Electronic Supplementary Information (ESI) How different are marine microbial natural products compared to their terrestrial counterparts?

Tanja M. Voser^{ab}, Max D. Campbell^{ac} and Anthony R. Carroll^{*ab}

^{a.} School of Environment and Science, Griffith University, Gold Coast, Australia. ^{b.} Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia. ^c Australian Rivers Institute - Coasts and Estuaries, Griffith University, Nathan, Australia.	
Comparison Between the Three Different Types of Analysis	1
Overlap Between Marine and Terrestrial Microbial NPs	1
Overlap between the Three Different Groups (Clusters)	2
Cluster Analysis on Extended Fingerprint (5000 Clusters)	3
Overlap Between Marine and Terrestrial Microbial NPs	3
Marine Microbial Natural Products and their overlap with Terrestrial Microbial NPs	4
Overlap between the Three Different Groups (Clusters)	5
Overlap between the Three Different Groups (Compounds)	6
Overlap between the Three Different Groups (Compounds & Accounting for Halogenation)	7
Overlap of NPs from Marine Macro-organisms	8
Overlap of NPs from Marine Macro-organisms (Accounting for Halogenation)	9
Overlap of the Marine Microbial NPs	10
Closer Look at the Different Overlaps in each Phyla and Genera	11
Top Producers of Marine Only Compounds	16
World Maps	17
Cluster Analysis on PubChem Fingerprint (5000 Clusters)	21
Overlap Between Marine and Terrestrial Microbial NPs	21
Marine Microbial Natural Products and their overlap with Terrestrial Microbial NPs	22
Overlap between the Three Different Groups (Clusters)	23
Overlap between the Three Different Groups (Compounds)	24
Murcko Scaffold Analysis (9195 Scaffolds)	25
Overlap Between Marine and Terrestrial Microbial NPs	25
Marine Microbial NPs and their overlap with Terrestrial Microbial NPs	26
Overlap between the Three Different Groups (Scaffolds)	27
Overlap between the Three Different Groups (Compounds)	28
Overlap of the Marine Microbial NPs	29
Closer Look at the Different Overlaps in each Phyla and Genera	30
Top Producers of Marine Only Compounds	35
Similarity Analysis of the Scaffolds	36
World Map	37
Chemical Structures mentioned in the Highlight	

Comparison Between the Three Different Types of Analysis

Overlap Between Marine and Terrestrial Microbial NPs

Fig. S1 a) Overlap between marine (blue) and terrestrial (green) microbial molecular clusters. The three different graphs represent the different analysis performed. a) shows the results from the extended fingerprint cluster analysis (which resulted in a total of 5000 clusters), b) shows the results of the fingerprint cluster analysis using the PubChem fingerprint (with the total of 5000 clusters) and c) shows the results of the scaffold analysis, where the NPs were divided into 9,195 scaffolds.

Overlap between the Three Different Groups (Clusters)

Fig. S2 a) Nesting of NPs from marine macro-organisms (orange), marine microorganisms (blue) and terrestrial microorganisms (green). Total number of clusters in each section is given in black. The three different graphs represent the different analysis performed. a) shows the results from the extended fingerprint cluster analysis (resulting in a total of 5000 clusters), b) shows the results of the fingerprint cluster analysis using the PubChem fingerprint (with the total of 5000 clusters) and c) shows the results of the scaffold analysis, where the NPs were divided into 9,195 scaffolds.

Cluster Analysis on Extended Fingerprint (5000 Clusters)

Overlap Between Marine and Terrestrial Microbial NPs

Fig. S3 a) Overlap between marine (blue) and terrestrial (green) microbial molecular clusters. It shows that 78.9% of the marine natural products clusters are nested amongst terrestrial clusters. Numbers indicate the total number of clusters in each section. b) Overlap between the marine (blue) and terrestrial (green) fungal NPs, with numbers representing clusters. c) Overlap of the marine (blue) and terrestrial (green) bacterial NPs.

Marine Microbial Natural Products and their overlap with Terrestrial Microbial NPs

Fig. S4 Total Number and Percentage of uniquely marine microbial NPs (blue) produced by organisms in different phyla vs marine microbial NPs that overlap with terrestrial microbial NPs (green).

Overlap between the Three Different Groups (Clusters)

Fig. S5 Nesting of NPs from marine macro-organisms (orange), marine microorganisms (blue) and terrestrial microorganisms (green). Total number of clusters in each section is given in black. Smaller numbers represent percentages of total clusters for each biota group. Blue numbers for example relate to the percentage of marine microbial NPs clusters in each section as a proportion of the total 2467 marine microbial NP clusters

Overlap between the Three Different Groups (Compounds)

Fig. S6 Nesting of NPs from marine macro-organisms (orange), marine microorganisms (blue) and terrestrial microorganisms (green). Total number of NPs in each section is given in black. Smaller numbers represent percentages of total NPs for each biota group. Blue numbers for example relate to the percentage of marine microbial NPs in each section as a proportion of the total 9598 marine microbial NPs. The small orange numbers represent total NPs from each biota group in each intersection. For example, 3219 in the terrestrial microorganism/marine macro-organism intersection represents terrestrial microorganism/marine macro-organism intersection represents terrestrial microbial NPs.

Overlap between the Three Different Groups (Compounds & Accounting for Halogenation)

Fig. S7 Nesting of NPs from marine macro-organisms (orange), marine microorganisms (blue) and terrestrial microorganisms (green) with halogenated NPs are removed from common clusters. Total number of NPs in each section is given in black. Smaller numbers represent percentages of total NPs for each biota group. Blue numbers for example relate to the percentage of marine microbial NPs in each section as a proportion of the total 9598 marine microbial NPs. The small orange numbers represent total NPs from each biota group in each intersection. For example, 3052 in the terrestrial microorganism/marine macro-organism intersection represents terrestrial microbial NPs.

Overlap of NPs from Marine Macro-organisms

Fig. S8 Number of NPs isolated from marine macro-organisms, divided into their respective phyla. Colours indicate clusterings with NPs from other groups. NPs that cluster only amongst other marine macro-organisms NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested among marine microbial NPs are dark blue, and NPs that are nested amongst marine and terrestrial microbial NPs are shown in dark green.

Overlap of NPs from Marine Macro-organisms (Accounting for Halogenation)

Fig. S9 Number of NPs isolated from marine macro-organisms, divided into their respective phyla with halogenated NPs removed from common clusters. Different colours represent clusterings with NPs from other groups. NPs that cluster only amongst other marine macro-organsims NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested among marine microbial NPs are dark blue, and NPs that are nested amongst marine and terrestrial microbial NPs are shown in dark green.

Overlap of the Marine Microbial NPs

Fig. S10 Number of NPs isolated from marine microorganisms, divided into their respective phyla. Different colours represent clusterings with NPs from other groups. NPs that cluster only amongst other marine microbial NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested among NPs from marine macro-organisms are dark blue, and NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are shown in dark green.

Closer Look at the Different Overlaps in each Phyla and Genera

Fig. S11 Number of NPs isolated from **marine Actinobacteria**. Different colours represent clusterings with NPs from other groups. NPs that cluster only amongst other marine microbial NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are dark blue, and NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are shown in dark green.

Fig. S12 Number of NPs isolated from **marine Ascomycota**. Different colours represent clusterings with NPs from other groups.. NPs that cluster only amongst other marine microbial NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are dark blue, and NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are shown in dark green.

Fig. S13 Number of NPs isolated from **marine Cyanobacteria**. Different colours represent clusterings with NPs from other groups.. NPs that cluster only amongst other marine microbial NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are dark blue, and NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are shown in dark green.

Fig. S14 Number of NPs isolated from **marine Proteobacteria**. Different colours represent clusterings with NPs from other groups.. NPs that cluster only amongst other marine microbial NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested among NPs from marine macro-organisms are dark blue, and NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are shown in dark green.

Fig. S15 Number of NPs isolated from **marine Bacteriodetes a**), **Basidiomycota b**), **Frimicutes c**) and **Zygomycota d**). Different colours represent clusterings with NPs from other groups. NPs that cluster only amongst other marine microbial NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested among NPs from marine macro-organisms are dark blue, and NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are shown in dark green.

Top Producers of Marine Only Compounds

Table 1 List of the top producers of marine microbial NPs that do not nest with terrestrial NPs, according to the fingerprint cluster analysis. On the left are the top 20 genera according to the absolute number of marine only NPs and on the right are the top 20 genera ranked by proportion of NPs that cluster only with marine NPs versus total compounds produced in the marine environment by this genus. For proportion calculations, genera that produced less than 5 compounds in total were removed from the list.

nus	# of Marine Only	Genus	# of Marine Only	Total # of Molecules
	217	Cytophaga	7	9
	200	Pseudopestalotiopsis	16	23
	188	Chrysosporium	9	16
	58	Pseudonocardia	8	15
	34	Polyporales	4	8
	27	Spiromastix	19	39
	22	Photobacterium	8	17
	20	Kyrtuthrix	6	13
	19	Actinoalloteichus	22	49
	17	Trichobotrys	8	18
	17	Rhytidhysteron	7	16
	16	Epicoccum	17	39
	16	Hormoscilla	3	8
	16	Alteromonas	8	22
	13	Microbulbifer	4	11
	12	Okeania	10	30
	11	Micromonospora	34	108
	11	Marinactinospora	4	13
	11	Arthrinium	9	36
	10	Pleosporales	3	12

Fig. S16 World map, showing the distribution of the 8,577 marine microbial NPs that have reported coordinates for their microorganism collection. The colours show the proportion of marine microbial NPs found at a specific location (2° x 2° grid cell) that are unique to the marine environment and don't cluster with terrestrial NPs, according to the fingerprint cluster analysis. The number of NPs found at each location varied substantially, and to represent low numbers of NPs at a location, more transparent dots (log10 scale) have been used.

Fig. S17 World map, showing the distribution of the 5,626 marine microbial NPs isolated from Ascomycota that have collection coordinates reported for the microorganism. The colours show the proportion of marine microbial NPs found at a specific location (2° x 2° grid cell) that are unique to the marine environment and don't cluster with terrestrial NPs, according to the fingerprint cluster analysis. The number of NPs found at each location varied substantially, and to represent low numbers of NPs at a location, more transparent dots (log10 scale) have been used.

Fig. S18 World map, showing the distribution of the 1,659 marine microbial NPs isolated from Actinobacteria that have coordinates reported for the microorganism collection. The colours show the proportion of marine microbial NPs found at a specific location (2° x 2° grid cell) that are unique to the marine environment and don't cluster with terrestrial NPs, according to the fingerprint cluster analysis. The number of NPs found at each location varied substantially, and to represent low numbers of NPs at a location, more transparent dots (log10 scale) have been used.

Fig. S19 World map, showing the distribution of the 734 marine microbial NPs isolated from Cyanobacteria that have reported coordinates for microorganism collection. The colours show the proportion of marine microbial NPs found at a specific location (2° x 2° grid cell) that are unique to the marine environment and don't cluster with terrestrial NPs, according to the fingerprint cluster analysis. The number of NPs found at each location varied substantially, and to represent low numbers of NPs at a location, more transparent dots (log10 scale) have been used.

Cluster Analysis on PubChem Fingerprint (5000 Clusters)

Overlap Between Marine and Terrestrial Microbial NPs

Fig. S20 a) Overlap between marine (blue) and terrestrial (green) microbial molecular clusters. It shows that 78.9% of the marine natural products clusters are nested amongst terrestrial clusters. Numbers indicate the total number of clusters in each section. b) Overlap between the marine and terrestrial fungal NPs (green) and bacterial NPs (blue).

Fig. S21 Total number and percentage of uniquely marine microbial NPs (blue) produced by organisms in different phyla vs marine microbial NPs that overlap with terrestrial microbial NPs (green).

Overlap between the Three Different Groups (Clusters)

Fig. S22 Nesting of NP clusters from marine macro-organisms (orange), marine microorganisms (blue) and terrestrial microorganisms (green). Total number of clusters in each section is given in black. Smaller numbers represent percentages of total clusters for each biota group. Blue numbers for example relate to the percentage of marine microbial NPs clusters in each section as a proportion of the total 2370 marine microbial NP clusters

Fig. S23 Nesting of NPs from marine macro-organisms (orange), marine microorganisms (blue) and terrestrial microorganisms (green). Total number of NPs in each section is given in black. Smaller numbers represent percentages of total NPs for each biota group. Blue numbers for example relate to the percentage of marine microbial NPs in each section as a proportion of the total 9598 marine microbial NPs. The small orange numbers represent total NPs from each biota group in each intersection. For example, 2941 in the terrestrial microorganism/marine macro-organism intersection represents terrestrial microbial NPs.

Overlap between the Three Different Groups (Compounds)

Murcko Scaffold Analysis (9195 Scaffolds)

Overlap Between Marine and Terrestrial Microbial NPs

Fig. S24 a) Overlap between marine (blue) and terrestrial (green) microbial molecular scaffolds. It shows that 78.9% of the marine NP scaffolds are nested amongst terrestrial scaffolds. Numbers indicate the total number of scaffolds in each section. b) Overlap between the marine and terrestrial fungal NPs (green) and bacterial NPs (blue). Jaccard index shows that there is only a 6% overlap between bacterial and fungal NPs.

Marine Microbial NPs and their overlap with Terrestrial Microbial NPs

Fig. S25 Total number and percentage of uniquely marine microbial NPs (blue) produced by microbes from different phyla vs marine microbial NPs that overlap with terrestrial microbial NPs (green).

Fig. S26 Nesting of NP scaffolds from marine macro-organisms (orange), marine microorganisms (blue) and terrestrial microorganisms (green). Total number of scaffolds in each section is given in black. Smaller numbers represent percentages of total scaffolds for each biota group. Blue numbers for example relate to the percentage of marine microbial NPs scaffolds in each section as a proportion of the total 2444 marine microbial NP scaffolds

Overlap between the Three Different Groups (Compounds)

Fig. S27 Nesting of NP scaffolds from marine macro-organisms (orange), marine microorganisms (blue) and terrestrial microorganisms (green). Total number of NPs in each section is given in black. Smaller numbers represent percentages of total NPs for each biota group. Blue numbers for example relate to the percentage of marine microbial NPs in each section as a proportion of the total 9598 marine microbial NPs. The small orange numbers represent total NPs from each biota group in each intersection. For example, 933 in the terrestrial microorganism/marine macro-organism intersection **28** represents terrestrial microbial NPs.

Overlap of the Marine Microbial NPs

Fig. S28 Numbers of NPs isolated from marine microorganisms, divided into their respective phyla. Colours indicate if these NPs cluster with NPs from other groups. NPs that cluster only amongst other marine microbial NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested among NPs from marine macro-organisms are dark blue, and NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are shown in dark green.

Closer Look at the Different Overlaps in each Phyla and Genera

Fig. S29 All the NPs isolated from **marine Actinobacteria separated by genus**. Different colours represent clusterings with NPs from other groups, based on Murko scaffold analysis. NPs that cluster only amongst other marine microbial NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested among NPs from marine macro-organisms are dark blue, and NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are shown in dark green.

Fig. S30 All the NPs isolated from **marine Ascomycota separated by genus**. Different colours represent clusterings with NPs from other groups, based on Murko scaffold analysis. NPs that cluster only amongst other marine microbial NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested among NPs from marine macro-organisms are dark blue, and NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are shown in dark green.

Fig. S31 All NPs isolated from **marine Cyanobacteria separated by genus**. Different colours represent clusterings with NPs from other groups, based on Murko scaffold analysis. NPs that cluster only amongst other marine microbial NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested among NPs from marine macro-organisms are dark blue, and NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are shown in dark green.

Fig. S32 All NPs isolated from **marine Proteobacteria separated by genus**. Different colours represent clusterings with NPs from other groups, based on Murko scaffold analysis. NPs that cluster only amongst other marine microbial NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested among NPs from marine macro-organisms are dark blue, and NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are shown in dark green.

Fig. S33 All the NPs isolated from **marine Bacteriodeted a)**, **Basidiomycota b)**, **Firmicutes c)** and **Zygomycota d)**. Different colours represent clusterings with NPs from other groups, based on Murko scaffold analysis. NPs that cluster only amongst other marine microbial NPs are represented in light blue, NPs that are nested amongst terrestrial microbial NPs are light green, NPs that are nested among NPs from marine macro-organisms are dark blue, and NPs that are nested amongst terrestrial microbial NPs and NPs from marine macro-organisms are shown in dark green.

Top Producers of Marine Only Compounds

Table 2 List of the top producers of marine microbial NPs that do not nest with terrestrial NPs, according to the scaffold analysis. On the left are the top 20 genera according to the absolute number of marine only NPs and on the right are the top 20 genera ranked by proportion of NPs that cluster only with marine microbial NPs versus total compounds produced in the marine environment by this genus. For proportion calculations, genera that produced less than 5 compounds in total were removed from the list.

Genus	# of Marine	Genus	# of Marine	Total # of	Proportion of
	Only		Only	Molecules	Marine Only
Streptomyces	351	Jishengella	6	6	1.0
Aspergillus	314	Kyrtuthrix	13	13	1.0
Penicillium	218	Lechevalieria	9	9	1.0
Moorea	78	Mooreia	9	11	0.8
Lyngbya	57	Cytophaga	7	9	0.8
Bacillus	42	Chrysosporium	11	16	0.7
Phomopsis	32	Marinispora	6	9	0.7
Trichoderma	31	Hypocrea	5	9	0.6
Micromonospora	26	Lyngbya	57	104	0.5
Alternaria	25	Agrobacterium	3	6	0.5
Pseudoalteromonas	25	Alteromonas	11	22	0.5
Actinoalloteichus	24	Actinoalloteichus	24	49	0.5
Botryotinia	24	Marinactinospora	6	13	0.5
Stachybotrys	23	Rivularia	5	11	0.5
Cladosporium	21	Scytalidium	4	9	0.4
Acremonium	20	Saccharomonospora	5	12	0.4
Salinispora	19	Graphium	4	10	0.4
Fusarium	18	Arthrinium	14	36	0.4
Oscillatoria	18	Trichobotrys	7	18	0.4
Pestalotiopsis	18	Drechslera	5	13	0.4

Similarity Analysis of the Scaffolds

Fig. S34 Similarity analysis of the scaffolds. Scaffolds that cluster within a classification (same colour) are not a problem, they only inflate the scaffold count, which is eliminated once scaffolds are translated back into the actual number of NPs. However, cluster where there are mixed colours, can be problematic since they show a potential underestimate of the overlap between the different kingdoms. Clusters containing terrestrial only scaffolds (green) and marine only scaffolds (blue), are an example of where cyclic peptides have been sorted into different scaffolds but are structurally very alike (two examples are shown in the red circles).

Fig. S35 World map, showing the distribution of the 8,577 marine microbial NPs that have reported coordinates for microorganism collection. The colours show the proportion of marine microbial NPs found at a specific location (2° x 2° grid cell) that are unique to the marine environment and don't cluster with terrestrial NPs, according to the scaffold analysis. The number of NPs found at each location varied substantially, and to represent low numbers of NPs at a location, more transparent dots (log10 scale) have been used.

Chemical Structures mentioned in the Highlight

ò 0=

70

HO,

HO-

H₂N—

0

,OH

0.

0

