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Summary

• Diplostigmaty, the presence of a primary (apical) stigma and secondary

(mid-stylar) stigmas along the style, is only known from the genus Sebaea (Gen-

tianaceae). Early work indicated that the secondary stigmas provide a mechanism

of autogamy, suggesting that it might ensure reproductive assurance.

• Here, we test the monophyly of this unique morphological trait. Using Bayesian

methods, we infer a nuclear DNA phylogeny for 96 accessions, including c. 50%

of the species from the genus Sebaea. With this phylogeny, we infer the distribu-

tion of ancestral states on critical nodes using parsimony and likelihood methods.

• The inferred nrDNA phylogeny shows that the genus Sebaea is divided in two

statistically well-supported clades, A and B, consistent with recent estimates. The

most recent ancestor (MRCA) of clade A, except the most basal species (Sebaea

pusilla), is resolved as diplostigmatic. No reversal to a single stigma is observed

within this clade.

• We suggest that diplostigmaty is evolutionarily stable through time. We also

discuss why this reproductive system is not found elsewhere than in Gentianaceae

and the potential advantage of diplostigmaty as a stable mixed mating strategy.

Introduction

The majority of flowering plant species are hermaphroditic
(i.e. flowers contain both male (stamens) and female
(carpels) organs). Although most species fertilize their
ovules with outcrossed pollen, self-pollination is widespread
and the shift to self-pollination is a common transition in
the evolutionary history of the angiosperms (Stebbins,
1974). Selfing relieves individuals from the requirement of
having mating partners and allows rapid colonization, but it

is associated with costs, including inbreeding depression,
pollen discounting and in the long term a loss of genetic
variability (Barrett, 2002). Mixed mating, where an individ-
ual reproduces both by self-fertilization (selfing) and mating
with genetically different individuals (outcrossing) occurs in
at least one-third of all angiosperm species, as shown by
inferences of selfing rates based on genetic markers (Barrett,
2002).

Early theoretical models suggested that inbreeding
depression, the main selective factor opposing the evolution
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of selfing, can be purged with self-fertilization, a process
that favours pure strategies of either outcrossing or selfing
(Lande & Schemske, 1985; Takebayashi & Morell, 2001;
Goodwillie et al., 2005; Johnston et al., 2009). While fur-
ther empirical and theoretical studies suggest that mixed
mating strategies have evolved and can be evolutionarily sta-
ble (Charlesworth & Charlesworth, 1978; Gregorius, 1982;
Holsinger, 1991; Haccou & Iwasa, 1995; Johnston et al.,
2009), the latter remains controversial (Lloyd, 1979; Lande
& Schemske, 1985; Flaxman, 2000; Takebayashi & Morell,
2001; Herlihy & Eckert, 2002; Porcher & Lande, 2005;
Schoen & Busch, 2008). Currently, the debate focuses pri-
marily on factors that facilitate the maintenance of mixed
mating systems, rather than on assessing whether, or which
of the existing mixed mating systems are evolutionarily sta-
ble (Goodwillie et al., 2005). It is therefore important to
identify suitable study cases for such investigations that may
provide examples of stable mixed mating systems.

Here, we investigate the ancestral and monophyletic pres-
ence of diplostigmaty, a unique morphological trait. We
discuss why it is found in Gentianaceae and not in other
angiosperm families, and suggest experimental tests of the
potential role of diplostigmaty as a morphological mixed
mating strategy.

Diplostigmaty, the presence of a primary (apical) stigma
and secondary (mid-stylar) stigmas on the style (Marloth,
1909; Fig. 1) is only known from the genus Sebaea (Gen-
tianaceae). Sebaea is composed of c. 100 species (Schinz,
1906; Kissling et al., 2008) mainly from Africa, of which
c. 65 are diplostigmatic. The flowers are radially symmetri-
cal (actinomorphic), with five free sepals and five petals that
are united basally into a long tube with five free lobes. As a
rule, the anthers are exserted and attached by a long fila-
ment to the sinus of the corolla lobes (Fig. 1a). Before
anther dehiscence, the style head of the gynoecium (with
the apical stigma) is situated slightly below the level of the
exserted stamens, while the secondary stigmas (when pres-
ent) appear lower down on the style. When the anthers
begin to open, the apical stigma is situated more or less at the
same level as the anthers. The style continues its elongation
and is mature when situated slightly above the anthers (avoid-
ing self-pollen deposition on the apical stigma). The second-
ary stigmas are fully developed only much after the apical
stigma reached its maturity, sometimes 2 or 3 days later,
consistent with a potential role in reproductive assurance.

In 1913, Hill published a series of glasshouse experiments
on several Sebaea species (i.e. S. aurea, S. ambigua, S. confer-
tiflora and S. imbricata): he removed the apical stigma, the
anthers or both. Hill also hand-pollinated the apical stigma,
the secondary stigmas or both, and recorded seed set after
these treatments. Removing the apical stigma led to signifi-
cant enlargement of the secondary stigmas, and the plant
produced viable seeds, while treatments involving removal
of the anthers did not lead to any seed set, suggesting that

cross-fertilization was excluded under the experimental con-
ditions. Together with hand-pollination results, Hill’s work
demonstrated that (1) these species are self-compatible, (2)
the secondary stigmas are functional as an organ allowing
self-pollen receipt and germination, and (3) seed set after
removal or not of the apical stigma must have resulted from
self-pollen deposition on the secondary stigmas. Both Hill’s
(1913) and Marloth’s (1909) studies on Sebaea suggest that
secondary stigmas allow the production of selfed progeny
when cross-pollination (mediated by the primary, apical
stigma) fails to fertilize some or all of the available ovules.
This idea is also consistent with the relatively basal position
of the secondary stigmas on the style, where self-pollen
naturally falls (Fig. 1).

The presence of diplostigmaty offers a unique opportu-
nity to further test whether such a morphological feature
allowing both self- and cross-fertilization as separate func-
tions is stable through evolutionary time. If this mating sys-
tem is not stable through time (i.e. over a very large number
of generations) we should expect to observe reversals to a
single stigma, assuming that secondary stigmas also entail
some costs, and that owing to the unique stylar architecture
(see the Discussion section) a reversal appears to be easy.
Moreover, if, as suggested by theory, mixed mating could
be advantageous, we should expect an individual selection
advantage to diplostigmaty (this being reflected at a large
time-scale by stability and by diversification of the group
with this innovation).

Here, we discuss this prediction by inferring the nrDNA
phylogeny for an extended taxonomic sampling of Sebaea
species and assessing the monophyly of diplostigmaty
within Sebaea by ancestral state inference.

Materials and Methods

Sampling, data collection and gene sequencing

Sebaea species were collected in Africa (from 2004 to 2007)
and the sampling was maximized to cover the geographical,
ecological and morphological variation of the genus. In
addition, two representatives of the neighbouring tribe
Chironieae were used as outgroups. The presence of second-
ary stigmas was recorded for all species sampled based on
direct observation of living and herbarium materials.

When available, we used the previously published DNA
sequence data of Exaceae (Yuan et al., 2003, 2005). To
these pre-existing data, we added 52 new sequences (Gen-
Bank Accession numbers FJ665987 to FJ666038) of Sebaea
and Exacum species (Table S1). To obtain our new DNA
sequences of nuclear ribosomal internal transcribed spacer
(ITS1 and 2) and the 5.8S gene, we followed Yuan et al.
(2003). To detect mistakes and correct uncertainties in the
computer-generated sequence, we compared aligned trace-
files in CHROMASPRO version 1.33 (Technelysium Pty
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Ltd, Tewantin, Queensland, Australia). Alignment was
performed using CLUSTAL W (Thompson et al., 1994) as
implemented in BIOEDIT 7.0.1 supplied by Tom Hall
(http://www.mbio.ncsu.edu/BioEdit/bioedit.html) with sub-
sequent manual improvement. The data matrix containing
the aligned sequences is available on request from J.K or
directly on TreeBase (accession number: M4660).

Phylogenetic analysis

Bayesian inference was conducted using MRBAYES version
3.1.2 (Huelsenbeck et al., 2001; Ronquist & Huelsenbeck,

2003) and the data were partitioned by genes. The most
appropriate model of sequence evolution for each partition
was determined using MRMODELTEST version 2.2.
(Posada & Crandall, 1998; Nylander, 2004; Posada &
Buckley, 2004) to be the general time reversible model
(GTR + G) for the ITS1, and the GTR + I + G model for
the ITS2, and the K80 model for the 5.8S gene. Default
priors were used for the base frequency parameters. Two
independent analyses each with four Markov chains, three
heated and one cold, starting from a random tree were run
simultaneously for 5 million generations with trees sampled
every 1000 generations. We used the online program

100 µm

900 µm

300 µm

50 µm

10 mm

(a) (d)

(e)

(b)

(c)

Fig. 1 Sebaea macrophylla. (a) Flower; (b) gynoecium at early stage, with carpels already postgenitally fused; (c) close up of part of (b) where
the secondary stigmas will develop: the suture of postgenital fusion appears slightly expanded and epidermal papillae of the secondary stigmas
are beginning to develop; (d) older gynoecium with secondary stigmas at the base of the style; (e) close up of part of (d, but in dorsal view of a
carpel) with secondary stigmas on both sides.
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AWTY (Wilgenbusch et al., 2004) to check for stationarity.
Trees generated before the four Markov chains reaching sta-
tionarity (the burn-in) were discarded. The remaining trees
were used to construct a 50% majority rule consensus tree.
High posterior probabilities were recovered for all major
lineages.

Morphological character state optimization

The character state evolution (using data on absence ⁄ pres-
ence of the secondary stigmas) was reconstructed with
MESQUITE 1.12 (Maddison & Maddison, 2008) on to
the obtained Bayesian trees by using two methods: maxi-
mum-likelihood-based discrete Markov k-state 1 parameter
models (Lewis, 2001; Maddison & Maddison, 2008); and a
maximum parsimony approach (Maddison & Maddison,
2000). The likelihood-based Markov k-state 1 model does
not consider any particular plesiomorphic state at the root
of the tree, and a character state can change to any other
state on any branch of the tree with equal probability. We
report proportional likelihood (P.L.) values of states scaled
so that the sum of all states is 1. We used a decision thresh-
old of 2.0 in MESQUITE (Maddison & Maddison, 2008)
for statistical considerations, while parsimony analyses con-
sidered character state transformations unordered.

Results

With both parsimony and likelihood methods, diplo-
stigmaty is unequivocally inferred to have arisen once in
Sebaea (Fig. 2), in clade A. Moreover, no reversal to a single
stigma has occurred within this clade.

The Bayesian topology with posterior probabilities is
given in Fig. 2 (arithmetic mean of the –loglikelihood (L)
of trees sampled after the burn-in = )7603.02; harmonic
mean = )7683.94). The topology is in broad agreement
with the relationships previously inferred in Exaceae using
smaller taxonomic samplings (Yuan et al., 2003, 2005;
Kissling, 2007).

However, while the present phylogeny does not resolve
the basal polytomy of the tribe, it confirms the recently
described genus Klackenbergia (Kissling et al., 2009) as dis-
tinct from Sebaea, and statistically supports the division of
Sebaea into two main clades, hereafter called clade A and
clade B, congruent with other estimates (Kissling, 2007)
(Fig. 2).

Discussion

We used DNA sequence data from the nuclear genome to
reconstruct the phylogeny of Sebaea and mapped the distri-
bution of diplostigmaty character states, i.e. pres-
ence ⁄ absence of secondary stigmas, on the obtained
phylogenetic tree. The data show that Sebaea is divided into

two main, statistically well-supported, separate clades
(clades A and B). All members of clade A are diplostigmatic
(i.e. have secondary stigmas), except for the basalmost spe-
cies (Sebaea pusilla), indicating that no reversals (loss of the
secondary stigmas) have occurred. By contrast, none of the
species in clade B is diplostigmatic. The age of Sebaea has
been previously estimated by penalized likelihood method
to be c. 20.3–54.3 Myr (Yuan et al., 2003), and this age
has been recently confirmed for the diplostigmatic Sebaea
clade (Kissling, 2007). As Sebaea species are small short-
lived annuals with probably more than one generation per
flowering season, we could reasonably assume c. 2 · 106

generations since the origin of diplostigmaty. This provides
support for the idea that diplostigmaty has been stable
through evolutionary time. However, it should also be
taken into account that a character state with a lower net
diversification rate could persist for a long time, even if it is
not a key innovation.

Clade A represents a large group of c. 65 species, which
occur mainly in the Western Cape (South Africa). This spe-
cies diversity, compared with the other genera of Exaceae
(including clade B), suggests a greater diversification for the
diplostigmatic Sebaea. Furthermore the basalmost species of
clade A, S. pusilla, has both a similar distribution area and a
similar dispersal strategy compared with the rest of the diplo-
stigmatic Sebaea (Kissling, 2007). Therefore, climatic or
ecological factors alone are unlikely to explain the diversifi-
cation burst of the rest of that clade. Sebaea pusilla also
shares with the rest of the clade several reproductive charac-
ters such as bilobed stigma, mode of anther dehiscence, and
flower colour and size. Although more work is needed to
substantiate the correlates of this diversification this is
consistent with the idea that the secondary stigmas, which
are absent only from this basal species, might constitute
an innovation that has contributed the diversification of
clade A.

Persistence through time of diplostigmaty and diversifica-
tion of clade A suggest that diplostigmaty may convey an
advantage under certain ecological conditions. A plausible
hypothesis for this, which is consistent with Hill’s (1913)
results but still requires experimental verification in natural
populations, is that the presence of a secondary stigmas with
delayed maturation might serve to ensure seed set when out-
cross pollen or pollinators are scarce (reproductive assur-
ance; Jain, 1976), while at the same time the apical stigma
can serve to promote opportunities for outcrossing during
early anthesis. Thus the persistence through time of diplo-
stigmaty is consistent with the idea that the ability to self if
outcrossing fails is always a selective advantage unless failure
to outcross is so rare that the cost of the structures to enable
selfing exceeds their benefit. An important advantage of
diplostigmaty with delayed maturation of the basal stigmas,
which may enable its evolutionary stability, is that with this
morphological trait the structures that facilitate selfing do
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Fig. 2 Parsimony inference of ancestral states on the 50% majority rule consensus trees from Bayesian inference analyses of the combined
data set. Likelihood inference of ancestral states is also reported for the nodes of interest. Branch support values are posterior probabilities from
a 50% majority rule consensus tree derived from a Bayesian inference analysis.
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not interfere with and do not diminish the opportunity for
outcrossing. Temporal and physical separation of primary
and secondary stigmas may thus lower the risk of seed dis-
counting (i.e. that production of selfed seed might use
ovules that would have otherwise been outcrossed and more
viable) (Barrett, 2002).

Because Hill’s experiments indicate that removal of the
apical stigma results in an enlargement of the secondary
stigmas, and studies on other plants show that floral herbiv-
ory can influence the evolution of floral traits (e.g. Steets &
Ashman, 2004; Ivey & Carr, 2005; Strauss & Whittall,
2006; Penet et al., 2009), an alternative explanation for the
putative ecological advantage of diplostigmaty in Sebaea
could be that the secondary stigmas evolved because of high
florivore pressure, rather than absence of pollinators. The
‘surplus’ stigma may function to replace the primary stigma
lost to herbivores. In this scenario, mixed mating would be
a byproduct of selection on diplostigmaty as an herbivore
tolerance trait and not reproductive assurance per se. How-
ever, as we never found flowers with the primary stigmas
destroyed neither in the field (> 200 populations) or in her-
barium material (> 3000 collections), this scenario appears
unlikely.

Whereas this may explain the persistence of this unique
trait, it does not explain why secondary stigmas are not
present in other groups. The answer may lie in unusual
structural features in the development of the gynoecium (J.
Kissling & P. K. Endress, unpublished). Although the
gynoecium at anthesis appears as seemingly syncarpous (i.e.
congenitally united) as in most angiosperms with a unified
style, this is not really the case. In early development the
two carpels are free at the level of the style and then fuse
postgenitally (for the role of postgenital and congenital
fusion, see Endress, 2006). Postgenital fusion of carpels by
itself is unusual but not rare in angiosperms (Igersheim
et al., 2001; Matthews & Endress, 2005; Remizowa et al.,
2008). However, what makes it truly unique is that the free

upper carpel parts that fuse postgenitally are not plicate
(folded) as is usually the case, but are flat (Fig. 3) so that
their margins are not hidden inside the style but come to lie
at the surface of the style. Because, as a rule, the ventral side
including the margins of a carpel develops stigmatic tissue,
only a stylar architecture as in Sebaea has the potential to
become stigmatic along the area of postgenital fusion
(Fig. 1). Consistent with this, in Sebaea the secondary stig-
mas always develop along the postgenital fusion suture line
between the carpels (Fig. 1c). The combination of these
two features, postgenital fusion and flat carpels, is what
makes this architecture unique. It is only known in Gen-
tianaceae (McCoy, 1940; Baum, 1948; Leinfellner, 1951;
Vijayaraghavan & Padmanaban, 1968) and the closely
related Apocynaceae (Walker, 1975; Fallen, 1985). Among
Gentianaceae, in Bartonia and Lomatogonium stigmatic tis-
sue occurs all along the line of postgenital fusion of the two
carpels. However, there is no separation into an upper and a
lower stigma. In the majority of Apocynaceae the stigma is
not apical but situated at the base of a ‘style head’. How-
ever, their pollination apparatus is more complicated, and it
is unlikely that the stigma is directly comparable with the
secondary stigmas in Sebaea. In any case, the presence of
two stigmas is only known in Sebaea.

In conclusion, diplostigmaty has arisen once in Sebaea
clade A, and no reversal to a single stigma has occurred,
consistent with the idea that the presence of a secondary
stigmas provides an ecological advantage. To test this idea,
further work should explore the evolutionary stability of
diplostigmaty and whether, and to what extent, the second-
ary stigmas serve for reproductive assurance in natural pop-
ulations, whereby the presence of this trait across a set of
related species allows for replication of experimental tests
and comparative analyses.
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(a) (b) (c)

Fig. 3 Three different types of style of angiosperm gynoecia
composed of two carpels (schematic transverse sections). (a) Type
with the carpels congenitally united (the most common type in
angiosperms); (b) type with plicate (folded) carpels postgenitally
united (occurring in several families of eudicots and monocots); (c)
type with flat carpels postgenitally united (occurring in Sebaea, some
other Gentianaceae and a few Apocynaceae). Vertical lines between
the two carpels, area of postgenital fusion; asterisks indicate carpel
margins.
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