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Abstract 
To enrich knowledge on the growth dynamics of commercial forest species in 
the Congo Basin, a study was conducted in Cameroon, within a community 
forest in savannah forest transition zone (Zone 1) and within FMU 10 052 in 
dense semi-deciduous humid forest (Zone 2). It aimed to obtain, in 8 species, 
the height (H) of the tree from its diameter (D) more accessible: Entandoph-
ragma cylindricum (Meliacea), Eribroma oblongum, Sterculia rhinopetala et 
Triplochiton scleroxylon (Malvaceae); Erythrophleum suaveolens et Piptade-
niastrum africanum (Fabaceae), Milicia excelsa (Moraceae) et Terminalia su-
perba (Combretaceae). The destructive method was used. After felling and 
flushing out a tree, the dendrometric parameters were measured and/or cal-
culated. In Zone 1, 6 species including T. scleroxylon were calibrated using 30 
trees of each. In Zone 2, 45 trees of E. cylindricum, 99 of E. suaveolens and 82 
of T. scleroxylon constituted the sample. At the 5% threshold (95% confi-
dence interval), the height-diameter relationship is a linear model. In all spe-
cies, the height of a tree is predicted by measuring its diameter through linear 
regression. In Zone 1 regression equation is: H(m) = 28.13 + 19.09 * D(m) for 
T. scleroxylon; H(m) = 12.35 + 30.38 * D(m) for S. rhinopetala; H(m) = 23.09 
+ 26.42 * D(m) for E. oblongum; H(m) = 14.86 + 20.92 * D(m) for P. afri-
canum; H(m) = 14.98 + 24.78 * D(m) for T. superba and H(m) = 1.55 + 32.37 
* D(m) for M. excelsa. In Zone 2, the relationship is: H(m) = 27.40 + 14.21 * 
D(m) for T. scleroxylon; H(m) = 7.79 + 20.18 * D(m) for E. cylindricum and 
H(m) = 20.08 + 9.74 * D(m) for E. suaveolens (probability associated with F < 
0.0001). The influence of site parameters (biotic and abiotic) on the height- 
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diameter relationship should be more studied in multilayers forests specifi-
cally in the Congo Basin. 
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1. Introduction 

The height of a tree is one of the basic dendrometric variables in forestry. Several 
other variables essential to forest management decision-making, such as tree 
scrolling and volume, stand dominant height and station quality index are derived 
from tree height, and the projection of stand development over time is based on 
precise height-diameter functions (Baumeister, 2017; Calama & Montero, 2004). 
Measuring the height of each tree is a tedious task (Fortin et al., 2009; Maiti et al., 
2016). This exercise is even more difficult in natural and complex tropical forests, 
such as those of the Congo Basin where trees of various ages, species, sizes, vigor 
classes, crowns and shade tolerance levels coexist, than under uniform planting 
conditions (Temesgen et al., 2014). Height measurements take longer than more 
accessible diameter measurements, and visual obstructions, rounded crown 
shapes, leaning trees, and terrain slopes are additional sources of error for height 
measurements (Mugasha et al., 2013). Very few studies have examined height- 
diameter relationships for multispecific natural tropical forests (Mugasha et al., 
2013; Temesgen et al., 2014; Tsega et al., 2018). This study lays the foundation for 
modelling the height-diameter relationship in the forests of the Congo Basin. In 
these natural tropical forests where logging takes only a few stems of different 
species per hectare, the height-diameter relationship calibrated from a sample of 
trees felled in the production forests will make it possible to estimate the height 
of the trees of a given species. In Cameroon, natural forests are generally mosaics 
of landscapes ranging from dense evergreen humid forests to forest-savanna 
transition zones to dense semi-deciduous humid forests (Letouzey, 1985). The 
study examines, on the one hand, the type of model that applies to the height- 
diameter relationship for each species, and on the other hand, the influence of 
the landscape on the model applicable to Triplochiton scleroxylon (Malvaceae), 
a species of very high commercial value in Cameroon (Gorel, 2012; Oumar et al., 
2021) encountered at both sampling sites. 

2. Material and Methods 
2.1. Study Site 

The study was carried out respectively in the dense semi-deciduous humid forest 
and in the forest-savanna transition zone. In dense semi-deciduous forest, data 
were collected in the Annual Cutting Plot (ACP 1-3) during operation in 2015 of 
the Forest Management Unit (FMU) 10,052, concession 1058 located in the 
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Eastern region, Kadey Division, Ndélélé Subdivision. In the forest-savannah 
transition zone, they were collected in the ACP under harvesting in 2011 in the 
Community Forest (CF) of the Coopérative des Paysans de la Lekié (COPAL) 
located in the Centre Region, Lekié Division, Batchenga Subdivision. FMU 10 
052 is located between north latitudes 3˚44'28'' and 4˚06'54'' and east longitudes 
14˚27'24'' and 14˚48'44''. The COPAL CF is located between the north latitudes 
4˚29'16'' and 4˚29'33' and the east longitudes 11˚47'74'' and 11˚61'25'' (Figure 1). 
The climate in both sites is of the humid Equatorial type with four seasons in-
cluding two rainy seasons (one small, from March to June and one large, from 
September to November), and two dry seasons (one long, from December to 
February and one small, from July to August). During the year, the mean tem-
perature varies between 20 and 24˚C in both sites, with an average rainfall of 
1600 mm in the Eastern region (SFIL, 2012) and 1550 mm for the Central region 
(Amougou, 2011). 

According to Letouzey (1985), FMU 10,052 belongs to the dense semi-deciduous 
rainforest of Meliaceae, Sterculiaceae/Malvaceae and Ulmaceae characterized 
mainly by the abundance of species of the genera Cola, Sterculia and Celtis. The 
most representative commercial species are Triplochiton scleroxylon (Malvaceae), 
Erythropheum suaveolens, Piptadeniastrum africanum, Terminalia superba,  

 

 
Figure 1. Localisation of the FC-COPAL and FMU 10,052. 
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Mansonia altissima, Entandophrama cylindricum, Desbordesia glaucescens, etc. 
(SFIL, 2012). The COPAL CF belongs to the forest savannah transition zone, 
with the most common species: Triplochiton scleroxylon, Lophira alata, Termi-
nalia superba, Lovoa trichilioides, Milicia excelsa, Eribloma oblongum and Ri-
cinodendron heudolotii (Letouzey, 1985; FC COPAL, 2007). Soils of the two zones 
are ferralitic with some differences (Jones et al., 2013). 

2.2. Methods 

Species selection depended on economic importance, resource availability (SFIL 
and COPAL order book), and species exploited during the study periods. A total 
of 8 species, belonging to 8 genera and 5 families were sampled. From May to 
July 2011, Triplochyton scleroxylon, Eribroma oblongum and Sterculia rhino-
petala (Malvaceae), Milicia excelsa (Moraceae), Piptadeniastrum africanum (Fa-
baceae), and Terminalia superba (Combretaceae) were sampled from the forest- 
savannah transition zone (Zone 1). From September to November 2015, T. scle-
roxylon, Entandophragma cylindricum (Meliaceae) and Erythrophleum suaveo-
lens (Fabaceaa) were sampled in FMU 10,052 (Zone 2). E. cylindricum, E. sua-
veolen and T. scleroxylon are among the thirty-five most exploited species in the 
Congo Basin (Pérez et al., 2005). 

In Zone 1, 30 individuals were calibrated for each of the selected species: 
Triplochyton Sleroxylon, Eribroma oblongum, Milicia excelsa, Piptadeniastrum 
africanum, Sterculia rhinopetala and Terminalia superba. In Zone 2, the sample 
consisted of 82 individuals of T. Scleroxylon, 45 individuals of Entandophragma 
cylindricum and 99 individuals of Erythrophleum suaveolens. 

The destructive method was used. Felling teams were followed in each AHC 
under operation. After felling and flushing out a tree, dendrometric measure-
ments are made: height of the stump, diameters big-end and small-end, length of 
the log, length of the abutment, length of the crown. The total height of the shaft 
is calculated by adding the height of the stump, the length of the abutment, the 
length of the log and the length of the crown (Figure 2). Collected data were 
analyzed using Excel and Xlstat Software (Table 1). 

3. Results 
3.1. Height-Diameter Relationship in Forest-Savannah Transition 

Zone 

By T. scleroxylon the height-diameter relation follows a linear model which re-
sults in the equation: H (m) = 28.13 + 19.09 * D(m) with the determination coef-
ficient of R2 = 0.84. This is a positive and very strong correlation. In this equa-
tion, the confidence interval of the means is: H = 47.54 ± 4.46 and D = 1.00 ± 
0.21. The parameter D has a fairly narrow confidence interval compared to that 
of parameter H, that is fairly wide, similarly, the constant of the model (28.13) is 
quite wide. The model indicates that within the range of variation of variable D 
given by the calibration, each time D increases by 1 m, H increases by 19 m. The  
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Figure 2. Dendrometric measurements. 
 

Table 1. Statistical analysis of dendrometric measures. 

Statistical Analysis 
 

Species 

Descriptive Statistics Variance 
Parameters of the  

regression: y = b + ax 

H (m) D(m) F value b: constant 
a: director  
coefficient 

Zone 1: transition forest savanah 

Triplochiton slceroxylon 47.54 ± 4.46 1.00 ± 0.21 144.4*** 28.13 19.09 

Sterculia rhinopetala 35.90 ± 5.87 0.77 ± 0.17 128.8*** 12.35 30.38 

Eribroma oblongum 47.27 ± 4.40 0.91 ± 0.15 128.7*** 23.09 26.42 

Piptadeniastrum africanum 43.06 ± 6.87 1.34 ± 0.25 42.5*** 14.86 20.92 

Terminalia superba 35.20 ± 4.56 0.82 ± 1.52 60.4*** 14.98 24.78 

Milicia excelsa (Moraceae) 53.87 ± 6.16 0.99 ± 0.16 78.4*** 21.55 32.37 

Zone 2: dense humid semidecidous forest 

T. slceroxylon 43.29 ± 6.75 1.12 ± 0.24 26.26*** 27.40 14.21 

Entandophragma cylindricum 41.24 ± 8.36 1.16 ± 0.28 38.90*** 17.79 20.18 

Erythrophleum suaveolens 35.38 ± 4.72 0.95 ± 0.16 12.67*** 26.08 9.74 

 
model is verified at 83%, 17% due to effects other than the explanatory variables 
(H and D) that vary simultaneously. At the 5% threshold, the confidence interval 
for observations is 95%, the regression model is linear, and the scatter plots are 
not distended (Figure 3(a)). 

For S. rhinopetala, the height-diameter relationship also follows a linear mod-
el that results in the equation: H (m) = 12.35 + 30.38*D(m) with R2 = 0.82. The 
confidence interval of the means is: H = 35.90 ± 5.87 and D = 0.77 ± 0.17. Para-
meter D has a narrow confidence interval compared to parameter H, the con-
stant of the model (12.35) is quite wide. The model indicates that within the 
range of variation of the variable D given by the calibration, each time D in-
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creases by 1 m, H increases by 30 m. The correlation is positive and very strong 
(R > 0.8). The model is 82% verified, 18% of which is due to effects other than 
the explanatory variables (H and D) that vary simultaneously. At the 5% thre-
shold, the confidence interval for observations is 95%, the height-diameter mod-
el is linear, and the point clouds are not distended (Figure 3(b)). 

For E. oblongum, this is also a linear model whose equation is: H (m) = 23.09 
+ 26.42 * D(m) with R2 = 0.83. The confidence interval of the means is: H = 
47.27 ± 4.40 and D = 0.91 ± 0.15. Parameters D and H have narrow intervals, 
that of the model constant (47.27) is quite wide. The model indicates that within 
the range of variation of variable D given by the calibration, each time D in-
creases by 1 m, H increases by 26 m. The correlation is positive and very strong 
(R > 0.8). The model is 83% verified, with 17% due to effects other than the ex-
planatory variables (H and D) that vary simultaneously. At the 5% threshold, the 
confidence interval for observations is 95%, the regression model is linear and 
the scatter plots are not distended (Figure 3(c)). 

For P. africanum, the height-diameter relationship also follows a linear model 
whose equation is: H (m) = 14.86 + 20.92 * D(m) with R2 = 0.603. The confi-
dence interval of the means is: H = 43.06 ± 6.87; D = 1.35 ± 0.25 m. Parameter D 
has a narrow confidence interval with respect to H which has a wide interval. 
The constant of the model (14.56) is quite wide. The model indicates that within  

 

 

Figure 3. Heigh-Diameter relationship in the forest-savannah transition zone. 

https://doi.org/10.4236/ojf.2022.122013


A. N. Y. Achille et al. 
 

 

DOI: 10.4236/ojf.2022.122013 241 Open Journal of Forestry 
 

the range of variation of the variable D given by the calibration, each time D in-
creases by 1 m, H increases by 21 m. The correlation is positive and strong (0.5< 
R < 0.8). The model is 60% verified, 40% of which is due to effects other than the 
explanatory variables (H and D) that vary simultaneously. At the 5% threshold, 
the confidence interval for observations is 95%, the regression is linear and the 
scatter plots are quite distended (Figure 3(d)). 

For T. superba, the model is linear according to the equation: H (m) = 14.98 ± 
24.78 * D(m) with R2 = 0.68. The confidence interval of the means is: H = 35.20 
± 4.56 and D = 0.82 ± 1.52. The parameter H has a narrow confidence interval 
compared to that of D which is wide. The constant of the model (14.98) is quite 
wide. The model indicates that within the range of variation of the variable D 
given by calibration, each time D increases by 1 m, H increases by 24 m. The 
correlation is positive and strong (R2 > 0.6). The model is verified at 68%, 32% 
being due to effects other than the explanatory variables (H and D), which vary 
simultaneously. At the 5% threshold, the confidence interval for observations is 
95%, the regression is linear and the scatter plots are slightly distended (Figure 
3(e)). 

By M. excelsa, the relationship follows a linear model whose equation is: H 
(m) = 21.55 + 32.37 * D(m) with R2 = 0.74. The confidence interval of the means 
is H = 53.87 ± 6.16 and D = 0.99 ± 0.16. Parameter D has a narrow confidence 
interval compared to H, which has a wide interval. The model constant (21.55) is 
quite wide. The model indicates that within the range of variation of variable D 
given by calibration, each time D increases by 1 m, H increases by 32 m. The 
correlation is positive and very strong (R > 0.8). The model is checked at 73%, 
27% being due to effects other than the explanatory variables (H and D), which 
vary simultaneously. At the 5% threshold, the confidence interval for observa-
tions is 95%, the regression is linear, and the scatter plots are slightly distended 
(Figure 3(f)). 

The probability associated with F (Fisher's test) for all species sampled is in 
this case less than 0.0001 (Table 1). This means that for a given species, we take 
the risk of getting 0.01% wrong when predicting the height of an individual. This 
explanatory variable is highly significant for all 6 species in the forest-savanna 
transition zone. 

3.2. Height-Diameter Relationship in Dense Humid 
Semi-Deciduous Forest 

By T. scleroxylon, the linear model equation obtained is H (m) = 27.40 + 14.21 * 
D(m) with R2 = 0.25. The means confidence interval is H = 43.29 ± 6.75 and D = 
111.78 + 23.62. The parameter H has a fairly narrow confidence interval com-
pared to D whose confidence interval is wide. The constant of the model (27.40) 
is quite wide. The model indicates that within the range of variation of variable 
D given by observations, each time D increases by 1 m, H increases by 14 m. The 
linear correlation is positive but weak (R2 < 0.5). The model is 97% verified, 3% 
being due to effects other than the explanatory variables (H and D) that vary si-
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multaneously. At the 5% threshold, the confidence interval for observations is 
95%. The regression is linear and only the values 0.5 < D < 1.5 m deviate from 
the scatter plot (Figure 4(c)). 

By E. cylindricum, the relationship is linear according to the equation: H (m) 
= 17.79 + 20.18 * D(m) with R2 = 0.47. The confidence interval of the means is H 
= 41.24 ± 8.37 and D = 116.19 + 28.57. The parameter H has a narrow confi-
dence interval compared to that of D which is quite wide. The constant of the 
model is quite wide (17.79) and the model indicates that within the limits of the 
range of variation of the variable D given by the observations, each time D in-
creases by 1 m, H increases by 20 m. The linear correlation is positive and aver-
age (R2 ≤ 0.5). The model is 93% verified, 7% being due to effects other than the 
explanatory variables (H and D) that vary simultaneously. At the 5% threshold, 
the confidence interval for observations is 95%, the regression is linear, and the 
0.5 ≤ D < 1.5 m deviates from the scatter plot (Figure 4(a)). 

For E. suaveolens, the relationship is linear according to the relation: H (m) = 
20.08 + 9.74 * D(m) with R2 = 0.12. The confidence interval of the means is H = 
35.38 ± 4.72 and D = 95.39 + 16.49. The parameter H has a narrow confidence 
interval compared to that of D which is quite wide. The constant of the model 
(20.08) is quite wide. The model indicates that within the range of variation of 
the variable D given by calibration, each time D increases by 1 m, H increases by 
9 m. The linear correlation is positive and very weak (R2 = 0.11). The model is  

 

 
Figure 4. Heigh-Diameter relationship in the dense humid semidecidous forest. 
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98% verified, 2% being due to effects other than the explanatory variables (H 
and D) that vary simultaneously. At the 5% threshold, the confidence interval 
for observations is 95%, the regression is linear but the D < 0.5 m deviates from 
the scatter plot (Figure 4(b)). 

The probability associated with F for all three species (E. cylindricum, E. sua-
veolens and T. scleroxylon) is less than 0.0001 (Table 1). This means that for a 
given species, we take the risk of getting 0.01% wrong when predicting the 
height of an individual. This explanatory variable is highly significant for all 3 
(three) species in the semi-deciduous dense humid forest area. 

4. Discussion 

Both in forest-savanna transition zones and in dense semi-deciduous humid 
forest areas, the height-diameter relationship follows a linear model for all the 
8 (eight) species studied. These results corroborate those of various authors 
who have worked on the height-diameter relationship either in monospecific, 
monostrate forest plantations (Fortin et al., 2009; Sharma & Zhang, 2004; Ro-
binson & Wykoff, 2011; Huang et al., 1992; Sharma & Parton, 2007; Trincado et 
al., 2007; Kebede & Soromessa, 2018; Santiago-García et al., 2020; Baumeister, 
2017; Sharma & Breidenbach, 2015) or in multi-stratum and multi-species natu-
ral forest (Mugasha et al., 2013; Temesgen et al., 2014; Tsega et al., 2018). How-
ever, the determination coefficient is high (R2 > 0.6) in the forest-savanna transi-
tion zone and low (R2 > 0.5) in the dense humid semideciduous forest, but the 
probability associated with the Fisher test for the 8 (eight) species in both sites 
is less than 0.0001 and therefore highly significant. This means that by predict-
ing the total height of an individual of one of these species using the linear mod-
el associated with it, one takes the risk of getting 0.01% wrong. Therefore, the 
proposed model for each of these 8 (eight) species can be used to predict the to-
tal height of each individual in its population from the accessible diameter mea-
surement. 

Knowing that both sites are under the influence of the same climatic and soil 
parameters (Amougou, 2011; SFIL, 2012; Jones et al., 2013), the difference in R2 
value between the two landscapes could be explained by sampling (Colas, 2020) 
or soil parameters (Fortin et al., 2009). Regarding sampling: in forest-savannah 
transition zone, the observations concerned individuals of (Minimum Exploita-
bility Diameter) D ≥ MED ≥ 0.6 m in this case D > 0.6 m except in S. rhinopetala 
with some individuals of D ≤ 0.6 m; in semi-deciduous forest areas the sample 
had in addition to individuals of D ≥ MED< ≥0.6 m, some young D < MED in-
dividuals. However, a more in-depth study of the influence of site parameters 
(biotic and abiotic) on the height-diameter relationship such as that conducted 
by (Sharma & Parton, 2007; Trincado et al., 2007; Fortin et al., 2009; Yang & 
Huang, 2014) would better explain this difference. 

In semi-deciduous dense humid forest, R2 alone cannot justify the linear re-
gression of the height-diameter relationship, adding statistical analysis could 
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better justify the model (Colas, 2016, 2020). Indeed, the descriptive statistics of 
this regression indicate for the 3 (three) species that: 1) at the 5% threshold, the 
confidence interval of the observations is 95% and 2) the probability associated 
with F is less than 0.0001 covering the highly significant explanatory variable 
and thus allowing to accept the adjustment of the model. This means that for a 
given species, we take the risk of being wrong by 0.01% when predicting the 
height of an individual from its diameter alone despite a low coefficient of de-
termination (R2 < 0.5). 

5. Conclusion 

Several variables to forest management decision-making, such as tree scrolling 
and volume, stand dominant height and station quality index are derived from 
tree height, and the projection of stand development over time is based on pre-
cise height-diameter functions. Measuring the height of each tree is a tedious 
exercise that is even more difficult in natural and complex tropical forests than 
under uniform planting conditions. Height measurements take longer than more 
accessible diameter measurements. To obtain the total height of a tree from the 
measurement of the accessible diameter, this study laid the foundation for mod-
elling the height-diameter relationship in the forests of the Congo Basin by in-
vestigating the type of model that applies to the height-diameter relationship for 
six (6) commercial species: encountered in the forest-savannah transition zone 
and the dense humid semi deciduous forest in Cameroon. 

A total of 8 species, belonging to 8 genera and 5 families were sampled: Trip-
lochyton scleroxylon, Eribroma oblongum and Sterculia rhinopetala (Malva-
ceae), Milicia excelsa (Moraceae), Piptadeniastrum africanum and Erythroph-
leum suaveolens (Fabaceae), Terminalia superba (Combretaceae), and Entan-
dophragma cylindricum (Meliaceae) were sampled. The destructive method was 
used. Felling teams were followed in each site under operation. After felling and 
flushing out a tree, dendrometric measurements were made and collected data 
were analyzed using Excel and Xlstat Software. Both in the forest-savanna tran-
sition zone and in the dense semi-deciduous humid forest area, the height- 
diameter relationship follows a linear model for all the 8 (eight) species studied. 
However, the determination coefficient is high (R2 > 0.6) in the forest-savanna 
transition zone and low (R2 > 0.5) in the dense humid semideciduous forest, but 
the probability associated with the Fisher test for the 8 (eight) species in both 
sites is less than 0.0001 and therefore highly significant. This means that by pre-
dicting the total height of an individual of one of these species using the linear 
model associated with it, one takes the risk of getting 0.01% wrong. Therefore, 
the proposed model for each of these 8 (eight) species can be used to predict the 
total height of each individual in its population from the accessible diameter 
measurement. However, a more in-depth study of the influence of site parame-
ters (biotic and abiotic) on the height-diameter relationship would better explain 
this difference obtained in both sites. 
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