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Abstract

Potato (Solanum tuberosum L.) is among the top five crops growing worldwide following cereals, wheat,
rice, corn and barley due to its high carbohydrate content and adaptability. Potatoes are particularly
valued in developing countries as a rich source of starch, vitamins C and B6 and essential amino acids.
Fusarium solani species complex (FSSC) is common pathogen of potato, causing dry rot in the Upper
Egypt. In this study were isolated and identiflied FSSC from potato tubers based on the morphological and
molecular characteristics. 187 isolates of Fusarium solani were obtained from potato tubers collected
from different regions in the Upper Egypt. Based on the morphological characters, sequence data from (-
tubulin and translation elongation factor (TEF-1a) genes, all of the selected FSSC isolates were divided
into three major groups (F. keratoplasticum, F. falciforme and F. solani). All the tested FSSC were able to
produce amylases. All of the isolates were evaluated for their pathogenicity on healthy potato tubers;
which showed pathogenic effect, lesion sizes were quite variable. F. solani (SVUFs73) had a highly
virulent effect.

Introduction

Potato (Solanum tuberosum L.) is one of the world’'s most significant food crops, and the second most
significant vegetable crop after tomato. Egypt is one of the biggest producers and exporters of potatoes
in Africa '. In recent decade, different pathogens causing potato tuber infections, particularly fungi of
genus Fusarium, have become widely spread in Egypt 22. In Egypt, potato has a significant situation
among all vegetable crops, where about 20% of whole area dedicated for vegetable production is
cultivated with potato #. Dry rot caused by Fusarium species is a significant potato disease worldwide,
which causes post-harvest rotting and seed piece rot after planting °. Fusarium dry rot of seed tubers can
reduce crop establishment by affecting the development of potato sprouts, resulting in poor emergence
and reduced plant stands with weakened plants ®’. Storage damages associated with Fusarium dry rot
have been reported to range from 6 to 25%, and occasionally losses as great as 60% have been estimated

89 Many species of this genus are pathogens affecting different economically important crops 191112 |t

was shown that potato dry rot was caused by more than thirteen different Fusarium species 3°.
Fusarium spp. which infect potato tubers differ depending on time of the survey and geographic location.

Fusarium solani are the most common pathogenic species in Egypt '41°.

Rapid identification of plant fungal pathogens enables to set up adjusted control measures and to
maintain a strategic distance from disease expansion and yield losses, regardless of whether the
invasion level is low. For Fusarium species, molecular identification is usually applied to identify them
that have comparable morphological qualities. For example, many species in a species complex such as
Fusarium solani species complex (FSSC) produce similar colony appearance and macroconidial features.
So, molecular identification is used to differ between species in a species complex 16 17:18, DNA
sequence can be used to distinguish between Fusarium species that show similar morphological
characters as well as to differentiate isolates in a species complex '°. For molecular characterization and
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phylogenetic analysis of Fusarium species, B—tubulin and TEF1-a genes are widely used as the genes
and regions are reported by many investigators '8 20, Fungi secreted Hydrolytic enzymes such as
cellulases, pectinases, proteases and xylanases, which are played critical roles in successful host
colonization by degradation of the cell wall 2.

This work aimed to characterize of F. solani species complex isolated from potato tuber and molecular
diagnosis by B-tubulin and TEF1-a genes. Also, evaluate the abilities of F. solani species complex for a-
amylase production and test the pathogenicity of F. solani against potato tubers.

Methods

Isolation and morphological identification of Fusarium solani

Many isolates of F. solaniwere isolated from eighty samples of potato tubers (forty were healthy and the
other forty were infected by moulds) were collected from four Governorates in Upper Egypt (Aswan, Luxor,
Qena and Sohag). For pure cultures single spore of Fusarium colonies were inoculated firstly into petri
dishes contained PDA medium, followed by inoculation of it in slants containing PDA medium and
maintained at 4°C for further studies 22. Colony morphology and microscopic examination were used for

classical identification 23.

Molecular identification of Fusarium isolates
DNA extraction

Fusarium solaniisolates were cultured in 250 ml flasks containing 50 ml Potato Dextrose Broth (PDB) for
2-3 days using a rotary shaker for 25°C at 120-150 rpm. The mycelium was collected by filtration and
ground to fine powder in liquid nitrogen. In an Eppendorf tube (1.5 ml) fifty milligrams of the powder was
put in it, then mixed with 0.7 ml 2 x CTAB buffer and vortex for 2min. Eppendorf tubes were incubated at
65°C for 60-80 min, then 0.7 ml of chloroform was added and mixed briefly. After centrifugation at 15.000
rpm for 10 min, the supernatant was transmitted to a new tube mixed with 0.6 ml isopropanol and chilled
to 20°C, followed by another centrifugation step at15.000 rpm for 5 min at maximum speed. The
supernatant was discarded and the resting pellet was washed twice with 1 ml of 70% ethanol, followed
by another centrifugation for 3 min at maximum speed 15.000, after that dried and dissolved in 0.1 mI TE
(10 mM Tris, 1 mM EDTA, pH 7.5) buffer (Moeller et al. 1992). The DNA quantity and quality checked by
electrophoresis on a 1.4% agarose gel revealed with ethidium bromide and visualized by UV trans-
illumination.

PCR amplification and sequencing

The primers used to amplify B-tubulin were Bt2a and Bt2b as described by Glass and Donaldson (1995).

The primers used to amplify translation elongation factor-1a (TEF-1a) were EF1 and EF2 modified from
26
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PCR reaction for both genes was carried out in PCR tubes containing 5 pL of the master mix (buffer,
dNTR, Tag DNA polymerase, 2 mM MgCl,) 1L of the template DNA, 0.5pL of both forward and reverse
primers and the volume was completed to 25 pL with PCR water. Amplification was performed in a
thermal cycler (Flexigene, Techne, Cambridge, UK).

Polymerase chain reaction (PCR) cycles for B-tubulin were as follows: initial denaturation at 94 °C for 1
min, 30 cycles of denaturation at 94 °C for 30 s, annealing at 54 °C for 30 s, extension at 72 °C for 1 min
and final extension at 72 °C for 5 min 2°. PCR cycles for TEF-1q, the cycle started with initial denaturation
at 94 °C for 5 min, 40 cycles of denaturation at 94 °C for 1 min, annealing at 58 °C for 1 min, extension at
72 °C for 2 min and final extension at 72 °C for 10 min 2/. PCR product was observed in a 1.4% agarose
gel, stained with ethidium bromide and visualized with UV transilluminator. Amplified products were
purified, quantified and sequencing in Macrogen (South Korea).

Phylogenetic analysis

Sequences of B-tubulin and TEF-1a were edited by using chromas program and aligned using Clustal X
included in MEGA version 6.0 28. Phylogenetic analysis was conducted using combined dataset of B-
tubulin and TEF-Ta sequences. The Acremonium genus is closely related to Fusarium. Therefore,
phylogenetic tree was rooted with Acremonium sclerotigenum (KC987128 and KT878381). The
phylogenetic reconstruction was done using the neighbor joining (NJ) algorithm, with bootstrap values
calculated from 1,000 replicate runs, using the software routines included in the MEGA software.

Screening of Fusarium solaniisolates for amylase production

Eighty eight isolates of Fusarium solani were screened for their abilities to produce extracellular a-
amylase. Isolates were grown on solid starch yeast extract agar (SYE) medium with a composition (in g
/L) of soluble starch, 5.0; Bacto-yeast extract, 2.0; KH, PO,, 1.0; MgS0,. 7 H,0, 0.5 and agar, 15 2°.
Cultures were incubated at 28°C for 6 days. Using a sterile cork borer (10 mm diameter), the inoculums
was obtained. For each fungal isolate, one sterile 100 ml Erlenmeyer flask containing 50 ml of the liquid
SYE was prepared. Cultures were incubated at 28°C without shaking for 7 days after which the mycelium
was harvested by filtration. Aliquots of 0.1 ml of a culture filtrate were pipetted into 10 mm cavities which
were made in SYE plates. After 24 h incubation at 28°C, plates were flooded with iodine solution (KI, 15 g;
l,, 3 g per liter of distilled water). A zone without blue indicates the production of amylase. In case of
positive strains, the average diameter of clear zones (in mm) of the triplicates for each isolate was
recorded.

Pathogenicity test of the selected isolates

The healthy potato tubers (Solanum tuberosum L.) were used in this experiment. Initially, tubers
appearing healthy and similar in the size (100—120 g) were selected and washed to remove excess soil,
surface sterilized in 50% sodium hypochlorite solution for 10 min and rinsed in 3 times of sterile distilled
water (Lui and Kushalappa 2002; Lui et al. 2005) and then dried under laminar flow. Then the tubers
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wounded with a cork borer with a diameter of 5 mm to a depth of 5 mm 3233, An agar plug (5 mm
diameter) containing active mycelium of Fusarium solaniisolates extracted from the margin of a 3-day-
old cultures grown on quarter of the quantity of PDA and placed into the wound, which was subsequently
sealed with the excised plug of tuber tissue. Two tubers used for each fungal strain. All the wounded
potato tubers were wrapped in black polyethylene bags 3430 and incubated in the dark at 20°C for 3
weeks. As a control, tubers were inoculated with an agar plug only. Following incubation, tubers were cut
longitudinally from the point of inoculation and the depth of internal necrosis was measured using
electronic calipers. Re-isolations on PDA medium were attempted from all isolates. The depth of wound
response in controls was also recorded for comparison. Tubers were cut through the inoculation points,
and the degree of rot was estimated.

Statistical analysis

Data were subjected to analysis of variance (ANOVA) using the Statistical Analysis System (SAS Institute,
Inc., 1996). Means were separated by Duncan’s multiple range test at P < 0.05 level.

Results

Morphological characterization of F. so/ani species complex

187 isolates of Fusarium solani were examined microscopically (Table 1). On PDA medium, aerial
mycelia of all isolates were white at the initial stage, while the colonies became off-white, violet, purple
and gray in the later stages. Single isolates of F. solani produced oval to kidney shape, microconidia
measuring 9.7-23.4 x 2.9-5.6 pm. Macroconidia had 3-5 septa ranging 28.5-50.6 x 3.1-6.2 ym (Table 2&
3). On the same medium, chlamydospores were observed that appeared singly or in pairs and
conidiophores were long monophialides.

The hierarchical analysis according to morphological characters of FSSC

The dendrogram was generated from 88 FSSC, the first group (16 strains) and the second group (72
strains) according to morphological properties (Figure 1).

From the hierarchical analysis, (Figure 1) the isolates which had the same morphological properties were
clustered together. The dendrogram divided into two clades.

The first clade comprised SVUFf1, SVUFf2, SVUFs24, 28, 34, 57,63, 71,74,75,76,77, 81, 85,88 and 104,
these isolates had the same colony color (Off-white to pale cream) and the shape of macroconidia are
falcate shape with pointed apexes. The second clade included two sub-clades, the first sub-clade
comprised 1 isolate of SVUFs87, this isolate was shorter than isolates in this clade and the second sub-
clade comprised 71 isolates (SVUFs19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40,
41,42,43, 44,45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72,
73,78,79, 80, 82, 83, 84, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102 and 103), these isolates
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had long macroconidia with fusiform and thick wall (the apical cell was blunt while the basal cell was
foot-shaped) (Figure 1) (Table 2).

Molecular characterization of Fusarium solani by amplification of B-tubulin and TEF-1a genes

To confirm the morphological identification of the studied isolates, molecular analyses were performed.
B-tubulin was successfully amplified from 88 isolates of Fusarium solani species complex recovered
from potato tubers samples. A single band of 350 bp was obtained by Bt2a and Bt2b primer pairs (Figure
2). Translation elongation factor-1a (TEF-1a) was also successfully amplified from 83 Fusarium solani
isolates and five Fusarium solaniisolates (SVUFf1, SVUFf2, SVUFs44, SVUFs86 and SVUFs90) have
short sequence by TEF-1a gene, so didn't show in Phylogenetic analysis. A single band of 700 bp was
obtained using EF1 and EF2 primer pairs (Figure 3). All the sequences of B-tubulin and TEF-1a were
deposited in the GenBank and their accession numbers were indicated in Figure (4) and (5). The B-tubulin
and TEF-1a sequences of Fusarium solaniisolates were subjected to GenBank database using BLAST
search and the results were recorded as the most closely related sequences with high percentage of
homology. TEF-1a showed the highly resolution comparable to B- tubulin in identification of Fusarium
solani species complex

Mega Blast analyses of the 2X consensus nucleotide sequence of B-tubulin and TEF-1a gene showed 99-
100% similarity with several Fusarium species sequences of the same region deposited in GenBank.
Neighbor joining tree using Mega 6 was used to study genetic relatedness of Fusarium strains (Figures 4
and 5).

B- tubulin dataset of F. solani species complex (88 F. solani) from the current study and 7 GenBank
sequences (Figure 4). The phylogenic tree (Figure 4) revealed that, the strains of £ solani species
complex were categorized into 3 clades. Phylogenetic analysis of this dataset resulted in the F. solani
species complex clustered together in one cluster to the exclusion of out-group taxa.

SVUFs87 (F. solani) was found to be at a separate branch. The first and second clade isolates were closer
to each other than the remaining clades with strong support 92% bootstrap value. SVUFf1 and SVUFf2 (F.
falciforme), SVUFs 24, 28, 34, 53, 57,59, 71,74,75,76,77, 81, 85, 88 and SVUFs104 (£, solani) clustered
together with Fusarium falciforme (KY776685 and KY776684) in the first clade. Strains in this clade have
the same morphological characters except isolates (SVUs53 and SVUs59), but all strains in this clade
have morphological characters different from other Fusarium solani species complex in macroconidia,
which was shorter than Fusarium solani species complex and these isolates gave the same results in the
pathogenicity test (lesion sizes 10:16mm) and a-amylase production (level of this isolates less than <10
mm). The second clade comprised SVUFs102 of F. solani species complex. The third clade was divided
into sub clades A, B, C and D. In the sub-clade A, SVUFs52 Fusarium solani was a base for all other
Fusarium solani species complex presented in the third clade. Sub-clade B consisted from 2 strains
(SVUFs62 and SVUFs72) of Fusarium solani species complex, which clustered together in one clade. Sub-
clade C included strains of SVUFs91, 92, 93, 94, 95, 97,98 and 101, these eight isolates considered as F.

solani species complex. Sub-clade D included SVUs19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36,
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37,38, 39,40,41,42,43, 44, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70,73,78,79, 80, 82, 83, 84, 86, 89, 90, 96, 99 and 103 strains forming distinct clade with different £,
solani species complex sequences (MF662654, KU938965, KT374270, KU938962 and KU938955), which
were obtained from NCBI.

Phylogenetic analysis was done by TEF-1a sequences for the 83 strains of £ solani species complex
under study along with 5 GenBank sequences (Figure 5). In addition to the out group sequence
Acremonium sclerotigenum (KT878381). The phylogenetic tree revealed that, the tested strains could be
categorized into six clades (Figure 5).

First clade comprised 2 isolates (SVUFs37and 84) of F. solani, which grouped together with F. solani
MG252286. Second clade includes strains (SVUFs82, 91 and 93); these three isolates were F. solani. First
clade and second clade were found to be at the base of the tree. Third clade SVUFs 39 and SVUFs72 (F.
solani) clustered together in one clade with 64% bootstrap value. Fourth clade consisted from 14 strains
(SVUFs24, 28, 34,57, 63,71,74,75,76,77,81, 85,88 and 104) closely related to Fusarium falciforme
MH463544. Isolates in this clade have the same morphological characters and also showed the same
results in the pathogenicity test (lesion sizes 10:16mm) and a-amylase production (levels of these
isolates less than <10 mm). Isolates in this clade were previously explained that they had morphological
characters different from other Fusarium solani species complex in macroconidia, which was the
shortest. The tree showed a well-supported relationship (99% bootstrap) between F. keratoplasticum
(KC808192), which was achieved from GenBank and isolate (SVUFs87) in fifth clade. Isolate in this clade
was the same isolate (Figure 4), which was represented as a separate branch in - tubulin phylogenetic
tree (Figure 4), so it was presented in a separate group at the base of the tree (Figure 4); isolate SVUFs87
was morphologically similar with other F. solaniisolates. However, the TEF-1a gene sequence of SVUFs87
was different from another F. solaniisolates and was classified as F. keratoplasticum. The latter was
considered partially different genetically from most £ solani species, but basically similar in terms of
biological characters. The sixth clade F. solani (SVUFs19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 35,
36, 38, 40, 41,42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69,
70,73,78,79, 80, 83, 89,92, 94, 95,96, 97, 98,99, 100, 101, 102 and 103) grouped with the other
Fusarium solani species complex (MH996883) that was obtained from GenBank.

Screening of Fusarium solanifor a-amylase production

88 Fusarium solaniisolates which were collected from potato tubers during this study were screened for
production of a-amylase qualitative assay depending on color change of lodine indicator from blue to
colorless in culture of Fusarium solani. All results recorded in Figure 6 and 7, each sample was tested in
three replicates.

It was observed that all Fusarium strains produced a-amylase and production was more than = 9 mm.

High levels of amylase (= 15 mm) were produced by isolates of Fusarium solani SVUFs73, SVUFs93,
SVUFs96 and SVUFs97.
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Others isolates of Fusarium solani produced a-amylase at levels ranging from 11-14 mm. These isolates
were belonging to F. solani species complex SVUFs20, 21, 23, 25, 26, 32, 35, 39, 42, 45, 47, 49, 50, 54, 56,
58,59, 61, 62, 65, 66, 69, 89,90 and 91 (Figure 6).

Low levels of a-amylase (=10 mm) were produced by others isolates of F. solani species complex
(SVUFf1, SVUFf2, SVUFs19, 22, 24, 27, 28, 29, 30, 31, 33,34, 36, 37, 38, 40, 41, 43, 44, 46, 48, 51, 52, 53, 55,
57, 60, 63, 64,67,68,70,71,72,74,75,76,77,78,79, 80, 81, 82, 83, 84, 85, 86, 87, 88,92, 94, 98, 99, 100,
101 and 103) (Figure 6).

Pathogenicity of Fusarium solani

Fusarium solani were evaluated for their pathogenicity on healthy potato tubers. Measurements
consisted into measuring the lesion’s size in the pathogenicity test. Lesion sizes were completely variable
and ranged from 0.0 mm to 35 mm (Figure 6). Lesion size less than 10 mm wasn't pathogenic to potato
tubers. The results of the pathogenicity test revealed that 88 isolates caused discoloration, necrosis and
lesion of the tubers. Of the 88 isolates with putative dry rot symptom.

Tubers inoculated with F. solani SVUFs73 showed a mean lesion size of 32.7 mm, the highest average
lesion size among all tested isolates Figure 6 and 8. Fusarium solani SVUFs73 showed higher
pathogenicity effect than other isolates, based on average lesion sizes (Figure 8).

On the other hand, no differences were observed between the four isolates of F. solani species complex
(SVUFs93, 96,97 and 102), which showed a similar lesion size (22.7) mm (Figure 8).

Tubers inoculated with isolates F. solani species complex isolates (SVUFf1, SVUFf2, SVUFs19, 22, 23, 24,
27,28, 29, 30, 31, 33,34, 36, 37, 38, 40, 41, 43, 44, 46, 48, 51, 52, 53, 55, 57, 59, 60, 63, 64, 67, 68, 70, 71,
72,74,75,76,77,78,79, 80, 81, 82, 83, 84, 85, 86, 87, 88,92, 94, 98,99, 101, 103 and 104) were
pathogenic to inoculated potato tubers and caused lesions of 10:16 mm (Figure 8).

Discussion

This study is the comprehensive research for identification and genetic diversity of Fusarium solani,
affecting the potato tubers in Upper Egypt. In this study, Fusarium solani were associated with potato
tubers collected from the markets in Upper Egypt. This result in agreement with 4 showed that F. solani
was the most frequently species associated with potato dry-rot in Egypt. According to other studies,
Fusarium solani was the most frequent and aggressive among all Fusarium species isolated from potato
tubers in different parts of the world °. This concurred with Chehri et al.2®> who assessed that F. solani
was considered as in the virulent group. However, the genus of Fusarium solaniis complex and
morphological differences may be difficult to observe. Therefore, the DNA analysis is necessary for

accurate identification and characterization of the species 3°.
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B-tubulin sequences are often used to identify fungal species, and vast numbers of these sequences are
already available in databases 7. The results of Donaldson et al. 38 demonstrated the utility of B-tubulin
sequences for phylogenetic studies in the genus Fusarium and a wide array of Ascomycetes. Sequence
of translation elongation factor-1a (TEF-1a) gene always offered a finer resolution and separated strains
of most Fusarium complex species at species rank 6. For precise identification of FSSC in this study, a
molecular systematic study of B-tubulin and TEF-1a genes was used. In this study, PCR assays with
primers Bt2a/Bt2b and Ef1/Ef2 that amplify B-tubulin and TEF sequences enabled us to acquire the
product with numerous species of F. solani. It was found that B-tubulin separated F. solani species
complex under study to F. falciforme and F. solani. While, TEF-1a separated FSSC to F. falciforme, F.
keratoplasticum and F. solani. Fusarium solaniisolates were additionally clustered in the same main
clade with several groupes which demonstrated intraspecific variations. Fusarium solani also represent a
species complex of 45 phylogenetic species which formed Fusarium solani species complex 3°. Inside £
solani species complex (FSSC), the isolates from soil and plant debris isolated worldwide are typically
gathered in one or two phylogenetic species, known as FSSC3 and FSSC4 #°47  Intraspecific variations of
F. solani have likewise been reported by Balmas et al. #2 in which two phylogenetic species, FSSC5 and
FSSC9 were identified among 23 Fusarium solani species complex. These results came in agreement
with Taha et al. ' who performed B- tubulin gene sequencing of Fusarium isolates and phylogenetic
analysis showed that the clade of F. solani divided into sub-groups. Mehl and Epstein #3 and Short et al.

44 reported that three of the most common species in F. solani species complex (F. keratoplasticum, F.
falciforme and F. solani), showed a good deal of intraspecific variation, and overlapping morphological
traits. This result was in concurrence with Chehri et al. 4> who examined and phylogenetically analyzed
55 strains of the FSSC based on internal transcribed spacer (ITS) regions and partial translation
elongation factor-1 (TEF-1a) sequences. They showed that the strains were characterized into four
portrayed Fusarium species, to be specific Fusarium keratoplasticum, F. falciforme, FSSC , and Fusarium
cf. ensiforme. Also, the phylogenetic trees unmistakably distinguished firmly related species and
particularly separated all morphological taxa. As indicated by Short et al.**, members from F. falciforme,
F. keratoplasticum, and FSSC ordinarily were related with human infectious diseases while these strains
were related with plants. These results were in agreement with Chehri et al.3° who reported that based on
the sequence data from translation elongation factor (TEF-1a) gene, all of the selected FSSC isolates
were divided into two major groups. the first group on molecular identification of FSSC strains isolated
from potato tubers in Iran and the second group were Fusarium falciforme, which were reported for the
first time in Iran.

In this study, all the Fusarium solani were active in producing amylase especially F. F. solani (SVUFs73,
93,96, 97, 102) (mean value =15 mm), whereas, low enzyme activity was exhibited by other isolates of F.
solani (mean value <14mm). These results are in agreement with Kumar et al. 4 who reported that the
primary and secondary screening results showed that a fungus isolated from degrading potato tuber,
Fusarium solani, expressed maximum amylase production over other isolates. Subsequently, it was
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selected for amylase production and optimization studies indicated that as independent variable, pH-4
and incubation temperature of 30°C were found ideal for amylase production by F. solani.

All Fusarium solaniisolates were pathogenic for potato tuber with different degrees. Isolate SVUFs73 of
F. solaniwas highly pathogenic to potato tubers, whereas, other isolates which belong to the same
species were weakly pathogenic to potato tubers. The mechanisms underlying this behaviour still vague.
Some studies proposed that mycotoxins produced by Fusarium spp. play a key role in this regard 47-48.49,
These results were in agreement with the results published by 3° who confirmed that some isolates of
F.solani were highly virulent and other isolates were virulent or nonvirulent. In addition, Ashour et al .3
confirmed that, of the 10 isolates of F. solaniwith dry rot symptoms, one isolate was the most pathogenic
while others were either less pathogenic (5 isolates) or non pathogenic, 4 isolates to potato tubers.
According to Saber et al.2, 8 isolates of Fusarium solani were obtained from infected potato tubers of
which 3 isolates were highly pathogenic to potato tubers, 2 isolates were avirulent, and other isolates
were non pathogenic to potato tubers.

Conclusions

Based on morphological, microscopic characteristic and molecular identification by sequencing of B-
tubulin and TEF-Ta genes, we proved the presence of Fusarium keratoplasticum, F. falciforme and F.
solani on potato tubers in Upper Egypt. Based on our knowledge and research, this is the first
comprehensive report on identity (morphological and molecular), pathogenicity and distribution of
members of F. solani species complex from potato tubers in Upper Egypt. TEF-1a gene in molecular
identification of FSSC was better than - tubulin. FSSC demonstrated the most aggressive properties and
amylase production, with present strong relationships between pathogenicity and a-amylase enzyme
production.
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Table [1): Total counts (TC, calculated per 480 segments, frequency (F, calculated per 40 samples) and percentage

frequency (%F) of Fusarium solani recovered from potato tubers.

samples Infected potato tubers Healthy potato tubers
Species TC F %F TC F %

Fusarium solani 128 32 80 59 20 50

Table (2): Morphological characteristics of Fusarium solani isolated from potato tubers

: Microconidia Macroconidia
Code of isolates Colony color i Chlamydospares
shape Size [am) Form Shape Size [um} Septate
SWUFFL, svL SWUFs24, 28, 3 . N . . o
P & Off-white to pale Ellipsaidal to 89.7-17.7 | Fal=e Falcate shaps with 2383586 2 Singly =ndin
57,63,71,74,75, 76, 77, 81, 85, : - 3 manaphialides .
53, 104 Cream kidney shaped =29-45 | head pointed apexes =31-56 pairs
. Fusiform and thick wall
Deepgray colony | Owaltokidney- | oo 005 [ pyee (The apical cell was 285317 Long Singly 2nd in
SVUFs87 with a white shape and have i 3 e 5
B X %320-45 | head blunt while the basal cell =3 2-51 maonophialides pairs
|zzading at center thicker walls
was foot-shaped)
SVUFs1%, 20, 21, 22, 23, 25, 26, 27,
29, 30, 31, 32, 33, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, . . .
48, 49, 50, 51, 52, 53, 54, 55, 56, off-white to gray Ozl to kidney- Fusiform .and thick wll Lang ] )
: shape, larger 14-23.4 | Falze [The zpical cell was 35.3-506 b Singly =ndin
58, 59, 60, 61, €2, 64, 65, 66, &7, and whitz to ; 35 mionaophialides N
2 and have =259-546 | head blunt while the basal cell | =3.5-6.2 pairs
&8, 69,70, 72, 73, 75, 79, 20, 82, b thicker wall foot-shaped)
83, 84, 86, 89, 90, 91, 92, 93, 94, SCRETWETS was foot-shape
35, 36, 57, 38, 39, 100, 101, 102,
103
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Table (3): Microscopic characteristics of Fusarium solani isolated from potato tubers

Code of isolates

Colony color

Macro& Microconidia

Chlamydospores

Phialides

SVUFFL, SVUFF2, SWUFs24,
28, 34, 57, 63, 71, 74,75, T&,
77, 81, 85, 83, 104

SVUFsE7

SVUFs13, 20, 21, 22, 23, 25,
26, 27, 29, 30, 31, 32, 33, 35,
36, 37, 38, 39, 40, 41, 42, 43,
44, a5, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 58, 59, &0,
61, 62, 64, 65, 66, 67, 68, 63,
70,72,73,78, 79, 80, 82, 83,
84, 86, 89, 90, 91, 92, 93, 94,
95, 96, 57, 58, 59, 100, 101,
102, 103
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Figure 1

Dendrogram (based on morphological characteristics) showing relationships among 88 isolates of
Fusarium solani isolated from potato tubers.
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Figure 2

PCR products obtained from different Fusarium solani by using primer pair Bt2a / Bt2b. M: 100 bp
molecular size marker.

Figure 3

PCR products obtained from different Fusarium solani by using primer pair EF1/ EF2. M: 100 bp
molecular size marker.
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Figure 4

Neighbor- joining phylogenic tree of 88 isolates of Fusarium solani species complex resulting from the
sequence results of B-tubulin gene using Acremonium sclerotigenum as out group.
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Figure 5

Neighbor- joining phylogenic tree of 83 isolates of Fusarium solani species complex resulting from the
sequence results of TEF-1a gene using Acremonium sclerotigenum as out group.
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Figure 6

Amylolytic activities and measurement of lesion expansions in the potato tubers of each sample by

different strains of Fusarium solani species complex.

Figure 7

Clear zone representing amylase activity produced by Fusarium solani (SVUFs73).
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Figure 8

External and internal symptoms of dry rot caused by Fusarium solani on potato tubers, after 21 days of
incubation; A and B: control sample; C and D: inoculated sample by SVUFs73.
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