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Abstract
Dispersion and atmospheric transport of fungal bioaerosols help fungal migration and colonization worldwide. The particle size of fungal propagules mainly
controls this and influences the taxonomic composition of fungal bioaerosols in a region. The study reports the size-resolved genomic characterization of the
pathogenic and non-pathogenic fungal bioaerosols found in the Indian subcontinent. Scanning Electron Microscope images and results from size-resolved
DNA analysis using the next-generation sequencing (NGS) method inferred the presence of unicellular and multi-cellular spores and large fungal fragments in
the bioaerosols. Further investigations inferred the presence of 67 crop pathogenic fungal OTUs capable of causing lethal crop diseases threatening the
country’s food security and agricultural economy. Many other pathogenic fungal species, which could affect plants (plants excluding the crops), humans, and
insects were also found in the bioaerosols. About 176 non-pathogenic OTUs inferred the presence of some beneficial fungal species in bioaerosols.
Community diversity and similarities shared by each pathogenic and non-pathogenic category implied that the pathogenic fungal categories shared many
OTUs within the categories, compared to the non-pathogenic fungal categories, explicitly explaining the evolution potential of pathogenic fungal species to
infect a broad host range. Such studies on bioaerosol characterization based on host-pathogen interactions help to predict pathogenic fungal invasions and
help the government to ensure biosecurity.

1. Introduction
Fungi, well-known pathogenic microbes, comprise several yeast species, mushrooms, molds, etc. (Hawksworth and Lücking 2017; Taylor et al. 2014; Woo et al.
2018). The annual emission rate of fungal bioaerosols (such as spores and their various structural segments) from various surfaces and substrates is
estimated to vary between 28–50 Tg a− 1 (Buée et al. 2009; Elbert et al. 2007; Fröhlich-Nowoisky et al. 2009; Heald and Spracklen 2009; Tedersoo et al. 2014).
The fungal bioaerosols influence the climate system by contributing to the cloud condensation nuclei (CCN) and ice-nuclei (IN) formation and by absorbing or
reflecting the terrestrial radiations (Fröhlich-Nowoisky et al. 2016; Guyon et al. 2003; Hassett et al. 2015; Pöschl et al. 2010; Spänkuch et al. 2000; S. Yadav et
al. 2019). They also pose a serious threat to humans, animals, and plants, causing lethal infectious diseases and allergies (Krishnamoorthy et al. 2020;
Priyamvada et al. 2017a, b; Valsan et al. 2016; Yadav et al. 2020, Fisher et al. 2012; Fröhlich-Nowoisky et al. 2016 and references therein).

Many attempts have been made worldwide to address the aerosolization properties, dispersion, deposition, and the adverse implications caused by the fungal
propagules on the ecosystem health and climate (Calhim et al. 2018; Elbert et al. 2007; Fröhlich-Nowoisky et al. 2009; Krishnamoorthy et al. 2020; Priyamvada
et al. 2017a, b; Valsan et al. 2016; Woo et al. 2018). The ability of fungi to survive independently and the rising number of diseases caused by them have
attracted the researcher’s attention to study their pathogenic effects on crops, which hampers a country's food security (Fisher et al. 2012). Also, several fungal
plant diseases have been reported to date worldwide that could cause even 100% crop losses (Després et al. 2012). Concurrently, various fungal propagules
and their toxins present in the bioaerosols have been repeatedly reported to cause a wide variety of human infections (Brown et al. 2012a; Fröhlich-Nowoisky
et al. 2016; Goudarzi et al. 2016; Jaenicke 2005; Krishnamoorthy et al. 2020; Laumbach and Kipen 2005; Priyamvada et al. 2017b). The particle size, one of
the most important characteristics of the fungal bioaerosols, plays a vital role in fungal fate and transport, deposition in the respiratory system, settling and
deposition on the Earth’s surface, resuspension to air, penetration into buildings, and pathogenicity potential to cause diseases in plants (Gat et al. 2021;
Tanaka et al. 2020; Thomas 2013; L. Wang and Lin 2012; Yamamoto et al. 2012, 2014). Therefore, the size and shape-dependent understanding and behavior
of the fungal bioaerosols will not only help to delineate their impacts from other types of bioaerosols but also improve our understanding of the specificity of
the role of fungal bioaerosols in ecosystem health (Wang and Lin 2012).

Traditionally, culture-dependent sedimentation and rainwater characterization methods were well-known for many decades to study atmospheric fungal
diversity (Kolby et al. 2015; Palmero et al. 2011). However, advanced studies involving next-generation sequencing methods have replaced culture-dependent
methods (Baldrian et al. 2012, 2022; Nilsson et al. 2019; Peay et al. 2016), enabling the broader coverage of the biodiversity details. The advanced methods
have allowed researchers to explore the much finer details and pathogenic properties of the non-culturable fungal bioaerosols (including the mycelia sterilia),
which constitute about > 60% of the atmospheric fungal bioaerosols (Shelton et al. 2002; Woo et al. 2018). Concurrently, many studies (Davison et al., 2015;
Talbot et al., 2014; Tedersoo et al., 2014, 2020) have also focused on the regional fungal diversity and community composition based on the available
metabarcoding data of the global fungal diversity and biogeography. Adapting such advanced techniques in characterizing the atmospheric fungal
bioaerosols would allow the researchers to get better insight into the emission, dispersion, and fungal pathogenic effects on plants and human health.

Further, research on the lifestyle changes adopted by the fungal pathogens unveils the fact that these pathogens undergo a tremendous amount of genetic
evolution to enable them to survive unfavorable environmental and climatic conditions, making them a potential pathogen with improved pathogenic
properties covering a broad host range (Couch et al. 2005; Davies et al. 2021; Dean et al. 2012; Rhodes 2019). Though several studies have been carried out
worldwide to address the pathogenic effects of fungal bioaerosols on plants, animals, and human health, there are insufficient studies of fungal diversity and
abundance in size-resolved aerosol samples using molecular biological methods to specifically investigate the role of fungi in view of crop damages.

In this study, we have investigated the size-resolved community structure of the fungal bioaerosols present in the Indian subcontinent using the next-
generation sequencing (NGS) method. Further, their pathogenic and beneficial role on the plants, humans, and the environment have been studied in detail by
analyzing and reviewing the available literature, emphasizing their impact on ecosystem health and climate based on size-resolved biodiversity assessment.

2. Materials and methods
The study was carried out to characterize the pathogenic and non-pathogenic (including beneficial) fungal burden over the Indian subcontinent and to
understand the influence of an agriculture field on the size-resolved fungal bioaerosol diversity. For this, the various fungal species present in the air were
identified from the air samples using the NGS method during the onset and end of the winter season. The identified fungal species were then grouped based
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on their pathogenic and non-pathogenic properties, and their size-resolved diversity was assessed. Such studies have implications in fungal ecology, human
exposure, plant pathogen transport, and climate.

2.1. Sample collection methods
A crop field located in Gurdaspur (Punjab, India) (32°2’21” N and 75°23’11” E), a site located in the Northern region of the Indian subcontinent, which is mainly
dependent on winter crops, was selected for the study (Fig. S1). Sampling was performed during the winter season of India (December 2019 – March 2020
specific period for winter crops) in two phases - phase 1 to cover the fungal diversity during the initial crop growth period (December 2019) and phase 2 to
cover the harvest period (March 2020). The sampling site and the surrounding croplands are home to a variety of crops, including cereals, pulses, spices,
vegetables, fruits, and medicinal herbs.

Size fractioned air samples were collected using the ten-stage Micro-Orifice Uniform Deposition Impactor (MOUDI II 120R, TSI Inc., USA) with rotating stages
for uniform deposition of particulate matter ≤ 10 µm (PM10). The cutoff size fraction of the stages was 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18, 0.10, and 0.056
µm, with a nominal inlet cutoff at 18 µm. Preprocessed/sterilized (60 ⁰C for overnight) and pre-weighed glass microfiber filter papers (47 mm diameter,
Whatman grade GF/C) were used for the sample collection. Ambient air samples were collected at a flow rate of 30 LPM for 70 hours. The loaded filter papers,
after exposure, were transferred to sterile 60 mm Petri plates (PP Petri plates, Tarson), sealed tightly, transferred to the laboratory, and stored at 4 ⁰C until
further processing.

Another set of samples was collected using the 2-stage sampler as described by Valsan et al. 2015 on the nucleopore membrane filters of 25 mm diameter
with a pore size of 0.2 and 5 µm to observe the morphological details of the bioaerosols using Hitachi S 4A00 Scanning Electron Microscope (SEM) equipped
with EDX/EDS (Chemical Engineering Department, Indian Institute of Technology Madras, Chennai, India).

2.2. Extraction of chromosomal DNA from the exposed filter papers and sequencing
Exposed filter papers were cut into three equal fractions for consideration as triplicates for DNA analysis. These fractions were cut into fine uniform-sized
pieces using a sterile scalpel and transferred into separate tubes containing the beads (as provided in the DNA extraction kit). The fungal DNA was extracted
using the ZR fungal/bacterial DNA extraction mini prep kit (Zymo Research, USA) following the manufacturer’s protocol. The extracted DNA was quantified
using a NanoDrop spectrophotometer (Thermo Electron Corporation, USA). Extracted DNA was subjected to PCR amplification targeting the ITS region using
the primers, i.e., forward - GCATCGATGAAGAACGCAGC and reverse - TCCTCCGCTTATTGATATGC. PCR was carried out in 50 µL reaction volume, which
includes 3 µl DNA, 25 µl Red dye master mix (Ampliqon, Denmark), 5 pM of each primer, 0.2 mM dNTPs, and water at the following PCR conditions: 3 minutes
of initial denaturation at 95⁰ C, 30 X (1 minute of denaturation at 95⁰ C, 1 minute primer annealing at 54⁰ C (fungi), and 1 minute elongation at 72⁰ C), and 3
minutes of final elongation at 72⁰ C.

The amplicons from the triplicate filter fraction extracts were pooled into a single representative sample for each size range of the MOUDI. Then the amplicons
were sequenced with next-generation sequencing (2 x 300 bp length) technique at Eurofins genomics (Bengaluru, India) using Illumina MiSeq platform Nextera
XT Index Kit for the generation of the NGS libraries using the manufacturer’s protocol (using i5 and i7 primers for the addition of multiplexing index sequences
and common adaptors). Thus, prepared libraries were purified with the help of AMPure XP beads and quantified using Qubit Fluorometer. Further, they were
analyzed on 4200 Tape Station using D1000 screen tape (Agilent Technologies) employing the manufacturer’s protocol. After which, the libraries were loaded
onto a MiSeq platform at a concentration of 10–20 pM for the generation of clusters and were sequenced using the Paired-end sequencing method.

2.3. Analysis of the sequences
The sequences obtained from the Illumina MiSeq platform were analyzed using QIIME 2 (Caporaso et al. 2010), for the inference of maximum likelihood
phylogeny (Price et al. 2010), along with RDP classifier to assign the taxonomic data using the naïve Bayesian classifier (Wang et al. 2007). The high-quality
clean sequences were obtained by trimming the adaptors, ambiguous sequences, and low-quality sequences (< 20 Phred scores) using Trimmomatic online
software (version 0.38) (Bolger et al. 2014) with a sliding window of 20 bp and a maximum length of 100 bp. FLASH platform (Magoč and Salzberg 2011)
was used to combine the data obtained, and the operational taxonomic units (OTUs) were picked using a sequence identity of 97% cutoff exhibited by the
sequences against the UNITE database (version 7.2) (Kõljalg et al. 2013). The taxonomies were then assigned to each OTU based on the sequence similarity
threshold of 90% using UCLUST.

2.4. Data information
The sequences obtained in the study were deposited in the NCBI sequence read archive (SRA) database with the project number PRJNA893083.

2.5. Statistical analysis
Species richness and the percent abundance were inferred from the OTUs obtained from the sequences retrieved from the samples. Shannon’s diversity index
(H) was calculated using the equation  where  gives the number of individuals observed (Yadav et al. 2022), evenness (Eh) (range
0–1) was calculated using  where Hmax is the maximum possible diversity, and dominance (D) (range 0–1) was calculated using 

 where n is the total number of individuals of a species and N is the total number of individuals. Further, all the plots were
plotted using: Circos (Krzywinski et al. 2009) for circular plots, Python libraries (version 3.7.6) in the open-source web-application Jupyter Notebook (V.6.0.3)
for the heatmap, and the bar stack plots, R Studio (version 4.1.0 (2021-05-18)) for Venn diagram, network plots, and principal coordinate analysis (PCoA)
plots.

3. Results and discussion

H = −Ʃ [(pi) ∗ In (pi)] pi

Eh = H/Hmax

D = (Ʃn( n − 1 )) / (N( N − 1))
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3.1. Fungal burden in the atmospheric air
The DNA sequence counts presented in the study are based on the parameters assigned during the NGS analysis and can be considered as a representation of
the actual fungal burden in the air. Figure 1a shows the mass size distribution of particulate matter (PM) (dM/dlogDp, where dM is the mass concentration of
the particles and Dp is the mid-point diameter of each MOUDI stage) of the study region during the phase 1 and phase 2 sampling period. The cumulative

PM10 concentration during phase 1 was 49.2 µg/m3 and phase 2 was 44 µg/m3, with the maximum mass concentration corresponding to the MOUDI stage of
size range 180–320 nm (Fig. 1a). Figure 1b shows the aerodynamic particle size distribution of the fungal bioaerosols (DNA sequences) representative of the
sampling site (dTr/dlogDp, where dTr is the number concentration of total DNA sequences obtained in each MOUDI stage and Dp is the corresponding mid-
point diameter). Figure 1c shows the distribution of assigned DNA sequences at the species level (dTa/dlogDp, where dTa is the number concentration of DNA
sequences obtained in each MOUDI stage and Dp is the corresponding mid-point diameter). The aerodynamic particle size distribution of the species-level
assigned DNA sequences (Fig. 1c) obtained in the phase 1 studies shows the maximum concentration in the MOUDI stages corresponding to the size ranges
1.8–3.2 and 5.6–10 µm. In phase 2, the maximum concentration of assigned fungal sequences is in the MOUDI stages corresponding to the size ranges 3.2–
5.6 µm and 5.6–10 µm (Fig. 1c).

Figure 1d illustrates the percentage abundance of assigned and unassigned sequences and the size-resolved richness of fungal families identified. The
unassigned fungal species at the phyla level have contributed to about 75.8% and 78.2% of the total bioaerosols burden in phase 1 and phase 2 samples,
respectively (the color chart on the top of Fig. 1d - A represents assigned and UA represents unassigned). The assigned fungal bioaerosols are spread over five
major phyla: Ascomycota, Basidiomycota, Mucoromycota, Mortierellomycota, and Chytridiomycota. Among the phyla observed at the species level,
Ascomycota was found to be predominant during both phases (81.4% in phase 1 and 86% in phase 2) (Fig. 1d). The fungal family Trichocomaceae and
Pleosporaceae show high relative abundance with 53.7% and 15.5% respectively in phase 1. Comparatively, phase 2 samples show the dominance of fungal
families Mycosphaerellaceae (66.4%) and Trichocomaceae (14%). Figure 2 shows scanning electron microscopy (SEM) images of fungal bioaerosols
collected using a separate two-stage sampler. The data from Figs. 1, 2, and S2 show that the size ranges measured correspond to fungal spores, fungal
fragments, clusters of spores, mycelium, and spores-dust agglomerates (Krishnamoorthy et al. 2020; Lacey 1991; Tong and Lighthart 2000).

The identified fungal species can be classified into two major categories: pathogenic fungi (comprising crops, plants (plants excluding crops), insects,
nematodes, and human pathogens) and non-pathogenic fungi (comprising saprophytic/environmental fungi and beneficial fungi). Figure 3 gives detailed
information on the qualitative and quantitative (species-level assigned DNA sequences) measurements of significant functional categories (assigned species-
level OTUs) of the pathogenic and non-pathogenic fungal species of both phases. Figures 3a and 3b represent the classification in phases 1 and 2,
respectively. Each figure has 11 concentric rings corresponding to the distribution based on different classifications. The nomenclature of these rings is shown
in the caption of Fig. 3. Ring 1 and 2 represent the phyla and species, respectively; ring 3 shows the non-pathogenic fungal species; ring 4 shows plant
pathogens excluding the crop pathogens; ring 5 shows the total crop pathogens; rings 6–11 shows the distribution of the crop pathogens in terms of different
types of crops - cereals, pulses, cash crops, fruits, vegetables, and spices. Identifying a wide variety of plant and crop pathogens implies the potential impact
on agriculture yield. Table 1 details the various fungal pathogens observed and the potential impact based on literature reports.
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Table 1
Brief description of the pathogenic properties of the fungal OTUs observed in the pathogenic category of the bioaerosols collected d

Fungal species Crop pathogens Plant Insect and
nematodes

Cereals Pulses Cash crops Fruits Vegetables Spices

Aspergillus flavus Affects
grains, crops,
and causes
post-harvest
storage
diseases

post-
harvest
storage
diseases

- - - - - -

Aspergillus
halophilicus

Post-harvest
storage
disease,
especially in
dried corns

- - - - - - -

Bipolaris melinidis leaf spots,
blights,
melting out,
and root rot
of paddy,
maize,
wheat, and
sorghum

- - - - - - -

Curvularia
intermedia

Affects
crops
especially
paddy and
sorghum

- - - - - - -

Curvularia lunata seed blight
and
germination
failure in
paddy, wheat

Seed blight
and
germination
failure of
millets

- - - - Leaf spots in
flowering plants

-

Erysiphe polygoni Powdery
mildew of
buckwheat

- - - - - - -

Kabatiella zeae Leaf spot
and stalk rot
in maize

- - - - - - -

Macrophomina
phaseolina

Damping off,
seedling
blight, collar,
basal stem,
charcoal,
root rot of
sorghum,
wheat, corn,
and alpha
alpha

Root rot of
chickpea,
soyabean

Root rot of
peanuts,
sunflower,
sesame
seeds

- Root rot of
cabbage,
sweet
potato,
and potato

- - -

Moesziomyces
bullatus

- Millet smut - - - - pathogenic -

Nigrospora oryzae Grain spots
in paddy,
sorghum,
and corn

- Leaf blight
and spots in
cotton and
tea

- - - - -

Penicillium citrinum Pathogenic - - Pathogenic - Pathogenic - Culex mosquito
mortality

Penicillium
polonicum

Spoilage
cereals

- Spoilage of
peanuts

Spoilage of
citrus fruits

Spoilage
of onions

- - -

Puccinia recondita Leaf rust in
wheat and
rey

- - - - - - -

Rhodosporidiobolus
nylandii

Affects
leaves of
corn

- - - - - Leaf pathogen -
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Fungal species Crop pathogens Plant Insect and
nematodes

Cereals Pulses Cash crops Fruits Vegetables Spices

Sporisorium lepturi Smut
especially in
sorghum

- - - - - Smut disease -

Sporisorium
reilianum

Pathogen of
maize and
sorghum
affects
inflorescence

- - - - - - -

Tilletia barclayana Pathogen of
paddy
causes black
bust with
smutted
appearance

Infects
Pearl
millets

- - - - Infects signal
grass and crab
grass

-

Ustilaginoidea virens Smut of
paddy crops

- - - - - - -

Ustilago maydis Smut of corn
and maize

- - - - - - -

Zymoseptoria brevis Leaf disease
of barley

- - - - - - -

Blumeria graminis Powdery
mildew of
cereals

- - - - - Powdery
mildew in grass

-

Aspergillus niger - Black mold
disease
commonly
observed in
pulses

Black mold
disease of
peanuts

Black mold
disease of
grapes,
apricots, etc.

Black
mold
disease
especially
onions

- - -

Choanephora
cucurbitarum

- Rot of snap
bean and
southern
pea, stem
and leaf rot
of hyacinth
bean and
green pea

- - Fruit and
blossom
rot of
cucurbits
and
affects
okra

- Stem and leaf
rot of Withania
somnifera
(ashwagandha),
and teasle
guard

-

Colletotrichum
capsici

- Leaf blight
of chickpea,
dieback in
pigeon pea

- - Leaf blight
in peppers
like chilly
and
capsicum

Affects
pepper

Leaf blight in
Chlorophytum
borivilianum,
and basil,
anthracnose in
poinsettia

-

Uromyces viciae-
fabae

- Causes
faba-bean
rust

- - - - - -

Pestalotiopsis
coffeae-arabicae

- - Found on the
leaf of
Coffee
arabica and
opportunistic
pathogen
capable of
producing
chemically
novel
metabolites

- - - - -

Alternaria longissima - - Causes leaf
spot, foliage
blight, stem
necrosis and
spot of
Sesamum

- - - - -

Rhizopus arrhizus - - Causes barn
rot of
tobacco

- - - - -
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Fungal species Crop pathogens Plant Insect and
nematodes

Cereals Pulses Cash crops Fruits Vegetables Spices

Aplosporella javeedii - - - Causes
branch blight
disease in
mulberries

- - - -

Aspergillus
carbonarius

- - - Affects grape
fruits

- - - -

Aureobasidium
pullulans

- - - Epiphyte and
endophyte of
apple and
grapes

Epiphyte
and
endophyte
of
cucumber,
green
beans and
cabbage

- - -

Candida
hyderabadensis

- - - A beneficial
fungus
observed in
association
with grapes
and an
opportunistic
pathogen

- - - -

Dothiorella vinea-
gemmae

- - - Associated
with grapes
an
opportunistic
pathogen

- - - -

Eutypa lata - - - Wood rot of
grape plant
leading to
dead arm
and grape
cankers

- - - -

Flammulina
velutipes

- - - Opportunistic
pathogen of
Chinese
hackberry
trees, ash
plant,
mulberry, and
persimmon
trees

- - - -

Hanseniaspora
uvarum

- - - Observed in
wine making
environments
and
opportunistic
pathogen

- - - -

Penicillium
aurantiogriseum

- - - Infects
strawberry
significant
loss
observed
during post-
harvest
period

- - Infects
asparagus

-

Pichia kluyveri - - - Helps in wine
making and
improves
wine quality,
could act as
an
opportunistic
pathogen

- - - -

Pichia
membranifaciens

- - - Opportunistic
pathogen of
fruits

- - - -

Plectosphaerella
cucumerina

- - - Causes fruit
rots

- - Causes root and
collar rots

-



Page 8/44

Fungal species Crop pathogens Plant Insect and
nematodes

Cereals Pulses Cash crops Fruits Vegetables Spices

Amylostereum
laevigatum

- - - - - - Plant pathogen
causes white rot
on trees

-

Antrodiella
brasiliensis

- - - - - - Plant pathogen
causes crust
like wood rot

-

Candida boleticola - - - - - - Plant pathogen -

Coprinellus
disseminatus

- - - - - - Plant pathogen
grows on rotting
trees

-

Cylindrobasidium
evolvens

- - - - - - Plant pathogen
grows on dead
branches of
deciduous trees

-

Daedaleopsis
confragosa

- - - - - - Plant pathogen
causes white rot
of willow trees

-

Entyloma diastateae - - - - - - Smut fungi
causes leaf
spots in plants

-

Erysiphe
multappendicis

- - - - - - Causes
powdery mildew
of plants

-

Macalpinomyces
ewartii

- - - - - - Causes smut
disease of
plants

-

Meripilus giganteus - - - - - - Polyporous
white rot
pathogen
especially broad
leaf tress like
Abies, Picea,
Pinus, Quercus
and Ulmus
species

-

Microbotryum
cordae

- - - - - - Common plant
pathogen

-

Mycosphaerella
ellipsoidea

- - - - - - Causes leaf
disease of
Eucalyptus
globulus

-

Mycosphaerella
tassiana

- - - - - - Infects several
plant hosts

-

Phlebia tremellosa - - - - - - Plant pathogen
commonly
known as
trembling
Merulius or jelly
rot a wood
decaying
fungus found in
rotting hard
wood and
conifer plants

-

Pholiota
highlandensis

- - - - - - Plant pathogen
which grows in
clusters in the
charred base of
trees

-

Phoma herbarum - - - - - - Causes brown
leaf spots and
cankers

-

Phyllosticta
capitalensis

- - - - - - Endophytic
fungi cause leaf
spots of
ornamental
plants

-
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Fungal species Crop pathogens Plant Insect and
nematodes

Cereals Pulses Cash crops Fruits Vegetables Spices

Pisolithus albus - - - - - - Plant pathogen
Tunisia and
Eucalyptus
occidentalis

-

Sarocladium
glaucum

- - - - - - Common plant
pathogen

-

Steccherinum
ochraceum

- - - - - - Plant
pathogenic
polyporous
wood rotting
fungi

-

Stereum rugosum - - - - - - Plant
pathogenic
polyporous
wood rotting
fungi, otherwise
known as leaf
fungus, wax
fungus, and
shelf fungus

-

Thanatephorus
cucumeris

- - - - - - Plant pathogen
with a wide host
range and
worldwide
distribution.
Further, cause
various plant
diseases such
as collar rot,
root rot,
damping off,
and wire stem

-

Toxicocladosporium
irritans

- - - - - - Common plant
pathogen

-

Trametes hirsuta - - - - - - Plant pathogen
known as hairy
bracket fungi
causes white rot
of wood

-

Drechslera catenaria - - - - - - Pathogen
causing leaf
blight and
brown rot in
Toronto
creeping
bentgrass

-

Arthrographis arxii - - - - - - - -

Aspergillus conicus - - - - - - - -

Aspergillus
fumigatus

- - - - - - - -

Aspergillus
ochraceopetaliformis

- - - - - - - -

Aspergillus
penicillioides

- - - - - - - -

Aspergillus sydowii - - - - - - - -

Aspergillus tamarii - - - - - - - -

Candida albicans - - - - - - - -

Candida diddensiae - - - - - - - -
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Fungal species Crop pathogens Plant Insect and
nematodes

Cereals Pulses Cash crops Fruits Vegetables Spices

Candida
palmioleophila

- - - - - - - -

Candida tropicalis - - - - - - - -

Candida zeylanoides - - - - - - - -

Curvularia
hawaiiensis

- - - - - - - -

Curvularia
pseudorobusta

- - - - - - - -

Diutina catenulata - - - - - - - -

Fereydounia
khargensis

- - - - - - - -

Fusarium penzigii - - - - - - - -

Mucor circinelloides - - - - - - - -

Myrmecridium
schulzeri

- - - - - - - -

Naganishia albida - - - - - - - -

Ochroconis
tshawytschae

- - - - - - - -

Purpureocillium
lilacinum

- - - - - - - Insect pathogen,
has antinematod
activity controls
the growth of roo
knot nematodes

Veronaea botryosa - - - - - - - -

Westerdykella
dispersa

- - - - - - - -

Exophiala mesophila - - - - - - - -
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Fungal species Crop pathogens Plant Insect and
nematodes

Cereals Pulses Cash crops Fruits Vegetables Spices

Exophiala
oligosperma

- - - - - - - -

Beauveria bassiana - - - - - - - Parasitic to
arthropods
causing white
muscardine
disease hence
called as
entomopathogen
fungi mostly use
as a biological
insecticide to
control a number
of pests such as
termites, thrips,
whiteflies, aphids
different beetles,
bedbugs and
malaria
transmitting
mosquitoes

Candida kruisii - - - - - - - Insect pathogen
grows in the gut o
the insect

Lecanicillium lecanii - - - - - - - Entomopathogen
fungus which
attacks white fly
and aphids

Metarhizium
anisopliae

- - - - - - - Insect pathogen
helps in controllin
malarial mosquit

Metarhizium rileyi - - - - - - - Entomopathogen
fungi used as
biopesticide

Arthrobotrys foliicola - - - - - - - Nematode
pathogen that
feeds on
nematode

Periconia digitata - - - - - - - Antinematode
activity

3.2. Crop-specific fungal pathogens and their diversity
Sequences obtained from the air samples have shown the presence of various crop-specific fungal pathogens that could lead to epiphytic or endophytic
infections, such as blight, rots, rust, smut, leaf spots, necrosis, postharvest storage infection, foliar diseases, powdery mildew, and cankers in various crops
(Fig. 3 and Table 1). The infection of crops from these pathogens results in a considerable reduction in crop yield. The impact of various fungal species
observed at the sampling site on numerous crops is described in the following sub-sections. This discussion is focused on the results obtained from NGS
analysis combined with available literature data related to their pathogenic nature.

3.2.1. Cereals
Cereals are most vulnerable to fungal infections leading to diseases such as leaf spots (Pronczuk et al. 2004), melting out (Manamgoda et al. 2014), leaf
blight (Akram et al. 2014; Limtong et al. 2020), rots (Egel et al. 2020; Su et al. 2001; Ullah et al. 2019), powdery mildew (Lu et al. 2015), grain spots (Liu et al.
2021; Zhang et al. 2012), rust (Peksa and Bankina 2019), smut (Kellner et al. 2011), spoilage (Çakır and Maden 2015), etc. About 21 cereal-specific fungal
OTUs (Fig. 3, 4a, and Table 1) spreading over two fungal phyla (Ascomycota and Basidiomycota) were observed in the study (represented by ring 6 in Fig. 3a
and 3b). Species like Moesziomyces bullatus, Rhodosporidiobolus nylandii, Sporisorium lepturi, Sporisorium reilianum, and Ustilago maydis were explicitly
observed in phase 1 and Blumeria graminis in phase 2 (Fig. 4a). Size fractionated fungal distribution showed that the least contribution of bioaerosols was in
size range 1–1.8 µm in both the phases (Fig. 4a).

Presence of the genus Aspergillus could cause a wide variety of diseases like postharvest infection, black mold disease, yield loss, etc., to cereals and other
crops, as described by Achaglinkame et al. (2017), El-Shanshoury et al. (2014), and Rudramurthy et al. (2019). The species observed in Basidiomycota phyla
suggest probable infection of cereals with diseases like smut of millets and sorghum, black rust of paddy and millets, leaf rust of wheat and rye, and powdery
mildew of cereals as described in Table 1 (Okolo et al. 2015; Stoll et al. 2005).

3.2.2 Pulses
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7 OTUs represented the fungal pathogens that could affect pulse crops at the sampling site during the sampling period (Fig. 3a and 3b (ring 7)). Ascomycota
was the most dominant phyla in both phases, with the primary species being Aspergillus flavus. The size-fractioned assessment has shown the presence of a
high concentration of OTUs in the size range of 5.6–10 µm (6 OTUs) in the phase 1 sample and at 3.2–5.6 µm (5 OTUs) in the phase 2 samples (Fig. 4a).
Presence of fungal pathogens such as Aspergillus flavus, Aspergillus niger, and other Ascomycetes suggests the higher possibility of crops suffering from
various diseases from postharvest infection of the pulses during storage and various infections of chickpea and other pulses (Table 1). Observed members of
Mucoromycota suggest the possibility of multiple pulse crops infections like fruit and blossom rot of snap bean and southern pea, leaf rot of hyacinth beans
and green peas in both the phases studied, and leaf blight of chickpeas and dieback of pigeon peas, specifically in the phase 1 samples (Alfenas et al. 2018;
Saxena et al. 2016). Uromyces viciae-fabae, the only member of Basidiomycota, is capable of causing faba-bean rust (Table 1).

3.2.3. Cash crops
For cash crops vulnerable to fungal infections, 6 OTUs were observed in phase 1 and 2 samples, spreading over two significant phyla, Ascomycota and
Mucoromycota, with the respective dominant species being Curvularia lunata, and Rhizopus arrhizus (Fig. 3a and 3b (ring 8)). Among the observed OTUs,
Pestalotiopsis coffeae-arabicae, a member of Ascomycota phyla, was found only in the phase 1 sample (Fig. 4a). Size fractionated characterization of the
fungal bioaerosols show that the various size ranges > 1.8 µm have shown the maximum concentration of the fungal bioaerosols during the phase 1 studies
and size ranges > 3.2 µm during phase 2 studies (Fig. 4a). Among the pathogenic fungal aerosols that can affect cash crops, Table 1 shows that the presence
of various Ascomycetes could seriously affect crop yield with diseases such as seed blight, seed germination failure, damping off, seedling blight, collar rot,
stem rot, charcoal rot, basal stem rots, root rot, leaf blight, leaf spots of coffee, cotton, and tea crops (Song et al., 2013), and zonate leaf spot, foliage blight
stem necrosis, and spots on capsules of Sesamum indicum (Sesame seeds) (Naik et al. 2017). Similarly, Rhizopus arrhizus is very well known for the disease
barn rot of tobacco (Table 1) (Chen et al. 2020).

3.2.4. Fruits
For fruits susceptible to fungal infection, 15 OTUs were observed during the sampling (Fig. 3a and 3b (9), Table 1). Among these, 12 OTUs were associated
with a size range of 1.8–3.2 µm, and 10 OTUs were associated with a size range of 3.2–5.6 µm (Fig. 4a). Presence of phyla Ascomycota and Basidiomycota
were observed in the phase 1 sample with the predominance of species Penicillium citrinum and Flammulina velutipes. Whereas Ascomycota was the only
phyla observed in the phase 2 samples (Fig. 3a and 3b (ring 9)), suggesting the possible infection of the fruit with various diseases such as the blight of
mulberries, infection of grape berries and apricots, an opportunistic infection of grapes and apples, dead arm and cankers of grape plants, postharvest
infections, spoilage and infection of citrus fruits, grey mold disease of grapevine, and fruit rots (Çakır and Maden 2015; Erkmen and Bozoglu 2016; Jia et al.
2019) (Table 1). Similarly, Flammulina velutipes, a particular edible mushroom, specifically affect mulberry, Chinese hackberries, and persimmon trees by
growing on the stalk of the tree (Table 1) (Fischer and Garcia 2015).

3.2.5. Vegetables
For vegetables susceptible to various fungal infections, three major phyla, Ascomycota, Basidiomycota, and Mucoromycota, with cumulative OTUs of 7, were
observed in both phases (Fig. 3a and 3b (10)). Size fractioned characterization of the fungal bioaerosols has shown that the size range 5.6–10 µm
contributes to a maximum of 5 OTUs (Fig. 4a) in phase 1 samples. Whereas, in phase 2 samples (Fig. 4a), the size range of 3.2–5.6 µm has dominated with 3
OTUs. The presence of pathogenic species of Basidiomycetes implied the chance of vegetable crops suffering an opportunistic infection. Ascomycetes
showed the probable chances of vegetable crops acquiring infections like spoilage of vegetables, postharvest infection, opportunistic infections, leaf blight of
peppers, damping off, seedling blight, collar rot, stem rot, charcoal rot, basal stem rots, and root rots of vegetables. Choanephora cucurbitarum of
Mucoromycota phyla was also observed and is capable of causing fruit and blossom rot of various cucurbits, infecting okra, and causing stem and leaf rot of
teasle (spiny) guard (Table 1).

3.2.6. Spices
For spice crops susceptible to various fungal infections, the size range 5.6–10 µm showed the presence of 2 OTUs in the phase 1 sample (Fig. 4a), which
belonged to the phyla Ascomycota (Fig. 3a and 3b (11)), suggesting possible chances of crops suffering an opportunistic infection, reducing the yield
(Table 1) (Ragavendran et al. 2019; Saxena et al. 2016).

3.2.7. Size fractioned characterization and diversity analysis of crop pathogenic fungal
bioaerosols
Figure 4b explains the size-resolved diversity indices like the Shannon diversity (H), Evenness (Eh), and Simpson’s dominance (D) observed among various
crop pathogenic categories. The figure shows that the cereal pathogenic fungi have maximum diversity, relatively high evenness, and a low dominance
compared to the other crop pathogens in both phase 1 and phase 2 samples. Size-resolved diversity analysis among the cereal-specific fungal pathogens has
shown the presence of a highly diverse population in size range of 1-1.8 µm (H = 1.9) of phase 1 and size ranges from 5.6–10 and 10–18 µm (H = 1.7) of
phase 2 samples. Whereas, diversity analysis of the fungal pathogens affecting pulses has shown the presence of a low diverse population in both phases,
indicating the presence of dominant species (Fig. 4b) with the maximum diversity in size range of 10–18 µm (H = 0.3) for both the phases. Cash crops have
shown moderate diversity and evenness with relatively similar dominance in all the size ranges studied. The H index for fruits showed the presence of unique
intra-community structures specific for each size range, which did not overlap in the phase 1 sample. Whereas, in the phase 2 sample, the diversity indices
were found to express similar values for more than one size range (Fig. 4b). Diversity assessment of vegetable-specific pathogens has shown that the fungal
bioaerosols have expressed a highly varying diversity in all the size ranges in both the phases (Fig. 4b). Size range 3.2–5.6 µm shows the highest diversity of
H = 1.3 and 0.9 in phase 1 and 2 samples respectively for the vegetable pathogens (Fig. 4b). Similarly, spices have expressed a relatively shallow diversity in
both the phases due to a smaller number of OTUs identified (Fig. 4b).
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The PCoA in Fig. 4c shows the assessment of the inter-community structure shared among the observed pathogenic categories. For cereal-specific pathogens,
fungal pathogenic community structures of 1–1.8 µm were less correlated to other size ranges in phase 1 samples. During phase 2, cereal-specific fungal
pathogenic bioaerosols of size range 3.2–5.6 µm and 5.6–10 µm overlapped with each other compared to the other size ranges suggesting the presence of
nearly similar communities. The pulses-specific fungal community has shown that the fungal OTUs of the size ranges 1.8–3.2 µm and 3.2–5.6 µm of phase 1
were found to express overlapping communities, and the size range 1.0–1.8 µm was found to have a unique community composition. Whereas phase 2
samples were found to have unique community compositions that were specific for each size range (Fig. 4c). Interestingly, size ranges 1.0–1.8 µm, 1.8–3.2
µm, and 10–18 µm of phase 2 samples were found to group separately, indicating the presence of some similar community composition (Fig. 4c).
Assessment of the overlapping fungal communities of cash crops expressed size specific fungal community composition except for the size ranges 5.6–10
and 10–18 µm with overlapping communities in the phase 1 samples. Similarly, phase 2 samples have shown size-specific community composition in all the
size ranges, except for the size ranges 3.2–5.6 and 5.6–10 µm, which were found to have overlapping communities. Further, the size range of 1.0–1.8 µm of
the phase 1 sample of cash crop pathogens expressed a unique community composition compared to the other size ranges and expressed considerable
similarity with the similar size range of the phase 2 sample. Further, phase 1 samples of fruits exhibited a similar community structure in all the size ranges
except for the size range 10–18 µm. Whereas in phase 2 samples, the size ranges 3.2–5.6 µm and 5.6–10 µm share similar OTUs (Fig. 4c) compared to the
other size ranges. Also, it has shown that the size ranges > 1.8 µm of phase 1 and the two size ranges between 3.2 and 10 µm of phase 2 has formed separate
group inferring the presence of a nearly similar population structure (Fig. 4c). Inter-community composition of the different fungal-specific size ranges of
vegetables has revealed that the phase 1 sample expressed a similar community population in all the size ranges compared to the phase 2 samples which
expressed diverse populations among the fungal-specific size ranges and shared common OTUs at the size ranges 3.2–5.6 µm and 5.6–10 µm. The size
range of 1.0–1.8 µm was found to have a unique composition compared to all the size ranges of the phase 1 sample of vegetables and expressed near
similarity with the phase 2 samples (Fig. 4c). Spices have shown that the size range 5.6–10 µm contained a community composition that was very different
compared to all the other size ranges in phase 1 samples (Fig. 4c). Moreover, size ranges 5.6–10 µm of phase 1 samples and 3.2–5.6 µm, and 5.6–10 µm of
phase 2 were found to be grouped together, inferring the presence of a nearly similar population structure (Fig. 4c). This shows that the cereals-specific
pathogens were rich in the intra-community composition and cash crop pathogens were rich in inter-community composition explaining the diverse species
observed among the different size range of a category and between the categories.

3.2.8. Enumeration of the common fungal pathogens affecting multiple crop hosts
Figure 5 shows the details of OTUs specific to crop pathogens (phases 1 and 2 separately) that could infect more than one crop host and the cumulative OTUs
shared within the respective sampling phases. The various categories of crop-specific fungal pathogens of phase 1 shared nearly 50–85% OTUs with the
corresponding category of pathogens in phase 2. The pathogenic fungal OTUs of cereals in phase 1 shared about 75% of the OTUs with the phase 2 samples,
pulses shared 85.7%, cash crops shared 83.3%, fruits shared 60%, vegetables shared 71.4%, and spices shared about 50% of OTUs with phase 2 samples.

Furthermore, Fig. 5 also shows the presence of pathogenic species that could cause infection in multiple crop hosts of the same phase, as described by Dean
et al. (2012). In both phases, the cereal-specific pathogen category was found to share most of their OTUs with pulses and cash crops (15% and 18.8% OTUs
each in phases 1 and 2, respectively), indicating the presence of common fungal pathogens infecting multiple crop hosts. Likewise, pulses-specific fungal
pathogens shared a majority of the OTUs with pathogens affecting vegetables (71.4% and 66.7% OTUs in phases 1 and 2, respectively) and cereals (42.9%
and 50% OTUs in phases 1 and 2, respectively) (Fig. 5). Cash crops-specific fungal pathogens were found to share maximum OTUs of about 50% and 60% in
phases 1 and 2, respectively with cereals. However, no observable OTUs were shared with pathogens specific to categories of fruits and spices. Further, the
fruit pathogenic bioaerosols shared the maximum OTUs with the pathogens of vegetables (26.7% and 33.3% in phases 1 and 2, respectively). Regarding
vegetables, maximum OTUs were found to be shared with pulses (71.4% and 80% in phases 1 and 2, respectively), followed by fruits (57.1% and 60% in
phases 1 and 2, respectively). Spice-specific fungal pathogens of the bioaerosols were found to share 50% OTUs each with the pathogens causing infections
in cereals, pulses, fruits, and vegetables in phase 1 and 100% each with the pathogens specific to the cereals and fruits in phase 2 (Fig. 5). This shows that the
pathogens can affect multiple host crops. Similar observations have been reported by (Couch et al. 2005) on the ability of Magnaporthe oryzae to cause
multiple crop host infections. Further, studies on the genetic properties of the devastating plant pathogenic fungi Colletotrichum sp. have unveiled the
presence of large sets of pathogenicity-related genes in association with gene-encoding secreted effectors, pectin degrader, secondary metabolism,
transporters, and peptidases which are expressed in successive waves leading to the lifestyle transition and evolution in crop pathogenic fungal species
(O’Connell et al. 2012).

3.3. Plant pathogenic fungal diversity and their possible role in plant diseases
A variety of plant pathogenic fungi (excluding the crop-specific pathogens) spreading over three major phyla like, Basidiomycota (22 OTUs), Ascomycota (15
OTUs), and Mucoromycota (1 OTU), were found to be present in the bioaerosols samples (Fig. 3a and 3b (4)). Among the pathogens observed, Bipolaris
melinidis was found to dominate the fungal bioaerosols of phase 1, and Mycosphaerella tassiana was found to dominate both the sampling periods (Fig. 6a).
Further assessment of the pathogenic fungal OTUs suggested that the plant species in the region are at risk of acquiring fungal infections such as white rot
(Slippers et al. 2003), wood rot (Westphalen et al. 2019), leaf spots (Limtong et al. 2020), blight, melting out, root rot (Carlucci et al. 2012; Xu et al. 2014),
rotten trunks and leaves (Novaković et al. 2018), stem and leaf rot (Alfenas et al. 2018; Pornsuriya et al. 2017; Saroj et al. 2012), leaf blight (Saxena et al.
2016), smut disease (Kellner et al. 2011), powdery mildew (Cowger and Brown 2019), jelly rot (Yeo et al. 2008), cankers, fruit rot, collar rot (Rivedal et al. 2020),
leaf rust, damping off, wire stem, general plant disease, leaf disease, and opportunistic infections (Okolo et al. 2015; Stoll et al. 2005) (Fig. 3 and Table 1). This
is in line with the investigations carried out by Anonymous (2017), Fisher et al. (2012), Savary et al. (2012), and Simion (2017), which report that the
phytopathogenic fungi were responsible for the reduction in the global crop yield, livestock feed contamination and reduction, and various plant infections.

Figure 6a further outlines the size-resolved characterization of the plant pathogenic fungal bioaerosols. Size range of 1.8–3.2 µm has shown high numbers
(24) of OTUs in phase 1 samples, and in phase 2 samples, 17 OTUs each were observed in size range 3.2–5.6 µm and 5.6–10 µm. This suggests that the
fungal bioaerosols dominated lower size ranges in the phase 1 sample and relatively higher size ranges in the phase 2 sample implying the fresh release of
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fungal spore aggregates and spores associated with the mycelium from the plants during the phase 2 sample collection. Accordingly, the Shannon diversity
index (H) has also shown a highly varying diversity index in the phase 1 samples compared to phase 2 samples with a moderate evenness (Fig. 6b). Figure 6c
shows the highly diverse nature of the fungal population observed among the different fungal-specific pathogens over the measured size ranges during the
phase 1 and phase 2 samples, except for the size range 3.2–5.6 µm and 5.6–10 µm of the phase 2 samples, which expressed an overlapping community
structure. From Fig. 6c, it can be seen that the size range 1.8–3.2 µm of phase 1 and 1–1.8 µm of phase 2 were found to group separately, suggesting the
presence of a nearly similar population structure (Fig. 6c). The data in Fig. 6 shows a higher diversity in phase 1 as compared to phase 2.

3.4. Insects and nematode pathogens and their diversity
The presence of a few insect and nematode fungal pathogens (Fig. 7) that could play a vital role in controlling the culex mosquitoes, nematodes, many insect
pests, and malarial mosquitoes were also identified in the bioaerosol samples during the sampling period (Lopez et al. 2014; Davies et al. 2021; Jiang et al.
2019; Khan et al. 2012; McKinnon et al. 2018; Pedrini et al. 2013; Ragavendran et al. 2019; Singh et al. 2013). They belonged to the phyla Ascomycota with the
predominance of Periconia digitata in both phases (Fig. 7a) and species like Beauveria bassiana, Metarhizium anisopliae, Metarhizium rileyi, and
Purpureocillium lilacinum indicating the diversity of pathogens sampled in phase 1 as compared to phase 2 (Fig. 7a, Table 1). Size resolved characterization
shows that the size ranges 1.8–3.2 µm and 3.2–5.6 µm was found to have high numbers of OTUs, i.e., 7 and 6, respectively, in phase 1 samples. In contrast,
the size range of 5.6–10 µm was found to dominate with 3 OTUs in the phase 2 samples (Fig. 7a).

Assessment of the diversity indices also has shown that the population of each size range has expressed a comparatively high diversity for phase 1 and
relatively lower diversity for phase 2 (Fig. 7b). Similarly, phase 1 expressed a higher evenness ranging from 0.1 to 0.9 compared to phase 2 with an evenness
ranging from 0.05 to 0.7. Following diversity index and evenness, the dominance D was found to be high in phase 2 samples with a maximum of D = 1
(Fig. 7b). PCoA (Fig. 7e) shows that all the size ranges of both phase 1 and phase 2 expressed a diverse population from each other except for the size ranges
3.2–5.6 µm and 5.6–10 µm during both sampling period, which expressed an overlapping community structure. From this, it is inferred that, though both the
phases shared overlapping communities at the size ranges 3.2–5.6 and 5.6–10 µm, phase 1 expressed higher diversity of size-specific OTUs compared to
phase 2.

3.5. Human pathogenic fungal burden in the bioaerosols and their diversity
Researchers worldwide have stated the emergence of human pathogenic fungal species due to the environmental stress experienced by the fungi. Most of the
phytopathogenic fungi develop resistance to the fungicides used, and this enables the fungal species to become more pathogenic as it can overcome the host
defense mechanism and the drugs used for treatment (Fisher et al. 2012; Rokas 2022; Sanglard 2016). Further, Pfaller (2012) has emphasized the potential
emergence of such fungal species as a significant threat to humankind, causing severe invasive infections in high-risk patients, especially those under
treatment, immunocompromised, and immunosuppressive patients. Assessment of human pathogenic bioaerosols of the samples has shown the presence of
nearly 29 OTUs (Fig. 7d). Among the pathogens observed, Ascomycota was found to be the dominant phyla, followed by Mucoromycota and Basidiomycota,
with the primary species being Aspergillus penicillioides in both the phases (Fig. 7d). Whereas species Candida diddensiae, Candida palmioleophila, Diutina
catenulata, Purpureocillium lilacinum, Veronaea botryosa, and Westerdykella dispersa were explicitly observed in the phase 1 (Fig. 7d). Similarly, Exophiala
mesophila and Exophiala oligosperma were explicitly observed in the phase 2 (Fig. 7d). As stated by researchers like Brown et al. (2012), Fisher et al. (2012,
2018), and Rhodes (2019) these pathogenic fungal bioaerosols were found to be capable of causing lethal diseases like opportunistic infections (Bezerra et
al. 2017; Rudramurthy et al. 2019), neonatal sepsis (Okolo et al. 2015), occasional pathogenic infections, candidiasis as nosocomial infection (Kim et al.
2020), candidemia, the intravenous catheter infection (Yamin et al. 2021), Hickman catheter associate fungemia (Whitby et al. 1996), allergy (Gunasekaran et
al. 2017), infection of immunodeficient and immunocompromised persons (Benedict and Mody 2016), nail infection, infection of Ketoacidosis patients,
cutaneous lesions (Vellanki et al. 2020), Golden tongue, infection of transplant patients, and angio-invasive infection (Table 1). Furthermore, these fungal
pathogens can infect animals, enhancing the possibility of human infections and severe epidemic incidences (Gnat et al. 2020, 2021; Köhler et al. 2015; WHO
2018).

Size fractioned assessment indicates that the size cutoff of 1.8–3.2 µm has shown the maximum number of OTUs during phase 1 and phase 2, i.e., 21 and 16
OTUs, respectively, followed by the other higher size ranges (Fig. 7d). Human fungal pathogens have shown the presence of highly diverse fungal pathogens
in all the size ranges of phase 1 and comparatively less diverse population in phase 2 (Fig. 7c). This denotes that most of the human pathogenic fungal
bioaerosols were specific to the size ranges varying between 1.8–10 µm as described by Fröhlich-Nowoisky et al. (2016), Guarnieri and Balmes (2014),
Hofmann (2011), Hussain et al. (2011) and Nazaroff (2016) with comparatively fewer bioaerosols burden in phase 2 implying the dominance of plant and
crop specific pathogens (Gnat et al. 2021; Köhler et al. 2015; WHO 2018). H values ranging from 0.3 (5.6–10 µm) to as high as 2 (1.0–1.8 µm) with an
evenness ranging from 0.1 (5.6–10 µm) to 0.8 (1.0–1.8 µm) and a relative dominance D ranging from 0.2 (1.0–1.8 µm) to 0.9 (5.6–10 µm) were observed in
phase 1. Phase 2 exhibited a diversity H of 0.3 (1.0–1.8 µm) to 1.5 (1.8–3.2 µm) with an evenness ranging from 0.1 (1.0–1.8 µm) to 0.5 (1.8–3.2 µm) and
dominance D ranging from 0.4 (1.8–3.2 µm) to 0.9 (1.0–1.8 µm) (Fig. 7c). From this, it is inferred that the size ranges 1.8–5.6 µm have shown the specificity
for diverse community structure of human pathogens as described by Guarnieri and Balmes (2014) and Krishnamoorthy et al. (2020). Further, PCoA infers that
the phase 1 and 2 samples comprised a highly diverse community in all the size ranges studied except for the size range 3.2–5.6 µm and 5.6–10 µm of phase
2 samples that were found to share overlapping communities (Fig. 7f). It is, however, important to note that the actual impact of the human pathogenic fungi
resulting in allergies and subsequent diseases would strongly depend on various additional factors such as the actual fungal load, the immune system
response of the individual exposed, the previous medical history of the individual exposed, etc. The data presented here, therefore, is just for nominal
information and does not necessarily represent or infer the effect on the community in the area of the study. Nevertheless, we believe such information for the
record is valuable.

3.6. Non-pathogenic fungal diversity and categories observed in the bioaerosols
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Along with the pathogenic fungal bioaerosols, many non-pathogenic fungal bioaerosols with a wide range of potential applications were also found in phase
1 and 2 samples collected during both sampling phases. These bioaerosols were further categorized based on their application and niche as the
saprophytic/environmental fungi and some beneficial strains such as biotechnologically and industrially important fungal species, medicinally important
fungal species, and nutritive edible mushrooms. Figure 3a and 3b (3) give information on the cumulative sequences observed in the non-pathogenic fungal
category observed in the bioaerosols.

3.6.1. Saprophytic/environmental fungal diversity of the bioaerosols
About 77 OTUs were observed as environmental fungal strains (62 OTUs), including saprophytes (15 OTUs) (Fig. 8a), spreading over four phyla, namely,
Ascomycota, Basidiomycota, Mucoromycota, and Chytridiomycota (Fig. 3). Aspergillus penicillioides was the most dominant species in both phases, followed
by Coprinopsis laani in phase 1 and Tilletiopsis washingtonensis in phase 2 (Fig. 8a). Other species observed include aquatic fungi (Jooste et al. 1990),
marine fungi (Wang et al. 2017), wood-loving fungi (Jang et al. 2012), xerotolerant fungi (Hirooka et al. 2016), soil fungi, environmental yeast (Li et al. 2021),
rare environmental mushrooms, fungi that grow on minerals and mineral-rich rocks (Goes et al. 2017; Jiang et al. 2018), extremotolerant fungi, weeping widow
mushrooms (Roberts and Evans 2011), dung fungi and mushrooms, etc. (Table 2). These environmental fungi and the saprophytes are generally omnipresent
and help to maintain the carbon-nitrogen cycle, the balance of decaying matters, and various other environmental factors and cycles (Dagenais and Keller
2009). Further, size-resolved analysis (Fig. 8a) inferred that the size range of 1.8–3.2 µm and 3.2–5.6 µm has shown high numbers of OTUs (48 and 41,
respectively) in phase 1. Whereas, in phase 2, the size range 1.0–1.8 µm has shown the presence of maximum OTUs of 29 followed by 27 OTUs each in size
range of 1.8–3.2 µm and 3.2–5.6 µm, respectively.
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Table 2
List of non-pathogenic fungal species observed during the sampling period and their beneficial properties

Fungal species Saprophytic/environmental
species

Biotechnological and industrial
species

Medicinal species Edible
species

References

Amauroascus
kuehnii

Common
saprophytic/environmental
fungi- isolated from animal
dungs, soil, and keratinous
surfaces of live or deceased
animals with keratinophilic
activity

- - - (Chlebicki and
Spisak 2016)

Agaricus gennadii - - - Salt-loving
edible
mushroom

(J. Wu, Liao,
and Lin 2020)

Agaricus rotalis Rare environmental mushroom - - - (Kerrigan et al.
2005)

Articulospora
proliferata

Aquatic hyphomycetes - - - (Jooste et al.
1990)

Aspergillus
fumigatus

Omnipresent saprophyte- plays
vital role in decaying matters
and maintains balance in
carbon-nitrogen cycle

- - - (Dagenais and
Keller 2009)

Aspergillus
penicillioides

Xerophilic saprophyte-
Common indoor fungi, present
in dust etc. especially papers
that too foxing papers

- - - (Stevenson et
al. 2017)

Aspergillus
subversicolor

Saprophyte - Commonly found
in damp indoor environments,
soil, plant debris, marine
environment, and food
products; often reported in dust
and in water-damaged building
materials, such as wallboards,
insulation, textiles, ceiling tiles,
and manufactured wood

      (Jurjevic,
Peterson, and
Horn 2012)

Aspergillus
sydowii

saprophytic fungi found in soil
and contaminate food. Also
causes death of sea fan corals

- - - (RYPIEN and
ANDRAS 2008)

Asterostroma
cervicolor

Common environmental fungi
having widespread distribution

- - - (Kirk et al.
2008)

Auricularia
nigricans

- - - Edible jelly
fungus
mainly
found in
trees and
mountains
also called
as cloud ear
fungus

(Nadir, Ali, and
Salih 2020)

Battarrea
phalloides

Saprophytic mushroom which
is at current risk of extinction

- - - (Gargano,
Venturella, and
Ferraro 2021)

Beauveria
bassiana

- Used as a biological insecticide to
control a number of pests such as
termites, thrips, whiteflies, aphids,
different beetles, bedbugs and
malaria transmitting mosquitoes

- - (McKinnon et
al. 2018; Pedrini
et al. 2013)

Bullera variabilis Ballistoconidium-forming
environmental yeast

- - - (NAKASE and
SUZUKI 1987)

Byssochlamys
spectabilis

- Industrial strain associated with the
spoilage of canned and fermented
food

- - (Samson et al.
2009)

Candida
ethanolica

- Industrial fodder yeast cultivated on
synthetic ethanol

- - (Rybářová,
Štros, and
Kocková-
Kratochvílová
1980; Xing et al.
2018)

Cerinomyces
canadensis

Environmental fungi
distributed in temperate
regions

- - - (Kirk et al.
2008)
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Fungal species Saprophytic/environmental
species

Biotechnological and industrial
species

Medicinal species Edible
species

References

Chlorophyllum
globosum

Environmental mushroom
found in tropical region

- - - (Ge et al. 2018)

Chlorophyllum
hortense

Big fleshy environmental
fungus (mushroom) that
occurs commonly in man-
made habitats especially in
compost-enriched garden soil,
lawns, and grazing pastures

- - - (Vizzini et al.
2014)

Coprinellus
aureogranulatus

A mushroom found in all
environments

- - - (Huang and
Bau 2018)

Coprinellus
heptemerus

Rare ink-cap environmental
mushroom

- - - (Redhead et al.
2001)

Coprinellus
heterosetulosus

Environmental mushroom - - - (Gierczyk et al.
2011)

Coprinellus
verrucispermus

Common saprophytic
mushroom of wood chips, leaf-
litter, and herbivores dung

- - - (Redhead et al.
2001)

Coprinopsis
acuminata

Commonly known as
humpback inkcap; grows on
herbivore dung

- - - (Gierczyk et al.
2011)

Coprinopsis
gonophylla

Environmental mushroom - - - (Redhead et al.
2001)

Coprinopsis laanii Environmental mushroom that
commonly grows on trees

- - - (Redhead et al.
2001)

Coprinopsis
macrocephala

Environmental mushroom
found in horse dung

- - - (Redhead et al.
2001)

Cunninghamella
echinulata

A soil saprotroph forming
rhizoids especially in the soil
rich in nitrogen, phosphorus,
and potassium

- - - (de Souza et al.
2018)

Cystobasidium
lysinophilum

Environmental fungi - - - (Q. M. Wang et
al. 2015)

Devriesia fici Fungi associate with marine
algae and is a marine fungus.
The genus has been
transferred to Neodevriesia

- - - (M. M. Wang et
al. 2017)

Dichotomocladium
sphaerosporum

Environmental fungi found in
dung

- - - (Benny and
Benjamin 1993)

Diutina catenulata Ascomyceteous yeast isolated
from environmental source
that generally acts as food
contaminant

- - - (O’Brien et al.
2018)

Entoloma infula Environmental mushroom - - - (Kirk et al.
2008)

Exidia japonica Saprophytic mushroom that
grows in freshly fallen dead
wood and produces gelatinous
biocorp

- - - (Spirin,
Malysheva, and
Larsson 2018)

Flammulina
velutipes

- - - A special
edible
mushrooms
which is
also called
as velvet
shank

(Tang et al.
2016)

Fusarium penzigii Environmental fungi observed
in soil and dead plant
substrata

- - - (Schroers et al.
2009)

Fuscoporia senex Environmental fungi capable
of decaying wood

- - - (Jang et al.
2012)

Galerina laevis Environmental mushroom that
are toxic

- - - (Enjalbert et al.
2004)
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Fungal species Saprophytic/environmental
species

Biotechnological and industrial
species

Medicinal species Edible
species

References

Ganoderma
lucidum

- - Used as herbal
medicine and has a
long history of use for
promoting health and
longevity

- (Unlu et al.
2016)

Ganoderma
sichuanense

- - Flat polyporous
medicinal mushroom
that has nutritional
and therapeutic
values and has been
used in ancient Asian
medicine

- (Yao et al.
2020)

Geastrum
schmidelii

Environmental dwarf earthstar
mushrooms that grow in
alkaline rich soil or calcareous
soil

- - - (Jeppson,
Nilsson, and
Larsson 2013)

Geastrum triplex An inedible fungus found in
the detritus and leaf litter of
hardwood forests

- - - (Kirk et al.
2008)

Gloeophyllum
carbonarium

Rare environmental
basidiomycota

- - - (Yu, Dai, and
Wang 2004)

Gymnopilus
underwoodii

Environmental mushroom that
grows on wood

- - - (Guzmán-
Dávalos et al.
2003)

Hannaella
kunmingensis

Environmental yeast-like fungi - - - (Han et al.
2017)

Hannaella oryzae Environmental yeast
associated with plants and soil

- - - (Q. Li et al.
2021)

Hansfordia
pulvinata

- Antifungal activity against the
phytopathogenic fungi
Cladosporium fulvum of tomato
plant

- - (Iida et al.
2018)

Hyphoderma
mutatum

Environmental basidiomycetes
that grow on trees

- - - (Telleria et al.
2012)

Hyphodontia
niemelaei

Environmental basidiomycetes - - - (Wu 2001)

Hypholoma
fasciculare

Saprotrophic poisonous
mushroom also known as
sulfur tuft or clustered
woodlover - a common
woodland mushroom

- - - (Demirel and
Uzun 2004)

Inocybe curvipes Poisonous mushrooms that
occur in urban and sub-urban
habitats. Also, found in trees
and local environments

- - - (Buyck and
Eyssartier
1999)

Irpex lacteus Common crust fungi found in
tropical region

- - - (Novotný et al.
2000)

Kluyveromyces
lactis

- Yeast used for genetic studies and
industrial applications. It has the
ability to assimilate lactose and
convert it to lactic acid

- - (Fukuhara
2006)

Knufia
marmoricola

Environmental fungi isolated
from limestone. It is an
extremotolerant rock inhabiting
fungus

- - - (OWCZAREK-
KOŚCIELNIAK
and
STERFLINGER
2018; Roberts
and Evans
2011)

Lacrymaria
lacrymabunda

Grows in woodlands, gardens,
and park are commonly known
as weeping widow mushroom

- - - (Roberts and
Evans 2011)

Lentinus
squarrosulus

- - - Common
edible
mushroom
with potent
antioxidants

(Mhd Omar et
al. 2011)
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Fungal species Saprophytic/environmental
species

Biotechnological and industrial
species

Medicinal species Edible
species

References

Lenzites betulina - - Commonly known as
gilled polypore, birch
mazegill, or
multicolor gill
polypore. It has
several medicinal
properties, including
antioxidant,
antimicrobial,
antitumor, and
immunosuppressive
activities. Mostly
found on barks

- (Liu et al. 2014)

Leptodiscella
africana

Environmental fungi that grow
in soil

- - - (Madrid et al.
2012)

Leucocoprinus
birnbaumii

Gilled mushroom commonly
found in flower pots and plant
pots

- - - (Adikaram,
Yakandawala,
and Jayasinghe
2020)

Metarhizium rileyi - It is an entomopathogenic fungi
used as biopesticide

- - (Binneck,
Lastra, and
Sosa-Gómez
2019)

Morchella
septimelata

Environmental fungi - - - (Kuo et al.
2012)

Mortierella exigua - Saprophytic fungi found in soil
which has the ability to undergo
diverse bio-transformations or
accumulation of unsaturated fatty
acids making them attractive for
biotechnological applications

- - (Vadivelan and
Venkateswaran
2014)

Myceliophthora
thermophila

- A thermophilic fungus that grows at
45–50 C, efficiently degrades
cellulose, and used in biofuel
production

- - (J. Li et al.
2020)

Mycothermus
thermophilus

- Thermophilic fungi have received
substantial attention in industry for
their potential to produce
thermostable enzymes and as
production platforms tolerant of
high temperatures

- - (Natvig et al.
2015)

Myrmecridium
schulzeri

Uncommon soil saprophyte of
worldwide distribution. It has
also been isolated from plant
detritus

- - - (Rezakhani et
al. 2019)

Panaeolus
antillarum

Commonly seen wild grey
mushroom that grows in dung

- - - (Desjardin
2017)

Panaeolus
papilionaceus

Common little brown
mushroom that feeds on dung

- - - (Murrill 1909)

Papiliotrema
terrestris

- Basidiomycota that produces β-
galactosidase oligosaccharides

- - (Ke, Fulmer, and
Mizutani 2018)

Penicillium
aurantiogriseum

- Biotechnologically important-cheese
production

- - (Kandasamy et
al. 2020)

Penicillium
citrinum

- - Medicinal fungi - (Sharma et al.
2021)

Penicillium
dravuni

A marine derived species
especially from marine algae

- - - (Janso et al.
2005)

Penicillium
multicolor

- - Medicinal fungi
produce
antimycobacterial
compound

- (Hemtasin et al.
2016)

Penicillium
polonicum

- Produces penicillic
acid, verucosidin, patulin, anacine, 3-
methoxyviridicatin and glycopeptide

- - (Valente et al.
2021)

Peniophorella
pubera

Environmental fungi - - - (Yurchenko, Wu,
and Maekawa
2020)
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Fungal species Saprophytic/environmental
species

Biotechnological and industrial
species

Medicinal species Edible
species
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Peziza buxea An environmental cup-fungi
appears in different color

- - - (Kirk et al.
2008)

Peziza vesiculosa It is found on nutrient-rich
soils, rotting straw
and manure and can often be
seen on compost heaps. This
species is
considered poisonous

- - - (Kirk et al.
2008)

Phanerochaete
chrysosporium

Known as crust fungi and
white rot fungi that degrades
lignin

- - - (Ganesh Kumar,
Sekaran, and
Krishnamoorthy
2006)

Physcia dubia It is known as blue-gray rosette
lichen and powder-back lichen.
It is calcareous, basaltic, and
siliceous. Grows on rocks,
bones, barks, and soil. Very
common in Europe, North
America and New Zealand, and
more patchily distributed in
South America, Asia, Australia
and Antarctica

- - - (Sonina et al.
2017)

Pichia kluyveri - Yeast helps in fermentation of wine
and improves wine quality

- - (Méndez-
Zamora et al.
2020)

Pichia
membranifaciens

- Used in fermentation, an industrial
strain that controls the growth of
Botrytis cinerea that causes grey
mold disease in grapevine

- - (Masih 2001)

Pluteus petasatus - - - Edible
mushroom

(Justo et al.
2011)

Psathyrella
candolleana

Commonly found in lawns - - - (Al-Habib,
Holliday, and
Tura 2014)

Psathyrella
phegophila

Environmental basidiomycetes - - - (Voto, Dovana,
and Garbelotto
2019)

Psathyrella
umbrina

Environmental mushroom - - - (Frank, Coffan,
and Southworth
2010)

Pseudozyma
hubeiensis

- Produces value added products like
endoxylanase and β-xylosidase

- - (Mhetras,
Liddell, and
Gokhale 2016;
Tanimura et al.
2016)

Punctularia
strigosozonata

Environmental basidiomycetes
otherwise called as tree
bacons. White-rot fungi with
powerful lignin degradation
efficiency and wood decaying
capabilities

- - - (Kirk et al.
2008)

Purpureocillium
lilacinum

Environmental fungi. It has
been isolated from cultivated
and uncultivated soils, forests,
grassland, deserts,
estuarine sediments and
sewage sludge, and insects

- - - (Chen, Lin, and
Hung 2019)

Pycnoporus
cinnabarinus

Rare polyporous
Basidiomycota that occurs in
cooler temperate regions
especially on trees or woods

- - - (Levasseur et
al. 2014)

Rasamsonia
composticola

Thermophilic species isolated
from compost

- - - (Su and Cai
2013)

Rhodonia placenta Brown rot fungi, occurring in
coniferous forest, and a
potential decaying fungus

- - - (Kölle et al.
2020)

Ruinenia clavata Yeast or yeast-like
Pucciniomycotina fungi

- - - (Q.-M. Wang et
al. 2015)
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Biotechnological and industrial
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Medicinal species Edible
species
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Saccharomycopsis
crataegensis

Environmental heterothallic
yeast

- - - (Kurtzman and
Wickerham
1973)

Sakaguchia oryzae Environmental
Pucciniomycotina fungi

- - - (Q.-M. Wang et
al. 2015)

Schizophyllum
commune

- - Omnipresent
medicinal mushroom.
Especially seen in
decaying trees after
rain

- (Arun, Eyini, and
Gunasekaran
2015)

Spiromastix
princeps

Xerotollerant fungi found in
house dust

- - - (Hirooka et al.
2016)

Spizellomyces
dolichospermus

Found in soil and mainly in
aquatic habitats

- - - (Wakefield et al.
2010)

Sporobolomyces
bannaensis

Environmental
ballistoconidium forming yeast

- - - (Zhao 2003)

Sporobolomyces
phaffii

Environmental basidiomycetes - - - (WANG and BAI
2004)

Stereum hirsutum Also called false turkey tail and
hairy curtain crust. It is a
fungus typically forming
multiple brackets on dead
wood

- - - (Grass et al.
2011)

Talaromyces
euchlorocarpius

Soil fungi - - - (Yilmaz et al.
2014)

Talaromyces
sayulitensis

Grows in mineral rich
substrates like oil shale

- - - (de Goes et al.
2017; Jiang et
al. 2018)

Thermoascus
aurantiacus

- Secrete enzymes that deconstruct
biomass at high temperatures

- - (McClendon et
al. 2012)

Thermomyces
dupontii

- Produces low molecular weight
thermo-alkali-stable and mercury
ion-tolerant xylanase

- - (Seemakram et
al. 2020)

Tilletiopsis
washingtonensis

Saprophytic yeast-like fungi - - - (Richter et al.
2019)

Tomentellopsis
bresadolana

Environmental fungi that grow
on wood

- - - (Ordynets et al.
2017)

Trametes
versicolor

- - Medicinal
basidiomycetes

- (Knežević et al.
2018)

Trichoderma reesei Mesophilic filamentous fungi,
secretes large quantities of
cellulolytic enzymes like
cellulase and hemicellulase

- - - (Fonseca,
Parreiras, and
Murakami
2020;
Rantasalo et al.
2019)

Trichothecium
crotocinigenum

- - Medicinal value –
produces
antimicrobial
compounds

- (Yang et al.
2018)

Virgaria nigra - Biotechnologically important strain-
produces 2,7-dihydroxy
naphthalene, virgaricin B, and
virgaricin

- - (ANDO,
YOSHIDA, and
OKUHARA
1988; Samy et
al. 2022)

Shannon diversity analysis (Fig. 8b) states that the size range 1.0–1.8 µm of phase 1 has shown the presence of a highly diverse population with an H value
of 2.7. Similarly, phase 2 has shown the maximum diversity of H = 2.1 in the size range of 1.8–3.2 µm. Following the diversity values observed, the phase 1
and 2 samples have explicitly shown high evenness and least dominance at the 1.0–1.8 µm and 1.8–3.2 µm size ranges, respectively (Fig. 8b). Figure 8c
exemplarily shows that the community structure of each size range had unique population diversity that was not overlapping with each other except for the
size ranges 3.2–5.6 µm and 5.6–10 µm of phase 2 implying the diverse nature of fungal bioaerosols observed.

3.6.2. Biotechnologically and industrially important fungi and their diversity
Fungi are of great interest, as these categories of fungi could help in the production of biotechnologically or industrially important (Table 2) products like
enzymes, proteins, antibiotics, organic acids, etc., that could help in food processing, could be used as medicines, fermentation, in food spoilage, bio-
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pesticides, etc. (Fukuhara 2006; McKinnon et al. 2018; Méndez-Zamora et al. 2020; Samson et al. 2009; Vadivelan and Venkateswaran 2014; Xing et al. 2018).
A total of about 20 OTUs of the biotechnologically and industrially important fungi were obtained during the sampling. They were found to spread over the
three major phyla: Basidiomycota, Ascomycota, and Mortierellamycota, with the predominance of Basidiomycota in both phases. Further, size ranges 1.8–3.2
µm and 3.2–5.6 µm of phase 1 samples were found to show high numbers of OTUs whereas, in phase 2, size range 1.0–1.8 µm showed the highest number
of OTUs (Fig. 8a). Moreover, Beauveria bassiana, Kluyveromyces lactis, Metarhizium rileyi, Myceliophthora thermophila, Pichia kluyveri, Pichia
membranifaciens, Pseudozyma hubeiensis, Thermomyces dupontii, Trichoderma reesei, and Virgaria nigra were the species uniquely observed in the phase 1
samples (Fig. 8a). Among the biotechnologically and industrially important fungi observed in the samples, Penicillium polonicum was the most important
member with widespread applications like the production of penicillic acid, verucosidin, patulin, anacine, 3-methoxyviridicatin, and glycopeptides (Table 2)
(Valente et al. 2021).

Shannon diversity index H has shown that phase 1 was comparatively diverse compared to the phase 2 samples with a maximum H value of 1.6 at the size
ranges 1.0–1.8 µm, 1.8–3.2 µm, and 5.6–10 µm of phase 1 and size range 1.0–1.8 µm of phase 2 samples (Fig. 8b). Similarly, maximum evenness of 0.9 was
observed at the size ranges of 1.0–1.8 µm in both the phases. Further, from Fig. 8c, it is inferred that the intercommunity diversity was high among the
different size ranges of phase 1 and 2 samples with no observable overlapping communities. Concurrently, size ranges 1.0–1.8 µm of phase 1 were found to
group with the size ranges 1.0–1.8 µm and 1.8–3.2 µm of phase 2 samples, inferring the presence of a nearly similar fungal community structure. This
implies that the biotechnologically and industrially important fungal bioaerosols of the samples were found to have a fungal diversity with a wide range of
application and was also found to have high inter and intra-community diversity.

3.6.3. Medicinally important fungal bioaerosols
About 8 OTUs of the medicinally important fungal bioaerosols were observed during both sampling phases (Hemtasin et al. 2016; K. Liu et al. 2014; Unlu et al.
2016; Yao et al. 2020). Basidiomycota was found to be abundant in phase 1, and Ascomycota was found to be abundant in phase 2. Lenzites betulina, well
known for its anticancer and antimicrobial activity, was uniquely observed in phase 1, and Ganoderma lucidum, which helps stabilize blood glucose levels,
immune system modulation, hepatoprotection, bacteriostasis, etc., was explicitly observed in phase 2 (Table 2). Table 2 elaborates on the species of medicinal
fungal bioaerosols observed in phase 1 and phase 2 and their medicinal properties. Trametes versicolor is the potential strain among the medicinal fungi
observed in the bioaerosols with various medical and immunological applications that includes activation of the reticuloendothelial system, modulation of
cytokines with the enhanced production of INF-γ and IL-2, enhancement of the viability of dendritic cells, maturation of the T-cells, enhanced activity of natural
killer cells, production of antibody, antitumor effects, and anticancer effects (Table 2). Further, from Table 2, it is inferred that the fungal species observed in
the bioaerosols had high nutritional and therapeutic values. Some were able to secrete antimycobacterial compounds and plant growth-promoting hormones,
along with the presence of compounds that are herbal medicines, anti-phytopathogenic agents, immunity boosters for certain cancers, enhance gut health,
reduce inflammation, reduce fatigue, improve insulin resistance, and detoxify xenobiotics (Table 2 and the reference therein). Size fractioned characterization
has shown that the size range 1.8–3.2 µm of phase 1 samples has shown the highest OTU. In the phase 2 samples, 7 OTUs each were observed at the size
range 3.2–5.6 and 5.6–10 µm (Fig. 8a).

Diversity analysis states that the phase 2 samples have shown a higher intra-community diversity than phase 1 samples (Fig. 8b). Evenness of phase 1 and 2
samples was found to be similar except for the size range 1.0–1.8 µm and 1.8–3.2 µm. Dominance, D was found to be comparatively higher at the size range
of 1.0–1.8 µm of phase 2 samples with a value of 0.7, and in phase 1 samples, a D value of 0.6 was observed in size ranges 1.0–1.8 µm and 1.8–3.2 µm,
which is following the diversity values observed (Fig. 8b). Inter community diversity analysis using PCoA shows that the communities present in all the size
ranges have a unique non-overlapping population specifically (Fig. 8c). This also strongly suggests the medicinal strains observed in the bioaerosols have
exhibited a diverse community structure as compared to all other non-pathogenic categories observed in the bioaerosols samples.

3.6.4. Characterization of the edible mushroom composition in the bioaerosols
A very low concentration of edible mushrooms of the phyla Basidiomycota was observed in the bioaerosols during the phase 1 and 2 samples (Tang et al.
2016). Only 5 and 2 OTUs were observed in phases 1 and 2, respectively. Among these species, Agaricus gennadii, Flammulina velutipes, and Lentinus
squarrosulus, which are considered an important food supplement from ancient times due to their rich nutritional value (Wu et al. 2020), were observed only in
phase 1 (Fig. 8a). Size fractioned characterization has shown no observable sequences in size range 10–18 µm in phase 1 (Fig. 8a). Diversity analysis has
shown the dominance of a single OTU in various size ranges during both the phases (Fig. 8b). PCoA (Fig. 8c) has inferred that 1.8–3.2 µm of the phase 1
sample was found to have a diverse community structure different from the other size ranges (Fig. 8c). However, due to the presence of less number of OTUs
in phase 2, the diversity characteristics cannot be assessed as an actual representation.

3.6.5. OTUs shared among the non-pathogenic fungal communities
Figure 8d explains the shared fungal diversity present in each category of the non-pathogenic fungal communities. The fungal communities observed were
found to be unique for each category and were not found to share many common OTUs as observed in the crop pathogenic fungal communities (Fig. 5),
explaining the relatively sparse influence of environmental factors leading to fewer changes in the lifestyle of the fungal species observed. The common
environmental fungal category, including the saprophytes, has shown the presence of 69 and 44 OTUs in the specific phase 1 and 2 samples for that category.
At the same time, they were found to share a few common OTUs with the biotechnologically and industrially important fungal species observed. Interestingly,
other categories, like the medicinally important fungi and the edible mushrooms, have shown the presence of non-overlapping community structure as
observed in Fig. 8d. This suggests that the non-pathogenic species were found to be category-specific with no observable inter-category overlapping OTUs
except for the cumulative 3 OTUs shared by biotechnologically and industrially important category and saprophytic/environmental category (Fig. 8d).

3.7. Diversity of the overlapping communities among the observed pathogenic and non-
pathogenic categories
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The diversity analysis of OTUs that were shared between the phase 1 and 2 samples of each category and the overlapping OTUs (Fig. 9) shared among the
pathogenic and non-pathogenic categories suggest that most of the pathogenic and non-pathogenic fungal OTUs were found to share OTUs among the
different categories of the same phase explaining the mixed influence of the fungal bioaerosols over the observed categories. A similar observation was
reported by various researchers on the lifestyle changes adopted by the fungal pathogens with genetic modifications to overcome barriers like environmental
stress, use of pesticides and chemicals, and drugs with improved pathogenicity infecting multiple hosts (Couch et al. 2005; O’Connell et al. 2012). Following
this, phase 1 samples of the crop-specific fungal pathogen were found to share about 75% of OTUs with the phase 2 samples. Likewise, the plant pathogenic
fungal category of phase 1 was found to share 48.6%, insects and nematodes pathogens shared 50%, and human pathogenic fungi were found to share
about 70.4% with the corresponding phase 2 categories (Fig. 9). The beneficial fungal category like saprophytic/environmental fungi of phase 1 shared 54.9%,
biotechnological and industrial fungi shared 50%, medicinal shared 87.5%, and edible category shared about 40% with the corresponding phase 2 categories
(Fig. 9).

Further, Davies et al. (2021), Dean et al. (2012), Rhodes (2019), and Rokas (2022) have elaborated on the mixed influence of the fungal pathogens in an
ecosystem and have stated the potential emergence of drug-resistant fungal species as a threat to the ecosystem health as evidence of the lifestyle evolution
of the fungal species to overcome the stress posed by drugs. Also, it has been stated that the food supply chain would be under threat due to the emerging
resistant strains, the prevalence of spoilage organisms, increased use of crop monocultures, and exorbitant usage of fungicides (Benedict and Mody 2016;
Savary et al. 2012). The pivotal role played by the fungal bioaerosols in various ecosystem processes necessitates a better understanding of their global
biodiversity to know their ecosystem stability and function (Peay et al. 2016). Accordingly, crop pathogenic fungal communities of phase 1 and 2 samples
shared maximum OTUs of 32.5% and 29.6%, respectively, with the plant pathogenic fungi as they belong to a similar domain. Similarly, plant pathogens were
found to share 35.1% and 42% of OTUs with crop pathogens in phases 1 and 2, respectively (Fig. 9).

A unique scenario was observed with the insects and nematode pathogens. They were found to share OTUs only in phase 1, with human pathogens (12.5%),
saprophytic/environmental fungi (12.5%), and biotechnological and industrial fungi (25%). Similarly, the medicinal fungal community shared OTUs (12.5%
each) specifically with the phase 1 and 2 samples of the crop pathogenic fungi. More interestingly, the edible fungal community was found to share OTUs
specifically with phase 1 of the crop pathogenic fungal community (Fig. 9). In contrast, human pathogens shared about 25.9% and 23.8% OTUs with phases 1
and 2 of saprophytic/environmental category, and the saprophytic/environmental category was found to share 9.9% and 11.1% OTUs of phase 1 and 2
samples with human pathogens, respectively. Likewise, the biotechnologically and industrially important fungal community was found to share 20% OTUs
each of phase 1 and 2 samples with the crop pathogens, as generally, most of them are used as biopesticides (Fig. 9). This explains the mixed influence
exhibited by the fungal bioaerosols on the pathogenic and beneficial properties on the ecosystem health inferring the evolution and adaptation undergone by
the fungal species for better survival in the ecosystem as described by various researchers (Couch et al. 2005; Dean et al. 2012; O’Connell et al. 2012; Rhodes
2019; Rokas 2022). Further, Avery et al. (2019) and Bebber, Ramotowski, and Gurr (2013) have stated that climate change has an imperative influence on the
spread of fungal pathogens impeding the ecosystem's health. Therefore, maintenance of country-specific inventories could facilitate the early identification of
the pathogenic fungal invasion and alert the timely implementation of the control measures.

Conclusion
Assessment of the bioaerosols of the study region in two different phases has shown the presence of many pathogenic fungal OTUs that could cause lethal
diseases to plants, humans, animals, insects, and also that of non-pathogenic fungal OTUs that could benefit the ecosystem. Size-resolved diversity analysis
of the category-specific fungal communities suggests that the phase 1 sample expressed a high inter and intra-community diversity compared to the phase 2
samples of fungal OTUs explaining the influence exhibited by the fungal bioaerosols released from the crops and plants. Thus, the following inferences could
be made from the present study- (i) both the pathogenic and non-pathogenic fungal communities co-exist in the bioaerosols, which could have a mixed
effect/influence on the ecosystem and climate over a given region, (ii) the survival strategies (due to lifestyle evolution) adopted by the pathogenic fungal
species enabled their potential to cause infection in a wide range of hosts, and (iii) overall reduction in fungal bioaerosol richness as observed in the phase 2
samples may be due to the influence by the pathogen-host interaction of fungal propagules from the mature crops and plants.

The maiden attempt on the size-resolved diversity characterization of the pathogenic and non-pathogenic fungal bioaerosols showed that the fungal
bioaerosols are present in all the size ranges investigated in the present study, varying from 1–18 µm, with the size range 1–1.8 µm having a unique diversity
and 3.2–5.6 µm and 5.6–10 µm having a similar diversity in majority of the categories. However, further comprehensive size-resolved genomic
characterization studies in distinct seasons and contrasting locations, coupled with dispersion modeling, pathogen-host interaction studies, and host
susceptibility studies, are required to understand the size-resolved diversity variations and its implications on the long-range transport of the fungal
bioaerosols.

Such studies on the bioaerosols characterization and maintenance of country or region-specific inventories of the fungal biodiversity would ensure biosecurity,
risk assessment measures, and to development of trade policies (Cai et al. 2011; Hyde et al. 2010) among the environmentally contrasting regions. It could
also play a vital role in the early prediction of pathogenic fungal invasion and help alert the concerned to implement necessary precautionary measures to
protect the ecosystem's health and global food security.
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Figures

Figure 1

Aerodynamic size distribution of particulate matter (PM10) and the DNA sequences count obtained during the Next-Generation Sequencing (NGS) analysis: a)
aerodynamic mass size distribution obtained (µg/m³); b) aerodynamic particle size distribution of the cumulative sequences obtained; c) aerodynamic particle
size distribution of the assigned (identified up to species-level) sequences obtained among the cumulative sequences. The thick lines in the size distribution
plots are the best fit to guide the eyes; and d) abundance of DNA sequences and phyla in percentage (UA - Unassigned sequences, A - Assigned sequences, As
- Ascomycota, Ba - Basidiomycota, Mu - Mucoromycota, Mo - Mortierellamycota, Ch - Chytridiomycota) and the obtained fungal-specific size fractioned family
level classification of the assigned OTUs where 1-5 in green color represents the size ranges 10 – 18 µm, 5.6 – 10 µm, 3.2 – 5.6 µm,1.8 – 3.2 µm, and 1.0 –
1.8 µm of phase 1 samples respectively and 1-5 in red color represents the size ranges 10 – 18 µm, 5.6 – 10 µm, 3.2 – 5.6 µm,1.8 – 3.2 µm, and 1.0 – 1.8 µm
of phase 2 samples respectively
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Figure 2

SEM images confirming the presence of fungal bioaerosols covering a wide size range, explaining the fungal size distribution observed in the study during
phase 1 (i - xx) and phase 2 (xxi - lxiv)
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Figure 3

Circular plot representing the qualitative and quantitative measurements (ticks represent the DNA sequences count obtained for each phylum) of significant
functional categories of pathogenic and non-pathogenic fungal bioaerosols present in phase 1 (a) and phase 2 (b) samples, respectively: 1) ring representing
the different fungal phyla observed during the sampling period; 2) ring representing the different OTUs/species observed corresponding to each phylum. The
different colors in the ring represent the various OTUs labeled at the bottom of the circular plot; 3) the ring explains the various non-pathogenic categories of
fungal OTUs observed, like the saprophytic/environmental and the beneficial fungal OTUs; 4) represents the OTUs of cumulative plant pathogens; 5)
represents the cumulative crop pathogens; 6) shows the OTUs of cereals; 7) shows the OTUs of pulses; 8) shows the OTUs of cash crops; 9) shows the OTUs
of fruits; 10) shows the OTUs of vegetables; and 11) shows the OTUs of spices
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Figure 4

Detailed size-resolved crop-specific fungal OTUs and their diversity: a) size-resolved crop-specific fungal OTUs obtained for the phase 1 and phase 2 samples,
respectively. The different colors of the ticks on the left axis represent the different species that are susceptible to cause infections in the different crop
categories such as cereals, pulses, cash crops, fruits, vegetables, and spices. The size-resolved relative abundance is color coded, and the thick black lines
represent the cumulative number of sequences observed for each species during the study period; b) size-resolved intra-community diversity analysis
explaining the Shannon diversity indices, evenness, and Simpson’s dominance of the crop pathogenic fungal OTUs observed; c) size-resolved inter-community
(PCoA) analysis of the crop pathogenic fungal OTUs observed
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Figure 5

Details of the specific OTUs of crop pathogens of each phase (phase 1 and 2 separately) that infected more than one crop host and also the cumulative OTUs
shared within the phases: red line network shows the OTUs shared among the phase 1 and phase 2 samples for each category and the green line network
represents the OTUs that could infect more than one host species. The numbers inside the colored squares and circles represent the key to identifying the
various species. The percentages written in different colors on the side of each category represent the percentage of sequences shared with the other
categories
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Figure 6

Detailed size-resolved plant-specific fungal OTUs and their size-resolved diversity: a) size-resolved plant-specific fungal OTUs obtained for the phase 1 and
phase 2 samples, respectively. The size-resolved relative abundance is color coded, and the thick black lines represent the cumulative number of sequences
observed for each species during the study period; b) size-resolved intra-community diversity analysis explaining the Shannon diversity indices, evenness, and
Simpson’s dominance of the plant pathogenic fungal OTUs observed; c) size-resolved inter-community (PCoA) analysis of the plant pathogenic fungal OTUs
observed
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Figure 7

Detailed size-resolved insect and human-specific fungal OTUs and their size-resolved diversity: a) size-resolved insect-specific fungal OTUs obtained for the
phase 1 and phase 2 samples, respectively. The size-resolved relative abundance is color coded, and the thick black lines represent the cumulative number of
sequences observed for each species during the study period; b) size-resolved intra-community diversity analysis explaining the Shannon diversity indices,
evenness, and Simpson’s dominance of the insect pathogenic fungal OTUs observed; c) size-resolved intra community diversity analysis explaining the
Shannon diversity indices, evenness, and Simpson’s dominance of the human pathogenic fungal OTUs observed; d) size-resolved human pathogenic fungal
OTUs obtained for the phase 1 and  phase 2 samples respectively; e) size-resolved inter-community (PCoA) analysis of the insect pathogenic fungal OTUs
observed; f) size-resolved inter-community (PCoA) analysis of the human pathogenic fungal OTUs observed



Page 43/44

Figure 8

Detailed size-resolved non-pathogenic category comprising the environmental and beneficial fungal OTUs observed like saprophytic/environmental strains,
biotechnologically and industrially important strains, medicinally important, and the edible mushrooms and their size fractioned diversity: a) size fractioned
fungal OTUs obtained for the phase 1 and phase 2 samples respectively. The size-resolved relative abundance is color coded, and the thick black lines
represent the cumulative number of sequences observed for each species during the study period; b) size fractioned intra-community diversity analysis
explaining the Shannon diversity indices, evenness, and Simpson’s dominance; c) size fractioned inter-community (PCoA) analysis; d) Venn diagram
explaining the common OTUs shared among the different non-pathogenic categories observed in both the phase 1 and phase 2 samples respectively
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Figure 9

Diversity of the overlapping communities among the observed pathogenic and non-pathogenic categories: green line network explains the OTUs shared
among the phase 1 and phase 2 samples of each category, and the red line network represents the OTUs that could infect more than one host species of the
pathogenic and non-pathogenic fungal species (CF- crop pathogenic fungal category; INF- insect and nematode pathogens category; SEF-
saprophytic/environmental fungal category; BIF- biotechnologically and industrially important fungal category; HF- human pathogenic fungal category; MF-
medicinally important fungal category; EM- edible mushrooms; and PF- plant pathogenic fungal category). The numbers inside the colored squares and circles
represent the key to identifying the various species. The percentages written in different colors on the side of each category represent the percentage of
sequences shared with the other categories.
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