EELTBOIILS

NEWS

BURGLAR ALARM FOR CARS • PROXIMITY
 DETECTOR • SOUND FOR VIDEO GAME

From Sony research... a totally new turntable system

Sony PS-4550
 Superb Fidelity from Today's Most Advanced Direct Drive

Audio experts the world over have been waiting for it ... Sony's incredible PS 4750, the ultimate turntable system.
State of the art takes on a new meaning with the PS 4750, probably the quietest turntable ever made.
In one elegant design Sony has reduced rumble, feedback wow and flutter to minute levels far beyond hearing and virtually beyond measurement. Wow and flutter for instance is an amazing 0.03\% (wrms.) Signal to noise is better than 70 dB (DIN-B). Sony achieved this in a number of ways: First, all the belts, pulleys, idler wheels and other paraphernalia used in conventional turntables to make the turntable spin at the record's speed, instead of the motor's, have been eliminated. The Sony PS 4750 has no need for these troublesome, noisy and fluttering parts, because its slow-revving D.C. motor is directly coupled to the platter.
Speed accuracy takes on new meaning with another Sony breakthrough, the "Magne-disc Servo Control."
Through a unique multi-gap head, this system automatically reads turntable speed through speed detective signals magnet-coated on to the turntable rim. Should there be any deviation induced by fluctuations in power supply, it immediately
"instructs" the servo motor to make microaccurate adjustments.

Another triumph of Sony research is the very material used to make the cabinet and turntable, B.M.C., developed specifically for audio use because its damping and resonance characteristics are 30 per cent better than the conventional aluminium diecast. B.M.C. is also virtually free of expansion or contraction, freeing the design of any problems arising from temperature changes. Sony innovation didn't stop there. Look at the revolutionary rubber disc supports. These insulation mats are of a unique design which firmly grips the record, effectively insulating the disc from vibration when the turntable revolves. By preventing vibrations, these mats contribute to the stereo effect and significantly improve presence.
The precision tonearm is a universal type which accepts all quality shells and cartridges. Some of the Sony PS 4750's other advanced features are: stylus pressure adjustment ($0-3 \mathrm{~g}$), anti-skate compensator, viscous-damped (up and down) arm lifter, see-through stroboscope, independent pitch control ($+4 \%$ on both $331 / 3$ and 45) and large insulator legs for effective prevention of audio feedback.
If you've been waiting for the ultimate turntable, you need wait no more. The superb Sony directdrive PS 4750 is here.
SONY
Research Makes the Difference

EEECTRONILS Rustralin

Australia's largest-selling electronics \& hi-fi magazine

This month, we review SX-950 FM-AM stereo receiver, a top-line performer from the Pioneer stable. Main features of the unit include comprehensive control facilities, top-class FM tuner performance, and a power output of 85 W per channel. Our review on page 21 has the details.

Published last May, our video ball game has proved an immensely popular project, with at least 1,500 built so far. This month, in response to many pleas, we describe a simple add-on sound effects circuit which greatly enhances the appeal of the unit. Turn to page 61

On the cover

The theme on the front cover dramatises the recent move by JVC Nivico in releasing high quality microphones for the amateur nature recordist. Also shown is the TL-E71 sound focusing reflector which, together with a new portable hifi cassette recorder (the CD-1635), was released at the same time. Two of the new microphones will be reviewed next month. (Photo courtesy Hagemeyer (A / Asia) B. V., 59 Anzac Parade, Kensington, NSW 2033.)

CONTENTS-NOVEMBER, 1976
world of electronics and hi-fi

3 Editorial: Science unveiled-warts and all
9 Hi-Fi News:
PCM for better master recordings-Millbank audio products in Australia
17 Acoustics and sound quality
21 Review: Pioneer SX-950 stereo receiver
25 Review: HD400X headphones from Sennheiser
31 New solar panel tracks the Sun
32 Michael Faraday: the father of refrigeration
37 Microphones Pt 2: Dynamic, capacitor and electret types
70 Forum: Who said we can't hear a 2 dB change?

projects and technical

[^0]
regular features

26 News highlights
96 Record reviews-classical
99 Record reviews-devotional, popular, jazz
112 Book reviews
115 Letters to the Editor
117 The amateur bands
121 Shortwave scene
123 Information centre
126 Marketplace-classified
128 Index to advertisers
125 Notes and errata

Rell over: chrounciestr?

Extracts from an address by Mr. E. Nakamichi, President Nakamichi Research Inc. at a recent Seminar in Sydney for Nakamichi dealers.
"TDK Super Avilyn Cassettes are recommended for use with all Nakamichi tape decks. Before leaving our factory, all Nakamichi equipment has bias voltages set for TDK SA to achieve optimum performance".

Super Avilyn's performance exceeds that of Chromium Dioxide formulation which previously was the best choice for linear high frequency response and high-end S / N, but $\mathrm{CrO2}$ suffered from reduced output in the middle and low frequencies (SA provides $1.5-2 \mathrm{db}$ more output than the best CrO 2 in those ranges, equal output at high frequency).

SA also outperforms the ferric oxide tapes (regular or cobalt energized) which are unable to take full advantage of the noise reduction benefits of the CrO 2 equalization because their high end saturation characteristics are not compatible with this standard (they require 1 EC 120 ms , normal or high EO).

From the report by Louis A. Challis \& Associates Pty Ltd. Consulting Acoustical \& Vibration Engineers, NATA laboratory.

The net result of SA's characterists and this EO difference is a tape with an impressive $4-5 \mathrm{db} \mathrm{S} / \mathrm{N}$ gain over the latest top-ranked high output ferric oxide tapes and more than $10-12 \mathrm{db}$ S / N gain over many so-called low noise ferric oxide tapes.

全
 TDK

Australian Distributor
Convoy International Piy. Ltd.
4 Dowling Street.
Woolloomooloo 20113582088

Editorial Viewpoint

Science unveiled-warts and all

EDITOR-IN-CHIEF

Neville Williams
M I.R.E E (Aust.) (VK2XV)

EDITOR

Jamieson Rowe
B.A (Sydney). B.Sc. (Technology. NSW) M.I RE.E. (Aust.) (VK2ZLO/T)

ASSISTANT EDITOR
Philip Watson
A.M.IR.E.E. (Aust.) (VK2ZPW)

SCIENCE FEATURES
Greg Swain. B. Sc. (Hons, Sydney)

PRODUCT REVIEWS

Leo Simpson

TECHNICAL PROJECTS

David Edwards. B.E. (Hons. Tasmania)
lan Pogson (VK2AZN / T)

GRAPHICS

Robert Flynn
PRODUCTION
Daniel Hooper

After all the criticism levelled at the ABC-TV people lately over controversial programs, I would like to hand them a big bouquet for running a superb series of programs on the history of science. The series I am writing about was the BBC production "Microbes and Men", which presented a carefully researched dramatisation of the lives and discoveries of Semmelweis, Pasteur, Koch, Ehrlich and the other 19thcentury researchers who laid the groundwork for modern bacteriology and immunology.

If you managed to see this series, I think you'll agree that it made fascinating viewing. Unlike previous attempts to dramatise scientific discovery, it presented the major researchers "warts and all", as well-rounded human beings rather than cardboard super-heroes. Far from reducing the impact, this really brought the process of scientific investigation down to earth, and helped the viewer to gain a better insight of the way real people react to real-life science.

While watching the series I couldn't help but compare its approach with the rather dull and dreary way science and technology have often been taught in our schools. So often they have been presented to pupils as little more than a vast montage of well-polished facts. As a result many people regard these disciplines with either apathy or suspicion, visualising scientists and technologists as cold, ruthless and unemotional folk who spark neither warmth nor interest.

The fact is, or course, that science and technology are like most other disciplinesdull and dreary a lot of the time, but now and again exciting to the point of exhilaration. As for those working in these fields, on the whole they're no different from any others. Sure they strive for objectivity and clarity of thought, but like most of us they often fall far short.

It is surely dangerous for a significant proportion of our society to view science and technology in an unrealistic manner, because this tends to lead to apathy and stifle healthy criticism. Scientists and technologists are like everyone else-if they are not open to pressure to explain or justify their actions from time to time, they can tend to get into mischief in the social sense.

All the more reason, then, why we need more programs like "Microbes and Men". In the meantime, I think everyone concerned with producing this series is to be congratulated. And thanks to our beleaguered ABC-TV for letting us see it out hereeven if it was in a rather late timeslot!
-Jamieson Rowe

ADVERTISING MANAGER
 Selwyn Sayers

CIRCULATION MANAGER
Alan Parker

ON SALE THE FIRST MONDAY OF EACH MONTH

Printed by Dalley-Middleton-Moore Pty Ltd, of Wattle St. Sydney and Masterprint Piy Lid of Dubbo. NSW. for Sungravure Piy Lid, of Regent St. Sydney

- Recommended and maximum price only

Editorial Office

57-59 Regent St, Sydney 2008
Phone 6993622
Postal Address: PO Box 163. Beaconsfield 2014

Advertising Offices

Sydney-57-59 Regent St. Sydney 2008 Phone: 6993622
Representative: Narcisco Pimentel
Melbourne-392 Little Collins St. Melbourne
3000. Phone: 678131

Representative: Keith Watts

Adelaide-Charles F. Brown \& Associates Lid 168 Melbourne St. North Adelaide 5006. Representative. Tom Duffy 2674377 Perth-454 Murray Street. Perth 6000 Representative: Jack Hansen 218217

Subscriptions

Subscription Dept, John Fairfax \& Sons Lid. GPO Box 506. Sydney 2001

Circulation Office

21 Morley Ave, Rosebery. Sydney 2018 Phone 6633911

Distribution

Distributed in NSW by Sungravure Pty Lid. 57-59 Regent St. Sydney, in Victoria by Sungravure Pty Lid, 392 Little Collins Street. Melbourne: in South Australia by Sungravure Piy Lid, 101-105 Weymouth St, Adelaide: in

Western Australia by Sungravure Piy Lid. 454 Murray Street. Perth: in Queensland by Gordon and Goich (A asia) Lid: in Tasmania by Ingle Distributors, 93 Macquarie St, Hobart; in New Zealand by Gordon and Gotch (NZ) Lid, Adelaide Rd. Wellington

Copyright. All rights reserved

Devices or arrangements shown or described herein may embody patents. Information is furnished without responsibility for its use and without prejudice to patent rights.
All manuscripts, photographs and other material submitted to Electronics Australia for publication must be accompanied by a stamped. addressed envelope. Contributions are submitted at the sender's risk, and responsibility for loss cannot be accepted by Electronics Australia.

Arrow Electronics ...Sound Leaders since 1948

You don't last that long in business unless you're good, and in 28 years you get to know just what people want.
Arrow are $\mathrm{Hi}-\mathrm{Fi}$ specialists and you can benefit from our experience. Whether you are looking for a complete system or an individual component, you'll find the one to suit your requirements, and your pocket, at Arrow Electronics. Remember, our motto is honesty and sincerity.

Choose from the world's finest Hi-Fi equipment

Marantz	Dual	Shure	Nikko
Quad	B \& W	Koss	Teac
Monarch	Sansui	SME	Wharfedale
Pioneer	Technics	Decca	KEF
DBX	Rotel	Audioson	Nakamichi
Goodmans	Epicure	Tannoy	Leak
Harman Kardon	Thorens	Garrard	Klipsch

Open late Thursday and Saturday mornings. Bankcard welcome.

ARROW ELEGTRONICS

342 Kent Street, Sydney (between King \& Market Sts.) Phone 29•6731

Agfa Super Ferro Dynamic - the sound safe - will record and store your music safe in sound, ready for when you want it. And we mean all the music. The outstanding performance of Agfa SFD is achieved through the use of a particular form of ferric oxide particle that is uniform in shape and size. The second factor is an Agfa technique that enables more particles to be deposited per sq. mm of tape, with each particle separated and in line to eliminate cross-over interference.
The advanced technology of the Super Ferro Dynamic tape results in five big improvements:

1. Reduced background noise.
2. Better maximum output level.
3. Improved dynamic range.
4. Improved high frequency output level.
5. Reduced harmonic distortion.

*Registered trademark of AGFA-GEVAERT Antwerp/
Leverkusen.

In addition, Agfa SFD cassettes feature a special mechanism for improved running properties.
Agfa Super Ferro Dynamic - the sound safe you can bank on for outstanding performance.

Dokorder.

A superb range that has sound quality taped.

Increasingly advanced recording techniques mean that near perfect sound is available to the music lover. To fully appreciate this sound, you need equally sophisticated reproduction equipment. And that's what Dokorder is all about!
A range of highly sophisticated tape recorders and decks . . . seven models to select from. One for every need and budget. For instance, the new 1140

Dokorder's finest professional tape deck. Studio quality and a host of features. And the 81404-channel

Dokorder.

tape deck with multi-sync, for fun, flexibility and fine sound. Then, there's the new MK550 stereo cassette deck featuring servo controlled drive system, built-in Dolby, Cue and Review system, Peak Level Indicators, Normal/Chrome equalization and a switched FM multiplex filter-features you should insist on in any first-class deck. With Dokorder, there certainly is a unit to suit every need! And every Dokorder gives you superb sound quality.

For descriptive literature and specifications, send a 30 cent stamp to Qualitron Industries Division of Photimport (Australia) Piy. Lid.

What is your first component?

We have become convinced that it really is your phono cartridge, even though we have been modestly advertising it for the past few years as your fourth.
Let's face it, the cartridge is that important first point where the music begins, and if the stylus cannot follow its path accurately, no amount of expensive equipment speakers, turntable or receiver
can make up for the distortion it can produce. That is why you need a cartridge you can depend on One that's the best your money can buy Specifically, a Pickering: Because a Pickering cartridge has the superior ability to "move in the groove" from side to side and up and down, without shattering the sound of your music on your records
Because a Pickering cartridge possesses low frequency tracking ability and high frequency tracing ability (which Pickering calls traceAbility ${ }^{\text {™ }}$). It picks up the highest highs and the lowest lows of musical tones to reveal the distinctive quality of each instrument
Because Pickering offers a broad range of cartridges to meet any application whether you have an automatic record changer, or a high quality manual turntable, a stereo, or a 4-channel sound system. Your Hi-Fi dealer will be able to recommend a Pickering cartridge that is just right for your system. Your stereo cartridge is the first part of your music system. It is too important to overlook. and so is a Pickering.

For further information write to: Fred A. Falk \& Co. Piy. Ltd., P.O. Box 234, Rockdale, N.S.W. 2216, Australia. Tel. 5971111 Fountain Marketing Limited, P.O. Box 5029, Auckland, New Zealand. Tel. 763064

The $\$ 600,000$ Luxor Service Centre now under construction.

O.B.C. Imports are investing over $\$ 1,000,000$ to build the future of Luxor in Australia

We could very easily set ourselves up simply to import Luxor colour televisions into Australia, but that's not a good background for growth. That's why we're spending over $\$ 1$ million to secure our future.

O.B.C. is building for the future

The nerve centre of Luxor operations is found in Melbourne, where everything is co-ordinated from the now well established O.B.C. (Imports) P/L. head office. To meet the rapidly increasing sales demand for Luxor sets - a new warehouse is being built. And, a new $\$ 600,000$ Service Centre is currently under construction. Similar service centres are also planned interstate as the Luxor name builds around the country.

A well-planned promotional campaign

The growth of Luxor is carefully planned, we don't intend to become Australia's colour television market leader overnight.

Informative full-page press advertisement

A recent full-page press campaign in the Melbourne Herald achieved phenomenal results - a matter of talking to the right people at the right time.

Our future expansion programme involves a similar step-bystep campaign, already well under way, selling colour television, stereo, hi fi and video-cassette recorders.

Superb Swedish technology

As Volvo is to automobiles, so Luxor is to colour television. Combining a careful attention to detail with an unmistakable touch of design flair. As part of our growth platform, we are continuing our close relations with Sweden, to assure a solid basis for operations in Australia.

The more you know about O.B.C. and Luxor, the more impressive they become.

Ruxar

 of Sweden

PCM for better master recording

In an effort to force the noise and distortion in disc records to even lower limits, Nippon Columbia Ltd have gone over to a pulse code modulation system in the pre-disc chain, in lieu of more traditional methods. The resulting PCM "Denon" brand recordings are being handled in Australia by AWA.

by NEVILLE WILLIAMS

In a conventional chain, operating in what one might describe as "analog" mode, progressive variations in audio signal amplitude are handled intact all the way from the original sound source to the ears of the remote listener.

Sound pressure waves at the microphone are transduced into an electrical signal which varies in a strictly linear fashion, proportional to the sound waves. This signal may then be passed to a tape recorder to become proportional variations in the strength of a magnetic pattern on the tape. Still later, the signal may be recovered from the tape and translated into proportional deviations in a disc groove, then recovered again and amplified to produce proportional movements in a loudspeaker cone, thereby recreating the original sound pattern.

Even this highly simplified word picture of a reproducing chain suggests a rather daunting number of processes. In each one, it is essential to maintain a strictly continuous and linear relationship between the input and output signal. In practice, this is no mean task.

Any departure from linearity within the signal chain can result in:

1. Harmonic distortion, or the generation of additional frequencies which are multiples of the original signal frequencies. A second harmonic is twice the original frequency; a third harmonic is three times, and so on.
2. Intermodulation distortion, or the generation of still other spurious

Whatever their technical merits, presentation of the Denon discs is noteworthy, most of them being in an envelope style plastic cover inside an outer paper sleeve.
frequencies equal to the sum and difference of other frequencies present.

An increasing percentage of distortion gradually modifies the sound as heard, producing an unnatural "edge" or harshness, and compromising definition to the point where instrumental and other sounds gradually merge into a sonically matted mess!
Another problem of the conventional audio system is the possibility of noise being introduced as, for example, by amplifier stages handling the wanted signal at very low level. Once noise has been added to the signal, it is faithfully preserved by the rest of the amplifier chain, just as if it were a legitimate part of the program.

A vital aspect of the struggle towards higher fidelity has been the evolution of amplifiers and transducers exhibiting a more linear input/output relationship, and therefore introducing a lower overall distortion content. Modern amplifiers are particularly good in this respect, but transducers and recording processes still have a way to go.

Similarly, a lot of effort has gone into increasing the signal/noise ratio, by maintaining a higher average signal level through the system and, at the same time, lowering the intrinsic system noise.

Considerable advances have been made but the problem has not been completely overcome. If the system is set up so that the loudest signal peak does not cause undue distortion or actual overload, the softest passage may be getting down to a level where system noise can be noticed. As a result, musicians and/or sound engineers have to modify the dynamics of program material to keep it within limits convenient for amplifier and recording chains.

In fact, signal/noise ratio is probably the most worrying aspect for audio-hifi engineers. If everything can be held precisely inside system limits-loud passages just short of overload, soft passages just clear of the noise level-a modern recording can be very impressive, despite the many mutations through which the signal passes. A reviewer may genuinely rate the loudest passages as "very clean", and softer passages as "sound out of silence".

The problem isn't so much what can be achieved under precise, optimum conditions but one of evolving methodology which is a little more tolerant of conditions short of optimum. Anything which can broaden the area between maximum signal level and the noise threshold will make the handling of ordinary reproduced music that much less critical, while also opening the way to truly superb reproduction having a wider dynamic range then ever before.

Some quite notable contributions along this line have been made by tape mastering equipment having exceptional characteristics. The efforts of Enoch Light come to mind, with his pioneering use of magnetically coated 35 mm movie film.
More recently, the Dolby system has become almost a standard in recording studios, in association with master tape facilities. By automatically boosting low level passages before they are applied to the tape, then attenuating them by a cor-

Illustrated above are the stages between microphone and the finished disc for the conventional "analog" approach. The

PCM system emphasised in the heavier boxes below, aims to minimise noise and distortion in the mastering processes.

The Harmankardonjblempirecec.

That's one hellava name for a sound system.
In fact it's made up of the specialist brand names that make up the Harman Synergy System.

It takes that many good names to put together a really good sound system. No single brand can match the standards we set for ours. So we go for the best pieces and piece them together.

We'll do it for you. Tell us how much you can spend. We'll send you details of the sound system that can be built around that sort of money.

It will be your very own Harmankardonjblempirecec!

[^1]
HIFI NEWS-continued

responding amount during replay, the effective signal/noise ratio for low level signals is improved, without prejudicing the response of the system to loud passages.
While very effective as a means of improving signal/noise ratio, the Dolby system and other automatic noise reduction systems are open to some criticism on the grounds that they may compromise linearity slightly, if not precisely adjusted, and they may also produce some slight "pumping" of the signal as amplifier gain is modified.
Nippon Columbia would appear to have taken an entirely different road in an effort to achieve reduced noise and wider dynamic range for their Denon label discs. They have resorted to a pulse sampling system for that part of the mastering chain between the mixing console and the input to the cutter drive amplifier.

For those who have not given the matter much thought, it may be helpful to explain that principle in broad terms:

Instead of being handled in the normal linear fashion, the audio signal is fed into a high frequency gating system which produces a continuous train of discrete pulses, each coded in a particular way to represent the amplitude of the audio signal at the relevant instant.
In a PPM (Pulse Position Modulation) system, the position of each pulse in the output sequence is advanced or delayed by an amount proportional to the signal amplitude it is supposed to represent. The sequence of PPM pulses can be decoded, when necessary, to recover the amplitude information, and resultants integrated to reconstitute the original audio envelope.

In a PTM (Pulse Time Modulation) or PWM (Pulse Width Modulation) system, the width of the individual pulses varies in proportion to the audio signal amplitude. As in the previous example, PTM

Digital or analog? While Nippon Columbia have started to make loud noises about their PCM system, it remains to be seen what impact it will make on the normal analog approach. In the meantime, this 4-deck tape duplicator has been installed recently in EMI's Emisound studios in North Sydney. Described as System 4400, it was manufactured in Australia by Electrodata Associates Pty Lid, of 18 Coward St Mascot, NSW. Using crystal locked motors for precise speed control, it operates normally at 60ips and can adapt to any likely $1 / 4$-inch tape format by the use of plug-in heads. The master reproducer will service any required number of slaves.
(or PWM) signals can be decoded and integrated to recover the original audio signal.

Yet another system, the one being used by Nippon Columbia, is PCM, short for Pulse Code Modulation. In this method, the audio sample is examined electronically and allotted one of a range of discrete values to which it most closely approximates. It's as if we all had to write down our height, correct to the nearest centimetre!

This discrete value is then identified and translated into a train of digital "bits"

WATCH OUT FOR THE BRAND NEW:

Electronics Australia

1976/77 YEAR BOOK

Crammed with fascinating reading, do-it-yourself projects, handpicked record and book reviews, a full listing of Australian and New Zealand radio and TV stations, equipment reviews, articles about amateur radio and short-wave listening and. . .

A look at the Citizens Radio Band in Australia

FROM YOUR NEWSAGENT MID-NOVEMBER
and fed through the system as such. Each group of digital bits-each digital "word"-conveys the message: "at instant A, the amplitude of the audio signal was X millivolts".

The next word might say: "at instant B, the amplitude of the signal was Y millivolts", and so on to the end of the program.
Assuming ordinary binary coding, a 6 -bit word per sample could nominate any one of 64 possible discrete levels. A 7 -bit word would cover 128 levels, an 8 -bit word 256 levels, and so on. Obviously, the larger the number of bits allocated per sample, the more precisely can the system represent the level of the original analog input signal.
It is usually considered that the sampling rate in a pulse system must be at least twice that of the highest frequency which it is hoped to reproduce. Thus, for a maximum signal frequency of 15 kHz , the sampling rate would have to be at least 30,000 per second, and preferably higher. This would apply for PPM and PWM systems but, for PCM, it would have to be multiplied by the number of bits, so that even an 8 -bit code would result in a bit rate of 240,000 per second.

An obvious question emerges: why become involved in all this? Why go about things in what seems the hard way?

The answer rests basically on the fact that a pulse type signal is intrinsically

Hot talent and hot material need Hot Sound Tape byAmpex

Ar ordinary tape just won't do these days for most audio recording jobs. You need the hot Ampex 406/407 studio mastering tape or, the hottest, Ampex GRAND MASTER. With 406/407 you'll get $72 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio, high output, low noise and low distortion. If your requirements call for an even hotter tape, then you need Ampex GRAND MASTER. This spectacular mastering tape offers a full $76 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio and as much as 3 dB
extra sensitivity on the high end. You can drive GRAND MASTER tape harder than you've ever driven a tape before. From a whisper to a scream, it responds with more undistorted output across the entire audible range than any other mastering tape available. It has high erasability so it is fully reuseable. And there's no need for bias adjustments: use GRAND MASTER at the same settings you've established for Ampex 406/407 or for 206/207. Detailed technical specifications and performance curves are available in our free brochure, offered to all audio professionals. Just ask us for literature on the Ampex

Hot Sound Tapes, GRAND
MASTER and 406/407.

AMPEX

Ampex Australia Pty. Ltd. 4 Carlotta St., Artarmon, N.S.W. 2064

TLX 20608, Phone 439-4077 and 292 Victoria Street North Melbourne, Victoria, 3051 Phone Melbourne 329-5229

HIFI NEWS-continued

"rugged", because the essential information does not depend on subtle variations in signal amplitude throughout the entire amplify/record/reproduce process. Nor is it anything like as open to penetration by inherent system noise. Basically, the circuitry has to distinguish and respond only to two states: pulse or no pulse, on or off, saturation or cut-off, etc.

Thanks largely to intensive research into video recording, and in the computer area, there is a wealth of technology available to generate, record and process pulsed or digital information with considerable facility.

From the brief information available, it would appear that Nippon Columbia have evolved a system which makes use of a fairly standard 4-head low-band video recorder for tape mastering using standard 2 -inch wide video tape running at $38 \mathrm{~cm} / \mathrm{sec}$, and giving a head/tape relative speed of $40 \mathrm{~m} / \mathrm{sec}$.

By analysing the accompanying Denon diagram in conjunction with other published information, conventional analog signal from the mixing console passes to a PCM encoder which has a sampling rate crystal locked to 47.25 kHz . This is 3 times the line rate of a NTSC TV signal, suggesting that audio samples are distributed on the basis of 3 per TV line.

Another figure indicates that each audio sample is described in a 13-bit simple binary code, suggesting that the system provides for up to 8192 possible discrete levels between whatever limits are set on the peak-peak amplitude.

Together the figures suggest a bit rate of something over 0.6 Mhz , which would be "chicken feed" for a modern video system. It would appear, however, that up to 8 distinct audio channels can be accommodated simultaneously, using a clock frequency quoted at 7.1825 MHz .

The composite, fully encoded signal is handled by the recorder almost as if it were an ordinary TV signal, with the notable exception of the vertical sync and blanking pulses. Once on video tape, it can be edited and dubbed (copied) largely using television techniques and equipment.

For playback, for the purpose of making the master disc, the tape is run at half speed, with two advance heads giving prior indication of forthcoming signal amplitudes, thereby cueing the variable pitch mechanism in the recording lathe.

The pulse train, now at half speed, is decoded and integrated back to an audio signal and fed to the disc cutter system, also operating at half speed. When the finished discs are played later at normal speed, the music is heard at normal speed and normal pitch.

In fact, the half-speed technique is not unique to Denon, but it does effectively

Already well known as distributors of a wide range of complementary product lines, Messrs R. H. Cunningham Pty Ltd have been appointed distributors in Australia for the Millbank Electronic Group, England, which specialises in audio equipment.

Announcing the new arrangement, Tony Hinman, Export Sales Manager of Millbank, said that his company was launched only in 1967 but, in the ensuing period, has grown enormously, with export markets established all around the world.

Current emphasis is on the company's so-called PAC-SYSTEM range of power amplifiers and associated peripherals, the latter including input modules, mixers, auto-tape players and multifacility tuners.

Intended primarily for professional situations, there are three PAC-SYSTEM amplifiers in the present range, offering power output ratings of 30,50 and 100 watts. Each has a 6 -input capability and can be combined with preamplifiers, etc, to produce what is virtually a custom built installation to meet the specific needs of a hotel or hospital, office or factory, restaurant or conference centre.

The plug-in input modules can be selected as required to cope with microphones, radio tuners, tape or disc players, automatic announcement equipment, as well as specialised facilities such

Illustrated at the top is one of Millbank's PAC-SYSTEM amplifiers, showing the use of plug-in modules. Above: one of the Company's simpler integrated amplifiers.
as tones, pips, gongs, security alerts, etc.

Where less specialised equipment is needed, typically an amplifier with two microphone inputs, paging over-ride and a music source, Millbank can provide 30-watt and 60 -watt "economy" integrated amplifiers with a high order of reliability.

Other products in the range include three different sound mixers, loudspeakers systems and paging microphones.

For further information on the Millbank range: R. H. Cunningham Pty Ltd, 493-499 Victoria St, West Melbourne 3003, or from branches in other capitals.
lower the frequency band by $2: 1$, reducing the problems of getting full drive to the cutter at frequencies which would otherwise approach or exceed 15 kHz .

Whether the Nippon Columbia enterprise will spur other record manufacturers to break with conventional techniques remains to be seen, but the specifications are certainly impressive:

DYNAMIC RANGE: 75dB. Assuming that the maximum signal level is set by the groove parameters in the disc, the clear inference is that the inherent system noise ahead of the cutter amplifier must be very low indeed.
DISTORTION: Less than 0.1% at operating level. This is probably the figure from PCM input to cutter drive but, by inference, includes the tape master. If so, it would be an outstanding accomplishment.
WOW AND FLUTTER: Not measurable. By ensuring that the sampling is done at precisely timed intervals and that the information is ultimately presented to the
decoder at precisely timed intervals-a routine precaution in computer circui-try-any wow and flutter in the tape mastering equipment would be ignored.
CROSSTALK, INTER-CHANNEL: Virtually none (better than -80 dB). Just as pulse circuitry can largely ignore system noise, so can it ignore low level spurious signals.
PRINT THROUGH: Virtually nil, for the same reason.
FREQUENCY RESPONSE: Within \pm 0.5 dB from DC to 20 kHz . Since the circuitry is handling only digital information, it is not subject to the influences which, in an analog system, might cause variations in the gain/frequency characteristics. MODULATION DISTORTION: Nil, or at least not measurable. It opens an interesling area for discussion as to the differences between non-linearity in an analog system (which does cause intermodulation) and non-linearity in a digital system caused by the substitution of discrete values or true values, at the sam-

Toshiba admit there is more than one great music system.

Toshiba SM 2900 Features FM/FM Stereo/MW/LW Receiver. Built-in 4 -track, stereo cassette deck. Front panel control of cassette, player or deck. 8 W RMS/channel output (both ch. driven into 8 ohms). Two-speed auto return player with high quality ceramic cartridge. Two-way speaker system incorporating 16 cm woofer, 5 cm tweeter. Dimensions: Centre Unit (WxHxD) mm $690 \times 200 \times 380$ Speaker Box (WxHxD) mm $215 \times 380 \times 160$.

All three systems have a few features in common. (Like a sensitive MW/FM 3 band radio. A supreme quality record playing unit. And a top performance stereo cassette deck.)
Yet each three-in-one is uniquely different. The SM 2900 has a standard rim drive turntable with ceramic cartridge. Both the SM 3100 and the SM 3500 have a high precision belt drive turntable with magnetic cartridge.

Now there are three.
Because our brilliantly original SM3500 system has produced a couple of talented offsprings, the Toshiba SM 3100 and the Toshiba SM 2900.
So now we tempt you with a complete Family of Toshiba Music Centres.

Toshiba SM 3100 Features FM/FM Stereo/MW/LW Receiver Built-in 4-track, stereo cassette deck. 12W RMS/channel output (both ch. driven into 8 ohms). Full ASO mechanism, memory system and chrome/normal selector stereo cassette deck. Two-speed belt driven player with moving-magnet cartridge, diamond stylus and semi-automatic lower/return/cut functions.
Includes 2 way speaker system incorporating 16 cm woofer, 5 cm tweeter. Dimensions: Centre Unit (WxHxD) mm $690 \times 200 \times 380$. Speaker Box (WxHxD) mm $275 \times 470 \times 190$.

Toshiba SM 3500 Features FM/FM Stereo/MW/LW Receiver. Built-in 4-track, stereo cassette deck. Dolby noise reduction system. 12W RMS/channel output (both ch. driven into 8 ohms). Two-speed belt driven player with moving-magnet cartridge, diamond stylus and semi-automatic lower/return/cut functions. Two quality microphones. Dimensions: $690 \mathrm{~mm}(\mathrm{~W}), 360 \mathrm{~mm}$ (D) and $200 \mathrm{~mm}(\mathrm{H})$.

And the SM 3500 has the famous Dolby noise reduction system that lets you record and play back with the absolute minimum tape hiss. So now the only choice you have to make is which Toshiba Music Centre fits your pocket. From the budget priced SM 2900 to the SM 3500 at around $\$ 650^{*}$.
Hear them all. At leading retailers. And let your ears persuade your wallet.
*This price includes the SS 200 speakers (not
illustrated) recommended as optional extras.
Design and specifications subject to change without notice.

~TOSHIBA

HIFI NEWS-continued

pling rate.
Add to these claims: no fluctuation in levels, no fluctuation in signal phase and amenability to automatic editing and splicing, and you have a pretty impressive story; one that is sure to spark plenty of debate in places where audio boffins congregate!

The Denon record catalog handed out by AWA at the recent consumer electronics show lists something over 50 albums, some of them multiple record sets. The large majority are of classical works performed by continental artists and orchestras, others being by Japanese artists, with an occasional recital of ethnic music.

Also mentioned in the literature is a set of 3 discs intended for technical testing. Record number 1 contains swept frequency bands for both channels, one sweep being over the subsonic range; there is provision for wow and flutter tests and bands of $1 / 3$ octave noise for both channels.

Record 2 contains musical soundsdifferent instruments, different microphones, different angles of sound pickup, recordings made in studios, halls, with different mic setups, \&c. It would appear to provide examples of what hifi enthusiasts often talk about, without the opportunity of being specific.

Record 3 concentrates on imperfections in reproduced sound-the audible effects of wow and flutter, variations in frequency response, crosstalk, limitations on dynamic range, the audible effects of harmonic distortion, and the problems of poor tracking. Price of the Audio Technical 3 -record set is quoted as $\$ 27.00$.

It sounds an interesting brew but, unfortunately AWA did not have a spare set for us to play with up to the time this article was written. In fact, the supply of Denon records would appear to be well short of the demand, currently from enthusiasts as much interested in the technology as in the actual music.

However, AWA did make available copies of several discs not as handpicked samples, we understand, but simply on the basis that they were some of those still left in stock. Since the emphasis was on technology rather than program content, at this point of time, we passed them to members of our technical staff with the request that they react to them primarily as examples of recording technique.

The discs are listed below, together with very brief comments on each:
J. S. BACH. Three Keyboard Concertos,

No 1 in D Minor; No 4 in A Major;
No 5 in F Minor. The Tokyo Bach
Players, with Yuji Takahashi, piano.
Recorded July 1973. Denon stereo OX-7033-ND. Price \$9.90.
Musically, an excellent performance, very cleanly recorded but marred by a

Pictured above are two recent additions to the Toshiba-EMI range of hifi equipment. At the top is the ST-220 AM/FM stereo tuner, which combines excellent specifications with good appearance and simplicity of operation. The SB-220 power amplifier has a matching brushed anodised panel, with all normal input, output and control facilities and clickstop bass and treble controls. It has a power rating of 22W RMS per channel, both channels driven, and has facilities for two sets of loudspeakers. (ToshibaEMI Australia Pty Ltd, 301 Castlereagh St, Sydney 2000.)
tape hiss that will be noticed by those blessed with keen ears. Perhaps it is significant that this was the oldest of the records submitted for observation.
G. F. HANDEL. The Eight Sonatas for Violin and Harpsichord. Josef Suk, violin; Zuzana Ruzickova, harpsichord. Recorded July 1975. Denon stereo, 2-record set, OX-7037-8-ND. Price $\$ 19.90$.
Comment: Zestful, precise playing, a 1710 Stradivarius and a rich concert harpsichord make this musically interesting, although a couple of the sonatas emerge as a trifle clinical. The recording itself is very clean, very quiet.
W. A. MOZART. The Haydn Quartets. No 14 in G Major, KV 387. No 16 in E-Flat Major, KV 428. Smetana Quartet. Recorded in the Church of St Mary, Lucany, Czechoslovakia, June 1975. Denon stereo OX-7034-ND. Price $\$ 9.90$.
You don't need to be a classical buff to enjoy this music. The quality is very good and the only discernible background noise as the gain comes up ahead of each track is the faint low frequency ambience of the church itself.
DIE NEUE DOMANE FUR OBOE. Heinz Holliger oboe and flute, with Camerata Bern. Compositions by Sando Veress, Krzysztof Penderecki, Isang Yun, Edison Denisow, Heinz Holliger.

Recorded in Tokyo, November 1974. Denon stereo OX-7031-ND, price $\$ 9.90$.
The quality is excellent and the noise level very low. The performance is also good but these are modern compositions and may not appeal to everyone, on that account.
SONATES ET DIVERTISSMENTS. Pierre Pierlot, Hautbois; Paul Hongne, basson; Robert Veyron-Lacroix, piano. Compositions by Boimortier, Telemann, Haendel, Mozart. Recorded in June 1974. Denon stereo OX-7030-ND. Price $\$ 9.90$.
A very pleasant program, whether or not you are familiar with the music. Quality on hautbois and basson is superb but, to my ear, harpsichord and piano could have been a trifle more prominent. The recording is very quiet.
VIRTUOSOS FOR STRINGS. Sofia
Chamber Orchestra conducted by Vassil Kasanjiev. Purcell, Suite in E Minor for Strings; Gluck, Sinfonia in G Major; Vivaldi, Sinfonia No 3 in G Major; Haydn, Divertimento in E-Flat Major. Recorded in September 1974. Denon stereo OX-7040-ND. Price $\$ 9.90$.
The interplay of the strings produces an extremely complex sound pattern but it remains clean, with none of the breakup that can so easily occur. Quality is first-rate but not necessarily better than other top quality orchestral recordings.
One point that will be obvious is that the recordings date back, in one case, to 1973, the implication being that Nippon Columbia had PCM recording equipment available and on site more than 3 years ago. If they didn't, it would seem a rather futile exercise to translate a conventional tape master to PCM, purely for the sake of the PCM endorsement on the jacket.

The equipment actually pictured in the sleeve material is a fairly compact group of rack mounting "grey boxes", complete with knobs and meters, and surmounted by a transportable type of video recorder. Technically, there seemed to be no reason why it should not have been operational for that time.

AWA representatives were not able, off the cuff, to put the chapter and verse to the PCM story but their impression was that Nippon Columbia had, in fact, developed the system some time ago. Originally, their prime interest had been in the professional field and there had been copyright and other problems inhibiting more direct exploitation of the system. Now, however, they were marketing the records around the World and publicising the technology behind them.

Based on the very limited sampling outlined above, our own reaction is that the PCM system is capable of producing recordings equal to the best produced by conventional analog methods. This is not meant as faint praise. The simple fact is that the original acoustics, microphone
(continued on page 19)

Top Disc Cutting Studios, like The Mastering Lab, rely on Stanton's 681-Calibration Standard in their Operations.

Not everyone who plays records needs the Stanton Calibration Standard cartridge, but everyone who makes records does!
At The Mastering Lab, one of the world's leading independent disc mastering facilities, the Stanton 681 Triple-E is the measuring standard which determines whether a "cut" survives or perishes into oblivion.

A recording lathe operator needs the most accurate playback possible, and his constant comparing of lacquer discs to their original source enables him to objectively select the most faithful cartridge. No amount of laboratory testing can reveal true musical accuracy. This accuracy is why the Stanton 681 Series is the choice of leading studios.

When Mike Reese, principal disc cutter at The Mastering Lab, plays back test cuts, he is checking the calibration of the cutting channel, the cutter head, cutting stylus, and the lacquer disc. The most stringent test of all, the evaluation of direct to disc recordings, requires an absolutely reliable playback cartridge . . . the 681 Triple-E.

All Stanton Calibration Standard cartridges are guaranteed to meet specification within exacting limits. Their warranty, an individual calibration test result, comes packed with each unit. For the technological needs of the recording and broadcast industries, and for the fullest enjoyment of home entertainment, you can rely on the professional quality of Stanton products.

sTaNTOn

Have you ever considered the influence your listening room has on the reproduction of music? You should, and in so doing may quite rightly question the whole subject of accuracy of reproduction.

Listen to a friend's voice as you walk through different environments. To illustrate the extremes of change; a bare unfurnished hall, tunnel, or subway will make the voice sound full and resonant. Quite likely clarity will be poor due to reverberation or echo of the original voice competing for your attention. The audible effect of excessive reverberation is reduced definition, not unlike the visual effect when a TV image is cluttered with ghosts.

As you walk out of this "field of influence" into the open air, the voice tends to lose its fullness, the apparent volume is reduced, and clarity is restored.
Which was really your friend's voice? Of course it's a silly question-it was the same voice in each case. However, it does demonstrate the profound effect that the surroundings play in moulding the tone of sound. Before we come to the point of questioning the accuracy of a reproduced performance we must establish what we mean.

For example, large pipe organs, by their very nature, exist in very large struc-tures-mostly churches. Familiarity with the original source of sound necessarily establishes a long reverberation time with pipe organ sound. So much so that a large pipe organ without its accompanying reverberation would be judged abnormal. This problem is not likely to arise with a pipe organ-they can't be moved around.

But other instruments and singers, indeed whole symphony orchestras, can be moved from place to place. Some buildings exhibit qualities acoustically favourable, others less so, some disastrous. Furthermore, certain types of music evolved within an environment, and its performance should embrace that concept. Chamber music is an example, requiring a large room rather than a hall.

We haven't even arrived at the problems of reproducing recorded performances yet. I'm simply trying to establish the delicacy of the situation, and the influence that the acoustics of an environment have on an original performance.

In my experience of concert halls, quite apart from their individual characteristics, ! have found enormous differences in different areas of the same hall. When we come to the reproduction of sound, we tend to make our judgements relative to our best experiences of live performances. This is as it should be,

- 204 Wattle St, Malvern, S.A. 5061
as recorded performances are generally made in favourable circumstances.

Well, at last we have arrived at our own listening rooms, where I trust we are going to attempt, as far as is possible, to accurately reproduce the original performances.

What are the requirements of the room, and how do we establish them? From the music lover's point of view, we must be entirely practical. We must ensure that in our quest for accuracy, the method does not become self-defeating through complication beyond the resourses of the amateur.

The equipment required to measure the reverberation time constant of a room at various frequencies is extremely costly. Nevertheless, we can come to terms with the problem and achieve the required end result, even if we can't state

"by MALCOLM D. McLEOD

available rooms for subjective analysis, at the same time observing construction, materials and contents. The observer should concentrate his attention on the "after ring" resulting from clapping the two blocks together. In a live room, the after ring will be very obvious, diminishing in intensity and duration in surroundings with more aborption, until ultimately, in an anechoic chamber, it cannot be detected. It comes as something of a surprise to find that, in the open air of a back yard, individual reflections can be heard from fences, garages and walls.

I have found over many years of experimenting, that the most favourable listening rooms are those in which after ring can just be detected, with concentration, using the "two block" method. This will
the results in figures. We would not be discouraged from laying out a pathway because we couldn't justify a surveyor's theodolite. We could devise an entirely satisfactory method using little more than a ball of string, some pegs, and those most important ingredients, patience and common sense.

The reverberation time constant of a room is the time in seconds after a steady state tone is stopped, to decay in intensity by 60 dB , which is one millionth of the original loudness. The requirements for the average room is a decay time of 0.9 of a second in the mid frequency region.
Regardless of absolute figures, observation of a single impulse of sound is a most revealing method of testing. A suitable source of impulse is two 18 mm thick blocks of chipboard, about $10 \mathrm{~cm} \times 10 \mathrm{~cm}$, clapped together. This sound source is intense, wide band, and reasonably repeatable. The observer must familiarize himself with "after ring" between the extremes of a tiled bathroom and a heavily dampened room.
It is worth while taking advantage of
be close to the ideal conditions. It is not advisable to go beyond this point of absorption, as an over damped room sounds lifeless.

I used the term "ideal conditions". Perhaps it would be better to say happy compromise, for we are attempting to fulfil two conflicting requirements.

The recordings we play will contain some reverberation from the studio or hall where the recording was made, and is to some extent controllable. Close microphone placement, particularly to a solo instrument, will increase the proportion of direct to reflected sound.

The degree of reverberation we get on records, will be related to the type of music and the likely surroundings of its performance, hence our expectations of long reverberation time for a pipe organ, and short reverberation for small works such as chamber music.

Recreating the music at home, we now reproduce the recorded reverberation along with the music, and are now in trouble, for the reverberation is coming from the same speakers as the music, rather than from every direction, includ-

models trom Nakamichi Research Inc.

1. NAKAMICHI 610. This highly sophisticated and versatile Control Pre-Amplifier can enable you to obtain even better results from your existing Hi -Fi equipment. The 610 can truly become the heart of any sound system duc to its many and varied inputs and its superb electronic specifications - An absolute must for the true Hi - Fi enthusiast. 2. NAKAMICHI 620 POWER AMPLIFIER together with the 610 control pre-amplifier are both units with extraordinary performance specifications. The most striking aspect of the Nakamichi 620 power amplifier is the fact that its barely measurable total harmonic and intermodulation distortion figures are an entire order of magnitude lower than those of most high quality pre-amplifiers at all power levels right up to and beyond its conservatively rated maximum output of 100 watts continuous sine wave per channel.
2. NAK AMICHI 250 CASSETTE PLAYER. An entirely new compact playback only deck featuring mechanical and electrical excellence that separates it from all other cassette players of a similar size.
3. NAKAMICHI 350 unit has the same physical dimensions as the model 250 but with full record/playback facilities. Features include 3 low noise/low impedance microphone inputs, 8 ohm stereo headphone output, Dolby noise reduction, tape selection and a single 35 dB range peak reading level meter that indicates the higher of the two channels at any given instant. 5. ADS $2001 / 2002$ MINIATURE HI-FI speakers when used with either the Nakamichi 250 or 350 , these speakers provide a top quality hi-fi system for use in cars, boats, bachelor flats ctc., or anywhere where space is limited.
and of course the already familiar Nakamichi TT1000, 700, 600 and 550.

VICTORIA: Allans Music (Aust) Lid. (03) 630451 - Encel Electronics Pty. Ltd. (03) 423761 • Instrol $\mathrm{Hi}-\mathrm{Fi}$ (Vic) Pty. Ltd. (03) 675831 • Southern Sound (03) $677869 \bullet$ Southern Sound (03) $977245 \bullet$ Tivoli Hi-Fi (03) $804956 \cdot$ E \& B Wholesale (052) 96616 • The Sound Craftsman (03) 5092444 N.S.W. Convoy Sound 3572444 \& 291364 • Instrol Hi-Fi Pty. Ltd. 294258 \& 2901399 • Milverson Piy. Lid. 938 2205, 4122122 \& 6353588 • Riverina Hi-Fi 938 2663/4 \quad United Radio Distributors Pty. Ltd. 2323718 • Wests (Burwood) Pty. Ltd. 7474444 • Pitman's Radio \& TV (069) 252155 • QUEENSLAND: John Gipps Sound (07) $360080 \bullet$ Premier Sound (079) 282701 - TASMANIA: Bel Canto (002) 342008 • WESTERN AUSTRALIA: Audio Distributors (092) 315455 • Alberts $\mathrm{Hi}-\mathrm{Fi} \bullet$ Lesley Leonards © A.C.T. Pacific Stereo (062) 950695 • SOUTH AUSTRALIA: Blackwood Sound
Centre (08) 2781281 Ern Smith Hi-Fi (08) 516351 •Allans Music (Aust) Pty. Ltd. (08) 2235533.

ACOUSTICS \& SOUND QUALITY-Cont.

ing the rear, as in the live performance.
Furthermore, by reducing the reflected energy in our listening room by introducing absorption, the source of sound, normally a pair of speakers, becomes more clearly definable. Taken to extremes, we shall hear two separate sources of sound rather than the illusion of a fairly solid area of sound from and between the speakers. We must tame the room, leaving enough reverberation to disguise the shortcomings of reproducing the recorded reverberation along with the music from the front, and additionally, to help fill the area between the speakers.

As this is clearly a matter of compromise, opinions may vary to some extent as to the "ideal solution". We could quite logically conclude that, for quadraphonic reproduction, rooms should be more heavily damped than for stereo.

It is important to understand what is happening so that corrective measures can be applied. Everything has a coefficient of absorption which can be expressed as a figure. This figure will lie between 0 and $1 ; 0$ meaning no absorption (or total reflection) and 1 meaning total absorption (no reflection). Remember that the figure of absorption applies at a given frequency but, for our needs, the figure of absorption at 500 Hz will be satisfactory.

The following list gives the coefficient of absorption of different materials at 500 Hz , and serves as a guide to the possibilities that can be applied to correct an over live room.
Cane-ite acoustic tiles, $3 / 4^{\prime \prime}$ thick 6 Cane-ite acoustic tiles, $12^{\prime \prime}$ thick . 45 Plaster acoustic tiles
Heavy curtains against wall .35
Heavy curtains, $4^{\prime \prime}$ from wall 45
Carpet on concrete . 2
Carpet on underfelt on concrete . 35
Brick wall, unpainted 03
Brick wall, painted . 015
Plaster ceiling

From experience, I have found that most rooms need considerable treatment. The exception are rooms with thick wall to wall carpet, large areas of heavy drapes and plenty of soft upholstery, book cases and other objects which break up reflective surfaces, though it's still a good idea to check it out. Careful observations using impulse testing should reveal mild reverberation which you should be able to pin-point, more than likely to the upper wall areas.

This represents the conditions we require. Why? Many reasons. First, the remaining degree of mid-range reverberation which, after all, is echo, has been tamed to the point where its relative magnitude will not have a deleterious effect on clarity, but still exhibit the "life" so essential to mask the point source(s) of sound.
Additionally, you now have a chance of achieving a fairly even frequency response. No matter how fine your equipment, and whatever evidence you may bring to demonstrate a level response, you are having yourself on if you exclude the influence of the room. A highly peaky mid-range, due to reverberation, gives an equally nasty effect as if it had been caused by part of your equipment. Many an amplifier spends its life on bass boost or with the loudness switch on, or both, in an attempt to "pull the response into shape ${ }^{\prime \prime}$.

Do some testing in your room and observe the conditions in other people's rooms. Refer to the chart for ideas that will increase absorption, and try to distribute the absorption around the room. Don't go to extremes. Enough, no more. Cane-pite acoustic tiles offer about the highest absorption per dollar, and are so effective that I must caution you against the idea of a full ceiling of them. It has proved excessive. 50% coverage at most.

Good listening, and I hope your wife likes the new drapes.

HIFI NEWS-continued

management and mixing are common to both methods; so also is the cutting, pressing, and the replay and reproduction in the home. Once a certain standard of excellence has been reached at the mastering stage, the final result is determined by the front end and back end of the reproduction chain.

It may well be that the contribution of the PCM system may not be to outperform today's analog best, but to provide a way around some of the attendant problems which result in the production of recordings short of the best. PCM will represent a major forward step if it opens the way to consistently lower distortion, consistently lower noise, and consistently wider response.

If it doesn't work out that way, it won't be for the want of trying. The Denon discs are packaged in a plastic sleeve with envelope type flap, in some cases inside a further paper sleeve. They come out looking really immaculate. The titles are in the original European language (which we simply copied) but all the rest of the copious jacket notes are in lapanese.

Denon PCM records are currently being handled by a few of the leading retailers but stocks are very limited. They can, however, be ordered through local record shops from the distributors: Amalgamated Wireless (Australasia) Ltd, 554 Parramatta Rd, Ashfield, NSW 2131.

Distributed by Audioson International Piy. Lid.

Sydney	Melbourne	Adelaide	Perth
9381186	3296066	3377000	259993

The SYMPHONIC MKIV.
FM/AM STEREO TUNER AMPLIFIER MODEL PRO 1007 Output 30 watts RMS each channel into 8 ohms load. Harmonic Distortion 0.5%. Frequency response 20 Hz to $40,000 \mathrm{~Hz}$ belt drive turntable MODEL BDP 100
Elliptical Stylus. Synchronous motor. Anti skating and lateral balance. Auto Cut/Auto Return.

Oil damped cueing. Spring loaded detachable injection moulded lid.

CD 4910 CASSETTE DECK

Auto stop on all functions. High density permaloy heads. CrO 2 Tape selector for bias and equalizing.

CS661 SPEAKER SYSTEMS

10" 3 way Speaker System. 3 way crossover net work. 8 ohms impedance. 30 watts capacity

RAMBLER

"s The Best Thing That Has Happened to Music."
See and hear the Rambler range of sound equipment at your Rambler dealer now and compare the outstanding performance and value
Distributed and serviced throughout Australia by Sun Electric Co. Piy. Lid. Melbourne, Sydney, Brisbane, Perth, Adelaide, Hobart and Canberra.

HIFI REVIEWS

Pioneer SX-950 stereo receiver

Pioneer have recently released three high power stereo receivers which have performance equivalent to much higher-priced separate components. Here we review the least powerful of the series, the SX-950. It is rated 110 watts per channel into 4 ohm load, over the range 20 Hz to 20 kHz and for less than 0.1% harmonic distortion.

Considering the impressive size and power rating of the SX-950, it is hard to credit that there are two higher rated models in the Pioneer range of stereo receivers. The higher rated SX1050 and SX-1250 are both very similar in appearance and facilities offered.

Dimensions of the SX-950 are 527×173 $\times 410 \mathrm{~mm}$ ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) while mass is 19.1 kg . A wrap-over timber case is supplied and included in the price. Finish on the front panel is identical to that on other current models in the Pioneer range.

As can be seen from the photographs, there are a large number of knobs and switches on the front panel so that some time is needed for the user to familiarise himself with all the facilities. The most often used controls, which are the Volume and Tuning knobs are close together and at the right-hand end of the control panel so that one does not have to grope around for too long to adjust the volume or tune to another station.
No less than three separate pairs of loudspeakers can be connected to the SX-950, although the push-button switching allows only two pairs to be driven at any one time.

Facilities for the tone controls and filters seem over-complicated considering that their overall effect is really no more than on a fairly basic stereo amplifier. Maximum boost is limited to plus 12 dB at 50 Hz and plus $111 / 2 \mathrm{~dB}$ at 15 kHz , while the figures for maximum cut at these frequencies are a little higher. The filter switches give effective attenuation from 30 Hz and 6 kHz of 6 dB / octave, which is hardly worth bothering about. Yet to provide this limited degree of frequency control, there are five switches and two knobs. Two lever switches actuate the filter stages; two more select the furnover frequencies for the bass and treble controls; the fifth acts to switch out the tone control circuitry completely. The effect of this last switch is merely to change the gain by 1 dB . There is no measurable effect on frequency response or distortion. This complexity seems rather pointless as the click stops on the tone control knobs are just as effective.

More useful are the four lever switches which allow for connection of two cassette decks or tape recorders, plus an Adaptor such as a Compressor/Expan-
der (eg DBX 117) or a Graphic Equaliser. One of the switches is marked "Duplicate" and allows copying from one cassette deck to another. These facilities are certainly desirable on a receiver in this price range.

Besides the facilities for tape recorders just mentioned, there are five pushbuttons which allow for selection of FM or AM tuners, two Phono inputs and one Auxiliary source such as Television
provided for tuning FM stations we found the deeply recessed meters hard to see when the receiver was mounted on a waist-high bench. The control panel needs to be at eye-level to allow the meters to be used. This means that the user has to bend over to tune a station.

The usual conglomeration of input and output sockets abounds on the rear panel. There is a swing-out AM aerial rod which requires adequate clearance at the rear of the chassis so it can be orientated for best reception. A three-core mains flex and approved three-pin mains plug is fitted.

We had some doubts about the combined fuseholder and mains voltage selector. It is usually necessary to remove the voltage selector plug when a fuse has

A large number of controls and facilities are provided on the high power SX-950.

sound. An appropriate window on the dial lights up to show which source has been selected.

Another control worthy of mention is the Muting switch, which provides 20 dB of attenuation additional to the Volume control. This allows momentary reduction in the volume level to allow telephone answering or to order another can of the amber fluid (if that is what appeals). The Muting switch also allows the system to produce very soft background music levels, which can be hard to set with the normal Volume control. This is because most Volume control potentiometers fail to provide progressive control action when set towards their minimum-they are also usually poorly matched at minimum settings.

While we approve of the facilities
to be changed. This raises the possibility of reinserting the plug incorrectly (for say, the 110 V mode) and thus the further possibility of serious damage. This problem could be avoided by ensuring that the fuseholder cap firmly grips the fuse when it is removed.
Removing the wrap-over timber cover reveals what appears to be a relatively uncluttered chassis. However, as our photographs show, there is a large amount of circuitry on the underside of the chassis.

Surprisingly for a unit of this complexity, none of the PC boards use plug-in connections-nor is there a mother board. Instead all interconnections to the boards are wire-wrapped. This is possibly more reliable, but it sure must add to the cost.

SOMT HRFANANS No3

New from Sony: Front loading Cassette Decks

TC 206SD

Sound that rivals reel-to-reel in a space only one sixth as high.

Sony's new front loading cassette decks are loaded with features. For example the TC206SD with full range separate bias and equalisation selectors to handle high quality ferric, chrome dioxide and Sony's superb double coated ferri-chrome cassettes. Fully flexible Dolby* controls with multiplex filtering to get the best from FM broadcasts LED peak indicator as well as easy to read VU's. Automatic shut off. Lockable pause key for precise cueing. Sony's famous long life Ferrite and Ferrite head. Illuminated cassette well and upright tape positioning for easy viewing of cassettes. Featuring the new 'Soft Eject' mechanism.
And the sound? Strictly 'Front of the House' Virtually linear smooth response over a
tremendous range of $20-16,000 \mathrm{~Hz}(\mathrm{FeCr}$, $\mathrm{C}_{1} \mathrm{O}_{2}$ tape). Wow and flutter at reel-to-reel standard of 0.08%. Signal to noise - an amazing 59dB.
If you want space saving, front-loading convenience and quality sound, check the range of Sony cassette decks soon; the TC 206SD for superb sound, the TC 209SD strictly for connoisseurs with specifications to match. And the budget priced TC 186SD for Sony quality - at a significant saving
-Dolby is a trademark of Dolby Laboratories Inc.

SONY.
Hear the difference research makes .

For your nearest stockist call SONY Sydney 20221, Canberra 95 2100, Melbourne 874 8222, Brisbane 447504. Adelaide 268 3444, Perth 81 3422, Newcastle 61 4991, Wollongong 715777 , Launceston 25322 , Townsville 714105.

meter calibration

We were interested to note the care taken with shielding of the input sockets and associated wiring from the output transistors. In fact, the more closely one examines the chassis of the Pioneer SX-950, the more one becomes impressed with the amount of work involved in it, both in design and assembly.

A glance at the circuit of the SX-950 confirms the visual impressions-that this is a very complex unit. Most of the FM and AM tuner circuitry is comprised of three integrated circuits. The remainder of the circuitry uses discrete components.

The power amplifiers are directcoupled and employ balanced supply rails of plus and minus 50 V . The filter capacitors for these rails are each 22000 uF . To obtain adequate power rating there are four output transistors per channel. The output stages are fully complementary.

Of particular interest in the power amplifier is the protection and muting circuitry which involves a relay switching the power circuits. The relay driving circuitry monitors the conditions of the output transistors. If excessive loading, excessive drive or a DC fault occurs, the relay disconnects the loudspeakers. If a short circuit is maintained the relay cycles on and off until the condition is corrected.

This system of protection is more satisfactory than some "load line" protection schemes which can interact with some loudspeakers to produce nasty screeching sounds. However, for the relay system to be employed the output transistors must be inherently rugged to withstand the momentary overloads which the relay allows before it switches. The output transistors in the Pioneer SX-950 would appear to be very rugged.
Both the preamplifier and power amplifier circuits follow fairly conventional lines, once the overall complexity is allowed for. Most of the supply rails, with the exception of those to the output stages, are regulated. Thus, there are no less than nine separate regulated supp ${ }^{1 \text { 1, }}$ rails. In fact the power supply board is

Top and underside views give some idea of the complexity of this stereo receiver.

for the closest approach to the riginal sound

The sound of QUAD is the ultimate in stereo high fidelity. Go and hear it ... then choose your high fidelity equipment.

OUAD

Ask your QUAD retailer or the Australian Agent for tree literature.

Australian Agent: BRITISH MERCHANDISING PTY. LTD., 49-51 York St., Sydney. Phone 291571.
SYDNEY: Arrow Electronics - Douglas Hi Fi - Instrol • Kent Hi Fi United Radio Distributors.
MELBOURNE: Allan's Music • Douglas Trading • Myers • Sound City. ADELAIDE: Blackwood Sound - Challenge Hi Fi .
BRISBANE: Brisbane Agencies • Stereo F.M. 3 QUAD 33 control unit
4 QUAD 405 power amplifier (Winner British Design Council 1976 Award) 5 QUAD FM3 stereo tuner
\longrightarrow Sound.
CANBER -
RA: Dura-
tone

- Pacific

Stereo.
HOBART: Bel Canto Pacific Quantum. PERTH: Alberts TV \& Hi Fi Centre - The Audio Centre.

APOLLO HI-FI

 PROUDLY PRESENTS LENCO \& DOKORDER L65 FULLY AUTO

16 pole synchronous motor fully adjustable antiskate 300 mm dia. 1.4KG platter friction lid hinges.

1120
4 TRACK 2 CHANNEL

Lifetime warranty Permalloy MBD heads (parts \& labour), peak indicators, sound on sound, sound with sound, electronic echo, cue and review. Optional head kit to convert to 2 track, 2 channel

PIONEER SX-950

bigger than that employed in some power amplifiers.

As in some other high power units we have reviewed, the power transformer was noisy. We were able to reduce this to an extent by tightening the clamp screws, but it was still noticeable as a faint buzz in a quiet location. Another problem inherent with a large transformer is that it can have an extensive hum field. While this does not affect the amplifier or tuner circuitry it certainly affects nearby magnetic cartridges and cassette decks.

With the SX-950 we found that a turntable or cassette deck had to be positioned at least 30 cm away from the receiver transformer before the hum field did not audibly affect their operation. We are not singling the Pioneer out for special criticism here; these remarks apply to most high power amplifiers, with the exception of those employing C-core or toroidal power transformers.

Performance specifications of the SX-950 are detailed at length in the comprehensive owners' instruction manual. The power amplifier and preamplifier sections are specified separately, as are the tuner sections. Naturally our performance tests applied to the preamplifier and power amplifier sections as a whole.

Power output is specified at 85 watts continuous per channel into 8 -ohm loads or 110 watts per channel into 4 -ohm loads, for a bandwidth of 20 Hz to 20 kHz and a total harmonic distortion of less than 0.1% over the whole band

Suffice to say, this spec was confirmed. Briefly, we measured power output at 105 watts from a single channel into an 8 -ohm load or 98 watts per channel with both driven.

With 4 -ohm loads, power output was a whopping 160 watts into a single channel and 138 watts per channel with both driven. These tests were performed using a regulated 240 VAC supply (as are all our tests on amplifiers).

Just to be difficult, we ran full power tests into 2 ohm loads. This blew the main fuse. This was a little surprising-we expected the relay to operate instead.

Frequency response at 1 watt was 3 dB down at 10 Hz and 70 kHz . Square wave response was good and stability with capacitances up to 2 uF shunting the load was satisfactory.

If the SX-950 is used with loudspeakers of average or high efficiency, the Loudness control should only be used in conjunction with the Muting switch. Otherwise a silly situation occurs where a Volume control setting of around 9 o'clock produces quite loud sound levels yet the Loudness contrul adds substantial bass boost. Better not to use it at all.

Phono sensitivity for 90 watts into 8 -ohm loads was 2.5 mV while Auxiliary input sensitivity was 150 mV . RIAA equalisation is stated to be within 0.2 dB
and we confirmed that as best we couldthese tight limits challenge those on audio oscillators and AC millivoltmeters.

Signal to noise ratio for Auxiliary inputs was 78 dB with respect to 90 watts with open-circuit inputs, and 84 dB with short circuit inputs. For Phono inputs, signal-to-noise ratio was 79 dB with respect to 90 watts and a $10 \mathrm{mV} / 1 \mathrm{kHz}$ input signal using a typical magnetic cartridge as input source. This last figure can only be achieved with the magnetic cartridge well away from the influence of the power transformer. Even so, it's very quiet, one of the best figures yet.

Figures for separation between channels of the preamplifier and power amplifiers are equally impressive. We obtained results of 75,60 and 50 dB at $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz respectively, with the undriven channel input short circuit. These figures ensure that there is no degradation of separation between channels for any likely signal source.

Performance results for Quieting, Meter response, Frequency response and Separation betwèen channels are all indicated in the two graphs. The Multiplex filter has the usual drastic effect on separation but does give a useful reduction in high frequency noise in poor reception conditions.
While the tuner certainly has good Quieting characteristics it seemed more prone to be affected by ignition noise than some other good tuners, when the
received signal was weak. This would not ordinarily be expected because the AM rejection ratio (not tested) is fairly high at 55 dB .

Muting and stereo beacon threshold is $3 u \mathrm{~V}$. We tend to the opinion that 10 uV would be a better setting. In addition, the circuit hysteresis should be increased to prevent erratic switching between mono and stereo when the signal is at the critical level.

19 kHz pilot rejection was 60 dB while 38 kHz and other residuals were unmeasurably low. Harmonic distortion in mono mode is $0.4 \%, 0.5 \%$ and 1% at $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 16 kHz respectively. In stereo the equivalent figures were 0.9%, 1.2% and 1.1%. These figures are quite a lot higher than the specification, but still adequate.

Overall assessment of the SX-950 is along the following lines: it has an amplifier and preamplifier of superlative performance which would be difficult to better. Its FM tuner is also good, but perhaps not quite up to the same high standard. Still, it would be far more expensive to obtain a separate tuner of higher standard plus a separate preamplifier/amplifier of the same power and performance, and this would be difficult to justify in Australia at present.

Recommended retail price is $\$ 669$. The SX-950 is available from high fidelity retailers throughout Australia. Further information can be obtained from Pioneer Electronics Australia Pty Ltd, 178-184 Boundary Road, Braeside, Victoria or interstate offices. (L.D.S.)

Comfortable headphones from Sennheiser:- HD400X

The outstanding features of the new Sennheiser HD-400X headphones is their light weight and wearing comfort. Mass is only 80 grams, not including the cable. It has a light cable 3 metres long terminated in a 6.5 mm jack plug. The black plastic headband is fully adjustable and the bright yellow foam earpads are

removable for washing or replacement.
The foam earpads provide little acoustic isolation from external noises but the phones are so light it is possible for the listener to forget that he is wearing them. Sound reproduction is clean and natural even though the frequency response is not particularly extended. Bass response is satisfactory for most music although it is lacking for pipe organs (as are most headphones, for that matter).
Load impedance of the HD-400X's is quoted as 500 ohms. Combined with a modest sensitivity, this acts to prevent overload when connected to normal stereo headphone jack on an amplifier, but allows adequate drive from the headphone socket on most cassette decks. Many low impedance headphones are not adequately driven by the socket on cassette decks, so this is a favourable feature.

Further information on price and performance can be obtained from high fidelity retailers or from the rusuralian distributors, R. H. Cunningham Pty Ltd, 493-499 Victoria Street, West Melbourne, Victoria.

America rolls out the first space shuttle

The flagship of a new era of space transportation was unveiled at Palmdale, California, on September 17 last when Orbiter 101, the first reusable Space Shuttle vehicle, was put on display by the National Aeronautics and Space Administration (NASA). The Space Shuttle, a versatile and reusable spacecraft, is scheduled to begin Earth orbital flights in 1979.

Although Orbiter 101 is the first vehicle off the assembly line, it will not fly into space until the early 1980s. Its first job in 1977 will be as a test vehicle. It will be launched from the top of a modified 747 jetliner in a series of manned flights (Approach and Landing Tests-ALT) to verify its aerodynamic and flight control characteristics at NASA's Dryden Flight Research Center (DFRC), Edwards Air Force Base, California
Subsequent to ALT, extensive ground vibration tests will be conducted in 1978 at NASA's Marshall Space Flight Center (MSFC), Huntsville, Alabama. When these tests are concluded, Orbiter 101 will be returned to Palmdale, California,
for modifications to prepare it for space flight. The second Orbiter (OV-102) will be used in the initial Earth orbital flights from NASA's Kennedy Space Center, Florida, in 1979.

The Orbiter, workhorse of the Space Shuttle program, is designed to be used as many as 100 times. It is as large as a commercial jet airliner (DC-9); its empty weight is 67,500 kilograms $(150,000$ pounds); it is 45 meters (122 feet) in length and it has a wingspan of 14.4 meters (78 feet).

The Space Shuttle is composed of the Orbiter, two solid rocket boosters and an external fuel tank which feeds the Orbiter's three main engines. The Orbiter is attached to the back of the fuel tank and the solid boosters are attached to each side of the external tank. The solid rocket boosters will be recovered, refurbished and reused.
With the Space Shuttle, the rather large stable of launch vehicles that we use today-both civilian and military-will be eliminated. The Shuttle will be used to place almost all our satellites into orbit
and, more importantly, it will have the capability to retrieve malfunctioning satellites and repair them in orbit or return them to Earth. No longer will it be necessary to write off a multi-milliondollar satellite due to a malfunction following launch.

The Space Shuttle will also be capable of carrying the Spacelab into orbit. Spacelab, carried in the Shuttle cargo bay, will provide a shirtsleeve, pressurized environment for scientific and technical investigators to work in space. Airlocks and a pallet external to the pressurized area will be available for experiments that require direct access to the space environment.

For lunar and planetary missions, the Shuttle will be capable of carrying upper stages into Earth orbit which will propel probes and satellites into outer space. These upper stages will also be used to place satellites into high geosynchronous orbits.

After its Earth orbital mission is completed, the Orbiter will return to Earth and land like an aircraft.

Major public showing for Viewdata

Viewdata-the revolutionary new British Post Office system for displaying telephoned information on television sets-recently had its first major public showing at the new National Exhibition Centre in Birmingham. Here, a businessman uses a custom-built terminal to make a telephoned request for details of current share prices.

The system harnesses the ordinary telephone to a modified domestic TV receiver. By pressing a key on the pushbutton control unit the television set is automatically linked to a 'library' of hundreds of thousands of items of information. This appears on the screen in up to seven colours with a maximum of 960 characters (about 200 words) on each 'page'. The page can be held for any length of time and after use another page can be called up.

Viewdata is based on an encyclopaedic store of constantly updated information on subjects of interest to all members of the community-from the family at home to business and industrial users at work. A public service is being

planned by the Post Office and more than 70 organisations are to take part in a full-scale pilot trial. This will enable the Post Office to determine the range of information to be provided, consider charges for the service and assess the likely demand.

Satellite tracking contract to Plessey Australia

Plessey Australia has been awarded a contract by the Department of Science for the supply and installation of Turn Around Ranging Station (TARS) equipment.

The station, to be installed at the Orroral Valley Tracking Station in the ACT, is one of three, the others being in Japan and Thailand, which will be used to determine the position in space of the Japanese geostationary meteorological satellite to be launched in mid-1977.

Plessey Australia is prime contractor for the project. The equipment itself is being manufactured by Fujitsu Limited, Japan. The Turn Around Ranging Station transponds ranging signals from a command and data acquisition station in Japan to measure the "round trip" time of the signals. Together with similar information from the other stations the position of the satellite can be determined regularly by computation.

The Australian Bureau of Meterology will, later, be installing a ground station to receive data from the satellite.

Export order for AWA speaker columns

Australian speaker columns, designed and built by Amalgamated Wireless (Australasia) Ltd, are to be installed in a new Opera House in Guatemala City, capital of the Central American Republic of Guatemala.

The columns, unique in the field of sound reproduction, were recommended for the Guatemala City Opera House by Dr V. L. Jordan, the worldrenowned Danish acoustic consultant, who recommended the same type of columns for the Sydney Opera House.

The AWA speaker columns are specifically designed for speech reinforcement in reverberant concert halls. AWA developed the revolutionary new design for the Sydney Opera House concert hall, which has since been recognised as having one the the best sound characteristics of any concert hall in the world.

In a reverberant hall it is necessary to produce a beam of sound which does not reflect from the walls. The shape of the beam normally varies as the speech frequency moves between high and low notes, which results in people sitting in different parts of the hall hearing the sound differently.

AWA's electrically tapered column overcomes this difficulty and maintains the shape of the sound beam, giving clear and uniform speech reproduction in all parts of the hall. The column incorporates 19 loudspeakers in a 4 metre enclosure.

Record turnover at Dick Smith Electronics

The past year has seen the turn-over of the Dick Smith Electronics Group almost double. Turn-over for the last financial year was at a record level of $\$ 3.6$, million compared with $\$ 2$ million for the previous year.
"I think our success is due to the fight we put on to hold costs", says Dick Smith. "While last year certainly wasn't a boom year for the industry, we were able to peg most of our prices by rationalising buying or opting for larger quantities. Too many suppliers seem to accept price rises as being inevitable and price themselves out of business."

Two new interstate stores have just opened in Brisbane and Melbourne and the Dick Smith Dealer network has also started operation in Hobart and Darwin. This new venture is planned for up to 20 dealers who will maintain control and ownership of their own business.

Mail order sales have continued to grow with the Artarmon headquarters handling about 1000 orders per week. Stock control has been computerised using an IBM System 32 with the revolutionary hard-goods package for electronic distributors-the first such installation in Australia. Over 3,500 basic lines are currently stocked.

Automatic map reader for air pilots

Marconi-Elliott has introduced an automatic map reader (AMR) which enables the pilot of a light aircraft or helicopter to see his current position at a glance, using the same map as he normally employs for navigation. The map is folded so that it shows the area over which the pilot plans to fly, and is then inserted under two superimposed 254 mm diameter transparent discs. These discs can be rotated independently by servo motors, and a radial line and spiral engraved on them can thus be made to cross each other anywhere over the map's surface in order to indicate a position.

Controls on the AMR enable the starting point to be entered by the pilot, and the self-contained microprocessor continuously calculates and automatically displays present position. This is worked out from speed, course and wind information entered by the pilot or fed by an "umbilical" cord from navigation equipment in the aircraft. The AMR is less than

25 mm thick and weighs under $11 / 2 \mathrm{~kg}$, allowing it to be held in the hand or strapped to the pilot's knee.

The AMR is designed to reduce the workload in military helicopters, general aviation aircraft and small ships by providing a simple aid to navigation.

First pictures of Henry VIII's warship

Using this new British 'low-light' television camera-which can operate at depths in excess of 30 metres without the need for artificial light-the first pictures of Henry VIII's warship, the 'Mary Rose', were beamed to the surface in southern England recently.

The 700-tonne Mary Rose sank off the English south coast in 1545 while leading 60 British ships to face a French squadron. The excavations are described as 'the most important maritime archeological project in the world at this time' and it is hoped that the hull of the vessel, together with the possessions of the men who perished in it may still be intact, encased in a shield of clay. First pictures from the camera show that the timbers are still in a superb condition.

A team of 40 divers is working on the wreck with the main task of digging a

trench around the vessel's keel. If the rest of the timbers are in as good condition as is believed it is hoped that the Mary Rose could be raised within three years.

Lecture series on

medical electronics

"Electronics in Medicine" is the theme of a series of public lectures to be held in the five mainland state capitals and in Canberra; and in summer schools in Sydney and Melbourne between November 29 and December 22.

The lectures and summer schools will be conducted by Professor B. McA. Sayers, Professor of Electrical Engineering Applied to Medicine, and Dr J. C. Vickery from the Engineering, in Medicine Laboratory, Department of Electrical Engineering, Imperial College of Science and Technology, London.

The lectures have been organised by

Professor Sayers
 the Institution of Radio and Electronics Engineers (IREE) from which further information and registration forms can be obtained. Interested readers should contact the General Secretary, IREE, 157 Gloucester St, Sydney 2000. Telephone 271039.

HHllsAntennas
 Receriving is Believing

Brisbane, Sydney, Canberra Melbourne, Hobart, Adelaide, Perth

The Hills Telray range of TV Antennas is making
its mark right throughout Australia. Regional
The Hills Telray range of TV Antennas is maki
its mark right throughout Australia. Regional installers are finding Telray the ideal medium priced antenna.
Telray copes with any channel combination which makes it a sensible choice for areas where changes of channel are expected. Metropolitan installers, too, are impressed with its performance and value for money. Like them, you'll find there's more money for you. Better performance for your customers. Hills Telray can put you in the profit picture. Write to any branch of Hills for our colour brochure on the full range of Telray antennas. You'll make more money . . . and happier customers by recommending Hills Telray as Standard.

Hills Telray Puts you in the Profit Picture.

NEWS HIGHLIGHTS

New spectrometer analyses particles down to 1 um

Scientists at the National Bureau of Standards (NBS) have developed a new instrument capable of routinely analyzing very small particles, 1 micrometre in size or larger. Called a laser-excited micro-Raman spectrometer, the device will be of special interest to scientists studying the role of very small particles in air pollution.

The unique spectrometer was developed by Dr Greg Rosasco and Dr Edgar Etz, chemists in the NBS Institute for Materials Research (IMR), with support from the US Air Force Technical Applications Center.

The micro-Raman spectrometer has a unique design that combines commercially available components with several innovative features. The resulting operation of the one-of-a-kind instrument is routine in that any specific particle of interest in a sample can be simply located and then rapidly and precisely positioned for measurement.

A key feature of the instrument is that

it optimizes detection of the very weak Raman signal from the particle of interest in a sample and minimizes all other sources of interference. The entire instrument is connected to a mini-
computer which allows automatic data acquisition over a long period of time.

Raman spectroscopy offers a unique "fingerprint" that provides specific information about the structural or molecular formula of major chemical units in a material. For example, the Raman spectrum of a substance containing sulphur and oxygen can be used to determine if the sulphur and oxygen are present as sulphates, sulphites, or as metal sulphides or oxides. Raman spectroscopy also provides information about the state of aggregation of the chemical units in a material, for example, whether they exist in a crystalline or glass-like phase.

The analytical capabilities of the microRaman spectrometer are under investigation by NBS scientists. Chemical and physical characterization of micrometre and submicrometre-sized particles is of major importance in enviromental analysis. It is believed that particles in this size range breathed into the lungs may damage the respiratory apparatus.

Europe's largest ultra-clean workshop

This new 'clean room' of the Mullard plant at Southampton in southern England is claimed to be the largest and cleanest workshop of its type in Europe. The room has an ultimate capacity for the production of about 2500 silicon slices a day for the computer industry in a superclean environment better than 'Class $10,000^{\prime}$. This means that the air within the room contains no more than 10,000 half-micro-metre sized particles in every cubic foot-compared with a typical factory environment usually rated at around a million particles per cubic foot.

The more critical parts of the clean room are restricted to Class 1000 and the supercritical areas are down to Class 100,

although in fact most of these sections have an actual particle count of less than 10.

Oil from coal-CSIRO research shows promise

A process to extract oil from coal is showing promise in research testing by the CSIRO, the Minister for Science, Senator J. J. Webster, said in Sydney recently. The Minister was inaugurating a laboratory-scale flash pyrolysis reactor built by the CSIRO's Minerals Research Laboratories at their North Ryde site.
"Flash pyrolysis is a process which can virtually 'cream off' the valuable oilforming products from coal, leaving a low sulphur char residue which can be burned for the production of gas or electricity," Senator Webster said. He said that the process was likely to be much
simpler than other alternatives, and so could cost less to develop.
The reactor inaugurated today processes 20 kilograms of coal per hour, and will be used to examine important engineering problems, and to test the sensitivity of the process to scaling up for use by industry.
"If successful, we hope that this work will encourage industry to participate in the development of a pilot plant, and that it will eventually lead to a full-scale process designed to satisfy a significant proportion of Australia's liquid fuel needs," Senator Webster said.

University students on FM radio

Melbourne University students went to air with the University's first experimental FM broadcasts, during August-and, from the students' viewpoint, the three-day experiment was a success.

Studio equipment for the students' experiment was supplied by Philips Electronics Systems (Vision \& Sound) and included the newly released LDN 5664 broadcast consolette, microphones, turntables, LBH 1309 motional feed-back loudspeakers, an ITC cartridge recorder and a PRO 36 reel recorder.

The FM transmitter used in the experiment was located in the University grounds and was restricted to an operating radius of about 10 kilometres, broadcasting on a frequency of 92.1 MHz .

The three-day experiment enabled the students to get a clearer understanding of the problems associated with programming and operating an FM radio station. In addition, it gave them training in taping recorded segments and then putting a completed program to air.

As a follow-up, the experimenters are conducting a survey amongst student listeners to find out what program material students want to hear.

This information will form part of their submission to obtain a full FM licence to broadcast educational material and university news.

Photimport presents with pride, the Lenco range of precision-engineered Hi -Fi turntables.
Australian test results have shown that wow and flutter are almost impossible to measure in Lenco
Three superb Lenco turntables.

Model L90

The L90 Lenco Electronic Hi-Fi. A superb, top-ranking bell-driven transcription turntable. 16-pole synchronous motor, illuminated strobe, dampened spring suspension and anti-skating device. As precise as a Swiss watch.

Model L65

The L65 Lenco Automatic belt-driven Hi -Fi turntable. Light aluminium tone arm. After selection of record diameter, tone arm lowers itself onto the record. After playing, it returns itself to tone arm rest. Viscously dampened suspension. A high quality instrument for excellent reproduction.
equipment! So, people who are looking for nearperfection in sound reproduction . . . listen to Lenco. Combine this superb reproduction with Lenco's very reasonable price and you have a very sound bargain!

Model L60

The L60 turntable, precision engineered for great sound reproducton! Manual operation, but with all other advanced features of the L65. The L60... the way 10 get renowned sound reproduction at a moderate price.

PHOTLMPORT
 MELBOURNE ADELAIDE BRISBANE PERTH SYDNEY

For descriptive literature and specifications, send a 30 cent stamp to
Qualitron Industries Division of Photimport (Australia) Piy. Lid.
Head Office: 69 Nicholson Street, East Brunswick, Vic. 3057 Australia. Telephone: 3806922

New solar panel tracks the Sun

Array of solar energy spheres

A major challenge facing solar cell manufacturers is to reduce the cost of their cells relative to the electrical output, both by increasing cell efficiency and by reducing manufacturing costs. One interesting new development, aimed at improving efficiency, is a revolutionary solar panel that automatically tracks the Sun, and yet has no moving mechanical parts.

by MICHAEL KENWARD*

The world's abundant solar energy can be turned into electricity easily enough. Photoelectric solar cells have been doing it for many years-but electricity from these cells costs much more than electricity from conventional power stations or even from nuclear power stations.
Now Derek Mash, of Standard Telecommunication Laboratories (STL) of Harlow in England has invented a solar 'eyeball' that could bring down the cost of "solar electricity".

Most work on solar electricity concentrates on silicon solar cells which, like other photoelectric solar cells, convert sunlight directly into electricity. Unfortunately, silicon solar cells are more than 100 times more expensive than they need to be if their electricity is to compete with that from modern power stations. Much of today's research and development on solar cells is concerned with new techniques for making cheaper silicon solar cells. But Derek Mash's work at STL takes a completely different approach.

STL is working on gallium-arsenide solar cells. The company already uses gallium-arsenide in its work on semiconductor lasers and other electro-optic devices. This substance has a significant advantage over silicon in solar cells in that the Sun's light can be focused onto the cell's surface by a lens which concen-
trates more solar energy on to a given surface area. Of course, you can do this with a silicon solar cell but you run two risks.

To begin with, the concentrated sunlight can produce a temperature so high that it damages the cell-galliumarsenide cells can withstand higher temperatures. Also, as the intensity of light rises on a silicon solar cell it "saturates" and the electrical output levels off before the Sun's energy is very high-galliumarsenide cells do not saturate so easily.

This means that a small area of galliumarsenide solar cell can generate much more electricity than the same area of silicon solar cell. But of course it also means that some sort of lens has to be used to focus the Sun's light on to a gallium-arsenide cell.

Solar energy systems that use optical focusing have a major drawback-they must follow the Sun as it moves across the sky during the day. There are numerous ways in which a cell can be made to keep watching the Sun, but most of these involve mechanical devices that are both expensive to build and need careful maintenance. Derek Mash has invented a system with no mechanical parts.

The STL device is a plastic "eyeball" about the same size as a football. The
sunlight shines through a lens in the eyeball and onto the solar cells. As the Sun moves, its light shifts off the cellwhich is surrounded by four gas reservoirs.

When the sunlight strikes one of these reservoirs the gas inside it-this is just air-heats up and expands, moving a small magnet inside the eyeball. This internal magnet interacts with an outside magnet and as a result the eyeball, which floats on water and can turn freely, moves so that the solar cell once again looks straight at the Sun.

The solar eyeball has very good prospects, says Mash, who has his doubts about the possibility of making silicon solar cells cheaply enough. He points out that while a gallium-arsenide cell might cost a little more than a silicon cell-the materials cost a little more but the production costs should be about the same-gallium-arsenide cells can be put into a focusing system that concentrates the Sun's light by a factor of 500 to 1000.

STL is quick to point out that its research and development is in early days yet, but it tentatively predicts that a kilowatt's electricity generating capacity might cost $£ 350$ to $£ 500$, which is not far off the cost of a kilowatt of generating capacity in a modern nuclear power station. The material used so far for experiments has been Perspex, which is both transparent and fairly easy to machine; production devices might use a cheaper material and a mass production process.

The fuel for the solar cells is, of course, free. Running costs should be very low because the tracking system has no moving parts to go wrong. And the eyeball's lens surface can easily be cleaned by washing it in the water in the float tank. Derek Mash reckons that solar eyeballs could last a very long time indeed.

The solar eyeball system can produce more than electricity. Solar cells are not 100% efficient at turning sunlight into electricity-more than three quarters of the solar energy escapes. Some of the energy left over can be captured in the solar eyeballs' water tanks. So the system can produce both electricity and hot water-two of the major domestic energy requirements.

[^2]
The world that was inside a test tube

Michael Faraday: the father of refrigeration

Abstract

Most of us know of Michael Faraday as the scientist who made great contributions to our knowledge of electricity and magnetism in the early nineteenth century. But did you know that it was Faraday, more than any other scientist, who was responsible for the development of the domestic refrigerator? This intriguing article tells the story of the scientific discoveries that lead to refrigeration.

"That tube's dirty-it has oil in it", said the rather sharp-tongued and rankpulling busy-body, Dr Paris to Michael Faraday, Sir Humphrey Davy's young laboratory assistant at the Royal Institution of Great Britain, one evening in 1823. "Don't be so careless in the future."

That was the scant thanks that Faraday received for a scientific discovery which was to have a profound effect on the world. And thus started a chain of carping, controversy and heart-burn which was to dog the mild-mannered, humble but proud Faraday. It arose out of jealousy over his climactic discovery.

Faraday had heated chlorine hydrate, a solid compound of chlorine and water, in one side of an inverted, closed U-tube while he cooled the other, and he had not noticed any "oil" in the tube before
he started the experiment. Later, after the officious Paris, a crony of Faraday's boss, Sir Humphrey Davy and later Davy's biased biographer, had departed, Faraday filed off the end of the tube which promptly exploded. The room was filled with the acrid smell of chlorine. Accordingly, early the next morning Dr Paris received the following laconic note:

"Dear Sir,

The oil you noticed yesterday turns out to be liquid chlorine.

> Yours faithfully
> M. Faraday"

In succeeding in liquefying chlorine, Michael Faraday had started a chain of discoveries which led to refrigeration. He made a number of other basic dis-

A watercolour by Harriet Moore of Faraday's magnetic laboratory. Faraday's great
electromagnet, used in many experiments, can just be seen beneath the table
A watercolour by Harriet Moore of Faraday's magnetic laboratory. Faraday's great
electromagnet, used in many experiments, can just be seen beneath the table.
by DR C. K. COOGAN
CSIRO Division of Chemical Physics, Clayton, Victoria 3168
coveries in chemistry and physics, some of which suggested further experiments to others, which all added up to the gleaming white refrigerator in the corner of the kitchen.

Dalton, who developed the Greeks' theory of atoms to lay the foundations of modern chemistry, had suggested a few years before that the so-called "permanent" gases might be liquefied by a combination of high pressure and cold. But how to produce the high pressure? Faraday thought he saw the answer. On heating chlorine hydrate, a compound in which chlorine is weakly bonded to water, masses of yellow chlorine had been evolved. When the tube cooled there was clear water in the heated side of the inverted U-tube and yellow, oily, liquid chlorine in the other. The chlorine evolved from the decomposition of the chlorine hydrate had liquefied under its own pressure.

Later he tried a syringe to compress chlorine and again produced liquid chlorine. Then he set off on an exultant jaunt of discovery, all in off-duty moments, to see if he could liquefy other gases. He repeated his success with chlorine in a number of cases, but he also repeated the original explosion several times too, burning his eyes on one occasion and ending up with 13 fragments of glass in his eye on another.

Success was in the eye of the beholder!
His troubles arose from the growing jealousy of his superior, Sir Humphrey Davy, who tried to claim that he had suggested the liquefication experiment to Faraday. The fuss this generated led later in 1823 to Davy also suggesting that Faraday had plagiarized from Wollaston when he invented the electric motor in 1821, and to Davy trying to bar Faraday's election to the Royal Society, the top science club of England, in 1824.

Davy had good cause to be jealous; in his protege a star of the first magnitude was rising and outshining him in his own institution!

At the beginning of the 19th century it was not even possible to conceive of artificial cold. It was not until a number of leading discoveries had been made by unfettered, curious minds, not bent on project-oriented or "relevant" research, that it began to dawn on people that it was possible to produce cold by mechanical means. The refrigerator would never have emerged but for the men in the ivory towers.

Before anything else it was necessary to get ideas about the basic nature of heat right, and this did not happen until the start of the 19th century. Until then, everyone believed Lavoisier's idea that heat was a kind of ghostly fluid called caloric ("calorique" to Lavoisier) which could flow into or out of matter. Hot things had more caloric that cold things. Didn't bodies expand when they became hot?

The logical next step was to weigh a hot body and to see if it lost weight on cooling, and this is just what Count Rumford (who, incidentally, established the Royal Institution in which Davy and Faraday were working) did on a new balance capable of an accuracy of one part in a million. The results ruled out heat having any weight-just another case of a profound forward step in science being made possible by better, more precise, instruments becoming available. Joule and Davy both reasoned that the only other property of matter left was motion, or vibration. Heat, then, is the mechanical energy of atoms vibrating at enormously high frequencies.

Then came more precise studies of the tie-up between pressure, volume and temperature. This appeared to be settled when Charles and Boyle set forth their famous Laws, which can be stated in combined form as PV/T is constant. But there were small discrepancies.

Modern ideas about the nature of a gas were beginning to gel in the early 19th century. It was becoming apparent that a gas was composed of atoms or molecules rushing about, colliding with one another and with the walls of the container. The pressure exerted by the gas was simply the pinging of rapidly moving gas molecules on the walls of the container.

Joule calculated in 1821 the mean velocity of hydrogen molecules at $0^{\circ} \mathrm{C}$ needed to produce a pressure of one atmosphere by bombarding the walls of the container. Clausius, Boltzmann, Maxwell, Meyer and Van der Waals all elaborated on this calculation and the picture of a gas as a sea of minute billiard balls began to look secure.

However, in 1835 Thilorier used Faraday's methods to liquefy carbon dioxide, and found that when liquid CO_{2} was allowed to evaporate rapidly it formed
"snow", or the now-familiar dry ice. As Thilorier said about this unexpected result:
"Inside a Faraday tube was a new world in which totally unexpected phenomena occurred!" The rapid evaporation had so cooled the liquid CO_{2} that it froze. The "freezing" of tissue by evaporation of methyl iodide by your friendly neighbourhood Medibank man is another application of this principle.

There had been prior clues to this. In 1811(?) Leslie and Wollaston (the same very productive scientist who was inadvertently involved in the dispute over the discovery of the electric motor) had succeeded in freezing water by evacuating the space around it to accelerate evaporation. Somehow, the densely packed molecules of liquid needed to take extra energy with them when they set off above into space as gas molecules. But there the matter rested for a while.

Above: Michael Faraday. Below: the bound volumes of Faraday's diary.

Meanwhile Faraday seized on Thilorier's new dry ice and using it to produce temperatures as low as $-110^{\circ} \mathrm{C}$ liquefied other gases. By 1844 all the known gases except hydrogen, nitrogen, oxygen, carbon monoxide, methane and nitric oxide had been liquefied. Of course helium, argon, neon, krypton, and xenon had not yet been discovered, but they and the others were eventually tamed by Dewar and Ohmes. As Faraday said, the fact that a number of scientists were working in the field was very beneficial, not wasteful, as they stimulated one another:
it is wonderful how much good results from different persons working at the same matter. When Science is a republic, then it gains; and though I am no republican in other matters, I am in this". The now prevalent ideas of politicians about rationalizing research so that only one person or group works on one topic flies in the face of the facts of history-scientists are seldom productive unless they can throw the ball backwards and forwards to one another.

Enter another giant, William Thompson alias Lord Kelvin. Joule and Thompson, who had been appointed to the chair of Natural Philosophy (physics) in Glasgow at the age of 22, got together to study this expansion and cooling in detail. They allowed highly compressed gases to expand through a porous plug into a region of lower pressure, whereupon the more widely, dispersed gas cooled. It is this principle which is at the heart of the normal domestic refrigerator.

Thompson, another universal genius like Faraday, but this time of the highlyeducated, university ilk, laid the first Trans-Atlantic cables, and later became Lord Kelvin and one of the first members of the British Order of Merit. Working together in the years 1851-1856 they established the basis of the science of cooling by expansion of compressed gases, the essence of almost every domestic 'fridge's operation. In fact, the first refrigerators were called Kelvinators.

It soon became clear that the mole-

BOGEN
 Public Address Amplifiers Technical Superiority, Reliability and Performance at economical prices.

C SERIES

Available in $10,20,35,60$ and 100 watt RMS output

- Plug in optional low imp. mic trans formers.
- Two amplifier outputs can be combined to double the power output.
- Music muting
- Short circuit, overload including circuit breakers.
- Rack mounting optional.

CT SERIES
Available in 35,60 and 100 watt RMS output

- Built in five equalizer filters for anti feed-back control.
- Built in electronic compression for constant output.
- Remote volume control capability.
- Music muting.
- Two amplifiers can be bridged at the input or output.
- Special overload and short circuit protection.
- Rack mounting optional.

MTB 250 WATT BOOSTER

- High quality system amplifiers.
- Available 60, 125, 250 watt.
- Frequency response $20-30,000 \mathrm{~Hz}$ $\pm 2 \mathrm{~dB}$.
- Hum - $83 d B$
- Rack mounting optional.

FOR FURTHER INFORMATION:

AUDIO TELEX COMMUNICATIONS PTY. LTD.

SYDNEY

5456 Alfred Staer MELBOURNE Milsons Point 2061 . 828 Glenferrie Road Telephone: 929-9848 Telephone: 819-2363

The development of refrigeration
cules of a gas, far from being mere stunted billiard balls, clung together fairly strongly when they were close together. Thus in order to expand a gas, or to evaporate a liquid, those bonds had to be broken. This required work, or heat, which had to come from somewhere and it had to come from the thermal energy of the gas or liquid. So on evaporation or expansion the temperature dropped, and in some cases this could lead to the freezing of a liquid, as with dry ice, or the lowering of temperature when a gas expands-which is what happens in a refrigerator. Van der Waals worked it all out, and found that this tendency of gas molecules to cling together accounted for the discrepancies in Boyle's and Charles' Laws at high pressures.

From then on inventions in the field of refrigeration came thick and fast. All the gases, including air, hydrogen, and the rare gases were liquefied. It was found necessary to produce better insulated containers than those currently available to hold liquefied gases, and Dewar obliged with a double-walled, silvered glass container, or Dewar vessel, now a permanent resident in every home under the name of Thermos. This was yet another unplanned spin-off of tremendous value.
There is another commonly used principle of refrigeration-the absorption, or Electrolux system-in which the refrigeration gas is absorbed in a liquid and released again by the application of heat. It was invented by a Swedish student as a lateral thought while working at an exercise on thermodynamics. In the guise of the "Silent Knight" it soon covered the face of Australia. Now out of favour for domestic refrigerators, it is now rapidly coming into its own again as a solar powered refrigerator for freezing and for solar powered air-conditioning.

Faraday had already contributed the other major discoveries which made your refrigerator possible. The electric motor is incredibly simpler to operate than any other type of motor-no fuel, no adjustments; just switch on. He invented this in 1821, complete with the ingenious device we take for granted, the commutator.

Jubilant with his discovery he went off to the theatre to celebrate in the evening, but while waiting in the queue, Faraday, a small man, was beaten up by a bully, so he promptly went home and wrote a brilliant paper on his discovery. This caused him trouble, too, as the jealous Humphrey Davy tried to suggest that he had pinched the idea from Wollaston, and the matter came to a head in 1823. Wollaston himself nobly exonerated Faraday and cut the ground from under

Davy. Throughout all this controversy, Faraday bore no grudge against Davy.

The other essential was of course the electric generator and its alternating current. The first electric motors were direct current and battery driven. In order to crack this nut, Faraday had first to puzzle out the rules applying to the induction of electricity. He systematically studied the current induced in a coil when the magnetic field passing through the coil was changed-for example when a magnet was withdrawn from the coil.

Just like the now crazy idea of caloric in heat, at the start of Faraday's magnificent work on electrical induction it was thought that there were four distinct types of electricity. Now we know it is all one and due to electrons flowing one way or another in electrical conductors. But the electron had to wait till 1899 for J. J. Thompson (no relation to Kelvin Thompson) to discover it. By 1831 Faraday had mastered the secrets of electric induction of current, probably the greatest discovery he ever made.

Faraday's tour de force culminated in the dynamo or generator, which others like Siemens in Germany took up and perfected. If the electric motor made domestic refrigeration possible, then domestic refrigerators also made the electric motor industry. Do you remember the early thirties when about the only electric motor in the average home was in the electric fan? The first refrigeration plants were powered by steam or diesel engines, and were thus large, nondomestic affairs which produced the ice little boys lugged home in billy-carts from the local ice-factory.

Australia played a prominent role in the early development of refrigeration. In 1856 and 57 journalist James Harrison of Geelong took out patents for a refrigerator using ether as the gas-liquid expansion cooling fluid. His machines were first made in NSW in 1859 and began to be used in the UK, industrially, to extract paraffin from oil. He set up an ice-works on the banks of the Barwon and in 1859 established a 10 ton per day ice plant in Franklin Street, Melbourne. In 1866 he was sub-editor of the Melbourne "Age" and he maintained an intermittent relationship with the "Age" until he died.

In 1868 J. Davy Postle read a paper to the Royal Society of Victoria in which he suggested that frozen meat might be shipped to the UK in vessels fitted with air-expansion refrigeration machines. He rolled up his sleeves and showed by experiment in 1869 how it could be done.
At that time frozen meat could only be shipped if accompanied by ice, which
practically ruled out the UK as a market for Australian meat. In 1873 Harrison became notable as the proposer of a new process for preserving meat-freezingand it worked well on mutton, keeping it indefinitely. He won a gold medal at the 1873 Melbourne Exhibition, but on trying to repeat the trick with a cargo of 25 tons of frozen beef to London, he found that while his process was perfect for mutton, the beef was unusable on thawing.

However, Postle's system was not developed commercially, and the honour of the first successful shipment of refrigerated meat went to J. J. Coleman of Glasgow, whose compressed-air refrigerator was fitted to the "Circassia" to bring chilled beef from America to the UK in 1879. Later that year the first Coleman-refrigerated shipment of frozen mutton travelled from Australia to the UK.

Some years later, Carl Linde of Munich showed that ammonia was a better fluid than air or ether for refrigeration, and for many years this reigned supreme. Nowadays, various Freons are preferred for a number of reasons.
Faraday died in 1867, and may never have seen one of the refrigerators which came from his work. Incidentally, don't. get the idea that Faraday was preoccupied with electricity and liquefication of gases. In 1820 he discovered a compound of carbon and hydrogen, which he called "bicarburet of hydrogen" and which we now call by the simpler name of benzene. A few years later he succeeded in "chlorinating" (or exchanging chlorine atoms for hydrogen) this compound.

By these two experiments he probably established the best claim to be called the father of modern organic chemistry, and the vast industries which grew out of it. The family of Freons now used as refrigeration gases are hydrocarbons in which some or all of the hydrogen atoms are replaced by chlorine or fluorine. On the side, he was making the first stainless

Shown at left is the "Electric Egg" used by Faraday for studying discharge phenomena in gases. At right is a close-up of Faraday's "great electromagnet". It was made from a section of ship's anchor chain, supported by a wooden stool.
steels, laying the foundations of the understanding of magnetism, making great contributions to optics and laying down the laws of electrolysis and hence of electroplating.

All this came from a man with little or no formal education who started work at the age of 13 as a bookbinder's apprentice. His mathematics were so poor that he returned a paper on electrostatics to its author, Poisson, with apologies that he could not understand it. Faraday himself quipped that the greatest feat he ever performed was when his friend Charles Babbage, Lucasian Professor of Mathematics at Cambridge, allowed him to turn the handle of his first computer!

It's hard to imagine our world today

Puns and Knighthoods

Thompson and Faraday between them gave rise to two of the most outrageous puns in the reign of Queen Victoria, both over the topic of knighthoods.

In 1835 Faraday was approached to accept a knighthood, which he politely but firmly turned down on the grounds that it might go to his head and affect his work! Fraser's Magazine heard about it on the grapevine and printed an article on it in which they said "Far-a-day was near a knight".

Thompson was deeply involved in the laying of the first successful TransAtlantic cable in 1866 and went off to sea in the "Great Eastern" to assist in its installation. He was not a good lec-
turer, and had a habit of haring off after any new thought that entered into his mind during a lecture and working out the mathematics there and then on the board-a habit which his students detested as they found him impossible to follow.

While he was away his duties were assumed by a man named Day, whose lectures were models of succinct clarity. Also whilst away, Thompson was knighted for his considerable services. On the occasion of Day's last lecture, he entered the lectureroom to find on the board ... "John chap. 9 v.4; Work while the Day is at hand for the Knight cometh when no man can work."
without refrigeration. Our whole food industry depends on it, our economy depends on it, our medical services depend on it. No freeze dried beans, no penicillin, no stored blood for transfusions, no frozen scallops, no liquid oxygen for the steel industry, no neon lights, no argon for welding, no airconditioning. And it's only just started the world of super-conduction achieved by liquefying helium is around the corner, allowing trains to hover above rails, electrical energy to be stored and current to be transmitted great distances without loss.

Dalton, Gay-Lussac, Davy, Avagadro, Magnus, Thilonier, Natterer, Deville Caignard de Tour, Graham, Joule, Young, Rumford, Kelvin, Andrews, Herepath, Wollaston, Clausius, Rankine, Maxwell, Boltzmann, Stoney, Tait, Van der Waals, Mendeleef, Amagat, Rayleigh, Crookes, Pictet, Cailletet, Wrohlewski, Olszewski, Kundt, Warburg, Onnes, Young, Ramsay, Leduc, Mathias, Siemens, Kirk, Coleman, Linde, Postle, Harrison and Dewar are all names on the roll of honour, but it was Faraday who provided the key experiment, the motor, the generator and the cooling gas!

It's modish nowadays to accuse today's scientists of doing research that is not relevant to the needs of society. Hardly a link in the chain that led to refrigeration took place for reasons other than the native curiosity of men trying to unravel the secrets of nature. Yet when all was added up the result was the most practical and needed of inventions in the modern world, with spin-off in all directions, totally inconceivable at the start. How relevant was their research?

* 6 SELECTABLE GAMES
* AUTOMATIC SCORING (DIGITAL DISPLAY ON SCREEN)
* SELECTABLE BAT SIZE

with sound and full digital scoring!

* SELECTABLE bALL SPEED
* SELECTABLE ANGLES
* AUTO OR MANUAL BALL SPEED
* REALISTIC SOUNDS (INBUILT SPEAKER)
* FULL VISUALLY DEFINED AREA
* FULL SEPARATE ARMCHAIR CONTROLS FOR EASE OF OPERATION
* FULL PROVISION FOR RIFLE SHOOTING TO BE ADDED
* CAN BE ADAPTED FOR COLOUR OPERATION.

Control unit only - separate armchair controls are supplied.

EASY TO BUILD WITH THE LATEST IC

SO SIMPLE: CONTAINS ONLY 3 IC's AND 3 TRANSISTORS!

DICK SMITH ELECTRONICS GROUP

Head Office : Phone 439 5311. Telex AA20036. Cable 'Diksmit' Sydney Mail Orders: P. O. Box 747. Crows Nest. N. S. W., 2065.
N.S.W. Branches: gore hill-162 Pacific Highway. 439 5311. 送, SYDNEY- 125 York St.. 29 1126. BANKSTOWN-361 Hume Hwy.. 7096600. Interstate Branches; QLD. - 166 Logan Rd.. Burando, 3916233.

DICK SMITH DEALERS:
Aero Electronics, 123a Bathurst St, HOBART. Tas. Ph 34-8232
Venemann \& Wyatt, 24 Stuart Hwy,
STUART PARK. NT. Ph 81-3491.
A.E. Cuoling, 6 Trimmer Rd,

ELIZABETH SOUTH, SA. Ph 255-2249

Part 2: Dynamic, capacitor and electret types

Reproduced by courtesy of Sennheiser Electronics, this series of articles is intended to assist sub-professionals and amateurs who need to use microphones, but without the advantage of formal acoustic training. This article discusses dynamic and capacitor types and matters of sensitivity and impedance.

by G. PRAETZEL and E. F. WARNKE*

According to the Brockhaus Encyclopeadia a microphone is an apparatus for transformation of sound vibrations into electric alternating voltages. We want to consider here only those types of microphones which are of importance today for sound recording and similar applications.
MOVING COIL: The moving coil microphone is by far the most used in microphone recording practice. Its mode of operation is illustrated in Fig. 4. A coil of copper wire is fixed to its diaphragm. When the diaphragm moves-activated by the sound-the coil follows the movement in the gap of the magnetic system and the copper wire windings cut the magnetic flux lines. This generates an electric voltage in the moving coil and this voltage can be taken by a connecting lead directly to the mixer or tape recorder.
CAPACITOR: Because of cost, capacitor type microphones have, for decades, been largely limited to use in professional studio situations. Recently, however, "Elektret" (often spelled electret) capacitor microphones have brought the principle into the sub-professional market in a less pretentious and less costly form. Fig. 5 illustrates the operation of a capacitor microphone.

A very light, tightly stretched electrode of metal or of plastic foil covered by vapourised metal, is placed in front of a rigid electrode of metal or metallized ceramics, the two electrodes thus forming a capacitor. If the light electrode used as a diaphragm vibrates under the influence of sound pressure, the capacitance between the two varies. This variation of capacitance is used in the DC-capacitor microphone for generating an alternating voltage in the following way:

The microphone capacitance is charged via a very high resistance from a polarizing voltage source. Due to capacitance variations caused by the sound
-Reproduced by arrangement with Sennheiser Electronic. Translated by T. M. Jaskolski and adapted for magazine publication by W. N. Williams
pressure fluctuations, the electric voltage across this capacitor varies too, as the charge cannot flow away fast enough.

Because of the low amplitude of the voltage variations, and the very high impedance of their source, the output from a capacitor microphone element cannot conveniently be coupled directly to a distant amplifier. Instead, the signal has to be applied first to a preamplifier adjacent to the microphone capsule to produce an effective signal source of higher amplitude and lower impedance. (See Figs. $5 \& 6$.)

As mentioned earlier, the most recent variant of the ordinary capacitor microphones is the electret type. In this, the polarizing voltage is, so to speak,
"frozen" in this capacitor, and the otherwise necessary external polarizing voltage is not required, reducing cost to some extent. However, the acoustic properties of those plastic foils, which can be "electretized", are not as good as the foils normally used in the studio capacitor microphones. Thus the quality standard of today's electret capacitor microphones is somewhere between the simple dynamic microphones and the wideband dynamic microphones for studio purposes.
RF CAPACITOR: While similar structurally to other capacitor microphones, the "RF" type is used in a quite different circuit configuration. There is no polarizing voltage as in the "DC" system, and no built-in field as for the "electret". Instead, the microphone capacitance is made part of the frequency determining circuit of a radio frequency oscillator operating, usually, at about 8 MHz . Variations of microphone capacitance with incident sound pressure frequency modulate the RF signal and an FM discriminator circuit turns this back into an audio signal.

Fig. 4: Illustrating the basic principles of a moving coil or "dynamic" microphone.

Fig. 5: There are three familiar variations on the capacitor microphone theme: the conventional DC type, the RF type and the new and very popular "electret" version, now finding wide application in the sub-professional field.

WOULD YOU SPEND AN HOUR A DAY TO EARN MORE MONET?

A better job. A bigger pay packet. And the satisfaction of doing your job well. A big reward for only an hour a day. Because if you spend that hour studying with an ICS program, you will be making a big step towards achieving your ambitions.
Learning with ICS is simple, satisfying and rewarding.
The ICS method of teaching, and the knowledge and skill you rapidly acquire, will give you greater confidence in your work, and your ability to progress.
Keep your present job while you learn.
You don't lose a day's pay while you learn. And because you decide when you study, and where you study, you

don't lose valuable time travelling to and from classrooms, and you can't miss any of the tuition program.
Thousands have done it you can too! Since it started, ICS has helped nearly nine million people in their study needs. Check through the list of programs on this page. Find the career that suits what you want for your future.

Fig. 6: Capacitor type microphones (b, c, d) often have a higher output than low impedance dynamics because they have an in-built preamplifier/impedance matching stage.

RF capacitor microphones have a particularly low inherent noise figure but, because of the rather special nature of the associated circuitry, they are mainly used in studio applications. (See Fig. 6.)

Having looked at the main types of microphone, it is appropriate next to consider the more important characteristics which form the basis of published data.
SENSITIVITY: The sensitivity figure for a microphone normally specifies the electrical voltage in millivolts supplied by the microphone when it is brought into a soundwave of a sound pressure of 1 ubar.

It should be noted that, under the new SI system of units pressures are being expressed in "Pascal" (Pa), which is defined as the pressure which a force of one Newton (N) exercises on an area of one square metre:

$$
1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}
$$

The relationship of the old and new units is indicated by the equation:

10 ubar $=1 \mathrm{~Pa}$

The sensitivity of a microphone can be converted from one unit to the other thus:
$1 \mathrm{mV} /$ ubar $=10 \mathrm{mV} / \mathrm{Pa}$
Sensitivity measurements are normally made on a microphone unloaded in a free sound field, i.e., without terminating impedance across the microphones output which otherwise would influence the
measurement. A sound pressure of 1 ubar might be generated-for instance -by a man speaking with normal volume of speech at a distance of about one metre.

If the sensitivity of a dynamic microphone is quoted as $0.2 \mathrm{mV} / \mathrm{ubar}$, it means that it would generate a voltage of 0.2 mV when placed at a distance of 1 metre from a man speaking at a normal level.

If the associated tape recorder or mixer requires an input signal of not less than 0.2 mV for a fully modulated recording, it is evident that the volume control would have to be turned fully up, unless the voice level into the microphone can be increased.

It is also evident that inherent amplifier noise could become a problem in such circumstances.

It follows that higher microphone sensitivity can be of advantage to the user, because a higher signal/noise ratio can be achieved. Good dynamic microphones today exhibit sensitivity values of $0.2 \mathrm{mV} / \mathrm{ubar}$, while capacitor microphones mostly have sensitivities of 2 $\mathrm{mV} / \mathrm{ubar}$, so that the volume controls of the following units need to be turned up less.
Against this, the signal supplied by the microphone must not be so large as to overload the input circuit of the associated amplifier. It can easily happen in
cases when a capacitor microphone with a high output level is connected to an input designed for the lower signal voltages of dynamic microphones. In such a case the too-strong microphone signal has to be reduced by means of suitable voltage dividers, so that overload by the highest expected sound pressure can be avoided.
IMPEDANCE \& MATCHING: The source-impedance or simple impedance, denotes the intrinsic alternating current impedance of the acoustic transducer. As the impedance often depends upon frequency it is measured in ohms at 1000 Hz . It amounts frequently to 200 ohms for low impedance dynamic microphones, is between 500 ohms and 5 k ohms for medium impedance mics and between 25 and 150k ohms for high impedance microphones.

To connect a microphone properly to a tape recorder or to an amplifier, two points have to be observed:

1. The microphone must be connected to the following unit by means of suitably wired plugs by cabling no longer than appropriate for the particular microphone.
2. The impedance and sensitivity of the following unit input must also be appropriate for the microphone.
In special cases, a design engineer may elect to match the output impedance of the microphone to the input impedance of the associated amplifier. This will usually ensure maximum power transfer and can loosely be described as "power matching".
More commonly, designers are interested in obtaining maximum transfer of signal voltage and this is obtained when the load impedance presented by the amplifier is much higher than the output impedance of the microphone. Since the the aim is to transfer voltage at a suitable amplitude, this situation can be loosely described as "voltage matching".

Sennheiser microphones are normally designed and calibrated on the assumption of "voltage matching", with the input impedance of the amplifier about 5-10 times the output impedance of the microphone. For all practical purposes, this can be regarded as no-load or unloaded operation.
Where the amplifier has a very high input impedance input-typically 250 k or more-it is not unusual for the sensitivity to be lower, so that a somewhat higher signal voltage is required. In such a case, the gap can often be bridged by the provision of a step-up transformer, either external to or integral with the microphone, to convert it from an effective low-output low-impedance type, to a high-output high-impedance equivalent.

It should be noted that cables carrying signals at high impedance should be kept as short as possible to minimise the risk of high frequency loss due to capacitive shunting, and the pickup of hum or extraneous signals from broadcast, television or other transmitters.
(To be continued)

"WITHOUT MY SCOPE IRONS I RECKON I'D NEED A 25 HR. DAY."

8. ŪUam "Start the day with a heary earth connection on the emergency power plant. Need a 130 watt iron. My Superspeed's got that and more. Just as well, the workshop's 400 yards away'

11.15am "Fix the speaker leads in the canteen P.A. Need a $30-40$ watt iron, but my Scope Minispeed did the job'

2.17pm "Tag soldering in the workshop and a desolder job on a P.C.B. Using the Minispeed saves swopping between conventional 60 watt and 25 watt irons".

9.15am "Call frum No. 2 Moulding Shop. Ran some temporary leads involving both tag joints and Printed Circuit Board (P.C.B.) connections. The Scope Minispeed handled the lot".

1.30pm "Resolder a $7 / 036$ earth to sheet metal - LP gas flame would work, but too much risk of heat damage to PVC cable. The Superspeed iron produced its full 150 watts and did the job"

3.58 pm "Emergency in shop six. I used my Minispeed to unsweat the leads of the main heater control circuit and then desolder the pyrometer circuit on the P.C.B. One iron, two different jobs" ${ }^{\prime \prime}$.

10.55 am The V.D.U. in the process control room is playing up. Replacing miniature eresistors on a P.C. B. is. ideally, the job for a temperature controlled 60 w iron but my Scope Minispeed did the job and did it well.

2.15pm "Fred borrowed my Minispeed to tackle an open circuit on the fork lift's headlights. He permanently soldered the wires to the terminal block, and used the Mini's 75 watts to do it"

4.18pm "This wiring's a real birds nest. Passed through the wires with the Minispeed stone cold, desoldered the three joints, let the iron cool down, then withdrew through the PVC insulation. The 5 second heat up and low tip mass let's me do this".

Scope soldering irons save time three important ways:

1. Versatility.

One Scope iron replaces several conventional irons because it can tackle a wide range of soldering problems, from integrated circuits and printed circuit boards to heavy earth and chassis connections.

You don't have to swap irons half-way through the job. Both the Minispeed and the Superspeed function as 20-30 watt irons, and then within seconds and a touch of the finger switch, you get increased heat output to increase the Minispeed to 75 watts, and the Superspeed to 150 watts.

(A) Scope Cordless. 60 W .

Designed for working where no power is available or during temporary failure. It's powered by

2. Speed.

Five seconds gets both irons ready for work, and they cool down quickly as well. When you encounter a heat sink you want an iron that can make up the heat loss instantly and maintain good soldering temperature. Result, the job's done fast and you can move onto the next.

3. Safety.

Scope irons are isolated from the mains. The special isolation transformer lets you work on live equipment with a higher degree of safety than a conventional iron.
two rechargeable Nicad cells with the capacity to solder between 100 and 200 typical electronic connections before overnight recharging.
(B) Scope 12V Hobby Iron.

This versatile iron is designed to work within 6 metres of your car battery.
(C) Scope Vibroscope.

This electric pencil allows for permanent writing on all metals. Valuable in an engineering store identifying metal tools, dating and naming parts, inscribing trophies.

The Scope range of products is designed to deliver efficiency ard convenience. Consider the advantages of these products.

For enquiries and further information on the Scope range of products contact: Scope Laboratories, 93 Matthews Avenue, Airport West, Melbourne, 3042.

Auto Rhythm Unit For Electronic Organs

Here is the second article giving constructional detals of a rhythm unit. Details are given of how to connect the SGS-ATES M252 Rhythm Generator chip to the previously described instrument simulator. Details are also given of a suitable case for the completed unit.

by DAVID EDWARDS

A rhythm generator is a timing system which generates trigger pulses for a set of oscillators whose damped, amplified outputs simulates the acoustic sensation of the musical instruments in the rhythm section. The rhythm generator, therefore, is not a true source of sounds, but only a means of timing the switch-on of the oscillator circuits which constitute the true sound sources.

To realise such a system, each cycle of the rhythm must be divided into a number of "elementary times" using a counting technique. A fixed memory then determines whether or not a given instrument should be triggered during

This diagram shows how a rhythm is divided up into elementary times, and grouped into bars.
each of these elementary times.
The elementary times which constitute the smallest subdivisions of the rhythm can be grouped into bars or measures (usually $1,2,3$ or 4). Within the complete rhythm, each of these bars can be programmed differently. Each bar, then, consists of n elementary times in which the beats of each instrument will be programmed to occur. In terms of musical notation, the length of these beats is described as a fraction of a known reference period (see Fig. 1).
When the sum of the beats in a bar comes to $4 / 4$, the rhythm is described as 4/4. Similarly, it is possible to have a $3 / 4$
rhythm and so on. The number of elementary times in the bar fixes the minimum duration of each beat; in other words, the greater the number of elementary times the shorter will be the minimum length of the beats and the richer the resulting rhythm.

For example, a $4 / 4$ rhythm programmed in 4 bars over 32 elementary times, i.e. 8 per bar, can only use musical beats of length $1,1 / 2,1 / 4$ or $1 / 8$, but if the same rhythm is programmed in two bars of 16 elementary times each, musical beats of length $1,1 / 2,1 / 4,1 / 8$ and $1 / 16$ can be used. The basis of such a rhythm generator is illustrated by the block diagram of Fig. 2.

The counter must be able to count to the number of elementary times corresponding to rhythms in $3 / 4,4 / 4$ and $5 / 4$ time. This means that the counter must stop and reset to its initial position after a certain number of counts, the number depending on the selected rhythm.

The two characteristics of the rhythm which determine the count requirement are the minimum beat length and the number of bars in the complete rhythm. Thus a $4 / 4$ rhythm with a minimum duration of $1 / 16$, and with 2 bars per rhythm requires $16 \times 4 / 4 \times 2=32$ counter states, while a $3 / 4$ rhythm with a minimum duration of $1 / 16$ and with 2 bars per rhythm requires $16 \times 3 / 4 \times 2=24$ counter states.

The read only type memory (or ROM) must have outputs which reset to zero after each "reading", so that the outputs will always be able to provide the correct trigger edges during following beats.

The system described in principle above can be realised with integrated circuits or with discrete devices. TTL devices can be used to fabricate the counter, and a standard MOS memory used to store the rhythms. Alternatively, the counter could be realised with discrete components, and a diode array used to store the rhythms. Such
approaches, however, tend to use large numbers of components, and are not recommended for this reason.

SGS-ATES have developed two rhythm generators implemented in single chips, using low threshold P -channel silicon gate technology, which are specifically designed for use with electronic organs and other musical instruments. These are the M252 and M253 devices, which are supplied in 16 and 24 pin DIL packages respectively.

These are both available with a standard musical content, and so can be used directly with the instrument simulator described previously. All that is required is a variable speed clock and a reset mechanism. In this article, we will concentrate on the M252 device.

Fig. 3 shows the block diagram of the M 252 device. This can generate 15 different rhythms, and can drive up to eight instruments simultaneously. An external reset facility is provided, as well as a downbeat indicator, to show when the rhythm pattern repeats. Only a single phase clock is required.

A four bit binary code must be generated to select the rhythm, as only four pins are available for this function. Fig. 5 shows the required codes, and the corresponding standard ROM rhythm content. Note that the sixteenth code does not generate a rhythm at all, and so can be used as an off position, if required.

The M252 has open drain outputs,

The block diagram of a basic rhythm generator is shown above. All this is contained in the M252.

low power dissipation, and operates from a single power supply. It is available from Warburton Franki (Sydney) Pty Lid, 198 Parramatta Road, Auburn, NSW 2144. It should also be available from their interstate branches, as well as from your usual component supplier.

Functionally, a complete rhythm generator unit should have the following features. 1. the different rhythms should all be selectable by an easily operated switch.
2. a reset switch should be provided, so that the rhythms can be started at a time determined by the player.
3. a mute switch is necessary, to give
the rhythm commences with the first beat of the bar, so that synchronisation will be achieved if the player commences to play at the same time as he manipulates the reset switch.

When the mute switch is in the on position, the rhythm unit operates, but no audio signals are passed to the output connectors. The downbeat light shows the state of the rhythm, so that the player can use this as a metronome, and keep in time with the rhythm. This means that when the mute switch is returned to the off position, the rhythm will be in step with the player.

However, because of the internal con-

an alternative starting procedure.
4. tempo and volume controls are required.
5. a visual device to indicate the tempo and beat should also be provided.

In order for full use to be made of the unit, it is necessary to achieve synchronisation between the rhythm unit and the player. This is accomplished by the visual tempo indicator, in conjunction with either the mute or reset switches.

The first method of achieving synchronisation is by means of the reset switch. In the off position, the rhythm unit is stopped, and produces no sound. When this switch is moved to the on position,
figuration of the M252 chip, the downbeat light normally does not function as a true metronome. This is because it lights only to signify the start of the ihythm, and not the start of every bar (there can be at least two bars per rhythm, before the pattern repeats). It is possible, however, to trigger the downbeat light from one of the instrument outputs (typically the bass drum) so that it lights once in every bar. The details showing how to do this will be given at a later stage.

We can now turn our attention to Fig. 5 , the circuit diagram. The M252 and its associated components are supplied

PARTS LIST

SEMICONDUCTORS

1 M252 B1 AA Rhythm generator chip
1555 timer IC
1 BC548 NPN transistor, or equivalent
1 BC557 PNP transistor, or equivalent
2 silicon diodes, 1N914A, 1N4148 or equivalent
118 V 400 mW zener diode
RESISTORS (all $1 / 2$ W)
1390 ohm, 1 15k, 3 47k, 2 82k, 4 100k
1 2M log. pot.
1 47k dual log. pot.
CAPACITORS (all plastic)
1 0.01uF, $30.1 \mathrm{uF}, 10.22 \mathrm{uF}$

SWITCHES

3 NKK DPDT toggle switches, part no. SP2022
3 NKK bezels to suit, black, part no. AT-205
1 Schadow 8-way 4-pole interlocked push button switch, part no.
TS-539

MISCELLANEOUS

2 knobs
1 case, $230 \times 205 \times 68 \mathrm{~mm}$
1 front panel to suit, see text
1 PL24/24/20VA $24 V 24 \mathrm{~V}$ transformer, or equivalent
1 piece Veroboard ($1 / 10^{\prime \prime}$ spacing)
1 output connector
Solder, hookup wire, rainbow cable, shielded cable, PCB standoffs, rubber feet
Note: resistor wattage ratings and capacitor voltage ratings are those used in our prototype. Components with higher ratings may generally be used provided they are physically compatible. Components with lower ratings may be used in some cases, providing ratings are not exceeded.

The complete schematic diagram of the M252 is shown at the left. Note that a code is used to select the rhythm.
with power from the +30 and +15 V rails of the percussion instrument simulator. Since the total circuit drain is in excess of that which the +15 V rail can sink, it is necessary to buffer this rail.

This is done by the BC557 transistor and associated components. The diode is used to compensate for the baseemitter drop of the transistor, while the zener diode clamps the voltage during turn-on. This is necessary because the +15 V rail takes an appreciable time to stabilise when power is first applied. The 0.1 uF capacitor removes switching spikes, and prevents them from affecting the instrument simulator.

The clock is formed by a 555 type timer IC, connected in the astable mode. This drives the M252 direct. The clock rate, or tempo, is varied by the 2 M potentiometer.

The reset function is performed by the reset switch, in conjunction with the BC548 transistor. When the reset switch is open, the diode isolates the downbeat signals, which come from the reset pin, from the oscillator. The oscillator is not reset (pin 4 is held high by the 47 k resistor) and the rhythm pattern is generated. Downbeat signals from pin 7 trigger the downbeat monostable (on the percussion instrument simulator board).

When the reset switch is closed, pin 7 is held high, and the M252 is held in the reset mode. At the same time, the BC548 transistor turns on, and resets the 555 by forcing pin 4 low. When the reset switch is released, the oscillator commences to operate, and the M252 starts at the beginning of the rhythm pattern.

The coding for the rhythm selection is performed by a switch bank. We have used an eight-way interlocked push button switch, in conjunction with a paddle switch. While it would have been better for the user to have a fifteen-way interlocked switch, these are much more difficult (and expensive!) to obtain, and so we were forced to compromise.

The arrangement of the various component parts can be seen in this photograph. Note how the Veroboard is positioned.

RHYTHM		CODE			STANDARD CONTENT	
	INPUT 8	INPUT 4	INPUT 2	INPUT 1		
	1	1	1	0	Waltz	3/4
2	1	1	0	1	Jazz Waltz	3/4
3	1	1	0	0	Tango	2/4
4	1	0	1	1	March	2/4
5	1	0	1	0	Swing	4/4
6	1	0	0	1	Foxtrot	4/4
7	1	0	0	0	Slow Rock	6/8
8	0	1	1	1	Rock Pop	4/4
9	0	1	1	0	Shuffle	2/4
10	0	1	0	1	Mambo	4/4
11	0	1	0	0	Beguine	4/4
12	0	0	1	1	Cha Cha	4/4
13	0	0	1	0	Bajon	4/4
14	0	0	0	1	Samba	4/4
15	0	0	0	0	Bossa Nova	4/4
No selected	1	1	1	1		

This table gives the required coding of the four rhythm select inputs necessary to select the fifteen different rhythms available.

Sample switches for our prototype were kindly supplied by IRH Components, The Crescent, Kingsgrove, NSW 2208. The part numbers are listed in the parts list.

The interlocked switches are used to select the correct codes for three of the four M252 inputs, so that each of the eight positions selects two rhythms. Final selection of the rhythm is done by the paddle switch, which only has to switch the remaining input. The switches are also used to connect pin 12 to either the

snare drum or the low bongo, as required, for the various rhythms.

The outputs from the instrument simulator are decoupled by 0.1 uF capacitors, and attenuated by the volume control. A mute switch is then used to enable the rhythm unit to be disconnected from the following circuitry, without affecting the timing of the rhythm.

We can now turn to the constructional details of the unit. As this is a rather specialised project, and because we intend in the future to give details of other rhythm generator chips, we have not designed a printed circuit board for use with the M252. Instead, we constructed our prototype on a small piece of Veroboard. Of course, individual constructors can always use a PCB of their own design, to achieve a neater finished project.
We constructed our prototype in an aluminium case supplied by Dick Smith Electronics Pty Ltd. This is the same basic case as used for the Video Ball Game (May 1976, File No. 3/EG/8). It measures $230 \times 205 \times 68 \mathrm{~mm}$, and is supplied blank (with no holes).

We have designed a front panel for the box, the details of which are included in this article. If you intend to build the unit into your organ console, then this panel can be used to mount all the switches and controls, with the actual circuitry mounted in some more convenient location.

We used a type PL24/20VA transformer, kindly supplied by Ferguson Transformers Pty Ltd, of 331 High Street, Chatswood, NSW 2067. As you can see in the photographs, we mounted this in rear right hand corner. The percussion instrument simulator printed circuit board fits neatly to the left of this, with the remaining space being used to mount the M252 and associated components.

We mounted these on a small piece of Veroboard, and used colour coded hookup wire (rainbow cable) to make

We have taken the latest advances in electret technology one step further. By combining them with advanced acoustic technology to make professional condenser microphones more portable.
One common powering module (K2U) serves three different compact heads: omnidirectional (ME20), cardioid (ME40) and mini-shotgun (ME80). Thus, for most studio and location situations, it's no longer necessary to carry three different microphones. Each head contains its own microphone capsule and "front-end" electronics, all exactly matched to its own precisely-controlled acoustical environment.
The Powering Module runs on a single 5.6 V battery, or phantom-powered directly from your recorder, preamp or other auxiliary equipment. Best of all, of course, is the great versatility. In a matter of seconds, you screw on whichever head you need and go!
Powering module and heads are available separately.

Australian Agent
Mi.. 493-499 Victoria St. West Melbourne, 3003 Ph 3299633 N.S.W.: 4-8 Waters Rd. Neutral Bay. 2089 Ph 9092388 W.A.: 256 Stirling St Perth 6000 Ph 283655
QLD: L. E. BOUGHEN \& CO
Cnr Milton \& Baroona Rds
Cnr Milton \& Baroona Rds
Milton 4064 Ph 361277 Mirton 4064 Ph 361277
S. A.: Werner Electronic S.A.: Werner Electronic
Industries Piy. Lid. Unit 28 Gray St.. Kilkenny. 5009 Ph : 2682801

Telex: Melbourne. 31447
Sydney. 21707 Brisbane
41500 Perth 93244

This full size reproduction of the front panel can be either copied or used directly. The dots in each corner are the positions of the four machine screws used to mount the panel to the front of the chassis.

This circuit diagram shows how the M252 is interfaced to the player and to the instrument board.
the interconnections to the PCB and to the switches. We then laced the wires into a loom, to give a neat finish to the project. We made the connections to the volume control and mute switch with shielded cable, to minimise hum pickup.
The layout of the components on the Veroboard is fairly simple. We made the strips run at right angles to the IC pins, and then used tinned copper jumpers to make the various connections. We used PCB pins to make the connections at the edge of the board, as these are very
robust mechanically.
It is not necessary to use an IC socket for the 555, as these devices are quite robust. However, we recommend the use of one for the M252, as this device, like all MOS chips, is prone to damage from static electricity. If a socket is used, the M252 can be installed after all interconnections have been made and checked.

The circuit diagram shows a schematic representation of the wiring for the interlocked switches. This can be used as a guide for wiring the switches. First make all the connections to the centre posts (shown on the diagram as the common interconnections), and then complete the remaining wiring on the
switches. Lastly, add the seven wires connecting the switch bank to the remainder of the circuit.

Once construction is complete, the unit can be tested. Apply power, and check the operation of all switches and controls. It may be necessary to adjust the trimpots on the instrument board to achieve suitable sounding instruments. Follow the instructions given in the previous article for this.

We also found that it was necessary to change one resistor on the instrument board to achieve a more realistic sound

This view of the interior of the prototype shows how the interlocked switches are wired, using the lugs provided.

Your next electronic circuit tester should be a

N-501

- $2 \mu \mathrm{~A}$ suspension movement $-0.05 \mathrm{~mA} / 1 \mathrm{mV}$ resolution
- Double protection - fuse \& Si diode
- Constant $1 \mathrm{M} \Omega$ input impedance (ACV) -RF-diode rectified current direct to movement
- Revised scale marking intermediate readings readily determined
- Multifarious application as circuit analyser
\pm DCV $0-60 \mathrm{mV} 0-0.3 \cdot 1.2 .3-$ $12-30 \mathrm{~V}(500 \mathrm{k} \Omega / \mathrm{V})$ 0-120-300-1.2k (50kJ/V) $\pm 2 \%$ 0-30k (w/HV probe)
士DCA 0-2 μ S 0-0.03-0.3-1.2 $-3-12-30 \mathrm{~mA}$ 0-0.12-0.3-1.2-12 (300mV) $\pm 2 \%$
ACV 0-3-12-30-120-300$1.2 \mathrm{k}(1 \mathrm{M} \Omega)$ $\pm 2.5 \%$ Freq. 20 Hz

U-60D

- Measurement ranges available.
DCV 0.10 .52 .51050 2501000 (20k Ω / V) 125 kV w/HV probe extra)
ACV 2.51050250 1000 ($8 \mathrm{k} \Omega / \mathrm{V}$)
DCmA 0.052 .550500 (500mV drop; 100 mV for 0.05 mA)
$\Omega \quad$ Range $-\times 1 \times 10$ X100 X1k Midscale -50Ω $500 \Omega 5 \mathrm{k} \Omega 50 \mathrm{k} \Omega$ Maximum - $5 \mathrm{k} \Omega$ $50 \mathrm{k} \Omega 500 \mathrm{k} \Omega 5 \mathrm{M} \Omega$ Batteries 1.5 V dry cell (UM-3 or equivalent) $\times 2$
LI $\quad 0.06 \mathrm{~mA} 0.6 \mathrm{~mA}$
LV 3V 3V
to $50 \mathrm{kHz}(\pm 1 \mathrm{ciB})$ ACA 0-1.2-12A
$\Omega \quad \times 1 \times 10 \times 100 \times 1 k$ $\times 10 \mathrm{k} \times 100 \mathrm{k}$ (\max. 200M)
Batt. 1.5V×1 \& $9 \mathrm{~V} \times 1$
-20 to +63
$252 \times 191 \times 107 \mathrm{~mm} 1.95 \mathrm{~kg}$

460-ED

- $10 \mu \mathrm{~A}$ movement -
$100 \mathrm{k} \Omega / \mathrm{V}$, varistor protected
- Polarity reversal switch negative measurements
- Equalizing transformer common shunts \& jacks for 1.2A \& 12A DC/AC
- Detachable indicator block - easy maintenance

LI $\quad 6 m A 60 m A$ LV 3V 3V

- Allowance.

With in $\pm 3 \%$ f.s.d. for DCV \& DCmA
Within $\pm 4 \%$ f.s.d. $(\pm 6 \%$ for 2.5 V) for ACV

Within $\pm 3 \%$ of scale length for Ω
Size \& weight. $133 \times 92 \times 42 \mathrm{~mm} \& 300 \mathrm{gr}$

75 years of service to Australian industry.

- Accurate DC reading - no HF current interference
\pm DCV 0-0.3-3-12-30-120.
300 (100k Ω)
$1.2 \mathrm{k}(16.6 \mathrm{k} \Omega / \mathrm{V})$
$\pm 2 \%$ 30k
(w/HV probe)
\pm DCA $0-12 \mu \mathrm{~A}$ 0-0.3-3-30-
300 mA 0-1.2-12A
$(300 \mathrm{mV}) \pm 2 \%$
ACV 0-3-12-30-120-300-
$1.2 \mathrm{k}(5 \mathrm{k} \Omega / \mathrm{V})$
$\pm 3 \%$ Freq. 20 Hz to
1 MHz at 3 V
ACA 0-1.2-12 $(300 \mathrm{mV})$
$\pm 3 \%$
$\Omega \quad \times 1 \times 10 \times 100 \times 10 k$
(max. 50M)
Batt. 1.5 Vx 1 \&
$9 \mathrm{Vx1}$
dB $\quad-20$ to +63
$184 \times 134 \times 88 \mathrm{~mm} 1.3 \mathrm{~kg}$

P-2B

The sturdy midget - quality quality instrument of functional design

- Designed for rugged service - phenol-resin front panel \& metal rear case
-Positive range setting special feature of a pinjack tester
- Reserve instrument - for household or field service

DCV 0-10-50-250-500-1k ($2 \mathrm{k} \Omega \mathrm{N}$ V) $\pm 3 \%$
DCA 0-0.5-10-250m (670 mV) $\pm 3 \%$
ACV 0-10-50-250-500-1k $(2 \mathrm{k} \Omega \mathrm{V}) \pm 4 \%$
$\Omega \quad 0-5 \mathrm{k} 500 \mathrm{k}$
Batt. $1.5 \mathrm{~V} \times 1$
dB -20 to +36
$\mathrm{M} \Omega$ 0.1-50 , using
$\mu \mathrm{F}$ 0.0002-0.6) external power
$120 \times 88 \times 40 \mathrm{~mm} 325 \mathrm{gr}$

Rhythm Generator

ABOVE: This photograph shows what an organist would see when using the Auto Rhythm unit.

BELOW: A diagram to aid in positioning the components on the Veroboard, and in making the cuts in the tracks.

balance. We altered the 1 M resistor connected to the 0.1 uF capacitor at the input of amplifier B2 to 100k. Note that we did not alter the feedback resistor, but the resistor connected to the FET source.
In order to give an improved sound when rapid tempos are used, we found it advantageous to alter the time constants of the white noise derived instruments. This can be achieved in several ways.
The time constants of each of the final R/C combinations connected to the FET gates must be reduced in value by a factor of about four. This is done by reducing either the resistor or capacitor values.

Economically, the best solution is to reduce the capacitors, from 0.47 uF to 0.1 uF , and from 0.22 uF to 0.047 uF . However, if you have already purchased these capacitors, then it may be cheaper to replace each of the trimpots with suitably lower values.

Reduce the 2.2 M trimpots to 470 k , and the 1 M one to 220 k . A third alternative, which is cheaper but less desirable, is to simply add extra resistors in parallel with the existing trimpots, on the underside of the board.

To operate the downbeat light from the bass drum, rather than from the downbeat output of the M252, it is necessary to change the downbeat monostable from negative to positive edge triggering. Refer to the previous article for details of how to accomplish this. This modification is necessary because the signal from the bass drum is positive going, rather than negative going like the downbeat signal.

Then simply connect the input of the downbeat monostable to the bass drum output of the M252 (pin 11), at the same time disconnecting the lead coming from the downbeat output (pin 7). No other modifications are necessary. We have tried this arrangement, and it did appear to give a satisfactory result musically, although since we do not have access to a listing of the standard musical content of the M252, we are unable to be completely definite about this.
In a future article, we intend to give details of other ICs which can be used instead of the M252. At the time of writing, these chips include the M253, from SCS-ATES, and the $\$ 8890$ and S2566/ S2567 chips from American Microsystems.

CO. PTY. LIMITED

INCORPORATING
P. A. HENDERSON \& CO. TRANSFORMER MANUFACTURERS

- SINGLE \& 3 PHASE TRANSFORMERS TO 20 KVA.
- MOTOR STARTING AUTOTRANSFORMERS TO 600 HP
- NEUTRAL REACTORS

8 East St.,
Granville, N.S.W. 2142. P.O. Box 31, Phone 637-7870.

"COWPER"

Cabinets and chassis for all projects featured in this magazine are available from

COWPER SHEETMETAL \& ENGINEERING

CASES PANELS
CHASSIS BOXES GENERAL SHEET METAL WORK FOR THE ELECTRONICS INDUSTRY \square WELDING
\square PRESS CAPACITY TO 75 TONS
11 Cowper Street, Granville, N.S.W. 2142 Phone 637-8736

A simple tuitional project that could start a big argument!

The "Goofy-Lite" is not intended to be taken any more seriously than its name suggests-a goofy little project that can form the basis of a practical lesson in electronics, but with the potential to be dressed up into a novelty display.

by WALTER NEVILLE

The Goofy-Lite is basically a "Science Fair" kit project (number 28-130) sold by Tandy Electronics stores throughout Australia. It sells complete, except for batteries and solder, for $\$ 5.95$. To construct it, you will need a few hand tools, soldering iron and solder, and four ordinary 1.5 V "penlight" cells. It can be put together, easily enough, in an evening, with the aid of a step-by-step assembly brochure which is packaged with the kit.
The basic idea is that the circuitry, powered by the four 1.5 V cells, energises five small neon bulbs, causing them to flash randomly or in a certain sequence, according to how the wiring is arranged. The current drain at 6 volts is only about 7 milliamps and, according to Science Fair, one set of batteries can last for weeks. Since we didn't have ours going for that long, we can only take their word for it!

Like many of the simpler Science Fair kits, this one is intended to be built up on the red plastic box in which it is packaged. Coding on the box makes it easy for even the uninitiated to effect the right connections but it is rather untypical, in the physical sense, since the leads within the box tend to be rather loose unless they are crimped over and
cut short. If you want to keep the GoofyLite built up, build it as suggested; on the other hand, if you want to recover the parts later for other projects, keep the leads reasonably straight and spot solder them, for easy disassembly at a later date.

On the other hand, the Goofy-Lite kit could provide the basis for a more permanent decorative project. For example, it could be built inside the base of a small garden pot holding an imitation shrub, with the winking lights as the "flowers". As the brochure observes, the lights do have something of the visual fascination of a flickering fire.

Fig. 1 shows the basic circuit arrange-
ment for the winking lights, when wired for random flashing. The lights are miniature neon bulbs, best known by the type number NE2. While included in the kit, NE2 bulbs can usually be bought separately from electronics parts dealers for about 25 c each.

They are essentially short lengths of glass tube, sealed at both ends and measuring about 25 mm long and 5 mm in diameter. Internally, there are two parallel wire electrodes, brought out respectively to thin flying leads. The bulbs are filled with neon gas.

Measured on a multimeter, the bulbs would represent an open circuit and would draw no significant current, if connected across a low voltage source. However, if the voltage across a neon bulb is gradually raised, electrons suddenly start to break away from the gas atoms and to move towards the positively charged electrode; and the atoms, now minus an electron, become "ions" and move towards the negative electrode. When this ionisation occurs, the gas glows red and current flows through the bulb.

In fact, it is essential to make sure that the current flow is externally limited and, in practice, neon bulbs like the NE2 are normally supplied from the voltage source through resistors of not less than 0.27 megohm. They normally ionise at about 70 V , although it is usual to operate them from a supply significantly above this figure. If, while a bulb is ionised, the supply voltage is gradually reduced, ionisation will usually cease at about 55V.

Reverting to Fig. 1, when the positive line is connected to a voltage source, typically of 100 V or higher, current begins to flow through each of the 2.7 megohm resistors to charge the 0.22 capacitors, connected across the respective NE2 bulbs. When the voltage across the bulbs reaches about 70, the neon gas inside ionises and glows red, and the resulting increased current discharges the 0.22 uF

Any number of NE2 bulbs can be wired as shown, given adequate power supply.
capacitor faster than it can be charged through the 2.7 M resistor. When the voltage falls to about 55, it can no longer maintain ionisation; the bulb ceases to glow and to draw current, and the charging cycle begins all over again.

Because the charge/discharge cycle is continuous, the circuit can be regarded as a type of oscillator, having a natural frequency determined by the supply voltage, the values of the resistor and capacitor and the characteristics of the bulb. Curiously, a small kit style electronic organ, popular a few years ago, used a whole array of neon oscillators.
In Fig. 1 the values have been selected to produce a readily visible flashing rate and, while they are nominally the same for each bulb circuit, the natural variations in component values produce slight differences in the flashing rate and therefore a random overall effect.

The Goofy light kit allows for only 5 bulbs, probably because that is as many as could reasonably be operated from the small battery powered supply. If operated from a more generous power supply (as from an old radio or TV receiver) almost any number of neon bulbs could be strung together, as per Fig. 1.

With the circuit as shown, it would be wise to keep the supply voltage down to about 100, even if it means using a couple of resistors to form a voltage divider across a higher voltage source. If the neon bulbs are connected directly to too high a voltage, the charging cycle will be speeded up and the flashing rate will be so high as that the bulbs will begin to look as if they are glowing continuously, and the visual effect will be lost.
While the random flashing hook-up of Fig. 1 is the most obvious one to use, particularly if the number of bulbs is increased, the construction leaflet suggests an alternative and intriguing way of interconnecting 5 bulbs, as in the original kit, and as shown in Fig. 2.

When so connected, the bulbs tend to flash in a sequence which may be repeated many times before it will change to another, and another. It will change also, if you disconnect and then immediately reconnect the positive bat-

SEQUENTIAL FLASHER CIRCUITFigure out how it works:

The Goofy Light seems to be such an elementary little project but, before you get snooty about Goofy, try your skill at figuring out how this sequential flashing circuit works. It's good for a head scratching argument at any level of expertise-enthusiast, technician, engineer or academic.

tery lead. The effect is intriguing to watch; and the circuit is likewise intriguing because it is quite tricky to figure out just how it works! Here's a starting point, if you want to try:

When the unit is first switched on, one of the bulbs will ionise-which one will depend on slight differences in their characteristics. But the moment one bulb ionises, the voltage across it will drop from about 70 to, say, 55 and this negative-going excursion will be coupled through the ring of capacitors to the positive electrodes of the other 4 bulbs. As a result, they will be prevented temporarily from ionising.

However, this is not a stable condition. With one end held at a low voltage and the other connected to the positive supply through 2.7 megohm resistors, certain of the capacitors will begin to charge, allowing the voltage across the associated bulbs to increase towards the full supply potential. When another bulb ionises, the sudden reduction in the capacitor ring voltage extinguishes the first bulb and temporarily locks out the others; then a further redistribution of currents and voltages begins, which culminates in the ionisation of yet another bulb.

And so on.

The third portion of the Goofy-Lite, illustrated in Fig. 3, is the DC/DC inverter section. Its job is to change the low DC voltage available from the batteries into a much higher voltage (albeit at a low
current) sufficient to operate the five neon bulbs.
To achieve this purpose, the inverter stage incorporates a PNP transistor which is connected to the primary winding of a centre-tapped transformer in such a way as to form an oscillator. Thus, when 6 V DC is applied to the transistor circuit, it begins to oscillate-in this case at about 900 Hz -and an alternating voltage at this frequency appears across the primary winding of the transformer.

The secondary winding has many more turns than the primary and the alternating voltage across it is much higher-nearly 200, according to the pamphlet with the kit. This is rectified by a single half-wave diode and appears on the plus line to the bulbs as pulsating DC having a nominal value, as measured on a meter, of just over 100 V DC.

While the circuit of Fig. 3 is a true $D C / D C$ inverter, it is a very simple one, mainly by reason of the fact that the output current which it has to supply is very small. Inverters designed to supply higher current (and perhaps higher voltage) output become progressively more complex. The basic oscillator commonly uses two transistors in a push-pull circuit, with everything very carefully designed to protect them against excessive dissipation and voltage peaks which can easily cause transistor breakdown. Knowing this, you will be prepared for the difference between the very simple inverter in the Goofy-Lite and more complex inverters you may come across later.

Even so, it can be assumed that the transformer in the Goofy-Lite inverter is especially designed for the job and it does not follow that it could be made to work with just any small step-up transformer. In short, you can have fun and games with the circuits of Figs. $1 \& 2$, using ordinary bits and pieces and an available power supply but, if you want to reproduce the inverter section, the easiest way would simply be to buy the complete Goofy-Lite kit.

So that's the Goofy-Lite: goofy, elementary, to be sure. But how did you get on trying to work out the operation of Fig. 2?

THE DC/DC INVERTER

Neon bulbs like the NE2 will not work at all at voltages less than about 70. This elementary little DCIDC inverter steps up the 6 V available from the four small cells to about 100 V DC. How it works is explained in the accompanying article.

Protect your vehicle-fit this

 Car burglar alarmHere is a design for a car burglar alarm which should appeal to the do-it-yourself type. It uses modern solid state technology, is relatively simple to build, and lends itself to individual options for greater effectiveness.

by IAN ROBERTSON*

A number of car burglar alarms have been described for home construction, and commercial units are available from car accessory outlets. Of the available versions, the so-called "flashing light alarms" are perhaps the most sought after. The alarm to be described is of this general type.
Two features of this alarm are:-
a) A light that flashes whenever the alarm is set. It is felt that the flashing light makes the car less attractive to a potential thief and, in addition, the flashing light reminds the owner to disable the unit upon entering the car.
b) A battery detector that senses when entry is made to the car, detecting the drop in battery voltage which occurs when the load on the electrical system changes. It only requires a door to be opened, the brake pushed, headlight switched on or any of several other items operated, to trip the alarm.

This operating principle simplifies installation, as almost all vehicles have courtesy lights with actuating switches installed in at least two doors. If not already fitted, switches may be installed in the rear door pillars, the boot, bonnet and glove box. It is essential to power these from a fuse which remains on even when the ignition is off.

Momentarily operating a push button sets the alarm. The ignition switch must be off or it will override any attempt to set the alarm. An indicator (previously off) will now light for a period of 12 seconds. This is the exit time and allows the driver to leave the vehicle without triggering the alarm. Doors or other protected areas should be closed before the end of this time.

After the exit time the indicator will flash at the 1 Hz rate, showing that the alarm is set and will be triggered by any disturbance to the electrical system.

When entering the car a delay of 6 seconds occurs before the horn sounds. This gives sufficient time for the driver to cancel the alarm (by setting the ignition switch to the "accessory" position) but

[^3]very little time for the burglar to overcome the alarm system.

Unless cancelled the horn will sound (pulsing at half second intervals) for approximately two minutes before being shut down. The system is retriggerable; the horn will again sound if the vehicle's electrical system is further disturbed.

The alarm circuit is best considered as a number of separate sections. These are:-

1. Input bi-stable
2. Exit delay
3. Oscillator
4. Indicator
5. Battery detector

Fig. 1. The differential amplifier arrangement used in the LM3900. Sometimes called a "Norton Amplifier" the configuration responds to differences in input current, rather than input voltage.

The complete alarm, ready for installation. The simple " U " chassis will suit most situations, but check its depth if a larger relay is used. The push button and LED are shown connected temporarily above the terminal block.

Each LM3900 contains four such operational amplifiers, as independent units except for common supply terminals. The circuits uses two LM3900s, shown marked as A1 to A4 and B1 to B4.

1. Input Bi-stable (A1):

This bi-stable is controlled by the ignition switch and the push button. A low output occurs whenever the ignition switch is in the accessory position, while pressing the push button (with the ignition switch off) gives a high output. The low output disables the alarm, while the high output initiates the exit sequence.

Different inputs are used for the accessory switch connection in positive and negative chassis systems. It is necessary to invert the accessory signal for a positive chassis vehicle, before passing it to the input bi-stable. This is performed by B2 which, otherwise, is not used.

This is the only circuit modification involved to cope with positive chassis vehicles. The unit is constructed on a fully floating basis and either its positive or negative rail may be connected to the vehicle chassis.
2. Exit delay:

To allow time to exit the vehicle once
the circuit is armed, a 12 second delay follows the input bi-stable. The delay is obtained from the R/C network in the inverting input of the second amplifier (A2). It takes 12 seconds for the current in the inverting input to reach a point where it will override the fixed current in the non-inverting input.

In the absence of an inverting input the output of this stage is high and this cancels both the battery detector and the horn mono-stable by feeding current into their inverting inputs. Operation of the horn is thus prevented, and if the
alarm was previously triggered its opera-

Component layout diagram, from the component side of the board, superimposed on the copper pattern. External connections to the board are shown on accompanying diagrams for negative and positive chassis electrical systems.

LOW POWER SCHOTTKY TTL
 At last we have been able to secure a comprehensive stock range of

 this exciting new logic family．These devices require no special hand－ ling as with CMOS，they are considerably faster（ 45 mHz typical）and Consume about one fifth the power of equivalent TTL functions． as they have identical pin connections and in most cases will directly interface with other TTL families without the need for buffer circuits． We have full data sheets and applications information available if required．－All prices include postage／packaging and sales tax．

74LS00
74LSO1
74LSO2
74 LS03
74LS04
74LS05
74LS08
74LS09
74LS10
74LS1 1
74LS13
74LS14
74LS20
74LS21
74LS27
74LS28
74LS30
74LS32
74LS37
74LS38
74LS40
74 LS42
74LS73
74LS74
74LS75
74LS78
74LS86
74LS90
74LS92
74LS93
74 LS95
74LS109
74LS113
74LS114
74LS151
74LS157
74LS163
74LS164
74LS174
74LS175
74LS181
74LS191
74LS192
74LS193
74LS194
74LS195
74LS196

QUAD 2 INPUT NAND GATE
QUAD 2 INPUT NAND GATE（OC）
39
QUAD 2 INPUT NOR GATE
.39
QUAD 2 INPUT NOR GATE（OC）
HEX INVERTER
HEX INVERTER（OC）
QUAD 2 INPUT AND GATE
QUAD 2 INPUT AND GATE（OC）
TRIPLE 3 INPUT NAND GATE
TRIPLE 3 INPUT AND GATE
DUAL NAND SCHMITT TRIGGER
HEX SCHMITT TRIGGER
DUAL 4 INPUT NAND GATE
DUAL 4 INPUT AND GATE
TRIPLE 3 INPUT NOR GATE
QUAD 2 INPUT BUFFER
8 INPUT NAND GATE
.43

QUAD 2 INPUT OR GATE
QUAD 2 INPUT NAND BUFFER
QUAD 2 INPUT NAND BUFFER（OC）
DUAL 4 INPUT NAND BUFFER
BCD TO DECIMER DECODER
DUAL J－K MASTER SLAVE F／F
DUAL D TYPE EDGE TRIGGERED F／F
QUAD BISTABLE LATCH
DUAL J－K NEG EDGE F／F
QUAD 2 INPUT EXCLUSIVE OR GATE
DECADE COUNTER
DIVIDE BY 12 COUNTER
4 BIT BINARY COUNTER
4 BIT L R SHIFT REGISTER
DUAL J－K POS EDGE F／F
DUAL J－K POS EDGE F／F
DUAL J－K NEG EDGE F／F 8 TO 1 MUX
QUAD 2 IN DATA SELECTOR（NI）
SYNC 4 BIT BINARY COUNTER
8 BIT P OUT SERIAL S R
HEX D－TYPE F／F WITH CLEAR QUAD D－TYPE EDGE TRIGGERED F／F 4 BIT ARITHMETIC LOGIC UNIT SYNC BINARY UP／DOWN COUNTER SYNC DECADE UP／DOWN COUNTER SYNC 4 BIT UP／DOWN COUNTER 4 BIT BIDIRECTIONAL S／R 4 BIT PARALLEL S／R DECADE COUNTER LATCH WITH PRESET

HOBBY NEWS NOVEMBER，1976

74LS221
74LS253 DUAL MONOSTABLE MULTI DUAL 4 TO 1 DATA SELECTOR／MUX

MICRO COMPUTER SHOP

We are proud to be one of the leading suppliers to the Australian Hobby Computer market．A fully operational MICROCOMPUTER SHOP has been established at our warehouse／showroom．If you are in Sydney why not drop in and try your SC／MP INTROKIT on our TELETYPE？Or alternatively try a few programs on other micro－ processors including
NATIONAL SC／MP LOW COST DEVELOPMENT SYSTEM
NATIONAL PACER
MOTOROLA 6800
SIGNETICS 2650
We have a wide range of components and peripheral devices also available．Please write for details．

ASCII BAUDOT TRANSLATOR

As described in EA October 1976 this project enables you to convert an SC／MP INTROKIT and use BAUDOT style teleprinters to talk to microprocessors．A demonstration system is on show at our computer shop．

SC／MP INTROKIT \＄89．50
ASC11－BAUDOT COMPONENT KIT
lall parts including PROM，UART with socket，opto couplers etc as well as full constructional details．）$\$ 57.50$
HIGH VOLTAGE TRANSISTOR（for teleprinter drive）$\$ 2.50$ VOLTAGE REGULATORS

LM340T－5＋5V 1 A $\$ 2.00$
LM320T－12－12V 1 A $\$ 2.75$
－All above prices include postage and packaging．Sales tax exempt prices available on request．

FOOTNOTE：

Our August Catalogue has brought us literally thousands of new customers．To these people and especially our existing customers we would like to say＂many thanks＂for your support．

To cope with the enormous increase in orders our mail order department have put in many hours of overtime and at last they have restored things to a more reasonable situation．

It appears that so many people have given us their business that our major competitor has become almost desperate．Please give him back at least some of your support as this will enable us to restore our grade of service to our pre－catalogue level．

Many thanks once again．

स⿴囗大\％

POSTAL ADDRESS：THE ELECTRONIC MAILBOX，P．O．BOX 355，HORNSBY 2077.
WAREHOUSE \＆SHOWROOM：109－111 HUNTER STREET，HORNSBY，N．S．W． 2077.
Telephone： 47637594764758
TRADING HOURS：9－5 WEEKDAYS，9－12．30 SATURDAY
tion will be terminated.
The indicator is also controlled; this will be covered under a separate heading.
3. Oscillator (A3):

This operational amplifier forms a 1 Hz square wave generator. Its output is the source of interrupted horn and indicator lamp functions. The 4.7 uF capacitor alternately charges and discharges via the 330 k resistor, swinging between voltage limits established by the resistors feeding the inverting and non-inverting inputs. This oscillator runs continually with the output gated when and where required. 4. Indicator (A4):

The indicator light (LED) displays the state of the alarm. It is driven by the square wave generator via A4, and will flash at 1 Hz unless otherwise overridden.

With the input bi-stable (A1) in the cancel position all pulses trying to reach the indicator will be by-passed to the negative rail (via the diode on the output of the bi-stable) and the lamp will remain off.
Setting the bi-stable will remove the blocking effect of the diode, but for twelve seconds while the exit timer (A2) output remains high, a current will flow into the indicator driver via the 22 k resistor and the indicator will be held on.
At completion of the exit time the indicator will be under control of the oscillator and the LED will flash, half second on half second off. The flashing indicator signifies the alarm is set and will be triggered by any change in battery loading.

Using a light emitting diode instead of a lamp for the indicator reduces the current demand on the car battery. In addition, the LED will not trigger the detector circuit as it switches on and off.
5. Battery Detector (B1):

A common centre tap-the junction of the 1 k resistors-is used for both amplifier inputs, but the lower value resistor feeding the inverting input drives the output low.

If a negative pulse occurs on the supply rail this pulse is coupled into the
inverting input by the 0.1 uF capacitor. Providing this pulse overcomes the bias on this input, the output will go high and will be held in this state by the feedback loop to the non-inverting input.

The diode in series with the inverting

CAR WIRING NEGATIVE CHASSIS
Connections for a negative chassis electrical system. The few connections required should be readily accessible.
input ensures that a minimum positive voltage is maintained at this input (along with other sections of the unit feeding this point) regardless of the amplitude of the negative pulse. Otherwise the operation of this and other stages of the circuit can be upset.
The detector may be blocked, by the input bi-stable and horn mono-stable, as explained elsewhere.
6. Enter delay:

A network similar to the exit delay follows the detector. This introduces a delay of six seconds between entering the car and the horn operating. Here, as in the other areas where this form of delay is included, fast resetting is ensured by a diode across the capacitor charge path; the diode quickly discharges the capacitor each time the amplifier output returns to zero. It is important that the diode is a low leakage silicon, otherwise delay times will be unpredictable.
7. Horn shutdown mono-stable (B3):

To place a limit on the time the horn will sound once the alarm is triggered a mono-stable is fitted to cancel the horn after 1.5 minutes operation. This is retriggerable, so that a further impluse into the detector (after the mono-stable has returned to normal) will start the cycle again.

Operation is as follows: The 6.8 M resistor normally holds the output in a

PARTS LIST

1 Printed board 76/b/4 (138x 65 mm)
112 V relay (coil 500 ohm or greater)
1 N/O push button
112 way terminal block
SEMI CONDUCTORS
2 LM3900 integrated circuits
6 1N4148/1N914A diodes
1 1N5060/EM404 diodes
1 LIT 21/TIL22B LED (with bezel)
CAPACITORS
3 0.1uF ceramic capacitor
1 4.7uF 25V TAG tantalum capacitor
3 22uF 16V TAC tantalum capacitor
2 47uF 6.3V TAG tantalum capacitor

RESISTORS ($1 / 2$ watt)

1470 ohm	$1330 k$
31 k	$2470 k$
$322 k$	$1680 k$
$268 k$	71 M
$182 k$	22.2 M
$5100 k$	13.3 M
2150 k	34.7 M
1220 k	16.8 M

MISCELLANEOUS

214 Pin IC sockets (optional)
Screws, nuts, wire etc.

The printed board, from the copper side, shown full size. While constructors can make their own boards if they wish, commercial versions of this board should be readily available at reasonable prices.

DCS
 DIRECT COMPONENT SUPPLIES

PROFESSIONAL QUALITY SWITCHES FOR THE HOBBYIST AT REALISTIC PRICES WITH MAIL ORDER CONVENIENCE HONEYWELL MICRO SWITCH

SERIES 8 PUSHBUTTONS

ALTERNATE ACTION (PUSH ON PUSH OFF)

8N1011 1 POLE C/O $\$ 1.52$

MOMENTARY ACTION
$\begin{array}{ll}\text { 8N1021 } 1 \text { POLE C/O } & \mathbf{\$ 1 . 5 2} \\ \text { 8N2021 2 POLE C/O } & \$ 2.67\end{array}$
INCLUDES PLASTIC PUSHBUTTON IN
RED WHITE OR BLACK, STATE CHOICE

DUAL IN LINE DIP SWITCHES

DSS 106 6POLE
DSS 107 7POLE
DSS 108 8POLE
DSS 110 10POLE

P.O.BOX 100 SCORESBY 3179

INCLUDE \$1 FOR POSTAGE \& PACKING VICTORIA ONLY OR $\mathbf{\$ 1 \cdot 5 0}$ INTERSTATE

low state. The current from the enter delay network forces the output high and this is latched via the 3.3 M resistor. By going high the output also cancels the battery detector, leaving only the 3.3 M to latch the mono-stable.

The 100 uF capacitor begins to charge, taking over 1.5 minutes for the current in the inverting input to return the circuit to the quiescent state. Re-triggering is now possible via the detector as it is no longer overridden.
8. Relay:

Low power relays or lamps may be driven directly by the LM3900, but the current into the input must be at least 0.1 mA . Even so, the IC will only sink around 30 mA and for this reason a minimum relay resistance of 500 ohms is recommended.

The relay driver is arranged as a NAND gate where both 150k inverting input resistors must be driven high before the output goes low, energising the relay. Only when the horn mono-stable and the oscillator output are high will the relay operate, and since the oscillator is continually in operation, the relay-and the horn--will pulse at half second intervals while ever the mono-stable is set.

During installation of the alarm, I found the normal operation of the circuit was upset when ever the horn operated. This was overcome by fitting 0.1 uF capacitors to the inputs of the horn mono-stable and the input bi-stable. As an additional safeguard the power supply is by-passed with a 22 uF capacitor.

Construction is fairly straight forward. Mount the components on the printed board. Observe carefully the polarity of the capacitors, diodes and integrated circuits, check resistors for correct value and, after soldering the components, check all points for dry joints, or for excess solder that may be shorting between tracks.

Where the unit is for use on a negative chassis vehicle, four resistors (marked on the circuit and component layout) need not be fitted to the board.

Bead tantallem capacitors are specified for this unit, standard electrolytic capacitors could be tried but leakage may be a problem in some types.

The finished board is fitted into a sheet metal channel. Four spacers hold the board clear of the channel, while a bracket supports the relay. A cover may be added to give extra protection where the mounting position in the car requires it.

The channel made for the prototype measured $31 / 2 \mathrm{in}(W) \times 81 / 2 \mathrm{in}(L) \times 1 \mathrm{in}(\mathrm{D})$. The last dimension may need to be increased, depending on the type of relay used and the space it occupies. Also, check the space into which it is to fit, before settling on final dimensions.

A diagram is given of the wiring between the board relay, and terminal block. Make sure the wiring to the relay contacts is sufficiently large to handle the
expected horn current. Also note a diode is fitted across the relay coil. The polarity must be correct; check before soldering.

There are many relays available. Their suitability for this project will depend in some cases on the horn system they are to drive. The current taken by a single horn will be less than the current requirement of a multiple horn system. If doubt exists as to the current demands of the system consider fitting an automobile horn relay in the engine compartment.
External connections to the alarm are made via a twelve way terminal block, this being fitted to one edge of the channel. Alternately the wiring could go directly to the board but the terminal block simplifies testing and installation.

The completed alarm should be fitted behind the dash panel, well out of sight and not in a position to be damaged by the passenger's feet.

Fit the push button and light emitting diode on the driver's side of the car, either in the dash panel or on a small plate screwed under the dash. For better visibility from outside the vehicle a second LED may be fitted to the passenger's side of the car, wired in series with the original LED.

Car wiring diagrams are given for both the positive and negative chassis versions of the alarm. Note this unit is for 12 volt systems. Six volt operation is no doubt possible but would require component changes that are not within the scope of this article.

Wiring may be summarised as: two wires run to the fuse panel, one to the horn fuse and one to the accessory fuse. A third feeds to the horn and a fourth to chassis. The push button and indicator are wired as shown in the diagram. Note that different inputs are used for the accessory switch in the positive and negative chassis versions.

Testing the unit will involve a run through the alarm sequence outlined at the start of this article. Testing should be carried out after the car wiring is finished, but prior to fitting the alarm behind the dash.

A lamp may be used instead of the horn during the initial stages of testing,

Connections for a positive chassis system. These are the only changes required to cope with car polarities.

Fig. 2. adjust detector sensitivity
Fig. 2a. A modification to provide variable detector sensitivity, as may be needed to avoid false alarms.

FIG. 26 LIMIT "START UP" CURRENT OF CLOCK
Fig. 2b. A clock, particularly a power wound spring type, may cause false alarms. This circuit, in conjunction with 2a, should solve most problems.
but the horn should be run for a short time to fully check the installation.

Constructors could find that their delay times differ slightly from those quoted in the text. The delay depends on component tolerances (particularly capacitor tolerances) and the times given were taken from the prototype.

Several components are marked on the circuit and board layout with an asterisk. An increase in resistance or capacitance of the marked component will lengthen the associated delay, while a reduction will shorten the delay. Resistance values can safely be doubled, but above this circuit operation cannot be guaranteed.

Since the unit is operated by a momentary drop in battery voltage, it is essential all existing lamps be in working order and further lamps and/or switches be fitted where required.
In vehicles fitted with an electric clock there is a possibility of false alarms. This applies particularly to clocks that are electrically rewound at intervals by a small motor.
Two general approaches may be taken to overcome this problem-reduce the sensitivity of the detector or limit the starting current of the clock-if necessary both cures may be tried.
Fig. 2a shows how the sensitivity of the battery detector may be reduced. It is hoped an adjustment can be found where the alarm is not triggered by the clock but retains sufficient sensitivity for normal use.
Fig. 2 b shows a network for inclusion in the active feed to the clock, the component valves are a guide only, in certain instances a series resistor may be found to be all that is required.

The above describes a basic system, but a number of options can be added to it. One is given here; others may suggest themselves to individual readers.
Relays normally have more than one contact set and, as only one pair is needed to operate the horn, an additional pair may be wired across the ignition points as shown in Fig. 3. These contacts prevent the car from starting thereby giving a second line of defence if the horn is faulty or has been disconnected.
This will normally only be effective if it is accompanied by a hidden switch

FIG. 3 DISABLE IGNITION CIRCUIT
Fig. 3. An extra set of contacts can disable the ignition circuit, as a back up in the event that the horn is disabled. This must be used with the switch in Fig. 4.

FIG. 4 HIDDEN SWITCH
Fig. 4. The hidden switch, to be used with the ignition circuit as in Fig. 3. The extra set of contacts can be used to prevent frivolous operation of the press button.

New IC design has no inductors

10-channel
 graphic equaliser

This article describes a practical circuit for an octave equaliser based on the new LM349 quad operational amplifier from National Semiconductor Corporation. The circuit requires just 6 ICs for a stereo version, and is unusual in that it employs no inductors.

An octave equaliser offers the user several bands of tone control, separated an octave apart in frequency with independent adjustment of each. It is designed to compensate for any unwanted amplitude-frequency or phase-frequency characteristics of an audio system.

A midrange tone control circuit can be used separately to make a convenient ten band octave equaliser. Design equations result from a detailed analysis of Fig. 1, where a typical circuit is shown. Resistors R3 have been added to supply negative

Fig. 1: typical octave equaliser section.
DC bias currents, and to guarantee unity gain at low frequencies.
This circuit is particularly suited for equaliser applications since it offers a unique combination of results depending upon the slider position of R2. With R2 in the flat position (i.e., centred) the circuit becomes an all-pass with unity gain. Moving R2 to full boost results in
a band pass characteristic, while positioning R2 in full cut creates a band-reject (notch) filter.
Writing the transfer function for Fig. 1 in its general form for maximum boost (assuming only that R3 is very much greater than R1) results in Eqn. (1):

$$
\frac{e 0}{e 1}=-\frac{s^{2}+\left[\frac{[2 R 1 R 2 C 1+R 3(R 1+R 2) C 2}{R 1 R 2 R 3 C 1 C 2}\right] s+\frac{2 R 1+R 2}{R 1 R 2 R 3 C 1 C 2}}{s^{2}+\left[\frac{[R 1+R 2) C 2+2 R 2 C 1+R 3 C 2}{R 2 R 3 C 1 C 2}\right]}
$$

Eqn. (1) has the form Eqn. of (2):

Equating coefficients yield Eqns. (3)-(5)

$$
\begin{aligned}
& W_{0}=\sqrt{\frac{2 R 1+R^{2}}{1 R 2 R 3 C 1 C 2}} \quad \text { Eqn: (3) } \\
& \mathrm{A}_{0}-\frac{2 \mathrm{R} 1 \mathrm{R} 2 \mathrm{C} 1+\mathrm{R} 3(\mathrm{R} 1+\mathrm{R} 2) \mathrm{C} 2}{2} \\
& 10-\frac{2 R 1 R 2 C 1+R 3(R 1+R 2) C 2}{2 R 1 R 2 C 1+R 1(R 2+R 3) C 2} \quad \text { Eqn: (4) } \\
& Q=\sqrt{\frac{2 R 1+R 2}{R 1 R 2 R 3 C 1 C 2}}\left[\frac{R 2 R 3 C 1 C 2}{[R 1+R 2) C 2+2 R 2 C 1+R 3 C 2}\right] \\
& \text { Eqn: (s }
\end{aligned}
$$

In order to reduce these equations down to something useful, it is necessary to examine what is required in terms of performance. For normal home use, $\pm 12 \mathrm{~dB}$ of boost and cut is adequate, which means that only a moderate amount of passband gain is necessary; and since the filters will be centered one octave apart in frequency a large Q is not necessary ($\mathrm{Q}=1-2$ works fine). What is desirable is for the passband ripple when all filters are at maximum to be less than 3 dB .

by DENNIS BOHN

Consumer Application Engineer, National Semiconductor Corporation.

TABLE 1		
$f_{0}(H z)$	C_{1}	C_{2}
32	$0.18 \mu \mathrm{~F}$	$0.018 \mu \mathrm{~F}$
64	$0.1 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$
125	$0.047 \mu \mathrm{~F}$	$0.0047 \mu \mathrm{~F}$
250	$0.022 \mu \mathrm{~F}$	$0.0022 \mu \mathrm{~F}$
500	$0.012 \mu \mathrm{~F}$	$0.0012 \mu \mathrm{~F}$
1 k	$0.0056 \mu \mathrm{~F}$	560 pF
2 k	$0.0027 \mu \mathrm{~F}$	270 pF
4 k	0.0015 F	150 pF
8 k	680 pF	68 pF
16 k	360 pF	36 pF

Examination of Eqn. (5) in terms of optimising the ratio of C 1 and C 2 in order to maximise Q shows a good choice is to let $\mathrm{C} 1=10 \mathrm{C} 2$. A further design rule that is reasonable is to make $R 3=10 R 2$, since R3 is unnecessary for the filter section. Applying these rules to Eqns. (3) and (5) produces some useful results:
$W_{o}=2 \pi$ fo $=(1 / 10 R 2 C 2) x$

$$
\begin{equation*}
(2+R 2 / R 1)^{n} \text { Eqn. (6) } \tag{7}
\end{equation*}
$$

$A o=1+(R 2 / 3 R 1)$
$\mathrm{Q}=[(2 \mathrm{R} 1+\mathrm{R} 2) /(9.61 \mathrm{R} 1)]^{1 / 2} \quad$ Eqn. (8)
Rewriting Eqns.(7) and (8) yields:
$\mathrm{R} 2=3(\mathrm{Ao}-1) \mathrm{R} 1$
$R 2=\left(9.61 \mathrm{Q}^{2}-2\right) \mathrm{R} 1$
Combining Eqns. (9) and (10) gives:
$\mathrm{A}_{\mathrm{o}}=\left[\left(9.61 \mathrm{Q}^{2}-2\right) / 3\right]+1$ Eqn. (11)
From Eqn. (11) it is seen that gain and Q are intimately related and that large gains mean large Qs and vice versa. Eqns. (9) and (10) show that R1 and R2 are not

Fig. 2: circuit for a 10-band mono octave equaliser. The circuit is simply duplicated for stereo.
independent, which means that one may be arbitrarily selected and from it (knowing Ao and/or Q) the other is found.

Practical Unit Design

The design of a practical working octave equaliser is set out in the following steps:

- Select R2 $=100 \mathrm{k}$
- R3 = 10R2 $=1$ Megohm
- For a gain of $12 \mathrm{~dB}, \mathrm{Ao}_{0}=4 \mathrm{~V} / \mathrm{V}$. From Eqn. (9):

$$
\begin{aligned}
\mathrm{R} 1=\mathrm{R} 2 / 3(\mathrm{Ao}-1) & =100 \mathrm{k} / 3(4-1) \\
& =1.11 \times 10^{\circ}
\end{aligned}
$$

Use R1 $=10 k$

- Check Q from Eqn. (8): $Q=[(2(10 k)+100 k) /(9.61)(10 k)]^{1 / 2}$
$\mathrm{Q}=1.12$, which is satisfactory.
- Calculate C2 from Eqn. (6) and C1 = 10C2
$\mathrm{C} 2=(1 / 2 \pi \mathrm{fo}(10 \mathrm{R} 2))(2+\mathrm{R} 2 / \mathrm{R} 1)^{\mathrm{L}_{2}}$
$\mathrm{C} 2=5.513 \times 10^{-7} / \mathrm{fo}$
A range of standard values for C 1 and C2 vs. fo is given in Table (1).

The complete design appears in Fig. (2). While at first sight it may appear complicated, it is really just repetitious. By using quad amplifier ICs, the whole thing consists of just three integrated circuits plus peripheral components.

Fig. (2) is for one channel only, and would be duplicated for a stereo system. The input buffer amplifier guarantees a low source impedance to drive the
equaliser, and presents a large input impedance for the preamplifier. Resistor R8 is necessary to stabilise the LM349 while retaining its fast slew rate ($2 \mathrm{~V} / \mathrm{us}$). The output amplifier is a unity gain, inverting summer used to add each equalised octave of frequencies back together again.

One aspect of the summing circuit that may appear odd is that the original signal is subtracted from the sum via R20. (It is subtracted rather than added because each equaliser section inverts the signal relative to the output of the buffer and R20 delivers the original signal without inverting.) The reason this subtraction is necessary is in order to maintain a unity gain system. Without it the output would equal ten times the input; eg., an input
of 1 V , with all pots flat, would produce 1 V at each equaliser output, the sum of which is 10 V .

By scaling R20 such that the input signal is multiplied by 9 before the subtraction, the output now becomes $10 \mathrm{~V}-9 \mathrm{~V}$ $=1 \mathrm{~V}$ output, ie., unity gain. The addition of R4 to each section is for stability. Capacitor C3 prevents possible large DC offset voltages from appearing at the output. If the driving source has a DC level then an input capacitor is necessary (0.1uF), and similarly, if the load has a DC level, then an output capacitor is required.

It is possible to generate just about any frequency response imaginable with this ten band octave equaliser. A few possibilities are shown in Fig. (3).

EEEETRORTES Supply
 Saruina

179 VICTORIA ST., KINGS CROSS N.S.W. 2011

MODULESsave time and money by using ready built and tested modules. Simple and reliable to use. Each unit is also avallable as a kit.

AMS module....\$7.75 kit....\$5.50 5 Watt RMS amplifier module. With the addition of a few capacitors and pots a complete amplifier suitable for use with crystal or higher output ceramic cartridges. A 28 volt power supply is required.

AM15 module... $\$ 10.75$ kit.... $\$ 8.75$ 15 Watt RMS amplifier module. Has low distortion, typically less than 0.1%, full frequency response of 30 Hz to 50 kHz , has 9 transistors and two diodes a fibreglass PC board, and requires a dual power supply of +28 and -28 volt

AM30 module...\$13.75 kit...\$11.75 30 Watt RMS amplifier module. Same as above, but requires +35 and -35 volt

PA40 module...\$15.75 kit...\$12.75 Preamp and controls suitable for use with AM15 and AM30. Magnetic input is 3 mV into 50 k ohms. Other inputs 100 mV into 100 k ohms. Output 200 mV into 10 k Signal to noise better than 60 dB , and distortion better than 0.1%. Controls +14 dB and -18 dB at 50 Hz and 10 kHz . PC board mounted pots for volume balance treble and bass. A fibreglass boârd.
sol module...s12.50 ktt...s10.50 Uses Mci 1312 IC , requit res power supply of 18 to 22 volts.
SQ2 module...533.50 k1t...529.50 SSes Mci 1312 , Hci 1314 and Mcl1315. This unit has fuil decoding and wave match control. Ideal for building up a four channel system at low cost.
TUI module only....58.50
Ah tuner module, 9 or 12 volt supply, ferrite rod, superhet model.
TU2 module only....529.50 AM and EM stereo tuner. proviston for stereo indicator and tuning meter. 12 volt supply, 3.50 V sensitivity. H18h quality unit at a nev low price.
PS1 module.....58.95 ktt....56.95 1A, 10 mot 40 vit resulator module. A transformer only required. Diodes and capacitor part of module. A protected output to protect module. Addition of a pot allows the setting of a maximum output current. Available with common positive or common negative rail, two modules can then be used to give dual supply with a centre tap transformer.

PS2 module...\$10.95 kit....\$8.95 2A, 10 to 40 volt regulator module. A higher current version of PSI.
pa
module....\$7.75 kit.... $\$ 4.95$ Stereo general purpose preamplifier. can be tallored for use with magnetic pickups, tape heads, microphones or guitars by changing a few components. Low noise, high quality performance.

plugs sockets

31	2. 5 mm panel socket	3 c
J3	3.5 mm panel socket	5
J4	6.5 mm mono panel socket	25 c
JS4	6.5 mm stereo panel socket	0 c
JSS4	6.5 mm switched stereo	0 c
PI	2.5 mm minature plug	13 c
P2	3.5 mm minature plus	6 c
P3	3.5 mm red or black plug	Oc
P4	6.5 mm plug	40 c
PS4	6.5mm stereo plug	$0 ¢$
PM4	6.5 mm right angle plug	0 c
C3	3.5 mm red or black line	20c
C4	6.5 mm line socket	40 c
CS4	6.5 mm stereo line socket	5 c
DC1	2.1 mm DC plug	c
DC2	2.5 mm DC plug	23 c
DJ1	2.1 mm DC socket	c
DJ2	2.5 mm DC socket	33 c
ACl	red or black alligator	14 c
BPI	red or black banana plug	c
BSI	red or black banana socket	c
CLI	cigarette lighter plug	43 c
COP 1	coaxial plug	
COS 1	coaxial chassis socket	34 c
COS 2	coaxial line socket	58 c
LC1	red or black RCA line sock	
LC2	red or black RCA plug	9 c
LC3	RCA metal chassis socket	25 c
LCS	RCA insulated chassis sock	
LC6	RCA double socket	5 c
LC7	RCA four way socket	68 c
8	RCA five way socket	c
LC9	RCA six way socket	98 c
DL2	DIN 2 pin line socket	28 c
DL3	DIN 3 pin line socket	c
DLS	DIN 5 pin line socket	44 c
DP2	din 2 pin plug	29 c
DP3	din 3 pin plug	3 c
DP5	din 5 pin plug	44 c
DS2	DIN 2 pin chassis socket	25 c
DS3	DIN 3 pin chassis socket	$30 ¢$
DSS	DIN 5 pin chassis socket	34 c
EC15	15 pin,.15" spacing PC edge	e 80 c
EC9	9 pin, $15^{\prime \prime}$ spacing PC edge	e 60c
EC5	5 pin, .15" spacing PC edge	e 30 c

KITSjust five of the kits from our range.

ETI422 50 Watt stereo $\$ 119.00$ Comes complete with wooden sleeve.

ETI424 Reverberation unit $\$ 49.50$ With metal cover.

ETI427 Graphic equaliser $\$ 99.50$ Comes complete with wooden sleeve.

ETI440 25 Watt stereo
$\$ 89.50$
With metal cover.
EADFC 200 MHz counter
$\$ 115.00$
Complete kit with metalwork, front panel and prescaler.

PM141 S Watt stereo $\$ 29.50$ Comes with transformer, pots, power supply, but without knobs and front panel. Ideal for construction under a turntable. Suitable for high output ceramic, and crystal cartridges.
EATSCDI Updated system
$\$ 19.50$ Complete with drilled metal case and prewound secondary coil. A reliable and easily costructed kit.

SPECIALS...... only while stocks last
2500uF 25 volt pigtail electros
22K Double gang linear pots 47K Double gang linear pots 100K Double gang linear pots 47K Double gang log pots BC350 PNP, similiar to BC559 500 mW Zeners, 8.2, 12,30 volt LM309K 5 volt, TO3 regulators $\$ 1.25$ LM741D DIL 8 case IC
1101256 bit RAM, $+5,-9$ volt $\$ 1.95$ 21021024 bit RAM, $=5$ volt $\$ 3.50$ 2M1000 Nixie readout tube 99c

KNOBS

WT1	Slide pot knob	33 c
195	Large silver HIFI knob	70 c
195 A	Small HIFI matches 195	60 c
245	Large siver instrument	90 c
859	Small black, ith pointer	4 C c
857	Large, matches 859	50 c
4094	Rectangular push button	50 c
4354	Round push button, colour	50 c

BEZELS
$\begin{array}{lll}\text { BL1 Red or green, small 6V } 40 \mathrm{c} \\ \mathrm{CR1} & 70 \mathrm{c}\end{array}$ $\begin{array}{lll}\text { CR1 } 240 \text { volt chrome bezel } & 70 \mathrm{c}\end{array}$

FUSEHOLDERS

FH1	3AG panel mount	90 c
FH2	1AG panel mount	90 c
FH3	3AG in line plastic	22 C
FH4	3AG chassis mount	22 C
FHS	3AG double chassis mount	39 C
FH6	3AG chassis mount, cover	22 C

LINEAR IC

Sound effects for your Video Ball Game

Since our Video Ball Game was published in the May 1976 issue, we have had many letters and enquiries from readers about possible sound and scoring circuits for the game. We have also had quite a few suggestions from other readers on how to accomplish this. In this article, we present an amalgamation of these ideas.

by DAVID EDWARDS

The basic game as published did not contain any provision for sound or scoring circuits. This was partly intentional, in order to keep the basic kit price as low as possible. However, as quite a few readers have demonstrated, a sound circuit may be implemented fairly easily with the addition of only a few extra devices.

Of course, such sound circuits do not use the sound system of the TV set, but instead use a separate speaker. This is because the addition of a sound carrier to the video modulator is much harder to achieve than the addition of a speaker and appropriate drive circuitry to the game itself.

The addition of scoring facilities is more difficult. Seven segment displays and the associated drive and counting circuitry could be added to the existing circuitry, and provided due regard was taken of the increased battery drain, would probably perform adequately. But because the player's attention is normally directed to the TV screen, the addition of this type of scoring may tend to be distracting.

It is generally regarded as more desirable to have the scores appear on the screen. There are two possible ways of
achieving this. Firstly, digital scores could be superimposed on the video for the game, to appear say in the top corners of the screen. In terms of the display circuitry alone, however, this method is quite complicated, and beyond the scope of a simple addition.

The second method is to have a bar graph type of display. This would be much simpler electronically, but would still necessitate fairly extensive modifications to the basic game circuitry.
But the real problem about trying to add on-screen scoring to our video game is that in the near future LSI video game chips will become readily available with these facilities inbuilt. These will supersede not only external sound and scoring circuits, but the whole ball game itself!

In the meantime, however, the Video Ball Game is still capable of providing hours of enjoyment for all the family, and provided it is simple, an add-on sound circuit can be worthwhile.

The add-on sound circuit we are presenting in this article is an amalgamation of our own ideas, and of those interested readers.

Circuits, comments and ideas were received from the following readers: M. Hillman, of North Epping, NSW; L.

Collins, of Arncliffe, NSW; D. Hainsworth, of the University of Queensland, St. Lucia, Qld; K. Bolton, Howrah, Tasmania.

The circuit uses a minimum of parts, and gives quite acceptable performance. Sounds are produced when the ball strikes either bat, and when the ball is served. Two different sounds are produced, one when the ball is struck by the left bat, and one when the ball is struck by the right bat.

Only four connections to the main PCB are required: two power supply leads, and two connections to the ball direction flipflop formed by gates 5c and 5d (refer to the diagram on page 39 of the May 1976 issue).

The horizontal direction of the ball is determined by the previously mentioned flipflop. Let us suppose that the ball is moving to the right. Point G, the output of gate 5 c will be low, and point H , the output of gate 5 d will be high. Pins 1 and 13 of IC14 (the additional gate, numbered sequentially to correspond with the previous system) will be held low by the 470 k resistors.

This will prevent the two osciliators formed by gates $14 a$ and $14 b$, and $14 d$ and 14 c from operating, so no sound will be produced by the speaker. This state of affairs will continue until the ball is deflected by the right bat

When this happens, point G will go high, and point H low. Point H going low will only cause gate 14a to remain held off, so that the associated oscillator will not operate. But when point G goes high, gate 14 d will be enabled for a short time, and during this period the oscillator will function, causing the speaker, controlled by the transistor, to emit sounds.

The duration of the sound is determined by the time constant of the resistor-capacitor combination. With the values as shown, the sound will last for approximately $1 / 30$ th of a second.

This oscillator has an approximate
LEFT: This is the circuit diagram for the sound effects module. Only four leads connect to the main PCB.
frequency of 1 kHz , and the resulting sound can be described as a "ping". In a similar fashion, the second oscillator is gated on when the ball strikes the left bat, but this time, since the oscillator frequency is lower, a "pong" is produced.

These sounds will also be produced when the ball is served, since serving also toggles the ball the direction flip-flop. A diode OR gate is used to feed the oscillator outputs to the transistor base, to prevent interaction between the oscillators. Speaker current is limited by the 56 ohm resistor. Higher impedance speakers can be used without changes, although lower impedance ones can not. Louder sounds will be produced by higher impedance speakers, and this may be advantageous in some cases.

Supply decoupling is provided by the 100uF/1k capacitor/resistor combination. This prevents the speaker current from modulating the main supply rail, and hence visibly affecting the TV picture.

Construction should present no ditficulties, as there is a minimum of parts. We suggest that the circuit be constructed on a small piece of Veroboard, with colour coded hookup wire used to connect the main circuit board. The +9 V supply can be obtained from point B (see the PCB overlay on page 41 of the May 1976 issue), and an earth connection at point A.

Points G and H on the circuit diagram (page 39) correspond to points H and D on the PCB overlay (page 41).
The speaker can be mounted behind a group of holes drilled in the top cover (there is no room left on the base of the chassis), with long enough leads to enable the cover to be easily removed for battery replacement. Mount the Vero board on one of the speaker mounting screws.

The usual precautions reguarding CMOS devices should be observed during construction, with the 74 COO mounted in a socket if you are at all doubtful of your capabilities. Testing simply consists of trying out the game.

Before concluding, some of the comments made by reader Mr D. W. Hainsworth of the University of Queensland may be of help to other readers. His first suggestion is that a 330 k resistor inserted into the link between the emitters of TR1 and TR2 will give an improvement in the dynamics of the ball/bat collision, while still allowing an adequate amount of slice to be imparted to the ball. This overcomes a slight defect caused by offsets in the bat vertical velocity differentiators, gates 6a and 6b.

He also suggests that flicker of the top and bottom lines can be reduced by loosely coupling the horizontal and vertical timebase oscillators. This can be done by connecting a 100 k resistor between the two sync outputs.

A number of readers have written to ask about the proportions of the court and its various elements. The ball, bat

ABOVE: This photograph shows how the speaker is mounted in the lid of the main chassis.

BELOW: The way in which the Veroboard assembly is held by one of the mounting screws is shown in this photograph.

PARTS LIST

1 74C00 quad NAND gate

3 1N914 silicon diodes
1 BC109, BC549 silicon NPN transistor
1 100uF 10 VW electrolytic capacitor
20.1 uF plastic capacitors

2 0.01uF plastic capacitors
2 470k, 1 100k, 1 47k, 1 10k, 1 1k, 1 56 ohm $1 / 2 \mathrm{~W}$ resistors
1 miniature 8 ohm speaker (higher impedances can be used it desired)
1 piece Veroboard

Solder, hookup wire, machine screws, nuts, washers
Note: Resistor wattage ratings and capacitor voltage ratings, where given, are those for our prototype. Components with higher ratings may generally be used providing they are physically compatible. Components with lower ratings may also be used in some cases, providing the ratings are not exceeded.

Tor or the touching account of how a little Aussie survived among the multi-nationals \& cut-price merchants
 . 7 years of steady growth proves it!

In the space of 7 short years, Dick Smith Electronics has grown to the point where it is one of Australia's leading suppliers of electronic components and equipment to the amateur $\&$ enthusias This would not be possible without the tremendous patronage that you - our customers have given us. For this we say "Thank You"

It's our seventh birthday this month and for the first time, we have shops interstate.
To celebrate this event and to show our gratitude, we thought you might like to read a little about the history of our company.
The best place to start any story is at the beginning; and the beginning of this company was a small car radio installation business in Neutral Bay, Sydney. The time: $1969 \ldots$

A youthful Dick Smith (age 24) sold his boat for about $\$ 1000$ and used this money to 'get the show on the road'. The business lasted seven months at Neutral Bay, then moved to the present site of our Gore Hill store in 1970.

Business thrived as a result of some of the crazy antics that Dick got up to for publicity. One remembers an advertisement he ran once in which the copy made absolutely no sense at all - he got a tremendous response. On another occasion Dick managed to procure a pogo-stick powered by a one-cylinder petrol engine. Interest in this gadget was so great that he demonstrated it several times on television.

Apart from the publicity, a lot of hard work was involved and at th is stage there were several technicians and car radio installers working for the company. By now Dick's great ambition in life was to earn $\$ 200$ per week. Nowadays many people in his company earn this - "Too many!" we hear him mumbling.
In 1972 Dick saw the tremendous potential in selling components, tools and equipment to the hobbyist. Not knowing much about this game, he hired a couple of guys and rented a small shop, and started trading.
The potential was there, and there was definitely a need for a dependable supplier of electronics components to the hobbyist. Dick made a decision. He decided to sell the car radio side of the business, and 'jump out of the frying pan into the fire'

The car radio premises at Gore Hill was changed into a shop - a far cry from the one we know today. It was not long before people
began to notice the good service from Dick Smith's and the business grew rapidly. This continued through 1973 when plans were made to expand this store as it was becoming impossible to get through the door! The shopfitting was completed quickly and the new shop was operating successfully early in 1974. Then Dick thought: "It's time we had a catalog" SO the first catalog was produced; all 42 pages of it and, compared to the latest effort, really quite crude. It was, however, very successful and the mail order section of the company grew rapidly. It soon became the most important part of the company operation.
Running a company placed heavy demands on a person and it became necessary to continually look for competent people to work for us. In this respect we have been very lucky, but even in today's hard times it is very difficult to get good staff.

By mid-1974, the Bankstown property was purchased to serve the needs of enthusiasts in Sydney's southern and western suburbs. Bankstown was a success right from the start, and continues to be so. Continual improvement to this establishment has ensured this success.
And we continued to produce catalogs, getting bigger and better all the time.
Business was booming, despite the gloomy clouds on the country's economic horizon. 1975 saw great changes and expansion.

Dick now had the size to begin importing his own gear. This is one of the reasons we have been able to hold many lines down to the same prices for over two years. Importing really began in earnest. Now over 80% of products sold by us are also directly imported by us.

The new Melbourne store, in busy Richmond. His rent has increased slightly: It's now almost $\$ 2000$ per week, and he RUNS 5 stores!

This has been extremely important to us as we have control over quality, we get to see new products quickly and also we can negotiate with the factories for the best possible prices. Dick and other staff go overseas regularly to ensure continuity of supply and to make sure that possible problems are eliminated before they start At the same time, we buy nearly $\$ 1$ million worth of goods annually from the Aust. electronics industry.
In April 1975 we released our 5 th catalog and opened our York Street store. Both were immediate successes. The same pattern of continual improvement at York St has resulted in regular patronage from our city customers.

By June we were bursting at the seams with stock - especially stock that was imported. At that time all inventory was kept in the roof over our Gore Hill store!
We took the daring step of moving our stock and mail order department into a warehouse about 1 km away from our Gore Hill store.
When we first saw this warehouse, 4000 sq ft of it and brand new, we never thought we would see the day when it was full. Five months later - it was full.
There was nowhere to go except out the front door so we decided to move again. This time to our present head office and warehouse in Carlotta Street, Artarmon. still about 1 km away from Gore Hill. Again, when we saw this place empty, 27000 so ft this time, we thought we would never fill it. The walls seem to be closing in on us these days, though.

CONTINUED 2 pages over
Not forgetting Queensland: here is the
Buranda store. It's part of a store and
dealer network across Australia.

April this year saw our latest and most

 successful catalog. We were swamped by an absolutely staggering response and at one stage, our famous 24 hour mail order service was 4 weeks behind! At the same time, we began to experience an international component shortage (and we still are, in fact). Many customers gained the impression that our service was failing. Well it was ... but there was precious little we could do about it. Orders placed 6 and 8 months before were not being delivered to us.Also this year we were successful in becoming the Australian agent for Midland Communication Equipment. We were very lucky to be appointed, as we belleve that Midland CB communication gear is the finest in the world.

Because we had a tremendous number of enquiries from people who wanted to purch ase wholesale quantities from us, we decided to establish a wholesaling facility. The program of appointing 'Dick Smith' and 'Midland' dealers throughout the land is proving to be extremely successful. We are always on the lookout for good potential dealers - write to us if you are interested.

Earller this year we installed an IBM System 32 Computer with the revolutionary hard-goods package for electronic distributors. This machine has virtually taken over stock inventory and control, with humans standing by to carry out orders! As well as being able to give instant stocks of any item from the $3500+$ that we carry, the machine can give sales breakdowns through our various stores (to see which one Dick waves the stick at) sales over any particular period (EG immediately after an advertisement has run) and tell us which items are selling and which items are not (thus enabling buying of essential or fast-moving items to be planned with a high degree of accuracy - it's just a pity that our computer cannot control the suppliers, too!) plus a veritable mountain of analyses, breakdowns and projections.
(It will also do the mundane things one would normally expect of a computer, like invoicing, credit control, profit \& loss, etc. etc)

If Dick is missing from his office, all employees know where to find him: He's in the computer room, extracting some terribly important and useful information like how many miles of insulation we sold to the Hutt River Province last month

> "Just making sure the computer is still working properly . .."

Which brings us up to now. Brisbane store opened in mid-September; Melbourne a couple of weeks later. Both appear to be as successful as our other ventures.
We now have many 'Dick Smith' \& 'Midland' dealers throughout Australia, some of whom are in the most incredible places!

It's a full-time job just keeping track of what's going on here now: 90 employees; $\$ 5$ million annual turnover; AND FULLY AUSTRALIAN OWNED - a fact we are most proud of!

We still like to think that we are a small company, though. Dick fiddles at home (as'a matter of fact, he has just finished making up a Twin 25 Amplifier, which is his pride and joy!). Most of the people who work here are "dabblers" so if there is a problem with a kit we are generally the first to know about it. Usually you never do, because we can rectify it before the kit is put on sale.

Last Christmas, Dick received a present: and he hasn't stopped playing with it yet. No, it wasn't a train set or even a busy builder; it was a $\$ 50,000$ IBM System 32 Computer. It is shown here with the lovely Dawn who is giving it its morning tea.

Where do we go from here?

Good question... A lot depends on you, of course. We are anxious to increase our dealer network throughout Australia. Maybe you are interested. If so, write to Gary Joh.nston in Sydney for details.

> Once again, thank you for your patronage. If you feel that we are letting you down in some way or other, write and tell us about it. How are we to know otherwise?

DICK SMITH ELECTRONICS GROUP
 Mail Orders: Po. Box 747. Cowe Nest. N. . . w. 2065. N.S.W. Bronches: Gors hll-162 padif: Highwoy 439 5311.

 SYDNEY-125 York St.. 29 1126. BANKSTOWN - 361 Hume Hwy.. 7096600. Interstate Branches: vic. - 166 Logon Rd. Purondo. 3916233 . VIC. - 656 Bridge Rd., Richmond. 421614.

All these goodies were on the way to YOU a few weeks ago. This is just a small part of our mail order department (sorry girls, that's MAIL, not MALE). Much of the stock sold by Dick Smith passes through this department.

So that's a little about us. We hope you didn't find it boring. It's never boring working here, anyway. Incidentally, speaking of work, perhaps you would like to. For us, we mean. We are continually on the lookout for guys and girls who are dynamic and want to work for a young, growing company. Average age is 21-1/2 - beat that! But you must know something about electronics. Just contact us by 'phone or letter. It will get to the right person here.

Make a novel door chime with a simple

Proximity Switch

Using only three low cost semiconductors, this simple project will have sure appeal to beginners and old hands aiike. Just bring your hand close to the sensor plate, and the circuit will cause a lamp to light or sound a buzzer.

by LEO SIMPSON

The simple proximity switch to be described here has several intriguing uses around the home. It also has possible application in the retail trade, for sales promotions.
Around the home, it may be used as a novel door chime unit, or as a "surprise" gimmick for parties. Imagine the fun if a bell were to ring whenever a guest reaches into the bowl of sweets, or sits down in that unoccupied armchair!

Some of the ideas for sales promotions could be as follows. A sensor plate could be placed behind a shop window. Window shoppers could then trigger the circuit. It might be used to turn on lights over display stands, actuate a slide projector or an endless loop cassette player. It could also be used as an attention alarm on shop counters. In fact, this unit is almost identical to that used on the counter of the former editorial office of "Electronics Australia".
An alternative use on a counter or display stand would be to actuate warning signs. A sign reading "Please do not touch" could thus light up or sound a buzzer when a person disobeyed. Museums could use this device by the dozen!

Total cost of the project is very low at $\$ 15$ or less, including all hardware and metalwork.

The circuit is very similar to that teatured in June 1971 of "Electronics Australia" (File No $2 / \mathrm{MS} / 21$). The major difference is that the new circuit employs a lower voltage transformer, which is considerably cheaper and more readily available. As a result the new circuit may not be as sensitive as the original, but it should still be quite sensitive enough for all likely applications.

The semiconductors complement is two SCR devices and one zener diode. Before describing the circuit operation, let us describe the behaviour of these three devices.

A zener diode can be regarded as a normal diode with a safe reverse breakdown characteristic. With voltage applied in the forward direction, it has a
conduction voltage of around 0.6 V or more, just like any silicon diode. With voltage applied in the reverse direction, the zener is non-conducting up to a specified voltage. Exceeding this voltage by a small margin causes reverse breakdown with a low dynamic resistance. Limiting resistors must be placed in the circuit to prevent over dissipation in the diode.

Conventional uses of the zener diode are voltage limiting (or waveform clipping) and in regulated voltage sources.

The two SCR devices are a conventional SCR and a complementary or "anode gate" SCR (also known as a
programmable unijunction transistor). An alternative device to the complementary SCR is the silicon controlled switch or SCS.

The SCR is one of the family of semiconductor devices known as thyristors. It can be regarded as a special type of recitifier diode which conducts in one direction only. What sets it apart from a normal diode is that when it is forwardbaised, it will not conduct until it is triggered into doing so by a small positive voltage applied between its third "gate" electrode and the cathode. With a sine wave voltage applied between anode and cathode, an SCR can be triggered into conduction at any instant during the positive half-cycles. At the end of each positive half-cycle, the SCR turns off as the voltage polarity reverses.
The complementary SCR, is very similar to an SCR, except that it has a gate electrode which is associated with the anode rather than with the cathode. The silicon controlled switch or SCS is virtually a combination of the two, having both an "anode gate" and a "cathode

gate ${ }^{\prime \prime}$. Either can initiate conduction.
Referring now to the circuit diagram, a power transformer with a centretapped 12.6 V secondary winding is required. The complementary SCR is connected across the whole winding, in series with 6.8 k and 1 k resistors. The cathode side of the winding is connected to earth (chassis). Note that when an SCS is used, the cathode gate is not connected.
Now for the complementary SCR to switch on during positive half-cycles of the AC waveform, the anode gate must be made negative with respect to the anode. If a person touches or brings their hand close to the sensor plate which is connected to the gate via the look resistor, triggering occurs because of the increase in capacitance between the gate and earth. The increase in capacitance causes the phase lag of the sinusoidal voltage appearing at the gate to increase with respect to the voltage at the anode, until the voltage difference between the anode and anode gate is sufficient to cause triggering.
Because a zener diode with a 10 V rating is connected from the anode of the complementary SCR to earth, the voltage appearing at the anode is a clipped, halfwave rectified sine wave with a peak amplitude of 10 V .

This means that the phase shift between anode and anode-gate voltages can only cause the anode gate voltage to drop below the anode during that period in the half-cycle before the zener diode begins to clip the waveform. Once the voltage at the anode is limited to 10 volts, there is little chance of the anode gate voltage being reduced below this figure.
So because of the zener diode, triggering produced by gate circuit capacitance always tends to occur early in positive half cycle, giving the circuit an all-ornothing switching characteristic.

When the complementary SCR fires, it applies a proportion of the zener-diodeclipped voltage across the 1 k resistor. This, in turn, forward biases the gate of the SCR to trigger it into conduction.
Since the SCR rectifies the 50 Hz sine applied to it, the voltage applied to the SCR load needs to be filtered to obtain DC. This is achieved by the 470 uF capacitor across the load.
An interesting feature of the circuit now becomes apparent. Normally, an SCR in a circuit such as this would be capable of varying the power to the load. However, since the rectified AC to the load is filtered and since the circuit triggering can only occur early in each positive half cycle, the load voltage is essentially independent of sensor capacitance, once it is sufficient to cause triggering.
If the zener diode was not included in the triggering circuit, both the complementary SCR and the conventional SCR could be triggered at any instant during the positive half-cycles of the 50 Hz AC

2/MS/-
Only three economy semiconductors are used in this simple circuit.

This diagram and the photo below show how to assemble the unit.

input. This would mean that the capacitance of the sensor plate could vary the DC voltage applied to the load-giving rather erratic operation.

The load used in our prototype is a neat little solid-state buzzer available
from Dick Smith Electronics Pty Ltd. It is considerably cheaper than a Sonalert although it is not as loud. The load could alternatively be a small relay.

Construction of the proximity switch is straightforward and non-critical in terms

PROXIMITY SWITCH

of layout．We housed the prototype in a compact aluminium mini－box measur－ ing $104 \times 74 \times 53 \mathrm{~mm}$ ．

Since the circuit and the suggested buzzer have a current drain of less than 20 milliamps，almost any 12.6 V trans－ former may be pressed into service．We used a small 2．5VA type，DSE 2851， supplied by Dick Smith Electronics Piy Ltd．Equivalent types are Ferguson PF 2851 and A \＆R 6474．If buzzers with higher current than about 150 mA are used a higher rated transformer will be required．Maximum rating of the SCR specified in the half－wave mode is about 700 milliamps．（No heatsink and at room temperatures）．

If the load current is more than about 50 milliamps，the filter capacitor will have be increased accordingly，to obtain satis－

This is the buzzer，twice actual size．

factory operation．

All the small circuit components are mounted on an eight－lug length of minia－ ture tagboard．The SCR is soldered directly into circuit and no heatsink is required．If an SCS such as the BRY39 is used，the cathode lead can be clipped short or sleeved to prevent it touching other components and possibly preju－ dicing the circuit operation．
The buzzer may be attached to the case by small self－tapping screws，or with epoxy adhesive．

Note that the case and circuit must be earthed via the mains cord，otherwise the device will not work．The lead to the sen－ sor plate runs out via small hole in the case．Shielded cable must not be used， otherwise cable capacitance may turn the unit on continuously．Nor should the sensor lead be too long，otherwise stray capacitance will be too high．

The three－core mains cord should be passed through a grommetted hole in the end of the case and anchored with a cord clamp．Terminate the earth conductor to a solder lug on the case．Terminate the active and neutral conductors to a two－ way insulated terminal block．Connec－ tions to the transformer primary are then made via the terminal block．
A sensitivity control may be added by
connecting a 5 megohm pot，wired as a variable resistance，in series with the sen－ sor lead．This will serve to make the unit less sensitive，if need be．

When the unit is complete and ready for installation choose a location which requires a minimum length of lead to the sensor plate．The sensor plate should be kept reasonably far away from earthed metal objects（ 30 cm should be ade－ quate）otherwise sensitivity may be compromised．The sensor plate may be concealed or visible，but it should be at least as large as a male hand（say $150 \times$ 200 mm ）．

Note that the sensor plate may be touched directly．There is no danger of electric shock，due to the low circuit vol－ tage and high values of resistance in the sensor circuit．

PROXIMITY SWITCH PARTS LIST

1 aluminium mini－box， $104 \times 74 \times$ 53 mm
19 V buzzer（available from Dick Smith Electronics Pty Ltd）
1 C106Y1 SCR
12 N6027 complementary SCR（or PUT）or BRY39 SCS
1 BZX79／C10 zener diode
1 470uF／25VW pigtail electrolytic capacitor
$1 \times 10 \mathrm{M}, 1 \times 100 \mathrm{k}, 1 \times 6.8 \mathrm{k}, 1 \times 1 \mathrm{k}(1 / 4$ or $1 / 2 \mathrm{~W}$ resistors）．
1 2－way insulated terminal strip
1 solder lug
1 cable clamp
1 grommet
Three－core mains flex，three－pin mains plug，connecting wire， spaghetti sleeving，screws，nuts， washers，solder．

Note：Capacitors and resistors with higher ratings may be used if physically compatible．Do not use higher rated SCRs，otherwise trigger－ ing will be unreliable．

A few checks can be made on the cir－ cuit if it does not work．The zener diode may be checked with a multimeter，with the power applied．The voltage reading across the zener，with the circuit untrig－ gered，will be about 3.8 V ．The SCR can be checked by disconnecting the gate and connecting it to the 12.6 V line via 1 k resistor．This should apply voltage to the load．If the SCR is okay，the complemen－ tary SCR can be checked by connecting the sensor lead directly to the case．This should also apply voltage to the load．©
printed circuib
－Accurately machine printed／etched
－Phenolic \＆fibreglass－gold／un plated
－Special manulacturers packs of 10
－EA．R \＆H．ET Philips．Mullard available
－Specials to your drawing
－POSTAGE small 60c large $\$ 1.00$

	1		4		1
				16 M19	350
ET711号	2.50	E17110	600	E1441	280
ET544	2.50	16PCS	4401	76EX10	280
ET602	B． 50	ET446	2.50	ET533A／C	3.50
ET446	2.50	ETS53C	2.00	ET533A	2.50
E111	7.50	ET5438	2.50	ET543A	2.50
ET445	250	ET241	280	ET7800	250
ET780A	300	ET541	2.50	ET444	250
76547	2.50	76M17	2.50	16LM5	250
16S56	300	16SW4	2.00	76月4	2.50
$76 \mathrm{M5}$	2.50	16VG5	5.00	16E04	3.00
76VG5	5.00	16M5	2.50	76R4	250
ET 108	2.50	EtisaA	450	ET 1408	350
ET514	2.50	ET101A	250	ET1078	250
ET706	2.50	ET130	250	76月13	300
7812	2.50	18403	250	16G3	250
16E02	550	15SWILA／B9	400	DRS－ACI	400
15PC12	2.50	EATEF 1	280	ET534	2.50
ET514	2.50	ET129	2.50	E128	2.50
［1439	300	ET420G	250	ET1238	250
ET123A	250	ET119	260	15F2	250
75111	250	ET438	2.50	15×12	250
15F12	280	ET1124	250	E1122	3.00
75Cl9	250	15PC12	250	ET121	250
ET120	250	F1118	2.50	ETIITA－8	280
ET104	250	E1500	2.50	15119	250
75R7	300	15CD 7	250	15FMS	250
157U10	350	75FE5	250	157U8	500
157U9	350	ET533A－1	250	ET440	450
ET400	250	15w3	250	ET532	250
ET5298	330	ET529A	450	ET102	250
ETEOIR	2.60	ETEO1P	250	EASRT	300
T5EME	250	15SD4	250	15401	250
ETA14E	250	ET41402	3.20	ET430	250
ET314	250	ET116	250	Eas	300
Eax1	300	ET520	250	ET312	300
1501	250	140×120	3.50	14MX12C	260
14MX128	320	14Max12A	280	ET101	250
ET521	250	ET428	280	［131］	250
ET530	2.50	ET421	250	ET428	250
14mxa	250	14EM9	250	14Tu：	250
ET429	250	fax	500	E810t	500
EAP	500	EAM	500	EAD	500
EAA	500	Eat	500	EAF	800
ESC	800	74C9	420	1408	400
ET424	2.50	E7311	250	ET526	250
ETII	250	14SA5	400	ET601m	250
ETSOIL	2.50	ET422	330	7453	250
ET601」	300	［1423	250	ET420E	330
ET5218	250	ET601H	250	E7601G	280
1421	250	74MPI	250	13127	280
ET6010	250	ET801C	280	ET420C	250
ET4200	250	ET4208	280	ET420A	250
［T524	280	ETEOTA	330	ET801N	390
E7601F	280	ET601E	390	ET801A	3.30
$13 \mathrm{TU11}$	280	$13 P 11$	2.80	ET520A 8	440
13C12	490	138AS	280	ETII3	310
ET419	250	ET218	350	ET417	250
E1309	280	E14140	250	137 T 1	280
1356	250	ET521	390	ET213	250
ET416	330	1301	250	ET518	250
133C	280	1311	280	ET414C	200
ET4141	280	ET414A	2.10	12M12	280
125A9M	2.0	［1413	210	ET034A	310
12511	280	12G7	280	12110	250
12111	330	ET037．40	600	12SA10	310
12C8	280	ET029	250	12510	210
12月9	210	12SAS	280	ET033	330
72Mx6	310	1213	3.30	ET026	280
121F6	250	l1as	250	12P3	280
12月2	280	12120	250	ET02］	2.80
ET021	280	12T2A－C	440	13v11	330
IJVIA	8.60	12SA1	330	$71 C 12$	440
ETO19	280	ET018	2.0	［017	280

ALL SILICON 30／60w PA
PORTABLE AMPLIFIER
 inomV 15 ohm outpur No 7630 Also 125． 250. 500 ohm output No 763A All 370 each．For $24 U V$ operation \＄33 extra．Freight collect
COILS and IF＇s All 3250 en plus posi 60 C RF CHOKES Plus post 80 c

381 AIR 25 mh 50 ma －Pye 70 c
381 IRON 10 uh to 1.000 un 25 ma 70 c
FILTERS $\quad 2 T$ Lina filet $2 \pm m p: 14$

MAIL cheque or money order （add postage）direct to：－

Who said we can't hear a 2 dB change?

Hifi engineers and enthusiasts can debate for hours the "colouration" imparted to reproduced sound by the more subtle peculiarities of amplifiers and transducers. They find it much more difficult, however, to identify positively and to put figures to the effects which they are talking about, and which allegedly compromise the sound quality as heard.

The simpler aspects of the problem are intrinsically technical, having to do with the behaviour of physical devices and electrical circuits. While still perhaps subtle and elusive, it is not unreasonable to believe that such phenomena can ultimately be identified by physical meansincluding the recent technique of studying transducer behaviour with the aid of a laser beam.

What is much more difficult-and likely to remain so-is the problem of verifying and quantifying what people say they hear. If Joe Bloggs insists that he is conscious of a certain effect which is compromising his enjoyment of reproduced sound, it is very difficult to establish whether he is deluding himself, or is genuine, or is magnifying an effect out of all proportion to its real significance.
And, lest it appear that I am having a shot at Joe Bloggs, Fred Nertz, or whoever, let it be understood that we all share similar subjective propensities. We all find it difficult to admit to not noticing what others profess to perceive. We all "have ourselves on" to some degree. We can all become obsessed with something that our peers feel should be ignored. We can all gain an ego kick from taking a stand as the ultimate perfectionist, no matter how unrealistic that stand might be.
It's all fair game in a subjective way but it does make things difficult for the engineer, enthusiast-or writer-who is trying to be objective!

What triggered this line of thinking was a letter to hand from a reader in Geelong, Victoria, who has this to say:

Dear Sir,

Your mention in the November issue of loudspeaker design involving lasers prompted me to set down some of my own findings about sound colouration.

Hifi standards such as DIN allow for frequency response variations within a $5 d B$ window. Audio literature commonly states that variations of less than $3 d B$ are not normally noticed by the average (?) listener. I am dubious about such
figures.

I am the lucky owner of a Nakamichi 700 cassette recorder and the beforeafter monitoring facility really opened my eyes about the different frequency response of cassette tapes, even within one brand, and the "colouration" this can produce.
As I like to have all may cassettes sound as near as possible to the original, I use a IVC Nivico SEA100 in the input lead to the recorder. The SEA100 allows for reasonably accurate tone control at $60 \mathrm{~Hz}, 250 \mathrm{~Hz}, 1000 \mathrm{~Hz}, 5000 \mathrm{~Hz}$ and $15,000 \mathrm{~Hz}$, the controls being calibrated in $d B$, and fairly accurate at the nominated frequencies.
Using white noise as a reference signal, not only I but also two young people could notice colouration quite strongly, even though the required correction, might be less than 2dB. This applies particularly to the frequencies between 1000 Hz and 5000 Hz , at least as far as my equipment will tell.

It would be interesting if you could make these same $A-B$ tests, not using a recorder, but with more accurate filters and frequency response measuring gear.
Perhaps the human ear is more capable than we suspect of assessing deviations from linear response. Perhaps even the overall volume is critical.

D.H. (Geelong, Vic)

In defence of the figures which D.H. queries, I think we should repeat what they are meant to convey-particularly as we have been aware of some confusion, of late.
The human ear responds to sound pressure, not in a linear fashion, but logarithmically. This isn't due to some contrary quirk of nature but is, in fact, the very property that allows us to perceive very faint sounds, while still being able to cope with the enormous sound power of a jetplane or a grand organ in the confined space of an auditorium.

It's this same logarithmic quality which tends to upset some of our thinking about amplifier power and loudness. To take an often-repeated situation,
manufacturer A brings out an amplifier rated at 20 watts. Not to be outdone. manufacturer B releases one delivering 25 watts and that may impress the buyers as intended; after all, 5 watts of power sounds quite loud on its own and, added to 20 watts, it ought to make quite a noise. That is, until manufacturer C comes up with a 40 watt amplifier-twice as powerful, therefore twice as loud!
Wrong, because such a reaction assumes that our response to changes in loudness level is linear, which it isn't!

To help order their thinking, engineers long ago adopted the concept of the decibel, which is 10 times the logarithm of the power ratio. For a power increase from 20 to 25 watts, the ratio is 1.25 . The \log of 1.25 is .0969 , so that the increment expressed in decibels is .969 or near enough to 1 dB .

An increase from 20 to 40 watts ${ }^{\circ}$ represents a power ratio of 2 , a \log of .3010 and an increment expressed in decibels of 3 .

Lengthy subjective tests have indicated that the average listener will not notice an increase in the loudness of a tone by less than 2 dB , provided he/she is not alerted to the change by a switching transient. A change of 3 dB in loudness is noticeable but certainly not obvious. To achieve a subjective reaction that the intensity of a sound has been doubled (or halved) an increment of 10 dB is necessary, representing a power ratio of 10 times, up or down.
Which, of course, renders rather pointless undue preoccupation with power increments of the order of those mentioned earlier. For an increase from 20 to 25 watts, representing 1 dB of change, the direct audible result would be virtually nil. Even doubling the power, from 20 to 40 watts would represent a just perceptible increase in potential loudness. To actually double the loudness, in the subjective sense, it would be necessary to bump the power rating from 20 to 200

watts!

This should not be construed as an argument against providing increased power output, where it can be obtained conveniently, because increased power does help the amplifier cope better with transients above the average power level. What the decibels notation does accomplish is to bring our expectations more in line with our sense of hearing.

The concept of 3 dB as a barely perceptible change in loudness has been widely accepted for a long time and leads to the common approximation that a piece of equipment can be considered to be "flat", provided the frequency response is within a 3 dB tolerance. We must be careful of our terminology, however.
"Within 3 dB " can be taken two ways. One is that the discrepancy between the maximum and minimum points on the response curve is not greater than 3 dB , The other interpretation is that neither the peaks nor the troughs in the curve
diverge by more than 3 dB from a stated or median reference level; this leaves open the possibility, of course, that the discrepancy between maximum and minimum response points could be up to 6 dB .

In his letter, D.H. refers to a DIN hifi standard, accepting a 5 dB "window", indicating a maximum discrepancy of 5 dB between the maximum and minimum response points. It would be equivalent to a maximum deviation of plus and minus 2.5 dB from a median reference.

Having in mind the likely response curves of loudspeakers in particular, any system which could offer a response window of 5 dB overall should sound very impressive indeed. I would venture to suggest that, if they did not suffer other limitations or peculiarities, any number of such systems would be accepted as top quality by a hifi enthusiast, provided they were heard in isolation.

Why the proviso?
Because I am inclined to go along with D.H's contention that the ear is a lot more sensitive than we may suspect to differences in response curves, when direct comparisons are possible, as in A-B testing.
Earlier in the year, we were involved in quite a lot of listening tests with loudspeaker systems, particularly leading up to the development of our own 3-41L design, and the Philips/Elcoma System 14 and System 16 projects. It involved A-B listening tests between systems, and between variations of the systems. As each was guided towards what we felt was optimum, we became progressively more satisfied with their respective performances, and prepared to give them our enthusiastic endorsement.

But, while they gained that endorsement, and while they sounded a lot more consistent on most program material than the usual groups of showroom speakers, there was no denying the differences on other program material and on broadband noise. And this difference remained, even with variations which produced very similar looking response curves.
I am well aware, of course, that there is a lot more to loudspeaker sound than mere frequency response. What 1 am saying is that differences which might not be at all evident in separate listening experiences can become startlingly obvious under direct A-B comparison.
I agree also with D.H. that the kind of effect we call "colouration" is most obviously connected with the mid frequency range-hence the vital importance of the mid frequency crossover characteristics or the mid frequency driver, where one is used. I had another very practical illustration of this recently, this time in connection with magnetic cartridges.

A hifi acquaintance was complaining rather bitterly about the dubious quality of many modern discs, on the grounds of vestigial noise, and distortion, and
overall balance. As a reviewer, I listen to a fair number of new releases-without having cause to complain anything like as much. So I decided to follow it up by comparing his record player with my own.
As it happened, I had available a number of discs and the equivalent 1:1 copies on cassette from the working masters, as mentioned in our story on page 14 of the last issue. We therefore had the potential not only to compare cartridges playing the disc, but to compare each with a very close cassette copy of the working master, made on a Nakamichi deck.

Without labouring the point, the discs did sound very ordinary, by hifi standards, on my friend's player. They sounded much better-normal, to my ears-on a couple of my own cartridges which I had on hand, a Shure V15 and an Empire 1000 ZE. Indeed, it was very difficult to pick any difference between either of the above mentioned cartridges, or between them and the high quality cassette. The problem was obviously not the discs but my friend's cartridge.

The cartridge was supposed to be a real connoisseur's job (adjective, not brand name); but it had enough wrong in its middle register to make good records sound ordinary, ordinary records sound poor, and poor records sound worse!

Again, we may not be talking about mere frequency response, but the point emerges that A-B comparisons can highlight differences that would be much less obvious and much more elusive in separate listening situations.
What D.H. is suggesting is that, under A-B conditions, and on the basis of frequency response variations only, keen ears can pick differences in colouration resulting from discrepancies of 2 dB or even less. Variations much greater than this will certainly be evident between top quality tapes of different brands, on different machines; even between different batches of the same tape.
D.H. invites us to follow up his observations ourselves but I frankly can't see much hope of so doing for the time being. However, others may like to make their own observations.

But there are just a couple of points worth keeping in mind. Let's say we agree that the ear can pick differences in colouration due to a frequency deviation of 2 dB or less; how do we discover which is the least "coloured" version of the two we are comparing? Secondly, if two versions are so similar that we can only pick the difference under A-B conditions, is it really all that important which one we listen to in isolation?

If the difference was a matter of distortion or noise level, evident only from an A-B test, one would logically pick the better of the two. But pure audio "colouration"? It has similar subtle connotations to the colour of "white" on a TV screen-without the availability of a reference standard!

Only $1.15 / 16^{\prime \prime} H \times 5-3 / 16^{\prime \prime} W \times 6.13 / 16^{\prime \prime} D$ 5 WATTS
6 CHANNELS $\quad \$ 139.50$ (Crystals Extra)
The latest in the famous LAFAYETTE Micro series the MICRO 66 embodies the versatility, reliability and periormance which have made LAFAYETTE Tamous inroughout the world in 27 MHz communications With an exra sensitive receiver of better than luV for $10 d b \mathrm{~S}$-10-N ratio. Range-Boost modulation circuitry, a built-in speaker plus push-button selected external speaker-microphone (supplied), the MICRO 66 is ideal for Boats or Base Station operation. Operates from 12 V DC or 240 V AC with optional Base Station Power Suoply

5 WATTS
12 CHANNELS

DYNA-COM 12A
\$139.50 (Crystals Extra)

A powertul 5-Watts input power in a hand-held transceiver! Excellen sensitivity and selectivity. Rug gedly designed for extra reliable performance this high-power walkie-talkie operates from internal batteries (rechargeable Ni-cad batteries available) or an external 12 V source

1 WATT 3 CHANNELS

Model HA-310
$\$ 73.50$ (Incl. 27240 MHz)
1.000 's of LAFAYETTE HA. 310 walkie talkies in use in Australia. 100.000's throughout the world athest to their superior qualities A protessionally designed. sturdily constructed. commercial quality unit for top performance and long term reliability. Rechargeable Nicad batteries are available to suit

All above transceivers are P.M.G
Type Approved (Licence Required).
A LARGE RANGE OF ACCESSORIES IS AVAIL ABLE. ANTENNAS. CRYSTALS, CONNECTORS, ETC. PLEASE ENQUIRE FOR DETALLS

LAFAYETTE
 ELETROMLIS

div of Electron Tube Distributors P / L
94 ST. KILDA RD. ST. KILDA
VIC., 3182
Phone 946036

Why are customer complaints ignored?

Abstract

On many previous occasions I have related stories which emphasise the vast communication gap which often exists between customer and serviceman; a gap which can lead to gross misunderstanding and accusations of dishonesty, which reflect against the trade as a whole. My first story this month is just one more example of such situations.

The story concerns a lady who is a professional musician and who needed a good quality tape recorder to pursue her profession. She subsequently bought a fairly high priced semi-professional type machine with all the potential for first class performance, and which should have been more than adequate for her needs.
In fact, the machine turned out to be completely unsatisfactory right from the start. As a result, she had taken it back to the shop several times, only to be told there was nothing wrong with it. Subsequently, she took it to another audio store, only to be told the same thing.
Now this lady lives nowhere near my suburb, but she is a relative of a very good customer of mine. And it was while she was visiting my customer one day that she poured out the whole sad story. Basically, it seemed that the recorder had always distorted very badly and now it had failed completely.
And my customer-with more confidence in my ability than 1 might have myself-assured her that I would be able to fix it. And so the recorder suddenly appeared on my counter, with the story I have just recountered. Could I have a look at it and give her some idea of what was wrong if she called in on her way home that afternoon? I said I would see what I could do.

The reason for the complete failure turned out to be a broken microphone cord. That fixed, the recorder worked perfectly and, in fact, turned in a first class performance. So what was this story about distortion? Thoroughly suspicious by now, I decided to wait until the lady returned before delving any deeper.

When she called back I asked her to show me how she operated the recorder. Then the penny dropped. She immediately set the recording level control fully clockwise and spoke her little test piece into the microphone. Then she played it back-and demonstrated very effectively just how badly the machine distorted!

Apparently there had been no instructions with the machine and nobody, in spite of her repeated complaints, had bothered to instruct her, or even investigate whether she knew how to use the machine.

It never ceases to amaze me how such stupid situations are allowed to occur. Surely, when a customer complains and the dealer can find nothing wrong with the equipment, the most elementary common sense suggests that it is time to ask the customer to demonstrate the exact nature of the problem. Such a simple request would eliminate the great majority of dealer/customer misunderstandings which reflect so adversely on the trade as a whole. As far as that goes, the customer would be wise to insist on demonstrating that about which he is complaining; even the most casual shop assistant would find it hard to ignore a complaint when the evidence is right under his nose.
Not that I have any reason to complain "over this deal. On the contrary, I am the "white-haired boy" as far as this customer is concerned. Not only was she most profuse in her appreciation, but she phoned me a couple of days later to enquire whether I stocked tapes and accessories and to tell me how much pleasure she is now getting from the recorder. She has since become a very good customer and, who knows, one of these days she may want a colour TV set!

My next story concerns the now ubiquitous pocket calculator. A colleague, who already owns one of the so-called "scientific" versions, decided that one of the simpler versions would make a nice present for his wife, mainly to take some of the drudgery out of balancing the household cheque account.
After some searching he found what he felt was an ideal unit; small and light, it provided the normal four functions, plus percentage, a memory, and even,
square root-though this last feature was unlikely to get much use. And, since the price was also attractive, he promptly bought it.

His wife was delighted but, unfortunately, her joy was short-lived. She complained to her husband the next day that she had tried to use it total up her cheque butts, whereupon it had suddenly "gone all funny".
More precisely, it had started generating quite meaningless groups of numbers, having no bearing on the calculations under way, and which would change quite randomly every few seconds. At the same time all control via the input buttons was lost.

Naturally, her husband wanted to be shown but, as always, the problem refused to reveal itself. My colleague suggested that she leave it for the present, keep on using the device, and see if it occured again. The unit was under guarantee and he had no doubt that this would be honoured. On the other hand, he had to have something more tangible about which to complain.

For a while, the calculator seemed to behave itself. Then, one night while he was home, his wife was using it for a fairly prolonged series of calculations when it suddenly went berserk again. At first the fact that he had seen it first hand didn't seem to help much, except to dispel any lingering doubts he may have had as to his wife's sanity.

Then he realised that there was a clue. The actual behaviour meant nothing, but he realised that it had happened after the unit had been on for some time; a good ten minutes. He put it aside, let it rest for half an hour, then tried again. It worked perfectly, and kept on working for another ten minutes. Then, without warning, it went berserk again.

Leaving it switched on he hurried down to his workshop, opened the back, and connected a voltmeter across the battery. It was a $9 \mathrm{~V}, 216$ type as used in pocket radios. And the best it could deliver under load was 4.5 V .

Well, that seemed to be the answer. It was the battery which came with the unit, of Asian origin, and of doubtful age and history, The next morning he took the unit back to the dealer, and explained what happened. Without hesitation the dealer threw the old battery in the rubbish bin and gave him a new one with a local brand.

Unfortunately, his triumph was short lived. The next time his wife tried to carry out some prolonged calculations, exactly the same thing happened. This time, he not only checked the voltage, but also the current and was shocked to discover that, with a full set of digits up, the drain was 60 mA plus.

Now my colleague is no expert on batteries, but even he realised that this order of current drain is abnormally high for a battery of this size. The dealer was
equally shocked and lost no time in
checking another unit of the same brand, and a similar unit in another brand.

The same brand produced virtually identical figures; 67 mA with a full set of " 8 s " displayed. The alternative brand, on the other hand, needed only 25 mA for the same display. By now both the dealer and my colleague were distinctly worried; the dealer because he had sold quite a number of units which would most likely rebound, and my colleague because he seemed to have bought a pup, and as a present into the bargain.

Fortunately, the dealer assured him that he would stand by the deal in some way. If he fancied an alternative unit he would make a swap-and without too much haggling about any price difference.

But my colleague was puzzled. How come a unit of this kind had been marketed if, as it appeared, it was so poorly designed that the prescribed battery was inadequate?

It was at this point that I became involved in the story, in a minor way. My colleague had related the story to me when I happened to receive a call from a friend who is well placed technically in one of our local battery factories. He was in need of a small favour and, having done what I could to help him, I didn't hesitate to seek a quid pro quo.

I briefly outlined the story and then asked him what he thought about that order of current drain from such a small battery.
"Was it", he enquired, "such-and-such a brand calculator?"
"Yes it was", I replied, "why, do you know them?"
"Yes", he answered, "we have already had several complaints about them. And what you suggest is right. This type of battery was never intended to deliver that kind of current for any length of time. It just won't stand up to it."

He went on to suggest that this particular calculator design was probably the result of an attempt to "jump on the bandwaggon" of current low price calculators. In addition, calculators using the 216 type battery were becoming increasingly popular overseas, and tending to displace those using the larger "AA" cells, at least for the simpler types.

He also pointed out that the alkaline cell might be a solution to this particular problem, since it is much more suited to heavy discharge situations, and without this seriously shortening its life. But he agreed it shouldn't be necessary.
So there it is. In addition to all the other decisions one has to make in choosing a calculator, that of current drain must now be considered.
As if life isn't hard enough!
And my colleague's problem? The last I heard he had decided to keep the calculator. Apparently the dealer had made him a very attractive offer involving a nickel-cadmium version of the 216 battery. So, by default, he has probably come out on top.

Where to buy printed boards etc

One of the most frequent requests we receive from readers concerns the availability of printed circuit boards for our projects. To a lesser degree they also enquire about chassis and etched panels.

Some readers imagine that we manufacture and distribute boards. Others appear to believe that these are available only from special sources. We do not manufacture or distribute any of these items, or any other components. But we are concerned that our readers should be able to buy these parts with no more difficulty than the other components used in a project. When a project is ready for publication we distribute drawings of printed boards, chassis, and front panels to a number of manufacturers who have requested that we supply this information.

These manufacturers are then in a position to supply these items to any distributor who requires them or, in some cases, direct to the public. On this basis you should be able to obtain these items from the same distributor who supplies your resistors, capacitors, transistors and other routine components. If he does not have them in stock he should have no difficulty obtaining them to order.

However, for the benefit of those readers who may have difficulty in obtaining these items, for one reason or another, we list below those manufacturers who are currently on our mailing list. If all else fails they should be able to either supply you direct, or advise which distributors are holding stocks.

PRINTED BOARDS

Applied Technology Pty Ltd,
109 Hunter St,
Hornsby, NSW 2077
Mrs Roslyn Barnett 241a MacKenzie St, Toowoomba, Q, 4350

Bespoke Metalwork, 42c Sydenham Rd,
Brookvale, NSW, 2100
E. H. Earl Ltd,
P.O. Box 834,

Wellington NZ
Jemal Products,
Unit 8, 120 Briggs St,
Welshpool, WA, 6106
Mini Tech Manufacturing Co Lid,
PO Box 9194,
Newmarket, NZ.

Precision Circuits,
P.O. Box 214

Nunawading, Victoria, 3131
Printed Circuits LId 6 Stark St,
Dorrington, Q. 4046
Printed Circuits LId,
P.O. Box 4248

Christchurch, NZ
R.C.S. Radio Pty Ltd,

651 Forest Rd,
Bexley, NSW, 2207
Statronics Pty Ltd, 103 Hunter St,
Hornsby, NSW, 2077

CHASSIS

Bespoke Metalwork, 42c Sydenham Rd,
Brookvale, NSW, 2100
Jemal Products,
Unit 8, 120 Briggs St,
Welshpool, WA, 6106
Arthur D. Spring,
22 William St,
Henley, NSW, 2111
Star Delta Co Pty Ltd,
PO Box 31,
Granville, 2142

ETCHED PANELS

Bespoke Metalwork,
42c Sydenham Rd,
Brookvale, NSW, 2100
Jemal Products,
Unit 8, 120 Briggs St,
Welshpool, WA, 6106
Star Delta Co Pty Ltd,
PO Box 31,
Granville, NSW, 2142
As a spin-off from the drawings we prepare for the trade, we can also supply copies for our readers (Price $\$ 2.00$). Those with access to metal working or etching facilities can take advantage of this to "roll their own".

However, beginners should be aware that this may not always be the most economical approach. To the cost of drawings must be added the cost of raw materials, wastage, etc, plus the disappointment which comes from a job which may fall short of professional standards.
As a general rule it costs very little more to buy the ready made product, saves a lot of time, and results in a much more satisfying end result.

E.D.\&E. (SALES) PTY. LTD

EDUC-8 COMPUTER-COMPLETE KIT

K

MAJOR STOCKISTS OF ALL GENERAL RADIO \& ELECTRONIC COMPONENT PARTS - YOU NAME IT - WE WILL QUOTE

Valves - Transistors - Zener \& Power Diodes - Semi-Conductors - Diacs - Triacs - S.C.R.'s - I/C's. Speakers - Microphones - Bezels - Styli - Cartridges - Inst Cases - Metalwork. Players \& Changers - Meters - Relavs - Condensers - Resistors Cores - Baluns - Terminals - Co-Axial Plugs \& Sockets - Multi Connectors - Printed Circuit Crystals - Ferrite Beads -- Wire - Etc. - Etc.

POPULAR KITS

TOP QUALITY

- LOWEST PRICES

AUDIO

1 Direct Reading A F Gen 2 SO Wave Gen-10Hz. 1 MHz
4 Additive Freq Meler
5 A F. Tone Bursi Ger
6 Laboratory Solid State A.F
Gen
7 Scaler/ Divider Unit
8 Crystal Freq Calibraior
9 Direct Reading A F Meter
$\stackrel{(0.200 K H z}{ }-10 \mathrm{MV}-2 \mathrm{~V}$
10 High Performance A.F Gen 1 White Noise Gen $13=$
$14=$

AUTOMOTIVE UNITS
15 Tacho $\&$ Dwell Angle for Ser
16 Dwall Extand
17 Solid State - COI
18 All Electronic Ignition Systam.
19 Windscreen Vari Wiper
20 Tacho \& Dwoll Unit
21 Brake Light Warning
22 Emargency Flasher
23 High Efticiency Flashe
24 Solid State Volt Reg
26 ignition Analyser 8 Sat
ognition Analyser \& Tach
27 Strobe Adap
28 Analyser
29 1975 CDI Unit

BATTERY CHARGERS
306 Volt - 1 Amp
$\begin{array}{ll}31 & 12 \text { Volt - } 1 \text { Amp } \\ 32 & \text { Automatic }\end{array}$
$\begin{array}{ll}32 & \text { Automatic H/Duty } \\ 33 & 1.14 \text { Volt - } 4 \text { Amp }\end{array}$
$\begin{array}{ll}34 & 1973 \text { Automatic Unit } \\ 35 & \text { Constant Current Unit }\end{array}$
35 Constant Current Unit
36
37
37

CONVERTERS - INVERTERS
$3912 \mathrm{VDC} 300 / 600 \mathrm{~V} 100 \mathrm{~W}$
340 VAC 20 W
4012 VDC 240 VAC 50W 4124 VDC 300 VDC 140 W 4224 VDC 800 VDC 160 W $43=$

A O UNITS
451963 3"' Calibrated
$4719683^{\prime \prime}$ C A A
48 C R O Electronic Switch
49 C. R O Wilectronic Switch. 50 C R O Calibrator
51 -

105 VHF F/S Detector
106 S W R Reflectometer 106 S W R Reflectometer
107 R F impedance Bridg 108 Signal Injector Bridge
108 1091972 FET Dipper 110 Digital Freq Meter 111 Simple Logic Probe
112 Frequency 112 Frequency Counter \& DVM Adaptor
113 Improved Logic Probe
114 Digital Logic Trainar 114 Digital Logic Trainar 115
Digital Scaler/Preamp
Digital Pulser Peobe 117 Antenna Noise Brid 118 Solid State Signal Trac 1191973 Signal injector 120 Silicon Diode Sweep

TRAIN CONTROL UNITS 24 Model Control 1967 25 Model Controt with Simulated Hi.Pow
27 Power Supply Unis 128 SCA PUT Unit 1971 29 SCR-PUT Unit with Simulated Ineria 1971 130 Electronic Steam Whistle
131 Electronic ChuHer 131 Electronic Chuffer

TV INSTAUMENTS
134 Silicon Diode Sweep Gen
135 Silicon Diode Noise Gen.
136 Ticion 135 Silicon Diade Noise Gen
136 Transistor Partern Gen. 137 TV Synch \& Pattern Gen 138 Cross Hatch \& Bar.Gen

VOLTAGE CURAENT CONTROL 142 UNITS
142 Auto Light Control
43 Brigh1/ Dim Unit 1971
144 SCR Speed Con 145 Fluorescent Light Dimmer 146 Autodim-Triac 6 Amp 147 Vari-Light 1973 48 Stage. etc Autodimmer 2
49 Auto Dimmer 4 \& 6 kW

RECEIVERS - TRANSMITTERS CONVERTERS
1533 Band 2 Valve
1543 Band 3 Valve
1551967 All Wave 2
1571967 All Wave 4
1581967 All Wave 5
1591967 All Wave 6
1601967 All Wave?
161 Solid State FET 3 B/C
162 Solid State FET 3 S/W
163240 Communications AX
65 All Whz Radio Control RX
66 Fremodyne 4.1970
167 Fremodyne 4
R. F. Section Only.
$68 \quad 110$ Communications RX 169 io0 Communications AX

PHONE
 662-3506

```
1>0 3 Band Preselector,
171 Radio Control Line RX
172 Deltahet MK2 Solid State
            Communications RX
                173 Interstate I Transistor.
            174 Colver Lal Locked H.F. RX
```

 175 E/A 130 Recoiver
 176 EA 138 Tunor/Receiver
 177 Ferranti IC Receiver
 178 Ferranti IC Rec/Amp
 1797 Transistor Rec
 \(180=\)
 $181=$

TRANSMITTERS

$82 \mathrm{~S}_{2} \mathrm{MHz}_{2}$ AM
8352 MH 2 Ha
184144 MHz Handsa!

CONVERTERS
187 MOSFET $52 \mathrm{MHz}_{2}$
$1882.6 \mathrm{MHz}^{2}$
189 6.19 MHz
190 V.H.F.

AMPLIFIERS PREAMPS \& CON

TROL UNITS MONAURA
194 Mullard 3.3
195 Modular 5.10 \& 25 Watt

STEREO

1961972 PM 1293 Wam
197 Philips Twin 10-10W
198 PM $10+10 W$
199 PM 128-1970
199 PM 128-1970
200 PM 132-1971
201 ETI-425 Amp \& Preamp.
202 ETT-425 Complete System
203 ETI-416 Amp
204 PM 136 Amp 1972
205 PM 137 Amp 1973 205A PM 143
GUITAR UNITS
$\begin{array}{ll}209 & P / M \\ 210 & E / T \\ 100 & 50 W\end{array}$
211 P/M $13421 W$
211 PM $13820 W$
213 P/M 138 20W
214 Revertar Unit
215 Waa. Waa Unit
216 Fun Box
PUBLIC ADDAESS UNITS
219 Loud Hailer Unit
221 P A Amp \& Mixe
222 Modular 25 W
223 Modular 50W

CONTROL UNITS

225	P/M
226	112

226 P/M 120
227 P/M 127

MIXER UNITS
229 FET 4 Channal
231 Simple 3 Mixe

Further thoughts on amateur microwaves
 Part 3

In the third and final article in this series the author describes typical equipment as used for UHF experiments from 1296 MHz to 10 GHz . It deals with various methods of frequency multiplication, modulation, and frequency generation, as well as both duplex and simplex systems.

by DES CLIFT VK2AHC

TYPICAL DESIGNS. To illustrate the different approaches possible, block diagrams of representative 1296 MHz , $2304 \mathrm{MHz}, 3.4 \mathrm{GHz}$ and 10 GHz systems in use at VK2AHC are shown in Figs. 8 to 12.

1296 MHz was the first serious attempt at crystal controlled operation above 432 MHz . As will be seen, it uses a 432 MHz Tx , which has been in constant use, both fixed and $/ P$, for a number of years.

It contains what has proved to be a very versatile FM oscillator circuit. The only faults were an initial shift on switch on and some drift-both have been rectified.

The other feature, in the 2304 MHz gear, is use of an R47M15 (RCA) solid state module, as the means of obtaining 12 W output with a drive of less than 1W: 12 V input, no tuning controls, fully protected and obviously no more expensive than buying the alternative bits and pieces from scratch and spending weeks getting it going.

These devices are for use in 470 MHz equipment. They function at 432 MHz with about 80% efficiency. The only snag which has been discovered so far has been in a design in which it was fed with the output of a varactor multiplier in which, for space reasons, a minimal amount of output filtering was used.

The device appeared to accept both the drive and idler frequencies, which latter were present due to the small amount of filtering, and promptly oscillated at or near one of these frequencies, taking excessive current. It would therefore appear prudent to drive them only from straight amplifiers. This gives a virtual guarantee of stability and the simplest, most compact arrangement.

In the case of the 1296 MHz gear (Fig. 8) the full output of the 432 MHz Tx is fed into a varacter trebler, from which 6 W is obtained and fed via a coaxial relay to the antenna. It is highly desirable to have some form of reflectometer connected between the 432 MHz Tx and the tripler
when making the final adjustments. The tuned circuits of the trebler are highly critical to adjust but this becomes easy when luning for minimum reflected power rather than attempting to tune everything up at once for maximum power output.
The receiving side is independent of the 432 MHz Rx. It uses a 60 MHz crystal oscillator shown in Fig. 5 of Electronics Australia Nov. '72. This circuit has been adopted as "the standard" for all VHF crystal oscillators where no frequency modulator is required (ie, Rx local oscillators).

The doubled and amplified output at 120 MHz (about 700 mW) is fed to a 12 times varacter multiplier. The 12 th harmonic $(1440 \mathrm{MHz})$ at 10 to 20 mW is selected by a high Q cavity at 1440 MHz and fed to a balanced mixer (per QST Sept. 1973). The only reason for the
choice of 1440 MHz was that the cavity and multiplier were available from a surplus telemetry transmitter. 1152 MHz would have been more suitable had the bits been produced from scratch.

The RF stage compensates for a somewhat lower than normal antenna gain and loss in the the coaxial feed. Its actual operational effect and noise figure has yet to be fully measured.

In common with all the equipment described the mixer is directly coupled to a low noise medium gain 144 MHz IF pre-amp; an absolute essential in this business for anything but local contacts. The IF at 144 MHz is fed into the station 144 MHz Rx which is also used $/ \mathrm{P}$ and uses a tunable If of $21 \mathrm{MHz}-23 \mathrm{MHz}$ $(144 \mathrm{MHz}-146 \mathrm{MHz})$. The only power supply necessary is +12 V and this also supplies the coaxial relay, a useful option.

Equipment for 2304 MHz (Fig. 9) is selfcontained except for the 30 MHz IF Rx. In this case both crystal oscillators run continuously, the Tx one in an oven at $80^{\circ} \mathrm{C}$. Modulation is applied directly to the crystal oscillator. The modified "Butler" oscillator, used with fundamental crystals operating between 12 MHz and 20 MHz (as in the 2304 MHz and 3400 MHz equipment) has been adopted

Fig. 8. Block diagram of a typical 1296 MHz set-up. The basis of the transmitter is a crystal controlled 432 MHz transmitter feeding a varactor trebler. Incoming signals feed a crystal locked converter ahead of a 144 MHz receiver.

as "the standard" for both narrow and medium wide band frequency modulated operation.

The 19 MHz oscillator feeds an MC1550G I/C. This was used as an experiment in this set and was not particularly stable as a straight amplifier and it needed to be heavily loaded. In the 3400 MHz circuit this $1 / \mathrm{C}$ is used as a trebler, fed resistively, and works much better. The crystal oscillator, modulator and I/C buffer are all contained in a cast box. The 19 MHz is multiplied to 460 MHz in a six stage arrangement, also in a cast box, further amplified in a 2N3866 stage, then passed to a R47M15 I/C amplifier, which produces some 12 W of RF. This is passed into a $\times 5$ varactor multiplier which produces about 700 mW at 2304 MHz . The output of this multiplier is passed to a coaxial relay, another optional extra.
The varactor multiplier stage is based on a Motorola application note design, the most successful of three tried. As with the antennas, and despite considerable experimentation, the results were nowhere as good as indicated. This was put down to the cruder mechanics, as no turning or milling facilities are available at VK2AHC and these really are desirable to make such devices.

A directional coupler is included to facilitate measuring the power being fed to the antenna. This is done by the addition of a coaxial crystal detector feeding a microammeter. When the detector is removed, a test signal from a signal generator or simple harmonics generator can be applied to the coupled port of the directional coupler and thence to the Rx.

The Rx consists of a balanced mixer

Fig. 9. Block diagram of a 2304 MHz system. This is self contained except for a receiver (744 or 30 MHz) following the converter. A crystal oven is used for the transmitter. About 12 W fed to the varactor at 460 MHz becomes 700 mW at 2304 MHz .
per QST April ' 74 design, onto which is mounted both a 30 MHz and a 144 MHz IF preamplifier, using MPF121s. This allows a very short connection to the mixer, a very desirable feature. Only the 30 MHz unit has been used so far, the
144 MHz unit was pet 144 MHz unit was put in for future narrow band systems.

The local oscillator chain starts at 63.166 and is multiplied to 252.66 MHz in a four stage arrangement. From this, in one box, it is fed to a separate 252.66 MHz amplifier using a BLY33 and thence to a varactor multiplier from which a whole series of multiples of 252.66 MHz is obtained. The one at 2274 MHz (ie, the

9 th) is selected by a high Q filter made from an APX6.

It was obvious on inspection of the APX6 that the precision drives and plungers of the three knob tuner could be put to better use. Consequently, one was stripped down and three separate cavities produced using only the original drive mechanism and plunger. One is useful for 1296 MHz or to feed a local oscillator chain using either a 30 MHz or 144 MHz IF. The second tunes 2274 MHz quite easily and is used as described. The third was made to tune from 645 MHz to 925 MHz to fill a space in the test equip-
ment.

Fig. 10. Block diagram of a 3486 MHz system. This is a fully duplex system, the two
transmitter frequencies being separated by the transmitter frequencies being separated by the receiver If (30 or 145 MHz). It is a wide band FM system (100 kHz) compared with the lower frequency systems.

FIGURE 1

FIGURE 3

FOUR GAMES WITH 'TRIPLE" SOUND AND SCORING RIGHT ON YOUR TV SCREEN
 simple to use - connect it to the aerlal socket of your Colour or Black \& White TV set and start playing

FEATURES

AUTOMATIC ON-SCREEN SCORING: After 15 points are scored by either player, the game is over and the Reset button must be pushed in order to continue play.

TRIPLE SOUND: In all games three types of sound are heard, Sound when the ball reflects of boundaries, when the ball hits a paddle and when a score is made.
SERVING: The regular serve position allows each player to control manually the time of serve. The ball is served only after the player pushes his serve button located on the player control box. In the "Pro" switch position the serve becomes fully automatic.

BAT SIZE: Regular and "Pro" size bats are provided.

BALL SPEED: Regular and "Pro" ball speeds are provided.
REBOUND ANGLES: Regular and "Pro" angles of rebound are
provided.
The Regular and "Pro" switch positions for Ball Speed, Bat Size, Angles and Serving allows the whole family to have fun. As you practice, and improve your game, you will enjoy using the professional features more of ten and with greater skill.

GAME DESCRIPTION

TENNIS
The game will appear on your screen as shown on figure 1. It is played by the players who use the left and right paddle controllers to vertically raise or lower their paddles. Play starts upon depressing the reset switch which causes the score to reset to $0-0$ and when the from either switch is in the automatic position will serve the ball from either the left or the right court. The player who is served must hit the ball back to his opponent, who must then return it. When either player misses his shot, a point is scored for his opponent and the next ball is served to him from the opponents court. Scoring is automatically displayed. The game ends with the first player to reach 15 points.

HOCKEY

This game will appear on your screen as shown on figure 2. Hockey, while similar to tennis, is much faster and more exciting game, Each player controls his GOALIE who moves in a vertical motion, and one forward MAN who also moves vertically. These MEN move cross-court to either player As in tennis, the opening serve comes to player who has just lost a point. Since basis. Further serves are who can return the puck, the play is very fast player has two MEN who can return the puck, the play is very fast. Scoring is the same as in tennis-first player to reach 15 points is the winner.

SQUASH

Squash consists of a court as shown in figure 3. It plays identical to tennis except only one player operates at a time and both are on the same side of the court, playing against the opposite wall. After the bel! is served the left player must hit the ball first and the alternates between the two players. This action continues until a point is scored. The object of the game is to keep the ball in play by continuousty hitting it to the back court wall. The ball can be reflected off 3 sides - the top, bottom and left wall. Again the first player to score 15 points is the winner.
SOLO
This game is almost identical to squash except that it is played by a single player with a single paddle as shown on figure 4. And only
one side will score points.

Post, Pack \& Insurance $\$ 3.50$ per unit
Included in this Price is a Battery Eliminator allowing
the unit on ordinary 240 V house Current, allowing you to operate RETAIL OUTLETS WANTED IN A A A And Antenna Adaptor. Please forward Orders and Enquiries direct INALL STATES direct to:-
W.H.K. ELECTRONIC \& SCIENTIFIC INSTRUMENTATION

2 Gum Rd. St. Albans, Vic. 3021 , AUSTRA, Wholesale

Approximately 10 mW of 2274 MHz emerges from the cavity. This is fed through a 3 dB attenuator, again an option, to the mixer. A change from zero to 3 dB and to 10 dB has so far produced no noticeable change in the received signal. This may be noticeable when tests on the 2304 MHz beacon of one of the satellites become possible.

The power supply of this equipment is obviously more elaborate than that used at 1296 MHz . It was built because it was found impossible to produce either the local oscillator or TX PA drive requirements using 12 V . The 723 regulator has been adopted as standard due to its versatility and ability to supply medium currents without external transistors. A relay performs the $T x$ and $R x$ functions and a switched option allows both crystal oscillators to run continuously. The oven is not considered a luxury.

The 2304 MHz band appears to be the top limit for narrow band FM and it has been decided to use 100 kHz as standard on all higher crystal controlled bands. The reasons are simple. The multiplication factor for 2304 MHz , using a 19 MHz crystal, is 120 times-this means a 3 kHz deviation at the output reduces to 25 Hz at the oscillator, which is just about the stability limit to be expected from the oscillator even in its oven, when considering incidental FM from the AC/DC converter and other extraneous sources. In practice, as much deviation as can be handled at the other end has been usedaround 5 kHz .

At 3400 MHz , using a 16 MHz crystal, the factor is 216 which would mean 13.8 Hz at the oscillator. Obviously, this is too severe a requirement; hence the change to 100 kHz , giving a 460 Hz crystal deviation.

The same crystal oscillator circuit caters for both deviation requirements, making the equipment sufficiently versatile to permit the wider deviation at 2304 MHz . But remember that a reduction in IF bandwidth is equivalent to a large increase in antenna size and obviously the most convenient to concentrate one's efforts on.

The block diagram for 3400 MHz (Fig. 10) illustrates the simplicity of this duplex arrangement compared with the simplex of 2304 MHz .

Further modification of the basic crystal oscillator has provided by far the best arrangement yet tried. Output is taken from a small resistor in the collector circuit of the second stage. This provides isolation from the oscillator tuned circuit and also assists in making the IC more stable.

The IC is operated as a trebler, followed by two doublers from which about 5 mW of 193 MHz is obtained. This is amplified in a four stage arrangement to 3 W and passed to a varactor trebler, giving 581 MHz output. All this is mounted on two sub chassis in a small box and fed by 12 V .

Note the method of using a 723 to

Fig. 11. A 10 GHz system. This is a fairly conventional arrangement, but uses a Gunn diode as the RF Generator. It, also, is a duplex system. Note the method of frequency modulating the system via the regulated power supply.

Fig. 12. A simplified 10 GHz system. No circulator is used in this arrangement, which provides simplex facilities only. The Gunn diode is coupled to the If amplifier via an untuned primary winding in series with the supply line.
modulate the oscillator by either voice or tone. This method of modulation has been found to further assist in reducing the drift that was present in the basic design used first for 432 MHz . The moral is that a process of evolution of a basically good circuit pays off, rather than continually switching from one circuit to another.
The 581 MHz output is fed to a further varactor multiplier, from which 3486 MHz is obtained at a level of 100 mW and this is fed to a three port circulator. The output port is fed to the antenna, while the third port feeds the crystal. Since received signals proceed to this port a duplex arrangement results when the other station uses a similar arrangement at $3456 \mathrm{MHz}(30 \mathrm{MHz}$ IF) or $3341 \mathrm{MHz}(145 \mathrm{MHz}$ IF). The latter was chosen in preference to 144 MHz to try to get away from the local 5A TV channel which gives trouble when the VK2AHC $2 m R x$ is run flat out.

Local oscillator drive is provided by reflection of 3486 MHz from the antenna. This is a crystal controlled version of the
traditional 10 GHz equipment and does, of course, require a circulator. If this is not available various simplex arrangements can be resorted to, the simplest being to mechanically change over the antenna from the T_{x} to the Rx and, by means of a probe, allow sufficient energy to spill into the antenna to produce the correct mixer current.

- Either of the two previous systems (Figs 9 or 10) can be used in all the higher frequency bands. Providing the correct final multiplication factor is chosen so that the fequency is between 440 and 470 MHz , the arrangement of Fig. 9, using the R47M15 module, would be the obvious one to use.

Fig. 11 shows an updated conventional 10 GHz system, which is a simplified version of the equipment described in Electronics Aust. Sept. 1972. Use of a Gunn Diode simplifies the power supply. Radio Commn. May 1974 gives details of simple mounts. An even newer and simpler 10 GHz arrangement is shown in Fig. 12 and is based on the Radio Commn. June
continued on page 125

Our top forte

Dual trace Model 540

DC-20MHz
 Dual trace
 Model 539C

Model 539C

These are the latest portable oscilloscopes to carry the BWD emblem. Bred from over 20 years experience, they sell throughout the world, against the best the world can produce.
This ad. cannot do them justice. Get the data sheets.

VIC.: \quad Miles Street, Mulgrave, 3170.
Telephone 5612888.
N.S.W.: $182-186$ Blues Point Road, North Sydney, 2060. Telephone 9297452.

QLD.: Warburton Franki (Brisbane) Pty. Ltd. 13 Chester St., Fortitude Valley, 4006 Telephone 527255.
S.A.: A.J. Ferguson (Adelaide) Pty. Ltd., 44 Prospect Road, Prospect, 5082. Telephone 2691244
W.A.: Cairns Instrument Services 32 Wickham Street, East Perth, 6000. Telephone 253144.
TAS.: Associated Agencies Pty. Ltd. 25 Barrack Street, Hobart, 7000. Telephone 231843.

Digital pulse detector

The display of digital pulses on an oscilloscope becomes difficult if they are not repetitive.

This circuit provides a simple method for detecting such pulses. Because the D type bistable transfers the information
from its data input to the Q output on the positive going edge of the clock pulse, both positive and negative pulses with widths down to approximately 10 nS may be detected.
(By P. V. Prior, in "Wireless World".)

Odd job for solar cells

If you need a simple noise generator for test purposes and you have a selenium solar cell handy, try biasing it with a voltage source and then applying the output of the cell to an audio frequency or radio frequency amplifier, suggest Calvin R. Graf. Whether it is forward biased or reverse biased, the solar cell will produce hiss-like white noise with an amplitude that increases directly with the bias voltage applied over the range of a few volts to about 15 V . And although it can work in the light, it is better kept in darkness, because an artificial light source, like an incandescent or fluorescent lamp, causes 60 Hz (or 50 Hz power line hum that overrides the cell's white noise output, especially when the cell is forward biased. Fluorescent lamps, Graf notes darkly, are worse than incandescent.
(From "Electronics".)
set by the feedback gain of the noninverting amplifier, so replacing the 68 ohm resistor with a lower value narrows the rejection band.

With the given component values, this circuit can be turned to reject either 60 Hz or 50 Hz power line frequency. With 10% tolerance capacitors, the minimum notch depth is 30 dB and the total 3 dB bandwidth is 14 Hz for 50 Hz and 18 Hz for 60 Hz centre frequency. The insertion loss outside the stop band is a negligible fraction of a dB.
(By Peter Lefferson, in "Electronics ".)

Silicon diode crystal set

The circuit shown is a rather unique crystal set using a silicon diode. Tuning is accomplished by varying capacitor C . The ferrite loopstick L, has a low impedance tap. The 1 M potentiometer applies a bias voltage across the diode, ranging from 0 to 0.75 volt. Thus, the potentiometer acts as a sensitivity control. At maximum sensitivity (0.7 V for-

HUGE SHIPMETT JUST ARRVED = PRICES SLASHED!
 YESI DICK NOW HAS HUG-E STOCKS OF BRAND NEW. FAMOUS "NATIONAL SEMICONDUCTOR" INTEGRATED CIRCUITS TRANSISTORS, DIODES, LEDS, DISPLAYS, ETC, ETC, ETC.
 he will supply anyone, and any quantity at the prices SHOWN - EVEN OTHER PARTS SUPPLIERSIII

 M150 4, 010 1

 M150 4, 010 1

 FULLY PRE.PROGRAMMED BY NATIONAL SEMICONDUCTO

 FULLY PRE.PROGRAMMED BY NATIONAL SEMICONDUCTO LABORATORIES FOR THE E-A ARTICLE LABORATORIES FOR THE E-A ARTICLE

 only $\$ 3500$

 only $\$ 3500$

 (DON'T PAY S40.001)

 (DON'T PAY S40.001)

 tax. frep price $\$ 30-95$

 tax. frep price $\$ 30-95$ HIGHIY EFFICIENT

 HIGHIY EFFICIENT}

INCREDIBLE BARGAINS ON C-MOS \& TTL IC'S AND OTHER SEMICONDUCTORS

C~MOS - SLASHED!

4000 Dual 3 input NOR with inverter

$\begin{array}{ll}4000 & \text { Dual } 3 \text { input NOR wit } \\ 4001 & \text { Quad } 2 \text { input NOR } \\ 4002 & \text { Dual } 4 \text { input NOR } \\ 4006 & 18 \text { stage static shite re }\end{array}$
$4006 \quad 18$ stage static shife register
4007 Dual complementary pair plus inverter
4009 Hex buffer linverter)
4012 Duad 2 input NAND
013 Dual D flip flop with reser
4014 Q stage shift register
4017 Decade counter/divider
4018 Presettable divide by N counter 021 8 stage static shift register Divide by 8 with 8 deci
Tripu NAND

7 stage ripple carry binary counter
Triple 3 input NAND
Dual J.K flip flop
Presettable up/down 4 stage counter Quad exclusive OR Hex buffer/TTL driver inverter
Hex buffer/TTL driver non inverter
Quad 2 input O R
Ouad 2 input AND
426 DPDT switch
Decade counter/7 segment dec/driver
4449 Economy hex inverter
4518 Dual BCD up counter
4520 Dual 4 stage binary up
4528 Dual retriggerable monostable multiv
4553 Digit BCD counter
ber with bulfer
74 COO Quad 2 input NAND

SPECLAL PURPOSE IC'S - SPECIAL PRICES

> GP Regulator (2-37V)
> Op amp
> Audio power amp
> Low noise dual preamp
> Low noise dual preamp (equalised) Timar
> Dual timer
> Op amp
Op amp
> Op amp
> 3909 LED flasher
> CA3130 FET OD amp
> SAK140 Techometer
> $\begin{array}{ll}\text { UAA1 } 10 & \text { Spot-olight analog to LED display } \\ \text { UAA180 } & \text { Bar-o-light analog to LED display }\end{array}$

T~J~l-l~0~W

คค

${ }_{90}^{30}$

7400 Quad 2 inpur positive NAND
7401 Quad 2 input positive NAND
$\begin{array}{ll}7402 & \text { Quad } 2 \text { input positive NOR } \\ 7403 & \text { Quad } 2 \text { input positive NOR with o/c ourputs }\end{array}$
7405 Hex inverter with o/c outputs
7408
7409
409
7410
7413
7413 Triple 3 input positive NAND
7420 Dual 4 input positive NAND
74308 input positive NAND
7437 Quad 2 input positive NAND bulfer
7441 Dual 4 input positive NAND buffer
7442 BCD to decimal decoder/driver

$$
\text { BCD to } 7 \text { segment dec/driver with } 15 \mathrm{~V} \text { oump }
$$

Expander dual 2 wide 2 input AND OR INV
Exp. 4 wide 2 input AND OR INV
4 wide 2 input AND OR INV
Dual 4 input expander
Gated J-K flip flop
J.K master slave ilip flop

Dual J.K master. slave flip flop
7474 Dual D type erge trig flip flop
7475 Quadruple bistable latch
7476 Dual $J \cdot K \mathrm{Km} / \mathrm{s}$ flip flop w/ pres $\&$ clea
7480 Gated full adder
$7482 \quad 2$ bit binary adder
7483 4 bit binary full adder (lock ahead carry)
$7486 \quad$ Ouad 2 inp excl. OR

190

7490
7491
7492 Div by 12 counter
4 bit binary counter
4 bit right/eft shift register
$7496 \quad 5$ bit shift register
74107 Dual J.K master sleve flip flop
Monostable multiv brator
74141 BCD to decimal dec/ driver

74192 Preser sync, decade up/down count
74103
$\square-$ EXPRESS SEMCOHOUCTOR MAIL OROER \rightarrow
"You oider asmicanduetors lrom ua by mail ordar, yout order will be
despatchod within 4 hours al reesipt (itit eay 10 lill such a simple order)

PLEASE ALLOW PACKING AND POSTAGE AT OUR
NORMAL RATES.
MINIMUM MAIL ORDER AMOUNT IS $\$ 5.00$.

DNODES - FRON 6 CENTS!

\(\begin{array}{ll}OA91 \& GP germanium diode
1N914 \& GP silicon diode\end{array}\)
\(\begin{array}{ll}1N914 \& GP silicon diode
1N4004 \& 400 \mathrm{~V} 1 A power diod\end{array}\)
1N4007 1000 V 1A power diode

'GARDEW VARIETY' TRANSISTORS - ALMOST GIVEN AWAY!

BC107/547 NPN audio
\(\begin{array}{ll}BC108/548 \& NPN audio
BC109/549 \& NPN low\end{array}\)
BC177/557 PNN low noise
\(\begin{array}{ll}BC1
BC1 \& PNP audio
PNP low voltag\end{array}\)
BC179/559 PNP low noltage

DRIVER \& POWER TRANSHSTORS - DOWN TOO!

BC639 NPN 80V iW driver
BC640 PNP 80V 1W driver
BD139 NPN BOV 8W driver
\(\begin{array}{ll}BD140 \& PNP 80V 8W driver
MJ2955\end{array}\)
2N3055 PNP 115W power
\(\begin{array}{ll}2N3055 \& NPN 115 W power
2N3638 \& PNP 500 \mathrm{~mA} switch\end{array}\)

2

> These special prices are only available from Dick Smith stores in Sydney. Melbourne and Brisbane; and from our mail order department in Sydney. However, Dick Smith Dealers will also have special semiconductor prices this month, (though not neceasarily on the same lines or at the same prices). NOTE: We can only hold these low, low prices until 1st December, 1976 (So buy all you need now, commercial quantities included) IF, before 1st December, you see a lower price advertised By an Austalian company rell us about it - and we will adjust our price even lower if we can)

2EWERS - JUST 25 CENTS!
$\begin{array}{ll}\text { B } 2 \times 79 \times \times \times \times & \begin{array}{l}400 \mathrm{~mW} \text { Zener diode } \\ \text { all voltages from } 3.3-20\end{array}\end{array}$
SCR'S - WAY DOWM
LEDS \& DISPLAYS -DISCOWTED!
$\begin{array}{ll}\text { TIL220 } & \text { Red LED } \\ \text { RL209 }\end{array}$
$\begin{array}{ll}\text { RL209 } & \text { Red } \\ \text { DLED } \\ \text { DL } 707 & 0.3^{\prime \prime} \text { comm. cath display }\end{array}$
$\begin{array}{ll}\text { DL707 } & 0.3^{\prime \prime} \text { comm. anode display } \\ \text { DL747 } & 0.63^{\prime \prime} \text { comm. anode display }\end{array}$
DL747 0.63" comm. anode display

DICK SWIUL Elicirolics
 GROUP

Mail Orders: p. O. Box 747. Crows Nest. N. S. w.. 2065
N.S.W. Branches: GORE HILL-162 Pacific Highwoy. 4395311.

SYDNEY- 125 York St.. 29 1126. BANKSTOWN-361 Hume Hwy.. 7096600 Interstate Branches: $\begin{aligned} & \text { QLD. - } 166 \text { Logan Rd.. Burando. } 391 \\ & \text { VIC. }-656 \text { Bridge Rd.. Richmond, } 421614 .\end{aligned}$

CIRCUIT \& DESIGN IDEAS

ward bias), very weak signals will be able to ride through the diode. When connected to a good aerial (a long wire or rotatable loop), this little set will deliver a surprising performance.

In operation, you will notice a point where advancing the sensitivity control causes the signal to drop out completely.

This happens when the diode turns fully on. Back down slightly for best sensitivity. Use high impedance crystal headphones and a small 1.5 V dry cell voltage source. The cell will last for a very long time.
(By John McVeigh, in "Popular Electronics".)

surface temperature meter. The accompanying circuit uses a silicon diode as the sensing element in a bridge configuration, feeding a differential amplifier to drive a meter.
Potentiometers R1 and R2 are used to set the lower and upper limits respectively. Resistor R3 depends on the sensitivity of the meter you use. If the system has too much gain for your application, the values of R5 and R6 may be increased but must remain the same value as each other.

The probe diode may be mounted in any convenient holder and should be fed with coaxial cable.
(From "Amateur Radio".)

For some of the work we have been doing lately, we needed to be able to measure variations in the case temperature of some power transistors. Not
being able to measure the case temperature led to the needless destruction of some devices, due to over-dissipation.

Obviously, we needed some form of

Direct-reading transistor tester

The op-amp provides base current for the transistor under test, whose action causes equal voltages to occur at the op-amp-input terminals. If Vref is 5.3 V , sufficient base current will flow to provide 1 mA collector current. Gain of the transistor is then $1 \mathrm{~mA} /$ base current, and the meter scale is calibrated. Thus, the 50 uA point is marked $1000 / 50=20$, and so on. A gain value of 400 is marked
at the 2.5 uA point. Resistor R and the diode protect the meter against overloading which could occur if a zero-gain transistor were tested. Resistance R in series with the meter should total 5 k .

For testing PNP devices a switch is fitted to reverse the supply polarity and the meter.
(By A. Rigby, in "Wireless World".)

KNOW

Where you are going?

Choose a career in the field of Electronics - the Nation's most progressive and fastest expanding industry

BROADCASTING

COMMUNICATIONS - marine APPLIED SERVICING
Classes are conducted at 67 Lords Road, Leichhardt
Day 9.00 a.m. to 4.00 p.m.
Evenings 6.00 p.m. to 8.30 p.m. or by Home Study Courses lexcept practical instruction on equipment)

SEND FOR PROSPECTUS

There is no obligation.

NAME. \qquad
ADDRESS \qquad

MARCONI SCHOOL OF WIRELESS Box 218, P.O. Leichhardt 2040.
A service of
Amalgamated Wireless (Australasia) Ltd.

The Fairchild F8

This month we continue our survey of microprocessors with a more detailed look at the Fairchild F8 chip set. We also look at Fairchild's F8 Design Evaluation Kit, which comes as a fully assembled PC board complete with power supply and teleprinter cables, together with a set of user, programming and applications manuals.

by JAMIESON ROWE

Fairchild Semiconductor's F8 microprocessor is an 8-bit design, like most of the others we have looked at in previous articles. Current devices are of the familiar N-channel MOS type, made using Fairchild's established "Isoplanar" LSI technology.
Despite these superficial similarities, the F8 microprocessor is significantly different from the others we have examined. Designed primarily for highvolume dedicated-use applications, its basic architecture is quite unlike that of a conventional minicomputer. As a result of this, its instruction set also tends to be rather different.
At present, two chips form the heart of any F8 system. One is the 3850, designated the CPU or central processing unit, and the other is the 3851 program storage unit or PSU. In terms of chip area the latter device is primarily a maskprogrammed ROM, organised as 1 k bytes, which stores the program to run the system.

This may sound conventional enough, but if you look at a block diagram for any F8 system, it shouldn't take long to realise that there is something missing: the usual address bus.

In fact, the designers of the F8 system have avoided altogether the need for conventional address bus, by moving all of the memory addressing registers out of the CPU chip, and into the PSU.

The 3850 chip is therefore unlike most
other CPU chips, in that it contains no program counter, pointer, stack, index or other addressing registers. But on the other hand it does contain 64 bytes of "scratchpad" RAM memory and two 8 -bit bidirectional I/O ports-things one doesn't tend to find on other CPU chips! These extra "goodies" have been provided by taking advantage of the chip area and package pins which would otherwise have been used for memory addressing.

On the other hand the mating 3851 PSU device contains a number of things which one doesn't find in a normal ROM, such as a program counter, a stack register, a data counter or indirect memory addressing register, and interrupt control logic. Quite apart from these it also provides two further 8 -bit bidirectional 1/O ports, and a programmable timer.

Block diagrams of the 3850 and 3851 devices are shown below.

What all this means is that the two chips alone provide a fully viable microcomputer system, with 1 k bytes of ROM program storage, 64 bytes of RAM, inbuilt clock and programmable timer, and 32 bits of programmable $1 / \mathrm{O}$. This is sufficient for a great many dedicated applications, such as automotive controllers, home appliance controllers, electronic scales and point-of-sale terminals, electronic games and information processors.

A huge market is predicted in this area,
and Fairchild has fairly obviously aimed the F8 system at it in terms of costeffectiveness. This is evident in the novel architecture adopted for the two basic chips, and also in their recent announcement of a new "single chip F8" to be released early new year. To be called the 3859, the new chip will combine the 3850 CPU and the 3851 PSU in a single package priced at less than $\$ 20$ in large quantities.

Fairchild is confident that this will give them a big slice of the total microcomputer market. In fact, according to Peter Duddy, F8 marketing engineer for Fairchild Australia, Fairchild expects to be the largest supplier of microprocessor chips in the world, by the end of this fiscal year.

It should perhaps be pointed out that since the ROM in the current 3851 PSU and that in the forthcoming 3859 are both mask-programmed, neither device is really suitable for small-quantity applications. There is a mask charge of around A $\$ 1250$, and a minimum order quantity of 200 pieces.

Although the F8 system would thus appear to have been designed primarily for dedicated applications requiring a minimal configuration, there is at the same time adequate provision for expansion into more elaborate and memoryintensive systems.

The memory address registers in the PSU chip are 16 bits wide, so that the F8 system is potentially capable of addressing up to 65 k bytes of memory. A single PSU chip at present provides only 1 k bytes of ROM, although a 3 k version has apparently been developed, and should be available shortly. Both are maskprogrammable in terms of the actual location they occupy in the overall 65 k memory space.

GETTING INTO MICROPROCESSORS

This means that multiple PSU chips may be used, to provide whatever amount of program storage is required. Each PSU will have its own program counter and other addressing registers, and all of these will work in tandem. However as the PSU's are mask-programmed to slot into different parts of the overall memory space, only one PSU is ever active during any particular instruction fetch or memory data operation.

RAM memory can of course be added to the system also, although not quite in the usual way. Because there are no address lines available, the RAM chips must be interfaced via special chips which duplicate the program counter and memory addressing registers of a PSU, together with the interfacing control logic.

There are two RAM interfacing chips, one for static memory devices (the 3853), and the other for dynamic memory devices (3852). The latter also provides logic for direct memory interfacing (DMA), in conjunction with a further dedicated DMA chip called the 3854.

There are only three programmable registers in the F8 CPU chip, apart from the 64 -byte scratchpad. The three registers comprise an 8 -bit primary accumulator, a 6-bit register used for indirect addressing of the scratchpad (called the ISAR), and a 5-bit status register.

To a certain extent the 64-byte scratchpad acts like a bank of 64 secondary 8 -bit accumulators. The first 11 scratchpad bytes are directly addressable via some of the F8 instructions, while the rest are accessible through implied addressing via the ISAR register. However, scratchpad addresses $9-15$ inclusive (decimal) are dedicated as buffers for the PSU addressing registers, so these will not usually be available for other purposes.

On the software side, the F8 has a repertoire of some 76 instructions, more than half of which use a single byte. Of the rest only three use 3 bytes, and the remainder 2 bytes. This allows some programs to be surprisingly short.

The F8 designers have achieved this economy by relying fairly heavily on

As received, the Fairchild F8 evaluation kit comprises an assembled PC board system, an edge connector with cables, and a binder of manuals.
implied addressing, where the data to be used in executing an instruction is not specified either directly or indirectly via an instruction operand, but is simply implied by the type of instruction. Most microprocessors use this addressing mode for arithmetic and logic instructions, for example, which normally "imply" that the data concerned is the content of the accumulator.
The F8 carries this considerably further. All eight of the non-branch memoryreference instructions use implied addressing, implying the PSU data counter as an indirect address register. Similarly all 15 of the scratchpad register instructions use implied addressing, implying either the accumulator or the use of the ISAR as an indirect scratchpad address register, or both. Quite a number of other instructions also use implied addressing.

In all there are some 15 accumulator instructions, 12 branch instructions, 8

Together the F8 CPU and PSU chips are capable of forming a complete minimal system, suitable for appliance controllers and similar applications.
memory reference instructions, 13 address register instructions (including jump to subroutine and return), 15 scratchpad register instructions, and 13 miscellaneous instructions.

Incidentally all memory reference instructions involve automatic postincrementing of the PSU data counter, which can be very useful. Many of the scratchpad instructions have optional auto increment or decrement of the lower 3 bits of the ISAR implied indirect addressing register, which again can be useful.
Included in the F8 instruction set are a number of powerful immediate instructions, including ADD, AND, COMPARE (2's complement subtraction), EX-OR, LOAD and OR, together with a "call to subroutine immediate" and a "load data counter immediate". There is also a "short" LOAD immediate instruction, which is only a single byte long, and used to load the accumulator with 4-bit data.
Input/output servicing is normally handled by two separate 2 -byte instructions, INPUT and OUTPUT, both of which use the second byte to address one of the IOT ports provided by the CPU chip and the PSU chip or chips. However there are also two "short" IOT instructions, capable of transferring data to and from the lowest 16 IOT ports.

Let us now pass from the F8 chips and their operation to look at the "F8 Design Evaluation Kit" currently available from Fairchild, to allow potential users to get practical experience and undertake simple program development at low cost.

As you can see from the picture, the

If we knew about your control problem we might be able to solve it

with the Fairchild F8 design kit. . . .

Priced at $\$ 166.50$ this new low cost microprocessor design kit comes as a fully assembled circuit board with interface and connecting cable for power supply and teletype terminal hookup.

It is a complete microprocessor system with CPU, Debug Program, Memory, 32 I/O BITS, two levels of interrupts and all the necessary control circuits. No assembly or soldering is required.

The fully tested and assembled circuit board includes the Fairchild 3850 F8 CPU circuit, the 3851 Fairbug Program Storage unit circuit, the 3853 Static Memory Interface circuit and eight 2102 static RAMS (1 kilobyte of memory).

Software with the kit includes the F8 Programming Manual, F8 Data Book and the Fairchild Fairbug Program.

F8 goes much further than the design kit. The range of support products enables you to construct versatile, cost effective systems from the most simple to the highly complex. There are the F8 and F8S Program Development Modules, F8 Memory Expander, the F8 Formulator and formulator cable and module options, and a comprehensive range of carefully thought out software.

Contact the Fairchild distributor in your state or Fairhild in Sydney 929 6711, or Melbourne 810592.
kit comes in three parts. There is a fully assembled PC board containing the evaluation system itself, an edge connector fitted with power supply and teleprinter cables, and a large ring binder containing a user manual, programming manuals and various other pieces of useful literature.

The evaluation system on the PCB contains a 3850 CPU, a 3851 PSU and a 3853 static memory interface to which is connected 1 k bytes of static RAM. Three of the four IOT ports provided on the 3850 and 3851 chips are available for interfacing to 8 -bit parallel peripherals, while the fourth is dedicated to serial interfacing with either a 100 -baud teleprinter or a 300-baud terminal, as desired.

The 3850 clock oscillator is implemented using RC components, which must be "tweaked" to give a clock frequency of 2 MHz using a CRO or digital counter-not for the F8 system itself, but to ensure the correct baud rates for the serial interfacing.

The edge connector cables provided with the board have banana-type plugs to connect to a power supply, and a Molex 15 -way connector which is capable of directly into the "No. 2 " socket on the rear right of a standard model ASR-33 or KSR-33 Teletype. The power supply requirements are for +5 V at 500 mA , and +12 V at 100 mA .
Resident in the ROM section of the PSU is Fairchild's debug program, which they have dubbed "FAIR-BUG". As with similar programs provided in the other evaluation kits we have examined, this provides basic facilities for the user to develop programs, together with routines for teleprinter IOT servicing. There
is also a routine to input a byte of data from one of the parallel IOT ports, something not usually found. All of the IOT routines are available to be called by user programs as subroutines.

The command set recognised by FAIR$B \cup G$ permits the user to display and optionally alter memory locations, scratchpad registers, the accumulator, ISAR and status registers or the PSU addressing registers. It also allows the user to punch and load formatted paper tapes, and to execute the user's program. As well as these fairly common functions there is another useful function which is not often provided: a command to punch out the user's program in PROM burning format, as distinct from reloadable format.

Fairchild Australia very kindly made one of the F8 evaluation kits available, so that we could gain some first-hand knowledge and "hands-on" experience. The hardware side of the system turned out to be quite easy to hook up, although I had to remember to adjust the 3850 clock oscillator to 2 MHz using a digital counter-to ensure that the timing would be right for the teleprinter interface. With this done the system was soon up and running.

Of course learning to drive a microprocessor's instruction set takes some time, as does the business of becoming fully familiar with the command repertoire of a debugging program. Both of these seemed to present a little more of a challenge with the F8 system than with the other systems I have used, perhaps because both the F8 instruction set and the FAIR-BUG commands are structured somewhat differently. However, after

ANSWER-BACK PROGRAM FOR FAIRCHILD F8 EUALUATION KIT J.ROWE, ELECTRONICS AUSTRALIA 9/9/76

0000	28	83	AD	GO, PI	83 AD	/CALL TTYI SUBROUTINE
0003	53			LR	3, A	/STORE CHAR IN R3
0004	28	83	E5	PI	$83 \mathrm{E5}$	/CALL TTYO TO ECHO
0007	43			LR	A, 3	/ RETURN CHAR TO AC
0008	23	8D		XI	- 80°	/CR?
O日0A	94	F5		BNZ	GO	/LOOP BACK \& CONTINUE IF NOT
800 C	7 A			LIS	- \varnothing A ${ }^{\circ}$	/YES: LOAD LF
g日0D	51			LR	1, A	/ STORE IN RI
OODE	28	83	E5	PI	83 E 5	$/$ SEND TO TTY VIA TTYO SUBR.
0011	2A	90	1 F	DCI	$001 F$	$/$ SET DC TO START OF AN SWER BUFF
0014	70			$\mathrm{FCH}, \mathrm{CLR}$		$/$ Clear ac
0015	8B			OM		IOR ANSWER CHAR INTO AC, CHECK STATUS
0016	84	E9		B2	GO	$/$ RETURN TO START IF CHAR IS ZERO
0018	51			LR	1, A	/ STORE CHAR IN RI
0019	28	83	E5	PI	8 3E5	$/$ SEND TO TTY UIA TTYO
001 C	90	F7		BR	FCH	/ KEEP GOING UNTIL FINISHED
$001 E$	00					
$001 F$	47	$4 F$	20			$/$ START OF ANSWER BUFFER
ஏ022	41	57	41			
0025	59	2 C	49			
0028	27	4D	20			
0828	42	55	53			
002 E	59	21	©D			
0831	®A	00				$/$ ANSWER MUST END WITH A ZERO BYTE

Here is the author's novelty answer-back program as implemented for the F8 evaluation kit. It illustrates some of the points discussed.
digesting the various manuals and accompanying literature, I was soon doing some tentative program develop-

ment.

Like some of the other small debugging programs, FAIR-BUG does tend to be rather wasteful in terms of teleprinter paper, by insisting on the use of a carriage return as a command terminator. One tends to use metres of paper, but with characters printed mainly in a narrow column at the left-hand side. The method used to initially keyboard in a program in hexadecimal code using FAIR-BUG also seems a little clumsy, requiring the use of two separate commands per entry.

However, while mildly irritating, neither of these could be construed as major shortcomings.

Out of interest, I tried writing a simple "answer-back" program like those I wrote for the systems we have discussed previously in this survey. By no stretch of the imagination is this a critical "benchmark" program designed to show up the relative capabilities of systems. However, it does provide a modest basis for comparison.

A listing of the program is shown on these pages, and you may find it of interest. As before it uses the teleprinter servicing subroutines in the debug ROM, which are here labelled "TTY1" and "TTYO" respectively. The program calls them by means of immediate addressing "jump to subroutine" instructions, which have the mnemonic " Pl ".

Note that because the TTYI subroutine does not appear to strip off the incoming parity bit, the exclusive-OR immediate instruction (" XI ") used to test for an incoming carriage return tests for a code of 8 D hexadecimal, not the correct ASCII code of 0 D . Note also that the "FCH" loop used to fetch and deliver the answer does not need to increment a buffer pointer, because the memory reference instruction "OM" causes this to happen automatically. The OM (OR from memory) is used here in preference to an "LM" (load from memory) instruction, because the LM instruction does not affect the status register, and the following $B Z$ (branch on zero) instruction is determined by the status register rather than the actual accumulator content.

All things considered, 1 found the Fairchild evaluation kit fairly easy to drive, and one which provides a practical and low cost way of becoming familiar with the F8 microprocessor system. It should be of particular interest to those intending to design with the F8, either as an evaluation system or as a low-cost development tool.

Price of the kit is quoted as $\$ 166.50$, plus tax where applicable. Kits are available from authorised Fairchild distributors in each state.

PLL's are the IN thing. Make sure when you design them in that you choose one from the Philips-Signetics range best suited to your application - study this list for a start.

[^4]ANDIF YOU REQUIRE SOMETHING DIFFERENT AND SPECIAL, DON'TFORGET OUR CUSTOM IC SERVICE
We have proven experience in custom design of PLL's for the Australian Telecommunications Industry and welcome enquiries for both Monolithic and Hybrid circuits.
Philips Electronic Components and Materials
Sydney
Melbourne 6990300
Brisbane ... 2774822
Adelaide... 2234022
Perth ... 213131
Philips Electronic Components and Materials, P.O. Box 50, Lane Cove. 2066

I am interested in Philips-Signetics PLL
Please send me information on
Type Nos.
Please have your rep call on me.
Name
Position
Clip to Company Letterhead

Electronic
Components
and Materials

Microprogramming module

For those who need to know the "inner mysteries" of microprocessors, including the way they execute instructions, Texas Instruments are producing a series of learning modules. The first of these to be released is the LCM-1001 Microprogrammer, designed to demonstrate the concepts of microprogramming.

by JAMIESON ROWE

Before describing the LCM-1001, it should perhaps be stressed that it is definitely NOT a microprocessor evaluation kit or development system. It is basically a teaching aid, designed primarily to demonstrate specific details of a microprocessor chip's internal operation, and perhaps to serve as a tool for the designers of specialised complex systems.

When the other modules in the TI series become available, it will apparently be possible to interconnect the LCM-1001 with them to produce both a functioning microprocessor, and ultimately a complete microcomputer system. But the resulting systems will be "micro" only in the sense that appropriate LSI chips will be buried within the various modules.

The LCM-1001 module itself is based on a $40-\mathrm{pin}$ LSI device called the SBP0400, which Texas Instruments describe as a "4-bit expandable parallel binary processor element". It appears to be essentially a 16 -function 4 -bit arithmetic and logic element (ALU) combined with a register file of eight 4-bit registers, two 4-bit working registers, and a factory programmed logic array capable of controlling the functions of these sections in response to 9 -bit instruction words.

The prime use of the SBP 0400 element is in making processors based on "bitslice" architecture. It provides a 4-bit wide slice of the main part of a processor, so that a number of units may be "stacked" to produce processors of any desired size -8 bits, 12 bits, 16 bits or as large as necessary.

To produce a complete microprocessor, the group of SBP 0400 devices must be supplemented by an algorithm controller. This is because the SBP 0400 is a microprogrammable device, capable of doing only one elementary task at a time. But it may be programmed to do any of the 512 tasks capable of being encoded by its 9 -bit instruction word, so that with a suitable algorithm controller a group of SBP 0400 devices form a very flexible processor.

What the algorithm controller does is take the operation code portion of the
"machine language" instruction words for the processor, and produce whatever is the correct sequence of elementary "microinstructions" necessary for the SBP 0400 devices to perform the required task. This is the technique of micropro-gramming-there is virtually a "computer within the computer", or more strictly a controller within the processor.

Many modern microprocessors use the microprogramming technique, which has the advantage that the instruction repertoire of the processor may be changed simply by changing the microinstruction sequences stored in the algorithm controller (usually in a ROM). With processors that are not microprogrammed the instruction repertoire generally cannot be changed without extensive and costly redesign of the processor chip as a whole.

It is basically the technique of microprogramming that the LCM-1001
socket for possible future interconnection to other modules. The power for the module comes from an internal rechargeable battery, with a simple rectifier circuit connected to a miniature jack socket to allow for battery charging. An external transformer unit is supplied with the module to provide the required 5.6 V AC , but as this unit is designed to plug directly into a 110 V outlet, it will not be of much value to Australian buyers.

The manual supplied with the LCM-1001 module is very comprehensive, although it does assume that the reader has a sound grasp of basic microprocessor operation and program-

ming.

All in all, the Texas Instruments LCM-1001 learning module would seem a very effective way of demonstrating the concepts of processor microprogramming. It should find considerable use in universities and colleges, and also in design labs engaged in the development of custom microprogrammed processor systems.

Of course it isn't really necessary to know how a microprocessor executes its instructions in order to use it or program it. So that the majority of people working with microprocessors and microcom-

The Texas Instruments LCM-1001 microprogramming learning module, complete with its construction manual. Later modules will deal with other aspects of processors and computer systems.

module is designed to demonstrate, using the SBP 0400 device as an example. Each of the control inputs, data inputs and data outputs of the device are brought out the LED indicators, and all inputs are provided with miniature toggle switches so that the device may be manually programmed. A pushbutton provides the clock signal input.

In addition, all of the SBP 0400 pin connections are brought out to a $40-\mathrm{pin}$ DIL
puters are unlikely to need the detailed knowledge that the LCM-1001 is designed to teach and demonstrate. In that sense it must be seen as a rather specialised learning tool.

Further information on the module and its planned companions is available from the local distributors for Texas Instruments, Instant Components Service, who have offices in Sydney, Melbourne and Adelaide.

An Introduction to Digital Electronics-10

Flipflops in counters

Apart from registers, the most common use for flipflops in digital circuits is in counters and frequency dividers. In this chapter we look at the various types of counter circuit, including ripple-carry, synchronous, up-down, ring and Johnson counters.

by JAMIESON ROWE

In many digital systems, there is a need to count the number of pulses which may occur at a given point. Quite a number of different circuits have been developed to perform this job, all of them generally given the title "counter". Nowadays just about all counters are based on flipflops. connected up in various configurations.

Before we look at the most common counter configurations, it is worth noting the difference between counting and two similar but slightly different operations: scaling, and frequency division.

When a circuit is used as a counter, we interpret its "output" as a numbergenerally a binary or BCD number - which continuously corresponds to the number of input pulses received by the counter input after the circuit has been reset or cleared. We expect to be able to examine the count at any time we choose, to see how many pulses have occurred

There are times, however, when we don't really need to know the count on a continuous basis. In fact it is sometimes sufficient to have nothing more than a guide to the rate at which input pulses are being received. This can be done by arranging for the circuit to simply deliver an output pulse each time a certain number of input pulses are received-say every 10, every 100 or every 1000 . A circuit used in this way is said to be "scaling" rather than counting, and would be described as a "scaler"

If a circuit capable of performing scaling is fed with a regular stream of input pulses-i.e., pulses having a fixed repetition rate-it will deliver output pulses which will also have a fixed repetition rate. But the output rate or frequency will be equal to the input rate or frequency divided by the scaling factor. In other words, the circuit will actually be performing frequency division.

Frequency division is merely a special type of scaling, if you like, where the input and output signals have a fixed repetition rate.

Most of the counter circuits we will be discussing in this chapter are also capable of performing scaling or frequency division, as required.

One more general point. It is usual to
classify counter circuits according to the number of input pulses which they are capable of receiving before effectively returning to their initial state. This is known as their "modulo factor". A counter which counts 10 pulses before returning to its initial state is thus described as a "modulo-10" counter, while one which counts to 16 before returning to its initial state is described as a "modulo-16" counter.

Another way of defining the modulo factor of a counter is to say that it

FIG. 1 RIPPLE-CARRY BINARY COUNTER-MODULO 16
describes the number of discrete counting states it provides. So that a modulo-16 counter provides 16 counting states, a modulo-10 counter 10 states, and so on. But note that the "clear" or all-zeros state is regarded as one of these states, and counted if it occurs.
The modulo factor of a circuit when used as a counter is numerically equal to its scaling factor when used as a scaler, and its division ratio when used as a frequency divider. So that a modulo-16 counter may be used as a $\times 16$ scaler or a divide-by- 16 frequency divider, and so on.

The simplest type of counter circuit is formed by connecting a number of T-type flipflops together as shown in Fig. 1. The input pulses are fed to the clock input of the first flipflop FF1, while the clock input of each successive flipflop is taken from the Q output of the preceding flipflop.

Fairly obviously, FF1 will change state upon the arrival of each input pulse, as they are fed directly to its clock input. However because the clock input of FF2 is fed from the O output of FF1, it will receive a complete "input pulse" only when FF1 completes a full reset-set-reset sequence. FF2 will therefore change state on every second input pulse.

Similarly because the clock input of FF3 is fed from the Q output of FF2, it will change state only for every fourth input pulse. And FF4 in turn will change state only for every eighth input pulse. The logic levels of the four flipflops for a sequence of input pulses will therefore be as shown in the truth table.

As you can see, the four flipflops effectively count the input pulses in binary fashion, with FF1 counting the units, FF2 the twos, FF3 the fours, and FF4 the eights. As a group the four flipflops are able to count up to 16 pulses before repeating the counting sequence. Hence this simple circuit may be described as a binary modulo-16 counter.

Because a flipflop takes a finite time to change state after being triggered at its

INPUT PULSES	O_{1}	$\mathbf{0 2}$	03	$\mathbf{0 4}$
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1
10	0	1	0	1
11	1	1	0	1
12	0	0	1	1
13	1	0	1	1
14	0	1	1	1
15	1	1	1	1
16	0	0	0	0

clock input, a counting circuit like that shown in Fig. I does not respond to an input pulse by immediately adopting the new count. If FF2 is required to change, it cannot do so until FF1 has changed its state; similarly if FF3 is to change, it cannot do so until FF2 has changed; and so on. The changes which take place following the arrival of an input pulse therefore tend to "ripple" down the counting chain, with the last FF tending to change somewhat after the first.

Counters using the simple scheme illus-
trated in Fig. 1 are therefore known as " ripple-carry" counters.
A simple ripple-carry binary counter of this type can be made with any desired number of flipflops, and will count to the corresponding power of 2. In general, a chain of " N " flipflops connected as in Fig. 1 will count up to the Nth power of 2 . So that five flipflops will count to 32 , six will count to 64 , seven will count to 128 , and so on.

While simple counters of this type are often used in digital circuits, there are situations where it is required to have a counter with a modulo factor which does not correspond to a power of two. One way of providing such counters is to start with a simple binary counter which has sufficient flipflops to provide the first binary modulo numerically larger than the required modulo. Then some form of feedback or gating is applied, so that the

INPUT PULSES	Q1	Q2
0	0	0
1	1	0
2	0	1
$3(0)$	0	0

FIG. 2 : MODULO-3 COUNTER
flipflops themselves. This is illustrated by the simple example in Fig. 2, which shows two flipflops connected to form a modulo-3 counter. Note the connection between the Q-bar output of FF2 and the

FIG. 4 ADJUSTABLE.MODULO COUNTER (SET FOR MODULO-11)
counter effectively "skips" some of the normal counting states, to provide the required modulo.
By using JK flipflops, the required gating can often be provided by the

INPUT PULSES	01	02	03	04
0	0	0	0	0
1	1	1	1	1
2	0	1	1	1
3	1	0	1	1
4	0	0	1	1
5	1	1	0	1
6	0	1	0	1
7	1	0	0	1
8	0	0	0	1
9	1	1	1	0
10	0	1	1	0
11	1	0	1	0
12	0	0	1	0
13	1	1	0	0
14	0	1	0	0
15	1	0	0	0
$16(0)$	0	0	0	0

Jinput of FF1, which forces FF1 to remain reset when FF2 is set.

A further example of the way gating may be used to provide counters with nonbinary modulos is shown in Fig. 3. Here three flipflops are used, connected to perform as a modulo- 5 counter. The gating used here is a little complex, with a connection from the Q-bar output of FF3 to the J input of FF1, a connection from the Q output of FF3 back to its own K input, and an AND gate at the J input of FF3 whose inputs connect to Q1 and Q2. You
might care to draw up your own truth table, to verify that this circuit does in fact have a counting modulo of 5 .

It is not always possible to use the J and K inputs to achieve the gating required for a given modulo. With some modulos, the easiest way of making the counter "skip" the required number of states is to arrange for an AND gate to detect when the counter has produced the required maximum count, and then reset all the flipflops via their R inputs.

This approach can be particularly useful where it is desired to be able to "program" a counter to any one of a number of modulo factors. This is illustrated in Fig. 4. As you can see, the output of the 4-input NAND gate connects to the R inputs of the flipflops, and is therefore able to reset the counter whenever all four of its inputs are taken to the true (1) logic level simultaneously. Each of the four gate inputs may be connected to either the output of a FF, or to the 1 level; by setting the switches S1-4 to the appropriate combination the counter may thus be given virtually any modulo between 1 and 15 .

With the switches set as shown, for example, the gate resets the counter whenever Q1, Q2 and Q4 are in the 1 state simultaneously. If you refer back to the truth table of Fig. 1. you will see that this combination first occurs immediately after the 11 th input pulse. Hence the combination of switches shown effectively turns the circuit into a modulo- 11 counter

So far, we have considered counters which begin counting from zero, and count continuously upward until the maximum count is reached. These are often called "up counters" or incrementing counters. It is also possible to produce counters to do the opposite, jumping from zero to maximum count on the first input pulse, and then counting downwards. Not surprisingly these are called "down counters" or decrementing counters

A simple ripple-carry down counter may be produced by connecting a chain of flipflops as in Fig. 5. Instead of connecting the clock inputs of the second and later flipflops to the Q outputs of the preceding FF, as before, they are now connected to the Q-bar outputs. This causes each FF to "carry-over" to the next whenever it sets. rather than when it resets.
By using gating, it is possible to produce a counter which may be programmed to count either up or down at will. by means of a control logic level. Not surprisingly, such counters are called "up-down counters"
While ripple-carry counters are adequate for many applications, there are

FIG. 5 : RIPPLE.CARRY DOWN COUNTER. MODULO-16

-that's where the money is!

Stott's course is totally comprehensive - and includes both sophisticated electronic equipment and project materials you need to gain a thorough understanding of servicing techniques
Divided into three self-contained sections, the course covers:
Part 1 - Introduction to Electronics (theory and practice) Part 2 - Monochrome Television Receivers Part 3 - Colour Television, including processing circuitry, service techniques, fault tracing and trouble shooting techniques Like all Stott's courses, you work with your own instructor who is an expert in this exciting and rewarding field, at your own pace, in your own home. It you are a beginner, Stott's will teach you everything you need to know concerning television principles and receiver circuitry. If you are already working in the field, or have completed some studies in electronics, you may be eligible to enter the course at an advanced stage. Whether your aim is to enter the TV service industry or whether you wish to gain a thorough understanding of television theory and servicing as an aid to sales experience, this is the course which will help you make it! Other electronics courses offered by Stott's include: Radio for Amateurs - Amateur Operator's Certificate

For full information mail this coupon today:

some situations where the progressive response of such a counter to the input pulses can cause problems. Mostly these arise because during the time taken for the changed input to "ripple down" the counter flipflop chain, the overall count present at the FF outputs may pass briefly through many spurious values.
Consider, for example, what happens when the counter of Fig. 1 has received 7 previous pulses, and then receives its 8 th pulse. First, FF1 will reset, giving the count " 0110 " for a brief instant. Then FF2 will reset, changing the count briefly to "0010". Then FF3 will reset, giving a further brief count of " 0000 " before FF4 finally sets to give the final correct count of "0001", or binary 8.

As you can see, the counter does not change directly from binary 7 to binary 8 , but briefly passes through binary 6 . binary 4 and binary 0 before reaching binary 8 . Although these "spurious" counting states may occur for only a small fraction of a micro-second, they may still be capable of causing trouble.

To cope with situations where a ripplecarry counter is not suitable, various types of "synchronous" counting circuits have been developed. As the name suggests, synchronous counters are designed so that all of their flipflop outputs change simultaneously, from one count to the next.

A simple modulo-16 synchronous counter is shown in Fig. 6, and you may care to compare it with Fig. 1. Note that here all of the FF clock inputs are fed with the input pulses, to ensure synchronous operation. The binary counting sequence is established by means of two AND gates, one a two-input gate feeding the T input of FF3 (G1), and the other a three-input gate feeding the T input of FF4 (G2).

The T input of FF1 is taken permanently to logical 1 , so that as before this element toggles on every input pulse. However, the T input of FF2 is connected to Q1, so that FF2 is only able to toggle on every alternate input pulse. Gate G1 then ensures that FF3 is only able to toggle on every fourth input pulse, when both FF1 and FF2 are in the set state. Finally G2 ensures that FF4 is only able to toggle when FF1, FF2 and FF3 are all set, which occurs only once in every eight input pulses.

The circuit of Fig. 6 thus counts in normal binary fashion, with a truth table exactly the same as that shown for Fig. 1. The only difference is that the circuit of Fig. 6 changes cleanly and synchronously between each of the counting states.

Both ripple-carry and synchronous counters may be provided with parallelload inputs, rather like the registers we looked at in the last chapter. This allows the counter to be preset, so that it effectively starts with a fixed count. A decrementing or down-counter provided with this facility may thus be used to count items in batches, by presetting it each
time with the required batch size, having it count down with the individual items, and ring a bell or otherwise indicate when its count reaches zero.

The counters we have looked at this far have been based on binary counting. There are other types of counters encountered in digital circuits, some of which can offer advantages over binary counters in some situations.

The most well-known counters in this category are the "shift counters", so name because they are based on shift registers. There are two basic types of shift counter: the ring counter, and the twisted-ring or Johnson counter.

Essentially, a ring counter consists of a simple shift-right register whose serial output is looped back and connected to

FIG. 6 : SYNCHRONOUS MODULO-16 COUNTER
logic 1, a single bit is loaded into the ring via FF1

The truth table shows how the circuit counts, by passing the 1 around the ring.

Ring counters of this type may be produced with virtually any desired modulo, simply by using the same number of flipflops.

FIG. 7 : MODULO 5 RING COUNTER

INPUT PULSES	O1	O2	O3	O4	O5
0	1	0	0	0	0
1	0	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	0
4	0	0	0	0	1
$5(0)$	1	0	0	0	0

its serial input, to form a ring. A suitable bit pattern is then loaded into the register, which counts by shifting the pattern continuously around the ring

Usually the bit pattern loaded into the ring is either a single 1 , or one less 1 than there are stages in the shift register-to give a single 0 , in effect. Both these patterns allow the ring counter to have a counting modulo equal to the number of stages in the ring, whereas other patterns tend to produce a smaller modulo.

Note that there must be at least one 1 and one 0 in the pattern, for the ring counter to work at all. If the "pattern" were all 1 's or all 0 's (scarcely a pattern in the usual sense of the word!), there would be no way of telling its position in the ring-so the counter would not work.

A simple modulo- 5 ring counter using D-type flipflops is shown in Fig. 7. As you can see, it is basically just a 5 -stage shift register with 05 tied back to the D input of FF1. However an "initialise" control line is provided, to set up the required bit pattern prior to counting. In this case the line connects to the S input of FF1 and the R inputs of the remaining stages, so that if the initialise line is taken briefly to

The Johnson or "twisted-ring" counter is like the normal ring counter in that it is formed from a simple shift-right register. However, in this case the serial input of the first FF is fed not from the last FF's

INPUT PULSES	O1	Q2	03	04	05
0	0	0	0	0	0
1	1	0	0	0	0
2	1	1	0	0	0
3	1	1	1	0	0
4	1	1	1	1	0
5	1	1	1	1	1
6	0	1	1	1	1
7	0	0	1	1	1
8	0	0	0	1	1
9	0	0	0	0	1
$10(0)$	0	0	0	0	0

Q output, but from its Q-bar output. This introduces a logical inversion or "twist" into the ring, because the first FF must always adopt the opposite state from that of the last.

The idea is shown in Fig. 8, which again shows a 5 -stage counter. However, if you
look at the truth table, you will see that this counter has a modulo of 10-twice the modulo of a normal 5 -stage ring counter. This is probably the main feature of Johnson counters: the logical twist gives them a counting modulo equal to double the number of stages in the ring, and hence twice the modulo of a normal ring counter.

Note that like the normal ring counter, the Johnson counter must be initialised, or loaded with a suitable bit pattern before counting begins. The pattern may be any of the combinations which normally occur during its counting sequence, although in most cases it is easiest to make it either all-1's or all-O's. In Fig. 8 the latter is done, by tying all the flipflop R inputs together to form a reset line.

The other main point to note about Johnson counters is that when the counter as a whole is operating at a particular speed, each of the individual flipflop elements is only called upon to toggle at the input speed divided by the modulo factor. If you look at the truth table in Fig. 8, for example, you will see that each of the flipflops only completes a full reset-set-reset cycle once in every ten input pulses.

This means that Johnson counters effectively multiply the speed performance of the flipflops used, so that quite modest devices can be used to count at impressive speeds-considerably higher speeds than those which the same devices normally would be capable of counting. when used in either binary counters or

FIG. 8 - JOHNSON OR "TWISTED RING" COUNTER
normal ring counters.
On the negative side, Johnson counters aren't suitable for counting in an odd modulo. This is because the modulo is twice the number of stages-so that only even modulos are possible, at least with the basic Johnson counter configuration.

VHF Maritime Mobile Service

As mentioned briefly in the "E.A. Year Book", a VHF marine service is now available in Australian waters. It provides a wide range of facilities, ranging from direct connection to the domestic telephone system, through a variety of commercial requirements, to non-commercial channels for boating clubs, life saving clubs, etc.

by PHILIP WATSON

The conditions under which the system operates are controlled by the PMG's Department and the Overseas Telecommunications Commission. The PMG's Department has laid down the technical specifications for the equipment to be used, the channels which are available, and the purpose for which each channel is to be used. OTC is responsible for providing and manning the coastal stations, including a 24 hour watch on the international distress frequency (channel 16).
Frequencies are designated according to internationally agreed channel numbers, and 17 channels have been allocated for the Australian system so far (see table). Of these, 12 are conventional simplex channels (both transmitters on the same frequency), and five are dual frequency channels to permit working into a standard telephone network.
A wide range of craft are entitled to use this service, there being five broad categories, as follows:
Port Operations:
Maritime services boards, harbour trusts, port authorities.
Commercial:
Oil refineries, tug companies, commercial marinas, island tourist resorts. Protessional Fishing:

Processors of fish, commercial purchasers of fish, catchers of fish. Non-Commercial:
Yacht clubs, life saving clubs, motor boat clubs, amateur fishing clubs.
Public Correspondence:
A telephone service available to all ship stations provided exclusively from government operated stations.
Regardless of how the other channels are allocated, channels 16 (international distress) and 67 (safety channel) are compulsory channels for any VHF marine installation. Similarly, channel 23 is essential before the installation can be licensed to operate into the domestic telephone network.

The permitted radiated power is specified as a combination of the actual
transmitter power output and the aerial gain over an isotropic; called the equivalent isotropically radiated power. For a coast station this is 83 W , for a mobile (ship) 41 W , and for a personal mobile 1W.

Assuming a dipole antenna, or one having a similar order of gain (2.1 dB), these figures correspond to an RF output of approximately $50 \mathrm{~W}, 25 \mathrm{~W}$, and 0.6 W respectively. Whatever aerial is used, it must be vertically polarised and omnidirectional.

Channel spacing is 25 kHz and maximum deviation $\pm 5 \mathrm{kHz}$. Transmitter audio response is to be 6 dB per octave pre-emphasis from 300 to 3000 Hz , and the receiver is required to have a

Fairly obviously, a VHF system can never be regarded as a long range one. With all VHF systems, the range is limited to only a little more than line of sight, or the horizon. The power allocated should be adequate for such distances, so that the final performance depends very much on the height of the aerials at each end.

A range of not less than 30 km should be expected between a ship and a coast station, possibly extending to 80 km under favourable conditions, and even 120 km under exceptional conditions. Ship to ship working would normally be less, if only because aerial height is restricted. A range of not less than 15 to 20 km should be expected, increasing under favourable conditions. For fairly obvious reasons, these figures could be markedly reduced if a ship is in a sheltered bay or estuary, rather than on the open sea.

While a restriction in one sense, this limited range has the advantage that interference from other users on the same channel will be reduced to a minimum.

The PMG's Department lists six specifications under which equipment may be type approved. Two of these, RB274 and RB275, cover two frequency operation, such as required for the domestic telephone network. The other four, RB297, 273, 274 and 275, cover single frequency (simplex) working only. These specifications are likely to be changed after 31st December 1976 and all new installations will have to meet the new specifications. Equipment already licensed will, in other than exceptional

A typical mobile marine FM radio telephone unit as approved by the PMG's Department. It operates from a 12 V DC supply, generates 25 W RF output, and can provide up to 10 channels. (Photo courtesy Weston Electronics Pty Ltd.)
complementary characteristic. In addition to the maximum power output which is permitted, transmitters must also have a reduced power output facility, maximum 1W. This is intended for short-range use to minimise interference to other users.

In certain circumstances aircraft may be licensed to use the specified VHF marine frequencies. Likely uses are in search and rescue activities or where aircraft are used in conjunction with marine activities, e.g., professional fishing. Such installations will be limited to maximum transmitter power 1 W , used at a maximum height of 300 metres.
cases, be permitted to remain in operation.

Commercial equipment which will meet PMG specifications is available from Australian manufacturers, and is expected to fall in the $\$ 600$ to $\$ 800$ price range. While this is a good deal more than 27 MHz equipment, it is still a lot less than the alternative HF SSB equipment, which typically runs around $\$ 1200$. In addition, by its very nature, the VHF system should give results, within its range, which are superior to either. Also, it provides for an internationally recognised distress channel, monitored at all times, which is not available in the

27 MHz band.

OTC is responsible for the land based stations which provide access to the domestic telephone network (public correspondence), and monitor the distress channel and safety channels. At the moment there is only one such land base. It is at OTC's coastal radio station at La Perouse, and covers the Sydney area. Similar stations are planned for other capital cities and at strategic points along the coast.

As already explained, channel 16 is the international distress channel, and channel 67 has been allocated in Australia as a supplementary safety channel. Channel 16 will be monitored by OTC staff at all times, and they will also issue weather forecasts, navigation warnings, etc., on channel 67 (0803, 1203, 1703 EST daily). Channel 67 will also be used as a working channel after a distress call has been acknowledged on channel 16, to keep the latter as clear as possible for other distress calls.

For the present, channel 26 will be used for public correspondence in the Sydney area, but boats may also fit channel 23 as an option.

The public correspondence service provides direct access to the telephonist via the OTC equipment at La Perouse. Calls may be made to any part of Australia, or overseas. The basic charge for ship to shore or shore to ship calls is $\$ 3.00$ for the first three minutes or part and $\$ 1.00$ for each additional minute or part. Trunk line charges or overseas charges
would be additional to these.
The system could, conceivably, function in the full duplex mode with both the transmitter and receiver on the ship operating simultaneously. However, this would require either separate aerials for transmitter and receiver, with suitable separation and filters to prevent energy from the transmitter desensitising the receiver, or a single aerial fitted with a

VHF MARINE CHANNELS

Channel	MHz	
6	156.3	
8	156.4	
11	156.55	
12	156.6	
13	156.65	
14	156.7	(Distress)
16	156.8	
23	$161.75 / 157.15$	(Public
24	$161.8 / 157.2$	
25	$161.85 / 157.25$	Correspon-
26	$161.0 / 157.3$	
27	$161.95 / 157.35$	dence)
67	156.375	
		Working)
70	156.525	
71	156.575	
73	156.675	
74	156.725	

suitable duplexer. The alternative arrangement, and the one which will most probably be favoured, is a semi-duplex mode whereby the on-shore party uses the telephone in more or less standard
manner, but the ship party retains the conventional press-to-talk technique.

Of particular interest to boating enthusiasts, particularly those with larger boats, is the non-commercial service. This is described in greater detail by the authorities as follows:
"Non-Commercial
"A VHF maritime mobile service between a specific coast station operated by a non-commercial organisation being representative of a readily recognisable group with maritime interests (e.g., a yacht club, life saving club, motor boat club, amateur fishing club or voluntary safety organisation, etc.) and associated ship stations or between ship stations in which messages, other than distress and safety messages, are restricted to those relating to the activities of such organisation and the operational handling and movement of vessels. Public correspondence is excluded from this type of service."

This means that a yacht club or similar organisation can set up its own base station for the benefit of its members and handle traffic relevant to club activities. It would not be allowed to handle third party traffic in any form.
Four channels have been allocated for the non-commercial service, including the mandatory channels 17 and 67. The other two are channels 73 and 70. Channel 73 is for ship to shore, and ship to ship working and is not shared with any other services. Channel 70 is for ship to ship working and is a shared channel. ©

MULTIMETERS
ANALOG

DC Volts: 6 Ranges to 1 kV
AC Volts: 5 Ranges to 1 kV
DC Amps: 6 Ranges 10uA to 10A
AC Amps: 1 Range to 10A
Resistance: 5 Ranges 0.1Ω to $200 \mathrm{M} \Omega$
$\mathrm{db}: 5$ Ranges to +62 db

- Diode Overload Protection

4 mm Terminal Sockets
Polarity Reversing Switch

Alternate Model 360TR incorporates Transistor Testing facilities.
Price: $\$ \mathbf{4 2 . 0 0}$ plus tax
"De-Luxe" Model MVA-100CN 100.000
ohms per Volt

Price only $\$ 37.50$. + Sales Tax 15%. Carrying Case $\$ 6.00+$ Tax. 25 kV Probe \$25.00 + Tax Temp. Probe $\$ 12.00$ + Tax.

DIGITAL
"Professional" Model HM35

Price only $\$ 150.00$. Sales Tax 15% including charger.

All units are supplied with leads, batteries and instructions.

A complete range of test instruments may be inspected at our Showroom and are available either direct from our Riverwood office, any leading wholesalers or ordered on the enclosed coupon. Please allow $\$ 2.00$ for packing, post and insurance.

University Graham Instruments Pty. Ltd., 106 Belmore Road, Riverwood, 2210.
Phone 53-0644

Berlioz Overtures: "'beyond praise"

BERLIOZ OVERTURES-Le Corsaire; Beatrice and Benedict; Le Carnaval Romain; Benvenuto Cellini; Les Francs Juges. London Symphony Orchestra conducted by Andre Previn. EMI compatible quadraphonic/stereo OASD3212.
For many years I have thought Colin Davis to be the world's finest interpreter of Berlioz' music. Now his authority is challenged by readings, different from his, but in my opinion even more in sympathy with the composer's passionate character. First, the sound in this issue is incomparably better than that in most of Davis' earlier recordings. Made for compatible quadraphonic/stereo it retains its superb quality on the stereo equipment on which I played it.

It makes Berlioz' magnificent-and original-orchestration sound even more wondrous. The Corsair takes flight in the very first bars followed by the lovely slow melody played in Previn's most caressing mood. Then comes the calculated recklessness of the pirates' attack, like an eagle circling before its final deadly swoop. You can hear the fierce cries of the engagement and the ultimate climax of victory. Its sense of excitement is quite overwhelming.

No one could desire a better contrast than the overture to Beatrice and Benedict that follows. It is, of course, based on Shakespeare's Much Ado About Nothing, a title which, as the notes point out, if used by Berlioz would have encouraged scornful comments by those unresponsive to his massive genius. It is full of the liveliest wit interrupted by lovers' quarrels and sulks. Yet one is never left in doubt as to the real affection that underlies these brief spats. It reminds one that Berlioz himself was a fervent, if often difficult lover. All this Previn captures unerringly, winning playing beyond praise.

Le Carnaval Romain lives up to its lively title, brimful of incidents, amorous and joyous. Couples flirt in the midst of revelling crowds. And Previn himself revels in all its verve.

Benvenuto Cellini opens rumbustiously in keeping with the character it depicts. After this Previn shows his complete familiarity with Berlioz' style in the following long legato passage played
with silken smoothness. The Berlioz' opera of the same name, though seldom played, has much to recommend it, though its best moments are to be found in the overture. Again Previn gives you a reading full of broad contrasts, each brought off without any elbow nudging. If you are acquainted with Cellini's memoirs you will immediately recognise this picturesque renaissance character's fine swagger.

The overture to Les Francs Juges is all that remains of an early unfinished opera. It was numbered by Berlioz Opus 3 but already shows much evidence of the composer's more mature style. Previn gets fine solemnity into the early part, making it sound like a weighty charge read out in court. The music has all the stiffness of court proceedings. Previn goes on to urgency in the following fast, but quiet passage, building it up to a beautifully prepared minor climax. The music then changes into dark threats, and all through the splendour of the recording again allows one to fully enjoy the Berlioz inspired scoring. And he did it all at the age of 23 . Very highly recommended.

BRAHMS-Trio in E Flat Major. Rudolf Serkin (piano); Michael Tree (violin); and Myron Bloom (horn).
SCHUMANN-Quintet in E Flat Major for Piano and Strings played by Rudolf Serkin (piano) with the Budapest String Quartet. CBS Stereo SBR 235770.
Although it is known as the Horn Trio, the piano has just as important a part as the named instrument. In the hands of Rudolf Serkin there need be no worry on that score. Nor is there much to be said in the way of criticism of the other two fine musicians, Michael Tree (violin) and Myron Bloom (horn).

Here is Brahms in his gentlest mood. The Trio was composed while he was staying in his beloved Baden-Baden-a retreat favoured by a much more recent composer, Pierre Boulez. The players capture the meditative mood of the work to perfection. The playing is technically impeccable and well recorded.

The unusual combination of instruments blend admirably, perhàps because of Serkin's unfailing command of dynamics and sonorities. The hypercritical might find a rare off-target intonation on the horn, otherwise the Trio is a fine piece to relax to. There are no worries, no flurries, and even the fast Finale is merry without being pushed.

The Quintet makes a fine contrast to the Trio. Impulsive, generous, spontaneous sounding Schumann has little in common with Brahms, especially in the meditative mood in which you find the latter in the Trio. The Piano Quintet is probably the most popular piece among Schumann's chamber music output, and is probably the most popular piano quintet in the repertoire today.

The original of this reissue is now about 10 years old, but the sound wears very well indeed. And again the whole

Beethoven-Symphony No. 3in E Flat

BEETHOVEN-Symphony No. 3 in E Flat. (The Eroica). The BBC Symphony Orchestra conducted by Sir John Barbirolli. HMV Stereo Concert Classic SOXLP 30209.
Just what Barbirolli had in mind when he recorded the first movement of this symphony is difficult to imagine. He starts with two hefty chords but then goes on to so suave a reading that it quite reduces the stature of the movement. He is so casual that he seems to take the whole exercise for granted.

This is not to say there is not much fine playing to be heard. It is his interpretation that is so off-putting. But play the rest of the symphony and you will be delighted with everything Barbirolli does. In the second movement, the Funeral March, he conveys a depth of sadness more moving than in any other reading I have heard. Yet he achieves this without any sacrifice of the music's grand dimensions.

The other two movements maintain the same high standard of playing and interpretation. The Scherzo is a peerless example of perfection of judgement of tempos and contrasting dynamics. Though completely different in mood from its predecessor it never sounds trivial.

The Finale starts with magnificently authoritive introductory bars. Its unusual form, a combination of variation and fugue, merge without any signs of a seam and the vitality is extraordinary in the quietest passages. The movement ends on a note of triumphant acclamation.

If only the first movement had been more in rapport with what follows no praise of mine could be high enough to do justice to this remarkable re-issue. It was originally put out some eight years ago and the sound is still fine. My advice is to put up with the disappointment of the first movement and go on to the delights of the other three.
is dominated by Serkin though he，at all times，blends perfectly with the strings． He is audible－and immensely authorit－ ive when necessary，but disappears discreetly when his part calls for single accompaniment．The original Budapest members were at their best when this record was made，their small lapses giv－ ing the performance a true air of cham－ ber music－the music of friends．They play so freely that there are occasional ragged ensembles，some roughness in the leader＇s tone，and occasional off－ target intonation．These are however， always minor and I feel churlish even to mention them．

WALTON－Symphony No．2．Variations on a Theme by Hindemith．The Cleveland Orchestra conducted by George Szell．Odyssey Stereo ODA5062．
The late George Szell，with his unique persistence on precision in everything he conducted，was an excellent choice for the Walton Symphony．The Second Symphony is one of my least liked Wal－ ton works．I do not think it compares at all favourably with either the First Symphony or the Viola Concerto．I must admit however that it does improve，if only slightly，to repeat performances and I can＇t imagine it being in better hands than Szell＇s．It is only rarely that recent music is prepared with the care that Szell makes manifest here．Even if the scores are not familiar to you－and the Hin－ demith Variations is a very rarely heard piece indeed－here is playing by the then famous Cleveland Orchestra that is peerless in its exactitude．Szell was often accused of demanding this precision at some cost in warmth of interpretation． Surely lack of effusion would have been a more appropriate term．In any case if you feel it necessary to make yourself well acquainted with these two seldom heard works I doubt that you will find better performances than you do here． The engineering is of matching pre－ cision．

TCHAIKOWSKY－Symphony No． 5 in E Minor．The Cleveland Orchestra con－ ducted by George Szell．Harmony Stereo Cassette HMC543．
George Szell，now dead some three or four years，was in life one of the coldest men I ever met．And this temperament was reflected in his music．Under his 20－odd years martinet regime he brought the Cleveland Orchestra up to a standard of matchless precision．His readings tended to be on the cool side but always of classic proportions．

Frenzy was an emotion quite alien to him．

In Brisbane，during his only visit to Aus－ tralia at the beginning of the war，he managed to restrain himself in the band
room even after a cellist had continued to play an extra bar all by himself at the end of Franck＇s Symphonic Variations．
Szell＇s strongest fortissimos were always under the strictest intellectual control．Yet he never failed to present a moving performance of everything he played．I wonder how many readers remember his inimitable recording of Dvorak＇s New World Symphony issued on 78＇s back in the middle 1930s．I still recall it with the greatest admiration．

Szell was a connoisseur＇s conductor and on one occasion，when I heard him conduct the Cleveland in Vienna，every other conductor of note there for the Festival attended and awarded him the same close attention that I did．Over many years CBS tried to＂popularise＂ him but without spectacular success among the record buying public．He remained as reserved as a box at the old Metropolitan．

All the more surprising，then，to find him delivering so passionate a perform－ ance of Tchaikovsky＇s Fifth．By this I don＇t mean that he used the occasional extra－ vagencies of a Bernstein or a Stokowsky， but he never failed to wring the last grain of emotion from the score．If you listen to this great performance carefully you will find that he brings it all off by an incomparable use of drama．And listen－ ing to it with the utmost care I could not find a single bar that failed to preserve the peerless accuracy to which he had trained his orchestra．

This cassette is not Dolbyed but the sound is quite good just the same，with a minimum of background noise．Some－ times Szell＇s tempos differ from those of most of his competitors but they always sound just right in their context．The slight wiriness of the strings can be bal－ anced against enjoyment of the elegant phrasing．There is excellent stereo sepa－ ration but no ping ponging．

Szell changes instantly from the utmost forcefulness to the most delicate dainti－ ness without a hint of a jolt．Every bar is as shapely as it is logical，although steely control can be detected under－ neath it all．Here is complete freedom without license in a glorious perform－ ance－the best I can remember．

If you want to sample the cassette try the beginning of the slow（2nd） movement leading to the lovely tone and exquisite shape of the French horn play－ ing，followed by the thin，plangent notes of the oboe．Yet beauty is never sacri－ ficed to sentimentality，for sentimentality was as alien to Szell＇s music as was cor－ diality to his social manner．After these few bars of the second movement go on to the delicious slight changes of tempo and dynamics in the Waltz（3rd）move－ ment．And despite the enormous intel－ lectual power of the Finale you will come across no lack of refinement．

In many quarters Szell was perhaps the most consistently underrated conductor of this century while in others his death was an irreparable calamity．
> ＂Remarkably good speaker for the price， very subtle，well balanced tonally and a delight to listen to． Good for both classical and modern music＂．

－Popular H－FF，July 1975.
 （1）
MONITOR AUDIO
MA 7
The best sounding \＄269＊pair of speakers you can buy！

SPECIAL PURCHASE-NEw garrard record changers at a fraction of list price

New C800 STEREO AMPLIFIER

GARRARD ZERO 100
TRANSCRIPTION CHANGER.

\$80.00!

(Normal recommended retail price \$198.00.)

AUTOMATIC OR MANUAL

OPERATION
Variable speed control with illuminated stroboscope. Supplied with Pickering AM2 magnetic cartridge \& diamond stylus.
Post \& packing (reg. post) N.S.W. $\$ 4.50$. Vic. S.A. \& Old $\$ 5.75$, Tas \$6.50, W.A. \& N.T. $\$ 8.75$.

The heavy $11 \frac{1}{2}{ }^{\prime \prime}$ diecast dynamically balanced two speed ($331 / 3$ \& 45 RPM) turntable is driven by the famous Garrard Synchro-Lab synchronous 4 pole motor. Incorporates the Garrard parallel tracking pick-up arm which is internationally recognised for its negligible tracking error. This arm has an integral magnetic bias compensator and will accept cartridges requiring a stylus force as low as 0.75 gm . Stylus force setting is simple \& accurate. A viscose fluid damping queueing system is used with convenient finger tip tab controls.

Garrard 6-400 Record Changer
 \section*{SPECIFICATIONS}

\$28.50

Recommended retail price $\$ 48.00$

 (POST \& PACKING SAME AS M82)Fully automatic turntable plays up to six records automatically and single records automatically or manually as required 10" turntable Bias compensation. Cue \& pause control with damped action. Record speeds $331 / 3,45$ and $78 \mathrm{rev} / \mathrm{min}$ Finished in black with silver trim. Player and changer spindles supplied
Supplied with high quality Garrard/Sonatone Ceramic Cartridge with Diamond stylus.
Bases in walnut or teak with perspex covers available.

New MAGNAVOX—MV5050 WATT SPEAKER SYSTEMS

 Complete kit of parts (less cabinet) d 720 As featured comprising Magnavox $10-4010^{\prime \prime} \mathrm{Y}<20$ Feb. 1976 bass unit. 625 mid range $6^{\prime \prime}$ two XJ3 dome tweeters, crossover network, innabond. speaker silk \& plans of cabinet

DRIVE UNITS: Magnavox $8-30$ high per-
formance $8^{\prime \prime}$ bass unit. Magnavox $6 \mathrm{~J} 6^{\prime \prime}$ mid range speaker. Magnavox new high fidelity dome iweeters (two supplied). SPEAKER KIT: (less cabinet) comprises above speaker, 1 mh inductance, 18 mfd
and 14 mfd . polyester capacitor, 1-3" and 1-6" tube, innabond, speaker silk and plans of cabinet.

> Post \& pack
> (rog. post) 86.50
> W. A 1050

> Cabinets available

Lighter Side
 Reviews of other recordings

Devotional Records

NEW FRIENDS. Carol Lawrence. Stereo, Word, WST-8689-LP. (From Sacred Productions Aust, 181 Clarence St, Sydney and other capitals).
Carol Lawrence, as pictured on the jacket, is a very personable lass, a talented popular vocalist and one who is warmly commended in the notes by Kurt Kaiser, Pat Boone and others less familiar in this country. Her first number suggests that the program to come will be of the up-tempo variety but the next three tracks are much quieter, revealing other aspects of her talent. Then there's more up-tempo, and some more quiet numbers to round off the program.

The track titles: Someone Who Can-Oh How He Loves You And MeClean Before The Lord-All The Time In The World-Friend Of The Father-Lord Send That Morning-Lover Of The Children-Simple Gifts-In The GardenLead The Way.

Having listened to the program I was at a loss for appropriate comment. Talented, versatile and experienced, I imagine that Carol Lawrence would have a very strong personal and audience appeal but I'm less sure about the appeal of the record in isolation, to an audience to whom she is just a name. Nor is the impression helped by her interpretation of the one traditional number "In The Garden" complete with a key change that seems as unnatural as it's unnecessary. Maybe the planning has focussed too much on the performer and not enough on the intended audience, I'm not sure. Best you listen for yourselves. (W.N.W.)

THAT THE WORLD MAY HEAR. Jimmie McDonald, Stereo, Sacred LPS-4518. (From Sacred Productions Aust, 181 Clarence St, Sydney and other capitals. \$4.50.)
If Jimmie McDonald can sustain the performance in this, his first solo album, he'll certainly be making quite a few more. In style, and in his choice of numbers, he is strongly reminiscent of Bev Shea and he wil! appeal to the same audience who like well established hymns, sung with apparent sincerity and modestornamentation. Jimmie

McDonald also has a powerful baritone voice and some of his phrases sound remarkably like those of Bev Shea but, whereas Shea's voice extends downwards into the bass range, Jimmie McDonald's range is more upward into the operatic tenor sound with (careful) just the faintest trace of stretched pitch on occasional high notes.

Settle back and enjoy these numbers, very well sung: Tell Me The Story Of Jesus-This Is My Father's World-He's Got The Whole World In His HandsWhen God Is Near-I Must Tell JesusWho Is On The Lord's Side-Lord I Want To Be A Christian-O Love That Will Not Let Me Go-Precious MemoriesUnworthy.

The recording is very clean both in terms of surface noise and by its lack of distortion. (W.N.W.)

LORD OF THE DANCE. Franciscus Henri. Stereo, Crest CRT-12-SLP-032. (From Sound \& Film Enterprises Aust, 122 Chapel St, St Kilda, 3182.)
According to a note from the distributors, this album was prompted by Franciscus Henri's commercials for the Christian Television Association. The credits indicate that he does the vocal solos throughout, plus guitar and percussion when appropriate. Other members of the group are named, with "The Proclaimers" providing choral backing.
The sound could be classed broadly as popular through to soft rock, not too offputting for traditional ears, but with its most obvious appeal to the rock generations. The lyrics are a mix of Cospel themes, and social and environmental comment: John-Lord Of The Dancelesus Is A Soul Man-This Little Light Of Mine-Morning Has Broken-My Father's Mansion-Suzanne-I Knew Jesus, Before He Was A Superstar-A Song For Jenny-Hymn-Tell It All Brothers-He Ain't Heavy, He's My Brother.

The performance is notable for the excellent diction throughout, so that the listener need never be in doubt as to the message behind the titles. Quality is excellent, with the solo voice projected from centre stage. Excellent modern style Gospel. (W.N.W.)

MONITOR AUDIO MA5 Series II The best sounding $\$ 425^{*}$ pair of speakers you can buy!
-ค.ค.P. (Stands extra)

Sole Australian Distributors

Head Office, W.A.: 155 Railway Pde., Leedervile, Western Australia, 6007. Phone 812930.
I.S.W. Office: 100 Walker Street, North Sydney, N.S.W. 2030. Phone $\$ 224037$. VICTORIA Offics: 103 Pelham Street, Cartion, 3053. Phone 3477620.

Educal Video Game

FIGURE 1

4

COMPLETE

ASSEMBLED
PRICE
(p.p.... \$3.50)

FIGURE 2

FIGURE 4
FOUR GAMES WITH "TRIPLE" SOUND AND SCORING RIGHT ON YOUR TV SCREEN.

FEATURES

* 4 Selectable Games - Tennis, Hockey, Squash \& Practice.
- Automatic Scoring.
- Score display on TV screen, 0-15.
- Selectable Bat Size.
- Selectable Anqles.
- Selectable Ball Speed.
- Automatic or Manual Ball Service.
- Realism Sounds.
* Forward Man in Hockey Game.
- Visually defined area for all Games.

GAME DESCRIPTION

TENNIS

The game will appear on your acreen as ahown on figure 1. It is played by the players who use the left and right padd. le controllers to vertically raise or lower their paddles. Play starts upon depressing the reset switch which causes the score to reset to $0-0$ and when the manual serve switch is in the automatic position will serve the ball from either the left or the right court. The player who is served must hit the ball back to his opponent, who must then return it. When either player misees his shot, a point is scored for his opponent and the next ball is served to him from the opponents court. Scoring is automatically displayed. The game ends with the first player to reach 15 points.

HOCKEY

This game will appear on your screen as shown on figure 2. Hockey, while similar to tennis, is a much faster and more exciting game. Each player controls his 'GOALIE who moves in a vertical motion, and one forward MAN who also moves vertically. These MEN move up and down as a group. As in tennis, the opening serve comes cross-court to either player on a random basis. Further serves are to player who has just lost a point. Since each player has two MEN who can retum the puck, the play is very fast. Sconing is the same as in tennis - first player to reach 15 points is the winner.

SQUASH ${ }^{-}$

Squash consists of a court as depicted in figure 3. It plays identical to tennis except only one player operates at a time and both are on the same side of the court playing apainst the opposite wall. After the ball is served the left player must hit the ball first and then alternates between the two players. This action continues until a point is scored. The object of the game is to keep the ball in play by continuously hitting it to the back court wall. The ball can be reflected off 3 sides - the top, botton, and left wall. Again the first player to score 15 points is the winner

PRACTICE

This game is almost identical to squash exept that it is played by a single player with a single paddle as shown on figure 4. And only one side will score points.

ACTION SOUNDS

In all games three types of sound are heard
a) Sound when the ball reflects of boundaries.
b) When the ball hits a paddle.
c) When a score is made.

Enquiries to:-Educal, 21,Wells Avenue, Boronia, Vic. 3155. Tel:-762-5713

Instrumental, Vocal and Humour

NUTCRACKER SUITE (TCHAIKOVSKY); PEER GYNT SUITE (Greig). The Boston Pops Orchestra conducted by Arthur Fiedler. Decca Phase 4 stereo PFS 4352.
This album caught me in just the right mood-after a long day in the garden and with nothing of particular interest on television. It was just so easy to get into the spirit of Tchaikovsky's "Nutcracker" and the familar excerpts: Miniature Overture; March; Dance Of The Sugar Plum Fairy; Trepak; Arab Dance; Chinese Dance; Dance Of The Reed Pipes; Waltz Of The Flowers.

Greig's "Peer Gynt Suite" occupies side 2 and starts with that very relaxing "Morning", followed by "The Death Of Ase", "Anitra's Dance", "In The Hall Of The Mountain King", and "Solvejig's Song"

While the melodies will be familiar to most, helpful jacket notes identify and explain the context of each track-still a bonus one gets with discs as distinct from the average pre-recorded cassette.

Technically, the surface is quiet and the frequency response wide but the strings seemed a trifle edgy to my ears. But I still enjoyed listening to it. (W.N.W.)

THE WORLD OF SCHUBERT. Decca SPA

 426.This record gives one an excellent insight to the music of Schubert, ranging from his "Unfinished Symphony" to his adaptation of Shakespeare's words in "Who Is Sylvia".

The other tracks are: Little Hedgerose-The Trout QuintetWhither, from The Fair Maid Of The Mill-Octet in F Major-Moments Musicaux No 3 in F Minor-Swan SongBallet music from RosamundeImpromptus No 4 in A Major-Piano Sonata No 18 in G Major-Ave Maria.

Some of the artists featured read like a Who's Who of the musical world with such names as Joan Sutherland, Stuart Burrows, John Constable, Clifford Curzon, Tom Krause, Hermann Prey, Vladimir Ashkenazy, The London Philharmonic, The Vienna Octet, The Swiss Romand Orchestra, The Ambrosian Singers and the New Philharmonia.

Except for "The Trout" which is recorded at a low level, and suffers a little from tape hiss, the overall quality is very pleasing. (N.J.M.)

STOKOWSKI: TCHAIKOVSKY FANTASIA. Various orchestras. Stereo, Decca Ace of Clubs SDDA- 454.
Assembled, presumably, irom Decca's library of Stohowshi recordings, this budget priced A ee of Clubs album contains a sampling of Thaikovshy worhs as under: Overture, Fantasia, Romeo \& Juliet (L'Orchentre de la Suisse

Romande); Marche Slave (London Symphony Orchestra); Waltz irom "Swan Lake"; Waltz from "The Sleeping Beauty", both these by the New Philharmonia Orchestra; 1812 Overture (Royal Philharmonic Orchestra, Welsh National Opera Chorus, The Grenadier Guards Band, the John Aldis Choir.

In all tracks the frequency response is as expected from a Decca firr recording but, in some of the tracks at least, the quality is a little on the coarse side. But, after all, it is a budget priced recording and it does contain a sampling of the dynamic conducting of the almost legendary Stokowski. Whether or not you buy it will be a personal decision based on these considerations. (W.N.W.)

KARAJAN CONDUCTS TCHAIKOVSKY

 Sleeping Beauty, Swan Lake Ballet suites. HMV SOXLP 30200.This delightful record gives you two of the best known ballet suites plus "The Dances Of The Persian Slaves" from "Khovantschina" by Moussorgsky. Although not the most recent performances, having been recorded in 1959 and 1961, the quality is excellent, with an airy, spacious sound about, particularly in "Swan Lake". I feel the record companies are doing music lovers a service in bringing out records of this nature, often introducing people to some of the best performances on disc that they may have missed in earlier releases.
"Dances ()f The Persian Slaves" is a marked contrast to the other music, with it's moody Eastern theme, but it is still a pleasant ending to a thoroughly enjoyable pertormance by The Philharmonia Orchestra. (N.J.M.)

GEORGE GERSHWIN, A Portrait In Music. MCA Coral COPS 7807 Astor release.
This two-record set of Gershwin's best known compositions should be high on the list for anyone with even a passing interest. With performers such as Les Brown, Judy Garland, Percy Faith, Sammy Davis Jr., Artie Shaw, Gertrude Lawrence, Ella Fitzgerald, Jess Stacie, Conley Graves Trio, Carmen McRae, Jerry Lewis, McGuire Sisters, Peggy Lee, First Modern Piano Quartet and Liberace. And tunes like; I Got Rhythm-Swanee-Embraceable You-Oh Lady Be Good-Fascinating Rhythm-Liza-SummertimeRhapsody In Blue; it's a real feast.

The quality varies from track to track, but with some of the original recordings dating back to 1943 this can be forgiven (N.J.M.)

ROGER WILLIAMS: VIRTUOSO. Stereo, MCA (Astor) MAPS 8327
Featuring the noted pianist Roger Williams, this excellently recorded album

"The MAA's would probably be most people's choice threugh asmoother, vitually liquid treble and extended hass" (1)

MONITOR AUDIO
MA 4
The best sounding \$649* pair of speakers you can buy!
-R.R.P. (Siands extra).

Sole Australian Distributors
LEAOMA
INDUSTRIESP「\%
Head Otfice, W.A.: 156 Railway Pde. Leederille, Western Australia, 6007. Phone 812330.
N.S.W. Otfice: 100 Walker Street, North Sydney, N.S.W. 2050. Phone 9224037. VICTOAIA Office: 103 Pelham Sreet, Carton, 3053. Phone 3477620.

 SOUNDOUT SERIES III STEREO INBUILT AMPLIFIERS IN ALL MODELS
 DISCO SCENE '76

To make your Disco alive Call the experts at Cashmore Sound

- 3 professional discotheque portable units
* Series Ill mono (170 watts)
- Series VI mono (170 watts)
- Series III stereo (2×170 watts)
- Mirror balls
- Motors
* Light Units (coloured)
- Colourtron Amplifiers
- Rope lights
- Strobes
* Smoke genies
* Bubble machines
- Projectors
* Jingle machines
* Speaker enclosures-manufactured
* JBL-Altec-Etone
- Portable disco stands
* Microphones-SHURE-AKG. etc.
- Amplifiers-CROWN - H/H-BOSE etc.

DEMONSTRATION IF REQUIRED Sales-Hire—Installation-Service-Top D.J.s Available DEALERS REQUIRED IN ALL STATES FOR FREE CATALOGUE-PHONE-WRITE-CALL Showroom Office

CASHMORE SOUNDOUT DISCOS

149-151 Georges River Road, Croydon Park, N.S.W. 2133. Telephone: Sydney, 798-6782 798-5647.

LIGHTER SIDE

makes for some very pleasant listening indeed. There is sufficient variation in style and pace throughout the album to maintain listener interest, although there was one track that didn't particularly appeal. I refer to the "Theme from Rollerball" which contains some rather "way-out" electronic music.

However, the other nine tracks more than make up for it, the rendition of "Stranger in Paradise" being the most notable.

Tracks featured are: Theme from Rollerball-Could it be Magic-Rock and Roller Bach-Country Concert-Jesu Joy-Stranger in Paradise-Nutrocker-Bolero-l Hear a Symphony-Roger's Bumble Bee. (G.S.)

LIVE DANCING IN AL CAPONE'S BALLROOM. MCA MAPS 8197, Astor release.
The basic idea, as conveyed by the title, is novel enough but the gimmick is overdone by the addition of an excessive crowd sounds, compere's voices and so on to what would otherwise be an interesting collection of "oldies"

There are 28 tracks in all, from people such as the Mills Brothers, Louis Armstrong, The Andrews Sisters, Bill Haley and The Comets, Teresa Brewer, the Modernaires, Glen Miller, Count Basie, Ella Fitzgerald, Buddy Holly etc., but they are all cut heavily to make room for machine gun fire, police sirens, etc.

I couldn't help but feel that people genuinely interested in the material would enjoy it better without such a heavy overlay. (N.J.M.)

THE SLIPPER AND THE ROSE. EMI EMC 3116 Stereo.
This sound track recording from the recent film based on the Cinderella story features plenty of well known talent with Richard Chamberlain, Edith Evans, Margaret Lockwood and Kenneth More, together with newcomer Gemma Craven in the star role.

Fifteen tracks cover the story from; The

IDEAL GIFT FOR MUSIC LOVERS . . .

DEGG日

 record brush

 record brush}

1,000,000 CONDUCTIVE BRISTLES no anti-static fluids needed

The new DECCA Record Brush consists of a million tiny fibre 'bristles'. As you brush the record surface, upward of a thousand bristles' enter each groove and remove more dust and grit than any other product available. In addition each 'bristle" is electrically conductive. Static on the record is removed as you clean, without the aid of special fluids.

- $\$ 12.50$ at leading Hi-Fi stores $\&$ record bars.

Australian Agent: British Merchandising Pty Lid., 49-5i York St Sydney
Ph. 29-1571.
-Recommended retail price

Overture-Why Can't I Be Two PeopleWhat Has Love Got To Do With Getting Married-Once I Was Loved-What A Comforting Thing To Know-Protocoligorically Correct-A Bride Finding A Ball-Suddenly It Happens-Waltz Theme-Secret Kingdom-He Danced With Me-She Danced With MePosition and Positioning-Tell Him Anything-I Can't Forget The MelodySecret Kingdom.
I haven't seen the film but friends who have say it is a delight; if the soundtrack is any guide I would agree with them. (N.J.M.)

LEE HOLDRIDGE CONDUCTS THE MUSIC OF JOHN DENVER. Stereo. RCA Victor BHL1-1366.
I have long been an admirer of the music of John Denver. His songs invariably reflect the simple pleasures of life, all too often forgotten in our bustling citiesthe countryside, sunshine, and nature.

The magic of some of these songs is captured here on this disc recorded by a very competent instrumental group under the direction of Lee Holdridge. A wide dynamic range is a feature of some tracks, although the overall mood of the album is one of relaxation.

Track titles are: Rocky Mountain High-Goodbye Again-Late Winter, Early Spring-Annie's Other Song-My Sweet Lady-Sunshine On My Shoulders-Follow Me/Leaving On A Jet Plane-Annie's Song-Calypso-Fly Away-The Eagle And The Hawk.

All in all, a very enjoyable listening experience. Recording quality is excellent. (G.S.)

FIRST CUCKOO. Eumir Deodato. MCA Records MAPS 8077. Astor release.
Eumir Deodato and his fellow musicians play a very funky brand of music, based on many varied styles. The title track of the album is an adaptation of Delius' "On Hearing The First Cuckoo In Spring", while at the other end of the range is "Black Dog", a Led Zeppelin number.

The range of instruments used is quite large, and even includes a cow bell! The overall result is very pleasing to the ear, with good solid bass and clean highs. Recording quality is excellent, so if you want a record to put your system through its paces, give this one a try. (D.W.E.)

THE WORLD OF MILIZA KORJUS. EMI OXLP 7616 Mono.
Judging by the photos on the jacket, the lady's surname should be spelt Miliza "Gorgeous"; the pictures, by the way, were taken from MGM's "Great Waltz" made in 1938.

The actual recordings that form the content of this disc were made in the period from 1934-1936 so you will have to forgive a certain patchiness in quality. There are fourteen tracks in all, including:

Aria Of The Queen Of The Night from The Magic Flute-Elvira's Aria from "Ernani" - Dearest Name from "Rigoletto"-Bolero from Sicilian Vespers-Shadow Song from "Dinorah"-Doll Song from "The Tales Of Hoffman"-Oriental Prayer from "Lakme" together with "The Bell Song" from the same work-Hymn To The Sun from "Coq D'or".

Most of the orchestral backing is provided by the Berlin State Opera Orchestra under various conductors and all the songs are sung in German. Considering the age of the original masters EMI are to be congratulated for an excellent job of remastering. (N.J.M.)

BEAUTIFUL NOISE. Neil Diamond. Stereo CBS SPB234777.
Neil Diamond is a singer/songwriter who certainly varies his style-one has only to compare this album with the legendary "Hot August Night" LPs to confirm this fact. But although the style differs, Neil Diamond fans should still find plenty to get enthusiastic about.

The album is, in Neil Diamond's words, "a series of recollections . . . seen through the eyes of a young songwriter making his way through the streets of New York City's tin pan alley in the early 1960s. It is made up of people, places and events..."

The best tracks on the album are undoubtedly "Beautiful Noise" and "Stargazer", both of which received plenty of airplay. Other tracks are: Lady-Oh-Don't Think ... Feel-Surviving the

Scottish Favourites

GOLDEN HOUR OF SCOTTISH FAVOURITES VOL. II. Stereo Musicassette, Astor. GHC-1062.
Hoots mon ... there are two things about this cassette to please the heart of anyone from north of the border-a full program of Scottish music, and the fact that it plays for a whole hour! But I jest. The hour spent passed very pleasantly for that part of my family group that does hail from the said area. A mixture of instrumental and vocal numbers, there are far too many to list but here are a few of them: The Tartan-Jigs Medley-Forty Shades Of Green (!) - Waggle O'The Kilt-Bonnie Wee Jeannie McCallScottish Waltz Medley-Loch Maree Islands-Sing Us A Song Of Bonnie Scotland-Scottish Trilogy.

With a toe-tapping community program like this, one tends not to fuss too much about quality but I certainly didn't notice anything to complain about, even though those responsible for compiling it must have had to tap quite a few sources. How else would they come across "The Muckin' O' Geordie's Byre", for which I had to seek a translation!
If you have a Scottish background, you'll surely enjoy it. (W.N.W.)
> ". . . it could prove to be an accurate reference speaker for checking the quality and balance of programme material".

- Gramophone, June 1974.
> "With the MA1, one forgets that one is listening to loudspeakers. Colouration is reduced to a level which we have met only rarely".
- Revue du Son, October 1974.

MONITOR AUDIO
MA 1
The best sounding $\$ 840^{*}$ pair of speakers you can buy!
-R.R.P. (Slands exira).
Sole Australian Distributors

INDUSTRIESPYY
Head Office, W.A.: 156 Railway Pde., Leedeville, Western Austraiia, 6007. Phone 812930.
N.S.W. Otfice: 100 Walker Steet, North Sydney, N.S.W. 2060. Phone 9224037. victorla oifice: 103 Pelham Street, Cartion, 3053. Phone 3477620.

NEW RELEASE!! collel cinne patarabolic cartrideso O PRECISION POLISHED NATURAL DIAMOND STYLUS ENGINEERED IN WEST GERMANY
 - GREATER CLARITY AND DEFINITION
 O REDUCED SURFACE NOISE
 - INCREASED STYLUS AND RECORD LIFE

After hundreds of hours of laboratory testing, G.H.E. in conjunction with the parabolic specialists, have selected this cartridge as that which most compliments the features of the precision parabolic stylus. In A/B testing with high quality cartridges costing over the one hundred dollar mark we believe that it parallels and exceeds their performance in subjective listening tests. Come in and compare for yourself with the G.H.E. multi-cartridge comparator.

G.H.E. Precision PARABOLIC SPECIFICATIONS

- Freq. Response -15 HZ to $25,000 \mathrm{KHZ}$ - OUTPUT - 7Mv 0 TRACKING ANGLE - $15^{\circ} 0$ CHANNEL BALANCE - within 1.5 dB 0 Tracking Force - 1 to 2 grams.

Price $\$ 53$ SPECIAL RELEASE OFFER!!!!!!
Free post and packing Australia wide-ENCLOSED IS CHEQUEFOR $\$$.
NAME.
ADDRESS.

LIGHTER SIDE—continued

Life - If You Know What I Mean - Street Life - Home is a Wounded Heart - Jungletime - Signs - Dry Your Eyes.

Recording quality is excellent, with negligible background noise. By the way, the cover on this album must be one of the most expensive ever produced-it's superb. Recommended. (G.S.)

CATERINA VALENTE. The Live Concert Album. Astor SPLP 1472.

The live concert atmosphere is well captured in this enjoyable record from Caterina Valente, recorded in London with an orchestra led by her brother, Silvio Francesco.

A pair of medleys take up most of side one, with such titles as: Senza Fine - Arriverderci Roma - More - Mulberry Bush - Girl From Ipanema - One Note Samba - Blame It On The Bossa Nova. Other tracks are: Before The Parade Passes By - Everybody Gets To the Moon - We've Only Just Begun - You've Got A Friend - Scarborough Fair - The Windmills Of Your Mind - Malaguena - Breeze And I - Canto De Ossanha - Leaving On A Jet Plane.

The Orchestra has an excellent big show band sound and could hold their own anywhere. (N.J.M.)

THE GOLDEN AGE OF SONG. Vol 4. EMI OXLP 7617.
With a title such as this you could expect a wide variation in quality but the performances, on average, outweigh this shortcoming. Some of the artists and their music are:

Paolo Silveri: Dio Possente - Miliza Korjus: Voices Of Spring - BBC Chorus and Orchestra: Grand March from 'Tannhauser' - Joan Cross: Mimi's Farewell - Jussi Bjorling \& Hjordis Schymberg: Lovely Maid In The Moonlight - Jan Kiepura: Tell Me Tonight - Covent Garden Opera Company: Brother Dear And Sister Dear - Jussi Bjorling; La Belle Helene - Maria Cebotari: O Habet Acht - Tito Schipa: Vivere - Luton Girls Choir: My Heart and I, Old Chelsea.

If you are old enough to remember these artists in their prime, this record will bring on an attack of the nostalgias! I guess that is what it is all about. (N.J.M.)

Pleasant background

PIANO AT COCKTAIL TIME. Pietro Dero. Stereo, Astor 3record set, SF-312.
At $\$ 5.75$ for a well packaged 3-record set, this has the potential to be very good value indeed. However, its true value to an individual record buyer will depend on the place he/she has in their listening for six sides of "cocktail time" piano.

The multi-fold jacket gives no information whatever about Pietro Dero but his name is curiously reminiscent of Peter Nero (pronounced with sinus) and he would appear to be from a similar physical mould! His style is typically that of an accomplished cocktail lounge pianist: rippling, heavy with ornamentation, pleasant if you want to listen, unobtrusive if you want to talk.

Much of it is done against a background of gentle rhythm - indeed so gentle and so regular that much of it could as easily be coming from an electronic "side man". More than that, many of the tunes are forced into the prevailing rhythm pattern. If you want to know how forced, try playing the traditional "Juanita" in strict waltz time!

As for the titles, there are actually more than double the number suggested by the " 30 Hits" on the jacket. They range from old traditionals like "Juanita" and "Greensleeves" through singalong favourites and stage melodies to a whole batch of "plus rhythm" arrangements of classical themes on the last side.
In short, the whole presentation is precisely what it purports to be: "Favourite music for cocktails and conversation". As such, it is quite successful. And technically? With the strictly controlled dynamics of a cocktail performance, the sound is very clean, very smooth. (W.N.W.)

JUNE BRONHILL, At The Opera House. M7 Stereo MLF 118
This lady needs no introduction to anybody, as one of Australia's best known singers, particularly in the field of operetta. This recording made recently at the Sydney Opera House could be regarded as a showcase of her remarkable vocal talent. There are thirteen titles in all, ranging from"Summertime" from "Porgy and Bess" to "Caro Nome" from Verdi's "Rigoletto". Others are the Overture from "Thus Spake Zarathustra" - Chacun Le Sait, Chacun Le Dit - My Hero - Czardas - Mein Herr Marquis - Ah Fors'e Lui Sempre Libera - Send In The Clowns Love Is Where You Find It - Bless This House - Villia - Shalom.

The recording carries the impression of a live performance very well and the Orchestra under the direction of Tommy Tycho, does an excellent job. (N.J.M.)
at the sound of a bell. Pavlov's Dog. Stereo. CBS SBP 234784.
This record is very unusual. First impression is that the lead singer of Pavlov's Dog has a very female sounding voice at first, but after listening to about half the tracks, one tends to forget about it. I guess this is just the conditioning coming out to which we are all subjected. My thoughts about conditioning were sparked off by the names of this album and the group, which were probably chosen for this very reason.

Returning to the record, however, I was quite impressed. All the tracks were composed by Pavlov's Dog, and all the lyrics are included on the album cover, so that you can follow it through. And, even though the instruments have a great deal of presence, at no time are the vocals drowned out.

In short, a very enjoyable record which is technically very good, with a wide range of sounds. The record will be heard best on a good quality system. (D.W.E.)

ANGEL. Angel. Casablanca NBLP 7021. Astor release.
Angel is a five man rock band, which I have not heard of before. This record commences with a burst of electronic wailing, which seems to come from all parts of the room at once-and that's only on a stereo system! I imagine that it would be even more spectacular on a four channel setup.

Similar effects seem to be absent from the remainder of the album, however, which is just straight, loud rock and roll. Tracks featured are: Tower-Long TimeRock \& Rollers-Broken Dreams-Mariner-Sunday Morning-On \& On-Angel (theme).

I found it difficult to pick out any tracks in preference to the remainder, they are all of a high standard. Technically, the record is O.K., but be warned that, to appreciate it, you need to have strong ears! (D.W.E.)
"So how does it all sound? In brief, fantastic! In more detail, the outstanding feature is a complete lack of strain with even the most crashing crescendos coming over easily ... particularly outstanding was the bass which can be characterised as having notable clarity, probably due to an almost total lack of confusing boom". - Popular Hi-FI, 1975.
"The first impression one gets when listening to the MA3 is one of physical presence, and this quality seems to be independent of the closeness of the recording. This may be attributable to the exceptional smoothness of its mid-range unit, together with the use of a very analytical tweeter". - Hi-FI and Audio, May 1975.

(12

MONITOR AUDIO
MA 3 The best sounding speaker you can buy at any price! They cost $\$ 1070^{*}$ a pair.

- R. R.P. (Stands exira).

Sole Australian Distributors:

LEROMA

INDUSTRIESP「Y゙
Head Office, W.A.: 156 Railway Pde., Leederville, Western Australia, 6007. Phone 812930. N.S.W. Office: 100 Walker Street, North Sydney, N.S.W. 2060. Phone 9224037. vICTORIA Office: 103 Pelham Street, Cartion, 3053. Phone 3477620.

New Products

for either the transmit mode only, the receive mode only, or both.

When using the internal VFO for both functions, in the normal way, a receiver fine tune facility is available which can vary the receiver frequency by up to $\pm 5 \mathrm{kHz}$, without altering the transmit frequency. The digital readout indicates either receive or transmit frequency as the set is switched from one mode to the other.

The set has an in-built 100 kHz crystal marker. The controls are so arranged that, initially, this marker may be calibrated against a standard frequency station, such as WWV. When so calibrated it may then be used to adjust the digital frequency counter for maximum accuracy.

Transmission may be either press-totalk controlled, VOX controlled, or held on by a switch position, as may be needed for test and adjustment. The VOX system is also used in the CW mode

This is a very versatile transceiver, offering many features not often found on amateur transceivers. It covers all HF amateur bands from 160 metres to 10 metres and, with one minor exception, the bands are broad enough to accommodate the differences between overseas and Australian amateur bands. The exception is the Australian 11 metre amateur band- 26.96 to 27.23 MHz -the set covering 27.00 to 27.50 MHz . There is also a reception position tuning across 15 MHz to cover WWV or other standard frequency stations.

The transceiver can transmit and receive on all bands using upper or lower sideband SSB, AM (single sideband, full carrier), CW, and FSK (RTTY).

Frequency selection is by a large central knob and the readout is a 6 -digit LED display. This can be read to the nearest 100 Hz at 30 MHz . The range of the VFO is approximately 500 kHz on each band and it requires approximately 35 turns of the knob to cover this range. (The 10 metre band -28 to 30 MHz -is covered in four steps.)

The digital frequency meter readout is to the left of the upper panel, with the VFO/ XTAL switch and monitor meter to the right. The lower controls are, L to R, Mode, Rx Gain, Tx Gain, Band, RF Tune, and PTT/VOX, etc.

As well as normal VFO operation, the set has provision for two crystal lorked frequencies. Also, it may be used with an external VFO in place of the internal VFO

MAJOR SPECIFICATIONS

to provide break-in operation. An antiVOX (anti-trip) circuit is also provided.

The transceiver is a hybrid unit, as is uuual for equipment of this general type. However, as well as using valves in the transmitter, it also uses three valves in the receiver. One is a 6BZ6 RF stage, one a 7360 low-noise beam differential mixer, and the third a 6EJ7 as a local oscillator. The makers claim superior cross modulation characteristics and less spurious heterodynes by using valves in this part of the circuit.
The transmitter uses four valves; a 6EJ7 driving a 6BQ5, which in turn drives two $6 \mathrm{SJ6Cs}$. A cooling fan is provided for the two latter valves.

The equipment may be powered from either the mains of a 12 V electrical system as in a car or boat. An inbuilt convirter is used in the latter mode and powers the cooling fan as well as the electronics. The required mode is selected by fitting the appropriate power cable.

Arix 360FTR multimeter has 34 ranges

As digital meters have improved in capability and reduced in price, so also have analog meters. This is demonstrated by the Arix FTR-360 which has a large multiscaled meter, many ranges, a facility for checking transistors and a high order of accuracy.

Sensitivity of the Arix 360FTR on DC ranges is 100,000 ohms per volt, while on AC ranges it is 10,000 ohms per volt. Measurement accuracy on DC ranges is claimed to be within $\pm 3 \%$ and $\pm 4 \%$ on $A C$ ranges. There are six DC voltage ranges, five $A C$ voltage ranges, seven $D C$ current ranges and one $A C$ current range at 10 amps . A fuse protects the meter when used on current ranges.

All told there are 34 ranges on the 360 FTR. Most of these are selected by the large rotary switch, while others are brought into play by the two auxiliary switches and by the additional sockets on the control panel.

The three red terminals are placed close together on one corner of the front panel to provide the transistor measurement facility. This is fine when transistors with long leads are to be measured, but is awkward with transistors having leads of length 13 mm or less, which is usually the case. A worthwhile refinement would be to add a transistor socket.

Base current in the beta measuring mode is about 25 microamps while maximum collector current is about 10 milliamps. Collector leakage current is checked at 3 V , which is the sum of the internal batteries. These conditions are okay for checking most small signal transistors.

A favourable feature of the transistor terminals is that the value of resistors can be measured by connecting them between collector and emitter terminals. This is easier than trying to measure a loose resistor with the meter prods. Of course the meter prods are still the best way of measuring components which are "in circuit".

In spite of the large number of ranges, the meter scales are, for the most part, easy to read. The exception is the Decibel scale, which has the smallest radius and consequently the most cramped calibrations. Also limiting the usefulness of this scale is the fact that the zero calibration is at the lower portion of the scale. Also the AC voltage ranges do not have a preferred sequence of $1: 3.16$ as normally found on AC millivoltmeters. This latter criticism applies to most multimeters so should not be construed as a particular drawback of this unit.

Accuracy of the unit was found to be particularly good. On the DC voltage ranges it was within 1% of full scale except on the 0.5 V and 2.5 V ranges,

where it was within 2%. Similarly, on the AC voltage scales, accuracy was within 2% of full scale. Resistance measurements were also within 2% using 500 as FSD. Midscale reading on the ohms scale is 20 so the meter is useful for resistance measurements down to a fraction of an ohm.
Frequency response of the $A C$ ranges was from 10 Hz to 100 kHz within $\pm 1 \mathrm{~dB}$. This is far better than that claimed in the instruction leaflet, to the extent that there must be a mistake in the specification.

Overall, we were impressed with the 360 FTR. It is a good all-round meter which is sure to become a work-horse. Price of the unit, complete with batteries and instructions, is $\$ 39.90$ plus 15% sales tax where applicable.
The Arix 360 FTR is available from electronic parts retailers or from the importers, Indeva Pty Ltd, 24 Bellevue Road, Bellevue Hill, NSW 2033. (L.D.S.)

APOLOGY

In the review on the Trio CS-1562 oscilloscope featured in the September issue, the price of $\$ 379$ plus sales tax refers to the model CS-1562 and not the higher performance model CS-1560. Our apologies to those inconvenienced by this error.

You only have to take one a year
 RECORDS CASSETTES

> Whether it's records or cassettes, World Record Club has much to offer you in all kinds of music - classical, light and pop! And you only have to take one a year - one record or cassette. Records from $\$ 3.65$ to $\$ 4.25$, cassettes $\$ 4.50$, you enjoy significant savings, whatever your choice. Send for details without obligation via the coupon below. There's no entrance fee, no catch, no hidden conditions. You order only what you want - and are sent only what you order.

TO: WORLD RECORD CLUB, 605 Camberwell Rd., Hartwell, Vic. 3124 1 Wakefield Street, Lower Hutt,
NZ P.O. Box 30-698
Please send me without obligation details of your programme on Record and Cassette.

[^5]ADDRESS

EA 15.11

LANTHUR ELECTRONICS

69 Buchanan Avenue. North Balwyn.
Vic. 3104 P. 0 Box 162. Ph. 854061

ELECTRIC DRILL

Speed controller kits. Will control speed down to stop of any ac / dc brush type motor No loss of torque Consists of triac. resistor, diodes. pot , knob. 3 pin base, plug $\&$ circuit 5 amp size (1200 watt) $\$ 8.95$
10 amp . size (2400 watt) $\$ 9.95$
Prices include postage

LAMP DIMMER KITS

Will control incandescent lamps down to out Consists of triac diac. capacitors. resistors. pot knob, ferrite rod, wire \& circuit 5 amp size (1200 watt) $\$ 695$
10 amp size (2400 watt) $\$ 795$
Prices include postage

PLASTIC CABINET

Suitable for above speed controller \& lamp dimmer kits \$1 55
Post free if with above kits otherwise plus postage. 0.40

ETCHING KITS

For printed circuit board All you need to make your own printed circuits. including a piece of board 6×4 inches, and instructions $\$ 495$ Prices includes postage

BATTERY CHARGER KIT

Will charge 12 volt wet batteries at 2 amps Consists of transformer, bridge rectifier, ballast resistor and circuit.
Plus postage Vic $\$ 1.10$
Other $\$ 200$

BATTERY SAVER KIT

Will supply dc voltages from 6 to 15 Consists of transformer, bridge rectifier, filter capacitor and circuit. One amp size \$8.50
Plus Postage Vic \$1 10
Other $\$ 2.00$
Two amp size $\$ 16.50$
Plus postage Vic $\$ 1.15$
Other \$2 50

SPEAKERS

Australian made M.S.P Good quality 4 inch 15 ohm
Price includes postage

Antenna Accessories from Ralmar

Ralmar Agencies Pty Ltd have released a range of antenna accessories for colour TV receivers or FM tuners. They are designed to operate with either 75 ohm coax cable or 300 ohm balanced lines. All are well constructed and attractively priced.

Ten units comprise the complete range. Most are wall-mounting boxes or plates, with concealed screw terminals for 75 ohm coax lines to FM tuners or TV receivers while some have visible thumbscrews for terminating 300 ohm ribbon. Most have integral PC boards which accommodate baluns and/or resistors in networks for low loss and low VSWR.

Each unit is briefly described as follows: WTO-1 is designated as a "Line Wall Tapoff". It is intended for use in home units and large buildings with master antenna and RF masthead amplifiers. WTO-1 is inserted in series with a 75 ohm coax distribution line and has two sets of outputs, 75 ohm coax and 300 ohm ribbon. WTO-2 is similar but is intended to terminate the end of a 75 ohm line.

UV-774 is a "75 ohm 4-way hybrid splitter". As its designation implies, it splits an incoming 75 ohm line into four 75 ohm outputs. A similar unit is the UV-772 which is a "75 ohm 2-way hybrid splitter". UV-732 is a "2-way hybrid splitter" with 75 ohm input and two 300 ohm outputs. UV-332 is a " 300 ohm 2-way hybrid splitter" with 300 ohm input and outputs. Somewhat different is the UV-173 Directional Coupler. It has 75 ohm input and output plus a 300 ohm branch output. It provides high isolation between outputs.

BT-2 is a low loss (0.5 dB) transformer matching a 75 ohm line to or from a 300 ohm line. BT-1 is a connector plug with inbuilt balun to connect a 300 ohm ribbon to a 75 ohm coax socket. PC-155 is

At right are five units in the range of television antenna accessories from Ralmar Agencies Pty Ltd.

Cevideo The AUDIO/VISUAL SPECIALISTS TECHNICS
 COLOUR TV TUNER

- Record one channel while watching another - No modification required to existing television sets - Will record while TV set is off - Usable with any video recorder BW or Colour with an RF output which means this tuner allows video recording of TV programs and playback through aerial input of TV set.

2nd Flour, Telford Trust Building
79-85 Oxford St, Bondi Junction. Ph. 3872555
a low loss 75 ohm coax cable 1.8 metres long terminated at each end with a coax connector.

We have not tested or actually used ar.y of these accessories but they all appear to be well made and should be entirely suitable for their intended application. Recommended retail prices are as follows: WTO-1 and $2, \$ 8.60$ each; UV-774, \$7.60; UV-732, UV-332 and UV-173, $\$ 4.50$ each; UV-772, $\$ 4.10$; BT-1, \$2.80; BT-2, \$2.25 and PC-155, \$3.10.

Ralmar accessories are available from parts retailers throughout Australia. Trade enquiries should be directed to Ralmar Agencies Pty Ltd, at their new address, 22 Atchison Street, St. Leonards, NW 2065 or interstate representatives.

Digital Readout Thermometer

The Comark 3001 is a small hand-held digital thermometer which enables fast, accurate temperature measurements from $-50^{\circ} \mathrm{C}$ to $+800^{\circ} \mathrm{C}$. It is battery powered and weighs 300 grams.

Further information from Jacoby, Mitchell Ltd, the Crescent, Kingsgrove 2208.

Digital Multimeter

University Graham Instruments Pty Ltd, 106 Belmore Road, Riverwood, NSW have released the Kamoden $\mathrm{HM}-35$ digital multimeter which had $31 / 2$ digit readout and 10 M input impedance on all ranges. Range switches are similar to those on a conventional meter.

OTR 6 TIME RECORDER

Precision elapsed time printer for industrial and sports applications, 3 programmes in a light, accurate, portable instrument.

AUSTRALIAN TIME EQUIPMENT PTY LTD 192 Princes Highway, Arncliffe, N.S.W. 2205 Phone: 590291

For fine detail work - a hands free magnifier

The Magna-Sighter is a precision 3-D binocular magnifier that leaves your hands completely free for work. It has hundreds of applications, and is invaluable for scientists, technicians, craftsmen, toolmakers, hobbyists, etc. Slips easily over the head-over glasses, too. Proved and used by many U.S. universities, space research bureaux, government departments and major industrial organisations. Available in 3 different magnifications. Price $\$ 21.00$

MAGNA-SIGHIER
For further information send this coupon today:
STOTT TECHNICAL SERVICES MEA 1176 है STOTT TECHNICAL SERVICES
(Division ol Stott's
Technical Correspondence College Ply. Lid.)
159 Flinders Lane, Melbourne, Vic., 3000
Please send me full information on the 3-D Magna-Sighter. I understand that no Sales Representative will call.
Name
Address

WHEN THE FLASH FLOOD STRUCK, ALVIN KNEW HE WAS INTROUBLE THEN HEDISCOVERED

Alvin's an electronics buff from way back when . . . he can talk for days on the subject, almost as though he had invented electronics himself . . . an impressive array of electronics gadgets and equipment in his "pad" is living proof of his keen devotion. No wonder he was sure everything "went down the drain" when a sudden flash flood saturated all before him. THEN he discovered the CRC procedure for restoring flooddamaged electronics equipment. To remove the residue he flushed everything with fresh water, then applied CRC Lectra Clean to
remove the grime. After that, CRC 2.26 was applied to remove all remaining moisture, leaving a thin protective film to prevent water re-entry, at the same time giving added protection against rust and coorosion of all metal surfaces. Today Alvin's "pad" contains handy cans of protective CRC for any future emergencies. If you're a buff like Alvin and want to know more about CRC electrical products write CRC Chemicals Australia Pty Ltd, Centre Court, Paul St., N. Ryde 2113.

NEW PRODUCTS

Card Frame

A new type of rack-mounting frame for plug-in PCB assemblies is available from Celotek Industries. Designed to mount in a standard 483 mm (19 -inch) rack, the frame is capable of mounting up to. 16 PCB modules on 25 mm centres.
The frame is adjustable for card widths in the range $85-101 \mathrm{~mm}$, between top and bottom moulded guides. An adjustment is also provided for card length. Card mounting centres are adjustable over a wide range.
The frame is open to allow good air flow around cards for cooling, but rigidity is ensured by all-steel construction. Decorative cover strips are available for the mounting flanges.

Further information is available from Celotek Industries Pty Ltd, 5 Greenfield Street, Botany, NSW 2019.

RADIO DESPATCH SERIVICE

869 GEORGE STREET SYONEY

CNR GEORGE \& HARRIS STS RAILWAY SQUARE

TEL 211-0816. 211-0191

OPEN MON. TO FRI. 8.15 AM TO 5.30 PM GAT. 8.00 AM TO 11.45 AM

BOURNS MULTI-
TURN TRIM POTS. FULL RANGE 74CXX FAMILY CMOS I.C. CALCULATORS TEXAS, NOVUS, MICROLITH. TV AERIAL B \& W, COLOUR AND ACCESSORIES TEST EQUIPMENT UNIVERSITY \& TRIO ELECTRONIC COMPONENTS

Aimed at the hobby enthusiast, this simple little IC radio is available in kit form from Dick Smith Electronics for just $\$ 12.50$. The unit is supplied complete with instructions, and can be assembled in about two hours.
Two ICs are employed in a full superheterodyne circuit-an LM1820 in the RF/IF stages, and an LM386 audio amplifier. The LM1820 acts as RF amplifier, mixer-oscillator, AGC detector, and If amplifier. A zener voltage regulator is also included on the chip.
The amplified IF output signal emerges from pin 6 of the LM1820 and is fed into a further IF stage. From there, the signal passes to a diode detector, and the resulting audio signal fed to the LM386 audio amplifier. Audio output is claimed as 300 mW when using the 6 V supply
specified.
We assembled a sample kit submitted to us by Dick Smith Electronics, and encountered no problems. A single PCB accommodates most of the components and this has been coded for easy assembly. The accompanying construction notes remove any remaining doubts about assembly, and also detail the simple alignment procedure which is performed without the aid of instruments.

An attractive moulded plastic case, complete with a carrying strap, is supplied as part of the kit, as is a crystal earphone piece. In short, an ideal kit for the beginner.

Readers may either purchase the kit from their nearest Dick Smith store, or by mail order from PO Box 747, Crows Nest, NSW 2065. (G.S.)

Transceiver-Continued

Other features include a receiver noise blanker, inbuilt speaker, panel mounted heater switches for both the transmitter and receiver, upper and lower limit warning lights indicating the edge of the 500 kHz bandwidth of the VFO, fast and slow AGC response times, automatic level control on transmit, and a panel meter which indicates RF output, modulation level, or the cathode current of the final valves.
From the specifications, and the other data, the reader can correctly assume that this transceiver is aimed at a specialised market; the kind of amateur who wants the best and is prepared to pay for it. And, as also might be imagined, the price tag is somewhat higher than that of the more run-of-themill variety. Price, including tax, is $\$ 1150$.

The specifications, and most of the other information, were taken from a large operating manual, as would nor-
mally be supplied with the instrument. However, we feel bound to comment that the manual is a classic example of "Japanese English", having suffered severely in the translation. The result varies from being merely quaint to completely incomprehensible.

Happily the agents assure us that a better manual is currently being prepared.

In the meantime, the existing manual is quite comprehensive. It should enable most amateurs to find their way around the set and perform all the necessary setting up adjustments to ensure optimum performance. It should also help considerably in the event that servicing is required. On the other hand, Rank are providing full service and backup facilities for those who may hesitate to tackle the job themselves.

Further details from Rank Industries Australia Pty Ltd, 12 Barcoo St, East Roseville, NSW 2069.

Sonnenschein batteries are of the lead-acid type, ideal for all kinds of portable electronic equipment requiring 2,6 or 12 volts at .9 to 7 amp hours capacity. Send for free comprehensive Technical Manual.

Sonnenscheln drytit PC BATTERIES For the man who has a battery problem.

Available from Wholesalers

VIC. : 493-499 Victoris St. West I Meibourne 3003 Ph 3299633 N S W: 4-8 Waters Rd. Neutral Bay 2089 Ph: 9092388 W.A.: 256 Stirling St.. Perth 6000. Ph 283655

OLD.: L. E. BOUGHEN \& CO
Corner Milton \& Baroona Rds Corner Milton \& Baroona Ros
Milton $4064 \mathrm{Ph}: 36 \quad 1277$ Miton Werner Electronic S. A.: Werner Electronic
Industries Piy Lid. Unit 25. Industries Pty Lid. Unit 25 .
28 Gray St. Kilkenny 5009 Ph 28 Gray St
2682801.

Telex Melbourne. 31447
Sydney 21707 Brisbane.
41500 Perth. 93244

But, in spite of these limitations, the book still represents very good value for money. It would make an excellent Christmas or birthday gift for any youngster who has set his sights on the novice licence.

The review copy came from Dick Smith Electronics Pty Ltd, who list it under catalog number B2280. (P.G.W.)

Colour TV

QUESTIONS AND ANSWERS ON COLOUR TELEVISION by J. A. Reddihough and David Knight. Published by Newnes-Butterworths, London. Hard covers. 134 pages. $165 \mathrm{~mm} x$ 110 mm , illustrated by numerous circuits and diagrams. Suggested price in Australia, $\$ 2.50$.
This book is clearly aimed at those who have a good knowledge of monochrome TV, but need to upgrade to colour. As such it would provide a very logical first step, being not so deep as to deter anyone who has reached this level in monochrome, yet dealing with the subject in a remarkably comprehensive way. Elementary mathematics is used to explain some processes, including angle diagrams, and some algebra. For the most part, however, the explanations are given in simple word pictures.

The book is divided into four sections: Colour Signals and Transmission, Picture Displays on Colour Tubes, Decoding the Chroma Signal, and Convergance. The book starts off, logically enough, with the pertinent facts on colour-wavelength, the colour triangle, additive and subtractive mixing, etc, leading naturally into the three colour system, dichroic mirrors, filters, etc. The only criticism here is the listing of suntractive primaries as red, yellow, and blue instead of magenta, yellow, and cyan.

The question and answer format may be regarded as something of a gimmick, but is does have the advantage of enabling a particular subject or thought to be introduced with a minimum of preamble. As such it probably contributes to the compact nature of the book.
The book is copiously illustrated with diagrams, explanatory circuits and, in some cases, what look like portions of commercial circuits, though obviously redrawn to maintain style, and not identified.

Quite apart from the modest price, this book seems to provide an extremely good introduction to colour. It would be a logical stepping stone to more involved texts, which are likely to be better understood as a result. Considering the price, it must be regarded as very good value indeed.

Our copy from Butterworths Pty Ltd, 586 Pacific Highway, Chatswood, NSW, 2067. (P.G.W.)

FUNDAMENTALS OF SOLID STATE

$\$ 3.00$ plus $60 \mathrm{c} p$ \& p
Electronics Australia
Box 163, Beaconsfield, NSW 2014

B00KS Just some of the titles from the biggest range of radio and electronics books in Australia.
If the book you require is not listed below it can be ordered from us.

NEW - NEW - NEW
Latest editions of some of the most popular books on the subject:
A R R L Handbook 1976 \$9 95 ARR I Electronics Data Book
Radio Handbook (William I Orr)-20th Edition $\$ 23.45$ US Callbook - 5th Anniversary Edition Callook - 5 th Anniversary E
For Use Throughout 1976 $\$ 1750$ Books Published by Electronics Australia:
Books Published by Electronics Austrion io
Fundamentals of Solid State-An Introduc
Semiconductors and Their Applications
Semiconductors an
(Jamieson Rowe)
$\$ 3.00$
Educ-8-An Educational Microcomputer
for the Home Constructor and College Student (Jamieson Rowe) 3.00

Student (Jamieson Rowe)
Basic Electronics-An Introduction to Electronics,
Radio. Hi-Fi. 5th Edition (Williams \& Rowe) $\$ 3.00$

New Books:

30 IC Projects (Herbert Friedman)
Unique IC OP.AMP Applications (Watter G Jung) $\begin{array}{r}\text { \$ } \\ \text { \$.75 } \\ \text { \$. } \\ \hline\end{array}$ IC OP.AMP COOKBOOK (Watter G Jung) $\quad \$ 1660$ TTL Cookbook (Lancaster) RTL Cookbook (Lancaster)
Active Filter Cookbook (Lancaster)
FM From Antenna to Audio (Leonard Feldman) Transistor Substitution Handbook VHF Antenna Handbook (Ed. A Barvicks) Shortwave Listener's Guide (H. Charles WoodruH) $\$ 475$

De Muiderkring Publications:

Transistor Equivalents-9th Edition (Entirely
revised and extended) revised and extended) 7400.74132 With Equivalents

Edition (A EC Van Utteren) -Transistors 1 st
American Radio Relay League Publications:

Hints and Kinks for the Radio Amateur	\$3.5
The Radio Amateur s VHF Manual	$\$ 5.5$
Understanding Amateur Radio	$\$ 5.5$
The Radio Amateur's Licence Manual	$\$ 2.0$
How To Become a Radio Amateur	$\$ 20$
A Course in Radio Fundamentals	$\$ 4.50$
A R R A Antenna Book	$\$ 5.5$
Special Communications Techniques for the	
Radio Amateur	$\$ 45$
FM \& Repeater for the Radio Amateur	$\$ 55$
Single Sideband for the Radio Amateur	$\$ 4.50$
Howard W. Sams Publications:	

Howard W. Sams Publume 1
Color TV Servicing Made Easy - Volume
(Wayne Lemons \& Carl Babooke)

Color TV Servicing Made Easy-Volume 2 Wayne Lemons \& Carl Babooke)
(Wayne Lemons \& Carl Babooke)
$\$ 760$
$\begin{array}{ll}\text { Handbook of Transistor Circuits (Allan Lytel) } & \$ 7.60 \\ & \$ 2.20\end{array}$
Tube Substitution Handbook
Know Your VOM.VTVM-Now Includes Vacuum Tube. Solid Siate. Analog. Digital (Joseph A Risse)

700
(Joseph A Risse)
Transistor Specifications Manual-7th Edition $\$ 7.60$
TV Servicing Guide - Arranged by Trouble
Symptoms (Leslie D Deane \& Calvin C
Symptoms (L
Young. Jr)
$\$ 5.75$
$\$ 6.35$
Security Electronics (John E Cunningham) $\begin{array}{r}5635 \\ \mathbf{5} 1020\end{array}$
Electric Guitar Amplifier Handbook (Jack Darr) EIA Electronics Multimedia Handbook (Ed Irving W Larson) Sponsored by Electronic
Industries Assn Industries Assn
99 Electronic Prin
$\$ 10.20$ 99 Electronic Projects (Herbert Friedman) Understanding IC Operational Amplifiers (Roger Nelen \& Harry Garland)
5 Minute Electronic Projects (Len Buckwalter) 5 Minute Electronic Projects (Le RC Circuits (Rulus P Turner)
Practical Transistor Servicing
William C Caldwell)
101 Ways to Use Your VOM and VTVM 101 Ways to Use Your VOM and VTVM
(Robert G Middleton) 101 More Ways to Use Your VOM and VTVM 2nd Edition (Robert G Middleton) Electronic Calculators (H EdW
Dictionary of Audio and H_{1}-Fi
$\$ 6.35$ Dictionary of Audio and Hi-Fi
(Howard W Sams Editorial Stafl) Howard W Sams Editorial Siafi) Transistor Fundamentals-A Programmed Learning Course - Vorircuit Principles (Robert J. Brite) Transisior -Volume 2-Basic Transistor Course-Volumes (Charles A Pike)
Ciransistor Fundamentals - A Programmed Transistor Fundamentals - A Electronic
Learning Course-Volume 3 . Learning Course- Volume (Martin Gersten) ransistor Fundamentals - A Programmed Learning Course-Volume 4. Digital \& Special Circuits (Louis Schweitzer \& Reginald H Peniston) S6 35 RCA Publications: SSD-204C Power Transistors
SSD-206C Thyristors/Rectifiers
SSD-207C High.Reliability Devices 5450
Solid Siate Servicing - Hi-Fi. Tape Recorders
AM FM Mono. Siereo. TV B \& W Color $\$ 595$
Circuits 1125
RC30 Receiving Tube Manual 97.95
RCA Transistor Manual) $\$ 450$
3 Dipole and Long
3 Dipole and Long
$\$ 6.35$
$\$ 6.35$
3 Vertical. Beam $\$ 7.00$
(Edward M Noll)
Edition (Bernard Grob) New Edition- Edition (Bernard Grob) New Edirion-
Solt Cover $\$ 1445$
Colour relevision Ser
(Gordon J King) $\$ 1320$
Colour Television Theory-PAL System
Principles \& Receiver Circuitry - SI Units(Huison)
PAL Colour Television for Servicemen (Cook)
$\$ 11.30$
TV Camera Operation (Gerald Millerson) 51500
$\$ 5.95$
Pin. Point TV Troubles in 10 Minutes-Check
$\$ 7.60$
$\$ 7.60$
The Oscilloscope (George Zwick)
Pin- Point Transistor Troubles in 12
Minutes-Check Charts-New59.65
Transistor Pocket Book (R G Hibberd) $\$ 9.00$
Edition (Compiled by A M Ball) 55.40
Pickups and Loudspeakers - How To Choose and $\$ 900$
Audio Technician s Bench Manual (John Eari) $\$ 9.00$
Non Linear Circuits Handbook (Analog $\$ 900$
Manual of Sound Recording-Second Edition
(John Aldred) $\$ 1050$
The All. In One Tape Recorder boo Soundbook (Joseph M Lloyd)
Basic Colour T V Course (Stan Prentiss) $\$ 495$
$\$ 845$Basic Electronics (U S Navy)
Introducing Electronic Systems (Ian R Sinclair) Iniroducing Electronic Systems (Ian R Sinclair) $\$ 8.45$
$\$ 625$
$\$ 450$
Radio and Electronic Laboratory Handbook8th Edition (M G. Scroggie)$\$ 1560$
SCR Manual-5th Edition -Including Triacs andOther Thyristors (General Electric)$\$ 5.40$
How To Get the Most Out of Your Pocket 9195
Calculator (Henry Mullich)
$\$ 9.00$ Reinforcement (Vivian Capel) s 7.15
Wind ' Solar Energy - For Radioand Low-Power Electronic 'ElectricApplications (Edward M Noll)$\$ 900$
FET-Principles. Experiments and Projects $\$ 1020$
Fowlers EEditionMechanical World Elecirical Year Book 1975;76$\$ 910$
$\$ 825$
Top Projecis from Electronics Today $\$ 250$
(Engineering StaH of Analog Devices Inc)
$A B C$ of Electronics (Farl \rfloor Waters) 5670
$\$ 575$
How To Build $\$ 5.75$
Adependent Video - A Complete Guide to thePhysics. Operation and Application of the NTelevision for the Student Artist and forCommunity TVs 1035
Great Britain Publication) $\$ 740$
Servicing Closed. Circuit Television (Melvin Whitmer) (Sams Publication) $\$ 635$
Newnes Radio Engineer s Pocket Book - 14th Edition $\$ 450$
Getting the Most Out of Your Electr Calculator Millam Li Enclosures (A Coher $\$ 710$
$\$ 825$
Linear Integrated Circuits (National) $\$ 760$
5745
Voltage Regulator Handbook (Nation $\$ 600$
MOS Integrated Cir
5745
Circuits-1975 Edition (Naliona)
$\$ 760$
$\$ 760$ Digital Integrated Circuits (National) Digital Integrated Circuits (National) Audıo Handbook (National)Calculator (Sams Publication)$\$ 7.60$
Foundations of Wireless and Electronics-9th Edition (M G Scroggie) $\$ 950$
A Dictionary of Electronics (A Dicrion $\$ 325$Ham Notebook-Volume 15410
55
Ham Notebook-Volume 2$\$ 275$
For Mail Orders please add: 80c Local $\$ 1.50$ Interstate
McGILL'S AUTHORISED NEWSAGENCY PTY. LTD.
187 Elizabeth Street, Melbourne.

IIS Component cicetronics pty Itd

THE GREAT NAME FOR ELECTRONIC 164-166, REDFERN STREET, 2016. TEL. 69 5922/69 6912.

COMPONENTS IN AUSTRALIA
P.O. BOX 156, REDFERN, NSW 2016

ANTENNAS \&

NOW AT M.S.C.

TRANSMIT RECEIVER CRYSTAL SETS FOR TRANSCEIVERS Large Range Available at $\$ 6.50 /$ set
HANSEN FS- 5 POWER METER Compact yet measures SWR and power at once Power 0-10.100W.SWR Frequency response 3 MHz to MHz 50 or 75 ohm impedance. $70 \times 98 \times 100$ \$29 80 P\&P $\$ 220$
FAMOUS 'SIDEBAND' 1 WATT TRANSCEIVER NC310

- Fully approved-max. power allowed by PMG - 3 channel capability/27.24MHz send and receive crystals fitted - Jacks for battery, antenna, etc.

BASE FOR CBM 1

CBW1

5' Fibreglass Whip Antenna Complete with base
Mobile Type $\$ 20.00$ Marine Type $\$ 21.00$ Sent Comet Freight Forward

CBM 1
8^{\prime} Fibreglass Shakespeare Whip (Long Range)
Whio only $\$ 24.00$ Sent Comet Freight Forward H/D Spring Base $\$ 15.00$. P\&P \$2
or Both for $\$ 36.00$.
Sent Comet Freight Forward

MGO27R

Magnetic Base Centre Loaded. Antenna $27^{\prime \prime}$ long designed to fit most cars. C/W Cable \& PL259 Plug
Only- $\$ 2500$ P\& $\$ 3$.
CO-AX CABLE
50Ω CO-AX Cable 35 c metre.

PLUG
PL259 Plugs 95 c each
DELUXE 'SIDEBAND' 5 WATT TRANSCEIVER MODEL II

- Oper ates fron 12 Vd c battery $\bullet 6$ channel capability- 2788 MHz firted * 5 W output - Maximum power allowed by PMG • Squelch and Noise limiter in receiver

```
                                    SPECIFICATIONS
                                    lol
                                    We.ght 
                                    Mntenna
                                    M
                                    Sengitivity,
                                    Squalch.-40dB down al }\pm10\textrm{KHz
```



```
                                    lol
                                    Frequancy Frequency 
                                    Frequency 
                                    loren
```


LOOK AT THIS

 FOR VALUE

FREOUENCYON
FREQUENCY
Receiver Sensitivity
Channel
Power Supply.
Transmitter Power . 5 watts DC input (maximum)

ONLY \$62.50 P\&P \$3.50

SEAGULL MODELCB-801, 23-CHANNEL MOBILE SYNTHESIZED C.B. TRANSCEIVER
FEATURES: Automatic noise limiter (ANL), P.A. facility, squelch control, transmit lamp, S-RFO meter.
ONLY $\$ 126.00$ P\&P $\$ 4.00$
NOTE: All transmitting equipment needs a P.M.G. licence.

[^6]

Novice licence

In the June 1976 issue you published a letter promoting yet another argument against the limited tenure and nonrenewability of Novice licences. In your comments on the letter you state, "It is also true that to date, no one has given a single cogent reason for the two year tenure." In view of this comment and of your apparent editorial stance in opposition to limited tenure for Novice Amateur licences, I would like to advance the following points for your consideration:

Space in the electromagnetic spectrum is limited, and such space as there is, is in great demand: it would be fair to say that there is hardly enough spectrum space to go around. Despite the foregoing, our Government (and governments elsewhere) are prepared to license Amateur operators, and to make available valuable spectrum space to a relatively unimportant service for the purpose of hobby operation. Governments rarely if ever give away something for nothing; why then do they countenance Amateur operation at all? What do they get out of it?

The answer is that they get a very great deal indeed. They get an entire corps of radio operator/technicians that are completely self-trained and selfequipped: operators with their own stations that are available for service in times of national emergency or natural disaster. The training and equipping of these operators takes place at no cost to the Government; its expenses in this connection are quite moderate and consist of the costs involved in examining candidates for the purpose of licensing them, keeping the appropriate administrative records and policing the operation of licensees on the air.

The fact that a Novice class of licence was created at all shows that the Government is not only getting a bargain but that they know it too: the Novice licence is a clear inducement for beginners to start in Amateur Radio, and once having started, to go on and get their full ticket. And this is the crux of the matter-the Novice licence is not intended as some sort of a second-class Amateur licence, but it is rather an inducement, a stepping stone on the way up to the full A.O.C.P. When this is taken into consideration, the two year tenure and the non-renewability of the Novice licence make a great deal of sense indeed.

After all, the Government is interested
in procuring radio operator/technicians that are qualified to the standards prescribed for the full Amateur O.C.P.operators that have a sufficient grounding in communications techniques and radio theory to serve as emergency operators who are capable of repairing their own equipment or if needs be, haywire together an emergency communications link out of whatever happens to be on hand. Allowing an operator to remain at the Novice level indefinitely would hardly accomplish the aims of the Government in creating that class of licence in the first place.
Undoubtedly some of the hypothetical fifty per cent of Novice licensees who fail the A.O.C.P. exam at their first attempt (notional figure from a letter in the June, ' 76 issue) will turn "pirate"-and so would a good many people who failed the Novice exam itself in the first placeand so would a good many who never bothered to take any exam at all. This is hardly a valid reason for making the Novice licence renewable: making it into a second-class permanent licence would defeat the very purpose for which it was instituted, and insisting that it should have unlimited tenure perhaps betrays a lack of understanding of the rationale behind not only the Novice licence but underlying the whole concept of Amateur Radio.

Perhaps the Radio branch should stand condemned for not spelling out the purpose of the Novice licence more clearly and emphatically; on the other hand they may have considered it to be so obvious as to make explaining unnecessary.

Ivan Botha.
Glen Innes, N.S.W.
COMMENT: To be honest your letter seems more an explanation than a justification. It also appears to assume that Governments hold all rights to natural resources, and that an individual citizen is but a pawn compared with the state. A lot of people would disagree with these assumptions.

FET symbols

Over many years I have been a reader of Electronics Australia, and am now stirred to write to you on the subject of circuit symbols. As there is now an Australian Standard covering these symbols, I think that your publication should use these exclusively.

I refer to the June 1976 edition, page 55 , the Sync-a-Slide circuit diagram. The

P channel FET symbol is drawn in such a way that there is no way of identifying the Drain and Source. (Or the Collector and Emitter, as the Standard decrees.) The novice constructor could be forgiven for imagining that the top connection is the Drain-but it is not. For the Drain to be negative with respect to Source the Drain would be connected to earth.

Looking at the text to see whether this gave guidance I find the statement: "When the gate voltage goes high, the FET is pinched off. . . ." A high gate voltage could result in cut-off, but pinch-off is an entirely different matter not caused by gate voltage at all.

As one who is called upon to put pen to paper at times I realize that it is well nigh impossible to write without errors. However, I think that there is really no excuse for those symbols.
N. Jackson

Glen Waverley, Victoria.
COMMENT: Many FET devices are electrically symmetrical, with the labels "drain" and "source" assigned quite arbitrarily. In circuits where such FETs are used purely as controlled resistors, with no direct voltage applied between the ends of the channel, this makes the drain and source connections doubly interchangeable. This applies in the circuit to which you refer, so that the "novice constructor" could in fact connect the device either way. Finally, as the gate-channel depletion layers controlling channel conduction are a function of both gate bias and channel current, pinch-off and cutoff are in fact closely related.

Leaders offend

"Electronics Australia" is a fine technical magazine. I have been a reader for about ten years, but the September issue will be the last for me. As far as I am concerned, Jamieson Rowe's editorials have destroyed the magazine's credibility as anything but a children's hobby magazine. I hope that not too many copies find their way overseas, if it is true that the magazine is Australia's largest selling electronics magazine

D. W. Davis

Brunswick, Victoria
COMMENT: Well, I did say we could expect to receive some flak! The claim that we are Australia's largest selling electronics magazine is fully supported by audited circulation figures, although as Mr. Davis has opted out he presumably won't be reassured even on this point.

The views expressed by correspondents are their own and are not necessarily endorsed by the editorial staff of "Electronics Australia The Editor reserves the right to select letters on the basis of their potential interest to readers and to abbreviate their contents where this appears to be appropriate

RECEIVERS FOR THE SERIOUS SWLI if is
general coverage Barlow Wicaiver with crystal controlled receiver with Aushablusb/cw FM now includes the BARLOW WADLEY

$\begin{array}{ll}\text { STANDArD } & \$ 269+\text { PR } \\ \text { WITH FM } & \text { S299 }\end{array}$

The new Yaesu FRG. 7 general coverage receiver features ac/dc operation and the famous Wadley
Loop principle with spin tuning and phase-locked synthesiser pro viding complete coverage from 500 KHz to 30 MHz with an accuracy better than 5 KHz .
Please write for further technical details (enclosing SAE) OUR PRICE

ANTENNAS
aster antenna. Covers $3-30 \mathrm{MHz}$ with special trap Ideal for DX reception. $\mathbf{\$ 2 1}+\mathrm{P} \& \mathrm{P}$
Listener 3 Long Range wire dipole antenna 3.30 MHz complete with balun, feed wax, VHF plugs, insulators.

the COMMUNICATIONS SPECIALISTS!

 KENWOOTS-700A

$\$ 575$

The promise of 2 meter operation The promise of 2 meter operation..the
Kenwood way. The TS -700A operates all modes: SSB (upper \& lower) IFMIAMICW and provides the dependability of solid state circuitry. Has lunabie VFO and 4 MHz band coverage (144 to 148 MHz) Automatically
switches transmit switches transmit frequency 800 KHz for repeater operation. AC and DC capabilly
through its builtin power supply. Outstanding frequency stability Complete with micro phone and bullt-in speaker.
HF TRAP DIPOLES of AL $480 \times N$ N 40 \& 80 metres, length 85 28 matres AL24DXN $20 \& 40$ metres, length MITTY UN
23 $1)_{1}^{23}$ metres

synthesised
 SSE \$245

This superb in is the ultimate in quality end sophistication! The CB 1000 is

DETOX AM TRANSCEIVER

6 dB gamma loop matched vertical
AS210BN 2 m beam, twin boom 10 al $\$ 40$
$\$ 99$
85
$\$ 105$
ANTENNA COUPLERS
CL66, 500 watts. 80 thru 10 matres, quality construction with 4 position con x switch CL666, 2.5 kW . 80 thru 10 metres, heavy
duty, 200 watts for 144148 MHz $\$ 112$ CL99. 200 watts for 144148 MHz pw meter and antenna coupler. Covers/
own mater and antenna coupler. Covers
$3.5-28 \mathrm{MHz}$ up to 500 w . SW R measurman
1.8 to $150 \mathrm{MHz}_{2}$ to 200 watts. A real bargain
$\$ 162$

 \$ 598 Milden

The fabulous Uniden 2020 phase-facked-loop transceiver and 6146 B 's in the final with screen voltage stabilisation for minimum distortion products Features plugin pcb's and even the front panel can be swung out for easy servicing. A
full spares catalogue is available together with change-ovel pcb's. Compare the Uniden 2020 with other HF transceivers and you'll be quickly convinced that it offers the best value! boom, 18 dB gain, $F / B 20 \mathrm{~dB}$, length 4 m , HF MOBILE ANTENNAS AS 303A Antenna Sat 80 thru 10 metres centre loaded, incl heavy duty ball mount and spring
Quality Hunter Resonators. Precision would with optimum design for asch
 RM B0 (100 metres)
RM 40 (40 metres)
S26 RM 20 (20 metres) GM1 Bumper mount \$15 RSS. 2 primaries) \$24 HY-GAIN HAM ANTENNAS 14AVONB 40 thru 10 metres trap all bands
H3MK3 Bal beam. Outstanding perter once at reasonable cost. Separate matched Hy-Q traps for ouch band
HZ NA 3 al beam 10.15.10. Ideal for top performance in limited space TH60XX Gal super Thunderbird. Impressive coverage 10.15 .20 metres. SWR lass than
$1.5: 1$ on all bands 1RAVT/WB The Great Wide Band Vo
thru 10 Maternal per Portormar 80 thru 10 motors $\$ 98$ pert omnidirectional capabilities. Automatic band witching Beeted-up Hy-Q traps Top loading coil. iss at band edges Outstanding low radiation pattern. Entirely sell-supporting.

IC215 HANDY FM PORTABLE This is ICOM's first FM parable, and it puts good times on the go. Change vehicles, walk quality FM communications io thighs ICOM quality
with you. Long lasting internal berreries a lo make portable FM really protable, while accessible features make conversion to external power last and andy

Fully collapsible antenna
15 channels
15 channels (12 on dial
Dual power 3 watis/40 mW
Lighted dial and meter $\$ 164$ Your new IC215 comes comp sita Your new IC215 comes complete with 3
popular channels, mic. shoulder min
 vICOM so day warranty.
QUALITY HAND PORTABLES The famous IC202 handy portable runs 3 FeAtures noise blanker, RIT lighted dial and mater, telescopic antenna and of course that ICOM quality Comes complete with mic. carrystrap, dry calls. English manual and
90 day warranty. 1502 $\$ 175$ C202 \$185 Six matres sSE using the ICSO2 can be groat
fund This handy portable runs 3 watts pop usb 52.53 MHz . Featuring V FO control, suite. cable noise blanker. RIT and provision for
external power and spacer. 9 lonalifo C external power and spanker.
batteries, English manual and 90 day warranty.

VICO
Cables \& Telegrams "IZYCOM" Melbourne

Head Office \& mail orders

139 Auburn Rd, Auburn, Vic. 3123 Ph: (03) 82-5398
Sydney Branch
23 Whiting St, Artarmon, NSW 2064 Ph: (02) 439-1271

Adelaide. Graham Stallard, 27 White Ave, Lockleys. Phone 437981
Brisbane Elite Electronics, 69 Wardell St. Dorrington Plione 384480 $\begin{array}{ll}\text { Canter ra } & \text { Datcom, } 32 \text { Kalgoorlie Cis. Fisher Phone } 884899 \\ \text { Perth } & \text { Netronics, } 388 \text { Huntriss Ave. Woodlands Phone } 463282\end{array}$

Prices and specifications subject to
change without notice. Prices include
Sales Tax but exclude freight and
Insurance. Allow 50c per $\$ 100$, minimum $\$ 1$

The A Bands
 by Pierce Healy, VK2APQ

Threats to amateur radio

The mighty dollar, public demands, commercial black boxes, national apathy, expansion of commercial frequencies. The referee-The World Administrative Radio Conference, 1979.

Those words are used to illustrate some areas from which potential threats to the amateur service could come during the next two years.

To try to forestall that possibility, answers to some pertinent questions must be sought. Such as:
-where does the future of amateur radio lie?
-where is amateur radio heading?
-are the future trends in amateur radio readily decernable?
-do amateurs comprehend the changed attitudes towards radio communication?
With the advent of the commercial black box era the habits and attitudes of amateurs have changed. One of these is that the emphasis seems to be communication rather than experimentation. This has not only affected operation on all frequency allocations but has also created a fertile field for the mighty dollar investors.

The black box industry, nourished by the introduction of miniaturised components, printed circuits and solid state devices, has developed a flourishing market for hand held personalised communication units.

While black boxes for amateur consumption is now big business, the possible market for the personalised hand held units is infinitely greater, plus a much higher content due to the repair-byreplacement attitude of the public in general.

These units are proving very popular among the non-technical members of the general public. The old affliction known as "mike fright" seems to have disappeared and the ability to use a microphone seems almost a natural habit. The ease with which it is now possible to listen and communicate via a small black box, not relying on interconnecting wires and eliminating charges (as in the case of telephones) has caught the imagination of young and old, stay at home and traveller alike. This is the phenomenon classified as "public right"; by its exponents and exploited by commercial opportunists.
It is an extension of the ancient "smoke signal" technique of conversing with unseen friends or neighbours. It has about the same degree of privacy. But it is likely to be a major factor in determining the overall form amateur radio will take in the future.
future. in several members of the International Telecommunication Union. Although most prevalent in the so-called developing nations, it is also evident in others where bureaucracy pays only lip service to amateur requirements.

Only the efforts of amateurs, individually within their own community or at government level through their national society, can overcome or alleviate some of the handicaps that can arise from those national attitudes.

It is a fact that where a strong active national ama-
teur organisation exists, close cooperation between themselves and administrative authority is possible.
However, the most destructive factor is apathy on the part of the amateur himself towards the threats from outside sources. All major amateur radio societies are endeavouring to alert their members not to lapse into an apathetic attitude towards WARC 1979.

The claim for additional frequency assignments from all types of commercial services is a never ending process. Unfortunately, as has happened in the past, the amateur service allocations are looked upon as fair game by commercial interests.
Use the band or lose them. This is still a sound watchword and is, in fact, a basic requirement if the present allocations are to be retained.
In the USA the American Radio Relay League has commenced a program to increase its membership by 60,000 by 1979 . It is hoped to achieve this by an aggressive program to expand training through affiliated clubs, the production of new publications and training materials, and efforts to reduce the drop out rate among novice licensees.
In Australia, the WIA has set a target of increasing its membership to 8000 by 1979. There are similar activities in other national societies.

The International Amateur Radio Union is also active. On the second weekend of September 1976, Region III directors met in Singapore and a few days later IARU regional representatives met in Geneva to advance IARU strategy in preparation for WARC 1979.

For those who have just joined the amateur ranks and those who are not members of their national society, it would be wise to reflect that amateur radio today is the result of efforts by older generations of amateurs and national societies, going back to the 1959 WARC and beyond.
To raise, or at least maintain, the status of the amateur service, it is now their turn to help influence the sole referee in frequency assignments and overall policies-WARC 1979.

HUNTER BRANCH FIELD DAY

The annual Hunter Branch Field Day will be held on Sunday 7th November, 1976 at Rathmines Park on the western shore of Lake Macquarie just south of Toronto.

Program: Registrations commence at 9.00 am .
$0900-0930-H F$ and VHF mobile scramble. Use of repeaters not permitted.
1000-1030-Pedestrian hidden transmitter hunt on 27.125 MHz .
$1045-1115-144 \mathrm{MHz}$ hidden transmitter hunt for mobiles.
mobiles. $1130-1215-7 \mathrm{MHz}$ hidden transmitter hunt for
mobiles.
1230-1330-Lunch-Note: Meals or barbeque

Radio clubs and other organisations, as well as individual amateur operators, are cordially invited to submit news and notes of their activities for inclusion in these colums. Photographs will be published when of sufficient general interest. and where space permits. All material should be sent to Pierce Healy at 69 Taylor Street. Bankstown 2200
facilities not provided.
$1330-1430$ - Blindfolded sniffer hunts on 144 MHz and 27.125 MHz .
1445-1515-Talk-in transmitter hunt on 144 MHz . 1530-1615-Transmitter hunt for mobiles on 144 MHz , iwo transmitters will be in operation. 1630-Prize presentation.
Registration fee- $\$ 1.00$ for family or adult single. $\$ 0.50$ for students.
The event has been organised by the WIA Hunter Branch, and the Westlakes Radio Club.

BLUE MOUNTAINS FIELD DAY

The Blue Mountains Branch, NSW Division WIA field day will be on Sunday 21st November, 1976, at Springwood.
The program was not to hand when these notes were compiled. Listen to VK2AWI news broadcasts on 7146 MHz Sunday mornings at 11.00 am for information.

DXCC COUNTRIES

Australian novice licensees will no doubt be interested in working DX countries. It will be interesting to see how long it will take before an Australian novice licensee applies for the DXCC award.

Country lists are readily available, but little publicity is given to the criteria that validate a country for the DXCC award.

There are four points in the present criteria. The first deals with government and administration.
-An area, by reason of government or a distinctly separate administration, constitutes a separate country.
The second point deals with islands and separation by water.
-An island or group of islands, not having its own government or distinctly separate administration, is considered as a separate country under the following conditions:
(a) Islands situated offshore from their government or administrative area must be geographically separated by a minimum of 362 kilometres of open water. This point is concerned with islands off shore from the mainland only. This point is not concerned with islands which are part of an island group or are geographically adjacent to an island group.
(b) Islands forming part of an island group or which are located adjacent to an island, or island group, which have common government or administration, will be considered as separate entities provided that there is at least 805 kilometres of open water separation between the iwo areas in question.
The third point deals with separation by foreign land.
-In the case of a country, such as that covered in point 1, which has a common government or administration but which is geographically separated by land which is foreign to that country, if there is complete separation of the country in question by a minimum of 121 kilometres of foreign land, the country is considered as two separate entities. This 121 kilometres of land is a requirement which is applicable to land areas only. In cases of areas made up of a chain of islands, there is no minimum requirement concerned with the separation by foreign land.
The final point refers to unadministrated areas.

- Any area which is unadministrated will not be eligible for consideration as a separate country.
There are a number of inconsistencies in the countries list if based on these criteria. The list has been in existence for many years dating back prior to World War II. Political changes following that war created problems but since then the criteria have been updated to overcome the broadness of the original rules.
The subject was treated at some length in "QST" October, 1972 and "CQ" March, 1976.

OVERSEAS NEWS SNIPPETS

The Canadian division of the ARRL has supported a novice licence proposal. The licence would be for Morse code only on $3700 \mathrm{kHz}-3725 \mathrm{kHz}, 7100 \mathrm{kHz}-$ $7150 \mathrm{kHz}, 21.1 \mathrm{MHz}-21.2 \mathrm{MHz}$, and $28.1 \mathrm{MHz}-$ 28.2 MHz . Power limited to 150 watts input.

BRIGHT STAR CRYSTALS PTY LTD

35 EILEEN ROAD. CLAYTON. VICTORIA 5465076

MAY WE REMIND YOU

THAT BRIGHT STAR CRYSTALS HAVE MORE THAN 36 YEARS EXPERIENCE IN (CRYSTALS)

AND WE'RE WHOLLY AUSTRALIAN

HOSE \& EQUIPMENT CO. PTY. LTD. SYDNEY. PHONE 666-8144

COMMUNICATION SYSTEMS PERTH PHONE 762566

FRED HOE \& SONS PTY. LTD
BRISBANE PHONE 474311

ROGERS ELECTRONICS

 ADELAIDE. PHONE 426666DILMOND INSTRUMENTS HOBART. PHONE 479077

COMPUTER COMPONENTS

MAGNETIC TAPE DRIVES
C/w Reed Switch Alpha-Numeric Keyboards-Suitable Microprocessors or Audio Modification-9 Track, 800 bits /inch. $\$ 160.00$

DISC DRIVE UNITS

c/w Power Supply-2 Megabit Capacity. $\$ 450.00$

CARD KEY PUNCH \& PRINTER
-80 Col Card-New $\$ 400.00$
ALPHA-NUMERIC KEYBOARDS
-Mechanical. $\$ 10.00$

MOTORS

$115 / 230 \mathrm{~V} 50 \mathrm{~Hz}$ Reversible 920RPM $1 / 10$ HP approx. $\$ 15.00$

DRUM PRINTER
 115 V -Single Column. $\$ 25.00$

POWER SUPPLIES

Input 95-240V AC Output 48V 2A, 10V $1 \mathrm{~A}-\mathrm{c} / \mathrm{w}$ Constant Voltage Transformer: 13.000 uF $73 \mathrm{VCap}, 4$ Pole Single Pole. 3 Pole c / o Relay 48VDC 2 Pole Contactor 48 V DC. 6 Fuse Holders. $\$ 30.00$

POWER SUPPLIES

Regulated Input 240 V AC Output +6 V (Adj) $50 \mathrm{~A}+12 \mathrm{~V}$ (Adj) $10 \mathrm{~A}-18 \mathrm{~V}$ (Adj) 50A. $\$ 250.00$

DRUM BLOWERS

115V 70 A 1550 RPM $1 / 5 \mathrm{HP} 10^{\prime \prime}$ dia. x $4^{\prime \prime}$ Drum. Reconditioned-in Housing with Filter $\$ 45.00$

DRUM BLOWERS

Rotron 115V 2.A 3100RPM $6^{\prime \prime}$ Dia. x $3^{\prime \prime}$ Drum $\$ 20.00$

MUFFIN TYPE FANS
Large $115 / 220 \mathrm{~V} 6^{\prime \prime} \mathrm{Dia} \times 3^{\prime \prime} . \$ 20.00$

FANS

-Rotron 8" Dia. Blade 115 1.1A c/w Guard and Cowl. \$10.00

PAPER TAPE READER

- Head Assembly $\$ 45.00$

PAPER TAPE PUNCH

- Head Assembly. $\$ 45.00$

RELAYS

-Mercury Wetted High Speed-Octal Base $\$ 3.50$

AUTOMATIC GARAGE DOOR MOTORS $\$ 85$

8 CODE RADIO CONTROL $\$ 110$

FRASER PRODUCTS, 425E PENNANT HILLS RD. PENNANT HILLS. PHONE BUS. 02-848 9133. AH. 02-639 0432.

AMATEUR BANDS

The licence would be for two years and require a 5 word per minute code test, knowledge of regulations, and knowledge of adjustment, operation and care of radio apparatus. The test would be administered by two advanced class licensees not related to the applicant.

In 1975 the Canadian Department of Communications (DOC) commenced introducing significant changes to amateur examinations and updating the content to reflect the state-of-the-art in a more streamlined manner.

The multiple choice examination has been in use since January, 1976 and reports indicate that it is working quite well and has generally gained acceptance. The pass mark is 70% and 10 words per minute Morse code.

RADIO CLUB NEWS

GOLD COAST RADIO CLUB: AOCP classes are now held in the Old Surfers Paradise state school. Six members sat for the August, 1976, examinations. Three novice call signs on the Gold Coast have resulted from the examination in March, 1976. These are-VK4NEV, Kev Hymus, VK4NKS, Ken Stewart and VK4NRT, Athol Roberts-Thomson.
The first official contact through OSCAR VII satellite from the GCRC club station, VK4WIG, was made on 3rd August, 1976, during orbit number 7852. Contact was made through the 70 cm uplink and 144 MHz downlink with ZL1TFA and VK5EU.

Quite a number of GCRC members are operating and listening through OSCAR VII.

ELIZABETH AMATUER RADIO CLUB: The annual general meeting of the EARC was held on the 4th September, 1976. The following office bearers were elected:-
President-Ted Cooling, VK5ZE; Secretary-Steve Mahoney, VK5ZIM; Treasurer-lim Zinkler; Committee-Steve Dench, VK5ZSD; Paul Philbrook, VK5ZPP; Bill Thomas, VK5VE.
Following the business of the meeting, an informative talk and demonstration on VHF antennas was given by Steve Mahoney, VK5ZIM.

The EARC meets on the first Saturday in each month at 8.00 pm in the Elizabeth Grove Methodist Church Hall, Fairfield Road, Elizabeth Grove, S. Aust. A welcome is extended to prospective members and visitors.

In conjunction with the WIA and the Elizabeth Technical College the EARC is arranging courses in amateur radio theory and Morse code for 1977.
Further details from the Secretary, EARC, PO Box 8, Elizabeth, S. Aust. 5112, or by telephone from the president, Ted Cooling, on 2552249 or 2557586 , or the publicity officer, Bill Thomas on 2586070.
MOORABBIN AND DISTRICT RADIO CLUB: From the September, 1976, issue of the MDRC newsletter "APC" it was reported that the president and treasurer had received their full licence call signs. John Emery, (VK3YDC) is now VK3UA and Bruce Wodetzki (VK3ZKR), is now VK3BIW.
These two calls will make it that much easier for DX stations to obtain honorary membership of the MDRC.
This award may be obtained by working five MDRC member stations. For VK stations it is neccessary to work 14 club members.

Intending members and visitors are welcome to the new club rooms at 33 Turner Road, Highett, Melbourne, Vic. Meetings are held on the third Friday in each month at 8.00 pm .

GEELONG AMATEUR RADIO \& TV CLUB: About 40 members, wives and friends attended the GARC annual dinner on Saturday 28th August, 1976. The venue was the Seafarer restaurant in Queenscliff. The event was voted as being very successful by all who attended.
An historical note appeared in the September, 1976, issue of the GARC newsletter. It recalls the part amateur radio played in the early days of broadcasting.

First established in 1925, an amateur station was operated by Fred Feldman in Forest Street, South

Geelong, call sign A3QH, later VK3QH. It was a popular station, broadcasting recordings and live recitals by the Geelong Mouth Organ Band.

The equipment was home made, including transformers, and the microphone. This was a Reis type, laboriously carved out of a block of marble, with gold plated electrodes and a mica diaphragm.
The transmitter was a master oscillator and a power amplifier using Heising modulation. The PA valve was a UX210 Radiotron. The modulator used four UV102As and the rectifiers were UV281s.
Rack and panel construction was used, the transmitter and power supply being in separate racks.
The antenna was a cage type inverted "L" 15 metres high. The input was 10 watts, the maximum allowed in those days.
Fred was also interested in DX, making many contacts on 40 and 80 metres.
CENTRAL COAST AMATEUR RADIO CIUB: A lecture, Logic Principles, was given at the club meeting on 20th August. 1976, by Ross Mudie. VK2ZRQ. This was televised live on ATV.
The broadcast was made from the club rooms at Kariong and relayed through a UHF repeater by Phil Levenspiel, VK2TX, at Wyong. Reports show that good signals were received in Newcastle. A video recording was also made.
The equipment was supplied and operated at the club rooms by Bob Carr, VK2ZUJ, Don Cruicher, VK2ZCZ, John Tanner, VK2ZXQ and Ray Wells, VK2ZSX.
In addition to ICs and logic used in the VK2RAC repeater control circuits, Ross gave detailed explanations of popular series of ICs and typical arrangements of ICs and their functions in devices such as frequency counters, call sign generators, clocks and associated control circuitry.
The CCARC is finalising the program for the 1977 field day on Sunday 20th February, 1977. Remember to keep that day free for a family outing at Costord.
illawarra amateur radio society: The inaugural monthly IARS news broadcast was made on Sunday evening the 8th August, 1976 by lohn Hodkinson. VK2BHO. This service will be conducted on the second Sunday of the month at 7.15 pm through the Wollongong channel 5 repeater.
Members of the Illawarra WICEN group. Jim Thyrd, VK2BBC, Jim Ciblin, VK2YCH, and Richard Wilson, VK2ZVX, participated with other organisations in an exercise on the 15th August, 1976 by the Illawarra Section of the State Emergency Service.
It was reported that, from a communications point of view, the exercise was extremely successful and the amateurs participated very well in the overall plan.
Moonbounce tests were carried out in late August but a transmitter power supply problem prevented contact with USA stations. W 4 ZXI was heard at " M " copy. After Lyle Patison, VK2ALU, had worked on the power supply-and removed a nest of micetests were conducted with European stations. Contact with F2TU was prevented by heavy QRM from another French station.

A QSL card was received from SM5LE for the first Australia-Sweden 432 MHz contact, on 30 th fuly. 1976.

WESTLAKES RADIO CIUB: Club activities are becoming more noticeable in the Newcastle area During August there was an increase of 20 members. bringing the membership to 162. A large percentage of new members are attending the YRS classes each Saturday afternoon.
Nine of the 13 candidates who sat for the August. 1976 AOCP examination, held at Newcastle, were WRC members
In reply to a query by the WRC, concerning amateur station operation by incapacitated persons, the following was received from the Post and Telecommunications Superintendent in Sydney.
"Although each application is considered on its individual merits the Department's general policy is to examine all persons who desire to become amateur radio station operators and to make special arrangements for persons unable to undertake the examination for an operator's cerificate in the normal manner. These include the examination of blind persons.
"When an incapacitated person satisfies the

IONOSPHERIC PREDICTIONS FOR NOVEMBER

Reproduced below are radio propagation graphs based on information supplied by the lonospheric Prediction Service Division of the Department of Science. The graphs are based on the limits set by the MUF (Maximum Usable Frequency) and the ALF (Absorption Limiting Frequency). Black bands indicate periods when circuit is open.

Department at a special examination that he is able to operate an amateur radio station in a responsible and capable manner he is advised that he may apply for an amateur station licence. An AOCP, however, is not issued in these cases.

Where the Department feels that it is in the interests of the licensee, special conditions regarding the satety of the station equipment may be required. These conditions may also restrict access to parts of the equipment or require the station to operate in the presence of another amateur radio operator".

YRCS NEWS

The lanuary, 1977 issue of these notes will review the WIA Youth Radio Club Scheme. Should club leaders wish to publicise their club with a report or a photograph please send details to the address given on page 117 by the 15th December, 1976.
The Black Forest Scout group in Adelaide, S.A. has a very active club which recently raised funds to purchase an FT200 transmitter. Steve Daff and Geoff Taylor, VK5TY, are concentrating on a radio operating course for club members.
Other clubs in South Australia include the Sacred Heart College club in Adelaide, which has 14 members. Membership is not restricted to members of the School.
Two students from the YMCA club sat for the novice licence examination, John Gazzard has two theory and one Morse code instructors assisting him. An active club meets each Tuesday evening at Port Augusta which is guided by Lloyd Douglas assisted by a former student.

In New South Wales there are at least 29 clubs registered with the NSW division of the YRCS.
John Stroud of the Blue Mountains Radio Club has been accepted as a trainee radio technician by the RAAF. His older brother Michael joined the RAAF in a similar trade earlier in the year. In both cases the RAAF selection board expressed satisfaction at the production of their YRS certificates.

At a radio camp at Wiseman's Ferry, organised by Reverend Bro Cyril Quinlan of the Eastwood Marist Brothers High School Radio Club, eight boys qualified for YRS certificates.

Two Blue Mountains Radio Club members have been successful in a recent amateur examination. Peter Griva, gained the AOCP and Henry Lepke the AOLCP. A recent "on the air" night used a transmitter built by one of the members to the design published in the lanuary and February, 1976 issue of "Elec. tronics Australia". The transmitter worked like a charm and several contacts were made.

Classes in electronics are conducted by the BMRC at the Springwood primary school every Friday night at 8.00 pm . Meetings are held in the Blaxland primary school on the first Monday of each month.
Enquiries should be directed to the publicity officer, Geoffrey Swift, 21 Hodgson Road. Glenbrook, 2773, telephone 391144.

SO YOU WANT TO BE A RADIO AMATEUR?

To achieve this aim, why not undertake one of the Courses conducted by the Wireless Institute of Australia? Established in 1910 to further the interests of Amateur Radio, the Institute is well qualified to assist you to your goal Correspondence Courses are avarlable at any time. Personal classes commence in February each year

For further information write to

THE COURSE SUPERVISOR, W.I.A.
 14 ATCHISON STREET. CROWS NEST. N.S.W. 2065

MUSICOLOUR III
 For the disco. light show. party. nites. or just relaxing enjoy your records and tapes more with the new magical Musicolour Organ Simple to connect to the home stereo or P.A. system 3 channels. 1500 watts max load each

Fully constructed, ready to operate $\$ 69.95$
Complete kit of top quality parts and instructions - $\mathbf{\$ 4 9 . 0 0}$ P P NSW 83.50 , interstate $\$ 5.50$

COLOURED FLOODLAMPS

Red, green, blue. yellow, clear.
240 V 100 watts For indoor or outdoor
Clear lamps 8450 ea Coloured lamps 96.90 ea P. P. 90c Swivel base and socket 6.75 ea P P. 90c

BSR STEREO PLAYER MODEL P-128

Latest design speed auto or manual operation 11 in heavy weight diecast turntable driven by fully shielded 4 pole dynamically balanced 240 V motor Noise suppressor. Silicon damped cueing device Square section brushed aluminium pick up arm. Adjustable counter-balance Calibrated stylus pressure control. Antiskate bias compensator fitted with magnetic cartridge diamond stylus Postage NSW:1.85. V O, SA. T:3.50 WA $\$ 5.50$.

$\$ 64.00$

30 WATTS OF EXCELLENT HI-FI

 WITH PLAYMASTER LOUDSPEAKER SYSTEMS3-45L. Features the mighiy $8-30$ wooter. 61 midrange and the incomparable Philips ADO16/T8 tweeter. this top quality low cost 3 way hi fi system is available from stock in either walnut or teak veneer and complies with the specs. as per April ' 75 84.00 each

3-41L. As described in June 76 E A. Again features the mighty 8. 30 woofer, with the advantage of the new Magnavox 6.25 midrange. and the more elaborate cross-over network The dome tweeter is Philips ADO160/T8 Beautiful teak, or the ever popular walnut veneer cabinets are available Either system can be carefully packed and despatched per airfreight passenger rail or road. Packed weight approx. 40 kl . pair.
$\$ 96.00$ each

EXPO.FM.AM.MPX 12 PLUS STEREO RECEIVER 12

Top quality. low cost home entertainment. Illuminated dial, brushed aluminium panel wainut cabinet. latest design, tuning meter, extra remote speaker outlets Loudness control, 240VAC outlet. FM muting. tape monitor. DIN REC/PB connector Specs-12W. RMS per ch. freq. resp. $30-25000 \mathrm{~Hz}$ distortion. Better than $0.8 \% \mathrm{ch}$ separation 45 dB . Inpui sen mag 3.5 Mv . 50K. Tuner, 1800 Mv 100 K Aux 80 Mv 470 K . Tape 180 Mv 47 K Tape output. R.C.A. 150 Mv . Din 30Mv
-139.00 P.P. N.S.W. 4.50. Intergtate 7.50.
C-B 27MHZ COMMUNICATION EQUIPMENT
GEAR TO SUIT BUSHWALKER, FISHERMAN, CAR, TRUCK, BOAT OWNER

Model NC-310. Features 3 channels. Battery checker, squelch control, tone call switch. external aerial. speaker and power jacks. battery charger jack, spec 13 transistors. RF input power. I watn TXfreq Tol $\pm 0005 \%$. Tone call freq 2000 HZ . RX Sen 0 7UV at 10 dB SN , sel 45 dB at $\pm 10 \mathrm{KHZ}$ If freq 455 KWZ
849.95 complete with book and circuit. p.p. $\$ 1.60$ interstate $\$ 295$
Model 2 Mobile. 6 channel 5 watts 14 transistors, 8 diodes. squelch control. sig strength / RF meter. microphone, book and circuit. 12 volt operation Size $43 / 4^{\prime \prime}$ WX $11 / 2^{\prime \prime}$ HX $6-3 / /^{\prime \prime} d$ 199.00 p p $\$ 2.50$ interstate $\$ 350$

Aerials base station ringo $\$ 54.00$ p.p. $\$ 3.50$
Mobile model 27R-stainless steel whip with centre loaded coil No holes required
Has strong magnet base, tested to 200 MPH wind, install and dismantle in seconds Length $27^{\prime \prime}$ with $11^{\prime \prime} 52$ ohm cable frea $26.5 / 275 \mathrm{MHZ}$
VSWR, less than $2 . \$ 29.95$ p.p. $\$ 2.50$

GARRARD MODEL 82

\$57.00.

A superb 3 speed transcription changer/player Auto manual operation 4 pole magnetically shielded syn motor Resiliently mounted Counterbalanced Elegant tone arm with slide-in cartidge carrier calibrated Antiskate $265 \mathrm{~mm}\left(10^{\left.1 / 2^{\prime \prime}\right)}\right.$ Aluminium platter Cue and pause control Cartridge tilting lever Magnetic cartridge diamond stylus Size $375 \times 335 \times 170 \mathrm{~mm}$ $\left(143 /{ }^{\prime \prime} \times 131_{4}^{\prime \prime} \times 61 / 4^{\prime \prime}\right) 45 \mathrm{~kg}(10 \mathrm{lbs}) \mathrm{P}^{\prime} \&$ P $\$ 250$
Interstate 5350

GARRARD CHANGER / PLAYER

MODEL-6400 3 speed auto manual changer-player 2 spindles Motor 2 pole $240 \mathrm{~V} 50 \mathrm{~Hz}^{2} 101 / 2^{\prime \prime}$ qurntable cue and pause, lubular section pick up arm, Sonatone cartridge, Great value 28.50.
Mounling base and perspex dust cover for etther model $\$ \mathbf{2 8 . 5 0}$. Send S.A.E. for more details

EXPO AM FM STEREO TUNER

New model, more sensitive, bet ter reception in remote areas Bright green illuminated dial FM stereo indicator. FM-AM tuning meter. AFC for better FM reception, sensivitity switch Specs FM 88-108MHz, max sen. SUV, 30dB quieting 14UV image rej. 32 dB MPX
separation. $34 d \mathrm{~B}$ AM 535-1605 KHZ Maxsen at 1000 KHZ . $100 \mathrm{UV} / \mathrm{M} 20 \mathrm{~dB}$ quieting $300 \mathrm{UV} / \mathrm{M}$ Image rej. 35 dB 1 fraj 32dB. Output 120 MV/AMFM. Power 240 V 50HZ. Size 315W 224D110H M/M

$\$ 69.00$ or $22.50-10$

NEW MODEL MAGNAVOX SPEAKERS

$10-4010^{\prime \prime}$ base 15 and 8 ohms 820.95 . $6256^{\prime \prime}$ mid range 8 ohms 914.95 . XJ3 dome weeter 780. Famous 8-30 8 ohms $\$ 14.95$. Magnavax 3 way cross-over for 10.40 625 and 2 XJ3 119 50. P \& PNS W $\$ 1.40$ Interstate $\$ 2.20$

HI FI CABINET KITS
Do it yourself-big savings Ourkits are extra easy to finish. Top, bottom, each side and Veneered pynerserd Complate with innerbend and walnul Complete with innerbond and speaker grille pair MV-50 system 86500 pair

MAGNAVOX WIDE RANGE

 TWIN-CONE SPEAKERS
8. 16 OHMS

6WR MK5 12 W RMS 8WR MK5 16 RMS OWR MK5 1 WW RMS $30 \cdot 16.000 \mathrm{~Hz}$ 12WR MK5 16W RMS S9.90
p.p. NSW 95c. Interstate $\$ 14.95$

TO CLEAR

PLAYMASTER $25+25$ STEREO AMPLIFIER
Complete kit of top quality pars with instructions 977.50 P.P. N.S.W $\$ 3.50$ Interstate 8550

MAKE SOLDERING EASY

Use a Lotring lightweight iron 240 V 30 watts Tip DOA 5MM Heating time 18 mins Max temp $410^{\circ} \mathrm{C}$. Weight $21 / 202$. Fully approved 950 P.P. 95 c .

EX SURPLUS GEAR

6 Line magneto switch board $\$ 17.60$ 200A. 200PIV silicon diode and heat sink 84.00. ATS imitter $220 \mathrm{MHz}=7.50$ Metal chassis and cabinet suitable for rack mounting. size $19^{\prime \prime} \times 7^{\prime \prime} \times 91 / 2^{\prime \prime} \mathrm{D}$ mounti
97.50 .

RARE C.R.O.TUBES

GARRARD

Ceramic cartridge Model KS40 Stereo with 78 /LP styli
8. 75

5JPI	- 750
3JP1	7.50
SE5A 7.	9.50
4/1	950
4EPI	9.50
$5 . P 4$	950
09D	950

SANYO NI-CAD

Rechargeable Batteries
Type A Penlight \$1 85 ea 4 lor $\$ 690$ Type C $\$ 3.20$ ea 4 for $\$ 1150$
Type D $\$ 365$ ea 2 for $\$ 680$
PP N S W s 100 other states \$ 175

13 CHANNEL TV
Tuner $\boldsymbol{\$ 7 . 5 0}$

An increase in the frequencies allocated to short-wave broadcasting has been forecast. Current plans call for a doubling of the spectrum allocated to shortwave broadcasters and, if adopted, will reduce the interference currently experienced by listeners on the now crowded bands.

According to Jim Vastenhoud of Radio Nederland the plans for the expansion of short-wave bands would increase their present frequency range from 250 kHz to roughly 500 kHz . He indicated that the short-wave broadcasting bands are now so overloaded that an end to the power race in shortwave transmitters can only be achieved if the 1979 World Administrative Conference decides upon a marked extension of short-wave broadcasting bands. Many short-wave broadcasters think that the shift of tratlic from fixed bands to satellite will provide a chance to double the spectrum allocated to shortwave broadcasters. Broadcasters also hope to make use of the 7 MHz band world-wide and to inaugurate a new short-wave broadcasting band for regional broadcasting in the 4 or 5 MHz range.

LA VOZ DE GALAPAGOS

Signals from the Galapagos Islands off the coast of Ecuador continue to be received on 4810 kHz from opening at 1215 CMT . The station is now verifying reception with an attractive card from the Station Director, Reverende Padre Edgar Raul Pinte. Galapagos lies off the coast of Ecuador and consists of 12 large islands and several hundred small islands. The largest town, San Cristobal, is the site of La Voz De Galapagos. The station has a call sign HCVG6 and operates on $4810 \mathrm{kHz} 1215-1430$ and 2300-0400GMT. According to the New Zealand DX Times, Galapagos time is 6 hours behind GMT. The station is operated by the Franciscan Mission and has an aftiliate station on Santa Cruz Island on 1410 KHz medium-wave.

NEW VOA BASE

According to the BBC Monitoring Service, the Voice of America could establish another relay base in Portugal. Radio Difusao Portuguesa, Lisbon has quoted a report from the Portuguese community press in Massachusetts that the United States authorities are expected to approach the Lisbon Government with the view to establishing a transmitting base in Portugal for "Voice of America" broadcasts to Europe and North Africa.
At the present time the Voice of America, as well as operating five transmitting sites in the United States, also has relay stations in Thailand, Sri Lanka, Greece, Ryukyu Islands; Philippines, Morocco, Liberia and England.

The Voice of America recently discontinued typing the location of the transmitter on the verification card and also deleted the announcement of the transmitter location in the station announcement. This has been brought to the attention of the American Senate, which has reversed the policy somewhat. Sites will continue to be listed in the VOA'S Frequency Schedule. This schedule will be sent to anyone requesting a copy. After ascertaining the correct site from the Frequency Schedule, include the

Notes from readers should be sent to Arthur Cushen, 212 Earn Street, Invercargill. NZ All fimes are GMT, add 9 hours for West Aust. Summertime. 11 hours for East Aust. Summer time and 13 hours for NZ Summer time.
site on your report, along with a request for verification of this specific site. If readers follow this policy they will then receive a verification giving complete details of date, time and the frequency and location of the transmitter.

NEW TWR STATION

Trans World Radio, which already operates gospel stations at Bonaire, Swaziland and in Monte Carlo, has recently opened a medium-wave transmitter in Guam on 770 kHz . Now comes the news of a new 400 kW transmitter to operate from Sri Lanka on 890 kHz to serve the South Asian area. In a release from TWR it is pointed out that the station will be located in Northern Sri Lanka, just 20 miles from the southern tip of India. TWR expects to have a dominant signal that will be not only easy to find but almost impossible to ignore. TWR expects to cover Afghanistan, Pakistan, Bangladesh, Burma, Nepal, and Thailand-a total population of 839 million people.

VATICAN'S HIGHER POWER

The installation of a new 500 kW transmitter for Vatican Radio is expected to be completed next month and put into service. As well the station is to have a tall rotatable aerial system to take advantage of the power boost. This increase in power over the present 100 kW transmitters will enable it to be heard throughout the world with more reliable signals. The rotatable aerial, which consists of two towers each 79 metres high, will allow the signal to be beamed at any point in the world, doing away with the many masis and arrays formerly necessary.

The Vatican Radio broadcasts in English to Australia and New Zealand daily from 2210-222SGMT on 7235,9615 and 11705 kHz .

PAPUA NEW GUINEA STATIONS

The next station to open in Papua New Guinea, according to John Campbell reporting in the WRH Newsletter, is Radio West Sepik, Vanimo 2kW, which has been assigned 3205 kHz . Later Radio Enga at Waba will be built, but there are no plans as yet announced for this new station. West Sepik and Enga are the only two Papua New Guinea provinces which have no radio service of their own. These two stations would complete the radio development plan.

RECENT VERIFICATIONS

MOZAMBIQUE: Radio Mozambique at Maputo, formerly Lourenco Marques, confirmed reception with a card as well as a letter and schedule. The card shows a map of the world with Mozambique marked. According to the schedule enclosed the ' A ' program is broadcast $3210 \mathrm{kHz} 0400-() 600$ and $1700-2200 \mathrm{GMT}$; $4925 \mathrm{kHz} 04(10-0630$ and $1615-2200 ; 6115 \mathrm{kHz}$ 0400-2200; $9620 \mathrm{kHz} 0500-1700 ; 11820 \mathrm{kHz}$ $0500-1700$; and $15295 \mathrm{kHz} 0700-1500 \mathrm{GMT}$.
ECUADOR: Radio 'Centinela Del Sur' Loja verifies with a letter. The callsign is HCER5, and the station broadcasts on 4890 kHz . As well as the letter, a pennant was enclosed. The verification signer is Hernan Coronel.

MEDIUM WAVE NEWS

AUSTRALIA: 2GN Goulburn, NSW, recently made a frequency change from 1380 to 1370 kHz to avoid interference from 3 MP , which is now on 1380 kHz . According to a verification letter from the Chief Engineer of 3 MP , they operate 24 hours a day using 5 kW and feeding a directional antenna system with protective mills toward Lithgow and New Zealand. 3 MP also sent a verification card, as well as the covering letter. The address of the station is Mornington Peninsula Broadcasting Lid, Bayside Shopping Centre, Beach Street, Frankston 3199.

Station 2LT Lithgow, which formerly operated on 1370 kHz , had moved to 1380 kHz instead of the previously announced 1390 kHz .
Last year it was announced that 3 medium-wave and 9 FM stations would be licenced for Universities and Technical Institutes. One of these, operated by the National University at Canberra, has been heard by Chris Martin of Sydney. According to the DX Post Adelaide $2 X X$ is a new community station located in the nation's capital. The Australian National University is running 2 XX with a power of 300 W on 1010 kHz . Hours of transmission are 2000-1500GMT. Postal address is PO Box 4, Australian National University, Canberra 2600 ACT. The other iwo stations for medium-wave operation are to be operated by the Darling Downs Research Institute at Toowoomba and the West Australian Institute of Technology

LISTENING BRIEFS EUROPE

DENMARK: Radio Denmark at Copenhagen has recently installed a rotable antenna and is now being heard on $15165 \mathrm{kHz} 0730-0815 \mathrm{GMT}$, while a further transmission on the same frequency has been noted at 2030GMT. Some other transmissions observed are 0900-0945, 1730-1815 and 1900-1945GMT
SWEDEN: Radio Sweden continues to operate a test transmission to Australia and New Zealand with a relay of the Swedish Home Program. Recently the frequency was moved from 11705 kHz to 9605 kHz , although the transmission is still broadcast 0630-0800GMT
EAST GERMANY: Radio Berlin international broadcast in English to South Asia 0645-0715 on 15240 and 17800; 1200-1230 on 1195, 15125 and 21540; and 1400 -1430GMT on 15125 and 21540 kHz .
ANDORRA: Information from the World Radio Handbook Newsletter indicates that Radio Andorra is again on short-wave on 62.30 kHz . The station broadcasts weekdays $0600-1500 \mathrm{GMT}$ with a relay of the home program in both French and Spanish, with French being broadcast $0600-0700 \mathrm{GMT}$. At weekends they are broadcasting in English and Dutch 0900 -1400CMT The experimental broadcasts are for a three month trial period and IRC's should be enclosed with a reception report to receive the special verification card
FRANCE: The English transmission to Africa has been retimed to $1600-1700 \mathrm{GMT}$ and is now broadcast on 15200, 15210, 15300, 15360, 15425, 17720, 17800, 17850,17860 and 21580 kHz .
HUNGARY: Radio Budapest has a daily transmission in English to the Far East 1030-1100GMT on 7155 , $9585,11910,15160,17715$ and 21525 kHz . A further transmission 1200-1240GMT is broadcast Monday to Friday on 6150, 7155, 9585, 11910, 15160, and 17785 kHz .
BELGIUM: The Belgium Radio has a daily broadcast in English 0015-0045GMT on 9735 kHz . Relays of the home program are also broadcast and reception in this area is generally good $0430-0615 \mathrm{GMT}$ on $9650-11790 \mathrm{kHz}$. A further transmission $1000-1130 \mathrm{GMT}$ is on 17740 and 21475 kHz .

AFRICA

BENIN: According to Sweden calling DXers (wo) transmitters are being supplied from Germany, one of 20 kW for medium-wave and one of 50 kW for short-wave, with a rotatable derial for transmission to Europe, Asia and later North America. For the time being ORTB, Cotonou, broadcasts on weekdays $0515-0830$ and $1615-2300 \mathrm{GMT}$ on 4870 kHz , and $1130-1330 \mathrm{GMT}$ on 7190 kHz . On Saturday and Sunday the transmission is $0600-2300 \mathrm{CMT}$, with the morning and evening transmissions on 4870 kHz and the midday session on 7190 kHz .

BC221

FREQUENCY METERS

Brand new in original packing cases－ unopened complete with 240 volt power supply Charts．etc． 890 each－cartage to rail is Freight payable at nearest attended railway station．

P．M．G．TYPE TELEPHONES

standard desk lype with magneto bell calling device Range 30 miles Uses slandard balferies af each phone．Any number can be connected logether on single line．
$\$ 35.00$
（2 TELEPHONE SETS）
si cartage to rall．Freight payable at nearest allended railway station．

TEN CHANNELS VHF TRANSCEIVER
TR1956 $\quad 225.150 \mathrm{MHz} 28$ volt DC oper－ ated AM single crystel locks both TX and RX on same channel complete with generator \＄33．00

TUNING UNITS

T．U．Series．Contains variable condenser suitable for aerial tuning，vernier 5＂Ceramic Coil Former．etc $19^{\prime \prime}$ rack mounting．only 1950 en．Posta $\$ 2.30$ ．B． 3.75. C．$\$ 480$ ．D． $\mathbf{8} 65$ ．

FREQUENCY METERS

AN URM 32 A 120 KHz 101000 MHz ． with 240 V power supply． 8125
$\$ 1.00$ cartage to rail．treight payable al nearest alfended railway station

ILFORD $17.5 \mathbf{m m}$ SPROCKETED
MAGNETIC TAPE
1000 h reeis brand new original packing $\$ 4.00$ ea．quantily
available
$\begin{array}{cccccc}\text { Post A } & \$ 1 & 30 & \text { 日 } & \$ 200 \\ C & \$ 2 & 30 & 0 & \$ 280\end{array}$
No． 62 TRANSCEIVER
With headphones accessories atc $\$ 60$

TELEPHONE WIRE

mile iwin（2 miles）genuine ex．Army Don 8 perfect condition 835 per arum 81 cartage to rail treight payable at destination

PRISMATIC COMPASSES
Genuine ox－army Mk 3．liquid darmped．as new $\$ 4500$ P \＆PA 8170 ．B $\$ 225$ ． C．$\$ 240$ ，D 62.65

MORSEKEY MORSEKEYBUTZERS
 $\$ 1.40$ $\$ 4.25$ Post 60 c

DYNAMIC

TRANSISTOR CHECKER

Provides a visual indication of signal output Tests：electrode open circuits．short circuits P\＆PAs1 70 日s 25

MULTIMETER

A compact and handy tester for workshop or lab where quick circui checks are required DC Voliage 5 －2 5 KK 120.000 OHMS per voli）AC Voliage 10.1000 V （ 10.0000 H MS per voli）DC Current O－50 UA．0－2．5 MA，O－250 MA．Resistance 0．6 Megoh ms Decibels－ 20 to plus 22 DB Complete with instructions

Only 1725 ea．Posi $\$ 105$
30.000 ohm per volt 23.75 P \＆P $\$ 1.05$

BENDIX PIONEER
Drife Sight
Type 83
$\$ 25000$
4 DIGIT RELAY COUNTERS so voll DC．suit slot car Lap counters．
01.28 each P \＆P 60c

NIBBLING TOOL
Cuts sheet metal like a punch and die， trims，notches and cuis to any size or shape over 7 ； 16 inch

ONLY $\$ 9.95$
Post $\$ 110$

NIFE CELLS

12 Volf，fully charged， $\sin \times \operatorname{3in} x \operatorname{lin} 4$ AH
11.50 each．P\＆P60c
MUIRHEAD
Mecadade oscillator．Type DG 38A
10000

HANDY SIGNAL INJECTOR
Produces an Audio Signal in rich harmonics Ideal for Sig Tracing in A．F．I．F．，and R F circuits Powered by 4 Penlight Bafteries with On Oll Switch and indicator lamp size $11 / 2^{\prime \prime}$
Diam．5＂Long Only
－6．50．Post 8110

TELESCOPES

$25 \times 30 * 6.50$
P\＆PA 1．70，B \＄2．25 C． 82.40 D 8265
SMALL CLIP－ON
POCKET TELESCOPE

ZOOM

TELESCOPES
60 magnification with a 60 mm coated ob，octive lens with tripod
$\$ 75.00$ as illustrated
P\＆PA S190 B \＄2 75
C 3320 D $\$ 395$
WALKIE TALKIES 2－WAY RADIO， PMG APPROVED
I wall．II transistor $\$ 130.00$ sel of 2
P\＆PA 3180 日 8250 C $\$ 280$. D 3320
SMALL COMPUTER

PANELS

3 in 2 in containing 2 valves，gity of resistors．etc

ONLY 76c．P\＆P60C

ELECTRONIC FREQUENCY

 COUNTERAusitonic irpe DFC $\$ 240 \mathrm{~V}$ so cycle 0 100 KHz
$\$ 150$

IMPELLER PUMPS

New gunmefal body，Stainless sieel Shatt．Neoprene Impeller Up to 1511 Liff，suitable for almost any tyoe of liquid Self prining．Ideal boat bilge pump，sullage drains．efc．Approx size ＂$\times 5^{\circ}$

$P \& P A \quad \$ 190 . B \quad \$ 275$ C 13.20 D

RECEIVER No． 210

$2.16 \mathrm{M} / \mathrm{cs} 865$
Transmitter No 11 suits $210 \geqslant 35$
24 volt Power supply to suit above 118 Oi complete station with Headphones．Mic Morse Key．Antenna 1110

LAVOIE FREQUENCY METER
Fr－／6U
100 to $500 \mathrm{M} / \mathrm{HZ}$
240 Volt operated
PERFECT CONDITION
8375.00
S22 Transceivers 100 ISOM CS
$\$ 35.00$

$5^{\prime \prime}$ CRO TUBE 5 BPI 65.50 each
Post A 8140 ．B 8225 ，C 8270 ．D

POSTAGE KEY
A：NSW
日：Vic，OI
C：SA，NT，Tas，New Guinea，
C：SA，NT

PANORAMIC ADAPTOR

MI type PRA． 1455 variable Kc
Course 440－520 Kc
Contre Preq 520－440 Kc
Fine Centre Freq 20－0．20
Filter band with 50．100， 200 LF
200 H F．Sweep band width 0.200
$\$ 75.00$ ．

BRANDNEW INCARTONS

65N7GT	95 c	CV850	81.50
SUAG	95 c	IH6G	758
EFSO	75 c	832	85.00
5 SY	02.25	6×4	－2．25
2×2	75 C	\checkmark R64	75c

AIRCRAFT CLOCKS

Genuine eight day jewelled movement sweep second hand Dash mounting －29．50 EA．P \＆P $\$ 1.10$

CONDENSER LENS

11／2＂Diam 4 $1^{\prime \prime \prime}$ FL 75 c 2 $1^{\prime \prime} 2^{\prime \prime}$ Diam 2＂F －1 50 each．Or 250 per pair P \＆P 40c

TELESCOPES

 ZOOM FOCUSING$30 \times 30823.95-45 \times 40836.50$
P\＆PA \＄1 70 B $\$ 225$ C $\$ 240$ D $\$ 265$

TRANSCEIVERS Ex Army

No C42 sel 36 to $60 \mathrm{MHz}_{2}$ complere with 24V power supply．headphone mic eads eic 18500 ．

No C45 sel． 23 to 38 MHz complete with mast．headphones．mic， 24 V power supply etc 195.00

0100 cantage to rall．freight payable at nearest raitway atation

Hanley double beam oscilloscope．Type
13A with probes
Working 150.00
T7D \times RCA STUDIO RIBBON MICRO－ PHONES Variable pattern \＆response music B \＄400C \＄4 30 D \＄4 80

EX－ARMY TWO－WAY FM RADIOS

1．2 WATTS OUTPUT SUPERHET
PRC9 AND 9A 27 to $39 \mathrm{M} / \mathrm{HZ}$ PRC10 AND 10A 38 to $55 \mathrm{M} / \mathrm{HZ}$ COMPLETE WITH HANDSET ANTENNA AND BATTERY ONLY 825 EA P\＆PA\＆2，B $\$ 450$ ．C 84.50 ，D $\$ 6.35$

16MM SOUND PROJECTORS IN GOOD WORKING ORDER

240 volts operated Complete with Speaker and Amplifier

CINEVOX 8150.00
BELL \＆HOWELL $\$ 250.00$ SIEMENS 8375.00
s 1 Cartage to Rail Freight payable at nearest attended Railway Station

3000 TYPE RELAYS
P M．G． $2000 \mathrm{hms}-1.5000 \mathrm{hm}$ Coils 2.50 each P \＆P 60C

P．MG．TYPEKEYSWITCHES． 45C P\＆P20C

Ciniel Oscillafor and Elecironic
Counter，Pype 388 ．

$\$ 250$

SPECIAL lucky dip valve offer，is new valves in carions for only s2．05．We haven＇t got time 10 sort them，so you reao the benetis
P \＆PA \＄180
RADAR TRANSCEIVER X BANO WITHKLYSTRON ETC．$\$ 45.00$

MICROPHONES OMNI DIRECTIONAL 50K OHMS

FREQ RESPONSE $100 \cdot 10,000 \mathrm{~Hz}$ Sensitivity 56 dB complete with 5 H cable Microphone Holder and Stand Base only Microphon
$\mathbf{~} 7.95$ ea P\＆P A\＆1．70．B\＆2．25．C\＆ 2.40 ．D 2.65.

REPERFORATOR

Genuine Siemens Type 33c 8500

INFORMATION CENTRE

PLAYMASTER TWIN 25: The .0022uF capacitor on each power amplifier of the Twin 25 is wrongly placed on the PCB. According to the circuit the .0022 uF is between the collector of T10 and the OV line. The .0022 uF is in fact between the OV line and the collector of T9. Dick Smith's staff assure me the thing works regardless. However, I have a mangled BC640 and a 39 ohm resistor to prove it doesn't. Moreover, BC640's are hard to get in Canberra. Can you advise substitute types? (B.W., Kambah, ACT.)

- There is an apparent anomaly between the PCB and circuit but the PCB is a direct equivalent to the circuit, as far as AC signals are concerned. This is because of the signal bypassing effect of the shunt 0.1 uF capacitor across T15. The circuit does work. Your damaged components are likely to be due to incorrect insertion of the BC640. Notice that the leadout diagram for the BC639/640's is different from the other transistors in the circuit. At this stage, we cannot nominate available substitutes for these transistors, apart from the more expensive BD139/ 140 types.

THIRD METHOD SSB: I wonder if a constructional article could be produced by your magazine for an SSB exciter based on the "third method" of generation, using CMOS technology. Readers such as myself have such limited recourses, that a project could better be done by someone with more experience in the field, hence my request directed to Electronics Australia. The idea is not new but I have never seen a project published along these lines. I feel that the advantages of the "third method" are considerable, with particular regard to the

[^7]matter of adjustments and I also feel that many other readers would be interested in a project of this nature. (A. E. A. Nelson, NZ.)

- Thank you for your suggestion regarding the SSB transmitter using the "third method" of generation. We have already given the matter some thought, and we will certainly be giving it some further serious thought in the near future. This does not constitute a promise of a project, but we will present one if circumstances permit.

COLOUR PRINTING: I was interested in your discussion of the Colorvision CCS in the June issue. It occurred to me that it might be used for slide presentation and, by simple electronic reversal, viewing of colour negatives would be possible. My main interest in this would be to determine the filter requirements to produce a balanced print from a colour negative.

In this regard a test print could be obtained by trial and error and, by knowing the filter factors used, and adjusting the machine to produce an identical picture on a colour TV set, it would be possible to solve the problem of colour reproduction. (M. K., Russell Lea, N.S.W.)

- This idea is not new. We published a brief description of such a system some years ago, as developed by an American firm. It was intended for making enlarged prints, but we have heard little about it since. On the other hand the idea is well established in the motion picture film processing industry and it is used by at least one large processing laboratory in Sydney. It is generally regarded as an

A PERFECT SPACE AGE ENTERTAINMENT FOR

THE WHOLE FAMILY

VIDEO SPORT

SPECIFICALLY DESIGNED FOR THE AUSTRALIAN T.V. SYSTEM

OPERATES ON ANY BLACK \& WHITE OR COLOUR TV SET

MERELY CONNECT INTO AERIAL OUTLET OF TV SET

4 GAMES ALL IN ONE MACHINE - TENNIS

- SQUASH - HANDBALL - FOOTBALL-HOCKEY
* Realistic Sound
* Automatic on screen scoring
* Forward shooting on hockeyfootball
* Variable ball speed
* Adjustable bat size
* Visually defined areas on all games
* Uses 6 regular "C" cell batteries or 9 volt AC adaptor
* Standard accessories with remote control unit.
* Complies with Postal \& relecommunications Dept interference standards
research or discuss design changes.
BACK NUMBERS: Only as available. Within last 6 months, face value. 7-12 months, add 5 c surcharge; 13 months or older, add 10 c surcharge. Post and packing for 60c per issue extra
OTHER QUERIES: Technical queries outside the scope of "Replies by Post" may be submitted without fee, for reply in the magazine, at the discretion of the Editor
COMMERCIAL SURPLUS EQUIPMENT No information can be supplied
COMPONENTS: We do not deal in electronic components. Prices, specifications, etc., should be sought from advertisers or agents
REMITTANCES: Must be negotiable in Australia and made payable to "Electronics Australia
ADDRESS All requests to the Assistant Editor. "Electronics Australia". Box 163. Beaconsfield, 2014

FULLY GUARANTEED (3 MONTHS) ONLY $\$ 79.50$

RONics PTY ITD
BUSINESS ELECTRONICS
212 Balaclava Road. Caulfield. Vic.. 3161
Tel 5097085.5091321 .5093898
Please send me the VIDEO SPORT \square tick (Cheque / Money Order enclosed)

Please send me more details on VIDEO SPORT \square tick

L．E．CHAPMAN

GRAMOPHONE MOTORS 3 SPEED COMPLETE WITH TURNTABLE \＄4

SUPER SPECIAL B．S．R． RECORD CHANGER

12 inch turntable balanced arm cueing device etc．\＄35，pack and post \＄1．50．Interstate \＄2．50．

LEVEL AND BALANCE

METERS
1200 Ohm 100 microamps

TV tuners

 valve type$\$ 10$.
SPEAKER $\$ 25.00$ ．Pack \＆post $\$ 1.50$ Interstate $\mathbf{\$ 2 . 5 0}$ ．

RCA Transmitting Tubes

 BEAM POWER TUBE 2 E26 Glass－octal heater－cathode type used as af power amplifier and modulator and as rf power amplifier and oscillator．May be used with full input up to 125 Mc and with reduced input up to 175 Mc ．Class．C Telegraphy maximum plate dissipation． CCS 10 watts．ICAS 13.5 watts $\$ 7.00$ ．
aAREAING

Hook up wire 30 mixed hook up 250 mixed 250 mixed sciews with self tappers，boits，nuts，etc．－\＄1．25 100 mixed 1 including fine radio 7 V knobs change \＄5．00
$1 / 2$ meg．double pole switch pots 51 c ．
Speaker Cabinets Size $16 \times 10^{\circ} \times 8$ in Speaker Cabinets Size $16 \times 10 \times 8$ in
cluding $261 / 2$ inch dual conespeakers $\$ 18$ each
Mixed pots 30 including Mixed pots 30 including
ganged concentric $\$ 5$ ．
Morganite \＆IRC 33 useful Morganite \＆IRC 33 useful
valves fresh stock $\$ 2.00$＋ valves res
postage 50 c
Slide switch 3 position 50 cents．
50 nim pots ineal for ext． Speakers 50 cents．Transistoi and Driver Speaker
Transfurmers $\$ 1.00$ pais Ferrite Rods $6 \mathrm{l} ; \mathrm{x} \%$ inch 50 cents． Pots 30 mixed values Includin ganged ana concentric $\$ 5$ ． In Line F use Holders 20 cents
Stereo Speaker Wire 12 cents Stereo
yard． yard．
100 Mixed TV and Radio Knobs including fine Tune and Channel Change $\$ 5$ ． Car radto suppi essor
condenser 30 cents．

BARCAINE

Special－Stareo Amplifier 3 watts per Special－Stereo Amplifier 3 watts per
channel RM！S 240 volt bass \＆tieble channel RM．S 240 volt bass \＆treble
boost controls．Includes fancy chrome boost controls．
face plate $\$ 10$
faceplate 10
Electris 3 in one 100．25－40 Electrcis 3 in one 100．25－40，
$24.250-300 . \quad 50-250-30075$ cents．
Screw in 6 Volt Pilot Lights $\$ 1.50$ for 10 ．Plug－in type 10 for \＄1．00．
100 mixed condensers micas polyester ceramic $\$ 2$ per pack and post 45 c
3.5 to 3.5 Jack Plugs ？ft Shielded Cable 75 cents； 6.5 to 3.5 Jack Plugs 7 ft ．Shielded Cable 15 cents．
Mixed Tag Sirips 50 cents 101 Doien．
Special Falicy chrome knobs Ideal for amplifiers． $5 \mathrm{for} \$ 1$
Tape Recorder Heads Transistor Top quality suit most recorders $\$ 5.00$ ．
Jack Plug Sockets 6.5 mm 35 cents．
Morganite and IRC resistors 33 values $\$ 2$ pei 100 pack and ost $45=$
Pnilips Gramo Motor and Pickup 4 Speed 6 Voll \＄7．75． Crossover Condensers 2 mfd
60 cents． 60 cents Crystal

Microphone
Inserts

BSR 4 SPEED 240V GRAM

Motor and Pickup \＄7．95
 SPECIAL
$61 / 2$ inch Dual Cone 4 ohm

SPEAKER CABINET includ－ ing 2 dual cone speakers． $6^{1 / 2}$ inch 10 watts RMS $\$ 16$ ．Size $16 \frac{1}{2} \times 10^{1 / 4} \times 8$. Pack \＆post Inter－ state $\$ 5$ a pair．
 NSW \＄3．00．

PUSH BUTTON SWITCHES	bunder
75c	

4 pos $\mathbf{1 5}$ cents， 2 pos 50 cents
BSR

PUSH SWITCHES

$75 c$

	VU METER $\$ 3.00$ pair
	CAR RADIO PUSH BUTTON TUNERS \＄4．50

BARCAINE

BAREAINE

Switch Wafers： 11 position 20 cents． Perspex 100 lor recor
size $12 \times 81 / 2 \times 33 / 4 \$ 150$
Pots： 50 K 50 cents； 1 M 50 Pots：
cents．
Tape Spools： 7 inch 75 cents． Tape Spools： 7 inch 75 cents．
$1 / 2 \mathrm{Meg} \mathrm{Double} \mathrm{Pole} \mathrm{Switch}$ $1 / 2 \mathrm{Meg}$ Double Pole Switch
Pots 50 cents． Cots 50 cents． Coaxia
ohm 30 cents yaid． Jack Plugs 6.5 inm 50 cents； Jack Plugs 6.5 inm 50 cents；
3.5 mm 25 cents．R．C．A．Plugs 3.5 mm cents．

Speakel Special 2% inch MSP o 16 \％ $431 / 2$ ohni $\$ 350$ Magnavox 5 inch 8 ohni $\$ 4$ MSP 4 inch 3 ohm $\$ 250$
Hook Up Wire 30 mixed colours lengths $\$ 1$ nag．
Speaker 4 pin plugs 15 cents． 25 mixed 5 and 10 Watt resistors $\$ 2.00$
250 mixed sciews．BSA，Whit self－tapper bolts，nuts，etc． $\$ 1.25$ bag plus 40 C post． BSR Stereo Player Model
P． 128 \＄52 P． 128 \＄52 pack and post TV Aerials Complete Range Hills Colour $\$ 12$ to $\$ 60$ Range
Harials Car radio aerials，lockdown，
 mm \＄4．50
Electros 3－in－one： 20,400,
$450,10,400,450,75,50,65$

AWA 11 inch P．I．TV EHT transtormers \＄5．00．
Power Transformer 60 mil 240 voll 36 voli Centre tap 6.3 winding $\$ 5$
Mics Dynamic lok $\$ 3.50$ Valve Sockets： 7 or 9 pin 10 cents．Octal 10 cents．
Power transformers 60 mil $225 v$ aside 6.3 winding $\$ 5$ small power ransformer $240 \mathrm{v}, 220 \mathrm{v}$ and 22 v windings $\$ 3$
Pilat Lights 24 volt screw－in， 10 for
$\$ 150$ $\$ 1.50$
Ferrite Rods 6 inch 50， $9 \times 1 / 2$ 75 cenis．
Pots： 10 K qanged 10950 cents： 1 Meg ganged log $\$ 1.25$ ； $1 / 2$ Meg ganged log $\$ 1.25$ ； 2 Meg ganged log $\$ 1.25$
Meg double pole switch $\$ 1.50$
Sharp TV FIyback Transformers BFT G04 \＄7．00． Transformers．drive đind output $\$ 1.00$ pair． Heat Sinks： $4 \times 211 / 4 \$ 1.50$
 Speake
$\$ 175$
National 3 in one woofer mid range and tweeter 15 ohm 10 inch $\$ 32$ Picture tubes 17 inch 90 deg new \＄19
Spaker Spaaker Cabinats 7 cu H 32 walts RMS
8 ohm includinh speakers．$\$ 37$ each Picture Tubes New 110 Deg

－－		E－		$=-$	－
61／2 inch Disal jone 4 $4 \times 28 \mathrm{ohm}$			Stiom	Mspex	
	$\begin{gathered} 5050 \\ \text { sic } \\ 4050 \end{gathered}$			（e）	
	50		cos	come	
		Magave sinen Dial	为		
	cosme		$\substack{\begin{subarray}{c}{\text { sicmo } \\ \text { sis }} }} \end{subarray}$		边
	Semot	Piomor	${ }_{\substack{51200}}^{590}$		边

INFORMATION CENTRE

ideal solution to the basic problem.
While the idea is simple, the hardware and calibration are quite complex and we seriously doubt whether it would be within the scope of the home constructor. As far as the Colorvision unit is concerned it is suitable only for 8 mm film.

DRILL SPEED CONTROLLER: I have a complaint to lodge about your Mark II drill speed controller. (July 1976, 2/PC/22). With the potentiometer turned up full there is an output of about 15 volts. The circuitry has been checked over and all double soldered. If you could suggest some fault that could be in it, I would be very happy. (H. H., Condobolin, NSW.)

- There could be any number of faults. You will have to trouble-shoot the unit using your multimeter. Check the resistors for correct value. Check the diodes for low resistance in one direction and high resistance in the other. The ST4 should show high resistance in both directions. The SCR (or Triac) can be checked in the following way: Disconnect the gate and connect it via a 1 k resistor to the Anode (or A2 in the case of a Triac). Now connect a drill and switch on. The drill should run at a high speed, but not its maximum. If the drill runs slowly, or not at all, replace the SCR. If the SCR checks out. then the ST4 is the other possible faulty component.

NOTES \& ERRATA

AM SYNCHRODYNE RECEIVER (June 1976, File No 2/TU/41): Readers have reported difficulty in obtaining the BA163 varicap diode. The author has suggested an alternative. Substitute a BB105G varicap as used in the Playmaster FM tuner and increase the series 47 pF capacitor (C24) to 0.01uF
3.5MHz SOLID STATE TRANSMITTER (September 1976, File No 2/TR/60): On the circuit diagram, the 270pF and .0012 uF capacitors in the tuned circuit of TR2 should be reversed. MUSICOLOUR Mk III (September 1976, 2/PC/23): To ensure reliable operation with all 555 IC's, the 10 k and 33 k resistors at the output of the bridge rectifier should be changed to 330 ohms and 1 k respectively.

Car Burglar Alarm . . . from p. 57

since, in most car electrical systems, bypassing the ignition switch, as a thief would normally do, will cancel the alarm in the same way as operating the switch itself.

Fig. 4a shows how a double pole switch is wired in series with the accessory switch and push button. With this fitted the thief has not only to bypass the accessory or ignition contacts, but also find and disable the second switch.

The purpose of the switch in the push button circuit is to prevent children-or curious adults-setting the alarm when the car is parked with the ignition switch in the off position.

Amateur Microwaves . . . from p. 79

1975 article. This arrangement is the obvious one to use on 5.8 GHz and work is proceeding in that band at VK2AHC.

Fig. 13 shows the complete circuit of my 3400 MHz equipment. It illustrates the FM crystal oscillator circuit and the use of 723 regulators, VHF amplifiers and varactor multipliers.
CONCLUSION. It is hoped that this may serve to help the newcomer to amateur UHF and microwave. Current programs at VK2AHC are aimed at investigating super refraction effects at 5.8 GHz and 10 GHz and keep abreast of techniques used in the rest of the world, particularly in the UK where activity at this time is extremely high.

Manufacturers of: Electrical / electronic equipment, wound components and lighting control equipment.

BRANCHES IN ALL STATES

Ferguson Transformers Pty Ltd.

Head Office
331 High Street. Chatswood
NSW 2067
PO Box 301 Chatswood. NSW. Australia 2067 Phone: 02-407-0261

SPECIAL OFFER

RESISTORS

1 OHM to 10 Megohms $1 / 4$ watt to 4 watt
Pack of 100 mixed $\$ 1.50$

PLUGS \& SOCKETS
 10 mixed $\$ 1.00$

CAPACITORS

Polystyrene
50 mixed $\$ 2.00$
Post \& packing +40 cents MAIL ORDERS ACCEPTED

> to:
A.O. Hi-Fi \& Electronics P/L P.O. Box 415

Ringwood, Vic. 3134
SHOP ADDRESS:
558 Mitcham Road MITCHAM, VIC. 3132

Phone: 8732867 or 7254779

FOR SALE

FERROGRAPH model 7504DHW reel-reel tape deck with Dolby. Excellent condition. 2 yrs. old. $\$ 950$ o no. Also TECHNICS SL 120 record deck. SME arm and V15 carridge 1 yr old. as new. $\$ 300$ King. 8. Borral St. Woomera. S A 5720. Phone 737883

PRIMO MICROPHONES EMU $522 \$ 21$ 80. DM 1487 PT T table model (suit hams) $\$ 3400$. EM 70 . high qual shotgun reviewed in E A. Sept $\$ 73.50$ P\&P $\$ 2.00$. Books. world cross Reference Handbook $\$ 9$ 50, transistor specifica. tion manual $\$ 4.40$ P\&P 40C-Transistors. BC 107. 148. 149. 157. 158. 159. BS 9016-10 for \$1 80. AC 127 128. 187. 188-68c ea. Diodes, zener 4.7V/1A. 19c ea. 1200V/2 5A-10 for \$2 90. BA222. 10 for 90c P\&P 40c Led readouts, common cathode/anode. 1 inch $\$ 3.90$ ea. \$/4 inch $\$ 180$ P\&P 40 c -VU meters. 4 sq. $\mathrm{cm}-\$ 250 \mathrm{P} \& \mathrm{P}$ 40 c -Range of VPC chokes also available Electronic Concern PO Box 733. Darlinghurst. NSW 2010.

AUSTRALIAN RADIO DX CLUB - Covering overseas and long distance radio reception, including shon-wave and medium-wave. Monthly bulletin for all members For full details, write enclosing 40 c to ARDXC, 3 Kadana St. Oak Park. Victoria 3046
V.T. V.M TAYLOR 171A with 25 KV probe and Handbook Perf order $\$ 50$ O Brien. Edgar Rd San Remo, 3925 Phone (056) 78.5317

RESISTORS AND CAPACITORS. Resistors all E12 values $1 / 4$ watt carbon film 10 ohm to 1 meg 2 cents each I.R.H GL $1 / 2$ or GLP $1 / 2$ watt Metal glaze 10 ohm -470 k 3 cents each or 25 cents over 250 . 1 walt 1 ohm to 1 k 6 cents each or 5 cents over 100 PACKS STANDARD PACK contains 5 each of E12 values in ranges shown COMPUTER PACK contains quantities based on general usage $1 / 2$ watt 285 resistors $\$ 7.00 \mathrm{~V}$ watt 305 resistors $\$ 590$ CAPACITORS ELECTROLYTICS single ended uprights. Mfd 35 v.w 1. 2.2. 3.3. 4.7. 10, 22,10 cents each $33.47,15$ cents 25 v.w 10016 cents each 22025 cents each 47035 cents Polyester Greencaps 100 v.w.001.0022.0033. 0047. 0056. 0068, 7 cents each .01. 022. 033. 047, 056 068. 082. 10 cents each 1. 22. 13 cents each Poly Pack 5 cents of these values $\$ 600 \quad 75$ capacitors. Other components see E. A. June. 1976. All components brand new from manufacturers or agents Each value of component individually packed. Post and packing included in all orders over $\$ 650$ For orders less than $\$ 650$ add 40 cents for post and packing. 5% discount on orders over $\$ 35.00 \quad 10 \%$ discount on orders over $\$ 7500$ Send orders to RAM ELECTRONICS. 575 Sydney Road. Seaforth. N S W 2092 Please send cheque or money order.

JUST ARRIVEDI!! . . TOP QUALITY CURRENT STOCK ELEC. TROLYTICS (Fresh Stock) SWITCHES (Miniature) and Panel Meters at incredible prices THESE ARE LIMITED QUANTITY SPECIALS SO BUY NOW AND SAVE MONEY Single ended type: 220uf/35v-10 for $\$ 200$. $1000 \mathrm{uf} / 25 \mathrm{v}-6$ for \$2 25. 470uf/25v-10 for \$250, 100uf/50v-10 for \$2 25. 100 uf/ $63 v-10$ for $\$ 240$ Pigtail type 2200 uf $/ 25 v-5$ for $\$ 350$. $100 u t / 350 v-4$ for $\$ 300$. $47 u t / 350 v-6$ for $\$ 300$. $22 u t / 350 v-8$ for $\$ 300$ 10ut/350v-10 for $\$ 300$. $22 \mathrm{ut} / 350 \mathrm{v}-10$ for $\$ 225$. $1 u f / 350 v-10$ for $\$ 175.47 u / / 50 v-10$ for $\$ 150$ 22ut/50v-10 for $\$ 120.640 u t / 16 v-10$ for $\$ 300$ SPECIAL BULK PRICE $22 \mathrm{uf} / 50 \mathrm{v}$ (single ended)- 200 for $\$ 1000$ NEW RANGE OF SWITCHES FANTASTIC SALE OF SWITCHES THESE ARE TOP QUALITY SWITCHES Many miniature types at incredible prices - ST 103A Toggle switch SPST-40c ea MSPB206R Push button DPDT-60c MST206N Miniature Toggle OPDT-85c. MSL203N-5 Rocker switch DPDT-65c. MSP406N Miniature Toggle 4PDT-\$1. MR3-3 Miniature Rotary switch - $\$ 150$ NEW PANEL METERS at Bargain Prices TOP QUALITY sEW BRAND TYPE SD640 0.50 micro Amp DC (Size) $21 / 2^{\prime \prime} \times$ $31 / 2^{\prime \prime}-\$ 3.75$ ea or 10 for $\$ 35$ TYPE SD830 0.1 milli Amp DC (Size) $31 / 2^{\prime \prime} \times 4 \frac{1}{2^{\prime \prime}}-\$ 425$ ea or 10 for $\$ 40$. EDUCA. TIONAL METER (IDEAL FOR Experiments or Schools) These Meters are enclosed in an atractive case ready to stand up on desk with connecting sockets on top MODEL ED 107 0.1 Amp OC- $\$ 5.75$ ea or 10 for $\$ 50$ SPECIAL AUDIO AMP IC HAl 3225.5 watts Peak incl cet diagram- $\$ 175$ ea or 4 for $\$ 6$ (TO CLEAR). I.C SOCKETS Top Quality 8 pin -35 c 14 pin-40c. 16 pin- 45 c SUPER BARGAIN PACKS. A MUST FOR HOBBYIST OR SERVICEMAN RESIS. TOR PACK - 100 per pack (incl $5 \% .10 \%$. $1 / 2 \mathrm{w}$ and iw types) - 2 packs for $\$ 180$ POLYESTER CAP PACK 100 per pack New range of values from 160 to 400 V (Fresh stock)- 100 tor $\$ 275$ ELECTROLYTIC PACK Incl High and Low voltage electros-25 for $\$ 2$. SEMICONDUCTORS SALE: BC108-10 for $\$ 1$. BC548. BC558. BC559-10 for \$150. BF198-5 for \$2. BF185-3 for $\$ 2$. BC637. 8C638-4 for S2. EM410-10 for S1. OASO-10 for \$1 2N6107-3 for $\$ 2.40250$ (2N3054)-3 for $\$ 2.50$ C106D S.C R (400V. 4A)-3 for $\$ 3.50 .2$ SA353 (AF 126)-5 for \$2. Post and Pack basic is 60 c Please add extra for heavier parcels
MICRONICS PO BOX 175. Randwick. N S W 2031
BOOMERANG TAPE RECORDING CLUB - Full details 9" * 4" S AE PO Box 118 . Wellington. N S W 2820

STEREO AMP $3+3$. EA Aug 68. 538 Crosshatch gen ETI704. \$29 Two Magnavox 8-30 boxes complete. 8cu tt $\$ 54$ ea Two $8-3018 \mathrm{cu} \mathrm{fi}$ cabinets. $\$ 21$ ea Two 20W HI FI speaker boxes. $\$ 34$ ea 830 speakers. $\$ 16$ ea All are in perlect working order. We buy built projects from E.A and ETI.PNL Electronics. 253 Forest Rd Arnclifte. N S W 2205 Ph 594422

Geological Survey of Papua New Guinea
has vacancies for:-

- Technical Officer Engineering-Geophysical Observatory. Port Moresby
- Technical Olficer and Senior Technical Officer Engineering - Volcano Observatory. Rabaul
All positions require training and experience in radio. electronics and preterably geophysical instruments Outies include construction instaliation and main. tenance of volcano surveillance seismic. related VHF equipment. Employment is by 2 -year contract
Please send resume to and request further particulars rom
CHIEF GOVERNMENT GEOLOGISTS,
BOX 778, PORT MORESBY
PAPUA NEW GUINEA.

PC LAMINATES TO CLEAR $-3^{\prime} 1^{\prime \prime} \times 24^{\prime \prime} \times 1 / 16^{\prime \prime}$ singlesided phenolic. 1 az copper $\$ 250$ for a pack of 5 Please add postage Weight 700 gm Hobby Hire, 16 Coveney St. Bexley, 2207 Tel 504361

ONE-OFF PC BOARDS Make your own prototype PC boards to professional standards from published or your own designs Simply press circuit symbol transfers direct on to copper and etch Suits artwork 100 Full instructions enclosed REPLACEMENT SHEETS AVAILABLE Pack of 10 sheets with all required lines \& symbols 8698 plus 50 c $P \& P$ from ENRITE ELECTRONICS 67 Clarke Street. PEAKHURST 2210 N S W

COLOUR PIC. TUBES (Shadowmask type) $13^{\prime \prime} \$ 50$ 15"\$65. TELESERVICE 842. Canning Hwy. 6153 Send SAE for queries.

WANTED

EARLY WIRELESS SETS Speakers. valves, parts. Radio books or mags Any quantity prior to 1930 O'Brien. Edgar Rd San Remo. 3925 Phone (056) 78.5317

DISPLAY ADVERTISEMENTS IN MARKETPLACE are available in sizes from a minimum of $6 \mathrm{~cm} \times 1$ col rated at $\$ 10$ per col $\mathbf{c m}$. Other sizes are at card rates. CLASSIFIED RATES $\$ 1.75$ per line per insertion payable in advance. Minimum two lines. CLOSING DATE is six weeks prior to the on-sale date. Issues are on sale the first Monday of each month. ADDRESS all classified orders. copy, enquiries, etc. to: The Advertising Manager, ELECTRONICS Australia, Box 162, Beaconsfield, 2014.

SPECIAL OFFER!

TECHNICAL DATA

- Electronlc Band Changing.
-0.5 - 29.9 MHz . Continuous Coverage. - Uses Wadley Loop (drift cancellation circuit) to derive synthesized hetrodyne oscillator signal. - LSB, USB, AM and CW.
- Frequency Readout better than 10 KHz (readable - to 5 KHz).
- Stability within 500 Hz during any 30 minute

Only a limited number of the famous Sheen" model "1000" scientific calculator available at this price, so be early.
Features

- 8 Digit display
- $\sqrt{\bar{x}} \pi 1 / x$
- Cos, Sin, Tan
- $M+M-M S$
- $\mathrm{Cos}^{-1}, \mathrm{Sin}^{-1}, \operatorname{Tan}^{-1} \cdot$ Guaranteed
- $\log Y^{n} E^{n}$

Send cheque or money order to:
SHEEN ELECTRONICS AUST 5 FREIGHT ROAD TULLAMARINE, VIC. 3043
period alter warmup.

- Better than $0.7 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{NSSB}$ and

Better than $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$ AM.

- Selectivity $\pm 3 \mathrm{KHz}$ at $-6 \mathrm{~dB}, \pm 7 \mathrm{KHz}$ at -50 dB .
- Input Impedance, high $0.5-1.6 \mathrm{MHz}$.
$50-75$ Ohm $1.6-29.9 \mathrm{MHz}$.
- 234 V AC $50-60 \mathrm{~Hz}$ or 12 V DC (externalorinternal

8 dry cell).

- Size $340 \mathrm{~mm} \times 153 \mathrm{~mm} \times 285 \mathrm{~mm}$.

FRG-7
$\$ 259$
Above prices include S.T Prices and specificetions
Above prices includ

ELECTROCRAFT PTY. LTD.

106 A Hampden Rd.
Artarmon, 2064
Phone 411-2989
Distributors of Belling Lee, Channel Master, Ecraft, Hills, HI. Q, Lab Gear, Kingray, Matchmaster. Largest Television
range of aerial equipment in Sydney, DISTRIBUTION AMPLIFIERS, EQUIPMENT AND ACCESSORIES
TELEVISION AERIALS, DIST WHOLESALE, TRADE AND RETAIL SUPPLIED.

HILLS THE NEW TELRAY RANGEAll Australia V H F. Channels \& F.M

COAXIAL CABLES

Attenuation per 100 ft at 200 MHz Reel Size Price Beiden 9242 Double screened with $\quad 40 \mathrm{~dB} \quad 500 \mathrm{H} \quad \$ 4228$ | Belden 9248 | Duofoil and Braid Aluminium | 31 dB | 500 ft |
| :--- | :--- | :--- | :--- | $\begin{array}{lllll}\text { TVMIA Concordia Copper Screened } & 44 \mathrm{~dB} & 100 \text { metre } & 30.15\end{array}$ $\begin{array}{ll}\text { Hartland WH89 Copper Brald } & 3.3 \mathrm{~dB} 100 \text { metre }\end{array}$ Harland WH87 Copper Braid 60 dB 100 metre Hartland WH86 Copper Braid 65 dB 100 metre 300 ohm Feeder Cable Open wire line 300 ohm Open wire line 300 ohm

18 dB	100 metre
1825	
15 dB	100 H
1580	

LAB GEAR AMPLIFIERS

VAB
Mast
Mast head 22 dB 75 ohm
CM 6014/DA 20 dB
CM 6034 . DA 4 ourlets 8 dB each
CM 6036 /DA VHF 30dB UHF
28dB
Televerta (VHF to UHF
frequency converter)
KINGRAY AMPLIFIERS
D15/500 m/V
D30/500 m/v
D40 $/ 600 \mathrm{~m} / \mathrm{v}$
$\begin{array}{ll}\text { D } 12 / 1500 \mathrm{~m} / \mathrm{V} & 7930\end{array}$
$\begin{array}{ll}\text { MH } 20 \text { masi Head } 300.75 \mathrm{ohm} & 6710 \\ & 6463\end{array}$

TELESCOPIC MASTS

CDE AR. 22 Rotator $\$ 79.00$ (over or under stolle rotator)
20f4 18 g gteet in $\$ 1930$ Stolle Aerial Rotator with Thrust
 42.42

ALL TYPES OF HARDWARE IN STOCK
Wall Brackets. Chimney Mounts. J Brackets. Guy
Rings 8 Guy Wire Masis from 8 ht to 50 ht

WILLIS TRADING CO. PTY. LTD. PERTH GPO Box No x2217. W. A 6001
 429 MURRAY ST • PERTH W A. 217609217600

Drake General Coverage Receiver 3 mHz to 30 mHz Battery \& Mains s299.00 Plus P \& P

general coverage RECEIVER
YAESU Type FRG 7
\$259

- Electronic Band Changing
- Uses similar principle io Wadley loop
e 0.5 to 30 MHz continuous coverage
- Frequency readout 10 kHz
- SSB (selectable USB. LSB) CW and

AM

- $230 \mathrm{VAC}, 12 \mathrm{~V}$ DC (External

DC or Internal 8 dry cells)

- 0.5 uV for $10 \mathrm{dBS}+\mathrm{N} / \mathrm{NSSB}$. CW

2 uV for $10 \mathrm{dBS}+\mathrm{N} / \mathrm{NSSB}$. CW
$2 u V$ for $10 d B S+N / N A M$

- $1.9-28 \mathrm{MHz}$ SSB/CW/RTTY - PLL System. If Shift - RF Processor. RF NFB - Newly Developed Dial

MULTIMETER

Build your own 20kת/V meter-complete with PC board and full instructions. 16 ranges

\$16.95

ALARM CLOCK MODULE MA1002

Features $05^{\prime \prime}$ Led Display $\$ 13.95$ Snooze Alarm Only add Transformer \& switches.

VHF CONVERTER TUNER 110.136 MHz couples to broadcast receiver. \$7.95ea.

TS-520 DX

The TS-520 is the final word in SSB transceivers, a superb creation from Kenwood, designed and built for serious enthusiasts around the world It features solid state circuit throughout except for the final and drive stages
Price $\$ 575.00$

DIGGERMAN ELECTRONICS

We offer a new realm in prices for hobbyists. Compare our prices. Return mail service

QUALITY ELECTROLVTIC CAPACITORS

> UPRIGHT AXIAL LEAD

Cap	16 V
1 uF	7 c
47 uF	7 c
10 uF	7 c
22 uF	8 c
33 uF	8 c
47 uF	9 c
100 uF	11 c
220 uF	13 c
470 uF	18 c
1000 uF	24 c

$001-7 c$
$0015=7 c$
$0022=7 c$
$0033-7 c$
$0047=7 c$
$0056=7 c$
$0068-7 c$
AESISTORS
Ohm
ZENER REc $\begin{array}{lr}01-7 c & 1-10 c \\ 015-8 c & 15-13 c \\ 022-8 c & 22-15 c \\ 033-8 c & 33-16 c \\ 047-9 c & 47-19 c \\ 056-9 c & 082-7 c\end{array}$ 25

25 V	16 V	25
7 c	8 c	9 c
7 c	8 c	9
7 c	9 c	10
8 c	9 c	11
9 c	10 c	13
11 c	11 c	14
12 c	13 c	17
17 c	15 c	20
23 c	21 c	32
37 c	31 c	40

LEDs with mig clip, quality large red - 25 c ea. Pots. trimpois \& others - SAE for price lists All goods top quality-satisfaction guaranteed or money back No minimum order. One P\& P charge of 40 c regardless of quantity. Prices current for 3 months for benefit of late readers

SUBSCRIPTION SERVICE

 Subscription Rates
 SA1400 per year within Australia SA1700 per vear e/sewhere

Make sure you receive every copy uf the magazine by ordering in from your riewsayent or the publisher For publisher subscriptions post this coupon, with your remittance, to Electronics Australia Subscristion Dept. John Fairfax \& Sons Ltd. GPO Box 506. Sydney. 2001 Subscription will start with first available
issue

Name

Address
Postcode years

Advertising Index

A O Hi-Fi Electronics Piy Lid

ACE Radio

AGFA Gevaen LId

Ampex Australia Pity Lid

Apolio Hi Fi Centre
Applied Technology Pry Lid24
Audio Engineers Pry. LId 4
Audio Telex Communications Pyy Lid 34
Australian Time Equipment Pty Lid 109
Bail Electronic Services 127
British Merchandising Piy Ltd. 24. 102
Bright Star Crystals Piy Lid 118
BKX Electronics Supply Service 60
B. W D. Electronics Piy Lid 80
Cashmore Sound 102
CRC Chemicals 110
Chapman LE 124
Classic Radio 98
Clock Disposal Co 126
Convoy International Piy. Ltd 2. 18
Cunningham R. H. Pyy Lid 46. 111
Deitch Bros. 122
Dick Smith Electronics Group $\quad 36,63,64,65,66,82$128
E. D. \& E (Sales) Piy Lid 74
Educal Kits 100
Electrocraft Piy. Lid 127
Electronic Development \& Sales Pity. Ltd 112
Fairchild Australia Pty Ltd 86
Farad Sales Pty Ltd 123
Ferguson Transformers Piy. Lid 126
Fraser Products 118
Geroge Hawthorn Electronics 104
Hagemeyer (Aust) IBC. OBC
Harman Australia Piy Ltd 10
Hills Furniture 28
International Correspondence Schools 38
Interson Piy. Lid 19
Lafayette Electronics 71
Lanthur Electronics 108
Leroya Industries Pty. Ltd 16. 97. 99. 101. 103, 105
Marconi School of Wireless 83
MS Components Electronics Pty Lid 114
McGills Newsagency Pty. Ltd 113
OBC Imports Pty. Lid 8
Parameters Pity Lid 44
Pickering \& Co 7
Philips Microprocessors 88
Photimport 6. 30
RCS Radio 69
Radio Despatch Service 110
Sheen Electronics Aust 127
Scope Laboratories 40. 41
Sony Kemtron Pty Lid IFC. 22
Star Delta Co. Piy Ltd 49
Stotts Magna Sighter 109
Stotts Technical College 92
Sun Electric Co Piy. Lid 20
Toshiba-EMI Aust. Piy Lid 14
University Graham Instruments Pry. Lid 95
Vicom International 116
Video Hi-Fi Centre 108
Warburton Franki-Sanwa 48
Webster Electronics 56
WHK Electronics 78
Willis Trading Co Piy. Ltd 128
Wireless Institute of Australia 119
World Record Club 107

Introducing the revolutionary UD-XL EPITAXIAL cassette

$\frac{\mathrm{UD}}{\mathrm{UB}}$Developed by MAXELL this completely new EPITAXIAL magnetic material combines the advantages of the two materials (gammahematite and cobalt-ferrite): the high sensitivity and reliable output of the gamma-hematite in the low and mid-frequency ranges and the excellent performance of the cobalt-ferrite in the high-frequency range. The result is excellent high-frequency response plus wide dynamic range over the entire audio frequency spectrum.
Compared to chrome tape, sensitivity has been improved by more than 3.5 dB . Because EPITAXIAL is non-abrasive, it extends to the life of the head. Consequently, the UD-XL delivers smooth, distortion-free performance during live recording with high input. When using UD-XL it is recommended that tape selector be in the NORMAL position.

Fidelity is also ensured by a precision-manufactured cassette shell with a special anti-jamming rib that provides smooth tape travel and helps eliminate wow and flutter.

Another good idea of the UD-XL cassette is a replaceable self-index label. Simply peel off the old label and put on a new
 one when you change the recording contents. No more mess

Magnatic material structure
Conventional magnatic particla
 on the label.

maxell.

For further information please write to Maxell Advisory Service, P.O. Box 49, Kensington, N.S.W. 2033.

Spend some time inspecting the JVC turntable range We doubt that anyone else has taken the amount of trouble to give you the faultless reproduction and durability that's built into every one of our models. The JVC automatic direct-drive turntable featured (JI-F45S) has a repeat knob for continuous or selected replays of dises (up to 6 times), and our DC direct-drive motor is far superior to AC servo-motors, and gives faultless high fidelity results every time. Wow and flutter is reduced even further to less than 0.03% WRMS. The concentricity and other critical factors of the $12^{\prime \prime}$ die-cast platter have been carefully determined for best results.

the right choice

On all JVC turntablos, the unique Tracing Hold tonearm system is another feature which means less record wear and less tracing error for you; it does this by lowering the centre of gravity of the tonearm counterweight assembly to a point below its pivot, providing ideal balance.

The introduction of a new gimbal support has been added to provide more precision, stability, sensitivity and durability. Whereas other gimbal systems may look like ours, most cannot supply the perfect JVC balance in horizontal and vertical planes. Belt-driven turntables also available: dL-F35 (fully automatic) JL-Al5 (semi-automatic).

[^0]: 42 Auto rhythm unit for electronic organs
 50 The Goofy-Lite-a simple tutorial project
 52 Protect your vehicle with a car burglar alarm
 58 A 10-channel graphic equaliser - new IC design has no inductors
 61 Sound effects for your video ball game
 67 Simple proximity switch for a novel door chime
 72 The serviceman Why are customer complaints ignored
 73 Special guide - where to buy pc boards, chassis and front panels
 75 Further thoughts on amateur microwaves Pt 3
 81 Circuit and design ideas:
 Digital pulse detector-Odd job for solar cells-Tunable notch filter suppresses hum - Silicon diode crystal set-Temperature meter-Directreading transistor tester
 84 Getting into microprocessors: The Fairchild F8
 89 Getting into microprocessors: Microprogramming module
 90 Introduction to digital electronics-10: Flipflops in counters
 106 New products:
 NEC Transceiver offers many features-Arix 360FTR multimeter has 34 ranges-Antenna accessories from Ralmar-Digital readout thermo-meter-Digital multimeter-Card frame-Simple IC radio kit from Dick Smith

[^1]: The
 Post this coupon to P.O. Box 6, BROOKVALE. 2100.

 Harman Synergy Systems

 I can spend around S

 system. Please send me details of an appropriate
 Harman Synergy System. Also the name of a retailer who can demonstrate the system.
 NAME .

 ## ADDRESS

[^2]: "Technology Editor, "New Scientist", London

[^3]: - 36 Hume Drive, Helensburg, N.S.W. 2508

[^4]: - HEF 4046 - micropower LOCMOS PLL
 - NE/SE 560 - FM Demodulator without tuned circuit
 - NE/SE 561 - Combined AM/FM Demodulator
 - NE/SE 562 - FM Demodulator with open VCO
 - NE/SE 564 - The first PLL to operate up to 50 MHz , TTL compatible (Available mid 1976)
 - NE/SE 565- The PLL for greater Precision and Stability
 - NE/SE 566- PLL Function Generator
 - NE/SE 567- PLL Tone Decoder for TELECOM
 - TDA 1005 - for HI FI BUFFS - FM STEREO DECODER plus.
 - UA 758 - FM STEREO DECODER (REPLACES THE MC1310E)

[^5]: NAME M. .

[^6]: MON-TUES-WED \& FRI: 9am-5.30pm. THURS: 9am-7pm. SAT: 9am-1 pm.
 S.A.E. Post and Packing 50 c where not included in $\$ 2.40$ to posting fee, NO ORDERS UNDER $\$ 3.00$ accepted, For replies please send S.A.E, Post and Packing 50 c where not included in price. PLEASE. . PLEASE PRINT YOUR NAME \&
 ADDRESS ON ALL ORDERS AND CORRESPONDENCE, BANKCARD WEAS

[^7]: If you are unable to complete an "Electronics Australia" project because you missed out on your regular issue, we can usually provide emergency assistance on the following basis:
 PHOTOSTAT COPIES : $\$ 2$ per project, or $\$ 2$ per part where a project spreads over multiple issues. Requests can be handled more speedily if projects are positively identified, and if not accompanied by iechnical queries
 METALWORK DYELINES: Available for most projects at $\$ 2$ each, showing dimensions, holes, cutouts, etc., but no wiring details.
 PRINTED BOARD PATTERNS: Dyeline transparencies, actual size but of limited contrast: $\$ 2$. Specify positive or negative. We do not sell PC boards.
 REPLIES BY POST Limited to advice concerning projects published within the past 2 years. Charge $\$ 2$. We cannot provide lengthy answers, undertake special

