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Abstract 
Rice (Oryza sativa L.) presents a strategic role in social and economic levels. The 
aim of this study was to elucidate the presence of genetic variability for the ge-
nus Oryza, and the possibility of using genotypes with wild characteristics in 
rice breeding programs. The Oryza genus shows great genetic variability 
through wild genotypes available in the most varied environments around the 
world. The negative effects imposed by abiotic stresses such as flood, salinity, 
low temperatures, water deficiency and high temperatures may be minimized by 
the efficient identification of a genetic variability source from the Oryza genus. 
Among the main wild species presented by the Oryza genus, Oryza glumaepa-
tula stands out being an active source of germplasm. The occurrence and pre-
servation of genetic variability of Oryza genus is indispensable to obtain new 
rice genotypes, to guarantee food security for the human population, as well as 
to develop genotypes that adapt to climatic changes and natural adversities. 
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1. Introduction 

Rice (Oryza sativa L.) presents a strategic role in social and economic levels. This 
crop is essential for human nutrition for supplying 20% of the calories con-
sumed, being considered a staple food for more than half of the world’s popula-
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tion [1] [2] [3] [4] [5]. Rice has an excellent nutritional balance, besides its wide 
adaptation in different environmental conditions. Therefore, it is considered a 
species of great potential to mitigate food scarcity in the world [6] [7]. 

According to the Food and Agriculture Organization of the United Nations 
[8], rice is characterized as the second most cultivated cereal in the world, with 
production around 516 million tons of grain, being sown in an area of approx-
imately 160 million hectares and average yield of 3200 kilos of grains per hec-
tare. The Asian continent accounts for 90% of the world’s production, through 
China, India, Indonesia, Bangladesh, Vietnam, Thailand, Myanmar and Philip-
pines. Brazil is the world’s ninth largest producer and contributes with 1.6% of 
the worldwide total production. The country is the largest producer outside the 
Asian continent, accounting for 13 million tons of grain [5] [9]. 

The continued populational growth and increased food demands are among 
the factors of extreme importance for today’s agriculture. Currently, about one 
billion people are chronically undernourished with an aggravated scenario in 
some specific situations. Unfortunately, there are no artifices capable of ensuring 
the agricultural system and providing appropriate conditions to feed a growing 
population expected to exceed nine billion people by the year 2050 [10]. 

An efficient use of natural resources and increased production are fundamen-
tal to meet the world’s food needs [11] [12] [13]. However, the search for new 
agricultural frontiers and the availability of natural resources is limited, exposing 
crops to a series of disturbing events caused by floods, salinity, water deficit, 
high and low temperatures, negatively interfering on grain yield [2] [12] [14] 
[15] [16] [17] [18]. 

Complex behaviors of rice plants are evidenced in response to these not fully 
understood events, since some aspects are determined by a large set of genes that 
express the morphological, physiological and biochemical attributes. They de-
pendent on the occurrence of stressors that trigger negative actions and accu-
mulation of free radicals in the cells, decreasing seed and grain yield [19] [20] 
[21]. 

Genetic breeding is fundamental to overcome the impacts of climate changes 
and the scarcity of non-renewable energy reserves, characterizing itself as a sus-
tainable activity and promoting food security. However, the procedures that 
enabled rice breeding also restricted its genetic variability, narrowing the genetic 
base of genotypes currently used in breeding programs. Thereby, it is necessary 
to search and rescue the variability through genotypes with a certain degree of 
rusticity, as these wild individuals will be sources of genes and alleles vital for 
developing new genotypes tolerant to abiotic stresses [22]. 

In this context, the aim of this study was to elucidate the presence of genetic 
variability for the genus Oryza, and the possibility of using genotypes with wild 
characteristics in rice breeding programs. 

2. Impact of Abiotic Stresses on Crop Development 

Waterlogging is characterized by a generalized environmental stress, where the 

https://doi.org/10.4236/ajps.2018.96083


V. J. Szareski et al. 
 

 

DOI: 10.4236/ajps.2018.96083 1095 American Journal of Plant Sciences 
 

rapid decline in oxygen diffusion rate (O2) during flooding is accompanied by a 
decrease in the availability of oxygen to the cell. It reduces energy production 
and compromises photosynthetic rates of the plant and accumulation of reserves 
[23]. Although rice is considered a tolerant crop, only a few specific cultivars ex-
hibit tolerance to prolonged submersion, since most genotypes die after 14 days 
of complete submersion [24] [25] [26]. 

Salinity is characterized as one of the most devastating abiotic stresses. Sali-
nized soils represent about 20% of the world area cultivated with rice [7]. It may 
result in adverse effects on crop germination, vigor and yield [27]. When plants 
are exposed to saline stress, ionic balance results in the manifestation of several 
physiological processes, including sodium uptake and exclusion, which unbal-
ance the dynamics of water and nutrients supply [28] [29]. Most rice plants are 
able to acclimatize under low or moderate salinities, however, their development 
is severely limited when salinity reaches high levels. Thus, plant survival and 
growth depend on phenotypic plasticity for cellular ionic balance [30] [31]. 

The effect of low-temperature stress is a major environmental factor limiting 
growth, development, yield and geographical distribution of the crop, especially 
in temperate and high-altitude areas [32] [33]. Low temperatures affect the 
growth and development of plants at any phenological stage, from germination 
to grain filling. During germination, the most common symptoms are low rates 
and delayed seedling emergence, which may compromise crop grain yield by 
25% [32] [34]. During the vegetative stages, it is possible to occur yellowing of 
leaves, reduction of tillering and delay of plant growth. During the reproductive 
period, this stress may cause sterility of flowers, preventing the development of 
pollen grains and consequently the formation, filling and number of grains per 
panicle [32] [35] [36] [37] [38]. 

Water deficit stress is defined as limiting, since it affects the yield potential of 
many crops and is considered one of the most damaging stresses for rice cultiva-
tion [39] [40]. Its effects may vary among genotypes, phenological stages of de-
velopment, severity and duration, compromising yield and its components [41] 
[42]. 

High-temperature stress is characterized as one of the major concerns, being 
considered a result of climate change [19] [43]. Most cultivated rice genotypes 
occur in regions where temperatures are above the optimum for plant growth 
and development (22˚C to 28˚C), since any increase in average temperatures 
during sensitive periods of pant development may affect rice productive perfor-
mance [44] [45]. The climatic variability is due to frequent episodes of high 
temperatures, which often coincide with the critical stages of crop development, 
such as flowering. There are predictions that rice yield might be reduced by up 
to 10% with an increase of 1˚C in the average temperature [46]. During seedlings 
initial growth, the occurrence of high temperatures impairs the establishment 
and uniformity of the field. In the anthesis, it may cause sterility and reduce the 
number of viable pollen grains, compromising rice yield. 
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3. The Oryza Genus 

The Oryza genus belongs to the Poaceae family, Glumiflorae order, Ehrhartoi-
deae subfamily, and Oryzae tribe [47]. It is composed by 20 to 24 species (de-
pending on the taxonomic references) and spread worldwide [3] [48] [49]. The 
variability of this genus evidences 11 distinct genomes (Box 1), which are AA, 
BB, CC, BBCC, CCDD, EE, FF, GG, KKLL, HHJJ and HHKK [50]. 

 
Box 1. Species of the Oryza genus, genome, number of chromosomes and geographic dispersion. 

Scientific name 
Genome  

designation 
Number of  

Chromosomes 
Dispersion 

Oryza sativa L. AA Diploid, 2n = 24 Tropical, Subtropical and Temperate Regions 

Oryza alta Swallen CCDD Tetraploid, 2n = 48 Central and South America 

Oryza australiensis Domin EE Diploid, 2n = 12 Tropical Australia 

Oryza barthii A. Chev. AA Diploid, 2n = 24 Central, Oriental and Ocidental Africa 

Oryza brachyantha A. Chev. et Rhoer. FF Diploid, 2n = 24 Central, Ocidental, and Oriental Africa 

Oryza coarctata Roxb. HHKK Tetraploid, 2n = 24 Southern Asia and Myanmar 

Oryza eichingeri A. Peter CC Diploid, 2n = 24 Oriental Africa and Meridional Asia 

Oryza glaberrima Steud. AA Diploid, 2n = 24 Ocidental Africa 

Oryza glumaepatula Steud. AA Diploid, 2n = 24 Latin America 

Oryza grandiglumis (Doell) Prod. CCDD Tetraploid, 2n = 48 Latin America 

Oryza granulate Nees et Arn. ex Wat GG Diploid, 2n = 24 Continental Asia 

Oryza indandamanica GG Diploid, 2n = 24 Meridional Asia 

Oryza latifolia Desv. CCDD Tetraploid, 2n = 48 South and Central America 

Oryza longiglumis Jansen HHJJ Tetraploid, 2n = 48 Southern New Guinea 

Oryza longistaminata Chev. et Roehr. AA Diploid, 2n = 24 Tropical Africa 

Oryza malampuzhaensis Krish. et Chand. BBCC Tetraploid, 2n = 48 Meridional Asia 

Oryza meridionalis Ng AA Diploid, 2n = 24 Australia and New Guinea 

Oryza meyeriana (Zoll. et Mor. ex Steud.) Baill. GG Diploid, 2n = 24 Southeast Asia, Malaysian Peninsula 

Oryza minuta J.S. Presl. Ex. C.B. Presl. BBCC Tetraploid, 2n = 48 Philippines and New Guinea 

Oryza neocaledonica Morat GG (presumed) Diploid, 2n = 24 (presumed) New Caledonia 

Oryza nivara Sharma et Shastry AA Diploid, 12 Asia 

Oryza officinalis Wall ex Watt CC Diploid, 12 Asia and New Guinea 

OryzapunctataKotschyexSteud. BB, BBCC 
Diploide and tetraploide,  

2n = 24, 2n = 48 
Africa 

Oryza rhizomatis Vaughan CC Diploid, 2n = 12 Meridional Asia 

Oryza ridleyi Hook. f. HHJJ Tetraploid, 2n = 48 Asia 

Oryza rufipogon Griff. AA Diploid, 2n = 24 Continental Asia 

Oryza schlechteri Pilger 
HHKK (requires 
reconfirmation) 

Tetraploid, 2n = 48 New Guinea 

Source: [43], [52], [53], [54]. 
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Species of the AA genome stand out due to the both cultivated species Oryza 
sativa L. (Asiatic rice) and Oryza glaberrima Steud (African rice) belong to this 
group [50]. Oryza sativa and Oryza glaberrima were independently domesticated 
from Oryza rufipogon in Asia, and Oryza barthii in Africa, respectively. Three 
ecogeographic groups were originated from Oryza sativa, indica, japonica and 
javanica or tropical japonica [51]. 

The Oryza glaberrima species is cultivated in West Africa, while Oryza sativa 
is widely distributed worldwide, being cultivated on all agricultural continents 
[55]. The Oryza sativa species is botanically characterized by presenting second-
ary ramifications in the panicles, persistent spikelets in the pedicel, and ligules 
up to 10 mm length. The Oryza glaberrima species do not present secondary 
ramification in the panicles, and are characterized by glumes, glabrous to little 
harsh leaves, red pericarp and ligules shorter than Oryza sativa [56]. 

Oryza indica and Oryza japonica subspecies differ in their morphological, 
physiological and genetic characteristics [57]. Among the most outstanding fea-
tures of the two subspecies, there is grain shape, with Japonica genotypes pre-
senting short, broad and thick grains, while Indica present long, narrow and 
slightly flat grains. Regarding the agronomic features, the subspecies Indica 
presents absence of awns, easy threshing, plants of light green color, large num-
ber of tilers and sensitivity to low temperatures. On the other hand, genotypes of 
the japonica subspecies present awns, tolerance to threshing, plants with dark 
green color, smaller number of tillers and tolerance to low temperatures, being 
the subspecies that represents 80% of the world’s production [36]. 

Genotypes from Indic germplasm have spread throughout flooded regions of 
tropical lowlands of South and Southeast Asia, and China. In Brazil, most culti-
vated genotypes of irrigated rice are included in this group, being the results of 
local selections and crosses between genotypes (dwarf gene). In contrast, the ja-
ponica subspecies is cultivated both in uplands and elevations of tropical forests 
of Southeast Asia, as in subtropical regions with lower air temperature, including 
Northeast Asia, Europe, Western United States, Chile and Australia. The tradi-
tional rain fed rice genotypes grown in Brazil present genetic base from this 
group [58] [59] [60]. These two subspecies are clearly differentiated based on 
their genomic structure [61] [62]. Regarding the number of genetic resources, 
there are more than 500 thousand accessions conserved in germplasm banks 
worldwide, of which 70% of the world’s collections are located in Asia [63].  

Currently, breeding programs targeting the main agronomic attributes of rice, 
grain quality and yield are based on the search for germplasms source of genes 
and alleles that determine these characteristics. Therefore, wild accesses that 
present the necessary characteristics for acclimatization to abiotic stresses or 
disturbing conditions imposed by the growing environment are sought for 
breeding programs. In this context, it is necessary to identify where these ac-
cesses are located, which could be either the center of origin or genetic diversity 
of the species, as well as active germplasm banks that provide the necessary va-
riability to breeders. 
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In Latin America, the genetic basis of rice is considered narrow, and genetic 
vulnerability occurs when an organism lacks genes or alleles to tolerate deter-
mined environmental or biological stress, which leads to crop vulnerability [64]. 
As strategies to potentiate gains or genetic progress of the crop, it is possible to 
employ wild genotypes or those with low breeding process, and then direct the 
genes or allelic forms of interest to the progenies. 

In Brazil, four wild rice species are found, which are also distributed 
throughout Central America and other South American countries. These are 
Oryza glumaepatula Steud, Oryza alta, Oryza grandiglumis and Oryza latifolia. 
Among these, Oryza glumaepatula stands out for plant breeding, which presents 
AA genome similar to grown species. It also is widely distributed and is rarely 
found in places outside the water. It grows on the banks of rivers and lakes, and 
its presence is related to the direct light incidence. Usually, this species is known 
as floating rice. In response to the elevation of water levels of rivers, a fast elon-
gation of their internodes occurs, with plants reaching seven meters height. 
When these plants break down, they originate large floating populations [22]. 

After identifying where to search and which genotypes will be useful in 
breeding program, the breeder may employ conventional breeding techniques, 
such as hybridization and selection strategies, as well as biotechnological tools 
that allow introgression of specific genes or gene blocks that, when combined 
with agronomic ideotype genitors, will potentiate traits of interest in the progeny 
[65]. The literature presents some researches that elucidate breeding procedures 
aimed at developing and identifying genotypes more responsive to situations of 
abiotic stresses (Figure 1). 

In this sense, wild species of the Oryza genus may be considered an alternative 
to increase rice genetic variability. Individuals of these species may be used as 
sources of genes and alleles in crossing blocks. Thereby, genes of interest are in-
trogressed to fix important characteristics, potentiating the genetic variability of  
 

 
Figure 1. Tolerance to abiotic stresses found in accessions of species belonging to the 
Oryza genus [28] [31] [39] [66]-[73]. 
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segregating population. It will increase the probability of identifying transgres-
sive families in relation to their respective parents [31]. The search and identifi-
cation of these superior families will allow the selection of genotypes along the 
segregating generations that show an escape from adverse conditions imposed 
by abiotic stresses inherent of the growing environments. 

4. Conclusions 

1) The Oryza genus shows great genetic variability through wild genotypes 
available in the most varied environments around the world. 

2) The negative effects imposed by abiotic stresses such as flood, salinity, low 
temperatures, water deficiency and high temperatures may be minimized by the 
efficient identification of a genetic variability source from the Oryza genus. 

3) Among the main wild species presented by the Oryza genus, Oryza glu-
maepatula stands out being an active source of germplasm. 

4) The occurrence and preservation of genetic variability of Oryza genus is in-
dispensable to obtain new rice genotypes, to guarantee food security for the hu-
man population, as well as to develop genotypes that adapt to climatic changes 
and natural adversities. 
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