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Abstract 

Grapevine (V. vinifera L.) is one of the most important crops worldwide due to its global 

distribution and economic value. Two forms of grapevine still co-exist nowadays: the cultivated 

form V. vinifera subsp. sativa and the wild form V. vinifera subsp. sylvestris, which is considered 

the ancestor of present cultivars. Archeological and historical findings suggest that cultivated 

grapevines have been domesticated from wild populations of V. sylvestris circa 8,000 BP in the 

Near East. However, recent genetic analyses raised the outstanding question whether multiple 

domestication events occurred. During domestication the biology of grapes changed dramatically 

to guarantee greater yield, higher sugar content and more regular production. The changes in 

berry and bunch size as well as the transition from dioecious wild plants to hermaphrodite 

cultivated grapes were crucial. Additional studies on the genetic relationship between wild and 

cultivated grapevines are required in order to understand how this phenotypic evolution occurred 

and to clarify the process of adaptation to domestication in grapevine. This will be useful for the 

future genetic improvement of viticulture. 

In this regard, we investigated the genetic and phenotypic variation within a germplasm 

collection of wild and cultivated grapevine accessions. The whole population was first genotyped 

with the commercial GrapeReSeq Illumina 20K SNP array, yielding 16K good quality single 

nucleotide polymorphisms (SNPs). Afterwards, a novel Restriction Associated DNA-sequencing 

(RADseq) procedure was developed in order to further increase the density of molecular markers 

across the grapevine genome. By applying this novel RAD-seq protocol to the whole population, 

37K SNPs were identified, which reflected a considerable level of genetic diversity between sativa 

and sylvestris accessions. The two merged SNP matrices were filtered for SNP loci with a missing 

rate > 0.2 and a minor allele frequency (MAF) < 0.05. The final panel of 27K SNPs evenly 

distributed along the grapevine genome was used to investigate the population structure by using 

both Principal Component Analysis (PCA) and the cluster algorithm implemented in 

fastSTRUCTURE software. In line with previous research, both analyses highlighted a low but clear 

differentiation between sativa and sylvestris individuals. Therefore, the extent of Linkage 

Disequilibrium (LD) was evaluated within the whole grapevine population and in the two 

subspecies separately. LD, as measured by the classical r2 correlation coefficient, decayed below 

0.2 within 10 kb in the whole population. On the other hand, a slower LD decay was observed in 

the wild compartment, where r2 reached values below 0.2 within 20 kb. This result can be related 

with an elevated level of inbreeding among wild individuals, linked to a small effective population 

size and the missing gene-flow between wild populations.  

Population differentiation statistic (FST) was computed across the grapevine genomes 

looking for genomic regions with divergent allele frequencies between the two grapevine 

subspecies. An overall low level of genetic differentiation (FST = 0.12) was observed between 

cultivated and wild grapes, suggesting the occurrence of genetic exchange among the two 

subspecies. However, a non-random distribution of divergent sites was observed along the whole 

genome: over two thousands of SNP loci revealed a significant level of differentiation between 

sativa and sylvestris, validated empirically with a permutation test. 1,714 annotated genes were 

found in LD with these most significant SNPs, and showed an enrichment of predicted functions 

related to the metabolic processes of nitrogen and carbohydrate as well as to the perception and 

adaptation to environmental stimuli. A slightly reduction of nucleotide diversity in the sylvestris 
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(πsylvestris/ πsativa ~0.95) was observed in almost all the identified genes involved in stress responses, 

suggesting that a selection is likely acting in wild populations for adaptation to several 

environmental changes. Therefore, these results point the attention towards sylvestris grapevines 

as valuable resources of resilience genes or alleles, which may have been lost in cultivated 

grapevine during the domestication process. 

Genome-wide association study (GWAS) approach has been applied as an alternative 

strategy to identify the genes and mutations that have been targets of selection during crop 

domestication. Therefore, the germplasm collection of cultivated and wild grapevines has been 

evaluated in two years for single berry and single bunch weight, number of bunches per plant, 

yield and berry composition (sugar, organic acid and K+ concentrations, titratable acidity and pH). 

A great phenotypic variation was observed within and between the two grapevine subspecies, 

notably for berry size, pH, acid contents and titratable acidity. The association test, carried out 

accounting for confounding factors, identified significant genotype-phenotype correlations for all 

traits, except for single berry weight. Genes encoding proteins related to Ca2+ sequestration and 

signalling, transcription factors and enzymes involved in the metabolism of polyamines were 

identified in linkage with the SNPs significantly associated to yield and bunch weight. At the same 

time, genes with a central role in the control of berry flesh pH and acidity were detected, such as 

the isocitrate lyase and V-type proton ATPase subunit a3 genes.  

Therefore, the present research has proven for the first time the feasibility of population 

genetics and association mapping approaches for dissecting the genomic basis of phenotypic 

variation in a complex genetic system as grapevine. Moreover, further evidence of the relevance 

of wild grapevine as a model for understanding the mechanisms of adaptation to natural 

conditions has been provided. These results pave the way for understanding how wild and 

cultivated grapevines react to environmental stimuli, which will benefit the development of new 

breeding strategies to face the ongoing climate changes and the growing demand of a sustainable 

viticulture.  
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Riassunto 

La diffusione geografica e l’importanza economica della viticoltura fanno della vite 

euroasiatica (V. vinifera L.) una delle specie più importanti per l’agricoltura mondiale. La maggior 

parte dei vitigni coltivati appartengono alla sottospecie V. vinifera subsp. sativa, la quale si ritiene 

sia stata domesticata nel vicino Oriente dalla vite selvatica (V. vinifera subsp. sylvestris) intorno al 

IV millenio a.C. Tuttavia, studi recenti hanno sollevato l’ipotesi di eventi di domesticazione 

secondaria della vite coltivata in Europa occidentale. Si pensa che il passaggio da viti selvatiche 

dioiche a viti con fiori ermafroditi sia stato fondamentale per la domesticazione della vite, dal 

momento che la capacità di produrre frutti per autofecondazione garantiva una produttività 

superiore e costante di uva. Altrettanto importante è stata la selezione per caratteristiche dell’uva 

di immediata percezione, come per esempio la dimensione della bacca ed il suo contenuto 

zuccherino. Studi aggiuntivi sulle relazioni genetiche tra la vite coltivata e la sua forma spontanea 

sono necessari allo scopo di chiarire la serie di incertezze che ancora persistono sull’origine della 

vite domestica ed incentivare il miglioramento genetico della viticoltura attuale.  

Pertanto, il principale obiettivo del presente lavoro di tesi è stato la caratterizzazione della 

variabilità fenotipica e genetica di una collezione di viti coltivate e selvatiche. L’intera popolazione 

è stata genotipizzata con il nuovo GrapeReSeq 20K SNP chip, ottenendo una matrice finale di 16 

mila marcatori SNP di alta qualità. Allo stesso tempo, un nuovo protocollo della tecnologia RAD-

seq è stato messo a punto con lo scopo di incrementare la densità dei marcatori molecolari lungo 

il genoma di vite. In seguito all’applicazione di questa nuova procedura di RAD-seq all’intera 

collezione di viti, circa 37 mila marcatori SNP sono stati identificati, mettendo in evidenza una 

cospicua diversità genetica tra la vite coltivata ed il suo presunto progenitore. L’unione delle due 

matrici di marcatori SNP, seguita dalla rimozione dei loci con un tasso di dati mancanti superiore a 

0.2 ed una frequenza dell’allele minore (MAF) inferiore a 0.05, ha portato alla formazione di un 

panel definitivo di circa 27 mila marcatori SNP, equamente distribuiti lungo il genoma di vite. 

Questo panel finale di marcatori SNP è stato utilizzato per analizzare la struttura della 

popolazione attraverso due approcci complementari, ossia l’analisi delle componenti principali 

(PCA) e l’approccio bayesiano implementato nel programma fastSTRUCTURE. In accordo con 

quanto riportato in letteratura, entrambe le strategie hanno messo in evidenza una chiara e 

moderata differenziazione tra le accessioni di V. sativa e V. sylvestris. Pertanto, l’estensione del 

Linkage Disequilibrium (LD), espresso sottoforma del classico coefficiente di correlazione r2, è 

stata valutata nell’intera collezione e nei due sottogruppi separatamente. Il valore di r2 è risultato 

inferiore ad una soglia di 0.2 dopo circa 10 kb nel germoplasma completo e dopo 20 kb nella 

sottopopolazione delle viti selvatiche. Questa discrepanza di valori di LD nelle viti spontanee può 

essere legata alla ridotta dimensione della popolazione effettiva ovvero alla mancanza di scambio 

di materiale genetico (gene-flow) tra popolazioni diverse di V. sylvestris.  

In seguito, la differenziazione genetica tra le viti coltivate e selvatiche lungo il genoma è 

stata misurata sottoforma di indice di fissazione (FST) per individuare regioni genomiche con 

frequenze alleliche divergenti tra le due sottospecie. Il valore medio di FST pari a 0.12 ha suggerito 

una moderata differenziazione genetica tra le accessioni di sativa e sylvestris, indicando come tra 

di esse si verifichino frequenti eventi di ibridazione. Tuttavia, circa 2 mila marcatori SNP hanno 

mostrato un elevato livello di differenziazione tra le viti coltivate e selvatiche (FST > 0.27), come 

confermato dal test di permutazione. 1,714 geni annotati sono stati identificati in linkage con i 
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suddetti marcatori SNP, mostrando un significativo arricchimento in funzioni geniche predette 

legate al metabolismo dell’azoto e dei carboidrati, e ai meccanismi di risposta ed adattamento agli 

stimoli ambientali. Una lieve riduzione della diversità nucleotidica della vite selvatica (πsylvestris/ 

πsativa ~0.95) è stata osservata nella maggior parte delle suddette regioni geniche con un ruolo 

nella risposta a stress biotici ed abiotici. Pertanto, una pressione selettiva sta probabilmente 

operando nelle popolazioni di V. sylvestris per l’adattamento ai sempre più frequenti 

cambiamenti climatici. Questo risultato sottolinea l’importanza della vite selvatica come putativa 

fonte di geni e/o alleli di resilienza, i quali potrebbero essere stati persi dalla vite coltivata durante 

il processo di domesticazione.  

L’approccio di genome-wide association study (GWAS) è stato, in seguito, applicato come 

strategia alternativa per l’identificazione dei geni e delle mutazioni selezionati durante la 

domestizatione della vite. Pertanto, l’intera collezione di viti coltivate e selvatiche è stata 

fenotipizzata per il peso della bacca e del grappolo, il numero di grappoli per pianta, la 

produttività, e la composizione chimica della bacca (contenuto in zuccheri, acidi organici e 

potassio, acidità titolabile e pH). Un elevata variabilità fenotipica è stata osservata tra e all’interno 

dei due sottogruppi di vite, soprattutto per i caratteri peso della bacca, pH, contenuto in acidi 

organici e acidità titolabile. Il test di associazione, corretto per la struttura della popolazione e le 

relazioni di parentela, ha identificato correlazioni significative marcatore-carattere per tutti i 

fenotipi studiati, ad eccezione del peso della bacca. Geni codificanti per fattori di trascrizione e 

per proteine coinvolte nel metabolismo del calcio e delle poliammine sono stati identificati in 

linkage con i marcatori SNP significativamente associati ai caratteri produttività e peso del 

grappolo. Inoltre, il test di associazione ha consentito l’identificazione di geni coinvolti nel 

controllo del pH e dell’acidità totale della bacca, come per esempio i geni codificanti per la 

subunità A3 della pompa protonica vacuolare ovvero per l’isocitrato liasi.  

In conclusione, il presente lavoro di ricerca ha dimostrato per la prima volta come la 

genetica di popolazione e l’ association mapping siano due validi approcci per individuare le basi 

genetiche della variabilità fenotipica osservata in un sistema genetico complesso come la vite. 

Inoltre, sono state fornite evidenze dell’importanza della vite selvatica come modello per lo studio 

dei meccanismi di adattamento agli stress ambientali. Questi risultati rappresentano la base per 

comprendere come le viti selvatiche e coltivate reagiscano agli stimoli ambientali, nell’ottica di 

sviluppare nuovi programmi di miglioramento genetico della vite ed affrontare gli attuali 

cambiamenti climatici e la crescente richiesta di una viticoltura sostenibile.  
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Chapter 1 

INTRODUCTION 

Grapevine (Vitis vinifera L.) is one of the most economically important fruit crop in the 

world, growing mainly in climates with warm dry summers and cool wet winters [1]. Grapes are 

widely used as fresh (table grapes) or dried (raisins) fruits as well as for wine, juice and spirits 

production. In addition, recent trends have also focused on antioxidants and healthful products 

derived from grapes [2]. According to the Organisation International de la Vigne et du Vin (OIV, 

2015), 7,5 million hectares are cultivated worldwide with grapevine, yielding 73,7 million tons of 

grapes in 2014 [3]. 41% of total world grape is produced in Europe, with France, Italy and Spain as 

the leading countries, followed by Asia (29%) and America (21%). Out of total grape production 

55% is used for wine-making, 35% as table grape, 8% for raisin production and the remaining 2% 

for other products. Due to the global wine exports in volume increased to 104 million hectoliters 

along with a value of 26 billion Euros in 2014 [4], high priority must be given to grapevine 

breeding in order to improve economically important traits, such as yield and berry composition, 

in view of a “sustainable viticulture”. 

1.1. Taxonomy and origin of the grapevines  

1.1.1. The family of Vitaceae 

Grapevine is a member of the Vitaceae family which consists of perennial plants distributed 

in temperate and inter-tropical climates as woody or herbaceous climbers or rarely shrubs [5]. 

About 900 species from 15 genera are documented in the Vitaceae family, from which only the 

genus Vitis produces edible fruits [6]. Molecular phylogenenies based on the complete plastid 

genome of grapevine place the Vitaceae into the earliest diverging lineage of rosids [7]. 

Moreover, several plastid (rbcL, trnL-F intron and spacer, atpB-rbcL spacer, rps16, trnC-petN 

spacer; [8][9][10]) and nuclear (ribosomal ITS, GAI1; [11][12]) genes have been used for resolving 

the Vitaceae phylogeny, identifying five major clades in the family: the Ampelocissus-Vitis-

Nothocissus-Pterisanthes clade, the Parthenocissus-Yua clade, the core Cissus clade, the Cayratia-

Cyphostemma-Tetrastigma (CCT) clade and the Ampelopsis-Rhoicissus-Clematicissus clade [13]. 

The family ancestor may belong to the Cissus genus, which is typically inter-tropical and possess 4-

merous flowers and a basic chromosome karyotype of 2n = 24 [10]. On the other hand, the 

genera Ampelocissus, Vitis, Ampelopsis and Parthenocissus consist of plants with 5-merous 

flowers that are characterized by a karyotype of 2n = 40, except the subgenus Vitis (2n = 38) [1]. 

Recently, Wen et al. [14] used 417 single-copy nuclear genes from the transcriptomes of 15 

Vitaceae species, and the grapevine reference genome [15] to reconstruct the deep phylogeny of 

the grape family, showing how the Ampelopsis-Rhoicissus clade is the earliest divergent lineage, 

while the Vitis-Ampelocissus and Parthenocissus-Yua clades are sister groups. In addition, this 

analysis revealed the close relationship between the CCT and Cissus clades, suggesting a single 

origin of 4-merous taxa in the grape family. This topology was further confirmed by using both full 

plastome and mitochondrial genes sequences of 27 Vitaceae species [16], indicating that the 

grape family did not exhibit significant reticultation at deep level. 
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1.1.2. Origin and diversification of the genus Vitis 

The genus Vitis is composed of two subgenera: Muscadinia Planch. (2n = 40) and Vitis 

Planch. (2n = 38). Muscadinia subgenus is represented by only three species, V. rotundifolia, V. 

munsoniana and V. popenoei, mainly distributed across the southeast of USA and Mexico. The 

Muscadinia could be considered as a relictual monospecific subgenus (or genus) that could make 

the transition between the two sister clades Vitis and Ampelocissus [10]. On the other hand, the 

subgenus Vitis consists of ~60 species, among which the cultivated taxa V. vinifera. These species 

have been found mainly in the temperate zones of the northern hemisphere from North America 

to eastern Asia, except for some subtropical species (V. caribeae, V. lanata). The two subgenera 

are reproductively isolated, while the species within subgenus Vitis are interfertile [17]. All species 

are dioecious except for V.vinifera L., which has hermaphroditic flowers, and V.rotundifolia, which 

segregates for this trait [17]. Although only V. vinifera is cultivated for human consumption, the 

Vitis wild species are of great economic importance since they are used as rootstocks (V. riparia, 

V. rupestri, V. berlandieri) for the highly susceptible V. vinifera and represent a gene pool for 

resistance to biotic and abiotic stresses [1]. Studing the evolutionary relationships within the 

genus Vitis is complicated due to the numerous synonyms, which likely arose from the lack of 

agreement between systematic botanists on what can be considered a species, and because of 

the broad morphological variation within species [18]. Indeed, the systematics of Vitis have relied 

on morphology for a long time [19] and just recently molecular methods have been introduced to 

resolve this taxonomic controversy. A phylogenetic analysis with three plastid DNA regions of 48 

accessions, including 30 Vitis species and several V. vinifera cultivars, supported that the genus 

Vitis is monophyletic [20]. In addition, three clades have been identified within the Vitis genus, 

reflecting the geographic distribution of Vitis species: Europe, Asia and North America. In 

particular, while the Asian clade presented high genetic diversity, low genetic variability was 

observed in the European and North American clades, suggesting hybridizations between 

cultivated grapevine and autochthonous accessions [20]. However, the use of plastid markers did 

not allow the assessment of hybridizations between the analyzed species. Recently, Wan et al. 

[17] examined 309 accessions from 48 Vitis species, varieties and outgroups, with 27 unliked 

nuclear genes. By estimating the divergence time, they showed how the splitting events between 

the deeper clades occurred almost simultaneously within the subgenus Vitis. This results was in 

agreement with the high degree of shared polymorphisms between North America wild grapevine 

species and European cultivated species observed by Myles et al. [21]. Moreover, they confirmed 

the origin of Vitis during the Paleogene in North America, followed by a progression to Asia to 

Europe [22]. In particular, the oldest age of Vitis was assigned to the Paleocene (65.5-58.8 Ma), 

during which Laurasia has only begun dividing into North America and Eurasia, and the climate 

was considerably warmer in the northern latitudes [23]. During the Pliocene and Pleistocene 

cooling cycles, fragmentation and isolation of some North America and Asian species occurred 

leading to the primary divisions within Vitis. After the glacial period, these species must have 

expanded and adapted ecologically to their large present range, acquiring a remarkable diversity 

in morphological characters. This diversity has been maintained by barriers of geographical, 

ecological or phenological nature. Therefore, Vitis was part of the great biogeographic 

phenomenon of range restrictions, survival in refugia, and diversifications, caused in many groups 

of organisms by the Quaternary ice ages [24].  
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1.1.3. The domestication of V. vinifera 

The Eurasian grape (Vitis vinifera L.) exists nowadays as two forms in Eurasia and in North 

Africa: the cultivated form V. vinifera subsp. sativa (o vinifera), and the wild form V. vinifera 

subsp. sylvestris, which is considered the ancestor of present cultivars [25]. The wild-type and 

cultivated forms are sometimes referred as two separated subspecies based on morphological 

differences [26], even if this distinction can be debated since these differences are most likely the 

results of domestication by humans rather than geographical isolation. The grapevine 

domestication has been linked to the discovery of wine, although it is unclear which process came 

first [27]. During domestication the changes in berry and bunch size and from dioecious wild 

plants to hermaphrodite cultivated grapes were crucial. In addition, the biology of grapes changed 

dramatically to ensure greater yield, higher sugar content for better fermentation and more 

regular production. Uncertainty still remains about whether this changes occurred through sexual 

crosses and natural or human selection, or via mutation, selection and subsequent vegetative 

propagation [25]. Major questions about grapevine domestication concern the number of 

domestication events and their geographic locations [28]. Two opposite hypotheses have been 

formulated so far: (i) a restricted origin hypothesis in which domestication took place in a single 

location from a limited wild stock, with subsequent spreading to other regions [29]; (ii) a multiple-

origin hypothesis in which domestication occurred along the entire distribution range of wild 

progenitor species, involving a large number of founders [30]. According to the first hypothesis, 

grapevine has been domesticated in the Near East region, stretching from the western Himalaya 

to the Caucasus, during the second half of the 4th millennium B.C. [31][32]. From the primo-

domestication center, there was a gradual dispersal to adjacent regions such as Egypt and Lower 

Mesopotamia, and then further spread around the Mediterranean following the main civilizations 

(Assyrians, Phoenicians, Greeks, Romans) [27]. In particular, during the second half of the 2nd 

millennium domesticated grapevines made their first appearance in the Southern Italy and later in 

Northern Italy, Southern France, Spain and Portugal [33]. By the end of the Roman Empire, grape 

growing was common in most of Europe. Furthermore, the Romans were the first to assign names 

to cultivars, even if it is difficult to correlate them with modern varieties [25]. V. vinifera was 

introduced in America by the missionaries during the 16th century and in South Africa, Australia 

and New Zeland in the 19th century. A recent assessment of the genetic diversity within 950 sativa 

and 59 sylvestris genotypes with 5,387 SNPs provided further evidence of the origin of sativa in 

the Near East [34].  

However, other studies on the genetic relationship between wild and cultivated grapevines 

have provided novel evidences supporting the multiple-origin hypothesis. Indeed, Grassi et al. 

[33] applied six microsatellite (SSR) loci to study the origin of some Italian cultivated grapevines 

from in situ direct domestication of the wild autochthonous grapevine, suggesting a second 

domestication event in the Sardinia island. Accordingly, Arroyo-García et al. [28] analyzed with 

nine chloroplast SSR loci 1,201 individual grapevine genotypes, including 513 sativa and 688 

sylvestris accessions from the whole area of the grapevine distribution. They identified eight 

different chlorotypes, of which only four had a global frequencies greater than 5%. A similar 

geographic distribution of chlorotypes was observed between the sylvestris and sativa groups, 

suggesting the existence of at least two origins of the modern grapevine cultivars: (i) an eastern 

origin related to the sylvestris population groups located in Near and Middle East; (ii) a western 
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origin related to sylvestris individuals from Iberian Penisula, Central Europe and Northern Africa 

(Figure 1).  

Figure 1: Chlorotype distribution in sylvestris and sativa population groups. Geographic areas considered 

are separated by lines when needed. Asterisks indicate that specific locations of collection in the area are 
unknown. From west to east: Iberian Peninsula (IBP), Central Europe, (CEU), Northern Africa (NAF), Italian 
Peninsula (ITP), Balkan Peninsula (BAP), Eastern Europe (EEU), Near East (NEA) and Middle East (MEA). The 
figure also shows the values of unbiased chlorotype diversity and the number of genotypes considered 
within each population group. (Source: Arroyo- García et al. [28]).  

 

Furthermore, the genetic analysis of a Israeli grapevine population of sativa and sylvestris 

genotypes against European and Asian grapevine datasets with 22 SSRs revealed how a large bulk 

of Israeli sylvestris and sativa populations are genetically proximal, supporting an autonomous 

domestication in Israel [35]. This result was further strengthened by the full genomic sequencing 

of nine Israeli grapevine individuals, including for the first time 3 sylvestris accessions [36]. The 

genome-wide comparison of these genomic sequences with the SNP profiles gained with the 

Vitis18kSNP array for Georgian and European populations confirmed the close genetic homology 

between Israeli sativa and sylvestris accessions. 

These studies regarding the genetic relationship between cultivated and wild grapevines 

represent a step towards the elucidation of the grapevine domestication process. However, 

several doubts are left on how, where and when the cultivated grapevine arose from its wild 

relative. The huge progress made in plant genetics and genomics represents a great opportunity 

to better understand the domestication process of V. vinifera.  
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1.2. Phenotypic and genetic diversity of V. vinifera 

1.2.1. V. vinifera subsp. sativa 

Substantial phenotypic and genetic diversity has been maintained in the cultivated 

grapevine, whose number of cultivars available today is estimated from 6,000 to 11,000 [37]. This 

considerable variation of cultivated grapevines is the results of three main processes during the 

long history of viticulture: sexual reproduction, vegetative propagation and somatic mutations 

[25]. Indeed, since the high heterozygosity of grapevine genotypes, the sexual crosses produce 

any progeny with a novel combination of parental alleles resulting in phenotypic variation. 

However, due to the long juvenile period of grapevine plants, vegetative propagation is a 

common agronomical practise in viticulture to preserve and multiple highly desirable genotypes. 

In addition, cuttings are a convenient method of moving cultivars from one region to another. 

During this long process of vegetative propagation, somatic mutations may occur leading to 

morphological and agronomical differences. It is thought that the appearence of hermaphrodite 

flowers, which was crucial during the grapevine domestication, resulted from a mutation [25]. 

Moreover, a putative causal SNP responsible for the substitution of a lysine with an asparagine at 

position 284 of the 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS) seems to be involved in 

muscat flavor in grapevine [38]. In this regard, transposon and retrotransposon based mutations 

have played a central role in promoting phenotypic variation in grapevine [39]. For instance, it has 

been shown that the insertion of a gypsy-type retroelement (Gret1) in the promoter region of a 

regulatory gene of the Myb family causes the loss of black berry colour in homozygous individuals 

[40]. In addition, insertion of a haT transposable element in the promoter of the TFL1A gene was 

shown to cause an early phenotypic alteration affecting cluster ramification and development, 

delay in flower meristem specification as well as both flower and flower organ reiterations [41]. 

Several efforts have been devoted to explore and characterize the phenotypic variation of V. 

sativa, notably for traits of interest such as berry weight [42] and composition [43][44], bunch 

weight [1], leaf shape [45], fertility and phenology [46]. However, the analysis of large sets of 

genetic resources at the morphological level are still missing because of the complexity of the 

methods available so far or the fact that phenotyping grape is expensive, time consuming and 

requires a lot of space [1].  

The morphological and agronomical differences of cultivated grapevines could also arise 

from the adaptation to different ecological conditions across the whole geographical distribution 

of grapevine during the long history of viticulture. Indeed, Negrul [47] classified the V. vinifera 

cultivars into three large eco-geographical groups, called proles, based on morphological 

similarities. The wine grape varieties with small berries widespread in western Europe (France, 

Spain, Germany, Italy and Portugal) were included in the proles occidentalis, whereas the table 

grapes varieties with large berries, mainly cultivated in the wide area extending from Central Asia 

to Near East, were placed in the proles orientalis. In particular, Negrul recognised two sub-proles 

within the proles orientalis: (i) caspica, composed of ancient vines used for vinification before the 

advent of Islam (from AD 500-1100), and (ii) the antasiatica, including cultivars for table grape and 

raisins of more recent origin [48]. Finally, the proles pontica, probably the most ancient group, 

was identified by wine grape varieties cultivated around the Black Sea and in eastern Europe. 

Furthermore, varietal ecotypes found from Georgia to the Balkans were designated as proles 
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pontica sub-proles georgica and sub-proles balkanica, respectively. The Negrul’s classification of 

grapevine cultivars has been confirmed by recent studies of genetic diversity within grapevine 

germplasm collections by using molecular markers. Emanuelli et al. [49] investigated the patterns 

of molecular diversity at 22 SSRs and 384 SNPs in 2,273 accessions of V. sativa, its wild relative V. 

sylvestris, interspesific hybrid cultivars and rootstocks. Out of the 1,085 non-redundant genotypes 

733 were sativa accessions, which revealed a deep population stratification in four groups. The 

first cluster (vv1) represented maily Italian/Balkan wine grapes, which resemble the proles 

pontica, whereas the second groups (vv2) was more heterogeneous including both table grape 

varieties related to ‘cv Sultanina’ (proles orientalis sub-proles antasiatica) and some Spanish wine 

grapes with unknown origin. The Muscat table and wine cultivars (vv3) belong to proles orientalis 

sub-proles caspica, while the French and German wine cultivars (vv4) were part of the group 

occidentalis. This broad genetic variability allowed the construction of core collections to 

maximize the allelic diversity among the sativa accessions and make it easily accessible for future 

studies of gene mapping and functional genomics. Further evidence of how the genetic structure 

in cultivated grapevines is linked to geography and human selection was provided by Bacilieri et 

al. [50], which analyzed a dataset of 2,096 cultivated genotypes by 20 SSR loci. Three main genetic 

groups were identified: a) wine cultivars from western regions (proles occidentalis), b) wine 

varieties from Balkans, and East Europe (proles orientalis), and c) a group mainly composed of 

table grape cultivars from Eastern Mediterranean, Caucasus, Middle and Far East countries 

(proles pontica).  

However, the extent of morphological and genetic diversity found today among cultivated 

grapevines might be a narrow reflection of what existed before the introduction of disease-

causing agents (Phylloxera) from America at the end of the 19th century. Moreover, during the last 

50 years the globalization of wine companies and markets caused further reduction of diversity, 

because of the emergence of a few popular grapevine cutivars, such as Chardonnay, Cabernet 

Sauvignon, Syrah, and Merlot [51]. Due to the constant evolution of disease-related agents and 

climate conditions, the exploration of new cutivated and wild genetic resources is required to 

design novel breeding programs. In this regard, several efforts have been recently devoted to 

investigate the genetic diversity within focal regions of grapevine development. For instance, 

Marrano et al. [52] (Appendix A, page 120) reported the first assessment of genetic diversity, 

relationships and structure of 80 grapevine cultivars and 21 V. sylvestris accessions originated 

from the regions of Uzbekistan, Tajikistan and Kyrgyzstan, revealing a significant amount of 

genetic variation. Similarly Basheer-Salimia et al. [53] characterized 43 putative cultivars grown 

mainly for local table grape consumption at Palestine with 22 common SSR markers, revealing an 

evaluable level of genetic diversity in a region of immense historical importance for viticulture. 

These genotype-based diversity analysis, coupled with other studies regarding the genetic 

diversity level in more grapevine germplasm collections [54, 35, 55, 49, 56, 57], agreed upon the 

high degree of molecular diversity in grape. The nuclear SSR diversity revealed for cultivated 

grapevines ranged from 0.6 to 0.85, averaging 0.77, with a mean number of alleles per locus equal 

to 16.9 [57]. This diversity is comparable or slightly lower than the one observed in natural 

population of Arabidopsis (14.4 alleles/locus, gene diversity = 0.83) [58], in wild populations of 

wild rice in China (gene diversity = 0.86) [59], and in collection of maize (14.8 alleles/locus, gene 

diversity = 0.79) [60]. Diversity values (expected heterozygosity) for SNP are generally low due to 

their bi-allelic nature. In grapevine, SNP diversity values ranged from 0 to 0.66 with a mean value 

of 0.30 [61, 62], which is slightly higher than the mean value reported for maize (0.26) [63]. 
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Therefore, the exploitation of this high genetic diversity in grape will be helpful to understand the 

functioning of grape genome and to discover the genetic basis of important agronomical traits in 

order to support new breeding programs.  

1.2.2. V. vinifera subsp. sylvestris 

V. sylvestris is considered the putative ancestor of the cultivated grapevine and represents 

the only endemic taxon of the Vitaceae in Europe and Maghreb [64]. Wild grapevines have been 

identified in France [65], Spain [66], Italy [67], Germany, Switzerland, Austria, Romania [33] and 

Tunisia, as well as in other European countries (Figure 2) [25]. Apparently, Spain and Italy harbor 

the highest number of recorded wild populations and they were proposed to work as shelters for 

V. vinifera during the last glaciation as well as putative sources of postglacial colonization and 

diversification [68].  

Figure 2: Localization of wild grapevine population in the Mediterranean basin. (Source: Heywood and 

Zohary [64]) 

 

However, it has been questioned if the current wild vines are real sylvestris individuals that 

have never been cultivated, or if they are naturalized cultivated forms escaped from vineyards as 

well as hybrids derived from spontaneous hybridizations among cultivated and wild forms [69]. 

Currently, wild grapevine is endangered throughout all its distribution range [70], with small and 

isolated population in Europe and temperate regions along deep river banks. Indeed, the 

distribution of the wild grapevine has dramatically been reduced over the last centuries with the 

introduction of pathogens from North America (phylloxera, oidium, mildew). Most of them died, 

except in floodplain forests as the root–host homoptera phylloxera was sensitive to flooding [71]. 

Moreover, while American resistant rootstocks were introduced in the vineyards to face 

phylloxera pest, this insect continued to infect populations of wild grapevines in regions of 

floodplain forests where the water table lowered. Intensive river management, starting in the 

middle of the 19th century, enhanced this process. In addition, the replacement of the floodplain 

forest by arable crops and meadows as well as the intensification of forest management with the 
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removal of the vines, considered detrimental to tree growth, led to a further fragmentation of 

wild grapevine habitats. This had an enormous impact on gene exchanges between populations, 

leading to a bottleneck, especially in gyno-dioicious plants [69]. Therefore, the reduction of wild 

grapevine populations by human actions led to a decrease of genetic diversity within most of the 

analyzed population of V. sylvestris. De Andrés et al. [66] performed a wide search of wild 

grapevine populations in Spain, collecting 237 individuals in 61 different locations. The amount 

and distribution of their genetic diversity was assessed using 25 nuclear SSR loci. The number of 

alleles per locus ranged from 3 to 17, with an average of 9.0, and 17 alleles showed a frequency 

lower than 1% (rare alleles). A slighly reduction of observed heterozigosity (Ho = 0.6) was 

observed compared to the expected heterozigosity (He = 0.7), pointing to the existence of 

inbreeding in some wild grape populations (Fixation Index (F) from 0,04 to 0,54). A comparable 

result was obtained by Emanuelli et al. [49], which observed average values of 10.6 and 1.9 alleles 

per locus for the SSR and SNP loci respectively in a wild grape population of 139 genotypes. In 

addition, a lower heterozigosity was observed within the sylvestris group than the cultivated 

population: the Ho evaluated with SSR and SNP markers was equal, respectively, to 0.63 and 0.25 

in the former, and 0.76 and 0.35 in the latter. These results have been supported by other surveys 

of the level of genetic diversity in wild grape populations [52, 36, 28, 22]. A different scenario was 

described by Ergül et al. [72], which observed greater genetic diversity in wild grapes from 

Anatolia than the one of authoctonous grape cultivars. This result was expected as Anatolian 

populations are located at the primary center of diversity and thus are more diverse than in the 

peripheral populations. Accordingly the genetic diversity analysis of wild grape samples from 

different geographic locations of Georgia at four polymorphic microsatellite loci revealed high 

level of polymorphism [73]. Therefore, the wild forms still conserves an overall important genetic 

diversity, which can be explored to avoid the loss of biodiversity affecting the viticulture [69]. In 

this regard, the maintenance of genetic variability and the phenotypic characterization within wild 

grape populations has become a priority. Revilla et al. [74] have characterized the anthocyanin 

profile of 126 mostly Spanish wild grapevine accessions during several years. Considerable 

variability in the anthocyanin fingerprints was observed, leading to distinguish three groups: (i) in 

the first group (23 accessions), grapes did not contain acylated anthocyanins [75], occurring 

primarily in Pinot Noir and its mutants, in some grey and rosé cultivars or white grapes [76]; (ii) in 

the second group (17 accessions), grapes contained acylated anthocyanins and a high proportion 

of cyanidin-derived monoglucosides, occurring rarely in cultivated grapevines; (iii) in the third 

group (86 accessions), grapes contained acylated anthocyanins and a large proportion of 

delphinidin-derived monoglucosides, as do most grapevine cultivars [76]. Therefore, there is a 

considerable genetic variability related to anthocyanins in Spanish wild grapevine populations, 

higher than those reported for cultivated varieties commonly considered of Spanish origin [74]. 

Bodor et al. [77] compared 45 wild grapevine accessions from Germany, Italy and Turkey for 36 

ampelometric traits using digital image analysis. The investigation of leaf morphological 

characters among the wild grape accessions revealed how geographic origin, sex of the flowers 

and vintage have significant effect on the broad diversity of leaf morphology in wild grapes. 

Particular interest has been raised on the genetic variability related to the resistance against pests 

and disease within V. sylvestris. Recently, Guan et al. [78] conducted a broad screen to evaluate 

the susceptibility levels to Botryosphaeria dieback, an important grapevine trunk disease, within a 

large selection of accessions from the family Vitaceae, including also V.sylvestris individuals. Large 

variation of resistance levels was found, with good performance in several accessions from V. 

sylvestris, whose resistance correlated with earlier and higher induction of some defence genes, 
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both in green and necrotic wood. Moreover, leaves of several V. sylvestris accessions were also 

less susceptible to necrosis induced by treatment with a culture filtrate of Botryosphaeriaceae, 

compared to commercial cultivars of V. vinifera. Furthermore, Riaz et al. [79] screened 306 V. 

vinifera cultivars, 40 accessions of V. sylvestris, and 34 accessions of Vitis species from northern 

Pakistan, Afghanistan and China, with 34 SSR loci, which included markers in linkage to the known 

powdery mildew (Erysiphe necator) resistance loci Ren1, Run1, Run2 and Ren4 [80, 81]. Two 

mildew resistant genotypes of V. sylvestris were identified, which presented the sequences 

previously identified in two mildew resistant V. vinifera cultivars: ‘Kishmish vatkana’ and 

‘Karadzhandal’. Accordigly, Tisch et al. [82] analyzed a collection of the European wild grape, 

representing a complete copy of the genetic variation still present in Germany, revealing that 

many genotypes show good tolerance against several grapevine diseases, such as downy mildew 

(Plasmopara viticola), powdery mildew (E. necator), and black rot (Guignardia bidwelli). In 

addition, Duan et al. [83] investigated the potential genetic variation in V. sylvestris with respect 

to their output of stilbenes and potential use for resistance breeding. Considerable variation in 

stilbene inducibility was identified in wild grapes, which splitted in two clusters of stilbene 

‘chemovars’: one cluster showed quick and strong accumulation of stilbenes, almost exclusively in 

the form of non-glycosylated resveratrol and viniferin, while the second cluster accumulated 

fewer stilbenes. A screen of the population with respect to susceptibility to downy mildew of 

grapevine revealed that the subpopulation of genotypes with high stilbene inducibility was 

significantly less susceptible than low stilbene genotypes. On the other hand, Ocete et al. [84] 

observed in 53 (25 females and 28 males) wild individuals from Spain a wide range of leaves 

morphologies and a remarkable low incidence of pests and diseases. In addition, some of these 

wild genotypes produced wines with high acidity and intense color. Therefore, a broad phenotypic 

and genotipic variation can be observed in the grapevine wild-relative, which may shift into the 

centre of the attention of plant breeding and evolutionary biology, as a valuable genetic resource 

for breeding and sustainable viticulture [85].  

 

1.2.3. Genetic relationship between cultivated and wild V.vinifera 

Since the advent of molecular markers several analyses have been focused on the genetic 

relationship between cultivated and wild grapes, outlining a low but clear distinction among the 

two forms of V.vinifera. The analysis of population structure within a grapevine collection of wild 

and cultivated accessions from Spain identified four main clusters: the first (C1) and second (C2) 

clusters were mainly composed by wild individuals, instead of clusters 3 and 4 consisting notably 

of cultivated accessions [66]. In particular, the two genetic groups C1 and C2 mirrored the 

geographic origin of wild accessions from respectively Northern and Southern regions of Spain. A 

clear genetic differentiation was detected between wild and cultivated grapevine forms (FST = 

0.12), even if the existence of a restraint genetic exchange between them was suggested. Indeed, 

as expected for an outcrossing dioecious subspecies, 10 spontaneous hybrids (4% of the collected 

samples) between wild and cultivated forms were detected. This result was in agreement with the 

low pollen flow between vineyards and wild plants reported by Di Vecchi et al. [70], which tested 

a direct paternity-based approach for the characterization of pollen-mediated gene flow between 

wild and cultivated populations of grapevine. The pollen flow resulted strongly correlated to the 

distance between individuals, with an estimation of pollen immigration in the wild populations 

from the cultivated compartment ranging from 4.2% to 26%. However, most of the fertilizing 
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pollen could be assigned to wild males growing nearby. This result could explain the positive 

values of the inbreeding coefficient (FIS) observed in wild grapevine accessions from Spain [66].  

A clear genetic differentiation between the two V. vinifera subspecies has also been 

reported by Emanuelli et al. [49]. Indeed, the Principal Component Analysis (PCA) approach clearly 

differentiated along the PC2 the sativa from the sylvestris, accounting for 5% and 8% of the total 

genetic variability for SSRs and SNPs respectively. However, a clear overlapping zone was 

observed, highlighting the occurence of gene flow between wild and cultivated grapes. The 

overall FST value equal to 0.16 between cultivated and wild grapevines strongly supported this 

probability. Much more resolution in the distinction between wild and cultivated grapes was 

gained by applying a hierarchical population structure analysis with the sofware STRUCTURE [86]. 

Indeed, some wine grapes related to Pinot Noir and Traminer, two ancient cultivars [87], were 

clearly distinguished from wild grapevine accessions (Figure 3).  

The relationship between wild and cultivated grapevine has been recently investigated 

using high-throughput SNPs discovered with Next Generation Sequencing (NGS) technologies. The 

analysis of relatedness among sativa and sylvestris genotypes by using 5K SNPs provided strong 

support for a clear differentiation between the two forms of V. vinifera (FST ~0.1) [34]. However, 

relatedness among geographically diverse sample of wild and cultivated revealed how all sativa 

accessions were genetically closer to sylvestris populations from Near East than to wild 

populations from Western Europe. On the other hand, Western European cultivars were more 

closer related to western sylvestris than other sativa accessions, remarking the occurence of gene 

flow between wild and cultivated grapes in Western Europe. Two main groups of sativa and 

sylvestris were also identified in a grapevine collection from Georgia by De Lorenzis et al. [54] 

through the latest Vitis18KSNP array. The FST value, accounting 0.1, meant that the two groups 

have a moderate differentiation, in agreement with the gene flow between the wild and 

cultivated compartments [70].  

In symmary, the picture arising today about the genetic relationship between V. sativa and 

its wild-relative V. sylvestris is of a clear differentiation between the two subspecies. Evidence of 

genetic introgressions between wild and cultivated compartments have been provided, 

highlighting how the hybridization has played a central role in the domestication and 

diversification of modern cultivars. Indeed, the analysis of genetic diversity within sativa cultivars 

have defined a large complex pedigree resulting from a number of spontaneous and inter-

generation crosses between cultivars that have been vegetatively propagated for centuries [34]. 

On the other hand, positive values of FIS have been observed within the wild populations, 

suggesting a potential inbreeding depression likely resulted from their small size as well as the 

intra-population pollen flow and the absence of inter-wild population flow [70].  
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Figure 3: Flow chart of hierarchical STRUCTURE analysis of the Vitis germplasm composed by 1,085 unique 

accessions using 22 SSRs and 384 SNPs. In the first chart, samples of the four predefined groups are 
separated by black lines, while in subsequent charts, populations found by previous rounds of analysis are 
separated. Ultimately for the SSR and SNP data, respectively, there are: 1 cluster of rootstocks (Rs/RsI), 1 
cluster of Vitis vinifera sylvestris (VS/VSI) and 5 subclusters of cultivated grapevine: VV1, VV2, VV3, VV4/ 
VV1I, VV2I, VV3I, VV4I. Q – membership coefficient. (Source: Emanuelli et al. [49]). 

 

1.3. Grapevine genomics and genetics 

1.3.1. Whole genome sequences  

The first reference sequence of the grapevine genome has been reported in 2007 by Jaillon 

et al. [15], being the first genome produced for fruit crop, the second for woody species and the 

fourth for flowering plants. The nearby full homozygous line PN40024 (estimated homozigosity ~ 

93%), derived from Pinot Noir by successive selfings, was sequenced through the whole-genome 

shotgun strategy, gaining an 8.4-fold coverage of the genome. When considering only one of the 

haplotypes in each heterozygous region, the assembly consisted of 19,577 contigs and 3,514 

supercontigs, for an overall sequence of 487 Mb. 69% of the assembled genome was anchored 

along the 19 linkage groups (LGs) of the reference genetic map. Repetitive/transposable elements 

(TEs) constituted 41.4% of the grapevine genome, a slightly higher proportion than the one 

identified in the rice genome [88]. By the analysis of paralogous regions, it was concluded that the 

current grapevine haploid genome originated from the contribution of three ancestral genomes. 

The comparison of the grapevine gene regions with those of other completely sequenced plant 

genomes led to conclude that the paleo-hexaploidy was present in the common ancestor to 

grapevine, Arabidopsis and poplar. In particular, it seems that the formation of the palaeo-

hexaploid ancestral genome occurred after the separation between monocotyledons and 
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dicotyledons and before the radiation of the Eurosids [15]. An alternative scenario was proposed 

by Velasco et al. [89], which presented a draft genome sequence of a cultivated clone of Pinot 

Noir with a size of 504.6 Mb. The variation within this clone of grape consisted largely of 

chromosome-specific gaps and hemizygous DNA. Indeed, the two homologous chromosomes 

showed either different sequences in some genomic regions (hemyzygous DNA) or gaps 

corresponding to sequence present in just one chromosome. These results suggested that the two 

homologous chromosomes of the cultivated Pinot Noir differ on average by 11.2% of their DNA 

sequences and that grape exists in a dynamic state mediated in part by transposable elements 

[90]. In addition, over 2 millions SNPs, of which 1,7 millions anchored to the 19 LGs, were 

discovered between the two homologous chromosomes, for an estimated SNP frequency of 4.0 

polymorphisms per Kb. By the evaluation of the number of synonymous substitutions per 

synonymous site (KS), a relative recent large-scale duplication in the grapevine genome was 

proposed. Therefore, three genome duplications were assumed to have occurred in both poplar 

and Arabidopsis [91, 92], one of which has been shared by all dicots, one that has been shared by 

Arabidopsis and poplar but not Vitis, and one that has been specific for Arabidopsis and poplar 

respectively [93]. In addition, a hybridization event might have occured in Vitis after the genome 

duplication shared by all dicots, explaining the presence of many grapevine genomic regions in 

triplicate. Other individual grapevine genomes have been completely sequenced so far [94, 95, 

96], highlighting the complexity and high variability of grape genomes. The development of third-

generation sequencing (TGS) technologies offers several advantages, such as longer read lengths 

(i.e. ~10 Kb with the single-molecule real-time (SMRT) sequencing, developed by Pacific 

BioSciences, PacBio [97]), which will benefit current grapevine genomics by closing gaps, 

characterizing structural variation in individual genomes and studying the grapevine methylome 

[98]. Indeed, new sequencing projects of other individual grapevine genomes are in progress [99]. 

They will open a new stage of the grapevine genomics, which will see the integration of –omics 

technologies to better understand deeply the functional complexity of the grapevine genome and 

its interaction with environmental stimuli.  

The latest updated gene prediction, called v2 [100], counts 31,922 genes and 55,649 

transcripts in the grapevine genome. Indeed, the incorporation of RNAseq data allowed to add 

2,258 new coding genes and 3,336 putative long non-coding RNAs to the previous gene 

predictions [101]. 80% of the new genes were found to have at least one gene ontology 

annotation, enriching the list of functional categories with functions that were previously under-

represented, such as those related to nucleotide binding site. The v2 gene prediction showed 

longer transcripts and coding sequences (CDS), with an average length of 1,207 and 247 bp 

respectively, and a number of exons per gene equal to 5,3. 30% of v2 predicted genes undergo 

alternative splicing producing 32,395 different isoforms. In particular, 64% of the alternative 

spliced genes produced more than two isoforms and a total number of 21,632 alternative splicing 

events were identified. The comparison of alternative splicing in different tissues, genotypes and 

stress conditions led to conclude that the extent of change in alternative splicing due to stress is 

similar to that seen in different tissues, clearly indicating its role in stress response.  
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1.3.2. Challenges of grapevine genetics and Linkage Disequilibrium 

As other tree species, grapevine is a challenging genetic system compared to herbaceous 

species such as Arabidopsis and cereals [102]. The grapevine plant presents several physiological 

constraints, such as its deciduous perennial nature, vineyard space requirements, an annual 

reproductive cycle and a generation time varying between 2 and 5 years, depending on genotype 

and growing conditions [103]. A novel grapevine system suitable for rapid genetic studies in small 

controlled environments has been described [104]. It is based on the mutant allele in the 

grapevine GA insensitive gene (VvGAI1) which confers a dwarf stature, short generation cycles 

and continuous flowering (‘microvine’) [104]. Recently, Chaïb et al. [105] demonstrated how the 

‘microvine’ can be used for rapid plant transgenic studies and for rapid genetic mapping and trait 

dissection beyond an initial F1 generation. 

Due to the cultivated grapevine derived from the domestication of dioecy wild plants 

followed by extensive vegetative propagation, current grapevine genomes are highly polymorphic 

[28]. Therefore, the extent of linkage disequilibrium (LD) is generally low in the short range when 

a sample of genetically distant genotypes is analyzed [62]. LD is a measure of the degree of non-

random association between alleles at different loci [106]. It can be considered as a historically 

reduced level of the recombination of specific alleles at different loci controlling particular genetic 

variations in a population. The basic measurement of LD is determined by calculating the 

difference between observed haplotype frequency and that expected based on allele frequency 

[107]. Usually LD is measured by two related statistics D’ [108] and r2 [109], which both can have 

values ranging from 0 to 1. If they are equal to zero the presence of alleles at different loci are 

completely indipendent of one another (linkage equilibrium), while if D’ and r2 are equal to 1 the 

presence of alleles at different loci are totally correlated. The main difference between D’ and r2 is 

that the latter accounts for both recombination and mutations events, while the former takes in 

consideration just the recombination events [110]. Indeed, LD is a sensitive indicator of the 

population forces that structure the genome, such as mutation, genetic drift, population structure 

and selection [111]. In particular, the bottlenecks associated to the domestication led to reduce 

genetic diversity and to increase the extent of LD by eliminating recombinant lineages [112]. Even 

when loci remain polymorphic, the number of allelic combinations across loci can be much 

reduced, leading to extensive haplotype structure (Figure 4) [112].  

The studies published to date on the extent of LD in grape suggest that LD decays to 

background levels within a small number of kilobases. Lijavetzky et al. [62] characterized over 200 

random gene fragments, representing circa 1 Mb of total sequence and over 1,500 SNPs, within 

11 genotypes corresponding to ancient unrelated cultivars as well as wild plants. r2 values close to 

0.2 were observed along genetic distances of 100-200 bp between pairs of SNP loci. Accordingly 

Myles et al. [21] evaluated the LD decay in 10 cultivated genotypes of V. vinifera with the 

Vitis9KSNP array, concluding that, while LD is generally low across all distances, it remains above 

background levels to ~10 kb. Moreover, this rapid LD decay appeared unchanged in 59 accessions 

of V. sylvestris genotyped with the same SNP technology [34]. 
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Figure 4: During a bottleneck, lineages are lost from the population. This leads to lost one or more of the 

gametic types with a consequent increase of LD. Indeed, only two of the four possible gametic types remain 
after a bottleneck, resulting in a situation of ‘perfect LD’ between SNPs. (Source: Hamblin et al. [112]). 

 

Recently, Nicolas et al. [113] assessed LD extent by genotyping 372 SNPs over four genomic 

regions and 129 SNPs distributed over the whole genome in a diversity panel of 279 cultivars. LD, 

measured by r2 corrected for kinship, reached 0.2 for a physical distance between 9 and 458 kb 

depending on genetic pool and genomic region. In addition, different values of LD were observed 

across the four genomic regions between wine eastern cultivars, wine western variaties, eastern 

table grapes and wild grapevine individuals. In particular, LD extent in the wild panel ranged from 

31 to 127 kb. Further studies on the pattern of LD across the whole genome are still necessary to 

design suitable grapevine collections for genome-wide association studies (GWAS) and genome 

selection (GS). Indeed, differences in the extent of LD have a very important effect on the marker 

density required for GWAS and GS, and the potential gene mapping resolution. Moreover, the 

assessment of LD size in cultivated and wild populations of grapevine will help to understand 

which evolutionary forces have been operating and whether some genomic regions have been 

subjected to selective pressures during the long history of viticulture [114].  

 

1.3.3. How to identify genes responsible for natural genetic variation in grapevine  

The identification of genes underlying the natural genetic variation for specific traits as well 

as the perception of the nature and effects of their allelic differences represent a major challenge 

in grapevine genetics [103]. Since the common quantitative nature of genetic variation, 

quantitative trait loci (QTL) mapping approaches are frequently applied to identify the genomic 

regions responsible for the phenotypic variation at different traits in grapevine. QTL mapping 

studies in grape usually rely on the use of F1 progenies obtained by crossing cultivars [115] or in 

selfed progenies [116]. QTL mapping has been extensively used to identify genomic regions 

contributing to resistance traits in crosses between V. vinifera cultivars and other Vitis species 

resistant to several grapevine diseases. This is the case for the Run1 [117] and Ren1 [81] loci 

responsible for dominant resistance to powdery mildew (Erisyphe necator), and the Rpv1 locus for 

the resistance to downy mildew (Plasmopara viticola) [118]. Recently, the inheritance of powdery 
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mildew resistance and susceptibility of wild V. rupestris B38 and cultivated V. vinifera 

‘Chardonnay’ has been studied by using 17K SNPs identified with genotyping-by-sequencing (GBS) 

approach [119]. Linkage maps of over 1,000 SNPs were constructed for the two parents and the 

‘Chardonnay’ locus named Sen1 (Susceptibility to Erysiphe necator 1) was corroborated, providing 

the first insight into the genetics of susceptibility to powdery mildew from V. vinifera. Regarding 

plant growth and physiology, the genetic structure of the traits seems to be complex and 

controlled by many QTLs of small effects. Exceptions are the control of plant sex and berry colour, 

that seems to be regulated by single loci, both located at LG2 [120, 121]. Other QTL mapping 

analysis have focused on the genetic control of berry-related triats, such as seedlessness and 

berry size [122][123]. A major seed development inhibitor (SDI) locus was detected on LG18 with 

a dominant effect on seedlessness and pleiotropic effects on berry size. In addition to this major 

QTL on LG18, Doligez et al. [42] have recently identified five new QTLs for berry weight on LGs 1, 

8, 11 and 17, and four new loci for seed traits on LGs 4, 5, 12 and 14. Several QTLs have also been 

identified for sugar and organic acid composition of grape fruits. Chen et al. [43] reported 14 QTLs 

at ten LGs for berry sugar content, and 8 QTLs for berry malic acid content, total acidity and 

tartaric acid-to-malic acid ratio on LGs 6, 13 and 18. Houel et al. [124], by constructing a mapping 

population of 129 microvines derived from Picovine x Ugni Blanc flb, identified seven major and 

minor QTLs for malate and tartrate contents at green lag phase of grape berries, of which four co-

localize with the seed number and berry weight QTLs on LG 7. Even though QTL mapping analysis 

have successfully provided a list of candidate genes putatively underlying the investigated traits in 

grapevine, the final demonstration of the role of a specific gene in the determination of a given 

phenotypic trait is still missing. Indeed, QTL mapping has limited mapping resolution and 

relatively low power in accurately estimating the number and size of QTLs [125]. In addition, the 

results of QTL analysis often depend on the environment as well as the parental lines used in the 

cross [126].  

An alternative to mapping traits in segregant populations is to performe LD- or association 

mapping, which uses a population of unrelated individuals [127]. Indeed, LD mapping approach is 

applied on samples of individuals from germplasm collections or natural populations, leading to 

explore a broader genetic variations with wider background for marker-trait correlations (i.e., 

many alleles evaluated simultaneously) [128]. Therefore, association mapping relies on the 

utilization of majority recombination events from a large number of meiosis throughout the 

germplasm development history [129]. As a result, the phenotype of interest may be associated 

with a much smaller chromosomal segment than in a classical bi-parental QTL mapping, providing 

in theory greater mapping resolution. LD mapping can be separated in two types, each focusing 

on a different level of genetic analysis. The first, called “candidate-gene association mapping”, 

focuses on the genetic variation in one or few candidate genes, putatively involved in the 

phenotypic variation of specific traits [130]. The second type of association analysis, called 

“genome-wide association mapping (GWAS)”, aims to identify genome-wide variation that 

associates with phenotypic variation. Therefore, GWAS requires measures of genetic variabiity in 

markers representing most of the genome and tests phenotype-genotype association for each 

marker [131]. However, one of the main limitations of LD mapping is the detection of spurious 

phenotype-genotype associations due to population structure [107]. Usually, population structure 

is geographic because crops were moved to a much broader range of environments, where 

natural selection drove genetic adaptation to these new habitats. Equally important is genetic 

structure associated with end-use or cultural preferences, such as table and wine grapes [113]. In 
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such cases, the phenotypic variation within subpopulations will strongly correlate with the 

differences of their allele frequencies, leading to false-positive marker-trait associations. In this 

regards, several models have been built so far to account for confounding factors in LD mapping 

[132, 133]. To date, GWAS has been mainly applied in cereals and other herbaceous species [134, 

135, 136]. For instance, the phenotypic variation in malting quality in barley was successfully 

linked to haplotype variation at the β-amylase2 gene, a locus involved in starch hydrolysis [137]. 

In maize, a GWAS approach was applied to identify QTLs and underlying candidate genes for leaf 

metabolite variation [138]. Recently, association mapping studies have been carried out also in 

perennial species, such as apple [139] and banana [140], revealing how LD mapping is a valuable 

genetic tool to dissect the genomic basis of main agronomical traits in complex genetic systems.  

Both QTL mapping and GWAS approaches have been extensively used as part of the “top-

down” strategy for identifying genes underlying specific traits [126]. Indeed, the top-down 

approach begins with the phenotype and uses genetic analyses to uncover genomic regions and 

candidate genes involved in the phenotype of interest. An alternative approach, named “bottom-

up approach”, start by using population genetics to discover “signature of selections” and than 

make use of other genetic tools to identify the phenotypes to which these genes contribute. 

Indeed, selection reduces variation at genomic regions surrounding genes controlling target 

phenotypes, because just a portion of the population will carry the alleles under selection. 

Therefore, only the selected alleles and those of genes in close linkage (“genetic hitch-hiking” 

[141]) will be retained [142]. This localized reduction of diversity at the selected locus and its 

surrounding genomic regions is well defined as “signature of selection” (Figure 5). Researchers in 

molecular evolution divide selection in different categories. Positive selection is defined as any 

type of selection in favor of new advantageous mutations. Negative selection refers to the 

opposite case in which selection acts against new mutations, also known as purifying selection. 

Balancing selection occurs when two or more extreme phenotypic values are favored 

simultaneously. This type of selection will often increase variability (R Nielsen 2005). 

Overdominance, which occurs if the heterozygote has the highest fitness, is a case of balancing 

selection [143].  
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Figure 5: The impact of domestication on genetic diversity. Colored dots represent neutral allelic diversity 

at genes across a chromosome (blue bar) in populations of a crop’s wild ancestor (top) and in the crop itself 
(middle). Genetic drift, acting strongly during the domestication bottleneck have caused a genome-wide 
reduction in genetic diversity. In contrast, selection have differentially reduced diversity at the specific 
genes that control the traits subject to selection. As a favored allele is driven to high frequency, much of the 
standing genetic variation within and around the targeted gene (black bar) is removed from the population, 
creating a molecular signature of selection. (Source: Olsen and Wendel [142]). 

 

Bottom-up approaches have been used to identify domestication loci [142], which are the 

genomic regions underlying the main changes occurred during crop domestications [144]. Indeed, 

the earliest agricultural practice was to grow and harvest wild plants of a favorable species, 

marking the shift from the hunter-gatherer life to agricultural civilization [144]. Afterward, 

humans would select the individuals with the desired characteristics in the wild species 

populations and use the favorable seeds to resow and plant the next year. During these constant 

cycles of human selection and crop improvement every year, many morphological and 

physiological traits of the wild progenitors were reshaped. The traits under human selection in 

crop domestication included seed dormancy, flowering time, mating system (e.g., the change 

from dioecious to monoecious plants in grapevine [25]), and coloration. Understanding the 

genetic basis of domestication-related traits is of particular importance since they still represent a 

target of modern crop breeding [145] (Figure 5). Bottom-up approaches begin with whole-

genome profiling of sequence variation in a diverse population sample, including domesticated 

varieties and its wild ancestors. Afterwards, genome scanning for selection signatures, also 

referred to as “selective sweeps” [146], is performed by applying population genetics methods. 

One way to detect selective events is the comparison of allele frequencies within and between 

populations (i.e. domesticated versu wild individuals) by using Wright’s fixation index (FST), the 

most common metric for population differentiation [147]. FST is defined as the difference between 

the average expected heterozygosity of subpopulations and the expected heterozygosity of the 

total population based on the Hardy–Weinberg equilibrium [106]. Indeed, if selection is acting on 
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a locus within one population but not within other related populations, then the allele 

frequencies at that locus among the populations can differ significantly. Large values of FST at a 

locus indicate high differentiation between populations, which is suggestive of directional 

selection, a case of positive selection [148]. Small values indicate that the populations being 

compared are homogenous, which may be indicative of balancing or directional selection in both 

[114]. Signatures of selection can be also detected by measuring and comparing the level of 

nucleotide diversity within each population [149]. The nucleotide diversity (π) is the average 

number of nucleotide site differences found when each unique pair of DNA sequences in a sample 

is compared. π is sensitive to the frequency of each DNA sequence allele in a sample, since more 

frequent sequences appear in more of the pairwise comparisons. Lin et al. [150] compared the 

level of nucleotide diversity between populations of the wild species Solanum pimpinellifolium 

with small red-fruited tomato, S. lycopersicum var. cerasiforme with cherry tomato and the big-

fruited tomato S. lycopersicum. 186 and 133 regions were identified as candidate domestication 

sweeps and improvement selective sweeps respectively, ,leading to develop a two-steps 

evolution hypothesis of fruit mass in tomato. The analysis of nucleotide diversity is often 

completed with the test of Tajima’s D, which quantifies the reduction in the genetic diversity 

around the selected locus by comparing π with the total number of segregating polymorphisms 

(θ) [151]. A segregating site is any nucleotide site that maintains two or more nucleotides within 

the population. Due to π is sensitive to the allele frequencies in the sample, a surplus of low 

frequency alleles (rare alleles) inflates θ. This leads the Tajima’s D to reach negative values, which 

indicate positive selection [151]. On the contrary, positive values of D results from an excess of 

intermediate-frequency alleles, which may occur in case of balancing selection [114]. Branca et al. 

[152] observed strongly negatively skewed distributions of Tajima’s D in a diverse collection of 26 

M. truncatula accessions, due to an excess of low-frequency SNPs. These skewed distributions of 

D may reflect a recent population expansion or positive selection events in M. truncatula. 

Bottom-up approaches have been applied to different species, such as rice [153], maize [154], 

apple [155] and sorghum [135]. Indeed, bottom-up approaches have several advantages for 

finding genes that contribute to adaptive traits and that will be useful in an agronomic context: (i) 

it is not necessary to develop segregant populations; (ii) far fewer plant samples are required 

compared to LD mapping; (iii) as association mapping, population genetics approaches can be 

applied to species with a long juvenile phase; (iv) they provide historical insights into the process 

of domestication [126]. Bottom-up and top-down approaches are complementary genetic tools. 

For instance, population genetics studies can provide candidate genes to further genetic analysis 

with LD mapping, or rather GWAS results can be better interpreted by implementing population 

genetic methods.  
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OBJECTIVES 

Grapevine is a complex genetic system due to its perennial nature and high polymorphic 

genome, that slow down the identification of genes underlying important agronomical traits. In 

addition, the origin of modern grapevine cultivars and their genetic relationship with their own 

wild relatives are still controversial. The genetic and phenotypic exploration of wild populations is 

becoming a priority in grapevine, since they still represent a reserve of natural genetic diversity, 

which can be exploited in future plant breeding to face the genetic erosion occurring nowadays in 

viticulture. Therefore, the present research aims to provide further evidence of the relationship 

between cultivated and wild grapevines at both genomic and phenotypic levels. Moreover, in the 

present study the feasibility of new genetic tools, such as GWAS and population genomics, is 

explored as an alternative to the traditional strategies of gene mapping, aiming to acquire new 

information about the functional genomic basis of the phenotypic diversity observed in grapevine. 

Therefore, the present research has been structured as follows: 

• Chapter 2 describes the development of a new protocol of restriction-site associated DNA 

(RAD) sequencing technology, in order to discover and validate a dense panel of SNP loci 

throughout the grapevine genome in a germplasm collection consisting of wild and cultivated 

grapevine accessions.  

• Chapter 3 shows the application of population genetics approaches to characterize the 

differentiation between the two subspecies of V. vinifera and identify the genomic regions 

underlying the adaptation occurred during the grapevine domestication.  

• Chapter 4 is a study of linkage disequilibrium mapping in a population of V. sylvestris and 

V. sativa for ten domestication-related traits, including berry size and composition.  
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Chapter 2 

SNP-DISCOVERY BY RAD-SEQUENCING IN A 

GERMPLASM COLLECTION OF WILD AND 

CULTIVATED GRAPEVINES (V. vinifera L.) 

 

Abstract  

Background: Grapevine genome has a high level of heterozygosity and a rapid linkage 

disequilibrium decay. The increase of molecular marker density throughout the genome is 

fundamental in order to improve the power and resolution of genetic mapping and to enable the 

application of population genomics methods. In this study we carried out the (high-throughput) 

SNP discovery in a grapevine germplasm collection of cultivars (Vitis vinifera subsp. sativa) and 

wild accessions (V. vinifera subsp. sylvestris) through a novel protocol of restriction-site associated 

DNA (RAD) sequencing based on 5500 SOLiD™ System.  

Results: By resequencing 1.1% of the grapevine genome at a high coverage, we recovered 

34K BamHI unique restriction sites, of which 6.8% were absent in the ‘PN40024’ reference 

genome. Moreover, we identified 37,748 single nucleotide polymorphisms (SNPs) that included 

154 non-nuclear variants. 93% of markers belonged to the 19 assembled chromosomes with an 

average of 1.8K SNPs per chromosome. 48% of the identified SNPs fell in genic regions mostly 

assigned to the functional categories of metabolism and regulation which may reflect different 

adaptation mechanisms among wild and cultivated grapevines. The SNP validation with both 

Sanger sequencing and the Vitis20K array showed the ability of RAD-seq to accurately determine 

genotypes in a highly heterozygous species.  

Conclusions: We provide a novel panel of high-quality and informative SNPs which reflects 

a considerable level of genetic diversity between sylvestris and sativa accessions. It will be useful 

in future surveys to select candidate polymorphisms contributing to domestication-related traits 

and to investigate the molecular pathways associated with plant response to environmental 

stimuli.  
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Background 

The introduction of molecular markers in plant breeding has enabled remarkable increases 

in agricultural production thanks to the discovery of genes associated to major agronomic traits, 

the study of species diversity and evolution, and the characterization of plant genetic resources 

[156]. During the last ten years Single Nucleotide Polymorphisms (SNP) have become the markers 

most widely used due to their abundance in the genome. They compensate the biallelic nature by 

being ubiquitous and amenable to high-throughput automation [157]. The advent of Next 

Generation Sequencing (NGS) has increased the possibilities of de novo and reference SNP 

discovery in cost-effective and parallel manners. At the same time, huge progress has been 

achieved for high throughput SNP genotyping thanks to the introduction of array-based 

technologies, able to screen several thousands SNPs per assay [158]. SNP arrays rely on the prior 

production of sequence information, the identification and validation of polymorphisms and 

finally the array construction [159]. Myles et al. [21] designed the first SNP array for grape 

(Illumina Vitis9KSNP chip) which included 8,898 SNPs discovered in a panel of 17 genomic DNA 

samples from V. vinifera cultivars and wild Vitis species. The second highest throughput SNP array 

produced in grapevine as part of the GrapeReSeq Consortium [160] includes 18,775 SNPs 

(Illumina Vitis18KSNP array). De Lorenzis et al. [54] used this tool to investigate the genetic 

variability of a Georgian germplasm collection including cultivated and wild grapevine genotypes, 

obtaining a final panel of 12,083 polymorphic loci. These experiments have shown how the 

application of array-based technologies to population genetic studies may underestimate the real 

genetic diversity of the investigated populations, especially when the discovery panel is 

evolutionary divergent from the studied accessions [161].  

Several methods that combine genome-wide SNP discovery and SNP genotyping are 

nowadays available. They rely on the use of restriction enzymes in order to reduce the portion of 

the genome to be sequenced. The number and type of restriction enzyme used as well as the 

amount of digested DNA, the multiplexing capabilities and the final depth of SNPs coverage 

distinguish the different protocols of genome-wide SNP discovery. One of these approaches is the 

Restriction-site Associated DNA sequencing (RAD-seq) based on rare-cutter restriction enzymes 

(6-8 bp recognition site) for sequencing short DNA fragments surrounding a particular recognition 

site throughout the genome. This method derives from the RAD tag marker technique [162] 

adapted to NGS platforms [163, 164]. The RAD-seq approach produces two types of markers: a) 

co-dominant SNP markers within the flanking regions of the restriction enzyme site; b) dominant 

markers due to sequence variations of the restriction endonuclease cutting site. RAD-seq has 

been applied in several plant species, such as sorghum [164] and eggplant [165], to discover SNPs, 

construct genetic maps and identify quantitative trait loci (QTLs). Recently, Wang et al. [43] 

genotyped a biparental population of grape interspecific hybrids with the RAD-seq approach 

producing a rather dense genetic linkage map of 1,814 SNPs. Chen et al. [43] using the same 

procedure built a genetic map of 1,826 SNP markers in a wine grape cross and could localize some 

QTLs for berry quality traits. Several modifications of the original RAD-seq protocol have been 

introduced by Genotyping-by-sequencing (GBS) [166], double digest restriction-site-associated 

DNA sequencing (ddRAD-seq) [167] and 2b-RAD-seq [168] methods. For instance, GBS [166] used 

a frequent cutter enzyme to generate reduced representation libraries prior to sequencing. GBS 

was first applied in grape by Barba et al. [119] to investigate the inheritance of powdery mildew 

(Erysiphe necator) resistance within a segregating population of V. rupestris x V. vinifera 

‘Chardonnay’, finally mapping 35,8% of the 47K SNPs identified. Actually, one of the major 
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drawbacks reported for GBS is the high rate of missing data which is currently faced by imputation 

programs such as LinKImpute [169] and Beagle [170](Browning and Browning 2007).  

The reference genome sequence of grapevine has been available since 2007 [15] with a 

total size of 487 Mb. Almost two million putative SNPs were reported for the heterozygous 

cultivar ‘Pinot Noir’ with an overall rate of 4 polymorphisms per kilobase [89]. A few other 

individual grapevine genomes have been completely sequenced so far. Da Silva et al. [94] 

analyzed the genome of the cultivar ‘Tannat’ using a mixture of de novo assembly and iterative 

mapping onto the ‘PN40024’ reference genome. The ‘Tannat’ genome was 1% shorter than the 

reference genome and presented more than two million single-base differences compared to the 

latter. Di Genova et al. [95] by sequencing the ancient table grape ‘Sultanina’ found 1,193,566 

high quality SNPs and novel genes absent in the V. vinifera ‘PN40024’ reference genome. More 

recently Corso et al. [96] resequenced two grape rootstocks, both interspecific hybrids, revealing 

a SNP frequency of one variant every 200 bases with the ‘PN40024’ reference genome. All the 

mentioned analyses evidenced the high level of heterozygosity in the grape genome. Moreover 

recent studies [62, 34] showed low levels of Linkage Disequilibrium (LD) in V. vinifera, with a 

decay of LD at ~10 kb inter-SNP distances, which necessitates increasing the density of molecular 

markers throughout the genome.  

As shown in other plant species [164, 171, 172] RAD-seq is a suitable method to develop 

robust markers for population genetics analyses. In this study we present the (high-throughput) 

SNP discovery carried out in cultivated and wild forms of Vitis vinifera through a novel protocol of 

RAD sequencing based on the 5500 SOLiD™ System. Our aim was to generate a tool for further 

investigations of grapevine domestication. 
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Methods 

Plant material and DNA extraction 

A germplasm collection of 51 cultivated (Vitis vinifera spp. sativa) and 44 wild-type (Vitis 

vinifera spp. sylvestris) grapevines was sorted at the FEM grape repository (ITA362), located in San 

Michele all'Adige, Italy (Appendix B, page 125). The sativa accessions were chosen within a 

genetic core collection (G-110) that retains 100% of SSR and SNP loci diversity present in the 

source collection [49]. The wild individuals, mostly originating from the Italian Peninsula, were 

selected within the sylvestris accessions of the same repository previously clustered through a 

hierarchical STRUCTURE analysis [49]. Young leaf tissue of one field grown plant per accession was 

harvested and stored immediately in sterile tubes at -80°C for DNA extraction and successive 

analyses. Total genomic DNA was isolated from freeze-dried tissue after grinding with the MM 

300 Mixer Mill system (Retsch., Germany) using the DNeasy 96 plant mini kit (QIAGEN, Germany). 

DNA concentration and purity were checked both by the Synergy HT Multi-Mode Microplate 

Reader (BioTek) and the NanoDrop 8000 UV-Vis Spectrophotometers (Thermo Scientific). 

Choice of Restriction Enzyme and Adapter Design 

RAD-seq libraries (see paragraph “Libraries construction”) were previously constructed with 

genomic DNA from PN40024 using three restriction enzymes (HindIII, BamHI and NcoI) separately 

that present a different number of recognition sites on the grapevine reference genome. The 

number of restriction sites recovered by each RAD-seq library at different coverage thresholds 

(number of RE site with coverage 4X, 8X, 16X, 24X; Supplementary Table S1) was checked in order 

to apply the best candidate RE to the entire grapevine population.  

Two types of adapters were used. The common 5500 Series SOLiD™ P1-T adapter for 

Fragment Library Preparation was modified by adding a biotin on the 5’ end of the top strand, and 

a 4 bp overhang, complementary to the sticky ends generated by BamHI, on the 5’ end of the 

bottom strand (Figure 1). The sequences of the top and bottom oligonucleotides are: 5′-Biotin-

CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGAT-3’ and 5’-Phosphate-

GATCATCACCGACTGCCCATAGAGAGGAAAGCGGAGGCGTAGTGGCC-3’. The P1 adapter 

oligonucleotides were diluted separately in Milli-Q water (100 µM each) and then annealed in a 

thermocycler according to the following conditions: 95°C for 3 min, ramp down to 4°C by 1°C/30 

sec; 4°C hold. The second adapter type was the standard barcoded adaptor used for 5500 SOLiD 

Fragment libraries and has a 10 pb barcode sequence. The different oligonucleotide sequences of 

the standard barcoded adapters are available on the Fragment Library Preparation 5500 Series 

SOLiD™ Systems User Guide [173]. Both biotinylated and barcoded adapters were diluted in water 

to 5 µM. Moreover, the presence of the restriction site in both adapters was verified in order to 

avoid its regeneration after the ligation with genomic DNA.  
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Figure 1: Main steps of the novel RAD-seq protocol: 1-2) sample genomic DNA is digested. The resulting 

digested DNA fragments are ligated to a P1 adaptor, that presents a biotyn group and a 4 bp overhang 
complementary to BamHI recognition site. 3-4-5) Biotynilated fragments are random sheared to a target 
size of 300-200 bp, captured using streptavidin beads and ligated to standard barcoded adaptors for 5500 
SOLiD Fragment libraries. 6) RAD-seq libraries are amplified and purified before sequencing. 

 

Libraries construction 

DNA samples (500 ng) were digested with BamHI-High Fidelity (New England Biolabs, NEB) 

enzyme for 1h at 37°C in 25 µL volumes containing 1X NEB CutSmart Buffer and 5U of BamHI 

(Figure 1). Next 30 µL of ligation master mix, containing 4 pmols of the biotinylated P1 adapter, 1X 

T4 DNA ligase reaction buffer (Invitrogen™) and 1U T4 DNA ligase (Invitrogen™) were added to 

the digestion products, and samples were incubated at 16°C overnight. The ligation products were 
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purified using one volume of Agencourt AMPure XP beads (Beckman Coulter) according to the 

manufacturer’s instructions and solubilized in 50 µL of 1X Low TE (10 mM Tris-HCl, 0.1 mM EDTA). 

DNA fragments were random sheared with a Covaris S220 Focused-ultrasonicator in 130 µL 

microTUBEs AFA Fiber Snap-Cap following the manufacturer’s protocol for Target BP Peak of 200 

pb. Afterwards the samples were vacuum concentrated to a final volume of 20 µL. Next 10 µL of 

Dynabeads® MyOne™ Streptavidin C1 (10 µg/µL), previously washed three times with 50 µL of 2X 

Binding and Washing (B&W) Buffer (10 mM Tris-HCl pH 7.5; 1 mM EDTA, 2 M NaCl), were added 

to each sample and resuspended in 20 µL of 2X B&W. Samples were incubated for 30 min at room 

temperature in rotation in order to capture the biotinylated fragments. Biotinylated coated beads 

of each sample were separated with a magnet for 2–3 min, collecting the surnatant in a clean 

tube to estimate the DNA recovery rate through a Qubit® 2.0 Fluorometer (dsDNA HS Assay; Life 

Technologies). The biotynilated coated beads were first washed with 50 µL of 1X B&W buffer and 

later with 50 µL of Buffer EB (Qiagen), and then resuspended in 20 µL of Buffer EB. Next 25 µL of 

NEBNext® End Repair Module (New England Biolabs) master mix, containing 5 μl of NEBNext End 

Repair Reaction Buffer (10X) and 2.5 μl of NEBNext End Repair Enzyme Mix (10,000 units/ml T4 

PNK; 3,000 units/ml T4 DNA Polymerase), were added to the biotinylated beads. The End Repair 

mix was incubated for 15 min at room temperature in rotation. After the End Repair Enzymes 

inactivation at 75°C for 20 min, 50 μl of ligation master mix, containing 4 pmols of the blunt 

barcoded P2 adapters, 1X T4 DNA ligase reaction buffer and 10U T4 DNA ligase (Invitrogen™), 

were added to the biotinylated samples and incubated 1h at room temperature in rotation. The 

biotinylated fragments from each library were amplified in 50 μl volumes containing 25 ng DNA 

fragments, 1X GoTaq® Green Master Mix (Promega) and 25 pmol each of the following primers: 

Library PCR Primer 1, 5′ -CCACTACGCCTCCGCTTTCCTCTCTATG-3′ and Library PCR Primer 2, 5′ -

CTGCCCCGGGTTCCTCATTCT-3′ [173]. The amplification was performed according to the following 

conditions: 95°C for 5 min, 12 cycles of 94°C for 20 sec, 62°C for 20 sec, 72°C for 50 sec, with a 

final Taq extension at 75°C for 3 min. PCR products were purified using 1.3 volumes of Agencourt 

AMPure XP beads. Each library was loaded on a Bioanalyzer (Agilent Technologies) for the 

evaluation of fragments size through a High Sensitivity DNA Assay. Libraries were considered 

suitable for sequencing if adapter dimers (99 bp in length) were minimal or absent and the 

majority of other DNA fragments were between 150–350 bp. If an excess of adapter dimers were 

present, the RAD libraries were purified again. Finally fragments sequencing (75 bp reads) was 

performed on a 5500 SOLiD™ System (Applied Biosystems, Life Technologies) pooling the libraries 

and running them in two different flow-cell lanes using the Exact Call Chemistry module (ECC).  

 

Reads pre-processing 

Reads were expected to start with the 5’-GATCC-3’ sequence released by BamHI cut and 

corresponding to T12320 in color space format. Reads 75 bp long obtained from SOLiD 

sequencing were inspected for the presence of the T12320 sequence at their starting point. When 

there were no color errors or one color sequencing error at the beginning, the read starting 

sequence was replaced with the full color space BamHI restriction site (T102320). Reads with 

more than one color error in their starting sequence were discarded.  
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DNA sequence alignment 

Pre-processed reads in color space were mapped on the reference 12X grape genome[15], 

the mitochondrial (mtDNA) [174] and the chloroplast (cpDNA) [175] DNA sequences using BFAST 

v0.7.0a [176] aligner. Only unique alignments with identity at least 90% were kept. All statistical 

analysis were performed using ‘stats’ v3.4.0 [177] and ggplot2 v2.1.0 [178] R packages.  

 

SNP calling and annotation  

The UnifiedGenotyper tool of the Genome Analysis Toolkit (GATK) v3.2-2 [179] was applied 

to call variants on unique alignments with a mapping quality score higher than 17. SNPs and indels 

having at least 10 reads and a quality score > 30 were retained. SNP genotypes were inferred 

through a Bayesian genotyper implemented in GATK that assigned genotype at each site as the 

genotype with the greatest posterior probability. SNP density across the V. vinifera ‘PN40024’ 

reference genome was evaluated by counting the number of SNPs in sliding windows of 500 kb 

using VCFtools [180]. Pearson’s correlation (r) was used to determine the relationship between 

the number of SNPs per chromosome and chromosome physical size. Finally, SNPs were classified 

into genomic feature groups and gene classes according to the grape gene annotation v2.1 [100].  

 

SNP validation 

50 fragments were selected to validate 183 SNPs with Sanger sequencing [181]. PCR 

primers were designed using NCBI/Primer-BLAST [182] to yield products 266-1002 bases long. 

Target sequence fragments were amplified in 4 cultivated and 3 wild accessions chosen within the 

analyzed population. Another V. sativa variety, that showed an uncommon low level of genetic 

variation at microsatellite loci, was also included during Sanger sequencing in order to test the 

ability of RAD-seq markers to capture undisclosed genetic diversity. The products of Sanger 

sequencing were run on the 96-capillary 3730xl DNA analyzer (Applied Biosystems®). Finally, 

STADEN package v2.0.0 [183] was used to analyze the DNA sequences.  

The grapevine population investigated in this study had previously been genotyped with 

the commercial GrapeReseq Illumina Vitis20KSNP chip [184]. The Infinium genotyping raw data 

were analyzed using the Genotyping Module v1.9 of the Illumina GenomeStudio Data Analysis 

software [185]. An individual locus analysis, where loci are identified by sorting on per-locus 

metrics such as call rate and cluster separation, was carried out to obtain a final data set of good 

quality SNPs. In order to assess the rate of fitted genotypes between GrapeReseq 20K chip and 

RAD-seq, the genetic profiles of the shared SNPs between the two data sets were compared for 

all samples, except for the sample GRAPE_51 which was not evaluated with the Vitis20KSNP chip 

(Appendix B, page 125).  
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Results 

Sequencing summary 

We selected BamHI as candidate restriction enzyme to construct RAD-seq libraries. Indeed, 

it showed almost a constant and high number of recovered RE sites at different levels of coverage, 

compared to the other two REs used to test the technical performance of the novel RAD-seq 

protocol (Supplementary Table S1). RAD-seq libraries were constructed separately for 95 

grapevine samples and were sequenced in two lanes using the 5500 SOLiD™ System. A total of 

566M reads 75 bp long were produced (Table 1) with an average of 5,102,500.3 reads per sample. 

The coefficient of variation (CV) for the number of reads was equal to 33.9 % among samples and 

2.5% per sample among lanes. BamHI is a type II restriction endonuclease without methylation 

sensitivity that recognizes a 6 bp site (5’–GGATCC–3’), cleaving just after the 5'-guanine on each 

strand. It leaves four base-long sticky ends (GATC-C) whose sequences are equal in color space 

format to T12320. As shown in Figure 2, 75% of the reads started with a correct T12320 sequence 

and 11% presented one single color mismatch that we assumed to be a sequencing error. The 

remaining reads (14%) showed more than one different color at the beginning sequence and were 

discarded. In order to increase the alignment specificity, the retained reads were pre-processed 

by replacing the starting sequence with the full BamHI restriction site in color space format 

(T102320), yielding finally 485M correct reads (76 bp).  

 

Figure 2: Summary of SOLiD sequencing errors at the starting sequence. Reads per sample with no 

colors errors (green); reads per sample with one color error (yellow); discarded reads per sample due to 
color errors higher than one (red). The black dotted lines indicates the average number of reads per sample. 
Inset shows the percentage of reads with no color errors, one error and more than one error. 
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Table 1: Number of reads and sequence produced by each filtering step during reads treatment.  

Step of reads treatment Number of reads Sequence (Gb) 

5500 SOLiD™ sequencing 566M 42.4 

Pre-processing 485 36.8 

Unique alignments 294M 22.3 

Unique alignments with MapQ > 10 177M 13.4 

 

Alignment  

Pre-processed reads were aligned to the reference 12X grape genome including mtDNA and 

cpDNA sequences in order to reduce the rate of multiple alignments (Figure 3). 60.3 % unique 

alignments (Table 1) showed a mapping quality score higher than 10 (177,212,079 over 

293,786,586 reads). Among them 8.4 % (14,963,674) accounted for not nuclear alignments.  

In silico digestion of the grapevine reference genome with BamHI identified 60,733 putative 

restriction sites with an average distance of 7.9 kb. We recovered a total of 34K unique restriction 

sites with at least ten alignments, 93.2% of which were predicted and 6.8% were absent in the 

reference genome (Table 2). This sequence polymorphism rate at the recognition site may reflect 

the genetic variability within the investigated germplasm collection, consisting of cultivated and 

wild forms of grapevine. If we consider the number of recovered restriction sites, the length of a 

SOLiD read and the assumed presence of two reads going upstream and downstream from each 

restriction site (Number of covered RE *2*75bp), about 1.1% of the grapevine genome looks 

resequenced in our study at a high coverage.  

Figure 3: number of alignments per sample. High quality (MapQ > 10) alignments per sample are shown in 

green, low quality (MapQ < 10) alignments in yellow and unaligned and multiple aligned reads in red. 
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Table 2: Number of identified BamHI recognition sites.  

Type Of Restriction Site Total Number 

PREDICTED 32,080 

UNPREDICTED 2,353 

NOT NUCLEAR PREDICTED 163 

NOT NUCLEAR UNPREDICTED 4 

Total 34,600 

The RE sites found in the grapevine PN40024 reference genome though an in silico digestion, are called 
“PREDICTED”. The RE site absent in the PN40024 genome are defined “UNPREDICTED”. “Not nuclear” RE 
sites are those identified in mitochondrial and chloroplast DNA sequences. 

 

We considered each up- or downstream read as a RAD locus. We expected that the read 

depth of each RAD locus would be similar for all the sequenced RE sites if digestion and 

sequencing were unbiased. However, some RE sites (16.5%) showed a huge difference in read 

depth among the two adjacent RAD loci. Indeed, those RE sites presented high depth (number of 

reads aligned to a locus > 10) in more than 80% of the samples at either upstream or downstream 

RAD loci. The correlation between read depth and the logarithm of restriction fragment length for 

69,525 unique RAD loci covered by at least one read was very small (r = 0.08; p-value < 2.2e-16). 

We observed a significantly higher correlation (r = 0.12, p-value < 2.2e-16) for RAD loci from 

restriction fragments shorter than 10 kb (71% of all unique covered RAD loci), while the 

correlation between read depth and the logarithm of restriction fragment length was not 

significant (r = 0.01, p-value = 0.1458) for RAD loci coming from restriction fragments above 10 kb 

in length (29% of all unique covered loci).  

 

Variant calling and annotation  

Variants on unique high quality alignments were called using UnifiedGenotyper module of 

Genome Analysis Toolkit (GATK) program [179]. We identified 37,748 SNPs that included 120 

variants discovered on mtDNA sequence and 34 SNPs within the cpDNA genome. 93% of markers 

belonged to the 19 assembled chromosomes with an average of 1.8K SNPs per chromosome 

(Figure 4A). SNP density ranged from one SNP every 10 kb on chromosome 8 to one SNP every 16 

kb on chromosome 19. Finally chromosome size and number of SNPs per chromosome were 

moderately correlated (r = 0.68). We split the reference genome in 985 bins of 500 kb and the 

number of SNPs per each bin was determined. Thirty five SNPs were present on average per bin. 

While 3 bins showed zero variants, 655 bins had 10 to 50 SNPs, 83 bins had < 10 SNPs and 244 

bins had 51 to 104 SNPs.  

According to the grape gene annotation v2.1 more than half of the SNPs fell in intergenic 

regions. 18,121 SNPs belonged to 6,634 grapevine predicted genes of which 1,680 presented 

2,557 nonsynonymous polymorphisms (Figure 4B). We looked for which GO terms of biological 

process ontology were more represented among the annotated genes which showed sequence 

variation. An over-representation of metabolism-related functions, referring both to biosynthetic 
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and catabolic processes, as well as of regulation and transportation mechanisms were observed. 

Moreover, a small but significant amount of nonsynonymous variants fell in genes related with 

the detection and response to stimuli such as oxidative and water stresses. 

Figure 4: A) SNP density across the 12X grapevine reference genome PN40024. Each block represents a bin 

of 500 kb. The bar “Un” shows SNPs found on unassembled genomic sequences. B) summary of SNPs 
annotation according to the grape gene annotation v2.1. 

 

SNP validation 

Fifty PCR fragments ranging from 266 to 1002 bp were Sanger sequenced on eight 

grapevine genomic DNA samples in order to validate 183 SNPs discovered by RAD-seq. The 

validation panel included 4 V. sativa and 3 V. sylvestris accessions already used to construct the 

RAD-seq libraries, and one outer V. sativa variety. Targeted SNPs included 123 transitions and 60 

transversions which were found at 10X coverage in at least 50 libraries. Out of 148 confirmed 

SNPs, 43.9% perfectly agreed with the RAD-seq data in all the resequenced samples, while 51.3% 

showed from 1 to 3 different genotypes. The overall rate of fitted genotypes was 86% which may 

indicate the ability of RAD-seq to accurately determine genotypes in a highly heterozygous 

species such as grapevine. Moreover, the exceptionally high level of homozygosity of the outer 

cultivated accession, that was homozygous for 49% of the 312 microsatellite markers tested 

[186], was proved by 78% of the confirmed SNPs. Nonetheless, a heterozygous profile was still 

observed for 33 SNPs, highlighting how RAD-seq is able to reveal unknown genetic variability. Our 

RAD-seq assay sampled 115 SNPs of those included in the commercial GrapeReseq 20K chip. The 

last had produced a final panel of 16,563 SNPs when applied to our germplasm population. 23% of 

the common SNPs showed identical genotypes in all 94 samples both using the Illumina chip and 
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the RAD-seq assays, while 72% differed in 1 to 15 cases bringing the overall rate of fitted genetic 

profiles among the two different genotyping approaches to 96%.  

 

Discussion  

Nowadays several genomic approaches, such as genome-wide association studies (GWAS) 

and genomic selection (GS), are of potential interest for gene mapping and phenotype prediction 

of agricultural traits. The application of these methods is still limited in perennial species with high 

levels of genetic diversity such as grapevine [187]. Indeed, grapevine plants are highly 

heterozygous (Ho = 0.80; [49]), despite being hermaphroditic self-fertile, likely as a result of 

selection for fruit production [25, 188]. High heterozygosity is thought to result from the dioecy of 

wild grapevines and has been maintained in cultivated plants through vegetative propagation 

from the earliest time of viticulture to preserve favorite genotypes [28]. This high polymorphisms 

rate and the resulting low LD in grapevine make the increase of marker density throughout the 

genome fundamental in order to improve the power and resolution of genetic mapping studies to 

identify significant marker-trait correlations [21]. Here, we applied a novel protocol of RAD-seq to 

a germplasm collection of wild and cultivated grapevine individuals in order to generate a tool 

enabling further association mapping and population genetic studies. We obtained 36.8 Gb of 

sequences, of which over 40% did not align successfully or were mapped in multiple locations on 

the 12X V. vinifera reference genome (Figure 3). This may be due to incomplete assembly of the 

reference genome or to high levels of genetic variation between the PN40024 and the 

investigated grapevine accessions. Similar findings have also emerged from the comparison of 

both “Tannat” and “Sultanina” de-novo assembled grapevine genomes with the reference 

genome [94, 95]. This can be even more evident in our study since half of the population belongs 

to the wild Eurasian vine V. sylvestris whose genome has not yet been thoroughly investigated. By 

now it is well accepted that plant genomes contain core sequences that are common to all 

individuals, as well as dispensable sequences comprising partially shared and non-shared genes 

that contribute to intraspecific variation [189]. Moreover, the heterozygous cultivar Pinot Noir 

showed a relevant portion of hemizygous DNA that confirms how the grape genome exists in a 

dynamic state mediated in part by transposable elements [190]. More than two thousands BamHI 

restriction sites where identified in our sequences which are absent in the reference genome. The 

absence/presence of a restriction site could be related to loss/gain of the RE site because of 

mutations occurring during grapevine evolution and propagation. The predicted restriction sites 

not recovered by RAD-seq assay could also be explained by imperfect digestion or poor quality 

reads as well as the presence of RE sites within repetitive sequences, as proved by the moderate 

percentage of reads discarded during the pre-processing and alignment analysis (Figure 2-3). A 

considerable level of genetic diversity within the investigated population has been proved by the 

37K SNPs discovered, given that half of the investigated population is composed of wild grapevine 

genotypes which have shown less genetic variability compared to cultivated grapes [25]. This 

panel exhibited a uniform marker density among chromosomes and significantly higher than 

those reported for SNPs identified in grapevine through RRL methods [119, 191, 43]. Our SNP set 

also included a remarkable number of chloroplast SNPs, that can be extremely useful to 

investigate genetic relatedness among wild and cultivated grapevines and to clarify the process of 

domestication in grapevine [28]. The RAD-seq survey identifies and scores markers simultaneously 

in the investigated population, surpassing one of the major limitation of SNP array technologies, 
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that are often based on genetic diversity discovered in a few resequenced individuals. For 

instance, the Vitis20K chip comprises 18,071 SNPs discovered within 47 V. vinifera genotypes and 

other 18 Vitis species [160]. Out of the V. vinifera genotypes just four accessions are V. sylvestris, 

which likely leads to an underestimation of genetic diversity in wild grape populations. The 

simultaneous discovery and genotyping of SNPs can also increase the number of high-quality 

markers useful in further analysis. Array-based technologies often fail in SNP genotype call, 

especially when the discovery panel is evolutionary divergent from the studied accessions [161]. 

For instance, Myles et al. [21] genotyped 146 grapevine individuals with the Vitis9KSNP chip but 

just 5,840 SNPs overcomed the SNP genotype quality threshold and were used for the population 

genetic analysis. 

The high number of variants found in less than 1 Mb is further evidence of the high level of 

heterozygosity in grapevine plants [62, 190]. This high genetic variability can be challenging for 

genome-wide polymorphisms discovery and genotyping [192]. In RRL approaches restriction site 

heterozygosity can skew read depth, leading to discarding low coverage RE sites, and it can cause 

null alleles at flanking SNP loci [193]. Since this bias depends on the size of the sample assayed 

and on the level of restriction site conservation across the sample, more individuals are 

sequenced, a larger fraction of variants will be identified. Indeed, sequencing many individuals at 

low depth has a higher rate of polymorphisms discovery and fair accuracy in genotype inference 

compared to high coverage sequencing for a few individuals [194]. Our effective sequencing 

coverage - 1.1% of the genome in 95 wild and cultivated genotypes - has permitted finding about 

2% of the expected polymorphisms based on the SNP frequency in whole-sequenced grapevine 

varieties [94, 95, 96]. Low coverage sequencing may soften the bias of restriction fragment length 

on RAD loci read depth. Indeed, Davey et al. [195] reported a correlation between restriction 

fragments length and read depth of RAD loci, which could be related to the shearing step during 

RAD library preparation, regardless of the shearing technique applied. We found that the bias was 

significantly lower compared to Davey et al. [195] for RAD loci from restriction fragments below 

10 kb. Therefore, a lower distortion of RAD loci read depth, with special regard to those up- and 

downstream of a heterozygous restriction site, may be expected in our RAD-seq assay. The 

application of a posteriori filters concerning missing data rate and minor allele frequency per each 

SNP can handle the implications of restriction site heterozygosity on RAD-seq genotyping.  

 Given that the coding regions are about 46% of the grapevine genome [100], an interesting 

result of our study is that 48% of the identified SNPs fell in genic regions, of which the annotated 

ones are mostly assigned to the functional categories of metabolism and regulation. Actually, 

plant metabolism is the most represented functional category among the unique set of predicted 

genes in the grapevine genome [196]. On the other hand, the polymorphisms observed in genes 

related to both biosynthetic and catabolic processes as well as regulatory or transport functions 

may reflect different adaptation mechanism among wild and cultivated grapevines.  
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Conclusions  

In this study we underlined the ability of RAD-seq to discover high quality SNPs and add 

new insights on the level of sequence variation between grapevine genomes. Being the first 

application of RAD-seq to a germplasm population of grapevine, our findings supply a genome-

wide comparison within grapevine species, economically the most important fruit plant in the 

world [197]. We provided a novel panel of 37K SNPs evenly distributed across the genome that 

may be useful in future genomic survey regarding the level of differentiation between wild and 

cultivated grapevines, in order to better explore their genetic relationship. This high-quality SNP 

data set enables the application of population genetics methods to capture the signals of 

selection left during the weak domestication process of grapevine and to access the genetic 

diversity of several sylvestris individuals [198]. Moreover, the identification of sequence 

polymorphisms within genomic regions associated to metabolism and regulation pathways makes 

our SNP panel rather informative for discovering the genetic mechanisms that contribute to the 

phenotypic variation associated with domestication traits. 
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Supplementary Data 

Table S1: Number of restriction sites recovered with RAD-Seq on PN40024 genomic DNA using three 

different restiction enzymes.  

 
sites covered on both up- and downstream 

ends, each end having at least x reads 
sites covered with at least x reads without 

considering up- and downstream ends 

 
x ≥ 2 x ≥ 4 x ≥ 8 x ≥ 16 x ≥ 24 x ≥ 2 x ≥ 4 x ≥ 8 x ≥ 16 x ≥ 24 

HindIII 116,230 102,839 81,696 43,724 19,019 202,522 182,045 165,777 135,674 107,640 

BamHI 42,712 38,894 36,375 30,091 23,930 80,861 57,013 53,013 49,462 45,904 

NcoI 77,105 68,868 55,893 31,899 14,878 124,160 108,386 108,386 85,190 69,945 
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Chapter 3 

GENOMIC SIGNATURES OF DIFFERENT 

ADAPTATIONS TO ENVIRONMENTAL STIMULI 

BETWEEN WILD AND CULTIVATED V. vinifera 

 

Abstract 

Background: The selective pressure applied by humans to domesticate plants is thought to 

have reduced the genetic diversity of genes contributing to elected traits. This selection process 

left genomic signs known as “signatures of selection”. While domestication produced crops with 

high yield and rapid growth, it arguably led to a decrease of plants resilience. Today wild 

ancestors are considered valuable sources of resilience factors, whose re-discovery can be 

fundamental for future sustainable agriculture. During domestication, changes in berry size and a 

transition from dioecious to hermaphrodite plants occured in cultivated grapevines (V. vinifera 

subsp. sativa) from its wild form (V. vinifera subsp. sylvestris). Population genetic analysis can help 

to clarify how these changes happened and to map genes contributing to adaptive traits in 

grapevine.  

Results: We investigated the genetic diversity of a grapevine germplasm collection 

composed by 44 V. sylvestris and 48 V. sativa accessions. We genotyped the whole population 

using the commercial GrapeReSeq Illumina 20K SNP chip and a novel RAD-seq procedure, 

obtaining a high density panel of 26K solid polymorphisms. Population genetic structure 

highlighted a clear separation among wild and cultivated accessions with a low level of admixure. 

The evaluation of LD extent in the two subgroups showed how LD decayed more slowly in wild 

grapevines (~20 kb) than within the domesticated subgroup (~10 kb). The FST metric was 

evaluated between cultivated and wild accessions along the whole genome. Over two thousand 

of SNPs showed a significant high value of FST, validated empirically with permutation test. These 

loci fall within putative “signatures of selection” that contain genes presumably involved in 

adaptation during domestication in grapevine. In addition, an overall reduction of nucleotide 

diversity was observed along the whole genome within V. sylvestris accessions, highlighting the 

small effective population size of wild grapevine. Positive values of Tajima’s D were detected in 

both wild (D ~0.89) and cultivated (D ~1.35) subgroups, probably indicating an ongoing balancing 

selection.  

Conclusions: The application of population genetic methods enabled the discovery of 

numerous signals of selection, including genes mainly related with the plant response to 

environmental stimuli. Future studies of functional genomics and/or candidate-gene association 

mapping will provide additional information about how the two forms of V. vinifera react to biotic 

and abiotic stresses. Finally, this study is further evidence of the broad genetic diversity still 

present within wild grapevines, which needs to be explored in future breeding programs in view 

of a sustainable viticulture. 
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Background  

The Eurasian grape (Vitis vinifera L.) is one of the most important crop worldwide due to its 

global distribution and economic value [197]. Nowadays V. vinifera L. exists as the cultivated form 

V. vinifera subsp. sativa (or vinifera) and the wild form V. vinifera subsp sylvestris which are 

sometimes referred as two separated subspecies based on morphological differences. However, it 

can be argued that those differences are likely the results of domestication by humans instead of 

geographic isolation [25]. Indeed, archeological and historical findings suggest that cultivated 

grapevines have been domesticated from wild populations of V. sylvestris circa 5,500-5,000 BC in 

the Near East [199], in the region known as Transcaucasia, which still presents a large genetic 

diversity of grapes [52]. From the primo-domestication sites, there was gradual spread to 

adjacent regions such as Egypt and Lower Mesopotamia and then further dispersal around the 

Mediterranean [27]. However, successive genetic analyses raised the outstanding question 

whether multiple domestication events occurred along the Mediterranean basin [33, 66]. For 

instance, Arroyo-Garcia et al. [28] suggest the existence of at least two important origins for the 

cultivated grapevine, one in the Near East and another in the western Mediterranean region. On 

the other hand, recent studies carried out using 5K SNPs provided further genetic evidence of the 

Eastern origin of most cultivars as well as the existence of introgressions from wild individuals in 

Western regions [34]. During domestication, genotypes producing bigger fruits with higher sugar 

content were selected to ensure greater and more regular yields as well as a better fermentation. 

In this process, the changes in seed morphology and flower sex were crucial [25]. In particular, V. 

vinifera cultivars generally exhibit hermaphroditic flowers while almost all wild grapevines are 

dioecious with separate male and female individuals [200].  

Many surveys of genetic diversity in grapevine collections have outlined a low but clear 

differentiation among cultivated and wild accessions by using plastid markers [28, 33], nuclear 

microsatellites [49] and SNPs [34, 54]. The cultivated grapevine is very diverse, with 6,000-10,000 

different varieties believed to exist in the world [69]. This large diversity is mostly the result of 

sexual reproduction, vegetative propagation and somatic mutations which have been crucial 

during the long history of grapevine cultivation [25]. On the other hand, V. sylvestris is less diverse 

than the domesticated grapevine. Nowadays relict populations of wild vinifera are present with 

very few individuals. Indeed, the distribution of wild grapevine has drastically been reduced over 

the last two centuries because of the introduction of pathogens (phylloxera, oidium, mildew) 

from North America and a fragmentation of wild grapevine habitats by humans [69]. In addition, 

the level of genetic flow detected between wild and cultivated grapevines may have 

consequences on the genetic diversity of the small wild populations as introgression, pollution of 

the gene pool and genetic loss [70]. However, the wild forms still conserve an overall genetic 

diversity that need to be explored as a putative valuable resource for breeding [85]. Indeed, as in 

other crops, genetic erosion or loss of variability is occurring in grapevine due to the low number 

of grown cultivars worldwide that had rapidly displaced old local varieties or landraces [69]. This 

loss of agrobiodiversity can increase the vulnerability of different cultivars to new environmental 

changes or the appearance of new pests and diseases [71]. Accordingly, several efforts have been 

recently devoted to explore the responses to biotic and abiotic stresses in wild V. vinifera, 

revealing tolerant accessions to salt stress [201, 202] and lime-induced chlorosis [203]. 

Furthermore, V. sylvestris was screened for genotypic differences in stilbene accumulation and 

susceptibility to downy mildew of grapevine (Plasmopara viticola), showing how wild accessions 

with high stilbene inducibility are also less susceptible to infection by P. viticola [83]. Whole-
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genome comparison of the level of genetic diversity between wild and cultivated individuals is an 

alternative approach for discovering the genes and genetic mechanisms involved in the 

domestication process and in the local adaptation to different environmental changes [126]. 

Indeed, the selection pressure may have shaped the pattern of variation across the genome, 

leading to a population-wide reduction in genetic diversity of genes contributing to selected traits 

[114]. These reductions are well defined ‘signatures of selection’ and persist until recombination 

and mutation restore diversity at the selected loci in the population [204]. Genomic insights of 

selection have been reported for several crops, such as tomato [150], maize [205], rice [206] and 

barrel medic [207].  

In this regard, we evaluated the genetic diversity of a grapevine germplasm collection 

composed of cultivated and wild V. vinifera by using a panel of 26K SNPs. The FST analysis 

disclosed a significant high level of differentiation between the two subspecies at several genomic 

regions which include genes mainly involved in primary metabolism and in the response to 

environmental stimuli. We provide further evidence that wild grapevines represent a valuable 

source of resilience factors whose re-discovery and re-introduction in cultivars can be 

fundamental for future sustainable agriculture. 
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Materials 

Plant material 

A germplasm collection of 48 cultivated (Vitis vinifera spp. sativa) and 44 wild (Vitis vinifera 

spp. sylvestris) grapevines (Appendix B, page 125) was sorted at the FEM grape repository 

(ITA362), located in San Michele all'Adige, Italy (46°18’ N, 11°13’ E). The sativa cultivars were 

chosen in order to maximize the genetic diversity based on a set of 22 SSR and 384 SNPs markers 

in the source collection [49]. The wild individuals, mostly from the Italian Peninsula, were selected 

within 110 different sylvestris genotypes, according to a cluster analysis performed with a model 

based approach as implemented in STRUCTURE [49]. Young leaf tissue of one field grown plant 

per accession was harvested and stored immediately in sterile tubes at -80°C for DNA extraction 

and successive analysis. The total genomic DNA was isolated from freeze-dried tissue after 

grinding with the MM 300 Mixer Mill system (Retsch., Germany). DNA extraction was performed 

using the DNeasy 96 plant mini kit (QIAGEN, Germany). DNA concentration and purity were 

inspected using both the Synergy HT Multi-Mode Microplate Reader (BioTek) and the NanoDrop 

8000 UV-Vis Spectrophotometers (Thermo Scientific). DNA samples were also checked for quality 

with gel electrophoresis.  

 

Genotyping with the GrapeReseq 20K SNPs array 

DNA samples were adjusted to a minimum concentration of 100 ng/µL in 10 µL aliquots. 

The commercial GrapeReseq 20K SNPs array [184] was used to genotype the whole population 

with the Infinium technology according to the Illumina protocol (Illumina, Inc., San Diego, CA, 

USA). The genomic DNA of the Pinot Noir cultivar was used as control. SNPs genotypes were 

scored using the Genotyping Module v1.9 of the Illumina GenomeStudio Data Analysis software. 

SNPs with a Call Freq score 0 and a GenTrain score < 0.6 were filtered out. Markers with a Cluster 

Sep score < 0.4 were visually inspected for accuracy of the SNP calling. SNPs with R mean score > 

0.3 and with clusters not overlapped were retained.  

 

RAD-Seq assay 

Restriction associated DNA sequencing (RAD-Seq) libraries were constructed using the 

method described in Chapter 2. Briefly, DNA for each sample were digested with BamHI enzyme 

and ligated to a P1 biotynilated adapter. After random shearing, biotynilated fragments were 

captured using Dynabeads® MyOne™ Streptavidin C1, and end-repaired. Standard barcoded P2 

adapters of 5500 SOLiD Fragment libraries were then ligated to the biotinylated samples. 

Afterwards each library was amplified and purified before fragments sequencing on 5500 SOLiD™ 

System (Applied Biosystems, Life Technologies). The raw data produced were filtered to remove 

low quality reads (mapping quality <10). The clean data were analyzed with the UnifiedGenotyper 

tool of the Genome Analysis Toolkit (GATK) v3.2-2 [179], and SNPs genotypes for each sample 

were inferred through the Bayesian genotyper implemented in GATK. 
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SNP filtering 

The two SNP data sets obtained with the 20K Illumina chip and the RAD-seq assays were 

merged in a unique panel. For the SNPs in common between the RAD-seq and the 20K Illumina 

chip we retained only the SNP profiles of the latter. Samples and SNPs with a missing rate > 0.2 

were filtered out. Genotype imputation was performed to fill in the missing data using LinkImpute 

v1.1.1 software, which is based on a k-nearest neighbour genotype imputation method (LD-kNNi) 

designed to work with unordered markers [169]. Finally SNPs with a minor allele frequency (MAF) 

lower than 0.05 were removed using Plink v1.9 software [208, 209].  

 

Analysis of population structure 

The genetic structure of the germplasm population was analyzed with fastSTRUCTURE 

software v1.0 [210], which uses a variational Bayesian framework for approximate inference of 

subpopulations [211]. A number of ancestral genetic groups (K), ranging from 1 to 10, was tested 

by 10 independent iterations for each K. The most likely K value was chosen running the algorithm 

for multiple choices of K and by plotting the marginal likelihood of the data. The software 

CLUMPP v1.1.2 [212] was used to find optimal alignments of the independent runs and the output 

was used directly as input into the program for cluster visualization DISTRUCT v1.1 [213]. 

Moreover, a Principal Component Analysis (PCA) was performed as implemented in ‘adegenet’ 

[214] R package for the multivariate analysis of genetic markers.  

 

LD decay 

Linkage disequilibrium (LD) was estimated between all SNPs with a MAF > 5% in the whole 

germplasm population and within sativa and sylvestris subgroups separately by using Plink v1.9 

software [209]. The classical r2 estimate of correlation between genotypes was used [109]. LD 

decay was explored by plotting the median r2 in sequential bins of 10 kb against physical position. 

Moreover, LD landscape of each chromosome was also inspected through heat-map visualization 

with the software Haploview v4.1 [215].  

 

Genomic differentiation between sativa and sylvestris genotypes 

Since FST is often applied to evaluate the degree of population differentiation [147, 216], FST 

was measured between sativa and sylvestris accessions with VCFtools v0.1.13 [180], by using 

sliding windows of 100 kb with a step size of 10 kb. Genomic windows with the top 5% of FST 

values were selected as candidate regions for further analysis. In order to verify the empirical 

cutoff with low false discovery rate, we performed whole-genome permutation tests to ascertain 

the thresholds for identifying genomic regions highly differentiated between the two grapevine 

subgroups. In particular, all the accession genotypes of sativa and sylvestris were shuffled and 

then FST analysis was performed with the same parameters 1,000 times. To better interpret the 

results gained with the FST analysis and to clarify how sativa and sylvestris genotypes are 
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differentiated, nucleotide diversity (π) and Tajima’s D [217] were estimated along the whole 

genome in 100-kb windows with a step size of 10 kb using VCFtools.  

 

Functional Genes Annotation  

The grape gene annotation v2.1 hosted on http://genomes.cribi.unipd.it/grape/ [100] was 

used to investigate the putative functions of genes present in the genomic regions with the top 

5% of FST values. In particular, the distribution of the identified genes into different biological 

processes was evaluated using the weight01 method provided by the R package topGO [218]. The 

Kolmogorov-Smirnov like test was performed to assess the significance of over-representation of 

GO categories compared with all genes in the grapevine gene prediction. In addition, the 

differentiation in the genomic regions reported in the literature as associated to flower and fruit 

traits was checked. 

 

Results and discussion 

Analysis of population structure 

A total of 92 grapevine sylvestris and sativa accessions were genotyped using the custom 

Vitis20K SNP array and a novel RAD-seq approach (see Chapter 2). We marged the two SNPs 

matrices in a unique panel, since they showed the same distribution of allele frequency and 

linkage disequilibrium (LD) pattern. After removing low quality loci, the filtered merged data set 

counted 54,157 SNPs (Table 1). Six samples (Appendix B, page 125) and 22,258 markers were 

removed because of a missing rate > 0.2. As showed in Table 1, the higher percentage of missing 

data produced by the RAD-seq assay could be related with several technical factors that led all 

sequenced regions to not be evenly covered in all individuals of the population [156]. After 

imputing the missing genotypes, SNPs with a minor allele frequency (MAF) < 0.05 were removed 

gaining a final panel of 26,893 SNPs with an average of 1.3K SNPs per chromosome. 70% of the 

SNPs with a MAF < 0.05 came from the genotyping assay with the Vitis20K array. These SNPs 

probably resulted from some errors in genotype calling and represent an underestimation of the 

real genetic diversity within the investigated populations, which is a well known bias of array-

based technologies [161]. SNP density ranged from one SNP every 15 kb on chr8 to one SNP every 

21 kb on chr19. Chromosome size and number of SNPs per chromosome were strongly correlated 

(r = 0.87).  

Table 1: Summary of SNPs filtering after population genotyping assays with the Vitis20K Illumina chip and 

RAD-seq approaches.  

Genotyping 
technology 

Initial N° of 
SNPs 

N° of SNPs with 
missing rate > 0.2 

N°of SNPs with 
MAF < 0.05 

Final Number 
of SNPs 

Vitis20K 16,563 338 3,600 12,625 

RAD-seq 37,594 21,920 1,330 14,268 

Total 54,157 22,258 4,930 26,893 

 

http://genomes.cribi.unipd.it/grape/
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We used this SNPs panel to investigate the population structure and visualize the 

relationships among individual accessions applying two different approaches. Principal 

Component Analysis (PCA) was first performed and Figure 1 shows the first two principal 

components (PCs) which accounted for the 21% of the total variation. PC1 clearly differentiates 

sylvestris genotypes from cultivated varieties, whereas PC2 reflects the variability within sativa 

accessions.  

 

Figure 1: Visualization of the genetic relationships among wild and cultivated vinifera by their projection 

onto the first two PC axes. Along each axis the proportion of the total variance accounted by each PC is 
shown in parentheses.  

 

To better understand the genetic structure of the analyzed germplasm collection, the 

clustering algorithm implemented in fastSTRUCTURE software [210] was used by exploring 

different possible numbers of subpopulations (Figure 2). The optimal number of subgroups was 

three: 81% of the individuals showed a clear assignment (membership likelihood > 0.75 %) to a 

cluster (Supplementary Table S1). Two major groups included 28 sativa accessions and 36 

sylvestris individuals respectively, while Pinot Noir, Gewurtztraminer and Mornan Noir cultivars 

clustered together in a third separated group. A first-degree relationship of Pinot Noir and 

Traminer has already been suggested by previous studies with microsatellite markers (SSRs) [87]. 

Moreover, Pinot Noir and Traminer have presumably ancient origins and many moderns cultivars 

are their first-degree relatives [219]. Probably these two cultivars could have arisen from 

hybridization between Roman grapes and local wild populations or from secondary domestication 

of the latter. Indeed, many of the 19 genotypes (13 sativa and 6 sylvestris) not clearly assigned to 

a defined group by fastSTRUCTURE exhibited admixture with this small cluster (K2, Supplementary 

Table S2). However, the analysis of population structure highlighted how the sativa and sylvestris 
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individuals were well distinguished as two separated groups with a low level of admixture. This 

result is consistent with previous reports based SSR and SNP genetic profiles, that have shown 

clear distinctions between wild and cultivated individuals [49, 28, 54]. Moreover, the low complex 

pattern of admixture observed between sativa and sylvestris accessions may agree with the 

hypothesis in which grapevine domestication took place in a single location from a restricted pool 

of wild genotypes, followed by the spread of cultivars to other regions where likely introgressions 

from local sylvestris occurred. However, we used sylvestris individuals mainly from the Italian 

Peninsula and already clustered through a hierarchical STRUCTURE analysis [49]. At the same 

time, sativa accessions were selected from a core collection that maximize the genetic diversity 

present in the whole germplasm collection. Therefore, biases in allele frequencies may have been 

introduced, leading to an underestimation of the real level of admixture between the two 

subspecies.  

 
Figure 2: Barplot of admixture proportions of wild and cultivated subpopulations, as measured by 

fastSTRUCTURE at K = 3. Each individual is represented as a vertical bar, reflecting assignment probabilities 
to each of the three groups. K1: red bars; K2: green bars; K3: blue bars. 

 

Estimation of Linkage Disequilibrium 

To estimate the level of LD along the whole genome, pairwise analysis between all SNPs 

with a MAF > 5% was used. LD, as measured by the classical r2 correlation coefficient [109], 

decayed below 0.2 within 10 kb (Figure 3a). Such rapid LD decay is consistent with the results of 

Myles et al. [34], which detected low level of LD (r2 < 0.2) at short physical distances using the 

Vitis9K SNP array. An even lower level of LD was observed by Lijavetzky et al. [62], which found in 

more than 200 gene sequences a decay of r2 within 100-200 bp. On the other hand, Nicolas et al. 

[113] observed that the decay of LD down to 0.2 ranged from 9 to 458 kb. These discrepancies 

may be related to the low number of genomic regions investigated in both LD surveys [62, 113] 

compared to our genome-wide analysis of LD. However, we confirmed the evidence of a rapid LD 

decay in grapevine, which is in agreement with the high polymorphic rate of the grapevine 

genome [89]. When analyzed separately in the two subpopulations, the decay of LD appears quite 

different between wild and domesticated grapes (Figure 3b). In particular, a slower LD decay was 

observed within the sylvestris group, where r2 reached values below 0.2 within 20 kb. This results 

is in contrast with previous reports on LD decay between sativa and sylvestris, where it appeared 

unchanged among the two subspecies [34, 113] or slower in the cultivated data set [220]. This 

discrepancy is not surprising since LD extent can vary according to different factors, such as 
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mating system, natural and artificial selection, the population under investigation and its mating 

history [107]. The longer extent of LD in wild grapevine can be related with an elevated level of 

inbreeding linked to a small effective population size and the absence of gene flow between wild 

populations [70, 66]. Indeed, no structure was identified within the sylvestris group by the above 

analysis of population structure, confirming the close genetic relationship between wild 

individuals. Furthermore, the mainly Italian origin of our wild accessions is limited compared to 

the large geographic area of the wild grapevine form. The differences of LD extent between sativa 

and sylvestris accessions were more evident when LD patterns per each chromosomes were 

compared. In particular, long-range LD (LRLD) between loci that are widely separated on 

chromosome (distance > 1Mb) was observed for almost all the chromosomes of the sylvestris 

group, especially on chromosomes 2, 4, 8, 13, 15 and 18 (Supplementary Figure S2). Findings of 

LRLD suggest that some forces are acting, such as population admixture, genetic drift, epistatic 

selection, hitchhiking with positive-selected mutation or structural variation in chromosomes 

[221]. Blocks of short-range LD were also observed within the sativa on chromosomes 2, 6, 17 and 

18 (Supplementary Figure S1). QTLs associated with important traits in grapevine have been 

detected on these chromosomes, such as those for flower sex and berry skin color on chr2 [222, 

223, 224, 200, 123], and berry weight on chr17 and chr18 [42].  

 

Figure 3: Decay of LD (a) in the whole population and (b) in sativa and sylvestris separately. Each point 

represents the median r
2
 value in sequential bins of 10 kb against physical position. 

 

Genomic differentiation between sativa and sylvestris genotypes 

Since the analysis of population structure underlined a clear separation between sativa and 

sylvestris accessions, population differentiation statistic (FST) was computed across the grapevine 

genome in order to identify genomic regions with altered allele frequency among the two V. 

vinifera subspecies. The overall level of genetic differentiation between cultivated and wild grapes 

was moderate (FST =0.12). A similar genetic divergence was identified between Western European 

cultivars and wild genotypes [34] as well as among grapevine accessions of sativa and sylvestris 

from Spain [66] and Morocco [225]. This low level of genetic differentiation suggests the existence 

of genetic exchange between cultivated and wild individuals, supporting the hypothesis that the 

introgression from local wild sylvestris has played an important role during grapevine 

domestication. However, a non-random distribution of divergent sites was observed along the 

whole genome: the top 5% had a FST > 0.27 and no positive signals was found to pass this 



Chapter 3 
 

44 
 

empirical cutoffs after permutation test (Supplementary Figure S3). 2,461 SNPs were included in 

2,001 windows identified as significantly differentiated between sativa and sylvestris individuals. 

All 19 chromosomes of the grapevine genome showed divergent sites, ranging from chr12 with 14 

windows to chr4 with 382 bins (Figure 4a). In particular, the genomic region spanning for 7.5 Mb 

at the beginning of chr17 has already been identified as a putative candidate domestication locus 

in previous studies [34, 113]. A shift in the distribution of alleles in populations may result from a 

sweep toward fixation of a selected locus and its nearby hitchhikers [114]. This sweep causes a 

population-wide reduction in the genetic diversity around the selected locus. Therefore, 

nucleotide diversity [151] was evaluated across the grapevine genome in sativa and sylvestris 

groups separately. Nucleotide diversity measured by the π value was slightly higher for the sativa 

group (2.34 × 10-5) than that for the sylvestris (2.00 × 10-5) group. Several surveys in grapevine 

germplasm collection consisting of both cultivated and wild V. vinifera accessions underlined this 

overall lower genetic diversity in the wild gene pool compared to the cultivated panel [28, 226, 

227]. Indeed cultivated grape has a big effective population size planted over multiple locations, 

where sexual crossing and somatic mutations coupled with a massive vegetative propagation 

have been the main driving forces during grapevine evolution, accumulating and increasing 

genetic variability in cultivated grapevine. This high level of diversity in cultivated V. vinifera may 

also arose from multiple domestication events [28, 33] through hybridizations with wild 

individuals [70]. Furthermore, our selection of sativa accessions from a core collection may 

overestimate the real level of nucleotide diversity in cultivated grapevines. On the other hand, the 

wild relatives are nowadays present in low number in isolated populations [228]. In addition, the 

anthropogenic pressure on natural habitats and disease-causing agents introduced in Europe from 

North America at the end of the 19th century may also explain the progressive decrease of 

nucleotide diversity in wild populations [25]. As showed in Figure 4b, the average value of the 

ratio πsylvestris/ πsativa was 0.89, confirming that π is higher in cultivated grapevine in most of the 

investigated genomic regions. In particular, a drastic reduction in nucleotide diversity of sylvestris 

individuals (πsylvestris/ πsativa = 0) was observed on chromosomes 5, 14 and 15 at genomic regions 

with a total of 6 SNPs monomorphic in the sylvestris. At the same time, a reduction in nucleotide 

diversity of the sativa was observed on chromosomes 5, 12, and 19, where πsylvestris/ πsativa had 

values higher than 10. However, while the reduction of genetic diversity in cultivated grapevine 

on chr19 was associated with a significant differentiation (FST = 0.32) between sativa and sylvestris 

group, no divergence in allele frequencies was observed for the other genomic regions with 

extreme values of πsylvestris/ πsativa. Indeed, both cultivated and wild individuals showed low minor 

allele frequency at those loci (MAF < 0.1). Therefore, this common reduction in nucleotide 

diversity in both subspecies may suggest reciprocal introgressions between wild and cultivated 

grapes [70] or could reflect local conditions affecting diversity in both populations [154]. Another 

common test used to detect signals of selection as distortion of allele frequency and nucleotide 

diversity is the Tajima’s D, which compares the number of pairwise differences between 

individuals with the total number of segregating polymorphisms [151, 217]. We observed mostly 

positive values of Tajima’s D in both wild (Dsyl ~0.89) and cultivated (Dsat ~1.35) subgroups. As 

reported by Riahi et al. [227], a positive value of Tajima’s D, especially for cultivated accessions, 

may indicate an excess of intermediate frequency alleles in these populations. Such configuration 

of allele frequencies may arose by a balancing selection, which maintains both alleles at the 

selected loci [229]. This may happen as the result of an heterozygote advantage as well as 

frequency-dependent selection or spatial and temporal habitat heterogeneity [143]. A balancing 
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selection is in line with the high heterozygosity of grapevine genome and with the heterogeneity 

of uses and habitats to which V. vinifera is adapted. 

 

Figure 4: a) Manhattan plot of FST values for all SNP sites between cultivars and wild grapevines. The 

horizontal blue and red lines indicate respectively the 95
th

 (FST = 0.27) and the 99
th

 (FST = 0.37) percentiles of 
the FST empirical distribution. The circles reported the putative functions and the related metabolic 
processes of the genes with the highest FST values in the enriched functional classes. b) Reduction in 
nucleotide diversity in the comparison of sylvestris and sativa accessions (πsylvestris/πsativa) across the genome.  

 

Identification of biological functions underlying sweep 

We looked at the new gene prediction v2.1 of the grapevine genome within windows of 20 

kb around the SNPs detected as putatively under selection. Out of the 2,032 predicted genes 

found in LD with the most significant SNPs 1,714 were annotated. Twelve functional classes were 

significantly enriched in the list of differentiated genes (Table 2), accounting for 109 of them 

(Supplementary Table S3). 69% of these genes had a predicted function related to organic 

compound metabolic processes, especially those of nitrogen and carbohydrate, while the 24% 
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was assigned to functional classes involved in perception, response and/or adaptation to 

environmental stimuli. 

 

Table 2: Functional Classes significantly differentiated between sativa and sylvestris accessions. 

GO ID Term 
Annotated 

genes 
Significant 

genes 
P-value 

GO:0071704 
organic substance 
metabolic process 

1516 33 0.01596 

GO:0006807 
nitrogen compound 
metabolic process 

604 32 0.01372 

GO:0005975 carbohydrate metabolic process 148 10 0.00019 

GO:0055114 oxidation-reduction process 143 9 0.00262 

GO:0009737 response to abscisic acid 114 8 0.00232 

GO:0006952 defense response 446 3 0.03388 

GO:0032259 methylation 72 5 0.01715 

GO:0009607 response to biotic stimulus 124 3 0.00045 

GO:0009651 response to salt stress 50 2 0.01213 

GO:0010363 
regulation of plant-type 
hypersensitive response 

20 2 0.0378 

GO:0010118 stomatal movement 9 1 0.00899 

GO:0090305 
nucleic acid phosphodiester bond 

hydrolysis 
11 1 0.03897 

 

Out of the 109 genes in the enriched classes 14 showed a FST values > 0.37 (99th percentile 

of the FST empirical distribution; Supplementary Table S3). Therefore, understanding the putative 

functions and the related methabolic processes of these genes has a particular relevance in the 

genomic comparison between sativa and sylvestris (Figure 4). At the top of the genes list showing 

highest value of FST we identified the ‘RPL5B’ gene (VIT_204s0008g00050; Table S3), which 

codifies the 60S ribosomal protein L5-2 [230]. This gene could illustrate differences in organ 

development and expansion between the two subspecies. Indeed, the angusta3 (ang3) mutant of 

A. thaliana for RPL5b gene displayed altered growth and development of several organs, notably 

of leaves [230, 231]. Therefore, it is likely that balancing selection (Dsat = 1.13; Dsyl = 1.37) has 

acted to promote the strong morphological variation observable today about leaf shape and size 

within and between cultivated and wild grapevines. Indeed, the former has palmate-lobed leaves 

with a huge variability regarding size, shape and hirsuteness [45], while the latter presents hairy 

leaves with small to medium size [77, 47]. Different climatic conditions, such as radiation and 

precipitation of certain geographic regions, could have caused the current variation in leaf shape 

and size [232]. A particular enrichment in genes with a role in the carbohydrate metabolic process 

has been observed in the list of genes with a significant differentiation between wild and 

cultivated populations (Table 2). The identification of the soluble starch synthase IV-1 gene (SS4; 

VIT_211s0065g00150; FST = 0.4) highlighted differences between the two subspecies in starch and 
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sucrose metabolism which is relevant for berry development [233]. Indeed, starch concentrations 

decline significantly during the ripening and maturation phase of berry growth for the production 

of hexose sugars, essential for flesh berry sweetness and fermentation [234]. In addition, we 

identified a nuclear transport factor 2 (NTF2) gene (VIT_217s0000g05240) which is involved in 

organelle-nucleus communication and has a predicted role in the response to abscissic acid (ABA). 

ABA is the plant hormone that promotes the ripening of non-climateric fruits and is associated 

with the plant’s response to different kinds of abiotic stresses such as drought, high temperature, 

chilling and salinity [235]. During grape ripening an increase in free ABA levels around véraison 

accompanies sugar accumulation, softening and anthocyanin synthesis [236]. NTF2 gene is 

located within the significant signature of selection on chr17, which included candidate 

domestication-loci for berry size and development [34]. A reduction of nucleotide diversity in 

sativa accessions (πsylvestris/ πsativa = 1.23) was observed at this locus, supporting the evidence of a 

putative selection for berry composition and ripening traits in cultivated grapevines [34]. Another 

diversified gene involved in the carbohydrate metabolic process is the NADP-isocitrate 

dehydrogenase gene (cICDH; VIT_204s0079g00530), which catalyzes the oxidative 

decarboxylation of isocitrate. An up-regulation of the genes encoding isocitrate dehydrogenases 

in tobacco (Nicotiana tabacum cv Xanthi) and grape (V. vinifera cv Sultanina) accompanied the 

increased aminating activity of glutamate dehydrogenase (GDH) under stress conditions, such as 

salinity, thanks to the signaling function of reactive oxygen species (ROS) [237]. Other loci 

involved in the response to different environmental stimuli were identified among the most 

differentiated genes between sativa and sylvestris. Indeed, the 10 kda chaperonin gene (CPN10; 

VIT_208s0040g01150) encodes the plant mitochondrial homologue of GroES or chaperonin 10 

(CPN10) in E.coli [238]. It is well known that the essential function of molecular chaperonins is to 

prevent the formation of ‘improper’ protein structures, which may occur during the exposure to 

stresses such as heat shock [239]. The ‘LPA66’ gene (VIT_204s0008g00480) encodes for a 

pentatricopeptide repeat (PPR)-containing protein, which is RNA binding and is involved in post-

transcriptional processes [240], including RNA editing. The Arabidopsis high chlorophyll 

fluorescence mutant low psII accumulation66 (lpa66) had impaired PSII functions resulting in the 

high chlorophyll fluorescence phenotype [241]. In the top 1% of the Fst empirical distribution we 

found also the gene VIT_204s0008g01360, which encodes a U-box domain-containing protein 35-

like. The Plant U-box (PUB) proteins have a ubiquitin protein ligase activity during protein 

ubiquitination [242]. The ubiquitin machinery is involved in responses to changes in abiotic or 

biotic environment by chromatin modification and transcription factor modulation, cell surface 

receptor localization and/or stability, and by controlling key enzymes in metabolic pathways 

[243]. In addition, the FATB genes (VIT_217s0000g01100) encodes the myristoyl-acyl carrier 

protein thioesterase which plays an essential role in chain termination during de novo fatty acid 

synthesis. Analyses on Arabidopsis mutants of FATB thioesterase revealed the crucial role of this 

enzyme in seed development and viability [244] as well as in the promotion of the hypersensitive 

response (HR) to pathogen attack [245]. Furthermore, the rhomboid-like protein 11 gene (RBL11; 

VIT_204s0008g03830) encodes a transmembrane serine protease which modulates several 

cellular processes in different biological contexts, such as cell signaling [246], through the 

regulated intramembrane proteolysis (RIP). The presence of the desacetoxyvindoline 4-

hydroxylase gene (VIT_204s0008g01360) among the genomic regions with the highest FST values 

supports the evidence of different adaptive response to environment changes between sativa and 

sylvestris genotypes. The desacetoxyvindoline 4-hydroxylase is involved in the biosynthesis and 

regulation of terpenoid indole alkaloids [247], secondary metabolites which provide protection 
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against microbial infection, herbivores consumption, and abiotic environmental stresses [248, 

249]. Differences in allele frequencies were also observed at the ERF2 transcription factor 

(VIT_215s0021g01590) and ‘RAP2’ (VIT_218s0001g05250) genes, which encode respectively the 

plant transcription factors ERF2 and RAP2, two members of the APETALA 2/ethylene-responsive 

element binding factor (AP2/ERF) family [250]. ERF proteins have been identified as ehylene-

responsive element (GCC box)-binding protein [251]. In tobacco, the GCC box has been found in 

the promoter of various defense genes and has been shown to function as a cis-acting element 

responsive to ethylene and elicitors [252]. RAP2 is a dehydration-responsive element-binding 

protein (DREB) with a role in plant abiotic stress responses, such as high-salt stress, water deficit 

and extreme temperatures [250]. Furthermore, the gene VIT_204s0008g03840 codifies for an 

ankyrin repeat-containing protein. Several studies have elucidated the regulatory function of 

ankyrin repeat proteins during plant growth and development stages as well as during stress 

conditions, such as drought stress and pathogen attack [253]. Finally, the identification of a 

splicing factor 3b subunit 1-like gene (VIT_208s0040g00270) supports that alternative splicing 

may contributes to the evolutionary adaptation. Indeed, the assortment of different protein 

isoforms can be quickly modified as a response to a sudden and strong selective pressure [100].  

In almost all the identified genes involved in stress responses a slightly reduction in 

nucleotide diversity was observed in the sylvestris (πsylvestris/ πsativa ~0.95), associated with a 

positive value of the Tajima’s D (Dsyl = 1.41). These results imply that a balancing selection is likely 

acting in wild populations for adaptation to several environmental changes which may occur in 

their natural habitat along river banks, also as a consequence of human action that has disrupted 

the original environment of wild grapevine populations [25]. Our results are in line with recent 

studies on the tolerance of sylvestris genotypes to different stress conditions such as pathogen 

attack [83] or calcareous soils [203]. Therefore, sylvestris grapevines represent valuable resources 

to mine for resilience genes or alleles which may have been lost during the domestication 

process, making cultivated grapevine dependent to agricultural means such as fertilization, 

irrigation, weeding, and chemical plant protection. The CPN10 and RAP2 genes represent an 

exception of this trend. Lower genetic diversity was observed at these loci in sativa accessions, 

suggesting a putative ongoing selection for adaptive mechanisms to salt stress.  

In addition to the GO enrichment analysis we looked for genes identified in previous QTL 

mapping studies as associated to main agronomic traits in grapevine, such as berry weight, berry 

skin color and flower sex (Table 3). Indeed, a large difference in berry size can be observed 

between wild and cultivated genotypes [25]. The wild V. sylvestris produces mature berries 

weighting less than 1 g, while berries of some table grape varieties can weight 10 g or more [228]. 

We found several genes of those reported in literature under berry weight QTLs [42], such as the 

genes for the xyloglucan endotransglycosylase (XTH;VIT_201s0150g00460) [254], the histone 

deacetylase 2C (VvHD2C; VIT_206s0061g01240) [255] and the cytochrome p450 78a3-like 

(CYP78A10; VIT_217s0000g05110), which has been found to regulate fruit size during tomato 

domestication [256, 42, 113]. One of the main changes likely occurred during grapevine 

domestication affected flower sex [25]. Common microsatellite (SSR) loci relatively close to the 

sex locus have been reported on chr2 [120, 224, 223, 200]. We found a genomic region spanning 

from 4.7 to 5.0 Mb on chr2 with a high level of differentiation between cultivated and wild 

accessions (FST ~ 0.31). This genomic region included 4 SNPs in LD with the APT [200], SNP4AC and 

Vvib23 [222] markers of flower sex.   
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Table 3: Genes reported in literature under QTLs for berry weight, flower sex and berry skin color, and 

identified in this study as significant differentiated between wild and cultivated grapevines. 

Gene ID Chr Position Gene Annotation Trait FST Reference 

VIT_201s0150g00460 1 
22826079: 
22829099 

xyloglucan 
endotransglycosylase (XTH5) 

Berry weight 0.28 [254] 

VIT_206s0061g01240 6 
19041829: 
19047502 

histone deacetylase 2C 
(VvHD2C) 

Berry weight 0.26 [255] 

VIT_217s0000g05110 17 
5600225: 
5602640 

cytochrome p450 78a3-like 
(CYP78A10) 

Berry weight 0.32 [256][42][113] 

VIT_211s0016g04630 11 
3959481: 
3961177 

DELLA protein SLR1-like (GAI) Berry weight 0.27 [42] 

VIT_218s0001g14000 18 
12002927: 
12003389 

auxin-induced protein X10A-
like 

Berry weight 0.29 [42] 

VIT_218s0001g14030 18 
12073128: 
12076336 

probable cytokinin riboside 5 
-monophosphate 

phosphoribohydrolase logl6-
like 

Berry weight 0.29 [42] 

VIT_202s0241g00050 2 
4698823: 
4704204 

uncharacterized protein Flower sex 0.29 [200][222] 

VIT_202s0241g00060 2 
4715393: 
4718698 

uncharacterized protein Flower sex 0.29 [200][222] 

VIT_202s0241g00060 2 
4715393: 
4718698 

uncharacterized protein Flower sex 0.29 [200][222] 

VIT_202s0154g00230 2 
5036984: 
5037952 

pinus taeda anonymous 
locus 0_16347_01 genomic 

sequence 
Flower sex 0.36 [200][222] 

VIT_202s0109g00370 2 
13050602: 
13056119 

RNA recognition motif-
containing protein 

Berry Skin 
color 

0.28 [44] 

VIT_202s0109g00380 2 
13057949: 
13076992 

dead-box atp-dependent rna 
helicase 5 (STRS1) 

Berry Skin 
color 

0.28 [44] 

VIT_202s0033g00450 2 
14308288: 
14309480 

transcription factor MYBA3 
(MYB113) 

Berry Skin 
color 

0.28 [44] 

VIT_202s0033g00460 2 
14313417: 
14314479 

transcription factor MYBA4 
(MYB113) 

Berry Skin 
color 

0.36 [44] 

VIT_207s0005g04890 7 
8141027: 
8142187 

Glutathione S-transferase 25 
(GSTU7) 

Berry Skin 
color 

0.28 [44] 

VIT_208s0040g01040 8 
12066763: 
12073699 

serine carboxypeptidase-like 
45-like (scpl46) 

Berry Skin 
color 

0.28 [44] 

 

A cluster of MYB-type transcription factor genes, which control the anthocyanin content in 

berry skin, is also located on chr2 [257][258][44]. We observed differences in allele frequency (FST 

= 0.36) at the transcription factor MYBA3 gene (MYB113; VIT_202s0033g00460) between wild 

individuals, which presented only colored fruits, and cultivated genotypes, composed by both 

colored and white varieties. This gene is located within the 5 Mb region on chr2 identified as 

associated with berry color by Myles et al. [34]. Moreover, the candidate genes for the 

glutathione S-transferase 25 (GSTU7; VIT_207s0005g04890) and the serine carboxypeptidase-like 

45-like (scpl46; VIT_208s0040g01040), identified under berry skin color QTLs [44], revealed a high 

level of differentiation (FST ~0.28).  
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Conclusions 

In the present research, we displayed the first whole-genome survey of the genetic 

differentiation between wild and cultivated grapevines by using population genetics approaches. 

An overall reduction of genetic diversity has been observed within the wild panel, supporting the 

occurence of an ongoing progressive decline of natural wild grapevine populations, and the 

necessity of developing new programs for the characterization and conservation of V. sylvestris. 

Moreover, we identified several genomic regions with divergent allele frequencies between 

grapevine cultivars and their wild relatives. These genomic regions showed a significant 

enrichment of gene functional classes related with responses to biotic and abiotic stresses, 

unraveling putative different mechanisms of adaptation to environmental changes between the 

two V. vinifera subspecies. Indeed, while grapevine cultivars are almost completely addicted to 

human agricultural practices, wild grapes keep likely facing the constant environmental 

alterations that still occur in natural habitats. In this regard, our findings pave the way for future 

studies of functional genomics and/or candidate-gene association mapping, which will provide 

additional information about how the two forms of V. vinifera react to environmental stimuli and 

stresses, such as water deficit and pathogen attacks. Finally, our results support the broad 

potential of V. sylvestris as spring of resilience factors in future breeding programs to deal with 

the ongoing climate changes and the increasing demand of a sustainable viticulture.  
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Supplementary Data 

Table S1: Ancestry values inferred by fastSTRUCTURE for 44 grapevine cultivars and 42 wild individuals 

genotyped at 26,893 SNP loci. The three subgroups inferred based on a membership cutoff of 0.75 are 
highlighted in grey. 

 

Sample ID Accession Name Population 
Cluster membership 

K1 K2 K3 

GRAPE_55 
 

sylvestris 1 0 0 

GRAPE_56 
 

sylvestris 1 0 0 

GRAPE_57 
 

sylvestris 1 0 0 

GRAPE_58 
 

sylvestris 1 0 0 

GRAPE_62 
 

sylvestris 1 0 0 

GRAPE_63 
 

sylvestris 1 0 0 

GRAPE_64 
 

sylvestris 1 0 0 

GRAPE_65 
 

sylvestris 1 0 0 

GRAPE_68 
 

sylvestris 1 0 0 

GRAPE_75 
 

sylvestris 1 0 0 

GRAPE_77 
 

sylvestris 1 0 0 

GRAPE_84 
 

sylvestris 1 0 0 

GRAPE_81 
 

sylvestris 0.97 0.03 0 

GRAPE_83 
 

sylvestris 0.95 0 0.05 

GRAPE_70 
 

sylvestris 0.94 0 0.06 

GRAPE_78 
 

sylvestris 0.94 0 0.06 

GRAPE_54 
 

sylvestris 0.93 0 0.07 

GRAPE_79 
 

sylvestris 0.93 0.07 0 

GRAPE_60 
 

sylvestris 0.91 0 0.09 

GRAPE_69 
 

sylvestris 0.91 0 0.09 

GRAPE_76 
 

sylvestris 0.91 0 0.09 

GRAPE_82 
 

sylvestris 0.91 0 0.09 

GRAPE_91 
 

sylvestris 0.91 0 0.09 

GRAPE_80 
 

sylvestris 0.9 0 0.1 

GRAPE_73 
 

sylvestris 0.89 0 0.11 

GRAPE_66 
 

sylvestris 0.88 0 0.12 

GRAPE_93 
 

sylvestris 0.86 0 0.14 

GRAPE_53 
 

sylvestris 0.82 0 0.18 

GRAPE_67 
 

sylvestris 0.81 0 0.19 

GRAPE_87 
 

sylvestris 0.8 0 0.2 

GRAPE_89 
 

sylvestris 0.8 0 0.2 

GRAPE_85 
 

sylvestris 0.79 0 0.21 

GRAPE_72 
 

sylvestris 0.78 0 0.22 

GRAPE_92 
 

sylvestris 0.78 0 0.22 

GRAPE_94 
 

sylvestris 0.78 0 0.22 

GRAPE_52 
 

sylvestris 0.77 0 0.23 

GRAPE_29 Pinot Noir sativa 0 1 0 

GRAPE_06 Gewuerztraminer sativa 0.08 0.92 0 

GRAPE_10 Mornan Noir sativa 0.08 0.89 0.03 

GRAPE_20 Zilavka sativa 0 0 1 

GRAPE_02 Alarije sativa 0 0 1 

GRAPE_36 Rossola sativa 0 0 1 

GRAPE_38 Armenia chi 10 sativa 0 0 1 

GRAPE_39 Trollinger Rot sativa 0 0 1 



Chapter 3 
 

52 
 

GRAPE_24 Ak chekerek sativa 0 0 1 

GRAPE_01 Alba aganyn isyoum sativa 0 0 1 

GRAPE_26 Limnio sativa 0 0 1 

GRAPE_27 Canorroio sativa 0 0 1 

GRAPE_46 Ak ouzioum tagapskii sativa 0 0 1 

GRAPE_47 Ahmed sativa 0 0 1 

GRAPE_04 Brustiano sativa 0.02 0 0.98 

GRAPE_21 Vernaccia di S.Gimignano sativa 0.04 0 0.96 

GRAPE_17 Saperavi sativa 0.06 0 0.94 

GRAPE_08 Beli Medenac sativa 0.06 0 0.94 

GRAPE_09 Macabeu sativa 0.06 0 0.94 

GRAPE_18 Malvasia Istriana sativa 0.08 0 0.92 

GRAPE_35 Piè di Palombo sativa 0.09 0 0.91 

GRAPE_45 Buffalo sativa 0.1 0 0.9 

GRAPE_41 Muscat Bleu sativa 0 0.12 0.88 

GRAPE_34 Moscato sativa 0.13 0 0.87 

GRAPE_40 Espadeiro blanco sativa 0.13 0 0.87 

GRAPE_31 Pignoletto sativa 0.15 0 0.85 

GRAPE_48 V.berlandieri Colombard sativa 0.15 0 0.85 

GRAPE_30 Verdelet sativa 0.17 0 0.83 

GRAPE_19 Jacquere sativa 0.18 0 0.82 

GRAPE_37 Castor sativa 0.12 0.07 0.81 

GRAPE_32 Aris sativa 0.21 0 0.79 

GRAPE_42 Bracciola nera sativa 0.05 0.21 0.73 

GRAPE_14 Roussanne sativa 0.27 0 0.73 

GRAPE_25 Ortrugo sativa 0.18 0.1 0.71 

GRAPE_07 Leon Millot sativa 0.17 0.19 0.64 

GRAPE_12 Corbera sativa 0.09 0.28 0.63 

GRAPE_50 
V,silvestris cl, Guemuld 103-

64 
sativa 0.39 0 0.61 

GRAPE_05 Forsellina sativa 0.29 0.16 0.55 

GRAPE_15 Csaba gyongye sativa 0 0.47 0.53 

GRAPE_43 Semidano sativa 0.03 0.45 0.52 

GRAPE_86 
 

sylvestris 0.48 0 0.52 

GRAPE_22 Shiraz sativa 0.29 0.35 0.36 

GRAPE_11 Lambrusco casetta sativa 0.48 0.18 0.35 

GRAPE_59 
 

sylvestris 0.67 0 0.33 

GRAPE_90 
 

sylvestris 0.67 0 0.33 

GRAPE_95 
 

sylvestris 0.68 0 0.32 

GRAPE_03 Arnsburger sativa 0 0.71 0.29 

GRAPE_71 
 

sylvestris 0.73 0 0.27 

GRAPE_88 
 

sylvestris 0.75 0 0.25 

GRAPE_23 Claverie coulard sativa 0.45 0.39 0.16 
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Figure S1: LD plots (GOLD heatmap) base on r
2
 values obtained with Haploview v4.1 for each chromosome 

within the sativa subgroup (red = high r
2
; blue = low r

2
). 

 

  



Chapter 3 
 

54 
 

Figure S2: LD plots (GOLD heatmap) base on r
2 

values obtained with Haploview v4.1 for each chromosome 

within the sylvestris subgroup (red = high r
2
; blue = low r

2
). 
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Figure S3: empirical distribution of FST values across the whole genome between wild and cultivated 

grapevines. The area shaded in red indicated the top 5% of FST values. The average and standard deviation 
(sd) of the 95

th
 percentiles of FST values gained over 1,000 permutations are also reported. 
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Table S2: Grapevine genes included in the enriched functional classes significantly differentiated between 

sativa and sylvestris accessions (significance cutoffs: **99
th

 percentile; *95
th

 percentile). 

Gene ID Chr Position Fst GO Term 
Gene 
name 

Gene 
Annotation 

(v2.1) 

VIT_204s0008g00050 4 16202:16771 0.49** 
nitrogen compound 
metabolic process 

RPL5B ribosomal protein 

VIT_204s0008g03840 4 3182895:3185997 0.45** 
response to biotic 

stimulus 
- 

ankyrin repeat-
containing protein 

VIT_204s0008g03830 4 3178460:3182280 0.45** 
organic substance 
metabolic process 

RBL11 
rhomboid family 

protein 

VIT_208s0040g01150 8 12159018:12162600 0.42** 
carbohydrate 

metabolic process 
CPN10 10 kda chaperonin 

VIT_217s0000g05240 17 5737662:5753467 0.4** 
response to abscisic 

acid 
- 

nuclear transport 
factor 2 and rna 

recognition motif 
domain-containing 

protein 

VIT_211s0065g00150 11 13509591:13529415 0.4** 
carbohydrate 

metabolic process 
SS4 

soluble starch 
synthase iv-1 

VIT_204s0008g00480 4 415618:417970 0.39** 
nitrogen compound 
metabolic process 

LPA66 

pentatricopeptide 
repeat-containing 

protein 
chloroplastic-like 

VIT_205s0049g00250 5 7334595:7335474 0.39** 
oxidation-reduction 

process 
- 

Desacetoxyvindoli
ne 4-hydroxylase 

VIT_204s0079g00530 4 11130821:11137310 0.38** 
carbohydrate 

metabolic process 
cICDH 

nadp-isocitrate 
dehydrogenase 

VIT_208s0040g00270 8 11213199:11217147 0.37** 
nitrogen compound 
metabolic process 

- 
splicing factor 3b 

subunit 1-like 

VIT_204s0008g01360 4 1114709:1118921 0.37** 
organic substance 
metabolic process 

- 
u-box domain-

containing protein 
35-like 

VIT_217s0000g01100 17 769342:770298 0.37** 
organic substance 
metabolic process 

FATB 
myristoyl-acyl 
carrier protein 

chloroplastic-like 

VIT_218s0001g05250 18 4220268:4222313 0.37** response to salt stress RAP2 
ap2 erf domain-

containing 
transcription factor 

VIT_215s0021g01590 15 12223557:12224200 0.37** defense response ERF2 
erf2 transcription 

factor 

VIT_206s0004g06420 6 7163946:7166617 0.35* 
nitrogen compound 
metabolic process 

- 

probable lrr 
receptor-like 

serine threonine-
protein kinase 
at1g56140-like 

VIT_206s0004g04180 6 5152464:5153142 0.35* response to salt stress - 
nucleic acid 

binding 

VIT_206s0004g06890 6 7615724:7620455 0.35* stomatal movement KT1 
potassium 

transporter 1-like 

VIT_217s0000g05270 17 5761030:5764757 0.34* 
organic substance 
metabolic process 

- 
uncharacterized 

protein 
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VIT_206s0004g07820 6 8601569:8603477 0.33* 
nitrogen compound 
metabolic process 

OTP82 

pentatricopeptide 
repeat-containing 

protein at1g08070-
like 

VIT_201s0127g00190 1 7536963:7537993 0.33* 
organic substance 
metabolic process 

CRK2 
cysteine-rich 
receptor-like 

protein kinase 2 

VIT_214s0171g00140 14 26008741:26011003 0.33* 
organic substance 
metabolic process 

- 
type receptor 

kinase 

VIT_206s0004g06980 6 7687431:7690514 0.33* 
organic substance 
metabolic process 

- 
probable phytol 

kinase 
chloroplastic-like 

VIT_211s0103g00110 11 15613800:15614090 0.33* 
oxidation-reduction 

process 
- 

photosystem II 
protein D2 

VIT_217s0000g01040 17 744117:746348 0.33* 
response to abscisic 

acid 
HSD7 protein 

VIT_213s0101g00050 13 11498528:11499084 0.32* 
nitrogen compound 
metabolic process 

RPS1 
ribosomal protein 

s1 

VIT_217s0000g06390 17 6970923:6972402 0.32* 
nitrogen compound 
metabolic process 

- 
uncharacterized 

protein 

VIT_208s0056g01650 8 2648151:2649186 0.32* 
response to biotic 

stimulus 
LBD20 protein 

VIT_208s0105g00480 8 7811452:7821404 0.32* 
carbohydrate 

metabolic process 
SAC8 

transmembrane 
protein g5p 

VIT_210s0042g00290 10 13123742:13128460 0.32* 
organic substance 
metabolic process 

SMO1-3 protein 

VIT_212s0059g01590 12 6491575:6511602 0.32* 
organic substance 
metabolic process 

- gdsl esterase lipase 

VIT_205s0049g00410 5 7455371:7457433 0.32* 
oxidation-reduction 

process 
- 

1-
aminocyclopropan

e-1-carboxylate 
oxidase homolog 1 

VIT_208s0007g05410 8 19354822:19363364 0.31* 
nitrogen compound 
metabolic process 

CBL 
cystathionine beta-

lyase 

VIT_207s0141g00580 7 324514:331958 0.31* 
carbohydrate 

metabolic process 
GAUT6 

alpha- -
galacturonosyltran

sferase 

VIT_214s0066g00600 14 27087956:27088713 0.31* 
organic substance 
metabolic process 

- 
uncharacterized 

protein 

VIT_217s0000g00170 17 88282:89690 0.31* 
organic substance 
metabolic process 

VIM1 zinc finger 

VIT_207s0129g00680 7 15918217:15921201 0.31* 
organic substance 
metabolic process 

- 

pentatricopeptide 
repeat-containing 

protein 
chloroplastic-like 

VIT_213s0156g00150 13 23889012:23889722 0.31* 
oxidation-reduction 

process 
- protein 

VIT_211s0016g02340 11 1886162:1888997 0.3* 
nitrogen compound 
metabolic process 

CDA1 cytidine deaminase 

VIT_217s0000g04710 17 5104509:5107597 0.3* 
nitrogen compound 
metabolic process 

- 
pentatricopeptide 
repeat-containing 

protein 

VIT_206s0004g05500 6 6342667:6344806 0.3* 
nitrogen compound 
metabolic process 

- 
myosin heavy 
chain-related 

protein 

VIT_205s0102g00773 5 22709504:22709776 0.3* defense response - 
probable disease 

resistance protein 
rdl6 rf9-like 
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VIT_208s0040g03200 8 14139778:14141968 0.29* methylation - 
60s ribosomal 

protein l4-1 

VIT_205s0020g03060 5 4794345:4798018 0.29* 
nitrogen compound 
metabolic process 

CYCT1-4 cyclin t1 

VIT_205s0020g03070 5 4800109:4802663 0.29* 
nitrogen compound 
metabolic process 

- 
cyclin family 

protein 

VIT_208s0040g03290 8 14236327:14250749 0.29* 
nitrogen compound 
metabolic process 

MCM8 
dna replication 
licensing factor 

mcm8-like 

VIT_206s0009g03385 6 16617200:16618027 0.29* 
response to biotic 

stimulus 
- protein 

VIT_201s0026g00090 1 8711856:8728580 0.29* 
carbohydrate 

metabolic process 
ULP1D 

ubiquitin-like-
specific protease 

1c 

VIT_201s0026g00100 1 8738934:8750115 0.29* 
carbohydrate 

metabolic process 
ULP1D ulp1 protease 

VIT_206s0004g08080 6 8843648:8845413 0.29* 
carbohydrate 

metabolic process 
XLG1 - 

VIT_208s0007g03030 8 17078610:17080600 0.29* methylation UBQ1 
ubiquitin fusion 

protein 

VIT_211s0065g00640 11 14530232:14586262 0.29* 
organic substance 
metabolic process 

CAS1 
cycloartenol 

synthase 

VIT_217s0000g00070 17 35355:36590 0.29* 
organic substance 
metabolic process 

- protein 

VIT_219s0085g00190 19 22516711:22517184 0.29* 
organic substance 
metabolic process 

SK4 skp1-like protein 

VIT_219s0085g00195 19 22520035:22520493 0.29* 
organic substance 
metabolic process 

SK4 skp1-like protein 

VIT_205s0029g00180 5 14365888:14385337 0.29* 
organic substance 
metabolic process 

ERD2B 
ER lumen protein 

retaining receptor-
like 

VIT_206s0004g05610 6 6420422:6423513 0.29* 
organic substance 
metabolic process 

- 

subtilisin-like 
serine 

endopeptidase 
family protein 

VIT_208s0007g08780 8 22158694:22159606 0.29* 
organic substance 
metabolic process 

MIZ1 
uncharacterized 

protein 

VIT_214s0066g02170 14 28394896:28398366 0.29* 
oxidation-reduction 

process 
- 

prolyl 4-
hydroxylase 

VIT_208s0040g03180 8 14133347:14136582 0.29* 
oxidation-reduction 

process 
RAP2 

ap2 domain-
containing 

transcription factor 

VIT_214s0066g02040 14 28307901:28309789 0.29* 
response to abscisic 

acid 
AATP1 atp binding 

VIT_214s0066g02050 14 28314798:28316327 0.29* 
response to abscisic 

acid 
- protein 

VIT_214s0066g02060 14 28318004:28319797 0.29* 
response to abscisic 

acid 
AATP1 atp binding 

VIT_214s0066g02100 14 28353929:28355637 0.29* 
response to abscisic 

acid 
AATP1 

mitochondrial 
chaperone bcs1 

VIT_214s0066g02110 14 28358493:28360078 0.29* 
response to abscisic 

acid 
AATP1 atp binding 

VIT_213s0067g03350 13 1837463:1838505 0.28* methylation - 
60s ribosomal 

protein l4-1 

VIT_206s0004g03730 6 4680671:4687232 0.28* 
nitrogen compound 
metabolic process 

NRPC1 
dna-directed rna 

polymerase iii 
subunit rpc1-like 
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VIT_206s0004g03740 6 4692715:4737715 0.28* 
nitrogen compound 
metabolic process 

NRPC1 
dna-directed rna 

polymerase iii 
subunit rpc1-like 

VIT_206s0004g03780 6 4759942:4760340 0.28* 
nitrogen compound 
metabolic process 

PRS 
wuschel-related 

homeobox 3 

VIT_206s0004g04040 6 5021170:5031333 0.28* 
nitrogen compound 
metabolic process 

- 
pentatricopeptide 
repeat-containing 

protein 

VIT_206s0004g05930 6 6666460:6669570 0.28* 
nitrogen compound 
metabolic process 

PCNA2 
proliferating cell 
nuclear antigen 

VIT_208s0007g03340 8 17307190:17311533 0.28* 
nitrogen compound 
metabolic process 

- 
ribosomal protein 

l1 

VIT_215s0046g01190 15 18217371:18218971 0.28* 
regulation of plant-
type hypersensitive 

response 
GT72B1 

hydroquinone 
glucosyltransferase 

VIT_215s0046g01210 15 18226980:18228562 0.28* 
regulation of plant-
type hypersensitive 

response 
GT72B1 

hydroquinone 
glucosyltransferase 

VIT_204s0023g00110 4 16084017:16085284 0.28* 
carbohydrate 

metabolic process 
- 

alpha- -glucan-
protein synthase 

VIT_206s0004g05040 6 5967109:5968595 0.28* methylation - 
isoprenylcysteine 

carboxyl 
methyltransferase 

VIT_215s0021g01110 15 11136019:11137148 0.28* 
organic substance 
metabolic process 

CYP714A1 cytochrome p450 

VIT_215s0021g01380 15 11651026:11665356 0.28* 
organic substance 
metabolic process 

- kinase like protein 

VIT_215s0046g01150 15 18197371:18198267 0.28* 
organic substance 
metabolic process 

- 
anthocyanidin 
reductase-like 

VIT_215s0046g01320 15 18339430:18341953 0.28* 
organic substance 
metabolic process 

- 
protein kinase-like 

protein 

VIT_216s0098g01780 16 21844781:21851539 0.28* 
organic substance 
metabolic process 

SSI1 
soluble starch 

synthase I 

VIT_217s0000g05592 17 6117344:6117909 0.28* 
organic substance 
metabolic process 

- 
momilactone a 

synthase 

VIT_217s0000g05600 17 6124001:6125145 0.28* 
organic substance 
metabolic process 

- 
short-chain alcohol 

dehydrogenase 

VIT_205s0049g01050 5 8090670:8091361 0.28* 
organic substance 
metabolic process 

- protein 

VIT_205s0094g01270 5 24541244:24543738 0.28* 
organic substance 
metabolic process 

BIR1 

probably inactive 
leucine-rich repeat 

receptor-like 
protein kinase 
at5g48380-like 

VIT_207s0005g04840 7 8105826:8106863 0.28* 
organic substance 
metabolic process 

MAPKKK2
1 

mitogen-activated 
protein kinase 
kinase kinase 

anp1-like 

VIT_207s0005g03750 7 6715566:6716963 0.28* 
oxidation-reduction 

process 
RIC7 protein 

VIT_207s0005g04060 7 7161837:7164031 0.28* 
oxidation-reduction 

process 
- protein 
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VIT_215s0046g00440 15 17407010:17409649 0.28* defense response PI4K 
phosphoinositide 
4-kinase gamma 4 

VIT_211s0016g04700 11 3988735:3992060 
0.2705

5* 
organic substance 
metabolic process 

KCS11 
beta-ketoacyl-coa 

synthase family 
protein 

VIT_206s0004g06310 6 7093095:7104132 0.27* methylation - 
60s acidic 

ribosomal protein 
p0 

VIT_216s0022g01860 16 14100069:14219500 0.27* 
nucleic acid 

phosphodiester bond 
hydrolysis 

CPSF160 protein 

VIT_204s0008g02230 4 1834035:1834800 0.27* 
nitrogen compound 
metabolic process 

- 
ap2 erf domain-

containing 
transcription factor 

VIT_204s0008g03960 4 3298715:3326185 0.27* 
nitrogen compound 
metabolic process 

- protein 

VIT_211s0016g04580 11 3888012:3891011 0.27* 
nitrogen compound 
metabolic process 

CRR21 
chlororespiratory 
reduction partial 

VIT_211s0016g04630 11 3959481:3961177 0.27* 
nitrogen compound 
metabolic process 

GAI della protein 

VIT_211s0016g04640 11 3966363:3968501 0.27* 
nitrogen compound 
metabolic process 

GONST4 
gdp-mannose 

transporter 

VIT_217s0000g01760 17 1307825:1308955 0.27* 
nitrogen compound 
metabolic process 

- 
duf246 domain-

containing protein 
at1g04910-like 

VIT_218s0001g06980 18 5220072:5221115 0.27* 
nitrogen compound 
metabolic process 

- 
pentatricopeptide 
repeat-containing 

protein 

VIT_205s0020g04520 5 6332992:6339892 0.27* 
nitrogen compound 
metabolic process 

LFR 
leaf and flower 
related protein 

VIT_208s0032g00010 8 2798984:2799422 0.27* 
nitrogen compound 
metabolic process 

- maturase 

VIT_208s0007g03150 8 17167523:17169413 0.27* 
nitrogen compound 
metabolic process 

- 
pentatricopeptide 
repeat-containing 

protein 

VIT_209s0070g00360 9 13521416:13522967 0.27* 
nitrogen compound 
metabolic process 

- 
aryl-alcohol 

dehydrogenase -
like 

VIT_209s0054g01000 9 21857946:21860542 0.27* 
nitrogen compound 
metabolic process 

- 
uncharacterized 

protein 

VIT_211s0206g00140 11 7470447:7473588 0.27* 
carbohydrate 

metabolic process 
SVL4 

glycerophosphoryl 
diester 

phosphodiesterase 
family protein 

VIT_212s0059g01660 12 6564094:6572507 0.27* 
organic substance 
metabolic process 

- - 

VIT_214s0066g00170 14 26743582:26745706 0.27* 
organic substance 
metabolic process 

CYP724A1 
cytochrome p450 

724b1 

VIT_209s0070g00320 9 13450437:13452476 0.27* 
organic substance 
metabolic process 

- 
cyclin-dependent 

kinase f-4-like 

VIT_207s0031g00100 7 16332009:16337077 0.27* 
oxidation-reduction 

process 
- 

2-oxoglutarate-fe -
dependent 
oxygenase 

domain-containing 
protein 
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VIT_204s0008g03950 4 3287257:3289094 0.27* 
response to abscisic 

acid 
RD22 

dehydration-
responsive protein 

rd22 
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Chapter 4 

A GENOME-WIDE ASSOCIATION STUDY TO REVEAL 

CANDIDATE GENES FOR DOMESTICATION-

RELATED TRAITS IN GRAPEVINE 

 

Abstract  

Background: Domestication involved strong novel selection operating on suites of traits, 

which underwent phenotypic evolution from wild plants to crops. Association mapping is one of 

the methods currently employed in identifying the genes and mutations that have been targets of 

selection during crop domestication, and to explore the considerable genetic variation still 

maintained in natural populations. 

Results: An association panel consisting of 42 wild and 46 cultivated accessions of V. 

vinifera was phenotyped for up to ten traits, including berry and bunch weight, yield and berry 

composition. A huge phenotypic variation was observed within and between the two grapevine 

subspecies, notably for berry size, pH, acid contents and titratable acidity. By using a panel of 26K 

SNPs, association analysis for each trait was carried out testing three different models which 

account for either population structure (GLM (Q)), familial relatedness (MLM (K)) or both (MLM 

(Q+K)). Significant genotype-phenotype associations were identified for all traits, except for single 

berry weight. In addition, cross associations were detected between yield and single bunch 

weight, and among malate concentrations and titratable acidity. 20 kb genomic regions 

surrounding the SNPs significantly associated to traits were scanned to search for candidate 

genes, yielding a total of 127 genes. In particular, genes encoding proteins related to Ca2+ 

sequestration and signalling, transcription factors and enzymes involved in the metabolism of 

polyamines were identified in linkage with the SNPs significantly associated to yield and bunch 

weight. At the same time, genes with a central role in the control of berry flesh pH and acidity 

were detected, such as the isocitrate lyase and V-type proton ATPase subunit a3 genes.  

Conclusions: our findings support the feasibility of association mapping to identify the 

genes and mutations underlying the phenotyping changes occurred during grapevine 

domestication and improvement. However, in order to increase the power and resolution of GWA 

studies in grapevine, further progresses are required towards the high-throughput acquisition of 

genome-wide markers in grapevine and the accurate collection of phenotypic data in bigger 

association panels. 
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Background 

Modern crops resulted from the long process of selection, breeding and adaptation, which 

have started with the beginning of agriculture around 10,000 years ago [144]. Although the 

domestication process deeply influenced the genetic diversity of modern crops, the majority of 

their current genetic variation has arisen from spontaneous mutations in their wild progenitors 

[112]. Therefore, understanding the phenotypic variation associated with the domestication 

process in crops will help to identify the genetic bases of domestication-related traits, and to 

better utilize the genetic resources for crop improvement (Huang and Han 2014). Advances in 

plant genomics during the last 10 years have introduced new tools for breeding strategies, such as 

genome-wide association studies (GWAS) and genomic selection (GS) [259]. Unlike the traditional 

quantitative trait loci (QTL) mapping, which uses bi-parental populations to study the co-

segragation of traits with markers, GWAS and GS are applied to populations of unrelated 

individuals, designed to capture a substantial portion of specie-wide variation [112]. The main 

difference between GS and GWAS strategies is that the former is used to predict phenotypes from 

marker profiles alone, reducing the time and costs involved in phenotyping breeding lines [260], 

while the latter aims at the identification of novel genotype-phenotype correlations that can be 

implemented in cultivar improvement through marker-assisted selection (MAS) [112]. GWAS 

takes full advantage of ancient recombination events occurred during the history of the 

association panel [145]. This provides higher mapping resolution than traditional gene mapping, 

which instead relies on the limited recombination history of a bi-parental population [261]. 

Moreover, while QTL mapping strategies use only the allelic diversity that segregates between the 

parents of a particular F2 population or within a Recombinant Inbred Lines (RIL) family, GWAS 

studies explore a broader genetic variation which depends on the size, geographic origin and 

genetic history of the population [262]. This increases the power to detect significant genotype-

phenotype correlations for traits with a polygenic nature [263]. However, the trait genetic 

architecture has a huge influence on the GWAS performance. If the trait is controlled either by 

many rare variants with a large effect on the phenotype or by many common variants with a small 

phenotypic effect, the power of GWAS to identify a true marker-trait association is deeply 

compromised [264]. Rare variants can only be detected with adeguate local sampling and may 

create synthetic genome-wide associations because they are usually linked with many other non-

causative variants within the genome, regardless of the extent of Linkage Disequilibrium (LD) 

[265]. Allelic and genetic heterogeneities are two other common drawbacks of GWAS [262]. Allelic 

heterogeneity occurs when multiple functional alleles of the same gene contribute to different 

phenotypes [266], while genetic heterogeneity consists in the control of phenotype by multiple 

major genes in LD [267]. Moreover, the genetic interaction between loci (epistasis) as well as the 

interaction between genes and environment (GxE) and the epigenetic variation represent other 

important GWAS issues [268, 269]. All these factors may account for the “missing heritability”, 

defined as a portion of genetic variance that cannot be explained by all significant marker-trait 

associations detected by GWAS [270]. The influence of each factor on GWAS performance 

depends strongly on the population sampled [262]. A matter requiring attention in crop GWAS is 

the need to account for confounding factors, that is population structure and criptic relatedness 

among studied individuals [271]. Population stratification results from the inclusion of individuals 

from different populations (i.e. diverse geographic origin), while cryptic relatedness refers to the 

degree of genetic relationship between individuals of the association panel. Indeed, samples with 
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a common genetic background share both casual and non-casual alleles and the LD between 

these sites can lead to spurious phenotype-genotype associations [272]. Accordingly GWAS 

methods based on the unified mixed linear model (MLM) have been developed [133] to account 

for confounding factors. In addition, more efficient alghorithms have been implemented to make 

MLM less computationally intensive [273, 132].  

GWAS has been widely applied in human genetics to identify major genes involved in 

diseases [274]. Recently GWAS approaches have also been carried out successfully in many crops, 

including maize [275], rice [206], sorghum [135] and barley [276]. Few applications of GWAS have 

been reported so far for perennial species, notably fruit trees. Kumar et al. [139] carried out a 

GWA analysis in apple for various fruit quality traits by applying a family-based design with 

controlled structure. On the other hand, Sardos et al. [140] applied GWAS to reveal the genetic 

bases of seedless phenotype in banana. The low number of GWA studies in fruit species may be 

ascribed to the difficulties in building up an ideal association panel. Indeed, extended juvenile 

phases, large plant size and the difficulties to collect information on commercially relevant traits 

(i.e. fruit quality) discourage breeding programs, which usually rely on only a small number of 

elite varieties [51]. This leads to have less unique genotypes in germplasm collection of perennial 

species than for annual crops, and a large part of these genotypes shares a high degree of genetic 

relationship [113]. Therefore, the design of a broad association panel composed by numerous 

unique individuals without introducing complex pattern of population stratification or familial 

relatedness is quite difficult in fruit trees species. Chitwood et al. [45] performed GWAS to map 

the genetic basis of leaf morphology in grapevine by using a population of 961 accessions 

genotyped with the Vitis9KSNP array [34]. Out of the 13 phenotyped traits only 4 resulted 

significantly associated with a handful of SNPs on chromosomes 1 and 6 after multiple testing p-

value adjustment. This GWA study underlined the limited power of association mapping studies in 

grapevine because of the rapid LD decay [21]. Fodor et al. [187] simulated GWAS for traits of 

different complexity on a population of 3,000 grapevine accessions, structured into three groups, 

using approx 90K SNPs. This simulation revealed how GWAS in grapevine was more efficient to 

detect a few loci with a large effect (characteristic of simple traits) than to identify multiple loci 

with small additive effects. Moreover, they postulated how sample size and the level of genetic 

diversity can compromise the power of GWAS in grapevine.  

In the present research GWAS has been applied as an alternative approach to dissect the 

genomic bases of domestication-related traits in grapevine. A germplasm collection of cultivated 

and wild grapevines has been evaluated for single berry and single bunch weight, number of 

bunches per plant, yield and berry composition (sugar, organic acid and K+ concentrations, 

titratable acidity and pH). The use of wild relatives aimed to explore novel genetic diversity 

potentially interesting for crop improvement [142]. In addition, this study contributes to add 

novel biological information about the changes occurred during the domestication process in 

grapevine.  
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Methods 

Plant material and phenotypes 

The association population consisted of 88 grapevine (V. vinifera L.) accessions, grafted on 

the rootstock Kober 5BB at the FEM experimental field ‘‘Giaroni” in San Michele all’Adige 

(Trentino, Italy), and uniformly pruned and trained according to the Guyot system (Appendix B, 

page 125). This population included 42 V. sylvestris and 46 cultivars of the G-110 core collection of 

V. sativa, which includes the overall genetic diversity at 22 SSR loci and 384 SNPs found within the 

source collection [49]. Phenotypic evaluation of 2 to 5 replicates per genotype was performed in 

2012 and 2013 for all traits as follows: clusters of each fruit-bearing plant were harvested six 

weeks after véraison for the evaluation of single bunch weight (OIV code number 502; SBCW), 

single berry weight (OIV code number 503; SBW), yield (OIV code number 504) and number of 

bunches per plant (NBCs). Juice samples (50 ml) from berries were measured with FTIR (Fourier 

transform infrared) using a FOSS instrument (FOSS NIRSystems, Oatley, Australia) for standard 

maturity analyses. Thus, total soluble solids (Brix°), titratable acidity, pH, malic and tartaric acid 

concentrations (g l-1), and potassium (g l-1; K+) content were assayed.  

 

Statistical analysis 

All statistical analyses were performed using R packages ‘stats’ v3.4.0 [177] and ‘ggplot2’ 

v2.1.0 [178]. Average values for replicates were used to evaluate correlation between the two 

year measurements. Moreover, Pearson correlation value (R) between each pair of variables was 

estimated in the whole population and the two subspecies separately with the ‘Hmisc’ v 3.17-3 R 

package [277]. One to six aberrant values were discarded according to traits. Different mixed 

models were fitted with lme4 package [278] in order to identify the best fit model for each trait. 

Model comparison was performed from the simplest model, based only on general mean and 

random genotypic effect (G), to the most complete one, based on general mean, random 

genotypic effect, fixed year effect (Y) and random genotype x year effect (GxY). Model selection 

was based on the Bayesian information criterion (BIC). Moreover, the mixed model assumption of 

normality of residual and BLUPs was checked after model fitting by quantile-quantile plot 

comparing the distribution of residual and random effect predictors to a theoretical normal 

distribution. No data transformation of phenotypes was performed. Based on the best fitted 

model, genotypic best linear unbiased predictor (BLUP) and broad-sense heritability were 

extracted [279].  

 

SNP genotyping and LD estimation 

Details of genotyping protocols for the studied population are reported in previous 

chapters. Briefly, SNPs genotypes were obtained by applying both the commercial GrapeReseq 

20K chip (see Chapter 3) and a novel protocol of RAD-seq (see Chapter 2). SNP loci with a missing 

rate > 0.2 were filtered out and genotype imputation was performed to fill in the remaining 

missing data using LinkImpute v1.1.1 software [169]. SNPs with Minor Allele Frequency (MAF) > 

0.05 were used to analyze the genetic structure of the population. Both a Bayesian approach, as 
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implemented in fastSTRUCTURE software v1.0 [210], and a Principal Component Analysis (PCA) 

[214] were perfomed, revealing a clear distinction between sylvestris and sativa genotypes. In 

addition, pairwise LD between SNPs was calculated with Plink v1.9 software [208] using the 

classical correlation coefficient r2 [109]. A degree of LD below 0.2 was observed within 10 kb.  

 

Marker-trait association analysis 

Genotype-phenotype associations were tested using both BLUPs and the average 

performance of each sample in each year separately. In addition, genome-wide association study 

(GWAS) was run for the trait “species” by giving to sativa accessions a score of 1 and to sylvestris 

samples a score of 0. GWAS was carried out applying three models which account for different 

confounding factors to avoid spurious marker-trait associations. The first model applied was the 

General Linear Model (GLM), which takes into account the population structure inferred by 

fastSTRUCTURE. The GLM equation can be expressed as  

yi = µ + xiβ + Qν + ε      (1) 

where yi is the phenotype of ith sample, µ is the model intercept, β is a vector of SNP 

effects, ν is a vector of population effect and ε is a vector of residual effects. Q is the matrix from 

fastSTRUCTURE which presents the individual probabilities to belong to a subpopulation. The 

second model applied was the Mixed Linear model, which extends equation (1) by incorporating a 

kinship matrix (K) to define the degree of genetic covariance between pairs of individuals [133]. A 

centered identical-by-state K matrix was estimated in TASSEL v5.0 [280] by using the method of 

Endelman and Jannink [281]. As both population structure and kinship were incorporated, this full 

model was called MLM (Q + K). Meanwhile, K only model, called MLM (K), which omits the 

population structure Q from the full model, was also used. All three models are implemented in 

TASSEL v5.0 software [280]. A quantile-quantile (Q-Q) plot was used to choose the model which 

better accounts for population structure and familial relatedness in the marker-trait association. 

Indeed, in this plot the negative logarithms of the p-values from each model were plotted against 

their expected values under the null hypothesis of no association with the trait. P-values 

adjustment for multiple testing was performed, and the Bonferroni-corrected critical p-values and 

False Discovery Rate (FDR) were used to identify significant marker-trait associations. Manhattan 

plots were displayed accordingly by using the ‘qqman’ v0.1.3 R package [282].  

 

Identification of candidate genes 

The positions of markers significantly associated to phenotypes were used to investigate 

the grapevine gene annotation v2.1 [100]. With regard to the extent of LD, windows of 10 kb 

upstream and downstream the SNPs of interest were used to identify candidate genes. In 

particular, the pattern of LD was inspected through heatmap visualization with Haploview v4.1 

[215] to ensure the extent of LD around the SNPs associated with phenotypes. Indeed, if the 

markers fell within long LD blocks, the entire genomic region located between the extreme SNPs 

was explored.  
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Results 

Phenotypic data 

The grapevine population of wild and cultivated accessions was phenotyped six weeks after 

véraison in two years for up to ten traits. Differences were observed between the sativa and the 

sylvestris for all variables in both years (Figure 1A-E). For most traits cultivated varieties exhibited 

higher variation than wild genotypes as indicated by standard deviation (SD; Table 1), except for 

tartaric acid whose concentration varied more in the sylvestris. In addition, six wild genotypes 

didn’t produce any bunch in both years and for other two wild accessions bunches couldn’t be 

harvested in 2013.  

The number of bunches per plant (NBCs) ranged from 1.6 (accession “Ahmed”) to 38.8 (cv 

“Pinot Meunier”) in sativa group with an average of 14.6 bunches per plant (Table 1). Instead, the 

sylvestris had an average of 7.8 NBCs, ranging from 1 to 25 bunches. The differences between 

cultivars and wild grapevines were more evident in yield (kg), single berry weight (g; SBW) and 

single bunch weight (g; SBCW). Indeed, grapevine varieties produced on average 1.9 kg of grapes 

per year with a maximum of 6.7 kg (cv “Zilavka”), while sylvestris genotypes had a yield 91.7% 

smaller (Table 1). The single berry weight (SBW) as well as the single bunch weight (SBCW) varied, 

respectively, by a four- and ten- fold factor (Table 1) between sativa and sylvestris genotypes. The 

former presented SBW from 5.9 g (accession “Ak ouzioum tagapskii”) to 0.5 g (accession “Aris”) 

and SBCW from 456.3 g (accession “Rossola”) to 9.9 g (accession “Aris”), while the latter showed 

SBW from 1.3 g to 0.3 g and SBCW from 47.8 g to 1.7 g (Figure 2).  

While Brix° and Potassium contents (g l-1 ;K+) showed less variability between cultivated and 

wild grapevines (Figure 1C-D), significant differences were observed between the two subspecies 

for pH, titratable acidity (as tartaric acid g l-1), malic and tartaric acid concentrations (g l-1). In 

particular, the sylvestris presented on average lower pH with higher acid concentrations (Table 1; 

Table 2B-C) than the grapevine cultivars. However, the missing rate was higher for malic and 

tartaric concentrations, titratable acidity and K+ content, because not enough juice was produced 

for 14 sylvestris in 2012 and 20 sylvestris in 2013. Nevertheless, phenotypic data of the two years 

were strongly correlated for all traits, notably for SBW, SBCW, titratable acidity, tartaric and malic 

acid concentrations, and K+ content (Figure 3). 
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Figure 1: comparison of phenotypic data between cultivated (in grey) and wild (in white) individuals 

in the two years of measurements (2012, 2013).  



Chapter 4 
 

69 
 

Table 1: Descriptive statistics and comparison of the phenotypic data from sativa and sylvestris accessions. 

Specie 
NBCs Yield SBW SBCW Brix° pH Acidity Tartaric Malic K 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

sativa 14.62 8.92 1.93 1.45 2.40 1.05 154.28 110.40 18.93 2.05 3.14 0.19 9.54 4.58 6.15 1.34 6.28 3.58 1.61 0.32 

sylvestris 7.77 5.30 0.16 0.18 0.65 0.20 15.07 11.58 19.65 1.93 2.93 0.20 14.80 4.48 8.96 2.44 8.40 2.95 1.58 0.27 

 

Table 2-A: Descriptive statistics of the phenotypic data from sativa and sylvestris accessions in each year of phenotyping. 

Specie Year 
NBCs Yield SBW SBCW 

Mean Max Min SD Mean Max Min SD Mean Max Min SD Mean Max Min SD 

sativa 
2012 15.70 38.80 4.33 8.17 2.14 6.71 0.22 1.65 2.34 5.92 0.48 1.02 149.43 456.27 9.90 112.97 

2013 13.49 34.00 1.67 9.62 1.72 4.85 0.08 1.21 2.47 5.86 0.51 1.08 159.13 381.52 10.07 108.85 

sylvestris 
2012 9.71 25.00 2.00 5.51 0.22 1.07 0.02 0.23 0.63 1.26 0.31 0.21 18.31 47.81 2.47 12.58 

2013 5.77 17.00 1.00 4.30 0.09 0.35 0.00 0.10 0.67 1.32 0.37 0.18 11.74 45.39 1.75 9.53 

Table 2-B 

Specie Year 
Brix° pH Acidity Tartaric 

Mean Max Min SD Mean Max Min SD Mean Max Min SD Mean Max Min SD 

sativa 
2012 18.56 24.81 14.07 2.19 3.18 3.80 2.61 0.21 9.02 34.98 4.40 4.99 5.63 10.28 3.61 1.22 

2013 19.31 23.14 15.33 1.86 3.10 3.40 2.74 0.16 10.06 25.43 5.00 4.11 6.67 9.28 4.46 1.25 

sylvestris 
2012 19.46 22.85 15.82 1.71 3.00 3.59 2.70 0.20 13.44 18.40 5.45 3.54 7.77 11.71 5.10 1.78 

2013 19.83 25.92 14.98 2.14 2.85 3.32 2.51 0.16 16.97 25.50 7.45 5.14 11.16 13.27 8.74 1.93 

Table 2-C 

Specie Year 
Malic K 

Mean Max Min SD Mean Max Min SD 

sativa 
2012 6.28 26.76 2.63 3.91 1.65 2.81 0.96 0.36 

2013 6.28 19.24 1.70 3.26 1.56 2.33 1.08 0.27 

sylvestris 
2012 8.23 11.89 3.37 2.42 1.60 2.04 1.25 0.25 

2013 8.69 15.69 2.96 3.77 1.54 2.13 1.13 0.30 
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Figure 2: bunches from grapevine cultivars and sylvestris accessions showing the highest or lowest value of 

SBW or SBCW.  
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Figure 3: correlation analysis between phenotypic data collected in 2012 and 2013 for each trait.  
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Pearson’s correlation coefficient (R) was estimated between each pair of variables in the 

whole population and in the two subgroups separately (Figure 4).  

 

Figure 4: Pearson’correlation analysis beween each pair of traits within the whole population (a), the 

sativa (b) and the sylvestris (c) subgroups. 
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The yield was more correlated (R ~0,8) with both SBW and SBCW than with NBCs (R = 0.4) 

in the whole population (Table 3). Instead, in the sylvestris the yield was highly correlated with 

both NBCs and SBCW rather than with SBW (Table 4; Figure 4c). This suggests that the 

productivity of wild grapevine may be more related with the number of clusters and the number 

of berries per bunch produced, since the berry weight barely reached values higher than 1.5 g. In 

addition, a significant inverse correlation (Table 3-5) was recorded for total soluble solids (Brix°) 

with SBW and yield in both the whole population and the cultivated grapevines. This result can be 

explained by the shrinkage of berries which occurs during véraison due to the loss of water by 

transpiration [283]. On the other hand, Brix° was correlated (R=0.5) with pH in the wild grapes. As 

expected, pH, malic and tartaric acid concentrations, and titratable acidity were highly correlated. 

However, in the sylvestris the pH was strongly correlated with tartaric acid concentration, while 

titratable acidity was mainly related with malic acid content (Table 4). Moreover, in the sativa the 

concentration of tartaric acid was negatively correlated with yield, SBW and SBCW (Table 5; 

Figure 4b). Finally, K+ concentration was correlated with pH in both sylvestris and sativa groups. In 

the cultivated subgroup, a correlation between K+ and Brix° was also found(Figure 4).  

 

Table 3: Pearson’s correlation analysis between traits within the whole population. 

 NBCs Yield SBW SBCW Brix° pH Acidity Tartaric Malic K 

NBCs - 0.43* 0.25* 0.03 -0.21* 0.21 0.09 -0.03 0.14 -0.03 

Yield 0.43** - 0.77** 0.83** -0.41** 0.29* -0.31* -0.55* -0.20 -0.22 

SBW 0.25* 0.77** - 0.79** -0.46** 0.4** -0.39** -0.66** -0.23 -0.03 

SBCW 0.03 0.83** 0.79** - -0.38** 0.25* -0.33* -0.54* -0.23 -0.23 

Brix° -0.21 -0.41** -0.46** -0.38* - 0.23* -0.19 0.05 -0.21 0.45** 

pH 0.21 0.29* 0.4** 0.25* 0.23* - -0.74** -0.64** -0.6** 0.6** 

Acidity 0.09 -0.31* -0.39** -0.33* -0.19 -0.74** - 0.77** 0.95** -0.14 

Tartaric -0.03 -0.55** -0.66** -0.54** 0.05 -0.64** 0.77** - 0.56** -0.07 

Malic 0.14 -0.20 -0.23 -0.23 -0.21 -0.6** 0.95** 0.56** - -0.03 

K -0.03 -0.22 -0.03 -0.23 0.45** 0.6** -0.14 -0.07 -0.03 - 

Significance levels: * 0.05; ** 0.001 
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Table 4: Pearson’s correlation analysis between traits within the sylvestris. 

 
NBCs Yield SBW SBCW Brix° pH Acidity Tartaric Malic K 

NBCs - 0.75** 0.10 0.26 -0.21 0.01 0.52 0.14 0.55 -0.38 

Yield 0.75** - 0.38* 0.73** -0.02 0.17 0.43 0.17 0.41 -0.40 

SBW 0.10 0.38* - 0.59** -0.31 0.01 0.12 -0.19 0.15 -0.45 

SBCW 0.26 0.73** 0.59** - 0.09 0.18 -0.09 -0.14 -0.18 -0.53 

Brix° -0.21 -0.02 -0.31 0.09 - 0.30 -0.84* -0.50 -0.74 0.52 

pH 0.01 0.17 0.01 0.18 0.30 - -0.83* -0.88** -0.46 0.9** 

Acidity 0.52 0.43 0.12 -0.09 -0.84 -0.83* - 0.66 0.87* -0.57 

Tartaric 0.14 0.17 -0.19 -0.14 -0.50 -0.88** 0.66 - 0.23 -0.73 

Malic 0.55 0.41 0.15 -0.18 -0.74 -0.46 0.87* 0.23 - -0.19 

K -0.38 -0.40 -0.45 -0.53 0.52 0.90 -0.57 -0.73 -0.19 - 

Significance levels: * 0.05; ** 0.001 

Table 5: Pearson’s correlation analysis between traits within the sativa. 

 
NBCs Yield SBW SBCW Brix° pH Acidity Tartaric Malic K 

NBCs - 0.21 -0.14 -0.43** -0.08 -0.02 0.13 0.09 0.14 -0.02 

Yield 0.21 - 0.54** 0.69** -0.55** -0.09 -0.19 -0.42** -0.14 -0.29 

SBW -0.14 0.54** - 0.61** -0.6** 0.06 -0.26 -0.54** -0.15 -0.07 

SBCW -0.43* 0.69** 0.61** - -0.45** -0.15 -0.20 -0.41** -0.17 -0.29 

Brix° -0.08 -0.55** -0.6** -0.45** - 0.46** -0.12 0.14 -0.14 0.46** 

pH -0.02 -0.09 0.06 -0.15 0.46** - -0.72** -0.61** -0.6** 0.56** 

Acidity 0.13 -0.19 -0.26 -0.20 -0.12 -0.72** - 0.75** 0.97** -0.08 

Tartaric 0.09 -0.42** -0.54** -0.41** 0.14 -0.61** 0.75** - 0.6** 0.04 

Malic 0.14 -0.14 -0.15 -0.17 -0.14 -0.6** 0.97** 0.6** - 0.00 

K -0.02 -0.29 -0.07 -0.29 0.46** 0.56** -0.08 0.04 0.00 - 

Significance levels: * 0.05; ** 0.001 

 

The distributions of phenotypic data in the whole population and in the two subspecies for 

each year are shown in the Figures 5-6. Most traits displayed a continuous variation within the 

subspecies. However, in the whole population NBCs, SBW, SBCW, tartaric acid and yield were 

clearly bimodal since cultivars and wild genotypes displayed divergent values. 
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Figure 5: distribution of the average values per each trait in cultivated and wild accessions separately. 
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Figure 6: distribution of the average values per each trait in the two measurements year separately.  
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Most of the models selected to estimate heritability and BLUP included both genotypic and 

year effects, except for SBW, SBCW and malic concentration for which the year effect was not 

significant. Broad-sense heritability (H2) was higher than 0.86 for all traits, especially for SBW and 

SBCW which showed the highest heritabilities (0.98).  

 

Genome-wide associations 

Association analysis for each trait was carried out testing three different models which 

account for either population structure (GLM (Q)), familial relatedness (MLM (K)) or both (MLM 

(Q+K)). MLM results with or without incorporating Q (population structure) were not materially 

different, suggesting how kinship matrix was sufficient to account for population stratification. For 

all traits GLM (with Q-matrix for K = 3 from the analysis with fastSTRUCTURE) was chosen as the 

best fitted model, except for SBW where MLM (K) greatly reduced false-positives compared to 

GLM. Indeed, Quantile- Quantile plots comparisons showed how MLM (K) produced overfitting or 

false-negatives for most of phenotypic variables (Supplementary Figures S1-2). The profiles of p-

values (in terms of –log10(p)) for all tested SNPs for each trait are illustrated in Figures 7-8. 

Marker-trait significant associations were identified for all phenotypic variables, except for SBW 

where no SNPs exhibited significant p-values after multiple testing corrections (Table 6). However, 

2 SNPs located on chr6 were strongly associated with single berry weight (SBW) before p-value 

correction, regardless of the model applied for GWAS. Moreover, different values of SBW were 

observed between the individuals with AA (0), BB (2) and AB (1) genotypes at both SNPs (Figure 

9). The average value of SBW for genotypes AA (0) at both SNPs was 1.3 g in 2012 and 1.4 g in 

2013, while the heterozygotes AB (1) showed greater values in both years ranging from 2.0 to 2.5 

g. The genotypes homozygous (2) for the minor allele at both SNPs (cv ‘Alba aganin isioum’, cv ‘Ak 

chekerek’ and the sativa accession ‘Ak ouzioum tagapskii’) exhibited the highest values of SBW, 

which was on average 4.7 g in 2012 and 5.0 g in 2013 (Figure 2). 
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Figure 7: Manhattan plots of GWA analysis for SBW, SBCW, NBCs, yield, Brix ° traits.  
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Figure 8: Manhattan plots of GWA analysis for pH (2012), malic (2013) and tartaric acids, titratable acidity 

(2012), and ‘species’ traits.  
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Figure 9: differences in berry size (2012, 2013, BLUP 2 years) between the three genotypes AA (0), AB (1) 

and BB (2) of the two most associated SNPs with SBW on chr6.  

 

The GWAS for single bunch weight (SBCW) identified six markers associated at 5% after 

Bonferroni correction (Table 6). Out of these 6 SNPs, five markers located on chromosomes 14, 4, 

3 and 9 were significantly correlated with SBCW in both years, while one SNP on chr19 showed a 

p-value < 0.05 only in 2013. Totally they explained a high proportion of observed phenotypic 

variance (R2, Table 6).  

 

Table 6: SNPs significantly associated to the ten traits analyzed, with the corresponding Bonferroni-

corrected p-values. When marker-trait associations were identified in one year, the latter is indicated in 
brackets. Differently, SNPs without any year specification were significantly associated to traits in both 
years. SNPs associated to more traits are underlined. MAF: minor allele frequency. R

2
: the proportion of 

phenotypic variance explained by the marker.  

Trait Chr SNP Position Alleles MAF p-value R2 

SBW 6 chr6_4829333_C_T 4829333 G\A 0.14 0.00 0.14 

SBW 6 chr6_4822590 4822590 T\A 0.15 0.00 0.14 

SBCW 14 chr14_26447823 26447823 C\T 0.25 0.01 0.16 

SBCW 4 chr4_2286974 2286974 G\A 0.38 0.02 0.16 

SBCW 3 chr3_724399_C_T 724399 G\A 0.28 0.02 0.16 

SBCW 3 chr3_11296490_A_C 11296490 A\C 0.06 0.03 0.15 

SBCW 9 chr9_18755332 18755332 T\C 0.30 0.03 0.15 

SBCW 3 chr3_621609_C_T 621609 A\G 0.27 0.04 0.15 

SBCW (2013) 19 chr19_9279384 9279384 C\A 0.28 0.00 0.17 

Yield 3 chr3_621609_C_T 621609 A\G 0.27 0.01 0.19 

Yield 13_random chr13_random_2675668 2675668 A\G 0.21 0.02 0.17 

Yield 7 chr7_4151125_C_T 4151125 G\A 0.23 0.03 0.17 

NBCs 15 chr15_11573065_C_T 11573065 A\G 0.41 0.05 0.20 

Brix° 14 chr14_26697249 26697249 C\T 0.49 0.00 0.36 

pH (2012) 18 chr18_11437074 11437074 A\G 0.32 0.05 0.25 

Species 1 chr1_6322315_A_G 6322315 A\G 0.23 0.02 0.03 

Species 1 chr1_6366603_A_G 6366603 A\G 0.23 0.02 0.03 
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Species 4 chr4_6119158_A_G 6119158 G\A 0.09 0.03 0.03 

Species 4 chr4_6801276_C_T 6801276 A\G 0.07 0.02 0.03 

Species 4 chr4_6962355 6962355 A\G 0.09 0.03 0.03 

Species 4 chr4_7097309_C_T 7097309 A\G 0.09 0.03 0.03 

Species 4 chr4_9423465_A_G 9423465 G\A 0.10 0.04 0.03 

Species 4 chr4_9539079 9539079 C\A 0.10 0.04 0.03 

Species 4 chr4_10214943 10214943 A\G 0.11 0.03 0.03 

Species 4 chr4_11771908 11771908 A\T 0.10 0.01 0.04 

Species 4 chr4_11779492 11779492 T\C 0.10 0.01 0.04 

Species 4 chr4_13331268 13331268 C\G 0.10 0.01 0.03 

Species 4 chr4_13542485 13542485 A\G 0.11 0.02 0.03 

Species 4 chr4_13633810 13633810 C\T 0.13 0.00 0.04 

Species 4 chr4_14607996 14607996 T\C 0.13 0.03 0.03 

Species 4 chr4_14622644_A_G 14622644 G\A 0.13 0.03 0.03 

Species 4 chr4_14637406 14637406 A\G 0.14 0.01 0.04 

Species 4 chr4_14651154_A_G 14651154 A\G 0.14 0.01 0.04 

Species 5 chr5_3968213_G_T 3968213 C\A 0.42 0.02 0.03 

Species 9 chr9_10609663 10609663 T\C 0.06 0.02 0.03 

Species 12 chr12_2806062_A_G 2806062 A\G 0.13 0.03 0.03 

Species 15 chr15_12863124 12863124 T\G 0.05 0.00 0.04 

Species 15 chr15_12988021 12988021 C\T 0.05 0.00 0.04 

Species 15 chr15_13584268 13584268 C\G 0.06 0.00 0.04 

Species 15 chr15_14467891 14467891 G\C 0.06 0.00 0.05 

Species 15 chr15_14532929 14532929 T\C 0.06 0.00 0.05 

Species 15 chr15_14532954 14532954 G\A 0.06 0.00 0.05 

Species 15 chr15_14532983 14532983 T\C 0.06 0.00 0.05 

Species 15 chr15_14547396 14547396 A\T 0.07 0.00 0.04 

Species 15 chr15_14547453 14547453 A\G 0.08 0.00 0.04 

Species 15 chr15_16809941_A_G 16809941 A\G 0.07 0.01 0.03 

Species 15 chr15_18786403 18786403 T\C 0.09 0.00 0.04 

Species 18_random chr18_random_2214072 2214072 T\A 0.22 0.03 0.03 

Species UN chrUn_19893727 19893727 T\C 0.10 0.01 0.04 

Malic (2013) 2 chr2_6004521 6004521 A\G 0.07 0.00 0.44 

Malic (2013) 14 chr14_7669507 7669507 C\T 0.07 0.00 0.35 

Malic (2013) 19 chr19_6331908_C_T 6331908 A\G 0.06 0.03 0.34 

Malic (2013) 2 chr2_15460662 15460662 C\T 0.23 0.03 0.30 

Malic (2013) 4 chr4_22974764_A_G 22974764 A\G 0.07 0.03 0.34 

Malic (2013) 12 chr12_3449410 3449410 C\T 0.18 0.04 0.34 

Malic (2013) 12 chr12_7131824 7131824 G\C 0.11 0.04 0.30 

Tartaric 2 chr2_80304* 80304 G\C 0.23 0.03 0.18 

Tartaric 2 chr2_62051* 62051 T\C 0.27 0.03 0.18 

Tartaric 4 chr4_15696818* 15696818 G\T 0.41 0.04 0.17 

Tartaric 16 chr16_5721952* 5721952 T\C 0.32 0.03 0.18 

Tartaric 17 chr17_4154180* 4154180 C\T 0.10 0.03 0.18 

Tartaric 17 chr17_4061210* 4061210 G\C 0.09 0.04 0.17 

Tartaric 17 chr17_4061215* 4061215 C\T 0.09 0.04 0.17 

Tartaric UN chrUn_31463774* 31463774 T\C 0.25 0.03 0.18 

Tartaric UN chrUn_34044935_A_C* 34044935 C\A 0.29 0.03 0.18 

Acidity 
(2013) 

12 chr12_7131824 7131824 G\C 0.11 0.01 0.27 

K 4 chr4_13542485 13542485 A\G 0.11 0.02 0.41 
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However, differences in bunch weight were observed between the three genotype AA, BB 

and AB of SNPs on chr4 and chr19, where the homozygotes for the minor allele showed highest 

values of SBCW (Supplementary Figure S3a). Notably the marker chr3_621609_C_T showed a 

significant association (p-value < 0.05) also with plant yield, which was very high for the 

homozygotes of the minor allele (Supplementary Figure S3b). Other two markers on chr3 

(chr3_724399_C_T; chr3_754845) were associated with yield in 2012 (False-Discovery-Rate < 

0.05). The high correlation between yield and SBCW (R = 0.8; Table 6) supports this cross 

association. In addition, two more SNPs located on chromosomes 7 and 13_random were 

significantly associated with yield.  

Association analysis identified one SNP on chr15 and one SNP on chr14 significantly 

correlated with number of bunches per plant (NBCs) and total soluble solids (Brix°), respectively. 

In particular, the three genotypes AA, AB and BB of SNP chr14_26697249 showed divergent 

values of Brix° at harvest (Supplementary Figure S3c). Associations for just one year were 

identified for pH (2012), malic acid concentration (2013) and titratable acidity (2013). pH was 

correlated with a single marker on chr 18, where a long LD of 89 kb was revealed (Supplementary 

Figure S4). On the other hand, malic acid content exhibited significant associations with 7 SNPs 

located on chromosomes 2, 4, 12, 14 and 19. The SNP chr12_7131824 revealed a high association 

also with titratable acidity in 2013, accounting for 27% of its phenotypic variation (Table 6). This 

result is a further evidence of how the berry flesh acidity is strongly correlated with the berry 

content of malic acid, one of the most studied acids for wine production. Moreover, 9 markers, 

located on chromosomes 2, 4, 16, 17 and Unknown, exhibited a significant FDR-corrected 

association with tartaric acid concentrations. GWAS was carried out on ‘species’ trait codifying the 

sativa and sylvestris subspecies as 1 and 0 respectively. Since the analysis of population structure 

with fastSTRUCTURE (see chapter 3) showed two or three main groups within the association 

panel, GLM was applied using Q-matrix for either K = 2 (GLM-Q2) or K = 3 (GLM-Q3). 34 SNPs 

resulted associated to the subspecies membership, out of which 3 SNPs on chr15 exhibited 

significant Bonferroni-corrected associations also with GLM-Q3. In particular, 2 SNPs were located 

on chr1, 16 on chr4, 1 on chr5, 1 on chr9, 1 on chr12, 11 on chr15, 1 on chr18_random and 1 on 

chrUn (Table 6). The marker chr4_13542485 showed a singnificant association also with the 

potassium (K+) concentration of the berry flesh, which had different values between the three 

genotypes of this SNP, notably the homozygous for the minor allele (Supplementary Figure S3c).  

 

Candidate genes 

Since LD decays below 0.2 within 10 kb (see Chapter 3), 20 kb genomic regions surrounding 

the SNPs significantly associated to traits were scanned to search for candidate genes. In addition, 

when specific LD patterns were observed around the associated markers, the full genomic regions 

in LD was explored. For instance, the two SNPs associated with SBW belong to a LD block of 81kb 

on chr6 (Supplementary Figure S5), and LD blocks were observed around the markers correlated 

with ‘species’ variable on chromosomes 1 (44 kb; Supplementary Figure S6) and 4 (62.5 kb, 129 

kb, 85 kb and 85 kb; Supplementary Figures S7-10). Moreover, the association on chr3 for both 

SBCW and yield fell within a LD block which extended for circa 250 kb (Supplementary Figure S11), 

while a long LD pattern of 150 kb was observed around the SNP chr14_26697249 significantly 

correlated with Brix° (Supplementary Figure S12). Out of the 64 SNP loci associated with 
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phenotypic traits 41% were located within genes, while the remaining 38 SNPs were mainly 

intergenic. The genome scan for candidate genes within the regions identified by GWAS yielded 

127 genes, of which 67% were in strong LD with the significant SNPs (distance < 10 kb). In 

particular, the number of genes ranged from 2 for NBCs to 10 for SBCW to 41 for ‘Species’. The 

detailed list of candidate genes is shown in Table 7.  

 

Table 7: List of candidate genes functionally annotated. Candidate genes for more traits are underlined.  

Trait Candidate 

gene 

Description Ch

r 

Start Stop 
SBW VIT_206s0004g03

750 

chitinase 1 6 474255

4 

474348

2 SBW VIT_206s0004g03

760 

protein 6 474422

7 

474725

7 SBW VIT_206s0004g03

770 

 6 475035

1 

475195

4 SBW VIT_206s0004g03

780 

wuschel-related homeobox 3 6 475994

2 

476034

0 SBW VIT_206s0004g03

790 

respiratory burst oxidase-like protein 6 476219

9 

476552

5 SBW VIT_206s0004g03

800 

nuclear factor related to kappa-b-binding protein 6 477157

4 

477938

7 SBW VIT_206s0004g03

810 

125 kda kinesin-related 6 477979

7 

478758

1 SBW VIT_206s0004g03

820 

chitinase 2-like 6 479462

0 

479619

3 SBW VIT_206s0004g03

830 

chitinase 2-like 6 479689

3 

479781

9 SBW VIT_206s0004g03

840 

chitinase 2-like 6 480114

4 

480235

7 SBW VIT_206s0004g03

850 

 6 480343

3 

480881

0 SBW VIT_206s0004g03

860 

chitinase 2-like 6 481081

6 

481182

9 SBW VIT_206s0004g03

870 

cct motif family protein 6 481903

3 

482056

1 SBW VIT_206s0004g03

880 

ribonuclease p subunit rpp30 6 482247

9 

482637

1 SBW VIT_206s0004g03

890 

histone -like 6 482664

2 

482765

2 SBW VIT_206s0004g03

900 

calcium-transporting atpase endoplasmic reticulum-

type-like 

6 482798

3 

483386

2 SBW VIT_206s0004g03

910 

 6 483828

9 

483895

6 SBCW VIT_203s0038g00

710 

 3 614468 614930 

SBCW VIT_203s0038g00

720 

nadh ubiquinone oxidoreductase b22-like subunit 3 615693 621041 

SBCW VIT_203s0038g00

730 

30s ribosomal protein mitochondrial 3 623867 624348 

SBCW VIT_203s0038g00

740 

epimerase family protein slr1223-like 3 624568 632364 

SBCW VIT_203s0038g00

750 

ubiquitin fusion degradation 1 3 631573 639607 

SBCW VIT_203s0097g00

710 

glutamyl-trna reductase 3 112918

16 

112969

93 SBCW VIT_203s0038g00

920 

 3 722303 732914 

SBCW VIT_204s0008g02

750 

transcription factor bzip 4 228412

1 

228711

5 SBCW VIT_204s0008g02

760 

uncharacterized protein 4 229394

8 

229539

9 SBCW VIT_214s0219g00

200 

pentatricopeptide repeat-containing protein 14 264462

70 

264488

91 SBCW VIT_203s0038g00

760 

arginine decarboxylase 3 644491 647420 

SBCW 

(2013) 

VIT_219s0015g01

165 

myb-like protein h-like 19 926823

7 

926863

8 SBCW 

(2013) 

VIT_219s0015g01

170 

myb-like protein h-like 19 930751

1 

930811

3 SBCW 

(2013) 

VIT_219s0015g01

180 

 19 934661

0 

934683

7 SBCW 

(2013) 

VIT_219s0015g01

190 

ubiquitin-conjugating enzyme e2-17 kda 19 934910

2 

935195

1 SBCW 

(2013) 

VIT_219s0015g01

200 

Ca
2+

 binding protein 19 937245

3 

937673

2 SBCW 

(2013) 

VIT_219s0015g01

210 

kh domain-containing protein 19 937576

5 

938411

1 Yield VIT_203s0038g00

710 

 3 614468 614930 

Yield VIT_203s0038g00

720 

nadh ubiquinone oxidoreductase b22-like subunit 3 615693 621041 

Yield VIT_203s0038g00

730 

30s ribosomal protein mitochondrial 3 623867 624348 

Yield VIT_203s0038g00

740 

epimerase family protein slr1223-like 3 624568 632364 

Yield VIT_203s0038g00

750 

ubiquitin fusion degradation 1 3 631573 639607 
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Yield VIT_203s0038g00

760 

arginine decarboxylase 3 644491 647420 

Yield VIT_207s0005g01

660 

pentatricopeptide repeat-containing protein 7 415225

2 

415745

7 NBCs VIT_215s0021g01

330 

nucleoside diphosphate kinase 15 115808

27 

115847

31 NBCs VIT_215s0021g01

340 

elmo domain-containing protein a-like 15 115829

60 

115974

94 Brix° VIT_214s0066g00

130 

 14 266966

60 

267000

54 Brix° VIT_214s0066g00

140 

rna-binding protein cp31 14 267101

73 

267149

80 Brix° VIT_214s0066g00

170 

cytochrome p450 724b1 14 267435

82 

267457

06 Brix° VIT_214s0066g00

180 

gtp-binding protein gb2 14 267503

64 

267550

53 Brix° VIT_214s0066g00

200 

pentatricopeptide repeat-containing protein 14 267576

86 

267646

19 Brix° VIT_214s0066g00

210 

sgf29 tudor-like domain-containing protein 14 267679

32 

267773

73 Brix° VIT_214s0066g00

220 

elongation factor chloroplastic-like 14 267780

91 

267853

49 Brix° VIT_214s0066g00

240 

gdsl esterase lipase at5g14450-like 14 267852

27 

267921

27 Brix° VIT_214s0066g00

250 

alpha-l-fucosidase 2 14 267925

09 

267942

28 Brix° VIT_214s0066g00

260 

surfeit locus protein 2 14 267981

54 

268020

46 Brix° VIT_214s0066g00

270 

methyltransferase pmt9 14 268013

12 

268127

71 Brix° VIT_214s0066g00

320 

pseudouridylate synthase transporter 14 268469

99 

268538

81 pH (2012) VIT_218s0001g13

350 

peptide transporter 18 113742

21 

113816

21 pH (2012) VIT_218s0001g13

360 

auxin-induced protein 5ng4-like 18 113839

69 

113874

08 pH (2012) VIT_218s0001g13

370 

 18 113898

56 

114066

78 pH (2012) VIT_218s0001g13

380 

cysteine proteinase rd19a-like 18 114096

60 

114207

88 pH (2012) VIT_218s0001g13

400 

cysteine proteinase rd19a-like 18 114254

69 

114276

25 pH (2012) VIT_218s0001g13

410 

V-type proton ATPase subunit a3 18 114286

96 

114717

13 Species VIT_201s0011g06

540 

phagocytic receptor 1b-like 1 631940

9 

632611

0 Species VIT_201s0011g06

550 

salt overly sensitive 1 (SOS1) 1 633765

5 

639305

3 Species VIT_204s0008g06

790 

protein 4 679632

7 

680194

6 Species VIT_204s0008g06

800 

enhancer of rudimentary 4 680506

9 

681324

0 Species VIT_204s0008g07

010 

dynamin-related protein 3a 4 702737

2 

710236

5 Species VIT_204s0008g07

020 

rieske iron-sulfur protein tic55 4 710644

2 

711043

3 Species VIT_204s0043g00

250 

60s ribosomal export protein nmd3-like 4 133288

15 

133328

82 Species VIT_204s0043g00

255 

cysteine-rich repeat secretory protein 3-like 4 133396

44 

133416

75 Species VIT_204s0043g00

300 

tpx2 (targeting protein for xklp2) family protein 4 135327

59 

135352

28 Species VIT_204s0043g00

310 

protein 4 135484

61 

135525

82 Species VIT_204s0043g00

340 

transcription repressor kan1-like 4 136407

45 

136505

21 Species VIT_204s0043g00

690 

two-component response regulator arr22 4 145986

40 

145996

14 Species VIT_204s0043g00

700 

pentatricopeptide repeat-containing 4 146219

16 

146831

26 Species VIT_204s0043g00

710 

hypoxia up-regulated protein 1-like 4 146921

95 

147051

41 Species VIT_204s0069g00

990 

uncharacterized protein 4 941712

5 

941993

2 Species VIT_204s0069g01

000 

uncharacterized transporter sll0355-like 4 942020

2 

942612

0 Species VIT_204s0079g00

760 

gtp binding protein 4 116441

92 

116589

27 Species VIT_204s0079g00

780 

unc93-like protein 4 117349

58 

117354

11 Species VIT_204s0079g00

790 

acyl:coa ligase acetate-coa synthetase-like protein 4 117417

62 

117443

84 Species VIT_205s0020g02

240 

at4g15540 dl3810w 5 396111

1 

396530

1 Species VIT_205s0020g02

250 

sugar transporter erd6-like 16-like 5 396891

7 

397224

1 Species VIT_209s0002g09

030 

low quality protein: patellin-3-like 9 106017

30 

106023

86 Species VIT_209s0002g09

040 

protein 9 106023

87 

106027

49 Species VIT_209s0002g09

050 

mitochondrial glycoprotein family protein 9 106065

85 

106091

12 Species VIT_212s0028g02

110 

uncharacterized protein 12 280530

6 

281021

9 Species VIT_215s0021g02

070 

uncharacterized protein 15 128630

18 

128637

36 Species VIT_215s0021g02

080 

hypothetical protein VITISV_023274 [Vitis vinifera] 15 128674

96 

128711

00 Species VIT_215s0021g02

140 

e3 ubiquitin-protein ligase bre1-like 1-like 15 129888

63 

130256

18 
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Species VIT_215s0046g01

950 

udp-glycosyltransferase 91a1-like 15 187793

60 

187866

10 Species VIT_215s0046g01

960 

udp-glycosyltransferase 91a1-like 15 187893

61 

187908

68 Species VIT_215s0048g00

330 

udp-d-glucuronate 4-epimerase 2 15 144678

20 

144692

35 Species VIT_215s0048g00

340 

udp-d-glucuronate 4-epimerase 2 15 144725

30 

144756

74 Species VIT_215s0048g00

400 

nitrate transporter -like (NRT1) 15 145330

54 

145335

33 Species VIT_215s0048g00

410 

peptide transporter ptr2 15 145335

34 

145342

23 Species VIT_215s0048g00

420 

arginase 15 145346

72 

145401

77 Species VIT_215s0048g00

430 

nitroreductase-like protein 15 145431

68 

145472

87 Species VIT_215s0048g00

440 

uncharacterized protein 15 145473

86 

145508

78 Species VIT_215s0048g00

460 

uncharacterized protein 15 145557

15 

145598

65 Species VIT_215s0048g02

670 

uridylate kinase 15 168079

97 

168096

06 Species VIT_215s0048g02

680 

protein 15 168139

11 

168171

50 Species VIT_215s0048g02

690 

fad-binding domain-containing protein 15 168181

33 

168215

58 Malic 

(2013) 

VIT_202s0012g00

280 

uncharacterized protein 2 599878

7 

600106

4 Malic 

(2013) 

VIT_202s0033g00

780 

14-3-3 protein 2 154611

90 

154615

53 Malic 

(2013) 

VIT_204s0044g01

450 

protein 4 229739

81 

229787

35 Malic 

(2013) 

VIT_204s0044g01

460 

spotted leaf 4 229799

59 

229813

50 Malic 

(2013) 

VIT_212s0028g02

650 

gtp-binding protein ras-like protein 12 344462

1 

344774

6 Malic 

(2013) 

VIT_212s0028g02

660 

acyl-CoA oxidase acx3 12 344797

6 

345561

3 Malic 

(2013) 

VIT_212s0059g02

320 

protein 12 712474

1 

712634

8 Malic 

(2013) 

VIT_212s0059g02

330 

 12 713170

4 

713347

3 Malic 

(2013) 

VIT_212s0059g02

340 

syntaxin 1b 2 3 12 713395

8 

713710

8 Malic 

(2013) 

VIT_212s0059g02

350 

isocitrate lyase 12 713931

9 

714274

9 Malic 

(2013) 

VIT_214s0081g00

120 

pentatricopeptide repeat-containing protein 

mitochondrial-like 

14 766531

3 

766706

4 Malic 

(2013) 

VIT_219s0090g00

170 

taxane 13-alpha-hydroxylase 19 632231

2 

632277

1 Malic 

(2013) 

VIT_219s0090g00

180 

cytochrome p450 19 632325

8 

632705

8 Malic 

(2013) 

VIT_219s0090g00

190 

cytochrome p450 19 632738

9 

632971

9 Malic 

(2013) 

VIT_219s0090g00

200 

transmembrane proteins 14c 19 633040

2 

634138

8 Tartaric VIT_202s0234g00

050 

embryonic flower 2 2 59724 78128 

Tartaric VIT_202s0234g00

060 

dna binding protein 2 79688 80318 

Tartaric VIT_204s0043g01

016 

protein 4 156965

34 

156976

19 Tartaric VIT_204s0043g01

022 

kinase family protein 4 156994

68 

157038

81 Tartaric VIT_216s0013g00

540 

 16 572593

7 

573313

3 Tartaric VIT_217s0000g04

020 

atp-dependent clp protease adaptor protein 

containing protein 

17 406268

3 

406780

1 Tartaric VIT_217s0000g04

030 

carbon catabolite repressor protein 4-like 3 17 406891

3 

407901

2 Tartaric VIT_217s0000g04

040 

ankyrin repeat-containing 17 408030

3 

408154

6 Tartaric VIT_217s0000g04

050 

alpha beta-hydrolase domain-containing protein 17 412639

2 

414220

6 Tartaric VIT_217s0000g04

060 

phytochrome and flowering time regulatory protein 1 17 414290

5 

414445

3 Tartaric VIT_217s0000g04

070 

uncharacterized protein 17 414879

8 

414929

9 Tartaric VIT_217s0000g04

080 

 17 415208

4 

415410

2 Tartaric VIT_217s0000g04

090 

zinc-finger domain of monoamine-oxidase a repressor 

r1 protein 

17 415540

5 

415975

7 K VIT_204s0043g00

270 

pre-mrna-splicing factor 38b 4 134387

42 

134558

67 K VIT_204s0043g00

285 

unnamed protein product [Vitis vinifera] 4 135030

53 

135033

70 K VIT_204s0043g00

290 

tpx2 (targeting protein for xklp2) family protein 4 135115

40 

135321

82 K VIT_204s0043g00

300 

tpx2 (targeting protein for xklp2) family protein 4 135327

59 

135352

28 K VIT_204s0043g00

310 

protein 4 135484

61 

135525

82 Acidity 

(2013) 

VIT_212s0059g02

320 

protein 12 712474

1 

712634

8 Acidity 

(2013) 

VIT_212s0059g02

330 

 12 713170

4 

713347

3 Acidity 

(2013) 

VIT_212s0059g02

340 

syntaxin 1b 2 3 12 713395

8 

713710

8 Acidity 

(2013) 

VIT_212s0059g02

350 

isocitrate lyase 12 713931

9 

714274

9 
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Discussion 

GWAS limitations in the association panel 

GWA studies represent a new tool in agricultural genetics for revealing the genetic bases of 

phenotypic variation [262]. The GWAS approach achieves higher mapping resolution than 

traditional methods by taking full advantage of ancient recombination events occured during the 

successive generations separating common ancestors from individuals in the studied population 

[145]. However, both population stratification and familial relatedness among individuals can lead 

to spurious marker-trait associations [263]. According to Yu et al. [133], in order to yield the 

largest QTL power in GWAS, the ideal population should have the lowest structure and 

relatedness. In this sense, family-based population design with controlled parent crosses has been 

suggested in apple [139] as well as nested association mapping (NAM) or multiparent advanced 

generation inter-cross (MAGIC) populations have been constructed in maize [284, 285], 

Arabidopsis [286], barley [287] and wheat [288]. Creating such materials in grapevine could be 

time-consuming and expensive for the space required by the large size of the sample plants. 

Moreover, in perennial species such as grapevine a large part of the unique genotypes available in 

the germplasm collections are closely related since a small number of elite cultivars appears to 

have been used for breeding [51]. These difficulties may explain why a few GWA studies were 

attempted so far in fruit trees and how their association panels, usually consisting of 100-200 

individuals [140], are smaller than those used for annual species. Recently, Nicolas et al. [113] 

designed an association panel of 279 grapevine genotypes by selecting key founder varieties of 

modern cultivars and removing their first-degree relatives, in order to performe future GWA 

studies. Even though our association panel is 3 times smaller than the population defined by 

Nicolas et al. [113], it comprises a good number of wild vinifera, which presents unexplored 

variation for quality and yield-related traits as well as for adaptation to environmental stresses. 

Moreover, for the first time such high number of sylvestris genotypes were phenotyped for traits 

of commercial interest, that is berry size and composition, whose genetic basis have been 

extensively investigated in previous works through classical bi-parental QTL mapping in cultivated 

varieties [228, 42, 43, 123]. The phenotypic variation observed for all traits in the whole 

population and separately in the subgroups of wild and cultivated grapevines makes our 

association panel suitable for applying association mapping in order to identify domestication-

related genes [126]. In addition, we performed GWAS with 26K SNPs evenly distributed across the 

grapevine genome, which provide much higher resolution than that of Nicolas et al. [113], which 

used 501 SNPs, and of Myles et al. [34] and Chitwood et al. [45], that employed the same 5K SNPs 

matrix. Although our SNP panel represents just one fourth of the 90K SNPs simulated for GWAS in 

grapevine by Fodor et al. [187], a step towards increasing the power and the resolution of GWAS 

in grapevine has been done practically in our study. Indeed, as in maize [289], the rapid LD decay 

observed in the grapevine genome makes it a promising model species in GWAS [145] with single-

gene resolution. Future availability of whole-genome sequences for numerous grapevine 

genotypes will satisfy the demand of tens of millions of SNPs for association mapping studies in 

grapevine. Furthermore, we accounted for confounding factors in GWAS by applying both GLM 

and MLM models, showing how the former was good enough for avoiding spurious associations 

due to the genetic structure of population. In addition, the stringent p-values corrections of 

Bonferroni or FDR should ensure a low rate of false-positive genotype-phenotype associations in 

our experiment.  
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Candidate genes controlling berry weight and yield  

The application of association mapping is an alternative approach to identify and interpret 

the genetic basis of the phenotype shifts associated with domestication [126]. Indeed, studying 

domestication traits is important not only from an evolutionary point of view, but also in 

agricultural, economic and social contexts [290]. Despite the limited size of the association panel, 

we identified significant genotype-phenotype associations for almost all traits studied, which 

presumably include the selected characters during the transition from wild relatives to cultivated 

grapevines [25]. An exception was represented by SBW, for which no marker exhibited significant 

p-values after the multiple testing correction. This result may highlight the complex genetic 

architecture of berry weight, which is strictly correlated to berry size and is influenced by seed 

content [123] . Moreover, SBW may present genetic heterogeneity, where different variants may 

underlie a trait with a maximized genetic variance [291]. However, we identified two SNPs on chr6 

associated with SBW in all applied GWAS models before the multiple testing correction of p-

values. These SNPs, separated by 6.7 kb, fell in a LD block of 81 kb. In this genomic region, we 

found 5 genes encoding chitinases, known to be part of the Systemic Acquired Resistance strategy 

[292], which acts to prevent pathogen attack during berry development [234]. Furthermore, we 

identified a wuschel-related homeobox 3 gene, 74 kb apart from the most significant SNPs for 

berry weight. This candidate gene encode a member of the plant WOX family, whose genes have 

been shown to play a broad role in plant development, notably for meristem maintenance [293]. 

Another member of the WOX family is the WOX13 homeobox gene, which promotes replum 

formation in the Arabidopsis thaliana fruit [294]. A Ca2+ transporting ATPase endoplasmic 

reticulum-type-like gene (Tables 6-7) was also found among the candidate genes for SBW, 

supporting the role of calcium ion in the development of grape berries [295]. Indeed, Ca2+ has a 

central role in cell signalling, in maintenance of cell wall integrity [296] and in the vacuole as 

counter-cation for organic and inorganic anions. Low concentrations of cytosolic Ca2+ are required 

for normal cell function. Therefore, calcium homeostasis in the cytosol is tightly controlled by 

membrane transporters which work to keep Ca2+ at low concentrations in the cytosol. A large 

number of genes with functions related to calcium sequestration, transport and signalling have 

already been found to display developmentally regulated expression patterns [234]. The 

identification of the Ca2+ binding protein gene on chr19 as associated in 2013 with single bunch 

weight (SBCW) supports the central role of calcium in fruit development (Table 7). In addition, 

genes encoding for transcription factors MYB-H and bZIP22 were strongly associated to SBCW, 

highlighting how changes in developmentally and morphologically complex traits, including many 

domestication traits, occurred through selection on transcriptional regulators [142]. Moreover, 

previously studies showed how bZIP factors are involved in the ABA-dependent processes of 

response to abiotic stresses [297] and grape berry ripening [298], as well as in the regulation of 

flavonoid biosynthesis in grapevine [299]. A cross association between SBCW and yield traits was 

detected on chr3, where candidate genes involved in cellular respiration were identified (Tables 

6-7). We also found the arginine decarboxylase gene (adc2) 10 kb apart from the marker 

chr3_621609_C_T significantly associated with both SBCW and yield. The ADC is involved in the 

biosynthesis of polyamines [295], growth regulators that have been implicated in several 

development processes and biotic responses [236]. In grape, a reduction in polyamines content 

was observed during berry development, reaching the lowest value at maturity [300, 301, 302]. It 

has been supposed that polyamines are important during early stages of fruit development, 
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notably promoting cell divisions [301]. However, gene expression studies during berry ripening 

have showed how genes coding for arginine decarboxylase increased their transcript abudance at 

the beginning of ripening and remained high in mature fruit [234, 303].  

 

Candidate genes involved in flesh berry composition 

Variation of berry composition was observed between sativa and sylvestris individuals. In 

particular, the former showed higher K+ concentrations and pH, while the latter exhibited higher 

flesh berry acidity, notably for tartaric acid content (Figure 1). Berry composition undergoes 

several changes throughout the double sigmoidal growth cylcle of the fruit[304]. In particular, 

during the first phase organic acids, mainly malic, tartaric and citric acids, accumulate in the 

vacuoles which undergo intense enlargement. At the end of the lag phase, the véraison is 

charachterized by the onset of sugar and anthocyanins accumulation, which results in increasing 

of flesh berry swetness and pigmentation [236]. Tartaric and malic acids are the predominat 

organic acids in the grape berry, accounting for over 90% of its total acidity [295]. They also 

contribute greatly to the pH of the juice, must and wine during vinification and subsequent wine 

ageing [295]. Tartaric acid concentrations in ripe berries reflect the extent to which its synthesis 

occurred during the first stages of berry development [305]. Indeed, tartaric acid can be found in 

grapevine flowers and its levels increase in the berry during the four weeks after anthesis [306]. 

We identified two genes involved in the control of flowering in plants as candidate genes for 

tartaric acid content in grape berries: the embryonic flower 2 gene, whose role as repressor of 

reproductive development in phase transitions has been shown in A. thaliana [307], and the 

phytochrome and flowering time regulatory protein 1 gene, which encodes for a nuclear protein 

involved in the regulation of flowering time by light quality [308]. Unlike tartaric acid, the levels of 

malic acid in grape berries change during fruit development. In particular, malic acid formed in 

the berry pre-véraison is broken down during ripening, when malate becomes a substrate for the 

TCA cycle, the gluconeogenesis and the aerobic fermentation [309]. We identified the isocitrate 

lyase gene among the candidate genes for malic acid concentration in flesh berries. The isocitrate 

lyase is one of the five enzymes involved in the glyoxylate cycle, which converts acetyl-CoA into 

succinate via a series of reactions concerning malate and citrate [309]. The glyoxylate cycle may 

contribute to malate accumulation in young berries [310]. On the other end, the glyoxylate cycle 

may fuel the gluconeogenesis pathway for the synthesis of glucose by supplying malate during 

berry ripening. In this way, the glyoxylate cycle also contributes to the reduction of fruit acidity 

through the consumption of malic acid [309]. The identification of a second association between 

the SNP in LD with isocitrate lyase gene and the titratable acidity trait supports the central role of 

glyoxylate cycle in fleshy berry acidity. The vacuole, which can occupy more than 99% of the total 

intracellular volume in grape berries, has a pivotal role in the storage of organic acid and sugars as 

well as in the control of cytoplasmic pH [311]. Indeed, the SNP on chr18 significantly associated to 

berry juice pH falls within the V-type proton ATPase subunit a3 gene. The V-ATPase is one of the 

primary electrogenic pumps on tonoplast [312] and converts the chemical energy of ATP in an 

electrochemical proton gradient allowing the transport of many solutes against their 

electrochemical gradient by specific transport systems [313].  

An overall measure of the solutes (largely sugars) in flesh berries is the Brix degree [283], 

which is usually used as an indicator of the proper berry maturity for quality wines [314]. A long 
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LD block of 150 kb around the genomic regions associated to Brix° trait was identified on chr14. 

Twelve genes are located within this region. The cytochrome p450 724b1 gene is implicated in the 

biosynthesis of brassinosteroid (BR) [315], plant hormones essential for normal plant 

development. A dramatic increase in endogenous BR levels was observed at the onset of berry 

ripening, as indicated by the simultaneous increase in berry weight and soluble solids (Brix°) [316]. 

A role of BR in the regulation of anthocyanin biosynthesis during ripening of grape berries has 

been invistigated recently [317], showing their effect mainly on downstream genes of 

anthocyanin biosynthesis. Indeed, anthocyanins accumulation in red grape varieties occurred 

since véraison. Accordingly another candidate gene for Brix° was the one encoding the 

methyltransferase PMT9, putatively involved in Arabidopsis anthocyanin biosynthesis [318]. 

Moreover, the genomic region of 150 kb associated with berries solutes content includes the α-l-

fucosidase 2 gene, which is involved in the metabolism of the hemicellulosic polysaccharide 

xyloglucan (XyG), the dominant component of plant cell wall [319]. Indeed, the α-fucosidase is a 

glycosylhydrolase that acts on the XyGs once deposited on the cell wall, contributing to its 

reassembling during cell elongation and releasing fucose residuals in the cytosol.  

 

Candidate genes discriminating cultivated and wild grapevines 

Grape berries has K+ as major cation, which is involved in several physiological processes, 

such as enzyme activation, cellular transport processes, anion neutralisation, and osmotic 

potential regulation [295]. A cross correlation between K+ and ‘species’ traits was identified on 

chr4. The gene encoding a tpx2 (targeting protein for xklp2) family protein is located 9.7 kb apart 

from the SNP significantly associated with both K+ and ‘species’ traits. TPX2 acts as a spindle 

assembly factor during mitosis as well as partecipates as a microtubule associated protein (MAP) 

in microtubule dynamics [320]. Therefore, the efficiency of spindle formation during cell 

proliferation as well as the microtubule metabolism during cell elongation may be addressed 

among the factors which influence berry size, one of the main domestication traits in grapevine 

[25]. The highest number of marker-trait associations was identified for the trait ‘species’, 

accounting for the level of genetic differentiation between cultivated and wild grapevines [155]. 

Notably, on chr15 we identified the nitrate transporter –like NRT1 gene, which showed significant 

p-values in both GLM-Q2 and GLM-Q3. The variation of NRT1.1B has been correlated with 

divergence in nitrate-use between the subspecies Oryza sativa L. indica and japonica [321]. 

NRT1.1B encodes a protein containing a peptide-transporter domain and is localized to the 

plasma membrane. The analysis of nucleotide diversity within this gene indicated that NRT1.1B 

underwent a positive selection during indica domestication process, leading to the higher nitrate-

use efficiency of indica compared to japonica [321]. In agreement with the genome scan for 

signatures of selection reported in chapter 3, the GWAS test on ‘species’ trait led to identify genes 

involved in the response to environmental stresses. The salt overly sensitive 1 (SOS1) gene 

encodes a Na+/H+ antiporter, which is the downstream target of the Salt Overly Sensitive (SOS) 

signaling pathway, involved in controlling ion homeostasis during salt stress [322]. In particular, 

SOS1 acts by extruding the toxic excessive Na+ from the cytosol [323]. In this sense, SOS1 is 

critically required for salt tolerance [322]. In addition, we identified the hypoxia up-regulated 

protein 1-like (HRE1) gene, whose product is an ERF transcription factor. HRE1 responds rapidly to 

oxygen deprivation by maintaining the expression of some anaerobic genes, such as the alcohol 

dehydrogenase (ADH) gene [324]. Hypoxia has been also associated with cell death in mesocarp 
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of winegrapes late in berry ripening due to high temperature and water stress [325]. Finally, the 

identification of the arginase gene, involved in the biosynthesis of polyamines [295], and the 

sugar transporter erd6-like 16-like gene, which encodes a monosaccharide transporter [326], 

highlighted how the sativa and sylvestris may present differences in the metabolisms of 

polyamins and sugars.  
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Conclusions  

We scan the grapevine genome for significant allelic variation underlying domestication-

related traits by applying GWAS approach. A considerable phenotypic variation was observed 

between and within the two V. vinifera subspecies, highlighting how our association panel will be 

useful in future GWA studies to further explore the consistent genetic variation still maintained 

within natural populations of grapevine. Several candidate genes were identified for most of the 

traits analyzed. In particular, our findings provided further evidence of how differences in the 

complicated interplay between transcription regulators, cell signalling factors and hormones, may 

be the basis of the phenotypic variation observed in berry and bunch weight between sativa and 

sylvestris individuals. Moreover, the significant allelic variation identified in candidate genes 

directly involved in the control of berry composition, notably of pH, malic acid concentration and 

titratable acidity, highlights multiple avenues for further works about the functional roles of the 

genes implicated, putative genetic pleiotropy between traits and GxE interactions. Finally, we 

presented a proof-of-concept of association mapping in grapevine, supporting its relevance as an 

efficient genetic tool to discover and reconstruct the genetic architecture of complex traits in a 

challenging genetic system. 
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Supplementary Data 

 

 

Figure S1: Q-Q plot of GLM, MLM (Q+K) and MLM (K) models used for GWAS test for SBW, SBCW, yield, 

NBCs, Brix° traits. 

  



Chapter 4 
 

93 
 

 

Figure S2: Q-Q plot of GLM, MLM (Q+K) and MLM (K) models used for GWAS test for pH, titratable acidity, 

malic and tartaric acid concentrations, K
+
 content and ‘species’ traits. 
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Figure S3: differences in SBCW (a-b), yield (b), Brix° and K
+
 (c) content between the three genotypes AA 

(0), AB (1) and BB (2) of the most associated SNPs. 
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Figure S4: LD block on chr18 around the marker (in the red box) associated to pH (2012) 

 

  

Figure S5: LD block on chr6 around the two markers (in the red box) associated to SBW. 
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Figure S6: LD block on chr1 around the two SNPs (in the red box) associated to ‘species’ trait. 

 

 

Figure S7: LD block on chr4 around the two SNPs (in the red box) associated to ‘species’ trait. 
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Figure S8: LD block on chr4 around the SNPs (in the red box) associated to ‘species’ trait. 

 

 

Figure S9: LD block on chr4 around the two SNPs (in the red box) associated to ‘species’ trait. 
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Figure S10: LD block on chr4 around the four SNPs (in the red box) associated to ‘species’ trait. 

 

 

Figure S11: LD block on chr3 around the SNP (in the red box) associated to both SBCW and yield traits. 
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Figure S12: LD block on chr14 around the SNP (in the red box) associated to Brix°. 
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Conclusions 

Crop plants used nowadays in modern civilization resulted from several thousand years of 

conscious as well as unintentional human selection, which transformed wild ancestors into high-

yielding and useful domesticated descendants [142]. During this domestication process, crops 

underwent several phenotypic changes, commonly known as the ‘‘domestication syndrome’’ 

[144]. Characterizing the genetic architecture of domestication-related phenotypes gives a 

powerful lens for understanding the process of adaptation in nature, as Charles Darwin noted in 

the introduction to his famous book [327]:  

“At the commencement of my observations it seemed to me probable that a careful study of 

domesticated animals and of cultivated plants would offer the best chance of making out this 

obscure problem. Nor have I been disappointed; in this and in all other perplexing cases I have 

invariably found that our knowledge, imperfect though it be, of variation under domestication, 

afforded the best and safest clue.”  

Moreover, the identification of the genes underlying the phenotypic evolution associated 

with plant domestication is becoming of great economic importance, since it may facilitate trait 

manipulation through precise breeding strategies.  

This thesis reports the characterization of the relationship between cultivated grapevine 

(V.subsp. sativa) and its supposed wild ancestor (V. subsp. sylvestris) at both genomic and 

phenotypic levels. The study has been organized in three main milestones, that is (i) the 

genotyping of a germplasm collection including wild and cultivated grapevines by using the latest 

Vitis20K SNP array and through the development a novel protocol of RAD-seq; (ii) the genome 

scan for signatures of selection with population genetic methods; (iii) the use of GWAS approach 

to identify the genetic bases of domestication-related traits in grapevine. The main conclusions 

drawn from these experiments are:  

 both strategies of genotyping have presented some drawbacks. The array-based technology 

produced an excess of low frequency alleles, which may represent an underestimation of the 

real genetic diversity within the investigated population [161]. On the other hand, a high rate 

of missing data was observed in the SNP panel produced by RAD-seq. This result can be 

ascribed to the high level of heterozygosity of the grapevine genome [89], which is known to 

limit the performance of RRL technologies in discovering and genotyping genome-wide 

polymorphisms [192]. Nevertheless, we gained genetic profiles at 26K SNPs in almost one 

hundred grapevine individuals, half of which were V. sylvestris. This big amount of genetic 

information for such numerous individuals has not been obtained in grapevine so far, even 

though the full genome sequences of a few other individual grapevine cultivars have been 

published [95, 94]. 

 

 A significant variation in allele frequencies between wild and cultivated V. vinifera has been 

discovered at genomic regions including genes with roles in the adaptation to environmental 

stimuli. Indeed, the application of both population genetics and GWAS approaches led to the 

identification of genes encoding the ERF2, RAP2 and HRE1 transcription factors, chitinases, 
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 the CPN10 and the Na+/H+ antiporter of the SOS signaling pathway, which are involved in the 

response to salinity stess, high temperature, drought and pathogen attack.  

 

 Most of the genomic regions identified as putative signatures of adaptation to domestication 

showed less genetic diversity in the wild compartment compared to grapevine cultivars. 

These findings raised some questions: is the genetic reduction in wild grapevine related to a 

higher stress tolerance? If yes, which physiological mechanisms are responsible for these 

abilities of adapting to environmental changes? If a balancing selection is acting, as suggested 

by the Tajima’s D test, which is the evolutionary advantage of keeping both alleles at 

intermediate frequencies?  

 

 Our findings on the genetic basis of domestication-related traits in grapevine support the 

prediction that changes in developmentally and morphologically complex traits, including 

single berry and single bunch weight in grapevine, occurred through selection on 

transcriptional regulators [i.e. MYB-H1-like and bZIP22 genes] as well as on proteins involved 

in hormone-dependent processes [i.e. NTF2 gene], and cell division [i.e. TPX2 gene] [328]. 

 

 The application of both top-down and bottom-up strategies to dissect the genomic basis of 

the phenotypic differentiation between wild and cultivated grapevine allowed to overcome 

some limitiations that each strategy presents individually. Indeed, when selection acts on 

standing genetic variation instead of a newly arisen mutation, undetectable “soft selective 

sweep” are generated by domestication, reducing the power of bottom-up approaches to 

detect signatures of selection [329]. In such cases, GWAS in populations of wild and 

cultivated plants is a suitable alternative to identify domestication genes. On the other hand, 

if the casual variants underlying domestication traits arise from de novo mutations as well as 

the trait is highly correlated with population structure, population genetic analysis is strongly 

recommended rather than association mapping.  

 

Taken together, a step forwards to the acquisition of much more genetic information 

among thousands of grapevine individuals has been done in the present research. Moving from a 

single reference genome to multiple reference genomes is fundamental in grapevine in order to 

reconstruct its evolutionary history and for better interpreting the phenotypic variation observed 

nowadays in natural populations [330]. Our results point the attention towards wild grapevines as 

a model for understanding the mechanisms of adaptation to natural conditions. Future functional 

genomics studies accompanied by a broad phenotypic screening of stress tolerance in V. sylvestris 

are necessary to clarify how wild and cultivated grapevine react to environmental stimuli and 

stresses. In addition, the ongoing decline of wild grapevine populations encourages their 

preservation in germplasm collection, since they represent an opportunity for re-discovering 

resilience factors in view of a sustainable agriculture. 
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Appendix B 

Table A1. List of the grapevine accessions included in the research panels of chapters 2, 3 and 4 of the 
present thesis. 'True-to-type' varieties are marked in bold. Samples removed for the high missing rate at 
SNPs loci in chapters 3 and 4 are checked in red.  

 

Sample ID Specie Accession name 
Used in 

Chapter 2 
Used in 

Chapter 3 
Used in 

Chapter 4 
GRAPE_01 sativa Alba aganin isyoum √ √ √ 

GRAPE_02 sativa Alarjie √ √ √ 

GRAPE_03 sativa Arnsburger √ √ √ 

GRAPE_04 sativa Brustiano √ √ √ 

GRAPE_05 sativa Forsellina √ √ √ 

GRAPE_06 sativa Gewuerztraminer √ √ √ 

GRAPE_07 sativa Leon Millot √ √ √ 

GRAPE_08 sativa Beli Medenac √ √ √ 

GRAPE_09 sativa Macabeu √ √ √ 

GRAPE_10 sativa Mornen noir √ √ √ 

GRAPE_11 sativa Lambrusco casetta √ √ √ 

GRAPE_12 sativa Corbera √ √ √ 

GRAPE_13 sativa Reze √ √ √ 

GRAPE_14 sativa Roussanne √ √ √ 

GRAPE_15 sativa Csaba gyongye √ √ √ 

GRAPE_16 sativa Pinot Grigio √ 
 

√ 

GRAPE_17 sativa Saperavi √ √ √ 

GRAPE_18 sativa Malvasia Istriana √ √ √ 

GRAPE_19 sativa Jacquere √ √ √ 

GRAPE_20 sativa Zilavka √ √ √ 

GRAPE_21 sativa Vernaccia di S.Gimignano √ √ √ 

GRAPE_22 sativa Shiraz √ √ √ 

GRAPE_23 sativa Claverie coulard √ √ √ 

GRAPE_24 sativa Ak chekerek √ √ √ 

GRAPE_25 sativa Ortrugo √ √ √ 

GRAPE_26 sativa Limnio √ √ √ 

GRAPE_27 sativa Canorroio √ √ √ 

GRAPE_28 sativa Pinot Meunier √ 
 

√ 

GRAPE_29 sativa Pinot Noir √ √ √ 

GRAPE_30 sativa Verdelet √ √ √ 

GRAPE_31 sativa Pignoletto √ √ √ 

GRAPE_32 sativa Aris √ √ √ 

GRAPE_33 sativa Nevado √ √ √ 

GRAPE_34 sativa Moscato √ √ √ 

GRAPE_35 sativa Piè di Palombo √ √ √ 

GRAPE_36 sativa Rossola √ √ √ 

GRAPE_37 sativa Castor √ √ √ 

GRAPE_38 sativa Armenia chi 10 √ √ √ 

GRAPE_39 sativa Trollinger Rot √ √ √ 

GRAPE_40 sativa Espadeiro blanco √ √ √ 

GRAPE_41 sativa Muscat Bleu √ √ √ 

GRAPE_42 sativa Bracciola nera √ √ √ 

GRAPE_43 sativa Semidano √ √ √ 
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GRAPE_44 sativa Soleil Blanc √ √ √ 

GRAPE_45 sativa Buffalo √ √ √ 

GRAPE_46 sativa Ak ouzioum tagapskii √ √ √ 

GRAPE_47 sativa Ahmed √ √ √ 

GRAPE_48 sativa V.berlandieri Colombard √ √ √ 

GRAPE_49 sativa V,silvestris Lauri 2 √ √ √ 

GRAPE_50 sativa V,silvestris cl, Guemuld 103-64 √ √ √ 

GRAPE_51 sativa Pinot Noir line 40024 √ 
  

GRAPE_52 sylvestris 
 

√ √ √ 

GRAPE_53 sylvestris 
 

√ √ √ 

GRAPE_54 sylvestris 
 

√ √ √ 

GRAPE_55 sylvestris 
 

√ √ √ 

GRAPE_56 sylvestris 
 

√ √ √ 

GRAPE_57 sylvestris 
 

√ √ √ 

GRAPE_58 sylvestris 
 

√ √ √ 

GRAPE_59 sylvestris 
 

√ √ √ 

GRAPE_60 sylvestris 
 

√ √ √ 

GRAPE_61 sylvestris 
 

√ √ √ 

GRAPE_62 sylvestris 
 

√ √ √ 

GRAPE_63 sylvestris 
 

√ √ √ 

GRAPE_64 sylvestris 
 

√ √ √ 

GRAPE_65 sylvestris 
 

√ √ √ 

GRAPE_66 sylvestris 
 

√ √ √ 

GRAPE_67 sylvestris 
 

√ √ √ 

GRAPE_68 sylvestris 
 

√ √ √ 

GRAPE_69 sylvestris 
 

√ √ √ 

GRAPE_70 sylvestris 
 

√ √ √ 

GRAPE_71 sylvestris 
 

√ √ √ 

GRAPE_72 sylvestris 
 

√ √ √ 

GRAPE_73 sylvestris 
 

√ √ √ 

GRAPE_74 sylvestris 
 

√ √ √ 

GRAPE_75 sylvestris 
 

√ √ √ 

GRAPE_76 sylvestris 
 

√ √ √ 

GRAPE_77 sylvestris 
 

√ √ √ 

GRAPE_78 sylvestris 
 

√ √ √ 

GRAPE_79 sylvestris 
 

√ √ √ 

GRAPE_80 sylvestris 
 

√ √ √ 

GRAPE_81 sylvestris 
 

√ √ √ 

GRAPE_82 sylvestris 
 

√ √ √ 

GRAPE_83 sylvestris 
 

√ √ √ 

GRAPE_84 sylvestris 
 

√ √ √ 

GRAPE_85 sylvestris 
 

√ √ √ 

GRAPE_86 sylvestris 
 

√ √ √ 

GRAPE_87 sylvestris 
 

√ √ √ 

GRAPE_88 sylvestris 
 

√ √ √ 

GRAPE_89 sylvestris 
 

√ √ √ 

GRAPE_90 sylvestris 
 

√ √ √ 

GRAPE_91 sylvestris 
 

√ √ √ 

GRAPE_92 sylvestris 
 

√ √ √ 

GRAPE_93 sylvestris 
 

√ √ √ 

GRAPE_94 sylvestris 
 

√ √ √ 

GRAPE_95 sylvestris 
 

√ √ √ 
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