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ABSTRACT 

Zinc is an essential element, which is toxic for organisms in their natural environments in excessive amounts. The zinc 
accumulation characteristics of a Zn-tolerant strain (H93, EC50 = 1010 mg·L–1 Zn2+) and a Zn-sensitive strain (B40-3, 
EC50 = 26 mg·L–1 Zn2+), Exophiala spp. and their antioxidant response to Zn2+ stress were comparatively characterized. 
Under their respective Zn2+ median effective concentrations, H93 absorbed 2.5-fold and accumulated 5.2-fold more Zn 
than B40-3. An elution experiment using CaCl2 revealed that Zn mainly accumulated intracellularly in the mycelia of 
the two fungal strains. The modulation of antioxidant components and antioxidant enzyme activities of the two fungal 
strains were comparatively analyzed under different Zn2+ concentrations. The activity of the total superoxide dismutase, 
peroxidase, and glutathione of H93 was always higher than that of B40-3, and the malondialdehyde content in H93 was 
also higher than that of B40-3. The current results suggested that the Zn tolerance of Exophiala strain may be attributed 
to their various instinctive behaviors with different rates of Zn accumulation and modulation of antioxidant compo- 
nents. 
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1. Introduction 

Among the dematiaceous fungi responsible for human or 
animal phaeohyphomycosis, the Exophiala genus is a 
well-known etiologic agent that presently includes sev- 
eral species considered as opportunistic pathogens [1-3]. 
In recent years, Exophiala fungi have been repeatedly re- 
ported as root-associated endophytic fungi, which have 
also been designated as dark septate endophytes (DSEs) 
[4,5]. Under low-power light microscopy, their pigmen- 
ted structures, including dematiaceous septate hyphae and 
microsclerotia (aggregation of dark, thick-walled, and 
closely packed inflated cells), are easily visible coloniz- 
ing the root cortex, the epidermis, and root surfaces in- 
tercellularly and intracellularly [6-8]. More data from 
field studies reveal that DSE comprise ascomycetous fun- 
gi which have a ubiquitous distribution and wide range of 
host plants [9,10] and they are especially common in 
stressful environments [11,12]. Previous studies in our 

laboratory found that most plants that naturally deve- 
loped in a Pb–Zn slag heap in Southwest China are com- 
monly colonized by DSEs [13] and DSEs isolated from 
these areas possess an inherent tolerance to heavy metals 
[14]. Under metal-polluted soils, the metal tolerant DSE 
strain Exophiala pisciphila H93 clearly alleviated the de- 
leterious effects of excessive heavy metal ions and its co- 
lonization improved the metal tolerance of maize [15]. 

Zinc is an essential micronutrient required for a wide 
variety of cellular processes. However, excessive Zn can 
be toxic to organisms [16], which is proposed in the 13 
metal contamination list by the US Environmental Pro- 
tection Agency (US EPA) [17]. Excessive heavy metals 
are known to induce oxidative stress by generating high 
concentrations of reactive oxygen species (ROS), such as 
superoxide radical  2O , hydroxyl radical (HO•), and 
hydrogen peroxide (H2O2), and affect the activity of en- 
dogenous enzymes, or membrane polyunsaturated fatty 
acids, which leads to lipid peroxidation and malondial- 
dehyde (MDA) formation [18,19]. Thus, MDA is con- 
sidered as a cytotoxic product of lipid peroxidation and 
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an indicator of free radical production and consequent 
tissue damage. If they are not effectively neutralized by 
the antioxidant defense system in tissues, oxidative stress 
results in direct damage to lipids, proteins, and DNA, and 
eventually initiates cell damage [20,22]. The antioxidant 
defense system of organisms is composed of different an- 
tioxidant components, including a non-enzymatic antio- 
xidant system, e.g., carotenoids, ascorbate, and glutathi- 
one (GSH), and an enzymatic anti-oxidative system, e.g., 
total superoxide dismutase (T-SOD), catalase (CAT), and 
peroxidase (POD) [23-25]. Under abnormal circumstances, 
organisms display several antioxidant enzymes against 
ROS, and enhance protective processes, such as the accu- 
mulation of compatible solutes and increased activity of 
detoxifying enzymes [26]. Changes in the activity of these 
defense systems have been proposed as biomarkers for 
contaminant-mediated pro-oxidant challenge [27]. 

More detailed studies of the interactions between 
DSEs and their host plants reveal they have a beneficial 
role in plant growth and survival in various stressful en- 
vironments [28], and DSE colonization improved the to- 
lerance of host plants under various abiotic stresses such 
as metal contaminants, heat, salinity and drought [15,29, 
30]. However, the current knowledge on the instinctive 
behavior of DSEs against metal toxicity is still limited. In 
the present study, a Zn-sensitive and a Zntolerant Exo- 
phiala spp. were targeted and their growth, Zn accumu- 
lation characteristics, and their modulation of antioxi- 
dant components and antioxidant enzyme activities were 
comparatively analyzed under different Zn2+ supplements. 

2. Materials and Methods 

2.1. Exophiala Spp. Strains and Zn EC50 

In the current study, two DSE fungi were compared: the 
Zn-tolerant Exophiala pisciphila H93 (referred to as 
H93), and the Zn-sensitive B40-3 culture identified as 
Exophiala sp. by sequencing their internal transcribed 
spacer and large subunit rDNA, and phylogenetic analy- 
sis. H93 was isolated from the roots of Arundinella ben- 
galensis that naturally grows in an ancient Pb–Zn slag 
heap at Huize, Yunnan Province, China and the Zn-sen- 
sitive B40-3 culture was isolated from the non-metal 
contaminated roots of Eupatorium adenophorum in the 
tropical rain forest of Xishuangbanna, Yunnan Province, 
China. Two DSE strains were deposited in Agricultural 
Culture Collection of China with accession number 
ACCC32496 (H93) and in China Forestry Culture Col- 
lection Center (CFCC89522) (B40-3) respectively. 

The Zn tolerance of the two fungal strains was deter- 
mined and expressed as the median effective concentra- 
tion (EC50) of Zn2+, which results in inhibition of 50% 
clonal growth. Modified Melin-Norkrans (MMN) liquid 
media (CaCl2·2H2O, 0.05 g·L–1; maltose, 3.0 g·L–1; NaCl, 

0.025 g·L–1; glucose, 10.0 g·L–1; K2HPO4, 0.5 g·L–1; VB1, 
0.1 mg·L–1; MgSO4, 0.15 g·L–1; 1% FeCl3 solution, 1.2 
ml·L–1; NaNO3, 3.0 g·L–1; and (NH4)2HPO4, 0.25 g·L–1; 
pH 5.5) were prepared and amended with the desired Zn2+ 
concentrations [31]. Then, 50 g·L–1 Zn2+ (ZnSO4·7H2O) 
stock solution was diluted to yield the desired concen- 
trations (0, 200, 400, 600, 800, 1000, 1500, and 2000 
mg·L–1 for H93, and 0, 25, 50 75, 100, and 200 mg·L–1 
for B40-3). Each 250 mL Erlenmeyer flask containing 
100 mL of the prepared media was inoculated with a fun- 
gal disk (Φ 0.6 cm) cut from a 14-day-old PDA culture. 
The Erlenmeyer flasks were incubated at 28˚C and 120 
rpm agitation for 7 d and then filtered through a medium- 
speed qualitative filter paper (Hangzhou Special Paper 
Co., Ltd., Hangzhou, China). Then, the mycelia were dri- 
ed to a constant weight in an oven at 80˚C and weighed. 
The EC50 value was calculated by fitting a linear regres- 
sion to the results from the inhibition of the biomass of 
the two fungal strains [32]. 

2.2. Biosorption and Accumulation of Zn by the 
Two Fungal Strains 

To determine the hyphal biosorption and accumulation of 
Zn, the two fungal strains were incubated under different 
Zn2+ supplements at 28˚C and agitated at 120 rpm for 7 d. 
Then, the mycelia in the 100 mL cultures were harvested, 
washed three times with 100 mL of distilled water, and 
as much liquid as possible was removed using a filter pa- 
per-covered Buchner funnel (medium-speed qualitative 
filter paper) using a vacuum pump (Yuhua Instrument 
Co., Ltd., Zhengzhou, China). Then 0.5 g mycelia were 
bathed for 30 min in 100 mM CaCl2 solution (100 mL) at 
28˚C and 120 rpm agitation [16]. Then, the zinc concen- 
trations in the CaCl2 eluting solution (for biosorption) 
and in the mycelia (for accumulation) were determined 
via a flame atomic absorption spectrometer (FAAS) using 
a Z2000 polarized Zeeman atomic absorption spectro- 
photometer (Hitachi, Japan). For the hyphal accumula- 
tion of Zn, 50 mg of the mycelia was digested using 
HNO3 + HClO4. Quantification was carried out with a 
calibration curve using a graded series of diluted Zn so- 
lutions (0, 0.1, 0.2, 0.4, 0.8, and 1.2 μg·mL–1) (GSW08620, 
National Research Center for Certified Reference Ma- 
terials, China). The hollow cathode lamp was operated at 
5 mA and the analytical wavelength was set to 213.9 nm 
for the detection of Zn [15]. 

2.3. Antioxidant Systems 

Under different Zn2+ supplements, the mycelia of the two 
fungal strains were harvested and washed as described 
above. The mycelia were then flash-frozen in liquid ni- 
trogen and ground in a chilled mortar and pestle. Then, 
0.5 g of the ground powder was collected into a new ster-  
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ile centrifuge tube and suspended in 5 mL Tris buffer so- 
lution (50 mM, pH 7.8) and centrifuged at 8000 rpm for 
30 min at 4˚C. The supernatant liquid was collected and 
used as cell-free extracts for the analysis of antioxidant 
activities [33]. T-SOD, POD, MDA, and GSH were de- 
termined according to the protocols of the Nanjing Jian- 
cheng Bioengineering Institute (Nanjing, China) included 
in the kits. 

organisms and also across different strains of a given 
species, and Zn tolerance may be linked to their physio- 
logic adaptation and the selection of their environment 
[35]. Cairney et al. [36] reported that the EC50 of Zn for 
ericoid mycorrhizal endophytes from Woollsia pungens 
is only 1.08 mg·L–1. However, the EC50 of Zn for Asper- 
gillus niger isolated from polluted sites reach 1625 mg·L–1 
[37]. In pioneer pine forests at 14 different locations along 
a Zn pollution gradient, Colpaert et al. [35] also reported 
that the severe Zn pollution surrounding Zn smelters 
clearly triggers the evolution of increased Zn tolerance in 
pioneer Suilloid fungi. With increasing distance from the 
Zn smelters, the frequency of Zn-tolerant genotypes de- 
creases. The EC50 of the Zn-tolerant ectomycorrhizal ba- 
sidiomycete Suillus luteus isolate (UH–Slu–Lm8) obtain- 
ed from a heavy metal polluted site in Lommel is appro- 
ximately nine fold higher than that of a Zn-sensitive iso- 
late (UH–Slu–P13) obtained from a non-polluted site in 
Paal [38]. In the current study, H93 was isolated from an 
ancient lead and zinc slag heap [14], and exposure to 
heavy metals may trigger its physiological adaptation to 
Zn stress [35]. 

2.4. Statistical Analysis 

Each treatment of all above experiments was conducted 
in triplicate and the average values were used in the data 
analysis. The effects of Zn on mycelial biomass, mycelial 
heavy metal content, and hyphal enzyme activity are ex- 
pressed as mean ± standard deviation (SD). The signifi- 
cant differences among the treatments were analyzed us- 
ing a one-way ANOVA with statistical significance at P 
< 0.05 based on a least significant difference multiple 
range test. 

3. Results and Discussion 

The growth of the two fungal strains was not restricted at 
lower Zn concentrations. However, the biomass of the 
two fungal strains decreased with increasing Zn2+ supple- 
ments (Figure 1). Our overall results were also in accor- 
dance with the original knowledge on Zinc. Zn is essen- 
tial for the normal growth and development of almost all 
organisms including filamentous fungi, because it serves 
as a cofactor in many physiologic processes. However, it 
can be highly toxic at excessive levels [34]. Meanwhile, 
the two fungal strains showed significant differences in 
their Zn tolerance. H93 showed 50% growth inhibition 
(EC50) at 1010 mg·L–1 Zn, whereas the biomass of B40-3 
was reduced by 50% at 26 mg·L–1 of Zn (EC50 for B40-3). 
Differences in zinc tolerance were found across different  

Mycelial biosorption and intracellular accumulation of 
Zn in H93 and B40-3 increased with the increasing ex- 
tracellular Zn concentrations (Figure 2). The intracellu- 
lar Zn accumulation was higher than that of the adsorp- 
tively bound Zn in both strains. Furthermore, the bio- 
sorption of Zn (presumed in the cell wall) and intracellu- 
lar Zn of the Zn-tolerant strain (H93) were signficantly 
higher than those of the Zn-sensitive strain (B40-3), 
which suggested that both the cell wall and cytoplasm 
contribute to the Zn tolerance of Exophiala strains. In 
contrast to the three fold Zn biosorption by H93 com- 
pared with that by B40-3, the Zn accumulation of the two 
fungal strains was almost the same at 26 mg·L–1 Zn. The 
intracellular Zn accumulation of H93 was 5.24-fold higher 
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Figure 1. Effect of Zn2+ supplementation on the biomass of H93 (a) and B40-3 (b) in modified MMN liquid cultures at 28˚C, 
agitated at 120 rpm for 7 d. 



Zinc Accumulation Characteristics of Two Exophiala Strains and Their Antioxidant Response to Zn2+ Stress 15

 60 

50 

40 

30 

20 

10 

0 
0      26     100    1010    1500

Zn2+ concentrations (mg·L-1) 

d

Z
n 

co
nc

en
tr

at
io

ns
 (

m
g·

L
-1

 D
.W

.)
 

d

c 
c 

c 
b 

b 

ab aa 

60

50

40

30

20

10

0
0        13       26       52 

Zn2+ concentrations (mg·L-1) 

Z
n 

co
nc

en
tr

at
io

ns
 (

m
g·

L
-1

 D
.W

.)
 

c c c 
b b

aba a

(a) (b)

 

Figure 2. Zn biosorption ( ) and accumulation ( ) in H93 (a) and B40-3 (b) under different Zn2+ stress. 
 
than that of B40-3 at their EC50 respectively; However, 
the biosorption by H93 was only 2.52-fold that by B40-3 
(Figure 2). Consequently, although more Zn ions were 
uptaked and accumulated by the H93 mycelia than B40-3, 
less growth restriction occurred under the same metal 
stress. The prevailing theory argues that the binding of 
metals to the cell wall and compartmentalization in the 
vacuoles may be essential mechanisms for metal detoxi- 
fication in various fungi [16,39,40]. Through energy-dis- 
persive X-ray spectroscopy, González-Guerrero et al. [41] 
found that heavy metals accumulated mainly in the my- 
corrhizal fungal cell wall and in the vacuoles, whereas 
minor changes in metal concentrations were detected in 
the cytoplasm. Subsequent experiments showed that many 
of the proteins involved in metal transport and homeo- 
stasis, such as ZRT2, play essential roles in Zn nutriation 
and resistance in eukaryotic cells [42,43]. At 52 mg·L–1 
Zn, the Zn accumulation and biosorption concentrations 
of B40-3 were almost the same, which suggested higher 
Zn concentrations might have disrupted the balance and 
severely damage the cell wall of B40-3 and further inhi- 
bited its growth. 

In biochemical systems, Zn exerts its antioxidant pro- 
perties, which appear to be mostly independent of Zn 
metalloenzyme activity [44]. However, excess Zn imposes 
severe effects on biomass production, biosorption, accu- 
mulation, and oxidative activities. Malondialdehyde (MDA) 
is a cytotoxic product of lipid peroxidation and an indi- 
cator of free radical production and consequent tissue da- 
mage [45]. Thus, the influence of Zn on the MDA pro- 
duction in the mycelia of the two fungal strains is de- 
termined and shown in Figure 3. The MDA content sig- 
nificantly increased when exposed to excess Zn after 7 d, 
and the effects of high Zn concentrations obviously en- 
hanced the MDA content. The MDA content of H93 was 
2.7-fold higher than that of B40-3 at their EC50 (Figures 
3(a) and (b)). The current study suggested that free radi- 
cal generation increased in H93 and B40-3 under Zn 

stress, as indicated by MDA. The MDA content of the 
two fungal strains increased with increasing Zn concen- 
trations in the culture medium, which indicates concen- 
tration-dependent free radical generation similar to the 
effect of heavy metals on the cyanobacterium Spirulina 
platensis-S5 [26] and higher plants [46,47]. 

In general, the activated antioxidant defense system of 
cells is reportedly a compensatory mechanism for various 
organisms and the modulation of the antioxidant status is 
an important adaptive response to heavy metals [48]. 
Penninckx [49] found that GSH plays an important role 
as a cellular redox buffer when yeast cells are under en- 
vironmental stress. At different Zn concentrations, the 
elevated extracellular Zn concentrations increased the GSH 
levels in both fungal strains, and showed a positive cor- 
relation between intracellular GSH content and extracel- 
lular Zn concentrations (Figures 3(c) and (d)). At their 
EC50, GSH in the H93 mycelia increased to 134% and 
104% for B40-3 compared with their mycelia without Zn 
stress. The GSH content of H93 was 2.94-fold higher than 
that of B40-3 at their EC50 (Figures 3(c) and (d)). 

In the present study, the correlation between external 
Zn concentration and antioxidant level was analyzed. 
The effects of excess Zn on the T-SOD and POD activity 
in the mycelia of both fungal strains are shown in Fig. 4. 
When the two fungal strains grew in the MMN liquid 
media without Zn, the T-SOD and POD activity in the 
mycelia were not significantly different and their con- 
tents were 16.33 U·mg–1 and 4.774 U·mg–1 protein for 
H93, and 18.443 U·mg–1 and 6.471 U·mg–1 protein for 
B40-3, respectively. However, the activity of the two an- 
tioxidant enzymes in the two fungal strains increased ra- 
pidly with the external Zn contaminant concentrations. 
The T-SOD and POD activity of H93 were 1.32-fold and 
1.86-fold higher than that of B40-3 at their EC50, res- 
pectively (Figure 4). Presumably, T-SOD and POD play 
effective roles in protecting the two fungal strains from 
the ROS induced by high Zn2  concentrations [50,51]. In +
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Figure 3. Effect of Zn2+ on the MDA and GSH content of the Zn-tolerant DSE strain H93 (A, C) and the Zn-sensitive DSE 
strain B40-3 (B, D). 
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Figure 4. Response of the T-SOD and POD to the elevated Zn2+ stress in the Zn-tolerant DSE strain H93 (A, C) and the 
n-sensitive DSE B40-3 (B, D). Z 
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summary, the present study provides direct evidence of 
oxidative stress-mediated Zn toxicity in Exophiala strains. 
Differences in Zn accumulation and tolerance were ob- 
served within Exophiala strains, and physiologic adapta- 
tion and environmental selection may contribute to this 
difference. The cell wall and cytoplasm play effective roles 
in the Zn tolerance of Exophiala strains, and the antio- 
xidant system in the cytoplasm, especially T-SOD and 
POD play important roles. 
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