Guide to 'non-voice' transmissions on shortwave

Ten-more, good buddy - the CBRS turns ten

Good

The 70 Series Multimeters: the shining standard by which others are measured.

 These multimeters are produced through advanced technology that assures you a wealth of product features. Giving you solid value for your money.
Security of a 3-year warranty.

A 3-year warranty reduces your cost of A 3-year warranty reduces your cost of
ownership. So you don't have to pay the price over and over for lesser-quality multimeters. More features for your money. Choose from either the basic 73 or the feature-rich 75 and 77. You'll find the features yeature-rich 75 and 77 . You'll find the features Hold ${ }^{\text {TM }}$ for capturing and holding readings. Audible tones to signal you for continuity. Autoranging for simple operation. And a sleep mode for extending battery life up to 2000 hours.

Made in the U.S.A.

 Like other Fluke products these multimeters offer you uncompromised quality at competitive prices. So get your hands on at competitive prices. So get your hands ona 70 Series Multimeter at leading electronics distributors nationwide.

FROM THE WORLD LEADER IN DIGITAL MULTIMETER.

FLUKE 73, 75, 77

\qquad Security of a
\qquad

\section*{as

as Gold

Abstract

*

Abstract

i

[^0]

-
rex
\qquad
†
$$
5
$$

Talk to your local Eimeasco distributor about Fluke -
A.C.T. John Pope Electrical (062) 806576 • J Blackwood \& Sons (062) 805235 • George Brown (062) 804355

- N.S.W. Ames Agency 6994524 - J Blackwood \& Sons * George Brown 5195855 Newcastle 606399 • Bryan Catt Industries 5262222 •D GE Systems (049) 691625 Petro-Ject $5501388 \cdot$ David Red $2671385 \bullet$ W. F Dixon (049) 615628 • Macelec (042) $291455 \bullet$ Ebson $7072111 \bullet$ Selectropants $7083244 \bullet$ Got Wood 4271676 Novacastrian Electronic Supply (049) 621358
- N TERRTTORY J Blackwood \& Son (009) 84 4255, 52 1788 - Thew \& McCain (089) 844999
 - Fred Hoe sons 2774311 . The Electronic Shop (075) 323632 - Thompson instruments (Cairns) (070) 512404
S. australia Protronics 2123111 • Trio Electric 2126235 • Industrial Pyrometers 3523688 • J Blackwood \& Son 460301 * Petro-Ject 3631353
- TASmania George Harvey (003) 316533 (002) 342233
- VICTOALA Rad io Parts 3297888 • George Brown Electronics Group 8788111 • G B Telespares 3284301 * AW M Electrical Wholesalers e Petro-Ject 419937

[^1]

A CELEBRATION

Well, didn't that year whizz by. It's our second birthday already! One of the most significant events for the magazine during the past year has been the incorporation of selected projects and articles from the British edition of the widely respected Elektor Electronics from October '86. This has proved quite popular and we're very pleased at reader's response to it. It's also personally very satisfying to see that the three projects featured in our first issue are still stock kits with a number of suppliers, as are many of our projects since then, testifying to the acceptance of our choice and presentation of projects.

But enough of history. We've plenty more to offer for the future: projects like active loudspeakers for the audio enthusiast, an all-mode amplifier for the six metre amateur band, some more small computer add-on projects and whatever you prompt us to produce that's of popular interest! And that's not to mention the features we've got lined up. We'll shortly be doing an update on dial-up data services and looking once again (maybe annually?) at what's happening in CAD. But we can't give too much away too early!

All of us at the magazine would like to sincerely toast all you loyal readers and say, THANKS FOR STICKING WITH US FOLKS!

Roger Harrison VK2ZTB Editor

Published by: Kedhorn Hoidings P/L (Inc. in NSW), Fox Valley Centre, Cnr Fox Valley Rd \& Kiogle St, Wahroonga 2076 NSW. Typeset by: Authotype Photosetters P/L, 397 Riley St, Surry Hills NSW, and Tuldin, 19 Princes St, McMahon's Point NSW. Printed in 1987 by: Offset Alpine, Cnr Derby \& Wetherill Sts, Silverwater NSW. Distributed by: Network Distributing, 52-54 Park St, Sydney NSW. *Cover Price \$4.75 (maximum and recommended Australian retail price only; recommended New Zealand price NZ\$6.50). Registered by Australia Post, Publication No: NBP 7435. ISSN No. 0815-5046.

COPYRIGHT: The contents of The Australian Electronics Monthly is fully protected by the Commonwealth Copyright Act (1968) Copyright extends to all written material, drawings. circuit diagrams, printed circuit boards, computer sottware and photographs. Although any form of reproduction is a breach of copyright, and we especially point out this extends to the construction of projects produced by our laboratory or our associates, we are not concerned about individuals constructing projects for their own private use, nor by bands for example, constructing one or more units for use in performances. Commercial organisations should note that no project or part project, including printed circuit boards produced by out laboratory or our associates and described in this magazine may be offered for sale, or sold, in fully or substantially assembled form, unless a licence has been specitically obtained to do so from the publishers,
Kedhorn Hoidings Pty LId, or from the copyright holders. We will take strenuous legal action against any person or firm found infringKedhorn Holdings Pty Ltd, or fro
ing our copyright as aforesaid.
ing our copytight as aforessid.
LABILITY: Whilst all efforts have
LIABILITY: Whilst all efforts have been made to ensure that all constructional projects and circuits referred to in this issue will operate as indicated efficiently and correctly and that all necessary components to assemble the same will be available, no responsibility whatsoever is accepted in respect of the failure for any reason at all of the project or circuit to operate effectively or at all whether due to any fault in design or otherwise and no responsibility is accepted for the tailure to obtain any components in respect of such project or circuit. In addition, no responsibility is accepted in respect of any injury or damage caused by any fautt in the design of any such project or circuit aforesaid. The publisher accepts no responsibility for unsolicited manuscripts, illustrations, computer sottware or photographic material although all care will be exercised. Comments and test results on equipment reviewed reter to the particular item submitted for review and may not necessarily pertain to other units of the same make or model number

AUSTRALIAN MADE

EDITOR/PUBLISHER
 Roger Harrison VK2ZTB
 ASSISTANT EDITOR
 Andrew Keir VK2AAK

DRAUGHTING
Kym Baillie
PRODUCTION COORDINATOR
Val Harrison
EDITORIAL ASSOCIATES
lan Boehm VK3XCD
Neil Duncan VK3AVK
B. App. Sci. Dip. Ed. M. Ed. Studs

Alan Ford VK2DRR/G3UIV FIAA MBIM

Tom Moffat VK7TM
Jonathan Scott VK2YBN
B. Sc./B.E. (Hons)

SPECIALIST SERVICES Jamye Harrison

NATIONAL ADVERTISING MANAGER

Richard Parker
INTERSTATE ADVT. SALES Victoria
Rowan Wyeth \& Associates 1/128 Dandenong Rd, Dingley 3172

Ph: (03)551 1212
Queensland
Geoff Horne Agencies
PO Box 247, Kenmore 4069
Ph: (07)202 6813; Fax: (07)202 7133
TIx: (07) AA41398 (Geoff Horne)

West Australia

Stephen Knight
Hugh Scott \& Associates
122 Aberdeen St, Northbridge 6000
Ph: (09)328 9204
ACOUSTICAL CONSULTANTS
Robert Fitzell Acoustics Pty Ltd, AAAC
CONTRACT PROJECTS
Technical Systems Australia
ENQUIRIES

Advertising
Editorial (02)487 1207 (02) 4871207
Technical
Only after 4.30 pm EAST
$(02) 487 \mathrm{l} 1483$

Roger Harrison or Andy Keir
SUBSCRIPTIONS
\$49.95 Australia,
overseas rates on application
EDITORIAL OFFICES
Fox Valley Centre

ADVERTISERS INDEX

COVERS

Elmeasco IFC
Bose Australia IBC
Tandy

INSIDE

ACE Radio 57
All Electronic Components . . . 77
Automatic ICE Co 37
CLC 81
Dick Smith Electronics . . 67-73
Emona
58
Emtronics 22
Force Electronics 18-19
Geoff Wood Electronics 44
Hatadi 13
Hi-Com Unitronics 78-79
IPS Radio \& Space Services . 26
Jaycar 63
Kalex 91
Kenwood 29
Maestro 82
Micro-Educational 84
Philips Elcoma 9
Powersonic 20
Quality Trends 77
Rosser Communications 14
Scientific Devices 21
Solarex 22
Sound On Stage 16
Statronics 7
Sydney CB Centre 11
Tega Electronics 77

COVER

Time for a celebration! It's our 2nd birthday. A toast to you, loyal readers, one and all! Pic - Allen Hedges. Design Val Harrison.

PROJECTS TO BUILD

AEM6011 Audio
Balanced Line Driver
59
A high performance unbalanced input to balanced outputstereoline driver, ideal for active speaker
systems.

AEM3505 Packet Radio

System for the

Commodore 64
....................... 74
If you've ever wanted to join the fun on packet radio,
here's the low cost way to do it if you have a
Commodore 64.

AEM2000 Lab. Standard Power Supply, Part 4 64
This month, it's the panel meter.

CIRCUITS \& TECHNICAL

ELEKTOR IN AEM
Contents33

Autoranging DMM to Build

Here's a great project! This DMM features an LCD display and is small enough for handheld operation.

Motorcycle Intercom

Simple, effective unit solves the driverpassenger communication problem.

DATA SHEET

...................... 76
The LH0002, featured in our 6011 Audio Balanced Line Driver this month.

FABULOUS OFFER!

Philips' PM 3055 50 MHz CRO! COMPUTING

SPECIAL OFFER
AEM4622 V. 22 Modem
Build yourself a V. 22 modem for modest cost and get flying at 1200 bps!

Software Review
A peek into "Mirror", a data communications package.

Dial Up
Roy Hill gets into digital signal processing.

Using the AEM4504 Speech Synth. on the BBC-B Computer

Here's how to hookup our popular low-cost speech synth. to the "Beeb" and get it talking with some simple software.

COMMUNICATIONS SCENE

A Guide to Non-Voice
Transmissions on SW
Looking for radio facsimile (FAX) and radioteletype (RTTY) stations on the shortwave bands? Here's where to find the regulars.

A Guide to Digital Communications, Part 2

Andy Keir concludes with a rundown on AMTOR and packet radio, plus where newcomers can seek help.

The Listening Post Package

Build a decoder for your Apple, Commodore or Microbee and get into FAX and RTTY reception on HF with our pcb/software offer.

Literature Review

Two new books for the communications enthusiast.

CONSUMER ELECTRONICS

And Ten-More

 Good Buddy!CB was "legalised" a decade ago.
David Flynn gives us a personal reminiscence.

FEATURE

And Ten-More Good Buddy!

CB was "legalised" a decade ago.
David Flynn gives us a personal reminiscence.

NEWS \& GENERAL

1986-87 INDEX
Compiled by Corey Harrison.

News Review
........................ 6
Guilt-edged capacitors?
Consumer News
..................... 15
New Onkyo separates.
Professional Products
20
Weather satellite Rx.

Spectrum

Wireless video.
Retail Roundup
Short form kits.

Project Buyers Guide

.................... . 56
Sourcing kits \& bits
Bytewide
...................... 81
New modem.

Letters

\qquad8
Subscriptions97

The Last Laugh

BIRTHDAY CONTEST
17

Win a fabulous Philips

 digital multimeter!
NEXT MONTH!

BUILD THIS LOW-COST STEREO AMP!
Have you noticed how kit stereo amps have gone up and up in price over the years? Sure, features and performance have improved, but what about the constructor who wants a "plain and simple" stereo amp? Well here it is!

A HIGH PERFORMANCE

BALANCED MIC PREAMP

Here's a top performer, featuring very low distortion and a sig-nal-to-noise ratio of 80 dB . And you can provide phantom mic powering up to 18 V .

SECTION INDICATION FOR A MODEL RAILWAY

Here's a unit that shows a train's position with a series of LEDs so you can "keep track" of the train on a large layout, particularly when you can't see it.

LASERS - AN OVERVIEW

Keep up to date on the world of laser technology. A must for students!

PUTTING THE AEM3500 AND

 AEM3510 TOGETHERHere's how you combine the 3500 Listening Post (July '85) with the 3510 Simple RTTY Modulator (May '87) to get a complete RTTY terminal.

While these articles are currently being prepared for publication, unforeseen circumstances may affect the final contents of the issue.

Gilt edged capacitors?

Amidst reports of a possible world shortage of tantalum, the prices of two small West Australian mining stocks, Vultan minerals Ltd and Greenbushes Ltd have increased dramatically in recent weeks.

Tantalum, which is the major product of these two companies, has been trading for around US\$21 a pound in recent times, but according to one report, may soon move up past US\$50 a pound.

Figures in a recent study by a Sydney broker infer that the world supply of tantalum, used in refined form to make tantalum capacitors, is less than half of demand.
The figures show that Greenbushes, originally a tin miner, produces 25% of the world's tantalum. Other major mines in Brazil and Thailand, produce about 60 tonnes a year.
The world consumption of tantalum dropped sharply between 1980 and 1981, but a subsequent recovery has seen the supply almost triple since then.
Whilst this situation will almost inevitably lead to an increase in the cost of tantalum capacitors, I don't think we are at the stage where we have to start stripping our old pc boards and queueing up at the stock exchange!

Spray painting with SQUIDS

Scientists at IBM have found a way to "spray-paint" large and complex surfaces with high-temperature superconductor material, raising the prospect of inexpensive, easy-to-apply magnetic shielding, computer wiring and other applications that might benefit from the material's unique properties and new-found workability, IBM say.
The new discovery followed just two weeks after IBM's announcement that it had made the first practical thin-film superconducting devices from the new materials - magnetic detectors called SQUIDS (Superconducting Quantum Interference Devices - see News Review last month).
Using a common industrial technique called plasma spraying, IBM has been able to coat
items of various sizes at approximately the same rate of speed one would expect to use to carefully spray-paint a car.
Plasma spraying is a technique used in manufacturing applications that quickly heats a material to thousands of degrees and instantly deposits the substance on a surface where it resolidifies. After coating, objects are annealed (heated), after which their coating becomes super-conducting.
IBM researchers believe they are the first to quickly and easily coat complex shapes such as pre-formed wires, contoured and flat surfaces and even tubes made from ceramic, quartz and metals - materials important in a number of industries.
IBM also has used this new discovery to make large hightemperature superconducting objects, to cover extensive areas and to produce, handle and employ large quantities of superconducting materials.
The materials - combinations of yttrium, barium and copper oxides, resemble flat black paint. After annealing, they become completely superconducting in the temperature range of liquid nitrogen, "warm" enough to be practical for many scientific and industrial uses. (Liquid nitrogen boils at 77 degrees above absolute zero.)
most materials and wires that IBM researchers have coated become completely superconducting at between 60 and 82 degrees ahove absolute zero.
The 1 BM scientists say the new materials might be used for advanced scientific experiments, serving as an easy-toapply and economical magnetic shielding. In addition to their ability to pass electricity without resistance, superconductors also are impervious to magnetic fields.
Superconducting "wires" for computer chip packages might also be made by plasma spraying, the scientists say. They

W.A. INDUSTRY SHOWS OFF

In past years, the Perth Electronics Show has been dominated by Japanese, European and other overseas consumer electronics manufacturers. However, last year, for the first time the Electronics Industries Association of W.A. (EIA) took space in a pavilion in order to "show off" the sort of high tech activities carried on in the west. It created quite some interest.

This year, the west's high-tech industries are again showing their capabilities with some 15 companies clubbing together to take a whole pavilion located just inside the Claremont showground's entrance.

The Perth Electronics Show this year runs from Tuesday 29 July (a trade day), through to Sunday 2 August.

Companies exhibiting in the EIA pavilion this year will be presenting equipment ranging across satellite communications to home security systems, printed circuit manufacture to energy management systems, etc.

Frank Krause, spokesman for the EIA, says membership ranges from small companies through to WA branches of major international business houses, such as Hewlett Packard and Wang.
have fabricated thin lines on typical substrates used in computers and have successfully coated tiny holes in these ceramic structures.
Substrates are used to support and string together scores and
even hundreds of such chips in modern computers.
Using such superconducting wires could prove useful in computers, since they would operate without electrical resistance.

There was movement at the station .. .

Mike Wilson. Managing Director of Dick Smith Electronics Pty Ltd in Australia and New Zealand, has announced his resignation from the company. Mr. Wilson, who joined the company in March 1984, intends to capitalise on his past experience in the computer industry and is examining several opportunities at this time.

Arista Electronics has announced the appointment of Mr. Peter Taylor to the position of Product Manager. Mr. Taylor joins Arista following nine years of service with Tandy Electronics where he was the assistant merchandising manager.
The board of Elmeasco Instruments Group announces that Mr. L. S. Altman will retire as managing director from the 18th May 1987, after a period of some 20 years with the company.
Mr. Altman will remain a director and a consultant to the group. Mr. Mike Collins, General Manager of Tech-Rentals Pty Ltd has been appointed a director and assumes the position of Acting Chief Executive Officer.
Elmeasco became a subsidiary of Tech-Rentals in 1984 and has grown to become one of the largest Australian owned electronic test and measurement companies in the country.

CHALLENGE

A CHALLENGE TO ALL POWER SUPPLY IMPORTERS WIN A FREE AD IN THIS MAGAZINE

WE THINK OUR AUSTRALIAN-DESIGNED AND MANUFACTURED OFF-LINE SWITCHING POWER SUPPLIES ARE THE SMALLEST IN THE WORLD, BUT BEFORE WE START BRAGGING ABOUT IT. WEI THOUGHT WE'D BETTER CHECK.
IF YOUR PRINCIPAL'S 10 WATT, 20 WATT, 30 WATT. OR 70 WATT SWITCHERS ARE GREATER POWERI DENSITY, WE'LL ADMIT IT IN ANOTHER AD IN THIS MAGAZINE. WE'RE SO CONFIDENT, GENEROUS TECHNICAL CONCESSIONS ARE BEING ALLOWED GIVING YOU| A KM START IN A MARATHON.

CONDITIONS:

Nominal Input Voltage must cover Australian "published" line conditions, i.e. 240 V RMS $50 \mathrm{~Hz} \pm 10 \%$. ' "This is a concession, ours cover a wider range of $200-280 \mathrm{~V}$. " At the nominated output power the supply shall operate at 50 degrees C ambient with a calculated MTBF of better than 30,000 hours with natural convection cooling - no fans - and no extra heatsinking. "'This is a concession - ours work at 60 degrees with 50,000 hours.". Supply must have 2 or more outputs. \cdots Another concession - ours are triples. \cdots Supply must meet the usual International and local creepage, clearance, and breakdown voltage safety standards. Supply must regulate down to 20% load (ours 10%) Dimensions must be measured overall. Supply must be a standard catalogue item, or at least available within 16 weeks, i.e. not a highly experimental lab prototype. In the event of dispute, the assessment of an independent engineering firm shall prevail.

10 WATT OUTPUT

$72 \times 27 \times 18 \mathrm{~mm}$
4.683 watts per cubic inch

20 WATT OUTPUT
$72 \times 40 \times 27 \mathrm{~mm}$
4.215 watts per cubic inch

30 WATT OUTPUT - FULLY ENCLOSED
$127 \times 58 \times 27 \mathrm{~mm}$
2.47 watts per cubic inch

70 WATT OUTPUT - FULLY ENCLOSED
$136 \times 71 \times 32 \mathrm{~mm}$
3.71 watts per cubic inch

30 WATT OUTPUT - OPEN TYPE
$127 \times 58 \times 24 \mathrm{~mm}$
2.78 watts per cubic inch

70 WATT OUTPUT - OPEN TYPE $136 \times 71 \times 28 \mathrm{~mm}$
4,24 watts per cubic inch

Text-to-speech

Dear Sir,
I have recently built the AEM4505 speech synthesiser project from the February 1986 issue of your magazine and was impressed by the quality of speech it produced. Since then I have been interested in updating to a text-tospeech synthesiser and heard that you produced such a project as a plug-in card for the IBM-PC, which uses the same speech synthesiser chip (SP0256AL2) as the previous project. Unfortunately, I have been unable to find out which issues this project was in and do not know what project number it is.

Could you please inform me if you have back issues of your magazine with this project in and if you produce the necessary printed circuit board for it? Some idea of costs would also be appreciated.

> P. Taylor,
> Frankston, Vic.

The AEM4504 was a very popular project and I'm glad you were impressed by it. The text-to-speech synthesiser to which you refer is our project AEM4505, published in the June and July 1986 editions. Back issues or article photostats cost $\$ 4.00$, post paid.

This project could be used as a plugin card for IBM-PCs or connected to either the serial or the parallel printer port of any computer and as you state, has the text-to-speech algorithm in an on-board ROM, the CTS256.

A complete kit for the AEM4505 is available from Hi-Com Unitronics at 7 President Lane, Caringbah 2229 NSW. Their telephone number is (02)524 7878 and their postal address for mail orders is PO Box 626, Caringbah 2229. They can also supply a pc board, we understand. The kit was recently advertised at $\$ 125$ which represents a very good saving (like about $\$ 500$!) over the cost of similar pre-built speech synthesisers we've seen.

Andy Keir

Amstradder fan

Dear Sir,

Having recently acquired an Amstrad 8256 PCW, my first home computer, lacking great keyboard skills and struggling to learn CP/M, I was grateful to read the article "Getting On Line" in the April AEM Amstradder Column.

I am thirsting for knowledge of my new computer, and I believe I have
purchased a really good, and quite professional, machine which will serve me for quite some time.

I find that most articles on computers tend to assume that every reader has full knowledge of all CP/M commands and codes etc, and as a result persons like me are left in a daze after reading, with a lot of time to be spent on experimenting to get things working.

I also realise that writers cannot treat each article as a training manual, but there is a point in between that would serve everyone well.

After all, the purpose of any article is to impart knowledge, and the success of such articles is to reach the greatest number of converts.
Thanks to Steve Holland for the article, and I will be watching your magazine for any future articles on the 8256 PCW.

Lawrie Sjoberg Henley South S.A.

Kits in short form

Dear Sir,
I have noticed in recent months that a lot of discussion has been taking place about the high cost of kits to build magazine projects. There seems to have been a lot of talk but very little action because, as yet, none of the electronics retailers have started selling kits in partial form as far as I can tell. I will admit that some retailers did make a halfhearted effort by advertising "hard to get" components, but for the most part these seemed to consist of outdated stock and not parts for current kits.

I am a pensioner and as a result, have to run my hobby on a very limited budget. I simply can't afford to spend the money for some of these kits in one go. It's all very well for the stores to suggest using a credit card but not too many pensioners can afford the luxury. When are the retailers going to realise that they would increase their sales if they could offer the difficult to obtain parts as well as complete kits?

There are many projects I would have built if I could have stretched out the cost over a period of time but instead, I have just had to go without. I really feel that most of the electronics retailers have lost interest in helping the hobbyist. These days the salesmen don't seem to know anything about electronics and the companies seem to have turned a deaf ear to all the suggestions about short form kits.
I don't expect you to publish this letter because I'm sure your advertisers would
object to my criticism but at least it makes me feel a bit better to have aired my grievances and maybe, if you get enough letters, somebody might eventually give the market what it wants.

C. Hodgekiss Blacktown, NSW

If you refer to the Retail Roundup page in this issue, you will find that at least one retailer has got their finger on the market's pulse. Dick Smith Electronics has announced the introduction of a service to provide customers with short form kits. Whilst initially this service will only be available for six of their more popular kits, they indicate that they intend to expand the service according to demand.

Apart from this service, there are some kits which have always been available from suppliers in short form. An example is our AEM4610 supermodem for which we supplied the pc board and EPROM.

As far as your comments about our advertisers are concerned, you need have no worries about our publishing your letter or indeed any letter from a hobbyist. Very many people who are employed in the electronics industry are also hobbyists, and that includes the staff at this magazine, so we are always eager to provide support or listen to comments from our fellows. If we think a letter has relevance to the hobby, we will make every effort to publish it.

Of course our advertisers are of great value to us, but it would be unfair to them and our readers if we were to allow them to dictate our editorial policies. This is a symbiotic industry, where the magazine and the advertiser depend on each other to address the needs and demands of the customer. It is reader/ customer feedback that really determines editorial direction of the magazine and sales policies of the retailer, within practical limits.

Andy Keir

1 GHz counter problem

Dear Sir,

Some time ago I bought a kitset from Dick Smith for a 1 GHz frequency meter. According to the assembly manual that came with it, the meter featured in your July 1986 edition.

I struck a problem with the meter and rang Dick Smith but they couldn't help me. My problem is that the meter works perfectly on the 10 and 80 MHz scales but not on the 1 GHz scale. When I put

Philips SMDs offer a lot of room for improvement

Philips Surface Mounted Devices give you plenty of room to improve the design, manufacture and performance of your products.

Because they not only take miniaturisation a major step forward, but also make circuit boards less costly and dramatically more reliable.

Smaller boards, closer placement, and because the devices are mounted on, not through the board, the designer can use both sides of the PCB.

Philips SMDs are designed for automation, and Philips is a leader in the specialised automation equipment to accurately site the SMDs. Your products are assembled faster, and more efficiently. And because these components are so
highly reliable, the failure rate - during manufacture and in the field - is significantly reduced.

So, before you begin a new design using conventional components, talk to Philips about SMDs.

We can give you exciting information about SMD applications by calling one of our offices below:
Sydney (02) 4393322 Melbourne (03) 5423333 Adelaide (08) 2430155
Perth (09) 2774199 Brisbane (07) 440191 or write to Philips Electronic Components and Materials 11 Waltham Street, Artarmon NSW 2064.

And ten more good buddy!

CB celebrates ten (legal) years. A personal reminiscence.

David Flynn

Abstract

Whether it was public pressure or commercial interest that brought on the $C B$ boom of the late 70 s, resulting in the "legalisation" of the Citizens Radio Service in July 1977, has been lost in the detritus of history. David Flynn furns over the decade, digs up a few survivors for a nostalgic tour of the HF and UHF bands, and speculates a liftle on the future.

I REMEMBER starting with one of those 20-in-1 kit boards, given to me one Christmas, which probably gave my early interest in radio and electronics a bit of a kick-start. The school library had a collection of the WIA's Amateur Radio magazines, which were way above my level - it took me quite some time just to work out why they would call someone 'Bill, 2XYZ' instead of using his surname. Amateur radio was all too mysterious, too hard to grasp, and of course they didn't even have the novice licence until later.
But the library also had some American publications, such as Popular Electronics, which were much more readable, and I flicked through those like summer fire. Maybe I didn't understand it all, but at least it made electronics more of a friend than a stranger.
Around 1975, PE was really getting into CB radio as it reflected the 'consumer' aspect of electronics. Of course it later dumped CB for computers, dropped computers for hightech audio and so forth, as the trends called for. So I went into CB from there, picking up copies of American mags like s9 from the local second-hand book shop.

First gear

The first rig I used was a Universe 23 channel mobile, which came from Strato Communications in Parramatta, Sydney. Strator was to western Sydney CBers what Stonehenge was to the druids!
Then came the move to sideband, with a Contact AM/SSB from Peter Shalley in Killara on Sydney's north shore. After that, I went into UHF with one of the early Philips' FM320s. A lot of people run the 320 s into the ground, but I still have a soft spot for them - just a weakness for 'first love', I suppose!

Current gear

Most of my operations today are on UHF CB. At one stage I had the lot -27 MHz and UHF at home and in the car, and also amateur radios for $6 \mathrm{~m}, 2 \mathrm{~m}$ and 70 cm - plus a general coverage HF receiver. But you can only really use one bit

of gear at a time (unless you're cross-banding), and I never had time to get on air often enough. I'd turn on the UHF, and find enough friends that I'd never get around to the ham bands, let alone 27 MHz .
So I decided to start again from stratch, selling everything except the UHF CB radio - and I've never really got back onto any other band 'full time.'
The gear I run today, then - it's mostly UHF. I've got this fantastic but very tiny sports car, a Fiat X1/9 (the man has taste! I had one too, once - Ed.) which my local radio tech calls a 'lunchbox', and the only rig that would fit was a remoted-mounted Sawtron 990. That point aside, the Sawtron is a superb radio in every way.
There is also an Icom IC-40 UHF handheld, and a few options have made it very versatile indeed. Besides the usual portable use, it is great when you travel with some friends who are in another car - I can give them the Icom, set it up in a jiffy, and we're in contact whatever happens, wherever we go.
I only use HF CB when I'm travelling, so the car has been out-fitted with all the cables and connections necessary. It's a sort of instant 27 MHz - just add radio and antenna!

Favourite gear

My very favourite rig would have to be the Icom IC-4E. I know that may confuse some readers, because the 4 E was a 430 MHz amateur radio . . . but in the early stage of the game there were no UHF CB handhelds. A few technical types figured out how to modify the 4 E and lift her upstairs to 477 MHz - quite illegal, granted, but even though you took a risk using it, the response was enough for Icom to make a legal version of the 4 E - the IC- 40 - available.
So there was this full 40 channel UHF CB handheld, fully compatible with the great range of Icom accessories, and fitted with a few special receive mods that enabled you to keep an ear on a nearby band which was never dull. Definitely a rig I've fond memories of.

The only two HF rigs that stand out were the Tram D201

and a nicely converted Kenwood. The Tram was a real gem - a massive base station using valves, large knobs and a lollipop mike to resemble a vintage wireless from the 1930s.
I suppose some people will lash out at me for using a modified Kenwood especially as I once championed the cause of the fully by-the-book operator . . . but I'd got to the point where the quality of 27 MHz gear just wasn't good enough. I wanted to get active on the amateur bands, and up-grade my limited licence to play with 10 metres FM - as you may have guessed by now, the FM mode is my biggest interest.

So when Kenwood brought out their TS-660 'quad-bander', it was a god-send. The 660 was an excellent radio, with all the features and performance which amateurs expected, but CBers could never hope to see on 11 metres. It covered 15/12/10 and 6 metres, on USB/CW/AM/FM, but with only 10 watts ouput. That suited me fine, I've never been a power freak. I had coverage of $26-28 \mathrm{MHz}$ wired in, dropped the CW for LSB, and quickly became a convert to 27 MHz FM!

That was all in the past of course, I wouldn't dream of running illegally now . . . really, truly!

Legalisation day

I was still at school, in Year 10, The morning CB was legalised was fantastic. It was on the news on the radio, and every mobile on their way to work was on air louder than ever.

We actually had a school excursion that day, to the St George Building Society head office in Hurstville - ironically, that building was the site for Sydney's first UHF CB repeater, on ch. 1/31, some years after.

Who remembers the queues at the P\&T Licensing offices?

Where did it lead me?

In a round about way, it led me where I am today. I'd always liked writing, but not really the creative sort - more along the journalistic line. When CB became big news, and the magazines came out, I realised I could write about CB - my first articles where printed while I was still in school.

I underwent some technical training in radio-electronics for a while, but kept writing, and eventually threw in the traineeship to study film and TV production. Again, I began writing in that field, all of which eventually led me to my present job - but if CB hadn't given me something to write about, I don't think I would have ended up here.

I also became involved in the club scene, which was a great learning experience, training me in PR and made me realise that PR was my strength and I could make a career of it.

The less selfish part of it is that I met some of my very best friends on air (on UHF CB, actually). We have more in common than CB of course, and we've shared some wonderful times together.

What about "upstairs"

Understandably, there's only one guest of honour at this month's birthday party. That overweight, noisy but ever-sopopular kid with the initials 'HF'. His cousin, born that same day, isn't there. He was premature, but grew into a lean, proud and sometimes arrogant lad. Happy Birthday, UHF.
It's understandable, all the fuss over 27 MHz , the memories of pirates, AMers and those kings of the airwaves, the sidebanders. 27 mHz was kicking and screaming for a long time before the DOC delivered it.

1469 PITTWATER RD. NARRABEEN. N.S.W. 2101. PHONE (02) 9131616

The North Shore's Best Communications Centre SPECIALISTS IN: * MARINE RADIOS - UNIDEN, G.M.E. * CB - ELECTROPHONE, UNIDEN, PEARCE SIMPSON * UHF CB - PHILIPS, UNIDEN, ELECTROPHONE * SCANNERS, RADAR DETECTORS * ACCESSORIES - HEAPS OF THEM !

Not so, UHF CB. This band was created by the DOC at the same time as it introduced the 18 channel 27 MHz allocation. The first true 477 MHz radios didn't appear until mid-1978, which gave a year for speculation and prophecies of doom to be cast over the future of UHF CB.

It was a difficult time, certainly. No-one had any experience with this sort of thing. A channellised allocation in the upper end of the UHF commercial band, mass produced radios with an output of five watts, for use by almost anyone.
The biggest question was one of range.
Graham Pockett, who wrote for CB Action magazine at the time, remembers his initial apprehension about UHF CB for a number of reasons.
"One was that commercial UHF radios, even with 25 watts, didn't seem to have a lot of range, and our big thing as CBers was power. Remember, this was the era of power, everybody had a linear amp, and everyone was going for bulk power. We hadn't realised in those days that power was not the answer for CB."

There was also the 'line of sight' axiom, underscored by the lack of knowledge about antenna systems and other matters taken for granted on 27 MHz . At the start, everyone from Dick Smith Electronics to AWA were eager to talk of their own plans for a UHF CB radio. Then the talk grew quiet, as they waited for Philips to test the water with their model FM-320 - which must rank as Australia's most eagerlyawaited CB radio.
CB Action founder and current editor, Pete Smith, described his first trial of UHF as a "most memorable experience."
"I realised that a whole new world was going to open up for the Australian CBer, and I was going to be a part of it." Ever the practical man, Smith also claimed one of the best advantages of the totally vacant 477 MHz band at the time to be, "no bloody breakers!"
If the proof of the pudding is in the tasting, then this dish went down well - with small businesses, farmers, and hobbyists who fled the insanity of 27 MHz .
"During this period of growth" remarks Pockett, "we had the same type of situation as was once on 27 megs. Older operators, in their late-20s to mid-30s, with no kids or bad language. It was overall a very pleasant medium to switch on to, and offered very reliable communications, which we hadn't expected originally."
Among the first hobbyist operators on the band was Leon Senior, today acknowledged as one of the "founding fathers" of UHF CB.
"It was pretty quiet on air, and we knew everyone in the area. There was still a lot of experimenting - most of us had mobile whips on our housegutters, and we discovered that if we put them up higher in the air we could get out better. Philips in Melbourne were on the air all the time, too, they must have given UHF to all their technicians and sales people.
"It all proved that UHF was better than what many people on CB magazine thought. At first they were unkind, but after they discovered it themselves, they swung around as well."

UHF was next to benefit from the introduction of repeaters. Yet the very first, says Senior, was short-lived indeed.
"It came on air on a Monday, and was taken down on Tuesday, Philips had fitted it with tone access, so no-one but Philips staff could use it. Everyone else protested against this, of course."
The repeater re-appeared in early November, 1979 - Melbourne Cup weekend. Philips not only removed the tone squelch to provide open access, but told Melbourne's UHF CBers how to modify their radios to 'duplex' mode.
"This time" says Senior," they put it up on Friday, and by Saturday morning everyone had the repeater modification,

and was using the repeater to talk to all these people we'd never been able to hear before."

With repeaters approved, 477 MHz took off. There are now almost 150 licensed UHF CB repeaters throughout Australia. These are financed and operated by individual hobbyists, communications stores, farmers, businesses and clubs - a cross-section of UHF users.
These users are the key to the success of UHF CB. In designing the service it did, the government - perhaps by accident - created not a replacement for 27 MHz , but a whole new realisation of what CB radio was all about.
Happy Birthday, 477 MHz !

Meanwhile, back at the ranch

If the first ten years of CB radio were filled with ups and downs for the users, then for the industry they were highs and lows of epic proportion. 'The industry' is, of course, any concern which stood to make money from CB radio. The manufcaturers, importers/wholesalers, retailers and the CB magazines.
In year zero, they all flourished. CB was business. Big business. Cutting across the social spectrum as it did, you could buy a CB radio anywhere. From the larger department stores, down to chemists and even smoke shops. If there was a dollar to be made - and a quick one at that - then CB was where you could make it. The crash that followed came as no surprise to anyone who could see further ahead than their end-of-day cash statement.

In 1977, there were some 150 different brands of CB radio on the shelves - a figure taken from the DOC's list of approved equipment at that time. There were primarily turned out by a mere handful of Japanese manufacturers. That one was labelled 'Apollo' and another 'Sound 4' counted for little. Any design variation - a different name, a change to the front panel layout, the deletion of one control or inclusion of another - any of these require a minimum production run of 1000 rigs.
With 150 brands, that translates into 150000 units, Allowing for a producition run of greater than 1000 (not uncommon), and the existence of un-approved models, there could easily have been 200000 to 300000 CB radios heading into the Australian market.
These radios all arrived in the space of months. Yet, at an average of 1000 sets purchased each month, that supply would have lasted in excess of two years. Although the number of sets being purchased by the public was large, it could not be shared amongst so many brands and so many retailers or importers. This led to slow sales in some companies, which found themselves unable to pay their Japanese manufacturers when the time came. The result - bankruptcy.
The Expo company was one of the first to fall. They had to dispose of 65000 radios, and did so at extraordinarily low prices. This started a chain of domino-effect bankruptcies. With massive amounts of equipment available at such low prices, people suddenly started buying Expo CB radios. (One

WHAT DOES AN OLD PIRATE REMEMBER ABOUT 1977?

"The time the RIs nearly caught me . . . the morning they legalised CB . . . all the mates I met on air . . . and the day I bought my Pearce-Simpson Super Panther."

Quality. Performance Reliability, Value for Money.

Reasons why, ten years later, Pearce-Simpson is still Australia's leading brand of CB radio. And why, along with Cobra and Royce, Pearce-Simpson CB radios are today distributed nationally by Australia's No. 1 communications company - Hatadi Electronics.
The names you'll remember - for years to come.

THREE OF A KIND

The Hatadi range of CB radios includes a variety of models. From AM to SSB, economy mobiles to deluxe base stations, and a full range of 477 MHz equipment. All with one thing in common - Hatadi's philosophy of the best radio gear your dollar can buy. Here are three new releases which meet that standard.

Cobra 18+

Now this is style! Smart looks to match the very latest car hi-fi gear . . . electronic channel change, innovative digital 'staircase' meter, and an extra large green LED channel display. There's also a PA facility, ch. 9 select, fully automatic noise limiter and convenient front-mounting microphone.

Super Tomcat II
The best-selling slim-line sideband, from Pearce-Simpson. Built to fit any car and any budget. RF gain control, green LED channel display, ANL/NB noise reduction circuitry, PA function and LED meter.

The very latest in UHF CB, with features that work for you - like a ch. 11 reset and display dimmer. Front-mounting microphone, long fluted controls and compact size make this a perfect mobile UHF. Optional selcall/CTSS.

PLAY IT SAFE

. . . with the latest radar detectors from Cobra. Proven on the American highways and in Australia.

Trapshooter PRO II
When it comes to a radar detector, anything less than the best is just your first few hundred dollars up in smoke. The PROII is Cobra's best. Super sensitive on both X and K bands, large signal strength/range meter, city/highway mute and sensor light.

Trapshooter PRO II Remote

This specially designed model of the PRO II is ideal for hide-away mounting. Large radar sensor fits behind the grille, miniature control unit sits snug in your dashboard, console, even glovebox! City/highway mute, test mode, alarm light and dual X / K band reception.

WHAT DOES THE FUTURE HOLD?

If the DOC doesn't just drop AM entirely, then 27 MHz will continue as before - more or less under its own weight and forward momentum.

UHF CB shows a continued potential which has only been fully realised in some areas. But it also shows that there are a myriad of uses for a high-quality, medium-range peoples' band. I think that the future of this is demonstrated by Japan's high-tech 900 MHz personal radio service - which has individually-addressable selective calling, carrier linking, the works.

I can see one possibility - that the DOC will take a slice from the 70 cm amateur band and open up a UHF PRS, ideal for personal husband-to-wife or business communications.
can't help thinking that this all came a bit late for the company).
Sales of other brands, already perilously low, dropped even further, forcing other companies broke, ensuring the chain would continue until the boom faded, and died. For years after, the Australian CBer was still buying radios from this source.

When time caught up, it was a new game entirely. The yen had strengthened against the dollar. The cost of components, labour and transport had risen. The smaller demand and lower production runs led to higher unit costs.

There is a saying. What fire does not destroy, it hardens. The survivors of 1977 are the established market leaders of today.

That boom period was also a springboard for the publishing industry, with both small and large companies catering for the thousands who suddenly wanted to read a magazine about CB radio.

The first of these was CB Australia. Initially appearing as a pull-out supplement within a 'Electronics Today International' in February 1977, it also retailed separately for 604, and then became a magazine in its own right. Editor was Roger Harrison!

Soon after, from the Melbourne giant Newspress, came "CB Action'. These two publications were to be front-runners, and occasional sparring partners, for years to come.
Others which sought a piece of the action were CB Monthly (lasting seven issues) and CB Life (first and only issue, November '77).

CB Australia and CB Action were perfectly poised to become rivals. 'Oz' was from Sydney, 'CBA' from Melbourne. One was constantly tongue-in-cheek, the other more serious. One went in for a broadsheet newspaper format, before moving to gloss pages, with monthly electronic projects - the other chose standard four-colour standard size with plenty

- to page 96

- from page 8

the oscilloscope on it, I found that the U664B chip was only dividing by two instead of 64 as the manual says it should. This is where I struck trouble as I have looked up all my data books and contacted Dick Smith but nobody has heard of this particular chip. I would like to obtain information on it's pinouts and specifications.

I have checked the board and soldering with a magnifying glass and everything looks alright. I wonder if you could help me as there may have been an errata in later copies of your magazine which unfortunately is difficult to obtain in the rather isolated area where I live.
P. Nicholls Runanga, NZ
The frequency counter to which you refer was featured as a Star Project in our July 1986 edition and was designed by the R\&D division of Dick Smith Electronics. I have contacted the designers at the head office of Dick Smith in Sydney and explained your problem to them.

The consensus is that you probably have a faulty U664B chip as they have not struck this problem in the past. Their advice is for you to contact your nearest Dick Smith store who will arrange a replacement for you. Whilst many of the specialised parts used in kits are not stocked by individual stores, $D S E$ assure me that any part can be obtained by ordering through one of their outlets or dealers.
The U664B prescaler chip is manufactured by Telefunken and the pin numbering can be gleaned from the circuit diagram in your assembly manual or the magazine. There has been no errata published for this project.

Andy Keir

New separates from Onkyo

0nkyo's P304 pre-amp and the M504 power amp are the latest additions in their Integra range. These two new products are the successors to the popular P3033 and M5033 amplifiers and have been released in Australia by Hi-Phon Distributors Pty Ltd.

As members of the Integra family, the P304 and M504 employ Onkyo's "real phase" circuitry. This includes an additional real phase transformer in the power supply circuits of both channels which Onkyo claim results in enhanced sound reproduction, especially when using high quality speaker systems.
Onkyo say that the P304 and M504 units complete the Integra range of products that offers first-class sound reproduction for any domestic application.
For further information, contact Hi-Phon Distributors Pty Ltd, Unit 1, 356a-358 Eastern Valley Way, Chatswood 2067 NSW. (02)417 7088

New Neumann mics from
 Amber

Amber Technology has announced the release of a new shotgun stereo microphone system from Neumann. Designed for stereo location reporting in noisy environments, the RSM 190i system comprises
a shotgun stereo microphone with windscreen, a matrix amplifier and all connecting cables.
Neumann says the system is also ideal for stereo television, where soloists can be accentuated with presence and middle emphasis, whilst the orchestra can be picked up with a variable, wide bass width.
The RSM 190i can be operated hand held or attached to floor stands or booms. Outputs from the matrix amplifier ar unaffected by disturbances caused by differing cable lengths through the use of balanced, transformerless circuitry. Both channels can be modulated without distortion up to a sound pressure level of 132 dB .

The system is stored in a robust, aluminium carrying case which can also accommodate a complete mic rophone mounted in a windshield, plus other equipment.

For further information, contact Amber Technology, Unit 6, Forestview Park Estate, Frenchs Forest 2086

W.A. HI-FI SHOW A SOUND SUCCESS

According to the organisers, the WA Hi-Fi Retailers Association HiFi Show held in Fremantle's Esplanade Hotel in April was a major triumph for the retailers of Perth, and the industry. It proved that good hi-fi is alive and well and that there are lots of people who want to see and buy.

The industry-sponsored Battle of Perth's Best Jazz Bands and a recital from the 30-piece WA Mandolin Orchestra drew the crowds, as the picture shows. The idea was to enable people to hear acoustic music live, and give them something to identify with. This will continue next year, and Bose might sponsor a busker street contest, too.

A range of new products were unveiled, including some locallymade items. Almost 20 eastern-states industry executives flew over. The formula of live sound in the streets plus well-presented equipment in a decent listening environment was pronounced a success by all. The hi-fi show will complement the Perth Electronics show, the organisers say, running six months apart.

Sony disc jockey now for the home

Following the success of their disc jockey compact disc player for the car, Sony has released a house bound unit, the CDP-C10. It has has a built-in changer for the 10 compact disc magazine and by selecting one of the various playback modes, you can sit back and enjoy in excess of 10 hours of musical enjoyment.

The CDP-C10 magazines are interchangeable with the CDX-J10 automotive disc jockey, allowing you to take a compilation of discs from the car to the house without removing the discs from the magazine.

You can manually select the playing order via the 21 key infra-red remote control or can use the "shuffle play" mode to select a disc at random and then randomly select the playing order until all the discs in the magazine are played.

The CDP-C10 is available through the Sony dealer network at a recommended retail price of $\$ 1599$, or contact Sony Australia Pty Ltd at 33-39 Talavera Road, North Ryde 2113 NSW. (02)887 6666.

"I've got MS but l'm still smiling."

Like most people with MS, my symptoms are mild. They come and go, but in between, I'm fine.

Some people with MS are more disabled than I am. They need the activity therapy centres, the nursing homes and the homes other services which MS Societies provide. For their sakes, keep up your donations

A LITTLE LIGHT' ON SOUND ON STAGE

The Sound on Stage staff pride themselves on having on display some of the finest production and studio equipment (including 2 to 24 track recorders) in Australia. Plenty of tape is always stocked so there is no fear of running out of the preferred Ampex 456 or Denon cassettes for your Tascam or Fostex.

STAGED FOR SOUND

Bring in your favourite compact disc and compare the range of JBL Studio Control Monitors, Electro Voice Centurys, Tannoys and NS-10s; all powered by Perreaux power amps.
"What desk should I buy or hire?" . . Just ask! Take a choice of Tascam, Fostex, Soundtracks, Soundcraft, Yamaha, AHB, D \& R, and TAC.

What about signal processors?, with so many to choose from which one will suit you? . . Boss, Yamaha, Roland, DBX, TC, Valley People, EMT, AMS, Lexicon and many more are on display.
Some P.A.s are also set up for demonstration eg. Martins, Yamaha, Turbo, E.V. and Session. You're welcome to come in and compare.

SOUND ADVICE

You do not have to fear the prospect of being assaulted by a rapacious salesman intent on taking your last hard earned buck...
If youre new to the industry, then the names Toivo Pilt (Toivo?) and Duncan McGuire may not mean much; until you look into their backgrounds and find a depth of music industry experience and talent.

Toivo Pilt, Manager of the Kent Street store, started his professional career around 1974 (he's not quite sure . . .) with "Sebastian Hardie" as Keyboard player, songwriter and arranger. Some of you might remember that John English was the original lead singer with S.H. Then to "Windchase", the first band that really cracked the lucrative $0 / \mathrm{s}$ market. They're still getting royalties from Japan! Session work for Doug Parkinson, Ross Ryan, Jeff St. John and other notables were to follow.

It is interesting to note that Toivo has written eight documentaries for the American and Mexican goverments over the years and still continues to write soundtracks when he's not yelling at the boss.

Duncan McQuire on the other hand, quiet and unassuming, electric bass player and one time winner of the Bass Player of the Year - Music Industry Award went a slightly different track.

After deciding that motor cycle racing had lost its attraction, he moved to Melbourne and started honing his bass skills on the pub circuit. Here came the break and he was invited to join "Ayers Rock" and toured the United States twice over a two year period. Music by itself was not enough though, he sought and found friends who were to teach him sound engineering. In his spare time, when the studios (no names here!) were empty, self tuition and sound jobs wherever and whenever he could get them led him to produce and engineer INXS" first album. Doug Parkinson got him to engineer his hit "I'll Be Around" and to cap it all off, the presentation of the Golden Reel Award to Duncan for the engineering of John English's live album "Beating the Boards". It went Platinum.

After a little break in the sun, a six months tour as sound engineer with "Jesus Christ Superstar" and after assisting his brother with several major video projects; Duncan was convinced that he should return full time to pro-sound equipment. He somehow landed in the lap of Toivo, (Toivo?), whom he had first met back in the "Windchase" days . . .

This of course leads us back to sound advice . . . Duncan and Mr. Pilt know what theyre talking about. If you want to buy, hire or just learn . . . They know about the "Art of Sound"

Everything from porta studios to 24 track recording, tape, mikes, amps and studio hire.

400 Kent St, Sydney. 2649783. 208 Pyrmont Bridge Rd, Glebe. 6604555. 5 Byres St, Newstead, Brisbane. (O7) 529083.

SECOND-BITRTHDAY CONTEST

WIN THIS SUPER PHILIPS DMM!

The Philips Series 18 digital multimeters are packed with features to meet all types of portable measuring requirements: from general servicing to both analogue and digital testing, R\&D and even calibration!
The PM2618X/01 features a four-digit (+1) liquid crystal display, 0.1% accuracy, fourteen functions, measurement to 20 A and $100 \mathrm{M}, d B$ readout, a 200 kHz frequency counter, a highly sensitive analogue bargraph and logic testing to speeds of 10 MHz with duty cycle info included!

Don't miss this opportunity to own what is one of the top-line portable multimeter available today!

Prize kindly donated by Philips Test \& Measurement Division.

All you have to do is answer the questions here, then tell us in 30 words or less why you'd desperately love to own this fabulous instrument!
RULES: You may enter as many times as you wish, but you must use a separate entry form for each entry and include a month and page number cut from the bottom of the contest page. You must put your name and address on each entry form and sign it where indicated. That is, photocopies are acceptable but an original month/page number from a copy of this month's magazine must accompany each entry form. The contest is open to all persons normally resident in Australia or new Zealand, with the exception of mem bers and families of the staff of Australian Electronics Monthly, the printers, Onset Alpine Network Distributors and/or associated companies. Contestants must ente隹 their names and addresses where indicated on each form. Photostats or clearly written the bottom of this page. This contest is invalid in states where local laws prohibit entries Entrants must sign the declaration that they have read the rules and agree to abide by their conditions. The winning entry will be drawn by the Editor whose decision is final; no correspondence will be entered into regarding the decision. Winners will be notified by elegram the day the result is declared and the winner's name and contest results published in the next possible issue of the magazine.

Send entries to:

Philips/AEM Birthday Contest PO Box 507, Wahroonga 2076 NSW

Q1: You remember AEM's 1st birthday? What was the prize offered by Philips Test \& Measurement (Scientific \& Industrial)?

Q2: The 18 Series DMMs were reviewed in AEM's February 1986 issue. What does the last paragraph in Alan Ford's review say?

Q3: Consider the following numeric string: 166622800. No to-ing and fro-ing now! You've seen it before. Philips advertise it a lot. What is it?

Now, on a separate piece of paper, tell us in 30 words or less, why you'd desperately love to take home this prize!

Name

Address

Postcode
I have read the rules of the contest and agree to abide by their conditions.

Signed
July 1987 - Australian Electronics Monthly - 17

- HAVE YOU GONE INTO YOUR LOCAL ELECTRONICS STORE RECENTLY AND FOUND IT'S TURNED INTO A TOY SHOP?
- DO THE SALESMAN'S EYES GLAZE OVER AND BRAIN TURN TO JELLY WHEN YOU ASK A TECHNICAL QUESTION?
- DO YOU FIND THAT YOU CAN'T ASK FOR SOMETHING WITHOUT KNOWING THE CATALOGUE NUMBER?
- DO YOU PULL YOUR HAIR OUT AT THE LACK OF SERVICE AND INDIFFERENCE YOU GET?
- DO YOU HAVE MASOCHISTIC TENDENCIES?

IF NOT, WHY DO YOU SHOP AT THESE PLACES?

WE ARE NOT A TOY STORE!

BUT WE DO TRY OUR BEST TO LOOK AFTER OUR CUSTOMERS WITH SERVICE AS WELL AS PRICES.

- WE STOCK OVER 4,000 PRODUCTS FOR THE HOBBYIST AND THE TRADE
- WE HAVE FIVE STORES IN ADELAIDE FOR YOUR CONVENIENCE.
- WE HAVE A FAST \& EFFICIENT MAIL ORDER SERVICE FOR THOSE OF YOU WHO ARE UNFORTUNATE ENOUGH NOT TO LIVE IN THE SUNNY SOUTH!
- WE'VE GOT MORE SPECIALS THAN A GOOSE HAS GOT PIMPLES (HAVE YOU EVER BEEN SERVED BY A GOOSE WITH PIMPLES?)

NOW HERE ARE SOME REAL SAVINGS FROM FORCE

AEM 2000

100W LABORATORY POWER SUPPLY KIT
Refer A.E.M. article this issue for details.

S.P. 12V 10 AMP.
$\$ 4.95^{5} 2^{95}$

$\$ 7.95{ }^{5} 6^{95}$

M6672 TRANSFORMER

$15-30 \mathrm{~V}$
1 Amp
$\$ 13.95{ }^{s 12}{ }^{95}$

$\$ 20.00^{\$ 1} 4_{\text {PROLL }}^{00}$

STOP
PRESS

New store

 atFindon, S.A.
NOW NOW
BATTERIES
AA
Normally $\$ 3.50$
NOW $\$ 995$
C
Normally $\$ 14.95$ NOW $\$ 995$
D
Normally $\$ 15.95$ NOW $\$ 995$
9V
Normally $\$ 2 z .00$ NOW $\$ 995$

PROFESSIONAL PRODUGIS NEWS

New low cost weather satellite receiver

TThe Feedback WSR5 24 receiver released by AWA Measurement and Control Division is designed to automatically receive images from orbiting weather satellites.
Orbital information as well as the user's latitude and longitude is entered via an integral keypad and the internal compu-
ter uses this data to overlay a grid and the user's position.
The infra-red and visible images received are stored sepa-
rately and the picture may be faded between the two, both during and after reception.

Alpha-numeric characters at the bottom of the screen indicate the current time, the last entered user position and the

Engineered With Vision

Built With Care.

POWER. SONIC, a leading manuracturer of rechargeable batteries, offers a complete line of both sealgd lead-acid and nickel-cadmium batteries, engineered to meet the toughest specifications. State-ot-the art design. meticulous quaity control and time proven performance are the reasons why engineers are specifying POW ER-SONIC batteries, compethitive prices and an outstanding frack record for produci reliability and on-time delivery have comvinced puyers. For more information or a copy of our catalog. contact:

POWER-SONIC AUSTBALIA
13 Watson Rd, PADSTOW 2211
Ph: (02) 7724522 Fax: (02) 7724863

SEALED RECHARGEABLE BATTERIES
reception time of the picture on the screen.
Depending on the satellite pass, an area of up to 2500 kms around the user is displayed and different enhancement curves can be used to maximise the dynamic range of the received images.
For further information, contact Measurement and Control division, AWA Technology Group, Unit C, 8 Lyons Park Rd, North Ryde 2113 NSW.

New generation of soldering from Weller

CCooper Tools' range of Weller soldering stations has been released in an all-new series.
All stations are fitted with a new design detachable soldering iron stand which can be fitted to either side of the power unit or used separately for greater flexibility.
For further information, contact your Weller distributor or Cooper Tools Pty Ltd, PO Box 366, Albury 2640 NSW. (060)21 5511.

Six inch cube offers safe heat

0wing to it's remarkable safety factors, a small cube - called the "Microfurnace" - that can be held in the palm of your hand, may be about to revolutionise electrical heating, we are told.
Originally designed for aircraft cockpits, the Microfurnace uses ceramic disc elements instead of the conventional coil type. The ceramic element operates at much lower temperatures, has a much greater life span and will not ignite objects poked inside the grill.

If objects are placed
against the unit, the heat output is automatically reduced, eliminating the chance of fire, the makers claim.

Although it only measures less than a six inch (150 mm) cube, the Microfurnace can heat and maintain the temperature of a fairly large room at 20 degrees Celsius.
At it's maximum output, the Microfurnace consumes 1500 watts but as the area begins to heat, the consumption will decrease automatically.
The Microfurnace has been approved by the NSW Energy Authority and sells for $\$ 199$ per unit. Enquiries can be made between 9 am and 5 pm on the toll-free number (008)023 196.

New Scope soldering station

Cope Laboratories has recently announced the release of their new model ETC60L soldering station featuring infinitely adjustable temperature control from 200 degrees C to 470 degrees C without changing tips.

A three-colour LED bar readout provides an indication of tip temperature and the soldering station uses zero volt switching which is useful when working on current sensitive components such as MOS ICs.

The ETC60L uses a powerful 60 watt element and should appeal to production engineers, technicians and advanced hobbyists. The price is expected to be around $\$ 159$ plus tax.

For more information, contact Scope Laboratories on (03)338 1566.

In house pcb prototyping

 technological advanceshave virtually automated the manufacture of pc boards from design to production, board prototyping, being an iterative task passing through several trial stages, must remain under close control of the designer.

Board manufacturers, being geared for mass production runs, of necessity must charge very high prices for prototype pc
boards, which can be a major design cost. Turn-around time is also a major consideration in the design cycle.
Making your prototypes "inhouse" is the cost-effective solution, says Kalex, a specialist supplier of printed circuit making equipment from Victoria.
Kalex has designed a variety of light boxes and an etch tank
which are ideal for prototype pc board production in-house. Changing artwork and making a new trial board can be done very quickly. They market their equipment Australia-wide and now export to New Zealand and New Guinea.

For more information, contact Kalex, 40 Wallis Ave, East Ivanhoe 3079 Vic.(03)4973422.

[^2]

SCIENTIFIC DEVICES AUSTRALIA
PTY. LTD.
(03) 5793622
(02) 952064
(08) 2556575

RELIABLE POWER FROM THE SUN

Solarex, world leaders in photovoltaic technology, manufacture solar power systems to operate reliably in the harshest climatic conditons that Australia has to offer. Whether it is in the Gibson Desert or on the summit of a Snowy Mountain Peak, the heart of a Solarex solar power supply system is a bank of Solarex Solartraction batteries providing a constant supply of electricity on demand. Solarex solar power systems can be found all over the country maintaining Australia's links with the rest of the world. Remote microwave repeaters, radio links, satellite tracking stations, air and sea navigation aids are all powered by Solarex systems.

A Solarex solar power system is a reliable, cost effective means of producing DC power with the option of inverting to 240 volts AC 50 cycles if required.
All system components are manufactured in Australia and are thoroughly tested before leaving the factory to ensure a maximum trouble-free life with little or no maintenance. Solarex Pty. Limited is continually developing solar power systems not only for radio and telecommunications but also to provide power for remote homes, villages and for water pumping and irrigation.

SOLAREX PTY. LIMITED

78 Biloela Street Villawood N.S.W.
PO Box 204, Chester Hill, 2162
Tel: (02) 727-4455 Telex: AA121975
Fax: (02) 727.7447

NEW JRC HF Transceiver

HF transceiver, specially designed for high performance, enhanced capabilities and ease of operation - features unique to JCR. With general coverage receiver, automatic antenna tuner (optional), two VFO systems, channel scanning, priority check, 72 channel memory capacity, digital RIT, several interference rejection circuits and PC remute control capabilities makes the JST-125 one of the three top transceivers on the market

PRICE ONLY \$2889

BELIEVE IT OR NOT!

An incredible 2000 per cent per year growth in the number of PACKET RADIO OPERATORS has been recorded in the U.S.A. This packet revolution is fast coming to Australia and EMTRONICS is ready to serve you.
NEW PACKRATT PK-232 - Morse, Bandot, ASCII, AMTOR, and packet data controller in stock now! This six mode machine goes with any RS232 computer or terminal. Call for full specs. (NOW WITH FAX). PRICE $\$ 699$
PK-64 WITH. HFM64 also in stock. This Morse, Bandot, ASCII, AMTOR and packet controller is compatible with $\mathrm{C}-64$ computer.

PK-87 ${ }^{\text {™ }}$ Packet Controller

The PK-87 is not just another copy it's much more. With all the packet program features of the Multi-mode PK-232, the PK-87 is an economical new TNC designed to bring you enhanced, completely compatible packet software plus new hardware features for improved packet operation.

PRICE $\$ 349$

Software Enhancements

- AEA's exclusive "MBX' Mailbox Monitor command lets you read and save received data without conlusing headers, callsigns, of repeats
- New commands let you restrict the use of your station for connects and digipeater functions. - Host mode for improved terminal program operation and development of specialized pro-
grams and applications.
grams and applications.
- Compatible with existing WORL1/WATMBL PBBS/Mailbox/Gateway programs, whh complete software command for remote selection
- link rate, modem tone, etc
- Autobaud routines for terminal data rates from baud), and software contral (progre down to 45 baud), and sollware data rates from 45 to 9600 baud

Hardware Enhancements

- Eight front panel status indicators show Converse, Transparent, and Command modes: Multiple Connects, Data Carrier Detect, Push o Talk, Status, and Connect.
High sensitivity (5 millivolts RMS), and dynam
ic range from 5 to 770 millivolts RMS ic range from 5 to 770 millivolts RMS. Rear panel AFSK output level adjustment from 5 to 100 millivolts RMS
- One minute hardware watchdog timer provides system security in unattended VHF/UHF PBBS/Mailbox and digipeater operation. Modem disconnect circuits guarantee com-
patibility with future high speed modem appatibility with future high speed modem ap-
plications and developments plications and developments.
Zilog 8530 SCC provides dependable hardware HDLC for higher speeds, and AMD 7910 lor reliable modem performance withou calibration.

NSW \& HEAD OFFICE: VICTORIA:
92.94 Wentworth Ave.

Sydney NSW 2000.
TLX: AA 73990
P.O. BOXK21.

Haymarket. NSW 2000
Ph: (02) 2110988
FAX: (02) 2811508

comat spondence
nom
021

e.

QUEENSLAND:
416 Logan Road
Stone s Corner Old 4120
TLX: 144696
Ph: (07) 3942555
FAX: (07) 3944316

Wireless video transmitter standard released

TThe Department of Communications has released a draft standard which aims to protect television reception against possible interference from wireless video transmitters.

Video transmitters provide "wire free" connection, allowing a video recorder to operate some distance from one or more television receivers and such devices could interfere with a neighbour's reception, particularly when operated in blocks of flats or other high density housing.
The proposed standard would specify the performance and effective range for video transmitters and once it comes into force, any user who causes interference or transmits antisocial material could render themselves liable to prosecution under the provisions of the Radiocommunications Act 1983.

Copies of the draft standard may be obtained by writing to the Assistant Secretary, Operations branch, Department of Communications, Canberra, or by ringing (062)48 3800 .

Frequency registers

Scanner enthusiasts who would like to find out just who it is they are listening to, will find the range of frequency registers from Captain Communications invaluable.
There are a number of registers, covering the entire LF, HF, VHF and UHF bands.

The registers provide full information on all listed frequencies, including transmit and receive frequencies (essential for duplex users), callsign, licenced user's name and transmitter location.

The Australian HF register contains over 400 pages and covers 2.009 MHz to 26.965

MHz. Price is $\$ 38$. The HF/VHF/ UHF register covers 200-531 $\mathrm{kHz}, 1755 \mathrm{kHz}-26.965 \mathrm{MHz}$ and $30.075-1300 \mathrm{MHz}$. Price is only \$19.

The Australian VHF/UHF register is a state by state listing, covering $42.5-512.925 \mathrm{MHz}$ and the Australian master register covers VHF and UHF for all states at $\$ 100$.

For further information, contact Captain Communications, 28 Parkes St, Parramatta 2150 NSW. (02)633 4333.

New Russian satellites launched

STOP PRESS: News from the UoSat Mission control centre at the University of Surrey, UK informs us that at some time on the 23rd June 1987, two new Soviet amateur transponders were launched into low earth orbit.
Two separate transponders, RS-10 and RS-11 are thought to be "parasites" on the Cosmos1861 spacecraft.

Early reports came from G3IOR who worked one of the spacecraft and subsequently many amateurs throughout the world have worked through the birds.

Through AMSAT North America, UA3CR reports the following details on the two new satellites:

Mode K uses 15 meters up and 10 meters down.
Mode Tuses 15 meters up and 2 meters down.
Mode A uses 2 meters up and 10 meters down.

Millimetric attenuators

The compact 02 series of micrometer drive attenuators offered by Flann Microwave Instruments are suitable, the company says, for a wide range of applications and are economically attractive for low budget programmes and systems operating at millimetric frequencies.
Each instrument provides an attenuation range of 0 to 30 dB
and exhibits low insertion loss. The claimed calibration accuracy of the attenuators is $\pm 0.2 \mathrm{~dB}$ and the SWR is better than 1.07 for most models.
Attenuators with an extended attenuation range and extra calibration points can be provided. Customised units can also be provided to special order.
Further information is available from Flann Microwave Instruments, Dunmere Road, Bodmin, Cornwall PL31 2QL UK.

Mode KT uses 15 meters up and both 10 and 2 meters down.
Mode KA uses both 15 and 2 meters up and 10 meters down.
It may be of interest to those of you who have been following the articles on digital communications to know that the above news was downloaded directly from the UO-11 satellite and was subsequently disseminated via the network of packet radio bulletin boards in Australia.

Radio data modem

NetComm Australia Pty Ltd has announced the release of a new radio data modem which makes access to a remote data base a reality, they say.

Completely designed and manufactured in Australia, the new radio modem can provide
an error free data path over any standard commercial two way radio system or cellular phone system.
Unlike conventional modems which operate over telephone lines, the radio modem can operate on any two-way radio system, including VHF and UHF FM systems through to HF SSB systems.

To the business with mobile or remote sites, radio modems offer many benefits. The company's host computer can be directly accessed without the need for an operator and electronic mail or message handling can be catered for. An important aspect is the privacy of communications and the block exchange sequence protocol employed in this modem has the advantage of rendering messages unintelligible to the casual listener.
for further information, contact NetComm (Australia) Pty Ltd, PO Box 284 Pymble 2073 NSW, (02)8885533.

Abstract

LA FRAYCE POUR SA PART A MANIFESTE TOUTE L'IMPORTANCE QU'ELLE ATTACHAIT A L'ORGANISATION DES NATIONS UNIES COME L'A MFRGLE SOLENELLEEENT LE PREMIER MINISTRE, M. PIERRE MALOYY EN PRENFIT LA PAROLE RUU DEBUT DE LA STEME SESSION DE L'RSSEMELEE GENERAE PUIS LORSGUE LE 28 SEPTEMPRE 1983, LE PRESIDENT DE LA REPURLIQLE VINT FAIRE, LUIMEE ENTENDRE LA VOIX DE LA FRAMCE A LA TRIBUNE DES NATIONS UNIES.

MONGIELR LE SECRETAIRE GEERAL, DES YOTRE NOMINATION A LA HANTE FONCTION QLE VOUS OCOPEEZ VOUS AVEZ MARQLE AVEC FORCE L'IMPORTAYCE QUE VOUS RTTACHIEZ A CE GLE L'ORGANISATION RETROU-

 VE LES PRINCIPES QUI L'AMAIENT FONDEE : 'MOUS NOUS SOMMES, DISIEZ-VOUS, SANS CONTESTE, BEPUCOUP ECARTES DE LA CHARTE CES DERNIERES ANEES. NOLS SOMES PERILELSEMENT PROCFES D'UN NOUVEL ETAT D'AMPRCHIE INTERMPTOMAL''. ET UN PEU PLLLS LOIN VO
A guide to non-voice transmissions on shortwave

Roger Harrison

Abstract

With a variety of interface units available to hookup to a shortwave receiver for decoding radio facsimile (FAX) and radioteletype ($R T T Y$) transmissions using a computer, we've experienced a constant stream of enquiries for lists of frequencies for these non-voice transmissions on the shortwave bands.

OUR FIRST issue's feature project, the AEM3500 Listening Post RTTY/FAX/Morse decoder, has introduced many readers to the fascinating range of "non-voice" transmissions on the HF band. Radio facsimile transmissions, in particular, can provide a fascinating interest. Many FAX transmissions on the HF bands are from metereological agencies, transmitting various weather synopsis maps and charts ("WX FAX") which can provide interesting, if not useful, information not available from generally published sources. The weather bureaus of Australia and New Zealand provide strong, easily picked-up transmissions from which quite clear weather analysis charts can be received. Some oriental news services use FAX to transmit news in kanji characters.

Radioteletype transmissions are legion. A great many are international news services or agencies. Weather bureaus exchange data in code, as well as transmitting information like weather satellite orbit details.

To receive the non-voice transmissions, you'll need a receiver capable of stable single sideband (SSB) reception, with a switch for selecting upper sideband (USB) and lower sideband (LSB) operation. The transmissions almost invariably employ frequency-shift keying to carry the digital data. If you don't know what sideband (upper or lower) a transmission employs, there's a simple international convention you can follow to sort out the signal and resolve it: below 10 MHz , use lower sideband (LSB); above 10 MHz , use upper sideband (USB).

The different transmissions have a characteristic 'sound'; RTTY is a staccato "burble", while FAX is a tone punctuated by a more or less regular "tic-tic-tic" with an occasional burst of sustained high-pitched tone (the synchronising pulse).

When receiving FAX transmissions, it is best to first attempt reception at 60 lines per minute (lpm), as this seems to be the most common transmission standard, and see if you get something sensible (patience, patience!). If not, then try another lpm rate.

The following listings are not intended to be exhaustive, but to provide a guide to known transmissions and 'active' frequencies. Whether you hear something on a particular frequency or not depends on a number of factors, including your latitude and longitude, the latitude and longitude of the station you are trying to receive, the time of day and season of the year, the current state of the sunspot cycle, conditions in the ionosphere, etc. So if you attempt receiving a transmission on a particular frequency and are unsuccessful, try again at another time. There are plenty of alternate frequencies to try. Even if your receiver has a digital frequency readout, it is best to tune a kilohertz or so either side of the given frequencies when searching for a transmission, as well as trying both settings of the sideband switch.

OK, we shall start with the facsimile transmission frequencies.

FAX

Undoubtedly the best FAX transmissions to 'cut your teeth' on when starting out are those from the Australian Bureau of Metereology stations - AXM near Canberra and AXI near Darwin, and the New Zealand Meteorological Service's station, RMC Wellington. All transmit on pretty well continuous schedules, mostly FAX but a little RTTY thrown in giving weather and satellite orbit data in code.

AXM

You'll find this station on two frequencies:

5100 kHz , and 11030 kHz .

It seems to be the Bureau of Meteorology's main one. On 5100 kHz it is generally well received on the eastern seaboard, day and night. Although, the further out you are, the more likelihood there is that reception will be poor or non-existent during the day owing to absorption in the ionosphere's D-region. If no good on 5100 , try 11030 kHz .

AXI

Here again, the station will be found on three frequencies:

```
7535 kHz,
10 555 kHz, and
13 920 kHz
```

The 7 MHz transmission is readily received in the north during the day, but can be swamped by layers of Asian broadcast stations during the night. The 10 MHz transmission is often well received up and down the east coast, across South Australia and southern West Australia.

RMC

This New Zealand station puts quite a strong signal into Australia. It may be readily heard all up and down the east coast at good strength. You'll find it on:

13550 kHz

So much for the local weather stations.

International WX FAX

A number of WX FAX transmissions located in the orient to the north of Australia can be heard, often at good strength. There are three frequencies that provide fruitful results:

```
14826 kHz,
17068 kHz, and
18 130 kHz
```

They appear to originate in Japan, for they transmit weather synopsis charts of the Japan-Korea and east China region, and tables of upper wind and temperature data. The WX FAX pictures received will often contain noise "stripes" and show distortion. You will also often see "ghosting" on the pictures, the result of multipath propagation which is prevalent on these transequatorial paths.
WX FAX transmissions from North America can be received here, too. Two good frequencies to try are:

13510 kHz , and
 17150 kHz

The 13 MHz transmission originates from Canada it transmits a lot of synopsis and analysis charts covering the whole of the US, as well as the North American continent. The 17 MHz transmission appears to originate from San Francisco.

European WX FAX transmissions may be copied on:
16320 kHz
The origin of this transmission is uncertain (do readers have any clues, here?), but synoptic charts covering from the polar region to North Africa, Spain to the Middle East are copied.

Other FAX

As alluded to in my introductory paragraphs, some FAX transmissions originate from news services. The most prevalent is Taiwan's CNA. This is to be found on:
which is readily heard over most of Australia and New Zealand. For something a little different, try:

18045 kHz

where you can find news FAX pictures being transmitted. You'll have to hold the print at arm's length, though, to see what it's all about!
Once you've had a little success at receiving FAX, you'll easily recognise FAX transmissions as you tune around and be able to eavesdrop at will.

RTTY

There are no end of RTTY stations to be found on the HF bands! Trouble is, many send strings of code - letters and numbers - that have no meaning unless you can decipher them. As mentioned earlier, there are a considerable number of news agencies transmitting stories, along with diplomatic networks and the like, all in plain text (albeit in a foreign language from some). You certainly get a different slant on the news!
There are a number of transmission frequencies that are readily received at good strength and provide excellent sources, particularly if you're new to this.
For listeners located in the southern states and New Zealand, the following stations are regularly heard:
Agence France Press (AFP), on
7542.5 kHz
10730.6 kHz

Allgemeiner Deutscher (ADN), on
9968 kHz
10552 kHz
Central News Agency (CNA), Taiwan on
7695 kHz
13563 kHz
North Korean News Agency (KCNA), on
13780 kHz
Reuters, on
6845 kHz
9120 kHz
10960 kHz
14514 kHz

WX FAX from RMC Wellington, showing south-east coast of Australia, the Tasman sea and New Zealand.

Tsushin News Service, Kyodo Japan, on
8173.5 kHz

17596 kHz
USSR news service (TASS) in English, on
6870 kHz
6950 kHz
7760 kHz
9110 kHz
10270 kHz
11470 kHz
12085 kHz
13410 kHz
14510 kHz , and
14700 kHz
United Press (UPI), on
9985 kHz
16232.7 kHz

19520 kHz
European WX FAX. The Scandinavian peninsula is readily seen in the upper left corner.

Xinhua News Agency, on
7250 kHz
9491 kHz
11680 kHz
12265 kHz
14923 kHz
For listeners in the north and north east of Australia, the following transmissions should be reliably heard
Allgemeiner Deutscher (ADN), on
9968 kHz
10545 kHz
10552 kHz

IPS GRAFEX PREDICTIONS TAKE THE GUESSWORK OUT OF HF RADIO FREQUENCY SELECTION

Grab a GRAFEX and, during any particular month, GRAFEX will recommend the best:

- Times

- Frequency Bands
- Average radio wave elevation angles for radio wave propagation between any two places.
From $\$ 16$ a year GRAFEX will improve your transmission and reception.
For further information and to order your GRAFEX predictions, please contact:

GRAFEX PREDICTIONS

Australian Government, Department of Science
IPS RADIO AND SPACE SERVICES
P.O. BOX 702
DARLINGHURST 2010
Telephone: (02) 2698617

Name: \qquad
Address: Postcode: \qquad

FEATURES INCLUDE:

4- Auto-set key sets amplitude, timebase and triggering

- 50 MHz bandwidth
- Sensitivity range $2 \mathrm{mV} /$ div. to $10 \mathrm{~V} /$ div.
- Minimum 5 ns timebase sweep
- 100 MHz trigger bandwidth, plus trigger view facility
- Auto, manual and single-shot triggering
- Microprocessor control to 'think' for you
- 16 kV tube accelerator voltage
- Liquid crystal display control setting display
- Multi-function, menu-driven softkeys
- Menu/help functions
- Power supply operates over 90-264 Vac, $45-440 \mathrm{~Hz}$.
- IEEE interface option
- Probe indication: $\times 10, \times 100$
- All-modular construction
- Built-in service program
- Reads like a book - top to bottom, left to right!

Now is the time to buy - take advantage of improved exchange rates and this very special offer on the Philips PM 3055 oscilloscope.

When we reviewed the PM 3055 in the April issue, we were so impressed we just had to have one for the lab!

COUPON

Yes! I want \qquad Philips PM 3055 oscilloscope(s) at $\$ 2795$ PROBES TO MATCH,
worth around $\$ 200$ worth around $\$ 200$
_FOR FRE!

This special offer includes a pair of PM8936/09 probes, free! They feature 100 MHz bandwidth, $\times 10$ attenuation, 10M input impedance and 1.5 m long leads.

Yes! This is the Philips PM 3055 that has set new standards in its class. Take this limited chance to buy a quality instrument that major electronic labs in government departments, defence establishments and industry are using. The latest production techniques have allowed Philips to produce this market leader instrument at TV set speed. And the faster they can be produced, the lower the price.
This offer is made to readers of Australian Electronics Monthly by Philips Scientific \& Industrial, and the magazine is acting as a clearing house for orders.

Don't delay,
 OFFER MUST CLOSE
 LAST MAIL 20 JULY 1987

Fill out the coupon now and rush it to:
Philips CRO Offer
Australian Electronics Monthly
PO Box 289, Wahroonga 2076 NSW
tax free, or $\$ 3354$ tax paid, with a free pair of PM8936/09 probes with each unit, plus $\$ 20$ for delivery.
TOTAL: \$ sales tax no:
I enclose payment by:
Money Order \square Cheque \square Visa \square
Cheque or Money Order no:
(Government departments and institutions may proceed on official purchase order, but this coupon must be attached)
Please make cheques or Money Orders payable to "Australian Electronics Monthly"

Name
Company
Position \qquad
Address
Postcode \qquad
Signature
(Unsigned Credit Card orders cannot be accepted)
Please allow for normal postal and bank clearance delays.
Bankcard $\square \quad$ Mastercard $\square \quad$ American Express \square
Credit card no:
Expiry date:

A guide to digital communications

Part 2 Andy Keir VK2AAK

Abstract

In part one of this article, we discussed the historical development of digital communications modes as well as describing the various codes and protocols in use. In part two, we will concentrate on the techniques and operating practices employed by amateur operators as well as look at recent equipment.

ALTHOUGH we commenced Part 1 with a description of Morse code, I don't intend to pursue the subject in any detail. Morse code is not generally thought of as part of the "digital" family even though strictly speaking it could be regarded as such. Our only interest in Morse comes from the fact that it is often incorporated as an additional mode in the many multimode decoders that are now available.

As I pointed out in Part 1, Morse should be thought of as a "human" mode. It is not particularly suited to computer based systems and whilst a very useful mode in some circumstances, it is quite inefficient when compared to the other digital modes. In this article, we will confine ourselves to those modes which were designed for machines or computers from the outset.

RTTY operation

As far as the end result is concerned, it makes very little difference whether you are using the classic mechanical teleprinter or a modern "glass RTTY" based around a computer terminal, as the latter is designed to emulate the former.

To transmit RTTY we can use either frequency shift keying (FSK) or audio frequency shift keying (AFSK). FSK is generally used on the HF bands below 30 MHz and AFSK is used in VHF applications. Because most RTTY operators these days employ single sideband transceivers, we can use the same modulator for both FSK and AFSK.
Regardless of whether the voltage levels representing mark and space are dc signals from a mechanical teleprinter or TTL levels from a computer, the modulator converts these signals to audio tones. If we feed these tones to the microphone input of an SSB transmitter, the result will be FSK. If we feed the same tones to an FM transmitter, we will get AFSK. The difference between the tones representing mark and space is called the shift and in amateur applications is usually 170 Hz . It should be borne in mind that many SSB transceiver are
designed for the low duty cycle of voice modulation. Wen used for RTTY, an SSB transmitter will be operating at 100% duty cycle and you may have to reduce power to avoid exceeding the rating of the transmitter's final stage.
At the receiving end, the recovered audio tones are converted back to voltage levels to suit the equipment in use by means of a demodulator. It is usual practice to include some sort of filtering in the demodulator so that the system does not respond to extraneous noise in the recovered signal.
Operating RTTY is similar to operating on voice except that the two parties type to each other instead of talking. Like many other modes, RTTY has developed it's own jargon and operating conventions. For the uninitiated, you may think you are reading a foreign language when first decoding a conversation between experienced operators. Widespread use is made of the "Q" code developed to speed up Morse code operations and details of their meaning can be found in most amateur radio literature.
Encouraged by the ready availability of simple, low-cost modems and computers, RTTY using AFSK on FM has become a popular mode on the VHF bands. A number of RTTY repeaters have been established in major cities and these often provide a "store and forward" mailbox facility similar to the popular telephone "bulletin boards".

AMTOR

AMTOR can be regarded as a form of RTTY but as explained in part one, offers the added advantage of error correction. Transmission and reception of AMTOR uses the same FSK techniques as normal RTTY and the modems employed are virtually identical. The difference with AMTOR lies in the way the cnaracters are constructed using a seven-bit synchronous code as opposed to the five-bit asynchronous Baudot/Murray code.

ONLY s1075 CAPTURE THE WORLD

The R-5000 is a new competition grade communications receiver which incorporates every conceivable operating feature. Designed for all modes of reception (SSB, CW, AM, FM, FSK), the R-5000 covers the frequency range from 100 kHz to 30 MHz , and with the addition of the optional VC-20 VHF converter, will also cover the 108 to 174 MHz range, again with all mode reception. The R-5000 has been designed with high performance in mind, and has an excellent dynamic range, together with carefully chosen operating facilities to match today's conditions. Microprocessor control is used for main functions, including dual digital VFO's, 100 memory channels, memory scrolling, memory and programmable band scan, and many other facilities.

FEATURES

Coverage is 2 MHz to 30 MHz in 30 bands, with an additional range from 108 to 173 MHz using the optional VC-20 VHF converter

Advanced microprocessor control allows frequency. band and mode data to be stored, recalled, and displayed, even in the VHF band of the VC-20.

The RF circuits of the R-5000 have been designed to give a high dynamic range, and with the 500 Hz bandwidth selected (YK-88C option), the intermodulation free dynamic range is 102 dB , with a therd order intercept point of +14 dBm , and a noise floor of -138 dBm .

* 100 kHz to 30 MHz optional extra.

High stability frequency control.
The reference oscillator which determines the frequency stability and readout accuracy of the R-5000 is accurate to + or -10 ppm within a temperature range of -10 to +50 degrees Celsius.
10 Hz step dual digital VFOs.
Built in dual VFOs operate independently of each other, and allow split frequency and split mode operation. The frequency steps are basically 10 Hz , giving that "True VFO" feel when tuning. The frequency steps are changed to 1 KHz in AM mode, and 5 kHz in FM mode.
Provision is made for the connection of both high and low impedance antenna systems.

Superb Interference Reduction.

Selectivity is enhanced by the use of dual crystal IF filters for SSB, and further features include IF shift and tunable notch filters. The IF filter selection system is fully flexible, in the same manner as the TS-440S transceiver, and offers automatic selection by mode, or manual selection according to the operator's requirements.

A dual mode noise blanker system deals effectively with both impulse noise as well as the "woodpecker".

Keyboard Frequency Selection

Frequencies can be entered using direct keyboard control, and a frequency lock switch prevents accidental frequency changes from occurring.

100 Memory Channels Capability

100 memories are provided, which store frequency, mode, and which antenna has been selected. Memory information can be scrolled to review contents of any memory channel.
Memory Scan and Programmable Band Scan.
Further memory facilities include memory scanning with programmable memory lockout, and programmable band scanning with centre stop for accurate on-channel tuning.
Plus a full list of other desirable features:

- Dual 24 hour clocks with timer - Optional VS-1 voice synthesiser for frequency announcement - Optional control by personal computer using the IF-232C interface - Lithium battery backup of memory contents - Built in AC power supply and option to use the receiver on 13.8 volt DC supplies - High quality internal loudspeaker - AGC time constant switchable fast/slow - Switchable RF input attenuator (0 to 30 dB in 10 dB steps).

To summarise: the R-5000 from KENWOOD offers the operator a top performance communications receiver of the very highest quality, with all the features and functions which the discriminating user could demand.

With the R-5000, KENWOOD gives the dedicated listener a receiver which will match the performance of the very best transceivers available today.

KENWOOD ELECTRONICS AUSTRALIA PTY. LTD. 4E WOODCOCK PLACE, LANE COVE, SYDNEY, N.S.W. 2066. Ph. (02) 4281455.
 your dealer below will guarantee satisfaction

N.S.W.: EMTRONICS - 94 WENTWORTH ANENUE SYONEY (021 2110988

REG SIOCKMAN COMMUNICATIONS - CNR BANOCKBURN ROAD \& SHIRLEY STREET INVERELL 1067) 221303 WORMALD COMMUNICATIONS - 5 I DEMNISON STREET HAMILTON NEWCASTLE $(049) 691999$ MACELEC PIY LTD - 99 KENNY STREET WOLLONGONG (0421 291455 E 8 K COMMUNICATIONS - 14 DUTTON SIREET DICKSON ACT 10621496437 E 8 COMMEING - 158 GRANITE STREET PORT MACOUARIE (O65) 899922
OX ENGINERIN
FRANK BOUNDY - LISMORE (065) 862145

INTERSTATE

Shown here is Brian Beamish VK4AHD who is the system operator of the very popular VK4BBS packet bulletin board. This picture shows the commitment which some operators make in terms of equipment, to provide a bulletin board which all suitably equipped amateurs can access. Brian will be well known to many readers in the Brisbane area where he is the manager of the Emtronics store.

The method of operating on AMTOR will depend on whether you are using the FEC or the ARQ mode. As explained in part one, the FEC mode is the one used for calling "CQ" or operating in a "net" comprising several stations. In use, the FEC mode is similar to standard RTTY but there are a few conventions that must be observed.

In RTTY, it is common to send a few lines of "RYs" before commencing your message. This is done to allow the distant station to tune your signal accurately and also so that older mechanical systems can get themselves "into gear". The RY characters are chosen because in the Baudot/Murray code they will test all five information bits. In AMTOR we use a syncronous seven-bit code which means that the distant station must have something to synchronise to. The distant station cannot synchronise to your typed characters so instead, we just pause for a few seconds without typing anything. This will result in a continuous steam of idle characters being sent which can be used by the distant station for tuning purposes as well as synchronization. It should be noted that the FEC mode operates at 100% duty cycle and the remarks concerning SSB transmitters when used with standard RTTY also apply in this case.

The ARQ AMTOR mode is quite different in operation as you need to know the other station's selective calling address (selcall) before you can make contact. When calling CQ in FEC mode, it is usual to include your own selcall so that the distant station can call you back using ARQ. As AMTOR is a mode specifically designed for computers, the actual commands which make the system perform the various functions will vary with the computer, interface and software in use.

Whilst the manuals provided with the various interfaces and software packages can be very helpful, I feel the best way to learn the intricacies of AMTOR operation is by talking to other amateurs who are familiar with the mode and who have learned all the tricks.

Packet radio

The low cost personal computer has been responsible for luring many enthusiasts away from the hobby of amateur radio in recent times. Packet radio may offer the incentive to many of these operators to once again become involved in radio by combining the two disciplines and this situation seems to be borne out by the fact that the packet mode has become the fastest growing area in the hobby today.
The packet mode can be used on both the HF and VHF bands, the only difference being the speed at which data is transferred and the tones produced by the modems. On the VHF bands, the most common standard is 1200 Baud using a modem based on the Bell 202 standard, the output of which is fed to an FM transmitter thus producing AFSK. On HF the
convention is to use 300 Baud with a narrow shift modem fed to an SSB transmitter which results in an FSK signal.

Despite the fact that there are usually dozens of TNC parameters which are user adjustable, only a few commands are used in general operation and once you have the TNC, computer and radio connected, it is a simple matter to make a contact. As an example, if VK2AAK wishes to talk to VK2ZTB, he simply types "CONNECT VK2ZTB". The TNC will key the transmitter and send a connect request packet. If VK2ZTB is available his TNC will reply and VK2AAK will see "CONNECTED TO VK2ZTB" displayed on his screen and the two stations may then simply type back and forth. To end the contact, one or other station types "DISCONNECT" and the logical connection will be broken.

PACKET RADIO BULLETIN BOARDS

One of the most interesting results from the marriage of computers and radio has been the establishment of numerous packet radio bulletin boards and mailboxes. These systems operate in a similar fashion to the well-known telephone type systems where an enthusiast equipped with a suitable modem can connect to the system and post or read messages and upload or download programs.
With typical ingenuity, amateurs have developed a sophisticated network of bulletin boards which not only provide the usual functions, but can also forward messages automatically to any destination station that is part of the network. As an example, I can sit at my computer and type in a message to an amateur in the USA and address it to him via a local VHF bulletin board. That bulletin board will then automatically forward my message through the network and via HF links to the USA where it will be routed to a bulletin board close to the intended recipient's location. The next time that amateur logs on to his local system he will be informed that there is a message for him. After reading my message, the overseas amateur can reply to me by the same method, going in the reverse direction.
Because the packet mode employs an error correcting protocol, you can be sure that any message you send through the system will arrive intact, regardless of how many stations it goes through on the way. Of course it's not only messages that can be sent in this way, computer programs, satellite predictions or indeed any sort of information that can be handled by a computer can be transferred.
It is perhaps due to the fact that we are becoming an informationbased society that packet radio is experiencing such phenomenal growth. Amateurs have always had the ability to communicate, that's what the hobby is all about, but never before have we had the facility to create an integrated network such as is now being developed.

Cmdic VKZZOP-1 cmd:** CONNECTED to Vk:20P-1										
VK2OP E8S - Bandi NSW AustralieVKEOF?										
1										
Msam	TS	S1z*		- BBS	From	Date	Subject			
	F	12111			WA3SAD	21-Jun	Amset Newsis4	Junie 15,	1087	
431	*	792.	atl	\& 4 F	VK2AIHX	21 -Jun	Disposal			
427	B*	651	ALL,	ev:	Vi4ebs	20-Jun	disposal notice	Pleasm	Reed A	asar-
426	E4	5731	ALL	(thF	Visaju	20-Jun	Woset Eulletan	mosi		
425	8*	2322	ALL	enf	Dulw	20-Jus,	HAPN Eulletar, No	-. 7		
424	E4	3604	ALL	HF	Dusus	20-Jun	HAPN Bulletion No.			
	N	840	VKAES	Sevk488s	VK2AmX	20-Jun	Fe : kek disposa	al		
418	88	1585	ALL		W7LHO	18-Jun	ARRL BULLETIN MA			
	EF	1513	ALL.	evn4Ebs	Vh2czz	18-Jun	novices to cet	VMF 2 RTI		
407	B*	812	ALL	¢	va 4 Ebs	16-Jun	No NTS TRAFFIC F	flease		
385	B3	2958	ALL		VKATTY	15-Jun	S.E.a.t.G. News	08-Juri-8	$872 / 4$	
	B*	3112	ALL		UFATTY	15-Jun	S.E.O.T.G. News	08-Jun-8	$871 / 4$	
383	\%	2324	ALL		VK2EHa	15-Jun	pl 23 2 mods			
282	B4	204	PLL.	evkzxy	Vk4EES	15-Jun	Macrotronics App	plo Softw	war	
	F*	7825			A18A	15-Jun	SWL SCDX 1942	09Jun 10		
379	B*	5609	ALL	enf	VK4aje	15-Jun	Hosat 2 Eulletan	- moso		
	N	574		ezlzamb	VK2XY	14-Jun	EASTNET (VK) VMF	Patket	FREO.	
	-			-vk	vr zahx	14-Jun	computer for Dis	pposal		
366	B\%	3384	ALL		VhaEBS	14-Jun	ZL 3RD PAKTY TRA	AfFic		
305	*	4520	ALL		vi 4 BES	14-Jun	This is Pactet	39ッ		
364	*	1370	ALL		vis 52	14-Jun	dce 2059%			
363	*	470	ALL		Vi/4Ebs	14-Jun	ZLZAMD \& KEGIRS			
362	F*	6.15	ALL		AI8A	14-Jun	SWL SCux 1941	02uwn	1/1	
Vk20P $>$ (${ }^{\text {a }}$										
** ut	Sc	ONNEX T								

To give you some idea of the scope of the packet network, here is a screen dump taken from a session on the VK2OP bulletin board run by Nat, VK2OP of Bondi NSW. Just take a look at some of the callsigns in the message titles and you will see what I mean about packet becoming a global information and message system.

Because the TNC is connected to and controlled by a computer, it is possible to leave your system running and have all incoming messages stored or printed for later review. Many stations now operate packet bulletin board systems which operate in a similar fashion to the familiar telephone systems as well as providing automatic message forwarding over great distances using HF links or even orbiting satellites.

As you can see, the marriage of computers and radio provides a fantastic opportunity for experimenters to make a contribution. Those individuals who found that computers offered more chance for creative experimentation are now applying their knowledge of computers and software to the area of amateur communications and if allowed to progress, I can forsee the development of a global network the sophistication, reliability and scale of which would be beyond individual governments and corporations.

Where to find on-air activity

Modes such as RTTY, AMTOR and packet occupying bandwidths less than 2.5 kHz are described as "narrowband" modes. Most of the bands allocated to amateurs in Australia have designated segments set aside for narrowband operation and these usually coincide with similar allocations in international bandplans. Whist in most cases it is not mandatory

to obey these bandplans, the vast majority of amateurs adhere to this "gentleman's agreement". The narrow band segments for the Australian HF amateur bands are as follows:
$1.825 \mathrm{MHz}-1.835 \mathrm{MHz}$
$3.620 \mathrm{MHz}-3.640 \mathrm{MHz}$
$7.040 \mathrm{MHz}-7.060 \mathrm{MHz}$
$10.140 \mathrm{MHz}-10.150 \mathrm{MHz}$
$14.070 \mathrm{MHz}-14.110 \mathrm{MHz}$
$18.100 \mathrm{MHz}-18.110 \mathrm{MHz}$
$21.075 \mathrm{MHz}-21.125 \mathrm{MHz}$
$24.920 \mathrm{MHz}-24.930 \mathrm{MHz}$
$28.050 \mathrm{MHz}-28.150 \mathrm{MHz}$
Of these bands, the segment between 14.070 MHz and 14.110 MHz will frequently provide the most activity as this band is favoured for "DX" operating. AMTOR signals will often be found between 14.850 MHz and 14.950 MHz whilst packet activity centres on 14.103 MHz and 14.107 MHz .

The VHF bands

On the VHF bands the narrowband segments are not so clearly defined, being based on convention rather than specific bandplans. Most operation takes place on spot frequencies and this is particularly true of the packet mode

THE AEA PAKRATT PK-232

If you're thinking of having a go at digital communications but don't know which mode to gear up for, why not try them all. With the PK232, your computer and a transceiver or two, you can establish a digital station capable of operating on any of the popular modes without the hassle of finding separate interfaces and modems and the associated "rats nest" of cables and switching.
The Pakratt model PK-232 from Advanced Electronic Applications Inc. is a multi-mode interface designed to provide the amateur operator with a versatile digital communications station in an integrated package. The interface will allow operation on Morse, RTTY using the Baudot code, RTTY using the seven-bit ASCII code, AMTOR in both ARQ and FEC modes, and packet using the AX-25 protocol.

Operation and connection of the PK-232 is very straightforward and as the interface is controlled via a standard RS-232 port, it can be used with virtually any computer. Another advantage lies in the fact that all the software for controlling the various modes is stored in ROM within the unit so you don't have to search around for special programs to suit your computer.

Almost every parameter that you might want to change can be altered using simple commands from your computer keyboard. Morse speeds can be selected between five and 99 words per minute, RTTY speeds can be selected from 45,50,57, 75 and 100
baud in the Baudot mode and additiunally 110, 150, 200 and 300 baud in the ASCII mode. Packet baud rates can be selected from 300 or 1200 baud or up to 9600 baud if using a suitable external modem.

The characteristics of the internal modem are automatically configured depending on the mode in use. On VHF packet the bandwidth is 2600 Hz , on HF it is 450 Hz and on CW it is 200 Hz . The demodulator is a limiter-discriminator type which is preceded by an eightpole Chebyshev 0.5 dB ripple bandpass filter.

The front panel of the PK-232 has 21 LEDs to indicate the status as well as a LED bargraph tuning display, an adjustable threshold control and a switch to select either of two transceivers. The unit comes supplied with all the necessary cables for connecting two transceivers and all you have to provide is a set microphone plugs to suit and an external power supply of 12 to 16 V at one amp. The instruction manual is complete and extensive, covering all aspects of connection and operation. You will certainly need to refer to the manual when aquainting yourself with the PK-232, there are some 140 different commands which the unit recognises.

I have been lucky enough to have a PK-232 loaned to me for a few weeks and I haven't had so much fun in a long time. I have used the unit on my VHF packet bulletin board as well as having a go at HF packet, RTTY and AMTOR. The unit performed flawlessly and the HF modem in particular was one of the best I have encountered. AEA have certainly got their act together with this unit and it appears to me from the comments I have received from other users that this interface is the one by which all others will be judged.
If you would like to find out some more about the PK-232, why not call into one of the Emtronics stores who currently have stocks of the units. Emtronics have their head office at 92-94 Wentworth Ave, Sydney, phone (02)211 0988. If you live in the Brisbane area, you can call into the Emtronics store at 416 Logan Road, Stones corner and have a chat with the manager, Brian Beamish. Brian is well known amongst the packet fraternity and is the system operator of the very popular VK4BBS packet bulletin board.

which relies on the common use of one frequency to support it's network style of operation. The AMTOR mode is predominantly used on HF and I am not aware of any operation on any of the VHF bands.

On the six meter band, the narrowband segment is from 52.080 to 52.100 MHz . Operation on the 6 m band is spasmodic regardless of the mode in use, but activity usually peaks between November and February each year.

The two meter band is where the majority of packet operation currently takes place. The frequencies of 144.800 $\mathrm{MHz}, 147.575 \mathrm{MHz}$ and 147.600 MHz are where you will find almost all the activity. There is no specific narrowband segment but the national calling channel for FSK RTTY is 144.075 MHz . There appears to be more RTTY activity on two meters FM using AFSK where the national calling frequency is 146.600 MHz .

The seventy centimetre band does not have a specific narrowband segment but the FSK calling frequency is 432.075 MHz . There is some packet operation on this band and the frequencies of 439.050 and 439.075 MHz are recommended for this mode. You can probably expect an increase in packet operation in this band as the mode gains popularity and high speed links become a reality.

Where to find advice

There are a number of societies and groups which have been set up by radio amateurs with a common interest in the digital modes. Most states and some major cities will have such an interest group, either as a separate body or perhaps as part of an existing amateur radio club. A good source of advice and assistance can usually be found by asking amongst amateurs already active on the modes of interest but perhaps the best approach is to contact one of the national groups who have wide resources and large combined expertise.
The Australian National Amateur Radio Teleprinter Society (ANARTS) have a large active membership who are involved in all aspects of digital communications. ANARTS

An example of the AX. 25 frame format. Each frame is divided into "fields" and is normally preceded by 16 -bit reversals for synchronization. The frame consists of the beginning flag, address field, control field, a network protocol identifier (PID), information field, frame check sequence (FCS) and an ending flag.
This example shows VK2AAK transmitting to VK2ZTB via a digipeater VK2RPH. The repeater address field is optional and may contain up to eight digipeater callsigns.

are not simply involved in RTTY but have members who operate on AMTOR and packet as well. The address of ANARTS is PO Box 860, Crows Nest 2065 NSW. If writing, please enclose a self-addressed, stamped envelope as a matter of courtesy.

The Australian Amateur Packet Radio Association (AAPRA) whilst being a relatively newly formed group, already have a substantial membership including amateurs from all Australian states as well as the USA, New Zealand and Papua New Guinea. The activities of AAPRA revolve mainly around AX-25 packet radio and many members are engaged in research and development of sophisticated packet network systems. Several of the AAPRA members operate bulletin board and dedicated digipeater services and if you use these services it seems only fair to support the organization by becoming a member yourself. Plenty of assistance is available for new packet radio enthusiasts and the group also publish an excellent newsletter full of practical advice and interesting news.
For information about AAPRA, write to: The Secretary AAPRA, 59 Westbrook Avenue, Wahroonga 2076 NSW and include a self-addressed, stamped envelope.

Further reading:

The ARRL 1987 handbook for the radio amateur, published by the American Radio Relay League. This latest ARRL handbook contains an updated chapter on digital communications and provides a detailed description of the AX. 25 packet protocol.

The amateur radio handbook published by the Radio Society of Great Britain contains some useful information on RTTY and AMTOR operating.

Another example of a packet bulletin board, this time closer to home. This system is run by the author and assistant editor, Andy Keir VK2AAK. During the day, the computer is used for writing the magazine, but after hours it becomes the VK2AAK bulletin board. This board has become the official system of the VK2 division of the Wireless Institute and will shortly change it's callsign to VK2AWI.

in AEM

The projects and circuits chosen for inclusion in the Elektor section are selected on the basis of interest, local relevance and component availability. Intending constructors should consult our 'PROJECT BUYERS GUIDE' in this issue for a guide to component sources and possible kit suppliers.

SPOT SINE WAVE GENERATOR - 1

by M G Weigl

Abstract

This ultra-low distortion, 4-frequency, sine wave generator is a laboratory-grade instrument for testing and aligning AF circuits of almost any kind.

A spot frequency generator is primarily used for distortion measurements. It derives its name from the fact that it delivers one or more fixed output frequencies (spots), rather than a continuous range. The use of fixed frequencies makes it possible to tailor the generator such that it outputs each "spot" as a pure sine wave with significantly less distortion than would be attainable with a continuously variable instrument. The spot sine wave generator described in this two-part article has technical features that make it suitable for a wide variety of applications having to do with the analysing, testing, and setting up of high-end audio equipment. Its excellent performance is the more surprising in view of its simplicity, relatively low cost, and the use of standard, off-the-shelf components.

Design principles

Figure 1 shows the functional blocks that make up the spot sine wave generator. In essence, the sine wave is obtained by first generating a square wave, integrating this to make a triangular waveform, and feeding this in turn to a high-order low-pass filter, which then outputs the sine wave signal. This approach is based on Fourier's theory of signal synthesis and analysis, which proposes that a rectangular wave is composed of an infinite number of harmonically related sinusoidal constituents.
The 4 MHz clock oscillator in the spot sine wave generator is crystal-controlled, and drives a : 16 divider to obtain a 250 kHz signal. After subsequent division by 25 and 2 , a 5 kHz rectangular wave is available for integrating in an R-C network. The other three frequencies of the generator are obtained by

Spot sine wave generator
Technical specification:
Output frequencies:
Output voltage
Frequency stability: Distortion:
Additional feature:
$5 \mathrm{kHz}, 1 \mathrm{kHz}, 500 \mathrm{~Hz}, 100 \mathrm{~Hz}$ 1.5 Vtms (variable) depends on quartz crystal. 0.008\% (third harmonic). built-in tuning fork circuit, $f=440 \mathrm{~Hz}$; Vout $=2 \mathrm{~V} \mathrm{~ms}$ (variable).
dividing 10 kHz by $10(1 \mathrm{kHz})$, 1 kHz by $2(500 \mathrm{~Hz}$) and 1 kHz by $10(100 \mathrm{~Hz})$.
The four rectangular waves are integrated with the aid of R-C combinations to obtain triangular waveforms. Each of these is passed through a low-pass filter to make the sine wave signals available for the driving of the burst-adaptor circuit via rotary switch S_{4}.
A useful boon of the spot sine wave generator is the built-in tuning fork circuit, which outputs a very pure and stable 440 Hz note.

Circuit description

The circuit diagram of the spot sine wave generator appears in Fig. 2. The central clock oscillator, IC_{1}, is controlled by quartz crystal X_{1}, whose operating frequency can be set to 4.000 MHz precisely by aligning trimmer Cs
The Q4 and Q_{1} outputs of the ripple counter in IC, supply the 250 kHz clock for the spot

Fig. 1. Block schematic diagram of the spot sine wave generator.

Fig. 2. Circuit diagram of the spot sine wave generator without output filters.
dividers, and the 31.25 kHz clock for the tuning fork, respectively. The 250 kHz signal is divided by 25 in IC_{2}. The slightly unusual divisor is obtained with the aid of a three-bit AND function, N_{1}, which resets the counter when Q_{s} goes high. The 10 kHz signal at the Q_{5} output is an asymmetrical rectangular wave which is made available at test point TP, and applied to the CLK inputs of FF , and ICs. The bistable divides by two, and the 5 kHz triangular wave is obtained after integration in $\mathrm{P}_{1}-\mathrm{C}_{1}$. The counter divides by ten, and drives integrating network $\mathrm{P}_{2} \mathrm{C}_{2}$ to provide the 1 kHz triangular signal. Bistable FF_{2} and counter IC_{6} likewise serve to deliver the 500 Hz and 100 Hz signals, respectively. The resistive part of each of the four integrating filters is a preset to enable setting the period to that of the incoming square wave. Example: $\mathrm{P}_{1}-\mathrm{C}_{1}$ should be aligned to give a period of $1 / 5000=200 \mu \mathrm{~s}$. At this setting, the amplitude of the triangular signal is 63% of that of the input square wave. Therefore, the presets are readily adjusted by measuring the peak amplitude of both signals.
Counter IC_{7} is set up to divide the 31.25 kHz signal by 71 with the aid of AND gates N_{2} and N_{3}. Ripple output Q_{6} drives integrating network $\mathrm{R}_{3} \cdot \mathrm{C}_{16}$. Preset P_{s} is used to adjust the level of the 440 Hz triangular wave fed to the active low-pass filter set up around $\mathrm{IC}_{\text {a }}$ This filter is a second-order Butterworth low-pass section with multiple feedback, dimensioned for a cut-off frequency of 440 Hz . The output is left CCcoupled, and may require a series capacitor to drive an amplifier.

Fig. 3. Basic circuit diagram of the 8th order Butterworth filter. Output 1 goes to input 2.

Table 1

Technical data LP1...LP4

Filter type:
Cut-off frequency (fc):

Filter coefficients:

Amplification of individual filter sections:

Butterworth low-pass:
8th-order with multiple feadback.
$5 \mathrm{kHz}\left(L P_{1}\right)$
$1 \mathrm{kHz}\left(L P_{2}\right)$
$500 \mathrm{~Hz}_{2}\left(\mathrm{LP}_{3}\right)$
100 Hz (LPa)
$\mathrm{A} 1=1.9616$
$A 2=1.6629$
$A 3=1.1111$
A4 $=0.3902$
$B 1 . . B 4=1$
$A_{t}=\prod_{1=1}^{n} A_{0}=\left(A_{0}\right)^{4}=1\left(f_{\text {test }} \ll f_{c}\right)$
$A_{0}=-1\left(f_{\text {test }} \ll f_{c}\right)$

Calculation of component values in a filter section (see also the parts list to Fig. 5):
$R_{1 i}=R_{21} /-A_{0 i}$
$R_{2 i}=\frac{A i C_{2 i}-\sqrt{A i^{2} C_{2 i}{ }^{2}-4 C_{11} C_{2,} B i\left(1-A_{0 i}\right)}}{4 \pi f_{2} C_{1 i} C_{2 i}}$
$R_{3 i}=B_{i} /\left(4 \pi^{2} f_{c}{ }^{2} C_{1 i} C_{2 i} R_{2 i}\right)$
$\mathrm{C}_{21} / \mathrm{C}_{1 i} \geq 4 \mathrm{Bi}\left(1-\mathrm{Aoi}^{1} / \mathrm{Ai}^{2}\right.$
Subscript i denotes filter section number 11

The low-pass filters

To make pure sine waves from the four available triangular signals, an equal number of active low-pass filters is required. Fig. 3 shows the basic circuit diagram of the four-section, 8th order Butterworth filter used in the spot sine wave generator. Note that the individual opamp sections are identical to the previously mentioned 440 Hz filter. Each of the low-pass filters $\mathrm{LP}_{1}-\mathrm{LP} 4$ is dimensioned as set out in Table l. The calculations for the component values are based on those set out in Halbleiterschalttechnik, a standard reference work by Tietze \& Schenk.
The capacitors in the filter sections have been taken as the starting point for the calculation of the precision resistors to arrive at the correct cut-off frequency. This is so arranged because high-stability (1%) resistors are generally more easily available than precision capacitors. The theoretical

Fig. 4. The printed circuit board for the spot sine wave generator

5

Fig. 5. The active filters are each constructed on a separate board of the type shown here.

Parts list

(low-pass filter boards LP1. . .LP4; see Fig. 5).

LPi:
Resistors ($\pm 1 \%$):
$R_{01} ; R_{02}=10 \mathrm{RJ}$
$R_{11} ; R_{21}=118 \mathrm{~K} 7(110 \mathrm{~K}+9 \mathrm{~K} 1)$
$R_{12}: R_{22}=89 K 86(47 \mathrm{~K}+43 \mathrm{~K})$
$R_{13} ; R_{23}=138 \mathrm{~K} 5(130 \mathrm{~K}+8 \mathrm{~K} 2)$
$R_{14} ; R_{24}=22 \mathrm{~K} 35(22 \mathrm{~K}+360 \mathrm{R})$
$R_{31}=82 \mathrm{~K} 57$ (82 K)
$R_{32}=75 \mathrm{~K} 37$ (75 K)
$\mathrm{R}_{33}=107 \mathrm{~K} 6(100 \mathrm{~K}+7 \mathrm{~K} 5)$
$\mathrm{R}_{34}=30 \mathrm{~K} 23(30 \mathrm{~K})$
Capacitors ($\pm 5 \%$):
$\mathrm{C}_{01} ; \mathrm{C}_{02}=22 \mu ; 16 \mathrm{~V} ; 20 \%$;
tantalum
$\mathrm{C}_{11} ; \mathrm{C}_{12}=220 \mathrm{p}$
$C_{13}=100 \mathrm{p}$
$C_{14}=150 p$
$C_{21}=470 p$
$\mathrm{C}_{22} ; \mathrm{C}_{23}=680 \mathrm{p}$
$\mathrm{C}_{24}=10 \mathrm{n}$

Semiconductor:

$\mathrm{IC}_{1}=$ TL074. or TL084
LP2:
Resistors $\{ \pm 1 \%$):
$R_{01} ; R_{02}=10 \mathrm{RJ}$
$R_{11} ; R_{12}=119 \mathrm{~K} 5$ (120 K)
$R_{12}: R_{22}=63 K 79(62 K+1 K 8)$
$R_{13} ; R_{23}=69 K 24(68 \mathrm{~K}+1 \mathrm{~K} 2)$
$R_{14} ; R_{24}=50 \mathrm{~K} 78(51 \mathrm{~K})$
$R_{31}=96 K 35(91 K+5 K 1)$
$R_{32}=56 \mathrm{~K} 32$ (56 K)
$R_{33}=53 K 8(47 K+6 K 8)$
$R_{34}=68 \mathrm{~K} 7(68 \mathrm{~K}+680 \mathrm{R})$
Capacitors ($\pm 5 \%$):
$\mathrm{C}_{01} ; \mathrm{C}_{02}=22 \mu ; 16 \mathrm{~V} ; 20 \%$;
tantalum
$\mathrm{C}_{11} ; \mathrm{C}_{13}=1 \mathrm{nO}$
$\mathrm{C}_{12}=1 \mathrm{n} 5$
$C_{14}=330 \mathrm{p}$
$\mathrm{C}_{21}=2 \mathrm{n} 2$
$C_{22}=4 n 7$
$\mathrm{C}_{23}=6 \mathrm{n} 8$
$\mathrm{C}_{24}=22 n$

Semiconductor:

$\mathrm{IC}_{1}=$ TL074 or TL084

LP3:

Resistors ($\pm 1 \%$):
$R_{01} ; R_{02}=10 \mathrm{RJ}$
$R_{11} ; R_{21}=118 \mathrm{~K} 7$ ($110 \mathrm{~K}+9 \mathrm{~K} 1$)
$R_{12} ; R_{22}=127 \mathrm{~K} 6(120 \mathrm{~K}+7 \mathrm{~K} 5)$
$R_{13} ; R_{23}=138 K 5(130 \mathrm{~K}+8 \mathrm{~K} 2)$
$R_{14} ; R_{24}=46 \mathrm{~K} 6(47 \mathrm{~K})$
$\mathrm{R}_{31}=82 \mathrm{~K} 57$ (82K)
$R_{32}=112 \mathrm{~K} 6(110 \mathrm{~K}+2 \mathrm{~K} 7)$
$R_{33}=107 \mathrm{~K} 6(100 K+7 K 5)$
$\mathrm{R}_{34}=68 \mathrm{~K} 02(68 \mathrm{~K})$
Capacitors ($\pm 5 \%$):
$\mathrm{C}_{01} ; \mathrm{C}_{02}=22 \mu ; 16 \mathrm{~V} ; 20 \%$;
tantalum
$C_{11}=2 n 2$
$C_{12}=1 \mathrm{n} 5$
$C_{13}=1 \mathrm{nO}$
$C_{14}=680 p$
$C_{21} ; C_{22}=4 n 7$
$\mathrm{C}_{23}=6 \mathrm{n} 8$
$\mathrm{C}_{24}=47 \mathrm{n}$

Note: each low-pass filter is constructed on its own PCB Type $87036-2$ (four pieces required).

Semiconductor:
$\mathrm{IC}_{1}=\mathrm{TL} 074$ or TL084.

LP4:

Resistors ($\pm 1 \%$):

$R_{01} ; R_{02}=10 \mathrm{RJ}$
$R_{11} ; R_{21}=119 \mathrm{~K} 5(120 \mathrm{~K})$
$R_{12} ; R_{22}=63 \mathrm{~K} 79(62 \mathrm{~K}+1 \mathrm{~K} 8)$
$R_{13} ; R_{23}=97 K 53(91 \mathrm{~K}+6 K 8)$
$R_{14} ; R_{24}=50 \mathrm{~K} 78(51 \mathrm{~K})$
$R_{31}=96 \mathrm{~K} 35(91 \mathrm{~K}+5 \mathrm{~K} 1)$
$\mathrm{R}_{32}=56 \mathrm{~K} 32$ (56 K)
$\mathrm{R}_{33}=81 \mathrm{~K} 26(82 \mathrm{~K})$
$R_{34}=68 \mathrm{~K} 7(68 \mathrm{~K}+680 \mathrm{R})$
Capacitors ($\pm 5 \%$):
$\mathrm{C}_{01} ; \mathrm{C}_{02}=22 \mu ; 16 \mathrm{~V} ; 20 \%$; tantalum
$C_{11}=10 n$
$C_{12}=15 n$
$C_{13}=6 n 8$
$\mathrm{C}_{14}=3 \mathrm{n} 3$
$C_{21}=22 n$
C_{22}; $\mathrm{C}_{23}=47 \mathrm{n}$
$\mathrm{C}_{24}=220 \mathrm{n}$
Semiconductor:
$\mathrm{IC}_{1}=$ TL074 or TL084

TURN YOUR APPLE COMPUTER INTO AN INTELLIGENT PRINTING, DISK SAVING,

 VIATEL TERMINALFOR
\$299!

- Super intelligent direct connect complete modem system for the Apple II and Apple Ile. No additional hardware, cabling or software is required. Viatel and conventional Communication software is contained in hardware. Autoanswer, autodial and automode search. Incorporates a battery backed calendar clock.
- A keystroke converts it to a complete Viatel terminal. Viatel Frames can be easily dumped to disk, printer or memory while online and subsequently reviewed at leisure. Viatel Identification and phone numbers are stored and sent automatically. The modem is capable of acting as a Videotext host in a private closed user group network.
$\$ 299$ RETAIL (INCLUDES DELIVERY AND S/T)
AUTOMATIC ICE CO., 10 SMITH ST., CHARLESTOWN 2290 NSW PHONE (049) 633188

SPOT SINE WAVE GENERATOR - 2

by M G Weigl

The article is concluded with details on the burst adaptor, and the construction of the instrument.

A tone burst is essentially composed of a controlled number of periods of an alternating voltage, usually a sine wave, and is used for testing and analysing the dynamic response of $A F$ amplifiers, passive and active filters, and loudspeakers. In the case of the loudspeaker, for instance, a sine wave burst can be used to study the transient behaviour of a drive unit by measuring its acoustic output with the aid of a test microphone, fitted at a suitable distance in front of the cone. The signal from the microphone is then amplified and made visible on an oscilloscope. This method provides useful information about the occurrence of resonance effects, phase delay, ringing, etc., while it is also a practicable way of measuring the linear operating range of the drive unit under test. Since the burst is a relatively short signal, its duration being typically of the order of 5-10 periods, the loudspeaker can be driven to its full peak power capability without overloading the voice coil. In a response measurement based on the use of tone bursts, the pause duration is generally long relative to that of the burst, and hence allows sufficient time for the drive unit to cool off.

Pause, burst and phase

With reference to the block diagram of the burst extension, shown in Fig. 6, the signal from the pole of $\mathrm{S}_{4 \mathrm{a}}$ (see Part 1) is applied to sine wave amplitude control P_{4}. The signal is then passed to a low pass filter, LP LP_{5} ($\mathrm{fc}=35 \mathrm{kHz}$), to ensure the absence of spurious compo-
Burst adaptor extension for spot sine wave generator.
Technical features:
Phase angle adjustable from 10 to 360°.
Turn-on and turn-off phase angle are fully synchronous.
Continuously variable Burst and Pause level.
Continuously variable Burst and Pause duration.
Also usable with other sine wave generators.
Maximum input voltage: 5.6 Vrms.
Maximum input frequency: 30 kHz .
SYNC output for triggering an oscilloscope.
nents. \AA burst is oblained with the aid of electronic switch ESI, which is controlled with a pulse signal. During the pauses in the pulse train, ESt drives $\mathrm{LP}_{5 \mathrm{a}}$ ($\mathrm{f}_{\mathrm{c}}=70 \mathrm{kHz}$) with the attenuated signal available at the wiper of P_{5}. During the active part of the switching pulse, $\mathrm{LP}_{5_{a}}$ is fed with the full amplitude of the
sine wave signal.
The control of ES1 is effected with a composite signal, obtained by appropriate setting of the time constant, τ, of the signals Phase, Burst and Pause. The period of Sync is not adjustable, but is always much longer than that of the slowest signal $(10 \mathrm{~Hz})$ in the circuit.

Fig. 6. Block diagram of the burst adaptor in the spot sine wave generator.

A burst of sine wave cycles

Figure 7 gives details on the connection of the burst extension to the sine wave generator described in Part 1 of this article. Low pass filters $\mathrm{LP}_{1}-\mathrm{LP} 4$ are shown once more here to make clear that they are part of the circuit fitted onte the main busboard, which will be described in due course.
A simple $\pm 15 \mathrm{~V}$ supply based around IC_{2} and IC_{3} is accommodated on the busboard for feeding the filter modules.
Electronic switch ES। turns the sine wave on and off, and hence produces the burst with the aid of the CHOP signal. The amplitude of the sine wave is determined by the setting of P_{4} (sine level), or P_{5} (pause level), when CHOP is logic low or high, respectively.
The switch positions shown in Fig. 7 apply to the BURST OFF situation. Output signal TRIG controls the CHOP generator, and is shown disabled via $E S_{3}$. The CHOP signal is therefore logic high, so that the sine wave is fed to the burst output via P_{5}, $E S_{1}$ and LPsa. The same spot frequency is, of course, available at the sine out socket, but the amplitude of the signal at this output and that at burst can be adjusted separately with P_{4} and Ps. Both outputs should be terminated in 600Ω.
Electronic switch ES 2 is activated when a CHOP signal is required for processing an aperiodical signal, such as noise. In that case, an internal CHOP signal is obtained by passing the output from LP_{4} (100 Hz) to the TRIG output. This arrangement enables ready use of the burst adaptor with a variety of externally applied signals.

Fig. 7. The connections between the burst adaptor and the sine wave generator circuit. The control signals are routed with the aid of electronic switches.

The burst extension

The circuit diagram of the CHOP generator, i.e., the central part of the burst adaptor, appears in Fig. 8. Comparator ICl converts any waveform at the TRIG input into a CMOS compatible, rectangular, input signal for monostable multivibrator MMV1, which is connected to trigger on the rising edge, and operates in the nonretriggerable mode, so that its mono time set with $\mathrm{P}_{1}+\mathrm{R}_{1}-$ C_{1}. . . C8 must lapse before triggering can take place again. Rotary switch Si_{1} and potentiometer P_{1} are the coarse and fine delay adjustments, respectively.
Since the TRIG signal is subject to delay before being converted into a usable CHOP signal, S_{1} and P_{1} in fact control the initial phase angle of the sine wave at the BURST output.
The most important parameters of the burst are the duration of the pause and the number of periods, and these can be set as required with the aid of monostables MMV_{3} and MMV_{4}, respectively. Potentiometers are provided to ensure precise adjustments for a particular application: P_{3} sets the length of the burst period, P_{2} that of the pause.
Monostable MMV_{4} can be disabled by the Q signal from MMV_{3} to keep the burst and pause periods well separated When the burst is completed, MMV_{4} is enabled again, and can be activated with the next negative trigger pulse from $M_{M}{ }_{1}$, since output Q of MMV_{3} goes high again.
Monostable MMV_{2} synchronizes the onset point (phase angle) of the sine wave

Fig. 8. Circuit diagram of the CHOP generator, and the power supply.
burst. It is connected to trigger on negative pulse transitions (input A is grounded), but is reset during the burst pauses, because output $\overline{\mathrm{Q}}$ of MMV_{3} is connected to its $\overline{\mathrm{R}}$ input. When the pause has lapsed, MMV2 can be triggered again with the next negative-going pulse from MMVI. MMV2 remains set until a reset is forced by MMV_{3}, because it is connected in the retriggerable mode, and its output period, set with Rs-CIs, is long relative to that of the lowest input frequency ($>10 \mathrm{~Hz}$). The turn-off instant of the CHOP signal is fixed with MMV। reverting to its inactive state.
Briefly recapitulating the characteristics of the BURST signal: pause and burst duration are variable, and the entire signal can be phase-shifted over 10 to 360° to suit particular measurements.
The signal at output Q of MMV_{2} is attenuated in divider $\mathrm{R}_{4}-\mathrm{P}_{6}$, and fed to the sync output for triggering an oscilloscope. Output Q of the same monostable turns on LED D_{1} via driver T_{1}. This makes it possible to see the burst activity from the instrument's front panel.
The power supply for the spot sine wave generator and its built-in burst adaptor is a conventional design based on a pair of integrated voltage regulators Type 7808 and 7908. The unregulated $\pm 22 \mathrm{~V}$ output is connected to the regulators on the main busboard. LED D_{2} is the power indicator of the spot sine wave generator.
The low pass filters for the burst and sine wave outputs are shown in Fig. 9, while Table 2 summarizes their technical characterists. Presets P_{1} and P_{2} enable nulling the offset voltage at burst and sine out, respectively.

Construction and setting up

Commence the construction of the instrument with fitting all parts on the main busboard shown in Fig. 10. It is possible to fit potentiometers instead of multitum presets for P_{4} and Ps_{5}. When this is opted for, soldering pins and wires are required to make the necessary connections. The low pass filters are also fitted onto the busboard with the aid of soldering pins (8 off per filter), but it is also possible to use

Fig. 9. The continuous sine wave and the sine wave burst are filtered prior to being output.

Table 2

Technical data LP5.
Filter type:
Cut-off frequency (fe):
Filter coefficients:

Overall amplification:

Bessel low-pass; 2nd-order with multiple feedback.
70 kHz (LP55)
35 kHz (LPSb)
A1 $=1.3617$
$B 1=0.618$
$L P_{53}: A_{1}=A_{0}=-1\left(f_{t \in 5 t} \ll f_{c}\right)$.
LPst: $A_{t}=A_{0}=-3\left(f_{\text {tost }} \ll \mathrm{fc}\right)$.

Calculation of component values: please refer to Table $1\left(L P_{1} \ldots\left(P_{4}\right)\right.$.

Parts list
(busboard, see Fig. 10)
Resistors $(\pm 5 \%)$:
$R_{1} ; R_{2}=560 R$
$R_{3} \ldots R_{6}$ incl, $=100 \mathrm{~K}$
$\mathrm{P}_{6}=220 \mathrm{~K}$ multiturn preset or 220 K
potentiometer
$\mathrm{P}_{5}=47 \mathrm{~K}$ multiturn preset or 47 K
potentiometer
Capacitors:
$C_{1}=1_{\mu}(M K T)$

Fig. 10. The main circuit board for the spot sine wave generator holds the circuit shown in Fig. 7. The filter PCBs are fitted vertically

Fig. 11. This circuit board holds the power supply and the CHOP generator
suitable mating PCB connectors. Note that holes have been provided on the main PCB to enable fitting metal screens between the filter modules
Switch S_{1} and associated timing capacitors and preferably fitted onto a separate PCB shown in Fig. 12. When this is not possible, each capacitor can be connected direct to the relevant switch contact, and each free capacitor terminal is then joined with the others to enable making a two-wire connection to the relevant points on the PCB.
The circuit board that holds $\mathrm{LP}_{5_{a}}$ and $\mathrm{LP}_{5 \mathrm{~b}}$ is completed as shown in Fig. 13.
Proceed with building the burst adaptor \& supply PCB shown in Fig. 11. Potentiometers $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} are mounted onto the instrument's front panel, and connected to the relevant points on the PCB with short lengths of screened wire, and soldering pins.
The power supply on the burst adaptor PCB is tested before fitting any of the ICs. Check the presence of $\pm 22 \mathrm{~V}$ and $\pm 8 \mathrm{~V}$ at the points indicated in the circuit diagram. When this ap-

Parts list
(see Figs. 11 \& 12)

Resistors ($\pm 5 \%$):
$R_{1} \ldots R_{4}$ incl. $=5 \mathrm{~K} 6$
$R_{5}=1 \mathrm{MO}$
$R_{6}=100 \mathrm{~K}$
$R_{7}=560 R$
$R_{8} ; R_{11}=150 \mathrm{~K}$
$R_{9}=4 K 7$
$R_{10}=15 \mathrm{~K}$
$R_{12}=150 R$
$R_{13}=680 \mathrm{R}$
$R_{14} ; R_{15}=100 R$
$P_{1} ; P_{2} ; P_{3}=1 M_{0}$ multiturn preset or 1M0 potentiometer
$P_{B}=10 \mathrm{~K}$ preset

Capacitors:

$C_{1}=100 n$
$\mathrm{C}_{2}=33 \mathrm{n}$
$\mathrm{C}_{3}=10 \mathrm{n}$
$C_{4}=3 \mathrm{n} 3$
$\mathrm{C}_{5} ; \mathrm{C}_{3}=1 \mathrm{n}_{0}$
$\mathrm{C}_{6}=330 \mathrm{p}$
$C_{7}=100 \mathrm{p}$
$\mathrm{Cl}_{1}=33 \mathrm{p}$
($C_{1}, \ldots C_{0}$ incl.: see Fig. 12)
$\mathrm{C}_{10} ; \mathrm{C}_{13}=470 \mathrm{n}$
$\mathrm{C}_{11} ; \mathrm{C}_{12}=22 \mathrm{n}$
$C_{14} ; C_{13}=10 \mu: 16 \mathrm{~V}$ tantalum $\mathrm{C}_{15}=220 \mathrm{n}$
$C_{16} ; C_{17} ; C_{23} ; C_{25}=242 ; 16 \mathrm{~V}$
tantalum
$C_{19}=1 \mu ; 16 \vee$ tantalum

12

$\mathrm{C}_{20} ; \mathrm{C}_{21}=680 \mathrm{n} ; 16 \mathrm{~V}$ tantalum $\mathrm{C}_{22} ; \mathrm{C}_{24}=470 \mu ; 35 \mathrm{~V}$

Semiconductors:
$B_{1}=880 \mathrm{C} 800$
$D_{1}=$ LED green
$\mathrm{D}_{2}=\mathrm{LED}$ red
$\mathrm{T}_{1}=$ BC327
$\mathrm{C}_{1}=\mathrm{LM} 311$
IC2 $_{2} ; \mathrm{IC}_{3}=4538$
$C_{4}=7808$
$I C_{3}=7908$

Miscellaneous:
$S_{1}=$ single pole 10 -way rotary switch (see Fig. 12; use a 12-way type with adjustable stopl.
$S_{2} ; S_{3}=$ SPDT switch with centre position.
$\mathrm{Tr}_{1}=2 \times 15 \mathrm{~V}$ or $2 \times 18 \mathrm{~V} ; 4.5 \mathrm{VA}$
for PCB mounting.
$\mathrm{F}_{1}=50 \mathrm{~mA}$ delayed action fuse.
Single-hole BNC sockets as required.
Miniature SPDT mains switch.
Mains entrance socket.

Suggested enclosure: Verobox
Type 202-210368 (205x $137 \times$ 110 mm approx.).

Fig. 12. Rotary switch S_{1} for the phase angle setting can be fitted separately onto this board, along with 8 capacitors

Fig. 13. This PCB holds the output low pass filters, and can be plugged onto the main busboard shown in Fig. 10.

14

Fig. 14. Suggestion for a front panel foil for the spot sine wave generator (size: $197 \times 104 \mathrm{~mm}$).
pears to be in order, the supply is switched off, and the ICs are fitted. Turn the supply on again and check the operating voltage direct at the relevant terminals of the ICs. Screen the supply from the rest of the circuit by fitting a copper, brass or tinned metal sheet vertically onto the board, straight over the dashed line on the overlay. The screen is secured with two soldering pins.
The photographs of a prototype serve as a guide in fitting and interconnecting the boards in the Verobox enclosure. A suggestion for making a suitable front panel for this project can be found in Fig.14. The burst adaptor \& supply PCB is fitted vertically near the rear panel of the enclosure. This makes it possible to install a metal screen between this board and those for the generator circuitry and the filter modules.
It is suggested to mount the completed PCBs in the following order.
Commence with fitting all the necessary components onto the
front panel. The $\pm 22 \mathrm{~V}$ and $\pm 8 \mathrm{~V}$ supplies are provisionally connected to the main board, and the presence there of $\pm 15 \mathrm{~V}$ and $\pm 8 \mathrm{~V}$ is checked at all relevant points.
If everything is in order so far, the main board can be secured near the front panel of the enclosure. Refer to Fig. 7 for wiring details, and make sure that you use screened wires exactly as indicated in the circuit diagram, Fig. 7. Do not forget any of the ground connections. When you use potentiometers for P_{4} and P_{5}, these must also be connected in screened wire. Prepare the wires for the supply voltages, CHOP, BO, TRIG and those for the connexion to the generator PCB, by soldering them to the appropriate terminals on the main busboard, and cutting the free ends to give suitable lengths to reach the relevant terminals on the burst adaptor \& supply board and the generator board.
Now fit the burst adaptor \& supply board in the enclosure, and connect the prepared
wires. Use screened wire for the connexions to the front panel mounted controls $\mathrm{P}_{1}-\mathrm{P}_{3}$, $\mathrm{S}_{1}-\mathrm{S}_{3}$, and the SYNC output socket. Connect LEDs Di and D_{2}, and pay due attention to the wiring of the mains ON/OFF switch, which is not shown in the circuit diagram because it is fitted as an external component.
The sine wave generator board is fed from the $\pm 8 \mathrm{~V}$ supply. The output socket for the tuning fork signal is fitted onto the rear panel of the enclosure. The generator board described last month is fitted on top of the main busboard, with a metal screen inserted between the two units-see the accompanying photographs of a prototype of the spot sine wave generator. The remaining wires from the main busboard and the supply are connected to the corresponding points on the generator board, and this finishes the construction of the instrument.

Parts list
(LP5s-LP5b; see Fig. 13)
Resistors: ($\pm 1 \%$)
Ro1; Roz; Roci; $\mathrm{R}_{06}=100 \mathrm{RJ}$
$\mathrm{R}_{03} ;$ Ros $_{05}=120 \mathrm{KJ}$
$R_{1 t} ; R_{21}=19 K 58(16 K+3 K 6)$
$R_{12}=25 \mathrm{~K} 01(13 \mathrm{~K}+12 \mathrm{~K})$
$\mathrm{R}_{22}=75 \mathrm{~K} 04$ (75K)
$\mathrm{R}_{31}=23 \mathrm{~K} 15(18 \mathrm{~K}+5 \mathrm{~K} 1)$
$R_{32}=51 \mathrm{~K} 6(51 \mathrm{~K}+620 \mathrm{R})$
$P_{1} ; P_{2}=50 \mathrm{~K}$ preset for vertical mounting

Capacitors ($\pm 5 \%$)
$\mathrm{C}_{01} ; \mathrm{C}_{02}=242 ; 16 \mathrm{~V} ; 20 \%$; tantalum
$C_{11}=47 p$
$\mathrm{C}_{12}=22 \mathrm{p}$
$\mathrm{C}_{21} ; \mathrm{C}_{22}=150 \mathrm{p}$
Semiconductor:
$\mathrm{IC}_{1}=\mathrm{TLO} 2$ or TL082

Fig. 15. Burst and continuous signal from the generator (15a), and the measured response of a typical squawker (15b).

NOW STOCKING COLINE PROBES

Update your scope with the switch selectable $\times 1 / \times 10$ Coline SP100 probes. As used by industry, research labs. universities etc. BNC connectors and selection of tips. Complete in deluxe heavy duty plastic pouch. $\mathbf{\$ 4 5 . 5 0}$

LMC 7660

SWITCHED CAPACITOR VOLTAGE CONVERTER This handy CMOS IC converts positive voltages into negative voltages in the range 1.5 V to 10 V . Circuits can be cascaded to increase output voltage. $\$ 2.97$

passive probe inccrporates a 3-position shide swith in the he and has a cable length of 15 metres SPECIFICATION: Position 11 Bandwidih DC to 10 MHz - inpul R i Miscope indul! innout C 40 DF - scope cap - Working Vollage 600 Vac finc peak ac) Position Ref Scope input grounded Probe lip grounded through 9 M Position $\times 10$ Bandwidth DC to 100 MHz - Riselime 35 nS - Input R 10 M when used with scopes having $1 M$ inpull probe $9 M$. $9-1 \bullet$ input $\mathrm{C} \| 5 \mathrm{pF}$ when used with scopes having 30pF inpul capacitance - Compensation Range 10.60 p . Working Vollage 600 V oc (inc peak ac) Supplied complete in deluxe heavy duty plastic pouch

QUALITY BELLING LEE IEC-TYPE CONNECTORS

L1950A

Appliance Inlet \$2.20

L2157

Right angled PCB Inlet \$2.50

L2723
Switched
and fused Inlet \$10.76

L2212A Fused inlet with
voltage selector \$28.35

L2292 Applia
outlet \$2.60

Rewireable
connector \$4.00

229 BURNS BAY RD.
(CORNER BEATRICE ST.)
TWX 71996
LANE COVE WEST N.S.W.
P.O. BOX 671 LANE COVE N.S.W. 2066
or Cash cheerfully accepted

AUTORANGING DIGITAL MULTIMETER

An accurate, fully protected, $33 / 4$ digit meter that can be made with an absolute minimum number of components.

Digital multimeters are nowadays offered in many different styles and at very competitive prices. In spite of this, many enthusiasts remain convinced that building good quality test equipment for use in their workshop is a very rewarding pastime.
The digital multimeter proposed in this article is a versatile and remarkably userfriendly test instrument that has some features not commonly found in its price bracket.

Circuit description

The Type ICL7139 from GEIntersil is a recently introduced, high performance, low power, autoranging digital multimeter IC, whose main technical data are summarized in Table 1. When used as a DC voltmeter, the ICL7139 always displays the result of a conversion on the correct range. As can be seen from the front panel for the multimeter, shown in Fig. 3, the mode selector has but a single position for DC and AC voltage measurements. When set to DC voltage, the ICL7139 automatically selects one of four ranges to ensure optimum accuracy of the readout. For AC voltage measurement, the chip has one range: 400 V . The mode switch has a high (H) and a low (L) position for resistance and current measurements, and the ICL7139 automatically selects one of two ranges within these groups.
Four features of this design deserve attention. Firstly, the RMS (root-mean-square) value of 50 Hz sinusoidal input signals can be accurately measured in the 400 V AC range. Secondly, the use of a $33 / 4$ digit LCD readout for the measuring

Auto-ranging DMM ICL7139

Technical characteristics:

- 13 ranges:

4 DC voltage: 400 mV ; 4 V ; $40 \mathrm{~V} ; 400 \mathrm{~V}$
1 AC voltage: 400 V
4 DC current: 4 mA ; 40 mA ; 400 mA ; 4 A
4 Resistance: $4 \mathrm{KQ}, 40 \mathrm{KQ}, 400 \mathrm{KQ} ; 4 \mathrm{MQ}$

- Autoranging-first reading is always on correct range.
- On-chip duplex LCD driver includes 3 decimal points and 11 annunciators.
- No additional active components required.
- Low power dissipation: $<20 \mathrm{~mW}$.
- Battery life typically 1,000 hours.
- Average responding converter for sinewave inputs.
- Display hold input.
- Continuity output drives piezoelectric beeper.
- Low battery annunciator with on-chip detection.
- Guaranteed zero reading for 0 V input on all ranges.
- Accuracy: 400 Voc: 1% of reading +1 . all other Voc ranges: 0.2% of reading +.1 .
4 K ; $400 \mathrm{KQ}: 0.5 \%$ of reading +8 .
$40 \mathrm{KQ} ; 4 \mathrm{MQ} ; 1 \%$ of reading +9 .
$4 \mathrm{~mA} ; 400 \mathrm{~mA}: 0.5 \%$ of reading +1 .
$40 \mathrm{~mA} ; 4 \mathrm{~A}: 0.2 \%$ of reading +1 .
$400 \mathrm{~V} / 50 \mathrm{~Hz}: 0.2 \%$ of reading.
- Overvoltage protection with varistor or surge arrestor.
- Current overload protection with fast fuse and diodes.

[^3]ranges and associated display symbols. Thirdly, an on-chip supply level detector automatically warns of a flat battery by activating the 20 bat symbol on the display. Lastly, the proposed DMM has a built-in continuity tester that produces an audible signal when the measured resistance is less than $1 \mathrm{~K} \Omega$. Also included is a hold function that enables "freezing" display readings.
With reference to the circuit diagram shown in Fig. 1, a few components require elaborating. Capacitor C_{3} at the Cint input of the DMM chip must be a high stability type with a tolerance of not more than 2.5%. The ratio $\left(R_{3}+R_{4}\right) / R_{7}$ must be kept at $10: 1$ within 0.05%; the absolute values of the resistors are less important here. Resistors $R_{1}+R_{2}$ and $R_{3}+R_{4}$ can be matched with the aid of preset P_{1}. The value of R_{5} and R_{6} must be correct within 0.5% for optimum accuracy on the resistance measurement ranges. Precision resistors $R_{8}+R_{9}$ and R_{10} determine the accuracy of the current measurements: both their absolute value and the $106: 10$ ratio to R_{r} must be correct within 0.5%.
An autoranging voltmeter can not work reliably without proper protection against input overvoltages. Although a varistor would be capable of adequate surge suppression with a response of the order of 25 ns , its equivalent capacitance of about 200 pF makes it less suitable for the present application. A gas-filled surge arrester has a slightly longer response time, but a very low parasitic capacitance: in the Type B2B600 used here it is only 2 pF while the device gives very good protection of

Fig. 1. Circuit diagram of the autoranging digital multimeter.

Fig. 2. The circuit board for the DMM fits in a standard Vero enclosure.

Parts list
Resistors ($\pm 5 \%$):
$R_{1} . . . R_{4}$ incl. $=5 \mathrm{MO}$
$R_{s}=10 \mathrm{~K} ; 5 \mathrm{~W}$
$R_{6} ; R_{7}=1 \mathrm{MO} ; 0.1 \%$
$R_{s}=1 \mathrm{R} 24 \mathrm{~F}$
$R_{9}=8 R_{66}\left(R_{s}+R_{9}=9 R 9 ; 0.5 \%\right)$
$\mathrm{R}_{10}=0 \mathrm{RI}_{1} 2 \mathrm{~W}$
$R_{11}=100 \mathrm{~K}$
$R_{12}=47 \mathrm{~K}$
$R_{13}=22 \mathrm{~K}$
$\mathrm{P}_{1}=20 \mathrm{~K}$ multiturn preset

Capacitors:

$C_{1}=180 p$
$\mathrm{C}_{2} ; \mathrm{C}_{4} ; \mathrm{C}_{3}=100 \mathrm{n}$
$\mathrm{C}_{3}=3 \mathrm{n} 9 \mathrm{G}$ polystyrene or
silver-mica
$C_{6}=10 \mu ; 16 \mathrm{~V}$; axial
Semiconductors:
$D_{1} ; D_{2}=1 \mathrm{~N} 4001$
$D_{3} \ldots D_{3}$ incl. $=1 \mathrm{~N} 4148$
$D_{10}=$ ICL8069CCZR (GE-Intersil) ∇
$\mathrm{IC}_{1}=$ ICL7139 (GE-Intersil) $\bar{\nabla}$
$\mathrm{T}_{1}=\mathrm{BC} 547 \mathrm{~B}$

Miscellaneous:

$\mathrm{S}_{1} ; \mathrm{S}_{2}=$ miniature SPST slide switch.
$\mathrm{S}_{3}=$ double-pole, 6 -way rotary switch for PCB mounting.
$F_{1}=$ fast $4 A$ fuse with $P C B$ mount holder.

Fig. 3. Drilling template and suggested front panel foil for the DDM.

the sensitive inputs on the ICL7139. Diode D_{10} is a temperature-compensated, precision, 1.2 V reference. As already stated, the function of preset P_{1} is not to set the voltage at the REF input of the DMM chip, but to compensate for the tolerance on the 5 M Q resistors. Its adjustment is simply carried out with the aid of a sufficiently accurate digital multimeter, borrowed from a friend or a helpful electronics shopkeeper.
Rotary switch S_{3} selects one of six measurements modes plus associated symbol on the LC display. Slide switch S_{2} selects the hold mode. The multimeter is fed from a 9 V battery, and is switched on and off with S_{1}. Since crystal X_{1} clocks the RMS converter internal to the DMM chip, the stated value of 100 kHz is only valid for measuring 50 Hz input signals. For 60 Hz measurements, X_{1} must be changed to a 120 kHz type.

Construction

The autoranging DMM is built on PC board Type 87099-see Fig. 2. The LC display is fitted into a wire-wrap socket or two sets of stacked terminal strips to ensure the required height above the circuit board. The three sockets for connecting the test leads are preferably mounted onto the enclosure lid to avoid excessive strain on the

PCB. The stated Vero enclosure has a battery compartment whose inside should be lined with expanded polystyrene. As shown on the accompanying photographs, a piece of aluminium foil is cut to size and insulated at both sides with self adhesive transparent foil. Great care should be exercised to avoid electrical contact between the aluminium foil and any component on the circuit board. A small area around the hole for the threaded part of the switch shaft should be left uninsulated. The screening foil is carefully secured by inserting it between a washer with a solder tag and the nut on the shaft of the rotary switch. A short wire is then run from the solder tag to point shield on the printed circuit board.

INTERCOM FOR MOTORCYCLISTS

This advanced intercom enables motorcycle rider and passenger to chat undisturbedly while riding, thanks to effective ambient noise suppression and automatic muting facilities.

On a motorcycle, communication between the rider and the passenger on the rear seat is usually restricted to tapping on arms or gesturing in an effort to draw attention to noteworthy objects or events. The safety helmets and the ambient noise (wind, engine and traffic) make a normal conversation impossible, and many a motorcycle enthusiast is, therefore, confined to the noise in his own helmet. Even if he shouted at the top of his voice, his passenger would not hear him, although they sit quite close to one another. The intercom proposed here should appeal to all motorcyclists who recognize the dangers involved in gesturing
movements from the passenger while riding at relatively high speed. The unit is also eminently suited for instructing novice riders or those practising for work in a mail despatch service.

Noise cancelling and automatic mute

The circuit diagram in Fig. 1 shows that there are two microphones for the driver (channel A) and two for the passenger (channel B). This arrangement makes it possible to selectively suppress ambient noise. Electret condenser microphone
MC_{2} supplies an AF voltage to the - input of opamp A_{1}, and $M C_{1}$ similarly drives the + input. The operation of the circuit becomes clear from studying Fig. 2, which shows the arrangement of the microphones and the headphone set in the helmet of driver and passenger. Referring again to channel A , MC_{1} receives the spoken messages plus accompanying ambient noise, while $\quad \mathrm{MC}_{2}$ receives noise only. The differential amplifier in A_{1} removes the noise component, so that the speech signal remains, and can be fed to $I C_{4}$ via C_{5}, P, and C_{10}. Stereo amplifier IC_{4} functions as a double mono amplifier in this circuit. Its out-
put signal is fed to the headphone set of the passenger. The intercom has a built-in automatic mute facility, so that it is only operative when either the driver or the passenger starts to speak. The speech signal from opamp A, is applied to the -input of comparator A_{3}, whose threshold is defined with preset P_{3} (mute b). Monostable MMV, is thus triggered by the peaks in the speech signal, and reverts to its inactive state when the speech pause is longer than about a second. Transistor T_{2} then shor-circuits the input of the headphone driver, ICA. When a long enough speech signal is available, the collectoremitter junction of T_{1} forms a

Fig. 1. Circuit diagram of the intercom for motorcyclists.

Fig. 2. This shows the preferred locations for the microphones and headphones inside the helmets.

Seen here is one of the designers working on a prototype.
high resistance, and the AF signal can reach the input of IC
The supply for the intercom is taken from the motorcycle's 12 V battery with the aid of a 10 V series regulator, IC. Filter components L_{1} and C_{23} are required for suppressing alternator and other noise on the supply lines to the intercom, while D_{1} affords protection against negative voltage surges.

Safety first

Figure 2 shows the preferred arrangement of the microphones and the loudspeakers (headphones) inside the safety helmets. The flat electret microphones are fitted underneath the lining inside the helmet to preclude head injuries. In this context, it is strongly suggested not to fit jack sockets in the helmet. A Walkman headphone set is

Fig. 3. The printed circuit board for making the intercom.

Parts list

Resistors $(\pm 5 \%)$:
$R_{1} ; R_{2} ; R_{9} ; R_{10}=1 K 8$
$R_{1 . ~ . ~ . ~ R e ~ i n c l . ; ~}^{\text {in }}$
$R_{11} ; R_{12} ; R_{13} ; R_{18}=47 \mathrm{~K}$
$R_{7} ; R_{8} ; R_{14} ; R_{15}=1 K 5$
$R_{17} ; R_{19}=1 K 0$
$R_{18} ; R_{20}=10 \mathrm{~K}$
$R_{21} ; R_{22} ; R_{23} ; R_{26}=6 K 8$
$R_{23} ; R_{24}=3 \mathrm{M}_{3}$
$R_{27} ; R_{23}=100 R$
$R_{29} ; R_{30}=2 K 2$
$P_{1} ; P_{2}=10 \mathrm{~K}$ preset for horizontal mounting.
$P_{3} ; P_{4}=1 \mathrm{KO}$ preset for horizontal mounting.

Capacitors:
$C_{1} \ldots C_{4}$ incl.; $\mathrm{C}_{22} ; \mathrm{C}_{24}=100 \mathrm{n}$
C_{3}. . . C_{B} incl. $; \mathrm{C}_{10} ; \mathrm{C}_{12}=330 \mathrm{n}$
$C_{0} ; C_{11}=470 \mathrm{p}$
$\mathrm{C}_{13} ; \mathrm{C}_{10} ; \mathrm{C}_{19}=100 \mathrm{H} ; 16 \mathrm{~V}$; radial
$\mathrm{C}_{14} ; \mathrm{C}_{15}=224 ; 16 \mathrm{~V}$; radial
$\mathrm{C}_{11} ; \mathrm{C}_{20}=150 \mathrm{n}$
$C_{13} ; C_{21}=470 \mu ; 16 \mathrm{~V}$; radial
$\mathrm{C}_{23}=1004 ; 25 \mathrm{~V}$; radial

Semiconductors:

$D_{1}=1 \mathrm{~N} 4001$
$\mathrm{T}_{1} ; \mathrm{T}_{2}=\mathrm{BC} 547$
$\mathrm{IC}_{1}=7810$
IC $\mathrm{C}_{2}=\mathbf{C O 4 5 3 8}$
$\mathrm{IC}_{3}=$ LM324
IC ${ }_{4}=$ TEA2025 (ITT, Thomson)
Miscellaneous:
$L_{1}=50 \mu \mathrm{H} ; 1 \mathrm{~A}$; toroidal ${ }^{\prime}$
suppressor choke.
$F_{1}=100 \mathrm{~mA}$ delayed action fuse with PCB mount holder.
$\mathrm{MC}_{1} \ldots \mathrm{MC}_{4}=$ elactret condenser microphone.

Suitable ABS enclosure
(waterproof).
$\mathrm{LS}_{1} ; \mathrm{LS}_{2}$ and $\mathrm{LS}_{3} ; \mathrm{LS}_{4}=$ Walkman *ightweight headphones.
eminently suited for this intercom, since it has a sufficiently long cord fitted with a small plug at the end. A similar cord and plug combination shoud be used for the microphone connections. In case of an accident, cord and plug will break instantaneously and can not inflict injuries on the wearer of the helmet.

Construction

The circuit board for the intercom is very compact in view of the limited space for mounting it onto a motorcycle. Fig. 3 shows that many resistors are mounted upright, while all electrolytic capacitors are radial types for PCB mounting.
The completed board is best cased in a strong, waterproof ABS enclosure with a built-in battery compartment to enable fitting the sockets. The cables to the helmets can be fed through small holes drilled into the associated lid.

The presets on the intercom board can be operated with the aid of short, home-made, shafts which are secured onto the central part of the wiper by means of two-component glue. When the adjustment is complete, the 4 holes in the intercom enclosure must each be sealed with a piece of waterproof adhesive tape.

From an idea by W vh Klooster $\& R$ Baltissen.

INTERFACING ATARI ST AND MSX2 COMPUTERS TO SCART/TTL COLOUR MONITORS

Questions:
- How do I connect my Atari ST computer to the SCART input on the TV set?
- Is it possible to drive a TTL compatible colour monitor from an Atari ST, MSX1 or MSX2 computer?
Answers: See text!

Many owners of an Atari ST or MSXI/2 home micro appreciate the excellent graphics features these machines offer at a relatively low price. The best graphics effects, however, are only achievable with a colour monitor, and here a problem arises because a really good and 100% machine-compatible display is generally well out of the financial reach of the majority of users. As usual in the computer business, periheral equipment is costly relative to the micro itself.

SCART and the Atari ST

Many TV sets are nowadays equipped with a SCART socket
at the rear to enable connecting VCRs and the like. If you own such a TV set, and an Atari ST computer, a medium-resolution colour system is within reach without having to spend a lot of money on a special monitor. The Atari Type l040ST is simply connected to the SCART socket by means of a standard cable. Users of the Type 520ST should not have difficulty in making a suitable cable as shown in Fig. 1. If the TV set has a TV/AV selector, this should be set to AV (audio-video). If not, $+10-12 \mathrm{~V}$ should be applied to pin 8 on the SCART connector to select the AV mode, which makes it possible to use the set as a monitor.

Colours on a palette

The least expensive of colour monitors are virtually always IBM compatible, which means they are equipped with standard TTL inputs for R, G, B and I (intensity), and are therefore capable of displaying 16 colours as shown in Table 1. It is seen that every colour is available in two saturation levels, depending on the logic state of the I bit.
On a SCART input, the colour signals are analogue, i.e., the voltage on the R, G and B line is proportional to the intensity of the corresponding chromatic component. Atari ST and MSX computers can switch between 8, fixed, intensity levels on the
analogue R, G and B line. In principle, therefore, there exist 8 shades of red, 8 of green, and 8 of blue, which in corrbination offer a choice of 512 colours. In practice, however, the computer can not support more than 16 colours at a time, and these must be selected from the available 512 with the aid of software.
What then is the difference between the 16 analogue and 16 digital colours?

In a TTL compatible RGB system, the 16 available colours are grouped

Fig. 1 Connections between an Atari 520 or 1040ST computer and a SCART input.
according to their saturation level, which is either 100% or 50%, depending on the logic state of the intensity (I) bit. The 16 analogue colours, however, can be composed at will thanks to the fact that the saturation of the red, green and blue constituents can be measured out individually: it is therefore possible to define an image starting from, for instance, only 8 shades of blue and 8 shades of red, omitting all other colours or shades thereof. This system has been adopted on the Atari computer and can be seen at work in the so-called control panel, a desktop utility of the GEM command system, and also in drawing programs such as DEGAS, NEOCHROME, and others. On an MSX 2 computer, the choice between colours is effected with the instruction COLOR = and its three subsequent parameters.
Most operating systems and games, however, do not enable the user to define the colour shades. The 16 colours are predefined by the supplier of the program, and are generally difficult to alter. These defaults are sometimes quite skilfully implemented, as in, for instance, the Atari programs from PSYCHOSIS/England. This observation is made here because it has important implications for the discussion to follow.

To be able to use an Atari or MSX2 computer in conjunction with an TTL compatible colour monitor, the analogue colour information must be digitized, i.e., converted to logic low and high levels. This can be done if it is assumed that the colour palette in the Atari computer is programmed as shown in the righthand column of Table l. It is seen that the number of colour shades is reduced from 8 to 3 . Experiments went to show that colour level 4 selected from the control panel gave acceptable results for the 50% saturated shades, and level 7 for the fully saturated ones. Similarly, on an MSX2 machine, these colours are defined with instruction COLOR = as shown in the listing in Table 2.
It should be noted that white, listed eighth in Table l, is in reality a greyish shade Consequently, genuine grey (RVBI $=9001$) can not be obtained from the proposed circuit without extending this with

2

Fig. 2 Circuit diagram of the 15 -colour TTL-RGB interface for Atari and MSX computers.
The converter about to be described in detail can thus output 15 of the 16 colours in Table 1 , white being substituted by a light grey shade. It should be reiterated, however, that the listed colours are only obtainable when the relevant program makes provision for selecting levels 0,4 and 7 on the RGB outputs. Intermediate levels generate colours that can not be reproduced with the present converter.

The converter

The analogue-to-digital RGB

Fig. 3 The sync pulse separator for MSX2 micros.
converter proposed here makes it possible to drive an IBM compatible colour monitor from the analogue video output on an Atari computer, or from the SCART connector on MSX2 computers such as those from PHILIPS and SONY.
Details of the converter appear in Fig. 2. Three operational amplifiers, A_{1}, A_{3} and A_{5}, compare the level of the analogue R, G or B voltage at the input with the potential supplied by voltage divider $R_{1}-\left(R_{2}+P_{1}\right)$. The toggle point of the opamps is therefore set with the aid of P_{1}, and arranged to lie within a range that ensures clearly defined switch points as well as the absence of jitter on the digital outputs.
The open-collector (OC) outputs of, the even-numbered opamps are connected in a wired-OR structure. The inverting input of each of these opamps is again driven by the analogue R, G and B signal, while the non-inverting inputs are commoned and held at a potential that can be adjusted with P_{2}. Whenever the voltage on any of the RGB inputs exceeds the threshold set with P_{2}, that is, when a 50% saturation level is switched to 100%, the relevant opamp toggles and pulls the input of N_{4} low, so that the intensity (I) bit is activated. Note that each of the previously mentioned opamps functions as an $O C$ inverter, whence the use of a pull-up resistor and a TTL inverter at each digital output. The adjustment of P_{2} is satisfactory when all colours from Table 1 are correctly displayed (on an Atari, you can check this with the aid of the previously mentioned control panel).
An interesting feature of the present circuit is its built-in automatic offset leveller set up around ICs. This ensures that the three incoming RGB signals have an equal zero offset. Voltage source ICs maintains an output potential of +1.8 V , generated with the drop across three series connected silicon diodes $D_{4}-D_{6}$, so that the direct voltage at all inverting opamp inputs is fixed at 1.2 V after subtraction of 0.6 V by $\mathrm{D}_{1}-\mathrm{D}_{3}$. These diodes pass current from IC_{3} whenever an RGB input voltage is below 1.2 V , and so ensure a well-defined analogue low level. Capacitors $\mathrm{C}_{1}-\mathrm{C}_{3}$ serve to store the voltage difference so created. The common offset
was set to 1.2 V to remain within the specified input voltage range of the Type LM319 opamp. When this is fed from a 5 V supply, as in the present application, the minimum and maximum input voltages are stated as 1.0 V and 3.0 V , respectively.
IBM compatible colour monitors are synchronized with positive HS and VS pulses, whence the use of two inverters $\mathrm{N}_{5}-\mathrm{N}_{6}$ for negating the $\overline{\mathrm{HS}}$ and $\overline{\text { VS }}$ signals from the Atari. Note that types 7404, 74LS04, 74S04, or 74 HCT 04 are all equally suitable for use in location IC4.

MSX computers

Not all computers in the MSX family are equipped with RGB outputs. While MSXI compatible micros can be used in conjunction with a normal TV set with perfectly acceptable picture quality, things are quite different when this is attempted with one of the more recently introduced MSX2 computers, simply because on the latter the screen resolution has been upgraded to 512×212 pixels, requiring a colour monitor for optimum graphics performance. SONY and PHILIPS computers in the MSX2 series have a SCART or DIN AV socket which makes it very easy to connect the RGB signals to the converter in Fig. 2. The synchronization signals, however, are not separately available, and must be extracted from the composite video signal by means of the circuit shown in Fig. 3. Note that inverters N_{5} and N_{6} are in fact those from Fig. 2, so that the remainder of the circuit in Fig. 3 is to be added to the preciously detailed converter for interfacing an MSX2 micro to an IBM compatible colour monitor. The set-up can be tested by running the MSX BASIC program in Table 2. This produces a row of vertical bars with the 15 available colours, arranged such that the 50% and 100% saturated versions of the colours are next to each other.

Owners of a SONY type HB75P, or any other MSXI computer sporting a SCART output, can also use the proposed converter. Unfortunately, the colour shades are fixed on all MSXI computers, making it impossible to display some of the colours in Table I. The listing in

Table 1.

TTL				conversion	analogue levels		
R	G	B	1		R	G	B
0	0	0	0	black	0	0	0
0	0	1	0	blue	0	0	4
0	1	0	0	green	0	4	0
0	1	1	0	cyan	0	4	4
1	0	0	0	red	4	0	0
1	0	1	0	magenta	4	0	4
1	1	0	0	brown	4	4	0
1	1	1	0	white (grey)	4	4	4
0	0	0	1	grey	$*$	$*$	$*$
0	0	1	1	light blue	0	0	7
0	1	0	1	light green	0	7	0
0	1	1	1	light cyan	0	7	7
1	0	0	1	light red	7	0	0
1	0	1	1	light magenta	7	0	7
1	1	0	1	leliow	7	7	0
1	1	1	1	intense white	7	7	7

- See text.

Table 2

```
10 SCREEN7
20 COLOR = (1,0,0,0)
30 COLOR = (2,0,4,0)
40 COLOR = (3,0,7,0)
50 COLOR = (4,0,0,4)
60 COLOR = < 5,0,0,7)
70 COLOR = (6,0,4,4)
80 COLOR = (7,0,7,7)
90 COLOR = (8,4,0,0)
100 COLOR = (9.7,0,0)
110 COLOR = (10,4,4,0)
120 COLOR = (11.7,7,0)
130 COLOR = (12,4,0,4)
140 COLOR = (13,7,0,7)
150 COLOR =(14,4,4,4)
160 COLOR =(15,7,7,7)
1030 ON STOP GOSUB 1100
1040 STOP ON
1050 FORI=0 TO 15
1070 LIME(1*32,0)-((I*32+31),212),1, BF
1080 HEXT
1090 GOTO1090
1100 COLOR 15,4,4: END
            3002. 72
```


Table 3

10 COLORO. 0.0
20 OH STOP GOSUB 90
25 STOP OM
30 SCREEKZ
40 PORI=0 TO 15
50 READ C
$60 \operatorname{LIME}(1 * 16,0)-((1 * 16+15), 191)$, C. BF
70 HEXT
80 GOTOBO
90 COLOR 15.4.4: EMD
100 data $0,1,12,2,3,4,7,5,6,8,9,10,11,13,14,15$
97042 . T3

Table 3 displays a set of vertical bars arranged in order of luminance intensity. It is possible to restore 9 or 10 out of the 15 available shades.
The RGB signals from the HB75P have a synchronization
component which would upset the operation of the comparators in Fig. 2. This can be effectively prevented by omitting D_{6}, so that the output voltage from IC_{5} is reduced from 3×0.6 to $2 \times 0.6=1.2 \mathrm{~V}$. D

PRINTED RESISTORS

by K Bachun

Abstract

Introducing an attractive alternative to hassling with lots of low value, high power, resistors in testing, designing and setting up power supplies, AF amplifiers, and the like.

Have you ever worked on a circuit whose operation depends largely on a power resistor with a value below some 0.5Ω ? The experiments usually start with fitting a "near guess" power resistor from the junkbox, and end in disappointment at finding that the required value can only be realized with a tangled network of series and parallel connected resistors of sundry values and power ratings. Then, if the circuit finally works, the question arises how much resistance has actually been fitted. This is not at all easy to find out, since the common ohmmeter is not suitable for measuning below, say, 5Ω, and the tolerance on every individual resistor in the network makes it very hard, if not impossible, to calculate the total resistance. Further complications can arise if the replacement resistor proves unobtainable in the required power rating.
Low value resistors with a high power rating and adequate precision for most applications can be made relatively easily by

using the resistance of narrow, etched tracks on a printed circuit board. Most photo-resist boards have a $35 \mu \mathrm{~m}$ thick copper surface, and manufacturers generally specify a tolerance of $\pm 5 \mu \mathrm{~m}$. The resistance of a track can be calculated if it is known that the resistivity of electrolytic copper is $0.0178 \Omega / \mathrm{mm}^{2} / \mathrm{m}$. Although copper is a highly
conductive substance, and hence enabler, making resistors with relatively small cross-sectional areas, the power rating of the resistors so made is surprisingly high, since the overall surface of the tracks is large relative to their cross-sectional area. Also, the use of epoxy boards ensures fairly good convection.

The good conductivity of copper results in relatively long tracks to achieve the required resistance. To.save board space, the tracks can be arranged in a meander pattern, as will be seen further on.
The graphs in Fig. 1 show the correlation between track length and resistance for four track widths. The plotted lines were obtained from:
$\mathrm{R}=\varrho \mathrm{L} / \AA$ or $\mathrm{L}=\mathrm{RA} / \varrho$

where

$\mathrm{R}=$ the resistance in ohms;
$\mathrm{L}=$ the track length in metres;
$\bar{A}=$ the cross-sectional area of the track in mm^{2};
$\varrho=$ the resistivity of electrolytic copper: $0.0178 \Omega / \mathrm{mm}^{2} / \mathrm{m}$.
As a convenient starting point for the calculations, the track width should not be less than 1 mm , so that post-etching irregularities do not derate the tolerance or the dissipation. For optimum heat distribution on the board, the insulating space between tracks should at least equal their width.
When the printed resistor is

Fig. 1. Correlation between resistance and track length with four track widths as parameters.

Fig. 2. The increase in track temperature as a function of the current, plotted for three track widths.
meander-shaped, due account should be taken of the track length in the corners or curves. Although it is fairly difficult to establish the effective resistance in these areas, a reasonable approximation can be made to ensure sufficient accuracy for most practical applications.
The curves in Fig. 2 show the relation between the current passed through a track, and the resultant increase in temperature. The choice between a l, 2 or 4 mm wide track can be made once the maximum permissible temperature increase, the ambient temperature, and the nature of the current (pulsed/continuous) have been established. To avoid the tracks being dislodged from the carner, the temperature of the PCB must not exceed $80-100^{\circ} \mathrm{C}$. Printed resistors will stand the occasional overload current, as long as this stays well below the point where the track burns out, and is not carried for excessive periods. Fortunately, the peak permissible current through a printed resistor is usually of the order of a multiple of the maximum continuous current rating. The stability of a printed resistor can be ensured by cooling it, reducing the effect of its temperature coefficient of about $0.4 \% /{ }^{\circ} \mathrm{C}$. Example: if the track width is 2 mm , and $\mathrm{I}=8 \mathrm{~A}$: $\mathrm{t}_{\mathrm{R}}=\mathrm{ta}_{\mathrm{a}}+50^{\circ} \mathrm{C}$, and the tolerance is 20%. Printed resistors can thus be made to requirement, and may take the form of plugin units that enable straightforward exchanging in an experimental set-up.
Alignment of the printed resistor is feasible in those cases where when high precision is required, or where a current is to be accurately adjusted. The tracks are then made slightly longer than strictly necessary, and the required resistance is

3

Fig. 3. Suggested front panel for the resistor bank.

Fig. 4. Track side of the printed circuit board for making the milli-ohm bank (shown 50% reduced).
obtained with the aid of wire jumpers soldered onto a loop structure located in the middle of the track. Series connection of short tracks is a less favourable method, because the track junctions give rise to disuniformity of the cross-sectional area, derating the maximum current.
The PCB-based resistor bank shown in Figs. 3 and 4 should prove a valuable and versatile tool for experiments with high power resistors in the 50 m \& to 18 range. The bank is composed of 10 series connected 100 m 8 resistors, and 150 ms type. All joints are tapped, and
the addition of the $50 \mathrm{~m} \Omega$ resistor makes it possible to create resistors in small increments.
The taps on the ladder network are made with 4 mm wander sockets, so that the bank is readily connected to a circuit with the aid of a set of flexible test leads (use sufficiently strong wire and good-quality banana plugs). A multi-pole switch for selecting the resistors was considered unsuitable in view of its cost and inevitable susceptibility to contact problems. The sockets are secured direct onto the PCB, as shown in the photograph, and
each nut and threaded body is carefully soldered to the track. The completed circuit board conveniently serves as the front panel of the resistance bank, whose enclosure should hold a fan to cool the tracks when these are to carry continuous, high, currents. A suitably rated fast acting fuse may be added to prevent tracks from burning out owing to high current surges.

Facsimile interface

May 1987.
The following labels for machine language subroutines in Table 1 should be written in lower case: PRINT; READ; ERR and END.

RGIAIL ROUNDUP

Dick Smith to introduce "short-form" kits

In response to "hundreds of requests" from Australian hobbyists, Dick Smith Electronics will introduce "short-form" kits from 15th August. The new system will initially be available for six of their popular kits as follows:

- Series 200 mosfet amplifier cat. no. K-3516 - HF amateur transceiver cat. no. K-6330 - 100 Watt VHF power amplifier cat. no. K-6313 - 1 GHz digital frequency counter cat. no. K-3437 • Radio direction finder cat. no. K-6345 - VK Powermaster power supply cat. no. K-3448.

You will now be able to order just the components required for the above projects, less hardware, transformers and the like. So, rather than paying for a project in one hit, which can stretch the budget a bit at times, you can buy the necessary requirements in more easily affordable installments as you build.
You place an order, make a part payment and the bits will be returned to the store where you ordered them in 14 days, DSE say. The rest of the items can be purchased later, as required. You'll find that, often, of the parts not included in the short form kit, like knobs and transformers, many are stock standard items which can be bought piece by piece as you need them, or taken from your personal stocks.

Mr. Peter Perry, DSE's new hobbyist manager, said in announcing the new initiative, "DSE has always considered the hobbyist our most important customer. In introducing this method of ordering, albeit for only six kits initially, we are supporting our commitment to the hobbyist.
"DSE has always been the leader in supplying what the hobbyist wants", he said, "and with the new short form system we believe we will yet again prove that we are supplying the

needs of the market"

Dick Smith intend to add more kits to the list each month or as demand requires. For further information, contact your nearest Dick Smith Electronics store.

Metallised poly capacitors from Jaycar

Taycar Electronics are now stocking high quality 100 n [0.1uF) metallised poly capacitors which are ideal for by-passing applications in and in audio circuits owing to their low self-inductance and low electro-mechanical distortion.

These capacitors have radial leads on a standard 10 mm spacing which simplifies printed circuit board design and facilitates component layout.

The Jaycar part number is RG5125 and they cost just 32 cents each. For more information, contact your nearest Jaycar outlet or ring their mail order hotline on (02)747 1888.

New transformers

HTere is the answer to the ever increasing price of imported toroidal power transformers, says local manufacturer, Jones Transformers.

PROJECT BUYERS GUIDE

The AEM6011 Audio Balanced Line Driver will present few difficulties to constructors. Firstly, Jaycar will be stocking it as a kit, right to the last nut and bolt. For constructors assembling the components for themselves, the only component not kept as a standard stock item at retailers is the LH0002 IC. However, Active Electronics in Melbourne and Geoff Wood Electronics in Sydney can supply your requirements.

The AEM3505 Packet Radio Unit for the Commodore 64 will also be stocked by Jaycar as a kit. In any case, the components are all widely stocked by retailers, so you will have no difficulty obtaining parts when it comes to the construction next month. The software, being customised, is only available through AAPRA, 59 Westbrook Ave, Wahroonga 2076 NSW. It costs $\$ 45.00$ and comes complete with a comprehensive manual.
The AEM2000 Lab. Standard Power Supply is being prepared as a kit, even as we write! Force Electronics in Adelaide will have kits ready to go out the door shortly, complete with a comprehensive construction manual and large circuit diagram.
This month's Elektor projects should present few traumas, if any. The Autoranging DMM will be stocked as a kit by Hi-Com Unitronics, we understand. Contact them on (02)524 7878. The Spot Sine Generator employs components that are generally available, except perhaps for the three-terminal regulators. For these, contact Geoff Wood Electronics in Sydney, or Active Electronics in Melbourne. Force Electronics in Adelaide may also be able to supply from their vast stock of semiconductors.
The Motorcycle Intercom employs the TEA2025 amp, which was also used in the Elektor Headphone Amp project from our October issue, last year. Hi-Com Unitronics are stocking it.

Good news for seekers of pc boards. Shortly, All Electronic Components in Melbourne will be stocking all the AEM pc boards, along with a considerable selection of the Elektor project boards published in AEM. Hi-Com Unitronics in Sydney is already stocking a range of AEM and Elektor pc boards and has plans to expand the range.

The JT-353 transformer is of balanced C-core construction, diagonally slot wound, which provides top efficiency and greatly reduces the external magnetic field. This is good news when attempting to reduce hum in audio amplifiers, the makers say. An alloy mounting bracket reduces the conduction of the field into the chassis where a steel chassis is used.
Dimensions are such that the transformer will fit within a 110 mm circle by 75 mm height. The weight is 1.85 kg and mounting is by four bolts at $40 \times 90 \mathrm{~mm}$
centres. It'has four windings and electrical specifications for $240 \mathrm{~V}, 50 \mathrm{~Hz}$ input are:
$35 / 35 \mathrm{~V}$ at 2.5 amps
$15 / 15 \mathrm{~V}$ at 0.25 amps
The low interwinding capacity reduces the possibility of powerline interference in the form of control tones or switching transients and the isolation also conforms to Australian notions of safety, Jones claim.

For further information on the JT-353 transformer, contact Geoff Wood Electronics, 229 Burns Bay Rd, Lane Cove NSW. (02)427 1676. 눈

- $1 \times$ Telex 300 high speed cassette duplicator complete with reel-to-reel and cassette master, with 6 slaves. - Same again, with 12 slaves. - $1 \times$ Telex 300 spare parts. - $3 \times$ Otari cassette loading machines. $1 \times$ Otari cassette loading machine with spare parts. - 2 x Telex high speed re-winders. - 1 x air compressor. - 1 x vacuum pump. Assorted test tapes and running stock.

> The lot! \$35,000 o.n.o. Phone Tony Maughan (075)32 8669

OPEN FOR BUSINESS:
 Monday to Friday 8.30 am to 5.00 pm . Saturday Morning 8.30 am to NOON.

ETONE SPEAKER SPECIALS 38 cm (15 inch) WOOFERS

Model	Size	Cone Type	v.Coil	Reson Hz	Frea Hz	Watts Rms	Price Ea or	2 \%or
4180	38 cm	$\mathrm{H}_{1} \cdot \mathrm{Fi}$	8 or 15 Ohms	30	2^3500	100	\$104 50 or	\$205.00
4310	38 cm	Straight surround	8 or 150 hms	45	40.6000	60	\$108.00 or	\$212.00
4510	38 cm	Straight surround	8 or 150 hrms	45	40.6000	100	\$150.00 or	\$294.00
4350	38 cm	$\mathrm{H}_{1} \cdot \mathrm{~F}_{1}$	8 or 15 Ohms	30	$30 \cdot 4000$	120	\$127.00 or	\$251.00
	Pack and Post tor 1 speaker NSW VIC $\$ 8.75$: or $\$ 13.50$: NT WA $\$ 17$ 50: SA $\$ 1150$ Pack and Post lor 2 speakers NSW VIC $\$ 1500$: O/T $\$ 2300$: NTWA $\$ 3000$: SA $\$ 2000$							

etone 50 WATT rms

A PAIR fon $\$ 60.95$ OR $\$ 34.5 \mathrm{se}$ ser

RUGGED TOP QUALITY HI-FI WOOFER 30 cm 8 hms

 - 90 DAYS FACTORY WARRANTY • FOAM POLY SURROUND - STURDY SUSPENSION FOR RICH REPRODUCTION $\cdot 3.5 \mathrm{~cm}$ VOICE COIL • FERRITE MAGNET • FREQ. RESPONSE . . $35-4500 \mathrm{~Hz}$ RESONANCE 35 HzP \& P for 1 Speaker NSW $\$ 480$ VIC $\$ 520$ TAS $\$ 6.25$ WANT $\$ 7.95$ OLDISA $\$ 580$ P \& P for 2 Speaker NSW $\$ 550$ VIC $\$ 720$ TAS $\$ 9.35$ WAINT $\$ 1145$ OLDISA $\$ 820$

POLYPROPYLENE CONE TOP QUALITY HI-FI WOOFERS 80 hm Voice Coll - Foam Poly Surround Sturdy Suspension - Fitted Moulded Gasket Ferrite Magnet - 90 days factory warranty
 $\begin{array}{llllll}2 \text { POL 12 } & 25 & 30.4000 & 80 & \$ 4750 & \$ 89.00 \\ 10 \text { POL 10 } & 30 & 354000 & 60 & \$ 4295 & \$ 79.95\end{array}$ $\begin{array}{rlllll}10 \mathrm{POL} 10 & 30 & 35.1000 & 60 & \$ 4295 & \$ 79.95 \\ 8 \mathrm{POL} 8 & 35 & 40.5230 & 50 & \$ 3595 & \$ 8895\end{array}$
P \& P for 1 Speaker NSW $\$ 4.80$ VIC $\$ 5.20$ TAS $\$ 6.25$ WANT $\$ 7.95$ QLDISA $\$ 5.80$ P \& P for 2 Speaker NSW $\$ 5.50$ VIC $\$ 7.20$ TAS $\$ 9.95$ WANT $\$ 11.45$ QLDISA $\$ 8.20$ $5^{\prime \prime}$ Polypropylene Mid-Range Speaker to suit above Wooters P.O.A.

NEW CONVENIENT DISKETTE FILES

FOR Includes Lock +2 keys '87

Features

- Capacity: 50 pcs 3-1/2" diskette

- High impact plastic lid and base
- Easy access handle for opening
and carrying
\$28.95 ea.

Features

- Double row display fling systems - Protective racks for diskette separation - Smoked PS plastic cover with lock
- High impact plastic hid and base
- Easy access handle for opening and carrying
- One hundred disk capacity $5-1 / 4$ " disk $P \& P \$ 2.00$
\$26.95 ea.
$\star \star$ PROFESSIONAL VIDEO UNITS $\star \star$ BRAND NEW IN CARTONS
14 inch GREEN SCREEN MONITOR COMPOSITE VIDEO INPUT

Cabinet \& Fully Adjustble Swivel Tilt Base All metal construction, fully shielded.

PRICE \$180.00 EA
LIMITEDSTOCK
FREIGHT P.O.A.
Internal regulated power supply 12V/5VDC output with sufficient capacity to supply up to 2 disk drives \& also power your computer

BRIDGE RECTIFIERS
1.5 A 200 PIV is for $\$ 3.95$

10 A 150 PIV 5 for $\$ 10.00$ HEAVY DUTY
10 A 400 PIV 53.75 ea 15 A 400 PIV $\$ 4.15$ ea 35 A 400 PIV $\$ 4.99$ ea
10 A 1000 PIV $\$ 5.95$ ea
15 A 1000 PIV $\$ 6.50$ ea.
35 A 1000 PIV $\$ 7.50$ ea

3 WAY CROSSOVERS
 200 Watts RMS

Crossover Freq. IKC and 5 KC
12db/Octave
$\$ 34.95$ ea. or $\$ 65.90$ a pair
P \& P $\$ 2.50$ ea. P \& P $\$ 5.00$ pair

microbee
 computer COMPONENTS

Computer Keyboard Switches in for $\$ 2.00 \mathrm{P}$ \& P $\$ 1.50$
New PC Bcards (no components) New PC Boaros (components mounted) as PER JULY ADVERT.

\star KONICA SPECIAL \star

Floppy Disks Single SidediDouble Density $31 / 2$ MF/1DD 552.50 Pk of 10
P and $P \$ 2.00$
TOP QUALITY JAPANESE 5.25"
MINI FLOPPY DISKS
"DUE TO PRICE WE CANT MENTION
BRAND
SUPER VALUE PACK OF 10 DISKS
$\$ \$ 8.00$ FKK
P\& $\$ 2.00$

1.C.'s

LM555	10 for 5495
LM3301	10 for 5600
745287	5 for $\$ 500$
74LS151	5 for $\$ 500$
7406	5 for $\$ 500$
7417	5 for $\$ 500$
7441	5 for 5600
MC1488	5 tor 5750

ABOVE P \& P $\$ 2.00$

TRANSISTORS

BC337 20 ea OR 10 for $\$ 170$ 8C $548 \quad 10$ tor 5100 BC $549 \quad 10$ tor $\$ 100$ BD139 70ea OR 10 tor S6 50 BD140 70 ea OR 10 for $\$ 650$ T1P31C $\$ 120$ ea 10 for $\$ 1100$ TIP32C \$1 20 ea 10 for $\$ 1100$ 2N3055 10 for $\$ 1500$ 2N6027 80 ea OR 10 tor $\$ 750$ 2N646 \$1 30 ea 10 for $\$ 1200$ GES2646 $\$ 100$ ea 10 tor $\$ 900$ 4N25 S1 50 ea 10 for $\$ 1400$ MJE350 S1 00 ea 10 for $\$ 750$ MJE3055 $\$ 180$ ea P \& P $\$ 2.00$

NEW FOR '87
 YES WE NOW STOCK COMPUTER PRINTER PAPER

STANDARD FAN-FOLD

 ACE 871 (279×241)2500 cIn SINGLE PART PLAIN 70 GSM BOND PRICE 54859 cIn OR $5 \cdot \$ 4485 \mathrm{cIn}$ P\&P SYD. METRO $\$ 3.50$ NSW $\$ 4.80$ OLD SA $\$ 11.30$ TAS $\$ 13.25$ WA NT $\$ 19.75$ VIC $\$ 8.70$ACE872 (279×381)2500 ctn 1 IPant Blue HICE H 60 GSM B OM

ACE 873 \{279×38 1)2500 ctn 1 Part Blue HS 60 GSM Bond PRICE $\$ 5141 \mathrm{ctn}$ OR 5 , $\$ 4927 \mathrm{ctn}$ ACE874 (279×381)2000 cin Plain 70 GSM Bond
PRICE $\$ 4908 \mathrm{cIn}$ OR $5 \cdot \$ 4703 \mathrm{~cm}$ ACE875 (279×241)2500 cm 1Part EXACT A4 Tear out clean edge pen 70 GSM Bond
PRICE $\$ 5875 \mathrm{cin}$ OR $5 \cdot \$ 5630 \mathrm{cin}$ ACE876 (279×381) 1000 ctn 2 Pan Blue Half Shadow CARBONLESS PRICE $\$ 6724 \mathrm{ctn}$ OR $5 \cdot \$ 6443 \mathrm{~cm}$ ACEB77 (279×381)750 cm 3 3art Blue PRICE S8101 cIn OR 5. $\$ 7765 \mathrm{cIn}$ ACE878 $1279 \times 3813500 \mathrm{~cm}$.4Pan Blue Hall Shadow CARBONLESS PRICE $\$ 7316 \mathrm{cIn}$ OR $5 \cdot \$ 7012 \mathrm{cIn}$ REGULAR POSTAL RATES APPLY

KONICA FLOPPY DISK 31/2MF 2DD $\$ 72.03 / \mathrm{Pk}$ $51 / 4$ MD 200 P and $P \$ 200$

12" Professional VDUs
Brand new in Cartons Green screen Composite video input. $\$ 180.00$
Amber screen $\$ 185.00$

P\&P

NSW \$8.70, Vic \$13.20
Qld/SA \$16.20,
Tas $\$ 18.45$, WA/NT $\$ 22.00$

V/SA
Credit card facilities now available after first registering following details with Ace Radio.
THIS IS FOR YOUR PROTECTION
EXPIRY DATE
yOUR NAME
CARD

NO: | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

RESIDENTIAL ADDRESS
signature
MIN ORDER $\$ 20.00$

KIKUSUI'S COS-5000TM SERIES THE OTHERS SIMPLY DON'T COMPARE

It's the standard features that make Kikusui CRO's exceptional.
The NEW COS-5000TM series offers standard features, normally only found on expensive, higher bandwidth scopes
Consider:

1
 Bright and sharp signal traces with Automatic

Linear Focus. This eliminates the need to readjust the focus during measurements between timebases. Even in high intensity, there are no blooming effects.

2'Simultaneous' triggering of both CH 1 and CH 2 . The VERT MODE displays both signals whether they are synchronised or not. An indispensable facility when troubleshooting between working and faulty boards.

CH
TRIG:CH
CH 2

CH

TRIG:CH2
CH 2

CH
TRIG:
VERT MODE
CH2

5

Auto setting of the

 optimum triggeringlevel. In AUTO TRIG LEVEL LOCK, a peak to peak detector locks onto and tracks the trigger signal. There is no need to reset the trigger level between measurements.
The Manual Level Control provides superior triggering of complex waveforms or very low level signals.

4 Stable viewing of complex waveforms.
 The VARIABLE HOLDOFF control

 allows the easy viewing of waveforms such as uP or video signals with multiple triggering edges, caused by different frequency and level components.

NO HOLDOFF

WITH HOLDOFF

Features	51007m	50607M	5041 TM	5021 TM	5020TM
Bandwidth	100 MHz	60 MHz	40 MHz	20 MHz	20 MHz
Channels	3	3	2	2	2
Vertical Sensitivity	1 mV IDIV	1 mV/DIV	ImVIDIV	ImV/DIV	1 mVION
Max Sweep Speed	2ns/DIV	Sns/DIV	20nsidIV	20ns/DIV	20ns/Div
DelayedSweep	YES	YES	YES	YES	NO
Trigger Modes	CH1. CH2, VERT MODE, LINE, EXTERNAL.				
Alt Sweep	YES	YES	NO	NO	NO
Delay Line	YES	YES	YES	NO	NO
Accel Voltage	18 kV	12 kV	12 kV	2.2 kV	2.2 kV
Warranty	2 YEAR WARRANTY ON PARTS AND LABOUR				
Probes	2 OUALITY SWITCHABLE PROBES INCLUDED				

For more information call Emona at (02) 519-3933. 86 Parramatta Road, Camperdown 2050. Or write Emona Instruments, P.O. Box K720, Haymarket, 2000. FAX: (02) 550-1378.

aem project 6011

An audio balanced line driver

David Tilbrook
Technical Systems Australia Pty Ltd
Here's a dual-channel (stereo) unbalanced input to balanced line output driver. Just the thing for driving an active loudspeaker system where the power amp(s) are in or with the speakers. Other applications for the unit include PA systems where line level signals have to be conducted over long distances, and bridging a pair of amplifiers.

THE CONCEPT of the electronic loudspeaker has been slowly taking shape over the last few years but, as yet, has not met with enormous consumer support. Nevertheless, the electronic loudspeaker concept is technically superior to the conventional passive loudspeaker and separate power amplifier.

In the conventional arrangement, the power amplifier is fed by long speaker cables to the input of a passive crossover mounted within the loudspeaker which divides the input signal into the separate frequency bands required by the individual drivers. The problems with this approach are enormous and will be dealt with in greater detail in articles describing the construction of electronic two- and three-way loudspeakers systems in months to come.

In the electronic approach, the power amplifiers are moved to within or adjacent to the loudspeaker cabinets and a separate power amplifier module is allocated to each of the drivers. The crossover function is provided by an electronic unit which supplies signals to the inputs of these power amplifiers. A long cable must then be used from the output of a preamplifier to the input of the active crossover fitted within the loudspeaker cabinet. Since the signal voltages in this wire are substantially lower than the signal voltages typically present in the speaker leads of the conventional arrangement, there is some danger of hum pickup within these cables if precautions are not taken and this is often seen as a disadvantage of the electronic loudspeaker. In fact, this is less of a disadvantage than may at first be apparent.
Although there is some possibility of hum pickup within these cables, such can by minimised, if not completely eliminated, by a combination of low driving impedance at the preamplifier end and by use of a balanced line driver. In the conventional approach, with separate amplifiers and loudspeakers, the long cables used to connect the output of the power amplifier to the loudspeakers can cause audible degradation of the sound quality and the reasons for this are not difficult to understand.

Of necessity, the designer of a conventional passive loudspeaker system must assume a constant voltage drive from the output of the power amplifier when designing the crossover and equalising the performance of the drivers. Unfortunately, no passive loudspeaker has a linear impedance curve. In fact, the impedance curve of most 8 ohm passive loudspeakers varies between about five and about 20-odd ohms across the audible frequency range. The presence of

resistance and reactance in the speaker cables forms a potential divider with this non-linear impedance and causes a varying amount of power to be transferred to the loudspeakers across the frequency range. In other words, it is impossible to provide a situation of true voltage drive to the loudspeakers unless this effect is compensated for in some way.

Approaches

A variety of approaches has been used to overcome this problem in the past, one of which was to extend the pickup point of the negative feedback loop within the power amplifier all the way to the rear of the loudspeaker, rather than simply to the output terminals of the power amplifier. Power amplifiers employing this technique would normally be supplied with three terminals for each channel on their rear panels, rather than two. Two of these terminals would form the conventional power amp output terminals and are connected by a standard speaker cable to the rear of the loudspeakers whilst the third terminal would be the negative feedback pickup point and would be taken via a third wire to the 'positive' ter-

aem project 6011

CIRCUIT OPERATION

The project is based around a TLO71 JFET op-amp which is configured to have a gain of -1 (i.e: unity gain, inverted output). The gain at this stage is determined by the ratio of resistors R102 and R101, and since these are both 10k, the overall gain at this stage is unity. Since the signal is applied at the inverting input of IC101, however, this stage will invert the phase of any signal applied to its input. To minimise dc offsets on the output of IC101, the resistance from the non-inverting input (pin 3) to ground must be approximately that of the resistance of pin 2 to ground. If it assumed that the input is driven by an impedance significantly lower than 10k, then the total impedance connected from pin 2 to ground is approximately 5 k . The value of R103 is therefore set at 4 k 7 .

Resistors R104 and R105, combined with capacitors C101 and C102 respectively, provide supply decoupling which ensures freedom from any supply interactions between IC102 and IC101 which might otherwise cause instabilities. Power supply filtering for high frequencies is provided by capacitors C103 and C104.
The output of IC101 is fed to the input of the LH0002H, IC102, a very high speed unity gain buffer, which provides a very low output impedance. A data sheet of this device is included elsewhere in this issue. As can be seen from the data, its distortion figures can become somewhat high. To overcome this problem, the LH0002H is contained within the negative feedback loop of the TLO71 so that the total harmonic distortion resulting from IC102 would be reduced by the overall feedback.
Resistor R106 is fitted in series with the output of IC102 to decouple the output of the AEM6011 from the negative feedback
loop and thereby ensure complete stability of the circuit. Capacitor C5, a 3u3 metallised polyester type, provides dc decoupling, while the 47 k resistor R107 ensures that the output side of C5 remains at ground potential.
The output of this circuit is applied to pin 3 of the XLR connector, whilst pin 1 of the XLR is supplied directly from the input. Signals applied to these two output points will therefore be out of phase.
The right and left channel inverting amplifiers operate in precisely the same way. Both are powered from a common regulated power supply employing a zener reference and a current amplifying seriespass transistor. The ac signal from the output of the AEM6000 power amplifier, or an alternative 30 Vac power supply, is rectified by the full wave rectifier formed from diodes D1, D2, D3 and D4 with capacitor input filtering provided by C8 and C9. Resistors R8 and R9 provide current limiting and supply the reference voltage zeners ZD 3 and ZD4. The 470 uF capacitors C 6 and C 7 shunt noise generated by the zeners and 'stiffen' the voltage across the zener, preventing noise modulation of the supply rails. These reference voltages are supplied to the bases of Q1 and Q2 which function as current amplifiers and this circuit also functions as a 'capacitance multiplier' which provides quite good regulation.

Fuses F1 and F2, and zeners ZD1 and ZD2 have been included as a safety circuit in the event of a power supply failure. The simple regulator circuit employed here has a tendency in the event of failure, to supply over-voltage to the attached circuitry and in such event, ZD1 or ZD2 will be biased on and the appropriate fuse will blow. Under normal operation, the voltage on the two supply rails will be around 14.6 V and the 18 V zeners will be biased off.
minal of the loudspeaker. In this way the negative feedback loop within the power amplifier can be used to compensate for signal voltages lost within the loudspeaker cable.

This technique has not been very popular for a number of reasons. The most important being that unless this extra speaker cable is fitted correctly, the amplifier would be completely without negative feedback and its enormous gain then would pose a threat to the loudspeaker.

The more popular and common approach to the problem of signal loss within the loudspeaker cables is to employ extremely good quality cables specially made so as to minimise the signal loss due to the resistance and reactance
of the speaker cables.
The problems associated with the loudspeaker cable are completely eliminated in the electronic approach because the input impedance of the electronic crossover is independent of frequency and is sufficiently high that negligible signal current flows in the cable between the preamplifier and the active crossover. Once problems associated with possible hum pickup are resolved, the output signal from the preamplifier will be far more accurately transferred to the input of the active crossover than is possible using a conventional pair of speaker cables between the output of a power amplifier and the input of a passive crossover.

TO-126

The project

This project describes a balanced line driver designed to convert the output of the AEM6010 Ultra-fidelity Preamplifier (Oct., Nov., Dec. '85) into a balanced output capable of driving a balanced line, to be connected to the balanced input of the AEM6503 Active Crossover (Feb. ‘86), employed in an active loudspeaker.

The output impedance of the AEM6010 preamplifier is around 47 ohms which is low enough to drive the long shielded cable from the output of the preamplifier to the input of the active crossover. All that is necessary to convert this to a balanced line is to provide an inverting amplifier with an output impedance also of around 47 ohms to match that of the 6010 . The cable connecting the output of the balanced line driver to the input of the active crossover therefore consists of three wires rather than two; one shield which can be common, one 'inverted' line and one 'non-inverted' line.

The balanced input of the active crossover amplifies the difference in signal between these two active wires, and since these signals are exactly 180 degrees out of phase, the difference between them adds to produce a signal voltage twice as large as that in each of the wires. Any signal which is common to both the inverted and non-inverted lines ("commonmode" signals), however, will be greatly attenuated when the balanced input subtracts these two signals from each other.

Any hum induced in the cable, for example, will have much the same voltage and phase in both the inverted and

aem project 6011

Construction

This is a relatively simple project to build, consisting basically of a single pc board housed in a small, simple metal cabinet. Before commencing the construction take the pc board and give it a thorough inspection for any anomalies that may have slipped in during the manufacturing process. Check for fine cuts or breaks in the tracks and for shorts between neighbouring tracks. These can often occur during the drilling of the pc board when fine slivers of copper can bridge between adjacent pads.
Begin construction with the resistors and links. Form the links from lengths of tinned copper wire. Follow with the small non-polarised capacitors, diodes and zener diodes. Be careful to follow the pc board overlay as to the correct orientation of the diodes and zeners. The two fuses should now be prepared for the board. It was decided to hard wire the fuses into position rather than use fuse holders. This is simply done by soldering a cut-off lead from a resistor to each end of the fuse. When doing this, however, be careful to do it quickly and not apply too much heat to the fuse as this may unsolder the fuse wire.

Position Q1 and Q2 before the larger power supply electrolytic capacitors as they are considerably more difficult to position after these capacitors are in circuit. When positioning the two transistors, be sure to follow the component overlay precisely. Q1 faces a different direction to that of Q2. To be absolutely sure of the pinout of the TO-126 package in which these components are housed, check with the diagram shown elsewhere in this article.
The larger 3 u 3 capacitors, C5 and C105, can now be inserted and soldered into position, followed by the electrolytic capacitors C6, C7, C8 and C9. These are polarised
components and hence need to be positioned accordingly. If these capacitors are inserted incorrectly, with reverse polarity, a breakdown of the dielectric within the capacitor will occur at first switch-on and may be damaged. To ensure the correct positioning, check with the overlay diagram.
The final components to be soldered to the pc board should now be the four ICs - IC1, IC101, IC2 and IC102. It is also essential here to be sure of the orientation of these ICs. They are available in two package types, the standard DIL package and the more commonly available round can package whose pinout is presented elsewhere in this article. In the round package, the tag on the case corresponds to pin 8.
The pc board should now be complete. However, before proceeding, it may be necessary to do a thorough check of the pc board to ensure there are no unwanted solder bridges between closely-spaced pads, poor joints, etc.

The box drilling details are relatively simple and the details for the prototype box are shown elsewhere in these pages. Finally, the board should be ready for attachment of the external wiring, which should be done before it is mounted in the box. If you are using the same or similar box to that used in the prototype, it will be necessary to mount the board before the XLR sockets as they extend a considerable distance into the box, inhibiting the mounting of the pc board. The wiring diagram should be consulted for the completion of the project. When soldering the shielded cable, be careful not to apply too much heat to the joint as this will melt the plastic coating surrounding the centre conductor, possibly resulting in a short to the shield.
When it's all together, one last check and you're ready to power it up and try it out. 4

A true 'laboratory standard' 0-55V, 10A max. output power supply

The digital panel meter is the subject of this month's article. The unit is autoranging, automatically providing the required readout accuracy on each range, for both current and voltage.

THE PANEL METER on the power supply is a two-range unit driving a $3^{1 ⁄ 2} 2$-digit 7 -segment LED display featuring autoranging. Heart of the unit is a Motorola MC14433 DVM chip. It has two input ranges of $\pm 200 \mathrm{mV}$ and $\pm 2 \mathrm{~V}$ which is externally 'scaled' via a resistive divider to 20 V and 200 V when selected to read volts, or 2 A and 20 A when selected to read current. Resolution on volts is 10 mV on the 2 V range, 100 mV on the 20 V range. On current, resolution is 1 mA up to 2 A , 10 mA from 2 A to 10 A . While 1 mA resolution is possible on the latter range, it's unnecessary as you'll rarely, if ever, need to set a current of, say, 8 A to an accuracy of 1 mA !

Looking at the circuit, you will notice the component numbering starts again and does not follow on from the rest of the circuit. The resistors start at R1, capacitors at C1, ICs at IC1 etc. Input to pin 3 of IC3, the MC14433, comes from the Digital Display switch, SW3, poles a and b. The RC network R3-C1 is a low-pass filter to stop display "dither" with any noise on the input. Pin 2 of the MC14433 is the reference input. A precision voltage reference is derived from ZD1, a TL431C precision voltage source. A different reference is required for each range which is provided by RV1 and RV1. The required reference is selected by either IC1a or IC1b, a pair of switches from a 4066 quad bilateral CMOS switch. Internal range selection
for the MC14433 is arranged by another switch from the 4066, IC1c, which switches R6 in and out.

Output from the MC14433 in multiplexed binary-coded decimal (BCD) format. IC5 is a BCD-to-7-segment display decoder/latch driver. It latches the appropriate segment outputs for each numeral, while IC6 provides drive for the selected numeral. The latter IC is an open-collector Darlington transistor array.

Autoranging is effected by IC2 (a four-stage shift register), IC4 (a D-type flip-flop) and some gates from IC7. The range 'top'/'bottom' is detected, the appropriate decimal point driven on and the MC14433 switched between ranges via IC1. Transistors Q1 and Q2 provide current drive for decimal points 2 and 3 , respectively.

Two poles from the Digital Display switch, SW3 c and d, change the DP drive when switching between volts, current and external display. LED1 is turned on when SW3 is switched to external. This is a panel-mounted indicator.

Power for the unit is obtained from a spare 8.2 Vac winding on T2. Two half-wave capacitor input rectifiers (D2-D7 and C8-C10) provide a split rail supply, regulated by two three-terminal regulators, IC8 and IC9, providing -5 V and +5 V respectively.

AEM2000 e, f PARTS LIST	
Semiconductors	
	1N914. 1 N4148
D2	. . . 1N4002
D3-6	1N914, 1N4148
D7	1N4002
D8	. 1N914
DP1	HDSP-5306
DP2,3.4	HDSP-5303
IC1	4066
IC2	. MC14035
1 C 3	. . MC14433
IC4	. MC14013
IC5	. . MC14511
IC6	. ULN2003
IC7	. MC14073
IC8 7905
IC9	. . 7805
ZD1.	. TL431C
Resistors	all 1/4W, 5\%
R1	. 1 k 5
R2 100k
R3	. . . 1M
R4	. . . 390k
R5	. . . 330k
R6	. 27 k
R7-13	270R
R14, R15	. 470R
R16	. . 10k
R17-19	470R
R20	. . 10k
R21	680R
RV1. RV2	. 10k trimpots
Capacitors	
C1-7	. 100 n MKT
C8-11	. $1000 \mathrm{u} / 16 \mathrm{~V}$
Miscellaneous	
AEM2000 e and f pc boards; tinned copper wire.	

Miscellaneous
AEM2000 e and f pc boards;

Construction

There are two boards, one containing the "electronics", the other, smaller, board the display. The latter mounts above the electronics board, supported by resistors R7-13 on one side, and a series of tinned copper wire links on the other.

Assembly of the boards is quite straightforward. Start with the display board. Locate the four displays on board, with the 5308 to the left (as you'd view it). Make sure they're correctly oriented. Then mount the three on-board resistors. Check the board, simple as it is, then set it aside. We'll come to assemble it to the other board later.

Now assemble the larger board. Each of the ICs is socketed and the sockets should be mounted first. Then insert all the

links, noting carefully where each is located. The link shown dotted is an insulated wire on the rear (copper) side of the board.

All the on-board resistors and diodes may be mounted next, followed by the transistors and ZD1. Watch the orientation of the semiconductors. Now mount all the capacitors, then RV1 and RV2. Now check the board thoroughly. Last of all, insert the ICs, taking care to orientate them correctly.

That's it for now, until we tackle the final assembly and wiring in the next part. 4

AEM Printed Circuit Service

Clear the air! - build our AEM5501 Negative Ion Generator. Providing around 8 kV output for best results, it's simple to build and low in cost. All parts readily available (Described Sept. '85)
Set of 3
pc boards.

$\$ 18.35$

inc. post \& handling
All boards manufactured on

quality fibreglass substrate
with rolled-tin over copper tracks
and silk-screened component overlay.
Order pc boards by the project number and title. We do not stock complete kits or components. Send
orders to: Australian Electronics Monthly

> PO Box 507 , WAHROONGA 2076 NSW (02)487 1207 .

PLEDGE YOUR PLASTIC!

Bankcard, Mastercard,
Visa \& American Express accepted.

PAY BY PAPER!
Cheques or money orders OK.
Make them payable to
"Australian Electronics Monthly"

Copies of the relevant articles cost $\$ 4.00$ each post-paid.

- 100\% APPROVAL RATING! - WE LEAD THE OPPOSITION
- CAST YOUR VOTE BY AUGUST 1
- 56 POLING STATIONS ACROSS AUSTRALIA!

SOMETHING TO SHOUT ABOHT WITH

TESTING,

 Imagine The policy speech is sobout iobeginn the leader waiks up to the
mic and nothing The cabtes
Solve ine Solve the prodiem - first cable's ufs.
EZ Checker Tests any cabit the
lengin
 bands. clubs, churhes. elc A must for
look al the saving' Cat 0.1532 And

Mas
Was.
$\$ 70.95$

ISPY WITH EITME

WHILE STOCKS LAST ${ }^{\text {s }} 399$

All promises valid till 1st August, 1987 or while stocks last. NO ASSETS TEST APPLIES If you haven't got the money easy terms available through DGG
poblonowion POLICY STATEMENT Friends. Romans. Countrymen. Lend me your ears. them. Nor to praise
You've probably noticed the opposition's
behaviour lately. Misleading and the People. Makleading the Parliamen promises. Promises they false claims and Come, come "No Ifor this" and "No keep. see through that carable (?) members v that You don't that, can'tyou. (1) members. You can You don'r need to be a Haw Smith Electronics is the best place see that Dick
your nest We nest.
We don't want to labour the point bur some
the barpains we're dole-ing our are so liberal if's
almost like socialised Like every campaised electronics. extending it beyongn, it must end. We're there's amyshing end before August 1. That's if 11 Call in anything leff!
Call in now to your nearest Dick Smith
form on page 7. Or usen ring handy postal voring
new rwist! new twist!
Vore t: Dick Sinent ring us up - there's a Electronics.

ANDREW . JEFF... This is the Cordiess Phone you SHOULD have used! The sensaluonal Callmaster Cordiess phone
around the home. ottice.
年 Parisament, ette Up to 200 mol lor the very latest in tecmance outstanding perimazing features:
Look at there am - Use as wreless - asp phone - Answer ca handset

- Dual channe
interterénce interterence
Programmable regre cannor usel Plugs into any standatd Telé socket - no wiring needed! Can eve p you wish! pensational periormer - we haven't seen a detter one ANYWHERE NTH
CLIF.SESO ALL THIS FOR ONLY s349

DICKSSMTH
ELECTRONTCS

PTY LTD

These offers are really liberal; but we won't labour the point

 \& And everything you need to get that signal down.
4. quality 5 C 2 V air-core low loss coax cable at a

4
4. 9m Mast
\downarrow
x

4
4
4
Guy Wire
Cam roll sultable for complese guying of abov
4
4
4

4
4
4

4
4

s4 ${ }^{95}$
Metal co-ax plug

ax plug is great Easy to wire to TV con

ney Mount
have a chimney. looks protty stupid!) Oouble

Barge Board Mount
 or other vertuertical mounting off barge board \$1-95
And down the bottom?

$$
\begin{aligned}
& \text { Make your instailauon really professional and and } \\
& \text { "tinished" with these } 75 \mathrm{ohm} \text { outlets. Small }
\end{aligned}
$$

$$
\begin{aligned}
& \text { "finished" with these } 75 \text { ohm outlets. Smali } \\
& \text { outlet mounts on skirting board. Cat L-4504 }
\end{aligned}
$$ 5450

No. you dont need a barge! -L shaped mount

4

B
 Hand-held

Even the smallest boat can get into trouble. Get hetp fast with a hand
held. Nothing to leave in the boat nothing to get pinched. And it has the same high output of in-dash models. SW. 6 channel capacity channel fitted). Cal 0.1126
BoNUS! Two exta channels FREE! (Your

choicel)
 choicel) $\$ 440$

4
BITS 'T' PIECES

Was 822.95 now Onky * 19 "s boot mount
 ${ }^{2} 25^{\text {s/ }}$
FOLDING SHAPDOWT
 ${ }^{8} 8$ 8s
cunversal magmabase

SUPER HEAVY DUTY ANTEMMA

 \$1995

s399 oasy to get your CB in and oul of the car. Lock it in the boot made with plated spring contacts. A must if you w keep the CB! Cat 0-4525

SEISATIONS

SUNDOWNER UHF WITH BONUS!
UHF CB - away from the mugs and yahoos. Just like when you leave Parliament House when
you want the best from CB. you want the best. Uniden 40 channel UHF - from Oick Smith

	UHF RITEMMAS	Notenough
SUNDOWNER		Signal?
	Soms	SICNALISE IT!
	only	
		5ixamemem
599	Only ${ }^{5} 49^{95}$	

ANTITHEFT $\sqrt{\text { aUstralia's best value }}$ AM/SSB CB

\$199 for an AM/SSB CB? It's amazing value - and there's skimping on quality. Full legal power, fully approved licensabie set gives you the power and performance you've

Boring, boring boring. Who wants to read through lists of Here's the reason: you'll Save! There must be som speech! Buy now before need here - even if just for some Type
Transistors

CHNO	Was	Now
$Z .1691$	$\$ 3.60$	
$Z .1845$		

ADI62GE powertrinn
N5380 $\%$ /p

$\underbrace{741524}_{0} \begin{gathered}7485 \\ 7 \\ 7\end{gathered}$
Bran

METAL FILM PACKS SACRIFICED

Sacrificed ain't the word. The prices have been massacred! Top quality, Brand now. prime spec metal film resistors. 1\% your projects
E. 12 Motal Film Pack
$\left.\begin{array}{l}300 \text { pieces computer selected vatues. Cal R.p015 } \\ \text { Normally } \$ 17.55 \text { NOW ONLY }\end{array}\right\}$
E-24 metal Film Pack
Nore. bulluder closer Normally S19.75 S
NOW ONLY

[^4] Professional ouelfy Test Equipment at Hobbyist Prices
"4000 COUNT" BARGRAPH DIGITAL SHOWS ANALOG:

FREE CASE!
Buy our pocket analogue multimeter
(O-1010) for only $\$ 16.95$ and wetil
throw in the protective case worth throw in the protective case worth
$\$ 3.45$ That sa great saving for a great litte meter' Perfect for beginners, to
around-the-home work. It's diode around-the-nom
protected and na
Cat O-1010/0-101

Digital light METER The Prime Minister's XI need one of these
when they play cricket Accurate readout
of inater of light level tor variety of scientitic and
sporting uses (photographers tove 'em!)

Auto Ranging Personal LCD
Small enough to carry in the pocket - it's
just 10 mm thick. And for the low low price. you wouldn't expect all the teatures

- super tast auto ranging. auto po arity NOW
 - AC $A D C$ voltages to 400 V - Resistance to 2M NORMALIY $\$ 54.95$ ECONOMY LCD BARGRAPH

Similar to above meter, but this one
features an "analog reacout onty. It is features an "analog reacout onty. th is
in "bar graph" form to show you both the magnitude and variations The
thargraph shows the read figure, with the option of an expanced scale to ge much better resolution.

- Includes "a "data hold" butt
allow readout "freezing"
- PLUW a readout "treezing
scale by 5 or 10 times.
- Superbly easy to use and
- Superbly easy to nes.

19" RACK MOUNTING CASE
Go on - put them on the rack! This quality case is pertect for standard 19^{-}rack
systems, sults Zop. Aack too (see right). systems, sults Z1p. Aack too (see right). Heavy
gauge (3 mm) tront panel, top and botiom gre-punched to get ra of their not arr! Now ONLY \$ 4.995

WANT THE LOT?

- Muitimeter - Transistors - Continuity
- AND FREQUENCY

Al last - everything in the palm of
your hand. All the normal DMM leatures - including high 20A AC
\& DC reading - in this superb 3.5 8. DC reading - in this superb 3.5
digit model PLUS na aiso reads
frequency to 200 kHz Ca10 1505
 FOR EVERYONE... AND IT WON'T BREAK THE BANK
OUTSTANDING! 20 MEG CRO + + +
It's much, much more than just a CRO - though it is one of the best you'd over want. But its more: also has inbulit component checker: Cal 0.1260

- 20 HHz bandwith

\$50 OFF 4.5 DIGIT BENCH METER
 to 10 tumes more than a 3.5 digtt DMMM.
With every range you'd ever need this is the ideal bench companion for
service technicians. development labs techs. schools... and the price is so aftordable, for the hobbyist too!

Large Size \qquad

60^{c}
 Normally outstanding value at $\$ 199$ THANKS TO THE ELECTION \$149
- IT'S ONLY

METER

The perfect tem to take to the rally they re pushing out This deluxe windspeed meter gives digital readout in km / h, knots. miles, m/s
eic with high accuracy. Scientific etc with high accuracy. Scientific
uses by the score. but also used to measure air conditioning, sports
(yaching, sky diving, baliooning. eic etc) and much more. Cat O-1405

5879

Questions will be asked in the house about this.

Demo Computer CLEARANCE SAVE THOUSANDS \$\$\$

 different np pes to choose from, and these prices are so tar below cost it would make our accountant cry'

GUARANTEED TO WORK WHEN THEY LEAVE US* BUT NO WARRANTY AT THESE STUPID PRICES

* Except where indicated as non-working

OLIVETTI M-24 SYSTEMS FROM \$1295 Olivetti's magnificent M-24 computer system - includes olivetti keyboard. These originally sold for nearly four thousand dollars But look at the price now! Your choice of hard disk or twin loppy units. these have been through our service IBM compatible machines. ready to run the world's biggest and best range of business software plus games, educational items. utilities, etc etc 8 MMZ clock speed means it's nearly twice as fast
as an IBM PC? Most units have 256 K memory. but this cannot be as an in teed It's a lucky dip'

> - MONITOR • CPU • KEYBOARO

10 MEG HARD DRIVE SINGLE FLOPPY

3 UNITS ONLY

DUAL FLOPPY

8 UNITS ONLY

OLIVETTI M-21 SYSTEMS

Not working, minor faults
The portable version of the M-24 - complete with integral screen and keyboard. Only 2 of these, and both have minor faults, which have NOT
been repaired But if you have any technical ability. you could almost certainly get these going without too much drama And look at the price - way. way under cost - like about one third COST price COMPLETE.

FIRST COME. FIRST SERVED

BONDWELL 14: PARTS \& SOFTWARE VALUE!
Heres another sensational offer We have three Bondwell $14 \mathrm{CP} / \mathrm{M}$
machines. Two are complete - even have Wordstar \& other "Star software One is not complete - It s been cannibalised tor parts so is
very much ONLV for parts value now But here s the deal
BUY THE TWO COMPLETE BOND WELLS FOR S500 (that's about
price) and we It throw in the "Ratted" One FREE We re SURE any price) and we Il throw in the "Ratted One FREE We re SURE any 2 COMPLETE, 1 INCOMPLETE

[^5]
ALTERNATIVE TO TELECOM

Why pay any MORE to Telecoms when the bargains in telephones and freephone products are at your

-OT MIM WILL THE HONOURABLE NO HANDS!

- No hands operation - No hands on the clock (it's digitall)

 DONS SHOUT: INTERCOM III

FM Duplex

4 Station Wired

NICAD SAVINGS • NICAD SAVINGS • GET UP TO 400 CHARGES OUT OF OUR HEAVY DUTY NICADS. Ideal for all your toys, radios...

Why buy Nicads? battery If looked after. this can easily be doubled Taking
worst case. each charge lor a AA cell cosis about 1 C
(e ecticity cosis are negligible) Compare this 10400 dry
batteries at about 60 c each. the savings are enormous

But there's more!

 the discharge cycle. A dry cell slarts dropping voltage immediately. You don't get the same drop off in a NiCad as a dry cell. Therefore motors continue to run at the correctspeed, lamps glow at the right brightness and so on - very close to complete discharge.

And even more!

dry cell. (less than 0050 mms devices which require high currents (e.g. photoflashes, high torque motors. etc) are much better off with NiCad cells than dry cells.

Still not convinced?

You can get much higher continuous current ratings in a NiCad cell than a dry cell. Whie nol rated the same way, a dry cell discharged at 90 mA is considered fat (1.1V) after approx. 2.5 hours. A NiCad cell lasts almosi 55 hours under the same conditions. Even under non-continuous discharge conditions. the NiCad cell whs hands down
because the NiCad can be re-charged beiween uses!

Battery Packs

Oty	Type	Cat No.	Price
$4 \times$ AA	500 mAh	S-3150	\$16.95
$2 \times C$	1.2Ah	S-3152	\$15.95
$\underline{2} \times \mathrm{D}$	1.2Ah	S-3154	\$16.50
$4 \times A A$	600 mAh	S-3160	\$19.95
$2 \times \mathrm{C}$	2.0Ah	S-3162	\$24.95
$2 \times D$	4.0Ah	S-3164	\$27.95

Extra Heavy Duty NiCads

Type	Cat No.	Price
C 2.0 Ah	$\mathrm{S}-3311$	$\$ 14.50$
AA 600 mAh	$\mathrm{S}-3312$	$\$ 5.50$
D 4.0 Ah	$\mathrm{S}-3310$	$\$ 14.50$
Sub C Fast Charge	$\mathrm{S}-3324$	$\$ 6.50$

Sub C Fast Charge

Eveready NiCad Charger

Mulf sze (AA. C D or 9V) NiCad ce s at a tme or one 9 V Ccmplete unt cuang plug-pack nothing
57^{75}

Multi-cell Charger
Cnarge uD to 4 batteries at a time
$-A A C, U 6 V$ or $9 V$ AND you can also charge AAA. and bution cells loo' But there's more a test
meter to check NCad voltage

CATCH ALL THE ELECTION ACTION ON TV
If you're a real masochist, you can watch the party
political broadcasts the political broadcasts, the ads the promises, the name calling. It's fun, isn't it! OR you can put up one of these antennas and watch a whole new world of TV Entertainment, even!

VHF PHASED ARRAY FOR LONG DISTANCE Superb performer on VHF at fringe and deep fringe ranges. Suitable for it's ideal for Canberra and won't upset the pollies or their mates! Easy to the pollies or the
install. Cat $L-4025$

${ }^{8} 99$

VHF \& UHF (in case they try to escape to UHF)

NEED MORE GAIN? HOW ABOUT 60\% MORE?
Extra gain on UHF band 4 for marginal signal areas, still with complete VHF band reception. It's the perfect all- round antenna - and
it's easy to install because it it's easy to install because it has only
${ }^{5} 89$

ALREADY HAVE VHF? HOW ABOUT UHF ONLY BAND 4

 Economy band 4 (Channel 28) $>$ antenna for reasonable signal areas.Ideal too for those areas (like Canberra) where VHF has a different polarity to UHF and you're \$/4988 1

BAND 5
Economy band 5 (Channels 39 to 69) Economy band 5 (Channels 39 to
antenna. similar to above band 4 antenna. 10 element design with cross reflector (like a candidate who's just lost an election. Cross)
 For poor UHF signal areas stis big gun will give you top pertormance
If it's on the air, and capable of being received. receive it! 16 elements with adjustable corner reflector. Superb!

FREE DIPLEXER WITH ANY ANTENHA ABOVE!!!
Free what? Diplexer. Accepts lead-ins from both UHF and VHF and brings them out with one lead - without the losses you'd get using an ordinary splitter back to front. Whew! That's what you get.
And Free. Normally $\$ 9.95$ worth, free with any of And Free. Normally $\$ 9.95$ worth. free with any of
the above antennas while the election fiasco last Cat L-4470

\$

CHARGE IT:
 overnight from Hat will gel going nesat morning, to 10.11
yourrequick, Aave $\$ 5001$
 CHECK IT WITHOUT

AMATEUR TV

TRANSMITTER
They won't let you start up your own TV station - but here's the next best thing: a mini TV transmitter great for seriding signals over short ranges. Accepts any video and audio input (eg use a video recorder up to 20 to 30 metres or so - around the home is, perfect. Cat 2500
DON'T PAY $\$ 100$ OR MORE FOR OTHERS.
ounaces
${ }^{9} 69{ }^{\text {ounange }}$

GAIN (YAGI)

 ANTENNAFor amateur use only. Increase gain by 10 d 8 for more serious experimental use in ATV. Note: this may allow signal to travel past boundaries of your RF output on above transmitter. ${ }^{C=10.258}$

EDISOT SCRET RASE

AC/DC? YOU
NEED A
MOVING IRON

MORE THAN A METER
if 5 ot all the usuat toatures PLUS
capectitance. transisiot. droce and cominuity colour- Just so you can find your mosis Hoter amongst all the black and
Cai 0.1 overioad protection. 100
${ }^{3} 119$

AMFM DESK CLOCK RADIO

NSW			QLD		
Swift \& Young Sts.	ALBURY	[060) 218399	157-159 Elizabeth St	8RISBANE CITY	(07) 2299377
T55 Terrace Level	BANKSTOWN SQ	(02) 7074888	166 Logan Rd	BURANDA	(07) 3916233
Shop 1, 65-75 Main St	BLACKTOWH	(02) 6717722	Gympie \& Hamitton Rds	CHERMSIDE	(07) 3596255
613 Princess Hwy	BLAKEHURST	(02) 5467744	2nd Leve Western Entrance.		
0xford \& Adelaide Sts	BONDI JUNCTION	(02) 3871444	Redbank Shopping Plaza	REDBANK	(07) 2885599
Shop 2, 18 Cross St.			Queen Elizabeth Or		
Warringah Mall	BROOKVALE	(02) 930441	\& Bernard St	ROCKHAMPTON	(079) 279644
Campbelltown Mall Queen St	CAMPPELLTOWN	(046) 272199	Gold Coast Hwy \& Welch St	SOUTHPORT	(075) 329863
Shop 235, Archer St Entrance	CHATSWOOD CHASE	(02) 4111955	Bowen \& Ruthven Sts	TOOWOOMBA	(076) 384300
147 Hume Hwy	chullora	(02) 6428922	Kings Rd \& Woolcock St	TOWMSVILLE	(077) 725722
164 Pacific Hwy	GORE HILL	(02) 4395311	Cnr Pacific Hwy \& Kingston Rd	UNOERWOOO	[07] 3410844
315 Mann St	GOSFORD	(043) 250235	SA		
4 Florence St	HORMSBY	(02) 4776633	77 Grenfell St	Adelaide	
Elizabeth Or \& Bathurst St	LIVERPOOL	(02) 6009888	Main South \& Flagstaff Rds	OARLINGTON	(08) 2988977
450 High Street	MAITLAND	(049) 337866	Shop T25.		
621-627 The Kingsway	Miranda	(02) 5252722	Elizabeth City Centre	elizabeth	(08) 2556099
173 Maitland Rd, Tighes Hill	NEWCASTLE	(049) 611896	Main North Rd \& Oarlington St	ENFIELD	(08) 2606088
Lane Cove \& Waterloo Rds	NORTH RYOE	(02) 8838855	24 Park Terrace	SALISBUAY	[08) 2811593
George \& Smith Sts	ParRamatta	${ }^{1021} 6892188$	WA		
The Gateway High \& Henry Sts	PENRITH	(047) 323400	Wharf St \& Albany Hwy	CANNINGTON	(09) 4518666
818 George St	RAILWAY SQUARE	(02) 2113777	66 Adelaide St	FREMANTLE	(09) 3359733
125 York St ${ }^{\text {Treloar's Bldg, Brisbane St }}$	SYONEY CIIY	${ }^{0} 022^{267} 9111$	William St \& Robinson Ave	NORTH PERTH	(09) 3286944
Treloar's Bldg, Brisbane St 263 Keira St	TAMWOATH WOLLONGONG	(067) 661711 (042) 283800	Raine Square. 125 William St TAS	PERTH CITY	(09) 4813261
ACT 96 GIadstone St	FYSHWICK	(062) 804944	Shop 40A. Lower Level. Cat \& Fiddle Arcade	HOBART	(002) 310800
VIC				hobant	(002) 310800
Creswick Rd \& Webster St 145 McCrae St	ballarat bewdig	[053] 315433	17 Stuart Hwy	Stuart park	(089) 811977
145 McCrae St Shop 46, Box Hill Central.	BENDIGO	(054) 430388	And just in case you can't get into	no of our 56 loca	nd Austraila.
Main St	BOX HILL	(03) 8900699	you can take advantage of our specia	al ofter OSXpress	to sytam:
Hawthorn Rd \& Nepean Hwy	EAST BRIGHTON	103) 5922366	simply fill in the form overieal. Toll	us what you want	make sure the
260 Sydney Rd	COBURG	(03) 3834455	promises are on their way as quick	as grassed lightni	your onder
1150 Mt Alexander Rd	ESSENDON	(03) 3797444	more than $\$ 100$ worth. we'll evan	irfreight your parco	ra in Australia
Nepean Hwy \& Ross Smith Ave	FRANKSTON	(03) 7839144	absolutely FREEIII		
Shop 9. 110 High St 291-293 Elizabeth St	GEELONG melbounne city	$\begin{array}{r} (052) 438804 \\ {[03 \mid 679834} \end{array}$	Toms avalabie 10		
Bridge Rd \& The Boulevarde	RICHMONO	(03) 4281614	apoleconis mough VI		ANMERICAN
Shop 2, 141 Maroondah Hwy	RINGW000	(03) 8795338		wetco	Express

aem project 3505

A complete packet radio system for the Commodore 64

Design - A.A.P.R.A.
Article - Andy Keir VK2AAK

Abstract

Packet radio has become the fastest growing mode in amateur radio since the introduction of two metres FM. If you are intrigued by this mode but have been put off by the cost and difficulty of obtaining a TNC, then this project is for you.

IF YOU HAVE been following our series on digital communications, you will know what a versatile device a terminal node controller is. Unfortunately, there is no getting away from the fact that because of their complexity, they are not cheap, and it is this fact which has discouraged some enthusiasts from becoming involved in packet radio.

Well, hesitate no longer. In this project we will be describing a complete packet system suitable for use with one of the most popular home computers, the Commodore 64. This system will allow you to get going on packet with minimum outlay because the only hardware needed is for the modem and some switching. All the work normally done by the microprocessor in the TNC is performed by the C64 with the aid of some very clever software.

The design of the modem is based on that produced by the Australian Amateur Packet Radio Association (AAPRA). AAPRA is a non-profit amateur radio club whose sole interest is the furthering of AX. 25 packet radio. The association welcomes enquiries from any amateur wishing to become involved in packet radio and they can be contacted by writing to: The Secretary, AAPRA, 59 Westbrook Avenue, Wahroonga. 2076 NSW. We have taken the opportunity in this presentation of the project to make a few minor alterations and enhancements to the original AAPRA pc board. These are designed to make wiring and interconnection a little easier.

The software for the project was written by Chris Mills VK4BCM and is an updated and enhanced version of that which was available in the public domain. This updated version is copyright to AAPRA and it can only be obtained from them. They will supply a customised version on disk together with an operating manual for $\$ 45.00$. You would be well advised to take advantage of this offer as earlier versions of the software are not guaranteed to perform as described and furthermore, you will be able to take advantage of new versions as they are released.

The circuitry

In this first article, we will describe how the modem works as well as providing some insight into using the software. We will be describing the construction of the modem in part two next month so in the mean time you might like to send off your software order to AAPRA so you'll be ready to go once you have completed building the project.
The hardware is actually quite simple, consisting of a modulator, a demodulator and some switching to control the press-to-talk input of the transceiver. The modulator is
designed around the well known Exar XR2206 function generator IC, a data sheet for which was published in last month's issue. As configured in this project, the 2206 will produce one or other of two tones, the frequency of which is determined by the resistors associated with pins 7 and 8 and the capacitor between pins 5 and 6 . In this design, multi-turn trimpots have been used in the timing network so adjustment is straightforward.

The keying signal applied to pin 9 will determine which of the two resistors will be used as the timing element and in our case the TTL level data from the computer is applied to pin 9. Modems for VHF packet use are based on the Bell 202 standard which uses the tone pair of 1200 and 2200 Hz . The two trimpots are adjusted to produce these tones which are then fed to the microphone input of the transceiver.
The demodulator is based on another Exar chip, the XR2211 FSK demodulator/tone decoder. This phase-locked loop (PLL) based circuit was specifically developed for data communications and is ideal for our application in this project. To look at it in the simplest way, it is the reverse of the 2206 chip in as much as it takes audio tones as the input and converts them to TTL level signals suitable for input to the computer.
In common with other PLL circuits, we can, by the use of a few external components, determine what range of frequencies will be detected as well as the frequency of the on-board voltage controlled oscillator (VCO). Where the 2211 differs from most PLL chips is in it's ability to detect whether the incoming tone is above or below the centre frequency. In our application, we know that the tones of the remote modem will be 1200 or 2200 Hz in accordance with the Bell specification so we set up the VCO to run exactly half way between those two tones, at 1700 Hz . Again we use a multi-turn trimpot for this adjustment to make alignment straightforward. When the 2200 Hz signal is present on the input, the 2211 will detect a tone higher than the centre frequency, when the 1200 Hz tone is present, the chip detects that is is lower than the centre frequency.

The remainder of the circuit is concerned with the power supply and switching of the transceiver's PTT line. The power for the modem is provided by an external supply of a nominal 12 V . The signals which are fed to the computer will need to be at TTL levels, so in addition we provide a 5 V rail by means of a 7805 voltage regulator fed from the 12 V rail.
Those of you who have examined the circuit diagram might be wondering why there is a 555 timer in there. Well, as the

modem is designed to interface with a transmitter, you can imagine the problems if the computer crashed whilst you weren't watching and left the PTT line closed. You would be putting a signal to air continuously, no doubt to the annoyance of others on the frequency. The 555 timer forms what is known as a "watchdog timer" which prevents the PTT line from staying on for more than a predetermined time.

With reference to the circuit diagram, it works like this. The PTT signal from the computer is normally high, going low when the computer wants to key the transmitter. When the PTT line is low, transistor Q2 will be turned off so it's collector will be high. The collector of Q2 is connected to the reset pin (4) of the 555 which, when pulled high, allows the 555 to operate. The collector of Q 2 is also connected to the base of Q3 and so as Q2 turns off, Q3 turns on thereby sending a short negative-going pulse to pin 2 of the 555 via the capacitor C13. Pin 2 of the 555 is the trigger, and when it sees a negative pulse, it will start the timing cycle sending pin 3 high and energising the PTT relay via Q4. The 555 is configured as a monostable, the period of which is determined by the resistor R21 and the capacitor C14.

If the computer releases the PTT whilst the 555 is still timing, transistor Q2 will turn back on thus sending pin 4 of the 555 low and resetting it. Pin 3 of the 555 goes low and the PTT relay de-energises. If on the other hand a fault occurs and the PTT line from the computer stays low, the 555 will eventually time out. Pin 3 will go low, the relay will de-energise and the circuit will remain in this condition until the PTT signal from the computer goes high again.

There is one possible problem with this scheme. Suppose we turned the computer off whilst power was still applied to the modem. The PTT line would go low and the transmitter would key up, clearly an undesirable situation. To overcome this, we power the 555 from the 5 V supply of the computer itself. Thus, if the computer is turned off, the 555 can never energise the relay.

Software

The software is responsible for all the hard work of assembling your input into packets ready for transmission and decoding incoming packets for display on your screen or printer. The AX. 25 protocol used in this project is quite complex and would take a great many pages to explain. If you are insatiably curious, I'm sure that AAPRA could supply you with all the details, but in this project we will confine ourselves to the operational details of the software.

The software provides the following features:

- Converse with other stations, direct or via digipeaters.
- File transfers, program and sequential.
- Serial printer (ASCII or Baudot).
- CBM printer.
- Beacons with user-configurable times and text.
- CW identification.
- Digipeating (your station can act as a digipeater).
- Variable baud rates (300 Baud for HF or 1200 Baud VHF).
- Windows showing the progress of packets.

There are some 40 or so commands which can be used in normal operation, but the majority of these are used for setting various parameters which don't need to be altered very often. In addition to these commands, there is provision to change screen and character colours and also to perform various disk operations by the use of simple combinations of keystrokes.

aem data sheet

National Semiconductor
 LH0002/LH0002C Current Amplifier

General Description

The LH0002/LH0002C is a generat purpose thick film hybrid current amplifer that is built on a single substrate The circuit features

- High Input Impedance
$400 \mathrm{k} \Omega$
- Low Output Impedance
$6!2$
- High Power Efficiency
- Low Harmonic Distortion
- DC to 30 MHz Bandwidth
- Output Voltage Swing that Approaches Supply Voltaçl.
- 400 mA Pulsed Output Current
- Slew rate is typically $200 \mathrm{~V} / \mu \mathrm{s}$
- Operation from $\pm 5 \mathrm{~V} 10: 20 \mathrm{~V}$

These features make it ideal to mtegrate with an operational amplifier inside a closed loop configu ration to increase current output The symmetrical output portion of the circuit also provides a low output impedance for both the positive and negalive slopes of output pulses.

The LH0002 is available in an 8 -lead low profile TO. 5 header. the LHOOO2C is also available in an 8 -lead TO.5, and a 10 -pin molded dual-in-line package.

The LH0002 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0002C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range

Applications

- Line driver
- 30 MHz buffer
- High speed D/A conversion
- Instrumentation buffer
- Precision current source

Electrical Characteristics (Note 1)

Schematic and Connection Diagrams

Metal Can Package

Order Number LH0002CN See Package N10B

Order Number LH0002H or LH0002CH See Package H08A

Typical Performance

Absolute Maximum Ratings

Supply Voltage	$\pm 22 \mathrm{~V}$
Power Dissipation Ambient	600 mW
Input Voltage (Equal to Power Supply Voltage)	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
LH0002	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0002C	$0^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$
Steady State Output Current	$\pm 100 \mathrm{~mA}$
Pulsed Output Current (50 ms On/1 sec. Off)	$\pm 400 \mathrm{~mA}$

$$
\begin{aligned}
& \pm 100 \mathrm{~mA} \\
& \pm 400 \mathrm{~mA}
\end{aligned}
$$

Parameter	Conditions	MIn.	Typ.	Max.	Units
Voltage Gain	$R_{\text {S }}=10 \mathrm{kQ}, R_{L}=1.0 \mathrm{kQ}, \mathrm{V}_{1 \mathrm{~N}}= \pm 10 \mathrm{~V}$	0.95	0.97		
AC Current Gain	$V_{\text {IN }}=1.0 \mathrm{~V}_{\text {rms }}, f=1.0 \mathrm{kHz}$		40		A/ma
Input Impedance	$\mathrm{R}_{\mathrm{S}}=200 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$	180	400	-	kQ
Output Impedance	$V_{I N}= \pm 1.0 \mathrm{~V}, R_{L}=50 \mathrm{Q}, \mathrm{R}_{\mathrm{S}}=10 \mathrm{kQ}$	-	6.0	10	Ω
Output Voltage Swing	$R_{L}=1.0 \mathrm{kQ}, V_{I N}= \pm 12 \mathrm{~V}$	± 10	± 11	-	\checkmark
Output Voltage Swing	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \mathrm{Q}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{Q}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$	± 10			v
DC Output Offset Voltage	$R_{S}=300 \mathrm{Q}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{kQ}$	-	± 10	± 30	$m V$
DC Input Offset Current	$R_{S}=10 \mathrm{kQ}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{kQ}$	-	± 6.0	± 10	$\mu \mathrm{A}$
Harmonic Distortion	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$ cms,$f=1.0 \mathrm{kHz}$	-	0.1	-	\%
Rise Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \Delta \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}$		7.0	12	ns
Positive Supply Current	$\mathrm{R}_{\text {S }}=10 \mathrm{kQ}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{kQ}$	-	+6.0	+10	mA
Negative Supply Current	$\mathrm{R}_{\text {S }}=10 \mathrm{kQ}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$	-	-6.0	-10	mA

Note 1: Specification applies for $T_{A}=25^{\circ} \mathrm{C}$ with +12 V on Pins 1 and $2 ;-12 \mathrm{~V}$ on Pins 6 and 7 for the metal can package and +12 V on Pins 1 and 2;-12V on Pins 4 and 5 for the dual-in-line package untess otherwise specified. The parameter guarantees for LH0002C apply over the temperature range of $0^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$, while parameters for the LH0002 are guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ over the temperature range
unless otherwise specified.

Most of the commonly available stand-alone TNCs use LEDs to give an indication of the current status. In this project, we use a screen window to provide status information and this will in fact give more information than simple LEDs. As an example, a normal TNC usually has a LED to indicate that there are un-acknowledged packets outstanding. Using the screen window in this software you are told exactly how many packets are still outstanding. Other information in the window will tell you the condition of the PTT line, the callsign of the last connected station, the current status of the connection and whether a disk file is open or closed.

At first sight, you may think that the software is going to be complicated to drive but in fact it is somewhat easier to come to grips with than the eighty or more commands of standalone TNCs. Much of the simplification is due to the fact that you no longer need all the commands to control the serial interface between the TNC and the host computer. In this project all the software is in the computer to start with. Believe me, you will find the nine or so pages of software instructions in the manual supplied with the software quite easy to assimilate when compared to the several hundred pages of information in the manual that came with the first stand-alone TNC I bought!

There is no doubt that interest in packet radio is increasing. If the article on digital communications has whetted your appetite, then hopefully this project will be the catalyst to get you going on the mode. This "software" TNC is in no way a compromise, it provides all of the features you could want and will allow you to join in the fun on packet at a considerable cost saving. You will be able to access the bulletin boards, send and receive programs or messages or just "chat" with your packet-equipped friends.

In part two of this project, to be published next month, we will describe the full details of construction and setting up as well as some suggestions for modifying the modem for use on HF. 4

TEGA ELECTRONICS

SPECIALISTS IN RADIO FREQUENCY, COMMUNICATIONS TEST EQUIPMENT COMPUTERS

CATERING FOR AMATEUR, COMMERCIAL, GOVERNMENT

Call In at: 75 Grand Boulevard, Montmorency Vic. 3094 or phone:
(03) 4311153 Terry and Gary (VK3ZHP)

AEM and ELEKTOR PRINTED CIRCUIT BOARDS

Quality, roll-tinned, fibreglass printed circuit boards; complete with silk-screened component notation, are once again available from the kitset and component specialists: ex-stock and at affordable prices. Huge range of AEM, ETI, EA, HE, AEC and now ELEKTOR - PRINTED CIRCUIT BOARDS, KITS AND FRONT PANELS.

- Mail Orders

- Trade Sales
- Personal Shopping
- Export Orders
- Custom boards \& panels

- Passive components
- Power devices
- Semiconductors
- Inductors
- Valves
- Only prime quality stocked
Kitsand iontand.

8088 CPU 4.77MHZ 8 slots 8087 socket quality PCB CA 1602 Turbo XT 640 K mother PCB v20 CPU 4.77 and 8 MHZ 8 slots 8087 socket quality PCB
CA1604 Turbo XT V20 with 1024k RAM CA 1610 Mini AT 1024 K mother PCB 80286 CPU 6 and 10 MHz 8 slots 80287 socket quality PCB
$\$ 1.150 .00$
CA 1612 Mini AT 1024 K Main PCB 80286 CPU 6 and 12 MHz 8 slots opt. 80287 quality keyboard Color graphic card RGB and composite, light pen ad'r
CA 1615 Diskdrive card $4 \times 360 \mathrm{k}$ D/D w/ cable

05
CA1617 Disk drive card short stem 2 int. drive with cable
$\$ 69.00$
CA 1620512 K RAM card O RAM CA 1621 Printer card with cable CA1625 High resol. monochrome and par. printer port adaptor $\$ 135.00$ $\$ 58.00$
$\$ 165.00$
CA1616 Multifunction card 384 K parallel serial clock and joystick ports w/ O RAM CA1614 Same as CA 1613 w/384K RAM
$\$ 190.00$
CA1616 Multi I/O card w/ clock/
parallel/2 serial/joystick
CA 1617 Multi I/O plus card same as CA 1616 w/d/drive card
$\$ 55$
CA 1618 Serial card RS232

COMPUTER POWER SUPPLIES

CA 1670 Power supply side sw 150 W w/ 4 drive cables
$\$ 150.00$
CA 1672 Power supply rear sw 135W 4 cable drives
CA 1675 Power supply side sw 180 W suit IBM AT 4 drive cables $\$ 175.00$

CA 1677 Power supply side sw 220W suit large AT PCB 4/D cables $\$ 245.00$ $\$ 295.00$

VIDEO MONITORS

CA 1800 Amber 12 inch monitor 18 MHz Swivel base, RCA plug Screen, swivel B. RCA plug
CA 1803 Amber 12 inch TLL high res. suit both hercules \& RGB of CGA CA1805 Amber 14 inch TTL high res suit both TLL mono \& RGB of CGA
CA 1830 TVM 14 inch RGB colour monitor $640 \times 200, \mathrm{AMB} / \mathrm{GN} /$ Colour CA 1833 TVM MD-3V 14 inch RGB colour monitor 640×200
6 back gd colours, video \& audio I/P plus speaker
CA 1837 TVM 14 inch EGA Col. monitor $640 \times 350 \mathrm{Amb} / \mathrm{gn} /$ colour
$\$ 1,020.00$

DRIVES, BACKUPS \& ACCESSORIES

CA 1630 Computer case w/ hinged flip top and 8 slots CA 1631 Computer case w/rear SW CA 1622 Hard disk cont'ler 2HD CA 1625 Enhance colour graphic ADR $640 \times 200 / 400$ selectable CA1642 5.25" DS/DD disk drive 360k half height Chinnon CA 16431.2 MB floppy drive NEC CA16455.25" 1.2 MB chinnon drive Half height suit IBM AT/XT
CA1648 Miniscribe 21 M hard disk fast access ime, half HT
CA 1650 Miniscribe 44 M voice coll half ht
CA 1652 44MB iape back-up for hard'k CA $1660 \times$ T keyb'd 10 functions and 83 keys w/ 5 pin DIN plug CA 1662 AT/XT keyb'd 10 functions and extra large return 3 leds CA 1664 Deluxe auto AT/XT 101 keyb'd
$\$ 110.00$
$\$ 110.00$ $\$ 290.00$
$\$ 595.00$
$\$ 250.00$
$\$ 295.00$
$\$ 295.00$
$\$ 750.00$
$\$ 1,400.00$ $\$ 995.00$
$\$ 140.00$
$\$ 165.00$ $\$ 220.00$

COMPUTER SYSTEMS

CXE640	640K 8088 system w/ 2 drives colour graphics, parallel/serial clock/games ports Keyboard \& 135W power supply	\$1,290
CX0646	1024K Turbo XT V20 CPU 4.77 \& 8 MHz , 2 drives, CGA parallel serial/game/clock	\$1,390
CX0650 with 2	Turbo AT 512K system floppy drives 360×2 CGA	\$1,950
CX0652	Turbo AT system $\mathrm{w} / 1.2 \mathrm{M}$ drive \& 20MB miniscribe hard disk 6 \& 12 MHz 1024 K RAM	\$3,900
CX0655	Turbo AT $6 / 10 \mathrm{MHz}$ 80286 CPU 20MB hard disk 1.2MB floppy	\$3,600
If you ne Miniscrib controlle	ed to add a 20MB e hard disk inc. card	\$950.00
PRINTERS		
CP1000 Super 5 EP1000 dot matrixprinter 100 cps NLQ IBM GR $\$ 550.00$		
S	ter 120 cps NLQ IBM GR	\$590.00
	er 5 EN 1802 dot matix cps NLQ heavy duty	\$890.00
	en 5 EN 1805 dot matrix cps 15 inch paper NLQ W/LF	\$19000
CP1100 Prin	ter ribbon for EP1201	\$22.00
EXTRA BITS		

Battery Back-up Power Supply

With noise filter 250 watts 15 minute back-up \$950.00
500 watts 15 minute back-up \$1,150.00

Power Surge Protection Magic Button

Plug in existing power outlet to absorb power surge.
$\$ 29.90$

Tycor Power Line Filters

One of the best on the market with proven test results. Removes transients over the entire frequency range, attenuating up to 99% of all spikes and noises, 9 different sizes from 1A (240 watt) to $50 \mathrm{~A}(12 \mathrm{~kW})$
price from $\mathbf{\$ 3 5 0 . 0 0}$

SPECIALS

Handheld instrument case as used in Barometer kit, Autoranging digital multimeter
$\$ 14.50$
Handheld Instrument case as used in EA remote control kit
$\$ 25.00$

COMPONENTS

2716	\$9.00	8284	\$7.50
2732	\$9.00	1488	\$1.10
2764	\$9.00	1489	\$1.10
27128	\$10.50	2102	\$6.00
27256	\$14.00	PALI6LB	\$11.00
RAM $416464 \mathrm{Kx8}$	\$2.95	58167	\$18.00
RAM 41256-15		75452	\$2.50
256K x 8	\$6.50	CA3140	\$1.45
RAM 41256-12		AY3-1015D	\$12.50
$256 \mathrm{~K} \times 8$	\$7.00	AY5-3600	\$12.50
V-20 CPU		6502	\$11.00
70108D)	\$26.00	6522	\$11.00
8087	\$377.40	6802	\$9.00
8088-2	\$16.00	68821	\$5.00
89.55	\$6.99	6809	\$16.00
8237	\$14.50	Z80A PIO	\$5.90
8250	\$22.50	Z80A CTC	\$6.00
8253	\$6.00	Z80A CPU	\$6.00
8255	\$6.00	Z80A DART	\$12.90
8259	\$6.00	Z80 UART	\$PO.A.
8237	\$14.50	Z80 S1O	\$12.50
SL490 32 channels Transmitter			\$10.50
SL486 Infra red preamp			\$10.50
ML926 Channel 1-16 decoder mont			\$16.00
ML927 Channel 17-32 deconder mont.			\$16.00
ML928 Channel 1-16 deconder latch			\$16.00
ML929 Channel 17-32 deconder latch			\$16.00
ML923 Analog \& digital decoder			\$16.00
LD271 Infra-red LED			$\$ 3.00$
BP104 Infra-red receiver			\$3.00

KP Range Polypropylene capacitors $\mathbf{2 . 5 \%} 63 \mathrm{~V} 5 \mathrm{~mm}$ spacing

Full range
Electrolytic RB \& Axial type from 1uF to $4700 \mathrm{uF}, 16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}$

Special electrolytics

100uF/100V axial EYMA	$\$ 1.80$
100uF/100V RB type	$\$ 1.50$
220uF/100V RB type	$\$ 2.00$
470uF/100V RB type	$\$ 2.50$
$4700 \mathrm{uF} / 100 \mathrm{~V}$ CAN	$\$ 13.50$
$10,000 \mathrm{uF} / 100 \mathrm{~V}$ CAN EYNA	$\$ 59.00$

Filter capacitors for computers

Miniature size monolithic ceramic blue caps $0.033 / 50 \mathrm{~V}$

AC Power Line Filter Capacitors

0.01 uF/250VAC
$\$ 1.20$
0.1 UF/250VAC
$\$ 1.60$

RESISTORS

	Each
1/wwatt 5% carbon film	$\$ 0.04$
$1 / 2$ watt 5% carbon film	$\$ 0.05$
1 watt 5%	$\$ 0.10$
$1 / 4$ watt 1% metal film	$\$ 0.07$
$1 / 4$ watt 1% M/F low noise	$\$ 0.12$

Other high power metal films
available

HI COM

MODULES

All modules are silk screened, pre-drilled aluminium front panels with knobs, pots, connectors \& components.

MIC	$\mathbf{\$ 8 5 . 0 0}$	O/P2 HEADPHONE	$\$ 95.00$
STEREO MD	$\$ 98.00$	POWER SUPPLY	$\mathbf{\$ 1 2 0 . 0 0}$
O/P1 UV LED	$\mathbf{\$ 1 1 2 . 0 0}$		

BLACK ALUM. CASES
8 modules C1 $350 \times 380 \mathrm{~mm} \$ 55$
12 modules C2 $350 \times 560 \mathrm{~mm} \$ 63$ 16 modules C3 $350 \times 740 \mathrm{~mm} \$ 70$

Add-on Power Amp modules available SOON!

Elector Serial Digitiser kits

8 channels incl.

AEM 4505 Text to

 Speech cardElector Autoranging 3.99 digital multimeter kit \sim

\$CALL

For your
computer. IBM computer. IBM PC/XT/AT compatible Serial version for others $\$ 149.00$

24 Way edge connector

 for CommodoreAEM 6506 Workhorse Power Amp
$\$ 49.00$

$\$ 7.50$
Elector 3.5 digit LCD panel Kit 7106, 3.5 LCD panel and PCB only

For Commod Includes edge connectors	32 Conversion kit Commodore
Elector Barometer Kit Includes case and all components. Some parts available separately. \$159.00	multimeter kit PCB No. 87099 \$CALL
13 way DIN Connectors	

NEW PRODUCT!

INDOOR/OUTDOOR MOVEMENT DETECTOR

With 240VAC Switch. Passive infra-red movement detector eith 240 VAC input \& 240 VAC output to turn on light or doorbell. Builtin daylight sensor to mute output. Timer switch up to 20 minutes, complete with mounting brackets.
Range up to 12 M

AEM 4605 Super Simple modem kit 300/1200/75 baud

Experimental Plug-in
cards for IBM PC/XT

$\underset{\text { VA PRICE }}{\text { ILP }}$ TOROIDAL TRANSFORMER

VOLTAGE
691215182225303540455055

HI-COM UNITRONICS INT. P/L

7 PRESIDENT LANE, CARINGBAH, N.S.W. 2229
PHONE: (02) 5247878
P.O. BOX 626, CARINGBAH 2229

GET FLYING ON 1200 BPS!

 BUILD THE "BIT STREAM FLYER"
-the low-cost way to high-speed dial-up data communications.

Looking to upgrade from your old V. $21 / \mathrm{V} .23$ modem? Here's how to do it without the expense of discarding your existing modem!
Build yourself this 1200 bps full duplex (V.22) modem and make that data really fly! The unit is used just like any other "dumb" modem. It works with any computer having an RS232 serial interface or adaptor. All you need is an RS232 serial cable to your computer and suitable communications software or terminal program.
Don't miss this opportunity to own a high speed modem and to enjoy the pride and satisfaction that comes from having built it yourself!

By special arrangement with the designers, you can obtain a complete kit to build the AEM4622 Bit Stream Flyer by Maestro for just

The components alone would cost you over $\$ 200$ at retail prices!
An optional plugpack power supply is available for an additional cost of $\$ 14.00$.

The kit is complete to the last detail; all components, semiconductors, switches, connectors, IC sockets and cabinet.

This offer is made by Maestro Distributors and the magazine is acting as a clearing house for orders.

Delivery, anywhere in Australia: $\$ 7.00$

OFFER CLOSES LAST MAIL AUGUST 311987
DON'T DELAY, COMPLETE THE COUPON NOW AND SEND IT, TOGETHER WITH YOUR CHEQUE, MONEY ORDER OR CREDIT DETAILS, TO:
AEM4622 MODEM KIT OFFER Australian Electronics Monthly PO Box 507, WAHROONGA 2076 NSW
Or you can phone us and "pledge your plastic" to order. Call (02)487 1207 and give your name, address and credit card details.COUPONPlease deliver
\qquad kit(s) priced at $\$ 179.00$ each, plus $\$ 7.00$ for delivery.

$$
\text { I enclose } \$ \quad \text { total, payment by }
$$ (please circle method):

\qquad
Money Order (No :)

Make cheques or money orders payable to "Australian Electronics Monthly" AEM4622 Bit Stream Flyer Modem Please include \qquad plugpack(s) at $\$ 14.00$ each.
\square Bankcard \square Mastercard \square VISA \square AMEX Card No. Signature:
(Note: unsigned credit card mail orders cannot be accepted)
Name: \qquad
Address: \qquad

Cost effective auto-dial modem

xiocon Pty Ltd, a Melbourne-based telecommunications development company, has released an auto-dial, autoanswer modem for $\$ 250$, including tax.

Drawing from advanced designs already utilized in a full range of OEM targeted modems, Xiocon has produced a full featured, cost effective modem for the entry level user.
The modem is fully Hayes compatible, Xiocon claim, with operating speeds of $300 \mathrm{bps}, 75 /$ $100,1200 / 75$ and 1200 half duplex. It supports CCITT specifications V.21, V. 23 and Bell 103.

The modem will support baud rate conversion from 1200/ 1200 to $1200 / 75$ for equipment not supporting split speed operation.

Extra features include full screen displays and plain english operating status messages. For information contact Xiocon Pty Ltd, 1st floor, $\mathbf{6 8 5}$ Centre Rd, East Bentleigh 3165 Vic. (03)557 7931.

AutoCAD in Australia

Autodesk Inc, creator of AutoCAD, the world's most widely used computer-aided design and drafting soft ware (as used in AEM!), has announced that it will be setting up a subsidiary in Australia to develop. market and distribute it's products.
Autodesk stated that an agreement has been entered into between MicroMega Communications Pty Ltd, trading as Entercom Computer Company. A new wholly owned subsidiary of Autodesk will be formed, to be called Autodesk Australia Pty Ltd.
The Australian operation will be staffed by Australians and Autodesk intends for the new

company to expand the current range of CAD/CAM products distributed in Australia and to manufacture and carry out any necessary research and development in Australia.

For more information, contact Debra Donegan, Entercom Computer Company, (03)429 9888 or Laura London, Autodesk Inc, (415)332 2344, ext 714.

New PC comms software

According to the distributors, PC Extras of Sydney, the new Supercom Executive provides flexible facilities for automated, unattended information gathering.

One of the advantages of an automated package such as this is to "try again" when attempting to access a remote dial-up system, PC Extras say.

With Supercom, you simply get the software to do all the dialling, either of one number, or a series of numbers in rotation. Supercom will even signal when it succeeds.

Another major use of this software is for unattended information gathering. Supercom can be instructed to dial up a remote system at a particular time, \log on, gather and store information and log off again.

For further information, contact PC Extras, GO3 The Watertower, Rosehill St, Redfern Hill 2016 NSW. (02)319 2155.

MAKE A MODEM!

The AEM4600 Dual-Speed Modem is quite a popular project. Get yourself on-line with the maximum features for the minimum cost.
Features $300 / 300$ and 1200/75 bps modes. Simple RS232 (serial) interfacing. All parts readily available. (Published Dec. '85)

All boards manufactured on quality fibreglass substrate with rolled-tin over copper tracks and silk-screened component overlay.

$\$ 17.50$
board has some faulty tracks \& no components overlay but our package includes full instructions, plus post \& handling charges. AMP.

Components readily available. All prices inc. post \& handling.
Up to 240 W (into 8 ohms) of clean, clear power! THD is rated below $0.005 \%, 3 \mathrm{~dB}$ bandwidth is 4 Hz to 130 kHz ! Use as a standalone module (AEM6000) - \$31.20 (Jun/July '86), or add our AEM6504 Status Monitor (Aug. '86) for clipping and fault protection $\$ 50.60$ the set
Why not get a stereo set, (makes the 6000 Stereo Amp) including the AEM6505 Surge Limiter? (Sept. '86) - \$114.48

Data dial-up through a looking glass

 - some reflections on "Mirror"

 - some reflections on "Mirror"}

Roy Hill

Computer "communications" programs have grown rapidly in recent years along with the burgeoning growth in data communications. When a company develops a product and announces it represents "the standard by which all others will be judged", it invites not just emulation, but to be outdone - and at a lower price. In hardware, IBM's PC would be the prime example. In the world of data comms software, there's Microstuf Inc.'s "Cross-Talk" and SoftKlone Conp.'s "Mirror". We asked Roy Hill, conductor of our Dial Up column, to ". . . look into it."

I WAS ASKED by the Editor to take a sample package of the Cross-Talk clone "Mirror" home, play with it for a while and then offer my comments on its operation and the manner in which it emulated Cross-Talk.
Now, Cross-Talk rapidly established a market position at the top of the heap following its release and hence is widely known. Being into data comms, I have been a user of CrossTalk, along with a variety of other programs of the genre. At the time of writing, I have "played" with Mirror for some six weeks and have come to know it reasonably well, so here goes...

Background

Firstly, I will assume you are at least familiar with the basics of a data comms soft ware package of some sort. Simple ones have been around for many years, more sophisticated packages having sprung up in recent times.
Mirror was written by SoftKlone Distributing Corp. and is what its advertising claims it to be - a faithful emulation of the Cross-Talk Comms XVI program, Version 3.6, written by MicroStuf lnc. MicroStuf were so proud of their work of art, that they trumpeted it to the world as being the ". . .standard by which other programs will be judged." SoftKlone decided they would follow this "standard" and wrote the Mirror package to emulate all of Cross-Talk's existing features, plus a fewadditional dazzlers that even MicroStuf would be proud of.
At the time I saw Mirror first advertised, it was about the period that everyone was suing everyone else for "look-alike, work-alike" packages (and winning). I thought that if MicroStuf ever took SoftKlone to court over their package, the result would be exceedingly interesting. They did, and it was! The trial judge in the U.S. ordered SoftKlone to modify the status screen so that it no longer resembled Cross-Talk's. They have done so and 1 was able to secure the updated version, dubbed the 'Beta' version (V3.6.11), of the new program.
lam pleased to say that the new screens are far easier to use than the Cross-Talk style. For
me, Cross-Talk has always had two fundamental limitations - lack of pull-down menus and poor status screen layout. Thanks to Microstuf's lawsuit, Mirror has fixed the latter problem (how's that for turning adversity into advantage). now how about pulldown menus?

Seeing is belleving

Mirror is supplied on a single 360 K floppy disc in IBM format and is not copy protected. SoftKlone encourage purchasers of the package to make a back-up and not use the master disc. Supplied with the package is a very thick operating manual of some 300 pages, and some advertising material for various U.S. dial-up services which would be fairly useless in the land of the Kookaburra and the Kangaroo.
With the release of the latest version, some updates to the manual will obviously be necessary. I am impressed by the way the new version fires up - the PgUp and PgDn keys can be used in conjunction with the Ctrl key to scroll through the current settings, which are divided into two screen halves. This is very helpful for changing one or two parameters before dialling.
After making the mandatory back-up, I thought that I should fire up Mirror without looking at any of the documentation - a practice that 1 would normally never indulge in. I felt this was justified as I am quite conversant with Cross-Talk and this was supposed to be a test of compatibility, which SoftKlone particular point up as a major feature. Mirror passed EVERY Cross-Talk compatibility feature that I could throw at it and I had great difficulty convincing myself that it was not CrossTalk that I was in fact using. (No wonder about the court case!). Even the help screens were the same.
When I commenced the reviewing process, I used Mirror on my Data System/1 PC/XT compatible (. . . cloned soft ware on a cloned computer, oh the irony! - Ed.). 1 later upgraded to an AT compatible (not without a very traumatic experience with my hard disk) and 1 can report Mirror works perfectly on
both machines, even in Turbo mode (10 MHz) on the AT. If only I could switch the phone lines to Turbo mode . . . now there's an idea!
After 1 had confirmed the compatibility of the software, the next step was to read the manual. This can often be an extremely daunting experience, as one of my "bete noirs" is computer documentation. It's usually done by the person who wrote the program and who obviously doesn't need a manual to help him/her out. The Mirror documentation was a pleasant surprise. It even has a workable index, although cross-referencing is not done particularly well -1 had some trouble finding "change the Screen colour" in the index. lt's under 'colour', not 'screen'. This, however, is a very minor fault compared to some manuals I've seen in which the index is either non-existent or only contains seven entries. As it turned out, 1 should have looked in the table of contents - "Color and Other Miscellaneous Topics" is a major chapter. Oh well!

Additional features

Mirror has several additional features not found in Cross-Talk, including two of special remark:

1) Mirror allows the user to start a LEarning sequence that remembers all the "log on" commands in a dial-up session and stores them for future use. Top marks!
2) Mirror allows file uploads and downloads to take place as background tasks. In fact, 1 found it very handy to download a file in the background mode whilst I was editing a file for uploading. I then had a Vlew of the uploaded file whilst Mirror was sending the edited file in the background. Top Marks again! Incidentally, Mirror doesn't have to go searching for your editor via a "path" command. Mirror has its own inbuilt text editor that uses Wordstar commands. This may or may not be an advantage, depending upon your current wordprocessor and views on Wordstar.

Mirror also has extended terminal emulation features - it can emulate 11 different terminals including a Televideo VT-52 and a VT100. Very useful. Extended comms protocols are also supported, with XMODEM batch, YMODEM and HAYES being additional to those offered by Cross-Talk.

The length of the time-out delay[$*$] (the delay between the finish of one block of transmitted data and the start of the next) can now be defined by the user. Optional CRC error checking (a vital consideration) has also been added for file transfers. The Kermit transfer protocol has also been modified to allow for variable packet lengths and 'repeated character' compression option, which both serve to speed up file transfer under Kermit [$*$].
All of these additional features are well documented in the manual's Appendix B (eight pages of it), which explain all of the additional features in great detail. Those features marked with the [*] are only available in the new version. I was also very impressed in the way that the new version allows modification to set-up options - a great improvement over Cross-Talk.

A look at digital signal processing

I HAVE BEEN ASKED to explore the topic of Digital Signal Processing this month. DSP has been with us for quite some time now (since the late 70s), but it is only in the last four years that the business has really hotted up. The principle is quite simple, really. When Eckert and Mauchly were designing ENIAC, they had the choice of either opting for a digital system (10 discrete voltage levels) or a binary system (only two voltage levels). They chose the latter because a binary system is far less susceptible to line fluctuations than is a decimal one. With a binary system, there is either a voltage or there isn't one. Noise no longer becomes a problem.

Items of consumer electronics that have long been considered the domain of analogue circuitry are now giving way to digital processing. The colour TV set is a typical example. All of the modern sets are having virtually all of their traditional analogue components replaced with digital circuitry. About the only exception to this is the tube and its drive circuits.

One of the biggest moves in the DSP field is the proposal for a world-wide digital phone network (called Integrated Services Digital Network - ISDN for short). This topic will form a column of its own in a later issue. The basic principle behind DSP is shown in Figure 1 below:-

The analogue signal is passed through an optional filter (to
remove unwanted frequencies) and this signal is then passed to the analogue/digital (A/D) section. The A / D section includes an ultra-high speed A/D converter, capable of sampling at rates of up to 30 MHz . That's fast, believe me. The DSP itself is the second of the three modules; the third module is the Analogue Output Section. This section is also optional, as the processed digital signal can be used on its own, without the need for a digital-to-analogue converter (DAC) to re-convert it to analogue.

The applications for such devices are growing rapidly. Any application that requires the high speed processing of analogue data can use DSP as a means of accomplishing this. These include "robotics, where visual sensors can be used to command motion; military electronics and airborne systems, which need to process large amounts of data from radar, camera and radio inputs into commands and signals that alert other systems or guide aircraft; image processing, where digital signal processing is used to clarify images for medical, industrial or defense applications; graphics processing, to create simulated images for use in such equipment as flight simulators; and telecommunications, where it is necessary to transform voice-grade digital and analogue signals for transmission by satellite or cable."(1) New generation microproces-

present

THE AEM4610
SUPERMODEM

A smart, stand-alone direct-connect serial modem 6809 microprocessor controlled - plugs into any RS232 (serial) port - fully software controlled (Hayes. compatible) - auto-answer, auto-dial, auto-disconnect - 300/300 and 1200175 bps CCITT V21 and V23 modes - IBM and Apple Viatel software available - automatic baud rate select - internal expansion slot - on-board speaker - plug-pack powered - 3 months warranty.
AEM4611 1200 bps full duplex add.0n now available!

AEM4610 SUPERMODEM

$\$ 349.17$ ex. tax, $\$ 399.00$ inc. tax. Fully built and tested.

AEM4611 V22 board

$\$ 173.58$ ex. tax, $\$ 199.00$ inc. tax. Fully built and tested. Kit less EFG7515 $\$ 119.00$. Kit complete - $\$ 169.00$ BANKCARD WELCOME
sors (in particular the TMS 32020) have chosen the DSP path to enable a large amount of parallel processing to take place and AMD (the "World Modem Chip" people) have produced a DSP variety of numeric co-processor, specifically designed for floating point operations (the AMD 29325). Here is a full list of these applications:

```
ZENEFAL PLRFOSE DSF
- Digital Filtering
- Correlation
- W2,odowzing
- Fast FourzerTransforme
- Adaptive filterang
- Waveform Generation
- Speerh processing
- Radar and Sonar processmgg
* Electronic countermeasures
* Seasmac processang
TELECOHMUNICATIONS
- Adaptive equalizers
- Spread-spectrum commumication
- Tamang generators
* Lata-encryptation & scramblung
- Signal modulgtıon/demodulation
- Digatal filterang
-Dヨtヨ compression
SPEECH PROCESSING
- Vomce store & forward
- Speech svinthesis & recognition
-volce amalysis
```

Figure 2. DSP applications are growing. ${ }^{(1)}$
In next month's column, I will continue this discussion with a talk on how DSP will be applied to the 'phone network, on a world-wide basis.

Supermodem updates

The Supermodem has been re-designed, with many improvements. These improvements are due largely to the requests that we have had from owner/readers, chiefly through the letters you send to this column. So the message should be loud and clear - keep the letters coming! The analogue front end section of the 7910 has been improved to give a better signal-to-noise ratio. This should assist with data transmission over noisy lines.
The Supermodem now has an on/off switch and four LEDs to indicate status. They are for monitoring of Power, DCD, TxD and RxD. The latter two are red/green bi-coloured LEDs, which are used to indicate the direction the data is flowing. That is, Originate or Answer mode. The power connector has also been improved after complaints by users that it occasionally falls out in use. The speaker circuit has been completely overhauled. The transistor driver circuit has been replaced with an LM386 op-amp and the 70 mm speaker has been replaced with a 30 mm miniature speaker that is now mounted directly on the motherboard. The line isolation transformer is now a low mass type that is more efficient, yet takes up less space on the board.
The DB25 connector has been replaced with a DB9 connector, as only six to seven wires are actually used for serial
data. The system EPROM has been upgraded to V10 and the EPROM itself is now a 27128 . One very interesting feature of the EPROM is that it now contains FORTH as the operating system and users will be able to write their own comms drivers in this language. The V10 EPROM also includes a power-on check of the system and indicates if a V. 22 expansion board is present or absent. The V. 22 board has also been modified - it now has far more tolerance to bad lines than previously.

Letters

We received a letter from Mr Tony Smith of Townsville, North Queensland, asking would we provide readers with details of his new BBS. We are only too pleased to do so! The BBS details are as follows:-

NAME:	Townsville RBBS
PHONE:	$(077) 741552$
AVAILABILITY:	7 days -24 hours
PROTOCOL:	300 bps, 8 data, 1 stop, no parity
ADDRESS:	c/- MSO 5769 , Townsville QId 4810
SYSOP:	Tony Smith
SUPPORTING:	Microbee, Amstrad, Generic CP/M, magaze contributions.

We wish Tony every success with his new BBS.

Novix FORTH chip

By the time you read this column, Chris Darling will have completed his initial trials of the Novix FORTH board pro-

totype. This means that a fully working version (and hence the project) are not too far off now. The project will be aimed at the person who enjoys (or would enjoy) building a lightning fast computer as a kit. Chris likes to use the aeroplane analogy when he describes the board. Which would you rather pilot, the Concorde or an F18A? Both are relatively fast, although the F18A is much faster than ANY of the existing passenger planes. The Concorde is designed for maximum ease of piloting, whilst the F18A . . . Need I say more?
The Novix FORTH board will be the equivalent of the F18A - fast and utilitarian. The project will certainly not suit those people who think of their IBM or Mac as an electronic security blanket and who never do anything except use tried and trusted packages on their machines. Of course, a fair degree of soldering skill (techniques have been covered in this magazine in earlier issues) will be required, as will the ability to perform simple diagnosis. The proposed project will be something similar to the microprocessor evaluation boards of the late 70 s -early-80s.

I can still remember my first computer - a SYM-1 made by Synertek Systems Inc (now defunct - the computer still works, so here's a case of a product outlasting the company that produced it). My SYM-1 taught me almost everything I know about micros (I learnt assembler and FORTH on the SYM) and it was a beaut machine for interfacing to instruments and experiments. The SYM gave a whole new meaning to the words "chip-frying basket." I had a 6522 VIA running at $110^{\circ} \mathrm{C}$ for two days, before I found out that I'd connected it to +12 V , instead of +5 . "Friends" of mine irreverently suggested that I should try placing distilled water ice-blocks on the VIA as a cooling mechanism.

The Novix FORTH board will only have a limited amount of software available, but with Eric Lindsay volunteering to run a newsletter for the project, software exchange should be well taken care of. Chris has even suggested that he will be able to make the unit "stand alone." Hz envisages using IBM-type accessories, such as keyboards, floppies and yes, even a hard disk!!!

As I also mentioned in last month's column, I have included a diagram of the actual manner in which the chip handles instructions. One or more FORTH words are combined into a single 16 -bit instruction, as shown in the diagram. The first four bits of the instruction detail the type of instruction (the Jump to Subroutine is encoded as a 0 in the highest of these four bits and the Return from Subroutine is encoded as a 1 in the same bit) - the remaining 12 bits control the ALU and its associated registers. This limits the processor to a 32 K address space, but this is not as limiting as it first appears. For one, the chip uses word addresses, not byte addresses (effectively doubling the address space) and secondly, FORTH was almost designed with program overlay techniques in mind. Combined with very high speed bank switching, memory address limitations are a minor point.

Figure 3. Details of the decoding of 16-bit instructions for the NC4000. ${ }^{(2)}$

The "T" register is the on-chip register for holding the value on the top of the stack and the " N " register is the on-chip register for holding the second top value on the data stack. This means that operations such as SWAP and DUP are VERY FAST to process.

The " T " register is one of the two inputs to the ALU. The other input is a multiplexed input, which places either the " N ", or the " N with carry", into the ALU, or alternatively, the value in the Multiplier-Divisor register (MD) or the Square Root (SR) register are placed in the ALU and the appropriate operation is performed.

Please let us hear your comments and suggestions for the Novix project. Write to Dial Up, PO Box 507, Wahroonga 2076 NSW. Till next month .. .

REFERENCES:

1. "Signal Processing: A Big Switch to Digital", Electronics, August 26, 1985, pp 42-46 (McGraw-Hill)
2. "Forth Language Shapes the Structure of a 10 MOPS Chip"', Electronic Design, March 21, 1985 (Hayden)
3. "Modem of the Future", AEM, April 1986, p.74.

IBM-APPLE-ĀMIGA MICRO-EDUCATIONALP/L

* Macintosh Library Dises

Full of the best of the available Public Domain Software
Send $6 \times 36 e$ stamps for postage.

* Add 810 for MAC 3.5" Disks

8/235 Darby Street
Neweastle 2300
(043) 264122

Australia's Largest Computer Mail Order Company

Using the AEM4504 low cost speech synthesiser on the

 BBC model B computer
Andrew Boon

Here's how to connect this popular project to the BBC model B so you can get it "talking" with a bit of software.

THERE ARE TWO WAYS in which the AEM4504 Speech

 Synthesiser (AEM, Feb. 1986) can be connected to a BBC Model B: the first is to configure the Speech Synthesiser to look like a printer socket; the second is to connect it to the User Port, in the same way as the Listening Post was connected (see AEM August 1986 for details). The first method makes programming very straightforward, simply turn the printer on with a VDU 2 command, and use a PRINT statement to send the allophone codes to the Synthesiser. The only drawback is, if you have a parallel printer, you can't use both printer and Synthesiser at the same time.Consequently, I decided to connect the Speech Synthesiser to the User Port. The connections between the AEM4504 interface and the User Port are shown in Table 1.

AEM4504	INTERFACE	BBC USER	PORT 20-WAY PLUG
1	$+5 \mathrm{~V}$	1	$+5 \mathrm{~V}$
2	-		
3	A6	16	PB5
4	A4	12	PB3
5	A2	8	PB1
6	-		
7	ARDY	4	CB2
8	OV	5	OV
9	SBY	2	CB1
10	-		
11	A1	6	PB0
12	A3	10	PB2
13	A5	14	PB4
14-16	-	14	PB4

TABLE 1: Interconnection Details

A 20 -wire flat ribbon cable should be fitted with a 20 -way insulation-displacement connector, to plug into the User Port. The individual wires of the cable should be separated at the other end, and those which are not used (i.e: 3, 7, 9, 11, 13, $15,17-20$) should be cut off short. I soldered the remaining wires directly into the printed circuit board. Make sure that you start counting from the correct side of the cable - see Figure 1 for details.

The two programs (Phrase Composer and Phrase Dictionary) have been re-written for the BBC Model B, and are reproduced in part only. All DATA statements are identical to the original program. The major difference is the inclusion of a machine language routine commencing at line 5000 in both programs. Calling the procedure 'init' at line 125 causes the assembly language section to be assembled, and 'setup' at line 126 initialises the User Port of the VIA to send

Figure 1.
data to the Speech Synthesiser - looking for a busy signal on CB1 and sending a strobe pulse on CB2 whenever a data word is stored in the output register.

To Edit a phrase in Phrase Composer, or to input a new sentence in Phrase Dictionary, an 'E' is required - not ESCAPE as in the original. Line 127 informs the printer that no characters are to be ignored. Line 245 of the Phrase Composer puts a copy of line 150 onto the screen before ending, so that the line can be edited using the cursor control and COPY keys, before re-running with an amended phrase.

The length of the Phrase Dictionary is such that the only Mode useable is Mode 7, i.e: the Teletex mode. In this mode some of the displayed characters are different from what is displayed on the keytops, e.g:] is displayed as a left arrow. Ignore what is displayed, EXCEPT for the apostrophe ('). If you are adding words to the dictionary, or typing in the original words, you must use the pound symbol (\mathcal{E}) in place of the apostrophe. For all other characters, the keytops are correct.

3480 DATA "q"."jq-"
3500 DATA "ram","gAZZP"
3510 DATA "rebecca", "Ns?GBH("
3510 DATA rebecca "roses. "NXwn"
3530 DATA "s", "GGWw"
3530 DATA s", "GGWh", "mouzBMsaT"
3540 DATA saturdar". waw BMSaT"
3550 DATA "sedtember", "wGI QG
3560 DATA "seven". "woGGcLK"
3570 DATA "seventeen". "WWGGGcLKMSK"
3580 DATA "stuenty", "wewGGeLKMS"
3590 DATA "sister". "wwLwMs"
3600 DATA "six","wLiw"
3610 DATA sixxtén", "wLiumSK"
3620 DATA "sixty", "wL (WMS"
3630 DATA son", "WOK"
3640 DATA "sound", "w'KU*
3650 DATA "south", "wew"
3660 DATA "space", "wITw"
3670 DATA statement". "WAOTAQPGKO"
3680 DATA "sunday" "muOOKBaT"
3690 DATA "suz","wOK"
3700 DATA "suzanne"."w-kZZK"
3710 DATA "t"."MS
3720 DATA $=$ talker". "MWHA is
3730 DATA "teleulston"."MGmLeLwLXK
3740 DATA "ten", "MGK"
3750 DATA "test". "MGwAO"
3760 DATA "testing", "MGWAQLI"
3770 DATA "the", "vX"
$37 B 0$ DATA "their"."JGGGO"
3790 DATA "there"."JGGGo"
3800 DATA "thirteen", "JsMSK"
$3 B 10$ DATA "thirty"."]sMS*
$3 B 20$ DATA "this"."RLw
$3 B 30$ DATA "thousind", "J.kZkU"
3B40 DATA "three","vgS"
$3 B 50$ DATA "thursday"."JtkAaT"
3B60 DATA "tım", MM ${ }^{-1}$
3870 DATA "time". "MFP
3 B80 DATA "to", "M--"
3890 DATA "today". "M-aT"
3900 DATA "tuesday". "Makal
3910 DATA "twelve"."MnG~Ac"
3920 DATA "twenty". MnGKMS*
3930 DATA "two", "M-."
3940 DATA "u"." Q_{-}"

3960 DATA "VIsion", "cLfLLXK"
3970 DATA "w", aOA2~_
3990 DATA "want", "nXKBQ"
3990 DATA wednesday"."nGGKKAat"
4000 OATA "what": "pXBQ"
4010 DATA "Who": "yど-"
4020 DATA "with", "nLu"
4030 DATA "x*""GGEIuW
4040 DATA "Y* "nF"
4050 DATA "Y*ar" "Y:"
4060 DATA "Yes". "YGum"
4070 DATA YOU : Y \vec{Y}_{z}.
4080 Data Your
4100 Data ${ }^{2}$ zero
4100 DATA zero"
4110 DATA dataend": zzzz
taend", "zzzz* must be last data line
4130 END OF ORIGINAL PROGRAM LISTING
5000 REM Assemble Machine Code Routines.
5020 DIM P 200
5020 DIM $0 \% 200$
5030 FOR OD $\%=0$ TO 2 STEP 2
5040 PARF $\$ 600$: REM Parameter Block.
5050 REM User Zero Page area.
SIBadre\&Bo:str adreag2:length=\&84
5070 OSBYTE=\&FFF4:RDIO=\$96:WRIO=\$97:REM OSBYTE Commands.
5120
5130
OPT opt\%

$$
\begin{aligned}
& \text { LDA PAR } \\
& \text { CMP }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CMP } \\
& \text { BEQ ok } \\
& \text { BRK }
\end{aligned}
$$

jer

JP\%/=45: REM Error Number
$P \%=P \%+1$
s(P\%)="Synthtic Speech Parameters*: REM Error Message.
P\%=P\% \& LEN ($\$ \mathrm{P} \%$)
© OPT ODET
BRK
. OK BRK PAR+3
CMP W129
BNE Prror \Branch if not.
LDA PAR+1 ISet Zero Page for indexed indirect addressing.
STA SIBadr
STA SIBadr +1
LDY MO
STA stradr
INY
LDA (SIBadr), Y
STA stradrti
LDY W3 (SIBadr), Y
STA length
LDA MRDIO
LDX WUIFR
JSR OSBYTE
TYA
AND M\& 10
BEQ sayit \Branch if not ready.
OEC lingth
BMI allsald
LDY wo
LDA (stradr), y
TAY
LDA HWRIO
LOX WUORB
JSR OSBYTE
INC stradr
ENE sayit
INC stradr*
allsaid PTS
.setup
LDA WURIO
LOX WDDRE
LOY M\&FF
JSF OSBYTE
LOA WROIO
JSR OSBYTE
JSR OSBYTE
ANO W\&OF
ORA \#\&BO
TAY
LCA HWRIO
LDX \#PCR
JSR OSBYTE
LDY MO
LDX W.OR
LDX W:CRR
RTS

- from page 82

All file transfers I attempted worked without a hitch. I always use CRC error checking where possible and this feature of Mirror was a definite advantage over checksum error checking. File transfer was accomplished at 1200 bps full duplex and the selection of files contained both ASCII and binary executable files. No errors at all were encountered during the transmission, meaning that no blocks had to be re-transmitted.
As a fair summary, I would have to say that Mirror outshines Cross-Talk, showing improvement over that "standard" in virtually every respect. If Mirror and Cross-Talk were the same price, I would still prefer Mirror. However, at $\$ 50$, Mirror is around than one-third the price of Cross-Talk
As a comms program I have no hesitation in recommending Mirror. At the price, I would probably even consider using it in preference to my favourite comms program, Procomm (by Shareware), simply because of the high quality documentation included.
The review copy (and the subsequent Beta version) was supplied by Delta Computer Systems, 13/83 George Street, Parramatta 2150 NSW. (02)633 4055.

ADMARKMT

AMSTRAD SOFTWARE; bill payer and expense manager both on disk. Cost $\$ 43$ ea, sell for $\$ 25$ ea or both for $\$ 40$. Andrew, 58 Beaver St. East Malvern, 3145 Vic. Ph. (03) 211-2669.

RS232 TERMINAL, green screen, 24 lines by 80 characters, detachable keyboard $\$ 125$. David Lincoln, Gosford NSW. (043) 284559.

MEMORY BOARDS 32K, \$12.00 each. David Lincoln, Gosford NSW (043) 284559.

AMSTRAD CPC programs; Shareplay - realtime stockmarket simulation, colour graphics and sound. Tunesmith - create BASIC sound routines as complete programs, no music or sound command knowledge needed. Wordseek - puzzle generator, educ. and fun, joystick compatible. Disk versions \$25 ea. Tape $\$ 15$ ea. All three: on disk $\$ 35$, on tape $\$ 25$. Send SAE for more. V. Greaves PO Box 1942, Shepparton 3630 Vic.

FIX-A-KIT; repair/build your AEM/ETI/EA project for $\$ 10$ per hour (parts, p\&p extra). No Charge for kits that can't be repaired (except p\&p). Cliff (02) 757-4675 or Steve (02) 6335897.

CONTACT wanted with TRS-80/Amstrad own. ers; programs, user's group services available. Write: Craig Tollis, P.O. Box 584, Port Macquarie, 2444.

FOR SALE. Siemens 100 teleprinter wired for use as a computer printer. Reliable and guaranteed; \$85. Frank Rees, 27 King St. Boort 3537, Vic.
VZ200/300 INFORMATION. The largest user group in the South Pacific area. Le VZ 200/300 OOP. Send S.A.S.E. to Mr. D'Alton, 39 Agnes St. Toowong 4066, Qld. Ph. (07) 371-3707.
VZ200/300 games tape packed with ten games of my own design. Send $\$ 20$ for the bargain tape (includes p\&p) to: R. Lyon, Jamieson post office 3723. Ph. (057) 770-554.

BETTER RADIO/TV RECEPTION by Ashok Nallawalla, Arthur T. Cushen MBE and Bryan D. Clark. Ashley Publishing, 1986. Soft covers, $\mathbf{1 3 0}$ pages, $210 \times 280 \mathrm{~mm}$. ISBN $0958853207 . \$ 19.95$ inc. postage in Australia. Review copy from the publishers, PO Box 539, Werribee Vic. 3030.
SUBTITLED "A Non-technical Approach", this book ". . . aims to satisfy the needs of the listener who merely wishes to listen to a distant radio station reliably, as well as the enthusiast who wants to develop listening into a major hobby." I would have to say at the outset that the authors have largely achieved that goal.

All three authors are well-known in shortwave listening and SW broadcasting circles and their collective knowledge and experience is reflected in the breadth of coverage, detail and organisation of the book. If shortwave listening is thought of by some as "old hat", then this publication should entirely dispel that notion. Even if you only give minimal credence to Marshall McLuhan's "global village" concept where the world's scattered communities are glued together by global communications technology, then it is clear that shortwave broadcasting and communications still plays the major role for most of the world's population. And believe me, only a few hours spent listening to the international SW broadcasters will introduce you to a view of world events quite different to that served up by the local radio and TV news networks!

The book is organised in seven chapters: Radio/Television Reception - An Overview, The Broadcasting Bands, Receivers, Antennas, Advanced Topics, The Broadcasters, and The Hobby of Radio DXing. Four Appendices cover Log Sheets, Metrics for Radio/TV, Time Difference Chart and Useful Addresses. A comprehensive index is included. The authors have sensibly taken an 'international' approach and the material is not restricted to this part of the world.

Fundamental concepts of radio receivers, radio transmission, propagation and antennas is covered in a semi-technical way, written at such a level as to be understandable by anyone with a modicum of intelligence and the motivation to persevere. However, the lan-
guage is a little "loose" in places, and simplification makes some material misleading, I feel. The occasional point is wrong. On page 75 , we are told the corner reflector antenna is a version of the Yagi. However, such examples appear to be few and, as a whole, the material is well-researched and well-written in a clear style with technical terms and jargon introduced in a natural manner and clearly explained.

Television is given the least coverage, only being touched on here and there in a few chapters, the greater emphasis being placed on mediumwave and shortwave reception. Good advice on purchasing equipment is included, along with practical advice on setting yourself up and how to go about getting the most from your interest. References to other literature - books and magazines along with helpful organisations is covered in considerable detail, for the authors clearly recognise that there can be no one source of information or advice for such a diverse interest; one appendix lists "useful addresses", covering books, magazines, organisations, manufacturers and major retailers. All very useful, for newcomer and 'old hand' alike. For the record, the authors included a very favourable review of AEM, along with a variety of other publications, but I trust my remarks will not be seen as having been influenced by that.
While the use of computers in the hobby is introduced in Chapter 5, I was disappointed the authors didn't make more of the opportunity to detail how a personal computer can be used to decode the non-voice transmissions to be found littering the high frequency bands. Mention is made that computers can be used for such purposes, but it's left at that. Well. I suppose you have to limit the scope of the book somewhere.

The book was produced on a wordprocessor and 'typeset' using a near letter quality (NLQ) dot matrix printer. Most illustrations were obviously produced using a graphics package and dot matrix printer and a few suffer a little from the inevitable inadequacies. The conventional photographic illustrations included are generally of a high standard and well chosen. The cóver is interesting and clearly conveys what the book's about. It contains a little 'joke' which had us intrigued until it was revealed by closer inspection, but you'll have to see the book for yourself. Clearly, the publication is a labour of love and it shows through. When I took up shortwave listening as a high school student, it was just the sort of book I yearned for, but never found. According to Radio Australia, it is the first such book published in Australia and I would agree with that.

All in all, Better Radio/TV Reception is a fine effort from a dedicated team of enthusiasts. If you're at all interested in shortwave listening, mediumwave DXing and related interests, I would recommend it as a necessary inclusion in your library.

- Roger Harrison

UV MATERIALS
3M Scotchcal Photosensitlve
Pock Price
$250 \times 300 \mathrm{~mm} 300 \times 600 \mathrm{~mm}$

8001	Red/Aluminlum	$\$ 70.15$	$\$ 80.75$
8005	Block/Aluminium	$\$ 70.15$	$\$ 80.75$
8007	Reversal fllm	$\$ 38.20$	$\$ 51.40$
8009	Blue/Aluminlum	$\$ 70.15$	$\$ 80.75$
8011	Red/Whlie	$\$ 83.20$	$\$ 72.70$
8013	Black/Yellow	$\$ 63.20$	$\$ 72.70$
8015	Black/White	$\$ 83.20$	$\$ 72.70$
8016	Blue/Whlte	$\$ 83.20$	$\$ 72.70$
8018	Green/White	$\$ 83.20$	$\$ 72.70$
8030	Black/Gold	$\$ 88.90$	$\$ 108.00$
8080	Black/Sllver	$\$ 83.20$	$\$ 72.70$

UV PROCESSING EQUIPMENT KALEX LIGHt bOX

- Autoreset Timer
- 2 Level Exposure
- Timing Light
- Instant Light Up
- Safely Micro Switch
- Exposure to $22 \mathrm{in} \times 1 \mathrm{lin}$

$+\mathbf{S T}$
KALEX "PORTU-VEE"
- UV Light Box
- Fully Portable
- Exposure to $10 \mathrm{in} \times 6 \mathrm{in}$

PCB PROCESSING

KALEX ETCH TANK

- Two Compartment
- Heater
- Recirculation
(by Magnetic Pump)
- Two Level Rack • Lid
\$595.00
$+\mathbf{S T}$

RISTON 3400		
PCB MATERIAL		
SIZE	SINGLE	DOUBLE
INCHES	SIDED	SIDED
36×24	$\$ 90.00$	$\$ 117.00$
24×18	$\$ 45.00$	$\$ 58.50$
18×12	$\$ 22.50$	$\$ 29.25$
12×12	$\$ 15.00$	$\$ 19.50$
12×6	$\$ 8.00$	$\$ 10.00$

All prices plus sates 'ax "t apphcable

40 Wallis Ave Easl Ivanhoe 3079 (03) 4973422 4973034 Telex AA 37678
ELECTRONIC COMPONENTS \& ACCESSORIES - SPECIALIST SCHOOL SUPPLIERS

AEM PRINTED CIRCUIT SERVICE

Our printed circuit boards are all manufactured on quality fibreglass substrate and feature rolled-tin over copper tracks and silk-screened component overlays.

AEM1500 METRONOME

A simple. low-cost project with variable beat from 'presto' to 'largo' Operates from 9 V battery. (Aug. ${ }^{\circ} 85$) $\$ 4.70$
2500 AUDIO OSCILLATOR
A simple sine/square signal generator for the bench. It covers 10100 kHz and has output amplitude ranges from 30 mV to 3 V . fully variable. Separate sine and square outputs. (Dec. '85) $\$ 9.65$
2600 PEAK RF POWER METER This simple. low-cost project features a 10-LED bar display and can be made for power ranges from 5 W peak to 400 W peak. (April '86)
$\$ 10.50$
AEM3500 LISTENING POST
Our most popular project. by far! It decodes the audio from a SW receiver and. with soltware, allows your computer (Apple II/BBC/C64/Microbee) to decode RTTY. FAX and Morse (July '85)
$\$ 12.20$
3502 SIGNAL-OPERATED CASSETTE CONTROLLER Just the thing for taping signats picked up on your SW receiver or scanner while you can't attend. Simple to build. powers from 10-15 V. (Mar. '86) $\$ 9.20$

4500 MICROTRAINER

Take the mystery out of micros. A great project for learning the 'guts' of
microprocessing, without having to build a microcomputer (Sept '85)
$\$ 28.50$
4501 8-CHANNEL RELAY
INTERFACE FOR COMPUTERS
Get your comptuter to control
something! Hooks up to 8 -bit parallei port or data bus. ('Bee - Oct '85. C64 - Sept '86).
$\$ 13.00$
4502 REAL TIME CLOCK
This project plugs into the Microbee's parallel port and gives accurate date/time etc. Battery-backed. (Nov ${ }^{\circ} 85$) $\$ 10.50$
4504 LOW-COST SPEECH SYNTHESISER
This simple to build project employs the GI speech chip SPO256-AL2 which allows you to put together 'word parts' 10 make electronic speech. It employs 8 -bit parallet interfacing. ('Bee interface - Feb. '86, with data sheet: C64 interface - July '86)

$\$ 17.30$

5501 NEG-ION GENERATOR
Clear the air! Our negative ion generator provides around 8 kV output Simple and low-cost. (Sept '85) $\$ 18.35$

AEM6500 MOSFET AMP MODULE A 'universal' amp module using the Hitachi MOSFETs and able to deliver 60 W with one pair or 120 W with iwo. into 8 ohms. (July "85)
$\$ 9.70$
6501 4-INPUT MIXER
A versatile mixer/preamp for a guitar amp or slage amp. Select resistors to select the input impedance of the channels (Sept. '85) $\$ 20.40$

6503 ACTIVE CROSSOVER
Here's a high pertormance four channel (use as many as you need) active crossover that's just right for that active speaker project! (Feb. "86) \$34.40

9500 BEAT-TRIGGERED STROBE
Just the thing for discos and parties! Project can act as a manually variable strobe or, coupled to an audio source flash in time with the beat. (July '85) $\$ 11.30$

HOW TO ORDER

Order pc boards by the project number and title - All prices include post and handling - New Zealand purchasers add $\$ 1.00$ to these prices - Photostats of the pertinent articles cost $\$ 4.00$ each, post paid - With out-of-stock boards there may be a delay in delivery.

All cheques or money orders should be made payable to Australian Electronics Monthly.

Australian Electronics Monthly

PO Box 507, WAHROONGA 2076 NSW (02)487 1207.

PLEDGE YOUR PLASTIC!
Bankcard, Mastercard,
Visa \& American Express accepted.
You can buy the boards at our offices if you wish, at any time during business hours. We're located at the Fox Valley Centre, Cnr Fox Valley Rd and Kiogle St, Wahroonga NSW. The entrance is in Kiogle St.

literature review

RADIO HANDBOOK,Twenty-Third Edition, by William I. Orr W6SAI, Howard Sams \& Co., 1986. Hard covers, 28 chapters, 195 x 254 mm. ISBN: 0672224240 . Review copy from the distributors, Pitman Publishing, Private Bag 19, South Melbourne 3205 Vic. $\$ 75.00 \mathrm{rrp}$.
WILLIAM I. ORR is indeed a prodigious author of books pertaining to radio communications, but the Radio Handbook would be one text likely to be found on the "must have" list of any enthusiast's library. I still have a copy which I purchased in the early seventies and to which I make frequent reference. After reviewing the latest edition, I realise that it's about time I updated.

Intended as a "working text" as well as a reference book, the Radio Handbook contains information on almost every aspect of radio
theory and practice within it's twenty eight chapters. For those who are studying for an amateur license examination or just need to refresh their memory. the introductory chapters provide full details of the fundamental principles. The references to amateur bands and licensing conditions are written for the American market and much of the information will not apply in Australia. Don't let this put you off, radio theory and practice is the same the world over so the majority of the contents are applicable wherever you live.
The Radio handbook is set out in logical order commencing with an introductory chapter on the hobby of amateur radio. Progressing through the fundamentals of electrical and electronic theory, the book continues with chapters covering transmission modes, portable operation, interference, receiving and transmitting techniques and equipment and propagation. The two chapters on constructing HF and VHF power amplifiers are very thorough and give complete constructional details for a range of high power amplifiers. How about a two kilowatt job on seventy centimeters! The book concludes with chapters covering antennae, test equipment, mathematics and calculations and miscellaneous data.
Whilst a good coverage of more familiar technology is provided (yes, there is a chapter on valves!!, it is a little disappointing to find only a limited description of some newer modes. Packet radio for example, whilst being one of the largest growth areas in amateur radio, only rates a few paragraphs. I realise it is difficult to give in-depth descriptions of every aspect of the radio hobby in a single volume, but perhaps it would have been a good
idea to provide some reference to further reading for those readers wanting to know more. To be perfectly fair, some aspects such as packet have developed very quickly and it does take a lot of time to produce a book such as this.

Another area which seems a little lacking is in the field of solid-state design and construction, particularly with regard to power amplifier design. I can appreciate that many amateurs would be interested in the design and construction of kilowatt level power amplifiers based on valve technology, but not all countries allow their amateurs to run that sort of power, nor can a large number afford it even where it is permitted. It would have been nice to see some designs for intermediate level power amplifiers, particularly for VHF and UHF.

Despite these minor shortcomings, the new twenty third edition of the Radio Handbook will be just as much a "bible" to many amateurs as my old version has been to me. This is not the sort of book which will sit on your shelf gathering dust. In fact, if you're anything like me, you will end up with margins full of scrawled notes and the occasional page singed by the soldering iron!
Regardless of where your interest in the hobby of amateur radio lies, you will find it invaluable. No book ever written can possibly provide you with all the details on every aspect of a subject as complex and wide ranging as radio communications, but the Radio Handbook goes a long way towards fulfilling that goal. No amateur's library could be considered complete without a copy.

- Andrew Keir

THIS WORMD WIDS HOBBY! AMATISUR RADO ARE YOU A MEMBER OF THE WIA?

Why not become a radio amateur by joining the Wireless Institute of Australia? The Institute can assist and advise you in how to obtain a Department of Communications licence, which will allow you to communicate with others having similar interests in Australia and throughout the world.

The wireless institute of Australia is a non-profit society fourtured the interests its inception it has nurteurs by liaison at al
of all Australian Governmental levels. Apart from many other benenith plastic member. you receive a magazine called encapsulated 64 padio your letter box each Act vity, to name but ans and vha Solar tom few. IVHF month.

SUPPORT YOUR HOBBY - become a member!

For further information, including a sample magazine, write to:

DADEX VOb. 2 1986089

MAGAZINE PROJECTS
July '86 AEM3503 Satellite Fax picture decoder 68
AEM6000 'Ultra-fidelity' MOSFET Power Amp Module, Part 2 56
AEM4505 'Code-to-speech' Synthesiser, Part 2 49
AEM4610 Super Modem, Part 4 40
Aug. '86 AEM6504 Power Amp 'Status Monitor 37
AEM9501 Dual Rail Power Supply Module 51
AEM6000'Ultra-fidelity mosfet PowerAmp, Part3 44
Sept '86 AEM4605 Super Simple Modem 44
AEM1501 Three-Chime Doorbell 40
AEM6000 Stereo Power Amp 50
Oct. ‘86 AEM8501 Car Alarm 85
AEM9502 Electric Fence Controlle 90
AEM5506 Lamp Saver 93
AEM6013 Building the Vifa 3-Way Loudspeakers 97
Nov. '86 AEM2501 Pink/White Noise Generator 69
AEM9502 Variable Output Electric Fence 74
Dec. '86 AEM9503 Rapid 12 Vdc NiCad Charger 68
AEM9504 Flash-triggered 'Slave' Strobe 72
AEM4506 Computer Frequency Counter Interface 80
Jan. '87 AEM6506 Workhouse Audio Power Amp 68
AEM2502 Digital Data Status/Logic Probe 76
AEM2505 RF dBm/Millivolt meter, Part 1 110
Feb. '87 AEM4611 V. 22 Expansion Board fo the Supermodem 92
AEM2510 Workbench Power Supply 68
AEM2505 RF dBm/Millivolt Meter, Part 2 106
Mar. '87 AEM2505 RF dBm/mV Meter 76
AEM3504 Computer Interface for Yaesu Receivers 68
AEM4611 V. 22 Board for the Supermodem 88
Apr. ‘87 AEM6005 100 W 'U-F' Topology MOSFET Amp 57
AEM2000 A 'Lab. Standard' 0-55 V 10 A Power
53
53 80
Supply, Part 1
Supply, Part 1
May '87 AEM6005 Upgrade Your Tilbrook 5000 Amp 56
AEM3510 Simple RTTY Modulator 64
AEM2000 Lab. Standard Power Supply, Part 2 68
June '87 AEM4622 Stand-alone V. 22 Modem 66
AEM6508 Clipping and Fault Indicator 62
AEM2000 Lab. Standard Power Supply, Part 3 57
STAR PROJECTS
July ' $861 \mathrm{GHz}, 8$-digit Frequency Counter 82
Aug.'86 'Modem Coupler' for Commodore 64s and 128s 70
Oct. '86 Field Strength Meter 119
Dec. '86 70cm 50 W All-mode Booster Amplifier 100
Feb. '87 Extended Pulse Burn' Electronic Ignition 74
Mar. '87 'PBUFF' - 256K Centronics-type Printer Buffer 92
Apr. '87 RF Attenuator Box 92
BENCHBOOK
July '86 94
Aug. ' 86 97
Sep. '86 97
Oct. '86 127
Nov. ' 86 79
Dec. '86 113
Jan. 87 102
Feb. ' 87 81
Apr. '87 74
May '87 94
COMMUNICATIONS
July '86 Simple Antennas for Weather Satellite Reception 78
Aug. '86 Radio Communicators Guide to the Ionosphere Part 8 77
Using the Listening Post on the BBC-B Computer 88
Sep. ‘86 Assembling Common RF Connectors 94
Oct. ' 86 Build an RF Field Strength Meter 119
Nov. '86 The Ionosphere and Radio Propagation - An Update 16 16
Dec. ' 86 All-mode 50 W Amp for 70 cm 100
Jan. ' 87 The Last Big Solar Maximum 106
Feb.' 87 Mobile Communications - on the move, Part 1 11
Mar. '87 Radio Communicators Guide to the Ionosphere, Part 9 107
Mobile Communications, Part 2 15
Apr. '87 Weather FAX and RTTY News Stations on Shortwave An RF Attenuator Box 92
May. '87 Menu Selectable CW Message Gen. Using the Microbee 78
June '87 A Guide to Digital Communications, Part 1 84
COMPUTING
July '86 Commodore Codex 38
Aug. '86 Review: Microbee 'Premium 66
Sep. '86 Adapting the AEM4501 Relay Interface to your C64/128 77
Add-on Keyboard for the Apple IIt 82
Screen Handling on the VZ-200/300, Part 1 89
Review: A Brace Of Modems 86
Oct. '86 Review: Protel PCB 106
Screen Handling on the VZ200/300, Part 2 110
Dial Up 116
Nov. ‘86 The Amstradder 85
Dial Up 87
Commodore Codex 89
Dec. '86 Assembling a PC-compatible 86
Memory Mapping and Computer Number Systems 90
Review: The Impact Laser Printer 96
Dial Up 98
Jan. '87 BeeBuzz 90
Commodore Codex 85
Amstradder 89
Dial Up) 82
Feb. '87 Review: Multitech 700 PC 96
Mar. '87 Dial Up 86
Music, Sound and the Computer Age 100
Apr. '87 What's New in Modems? 8
Dial Up 85
Amstradder 84
Commodore Codex 87
BeeBuzz 82
May. '87 VZ-Epson Printer Patch, Part 1 86
Dial Up 89
June '87 VZ-Epson Printer Patch, Part 2 74
BeeBuzz 76
Dial Up 80
CONSUMER
July '86 Perth Show Preview 17
Aug. '86 Chicago CES 22
Sep. '86 The 'Imaging Wars' 10
Oct. '86 Perth Electronics Show Roundup 31
Nov. '86 Imaging Wars - Reports from the Fronts 26
Hi-Fi Review: Marantz PM-94 30
Dec.'86 Home Entertainment and Consumer Electronics, Part 1 12
an. '87 Home Entertainment and Consumer Electronics 25
Feb. '87 Hi-Fi Review - a Perfect Match 28
Mar. '87 Las Vegas CE Show 30
Apr. '87 Consumer to Win in DAT Versus CD Battle 76
May. '87 Recent Developments in Bass Speaker Designs 16
June '87 DAT Day Has Come 20
DATA SHEETS
Aug. '86 National JA Relays 62
Sep. '86 Telfunken U450B 3-Tone Ringer 59
Nov. '86 EFG7515 V. 22 Modem Chip 79
Jan. '87 LM832 DNR Chip 98
June '87 XR2206 92
EFG7515 (repeated) 95July '86 Modern Fixed Capacitors, Part 1 11
Aug. ‘86 Profile - Dick Smith Electronics 55
Sep. ' 86 Relays 24
Oct. ' 86 CAD - Relieving the Design Drudgery 13
Nov.' 86 The Ionosphere and Radio Propagation - an Update 16
Dec.'86 Home Entertainment and Consumer Electronics, Part 1 12
Jan. '87 Technology and the America's Cup 8
Feb. '87 Advances in Loudspeaker Technology 21
Mar. '87 Telecom's Mobilenet - A User's Review 10
Apr. ' 87 So What's New in Modems? 8
May. ' 87 So You Want to Buy a Multimeter? 10
June ' 87 Hardware Enhancements for PCs and Compatibles 10
NEWS \& GENERAL
July '86 Ariane rocket crash 9
Sony releases CD Walkman 15 15
Philips' radical new CRO 19
Microbee plug their '16-bit product hole' 37
The Eager Eagle 55
Low-cost local radio FAX 67
Aug. '86 Satellites \& Lord Howe Is 9
New NAD cassette deck 21
New Fluke DMM 27
The un-vanished thermistor 35
TDK get into floppies 64
Skitube communications 76
Sep. '86 Schools' radio data net 8
Updating Compu-fi 19
Philips' hybrid mic amp IC 22
Piezo transducers 39
Datacraft export to Japan 74
New line of scanners 93
Oct. '86 Personal opinion 122
Conjure magic 8
Technics' digital piano 30
In-circuit test instrument 20
Jaycar Stocking Magnavox 83
Where're the compatibles? 102
Emergency services' radio link 118
Nov. '86 Heathkit arrives at DSE 6
CD Storage solution 25
Sourcing electric fence bits 67
'SCRAM' keeps traffic moving 83
Versa Tuner II 91
Low-cost generator 95
Dec. '86 Electronics export drive 6
New National camcorder 20
New Tektronix CRO 24
Low loss coax bargain 67
Pocket RS232/V24 tester 78
Wide range noise bridge 99
Jan. '87 Optic fibre links south to north 7
Flat panel speakers 23
Range of poly capacitors 67
Tunneling transistor 92
New 16/32-bit micro tester 81
Philips study 104
Feb. '87 Electric vehicle races 6
KEF's new flagship 18
Finding RF chokes 67
Upgraded power supplies 83
Atari goes it's own way 90
Amateur exam devolvement 99
Mar. ' 87 Control the bugs 6
Profile - Statronics 26
Cinema sound to surround 29
Retailer supports Elektor kits 67
Intel's new V22 chip set 85
New audio connector 99
Icom's new 'Micro-2' HT 106
Apr. '87 Brisbane-Adelaide optic fibre trunk 6
Audio Show formula to watch 75
Scope for wicked work 31
Locally made XT/AT boards 79
Pro amp is local product 17
Sunspots bottom-out 91
May. '87 SQUIDs raise temps 6
Palm-sized copier
18
Anitech to sell Kenwood54
New spectrum analyser 77
Roland graphics boards 85
June ' 87 New courses launched 6
TDK updates its range 18
New low-cost generator 22
Two new Jaycar stores 56
Uproar over Novice 2 m proposal 83
Speedy mono graphics card 73
PRACTICALITIES
July ' 86 Simple Antennas for Weather Satellite Reception 78
Sep.'86 Modular Music Synth., Part 1 60
Dec. '86 Modular Music Synth., Part 2 29
an. ' 87 Modular Music Synth., Part 3 94
Apr. ‘87 Modular Music Synth., Part 4 65
REVIEWS
Aug. '86 Microbee 'Premium' 66
Sep. '86 Rosser Modems 86
Oct. '86 PROTEL-PCB CAD Package 106
Nov.'86 Marantz PM-94 amp 30
Dec. '87 Bloctronics - Electronic 'Lego' 22
Impact Laser Printer 96
Feb. '87 A Perfect Match - Nakamichi/B\&W 28
Multitech Plus 700 96
Mar. '87 Telecom's Mobilenet 24
Apr. 87 Philips PM 3055 oscilloscope 31
TECHNICAL
July '86 Soldering in the Electronics Industry 23
Modern Fixed Capacitors, Part 1 11
Aug. '86 Modern Fixed Capacitors, Part 2 58
Sep. '86 Relays 24
Modern Fixed Capacitors, Part 3 66
Project Modems Update 88
Oct. '86 Relays, Part 2 22
Nov. ‘86 Inside the Laser Printer 16
Jan. '87 Mikes on Stage, Part 1 85
Mar. '87 Understanding Frequency/Period Counters 104
Apr. '87 Understanding Switched-Mode Power Supplies 19
Adapting the EPB Ignition to Electronic Points 71
May '87 Recent Developments in Silicon Sensors 20
NOTES \& ERRATA
Nov. '86 15
Dec. '86 , 65
Feb. '87 66
Mar. 8750

ELEKTOR IN AEM - PROJECTS

Oct. ‘86 Serial Digitiser 35
Headphone Amp 40
Satellite Loudspeakers 42
Loudspeaker Impedance Meter 47
DC-Operated Battery Charger 54
RMS-dc Converter 61
Rodent Deterrent 62
VHF Test Oscillator 68
Heartbeat Monitor 74
PCBs 80
Nov. '86 Guitar Equaliser 34
VHF Filters 38
VHF Amp. 43
Superregenerative SW Receiver 46
Darkroom Exposure Meter 48
Atari Colour Video Interface 50
Oven-compensated Oscillator 62
Dec. '86 Barometer/Altimeter 34
Car Radio Alarm 49
Octave Generator for Guitarists 55
Speech Processor with Background Suppression 60
Guitar Fuzz Unit 61
Jan. '87 IR Remote Switch 34
Electronic Balance 38
Car Lights Monitor 46
True RMS Meter 48
Temperature Probe 65
Feb. ‘87 Portable Mixer\# - 1 34
Portable Mixer\# - 2 49
Portable Mixer\# - 3 54
Single-Trace to Dual-Trace CRO Converter 59
PCBs 48. 66
Mar. ‘87 VLF Add-on Unit for Oscilloscopes 34
Electronic Rain Gauge 39
Mobile Studio Unit 61
Apr. '87 Valve Hi-Fi Preamp 34
Bi-Phaser FX Unit 40
SCART Video Adaptor for the IBM PC 43
Stereo VU Meter 45
May. ‘87 Motional Feedback in Loudspeakers 34
Valve Hi-Fi Preamp. Part 2 40
Facsimile Interface 45
Linkwitz Crossovers 51
Jun. '87 Midi Signal Redistribution Unit 34
Midi \& Disk interface for the Atari ST 38
Metal Detector 40
Capacitance Meter Project 45
PCBs 52
ELEKTOR IN AEM - ARTICLES
Oct. '86 Loudspeaker Impedance Correction 47
Inductors in Practice 65
RF Circuit Design 68
Electric Propulsion for Satellites 71
Storage Oscilloscopes 76
Nov. ' 86 How Much Longer for Silicon? 56
Magnetic Field Sensors 64
Dec. '86 Sound Sampling \& Digital Synthesis 50
Reproduction Problems with Nov? 62
The Battle for Super Television 63
PCBs 66
Jan. '87 Watchdog Timer 42
Analogue Wattmeter 43
Filtering a Computer Connector 47
Phonebell Simulator 47
Feb. '87 Loudspeaker Efficiency 62
Mar. '87 The Story of Cossor Radar 42
Apr. '87 Field Effect Optocoupler 48
May. '87 Motional Feedback in Loudspeakers 34
Electronic Potentiometers 37
June '87 Introduction to dc Power Supplies 48
Secondary Breakdown in Power Transistors 53

- from page 14

CB celebrates ten (legal) years.

of adverts. A typical CB Australia cover featured CB radios - CB Action prefered bikini-clad models with mike in hand.

In the long run, CB Australia closed in early 1979. CB Action continued until 1981, when it too became a casualty of the shrinking market and lack of enthusiasm.
But if the big boys couldn't do it, what was to prevent smaller, independent concerns from having a go? Ex-Action editor Graham Pockett was approached by a low-profile Melbourne publisher to start a new mag. Pockett quickly reunited the old team from CBA, added a few new twists, and CB Focus was born. Despite wide acceptance and growing sales, the publisher pulled out and CBF went out of focus in mid-1982.
Then followed a period when the only CB publications on the newstand came from England, where CB was undergoing a boom to parallel our own 1977-78 peak. It was a ludicrous situation - the gear was different, the mode and frequencies were different ($27.6-28 \mathrm{MHzFM}$), and the UK scene held no relevance to Australia.
CB Action made a come-back as a quarterly in 1983, under the guidance of original editor Pete Smith. Again, the essence of the old CBA was still there - many of the same writers, advertisers, columnists - and by popular demand CBA went bi-monthly in 1986.
Writers for the CB magazines have been through the gamut - in demand, out of action, back in demand, idolised by some and scorned as 'know-alls' by others. So today, after the magazine boom from 1977-1979 - where are the disciples who wrote our holy books?

Roger Harison - editor of CB Australia and Electronics Today International, now Editor/Publisher of this very mag!

Pete Smith - original editor of CB Action, now editor of CBA once again; also editor and/or advertising manager for a dozen other publications of Newspress, including Lets Travel and Amateur Radio Action.

Graham Pockett - editor of CB Action, thence editor CB Focus; still in touch with the CB scene, but mostly involved in the transport industry.

Brendan Akhurst \& famed CB Australia cartoonist, was also a policeman at the time! Now full-time cartoonist.

Dan Bartley - created the CBing truckie Terry Walker, who appeared in an immensely popular series of short stories in CB Action and CB Focus. Passed away July 1983.

Billy Payne - National Director of CREST and regular contributor to CB Australia - now a journalist/reporter in TV and radio.

Mike Hurst-Meyers - National Director of NCRA (National Citizens Radio Association) and regular contributor to $C B$ Australia - currently works in computer programming and software.

Leon Senior - original UHF columnist and expert with CB Action and CB Focus; still very active on 477 MHz , vicepresident of Melbourne's UHF Omega Radio Club, works in electronics componentry supply.

David Flynn - regular contributor for CB Action and CB Focus - still active with CB Action, and other local and overseas magazines; publicity officer in TV industry.

SUBSCRIBE! TO AUSTRALIA'S TOP ELECTRONICS JOURNAL

Australia's only independent technical electronics journäl, providing a balanced coverage of the fields of audio, broadcasting, pro sound, video, communications, computing, engineering and technology.

For only $\$ 49.95$ for 12 issues, you get:

- 5 to 10 projects to build each month
- the best trom our Australian designers and the cream from the British Elektor.
- Monthly Project Buyers Guide
- each issue we detail where you can get the components featured in our projects as well as which firms are stocking kits of our projects.
- Telephone technical enquiries
- yes, you can speak to the editorial team direct and have your queries answered. We don't live in an ivory tower!
- Hi-Fi, sound and video news, reviews \& features
- independent, professionally conducted reviews from Robert Fizell Acoustics; features from well-known writers like Dennis Lingane and Malcolm Goldfinch.

- Practical computing articles

- a whole section each month devotech to electronics enthusiasts exploring computing and computing enthusiasts exploring electronics.

- Communications coverage

- news, reviews and practical features on RF techniques and radio communications, covering everything from circuit techniques to cellular radio, from satellites to amateur radio.

- Topical technical features

- covering consumer electronics, topical technological and scientific fields, current issues and circuit techniques.
- What's new in the market
- occasional features on new products and developments, giving topical and informative coverage of specific fields and product groups.

You'll find something to interest you every month in Australian Electronics Monthly, no matter what your special interest might be. The magazine is "sectioned" into categories for easy reading and easy reference, each section headed by its own news column.

If you've found AEM hard to get in your newsagent, DON'T DELAY, SUBSCRIBE TODAY!

If you work in electronics, communications, computing or servicing, a subscription to Australian Electronics Monthly could be tax deductible.

COUPON

Yes! Put me down for a subscription to Australian Electronics
Monthly at $\$ 49.95$ for 12 issues. I am paying by (please circle payment method):

Cheque: (No:)
Money Order (No:)
(Cheques or Money Orders should be made out to "Australian Electronics Monthly")
\square Bankcard
\square VisaMastercard
\square Amex

Card No \qquad Expiry: \qquad
Signature
(Note: unsigned credit card orders cannot be accepted)
Name:
Address:

The Last Laugh

THE PHONETIC ALPHABET, where words are used to denote letters: CAT being "charlie-alpha-tango", is used by voice communications operators the world over to clearly and unambiguously spell text in messages. It should be well-known to many readers, even if only vaguely remembered from its use on some television soapie or police drama. Readers who remember British comedian Tony Hancock's famous "Hancock's half-hour" piece called "The Radio Ham" will surely recall his use of the phonetic alphabet.

The phonetic alphabet is, in fact, an agreed "standard" so as to avoid ambiguity. That's all fine and dandy, but where it's use is unessential - such as when good conditions prevail on the amateur bands - there are those who like to express their individuality by devising new phonetics.
Well, overheard on a certain amateur band recently were a few chaps devising an all-Australian bicentennial phonetic alphabet. A fine and laudable project to publicise the celebrations on the 200th anniversary of European settlement on the eastern shores of Terra Australis, but one that we think would meet with not a little puzzlement from recipients.
"Australia" for A, seems fine and would be widely and readily recognised. "Buledelah" would clearly enunciate the letter B, but would, in itself, be meaningless apart from the problem that a large body of Australians cannot pro-

nounce the town's name correctly in the first place! Besides, it sounds like a term used to describe the negotiations of Italian politicians.
"Coonawarra" for C would be ambiguous unless the recipient appreciated Australian wine (otherwise it could equally stand for K), and would be unappreciated in certain states of the USA. Crocodile (as in Dundee), was favoured by some quarters.
"Dingo" would not have such problems, but would be unappreciated in a certain northern state of Australia, and is probably copyright to a certain national TV program!
"Ettamogah", while making clear the E, would not curry favour with cat lovers
the world over.
"Fosters" was a natural, except that the Canadians think it's their national drink!

There was much heated debate over the use of Koala or Kookaburra for K (we favoured the latter, naturally). Others favoured Kelly, for historical reasons. (King, after the colonial governor, would serve equally well, but obscurity ruled it out).

Try your callsign in bicentennial phonetics; here's VK2AAK, for an example - Vaucluse Kookaburra two Adaminaby Adaminaby Kookaburra. Or VK2ZTB - Villawood Kookaburra two Zetland Tantangara Buledelah! It has a certain ring to it, don't you agree?

XTRAORDINARY

You expect results when you have some of the best Research and Development facilities in the world together with over 150 of the best researchers.
"No one in our acquaintance ubo bas beard these speakers has failed to be amazed and even awed by their performance .. In our listening room, side by side with speakers costing three to five times as much, the AM-5 consistently produced the more exciting and listenable sound in A / B tests."

Julian Hirsch
Stereo Review April '87
For more information on all the Bose Loudspeaker Range and a copy of Julian Hirsch's review, contact;
Bose Aust. Inc.
11 Muriel Ave.
Rydalmere 2116 NSW
(02)684-1022

Always a grand performance

Tandy Electronics bring you Realistic ${ }^{\circ}$ speakers for music lovers who won't compromise on sound quality or craftmanship. In fact almost all of our range has a genuine walnut finish. From the mighty Mach Two° to our widely acclaimed Minimus ${ }^{\oplus}$ series, every Realistic speaker
system is engineered and manufactured to the most rigorous standards ensuring many years of trouble free listening. All Tandy Hi - Fi speakers carry a 5 -year warranty. With a total of 18 models Realistic can offer you the right speaker for every conceivable situation and budget.

WE SELL IT
 WE SERVICE IT WE SUPPORT IT

- Trademark of Tandy Corporation, InterTAN Australia Ltd, being a registered user.

[^0]:
 \qquad

[^1]: ,

[^2]: -

 ## OSCILLOSCOPES

 DUAL TRACE 20 MHz

 ## Model 3132 \$683 (Plus S/T)

 (Includes Two Probes)

 \author{

 * $2 \mathrm{mV} /$ div calibrated sensitivity on * 14 Trigger Functions both channels
 * DC -20 MHz Bandwidth
 * X-Y Operation
 * Algebraic Addition and Subtraction
 * $5^{\prime \prime}$ CRT
 * $40 \mathrm{~ns} /$ div to $0.2 \mathrm{~s} /$ div timebase
 }

[^3]: Principal dara taken from manufacturer's preliminary data sheet.

[^4]: DISCOUNTED HARDWARE Missing screw pack To 3 mm pan-head switch screws. 10 mm iong. The ones y never find! Cal H. 1672 Were $\$ 1.05$ pack 10,Now 85 t Assorted Metrics 200 pieces of popular sizes. 25.384 mm . Cross, round and Metric washers
 680 (yes. 680°) pieces of various size metric washers. Over 100 g Self tappers $\mathbf{3 2 . 5 0}$ Now $\$ 2.25$
 Self tappers
 150 pleces of various small selt tappers (pk). Cat H-1505
 Crommets too
 Pack of 812 mm diam grommets $(9 \mathrm{~mm}$ bore) - - ideal for makıng your projects just that bit safer' Cat H.1719were $\$ 1.35$ pack, now $\$ 1,20$.

[^5]: NOTE: Strictly limited stock, available ONLY through DSX press
 (Sydney), phone 008226610 or 8882105 . Phone to order can be despatched direct to you or through your nearest DSE store FREIGHT FREE!

