ArticlePDF Available

Resistance to leaf rust in wheat (Triticum spp. L.) varieties adapted to El BajíO, México

Authors:

Abstract

Leaf rust caused by Puccinia triticina is one of the main diseases of wheat (Triticum spp. L.) in México. Through breeding it is possible to incorporate resistance genes in seedling and adult plant that maintain resistance to leaf rust for long periods of time. The objective of this study was to postulate genes of seedling and determine adult plant resistance to leaf rust in wheat varieties recommended for El Bajío, México. The genes in seedlings were postulated, under greenhouse conditions, in 11 varieties and in the field adult plant resistance was determined. In durum wheat, genes Lr10 and 23 were postulated and one not identified. Lr10 and 23 in seedling and adult plant are ineffective to race BBG/BN that overcame the resistance of durum wheat varieties grown in México. In the eight bread wheat varieties the resistance genes Lr1, 3, 3bg, 10, 13, 14a, 16, 17, 23, 27 and 31, alone or in combinations were postulated. These do not differ substantially from those postulated in the varieties released in México until 1990. In the field tests adult plant resistance was identified as different from that of the seedling, but at levels that should be improved with larger number of durable resistance genes and diversifying the sources of resistance.
457
Resumen
La roya de la hoja causada por Puccinia triticina es una de
las principales enfermedades del trigo (Triticum spp. L.) en
México. A través del mejoramiento genético es posible incor-
porar genes de resistencia en la plántula y planta adulta que
permitan mantener la resistencia a la roya de la hoja por pe-
riodos largos de tiempo. El objetivo de esta investigación fue
postular los genes de plántula y determinar la resistencia de la
planta adulta a la roya de la hoja en variedades de trigo reco-
mendadas para El Bajío, México. Se postularon los genes en
las plántulas, en condiciones de invernadero, en  variedades
y en el campo se determinó la resistencia de las plantas adul-
tas. En trigos cristalinos, se postularon los genes Lr10 y 23 y
uno no identificado. Lr10 y 23 en plántula y planta adulta
son inefectivos a la raza BBG/BN que superó la resistencia de
las variedades de trigos cristalinos cultivados en México. En
las ocho variedades de trigo harinero se postularon los genes
de resistencia Lr1, 3, 3bg, 10, 13, 14a, 16, 17, 23, 27 y 31, so-
los o en combinaciones. Estos no difieren substancialmente
de los postulados en las variedades liberadas en México hasta
. En las pruebas de campo se identificó resistencia de la
planta adulta diferente a la de la plántula, pero en niveles que
deberán ser mejorados con número mayor de genes de resis-
tencia durable y diversificando las fuentes de resistencia.
Palabras clave: genes de resistencia, Puccinia triticina, planta
adulta, plántula.
AbstRAct
Leaf rust caused by Puccinia triticina is one of the main
diseases of wheat (Triticum spp. L.) in México. Through
breeding it is possible to incorporate resistance genes in
seedling and adult plant that maintain resistance to leaf
rust for long periods of time. The objective of this study
was to postulate genes of seedling and determine adult plant
resistance to leaf rust in wheat varieties recommended for El
Bajío, México. The genes in seedlings were postulated, under
greenhouse conditions, in  varieties and in the field adult
plant resistance was determined. In durum wheat, genes Lr10
and 23 were postulated and one not identified. Lr10 and 23
in seedling and adult plant are ineffective to race BBG/BN
that overcame the resistance of durum wheat varieties grown
in México. In the eight bread wheat varieties the resistance
genes Lr1, 3, 3bg, 10, 13, 14a, 16, 17, 23, 27 and 31, alone
or in combinations were postulated. These do not differ
substantially from those postulated in the varieties released
in México until . In the field tests adult plant resistance
was identified as different from that of the seedling, but at
levels that should be improved with larger number of durable
resistance genes and diversifying the sources of resistance.
Key words: resistance genes, Puccinia triticina, adult plant,
seedling.
IntRoductIon
Use of genetic resistance to leaf rust in wheat
(Triticum spp. L.) is the most economical
and environmentally safe control. Selection
is performed to obtain maximum resistance to rust
and to achieve level close to immunity; however,
in most cases this type of resistance is simple
inheritance (Huerta et al., ). For this type of
RESISTENCIA A ROYA DE LA HOJA EN VARIEDADES DE TRIGO
(Triticum spp. L.) ADAPTADAS A EL BAJÍO, MÉXICO
RESISTANCE TO LEAF RUST IN WHEAT (Triticum spp. L.)
VARIETIES ADAPTED TO EL BAJÍO, MÉXICO
Ernesto Solis-Moya1*, Julio Huerta-Espino2, María F. Rodríguez-García2, Héctor E. Villaseñor-Mir2,
Eduardo Espitia-Rangel2, Lourdes Ledesma-Ramírez1 y María del P. Suaste-Franco1
1Programa de Trigo, Campo Experimental Bajío, INIFAP. km 6.5 carr. Celaya-San Miguel.
38000. Celaya Guanajuato. 2Programa de Trigo, Campo Experimental Valle de México, Ins-
tituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Apartado Postal No. 10.
56230. Chapingo, Estado de México. (solis.ernesto@inifap.gob.mx).
*Autor responsable v Author for correspondence.
Recibido: agosto, 2012. Aprobado: mayo, 2013.
Publicado como ARTÍCULO en Agrociencia 47: 457-469. 2013.
458
AGROCIENCIA, 1 de julio - 15 de agosto, 2013
VOLUMEN 47, NÚMERO 5
IntRoduccIón
El uso de la resistencia genética a la roya de la
hoja del trigo (Triticum spp. L.) es el control
más económico y ambientalmente seguro. La
selección se realiza para obtener resistencia máxima
a las royas y lograr nivel cercano a la inmunidad;
sin embargo, en la mayoría de los casos este tipo
de resistencia es de herencia simple (Huerta et al.,
). Para este tipo de resistencia, también conoci-
da como resistencia de plántula, vertical, específica
o de raza-monogénica, la selección es relativamen-
te fácil en generaciones tempranas, su naturaleza es
de raza específica (Parlevliet y Zadoks, ), y se
usa contra patógenos altamente especializados. Esto
es parcialmente cierto cuando se usan métodos de
mejoramiento como el pedigrí o el esquema típi-
co de retrocruza. De esta forma ciertos genes con
efectos mayores, generalmente de raza específica, se
acumulan en el germoplasma base usado en las hi-
bridaciones (McIntosh et al., ). La ausencia de
un sistema recurrente o un sistema que permita re-
combinación mayor del carácter favorece que la re-
sistencia específica prevalezca, o que la dominancia
sea el componente genético principal de la varianza
genética total de la resistencia. La duración de los
genes de efectos mayores ha sido muy corta en el
caso de la roya amarilla (Johnson et al., ) y de
la roya de la hoja (Singh y Dubin, ).
En el catálogo de genes y símbolos de trigo se
enlistan más de  genes de resistencia a la roya de
la hoja causada por Puccinia triticina E. (Huerta-Es-
pino et al., ). De estos genes, sólo Lr, Lr,
Lr y Lr confieren resistencia parcial (Singh et
al., ; Herrera-Foessel et al., a y b) o resis-
tencia del tipo de desarrollo lento, horizontal, po-
ligénica o de planta adulta (Singh et al., ). De
los genes de resistencia específica usados en México,
ninguno ha permanecido efectivo (Singh y Dubin,
) y cuando estos genes se usan individualmen-
te han durado en promedio  años (Singh y Du-
bin, ; Singh et al., ). En las  variedades
liberadas en México de  a  se postuló la
presencia de  (Lr, Lr, Lrbg, Lr, Lr, Lra,
Lr, Lr, Lr, Lr, Lr, Lr y Lr) genes in-
dividuales o en combinaciones de dos o más (Singh
y Rajaram, ; Singh, ). Todos estos genes
fueron efectivos un tiempo corto y existen razas del
hongo que superan esa resistencia.
resistance, also known as seedling, vertical, specific
or monogenic-race resistance, selection is relatively
easy in early generations, it is of race-specific nature
(Parlevliet and Zadoks, ), and is used against
highly specialized pathogens. This is partly true
when breeding methods are used such as pedigree
or typical backcross scheme. In this way certain
genes with major effects, generally of specific races,
accumulate in the germplasm base to be used in the
hybridizations (McIntosh et al., ). The absence
of a recurrent system or a system that allows a
higher recombination of the character favors that
specific resistance be that which prevails, or that the
dominance be the primary genetic component of
the total genetic variance of resistance. Duration of
genes of greater effects has been very short in the
case of yellow rust (Johnson et al., ) and leaf
rust (Singh and Dubin, ).
In the gene and wheat symbol catalog there are
listed more than  genes for resistance to leaf rust
caused by Puccinia triticina E. (Huerta-Espino et
al., ). Of these genes, only Lr, Lr, Lr
and Lr confer partial resistance (Singh et al., 
Foessel Herrera et al., a and b) or slow-rusting,
horizontal, polygenic or adult plant resistance type
(Singh et al., ). Of the specific resistance genes
used in México, none has remained effective (Singh
and Dubin, ) and when these genes have been
used individually have lasted on average  years
(Singh and Dubin, , Singh et al., ). In the
 varieties released in México from  to  the
presence of  (Lr, Lr, Lrbg, Lr, Lr, Lra,
Lr, Lr, Lr, Lr, Lr, Lr and Lr) single
genes or in combinations of two or more (Singh and
Rajaram, ; Singh, ) was postulated. All these
genes were effective in a short time and there are
races of this fungus that overcome this resistance.
The varieties Pénjamo T, Lerma Rojo S, Jaral
F, Bajío F, Azteca F, Pótam S, Toluca F,
Tórim F, Roque F, Salamanca S, Anahuac
F, Pavón F, Jahuara M, CIANO T,
Glenson M, Abasolo S and Galvez M, which
are grown in the region of El Bajío (includes parts
of the states of Querétaro, Guanajuato, Michoacán
and Jalisco) have resistance genes Lr, Lr, Lr,
Lr, Lra, Lr, Lr, Lr, Lr, Le and Lr
that differ a little from those genes postulated in
the varieties grown in other regions of México, and
lack the genes Lrbg and Lr (Singh and Rajaram,
RESISTENCIA A ROYA DE LA HOJA EN VARIEDADES DE TRIGO (Triticum spp. L.) ADAPTADAS A EL BAJÍO, MÉXICO
459
SOLÍS-MOYA et al.
3 Investigador del Programa de Trigo del CIMMYT, Apdo. Postal 6-641. 06600. México, D.F., México v 3Researcher. Wheat Program.
International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641. 06600. México, D.F., México.
Las variedades Pénjamo T, Lerma Rojo S,
Jaral F, Bajío F, Azteca F, Pótam S, To-
luca F, Tórim F, Roque F, Salamanca S,
Anahuac F, Pavón F, Jahuara M, CIANO
T, Glenson M, Abasolo S y Gálvez M, que
se cultivan en la región de El Bajío (incluye parte de
los estados de Querétaro, Guanajuato, Michoacán y
Jalisco) poseen los genes de resistencia Lr, Lr, Lr,
Lr, Lra, Lr, Lr, Lr, Lr, Lr y Lr que
difieren poco de los genes postulados en las varieda-
des cultivadas en otras regiones de México, y carecen
de los genes Lrbg y Lr (Singh y Rajaram, ;
Singh, ). Los genes que poseen las variedades li-
beradas de  al  en México no se han dado a
conocer, aunque la mayoría ya ha sido determinada
(Singh, comunicación personal[]).
Mediante mejoramiento genético pueden combi-
narse genes de resistencia de plántula y planta adulta
que permitan mantener la resistencia a la roya de la
hoja por periodos largos de tiempo, pero se desco-
nocen los genes en las variedades comerciales de El
Bajío. Por tanto, el objetivo de este estudio fue deter-
minar mediante postulación los genes de resistencia y
sus combinaciones en las variedades actuales de trigo
y si formas de resistencia diferente a la conferida por
genes mayores están en estos genotipos. La hipótesis
fue que los trigos cristalinos tienen número menor
de genes de plántula y planta adulta que los trigos
harineros.
mAteRIAles y métodos
Genotipos
Se estudiaron  variedades de trigo (Cuadro ), tres cris-
talinos o macarroneros, de una especie tetraploide con geno-
ma AABB y ocho genotipos harineros con genoma AABBDD
(Huerta y González, ).
Pruebas en invernadero
Las pruebas de postulación se realizaron en los invernaderos
del CIMMYT, en El Batán, Estado de México. Los  genotipos
se sembraron en junio del , en charolas plásticas con ocho
hileras y seis columnas, con capacidad para  entradas. Junto
con estos genotipos también se sembraron las diferenciales de
; Singh, ). Genes in varieties released from
 to  in México have not been made public,
although most have already been determined (Singh,
personal communication[]).
Through genetic improvement resistance genes
from seedling and adult plant can be combined to
maintain resistance to leaf rust for long periods of
time, but genes in commercial varieties of El Bajío
are unknown. Therefore, the objective of this study
was to determine by postulation the resistance genes
and their combinations in current wheat varieties and
if forms of resistance different from those conferred
by major genes is in these genotypes. The hypothesis
was that durum wheats have fewer genes of seedling
and adult plant that those of bread wheats.
mAteRIAls And methods
Genotypes
Eleven wheat varieties were studied (Table ), three are
durum wheat from a tetraploid species with genome AABB
and eight are bread wheat genotypes, with genome AABBDD
(Huerta and González, ).
Greenhouse tests
Postulation tests were carried out at CIMMYT’s
greenhouses, El Batán research station, Estado de México. The
 genotypes were sown in June , in plastic trays with eight
rows and six columns, with space for  entries. Along with
these genotypes also the differentials of leaf rust possessing
a single resistance gene were sown of which  are lines of
bread wheat and four of durum wheat. Ten days after seeding
they were inoculated with urediniospores of  physiological
leaf rust races (Singh, ), including race BBG/BN able to
overcome the resistance of a large amount of durum wheats
(Singh et al., ). Races were collected in México since
 (Villaseñor et al., ) and they have been preserved
in vacuum and refrigerated in sealed glass vials. For the study,
the races were placed  h in a chamber with  % HR and
with them eight-day-old seedlings of the susceptible variety
Morocco were inoculated. Later, spores were collected and a
suspension of each of the  physiological races was prepared
in mineral oil Soltrol  (Phillips Co.). With suspensions the
inoculation of differentials and tested varieties were performed,
460
AGROCIENCIA, 1 de julio - 15 de agosto, 2013
VOLUMEN 47, NÚMERO 5
with  days of age and  to postulate the presence of gen
Lr. The inoculated seedlings were kept  h at  % HR
in a dew chamber, then they were placed in a greenhouse that
was kept day/night with / °C. Ten days after inoculation,
types of infection were evaluated on a scale of  to , according
to Roelfs et al. (): the phenotypes with infection from 
to  or  are classified as resistant and  to  as susceptible.
For this study it was important to note the type of infection,
as each resistance gene expressed in the seedling produces a
characteristic infection, according to each physiological race
(Roelfs et al., , McIntosh et al., ). Tests were repeated
in June and October  and January and June . Also, on
the same dates additional tests were included at temperatures
roya de la hoja que poseen un solo gen de resistencia; de ellas 
son líneas de trigo harinero y cuatro de cristalino. Diez días des-
pués de la siembra se inoculó con urediniosporas de  razas fi-
siológicas de roya de la hoja (Singh, ), incluida la raza BBG/
BN capaz de superar la resistencia de una gran cantidad de trigos
cristalinos (Singh et al., ). Las razas fueron recolectadas en
México desde  (Villaseñor et al., ). Estas se conservan
con vacío y refrigeradas en ampolletas selladas de cristal. Para el
estudio, las razas se colocaron  h en una cámara con  % HR
y con ellas se inocularon plántulas de  d de edad de la varie-
dad susceptible Morocco. Después, las esporas se recolectaron
y se hizo una suspensión de cada una de las  razas fisiológicas
en aceite mineral Soltrol  (Philps Co.). Con las suspensiones
Cuadro . Número y genealogía de  variedades de trigo adaptadas a la zona de El Bajío, Guanajuato,
México, evaluadas en el estudio.
Table . Number and genealogy of  wheat varieties adapted to the area of El Bajío, Guanajuato, Méxi-
co, evaluated in the study.
Núm. Variedad, cruza y genealogía
Trigos cristalinos
1TOPACIO C97RASCON 43NACORI C97 ALTAR 84/CMH82A.1062//RISA
CD83484-B-2M-030YRC-040M-14YRC-4PAP-0Y
2AMBAR C97BLEATER 9SRN2//YAVAUS/TEZ
CD74062-17Y-5M-1Y-0M
3GEMA C2004SNTURK MI83-84 375/NIGRIS_5//TANTLO_1
CD94483-A-3Y-040M-030Y-0R
Trigos harineros
4CORTAZAR S94
TR810352-4R-1R-1R-0R
5ENEIDA F94PGO/CEL 81
TR841617-12R-0R-1R-0R
6GRACIABARCENAS S 2002BBT/2/RON//ON/II-20350/3/YDING/4/SLM/5/2F1/6/MTE
TR871405-7R-2R-0R
7MAYA S2997845.63.6/SLM//CUBA/3/CALIOPA E B /4/LIMPIA
TR970215 -6R-0C-0R-0C-0R-2R-0R
8NORTEÑA F2007PARULA/2*PASTOR
CGSS97Y00034M-099TPB-027Y-099M-099Y-099M-27Y-0B-0250R-0R
9URBINA S2007CNO79/PRL//CHIL/3/CUBA/4/CASILDA/CENTELLA
TR00132-10R-0R-0R-OC-3R-0R
10 MONARCA F2007WBLL1*2/TUKURU
CGSS00B00173T-099TOPY-099M-099Y-099M-30CEL-0B
11 JOSECHA F2007WBLL4/KASORO//PASTOR
CGSS00152T-099TOPY-099M-099Y-099M-22CEL-0B
RESISTENCIA A ROYA DE LA HOJA EN VARIEDADES DE TRIGO (Triticum spp. L.) ADAPTADAS A EL BAJÍO, MÉXICO
461
SOLÍS-MOYA et al.
from  to  °C, for detecting the presence of genes Lr and
Lr (Roelfs et al., , McIntosh et al., ).
Field evaluation
The  genotypes (Table ) were sown at the Experimental
Field Norman E. Borlaug (CENEB) of the National Institute
for Forestry, Agriculture and Livestock (INIFAP), on November
, . Durum and bread wheat genotypes were separated
because the races of leaf rust developed in the two groups are
different (Huerta-Espino and Roelfs, ; Singh, ).
Genotypes were sown in double rows of  m long and at the end
of each row the susceptible varieties Morocco and Atil C of
durum and bread wheat were sown. Inoculation was made on
January ,  and Morocco plants were inoculated with a
mixture of urediniospores of races MCJ/SP and MBJ/SP, in three
times, to generate epidemics and Atil C was inoculated with
race BBG/BN of durum wheats (Singh et al., ). Bread wheat
races were selected because they are the most common in México
and are virulent for most seedling resistance genes (Villaseñor et
al., ). The race BBG/BN was used because it is virulent to all
durum wheat varieties that were released to El Bajío before 
(Huerta et al., ).
Rust readings were made on March  and , . Infection
levels were recorded using the modified Cobb Scale (Peterson
et al., ), which measures the percentage of infection in
the flag leaf, based on the leaf area invaded by the fungus and
the response of the plant to disease; according to this, can be
resistant (R), moderately resistant (MR), moderately susceptible
(MS) and susceptible (S). The field evaluation was repeated in
spring-summer  and  seasons, sowing on July , 
and July , , in El Batan, with the same races used in the
CENEB and the same evaluation system. The experimental
design was a randomized block design with two replications.
Results And dIscussIon
Postulation of resistance genes in durum wheats
In México until , there was only the typical
race of durum wheats BBB/BN, and then the race
BBG/BN appeared which was introduced to México
by means hitherto unknown, which overcame the
resistance of the variety Altar C after  years
of intensive cultivation in southern Sonora and
northern Sinaloa (Singh, ). Altar C, Aconchi
C and other varieties are susceptible to leaf rust
in Chile and north Africa, including Ethiopia (Singh
and Dubin, ).
se realizó la inoculación de las diferenciales y las variedades de
prueba, con  d de edad y  para postular la presencia del gen
Lr. Las plántulas inoculadas se mantuvieron  h en  %
HR, en a una cámara con rocío y se colocaron en un inverna-
dero mantenido día/noche con / °C. Diez días después de
la inoculación se evaluaron los tipos de infección con una escala
de  a , de acuerdo con Roelfs et al. ( ): los fenotipos con
infección de  a  o  se clasifican como resistentes y con  a 
como susceptibles. Para el estudio fue importante anotar el tipo
de infección, pues cada gen de resistencia expresado en la plán-
tula genera una infección característica, de acuerdo con cada raza
fisiológica (Roelfs et al., ; McIntosh et al., ). Las pruebas
se repitieron en junio y octubre del  y enero y junio del
. En esas mismas fechas se incluyeron pruebas adicionales a
temperaturas de  a  °C para detectar la presencia de los genes
Lr y Lr (Roelfs et al., ; McIntosh et al., ).
Evaluación en campo
Los  genotipos (Cuadro ) se sembraron en el Campo
Experimental Norman E. Borlaug (CENEB) del Instituto
Nacional de Investigaciones Forestales, Agrícolas y Pecuarias
(INIFAP), el  de noviembre del . Los genotipos de tri-
go cristalino y harineros fueron separados porque las razas de
roya de la hoja desarrollados en los dos grupos son diferentes
(Huerta-Espino y Roelfs, ; Singh, ). Los genotipos se
sembraron en surcos dobles ( m de largo) y al final de cada sur-
co se sembró la variedad susceptible, Morocco y Atil C de
trigos harineros y cristalinos. La inoculación se realizó el  de
enero del  y las plantas de Morocco fueron inoculadas con
una mezcla de urediniosporas de la razas MCJ/SP y MBJ/SP, en
tres ocasiones, para generar la epifitia, y Atil C se inoculó
con la raza BBG/BN de trigos cristalinos (Singh et al., ).
Las razas de trigos harineros fueron seleccionadas porque son
las más comunes en México y son virulentas para la mayoría de
los genes de resistencia de plántula (Villaseñor et al., ). La
raza BBG/BN se usó porque es virulenta para todas las varie-
dades de trigo cristalino liberadas para El Bajío antes del 
(Huerta et al., ).
Las lecturas de roya se hicieron el  y  de marzo del .
Los niveles de infección se registraron con la escala modificada
de Cobb (Peterson et al., ), que evalúa el porcentaje de in-
fección en la hoja bandera, con base en el área de la hoja invadida
por el hongo y la respuesta de la planta a la enfermedad; según
esto, puede ser resistente (R), moderadamente resistente (MR),
moderadamente susceptible (MS) y susceptible (S). La evalua-
ción en campo se repitió en los ciclos primavera-verano 
y , con siembra el  de julio del  y  de julio del
, en El Batán, con las mismas razas usadas en el CENEB y el
462
AGROCIENCIA, 1 de julio - 15 de agosto, 2013
VOLUMEN 47, NÚMERO 5
mismo sistema de evaluación. El diseño experimental fue bloques
al azar con dos repeticiones.
ResultAdos y dIscusIón
Postulación de genes de resistencia
en trigos cristalinos
En México hasta el  sólo existía la raza típica
de trigos cristalinos BBB/BN, luego surgió la raza
BBG/BN introducida a México por medios desco-
nocidos, que superó la resistencia de la variedad Al-
tar C después de  años de cultivo intensivo en
el sur de Sonora y norte de Sinaloa (Singh, ).
Altar C, Aconchi C y otras variedades son sus-
ceptibles a la roya de la hoja en Chile y norte de
África, inclusive Etiopía (Singh y Dubin, ).
En las variedades Topacio C y Ámbar C se
postularon los genes Lr y Lr, pero no en Gema
C (Cuadro ).
Las plántulas de las tres variedades fueron sus-
ceptibles (en invernadero) a las dos razas nuevas de
roya de la hoja, BBG/BN y BCG/BN. La segunda
fue detectada en el ciclo -, superó la re-
sistencia de Júpare C y no fue usada en este
estudio (Huerta et al., ). Gema C no po-
see genes de resistencia en plántula, pues fue suscep-
tible a ambas razas. En planta adulta (en campo),
en respuesta a la inoculación con la raza BBG/BN,
Topacio C mostró un gen de desarrollo lento de
roya que ocasiona que los niveles máximos de infec-
ción sean menores de MS. La respuesta de Ámbar
C a la misma raza fue MS y puede deberse a la
acción de un gen de planta adulta. Gema C
mostró nivel máximo de infección de MS, que
indicaría la presencia de un gen de desarrollo lento
de la roya. Las mismas variedades evaluadas en El
Batán en verano del  y  tuvieron niveles
de infección mayores, porque la epifitia se inició
desde las primeras etapas de desarrollo y las condi-
ciones de humedad y temperatura fueron favorables
para el desarrollo de la enfermedad. En Ámbar C
y Topacio C la infección alcanzó casi  %, por
lo que ambas variedades se consideran susceptibles y
el gen de desarrollo lento de la roya no fue suficiente
para protegerlas. La roya de la hoja en Gema C
avanzó rápidamente y fue difícil separarla del testi-
go susceptible Atil C. La infección máxima fue
 %, lo que indica que el gen de resistencia a la
In varieties Topacio C and Ámbar C genes
Lr and Lr were postulated, but not in Gema
C (Table ).
Seedlings of the three varieties were susceptible
(under greenhouse) to the new two races of leaf rust,
BBG/BN and BCG/BN. The second was detected in
the - season, it overcame the Júpare C
resistance and was not used in this study (Huerta et
al., ). Gema C has not seedling resistance
genes since it was susceptible to both races. In adult
plant (in field) in response to inoculation with
race BBG/BN, Topacio C showed a slow-rusting
resistance gene causing that maximum levels of rust
infection were under MS. Ámbar C response
to the same race was MS and can be due to the
action of an adult plant gene. Gema C showed
maximum infection level of  MS indicating the
presence of a slow-rusting resistance gene. The same
varieties evaluated at El Batán research station in
summer  and  had higher infection levels,
because epidemics started from the earliest stages
of development and humidity and temperature
conditions were favorable for the development
of disease. In Ámbar C and Topacio C the
infection reached almost  %, so that both
varieties are considered susceptible and the slow-
rusting resistance gene was not enough to protect
them. Leaf rust in Gema C advanced quickly
and was difficult to separate it from the susceptible
control Atil C. Maximum infection was  %,
indicating that the slow-rusting resistance gene of
this line is not enough, especially in areas where
the disease is present from early stages of the crop
development. The presence of Lr is confirmed
in durum wheat; therefore, we can infer that the
resistance gene present in Gema C and other
durum wheats is Lr (Herrera-Foessel et al.,
b), it was identified in the Atil C cultivar
and possibly introduced from Pitic , which
was used as a source of dwarfism (Rht) in durum
wheats in México (Huerta et al., ).
Postulation of resistance
genes in bread wheats
Among the bread wheat genotypes in variety
Cortazar S only the gene Lr was postulated
(Table ) with the help of the races BBB/BB, BBB/
BN, TCB/TD and MFB/SP. Lr in Cortazar S
RESISTENCIA A ROYA DE LA HOJA EN VARIEDADES DE TRIGO (Triticum spp. L.) ADAPTADAS A EL BAJÍO, MÉXICO
463
SOLÍS-MOYA et al.
Cuadro . Variedad, porcentaje de infeccióny y genes de resistencia a la roya de la hoja postulados en plán-
tula de  variedades de trigo adaptados a la zona de El Bajío, México.
Table . Variety, percentage of infection and resistance genes to leaf rust postulated in seedling of  wheat
varieties adapted to the area of El Bajío, México.
Variedad Y07-08 BV08 BV09 Genes postulados
Trigos cristalinos
Topacio C97 30MS 50MS 90S Lr10, 23,
Ámbar C97 5MS 20MS 100S Lr10, 23,
Gema C2004 15MS 30MS 60MS
Trigos harineros
Cortazar S94 10MS 20MS 20MS Lr17
Eneida F94 15MS 20MS 20MS Lr3, 10, 16 y 23
Barcenas S 2002 10MS 15MS 15MS Lr3bg, Lr10, Lr13, Lr14a, Lr27 y Lr31
Maya S2007 10MS 20MS 20MS Lr1, Lr10
Norteña F2007 10MS 10MS 10MS Lr3, Lr14a
Urbina S2007 10MS 10MS 10MS Lr1, Lr23
Monarca F2007 TR 5MS 5MS Lr14a, Lr27 31
Josecha F2007 5MS 10MS 10MS Lr10, Lr23, Lr27 31
y Escala modificado de Cobb (Peterson et al., ), con dos componentes en porcentaje de infección y respues-
ta de la planta Ssusceptible, MSmoderadamente susceptible, TRtrazas de infección. Y-siembra
establecida en Ciudad Obregón, Sonora en el ciclo otoño-invierno -; BV y BVsiembras
establecidas el Batán, Estado de México, en los ciclos primavera verano  y  v y Modified Cobb Scale
(Peterson et al., ), with two components in percentage of infection and response of plant S susceptible,
MSmoderately susceptible, TRtraces of infection. Y-sowing established in Ciudad Obregón, Sonora
in autumn-winter - crop season, BV and BVsowing established at the Batán, Estado de
México, in the spring summer  and  crop season.
roya de desarrollo lento de esta línea no es suficien-
te, especialmente en las áreas donde la enfermedad
se presenta desde las primeras etapas de desarrollo
del cultivo. La presencia de Lr en trigos crista-
linos está confirmada; por tanto, se puede inferir
que el gen de resistencia presente en Gema C
y otros trigos cristalinos es Lr (Herrera-Foessel
et al., b), fue identificado en el cultivar Atil
C y posiblemente introducido de Pitic ,
usado como fuente de enanismo (Rht) en los trigos
cristalinos en México (Huerta et al., ).
Postulación de genes de resistencia
en trigos harineros
Entre los genotipos de trigo harinero en la varie-
dad Cortazar S sólo se postuló el gen Lr (Cuadro
) con la ayuda de las razas BBB/BB, BBB/BN, TCB/
TD y MFB/SP. Lr en Cortazar S pudo provenir
de la variedad INIA F, que es uno de sus progeni-
tores (Solís et al., ). En planta adulta, Cortazar
S mostró resistencia a la roya de la hoja, debida al
can come from the variety INIA F, which is one
of its parents (Solis et al., ). In adult plant,
Cortazar S showed resistance to leaf rust; due
to the action at least of three adult plant resistance
genes which are of partial or slow-rusting resistance
genes, and  to  % of maximum infection in the
flag leaf (Table ) according to the modified Cobb
Scale (Peterson et al., ). One of these genes is
Lr identified by the presence of the gene Ltn (leaf
tip necrosis) that is expressed by drying or necrosis
of the apex of the leaf (Singh, ). The second
gene is Lr, it can also be identified in field by
necrosis of the apex of the leaf (Ltn) (Rosewarne et
al., ) and comes from Salamanca S (Kolmer
et al., ), parent of this variety.
Bárcenas S has several seedling genes
conferring resistance to leaf rust of wheat, including
Lrbg, Lr, Lr, Lra, Lr and Lr. However,
for all of these genes there is already virulence in
México and Bárcenas S is susceptible in seedling
to races MCJ/SP and MBJ/SP (Singh, , Singh
and Dubin, ), which are the most common in
464
AGROCIENCIA, 1 de julio - 15 de agosto, 2013
VOLUMEN 47, NÚMERO 5
menos a la acción de tres genes de resistencia de plan-
ta adulta, que son genes de resistencia parcial o de
enroyamiento lento, y  a  % de infección máxi-
ma en la hoja bandera (Cuadro ) según la escala mo-
dificada de Cobb (Peterson et al., ). Uno de estos
genes es Lr identificado por la presencia del gen
Ltn (leaf tip necrosis) que se expresa por el secamien-
to o necrosis del ápice de la hoja (Singh, ). El
segundo gen es Lr también se puede identificar en
campo por la necrosis del ápice de la hoja (Ltn) (Ro-
sewarne et al., ) y proviene de Salamanca S
(Kolmer et al., ), progenitora de esta variedad.
Bárcenas S posee varios genes de plántula
que confieren resistencia a la roya de la hoja del tri-
go, entre ellos Lrbg, Lr, Lr, Lra, Lr y Lr.
Sin embargo, para todos estos genes ya existe viru-
lencia en México y Bárcenas S es susceptible en
plántula a las razas MCJ/SP y MBJ/SP (Singh, ,
Singh y Dubin, ), que son las más comunes en
El Bajío y todas las áreas de siembra de trigo con rie-
go y de temporal. Fue posible postular la presencia
de Lrbg en las pruebas de plántula, por la resisten-
cia en contra de la raza CCJ/SP y por la presencia
del progenitor MNG/Zaragoza F (Singh y
Rajaram, ) y por la combinación de los genes
complementarios Lr, provenientes del mismo
progenitor. La presencia del gen Lr provee a Bár-
cenas S resistencia a la raza TCB/TD, una de las
más comunes hasta  (Singh y Dubin, ) y se
especula que este gen proviene del progenitor Marte
M involucrado como último progenitor en la cru-
za (Cuadro ). La presencia de Lr parece provenir
de Salamanca S y otros progenitores como INIA
F (Singh y Rajaram, ). También se postuló la
presencia del gen Lra que proviene de los proge-
nitores Rafaela o Pénjamo T, involucrados en la
cruza de Bárcenas S. Bárcenas S fue resis-
tente en planta adulta y alcanzó niveles máximos de
infección de  a  % en la hoja bandera (Cuadro
) y en respuesta a las inoculaciones artificiales con
las razas MCJ/SP y MBJ/SP, a las que fue suscepti-
ble en estado de plántula. Esto indica que la resis-
tencia en campo de esta variedad se basa al menos
en tres genes de resistencia de planta adulta (Singh et
al.,  a y b). Estos genes de planta adulta tienen
efectos aditivos y parece que uno de ellos es Lr,
que confiere resistencia de desarrollo lento (Singh et
al.,  a y b). El segundo es Lr, con comporta-
miento similar a Lr (Singh et al., ; William et
El Bajío and all sowing areas of irrigated and rainfed
wheat. It was possible to postulate the presence
of Lrbg in seedling tests for resistance against
race CCJ/SP and by the presence of the parent
MNG/Zaragoza F (Singh and Rajaram,
) and by the combination of complementary
genes Lr from the same parent. The presence
of gene Lr provides Bárcenas S resistance to
race TCB/TD, one of the most common until 
(Singh and Dubin, ) and it is speculated that
this gene comes from parent Marte M involved
as last parent in the cross (Table ). The presence
of Lr appears to come from Salamanca S and
other parents as INIA F (Singh and Rajaram,
). Also it was postulated the presence of gene
Lra, which comes from the parents Rafaela or
Pénjamo T, involved in the cross of Bárcenas
S. Bárcenas S was resistant in adult plant
and reached maximum levels of infection from 
to  % on the flag leaf (Table ) and in response
to artificial inoculations with the races MCJ/SP and
MBJ/SP to which it was susceptible in seedling stage.
This indicates that the field resistance of this variety
is based on at least three adult plant resistance genes
(Singh et al.,  a y b). These adult plant genes
have additive effects and it appears that one of
them is Lr, which confers slow-rusting resistance
(Singh et al.,  a y b). The second one is Lr
with similar behavior to Lr (Singh et al., ;
William et al., ). It is expected that this type
of resistance is durable, by failing the pathogen to
exercise strong pressure of selection.
In the variety Eneida F presence of genes Lr,
,  and  (Table ) was postulated. Of them, Lr
is the easiest to postulate due to the fact that its type
of infection is peculiar “” (Huerta et al. ).
Lr was also evident by the type of infection to race
BBG/BN and Lr for its response to TCB/TD (type
of infection (‘;’). Eneida F response to race MCJ/
QM also allowed to postulate Lr. Lr presence
in Eneida F can be explained by the presence of
the variety Papago F, derived from the BUC/
PAVÓN cross, in which has been postulated and
confirmed by genetic analysis (Singh and Rajaram,
; Singh and Huerta-Espino, ). Gene Lr
has been postulated in Pavón F, which is one of
the parents of Pápago F (Skovman et al., ).
Genes Lr and Lr could come from the variety
Celaya F (YDING/ZENZONTLI), parent of
RESISTENCIA A ROYA DE LA HOJA EN VARIEDADES DE TRIGO (Triticum spp. L.) ADAPTADAS A EL BAJÍO, MÉXICO
465
SOLÍS-MOYA et al.
al., ). Se espera que este tipo de resistencia sea
duradera, al no ejercer el patógeno presión fuerte de
selección.
En la variedad Eneida F se postuló la presen-
cia de los genes Lr, ,  y  (Cuadro ). De
ellos, Lr es el más fácil de postular debido a que
su tipo de infección es peculiar “” (Huerta et al.,
). Lr también se hizo evidente por el tipo de
infección a la raza BBG/BN y Lr por su respuesta
a TCB/TD (tipo de infección ’;’). La respuesta de
Eneida F a la raza MCJ/QM permitió también
postular Lr. La presencia de Lr en Eneida F
se puede explicar por la presencia de la variedad
Pápago F, derivada de la cruza BUC/PAVÓN, en
la cual se ha postulado y confirmado mediante aná-
lisis genético (Singh y Rajaram, ; Singh y Huer-
ta-Espino, ). El gen Lr se ha postulado en
Pavón F, uno de los progenitores de Pápago F
(Skovman et al., ). Los genes Lr y Lr po-
drían provenir de la variedad Celaya F (YDING/
ZENZONTLI), progenitor de Eneida F. En
planta adulta esta variedad basa su resistencia en el
efecto residual de Lr y otro gen con efecto aditivo
(Cuadro ).
La variedad Maya S posee los genes de resis-
tencia Lr y Lr. La presencia del gen residual Lr se
postuló por la respuesta a la infección con las razas
BBG/BN, CBJ/QL y CBJ/QB. Lr muestra su infec-
ción “” característica cuando es efectivo (McIntosh
et al., ). Lr se postuló por su respuesta a las
razas CBJ/QB y TCB/TD. La presencia de Lr en
Maya S confiere resistencia a TCB/TD, una de
las más comunes hasta  (Singh y Dubin, ).
En México ya existe virulencia a ambos. Maya S
es susceptible en plántula a las razas MCJ/SP y MBJ/
SP (Singh, , Singh y Dubin, ). Lr es uno
de los genes presentes en especies de trigos cristalinos
y trigos harineros (Huerta y González, ). En el
ciclo primavera-verano, en respuesta a infecciones
naturales en Texcoco, Estado de México y Roque,
Celaya, Guanajuato, Maya S mostró resistencia
en planta adulta con niveles máximos de infección de
 % en la hoja bandera. Los genes de planta adul-
ta, uno de ellos Lr, con efectos aditivos, confieren
resistencia de enroyamiento lento (Singh et al., )
a la roya de la hoja.
En Norteña F se postularon los genes Lr y
Lra. En la plántula estos genes no presentan resis-
tencia contra las razas MBJ/SP y MCJ/SP. Lra se
Eneida F. In adult plant this variety bases its
resistance on the residual effect of Lr and another
gene with additive effect (Table ).
The variety Maya S has resistance genes
Lr and Lr. The presence of residual gene Lr
was postulated by the response to infection with
races BBG/BN, CBJ/QL and CBJ/QB. Lr shows
its characteristic infection “” when it is effective
(Mcintosh et al., ). Lr was postulated by its
response to the races CBJ/QB and TCB/TD. Lr
presence in Maya S confers resistance to TCB/
TD, one of the most common until  (Singh and
Dubin, ). In México there is already virulence
to both. Maya S is susceptible in seedling to
races MCJ/SP and MBJ/SP (Singh, , Singh and
Dubin, ). Lr is one of genes present in species
of bread wheats and durum wheats (Huerta and
González, ). In the spring-summer crop season,
in response to natural infections in Texcoco, Estado
de México and Roque Celaya, Guanajuato, Maya
S showed adult plant resistance with maximum
levels of infection of  % on the flag leaf. The adult
plant genes, one of them Lr, with additive effects,
confer slow-rusting resistant (Singh et al., ) to
leaf rust.
In Norteña F genes Lr and Lra were
postulated. In seedling these genes did not present
resistance against races MBJ/SP and MCJ/SP.
Lra was detected by the characteristic type of
infection “X” on response to inoculation with race
BBG/BN (Roelfs et al., ). The adult plant of
Norteña F bases its resistance on the action of
at least three genes of additive effect. One of them
is Lr, it was located in chromosome BL and
identified initially in the variety Pavón F (Singh
et al., ); having been identified on Parula and
Pastor, both parents of Norteña F, it is found
in homozygous state. The second gene is found in
chromosome BL, close to genes Lra and Lrb
(Zhang et al., ) and it is designated as Lr
(Herrera-Foessel et al., ). There is a third gene
of additive effect, whose location in the genome is
unknown, but its presence is evident by levels of
infection that leaf rust reaches in Norteña F.
Resistance to leaf rust that Norteña F possesses
is of slow-rusting type, with low levels of infection
and small pustules; with the progress of the plant
development resistance becomes more evident, by
the small number of pustules or lesions.
466
AGROCIENCIA, 1 de julio - 15 de agosto, 2013
VOLUMEN 47, NÚMERO 5
detectó por el tipo de infección característico “X” en
respuesta a la inoculación con la raza BBG/BN (Roelfs
et al., ). La planta adulta de Norteña F basa
su resistencia en la acción de al menos tres genes de
efecto aditivo. Uno de ellos es Lr, localizado en
el cromosoma BL e identificado inicialmente en la
variedad Pavón F (Singh et al., ); al haberse
identificado en Parula y Pastor, ambos progenitores
de Norteña F, se encuentra en estado homoci-
gótico. El segundo gen se encuentra en el cromosoma
BL, cercano a los genes Lra y Lrb (Zhang et al.,
) y es designado como Lr (Herrera-Foessel et
al., ). Hay un tercer gen de efecto aditivo, no se
conoce su localización en el genoma, pero es evidente
su presencia por los niveles de infección que la roya
de la hoja alcanza en Norteña F. La resistencia
a la roya de la hoja que Norteña F posee es del
tipo de desarrollo lento, con niveles bajos de infec-
ción y pústulas pequeñas; al avanzar el desarrollo de
la planta la resistencia se hace más evidente por el
número reducido de pústulas o lesiones.
La variedad Urbina S posee los genes Lr y
Lr de resistencia a la roya de la hoja del trigo. La
presencia del Lr se postuló por la respuesta a la infec-
ción con las razas BBG/BN, CBJ/QL y CBJ/QB. Lr
se postuló por el tipo de infección Fleck (;), como un
pequeño punto clorótico y/o necrótico del tamaño
de la punta de un alfiler y es consecuencia de la muer-
te de una célula en respuesta a la infección del hongo
de la raza MCJ/QM. Urbina S es susceptible en
plántula a las razas MCJ/SP y MBJ/SP (Singh, ;
Singh y Dubin, ). Además, posee un tercer gen
de plántula que no corresponde a los genes identifi-
cados, pero que es efectivo en contra de las razas CCJ/
SP y otras razas identificadas en el norte de México,
incluyendo una denominada TNM/SP. En respuesta
a infecciones naturales en Texcoco (Estado de Mé-
xico) y Celaya (Guanajuato), donde son comunes
las razas MCJ/SP y MBJ/SP y a las que la plántula
Urbina S es susceptible, en el ciclo primavera
verano del  la planta adulta mostró resistencia
con infección máxima de  % en la hoja bandera,
indicando que esta variedad nueva basa su resistencia
de campo en los genes de resistencia de planta adulta
Lr, Lr y Lr (Huerta-Espino, comunicación
personal[]).
The variety Urbina S has the genes Lr and
Lr for resistance to leaf rust in wheat. Lr presence
was postulated by response to infection with races
BBG/BN, CBJ/QL and CBJ/QB. Lr was postulated
by the type of infection Fleck (;), as a small chlorotic
and/or necrotic dot the size of the tip of a pin and is
the result of the death of a cell in response to fungal
infection of the race MCJ/QM. Urbina S is
susceptible in seedling to races MCJ/SP and MBJ/
SP (Singh, ; Singh and Dubin, ). It also
possesses a third gene of seedling that does not
correspond to identified genes, but it is effective
against races CCJ/SP and other races identified in
northern México, including one called TNM/SP. In
response to natural infections in Texcoco (Estado
de México) and Celaya (Guanajuato), where races
MCJ/SP and MBJ/SP are common and to which
the Urbina S seedling is susceptible, during
the spring summer  crop season adult plant
showed resistance with maximum infection of
 % on the flag leaf, indicating that this new
variety bases its field resistance on genes of adult
plant resistance Lr, Lr and Lr (Huerta-
Espino, personal communication[]).
In Monarca F resistance genes Lra and
Lr were postulated. Lra is only effective
against races of leaf rust mainly invading durum
wheats. Lra, however, is ineffective against most
invading races bread wheat, even MBJ/SP and MCJ/
SP. The pair of complementary genes Lr
were identified in Jupateco F, then in the variety
Baviacora M that became susceptible to race
MCJ/SP (Singh and Dubin, ), and from this
they were transferred to the line Weebill, parent of
Monarca F. This pair of complementary genes
also provided resistance to leaf rust in durum wheat
varieties Júpare C and Banámichi C, until
race BBG/BP appeared and overcame this resistance.
Lr is ineffective against leaf rust races MBJ/
SP and MCJ/SP and race BBG/BP of durum wheat
(Huerta-Espino et al., ). Therefore, Monarca
F is susceptible in seedling state to races that
combine susceptibility for Lra and Lr,
including MCJ/SP and MBJ/SP. The variety
Monarca F reaches almost immunity to leaf
rust in adult plant and this is due to the number
4 Investigador del Programa de Trigo del INIFAP-CEVAMEX, Apdo. Postal 10. 56230. Chapingo, Estado de México, México v 4
Researcher. Wheat Program. INIFAP-CEVAMEX, Apdo. Postal 10. 56230. Chapingo, Estado de México. México.
RESISTENCIA A ROYA DE LA HOJA EN VARIEDADES DE TRIGO (Triticum spp. L.) ADAPTADAS A EL BAJÍO, MÉXICO
467
SOLÍS-MOYA et al.
En Monarca F se postularon los genes de
resistencia Lra y Lr. Lra es efectivo sólo
contra razas de roya de la hoja que invaden prin-
cipalmente los trigos cristalinos. Lra, sin embar-
go, es inefectivo contra la mayoría de las razas que
invaden al trigo harinero, incluso MBJ/SP y MCJ/
SP. El par de genes complementarios Lr,
fueron identificados en Jupateco F, después en
la variedad Baviacora M que se tornó suscepti-
ble a la raza MCJ/SP (Singh y Dubin, ), y de
ésta se transfirieron a la línea Weebill, progenitor
de Monarca F. Este par de genes complemen-
tarios también proporcionó resistencia a la roya de
la hoja en las variedades de trigo cristalino Júpare
C y Banámichi C, hasta que la raza BBG/
BP apareció y venció esta resistencia. Lr es
inefectivo contra las razas de roya de la hoja MBJ/
SP y MCJ/SP y la raza BBG/BP de trigos cristali-
nos (Huerta-Espino et al., ). Por tanto, Mo-
narca F es susceptible en estado de plántula a
las razas que combinan susceptibilidad para Lra
y Lr, incluyendo MCJ/SP y MBJ/SP. La va-
riedad Monarca F alcanza casi inmunidad a la
roya de la hoja en planta adulta y esto se debe al
número de genes de efecto aditivo presente en sus
progenitores. Por ejemplo, Tukuru posee hasta cin-
co genes de resistencia de enroyamiento lento y es
un progenitor cuya estabilidad de la resistencia es
muy alta en México y otros países donde la roya de
la hoja alcanza niveles epidémicos altos. El análisis
genético del progenitor Tukuru en México reveló la
presencia de cinco genes de efecto aditivo (Singh
et al., ; Singh y Huerta-Espino,  a y b).
El progenitor Weebill posee tres a cuatro genes de
efecto aditivo (Zhang et al., ), de manera que
Monarca F adquiere niveles altos de resistencia
a la roya de la hoja. Entre los genes de resistencia
durable que Monarca F posee, está Lr que
es efectivo desde que Yaqui  se liberó en México
(Kolmer et al., ) y clonado recientemente, lo
que ayuda a entender su naturaleza y durabilidad
(Krattinger et al., ). Monarca F también
posee Lr (Singh et al., ) que es efectivo desde
que Pavón F fue liberado en  para el noroeste
de México y con buena adaptación para siembras de
temporal.
En Josecha F se postularon los genes Lr,
Lr y Lr. Lr se postula por su respuesta a
la raza TCB/TD con su tipo de infección Fleck (;).
of additive effect genes present in their parents.
For example, Tukuru has up to five slow-rusting
resistance genes, and is a parent whose resistance
stability is very high in México and other countries
where leaf rust reaches high epidemic levels. Genetic
analysis of progenitor Tukuru in México revealed
the presence of five additive effect genes (Singh et
al. ; Singh and Huerta-Espino,  a and
b). The parent Weebill has three or four additive
effect genes (Zhang et al., ), so that Monarca
F acquires high levels of resistance to leaf rust.
Among the durable resistance genes that Monarca
F possesses is gene Lr, which is effective
since Yaqui  was released in México (Kolmer
et al., ) and cloned recently, which helps to
understand its nature and durability (Krattinger et
al., ). Monarca F also has Lr (Singh et
al., ) which remains effective since Pavón F
was released in  to the northwest of México and
with good adaptation to rainfed crops.
In Josecha F genes Lr, Lr and Lr
were postulated. Lr is postulated by its response to
race TCB/TD with its type of infection Fleck (;). It
is speculated that Lr in the variety Josecha F
derives from Pastor (Rebeca F), which is parent in
its cross and in which its presence has been postulated
(Huerta et al., ). Complementary genes
LrLr were identified by their characteristic
infection type “x” in response to an avirulent race as
LCJ/BN. In response to artificial inoculations with
races MCJ/SP and MBJ/ SP, to which the Josecha
F seedling is susceptible, in the spring-summer
crop season in Celaya, in adult plant the maximum
severity on the flag leaf was  %, indicating that its
field resistance is based on at least three adult plant
genes (Singh et al.  a and b). These adult plant
genes have additive effects and confer slow-rusting
resistance (Singh et al.,  a and b) to leaf rust that
is effective against all races that exist in México and
other countries, and protects against epidemics up to
 % (Singh and Huerta-Espino, ).
conclusIons
No variety was susceptible to all races used in the
study and there was indeed resistance to all of them.
In durum wheats two seedling genes were postulated
and  in bread wheats in different combinations
to leaf rust; for all of these genes there is already
468
AGROCIENCIA, 1 de julio - 15 de agosto, 2013
VOLUMEN 47, NÚMERO 5
Se especula que Lr en la variedad Josecha F
proviene de Pastor (Rebeca F), que es proge-
nitor en su cruza y en el cual se ha postulado su
presencia (Huerta et al., ). Los genes comple-
mentarios LrLr se identificaron por su tipo
de infección característico “x” en respuesta a una
raza avirulenta como LCJ/BN. En respuesta a ino-
culaciones artificiales con las razas MCJ/SP y MBJ/
SP, a las cuales la plántula de Josecha F es sus-
ceptible, en el ciclo primavera-verano en Celaya, en
planta adulta la severidad máxima en la hoja ban-
dera fue  %, indicando que basa su resistencia
de campo en al menos tres genes de planta adulta
(Singh et al.,  a y b). Estos genes de planta
adulta tienen efectos aditivos y confieren resisten-
cia de desarrollo lento (Singh et al.,  a y b) a la
roya de la hoja que es efectiva contra todas las razas
que hay en México y otros países, y protege contra
las epifitias hasta en  % (Singh y Huerta-Espino,
).
conclusIones
Ninguna variedad fue susceptible a todas las razas
usadas en el estudio y sí hubo resistencia a todas ellas.
En trigos cristalinos se postularon dos genes de plán-
tula y  en harineros en diferentes combinaciones a
la roya de la hoja; para todos estos genes ya hay viru-
lencia en México. La resistencia a la roya de la hoja en
planta adulta en el campo es adecuada en variedades
de trigos harineros pero no en los trigos cristalinos.
AgRAdecImIentos
A la Fundación Guanajuato Produce A. C. por el financia-
miento parcial al proyecto / “Materiales de trigo adaptados
y con características para la producción en el estado de Gua-
najuato, y de alta calidad para la industria (de gluten suave y
gluten fuerte)”.
lIteRAtuRA cItAdA
Herrera-Foessel, S. A., E. S. Lagudah, J. Huerta-Espino, M. J.
Hayden, H. S. Bariana, D. Singh, and R. P. Singh. a.
New slow-rusting leaf rust and stripe rust resistance genes
Lr and Yr in wheat are pleiotropic or closely linked.
Theor. Appl. Genet. : -.
Herrera-Foessel, S. A., R. P. Singh, J. Huerta-Espino, V. Calvo S.,
and E. S. Lagudah. b. First report of slow rusting gene
Lr in durum wheat. Book of abstracts  BGRI Tech.
Workshop Jun. - Saint Paul MN. USA.  p.
virulence in México. Resistance to adult plant leaf
rust, in the field is adequate in bread wheat varieties
but not in durum wheats.
End of the English version
pppvPPP
Herrera-Foessel, S. A., R. P. Singh, J. Huerta-Espino, G. M.
Rosewarne, S. K. Periyannan, L. Viccars, V. Calvo-Salazar, C.
Lan, and E. S. Lagudah. . Lr: A new gene conferring
slow rusting resistance to leaf rust in wheat. Theor. Appl.
Genet. : -.
Huerta-Espino, J., and A. P. Roelfs. . Physiological
specialization of leaf rust on durum wheat. Phytopathology
: .
Huerta, E. J., y R. M. González I. . Tipos y grupos de trigo.
In: Villasenor Mir, H. E., y E. Rangel E. (eds). El trigo de
temporal en Mexico. Chapingo, Estado de México, México,
SAGAR, INIFAP CIRCE, Campo Experimental Valle de
México. (Libro Técnico Núm. ). pp: -.
Huerta, E. J., H. E. Villaseñor M., E. Espitia R., S. G. Leyva M.,
y R. P. Singh. . Análisis de la resistencia a la roya de la
hoja en trigos harineros para temporal. Rev. Fitotec. Mex.
: -.
Huerta-Espino, J., R. P. Singh, S. A. Herrera-Foessel, J. B.
Perez-Lopez, and P. Figueroa-López . First detection of
virulence in Puccinia triticina to resistance genes LrLr
present in durum wheat in Mexico. Plant Dis. (): .
Huerta, E. J., R. P. Singh, H. E. Villaseñor M., E. Solís M., E.
Espitia R., y S. G. Leyva M. . Transferencia del gen
Lra de trigos harineros a trigos cristalinos y expresión de la
resistencia a roya de la hoja. Rev. Fitotec. Mex.  (): -.
Huerta-Espino, J., R. Singh, S. Germán, B. McCallum, R. Park,
W. Chen, S. Bhardwaj, and H. Goyeau. . Global status
of wheat leaf rust caused by Puccinia triticina. Euphytica
(): -.
Johnson, R., M. S. Wolfe, and P. R. Scott. . Pathology
Annual Report of the Plant Breeding Institute ,
Cambridge, U.K. pp: -.
Krattinger, S.G., E. S. Lagudah, W. Spielmeyer, R. P. Singh, J.
Huerta-Espino, H. McFadden, E. Bossolini, L. L. Selter, and
B. Keller. . A putative ABC transporter confers durable
resistance to multiple fungal pathogens in wheat. Science
: -.
Kolmer, J. A., R. P. Singh, D. F. Garvin, L. Viccars, H. M.
William, J. Huerta-Espino, F. C. Ogbonnaya, H. Raman,
S. Orford, H. S. Bariana, and E. S. Lagudah. . Analysis
of the Lr/Yr rust resistance region in wheat germplasm.
Crop Sci. : -.
McIntosh, R. A., C. R. Wellings, and R. F. Park. . Wheat
Rusts: An Atlas of Resistance Genes. CSIRO Australia.  p.
Parlevliet, J. E., and J. C. Zadocks.. The integrated concept
of disease resistance; a new view including horizontal and
vertical resistance in plants. Euphytica : -.
Peterson, R. F., A. B. Campbell, and A. E. Hannah.. A
diagramatic scale for estimating rust intensity of leaf and
stems of cereals. Can. J. Res. Section C. : -.
RESISTENCIA A ROYA DE LA HOJA EN VARIEDADES DE TRIGO (Triticum spp. L.) ADAPTADAS A EL BAJÍO, MÉXICO
469
SOLÍS-MOYA et al.
Roelfs, A. P., P. R. Singh, and E. E. Saari. . Las royas del trigo:
Conceptos y métodos para el manejo de esas enfermedades.
México, D.F. CIMMYT.  p.
Rosewarne, G. M., R. P. Singh, J. Huerta-Espino, H. M. William,
S. Bouchet, S. Cloutier, H. McFadden, and E. S. Lagudah.
. Leaf tip necrosis, molecular Markers and -proteasome
subunits associated with the slow rusting resistance genes
Lr/Yr. Theor. Appl. Genet. : -.
Singh, R. P. . Pathogenicity variations of Puccinia recondita f.
sp. tritici and P. graminis f. sp. tritici in wheat growing areas
of Mexico during  and . Plant Dis. : -.
Singh, R. P. . Association between gene Lr for leaf rust
resistance and leaf tip necrosis in wheat. Crop Sci. :
-.
Singh, R. P. . Resistance to leaf rust in  Mexican wheat
cultivars. Crop Sci. : -.
Singh, R. P., and S. Rajaram. . Resistance to Puccinia
recondita f. sp. tritici in  Mexican bread wheat cultivars.
Crop Sci. : -.
Singh, R. P., and J. Huerta-Espino. . Inheritance of seedling
and adult-plant resistance to leaf rust in bread wheat cultivars
Ciano  and Papago . Plant Dis. : -.
Singh, R. P., and J. H. Dubin. . Sustainable control of wheat
diseases in Mexico. In: Pacheco, C. J. J., y S. L. Perez. (comps).
Memorias del Primer Simposio Internacional de Trigo. Abril
- de . Cd. Obregón, Sonora, Mexico. pp: -.
Singh, R. P., and J. Huerta-Espino. . Effect of leaf rust
resistance gene Lr on grain yield and agronomic traits of
spring wheat. Crop Sci. : -.
Singh, R. P., K. A. Mujeeb, and J. Huerta E. . Lr a gene
conferring slow rusting resistance to leaf rust in wheat.
Phytopathology : -.
Singh, R. P., J. Huerta-Espino, and S. Rajaram. . Achieving
near-immunity to leaf and stripe rusts in wheat by combining
slow rusting resistance genes. Acta Phytopathol. Hung. :
-.
Singh, R. P., J. Huerta-Espino, and M. William. a. Slow
rusting genes based resistance to leaf and yellow rusts in
wheat: Genetics and breeding at CIMMYT. In: Eastwood
R., G. Hollamby, T. Rathjen, and N. Gororo. (eds). Wheat
Breeding Society of Australia Inc. th Assembly Proc. th-
st September . Mildura, Australia. pp: -.
Singh, R. P., and J. Huerta-Espino. b. Sources and genetic basis
of variability of major and minor genes for yellow rust resistance
in CIMMYT wheats. In: CIMMYT. . The Eleventh Reg.
Wheat Workshop for Eastern, Central and Southern Africa.
Addis Ababa, Etiopia: CIMMYT. pp: -.
Singh, R. P., J. Huerta E., y M. William. . Resistencia
durable a roya de la hoja y roya amarilla del trigo: genética
y mejoramiento en el CIMMYT. In: Kholi, M., M. Díaz, y
M. Castro M. (eds). Estrategias y Metodologías Utilizadas
en el Mejoramiento de Trigo. Seminario Internacional, La
Estanzuela, Uruguay. CIMMYT-INIA. pp: -.
Singh, R. P., J. Huerta-Espino, W. Pfeiffer, and P. Figueroa-
Lopez. . Occurrence and impact of a new leaf rust race
on durum wheat in the Nothwestern Mexico during -
. Plant Dis. : -.
Skovmand, B., R. Villareal, M. Van Ginkel, S. Rajaram, and
G. Ortiz-Ferrara. . Semidwarf bread wheats: names,
parentages, pedigries, and origins. Mexico. D.F. CIMMYT.
 p.
Solís, M., E., A. Salazar Z., y J. Narro S. Octubre . Cortazar
S: Nueva variedad de trigo harinero para El Bajío. Folleto
Técnico Núm. . Instituto Nacional de Investigaciones
Forestales, Agrícolas y Pecuarias. Centro de Investigaciones
Regional del Centro. Campo Experimental Bajío, Celaya,
Guanajuato, México.  p.
Villaseñor, E., O. M., J. Huerta E., S. G. Leyva M., E. Villaseñor
M., y E. Espitia R. . Análisis de virulencia de la roya de
la hoja (Puccinia triticina Eriks.) del trigo (Triticum aestivum
L.) en Los Valles Altos de México. Rev. Mex. Fitopatol. ():
-.
William, M., R. P. Singh, J. Huerta-Espino, S. Ortiz Islas, and
D. Hoisington. . Molecular marker mapping of leaf
rust resistance gene Lr and its association with stripe
rust resistance gene Yr in wheat. Phytopathology :
-.
Zhang, J. X., R. P. Singh, J. A. Kolmer, J. Huerta-Espino, and
A. Anderson. . Inheritance of leaf rust resistance in
CIMMYT Wheat Weebill . Crop Sci. : -.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Leaf rust caused by Puccinia triticina is the most common and widely distributed of the three wheat rusts. Losses from leaf rust are usually less damaging than those from stem rust and stripe rust, but leaf rust causes greater annual losses due to its more frequent and widespread occurrence. Yield losses from leaf rust are mostly due to reductions in kernel weight. Many laboratories worldwide conduct leaf rust surveys and virulence analyses. Most currently important races (pathotypes) have either evolved through mutations in existing populations or migrated from other, often unknown, areas. Several leaf rust resistance genes are cataloged, and high levels of slow rusting adult plant resistance are available in high yielding CIMMYT wheats. This paper summarizes the importance of leaf rust in the main wheat production areas as reflected by yield losses, the complexity of virulence variation in pathogen populations, the role cultivars with race-specific resistance play in pathogen evolution, and the control measures currently practiced in various regions of the world. Keywords Triticum aestivum – Triticum turgidum –Resistance–Races
Article
Full-text available
The CIMMYT spring wheat Weebill 1 has near- immune levels of adult plant resistance (APR) to leaf rust caused by Puccinia triticina Eriks. To determine the genetic basis of resistance in seedlings and adult plants Weebill 1 was crossed with two susceptible parents Jupateco 73S and 'Thatcher'. Advanced F4:5, F4:6, and F5:7 recombinant inbred lines (RIL) populations from Jupateco 73S/Weebill 1 and BC1F2 popu- lations from Thatcher/Weebill 1 were derived. The F5:7 RILs and BC1F2 families were tested as seedlings with fi ve races of P. triticina. The F1 and F4:5, F4:6, and F5:7 RILs of Jupateco 73S/ Weebill 1 were evaluated in plots in Mexico and St. Paul. The Jupateco 73S/Weebill 1 RILs and Thatcher*2/Weebill 1 F2 families segregated for Lr14b, an unknown seedling leaf rust resistance gene derived from Weebill 1 in both crosses, and Lr17a derived from Jupateco 73S in the RIL population. Lr17a was mapped to the distal end of chromosome 2AS and was linked to microsat- ellite maker Xgwm636 at a distance of 4.0 cM. The seedling genes did not condition effective resistance in the fi eld plots with races used in the fi eld trials. The segregation ratio in the RILs and F2 families indicated the presence of three to four APR genes in Weebill 1. One of the APR genes was linked to the seedling gene Lr14b on chromosome 7BL and reduced leaf rust by 47% in St. Paul and 31% in Mexico. Based on the haplotypes of DNA markers, we do not believe that any of the APR genes is Lr34.
Article
Slow rusting resistance in wheat (Triticum aestivum) to leaf rust (Puccinia triticina) and stripe rust (Puccinia striiformis tritici) is often conferred by a few partially effective, non-hypersensitive type of genes with additive effects. Inheritance studies at CIMMYT have shown that although individually these genes may have small to intermediate effects, combinations of 3 to 5 such genes result in a high level of resistance. We planned a breeding experiment aimed to combine such genes for resistance to both leaf and stripe rusts with high yield potential. Simple crosses were made between parents that had moderate to good levels of slow rusting resistance to both rusts; the Fls were then top-crossed (three-way) with a third parent that had high yield potential and at least some resistance. Segregating generations were alternated between Ciudad Obregon (28 ○N, 39 masl, irrigated, high yielding site with high leaf rust pressure) and Toluca (18 ○N, 2640 masl, high rainfall site with high stripe rust pressure) in Mexico. We have identified lines that contain high yield potential and resistance levels reaching to near-immunity to both rusts but based on additive genes.
Article
Wheat (Triticum aestivum) cultivars Ciano 79 and Papago 86 have maintained high levels of resistance to leaf rust, caused by Puccinia recondita f. sp. tritici, since their release during 1979 and 1986, respectively, in leaf rust-prone northwestern Mexico. Because inheritance of leaf rust resistance for these cultivars is unknown, Ciano 79 and Papago 86 were intercrossed, crossed with the susceptible cultivar Sonora 64, and crossed with the adult plant resistant cultivar Frontana to evaluate the resistance relationship. Inheritance studies were conducted in seedling and/or adult plant growth stages using the parents, F1 plants, F2 populations, and F3 and F5 lines. The resistance to P. r. tritici pathotype TCB/TD in seedlings of Ciano 79 and Papago 86 was conferred by a single gene, Lrl6. When present alone, Lrl6 confers only moderate resistance in adult plants to the same pathotype. The adult plant resistances of both cultivars were based on the additive interaction between gene Lr16 and a minimum of two other slow-rusting genes. Besides Lrl6, one of the two slow-rusting genes was also common in Ciano 79 and Papago 86. The adult plant resistance genes in these cultivars differed from the resistance genes in Frontana.
Article
The Lr34/Yr18 adult plant resistance gene contributes significantly to durable leaf rust (caused by Puccinia triticina Eriks.) resistance. Simple and robust molecular markers that enable early detection of Lr34/Yr18 are a major advancement in wheat (Triticum aestivum L.) breeding. An insertion/deletion size variant located at the csLV34 locus on chromosome 7D within an intron sequence of a sulfate transporter-like gene tightly linked to the Lr34/Yr18 dual rust resistance gene was used to examine a global collection of wheat cultivars, landraces, and D genome-containing diploid and polyploid species of wheat relatives. Two predominant allelic size variants, csLV34a and b, found among the wheat cultivars showed disparate variation in different wheat growing zones. A strong association was observed between the presence of Lr34/Yr18 and the csLV34b allele and wheat lines known to have Lr34/Yr18 that had the csLV34a allele were rare. All landraces with the exception of those from China were predominantly of the csLV34a type. Only one size variant, csLV34a, was detected among the diploid and polyploid D genome-containing species, indicating that csLV34b arose subsequent to hexaploid bread wheat synthesis. The lineage of the csLV34b allele associated with Lr34/Yr18 in modern wheat cultivars from North and South America, CIMMYT, Australia, and Russia was tracked back to the cultivars Mentana and Ardito developed in Italy by Nazareno Strampelli in the early 1900s. The robustness of the csLV34 marker in postulating the likely occurrence of Lr34/Yr18 across a wide range of wheat germplasm and its utility in wheat breeding was confirmed.
Article
CIMMYT germplasm derived wheat (Triticum aestivum L.) cultivars are grown on a large area worldwide. The status of leaf rust Puccinia recondita Roberge ex Desmaz. f. sp. tritici resistance in various cultivars is unknown. In this study, designated Lr genes were postulated in 26 cultivars released in Mexico between 1950 and 1989 by inoculating their seedlings with 14 pathotypes of diverse avirulence-virulence combinations. The adult plant resistance was evaluated with two currently predominant pathotypes during 1991-1992 crop cycle at Ciudad Obregon in northwest Mexico. Additionally, the probable presence of Lr13 and Lr34 was identified by determining the presence of linked genes Ne2 and Ltn, respectively (.)