Amateur Radio's Technical Journal

A Wayne Green Publication

Ready for RTTY?
5 Articles
"Cheap Trick"
TVRO Receiver
Page 60

Simple

Circuits
Return!
Page 92

Tips on Chips Page 72

Home-Brew

Contest Runner-Up Page 58

Skinflint's

 2 m J-Pole Page 84Micro Modem

- a RTTY TU designed
for computersWA4CKQ

F1 for the Hot Water 101

- all the way with FSK! . . K0JH

No-Frills RTTY

-\$200 and you're on the air
WA4STO

Incredibly Simple RTTY

- receive it on your TRS-80
wox

The RTTY/Tribander
Marriage
-enjoy the 100% duty cycle K0ARC

32
10

The Vertical Deuce

- 40 and 75 meters ... W9CRC 80

The J-Pole Love Affair
-not for CBWB5AOX

"Cheap Trick" TVRO Receiver-60

Never Say Die-6
Ham Help-69,93
Social Events-88
Circuits-92
DX-96
RTTY Loop-97
Review-99
Reader Service-114

New Products-118
Letters-119
Fun!-124
Contests-132
Satellites-140
Corrections- 140
Dealer Directory-162
Propagation-152

ICOM Presents the Minicom IC-25A

Imagine. 25 watts $/ 5$ memories/2 scanner systems in a $2^{\prime \prime} H \times 51 / 2^{\prime \prime} \mathrm{W} \times 7^{\prime \prime} \mathrm{D}$ 2 meter transceiver!

A very small package with a 25 watt punch, the IC-25A is a full featured $\Xi \mathrm{M}$ transcciver for the space conscientio is operator. Near.y the same size as an automotive AM racio, the IC-25A will fit in places usually considered impossible for á one piece 2 meter transceive-. The IC-25A is no Lghtweight when it comes to fearares:

- 5 memorics. Store your favorite frequences.
- Priority channel. Monitor your most imporant frecuency.
- 25 watts high/ 1 watt battery saving low power.
- Touchtone ${ }^{\text {TM }}$ mic standard..no extra ccst...to work your favorite autopatch repeater.
- Full band scan/programmable scan (set your own limits)/memory scan....all with automatic resume after preset delay or carrier drop.
- 2 VFO's with data transfer standard.
- 2 tuning rates 5 KHz (A VFO) or 15 KHz (B VFO).
- Nor/Rey switch for instant monitoring of repeater inputs.
- Memory back up power supply option holds memozy when attached.

5-STORE :UYING POWER in actiond

FREE SHIPMENT (UPS Brown)

ETロALPHA

ALL ALPHA AMPLIFIERS IN STOCK FOR FAST DELIVERY CALL FOR SPECIAL PRICES

one example:
76PA
REGULAR $\$ 2395$ SALE! \$1799 AhIRARE ALL MIRAGE avallable at

2 METER AMP B-1016
10W IN, 160W OUT.
REGULAR
\$279.95
\$249 ${ }^{95}$
B-3016 REGULAR $\$ 239.95$ 30W IN , Lale 919995

KLM

 KT-34A 4 ELEMENT TRIBANDER KT-34XA
6 ELEMENT TRIBANDER

CALL FOR PRICES OTHER KLM ITEMS.

NEVER BEFORE! NEVER AGAIN

IC. 730

SALE!
REGULAR 5829
$\$ 64995$
LIMITED TIME ONLY .. LIMITED QUANTITY ACT!

6วKENWOQロ

CALL NOW FOR SPECIAL LOW PRICES

TS-930 S
TR-2500

TR-7730/MC46

TS-830S

BARGAIN PACKAGE
$\left[\begin{array}{ll}\text { TS-830S } & \text { Transceiver } \\ \text { SP-230 } & \text { Speaker } \\ \text { YK-88C } & \text { cw fitter }\end{array}\right]$

A $\$ 1084.85$ VALUE

(U.P.S. Brown) CONTINENTAL U.S.A

PHREE 800 854-6046

9:30AM to 5:30PM PACIFIC TIME.
OVER-THE-COUNTER, 10AM to 5:30PM. MONDAY THROUGH SATURDAY
CALIFORNIA CUSTOMERS PLEASE PHONE OR VISIT LISTED STORES

ANAHEIM, CA 92801
 2620 W. La Palma,

 (714) 761-3033 (213) 860-2040 Getween Disneyland \& Knott's Berry FarmOAKLAND, CA 94609
2811 Telegraph Ave., (415) 451-5757 Hwy 24 Downtown. Left 27 th ofl-ramp.

SAN DIEGO, CA 92123
5375 Kearny Villa Road (714) 560-4900

$$
\text { Hwy } 163 \text { \& Clairemont Mesa Blvo. }
$$

BURLINGAME. CA 94010
999 Howard Ave., (415) 342-5757
5 miles south on 101 from S.F. Alrport

276π Pidoro olvens

 COLLINS. CUBIC CURTIS . CUSHCPAFT. DAIWA. DATONG- dentron drake dx engineering - eimac - hustlen KYGAIN -ICOM. JWMLLER KENWOOD KLM IARSEN

VAN NUYS, CA 91401
6265 Sepulveda Blvd., (213) 988-2212
San Diego Fwy at Victory Blva.

INFO

Manuscripts

Contributions in the form of manuscripts with drawings and/or photographs are welcome and will be considered for possible publication. We can assume no responsibility for loss or damage to any material. Please enclose a stamped, self-addressed envelope with each submission. Payment for the use of any unsolicited material will be made upon accep tance. All contributions should be directed to the 73 editorlal offices "How to Write for 73" guidelines are available upon request.

Editorial Offices:

Pine Street
Peterbarough NH 03458 Phone: 603-924-9471

Advertising Offices:

> Elm Street
> Peterborough NH 03458 Phone: $603-924-7138$

Circulation Offices:

Elm Street
Peterborough NH 03458 Phone: 603.924-9471

Subscription Rates

In the United States and Possessions: One Year (12 issues) $\$ 25.00$
Two Years (24 issues) $\$ 38.00$
Three Years (36 issues) $\$ 53.00$

Elsewhere:

Canada and Mexico- $\$ 27.97 / 1$ year only, U.S. funds. Foreign surface mail-\$44.97/1 year only, U.S. funds drawn on U.S. bank. Foreign air mail-please inquire.

To subscribe, renew or change an address:

Write to 73 Magazine, Subscription Department, PO Box 931, Farming. dale NY 11737. For renewals and changes of address, include the address label from your most recent issue of 73. For gift subscriptions, include your name and address as well as those of gift reciplents. Postmaster: Send form "3579 to 73 Magazine, Sub scription Services, P.O. Box 931, Farm ingdale, NY 11737.

Subscription problem or question:

Write to 73 Magazine, Subscription Department, PO Box 931, Farmingdale NY 11737. Please include an address label.

73 Magazine (ISSN 0098-9010) is published monthly by 73, Inc., a subsidiary of Wayne Green, Inc., 80 Pine Street Peterborough NH 03458. Second class postage paid at Peterborough NH 03458 and at additional mailing offices. Entire contents copyright 1982, Wayne Green, Inc. All rights reserved. No par of this publication may be reprinted or otherwise reproduced without written permission from the publisher. Micro film Edition-Universlty Microfilm Ann Arbor MI 48106.

Announcing

NOW AOTOPATG:

PRIVATE PATCH

Introducing Private Patch. A giant step forward in Autopatch/Interconnect technology, capability and standard features. Our revolutionary new techniques of audio and digital signal processing offer several advantages over conventional sampling/scanning type Autopatches: 1. The annoyance of continuous squelch tails is totally eliminated. Makes conversation much more natural and enjoyable. 2. In addition to superb simplex capability, operation through repeaters is made possible. 3 . The only connections made to your base transceiver are to microphone and speaker jacks. NO INTERNAL CONNECTIONS OR MODIFICATIONS NECESSARY! Use Private Patch simplex for local operation, through a repeater for extended range. CW ID makes your Autopatch legal, and alerts you to incoming calls when ringback is turned on (state callsign when ordering). Five digit owner programmable access code and operator/fong distance inhibit switch assure security and protect your phone bill. Positive control is assured by Private Patch logic functions. A fully digital timing approach eliminates all timing adjustments. Three/six minute timer shuts down Private Patch if you drive out of range. Resettable with reset code for additional talk time as required. Self contained AC supply. Modular phone jack and modular phone cord provided. All electronics contained on one high quality glass circuit card. Private Patch contains 40 integrated circuits and 16 transistors. Send for additional information. Compare our features.

Special Factory Direct Introductory Price \$489

CALIF. ADDRESS ADD ${ }^{\text {s } 29.34}$

DEALERSHIPS INVITED
AUTOCONNECT
P.O. BOX 4155

TORRANCE, CA 90510

Learn the truth about your antenna.

Find its resonant frequency. Adjust it to your operating frequency quickly and easily.
If there is one place in your station where you cannot risk uncertain results it is in your antenna.

The Palomar Engineers R-X Noise Bridge tells you if your antenna is resonant or not and, if it is not whether it is too long or too short. All this in one measurement reading. And it works just as well with ham-band-only receivers as with general coverage equipment because it gives perfect null readings even when the antenna is not resonant. It gives resistance and reactance readings on dipoles, inverted Vees, quads, beams, multiband trap dipoles and verticals. No station is complete without this up-to-date instrument.

Why work in the dark? Your SWR meter or your resistance noise bridge tells only half the story. Get the instrument that really works, the Palomar Engineers R-X Noise Bridge. Use it to check your antennas from 1 to 100 MHz . And use it in your shack to adjust resonant frequencies of both series and parallel tuned circuits. Works better than a dip meter and costs a lot less. Send for our free brochure.

[^0]
Entirely professional level!
 You'll find the difference the mare you use it. ULTIMATE QUALITY, NRD-515

Receiver, NRD. 515
SPECIFICATIONS
Recoiving frequeney range
Recaiving modes
Receiving system
Sensitivity (S/N 10d8 1.6 to $30 \mathrm{MH}_{2}$ 100 to 1600 kHz Selactivit

Stabillty
Power requirements
Dimensions and Weight. Preset memorv (Option): Frequency stability
mage rejection ratio. preal
Af outpuis.
Speaker output
Record/line output

Highest grade all-wave receiver

Best for 59

SPECIFICATIONS Fated output pow
Frequency range

Joow NSD. 515 (50W 2 MMHz band) $18 \mathrm{MH}_{2}-2.0 \mathrm{MHz}_{2} 3.5 \mathrm{MH}_{2}-4.0 \mathrm{MHz}$ $70 \mathrm{MHz}_{2} 73 \mathrm{MHz}_{2} 14.0 \mathrm{MHz}_{2}-14.35 \mathrm{MHz}$ $210 \mathrm{MHz}_{2}-2145 \mathrm{MHz}_{2} / 280 \mathrm{MHz}^{2}-29.0 \mathrm{MHz} 2$
$290 \mathrm{MHz} 29.7 \mathrm{MHz} / \mathrm{Ottion}$ al new bands $290 \mathrm{MHz}_{2}-29.7 \mathrm{MH}_{2} / \mathrm{O}$ ption al new bands ${ }^{10} 1 \mathrm{MHHz}^{-10} 15 \mathrm{MHz}^{18} 06 \mathrm{BMHz}^{-}$
$18168 \mathrm{MH}_{2} 2489 \mathrm{MHz}^{-24.99 \mathrm{MH}_{2} /}$
A 3 J (USB,LSB) A1 (CW) F1 (RTTY)
Mode of emission
Transmitter, NSD-515

[^1][^2]
W2NSD/4 NEVER SAY DIE editorial by Wayne Green

"Wayne, after having read your editorials for many years 1 feel 1 know you personally," said Rudolf Aumann HK1ESU the other day in Cartagena, Colombia. Rudolf, hearing that I was in town for a couple of days, came to my hotel to find me after failing to get through by phone. He found Sherry and me just finishing dinner in the garden of the Cartagena Hilton, where they had served an outdoor barbeque cookout.

I found Rudolf a delightful person with many interests, quite wrapped up in his second hobby of collecting pre-Columbian antiquities. Indeed, he has a collection which rivals those of museums. He found, as have many others, that the real Wayne Green, whoever that is, comes through in my editorials.

The Colombians are most friendly. Sherry and I, taking advantage of the Eastern Air system excursion fare, finished off a hectic business trip with a couple of days of relaxation in Cartagena. This gave us a chance to rest a bit and see a new country. It also added to my count of countries visited.
Of course, getting to Cartagena is an adventure in itself. Having arrived with no warning from either friends who had lived there or from the tourist guidebooks, I found myself knee-deep in the barracudas which inhabit many of the thirdworld airports. Providence was
in my favor in that all of the car rental agencies were closed, it being Sunday afternoon. Sherry had tried to reserve a car for us, but fortunately she wasn't able. l'll explain.

The taxi drivers at airports . . and their pimps. . .start out asking about two to three times the normal fare. This is complicated by their knowing no English and me knowing little Spanish... or Swahili, or whatever the local language. Eager hands reach for your bags, fully expecting to net at least a buck or two for carrying them even the shortest distance. They assure you that all of the official money changers are closed, but they have a friend who will give you a very good rate. . . sixty pesos to the dollar.

After bargaining the taxi fare to the bus station down from $\$ 15$ to $\$ 10$ ($\$ 5$ turned out to be more like the going fare), we plopped into a taxi...a 1955 Chevy, I think. . . and were off to Baranquilla. Unless you've been to a poor country, you have no idea of what poverty can be. We really have nothing approaching it anywhere in the United States. Everything is in disrepair, . . the streets, the sidewalks (where there are any), the buildings, walls... all broken and falling apart.

Colombian buses are about the only means of transportation, so they are usually packed solid with people. Air condition-

\$5 HOME-BREW II CONTEST $\mathbf{\$ 5}$

It is not too late to submit an entry for 73's Home-Brew II Contest. Until October 1, we'll be looking for articles describing the best home-brew projects for under $\$ 50$. The winners will share $\$ 500$ in cash prizes. For complete details, see page 6 of the June, 1982, issue of 73.
ing of cars and buses is rare, so the windows (if any) are open. It's hot. Remember that the equator goes through Colombia, so it's hot all year around. There are few private cars in Colombia, so the need for buses is great, with the result that they are everywhere, each fighting to pass the others along the narrow streets. Most of them are gaily painted and decorated, reminding one perhaps of the "art" In the New York subways.

The bus depot turned out to be a street corner more than normally infested with buses. We found the place to buy tickets and splurged a big $\$ 8.00$ for two tickets to Cartagena. The bus was scheduled to leave at $2: 30$ pm, if we wanted a regular bus. If we waited until $6: 30 \mathrm{pm}$ we could take an air-conditioned bus! We really didn't want to stand on a street corner in Baranquilla with our hand lug. gage and two big suitcases for four hours, so we opted for the 2:30 trip. It wasn't bad at all.

Once out of the city, the bus rolled along the narrow road at around 60 mph , passing just about everything in sight. The countryside consisted of sparse ly populated rolling hills, with few towns. We did stop occasionally to let the passengers buy food from roadside vendors...freshly cut pineapple slices, pineapple fritters, shashliks on a stick...things like that. At one point, two children got on the bus and went through a ten-minute recltation in exchange for a few coins, getting off at the next stop for a return on the next bus and another recitation.

As the bus threaded its way through the narrow streets of Baranquilla, none with any route
markings that I could see, I was most thankful that the car rental agencies had been closed. Imagine trying to find my way through all that! Even once out of the country there were few signs at crossroads. Add to all that the seemingly fatalistic driving attitude of the truck and bus drivers and you can see why, even with the heat, I was glad to be making the trip by bus.

The temperature was in the low 90 s and not uncomfortable as long as the bus kept moving. The stops immediately started sweat pouring out of every pore, The trip was a bit over two hours to Cartagena, where the bus terminal was even more primitive than the one in Baranquilla. It was not lacking taxi drivers and hordes of baggage carriers, all with dreams of Yankee gold not well concealed. I got the taxi fare down from $\$ 10$ to $\$ 2.50$ and we were on our way through Car. tagena to the Hilton, an air-conditioned luxury respite from the heat and poverty everywhere else.

They even had an ice machine on our floor! We unpacked, relaxed, and had a nice buffet dinner at the hotel. The food was superb. I really needed the rest, not so much from the rigors of the taxi and bus rides, but from the tensions of the previous week.

We'd started out Saturday night with a trip to Chicago. Now one thing you should know about Eastern Airlines is that when you go on a trip just about anywhere on Eastern, you go through Atlanta. Just as Federal, I think it is, ships all pack. ages to Memphis and sorts them, Eastern ships all passengers to Atlanta and sorts them out for their destinations.

Over the next few days we flew Boston-Atlanta-Chicago-Atlanta-Houston-San Antonio-Atlanta-Ft. Lauderdale-Atlanta-Miami-Baranquilla-Miami-Boston. We sure got to know the Eastern lonosphere lounges at Atlanta.

The first stop was Chicago and the summer Consumer Electronics Show (CES). This was at McCormack Place and was huge. While there was little there in the ham field, the two days I spent there were still well invested. I do have to keep up with home computers, the latest in satellite receiving systems, and discover gadgets such as the new Brother $\$ 200$ dot-matrix typewriter with a 16-character

"DX-traordinary"... superior dynamic range, auto. antenna tuner, QSK, dual NB, 2 VFO's, general coverage recejiver.
A superlative, high-performance, all solid-state $\mathbf{H F}$ transceiver, that covers all Amateur HF bands, and incorporates a 150 kHz to $\mathbf{3 0 \mathrm { MHz } \text { general coverage }}$ receiver having an excellent dynamic range.
TS-930S FEATURES:

- 160-10 Meters. with $150 \mathrm{kHz}-30$ MHz general coverage receiver. Covers all Amateur frequencies, plus WARC. on SSB. CW, FSK. and AM. UP conversion digital PLL circuit.
- Excellent receiver dynamic range. Typical two-tone dynamic range. $100 \mathrm{~dB}(20$ meters. $50-\mathrm{kHz}$ spacing. 500 Hz CW bandwidth).
- All solid-state 28 volt operated final amplifier. Lowest IM distortion. Power input 250 W on

SSB/CW/FSK. 80 W on AM. SWR/ Power meter.

- Available with AT-930 automatic
- SSB IF slope tuning. allows independent adjustment of the low and/or high frequency slopes of the IF passband.
- CW VBT and pitch control. VBT tunes out interfering signals. CW pitch control shifts IF pass-band and beat frequency. "NarrowWide" filter switch.
- Tuneable. peak-type audio filter for CW .
- AC power supply built-in.
- Fluorescent tube digital display. with digitalized sub-scale. in $20-\mathrm{kHz}$ steps.
- RF speech processor.
- One year limited warranty.
- SSB monitor circuit.

Optional Accessories̀:

- AT-930 Auto antenna tuner.
- SP-930 External speaker with selectable audio filters.
- YG-455C-1 $(500 \mathrm{~Hz})$ or YG-455CN-1 (250 Hz) plug-in CW filters for 455 kHz IF.
- YK-88C-1 $(500 \mathrm{~Hz}) \mathrm{CW}$ plug-in filter for 8.83 MHz IF.
- YK-88A-1 (6 kHz) AM plug-in filter for 8.83 MHz IF.
- SO-1 commercial grade TCXO.
- MC-60A deluxe desk microphone, 8-pin, with pre-amplifier. UP/DOWN switches.

All mode (FM/SSB/CW) 25 watts, plus...!!!

The TR-9130 is a powerful, yet compact, 25 watt FM/USB/LSB/ CW transceiver. Available with a $16-\mathrm{key}$ autopatch UP/DOWN microphone (MC-46), or a basic UP/DOWN microphone.
TR-9130 FEATURES:

- 25 Watts RF output on all modes. (FM/SSB/CW).
- FM/USB/LSB/CW all mode. Selectable tuning steps of $100-\mathrm{Hz}$. $1-\mathrm{kHz} .5-\mathrm{kHz}$. $10-\mathrm{kHz}$.
- Six memorles. On FM, memorles $1-5$ for simplex or $=600 \mathrm{kHz}$ offset, using OFFSET switch. Memory 6 for non-standard offset. All six memories may be simplex. any mode.
- Memory scan.
- Internal battery mèmory backup, using 9 V Ni-Cd battery. (not KENWOOD supplied). Memories are retained approx. 24 hours, adequate for the typical move

- HI/LOW power switch. 25 or 5 watts on FM or CW.
- High performance noise blanker.
- RF gain control. - RIT circuit.

Optional accessories:

- KPS-7 Fixed station power supply.
- PS-20 Fixed station power supply (TR-9500 only).
- SP-120 External spéaker.
- TK-1 AC adapter for memory back-up.

STAFF

PUBLISHER/EDITOR
Wayne Green W2NSD/1
EXECUTIVE VICE PRESIDENT Sherry Smylhe
assistant publisherieditor Jelf DeTray WB8BTh
MANAGING EDITOR Jotn Burnell
ASST. MANAGING EDITOR Susan Philbrick
EDITORIAL ASSISTANTS Nancy Noyd Richard Phenix Steve Jewelt
TECHNICAL EDITOR Tim Daniel NBRK ASSISTANT TO THE PRESIDENT
Mathew Smith KAllei associates
Robert Baker WB2GFE
John Edwards KI2U Bill Gosney KE7C Sanger Green Chod Harris VP2ML
Dr. Marc Leavey WA3AJR J. H. Nelson

Bill Pasternak WA6ITF
Peter Stark K20AW
PRODUCTION MANAGERI PUBLICATIONS Nancy Salmon
ASST. PRODUCTION
MANAGERIPUBLICATIONS Michae\ Murphy
ADVERTISING GRAPHICS MANAGERS Steve Baldwin Bruce Hedin Jane Preston production Frances Benton Betly Butler Betty Butler Fiona Davies Linda Drew Sandra Dukett Denzel Dyer Dianne Ritson Theresa Ostedo Scott Philbrick Mary Seaver Deboran Slone Irene Vail Judi Wimberly David Wozmak Photogatphy Bryan Hastings John R. Schwelgert Robert M. villeneuve Thomas Villeneuve typesetting Sara Bedell Melody Bedell Marie Barker Debble Davidson Michele Des Rochers Jenniter Fay Ellen Schwait Karen Stewall Lisa Stelne!
general manager Debra Wetherbee CONTROLLER Roger J. Murphy accounting manager Knud Keller KV4GG/1
CIRCULATION MANAGER Palricia Ferrante 603-924.9471
BULK SALES MANAGER Ginnie Boudrieau 1.1800)-343-0728 ADVERTISING 603.924 .7138

Jim Gray WIXU. Mgr
Nancy Clampa. Asst. Mgr. Ross Kenyon KAIGAV Cornelia Taylor

LCD readout which permits some rough editing of the material before it is printed. The new Sony pocket TV was interesting, too. And I was pleased to see our book of programs for the Caslo 702P on display in the Casio exhibit.

Atari had one hell of a press party to announce their relationship with Spielberg. Fresh oysters, escargots . . . it was a fantastic buffet. The way to my heart is definitely through my taste buds.

For some reason, both the CES and the NCC (National Computer Conference) were running concurrently, so Sherry and I had to see as much of CES as we could in two days and then get aboard Eastern for another trip to Atlanta and then to Houston.

NCC, like CES, was a madhouse. The attendance was probably about the same, some-

OSL OF THE MONTH: W7VZ

If this innovative eye-grabber makes you thirsty, it's no accident. Send your QSL entry, in an envelope, to QSL of the Month Contest, Editorial Offices, 73 Magazine, Peterborough NH 03458. Be sure to include your choice of book from 73's Radio Bookshop.
where in the 80,000 or so range. Like CES, I could easily have spent the four days of the show seeing it, meeting old friends, and catching up on new products. I did spend a good solid
two days looking over perhaps twenty or more new microcomputers, a wide variety of new hard-disk drives, and enough

Continued on page 126

Well . . I Can Dream, Can't I?
by Bandel Linn K4PP

"I know you need the extra space for ham radio, so my mother is moving out!"

The Memory Keyer

 that started a revolution in CW
Store

commands, as well as text, for automatic execution

The Heathkit μ Matic Memory Keyer's sneak preview caused a sensation at Dayton in 1981, and the excitement is still running high. Ask about it on the air. Those who own one will tell you it revolutionized their operating practices, eased their hand fatigue, multiplied QSOsand increased the number of incoming QSLs. In contest, you can prove it's the best every time, inside, a custom microprocessor stores up to 240 characters of text or commands. Variablelength buffers eliminate wasted memory space. Command strings let you sequence speed, weight and repetition alterations or text in any order you desire. Choose the speed (1-99), any of 11 weight settings, plus spacing and message repeat count, then sit back and collect contacts... Capacitive-touch lambic paddles unplug and store inside the keyer when not in use. Left handed? A two-key function will reverse the paddles! Or a socket will connect to your favorite keyer. To boost copy, a 4-level random 'practice'
mode permits 6400 different
and repeatable, 3000 -character training sessions at any speed you like.
Other features include a built-in sidetone oscillator and speaker with volume/tone controls, phone jack and earphone, message editing, entry error alarm, self-diagnostics, battery backup and a unique auto-shutoff should you forget. Complete details on the revolutionary μ Matic Memory Keyer are in the new Heathkit Catalog and at your nearby Heathkit Electronic Center.*

Send for a free catalog! Write:
Heath Company, Dept. 011-934,
Benton Harbor, MI 49022
-303
In Canada, contact Heath Company.
i4mo Dundas Street E., Mississauga. ONT L4X2R7.
Visit your Heathkit Store
 displayed, sold
and serviced. white pages for locations. Units of veritechnologay Heathkif

Micro Modem

 - a RTTY TU designed for computersThis article describes an easy-to-build AFSK (audio frequency shift keyed) modulator and demodulator unit specifically designed for microcomputer RTTY operation. I take the liberty of using the term modem here in describing this unit since it is the common computer-related term for devices which perform digi-tal-to-audio signal conversions [mo'dem (mód $\mathbf{m}^{\prime} \mathrm{m}$) η. an acronym for the term modulator-demodulator. A device used for communicating digital information over analog transmission systems, such as telephone or radio]. Conventional RTTY terminology defines this as a terminal unit.

I would like to start by telling you a little about how and why I decided on the particular design I chose. I don't know about
you, but I frequently find it frustrating to read a construction article and not have the author tell me how his design is different from other similar designs, in what ways it is better, and what led him to take his approach. I believe you can appreciate the result more when you know the rationale for its being.

I knew very little about RTTY mode when I started. 1 read back issues of 73 , picked up a copy of the RTTY Handbook,' and talked to friends. I soon learned the basics and realized that there were only two things preventing me from getting on the air-a program for my microcomputer and a modem to convert RTTY AFSK tones to digital TTL-level signals, and vice versa.

Writing the send-receive computer program to trans-
late serial Baudot data to parallel ASCII (for the video display), translate parallel ASCII (from the keyboard) to serial Baudot, and manage the keyboard and display operation was not as difficult as I had imagined. Again, previous 73 articles and the monthly RTTY Loop column by Marc Leavey WA3AJR were extremely helpful. The JuneJuly issues of 1978 and 1979 contained programming flowcharts and descriptions which are easily adaptable to most any type of computer.

The next step was deciding what to do about a modem, or terminal unit. There seemed to be an abundance of TU gear available from various manufacturers, but there were a couple of problems with nearly everything 1 saw. First, the prices were out of line with
what I was willing to pay. Second, most had features (for example, loop power supplies and autostart) which were for users who were operating conventional electromechanical TTY terminals, not computer terminals. Other features such as wide $(850-\mathrm{Hz})$ shift and CRT tuning indicators were likewise judged as not necessary for my initial system.

The only other avenue open to me was to consider building my own terminal unit. From my research into the various ham magazines, I found numerous TU construction articles. Some described only modulators, others only demodulators, and still others described complete units. I was looking for something that was relatively simple, inexpensive, and yet would give me good operational perfor-

Front view of RTTY modem.

Rear view of RTTY modem.
mance under typical HF RTTY conditions - and would work with my microcomputer

Selection of an AFSK modulator was settled when I saw the article in 73 entitled "Experimenting with Tones." ${ }^{2}$ The Exar XR2206 function generator IC can be easily connected as a very stable two-tone oscillator and can be keyed using a TTL-level input. A breadboard version of a $170-\mathrm{Hz}$ shift generator confirmed my feeling that this was the circuit I was looking for. More on this later.

Selection of a demodulator circuit was a different and more difficult matter. The designs based on phaselocked loops (PLLs) like the 565 and the 567 appealed to me because they are inherently frequency selective, relatively immune to noise, and are specifically intended to perform FSK demodulation. Furthermore, they are simple to work with and are inexpensive.

I first breadboarded a circuit based on the 565. This worked fairly well but seemed much more sensitive to noise and QRM than 1 was comfortable with. Too, it required a relatively large number of components external to the IC for filtering, signal conditioning, and TTL-level conversion. After a while I realized that the same functions could be accomplished using the more comprehensive capabilities of the 567 tone detector IC and could be done with considerably fewer external components. The 567 also operates on a 5 -volt supply which means that no TTL-level conversion is required on its output.

Most published designs of 567 -based demodulators use the single tone detect technique in which only one 567 is set up to detect only one half of a RTTY signal-either mark (2125

Hz) or space (2295 Hz). Absence of the desired tone is interpreted to mean presence of the opposite tone. In other words, if the detector is set to look for mark, any time a mark is not being received, it is assumed that a space is being received. Obviously this assumption can be all wrong under conditions where fading and noise are causing signal outages. Also, it makes tuning difficult because CW signals look like RTTY to the detector. You must actually listen to the signal to determine the difference.

Even though 1 felt that some of the designs I had seen were less than ideal, I also felt that I wanted to use the PLL approach-specifically the 567 . Basically, it seemed that a demodulator based on two PLLs, one for mark and another for space, would be the most significant improvement. I would discover later (after having breadboarded a version of this type of circuit) that there were other improvements which could be made.

One of the things 1 learned about the 567 is that its detection bandwidth is extremely dependent upon the level of its input signal. Most designs I have seen do not attempt to manage the bandwidth, but rather attempt to simply keep input level below the

Interior view. 22-pin PC board plugs into socket mounted on rear panel.
maximum at which the device will still function. Below that maximum, varying input levels cause bandwidth also to vary over a wide range. A consistently small bandwidth would be preferable in order to reduce the effects of QRM. This meant that I would want some type of limiter in my design which would maintain a minimum input to the 567.

Another characteristic of the 567 that caused me concern was the fact that the output will "chatter," or bounce, briefly when turning on. This is somewhat dependent upon certain com-
binations of input level, component values, and how far off center frequency it is operating. This apparently causes no problems when this type of circuit is used to drive conventional electromechanical TTY gear because of the relatively long response time of its components. It can be a problem, however, when used to drive a computer terminal or other digital logic devices. This problem also would have to be solved in my demodulator design.

Let's take a look now at an overview of the circuit I finally decided upon.

Fig. 1. Block diagram of RTTY modem. Top is demodulator; bottom is modulator.

Fig. 2. RTTY modem and computer in an amateur station.

Fig. 3. Basic 567 tone-detection circuit.

Overview

Fig. 1 shows a block diagram of the complete RTTY modem, both the modulator and demodulator.

The modulator generates either mark tones of 2125 Hz or space tones of 2295 Hz , depending upon the value of the keying voltage on its input. The keying input represents serialized Baudot data from an output port on the microcomputer. Each Baudot character is made up of mark and space bits, where a mark is high and a space is low. The output is nearly a pure sine wave, amplitudes of the mark and space tones are equal, and there are no switching transients.

The demodulator portion of the modem consists of a limiter, dual PLL detectors, and a slicer. The limiter controls input level and ensures consistent detector operation. Two independent tone detectors are set to react to the presence of input frequencies on, or very close to, 2125 Hz and 2295 Hz . The passbands are narrow enough to prevent erroneous locking onto nearby QRM and also narrow enough that the two passbands do not overlap.

LED indicators attached to each section serve as tuning aids. Alternating flashes indicate a legitimate $170-\mathrm{Hz}-$ shift RTTY signal.

Output from the individual detectors is fed into a slicer. Here the two inputs are combined back into a single output going to the input port on the microcomputer. Again, mark is high, space is low.

Fig. 2 shows how the modem fits into an amateur station.

567 Tone Decoder IC

In order to understand how the RTTY modem works, it is necessary to know a little something more about the 567 . Basically, it is a phase-lockedloop tone detector which provides an open-collector output on pin 8 (see Fig. 3). When an input signal is present on pin 3 which falls within its capture passband, the output shorts to ground. Thus, if the output is "pulled up" to 5 volts through an appropriate resistor, R_{L} (current must be limited to 100 mA or less), TTL-level transitions between 0 and 5 volts can be achieved. External components attached to other pins set center frequency,
bandwidth, and output delay.

For the purpose of detecting RTTY signals, we want a center frequency of either 2125 Hz or 2295 Hz . In Fig. 3, R_{T} and C_{T} deter. mine center frequency by the approximation: $f_{0}=$ $1 /\left(R_{T} C_{T}\right)$.

Now, for RTTY, we want a minimum passband, for two reasons- to eliminate QRM and to prevent detection of both mark and space tones at the same time. Remember, they are only 170 Hz apart. C_{2} and input voltage level V_{i} determine bandwidth. The formula used to approximate bandwidth in terms of percent of f_{0} is: BW (\% of $\left.f_{0}\right)=$ $1070 \sqrt{V_{i} / f_{o} C_{2}}$, where C_{2} is in $\mu \mathrm{F}$ and V_{i} is in volts rms.

A word of caution: The formula becomes less usable at lower values of V_{i} (near 20 mV) combined with values of C_{2} below about $.5 \mu \mathrm{~F}$ and f_{o} values in the $2000-3000 \mathrm{~Hz}$ range. Actual bandwidth realized is less than predicted by the formula.

The last characteristic of the 567 with which we must be concerned is output delay. All PLLs exhibit some delay to lock onto an input signal and confirm its presence on its output. This is expressed in terms of number of cycles (of input frequency). For 60 -wpm RTTY, each bit (a Baudot character is a start bit, five data bits, and a stop bit) is 22 ms wide, except the stop bit which is 31 ms . We therefore want output delay to be something considerably less than 22 ms - which is

46 cycles for a mark bit $(.022 \mathrm{sec} . \times 2125 \mathrm{~Hz})$ and 50 cycles for a space bit (. $022 \mathrm{sec} . \times 2295 \mathrm{~Hz}$).

Unfortunately, output delay is controlled by C_{2}, and in a way that is opposite to the way it affects bandwidth. In other words, for large values of C_{2}, bandwidth is small and output delay is large. We would rather have both small. I said earlier, however, that at low input levels and low values of C_{2}, bandwidth is significantly smaller than predicted by formula - and small output delays are obtained at the same time! This is clearly a case of having your cake and eating it, too.

The circuit described in this article has a measured output delay of about 15 cycles, or about 7 ms . This means that the mark detector, for instance, takes 7 ms to lock onto a $2125-\mathrm{Hz}$ input, resulting in an output which is only 15 ms wide, not 22 ms . If my circuit were of the type that uses only one PLL, the output would be severely distorted. Marks would be too short and spaces would be too long. Using dual detectors with an appropriate slicer eliminates this problem.

Demodulator Circuit Description

Refer to Fig. 4. A jack is provided to attach a speaker for monitoring input audio from your receiver. A switch allows monitoring at attenuated volume, bypassing the attenuator for tuning purposes, or not monitoring at all.

The limiter is a high-gain amplifier using a 741 op amp (U1) which has parallel reversed diodes in its feedback path. The effect of the diodes is to limit output to about .6 volts-the for-ward-bias drop across a silicon diode. Gain of the amplifier is very high for low-level input, before the diodes begin fully conduct-

By popular acclaim - the leader and king of radio teleprinter communications - the HAL DS3100ASR and ST6000. When combined with the MSO3100 Message Storage Option and a hard-copy printer, you have the premier RTTY station. Discriminating operators the worldover choose the DS3100 and ST6000 for their stations over any other equipment. The DS3100 and ST6000 have set new standards of comparison for commercial and amateur RTTY data communications; they are representative of the high standards of quality and performance for which HAL is known throughout the world. Put your best RTTY signal forward with the DS3100 and ST6000!

- Send and receive ASCII, Baudot and Morse code
- Full length 72 character lines and 24 line screen
- True "ASR" operation - pretype while receiving
- 50 Line pretype, on-screen transmit buffer
- 150 Line receive display buffer
- MSO3100 adds 450 lines of MAILBOX message storage
- P31 green, 12 inch display screen is built-in
- Control functions are clearly marked on keytops
- On-screen status indicators with real time
- Upper-lower case ASCII with ALL control codes
- 45, 50, 57, 74, 100 baud Baudot
- 110, 150, 300, 600, 1200, 1800, 2400, 4800, and 9600 baud

ASCII - full or half duplex

- 1 to 175 wpm send and receive Morse code
- Current loop or RS232 I/O interface
- ST6000 has tuning oscilloscope and loop supply
- Three RTTY shifts: $\mathbf{1 7 0}, \mathbf{4 2 5}$, or $\mathbf{8 5 0 ~ H z}$
- Multiple active RTTY filters and detector stages
- Crystal controlled RTTY transmit tones
- Printers available for hard-copy of all 3 codes

Write or call for more details. See the DS3100, MSO3100, ST6000, and printers at your favorite HAL dealer.

Fig. 4. Demodulator circuit. Audio input is from phone output of receiver. Output goes to computer input port. LEDs indicate RTTY signal.
ing. As input increases, gain decreases logarithmically due to the small-signal conduction characteristics of the diodes. If you look at the limiter output on a scope, you will not see a flat-top square wave, but instead a waveform with more rounded tops. Coupling capacitor C_{3} is required to block the dc bias $(+6 \mathrm{~V})$ on the output of U1.

Limiter output is further reduced by voltage dividers R2-R3 and R4-R5 to approximately 30 mV rms which is used as input to PLLs U2 and U3. This sufficiently low-level input ensures a bandwidth of only about 100 Hz , or $\pm 50 \mathrm{~Hz}$ either side of center frequency. Trimpots R7 and R8 set center frequency.

Output on pin 8 of U2 and U3 falls low when the expected frequency is detected, which turns on the associated LED. I mentioned before that this output contains a 7 -ms delay and also has approximately 1 ms of chatter.

These outputs are fed into a slicer which is simply an R-S flip-flop constructed of two NAND gates. Actually, the slicer in this circuit is intended to do more than simply recombine its two

Fig. 5. Slicer reconstructs original data from separate detector outputs. Notice that distortion is corrected and that the ouput signal has been delayed by 7 ms from original.
inputs into a single output. First, it serves as a debouncing circuit to eliminate the chatter 1 just mentioned. Secondly, it nullifies the output delays of the PLLs. To illustrate how this works, refer to Fig. 5. Individual output delays of each of the two detectors are shown as being exactly equal when, in reality, they may differ a little. Anyway, the slicer output is almost entirely free of distortion and is delayed in time by 7 ms .

The final advantage of the flip-flop slicer is that it only changes states if both mark and space tones are present. If noise or momentary loss of signal occurs during a single bit, its output state is maintained until
the opposite tone is detect ed. This certainly doesn't solve all types of signal problems, but it helps.

A switch is provided on the output to select normal or reversed shift operation. Most amateurs use normal shift (mark= low tone, space = high tone) and lower sideband on HF RTTY.

Modulator Circuit

Fig. 6 shows the AFSK modulator portion of the RTTY modem. It is based on the XR2206 function generator IC. Although this device has many uses, it is especially designed for twotone AFSK generation. Read the excellent article by W2FPP for additional information. ${ }^{2}$

Mark and space frequencies are independently set by timing resistor trimpots R9 and R10 respectively. The timing capacitor between pins 5 and 6 is common. Output on pin 2 is a sine wave and is phase-continuous when switching, which makes it well suited for SSB FSK modulation. Component values should be high quality for best results.

The keying signal is applied to pin 9 and is a TTLlevel signal directly from the microcomputer output port. +5 volts selects the mark generator and 0 volts selects space.

Resistor R11 (10k) controls output level. This results in approximately 1 volt pp to the microphone input of the transmitter. Other levels may be obtained by changing this resistor.

The earphone jack was installed so that the output can be monitored for testing purposes.

Power Supply

The power supply is rather straightforward (Fig. 7). The center-tapped transformer serves both the +5 and +12 -volt supplies. Low current requirements allow the LM340 regulators to be mounted directly to the PC board without heat sinks.

Construction

I built the RTTY modem on a Radio Shack $41 / 2^{\prime \prime} \times 4^{\prime \prime}$ universal PC board with a dual 22-pin edge connector and mounted everything into a $31 / 2^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime}$ metal box (see photos) also available from Radio Shack. Fig. 8 shows the component layout and pin allocation that I used. Layout is not critical, which allows a lot of flexibility in how you might build your own version. I intentionally left an area open on the board to give me room to later build a bandpass filter to help reduce QRM problems.

It's Hard To Be Humble When You're Number One On 2 Meters!

 could take the space to go on and on about how the many thousands of KDK owners have put us in the number one spot in two meter FM equipment. Better still, we think that just to show you the picture and give you the specifications and then slyly suggest you ask any KDK owner about the radio, will convince you. If that won't convince you, well, you just can't be convinced of anything!

[^3]INTRODUCTORY PRICE!
Includes Tone Pad Microphone
\$309
and all accessories. Shipping: $\$ 5.00$ eastern U.S.A. $\$ 7.50$ western U S.A.

- 10 memories in 2 memory banks of 5 each (A\&B). Any memory can be changed instantly.
- Control functions: Select memories, show memory channel number, or select memories and show frequency of channel, or dial frequencies with two speed selectable control. Instant choice of either 5 or 100 khz tuning steps. Programmable band scan limits and memory scan.
- Frequency shown in 5 bright LED digits. LED indicator shows when signal is received (unsquelched), LED indicator shows transmit. Modern LED bar meter shows signal strength of received signal and on transmit shows relative output power.
- Microphone includes tone pad, and up and down buttons to change dial frequency or memory channels.
- A standard microphone with up-down buttons only is available separately.
- The FM 2030 is basically as easy to use as a crystal receiver with rotary switch frequency selection for full "eyes-on-the-road" mobile operation.
- And, in case we forgot to mention it, we are proud to continue our famous KDK quality and ruggedness!
- Smaller case size: $55 \mathrm{~mm}\left(23 / 16^{\prime \prime}\right)$ high, $162 \mathrm{~mm}\left(63 / 8^{\prime \prime}\right)$ wide, 182 mm (7 3/16') deep.

WORLD'S FAIR NEWS! KDK 2 meter radios are the only FN units chosen to be used at the World's Fair Ham Station!

WRITE FOR BROCHURE - DEALER INQUIRIES INVITED!
Warranty information available from your dealer or direct. Company reserves the right to change specifications and prices without notice. Exclusive USA, Central and South American Distributor Mail Order - COD - Bank Cards

ORDER NOW DIRECT CALL TOLL FREE

When I decide to build it, I'll just insert it in the circuit ahead of the limiter on the demodulator. The frequen-cy-adjust trimpots for both the modulator and the demodulator are mounted on the board such that they are easily accessible when the board is plugged into the cabinet.

When working with TTL devices, it is normally good practice to add decoupling capacitors between the $+5-\mathrm{V}$ supply pins and ground. Although not shown in the circuit diagram, disc capacitors 0.1 to $.01 \mu \mathrm{~F}$ with short leads should be attached to the

7400 (pin 14) and to each of the 567 s (pin 4).

Most parts, including the trimmer pots and the XR2206 IC, are available from Jameco Electronics, San Carlos CA 94070.

Alignment

Use a frequency counter to align the AFSK modulator. Attach the counter to the output jack, ground the input jack (or pin 9 of the XR2206) to select the space timing circuit, and then adjust trimmer R10 to get $2295-\mathrm{Hz}$ output. Now remove ground on the input jack (or pin 9) which selects the mark timing circuit, and

Fig. 6. AFSK modulator circuit. Input comes from computer. AFSK output signal goes to microphone input of SSB transmitter. Earphone jack is for monitoring output.
then set trimmer R9 to get $2125-\mathrm{Hz}$ output. This completes modulator alignment.

Now align the demodulator. First, the mark detector. Apply a $1-\mathrm{V}$ pp $2125-\mathrm{Hz}$ sine wave to the demodulator input jack. I use the frequency marker signal from my transceiver, adjusted to frequency using the frequency counter, and adjusted to level using a scope. Adjust mark trimmer R7 until the mark tone LED indicator comes on. Now find the position which is midway between the two positions where the LED goes off. The center frequency should now be at or very near 2125 Hz . Alignment of the space detector is done in the same manner for a frequency of 2295 Hz .

At this time, you should verify that the bandwidth of each detector is no more than 150 Hz , or $\pm 75 \mathrm{~Hz}$ on either side of center frequency. With your receiver feeding into the input, slowly tune across a heterodyne or marker tone. One of the LEDs should light briefly and then the other. There should be a "dead spot" in between where neither LED is lit. There should not be any time when both LEDs are on for the same tone. If you have problems with these verification tests, check alignment of each detector and check to make

Fig. 7. Power supply. Provides regulated +5 V and +12 V .
sure that the input on pin 3 of each 567 is no more than $30-40 \mathrm{mV}$ pp.

Operation

Using the modem on the air is pretty simple. When transmitting, the AFSK modulator is driving your transmitter at 100\% duty cycle. So make sure that you set your microphone gain for reduced if power output to protect your finals.

In receive mode, tune your receiver around the RTTY portions of your favorite band and then look for the distinctive blinking of the mark and space LED indicators when a valid RTTY signal is found. Make sure that your receiver's audio output level is sufficiently high to produce good, solid LED flashes. Also, you will usually want the Shift switch in the Normal position.

Summary

The RTTY modem was designed to provide inexpensive yet reliable operation for the amateur who wants to quickly get on AFSK RTTY. Because 1 wanted to use it with a microcomputer terminal, I attempted to eliminate some of the problems of other designs which were associated with conventional TTY terminal operation. The design is simplified by the use of a single IC modulator and a demodulator based on dual PLL tone decoders. Dual decoders have advantages over designs which use only a single decoder: They are easy to tune, immune to certain types of signal fading, noise, and distortion, and will not react to CW signals.

Although built to interface directly to my computer input/output ports, other types of interfaces, such as RS232C, current loop, or UART, could certainly be used if the appropriate circuitry is added This makes no difference to

FEATURES SO UNIQUE AND OF SUCH SUPERIOR COMMERCIALGRADE QUALITY, THAT...

IT CARRIES A 1 YEAR LIMITED WARRANTY!

- 8 MHZ COVERAGE, CAP/MARS BUILT IN: 142.000 - 149.995 MHz in selectable steps of 5 or 10 kHz . COMPARE!
- TINY SIZE: Only $2^{\prime \prime} H \times 5.5^{\prime \prime} \mathrm{W} \times 6.8^{\prime \prime}$ D' COMPARE!
- MICROCOMPUTER CONTROL: At the foreiront of technology! - UP TO 8 NON-STANDARD SPLITS: Ullimate verselility for CAP/MARS. COMPARE!
- 16-CHANNEL MEMORY IN TWO 8-CHANNEL BANKS: Retains frequency and slandard oflset.
- DUAL MEMORY SCAN: Scan memory banks either separately or together COMPARE!
- TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan the two segments eithe- separately or together COMPARE!
- FREE AND VACANT SCAN MODES: Free scanning stops 5 seconds on a busy channel. Vacant scanning stops on unoccupied trequencies.
- DISCRIMINATOR SCAN CENTERING (AZDEN EXCLUSIVE

PATENT): Always stops on Irequency.

- TWO PRIORITY MEMORIES: Either may be instanlly recalled ai any time COMPARE!
- NICAD MEMORY BACK UP: Never lose the programmed channels!
- FREQUENCY REVERSE: The touch of a single buticn inverts the transmit and receive frequencies, no matter what the offiset
- ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Unparalleted ease ol operation.
- BRIGHT GREEN LED FREQUENCY DISPLAY: Easily visible,
even in direct sunlght
- DIGITAL S/RF ME TER: Shows incoming signal strength a 1 relative output
- BUSY-CHANNEL AND TRANSMIT INDICATORS: Bright LEDs show when a channel is busy and when you are transmitting
- FULL 16-KEY TCUCHTONE" PAD: Keyboard functions as autopatch when transmitting
- PL TONE: Optional PL tone unit allows access to PL repeate-s. Deviation and tone frequency are lully adjustable
- TRUE FM: Not phase modulation. Unsurpassed intelligibility and fidelity
- 25 WATTS OUTPUT: Also 5 walls low power for shori-range communication and battery conservation. (Transmitter poweı is fully adjustable)
- SUPERIOR RECEIVER: Sensitivity is 0.2 uV for $20-\mathrm{dB}$ quieting. Audio circuits are designed to rigorous specifications for exceptional perlormance, second to none. COMPARE!
- REMOTE-CONTROL MICROPHONE: Memory A- 1 call, up/ down manual scen, and memory address functions may be perlormed withou touching the front pane! COMPARE!
- OTHER FEATURES: Dynamic microphone, buill-in speaker, mobile mounting bracket, remote speaker jack, and all cords. plugs, fuses and r ardware are included
- ACCESSORIES: ©S-6R 6-amp ac power supply, CS-AS remote speaker, and Corrmunications Specialists SS-32 PL tone module
- ONE-YEAR LIMI-ED WARRANTY!

Fig. 8. Parts layout and pin configuration (top view).
the basic operation of the modem.

I wish to thank Bill Harrington WB4PEO for his assistance during the testing phases of this project.

References

1. The New RTTY Handbook, a 73 publication, 1978.
2. George Allen W2FPP, "Ex. perimenting with Tones," 73, February, 1979, page 62.
3. John Loughmiller WB9ATW, "Digiratt-RTTY AFSK Generator and Demodulator," Ham Radio, September, 1977, page 26. 4. Linear Data Book, National Semiconductor Corp., 1976.
4. 73 Magazine, special RTTY issue, September, 1977.

THIS RITM ANSWIR

IIR ACEESSORIIES

SIMPLE SIMON VIDEO STABILIZER

simple Simon Video Stabilizer Model VS-125. eliminates the ver deo tapes when playing throug arge screen projectors or on an other VTR. Simple to use, just adjusi . will play all the w
12 V power supply.
VS-125 Video Stabilizer, wired $\$ 54.95$

SIMPLE SIMON VIDEO SWITCHING BOX

The Affordable Video Control Center Excellent in isolation and no toss routing system. Simple Simons VSEto bring a varien of video Box enables together for easy viewing/dubbing. Also you gain the ability to record one channel while viewing another. Unit includes two F-type quick cornector ended cables.
VSB-300 Video Switching Box, wired \$19.95

UUF AIIEENAS and AGGESSORIIES

MOS-AMATEUR-ETV 32 ELEMENT
YAGI ANTENNA
 - 23 dB Average Gain - Commercial Grade Wat erproof Housing with 41/4" $\times 21 / x^{\prime \prime}$ Area tor Elecrronics
Includes P.C Probe, F-61 Connector and Mounting Hardware
MAE-2 32 Element YAGI Antenna
Kato Sons' Down Converter Kit $\star 1.9-2.56 \mathrm{~Hz} \star$ Designed for Simple Simon by former Japanese CO Amateur Magazine's UHF Editor Engineer. Unit utilues new ingenious Printed Circuit Probe for maximum gain Circunt board firs inside MAE-2 antenna housing Requires 1 hour assembhy. IC. and capacitors pre-sablered
Model KSOC-KIT $1.9-2.5 \mathrm{GHz}$ Down Converter Kit
Kato Sons' Regulated Varible DC Power Supply For use with KSOC-KIT $1.9-2.5 \mathrm{GHz}$ Down Converter. Completely assembled with Attractio
IED Indicato
Model KSPS-1A Assembled Power Supply
 ORDER ALL THREE ITEMS MAE-2 KSDC-KTT aw isps-1a to amp

ZYZZX VHF-UHF Wideband Antenna Amplifier

Switch to Bambi"!

Electronically

Bambi Electronic Video Switch makes switching of your VCR/VTR Pay TV Decoders, Cable TV, Video Discs, Video Games, Closed Circuit TV, Antennae and Microcomputer as easy as pushing buttons.

The Bambi Electronic Video Switch is an electronic switch ing network which can accept up to six different sounces of video signals and provide the flexibility of directing the infputs to any or all of the three outputs.

Now you can eliminate ... the drudgery of disconnecting and reconnecting your video equipment each time you use it the tangled mess of cables which are impossible to trace out ...not being able to use more than one function at a time.

Bambi lets you enjoy using your video equipment the way it should be ... electronically and on line at the push of a button.

Model
BEVS-1

${ }^{\$} 129{ }^{95}$

Bambi's front panel was designed with the usai in mind. Computer styled construction. with soft-touch keyboard (rated for over 10 million operations. arranged in marrix form hows basy input/outout selection withou he kevo are in atiat displayed on the keyboard are immediately
the 18 LED status indicators.

Check the quality of Bambi against that of Bembi's Specifications: much higher priced competition. All solid tate electronic switching provides low atten. ation (3d8). wide frequency response (40. 890 MHz) and excellent isolation between sugnal sources leach 1/O section individually sheilded for 65 de min isolation)

7+11 PID PABIS KIIS

INTRODUCING OUR

 7+11 PWD PARTS KITS

7+11 SWU PARIS KIIS

 MITSUMI
VARACTOR

 UHF TUNER Model UES-A56F \$24.95Frea. Range UHF470 $=889 \mathrm{MHz}_{2}$ Antema Input 75 otrns
Channels 14-83 Output Chamel 3

VTi-sw orschiplion
VTI-SW Varactor UHF Tuner, Model UES-A56F
2 CB1-SW Printed Circuit Board. Pre-Driled
3 TP7-SW P.C.B. Potentiometers, 1-20K. 1-1K. and 5-10K ohms. 7 -pieces
4 FR35-SW Resistor Kit Wam. 5\% Carton Film. 32-pieces 5 PII-SW Powe Transtormet, PRi-117VAC. SEC-2dVAC. 250 ma
6 PP2-SW Panel Mount Patentiometers and Knobs 1-1KBT and $1-5 K A T$ w/Swith.
1 SS14-SW IC's 7 -pcs. Oiodes 4 -pcs. Regulators 2-pcs Heat Sink 1 -piece.
8 CE9-SW Electrolytic Capacitor Kit 9-pieces
9 CC33-SW Ceramic Dish Capacitor Kit, 50 W.V 33 -pieces
10 CT -SW Vantle Ceramic Trimmer Capacitor Knt 5 -65pto. 6 -pieces
11 L4-SW Coil Kit. 18 mhs 2 -pieces. $22 \mu \mathrm{~h}$ s 1-piece (o......
 Core with 3 f . of $\# 26$ wire

12 ICS-SW I.C. Sockets, Tin inlay, 8 -pin 5 -pieces
13 SA-SW Speaker, $4 \times 8^{\prime \prime}$ Oval and Prepunched Wood Enclosure
$\$ 24.95$ 18.95 5.95 4.95 6.95 5.95 29.95 29.95
5.95 5.95
7.95 7.95 5.95 500 . 4.95

4 MISC-SW Misc. Parts Kit Includes Hardware. (B/32. 8/32 Nuts. \& Bolts). Hookup Wire, Ant. Terms, DPOT Ant. Switch. Fuse. Fuseholder, etc
When Ordering All Items. (I thru 14). Taral Price
9.95

SIMPLE SIMON ELECTRONIC KITS, ${ }^{\text {w' }}$ Inc.
3871 S. Valiey V
WRITE FOR
OUANITTY OISCOU
Ounnir oiscoumts

702-871-2892
1-800-782-3716
 IVT1-PWO 2CB1-PWD 3 3TP11-PWD

4FR-31-PWD 5 5PT1.PVID 6 6PP2-PWD

7 7SS17-PW0
8 8CE 14-PWD
9 scce20-PWO
10 10CT5-PWD
11 1115-PWD

12 121CS-PWI
13 13SR-PWD
14MISC-PWD
deschiption
Varactor UHF Tuner, Model UES-A56F Printed Cucuit Board, Pre-drilled PCB Potentiometers 4-20K 1-5K 2-10K 2-5K 1-1K. and $1-50 \mathrm{~K}$ (11 pieces) Resistot Kr r. 1 hW , 5% 29-pcs, \% $\mathbf{W} \mathbf{2 - p C s}$ Power Transtomer, PRI-117VAC, SEC-24vaC al 500 ma
Panee Mount Potentiometers and Knolbs. 1-1 KBT and 1-5KA.T with switch
IC's 7 -pcs. Diodes 4-pCS. Regulators 2 -pcs Transistors 2-pcs, Heal Sinks 2-pcs Electrolytic Capacitor Kit. 14-pieces Ceramic Disk Capacitor Kit, 50 WV. 20-pcs Varibie Ceramic Trimmer Capacitor. 5-65pld, 5-pieces Coll Kin . 18 mhs 3 -pcs, $.22 \mu \mathrm{hs} 1$-piece (prewound inductors) and 2 T37-12 Fermte Toroid cares with 6 ft. \# 26 wise. and 16 pin 2 -pcs.
Enclosure with PM Speaker and Pre-drilied Backpanel tor mounting PCB and Am. Terms Misc. Parts Kitt. Includes Hartware, (6/32, 8/32 Nuts \& Bolts), Hoakup Wire. Solder. Ant. Terms OPDT Anc. Switch. Fuse. Fusehoider, elc. Mrlar Capacilors. 14-pcs and Siver Mica Capacitors 2 -pieces
9.95

15 15MC16-PWD Hems. (1-15). Totel Price.

PaIce
\$24.95 . 18.95 8.95 9.95 5.95 . 29.95

Avallable by Mail Order Only Send Check" or Money Order. Minimum Order: \$16.95. Add 10\% Shipping and Handling on orders under $\$ 40.00$. For orders over $\$ 40.00$, add 5%. Minimum Shipping and Handling \$2.00. Cat. \$1.00 - VISA and Mastercard Acceptable -

F1 for the Hot Water 101 - all the way with FSK!

The Heathkit HW-101 is one of the most popular transceivers on the market. It is available for a fraction of the price of some of the fancy rigs, uses tubes, and has plenty of room on the inside for modifications. A comprehensive technical manual comes with it which includes X-ray views of all the boards and a complete explanation of how it goes together-mechanically as well as electrically. Many used HW-101s are available
at hamfests and in the various ham magazines. The LMO (vfo) is stable and the rig would seem to be an ideal candidate for RTTY. The only problem is a very limited amount of information about how one might go about putting this jewel on RTTY.

Faced with this dilemma, I decided to grab the bull by the horns and see what could be done. There are two methods of obtaining FSK from a sideband trans-

Photo A. The circuit board is mounted on the left side of the LMO. The shift-adjust cap can be seen on the upper left corner of the board.
mitter: 1) the AFSK method and 2) the FSK method.

The AFSK method consists of feeding audio tones into the microphone jack while running the transmitter in the USB or LSB mode. If carrier and unwanted sideband suppression is sufficient, the resulting signal is identical to a true FSK signal when detected on the air. The drawbacks to this method, however, are many. Many transmitters do not have sufficient carrier suppression and it is easy to
over-drive the transmitter and cause splattering just as is heard so often on the SSB bands. Another problem is that when using 850 -cycle shift, the standard tone of 2975 Hz falls very close to the edge of the audio passband of the transmitter and is therefore attenuated, resulting in uneven power between mark and space tones on the air. Some rigs will not pass this tone at all.

Irv Hoff W6FFC has written several articles explain-

Photo B. Rear view of FSK board showing wires from computer.
ing the pros and cons of using AFSK input to SSB transmitters and transceivers to obtain FSK on HF. 1,2 The instruction manual which comes with the HAL AK-1 AFSK generator has an excellent discussion and summary of the important points. At least one of these sources should be reviewed betore attempting to obtain FSK in this manner. Remember, if the FCC detects any unwanted sideband or carrier on your signal, a pink ticket will follow.

The true FSK method is simpler and safer if it can be obtained. Unfortunately, many transmitters have vfo's that are very difficult to modify. Then, too, there is always the possibility of destroying the built-in stability if one tampers with a vfo without sufficient knowledge of the principles involved.

A close examination of the HW-101 schematic shows that in the CW mode, the balanced mixer is unbalanced and a crystalgenerated carrier is allowed to pass through. It was a simple matter to connect a trimmer capacitor across this crystal and observe that the desired shift in the carrier frequency occurred.

The circuit of Figs. 1(a) and (b) was developed and has been used at KO)H to work 62 countries and 44 states in two months, running the HW-101 barefoot with only 75 Watts output into a mini-quad antenna orr a thirty-foot mast.

The circuit assumes that you are running a computer with TTL output levels. If you have RS-232 output signals, simply add the circuit of Fig. 2 to convert the RS-232 to TTL signal levels. If you are running a normal $120-\mathrm{V}$-dc $60-\mathrm{mA}$ teletype loop, you can use the circuit of Fig. 3 to obtain a TTL output which will drive the FSK input to the transmitter, but you will have to devise another method of
turning the transmitter off and on. Doing it manually would be the easiest method. If any of the TTL signals are inverted, just add a hex inverter such as the 7404

After trying several solidstate methods with less than complete success, relays were used to do the keying of the transmitter and the switching on and off the air. Perhaps someone else can modify the circuit to accomplish the same thing with a diode or transistor switch and eliminate the relays

Power to run the relays was borrowed from the filament line which is easily accessible at the pilot lamp socket attached to the LMO. A simple rectifier and filter are used to get approximately 12 V dc. See Fig. 1(c). Relays are miniature magnetic-reed types and are available from two sources that I know of: ETCO 066RL4 (\$.99) and EDLIE DC14075 (\$.79). Other relays of a similar fast-acting type will work just as well

The entire circuit is laid out on a printed circuit board in about fifteen minutes using a resist pen. It is not reproduced here because the exact pattern will depend upon the actual components used. Nothing is critical so no special talent is required. There is no reason why wire-wrap or any other method of construction could not be used. The circuit board is mounted to the left side of the LMO, using existing metal screws (see Photos A and B).

The external lines are brought into the HW-101 through a molex ${ }^{\text {(1) }}$ connector (Radio Shack 274-229/ 239) which fits nicely into the hole provided on the rear panel of the transceiver with a minimum of filing (see Photo C).

The connection to the CW crystal, Y 3 , is best made at pin 17 of the modeswitch rear wafer. The prop-

Photo C. The molex ${ }^{\oplus}$ connector (Radio Shack 274-239) is installed on the rear panel.

Fig. 1 (a).

Fig. 1(b).

Fig. $1(\mathrm{c})$.
er pin can be identified by the black wire which runs from it to a hole labeled " 22 " on the modulator circuit board right beside crystal Y3.

The connection to the PTT circuit is a little more complicated. The logical place to connect would be on the mode switch at pin 20 or to tube V12, pin 8 . The mode-switch pin 20 is not easily accessible, however, and pin 8 of V 12 is on the opposite side of the modulator circuit board from the place chosen to mount the FSK board. The point decided upon was the white wire with black tracer which connects to mode-switch
pin 20 and then is routed from underneath the mode switch to the rear of that switch. A small piece of the insulation of this wire was carefully scraped away and the PTT connection was made to the wire

To adjust the FSK circuit for 170 -cycle shift, simply put the transmitter in the CW mode and, while connected to a dummy load, key the transmitter through the PTT circuit. Either tune your receiver until the proper mark frequency is obtained as determined by your RTTY terminal unit or, using a frequency counter, adjust the receiver until an audio output frequency of

2125 Hz is obtained. Now set the equipment to send a steady space or open your loop if using a high-level ($120-\mathrm{V}$-dc, $60-\mathrm{mA}$) loop, and adjust the trimmer capacitor for a proper space as seen at the terminal unit or until the frequency counter indicates a frequency of 2295 Hz . $(2295-2125=$ $170-\mathrm{Hz}$ shift.)

Provisions in this circuit are for $170-\mathrm{Hz}$ shift only since nearly 100 percent of ham and MARS activity is now using that shift. If you need $850-\mathrm{Hz}$ shift for some reason, simply add another trimmer capacitor in parallel with the existing one, arrange to switch it in for $850-\mathrm{Hz}$ shift, and adjust it until $850-\mathrm{Hz}$ shift is obtained (2975 Hz)

Now tune the HW-101 up in the CW mode as you usually would, but decrease the output power to around 60 Watts by backing off on the mic/CW level control. If you have the $400-\mathrm{Hz}$ filter

Fig. 2.

Fig. 3. High-level RTTY loop to TTL.
installed, be sure the filter control is in the SSB position. If you have not done so, you will soon see the need for VE3IOI's sidetone volume control modification. ${ }^{3}$ Without some method of controlling the sidetone, you will be subjected to a piercing tone during the entire time the HW-101 is transmitting RTTY

If you have never been
on RTTY before, you are in for a treat. There isn't another mode which affords the quality QSOs that RTTY does. Everybody wants to chew the rag, even the DX stations in most cases. The average QSO lasts for an hour. You will also be amazed at the really good signals you will hear from stations who are running anywhere from 10 to 100

Watts. Probably 60 to 70 percent of all RTTY signals are being originated from transmitters putting out less than 100 Watts. One chap in Italy called me for a signal report and when I gave him an honest 589, he explained it was his first RTTY QSO using his new TS-130V which puts out 15 Watts. The HW-101 is a high-power rig by comparison. Try it-it's a ball.

Notes

1. "AFSK for RTTY," Irv Hoff W8KDC, QST, June, 1965, page 32.
2. "AFSK for RTTY," Irv Hoff W6KKC, QST, February, 1969, page 11
3. "Sidetone Volume Control for the HW-101," Hints and Kinks, QST, June, 1981, page 36. 4. ETCO Electronics Corp., North Country Shopping Center, Rte. 9N, Plattsburgh NY 12901 ($\$ 10$ minimum order).
4. EDLIE Electronics, 2700 Hempstead Turnpike, Levittown NY 11756 ($\$ 22.50$ minimum order).

2\% Bonus for Prepaid Orders (Cashier's Check or Money Order)

ORDER ORDER HOURS

11 am - 7 pm (Eastern Time) M, W-F $11 \mathrm{am}-3 \mathrm{pm}$ (Eastern Time) Tuesday $9 \mathrm{am}-3 \mathrm{pm}$ (Eastern Time) Saturday

TEN-TEC SALE	
OMNI-C 160-10M Transceiver	1069.00
255 Deluxe Power Supply/Speaker	169.95
229 2KW Antenna Tuner	228.95
243 Remote VFO for Omni-C	168.95
ARGOSY 80-10m Transceiver	499.95
225 Power Supply	114.95

CDICOM

HF TRANSCEIVERS
720A - The Top of the Line
730 - A Great Mabile
740 - A New Model

2 m and UHF
IC 2A/2AT-2m handheld IC $3 A T-220 \mathrm{MHz}$ handheld IC 4 AT- $440-450 \mathrm{MHz}$ handheld IC $25 A-2 m 25$ watt XCVR IC 290A-2m all mode XCVR

SANTEC

Handhelds

144up 2 m Synthesized handheld
440up MHz Synthesized handheld
Amplifiers - Tokyo High Power
HL-32V 2 m 30 watt out.
HL-82V 2 m 80 watt out, recv. preamp
HL-160V 2 m 160 watt out, recv, preamp
HL-20U $440-450 \mathrm{MHz}, 2$ in, 20 out
HL-90U $430-440 \mathrm{MHz}$, 90 out
Tuners
HC1 50200 watt SWR/watt meter
HC2000 2000 watt meters/switch
COMPLETE LINE OF FILTER

- CALL FOR QUOTES

- Shipping not included in prices -

MICROLOG

THE COMPLETE RTTY/MORSE SYSTEM - CALL FOR OUR LOW PRICE -
ANTENNA/ROTOR SPECIALS
MOSELEY - THE NEW LINE!TA 33 3-element 10-15-20 Meter BeamCL 33 3-element 10-15-20 Meter Beam

CL 36 6-element 10-15-20 Meter Beam CUSHCRAFT CUSHCRAFT
A3 10-15-20m 3-ølement Beam.
A4 10-15-20m 4 -element Beam
 HY-GAIN
TH3MK3 10-15-20m 3-elem. Beam w/stainless hdwr.
TH7DX New Broad Band 7 -element Beam !. KLM
KT34A 10-15-20M 4-element Beam
KT34XA 10-15-20m 6-element Beam 303.95 HUSTLER
172.95 224.95

ROTORS
CDE/HI-GAIN Ham IV

- Shipping not included in prices -

TELEX HEADSETS-HEADPHONES
C1210/C1320 Headphones 22.95/32/95
PROCOM 200 Headset/dual Imp. Mic ... 77.50
PROCOM 300 It./wt. Headset
Dual Imp. microphone
KLM ANTENNAS (other antennas in stock)
144-148 13LB 2 m 13-elem. w/balun... 77.95
144-148 16C 2 m 16 -element foroscar ... 93.55
420-450-14 420-450 MHz
14 -element beam.
37.54

420-450-18C $420-450 \mathrm{MHz}$
18 -element oscar.
432-16LB 16 element
430-434 MHz beam/balun
HUSTLER 5BTV $10-80 \mathrm{~m}$ Vertical
4BTV $10-40 \mathrm{~m}$ Vertical
58.70
60.70

HF Mobile Resonators Standard
10 and 15 meter 8.95
20 meters $\quad 1195$
40 meters $\quad 13.95$
75 meters $\quad 14.50$
AVANTI AP 151.3 G 2 m on glass ant BUTTERNUT HF6V 10-80m Handheld
BENCHER PADDLES Black
Chrome
CUSHCRAFT(Call for other Cushcraft items)
AV3 $10-15-20 \mathrm{~m}$ vertical 44.5
AV5 $10-80 \mathrm{~m}$ vertical
ARX-2B Ringo Ranger II, 2 m vertical
A3219 2m Boomer DX Beam.
214 B SSB 144-146 MHz boomer
$214 \mathrm{FB} 144.5-148 \mathrm{MHz}$ FM boomer 2208220 MHz SSB boomer
A147-11 11 -element 2 m FM beam.
A147-20T 20 -elem. 2 m SSB/FM beam
AMS 147 2m Magnet Mount

ORDER INFORMATION

Orders or Quotes Only
1-800-336-4799
Information
and Virginia Orders
(703) 643-1063

M-W-F: 12 noon-8 pm
Store Hours:
-453

MJF PRODUCTS (Call for other MFJ items)	VoCom ANTENNAS/2m Amps
989 New 3KW Tuner 279.95	5/8 wave 2 m hand held Ant......... 15.95
9621.5 KW Tuner mtr/switch. 189.95	2 watts in, 25 watts out 2 m Amp 69.95
9498300 watt deluxe tuner 121.95	200 mw in. 25 watts out 2 m Amp 82.95
941 C 300 watt tuner switch/mtr 79.95	2 watts in, 50 watts out 2 m Amp 105.95
940300 watt tuner switch/mtr 69.95	2 watts in, 100 watts out, 2 m Amp ... 159.95
484 Grandmaster mem. keyer $12 \mathrm{msg} . . .113 .95$	Power Pack for I-COM 2A/2AT 185.95
4824 msg memory kever. 81.95	MIRAGE AMPS \& WATT METERS
422 Pacesetter Keyer w/Bencher BY1 . . . 87.15	MP1 / MP2 HF or VHF Watt Meters 99.95
408 Deluxe Keyer with speed mtr..... 69.95	B23 2 in - 30 out, All Mode 2 m Amp.... CALL
496 Keyboard II 289.95	B10810 in-80 out, All Mode 2 mm Amp CALL
7528 Dual tunable filter 79.95	B101610 in-160 out, All Mode 2 m Amp. . . CALL
10224 -hour clock 29.95	$8301630 \mathrm{in}-160$ out, All Mode 2 m Amp. . . CALL
ASTRON POWER SUPPLIES (13.8 VDC)	D1010N UHF Amp. All Mode CALL
RS7A5 amps continuous. 7 amp ICS ... 48.60	C106 220 MHz Amp. CALL
RS12A 9 amps cont., 12 amps ICS 66.35	AEA
RS2OA 16 amps cont., 20 amps ICS. . . 87.20	Isopole 144 (Limited Qty.) 29.95
RS20M same as RS20A + meters. 105.50	MM-2 Morsematic II keyer. CALL
RS35A 25 amps cont., 35 amp ICS ... 131.95	CK-2 Contest keyer............... CALL
RS35M same as RS35A + meters. 151.95	MBA-RO Code Reader. 265.00
VS35M 25 amp cont. adjustable 171.00	MBA-RC Code Reader/Converter. CALL
VS20M 16 amp cont. adjustable 124.00	CABLE BY SAXTON
MINIQUAD HQ-1................... 127.95	RG 213 Mil Spec 26c/ft.
\star SUPER SPECIALS *	RG 8/m 95\% shield-foam 24c/ft.
AZDEN PCS 300 Handheld 284.00	Mini-8 . $11 \mathrm{c} / \mathrm{ft}$.
PCS 3000 2 m XCVR 284.00	RG 58 $9 \mathrm{c} / \mathrm{ft}$.
KDK FM 203025 watt 2 m XCVR 279.00	
KENWOOD, YAESU - CALL FOR QUOTES	8-wire Rotor 2 \#18, 6 \# 22 16c/ft. CLOCKS BY BMI
HY-GAIN ANTENNAS	173 DM dual desk clock............ 59.95
18 AVT/WB 10.80 m vertical CALL	DAIWA/MCM
14 AVQ/WB 10-40m vertical. CALL	CN520/CN540 watt meters. 59.95/69.95
TH3MK2 10-15-20m 2 -element beam . \because CALL	CNW418/CNW518
TH3JR 10.15-20m beam............... CALL	Antenna Tuners 169.95/279.95
(Most antennas now with stainless hardware)	CNA 2002 Auto 2.5W Tuner 399.95

- CALL FOR QUOTES -

Partial product listing - send stamp for a flyer or call for quotes. Terms: prices do not include shipping. VISA and Master Charge accepted. 2\% discount for prepaid orders (cashier's check or money order). COD fee $\$ 2.00$ per order. Prices subject to change without notice or obligation. No personal checks accepted. Returns subject to 10% restocking fee.

No-Frills RTTY

- \$200 and you're on the air

Luck Hurder WA4STO
Fort Valley Route
Seven Fountains VA 22653

Yup. Here's another article on radioteletype,
folks. But before you turn the page with one hand (while stifling a yawn with the other), consider the following. l've got somewhat less than $\$ 200$ invested in my RTTY gear and I'm not only going to show you how

Photos by Forest McCarty

Photo A. On the left is the Model 19 printer, with the Model 14 tape reperforator to the right. The sour look on my face is representative of how you will feel after lifting your first printer! But remember, the price is right.
to do likewise, but l'll even give you a few pointers on how to hook all these weird gizmos together. The result? Loads of fun with no muss, no fuss.

What you won't find in this article is a lot of complicated math or any in-credibly-expensive equipment. Don't look for any computer programs and don't expect a long list of formulas or incomprehensible graphs. Just pay attention to the pictures, chum, and enjoy the thrill of RTTY as much as a growing number of us are doing now Got yourself positioned in your favorite chair? Super. Here goes

First off, I'll make a couple of basic assumptions that should apply to you and your station. Assumption number one is that you presently have a transmitter/receiver (or a transceiver) lurking about somewhere and some sort of wire, aluminum tubing, or whatever that you can press
into service as an antenna. Nothing fancy, mind you. If it had to be fancy, I wouldn't be writing about it! Anyone with the misfortune of having visited my shack will jump at the opportunity to verify that my antennas are among the worst possible. So whether your goal is HF or VHF RTTY, do what you can. One of my favorite sayings is that any antenna will work - but some do so better than others

The second assumption is that you have a desire to become active in RTTY. Perhaps you have friends who consistently time out the local repeater with details about their latest zil-lion-dollar efforts at computerized transmission of the Miss April centerfold Or maybe your programmable scanner locked itself up solid on 147.1 MHz the other night with those weird deedle-deedle-deedles that you'd just love to snoop in on. OK, OK - just hang in there for a few more para-

Fig. 1. The "local loop" is nothing more than a dc loop of 60 mA connecting all of the RTTY station equipment. The use of a large barrier strip allows for additional pieces of equipment to be inserted into the loop with ease.
graphs and you'll be able to further your studies into human anatomy and/or the fine points of RTTY espionage!

The above assumptions are probably valid for the huge majority of you who have gotten this far into the article. And, let's face it, the theory hasn't become too deep yet, and you've not spent a dime.

Photo A shows yours truly and my mechanical marvels. They're marvelous for two reasons. First, they're older than I am, while probably working as well as the day they were built. And second, they were free! This particular Model 19 and all the associated tape gear was obtained gratis through the Army MARS program. Not that I'm suggesting that you join one of your state MARS teams just to get free equipment, but it certainly is one of the benefits that one hates to pass up, and you'll learn a lot if you participate in MARS.
l'd also like to point out that in the past year, five complete teleprinters have passed through my hands at no charge. Two were from the MARS program and
three were from fellows who were glad to get them out of their shacks! Their loss was my gain, and there's absolutely no reason why you can't do the same. Spread the word on the repeaters, request help from your friends, write letters. Do anything reasonable, but keep at it. There's more free equipment out there than you'd dream possible. I've had to drive from where I live in the mountains of the Shenandoah Valley all the way into the suburbs of Washington DC more than once-a distance of about 100 miles each way. There are only a couple of reasons I'd drive there these days, and one is free RTTY gear!

Assuming that you've rounded up one or two of these fine old machines, now's the time to hook up your terminal unit.
"What's a terminal unit?" you ask in dismay! Well, without going into detail, the terminal unit (or TU) is that neat little gizmo that converts those deedledeedles into something that your RTTY machine can use. There's a great profusion of TU equipment ad-

Photo B. The Model 19 printer with cover removed. Note the terminal strips with all the wires going every which way. Don't be intimidated! Only two sets of connections are really necessary, one for the ac and one for the dc loop. See Fig. 1 for loop details. Also note use of $1 / 4$-inch phone plugs for easy changes in equipment location.
vertised these days, but if you'll take a glance at the accompanying photos you'll see the one I've been using. It's the TU-170, made by Flesher Corp., and their advertising is abundant in 73 as well as other magazines. In kit form the TU-170 was $\$ 150$, and let
me tell you, pal, if I can build it, you sure as heck can. Honest.

This particular TU has many features, including a gadget that will allow you to transmit RTTY as well as just print it. Also, it has an autostart feature which will allow you to receive RTTY

Photo C. The onity interconnection between the transceiver and the terminal unit required for receiving RTTY is from the "patch out" jack to the "receiver audio" lugs on the TU. The printer is normally plugged into the ac receptacle on the TU for autostart operation.

AT LAST!

This service will be available nationally. Lab tested \& time proven modifications professionally installed in your amateur Handy-Talkie 2M, 220, 440, MH2 transceiver by Henry Radios warranty technicians (KNOWN AS "A\&W PRODUCTIONS")

HAVE ALL PL TONES AVAILABLE AT YOUR FINGER TIPS

Outboard the dip switch! Have it neatly inlayed into the back cover of your Handy- Taikie making all 32 PL Tones Selectable at a moment's notice.
\$25 Got your own PL? Send it to us with your Handy-Talkie unit and we do the professional Installation for you.
$\mathbf{5 5 5}$ We will install a new PL and inlay the dip switch into the back cover of your Handy-Talkie ready to operate.
Send us your Handy-Talkie unit and a check or money order plus $\$ 3.50$ for shipping and hand ling payable to A\&W PRODUCTIONS, INC.

For TEMPO units the dip switch is inlayed into the Push-to-Talk bar. The TEMPO S- 15 will have the dip switch inlayed into the back cover. $\$ 45$ We will installa NEW BATTERY BEATER in your TEMPO S-1, S.2, S-4, S-5 READY to operate. Your New Battery Beater will use the same jack as the charger with no new holes and regulation circuits built into unit. Comes w
Cligar Lighter Adapter with internal fuse.
CONTACT A\&W PRODUCTIONS FORSPE. CIAL MODIFICATIONS YOU MAY WANT TO HAVE DONE. WE SPECIALIZE IN THE TEMPO HANDY-TALKIES.
messages while you're at work. But the nicest thing I'd like to pass along to you is that the people at Flesher are just as interested in getsing your TU to work as you are. I've had to pull them away from whatever they were doing on several occasions on the telephone and they were always extremely helpful. I wrote and told
'em so, too. You wouldn't believe the foolish questions I've had to ask them, but they never flinched. Thanks, folks!

OK, now you've got your RTTY machine and you've got a TU and you're standing around wondering how in Sam Hill to begin hooking all this gadgetry together. Relax! Better yet, don't

Photo D. Transmitting RTTY is simplicity itself. Just plug the AFSK output from the TU into the mike jack of the transceiver, and enjoy!
relax. Jump right up and run over to your collection of back issues of 73. The September, 1977, issue is crammed full of muchneeded information on the care and feeding of these old clunkers. What's that you say? Those nerds who've been running their mouths on the repeater refuse to give back your copy of the September issue? Never fear. Wayne Green sells back issues, and if he's all out, see if you can get an SASE into my mailbox and l'll try to answer your questions.

At any rate, take a peek at the accompanying closeup of the Model 19 printer (Photo B). This particular machine really had me buffaloed for an embarrassing number of weeks. I'd found several articles and books that told me how to hook up a normal printer (which has three terminal strips), but not a word about this particular beast. One of my MARS friends finally said, "Hey dummy! All they've done is combine the three normal strips into two," which explained why all my gyrations in the shack failed to produce the third strip from within the innards of this antique. You might be lucky enough to have the red and black plugs already there, just-a-waitin' to be hooked in series with your TU loop supply (see Fig. 1). If not, you may have to dig around a bit. If nobody has seriously butchered the internal wiring, you'll find the correct connnections with no problems. If you really get stuck, let me know.

One brief word of warning here. Keep your mitts away from the actual loop supply. I'm talking about something like 130 volts at 60 mA . That just might be enough to kill you! I've managed to ignore this advice thrice so far, and it hurts!

Now apply audio from your rig to your TU, and you should be able to tune in

RTTY signals. Photo C shows how I managed my connections. It took about thirty seconds to figure this part out. The thrill of tuning past a RTTY signal and hearing the printer start chugging away was just super. I couldn't believe that this ancient equipment could possibly work so well! Given a bit of lubrication and a dab of TLC, 1 expect that these machines will live longer than I will, particularly if 1 ignore the previous paragraph another time or so!

Photo D shows how I managed to start transmitting. It was very difficult-I merely plugged in the AFSK output from my TU to the mike jack on my transceiver, adjusted the drive, and started typing!

I do, however, feel a touch of moral obligation to the RTTY neophyte. If you're using tubes in the finals of your rig, for Pete's sake, turn down the mike gain or otherwise reduce the power! I've ruined more 6146 finals than l'd zare to comment on, and l've gone now to idiot-proof transistors. The rig that I presently use is capable of running all day at full power. Yours might not be so blessed. Find out, if you don't already know. End of sermon.
l've shown you my method for getting on RTTY. This is one of the simplest and cheapest ways I could come up with to obtain the features that I deemed important. I've got loads of ideas brewing in my head that I'm hoping to write about soon, so feel free to write and tell me what you liked or didn't like about this article. All SASEs will be answered.

I would like to express my sincere appreciation to Forest McCarty for his photographical expertise, as well as to Durwood WA4ZBP and all my many Virginia Army MARS friends for answering my never-ending questions.

Call Toll Free: 1-800-558-0411
Call Toll Frec: 1-000-558-0411
AMATEUR ELEGTRONIC SUPPLY
4828 W. Fond du Lac Avenue; Milwaukee, WI 53216 - Phone (414) 442-4200

AES ERANCH STORES

WICKLIFFE, Ohio 44092
28940 Euclid Avenue
Phone (216) 585-7388
Ohio WATS 1-800-362-0290
Outside Ohio 1-800-321-3594
ORLANDO, Fia. 32803
621 Commonwealtn Ave. Phone (305) 894-3238 Fia. WATS 1-800-432-9424 outside Fla. 1-800-327-1917

CLEARWATER, FAa. 33515
1898 Drew Street
Phone (813) 461-4267 No In-State WATS No Nationwide WATS

LAS VEMAS, NEV. 89106
1072 N. Rancho Drive Phone (702) 647-3114 No In-State WATS Outside Nev. 1-800-634-6227

Incredibly Simple RTTY - receive it on your TRS-80

I
f you have a transceiver and a TRS-80 ${ }^{\top 1}$, then you have nearly all the equipment necessary to receive radioteletype (RTTY). The only additions required are a 26 -statement BASIC program, two TTL integratedcircuit chips, and a demodulator. The program and interface design are presented here, and a demodulator is recommended

RTTY System

As shown in Fig. 1, a RTTY system might consist of a radio receiver, a demodulator, a computer (in that case, the TRS-80), and a
monitor or other form of readout. Most RTTY is sent as audio frequency shift keying (AFSK) via SSB radiotelephony. Hence, when a signal is tuned in on your receiver, it will be heard as two alternating audio tones. Those tones are called the mark and the space - the lower tone being the mark.

The job of the demodulator is to convert those audio tones into a computer-compatible on-off signal. Historically, demodulators have developed a 20 -milliamp current signal for direct use

Fig. 1. RTTY reception system.

Fig. 2. RTTY signal from demodulator.
with a teletype terminal such as an ASR-33. However, for interconnection to a computer, the demodulator, or demod, must present a logic signal that is compatible with standard logic chips. So, when the AFSK signal is received, the demod converts the lower tone to a logic one and the upper tone to a logic zero or zero volts.

The computer's job, then, is to convert the logic signal from the demod to a corresponding letter code for presentation on a monitor. The majority of the work is done with a BASIC program while the interface provides conriection to the demodulator output.

Demodulation

Let's take a look at the demod operation first. Suppose the letter Y is being received. A low audio tone will be received first followed by the start bit, a higher frequency tone. The demod will convert the low tone into a logic high signal, or mark, and the start bit into a logic low signal, or space, at zero volts. The actual code for the letter Y, as shown in Fig. 2, is then received as a sequence of marks and spaces: mark-space-mark-space-mark or high-low-high-low-high. The sequence is ended by a stop bit-a mark. All marks and spaces are 22 ms in duration except the stop which is 31 ms .
For testing of the TRS-80

Fig. 3. TRS-80/RTTY interface.

Fig. 4. Flowchart for the RTTY program for the TRS-80.

RTTY system, the Kantronics Signal Enforcer ${ }^{\text {M }}$ audio filter was used. That dual filter has a TTLcompatible demod output. When a signal is tuned in, the Signal Enforcer demod output presents a logic high signal for a mark and a logic low signal for a space.

Now let's examine how the demod output can be interfaced to the TRS-80 hardware.

Computer Interface

Since the RTTY signal is only one voltage, either high or low as time goes by, only one signal line into the computer is necessary. However, in order for the TRS-80 to receive it, the signal must be gated onto the memory bus under the control of a "read" signal. In addition, the memory bus must be isolated from outside circuits, so a noninverting TTL logic chip is required.

As shown in Fig. 3, these requirements can be satisfied using two chips, a

74LS02 NOR gate and a 74LS367 gated buffer. The demod output status is transmitted to the memory bus via the buffer when pin 1 is set to a logic low. That is accomplished by executing the BASIC statement $A=\operatorname{PEEK}(-1)$. The minus factor sets the highest-order address bit of the address bus on, and the PEEK statement causes the "read" pulse to be issued simultaneously. The address bit is inverted by a NOR gate and then combined with the "read" pulse to provide the activating signal at pin 1 of the buffer.

The resulting data, then read off the memory bus, is inverted and assigned to the variable A. For example, if the demod output is high, the value for A will be 255 , but if it is low, it will be set to 254 .

A few more comments on the logic interface are in order. The line names at the left of Fig. 3 represent the pin connections to the TRS-80 I/O port. A15-P7 means address line 15 at pin

10 CLS: DINA $\$(32): A \$(\phi)=" ":$ REM TELETYPE RECEIVER PROGRAM
$15 \operatorname{DIMB} \$(32): \mathrm{B} \$(\emptyset)=" \quad ": M=\emptyset$
$2 \emptyset$ REM FOR KANTRONICS' SIGNAL ENFORCER, ll-2-8 ${ }^{\prime}$, WめXI.
45 DATA $K, Q, U, \nexists, J, W, A, X, F, Y, S, B, D, Z, E, V, C, P, I, G, R, L$
46 DATA *, M, N, H, " ", \mathbf{O}, *, $\mathrm{T}, \star: B=\emptyset$
47 FOR I=1TO31:READ AS(I):NEXT I
$5 \emptyset \operatorname{DATA}\left(, 1,7, \quad ', 2,-, 1,!, 6,, ?, \$,^{\top}, 3,-, \star, \emptyset, 8, \delta, 4,\right)$
51 DATA *, ., -, 非," ", 9, *, 5, *
55 FOR $I=1 T 031: \operatorname{READ} B \$(I): N E X T I$
$1 \emptyset \emptyset$ IF PEEK $(-1)=254$ THEN $11 \emptyset$ ELSE $1 \emptyset \emptyset$
$11 \emptyset I=\emptyset: J=\emptyset: K=\emptyset$
115 FOR L=1TO4:NEXT L
120 IF PEEK $(-1)=254 \quad I=I+16$ ELSE $I=I+\emptyset$
$125 \mathrm{~J}=\mathrm{J}+\emptyset: \mathrm{K}=\mathrm{K}+\emptyset$
130 IF PEEK $(-1)=254 \quad \mathrm{I}=\mathrm{I}+8$ ELSE $\mathrm{I}=\mathrm{I}+\emptyset$
$135 \mathrm{~J}=\mathrm{J}+\emptyset: \mathrm{K}=\mathrm{K}+\emptyset$
$14 \emptyset$ IF PEEK $(-1)=254 \quad I=I+4$ ELSE $I=I+\emptyset$
$145 \mathrm{~J}=\mathrm{J}+\emptyset: \mathrm{K}=\mathrm{K}+\emptyset$
$15 \emptyset$ IF PEEK $(-1)=254 \quad I=I+2$ ELSE $I=I+\emptyset$
$155 \mathrm{~J}=\mathrm{J}+\emptyset: \mathrm{K}=\mathrm{K}+\emptyset$
$16 \emptyset$ IF PEEK $(-1)=254 \quad I=I+1$ ELSE $I=I+\emptyset$
170 IF $\mathrm{I}=4 \mathrm{M}=1$
172 IF I= \emptyset THEN $2 \emptyset \emptyset$
$18 \emptyset$ IF $M=\emptyset$ PRINT AS(I); ELSE PRINT BS(I);
190 GOTO100
$2 \emptyset \mathrm{M}=\emptyset:$ GOTO1 \emptyset
Fig. 5. 26-step RTTY program listing.

7; D0-P30 means data line 0 at pin 30; RD*-P15 means read pulse negative at pin 15; the ground connection is at pin 29. The user must supply his own $5-\mathrm{V}$-dc power source for the interface logic because the TRS-80 connector usually has that pin disconnected. In addition, if desired, the remaining NOR of the 74LS02 can be used to buffer the demod input and drive on the LED.

That completes the interfacing. Let's now take a look at the 26 -statement BASIC program to decode and display RTTY signals.

BASIC RTTY Program

Again, take a look at Fig. 2. The standard RTTY 60 format includes a start bit of $22-\mathrm{ms}$ duration, five $22-\mathrm{ms}$ data slots, and a 31-ms stop bit. When no characters are being received, the demod output will be high continuously.

When a letter or figure is received, it will commence with a start space. This is our key; we will have the program watch the demod output until a space is received. Then, proper delays can be built into the program so that samples are taken at approximately the center of each data slot.
For example, if a space is detected at B in Fig. 2, then the program will delay 22 ms and sample at 16, delay again for 22 ms and sample at 8 , and so on, taking five samples in all.
Now let's take a look at the flowchart for the program as shown in Fig. 4. First, constants are initialized and letters and figures are read in via the data statements to form the RTTY character codes. Then, the program enters a continuous loop. If a space is received, proper delays are generated and samples are taken. If not, the pro-

gram waits, continually sampling for an input. Once a sample is taken, the program must check to see if the figures or the letters code has been transmitted. Those codes are used to set lower- or uppercase letters or figures, for those characters to follow.

Now let's take a look at the program listing

26-Statement
 BASIC Program

As shown in Fig. 5, the program is short -26 steps. It is probably possible to shorten it somewhat by combining some statements.

Statements 10 through 55 initialize constants and set the string variables with index numbers in two tables. Those indexed variables represent the letters and figures that can be printed by a Teletypeim machine Statement 100 is used to continually sample for a
start bit. Once one is detected, statements 110 through 160 sample a fivebit code. Statements 170 through 200 determine letters or figures states. For a TRS-80 Level II with 16 K , statement pairs 120 , 125 or 130,135 will cause a delay of about 22 ms Some adjustment may be necessary from machine to machine.

To summarize, let's suppose the letter Y is to be received. The program is started and waits at statement 100 for a space or start bit. Suppose one is received as at B in Fig. 2. The program then delays about 8 ms at statement 115 and then samples at 16 , $8,4,2$, and 1 . With the code Y, a space is received at 8 and 2. That totals 10 and is used as the index to $A \$(10)$ so that Y may be printed on the screen.

73 and we hope you enjoy listening to RTTY.

NEW PRODUCTS FROM HAL-TRONIX

2304 MHz DOWNCONVERTERS

Frequency Range $2000-2500 \mathrm{MHz}$
2304 Model 1: Basic three-stage, less case and connectors.
$\$ 49.95$
2304 Model 2: Three-stage, includes preamp, with die-cast case and connectors
$\$ 59.95$
2304 Model 3: With high-gain preamp, die-cast case and
connectors.
$\$ 69.95$
The above models complete with high-quality drilled PC boards, all electronic components, etc., with 15 -page manual.
Note: Any of the above, Factory wired, $\$ 50$ additional
POWER SUPPLIES FOR THE DOWNCONVERTERS:
Power supply kit \#1, less case and connectors.
$\$ 19.95$
Power supplykit \#2, includes case \& connectors.
$\$ 24.95$
Power supply-already built, complete
.$\$ 34.95$
PARTS FOR THE NTSC RF MODULATOR FOR CHANNELS 3.4. or 5. This is not a complete kit. The hard-to-get parts include the LM-1889, the .08 microhenry tank coil, the $7-14$ microhenry adjustable coil, the 10 microhenry RF coil, with schematic (no PC board) as used in Bob Cooper's satellite TV receiver. Real buy at
. $\$ 5.95$

SHIPPINO INFOMMATION

OROERS OVER 520.00 WILL BE SMIPPEO POSTPAIO EXCEPT ON ITEMS WHERE ADOITIONAL CHARGES ARE REOUESTED CN ORDERS LESS TMAN $\$ 20.00$ PLEASE INCLUOE ADOITIONAL $\$ 1.50$ FOR HANOLING AND MAILING CHARGES SENO SASE FOR FREE FLYER

TOUCHTONE DECODER KITS

HAL 567-12: single line in, 12 lines out. complete with 2 -sided plated-through G- 10 board and all components. Uses seven 567's and three 7402's
$\$ 39.95$
HAL 567-16: single line in, 16 lines out. complete with 2 -sided plated-through G- 10 board and all components: includes $22-$ pin edge connector Uses eight 567's and four 7402° s. (See construction article in April 1981 Radio \& Electronics for complete writ eup.)........... $\$ 69.95$
TOUCHTONE ENCODER KITS
HAL ECD-12: 3×4 twelve-character encoder utilizing the ICM 7206 Intersil chip. Kit comes complete with both LED and audio-coupled outputs (speaker included). With aluminum anodized case
$\$ 29.95$
HALECD-16: 4×4 sixteen-character encoder utilizing the ICM 7206 Intersil chip. Kit comes complete with LED and audio-coupled outputs (speaker included). With aluminum anodized case.
$\$ 39.95$

The RTTY/Tribander Marriage - enjoy the 100% duty cycle

It seems that almost all electronic gear today is rated in terms of a duty cycle, which simply means how long or how hard it can work without resting and cooling off. In the days of AM when all transmitters and rf amplifiers were expected to operate under full power for long periods of time, we didn't give much thought to a duty cycle. True, perhaps some of the cheaper gear should have had such ratings because, as we all know, heat is the archenemy of electronic components, and much of the more lightly built stuff had frequent component failures.

Today, however, duty cycle is a big thing. Our gear is tiny indeed when compared to yesteryear's. Miniaturization is the thing. Solid-state technology has pygmytized those old boat anchors into neat little packages hardly larger than yesterday's external vfos. It has given us features few dreamed of twenty or thirty years ago when the names Johnson, B \& W, Hallicrafters, and Collins, among others, were the respected leaders in manufacturing amateur radio equipment.

In many cases, these little runts even give us far more power output than their ancient counterparts.

But there is one marked difference: They can't do it continuously.

And this duty cycle thing isn't limited to exciters and amplifiers. Many antennas also have duty-cycle ratings, although I can't recall any manufacturer saying so in black and white. Instead, they use terms like "...rated for full legal amateur power limit" or ". . . rated at $2-\mathrm{kW}$ (or $4-\mathrm{kW}$) PEP."

Well, this sounds impressive, but when a body strips it down to its basics, it really doesn't say anything worthwhile. In the first place, PEP refers to SSB input power, not output. Some loosely apply the term PEP when talking about CW, which is neither here nor there. The power we should be concerned with-as long as we don't exceed the legal input limits - is that which runs up the feedline and makes a noise on the air. And believe me, this is always a whole lot less than what we're stuffing into the final!

Of course, manufacturers' power ratings usually apply to trapped antennas. But let's take the old familiar yagi tribander. I think almost anyone reading this will agree that these are by far the most popular HF antennas in the world and, with a very few exceptions.
all have traps of varying design. They usually aren't as efficient on any one band as a monobander, but they serve well and allow flexibility with minimum expense and hassle, and we've been getting along with them for a long, long time.

And their physical designs have changed over the years. These new ones have sleek, compact trap assemblies with the coils enclosed in aluminum tubing, away from the elements and offering much less wind resistance than those old external coils we used to see. One of the main reasons they can do this is because AM on the ham bands is a thing to be discussed with nostalgia. Hardly anyone ever throws a kilowatt of plate-modulated power on the air any more, so the traps don't have to be so massive.

SSB and CW are intermittent, right? Therefore, the traps aren't called upon to perform under sustained high rf voltages, so now they can be made of aluminum wire wrapped on injec-tion-molded plastic coil forms and sealed inside aluminum housings. Neat. Very neat and efficient.
It has been said by wise men that about the only thing in this old world which remains constant is
change. It's called progress, and thank goodness for it. But progress is not achieved totally without difficulties, as we shall see.

Amateur radioteletype and amateur television have been around for quite some time, but not until the last couple of years have they enjoyed much widespread popularity. Now, with the rapid advancements in solid-state technology bringing microprocessors and home computers within reach of the modestly-heeled amateur, one has only to tune across the bands and listen to the deedle-deedle of RTTY or the musical whirring of an SSTV rig to realize just how many hams have turned to these "new" and fascinating modes of communication. And interest is growing daily, judging by the number of manufacturers who advertise sophisticated RTTY and SSTV equipment in the pages of radio amateur magazines.

However, there begins to emerge a new problem. RTTY and SSTV have little in common with SSB or CW. Rather, they are first cousins to FM. To transmit in either mode demands that a steady carrier be placed on the air, and therein lies a problem which is causing growing concern among the
manufacturers of multiband trapped antennas Therein also lies the reason for this article. I hope that in sharing my own experience with fellow amateurs, I might help in some way to minimize, or even in some instances eliminate, upcoming problems. On the other hand, it is not my intention to single out any one manufacturer and add insult to injury by naming a product because, from what I have been told by manufacturers and amateurs alike, more than one manufacturer is hunting a solution.

In my own case, in March of 1979 I bought and installed a three-element triband beam made by one of the oldest and most respected manufacturers in the business, and it performed better than expected. Much of my operating time is spent on 20 -meter RTTY, however, and a great deal of that is spent in running pictures. This is a blast, as any pix enthusiast will tell you. It is astounding to see the skill and ingenuity that has gone into the making of some of these and a thrill to watch one taking shape on the printer

There are a few pictures around that take ten minutes or less to send, but there also are hundreds which take up to half an hour or even longer, all requiring a steady, unwavering carrier being fed into the antenna.

It is in this kind of service that the real weakness shows up in our new equipment. Few of today's transceivers are capable of much rf output under steady key-down operation because they are designed for intermittent use. The plate dissipation of the final tubes (or transistors), as well as the limitations of power supplies, must be taken into consideration and not exceeded. I run a Kenwood TS-820S, and the
owner's manual plainly states that it is unwise to exceed $100-\mathrm{W}$ atts input to the final in RTTY or SSTV modes; so I don't. But on 20 meters this produces an output of less than 25 Watts. And while this power level will get you by under good band conditions, it becomes pretty puny while trying to run a picture on 20 during crowded weekends. So the next thing, naturally, is to run an amplifier.

But even here there are limitations. First, many amplifiers, such as Heath's SB-220, should be allowed to cool after 10 minutes operation at 1 kW . They tell you so. But then, how many exciters are there around that will drive it to a full gallon? Not many, for they take lots of drive - on the order of 50 to 100 Watts, which means output from the exciter. So, in the case of the SB-220, you get about ten times the power out that goes in, or, typically, 250 Watts out with 20 or so Watts drive, which doesn't strain anything very much and is adequate for most RTTY or SSTV work.

Then another problem rears its ugly head. The summer of 1980 was a particularly warm one, and one day my swr rose far above the usual 1.2:1 at around 14.090. This was after I had again become the owner of a 1957-vintage Johnson Viking Kilowatt, the one that is contained in a beautiful gray steel desk. I had owned this very same rig between 1959 and 1965 before selling it to K01TZ. He trucked it all over the country for 15 years, then moved back here and resold it to me. Since this jewel requires so very little drive, it is the ideal amplifier for RTTY and SSTV. Ten Watts will drive it to $2-k W$ PEP, so one can see how little strain there is on the TS-820S.

Well, I had been using this Johnson for about a
week when my swr began to climb. True, there had been times when, in order to get a RTTY picture through heavy QRM on 20 , I had run the power up near a kW. which put about 600 Watts into the beam. This was the beam's undoing, for one glance at it showed the 3-foot section outboard of the trap on the driven element was sagging about two inches. This was on just one end. Obviously, something had melted inside the trap.

Fortunately, it is no big hassle to climb the tower and remove the driven element, letting it down with a rope. And when 1 got it down and the trap disassembled, I found the plastic coil form melted like butter.

This beam has two coils inside the trap assembly. The inboard coil is the tenmeter trap while the outboard is for fifteen meters. Together, they form the 20 -meter trap. It was the fif-teen-meter trap that had melted, and inspection of the other trap showed it had split slightly and shrunk $3 / 16^{\prime \prime}$ in length, indicating imminent failure.

A letter and an order to the factory for new fifteenmeter traps brought a telephone call from the manufacturer. He was very nice and understandably very concerned. He said this certainly was not the first trap failure in his product, that it had been going on for well over a year and was due to RTTY and SSTV operation. He added that other manufacturers also were plagued with the same problem and all were trying to find a solution.
"These antennas have a duty cycle," he said. "They were never meant to take a steady carrier for long periods of time. The heat generated in the trap coils has no place to go, so the plastic melts. Power level is not the problem. It's a matter of du-
ty cycle. No matter if you run high or low power, if you keep running RTTY with that beam, the traps eventually will fail. High power, of course, will do it quicker."
"I didn't see any mention of 'duty cycle' in your ads," I said.
"When the antenna was designed," he answered, "we had SSB and CW in mind, and the traps will handle the legal limit in those modes for years. But we didn't anticipate the sudden popularity of RTTY and SSTV."

He went on to say that they had hand-made some coil forms from TeflonTM which gave no signs of failing, but said their molds used for plastic would not accept Teflon, and retooling would be too expensive and run the production costs too high.
"How about drilling ventilation holes in the trap housings?" I asked.
"It would help," he admitted. "But we already have two small drain holes in the bottoms, and insects even find their way inside these. Then, when the rf starts, they can't get out. They become fried, and the resulting carbon buildup eventually shorts out the turns on the coils."

Stumped, that's what I was. Here I had a fairly expensive tribander sitting atop a 50 -foot tower, and I wasn't about to give up my RTTY. There had to be a way, I told myself. There just had to be!

Having been in aviation more than 40 years, I was aware of the value of aircooling, so I decided to ventilate the traps. Leaving a 3-inch strip on top of the aluminum housings untouched, I drew lines $3 / 4 "$ apart lengthwise on the rest of the surfaces. Then 1 marked them every $3 / 4^{\prime \prime}$. Alternate lines were staggermarked so the holes would likewise be staggered diag-

Your Ham Tube

 Headquarters!
onally and would not structurally weaken the housings. After that, I centerpunched each mark and, in three succeeding steps, drilled holes, the last drill being $1 / 2^{\prime \prime}$ in diameter. When I finished, the aluminum housings closely resembled the barrel housings on those World War I German Spandau machine guns. Each contained 94 holes, which would allow a considerable airflow around the coils.

Following this, using ordinary aluminum screendoor wire, I wrapped each completely, securing it in place with four stainlesssteel hose clamps. The idea here was to defeat all but the tiniest of insects, as well as snow and ice, while still allowing warm air from the traps to escape. The screen impairs the flow-through of air, but everything nowadays is a compromise, isn't it? And with no holes on top
to allow snow or rain to enter, I felt the coils were reasonably safe from the elements.

At any rate, for the past nine months or so I have been running from 200 to 600 Watts into that beam on RTTY, and during some pretty warm weather, I might add. So yesterday, out of curiosity, I took the element down and inspected the traps. I could find no evidence of cracking or melting, which seems to indicate that the ventilation system is working. This may not be the ultimate answer, but it certainly has to be an improvement for those RTTY and SSTV operators who are using a trapped triband beam. They already have their investment in both beam and equipment and, according to a popular manufacturer, are headed for eventual trap failure. So why not take this simple preventive measure?

The ©fweet ofounding ©Repeater

 MARK 3CR

A Stradivarius is more than a body, neck, and strings. The name alone says it is an instrument of outstanding quality and beautiful sound.

In repeaters the name for optimum performance and clean, natural sound is Mark 3CR. And Mark 3CR also means:

- Receiver sensitivity $<0.25 \mathrm{uV}$.
- Schmitt trigger squelch to capture fading signals
- Spurious rejection $>65 \mathrm{~dB}$.
- 13 Morse messages
- Autopatch and reverse autopatch
- 15 Function controlled outputs
- Die cast aluminum receiver and transmitter enclosures

Both Systems Provide

You won't find as much well thought out programming, circuitry, and features anywhere, at any price! The ATR-6800 combines the best of both worlds, an easy to use video system for CW/RTTY/SSTV with automatic station control and a stand-alone computer with expandable memory \mathcal{E} full instruction set in Motorola assembly language. Add the BASIC language option package and you'll have the unique combination of an RFI proof computer and ultimate RTTY/CW HAM station. And don't forget "easy to use." All of us at Microlog are RADIO ACTIVE on RTTY, so there's a lot of personal attention to detail and ease of operation. "Stick-on" command listing and video status display will get you on the air quick and sounding like a pro. and still come up short.

- SIMPLE DIRECT CONNECTION to your Transceiver. - COMPLETE SYSTEM, built-in Demodulator E AFSK Modulator with keyboard programmable tone pairs. - SPLIT-SCREEN operation with keyboard selectable line location. - LARGE, TYPE AHEAD text buffer. - TEN, programmable message memories, plus ID's WRU E SELCALs. - RANDOM CODE generator \mathcal{E} hand key input for practice. - Baudot 60 to 132 WPM. - ASCII 110 \& 300 baud. - SYNC-LOCK MODE for improved ASCII operation. - RECORDER INTERFACE FOR "BRAG-TAPE" or recording off-the-air. - CODE CONVERTED Printer output in Baudot or ASCII. - SSTV/GRAPHICS transmit. • FULL 63 KEY Computer grade keyboard.

There's a certain thrill to using efficient, reliable digital communications equipment on the air. That's the fun of RTTY. Spice up your Amateur Radio operation with the silent video system that does it all, the Microlog ACT.1. Even if you own a home computer and are considering an outboard interface/program, remember, we've put it all in one RFI tight enclosure that's ready to go as soon as you power up. And, with the "Battery-backed" memory option. you won't even lose your pre-programmed messages if there's a "blink" in the A.C. The ACT-1 has features that the competition doesn't even have on the draw. ing board! Check for yourself, you could spend a lot more

> ATR-6800 vS ACT-1 $\varepsilon_{\varepsilon}^{\text {The most often asked question we hear is "What's the difference between the ATR }}$ all the functions and features you need for a multi-mode station. Along with this superior "ON-the-AlR" performance, the ATR-6800 extends your operation into the realm of automatic station control and computer programming. Plug-in applications modules expand the ATR's memory to add new HAM oriented programs which are enabled by simple keyboard commands. By adding the BASIC option package, you'll have pre. programmed full community mailbox, contest dupe sheet, personal station log, message editor. BASIC computer language and 16 k of battery-backed (non-volatile) memory. We also provide a subroutine list so that you can write programs to directly control the ATR-6800 in easy to use BASIC language. The ATR-6800 then is the expandable, "do everything" system where your imagination is the only limit! The ACT-1 is designed for the HAM who needs the essentials of a complete video system for digital communications.

TECHNICAL SPECIFICATIONS ATR-6800 \& ACT-1

OnTPUT TO TRANS + Voltage Keying - Vollage Kela

 AFSK Tones, Range
 AFSK Tones. L Printer Oriver

 MISCELLANEOUS CONNECTIONS
data rates
Morse
$\begin{array}{ll}\text { Mere is: } & 10.80 \text { character messages (800 sotal) batiery backec } \\ 10 & \text { 15 charatets maximum in slandard } 10 \text { and } 17 \text { in }\end{array}$
WRU: $\quad \begin{aligned} & \text { RTTY } 10 \\ & \text { Up to } 15 \text { characters }\end{aligned}$

- computer capability
Memory
COMPUTER CAPABILITY
Standard unit has 4000 bytes of RAM for user pro-
Language
Commands
Tape Intertace
nput: Output; Load; Go with Break Point; or Normal
Basic
Slore Programs on Audio Cassette
emply and unit is in transmit. Keyboard command on/ofl.UN-SHIFT on Space: Automatically shilts back to "LETTERS" upon recelptof transmission of space. Keyboard command on/off.
REAL-TIME CLOCK: Keyboard set, always on screen diaplay, hours. minutes. seconds, Can also be inserted in transmit text buffer by keyboard
command. command.
WORO WRAP AROUND: Prevents splitting words at the end of a line, Works In receive as well as transmit.
COOE PRACTICE: Aandom 5 char generator sends at any speed you set via
the keyboard. Hand-KAy tnout allows use in cocoe practice oscllition that will also read your sending!
STATUS DISPLAY can de called up to show the condition and control commands for 20 programmabie parameters, such as AFSK tone treas. UNOS printer, otc. in use.

DETECTION MOOES
Democulator

```
* Terminal
```

```
* Terminal
```

Baudor
ASCI
Slow Scan OUTPUT OP OUTPUT
Symbol
Word
Symbol
Word
tine

Line
Buffer

Phase correlation detector with AGC controlled bandpass liller (100 Hz nominal widit -800 Hz Computer program entanced dual tone demoo. Primary tones Hxed e $2125 / 2295 \mathrm{~Hz}$, Secondary tones variable ${ }^{\text {and }} 500-3000 \mathrm{~Hz}$.
RS232 compatible half duplexa or RS232 compatible hall duplexior full duplex up to
9600 Eaud
5.199 WPM Keyboard selectable in 1 WPM steps Auto speed racking or speed on receive
All standard $45,50,57,74,100$ Baud $160,66,75,100$ All stindaro 45, 50, 57, 74, 100 Baud ($60,66,75,100$ 110 \& 300 Baud normal 8 synclock using Internat
Modem. ATR adds speeds up to 9600 Baud. Moder. ATR adds speeds up to 9600 Baud.
B seconds per frame m second
Characte
Character ouputs when typed
Words sent atter "Space Bar" Line sent after "Return"

TUNING INOICATORS Visual Rel, Tone 800 Hz Keyed Regenerated Scope LED on Mark (Keydown) PROGRAMMABLE MEMORIES

```
Mere is: }\quad1040\mathrm{ character messages (400 totall or
```

```
Mere is: }\quad1040\mathrm{ character messages (400 totall or
```

115 VAC, 60 Hz 60 VA Man, Act. $1,30 \mathrm{VA}$ Max ($230 \mathrm{VAC}, 50 \mathrm{~Hz}$ optional) 12 volt version avallable 10 ma max. MECHANICAL
ATR 6800 : ATR 6800
Size

Stre
Weight ATR-6000 \& ACT-1: Color

$17.8 \mathrm{~W} \times 3 \mathrm{H} \times 9.5 \mathrm{D}$
Belge Top, Black Base
AL5052 Aluminum Alloy _ACT.
-51 MICROLOG CORPORATION - 18713 Mooney Drive—Gaithersburg, MD 20879 (301)258-8400

The latest edltions of the world-famous Radio Amateur Callbook will be avallable soon. The U.S. edition features over 400,000 listings, with over 75,000 changes from last year. The Foreign edition has over 370,000 listings, over 50,000 changes. Each book lists calls and the address information you need to send QSL's. Special features include call changes, census of amateur Ilcenses, world-wide QSL bureaus, prefixes of the world, international postal rates, and much more. The new 1983 Callbooks will be publlshed December 1, 1982. Order your copies now.

Order both books at the same time for \$41.95 including shipping.

Order from your dealer or directly from the publisher. All direct orders add shipping charge. Forelgn residents add $\$ 4.55$ for shipping. Illinois residents add 5% sales tax.

Pegasus on blue field, red lettering. $3^{\prime \prime}$ wlde $\times 3^{\prime \prime}$ high. Great on Jackets and caps.

Dept. B
925 Sherwood Drive Lake Bluff, IL 60044, USA

Take your favorite H.T. out for a drive tonight.
For $\$ 69.95$ you get the most efficient,
dependable, fully guaranteed 35W 2 meter amp kit for your handy talkie money can buy. Now you can save your batteries by operating your H.T. on low power and still get out like a mobile rig. The model 335A produces 35 watts out with an input of 3 watts, and 15 watts out with only 1 watt in. Compatible with IC-2AT, TR-2400, Yaesu, Wilson \& Tempo! Other 2 meter models are available with outputs of 25 W and 75 W , in addition to a 100 W amplifier kit for 430 MHZ .
Communication Concepts Inc. $\begin{gathered}2648 \mathrm{~N} . \operatorname{Aragon} \\ (513) \\ 296-1411\end{gathered}$

M^{2} ENGINEERING'S VHF H.T. CONVERTERS

-DOUBLE BAND HC-V,HC-U2
-SINGLE BAND HC-V220

- BI-LATERAL PROTECTION AGAINST

ACCIDENTAL TRANSMIS SON

- STANDARD BNC

CONNECTORS

- $\mathrm{HC}-\mathrm{V}$

154-158
159-163

- HC-U2

460-464
480-484

- $\mathrm{HC}-\mathrm{V} 220$

221-225

- USES SINGLE AAA CELL
- LOW LOSS COUPLING TO ANTENNA
- "OFF" RETURNS TO NORMAL TRANSCEIVER OPERATION
- SIZE: approx. $2 \times 1.5 \times 1.5$
- WEIGHT 3.9 O2s
$\underset{\$ 72.45}{\mathrm{HC}-\mathrm{U}}$
$\mathrm{HC}_{\$ 62.45}^{-\mathrm{V} 220}$
$\mathrm{HC}-\mathrm{V}$
$\$ 47.45$

M-SQUARED

ENGINEERING, INC. 1446 LANSING AVE.
SAN JOSE, CA. 95118
(408) 266-9214

Shipping included
Calif. residents add 6.5\% sales tax

Others claim more gain for their antennas than the IsoPole ${ }^{\text {TM }}$ antennas, but none can beat the IsoPole for HONEST on-the-horizon omni-directional gain unless you are willing to spend at least THREE TIMES AS MUCH!!! The IsoPole is easiest of ALL competitive models to assemble, has a weather protected, factorytuned matching network, (no more aggravating SWR variations with weather changes), uses all stainless steel hardware, and is designed to withstand severe icing and wind conditions. The IsoPole antenna is UPS shippable without the standard 10 foot $11 / 4$ inch TV mast. You can buy the mast from your local ham dealer, hardware store, or Radio Shack ${ }^{\text {TM }}$ store for less than the shipping costs of a single mast. When good strong, low cost 10 foot sections of mast are so easily available, why compromise by using several shorter pieces that have to be joined together?

For more details, please write for our latest catalog or visit your favorite dealer.

Prices and Specifications subject to change whithout notice or obligation.

ADVANCED ELECTRONIC

 APPLICATIONS, INC.P.O. Box C-2160,

Lynnwood, WA 98036
(206) 775-7373

Telex: 152571 AEA INTL

Confessions of a Counter Evolutionary

- part II

Editor's Note: 73 presents the second half of WA2FPT's "Confessions of a Counter Evolutionary." The August, 1982, issue featured the first half of this comprehensive design. The LSI Computer Systems LS7030 counter chip used in this project is available from Belco Electronics, 43 South 49th Ave., Bellwood IL 60104, for $\$ 12.75$ plus shipping.

Fig. 1. Block diagram.
ast month we tackled the basic theory of counters and scrutinized the timebase, display, and counting circuitry. We'll finish the job this month. Let's start by looking at the front panel

There is a conspicuous absence of rotary switches on the front panel. Instead, simple binary counters stepped with momentary-push-button SPDT switches are used with LED indicators to control all counter operations

There are three such binary" rotary switch eliminators" employed: a fourposition circuit for the four timebases (.01, 1, 1, and 10 seconds), a three-position input-display-select button
for $\mathrm{kHz}, \mathrm{MHz}$, and prescaled MHz , and a modeselect switch for frequency, period, and events. Two additional push-button-switch circuits are enabled when in events mode and the lamp test, which was explained earlier.

The basis for these three counters is the four-position timebase-section counter of Fig. 12. The two 2-input NAND gates form a set-reset flip-flop that debounces the SPDT switch contacts, giving clean, glitch-free pulses to step the binary counter. Notice that the counters, 4013 dual-D flip-flops, are wired as toggles. That is, the outputs alternate low and high with each positive transition of the input clock
pulse. Two such arrangements are cascaded, resulting in a counter with four distinct output combinations. The output sequence of the four consecutive pushes of the timebase select button, taking the Q_{1} and Q_{2} outputs in pairs, is: $0,0,1,0,0,1$, and 1,1 , where 0 is almost GND and 1 is near +5 volts.

74CO2 quad 2-input NOR gates are used as "zero-detecting" decoders to give unique 1 output levels for each of the four pairs of outputs. NOR gates can be used this way because they produce a high output only if all inputs are low. These decoded signals then control the selection and routing of the timebase signals. Fig. 12 shows the four timebases as inputs to the four NAND gates of IC16.

The output of each of these NAND gates is regulated by the condition of its control line, the four counter states, only one of which will be active (high) at a time. Therefore, only one of the four NAND gates will be passing pulses, with the remaining three outputs disabled at a high level. As the timebase button is pushed, the counter will step, activating the next control line, gating (enabling) the next corresponding timebase. All four timebases feed a 4012 (IC22) to give a single source of timebase outputs.

This kind of arrangement amounts to a 4-to-1 multiplexer, but I didn't have the one chip package available to do the job, a 4052.

Four jumbo LED frontpanel indicator lights show which timebase is active. The control lines from IC19 accomplish this by turning on gates of IC40, a 75492 LED driver. Series resistors limit the current for the LED's safety. Since I ran the LEDs on 8 volts, I used quarter-Watt, $220-\mathrm{Ohm}$ resistors that let about 30 mA flow through the LEDs.

All the resistors are

Fig. 12. Timebase select.
mounted in DIP component carriers occupying sockets on the main wire-wrapped board. I'll admit this was an unnecessary extravagance, but they were a gift to my parts cabinet, so I used them.

The chosen timebase signal emerges from pin 1 of IC22 and goes to IC12, pin 2, the 74 C 157 , where it is selected, or not, for frequency, or else disconnected for the other functions.

The input-display-select switch selects kHz or MHz readout of the displays. The third position, prescaled MHz , routes only signals from the $500-\mathrm{MHz}$ amplified prescaler to the 7030 counter, again with the proper display.

Because only three positions are required, the basic four-position counter is modified to reset to the first position after stepping past the third state. This is done by using the output of the NOR gate decoding the fourth position of the counter to reset the counter to 0 by taking advantage of the 4013's direct (asynchronous) reset input. Whenever those inputs (pins 4 and 10 for both halves of a 4013) are brought high, the flipflops set their Q outputs to

0 , regardless of any other interval activity. The basic scheme in Fig. 13 is thus the same as in Fig. 12.

As explained before, IC11 is a set-reset flip-flop; IC33, a 4013 , is the counter; the state decoders are a 74CO2; and the display LEDs are driven from 75492 gates. Notice the labels on the 74C02 output lines - they are all important in controlling the various counter functions and we'll see more of them later.

The mode-select switch shown in Fig. 14 is a mirror image of the input-display select. The modes, as you probably have surmised by now, are frequency, period, and events. The period control line, labeled P, serves as the select line for IC12, the $74 C 157$ that interchanges the period and the timebase.

The E line (for Events) has a little more work to do, however. Recall that our events totalizing needs the reset and load signals withheld from the 7030. What is required is a circuit that, upon user demand, will allow manual loading and resetting, but will default to the automatic supply of reset and load pulses to the

7030 chip as needed in period and frequency operation. The E line is the key to such control in this counter.

There are two front-panel push-buttons named display start-stop and count-reset that drive the circuit in Fig. 15. IC28 debounces both, and IC37 provides push-on, push-off toggling action. That is, each Q output from IC37 is latched at alternating 0 s and 1 s by the configuration shown. In effect, each is a single-pole, dou-ble-throw switch. The first push can set the flip-flop (output high), and the next push would reset it. Notice how the E line, inverted through a gate of IC24, only enables these flip-flops when in the events mode. Otherwise, the flip-flops are always set.

The direct reset or clear inputs are wired through two SPDT-switched rearpanel RCA phono jacks. This gives some external device a chance to reset and load the counter, if desired.

Remember the RC networks used to provide reset and load pulses? Well, each of these enters a separate AND gate, whose outputs finally go to the 7030 reset

Fig. 13. Input display select.

Fig. 14. Mode selection.
(pin 22) and load (pin 21) inputs. The AND gate also squares up the exponential-ly-rising input pulses nicely.

The utility and simplicity of the reset and load functions should relieve any misgiving you might harbor concerning the slight circuit complexity. As long as frequency or period mode is selected, IC37 remains set and the two AND gates of IC18 shown are always allowing the load and reset pulses to pass through to the counter.

When events mode is selected, the E line goes high, and the gate synchronizing flip-flop of IC13 is set via pin 4. IC15, pin 9 also is tied to the E line, preventing normal reset pulses. Simultaneously, the two halves of IC37 are enabled, and the
display start-stop and countreset push-buttons are active. IC18, pins 10 and 13 will not now pulse, because no pulse will reach either of the load or reset RC networks. See Fig. 11(a). Accordingly, the push-buttons so described will have complete and total control over the machine's resets and loads.

In the events mode, the display will be rippling with input counts, be static, or display zero. If it is rippling, the display start-stop is always delivering a load to the counter, and the countreset button is telling the counter to count! (That is, not reset.) A push of the the display start-stop button will freeze the display (no more load), but the 7030 still will be counting
internally. Another touch of the DSS button will again provide a continuous display of the incoming events. As soon as the C-R button is pushed, the counter will reset internal circuits to zero. In order to view this zero, the DDS must be active; otherwise, the previous reading will be seen.

Making the internal 7030 counter controls separate from the display allows complete flexibility for elapsed-time operation and data-acquisition applications. The remote-control option multiplies the value of this feature.

Decimal Pointers

The decimal point changes positions, as you
would expect, with kHz or MHz selection, and with the selection of each of the four timebases. It also offsets two places to the right to indicate proper MHz when the divide-by-100 decimal point also becomes visible only in frequency mode, because the period displays in microseconds and the events mode doesn't need it.

There was a good reason to save the description of the decimal-point circuitry until now, because its design is wholly dependent on two characteristics of this counter: the multiplexed display and the binary counters used in the function switching.

From the 7030 data sheet, I learned that in order to illuminate, for example, the decimal point in the fifth digit, the digit 5 strobe would have to be routed to both the decimal point input at pin 10 of the 7030 (to unblank the display) and to a suitable decimal point driver (a 75491). Four different timebases with the three different frequency representations give twelve switching combinations.

This challenge (for me, anyway) was simplified considerably by using two CMOS multiplexer chips, the now-familiar 74C157 quad 2 -to-1, and the 74 C 151 8 -to-1 multiplexer. If you have never played with multiplexer chips, you'll be in for a pleasant surprise when you see how this and similar switching problems are solved.

The four timebases are $10,1,0.1$, and 0.01 seconds. For a proper readout in MHz , the decimal points to be activated must be the 8 , 7, 6, and 5 digit strobes, respectively. A kHz readout requires digit strobes $5,4,3$, and 2. The prescaled MHz display needs the strobe pulses for digits 6, 5, 4, and 3 for the different timebase.

Most of the work is handled by the 74C151. Eight

Race car communications demand the best from an antenna under some of the worst conditions. Split second decisions require reliable signals at exceptionally high speeds.

That's why Larsen Antennas are used on race cars at the indy 500. Because Larsen Antennas are designed to take high speed with minimal signal distortion. Proving they can travel in the fast lane without putting a drag on their performance. Larsen's precision tapered stainless steel whip provides maximum flexibility while minimizing radiation pattern distortion, giving you a clear consistent signal. And Larsen's
exclusive Külrod ${ }^{\circledR}$ plating, gives your antenna high conductivity to assure that maximum power goes into communicating - not heat.
That full measure of performance goes into our product integrity toc. With a no nonsense warranty that won't slow you down.
So, whether you're following the racing circuit or a local rescue effort, you'll find Larsen Antennas will keep you ahead of the situation with dependable performance. Ask your favorite Amateur dealer to demonstrate how you can hear the difference with Larsen Antennas. Write for our free Amateur catalog.
digit strobes: $8,7,6,5,5$ (again), 4, 3, and 2, are selected by a 3-bit address called C, B, and A. The high order bit is C. Using the in-put-display-select line, this is 0 for kHz and 1 for MHz (really not kHz). The B and A digits are the timebase-select outputs $\left(Q_{1}\right.$ and $\left.Q_{2}\right)$ of the 4013 flip-flops.

The prescaled MHz decimal point placement requires a modified input of the digit strobes for the MHz section of the 74 C 151 . Here the 74 C 157 is used to select either strobes $8,7,6$, and 5 , for normal MHz , or $6,5,4$, and 3, for the prescaled MHz display. As you might guess, the PM (Prescaled MHz) control line, when active, selects the B-side strobes.

The complete decimal point circuit is shown in Fig. 16. The four high-order strobes to the 74 C 151 are selected by the 74C157, with the lowest group of four appearing as direct inputs for the kilohertz presentation.

As the 74C151 is addressed by the two output bits from the timebase select counter, the chosen digit strobe is sent out via the Y output (pin 5) to the data input of IC31, a 4013 flip-flop. IC35 can also be enabled by a separate strobe line itself, but here the outputs are always enabled by grounding pin 7. At IC31, the selected digit strobe is clocked by a 100 kHz signal through the AND gate of IC18, enabled by control line F (Frequency mode). The Q output sends the strobe, as mentioned earlier, to the 7030 decimalpoint input at pin 10, and to the 75491 driver to the decimal point segments of the display. The leftover portion of IC22 is shown wired as an inverter to take the blank signal from the 7030 (pin 11) and properly reset IC3, preventing possible display damage. The $100-\mathrm{kHz}$ clocking signal is more than adequate to accurately follow the $1-\mathrm{kHz}$ scanning rate.

Fig. 15. Count-reset and display start-stop.

Another feature is that leading zero blanking is automatic when the decimal point is not used

It might be helpful to remember that the digit strobe selection given here is for right-hand decimal-point displays. Left-hand decimalpoint displays would use strobes 1-7 and 2-8.

Front Ends and Odds

The input-signal conditioner, so well-loved and remembered from Elementary Counting, is manifested in a $\mathrm{Hi}-\mathrm{Z}$ dc $5-\mathrm{MHz}$ preamp, and a $5-500+-\mathrm{MHz}$ Lo-Z divide-by-100 prescaler amplifier.

The Hi-Z unit (see Fig. 17) also was borrowed from WA1UFE's fine counter article in the December, 1976, 73 Magazine. The only change I made was to omit the $68-\mathrm{pF}$ silver mica capacitor shunting the 100 k input resistor. Since the preamp is used only to 5 MHz , or so,
this "speed-up cap" was not needed. Besides, I didn't have one in my junk box!

The same fine performance noted by WA1UFE still holds for my rendition of this excellent design. I do have something to contribute, however. An easy PCboard layout using tape is shown in Fig. 18(a), fullsized, with foil and component sides illustrated.

The Lo-Z $5-500-\mathrm{MHz}$ preamp is also easily done with the "tape'n etch" method of PC-board fabrication. Fig. 2O(a) gives the pattern for the board layout, while Fig. 19 shows the schematic. The basic design is from K4GOK, with some later embellishments by K4)IU in the February, 1978, issue of Ham Radio. My sole contribution, aside from the PC board, is the 39 -Ohm emitter resistor in place of the earlier 47Ohm one. This increases the current through the 2N5179 and lowers the input imped-
ance a bit, but significantly improves the low end (5-10 MHz) sensitivity.

The 11C90 ECL prescaler is no longer a stranger to experimenters, so it will not be elaborated on. (See the article by K20AW in the October, 1976, 73 if you want some good 11C90 information.) Although the 11C90's price has dropped somewhat, I was still nervous, after soldering it in place, to apply power.

The 74196 divides the 11C90's pin 7 divide-by-ten output by 10 again, giving a divide-by-100 output. The output taken is the Q_{c} output from pin 2 instead of the usual pin $12 Q_{D}$ output commonly employed. The frequency is the same from each, but the Q_{c} output has a 60% duty cycle compared with the $90 \% \mathrm{Q}_{\mathrm{D}}$ duty cycle. This is done for the benefit of the 7030, which, from its data sheet, prefers as close to a 50% duty cycle as possible. It is only towards the operational limits of any device, including the 7030, that details such as this become important. Experience is a thorough, if humbling, teacher

Both preamp boards are mounted by small rightangle brackets inside a small aluminum minibox (the $3 \times$ $2 \times 13 / 4$-inch Bud Z100). UG-290 BNC connectors are used for the inputs, and their bolts hold the preamp box securely. I can't say for certain whether or not these shielding precautions are absolutely required, but there is no false triggering from strong nearby of energy, either. Small-diameter coax (RG-174/U or similar) is used to bring both boards' outputs to the PCboard edge connector.

These TTL signals are converted into CMOS signals by a neat trick peculiar to CMOS. CMOS inputs are not directly connected to the outputs. Also, inputs can be paralleled for increased fanin (the maximum number of allowable inputs), and the

Introducing incresible tuning accuracy at an inzredibly affordakle price: The Command Series RF-31J0 31-band AM:FM;SW receiver.' Nc Jther shortwave receiver brings in JLL quertz synthesized turing and all-band digital readout for es low a כrice. $\stackrel{7}{ }$ The tuner tracks anc "locks' jnto your signal, and the 5 -sigit disJlay shcws exactly what frequency; jou're on.

There are other ways the RF-3100 sommands the airways: It can traval -he full length of the shortwave bard that's 1.5 to 30 MHz). It elirrinates interlerence when stations overlap by narrowing the broadcast tand. timproves reception in stro g signal areas w th RF Gain Control. And the RF-3100 caiches Morse
communications accurately with 3FD Pitch Contrl.
Want to ring in your favorite prograrrs wilho -. Ifting a finger? Then ocnsider the Fanasonic RF-6200 8-cand ARA/FM/SV/ sceiver (1.6 to 30 MHz , has misrocom=uterized presel pushbution tuning, for zpogramminc 12 different breadcasts, ir the same broadcast 12 days na rov. Automatically. It even has a quartz alarm clock that tums the radio or arc off to play your favวrite broadcasts

The Commanc Saries RF-3ij0 and -RF-6300. Two more ways to rem the glabe at tre speed of sound. Only from. Panasar ic.
Shortwave recsplizn w I vary w th antenna, weat ver c=nditions, o Jerac is gejgrap iic loc abcn and other factors. An o Jtsite ante na mar be rej」 ec for maximum sho twave re seption.
Bas Bd on a co-pe-isor of suggested retail yrices

This Panascnic Command Series shortwave receiver brings the state of the art closer to the state ofyour pocketbook.

With PLL Quartz SynthesizedTuning and Digital Frequency Readout.

Fig. 16. Decimal point.

Fig. 17. Hi-Z dc to $5-\mathrm{MHz}$ input preamplifier.
outputs for increased fanout (the output load-driving capability).

The 74C02, IC17, is an example of how this CMOS quad 2 -input NOR is put to work as a TTL-to-CMOS converter. Even though its physical location is on the main wire-wrapped board, it is shown in the frontend schematics of Fig. 17 and Fig. 19.

The output of the $\mathrm{Hi}-\mathrm{Z}$ unit, a 74LS04 of modest power requirements, is converted to CMOS compatibility by a single NOR gate with two inputs tied together with a $10 \mathrm{k}-\mathrm{Ohm}$ pullup resistor to help the TTL 1 output up to a comfortable CMOS level.

Fig. 19 shows the remaining three 2 -input NOR gates

Fig. 18(a). Hi-Z preamp PC layout.
used to interface the Lo-Z preamp with the CMOS main counter circuitry, with all inputs and outputs in par-
allel. Try this with something other than CMOS logic! Such an arrangement provides needed buffering for the power-hungry 74196 output transistors.

Sensitivities for the LoZ unit are adequate between 5 and 10 MHz , becoming terrific out to the limits of my stone-age rf generator. With graphs and numbers aside, though, it's a real kick to stand 25 feet away from the counter and read those half-inch digits as I key my 1-Watt, 2-meter FM transceiver.

The Hi-Z unit exhibits a usable sensitivity of about 45 mV at the low audio range, down to about 10 mV to its externally imposed $5-\mathrm{MHz}$ limit, as closely as 1 can determine from basement measurements.

Power Play

Power supplies are usually the most boring part of any project, thanks to the voltage regulator integrated circuit manufacturers. I suppose this machine is no exception, but 1 did have some surprises during construction.

There are three 3-terminal regulators used, two 7805s and one LM340T-8, as can be seen from Fig. 21. One 7805 (+5 volts) is housed inside the box containing the

ALL HOLES ON . I' GRID, CENTERED. MATERIAL: VECTOR I69P44 I

Fig. 18(b). Parts placement for Hi-Z preamp PC layout.

The SSII 5/8 Wave Antenna exhibits 9db gain over a RD2S Tuned Rubber Duck and 3db when collapsed to a $1 / 4$ wave ... The word is out, of all $5 / 8$ Wave HT Antennas tested only the SSII when collapsed to a $1 / 4$ wave exhibited gain over a Rubber Duck. In fact, all other $5 / 8$ wave HT Antennas tested were 1 to 4 db below a Rubber Duck in the collapsed mode. In the $5 / 8$ wave mode the SSII was equal to or exhibited as much as 2db gain over all other $5 / 8$ wave HT Antennas teisted ... and the RD2S Short Duck was equal to or exhibited up to 4 db gain over all other rubber ducks tested.
With SSII's modular construction you can replace or exchange any of the 5 types of base connectors available (BNC, TNC, PL259, Tempo/Mot, F-type) . . . plus the telescopic section may be replaced for only $\$ 5.00$, another Tuned Antenna exclusive. The tuned loading coil/spring is soldered to the machined end caps notswedged . . . and there are no ticky tacked capacitors or leads in the SSil's loading coil to break.
There are no short cuts in designing and building antenna's at these high frequencies. Soldered connections and antennas actually designed and tuned on the HT are mandatory to achieve maximum reliability and performance.

The Tuned Antenna Co. is the only manufacturer that specifies the gain of their 5/8 Wave HT Antenna in db at $1 / 4$ wave and 5/8 wave over a rubber duck. These gain figures have been obtained from extensive field strength readings, using H 's and $H T$ Antennas for the test . . . maximum effective radiated power is the result of efficient antenna design. Remember 5 watts into a 50 ohm dummy load with an swr of 1.1:1 $=0 \mathrm{ecp}$.
Now you know why the word is out. The Super Stick II and RD2S Short Duck gives your HT the effective radiated power you need to make those long hauls. Join the tens of thousands of satisfied customers. Call one of our 112 dealers today. The perfect pair is a limited offer so call today.

THIS MULTI-BASED SYSTEM. FITS ANY HT BNC, TNC, PL-259 "F" TYPE MS-TEMPO SECTION
frontend boards, and the TO-220 package is bolted to the aluminum case. Total power drawn for the front end is about 200 mA , most of which is eaten up by the Lo-Z board, as you might imagine, with its 11C90 and 74196.

The entire counter board, with the exception of the 75492 s, is powered from the other 7805 and draws a scant 150 mA at 5 MHz . Yet CMOS has the rather nice property of using power only when it switches on or off, and practically zilch when static. Of course, the higher the frequency of switching, the greater the power consumption.

The LED indicators and the FND 500 seven-segment display drivers are driven from the LM340T-8, an 8 -volt regulator used to brighten the front panel a bit. Both the 8 -volt and 5 -volt regulators are heatsinked (sunk?) by being bolted to the L bracket holding the 44 -pin edge connector.

Back in the discussion on the master oscillator, the 723 regulator was explained, so I won't subject you to it again! The experience with the crystal oven does merit a few observations, however. The oven draws 750800 mA at 9 volts. I had originally used a 5 -volt LM 309 K raised by a 1.1 k resistor "pedestal" (between the case common and the circuit ground) to $8+$ volts. This was all mounted on the master-oscillator board inside the minibox.

Fig. 19. Lo-Z $5-500-\mathrm{MHz}$ input amplified prescaler $(\div 100)$.

Out on the bench in free air, it worked great. Buttoned up, however, the oven would cease to function after a few minutes. After a little careful thought along with my consternation, I figured out that the 309 was entering its thermal-shutdown mode because I had neglected to properly heatsink it. The air circulation in the haywired stage of the design had lulled me into a false confidence that "everything would be cool" once it was inside the minibox.

After ripping this failure out, I solved the whole problem with a single resistor, a capacitor, and Ohm's law. The raw dc from the fullwave rectifier was about 12 volts. Since the oven operates at 9 volts, I needed the

Fig. 2O(a). Lo-Z prescaler ($\div 100$) PC layout.
value of resistor that would drop about three volts when the oven kicked in.

Ohm's law, assuming a 12 -volt supply and a current of 750 mA , gave a 4 -Ohm resistor value (3 -volt drop $=$ $750 \mathrm{~mA} \times 4$ Ohms) to produce the desired 9 volts for the oven. When the oven was off, the unloaded circuit voltage would climb back up to 12 volts, but that didn't matter.

I had a 5-Ohm resistor handy so it was tried, with success, even though the oven voltage was just a little over 8 volts. A 10-Watt resistor hardly gets warm, and a 5-Watt would probably be fine. The capacitor smooths the ripple resulting from the
extra load on the transformer when the oven is operating. A front-panel LED turns on with the oven to show when the oven is active.

The 7030, being a good PMOS device, requires a negative bias when interfacing with TTL and CMOS. I used the brute force method of a separate transformer and a half-wave rectified $12-V$ zener diode to supply it with -12 V . Because only a few mA are drawn, however, virtually any arrangement that will provide a $-12 \cdot V$ bias would work here.

At one point during the breadboarding stage, I was using a zener-biased pass-

Fig. 2O(b). Parts placement for Lo-Z prescaler ($\div 100$) PC layout.

WORLD TIME WATCH

the first microprocessor watch made especially for hams

The HAM-1 functions include local time world time, (G.M.T. too) count-up and count down chronometer, day, month, date, alarm and hourly chime. It's ideal for log-keeping, DX time conversion and 10 minute I.D. timing. The HAM- 1 feafures a high contrast Seiko display and solar ce!l battery assist. Battery life is better than 4 years. The HAM-1 is water resistant to 20 meters, the case is 100% solid staintess steel and the crystal is scratch resistant mineral glass. The HAM1 is rugged and durable and has a 1 year warranty.

2 METER AMPLIFIER $\$ 39.95$

- 2 Watts In, 10 Watts Out - V.S.W.R. Protected Can be Used for F.M. \& S.S. B. Led Status Indicators - Low Loss SO-239 Connectors Current Drain Less Than 2.5A at 13.6 V.D.C. - Massive Heatsink ${ }^{\circ}$ Built $\operatorname{In} T / R$ Switch

TEMPO S-1 UPGRADE KITS $\$ 39.95$

Upgrade your early Tempo S-1 to current Production Specifications, kits include: 450 M.A.H. Battery Pack - New Case Assembly - All New Escutcheons - Spkr./Mic. Jack w/Dust Cap New Earphone \& Jack - P.C.B. and Parts for Easy Installation - Detailed Instruction Manual - For Radios With \& Without T.T. Pad.
Other Accessories Available:
Spkr/Mic. Designed for S-1's. . . \$24.95 Heavy Duty Belt Clip.7.50

Flex Antenna 6.00
To Order Call or Write to:
ADVANCED COMMUNICATIONS INTERNATIONAL
2411 Lincoln Avenue - 448 Belmont, CA. 94002 U.S.A. (415) 595.3949

Add $\$ 3.00$ per order for shipping \& handling. California residents add 6\% sales tax. Visa. Master Charge accepted.

COMPUTERIZED MORSE KEYERS

AEA, the first company to introduce microcomputerized products to the Amateur Radio market, is proud to announce the second generation of computerized electronic keyers. Each keyer is preprogrammed, no computer language is required of the operator. The easy to use keypads eliminate up to 75 switches or potientiometers, thereby greatly simplifying the operation of such sophisticated keying systems. We invite you to compare the features of our keyers (shown below) to ANY others.

IMPORTANT KEYER ANDIOR TRAINER FEATURES	AEA MM-2	$\begin{aligned} & \text { AEA } \\ & \text { KT- } 2 \end{aligned}$	$\begin{aligned} & \text { AEA } \\ & \text { CK-2 } \end{aligned}$
Speed Range (WPM)	2.99	1.99	1.99
Memory Capacity (Total Characters)	500	N/A	500
Message Partitioning	Sott	N/A	Solt
Automatic Contest Serial Number	Yes	N/A	Yes
Selectable Dot and Dash Memory	Yes	Yes	Yes
Independent Dot \& Dash (Full) Weighting	Yes	Yes	Yes
Calibrated Speed, 1 WPM Resolution	Yes	Yes	Yes
Calibrated Beacon Mode	Yes	N/A	No
Repeat Message Mode	Yes	N/A	Yes
Front Panel Variable Monitor Frequency	Yes	Yes	Yes
Message Resume After Paddle Interrupt	Yes	N/A	Yes
Semi-Automatic (Bug) Mode	Yes	Yes	Yes
Real-Time Memory Loading Mode	Yes	N/A	Yes
Automatic Word Space Memory Load	Yes	N/A	Yes
Instant Start From Memory	Yes	N/A	Yes
Message Editing	Yes	N/A	Yes
Automatic Stepped Variable Speed	No	No	Yes
2 Presettable Speeds, Instant Recall	No	No	Yes
Automatic Trainer Speed Increase	Yes	Yes	N/A
Five Letter or Random Word Length	Yes	Yes	N/A
Test Mode With Answers	Yes	Yes	N/A
Random Practice Mode	Yes	Yes	N/A
Standard Letters, Numbers, Punctuation	Yes	Yes	N/A
All Morse Characters	Yes	Yes	N/A

For more information write AEA, or better yet see your favorite dealer for a demonstration.

Software ©copyright by AEA

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE OR OBLIGATION.

Contest Keyer

ADVANCED ELECTRONIC APPLICATIONS, INC. Lynnwood, WA 98036 (206) 775-7373
-2 Telex: 152571 AEA INTL

Fig. 21. Power.
transistor arrangement for the negative bias. Suddenly, I noticed the counter behaving erratically, giving some strange readings. After a few minutes of probing around, I was horrified to discover that the pass transistor had shorted and the $-12-\mathrm{V}$ nominal bias had soared to -32 volts! This, with the +5 -volt positive supply,
meant that the 7030 was enduring 37 volts! I was certain the 7030 had counted its last, but it survived, and so did I! In the interest of simplicity, I fell back to the present bias arrangement shown in Fig. 21, and there are no regrets yet.

Besides the ordinary fused primary-transformerwinding protection, I used a

1-MHz 12-pin 74LS90 (master oscillator)	Z. Lamp test NO H 4 , pin 3
21. Ground	Y. Gate LED H4, pin 4
20. +5 V	X. Load NO contact
29. +8 V	W. Load NC contact
18. Prescaled inputs (Lo-Z)	V. Reset NO contact
17. Direct input (Hi-Z)	U. Reset NC contact
16. IC25, pin 9-segment a	T. Freq. LED H5, pin 1
15. IC25, pin 6-segment b	S. Period LED H5, pin 2
14. IC25, pin 2-segment C	R. Events LED H5, pin 3
13. IC21, pin 13-segment d	P. Mode NO contact
12. IC21, pin 9-segment e	N. Mode NC contact
11. IC21, pin 6-segment f	M. kHz LED H5, pin 6
10. IC21, pin 2-segment g	L. MHz LED H5, pin 7
9. IC25, pin 13-segment D.P.	K. Pre-MHz LED H5, pin 8
8. IC34, pin 2-digit strobe 8	J. Input display NC
7. IC34, pin 1-digit strobe 7	H. Input display NO
6. IC29, pin 13-digit strobe 6	F. 0.1-sec LED H6, pin 4
5. IC29, pin 9-digit strobe 5	E. 1-sec LED H6, pin 5
4. IC29, pin 7-digit strobe 4	D. 10-sec LED H6, pin 6
3. IC29, pin 6-digit strobe 3	C. .01-sec LED H6, pin 3
2. IC29, pin 2-digit strobe 2	B. Timebase NO contact
1. IC29, pin 1-digit strobe 1	A. Timebase NC contact

All LED connections are to cathodes. Anodes are tied to +8 V on front panel. All switch commons are grounded on front panel.

Fig. 22(a). Logic-card edge-connector pin designation.

2-Amp dc circuit breaker in series with the 12 -volt positive supply. If this CB should trip, the ac line voltage will then drop out through the CB's external switch contacts. A dc circuit breaker is certainly not a necessity, but they can be had in most surplus houses for a dollar or so. I also used a DPDT power switch to completely disconnect the ac from any part of the counter when power is off. Because there are no CMOS inputs normally left floating, potential static damage is not a concern, either.

The power pilot LED is
another of those weird yellow jobs that has its attendant 100 -Ohm series resistor. It provides a good bright light when connected to the unregulated 12 V dc , as well it should!

All the 3 -terminal regulators have 0.1 uF disc caps across the inputs and outputs for noise suppression and for better transient response (so l'm told). As the oven turns on, the raw dc drops to about 10.8 V , still plenty to properly power the various regulators. The main transformer for the positive supply used was one purchased from my friendly neighborhood Radio Shack, the RS273-1514, rated 18 V CT at 3.5 Amps. This is more than adequate, and a similar 2-Amp transformer would be sufficient.

Construction Techniques

Most of this counter is wire-wrapped. Everything but the master oscillator, the power supply, and the two preamps are crammed on a Vector 3662 wirewrapping board, with the matching 44-pin edge connector mounted on a homemade $1 / 8$-inch aluminum L bracket. There is nothing sacred about using an edgeconnected board. A cheaper perfboard would be adequate, but the plug-in board is handy for troubleshooting and easy modification

The seven-segment displays also are pluggable

Photo B. The Universal Counter's back panel provides outputs from different points on the timing chain and allows the use of a remote monitor.

The Interface ${ }^{t m}$
 Sugg. Price $\$ 189.95$

Your personal computer becomes a complete CW/ RTTY/ASCII send and receive terminal with The interface linking it to your transceiver.
If you own an Apple II or Apple II Plus, Atari 400 or 800 , TRS-80 Color Computer, or VIC-20, The Interface will put your computer "On-The-Air".
Software for each system features split screen display, buffered keyboard, status display, and message ports. Attach any Centronics compatible printer for hard copy. Software is available, on diskette for the Apple and program boards for the others, at an additional cost.

Apple diskette	Atari board	VIC-20 board	TRS-80C board
$\$ 29.95$	$\$ 49.95$	$\$ 49.95$	$\$ 59.95$

See The Interface at your authorized Kantronics dealer, or contact:

EéKantronics

Some DIP wire-wrapped sockets were cannibalized, the pieces were spaced on a narrow $6^{\prime \prime}$ piece of $.1^{\prime \prime}$ perfboard, and the eight FND 500 s were mounted The segment pins then were wrapped daisy-chain style in parallel; these seven wires, plus the decimal-point wire and the eight common-cathode wires, form one wiring harness to the 44-pin edge connector. The other harness is composed of the cathodes of the eleven front-panel LEDs (crystaloven and power-indicator wires are brought out separately) and eleven wires from the six push-button switches (5 SPDT and the SPST lamp-test switch). Other edge connector connections include +8 volts, +5 volts, the $1-\mathrm{MHz}$ signal from the master oscillator board, and the two frontend signals. A ground completes the 44 pins - see Fig. 22(a). The $-12-V$ bias is jumpered directly to pin 26 of the 7030 on the pin side of the board.

Five 16-pin DIP headers (Radio Shack 276-1980) are used to hold the 10k pull-up resistors, the LED current limiting resistors, and the two RC networks - see Fig. 22(b). Once again this is convenient, as these component carriers plug right into 16-pin wire-wrap sockets.

I decided to tap the available source of pulses always present in the oscillator divider chain for an external set of test signals, as shown in Fig. 22(c). Six frequencies, $1 \mathrm{MHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}, 1$ $\mathrm{kHz}, 100 \mathrm{~Hz}$, and 10 Hz , were buffered with a 4049 hex inverter. A 16 -conductor ribbon cable with a DIP socket takes the six signals to some RCA phono jacks mounted on the right rear chassis next to the master oscillator and crystal oven. These output connectors are quite suitable, as CMOS square-wave signals do not generate as many harmonics as do similar-frequency TTL signals, because of the slower rise times. The

HS

R16, 17, 22, 23, 11, 12, 6, 8
$4,5,27=10 \mathrm{~K} \quad 1 / 4 \mathrm{w}$
$R 18,19,20,21,24,25,26$,
$13,14,15,10=220 \Omega 1 / 4 \mathrm{~W}$ R 7. 9 = 100 K

(

PULL UPS FOR TTL
CMOS CONVERTER

Fig. 22(b). DIP component carriers.
$10-\mathrm{MHz}$ TTL master oscillator test signal does use a BNC output connector, however. All seven test outputs are dc-coupled by choice

An EIA RS232C-type 25-pin connector is also on the back, labeled "Remote Monitor." Using the BCD (Binary Coded Decimal) outputs of the 7030 with each digit clocked out by its strobe, the information in the counter is made available to any desired external device that is plugged in. Movable jumpers soldered to the RS232 connector can sample this display information as well as enable the remote control of counter operations. An obvious candidate for such connection would be a microprocessor. If such mating is desired, it would be wise to recall that the sampling rate is equal to the multiplexed-display scan rate (1 kHz for this machine)

A DPDT switch, also on the back panel, selects whether or not the display-start-stop and count-reset 4013, IC37. flip-flop is controlled from the front pushbuttons or from another external source via two more RCA phono jacks.

The push-button switches are surplus computer types, bought for $\$ 1$ each. They are large and bulky, but they "click" nicely. You could use whatever momentary SPDT switches are suitable and/or available.

Radio Shack was the source of the cabinet. Two reinforcing rods made from scrap phenolic are used to stabilize the chassis which
becomes a little unsteady after all the components are mounted. It is quite sturdy, though, when the vinyl-clad steel cover is in place.

The jumbo LEDs are mounted in "Clip-lite" holders in $1 / 4$-inch holes. These sharp-looking mounting devices are worth every penny. You'll not be sorry if you spend for them. Quest Electronics (PO Box 4430C,

Fig. 22(c). CMOS test-signal output buffer.

BOOKS

73 Magazine, Pine Street, Peterborough, N.H. 03458
Please send me the following 73 products:

Please allow $4-6$ weeks for delivery. Shipping/handling
No C.O.D. orders accepted. Enclosed $\$$ \qquad \square Check \square M.O. Bill: \square AE \square MC \square Visa

Card ${ }^{*}$

\qquad Exp. date \qquad
Signature \qquad Interbank \# \qquad

Name

Address \qquad
City \qquad
State \qquad

Shipping and handling charges
Shipping and handing charges:
$\$ 1.50$ ist book, $\$ 1.00$ each additional book (UPS, use street address) $\$ 10.00$ each book overseas airmail

SUBSCRIPTIONS

73 subscribers save 30% off the newsstand price.

New subscription

Enclosed $\$$ \qquad $\square \mathrm{MC}$
Bill:
Card \qquad Exp.date \qquad
Signature \qquad Interbank \# \qquad
Name
Address
City \qquad State \qquad Zip \qquad
Canada \& Mexico $\$ 22.971$ year U.S. funds only.
Foreign surface-\$39.971 year U.S. funds drawn on US bank only Foreign airmail-please inquire.

||||||

```
NO POSTAGE
    NECESSARY
    IF MAILED
        IN THE
UNITEDSTATES
```


BUSINESS REPLYCARD

FIASICLASS DEAMITNO 73 PETEABOAOUGM MM 03458

POSTAGE WILL BE PAID BY ADDRESSEE
73 Ha ONZLINS
Subscription Dept. POB 931
Farmingdale NY 11737

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY CARD

FIAST CLASS PERMIH NO 13 PETEAGOROUGMNH OJASE

POSTAGE WILL BE PAID BY ADORESSEE
73 MADNVLIS
Att. Mail Order
Peterborough
NH 03458
 Stock No. 日2501 10ea. of 10.12-15-18-22-27-33-39 47.56 O HM Stock No. 83502 10ee. of 68-82-100-120 150-180-220-270-330-390 OHM \$22.50 390 $\quad 85$ onct Stock No. 82504 10.e. of $3.3 \mathrm{~K}-3.9 \mathrm{~K} \cdot 4.7 \mathrm{~K} \cdot 5.6 \mathrm{~K}$ 6. BK-8.2K-10K-12K-15K-18K OHM Stock No. 8250510 es. of $22 \mathrm{~K}-27 \mathrm{~K} \cdot 33 \mathrm{~K} \cdot 39 \mathrm{~K}-47 \mathrm{~K} \cdot 56 \mathrm{~K}$-68K-82K-100K-1 20 K OHM Stock No. 8250510 e3. of $22 K-27 K-33 K-39 K-47 K \cdot 56 K 68 K-82 K-100 K-120 K$ OHM
 $\frac{\text { Stock No. } 8250710 \text { en. of } 1 \mathrm{~m} \cdot 1.2 \mathrm{M} \cdot 1.5 \mathrm{~m} \cdot \mathrm{I} .8 \mathrm{~m} \cdot 2.2 \mathrm{~m} \cdot 2.7 \mathrm{~m} \cdot 3.3 \mathrm{~m} \cdot 3.9 \mathrm{~m} \cdot 4.7 \mathrm{M} \cdot 5.6 \mathrm{~m} \cdot \mathrm{OH}}{\text { WILD ROVER }}$ WILD ROVER

ELPAC POWER SUPPLIES - SOLV SERIES FULLY REGULATED

Tfry 7 most popular sizes y $4=0$
 Nutdriver Kh
$\underset{\substack{\text { siock } \\ 51001}}{\mathbf{S N O}} \mathbf{\$ 2 1 . 9 5}$

Special of the Month!

OIGITAL MULTIMETER Large easy to read. $5^{\prime \prime} 3 / 9$ digit display- 200 hours operating life with single $9 v$ alkaline bat-tery-low battery + polarity indicators - Five functions (DC
Volts, Onms. DC mA. AC Volts. Diode and transistor function $\$ 54{ }^{95}$ PIN FORMING TOOL puts IC's on their true row to row spacing One side is for 300 centers. Flip tool over for devices on 600 centers Put device in 1001 and squeeze

ONE TOOL DOES 8 ThrU 40 PINS! Stock No. 11059 \$12.95

CRIMPS $=10-24$ mise CRIMPS $\# 10-m 24$ wire
STRIPS solid $=12.22$ and
SIranded $=14.24$
SCREW CUTI SIranded $=14.24$
SCREW CUTTER for 6
THE PIKE CUTTER and PLIERS $\underset{51005}{\text { STOCKNO. }} \$ 12.95$

MOOUTEC

Miniclamp $A C$ Volt-Ammeter 4. allows singling one conductor out of $\begin{array}{lll}\text { ock No. AC Amperes } & \text { Pnce } \\ 13730 & 0.25 A & \$ 39.50 \\ 13731 & 0.50 \mathrm{~A} & 39.50 \\ 13732 & 0.100 \mathrm{~A} & 39.50\end{array}$ ACCESSORY LINE SPLITTER allows fast readings of AC Dower con sumption of plug in equipment with Stock No. $13727 \$ 9.95$ POCKET SIZED BATTERY TESTER lor all types of smaill batteriestrom $104.5 v$
Stock No. 13733
$\$ 13.95$ VOLT-I-CATOA
automotive diagnostic meter plugs into lighter socket and indicates bat
tery condition and charging rates Stock No. $13736 \$ 12.95$ ac voltage tester plugs into any 110 v service recept able to check time voltage over 50 able to check time vottage over $50-$
Stock No. $13735 \$ \mathbf{\$ 9 5}$ VOM-MULTITESTER versatile Volt-Ohm-Milliammeter in
smail package
stock No. $13729 \$ 13.95$

- D Drawer Q Milford NJ 08848-9990

TI WIRE WRAP SOCKETS Tin crated phosono bronze contact - 3 wi
srock No.
11301 11302
11303 11303
11304
11305 11305
11308 11306
11307
11300 $\begin{array}{ll}11308 & 28 \\ 11309 & 40\end{array}$ $\begin{array}{lll} & \\ 1.24 & 25 & 100 \\ \$.45 \$ & .40 & \$.36 \\ .68 & .59 & .54 \\ .72 & .84 & .58 \\ .82 & .73 & .66 \\ 1.11 & .99 & .00 \\ 1.26 & 1.12 & 1.02 \\ 1.41 & 1.25 & 1.14 \\ 1.71 & .52 & 1.36 \\ 2.31 & 2.05 & 1.86\end{array}$ TI LOW PROFIL SOCKETS Th olated phosphor
broneecontact pins brith gas tront seat

Stock
No.
No. No Pin
$\begin{aligned} & \text { No. } \\ & 11201\end{aligned}$
$\begin{array}{lllll}125 & 25 & 100\end{array}$
 $\begin{array}{ll}11202 & 14 \\ 11203 & 10\end{array}$ 11205
11206
11207 11207
11208
11200 18
21
24
.27
.30
.33
.38
.53 $\begin{array}{ll}88 & 1 \\ 21 & 1 \\ 24 & \\ .28 \\ .30 \\ 34 & \\ 45\end{array}$

4511 RTTY Interface for TRS-80 Color Computer Owners

- Simply plug into Program Pak" slot.
- No software to load. it is in ROM
- Split screen features word wrap and continuously displays status.
- Selective calling stores incoming messages on casette tape.
- Baudot and ASCII modes.
- Standard ELA signals to your T.U. - Complete documentation supplied.

4511 RTHY Interface \$169.98

RIDGE Tested \& assembled; 90 SYSTEMS $\begin{aligned} & \text { day warranty; we pay } \\ & \text { shipping Mass. resi- }\end{aligned}$ CO., INC. dents add 6% sales tax P.O. Box 772. Acton. MA 01720 (617) 264-4251

LEARNING THE MORSE CODE?
 Try the All New AEA BT-1 Basic Trainer For Morse Code

AEA, in conjunction with ETS (Educational Technology and Services)", has developed the BT- 1 Code Tralner. ETS methodology, based upon research by a prominent mid-west university, has demonstrated that a typical student using this system and the BT- 1 can learn Morse code to speeds of 20 WPM in four weeks based upon two 20 minute daily training sessions.

The pre-programmed BT-1 computerized trainer will allow you to acheive proficiency in Morse code faster than any other known method.
No prior knowledge of Morse code is required to use the BT-1. There are no tapes to purchase or wear out. The BT-1 operates from a 12 VDC source or from the AEA 117 Vac wall adapter unit. AC-2. For portable use the BT-1P is available with Nicad batteries and comes with a charger that operates from 117 Vac . The unit can also be used in moblle settings via the 12 VDC system.

$$
\text { -Education Technology \& Services, see page } 81 \text { October } 1981 \text { issue of Ham Radio Magazine. }
$$

Prices and Specifications

Subject To Change Without Notice Or Obligation.

AEA

Brings you the Breakthrough!

See the BT- 1 at your dealers or write: Advanced Electronic Applications, Inc. P.O. Box C2160

Lynnwood, Washington 98036 (206) 775.7373 Telex: 152571 AEA INTL

ICs on main counter board:

IC1	LS7030	IC21, 25	75491
IC2, 5, 6	4029	IC22	4012
IC3, 7, 8 ,		IC29, 34, 39, 40	75492
9, 10	74C90	IC35	74 C 151
$\begin{aligned} & \text { IC11, 14, 15, } \\ & 16,20,24,28 \end{aligned}$	$74 \mathrm{C00}$	IC41	4049
IC12, 36	74 C 157	Preamps: 11C90, 74196, 74LSO4	
$\begin{gathered} \text { IC13, 26, 31, } \\ 37,38 \end{gathered}$	4013	Master oscillator: 5400, 74LS90 LM723	
IC17, 19, 23, 27	74 CO 2	Power supply: LM340T-8 and two 7805s	
IC18	74 CO 8		

Fig. 23. IC socket-location chart.

Santa Clara CA 95054) has them, as do a few others. Dry transfer lettering identifies the lights and switches.

Here are a few helpful hints on the wire-wrap board. The 3662 Vectorbord ${ }^{\circledR}$ is 4.5×6 inches. The IC sockets, forty in all, densely populate the board. No effort was spared to carefully document and methodically wrap the circuits one section at a time. Four different colors of wirewrap were used: one for power, one for ground, one for all intra-board connections, and the last for board exits to the edge connector. Vector T-44 pins were soldered to the board's edgeconnector pads to provide wrap points.

A necessary preliminary step is to make both a pinside and a socket-view board map showing all
socket and IC locations so you'll know which socket you are wiring (see Fig. 23). All power and grounds should be wrapped next. An ohmmeter will quickly spot shorts and opens. The TBOD chain was then wrapped, and the ICs were inserted and then powered up. After proper operation was observed (following a few corrections), the ICs were carefully removed and set aside in conductive foam. Each section was wired and debugged individually before the various control lines were sent to the far reaches of the board. The usual sequence was wire-wrap, IC insertion, smoke test, then debugging for the surviving ICs. The construction sequence I used was switch. ing, display, decimal point, and, of course, the counter circuitry itself.

Fig. 24. External Lo-Z attenuator.

This sort of experience points out the extreme flexibility of wire wrapping. In this case, a fairly serious revision costs only some thought and a few wires. A printed-circuit approach would have resulted in at least the abortion of the first board layout, and probably abandonment of the project due to frustration. The other point is that I had breadboarded only a basic fre-quency-only counter to coarsely check out the basic counter circuits. The abandoned decimal-point circuit was initially conceived solely from a personal interpretation of the 7030 data sheet. Only reality and the actual circuit operations, or lack thereof, provided the necessary guides and corrections to my thinking. The value of breadboarding your first-order attempts can't be overestimated. The old adage, "If it works on a breadboard, it will work anywhere," has been proven many times.
Successful wire-wrapping of larger projects takes some persistence and defenses against paranoia. Persistence to follow through, and resistance to the slightly paranoid feeling that every little 30-AWG wire you miswrap could be the one that causes nights of insomnia and a new vocabulary for those around you.

This is the place where the documentation and organization of your project pay off in steady progression until successful completion, and in the building of confidence in yourself and in your design work. Remembering this can mean that your projects will perform reliably, as you intended, and that they can be fixed when necessary without resorting to a human sacrifice (you!) to appease that ever-lurking god of home-brew, Nevor Wark!

The rest of the pieces are best obtained from some of the great variety of small parts sources widely adver-
tised. It is possible to save 30% or more on ICs and sockets, displays, etc., by comparison shopping.

If you are purchasing most of your components new, consider using all 74C90s for the divider chain, as mentioned earlier, since they are cheaper than 4029 s and also less expensive to socket

The counter has no internal attenuator because a useful one would not fit inside the cabinet. The $\mathrm{Hi}-\mathrm{Z}$ input needs only loose coupling with proper shielding anyway to pick up virtually any signal, because of its sensitivity. The Lo-Z is about 30 Ohms or so at higher operating frequencies and doesn't mind being driven from a 50 -Ohm source.

Conclusion

The WA2FPT 7030 Universal Counter is an evolution of this ham's ideas and dreams. Taken by themselves, the various portions of its anatomy are not particularly new or daring. The useful combination of these common design techniques, though, has resulted in a counter that is a joy to use and has flexibility not found in counters at $\$ 500$ or more.

Don't build this counter if all you want is that barebones $\$ 100$ frequency counter or one of its brothers. Do create one, however, if you want the adventure of incorporating wire-wrapping, topnotch front ends, a voltagetuned master oscillator, and all the other goodies. Then scrape together the $\$ 100$ $\$ 150$ you'll need and jump in. The little touches like the push-button function selection and LED indicators only serve to set this counter apart from all others. It's a small price to pay for a little distinction and some personal fulfillment. You, too, can build yourself as you build your counter. I'd be interested to learn how yours turns out.

It's been great "wrapping" with you!

ANTENNA TUNERS wois

MFJ-941C 300 Watt Versa Tuner II

Has SWR/Wattmeter, Antenna Switch, Balun. Matches everything 1.8-30 MHz: dipoles, vees, random wires, verticals, mobile whips, beams, balanced lines, coax lines.

Ham Radio's most popular
antenna tuner. Improved, too.

So. 239 connectors, 5 way binding posis, finished in eggshell white with walnut grained sides.
4 Dther 300W Models: MFJ.940B, $\$ 79.95$ $(+\$ 4)$. like 941 C less balun. MFJ.945, \$79.95 $(+\$ 4)$, like 941C less antenna switch. MFJ-944, $\$ 79.95(+\$ 4)$, like 945 , less SWR/Wattmeter, MFJ.943, $\$ 69.95(+\$ 4)$, like 944 , less antenna switch. Optional mobile bracket for 941C, 940B, 945, 944, \$3.00.

MFJ-962 VERSA TUNER III

$$
\$ 89^{95}
$$

 \$8995

 \$8995} (+ \$4), like 941C less antenna switch. MFJ-944, MFJ.943, $\$ 69.95(+\$ 4)$, like 944 , less antenna

Run up to 1.5 KW PEP, match any feed line from 1.8 .30 MHz

Built-in SWR/Wattmeter has 2000 and 200 watt ranges, forward and reflected.
6 position antenna switch handles 2 coax lines (direct or through tuner), wire and balanced lines

4:1 balun. 250 pt 6 KV cap. 12 pos. inductor Ceramic switches. Black cabinet, panel.
ANOTHER 1.5 KW MODEL: MFJ.961, $\$ 189.95$ $(+\$ 10)$, similar but less SWR/Wattmeter

MFJ-10. 3 toot coax with connectors, $\$ 4.95$.
To order or for your nearest dealer

For tech. info., order or repair status, or calls outside continental U.S. and inside Miss., call 601-323.5869

- All MFJ products unconditionally guaranteed for one year (except as noted).
- Products ordered trom MFJ are returnable within 30 days for full refund (less shipping).
- Add shipping $\&$ handling charges in amounts shown in parentheses.

Write lor FREE catalog, over 80 products ENTERPRISES, INCORPORATED
Box 494, Mississippi State, MS 39762-47

MFJ's best 300 watt Versa Tuner II.
Matches everything from $1.8 \cdot 30 \mathrm{MHz}$, coax randoms, balanced lines, up to 300 W output. solid-state or tubes

Tunes out SWR on dipoles, vees, long wires, verticals, whips, beams, quads

Built-in 4:1 balun. 300 W . $50 . \mathrm{hm}$ dummy load. SWR meter and 2 -range wattmeter ($300 \mathrm{~W} \& 30 \mathrm{~W}$)

6 position antenna switeh on tront panel, 12 position air-wound inductor; coax connectors, bind ing posts, black and beige case $10 \times 3 \times 7$

MFJ-989 VERSA TUNER V
Flexible antenna switch selects 2 coax lines, direct or through tuner, random wire/balanced line or tuner bypass for dummy load.
12 position efficient airwound inductor for lower losses, more watts out

Built-in 4:1 balun for balanced lines. 1000 V capacitor spacing.

Works with all solid state or tube rigs
Easy to use, anywhere. Measures $8 \times 2 \times 6^{\circ \prime}$, has
MFJ-949B VERSA TUNER II

Matches coax, random wires 1.8 .30 MHz Handles up to 200 watts output; efficient air wound inductor gives more watts out. $5 \times 2 \times 6$ " Use any transceiver, solid.state or tube
Operate all bands with one antenna.
2 OTHER 200W MODELS:
MFJ-901, \$59.95 ($+\$ 4$), like 900 but includes
4.1 balun for use with balanced lines

MFJ.16010, $\$ 39.95(+\$ 4)$, for random wires only. Great for apartment, motel, camping, opera tion. Tunes 1.8 .30 MHz .

MFJ-984 VERSA TUNER IV

Up to 3 KW PEP and it matches any feedline, 1.8. 30 MHz , coax, balanced or random.

10 amp RF ammeter assures max. power at min . SWR SWR/Wattmeter, for./ref., 2000/200W 18 position dual inductor, ceramic switch
7 pos. ant. switch. 250 pt 6 KV cap $5 \times 14 \times 14^{\prime \prime}$ 300 watt dummy load. 4:1 lerrite balun.
3 MORE 3 KW MODEL\$: MFJ.981, \$239.95 $(+\$ 10)$. like 984 less ant. switch, ammeter MFJ.982, $\$ 239.95(+\$ 10)$. like 984 less am meter, SWR/Wattmeter. MFJ.980, \$209.95 $(+\$ 10)$, like 982 less ant. switch.

New smaller size matches new smaller rigs only $10.3 / 4 \mathrm{~W} \times 4-1 / 2 \mathrm{H} \times 14-7 / 8 \mathrm{D}^{\prime \prime}$
3 KW PEP. 250 pl. 6 KV caps. Matches coax. balanced lines, random wires $1.8 \cdot 30 \mathrm{MHz}$

Roller inductor, 3 digit iurns counter plus spin ner knob for precise inductance control to get that SWR down

Buitt-in $\mathbf{3 0 0}$ waft, 50 ohm dummy load.
Built-in $4: 1$ territe balun.
Built-in lighted 2\% meter reads SWR plus for ward/reflected power. 2 ranges (200 \& 2000W) 6 position ant. switch. Al. cabinet. Till bail

TUFIS ELECTRONICS

61 Lowell Rd.. Hudson. N.H. 03051 (603) 883 -5005
....TOWERS ...ROTORS....ANTENNAS...COAX....MF XCVAS.. pages. and most of them are in stock Open SEVEN DAYS every our DISCOUNT PRICES are hard to beat and Our FRIENDLY SERVICE is second to none. We're only 30 mins from Ate 128 in BOSTON via Rte 3. and oniy 45 Mins from LOG AN Internationa order service. Most mail and PHONE orders are shipped in on
day. Send S1 for our ENLARGED CATALOG, free with order DISCOUNTS-FREECATALOG-EXPORTS-PACKAGES

NEW LARGE TYPE

¢KENWOOD

		same
TS. 13303 100-10 CETER GIO NOTCH VET IF BHIFT MORC 	$\text { 990. } 95$	(690. 50
Sp-230 Entemme grearer mith selectame flleas		71.50
15-1 10 S		
13-1303E A4, AbME MiThour ran		
SP-120 EITERME SCFAMEA		
AT-430 antema tuat fon	140.93	
	104.43	-10.50
	3x9\% 93	380.50
	1220.93	(106.90
	339.93	c5ve. 90
VB-45SCM 750 HE WILTER	113.78	10\%. 30
		-8.50
		2.30
		38.50
[c-393 sok omm map mic		27.30
		4.50
		+i.30
ic-10 digital comutielied momd cidik	103. 50	
		${ }_{50}$
	560. 95	3*\%. 30
Vor-t wis Sreicm moce isom		
Fmot Fon moits 1 lose		19.50
NC-come orment base Mic delure o PiN		64.30
MC-cose orvanic base mic deluil e pim		3. 19.50 19.30
		159.50 180
-ps-21 mose sia izvoc sieryy 21 amo imT	126.83	114.50
		47.50
SP-40 COFPACT MORILE SPEAER		
		17.30
		70.30
ts-930s m/AT ALL bant dum uio mer ant tuen	1790.00	1670.
	${ }^{1590} 5$	
va-asse-1 500 mz Cm PILTEmFO		
		59.50
KENWOQD VuF		
	440.03	300.50
		3.50
te-1,30 AS Mbove w/o Pouck rowe Mic	327. ${ }^{\text {\% }}$	480.50
	309.	324.30
HE-46 10 KEY POUOH TOE MIC	179.97	+19.30
-230 ${ }^{2}$ a	32.4	
TS-1 MOEILE SUPMY CHATEE ROR 2300		${ }^{42} .50$
-23 mi-cd mattent mack		36.30
		34.90
WS-1 Wis\% STRAP POA TMOZ2500		2.30
- natient (Ase For Tk-2300		. 30
monile ouic		
-1 PRIORAMABL Et Cicss encioner dip sm		34. 30

AFFILIATE STORES

BUZZARDS BAY ELECTRONIC 196 Main Street Buzzards Bay, Mass 02532 617-759-3376 DX COMMUNICATIONS 3214 Transit Road West Seneca, NY 14224

716-668-8873

Please contact our Hudson, NH office for details about our affiliate store program.

hy-gain

	350:	
	Sisp:	
Otiortos		
203BMS	\%	140.50
losmen	169	${ }^{127.50}$
	30	- 1807.30
	332.	
12 Pb	8150	
	1040.93	${ }_{15}^{15.50}$
		\%s. 5
lanvolmas thas vertical 10 thel to MeTERS leavtimp that vertical mothat to merers		
	198.4	140.90
Hr-gain motore		
hop soo hav wury diaite hmaig	13	
	330	cysisi.30
	${ }_{319}^{19.95}$	
	107.30	115.30
cowna sox for wh iv on coas	119\%	+7.30
		37.
LOMR MAST MOUNT WIT FON TZM/HAN IV 	67.00	cose
UV-GAIN CRANK-UR TOWERB		
		sex. 90
	$\xrightarrow{913.00}$	(003.50
	T710.00	${ }_{\text {a }}^{1893.50}$
	\%70. 0	
	${ }^{3} 8.00$	-73.30
2 No-coa coil Mem		135.50
120	321,	- 378.50
	$\underset{\substack{101 \\ 150.0}}{ }$	边132.30 131.30
Hos ST STEL Mesi $2 \cdot 00$		S30
	\$10.00	. 50
	300.	cor
OV-GAIN VHF MNTENNAS		
- IENRY POWER amme		
IKO-S 1200 matrs mo-15 miRs U9E5 3-5007 tum 	\%00. ${ }^{\text {a }}$	
	3.00	50
MAM-KEV		
	8	-
MFs		
(1)		
${ }_{230} 510$		
MFJ -ILTERS		
mfu Kevers		
mFJ Antenin tuners		
JW Mriler nequa suit		

FAST SERVICE

"BRAND NEW"
CHAMPION MESSAGE

PLUS:

MEMORY KEYER
 Model TE- 292
 $\$ 125.95$

Features

- State-of-the-Art-CMOS Circuilry - Chorce of Message Storage
A. Six 50 character messages
B. Twelve 25 character messages
C. 27 combinations of message
C. programming.
- Recoras at any speed-plays at any speed - Memory operating LED
- Use for daily OSO or contests

Self.completing dols and dashes

- Boin dol and dash memory
- lambic keying with any squeeze paddie
- 5.50 w.p.m
- Speed, volume, tone, tune and weight conirols
- Sidelone and speaker
- Low current drain CMOS battery operation-portable
- Rear panel Jack lor auxiliary power
- Deluxe quarter-inch jacks for keying and output - Keys gria block and solld rigs
- WiRED AND TESTED FUlLy Guaranteed-LESS BATTEAY

$\$ 89.95$

Features:
Model TE-284

- State of the-ArI CMOS Circuilry
- Three choices of Message Storage A. Two (50 character each) message storage
B. Four (25 characler each) message storage
C. One 50 character and two 25 characier message storage
- Records at any speed.plays at
any speed
- Memory operating LED
- Use for dally OSO or contesIs

PLUS:

- Self.completing dots and dashes
- Roth dot and dash memory
lambic Keying with any squeere padole
-5.50 w.p.m
- Speed volume tone tune and weight controls - Sidetone and soeaker
- Low current drain CMOS battery operation-portable
- Deluxe quarlerunch jacks forkeying and output
- Keys gria block and solid rigs
- wired and tested fully guaranteed-less battery

Model \# TE2OI

Features:

- Advancea CMOS message memory Two 15
storage
- Repeal lunctro
- Records al an
al any speeo
- Longer messasa -plays dac

Erampte senge capacity
Erample sena co co co ox de
WB2YJM WB2YJM W82YJM W82YJM A-Then play WB2YJM OSL NY NY ST9 S\$9 Paul paulk

- Use tor daily OSOs or contests

MEssAGE MEMORY KEYER

PLUB:
 - Stale of the arr CMOS keyer

 - Bern dol and dash memory - lambic heying with any squeer padale- 550 mpm
- Speed volume rone lune and
- Sicelone ano speaner
- Lon currenr drain CMOS oarrer
operation-portable
- Defure quarfer inch lacks lor key
ing and oulpur
- Kers gria oloch and solio spaterigs
- WIAED AND TESTED FULL

GUARANTEED- LESSBATIEAY

Model \# TEI44 $\$ 65.95$

- Speed, weight, tone, volume lune conirols \& siderone and speaker
- Semi-automatic "bug" operation \& straight keying-rear panel switch
- Low current drain CMOS battery operation-portable - Deiuxe quarter inch jacks for keying and output
- Keys grid block and solid state rigs

Wired and tested-fully guaranteed-less Dallery

Features: Deluxe CMOS Electronic Keyer

- State of the-ar CMOS circunty

- Self completing dors and dashes
- Both dot and dash memory
- IAMBIC keying with any squeeze paddle
5.50 wmm

$\$ 75.95$

MODEL TE133 - same as TEIA4 with wgi and tone conirolinternal, less sem
aulokeying.
AT YOUR DEALER OR SEND CHECK OR MONEY ORDER $\$ 45.95$
Plus $\mathbf{\$ 2 . 0 0} \mathbf{S / H}$ NY Res add tax

ELECTRONICS, INC
 1106 RAND BLDG. BUFFALO NY 14203

"BEEPER III"

"THE PROFESSIONAL TOUCH COMES TO AMATEUR RADIO!'
'BP-3 automatically provides a gentle high fre quency beep at the beginning of each transmls sion and a low beep at the end. Virtually elimi nates "talk over"! Operates for up to one year on a single $9-\mathrm{V}$ battery (not supplied). Can be directly interfaced to any transcelver which is keyed by grounding the PTT line the PTT line voltage must be posilive, not greater than 24 VDC. nor the current greater than 100 ma. Works with virtually all modern gear. You've heard it: now you car have it!'

"ADD THE BEEP!"

BP-3A Complete with case, cable. Standard 4 -pin oonnectors
BP-38 As above except without oonnectors. Add your own BP 3 C Cirectors Addyour own

GOTHAM

 ANTENNAS (305) 294-2033SMALLLOT TRAP DIPOLES

MODEL	BANDS	LGTH	PRICE
TSL 8040	80.40	78°	$\$ 49.95$

SMALL LOT SHORTENED DIPOLES
$\begin{array}{llll}\text { SL-8010 } & 804020 & 75 & \$ 59.95\end{array}$

SL. 160	160	130°	$\$ 38.95$
SL.80	80	63°	$\$ 37.95$

SL. 40	40.15	33°	$\$ 36.95$

FULL SIZE PARALLEL DIPOLES
$\begin{array}{llll}\text { FPD. } 8010 & 80.40 .20 & 130 & \$ 49.95\end{array}$
$\begin{array}{llll}\text { FPD. } 4010 & 40.20 .15 .10 & 63 & \$ 44.95\end{array}$
NEW' PORTABLE VERTICAL' IDEAL FOR APARTMENTS CAMPING. TRAILERS̄!
Folds to 5 Package No Radials. Required Fully Assembled Full Legal Limit. $1: 1 \mathrm{VSWR}$ model bands hght paice $\begin{array}{llll}\text { PV. } 8010 & 80.10 & 13 & \$ 59.95\end{array}$ proven design gotham all band
41. verticals
$\begin{array}{llll}\mathrm{V} .160 & 160.80 .40 .20 & 23 & \$ 44.95\end{array}$ 15.10.6 15106 $23 . \quad \$ 42.95$ $4020.15 .10 .6 \quad 23 \quad \$ 40.9$
FAMOUS GOTHAM QUADS
2 Elements-3 Bands Complete $\$ 149.95$ CHAMPIONSHIP GOTHAM BEAMS Full Size Complete from $\$ 99.95$ dealer inouiries invited CALL OR SEND LARGE SASE FOR CATA LOG. Snipping: Dipoles \& Verticals $\$ 2.50$ USA: $\mathbf{5 7 . 0 0}$ Canada: $\$ 5.00$ FPO, APO Beams \& Quads Snipped UPS or Freight Collect Fla. Ado 5\% Sales Tax
1415 First St. • Key West, FL 33040

-
6M Multimode FM Option. 3W/10W

HF Digital Transceiver Inc. FM. 240W DC

FT-230R $\$ 359.95$ SALE $\$ 319$

LCD Dual VFOs Memory 25 W

ICOM-YAESU HAND-HELDS

	w/TIP	w/o tip
IC 2a/2at	5242.00	\$216.00
IC 3A/3AT 220	\$269.00	\$242.00
IC 4A/4AT 440	\$269.00	\$242.00
FT.708R 440	$\$ 319.00$	

HAL COMMUNICATIONS on oisplay at eeb CT. 2100 Communica
KB. 2100 Keybuard
DS. 3100 Terminal CWR-6850 Telereader

Full Line Available Sanyo \& Zenith Monitors In Stock at Special Prices

UPS Cnarges Noi Included
Prices Subject to Change Without Notice

Electronic

Equipment Bank mase cherg
516 Mill St. N.E. vienna VA 22180
 Thurs
Plan a visit next time you're in Washington. D.C SORRY: NO CODs

CUALITY parts at DISCOUNT PRICES

MINI B/R AUTOMATIC

HOME UNIT

ASSEMBLY INCLUDES TAPE HEAD, MOTOR BEL llovac MOTOR, PRE-AMP
LIGHTS, SWITCHES, USEFUL PARTS AN EXCEPTIONAL BUY!
 AQUUSTABLE HEIGHT FROM
$1.63^{\prime \prime}$ TO $2.93^{\prime \prime}$; WIDTH 6.85"; DEPTH $8^{\prime \prime}$. BUILT IN STAND OFFS FOR P.C.
BOARDS., FRONT AND BACK PANELS NOT INCLUCED.

PHOTO FLASH

GAPACTTORS 170 MFD 330 VOLT

600 MFD 360 VOLT

750 MFD 330 valt

MSLDE POTS

\qquad

$$
\begin{gathered}
3.600 \mathrm{mid} \\
40 \mathrm{VDC} \\
\$ 1.00
\end{gathered}
$$

$6,400 \mathrm{mfd}$

60 vod
$\$ 2.50$
$13 / 8^{*} \mathrm{VAM} \times 414^{\circ}$
$12,000 \mathrm{mfd} 40 \mathrm{VDC} \$$.3.00 22,000 mid. 40 VOC
$2^{2 \prime} \mathrm{DIA} \times 6^{\prime \prime} \mathrm{HIGH} \$ 3.00$
$25000 \mathrm{mid} .75 \mathrm{VDC} \$ 4.50$

COMPUTER
GRADE
CAPACITOR
TRANSFORMERS

120 volt
primaries
5.6 VOLTS at 750 mA
83.00
VOLTS

 25.2 VCT at 2.8 AMP 55.50
35 VCT

 STANDARD JUMBO DIFFUSED
RED
GREEN
GREEN 10 FOR $\$ 2.00$
FLASHER LED 5 volt operation 2) RED JUMBO SIZE

$$
\text { Refor } \$ 1.70
$$

BI POLAR LED

SUB MINI LED

FREE! SEND

Double Trouble on 50 MHz

- Home-Brew Contest runner-up

Ed. Note: KL7GLK's article was the runner-up in our Home-Brew Contest. Larry will be receiving a $\$ 100$ bonus in addition to his normal article payment.

Larry lack KL7CLK
7 East Lake Drive, Bay Ridge
Annapolis MD 21403

${ }^{11}$ That's milliwatts," | explained to the Florida station. It's okay, 1 thought; three of his neighbors had missed the milli part the first time, too, or maybe they just didn't believe it. The truth was that 1 was just as surprised as I talked to one six-meter station after another on less than one quarter of a Watt.

True, the band was hopping with summer E skip, but that didn't diminish my thrill of working QRP DX

I was using a little double sideband transmitter l'd originally designed for the license-free $49-\mathrm{MHz}$ band For you fellow Forty-Niners, it works quite well there (reduce the input to 100 mW). It has been heard over 25 miles. When six opens up and the ham in you returns, changing the crystal to 50 MHz is when the fun really begins.

Circuit

The transmitter centers around an active balanced modulator fed by a crystal oscillator. Two stages of linear amplification result in a signal of $250-400 \mathrm{~mW}$ with a carrier suppression on the order of 40 dB . I have had mixed results with passive diode ring modulators at 50 MHz . Carrier suppression is tricky. This active design, however, tunes cleanly right from the start and should present no tuneup difficulties.

Fig. 1. $50-\mathrm{MHz} D S B$ transmitter.

The oscillator is a particular gem. The credit goes to K1CLL (May, 1970, 73) for such a trouble-free design L1 is 15 turns of \#30 enamel wire close wound on a 3/8-inch-diameter slugtuned form. The crystal tap is 5 turns from the collector end of Q1. The oscillator feeds the emitters of the balanced modulator through a resistor network. R1, a 2.5 k trimpot, is used to null the carrier. L2 is also a $3 / 8$-inch-diameter slugtuned coil, but it is centertapped, 24 turns of \#26 enamel wire. L3 is six turns of insulated hookup wire wound over the center portion of L2.

The audio stage that drives the modulator is a salvaged amplifier out of a defunct tape recorder. Any 1-Watt amplifier will work fine. There are so many inexpensive sources of these amplifiers that it does not pay to spend the time building one yourself. T1 is the normal output transformer that once fed a $16-\mathrm{Ohm}$ speaker. If all that is available is an 8 -Ohm output transformer, it will work, but it will not give as much drive. A speech clipper using a pair of 1 N695 diodes

Fig. 2. Field-strength meter.
limits the audio frequency response. This feeds into the input of the audio amplifier. Q4 and 5 are biased as linear amplifiers; depending on the value of R2, the input can vary from a few milliwatts up to 400 .

Tune-Up

I have found using a field-strength meter (FSM), Fig. 2, the easiest way to tune up this transmitter. Power is applied to both the oscillator and the balanced modulator, but disconnect the audio stages. Clip the FSM to one side of the emitters of Q2 or 3 and adjust L1 to maximum. Remove the meter and attach it to the base of Q4. Adjust L2 for maximum, then R1 for a
minimum reading. It should be possible to achieve a deep null by alternating the tuning of R1 and L2. This will adjust the level of carrier suppression. Remove the FSM and apply power also to the audio stages. With a $50-\mathrm{Ohm} 1 / 2$-Watt resistor as a dummy load and the FSM attached to the output at 17 , apply a tone (i.e., whistle into the microphone) and adjust C1 and C2 for maximum.

You're ready to go on the air.

Life On DSB

If you've never operated DSB before, be prepared for some strange signal reports. Most stations will not

Six-meter DSB transmitter in a minibox.
be able to tell a difference between DSB and the other SSB signals on the band. A few will be confused by that extra sideband... Ah, but that only makes things
all the more exciting. Wait until the other guy also finds out it's only a quarter Watt of power. You'll have no end of interesting QSOs after that.

Parts List

Transistors

Q1 2 N2222 HEP equivalent HEP55 Q2.5 2N2369A (2N706) HEP equivalent HEP50
Transistors came from a "grab-bag" from Poly Paks, Inc., Lynnfield MA. Priced individually from a parts house as HEP equivalents, approx. $\$ 1$ each.

Crystal

$50 \cdot \mathrm{MHz}$ 3rd overtone in HC6/U holder
Available from Jan Crystals, PO Box 06017, Fort Myers FL 33906.

Capacitors

C1,2 Johnson air variables 1.7-14.9, miniatures, type T-6-5
Available from Semiconductors Surplus, 2822 North 32 St.,
Phoenix AZ 85008.
10 pF silver mica
56 pF silver mica
From the same source above.
6.02 uF ceramic capacitors

General capacitor assortments from Poly Paks or Radio Shack; values from . 005 to .01 work fine.
4 .001-uF ceramic capacitors
Same sources as above; values $.001 \cdot .005$ uF work fine.
5 .1-uF ceramic capacitors
Same sources as above; values .01-. 1 are suitable.

Resistors

156 Ohms
2100
2220
1 1k
14.7 k

2 5.6k
1 10k
1 22k
1 47k
4 100k
All these are 1/8-Watt 10% carbon resistors. From grab-bag assortments from Poly Paks. Available also from Radio Shack.

R1, 3 2.5k miniature trimpots
A.B type F number FR252U is the type used, although any small 2.5 k variable resistor will work fine.

Diodes

1 N695 SK3087, 1N914, 1N456, HEP 158 will also be suitable; from a grab-bag of diodes, silicon types.

Coils

L1,2,3 Salvaged iron slug-tuned coil; for number of turns, see text. Ramsey Electronics or Digital Research: Parts, PO 401247B, Garland TX 75040. Variable inductors for forms.
L4.7 Free-handed wound coils of \#24 copper wire. See text.

Audio Amplifier

1-Watt audio amplifier with a 16 -Ohm output transformer. Salvaged from a Radio Shack tape recorder. Any Hi-Z input audio amplifier with an 8 -16-Ohm (see text) output transformer of approx. 1-Watt output is suitable (i.e., from a clock radio, portable AMIFM radios-hamfest materials).

Miscellaneous

Cabinet Small $5 \times 7 \times 3$ inch metal box from Radio Shack. BNC coax connectors
Microphone jack from Radio Shack
DPDT switch (for T/R)
Pilot lamp
PC board
Q6,7 2N 1566A RCA SK equivalent SK 3009

RF tuning meter

M1 Any milli-or microamp meter movement; can also be a multimeter attached to the diode-choke network.
RFC $\quad 2.5 \mathrm{mH}$ Any surplus choke in this range; also jumble winding about 200 turns of \#30 wire on a high value 2-Watt resistor will work. 2.5 mH choke from Radio Shack.
1N192 Can be any silicon diode. See above sources.

The $\$ 100$ TVRO Receiver -Satellite Central, part IX

Ed. Note: Part I of 73's "Cheap Trick" $\$ 100$ satellite TV receiver series appeared in the August, 1982, issue.

Building your first TVRO receiver can be fun if you start with a well-thought-out design such as this dual-conversion model by Dwight (Rex) Rexroad Despite Cheap Trick's cost, you'll be surprised at the results. The proof is in the picture!

Last month, we covered the simple downconverter box which used cheap components to get the 3.7-to-4.2-GHZ TV satellite signals down to 500 to 1000 MHz i-f. See the diagram in Fig. 1(a). According to Rex, "The conversion gain of the tuner is about 10 dB . The levels

Photo A. Dwight Rexroad with his $\$ 100$ receiver.
into the i-f amp are not unlike those found in other receivers made today."

Clever

Construction Technique

Building a home-brew VHF device such as this has its own set of problems. Because this will probably be a one-of-a-kind unit, it doesn't make a lot of sense to sit still long enough to engineer a PC board layout Likewise, the Vectorbord ${ }^{\text {® }}$ point-to-point wiring technique can eat time like a parking meter. So Rex applies a secret used by many VHF experimenters. The entire baseband unit is built on copper-clad perfboard, which is ideal because you put the clad portion on the top and do the wiring on the
bottom (see Photo B). Says Rex, "I've got this humongous ground plane there. Anywhere I want to ground, I just stick a wire in a hole and solder." A hole that must allow a wire to pass through is cleared of excess copper with a $1 / 4$-inch drill bit operated by hand. This trick not only saves time, but keeps even the most cantankerous VHF circuit from running off on its own. As Rex says, "This is not a critical receiver. You've just got to apply good layout, grounding, and short leads."

Bandpass Filter

Rather than use ad justable coils in his filter (see Fig. 2), Rex chose to use fixed coils and adjustable

Photo B. Believe it or not, everything is socketed. No problem at 70 MHz as long as you have a large groundplane nearby. The mirror in the photo shows the wiring below the groundplane.
capacitors to save money For a further saving, Rex suggests you buy the coil assortment sold by Radio Shack and rewind your own. Or you can use the Amidon T-50-6 cores.

Rex comments, "Designwise, the filter is similar to that by Taylor Howard. Alignment is best done with a sweep generator, because you'll go crazy using anything else. The ideal curve would be flat as a pancake from 55 MHz to 85 MHz . Try to keep it especially flat from 60 to 80 MHz for best results. I'd like to make a nonadjustable filter work. Maybe I'll figure one out with Cheap Trich II."

Get Out of the Mud

Moving on to the $70-\mathrm{MHz}$ i-f amplifier in Fig. 3, we find that Rex did what every TVRO designer should have done in the begining-He used off-the-shelf parts Here's a perfect example: He used the readily available MC1350. This is the workhorse i-f amplifier used in many TV sets and bootleg subscription-TV decoders built today. With a cost of only $\$ 1.38$ and easy availability, it's a natural. The input impedance of an MC1350 is more than 1 k , so Rex put a $75-\mathrm{Ohm}$ resistor on the input to properly terminate the i-f filter.
"At 70 MHz , the MC1350 has about $20-\mathrm{dB}$ gain in the broadband mode. Of course, they run much better at 45 MHz where you find them in your TV. The MC1350 has both differential inputs and and outputs. One differential input is bypassed to ground. Pin 5 is the i-f gain-control input. Like everything else in this circuit, it is bypassed." Later on, you can feed your agc into this pin. If you were to try your hand at using a 564 PLL detector, you might have to put the control on the front panel since the 564 is level sensitive. On the other hand, using the

Fig. 1(a). A fixed-frequency local oscillator drives a balanced mixer in the first conversion stage of the Cheap Trick receiver. The MC5121 amplifier drives a modified UHF TV tuner where the signal is downconverted again. This circuitry was described in last month's edition of Satellite Central.

Fig. 1(b). The baseband circuits consist of off-the-shelf ICs.
nifty MC1357 quadrature detector can make the i-f gain a simple "set and forget" operation

Kex suggests using peaking coils on the differential output because he found an expected gain slope. "It starts around 20 MHz and goes downhill pretty fast. I have a sweep of it running from 10 to 100 MHz . It's a nice diagonal line!" Putting . 18 -uH coils on the 220 Ohm load resistors will peak the MC1350 on 70

MHz . The $500-\mathrm{pF}$ coupling capacitors are not critical.

The other parts values in the circuit are right out of the Motorola handbook. "I use Amidon slip-on ferrite beads. A bagful of beads is a lot cheaper than a batch of chokes. You don't need large inductance values here, not at 70 MHz . A bag of beads is only a buck, and one sack will do."

The second stage, like the first, uses typical book values. The gain resistor
on pin 5 is the current-limiting resistor value for a maximum gain. It's just that simple. Interestingly enough, Rex found that grounding pin 5 on the MC1350 did not produce maximum gain. Instead, it produced less. But start to add some resistance at pin 5 and the gain will rise to maximum at about 5.2 k Ohms. The output feeds a broadband transformer wound on still another ferrite bead

Photo C. You can get away with RCA jacks on the $70-\mathrm{MHz}$ filter, seen below the UHF tuner.

The diodes on the secondary afford an excellent spot to attach a $1-\mathrm{mA}$ carrier meter for antenna aiming, tune-up, an S-meter, or even agc. Here's a typical place where Rex applied excellent engineering technique. Previous designs had used a small capacitor and a series resistor to feed the diodes. A few moments of thought brought Rex to the conclusion that what is really needed is just a single capacitor with about the same series reactance as the resistor. This will allow you to eliminate the resistor (one less part) and get exactly the same results! "I can't help it," says Rex.
smiling. "This project must be truly cheap."

Divide the Headache in Half

Back now to the rf transformer. The secondary feeds one half of a 74S112, a divide-by-two circuit which shifts the $70-\mathrm{MHz}$ signal down to 35 MHz where the detector can deal with it better. The $500-\mathrm{Ohm}$ pot was chosen as a good value to make adjustment easy. "Despite the doubters, it works like a charm. The adjustment is not critical. All the pot does is set the bias for the trigger input. Just find a weak signal, and tweak for minimum spark-

COILS WOUND ON AMIDON T-50-6 CORES
$15 \mu \mathrm{H}=6$ TURNS
$56 \mu \mathrm{H}=12$ TURNS
$40 \mu \mathrm{H}$ TO $.68 \mu \mathrm{H}=10$ TURNS
$28 \mu \mathrm{H}$ TO $47 \mu \mathrm{H}=\mathrm{B}$ TURNS
Fig. 2. Diagram of the $70-\mathrm{MHz}$ filter. The circuit uses adiustable capacitors for tuning.
lies. The symmetrical gain limiting in the previous stages (not found in all satellite i-f amplifiers) makes this adjustment very easy."

Perhaps you've noticed that the 74S112 is running from a 12 -volt supply. Impossible? Probably. Instead, the voltage-divider combination of the 500 -Ohm pot and the 180 -Ohm dropping resistor set the Vcc for the chip to about 5 volts. Those of you who handle workhorse ICs such as this know that you can fiddle with the voltage nearly a volt either way and not see any big problems. This technique saves the cost of a zener diode. And the brand of IC doesn't matter. It costs less than a buck. Just be sure to use a 74S112 rather than a

74LS112 which may only make it to 50 MHz

Some Receivers Look Bad, But Not This One

Gain margin in this system is about 20 dB . If the input level to the divide-bytwo circuit changes radically, you will need to readjust the pot. "That's what happens with so many of the typical divide-by-two designs used in receivers today," comments Rex. "If you transport them from one dish/LNA setup to another, you may need to reset the threshold. Still, it's not as critical as a design that uses the 564 PLL
"The signal level on the output of the 74S112 should be peak-to-peak just under 5 volts. A flip-flop

Fig. 3. Bargain-basement ICs highlight this baseband design. The MC1357 quadrature detector produces a better picture than most PLL detectors. T1: pri. -4 trifilar turns; sec. -2 trifilar turns; \#28 wire, Amidon $101-43$ bead.

DO IT YOURSELF. . . SEE THE WORLD!

Complete System Price

As Low As
\$1797 ${ }^{\text {so }}$
(Distributor Price)

Bcman Industries offers complete Satellite Television Systems designed specificely for installation ty the purchaser. You will receive broadcasts from Gesststionary satellites wilh your choice of 3 DIFFERENT Fiberglcss Parabolic Antennas (9, 10, 11 ft .) The elec. fronics are the latest in Satellite TV equipment utilizing state-0"-the-art components and circuit design. A tully illustrated instruction booklet is supplied with each system to explain the ecsy, step-by-step installation procedures, programming information and antenna alignment directions. Your complate system will arrive in only 2 containers for prompt assembly by you or by ycur dealer.

For information about your local Dealer, Distributor \& the affordable high-quality line of Boman Satellite Television Products, please use the reader card service for prompt reply.

BOMAN INDUSTRIES
SATELLITE PRODUCTS DIVISION
9300 HALL RD., DOWNEY, CA 90241

Toll Free Numbers:
Inside Ca.: (800) 352-2553
Outside Cf..: (800) 421-2533
running at high speeds usually does that," comments Rex. "Funny thing is, the MC1357 detector that follows has about 40 dB more gain, so we've got to swamp it down on the input with a 68 -Ohm resistor. It really doesn't seem to matter much value-wise
"The input to the MC1357 is differential so we bypass one and use the other. The only critical thing about the detector is that you must use short leads, especially to ground. Pin 5 has a bias de-emphasis capacitor with pin 14 acting as high-frequency de-emphasis. We don't get around to true video de-emphasis until later. The output stage has a tendency to oscillate at deviation extremes. You wouldn't hear it at audio, but you'd see it in video. So I've got that $10-\mathrm{pF}$ cap which rolls us off at the high end just a bit, but not enough to suck out the subcarriers. Use a twisted-wire gimmick if you want." Rex believes you could even forget the cap if you don't mind knowing that your sync tips will look dirty.

Avoid Oscillation

It must be remembered at this point in the description that this is indeed a VHF device. Using little 10-pF caps won't mean a thing if your lead dress is long and sloppy. Chances are it won't work at all. If you do build the unit on perfboard, be sure to keep everything short. A sure sign that lead dress needs attention will be poor highfrequency response. Use plenty of bypasses such as on pin 13 of the MC1357 where parasitics can occur. Interestingly enough, oscillation at this point will likely come from the amp in the chip itself rather than the i-f amps. Like everything else in Cheap Trick, the cost of the MC1357 is less than that of the popular 564 PLL - about $\$ 1.50$.

The quadrature coil on

Photo D. Tune like the pros with a rotary switch thanks to a stable design and afc loop. Buy the pots at a swap meet to keep the total receiver cost from inching past $\$ 100$.

Fig. 4. This simple afc loop circuit samples the detected video offset to control the UHF tuner local oscillator.
pins 2 and 12 is very noncritical. Rex comments, "The S curve is wider than the bandwidth we want, so all you'll get if you mistune it is an offset dc output. It could be a problem when you add the afc loop. Another symptom is that the picture will be a little bit washed out. But you'd have to mistune it radically for that to happen!""

The tune/afc circuit in Fig. 4 is simply a feedback loop. Rex filters the video with an RC network. He used an LM324 wired to the single-ended 30 -volt supply. A 5 k pot on the non-inverting input not only sets the output to zero volts, but compensates for the discovery that the MC1357 de-
tector doesn't always yield an output at exactly half the supply.

The second amp mixes the 5 k tuning control with the afc feed to control the UHF tuner. The resistive divider on the inverting input allows the amplifier to develop a zero voltage output which is necessary for the UHF tuner range. The LM324 is one of the few amps that can work at these voltages. And you still have 2 unused amps in the chip which can be for optional metering or agc circuits.

If you find a deal on small 5 k pots somewhere, Rex suggests you mount a batch of them on a board as seen in Photo D and feed a rotary switch to get decent
tuning. This method works very well thanks to the good stability of the design and positive action of the afc circuit.

Video Magic

The detector output is fed into an emitter follower (a 2N2222 costs 10 cents) where the baseband video feeds a $100-\mathrm{uF}$ capacitor. The sound subcarrier signals are fed from the same point through an RC highpass filter to the detectors. Moving on to the video circuit in Fig. 5, the 75 -Ohm video de-emphasis circuit that follows is unique because it uses fewer parts and does essentially the same thing as commercial designs. More importantly, Rex says, "it uses parts that are closer to standard values than other designs. You can buy all the parts over the counter."

The pi network that follows acts as a low pass to yank out the sound subcarriers and noise. The $75-\mathrm{Ohm}$ resistor that follows acts as a proper termination to ensure that the standard values you use will get the same response. The signal is dc-coupled into a 733 video amplifier which also has a differential input. Because Rex used a single-ended supply, he used a voltagedivider network to feed the inputs. The $10-\mathrm{uF}$ capacitor in the divider is necessary because the signal has a lot of low-frequency components. The 10 k pot acts as a gain control and should give you enough control for even half transponder video levels. "The 733's minimum gain is higher than the 592. Thit's the only difference I can tell," says Rex. "They both cost about a buck. Performancewise, it's a toss-up. I use the flat-pack versions. You could skip the video polarity switch since a jumper will do."

Getting a Perfect Picture

The clamp circuit re-

Sustems

STAR VIEW MODEL 12K - Complete System

- Easy to Install
- Reasonably Priced

- UPS Shippable Weight 125 Pounds

\author{

- More than 100 Channels Accessible
}

THE STAR VIEW 12K SYSTEM KIT CONTAINS:

- 12 Foot Antenna
- Azimuth Elevation Mount
- 24 Channel Receiver
-120응 Noise Amplifier
- Feed Horn
- Cables 8 Connectors
- No Modular Included
(May be ordered separately for \$79.95)
Available through your local Craig Star View dealer - Call or write for information Dealership inquiries welcome - Price subject to change without notice.
H\&R COMMUNICATIONS, INC. Subsidiary of Craig Corp.
Route 3, Box 103G
Call 800-643-0102
Pocahontas, Arkansas 72455 -86
or 501-647-2291

2 GHz Microwave Receiving 8ystems

The new Micro-System features a machined $18^{\prime \prime}$ parabolic reflector for maximum efficiency, a linear feed-point downconverter with ceramic high performance RF preamplifier transistor, a variable 12 to 18 volt regulated power supply and 50^{\prime} of 75Ω coaxial downlead, including a 3^{\prime} jumper and matching transformer. The Micro-System includes a full 6 month warranty.
Micro-System (MS-021)
'159's
Micro-System (MS-578)
.169"
Micro-System (MS-645) $179^{\circ 8}$
Shipping \& Handling: USA ... s4 4^{00} AK, HI \& PR ... 10^{00}

POLATRON
ELECTRONIC ROTOR

ELECTRONIC SATELLITE POLARITY SELECTION

- no moving parts
- no motors to fall
- NO WAITING
- INSTANT POLARITY SELECTION
- PEAKING CONTROL
- ELECTRONIC ROTOR \& SCALAR FEED COMBINED

PRLATRON

189.95

Controller/Power Supply
44.50

[^4]
SATMAR BRINGS SATELLITE TV DOWN TO EARTH

If you're already considering buying Your own SateluIE N EARTH STATION you probably know that you will be able to receive over 50 channels of movies, sports, educational, news, tinancial, and religious programming. SATELLITE N can indeed be your window to the world.
What you may not know is that all N earth stations were not created equal -and what's more that different viewing locations in the United States may require different component (anienna, LNA, receiver) configurations for top viewing enjoyment consistent with lowest cost and moximum value. Don't be fooled by advertising for extremely low cost units if the seller tries to tell you that it will work fantastically evernwhere in the U.S. - it may not.
If you want the best combination of price and performance give us a call and we'll help you configure a system for your locale. We have the experience and we have the prices.

Example A,
Configured for:
Phoenix, Arizona

- Micro Scon 14 -in parobolic ontenna with bolic anfenna with polar mount and electr
Dexcel Dxp. 9000
Dexcel DXP. 1000 recelver with buill in modulato
- Dexcel $400^{\circ} \mathrm{K}$ Low Noise Amplitier
- Clícular scalar reed norn COMPLEIE SYSTEM•
\$3275

Example 8
Contigured for:
Denver, Colorado

- Micro Scan 14नin paro bollc antenna with bollc antenna with polectric remote INA electri
roter
- Dexcel DXP-1000 recetver with built in modulator
- Dexcel $120^{\circ} \mathrm{K}$ Low Noise Ampliffer
- Círcular scalar feed horn COMPLETE SYSTEM*
\$2950

2230 E. Indian School Rd., Phoenix. AZ 85046 (602) 954-6008
*FOB Phoenix, Aizona

CHEAP TRICE

Photo E. Tweaking the clamp-circuit coupling capacitor will reduce picture flicker, but it may also affect the video baseline (seen at right).
moves the frequency-dispersion waveform from the signal. This is a common design used in many receivers today and is described by Lancaster in the Cheap Video Cookbook. "It doesn't work perfectly. You can make some trade-offs. If you are getting too much flicker in the picture, you can lower the value of the 1-uF cap feeding the diodes." Rex goes on to say that, "too much reduction in that value will produce a large amount of tilt in the vertical interval." This means the idea is fine unless you want to chase data hidden in the vertical interval later on (see Photo E). Most TV sets don't see the tilt, but a high-speed data comparator will. The last emitter follower has a low output impedance, so a terminating resistor is placed in series. It works well with cable lengths up to 50 feet without ringing. The final
output high-frequency response can be verified by looking at the multiburst waveforms in the vertical interval of some transponders. You'll be amazed at the quality of this receiver as seen in Photo F

The sound demodulator in Fig. 6 is straight out of your typical $4.5-\mathrm{MHz}$ TV set sound section with a clever trick to make it work slightly better and still use cheaper parts! Rex uses input transformers that are the surplus $10.7-\mathrm{MHz}$ i-f types found in cheap portable FM sets. They are retuned to 6.8 MHz , the most often used sound frequency. "A common source is Poly Paks where they cost about 28 cents apiece!" You may find that you'll need to adjust the values of the parallel $56-\mathrm{pF}$ caps from 50 to nearly 120 pF to get the entire range of possible subcarrier frequencies. See Satellite Central VI and VII

CHEAP TRICK"

Photo F. The proof is in the pudding. This multiburst display from Satcom 3 shows that the receiver high-frequency response is none too shabby
for more background on subcarriers

The transformers are wired back to back on the input. The signal feeds the low-impedance winding from the $50-\mathrm{pF}$ cap back into the video demodulator. The circuit then becomes a conventional bandpass with the output low-impedance winding of the second transformer feeding the input to the CA3065 FM quad-
rature sound demodulator "This configuration works very nicely since they were designed that way. There are a lot of 4.5- and $10.7-\mathrm{MHz}$ circuits out there using these parts," comments Rex. "The circuit is right out of the handbook. I use the same value of quadrature tuning cap (82 pF) which seems to hold over the band. I was just too cheap to use a coil in the

Fig. 5. Easy video processing with a standard component low-pass filter, clamp circuit, and video DA.
2300 MHz DOWN CONVERTER
ASSEMBLED
12v POWER SUPPLY ASSEMBLED
(Stationary or variable)
SELECTIVE PRE-AMP
SUPERVERTERI
(Crystal Board and PA)
CIGAR ANTENNA
I
4 FT. DISH ANTENNA
NNA $\$ 47.95$
(KD-44 25 DB OVERALL GAIN)
DRIFTMOD
HIGH GAIN TRANSISTOR $\$ 9.95$
VIDEO STABILIZER $\$ 39.95$
$\$ 19.95$
. $\$ 1.25$
\$19.95
$\$ 39.95$
$\$ 19.95$
\$29.95
$\$ 26.95$
$\$ 75.00$
KIT SPECIAL \#1
Down Converter,
Power Supply,
Cigar Antenna
$\$ 49.95$
KIT SPECIAL \#2
Down Converter,
Power Supply,
4 Ft. Antenna
1691 MHz Weather Satellite Downconverter [137.5 MHz output]

For information or ordering

 (817)860-1641MC, VISA, Phone or Mail Orders Accepted Hours, 8:30-4:30 CDST; Mon.-Fri.

Our product may be copied, but the performance is never equaled

UNIVERSAL COMMUNICATIONS Arilington, TX 76004-0339

Satellite Television

Whether you need 1 system or 100 we have the highest quality antenna to meet your utmost expectations and quality standards, at easy to live with prices.

Send:
$\$ 7.95$ for
Introduction to Satellite manual.

Pictured is our 11 ft Dish with our easy setting one man installation trailer.

Write or call us for more information.

Fig. 6. The subcarrier sound detector uses a single TV sound section IC. Good sound quality results from using cheap FM i-f transformers in a bandpass network on the input.
network. So I used another $10.7-\mathrm{MHz}$ transformer. It works fine."

Can You Really

Do It for $\$ 100$?
A Clint Eastwood movie
a few years back, titled Dirty Harry, had a good line in it that zeros in on the approach to take with a project such as this. The cool detective character Harry Callahan gave sage advice
when he said, "A man must know his limitations." It is perhaps somewhat fitting that you too should consider your own particular abilities with VHF circuitry and parts scrounging. If you've
never done any VHF work or think that parts procurement is simply picking up a telephone, then you should reconsider that you can indeed duplicate this receiver for less than 100 bucks.

Now I'm not trying to say this is a tough project - only that you will need to be careful if it is one of your first. The clever tricks of Dwight Rexroad put the price within reach as long as you do the work. It's worth the effort because your learning curve will be up several notches on completion. Besides, this may be one of the best little family attention getters you could try because of the use it will get when you finish it. Just think of all that hamming you can do with everyone else pacified.

Questions? Only those accompanied by an SASE can be answered. Sorry, no calls. Have fun with this one!

AVANTEK GPD SERIES AMPLIFIERS GPD $401,402,403$ 12-14 DB GAIN

POWER 15 VDC TOS MOUNTING IDEAL FOR COUNTER AND TV PREAMPLIFIERS COMPLETE WITH CIRCUIT BOARD FOR MOUNTING
$\$ 25.00$ EA., SET OF THREE $\$ 65.00$ AMATEUR MICROWAVE DOWNCONVERTER
complete - assembled - ready to install - not a kit

SPECIAL \$179.95

including shippinc (u.p.s.) visa and mastercard accepten

50. dB SVSTEM GAIN

TUNES 2.1 Chz to 2.4 Chz
PREANPLIFIER 20. dB CAIN 2.5 dB NF
OUTPUT IAIPEDANCE 75 OR 300 OHMS
FULL YEAR WARRANTY PERFORMANCE GUARANTEED OR YOUR MONEY REFUNDED
CALL (804) 489-2156

7510 GRANBY STREET SUITE 207 NORFOLK, VIRGINIA 23505

SATELLITE TV SYSTEMS

"COMPARE OUR QUALITY, I'RICES AND SERVICE!"
WE MANUFACTURE:

PARABOLIC DISHES
PCLAR MOUNTS
DEMO TRAILERS CL'STOM IARTS
WESTOCK
WASHBUR.N
kLA
AVANTEK
GARDINER

MOTORIZATION SYSTEMS しNAHGLDERS ALLMINLM HORNS
SUITCHES \& HARDW/ARE

- FOR OUR LATEST BROCHURE AND ['RICES

AUSTIN C LEUTS LEWIS CONSTRU CTINN CO.
$k+G G C$ P.O BOX 100
901.884 .2191

HUABPOLDT. TN. 38343
"IN BUSINESS AT THIS IOCATION SINCE $1964 "$ - 452

2 G肗 Dual Stage Microwave Preamplifiers

Use the Ampire 2001 to improve the performance of your microwave receiving system. The broadband design lowers the system Noise Figure and increases the overall system gain. Use the Ampire 2001 for the TV band and the Ampire 1690 N for the GOES and METOSAT satellite band.

TEM Microwave Corporation
22518-97th Avenue North
Corcoran, MN • 55374
एs
612-498-8014

MICROWAVE TELEVISION SUBSCRIPTION TELEVISION MICROWAVE TELEVISION

 EDUCATION MANUALOur upd cepts anted manual includes microwave con delailed schematics and PC antennerters. Includes watics and PC board layouts SUBSCRIPTION TELEVISION EDUCATION MANUAL
\$14.95
Two scrambling \& decoding systems are explored in depth Signal capture and modifica fion techniques are presented for educationa aralysis
AMATEUR MICROWAVE
RECEIVER SYSTEM
$\$ 169.95$
Continuing in the high quality and performance that you ve come to know in the HMRII, this re ceiver has a new design and increased gain

INFORMATION PACKAGE ON ALL VIDEO PRODUCTS AND KITS $\$ 2.00$ ORDER INFORMATION
Please add 5\% shipping and handing CA residents atro $6^{\circ} \%$ or 65% sales tax VISA and MASTERCARD cepted
ABEX
P. O. Box 26601 -G

San Francisco. CA 94126-6601

- For the cetialuien communk a tion raino amatele

	Surface U.S.Janada Mexico	Surface All Foreign	Airmail Central S. America	Airmail All Other Foreign
1/2 year	\$ 10.00	\$ 13.00	\$ 20.00	\$ 23.00
1 year	\$ 20.00	\$ 26.00	\$ 40.00	\$ 46.00
2 year	\$ 38.00	\$ 50.00	\$ 78.00	\$ 90.00
3 year	\$ 56.00	\$ 74.00	\$116.00	\$134.00
	ATV.SSTV.FAX.RTTY.Sarellites.EME Microwave and Computers			

Published 12 fimes per year by Mike Stone WBOQCD P.O. Box H. Lowden, lowa 522550408

SATELLITE TELEVISION FEED

MABE RAOM . 1518 BRASS

Used with a PARABOLIC DISH having a focal length to diameter ratio [$1 / 0$) . 3 to 45

Frequency range $3.30 \mathbf{G H z}$ to $4.90 \mathbf{~ G H z}$
Fits a standard CPR 229 flange on the LMA
Introductory offer: $\$ 30.00$ Postpaid USA Mastercard . Money order - Cashier Chech

For an additional charge we will adapt this feed horn to your LMA.

FRIEDSAM TV HARDWARE P.O. BOX 311

112 WEST MAIN STREET MARSHALLVILLE, GEORGIA 31057 912-967-2828

S.D.-500 WEATHER STATION

CONSOLE

Two large 5" square indicators with red and white graduations on a white background mounted on a black acrylic panel further enhanced by the solidly built mahogany cabinet. Dimensions $16^{\prime \prime}$ long $\times 7^{1 / 2^{\prime \prime}} \times 4^{3 / 4^{\prime \prime}}$ wide
WARR.ANTY
Against defects in material or workmanship for one year from time of delivery.
INSTALLATION
Both transmitters are mounted on an alunsinum " U " support supplied with clamp, for in stallation on any $11 / 4^{\prime \prime}$ diameter support (by purchaser).
POWER
115 volt A.C. 60 cycle, includes 9 -foot-long power cord, system fused ($1 / 1 / \mathrm{amp}$.). Power in dicator lamp is also provided on console indicator panel.

CABLE

$.190^{*}$ diameter 5 conductor, standard length 50 feet. Extra cable available in 500 -foot in crements. Maximum length 300 feet. APPLICATION
This system for use in home, radio stations, small airports, marine installations, schools industry, air pollution studies. Mfg. by TMAC PRODUCTS, P.O. Box 2834 1, Columbus Ohio 43228

Tmac. Products -i7d WEATHER INSTRUMENTS
P.O. BOX 28341 COLUMBUS, OHIO 43228

Wind direction is obtained from a counterbalanced aluminum wind vane assembly coupled to a precision linear potentiometer, 360° continuous rotation powered by a regulated 5.0 volt D.C. power supply COST COMPLETE
lncluding 50 -foot conductor and mounting hardware is $\$ 360.00$ plus $\$ 4.00$ shipping U.S.A. Use VISA, M.C., or C.O.D. All foreign orders add 25% for shipping. No foreign C.O.D.'s.

HAM HELP

I need schematics and manuals for the Precision ES-500A oscillograph. I would also like to hear from anyone who can help me increase the dynamic range of my DX- 302 receiver. I will pay all copying and postage costs

Rob Leonard Lens Ave. Dayville CT 06241

Free to any high school ham club: back issues of 73, QST, CQ, and HR. 73: 1974-pre sent; QST: 1973-present; CQ. 1975; HR 1974. I will donate these magazines (approx. 150) to any high school ham club that will pay shipping. Send SASE for more details.

Mike Weber WB8RDN

1525 Burney Lane
Cincinnati $\mathrm{OH} \mathbf{4 5 2 3 0}$

Wanted: any info avallable on the Cromemco Z.2 microcomputer system or the following Cromemco boards: ZPU, 16KZ, TU.ART. I am also looking for any information on the Processor Technology Corp. VDM-1 video display board.

> Donald Patters on WA1FXK
> Box 582
> Port Austin AFS MI 48467

I am looking for:

- Information on constructing an interface to monitor slow-scan television using a black and white television set and the audio output of a Hammarlund HQ170.A recelver: - A Heathkit SB-10 sideband converter in working condition (or easily repairable) with the manuals; and
- More information on the sideband
monitor scope construction project written up in the January, 1977, issue of 73 Magaz/ne, especially concerning the colls in the ri section of this project.

Fred Erickson KA1GCN
105 GSt .
Tumers Falls MA 01376

I need a glass dial to replace the broken one on my Model 12 U 159 Zenith console radio. I will pay any reasonable price.

Walter Burdine W8ZCV Waynesville OH 45068

I am looking for someone who can draw a circuit diagram lor me which will show me how to add a product detector to the HRO60 circuit.

Emil Rettlg W6BNR 1260 143rd Ave. San Leandro CA 94578

I need schematic diagrams and, if possible, a service manual for a Data Instru. ments oscilloscope which includes a 1700% N display unit, a 1 Y 2 vertical amplifier plugin, and a 1×2 timebase plug-in. I will pay rea-
sonable photocopying charges and post age or will photocopy and return

Tim Wulling WBelZX 1495 Raymond Avenue Saint Paul MN 55108

Please help me locate, for my private col lection, a vertical vibroplex, a camelback straight key, and a Martin vibroplex

Dick Randall K6ARE

 1263 Lakehurst Rd Livermore CA 94550I need schematics or any information for the Pride Electronics DX 300 bilinear ampli. fier. I will pay any copying cosis.

Dave Armstrong N7DYV
827 Mae Dr.
Twin Falls ID 83301

We are looking for a schematic for the National NCX5 transceiver. Can someone please help us?

Luis Jorge Bros Burrel XE3L
Radio Club de Merida, A. C
Apdo. Postal 329
Merida, Yucatan, Mexico

look here 1-713-658-0268

Kenwood TS530S New Demo 600.00 Kenwood TS930S + Accessories-Call! SANTEC ST 144 UP ….... 299.00 TOKYO HiPower-10\% Off List-In Stock SIGNAL ONE MILSPEC - SOON!

ICOM IC730
IC290A
IC22U
IC740
IC490A
IC25A
IC720/AC
YAESU FT230R FT208R/708R FT1 FT1012D-3
FT102
FT902DM
TR7A
R7A
699.00 429.00 429.00
269.00 989.00 569.00 309.00 1298.00 299.00
289.00 ea 2395.00 749.00

CALL 1249.00 1249.00
699.00 1450.00
1400.00

AEA MM2 125.00
MBARC
Tote and Talk Cordless
Telephone/Base …..... 149.00
749.00
Robot 800 A 399.00

Robot 400 675.00
HAL CT2100 699.00
HAL KB2100 169.00
Kantronics Hamsoft STOCK
$\begin{array}{lll}\text { Dentron ATIK } & 125.00 \\ \text { Kantronics Interface } & 169.00\end{array}$
Sherwood Curtis
Kantronics Minireader 249.00 ALPHA $78 \mathrm{Hi} \mathrm{S} / \mathrm{N}$........ 2795.00
Collins KWM2 Noiseblanker-New Sealed 200.00
KLM KT34A 309.00
KLM KT34TA 469.00
RG214 Nonmil copperbraid coax $70 \mathrm{c} / \mathrm{ft}$.
AMPHENOL PL259 Silverplate 1.00 SPRAGUE 1000PF/30KV Doorknob Cap 16.00
1000 PF/500V Feed thru 1.95
CDE . 001/20KV Cap 1.95
TCA 25A/1000 PIV Epoxy diode
...19c ea
elden 9258 RG8X 196/ft 8214 RG8 Foam 36c/ft 8267 RG213 43c/ft 9405 Heavy Rotorcable 45c/ft LARGE BOOKSTORE
Mosley
20\% Off List
ALL ITEMS GUARANTEED
please say you saw it in this MAGAZINE AD.

MASTERCARO VISA

All prices fob Houston except where indicated. Prices subject to change without notice, all liems guar anteed Some items subject prior sale. Texas residents add tax Please add sufficient postage, balance collect.

Electronics Supply 1508 McKinney -45 Houston, Texas 77010

2300
MHz
READY TO INSTALL. . 89.95
CONVERTER KIT....................... . . 29.95
NEC NEO2137 TRANSISTOR 3 for 7.95
CONVERTER KIT ASSEMBLED........ . 38.95
POWER SUPPLY ASSEMBLED 19.95
CIGAR ANTENNA . 19.95
HOUSING, MTG BRKT, 50 COAX. 19.95
TERMS: CHECK, VISA, MASTER CARD
IN STOCK - READY TO SHIP
2012 15th Av. • Ft. Worth, Tx. 76102
817-332-2994

INTRODUCING SMP'S DOWNCONVERTER KIT!!
 SWHMY $\Sigma^{\text {NEW }}$ SHMN

2300 MHz MICROWAVE DOWNCONVERTER

KIT. Includes high quality PC board, NE02137
NE02136 transistors, thermal drift stabilizer, silver solder, 141 hardline, matched diodes, F-connectors, molded coils, instructions.

EM-4 The EM-3 with NE64535 high performance RF
transistor, Adds 3 db gain to EM-3 and reduces noise figure.
37.95 .

DO IT RIGHT THE FIRST TIME
 WITH SUPERIOR QUALITY - WITHOUT HIDDEN COSTS

THOSE 19.95
"DEALS" DON'T
HAVE IT ALL
WE DO!

- Detailed Instructions
- Post-Paid Delivery
- Thermal Drift Stabilizer - F-Connectors
- Hardline Antenna Probe
- High Gain RF Stage
- Matched Diodes
- Molded Coils
- Silver Solder
- Toll-Free Number

ANT-4 Antenna 30.00 with Adjustable Bracket

RFA. $1 \quad 34.95$ Preamplifier

DA-3 62.95
EM-3 \& RFA. 1

Sale!

TU8 Power Supply 34.95

Orders Only: 1.800.368-3028 info., VA \& D.C.: 1.703-255-2918 Discounts Over $\$ 100$

Superior Microwave Products, Inc.
P.O. Box 1241

Vienna, VA 22180

All Orders Postpaid \& Shipped in 48 Hours
We Don't Compromise On Quality

REMEMBER THE FUN AT PLAYBOY'S GREAT GORGE RESORT IN 1976 \& 1978?

> THE ARRL
> HUDSON DIVISION CONVENTION MOVES BACK TO GREAT GORGE FOR 1982!

If you attended the ARRL Hudson Division Convention in '76 or '78, then you know what a great time we'll be having on the weekend of October 30-31, 1982, at the same fantastic location in Great Gorge, New Jersey. If you missed either of these years, ask someone who was there. You'll hear about all the super activities, seminars, forums, fleamarket and exhibits covering everything from 160 meters to microwave; all modes, all facets of our great hobby. plus, new for '82, even more on computers and TVRO earth stations! As in the past, we also have a full women's program for non-ham XYL's, and the Great Gorge resort has everything in sports and leisure activities you could ever want.

DON'T MISS OUT. RESERVE NOW AND SAVE-TICKETS ARE $\$ 9.00$ AT THE DOOR. USE COUPON BELOW.

HARC CONVENTION, POST OFFICE BOX 528, ENGLEWOOD, NJ 07631
Please send me the following 1982 Hudson Division Convention Tickets:

- (Quantity) REGISTRATION TICKETS @	@ \$ 7.50	\$
BANQUETTICKETS*. @	@ \$24.00	\$
TOTAL ENCLOSED (Make check payable to "HARC")		\$
- PLEASE ENCLOSE A STAMPED-SELF.ADD	DDRESSED	NVELOPE -
NAME	CALL	
ADDRESS		
CITY, STATE, AND ZIP CODE		
FLEAMARKET SELLERS ONLY-CHECK	HERE FOR	NFO \square

- indicate below ANY SPECIAL RE duesisforbanouet FOR SEATING (Clud table or group sealing)

FLEAMARKET SELLERS ONLY-CHECK HERE FOR INFO D

29.95

Digital Basics

- part I

Joseph J. Carr K4IPV

5440 South 8th Road
Arlington VA 22204

Digital electronics has hit amateur radioand hobby electronics in general - in a big way! This field of electronic endeavor was once the province of a few freaky computerniks, military electronics technicians, and industrial electronics types, but today, none of us can safely ignore digital electronics.

Digital electronics is, in a way, actually simpler than conventional analog electronics because the digital logic devices recognize only two states, i.e., ON and OFF. This fact makes digital circuits similar to relays and mechanical switches. Simple, huh? In fact, some digital circuits are little more than high-frequency electronic versions of sim-

Fig. 1. TTL logic levels: 0 volts is LOW, 5 volts is HICH.
ple switches. It is my opinion that anyone who can understand simple relay and switch circuits also can understand the basics of digital electronics! Certainly anyone who can understand the vagaries of singlesideband and FM communications equipment will be able to understand digital electronics.

In this three-part series, we will explore the various forms of IC logic elements: gates, flip-flops, and multivibrators. In this first installment, I am going to give some basic definitions, introduce you to the popular IC-device families, and ex-
plore the principal forms of logic gates

Logic States

I have mentioned that digital circuits respond only to two different input states -ON and OFF - which can be called 1 and 0 (after the two permissible digits of the binary, i.e., base 2, number system), HIGH and LOW, or (in older textbooks) "true" and "false." These designations are used to refer to two different voltage levels. In this article, I will stick to the HICH/LOW designation because it will graphically describe what is actually going on in the circuit.

Fig. 2. This typical RTL (resistor-transistor logic) inverter circuit produces a LOW output when the input is HICH. A LOW input is accompanied by a HICH output. For RTL, 0 volts is LOW and 3.6 volts is HICH.

Transistor-transistor log ic (TTL) responds to 0 and +5 volts for the two logic levels. If any other voltage levels are used, then the TTL device will either (1) fail to work, (2) work unpredictably, or (3) burn out (ZZZAPPP!)

Fig. 1 shows the TTL logic levels

Positive and Negative Logic

You may sometimes hear the terms positive logic and negative logic. These terms sometimes tend to confuse the newcomer; they mean nothing more than how the HIGH and LOW logic states are related to voltage levels. In positive logic, the HICH is logical 1 and will be a positive voltage (e.g., +5 volts in the case of TTL). The LOW, logical 0 , is the 0 volts condition (e.g., in TTL). Logical 0 may be a negative voltage in some CMOS circuits. In negative logic these designations are reversed (i.e., HIGH $=$ logical 0 and LOW = logical 1). In the vast majority of uses, positive logic is specified. In fact, the descriptive names given to digital IC devices reflect a bias toward positive logic. This potential confusion is why I prefer HICH/LOW designations. The $1 / 0$ designation
will be reserved for the illustrations and truth tables. . but keep in mind that positive logic is used unless otherwise noted.

Logic Families

A logic family is a series of IC devices that may easily be interconnected and which use similar technology in their construction. All of the devices within a given family will have the same input and output circuits, so that direct interconnection is possible.

The only major consideration is whether an output can supply sufficient current to drive all of the inputs that are connected to it. But in any given logic family, output voltage and current levels and input voltage and current requirements are fixed by agreement. They are defined in terms of units of fan-in and fan-out. This unit is the current requirement of a single standard input at the fixed voltage level. Such an input has a fan-in of one unit. If an IC is said to have a fanout of, say, five, it will drive five standard inputs. The device, therefore, can supply sufficient current to drive all five inputs satisfactorily. The total fan-in of all devices connected to any output must be equal to, or less than, the rated fan-out of the output.

The logic families which we will consider are: RTL, DTL, TTL, HTL, ECL, and CMOS. Of these families, CMOS and TTL are the most popular today; RTL and DTL are obsolete and no longer used in new designs. Plenty of older equipment still in use, however, contains RTL and DTL devices.

Speed vs. Power

The principal factors governing the speed (i.e., maximum operating frequency) of a digital IC are the internal resistances and capacitances. If resistances are increased so that power
consumption drops, then the RC time constant of the device is longer. Long RC time constants mean slower operating speeds. As a general rule, higher-speed logic families require greater power consumption. CMOS devices, which require very little current (hence are low power), operate well only to 4 or 5 megahertz (MHz), with some devices tooting along to 10 MHz . TTI devices, on the other hand, usually work to 18 or 20 MHz , with some devices operating to well over 80 MHz .

RTL Devices

Resistor-transistor logic (RTL) is an obsolete logic family that was popular in the early to mid-60s. Fig. 2 shows a typical RTL inverter circuit, i.e., a circuit that produces a LOW output when the input is HIGH and a HIGH output when the input is LOW.

RTL logic IC devices used 0 volts for logical 0 and +3.6 volts for logical 1 . If the input of the RTL inverter is grounded (i.e., placed LOW), then the output voltage will be HIGH, which in this case means +3.6 volts. But, if the input voltage is +3.6 volts, then the output will be 0 volts.

RTL devices usually carry type numbers in the uL900 range (mostly 8- and 10-pin metal cans) and MC700 series (mostly 14 -pin DIPs).

DTL Devices

The next popular IC logic family was the diode-transistor logic (DTL) family. These devices operated at speeds greater than most RTL devices. Fig 3 shows a typical DTL inverter.

When the DTL input is HICH, diode D1 is reversebiased. In that condition, R1 will forward-bias transistor Q1, which in turn for-ward-biases D2 and Q2. Voltage levels in most digital circuits are selected to saturate the transistors, so when Q2 is turned on, it is turned on to full saturation.

Fig. 3. DTL (diode-transistor logic) offers better speed than RTL. A typical DTL inverter is shown here.

Fig. 4(a). The TTL (transistor-transistor logic) family has LOW values ranging from 0 to 0.8 volts. HICH is 2.4 to 5.0 volts. An inverter is shown here.

This condition means that the output of the inverter, which is the collector terminal of Q2, goes nearly to ground. The actual voltage $\mathrm{V}_{\text {ce(sat) }}$ of the transistor is on the order of a few tenths of a volt at most.
When the input is LOW, the cathode of D1 is grounded. Since D1 is now forward-biased, the base of Q1 is essentially grounded. Under this condition, Q1, D1, and Q2 are reverse-biased. With Q2 cut off, then, the output voltage rises to that of $\operatorname{Vcc}(+)$. Most DTL devices carry part numbers in the MC800 and MC900 ranges (Motorola designation).

ITL Devices

Probably the most widely used digital IC logic family is the transistor-transistor logic (TTL) family. When most people speak of digital ICs, it is the TTL family of devices to which they re-

Fig. 4(b). An open-collector TTL circuit results when the output circuit is simplified. An external resistor is needed between the output and +5 volts.
fer. Most TIL devices carry type numbers in the 7400 range. (Those devices in the 5400 range are military equivalents to the $7400-$ series, i.e., a 5447 is a 7447 in uniform. The principal difference between the 5400 and 7400 devices is in the operating temperature range -0 to $80^{\circ} \mathrm{C}$ for com-
mercial devices and -55 to $+125^{\circ} \mathrm{C}$ for military devices.)

Fig. 4(a) shows the circuit for a typical TTL inverter IC. Like the DTL device, the TTL input acts as a current source while the output acts as a current sink. The typical TTL input will source 1.8 mA and will be LOW if the voltage is 0 to 0.8 volts and HICH if 2.4 to 5.0 volts are applied. Performance at values of input potentials between 0.8 and 2.4 volts is not defined, so operation of the devices is unpredictable.

When the TTL input is HIGH, Q1 is cut off, so point A goes HICH. This condition turns on Q2, forcing point B HIGH and C LOW. We find, then, Q3 is turned on and Q4 is off. This forces the output LOW. Again, the transistors are operated either totally cut-off or totally saturatedon.

If the input is LOW, then exactly the opposite situation occurs: Q1 is turned on (forcing point A LOW), Q3 is off, and Q4 is turned on, i.e., it is connected to $\operatorname{Vcc}(+)$.

TTL devices must have a regulated dc power supply of +4.75 to +5.25 volts. In fact, there are some circuits of combinations of devices that require a more limited range of voltages nearer to +5 volts dc. Voltages greater than +5.25 volts often result in a high failure rate of TTL devices.

Some TTL devices are described as being open-collector devices. These are essentially the same as regular TTL devices except that the output circuit is modified, i.e., Q4 and D2 are missing. An example of an open-collector circuit is shown in Fig. 4(b). These devices require an external 1 k - to 2 k -Ohm resistor between the output terminal and the 5 -volt dc powersupply line.

Open-collector devices can be useful if you need to

Fig. 5(a). A typical CMOS inverter circuit.

Fig. 5(b). An equivalent circuit for LOW input, HICH output.

Fig. 5(c). An equivalent circuit for HICH input, LOW output.

Fig. 6. HTL (high-threshold logic) is useful in applications where noise pulses may be a problem.
tie the outputs of two or more gates together or if you are driving something other than TTL.

CMOS Devices

CMOS IC devices use MOSFET transistors instead of the PNP or NPN bipolar transistors that are used in other logic families. CMOS inputs, therefore, offer a very high impedance. Fig. 5(a) shows a typical CMOS inverter circuit. Note that this family is called complementary because the output circuit consists of a complementary pair of MOSFET transistors, i.e., an
n-channel and a p-channel in series

CMOS circuits work over a wide range of voltages, with most devices using a LOW of 0 to 1 volt and a HIGH between 3 and 15 volts. The optimum power supply and HIGH value is usually between 9 and 12 volts. In some instances, a bipolar supply may be used

CMOS outputs are not directly TTL-compatible, although some specific ICs in the CMOS line are designed to have a TTL-output stage (e.g., the 4049 and 4050 devices). These TTL-compat-
ible devices are often used to directly interface CMOS and TTL devices.

Figs. 5(b) and 5(c) show the equivalent circuits for a CMOS inverter in both possible input conditions, i.e., input HIGH and input LOW. Recall that a p-channel MOSFET turns on when the gate is LOW, while the n-channel device turns on when the gate is HICH .

Fig. 5(b) shows the situation in which the input is LOW. Transistor Q1 will have a very low (e.g., 200 Ohms) channel resistance. In this case, the output is equivalent to a 200 -Ohm resistor to the $V+$ power-supply line.

In Fig. 5(c), we see the situation in which the input is HIGH. Transistor Q2 now has a very high channel resistance, and Q1 has a very low channel resistance (again, about 200 Ohms). In this case, the output looks like a 200 -Ohm resistance to ground, so the output is LOW.

The CMOS ouput stage always looks like a high and low resistor in series across the power supply - see Figs. 5(b) and 5(c). The overall current drain, therefore, is very small

But CMOS devices do have a problem: They contain MOSFETs, so they are sensitive to static electricity. All A-series CMOS devices (e.g., the 4001A) have this problem, but it is less severe in B-series (e.g., the 4001B) devices. The B-series have built-in diode gateprotection to bypass high static potentials around the sensitive gate structure. Even so, they should be handled with care

HTL Devices

Noise pulses often are seen by logic circuits as valid input pulses. This problem is especially bothersome in high-speed TTL devices that are normally able to pass high-frequency, short-duration pulses. The solution in noisy environ-

"Mobile antenna mounting and cable routing on today's cars are a nightmare"

"We just can't find a high performance antenna that doesn't need a ground plane"

- Co-inductive coupling establishes highly tuned circuit through glass or any non-conductive material up to $3 / 4$ " thick, with no measurable signal loss.
- No ground plane: full electrical halfwave design provides omnidirectional performance equal to practical $5 / 8$ wave installations.
- New DUO-BOND mounting system for firm, resilient, waterproof bonding in minutes-yet removable without damage to car or antenna.
- No holes to drill, no damage to vehicle ...easy, fast cable routing
- Four gain models to cover the 2 meter, 220 MHz , and UHF amateur bands.

the antenna specialists co.
the antenna specialists co.
a member of The Allen Group Inc. 12435 Euclid Ave., Cleveland, OH 44106 Canada: A. C. Simmonds \& Sons, Lid.

we design solutions.

and
c)

NAND
e)

OR
b)

NOR
d)

xOR
1)

Fig. 7. You can determine the function of a TTL gate by looking at its schematic symbol.
ments is to use a digital IC logic family that requires a high input voltage to trigger. CMOS devices operated at high $V-$ and $V+$ values meet this requirement, but the older bipolar high-threshold logic (HTL) may also be used (Fig. 6).

HTL (also sometimes called high-noise-immunity logic, or HNIL) uses $V+$ values of 12 or 15 volts depending upon the series. As a result, the logic levels also are high, so it requires a bigger noise pulse to cause trouble

Emitter-Coupled Logic

Up until now we have been talking about saturated logic families, i.e., the transistors in the ICs are either all the way on or all the way off (cut off or saturated). Emitter-coupled logic (ECL) is called an ac logic family because the transistors are operated in a nonsaturated mode. As a consequence, ECL devices are capable of very fast operation. Most commonplace ECL devices operate to 80 or 120 MHz , while some costly special devices operate to over 1 GHz (that's 1000 MHz !). The usual prescaler for a digital frequency counter is nothing more than an ECL frequency divider that divides the $500-\mathrm{MHz}$ input signal down to 50 MHz

Note that it is necessary to use VHF/UHF circuit de-
sign and layout techniques when working with ECL devices. The very high frequencies used are, after all, in the UHF range

Gates

A digital electronic gate is a circuit whose output is HIGH or LOW depending on the input. Gates operate under a set of well-defined rules. The basic forms of digital electronic gates are NOT, OR, AND, NOR, NAND, and XOR (ExclusiveOR). In the paragraphs to follow, we will discuss all of these basic gates.

NOT Gates

NOT gates, also called inverters, produce an output that is the opposite of the input signal. Recall that digital circuits respond only to HIGH and LOW voltage levels. In an inverter circuit, therefore, the output will be HIGH when the input is LOW and LOW when the input is HIGH .

The circuit symbol for the inverter is shown in Fig. $7(a)$, while the truth table is given in Fig. 8(a). Note that any digital symbol with a circle on the output produces an inverted output. Similarly, if one or more inputs has a circle on it, then that input is inverted. The rules for the operation of the inverter are:

1) A HICH on the input produces a LOW output.
2) A LOW on the input
produces a HIGH output.

OR Gates

An OR gate will be HICH if any of its input is HICH. The symbol for an OR gate is shown in Fig. 7(b), while the truth table is given in Fig. 8(b). The truth table shows the rules of operation for the two-input OR gate, and these are summarized below:

1) If both inputs A and B are LOW, then the output is LOW
2) If either input A or B is HIGH, then the output is HIGH.
3) If both inputs A and B are HIGH, then the output is HIGH .

AND Gates

The AND gate is the opposite of the OR gate. The AND gate produces a HIGH output only when all inputs also are HICH . The circuit symbol for the AND gate is given in Fig. 7(c), and the truth table is shown in Fig. 8(c). The rules for the operation of the two-input AND gate are

1) If both inputs A and B are LOW, then the output is LOW.
2) If either input A or B is LOW, then the output is LOW
3) If both inputs A and B are HICH , then the output is HICH

NOR Gates

The NOR gate is a combination of a NOT gate (inverter) and an OR gate, hence the designation NOR, which means NOT/OR. It is, therefore, an OR gate with an inverted output. The NOR gate is, in fact, sometimes represented in textbooks as an OR gate with an inverter following. The NOR gate symbol, shown in Fig. 7(d), is an OR gate symbol with the circle denoting inversion at the output. The truth table for the two-input NOR gate is shown in Fig. $8(d)$, and the rules for its operation are summarized below:

Fig. 8. Understanding a truth table is the key to using logic devices. The 1 designates a HICH state and the 0 designates a LOW one

1) If both A and B inputs are LOW, then the output is HIGH
2) If either input A or B is HICH , then the output is LOW.
3) If both inputs A and B are HICH , then the output is LOW

NAND Gates

The NAND gate is a NOT/ AND gate, i.e., an AND gate followed by an inverter. The symbol for the NAND

Alaska

Microwave Labs 4355 E 5TH STRET ANCHORNGE ALASMA G:309 GNDP GAPACTOLS
$180.220 .270,330390.470560680 .820$. 1K 12 K
1.8K. 3.9K. 82 K .10 K 100K

MGF 1412 NF 2.008 \&GHZ MAG 1508 MCF1200 NF 1.00 B @ IGH2. NF 220 \& MAG 1408 @

NC CHASSIS MOUNT SOUAREIS
BNG PIUG FOR RG 58
SMA CHASSIS MOUNT SOUARE FLANGE SMA CHASSIS MOUNT STRIP.LINE TAB
SNA PLUG FOR RG. 58
SMA PLUG FOR 141 SEMI RIGID
IYPE N CHASSIS MOUN
IYPE N PLUG FOR RG-9/RG-8
IYPE N DOUBLE MALE
IYPE N CHASSIS MOUNT PLUG SOUARE FLANGE
Sil SLLER PLALLGKIT

V72T. 12 GGHZ $103.2 G \mathrm{HZ}$ MIN POWER OUI 10 MW

APPROX $325 \times 50 \cdot 0312$ \$650
FEDD-THiI CAPACITORS 470 PF SOLDER TYPE

DPEN AT 8 PM GST CLOSED 8PM PST
COD - YIG - MCETCROMAD

V-J2 METER 90 WAT OUTPUT

 Model 90PL FOR ONLY \$139.95*

PLUS SHIPPING
FACTORY DIRECT

- FREDUENCY range $144 \cdot 148 \mathrm{MHz}$
- OPERATION FM or SSB (completely linear) Class ABI
- RF DRIVE 1 to 30 walts
- KEVING RF activated with high quality relays
- SSB operation built in delay
- POWER REQUIREMENTS typical 10 watts drive. 13 amps at 13.8 vOC
- IDLE current 20 mills
- MOBILE or FIXED operation
- PREAMP 180B gain minimum
- NOISE FIGURE less than 1.5 DB
- PREAMP KEYING independent - separately RF activated relays
- COMSTRUCTION wap around aluminum heat sink 2 pieces

360 degrees cooling

- SIZE 7 " $(\mathrm{w}) \times 6^{\prime \prime}(\mathrm{d}) \times 3^{\prime \prime}(\mathrm{h})-$ WEIGHT 3 libs. 9 o2s.
- immediate shipment

SPECIAL OFFER
Matching Power Supply
s99.95*

15 AMP SUPPLY wr. 13 libs size $8^{\prime \prime \prime}(w) \times 5^{\prime \prime}(\mathrm{h}) \times 6^{\prime \prime}(\mathrm{d})$
IMMEDIATE SHIPMENT
all parts and labor warranted one full year
VJ90PL Amplifier $\$ 139.95$ plus 53.00 shipping
VJ15 POWER Supply $\$ 99.95$ plus $\$ 7.00$ shipping
-Prices USA only

POWER INPUTIN WATTS
POWER CHART

Organize your shack with a CLUTTERFREE MODULAR CONSOLE \$203.35

- Large, $42^{\prime \prime} \mathrm{H} \times 57^{\prime \prime} \mathrm{W} \times 29^{\prime \prime} \mathrm{D}$
- Strong groove-construction
- Mar-resistant wood grain finish
- Options, drawers \& face plate
- For ham or home computer
- Visa and Master Charge

CLUTTERFREE MODULAR CONSOLES
P.O. Box 5103 Tacoma, WA 98405 (206) 272.8321 -89

VISA, MASTER CHARGE, M.O. or C.O.D. • PHONE (713) 477-0134
V-J PRODUCTS, INC. 505 East Shaw, Pasadena, Texas 77506 Serving the electronics industry since 1965

HI.Q BALUN

- For dipoles yagis inverted vees \& doublets
- Replaces center insulator
- Puts power in antenna
- Broadbanded 3.90 MHz
- Small. lightweight and weatherproof
- 11 impedance ratıo
- For lull legal power and more
- Helps eliminate TVI
- With so 239 connector
only \$12.95

π

HI-Q ANTENNA

 CENTER INSULATOR

Small, rugged. lightweight weatherprool
Replaces center insulator Handes full legal power and more

$\$ 6.95$ win so 239 connector

HI-Q ANTENNA END INSULATORS

Rugged, Ilghtwelght, injec. tion molded of top quality material, with high dielec. tric qualities and excelient weatherability. End insulators are constructed in a splral unending fashion to permit winding of loading colls or partial winding for tuned traps.
May be used lor

- Ciuy wire strain insulators - Encr or center insulators lor $\$ 4.95$
- Consiruction ot antenna load

All antennas are complete with a $\mathrm{HI} \cdot \mathrm{Q}$ Balun or $\mathrm{HI} \cdot \mathrm{O}$ Antenna Center insulator, No. 14 antenna wire, ceramic insulators, 100 nylon antenna support rope (SD models only 50) rated for full legal power. Antennas may be used as an inverted V and may also be used by MARS or SWLs

Antenna accessories-available with antenna orders Nylon guy rope 450" test 100 teet $\$ 4.49$ Ceramic (Dogbone Type) antenna insulators $\$ 1.50$ p SO 239 coax connectors

All prices are postpaid USA 48 Available at your tavorite dealer or order direct from

> Van Dealer Inquiries Invited Gorden Engineering

BOX 21305 B, SOUTH EUCLID, OHIO 44121

COMSTAR RESEARCH	
P.O. BOX 771 Madiso	

gate is shown in Fig. 7(e). This symbol is the AND gate symbol with the circle at the output to denote inversion. The truth table for
the two-input NAND gate is shown in Fig. 8(e), and the rules are presented in summary below:

1) If both A and B inputs

Fig. 9. A chip may contain as many as six individual gates.
are LOW, then the output is HICH
2) If either input A or B is LOW, then the output is HICH.
3) If both A and B are HIGH, then the output is LOW.

XOR Gates

An Exclusive-OR (XOR) gate is like the OR gate discussed earlier except that it will have a LOW output if more than one of its inputs is HICH. For a HIGH output, there must be one exclusive HIGH input. The XOR gate symbol, shown in Fig. $7(f)$, is a modified OR gate symbol. The XOR operation is summarized by the truth table in Fig. 8(f) and the rules below:

1) If A and B are both LOW, ther the output is LOW.
2) If A is HIGH and B is LOW, then the output is HIGH .
3) If B is HICH and A is LOW, then the output is HICH
4) If A and B are both HICH, then the output is LOW

TTL and CMOS Examples

Earlier in this article, I introduced you to several different families of IC digitallogic devices. Of these, several are considered obsolete, so they will not be discussed further. The TTL and CMOS families, however, are very much alive and form the basis of most digital projects today.

TTL/CMOS NAND Gates

In the TTL IC logic family, the most popular NAND gate (and probably the most popular IC) is the 7400 (see Fig. 9). This device contains four two-input NAND gates and usually sells for less than 254-or around six cents per gate. Each of the four NAND gates in the 7400 package is an independent entity, but shares the common power supply and ground connections (pins 14 and 7, respectively).

The 7401 and 7403 are similar to the 7400 except that they are open-collector devices. This means that pull-up resistors are needed, i.e., one $2 k$ - to 4 k -Ohm resistor from each output to the +5 volt line

The 7430 is an eight-input NAND gate (one per 14-pin DIP package). The 7430 device, therefore, has eight distinct inputs...and all eight must be HICH before the output drops LOW. If any one of the eight inputs remains LOW, then the output stays HIGH. Since most microcomputers today are eight-bit machines, the 7430 is often used as an address, or I/O port, decoder.

The 7410 and 7420 are three- and four-input TTL NAND gates, respectively.

In the CMOS line, we also have several different types of NAND gates. The 4011 is a quad two-input NAND gate that is reminiscent of the 7400 . The 4012 device is a dual four-input NAND gate. All four inputs of either gate must be HIGH for the respective output to be LOW. The 4023 device is a triple threeinput NAND gate, while the 4068 is an eight-input NAND gate.

TIL/CMOS NOR Gates

The 7402 TTL NOR gate is by far the most common example from the TTL line and is almost as popular as the 7400 device. The pinouts for the 7402 are shown in Fig. 9(b)- see 9(a) for pinouts for the 7400, for comparison. Note that the pinouts of the 7400 and 7402 are different, as are their logical responses

And Now. .

We have just gotten our toes wet in the study of digital electronics. In part II, we will progress a little further: We will be up to our ankles in flip-flops. For now, however, you have sufficient information to begin experimenting with flip-flops.

NEIU NANY' CHATRGE: Fior Yourr Histrery Piacks

RECHARGE YOUR HAND HELD RADIO BATTERY PACKS TO FULL CAPACITY IN AS LITTLE AS 45 min . EXAMPLE - Fully Charge ICOM BP3 in 30-45 Minutes.

SEPERAIE IUSES PROVIDEO INIERNAIIYIOR A.C. ANO O.C. OPERAIION. -BUIII IN REVIRSI POLARITY PROIICTION.

ONE UNIT DOES IT ALL Charge, ICOM, YAESU, KENWOOD, TEMPO. SANTEC and Others Automatically in Your Home, Car, Boaf, R.V. or Airplane with Built-in Heavy Duty Poner Supply or 12 to 24 V Isternal D.C. Supply Such is Cigar lighter in Your Car.
all sulid State
Pierision Components Uwed Throughonut. In A Unique Circuit
Cellg. Chatger Measures Remaining Charge In Cells Constantly
and lums Ofl Autumaticatly When Battery is Iully Changed
Batter, Can Be lefl Comnected Indefinitely

INCIUDES: Removable of F1. Cord for A.C. Operation and 2 Mating Connectors bir D.C Input and Batterv Ieads

HAIURES: High Qualily, Custom Oesigned Heavy Gauge Aluminum Cabinet
FULI 1 YR. WARRANTY ON PARTS AND WORKMANSHIP

ACCISSORI CONNECTOR TO FIT ICOM BATTERY PACKS, BP-2, BP3, BP4, BP5, $\$ 3$ PREPAIO OROERS INCLUOE $\$ 3$ SHIPPING, \& HANDLING INCIUOE O\% IAX PHONE ORDERS - CALL [209] 586-7059

ARCO Solar" Power systems end radio mumbo jumbo.

Up in remote, high altitude areas, 2 -way radio communications can turn into mumbo jumbo-or die out completely-without a steady source of telecommunications power
Diesel generators are often cumbersome and require constant maintenance. Thermal-electric converters burn expensive propane. Wind-generated systems can ice up on mountain tops.
The solution is photovoltaic power
Charles Ostertoh knows. A systems engineer for Automation and Electronics, Inc. of Casper, Wyoming, one of the region's major electrical contractors, Ostertoh did the installation work on several shared 2-way radio repeaters in the state's Green Mountain region
All the repeaters are powered entirely by ARCO Solar photovoltaic power systems.
"The ARCO Solar systems have provided reliable energy for two years now," reports Osterloh. The photovoltaic powered repeaters pick up signals from cars and trucks and transmit them to distant receivers. Extending the range of communications. Keeping people safely in touch
So, if you want to keep up your communications, just contact the ARCO Solar distributor nearest you.

DENVER

C.W. Electronic Sales
(303) 832-1111

LOS ANGELES
Henry Radio
(213) 820-1234

DALLAS
Hutton Companies Dallas (214) 484-0580 NORTH HOLLYWOOD Wm. Lamb Company (213) 980-6248 KANSAS CITY North Supply Company (913) 888-9800
sCOTTSDALE
Photocomm (602) 948-8003 HONOLULU Servco Pacific Inc. (808) 841-3644 WILLITS
Solar Electric Specialties (707) 459-9496

SANTA BARBARA
Solar West Electric
(805) 963-9667

CALGARY ALBERTA
CANADA
Westronics Engineering
(403) 253-5585

CALGARY
ALBERTA CANADA
Westronics Engineering (403) 253-5585

ARCO Solar,Inc.

Subsidiary of AtlanticRichfieldCompany - 1982 ARCO Solar. Inc.

The Vertical Deuce -40 and 75 meters

Russ Rennaker W9CRC
1011 Linda Drive
Kokomo IN 46901

There has been much written about antennas, a good portion of which has been about verticals. This is no great scoop and probably has been told in one form or another many times over. It is, however, an easy way to achieve efficiency out of a single antenna for both forty and seventy-five meters.

Of course, the most commonly used method to work multiband on a single antenna is with traps. I have used trapped antennas for many years allband trapped; twenty, forty, and eighty trapped; ten, fifteen, and twenty trapped; and even forty/ seventy-five trapped. I have always experienced many problems with traps, the greatest of all being the limitations in bandwidth, i.e., swr. The method described here solves all of the problems, including bandwidth and high swr.

I have been running a monoband, forty-meter vertical for some time and an additional antenna for sev-enty-five. After disapproving looks from my neighbors at the half-wave doublet strung from one end of the house to the top of my
beam tower, with the coax dangling halfway in between, 1 decided to do something.

The sketch and the picture tell the rest of the story. The mast I used was $11 / 4$ " aluminum tubing, and the height was $29^{\prime} 6^{\prime \prime}$ from base insulator to top-hat. The top-hat was made from old TV antenna elements and consisted of eight "spokes," each 24" long. There are several methods of fastening the spokes to the vertical tubing. I used a $5^{\prime \prime}$-diameter piece of aluminum, flattened the end of the tubing, and bolted it to the circular plate. Be sure to use two bolts to ensure that the spokes stay in place and don't swivel out of line.

The coil I used was an old B\&W, 2" in diameter, with 20 turns of \#12 wire. The tap strap was RG-59/U coax shielding removed from the cable and flattened. It should be as short as possible, and when the final position is determined, it should be soldered to the coil turn solidly. The relay was an old one from the junk box, but anything will do if it makes good, solid contact when closed. It could be 110 V ac or some optional dc voltage you might happen to have handy in the shack. Be sure to use correct voltage as indicated by the spec on the coil, since the relay will be closed during all forty-meter usage and we wouldn't want it to get too warm from too

A close-up of the relay/tuner box showing the \#6 wire connected to the base of the aluminum tubing, likewise the ground wire attached to the bottom half of the base.
much current flowing through it.

Of course, the relay and coil should be enclosed. A metal enclosure did not' seem to affect the tuning of the coil in the slightest. I just happened to have an old cast-aluminum box once used in the military for an antenna tuner. It already had a PL-259 connector on one side and a feedthrough insulator on the top. Anything you can come up with will do the trick.

Tuning the antenna is very simple. Since I already had the antenna working on forty meters, no adjustment to length was required. However, if you start from scratch, I suggest you make the mast adjustable by using the top half inserted into the bottom half and a hose clamp to fasten permanently when the correct length is determined. If you are proceeding from scratch, you will want to start with the antenna a little longer than the ultimate will be. Use a grid-dip meter or'an in-line swr meter and shorten the mast two or three inches at a time until it resonates in the portion of the forty-meter band you desire. The change-over relay must be closed when tuning the antenna for forty meters-at this point the shorting strap on the coil need not be fastened at all.

Now that we have the antenna working on forty, we will resonate it on seventyfive. I used a CRC 100 uF, 5000 -volt capacitor across the coil. This is a tubular capacitor and I suspended it inside the coil, soldering it to each end of the coil. Of course, if you use some other value or the coil size is not the same, you will have to make necessary changes in the tuning procedure.

The procedure I used was to open the relay, leaving the entire coil in series with the forty-meter antenna. See what the resonant point is with all of the coil in. If you can't resonate it at your desired frequency, you will have to either add to the coil turns or to the capacitance. In my case, it resonated below the 3.8 MHz meaning the coil was too long. I tried the shorting strap two turns down from the top and checked again, but it still was too long. I moved it two turns at a time
until I found the correct turn for 3.8 MHz . It turned out to be the fifth turn from the top. I soldered it firmly to that turn, closed the enclosure, and that was it.

I found that at forty meters my antenna had an swr of 1.3 to 1 from 7.1 to 7.3 (making it flat across the phone band) and 1.4 to 1 at 7.0 MHz - just about as good as anyone could expect. On seventy-five the swr was 1.7 to 1 at 3.7 MHz , 1.2 to 1 at $3.8,1.7$ at 3.9 , and 1.75 at 4.0 MHz . It sure beats all those unsightly overhead wires.

The control box for the change-over switch is a small $2^{\prime \prime} \times 3^{1 / 2 \prime}$ " aluminum item, common in any parts store or out of your junk box at home. The switch is a simple single-throw/singlecontact which I found in my junk box. I wired a pilot light across the "on" side so that I could easily tell when the switch was in the fortymeter position. Another color pilot light could be

New Automatic Antenna Tuner Auto-Track Model AT 2500

Check these specifications...

- Auto-Track antenna tuners can handle power in excess of 2500 Watts PEP.
- Frequency Range: Continuous from $3-30 \mathrm{MHz}$
- Average automatic tune-up time is 15 seconds
- Impedance matching: 10 ohms to 300 ohms 1050 ohms resistive.
- Direct reading SWR \& Power meters

Fig. 1.
wired across the other side of the switch to indicate it was in the seventy-five-meter position-but 1 didn't think that was necessary. In addition, I wired the switch to my master switch which turns on the rig, so it would be impossible to leave the
relay on when the shack is not occupied it probably wouldn't hurt it to leave it on all night since it draws little current, but everything in my shack is turned on by a master switch and I made no exception for the relay circuit.

> The New Standard in High Performance Repeater Control...

\square FRIENDLY. POWERFUL. EASY TO USE - Human engineered to be your "assistant" at the repeater, with capability second to none.
GREMOTELY CONFIGURABLE Change command codes, messages, tone characteristics, tim ing, and more, remotely! Reliable storage in E? PROM

Call or write for detailed specifications.

Manual and demonstration cassette tapes available separately.
\square Room to grow: BUILT IN! Features intelligent remote control and meter readback Interfaces to synthesized remote bases and links. Planned soft ware upgrade path.
SUPPORT - We invented the "Computer Controlied Talking Repeater." so we know how to provide the applications assistance, and long term support so crucial to a computer based product.
-BRING YOUR REPEATER SYSTEM INTO THE 80'S - Starting at less than $\$ 1200$!

The RC-850 Repeater Controller!

odvanced compuler controls

10816 Northridge Square Cupertino, CA 95014 (408) 253.8085

A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is an astonishing $\pm .1 \mathrm{~Hz}$ over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our SS- 32 encode only model is programmed for all 32 CTCSS tones or all test tones, touch-tones and burst-tones. And, of course, there's no need to mention our 1 day delivery and

SS-32

TS-32 Encoder-Decoder

- Size: $1.25^{\prime \prime} \times 2.0^{\prime \prime} \mathrm{x} .40^{\prime \prime}$
- High-pass tone filter included that may be muted
- Meets all new RS-220-A specifications
- Available in all 32 EIA standard CTCSS tones

SS-32 Encoder

- Size: . $9^{\prime \prime} \times 1.3^{\prime \prime}$ x $.40^{\prime \prime}$
- Available with either Group A or Group B tones

Frequencies Available:

Group A			
67.0 XZ	91.5 ZZ	118.8 2B	156.7 5A
71.9 XA	94.8 ZA	123.03 Z	162.2 5B
74.4 WA	97.4 ZB	127.3 3A	167.96 Z
77.0 XB	100.01 Z	131.8 3B	173.8 6A
79.7 SP	103.51 A	136.54 Z	179.9 6B
82.5 YZ	107.2 1B	141.3 4A	$186.2 \mathrm{7Z}$
85.4 Y A	110.92 Z	146.2 4B	192.8 7A
88.5 YB	114.8 2A	151.45 Z	203.5 M1

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B						
TEST-TONES:	TOUCH-TONES:	BURST-TONES:				
600	697	1209	1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450
1500	852	1477	1700	1950	2250	2500
2175	941	1633	1750	2000	2300	2550
2805			1800	2100	2350	

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened,
shortened or eliminated by changing value of resistor
Wired and tested: TS-32 \$59.95, SS-32 \$29.95

The J-Pole Love Affair - not for CB

Would you like to try a nifty antenna for 2 meters that is inexpensive (less than $\$ 5.00$ usually), is lightweight and easily portable, exhibits gain over the typical 5/8-wavelength-type antenna, requires no ground plane at all, and nobody mistakes for a CB antenna?

Several years ago while attending business college at New Mexico State Uni-
versity in Las Cruces, I was bitten by the 2 -meter FM bug. There was lots of 2-meter activity in town, and I, being limited in funds, began playing with various types of home-brew antennas. 1 stumbled on the J-pole section of the ARRL antenna book and began experimenting with various J designs.

I had seen a couple of old-timers using the J an-

Fig. 1.
tenna made from CB whips and they complained of the J's susceptibility to breakage when whacking trees or other overhead obstructions; they also complained of the difficulty in building a proper balun with which to couple the feedline to the antenna.

In my 'case, even CB whips were out of my price range, so I cast about for alternatives. I had often noticed the colorful fiberglass "bicycle flags" on the kids' bikes and how much they resembled antennas. I decided to try them. These rods are really very nice for all types of hamming needs. They are sometimes fiberglass and sometimes plastic, and of course the fiberglass ones are the best buy. They seem to cost around $\$.99$ to $\$ 5.00$ depending on whether they're on sale or not.

I was in love with the J design from the first. The first few I built were tricky to tune and quite fragile, but they worked well. I went through several designs before settling on the
present one. I discovered that doing away with the balun arrangements simplified the matching procedure, improved the antenna's performance, and greatly increased the longevity of the antenna (less to break or vibrate loose). As you may discern by looking closely at this antenna, there are several ways to construct it. Use your own imagination and ingenuity to make use of what you have to build it. You might wish to coat the whole antenna assembly with boat varnish or other sealant after the coax is attached and tuned satisfac. torily.

See Figs. 1 and 2 for assembly details. You may note in Fig. 3 that I use the bike mounting bracket that comes with the pole. If it is mounted as shown, the mount will have a hinge action that will allow the antenna to harmlessly fold back when a low overhead obstruction is encountered, but keep the device erect while driving normally. Also, one of the great advantages of this antenna is
that, requiring no ground plane, it may be placed essentially anywhere on the vehicle you wish without adversely affecting its performance. Offered in Fig. 3 are 3 variations in mounting that should adapt to most vehicles. The bolt-action mount saves the antenna (and your car) when you hit tree limbs, etc.

This antenna has several natural applications: motorcycles and bicycles, 18-wheelers and recreational vehicles, backpack frames, as a hand-held for great gobs of gain with portables, bumper or head-ache-rack mounting on any vehicle, easy mounting on light bars for public safety vehicles, and installation against the window in a motel or apartment!

To adjust the antenna for lowest swr, merely slide the shield and center conductor up and down on the lower portion of the J until the lowest swr point is found. The wire and welding rod need to be scraped and clean for this procedure. Solder the connections
when you find the right point. If you have any difficulty, try reversing the shield and center conductor connections. The antenna will work either way as long as you can get it to match properly.

I have compared this antenna to many of my own friends' $5 / 8$-wave $3-\mathrm{dB}$ gain antennas. I haven't seen one yet that this J-pole will not compare to or outperform. Usually the J-pole, mounted or held near the competing antenna's former location, exhibits about an S-unit gain on receiving a weak repeater. Try it sometime. (By the way, one S-unit compares roughly with 1 dB on all the imported radios l've checked.) I keep a spare antenna around the house for motel mobile and it's easy to walk out to a friend's car', get a meter reading on a distant repeater, then remove his antenna and hold the J-pole temporarily near the same spot. Usually the J-pole will have noticeable gain. I theorize the greater height of the J-pole plus the

Fig. 2.
lack of ground sensitivity account for the difference.

I have shown this antenna to several engineer-type friends who shake their heads in disgust over its simplicity and lack of balun, etc. However, they all agree that for some reason it works well . . and that's what it's all about, isn't it?

It would not be fair to ignore some disadvantages with this antenna. It is not as sturdy as most commer-cially-made antennas. Weather, vibration, wind, and corrosion will necessitate repairing the antenna occasionally-depending on your climate. (Usually the soldered connections give the most frequent trouble. I usually have to repair mine every 9 months or so.) This antenna may exhibit some minor directivity. However, all antennas on vehicles are directive to
some degree, depending on the mounting location. Depending on the rigidity of your rod, you may find under road speeds the swr changing as the antenna bends backward. I have good luck in mounting the antenna with the stub facing forward or sideways so the spacing of the stub doesn't change as the antenna flexes.

In conclusion, I have presented here a simple, inexpensive, and very effective 2-meter antenna. It can be adapted easily to 220 or 450 use by experimentation and scaling of the dimensions. None of my antennas has ever been stolen and no one has ever asked me if I monitored channel 19. It may be, as some engineers insist, much like a bumblebee (too heavy to fly). However, if you try it, you will agree it works anyway!

"L" BRACKET.. MDUNT INSIDE DOOR / WINDOW WELL, RAIN GUTTER, ETC.

STRAIGHT BRACKET FOR INSIDE TRUNK LIP ETC.

Fig. 3.

The Great Boxboro Convention Returns!!

Remember the fantastic Boxboro hamfest back in 1980? Well here we go again with improvements galore to make the show even better! Located "in the country" on Route 495 at Route 111 the New England ARRL Convention for 1982 features free shuttle bus service to and from a giant free parking area - no more parking worries!!

Prizes Awarded

Both Days of Show
Through the generous cooperation of the manufacturers and dealers lucky conventioners will be taking home transceivers. handi-talkies. amplifiers. HF and VHF antennas, rotors. CW \& RTTY decoders, and even a Tektronix scope! The list is endless as the affair is nonprofit and all surplus funds so directly into prizes.

See Every Possible Make of Ham Gear

Exhibits will be open Saturday 9 to 5 . Sunday 10 to 5 . Manufacturers and distributors are turning out in force! Virtually everybody will be at Boxboro from all parts of the country bringing with them the latest equipment in HF and VHF plus exotic antennas, test equipment. RTTY. CW plus color and B\&W SSTV

Big Events All Weekend

Two meter fox hunts, YL programs. seminars on all aspects of ham radio including microprocessors, RTTY, color SSTV, DX, a Wouff Hong ceremony. Saturday night banquet. show and dance plus prizes awarded all weekend.
There will be a home brew equipment exhibit and contest. CW and QSL contests. Booths will include AMSAT and MARS. CAP, and the QSL bureau.

Early Bird Tickets Available by Mail Only!

Registration is $\$ 4$ early bird, $\$ 5$ at the door. Combination banquet, dance and show tickets are $\$ 13.50$ each including tax and gratuity. Order tickets from Arthur Tomkinson, W1 THT, 9 Oliver Terrace, Revere, Massachusetts 02151. Include SASE! Make checks payable to FEMARA. The Sheraton Boxboro may be sold out by the time you read this but their address is Boxboro, Massachusetts 01719 . You must mention "radio show" to get the convention discount!
microcomputer, SPECTRONICS SW SPECIAL! Controlled Tuning!

4-Band Portable with PLL Tuning

LIST	NOWONLY
S24905	S21750

OHPEGRONICS ${ }^{\text {mc }}$
1009 GARFIELD ST. OAK PARK, IL. 60304

Gives You Hand-Held to Mobile and Back Again!

simply plug in your Icom IC-2A (T) and you have a $25-35 \mathrm{~W}$ synthesized mobile rig - take it out again, all charged and ready, when you want hand-held operation.

RF POWER-the Power Pocket amplifier/ charger accepts any version of the IC-2A and applies its output to a wide-band if amplifier. With 4 W input, the Power Pocket delivers 35 W output; 3 W in brings 30W out, 2 W becomes 25 W , and the $1 / 2 \mathrm{~W}$ how power'position yields 5 W output.
AF POWER-the Power Pocket provides $21 / 2 \mathrm{~W}$ audio output and a 4 -inch speaker so that messages can be heard above road noise, even with the windows down. Also, you can operate the IC-2A at low volume, thus less drain on the battery pack.
CHARGING POWER-the spring-loaded charger pocket adapts to tall or short packs; accepts and charges all Icom battery packs. Separate "charge" switch and indicator lets you charge battery pack whether or not the amplifiers are in use. Charge is supplied at 35 mA rate, which (a) with IC-2A(T) OH, will give a complete charge in 10 to 14 hours; (b) with $/ C-2 A(T)$ on and receiving, supplies all needed radio power, maintaining battery.

EXTRA CHARGING POWER-when the VoCom Power Pocket's mic is keyed, its charger suvplies 400 mA to power the IC-2A(T) so that there is little drain on the battery. With the IC-2A(T) turned of:, this 400 mA can be used to provide a quick charge for emergency needs.
MIC PREAMP-the adjustable mic preamplifier lets you use the IC-2A(T) in or out without readjusting its mic input. It also makes the Power Pocket compatible with any standard mobile microphone.
Suggested retail price, $\$ 229.95$ (includes mic). See your favorite amateur radio dealer.

TI $\mid \prod^{-90}$

PRODUCTS CORPORATION

 65 E. Palative Rd., Prospect Heights, 1 L 60070 (312) 459-3680kom and $I C-$-2A(T) are trademarks of Icom America. tric. Power Pecket and VoCom are trademarks of Vocom Products Corporation. 1982 by VoCom Products Corporation.

H
 HF MOBILES DELIVER FIXED STATION PERFORMANCE

Hustler HF antennas deliver outstanding signal reports wherever you're mobile!

Design your own HF mobile from a full selection of topquality: U.S.-made stainless steel ball mounts, quick disconnects, masts, springs, and resonators. You can cover any 6 -to-80-meter band. Choose from medium or high power resonotors with broadest bandwidth and lowest SWR for optimum performance on any band. Easy band change and garaging with Hustler's foldover mast, too.
 standard of pertormance.

3275 North "B" Avenue [issimmee, Florido 32741

SOCIAL EVENTS

Listings in this column are provided free of charge on a space-avaliable basis. The forlowing information should be included in every announcement: sponsor, event, date, time, place, clity, state, admission charge if any), features, talk-in frequencies, and the name of whom to contact for further informa. fion. Announcements must be received ap 73 Magazine by the first of the month, iwo months prior to the month in which the event takes place. Mall to Editorial Offices, 73 Magazine, Pine Street, Peterborough NH 03458.

harrisburg Pa

SEP 5

The Central Pennsylvania Repeater Assoclation will hold the 9 th annual HamfestiComputertest on September 5, 1982, beginning at 8:00 am, at the Harrisburg Farm Show parking lot, off the Route 81 Cameron Street exit. Follow the slgns to the Farm Show building.) Registration Is $\$ 3.00$; sellers' 10 -font space, $\$ 5.00$; tailgating, $\$ 1.00$. Talk-in on $144.87 / 15.47$, 146.16/.76, and .52. For more information or a map, contact Irvin Sanders K3lUY, RD \#3, Box FA53, Marrisburg PA 17112, or phone (717)-469-2185.

hamburg ny

SEP $10-11$
Ham-O.Rama ' 82 will be held on Friday and Saturday, September 10.11, 1982, at the Erie County Fairgrounds near Buffalo NY. Hours are 6:00 pm to 9:00 pm on Friday and 7:00 am $105: 00 \mathrm{pm}$ on Saturday. Advance tickets are $\$ 3.50$ (deadline: September 1st) and tickets at the gate will be $\$ 4.50$. Chilldren under 12 will be admitted tree. The outside tlea market is $\$ 3.00$ per space and the inside tlea market is $\$ 10.00$ per space. Fea. tures will include new equipment displays, computers, technical programs, ladies' programs, and valuable awards. Talk-in on 146.31/.91. For advance tickets, send an SASE to Dave Baco WA2TVT, 130 Vegola Avenue, Cheektowago NY 14225.

aUGUSTA ME SEP 10-12

The Augusta Emergency Amateur Radio Unit will hold the ARRL-approved Northeast Area Hamfest on September 10.12, 1982, at Windsor Fairgrounds, 10 cated just off Route 17, 10 miles east of Augusta ME. Facilities for campers will be available. Activities will Include a flea market and regularly scheduled speakers and demonstrations, as well ag the usual events. Talk-in on 146.22i.82 and 3940 .

augusta nj

SEP 11
The Sussex County Amateur Radio Club will hoid its fourh annual SCARC '82 hamfest on Saturday, September 11, 1982, at the Sussex County Farm and Horse Show grounds. Plains Road off Rte. 206 Augusta NJ, just north of Newton. Pre. registration for outdoor flea market sellers is $\$ 4.00$; at the gate, $\$ 5.00$. Pre-registration for indoor flea-market sellers is $\$ 5.00$; at the gate, $\$ 6.00$. Other registration is $\$ 2.00$. There will be door prizes and acres of free parking. Talk-in on 147.901.30 and 146.52. For additional information or pre-regis. tration, write Sussex County Amateur Radio Club. PO Box 11, Newton NJ 07860. or Lloyd Buchnoliz WA2LHX, 10 Black Oak Drive, Vernon NJ 07462.

UNIONTOWN PA

SEP 11
The Unlontown Amateur Radio Club will hold its 33rd annual gabfest on Saturday, September 11, 1982, on the club grounds tocated on the Old Pittsburgh Road, just off Route 51 and the 119 bypass, Uniontown PA. The pre-registration fee is $\$ 2.00$ each or 3 for $\$ 5.00$. There will be free parking, free coftee, and free swap and shop setups with registration. Prizes will be awarded, including a first prize of a Ten-Tec Argosy 525 HF . Featured will be a DX contest, demonstrations, and refreshments. Talk-in on 147.045/.645, 144.57/145.17 and 146.521.52. For further information, contact UARC Gablest Committee, c/o John T. Cermak WB3DOD, PO Box 433, Republic PA 15475, or phone (412)-246-2870.

MARION IN

SEP 11
The Grant County Amateur Radio Club Hamtest will be held on Saturday, September 11, 1982, at McCarthy Hall. Marion IN. from 8:00 am until 4:30 pm. Admission is $\$ 2.00$ in advance and $\$ 3.00$ at the gate. There will be good home cooking, hourly drawings, and major prizes. Talk-in on $146.19 / .79$ and 146.52. For more informa. tion or tickets, send an SASE to Beecher Waters WB9YMF. RR \#1, Box 357 . Converse IN 46919.

MELBOURNE FL SEP 11.12

The Platinum Coast Amateur Radio Society will hold its 17th annual hamfest and indoor swap-and-shop flea market on September 11.12, 1982, at the Melbourne Auditorlum, Melbourne FL. Admission is $\$ 3.00$ in advance and $\$ 4.00$ at the door. Swap tables are $\$ 10.00$ for one day and $\$ 15.00$ for both days. There will be unlifmited free parking, a tail-gate area air-conditioned swap and exhibit area, awards, forums, and meetings. Talk-in on . 251.85 and .521.52. For reservations, tables, and information, write PCARS, PO Box 1004, Melbourne FL 32901, or call (305)-245-5116.

WARNER ROBINS GA SEP 11.12

The Central Georgia Amateur Radio Club (CGARC) will hold the fourth annual Central Georgia Hamtest and ARRL Georgla State Convention on Saturday and Sunday, September 11.12, 1982, at the Warner Robins Recreation Center, 800 Watson Boulevard, Warner Robins GA. Donation tickets will be available at the door for $\$ 1.00$ each, 6 tor $\$ 5.00$, or 13 tor $\$ 10.00$. There is no registration fee. Indoor or out. door flea market space is $\$ 3.00$ per day (bring your own table). Features will include meetings, forums, a Sunday morning breakfast for the Georgia State CW Association, activities for YLs and harmonics, a Friday night hospitaily room, and Saturday night pickin' and grinnin'. Talk-in on 146.25/.85. For more information, contact Jim Piper W4HON, 618 American Boule. vard, Warner Robins GA 31093.

butlen pa
 SEP 12

The Butler County Amateur Radio Association will hold its annual hamtest on Sunday, September 12, 1982, from 9:00 am to 4:00 pm, at the Butler Farmshow Grounds
at Roe Airport, Butter PA. Fiy-in at Butler Farmshow Airport. Admission is a $\$ 1.00$ donation and children under 12 will be admit. ted free. Overnight campers are welcome and food and refreshments will be available. There will be an indoor flea market (vendor space will be $\$ 3.00$ per 8 -foot table), a free outside flea market, tree parking fincluding for the handicapped), and prizes, including a Kenwood TS -8305 HF transceiver. Talk-in on 147.96/.36, 52, and 147.84/.24. For additional information, contact Leighton Fennell, Crestmont Drive, RD 6, Butler PA 16001, or phone (4 12)-586-9822.

WILLIMANTIC CT SEP 12

The Natchaug Amateur Radio Assoclation will hold a giant flea market on Sunday. September 12, 1982, from 9:00 am until 400 pm, at the Elks home, off Rtes. 32 and 6 , Willimantic CT. Tables may be reserved in advance for $\$ 5.00$ until September 1st; after that date, they will be $\$ 7.00$ at the door. Admission is $\$ 1.00$. There will be free parking. as well as raftles ând door prizes. Talk.In on 147.30 and 147.901.50. For further information, contact Clifton Pease KA1HYW, 268 Main Street, Willimantic CT 06226, or phone (203)-456-1432 after 4:00 pm.

CARTERVILLEIL SEP 12

The Shawnee Amateur Radio Association will hold its 26 th hamfest, SARAFEST ' 82. on Sunday, September 12, 1982, at John A. Logan College, Highway 13, Carterville IL. Admission is $\$ 2.00$ in advance and $\$ 3.00$ at the door. There will be an air-conditioned flea market. forums, computers, refreshments, contests, and prizes, including a first prize choice of a Kenwood 130S HF transceiver, a microwave oven, an RCA color TV. or an automatic dishwasher. Talk-in on $146.25 / .85,146.52$, and 3.925 . For further information, contact William May KBgQY, 800 Hilldate Avenue, Herrin IL 62948, or phone (618)-942.2511 days.

PORT JEFFERSON LI NY

SEP 12
The Suffolk County Radio Club will hold the 5 th annual flea market on Sunday, September 12, 1982, at the Odd Fellows Hall, Jayne Boulevard, Port Jefferson Station NY. The rain date will be September 19th. Admission for buyers is $\$ 1.50$ each and YLs, XYLS, and harmonics will be admitted free. Sellers, including car and driver, will be charged $\$ 3.50$ each. There will be raffles and food and drink, plus drawings for door prizes. Talk-in on 145.21/144.61. For additional information, contact Floyd WA2SDI at (516)-234.9376 after 6:00 pm.

GRAND RAPIDS MI SEP 18

The Grand Rapids Amateur Radio Asso. ciation, Inc., will hold its annual swap and shop on Saturday, September 18, 1982, at the Hudsonville Fairgrounds. There will be prizes and dealers, with an indoor sales area and an outdoor trunk swap area. Gates will open at 8:00 am for both swappers and the public. Talk-in on 146.16/.76. For more information, write Grand Rapids Amateur Radio Assoclation, Inc., PO Box 1248, Grand Rapids MI 49501.

PEORIA IL
 SEP 18 -19

The Peoria Area Amateur Radio Club will hold the Peoria Superiest " 82 on September 18-19, 1982, at the Expositlon Gardens, W. Northmoor Road, Peoria IL. The gate opens at $6: 00 \mathrm{am}$; the commercial building at $9: 00$
am. Admission is $\$ 3.00$ in advance or $\$ 4.00$ at the door. Activities include forums, amateur radio and computer displays, a free flea market, and, on Saturday evening, an informal get-together at the Heritage House Smorgasbord. At the hamfest site, there will be free movies Saturday night. Full camping facilities are available, as well as a Sunday bus to Northwoods Mall for the ladies. Talk.In on 146.16/.76. For more information, contact Charles W. Kuhn WD9EGW, PAARC Director, 7005 N . Tobi Lane, Peoria IL 61614.

MT CLEMENS MI

SEP 19
The L'Anse Creuse Amateur Radio Club will hoid its 10 th annual swap and shop on Sunday, September 19, 1982, from 9:00 am to $3: 00 \mathrm{pm}$, at the L'Anse Creuse High School, Mt. Clemens MI. Take 1.94 eastbound to the Metropolltan Parkway exit: then take the Metropolitan Parkway 10 Crocker; go left on Crocker to Reimold and then right on Reimold to the last schoot, L'Anse Creuse High School. Admission is $\$ 2.00$ at the door or $\$ 1.00$ in advance. FCC representatives will be there, as well as plenty of new and used gear. There will be lots of food and parking, plus hourly prize drawings. Prizes include a first prize of $\$ 250$, a second prize of $\$ 100$, and a third prize of $\mathbf{\$ 5 0}$. Talk-in on 147.69/.09 and 146.52. For more information, send an SASE to Maurice Schietecatte NBCEO, 15835 Touraine Ct., M1. Clemens MI 48044.

AUGUSTA GA

SEP 19

The Augusta Amateur Radio Club will hold its annual hamiest on September 19, 1982, at the Julian Smith Casino in Augusta GA. Admisslon is $\$ 3.00$ per person; tailgat. Ing will be $\$ 2.00$. There will be prizes, a barbecue, bingo, and a hospitality room on September 18th from $4: 00 \mathrm{pm}$ to $11: 00 \mathrm{pm}$ at the Ramada Inn West, Rooms $108-110$. Talk-In on 147.721.12. For more Information, contact John Schumacher N4DOU, PO Box 3072, Augusta GA 30904, or phone (404)860.4460 trom $6: 00 \mathrm{pm}$ to $9: 00 \mathrm{pm}$ EDT.

PENNSAUKEN NJ
 SEP 19

The South Jersey Radio Association will hoid its 1982 annual hamtest on Sunday, September 19, 1982, from 8:00 am to 4:00 pm , at Pennsauken High School parking lot, Route 73 and Remington Avenue, Pennsauken NJ. There will be door prizes, food, and fun. Admlssion is $\$ 3.00$; tailgate sales are $\$ 5.00$. Talk-in on 146.220/146.820 and 146.52. For ticket sales and more information, contact Fred Holler W2EKB, 348 Bortons Mill Road, Cherry Hill NJ 08034.

VENICE OH
 SEP 19

The Forty-Fifth Annual Cincinnall Hamtest will be held on Sunday. September 19. 1982. at Stricker's Grove, State Route 128, Venice (Ross) OH. Admission and prize ticket, $\$ 5,00$. There will be exhibits and booths, prizes, a flea market (radio-related products only), a hidden transmitter hunt, and an air show. Food and refreshments will be available. For further information. write Lillian Abbott K8CKI 317 Greenwell Road, Cincinnati OH 45238.

MONTGOMERYAL

SEP 19
The Central Alabama Amateur Radio Assoclation will hold its 5 th annual hamfest on Sunday, September 19, 1982, at the Civic Center, downtown Montgomery AL. There will be free admission, free parking, and 22,000 square feet of air-conditioned
activities, including a flea market. Setup will be at 0600, doors will be open from 0800101500 , and a prize drawing will be held at 1400 CDST. Restaurants and motel accommodations are located within a short walk of the Civic Center and refresh ments will be available in the Civic Center. Talk-in on 146.04/.64. 146.31/.91, 147.78/.18, or $147.045 / \pm 600 \mathrm{~T}$. For further information or market reservations, write Hamfest Com mittee, 2141 Edinburgh Drive, Montgomery AL 36116, or call Phil at (205)-272.7980 evenings.

NEW KENSINGTON PA SEP 19

The Skyview Radio Society will hold its annual hamfest on Sunday, September 19 , 1982. from noon untit 4:00 pm, at the club grounds on Turkey Ridge Road, New Kensington PA. Registration lee is $\$ 2.00$; ven dors, $\$ 4.00$. There will be awards. Talk-in on $.04 / .64$ and .52.

NEWTOWN CT SEP 19

The Candlewood Amateur Radio Association will hold a flea market and auction on Sunday, September 19, 1982, raln or shine, at the Essex House, Rte. 6, exit 8 off I.84, Newtown CT, from 10:00 am to 4:00 pm, Ad mission fee of $\$ 1.00$ includes one door prize chance. Tables are $\$ 6.50$. Featured will be an equipment raffie of a TR. 2500 handietalkie dealers, and a magic show for the kids. Refreshments will be available. Talk in on 147.721.12. For advance table reserva. tions, write CARA PO Box 188, Brookfield Center CT 06805. For more information, call George WB2THN at (914)-533.2758, Ken KA1GDS at (203).744-6953, or George AF1U at (203)-438-0549.

ELMIRA NY SEP 25

The Elmira Amateur Radio Association will hold the seventh annual Elmira Interna tional Hamfest on September 25, 1982, at the Chemung County Fairgrounds. Breakfast will be avaltable for several hours after the gates open at 6:00 am. Advance llckets are $\$ 2.00$ and lickets at the gate are $\$ 3,00$ Featured will be tech talks, a free flea mar ket, dealer displays, and prizes, Including a grand prize of an fcom IC.730. Friday night camping will be available on a limited basis at the falrgrounds and lunch will be avall able starting at 11:00 am on Saturday. Talk in on 147.96/.36, 146.101.70, and 146.52. For advance tickets, write John Breese, 340 West Avenue, Horseheads NY 14845.

WICHITA FALLS TX SEP 25.26

The Wichlta Amateur Radio Soclety will hold its first annual hamfest on Septem. ber 25-26, 1982, at the National Guard Armory, Wichita Falls TX. Pre-registration closes Wednesday, September 22, 1982, and is $\$ 4.00$ per person and $\$ 3.00$ per swap table. Registration at the door is $\$ 5.00$ and starts at 8:00 am on Saturday and Sunday. There is tree shuttle service from the Kick. apoo Airport ($1 / 4$ mile south), tree RV park ing without hookups at the armory, and a concession stand open both days. There will te dealer displays, an inside flea mar kel with 24 -hour securliy, scheduled ladies' activities and prizes, contests meetings, a grand prize, and other prize drawings. Talkin on 146.34/,94 and 147.751.15. For more information and pre registration, write to WARS Hamfest, PO Box 4363, Wichita Falls TX 76308

GRAYSLAKE IL
 SEP 25.26

The Chicago FM Club will hold the 12 th
annual Radio Expo on September 25-26, 1982, from 9:30 am to 4:00 pm, at the Lake County Fairgrounds at the intersection of Rtes, 45 and 120, Grayslake IL. Admission is $\$ 3.00$ in advance and $\$ 4.00$ at the door. There will be displays, seminars, technical talks, a flea market (open from 6:00 am to 6:00 pm), full food services, a free camping area, acres of free parking, ladies programs, children's events, and prizes. Talk-in on 146.16/146.76 and 222.52/224.10. For more information and/or reservations, contact Harold G. Rowlett, clo Radio Expo, PO Box 1532, Evanston IL 60204, or phone (312)-588-3976.

BEREA OH SEP 26

The Cleveland Hamfest Association will present the 8th annual Cleveland Hamfest on Sunday, September 26, 1982, at the Cuyahoga County Fairgrounds in Berea OH, from 0800 to 1700 hours. Activities will include indoor exhiblis, forums, a ladies program, and an outdoor flea market with separate parking. Food services will include both breaktast and lunch. There will be three main prizes and a moblle check-in prize. Talk-In on 146.52. Advance tickets are $\$ 2.50$ prior to August 31 st and $\$ 3.00$ at the door. For more information, contact the Cleveland Hamfest Association, PO Box 27211, Cleveland OH 44127

NEW LONDON NH SEP 26

The 6th annual Connecticut Valley FM Assoclatlon Hamfest/Flea Market will be held on Sunday, September 26, 1982, from 9:00 am to 5:00 pm, at King Ridge Ski Area. New London NH. Adull admissions are $\$ 2.00$, a llea.market setup is $\$ 5.00$, and children under 16 will be admitted Iree. King Rldge will have the food concession. For more information, contact Francis Callahan KA18WE, Box 173. East Walling. ford VT 05742.

ADRIAN MI
 SEP 26

The Adrian Amateur Radio Club will hold its 10th annual hamfest on Sunday, September 26. 1982, at the Lenawee County Fairgrounds, Adrian MI. Talk in on 446.31/.91 (W8TQE). For tickets, tables. and more information, contact the Adrian Amaleur Radio Club, Inc., PO Box 26, Adrian MI 49221.

GAINESVILLE GA

SEP 26
The 9th annual Lanierland ARC Hamfest will be held on September 26, 1982 begin. ning at $9: 00 \mathrm{am}$, in the Holiday Hall at Holi. day Inn, Gainesville GA. There will be free tables and an inside display area for dealers and distributors (doors will open at $8: 00$ am for dealer setups). Prize tickets are $\$ 1.00$ each or 6 for $\$ 5.00$. Food and drink will be available, as well as a large parking lot for a free flea market. A boat anchor auction will be held and all activities and facilities will be free. Talk-in on 146.071.67. For information and free space to dealers, contact Phil Loveless KC4UC, 3574 Thompson Bend. Gainesville GA 30506, or phone (404)-532.9160.

BOXBORO MA OCT 2.3

The Federation of Eastern Massachu setts Amateur Radio Associations will hold the New England ARRL Convention on October 2.3, 1982 at the Sheraton Boxboro Hotel, Route 495 at Route 111, Boxboro MA. On Saturday the hours will be 9:00 am to 5:00 pm and on Sunday, 10:00 am to 5:00
om. Early-blrd registration is $\$ 4.00$. The Saturday evening banquet, dance, and show is $\$ 13.50$. Features will include a Woulf Hong midnight ceremony Saturday and $Y \mathrm{~L}$ programs on both days. For reservalions and advance registration, send an SASE to Arthur Tomkinson W1THT, 9 Oliver Terrace, Revere MA 02151 and make checks payable to FEMARA.

WARRINGTON PA

OCT 2.3

The Pack Rats slxth annual Mid-Atlantic VHF Conference will be heid on Saturday, October 2, at the Warrington Motor Lodge, Rte. 611, Warrington, PA. Advance registra. tion $\$ 3.00$; at the door, $\$ 4.00$. Price includes admission to the 11th annual Pack Rats Hamarama on Sunday, October 3, at the Bucks County Drive•In Theater, Rte. 611, Warrington, PA. Admission to the flea market $\$ 2.00$ and tailgating $\$ 4.00$ per space. Bring your own table. Gates open at 7:30 am. Talk-in via W3CCX on 146.52. Informa. tion for both events is available from Hama. rama '82, POB 311, Southampton PA 18966 or Lee A. Cohen K3MXM at (215)-635.4942.

ROCK HILL SC

 OCT 3The York County Amateur Radio Soclety will hold its 31 st annual hamfest on Sun. day, October 3, 1982, at Joslin Park, Rock Hill SC, starting at 0700. Pre-registration is $\$ 3.00$; at the gate, $\$ 4.00$. There will be prizes. Talk-in on 146.43/147.03 and 146.52. For additional information, contact YCARS, Box 4141 CRS, Rock Hill SC 29730.

YONKERS NY
 OCT 3

The Yonkers Amateur Radio Club will hold its electronics falr and flea market on Sunday, October 3, 1982, from 9:00 am to 5:00 pm, rain or shine, at Yonkers Municipal Parking Garage, corner of Neppernan Avenue and New Main Street. Admission is $\$ 2.00$ each; children under 12 will be admitted free. Sellers' spaces are $\$ 6.00$ (bring your own table) and include one admittance. Gates will be open to sellers at 8:00 am. There will be live demonstratlons, hourly prizes, an auction, tree parking, refreshments, and unlimited free coffee all day. Talk-in on 146.265/146.853, 52 . or CB channel 4. For further information, write YARC, 53 Hayward Street, Yonkers NY 10704, or phone (914)-969-1053.

VIRGINIA BEACH VA

OCT 9.10
The ARRL Virginia State Convention and Tidewater Computer Show. Hamtest. Electronic Flea Market will be held on Saturday and Sunday, October 9-10, 1982, from 9:00 am to 5:00 pm both days, at the pavilion in Virginla Beach VA. Admission is $\$ 3.50$ for both days. Flea-market tables are $\$ 5.00$ for one day or $\$ 8.00$ for both days; commercial tlea-market tables are $\$ 15.00$ for both days, and commercial booths are $\$ 30.00$ for both days. Featured will be dealers, special displays. forums. computers, satellite equipment. special XYL programs. and a cocktall party Saturday night. There will be an advance ticket drawing for a hand held transceiver, as well as many valuable door prizes. For more information and/or tickets, contact Jim Harrison N4NV, 1234 Little Bay Avenue, Norfolk VA 23503, or phone (804)-587.1695.

ASHEVILLE NC OCT 9

The Western North Carolina Amateur Radio Society will hold its seventh annual Autumniest on October 9, 1982, at the Asheville Civic Center. Asheville NC. Ad-
mission is $\$ 3.00$ in advance and $\$ 4.00$ at the door. Flea market tables will be $\$ 5.00$ at the door. Activities (all indoors) will include the McElray Memorial CW Competition, bingo for the ladies, and dealer and flea market tables. Travel, motor home, and camping lacilities will be available. Talkin on .31/.91, .16/.76, and .52. For more information, contact WCARS, PO Box 1488, Asheville NC 28802.

PARAMUS NJ

OCT 10
The Bergen ARA will hold a ham swap 'n sell on October 10,1982 , trom 8:00 am to 4:00 pm, at Bergen Community College, 400 Paramus Road, Paramus NJ. Buyers will be admitted free and sellers will be charged $\$ 3.00$. There will be tailgating only; bring your own table. Thousands of spaces will be available. Talk-in on .79/.19 and .52. For more information, contact Jim Greer KK2U, 444 Berkshire Road, Ridgewood NJ 07450, or phone (201)-445-2855.

LIMA OH
 OCT 10

The Northwest Ohio Amateur Radio Club will hold its sixth annual hamfest on Sunday, October 10, 1982, at the Allen County Falrgrounds, Lima OH. Indoor flea market tables will be available for $\$ 5,00$ for an 8 -foot table or $\$ 3.00$ tor haif a table. Tickets are $\$ 2.50 \mathrm{ln}$ advance, $\$ 3.00$ at the door. Doors will open at 6:00 am and grand prizes will be drawn at 3:00 pm. Overnight camping will be available at the fairgrounds. Talk-In on .07/.67, .631.03, . $34 / .94$, and .521.52. For more information, write NOARC, Box 211. Lima OH 45802.

BALTIMORE MD
 OCT 10

The Columbla Amateur Radio Associathon will hold its 6 th annual hamtest on Sunday, October 10, 1982, from 8:00 am 10 3:30 pm , at the Howard County Fairgrounds (15 miles west of Baltimore, just off 1.70 on Rt. 144, 1 mile west of Rt. 32). Admission is $\$ 3.00$, tables are $\$ 6.00$, tailgating is $\$ 3.00$, and indoor tailgating is $\$ 5.00$. Food will be available and prlzes will be awarded. Talk-in on 147.735/135 and 146.52.52. For table reservations or information, write Sue Crawford, 6880 Mink Hollow Road, Highland MD 20777, or phone (301)-286-3805.

WAUKESHA WI OCT 10

The Kettle Moraine Radio Amateur Club will hold its annual Ham, Computer, Video Fest on Sunday, October 10, 1982, at the Waukesha County Expo Center, Highways F and FT, Waukesha WI. Tickets are $\$ 2.00$ in advance and $\$ 3.00$ at the door. Tables are $\$ 3.00$ for each 4 .foot length; reservations will be accepted until October 1, 1982. Since all tacilities will be indoors, the hamtest will be open rain or shine, begin ning at $8: 00 \mathrm{am}$. There will be prizes, food, commercial exhibtors, a "happy hour," and free parking. For table reservations, send a check payable to KMRA Club, PO Box 411, Waukesha WI 53187.

CHELSEA MA OCT 17

The 19-79 Repeater Association of Chelsea MA will hold its annual flea market on Sunday, October 17, 1982, from 11:00 am to 4:00 pm (sellers admitted at 10:00 am), at the Beachmont VFW Post, 150 Bennington Street, Revere MA. Admission is $\$ 1.00$. Sellers' tables are $\$ 6.00$ in advance and $\$ 8.00$ at the door, If avallable. Talk-in on . 191.79 and .52. For table reservations, send a check to 19.79 Repeater Association, PO Box 171, Chelsea MA 02150.

DUAL DRIVE TRIBANDERS

- 20, 15 and 10 meters - Wideband. Low SWR. No tuner needed - Exclusive phased dual drive gives higher gain - Exclusive coaxial capacitors have lower losses, higher Q - Transmitter power is radiated not lost in the traps - Full power low loss balun. Gives improved beam pattern
TET Antenna Systems presents three full size trap multiband beams to meet every amateur need. 5 element, 4 element, and 3 element models all with the exclusive TET dual phased drive. This famous drive system originated with $\mathrm{HB9CV}$ and was perfected by JA3MP. When you buy TET dual drive you know you have the best. It has more gain - just like adding another parasitic element. And wide bandwidth so you can use your solid-state transceiver on both phone and CW without a tuner.
Only the highest quality materials are used throughout. All aluminum tubing is 6061 .T6 alloy. Stainless steel fasteners are provided for all electrical connections. Tubing is cut and predrilled to precision tolerances for easy one afternoon assembly. Light weight and low wind area designs permit use of simpler support structures.
All models feature full 3 Kw PEP power handling, VSWR typical 1.5 or less across all of 20, 15 and, on 10 meters, from 28.0 to 29.2 MHz . Drive impedance is 50 ohms and maximum element length 27^{\prime}. They accomodate masts from $1 \frac{1}{2}$ to $2^{\prime \prime}$ diameter, withstand winds to 100 mph and are furnished complete with a low loss balun that easily withstands full rated power. For gain and front-to-back ratio specifications write or call the factory

factory.	HB35T	HB43SP	HB33SP
Boom Length:	24'7'	$19^{\prime} 8^{\prime \prime}$	13' $2^{\prime \prime}$
Turn Radius:	18'10".	$16^{\prime} 9^{\prime \prime}$	15^{\prime}
Wind Area Ft ${ }^{2}$	7.9	6.6	4.7
Wind load lbs. @ 80 mph :	160	132	102
Boom Dia	$2^{\prime \prime}$	2"	1-5/8"
Weight, lbs :	50	38	27
Price:	\$329.95	\$239.95	\$174.75
	+ shipping	+ shipping	+ shipping

Send for free catalog describing these dual drive beams, our VHF Swiss quads, roofmount towers, elevation rotators and more.
Don't wait any longer to start working rare DX. Order your dual-drive beam today! BY MAIL:
TET Antenna Systems
1924-E W. Mission Road
Escondido, CA 92025
BY PHONE: 714-743-7025

Tune In. . .With GM自NITORING TIMES
 Published Bi-Monthly

Take charge of your scanner or short wave receiver. Learn where to look and when to listen with help from MONITORING TIMES. the only broad-spectrum publication written for serious listeners.

There's an adventure waiting at your fingertips. Tune in drug smuggling communications, spy networks, Space Shuttle support broadcasts, military and government air-to-ground radio, pirate and clandestine transmissions, ship-to-shore links-and much, much more

Send for FREE sample copy today. Please write to:

MONITORING TIMES
140 Dog Branch Road
Brasstown, N.C. 28902

Dual-purpose power amplifiers for HT and XCVR!

-1-10 Watts Input - All-mode operation - 5 year warranty model:
B1O16 (2 meters)
IW $\mathrm{In}=35 \mathrm{~W}$ Out
2 W in $=90 \mathrm{~W}$ Out
10 W In $=160 \mathrm{~W}$ Out with RX preamp!
$\$ 279.95$

ClO6 (220 MHz)

1 W in $=15 \mathrm{~W}$ Out
2 W In = 30W Out
10W in = 60W Out
with RX preamp!
$\$ 199.95$

DIOIO (43O-45O MHz)

IW In = 20W Out
2 W In $=45 \mathrm{~W}$ Out
10W In = 100W Out
5319.95

There's more, and WATT/SWR Meters, too!
See your nearest Dealer

MICROWAVE TELEVISION

The standard RP downconverter package shown above glves you a proven converter design mounted in a weathertight antenna that features low wind loading and easy installation
With this package you are ready for hours of Amateur television entertainment. Just aim the antenna. connect one 75 cable Irom the antenna to the power supply and a second line from the power supply to your TV, and you are on the air
All downconverter models use microstrip construction for long and reliable operation. A low noise microwave preamplifier is used for pulling in weak signals. The downconverter also includes a broad band output ampitier matched 1075 hms , the RP model is recom. mended tor up to 15 miles. Over a range of 15 to 25 miles, the RP + , which has a lower noise and higher gain RF amplitier stage, provides better television reception. These ranges are necessarly approximate, as signal strength is very sensitive to line of sight obstructions. For installations over 25 miles, an RPC unit which uses a separate antenna is avallable. All models are warranted lor one year

Prices including UPS shipment are as follows:
-165
Model RP receiver package 5135
Model RP + recelver package \$155
Model RPC receiver package.
.5155

RTTY SCOPE

 NEW!

At Last! An RTTY Tuning Scope!

And who else but HAL would bring you such a practical solution to the RTTY tuning problem. If all you have is flashing lights, you know how difficult it can be to match your transmit frequency with that of a received RTTY signal. The RS2100 RTTY Scope ends these problems with an accurate display of the received signal (both signal amplitude and phase). The RS2100 is a matching companion for the CT2100 Communications Terminal and may be used with most HAL and other manufacturers' RTTY equipment. An internal loop supply is included.

- X-Y tuning scope indication
- $1^{\prime \prime}$ diameter green phosphor CRT
- Front panel focus, intensity, and position controls
- Internal 200 VDC, 60 ma loop supply
- Two loop keying circuits (high voltage or optical isolator)
- $3-1 / 2^{\prime \prime} \times 8-1 / 4^{\prime \prime} \times 10-3 / 16^{\prime \prime}, 9$ lbs net, 12 lbs shipping 120/240 VAC, $50 / 60 \mathrm{~Hz}$ power
- Scope indicator works with CT2100, DS2050, DS2000, CWR685, CWR6850, CWR670, CWR6700, ST5000, ST-6K, ST-5K, and more
- Loop supply works with CT2100, DS2050, DS2000, CWR685, and CWR6850

Write or call for more details. See the RS2100 at your favorite HAL dealer. -345

CIRCUITS

Do you have a technique, modification, or easy-to-duplicate circuit that your fellow readers might be interested in? If so, send us a concise description of it (under two pages, double-spaced) and include a clear diagram or schematic if needed.
In exchange for these technical gems, 73 offers you the choice of a book from the Radio Bookshop, to be sent upon publication. Submit your idea (and book choice) to: Circuits, Editorial Offices, 73 Magazine, Peterborough NH 03458. Submissions not selected for publication will be returned if an SASE is enclosed.

VISUAL ADJUST FOR GAMMA MATCH: In an emergency or when you don't have your swr meter handy, you can still adjust a gamma match with good results by doing the following: Make a rectangular "Hertz loop" (see diagram) by soldering a piece of solid hookup wire to a 6.3-V, $150 \cdot \mathrm{~mA}$, no. 40 pilot lamp. You may use a socket if desired. The loop is the same height as the gamma and about half the width. If the exciter is QRP, it may be necessary to increase the width of the loop a bit. Fix it to the gamma with masking tape and excite the antenna with about 10 Watts (or enough power for the lamp to start to glow). Adjust the gamma for maximum brightness of the lamp. If the lamp becomes too bright, you may decrease the coupling between the Hertz loop and the gamma by bending one end of the loop slightIy away from the match, Caution: Do not touch the antenna with the power on. After adjusting for maximum brightness, remove the loop and the antenna is matched. Even if you use an swr meter at the transmitter end of the scale, it may falsely indicate a perfect match with certain lengths of coax. However, if you also use the Hertz loop, it quickly verifies that the gamma is adjusted for maximum power transter.-Jose Vicente PY2AUC, Campinas, SP, Brazil.

DUMMY LOAD FOR POWER
SUPPLIES: The series pass transistor is used as a variable resistor and will handle up to 15 Amperes or 115 Watts. The base bias is set by the resistor so that the conduction can be varied. The transistor will get rather hot. It must be mounted on a heat sink and should have forced cooling if heavy loading is antic-ipated.-Glen Deibart, APO NY.

NOISE-BLANKER MODIFICATION FOR THE YAESU FT-707: Fig. (a) is the original circuit in which full gating is used. Fig. (b) shows the new circuit which employs variable gating on Q14, improving the suppression of ignition noise. I had no need for the vox control, so I disabled it and used the potentiometer for the noise-blanker gate control. Results were very good; adjust the control until the ignition noise and strong adjacent signals disappear.-Carl Weiche W5NLB, Tulsa OK.

SIX-METER AMPLIFIER: This class C six-meter amplifier produces a respectable signal when driven with about one Watt from a military GRC or PRC FM transceiver or a conventional amateur transmitter. The CB transistor operates only slightly warm with two square inches of heat sink. The Q of the output network is 7 when operated at 13 volts. The input network Q is 3.5.-AI McKenna WB6BSP, Healdsburg CA.

ELECTRONIC PHONE BELL: The speaker emits a distinctive warble tone when ring pulses are applied to the phone line. Use this circuit as a remote bell or disconnect the phone's ringer for direct use. R1 adjusts the duration of the output; R2 and R3 control the tone's duty cycle and frequency. The transistor is a general-purpose NPN photodevice. The neon bulb and transistor are coupled with the heat-sink tubing to form an optoisolator. - John Mairs AA4DX, Springfield VA.

HAM HELP

We are happy to provide Ham Help list. ings free, on a space-avaifable basls. We are not happy when we have to take time from other duftes to decipher cryptic notes scrawled lleglbly on dog-eared post cards and odd.sized scraps of paper. Please type or print your request (neatiy!), double spaced, on an $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ sheet of paper and use upper and lowercase ler. ters where appropriate. Also, please make a "1" look llke a "1," not an "l," which could be an "el" or an "eye," and so on. Hard as it may be to believe, we are not familiar with every plece of equipment man. ufactured on Earth for the last 50 years! Thanks for your cooperalion.

I am looking for a schematic for a keyboard manutactured by Incoterm Corp., assembly 055 13-02-70REV. I am also look. ing for any Information on how to interface this keyboard to a RTTY or microprocessor system.
W. G. Mott 2 London Bridge London SE1 9RB

England

I would like to hear from somebody who can repair a Digital Frequency Display, Model DD.1K.
J. M. Garcla KP4EE

PO Box 66
Aguadilla PR 00605

I am looking for a schematic for a 1934 Philco table-model Type 89, Code 123, Ser. No. D-15143.

Charles Owens
Denbow Rd.
Durham, NH 03824
am looking for a Central Electronics 200.V transmitter in any condition of parts for the same.

Ted WIIson KATLVT 12439 So. Giles St. Las Vegas NV 89124

Wanted: OS8N oscilloscope, a Sencore TC28 tube tester hybridster, Ameco R5 receiver, and a Knight Kit vio. Please state price and condition

Kevin Neal
Rte. A, Box 221A Flippin AR 72634

Looking for equipment donations to help initlalize a ham club station at a recently opened veterans home. All donations ac. companied by a note giving approximate values will be accordingly acknowledged since they are tax deductible.

> David Basham AE8Y Chiet, Social Services Barbours ville Veterans Home 512 Water St.
> Barboursville WV 25504

Schematics or manuals on the following would be appreciated:

- Hallicrafters SX 104.30-50 MC receiver.
- Precision Applications E400 series sweep generator
- Knight capacltance checker.
- Tektronix 541.535 O-Vert plug in
- Military OS.8U oscilloscope, PS1J power supply, and P1B2X8.J oscilloscope.
- Electalarm Model ID60 alarm by Nuclear Electronics Corp.
- American Telephone alarm, Model AE 202UL, clo ATA Controls Systems.
- Sears Micromatic IC cassette tape recorder.

Costs for postage and/or copying will be paid, but let me know them first.

Kevin Neal
Rte. A. Box 221A
Flippin AR 72634

I need a schematic and manual for the IC $2 F$ VHF 2 -meter transceiver and a sche matic for the IC-3P power supply 3375 . made in 1970.

Marold Nelson WB9OMX
401 East Wisconsin Ave Silver Lake WI 53170

I need the dimensions for the CW radials for the Hy-Gain 18AVTWB antenna.

Sam Creason K6EW 2940 Arlington Ave. Fullerton CA 93635

I need Information and schematics for a Phonics TV phone, part $\quad 690.56331$, manu factured by AMF Electronics Products Div. In Herndon, Virginia. I am also looking for intormation on converting a J.I.L. 202SSB CB to 10 meters. I will pay for any copying costs involved.

Jelf Parker WA1WXL
2001 Jack Frost Rd
Virginia Beach VA 23455

I need information/schematic/instruction manual for the Bu Ships LM- 21 xtal calibrator, freq. indicating $125-20,000 \mathrm{kHz}$, type 74028 -A. I would also like some information on building a suitable power supply for this unit.

Whlliam Stahl
PO Box 262
Martion NJ 08053

I need the operating manual for the Supreme oscilloscope, Model W546A. I will pay any mailing and copying costs.

Glenn Churchill KA2IOI
Box 504
Hudson Falls NY 12839

I am looking for schematics and any other info for the Lafayette He-45 6-meter rig.

Sean Poole KA4LWX 8926 Byron Ave. Surfside FL 33154

I ant looking for the manual and/or schematic for the Hammarlund FM. 5 VHF equipment. I will pay for copying and postage.

Bill Ryan WA2DND
CC 140, Rensselaer Polytechnic Institute Troy NY 12180

Would anyone who has modified a calculator to measure Onms (April, 1982, 73 Magazine) please contact me?

Kevin Neal

Rie. A, Box 221A
Flippin AR 72634
Wanied by my friend DJOQN, near Munich: a repeater offset kit or schemalic of same for the Comptronix FM-80 10 -meter FM rig. Send price/info to me, please.

Doug Smith WAGGON
1369 Tree Garden PI.
Concord CA 94518

I need a copy of the Frequency Selection Code Book and Service Manual for the Ten. nelec Model MS2 memory scanner. I will pay shipping and duplicating costs.

Kenyon B. Courts KA7JJJ

 5267-B Mather St. Eielson AFB AK 99702Here are some items I am looking for:

- Assembly instructions/operating information for a Tel-Rex Model TC.99C triband beam antenna
- Copies of the operating manuals, shop manuals, and modifications for the Collins 75A4 receiver and a Central Electronics 100.V transmitter
- The current address of Wesley R. Schum,
the developer of the $100 . \mathrm{V}$ broadbanded ex. citer-transmitter
I will copy and return immediately with postage retund, or pay for copies.

Bob Robinson KU8C
Route 3 Box 302
Fairmont WV 26554

I need a copy of the service manual for the Bearcat 220. I will be glad to pay copy. ing costs and postage.

Jose Nunez YV2BSV
PO Box 390
Merida 5101A Venezuela

I'm looking for the antenna coupler CU 286/FRR-33 part of the radio recelving set AN/FRR-33, and the control monitor C.1012/FRR, keyer KY.82/FRR and loudspeaker LS. 179/U parts of the radio recelv. ing set AN/FRR. 34.

Roberto Pieraccini
Via V. Veneto 66
51013 Chiesina Uzzanese
Italy
Wanted: Members of school clubs teachers, and students to participate in ed. ucation networks to aid technical and nontechnical classes. Those interested please send schedule information, or information about existing high school and college net. works.
N. S. C. C. Radio Club (K 7WWP)

14861 6th Ave. NE
Seattle WA 98155

I am looking for a 40-toot breakover tower manufactured by Tele-Tower in Enid, Okla. noma.

Howard Russell N6EBF
1291 Sandra Court Upland CA 91786

I am looking for sottware and the required interface to operate RTTY/CW using the TI.99/4A computer.

Steve Shaw W6SLY
7740 Larchwood Way
San Diego CA 92120

I need a mobile mounting bracket for the Midland 13-510A 2-meter transceiver.

George Stephens KA3DSA
5813 Bryn Mawr Road
College Park MD 20740

I am looking for information on how to modify the Bearcat 220 scanner so that it will receive on 29.6 MHz and 52.525 MHz .

Marty Linke WD9ABG 621 North Grace St.
 Lombard IL 60148

LIMITED SPECIAL S555.00		
	Oscilloscopes	
	tomeet every need	
	$\because: \%$ WITHPROHES: $\times 18 \times 10$	
- 0	- ASSEMBLED \& CALIBRATED NEW RECTANGULAR CRT	
MODEL HM-203 (603)434-53		
dener ingutries invited		
- ORiven	ll OPssac	

REGENCY SCANNERS

Call or write today for data shects \& prices! Sold Factory Direct or throughi Expert Sales Pops only. Get your order in A.S.A.P.!

SPECTRUM
Export Orders Welcomed

10M FM Repeaters, Remote Bases,

Join the fun with the growing activity on 10M FM! Extended 'superior' groundwave contacts; local Repeaters; Remote/Local Bases and Mobile for Nationwide or Foreign DX. All with the ease of 2 M FM! Or, tie a 10 M Remote Base into your existing VHFNHF Repeater!
Our Repeaters and Remote Bases are basically made up of 2-SCR-

RX \& TX Boards Now Available! 1000 Mainframes, complete with a VHF/UHF Link "built-in." The 10M FM Receiver is "Super Hot" and "Super Sharp." The transmitter is a 35 Wt. unit with beautiful audio quality.
A Complete Data Package is now available on both complete systems and boards - all commercial quality. Call or write for more information today.

SPEC COMM REPEATER BOARDS \& SUB-ASSEMBLIES

BOARD

10M ALSO available

SCR200 VHF Recolver Board

- Totellir Now Adranced Designt
- 8 Pole Front End Fitr * wide dynamic range-reduces overload, spurious Resp. \& IMs!
- Sens. 0.3 uV/12aB SINAO tyo
\bullet Sel. 6 dB © $\pm .5 \mathrm{KHz} \cdot 130 \mathrm{~dB} \pm 30 \mathrm{KHz} .18$ Pole Crystal +4 Pole Ceramic Fitrs.
- 'S Meter' Discriminator \& Deviation Mtr. Outputs!
- Exc. audio quality! Fast squelen! w/0.0005\% Crystal. ("Super Sharp"IF Filf, a/so avall.)

SCR200 Recelver Assembly

 - SCR200 mounted in anielded housing - Completely asmbld \& tested, w/F.T. caps, SO239 conn- As used in the SCR1000 Ready to drop into your system! High Recommended'

SCR450 UHF Recelver Bd. or Assy. - Similar to SCR200, except $420-470 \mathrm{MHz}$

SCAP Autopatch Board - Provides all basic autopatch functions - Secure 3 Digit Access; 1 Aux On. Off function. Audio AGC: Bullt-In timers; etc. Beautiful Audio! - Or1 inhibli bod also avallable - Writeicall for details and a data shee

RPCM Board

- Used w/SCAP board to provide "Reverse Patch and Land Line Control of Repeater
- Includes lana line answering circuitiry

ID250 CW ID $\&$ Audio Mlxer Board

 - Adjustable ID tone speed. level liming cycle - 4 Inpul af mixer \& Local Mic amp - COR input \& xmir hold circuits- CMOS logic. PROM memory - 250 bilsichannel - Up to 4 diflerent io channeis!
- Many other features. Factory Programmed

FL. 6
FL- 6 Rcur. Front-End Preselector

- 6 Hi Q Resonators with Lo Noise Transistor Amp (2M or 220 MHz).
- Provides tremendous rejection of "out ot-band" signals wout the usual loss! Can otten be used instead of large expensive cavity fillers
- Extremely helpful at sites with many nearby VHF transmit ers to "filter-out" these out of band signals.
CTC100 Rptr. COR Timenticontrol Bd.
- Complete solid state control for rpir COR, "Hang" Timer, "TimeOut" Timer, TX ShutdowNReset, etc.
- Includes Inputs \& Outputs for panel controls \& lamps

Repester Tone a Control Bde - For SCR1000/4000 - CTC100n0250 onty

TRA-1 "Courtesy Tone Beeper" Board

- Puts out a tone beep apx 1 sec alter RX sig drops - thus allowing time for breakers
- Resets T.O. Timer aller "beep"

TMR. 1 "Kerchunker Killer" or "TIme Out Warning Tone" Bd.

- For One of above 2 functions
- "Kerchunker Killer" provides adj. delay (0-10 sec.) for initial rpir access. Auto-Reset at end of OSO
- T.O. Warning Tone provides alerting "warble tone" apx. 10 sec . before "time out."

PSM-1 Repeater Power Supply Mod KIt

- For SCR. 1000 or SCR-4000
- Replaces Darington Pass Ir--for improved ra/labillty
- Includes new overvoltage "Crowbar" shut down clrcult.
- Complete kit. w/assembled PC board \$19.50 + $\$ 3.50$ shipping/handling.

PRM200 Power Supply Filter

 Cap/Regulator/Metering Board- As used in the SCR1000 as maln part of 13.8VDCr8A Pwr. Sply.
- Includes 14,000 μ F Filter Cap, Reg. IC and Driver

Trans., V/l Meter shunte and cal pots.

- Requires Ximr., Br. Rect, Pass Tr./Heat Sink, (Optional Meter), for complete supply
 aVAILABLE

SCT410 XMTR. ASSY.

SCT110 VHF XmirlExclter Board

 - 7 or 10 Wis. Output. 100% Duty Cycle - Intinite VSWR prool- True FM for exc. audio qually
- Designed specifically for continuous rpli service very low in "white noise.
- Spurious 70 dB . Harmonics 60 dB .
- With 0005% xtal.
- BA. 1030 Wt. Amp board Heat Sink, 3 sec . L.P. Filter \& rel. pwr. sensor. BA75 75 Wt. unit also available.

SCT1 10 Transmitter Assembly

- SCIllo mounted in shlelded housing.
- Same as used on SCR1000
- Completely assmbld. w/F.T. caps, SO239 conn.
- 10,30 , or 75 Wt. unit.

SCT410 UHF Transmitter Bd. or Assy.

- Similar to SCTIIO, 10 w/s nom.
- Avall. w/ or w/o OS-16 Super High Stability Crystal OecjOven.
- BA. 40 4OW. UHF AMP. BD. $\frac{\text { HEAT SINK. }}{}$

PCB. 1 Xmtr. Power Control Board

- For SCT110 or SCTA10 Excliers
- Varies B + to control Pwr. Out
- Switchable Ri, Low, or Med. Pwr. out, locally or remotely. AdJ. levels.

- 3 digit ON, 3 digit OFF control of a single repeater function, or (optional) 2 functions (2 digits ON/OFF each).
- Can be used to pull in a relay, trigger logic, etc.
- Typlcally used for Rpir., ONIOFF, hillo Pwr PL ON/OFF, Patch Inhibit/Reset, etc.
- Stable anti-falsing design 5 s limit on access

Chod Harris VP2ML
Box 4881
Santa Rosa CA 95402

WILL HEARD BE HEARD?

A DXpedition to Heard Island, in the southern Indian Ocean, nears reality. At the International DX Convention in Visalia, California, last April, Ian Hunt VK5QT announced tentative plans to activate this rare radio location. In the months follow. ing, the details (and especially funding) started to fall into place.

Heard Island is a small rock sticking out of the frigid seas not far from Antarctica. To locate Heard on the globe at your neighborhood library, put your finger on Saskatoon, Saskatchewan. Now find the diametrically opposite point on the globe, the spot antipodal to Saskatoon. Unless the manufacturer's logo is covering it up, you should have found Heard. Getting radio equipment and operators to Heard won't be so easy.

Heard sits in the middle of some of the worst weather in the world. Temperatures as low as -60° and winds in excess of $300 \mathrm{~km} / \mathrm{h}$ have been recorded on the coast of Antarctica, the nearest significant land mass to Heard. Far from shipping lanes and lying in the dreaded wind belt that sweeps around Antarctica, Heard is about as isolated and inhospitable a spot as one can find.

So why are amateurs going there at all? Several mountaineers plan to scale Big Ben, Heard's 2700 -meter high, icecovered volcano. Splitting the costs with the mountaineers in return for providing top-notch radio communications in case of emergency puts the Heard Island DXpedition into the realm of the possible although costs for the radio part of the trip alone will top $\$ 30,000$.

The International DX Foundation and the Northern California DX Foundation have offered $\$ 10,000$ each toward the trip, and the Wireless Institute of Australia will provide four stations and has pledged \$7,000,
saddened to hear of the death of one of its most valued members, Jesse Bieberman W3KT. Jesse passed away on May 28 , at the age of 77 .

A native and longtime resident of Philadelphia, Jesse displayed an undying dedication to two of his loves: teaching and ham radio. He worked with students both in his job as teacher and in ham radio, found ing the school radio club as well as staying active in the prestigious Frankford Radio Club.

In his later years, Jesse served amateur radio as Vice Director of the Atlantic Division of the ARRL for ten years, and then, after 1980, as Director. He attended the IARU conference in Lima, Peru, in 1980 as a member of the Foreign Affairs Committee of the ARRL board, and he served as the board liaison to the DX Advisory Committee.

Jesse's radio career spanned more than six decades, beginning with his first license in 1920. His longtime dedication to DXkept his call on the top of the DXCC Honor Roll on both SSB and Mixed. And when the CW DXCC award was announced, Jesse was ready. He earned CW DXCC Number 1 in 1975, at the age of 70 . He also was an active contester, consistently operating for the Frankford Radio Club's winning efforts.

Jesse was best known for his efforts in QSLing. He served as the volunteer manager of the W3 QSL bureau for 33 years, sorting other amateurs' cards and making sure they got to their proper destinations. And in that 33 years, not one amateur officially complained about the bureau, an absolutely remarkable record given the notorious impatience of DXers!

But Jesse did more than handie the incoming cards for hams in the third call area. He shared his years of QSLing experience with any amateur. Jesse ran the W3KT Outgoing QSL Service, the most respected DX QSL forwarding service anywhere. For just a few cents a card, Jesse would locate the best possible QSL route for a given station: direct, through a manager, or whatever. He forwarded your card with others for the same station, with return envelopes. When the cards came back, he distributed them via the incoming QSL service, keeping the costs of the service within the reach of every DXer. Jesse knew
all the tricks, all the ways to increase QSL returns.

The W3KT QSL service is now closed. Those cards in the pipeline will be forwarded, but no new cards are being accepted. Jesse's shoes are just too big to fill.
But the DX world has lost more than the best QSL service; it has lost a dedicated DXer who unhesitantly helped others, a fine example to new and experienced operators alike, a man who gave freely of himself so that others could enjoy the hobby that he loved so much. We have lost a good friend. We will miss you, Jesse.

CHINA UPDATE

China continues to make DX news. Both Chinas, in fact. More details of the future of amateur radio in the People's Republic of China leak out around the now. tattered bamboo curtain, and Tim Chen's QSL manager, K2CM, provides some additional details on BV2A/B.

BY1PK has been on and off the air since the first legal operation from mainland China in 30 years began earlier this year. Operator training continues with materials provided by various amateur radio organizations, including the ARRL. The operators will soon return to their homes, carrying with them the experience gained in Beljing: Sometime in the not-toodistant future, these new ops will activate more stations in China, and BYs will be heard more than sporadically.
Meanwhile, bootleggers have been enjoying open season with the BY1PK callsign. The Chinese operators have been deluged with QSLs from well-meaning amateurs who worked someone signing BY1PK. Most of the stateside hams received very nice postcards from China in return for their QSLs and IRCs, but, alas, not a single QSL card. The few hams lucky enough to catch BY1PK on the first run (mostly JAs) can justifiably treasure their colorful cards.

The BY1PK operators stayed on CW , often haunting frequencies 30 kHz up from the bottom of the band, especially on 15 and 20 meters. A straight key and a request for a full QSO with exchange of names and QTHs was typical. QSLs with IRCs to Box 6106, Beijing, People's Republic of China, have gotten a re-
sponse. How soon will BYs be as prevalent as JAs? Not right away, but BY won't be on the top of the most-wanted list for much longer. Meanwhile, there is always the "other" China.

Charlie Moraller K2CM was
kind enough to share additional details about Tim Chen and $B V 2 A / B$. First, those calls are assigned to the China Radio Association. The club station is quite distant from Tim's home QTH, which limits activity, but Tim continues to be the only
member of the Association with permission to operate. The frequent typhoons which rip through the region force dismantling of the yagi every year. The normal yagi emits a far better signal than the dipole used in typhoon season.

Charlie says that Tim wants the OSOs from BV2B QSLed direct to Box 101, Taipei, Taiwan, Republic of China. K2CM is the QSL manager for BV2A. Tim's choice. QSL BV2A via K2CM, 70 Silverbrook Road, Shrewsbury NJ 07701.

RTTY LOOP

Marc I. Leavey, M.D. WA3AJR 4006 Winlee Road
Randallstown MD 21133

Sometimes you just can't win. I mean, I try to plan out this column for months ahead, and then you all go and respond to me, and now here I am with a ton of mail on my desk! Oh well, one of the things I most enjoy is answering questions here in the pages of 73 , so 1 guess this month l'll plunge right in.
Interest in applying micro. computers has never been high. er. Dennis Adamkiewicz KA8ETB, from Cleveland Heights, Ohio, drops a line that he is trying to put his home-brew 6803/6847 system up onto RTTY. This sounds like a reasonable combination, and with suitable software should be just the ticket for a silent terminal. The programs published in this column a few years back can provide a starting point for such software, and I am sure that the sequence we are going through now will also be helpful. Let us all know how the project progresses, Dennis.

Chuck Evola is another 6800 buff, but this time with the old Altair 680b. A few months ago, 1 noted in this column that Chuck was trying to get his system up on RTTY, and the next thing he knew he was exchanging software and printing RTTY using a modified version of the receive program from this column. Chuck sends along his version. I have cleaned it up a tad, and it is printed here for all you 680b fans out there.
Another question posed by Chuck is about a technique to prevent printing unless "true" RTTY is present. I will suggest at this time that such a technique is indeed feasible, using multi-ple-sampling methods. The receive routine I will develop for the terminal described in July
(to continue next time) will use just such a technique, so don't go away.
While we are on the subject of 6800s, Keith Diehl AL7CC up in Anchorage, Alaska, writes of the availability of the A.M.I. 65051/68051 ACIA chip. He notes that this 6800 -compatible chip can be interfaced much as the more-common 6850 ACIA , but that it is able to handle five. bit words with a $11 / 2$-bit stop pulse. Sounds interesting, Murray or less! Wonder if anyone else is using this chip.
Letters with lists of questions sometimes arrive, and such is the case with a note from Todd A. Lefkowitz, M.D., an opthamologist who enjoys shortwave listening with a special ear towards utilities DXing. Todd's first question is the killer: "Which decoder do you recom. mend?" I really cannot endorse anyone's RTTY demodulator, Todd, partly because I want to be fair and partly because I have not seen everyone's in use to compare. I can tell you that, in general, you get what you pay for, and that the available lowend demodulators, such as the iRL FSK-500 and Flesher TU-170, provide good performance at an attractive price. Moving up to units such as the iRL FSK-1000 or one of the Hal units may be needed if you need some bells and whistles, but I suggest you write for data sheets from several of these companies and compare specs for yourself.

Two related questions Todd poses are about a source for RTTY frequencies other than Tom Harrington's book reviewed here last year and other sources for Oliver Ferrell's RTTY frequency guide. I am afraid that if Gilfer Associates, the publisher, has indicated to you a lack of copies of the Ferrell book, then you have shot the
wad. Il know of no other source. The Harrington book, which is available from the 73 Radio Bookshop, remains an excellent (and to my knowledge, the only such) guide to utility and other RTTY signals.

Todd's last question is a com-
mon one which I have fielded any number of times. He asks for books or magazine articles on RTTY principles and basics. Unfortunately, there is no book currently available which covers RTTY basics with modern techniques. What is around are ten-

Program listing.

WADEDU Electronics Supply

LIST \$2995.00

- 73 MHz first If
- 0.3 uV sensitivity
- full break in
- Curtis 8044 keyer available as option
- front panel keyboard
- ten VFO's
- one year factory warranty

Your Price $\$ 2395.00$ Accessories Available

YAESU

THE NEW FT-102

- Operating Modes: LSB, USB (A3J/J3E); CW (A1/A1a); AM (A3/A3E) and FM (F3/F3E)**
- Transmitter Power Input: (1.8-25 MHz) (28-29.9 $\mathrm{MHz})$, SSB, CW, AM, FM, 240W DC, 80W DC, 160W DC, 80W DC, 160W DC
- Carrier suppression: Better than -40 dB at 14 MHz
Sideband suppression:
Better than -60 dB (14 $\mathrm{MHz}, 1 \mathrm{kHz}$ tone)
- Modulation types:

A3J/J3E: balanced modulator
A3/A3E: low level amplitude modulator F3/F3E: variable reactance modulator

- Receiver

Image rejection:
Better than 70dB from 1.8 21.5 MHz

Better than 50 dB from 24.5 $-29.9 \mathrm{MHz}$

ANNOUNCING THE NEW

- Iransmitter RF Power SSB (A^{3} I)
CW (A1) RTTY (F1)
FM (Option)
200W PEP INPUT
200W INPUT
200W INPUT
- Receiving Mode $A^{1} A^{3}$ J (USB LSB) f F^{1} (Option)
- Emission Mode
$A^{3} I S S B$ (USB \& LSB)
A1 CW
F1 RITY
F3 (28 MHIz)
- Sensitivity

SSB CWRTTY Less than $0.3 \mu \mathrm{v}$ for
$10 \mathrm{~dB} 5+\mathrm{N} / \mathrm{N}$
(Preamp - On) Less than $0.15 \mu \mathrm{v}$ for 10 dB S +N/N
FM (Preamp - On) Less than 0.3
v for 20 dB quieting

DONS CORNER

The Ratings continue - 2 meter mobile month: Kenwood TR9130, excellent sensitivity, easy operation, light output; ICOM IC 290A, good performance, cheaper pricing; Yaesu FT480R, great reliability, medium pricing.
ICOM IC25A - Kenwood TR7730 - Yaesu FT 230 - All popular, All the same basic flavor. Yaesu FT208R - biggest seller; Kenwood TR 2500 - durable; Santec St144 μ P'- most features; ICOM IC2AT - basic reliable workhorse.
Consider the various Mod Kits out FOXTANGO, WGIOG, ICOM-Kenwood users, etc.: Our repair dept. has tried several \& they are excellent, plus an affordable way 10 "upgrade" an old radio (TS820?). Remember our service dept. What we can't fix with a hammer, we don't work on.

See you next month!

BELDENO

and twenty-year-old circuits and books which predate ASCII and much other recent development. Hopefully, this is a situation which will be soon corrected by the gang at 73. As far as magazine articles, you are reading the most consistent source for RTTY information for the last five years. Within the covers of this magazine, I am sure you will be able to find the answer to many, if not all, of your RTTY problems. If you have specific questions, drop me a line and I will see what I can do to reply in a future column.

Carl E. Nelson KI0H, in Blaine, Minnesota, touches base with his recently-developed interest in RTTY. He wants to put an ASR-33 Teletype machine on the air and is looking for plans for an AFSK generator and demodulator. He also is interested in ASCII-to-Murray (Baudot) conversion, for use on five-level circuits.

A similar question comes from Dr. William W. Fulcher, Jr., N4WF, over in Hendersonville,

Tennessee. Bill is looking for help in wiring a Teletype Model ASR-28 he has obtained for amateur use.

Well, gentlemen, and ladies in attendance also, many of these questions have been answered in previous editions of "RTTY Loop." In the five years of this column, I have covered the hookup of many types of Tele. type machines and have presented various circuits for trans. mitting and receiving. At present, there is no compilation of this material available. Hopefully, something of this kind will be available in the not-too-distant future. If you are interested, drop me a line and let me know what you would like to see in such a publication.
A gentleman who makes his wants clearly known is Larry Marcus W5MDT, from Plano, Texas. Larry is looking for a book or source that will give a "comprehensive understanding of the various computer software available as well as the
dedicated machines" that he sees advertised. The biggest problem with this, Larry, is the hugelvariety of stuff. It would be difficult to assemble a collection of all that is out there in one place to "A/B" compare it, and short of such a direct comparison, any presentation is bound to be biased. Nevertheless, I would refer you to the many articles presented here in 73 and in our sister publication, Microcomputing, for some help. I have tried to review whatever I have been able to get ahold of, and in the past have looked at several systems. Many manufacturers, however, are less than willing to submit their systems for criticism. Again, I am sorry, but to the best of my knowledge, no book is available that would answer your need specifically.

Speaking of manufacturers, I have a note here from Bob Pearson KH6AKW, who runs an outfit called Hawaiian Computer Softivare. Bob has a program for the Ohio Scientific Superboard II that enables that computer to
run Murray and ASCII with a variety of features and enhancements. It looks interesting, although I am unable to try it out, for lack of a Superboard II! A random thought which occurs to me is that the Superboard II is a 6502-based computer, muci as the Apple and Pet. Wonder if some conversion would be possible to these systems? Might be worth looking into, Bob. Anyway, if you are interested, drop Bob a line at Hawaiian Computer Software, 99-060 Lohea Place, Aiea HI 96701. Make sure you mention 73 Magazine's "RTTY Loop" in your note, OK?

More next month, with a return to the super 6800 RTTY terminal we have been describing. Remember, if you want a question answered here in the column, send it to me at the above address. If you would like a personal reply, you must enclose a self-addressed stamped envelope. I try to answer all questions received, but I do have quite a backlog. Just be patient, and keep watching "RTTY Loop."

REVIEW

THE INFO-TECH M500ASR

This is not really meant to be a "product review" but a down-to-earth look at some of the ex. citement and problems a new product can bring and the way it affects the health and wellbeing of the owner of a new piece of gear-especially if it is of new design.

The Info.Tech M500ASR is a state-of-the-art communica-
tions terminal for use in the transmission and reception of RTTY in the ASCII and Murray (Baudot) codes as well as for sending and receiving Morse code. It is a microprocessorcontrolled unit based on the Fairchild F8 (3850) and has 20 K of memory which is divided up into 8 K ROM, 8 K RAM, and 4 K video RAM. There is an option that allows the addition of 10 K of RAM for the mailbox systems.

The system consists of three major units: the mainframe, which houses 95% of the electronics, the keyboard, which is connected to the mainframe via an umbilical cord, and the monitor, which is a Sanyo VM4512, 12-inch black and white monitor.

Features

The M500ASR will encode and decode ASCII up to 1200 baud and Baudot up to 100 baud. In the ASCII mode at 110 baud, it uses an eleven-unit code which consists of 1 start bit, 7 data bits, 1 parity bit, and 2 stop bits. When using 150 to

1200 baud ASCII, the M500ASR uses the ten-unit code which is the same as the eleven-unit code except there is only 1 stop bit. The use of parity is also keyboard-selectable from odd, even, or none. When none is selected, parity is marking. in the Baudot mode, the M500ASR uses the standard 7.5 -unit code. In the Morse mode, it will send and receive CW from 5 to 100 wpm, with auto-tracking on receive.

There are five types of transmitting modes in RTTY: letter mode, word mode, line mode, buffer mode, and clocked mode. In the letter mode (or character

mode, as it is more accurately described), each letter is transmitted as it is entered from the keyboard. In the word mode, the pre-typed word is sent only after the space bar is entered. In the line mode, an entire line of text is transmitted only after the return key is depressed. In the buffer mode, pre-loaded buffers are dumped on command.

Of all the different modes that are available, the clocked mode is the most unique. The output is slowed to a speed that depends upon the setting of the clock output value. It allows the trans. mitted character output to maintain a constant rhythm that gives the station on the receiving end the illusion that you are typing at a smooth and even rate. In selecting clock values, a selected value of 1 would be full speed and 9 would cause the output to be one ninth the normal rate

The M500ASR has several different message systems available. There are ten programmable messages of up to 144 characters each. Each message can be sent separately or the entire contents of messages 0 through 9 may be linked to allow up to 1440 characters to be preloaded. This is especially handy for "brag tapes" or message handling. There are two types of ID messages available. One is CW ID only and the other allows a RTTY message to be incorpo. rated into the ID. This message is preprogrammable and allows you to ID in RTTY then CW. After CW ID, it will go back to the original mode and speed automatically.

The Modem

The modulator/demodulator system (modem) of the M500ASR uses an envelope detector tuned to a center frequency of 1000 Hz for the detection of Morse code. However, as with any other system that receives Morse code, it must receive decent CW. If you try to copy someone who uses his own brand of spacing (the type that makes Sam Morse roll over in his grave), you will get nothing but garbage on the screen. However, if the transmitting station is using an electronic keyer with proper weighting or, better yet, another computer, you will get 100 percent copy (depending on
band conditions and QRM, of course).

In the RTTY mode, a threeshift active filter demodulator is used for all Baudot speeds and 110 -baud ASCII. The shifts are 170,425 and 850 Hz . The $425-\mathrm{Hz}$ shift is really handy for those serious SWLs who love to see the news before anyone else does, or get the latest in the weather directly from the National Weather Service in Kansas City. A separate active filter is provided for ASCII speeds from 150 to 1200 baud. The RTTY tones are provided in several different ways. There is a three-function generator used to generate the audio tones that are fed directly into the mike of your rig. In addition to AFSK, there are FSK, inverted FSK, and RS-232 keying outputs.

For automatic operation of the keying circuit of your rig, there are several different push-to-talk (PTT) lines available. Now, while we are on the sub. ject of AFSK and FSK, some of you old-timers will be saying, "He should tell new operators to use FSK only, because AFSK causes adjacent channel splatter and unnecessary QRM." Well, let me say this: I have been using nothing but AFSK for over a year and have not run into any problems yet. The catch is that you must be very careful not to overdrive your rig and must check your outgoing signal regularly for flat-topping and distortion. Should you find the AFSK generator is flat-topping, splattering, or distorting, the level can be lowered from the factory-set value of 1.5 volts.

Hard Copy

If you decide to become a "green key," at some time you will find the need to have a hard copy of what you have received. (If for nothing else, just to show your friends the pictures of the nudes being sent on 14.0895 MHz .) This is one area where the M500ASR really shines. There are several different printer inputs and outputs available, in. cluding a fully-isolated loop for those of you who still insist on using a mechanical monster such as a model 15. For the newer printers, RS- 232 and MIL-188 are available. But that's not all. The printer outputs are fully regenerated. You can copy 110 -baud ASCH on your 45-baud model 19 or 1200 baud ASCII on
your Epson set at 300 baud without the need for external converters.

There is a limit to this. If you try to copy 1200 -baud ASCII and print it on a printer set at 300 baud, the printer buffer on the M500ASR will fill up, overwriting text that was already in the buffer. Also, let me remind those of you who are into SWLing that what you copy is for your eyes only. Don't make the mistake of printing out a long story from the AP or UPI and showing it to your neighbor. If you do you will be violating FCC regulations.

Tape Interface

RTTYers tend to be very longwinded. This is where a cassette interface becomes very handy. Most RTTYers have compiled brag tapes that give a rundown of their station equipment. Some include personal information, general info about the XYL, the rug rats, dog, cat, job, etc. Most of the cassette interfaces in use today are really nothing more than a few simple connections which allow you to record and play back through your terminal.

The M500ASR cassette interface is more like the type of interface you would find on a personal computer. It actually outputs data in blocks using Kansas City standard tones. The data is loaded and stored in fixed blocks of 1008 characters. Each data block is preceded by two groups of synchronizing leaders and followed by a group of end-of-block transfer codes. The codes are automatically generated when a recording is made, and tested when it is played back. When the cassette load or dump command is entered, the cassette motor control will turn on, starting the cassette recorder. Then the first synchronization group will be sent. After the recorder comes up to full speed, the second group will be sent followed by the data block and end-of-block group. After the end-of-block group is sent, the cassette motor control will turn off.

Because of the way the tape is formatted, it is not necessary to start the tape at a specific point when playing back or loading data. Also, all other functions may continue in normal operation as long as you do not try to access the buffer where the tape operation is originated.

In actual operation, I have found that the tape interface is a handy device, but it is not too well suited for use in running brag tapes or picture tapes due to the limit of the buffer. What it will allow you to do is to make a tape of your general operating parameters. Then all you have to do is turn the power on and enter the cassette-load command. While the cassette interface is loading your CQ message, ID, CW ID, Sel-Cal codes, and WRU answer codes, you can drink a cup of coffee while the machine does all the work.

Screen Options and Mailbox

The M500ASR has a "split screen" which divides the transmitted text and received text, both of which are displayed at the same time. The upper portion of the screen is the received text and is brighter in intensity than the lower, which shows the transmitted text or the text entered into the transmit buffer.
The system uses a 25 -line by 72 -character format of which any number of lines from 2 to 15 can be assigned to the transmit buffer. The bottom ($25 t h$) line is reserved for the status line which shows the current operating parameters of the unit and the time and date in local or Zulu time.

The receive video has word wraparound, a feature which prevents the unit from cutting off a word of 15 characters or less at the end of a line. When operating in the word or line mode, the transmit video area has the same feature. The system uses dual cursors. One, known as the keyboard cursor, indicates where on the screen the next character entered from the keyboard will be placed. The other cursor, called the transmit cursor, shows what character is next on line to be transmitted. This allows you to see how far ahead of the output you are when typing into the buffer and serves as an indicator of the number of characters which remain to be transmitted.

There are several keys available to the operator of the M500ASR. Along with the CQ and DE keys, there is a break key which, when depressed, causes the RTTY outputs to remain in the mark condition. When operating in the Morse mode, it causes the transmitter to be turned on. There is a run/load key which

BUM—SELL_TRADE All Brands New \& Reconditioned

YOU WANT A DEAL - WE WANT TO DEAL

CALL NOW!!! SAVE-SAVE-SAVE

NOTE: SEND $\$ 1.00$ FOR OUR CURRENT CATALOG OF NEW AND RECONDITIONED EQUIPMENT SEND $\$ 1.00$ FOR OUR WHOLESALE LIST OF UNSERVICED \& OVERSTOCK ITEMS. SEND $\$ 2.00$ FOR BOTH. THEY WILL BE MAILED SEPARATELY.

controls the transmit buffer output condition. There is a repeat key which, when held down in conjunction with any other key, will cause that character to be repeated until one of the keys is released. The blank key causes the keyboard cursor to move back one space for each time it is depressed, up to the beginning of the line. There is a reset key which clears all of the RAM and initializes the operating parameters and causes a self test of the various segments of RAM. For Morse operation, there are special keys for AR, AS, BK, BT, SK, "Attention," and "Understand."

What do I do if I make a mistake when I am loading a mes. sage into the transmit buffer? Well, with the M500ASR's powerful editor, all you do is enter a few simple commands and, at the stroke of a key, you can delete a character, insert a character, or insert a string of characters. To edit text that has scrolled off the transmit video screen, you must enter the receive area buffer editor mode. Then you can edit the text in the same manner as you would when in the transmit buffer editor. The operation may sound complicated but it is not. The dual editor is a very powerful and extremely useful device. I have typed out several letters, and 1 even wrote this article using the M500ASR as a word processor.

I mentioned a mailbox option that is available for the M500ASR. I operated the system with the mailbox option, and, to be completely honest, 1 would not call it a mailbox. Generally, you think of a mailbox as being an electronic depository for the operator to receive messages while he is away from the shack. In reality, the M500ASR mailbox allows only others to send and receive messages. It gives stations total and complete control of the system. They can list a directory of mes. sages in the mailbox. A station can call up a selective directory that lists only those messages that are for him. He then can read those messages and erase them. It really works well for other stations but it serves no purpose for the owner of the system.

The owner of the system cannot read a message or write a message for someone else. In fact, he cannot use it at all, be-
cause when in the mailbox mode, the keyboard is completely locked out. The only way to remove the system from mailbox operation once you are in that mode is to press the reset key or turn the power off. It is, in effect, a "blind mailbox." This would be a nice option for a RTTY repeater.

Problems

Murphy's law states that what can go wrong will go wrong, and believe me, for a while I thought I was Murph's stepson. When I traded my M200F and M300C for this brand new top-of-the-line system, I was, to say the least, very excited. I never had one bit of trouble with the other system, but when I hooked up the new sys. tem things started changing rapidly. During the first day of operation, the system showed some very strange and erratic behavior, bordering on being schizo. I had a choice. Either I was becoming senile (at age 28) or the microprocessor had a mind of its own.

The mark tuning LED went first. Then the system started refusing commands from the keyboard. Steadfastly, it ignored everything, while the colon on the block winked merrily away. A phone call to Info-Tech confirmed my suspicions: They were having problems with the programming of the ROMs and knew how to fix it. So, back to the factory it went. (Let me point out that I got the fourth production unit off the line and was really not too concerned with the problem. We all know that when something is new it is sub. ject to several attacks of Mur. phy's law.)

Ten days later, the dust was barely settling in the tracks of the UPS truck when I had the system back on line. What happened now? Nothing happened. Murphy struck again. Now I am starting to have some second thoughts. Oh well, a phone call produced some reassuring sounds on the other end, and it was back on the road again for my M500ASR.

Like clockwork, ten days after I returned the unit the second time, T.J., the UPS lady, returned with my M500ASR. This time she did not even get a chance to get out the door before I had the unit hooked up and the power on.

Did it work? Well, it worked for a while, anyway. The mark tun-
ing LED was fixed and everything seemed to be okay for about 15 minutes. And then? Data started jumping around to weird places. The entire screen filled with characters and started an endless scroll to oblivion. Bits and pieces from the recallable messages were popping onto the screen out of nowhere. Every time I tried to operate in the load mode, the system would try to send the status line over and over again.

I would hate to be on the re. ceiving end of the phone call that would result from a problem like this. Luckily, John, at info-Tech, had some more very interesting sounds to make. I think he could have been a politician.

A Short Time Later.

Someone is knocking on my door. Oh! "Hello T.J., I see you have a package for me. Great! It's my brand new (rebuilt) M500ASR. Thanks, T.J., see you later." As she shut the door behind her, I made a mad dash for the bench and started hook. ing up the unit. Let's see now. Power on. Looks good so far. Monitor on. All systems go. Status line normal. I want to assign four extra buffers to the transmit buffer, so I depress the SHIFT and CTRL keys at the same time and enter XB-4 ${ }^{\circ}$. Yep, it works. I start tuning around the band, signals everywhere. Let's see, there's a strong one. It's 6D5M, with a nice signal in here calling CQ. I answer him, and we have a nice chat. Well, everything seems to be working OK. Maybe it's fixed.

Did you ever feel like you were Charlie Brown trying to fly a kite? You know, when the kiteeating tree always devours his pride and joy. Well, you can't blame the tree, it's probably hungry. Gremlins are like that, hungry all the time. They need three squares a day of silicon.

The same problems were there and I was getting a little tired of sending this system back to the factory. I saw a trend developing. After a long discussion with John, he said that he would send me a new set of EPROMs with some of the revisions to the program on them.

Even Later

Someone is knocking on my door. "Hello, T.J., how are you doing? I see you have a package
for me. Thanks, T.J., see you later."

Ten minutes later everything is hooked up and ready to go. What's that noise? I still hear little grumbling sounds. Must be my imagination. Power on. Everything looks good. Status line normal. Add four buffers to the transmit buffer. All systems go. 1 start tuning around the band. Wow! A 25 over signal. Its HH2CL with a great signal in here. Solid copy. Well, how about that, everything seems to be working fine. That makes the final score Info-Tech 1, gremlins 3. Not bad for a new player on the team.

One week later the battle cry of gremlins is loud and clear. They lost the battle, but the war is not over. They attack from all directions. The treaty is broken. Charlie Brown has better luck than this. Okay now, count to 10 , stay cool, be calm, don't get ex. cited. I am sure there is a logical explanation for this.

After some lengthy discus. sion with John, he decides to send me a new set of 2716 EPROMs and a new set of RAMs, on the thought that one or more of the RAMs could be bad. Well, at least it is not so bad this time. I can still operate RTTY while I am waiting for the new parts. The system acts only a little screwy.

Five days later T.J. is back at the door. After I scribble my name on the necessary form, not even the Roadrunner could catch me as I smoke the trail between the door and the bench.

It took longer this time, but two weeks later the gremlins were at it again. This time I think they are in for the duration. They are doing things I have never seen before. They are even at tacking the keyboard, making some of the keys operate funny. I think this unit is jinxed.

Back on the phone with John. (I think I will put in a WATS line.) We discuss the problems and come to the conclusion that it would be best to send me a brand new system.

Three days after I shipped the unit back to Info-Tech, I called John to follow up and see that the unit had arrived. Indeed it had, but it did not make the trip in too good a shape. It seems as if UPS bounced it around a little and reduced it to a metal and silicon junk heap. Don't worry, I had it insured. John informed
me that they had already shipped me a new system and he would take care of the insur. ance claim from that end.

Murphy Lives!

Nothing is ever as simple as it sounds. Three days later, T.J. left a package for me on the door step. Imagine my dismay when I saw a yellow damage tag on the package. I thought they had damaged my new unit. Upon opening the package, I found it was the old one. Old Serial Number Four! Pieces of M500 were stuffed in the box. Great! What now? Out to the shack to call John and find out what is going on.
When I told John what had happened, the silence on the other end was deafening. His first words were "Oh, boy!" Then, after we discussed what had happened, he told me he would call me back and let me know what to do with the old one. In the meantime, my new system should be there the next day.

Here comes T.J. up the drive, and about thirty minutes later I had the new system (Serial Number 25) up and running. Everything was doing what it was supposed to do, and doing it well. And now that I had operated a fully-functional system, I realized that it was worth the time and trouble. Info-Tech has made a great advancement in the state of the art of RTTY.

John tells me that they want to put the old unit to the torture test and see if they can run the resident gremlins off. I wish them all the luck in the world But right now I have to get dressed as T.J. and I are going to dinner and a show to celebrate

The M500ASR (with $12^{\prime \prime}$ monitor) has a list price of $\$ 1475$. A memory-expansion board with mailbox option costs $\$ 180$. For more information, contact the manufacturer of Info-Tech equipment: Digital Electronic Systems, Inc., 1633 Wisteria Court. Englewood FL 33533. Reader Service number 482.

Jim Brown N4DDS
Eads TN

THE MFJ CW COMPUTER INTERFACE

MFJ Enterprises has done it again. For about $\$ 70.00$, you can obtain a compact ($6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$) yet complete interface for receiving and sending Morse code
with your computer. Of course, you must write the software. But at least the hardware problem is largely solved.

In this review I will discuss the various aspects of the MFJ. 1200 with emphasis on its design, features, and limitations. I will also explain why an interface is needed. Finally, I shall supply you with a BASIC program to re. ceive Morse code. In this way, you can try out your 1200 right away while you are developing more sophisticated software to suit your own application. And, if you are a Heath $\mathrm{H}-8$ and $\mathrm{H}-89$ computer owner and cannot wait to get on the air with your machine, write me. I have a good program at a reasonable price available separately or in a package with the 1200.

First of all, what do you need to use the computer to read Morse code? Essentially, you must solve two problems: the hardware interface and the software support. First, let's look at the hardware. Imagine if you can the audio output of a radio receiver tuned to a CW signal. If you view it on an oscilloscope, you will see a train of audio oscillations of various widths interwoven with periods of no output. Each packet of audio waves represents an audible tone and its width determines whether it is a dot or a dash. The times
when there is no output are the intracharacter, intercharacter, or interword spaces.

You can draw a curve around each wave packet. This curve is constructed to be tangent at each local maximum (peak) of the audio oscillation and is called an envelope. Ideally, the envelope is a rectangular wave, but in practice it will have finite rise and decay times. Of course, what I am describing is nothing more than an audio signal modulated by a rectangularly. shaped wave of a much longer period. Typically, the audio tone has a frequency of 1000 Hz or a period of 1 millisecond. At 20 words per minute, the envelope is about 180 milliseconds in length for a dash and one third of that for a dot.

The computer wants only the envelope, or, rather, its upper or lower half. The audio is only a carrier, and the situation is com. pletely analogous to $A M$ modulation and detection. Thus, the CW detector must extract the envelope, shape and enhance it, and then present it to the com puter at a compatible level. This is precisely what half of the MFJ interface accomplishes. The computer will see a series of log. ical highs and lows at its input, where the length of time between transitions represents a dot, dash, or space. It is now up
to the computer to convert the digital information to readable text.

Take a look at the schematic design of the MFJ-1200, Fig. 1. Beginning at the audio input jack, we find a simple diode noise clipper followed by a two. stage, multiple feedback, bandpass filter. The calculated center frequency is 850 Hz and the $3-\mathrm{dB}$ bandwidth is 175 Hz for each stage. The second stage also drives an LED indicator which blinks with the CW input and provides an indication of proper tuning. Following this is a simple diode detector with a sense switch, and this circuit precedes a second-order, VCVS low-pass filter with unity gain and a calculated cutoff frequency of 75 Hz . This additional filter takes out unneeded detection products. Next, a comparator circuit shapes the detected output to produce a rectangular wave with a fast rise time and to generate RS-232 levels. Finally, a transistor converts the RS-232 to TTL levels.

Using a function generator and an oscilloscope, I found the center frequency to be 860 Hz and the $3 \cdot \mathrm{~dB}$ bandwidth to fall in the $780 \cdot$ to $950 \cdot \mathrm{~Hz}$ range. My frequency meter does not allow resolution finer than 10 Hz , so these values are certainly in agreement. I also measured the

Fig.1. Schematic diagram.

The MFJ CW computer interface.
low-frequency filter cutoff and read a 3 -dB point of about 60 Hz . And, finally, I checked the rise time of the TTL output with an input code signal of about 22 words per minute and found it too short to measure.

The detector circuit is quite simple-a diode and a low-pass filter. It differs from the more frequently used 567 tone decoder. MFJ told me that they had experimented with the decoder but finally decided on the circuit described. It does, however, have a slight disadvantage, and that is that the bandwidth is rather strongly dependent on amplitude. I found that the higher the input amplitude, the wider the range of response. In contrast, a 567 will respond only over a width of about 14% of its freerunning frequency once the input magnitude exceeds a certain threshold. But I have experienced no difficulty in actually using the 1200, and the documentation cautions the user to reduce the input until only the desired CW signal is activating the received-signal LED.

The MFJ- 1200 will also key a transmitter. A transistor converts RS-232 to TTL levels, and a second transistor drives two high-voltage keying circuits. Unfortunately, the documentation does not give the maximum allowed ranges, but the catalog lists -300 volts at 10 mA and +300 volts at 100 mA . An LED glows when the transmitter is keyed. I have also used the unit to activate a battery-operated code-practice oscillator when running my AUTOSEND program. This program produces random or fixed-length code groups for learning Morse, and the 1200 not only allows me to
hear the output but also to make practice tape recordings.
Let us now look at the MFJ-1200 from the user's standpoint. There are two switches on the front panel. One applies power. (The rectifier and filter circuits are inside; the power transformer is external and is built into the wall plug. Thus the unit expects 9.12 volts ac, and the application of dc can damage it.) The other push-button is a sense or normal/reverse switch. The output logic is reversed if this is pushed in. The usual convention is for a logic 1 to be an electrical low. However, with this switch the opposite sense can be chosen.

In addition to being able to accommodate various hardwarel software arrangements, the sense switch has a rather unusual application. Some CW utility stations occasionally use frequency-shift keying. The various Navy stations on 8.090 and 12.135 MHz transmit with an $850-\mathrm{Hz}$ shift from time to time. To take maximum advantage of CW FSK, you should have a RTTY modem such as the iRL FSK-1000. However, with the MFJ-1200 you can read either the mark frequency or the space frequency by changing the sense.

On the back are seven phono sockets and the ac-power connector. It is best to attach the audio input in parallel with the speaker line because the receiver volume control can be used to regulate the input level. This is important for readable code.

Two sockets give the detected output to the user at either TTL or RS-232 levels. These are the inputs to the computer. However, you cannot really use
a serial input port even though the output from the 1200 is itself serial data. This is because Morse output does not have the form expected by the computer interface (UART) of start bit, data bits, parity bit, and stop bit(s). Rather, the software itself must perform as the UART. What the computer really needs is a one-line parallel port.

Many computers have parallel ports which usually operate at TTL levels, and it is quite easy to read them using assembly or high-level-language programs. Some computers have no parallel ports which are provided by the manufacturer. A good example is the Heath $\mathrm{H}-89$, but even in this case it is easy to find input and output lines which are not part of the serial signal-in and signal-out paths. Many UARTS, such as the INS8250 and the 8251, provide several lines to control modems or other peripheral devices. For example, the 8250 has eight-four each for input and output. The output lines are located at port address +4 and are called Modem Control Lines. Similarly, the modem status lines at port +6 can be used for input. The 8251, while not quite so versatile, has one input and two output lines which can be found at port address +1 . In some cases, the modem lines can even be used to generate interrupts. For more information, see your computer documentation.

The next two connectors on the MFJ-1200 are TTL or RS-232 inputs from the computer. The same remarks about output lines apply, and attachments should be made from a parallel port or modem control line and not from a signal-serial-output port. Finally, two sockets, one for direct and one for grid block keying, are provided. A subminiature phone jack is used for 12 volts ac.

To use the 1200 , a CW signal is tuned until the received signal LED blinks brightly. The amplitude of the signal is then reduced until only the signal itself turns on the light. Too much drive causes the unit to interpret noise and adjacent channel interference as valid signals. The resulting output to the terminal is rubbish, with the periods between transmissions filled with Es and Ts. I found that with relatively careful tuning and regula.
tion of volume, the received code was printed very accurately.

One of the most difficult aspects of using the unit is getting the volume level set properly to avoid false triggers and setting the center frequency accurately. The two go together since the detector allows a wider bandwidth with high amplitude. It would be a great help to have a tuning meter. One must balance economy with performance, of course, but it would be really useful to at least have a socket on the back where a simple meter could be connected. I found that after an initial setting, I could improve the accuracy by reducing the volume until the LED became quite dim and then returning for maximum brightness. Things do not have to be absolutely perfect; there is enough tolerance for minor errors, and the technique just described is adequate.
How well does it work? To find out, I tried it with several Morse programs and made a few heuristic comparisons. I also made a qualitative comparison with another CW detector -the iRL FSK-1000. Before you say that iRL makes only RTTY demodulators, let me remark that the FSK-1000 is an outstanding unit for CW, although for some reason the company never mentions this explicitly. Excellent filters, AM and limiterdetection modes, narrow bandwidth, and many other features make it a versatile unit for digital communications. I also point out that it costs eight times as much as the MFJ-1200, and its purchase for CW use alone is not sensible.

In all cases, we obtained good accuracy on machine-sent CW from the various utility stations. It seemed that a few more errors were made with the 1200 than with the FSK-1000, but the difference was not great. Amateur reception was not as good, but this has little to do with the characteristics of the CW interface or the program but rather with the nature of amateur communications itself. At this point, we should perhaps mention that computer CW may initially be a disappointment to some. Even very good Morse programs do not tolerate bad sending, and unfortunately it can be found everywhere. It takes an astute combination of eye, ear, and experience to use the computer in such code since a high percent-

MDREAIN
 $1 / 2$-size (75 M only $66^{\text {') }}$)
 Multi-Band (5, 4, 3 bands) 80175M thru 10M
 Broadbanded - no traps used
 Prices start at $\mathbf{\$ 8 2 . 5 0}$
 MDrifin

THE MOR-GAIN HD DIPOLES are the most advanced, highest performance multi-band HF dipole antennas available. Patented design provides length one-half of conventional dipoles. 50 ohm feed on all bands, no tuner or balun required. Can be installed as inverted VEE. Thousands in use worldwide. 22 models available including two models engineered for optimum pefformance for the novice bands. The Mor-Gain HD dipoles N / T series are the only commercial antennas specifically designed to meet the operational requirements of the novice license. Our 1 -year warranty is backed by nearly 20 years of HD dipole production experience.

For detailed 10 -page brochure, write or phone directly to MOR-GAIN. PO. Box 329T, Leavenworth. Ks. 66048, Tel. (913) 682-3142.

MDRefin

PORTAPEATER

\$179.00 assembled M100 A
$\$ 99.00$ assembled unit INSTANT REPEATER
-4Channel PROM CW I Der

- vOX or COR operation
- 250 volt switching capability *An Instant
Repeater

board
*Works with any type radios
- Complete Timer Functions
- Built In Test Functions
- 20 Page Technical Manual

Fully tested, programmed, assembled)
W-S ENGINEERING P.O. BOX 58, PINE HILL, N.J. 08021
(201-852-0269)

Transmits perfect Morse Code * Built-in 16 . character buffer * Internal speaker and sidetone * Reed relay output eliminates keying problems * All solid state circuits and sockets. for reliability * Speed range 5-45 WPM * Perfect companion to our CODE STAR all-mode code reader.
MORSE-A-KEYER KIT, model MAK-K, Complete kit of parts \& manual $\$ 159.95$ MORSE-A-KEYER, model MAK-F, Factory wired \& tested $\$ 199.95$ - MORSE-A-KEYER ESSENTIAL PARTS KIT, modeI EPK-K. $\$ 69.95$ (Essential parts kit for home-brewers consists of pc board, board parts and manual. You supply ASCII keyboard, cabinet, power supply \& miscellaneous parts.) - Send check or money order. Use your VISA or MasterCard. Add $\$ 5.00$ shipping and | handling for Continental U.S. Wlsconsin residents add 4\% Wisconsin State Sales Tax. |

Corporation
Telephone: (414) 241-8144 Post Office Box 513G, Thiensville, Wisconsin 53092 ~ 50

AEA once again breaks new ground in the code communications field with the new model MBA-RC reader/code converter. The MBA-RC decodes Morse, Baudot or ASCII signals off the air and displays them on a large 32 character alphanumeric vacuum fluorscent display. In addition, it will output Morse code for keying your transmitter. It will also generate RTTY (Baudot or ASCII AFSK two tone output. (170 or 850 Hz shifts.) Any of the acceptable input codes can be converted to any of the specified output codes (any speed to any speed). If you have any of the common Baudot RTTY terminals as an example, you can now send and receive Morse and ASCII with your keyboard and printer. You can even generate ASCII or BAUDOT RTTY using your Morse hand key or memory keyer.
Get the details. Write for our free product catalogue or better yet, see your favorite dealer.

Prices and Specifications subject to change without notice or obligation. Software ©copyright by AEA.

ADVANCED ELECTRONIC APPLICATIONS, INC.

P.O. Box C-2160,

Lynnwood, WA 98036
(206) 775-7373

Telex: 152571 AEA INTL

CW SOFTWARE

The purchase of the MFJ-1200 solves a vexing hardware problem, but you still must write or purchase a program to fit your needs. You can test your new 1200 with a simple but effective BASIC program which I have shamelessly lifted from an article in Kilobaud Microcomputing by Robert W. Kurtz W8PRO (see References). Originally written for the Kim computer, I have tightened and modularized the code but left the basic technique intact. The original look-up table also has been modified by adding all Morse characters, and I have replaced the author's use of a "." for a missing character by a null string. Finally, I have not hesitated to use the various features of MICROSOFT ${ }^{\text {B }}$ BASIC such as integer representation and double-letter-variable names. However, the original variable names used by the author have not been altered. (For a detailed description of the theory of operation, see the original article. We will supply a copy for an SASE. If you are running HDOS, send us a disk and we will return a copy of the program as well.)

When you adapt the listing for your system, you may leave out the REM statements as well as those lines and comments preceded by an apostrophe. You can replace double-letter names by other variables. You also can omit line 240 if you do not have integer specifications, and you can omit the errorhandling subroutine at 250 . It is used to keep integer overflow from stopping the program. This will occur if the integer variables DO and DA are constantly incremented by noise without a chance to reset. It is not serious and it will never happen when receiving normal code.

The error routine also reminds you to set the input port parameters when you first run the program. Let us tell you how we connected the MFJ-1200 to our computer and this will explain the settings we used at line 790: 790 DATA \&076, \& 040.

On a Heath H.8, there are several serial and parallel ports. Four of these are controlled by an 8250 UART. We attached the RS-232 output of the 1200 to the Data Set Ready (DSR) modem status line at a port addressed at 070 octal. DSR can be read by detecting the fifth bit at port address +6 . Hence the input to the port must be ANDED with 00100000 B (040 octai) to be read. This explains the values in the BASIC line above. The ampersand is MBASIC'S way of designating an octal constant. Equivalent decimal integers can also be used.

The program expects a value of $A=0$ when the key is down. You will have to modify the program if the port read subroutine returns a different value for the same condition. Alternatively, you might be able to use the sense switch on the 1200 if the logic is simply being inverted

If you have an H-89, use the port at 330 octal (OE8H). Attach the 1200's RS-232 output to pin 6 on the D-connector and ground to pin 7. (This is standard RS-232 protocol.) It is not necessary to attach anything inside the computer. For other

[^5]age of what is typed out is either incorrect, badly spaced, or both.

On the other hand, keyboard and computer CW are received very well. It is a great pleasure to run along at 50-60 words per minute, and this is where this kind of digital communication method comes into its own. We have had some excellent QSOs at these speeds.

In conclusion, I found the MFJ-1200 a very satisfactory unit. It performs well, and its price is well within a range most
of us can afford. It can open new worlds to amateur radio operators and to those interested in shortwave listening. It gives the computer user a new area of exploration. Despite its "ancient" (1836) origins, Morse code remains a viable and widely used method of communication, especially in the maritime services. I routinely listen to UPi news, read weather broadcasts and telegrams, and decode Rus. sian CW in addition to our usual amateur activities. If you are in-
terested in a list of utility stations I have received, or if you would like a copy of Cyrillic CW, write me for more information.

The MFJ. 1200 can be purchased directly from MFJ Enter. prises, PO Box 494, Mississippi State MS 39762 for $\$ 69.95$ plus postage. If you need a power supply, add $\$ 9.95$. Reader Service number 483.

William S. Hall 5621 Maple Heights Court

Plttsburgh PA 15232

References

1. Kurtz, R. L., "World Of the Brass Pound ers: Receive Morse the Easy Way," Kilo baud Microcomputing, November, 1978. 2. Gillett, M., "CW and the TRS-80,"73 Magazine, April, 1980.

THE FLESHER TU-170 TERMINAL UNIT

After searching through several years worth of back is* sues of QST and 73, it became clear that for receiving RTTY tones almost all amateur sta-

Are You a Big Gun Contester?

The small number of elite operators at the top of the list when the results are published know what it takes to win a major contest. . . do you? These winners reveal their secrets in THE CONTEST COOKBOOK by N6OP. You will find 170 pages of suggestions for the first-time contester as well as tips that will increase the score of a seasoned operator. Domestic, DX, and specialty contests are all discussed. . . complete with photographs and diagrams that show the equipment used by the top scorers. Winning a contest means more than having a kilowatt and a beam-it takes a good operator with lots of determination. Don't settle for being a Little Gun . . . order THE CONTEST COOKBOOK today by using the order card in this magazine. Send a check for $\$ 5.95$ plus $\$ 1.50$ for the first book, $\$ 1.00$ each additional book and $\$ 10.00$ per book foreign airmail, or include detailed credit card information. Sorry, no C.O.D. orders accepted.

GEI READY NOW FOR THE CONTEST SEASON! CALL TODAY 1.800-258.5473

tions were using $170 \cdot \mathrm{~Hz}$ shift, and that there are in general two basic types of demodulators in use, the phase-locked loop type and the filter type. It also seems that fancier stations have autostart capabilities: the capacity to turn on an unattended TTY when a remote station starts sending.

Further reading disclosed that phase-locked loop demodulators tend to work great if there is no interference or adjacent strong signal, but that they tend to lock easily onto strong, adjacent signals, which could be a problem in HF work. Filter-type demodulators, however, are somewhat more immune to adjacent strong signals. Even further reading disclosed that the Flesher Corporation of Topeka, Kansas, marketed a TU using the filter type of demodulator, and that the unit had a tuning meter, autostart, and a built-in
loop supply. Aiso, Flesher markets the unit in either kit form or assembled and tested. A phone call the next day to Topeka resulted in a small bruise to my VISA card, and the arrival one week later of my TU- 170 kit.

For those readers who are accustomed to Heathkit ${ }^{\circ}$ instructions, the Flesher unit will not exactly bring smiles of joy. The instructions are adequate, but the kit is best assembled by an experienced kit builder. The instructions are straight to the point and lump similar steps together. (For example, "Install all diodes" on board.) The kit builder working from a pictorial of the board first installs the jumpers (there are eight), then the diodes and resistors, and then the integrated circuit sock. ets. Although the kit does not include IC sockets, a slip of paper in one of the parts bags informs the builder that IC sockets are
now supplied and that they should be installed instead of the ICs called for in the instructions. I installed the sockets where it said to install the ICs, and did not insert the ICs until after completing all soldering.

The Flesher TU-170 consists of one single-sided printed circuit board measuring approximately $6^{\prime \prime}$ by $6^{\prime \prime}$, a heat-sink plate which mounts to the PC board and in back of the front panel, and a Ten-Tec-type chassis/cabinet which consists of a U-shaped front panel/bot-tom-rear panel, a top, and two sides. Construction lakes between 12 and 20 hours, depending upon your ineptitude. A small pencil-type soldering iron should be used, and care should be taken to minimize the heat, particularly around the frontpanel switches.

A special caution should be noted about the front-panel

Fig. 1. TU-170 terminal unit functional block diagram.

Fig. 2. Demodulator detailed block diagram.
switches. They are very inexpensive and are especially susceptible to heat damage. Being of frail plastic design, if too much heat is applied to the contact posts, the plastic body may become soft, allowing the contact post being soldered to move and the switch to become inoperative. If this should happen, as in my case, a call or letter to Topeka will result in a new switch arriving about one week later. Do not bother, as I did, to try to find a replacement switch around town. A search of Los Angeles found no suitable switches which would exactly fit the square hole in the Flesher front panel. The factory is very polite and helpful in such situations, but it does take about a week from the time they are notified to get a new one.

Other rules of kit building that one should observe include:

1) Follow the instructions!
2) After finishing the PC board, check each component for correct value and orientation, as well as for a good solder connection. Also check for and remove any solder splashes.
3) Do not rush!
4) Use a good wire stripper, not a pair of cutter pliers.
5) Do not rush; follow the instructions.

Assuming that you observe the above cautions, it is highly probable that a completed TU-170 will appear several nights after you started, along with some burn marks on several fingers.

Before discussing alignment, it is useful (as they say in the text books) to look at the Flesher TU-170 from the functional point of view. Fig. 1 shows a block diagram of the unit. It is divided into three major functional blocks: the demodulator with autostart and loop-keying circuitry, the modulator, and the power supplies.

With the exception of the autostart line.switching solidstate relay, meter, switches, jacks, and input/output terminal board, all of the circuit components are mounted on the $6^{\prime \prime}$ by 6" PC board.

Details of the demodulator are shown in Fig. 2. The audio input from the transceiver, containing the mark tone at 2125 Hz and the space tone at 2295 Hz , passes through the mark and space filters and is then rectified. The negative half of the filtered space signal or the
positive half of the filtered mark signal then drives an amplifier either hard positive or hard negative. The output of the detector then is low-pass filtered to remove the high. frequency audio components, and then squared off and sent to the loop-keying circuitry. The loop-keying circuitry switches the +120 V dc which runs the TTY printer magnets.

For computer enthusiasts, a TTL-level output is available. Also available at the mark and space filter outputs are high level signals (15 -volt peak-topeak) to drive the horizontal and vertical channels of an oscilloscope. The mark signal is normally applied to the horizontal channel, and the space signal to the vertical channel of the scope. These signals will provide a cross or crossed-ellipse pattern when connected to the scope when the RTTY signal is properly tuned.

The filtered mark/space signals also have their negative halves rectified and are fed into the autostart/meter detector. The front-panel meter will indicate maximum deflection when a signal is properly tuned. The autostart circuit will turn on 115 V ac through a solid-state relay when a RTTY signal is present. The 115 V ac may be used to turn on the TTY motor. A front-panel potentiometer allows the autostart detector to be set at any desired minimum signal level, thus avoiding activation of the TTY on noise or low-level signals. The transmit and receive modes are controlled by the Send/Rec switch on the front panel. A set of contacts on this switch sends +12 V dc to the loop-keying circuit, thus preventing spurious output from the demodulator from keying the printer during transmit. A second set of contacts on the Send/Rec switch can be used to trip the push-to-talk circuit on the transceiver.

The TU-170 modulator generates the audio mark/space tones. Fig. 3 shows a block diagram of the audio modulator. The TTY keyboard contacts provide a switched loop voltage which, after going through the loop-keying circuit, provides a high- or low-level input to the modulator. The frequency of the modulator is generated by a 555 timer/oscillator integrated circuit. By changing the value of the resistance in the 555
frequency-determining components, either a $2125-\mathrm{Hz}$ mark or a $2295-\mathrm{Hz}$ space signal will be generated. A high input to the modulator will cause a mark to be generated, and a low input, a space.

For a space, the frequency is changed by a transistor and FET which switch a resistor in parallel with the mark-frequencydetermining resistor, thus presenting a lower resistance to the 555 and causing a higher frequency to be generated - in this case, a $2295-\mathrm{Hz}$ space frequency. For CW ID, a separate input is provided which changes a ca. pacitor connected to the 555, thereby providing for a $100 \cdot \mathrm{~Hz}$ shift for a key to send your call in shifted CW.

The output of the 555 is filtered through an active filter. A pot allows the filter to be centered and, therefore, equal amplitude on both mark and space signals can be adjusted. The 555 circuit and filter provide a very clean and coherent signal.

Alignment of the TU-170 is very straightforward. First the modulator is set to the correct mark and space frequencies. A counter is needed for this step. The mark is set first by adjusting a potentiometer. Then a jumper from +12 V dc will switch the 555 to a space and the space tone pot is set for 2295 Hz . During the first hour or so of operation after power on, some drift will be seen on the counter for both the mark and space frequencies. About 10 Hz over an hour's period was observed. Since both the mark and space tones drift about the same amount, this will present no problem for amateur demodulators since these small drifts are well within the demodulator's bandpass.

After setting the frequency of the mark and space tones, their amplitudes are set by a third pot to be about equal. An oscilloscope or a VTVM is needed for this adjustment. The tone output then is jumpered to the demodulator input, and the mark and space filters are adjusted. Three pots in each filter are adjusted for maximum deflection on the front-panel meter. Add a cover and sides, and the TU-170 is completed. The unit now is about $7.25^{\prime \prime}$ wide by $3.25^{\prime \prime}$ high by $7.25^{\prime \prime}$ deep. It is grey and black, and rather attractive. It easily blends into most stations.

Fig. 3. Modulator detailed block diagram.

The next step is to hook up the TU-170 to the station transceiver and teletype. I use a Yaesu 227R here, on 2 m FM. Yaesu has thoughtfully provided all of the necessary connections needed on an accessory connector on the rear panel of the 227R. These signals are: push-to-talk, microphone audio input, and speaker audio output. I leave my speaker connected while in the RTTY mode so that I can hear the tones and know that everything is OK.

You should use shielded cable for all connections between the TU- 170 and your transceiver. Multi-conductor cable with a single outside shield is OK, but I used separate lengths of individually-shielded wire for each signal. Just use good techniques and you won't have any problems.

If your rig does not have an auxiliary connector with the proper signals available, then you can use the microphone input jack and earphone/speaker jack. If you do use the auxiliary connector, as I did, the TU-170 modulator will be in parallel with your transceiver microphone. When receiving, you then will hear a tone coming out of your microphone, since the TU-170 is always generating a tone whether it is in transmit or receive. The microphone in this case acts as a speaker. Also, you probably will not be able to transmit on FM voice when the tone is on, since it is strong enough to drown out the audio from the microphone. The simple solution is to turn the TU-170 ac power switch off whenever you are in the FM voice mode.

An alternate solution is to add a switch to the TU-170 to disable the 555 oscillator. A number of other stations use computers on RTTY in our area. The TU-170 has TTL input and output lines to allow it to be connected eas. ily to your favorite computer.

Once your hookup is com. plete, you are ready to start. I would suggest that you listen at first to get a feel for how conversations are held. Good operating practice is to wait after a station has signed to allow others to break in. When you feel reacy, jump in with your call.

Well, there you have a description of my first experiences with RTTY. The Flesher TU-170 has now been in use here at WB6CRD for some time without any problems whatsoever. It is a first-class unit for either the beginner or the old-timer, and can be used with computers. The world of RTTY has now been opened to me, and it is a fascinating world. I highly recommend it to you.

The TU-170 is available in kit form for $\$ 169.95$. For more information, contact Flesher Corporation, 507 Jackson, PO Box 976, Topeka KS 66601. Reader Service number 484.

Tony Gitt WB6CRD
Culver City CA

DAIWA DK- 210

The gang at 73 knows I'm a CW freak and spend most of my time at the low end of the various bands, hanging out with others of like persuasion. For years, l've been using a time; honored but somewhat passé

The Daiwa DK-210 electronic keyer.
"TO" keyer. . . one of the tubetype keyers made by Hallicrafters as the HA-1...but still a real standard in many shacks, even today.

Like many of you, I suspect, I didn't even know that Daiwa made a keyer. Sure, we all know about their swr and power meters...the ones with the "crossed" pointer readout. and we know about their line of antenna tuners, but a keyer?

First impressions are important, and Daiwa doesn't let us down on this vital part of product marketing. The Daiwa DK-210 electronic keyer comes in the expected plastic-wrapped package with accessories separately wrapped and packed in the same carton. These include two RCA phono plugs, a power cord, and a power plug.

The DK-210 is dark grey in color and feels quite heavy... heavier than you'd expect for its size...a quality feeling. The crinkle finish is well done, and the front-panel markings stand out clearly against the dark finish color.

In this model, there are five small rectangular LEDs in the upper left-hand corner, surrounded by a white outline. Each LED is labeled with a number: $10,20,30,40$, and 50 (wpm); more about these later. The left-hand knob is labeled SPEED and obviously sets the speed of the dots and dashes generated by the keyer's electronics. A segmented circle around the knob is marked with the same numbers, corresponding to the LEDs. . . again an obvious (but welcome) feature.

A second knob is labeled WEIGHT and has a scale whose limits are marked MIN and MAX. This knob controls the dot-dash ratio and space; at MIN , the ratio is exactly three to one... that is, the length of time occupied by one dash is exactly equivalent to the time occupied by three dits. If you like to slur your keying and send code that has a different ratio, you have plenty of adjustment to play with. I would guess that beyond about the ten o'clock position of the pointer on the knob, you might succeed with a setting that nobody could decipher!

The DK- 210 has a built-in speaker and tone generator so that you can monitor your own sending. The tone is pleasant and sounds something like the monitor of the transmitter itself.

There is an external volume control, while the tone's pitch may be adjusted by a small screw-driver-slotted plastic shaft on the rear panel of the keyer. As it was received, l'd guess the tone was about 700 Hertz...just right for my ear, so I didn't bother changing the pitch. If you like stereo, you can use the transmitter's own keying monitor playing counterpoint to the built-in keyer monitor. I do that sometimes to relieve the monotony of a single tone.

A rotary switch allows you to select SEMI-AUTO, AUTO, and TUNE. In the SEMI-AUTO position, dots are generated automatically but dashes must be made manually, like the oldfashioned bug keyers. In the AUTO position, the key is a full electronic keyer with all automatic functions, including the desirable iambic-keying capability...something l've not yet taught myself to use. No mat-ter-it works just fine with my old-fashioned type of thumb and forefinger input. (One of these days, though, l've got to learn to use iambic, or "squeeze," keying as it's called.)

The tune position is to allow you to turn your transmitter on in the way you used to do by holding the old pump handle in the down position. . .that is, to make a steady tune-up signal on the and, er...ah, the dummy load. Finally, at the extreme right side of the front panel is the toggle switch that turns the power on and off, as indicated by an LED just above it. Below the toggle switch is a standard quarter-inch phone jack. Naturally, I had to change mine from the one I had on it back to the standard! Oh, yes, I almost forgot: It's labeled KEY and that's where you plug in your paddle.

On the back panel there's an accessory power-input jack for the usual 8-to-13.8-volt dc pow. er-input plug...the style that you are used to seeing on tape recorders and other electronic devices that need that kind of power. More about this later, too!

Two RCA-type phono jacks are also on the rear panel. One is red and the other, black. The red one says DIRECT and the black one says GRID BLOCK. This means you can use the Daiwa 210 to key an old-fashioned cathode-keyed rig (limits are 300 $\mathrm{V}, 100 \mathrm{~mA}$, max.) or one of the
newer rigs in which the grid of a control tube, or a solid-state device, is keyed (limits are -100 V , 10 mA, max.).

Having an Icom IC-720A to key, I used the grid block outlet and managed to use one of the accessory phono plugs thoughtfully provided by Daiwa. Next, I looked for a source of power. Failing to locate an appropriate source of 12 volts dc with the proper plug right away, I decided to remove the top cover of the keyer (per instructions) to locate the battery holder . . . and install a 9 -volt battery.

Whoopee! The keyer lighted up and a few dots and dashes caused the LEDs to glow. . . first the 10 , then the 20 , and finally the 30 ...sort of a progressive display running from left to right. The instructions suggest that if you run on battery power it would be a good idea to disable the LEDs to reduce power consumption. Likewise, it would be a good idea to forgo use of the keying monitor/speaker.

I quickly tuned in a station, gave him a call, and asked for a critical keying-quality report. The reply was a definite "Sounds great here, OM." I was in business!

All that evening I used my keyer, even forgetting the 300-mA current drain, until the battery started running low. Low battery power is evidenced by the keyer failing to keep up the set speed and the LEDs failing to light up. The "weight" is not affected, however.

Knowing that my time on remaining battery power was limited, I decided to hook up the small utility supply I had to provide all the power 1 would need for a weekend of CW. Easy, I figured...just do the normal thing...hook up the positive lead to the center pin, the negative lead to the shell, and oops! Immediately I suspected my supply, but that turned out okay. A closer look at the input jack on the Daiwa showed the reason (I needed a magnifying glass to read it). The center pin, friends, is negative while the sleeve is positive! After changing the leads on my supply, I got an immediate indication of all being normal and happy with the keyer.

I checked the LED indication of speed (in which several characters are integrated by the circuitry to read out an average speed) and the dial setting of
speed, and they seemed to coincide very well. My normal conversational keying speed is around 30 or 35 wpm , and that's where I set the speed control; it also was what the LEDs indicated I was doing. I found that at higher speeds a slight slurring of dots and dashes is smoother sounding, and this was easily achieved by adjusting the "weight" control pot to about the 9 o'clock position. Just enough to make it pleasing to my ear.

The 6 -inch-wide, 2.5 -inch-high, and 6-inch-deep box hardly occupies any space at all on my operating desk. In fact, it's so neat-looking and so unobtrusive that I have given it a place of honor right next to my transceiver. . . which it complements beautifully. Altogether, I guess I've operated the little Daiwa 210 electronic keyer about 25 or 30 hours now, and it hasn't missed a beat.

Complaints: none, except at my own stupidity for not reading the nice little instruction brochure with its illustration of polarity on the power plug plainly shown! I have known for years that one ought to read the instructions first, but-like many of us-I figure it's so simple that reading instructions isn't necessary. Well, I learned.

I don't have much stray rf floating around the shack as all my antennas are current-fed, and the high-voltage points are far removed from the equipment. Nevertheless, if you endfeed an antenna and bring it into the shack to your tuner, you might have to use shielded keying leads between the output of the 210 and your transceiver. Rf has a funny way of producing not-so-funny results with solidstate devices.

Anything else? Just one thing: Daiwa also makes a nice version of this keyer without the LEDs, and it's called the model 200. Just in case you don't care for the speed-readout system, or don't feel it's necessary, or maybe want to save a few pennies, you might prefer the 200.

The DK-200 is priced at $\$ 82.50$ and the DK-210 sells for $\$ 99.50$. Daiwa keyers and instruments are distributed in the United States by MCM Communications, 858 Congress Park Drive, Centerville OH 45459. Reader Service number 480 .

James Gray W1XU
73 Magazine Staff

RADIO BOOKSHOP

FOR THE NOVICE

New, updated editions

of our famous novice

license study guide and novice study tapes

- NOVICE LICENSE STUDY GUIDE-by Timothy M. Daniel N8RK. Here is the most up to date novice guide available. It is complete with information about learning Morse Code, has the latest FCC amateur regulations and the current FCC application forms. This guide is not a question/answer memorization course but rather it emphasizes the practical side of getting a ham license and putting a station on the air. It reflects what the FCC expects a Novice to know without page after page of dull theory. The most
current information still avallable at last year's price. $\mathrm{SG} 7357 \$ 4.95$.
- NOVICE STUDY TAPES - If you are just getting started in ham radio, you'll find these tapes indispen. sable! This up-to-the-minute revision of the 73 Study Course is the perfect way to learn everything you need to breeze through the Novice written exam. Theory, FCC regulations, and operating skills are all covered, and you'll be amazed at how fast you learn using these lapes
latest information on setting up your own harn statlon, and getting on the air. Thousands of people have discovered how easy learning from cassette can the lascinating world of ham radio! CT7300 Set of 3-\$15.95."
Scientists have proven that you learn faster by listening than by reading because you can play a cassette tape over and over in your spare time-even while you're driving! You get more and more into each time you hear It. You can't progress without solld fundamentals. These three hour-long tapes give you all the basics you'll need to pass the Novice exam easily. You'll have an understanding of the basics which will be invaluable to you for the rest of your life! Can you afford to take your Novice exam
without flrst listening to these fapes?

Special Offer! Both Novice License Study Guide and Novice Study Tapes \$19.95 Order NP7300.

GENERAL LICENSE STUDY GUIDE

by Timothy Mi Donivi general license study guide-by Timothy M. Daniel N8RK This is the complete guide to the General License. Learning rather than memorizing is the secret. This is not a question-andanswer guide that will gather dust when the FCC issues a new test. Instead, this book will be a helpful reference, useful long after a ham upgrades to General. Includes up-to-date FCC rules and an application form. Order yours today and talk to the world. SG7358 $\$ 6.95$

Style W

Style Y

W2NSD/1

릉…

- OSL CARDS-73iurns out a fantastic series of OSL cards at about halt the cost of having them done else where because they are run as a fill-in between printing W-OW0250-for $\$ 8.95^{\circ}$; 500 Style W-OW0500-for $\$ 13.95^{*}, 250$ Style X - 0×0250 - for $\$ 8.95^{*} ; 500$ Style X-QX0500; 250 Style Y-QY0250-ior $\$ 8.95^{\circ} ; 500$ Style Y-OY0500 - lor \$13.95. Allow 6-12 wks for delivery.
- LIBRARY SHELF BOXES - These sfurdy white. cor rugated, dirt-resistant boxes each hold a full year of 73 Kilobaud Microcompuling or 80 Microcompuifing. With your order, request self-sticking labels for any of the lollowing: 73 , Kilobaud Microcompuling, 80 Microcompuling, CQ, QST. Ham Radio. Personal Computing, Radio Electronics, Interlace Age, and Byle Order 1 each ${ }^{*}$; order 8 or more-BX1002-lor $\$ 1.25$ each ${ }^{\text {. }}$.

For Your
 Ham Shack

- Preserve and protect your collection for a lifetime! Order these handsome red binders with gold lettering. USA please 3 for $\$ 21.75,6$ for $\$ 42.00$. (Postpaid within money orders only, no phone or C.O.D.) Check or Binders, P.O. Box 5120, Philadelphia, PA 19141.
- NOTE-Above addrese for Binders only

73 Code Tapes

any four tapes for
\$15.95! \$4.95 each

"GENESIS"

5 WPM-CT7305 - This is the beginning tape for people who do not know the code at all. It takes them through the 26 letters. 10 numbers and necessary puncluation, newest blitz teaching techniques. It is almost mirac. ulous! In one hour many people-including kids of tenare able to master the code. The ease of learning gives confidence to beqinners who might otherwise drop out.
"THE STICKLER"
$6+$ WPM-CT7306-This is the practice tape for the Novice and Technician licenses. It is made up of one solid hour of code, sent at the official FCC standard (no ther tape we've heard uses these standards, so many people flunk the code when they are suddenly-under pressure-faced with characters sent at 13 wpm and spaced for 5 wpm). This tape is not memorizable, unike random characters sent in groups of five.

"BACK BREAKER"

13 + WPM-CT7313-Code groups again, at a brisk 14 per so you will be at ease when you sit down in front of the steely eyed government inspector and he starts sending you plain language at only 13 per. You need this extra margin to overcome the panic which is universal in the test situations. When you've spent your money and time to take the test. you'll thank heaven you had this back. breaking tape.

COURAGEOUS
20 + WPM - CT7320-Code is what gets you when you go for the Extra class license, it is so embarrassing to his our ust because you didn t prepare yoursell wode groups are so difficult that you"ll almost lall asieep copying the FCC stuff by comparison. Users report that they can't beligve how easy 20 per really is with this tantastic one hour tape.

OUTRAGEOUS"
25 + WPM - CT7325-This is the tape for that small group of overachieving hams who wouldn't be content to simply satisty the code requirements of the Extra Class license It's the toughest tape we've got and we keep a permanent file of hams who have mastered it. Let us know when you're up to speed and we'll inscribe your hame in 73's CW "Hall of Fame.

SSTV TAPE

- SLOW SCAN TELEVISION TAPE-CT7350-Prize winning programs from the 73 SSTV contest. Excellent lor Demo! \$5.95
- BACK ISSUES-Complete your collection; many are prime collectables now, classics in the field! A full col lection is an invaluable compendium of radio and elec ronics knowge
7330073 BACK ISSUE - BEFORE JULY 1980 $73350 \quad 73$ BACK ISSUE JULY 1980 THAU OCT 3.00 73350 P 73 BACK ISSUE NOV 1981 TO PRES 3.5 ... $\$ 3.50$ 73005 - 73 BACK ISSUE - 5 YOUR CHOICE $73010 \quad 73$ BACK ISSUE- 10 YOUR CHOICE 73025 73125 73 BACK ISSUE-25 CUR CHOICE $\$ 27.00$

Shipplng: Please add \$100 per magazine Please per magazine. Orders of en magazines or twenty•flve magazines add $\$ 7.50$ per order.

[^6]
RADIG THE HAMSHACK

THE COMPLETE SHORTWAVE LISTENER'S HAND.

 BOOK, 2nd EDITION by Hank Bennett and Harry L. Helms. This comprehenslve volume contains loads of new information from all over the world on the latest developments in SWL technology clubs, associations, practices and stations. A thorough gulde to stations of The world by general continental area and frequency is included. BK $1241 \$ 9.95$THE TEN METER FM HANDBOOK - by Bob Heil K9EID. This handbook has been published to help the ten meter versions and tricks that are used many me existing units work better. Join the gieat "tinkerers" of the world on ten FM and enjoy the fantastic amount of fun in communicating with amateur stations worldwide on ten meter FM. EK $1190 \$ 4.95$.

THE PRACTICAL HANDBOOK OF AMATEUR RADIO FM REPEATERS-by BIII Pasternak WAGITF (author of 73 Magazines monthly column "Looking West") This is the book for the VHFIUHF FMer, compiled from material submitted by over a hundred individuals, clubs, organizations and equipment manufacturers. A
have" for your ham shack shelf. BK $185 \$ 12.95$.
have" for your ham shack shelf. BK $185 \$ 12.95$.

TOOLS \& TECHNIQUES FOR ELECTRONICS-by A. A Wicks is an easy-to-understand book written for the beginning kit-builder as well as the experienced hob safe and correct ways to use basic and specialized tools for electronic projects, as well as specialized metalworking tools and the chemical aids which are used in repair shops. BK7348 \$4.95.
BEHIND THE DIAL-Tnls book explains, in detail, what's going on on all the frequencles, from shortwave up to microwave. It gives the reader a good idea of what he can find and where to find it, including some of the secret stations such as the C.I.A. and the F.B.I. Everything is covered short of microwave monitoring. Anyone interested in purchasing a shortwave receiver should have a copy of this book. surveillance, station layout consideration, antenna systems, interface, and the electromagnetic spectrum. are included. BK7307 \$4.95
THE NEW WEATHER SATELLITE HANDBOOK - by Df. Ralph E. Taggart WB8DOT. Here is the completely updated and revised edition containing all the informa tion on the most sophisticated and effective space cratt now in orbit. This book serves both the exper enced amateur satellite enthusiast and the newcomer is an introduction to satellite watching, providing all the information required to construct a complete and highly effective ground station. Solid hardware designs and all the instructions necessaryto operate the equipment are incluced. For experimenters who are operating slations, the book detalls all procedures spacecraft. Amateur weather satellite activity repre. sents a unique blend of interests encompassing electronics, meteorology and astronautics. Join the privileged few in watching the spectacle of earth as seen from space on your own monitoring equipment. BK7383 88.95 ."

THE 73 TEST EQUIPMENT LIBRARY

VOL II AUDIO FREQUENCY TESTERS-Jampacked with all kinds of audio frequency test equipment. If you're into SSB, RTTY, SSTV, etc., this book is a must for you. . a good book for hi.fl addicts and experimenters, too! LB7360 \$4.95.

VOL. III RADIO FREQUENCY TESTERS-Radio frequenEy waves, the common denominator of amateur radio Such items as SWR, antenna impedance, line impedance, erators, crystal callibrators, grid dip oscillators, noise generators, dummy loads, and much mofe. L87361 \$4.95.

VOL. IV IC TEST EQUIPMENT-Become a trouble shooting wizard! In this tourth volume of the 73 TEST EOUIPMENT LIBRARY are 42 home construction projects for building test equipment to work with your ham station and in servicing digital equipment. Plus a EOUIPMENT LIBRARY. LB7362 $\$ 4.95$.

RF AND DIGITAL TEST EQUIPMENT YOU CAN BUILD-BK1044-Rt burst, function, square wave generators, variable length pulse generators- 100 kHz marker, H and rf sweep generators, audio osc, affrf slg.
nal injector, 146 MHz synthesizer, digital readouts for counters, several counters, prescaler, microwave meter, etc. 252 pages. BK 1044 \$5.95.

THE 73 TECHNICAL LIBRARY

THiocomplite S:ORTMAV ITSTDNEB Hotirook-is
 INTERFERENCE HANDBOOK

FOR

THE CONTEST COOKBOOK

THE

CONTESTER

THE CONTEST COOKBOOK - This book reveals the secrets of that elite group of operators who top the lis when the contest results are published. It contains detalled suggestions for the first-time contester as well as tips for the advanced operator. Domestic, DX, and photialty contests are all discussed. complete with perating alds used by the top scorers. For the serious operating alds used by the top scorers. For the serious contester. BK7308 \$5.95.

WORLD PRESS SERVICE FREQUENCIES - by Thomas Harrington Can't wait to hear the evening news, of are you wondering about the news that you aren't hearing? Receive by Radio Teletype (RTTY) al the world news and financial happenings from the you the frequencles and times of broadcast of such news services as AP, UPI, Reuters, TASS, VOA and London Press. Also included is an introduction to RTTY with information on equipment, antennas, abbre-viations-everything you need to get started in RTTY BK1202 \$7.95*

SSB. . THE MISUNDERSTOOD MODE-by James B Wilson. Single Sideband Transmission...thousands of us use if every day, yet it remains one of the least understood tacets of amateur radio. J. B. Wilson presents several methods of sideband generation, am ply illustrated with charts and schematics, which will enable the ambitious reader to construct his own sldeband generator. A must for the technically. serious ham. BK7351 \$5.50.

PROPAGATION WIZARD'S HANDBOOK - by J. H. Nelson. When sunspots riddled the woridwide com munications networks of the 1940 s, John Henry Neison looked to the planets for an answer. The result was a theory of propagation forecasting based upon inter liable forecaster in America today The book provides an liable forecaster in America today. The book provides an future as well as teaching the art of propagation forecasting. BK7302 \$6.95.

IC OP.AMP COOKBOOK - by Walter G. Jung. Covers not only the basic theory of the IC op amp in grea detail, but also includes over 250 practical circuit ap plications, Ilberally illustrated, 592 pages, $51 / 2 \times 8 \frac{1}{2}$ softbound. BK1028 \$14.95.

- Use the order card in this magazine or Itemize your order on a separate piece of paper and mail to: 73 Radio Bookshop - Peterborough NH 03458. Be sure to include check or detailed credit card intormation. No C.O.D. orders accepted. All orders add $\$ 1.00$ handing. Please allow $4-6$ weeks for dellvery. Ouestions regarding your order? Please write to Customer Service at the above address. (Prices subject to change on books not published by 73 Magazine.)

RADIO BOOKSHOP
 ANTENNA BOOKS

 COOK BOOKS

 COOK BOOKS}

VHF ANTENNA HANDBOOK - The new VHF Antenna Handbook detalls the theory, design, and construction of hundreds of different VHF and UHF antennas practical book written for the average amateur who lakes joy in building, not full of complex formulas for the design engineer. Packed with fabulous antenna projecis you can build. BK7368 $\$ 5.95$.

- BEAM ANTENNA HANDBOOK (New 5th edition) BK1197-Yagi beam theory, construction and operation information on wire beams, SWR curves and matching systems. A "must" for serious DXers. $\$ 5.95$
- VHF HANDBOOK FOR RADIO AMATEURS-BK 1198 -Contains intormation on FM theory, operation and quipment, VHF antenna design and construction, satel Ite-EME, and the newest solid-state circuits. $\$ 6.95$
- THE RADIO AMATEUR ANTENNA HANDBOOK BK1199-All about wire antennas, beams, luners baluns, coax, radials, SWA and towers. Clear and corm plete information. $\$ 6.95$
- SIMPLE, LOW.COST WIRE ANTENNAS FOR RADIO AMATEURS - BK 1200-All new data and everything you want to know about low cosi, multı-band antennas, inex pensive beams. "invisible" antennas for hams in "tough" locations. \$6.95

TTL COOKBOOK - by Don Lancaster. Explains what TTL is, how it works, and how to use it. Discusses prac tical applications, such as a digital counter and dis play system, events counter, electronic stopwatch digital voltmeter and a digital tachometer
BK1063 $\$ 9.50$.

CMOS COOKBOOK-by DON Lancaster. Detalls the application of CMOS, the low power logic family sultable for most applicallons presently dominated by TTL. Required reading for every serlous digltal ex perimenter! BK1011 $\$ 10.50$.

TVT COOKBOOK -by Don Lancaster. Describes the use of a standard television recelver as a micropro cessor CRT terminal. Explains and describes charac ter generation, cursor control and interface informa on in typical, easy-to-understand Lancaster style. BK1064 \$9.95.

THE WELL EQUIPPED HAM SHACK

73 DIPOLE AND LONG.WIRE ANTENNAS - by Edward M. Noll W3FQJ. This is the first collection of virtually every type of wire antenna used by amateurs. Includes dimensions, configurations, and detalled construction dala for the construction ot nolse bridges line luners and data on measuring resonant frequency, velocity factor, and swr. BK1016 $\$ 5.50$

- all about cubical quad antennas (2nd edi tion)-BK1196-The "Classic" on Quad design, theory, construction, and operation. New 2nd edition contains new feed and matching systems and new data. 55.95 .
- HOW TO DEFEND YOURSELF AGAINST RADAR - BK 1201-by Bruce F. Bogner and James R. Bodnar, a lawyer and radar expert. This book glves you the ammunition to challenge the radar "evidence" that usually leads to a speeding convictlon. The major part of the book details the Inner workings of radar-you'll become more of an ex speeding ticket - the officers and judges. The remainder of the book outlines how to defend yourser again a a lawyer. The price is a lot less than a fine! $\$ 6.95$.

MICROCOMPUTER BOOKS

ANNOTATED BASIC-A NEW TECHNIQUE FOR NEO PHYIES. VOL \& 2-Annotated BASIC explains the complexities of modern BASIC. It includes complete TRS-80* LevellI BASIC programs that you can use. Each program is annotated to explain in step-by-step fashion the workings of the program. Programs are flowcharted to assisted you in following the operational sequence And-each chapter includes a descrlption of the new concepts which have been introduced.
volume 1 BK7384 \$10.95 volume 2 BK7385 $\$ 10.95$
HOBBY COMPUTERS ARE HERE!If you want to come up to speed on how computers work-hardware and software-this is an excellent book. It starts with fun damentals and explains the clrcuits and the basics of programming, along with a couple of TVT construction recommendations as a teaching ald. \$4.95. BK7322

KILOBAUD KLASSROOM-By George Young and Peter Stark. Learning electronics theory without practice isn' easy. And it's no fun to buid an electronics project that you cant use. Kirobaud Klassroom the popular series first published in Kilobaud Microcomputing, combines theory with practice. This is a pracifcal course in digital electronics. It starts out with very simple electronics projects, and by the end of the course you'll construct your own working microcomputer! BK $7386 \$ 14.95$

- 40 COMPUTER GAMES - BK7381 - Forty games in all in nine different categorles. Games for large and small systions, and even a section on calculator games. Many represented. A must for the serious computer games man. $\$ 7.95^{\circ}$
- UNDERSTANDING AND PROGRAMMING MICRO COMPUTERS-BK7382-A valuable addition to your computing library. This two-part text includes the best articles that have appeared in 73 and Kilobaud Microcomputing magazines on the hardware and soft and well-structured text helps the reader get involved $\$ 10.95^{\circ}$

TEXTEDIT-A Complete Word Processing System in kit form-by Irwin Rappaport. TEXTEDIT is an inexpenslve word processor that you can adapt to suit your needs, from writing form letters to large texts. It is written in modules, so you can load and use only those portlons that you need. Included are modules that perform right justification, ASCII upper/lowercase conversion, one-key phrase entering, complete editorial functions, and much more! TEXTEDIT is written in TRS. 80° Disk BASIC, and the modules are documented in the aut hor's admirably clear tutorial writing style. Not only does Ifwin Rappaport explain how to use TEXTEDIT; he also explains programming techniques implemented in the system. TEXTEDIT is an inexpensive word processor that helps you learn about BASIC programming. it is written for TRS-80 Models 1 and 111 with TRS Darks 2 . m and marks of the Radlo Shack Division of Tandy Corpora tion. BK7387 \$9.97

- SOME OF THE BEST.FROM KILOBAUDIMICROCOM. PUTING-BK7311-A collection of the best articles that have recently appeared in Kilobaud/ MICROCOMPUTING. Included is material on the TRS 80 and PET systems, CP/M, the $8080 / 8085 / Z 80$ chips, the ASR- 33 terminal. Data base management, word processing, text editors and file structures are covered too. Programming technlques and hardcore hardware construction proj: ects for modems, high speed cassette interfaces and TVTs are also included in this large format. 200 plus page edition. $\$ 10.95$.
- THE NEW HOBBY COMPUTERS-BK7340-This book takes it from where "HOBBY COMPUTERS ARE HERE!" leaves off, with chapters on Large Scale Integra. HERE! leaves off, with chapters on Large Scale integra-
tion. how to choose a microprocessor chip, an introduc. tion. how to choose a microprocessor chip, an introouction to programming, low cost lio for a computer, commuch much more! Don't miss this tremendous value! Only \$4.95.

WORLD REPEATER ATLAS - Completely updated, over 230 pages of repeater listings are indexed by location - and frequency. More than 50 maps pinpoint 2000 repeat er locations ihroughout the USA. Foreign listings in clude Eupope, the Middle East, South America, and Atrica. \$4.95-BK73i5

THE MAGIC OF HAM RADIO-by Jerrold Swank W8HXR. Under various callsigns, W8HXR has been heard on the harm bands since 191. He has warche to an era of microprocessors and satellite communica thons. Jerry has responded to calls for help from earth quake-striekn Managua and tornado-ravaged Xenia Ant arctica, one of man's lonellest outposts, has been a bit arcica, one of man s lonellest outposis, has been a bi torts. Drawing on his own colorful experiences and those of many other hams, Jerry has compiled this word picture of ham radio during the pasi six decades BK7312\$4.95

A GUIDE TO HAM RADIO-by Larry Kananer WB2NEL What's Amateur Radio all about? You can learn the basics of this fascinating hobby with this excellen beginner s guide. It answers the most frequently asked questions in an easy-going manner, and it shows the best way 10 go about gelling an FCC license. A Guide to Ham Radio is an Ideal introduction to a hobby enjoyed by people around the world. $\$ 4.95$. BK 7321
WORLD RADIO TV HANDBOOK 1982, 25TH EDITION -This book is the bible of international broadcasters providing the only authoritative source of exact informa tion about broadcasting and TV stations world wide This 1981 edition is completely revised, glving com prehensive coverage of short, medium and long wave 560 pages of vital aspects of world listening
$\$ 16.50$. BKI184
*Use the order card in this magazine or itemize your order on a separate plece of paper and mail to: 73 Radio Bookshop - Peterborough NH 03458. Be sure to include check or detailed credit card information. No C.O.D. orders accepted. All orders add $\$ 1.00$ handling. Please allow $4-6$ weeks for delivery. Questions regarding your Order? Please write to Customer Service at the above address. (Prices subject to change on books not published by 73 Magazine.)

2 AEAAdvanced Electronic Applications 37, 47, 51, 105, 133 164 A\&W Productions 169 A. P. Systems, Inc.
115 AS ATV Magazine
114 Abex
.69, 14
124 Advanced Computer Controls . 8
448 Advanced Communications International
406 Alaska Microwave Labs
. .47
77
57
20 All Electronics Corp. $\begin{array}{r}57 \\ \hline\end{array}$

5 Amateur-Wholesale Electronics

- Antenna Bank 22

63 Antenna Speclalists Co.
121 Arco Solar, Inc.
ARRL Hudson Div
Convention
Assoclated Radio
130 Auto Connect
477 Auto Connect
175 Automated Technology 118
469 BG Carl Electronics ...
11 Barker \& Williamson, Inc
26 Bash Educational Services.
439 Ben Franklin Electronics
153 Bit "O" Byte Bilal Co.
157 Boman Industries
Boxboro Hamfest
142 Britt's Two.Way
Radio Services 12 Buliet Electronics 92 Ceco Communications, Inc. 102 Centurion International 89 Clutterfree Modular Consoles 150 Commtek.
28 CommunicationsCenter NE ... 143 382 Communication Concepts, Inc.

15 Communications Specialists
140 Comstar Research
152 CQ Products

2 JDL Industites JWL Electronics 39 Jan Crystals 354 Jensen Tools, Inc 165 K\&S Enterprises

Kantronics, Inc.
KDK Distributing
Kenwood.
........ Cov. IV, 7
158 Lance Johnson Engineering. . . . 141
322 Larsen Antenna.
452 Lewis Construction Co.
77 M-Squared Engineering 44 Macrotronics,inc. 134 Madin Electronics 70, 98 134 Martin Engineering 480 MCM Communications 109 47 MFJ Enterprises ...53, 127, 129, 131 478 MFJ Enterprises 483 MFJ Enterprises

49 Micro Control Specialties
50 Microcraft Corp
146.155
... .34

50 Microcraft Corp. $. .105,133$

52 MidCom Electronics
308 J. W. Mllier/Div. Bell Ind
Mirage Communlcations
Monlforing Times
Mor-Gain
173 Multi-Band Antennas
123 N \& G Distributing
318 National Comm. Group Co.
412 Nemal Electronics
481 'Non-Linear Systems
Orbit Magazine
P. C. Electronics Palomar Englneers 380 Panasonic
404 P.B. Radio Service
Proham Electronics
60 Quest Electronics
315 Radio Activity
61 Radio Amateur Callbook, Inc
117 Radio Supply Engineering 397 Radio World

105 Radios Unlimited
62 Ramsey Electronics
138
147 Randall Sherman 145156 RCA Service Company 131
156 RF Electronics 90
171 Ridge Systems Co., Inc. 5
133 Rivendell Associates 93
RQ Service Center 143
65 S-F Amateur Radio Services 138
168 Satmar Satellite TV Systems ... 65
50073 Magazine
Books . . 107, 111-114, 116, 117, 141
Dealers Ad. .
107
Subscriptlons
115,141 Universify Mlcroflims
148 Shaver Electronics

112 Sintec Co.
162 Space Electronics 142
68 Spectrum Communications
436 Spectrum International94,95
376 SMP Internatlonal, Inc
69 Surplus Electronics
135 TEM Microwave Corp
170 TET Antenna System
449 The Ham Shack
57 The Tuned Antenna Co
174 TMAC Products
76 Trac Electronics
104 Trionyx Industrles, Inc.
88 Tufts Electronics, Inc. \qquad Universal Communications 67
155 Universal Distributors 93
Universal Radio Co..
V.J Products, Inc Van Gorden Engineering .142

Van Gorden Engineering 77
311 Vanguard Labs
90 VoCom Products
302 W-S EngineerIng
83 Yaesu Elecironics Co. 143
83 Yaesu Electronics Co. Cov. III

73 MAGAZINE

Books, eTC.

To order complete the postage paid card or itemize your order including detailed credit card information or check and mail to:
73 Magazine/Mail Order Dept./Peterborough NH 03458

C	Item Price	Catalo	* Item Price	
8к10,6	73 dipole \& LOng wire antennas	cr7306	CODE PAPE-6 WPM \$ 4.95	
	\$550	C[7313	CODE TAPE-13 + WPM \$ 495	
		C17320	CODE TAPE-20 + WPM \$ 4.95	
		ci7325	CODE TAPE-25 + WPM \$ 495	
73	73 日ACK ISSUE-BEFORE JULY 1980	Cr7394	CODE TAPES (ANY FOUR A SOVE) \$1595	
		8K7300	THE CONTESTCOOKBOOK \$ 595	
73350		8K7381	40 COMPUTERGAMES $\$ 795$	
73350P 7	73 EACK ISSUE NOV 1981 TO PRESENT ${ }^{\text {S }}$	SG7358	GENERAL LICENSE STUOV GUIDE \$695	
73005	73 BACK ISSUE - 5 YOUR CHOICE	EK7304	gIant gook of amateur radio	
	Aco 5100 del magazune ior shipping			ANTENNAS
			8K732	
73010	73 gaCK ISSUE - 10 YOUR CHOICE	BK7325		
73025	33 gack ISSUË- 25 YOUR CHOICE		REALLY UNDERSTANOIT \$ 9.95	
73125	73 gACK ISSUĖ-25 OUA CHOICE	EK1201	HOW TO DEFENO YOURSELF AGAINST	
	T3 Backissue-25 OUN ChOICE \$14.00		RADAR	
Ado $\$ 750$ per order for shipping		EK1028	IC OPAMPCOOKBOOK $\quad \mathbf{\$ 1 2 . 9 5}$	
		8K1230	INTERFERENCE HANDBOOK I 895	
		8K7312	Magic of hamradio .i. \$495	
		EK1033	MASTEA MANDBOOK OF HAM RADIO CIP.	
EK1196	all abolit cubical ouad antennas		Cults \$ 6.95	
	\$ 5.95	-6k7340	THE NEW HOBEY COMPUTERS \$ 4.95	
BK1197	BEAM ANTENNA HANOBOOK \quad \$ 5.95	867383	thenew weather satellite	
ER7307	BEHINO THE DIAL $\$ 4.95$		HANDBOOK \$ 8.95	
8k7309	CMALLENGE OF 160 \$ 4.95	Cr7300	NOVICE THEORY TAPES $\mathbf{\$ 1 5 9 5}$	
Exi01t	CMOS COOKBOOK $\quad \$ 10.50$	-6K7310	OWnEA REPAIR OF RADIO EOUIPMENT	
Cr7305	CODE TAPE-5 WPM S 4.95		- \$ 7.95	

Catalog	\# Item Price
8k7305	POWER SUPPLY HANOBOOK \$ \$9\%
9k1015	practical antennas for the radio
	MMATEUR $\$ 9.95$
8K1185	THE PRACTICAL HANOBOOK OF FM
	MEPEATERS ${ }^{\text {a }} 9.95$
9k7302	Propagation wizaros handeook
	\$ 695
Ow0230	OSL CAAOS-STYLE W-250 \$895
Ow0500	OSLCAROS-STYLE W-500 \$1395
0x0250	OSL CAROS-\$TYLE X-250 \$895
0x0500	OSL CAROS-STYLEX-500 \$ $\$ 1395$
OYO230	OSL CAROS - STYLEY-250 \$ 095
OYOS00	OSL CAROS - STYLE Y-500 $\$ 13.95$
8K1199	the radio amateun antenna
	HANOBOOK \$ 6.95
Bk104a	RF 8 OIGITAL TESTEOUIPMENT $\$ 5.95$
EK 1059	RIL COOKBOOK \$650
EX 1000	SHELF BOX-1 \$ 200
Bx1001	SHELF BOXES -2.7 . $\$ 150$ each
BX 1002	SHELF BOXES - ${ }^{\text {A ANOUP. } \quad \$ 1.25 e a c h ~}$
BK 1200	SIMPLE. LOW COST WIAE ANTENNAS
B67311	SOME OF THE BEST FROM KILOBAUD
	. $\$ 10.95$
B67391	SOME OF THE BEST S 395
BK7351	SSB THE MISUNDERSTOOD MODE 5

Catalog	H Item Price
Cr7350	SSTV TAPE.
SG1081	STUOY GUIDE-ADV CLASS $\quad \$ 6.95$
SG 1080	STUDY GUIDE-EXTAA CLASS \$ 5.95
SG7357	STUDY GUIDE - NOVICE CLASS \% 4.95
8K1190	THE TENMETERFMHANDBOOK \$ 495
L87359	TEST EOUIPLIB VI-COMPONENT
	TESTEAS . $\$ 4.95$
Le7360	TEST EOUSPLIE V2-AUNIO TESTERS
	. 54.95
7361	TESTEOUIP LIE V3-AADIO EOUIP. 54.95
Le7362	TESTEQUIPLPB V -IC TESTEO Si495
8K7348	TOOLS A TECHNIOUES \quad S 4.95
1063	TTL COKKBOOK
8k 1064	tvi cookbook is is.95
6K7382	UNDERSTANOING \& PROGRAMMING
	MICROCOMPUTERS
7300	U.S.AMATEURRADIO CHART \$19
ex 1069	veritigal beam 8 triangle antins
	\$ 550
8к7368	VHF ANTENNA MANOBOOK \% 5.95
EKTIS	VMF HANOBOOK FOR RADIO AMATEURS
	\$ 8.95
EK7370	WEATMER SATELLITE HANDBOOK \$ 2.50
8 K 1202	WORLO PRESS SERVICE FREOUENCIES
	\$ 595
8 K 1184	RLo madio ty handiook.
(

READER SERVICE

This card is valid until October 31, 1982
A. Which of the following best describes your involvement in electronics? $\square 1$. Strictly a hobby
\square 3. Both hobby and business $\square 2$. Strictly business
B. Do you own a microcomputer?
$\square 1$. Yes
$\square 2$. No
C. If you answered yes to Question B, which of the following applies: $\square 1$. I use my microcomputer entirely for amateur radio.
-2. I use my microcomputer for several things, including amateur radio. $\square 3$. I don't use my microcomputer for amateur radio.
D. Which band(s) do you usually operate on?

$\square 1.2$	$\square 4.15$	$\square 7.80$
$\square 2.6$	$\square 5.20$	$\square 8.160$
$\square 3.10$	$\square 6.40$	$\square 9$. Other

E. Which of the following best describes your interest in TVRO (satellite TV)? $\square 1$. I currently own a TVRO.
$\square 2$. I will build or buy a TVRO in the near future.
\square 3. I'm interested in learning more about satellite TV.
\square 4. I am not interested in satellite TV.
F. How do you look at the ads in 73 Magazine?
$\square 1$. Look at almost all ads
-4. Look only at full page ads
$\square 2$. Look at about half of the ads $\quad \square$. Look only at color ads
\square 3. Look only at ads for certain products
G. How do you rate the visual appeal of ads in 73 Magazine?
$\square 1$. Excellent
$\square 3$. Fair
-4. Poor
\square 2. Good
H. I would like to see more of the following types of articles in 73 Magazine (check all that apply)?
$\square 1$. Equipment modifications
$\square 2$. Simple construction articles
\square 3. Complex construction articles
4. Historical
$\square 5$. Antennas

1. What do you think of the saddle stitch binding now being used on 73 Magazine?
$\square 1$. Love it $\square 4$. Don't care
$\square 2$. Ok, no bettter than
$\square 3$.
Bring back the old binding
J. Which amateur radio magazines do you read regularly
$\square 1.73$ Magazine
-3. Ham Radio
-4. $C Q$
$\square 2$. QST
$\square 6$. Operating news
$\square 7$. Theory
$\square 8$. Beginner
$\square 9$. Humor
K. How many issues of 73 Magazine have you read during the last year?
-1. 1-3
-3. 7-10
$\square 4.11$ or 12

Reader Service: Return this card to receive full information on the products advertised in this issue. Refer to the add. You will find numbers near the logo of each advertiser. Each represents the advertiser's individual Reader Service Number. Circle the corresponding numbers on the card on this page, include your name, address \mathcal{E} zip, and drop in a mailbox. In 4-6 weeks you'll hear from the advertiser directly.

1	6	19	16	21	126	131	136	141	146	251	256	261	266	271	376	381	386	391	396
2	7	12	17	22	127	132	137	142	147	252	257	262	267	272	377	382	387	392	397
3	8	13	18	23	128	133	138	143	148	253	258	263	268	273	378	383	388	393	398
4	9	14	19	24	129	134	139	144	149	254	259	264	269	274	379	384	389	394	399
5	10	15	20	25	130	135	140	145	150	255	260	265	270	275	380	385	390	395	400
26	31	36	41	46	151	156	161	166	171	276	281	286	291	296	401	406	411	416	421
27	32	37	42	47	152	157	162	167	172	277	282	287	292	297	402	407	412	417	422
28	33	38	43	48	153	158	163	168	173	278	283	288	293	298	403	408	413	418	423
29	34	39	44	49	154	159	164	169	174	279	284	289	294	299	404	409	414	419	424
30	35	40	45	50	155	160	165	170	175	280	285	290	295	300	405	410	415	420	425
51	56	61	66	71	176	181	186	191	196	301	306	311	316	321	426	431	436	441	446
52	57	62	67	72	177	182	187	192	197	302	307	312	317	322	427	432	437	442	447
53	58	63	68	73	178	183	188	193	198	303	308	313	318	323	428	433	438	443	448
54	59	64	69	74	179	184	189	194	199	304	309	314	319	324	429	434	439	444	449
55	60	65	70	75	180	185	190	195	200	305	310	315	320	325	430	435	440	445	450
76	81	86	91	96	201	206	211	216	221	326	331	336	341	346	451	456	461	466	471
77	82	87	92	97	202	207	212	217	222	327	332	337	342	347	452	457	462	467	472
78	83	88	93	98	203	208	213	218	223	328	333	338	343	348	453	458	463	468	473
79	84	89	94	99	204	209	214	219	224	329	334	339	344	349	454	459	464	469	474
80	85	90	95	100	205	210	215	220	225	330	335	340	345	350	455	460	465	470	475
101	106	111	116	121	226	231	236	241	246	351	356	361	366	371	476	481	486	491	496
102	107	112	117	122	227	232	237	242	247	352	357	362	367	372	477	482	487	492	497
103	108	113	118	123	228	233	238	243	248	353	'358	363	368	373	478	483	488	493	498
104	109	114	119	124	229	234	239	244	249	354	359	364	369	374	479	484	489	494	499
105	110	115	120	125	230	235	240	245	250	355	360	365	370	375	480	485	490	495	500

Name

Address

\qquad
City \qquad State \qquad Zip

BUSINESS REPLY MAIL

FIRST CLASS

PERMIT \#29 P O BOX 326 DALTON MA 01226

73 MAOAZINR
P.O. Box 326

Dalton, MA 01226-0326

Radio Bookshop NEW from 73
 THE
 NEW
 WEATHER
 SATELLITE HANDBOOK

BY DR. RALPH E. TAGGART

Here is the completely updated and revised edition of the best selling Weather Satellite Handbook - containing all the infor mation on the most sophisticated and effective spacecraft now in orbit. Dr. Taggart has written this book to serve both the experienced amateur satellite enthusiast and the newcomer The book is an introduction to satellite watching, providing all the information required to construct a complete and highly ef fective ground station. Not just ideas, but solid hardware designs and all the instructions necessary to operate the equip ment are included. For the thousands of experimenters who are operating stations, the book details all procedures neces. sary to modify their equipment for the new series of space. craft. Amateur weather satellite activity represents a unique blend of interests encompassing electronics, meteorology and astronautics. Join the privileged few in watching the spec tacle of earth as seen from space on your own monitoring equipment. Order BK7383 \$8.95

SAVE $\mathbf{\$ 2 . 9 5}$

WEATHER SATELLITE
 HANDBOOK (first edition)

By Dr. Ralph E. Taggart WB8DQT. Valuable information in this first edition is not included in Dr. Taggart's just published book. The New Weather Satellite Handbook (see above). Chapters such as "How to Build an Electric Timer for Satellite Tracking" and "Building an Automatic Control for the Satellite Receiving Station" will no longer be available when this edition is out of print. This is a good entry level text for those discovering the exciting new use of weather satellites. Regular price: $\$ 4.95$. SPECIAL PACKAGE PRICE--BOTH BOOKS FOR ONLY $\$ 10.95$, SAVE $\$ 2.95$! (This offer available only while sup. plies last.) Order WS7300 and receive both editions of the Weather Satellite Handbook for only $\$ 10.95$ (plus $\$ 1.00$ shipp. ing and handling charge).

[^7]
From $75=$ MAGAZINE THE MOST WORLD Giलp Bx Be

 ATLAS UP-TO-DATE REPEATER ATLAS AVAILABLE! INCLUDES:- MAPS FOR EACH STATE
- 28 MHZ THROUGH 1296 MHZ
- PERFECT FOR MOBILING
- WORLD REPEATER ATLAS-BK7315-Completely updated, over 230 pages of repeater listings are in. dexed by location and frequency. More than 50 maps pinpoint 2000 repeater locations throughout the USA. Foreign listings include Europe, the Middle East, South America and Africa. \$4.95.

IN STOCK AND READY TO SHIP

- Use the order card on the Reader Service page of this magazine
or itemize your order on a separate piece of paper and mall to:
73 Radio Bookshop - Peterborough NH 03458. Be sure to include check or detailed credif card information. No C.O.D. orders accepted Add $\$ 1.50$ handing charge for the first book: $\$ 1.00$ for each additional book Questlons regarding your order? Please write to Customer Service at the above address. Please allow 4-6 weeks for delivery
FOR TOLL FREE OROERING CALL 1-800-258-5473

MAGAZINE

THE 1982 EDITION GENERAL LICENSE STUDY GUIDE

by Timothy M. Daniel N8RK

This is the complete guide to the General License. Learning rather than memorizing is the secret. This is not a question-and-answer guide that will gather dust when the FCC issues a new test. Instead, this book will be a helpful reference, useful long after a ham upgrades to General. Includes up-to-date FCC rules and an application form.
ORDER yours today and talk to the world
SG7358 $\$ 6.95$
Please call regarding availability
-Use the order card on the Reader Service page of this magazine or itemize your order on a separate piece of paper and mail to: 73 Radio Bookshop-Peterborough NH 03458. Be sure to include check or detailed credit cardintormation. No C.O.D. orders accepted. Add $\$ 1.50$ handling charge for the first book; $\$ 1.00$ for each additional book. Questions regarding your order? Please write to Customer Service at the above address. Please allow $4-6$ weeks for dellvery

FOR TOLL FREE ORDERING
CALL 1-800-258-5473

Wayne Green Books

Leam Dikital
Electronics While
Building Your Own
Computer!

TEXTEDIT-A Complete Word Processing System in kit form
by Irwin Rappaport

TEXTEDIT is an inexpensive word processor that you can adapt to suit your needs, from writing form letters to large texis. It is written in modules, so you can load and use only those portions that you need. Included are modules that periorm:
-right justification

- ASCII upperilowercase conversion
-one.key phrase entering
- complete editorial functions
-and much more!
TEXTEDIT is written in TRS 80° Disk BASIC, and the modules are documented in the author's admirably clear tutorial writing style. Not only does Irwin Rappaport explain how to Use TEXTEDIT: he also explains programming techniques implemented in the system. TEXTEDIT is an inexpensive word processor that helps you learn about BASIC program ming. It is written for TRS 80 Modets I and III with TRSDOS $2.2 / 2.3$ and 32 K

BK7387 \$9.97 Disk Available DS7387 \$19.97
 ISBN 0.8806.050.6

Annotated BASIC-A New Technique for Neophytes.

BASIC programming was supposed to be simple-a beginner's programming language which was 50 near to English that it could be easity understood. But, in recent years, BASIC BASIC simply Isn't basic anymore.
Annotated BASIC explains the complexities of modern BASIC. It includes complete TRS 80° Levelll BASIC programs that you can use. Each program is annotated to explain in step-by-step fashion the workings of the progiam. Programs are flowcharted to assisted you in tollowing the operational sequence. And-each chapter includes a description of the new concepls which have been introduced
Annotated BASIC deals with the hows and whys of TRS 80 BASIC programming. How is a program put together? Why is it written that way? By observing the programs and following the annotation. you can develop new techniques to use in your own programs-or modity commercial programs for your specific use
Annotated BA SIC Volume 1 contains Projecting Proths, Surveyor, Things to Do, Tax Shelter, Introduction to Digital Logic, Camelot. The Soundex Code. Deducwon, Op Amp, Contractor CKT384 $\$ 10.95$
BK7384 $\$ 10.95$ ISBN $0.88006-028 \times$ AVAILABLE NOW!
Annotsfed BASIC Volume 2 contains Rough Lumber List, Trip Mileage. Flight Plan, OSCAR Data, SWRJAntenna Design. Supermaze. Petals Around the Rose. Numeric Analysis, Demons, Air Raid, Geography Test, Plumbing System Design
BK7385 $\$ 10.95$ ISBN 0-88006-037.9
Order Both Volumes and Save! BK738402 \$18.95

KILOBAUD KLASSROOM-

A practical course in digital electronics

By George Young and Peter Stark

Learning electronics theory without practice isn't easy. And it's no fun to build an elec tronics project that you canit use. Kilobaud Klassroom the popular series first published in Kilooavd microcompuing. combines ineory whacice. This is a prist pubishe in dighal electronics. It starts out with very simple elechonics propects, and by the end of the course you'll construct your own working microcomputer!
Whether Whether you re learning at home or in the classroom, this book provides you with a sollid background in electronics- and you'll own a computer that you buill yourself!
Kilobaud Klassroom contains Getting the Ball Rolling. Gates and Flip. Fiops Explained, J.K. Flip-Flops and Clocked Logic. PC Boards and Power Supples, Hardware Logical Functions Vollage, Current and Power Supplies, Transistors, Diodes and OP Amps, Pulses and More Vollage, Current and Power Supplies, Transisiors, Diodes and OP Amps, Pulses and More
Pulses, Counters and Reglisters, Bus Traltic Control, ROM and RAM Memories, I/O Circutry, Pulses, Counters and Registers, Bus Tralic IIIIrol, ROM and RAMMemories, IVO Pilcutry Connections, Finally...The Kilobaud Krescendo, Eproms and Troubleshooting, Expan slons and Programming. Machine Language Programming. Assembly Language Program. ming. Connecting to the Outside World.
ISBN. 0.88006-027.1 AVAILABLE NOW! BK7386 $\$ 14.95$

THE NEW WEATHER SATELLITE HANDBOOK-

By Dr. Ralph E. Taggart WB8DQT-
Here is me compleiely updared and revised edimon or ne besr-seling weainer Sapelme Handbook - containing all the information on the most sophisticated spacecraft now in orbit. Dr. Taggart has written this book to serve both the experienced amateur satellite enthusiast and the newcomer. This book is an introduction to satellite watching. that tells you how to construct a complete and highly effective ground station. Not just ideas but solid hardware designs and all the instructions necessary to operate the equipmen are included. An entire chapter is devoled to microcomputers and the Weather Satellite Station. and for the thousands of experimenters who are operating stations. The New Weather Satellite Hendbook detalls all the procedures necessary to lollow the curren spacecraft
Weather Salellite contains Operational Satellite Systems, Antenna Systems, Weather Satellite Receivers. A Cathode Ray Tube (CRT) Monitor for Satellite Picture Display, A Drect.Printing Facsimile System for Weather Satelite Display, How to Find the Satelite, Test Equipment, Microcomputers and the Weather Satellite Station, Station Operations
ISEN 0-88006-015-8 avallable now! BK7383 58.95
-TRS. 80 and TRSDOS are trademarks of the Radio Shack Division of Tandy Corporation.

FOR TOLL-FREE ORDERING CALL 1-800-258-5473 WAYNE GREEN BOOKS • PETERBOROUGH NH 03458

NEW PRODUCTS

BASE STATION ANTENNA

Ringo Ranger II is the newest addition to the Cushcraft line of Proline base station antennas. This improved model has 5.5 dB gain with an additional $5 / 8$-wave section and decoupling radials for a low angle of radiation. All Ringo Ranger II antennas are broadband and easily fieldtuned for quick installation. They are made from aluminum, with stainless steel hardware.
There are models covering the frequency range from 146-512 MHz . The Ringo Ranger II is priced at $\$ 49.95$. For more information, contact Cushoraft Corporation, PO Box 4680, Manchester NH 03108; (800)-258-3860. Reader Service number 479.

Cushcraft's Ringo Ranger II base station antenna.

CALLSIGN DISPLAY

G \& T Service Company offers a $3^{\prime \prime} \times 8^{\prime \prime}$ callsign display. It is available with black, blue, red, green, or woodgrain back. ground and white letters, or a white or yellow background with black letters. G \& T also offers a clear Plexiglas ${ }^{\text {TM }}$ holder. The callsign display sells for $\$ 6.00$ plus shipping. For more information, contact G \& T Service Company, 3210 N. County Line Road, Farwell MI 48622. Reader Service number 476.

ICOM IC. 740 HF TRANSCEIVER

The Icom IC-740 is a versatile transceiver with front-panel or top controls that allow access to all operating functions. Adjustable receiver parameters include rf preamp, if gain, noise blanker (width and level) i-f shift, passband tuning, crystal filter inlout, notch filter, agc (time constant and on/off), squelch, tone, and audio gain. Transmitter controls are mike gain, VOX, compressor, and power (10-100 W). The IC-740 includes capability for operating in the FM mode.

The frequency synthesis network includes dual vfo's with three tuning rates, split operation, and memory. Analog control of frequency with the incremental tuning on either TX, RX, or both. Full metering of receive-signal strength, trans-mit-relative rf output, com. pressor level, ALC and collector current, plus a built-in swr meter.

A large selection of options

Palomar Engineers' MK V electronic keyer.
allows tailoring the IC-740 to your needs: a frequency marker, FM module, built-in electronic keyer, two $9 \cdot \mathrm{MHz}$ i-f CW filters, three $455-\mathrm{kHz}$ i-f CW filters, and optional internal power supply. The suggested base price for the IC-740 is $\$ 1099$.
For more information, contact Icom America, 2112 116th Ave. NE, Bellevue WA 98004.

PALOMAR ENGINEERS' ELECTRONIC KEYER

Palomar Engineers has announced the new IC keyer, the MK V. It features a 1-Ampere silver contact relay output that will key all ham rigs and most shipboard transmitters. It keys either polarity without change of jumpers.

The keyer features the fullyadjustable Ham-Key paddle and Curtis IC. It is available with

The Icom IC-740 transceiver.
either standard operation or type-B action. The keyer has a sidetone oscillator, speaker, volume and speed controls, mode switch, and an internal pitch control. It operates from a clip-on 9 -volt battery for complete portability, or you can use a 9 - or 12 -volt dc power supply.

The MK V sells for $\$ 132.50$ plus shipping/handling. For more information, contact Palomar Engineers, 1924-F West Mission Road, Escondido CA 92025.

AUTOCONNECT'S AUTOPATCH

AutoConnect introduces Private Patch. Since Private Patch does not employ the sampling technique, there are no repetitious squelch tails. In addition to simplex capability, AutoConnect's technique of audio and digital signal processing also permits operation through repeaters.

A five-digit user-programmable access code and long dis-tanceloperator-restrict switch protect your ohone bill. A frontpanel ringback switch permits incoming calls when desired.

Additional features are CW identification and a six-minute shut-down timer with reset code for additional talk time.

The Private Patch's introductory price is $\$ 489$. For additional information, contact AutoConnect, PO Box 4155, Torrance CA 90510. Reader Service number 477.

the Global specialties SOLDERLESS BREADBOARD

Designed specifically for microprocessor applications, the new PB-105 solderless breadboard from Global Specialties Corporation contains five binding posts, 18 distribution buses, and six solderless breadboarding sockets. The $9.2^{\prime \prime} \times 11.4^{\prime \prime} \times .05^{\prime \prime}$ $(234 \times 290 \times 1.3 \mathrm{~mm})$ "Superboard" offers 50 percent more breadboarding area (up to 48 14-pin ICs) than the next smaller size.

Conductive spring clips within the breadboard body securely grasp component leads and connecting wires. Parts plug in and pull out without damage. Vinyl feet are mounted to the underside of the backplate to prevent slipping or damage to the bench top.

Proto-Board assemblies are engineered for use in design, test fixturing, quality control, prototyping, evaluation inspec
tion, and custom circuit applications. Suggested US resale price is $\$ 115.50$.

For further information, contact Global Specialties Corporation, 70 Fulton Terrace. New Haven CT 06509; (203)-624-3103. Reader Service number 484.

MFJ ACTIVE RECEIVING ANTENNA

MFJ has introduced a new active outdoor receiving antenna with outdoor whip that gives reception of $50-\mathrm{kHz}$ to $30-\mathrm{MHz}$ signals. At lower frequencies, it is equivalent to an outside wire antenna hundreds of meters long. At high frequencies, it has highgain amplifying action.

A high-dynamic range if amplifier is mounted at the antenna for maximum signal-to-noise ratio. A $20-\mathrm{dB}$ attenuator switch on the control unit prevents receiver overload.

The new antenna comes com-

The MFJ outdoor active receiving antenna.

CORRECTION

Please note that the TMAC Products weather station mentioned in our July issue (page 106) is powered by 115 volts (not 155 volts as stated).
plete with a 50 -foot coax cable with connector. It is available from MFJ Enterprises, Inc., for $\$ 129.95$ plus shipping and handling.

For more information, contact MFJ Enterprises, Inc., PO Box 494, Mississippi State MS 39762. Reader Service number 478.

THE DYNATRACER DT-1 CIRCUIT ANALYZER

Non-Linear Systems, Inc., has added the DT-1 Component Signature Analyzer as a companion to its line of miniscopes. Desig. nated the DT-1, the instrument has a capability as an in-circuit tester producing displays distinctive to the particular component or circuit belng tested with-
out the application of power to the circuit under test. DT-1 can be used with any oscilloscope equipped with an $X \cdot Y$ input.

The unit will display on the associated oscilloscope screen waveform pattern the condition of any component or group of components within a circuit. Accessories include a test-lead assembly, BNC-to-BNC cables for attachment to scope, and a unique component test adapter for testing radial-lead components without test leads.

The price for the DT- 1 is $\$ 150$. For more information, contact Non-Linear Systems, Inc., PO Box N, Del Mar CA 92014. Reader Service number 481.

The Dynatracer DT- 1 circuit analyzer.

I just wanted to get my two cents in on dropping the code as mentioned in Wayne's editorial Like the column "Never Say Die," in my opinion, "the code never will." Code has always been a great part of ham radio and I hope it stays. Code is a language everyone can enjoy and communicate by. It took me
quite some time to learn it, I grant you, but I stuck with it. If you want something bad enough, you can do it-and with great satisfaction.

Sounds like code came very easy for you-5 wpm in one hour. You must not have en. joyed something coming so easily, since now you feel code should be abollshed. My spelling is terrible and I learn slowly.

But I made my Extra and sure am proud of it. And if I can do it, most anyone can.

I'm sure glad Garth Evans is on our side of the fence. Like Garth said, "you have to dangle a carrot in front of the horse to get more privileges." Wayne, you say Bash is cheating, but are you sure you're not getting some kickback from Bash? Because with no code test, all you have to do is buy a Bash book, read a few hours, and you'll have your ham ticket. By the sounds of it, Wayne, you would like to see the ham bands turned into another 11 meters (chicken band). Well, that's my
two cents. All in all, Wayne, you have a great magazine, but not all your opinions are great.

Ron Ostman KAOAYN

 Eden Prairie MNRon, I admit that my opinions may not seem all that great if you ignore most of what I write and take little bits out of context and try to argue about them without mentioning the rest. Never have l ever suggested doing away with the code test and then leaving everything else the same. I guess you just read little parts of what I write and then wonder why I am not clear in my thoughts. You must really think I
am stupid if you think I want any of our ham bands to be like a CB channel. No, whenever / suggest canning the code, I also tie with it a much more serious technical exam, one which Bash will be unable to compromise. We have what is supposed to be a technical hobby, not a skill hobby, and the entry exam should reflect this. - Wayne.

I've read and reread your thoughts about code-free amateur licenses in the March issue of your mag, and hope someone out there listens to you. I've wanted to become a ham sincel got into electronics in 1946 (remember the old jokes about the "drip pan for the grid leak?") but have simply no interest in learning Morse code. The technical side of ham radio and electronics in general is fascinating to me, and I spend much of my free time working up a new circuit I've seen somewhere or trying to keep up on technical reading (that could be a full-time job nowadays!). Of course, 73 occupies a few hours every month.

I designed high-fidelity amplifiers back in the ' 40 s when nobody else knew what I was talking about and thought I was kind of nutty. I made the transition to solid-state with only mild trauma. I even went the CB route for a short while, but gave it up. They are, generally, foul-mouth rednecks with IQs in the low 80s or so. There are some excep. tions, sure, but they are too rare. I have a lot of reading and research to do on TVRO now (great series by WA4CVP and WA4OSR you've been running lately), so l'll take out my frustrations on the microwaves. Keep up the good work.

Jim White Sacramento CA

WELFARE ATTITUDE

Here I am again, reading the June 73 Letters column. Seems as though you continue to bash away at Bash, and your no-code license controversy goes on unabated.

Assume for the moment that you get your way. The most obvious question is, how do you pro. pose making your theory test Bashproof?

As for the club idea, it has been my observation that most clubs, no matter how enthusias-
tic they start out, soon deterio rate into the usual 5% doers and 95% hangers on. It would seem that the result would be to put into the hands of a few elitists the power to decide who gets a license. A disinterested FCC bureaucrat hireling is probably best qualified to apply the rules equally to all applicants.

I think the basic problem lies not specifically with ham radio, but with our society in general. Only when the pride of personal accomplishment replaces the welfare attitude will Bash die and amateur radio grow-no matter what the entrance re. quirements.

Henry Testa KB6PM

San Diego CA
Henry, it isn't our society that is different. . . people have always been like that. People do things because they enjoy them and feel some sense of responsibili. ty and accomplishment. The more we get people involved in amateur radio with responsibili. ties, the more enthusiasm I think we'll have. Amateurs who have been around for ten years can re. member the real enthusiasm of the FM and repeater pioneers. Clubs formed all around the country. We had growth, enthusiasm, and excitement. - Wayne.

EMERGENCY SYSTEMS

I have been a reader of 73 since Wayne started it in Brooklyn NY, and have been an avid reader of the "Never Say Die" column. I must make a few comments on your June, 1982, issue.

You are advocating a national policy for emergency communications, which, by the way, I agree with with only one difference. I am afraid, Wayne, that our equipment is becoming so complex and sophisticated that very few hams have the capability and know-how to maintain/ service same. In a real emergency, when the big national/military systems have gone up in atomic smoke, most of our present equipment will have gone the same way through the action of EMP (see AK0Q's article in the same issue). This guy knows something that few hams know.

I am retired now but have been involved in military communications planning for many years and have come across this subject many times. Much
of the material is still in the Top Secret drawers. While the military can replace its black boxes because they have thousands in reserve and cost is no object, the poor ham is out of business when all our beautiful idiot lights are out. I suggest you give this some thought and, instead of advocating more sophisticated emergency equip. ment, let's think of survivability also. The only way to survive in my opinion is if hams can main. tain their own equipment with minimum reliability on the manufacturer. Yes, I am thinking the unthinkable. Emergency equipment should be simple tube equipment, with at least one of each tube on the shelf in reserve. Above all, it should be maintainable.

Also, Wayne, let's face it: If the unthinkable ever happens, there will be no power and no gas for pur gas-guzzling generators, so all of our emergency equipment should be batteryoperated with, perhaps, a solar trickle charger. Some enterprising company might be induced by you to engineer a packaged transceiver/battery power system at reasonable cost and simple to maintain, remembering that it will have to be used and maintained when all has gone up in smoke.

I am sure that there are enough amateurs in every state to organize a truly compatible national emergency system. With your persuasive powers and 73 Magazine, I am sure it can be done. I am truly interested in seeing such a system established, because I know that should the big cloud ever rise over New York, Washington DC, Chicago, etc., etc., all other systems will be down. There will be no power, no telephone, no commercial radio, and no transportation. Only a truly compatible, maintainable amateur system can survive.

Hope to hear more on this most important subject from you. Keep up the good work, Wayne. We need more like you.

Arnold Samuels KH6COYI7

Ocean Shores WA
Oh, I'm familiar with EMP, those electromagnetic pulses which accompany nuclear bombs. Getting information on the subject is difficult, but there have been some good ar. ticles in the more technical
journals. It appears that unless we are hit close enough so we won't be around to worry about it, most of our solid-state ham gear will survive. . particularly if it is not connected to an outside antenna. One of the nice things about solid-state equip. ment is its ability to run from twelve volts. Now, we may have a shortage of 120 V ac to run tube equipment, but it is going to be a long time before we run out of 12.V dc sources. You can even run transistor equipment from solar cells if you have to, but forget it with tubes. If you are worried about servicing the more complicated electronics, I suggest you turn the job over to a teenager, if you can find one. You've been spending too much time in the company of old-timers who are afraid to even try to fix transistor and IC circuits. Kids plunge right in and have a ball. . . and fix them. I can remember back to my early days in amateur radio when I built anything I wanted, fixed anything, and had a ball. -Wayne.

EX-DEALER CONFESSIONS

I was an amateur radio dealer. After many years of screwing around with the hobby, I found myself on the other side of the counter. The excitement was profound and when our first big order arrived, you can imagine the feeling. I mean, gosh, golly, see, I can open any one of those boxes and play to my heart's content. Anyone else would call it a mental disease but we call it being a "ham."

Imagine what it was like getting ready for opening day. All the expectations were there in full force. The doors went open, the phone was activated, and the ads were placed. And they came, saying, "Hey, this is great - we have a real ham store in town!"

For a few weeks it was, without a doubt, the peak of my long involvement with ham radio. What ham could ask for anything more? Then it started to happen. "Can't you fudge the tax for me?" "How about a better discount?" "Can't you ship the box to a friend in Penn. sylvania and let me take the rig?" I actually shipped a cinder block in a Yaesu box to PA. Guess what happened. The damned block broke up, UPS

GEM-QUAD FIBRE-GLASS ANTENNA FOR 10, 15, and 20 METERS

2 element 2-meter Quad N/C on request, introductory offer with purchase of quad.

WINNER OF MANITOBA DESIGN INSTITUTE AWARD OF EXCELLENCE
Buy two elements now - a third and fourth may be added later with little effort.
Get a maximum structural strength with low weight, using our "Tridetic" arms.
GEM QUAD PRODUCTS
Transcona, Manitoba, Canada R2C 225
Box 53
Telephone (204) 866-3338

GLB

HIGH PERFORMANCE PRESELECTORS

MODEL P50 to P500

- 50-500 MHz
- Ultimate rejection over 80 dB
- Five large helical resonators
- Low noise
- High overload resistance
- Typical rejection figures:
$\pm 600 \mathrm{kHz}$ at $144 \mathrm{MHz}:-30 \mathrm{~dB}$
$\pm 1.6 \mathrm{MHz}$ at $220 \mathrm{MHz}:-40 \mathrm{~dB}$ $\pm 5 \mathrm{MHz}$ at $450 \mathrm{MHz}:-45 \mathrm{~dB}$
- The solution to interference, intermod and desens problems on repeaters
- 12V DC operation
- Dimensions only $1.6 \times 2.6 \times 4.75$ excluding connectors
- Custom tuned to your frequency
- Low cost - only $\$ 69.95$
- Allow \$2.00 for shipping and handling We have a complete line of transmitter and receiver strips and synthesizers for Amateur and commercial use. Write or call for our free catalog. We weicome MasterCard or VISA

GLBELECTRONICS

1952 Clinton St., Buffalo, N. Y. 14206 1-(716) 824-7936, 9 to 4

PB RADIO SERVICE 1950 East Park Row Arlington, TX 76010
\therefore PRODELIN 10° ANTENNA 8 peice for easy shipping/Injection molded for precision

* ChAPARRAL POLAROTOR

Changes polarity in less than half a second/Feed ε LNA never moves

* DEXCEL RECIEVER

Great looks/Great performance/2 YEAR WARRANTY/ Dentent tuning/ Built in modulator
\therefore DEXCEL 120° L.N.C.
Eliminates need for old fashioned LNA/2 YEAR
WARRANTY/Best LNC made
*ALSO AVAILABLE
1900 to 2500 MHz Microwave Downconverters

Assembled. $\$ 48.50$
SLOTTFD ARRAY ANTENNA. $\$ 21.95$
COMMERICAL M.D.S. SYSTEM............ $\$ 169.95$
CALL ORDER DEPT. TOLL FREE:
(800) 433-5169

INFORMATION CALL:
 (817) 460-7071

FT101 TS520 TS820

 FILTER CASCADINGProbably the most popular units ever produced, these solidly built transceivers were built to LAST. If you can live without gadgetry, why replace your reliable time-tested rig with a costly new model? Especially since you can easily make your receiver equal in selectivity and ultimate rejection to any now on the market with an inexpensive

Fox-Tango Filter Cascading Kit!
CONSIDER THESE FEATURES

- Easy installation - 30 minute average.
- No drilling, switching, alignment
- Results of 16 poles of filtering:

Filter Shape Factor as high as 1.19.
Ultimate Rejection better than 100 dB .
Works wonders on SSB; improves CW.

- Compensates for Filter Insertion loss.
- Complete instructions, clear diagrams.
- No RX audio impairment, TX unaffected
- Fits all models of Series - any letter.
- 10\% off if any four are ordered at once. TS520 Series Order Kit No. 520K. $\$ 70$ TS820 Series: Order Kit No. 820K $\$ 70$ FT101 Series (not ZD): Order Kit No. 4K... \$75 FT101ZDSeries: Order Kit No. 4K-ZD . . . \$75 Prices include shipping to U.S. \& Canada; Overseas Air \$5. Florida Sales Tax: 4\% All kits include a genuine 8 -pole top-quality FI Filter, improved cascading/mini-amp circuit board, all needed parts, cables, and detailed instructions.
In addition to the above, Fox-Tango features cascading kits for the FT-901/2 (\$65), FR101 (\$55), Heathkit SB104A (\$60). Also a wide line of SSB, CW, AM, and special filters for Yaesu, Kenwood, Drake R4C and 7-Line, Heathkit, and Collins 75S-3B/C.

NEW! TS830S and R820 KITS TS830 and R820 owners who have replaced their 1st and 2nd $\mathbb{F F}$ filters with a Matched Pair of 2.1 KHz Fox-Tango filters enthusiastically report the following:
". . VBT now works as / dreamed it should
Results are almost unbelievable
Spectacular SSB RX performance
I no longer need a CW Filler. (Names on Request)
Tests prove that high quality Fox-Tango 8 pole discrete-unit Crystal Filters are notably superior to the original units, especially the modest 455 KHz second IF ceramic unit. Substitution of Fox-Tango filters result in a bandwidth of 1.9 KHz at -6 dB , a shape factor of 1.2, and Ultimate Rejection of at least 110dB!
(Independent Report available upon request.) Regular Price: $\$ 55+\$ 125=\$ 180+$ shipping INTRODUCTORY PRICE (Complete Kit). . $\$ 150$ Includes Matched Pair of Fox-Tango Filters

All cables, parts, detalled instructions
10\% Quantity Discount Applies
Genuine Fox-Tango crystal filters are guaranteed for ONE YEAR. Beware of cheap imitations; they are no bargain! Don't be fooled.

GO FOX-TANGO - TO BE SURE!
ORDER by Mail or Telephone. Pay by Visa, MC, M.O., Check (US\$), Cash, or C.O.D.

AUTHORIZED EUROPEAN AGENTS
Scandanavia: MICROTEC, Makedien 26,
3200, Sandefiord, NORWAY
Other: INGOIMPEX. Postfach 24 49,
D-8070, Ingolstadt. W. GERMANY

Phone: 1-305-683-9587 - 323
opened it and discovered the contents, and sent an inspector to investigate! Needless to say, I felt like a jerk and had a hard time explaining that one. I said it was just a joke. Dumb people do dumb things.

Then came the advent of CB. Not normal CB, but HF CB. All of a sudden, strange people were selling the same equipment I was-out of their garages and basements. I was one of those high-minded nincompoops who refused to sell to the HFers and required a ham license in order to buy a transmitter. Although I was able to purchase the equipment cheaper than these pseu-do-dealers, I couldn't fudge the tax and I wouldn't "clip the brown wire" and cater to those illegal operators. You can see right there that I was never gonna make any money.

I would go to a hamfest in my own state and have to stand there like a jerk while an out-ofstate dealer beat me out by not charging sales taxes! Complaining didn't do any good. Finally, after I went out of business, all hell broke loose at the Roches. ter hamfest. The state was wrong in their tactics but right in principle. Everyone in New York State lives with sales taxes and । don't see any of them pounding on the walls. It's ridiculous for hams to expect special consideration just because they're hams. If I was a hot-shot modelairplane enthusiast, I don't think I could expect to be exempt from sales taxes because my little airplane could fly typhoid serum across a flooded river in an emergency. We all do what we can.

When you operate a business, you're faced with all sorts of expenses. Aside from the normal bookwork, you have the state and federal government taking up a good percentage of your time. Then there's the overhead in keeping a walk-in showroom going. Insurance, upkeep, test equipment, tools-the list goes on and on.
Then there is "salesmanship." I'm a technical type and always tried to give the inexperienced the benefit of my knowledge. Unfortunately, most hams are already "experts" and no matter what you tell them, they know more than you do or their "buddy" does. The real culprit is the attitude of most amateurs. There was once a day when the amateur was accepted as a fairly knowledgeable radio
type. He got discounts at the local radio store. Today, it's a different story. Amateur radio is a limited, special-interest hobby and is treated as a consumer item by the big importers.

The majority of rigs (at that time) were being sold to the HFers and not the hams. That was the era of the "Big Boom." This consumerism approach forced prices down and dis. counts were given because of the competition (via the 800 numbers). It was no longer feasible to keep an open showroom for people to come in, try the gear, make their decision on what to buy, and then call an 800 number and order to beat the tax. To make a long story short, the doors were closed.

I will be the first to agree that price is important. The only useful purpose of a local dealer is convenience-providing the opportunity to inspect and try the gear you're interested in and being there for service. But hams don't care about paying for service or convenience. After all, the manufacturer provides a warranty.

The only way any dealer can make it is to rely on mail-order sales or locate in a highly populated area. More significant is the realization that all this could end should the manufacturers and importers decide that they don't need dealers. Since they are providing the warranty anyway, they could install an 800 number and take over sales. Once the majority of the big outfits did this, they would have absolute control over pricing. As I stated, "ham radio is a limited, specialinterest hobby" and there is no need for discounting. People don't build anymore, so where would you go to "beat the price?"

Once I discovered the requirements of a likeable and lovable dealer, I realized that I couldn't make money at it. I didn't have the personality for it. I couldn't stand cheapness, I couldn't stand listening to a guy who just went to Radio Shack and bought his coax and then came to me and bitched about the price of a couple of fittings. Yuk. I had guys who actually complained about paying a seven-cent sales tax on a dollar item. I've had people buy their radios elsewhere and come with a rig under their arm looking for warranty service. I've had peo-
ple order parts for their gear and say, when I called them to let them know they had arrived, "Oh...yeah...I fixed it... don't need the parts anymore." A month later they call again: "Hey, can you fix my rig?" (Click.)
No, it wasn't all bad. I've had guys come in, pick out the most expensive units, never dicker on price, pay me in ones (from every pocket), and depart never to be seen again. That's when you crawl off in a corner muttering to yourself (or isolate yourself in the john with a copy of MAD magazine).
Yes, there are days when I miss it. I miss getting to play with all the "goodies" and being up-to-date with the industry. I miss the rumors of who is getting the favoritism and the best buys, and I especially miss getting the news about a new model, not from the maker or importer, but from the magazine ads (the model that's announced before Christmas-the one you order gobs of for the big rush in sales-only to receive maybe one and then get them all a month later when nobody is interested). I miss the double shipments, I miss getting all the accessories for an old model and not the new model. I miss all the trade-ins that blew up in my face. I miss hearing from the government that I didn't send in enough withholding. I miss getting ready for the next big hamfest. Yes, I miss it. The problem is that I couldn't make a living at it. In a sense, any present amateur radio dealer is giving his customers much more than they deserve, or he wouldn't be in business. I was not willing to give that much.
If you have a local dealer, sup. port him even if you don't like him. You may pay a little more for the convenience but, in the long run, you'll find it's worth it. There is no way he can get rich and the only reason he is there is because he loves the hobby -one thing you both have in common. After he is gone, nobody will replace him. My business could have survived by concentrating on mail-order sales, but the profit level would not have matched money-market earnings. I think this is true with any dealer.

1 just ordered a new Yaesu receiver. I did as most of you. I looked at the ads, found the "BESPRIZ," called the 800
number, used my charge card, and am now awaiting the brown UPS truck. It's so impersonal. There's no one I can go to locally, no one to bitch about the tax to, no one I can expound my knowledge to, no place I can run into fellow hams to BS with, no dealer I can get irritated with because he's had a bad day and is nasty. Hell, it's no fun at all. I think I'm becoming an "oldtimer." I can build a radio out of a safety pin and a razor blade. Can you?

Jim Beckett WA2KTJ
Corning NY

CCD ANTENNAS

Cheers to the multitude of you (literally) around the globe who have phoned and written us about your success with the 5.dB-gain W4FD Controlled-Current Distribution multiband dipole (as described in our 73 articles in October ' 78 and July ' 81 ; also see the May ' 82 issue).
We are pleased that the United States Navy has appro. priated monies to construct CCD antennas. (Here is an excellent opportunity for anyone wishing to manufacture, under very reasonable licensing conditions.)
Thanks most of all to this great magazine for bringing our story to you and for granting us permission to reprint the latest construction data. You may have a copy for a small, onestamp SASE.

Gene Brizendine W4ATE (800 Hummingbird Dr. SE Huntsville AL 35803) Harry Mills W4FD

AMATEUR HIGHWAYS

I wonder what you might think about getting the FCC to rescind the-ruling giving extra privileges to the Advanced licensees in that these hams get the private use of the lower 25 kHz in the CW segments of the bands?

My idea on this is related to the use of the highways. Driving the roads and operating in the amateur spectrum are privileges granted by public agencies. Operators must show prudence and abide by the rules and regulations.

The highway privilege is expressed in several classes of licenses: Extra or Advanced for truckers, bus drivers, etc., and

OALL NUMBER ONE!

GARLOAD INVENTORIES • ROCK BOTTOM PRIGES SUPER-FAST SERVICE

*\$249
A modular approach. . for your own custom-designed ATV system... Here's how

TXA5-4 ATV EXCITER/MODULATOR. $\$ 89 \mathrm{pPD}$ This wired and tasted module is designed to dive the Motorola MHW-710 module in the PAS 10 watt linear
amp. The crysial in the 100 mHz repion keeos har monics out of two meters for talk back. The video modulator is full 8 mHz lor computer praphics and col of. Reauires 13.8 vac reg of 70 ma . Tuned with xtal on 439.25, 134.0, of 426.25 mHz Provision for sync ex
panding. Frea. avallable. panding. Freq. available.

PA5 10 WATT ATV POWER MODULE $\$ 89$ ppd The PA5 will put out 10 walts AMS power on the sync tips when driven with 80 mw by the TXA5 excher. 50 ohms in and out, plus bandwidth tor the whole band vac regulated a 3 amps.

FMA5 AUDIO SUBCARRIER GENERATOR \$29 ppd Puls audio on with your camera video jusl as broad cast TV does at $4.5 \mathrm{mH} z_{\text {I }}$ Puts oul up to 1×0.010 dilve the TXAS or VM.2, 3. or 4 modulators. Requires low 2 mic (150 to 600 ohms), and +12 to 18 vac 25 ma Works with any x mitr with 5 mHz video bandwidith
TVC-2 ATV DOWNCONVERTER. . . $\mathbf{S 5 5}$ ppd Stripline MRF901 (1.7 do NF) preamp and double bal. anced mixer module digs out the weak ones but resists ntermods and overload. Connects between uht anten 42010450 mHz . Requires +12 to or 3 . Varic ap fune Super sensilive TVC.2L Nit NE64535 preamp Oib NF

slage. . $\mathbf{S 6 9} \mathrm{pDd}$
"TXA5, PA5, FMA5 and TVC Basic Module Pkg.
Call or write for our complete list of specifications, station set-up diagrams, and optional accessories which include antennas, modutators, detectors, test generators, cameras, etc. WE ARE A FULL-LINE SUPPLIER OF ALL YOUR ATV NEEDS.
TERMS: VISA or MASTER CARD by telephone or mail, or check or money order by mall. All prices are delivered in USA. Allow three weeks after order for delivery. (213) 447.4565 Charge card orders only

P.C. ELECTRONICS ${ }^{2522}$ Paxson Lane,

 Tom W6ORG Maryann WB6YSS Arcadia, California 91006

ORBIT is the Official Journal for the Radio Amateur Satellite Corporation (AMSAT), P.O. BOx 27, Washington, DC 20047. Please write for application.

For a FREE SAMPLE COPY please send $\$ 1$ to cover First Class Postage and handling to: Orbit, 221 Long Swamp Road, Wolcott, CT 06716.

General and beginners for the rest. The Advanced exam is given to help ensure good and safe driving skills. But these Extra class drivers share the highways right along with the General class and even the beginners.
In view of this, why should the ham bands be segregated? It seems to me to be a form of dis. crimination. The amateur bands are just that for amateurs of all classes. The Advanced or Extras may not think it, but they are still amateurs. Radio operating skill doesn't come with technical knowledge.

QRM keeps increasing with more contests and RTTY stations. By returning these 25 kHz to the majority of amateurs, our privileges would return to us more enjoyment.
C. M. Johnson W6EOT Lakeside CA
C.M., your attempt at reasoning is weird, possibly brought on by having spent too much time in California. In the long run, ifavor splitting up our bands the way we all agree they should be split up, with no FCC regulations on this at all. But if you think 25 kHz is going to give you more room to operate, you have another thing coming. That would be swallowed up so fast you would never know it had been there. No, if there is too much interference, we either have to move to bands which are not as crowded (and there are plenty of
them) or else start working on communications modes which use our frequencies more efficiently. If you change to RTTY you will be able to communicate about five to fifty times as fast, thus having to be on the air much shorter periods, leaving some spectrum for others to talk. Just by using already known (but not used) techniques, we can communicate at 8,500 words per minute. Should we have a special express lane on your highway for 200 mph cars or do they have to drive at 55 mph along with the trucks and buses?-Wayne.

As DX of some scarcity, although not really that rare, I must endorse Wayne's com. ments on pileups.

For DX stations, the first time at the bottom of a pileup is so terrifying that many never come back. On 20, for instance, many keep out of the American phone band for that reason.

My own technique, one which has enabled even the QRP stations to achieve a successful QSO, is somewhat similar to Wayne's. Once a pileup gets going, I go through the call areas in turn, starting with either area 5 or 7 , and finish at 6 (6 s here are really sounding like the proverbial Californian kilowatt). By asking for the callsign once only, and then answering the loudest
heard, turnaround is pretty quick. And it gets rid of the tailenders once and for all. Some doubling does occur, and there is always some QRM, but the beams at the other end seem to sort things out pretty well. And, once there is a successful QSO with just one QRP station, other stations in the queue are that much more patient-they know that their turn will surely come. Elbow jolts are far fewer.

A couple of comments for queue jumpers. They are right at the top of my hate parade-if others can wait, so can they. If they can't, no QSL.

Inexperienced amateurs wishing to QSL with rare DX should note the following:

Please make sure that your QSL card has all the information needed, and that it is right. I have had cards with the time wrong by hours, or which used local, not UTC, and cards on which the date has been wrong by up to a month (i wonder what they are using for log books-mine is written up as the call is made); there are even some cards here without the name and address of the operator!
For rarer DX , postage is a ma. jor expense. I know of some DX stations who will not reply unless some form of postage is included. One IRC will get a surface mail reply from most stations; if more IRCs are needed, "George Washington" may be both cheaper and worth more at
the other end. If time is available, ask your DX station. He may prefer one or the other. Of course, many DX stations have a QSL manager. The same courtesies should also be extended to him.

As regards the magazine, when the format changed (with all the emphasis on techniques and a technology that will have little short-term relevance in the South Pacific), I was initially disappointed. However, upon reflection, I say, "go to it!" This is a hobby, with frontiers that the professionats simply do not have the resources to explore. Why, that is where we came from in the first place! And, as for my subscription to 73 , why, when 1 first decided to pay out a week's wages in 1966, when I first became a subscriber, my, it was a big decision. Now, I look upon it as an investment which is still returning great dividends after all this time. In fact, my most useful resource is nearly 16 years of articles on every topic in the hobbyist's field.

David Bell 3D2DB
Suva, Fiji
1966? That's the year I visited Suva and got on the air as VR2FD (Fuddy Duddy). I was using a borrowed Heath transceiver and I had a ball. Perhaps one of these days I'll be able to stop off at Fiji again and enjoy the Kava ceremonies, update my call to 302FD, and work a few more of the pileups.-Wayne.

FUN!

John Edwards KI2U
78-56 86th Street
Glendale NY 11385

VHF-UHF COMMUNICATION

I've had a love affair with VHF-UHF radio that stretches back to my earliest days in this hobby. While any appropriately-licensed amateur with a few bucks can talk to the far corners of the Earth on HF, it takes skill-not just money-to work DX on 50 MHz and above.

Perhaps the reason for my fixation with the top frequencies has something to do with the way I entered ham radio. You see, unlike my fellow neophytes, I started my ham career with a Tech license. While I have nothing against either Novices or CW addicts, I've always felt more relief than accomplishment after passing a code test. Indeed, after I passed my Extra, I took all of my code cassettes and recorded music over them.

My proudest moment on VHF came on November 20, 1979. That was the day K7OFT and I II was WB2IBE then) set the amateur dis-
tance record for a two-way A4 facsimile contact (New York City to Seattle, 2,430 miles, 50.250 MHz). Now that the FCC has opened A4 to the HF bands, I'm sure the record will soon be broken. Still, DX is child's play on HF. But experimenting on six meters and up-that's a different world.

ELEMENT 1—CROSSWORD PUZZLE (Illustration 1)

Across

1) Increases receiver sensitivity
2) Interference type (abbr.)
3) A 6 -meter activity (abbr.)
4) Not twice
5) Key maker
6) Circuit type (abbr.)
7) J-pole, for instance
8) Costa Rica prefix
9) Regret or French street
10) VHF-UHF combined antennas
11) Handle
12) Canadian rule-makers (abbr.)
13) The medium (abbr.)
14) Morse "standby"
15) Month after VHF QSO Party (abbr.)
16) A place to skip (abbr.)
17) Haiti prefix
18) Alaska prefix
19) HF rig to VHF rig
20) Superhet and superreg
21) Old Novice prefix
22) Beam
23) Noise or connector
24) Sun
25) Hawaii prefix
26) League appointment (abbr.)
27) Top-type antenna
28) West coast city (abbr.)
29) Gate type

Illustration 1.
ELEMENT 2—FILL•IN
(Courtesy of Joe Reisert W1JR)

1) 6 meters: \qquad to \qquad MHz .
calling frequency is
 to \square MHz .
calling frequency is \qquad 10 \qquad MHz .
SSB/CW calling frequency is \qquad to \qquad MHz .
2) 70 centimeters: \qquad is 10 MHz .
3) 23 centimeters: \qquad 10 to \qquad MHz .
4) 13 centimeters: \qquad
\qquad MHz .
5) The two exclusive VHF CW bands are \qquad to
\qquad MHz and \qquad
) The highest FCC frequency assignment is
6) The first US station to work Europe on 6 meters was.
7)

 popularized 144 MHz with his low-noise 417 tube converter.
11) \qquad all have their calls on 432 yagis.
12) An early pioneer of EME from the W1 call area was
13) The first recipients of 144 . and $432 \cdot \mathrm{MHz}$ WAS awards:
14) Name the ARRL sections in the W1 call area
15) Name the ARRL sections in the W2 call area
16) The call \qquad set the all-time June multi-op contest record.
17) The lowest frequency two-way EME QSO was on MHz and the highest was on MHz .
18) The highest frequency where meteor-scatter QSOs have occurred is \qquad MHz .
19) What mode of propagation is possible on 220 MHz , but is still unattained?
20) Typical meteor-scatter QSOs rarely occur beyond
\qquad miles.
21) 10,000-mile-DX QSOs are possible on EME. True or false?
22) Statistically speaking, the most popular frequency band and mode for VHF communication is: \qquad -,

ELEMENT 3-SCRAMBLED WORDS

Unscramble these terms relating to VHF-UHF communication:

```
VEAWGIDEU
ISHD
EREHPSOPOTR
ECRNORTVE
```

$$
\begin{aligned}
& \text { LIRNDEAH } \\
& \text { PRETREEA } \\
& \text { ETASLTILE }
\end{aligned}
$$

EVAWCRIMO TTREACS KLIN

ELEMENT 4-MULTIPLE CHOICE

1) In which month of the year does the Leonids meteor shower occur?

> 1) November
> 2) July
> 3) August
> 4) March
2) If you put all of the VHF bands together (2 through $11 / 4$ meters), how many total Hertz would you have?

1) 60 MHz
2) 60 kHz
3) 16 MHz
4) 13 MHz
5) In which year did we lose the 5 -meter band?
6) 1928
7) 1941
8) 1968
9) Amateurs never had a 5 -meter band.
10) In which year did the first US-Great Britain 6-meter QSO take place?
11) 1934
12) 1946
13) 1969
14) It's never been done.
15) Which of the following 'devices can be used to measure VHF frequencies?
16) Lecher wires
17) Grid drip-pan meter
18) VTVM
19) Frequency multiplier

THE ANSWERS

Element 1:

See Illustration 1A.

Element 2:

$1-50,54,50.110$
$2-144,148,144.2$
3-220, 225, 220.1
4-420, 450, 432.1
5-1215, 1300
6-2300, 2450
$7-50,50.1,144,144.1$
$8-300 \mathrm{GHz}$ and up
9-W1HDQ
10-W2AZL
11-W1HDQ, K2RIW, WOEYE,
F9FT, N6NB
12-W1FZJ

```
13-KOMQS, WOYZS
14 - NH, ME, VT, RI, CT, EMA, WMA
15-WNY, ENY, NYC/LI, NNJ, SNJ
16-W1FC
17-50, 2304
18-432
19-Es or sporadic E
20-1500
21-True
22-2 meters, FM
```


Element 3 :

(Reading from left to right) WAVEGUIDE, HARDLINE, MICROWAVE, DISH, REPEATER, SCATTER, TROPOSPHERE, SATELLITE, LINK, CONVERTER.

Element 4:

1-1 I can't figure out why they would name a meteor shower after a Soviet president.
2-4 A lot of real estate. So why is everybody on 2 meters?
3-2 After the war we moved to 6 meters. Some stupid thing called "television" forced the change.
4-4 No 6-meter privileges in the UK.
5-1 There may still be some old-timers using these things instead of frequency counters. Check an old theory book for an explanation of how these devices work.

SCORING

Element 1:
Twenty-five points for the completed puzzle, or one-half point for each question correctly answered.
Element 2:
One-half point for each blank filled.
Element 3:
Two and one-half points for each word unscrambled.
Element 4:
Five points for each correct answer.
How did you do?
1-20 points-Like 220 at 3 am .
21-40 points-Misdirected beam.
41-60 points-Smart as a QSO on a calling frequency.
61-80 points-Very high IQ.
$81-100+$ points-Ultra high IQ.

FUN! MAILBOX

I just received my May issue of 73 and I'm pleased that so many were able to solve the $D \times$ puzzle printed in the January issue. On the other hand, I'm sorry, John, about the indignant comments you received. Obviously, the puzzle was submitted as a brain teaser and to have FUN!

The really sad part is that I have to inform you and the contestants that solution 1 is correct whereas the other two are not!

There are three pertinent time elements in the clues, namely, (1) previously worked, (2) now working, and (3) will work next.

Clue E states, "Jack, who previously worked Taiwan, will not next work Hong Kong." In effect, this clue says that Jack had just worked Taiwan but it doesn't tell who he is working now-only that he will not be working Hong Kong next. From this clue a partial sequence develops, namely, Taiwan to ???? to Hong Kong. Both solutions 2

Illustration 1A.
and 3 show a sequence of Taiwan to Mongolia to Hong Kong, which is invalid. Hence solutions 2 and 3 are incorrect.
To be fair, however, I can now see that clue E might have been clearer if it had stated "... who had just previously worked Taiwan. .."
Thanks for running the puzzle, John, and if any of the contestants want a copy of my solution, l'll be pleased to send it to them. An SASE would be appreciated.

Bob Young W1MXI

Belmont MA
Will we never find an end to the January DX puzzle? Here I am, getting my woolies ready for another winter, and we have yet another interpretation on that brain-twister. Personally, I think it's all a matter of semantics, and hope readers will take up Bob's offer of corresponding directly with him. As for me, I'm through with this one.-JE.

W2NSD/1 NEVER SAY DIE

 editorial by Wayne Green
from page 8

new developments to keep us busy trying to keep up for months to come.

Being not completely unknown in the industry, I was taken behind the scenes to see some exciting new products not being shown at the show. As the publisher of four magazines in the micro field, I guess I get a bit too convinced of my visibility and am thus brought down to earth when a new firm gets into
the field and I run into a group of people who have never heard of me or my magazines.

I went through this shock recently with the debuts of four DEC computers, two Wang systems, the Sony computer, and the Victor computer. More and more computers are being brought to the market by firms with virtually no knowledge of the microcomputer market. This seems like a recipe for disaster, but perhaps these firms will adapt and succeed.

The proliferation of low-cost computers is exciting. With the price of the Radio Shack Color Computer being dropped to around $\$ 300$, the prices on the VIC-20 going to around $\$ 239$, the Sinclair coming out via Timex at $\$ 100$ (with discounts probably to around \$88), the new Panasonic JR-200 at $\$ 300$, the Commodore Max at around $\$ 150$, and so on, there is going to be a lot of computing power available in the under $\$ 300$ range. This means that there are going to be opportunities for programs, accessories, expansions, and so forth for these systems. Look for new businesses to start and soon be raking in millions. We are going to see a lot of new millionaires in the next few years.

After four hectic days of shows and four Eastern trips, it
was time for a short vacation, so Sherry and I took Eastern to San Antonio for a visit with her mother in Seguin, Texas. Her father was away on a visit to my folks up in northern New Hampshire, so we missed him. We got a good night's sleep, had one of the fantastic meals Alma makes, and were on our way to the airport again. This time we went to Atlanta and then on to Ft. Lauderdale for the computer show there.

The show, held at Brower College, had not been as well publicized as one might wish, so the attendance was small. With all due respect, Infoworld, while a fine newspaper, is not the best bet for reaching hobbyists and people interesfed in computer shows. I think my talk cleaned out the exhibit hall completely, with 82 to hear me. Sherry and I

DIRECTION FINDING?

* Doppler Direction Finding
\star No Receiver Mods
\star Mobile or Fixed
\star Kits or Assembled Units
\star 135-165 MHz Standard Range
* Circular LED Display
* Optional Digital Display
* Optional Serial Interface
* 12 VDC Operation
* 90 Day Warranty

New Technology (patent pending) converts any VHF FM receiver into an advanced Doppler Direction Finder. Simply plug into receiver's antenna and external speaker jacks. Use any four omnidirectional antennas. See June 1981 issue of 73 for technical description. Kits from $\$ 270$. Assembled units and antennas also avallable. Call or write for full details and prices.

NoVAX II

NOVAX II

NOW TWO MODELS TO SERVE YOU BETTER

YOUR OWN PRIVATE AUTOPATCH

Novax
 Mobile Connection

NOVAX interfaces your standard 2 meter; 220; 450; etc. Base station and telephone, using a high speed scan switching technique so that you can direct dial from your automobile or with your HT from the backyard or poolside - Automatically ... Easy installation transceivers, featuring solid state switching, offer best results ... Available interfaced with an ICOM 22 U.

FEATURES	NOVAX 1	NOVAX 11
- 3 min . Call duration timer	YES	YES
- Up to 45 sec . activity timer	YES	YES
- Single digit Access Control	YES	NO
- DTMF (Touch Tone)* phone connection	YES	YES
- 4 digit Access Control	NO	YES
- Toll Restrict	NO	YES
- LED Digital Display	NO	YES
- Vinyl covered alum. case size	$5^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$	$10^{\prime \prime} \times 8^{\prime \prime} \times 1{ }^{3 / 4}{ }^{\prime \prime}$
- Directly Interfaces with Repeater	NO	YES
- Rotary Dial System (incl. Last digit dial)	NO	YES-'Option'-\$49.95
- Ring Back (reverse autopatch) "Option"	YES-\$39.95; Kit \$29.95	Y ES-Wired-\$39.95
- Price	Kit;\$169.95/wired\$219.95	Wired only \$279.95
N.Y.S. Res, add appro, Sales Tax	SHIPPING ADD $\$ 3.50$ in U.S.A.	

To order, send check, money order to:
master charge AND VISA ACCEPTED
 (formerly R.W.D. Inc.)

Trademark ITT
Box 162 -Tudman Rd. Westmoreland, N.Y. 13490 or Phone 315-829-2785
-21

Hear

 Police/Fire Weatheron 2 Meter Handhelds with this MFJ VHF Converter.

New MFJ VHF converter turns your synthe sized scanning 2 meter handheld into a hot Police/Fire/Weather band scanner
$144-148 \mathrm{MHz}$ handhelds receive Police/Fire on $154-158 \mathrm{MHz}$ with direct frequency readout. Hear NOAA weather, maritime coastal plus more on $160-164 \mathrm{MHz}$.
Mounts between handheld and rubber ducky.
Feedthru allows simultaneous scanning of both 2 meters and Police/Fire bands. No missed calls.
Highpass input filter and 2.5 GHz transistor gives excellent uniform sensitivity over both bands. Crystai controlled
Bypass/OFF switch allows transmitting. Won't burn out if you transmit (up to 5 watts) with converter on. Low insertion SWR. Uses AAA battery. $21 / 4 \times 1 \frac{1}{2} \times 11 / 2$ In. BNC connectors.

Enjoy scanning, memory, digital readout. elt. as provided by your handheld on Police/Fire band
220 MHz Converter for 2 M Handheid MFJ-314 MFJ-314, like MFJ-313
 handheld.
Police/Fire/Weather Band Converter for 2 Meter Mobile Rigs.

MFJ-312, like MFJ-313 but for mobile 2 meter rigs. Transmit up to 40 watts thru converter without damage. S0-239 connectors. Moblle mounting brackets. Rugged. "ON" LED. Use 12 VDC or AAA battery. $3 \times 4 \times 1 \mathrm{in}$.

Order from MFJ and try it-no obligation. If not delighted, return it within 30 days for refund (less shipping). One year unconditional guarantee.
Order today. Call toll free 800-647-1800. Charge VISA, MC or mail check, money order for amount indicated plus $\$ 4.00$ each shipping. Hear police/fire/weather. Order now.
CALL TOL FREE ... 800.647-1800 Call 601-323-5869 in Miss. outside continental USA. tech/order/repair info. Telex 53-4550.
grabbed a nice lunch at the 94th Aero Squadron restaurant before the show. We enjoy that place, though our visits to Ft . Lauderdale are not all that frequent.
The talk over, we rushed back to the airport via Swenson's Ice Cream Parlor and a banana split. This time Eastern took us to Atlanta, but instead of the lounge we headed for town and the Marriott for the Atlanta Hamfestival.
The hamfest didn't seem to draw as large crowds as in many past years. I don't know if this is a reflection on the lack of growth of amateur radio, the economy, or the lack of anything really new and exciting to bring 'em in. Only about half of the exhibit booths had been sold, so most of the industry people weren't there... and the computer exhibits had almost completely disappeared. A couple years ago it looked as if the computer exhibits might push out the ham exhibits.

This lack of computer coverage may be a reflection of the turn in interest of the show promoters. A few years ago 1 worked with them to put on the heat to bring in computer exhibits and computer interested readers. I didn't hear much from them this year, so I didn't do much. Something big is needed to bring this great hamfest back to life.
I'm not fussing with the committee, for they were as cooperative as they could be for me. At the last minute, when I found I had a day between my Ft. Lauderdale talk and a trip to Colombia, Chaz arranged a spot for me to give a talk. . at $2: 00 \mathrm{pm}$ Saturday, the best time. They did everything possible to make my short visit comfortable and fun.
For some reason, Sunday is the big day at Atlanta. Most hamfests only pull about 50% as much traffic on Sunday as Saturday, but Atlanta has historically pulled more on Sunday. They did again. Some of the exhibitors who had been grumbling about the sparse attendance on Saturday perked up as sales boomed on Sunday. Well perhaps "boomed" is an exaggeration. Nobody was buying much in the way of expensive equipment... and the flea market was very depressing.
The hotel got on my recommended list with their luncheon. They had a do-it-yourself des-
sert buffet for $\$ 1.95$. I think this is the first time l ever beat a restaurant on a buffet. I really did a job on that buffet, starting out with apple cobbler smothered with soft serve ice cream, then going on to sundaes with cherries, strawberries, chocolate, and pineapple. I was not able to get to the baklava, the cream puffs, the chocolate eclairs, and so on. Hmmm, if we can allow a little more time between planes in Atlanta, I wonder if we might...?

Saturday night in Atlanta has turned into a ritual. Chuck Martin of Tufts was exhibiting, so his crew joined us on a trip out to Aunt Fanny's Cabin where we did the best we could with fried chicken, Smithfield ham, and all the fixings. Chuck, who had driven down, went back via the Knoxville World's Fair.

On Sunday morning, Sherry and I went back to the airport and Eastern, with a stop off in Miami on the way to Baranquilla. It's not as long a trip as I thought.

Once ensconsed in the Hilton in Cartagena, I began to wonder how I might get in touch with some of the local amateurs. I'd brought a page of the Callbook with me, so I had the addresses of quite a few hams in Cartagena (Car-ta-hey-na)...but which of them spoke English? Sherry, who knows a dozen or two words of Spanish, tried calling a few of the hams, but never managed to get beyond their housemaids. Then she got the hotel operator to make the calls for us and we were soon in touch with HK1EDM and HK1FA, Victor, the president of the local radio club.

Armando Castillo HK1EDM, a local plastic surgeon, his daughter, with Victor Yacaman HK1FA and his wife picked us up for dinner on Monday. They took the time to drive us around the old walled city and fill us in on the fascinating history of the town. It seems that Cartegena was repeatedly attacked by pirates, often being captured. Some of the pirates were a bit more than we've seen in our movies, arriving with nearly 200 ships and 23,000 troops.

We visited the radio club, where I signed in the log. They have their own club premises, complete with a service bench for repairing ham gear.

While I didn't send ahead for a license since I would be there
for only two days, I did have along a Kenwood HT, so I checked out the local repeaters. I had no trouble kerchunking five different repeaters from the hotel on 146.61, 64, 94, 147.06, and 147.24 . I heard at least three more, but was unable to kerchunk them. Simplex was going strong on $145.05,24,85$. You can bet that the next time I manage a day or two in Colombia at the end of a business trip, l'il have a license awaiting me and be busy talking on the repeaters. If I can get away for a couple more days I'll include a side trip to San Andres for some skin diving.

The trip back to Baranquilla was similar to the one down, complete with the singing children and small-town food vendors. The bus was smaller and hotter. Once at the airport, everything settled into routine and in a few hours we were back in Peterborough, New Hampshire, laughing over the problems and the fun of the visit.

The amateurs in Colombia, like amateurs everywhere, are wonderful people. I've never been seriously disappointed in my travels. Of course it helps when I am able to meet hams like Rudolf, who have been reading my editorials and already know me pretty well.

Eastern managed to get most
of the Braniff routes to South America, so they've removed Colombia from their special around-the-airline fare. They may be working on a new fare system which will include more of South America. In the past I've found that I could, by putting up with the Atlanta stops, get to a couple of shows cheap. er than to just one... and then be able to include a stop or two in the Caribbean as a bonus. Sherry and I managed St. Maarten, Martinique, and other such stops this way in the past. It's worth looking into. Eastern keeps inching up the cost of their around-the-system excursion fare, so check it out the next time you have to make a trip somewhere and see if you can't throw in a side trip to Antigua at no extra cost. I've only visited two South American countries so far, so l'm watching for something special from Eastern which could get me to a few more without a lot of cost. NSD stands for Never Spend a Dollar, which is consistent with my Yankee upbringing

RADIOAFICIONADOS

Note: if you look in the yellow pages of the phone book under Radioaficionados, you may find a list of the local radio amateurs

MFJ SHORTWAVE ACCESSORIES

NEW Indoor Tuned Active Antenna. Rivals, can even exceed reception of outside long wire.

Rivals long

MFJ. 1020 NEW INDOOR ACTIVE ANTENNA sits on your desk ready to listen to the world. Rivals, can otten exceed, reception of outside long wire. Unique Tuned Active Antenna minimizes intermod, provides RF selectivity. re duces noise outside tuned band. Also use as preselector for external antenna. Covers 300 KHz to 30 MHz in five bands. Adjustable telescoping antenna. Controls: Tune, Band Selector, Gain. On-Oft/Bypass. LED. FET, bipolar circuitry. Phono jack for external ant. $6 \times 2 \times 6$ inches. 9.12 VDC or 9 V battery for portable use 110 VAC with optional AC adapter, $\$ 9.95$

MFJ-1040 RECEIVER PRESELECTOR. Improves weak signal reception, rejects out-ol band signals, reduces image response, 1.8 to 54 MHz . Up to 20 db gain. Low noise MOSFET. Gain control. Bandswitch. Can use 2 ant., 2 revrs. ON.OFF/Bypass. 20 db attenuator. LED. Coax. phono jacks. $8 \times 2 \times 6$ in. Also for XCVAS to 350 watts input. Auto bypass. Delay control. PTT jack. MFJ-1045, S69.95. Same as MFJ 1040 , less attenuator, xcvr auto bypass. delay control. PTT. Use 1 ant., 1 rcvr. $5 \times 2 \times 6$ in. 9 V bat. Both requires 9-18 VDC or 110 VAC with optional

AC adapter, $\$ 9.95$
listed by name and call in Latin American phone books. The listing in Cartagena was most helpful.

SUCCESS

A depressing bit of news was In a recent report in the Wall Street Journal. Unless they rewrote the study, something I have personally known them to do.. . so I don't give them a lot of creditability, this showed that a high percentage of the teenagers they polled had little interest in success. All they wanted out of life was to have a home, a job, and a family.

I suppose, considering the cost of homes these days, that might seem like an outsized expectation, but I find that I am angry with the schools which are teaching the kids these meager values. Remember, if you will, that many of the people we employ to teach our children. . .the people who are giving them much of their values. . . are failures as far as coping with our economic system is concerned. It is a pity that parents have so little real choice in schools... and make this even worse by having virtually no communication with their kids At home, the television set is on and other studies have shown that the parents will fight almost to the death to keep it on, day and night.

Without much in the way of real communication with the parents; children have to learn from television and school.
neither of which is inspiring. Are there any TV shows which show successful people accomplishing things? In most of the shows l've seen, the heads of large corporations are busy ordering people killed, stealing formulas, and other skullduggery.

Our school system is set up so as to virtually guarantee fallure as far as making any real money is concerned. Pity, for the more money you make the more ability you have to help move the world ahead. The less you make, the less say you have in what is going on. Yet we have our schools set up so as to provide employees for large businesses (no one has ever gotten rich as an executive in a large business... according to John Wareham in his Secrets of a Corporate Headhunter...a superb, if probably disturbing book). If one continues on through the educational pro-
cess, one finds the goal is teach ing, another proven way to stay impoverished.

With little, if any, input to the kid from the parents, I sup. pose it is no wonder that our kids have no enthusiasm for success. This is something which happens in early schooling, so by the time a kid might get a chance to listen to me it is too late.
This is frustrating, in a way. Here we are in the middle of the computer revolution, with op. portunities on every side for youngsters to become incredibly successful, yet most of them don't want to and won't make even a slight effort to try. We've already seen more new millionaires as a result of the microcomputer in the last two or three years than we've had in any similar period in history... and this is only the beginning. We are about to enter a computer/communications explosion which will force millions on many more entrepreneurs. It's all there if you want it.
Being, for some reason, an entrepreneur, I see these opportunities opening up on every side. And I see a lack of people with the background it takes to succeed. I'm held back from getting into many more projects by lack of money for growth. . . and a lack of able people to follow up on the work that has to be done. Oh, we're growing at about 40% or so a year, but the opportunities are out there for ten times that in growth... if the venture capital and management were available.

Well, enough grousing about my frustrations. If I can organize a pilot model college to provide an entrepreneurial education I think our country would be able to grow faster and cope more successfully with the Japanese. I don't think we will ever do it with big corporations and the type of people they generate.

EMERGENCIES

Speaking of frustrations, I'm still looking for articles on advanced emergency communications systems which amateur radio could pioneer. Not only does amateur radio need the boost such new systems would provide, but our country needs the safety which such systems could provide. Right now, if the bombs should drop, we'd be in one hell of a fix. A recent disaster novel, Satan's Ham-
mer, spells out many of the problems we would face should a major disaster occur. Unfortunately, the authors of the book were unfamiliar with amateur radio, a service which will obviously be of key importance in any calamity.

It is a crime that amateur radio has managed to keep the traffic nets using CW for the last 30 years. When John Williams W2BFD and others showed the simplicity and effectiveness of RTTY back in 1948, it was time to make the change from Morse code to RTTY at 60 or 100 words per minute. Now, with a computer within the reach of anyone (Sinclair, \$100), what on Earth are we thinking of trying to send emergency messages with a hand key at ten or twenty words per minute? What do I have to do to get some action, start an Amateur Radioteletype Repeater League to bring us into the last half of the century? Yes, I know that virtually to a man you are about my age... which is sixty this year... and that you are tired and don't want to try anything new. Well, dammit, stock up on All-Bran and prunes and let's get this old ark a moverin. I want to see some sign of experimentation, even if we have to develop the action in the geriatric set.

In case you have managed to avoid the news programs on television, more and more countries are going atomic. This means that one of these days a little war, such as our recent conflicts in Lebanon, the Falklands, and so on, could escallate into that projected loss of 140 million Americans. Yep. there goes old gloom and doom Wayne again. . and I admit it this time. Sure, I agree with you that such a thing is so terrible that it is absolutely impossible. But I don't believe that any more than you do.
We both know that it is highly unlikely...but the possibility has to be reckoned with. Now if amateur radio could come into the 80 s and get some emergency relay systems working. automatic relays... with high speed digital communications...we just might have something left should all hell break loose. If we are going to depend on CB for post-atomic communications, we are not going to have a workable govern. ment.
You probably don't have the
guts to bring this up at a club meeting and get things started. I don't blame you. No, it's better to get mad at me for bringing it up and do be sure the next time you see me to assure me that you don't always agree with everything I write.

IONIZED!

The article on negative ions in the July 73 (page 52) left out a very important piece of information that you really should have before you start pouring ions around your house. There's a little side effect of these damned ion generators which they don't tell you about. . . one which can cost you a bundle.
There has been a mystique about negative ions for years. All sorts of claims have been made for them at various times... such as that they help you to think better, to feel better, to heal faster, and so on. Articles have pointed to positive ions as bringing on depression and even suicides

With the government taking a dim view of sales literature promising cures for things where proof is lacking, the brochures for negative ion generators are a marvel of hyperbole without anything really being promised. These ads do not promote confidence in the product.
Yet it seems as if there must be something there. I can't help but notice that virtually all of my really brilliant ideas come while I am taking a shower. If I sit in a tub of water nothing much happens. I probably should have a shower attached to my office and pop in and out a dozen times a day. I've read that this is not an unusual occurrence and that it is thought to be the knocking off of positive ions by the shower water which is responsible. This is supposed to build up the negative ions, allowing the brain to function better.

Now, as any of my great army of detractors will vouch, anything which will help me think better should be pursued. So it was only a matter of time until l got sucked in and bought one of those negative ion generators for my office. It was a little one. . . one of those small black ball types I'm sure you've seen advertised. Mail-order item. Well, it arrived and I plugged it in and put it above my desk and awaited flashes of brilliance. Nothing happened.

Attention radio amateurs:

8-LEVEL ASCII TELEPRINTER SALE!

Model 33ASR SF Good Working Condition s300!
plus tax and shipping.
Code: ASCII
Speed: $10 \mathrm{cps}, 100$ baud. Interface: 20/60 mA,
EIA optional
Data Set Optional
From RCA Service Company Nationwide Service Available

RB/

Write
1.270
J. H. Bell

RCA Service Company
Bldg. 204-2, Route \#38
Cherry Hill, New Jersey 08358
Or call collect the RCA Data
Services Region Office in
your area:

New York	$212-267-1550$
Philadelphia	$609-234-8900$
Atlanta	$404-934-9333$
Dallas	$817-640-0900$
Chicago	$312-595-4910$
Los Angeles	$213-728-7473$

MFJ RF NOISE BRIDGE

Lets you adjust your antenna quickly for maximum performance. Measure resonant frequency, radiation resistance and reactance. Exclusive range extender and expanded capacitance range gives you much extended measuring range.

This MFJ. 202 RF Noise Bridge lets you quickly adjust your single or multiband dipole, inverted Vee, beam, vertical, mobile whip or random system for maximum performance

Tells resonant frequency and whether to shorten or lengthen your antenna for minimum SWR over any portion of a band.

MFJ's exclusive range extender, expanded capacitance range ($\pm 150 \mathrm{pf}$) gives unparalleled impedance measurements, 1 to 100 MHz . Simple to use Comprehensive computer proven manual

Works with any receiver or transceiver. S0. 239 connectors. $2 \times 3 \times 4$ inches. 9 volt battery

Other uses: tune transmatch; adjust tuned cir cuits; measure inductance, RF impedance of ampli fiers, baluns, transformers; electrical length, velo city factor, impedance of coax; synthesize RF im pedances with transmatch and dummy load.

\author{

- Exclusive range extender - Expanded
 capacitance range - Series Bridge
}

Order from MFJ and try it - no obligation. It not delighted, refurn it within 30 days for a refund (less shipping). This bridge is unconditionally guaranteed for one year.

To order, simply call us toll free $800 \cdot 647 \cdot 1800$ and charge it on your VISA or MasterCharge or mail us a check or money order for $\$ 59.95$ plus $\$ 4.00$ for shipping and handling for MFJ. 202

Put this MFJ Noise Bridge to work improving your antenna. Order from MFJ or see dealer.

CALL TOLL FREE
 800-647-1800

Call 601-323.5869 for technical information, or der/repair status. Also call 601-323-5869 outside continental USA and in Mississippi

continental USA and in Mississippi
 ENTERPRISES, INCORPORATED Box 494, Mississippi State, MS 39762

Belore Midnlght Oct. 17
Firestone Tarp Mig. will send any of the above truck size tarpaulins to any reader of this publication who reads and responds to this test before midnight Oct 17. Each tarpaulin lot (\#Z.18, PVC) is constructed of high denslity fabric (with virgin grade ingredient phlied by Gult Oil Co. Dow Chemical and upplied by Gulf Oin Co.. Dow Chemical Co.. and Union Oil Co.) with nylon reinforced rope hems. dou be lock stitched hems, electronically welded seams, 100% water proof, 4 ($1 / 2$ " dia.) metal grom mets set on 3 ft . centers with relnforced triangular corner patches and are recommended for all heavy duty use and all bulk or pallet riding materials, and will be accompanied with a LIFETIME guarante will be accompanied with a LiFetme guarantee hat 77 hanilng orating for each tarp ordere. Add $\$ 7$ handiling \& crating for each tarp ordered Firestone Tarp M1g. pays all shipping. Should you wish to return your tarpaulins you may do so for a ull refund. Any letter postmarked later than Oct. 17 will be returned. LIMIT: Fifty (50) tarps per address no exceptions. Send appropriate sum together with our name \& address 10 : Tarp Test Dept \#163K Fire your name a address io. Tarp Test Dept. H163K. Firetone Tarp Mig., Inc., 6314 Santa Monica Bivd.. L.A CA 90038, or for fastest service from any part of the country call collect before midnight 7 days a week (213) 462.1914. (Ask operator tor) TARP TEST \#163K. Have credit card ready

FIRESTONE TARP MFG. INC

 6314 Santa Monica Blvd.L.A., CA 90038

MULTI-BAND ANTENNAS 7131 DWENSMGUTH AVENUE, SUITE AG3E CANOEA PARK, CALIF, 91303 TELEPMONE: (213) 341-5460

- Spider ${ }^{\text {im }}$ Antennas are not made on a production line; they are virtually custom built.
The Spiderim Maritimerim is the ultimate antenna for marine use. Constructed of non magnetic stainless stee! and nickel-chrome plated bronze, and using the regular Spiderim resonators and tuning sleeves
The Spiderim Adapter converts any mono band antenna with a half inch mast into a modern four-band antenna at a modest price.
For further information, prices write or call

These gadgets are being sold as smoke-clearing devices. I've seen demonstrations of how they precipitate smoke out of the air almost instantly. Well, that's great for some offices, but I don't smoke. I don't hire anyone who smokes. I don't let anyone smoke in the building, much less my office, so that function of the generator isn't very helpful. . . but it does tie in with the disastrous side effect.

A couple months ago I got an ad in the mail for a more powerful ion generator. Hmmm, perhaps that was the trouble, not enough ions. So I sent for this powerhouse ion generator and waited with hopes of being able to keep brilliant thoughts perking day and night.

The contraption arrived. It wasn't a lot larger than the black bomb sitting on the bookshelf over my head. This is a powerhouse generator? Oh, well, I put it on the shelf and plugged it in and waited for genius to strike. And I waited.

There must be something wrong with the idea. Here I was awash in negative ions and I felt tired and needed to lie down for a nap. Phooey. So 1 reached down to unplug the new generator and got zapped. That sucker had zillions of volts jumping out of the power plug. . . I couldn't get near it. Did I have the plug in backwards? I got some insulated foam and changed the plug around. Nope, still the same...hot. That's dangerous! There must be 100,000 volts jumping around that wall socket. You know, it's mighty difficult to pull a power
plug when you know it is going to give you a dandy shock, even with insulation. I sent the gadget back to the mail-order house and got a refund.

Okay, now the real kicker. After a year of sitting under my black bomb awaiting benefits, I moved some of the boxes of magazines which were on the shelf to another room. For a good ten feet around the generator, every book or box on the shelf had an outline around it printed permanently on the wall. A picture on the wall six feet from the generator was nicely outlined in black. It was as if I had sprayed the wall with dark grey. That damned generator had attracted the dust in the air to the walls of the room. . . and the books, boxes, pictures, and so on. I got a hundred years worth of dust coating my walls in about one year! The office walls are a disaster. Even the ceiling at that end of the room is a much darker grey. The whole room will have to be painted.

1 thought you might like to know before you get too enthused over the ion generator in the July issue.

HAM PUBLICATIONS

The virtual disappearance of Ham Radio magazine from hamfests and conventions has rein forced rumors that publisher Tenney would like to retire. There was some serious talk of that a few months ago, but apparently the chap interested in taking it over thought better of the idea after looking into the economics.

Tenney has been talking about retirement and his recent folding of Ham Horizons and getting rid of Ham Radio Report would indicate that he is wind ing down his publishing business. With the loss of editor Fisk, HR seems to have no one on the staff qualified to select and edit the more technical articles.

Since magazine publishers do have to take care of their subscribers when they fold their magazines, the usual move is to turn to a similar publication and arrange for them to fulfill the obligation. This is an expensive matter, but hopes of subsequent renewals and thus an eventual recouping of the investment often prevail.

With HR reaching the lowest point in advertising in ten years this spring, the losses must be considerable. However, should HR fold, you may be sure that ham high-tech articles will not disappear. We're preparing to open a section in 73 on this so that we can provide serious engineering builders the projects they like. We do have good technical brains on tap.

The way we keep score in the publishing business is by counting pages of advertising. For instance, to put things into perspective, in May, 73 had 93 pages of ads, QST had 91 pages, CQ had 58 pages, and $H R$ had 37 pages. That about tells the story. With the break-even point for most magazines being at around 45% advertising these days, when one is only running about 37%, like $H R$, the chances
are that money is being lost and something is going to have to change. They've been under 45% for a year, so it's probable that the losses have been mounting. Of course if circulation is kept small, it is possible to get by with fewer ads, so that could be their stratagem.

The main problem in the whole ham field is one of lack of growth. This has kept the sale of ham gear down and that, in turn, has limited funds for advertising. Advertisers tend to cut back and advertise only where they know they are getting the most sales, which puts the pinch on specialty publications such as HR. Tests often show that advertisers are able to do about the same in sales with or without ads in anything but 73 and QST. When sales are brisk and profits large, firms can afford to run ads in smaller magazines as a way of helping them. But when the bottom line starts turning red, these extravagances are reconsidered.
To perhaps put things into a better perspective, let's look at how advertising is going to 73 , QST, and HR for the first six months of 1982 vs. the same period in 1981.

Pages of ads			
	1981	1982	
73	426	534	
QST	571	556	
HR	301	212	

Thus, in comparable periods, we see 73 advertising up over 25%, QST down about $21 / 2 \%$, and HR down 30% ! Obviously something is happening.

EXCHANGE:

Exchange the usual five-digit number consisting of RS and progressive QSO number starting with 001.

Robert Baker WB2GFE
15 Windsor Dr.
Atco NJ 08004

EUROPEAN DX CONTESTPHONE

Starts: 0000 GMT September 11 Ends: $\mathbf{2 4 0 0}$ GMT September 12

Sponsored by the Deutscher Amateur Radio Club (DARC). Only 36 hours of operation out of the 48 -hour period are permitted for single-operator stations. The 12 hours of nonoperation may be taken in one but not more than three periods
at any time during the contest. Operating classes include: single operator, allband and mul-ti-operator, single transmitter. Multi-operator, single-transmitter stations are allowed to change band only one time within a 15 -minute period, except for making a new multiplier. Use all amateur bands from 3.5 through 28 MHz . A contest QSO can be established only between a non-European and a European station. Each station can be worked only once per band.

SCORING:

Each QSO counts 1 point. Each QTC (given or received) counts 1 point. The multiplier for non-European stations is determined by the number of European countries worked on each band. Europeans will use the last ARRL countries list. In addition, each call area in the follow. ing countries will be considered a multiplier: JA, PY, VE, VO, VK, WIK, ZL, ZS, and UAGIUA0. The multiplier on 3.5 MHz may be multiplied by 4 , on 7 MHz by 3 , and on 14 through 28 MHz by 2 .

The final score is the total QSO points plus QTC points multiplied by the sum total of multipliers.

QTC TRAFFIC:

Additional point credit can be realized by making use of the QTC traffic feature. A QTC is a report of a confirmed QSO that has taken place earlier in the contest and later sent back to a European station. It can be sent only from a non-European station to a European station, the general idea being that after a number of European stations have been worked, a list of these stations can be reported back during a QSO with another station. An additional 1-point credit can be claimed for each station reported.

HAZER ${ }^{\text {" }}$

 TOO OLD-TOO SCAREDTOO TIRED TO CLIMB? HAZE YOUR TOWERFa. Hazer follows parallel to tower

- Works best on self standing towers
- Guy wire lugs provided on Hazer
- Midway tower guy wires must temporarily be removed during operatlon
- Simple \& easy to install and use
- Complete with winch, 100 tt of cable. hardware 8 Instructions

MARTIN ENGINEERING P.O. BOX 253 BOONVILLE, MO 65233 816-882-2734

HAZER II Heavy duty, aluminum, for Rohn 20 \& 25 tower $\$ 279.95$

HAZER III Standard duty, aluminum, for Rohn $20 \& 25$ tower $\$ 199.95$

HAZER N Heavy duty, steel, for Rohn 20 \& 25
$\$ 249.95$
Tower, Rotator, Ant. not Included

* Ideal for Novices, SWL's and seasoned amateurs * Built-in code practice oscillator \& speaker - 12 VDC Operation or VAC with adapter provided
* Optional serial/parallel ASCh oulpur port - 70 WPM

H/ieracragt
Corporation Telephone: (414) 241-8144 P. O. Box 513G, Thiensville, Wisconsin 53092

NEW MORSEMATICTM MM-2 KEYER

THE MORSEMATIC KEYER BY AEA HAS BEEN PROCLAIMED BEST OF ALL PADDLE KEYERS ON THE MARKET

Now you can get all the features of the world's first and still best microcomputerized keyer at a 25% reduction in price. The new model MM- 2 has all the outstanding features of the MM-1 predecessor such as dual microcomputers with copywritten software, 500 character soft-partitioned ${ }^{\text {TM }}$ memory with editing, exclusive beacon mode, exclusive automatic speed increase trainer mode, and exclusive automatic serial number generator. In addition, the MM-2 comes complete with CMOS memory and provisions for internal memory keep alive battery. The MM-2 operates from external 12 VOC at approximately 350 Ma .

ACCESSORIES:

Model AC-2 350 Ma 12VDC Wall Adaptor
$\$ 9.95$
Model ME-2 Factory Installed (2000 Character Memory Expansion) $\$ 39.95$
If you have hesitated buying the best because of price, you need to wait no longer, the best is now available in an improved form at a price you can afford.

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE
call or visit:

Brings you the Breakthrough! Sales \& Service

2508 Atlanta Street
Smyrna, GA 30080
(404) 432-8006

DISPLAY Your STUFF

With the AEA MBA-RO Reader

 Automatic display of transmitted and received Morse and RTTY coded signals has come of age. It is proving to be most worthwhile for improving one's own transmitted "fist" and for allowing SWL's or visitors the opportunity to experience the thrill of Amateur Radio coded transmission.

While no machine can yet match the ability of a skilled CW operator in copying poor fists or signals buried in the noise, the MBA-RO by AEA excells even when compared against units costing much more. The large 32 character display allows much easier reading than shorter displays, especially at higher speeds such as 60 WPM or 100 WPM RTTY. The MBA-RO also features dual filters for RTTY decoding of either 170 Hz or 425 Hz (easily changed to 850 Hz) shift transmissions.

For more details, write for our latest catalog or visit your favorite dealer.

Prices and Specifications subject to change without notice or obligation. Software © copyright by AEA.

ADVANCED ELECTRONIC

APPLICATIONS, INC.
P.O. Box C-2160,

Lynnwood, WA 98036
(206) 775-7373

Telex: 152571 AEA INTL

CALENDAR

Sop 11:12
Sep 11-12
Sep 11-12
Sep 18.19
Sep 18.19
Sep 18.19
Sep 18.20
Sep 25.26
Sep 25.26
Sep 25.27
Oc: 2.3
Oc: 16.17
Oct 16-17
Oct 16.17
Oct 23.24
Nor 6.7
Nov 13.14
Nov 20.21
Dec 4.5
Dec 11.12
Dec 19
Jan 8
Jan 9
Jan 15-16

ARRL VHF OSO Party
European DX Contest-Phone
Cray Valley RS SWL Contest
New Mexico QSO Party
CAN.AM Contest-Phone
College Scrimmage
Washington State OSO Party
Maine OSO Party
CAN.AM Contest-CW
Massachusetis OSO Party
Cellfornia QSO Party
ARCI ORP CW QSO Party
Pennsylvania QSO Party
BSA Jamboree-On-The-Air
Maryland-Diatrict of Columbia QSO Perty
ARRL Sweepstakes-CW
European DX Contesi-RTTY
ARRL Sweepetakes-Phone
ARRL 160-Meter Contest
ARRL 10-Meter Contes!
CARF Canada Contest
73 Magazine 40.Meter World SSB Champlonship 73 Magazine 80-Meter World SSB Championship
73 Magazine 160-Meter World SSB Championship

A QTC contains the time, call, and QSO number of the station being reported, i.e., 1300/DA1AA 134. This means that at 1300 GMT you worked DA1AA and re. ceived number 134. A QSO can be reported only once and not back to the originating station. Only a maximum of 10 OTCs to a station are permitted. You may work the same station several times to complete this quota but only the original contact has QSO point value. Keep a uniform list of OTCs sent. QTC $3 / 7$ indicates that this is the 3rd series of QTCs sent and that 7 QSOs are reported. Europeans may keep the list of the received QTCs on a separate sheet if they clearly indicate the station who sent the QTCs.

AWARDS:

Certificates to the highest scorer in the each classification in each country, reasonable score provided. Continental leaders will be honored with plaques. Certificates will also
be given to stations with at least half the score of the continental leader or with at least 250,000 points. The minimum requirement for a certificate or a trophy is 100 QSOs or 10,000 points.

ENTRIES

Violation of the rules, unsportsmanlike conduct, or taking credit for excessive duplicate contacts will be deemed sufficient cause for disqualification. The decisions of the Contest Committee are final. It is suggested that the log sheets of the DARC or equivalent be used. Send a large SASE to get the wanted number of logs and summary sheets (40 QSOs or QTCs per sheet). SWLs apply the rules accordingly. Entries should be sent no later than October 15th to: DARC DX Awards, PO Box 1328, D-895 Kaufbeuren, Germany.

EUROPEAN COUNTRY LIST:

C31, CT1, CT2, DL, DM, EA, EA6, EI, F, FC, G, GC Guer, GC

NEWSLETTER OF THE MONTH
This month's newsletter winner, the BIARC Bulletin, is chock-full of useful information. Published by the Big island Amateur Radio Club, Hilo HI, the newsletter has an activity calendar that lists local, national, and international ham radio events, a directory of nets and bulletins, and even reminders for club members whose licenses are about to expire. The BIARC Bulletin also offers a special Hawaiian flavor, making it interesting to read even if you are not a member. Great job, BIARC, and great job, Editor Dean Manley KH6B!

Jer, GD, GI, GM, GM Shetland, GW, HA, HB9, HBO, HV, I, IS, IT, JW Bear, JW, JX, LA, LX, LZ, M1, OE, OH, OHQ, OJQ, OK, ON, OY, OZ, PA, SM, S, SV, SV Crete, SV Rhodes, SV Athos, TA1, UA1346, UA2, UB5, UC2, UN1, UO5, UP2, UQ2, UR2, UA Franz Josef Land, YO, YU, ZA, AB2, 3A, 4U1, and 9H1.

CRAY VALLEY RS SWL CONTEST

Starts: 1800 GMT September 11

 Ends: 1800 GMT September 12Up to 18 hours of logging may be done during the contest period with a rest period clearly shown. Multi-operator stations may \log during the entire contest. The contest is open to anyone in the world, and there will be two sections, phone and CW, each with two categories: single operator and multi. operator. The second category is open to two or more listeners or to clubs and more than one receiver can be used. The 1.8 -, $3.5-7-, 14-, 21$-, and $28-\mathrm{MHz}$ bands may all be used.

Scores should be compiled as follows: one point for each station heard multiplied by the number of different countries heard on each band. A list of countries heard must be furnished and a separate log must be submitted for each band. IIlegible logs will not be accepted. The call areas of the USA, Canada, and Australia will each count as a separate country. All other countries will be determined by the official RSGB Countries List. No CQ or QRZ or similar call will be allowed to count for points. If points are claimed for both sides of a QSO, the callsign of each must appear in the station-heard column.

Log sheets are available from Owen Cross G4DFI, 28 Garden Avenue, Bexleyheath, Kent DA7 4LF, England, if you jnclude an SAE and sufficient return postage. If is desirable that entrants use official log sheets, but entries on homemade log sheets will be accepted if the following information is given: date, time, band station heard, station being worked, report at SWL's QTH. Points may be claimed only for stations actually heard and callsigns must be shown in full. Entries should be sent to the Contest Manager, G4DFI, at the above address, to
arrive no later than November 1 st . Certificates of merit will be awarded at the discretion of the board of the Cray Valley RS and its decision will be final.

WASHINGTON STATE QSO PARTY
 0100 to 0700 GMT September 18 1300 GMT September 18 to 0700 GMT September 19 1300 GMT September 19 to 0100 GMT September 20

The seventeenth annual contest sponsored by the Boeing Employees' Amateur Radio Society (BEARS) is divided into three operating periods as shown. All amateurs are invited to participate. Use all bands and modes, but no CW QSOs are allowed in the phone bands. Stations may be worked once on each band and mode for contact points and more than once each band/mode if they are additional multipliers.

EXCHANGE:

QSO number, RS(T), and state, province, country, or Washington county.

FREQUENCIES:

Phone-1815, 3925, 7260, 14280, 21380, 28580; CW-1805, 3560, 7060, 14060, 21060, 28160; Novice-3725, 7125, 21150, 28160.

SCORING:

Washington stations score 2 points for each phone contact and 3 points for each CW contact, including contacts with other Washington stations. Multiply QSO points by the total number of different states, Canadian provinces, and other foreign countries worked.

All others score 2 points for each phone contact and 3 points for each CW contact with a Washington station. Multiply QSO points by the total number of different Washington counties worked (39 maximum). There will be an extra multiplier of one for each group of 8 con. tacts with the same Washington county for all non-Washington stations.

AWARDS:

Certificates will be awarded to the highest scoring station (both single- and multi-operator) in each state, Canadian province, foreign country, and Wash.
ington county. Additional certificates may be issued at the discretion of the Contest Com mittee. Worked Five BEARS Awards also are available to anyone working 5 club members before, during, or after the QSO party (unless previously issued). All QSO Party entries will be screened by the Contest Com mittee for possible Worked Five BEARS Awards. Worked Three BEAR Cubs Awards are also available for working 3 Novice members.

ENTRIES:

Logs must show dates/times in GMT, stations worked, exchanges sent and received, bands and modes used, and scores claimed. Include a dupe sheet for entries with more than 200 QSOs. Each entry must include a signed statement that the decision of the Contest Committee will be accepted as final. No logs can be returned. Results of the QSO Party will be mailed to all entrants and an SASE is not required. Log sheets and summary sheets must be postmarked no later than October 20th and sent to: Boeing Employees' Amateur Radio Society, clo Contest Committee, Willis D. Propst K7RS, 18415 38th Avenue South, Seattle WA 98188.

CAN.AM CONTEST

Starts: Phone-1800 GMT September 18
CW-1800 GMT
September 25
Ends: Phone-1800 GMT
September 19 CW-1800 GMT September 26

Sponsored by the Ontario Contest Club and Canadian DX Association to increase the friendship among Canadian and American amateurs and to provide a means of measuring the performance of operating skills and equipment. Categories of competition: single operatorallband, single band and QRP, stations operated by the station licensee; multi-operator, single transmitter-stations operated by more than one operator, or single operator other than the licensee, or club stations; and club competition. Multi-operator stations can operate full 24 -hour period, single operator stations can operate maximum 20 hours with one or two rest periods

totaling a minimum of four hours which must be clearly marked in the log. Any further rest periods do not need to be logged. For QRP operation, a maximum of 10 Watts input is allowed during the contest.

FREQUENCIES

All SW bands 1.8 through 28 MHz are permitted. US General portion of the bands is recommended for use.

EXCHANGE:

Signal report: use RS on phone and RST on CW, plus sequential QSO number starting with 001, plus múltiplier area (MX) abbreviation, in that order, i.e., 59001 CT , 599021 NY . Multiplier area abbreviation is the usual two-letter postal abbreviation for 50 US states, CN for Caribbean (KC4, KG4, KP1, KP2,

KP4, KS4, KV4 and their A- and W- prefix equivalents), PC for Pacific (rest of US possessions and Antarctica). Canadians will use: NF for VO1, VO2; NB for VE1 New Brunswick; NS for Nova Scotia; PE for Prince Ed ward IsI.; SI for Sable and St. Paul Isl.; PQ for VE2; ON for VE3; MB for VE4; SK for VE5; AT for VE6; BC for VE7; NW for VE8 NWT; YU for VY1 Yukon.

SCORING:

The final score is the result of the total QSO points from all bands, multiplied by the sum of the multipliers from all bands. Phone and CW sections of the contest are considered separate contests. However, combined score for phone and CW will be used for overall competition. Combined score will be calculated by the contest committee
as a result of the addition of phone and CW scores. Points: American to American, and Canadian to Canadian QSOs count for 2 points; American to Canadian and vice versa count for 3 points. The same station can be contacted once on each band and mode. Stations operating from outside of their own call area must sign slash and the area they are operating from, i.e., W6AM/7, NP4AW4, W7RM/KH6, KH0AHW6. Multipliers: 50 US states, 2 US possessions (Caribbean, Pacific); 10 Canadian provinces, 2 territories (NWT, YU), 1 islands (Sable, St. Paul). Total of 65 multipliers per band; maximum possible on all 6 bands is 390 .

AWARDS:

Handsome first-place certificates will be awarded in each
multiplier area on both modes in single-operator category. Top five multi-operator stations in each country will receive certificates for high combined phone and CW scores. All scores will be published in CQ. Trophies and plaques will be awarded to the Canadian Champion and American Champion in four categories: single operator, combined, single operator, phone, single operator, CW, and multi-operator, combined.
The Club Competition Championship will be awarded to the club having highest score as a result of addition of 5 best scores on phone and 5 best scores on CW made by its members. A club officer must submit the summary showing the callsigns and scores. Each station is eligible for one trophy only. In a case where one station qualifies for another trophy, the less-significant trophy goes to the next eligible station.

Free one-year subscription to Long Skip, the CANAD-X bulletin, will be awarded to the top 5 US stations.

ENTRIES:

All times must be kept in GMT. Indicate multipliers the first time only on each band. Log must be checked for duplicate contacts, correct QSO points, and multipliers. Do not use separate logs for each band. Rest periods must be clearly marked in the log. Each entry consists of: \log sheets, summary sheet showing all scoring information, category of competition, operator's name and callsign, address of the station, and signed declaration. Entries with over 200 QSOs must in. clude check sheets for each band. Official logs, check sheets and summary sheets with multiplier tables area available from the Contest Chairman; a large SASE with Canadian stamps (or US stamps not glued to the envelope) will bring you the samples. Contestants are encouraged to use them; they greatly help with the processing of the entries. Send your log regardless of your score total.

Any band can be selected for the single-band category. All single-band entries will be judged in one category. It is up to the contestant to select the one that could bring him the
highest point score for his particular situation.

Violation of national amateur radio regulations or rules of the contest, unsportsmanlike conduct, taking credit for excessive duplicate contacts, or unverifiable QSOs or multipliers will be deemed sufficient cause for disqualification. Incorrectly logged calls will be counted as unverifiable contacts. Actions and decisions of the CAN.AM Contest Committee are official and final.

All entries must be post. marked not later than 30 days after the contest and mailed to: CAN.AM Contest Chairman, VE3BMV, Box 65, Don Mills, Ontario, Canada M3C 2R6.

COLLEGE SCRIMMAGE

Starts: 0200 GMT September 18 Ends: 0400 GMT September 19

The idea of this contest is to put long-lost alumni in touch with their alma mater. Entry classes include alumni and college stations (one transmitter only). Exchange name of college, junior college, or university you last attended and the last year you graduated or will graduate. Club stations substitute "amateur radio club" for number. Non-collegians substitute "high school" for college name. Stations may be worked once per band on SSB only. Multiply total QSOs times number of different colleges, junior colleges, and universities worked. Logs should be sent to Penn State ARC, K3CR, 202 Engineering Unit E, University Park PA 16802. Please include an SASE for results.

NEW MEXICO QSO PARTY

Starts: 1800 GMT September 18 Ends: 2100 GMT September 19

Sponsored by the Albuquerque DX Association. Each station may be worked once on each band and each mode.

EXCHANGE:

RS(T); QSO number starting with 001; and state, province, DX country, or NM county.

SCORING:

Count 2 points for each phone/SSB QSO and 3 points for each CW QSO. NM stations multiply total QSO points by total number of states, provinces, and DX countries worked.

All others, multiply total QSO points by the total number of NM counties worked each band, each mode.

AWARDS:

Plaques will be presented to the top score from outside NM and the highest NM single operator and portable. Certificates awarded top scorers from each state, province, and DX country. Certificates will also be awarded to each station submitting a score of more than 100 total points.

ENTRIES:

Entries must be postmarked no later than October 15th and addressed to: K5QQ, 1005 Morina Court NE, Albuquerque NM 87112. Include an SASE for complete results.

1982 MAINE OSO PARTY

Starts: $2300 Z$ September 25 Ends: $2359 Z$ September 26
The Maine QSO Party is sponsored by the Portland Amateur Wireless Association. Exchange signal report, serial number, and QTH (county for Maine stations; state, province, or country for others). Stations may be worked once on CW and once on phone for each band. Count three points per QSO and multiply by number of Maine counties worked for final score. (Maine stations multiply by Maine counties, states, provinces, and countries.) Suggested frequencies: CW-1805 and 60 kHz up from low end of band; phone-1815, 3930, 7280 , 14280, 21380, 28580 kHz; Nov-ice-3720, 7120, 21120, 28120.

Certificates will be awarded to top scorers in each state, province, country, or Maine county. Mail entries by Decem. ber 1st to PAWA, Box 1605, Portland ME 04104. Applications for the Worked All Maine Counties Award may go to the same address.

MASSACHUSETTS QSO PARTY Starts: 1600 GMT September 25 Ends: 0200 GMT September 27

Sponsored by the Greater New Bedford Contesters. A station may be worked once per band. Phone and CW are separate bands. No crossband or repeater contacts permitted. Mobiles and portables may be
counted as new contacts each time a county change takes place.

EXCHANGE:

RS(T) and state, province, or Massachusetts county.

FREQUENCIES:

Phone-1820, 3960, 7260, 14290, 21380, 28590, 50.110; CW -1810, 3560, 7060, 7120, 14060, $21060,21120,28060,28120$. Use of FM simplex is encouraged. Remember to use CW in CW bands only

SCORING:

All stations count 2 points for each completed SSB exchange and 4 points for each CW exchange. Massachusetts stations multiply QSO points by total number of states, provinces, and Massachusetts counties worked. DX stations worked only count for QSO points. Outside Massachusetts, multiply QSO points times total number of Massachusetts coun. ties worked. As a bonus, add 100 points to the total score for each sponsor worked (KA1GG, N1AVA, K1KJT). Note that they can only be worked once for bonus points.

AWARDS:

Certificates will be awarded to first through third place win. ners in each Massachusetts county as well as each state. Two special awards will be given out for the radio club with the highest aggregate score in Massachusetts (min. of 3 logs) and to the Massachusetts station submitting the all-time highest number of QSOs. The current record is held by K1GSK (1483 QSOs in the 1979 contest). Additionally, a certificate will be given stations working all three sponsors.

ENTRIES:

Logging must include datel time, band, mode, callsign, state and province worked, and exchange RS(T). Submit separate summary sheet along with logs. Summary sheet information should include your name, call, mailing address, club affiliation for aggregate score, total QSO points, multipliers claimed, and total score. Deadline for mailing is October 31. For awards and results, send $\$.50$ postage (no envelope) to Ed Peters K1KJT, 29 Greenbrier Drive, New Bedford MA 02745.

COMMMUNICATIONS ©ENTER

'SUUPER SEPTEMBER SPECIALS"

ICOM IC720, 740
KENWOOD TS 530S/830S
YAESUFT 101 ZD, 902DM

PHONE HOURS: 8 am- 5 pm CDT Mon.-Sat

YAESU FT 707

KENWOOD TS 130SE

YAESU FRG7700 SONY ICF 2001 PANASONIC RF3100 KENWOOD R600/R1000

KENWOOD HYGAIN

YAESU KLM

ICOM HUSTLER
MIRAGE
JIL

Special \$449.95
Special \$289.95
$\$ 269.95$
YOUR ELECTRONIICS CENTER•
1840 "O" Street Lincoln, Nebraska 68508 we trade Nebraska Call (402) 476-7331

YOU'VE NEVER HEARD ANYTHING LIKE IT!

The FASTRAK* model 2002 sound synthesizer module let's you explore the capabilities of TI's SN76477 complex sound generator

Create a variety of sounds using either 52 on-board switches or your $\mu \mathrm{C}$. Results limited only by your imagination.

One-evening assembly using 4.6×3.6 inch pc board and comprehensive instructions supplied.

The model 2002 is compatible with other FASTRAK* series modules.

Price: $\$ 16.65$

Price includes: glass-epoxy, etched, plated, drilled pc board; instruction manual; postage in U.S.A. (Ohio residents add 5\% sales tax)

Send $\$ 1.00$ for illustrated festress product catalog and refund coupon

Proham Electronics Incorporated 34 b 2 D LAKELAND BLVD EASTLAKE OH 44094 (211) 951-2110

Actual Size

$\sum 2$ (4भासमझागत乙 (ANTENNAS

```
CENTURION
```

CENTURION
Phone 402/467-4491
Phone 402/467-4491
Telex 48-4371 CENTURION LCN
Telex 48-4371 CENTURION LCN
P.O. EOx 82846 Uncoln, NE 68501 }284
P.O. EOx 82846 Uncoln, NE 68501 }284
-102

```
-102
```


. . . at last - everything at your

fingertips !!!
Bring ORGANIZATION \& CONVENIENCE to your HAM Station! Eliminate clutter and provide lots of space for everything you need - Tuners, VFO, CW Keyers, Filters, Telephone, Log Book, Etc...

- ANGLED REAR SHELF
- all parts fitted
- STURDY CONSTRUCTION
- WALNUT or PECAN FINISH Floor space: 39 "w by 30 " d .
Also: 51 "w by 30 " d - $\$ 199.50$
Dealers Inquiries Invited

A Finely Crafted Plece of Furniture

 WIth a REAL Purpose . . .Call : (213) 837-4870 or Write for Information

S-F Amatour Radio Servicos

4384 Keystone Ave., Culver City, CA 90230

THE LAST WORD IN

 READERS THE NEW MBA-RO
FEATURES:

- 32 CHARACTERS FOR EASY HIGH SPEED COPY OF MORSE
- ASCII and BAUDOT RTTY
- NO RECEIVER MODIFICATION NECESSARY
- INSTANT SPEED TRACKING FOR MORSE CODE OVER WIDE SPEED RANGE FROM 2 TO 99 WPM
- OPERATES FROM 12 V.D.C.

For AEA Readers or other AEA Products, call or visit:
AEA
Brings you the Breakthrough!

Radios Unlimited
1760 Easton Avenue
Somerset, N.J. 08873
(201) 469-4599
(800) 526-0903

CD ICOM

FOR THE PROFESSIONAL AMATELR

NEO

distributing

IC-720A H.F. LIST $\$ 1349.00$

SSB-CW MODE-PORTABLE RADIOS 1C.502-A 6 METER LIST 239:00 N\&G PRICE 185,00 10-202-S 2 METER LST 279.00 N\&G PRICE 215.00

IC. $25-A$
LIST $\$ 349.00$

IC-451A U.H.F. LIST \$899,00

IC 730 H.F.
LIST $\$ 829.00$

Computerize your DX operations. Speed up and simplify your DXCC efforts. Locate any of the 318 approved countries by name, number or prefix. . . and find out if you've worked it... with the callsign, band, date, time, heading and distance-displayed instantly. DX-PEDITER'S memory contains all the info you need. ENTER AND UPDATE new and pertinent information as to country status and how and when you worked it . . . and much more.

If ordering direct: Retail $\mathbf{\$ 2 9 . 9 5}$. Add $\mathbf{\$ 2 . 0 0}$ shipping/handling California residents, please add $\$ 1.95$ Sales Tax BASH EDUCATIONAL SERVICES, INC. P.O. Box $2 l 15$ San Leandro, CA 94577 (415) 352.5420

2 METER, $220 \mathrm{MHz} \mathcal{G} 70 \mathrm{CM}$ ANTENNA

HF-UHF-VHF Duplexer

Frequency input/output $1.8-270 \mathrm{MHz}$ low $200-600 \mathrm{MHz}$ high dB loss. 3 dB Bank rejection 50 dB Saves coax cost-mobile or base ATV Audio-Video dual TX \& RX Eliminates coax switchessingle feed line IDEAL COMBINATION ANTENNA \& DUPLEXER

DP-DF 770 DUPLEXER $\$ 38.75$
1275 N. GROVE ST. ANAHEIM, CALIF. 92806 NOTE: Price, specifications subject to change without notice and obligation.
(714) 630-4541
SATELLITES
Amateur Satellite Reference Orbits

Date		OSCAR 8		RS-5		RS-6		RS-7		RS-8		Date
		UTC	EQx	UTC	EQX	UTC	EQX	UTC	EOX	UTC	EQX	
		=										
Sep	1	0055	88	0135	225	0146	238	0853	216	0026	206	1
	2	0059	89	B138	225	8131	228	0843	215	8823	267	2
	3	0163	98	0124	225	0115	226	0834	214	0828	208	3
	4	8188	91	0119	226	0168	223	0824	213	8017	209	4
	5	0112	92	8114	226	0044	221	014	212	0014	269	5
	6	0117	94	0108	226	0929	219	0085	211	0012	210	6
	7	0121	95	8183	226	0014	216	0154	240	日eg	211	7
	8	8125	96	8058	226	6157	244	0145	239	0006	212	8
	9	8138	97	0052	226	0141	241	0135	238	0083	213	9
	18	0134	98	8047	227	0126	239	0125	238	0088	213	18
	11	0139	99	0041	227	0111	237	0116	237	0157	244	11
	12	0098	75	0036	227	8855	234	0106	236	0154	245	12
	13	0004	76	8031	227	6048	232	0056	235	0152	246	13
	14	0089	77	0925	227	8825	238	0047	234	0149	247	14
	15	0013	78	0020	228	8089	227	0037	233	0146	248	15
	16	0017	79	0015	228	0152	255	0027	232	0143	248	16
	17	0822	81	0009	228	0137	253	0018	231	0148	249	17
	18	0826	82	0004	228	0122	258	8008	238	0138	250	18
	19	0831	83	0158	258	8186	248	0158	259	0135	251	19
	20	0835	84	Q153	259	0051	246	0148	259	0132	252	28
	21	0839	85	0148	259	0035	243	8138	258	0129	252	21
	22	8044	86	8142	259	8020	241	0129	257	0126	253	22
	23	6048	87	0137	259	0685	239	0119	256	0123	254	23
	24	0852	89	0132	259	0148	266	8110	255	0121	255	24
	25	8057	99	0126	268	0133	264	8100	254	0118	256	25
	26	0101	91	0121	260	0117	261	085	253	0115	257	26
	27	8106	92	0116	260	0162	259	8041	252	0112	257	27
	28	0118	93	0110	266	0846	257	8031	251	0189	258	28
	29	8114	94	0105	268	0631	254	8021	251	0187	259	29
	30	8119	96	0108	268	0016	252	0012	258	8184	260	30
Oct	1	0123	97	8054	261	0868	258	8082	249	0101	261	1
	2	0128	98	8849	261	0144	277	0152	278	6658	261	2
	3	0132	99	0643	261	0128	275	0142	277	0855	262	3
	4	0136	108	8638	261	0113	273	0132	276	0852	263	4
	5	0141	101	0833	261	0857	278	8123	275	6058	264	5
	6	0062	77	0927	262	0942	268	0113	274	0047	265	6
	7	0906	78	0822	262	-827	266	0183	273	0844	266	7
	8	0011	79	0017	262	0611	263	0054	273	8041	266	8
	9	0015	86	0011	262	0155	291	8044	272	8038	267	9
	16	0928	81	0006	262	0139	288	8034	271	8036	268	18
	11	6024	83	0601	263	0124	286	-825	270	0833	269	11
	12	8028	84	0155	293	0108	284	0015	269	0838	278	12
	13	0033	85	B150	293	0853	281	0606	268	0027	278	13
	14	9837	86	0144	293	0038	279	0155	297	0824	271	14
	15	8042	87	8139	293	0822	277	0145	296	8021	272	15

ISKRA II

By the time you read this, the ISKRA II satellite placed into orbit by cosmonauts aboard the Salyut VII space station probably will have reentered the atmosphere and met its fiery fate. The projected lifetime of ISKRA Il was only six weeks from the time of its launch on May 17.

ISKRA II was unique in being the first amateur satellite to carry an HF-to-HF transponder. It received signals on 15 meters and retransmitted them on 10 meters.

FUN WITH RS TELEMETRY

With rare exceptions, a satellite orbiting the Earth is beyond the reach of direct human observation. We can't see it, except perhaps as a bright dot in the

	Beacon
Satellite	Frequencies (MHz)
RS3	$29.321,29.401$
RS4	$29.360,29.403$
RS5	$29.331,29.452$
RS6	$29.411,29.453$
RS7	$29.341,29.501$
RS8	$29.461,29.502$

Table 1. RS beacon frequencies.
night sky. If it misbehaves, we can't put it on the test bench to determine what ails it. In fact, the only way we have any idea of the condition of an orbiting satellite is by means of the telemetry data it constantly beams to Earth.

In the excitement over the communications opportunities offered by the six RS satellites launched last December by the Soviet Union, the interesting telemetry beacons of these spacecraft have largely been overlooked. Monitoring these beacons can be an interesting activity that does not require any special equipment. You need only the ability to receive signals at the high end of the 10 -meter band.

The RS satellites send their telemetry in Morse code at 15-25 words per minute on the beacon frequencies shown in Table 1. Each frame of telemetry consists of seven items of information, and consecutive frames are separated by the name of the satellite. Thus, a telemetry frame from RS3 might read: RS3 K00 D12 072 G00 U21 S79 W90. The letter prefix designates the parameter

same as K

telemetry baseline; should be zero (00)
$0.2 \times \mathrm{N}=$ output power of beacon in mW
when $N=10 \pm 1$, a $10-\mathrm{dB}$ attenuator is in line with main receiver front end $0.1 \times(\mathrm{N}-10)=$ S-meter reading of 1 st receiver
same as above for "robot" receiver
same as above for 2 nd receiver
same as K
same as K
$0.1 \times \mathrm{N}=$ voltage of transponder 9 volt line
$=$ voltage of transponder 7.5 -volt line
$=$ voltage at first 9 -volt stabilizer
$=$ voltage at first 7.5 -volt stabilizer
$=$ voltage at second 9 -volt stabilizer
$=$ voltage at second 7.5 -volt stabilizer
same as K
$N=$ \# OSOs made by robot (occasionally reset to zero by ground controllers)
$N \times 0.1=$ power consumption of heating system in Watts
$\mathrm{N} \times 20=$ input power of robot transmitter in mW
$\mathrm{N} \times 20=$ input power of service channel in mW
when $N=10 \pm 1$, a $10-\mathrm{dB}$ attenuator is in line with the robot recelver front end
when $N=10 \pm 1$, a $10-\mathrm{dB}$ attenuator is in line with the service receiver front end

Table 2. RS telemetry channel preflxes and their meanings. N is the fwo-digit number sent after the prefix. Where two preflixes are given, the flrst is used when the transponder aboard the satellite is inactive; the second is used when the transponder is active. The definitions of other prefixes are not yet known.
being measured, while the twodigit number represents the measured value. Often, the number must be inserted into a simple equation to translate the measurement into standard units.

A given satellite may send up to 28 different telemetry items, organized into 4 frames, before it repeats the entire sequence. Most items have a two- instead of one-letter prefix ahead of the number. Two-letter items with the same first letter are always sent as part of the same frame.

Table 2 contains a list of the telemetry prefixes so far monitored from the RS satellites, along with equations and other information.

By interpreting the telemetry data, you can learn a great deal about the environment aboard the RS satellites. It's one way to take an active part in the amateur space program even if you're not equipped for twoway satellite communications. Shortwave listeners can participate, too. Give it a try!

CORRECTIONS

"Coherent CW for VHF," which appeared in the July, 1982, issue, was based on a paper given at the 27th Annual VHF Conference, Western Michigan University, Kalamazoo MI, on Oct. 17, 1981.

Tim Daniel N8RK
 73 Magazine Staff

Following the publication of "The Very, Very Best CW Filter?"' (73 Magazine, July, '82), some builders have written me to tell of oscillation in the output of this filter. This is probably due to an "induced" feedback to the
input of the very sensitive op amp used in the circuit.
Rather than rearrange the components, it is easiest to control this oscillation by putting a small amount of positive bias on the input. Connect pin 2 of the LM324 to the positive voltage through a resistor of about 200 k Ohms. The exact size of the resistor is best determined by experimentation. If the resistor is too small, the sensitivity of the unit will suffer; if the resistance is too large, some oscillation may remain.

Jim Hyde WB4TYL
Waycross GA

Subscruption Problem?

73 Magazine does not keep subscrip tion records on the premises, therefore calling us only adds time and doesn't solve the problem
Please send a description of the problem and your most recent ad dress label to:

73 Magazine

Subscription Dept
PO Box 931
Farmingdale, NY 11737

Thank you and enjoy your subscription

PRESERVE

75 MAOAZJNE

BINDERS

FILE CASES
Keep your issues of 73 Magazine logether, handy and protected in handsome and durable library files or binders. Both styles bound in red teatherette with the magazine logo stamped in gold.
Files: Each file holds 12 issues, spines visible for easy reference. $\$ 5.95$ each. 3 for $\$ 17.00$. 6 for $\$ 30.00$
Binders: Each binder holds 12 issues and opens flat lor easy reading. $\$ 7.50$ each. 3 for $\$ 21.75$. 6 tor $\$ 42.00$
(Postage paid in USA. Foreign orders include \$2.50 per item)
Please siate years: 1977 to 1983
Send check or money order to:
JESSE JONES BOX CORP
P.O. Box $5: 20$

Philadelphia. PA 19141
Allow 4 to 6 weeks for delivery

DX'ERS—GIVE YOUR VERTICAL A GROUND PLANE ONE!

EVERYONE KNOWS THAT GROUND RADIALS WILL IM bove the performance of your vertical antenna but what a mess they can be!
OUR GP. 1 ELIMINATES THE MESS BY PROVIDING A CON venient buss at the base of your vertical. letting YOU INSI ALL RADIALS IN STYLE:
CAST "alumalor construction-\%" thick (built LIKE A TANK)
EASILY MOUNTS ON MASTS UP TO 2"IN DIAMETER.
TWENTY FOUR LARGE BOLTS EASILY HANOLES ELABORATE SYSTEMS.
LARGE 10 BASE ALSO NESTS INSIDE POPULAR TOWER
SECTIONS. SECTIONS.
OPENING PROVIDED FOR FEEDLINE ROUTING.
THE GP. IS ALSOIDEAL FOR ROO M
LANCE JOHNSON ENGINEERING

this publication is available in microform

University Microfilms International
300 North Zeeb Road
Dept. P.R.
Ann Arbor, MI 48106
U.S.A

18 Bedford Row Dept. P.R
London, WC1R4EJ England

WAYNE WANTS YOU!!

Wayne Green is looking for people to join our 73 Magazine staff as editors, proofreaders and technical advisors. If you are a non-smoker looking for a position with a progressive organiza. tion, send him your resume. Wayne wants to hear from you. Contact:

Wayne Green Inc.
Peterborough, NH 03458
Attn: Personnel-739

PROUD OF! COMMERCIAL
QUALITY af $1 / 10$ THE COST!: GUARANTEED! clamps
No COD OR CREDIT CARDS. all orders in us funds.
all foreign orders add $\$ 5.50$ Shipping in addition ${ }^{5} 22$ 95 TO PGH.

\squareASSOCIATES P 0 80X 757 3050 NE 55 TH AVE. SILVER SPRINGS, FIA. 3268 .

『 TRIPOLE MULTI-BAND

The TRIPOLE antenna covers the $160,80,40,20,15,10$ and 6 The TRIPOLE antenna covers the $160,80.40,20.15,10$ and 6
meter bands without retuning or a tap change. 8010120 ft . meter bands without retuning or a tap change, 80 wh 120 ft .
lengih. 2 KW PEP. Twinverted V and horizontal wilhout an antenna luner. Neat appearance, built in balun, rugged, aids mast or tower guying. A best choice for an all-around amateur station antenna.
Guaranteed, Kit T80-K $\mathbf{\$ 7 4 . 9 5 \text { ; Assembled T80.A } 5 8 4 . 9 5}$ Prices postpald cash. TX residents add 5% sales tax.
Call or send card for information on TRIPOLE antennas and edline kits Order direct or ask your Dealer
BR universal radio co Dept. O1 P.O. Box 2604 ,
EI Paso, Texas 79926 (915) $592-1910$ MASTEん CHARG

FREE CATALOG

NEW!
CATALOG OF HARD-TO-FIND PRECISION TOOLS

Also containstest equipment

 plus wide selection of toolkits and casesJensen's new catalog is jam-packed with more than 2000 quality items. Your single source for hard-to-find precision tools and tool kits used by electronic technicians, scientists, engineers, instrument mechanics, schools, laboratories and government agencies. Send for your free copy today!

RED HOT SPECIALS!

KDK FM2030 w/TT mike Azden PCS-3000 2M transceiver Azden PCS-300 2M handheld Azden PCS-2800 10M FM Iransceiver Ten-Tec Argosy transceiver Ten-Tec Delta transceiver Ten-Tec Omni-D transceiver MFJ 949B antenna tuner
Janel QSA-5 2M receiver preamp Santec $140 \mu \mathrm{p} 2 \mathrm{~m}$ handheld Bearcat 20-20 Scanner . Ten.Tec Hercules Amp. Swan 1500 2A Amp
$\$ 279.00$ 283.00 283.00 283.00 435.00 675.00 965.00 112.00 . 38.50 .293 .00 269.00 235.00 1239.00 499.00 32.00
write for list

Ben Franklin Electronics

$1151 / 2$ N Main Hillsboro KS 67063

CB TO TEN METER CONVERSION KITS

KITS for AM—SSB—FM 40 Channel PLL chassis conversions
DETAILED INSTRUCTIONS for easy installation with minimum time and equip ment
BAND COVERAGE flexibility provides up to 1 MHz coverage for most PLL chassis.
PRICES Low cost prices range from $\$ 8.00$ to $\$ 50.00$

All kits are in stock including several different FM kits.
FREE CATALOG Write or call today

-78 INDEPENDENT

CRYSTAL SUPPLY COMPANY

P.O. Box 183

Sandwich, Ma. 02563-0183
(617) $888-4302$

- Covers 100 to 185 MHz in 1 kHz steps with thumbwheel dial - Accuracy 1 part per 10 million at all fre quencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - Spurs and notse at least 60 dB below carrier - RF output adjustable from $5-500 \mathrm{mV}$ at 50 ohms • Operates on 12 Vdc @ 1/2 Amp - Avail able for immediate delivery • $\$ 349.95$ plus shipping - Add-on Accessories available to extend freq range, add infinite resolution, volce and sub-audible tones, AM. precision 120 dB callbrated attenuator - Call for detalls - Dealers wanted worldwide

VANGUARD LABS 100-23 Jamaica Ave., Hollis, NY 11423 Phone: (212) 488.2720
C.B. SPECIAL
(Repeat of a sell out) CONVERT THESE TO 10 METER FM
New Hy.Gain 40 Channel prinled circult oards assembly (Squelch pot volume ontiol and channet switch not included) Boards soid as is. Dimension $6^{\prime \prime} \times 6^{\prime}$

1-9 pcs $\$ 7.50$ en.

10-49 pcs $\$ 8.50$ en.
(White quantiles last)
REMOTE 40 CHANNEL C.B Remotes have a metal frame Speaker plastic case. and control mic not included Sold as is.
$\$ 14.95$ e 8

C.B. BARGAIN

C. B coards missing parts or damaged Can oe used tor spare parts. Buy severail $\$ 3.50$ es
Order intormation Please add $\$ 4.00$ for S/M via UFS COD's accepled for orders otaling $\$ 50.00$ or more Florida residents aod 4% sales tar Minimum order $\$ 15.00$ Fortign orders US tunds only ado 20% for SIM MASTER CARD and VISA accepted
Surplus Electronics Corp.
1294 NW 54th St.
Miami FL 33166
P.M. $305 \cdot 887.8228$

RIG TROUBLES

 GOT YOU DOWN?- YOU COULD SHIP YOUR RIG TO THE FACTORY FOR REPAIR.
- YOU COULD SHIP IT TO RQ SERVICE CENTER FOR REPAIR.
-BUT YOU STAND A GOOD CHANCE OF FIXING IT YOURSELF WITH HELP FROM YOUR OWN COPY OF "OWNER REPAIR OF RADIO EQUIPMENT"
-THIS BOOK WILL BE SHIPPED POSTPAID FROM K6RQ FOR $\$ 8.95$

RQ SERVICE CENTER 14910 LG Bivd. Los Gatos, CA 95030

CONTACT-80

An ultra sophisticated yet simple to operate RTTY System for the demanding operator at an affordable price.

Features:

- DIsk UIO; SAVE, LOAD, KILL \& DIR
-TRI.SPLIT screen. user defined
- 10 CANNED MESSAGES
-DYNAMIC BUFFER ALLOCATION
- Live HARDCOPY for parallel printers
- K oyboard CONTROL of STATION
- AUTO.ID; RTTY, CW (selectable ONIOFF)
- CLOCKED OUTPUT rato
- All BAUDOT speeds plus ASCII (110)
- NAME, DATE, TIME from computer
-On screen BIT PATTERN SCOPE
Requires TRS-80, MOD-1II with Disk, your CALL SIGN plus TU with 60ma loop.
DISK IIO; VERSION \$279.00 Post Paid MOD-III. 32K. CASSETTE IIO VERSION Pos: Pald

COMM TEK

4493 Orleans Dv., Dunwoody, GA 30338

(((1((B / T "O" BYTE $)$

ALL Prices Include Shipoing and Tar in ine U 5 A. ALL DISKS ar WARRANTED against material detects tor 90 days from diste of purchase.
(1) $51 / 4$ inch Diskettes (sotit sectoredi. Conter Reinforcing Rine. Jacket and plastic boz stand.
They ARE TOP Quality and used by the softwere nouses $\mathbf{\$} \mathbf{\$ 2 7}$ for 10 diskettes or $\mathbf{\$ 2} 270$ each for the first 20.20 to 100
will be $\$ 2.50$ each will be $\$ 2.50$ each
(2) SYMTEC HIGH RES LIGHT PEN - With soltware $=\mathbf{8 1} 5.00$ (3) 16K RAM CARD for the APPLE III +)

BARE BOARD $=\$ 30.00$
This card is companible with
(A)PADDLE.ADAPPLE brings the game paddie por out to a (a)PADDLE.ADAPPLE brings the game
convenient location. For only $=\mathbf{\$ 2 7 . 5 0}$
(5) MAGIC KEYBOARD anmeric key pad (hem or des) with the apple keyboarch. For only $=\$ 8.00$
Both products are trom Soushern Cal. Research Group and advertised in Sott Talk magarine for Apples and carry a 90 day warianty.
(6) RAMDISK- 320 by Axion, 320 k of ram, that holds over 2 diak of programs, DOS \& pascal 1.1 compatible, battery backup, slot independent, diaws no power from your Apple $\mathrm{IK}+1.11$ is adverised in SottTalk. Suggested price $\$ 1305.00$ My Price 81225.00
(h) will carry other items in ine future it there is something of interest to you but is too expensive. drop me a note, I will get the lowest price 1 can and pass it on to you.

The prices may change without nolice.
Please send OROERS with payment or inquiries to-

BIT "O" BYTE
P.O. Box 60972
Sunnyvale, CA 94088

ALL BAND TRAP ANIENXASA

YAESU FT-207R OWNERS SAVER KIT	
	when carrier drops
less power drain when soue	
Sole	
Imporved autio fidelity and ouvoness	

FALL '82 SPECIALS

AN/UPM-84 SPECTRUM ANALYZER - 10 Mhz 10
 44.88 Ghz in eight bands: $5^{\prime \prime}$ CRT display. Resolution: 20 Khz @ 3 do points. Dlspersion: 500 $\mathrm{Khz}-5 \mathrm{Mhz}(10-55 \mathrm{Mhz}), 500$ Khz - 25 Mhz (55 Mhz up). Sensivity as low as -63 db (10 150 Mhz), -40 db (2 Ghz up). Requires 115 VAC $60 \mathrm{~Hz} .171 / 2 \mathrm{x}$ 191/4x22", 145 los net; 185 sh. Used reparable: \$495. \$395. Manual, partial repro: \$15. ACCESSORY KIT: w/adapters, RF attenuators, bandpass filters, case: $\$ 100$. w/set purch. R-388/COLLINS 51J3 RECEIVER $-0.5-30.5 \mathrm{Mhz}$
 AM-CW in 30 bands: 1 Mhz per band. Bandwidth 0.2-6 Khz: 500 Khz IF. 5 -step crystal selectivity, "S" meter and 100 Khz calibration points. Requires 115/ 230 VAC 60 Hz ; 101/2x 19×13 ", 55 los. Sh Used, reparable: Checked: $\mathbf{4 0 0} \mathbf{\$ 3 3 0}$. Manual, partial repro: $\$ 10$. Prices F.O.B. Lima, 0. - VISA, MASTERCARD Accepted. Allow for Shipping - Write for New 1982 Catalog Address Dept. 73 - Phone: 419/227-6573

[^8]
TघRMWNAL

 TERMINALL is a hardwate and sotiware system that converts your personal computer into a state of the art communications terminal. plus sophisticated and reliable soltware
 Simplicity
 TERMINALL was designed from the oulset to be easy to connect to yout radio and easy to use Plug into vour teceiver headphone lack and copy Morse Code or radioteletype (RTTY) Plug into you CW key ack and send Morse Code Allach a microphone connec tor and sena Baudot or ASCII RTTY using audio tones (AFSK) That's all there is to hooking it up
 The soltware is loaded into your computer from disk or cassette Enter vour callignn and the time and you will start rectiving im mediately. No seltings or adjustments ate necessary to recerve Morse Code. it's fully automatic and it wotkst You may type you message while recevving ot transmiting
 You will tee on the air, recerving and transmuting in any mode:
 minures As we said. TERMINALL 15 sumple
 More for your money
 - TERMINALL has the RTTY terminal unit demod and AFSK buitt in this resulis in a lower total cosi
 - Fentastic Morse reception. Six slage active folter demodulator coples the weak ones Auto adaplive Morse aigorithm copues the sloppy ones. Received code speed displayed on status

 apple $+$ TRS-80- Outatanding documentation. Professionally written 90 page uset manual contains step by sted instructions
- Buitt in, eaparate, multi atege, active filter RTTY and CW demodulators. No phase lock loops RTTY demodulator has 170 and either 425 or 850 Hz shitt-kevboard selectable and uses etther
the panel meter or scope outputs lor easy tuning Copy the weak ones Copy the noisy ones Copy the tading ones
- Buit in cryatel controlled AFSK. Rock stable for even the most demanding VMF or MF applications A must on many VMF
- Built in 110 or 220 voll $A C$ powet supply
- Buitr in parallal printar drivar sotwere. Simply atrach a parallel ASCII printer le g the EPSON MX 801 to vour printer port abrain hardcopy in all modes
Multi level diaplays - allows examining and editing of historical
tex
Telurns, user programmable mode edinng, diddle, ignore cartiage relums, user programmable end of line sequence, adjustable cat
rage widit, mulriple user detined WRU, transmil delay (tixed, none riage widit, mulfiple user defined WRU. transmin delay (tixed, none
or auto adaptive), break mode and more' The all in -one TERMINALL desion
HF of VMF. Ham. Commercial. SWL or MARS' SWL's TERMINALL may be jumpered tor either 425 or 850 Hz recephon to copy news and weather services

System Requirements TERMINALL Ti Communications termunal of the TRS 80 Model
Requires a Model I TRS 80 . 16 K RAM and Level II BASIC Includes sofiwate on cassette and dist, assempled and tested hardware and
an extensive inszuction manual $\$ 499$.
TERMINALL T3 Communications terminal for the TAS 80 Mode Requires a Model III TRS 80 . 16K RAM and Model III BASIC In udes soltwate on cassette and disk, assembled and tested hard TERMINALL T2 Communications termunal for the APPLE II. Re ware is provided on disk in DOS 32 format Use MUFFIN urility 10 convert to OOS 3.3 lormat Includes soliware on disk, assembled
and tested hardwate and an extensive instruction manual 299 .

15 Day Money Back Trial Period on Factory Direct Orders

MACROTRONICS, inc.
1125 N Golden State Blvd. rurlock. California 95380

The communications terminal that does it all!

* BEC * Bullet Electronics Corp. P.O. Box 401244E Garland, TX. 75040 (214) 278-3553

-12
THE PRESIDENT SAYS:

"HOGWASH!!"

After taking one look at the TRIPUT POWER SUPPLY our engineer declared that the units were worth several hundred dollars each. He pointed out the engineering, high quality construction and state-of-the-art integrated design in support of his position. The President of BEC more pragmatically pointed out the already full warehouse and the two trailer truck loads of power supplies waiting in the parking lot, and set the price to move them QUICKLY! We have a large quantity, but the supply won't last long. The only thing we ask is please read the ordering rules.

QUALITY DOUBLE SIDED GLASS BOARD

REGULATOR ASSEMBLY (part of unit)

COMPLETE UNIT
(as you receive it)

Plus Freight 21 lbs . ORDERS SHIPPED WITHIN CONTINENTAL U.S. ONLY! $6 \times 5 \frac{1}{4} \times 12$ ORDERING RULES

1. Mail check or MO for $\$ 62.50+\$ 5.00$ for shipping or phone (214) 278-3553 to charge VISA/MC or COD order. (UPS COD only, add $\$ 2.50$ COD fee)
2. Texas residents include 5% sales tax.
3. Orders for this unit will be shipped within 48 HOURS or we pay the freight! (weekends or holidays excluded)
4. ONE TIME OFFERI LIMIT TWO (2) SUPPLIES PER CUSTOMER.
13.6V@20A MODIFICATION By changing a lew parts on the board the Triput Power Supply will do 11-14V (adjustable) at up to 20A. Pertect for that 2 meter linear ampl we send step by step instructions and necessary parts. Modlfication per instructions will not void the 30 day warranty.
+12V@7A; +5V@10A;-12V@5A - UNIT IS COMPLETELY ASSEMBLED! - Fused primary and DC sections - huGE Shielded TRANSFORMER - 2% Load \& Line Regulation

- Low Ripple (<100mv)
- Short Circuit Protection
- Overvoltage Protection on all three outputs
- 25A Bridge Rectifier
- Over $60,000 \mathrm{mid}$ of filters
- High Efficiency Switching Regulator reduces heatsink area
- Schematics and service guide included
-Thermal Shutdown
- Statis LED's (3)

IEIITSEL
 the first name in Counters ! 9 DIGITS 600 MHz \$129 $\frac{95}{\mathrm{w}}$
 SPECIFICATIONS: Range: $\quad 20 \mathrm{~Hz} 10600 \mathrm{MHz}$

The CT 90 is the most versatile feature packed counter available for less than $\$ 300.00$: Advanced design features include three selectable gate times, nine digits. gate indicator and a unlque display hold function which holds the displayed count after the input signal is removed' Also a 10 mHz TCXO time base is used which enables easy zero beat calibration checks against WWV. Optionally, an internal nicad battery pack, external time base input and Micropower high stability crystal oven time base are available. The CT-90, performance you can count on'

Sensitivity: Less than 10 MV to 150 MHz
Less than 50 MV to 500 MHz
Resolution: 0.1 Hz (10 MHz range) 1.0 Hz (60 MHz range) 10.0 Hz (600 MHz range)

Display. $\quad 9$ digits 0.4° LED
Time base: \quad Standard $10.000 \mathrm{mHz} 1.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$. Optional Micro power oven $0.1 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$ Power. 8-15VAC@ 250 ma

7 DIGITS 525 MHz \$99 $\frac{95}{\mathrm{w}}$
 SPECIFICATIONS:

Range $\quad 20 \mathrm{~Hz}$ to 525 MHz
Sensitivity: Less than 50 MV to 150 MHz Less than 150 MV to 500 MHz
Resolution: $\quad 1.0 \mathrm{~Hz}_{\mathbf{\prime}}$ (5 MHz range) 10.0 Hz (50 MHz range) 100.0 Hz ($500 \mathrm{MHz}_{\mathrm{z}}$ range)

Display: $\quad 7$ digits $0.4^{\prime \prime}$ LED
Time base: $\quad 1.0 \mathrm{ppm} \mathrm{TCXO} 20-40^{\circ} \mathrm{C}$
Power. 12 VAC 250 ma

The CT-70 breaks the price barrier on lab quality frequency counters, Deluxe features such as three frequency ranges - each with pre amplification dual selectable gate times, and gate activity indication make measurements a snap. The wide frequency range enables you to accurately measure signals from audio thru UHF with 1.0 ppm accuracy - that's $.0001 \%$! The CT- 70 is the answer to all your measurement needs. in the field lab or ham shack

PRICES:
CT. 70 wired I year warranty $\$ 99.95$ CT. 70 Kit 90 day parts warranty

BP-1 Nicad pack + AC
adapter/charger

-5

 7 DIGITS 500 MHz\$79 95
WIRED

PRICES:

MINLIOO wired 1 year warranty
AC- Z Ac adapter for MINI-
BP. Z Nicad pack and AC adapter/charger

Here's a handy, general purpose counter that provides most counter functions at an unbelievable price. The MINI 100 doesn't have the full frequency range or input impedance qualities found in higher price units, but for basic RF signal measurements, it can't he beat Accurate measurements can be made from $1 \mathrm{MH}_{\mathrm{z}}$ all the way up to $500 \mathrm{MHz}_{\mathrm{z}}$ with excelient sensitivity throughout the range, and the two gate times let you select the resolution desired Add the nicad pack option and the MINI-100 makes an ide al addition to your tool box for "in-the field" frequency checks and repairs.

SPECIFICATIONS:
Range: $\quad 1 \mathrm{MHz}_{2}$ to 500 MHz Sensitivity. Less than 25 MV Resolution 100 Hz (slow gate) 1.0 KHz (fast gate) Display: $\quad 7$ digits, 0.4° LED Time base: $\quad 2.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$ Power. $\quad 5$ VDC@ 200 ma

8 DIGITS 600 MHz \$15995

SPECIFICATIONS:

Range $\quad 20 \mathrm{~Hz}$ to 600 MH Sensitivity: Less than 25 mv to 150 MHz

Resolution:
Display
Display
Time ba
Power.

Less than 150 mv to 600 MHz 1.0 Hz (60 MHz range) $10.0 \mathrm{~Hz}(600 \mathrm{MHz}$ range) 8 digits $0.4^{\prime \prime}$ LED 8 digits 0.4- LED $2.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$
110 VAC or 12 VDC

The CT- 50 is a versatile lab bench counter that will measure up to6 00 MHz with 8 digit precision. And, one of its best features is the Receive Frequency Adapter. which tums the CT- 50 into a digital readout for any receiver. The adapter is easily programmed for any receiver and a simple connection to the receiver's VFO is all that is required for use. Adding the receiver adapter in no way limits the operation of the CT-50, the adapter can be conveniently switched on or off. The CT-50, a counter that can work double duty!

PRICES: CT 50 wired 1 year wartanty CT- 50 Kit 90 day pars warranty
159.95

RA-1. receiver adapter kit RA-1 wired and pro program med (send copy of receiver schematic)

DIGITAL MULTIMETER $\mathbf{\$ 9 9} \frac{95}{w}$

 WIREDThe DM- 700 offers professional quality performance at a hoblyist price Features include: 26 different ranges and 5 functions, all arranged in a convenient, easy to use format. Measurements are displayed on a large $31 / 2$ dixit. $1 / 2$ Inch LED readour with automatic decimal placement, automatic polarity, overrange indication and overlond protection up to 1250 voles on all ranges, making it virrually goof-proof. The DM-700 looks great, a handsome, jet black, rukxed ABS case with convenient retractable ult bail makes it an ideal addition to any shor

SPECIFICATIONS:

DC/AC voits: 100 uV to $1 \mathrm{KV}, 5$ ranges DC/AC
current $\quad 0.1$ uA to 2.0 Amps 5 ranges Resistance 0.1 ohms to 20 Megohms. 6 ranges Input
impedance 10 Megohms DC/AC volts Accuracy $\quad 0.1 \%$ basic DC volts $\begin{array}{ll}\text { Power. } & 4^{\prime} \mathrm{C} \text { cells }\end{array}$

AUDIO SCALER

For high resolution audio measurements, multiplies UPin frequency

- Great for PL tones
- Multiplies by 10 or 100
- 0.01 Hz resolution' $\$ 29.95$ Kit $\$ 39.95$ Wired

ACCESSORIES

Telescopic whip antenna - BNC plug
High impedance probe, light loading
Low pass probe. for audio measurements
Direct probe, general purpose usage
Tilt bail, for CT 70, 90, MINJ-100
Color burst calibration unit, calibrates counter
against color TV signal.

COUNTER PREAMP

measuring extremely weak signals from 10 to 1,000 $\mathbf{M} \mathrm{H}_{2}$. Smail size, powered by plug transtormer included. - Flat 25 db gain

- BNC Connectors
- Great for sniffing RF with pick-up loop $\$ 34.95 \mathrm{Kit}$ \$44.95 Wired

Introducing TVRO CIRCUIT BOARDS Satellite Receiver Boards-Now in Stock

DUAL CONVERSION BOARD

$\$ 25.00$
This board provides conversion from the 3.7-4.2 band first to 900 MHz where gain and bandpass filtering are provided and, second, to 70 MHz . The board contains both local oscillators, one fixed and the other variable, and the second mixer. Construction is greatly simplified by the use of Hybrid IC amplifiers for the gain stages.

SIX 47pF CHIP CAPACITORS
 For use with dual conversion board
 $\$ 6.00$
 70 MHz IF BOARD.
 $\$ 25.00$
 This circuit provides about 43dB gain with 50 ohm input and output impedance. It is designed to drive the HOWARD/ COLEMAN TVRO Demodulator. The on-board bandpass filter can be tuned for bandwidths between 20 and 35 MHz with a passband ripple of less than $1 / 2 \mathrm{~dB}$. Hybrid IC's are used for the gain stages.

SEVEN . 01 pF CHIP CAPACITORS
For use with the 70 MHz IF board.

DEMODULATOR BOARD $\$ 40.00$
This circuit takes the 70 MHz center frequency satellite TV signals in the 10 to 200 millivolt range, detects them using a phase locked loop, de-emphasizes and filters the resuft and amplifies the result to produce standard NTSC video. Other outputs include the audio subcarrier, a DC voltage proportional to the strength of the 70 MHz signal, and AFC voltage centered at about 2 volts DC.

SINGLE AUDIO
$\$ 15.00$
This circuit recovers the audio signals from the 6.8 MHz frequency. The Miller 9051 coils are tuned to pass the 6.8 MHz subcarrier and the Miller 9052 coil tunes for recovery of the audio.

DUAL AUDIO
$\$ 25.00$
Duplicate of the single audio but also covers the 6.2 range.
DC CONTROL. $\$ 15.00$
SPECIAL SET OF FIVE BOARDS
$\$ 100.00$
INCLUDING DUAL AUDIO (2 single audio boards)

1900 to 2500 MHz MICROWAVE DOWNCONVERTER

MICROWAVE RECEIVER This receiver is tunable over a range of 1900 to 2500 MHz approximately, and is intended for amateur use. The local oscillator is voltage controlled, making the I.F. range approximately 54 to 88 MHz for standard TV set channels 2 thru 7.
$\begin{array}{lllllllll}\text { P.C. BOARD with DATA } & 1 \text { to } 5 & \$ 15.00 & 6 \text { to } 11 & \$ 13.00 & 12 \text { to } 26 & \$ 11.00 & 27-u p & \$ 9.00\end{array}$
P.C. Board with all parts for assembly $\$ 49.99 \quad$ P.C. Board with all chip caps soldered on. . . $\$ 30.00$
P.C. Board with all parts for assembly P.C. Board assembled \& tested $\$ 69.99$ plus 2N6603.
$\$ 69.99$ P.C. Board assembled \& tested with 2N6603\$79.99
HMR II DOWNCONVERTER with Power Supply, Antenna (Dish) \& all Cables for installation. 180 Day Warranty. 1 to $5 \quad \$ 150.00 \quad 6$ to $11 \quad \$ 140.00 \quad 12$ up $\quad \$ 125.00$
YAGI DOWNCONVERTER with Power Supply, Antenna (Yagi) \& all Cables for installation. 90 Day Warranty. 1 to $5 \quad \$ 150.00 \quad 6$ to $11 \quad \$ 140.00 \quad 12$ up $\$ 125.00$
YAGI DOWNCONVERTER as above but Kit. (NO CABLES) With Box. 1 to $5 \quad \$ 125.00 \quad 6$ to $11 \quad \$ 115.00 \quad 12$ up $\quad \$ 100.00$
HMR II DOWNCONVERTER as above but Kit. (NO CABLES) With PVC. 1 to $5 \quad \$ 125.00 \quad 6$ to $11 \quad \$ 115.00 \quad 12$ up $\$ 100.00$

SPECIAL NEW STOCK OF CARBIDE DRILL BITS—YOUR CHOICE \$1.99

1.25 mm	$13 / 64$	36	47	55	63
1.45 mm	19	37	48	56	64
3.2 mm	20	38	49	57	65
3.3 mm	24	39	50	58	67
$1 / 8$	26	40	51	69	69
$3 / 16$	29	44	52	60	61
$5 / 32$	30	45	54	62	
$7 / 32$	31	46			

Start taking calls in curious places with the

revolutionary, new Cordless $\mathscr{E} \pm \operatorname{cort}{ }^{\circ}$ Phone.

Special Purchase-The Éscort ${ }^{\circ}$ Cordless Telephone!

We are pleased to announce the Escort Mark III is now available at special pricing. We bought the manufacturer's entire inventory.and we are passing the savings on to you!

The Escort Mark III was originally designe to dail for $\$ 199.95$. Now, we
 out at $\$ 149.95$. In any ever, ourlike the profit margins

QUANTITY
$1-2$ units
3-5 units
6-11 units
12-23 units

EADR PRICE
G) VROFIT AT $\$ 149.95$
69.75 each 53%
64.50 each 57%
62.50 each
60.75 each

On all ord of 12 or more, we pareight! This is your opportunity to stock up for the Christmas ying season. These are ideal gift items , ath ireally move out!

VHF DUPLEX5R

This duplexer was nase for RF Harris Mobile Phones and Two Why Radios. These duplexers can be used in any mobile phone or two way radio system, along with having the capabilities to be modified for UHF use. The physical dimensions are $33 / 5^{\prime \prime}$ Long, $42 / 5^{\prime \prime}$ Wide, and $11 / 10^{\prime \prime}$ Deep. The approximate weight is 18 oz .11 lb .2 oz .. PRICE $\$ 74.99$

- Operates as a regular telephone on touch-tone or rotary dial systems
- Range up to 300 feet
- Ni-Cad rechargeable batteries included in telephone
- Charger built into base transmitter
- Simple plug-in installation!
- High-performance antenna
- Full duplex, answer and dial out
- Full FCC approval

HOW WE CUT THE CORD.
The new Cordless Phone works on a simple, highly sophisticated principle. A small base station plugs into your regular phone jack, and an electrical wall outlet. The base station then transmits any in- or out-going call to the handheld receiver, anywhere up to 300 feet.

GaAs, TUNNEL DIODES, ETC.

PART	PRICE	PART	PRICE	PART	PRICE	
MA47100	\$ 3.05	MRF503	\$ 6.00	PT4186B	\$	POR
MA47202	30.80	MRF504	7.00	PT4209		POR
MA47771	POR	MRF509	5.00	PT4209C		POR
MA47852	POR	MRF511	8.65	PT4566		POR
MA49558	POR	MRF605	20.00	PT4570		POR
MB4021	POR	MRF629	3.47	PT4571		POR
MBD101	1.00	MRF644	23.00	PT4571A		POR
MD0513	POR	MRF816	15.00	PT4577		POR
MHW1171	42.50	MRF823	20.00	PT4590		POR
MHW1 182	48.60	MRF901	3.00	PT4612		POR
MHW4171	49.35	MRF8004	2.10	PT4628		POR
MHW4172	51.90	MS261F	POR	PT4640		POR
MHW4342	68.75	MT4150 Fair.	POR	PT4642		POR
MLP 102	25.00	MT5126 Fair.	POR	PT 5632		POR
MM1 500	32.32	MT 5481 Fair.	POR	PT 5749		POR
MM1550	POR	MT 5482 Fair.	POR	PT6612		POR
MM1 552	50.00	MT 5483 Fair.	POR	PT6626		POR
MM1553	50.00	MT 5596 Fair.	POR	PT6709		POR
MM1614	10.00	MT5764 Fair.	POR	PT6720		POR
MM2608	5.00	MT8762 Fair.	POR	PT8510		POR
MM3375A	11.50	MV 109	. 77	PT8524		POR
MM4429	10.00	MV1401	8.75	PT8609		POR
MM8000	1.15	MV1624	1.42	PT8633		POR
MM8006	2.30	MV1805	15.00	PT8639		POR
M0277L	POR	MV1808	10.00	PT8659		POR
M0283L	POR	MV 1817B	10.00	PT8679		POR
M03757	POR	MV 1863B	10.00	PT8708		POR
MP102	POR	MV 1864A	10.00	PT8709		POR
MPN 3202	10.00	MV1864B	10.00	PT8727		POR
MPN3401	. 52	MV1864D	10.00	PT8731		POR
MPN 3412	1.00	MV1868D	10.00	PT8742		POR
MPSU31	1.01	MV2 101	. 90	PT8787		POR
MRA2023-1.5 TRW	42.50	MV2111	. 90	PT9790		41.70
MRF212/208	16.10	MV2115	1.55	PT31962		POR
MRF223	13.25	MV2201	. 53	PT31963		POR
MRF224	15.50	MV2203	. 53	PT31983		POR
MRF237	3.15	MV2209	2.00	PTX6680		POR
MRF238	12.65	MV2215	2.00	RAY-3		24.99
MRF243	25.00	MWA110	7.45	40081		POR
MRF245	34.50	MWA120	7.80	40281		POR
MRF247	34.50	MWA1 30	8.25	40282		POR
MRF304	43.45	MWA210	7.80	40290		POR
MRF315	23.00	MWA220	8.25	RF110		25.00
MRF420	20.00	MWA230	8.65	SCA3522		POR
MRF421	36.80	MWA310	8.25	SCA3523		POR
MRF422	41.40	MWA 320	8.65	SD1065		POR
MRF427	16.10	MWA 330	9.50	SS43		POR
MRF428	46.00	NEC57835	5.30	TP1014		POR
MRF450/A	13.80	ON 382	5.00	TP1028		POR
MRF453/A	17.25	PPT 515-20-3	POR	TRW-3		POR
MRF554/A	19.90	PRT8637	POR	UTO504 Avantek		70.00
MRF455/A	16.00	PSCQ2-160	POR	UTO511 Avantek		75.00
MRF458	19.90	PT3190	POR	V15		4.00
MRF463	25.00	PT3194	POR	v33B		4.00
MRF472	1.00	PT3195	POR	V100b		4.00
MRF475	2.90	PT3537	POR	VAB801EC		25.00
MRF477	11.50	PT4166E	POR	VAB804EC		25.00
MRF502	1.04	PT4176D	POR	VAS21AN20		25.00

Toll Free Number 800-528-0180 (For orders only)

RF TRANSISTORS, MICROWAVE DIODES

PART	PRICE
1S2199	\$ 7.50
1S2200	7.50
2N1561	25.00
2N1562	25.00
2N2857	1.55
2N2857JAN	2.55
2N2876	11.00
2N2947	18.35
2N2948	15.50
2N2949	3.90
2N2950	4.60
2N3375	8.00
2N3553	1.57
2N3632	13.80
2N3818	5.00
2N3866	1.30
2N3924	3.35
2N 3927	17.75
2N 3950	25.00
2N4072	1.80
2N4127	21.00
2N4427	1.30
2N4428	1.85
2N4957	3.45
2N4958	2.90
2N4959	2.30
2N5090	13.90
2N5108	4.00
2N5109	1.70
2N5160	3.45
2N5177	21.62
2N5179	1.00
2N5583	4.00
2N5589	8.65
2N5590	10.35
2N5591	13.80
2N5635	10.95
2N5637	15.50
2N5641	9.20
2N5642	10.95
2N5643	15.50
2N5645	13.80
2N5646	20.70
2N5691	18.00
2N5764	27.00
2N 5836	5.45
2N 5842	8.00
2N 5849	20.00
2N5913	3.25
2N5922	10.00
2N5923	25.00
2N5941	23.00
2N5942	40.00
2N5944	9.20
2N 5945	11.50
2N5946	19.00
2N6080	9.20
2N6081	10.35
2N6082	11.50

PART	PRICE	PART	PRICE
2 N 6083	\$ 13.25	CA2612 (TRW)	\$ 25.00
2N6084	15.00	CA2674 (TRW)	25.00
2N6094 /M9622	11.00	CA2881-1 (TRW)	25.00
2N6095 /M9623	12.00	CA4.101 (TRW)	25.00
2N6096 /M9624	15.50	CA4201 (TRW)	25.00
2N6097	17.25	CA4600 (TRW)	25.00
2N6136	21.85	CD1889	20.00
2N6166	40.25	CD2545	20.00
2N6201	50.00	CMD 514 AB	20.00
2N6459	18.00	D4959	10.00
2N6603	12.00	D4987M	20.00
2N6680	80.00	D5147D	10.00
2SC756A	7.50	D5506	10.00
2SC781	2.80	D5827AM	20.00
2SC1018	1.00	DMD6022	30.00
2SC1042	12.00	DMS-2A-250	40.00
2SC1070	2.50	HEP76	4.95
2SC1239	2.50	HEPS 3002	11.30
2SC1251	12.00	HEPS 3003	30.00
2SC 1306	2.90	HEPS 3005	10.00
2SC1307	5.50	HEPS 3006	19.90
2SC1760	1.50	HEPS 3007	25.00
2SC1970	2.50	HEPS 3010	11.34
2SC2 166	5.50	HTEF2204 H.P.	112.00
8B1087 (M.A.)	25.00	5082-0112 H.P.	14.20
A50-12	20.00	5082-0253 H.P.	105.00
A283B	5.00	5082-0320 H.P.	58.00
ALD 4200 N (AVANTEK)) 395.00	5082-0386 H.P.	POR
AM123	97.35	5082-0401 H.P.	POR
AM688	100.00	5082-0438 H.P.	POR
BB105B	. 52	5082-1028 H.P.	POR
BD4/4JFBD4 (G.E.)	10.00	5082-2711 H.P.	23.15
BFQ85	1.50	5082-3080 H.P.	2.00
BFR90	1.30	5082-3188 H.P.	1.00
BFR91	1.65	5082-6459 H.P.	POR
BFW92	1.50	5082-8323 H.P.	POR
BFX89	1.00	35826 E H.P.	POR
BFY 90	1.00	35831 E H.P.	29.99
BGY 54	25.00	35853E H.P.	71.50
BGY 55	25.00	35854 E H. P.	75.00
BGY74	25.00	HPA0241 H.P.	75.60
BGY 75	25.00	HXTR3101 H.P.	7.00
BL161	10.00	HXTR3102 H.P.	8.75
BLX67	11.00	HXTR6101/2N6617	H.P. 55.00
BLY 568CF	25.00	HXTR6104 H.P.	68.00
BLY87	13.00	HXTR6105 H.P.	31.00
BLY88	14.00	HXTR6106 H.P.	33.00
BLY89	15.00	QSCH1995 H.P.	POR
BLY90	20.00	JO2000 TRW	10.00
BLY351	10.00	J02001 TRW	25.00
C4005	20.00	J04045 TRW	25.00
CA402 (TRW)	25.00	K3A	10.00
CA405 (TRW)	25.00	MA450A	10.00
CA612B (TRW)	25.00	MA41487	POR
CA2100 (TRW)	25.00	MA4 1765	POR
CA2113 (TRW)	25.00	MA43589	POR
CA2200 (TRW)	25.00	MA43636	POR
CA2213 (TRW)	25.00	MA47044	POR
CA2418 (TRW)	25.00	MA47651	25.50

Toll Free Number 800-528-0180 (For orders only)

9M9 zelectronts

"TRANSISTORS"

WATKINS JOHNSON WJ-M62 3.7 to 4.2 GHz Communication Band Double Balanced Mixer $\$ 100.00$
SSB Conversion Loss 4.9dB Typ. 6dB Max. fR 3.7 to 4.2 GHz
5.5dB Typ. 6.5dB Max. fI DC to $1125 \mathrm{MHz} f \mathrm{fL} f$
fI 880MHz fL fR
SSB Noise Fiqure
fR 3.7 to 4.2 GHz
4.9dB Typ. 6dB Max. fI 30 to $1125 \mathrm{MHz} \mathrm{fL} f R$
5.5dB Typ. 6.5dB Max. fI 880MHz fL fR

Isolation
fL at $\mathrm{R} \quad 30 \mathrm{~dB}$ Min. 40dB Typ. fL 2.8 to 5.35 GHz
fL at I
25 dB Min. 30 dB Typ. fL 4.5 to 5.35 GHz
20dB Min. 30dB Typ, fL 3.6 to 4.5 GHz
15 dB Min. 25 dB Typ. fL 2.8 to 3.6 GHz
Conversion Compression ldB Max. fR Level +2dBm
Flatness $\quad 2 \mathrm{~dB}$ Peak to Peak Over any 40 MHz Segment of $f R=3.7$ to 4.2 GHz
Third Order Input Intercept $+11 \mathrm{dBm} \quad f R 1=4 \mathrm{GHz} f R 2=4.01 \mathrm{GHz}$ Both at $-5 \mathrm{dBm} \mathrm{fL}=4.5 \mathrm{GHz}$
Group Time Delay .5ns Typ. . 75 ns Max. fR3.7 to 4.2 GHz fL 3480 MHz @ +13 dBm
VSWR
L-Port $1.25: 1$ Typ. 2.0:1 fL 2.8 to 5.35 GHz
R-Port $\quad 1.25: 1$ Typ. $2.0: 1 \quad f R 3.7$ to $4.2 \mathrm{GHz} f L f R$
$1.4: 1$ Typ. $2.0: 1 \quad f R 3.7$ to 4.2 GHz fL fR
I-Port
$1.5: 1$ Typ.
2.0:1 $\quad f I=100 \mathrm{MHz}$
1.3 :1 Typ. 2.0:1 fI $=500 \mathrm{MHz}$
$1.8: 1$ Typ. 2.5:1 fI=1125MHz

SGS/ATES RF Transistors			Motorola RF Transistor	
Type.	BFQ85	BFW92	MRF901	2N6603
Collector Base V	20 v	25 v	25 v	25 v
Collector Emitter V	15 v	15 v	15 v	15 v
Emitter Base V	3 v	$2.5 v$	3 v	3 V
Collector Current	40 ma	25 ma	30ma	30 ma
Power Dissipation	200mw	190mw	375 mw	400 mw
HFE	40 min . 200max.	20min. 150max.	30min. 200max.	30min. 200max.
FT	4 GHZ min. 5 GHz	max.1.6GHz Typ.	4.5GHz typ.	2GHz min.
Noise Fiqure	1 GHz 3 dB Max.	500 MHz 4 dB Typ.	1 GHz 2 dB Typ.	2GHz 2.9dB Typ.
Price	\$1.50	\$1.50	\$2.00	\$10.00

National Semiconductor Variable Voltage Regulator Sale !!!!!!!!!

LM317K	LM350K	LM723G/L	LM7805/06/08/12/15/18/24
1.2 to 37vdc	1.2 to 33 vdc	2 to 37 vdc	
1.5 Amps	3 Amps	150 ma	$5,8,12,15,18,24 \mathrm{vdc}$
T0-3	T0-3	T0-100/T0-116	1Amp
$\$ 4.50$	$\$ 5.75$	$\$ 1.00 ~ \$ 1.25$	$\$ 1.17 \$ \$ 2.00$

P \& B Solid State Relays Type ECT1DB72
5VDC Turn On 120VAC Contact 7 Amps
20Amps on $10^{\prime \prime} \times 10^{\prime \prime} x .062^{\prime \prime}$ Alum. Heatsink with
Silicon Grease $\$ 5.00$
*May Be Other Brand Equivalent

"MIXERS"

WATKINS JOHNSON WJ-M6 Double Balanced Mixer

FAIRCHILD / DUMONT Oscilloscope Probes Model 4290B
Input Impedance 10 meg., Input Capacity 6.5 to 12pf., Division Ration (Volts/Div Factor) 10:1, Cable Length 4Ft. , Frequency Range Over 100 MHz .
These Probes will work on all Tektronix, Hewlett Packard, and other Oscilloscopes.
PRICE $\$ 45.00$

MOTOROLA RF DATA BOOK
List all Motorola RF Transistors / RF Power Amplifiers, Varactor Diodes and much much more.

PRICE $\$ 7.50$

"SOCKETS AND CHIMNEYS"

EIMAC TUBE SOCKETS AND CHIMNEYS

	Socket	S POR	SK626	Chimney	$\$ 7.70$
SK110	SK406	Chimney	35.00	SK630	Socket

JOHNSON TUBE SOCKETS

124-115-2/SK620A	Socket	\$ 30.00	124-113	Bypass Cap.		10.00
124-116/SK630A	Socket	40.00	122-0275	Socket		
			$\begin{aligned} & \text { (For 4-2! } \\ & 3-500 Z \text {) } \end{aligned}$	$4-400 \mathrm{~A}, 3-400 \mathrm{Z}$		$\begin{aligned} & 10.00 \\ & 2 / \$ 15.00 \end{aligned}$

CHIP CAPACITORS

. 8 pf	10pf		100pf*	430pf
1 pf	12pf		110pf	470pf
1.1 pf	15 pf		120pf	510pf
1.4 pf	18pf		130pf	560pf
1.5pf	20 pf		150pf	620 pf
1.8 pf	22pf		160pf	680pf
2.2pf	24pf		180pf	820pf
2.7pf	27pf		200pf	1000pf/.001uf*
3.3pf	33pf		220pf*	1800pf/.0018uf
3.6 pf	39pf		240pf	2700pf/.0027uf
3.9pf	47pf		270 pf	10,000pf/.01uf
4.7pf	51pf		300pf	12,000pf/.012uf
5.6pf	56 pf		330 pf	$15,000 \mathrm{pf} / .015 \mathrm{f}$
6.8pf	68 pf		360 pf	18,000pf/.018uf
8.2pf	82pf		390pf	
PRICES :	1 to $10-.99 ¢$	101 to 1000	. $60 \pm$ * IS A SPECIAL	PRICE: 10 for \$7.50
	1.1 to $50-.90 \$$	1001 \& UP	. $35 ¢$	100 for \$65.00
	51 to 100-.80¢			1000 for \$ $\$ 350.00$

WATKINS JOHNSON WJ-V907: Voltage Controlled Microwave Oscillator $\$ 110.00$
Frequency range 3.6 to 4.2 GHz , Power ouput, Min. 10 dBm typical, 8dBm Guaranteed.
Spurious output suppression Harmonic $\left(\mathrm{nf}_{\mathrm{o}}\right)$, min. 20dB typical, In-Band Non-Harmonic, min. 60dB typical, Residual FM, pk to pk, Max. 5 KHz , pushing factor, Max. $8 \mathrm{KHz} / \mathrm{V}$, Pulling figure (1.5:1 VSWR); Max. 60 MHz , Tuning voltage range +1 to +15 volts , Tuning current, Max. -0.1 mA , modulation sensitivity range, Max. 120 to $30 \mathrm{MHz} / \mathrm{V}$, Input capacitance, Max. 100pf, Oscillator Bias $+15+-0.05$ volts @ 55 mA , Max.

TUBES

TYPE	PRICE	TYPE	PRICE	TYPE	PRICE
2E26	\$ 5.69	KT88	\$ 20.00	6562/6974A	\$ 50.00
2K28	100.00	DX362	50.00	6832	22.00
2X1000A	300.00	DX415	50.00	6883/8032A/8552	7.00
3B22	19.75	572B/T160L	49.00	6897 (110.00
3B28/866A	7.50	592/3-200A3	144.00	6907A	75.00
3-5002	102.00	807	7.50	6939	15.00
3-10002	400.00	811	10.00	7094	125.00
$3 \mathrm{CX1000A/8283}$	428.00	811A	15.00	7117	17.00
3CX1500A7/887	533.00	812A	35.00	7211	60.00
3 x 2500 A 3	200.00	813	50.00	7289/3CX100A5	34.00
3CX3000A7	490.00	829B	38.00	7360	11.00
4-65A/8165	45.00	832A	28.00	7377	67.00
4-125A/4D21	58.00	4624	310.00	7408	4.00
4-250A/5D22	75.00	4662	80.00	7650	250.00
4-400A/8432	90.00	4665	585.00	7695	8.00
4-400C/6775	95.00	5675/A	25.00	7843	58.00
4-1000A/8166	300.00	5721	200.00	7854	83.00
4B32	22.00	5768	85.00	7868	5.00
4E27A/5-125B	155.00	5836	100.00	7894	12.00
4CS250R	146.00	5837	100.00	8072	65.00
4X150A/7034	30.00	5861/EC55	110,00	8117 A	130.00
4X150D/7035	40.00	5876A	25.00	8121	60.00
4X150G/8172	100.00	5881/6L6W	6.00	8122	100.00
4X250B	30.00	5893	45.00	8236	30.00
4CX250B/7203	45.00	5894/A	50.00	8295/PL172	506.00
4CX250F/G/8621	55.00	5894/B	60.00	8462	100.00
$4 \mathrm{CX} 250 \mathrm{~K} / 8245$	100.00	5946	258.00	8505A	73.50
4CX2 50R/7580W	69.00	6080	10.00	8533W	92.00
4CX300A/8167	140.00	6083/AX9909	89.00	8560/A	65.00
4CX350A/8321	83.00	6098/6AK6	14.00	8560AS	90.00
4CX350F/J/8904	95.00	6115/A	110.00	8608	34.00
4X500A	282.00	6146	7.00	8637	38.00
4CX600J/8809	607.00	6146A	7.50	8643	100.00
4CW800F	625.00	6146B/8298A	8.50	8647	123.00
4CX1000A/8168	340.00	6146W	14.00	8737/5894B	60.00
4CX1 500B /8660	397.00	6156	66.00	8873	260.00
4CX5000A/8170	932.00	6159	15.00	8874	260.00
4CX10000D/8171	990.00	6161	233.00	8875	260.00
4CX1 5000A/8281	1260.00	6291	125.00	8877	533.00
$4 \mathrm{PR60A}$	100.00	6293	12.00	8908	12.00
4PR60B/8252	175.00	6360	5.00	8930/6512	71.00
4PR400A/8188	192.00	6524	53.00	8950	12.00
5CX1500A	569.00	6550	10.00		
6BK4C	6.00	6JM6	6.00	6LQ6 (Sylvania)	7.50
6DQ5	5.00	6JN6	6.00	6LU8	6.00
6FW5	6.00	6JS6B	6.00	6LX6	6.00
6GE5	6.00	6KG6/EL 505	6.00	6ME6	6.00
6GJ5	6.00	6KM6	6.00	12BY7A	4.00
6HS 5	6.00	6KN6	6.00	12JB6A	6.00
6JB5/6HE5	6.00	6LF6	6.00	6KD6	6.00
6JB6A	6.00	6LQ6 (GE)	6.00	6JT6A	6.00
				6KD6	6.00

NOTICE ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE !! TUBES MAY EITHER BE NEW OR SURPLUS CONDITION !!!

TEKTRONIX OSCILLOSCOPES	PRICE
MODEL 453 Portable 50 MHz	
Dual Trace.	\$1200.00
MODEL 453A Portable 60 MHz	
Dual Trace.	\$1400.00
MODEL 454 Portable 150 MHz	
Dual Trace.	\$1800.00
MODEL 454A Portable 150 MHz	
Dual Trace.	\$2000.00
MODEL 455 Portable 50 MHz	
Dual Trace.	\$1800.00
MODEL 475 Portable 200 MHz	
Dual Trace.	\$2640.00
MODEL 475A Portable 250 MHz	
Dual Trace.	\$2940.00
MODEL 7514 Storage Oscilloscope with a 7A15A and a 7A15AN. 11 Amplifier and a 7B50 Time Base.	
MODEL 577D1 Storage Curue Tracer with a 177 adapter	\$3233.00
MODEL 577D2 Curve Tracer with a 177 adapter	\$2796.00
Tektronix Lab Cart Model 3	\$ 316.00

MODEL 54750 MHz Bench Scope.
WItha 1 A1 Dual Trace
With a IA2 Dual Trace
With a $1 A 4$ Quad Trace With a 1 A5 Differential With a IA6 Differential or with 1 of each above MODEL 54530 MHz Bench Scope with a CA Dual Trace
MODEL 545A 30 MHz Bench Scope
with a CA Dual Trace
s 722.50
S 637.50
5872.50
s 722.50
S 612.50
$\$ 1667.50$
$\$ 412.50$
5437.50

MODEL 54450 MH2 Bench Scope with a CA Dual Trace.
MODEL 543A 33 MHz Bench Scope
s 650.50
withaCADual Trace. S 475.50

HEWLETT PACKARD OSCILLOSCOPES PRICE
MODEL 180A Main Frame.
S 675.00
MODEL 180E Main Frame. S 750.00
MODEL 181A Main Frame. $\quad \$ 1000.00$
MODEL 182A Main Frame. $\$ 900.00$
MODEL 183A Main Frame. $\quad \$ 1000.00$
MODEL 180 SERIES PLUG.INS
1801 A Dual Trace 50 MHz . 5495.00
1803A Differential. 5775.00

1804A Quad Trace 50 MHz S 795.00
1807A Dual Trace 50 MHz s 375.00
1815A TDR/Sampler with a 1816A DC 104 GHz
$\$ 1500.00$
1821A Time Base \& Delay Generator. $\$ 495.00$
1822A Time Base \& Delay Generator. s 525.00
1831A Direct Access 600 MHz . $\$ 200.00$
1840A Time Base \& Delay Generator * $\$ 450.00$
1841A Time Base \& Delay Generator. $\quad \$ 675.00$

- For 183A Only !!!!!!!!

TELEOUIPMENT MODEL D83 Oscilloscope
Dual Trace Portable 50 MHz . With a V4 and S2A Plug.In. $\$ 1200.00$
DUMONT MODEL 1062 Oscilloscope
Dual Trace 65 MHz portable.
S 750.00
TEKTRONIX
MODEL RM565 Dual Beam Oscilloscope
10 MHz with a 3A6 Dual Trace and a $3 A 72$ Dual Trace. $\$ 1107.50$ MODEL 549 Storage Oscilloscope
Bench 50 MHz with a CA Dual Trace $\quad \$ 1000.00$
MODEL 647A Oscilloscope
Bench 100 MHz with a 10 A 2 Dual Trace
and a 11B2A Time Base
$\$ 1200.00$

ORDERING INSTRUCTIONS

DEFECTIVE MATERIAL: All claims for defective material must be made within sixty (60) days after receipt of parcel. All claims must include the defective material (for testing purposes), our invoice number, and the date of purchase. All returns must be packed properly or it will void all warranties.
DELIVERY: Orders are normally shipped within 48 hours after receipt of customer's order. If a part has to be backordered the customer is notified. Our normal shipping method is via First Class Mail or UPS depending on size and weight of the package. On test equipment it is by Air only, FOB shipping point.
FOREIGN ORDERS: All foreign orders must be prepaid with cashier's check or money order made out in U.S. Funds. We are sorry but C.O.D. is not available to foreign countries and Letters of Credit are not an acceptable form of payment either. Further information is available on request.
HOURS: Monday thru Saturday: 8:30 a.m. to 5:00 p.m.
INSURANCE: Please include $25 ¢$ for each additional $\$ 100.00$ over $\$ 100.00$. United Parcel only.
ORDER FORMS: New order forms are included with each order for your convenience. Additional forms are available on request.
POSTAGE: Minimum shipping and handling in the US, Canada, and Mexico is $\$ 2.50$ all other countries is $\$ 5.00$. On foreign orders include 20% shipping and handling.
PREPAID ORDERS: Order must be accompanied by a check.
PRICES: Prices are subject to change without notice.
RESTOCK CHARGE: If parts are returned to MHZ Electronics due to customer error, customer will be held responsible for all extra fees, will be charged a 15% restocking fee, with the remainder in credit only. All returns must have approval.
SALES TAX: Arizona must add 5% sales tax, unless a signed Arizona resale tax card is currently on file with MHZ Electronics. All orders placed by persons outside of Arizona, but delivered to persons in Arizona are sub. ject to the 5% sales tax.

SHORTAGE OR DAMAGE: All claims for shortages or damages must be made within 5 days after receipt of parcel. Claims must include our invoice number and the date of purchase. Customers which do not notify us within this time period will be held responsible for the entire order as we will consider the order complete.

FAIRCHIL	HF AND UHF PRESCALER CHIPS	PRICE
95H900C	350MC Prescaler divide by $10 / 11$	\$ 8.50
95H910C	350MC Prescaler divide by $5 / 6$	8.50
11C900C	650MC Prescaler divide by 10/11	15.50
11C910C	650MC Prescaler divide by $5 / 6$	15.50
11C06DC	UHF Prescaler 750MC D Type Flip Flop	12.30
11C05DC	1GHz Counter Divide by 4 (Regular price $\$ 75.00$)	50.00
11C01FC	High Speed Dual 5/4 Input NO/NOR Gate	15.40
82S90	Presettable High Speed Decade/Binary	
	Counter used with the $11 \mathrm{C} 90 / 91$ or the $95 \mathrm{H} 90 / 91$ Prescaler can divide by 100. (Signetics)	5.00
11C24DC	This chip is the same as a Motorola MC4024/4324 Dual TTL Voltage Control	
	Multivibrator.	3.37
11C44DC	This chip is the same as a Motorola	
	MC4044/4344 Phase Frequency Detector.	3.37

GENERAL ELECTRIC CO. GUNN DIODE MODEL Y. 2167
Frea. Gap (GHZ) 12 to 18, Output (Min.) 100 mW . Duty ($\%$) CW, Typ. Bias (Vdc) 8.0, Type. Oper. (MAdc) 550, Max. Thres (mAdc) 1000, Max. Bias (Vdc) 10.0.
VARIAN GALLIUM ARSENIDE GUNN DIODES MODEL VSX. 920155
Freq. Coverage 8 to 12.4 GHz , Output (Min.) 100 mW , Bias Voltage (Max.) 14vdc, Bias current (mAdc) Operating 550 Typ. 750 Max., Threshold 850 Tup. 1000 Max.
$\$ 39.99$
VARI-L Co. Inc. MODEL SS. 43 AM MODULATOR
Freq. Range 6010 150MC, Insertion Loss 13dB Nominal, Signal Port Imp. 500 hms Nominal, Signal Port RF Power

+ 10dBm Max., Modulation Port BW DC to 1 KHZ , Modulation
Port Bias 1ma. Nominal.
$\$ 24.99$

AVANTEK CASCADABLE

MODULAR AMPLIFIERS
Frequency Range
Gain
Noise Figure
Power Output
Gain Flatness
Input Power Vac
mA
PRICE $\$ 70.00$

Model UTO. 504	UTO. 511
5 to 500 MHz	5 to 500 MHz
6 dB	15 dB
11 dB	2.3 dB to 3 dB
+17 dB	-2 dB to
	-3 dB
1 dB	1 dB
+24	+15
100	10
$\$ 70.00$	PRICE
	$\$ 75.00$

HEWLETT PACKARD		
MIXERS MODELS	10514A	10514 B
Frequency Range	2 MHz 10 500MC	2 MHz to
		500 MC
Input/Output Frequency L \& R	200 KHz to	200 KHz to
	500 MC	500 MC
x	OC to 500MC	DC to 500MC
Mixer Conversion Loss (A)	7 dB	7 dB
(B)	9 dB	9 dB
Noise Performance (SSB) (A)	7 dB	7 dB
(B)	9dB	9dB
PRICE	\$49.99 PRICE	\$39.99

FREQUENCY SOURCES, INC MODEL MS.74X MICROWAVE SIGNAL SOURCE

MS.74X: Mechanically Tunable Frequency Range (MHz) 10630 to 11230 (10.63 to 11.23 GHz) Minimum Output Power (mW) 10, Overall Multiplier Ratio 108, Internal Crystal Oscillator Frequency Range (MHz) 98.4 to 104.0, Maximum Input Current (mA) 400.
The signal source are designed for applications where high stability and low nolse are of prime concern. these sources utilize fundamental transistor oscillators with high Q coaxial cavities, followed by broadband stable step recovery diode multipliers. This design allows single screw mechanical adjustment of frequency over standard communications bands. Broadband sampling circuits are used to phase lock the oscillator to a high stablity reference which may be either an internal self.contained crystal oscillator, external primary standard or VHF synthesizer. This unique technique allows for optimization of both FM noise and long term stability. List Price is $\$ 1158.00$ (THESE ARE NEW)

Our Price - $\$ 289$.

HEWLETT PACKARD 1 N5712 MICROWAVE DIODE

This diode will replace the MBD101, 1N5711, 5082-2800, 5082.2835 ect . This will work like a champ in all those Down Converter projects.
$\$ 1.50$ or $10 / \$ 10.00$
MOTOROLA MHWI172R LOW DISTORTION

WIDEBAND AMPLIFIER MODULE.

Frequency Range: 40 to 300 MHz ., Power Gain at 50 MHz 16.6 min . to 17.4 max., Gain Flatness ± 0.1 Typ. ± 0.2

Max. dB., DC Supply Voltage -28 vdc , RF Voltage Input $+70 \mathrm{dBmV}$

PRICE \$29.99

GENERAL ELECTRIC AA NICADS

Model \#1B905HD11.G1
Pack of 6 for $\$ 5.00$ or 60 Cells, 10 Packs for $\$ 45.00$
These may be broken down to individual cells.

ORDERING INSTRUCTIONS

TERMS: DOMESTIC: Prepaid, C.O.D. or Credit Card

FOREIGN: Prepaid only, U.S. Funds - money order or cashier's check only

C.O.D.: Acceptable by telephone or mail. Payment from customer will be by cash, money order or cashier's check. We are sorry but we cannot accept personal checks for C.O.D.'s.
CONFIRMING ORDERS: We would prefer that confirming orders not be sent after a telephone order has been placed. If company policy necessitates a confirming order, please mark "CONFIRMING" boldly on the order. If problems or duplicate shipments occur due to an order which is not properly marked, customers will be held responsible for any charges incurred, plus a 15% restock charge on returned parts.
CREDIT CARDS: WE ACCEPT MASTERCARD VISA AND AMERICAN•EXPRESS.
DATA SHEETS: When we have data sheets in stock on devices we do supply them with the order.

RAMSEY PARTS WAREHOUSE
 ELECTRONIC'S

2575 Baird Rd

716-586-3950

MINI KITS - YOU HAVE SEEN THESE BEFORE NOW here are old favorite and new ones too. GREAT FOR THAT AFTERNOON HOBBY.

DIAL YOUR DEAL TOLL-FREE 1-800-325-3636

 ALSO CALL FOR PRICES ON AVAILABLE USED EQUIPMENT WE TRADE ON NEW OR USED

FULL LINE ALL PARTS \& COMPUTER PRODUCTS

- 60
P.O. Box 4430M Santa Clara, CA 95054 Will calls: 2322 Walsh Ave.
(408) 988-1640
same day shipmemt. First line parts only. Factory tested. Guaranteed money back. Quality IC's and other components at factory prices.
INTEGRATED CIRCUITS
Phone orders only (800) 538-8196

Apple Poripheral Kits
SERIAL IOO INTERFACE 0 to 30,000 baud, D.T.R., Input $\&$ output from monitor or basic, or use Apple as inteligent terminal, Bd only (P/N 2) \$14.55, Kit (P/N 2A) \$51.25, Assembled (P/N 2C) 862.95
PROTOTYPING BOARD (P/N 7907) \$21.95. PARALLEL TRIAC OUTPUT BOARD 8 triacs, each can switch $110 \mathrm{~V}, 6 A$ loads. Bd only (P/N each can swich $110 \mathrm{~N}, 6 \mathrm{~A}$ loads. Bd on
$210) \$ 19.20$. Kit (P/N 210A) $\$ 119.55$. APPLE II GAME PADDLESAdam and Eve 538.00 Inturface Kits
SERIALPARALLEL INTERFACE Bidirectional Baud rates from 110 to 19.2K sw selectable polarity of input and output strobe. 5 to B data bits, 1 or 2 stop bits, panty odd or even or none. all characters comain a start bit. $+58-12 \mathrm{~V}$ 10quired. Bd o
RS-232/TTL IMTERFACE Bidirectional Ruires $\pm 12 \mathrm{~V}$, Kit (P/N 232A) 89.95 . quires $\pm 12 \mathrm{~V}, \mathrm{Kn}($ P/N 232 A) 59.95 . RS-232/20mA NTERFACE Bidirectional, 2 passive opto-isolated circuits, Kit (P/N 7901A)
$\$ 14.95$. $\$ 14.95$

PROM Eraser

Will erase 25 PROMs in 15 minutes. Ulitraviotet, assembled 25 PROM capacity 337.50 (with timer 569.50) 6 PROM capacity OSHAUL version $\$ 83.00$ (with timer $\$ 119.00$)

280 MicroProlessor $\$ 149.00$ Single board computer. Leaming, teaching, prototyping. 2 K RAM, keyboard, displays: cassette Interface. Tiny BASIC $\$ 19.00$. All fully assembled.

280 Microcomputer Kit $\mathbf{\$ 6 9 . 0 0}$
16 bit $1 / 0.2 \mathrm{MHz}$ clock, 2 K RAM. ROM Bread board space. Exceilent for control. Bare Board $\$ 28.50$. Full Kit $\mathbf{\$ 7 9 . 0 0}$. Montor $\$ 20.00$. Power Supply Kit $\$ 35.00$. Tiny Basic $\$ 30.00$.

Modem Kit $\mathbf{\$ 6 0 . 0 0}$

State of the art, orig., answer. No tuning necessary. 103 compatible 300 baud. Inexpensive acoustic coupler plans included. Bd. only $\$ 17.00$. Article in June, July, Aug. Radio Electronlcs, 1981.
60 Hz Crysial Time Base KII \$4.40 Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy.

Video Modulator Kit

$\$ 9.95$
Convert TV set into a high quality monitor w/o affecting usage. Comp. kit w/tull instruc
Multi-volt Computer Power Supply $8 \mathrm{v} 5 \mathrm{amp}, \pm 18 \mathrm{v} .5 \mathrm{amp}, 5 \mathrm{v} 1.5 \mathrm{amp} .-5 \mathrm{v}$ $.5 \mathrm{amp} .12 \mathrm{v} .5 \mathrm{amp},-12 \mathrm{v}$ option. $\pm 5 \mathrm{v}, \pm 12 \mathrm{v}$ are regulated. Basic Kit $\$ 35.95$. Kit with chassis
and all hard ware $\$ 51.95$ Add $\$ 00$ shipoing Kit and all hardware $\$ 51.95$. Add $\$ 5.00$ shipping. of hardware $\$ 16.00$. Woodgrain case $\$ 10.00$ $\$ 1.50$ shipping

Type-N-Talk by Votrax

rext to speech synthesizer with unlimited vocabulary, built-in text to speech algorithm, 70 to 100 bits per second speech synthesizer, RS232C interface $\mathbf{5 3 5 9 . 0 0}$. Speech IC $\mathbf{\$ 7 2 . 0 0}$.

Direct Connect Modem $\$ 99.00$

fully assembled in case with RS232 cable. Orig/answer, 103 compatible, 9V battery or wallplug.

FM-5 PC Board Kit-ONLY \$159.95 complete with controls, heatsink, etc.

10 watts, 5 Channels, for $6 \mathrm{M}, 2 \mathrm{M}$, or 220

R76 VHF FM RECEIVER for $10 \mathrm{M}, 6 \mathrm{M}$, $2 \mathrm{M}, 220$, or commercial bands. Fantastic selectivity options. Kits from \$84.95 to \$109.95

- R450 UHF FM RECEIVER for $380-520 \mathrm{MHz}$ bands. Kits in selectivity options from \$94.95
- R110 VHF AM RECEIVER KIt for vhf aircraft band or ham bands. Only $\$ 84.95$

HIGH QUALITY FM MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

- COR KITS With audio mixer and speaker amplifier. Only \$29.95.
- CWID KITS 158 bits, field programmable, clean audlo. Only \$59.95.
- A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. $7 \times 8 \times 2$ Inches. Only $\$ 18.00$.
- SCANNER CONVERTERS Copy 72.76, 135-144, 240-270, 400-420, or $806-894 \mathrm{MHz}$ bands on any scanner. Wired/tested Only \$79.95.
- T51 VHF FM EXCITER for 10M, 6M, 2M 220 MHz or adjacent bands. 2 Watts continuous. Kits only $\$ 54.95$.
- T451 UHF FM EXCITER 2 to 3 Watts on 450 ham band or adjacent. Kits only \$64.95.
- VHF \& UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters \& xmtg converters. Kits from $\$ 69.95$.

VHF \& UHF TRANSMITTING CONVERTERS
For SSB, CW, ATV, FM, etc. Available for $6 M, 2 M$, 220,440 with many IF input ranges. Converter board kit only at $\$ 79.95$ (VHF) or $\$ 99.95$ (UHF) or kits complete with PA and cabinet as shown.

VHF \& UHF RECEIVING CONVERTERS
20 Models cover every practical if and if range to listen to SSB, FM, ATV, etc. on 6M, 2M, 220,440, and 110 aircraft band. Even convert weather down to 2 M ! Kits from $\$ 39.95$ and wired units.

VHF \& UHF RECEIVER

PREAMPS. Low noise

VHF Kits from 27 to 300 MHz . UHF Kits from 300 to 650 MHz . Broadband Kits: $20-650 \mathrm{MHz}$. Prices start at $\$ 14.95$ (VHF) and $\$ 18.95$ (UHF). All preamps and converters have noise figure 2 dB or less.

DEALER DIRECTORY

Phoenix AZ

The South west's most progressive communications company stocking Kenwood, ICOM, Yaesu, MF], B\&W. Astron, Larsen. Cushcraft. Hy-Gain, Power Communications Corp., 1640 West Camelback Rd.. Phoenix AZ R5015, 241.Watt.

Culver City CA
Jun's Electronics, 3919 Sepulveda Blvd. Culver City CA 90230, 390-8003. Trades 463. 1886 San Diégo. 827-5732 (Reno NI').

Fontana CA

Complete lines ICOM, DenTron. Ten-Tec, Mirale. Cubic, Lunar. over 4000 electronic products for hobbyist, techniclan, experimenter. Also
CB radio, landmobile. Fontana Electronics, 8628 Sierra Ave., Fontana CA 92335, 822-7710.

San Diego CA

We buy and sell Surplus Army Navy Electronics. wiso Terminated Material. What do you want to 440-7th Avenue, PO Box 2048, San Diego CA 92112. 232-4379.

New Castle DE
Factory Authorized Dealerl Yaesu. ICOM, TenTec, KiDN, Azden, AEA. Kantronics, Santec, Full Line of Acressories. No Sales Tax in Delaware,
One mile of I-95. Delaware Amateur Supply, 71 Mcodow Roed New Costle DE 19720,320 - 7728

San Jose CA

Bay aren's newest Amateur Radio store. New \& used Amateur Radio sales \& service. We feature Kenwixd, ICOM, Azden, Yaesu, Ten-Tec, San-

Smyrma CA
Fior vous Kenword. Yaesu, ICOM. Drake and othir amateur nevels, come to see us. Britt's TwoWay Radio. 2506 N. Alanta Rd., Smyma GA 300\%0, 432-8006

Preston ID

Hino WBiBYZ has the Largest Stock of Amateur Gear in the Intermonntain West and the Best Prics Cributing, 78 So. State. Preston ID 83263. 852-0830.

Terre Haute IN

Your ham heudquarter located in the heart of the midwest. Hoosict Electronics, inc., 9 Meadows 2381456 .

Baltimore MD

Always busing lab grade test equipment RP. Tek. Gr, IAN. Elc. Also buy microwave coaxial \&
 514 Ensor St. Belto. MD 21202. 685 -1893.

Littleton MA

The ham store of N.E. you can rely on. Kenwood. ICOM. Wisson. Yaesu, DenTron, KLM amps. B\&W W switches \& wattmeters. Whistler radar detectors, Bearcat. Regerky, antennas by Larsen. Wilson. Hustler GAM TEL-COM Inc; Communications \& Electronics. 675 Great Rd., Rt. 119
Lituton MA 01460,486 -3040, Litteton MA 01460, 486-3040.

Ann Arbor MI

See us for product like Ten. Tec. R. I- Drake. DenTron and many more. Open Monday through Saturday 0830 to 1730, WB8VGR, WB8UXO,
WOSOKN and W8RP behind the counter. Pur WDKOKN and W8RP behind the counter. Pur-
chase Radio Supply, 327 E. Hower Ave., An Archase Radio Supply, 327 .
bor M1 48104, 666.2696

Hudson NH

New England's Distritutor and Authorized Ser. sike Center for al! Major Amateur Lines. Tufts Radio Electronics, Inc., 61 Lowell Rond, Hudwon
$\mathbf{i H} 03051,883$-5005. NH 03051, 883-5005.

Somerset NJ

New Jerser's only factory-authorized ICOM and Yaesu distributor. Large inventory of new and
used spectals. Most major brands in sock. Com. used specials. Most major branis. n sock. Com-
phete service and fucilities. Radios Unlimited, 1760 Easton Avenue, P.O. Box 347, Somerset NJ 08873. 469-4599.

Buffalo NY
WESTERN NEW YORK
Nimgara Frontier's only full stocking Amateur Comer. Also Shortwave, CB, Scanners, Marine wood and others Towers, Antermas. Sales and Service. DX Communications, 3214 Transit Road West reneca NY, 668-8873.

Amsterdam NY

UPSTATE NEW YORK
kenwood. ICOM, Drake, plus mans other lines Amateur Dealer for over 35 years. Adirondack Ra dio Supply, Inc. 185 West Main Street. Amster-
dam NY $\mathbf{I 2 0 1 0 , ~ 8 4 2 - 8 3 5 0 . ~}$

Syracuse-Rome-Utica NY
Fealuring: Kenwond, Yaesu, ICOM, Drake. Ten Tec, Swan. DenTron, Apha, Hobot, MF], Ternpo, Astron, KLa, My-Gairs, Mosay, ladsen, Cusheraft, Huster, Mini Products. You won't be disappointed with equipment/service. Radio World. Oneida Count Aiport-Terminal Building. Oriskany NY 13424, 337-0203.

Columbus OH

The biggest and best Ham Store in the midwest eaturing quality kenwood products wilh working displays. We sell only the best. Authorized kenw ood Service. Universal Amateur Radio Inc.. 1280 Aida Dr.. Reywoldshurg (Columhus) Oll 43068, 866-4267.

Bend OR

Satellite TV. Known brands. Call today for more informution and incuire about our dealer prot
KTam. WESPERCOM, P.O. Box 7226 , Bend OR 97708, 389-0996.

Philadelphia PA
 Camden NJ

Waveguide \& Coaxial Micronave Components α Equipment. Iaboratory Grade Text Instruments. Power Supplies, Buy; Sell \& Trade all porpular elc Lectronic Research Labs 1423 Fern Ave Comden N1 08104,541-4200.

Scranton PA

ICOM, Bird, Cusheraft. Beckman. Fluke. Larsen. Hustler. Antenna Sywialists, Astrun Avanti, Belden, W2AU/W2VS, CIDE. AEA. Vibroplex, Ham-Kex, CES, Amplarool, Sens:
 18509, 343-2124.

Dallas TX
Dealer in Used Computer Hardware \& Electronic Parts. Special on Daisy Wheel Printer. Xerox Word Processing E(puipment Dual Ciard Printers Company (The Computer Room) Dept 732522 Butler St.. Dallas TX 75235, 630-4621.

San Antonio TX

Amateur, Commercial 2-way. Selling Antenna Specialists, Avanti, Azden, Bird. My-Gain. Stan dard, Vibroplex, Midland. Henry, Cushcratt. Dielectric, Cubic, Tempo. Co. 2317 tane Jackm Anad Equipment Co.. lnce, ${ }^{2317}$ Uance Jackwn Road.
San Antonio TX 78213. 734-7793.

Vienna VA

The Washington metropolitan areas leading supplier of the latest in Amateur Hadio and Test Equipment. On your next trip to the Nation's
 gark, inc.

DEALERS

Your company name and message can contain up to 25 words for as little as $\$ 150$ yearly (prepaid). or $\$ 15$ per month (prepaid quarterly). No mention of mail-order business or area code permitted. Directory text and payment must reach is 60 days in advance of publication. For example. advertising for the Nov. 82 issue must be in our hands by Sept. Ist. Mail to 73 Magazine, Peterborough NH 03458. ATTN: Nancy Ciampa.

PROPAGATION

J. H. Nelson
4 Plymouth Dr. Whiting NJ 08759

EASTERN UNITED STATES TO:

GM	00	02	04	06	08	10	12	14	16	18	20	22
ALASKA	14	14.	7A	7	7	7	7	7	14	14	14.	
ARGE MTINA	21	144	14	14		14.	14A	21	21A	214	21a	1
australia	21	14	14	78	78	78	78	148	14B	14	21.	21A
CAMAL ZONE	21	14	14	14	7	7	14	21	11	21A	21A	21A
englano	78	7		7		7A	14	21	21	21	14.	14.
Hawall	21	14	7	7	7	7		7	14	21	21	21
imoia	14	14	78	78	78	7 B	14	14	14	14	14	14
JAPAN	14A	14	78	78	78	78	7 B	7	78	7 B	14	14
MEXICO	14A	14	14	7	7	7	7A	14.	14A.	21	21	21
PHILIPPINES	14	14.	78	78	7B	7B.	78	148	14.	14.	14.	14A
meaporico	14A.	14	14.	7	7	7	14	148	21	21A	21A	1
SOUTM AFRICA	14	7 A	78.	78	14 B	14	21A.	21A	21 A	21A	21	21
U.S.S.A.					78	78	19	14		148		78
WEST COAST	21	14	7 A .	7	7	7	7	14	21	21	2 左	218

CENTRAL UNITED STATES TO:

ALASKA

A	14	14	14	7	7.	7.		7	14	14.	14.	14
argentina	21	14A	14	14	7	7	14.	21.	21A	21 A	21A	21
australia	21 A	21	14	78	7B.	713.	78	148	14i:	14.	21	$21 A$
CANAL ZONE	21	14	14	14	7	7	14	21	21	21A1	21A	21A
enclano	7	7	7	7	7		14	14	21	21	14	14
Hawall	21	14A	14	7	7	7	7		14	21.	21	21
inoia	14.	14	78	73	2 B	2 B	78	148	14	14	14	
Japan	14A.	14.	148.	78.	78.	78.				7 A	, 14	14
MEXICO	14.	14.	14.					14.	14A.	21.	21.	21
Prilippines	14A	14	148	7 B	7B	7 B	7B	14 B	14	14.	14	14A
PUERTORICO	14 A	14.	14.	7	,	7	14	14A	21.	L1A.	21 A	21
SOUTH AFRICA	14.	78.	78	$7 B$	$7 B$	7 B	14A	21.	21A	21A.	21.	21

WESTERN UNITED STATES TO:

Alaska	1	1	14	7	7				7 A	4	14.	14
ARGENTINA	21	14A	14	14	7A.	7	7	143	21A	21A	?1A	21
australia	21.A.	21A	21	14	14	14	14 B	14 B	14 B	14	21	21A
CANAL ZONE	21	14	14	14	7		14	21	21	21 A	214	21A
englano	7	7	7	7	7	7	78	148	14.	14A	14.	14
Hawall	21A	21	14A	14.	14	7 A	7	7	14	21	21A	21A
inota	14.	14A.	14.	78	78	7 B	7B.	7 B	14.	14	14.	14.
Japan	21	14A	14.	148	78	7	7	7	7	14	14	14
MEXICO	21	14	16	7	7	7	7	14	148	21	21	21
PWILIPPINES	21.	14.	14.	148	7	2	2	7	14.	14	14	1es
PUERTORICO	21.	14.	14	7 A	7	7	14.	14 A	21	21 A	$21 A$	21
SOUTN AFRICA	14.	72	78.	7 B	78.	78	78	14	21	21A	$21 A$	21
U. S. S. f.	781	78.			730]	78	7 B	148	14	14A	14	7 B
EnSt Coast	21	14	7 N	7	7	7	7	14	21	21	21 A	$21 A$

$A=$ Next higher frequency may also be useful.
 $\mathbf{B}=$ Difficult circuit this period.

First letter $=$ night waves. Second $=$ day waves.
G = Good, $\mathrm{F}=$ Fair, $\mathrm{P}=$ Poor. * = Chance of solar flares. \# = Chance of aurora.
note that night wave letter now comes first

SEPTEMBER

New Yaesu FT-102 Series Transceiver of Champions!

Abstract

The long-awalted new generation of Yaesu HF technology has arrived! New research In improved recelver filtering and spectral purity is brought to bear in the competition-bred FT-102, the HF transceiver designed for active Amateurs on today's intensely active bands!

Unique Cascaded Filter System

The FT-102 utilizes an advanced 8.2 MHz and 455 kHz IF system, capable of accepting as many as three filters in cascade. Optional filters of $2.9 \mathrm{kHz}, 1.8$ $\mathrm{kHz}, 600 \mathrm{~Hz}$, and 300 Hz may be combined with the two stock 2.9 kHz filters for operating flexibility you've never seen in an HF transceiver before now! All New Receiver Front End
Utilizing husky junction field-effect transistors in a 24 volt, high-current design, the FT-102 front end features a low-distortion RF preamplifier that may be bypassed via a front panel switch when not needed.
IF Notch and Audio Peak Filter
A highly effective 455 kHz IF Notch Filter provides superb rejection of heterodynes, carriers, and other annoying interference appearing within the If passband. On CW, the Audio Peak Filter may be switched in during extremely tight pile-up conditions for post-detection signal enhancement.
Variable IF Bandwidth with IF Shitt
The FT-102's double conversion receiver features Yaesu's time-proven Variable Bandwidth System, which utilizes the cascaded IF filters to provide intermediate bandwidths such as $2.1 \mathrm{kHz}, 1.5 \mathrm{kHz}$, or 800 Hz simply by twisting a dial. The Variable Bandwidth System is used in conjunction with the IF Shitt control, which allows the operator to center the IF passband frequency response without varying the incoming signal pitch.
Wide/Narrow Filter Selection
Depending on the exact combination of optional filters you choose, a variety of wide/narrow operating modes may be selected. For example, you may set up 2.9 kHz in SSB/WIDE, 1.8 kHz in SSB/NARROW, then select 1.8 kHz for CW/ WIDE, and 600 Hz or 300 Hz for CW/NARROW. Or use the Variable Bandwidth to set your SSB bandwidth, and use 600 Hz for CW/WIDE and 300 Hz for CW/NARROW! No other manufacturer gives you so much flexibility in selecting filter responses!
Variable Pulse Width Noise Blanker
Ignition noise, the "Woodpecker," and power line noise are modern-day enemies of effective Amateur operation. The FT-102 Noise Blanker offers improved blanking action on today's man-made noise sources (though no blanker can eliminate all forms of band noise) for more solid copy under adverse conditions. Low Distortion Audio/IF Stage Design
Now that dynamic range, stability, and AGC problems have been largely eliminated thanks to improved technology. Yaesu's engineers have put particular attention on maximizing intelligence recovery in the receiver. While elementary fitter cascading schemes often degrade performance, the FT-102's unique blend of crystal and ceramic IF filters plus audio tone control provides very low phase delay, reduced passband ripple, and hence increased recovery of information.

Heavy Duty Three-Tube Final Amplifier
The FT-102 final amplifier uses three 6146B tubes for more consistent power output and improved reliability. Using up to 10 dB of RF negative feedback, the FT-102 transmitter third-order distortion products are typically 40 dB down, giving you a studio quality output signal.
Dual Metering System
Adopted from the new FT-ONE transceiver, the Dual Metering System provides simultaneous display of ALC voitage on one meter along with metering of plate voltage, cathode current, relative power output, or clipping level on the other. This system greatly simplifies proper adjustment of the transmitter.
Microphone Amplifier Tone Control
Recognizing the differences in voice characteristics of Amateur operators, Yaesu's engineers have incorporated an ingenious microphone amplifier tone control circuit, which allows you to tailor the treble and bass response of the FT-102 transmitter for best fidelity on your speech pattern.
RF Speech Processor
The buitt-in RF Speech Processor uses true RF clipping, for improved talk power under difficult conditions. The clipping type speech processor provides cleaner, more effective "punch" for your signal than simpler circuits used in other transmitters.
VOX with Front Panel Controls
The FT-102 standard package includes VOX for hands-free operation. Both the VOX Gain and VOX Delay controls are located on the front panel, for maximum operator convenience.
IF Monitor Circuit
For easy adjustment of the RF Speech Processor or for recording both sides of a conversation, an IF monitor circuit is provided in the transmiter section. When the optional AM/FM unit is installed, the IF monitor may be used for proper setting of the FM deviation and AM mic gain.
WARC Bands Factory Installed
The FT-102 is factory equipped for operation on all present and proposed Amateur bands, so you won't have to worry about retrofitting capability on your transceiver. An extra AUX band position is available on the bandswitch for special applications.
Full Line Of Accessories
For maximum operating flexibility, see your Authorized Dealer for details of the complete line of FT-102 accessories. Coming soon are the FV-102DM Synthesized VFO, SP-102 Speaker/Audio Filter, a full line of optional filters and microphones, and the AM/FM Unit.

"Comm-packed"

BIG performance... small size... smaller price!!!

 TR-2500The TR-2500 is a compact 2 meter FM handheld transceiver featuring an LCD readout, 10 channel memory, lithium battery memory back-up, memory scan, programmable automatic bandscan, Hi/Lo power switch and built-in sub-tone encoder.

TR-2500 FEATURES:

- Extremely compact size and light weight
Measures $66(2-5 / 8) \mathrm{W} \times 168(6-5 / 8) \mathrm{H}$ $x 40(1-5 / 8) \mathrm{D}, \mathrm{mm}$ (inches). Weighs 540 grams (1.2 lbs) with $\mathrm{Ni}-\mathrm{Cd}$ pack
- LCD digital frequency readout Shows frequencies and memory channels. four "A rrow" indicators.
- Ten channel memory

Nine memories for simplex or ± 600 kHz offset. "M0" memory for nonstandard split frequency repeaters.

- Lithium battery memory back-up (Estimated 5 year life.) Maintains memory when $\mathrm{Ni}-\mathrm{Cd}$ pack is fully discharged or removed.

- HI/LOW power selection
2.5 watts or 300 mw .
- Memory scan

Scans only channels in which
frequency data is stored.

- Programmable automatic band scan Upper and lower frequency limits and scan steps of $5-\mathrm{kHz}$ and larger
- UP/DOWN manual scan
- Built-in tuneable sub-tone encoder Tuneable (variable resistor) to desired CTCSS tone.
- Built-in 16-key autopatch encoder
- "SLIDE-LOC" battery pack
- Repeater reverse switch
- Keyboard frequency selection
- Extended frequency coverage Covers 143.900 to 148.995 MHz in $5-\mathrm{kHz}$ steps.
- Optional power source

Using optional MS-1 mobile or ST-2 AC charger/power supply, radio may be operated while charging. (Automatic drop-in connections.)

Actual size

- High impact plastic case
- Battery status indicator
- Two lock switches

Prevent accidental frequency change and accidental transmission.

Standard accessories include:

- Flexible antenna with BNC connector
- 400 mAH Ni-Cd battery pack
- AC charger

Optional accessories:

- ST-2 Base station power supply/ charger (approx. 1 hr.)
- MS-1 13.8 VDC mobile stand/charger/ power supply

TR-3500

70 CM FM Handheld

- $440-449.995 \mathrm{MHz}$ in $5-\mathrm{kHz}$ steps
- TX OFFSET switch keyboard
programmable $\pm 5 \mathrm{kHz}$ to $\pm 9.995 \mathrm{MHz}$
- $1.5 \mathrm{~W} / 300 \mathrm{~mW}$ HI/LOW power switch
- Auto. squelch position on squelch

control

- Tone switch for TU-35B optional programmable CTCSS encoder
- Other features include 10 memories lithium battery memory back-up. programmable automatic band scan. memory scan. UP/DOWN manual scan, repeater reverse. 16-key autopatch, keyboard frequency selection. slide-lock battery Subject to FCC approval.
- VB-2530 2-M 25 W RF power amp.. w/cables. mtg. brkt. (TR-2500 only)
- TU-1 Programmable CTCSS encoder (TR-2500 only)
- TU-35B Programmable

CTCSS encoder (mounts inside
TR-3500 only)

- PB-25 Extra 400 mAH Ni-Cd battery
- PB-25H Heavy-duty $490 \mathrm{mAH} \mathrm{Ni}-\mathrm{Cd}$ battery
- BT-1 Battery case for manganese/ alkaline AA cells
- SMC-25 Speaker-microphone
- LH-2 Deluxe leather case
- BH-2A Belt hook
- WS-1 Wrist strap
- EP-l Earphone

More information on the TR-2500 and TR-3500 is available from all authorized dealers of Trio-Kenwood Communications. 1111 West Walnut Street. Compton, California 90220.

[^0]: The price is $\$ 59.95$ in the U.S. and Canada. Add $\$ 3.00$ Shipping/Handling.
 California residents add sales tax.
 Fully guaranteed by the originator of the R-X Noise Bridge.

 ORDER YOURS NOW! Palomar Engineers

 Box 455, Escondido, CA. 92025 Phone: [714] 747-3343

[^1]: AUSTRALIA: NS.W-EMONA ELECTRONICS PIY LTD Phone: 398.6378
 FINLAND: Kotk- VISIAADIO Or Telex. 53260 VISI SF
 FRANCE: Parls-SOCIETEGESS (GENERALELECTMONIC SERVIGS) Phone (1 3453592
 CANADA VAMANCOUVE-GLENWOOD THADINGCO LTD Phone 6049840404
 GERMANY: Hannover- AICHTEA CO Phone (O511) 3521111

[^2]: | SWITZERLAND SEICOM AG Phone. 064515566 |
 | :--- |
 | U.K.: DerbvShic-LOWE |

 U.K.: Derbyshire-LOWELLECTAONICS, LTD Phone 0629.243
 U.S.A.: NJSGILFER ASSOCIATES INC Phone: 2013917887

 NE. OhIo-UNIVERSAL AMATEURAADIO. INC. Phone. (614) 866.4267
 NEW ZEALAND: DUNedII-RADIO ENGINEERING LTD Phone 51.075

[^3]: - KDK continues the tradition of being the ultimate in VHF FM mobile operafions. We make maximum use of multiple function, multiple shaft controls and only three sets of knobs are located on the front panel. Still many new features have been added, such as digital RIT, reverse button, memory channel readout number and more!
 -The new KDK 4 bit microprocessor chip has in-house developed software which makes all these new features possible.
 - Modern styled front panel with dials intelligently arranged so you can best utilize the multi-function, easy to handle controls. We gave it a very heavy textured paint finish that is highly resistant to scratching!
 - Frequency coverage $143.005-148.995 \mathrm{mhz}$. S / N better than 35 db at 1 uv input. Better than 2 uv at 12 db SINAD. Squelch sensitivity better than .15 uv . Bandwidth at $-6 \mathrm{db}: \pm 6 \mathrm{khz}$, at $-60 \mathrm{db}: \pm 16 \mathrm{khz}$. Image ratio better than 70 db . Double superhetrodyne. Transmitter uses variable reactance frequency modulation with maximum deviation set at $\pm 5 \mathrm{khz}$.
 - RF power is a good, clean no spurious signal of 25 watts on high and 5 watts (adjustable) on low.
 - Good audio with the famous KDK audio output capability of 1.5 watts . . you can't blow out our audio IC!
 - Nicads for memory retention built in, nothing extra to buy. Disconnect the F $\$ 2030$ from the power source and the memories remain!
 - Easy to use mobile mount with instant disconnect knobs for fast, simple removal. DC Cable and mounting hardware, spare fuse, external speaker plug and complete simplified instruction book includes circuit diagrams and even complete alignment instructions! No extras to purchase!

[^4]: | INTERNATIGNAL |
 | :---: |
 | SATELIITE VIOEO |
 | CORPONATION |

 POST OFFICE BOX 5685
 ORANGE CALIFORNIA 92667
 (714) $998.6080 / 633 \cdot 1370$

[^5]:

 ## Program listing.

 machines, please consult your documentation. If you have a TRS-80, MFJ has a special version of the MFJ-1200 for you.

 If you want to experiment with a sending program, you can try to use BASIC, but it will not be very satisfactory unless you can use character instead of line input. In Morse code it is better to send out a character as soon as it is entered on the keyboard. Microsoft's INPUT\$ offers such a method. See also Reference 2.

[^6]: -Use the order card in this magazine or Itemize your order on a separate piece of paper and mail to: 73 Radio Bookshop - Peterborough NH 03458. Be sure to include check or detalled credit card information. No C.O.D. orders accepted. All orders add $\$ 1.00$ handling. Please allow $4-6$ weeks tor delivery. Questions regarding your order? Please write to Customer Service at the above address. (Prices subject to change on books not published by 73 Magazine.)

[^7]: - Use the order card in this magazine or itemize your order on a separate piece of pape and mall to: 73 Radio Bookshop - Peterborcugh NH 03458. Be sure to include check or detalled credit card information. Add $\$ 1.50$ first book, $\$ 1.00$ each additional book by 73 Magazine. Questions regarding your order? Please write on books not published the above address. Please allow 4.6 weeks for dellvery. NOC.O Orders accepted. Toll Free ordering call $1-800-258-5473$.

[^8]: 1016EGUREKA. SOA 1105 LIMA, OHIO. 45802

