Molecular Phylogeny and Morphology of Mycosphaerella nawae, the Causal Agent of Circular Leaf Spot on Persimmon

Seung-Yeol Lee', Yang-Sook Lim ${ }^{2}$ and Hee-Young Jung ${ }^{1,3, *}$
${ }^{1}$ College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
${ }^{2}$ Persimmon Experiment Station, Gyeongsangbuk-do Agricultural Research \& Extension Services, Sangju 37268, Korea
${ }^{3}$ Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Korea

Abstract

In this study, the phylogeny and morphology of Mycosphaerella nawae (Dothideomycetes, Ascomycota) were examined using Korean and Japanese isolates, to establish the phylogenetic relationship between M. nawae and its allied species. Korean and Japanese isolates of M. nawae were collected from circular leaf spot-diseased leaves and were confirmed based on internal transcribed spacer (ITS) sequence data. Phylogenetic analysis was conducted using multiple genes, including the ITS region, 285 rDNA, β-tubulin, translation elongation factor- 1α, and actin genes. Our results revealed that M. nawae is closely related to members of the genus Phaeophleospora but are distant from the Ramularia spp. In addition, microscopic analysis revealed pseudothecia on the adaxial and abaxial surface of overwintered diseased leaves (ODL) and only on the abaxial surface of diseased leaves. Ascospores are oval to fusiform, one-septate, tapered at both ends, $1.7 \sim 3.1 \times 8.1 \sim 14.1 \mu \mathrm{~m}$, and were observed in ODL. Conidia are oval, guttulate, one-septate, $3.5 \sim 4.9 \times 12.8 \sim 19.8 \mu \mathrm{~m}$, and barely discernable on 30 -day cultures. To our knowledge, this is the first report on the phylogeny of M. nawae, which is closely related to the genus Phaeophleospora, especially P. scytalidii.

Keywords Persimmon, Phaeophleospora spp., Phylogenetic analysis

Circular leaf spot (CLS) that is caused by Mycosphaerella nawae Hiura \& Ikata, occurs only on persimmons (Diospyros kaki Thunb.) and has been reported in Japan, Korea, and Spain [1-3]. The typical symptoms of CLS include necrotic spots on leaves, chlorosis, red discoloration, and early defoliation [4]. This disease consequently leads to premature fruit maturation and abscission, ultimately resulting in economic losses $[3,5]$. Previous studies have shown that M. nawae has a long latent period and that typical symptoms on leaves appear approximately 4 mon after infection [6,

[^0]Received June 29, 2016
Revised September 19, 2016
Accepted October 27, 2016
@This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

7]. Similarly, it grows very slowly on cultured media [5]. Therefore, isolation of M. nawae from diseased leaves (DL) has proven difficult [4]. According to Kwon et al. [5-7], the anamorph of M. nawae is of Ramularia-type and can be observed in a 90 -day-old growth on potato dextrose agar (PDA) media as well as in circular leaf spots. The authors identified the anamorphic type of M. nawae as Ramularia sp. based on their morphological characteristics; however, its classification was not supported by their phylogenetic analysis based on molecular marker genes [7].

The genus Mycosphaerella includes numerous fungal pathogens mainly associated with foliar diseases of various host plants [8, 9]. Classification of the genus Mycosphaerella has relied on host plant symptoms, morphological and cultural characteristics [10-14], and phylogenetic analyses using molecular markers [12-14], or molecular markers along with morphological characteristics [15]. Reassessment of taxonomic status has been performed for many fungal species in the genus Mycosphaerella, and most of these studies have used morphological characteristics and molecular methods [16-18]. Recently, new genera and combinations have been reported in Mycosphaerellaceae and Teratosphaeriaceae based on molecular marker genes and morphological characteristics, whereas several combinations only occurred based on phylogenetic analysis [19, 20].

This study aimed to examine the morphological characteristics and compare the phylogenetic position of Korean and Japanese M. nawae isolates, based on the internal transcribed spacer (ITS) region, 28 S rDNA, β-tubulin, and actin genes, in relation to fourteen allied species and Ramularia spp. which was reported as an anamorph of M. nawae. These comprehensive experiments were conducted to enhance our understanding of the phylogenetic position of M. nawae.

MATERIALS AND METHODS

Isolation of Mycosphaerella nawae from DL and their

 microscopic observation. CLS-diseased persimmon leaves were collected from seven different regions, including Sangju-si, Gumi-si, Gimhae-si, Miryang-si, and Changwonsi in Korea, and the Wakayama prefecture in Japan, from August to October 2014. To isolate M. nawae from the DL, dark green necrotic spots were sterilized in 70% ethanol for 30 sec and 1% sodium hypochlorite for 60 sec . The samples were then washed thrice in double distilled water (DDW). The sterilized samples were dried on filter paper at room temperature for 30 min , and $\mathrm{DDW}(50 \mu \mathrm{~L})$ was then added on the back of the symptomatic spots, which were then spread on a PDA plate and then incubated at $25^{\circ} \mathrm{C}$ until colonies appeared. After 2~3 days, small black colonies were transferred onto a new PDA plate.Genomic DNA preparation and PCR amplification of molecular markers. Total genomic DNA was extracted from the isolated M. nawae according to the cetyltrimethylammonium bromide method [21]. Using the genomic DNA of M. nawae isolates and their allied species, the ITS region, the partial region of 28 S rDNA, Tub, and Act were amplified using the corresponding primer pairs [22-25]. A total reaction volume of $20 \mu \mathrm{~L}$ contained $1 \mu \mathrm{~L}$ of genomic DNA, $2 \mu \mathrm{~L}$ of $10 \times$ Taq buffer, $0.4 \mu \mathrm{~L}$ of 10 mM $\mathrm{dNTP}, 0.5 \mu \mathrm{~L}$ each of 10 pM forward and reverse primer, and $0.2 \mu \mathrm{~L}$ of Taq DNA polymerase (Solgent Co., Daejeon, Korea). PCR was performed in a Veriti 96 -well Thermal Cycler (Applied Biosystems, Carlsbad, CA, USA). The obtained PCR products were electrophoresed on 1% agarose gel, stained with ethidium bromide, and observed under a UV illuminator. All the amplified PCR products were purified using ExoSAP-IT (USB Co., Cleveland, OH, USA) and were directly sequenced (Solgent Co.).

Nucleotide sequences and phylogenetic analyses. All the obtained sequences of ITS, partial 28 S rDNA, Tub, and Act were compared with the available sequence data, using BLAST search against the NCBI GenBank database to identify the sequences, and multiple sequence alignments were performed using CLUSTAL W [26]. Phylogenetic trees were constructed according to the maximum likelihood method with 1,000 bootstrap replications, using the MEGA 7 software ver. 7.0.14. Moreover, each of the homosynonyms
and heterosynonyms of the allied species of M. nawae were surveyed through the MycoBank Database (http://www. mycobank.org).

Microscopic observation. Isolated colonies were observed under a light microscope (BX-50; Olympus, Tokyo, Japan) after 30 days of cultivation. To observe the conidia, aerial mycelia were collected from 30-day-old colonies, using DDW, and the suspension was spread onto a PDA plate. The PDA was observed under a light microscope to determine conidia before germination.

Observation of pseudothecia on diseased and overwintered DL To observe the pseudothecia on DL, DL and overwintered diseased leave (ODL) were collected from diseased trees and the leaf litter around the diseased trees in Sangju-si. The adaxial and abaxial sides of the DL and ODL were observed under a stereoscopic microscope (DIMIS-M; Siwon Optical Technology, Co., Ltd., Anyang, Korea) and a light microscope (BX-50; Olympus) after staining with 1% methylene blue. To prepare semi-thin sections, the diseased part was excised using a sterilized surgical blade. Samples were then treated with Karnovsky's fixative (2% paraformaldehyde and 2.5% glutaraldehyde in 0.05 M cacodylate buffer, pH 7.2) for 24 hr . The fixed samples were dehydrated in a graded ethanol series of 30%, $50 \%, 70 \%, 80 \%, 90 \%$, and absolute ethanol for 20 min at each concentration and were then infiltrated with propylene oxide. Finally, the samples were embedded in Spurr's resin and polymerized at $70^{\circ} \mathrm{C}$ for 10 hr . The embedded samples were cut using an ultra-microtome (MT-7000; RMC Boeckeler, Tuscon, AZ, USA) and each section was observed using a light microscope after staining with 1% methylene blue.

RESULTS

Isolation of Mycosphaerella nawae from CLS-DL. Twenty isolates of M. nawae were obtained from collected leaves with CLS-disease from each region of collection. At

Fig. 1. Morphological characteristics of the isolated Mycosphaerella nawae on potato dextrose agar (PDA). A, Isolated M. nawae colonies after 4 wk of growth on PDA; B, Reverse side of the 4 -week-old colony.
first, the colonies appeared white, dense, and round, and grew slowly on the PDA plates compared to other fungi. After 5 to 7 days, the colonies turned dark green toward the middle. After 4 wk , they transformed into grayish
brown or dark brown colonies that were raised in the center, had a wave pattern with a wrinkled surface, and ranged from 19 to 21 mm in diameter at $25^{\circ} \mathrm{C}$ (Fig. 1 A and 1B).

Fig. 2. Maximum likelihood tree of Mycosphaerella nawae inferred from the internal transcribed spacer sequences. Pseudoramichloridium henryi (GQ303289) was used as the outgroup. The numbers above the branches represent the bootstrap values obtained for 100 replicates (values smaller than 80 are not shown). The scale bar represents a phylogenetic distance of 0.02%.
$\underline{\underline{\text { Table 1. List of allied species of Mycosphaerella nawae for phylogenetic analysis }}}$

Species	Culture collection accession No.	$\begin{aligned} & \text { Synonym }^{\mathrm{a}} \\ &(=\text { Heterosynonym/ } \\ & \equiv \text { Homosynonym) } \end{aligned}$	Reference ${ }^{\text {b }}$	Isolated host	Genbank accession No.				
					ITS	28s rDNA	Act	TEF-1 α	Tub
Amycosphaerella africana	CBS 110500	= Mycosphaerella africana	20	Eucalyptus globulus	LC121129	LC121200	LC121211	KF903115	LC121211
Lecanosticta acicola	CBS 133789	\equiv Dothistroma acicola		Pinus sp.	LC121130	LC121201	LC121212	JX901648	LC121212
Mycosphaerella graminicola	CBS 398.52	-		Triticum aestivum	LC121131	LC121202	LC121213	JQ739795	LC121213
Mycosphaerella musae	CBS 121386	-		Musa sp.	LC121133	LC121204	LC121215	-	LC121215
Paramycosphaerella blechni	COAD 1183	-		Blechnum serrulatum	KT037544	KT037586	KT037611	KT037503	-
Paramycosphaerella sticheri	COAD 1422	-		Sticherus penniger	KT037528	KT037569	KT037615	KT037488	-
Paramycosphaerella cyatheae	CPC 24730	-		Cyathea delgadii	KT037534	-	-	-	-
Paramycosphaerella intermedia	CBS 114415	= Mycosphaerella intermedia	20	Eucalyptus saligna	KF901682	KF902027	KF903468	KF903143	-
Paramycosphaerella madeirensis	CBS 112301	= Mycosphaerella madeirae	21	Eucalyptus globulus	KF901688	KF902033	KF903453	KF903108	-
	CBS 112895			Eucalyptus globulus	LC121137	LC121203	LC121214	KF903109	LC121214
Paramycosphaerella marksii	CBS 110981	= Mycosphaerella marksii	20	Eucalyptus sp.	KF901749	KF902103	KF903417	KF903148	-
	CBS 110920			Eucalyptus globulus	LC121137	LC121209	LC121219	KF903145	LC121219
Paramycosphaerella parkii	CBS 387.92	\equiv Mycosphaerella parkii	21	Eucalyptus grandis	KF901785	KF902143	KF903585	KF903392	-
					LC121139	LC121210	LC121221	KF903392	LC121221
Paramycosphaerella vietnamensis	CBS 119974	\equiv Mycosphaerella vietnamensis	21	Eucalyptus grandis hybrid	KF901809	KF902171	KF903514	KF903114	-
Paramycosphaerellla intermedia	CBS 114356	= Mycosphaerella intermedia	20	Eucalyptus saligna	LC121136	LC121207	LC121218	KF903142	LC121218
Passalora fulva	CBS 119.46	\equiv Cladosporium fulvum		Lycopersicon esculentum	LC121134	LC121205	LC121216	-	LC121216
Phaeophleospora concentrica	CPC 3615	-		Protea caffra	FJ493187	FJ493205	-	-	-
Phaeophleospora epicoccoides	CMW 22486	= Kirramyces epicoccoides		Eucalyptus urophylla	DQ632706	-	-	DQ632720	-
Phaeophleospora eucalypticola	CPC 26523	-		Eucalyptus robusta	KX228267	KX228318	-	KX228374	-
Phaeophleospora eugeniae	CMW 5351	-		Eugenia uniflora	DQ632710	-	-	EF011663	-
Phaeophleospora eugeniicola	CPC 2558	-		-	FJ493191	FJ493209	-	-	-
Phaeophleospora gregaria	CBS 114662	= Mycosphaerella gregaria	20	Eucalyptus sp.	KF901713	KF902060	KF903470	KF903165	
	CBS 111519			-	DQ267579	JX901861	JX902108	JX901655	-
	CBS 111167			Eucalyptus cladocalyx	KF901711	KF902058	KF903434	KF903163	-

Table 1. Continued

Species	Culture collection accession No.	$\begin{aligned} & \text { Synonym }^{\mathrm{a}} \\ &(=\text { Heterosynonym/ } \\ & \equiv \text { Homosynonym) } \end{aligned}$	Reference ${ }^{\text {b }}$	Isolated host	Genbank accession No.				
					ITS	28 s rDNA	Act	TEF-1 α	Tub
	CBS 110501			Eucalyptus globulus	LC121135	LC121206	LC121217	KF903161	LC121217
Phaeophleospora hymenocallidicola	CPC 25014	-		Fern	KR476739	KR476772	-	-	-
Phaeophleospora hymenocallidis	CPC 25018	-		Fern	KR476740	KR476773	-	-	-
Phaeophleospora parsoniae	CPC 22537	-			KJ869131	KJ869188	-	-	-
Phaeophleospora pteridivora	COAD 1182	-		Serpocaulon triseriale	KT037547	KT037582	KT037631	KT037499	-
Phaeophleospora scytalidii	CBS 516.93	= Mycosphaerella scytalidii	20	Eucalyptus globulus	KF901616	-	-	-	-
	CBS 118493			Eucalyptus urophylla	KF901631	KF901966	KF903493	KF903167	-
Phaeophleospora stonei	CBS 120830	-		Eucalyptus sp.	KF901525	KF901847	KF903645	KF903168	-
Phaeophleospora stramenti	CBS 118909	= Mycosphaerella stramenti	20	Eucalyptus sp.	KF901617	KF901942	KF903506	KF903169	-
Pseudoramichloridium henryi	CBS 124775	-		Corymbia henryi	GQ303289	KF442561	KF903559	KF903227	-
Ramularia aplospora	CBS 109013	\equiv Ramularia haplospora		Alchemilla xanthochlora	KP894216	KP894107	KP894322	KP894432	-
Ramularia calcea	CBS 101612	= Ramularia noneae		Symphytum sp.	KP894219	KJ504744	KJ504449	KJ504700	-
Ramularia endophylla	CBS 117876	-		Quercus robur	KP894244	KP894137	KP894352	KP894462	-
Ramularia glennii	CPC 18468	-		-	KJ504775	KJ504734	KJ504439	KJ504690	-
Ramularia grevilleana	CBS 114732	= Ramularia punctiformis		Fragaria ananassa	KP894221	KP894438	KP894328	KP894113	-
Ramularia inaequalis	CBS 250.96	= Ramularia inaequale		Taraxacum officinale	KP894224	-	-	-	-
Ramularia lactea	CBS 114442	= Ramularia violae		Viola hirta	KP894229	KP894122	KP894337	KP894337	-
Ramularia nyssicola	CBS 127664	\equiv Mycosphaerella nyssicola		Nyssaogeche x sylvatica hybrid	KP894231	KP894124	KP894339	KP894449	-
Ramularia plurivora	CPC 16123	-		Knautia arvensis	KJ504782	KJ504741	KJ504446	KJ504697	-
Ramularia tricherae	CBS 108994	$=$ Ramularia knautiae var. arvensis		-	KP894252	KP894145	KP894360	KP894470	-
Xenomycosphaerella diplazii	CPC 24691	-		Diplazium sp.	KT037542	KT037584	KT037627	KT037501	-
Xenomycosphaerella elongata	CBS 120735	= Mycosphaerella elongata	20	Triticum aestivum	KF901808	KF902170	KF903528	-	-
Xenomycosphaerella yunnanensis	CBS 119975	= Mycosphaerella yunnanensis	20	Musa cultiva	KF901628	KF901962	KF903515	KF903375	-

Molecular identification based on ITS sequences. The obtained ITS region sequences from 20 Korean and Japanese M. nawae isolates were searched in the NCBI database, using the BLAST search. All the obtained sequences from the Korean and Japanese isolates were 665 bp long and were identical (data not shown). We observed that all the isolate sequences were identical to those of the Spanish M. nawae isolates (GQ465767 and GQ465768). The phylogenetic analysis showed that they were indistinguishable from the Spanish M. nawae isolates (GQ465767 and GQ465768) but were distinct from those of Ramularia spp. whereas the sequences of Phaeophleospora gregaria were not distinguished from M. nawae (Fig. 2).

Phylogenetic analysis based on molecular markers. To examine the phylogenetic relationship of M. nawae with its allied species, a maximum likelihood tree was constructed
based on the combined dataset composed of concatenated sequences of ITS, 28 S rDNA, Tub, and Act. The obtained sequences of all molecular markers were deposited in the NCBI database (LC121109~LC121232). The combined dataset was approximately $2,450 \mathrm{bp}$ and included sequences from 20 M . nawae isolates and the derived allied species from the NCBI (Table 1). In the resulting tree topology, the Korean and Japanese M. nawae isolates were clustered together forming a single sister clade to the clade containing the genus Phaeophleospora (Fig. 3). In addition, we tested the phylogenetic relationship between the newly introduced species in the Mycosphaerellaceae and the Korean and Japanese isolates of M. nawae based on ITS, partial of 28 S rDNA and translation elongation factor- 1α (TEF-1 α) genes (Table 1). The combined dataset was approximately 1,200 bp and a phylogenetic tree was constructed using the maximum likelihood method with 1,000 replicates. The

Fig. 3. Maximum likelihood tree of Mycosphaerella nawae and its allied species inferred from the combined internal transcribed spacer, partial 28 S rDNA, β-tubulin, and actin gene sequences. Mycosphaerella musae was used as the outgroup. The numbers above the branches represent the bootstrap values obtained for 100 replicates (values smaller than 80 are not shown). The scale bar represents a phylogenetic distance of 0.02%.

Fig. 4. Maximum likelihood tree of Mycosphaerella nawae and its allied species inferred from the combined internal transcribed spacer, partial 28 rDNA, and translation elongation factor- 1α (TEF-1 α) gene sequences. Pseudoramichloridium henryi (CBS 124775) was used as the outgroup. The numbers above the branches represent the bootstrap values obtained for 1,000 replicates (values smaller than 80 are not shown). The scale bar represents a phylogenetic distance of 0.02%
results showed that the Korean and Japanese M. nawae isolates were closest to the genus Phaeophleospora spp. especially P. scytalidii (Fig. 4).

Observation of pseudothecia on DL. The upper and lower surfaces of CLS-DL were observed using a stereoscopic microscope. Pseudothecia were observed on both surfaces

Fig. 5. Photographs of overwintered diseased leaves (ODL) and diseased leaves (DL) along with stereoscopic micrographs of their adaxial and abaxial sides. A, ODL; B, E, Stereoscopic micrographs of the adaxial side of ODL and the abaxial side of DL; C, F, Pseudothecium observed on the adaxial side of ODL and the abaxial side of DL; D, DL, red arrows indicate the observed pseudothecium (scale bars: B, C, E, F = 1 mm).

Fig. 6. Stereoscopic micrographs of overwintered diseased leaves (ODL) and diseased leaves (DL) along with cross section analysis. A, Stereoscopic micrographs of ODL; B, E, Pseudothecium observed in a semi-thin section; C, F, Enlarged image of B, E; D, Stereoscopic micrograph of DL (scale bars: A, D = 1 mm, B, C, E, F = $10 \mu \mathrm{~m}$). EC, epidermal cell; PP, palisade parenchyma; SP, spongy parenchyma.
of ODL, whereas they were only observed on the lower side of DL (Fig. 5). The structures were observed on the cross sections of the leaves. The pseudothecia where located between the epidermal cells and the palisade parenchyma of the ODL. They were mostly flask- and pear-shaped structures, $55.1 \sim 62.2 \mu \mathrm{~m}$ wide (average $58.3 \mu \mathrm{~m}$), and $70.8 \sim$ $80.3 \mu \mathrm{~m}$ high (average $76.0 \mu \mathrm{~m}$) (Fig. 6). The pseudothecia on the DL were located between the palisade and spongy parenchyma, and were mostly ovoid and flask-shaped, $55.6 \sim 69.2 \mu \mathrm{~m}$ wide (average $60.7 \mu \mathrm{~m}$), and $55.6 \sim 69.9 \mu \mathrm{~m}$ high (average $64.8 \mu \mathrm{~m}$) (Fig. 6). The morphology of the asci and ascospores observed on the structures in the ODL
confirmed that these structures represented the pseudothecia of M. nawae.

Observation of ascospores and conidia. Mature asci were observed in ODL collected from leaf litter between May and July 2015 (Fig. 7). These were cylindrical to clavate and banana-shaped structures, 8 -spored, straight or curved, $4.6 \sim 6.8 \mu \mathrm{~m}$ wide (average $5.7 \mu \mathrm{~m}$), and $25.9 \sim 34.1 \mu \mathrm{~m}$ high (average $31.1 \mu \mathrm{~m}$) (Fig. 7A and 7B). The ascospores were oval to fusiform, hyaline, one-septate or aseptate, mostly tapering at both ends, $1.7 \sim 3.1 \mu \mathrm{~m}$ wide (average 2.5 $\mu \mathrm{m}$), and $8.1 \sim 14.1 \mu \mathrm{~m}$ high (average $10.3 \mu \mathrm{~m}$) (Fig. 7C).

Fig. 7. The observed ascospores and conidia-like structures of Mycosphaerella nawae. A, B, Asci and ascospores; C, Ascospore; D, E, Mycelia observed in M. nawae cultured for 30 days; F, Conidia. Arrow indicates germinated conidia (scale bars: A, $\mathrm{D} \sim \mathrm{F}=$ $10 \mu \mathrm{~m}, \mathrm{C}=5 \mu \mathrm{~m})$.

Furthermore, because conidia were rarely observed in M. nawae cultured on PDA, a suspension of the aerial mycelia was spread on the PDA. Thereafter, very few conidia including germinated conidia and hyphae were observed on the PDA. The conidia were oval, guttulate, hyaline, oneseptate, $12.8 \sim 19.8 \mu \mathrm{~m}$ high (average $17.1 \mu \mathrm{~m}$), and 3.5~4.9 $\mu \mathrm{m}$ wide (average $4.3 \mu \mathrm{~m}$) (Fig. 7F).

DISCUSSION

A previous study reported that the M. nawae anamorph was similar to that of Ramularia spp. in its morphological characteristics [7], whereas the M. nawae isolates in the present study were distinct from those of the Ramularia spp., as indicated in our phylogenetic analysis of the ITS region (Fig. 2). The phylogenetic placement of M. nawae using the combined dataset revealed that the M. nawae group was closest to the genus Phaeophleospora, especially P. scytalidii (Figs. 3 and 4). This suggests that M. nawae had a high degree of similarity with the genus Phaeophleospora.

Recently, new combinations and genera were introduced in Mycosphaerellaceae, based on phylogenetic analysis, such as genus Amycosphaerella, Xenomycosphaerella, and Phaeophleospora [19, 20]. Among these, several species belonged to the genus Phaeophleospora, Xenomycosphaerella, and Paramycosphaerella; they combined the species or changed the genus name based on only phylogenetic analysis results, without morphological comparison [19]. In this study, we constructed a phylogenetic tree comparing the allied species of M. nawae and the Korean and Japanese M.
nawae isolates, based on combined ITS region, 28 S rDNA, $T u b$, and Act sequences (approximately $2,450 \mathrm{bp}$) and the combined ITS region, 28 S rDNA and $T E F-1 \alpha$ gene sequences (approximately $1,200 \mathrm{bp}$). The results showed that the Korean and Japanese M. nawae isolates were closest to Phaeophleospora spp., and that P. scytalidii was the closest species of the genus Phaeophloeospora (Figs. 3 and 4). According to Videira et al., M. nawae has a Ramularia-like anamorph and is close to the genus Phaeophleospora, based on the ITS region [27]. Our results confirmed that i) M. nawae could be differentiated from Ramularia spp. by its morphological characteristics, ii) although it was close to the genus Phaeophleospora, it was closest to P. scytalidii.

The conidia of M. nawae were previously observed only in 1929 [1], and later, Kwon et al. [7] reported the anamorph stage of M. nawae as that of Ramularia spp. because of their similar morphological characteristics. One of the major characteristics of Ramularia spp. is the presence of scar structures on conidia [27]. In this study, the structures were not observed during microscopic observation (Fig. 7D~7F). Furthermore, phylogenetic analyses based on the ITS sequence data revealed that the Ramularia spp. were not closely related to the M. nawae isolates. These results indicate that M. nawae is distinct from Ramularia spp. Phylogenetic analysis showed that the genus Phaeophleospora was closely related to M. nawae (Fig. 3 and 4). The morphology of M. scytalidii (=P. scytalidii) has many similarities with M. nawae, such as pseudothecium production, similar size of ascospores, and conidia tapering at both ends, guttulate, and septate, among others
[17]. Interestingly, mycelial structures of P. scytalidii and M. nawae share similarities (Fig. 7D and 7E), including being solitary or branched, septate, and peanut- or bottle gourd-shaped [7, 17].

Many recent studies have been conducted on the genus Mycosphaerella and its anamorph [19, 20, 28-30]. Many species belonging to the genus Mycosphaerella have been segregated into other groups based on the morphology of their particular anamorph [31, 32], as well as based on teleomorph features such as asci and ascospores [12]. However, these classifications have not always been correlated with phylogenetic analysis [15, 32]. Recent studies on the genus Phaeophleospora indicated that species that were newly transferred into the genus based on phylogenetic inference, including P. gregaria, P. scytalidii, and P. stramenti, reproduce sexually and lack the asexual state [19]. In addition, phylogenetic analysis based on the multi-locus result revealed that most of the heterosynonym or homosynonym species are included in the genus Mycosphaerella (Table 1, Fig. 3). Furthermore, these current species names were not reflected in the anamorph stage, except for M. graminicola (anamorph: Zymoseptoria tritici). Since phylogenetic data revealed that the M. nawae cluster was closely related to Phaeophleospora spp. and especially to P. scytalidii, there is a possibility that M. nawae could be accommodated in the genus Phaeophleospora according to previous reports [19, 20]. Nonetheless, the common morphological features, cultural characteristics, and classification of the Phaeophleospora spp. and M. nawae need to be re-evaluated.

ACKNOWLEDGEMENTS

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through the Advanced Production Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (314031-3).

REFERENCES

1. Ikata S, Hitomi T. Studies on circular leaf spot of persimmon caused by Mycosphaerella nawae. Spec Bull Okayama Prefect Agric Exp Stn 1929;33:1-36.
2. Kang SW, Kwon JH, Lee YS, Park CS. Effects of meteorological factors on perithecial formation and release of ascospores of Mycosphaerella nawae from the overwintered persimmon. RDA J Agric Sci 1993;35:337-43.
3. Berbegal M, Pérez-Sierra A, Armengol J, Park CS, GarcíaJiménez J. First report of circular leaf spot of persimmon caused by Mycosphaerella nawae in Spain. Plant Dis 2010; 94:374.
4. Berbegal M, Mora-Sala B, García-Jiménez J. A nestedpolymerase chain reaction protocol for the detection of Mycosphaerella nawae in persimmon. Eur J Plant Pathol 2013;137:273-81.
5. Kwon JH, Park CS. Ecology of disease outbreak of circular
leaf spot of persimmon and inoculum dynamics of Mycosphaerella nawae. Res Plant Dis 2004;10:209-16.
6. Kwon JH, Kang SW, Park CS, Kim HG. Microscopic observation of the pseudothecial development of Mycosphaerella nawae on persimmon leaves infected by ascospore and conidia. Korean J Plant Pathol 1998;14:408-12.
7. Kwon JH, Kang SW, Park CS, Kim HK. Identification of the imperfect stage of Mycosphaerella nawae causing circular leaf spot of persimmon in Korea. Korean J Plant Pathol 1998; 14:397-401.
8. Farr DF, Bills GF, Chamuris GP, Rossman AY. Fungi on plant and plant products in the United States. St. Paul (MN): APS Press; 1995.
9. Crous PW, Braun U. Mycosphaerella and its anamorphs. 1. Names published in Cercospora and Passalora. CBS Biodiversity Series. Vol. 1. Utrecht: Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre; 2003.
10. Park RF, Keane PJ. Leaf diseases of Eucalyptus associated with Mycosphaerella species. Trans Br Mycol Soc 1982;79:101-15.
11. Carnegie AJ, Keane PJ. Further Mycosphaerella species associated with leaf diseases of Eucalyptus. Mycol Res 1994;98:413-8.
12. Crous PW. Mycosphaerella spp. and their anamorphs associated with leaf spot diseases of Eucalyptus. Mycologia Memoir No. 21. St. Paul (MN): APS Press; 1998.
13. Crous PW, Aptroot A, Kang JC, Braun U, Wingfield MJ. The genus Mycosphaerella and its anamorphs. Stud Mycol 2000; 45:107-21.
14. Stewart EL, Liu Z, Crous PW, Szabo LJ. Phylogenetic relationships among some cercosporoid anamorphs of Mycosphaerella based on rDNA sequence analysis. Mycol Res 1999;103:1491-9.
15. Hunter GC, Wingfield BD, Crous PW, Wingfield MJ. A multi-gene phylogeny for species of Mycosphaerella occurring on Eucalyptus leaves. Stud Mycol 2006;55:147-61.
16. Crous PW, Liebenberg MM, Braun U, Groenewald ZJ. Reevaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean. Stud Mycol 2006;55:163-73.
17. Crous PW, Wingfield MJ, Mansilla JP, Alfenas AC, Groenewald JZ. Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. II. Stud Mycol 2006;55:99-131.
18. Andjic V, Barber PA, Carnegie AJ, Hardy GS, Wingfield MJ, Burgess TI. Phylogenetic reassessment supports accommodation of Phaeophleospora and Colletogloeopsis from eucalypts in Kirramyces. Mycol Res 2007;111(Pt 10):1184-98.
19. Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie AJ, Burgess TI, Crous PW. Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia 2014;33:1-40.
20. Guatimosim E, Schwartsburd PB, Barreto RW, Crous PW. Novel fungi from an ancient niche: cercosporoid and related sexual morphs on ferns. Persoonia 2016;37:106-41.
21. Namba S, Kato S, Iwanami S, Oyaizu H, Shiozawa H, Tsuchizaki T. Detection and differentiation of plant-pathogenic mycoplasma-like organisms using polymerase chain reaction. Phytopathology 1993;83:786-91.
22. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct
sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315-22.
23. O'Donnell K. Fusarium and its near relatives. In: Reynolds DR, Taylor JW, editors. The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. Wallingford: CAB International; 1993. p. 225-33.
24. Albertini C, Gredt M, Leroux P. Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pestic Biochem Physiol 1999;64:17-31.
25. Arzanlou M, Abeln EC, Kema GH, Waalwijk C, Carlier J, de Vries I, Guzmán M, Crous PW. Molecular diagnostics for the Sigatoka disease complex of banana. Phytopathology 2007;97: 1112-8.
26. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673-80.
27. Videira SI, Groenewald JZ, Verkley GJ, Braun U, Crous PW. The rise of Ramularia from the Mycosphaerella labyrinth.

Fungal Biol 2015;119:823-43.
28. Verkley GJ, Crous PW, Groenewald JZ, Braun U, Aptroot A. Mycosphaerella punctiformis revisited: morphology, phylogeny, and epitypification of the type species of the genus Mycosphaerella (Dothideales, Ascomycota). Mycol Res 2004; 108(Pt 11):1271-82.
29. Crous PW. Taxonomy and phylogeny of the genus Mycosphaerella and its anamophs. Fungal Divers 2009;38:1-24.
30. Arzanlou M, Groenewald JZ, Fullerton RA, Abeln EC, Carlier J, Zapater MF, Buddenhagen IW, Viljoen A, Crous PW. Multiple gene genealogies and phenotypic characters differentiate several novel species of Mycosphaerella and related anamorphs on banana. Persoonia 2008;20:19-37.
31. Klebahn H. Haupt- und nebenfruchtformen der Askomyzeten. Leipzig: Borntraeger; 1918.
32. Crous PW, Kang JC, Braun U. A phylogenetic redefinition of anamorph genera in Mycosphaerella based on ITS rDNA sequence and morphology. Mycologia 2001;93:1081-101.
33. Verkley GJ, Starink-Willemse M, van Iperen A, Abeln EC. Phylogenetic analyses of Septoria species based on the ITS and LSU-D2 regions of nuclear ribosomal DNA. Mycologia 2004;96:558-71.

[^0]: Mycobiology 2016 December, 44(4): 191-201
 https://doi.org/10.5941/MYCO.2016.44.4.191
 pISSN 1229-8093 • eISSN 2092-9323
 (c) The Korean Society of Mycology

 ## *Corresponding author

 E-mail: heeyoung@knu.ac.kr

