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Abstract

Early land plant mitochondrial genomes captured important changes of mitochondrial genome evolution when plants
colonized land. The chondromes of seed plants show several derived characteristics, e.g., large genome size variation, rapid
intra-genomic rearrangement, abundant introns, and highly variable levels of RNA editing. On the other hand, the
chondromes of charophytic algae are still largely ancestral in these aspects, resembling those of early eukaryotes. When the
transition happened has been a long-standing question in studies of mitochondrial genome evolution. Here we report
complete mitochondrial genome sequences from an early-diverging liverwort, Treubia lacunosa, and a late-evolving moss,
Anomodon rugelii. The two genomes, 151,983 and 104,239 base pairs in size respectively, contain standard sets of protein
coding genes for respiration and protein synthesis, as well as nearly full sets of rRNA and tRNA genes found in the
chondromes of the liverworts Marchantia polymorpha and Pleurozia purpurea and the moss Physcomitrella patens. The gene
orders of these two chondromes are identical to those of the other liverworts and moss. Their intron contents, with all cis-
spliced group I or group II introns, are also similar to those in the previously sequenced liverwort and moss chondromes.
These five chondromes plus the two from the hornworts Phaeoceros laevis and Megaceros aenigmaticus for the first time
allowed comprehensive comparative analyses of structure and organization of mitochondrial genomes both within and
across the three major lineages of bryophytes. These analyses led to the conclusion that the mitochondrial genome
experienced dynamic evolution in genome size, gene content, intron acquisition, gene order, and RNA editing during the
origins of land plants and their major clades. However, evolution of this organellar genome has remained rather
conservative since the origin and initial radiation of early land plants, except within vascular plants.
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Introduction

Among major lineages of eukaryotes, land plants (embryo-

phytes) have mitochondrial genomes that exhibit several derived

features setting them apart from chondromes of other eukaryotes:

large and highly variable genome sizes, frequent intra-genomic

rearrangements, rich and varied intron contents, highly variable

RNA editing levels, and incorporation of foreign DNAs

[1,2,3,4,5,6]. When and how these evolutionary novelties arose

in land plants, which represent a clade spanning at least 475

million years of evolution [7], have remained largely unknown

until recently. Over the last twenty years, chondromes from

representatives of all major lineages of early land plants and some

charophytic algae have been sequenced. These include four

charophytes (Mesostigma viride [8], Chlorokybus atmophyticus [9],

Chaetosphaeridium globosum [10], and Chara vulgaris [11]), two

liverworts (Marchantia polymorpha [12] and Pleurozia purpurea [13]),

one moss (Physcomitrella patens [14]), two hornworts (Megaceros

aenigmaticus [15] (despite its change to Nothoceros aenigmaticus [16],

we will use the original name to be consistent with literature) and

Phaeoceros laevis [17]), and two lycophytes (Isoetes engelmanii [18] and

Selaginella moellendorffii [19]). These data show that the mitochon-

drial genomes experienced dynamic evolution during the origin

and early evolution of land plants but have remained rather stable

within liverworts and hornworts [6]. Further, these data and those

from seed plant chondromes [20,21,22,23,24,25,26,27,28,29,30]

suggest that the extremely fluid mitochondrial genomes first found

in flowering plants [31,32,33] are restricted to vascular plants.

More specifically, these sequenced chondromes indicate that the

mitochondrial genome size increased significantly during the

origin of land plants and had remained relatively constant in

bryophytes, which represent the first stage of land plant evolution

[34,35]. The wide genome size variation is seen so far mostly in

angiosperms [26]. Frequent intra-genomic rearrangements did not

occur until the emergence of vascular plants. Intron contents,

while being relatively stable within most of the major lineages of

land plants (liverworts, hornworts, and vascular plants), differ

significantly among these lineages. RNA editing clearly occurs in

liverworts, the most basal lineage of land plants [34,36,37], but

only two lycophytes, Isoetes and Selaginella, have been found to show

extremely high levels of editing so far [19,38]. Finally, no foreign

DNA has been seen in any of the bryophyte chondromes, and the
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first land plant that has sequences of both chloroplast and nuclear

origins in the chondrome is the lycophyte Isoetes [18].

To determine the mode of mitochondrial genome evolution

across the entire diversity of bryophytes, we sequenced chon-

dromes of the moss Anomodon rugelii and the liverwort Treubia

lacunosa. Anomodon rugelii is the second moss, after Physcomitrella

patens, that is sequenced for the chondrome. The two species span

much of the clade true mosses, which represents 94% of the moss

species diversity [39,40,41]. Treubia lacunosa represents one of the

two liverwort families (Treubiaceae and Haplomitraceae) in the

clade that is sister to all other liverworts [40,42]. Hence, these two

chondromes from critically positioned taxa add significantly to the

data that already exist and allow a comprehensive examination of

mitochondrial genome organization and evolution in early land

plants.

Results and Discussion

General Features of the Treubia and Anomodon
Mitochondrial Genomes

Both Treubia and Anomodon chondromes are assembled as single

circular molecules (Figs. 1 and 2, deposited in GenBank under

accessions JF973315 and JF973314). Their sizes are 151,983 and

104,239 base pairs (bp) respectively, with AT contents of 56.6%

and 58.8%. The percentages of the various sequence elements

(genes, exons, introns, and intergenic spacers) in the genome are

shown in Table 1.

Because this is the first time that mitochondrial genome

sequences from more than one species in each of the three

bryophyte clades are available, and similar data have also become

available from related charophytes and lycophytes recently, we will

provide some comparative analyses across major lineages of early

land plants on all aspects of the genomes discussed.

Comparison of the seven bryophyte chondromes with the Chara

chondrome shows that the genome size increased roughly by three

times during the origin of land plants and has been relatively stable

afterwards, especially within liverworts, mosses, and hornworts

(Table 1). The genome size variation seems to be more correlated

with the change in proportion of intergenic spacers. The AT

content in mitochondrial genomes does not show much variation

in Chara and the bryophytes.

RNA editing seems to occur in both Treubia and Anomodon

chondromes but at very low levels, as use of the standard genetic

code allowed annotation of almost all protein-coding genes but a

few that required reconstitution of start or stop codons and

removal of internal stop codons (Table 2). The low level of editing

in the Treubia chondrome is interesting, as its close relative

Haplomitrium likely has a significantly higher level of editing, at least

in nad1 and nad7 [43,44]. Given that both taxa are relic members

of an ancient lineage, such unequal levels of editing in the two taxa

are difficult to explain by any known mechanisms, adding another

example to the previously observed phenomenon of highly

lineage-specific occurrence of RNA editing in land plant

organellar genomes [45]. The low level of editing in the Anomodon

chondrome parallels the situation in the Physcomitrella chondrome,

where only 11 editing events occur in the entire genome [46].

However, some mosses such as Takakia may have high levels of

editing according to a comparative analysis of nad1 sequences [43].

No foreign DNA was detected in either Treubia or Anomodon

mitochondrial genome. This result is consistent with those of

several previous studies, which found no DNA of chloroplast

or nuclear origin in any of the five bryophyte chondromes

[12,13,14,15,17].

Gene Contents
The Treubia and Anomodon mitochondrial genomes contain

standard sets of protein-coding genes involved in respiration and

protein synthesis as found in the chondromes of the liverworts

Marchantia and Pleurozia and the moss Physcomitrella (Table S1 in

File S1). The ribosomal and transfer RNA genes in these two

chondromes are also similar to those in the liverwort and moss

mitochondrial genomes sequenced before. In fact, gene content of

the Anomodon chondrome is identical to that of the Physcomitrella

chondrome, even for pseudogenes.

There are several aspects that deserve special attention. First, in

the Treubia chondrome the genes involved in cytochrome c

biogenesis are either pseudogenized (ccmB and ccmFC) or lost

(ccmC and ccmFN). This is the first liverwort that has no functional

mitochondrial gene encoding for this enzyme complex. Previously,

two hornworts, Megaceros and Phaeoceros, were known to have no

functional mitochondrial gene for cytochrome c biogenesis [15,17]

(Table S1 in File S1). Second, nad7 seems to be a functional gene

in Treubia, similar to the situation in Haplomitrium [44]. In all other

liverworts that have been investigated, this gene is a pseudogene

[44], with a functional copy residing in the nuclear genome [47].

Third, trnTggu is absent in Treubia, as in Apotreubia, the other genus

of Treubiaceae, which was reported previously in a survey of trnA-

trnT-nad7 gene cluster in a wide variety of liverworts and mosses

[48]. This gene is present on the same strand as trnA and nad7 in

Chara, Blasia (the sister group of complex thalloid liverworts to

which Marchantia belongs), 10 diverse mosses (including Physcomi-

trella and Anomodon) [48], and two hornworts (in which nad7 has

been lost) [15,17] (Fig. 3). However, in Marchantia and four other

complex thalloid liverworts this gene is located on the opposite

strand in comparison to trnA and nad7; further, it is absent in 10

other complex thalloid liverworts apparently due to a loss in their

common ancestor [48]. Fourth, rpl10, previously known as an

open reading frame (ORF) in all five sequenced bryophyte

chondromes [12,13,14,15,17] and recently characterized as a

functional gene encoding ribosomal protein 10 in the large subunit

[49,50], is present in both Treubia and Anomodon. Fifth, rtl, which

codes for a reverse transcriptase, is a functional mitochondrial

gene in Treubia as in Marchantia. In Pleurozia, Physcomitrella, and

Anomodon, however, it is a pseudogene. In the two mosses and

Chara, rtl is located inside a group II intron, nad9i283 and nad3i211

respectively, whereas in the three liverworts it is a free-standing

gene positioned between cob and nad9, likely originating from a

group II intron-derived reverse transcriptase gene. Finally, trnRucu

and trnYgua both have a duplicated copy in the Treubia chondrome.

The two genes are next to each other (Figs. 1 and 3) and the

duplication involved both genes, which likely occurred in the

ancestor of all liverworts as the same gene arrangement is found in

all three sequenced liverwort chondromes. What is intriguing is

that in Marchantia, one copy of trnRucu appears to have given rise to

trnRucg, a tRNA gene that was lost in the mitochondrial genome of

the common ancestor of all green plants (Chlorophyta sensu stricto

and Streptophyta), but has been re-created from a duplicated copy

of either trnRucu in Marchantia and Chlorokybus or trnRacg in

Nephroselmis and Mesostigma by simply modifying the anticodon and

a few other nucleotides. The detailed evidence on this finding was

presented in a previous study by us when reporting the Pleurozia

mitochondrial genome [13].

There are 20 ORFs longer than 100 codons located in in-

tergenic spacers of the Treubia chondrome (Fig. 1), no such ORF

was detected in the Anomodon chondrome (Fig. 2). In Treubia, the

five relatively large ORFs, ORF145, ORF458, ORF131-2,

ORF197, and ORF312, are located in the long intergenic spacer

between rrn18 and rps4, and may represent unidentified genes.

The Early Land Plant Mitochondrial Genomes
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Nevertheless, none of these ORFs has a homolog in Marchantia or

Pleurozia and hence they may simply represent chance occurrences

of reading frames. Lack of ORFs in the Anomodon chondrome is

probably due to the overall genome size economy in the moss

mitochondrion (Table 1).

Comparison of mitochondrial gene contents among three

bryophyte lineages shows that liverworts and mosses are rather

similar in this regard, with only minor difference in the tRNA gene

complement (Table S1 in File S1). These two early lineages of land

plants have mitochondrial gene contents that can rival their close

charophytic alga relatives. On the other hand, hornworts have lost

or are in the process of losing many genes for both respiration and

protein synthesis, approaching the condition of two lycophytes

sequenced so far, Isoetes and Selaginella (Table S1 in File S1).

Two recent studies have reported pseudogene pieces in

intergenic spacers [48,51]. Systematic surveys of these gene pieces

Figure 1. The gene map of Treubia lacunosa mitochondrial genome. Genes (exons indicated as closed boxes) shown on the outside of the
circle are transcribed clockwise, whereas those on the inside are transcribed counter-clockwise. Genes with group I or II introns (open boxes) are
labeled with asterisks. Pseudogenes are indicated with the prefix ‘‘y’’.
doi:10.1371/journal.pone.0025836.g001
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are carried out here for all genes in all spacers of the seven

bryophyte chondromes. The three liverwort chondromes harbor a

large number of gene pieces in 30 spacers (Table S2 in File S1).

The two hornwort chondromes contain only nad6 pseudogene

pieces in the nad4-nad5 and rrn18-trnMfcau spacers (Table S2 in File

S1). No such gene piece was found in any spacer in the two

moss chondromes, almost certainly caused by the overall genome

compactness in the moss mitochondria. These gene pieces are

likely the results of retroposition as they lack any intron in cases of

intron-containing genes (at least one intron, cobi783, has been

retroposed separately from exons into three spacers (see below)).

Most of these pieces are rather short, accounting for only a small

portion of the gene. The only exceptions are the pieces for cob in

liverworts and nad6 in hornworts, which account for over 80% of the

gene length in both cases. In addition, some of these pieces were

probably retroposed into the spacers in the common ancestor of all

liverworts as they are present in the three species, and others were

resulted from more recent retroposition events in more restricted

scopes of taxa. Finally, some genes or portions of a gene seem to be

favored targets of retroposition, as their pieces appear in more than

one spacer, e.g., atp8, ccmFC, cob, cox2, nad2, rpl2, rps7, and rtl (Table

S2 in File S1). No piece of ribosomal RNA or tRNA gene was

detected in any spacer. At least one group II intron, cobi783, was

retroposed (see below), but no systematic survey was conducted for

introns because sequence divergence varies significantly in different

domains of an intron, which makes BLAST searches difficult.

Figure 2. The gene map of Anomodon rugelii mitochondrial genome. Genes (exons indicated as closed boxes) shown on the outside of the
circle are transcribed clockwise, whereas those on the inside are transcribed counter-clockwise. Genes with group I or II introns (open boxes) are
labeled with asterisks. Pseudogenes are indicated with the prefix ‘‘y’’.
doi:10.1371/journal.pone.0025836.g002
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Gene Orders and Repeat Sequences
The gene order in the Treubia chondrome is identical to those in

the Marchantia and Pleurozia chondromes (Fig. 3). Likewise, the

Anomodon and Physcomitrella mitochondrial genomes have identical

gene orders. Since the three liverworts span the entire liverwort

clade [40,42], the gene order of these three species likely

represents the ancestral condition of all liverworts. The two

mosses cover only the diversity of the true mosses. Several other

major lineages that represent relic and ancient mosses have not

been sampled, i.e., Takakiales, Sphagnales, Andreaeales, Tetra-

phidales, Polytrichales, Buxbaumiales, and Diphysciales [39,40].

Hence, there may not be sufficient data to infer gene order of the

ancestral moss mitochondrial genome. Nevertheless, the gene

orders of the two moss chondromes are not very different from

those in the liverwort and hornwort chondromes (Fig. 3), which

suggests that they may not be too different from the ancestral

condition of the moss mitochondrial genome.

Four classes of long repeat sequences longer than 100 bp are

present in the Treubia chondrome (Table 3). The classes A and C,

both inverted repeats, have been characterized in Pleurozia before

[13] and are also present in Marchantia. Two new classes, B2 and

E, both direct repeats, are found in Treubia and Marchantia; they are

present in Pleurozia but were not characterized previously because

of their short length (,100 bp). The classes B and D found in

Pleurozia and Marchantia are absent in Treubia, and probably arose

after Treubiaceae/Haplomitraceae had diverged. Five of these

classes (B, B2, C, D and E) have two copies each in the genome

and their locations are listed in Table 3. The class A, however, has

four copies in Treubia and Marchantia and three copies in Pleurozia.

Two of these copies are closely related, sharing a long stretch of

identical sequences, and are located in a group II intron (cobi783)

and a spacer between nad4 and nad5. They are present in all three

species at the same locations. The additional more divergent

copies are located in the atp6-nad6 and trnQuug-rpl10 spacers (the

latter copy has been lost in Pleurozia) (Fig. 3).

One intriguing aspect about these long repeats is that all six

classes involve duplication of genes or introns in intergenic spacers,

probably via retroposition. Recently, it has been reported in the

hornwort Megaceros chondrome that all three classes of long repeats

involve duplication of genes or an intron [15]. Out of ten classes of

repeats now known in the liverwort and hornwort chondromes,

only one class (D in Phaeoceros) does not involve duplication of any

gene or intron [17]. There is no homology between the repeat

sequences in the liverworts and the hornworts.

No long repeat sequence was found in the Anomodon chondrome.

Short (,100 bp) repeat sequences were identified in both Treubia

and Anomodon chondromes. In the former, they are of diverse

sequence compositions, whereas in the latter they are mostly

domains V and VI or other elements of closely related group II

introns (data not shown). Only one family of microsatellite

sequence, AT dinucleotides reiterating 10 times in the second

exon of cob, was found in the Anomodon chondrome. No such

sequence was detected in the Treubia chondrome.

Though there are no or only a few changes in mitochondrial

gene order within each of the three bryophyte lineages as shown

by the seven sequenced chondromes, a minimum of 17 and 6

changes (inversions and translocations) need to be invoked to

explain the gene order differences among liverworts, mosses, and

Table 1. Genome sizes and proportions of the various types of sequence in the mitochondrial genomes of Chara vulgaris and
seven bryophytes.

Species Genome size (bp) AT (%) Genes (%) Exons (%) Introns (%) Intergenic spacers (%)

Chara vulgaris 67,737 59.1 91 52 39 9

Treubia lacunosa 151,983 56.6 53 26 27 47

Marchantia polymorpha 186,609 57.6 51 23 28 49

Pleurozia purpurea 168,526 54.6 52 29 23 48

Physcomitrella patens 105,340 59.4 65 37 28 35

Anomodon rugelii 104,239 58.8 70 39 31 30

Phaeoceros laevis 209,482 55.4 47 11 36 53

Megaceros aenigmaticus 184,908 54.0 50 16 34 50

doi:10.1371/journal.pone.0025836.t001

Table 2. Start and stop codons altered by putative RNA editing in coding sequences of Treubia lacunosa and Anomodon rugelii
mitochondrial genomes1.

Species Gene Start codon created No. of stop codons removed Stop codon created

Treubia lacunosa sdh3 1 UAA -. CAA

Anomodon rugelii atp1 ACG -. AUG CAA -. UAA

cox3 CAA -. UAA

ccmC CAA -. UAA

ccmFN CAA -. UAA

tatC ACG -. AUG

1GTG is the start codon for rpl16 in the Treubia chondrome, and is also the start codon for nad9 and rpl16 in the Anomodon chondrome.
doi:10.1371/journal.pone.0025836.t002
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hornworts (Fig. 3). How these genomic rearrangements happened

are difficult historical events to reconstruct. Repeat sequences have

been suggested to serve as sites of homologous recombination,

resulting gene order changes in organellar genomes [52,53,54]. A

pair of long repeat sequences were recently identified in the

Megaceros and Phaeoceros chondromes that were located outside a

region that had been inverted [17]. The repeat sequences detected

in the liverwort chondromes in this and an earlier study [13] may

have been responsible for mitochondrial gene order changes

between liverworts and other early land plants. One class, repeat

A, is particularly noteworthy (Table 3). A major block of genes,

including many encoding ribosomal proteins, respiratory proteins,

and some tRNAs, are located on opposite strands between Chara-

liverworts and mosses-hornworts (Fig. 3). The former condition

can be traced back to Cyanidioschyzon merolae (a unicellular red alga)

[55] and Nephroselmis olivacea (a unicellular prasinophyceae green

alga) [56] (also see Fig. 2 in [15]), whereas the latter condition

extends to Huperzia squarrosa (a basal lycophyte and an early

vascular plant; Y. Liu, B. Wang, P. Cui, L. Li, J.-Y. Xue, J. Yu, &

Y.-L. Qiu, unpublished data). It is thus possible that the Chara-

liverworts gene arrangement represents the ancestral condition

and that of the mosses and hornworts is an evolutionarily derived

condition. This change was perhaps caused by a major inversion

within the mitochondrial genome of the common ancestor of

mosses-hornworts-vascular plants after liverworts had diverged.

The class A repeats, likely present in the chondrome of that

common ancestor and retained in the modern liverwort

chondromes, probably served as sites of homologous recombina-

tion. The positions of the two members, one located in the second

intron in cob and the other in the spacer between trnQuug and rpl10,

match roughly but rather nicely with the boundary points defining

the region that has undergone inversion (Fig. 3). Two facts are

consistent with this hypothesis. One is that the trnQuug-rpl10 copy

shows a higher level of divergence to the cob intron copy than the

nad4-nad5 spacer copy, indicating its more ancient history.

Additionally, most members of this class are present in the three

diverse liverworts, again indicating their ancient history. One

might argue that absence of this class of repeats in the moss and

hornwort chondromes does not support the hypothesis. However,

this evidence can be used to explain evolutionary fixation of

rearranged gene orders in the chondromes of mosses, hornworts,

and basal vascular plants, which indeed have not reverted back to

the Chara-liverwort condition. Further, the moss chondromes are

rather economical in size (Table 1), and repeat sequences might

Figure 3. Gene order comparison among mitochondrial genomes of Chara vulgaris, Treubia lacunosa, Marchantia polymorpha, Pleurozia
purpurea, Physcomitrella patens, Anomodon rugelii, Phaeoceros laevis, and Megaceros aenigmaticus. Species are arranged according to the
organismal phylogeny [39,40,42,81] except that positions of the two hornworts are reversed as the Megaceros gene order more likely represents the
ancestral condition according to a parsimony criterion (a supplementary figure (Fig. S1) is presented in which the two hornworts are placed in their
correct organismal phylogeny positions). Solid lines connect orthologous genes between species with the same orientation, whereas dashed lines
connect those with the reversed orientation. Repeat sequences are color-coded: in liverworts, RepA – black, RepB – green, RepB2 – purple, RepC –
red, RepD – blue, and RepE – orange; in hornworts, RepA – red, RepB – blue (responsible for the inversion between Megaceros and Phaeoceros), RepC
– green (this class of repeats was not annotated in either hornwort due to their length of ,100 bp, inverted in Megaceros but direct in Phaeoceros),
and RepD – purple.
doi:10.1371/journal.pone.0025836.g003
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have been purged from the genome shortly after the origin of

mosses. It would be desirable to sequence chondromes of some

basal moss lineages such as Takakia and Polytrichum to see if they

have larger genomes and harbor long repeat sequences.

Evolution of gene order in bryophyte chondromes is overall

quite conservative, both within and among major lineages. The

extent of conservation is especially striking when compared with

rapidly rearranged mitochondrial genomes of vascular plants

[18,19,21,23,25,26,28]. A total of 19, 18 and 7 inversions and

translocations (plus some deletions) can explain gene order

differences of chondromes between Chara and Treubia, Pleurozia

and Physcomitrella, and Anomodon and Megaceros respectively (Fig. 3).

These are very modest number of changes for the lineages that

have existed for at least 375 million years, the age of liverworts

inferred from a well-preserved fossil [57]. In sharp contrast, two

cytotypes of maize differ by 16 rearrangements in their

chondromes [23]. If any adaptive explanation is sought, which

has been explored in several recent studies of molecular evolution

in organellar genomes [45,58,59], one wonders what are the

reasons behind such high levels of conservation. One factor may

be that organellar genomes, like their ancestral bacterial genomes,

have polycistronic operons [60,61,62,63,64]. Some gene clusters,

which likely represent polycistronic operons, have widespread

phylogenetic distribution in green algae and early land plants, with

some even found in Reclinomonas americana (a basal eukaryote) [65]

or Cyanidioschyzon merolae [55]. These include rRNA genes,

ribosomal protein genes, nad2-nad4-nad5, ccm genes, nad4L-sdh

genes, and cox2-cox3-cob-nad6 [15]. Expression of these genes has

probably exerted strong functional selection pressure on tight

linkage and proper arrangement order of these genes in certain

regions of the mitochondrial genome. Further, the products of

these genes are assembled into protein/enzyme complexes

involved in respiration and protein synthesis together with those

encoded by nuclear genes, which were originally mitochondrial

genes that migrated to the nucleus during post-endosymbiosis

evolution [66]. This process would add another layer of functional

constraint on inheritance and expression of the organellar genes.

Recently, some nuclear genes encoding proteins that suppress

recombination in mitochondria and chloroplasts in the plant cell

have been characterized in Physcomitrella and some angiosperms

[54,67,68]. Thus, conservative gene order evolution in organellar

genomes seems to be resulted from both historical/genome

structural reasons and functional non-autonomy of these tiny

genomes. Nevertheless, these reasons are insufficient to explain the

extreme level of conservation in the bryophyte mitochondrial

genomes, because the same organellar genome is radically

recombinogenic in vascular plants. Hence, additional, likely

organismal, explanations need to be sought to account for such

drastically different levels of gene order conservation in bryophyte

and vascular plant chondromes.

Intron Contents
The intron content of the Treubia chondrome is similar to those

in the Marchantia and Pleurozia chondromes. Both group I and

group II introns are present and they are all cis-spliced (Table S3

in File S1). However, Treubia does not have either of the two group

II introns (atp1i989 and atp1i1050) found in atp1 of Marchantia and

Pleurozia. Likewise, it lacks one of the two group II introns in nad4L

(nad4Li283) of the other two liverworts. The sole group II intron in

Marchantia rrn18 (rrn18i1065) is also lacking in Treubia, as in

Pleurozia.

The intron content in the Anomodon chondrome is exactly the

same as that in the Physcomitrella chondrome, again all being cis-

spliced, whether they are group I or group II (Table S3 in File S1).

With intron contents determined from the seven completely

sequenced bryophyte chondromes, it is clear that the largely

unique intron content in each of the three bryophyte lineages is

shared by most members of the lineage and can be attributed to

independent gains of these mobile genetic elements in the

common ancestors of liverworts, mosses, and hornworts respec-

tively (Table S3 in File S1). Secondary losses and later acquisitions

seem to have happened, but only sporadically. This pattern of

intron distribution is consistent with the rather conservative mode

of gene order and gene content evolution in liverworts, mosses,

and hornworts.

Dynamic and Conservative Evolution of Mitochondrial
Genomes in Early Land Plants

The data from the Treubia and Anomodon chondromes reinforce

the conclusion of several recent studies that mitochondrial

genomes in early land plants show a mixed mode of dynamic

and conservative evolution [13,14,15,17]. During the origin of

land plants, changes in the following aspects were quite dynamic:

genome size increase, gene order change, gene structural

alteration (ccmF fractured into ccmFC and ccmFN), and appearance

of RNA editing machinery. The dynamic mode of evolution

continued as major clades of land plants appeared: genome size

increase or decrease, massive waves of intron acquisition, extensive

gene losses in hornworts, generation of repeat sequences, and

major inversions and translocations resulting gene order change.

On the other hand, several aspects of the genome were rather

conservative during this phase of plant evolution, in particular in

comparison with vascular plant chondromes. These include:

overall genome size, genome structure (lack of recombination that

generated subgenomic circles), sequence composition (AT%), gene

order, and genome content (lack of foreign DNA). Within

liverworts, mosses, and hornworts, conservative evolution of

mitochondrial genomes was even more extreme. Not only gene

and intron contents varied little among diverse species within each

of the three major clades of bryophytes, pseudogene gene contents

and retroposed pseudogene pieces were highly similar as well.

Gene orders were also identical among different species of

liverworts and mosses respectively, and those of two hornworts

were also rather similar. Before these bryophyte chondromes were

sequenced, no prediction could be made about what they might

look like based on what was known of mitochondrial genomes in

angiosperms and pteridophytes [25,28,31,33,69].

With at least two species sequenced for their chondromes in

each of the three bryophyte lineages, most features of this

organellar genome seem to follow some patterns within the

lineage. However, RNA editing, which is correlated to changes in

protein hydrophobicity and molecular size in land plant organellar

genomes [45], remains unpredictable, as its abundance can vary

dramatically in closely related taxa such as Treubia and

Haplomitrium. In lycophytes, similarly highly disparate occurrence

of RNA editing has been observed in Isoetes [38] and Selaginella [19]

versus Huperzia (Y. Liu, B. Wang, P. Cui, L. Li, J.-Y. Xue, J. Yu, &

Y.-L. Qiu, unpublished data). Underlying causes of this enigmatic

molecular evolutionary phenomenon need to be pursued in future

studies.

Finally, what may be speculated about is that an evolutionarily

derived type of mitochondrial genome expression system seems to

have evolved in vascular plants, as bryophytes still have the typical

and ancestral type of mitochondrial genomes. Notably, the genes

in bryophyte chondromes remain organized into long polycistron-

ic operons as in green and red algae as well as the basal eukaryote

Reclinomonas [8,10,11,56,65], despite many changes that took place

during the origin of land plants and emergence of liverworts,
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mosses, and hornworts. Frequent intragenomic rearrangements in

vascular plant chondromes have broken most of these operons and

many genes become free-standing as in the nuclear genome, which

may be caused by mutations of nuclear genes identified recently

that suppress recombination in organellar genomes [54,67,68].

During the bryophyte-vascular plant transition, the dominant

generation in the plant life cycle changed from a haploid

gametophyte to a diploid sporophyte, plant size increased by

several orders of magnitude, and the physical environment

changed correspondingly [35,70,71,72,73]. The change revealed

in mitochondria, the powerhouse of the plant cell, is correlated to

this major change in evolution of land plants and the environment

on earth; whether there is any causative relationship between them

is currently unknown.

Materials and Methods

Approximately 10 g of fresh tissues of Treubia lacunosa (Col.)

Prosk. and Anomodon rugelii (C.M.) Keissl. were collected in the field

from New Zealand and Michigan, USA, respectively. The Treubia

material was collected with a permit (Number BP-17540-FLO) to

Dr. Matt von Konrat at Field Museum (USA) issued and

coordinated by Paul Cashmore of the New Zealand Department

of Conservation. The Anomodon material was collected on public

land, requiring no permit because it is a common weedy species.

The material was brought to the lab for cleaning under a

dissecting scope. For Treubia, a voucher specimen numbered John

J. Engel & Matt von Konrat 28345 was deposited at Field

Museum. For Anomodon, a voucher specimen numbered Qiu 06002

was deposited at the University Herbarium in the University of

Michigan, Ann Arbor.

Total cellular DNA was extracted with the CTAB method [74],

and purified with phenol extraction to remove proteins. A fosmid

library was constructed using the CopyControlTM kit (EPICEN-

TRE Biotechnologies, Madison, Wisconsin, USA) from the total

cellular DNA fragments of 35–45 kb size-selected by agarose gel

electrophoresis. No restriction enzyme digestion or mechanical

shearing was used before electrophoresis. Clones containing

mitochondrial DNA fragments were identified through Southern

hybridizations using the HRP chemiluminescent blotting kit (KPL,

Inc., Gaithersburg, Maryland, USA), with major mitochondrial

genes as probes. The probes were made by amplification from

total cellular DNA of Treubia or Anomodon. The inserts were

sequenced through primer-walking on an ABI 3100 genetic

analyzer (Applied Biosystems, Foster City, California, USA).

Sequences were assembled using Sequencher (Gene Codes Corp.,

Ann Arbor, Michigan, USA).

The mitochondrial genomes were annotated in six steps. First,

genes for known mitochondrial proteins and rRNAs were

identified by Basic Local Alignment Search Tool (BLAST)

searches [75] (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) of

the non-redundant database at the National Center for Biotech-

nology Information (NCBI). The exact gene and exon/intron

boundaries were predicted by alignment of orthologous genes from

annotated plant mitochondrial genomes available at the organelle

genomic biology website at NCBI (http://www.ncbi.nlm.nih.

gov/genomes/ORGANELLES/organelles.html). Putative RNA

editing sites were inferred to create proper start and stop codons

as well as to remove internal stop codons. Second, genes for

hypothetical proteins were identified using the web-based tool

Open Reading Frames Finder (ORF-finder; http://www.ncbi.

nlm.nih.gov/gorf/gorf.html) with the standard genetic code.

Third, genes for tRNAs were found using tRNAscan-SE [76]

(http://lowelab.ucsc.edu/tRNAscan-SE/). Fourth, repeated se-

quences were searched using REPuter [77] (http://bibiserv.

techfak.uni-bielefeld.de/reputer/) or BLAST. Fifth, microsatellite

sequences were screened using msatcommander 0.8.2 with default

settings [78]. Finally, pseudogene pieces in intergenic spacers were

identified by BLASTing gene sequences against spacer sequences,

and those longer than 50 bp were recorded in this study.

The annotated GenBank files of the mitochondrial genomes

of Treubia and Anomodon were used to draw gene maps by using

OrganellarGenomeDRAW tool (OGDRAW) [79]. The maps

were then examined for further comparison of gene order and

content. When sequence homology in some parts of certain

genes or intergenic spacers was uncertain, the sequences were

aligned using CLUSTAL_X [80], with visual examination

followed.

Supporting Information

Figure S1 Gene order comparison among mitochondrial

genomes of Chara vulgaris, Treubia lacunosa, Marchantia polymorpha,

Pleurozia purpurea, Physcomitrella patens, Anomodon rugelii, Phaeoceros

laevis, and Megaceros aenigmaticus. Species are arranged according to

the organismal phylogeny [39,40,42,81]. Solid lines connect

orthologous genes between species with the same orientation,

whereas dashed lines connect those with the reversed orientation.

Repeat sequences are color-coded: in liverworts, RepA – black,

RepB – green, RepB2 – purple, RepC – red, RepD – blue, and

RepE – orange; in hornworts, RepA – red, RepB – blue

(responsible for the inversion between Megaceros and Phaeoceros),

RepC – green (this class of repeats was not annotated in either

hornwort due to their length of ,100 bp, inverted in Megaceros but

direct in Phaeoceros), and RepD – purple.

(EPS)

File S1 Contains Table S1. Gene contents in mitochondrial

genomes of selected charophyte and land plants1. Table S2.
Pseudogene pieces in intergenic spacers of mitochondrial

genomes of Treubia lacunosa, Marchantia polymorpha, Pleurozia purpurea,

Phaeoceros laevis, and Megaceros aenigmaticus1. Table S3. Intron

contents in mitochondrial genomes of selected charophyte and

land plants.1

(DOCX)
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