ham

magazine

\square
3. 797.3

MAIN/A!
OFF/MAN

NOTCH

SPECIAL 4th Annual Receiver Issue

This amazing pocket sized radio represents the year's biggest breakthrough in 2-meter communications. Other units that are larger, heavier and are similarly priced can offer only 6 channels. The SYNCOM'S price includes the battery pack, charger, and a telescoping antenna. But, far more important is the 800 channels offered by the S1.

The optional touch tone pad shown in the illustration adds greatly to its convenience and we have available a 30 watt solid state power amplifier designed to give the SYNCOM S-1 the flexibility of operating as a mobile and base station as well.

SPECIFICATIONS
Frequency Coverage
Channel Spacing:
Power Requirements
Current Drain:
Batteries:
Antenna Impedance:
Dimensions
RF Output:
Sensitivity:

144 to 148 MHz
Every 5 KHz
17 ma -standby 400 ma -transmit
Ni-cad battery pack included 50 ohms
$40 \mathrm{~mm} \times 62 \mathrm{~mm} \times 165 \mathrm{~mm}\left(1.6^{\prime \prime} \times 2.5^{\prime \prime} \times 6.5^{\prime \prime}\right)$ Better than 1.5 watts Better than 5 microvolts

SUPPLIED ACCESSORIES
Telescoping whip antenna, ni-cad battery pack, charger. OPTIONAL ACCESSORIES
Touch tone pad, tone burst generator, CTCSS chips, Rubber flex antenn
Price ... $\$ 349.00$ (or with touch tone pad ... $\$ 399.00$)
Tempo also offers a complete line of solid state power amplifiers, pocket receivers, the FMH-2, 5 \& 42 portables, the VHF/ONE PLUS mobile transceiver, and the FMT- 2 \& FMT- 42 remote control mobile transceivet All available from Tempo dealers throughout the U.S.
Call or write for full information.

For The "Professional" Amateur.

The RACAL RA6772. In use by Military and Government organizations the world over, this outstanding receiver is now available to the serious amateur operator.

Superb performance on the entire amateur band as well as all other bands. Frequency range of 15 kHz to 30 MHz with tuning increments in 10 Hz steps. The RA6772 synthesized LF/MF/HF communications receiver, direct from the manufacturer. Call or write for details on this exceptionally fine equipment.

5 Research Place, Rockville. Maryland 20850 - (301) 948-4420 - Telex 898-456 - Cable RACAL USA

This NEW MFJ Versa Tuner II . . .

 has SWR and dual range wattmeter, antenna switch, efficient airwound inductor, built in balun. Up to 300 watts RF output. Matches everything from 1.8 thru 30 MHz : dipoles, inverted vees, random wires, verticals, mobile whips, beams, balanced lines, coax lines.

Only MFJ gives you this MFJ.941B Versa Tuner II with all these features at this price: A SWR and dual range wattmeter (300 and 30 watts full scale) lets you measure RF power output for simplified tuning.

An antenna switch lets you select 2 coax lines direct or thru tuner, random wire/balanced line, and tuner bypass for dummy load.

A new efficient airwound inductor (12 positions) gives you less losses than a tapped toroid for more watts out.

A 1:4 balun for balanced lines. 1000 volt capacitor spacing. Mounting brackets for mobile installations (not shown).

With the NEW MFJ Versa Tuner II you can run your full transceiver power output - up to 300 watts RF power output - and match your

ANTENNA SWITCH lets you select 2 coax lines direct or thru tuner, wire/balanced line, dummy load.
transmitter to any teedline from 160 thru 10 Meters whether you have coax cable, balanced line, or random wire.

You can tune out the SWR on your dipole, inverted vee, random wire, vertical, mobile whip, beam, quad, or whatever you have. You can even operate all bands with just
one existing antenna. No need to put up separate antennas for each band.

Increase the usable bandwidth of your mobile whip by tuning out the SWR from inside your car. Works great with all solid state rigs (like the Atlas) and with all tube type rigs.

It travels well, too. Its ultra compact size $8 \times 2 \times 6$ inches fits easily in a small corner of your suitcase.

This beautiful little tuner is housed in a deluxe eggshell white Ten-Tec enclosure with walnut grain sides.
$\mathbf{S 0 - 2 3 9}$ coax connectors are provided for transmitter input and coax fed antennas. Quality five way binding posts are used for the balanced line inputs (2), random wire input (1), and ground (1).

NEW 300 WATT MFJ VERSA TUNER II'S: SELECT FEATURES YOU NEED.

NEW MFJ-945 HAS SWR AND DUAL RANGE WATTMETER.

Same as MFJ-941B but less 6 position antenna switch.

NEW MFJ-944 HAS 6 POSITION ANTENNA SWITCH ON FRONT PANEL.

Same as mFJ-9418 but less SWR/Wattmeter.

NEW MFJ-943 MATCHES ALMOST ANYTHING FROM 1.8 THRU 30 MHz .

ULTRA COMPACT 200 WATT VERSA TUNERS FOR ALL YOUR NEEDS.

MFJ-901 VERSA TUNER MATCHES ANYTHING, 1.8 THRU 30 MHz .

for more watts out. Matches dipoles, vees, random wires verticals, moblle whipt, beams, balanced lines, coax. 200 watts RF, $1: 4$ balun, $5 \times 2 \times 6$ in.

MFJ. 900 ECONO TUNER MATCHES COAX LINES/RANDOM WIRES.

S495

Same as MFJ-901 but less balun for balanced lines. Tunes coax lines and random lines.

MFJ-16010 RANDOM WIRE TUNER FOR LONG WIRES.
s3995
1.8 thru 30 MHz . Up to 200
 watts RF output. Matches high and low impedances. 12 position inductor, \$0-239 connectors. $2 \times 3 \times 4$ inches. Matches 25 to $\mathbf{2 0 0}$ ohms at 1.8 MHz . Does not tune coax lines.

For Orders

Call tollifree 800-64 7-1800
 Order today. Money back if not delighted. One year unconditional guarantee. Add $\$ 2.00$ shipping/handling. For technical information, order/repair status, in Mississippi, outside continental USA, call 601-323-5869.

ham radio

contents

10 high-frequency communications receiver Norman J. Foot, WA9HUV
26 low-noise
432-MHz preamplifier Albert J. Ward, WB5LUA
30 tracking calculations for superhet receivers Courtney Hall, WA5SNZ
34 CW signal processor William B. Jones, W7KGZ
38 low-noise $30-\mathrm{MHz}$ preamp James R. Fisk, W1HR
42 1296-MHz local oscillator Paul C. Wade, WAZZZF
51 evaluating oscillator sidebands Ulrich L. Ronde, DJ2LR
60 synthesized high-frequency local-oscillator system Raymond C. Petit, W7GHM
68 reciprocating detector Stirling M. Olberg, W1SNN
74. RTTY demodulator John M. Loughmiller, KB9AT
80 high-sensitivity preamp for frequency counters Paul R. Kranz, W1.CFI
84 twin-diode microwave mixer James L. Dietrich, WAORDX
89 two-meter preamplifier Herbert L. Bresnick, WB2IFV

4 a second look
142 advertisers index
120 coming events
117 flea market
132 ham mart
94 ham notebook

6 letters 98 new products 8 presstop
142 reader service 105 stolen equipment

Our society is a very mobile one, and with the recently lowered air fares, more people than ever before are traveling by air. It's only natural for the vhf-fm operator, with his portable fm rig, to question the possibility of using his equipment on commercial flights.

It is popularly believed that all you have to do is obtain the captain's permission to operate; surely your little two-watt fm rig is not going to cause any interference with the high-powered radio equipment used on board the aircraft. However, this is not the case - according to the Federal Air Regulations, approval must be obtained from the air carrier (airline) and not the pilot in command. However, once approved by the air carrier, the permission of the captain in command must a/so be obtained to operate equipment aboard a particular flight.

Shortly after World War II, portable Japanese fm broadcast receivers appeared on the market, and passengers started using them aboard commercial flights. At the same time, aircraft navigation radios started doing strange things, and it didn't take long to determine that the interference was being caused by of radiation from the portable fm receivers. The aircraft radios literally went wild, and at least two aircraft accidents were attributed to interference of this type.

When it was determined that this interference was present, the FAA promulgated new regulations, paragraph 91.19 of the Federal Air Regulations. This paragraph states that no electronic device may be operated aboard a commercial airliner except heart pacemakers, voice recorders, hearing aids, calculators, electric shavers and electric watches, unless the device has been approved by the air carrier or operator. The regulation further states that the captain of the aircraft does not have the authority to authorize such operation.

Consider, for a moment, what might happen if such operation were allowed. Suppose you have been operating all across the country, and your plane is about to land. A passenger with a briefcase telephone sitting across from you has been watching you operate. About 10 minutes before landing, he decides to call his wife. Unfortunately, his radio telephone transmits right in the middle of the glide slope spectrum. As soon as his transmiter is keyed, the glide slope indicator cross pointer goes up or down, and the autopilot follows it. That could be disastrous.
As an airliner flies across the country, the pilot changes frequency every 5 minutes or so. If several fm operators are on the same flight, only one can talk at a time, so some may decide to switch to other frequencies. When you figure out all of the i-f and carrier frequencies of the aircraft radios, plus the amateur gear, plus all the possible mixing products, you can appreciate the magnitude of the problem.
A few years ago a well known vhf-fm operator prevailed upon an airline to test his Motorola HT in one of their aircraft so he could operate during a flight he planned to take. After months of correspondence and personal meetings with airline communications people (many of whom were amateurs), the airline agreed to run the necessary tests. On the appointed day the aircraft was removed from line operation and the test began; it took three hours and four men to complete. The HT caused no interference, and the amateur received a letter authorizing the operation of that HT on that particular trip in only that type of aircraft. It's easy to understand why the airlines, who are trying to cut costs, are not enthusiastic about testing an individual's vhf-fm equipment.
Many fm operators continue to ask the captain's permission to operate, and he may give it, not realizing the possible bind he is putting himself in; he could have his license suspended or he could be fired. Don't put him in that position, and don't subject yourself and other passengers to a situation which could be hazardous to all on board.

Remember, you may not cause any interference during the trip, but the ILS glide slope receiver is used only during the last few minutes of flight, so interference may not be noticed until it's too late!

Jim Fisk, W1HR
editor-in-chief

zip-cord feedlines

Dear HR:

I feel that the article by W7RXV (ham radio, April, 1978, page 32) deserves a rebuttal. First, I doubt the accuracy of Fruitman's measurements on the coax. As a practicing antenna engineer, I have made rather precise measurements of the loss of both RG-58 and RG-8. The numbers that have repeated themselves time and time again are very close to 2.0 $\mathrm{dB} / 30$ meters for RG-58 at 20 MHz and 1.0 dB at 4 MHz . Thus, for a $20-$ meter run, Fruitman should have measured 20 per cent (versus his claimed 58 per cent) transmission loss at 20 MHz . The other numbers are off by a proportionate percentage.

More serious, however, is Fruitman's apparent disregard of measurement and use techniques between coaxial cable and balanced-wire line. When he says "the zip cord came down and the RG-58 went up" one must be a bit suspicious that the two different types of transmission cable were fed from the same connector. Moreover, one must then ask if he used the same measurement technique for both coax and twinlead without the use of baluns. Had he made the blunder of not using the twinlead properly, the errors he reports would be expected. The loss is not in the twinlead, but in the VSWR mismatch.
I have used lamp (zip) cord on the lower bands with reasonable results. Of course, you can't go out and buy just any old zip cord and hook it up without going through a bit of in-
vestigation. The impedance of zip cord varies from about 70 ohms (for the light duty wire) to about 30 ohms for the super-heavy duty cord. Loss is a bit better than the normal 75ohm twinlead.

Jim Weir, WB6BHI VP Engineering
Radio Systems Technology Grass Valley, California

51J product detector

 Dear HR:I would like to thank Bill Orr, W6SAI, for the fine article in the February, 1978, issue of ham radio which showed how to add a product detector to a Collins 51J receiver. I made this modification to my receiver and am very pleased with the change.

However, I did run into a problem which evidently did not crop up when Mr. Orr made his conversions. I found that when I turned up my audio gain, the receiver immediately started motor-boating. Investigation revealed it was not motor-boating, but was hash pick up from the filter unit of the power supply. I tried replacing the plug-in type filter capacitor, but this did not cure the problem. I finally had to add a $10-\mu \mathrm{F}$ filter capacitor at the junction of the screen and plate resistors.

> Frisco Roberts, K5CE Corpus Christi, Texas

pi networks

Dear HR:

The article by Irv Hoff, W6FFC, in the June, 1978, issue of ham radio on pi network design was well done and fulfilled a need for those interested in building equipment. However I'd like to point out one minor discrepancy in an otherwise excellent article that may cause some confusion. On page 63, Irv points out that an ff
choke should be used at the antenna output of any pi or pi-L network. All well and good, but nowhere in the article does the author indicate how this if choke should be connected. Perhaps it is implicit in the text, but I think that a simple addition to fig. 3 showing how to connect the choke would be appropriate. The if choke should be strapped between the antenna output connector and ground. The choke is essential in such a circuit in series with the network output!

> A. Wilson, W6NIF
> Encinitas, California

phased antenna

Dear HR:

After looking at some of the beams (especially 40 meters) I came up with a cheaper way to get a signal to the West Coast, especially at night. The idea was copied from some of the other antennas - it's very easy to make. It uses half-wave dipoles in phase, and gives a nice bi-directional antenna. Taking in the velocity factor of RG-8, which is 0.66 , I took 492 $\times 0.66$ and divided that by the frequency $7.250 \mathrm{MHz}=44^{\prime} 9^{\prime \prime}$ for my phasing lines, one for each dipole.

I use a minimum of $1 / 8$-wavelength spacing ($16^{\prime} 1$ 1"). I found very little difference between $1 / 4$-wave and $1 / 8$-wave spacing. I've checked it with several stations and, with a friend to compare signal reports with, 1 ran 500 W PEP while he ran the full 2 kw PEP. I averaged 2 to 3 S-units more than he did all the time. This same thing was tried on 75 , and I got the same results. The stations on the West Coast gave me the best signal report. I hope this works as well for others as it has for me.

Jerry Thacker
Francisco, Indiana

Escape the rat race...tyy $440 \mathrm{MHz}^{\text {FMI }}$

2 METERS IS GREAT! THAT'S WHY EVERYBODY IS ON THE BAND (SO IT SEEMS). AND YOU WILL HEAR THE POPULAR KENWOOD TR-7400A AND TS-700SP TRANSCEIVERS ON ALL THE REPEATERS AND SIMPLEX FREQUENCIES. BUT SOMETIMES YOU WISH THE BAND WERE NOT SO POPULATED... SO YOU COULD GET A WORD IN EDGEWISE... OR MONITOR A RELATIVELY QUIET CHANNEL FOR A FRIEND OR TWO . . OR HEAR SIGNALS WITH LESS NOISE ... OR USE A SOPHISTICATED REPEATER OR REMOTE BASE WITH BETTER COVERAGE. 440 MHz IS THE ANSWER. IT WILL SURPRISE YOU. IT WILL PENETRATE BUILDINGS WHERE 2 METERS WON'T, AND OFTEN YOU CAN EVEN WORK OUT FROM UNDERGROUND GARAGES ... WHERE 2 METERS IS DEAD! BEST OF ALL, IT'S EASY TO GET ON 440 MHz (70 CM) . . . WITH A KENWOOD TR-8300 TRANSCEIVER. HIGH QUALITY IS CRITICALLY IMPORTANT ON UHF BANDS, AND THE TR-8300 IS JUST WHAT YOU NEED TO MEET ALL TECHNICAL REQUIREMENTS. IT FEATURES:

- 10 watts RF output (switchable to 1 watt)
- 23 crystal-controlled channels (3 supplied)
- $445.0-450.0 \mathrm{MHz}$ transmit range
- 442.0-447.0 MHz receive range
- Transmitter and receiver adjustable over any $5-\mathrm{MHz}$ segment from 440 to 450 MHz
- 5-section helical resonator and 2-pole crystal filter in IF to reject intermod
- SWR protection in final amplifier
- Excessive-voltage and reverse-polarity protection circuits
- $0.5 \mu \mathrm{~V}$ for 20 dB quieting sensitivity
- Better than -60 dB spurious radiation
- $20 \mathrm{KHz}(-6 \mathrm{~dB}), 40 \mathrm{KHz}(-70 \mathrm{~dB})$ selectivity
- Monitor switch that lets you check modulation and frequency "netting"
- Call CH switch that activates optional CTCSS (subaudible tone) function
- Large S meter

Move up to 440 MHz today... with a Kenwood TR-8300 .. for more reliable communications!

BALLOON MOBILE AMATEUR RADIO provided the Double Eagle II with vital communications as the 112 foot high balloon became the first free-air craft to cross the Atlantic. The balloonists, operating as W5OCP on 14325 kHz , maintained contact with their ground crew in Bedford, Massachusetts, using at Atlas transceiver.

Though None of The Three balloonists were themselves Amateurs, there were Amateurs (including W50CP) in the Eagle II's ground support crew. The Atlas had been taken along for compact, lightweight backup communications, and when the crew found themselves without other communications halfway through their trip, their emergency use of Amateur frequencies under paragraph 1381 of the International Radio Regulations was not inappropriate.

Another Adventurer, Naomi Uemura, JG1QFW, was in Washington in late August for a press conference and a celebration of his accomplishment: reaching the North Pole solo. With much of the trip's communications burden carried by Amateur Radio, lots of good PR should result.

THE FCC'S BAN ON 10-METER LINEARS came an important step closer to being challenged when the ARRL filed, in late August, a Petition for Review of the controversial decision in the United States Court of Appeals, District of Columbia Circuit. This in effect gives the League 45 days in which to prepare a brief on the matter, and, with the League Executive Committee meeting at mid month, the final decision on just how far they' 11 carry the matter should be made then.

Amateur Use of ASCII for RTTY is the sole subject of the Notice of Inquiry and further Notice of Proposed Rule Making on the "Bandwidth Docket" - 20777. The NPRM will propose adding ASCII to the permitted emissions for Amateurs, while the NOI will ask what specific standards should go into the new rules. Comment Due Date on this Notice of Inquiry and NPRM is November 15, with Reply Comments due December 16.

The FCC-Amateur Media Meeting proposed for this month will probably be devoted to Amateur exams - content, study guides, exam administration both in and out of the FCC, and the like. Dates are available at Gettysburg, but it could be further delayed if a 10th Notice of Inquiry on WARC 79 requires a meeting of the Advisory Committee on Amateur Radio, which could be held at the same time.

A SIGNIFICANT ANTENNA VICTORY has been achieved by W6QOL. The pro-Amateur Radio decision in this case, rendered by the Federal District Court, prohibits the city of Placentia, California, from limiting W6QOL's antenna to 25 feet.

By Its Decision, that court directly contradicted the California State Court's decision that Cerritos, California, had the right (in the $N 6 Q Q$ case) to limit an Amateur's antenna height. Thus it appears that the Supreme Court, which declined to rule last spring on the N6QQ decision, will again become involved in the battle, as there are now contradictory decisions that must be resolved in the same area of law.

Another Antenna Battle appears to have been won in Farmington, Michigan, a Detroit suburb. Despite strong objections from home owners, the Farmington Heights Planning Commission has come out in favor of tripling the permitted height of radio towers from the present 25 to 75 feet. In a new ordinance sent to the city council, the planning commission proposed increasing the maximum to 75 feet, but with the proviso that the tower height could be no more than half the width of the lot.

1979 ARRL DX CONTEST, having been reduced by the Board of Directors to one weekend per mode, will be held in March with the first weekend for phone and the third for CW. Preference for February dates from large numbers of U.S. stations has been strong, citing building low-band noise from spring storms as a major problem. But, an informal poll of overseas participants indicated a preference for March dates.

DURING TORRENTIAL RAINS that brought death and destruction to south and central parts of Texas, Amateurs served a vital communications role. Nearby Amateurs received first word of the disaster at 6:00 AM on August 2, when K5RZD called into San Antonio via repeater to ask for helicopter evacuation of flood survivors from Medina. At about the same time, the U.S. Whether Service was calling EC WA5RNV asking for Amateur communications help. Until the waters started to recede late in the weekend, an estimated 100 Amateurs worked around the clock providing much needed communications for rescue workers and survivors. In addition to providing disaster communications, a number of Amateurs monitored flood gauges throughout the affected countries to provide Weather Service Chief Hydrologist George Kush with vital data for predicting which areas were threatened and needed to be evacuated.

THE FIFTH 2-METER "WAS" has been earned by KIWHS thanks to K9SS and his Idaho operation.
ANYONE DESIRING CATV cable and/or connectors per the Woods article in September, ham radio, should send a self-addressed, stamped envelope to Box 7111, Phoenix, Arizona $\overline{85011 .}$

A Blend of Art and Amplifier

- Covers 160-15 meters \& most MARS freqs.
- Continuous 1 KW input CW. SSTV. RTTY. 2KW PEP SSB
- Built-in adjustable ALC
- Easily changed 117V or 234 V AC, $50 \cdot 60 \mathrm{~Hz}$
- FCC TYPE ACCEPTED
- OTR-2000L suggested price \$1099.50

There are certain times when amplifiers transcend their function and approach the status of art. An amplifier as a reliable source of power is fundamental, an amplifier as an artful precision instrument is unique.

The DTR-2000L achieves this uncommon standard by employing the most powerful final tube legally permitted in the amateur service. The world famous Eimac 8877. Then, following through with features such as a vacuum impregnated power transformer, continuous duty power supply, hi-lo power switching, pressurized forced air cooling, harmonic suppressiôn far exceeding FCC specification, dual meters for monitoring plate voltage and current.

We are confident you'll agree that the DTR-2000L is an exciting blend of art and amplifier. Now available at DenTron dealers throughout the world.

Radio Co.
2100 Enterprise Parkway Twinsburg, Ohio 44087
(216) $425-3173$

digitally programmable
high-frequency communications receiver

> High-frequency receiver for $1-30 \mathrm{MHz}$ features up conversion, frequency synthesis, and novel digital control of the rf and mixer circuits

The high-frequency communications receiver described here includes a unique digital interface that provides it with unusual capability. The receiver covers selected portions of the high-frequency spectrum between 1.8 and 30 MHz with the aid of a frequency synthesizer that is an integral part of the digital display. Coverage includes all of the amateur bands, two bands which include WWV, several of the international short-wave broadcast bands, and most of the CB band. Coverage is not limited to these bands. In fact, the basic scheme is such that the receiver can be set up to cover the entire range from 1.8 to 30 MHz .

development

This unusual receiver was developed strictly as a hobby over a period of about a year. The object was to design and build a high-performance breadboard model that could be controlled from the front panel through a digital interface. In many respects, the result represents a radical departure from conventional receiver design. Once the basic scheme was conceived, it was only a matter of building up the

By Norman J. Foot, WA9HUV, 293 East
Madison Avenue, Elmhurst, Illinois 60126
various functional blocks, integrating them, connecting the interface, and checking out the entire system. At first blush this seemed easy, but assuredly it was not.
It is difficult to describe all of the details of the programmable receiver in one magazine article. Therefore, this article will include a general description of the overall scheme with the aid of functional block diagrams, so that a clear understanding of the basic idea will be gained. An overall wiring diagram of the frequency counter is not included, but special emphasis will be given to the circuits associated with the frequency synthesizer. Other circuits that will be described are those considered to be unique, such as logic control and the high-frequency oscillator.

general description

To simplify the development process, the decision was made to divide the receiver into physical subassemblies or modules, each including circuitry that logically belongs together. Each individual module was fitted with BNC connectors for rf and i-f interconnections, and 14 pin DIP sockets were used for logic and power. While this modularized approach added considerably to physical size and circuit complexity, it provided a way to easily and quickly remove modules to facilitate debugging, modifications, and repair. Pertinent test points were included on each module. Extender cables were used to operate the receiver with one or two modules removed from the main frame.

The modules are mounted on a pair of $28 \times 43 \times$ $5 \mathrm{~cm}(11 \times 17 \times 2$ inch $)$ aluminum chassis, each equipped with a standard $13.3-\mathrm{cm}(5-1 / 4$-inch) high relay rack panel. The lower deck houses the circuits that function to select and display the frequency to which the receiver is tuned, and to convert incoming signals to 32 MHz . The upper deck contains the final mixer and all of the $1650 \mathrm{kHz} \mathrm{i-f}$, mode select, detection, and audio circuitry. These two decks are re-

Construction of the $32-\mathrm{MHz}$ deck which includes the main tuning control, frequency display, thumbwheel switches, and rf gain control.

Rear view of the $32-\mathrm{MHz}$ deck showing the perf-board construction.
ferred to as the $32-\mathrm{MHz}$ and the $1650-\mathrm{kHz}$ decks.
Now that the design has been confirmed by the working breadboard model, it should be a relatively simple matter to physically reconfigure the receiver to fit into a single, standard-size enclosure.

No printed-circuit layouts have yet been prepared. All of the digital circuits were assembled by hand using pieces of perforated epoxy fiberglass with a hole matrix on $2.5-\mathrm{mm}$ (0.1 -inch) centers, such as Vector 169P84. Component parts were hand wired and soldered using a combination of wire wrap technique and no. $26(0.4 \mathrm{~mm})$ tinned copper wire insulated with Teflon sleeving.

A major challenge for those wishing to reproduce this receiver is to reduce the counter and other IC boards to printed circuits. The counter board alone includes 27 integrated circuits of which six are LED displays. The total IC count is 71 . There are a total of 13 DIP sockets used for power, and three sets of 8 DIP switches. In addition, there are 34 transistors including series pass regulators in the power supplies, and 44 diodes including switching and power supply rectifiers and zener regulators.

The overall gain of the receiver from antenna to product detector output is approximately 122 dB when all controls are set for maximum. Overall sensitivity is $0.2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$ ratio, which is more than adequate for most high-frequency requirements.

The front panel of the $32-\mathrm{MHz}$ deck has a threedigit thumbwheel for band and band segment selection, a vfo knob for tuning $100-\mathrm{kHz}$ band segments, and a six-digit seven-segment LED display which indicates the antenna frequency to within $\pm 100 \mathrm{~Hz}$. The accuracy of the readout is based on a 1.0 MHz crystal clock which is zero beat with WWV. There is also a unique antenna trimmer, an if gain control, pilot light, and power switch.

The $1650-\mathrm{kHz}$ deck includes a mode switch which

 MHz , a frequency synthesizer, and diode-switched front-end and mixer circuits.

allows selection of $a-m$, USB, LSB, CW, or fm ; agc release switch, S-meter, audio gain control, i-f gain control, pilot light, power switch, and a small loud speaker. Each deck includes its own regulated power supply.

Both the band-select thumbwheel switches and the mode switch output TTL compatible binary codes. The bandswitch thumbwheels provide a cer-

basic receiver design

The ground rules for high performance in a gener-al-coverage receiver were elegantly described by Wayne Ryder, W6URH, in his recent ham radio article. ${ }^{1}$ He discusses the design criteria for general coverage, and gives illustrations of up-conversion schemes designed to minimize interference from the various radio services.

High-frequency oscillator module. The band-select signals are connected through the DIP socket.
93.9 MHz . Although this choice may not be optimum in terms of possible interference from local TV or fm stations, the tuned front-end if circuitry provides sufficient image rejection so that this kind of problem has not been encountered, even though I live near a major metropolitan area.
To adequately describe the programmable nature of this receiver, it is first necessary to explain the block diagram shown in fig. 1. The front end includes an of amplifier and first mixer. The if input signal is up-converted to the first $\mathrm{i}-\mathrm{f}$, which has a passband covering 31.9 to 32 MHz . The hfo signal is derived from the frequency synthesizer and operates from 33.8 to 61.9 MHz . The vfo for the second converter tunes continuously between 30350 and 30250 kHz to down-convert the $32-\mathrm{MHz}$ signals to 1650 kHz .
The digital readout uses six seven-segment LED displays. The three left-hand digits respond to a
counter driven by the hfo; the three right-hand digits are driven by the vfo. Programmable counters are used so the display corresponds to the antenna frequency rather than either the vfo or the hfo. The TENS, UNITS, and TENTHS of MHz are selected by the setting of the thumbwheel. The TENS, UNITS, and TENTHS of kHz digits read from 0.00 to 99.9 as the vfo knob is turned clockwise across its range. Thus, the thumbwheel serves as the bandswitch while the vfo knob bandspreads $100-\mathrm{kHz}$ band segments.
The first conversion scheme is described analytically as follows:

$$
f_{h f_{0}}=f_{s}+32000 \text { (frequencies in } \mathrm{kHz} \text {) }
$$

where f_{s} is the signal frequency at the low end of a $100-\mathrm{kHz}$ band segment. For example, if the receiver is tuned to 1800 kHz , the hfo will be phase-locked to $1800+32000=33800 \mathrm{kHz}$. The hfo setting for the 28.0 MHz band segment would be 60000 kHz .

The second converter down-converts the 32000 to 31900 kHz i-f band to 1650 kHz . This requires a vfo that tunes from 30350 to 30250 kHz , in that order, so that an up-converted signal that falls within the 32 MHz passband will be down-converted to 1650, depending on the setting of the vfo. Therefore, the overall conversion scheme is:

$$
\begin{aligned}
& f_{s}(\text { low end })=f_{h f o}-1650-30350 \\
& f_{s}(\text { high end })=f_{h f o}-1650-30250
\end{aligned}
$$

For example, if the digits set into the thumbwheels

fig. 4. Schematic diagram of the diode-switched rf amplifier. Band selection is accomplished by providing forward current to the 1N914 diodes to short circuit portions of the inductor to ground. Similar arrangements are used in the mixer and high-frequency oscillator.

fig. 5. Circuit diagram of the digitally controlled high-frequency oscillator. Band-select logic is similar to that used in the rf amplifier and mixer circuits in that forward-biased diodes are used to change the value of $L 2$.
are 141 , the hfo frequency is 46100 kHz and the vfo tunes from 14100 to 14200 kHz .

Special care was given to the design of the vfo since it is free running and operates at a relatively high frequency. The design goal was for less than $\pm 2 \mathrm{kHz}$ drift during the first ten minutes of warmup, and less than $\pm 100 \mathrm{~Hz}$ thereafter. Short-time drift and phase jitter were reduced to negligible values by careful bypassing and post regulation of the power supply.

A series of experiments were performed which were aimed at synthesizing the vfo, to provide it with $10-\mathrm{Hz}$ steps in conjunction with a front-panel tuning knob. However, the approach using continuously variable vfo tuning was selected because of its infinite resolution which gives the operator that "smooth" feel. The ten-turn potentiometer used for vfo tuning gives more than adequate resolution, and allows ssb signals to be tuned in quickly and easily. One turn of the vfo knob represents 10 kHz of tuning range. The RIT control was added primarily for use in net operation.

The i-f circuits following the second mixer are fairly conventional, with the possible exception of the AM3705 analog multiplexers, which are used for mode switching. Changing modes is accomplished with a front-panel switch that outputs 3-bit binary words to drive the multiplexers located at appropriate places in the receiver. These multiplexers perform such functions as bypassing the ssb filter when operating a-m, selecting the upper or lower sideband bfo crystal, and inserting the narrow CW crystal filter into the if chain in the CW mode. While the switching functions are illustrated on the block diagram by
conventional switch symbols, all switching is actually done by binary control from the panel.

The i-f amplifier is a Motorola MC1590G which drives MC1596G product detector. This combination is ideal because it allows a single product detector to be used for $a-m$, ssb, and fm . The 1590 provides more than 60 dB of agc. In this receiver the agc range is extended by using delayed agc on both the rf and i-f preamplifier stages, the longest delay being associated with the rf stage.

The agc voltage is tapped off the agc amplifier and fed to an op amp; the op amp drives both the delayed agc circuits as well as the S-meter. This approach provides a simple way of using a $0-1 \mathrm{~mA}$ meter as the S-meter. Calibration of the S-meter was accomplished by inserting a Kay attenuator in the i-f circuit, feeding a signal to the antenna, and recording the deflection of the S-meter for various attenuation values. Full scale is adjusted by a potentiometer on the op-amp output, while zero is set by removing the antenna and adjusting the age gain control associated with the MC1590.

A GE PA-237 integrated circuit is used as the audio amplifier; this drives a small speaker behind the panel of the 1650 kHz deck. This is an optional feature which admittedly was added for esthetic purposes to balance the front panel arrangement. Generally the output of the product detector is used to directly drive a stereo amplifier, although the built-in speaker allows the receiver to be used independently.

That part of the overall functional block diagram (fig. 1) which is inside the dotted lines belongs to the $32-\mathrm{MHz}$ deck. It is primarily involved with the counters and display, the hfo and vfo, and the digital inter-
face. The balance of this article will concentrate primarily on the details of these circuits, which collectively are the heart of the frequency synthesizer.

function of the counter

The counter plays an important role in controlling the hfo frequency, and it also provides the outputs to drive the display. Fig. 2 is a block diagram which illustrates the basic scheme, but for clarity some of the functional circuits have been omitted. For example, DIP switches mounted on the counter board are used to program the TENS, UNITS, and TENTHS MHz counters. Only one set of these switches is shown in fig. 2. Logic inputs such as GATE, LOAD, and RESET circuits have been omitted. An excellent article by WB2DFA, which appeared in ham radio ${ }^{2}$, illustrates
many of the counter, logic, display, and time base generator circuits, some of which are used in this programmable receiver. Wiring diagrams of some of the more sophisticated up/down programmable counters will be described later. An article by Phillip Rand, W1DBM, in $Q S T^{3}$ is recommended if you want a better understanding of these circuits.

For the receiver described here to work properly, it is necessary that the hfo be phase locked to harmonics of 100 kHz derived from the 1.0 MHz clock. It is absolutely essential that the hfo be locked to the correct harmonic or line number. This is automatically accomplished by means of a ramp which tunes the hfo to within a few kHz of the correct spectral line. By definition, the hfo is part of a frequency synthesizer that has the capability to output any one of 281

fig. 6. Digital band selector circuit provides binary commands for coil switching in the rf amplifier, mixer, and high-frequency oscillator. To maintain circuit tracking, the same voltage ramp is used to tune all three circuits.
table 1. Low band edge high-frequency oscillator (hfo) frequencies.

input signal frequency (MHz)	hfo frequency (MHz)
28.00	60.00
27.00	59.00
21.00	53.00
15.00	47.00
14.00	46.00
9.00	41.00
7.00	39.00
3.00	35.00
1.80	33.80

frequencies between 33.8 and 61.9 MHz . Specifically, these are $33.8,33.9,34.0, \ldots 61.7,61.8$, and 61.9 MHz . In the breadboard receiver I built, 91 of these outputs are available, corresponding to a total frequency coverage of 9200 kHz . It is not difficult to modify the system to include additional bands or to change existing bands to cover other frequency ranges.
binary numbers counted, the ramp is inhibited. At this time, the hfo is close enough to the desired 100kHz line that there can be no ambiguity. In theory, the frequency error immediately prior to lock-up is never more than 6.19 kHz , although in practice it may be slightly larger. Fig. 2 includes functional blocks which illustrate how coarse tuning is accomplished in association with the display counter. Note that the third comparator which is associated with the HUNDREDTHS hfo MHz is hard wired to respond to zero. This counter stage is not associated with the display.

The tuning ramp is derived from a 566 function generator and a pair of 74191 up/down counters which drive an 8-bit DAC (digital to analog converter). The DAC provides infinite memory. When the ramp is interrupted, the ramp voltage corresponding to the value needed to coarse tune the hfo is retained indefinitely, or until a new frequency is programmed. Fig. 3 is a schematic diagram of the ramp generator. Up/down and inhibit logic signals are derived from the cascaded comparators. With this approach, it is

fig. 7. Schematic showing the use of 7408 two-input AND gates to drive the switching diodes in the rfamplifier and mixer circuits to reduce fan-out loading on the 74128 drivers in the band selector (fig. 6). Since the same tuning ramp controls the control signals to the hfo, mixer, and rf amplifier, tracking is maintained.

The key to synthesizer operation is the combination of programmable hfo counters and associated comparators. An 8 -bit number is fed to the UNITS and TENTHS MHz comparators from the front panel thumbwheels when the desired frequency is dialed. A voltage ramp is enabled which tunes the hfo in the direction of the dialed frequency. When coincidence occurs between the binary numbers dialed and the
not possible for the hfo to lock to any 100 kHz line other than the correct one. A momentary interruption of power, or any other condition that unlocks the hfo, causes a repeat of the phase lock action.

front end tuning

A schematic diagram of the rf amplifier is shown in fig. 4. The of coils are wired in series with 1N914s

fig. 8. Functional block diagram of the phase-locked loop used in the receiver. The hfo provides one of two signals to the phase detector; the other input from the spectrum generator provides $100-\mathrm{kHz}$ signals throughout the hfo tuning range. Loop bandwidth is about 10 kHz .
located at coil junctions which provide short circuits to ground. A particular band is selected by providing forward current to one of the diodes by band-select logic circuits which will be described. The rf circuit is typical of the mixer and the hfo, each having similar band selecting diodes. The ramp which tunes the hfo is also used to tune the rf and mixer coils.

hfo tuning and control

Since the hfo operates at a much higher frequency than the rf and mixer stages, rather than using separate coils for each band, a single coil wound with no. 14 (1.6 mm) tinned wire is used as shown in fig. 5. The inductance is self-supporting except for a polyethylene foam strip which is glued to one side of the coil with epoxy cement to make it rigid. The switching diodes are soldered to the coil at appropriate
locations. Because of the inductance of the diode leads and the manner they are dressed away from the hfo coil, the correct diode locations are found by cut and try at first, those corresponding to the highest frequency bands being most critical. Each tap is adjusted so that lock up occurs with a ramp voltage of approximately 4.0 volts at a frequency corresponding to the low end of the particular band. Table 1 lists the low end hfo frequencies corresponding to each of the 1.0 MHz bands in the receiver.

Start by dialing 28 MHz , and adjust the inductance of L1 until the hfo locks up at 60000 kHz with approximately 4.0 volts of ramp. Next, with 27 MHz programmed, adjust the position of the 27 MHz diode on L2 until lock up occurs with about 4 volts of ramp. Repeat this process, proceeding toward the 160 meter band. An auxiliary counter can be used to con-

fig. 9. Spectrum generator used in the phase-locked loop (fig. 8) to generate narrow pulses spaced 100 kHz apart.
firm that the hfo locks up at the proper frequencies. If the hfo counters are properly programmed, the digital readout will agree with the thumbwheel numbers.

programming the counters

The TENS and UNITS MHz hfo counters are programmable. Two sets of DIP switches mounted on the back of the counter board contain the programming switches. Four of these switches are used to program each hfo counter stage.

Each counter can be programmed to initiate its count at any number from zero through 9 . This is a means of advancing each digit to agree with the corresponding antenna frequency digit. If the heterodyne scheme described here is used, the TENS MHz counter should be programmed to 0111 (7) and the UNITS MHz stage for 1000 (8). The TENTHS MHz stage is hard wired to 0000 (zero).

The TENS kHz vfo counter is programmed for 0101 (5) while the UNITS and TENTHS kHz stages are hard wired for zero. In some heterodyne schemes, such as one which uses a 455 kHz i-f, the UNITS kHz stage should also be programmable.

band-select logic

The traditional way to change bands and select signals is by means of mechanical devices such as multi-wafer switches and ganged variable capacitors, although some CB and 2-meter receivers have employed frequency synthesizers for channel selection. More recently, high-frequency receivers have come on the market which use frequency synthesizers and digital displays. These are relatively expensive, but ultimately most high-frequency receivers will be manufactured this way.

Equipment for CB and 2 meters covers relatively narrow frequency bands. For example, a 40 -channel

fig 10. Parametric phase detector developed by WASHUV. The circuit uses a pair of fast complementary switching transistors to provide the required phase inversion without transformers. The gain of the 741 op amp is set at about 15 dB .
fig. 11. Unusual antenna trimmer circuit used in the receiver maintains tracking with the rf amplifier and mixer circuits.

CB receiver covers a frequency band having a high to low frequency ratio of about 1.6 per cent. By contrast, the high-frequency portion of this programmable receiver covers 33 per cent of the high-frequency band between 1.8 and 30 MHz . The technique of band changing through front panel thumbwheel switches, together with band-selecting diodes, allows a wide range of frequencies to be covered with relative ease.

The binary commands not only perform the rf, mixer, and oscillator coil switching function, but they program the comparators as well. A pair of SN74141 BCD to decimal decoder drivers and three SN74128 current drivers are used to provide TENS and UNITS MHz band-switching logic signals. The circuit of fig. 6 shows how this is done. Note that the TENS 74141 provides a MHz logic output of 0,10 , or 20 . The UNITS MHz 74141 provides a logic signal output corresponding to any number between zero and nine. The 74128s are current sources which are wired so that any one of 12 possible sets of coil selections can be made, although only ten of these are used.

To select 80 meters, for example, 03 is dialed. This provides $B C D$ logic signals which turn on the 03 driver. The current supplied from this driver forward biases the appropriate 1 N 914 hfo diode, thus selecting the hfo coil corresponding to the 3.0 to 4.0 MHz band. Assuming 3500 kHz (035) is programmed, the ramp tunes the hfo until its frequency reaches 35500 kHz where it becomes phase locked. The vfo now tunes the band segment, 3500 to 3600 kHz .

The same 74128 logic signals are used indirectly to select the 3.0 to 4.0 MHz rf and mixer coils. SN7408 quad two-input AND gates driven from the 74128s supply current to the front end coil diodes to reduce fan out loading on the 74128s, as shown in fig. 7.

Note that the rf and mixer coils are tuned with the same ramp that tunes the hfo. This is how the rf and hfo circuits are made to track; details will be given later.

phase-locked loop

Having developed a way to coarse tune the hfo, the task of phase locking the hfo to the correct harmonic of 100 kHz becomes a relatively simple matter. Fig. 8 is a block diagram which illustrates a secondorder phase-locked loop such as the one employed here. The hfo, which is part of the closed loop, provides one of two signals for the phase detector. The other input to the phase detector is external to the loop and includes a spectrum of signals spaced 100 kHz apart. This spectrum extends across the hfo frequency range from 33.8 to 61.9 MHz .

The bandwidth of the closed phase-locked loop is limited to about 10 kHz so that there can never be an ambiguity between line selection. The loop can recognize only one line at a time, in spite of the fact that there are at least 281 individual sine-wave signals fed into the phase detector from the spectrum generator. Since it is not necessary to provide a way for selecting individual spectral lines, the spectrum generator, illustrated in fig. 9 , is quite simple and consists of only a single transistor and a few discrete components.

The crystal clock and decade divider are part of the time-base generator. The 2N3563 transistor serves as a very fast switch which provides very narrow (16 ns) pulses to the phase detector. These narrow impulses include fairly uniform distribution of individual sinewave signals extending from 100 kHz to well above 60 MHz . R-C coupling circuitry is arranged to reject most of the unneeded signals below 33 MHz ; pulse shaping and parasitic capacitance causes the amplitudes of these signals to roll off rapidly above 60 MHz . It is necessary to shield the spectrum generator to prevent these signals from getting into the front end of the receiver. Otherwise, they will appear as markers at each end of each band segment.

phase detector

A survey of the various types of PLL ICs available to perform the phase detection function was disap-
table 2. Tuning voltage for the front end and high-frequency oscillator.

input frequency (kHz)	tuning voltage (volts)	hfo frequency (MHz)	tuning voltage (volts)
7000	4.00	39.0	4.00
7100	4.51	39.1	4.25
7200	5.09	39.2	4.53
7300	5.75	39.3	4.85
7400	6.47	39.4	5.20
7500	7.29	39.5	5.60
7600	8.11	39.6	6.00
7700	9.14	39.7	6.50
7800	10.16	39.8	7.00
7900	11.40	39.9	7.60
21000	4.00	53.0	4.00
21100	4.16	53.1	4.20
21200	4.32	53.2	4.40
21300	4.50	53.3	4.64
21400	4.65	53.4	4.82
21500	4.86	53.5	5.09
21600	5.08	53.6	5.36
21700	5.30	53.7	5.64
21800	5.55	53.8	5.95
21900	5.80	53.9	6.27

pointing in terms of the requirements imposed by the programmable receiver. In many cases frequency response was the limiting factor - in others the cost was too high. Some earlier PLL chips that might have had promise were no longer available; more recent types are not only expensive, but also require considerable peripheral circuitry. I decided to settle for a homebrew design.

The phase detector used for the phase-locked loop is an original circuit which I developed. It uses a pair
of fast complementary switching transistors which perform the required phase inversion without the need for transformers. This makes the circuit simple and very broadband as well. The circuit is shown in fig. 10. The complementary transistors would normally produce zero output, since the transistors are complementary and one output is 180° out of phase with the other. However, the hfo signal, which has a relatively large peak-to-peak amplitude, modulates the transistor collectors. If the relative phase of the hfo is other than 90° relative to the reference signal, one of the outputs tends to be suppressed while the other is enhanced. For this reason, the phase detector is referred to as a parametric phase detector. The hfo is the element that controls the amplitudes of the other two signals. The amount of unbalance depends on the relative phase of the hfo signal and the reference signal. When that angle is 90°, the outputs are equal and cancel.

The input to the Schottky diode acts as a common summing junction for the three signals: the zero reference, the 180° reference, and the hfo. If the output of the detector is plotted as a function of the phase angle, a discriminator type of curve results. Note that the phase detector curve sits on top of a pedestal which results from rectification of the relatively large hfo signal. This is unimportant since it is compensated for by the offset potentiometer associated with the op amp at the phase detector output. Furthermore, the offset adjustment allows the voltage for the tuning varactors to be set to the proper value for the low end of each hfo band.

When the hfo is not locked the output of the phase

fig. 12. Simplified diagram of the cascaded comparators and their output filtering. This circuit provides the ramp sweep stop and directional steering commands to the 74191 up/down counters in the ramp generator (fig. 3).
detector is a sine wave at a frequency equal to the difference between the reference signal and the hfo. Lock up occurs almost instantaneously and is difficult to see on an oscilloscope.
The gain of the op amp is set to about 15 dB . If the phase-locked loop has a tendency to oscillate, the gain of this stage can be reduced by lowering the value of the 220 k feedback resistor. It is not recommended that any of the other component values in the phase detector be changed.

spurious signals

In spite of care in shielding the spectrum generator, it was necessary to shield the if section of the receiver carefully and to apply bypassing capacitors rather extensively at each terminal of the DIP power connector and at the BCD inputs to reduce these signals to levels below the ambient antenna noise.

Spurious signals which were much more difficult to control resulted from products of the hfo and vfo. Even though these signals are applied to separate mixers and are not intended to be associated, both the hfo and vfo signals are converted to TTL compatible levels in the counter where intermixing and harmonic generation results. These spurs can be classified as follows:

$$
M(v f o)-N(h f o)=1650 \mathrm{kHz}
$$

The strongest spur occurs where $M=2$ and $N=1$ at 27025 kHz . A smaller spur occurs at 14330 kHz where $M=3$ and $N=2$; a relatively weak spur was found at 7012.5 kHz where $M=4$ and $N=3$.

The ideal way to eliminate these spurious signals is to install a bandpass filter between the first mixer output and the second mixer input. This filter should cover a band from 31.9 to 32.0 MHz and should have sharp skirts. Some excellent filter design articles are included in the list of references. 4,5

antenna trimmer

The circuits associated with the antenna trimmer bear little resemblance to conventional antenna trimming circuits. However it is a very effective technique which has the added advantage that tracking between the hfo and the rf circuits is accomplished at the same time.

The voltage ramp that tunes the hfo is also fed to the if and mixer tuning varactors. A front panel potentiometer control serves as the antenna trimmer. It operates in conjunction with the circuit described in fig. 11 which includes a pair of op amps. ${ }^{6}$

The way in which the antenna trimmer works is best illustrated by an example. First, set the thumbwheels to select $7.0 \mathrm{MHz}(070)$. The ramp voltage

fig. 13. Logic correction circuit which resolves a minor problem with the TENS MHz counter. When an 8 or 9 is programmed, the TENS MHz counter and corresponding display advances one extra digit because the TENS MHz digit advances. An example is given in the text.
corresponding to the low end of each band is approximately 4.0 volts, which is the value required to phase lock the hfo to 39000 kHz . As can be seen in table 2 , as the hfo is incremented from 39000 to 39900 kHz (which tunes the receiver from 7000 to 7900 kHz), its tuning voltage increases from 4.0 to 7.6 volts. Based on the sizes of the varicaps used and the total circuit capacitance, the if and mixer varicaps require a tuning voltage range of 4.0 to 11.4 volts to tune from 7000 to 7900 kHz . Thus, the change in ramp voltage for the front end must be amplified by the op amp by a factor of 2.055 to achieve tracking with the hfo.

The situation is different in the $21000-21900 \mathrm{kHz}$ band where the hfo tuning ramp varies from 4.0 to 6.27 volts. However, the rf and mixer circuits only need a variation of 4.0 to 5.8 volts. Therefore, for the amateur 15-meter band, the ramp slope must be amplified by a factor of 0.7929 . The antenna trimmer control automatically makes this gain adjustment when it is adjusted for resonance or maximum signal strength. The 5 k pedestal control is set to provide 4.0

Construction of the modele containing the spectrum generator (left), phase detector (center), and ramp generator (right).
volts output corresponding to the low end of each band. Once this adjustment has been made, it does not have to be readjusted.

front end alignment

The antenna trimmer circuit provides a convenient way to align the front end coils. Start the alignment with 10 meters and proceed in numerical order down to 160 meters. This will avoid interaction between coil inductance settings. The pedestal potentiometer is first set for 4.0 volts output corresponding to the low end of the band. The front end coils are then aligned. Next, the high end of the band is programmed by means of the thumbwheel switches and the antenna trimmer is adjusted for maximum if gain. Without changing the setting of the antenna trimmer, realign the rf coils at the low end of the band. Again, check the antenna trimmer setting at the high end. Several iterations of this kind are required until the inductance of the coils is set so that tracking is achieved without having to radically change the antenna trimmer setting when going from the low to high end of the band.

The same procedure is repeated for each of the other bands. Once the coils have been aligned in this manner, very little adjustment of the trimmer should be required after the initial adjustment when a new band segment is selected.

comparators

The ramp sweep stop and directional steering commands are derived from the three hfo comparators as previously explained. Sweep control is accomplished by cascading the SN7485s as shown in fig. 12. Since the 74191 up/down counters in the ramp circuit need only a single up/down command, pin 5 of the 191s are tied high. However, when the ramp is enabled, if the up/down logic level is low, the counters count up, which increases the ramp voltage. Therefore, the MORE THAN cascaded output of
the 7485 s is connected to pin 5 of the 191s. The EQUALS output which stops the ramp is high only when all of the 12 counter bits agree with the bits programmed, including the hard wired HUNDREDTHS MHz bits.

Since the counters operate in two modes, namely COUNT and DISPLAY, the bits are changing during the COUNT mode, causing the comparators to output fluctuating logic data. To overcome this problem, both of the cascaded comparator outputs are modified to provide suitable output logic signals. These relatively simple circuits are shown in fig. 12. Because of the requirement to filter these control signals, there is a finite delay between comparator coincidence and application of the logic commands. This sets an upper limit to the ramp sweep rate because some overshoot of the hfo frequency results. If the sweep rate is too fast, overshoot will be sufficient to change the comparator output signals before the sweep circuit is stopped, which means that the sweep lock circuit will keep oscillating and lock up will never occur.

A total ramp sweep interval of about two to four seconds is satisfactory. Only when changing bands is there any noticeable delay in hfo lock up. When incrementing the thumbwheel switches from one band segment to another, there is no noticeable delay.

There is a trivial problem that is related to the TENS MHz counter. Whenever either an 8 or 9 MHz is programmed, the TENS MHz counter and corresponding display advances one extra digit because the corresponding TENS MHz digit advances. To avoid this problem, the simple logic circuit shown in fig. 13 is used. This circuit prevents the TENS MHz counter

fig. 14. Resistance of a forward-biased 1 N 914 diode at $1 \mathbf{k H z}$, as measured with a GenRad 1650B impedance bridge. Diode resistance is important because it affects the Q of the tuned circuits used in the receiver.
fig. 15. Diagram of the ssb mode select used in the receiver. This is typical of the analog multiplexing circuits operated from the frontpanel.

from advancing whenever the UNITS hfo digit is a one or a zero. When dialing 27.0 MHz , for example, the hfo frequency is 59 MHz , but when 28 MHz is dialed, the hfo advances to 60 MHz . This change in the most significant digit from 5 to 6 would normally advance the display from 27 to 38 . The logic circuit of fig. 13 solves this problem.

switching diodes

As previously explained, 1N914 diodes are used for front end and hfo coil switching. This approach was found to be both simple and effective. It should be recognized, however, that the forward resistance of the diode has a tendency to reduce the Q of the tuned circuits. To minimize this effect, the L/C ratio of the front-end coils has been made as large as possible. Fig. 14 shows the diode resistance as a function of forward current. Note that the resistance drops to about 6 ohms at a current of 40 mA , and any further increase in current has a small effect on resistance. Some simple calculations show that with a circuit capacitance of 20 pF at 28 MHz , if the loaded circuit Q is 50 without the diode, it drops to 23 with the diode; this both increases the if bandwidth and reduces gain. It was found that Q and gain could be increased to acceptable levels if parallel-connected diode pairs were used with the 10 -meter coils.

The effect of the switching diodes is less pronounced on the lower bands (it is practically negligible at 1.8 MHz). It is possible to control front-end gain so that it is nearly the same on all bands by adjusting the currents in the diodes.

mode-select circuitry

The circuit of the ssb mode-select circuit is shown in fig. 15. This is typical of each of the analog multi-
plexing circuits operated from the front-panel mode switch. While only five outputs are used, the switch has 8 -pole capability.

summary

The development of this programmable receiver was a much more formidable task than I originally envisioned. The receiver as it exists presently represents a first phase effort, and much yet remains to be done in terms of refinement. The basic idea has been proven to be sound, however, and the result is a high performance breadboard receiver of advanced design.

It is hoped this article will provide other experimenters with new ideas and incentives to try their hand at something radically new. Additional circuit details can be made available to those hearty experimenters who are interested in duplicating this receiver in part or as a whole. Please send me a self-addressed, stamped envelope for further details. Readers' suggestions and constructive criticism are welcomed.

references

[^0]ham radio

super low-noise 432-MHz preamplifier

Construction of a low-noise bipolar transistor preamplifier which offers 0.8 dB noise figure with 15 dB gain

The heart of any successful moonbounce (EME) system is the low-noise preamplifier which precedes the receiving converter. On 144 MHz , an overall system noise figure of less than 1.0 dB seldom increases receiver sensitivity significantly because of the high sky noise temperatures of 300° to $400^{\circ} \mathrm{K}$. On 432 MHz , however, sky noise temperatures of 10° to 20° K are possible; this means that decreasing the overall system noise figure below 1 dB significantly improves receiver sensitivity.

Until recently the popular Fujitsu FJ203 and the Fairchild FMT4575 bipolar transistors have yielded the lowest noise figures at 432 MHz - typically 1.25 dB. The Texas Instruments MS2110, although not as well known, also produces noise figures as low as 1.1 $d B$ at this frequency. Shigeru Sando, JH1BRY, introduced an excellent $432-\mathrm{MHz}$ preamplifier using NEC's V244 GaAs fet which opened the eyes of many moonbouncers. ${ }^{1}$ With its impressive 0.6-0.7

[^1]dB noise figure, it beat everything else at the noisefigure contests. However, its cost of $\$ 120$ makes it a luxury for most amateurs.

Recently NEC introduced a new bipolar device, the NE64580, which is rated at 0.8 dB noise figure at 500 MHz . At $\$ 92$ each, it appeared to be a mighty competitor to the V244. Even better, the people at NEC came out with the NE64535 at a cost of only \$17 in single quantities;* it is rated at 1.6 dB noise figure at 2 GHz with an f_{T} of 8.5 GHz . At 500 MHz , the NE64535 has a rated noise figure of 0.8 dB .

The NE64535 uses the same chip as the NE64580 but is mounted in a less expensive hermetically sealed Micro-X package. This article discusses the design of a $432-\mathrm{MHz}$ preamplifier that uses this

Construction of the low-noise 432-MHz preamplifier, showing the placement of the stripline resonator. Output connector J 1 is to left; input SMA connector is partially hidden by the piston capacitor C 1 .

By AI Ward, WB5LUA, RR2, Box 65A, McKinney, Texas 75069
device to obtain measured noise figures as low as 0.8 dB . The original design was based on the more expensive NE64580, but identical results have been achieved using the NE64535.

At the 1977 convention of the Central States VHF Society in Kansas City, Missouri, this preamplifier measured only 0.1 dB higher noise figure than the V244 GaAs fet entered by K2UYH; all other bipolar entries had approximately 0.3 to 0.4 dB higher noise figures. At 432 MHz , this decrease in noise figure over other bipolar devices results in a significant increase in receiver sensitivity.
Since I was intrigued by the fact that Shigeru Sando was able to use a parallel tuned circuit on the input to his V244 preamplifier and still achieve a low noise figure, I decided to try something similar. I wanted to obtain a low-loss match for minimum noise figure and still achieve adequate selectivity so 1 wouldn't require an external cavity.
The final design uses a parallel tuned circuit with capacitive coupling on the input (fig. 1). To minimize circuit losses I used a low-loss microstrip line rather than a lumped inductor. Resistive loading is used on the output and will be discussed later. I am presently using this preamplifier without an external cavity and have experienced no problems with intermodulation. Since the preamplifier is capacitively coupled at the input, greater rejection of unwanted signals will occur below 432 MHz . When the preamplifier is adjusted for minimum noise figure at $432 \mathrm{MHz}, 10 \mathrm{~dB}$ of rejection is typically obtained at $200 \mathrm{MHz}, 26 \mathrm{~dB}$ at 100 MHz , and 40 dB at 50 MHz . In all but the worst rf environments this should be adequate.

At my location, for example, a broadband FJ203 preamplifier cannot be used without a cavity, whereas the NE645 preamplifier has given no problems at all (my location is within $15-20 \mathrm{~km}$ of fm and TV transmitting antennas). If external filtering is required, a cavity filter with 0.2 dB loss described by Joe Reisert ${ }^{2}$ will increase the noise figure to only 1.0 to 1.2 dB , which is still a worthwhile improvement.

design

Lacking any sort of tables describing the optimum source impedance required for minimum noise figure, I initially designed the input circuit for maximum gain using the published s parameters for the device. The input circuit was then optimized for lowest noise figure with a Hewlett-Packard HP-342A automatic noise figure meter. The resultant circuit uses a microstrip line with a characteristic impedance of 70 ohms.
An attempt was made to tune the output circuit to increase selectivity, but, as expected, completely stable operation was not obtained. As with most
microwave bipolar transistors operated in this frequency range, maximum available gain is so high that oscillations are common. Stable operation of this device was finally achieved with resistive loading. This method of stabilizing $432-\mathrm{MHz}$ preamplifiers was suggested in an earlier article on the FMT4575. ${ }^{2}$ However, the selection of the 100 -ohm collector resistor was not arbitrary; in addition to stabilizing the preamplifier, it also serves to provide a better match to the post-amplifier. Resultant output vswr of this preamplifier should be less than 2.0:1. When using a post-amplifier with a variable match at the input, no problems have been incurred in obtaining stable operation.
While optimizing noise figure, I required some

C1	$0.8-16 \mathrm{pF}$ air variable (Johanson 5200 series)
C2	$0.8-10 \mathrm{pF}$ air variable (Johanson 5200 series)
C3	$1000-\mathrm{pF}$ mica or ceramic disc (not critical)
CR1	1N914 or 1N4148 silicon diode
CR2	9.1-volt zener (1N757)
FT1-FT3	$470-1000 \mathrm{pF}$ feedthrough capacitors
J1	SMA coaxial connector
J2	BNC coaxial connector
L1	microstrip line $15 \mathrm{~mm} \mathrm{(10.6} \mathrm{in)}. \mathrm{wide} ,53 \mathrm{~mm} \mathrm{(2.1} \mathrm{in)}$. RFC1 long, mounted $5 \mathrm{~mm} \mathrm{(0.2} \mathrm{in)} above chassis$.

fig. 1. Schematic diagram of the low-noise preamplifier for 432 MHz ; typical noise figure is less than 1.0 dB . The NE64535 transistor is manufactured by Nippon Electric Company (NEC) and costs $\$ 17$ in small quantities.
method of varying the dc bias conditions to determine their effect on noise figure. The bias circuit I used allows optimization of both $V_{C E}$ and I_{C} for minimum noise figure by varying resistors R2 and R5. This method uses both voltage feedback and a constant base current source to ensure dc stability. ${ }^{3}$ (Bias circuit design using this arrangement is discussed on page 39.)

The data sheet for the NE64535 specifies $V_{C E}=8.0$ volts at $I_{C}=7.0 \mathrm{~mA}$. It was found experimentally that minimum noise figure at 432 MHz occurs at a $V_{C E}$ of

fig. 2. Combination bias tee/PIN diode switch used to operate separate preamplifiers for $432-\mathrm{MHz}$ EME and tropo. The PIN diodes (CR1 and CR2) are Microwave Associates type MA47110.
6.0 volts with I_{C} approximately $4-5 \mathrm{~mA}$. The new operating conditions decreased noise figure by about 0.2 dB . Although not as critical as the input match, the dc operating conditions can also be optimized for rowest noise figure at a particular operating frequency.

Zener diode CR2 was incorporated mainly to protect the collector-emitter junction, since the device has a maximum $V_{C E}$ rating of only 12 volts. Not only
table 1. PIN diode switch performance on
three vhf amateur bands.
insertion
frequency
loss
144 MHz
does it protect the device as you optimize bias conditions, but it also protects the transistor from transients that may be present on the 12 -volt supply line.

For maximum effectiveness, the preamplifier should be mounted at the antenna. With RFC1 installed in the circuit, +12 volts can be conveniently run up the receive coax. At my station I use separate preamplifiers for EME and tropo operation feeding a common mixer, so I needed a convenient method of switching between preamplifiers. Since good mechanical coaxial relays are expensive, I devised the combination bias tee/switch arrangement shown in fig. 2. The switching elements are inexpensive, readily available PIN diodes.

When the PIN diodes are forward biased with 50 mA of current, their insertion loss is slightly less than 1.25 dB at 432 MHz . With no bias applied, the isola-
tion between ports is 16 dB . Isolation is defined as the insertion loss to the off port. Since +12 volts is switched between preamplifiers at the same time that the control bias is transferred, tuning interactions between the EME and tropo preamplifiers are kept to a minimum.
The isolation can be improved by applying reverse bias to the PIN diode in the off port leg. The reverse bias decreases the diode capacitance, thereby increasing the isolation to the off port. The amount of reverse bias that can be applied is limited by the reverse breakdown voltage specified for the diode. Since a dual polarity power supply is not available at my station, I chose not to reverse bias the PIN diode. There are many versions of the PIN diode switch that could be used to increase isolation - but they are beyond the scope of this article.

The usefulness of the PIN diode switch can be extended to switching various local oscillators that supply injection to a broadband double-balanced mixer for multiband operation. As shown in table 1 the combination bias tee/PIN diode switch arrangement performs even better at lower frequencies. The PIN diode used here is a Microwave Associates MA47110 available for 99 cents in small quantities.

construction

The preamplifier is built in a $108 \times 57 \times 38 \mathrm{~mm}$ ($4-1 / 4 \times 2-1 / 4 \times 1-1 / 2$ inch) Minibox, which is both inexpensive and readily available. The of circuitry is mounted on the inside while all the bias components are mounted on the top of the minibox (figs. 3 and 4). This allows greater isolation between the if and dc components than if all components were mounted inside the enclosure.

The microstrip line, 15 mm (0.6 inch) wide and 53 mm (2.1 inches) long is mounted approximately 5 $\mathrm{mm}(0.2 \mathrm{inch})$ above the chassis. The corners are rounded off to a radius of 1.5 mm ($1 / 16 \mathrm{inch})$ to minimize the discontinuities at the end of the microstrip line. The $0.001-\mu \mathrm{F}$ feedthrough capacitor is used as a

fig. 3. Layout of the rf components in the low-noise $432-\mathrm{MHz}$ preamplifier. The input network is formed by C1, C2, and L1; the output network consists of R1 and C3. Bias circuitry is installed on the outside of the Minibox enclosure (see fig. 4).
support for one end of the microstrip line; the opposite end is soldered to the Johanson variable capacitor, C2. The input matching capacitor, C1, is soldered directly between the input connector and capacitor C2. An SMA-type connector is used on the input. Its small size and low loss make it a must for low-noise operation. A less expensive BNC type connector is used on the output.
To facilitate direct grounding of the two emitter leads, I used two solder lugs bolted to the chassis to serve as tie points. The lugs are cut off so they stand up from the chassis about 3 mm (0.1 inch). This allows enough area to conveniently solder the emitter leads. Keep the emitter leads on the device full length.

The leads on C3 and R1 must be as short, and as far away from the input circuitry, as possible to reduce any chance of feedback. If the preamplifier is built according to the layout in fig. 3 no shield will be required between the input and output circuitry.

When using a Minibox as an rf enclosure, be sure to scrape off any paint or any other nonconductive film that may be on the areas where the two halves of the enclosure meet. This is best done before assembly has been started, and is necessary to achieve a good rf-tight enclosure. Be sure to use all four screws supplied with the Minibox.

operation

Connect the output of the preamplifier to the postamplifier or converter with a short section of 50 -ohm coaxial cable. Terminate the input with 50 ohms. With +12 volts powering the preamplifier, the total current drain should be 5 to 6 mA for lowest noise. The actual collector current will be about 1 mA less than the total current due to the current being drawn by resistors R3 and R4 in the bias circuit. At the rated $5-6 \mathrm{~mA}$ of current, $V_{C E}$ will be 5-6 volts. Since the actual collector current drawn from the power supply is a function of the dc current gain ($h_{F E}$) of the device, the value of R2 may have to be adjusted slightly to achieve the desired amount of collector current. To date, all of the devices tested have achieved similar operating parameters and lowest noise figure with-

fig. 4. Top view of the $432-\mathrm{MHz}$ preamplifier showing the layout of the bias circuit.

Top view of the $432-\mathrm{MHz}$ preamp showing the layout of the bias resistors (see fig. 4). BNC output connector is at far right: SMA input connector is to the left.
out any modifications to the bias network shown in fig. 1.

Optimizing the input network for lowest noise figure is most easily done with an automatic noise-figure meter, but precise tuning can still be achieved by using a weak-signal source or a simple noise generator. Start with C1 at about half capacitance and then minimize noise figure with C2. Increase C1 slightly and then repeak C 2 for minimum noise figure. Do not increase the capacitance of C1 past the point where minimum noise figure occurs. Overcoupling with C1 broadens the frequency response of the preamplifier with no improvement in noise figure. Finally, peak the post-amplifier stage into the preamplifier for minimum noise figure.

All devices I have tested so far have yielded noise figures between 0.8 and 1.0 dB ; associated gain at minimum noise figure varies from 14 to 16 dB . With the added selectivity and lower noise figure obtainable with this device, this preamplifier should make for a significant improvement in the reception of EME signals as compared with other bipolar devices presently on the market. It also does a good job of challenging users of GaAs fets at noise-figure measuring contests! After nine months of operating $432-\mathrm{MHz}$ EME with this preamplifier, I am convinced that it has made a worthwhile improvement in the reception of weak signals.

references

1. Shigeru Sando, JH1BRY, "Very Low-Noise GaAs Fet Preamplifier for $432 \mathrm{MHz}_{2}$ " ham radio, April 1978, page 22.
2. Joseph Reisert, W1JR, "Ultra Low-Noise UHF Preamplifier," ham radio, March 1975, page 8.
3. Kenneth Richter, "Design DC Stability Into Your Transistor Circuits," Microwaves, December 1973, page 40 (see also Hewlett-Packard Application Note 944-1).
ham radio

superhet

tracking calculations

How to choose component values for tuning rf

and local-oscillator stages in superhet receivers

Superheterodyne receivers which have ganged tuned capacitors for simultaneous tuning of the local oscillator and signal frequency circuits require a special design approach. When such circuits are correctly designed and adjusted, they are said to "track," meaning that each resonant circuit is correctly tuned for any frequency setting of the receiver's tuning dial. Errors in tracking, if large enough, cause loss of receiver sensitivity.

The following method of calculating component values for superhet tuning circuits is not new, but I've tried to reduce the procedure to its essentials. Interested readers who want to pursue the topic should review reference 1, which lists other works on the subject.

the problem

Fig. 1 illustrates what is to be accomplished. As the tuning capacitor is rotated, the receiver's input circuits must tune from the lowest signal frequency, f_{1}, to the highest signal frequency, f_{2}. At the same time, the local oscillator (LO) must tune to a frequency which is always equal to the signal frequency plus the intermediate frequency, the i-f being a constant

[^2]fixed frequency. Although circuits can be designed so the LO frequency is lower than the rf or signal frequency, the method described here requires that the LO be higher than signal frequency.*

Fig. 2 shows the component arrangements for the signal and oscillator tuning circuits. In the signal circuit, C_{T} represents the distributed capacitance of the coil, plus the minimum capacitance of the variable tuning capacitor, plus any fixed capacitance necessary to adjust the circuit. Capacitance C_{G} is the variable capacitance of one gang of the tuning capacitor used for the signal frequency. $C_{G \max }$ is the difference between minimum and maximum values of the variable capacitor. If a variable capacitor section can be adjusted from a minimum value of 10 pF to a maximum value of 365 pF , for example, then $\mathrm{C}_{\mathrm{Gmax}}$ for that capacitor is 355 pF .

Capacitor $C_{T L}$ in the oscillator circuit represents the distributed capacitance of the oscillator coil; its value is found by measuring the self-resonant frequency of the coil with a grid-dip meter; then, knowing the inductance, the capacitance may be calculated. In many cases, however, $C_{T L}$ will be so small, compared to the other circuit capacitances, that it may be neglected. C_{p} is called the padder capacitor; $\mathrm{C}_{\text {Tc }}$ represents the minimum capacitance of the oscillator section of the tuning capacitor plus any capacitance needed for correct adjustment; C_{Go} is the variable capacitance of the oscillator gang on the tuning capacitor. $\mathrm{C}_{\text {Gomax, }}$ used in the equations, is the difference between minimum and maximum values of C_{Go}. It is not required that the oscillator section of the ganged tuning capacitor have the same capacitance as the rf sections, but, for the equations here, its percentage of maximum capacitance vs. angle of shaft rotation should be the same as for the rf sections. In other words, the rotor plates of the capacitor should all have the same shape.

design equations

Units for the following equations are microhenries for inductance, MHz for frequency, and picofarads

By Courtney Hall, WA5SNZ, 7716 La Verdura Drive, Dallas, Texas 75248
for capacitance. Equations are listed in the order in which they must be solved, so that values needed for a particular equation will have already been determined. It is first necessary to define the signal and i-f frequencies, then make a few preliminary calculations regarding their relationships. Also, the difference between minimum and maximum values of the tuning capacitor sections must be determined; this is best done with an accurate capacitance meter or bridge. I am hesitant to accept vendor's ratings, especially when buying variable capacitors on the surplus market.

$$
\begin{aligned}
& f_{1}=\text { minimum signal frequency } \\
& f_{2}=\text { maximum signal frequency } \\
& f_{i}=\text { intermediate frequency }(i-f)
\end{aligned}
$$

$$
\begin{gathered}
A=\frac{f_{2}}{f_{1}} \quad A^{2}=\left(\frac{f_{2}}{f_{1}}\right)^{2} \\
B=\frac{f_{2}+f_{i}}{f_{1}+f_{i}} \quad B^{2}=\left(\frac{f_{2}+f_{i}}{f_{1}+f_{i}}\right)^{2} \\
C_{G \max }=C_{\max }-C_{\min } \\
C_{G o \max }=C_{o \max }-C_{o \min }
\end{gathered}
$$

Values of components for the signal tuning circuit may be calculated as follows:

$$
\begin{aligned}
C_{T} & =\frac{C_{G \max }}{A^{2}-1} p F \\
L & =\frac{25330}{C_{T f_{2}^{2}}} \mu H
\end{aligned}
$$

For the oscillator circuit, there are two methods of calculation; one is for arithmetical-mean tracking, and the other is for geometrical-mean tracking. Arithmetical-mean tracking is probably best if the receiver tunes a relatively narrow range of frequencies, while geometrical-mean tracking should be used if the receiver tuning range is large, such as $f_{2} / f_{1}=3$. Again, some preliminary calculations are needed. For arithmetical-mean tracking, calculate:

$$
r=\frac{A^{2}}{B^{2}}\left(\frac{3+A}{3+B}\right)\left(\frac{1+3 B}{1+3 A}\right)
$$

fig. 2. Component arrangement in superhet oscillator and signal tuning circuits. In some receiver designs two or more identical signal circuits may be used for preselection.

For geometrical-mean tracking, calculate:

$$
r=\frac{A^{2}}{B^{2}}\left(\frac{2 B+(1+B)(\sqrt{A})}{2 A+(1+B)(\sqrt{A})}\right)
$$

With the proper value of τ determined, proceed as follows:

$$
\begin{gathered}
C_{P \max }=\frac{C_{G o m a x}}{r-1} \\
C_{T c \max }=\frac{C_{G o m a x}}{r B^{2}-1} \\
C_{P \min }=C_{P \max }-C_{T c \max } \\
C_{P}=\left(C_{P \min }+C_{T L}\right) p F \\
C_{T c}=\left(C_{T c \max }-C_{T L}\right) p F \\
L_{0}=\frac{25330 C_{P_{\min }} C_{P \max }}{C_{T c \max } C_{P^{2}}\left(f_{2}+f_{i}\right)^{2}} \mu H
\end{gathered}
$$

example

A receiver is wanted which will tune from 2.5 to 3.5 MHz , and the $i-f$ is to be 0.455 MHz . To add a little safety factor, it is decided to make the tuning range 50 kHz wider on each end.

$$
\begin{gathered}
f_{1}=2.45 \mathrm{MHz} \\
f_{2}=3.55 \mathrm{MHz} \\
f_{i}=0.455 \mathrm{MHz} \\
A=\frac{3.55}{2.45}=1.449 \\
A^{2}=2.1 \\
B=\frac{3.55+0.455}{2.45+0.455}=1.3787 \\
B^{2}=1.9
\end{gathered}
$$

A three-gang variable capacitor is available, and each section is measured to have a range of 10 to 365 pF . Therefore

$$
C_{G \max }=365-10=355 \mathrm{pF}
$$

table 1. Results of calculations to prove validity of the design approach (see figs. 3 and 4).

\mathbf{C}_{G} $(\mathbf{p F})$	$\mathbf{f}_{\text {osc }}$ $(\mathbf{M H z})$	$\mathbf{f}_{\text {osc }} \mathbf{- 0 . 4 5 5}$ $(\mathbf{M H z})$	$\mathbf{f}_{\text {sig }}$ $(\mathbf{M H z})$	error $(\mathbf{M Z})$
0	4.0050	3.5500	3.5500	0
45	3.7812	3.3262	3.3257	500
90	3.5946	3.1396	3.1392	400
180	3.2994	2.8444	2.8443	100
270	3.0746	2.6196	2.6195	100
355	2.9054	2.4504	2.4497	700

The rf or signal section components may now be calculated:

$$
\begin{gathered}
C_{T}=\frac{355}{2.1-1}=322.73 \mathrm{pF} \\
L=\frac{25330}{322.72(3.55)^{2}}=6.228 \mu \mathrm{H}
\end{gathered}
$$

For proper alignment, and to allow for tuning out stray circuit reactance, the inductor should be slugtuned, and C_{T} should have an adjustable component. Remember also that the calculated value of C_{T} includes the minimum capacitance of the variable tuning capacitor. With these things in mind, the rf tuning circuit could be designed as shown in fig. 3. The $10-\mathrm{pF}$ minimum capacitance of the tuning capacitor, plus the $43-\mathrm{pF}$ setting of the trimmer, plus the $270-\mathrm{pF}$ fixed capacitor add up to the calculated value for C_{T} of 323 pF . Distributed capacitance of the coil has been ignored, but its value can be no more than a few pF ad can be easily compensated for by slight adjustment of the trimmer during alignment.
Arithmetical-mean tracking is chosen for the oscillator circuit because of the modest tuning range.

$$
\begin{gathered}
r=\frac{2.1}{1.9}\left(\frac{3+1.449}{3+1.3787}\right)\left(\frac{1+3 \times 1.3787}{1+3 \times 1.449}\right)=1.0787 \\
C_{P \max }=\frac{355}{1.0787-1}=4510.8 \mathrm{pF} \\
C_{T c \max }=\frac{355}{1.0787(1.9)-1}=338.2 \mathrm{pF} \\
C_{P \min }=4510.8-338.2=4172.6 \mathrm{pF}
\end{gathered}
$$

Ignoring the distributed capacitance of the oscillator coil gives the following:

fig. 3. Design of the signal tuning circuit given in the example.

$$
\begin{gathered}
C_{T L}=0 \\
C_{P}=4172.6+0=4172.6 p F \\
C_{T c}=338.2-0=338.2 p F \\
L=\frac{25330 \times 4172.6 \times 4510.8}{338.2(4172.6)^{2}(3.55+0.455)^{2}}=5.0478 \mu H
\end{gathered}
$$

Using these calculated values, the actual oscillator tuning circuit could be set up as shown in fig. 4.

That takes care of the paper design, but is it correct? To find out, I used the calculated values of the capacitors and inductors, then chose several discrete values for C_{G} and C_{Go}, the sections of the variable capacitor, and calculated the resonant frequencies of the of and LO circuits for each value. Table 1 shows the results.

For perfect tracking, each oscillator frequency minus 0.455 MHz should exactly equal the corresponding signal frequency. The errors are so small

fig. 4. Design of the oscillator tuning circuit.
that they can be attributed to rounding off calculations in each step of the procedure; therefore, the overall method appears valid.

remarks

No allowances are made for effects of coupling the resonant circuits to other circuit components, which will certainly have some impact. If the range of the adjustable components does not allow proper alignment and tracking, then the values of some components may have to be slightly changed. The small distributed capacitance (C_{TL}) of the oscillator coil, which was ignored, causes slight errors in the calculated values of the oscillator padder, C_{p}, and trimmer, $\mathrm{C}_{T c}$, but C_{P} is so large that the error is negligible there, and C_{Tc} may be adjusted to compensate for the error.

Information on correct superheterodyne alignment techniques is available to amateurs elsewhere, 2 but the design equations presented here have, in my opinion, been too long absent from contemporary amateur literature.

references

[^3]ham radio

The FIPRTHTKI HW-8 ...it works the world on a couple of watts!

In 1977 Norm North, WAID3R, was assigned to Thule, Greenland. With him went his Heath HW-7, a dipole antenna, and a goal... work all 50 states!
Norm failed! But what he did accomplish in three months' time, with his HW. 7 and the call OX5AB, is nothing short of amazing! Worked: 41 states, 30 countries, including a PY4 in Belo Horizonte, Brazil, and First Place, High-Band CW Greenland, in the '77 ARRL International DX Competition! Quite a record!
In Norm's words: "I honestly believe that I could have worked all states and perhaps DXCC if I had stayed in the Arctic a bit longer. This is quite a tribute to that little rig..." We'd agree, and we bet Norm would have done even better had he been using a new Heath HW-8! Why? Because our engineers felt they could give you a much finer QRP rig than the HW-7. One with better sensitivity, lower hum and noise figures, an RF gain control, sharper preselector, switchable selectivity, more bands to operate, and even a bit more power!
They succeeded in a big way! And the result of their efforts is a truly superb CW transceiver for the QRP operator that costs just $\$ 129.95^{*}$... the Heathkit HW. 8 !

Why don't you take up the challenge? Build an HW-8 kit, then join the growing ranks of outstanding QRP operators. like Norm, who are proving you really can work the World on a couple of watts!

- Price is mail order. F.O.B. Benton Harbor, M1. Prices and specifications subject to change without notice.
Catalogs also available at the 50 Heathkit Electronic
Centers coast-to-coast (units of Schlumberger Products
Corp.) where Heathkit products are displayed, sold, and serviced. Retail prices on some products may be slightly higher. See your phone book white pages.

FREE Heathkit Catalog

Heath
Schlumberger

Heath Company Dept. 122.460 Benton Harbor, MI 49022

[^4]Name
Address
City
AM-375A
Z

CW signal processor

A simple means for eliminating

Almost from the very beginning of ham radio, there has been interference. With varying degrees of success, numerous devices have been designed to combat this problem. Modern technology has provided us with such things as narrow-bandwidth crystal filters, active audio filters, Q-multipliers, and acoustically resonant transducers, to name just a few.

There is another method of providing interference rejection for the CW operator, though it has been largely ignored except by a scant few. This involves the use of narrow-bandwidth, integrated-circuit tone decoders, or as shown in this article, the LM567.

The LM567 is a phase-locked-loop tone decoder which can be made to respond to a tone anywhere from less than 1 Hz to approximately 500 kHz . For my use, the range is adjustable from roughly 500 Hz to 1100 Hz . The bandwidth has been set to about 50 Hz either side of the center frequency. In other words, if the LM567 is set to a center frequency of 750 Hz , it will respond to any signal from 700 Hz to 800 Hz and ignore virtually all others.

circuit description

A CW signal from the phone jack of a receiver is fed to the 8 -ohm winding of T1 (see fig. 1). This transformer presents a low-impedance termination for the receiver audio stage, as well as providing a voltage step-up for the input of the LM567. The two 1N34A germanium diodes across the secondary limit the audio voltage to near the optimum value for the tone decoder. The three resistors and the capacitor connected to pins five and six determine the frequency range over which tones can be decoded. When a tone of the proper frequency is present at the input terminals, the output (pin 8) goes to ground and causes the LED to light.

The waveform at the output of the LM567 is sometimes a little ragged, and, for that reason, it is fed through one half of a 7413 Schmitt trigger. This stage transforms the output waveform to a square wave with very fast rise and fall times and also performs the inversion necessary for the following stage.

It wasn't until a prototype was constructed that a problem became known. The output of the tone decoder stays low for a few milliseconds after the input signal stops. The net result is to increase the "weight" of the keyed signal. That is, it decreases the spacing between code elements. To counteract this problem, a 1000 -ohm resistor was connected between the output of the LM567 and the input of the 7413. Also, there is a $3.3-\mu \mathrm{F}$ capacitor from the input of the 7413 to ground. This combination delays

By William B. Jones, W7KGZ, 5319 Northeast 109th Street, Vancouver, Washington 98665
the switching time of the 7413 after the tone decoder goes low. The end result is to restore normal weight to the keyed signal. The values specified were experimentally derived and may be adjusted to suit individual tastes. The third stage is the familiar NE555 timer, wired as a keyed audio oscillator.

In operation, a CW signal is tuned in on the receiver and the frequency control of the CW PROCESSOR is varied until the LED begins to blink in unison with the incoming signal. This indicates that the LM567 is tuned to the proper frequency and is decoding the CW being presented to it. Activating S1 will replace the live audio with the tone generated by the 555 .

It takes approximately 10 to 15 millivolts of audio from the receiver to activate the tone decoder. This corresponds to a rather weak signal (S3 to S4 would be a fair guess) in most receivers. Obviously then, the CW PROCESSOR is quite sensitive and does not take a "block-buster" signal to make it work.

From time to time, you will encounter signals that shift frequency, fade into the noise, or become obliterated by stronger adjacent signals. As these situations occur, the CW PROCESSOR will stop responding to the signal, with the resultant loss of audio. The circuit shown in fig. 2 was added to automatically switch the output from the receiver back to the headphones, after an adjustable delay.
Once again, the NE555 timer is pressed into service, this time as a monostable multivibrator. The addition of a single PNP transistor transforms the circuit into a negative recovery monostable. 1 If this circuit is incorporated into the CW PROCESSOR, S1 will be replaced by the contacts on K1.

It should be pointed out that if a relay with a 5 - or 6 -volt coil is unavailable, it is quite permissible to substitute one with a 12 -volt coil and operate the second NE555 from the 12 -volt supply line. The circuit per-

fig. 2. For periods when you experience loss of signal, this circuit will automatically switch back to live receiver audio after a suitable delay. If a relay with a 5 -volt coil is not available, the circuit can also be powered from +12 volts.
formance is identical in either case. Of course, the additional NE555 is not absolutely necessary to the performance of the CW PROCESSOR, but it does add a considerable amount of operator convenience. Whether it is included or not is entirely up to the individual builder.

construction

Because everything is operating at audio frequencies, layout and construction are definitely not critical. My version was constructed on a printed circuit board with hole spacings adjusted to suit the size of components on hand. Alternatively, perfboard and hardwired connections could be used with equally reliable results.

On the subject of parts and pieces, note that all of the necessary parts to build your own version of the CW PROCESSOR are listed in the Radio Shack catalog. Reasonable amounts of latitude may be taken

fig. 1. Schematic diagram of the signal processor. The 567 is a phase-locked loop which is configured to respond to tones from 500 to 1100 Hz . The Schmitt trigger reduces the weighting effect caused by the output of the PLL remaining low after removal of the audio signal. Since the processor requires a +5 volts, a simple 3-terminal regulator can be used to power the unit from a 12 volt line.

CW signal processor with the case removed, showing layout and construction. Relay is mounted on separate circuit board installed on top chassis rail; other circuit board is mounted on standoffs on bottom rail.
with regard to parts values since few are critical. However the capacitors associated with the LM567 and LM340 should be low-leakage types; tantalums are recommended as the best choice in this case.

The enclosure was garnered from the local surplus emporium and is pretty much a one-of-a-kind item. Any box large enough to accommodate the parts will be suitable. In the early developmental stages,
the CW PROCESSOR was operated with no enclosure at all and no problems were encountered. This would suggest the possibility of using a nonmetallic box instead of the more common aluminum cabinet.

summary

The CW PROCESSOR is not a cure-all for all QRM problems; it does have its limitations. For example, the $100-\mathrm{Hz}$ bandwidth talked about earlier is valid only for signals not exceeding approximately 300 millivolts at the input of the LM567. As is sometimes the case, you will be trying to copy an S 5 signal with the CW PROCESSOR and an S9 signal only 200 Hz away will disrupt reception. Also, if you are trying to copy a heavily weighted CW signal, the CW PROCESSOR will aggravate the situation unless an absolute minimum of signal is presented to the input.

All things considered, however, using the CW PROCESSOR has been pure joy. Operator fatigue is greatly reduced by not having to listen to all of the garbage normally associated with ham band signals. It is amazing how well this device snatches a barely readable signal out of the noise and transforms it into the kilowatt-next-door category. Build one for yourself and see what a difference it makes at your station.

reference

1. Don Lancaster, TTL Cookbook, Howard W. Sams, Indianapolis, 1974.
ham radio

birdie suppression in the Swan 160X

The Swan 160X is a 400 -watt PEP input transceiver for 160 meters. Unfortunately, it is no longer made. During its lifetime, there was little interest in the 160 meter band. Now, that interest is growing, the 160 X is a prized piece of equipment for the "top band" enthusiast. A few 160Xs are available second hand, but they are quickly snapped up and do not stay on the dealer's shelves for any length of time.

A minor problem with the 160 X is a birdie or crossover product which falls in the passband of the receiver. It can be heard as a carrier, or heterodyne, at about 1834 kHz . Though not particularly loud, it can be very annoying when you're looking for a weak DX signal.

An investigation of the mixing technique in the 160X shows that the spurious signal is a result of unwanted mixer products from the VFO and the carrier oscillator, Q3. At spurious frequency of 1834 kHz , the carrier oscillator is at 5.500 MHz and the VFO is at 7.333 MHz . The third-order product of these two frequencies is:

$$
\text { Birdie }=3 f_{2}-2 f_{1}
$$

where,

$$
\begin{array}{cc}
& f_{1}=7.333 \mathrm{MHz} \\
& f_{2}=5.500 \mathrm{MHz} \\
\text { or, } \quad 16.500-14.666=1.834 \mathrm{MHz}
\end{array}
$$

The birdie may be reduced to an amplitude by placing a trap tuned to 14.666 MHz in the output lead of the VFO. This is easy to accomplish since the output signal from the VFO appears at the accessory socket (J6) located on the rear apron of the 160X. It is merely necessary to break the lead in the plug and insert a small trap as shown in fig. 1. The trap can be made up of very small components and mounted directly to the pins of the plug, which should always be in place when an auxiliary VFO is not used. (Since, to my knowledge, an auxiliary VFO was never built for the 160 X , this is a moot point!)

If a compression-type capacitor is used, the trap is easily adjusted by tuning the transceiver to 1834 kHz and adjusting the capacitor for minimum birdie response in the receiver.

Bill Orr, W6SAI

People wore highbutton shoes . . . Eisenhower was President . . . Hardly anyone operated on $220 \mathbf{~ M H z}$ TITES HRUE EHRTGED

TPL COMMUNICATIONS has kept up with the changes and now offers to the many 220 MHz operators a wide variety of amplifiers.

	Model	Power In	Power Out	
	*401	5 to 15W	30 to 45W	These models may
	401B	1 to 4W	30 to 45W	be ordered with a
220 MHZ	*801 ${ }^{801 B}$	$\begin{aligned} & 5 \text { to } 15 \mathrm{~W} \\ & 1 \text { to } 4 \mathrm{~W} \end{aligned}$	60 to 90 W 60 to 90 W	repeater option
	*801C	15 to 30W	60 to 90W	
	*1301	5 to 15W	90 to 130W	
	*1301C	15 to 30W	90 to 130W	

See these and other fine TPL amplifiers at your dealer listed below.

ACTION RADIO

Ave. Pinero 1271
Сарагra Тегrace, PR 00920
(809) 782-2126

AMATEUR RADIO SUPPLY
6213 13th Ave. South
Seattle, WA 98108
(206) 767-3222

AMATEUR ELECTRONIC SUPPLY
4828 W. Fond du Lac Ave.
Milwaukee, WI 53216
(414) $442-4200$

AMATEUR RADIO CENTER
2805 N.E. Second Ave
Miami, FL 33137
(305) 573-8383

ADIRONDACK RADIO SUPPLY
185 W. Main St.
Amsterdam, NY 12010
(518) 842-8350

BRITT'S 2-WAY RADIO SERVICE
2508 N. Atlanta Road
Smyrna, GA 30080
(404) 432-8006 (local)
(800) 241-9961 (toll free)

CW ELECTRONIC SALES CO.

1401 Blake St.
Denver, C0 80202
(303) $893-5525$
E.I.S.C.

11305 Elkin St.
Wheaton, MD 20902
(301) 946-1088

ERICKSON COMMUNICATIONS
5935 Miwaukee St.
Chicago, IL 60646
(312) 631-5181

HAM-BUERGER
68 N . York Rd.
Willow Grove, PA 19090
(215) 659-5900
ham radio center
8340 Olive Blvd.
St. Louis, MO 63132
(314) $993-6060$ (local) (800) 325-3636 (toil free)

HAM RADIO OUTLET
2620 W. La Palma
Anaheim, CA 92801
(714) 761-3033

999 Howard Ave.
Burlingame, CA 94010
(415) 342-5757
ham radio outlet
5375 Kearney Villa Rd.
San Diego, CA 92123
(714) 560-4900

13754 Victory Blvd.
Van Nuys, CA 91401
(213) $988-2212$
H.E.M.E.C.

217 W. Gutierrez St.
Santa Barbara, CA 93101
(805) 963-3765
honolulu electronics
819 Keeaumoku St
Honolulu, HI 96814
(808) 949-5564

LONG'S ELECTRONICS
2808 7th Ave. South
Birmingham, AL 35233
(800) 292-8668 (local toll free)
(800) $633-3410$ (out of state toll free)

MADISON ELECTRONICS SUPPLY
1508 McKinney
Houston, TX 77002
(713) 658-0268 (local)
(713) 497-5683 (nights)

N\& G distributing
4545 NW 7th St
Miami, FL 33126
(305) $443-6119$

PORTLAND RADIO SUPPLY
1234 SW Stark
Portand, OR 97205
(503) $228-8647$

RESCO
1506 Kanawha Blvd. E
Charleston, WV 25311
(3014) 342-2470

SLEP ELECTRONICS CO.
Hwy. 441 - Franklin South
Ottio, NC 28763
(704) $524-7519$

THE COMM CENTER
9624 Ft. Meade Road
Laurel, MD 20810
(301) $792-0600$

TOWER ELECTRONICS
24001 Alicia Parkway
Mission Viejo, CA 92675
(714) 768-8900

TRACY'S ELECTRONICS
5691 Westrreek Drive
Fort Worth, TX 76133
(817) 292-3371

TUFT'S RADIO ELECTRONICS
209 Mystic Ave.
Medford, MA 02155
(617) $395-8280$

COMMUNICATIONS INC. 1324 W. 135TH ST., GARDENA, CA 90247 • (213) $538-9814$
Canada: Lenbrook Industries, Ltd., 1145 Bellamy Rd., Scarborough, Ontario M1H 1H5 Export: EMEC Inc., 2350 South 30th Avenue, Hallandale, Florida 33009

low-noise 30-MHz preamplifier

A low-noise preamplifier which may be used to improve 10-meter receiver sensitivity, improve OSCAR communications, or extend Gunnplexer range

The apparent sensitivity of many communications receivers seems to fall off above about 25 MHz because of the lower levels of external galactic and external noise at these frequencies. ${ }^{1}$ When the 10 meter band is wide open, this isn't particularly noticeable, but when propagation conditions are marginal additional sensitivity makes a big difference in DX performance.

A receiver which has an adequate noise figure on 20 and 15 meters may be marginal on ten; also, frontend circuits which have been optimized for the lower amateur bands don't always work as well as they should at 28 MHz . This is especially true with vacuum-tube if amplifiers. Since 10 meters is open perhaps three years during the 11 -year sunspot cycle, and then for only a few hours each day, it is understandable why the designers don't pay more attention to 10 -meter performance.

If you operate on the vhf-uhf bands and use your receiver as a tunable i-f, noise figure is extremely important because it affects the noise performance of your vhf/uhf converter. Satellite communications can also be improved by better receiver sensitivity, and if you operate on 10 GHz with a Gunnplexer, you

By James R. Fisk, W1HR, ham radio, Greenville, New Hampshire 03048

fig. 2. Dc bias circuit for vhf/uhf applications stabilizes collector current with voltage feedback through resistor R_{B} and maintains constant base current with $R_{B 1}$ and $R_{B 2}$. A design example is given in the text.
can double your effective range by lowering your system noise figure by 6 dB .

30-MHz preamp

The $30-\mathrm{MHz}$ i-f preamplifier shown in fig. 1 is based on a design by engineers at Microwave Associates using low-noise npn silicon planer transistors. * These transistors exhibit excellent noise figure vs current characteristics, which results in extremely low noise figure and wide dynamic range. The circuit provides 19 dB gain with a noise figure of about 1.1 dB ; compression of 1 dB occurs at an output of -7 dBm . The $3-\mathrm{dB}$ bandwidth of the preamplifier is 10 MHz , and the input is designed to match the $200-$ ohm source impedance of the Gunnplexer mixer diode. Circuits for matching the preamp to 50 ohms are discussed later in this article.
The noise figure of the Schottky mixer diode in the Gunnplexer is specified at 12 dB maximum, but many units are better than this. With careful design, proper impedance matching, and the use of an i-f preamplifier with a 1.0 to 1.5 dB noise figure, some users have reported system noise figures well below 10 dB . This represents a significant increase in reliable communications range.

[^5]
bias circuit design

One factor which is often overlooked in vhf circuit design is the dc bias network. At low frequencies an emitter resistor is often used to provide negative current feedback for dc stability. In low-noise vhf applications, however (and this includes 28 MHz), the emitter bypass capacitor which is an efficient of bypass at the design frequency often introduces low frequency instability. Furthermore, any series emitter impedance, no matter how small, results in a degradation of noise figure and gain. Therefore, vhf circuits which are designed for lowest noise or maximum gain require that the emitter lead be grounded as close as possible to the transistor package to keep emitter series feedback to an absolute minimum.

The transistor variable which has the most effect on dc stability is collector current. If you study the transistor's parameters, you'll find that gain and noise figure are the most sensitive to changes in bias, and both are stronger functions of collector current than of collector-emitter voltage, $V_{C E}$. There-

fig. 3. Suggested circuit for matching the low-noise preamplifier stage to 50 ohms.
fore, the ultimate goal in dc bias design is to stabilize collector current. The temperature-sensitive parameters which affect collector current are the internal base-emitter voltage, $V_{B E} ;$ the dc current gain, $h_{F E}$; and the reverse collector current, $I_{C B O}$. Normally $I_{C B O}$ is expected to double for each $10^{\circ} \mathrm{C}$ temperature rise, but because of surface currents in uhf and microwave transistors, $I_{C B O}$ increases at a rate much less than this and can usually be neglected in vhf bias design.

Fig. 2 shows a dc bias circuit which stabilizes $V_{B E}$ and $h_{F E}$ by using voltage feedback through R_{B}

fig. 1. Low-noise preamplifier has a noise figure of 1.1 dB at 30 MHz and 3 dB bandwidth of 10 MHz . Gain is 19 dB . Total current drain with a +10 volt supply is 13 mA . All resistors are $1 / 4$ watt carbon; bypass capacitors are 50 -volt ceramics.
and a constant base current source from resistors $R_{B 1}$ and $R_{B 2} \cdot{ }^{2}$ Not shown are the of chokes which must be placed in series with the base and collector (RFC1 and RFC2 in fig. 1).
The design equations for this bias circuit are given in fig. 2. First determine the available supply voltage $V_{C C}$, select the desired transistor operating point ($V_{C E}$ and I_{C}), and check the transistor data sheet for dc forward gain $h_{F E}$. If $h_{F E}$ data is unavailable, assume $h_{F E}=50$; this is a fair assumption for many vhf/uhf transistors. To ensure a constant base current source, the voltage $V_{B B}$ is set at approximately three times the base-emitter voltage, $V_{B E}$, or about 2 volts for silicon transistors ($V_{B E}=0.7$ volt). The current through $R_{B 2}$ is set at five times the base current I_{B}. Since $I_{B}=I_{C} / h_{F E}$, the current through $R_{B 2}$ is $5_{C} / h_{F E}$. The current flowing through $R_{B I}$ is the

fig. 4. Schematic and construction of a 4:1rf transformer for matching 200 ohms to $\mathbf{5 0}$ ohms. The transformer consists of 18 turns slightly twisted pair number $\mathbf{2 8}(\mathbf{0 . 3} \mathbf{~ m m})$ enamelled wire on a T-50-6 toroid form.
sum of the current through $R_{B 2}$ plus base current or ${ }_{6} I_{C} / h_{F E}$.

The noise-figure curve at 30 MHz for the Microwave Associates 42001-509 transistor shows a rather broad minimum centered around $I_{C}=3 \mathrm{~mA} ; h_{F E}$ is about 90 . With a 10 -volt dc power supply, $V_{C E}$ is selected to be 6 volts. Using the design equations of fig. 2 yields the following bias resistor values: $R_{B}=$ $39 k, R_{B 2}=12 k ; R_{B 1}=20 k$; and $R_{C}=1250$ ohms. The

fig. 5. Full-size printed circuit layout for the low-noise preamplifier.
$30-\mathrm{MHz}$ preamplifier in fig. 1 uses the nearest standard resistance values.

In the output emitter follower stage dc stabilization is provided by current feedback produced by the 470 -ohm emitter resistor; the input impedance of this stage is approximately 50 ohms. The emitter follower is used to drive a 50 -ohm coaxial cable to the first i-f stage or front end if amplifier. If the preamplifier is located very close to the $28-30 \mathrm{MHz}$ if stage, the emitter follower may be omitted.

input matching

Another important consideration in low-noise amplifier circuits is the design of the input matching circuit. For the 42001-509 transistor the input impedance for optimum noise figure is $100+\mathrm{j} 37$ ohms at 30 MHz . The input pi network (C1, L1, C2 in fig. 1) transforms this to the 200 -ohm source impedance of the Gunnplexer mixer diode. The output of the first stage is matched to the approximately 50 -ohm input of Q 2 with $\mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5$, and L 2 .
If you wish to use this preamplifier in a 50 -ohm system you can either modify the input matching circuit or use a $4: 1 \mathrm{rf}$ transformer. A suggested 50 -ohm

fig. 6. Component layout of the preamp circuit board. Note that RFC1 is mounted on the foil side of the board to prevent coupling to RFC2.
input circuit is illustrated in fig. 3. Construction of a simple 4:1 rf transformer which will match 200 ohms to 50 ohms is shown in fig. 4.

construction and test

Fig. 5 shows a full-size, printed-circuit layout for the low-noise $30-\mathrm{MHz}$ preamplifier; the component placement is shown in fig. 6. Note that the rf choke in the base circuit of Q1 (RFC1) is mounted on the foil side of the board; this is to prevent unwanted coupling to RFC2, which is located nearby. When winding the toroid coils, be sure to spread the windings evenly over the circumference of the form.

With slight modification the circuit board will ac-- commodate the 50 -ohm matching circuit of fig. 3. L1 and C2 are soldered to the same circuit pads as L1 and C2 in the 200 -ohm matching circuit. C1 replaces the $1000-\mathrm{pF}$ blocking capacitor; however, it may be necessary to drill new holes because of the wider spacing of the tabs on the variable capacitor.

fig. 7. Minimum loss pad which may be used to match 200 ohms to 50 ohms. Pad loss of 11.5 dB must be considered when making noise or gain measurements.

Since most if signal generators and noise-figure meters are designed for a 50 -ohm system, and the preamplifier is designed to match 200 ohms, you must take a $4: 1$ impedance transformation at the input when tuning the preamp. You can use the $4: 1$ If transformer if you wish, or the minimum loss pad* shown in fig. 7. This pad has approximately 11.5 dB loss, which must be considered when making gain or noise measurements.

For best operation the preamplifier should be adjusted for minimum noise figure, but this is not possible if you don't have access to noise-measuring equipment. Tuning the preamplifier for maximum gain will degrade noise figure slightly, but noise performance will still be better than that available with most $28-\mathrm{MHz}$ receivers or $30-\mathrm{MHz}$ i-f strips.

[^6]
references

1. James Fisk, W1DTY, "Receiver Noise Figure, Sensitivity, and Dynamic Range - What the Numbers Mean," ham radio, October, 1975, page 8. 2. Kenneth Richter, "Design DC Stability Into Your Transistor Circuits," Microwaves, December, 1973, page 40.

GUNNPLEXER ${ }^{\text {M }}$ TRANSCEIVER "FRONT END" BY MICROWAVE ASSOCIATES

Features

- Low Cost
- High Sensitivity
- Integrated Assembly
- Electronically Tunable
- High Reliability
- Low Operating Voltage

THE GUNNPLEXER SYSTEM The

 fascination of amateur microwave is unique. Microwave systems have an 'exotic' ring to them. Until the appearance of the Gunnplexer, getting into microwaves required either a six foot rack of surplus gear or a friend on the inside of a microwave hardware supply company. The Gunnplexer has changed all of that; now you don't need any friends in the microwave business (in fact it may be better if you don't have any prior microwave knowledge because the Gunnplexer pretty much throws away the book on standard microwave design practices!).Equally fascinating is the wide band capability of the microwave region. The 10 GHz assignment has spectrum-space for 111 simultaneous video (4.5 MHz wide) channels. Try that even using SSTV in the 20 meter assignment.
The bottom line on microwaves is simply that it will do much more communicating than you might first suspect.

TWO.WAY COMMUNICATIONS

The primary application of the Gunnplexer "front end" is for 2-way communications. Two units, one a transmitter and the other a receiver down converter, are used with their carrier frequencies off-set to provide a reasonable IF (30 MHz or higher). Applications range from linking remote receivers to VHF repeaters, transmitting color video, linking homemade computers, full duplex mountain top DXing or over water duct DXing. A separate power supply and simple FM modulator must be provided; the MA-86551 (17 dB) horn antenna (shown here) is suggested.
WHY A GUNNPLEXER? Amateur microwave communication is fascinating and challenging. Now with the revolutionary MICROWAVE ASSOCIATES Gunnplexer front end this exotic form of communication is available to virtually anyone. And at an unbelievably low cost!

MA-87141-1 2 Complete Gunnplexer Transceivers (MA-87127-1, 15 mW typical and 2 horn antennas MA-86551, 17 dB) just $\$ 199.95$ plus $\$ 2.00$ shipping and handling.

Send for our complete Gunnplexer Introductory Package. VISA and MasterCharge Orders Welcomed.

Exclusive distributor for MICROWA VE ASSOCIATES products in the United States and Canada.

clean local-oscillator chain

 for 1296 MHz
An easy-to-build LO for 1296 MHz which can be optimized without a spectrum analyzer. Outputs are also available for 220 and 432 MHz

Development of a local-oscillator chain for 1296 MHz which can be tuned up without a spectrum analyzer, yet has an acceptably clean spectrum, has been a long-time goal. I have built several LO chains which required the use of a spectrum analyzer and several hours of trimming to tune; when they quit in the midst of a contest, there was no recourse. This article describes a $1296-\mathrm{MHz}$ LO chain which can be tuned up in a few minutes with minimal test equipment, including a tripler which needs no tuning. The spectrum analyzer photographs were taken after tuning was completed; it was not used during the tuneup procedure.
What is an "acceptably clean spectrum?" Very simply, it is one which produces no birdies in the operating band. More quantitatively, the following criteria are arbitrarily defined:

1. No spurious (not harmonically related) outputs
2. Undesired harmonics of oscillator suppressed more than 40 dB
3. Undesired harmonics of oscillator well separated (spacing more than 5% of output frequency)
4. No harmonics near the i-f band
5. Low noise content

Now examine fig. 1A, the local-oscillator spectrum of a typical $432-\mathrm{MHz}$ converter with a fairly low frequency oscillator, followed by two single-tuned transistor triplers. This converter has enough birdies so the band never sounds dead!
The causes of the poor spectrum of fig. 1A are insufficient selectively, excessive multiplication factor, and inefficient multipliers. Increasing the oscillator frequency spaces the harmonics and eases the selectivity, or filtering, problem. However, a single transistor is still an inefficient multiplier; it would much rather amplify than multiply, so the output always has a strong fundamental component. (A tripler also has a strong second harmonic component). One solution is the use of idlers, but they make tuning very critical and usually add a tendency to parametric oscillations. Diode multipliers have the same problems, but with added loss (transistor multipliers often have gain).

A more effective solution is the use of natural multiplying circuits. A push-push doubler was described several years ago. 1,2 This basic circuit was incorporated into both doubler stages of a $432-\mathrm{MHz}$ local-oscillator chain; the resultant spectrum shown in fig. 1B. This system has worked beautifully for more than two years.
Recently, a push-pull tripler was added to the out-

By Paul C. Wade, WA2ZZF, 153 Woods Road, Somerville, New Jersey 08876

fig. 1. Spectrum analyzer display of the local oscillator chain for a typical 432MHz converter, A, showing the large number of undesired spurs. Other displays show the output spectrum of the local-oscillator chain described in this article. (Measurements made with Ailtech 727 spectrum analyzer at 10 dB per division.)

B. Output from the low-frequency multiplier chain described in this article. Output at 384 MHz is approximately 20 $m W$. Horizontal scale: $\mathbf{1 0 0} \mathbf{M H z}$ per division.

D. Display of the $1152-\mathrm{MHz}$ output showing the noise spectrum. Horizontal scale: $1 \mathbf{M H z}$ per division. Contribution from spectrum analyzer is probably significent.

A. Local-oscillator spectrum of a typical $432-\mathrm{MHz}$ converter, after tuning for cleanest output with a spectrum analyzer. Horizontal scale: 100 MHz per division.

C. $1152-\mathrm{MHz}$ output from the frequency tripler for use as a local oscillator on 1296 MHz . Output is approximately 0.5 $\mathbf{m W}$. Horizontal scale: $200 \mathbf{M H z}$ per division.

E. Spectrum of output available from JI is easily filtered for use as a local oscillator for $\mathbf{2 2 0}-\mathbf{M H z}$ equipment. Horizontal scale: 100 MHz per division.
put to build a $1296-\mathrm{MHz}$ local oscillator. The pushpull tripler had been a stumbling block because of the requirement that the outputs, as well as the inputs, be 180° out of phase; the push-push doubler
requires phase reversal only at the input, which is easily provided by a trifilar wound transformer or a balun. If an untuned transformer was used at the output, it would be a broadband amplifier rather than

C6, C7
C8
CR1, CR2,
CR3
L1 6 turns no. $24(0.5 \mathrm{~mm})$ Formvar close spaced on $3 / 16^{\prime \prime}$
$(5 \mathrm{~mm}$) coil form with green slug; tap at $11 / 2$ turns
$L 2$
4 turns no. $18(1 \mathrm{~mm})$ tinned wire, $3 / 16^{\prime \prime}(5 \mathrm{~mm})$ ID, $5 / 8^{\prime \prime}$ $(16 \mathrm{~mm})$ long; tap at $11 / 4$ turns (optional link: $13 / 4$ turns no. 22 (0.6 mm) insulated wire, $3 / 16^{\prime \prime}(5 \mathrm{~mm})$, installed near hot end of L)
L3
L4
L5
1.2-4.2 pF air variable (E.F. Johnson 189-501-5)

L6, L7
Q1

03, 04
RFC
T1, T2

T3

U1
U2
Y1

Q2 2N5109, MSC 80099, or equivalent (2N3866 usable with
printed transmission lines, $\lambda / 4$ long at $768 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}$ chosen to provide correct tuning inductance at 1152 MHz
2N4124 lower gain)
2N5179 (case floating - case cut off flush with base)
ferrite bead with 2 turns no. $30(0.25 \mathrm{~mm})$ Formvar
4 turns no. $30(0.25 \mathrm{~mm})$ trifilar wound on large ferrite bead, $\mu=900$ (Ferronics 11-090-J; suggested replacements: Amidon FT-25, mix 43 or Amidon 801 ferrite bead, mix 43)
3 turns no. $30(0.25 \mathrm{~mm})$ trifilar wound on ferrite bead, $\mu=125$ (Ferronics 21-030-K; suggested replacements: Amidon FT-25, mix 61 or Amidon 101 ferrite bead)
RCA CA3049T
78L05
96 MHz third-overtone crystal
fig. 2. Schematic diagram of the $1152-\mathrm{MHz}$ local-oscillator chain. Outputs are available for use on $\mathbf{4 3 2} \mathbf{M H z}$ (cable A) and 220 MHz (J1). Cable A is short piece of semi-rigid coax. Components marked with an asterisk may be critical or may need adjustment for optimum performance. Printed-circuit boards are shown in figs. 3 and 4.

fig. 3. Printed-circuit layout for the single-sided low frequency board (output at 384 MHz). Component placement is shown in fig. 6. Material is single-clad $1.5 \mathrm{~mm} \mathrm{(1/16")} \mathbf{G 1 0}$ circuit board.
a tripler. The brainstorm which made this work was to use a rat-race coupler at the output. As used in this circuit, two input signals which are 180° out-ofphase at the resonant frequency combine at the output port, while other phases and frequencies combine in the terminating resistor. The rat-race is not critical so no tuning is required.

The frequency tripler is followed by a printedcircuit filter made up of quarter-wavelength stubs; the output spectrum is shown in fig. 1C. For detailed descriptions of the rat-race and printed-circuit filter, see Howe's excellent book, Stripline Circuit Design. ${ }^{3}$ Fig. 1D shows the noise spectrum of the $1152-\mathrm{MHz}$ output - none is evident down to the noise floor of the analyzer (on this non-optimum range for this measurement); fig. $1 E$ is the output of the first
doubler, at J 1 , for use as a 220 MHz local oscillator, or for connection to a frequency counter.

The major objection to push-push doublers and push-pull triplers is that two transistors are required. However, prices for usable vhf/uhf transistors have dropped to the point that they are available in the 15 cents to $\$ 1$ range. As an alternative, several matched transistors on the same chips can be bought as an integrated circuit. The single CA3049T used for both doublers costs $\$ 1.13$ from a local dealer. While the prices of semiconductors have been steadily decreasing, prices for capacitors and coil forms, needed for idlers and filters in conventional multipliers, have increased.

Construction is straightforward and requires no machining; all frequency-determining elements

fig. 4. Active side of the double-sided $1152-\mathrm{MHz}$ tripler/filter circuit board. Unetched reverse side serves as the ground plane. Material is $1.5 \mathrm{~mm}\left(1 / 16^{\prime \prime}\right)$ double-clad G10 circuit board.

fig. 5. Construction of transformers T1 and T2. Turns are counted by the number of times the wire passes through the center. Wire is no. 30 to no. $34(0.25-0.16 \mathrm{~mm})$ Formvar coated. T3 is similar except it consists of three turns.
above grid-dipper range are printed. Printed-circuit layouts are shown in fig. 3 and 4. Component placement may be seen in the photographs. Transistors Q3 and Q4 have their leads bent outward along the printed lines about 0.1 inch (2.5 mm) below the case (the fourth lead, case, is cut off flush so the case is not connected) as shown in the close-up photograph.

The trickiest part in building the LO chain is winding transformers T1, T2, and T3. T1 and T2 consist of four trifilar turns on a large ferrite bead such as a Ferronics 11-090-J $(\mu=900)$ as shown in fig. 5. All windings are wound at the same time for a total of 12 turns. The four turns are counted from the inside not the outside. Also shown in fig. 5 are the transformer connections and how they are installed in the circuit. Construction of transformer T3 is similar except it consists of 3 trifilar turns on a Ferronics

21-030-K ferrite bead ($\mu=125$). Transformer T2 is installed on the copper foil side of the board to minimize lead length. Cable \mathbf{A} in fig. 2 is not installed yet; a temporary jack is installed instead.

Tuneup is also straightforward. Monitoring the power at J1, tune L1 and the trimmer capacitor across $L 2$ for maximum output. Check the frequency with a frequency counter, wavemeter, or grid-dipper. It may be necessary to reduce the value of C2 for maximum output with different crystals. Roughly 0.1 milliwatt is available from J 1 with the small link.

Stripline filter for the low-noise amplifier. The bolts through the board ensure an adequate ground connection at the end of the quarter-wavelength filters.

Next, terminate J1 with 50 ohms and monitor the output at L 5 through the 120 pF capacitor (cable A not yet installed). Adjust C3, C4, C5, and L2 trimmer for maximum output (approximately 20 mW). If convenient, check frequency - if not, note capacitor

fig. 6. Component placement for the low-frequency multiplier board. Foil side is shown in fig. 3 .

fig. 7. Component placement on the $1152-\mathbf{M H z}$ tripler/filter board. Foil layout is shown in fig. 4. Contrary to other component placement diagrams, this diagram is shown from the etched side of the board.
rotor settings in the photographs. Of the three units I have built, the only one which did not proceed smoothly to this point had a defective IC section.

Now either proceed to the tripler or (optional) go back and fine tune the doublers. Small adjustments to the coupling capacitors tapped off L1 and L2, to the output of the voltage regulator (vary the 330 -ohm resistor), and to all previous tuning points may help.

Finally, install cable A. Approximately 0.5 mW $(-3 \mathrm{dBm})$ should be available at J 2 . If the output is low, varying the voltage on Q3 and Q4 (set by CR3) may help. If the output is still low, wrap a small square of aluminum foil over the bare end of a Q-tip and poke around the stripline circuitry while monitoring the output; if it is working normally, nothing should produce a significant increase in output. However, if a balanced mixer ${ }^{4}$ with variable dc bias is used, local oscillator powers as low as -10 dBm will probably not significantly degrade the noise figure, if the mixer bias is set at the LO level to be used. This combination was the lowest noise-figure $1296-\mathrm{MHz}$ converter measured at the 1977 Eastern VHF/UHF Conference.

The printed stripline (technically microstrip) elements, the rat-race and filter, were chosen partly for their non-critical nature. They have moderate inherent bandwidth, so the output frequency could be shifted $\pm 5 \%$ with no changes. Conversely, the dimensions are not too critical. For example, the
characteristic impedance of the rat-race is approximately 66 ohms vs the design value of 70 ohms because it was laid out using standard printed-circuit tape. For greater frequency changes, it is primarily the length of the lines, rather than the width, which changes. If major changes are contemplated, further research ${ }^{3,5}$ is suggested.

This local-oscillator chain, together with a simple balanced mixer, provides a relatively easy way to listen on 1296 MHz ; a varactor tripler would complete a basic station. Since there are no critical adjustments, it can be confidently built with moderate test equipment and skill, yet it has the stability and spectral purity required for an advanced station. Portions of the chain are usable for 220 and 432 MHz as they stand; the addition of a doubler to 2304 MHz is contemplated.

references

1. C. Andren, "Low-Cost $100-$ to $200-\mathrm{MHz}$ Doubler has 5 dB Gain, 1\% Distortion," Electronic Design, 1 September, 1970, page 84.
2. D. E. Schmitzer, DJ4BG, "Frequency Multiplication With High Spurious Signal Rejection," VHF Communications, November, 1971, page 248.
3. H. Howe, Stripline Circuit Design, Artech House, Dedham, Massachusetts, 1974.
4. P. Wade, WA2ZZF, "A High-Performance Balanced Mixer for 1296 MHz ," QST, September, 1973, page 15.
5. H. S. Keen, W2CTK, "Microwave Hybrids and Couplers for Amateur Use," ham radio, July, 1970, page 57.
ham radio

LET US QUOTE YOUR SPECIFIC NEEDS FROM OUR \$2,000,000.00 AMATEUR GEAR INVENTORY.

AEA	List
AD-1 Autodialer	129.95
ATLAS	List
350 XL	1195.00
350 P.S.	229.00
305 VFO	155.00
DD6-XL Digital	229.00
DMK-Deluxe Mobile Mt.	65.00
210X	765.00
215X	765.00
Also All Accessories	
B\&W	
COLLINS	List
KWM2A	3533.00
32S3A	3250.00
75S3C	3000.00
516F2	440.00
Also All Accessories	
DENTRON	List
MLA 2500B	899.50
160-10AT	129.50
MT2000A	199.50
MT3000A	349.50
Jr. Monitor	79.50
Also All Accessories	
ICOM	List
IC245SSB	689.95
IC380	480.00
IC211	850.00
IC701AC	1650.00
Also All Accessories	
NPC	
WM NYE	

KENWOOD	List
TS820S	1098.00
TS820	919.00
TS520S	739.00
TS700SP	729.00
TR7400A	399.00
VFO820	155.00
VFO520	139.00
SM220	329.00
Also All Accessories	
MIDLAND	List
13-510	399.00
13-513	499.00
Also All Accessories	
R. L. DRAKE	List
T4XC	699.00
R4C	699.00
TR7IDR7	1295.00
MN4C	165.00
MN2000	250.00
Also All Accessories	
STANDARD	List
SRC146A	259.00
C-6500	379.00
Also All Accessories	
SWAN	
350B	
350D	
750CW	679.95
Also All Accessories	

TEMPO	
TEN-TEC	List
Tritan IV	699.00
Tritan IV Dig	869.00
Century 21	299.00
Century 21 Dig	399.00
Also All Accessories	
VIBROPLEX	
WILSON	
Mark II	
Mark IV	229.95
1402SM	259.95
1405SM	254.95
1407SM	329.95
Also All Accessories	384.95
YAESU	
FT-101F	List
FT-101FE	799.00
FT-101FX	759.00
FL-2100B	699.00
FT-301	529.00
FT-301D	769.00
FT-901DM	935.00
FT-901D	1459.00
FT-901DE	1259.00
FL-101	1259.00
FR-101D	649.00
FR-101S	749.00
FRG-7000	599.00
FT-227R	655.00
FT-225R	349.00
FT-625RD	840.00
Also All Accessories	895.00

ANTENNAS • ROTORS • TOWERS

CUSHCRAFT
HY-GAIN
HUSTLER
MORGAIN
MOSLEY
ROHN TOWERS
WILSON
ALLIANCE
CDE

ALLIANCE	List	CDE	List
HD73	179.95	HAM III	194.93
U-100	69.95	T2TX	349.95
		CD44	154.95
HY-GAIN	List	BT-1	114.95
TH6DXX	296.95		
TH3MK III	219.95	WILSON	List
TH3JR	144.50	SY-1	274.95
HY QUAD	229.95	SY-2	219.95
18 AVT/WB	97.00	WV-1	79.95
18HT	299.95	WR1000ROTOR	469.00
		WR500 ROTOR	149.95

ROHN TOWERS	
	List
MOSLEY	264.50
TA33	197.85
TA33JR	392.75
TA36	304.75
CL.33	392.75
CL.36	
MORGAIN	List
75-10HD	$\mathbf{7 4 . 5 0}$

Give us a try before you buy • Call Jim Titus Toll Free and ask him to quote your requirements from this ad

FREE UPS SHIPPING
 ON PREPAID ORDERS

- PICK YOUR OWN PACKAGE •

KENWOOD

TS-520S
160-10M TRANSCEIVER $\$ 739.00$

KENWOOD

TS-820S
160-10M TRANSCEIVER
\$1098.00

YAESU

FT-101E
160-10M TRANSCEIVER
\$799.00

BUY ANY ONE OF THE ABOVE RIGS AT PRICE SHOWN AND SELECT ANY ONE OF THE FOLLOWING FOR \$5.00

HD-73 ROTOR HEAVY DUTY, DUAL SPEED Value $\$ 154.95$

160-10AT Tuner
Value $\$ 129.50$

Model
43 Meter
Value $\$ 125.00$

a Division of TREVOSE ELECTRONICS, INC/ 4033 Brownsville Road, Trevose, PA 19047
FREE UPS SHIPPING
ON PREPAID ORDERS
VISA master charge

\%is. $800 \cdot 523.8998$

WHERE THE HAM IS KING

- PICK YOUR OWN PACKAGE •

MIDLAND

13-510 FM TRANSCEIVER 25 WATTS / 800 CHANNELS \$399

KENWOOD

TR-7400A FM TRANSCEIVER 25 WATTS / 800 CHANNELS
\$399

ICOM

IC-245 FM TRANSCEIVER WITH SINGLE SIDEBAND \$689.95

BUY ANY ONE OF THE ABOVE RIGS AT PRICE SHOWN AND SELECT ANY ONE OF THE FOLLOWING FOR \$5.00

DRAKE

1525 EM
TOUCH TONE ${ }^{\circ}$ ENCODER MICROPHONE
Value $\$ 49.95$

CES

MODEL 300 ACOUSTICAL PAD
Value $\$ 49.95$

SEI

SPS-8
POWER SUPPLY
Value $\$ 79.95$

FREE UPS SHIPPING ON PREPAID ORDERS VISA nasec cruge

evaluating

noise sideband performance
Receiver local oscillators produce noise sidebands
which degrade receiver performance how good is the oscillator in your receiver? Here are some ways to find out

All oscillators produce noise sidebands which can degrade the performance of the equipment in which the oscillator is used. In receivers, noisy local-oscillator stages produce reciprocal mixing products which cause blocking. ${ }^{1,2}$ For oscillators used in high-frequency or vhf/uhf equipment, it's sufficient to measure the noise sideband performance in $\mathrm{dB} / \mathrm{Hz}$ between 500 Hz and 100 kHz from the carrier; a way of doing this is described in this article. Also discussed is a method for determining local-oscillator noise sideband levels by measuring the receiver's blocking performance.

Fig. 1 shows the test setup recommended by the National Bureau of Standards for measuring noise sideband performance between 500 Hz and 100 kHz from the oscillator carrier.* A signal generator with extremely high spectral purity such as a crystal oscillator is used as a reference oscillator for a high-level, double-balanced mixer. The output of the oscillator under test is fed into the rf port of the mixer through a variable attenuator. The output of the doublebalanced mixer is then connected to a waveform analyzer.

A simplified block diagram of a waveform analyzer is shown in fig. 2. The signal to be analyzed is mixed

[^7]By Ulrich L. Rohde, DJ2LR, 52 Hillcrest Drive, Upper Saddle River, New Jersey 07458

fig. 1. Test setups recommended by NBS for measuring fm noise (phase fluctuations), and a-m noise lamplitude fluctuations). For a low modulation index, as is the case of a hard-limiting oscillator, there is no difference between a-m and fm noise.
with a tunable local oscillator and the i-f output is applied to a narrow bandpass filter. In operation the frequency of the VFO is adjusted so the desired component of the input waveform is equal to the center frequency of the selective filter. Thus the component to be measured is fixed to a predetermined frequency, is amplified, and measured at this fixed frequency; other frequency components in the input waveform are rejected by the narrow bandpass filter. Fig. 3 shows the filter response curve of the Rohde $\&$ Schwartz FAT3 waveform analyzer which has an i-f at 80 kHz ; the bandwidth is 4 Hz at the 3 dB points.
To calibrate the test setup, the wave analyzer is set to full sensitivity, where zero equals 10 mV and -80 dB equals $1 \mu \mathrm{~V}$. The oscillator to be analyzed is then set to a frequency 30 kHz from the crystal oscillator, and the variable attenuator is adjusted so that the double-balanced mixer output gives a full-scale reading equivalent to 10 mV .
If an instrument with high dynamic range and a linear dB scale is used, the attenuator can remain in the same position during the entire test procedure. Where limited dynamic range is available, the attenuator is set so at full sensitivity the instrument will indi-
cate $1 \mu \mathrm{~V}$ on a quasi-linear meter, and the logarithmic display will be simulated later by taking readings from the attenuator.
Now connect a frequency counter to the oscillator, and change the frequency either 1 kHz up or down from the original setting, which was offset 30 kHz from the crystal oscillator. Then reconnect the signal generator to the double-balanced mixer. The waveform analyzer, which typically has three or four bandwidths available, is set at $100-\mathrm{Hz}$ bandwidth. Assume that the logarithmic display on the analyzer indicated -60 dB when the original frequency was selected. This means that, in a $100-\mathrm{Hz}$ bandwidth, the noise sideband voltage is 60 dB below the carrier. Since the noise sidebands are expressed in dB per 1 Hz ($\mathrm{dB} / \mathrm{Hz}$), a 20 dB correction factor must be added to the measured 60 dB because of the $100-\mathrm{Hz}$ bandwidth; in this case the noise sideband performance is $80 \mathrm{~dB} / \mathrm{Hz}$.
Practical experience indicates that an oscillator which exhibits $80 \mathrm{~dB} / \mathrm{Hz}$ noise performance is not very good, so the crystal oscillator can be considered much better and its noise contribution may be neglected.

sideband noise evaluator

Commercial waveform analyzers with a built-in, double-balanced mixer, linear logarithmic displays, and wide choice of bandwidths are extremely expensive - as much as $\$ 30,000$, - so few are in amateur hands. However, you can build an instrument with similar performance for less than $\$ 300$ if you're willing to give up certain features:

1. Choice of multiple bandwidth

2. Extremely linear logarithmic scale

3. Small i-f bandwidth

The resulting instrument, which I call the Sideband Noise Evaluator, is no longer in the class of the waveform analyzer which permits measurements from a few Hz to 60 kHz or more, but it's ideal for measuring the noise sideband performance of oscillators.

A block diagram of the device is shown in fig. 4. The local oscillator must deliver +17 dBm drive and

fig. 2. Simplified block diagram of a waveform analyzer. The frequency of the VFO is adjusted so the desired component of the input signal is mixed to the center frequency of the narrow bandwidth filter where it is amplified and measured.
the mixer must accept any frequency combination between 70 kHz and 200 MHz . This frequency range is sufficient to evaluate most oscillators used in radio communications systems.

circuit description

A feedback amplifier is used as a wideband termination for the mixer and as a low-noise preamplifier. It also compensates for losses of the following crystal filter. While any i-f between 1 MHz and 10 MHz can be used for which suitably selective filters can be purchased, the chosen frequency of 5.695 MHz was based on the use of $125-\mathrm{Hz}$ wide filters built by Sherwood Engineering.*

Two high-gain wideband amplifiers boost the signal by about 80 dB and feed a second crystal filter. A post-amplifier is used to compensate for the second filter losses; a detection circuit drives an operational amplifier which in turn drives a meter and the agc input for the wideband amplifiers.

Two wideband amplifiers are used in the circuit, so there is more than 120 dB of agc range available. Thus, the instrument should provide at least 100 dB dynamic range with the $125-\mathrm{Hz}$ bandwidth filters. If you consider a sensitivity of $5 \mu \mathrm{~V}$ relative to 1 volt emf, this results in $120 \mathrm{~dB} / \mathrm{Hz}$ resolution.

Resolution could be increased 10 dB by using an i-f filter 1 kHz to 2 kHz wide, but it would not be possible to make noise measurements closer than 4 kHz from the carrier. Therefore, the user must decide whether more than 120 dB dynamic range is required, or if it's more important to measure noise close to the carrier. In my opinion, close-in noise is very important because of the number of CW stations which can be heard when receiver selectivity is set to 500 Hz ; that's why I used the narrow $125-\mathrm{Hz}$ filters.

A complete schematic for the Sideband Noise

Construction of the Sideband Noise Evaluator showing the location of the printed-circuit board in the Ten-Tec enclosure. The meter is connected to the circuit with two lengths of miniature coaxial cable.

fig. 3. Response curve for the $4-\mathrm{Hz}$ wide bandpass filter used in the Rohde $\&$ Schwarz FAT3 waveform analyzer. The center frequency is at 80 kHz .

Evaluator is shown in fig. 5. The Mini-Circuit Laboratories \dagger SRA3H was found to be the ideal choice for the input mixer; a 2N5109 CATV transistor with voltage and current feedback both amplifies and provides proper termination to the mixer's i-f port. The $5.695-\mathrm{MHz}$ filters from Sherwood Engineering are designed for 50 -ohm input and output impedance; the Mini-Circuits 4:1 and 16:1 transformers provide correct circuit matching.

The Motorola MC1590s which are used in the wideband amplifier are the perfect choice for this application. ${ }^{3}$ The gain of the stages is set by resistors R7 and R10, as discussed in the Motorola data sheet.

The Texas Instruments 733 wideband amplifier IC compensates for the losses of the second narrowband filter. The three diodes at the output of the 733 act as a voltage doubler and provide suitable time constants and thresholds to feed an LM301 operational amplifier. The $50-\mu \mathrm{A}$ meter is shunted with 470 ohms to limit the reading to $45 \mu \mathrm{~A}$; for a full-scale reading this resistance value must be increased slightly. The two 10 k resistors equalize agc distribution to the MC1590 ICs.

After this circuit was built, I found two problems with the Sherwood filters. First, the center frequency was off by 47 Hz ; relative to a 6-dB bandwidth of 125 Hz , the discrepancy expressed in per cent is unreas-

[^8]
fig. 4. Block diagram of the Sideband Noise Evaluator which may be used to measure oscillator sideband noise. A schematic diagram for the instrument is shown in fig. 5.
onably high. Second, the insertion loss of the Sherwood filters was substantially higher than expected. When this was discovered, the 2N5109 preamplifier circuit between the double-balanced mixer and the first filter was redesigned. The circuit of the new amplifier is somewhat more complex (see fig. 6) and costs an additional $\$ 5$, but has nearly 20 dB gain. The gain of the circuit can be adjusted by changing the value of the unbypassed 50 -ohm resistor in the emitter circuit of the first 2N5109.

Unfortunately, the circuit board in fig. 7 was designed for the single 2N5109 preamplifier (fig. 5), but it shouldn't be too difficult to lay out a new PC board if you wish to use the improved preamplifier. This may be worthwhile because the improved pre-
amp expands the instrument's dynamic range by almost 20 dB due to a substantial decrease in noise figure.

calibration

The Sideband Noise Evaluator requires no adjustments! It should be possible for amateurs who build this test setup to use it immediately without difficulty. Fig. 8 is a graph of output readings as a function of the rf input voltage (measured with a +12.0 volt power supply). While the scale is not as linear as that available with a commercial waveform analyzer, the curve permits adequate resolution for most noise sideband measurements.

If the two-stage preamplifier is used, however,

fig. 5. Schematic diagram of the Sideband Noise Evaluator. Circuit operation is discussed in the text. The filters are Sherwood Engineering $5.695-\mathrm{MHz}$ crystal filters with $\mathbf{1 2 5 - H z}$ bandwidth. The $\mathbf{4 : 1}$ and $\mathbf{1 6 : 1}$ transformers are from Mini-Circuits Labs.

fig. 6. Improved input preamplifier for the Sideband Noise Evaluator which has nearly 20 dB gain. Gain can be adjusted by changing the unbypassed 50 -ohm resistor in the emitter of the first 2N5109.
recalibration is necessary because of the higher gain. I recommend changing resistor R15 across the meter (fig. 5) to compensate for the increased sensitivity of the instrument with the improved preamp.

crystal oscillators

To obtain full use of the Sideband Noise Evaluator, I suggest you build a set of crystal oscillators. Funda-mental-frequency crystals can be purchased that operate between 400 kHz and 30 MHz in what is frequently called the parallel-resonant mode (which
should more accurately be called the inductive mode). Fig. 9 shows a suitable low-noise crystal oscillator circuit with a wideband postamplifier that delivers the required +17 dBm output level or slightly more. Any inductive-mode crystal between 400 kHz and 30 MHz can be plugged into this circuit and give useful output without any adjustments.

The frequency range between 30 MHz and 100 MHz can be covered by a crystal oscillator which uses either a third- or fifth-overtone crystal. However, the oscillators must be tuned. Various overtone

fig. 7. Printed-circuit layout (above) and component placement diagram (below) for the Sideband Noise Evaluator. Note that this artwork is approximately 67% of full size - a full-size PC layout is available from ham radio upon receipt of a self-addressed, stamped envelope.

fig. 9. Low-noise crystal oscillator for operation from $\mathbf{4 0 0}$ kHz to 30 MHz ; output is +17 dBm . No adjustments are required. Inductors L1 and L2 are 6 turns, center tapped, on $\mathbf{1 / 4}$-inch ($6-\mathrm{mm}$) TC9 core.
oscillator circuits have been described in the literature, but the authors have not discussed either shortterm stability or sideband noise performance. Probably the worst and noisiest of all oscillator circuits places the crystal between the transistor base and ground (fig. 10). The reason for the high noise contribution is that this circuit severely degrades the Q of the crystal. The noise sideband performance is partially dependent on the circuit but is determined primarily by the Q of the resonator: an LC circuit, a high- Q cavity, or a quartz crystal, and the latter has the highest Q of all known resonators.

Fig. 11 shows a crystal oscillator circuit that can be used for third- and fifth-overtone crystals in the frequency range from 30 to 100 MHz , and delivers +17
dBm to the double-balanced mixer. This circuit combines the best possible noise performance with high output power and excellent stability. ${ }^{4}$
The noise performance of the crystal oscillator circuits of figs. 9 and 11 is better than $120 \mathrm{~dB} / \mathrm{Hz}$ at 1 kHz from the carrier, and $150 \mathrm{~dB} / \mathrm{Hz}$ or more at 20 kHz from the carrier. Because of their excellent noise performance, these circuits can be used as local oscillators without degrading receiver performance; very few oscillators and practically no frequency synthesizers achieve their low-noise sideband levels.

measuring your receiver's oscillator sideband noise

The easiest way to measure the noise sideband performance of the local oscillator in your receiver is to measure the "blocking" or reciprocal mixing. First, accurately calibrate the receiver's S-meter between S1 and S9 +40 dB using a signal generator and an accurate attenuator (a suitable band is 14 MHz). For the signal generator I recommend a crystal oscillator which uses a $14-\mathrm{MHz}$ crystal.

Tune the receiver to the frequency of the signal generator and increase the input to the receiver so the S -meter reads $\mathrm{S} 9+40 \mathrm{~dB}$. Move the tuning dial 10 kHz and note the S -meter reading; more than likely it will be S 6 . Assuming S 9 is $100 \mu \mathrm{~V}$ emf ($50 \mu \mathrm{~V}$ terminated), and each S-unit is exactly 6 dB , then S 6 is approximately $6 \mu \mathrm{~V}$. S9 +40 dB is 5 mV , so the difference between the two signals, for all practical purposes, is 60 dB . Since the measurement will probably be made with a 2.7 to 3 kHz ssb filter in the receiver, the conversion factor from 3 kHz to 1 Hz is about 35 $\mathrm{dB}\left(10 \log B W_{H_{z}}\right)$. Therefore, the noise sideband performance of the internal oscillator is $95 \mathrm{~dB} / \mathrm{Hz}$

To fully utilize the low intermodulation capabilities available with high-level, double-balanced mixers in

rf input	current reading 1 volt	volts emf (unterminated)
$-12 \mu \mathrm{~A}$	1 volt	
-20 dB	$40 \mu \mathrm{~A}$	316 mV
-30 dB	$34 \mu \mathrm{~A}$	100 mV
-40 dB	$31 \mu \mathrm{~A}$	32 mV
-50 dB	$28 \mu \mathrm{~A}$	10 mV
-60 dB	$24 \mu \mathrm{~A}$	3.2 mV
-70 dB	$21 \mu \mathrm{~A}$	1 mV
-80 dB	$16 \mu \mathrm{~A}$	$100 \mu \mathrm{~V}$
-90 dB	$11 \mu \mathrm{~A}$	$32 \mu \mathrm{~V}$
-100 dB	$5 \mu \mathrm{~A}$	$10 \mu \mathrm{~V}$
-106 dB	$1 \mu \mathrm{~A}$	$5 \mu \mathrm{~V}$

fig. 8. Calibration curve for the Sideband Noise Evaluator shows rf input in dB relative to 1 volt emf vs indicated output current. To convert to $\mathrm{dB} / \mathbf{H z}$ add $\mathbf{2 0} \mathbf{d B}$ (because of 100 Hz filter bandwidth).

fig. 10. Popular crystal oscillator circuit that is very noisy because the Q of the crystal is severely degraded. This circuit is not recommended for any application.
modern communications receivers, the noise sideband performance must be at least $120 \mathrm{~dB} / \mathrm{Hz}$ at 10 kHz from the carrier. To meet this criterion, the noise sideband performance of the receiver LO in the above example must be improved by 25 dB . I recommend that every designer of high-frequency of vhf/uhf receivers or local oscillators build a Sideband Noise Evaluator to ensure noise performance of at least $120 \mathrm{~dB} / \mathrm{Hz}$ at 10 kHz from the carrier. 5

fig. 11. Ultra low-noise crystal oscillator circuit which can be used with third- and fifth-overtone crystals in the frequency range from 30 to 100 MHz . Output is +17 dBm .

references

1. Ulrich L. Rohde, "Eight Ways to Better Radio Receiver Design," Electronics, February 20, 1975, page 87.
2. R. F. A. Winn, "Synthesized Communications Receiver," Wireless World, October, 1974, page 413.
3. Ulrich L. Rohde, "I-F Amplifier Design," ham radio, March, 1977, page 10.
4. Ulrich L. Rohde, "Mathematical Analysis and Designs of an Ultra-Stable Low-Noise 100 MHz Crystal Oscillator with Differential Limiter, " Presented at the 32nd Annual Frequency Symposium, Fort Monmouth, New Jersey, April 24, 1978.
5. Ulrich L. Rohde, "Effects of Noise in Receiving Systems," ham radio, November, 1977, page 34.
ham radio

The Larsen Kūlrod Antenna

Good

Looker.

Great

Performer

Low down silhouette and streamlined good looks. That describes the Larsen Külrod Antenna.

Performance that assures solid contacts with no power wasted in inefficient base or phasing coils and with none lost in inefficient high loss whips. Real performance . . . that, too, is what you get with the Larsen Kürod Antenna.

These antennas were designed and engineered to meet the tough competitive needs of the two-way commercial communications field. Today they are sold to these users throughout the U.S. and in Canada, Australia, South America, Mexico and in Europe, too. And often at a price some above competition. The reason has got to be performance. Well, OK . . . looks and performance.

Now you can get these same Larsen Külrod Antennas in leading Amateur stores. They are available in a variety of easy-to-install permanent and temporary mounts to meet Amateur frequency needs on 144, 220 and 440 MHz . And even on 6 meters.

Write for catalog and fact sheet and the name of the dealer nearest you. Then you, too, will say: "Thanks for the fine signal report. The antenna here is a Larsen Külrod!"

Lorsen Antennos

Pioneers in communications antennas for over 25 years.
11611 N.E. 50th Ave. In Canada write to:
P.O. Box 1686 Unit 101
Vancouver, WA 98663 283 E. 11th Avenue
Phone: 206/573-2722 Vancouver B.C. V5T 2C4
Telex: 36-4428
Phone: 604/872-8517

* Külrod is a Registered trademark of Larsen Antennas, Inc.

THE DMUWNNINC

The age of tone control has come to Amateur Radio. What better way to utilize our ever diminishing resource of frequency spectrum? Sub-audible tone control allows several repeaters to share the same channel with minimal geographic separation. It allows protection from intermod and interference for repeaters, remote base stations, and autopatches. It even allows silent monitoring of our crowded simplex channels.

We make the most reliable and complete line of tone products available. All are totally immune to RF, use plug-in, field replaceable, frequency determining elements for low cost and the most accurate and stable frequency control possible. Our impeccable 1 day delivery is unmatched in the industry and you are protected by a full 1 year warranty when our products are returned to the factory for repair. Isn't it time for you to get into the New Age of tone control?

TS-1 Sub-Audible Encoder-Decoder - Microminiature in size. $1.25^{\prime \prime} \times 2.0^{\circ} \times .65^{\prime}$ - Encodes and decodes simultaneously $\$ 59.95$ complete with K - 1 element.
TS-1JR Sub-Audible Encoder-Decoder - Microminiature version of the TS-1 measuring just $1.0^{\circ} \times 1.25^{\circ} \times .65$, for handheld units - $\$ 79.95$ complete with K - 1 element.
ME-3 Sub-Audible Encoder - Microminiature in size, measures $.45^{\circ} \times 1.11^{1} \times .6^{\circ} \cdot$ Instant start-up $\boldsymbol{\$ 2 9 . 9 5}$ complete with K -1 element.
TE-8 Eight-Tone Sub-Audible Encoder • Measures $2.6^{\circ} x$ $2.0 \times .7^{*}$ - Frequency selection made by either a pull to ground or to supply - $\$ 69.95$ with 8 K -1 elements.
PE-2 Two-Tone Sequential Encoder for paging - Two call unit - Measures $1.25^{\circ} \times 2.0^{-} \times .65^{\circ} \cdot \$ 49.95$ with 2 K -2 elements.

SD-1 Two-Tone Sequential Decoder - Frequency range is $268.5-2109.4 \mathrm{~Hz} \cdot$ Measures $1.2^{*} \times 1.67^{7} \times .65^{\circ} \cdot$ Momentary output for horn relay, latched output for call light and receiver muting built-in - $\$ 59.95$ with 2 K - 2 elements.
TE-12 Twelve-Tone Sub-Audible or Burst-Tone Encoder Frequency range is $67.0-263.0 \mathrm{~Hz}$ sub-audible or $1650-4200 \mathrm{~Hz}$ burst-tone - Measures $4.25^{\circ} \times 2.5^{\circ} \times 1.5^{*} \cdot \$ 79.95$ with 12 K -1 elements.
ST-1 Burst-Tone Encoder - Measures. $95^{\circ} \times .5^{\circ} \times .5^{5}$ plus K-1 measurements - Frequency range is $1650-4200 \mathrm{~Hz}$ $\$ 29.95$ with K -1 element.

COMMUNICATIONS
 SPECIALISTS

426 W. Taft Ave., Orange, CA 92667
(714) 998-3021

frequency synthesized local-oscillator system

 for the high-frequency amateur bandsDesign of a versatile frequency synthesizer system for high-frequency use which features exceptional spectral purity, $10-\mathrm{Hz}$ resolution, and low power-consumption

This article is the first of a series which will describe a complete phase-locked local-oscillator system for amateur equipment with a single-conversion, $9-\mathrm{MHz}$ i-f. The system offers performance which will meet the requirements of the advanced communication techniques of the 1980s - techniques which require frequency accuracy, stability, and calibration typically 100 times better than the best commercial equipment being sold today in the amateur market. This article describes the basic VFO synthesizer. Future articles will describe the phaselocked, $9-\mathrm{MHz}$ BFO system, a universal phase-locked up-converter permitting operation on all bands, 160 through 10 meters, and a variety of "acrobatic" tuning methods possible only with frequency synthesizers.

frequency synthesizer accuracy

With routine care, a home builder can put together a frequency standard which will hold to 1 part in 10^{7} under room-temperature conditions. I believe that
every amateur station should have such a standard. Our rigs today usually have several free-tuning oscillators, each one subject to calibration errors, drift, and other inaccuracies, and the usual use of the standard is to ensure that these inaccuracies are held within acceptable limits.

Most operators are satisfied if they are within a few hundred hertz. The typical digital readout which is used in place of a VFO dial resolves the frequency only to the nearest 100 Hz . Thus, even if the counter timebase and all the oscillators not being measured are perfectly on frequency, a $\pm 50 \mathrm{~Hz}$ uncertainty remains. To gain the very real $20-\mathrm{dB}$ signal-to-noise level improvement possible with coherent CW and similar methods of radio communications now in development, the total frequency error must be held within 1 or 2 Hz .

The only workable method of achieving this precision in a variable-frequency system is to phase-lock every oscillator to the frequency standard. With this arrangement, proper setting of the standard automatically imparts the same accuracy to every other oscillator.

The phase-locked frequency synthesizer is well established in the vhf- fm business, where its agility saves buying hundreds of crystals. When the channel spacing is 10 kHz and the width of the output frequency band is only a few per cent of its center frequency, the synthesizer is easy to build. The requirements for a high-frequency synthesizer, however, are an entirely different story. Outputs must cover a wide range and 10 or 100 Hz "channel spacing" is required, but switching speed must still be very fast. Spurious outputs must be exceptionally low to prevent degrading the performance of wide-dynamicrange receiver designs. In addition, the synthesizer must be, like a VFO, easy to tune. Before going into the details of a practical circuit which meets these requirements, I'd like to discuss one problem which plagues most synthesizer designs.

synthesizer noise

All oscillators generate noise in addition to the desired signal. Such noise is usually classified into three categories: harmonics, nonharmonic discrete spurs, and phase noise. Harmonics are the easiest to eliminate. In applications where good harmonic suppression is required, a bandpass or lowpass filter at the output is usually sufficient.

Nonharmonic spurs (parasitics) in oscillators are extraneous, unstable outputs at unpredictable frequencies. These are stopped by proper bypassing, shielding, and filtering in the design and construction

fig. 1. Block diagram of the basic synthesizer for highfrequency use. The VCO operates from 110 to 160 MHz ; this same basic scheme may be used for a number of applications in the range from 500 kHz to 16 MHz . Specifications for two hf synthesizers based on this system are given in table 1.
of the circuit. In synthesizers there are several additional sources of spurs: digital counter noise, mixer intermodulation products, feedthrough of an intermediate oscillator's signal to the output, modulation of a vco by tiny amounts of the loop reference signal from the phase detector -- these all serve to tremendously complicate designs. The presence of spurs in a receiver synthesizer's output produces birdies and the appearance of phantom signals in the i-f passband; the effect is very similar to that of inadequate image suppression.

An ideal oscillator would concentrate all its output energy at just one frequency, the desired carrier frequency. Real oscillators behave as if they were modulated by a broadband hissing noise. The result is that the oscillator's output energy is not perfectly concentrated at the carrier, but is smeared out above and below the carrier for many tens of kilohertz. The power level of this sideband noise typically diminishes in direct proportion to its frequency offset from the carrier.
If you had a super-selective bandpass filter with a

Construction of the frequency synthesizer showing the data input switches (right) and output (top left). The 1 MHz TTL reference signal is connected to the circuitry through the coaxial cable.

1- Hz passband and used this filter to measure the levels of this noise compared to the carrier, you would find that a well-designed vhf oscillator would produce sideband noise about 80 dB below the carrier for a frequency 100 Hz separated from the carrier, 100 dB below at 1 kHz , and 120 dB at 10 kHz . The total power level of uniformly distributed noise which reaches the detector of a receiver is directly proportional to the i-f bandwidth. Thus, if instead of a $1-\mathrm{Hz}$ filter you used a $2-\mathrm{kHz}$ filter, the noise reading would be two thousand times, or 33 dB , worse: only 88 dB down at 10 kHz offset.

It has been known for many years that oscillators produce this phase noise, but until recently oscillator noise was among the least of the designer's worries. The bad effects of this noise were nothing compared to the effects of mixer intermodulation and front-end overload! But today the situation has reversed. During the past few years we have seen spectacular improvements in the design of receiver front ends combined with an increasing interest in frequency synthesizers. But a phase-locked synthesizer requires a voltage-tuned oscillator, and to replace a variable capacitor with a varactor diode instantly increases the oscillator noise level by as much as 20 dB . So now instead of a -88 dB noise level 10 kHz from the carrier, you have only -68 dB .

What does this mean in terms of performance? Assume you have a state-of-the-art i-f filter for ssb which guarantees suppression of at least 120 dB for signals 10 kHz away from the center. Theoretically you could listen to a 1 microvolt DX station without interference from a carrier 10 kHz away which was 100 dB stronger, or 100 millivolts. But instead, the 68 dB noise from the oscillator can mix with a carrier
only 70 dB stronger 10 kHz away and produce a hissing noise which would mask the weak DX signal. This effect is called reciprocal mixing, and if a synthesizer signal is not free of noise, it can negate all the high-performance features of the high-intercept mixer and super i-f filters.

Fortunately, there is a way to improve the noise performance of a wide-tuning range VCO, and this method also gives us a synthesizer which can switch fast between frequencies while having very fine narrow channel spacing.

VFO synthesizer

Two versions of the synthesizer can be built on the same circuit board. The first, or A version, covers 5 to 6 MHz in $100-\mathrm{Hz}$ steps. It provides coverage of the 80 and 20 meter bands when used with a single-conversion i-f at 9 MHz . Version B covers a $500-\mathrm{kHz}$ range in 10 Hz steps. It forms the basis for a threeloop local-oscillator system which covers all bands, 160 through 10 meters, with the same $9-\mathrm{MHz}$ i-f. You can build an A-version synthesizer and convert it later to version B simply by adding 3 components and changing the VCO coil. Table 1 gives specifications for the two versions.

Fig. 1 is a block diagram of the version B synthesizer. The design features low power consumption, very high spectral purity, fast switching, and rf output suitable for driving a diode double-balanced mixer. The VCO covers $110-160 \mathrm{MHz}$ in $1-\mathrm{kHz}$ steps, operating in a loop having a $1-\mathrm{kHz}$ reference frequency. The VCO signal is divided by 100 to yield an output from 1100 to 1600 kHz in 10 Hz steps; phase noise performance is 40 dB better than the VCO, and frequency switching seems instantaneous to the ear. A novel feature is the use of the divide-by-100/101
table 1. Specifications for the hf frequency synthesizers. Figures for phase noise are minimums; typical measured values are approximately 10 dB better.

Output frequency range
Resolution
Output level
Suppression of nonharmonic discrete spurs
Phase noise, below carrier in 1-Hz bandwidth, for stated offsets from carrier
Switching speed
Data input requirement
Reference requirements

Power
version A
$5.0-6.0 \mathrm{MHz}$
100 Hz steps
$+10 \mathrm{dBm}$
$70 \mathrm{~dB} \quad 80 \mathrm{~dB}$
$80 \mathrm{~dB}, 100 \mathrm{~Hz} \quad 90 \mathrm{~dB}, 100 \mathrm{~Hz}$
$100 \mathrm{~dB}, 1 \mathrm{kHz} \quad 110 \mathrm{~dB}, 1 \mathrm{kHz}$
$120 \mathrm{~dB}, 10 \mathrm{kHz}$
30 ms

version B

$1.1-1.6 \mathrm{MHz}$
10 Hz steps
$+10 \mathrm{dBm}$

Parallel BCD, 10 volt CMOS levels, 4 digits for version $\mathrm{A}, 5$ digits for version B.
$1-\mathrm{MHz}$ sine or square wave, at least 1 volts p-p; input impedance of reference input approximately 50 pF to ground.
12 volts dc, approximately 75 mA .

CR1 Dual varactor diode (Motorola MV104)
L1 6 turns no. $22(0.6 \mathrm{~mm}), 3 \mathrm{~mm}(1 / 8) \mathrm{ID}$, tapped at 2 turns
RFC 6 turns no. $28(0.3 \mathrm{~mm}$) on F754-1-06 ferrite bead
S1-S5 Miniature BCD 10-position rotary switches

T1 Broadband if transformer (Mini-Circuits Lab T16-1)
*A complete kit of parts for this syrithesizer including the double-sided PC board, data input switches, and enclosure is available for $\$ 210$ from Petit Logic Systems, Post Office Box 51, Oak Harbor, Washington 98277.
fig. 2. Schematic diagram of a frequency synthesizer that provides outputs from 1.1 to 1.6 MHz in 10 Hz steps. Total power consumption is only 75 mA . All resistors are $1 / 4$ watt carbon film or composition; all polarized capacitors are dipped tantalum; nonpolarized capacitors are ceramics. A kit of parts is available from the author.*

fig. 3. Seven-pole Chebychev lowpass filters for use with the version A synthesizers. Both provide about 60 dB attenuation at twice the cutoff frequency.
prescaler in the programmable counter system. With this prescaler, comparatively slow and low powerconsuming CMOS programmable counters operating at frequencies below 2 MHz can control a VCO operating at 160 MHz without sacrificing the $1-\mathrm{kHz}$ spacing between adjacent steps.

The 100/101 prescaler works as follows. Suppose the N counter is set to 1500 and the M counter to zero. The VCO locks at 150 MHz so the output of the prescaler is $150 \div 100$ or 1.500 MHz . Since N is 1500 , the N counter output is 1 kHz as intended. Thus the N counter output represents 100 times 1500 or 150,000 cycles of the VCO signal. At the end of each complete cycle of the N counter, both the N and the M counter are preset to the values given by switches S1 through S5.

Suppose the M counter is now set to 01 . The prescaler goes through 1500 complete divides as before, except that the first divide is by 101 instead of 100. The result is that the N counter output to the phase detector represents not 150,000 cycles of the VCO output, but 150,001 cycles. Thus for any setting S given to the M counter, the first S prescaler divides are by 101 , and the remainder are by 100.

The most significant digit of the N counter is a 4bit binary counter instead of a decimal counter. Thus, the maximum count available is 1599 instead of 999 . The offset adder, U11, is programmed by jumpers to cause the synthesizer to deliver output frequencies which correspond in an appropriate way to the settings of S1.

To build a version-A synthesizer, the inductance of the VCO coil is increased to resonate with the varactor at 55 MHz ; U2 is omitted, and the base of O 3 is connected directly to pin 8 of U 1 ; U 11 is omitted;

U12 preset is set to binary 5 , and S 1 is omitted. S2 then becomes the 100 kHz digit, S3 the 10 kHz digit, and so on.

assembly and checkout

If a fault develops in a PLL system, it is often difficult to locate because many faults all exhibit one symptom, the loop goes out of lock. By assembling the system one section at a time and then checking that section before continuing assembly, trouble spots can be quickly located. Here is the procedure I use:

1. VCO and divide-by-100. Assemble the circuits starting at TP1, going through $\mathrm{Q} 1, \mathrm{Q} 2, \mathrm{Q} 3, \mathrm{U} 1, \mathrm{U} 2$, and U3. Take a potentiometer of any convenient value from 1 k to 500 k and connect the slider to TP1, one end to ground, and the other end to the 12 -volt supply. With this you will be able to manually set the VCO control voltage to any value over its entire range. Apply power and check for at least 9 volts dc at the drain of Q1 and 5 volts at pin 5 of U1 and pin 14 of U2. Check for a TTL-level signal at a frequency below 20 MHz at TP2. Check for a TTL signal below 2 MHz at TP3, holding TP4 at ground. Connect a 51ohm resistor across the output terminals and check for an approximately 2 -volt p-p squarewave across this resistor. Leave TP4 grounded.

The following discussion assumes that the synthesizer under construction is the 1.1 to 1.6 MHz version. Set the control voltage to 2 volts and adjust L1 by slightly compressing or stretching the coil until the output frequency is 1.1 MHz . Then bring up the control voltage to 10 volts and check that the output frequency is approximately 1.6 MHz . (If you don't have a frequency counter, a standard a-m broadcast radio will work.) If the frequency isn't quite 1.6 MHz , stretch the coil slightly.

If you are building the $5-6 \mathrm{MHz}$ version, set the control voltage to about 6 volts and adjust the coil L1 until the output frequency is 5.5 MHz .
2. 100/101. Assemble the circuits $U 4$ through U7, including the resistor network leading to TP9. Apply power and check for 5 volts at pin 5 of U4 and pin 14 of U5 and U6. Connect TP9 to 12 volts. Observe a signal at TP5 which is identical to that at TP2. Check for the same signal inverted at TP6. Observe an ECLlevel signal at TP7 which has the same frequency as the signal at TP3 except that it is at the lower logic level for one-tenth of the time and at the higher for nine-tenths of the time. Measure the signal at TP8. Then remove the connection from the power supply to TP9 and ground TP9; this should cause the frequency at TP8 to go down by 1 per cent.
3. Programmable counter. Assemble all the circuits of U10 through U16, the BCD switches, and the jumper-wire programming for U11. Apply power and check for at least 10 volts on pin 14 of U10, pin 5 of U11, and pins 16 of U12 through U16. Set the control voltage for 6 volts and set the data input switches to values representing the center of the synthesizer frequency range. TP10 should show an extremely narrow negative pulse at a frequency of approximately 1
critical value, the TP12 voltage should be near zero, and vice versa. As you move the potentiometer back and forth over this critical value, the TP12 signal should abruptly jump from near zero volts to near the positive supply voltage and back.
5. Closing the loop. Remove the potentiometer from TP1. Solder in the 27 k resistor and the diodes CR2 and CR3. Apply power and observe the voltage at TP12 with a VTVM or scope using a 10 -megohm

Bottom view of the double-sided PC board used for the high-frequency synthesizer.
kHz . Adjust the control voltage over its entire range and check that this pulse signal frequency rises and drops smoothly with your adjustments, not making sudden jumps or disappearing. With a scope connected to TP9, change the settings of S4 and S5 and observe a $1-\mathrm{kHz}$ negative pulse, the width of which is proportional to the settings from 00 to 99 .
4. Reference divider and phase detector. Assemble the circuits of U8 and U9, including the loop filter except for the 27 k resistor and the two diodes CR2 and CR3. Apply power and check for at least 10 volts at pins 16 of U8 and U9. Connect the output of a 1 MHz frequency standard to the reference input terminal. Observe a $1-\mathrm{kHz}$ pulse waveform at TP11. With S1 through S5 at the mid-frequency setting, observe the voltage at TP12 while varying the control voltage. When the control voltage is above some
probe. The voltage should be at an intermediate value. Touch the VCO components with your finger and observe the voltage rise slightly. The output frequency of the synthesizer should now correspond exactly to the settings of S1 through S5, allowing for possible inaccuracies between the counter timebase and the reference oscillator used for the synthesizer.

Remove the ground from TP4. When making large frequency changes, the output of the synthesizer will be interrupted for perhaps 0.1 second. Remove the signal from the reference oscillator and the synthesizer output should disappear and remain off until the reference oscillator is reconnected. When making frequency changes of 1 kHz or less, the output is not interrupted at all. The disable function insures that, if, for any reason, the synthesizer is not locked and stable, it will have no output.
ham radio

DSI Instruments Inc.

Performance You Can Count On

MODEL 3600 A
$\$ 199.95$
$\$ 199.95$
INCLUDES OVEN TIMEBASE + .5 PPM

The 3600A, 3550 W and 3240 HH Frequency Counters represent a significant new advancement, utilizing the latest LSI Design ... which reflects DSI's ongoing dedication to excellence in instrumentation, for the professional service technician and amateur radio operator. Before you buy a DSI instrument you know that the specification is. We publish complete and meaningful specifications which state accuracy over temperature and sensitivity at frequencies you need. And we guarantee those specifications in writing. JOIN THE RANKS OF THOUSANDS OF SATISFIED CUSTOMERS. PLACE YOUR ORDER TODAY AND BE THE ONE ON FREQUENCY.

ALL UNITS ARE FACTORY ASSEMBLED,
TESTED AND CARRY A FULL 1 YEAR WARRANTY.

See Your Dealer
OR
Call Toll Free (800) 854-2049 DSI Instruments, Inc.
California Residents, Call Collect (714) 565-8402
VISA - MC - AMERICAN EXPRESS - CHECK - MONEY ORDER - COD 7914 Ronson Road, No. G, San Dlego, CA 92111

- NO EXTRA COSTS -

FREE shipping anywhere in USA. \& Canada All other countries. Add $\$ 1000$ Strongest warranty in the counter field ONE YEAR Parts and Labor Satisfaction Guaranteed

DSI COMLUNIGATIONS SERIES 1.3GHz - 1 CHz - 700 HHz

MODEL C1000 $\mathbf{1 0 H z}$ to 1 GHz 59995 - AUTO ZERO BLANKING

Accuracy . . . that's the operational key to this rugged advanced design Model C1000 1 GHz frequency counter . . . a significant achievement from DSI. That's because you get . $\mathrm{PPM} 0^{\circ}$ to $40^{\circ} \mathrm{C}$ proportional oven time base ... Built in 25DB preamplifier with a 60DB adjustable attenuator $\times 10 \& \times 100$ audio scaler which yields .01 Hz resolution from 10 Hz to 10 KHz equivalent to $10 \mathrm{sec} . \& 100 \mathrm{sec}$. Gate Time Selectable .1 \& 1 sec , time base and 50 ohms or 1 meg ohm input impedance . . . Built-in battery charging circuit with a Rapid or Trickle Charge Selector . . . Color keyed high quality push button operation . . All combined in a rugged black anodized ($.125^{\prime \prime}$ thick) aluminum cabinet. The model C-1000 reflects DSI's on going dedication to excellence in instrumentation for the professional service technician, engineer, or the communication industry.

MODEL C700 50 Hz to 700 MHz s29995
 - AUTO ZERO BLANKING - AUTO DECIMAL POINT

ALL NEWI AII UNPARALLELED DSI QUALITY! The model C 700700 MHz frequency counter features 2 PPM 0° to $40^{\circ} \mathrm{C}$ proportional oven time base ... 25db preamplifier with a 60 db adjustable attenuator. Built in battery charger with a rapid or trickle charge selector . . . Combined in a rugged ($125^{\prime \prime}$ thick) aluminum cabinet makes the C700 ideal for the communication industry and professional service technician.

3600A OWNERS: Up date your 3600A frequency counter to a C 700 includes, new back board, .2PPM proportional oven, 25 db preamplifier, rugged $.125^{\prime \prime}$ thick aluminum cabinet, order 3600A-700. Unit must be returned to DSI factory for modification.

DSI - GUARANTEED SPECIFICATIONS - FACTORY ASSEMBLED - MADE IN USA

Model	Frequency Range	Proportional Oven Accuracy Over Temperature	50 Hz To 75 MHz	75 MHz To 500 MHz	500 MHz To GHz	Number Of Digits	Size Of Digits	Power Requirements	Size

- All Units Are Factory Assembled, Tested And Carry A Full 5 Year Limited Warranty -

- NO EXTRA COSTS •

FREE Shipping anywhere in U.S.A.
\& Canada. All other countries, Add 10\%.
Strongest warranty in the counter field. : Satisfaction Guaranteed.

See Your Dealer
OR
Call Toll Free (800) 854-2049 DSI Instruments, Inc.
California Residents, Call Collect (714) 565-8402
VISA • MC • AMERICAN EXPRESS • CHECK • MONEY ORDER • COD
7914 Ronson Road, No. G, San Dlego, CA 92111

3600A-700 Factory update (3600A only)

 Includes Labor \& Re-Calibration \$124.95Model C $1000 \quad \$ 399.95$
Opt. 01 1.3 GHZ (C1000 only) $\$ 99.95$
Opt. 02.05 PPM 10 MHz Double Oven
0° to $50^{\circ} \mathrm{C}$ Time Base (C1000 only) $\$ 129.95$
Opt. 0320 Hr . rechargeable Battery Pack
\$ 29.95
Ant. 210 Telescopic Ant./BNC Adapter \$ 9.95

second generation reciprocating detector

An updated version of the reciprocating detector, which can be used in solid-state receivers with high-frequency
i-f strips

During the past three years l've had many requests for revisions to the reciprocating detector circuit' so that it can be used directly at high frequencies. Here's an updated IC design that can be used at frequencies up to 20 MHz .

background

Early attempts to directly use the RD above 5 MHz required very careful circuit layout to reduce or eliminate inter-circuit coupling, and in particular to maintain the correct phase relationship required in the feedback loop. Also, the detector portion operated as a half-wave rectifier. A current-regulating source had to be adjusted to cause the signal diode to operate at a level just below conduction, so that at fre-

[^9]quencies above 5 MHz the diode and its circuitry ceased to perform uniformly. Result - a badly distorted detected signal.

Despite the distortion, in some cases the circuit performed well enough for signal identification. But much was to be desired. A cure for individual cases was to adjust the bias level for the current-source diode until it just conducted on noise. In most cases, with a tube receiver that produced $i-f$ signals to the RD input exceeding the saturation level of the complete circuit, a clipped response occurred. Single sideband signals then became unmanageable because of widely varying signal levels that couldn't be controlled by the agc systems in older tube receivers.

The original circuit was designed to be used in receivers such as the Collins 51S1 and Drake R4A, which have highly selective dual or adjustable filters in the receiver i-f passband. In the 51S1 receiver the i-f output was fed to the RD through a cathode follower; the maximum output level could not exceed 3 volts. The application using the Drake R4A employed enough attenuation through the coupling to the original product detector output transformer to preclude saturation.

An updated design, which uses ICs, allows the RD to be incorporated into more modern receivers. Models of the new circuit have been made for 10.7, 16 , and 20 MHz . Test models were constructed using point-to-point wiring. Later models used PC boards.

circuit description

The circuit consists of two amplifier chips, IC1, and IC2 (fig. 1). These are monolithic wideband amplifiers with frequency response between 10 kHz and 20 MHz . These chips are 10 -lead devices in TO-5 cans. A third if amplifier, IC3 is a balanced differential amplifier using an internal constant-current source, which eliminates the orignal problem caused

alternative power scheme

fig. 1. Schematic of the reciprocating detector MKII using wideband-amplifier ICs, (A). Also shown are an alternative power scheme for receivers using a high-voltage dc supply, (B), a test setup for adjusting the filter, (C), and a schematic for a $10.7-\mathrm{MHz}$ ssb filter, (D).
by the biased. half-wave rectifier. This amplifier operates from $0-100 \mathrm{MHz}$. This wideband response allows the circuit to work in the same manner as the original current source for the detector and as the reciprocating switch. These two functions are improvements over the old circuit. The dynamic range improvement alone is worth the effort.
Tracing the signal through the circuit, we see that a capacitive input circuit couples the if signal into IC3 input. The capacitive coupling isolates any direct cur-

SOURCE FOLLOWER
rent that might be superimposed on the if signal from the i-f ouput circuit. The input signal is then applied to a phase-shift network, then to one set of inputs of IC1 and IC2. These three inputs are then provided with a signal path that's essentially in series with the reference signal, or beat frequency similar to a conventional product detector.

The reference frequency is generated by filtering a portion of the received signal through a narrowband crystal filter, FL1. The push-pull output of this filter

fig. 2. PC-board layout for the updated reciprocating detector.
feeds this signal into the balanced inputs of IC2 and IC3. We now have the circuit reference by virtue of a carrier-controlled feedback loop. The feedback loop response time is determined by the slow recovery time of the narrowband filter; therefore, noise pulses are reduced or eliminated.

IC4, an op amp, is an audio amplifier. The received-signal audio envelope is taken from the input filter, FL1, then applied through two lowpass filters to the 741 IC. This amplifier audio gain is established by the feedback resistor (51k). This value may be changed for a higher or lower level; however the gain will overdrive the first audio inputs of most communications receivers. A 20 k trimpot at the audio amplifier output allows gain control.

The RD will work in any receiver if its i-f matches that of the RD reference filter. For best results, narrowband i-f filters offering high selectivity are a major requirement. Many receivers use dual filters offset by the correct dispersion to allow either sideband to be selected by switching in the appropriate filter section. Others use adjustable filters to obtain the same effect. I-f passband circuits using single filters, as in many of the older tube receivers, also perform nicely. With $1.8-\mathrm{kHz}$ filters, however, only one side can be used unless the reference or beat frequency is displaced to center the signal in the filter. The older reciprocating detector circuits didn't provide for this problem.

Circuitry to show how a filter can be constructed for upper/lower sideband selection for use in receivers with single passband filters, incorporating three crystals, is shown in the filter circuit. If your
receiver uses filters to select sidebands, then only one crystal, set in the i-f passband center, will be required.

construction of a

10.7-MHz RD filter

The filter used in an RD is not a complicated device. It has a shape factor similar to that of the old variable crystal filters. It's not a wide passband filter because it's used to select the beat-frequency signal.

On a Micro Metals T50-2 toroid core wind 14 turns of 0.2 mm (no. 32) enameled wire. Secure the wire so it won't become loose. Use tape or nylon string. Make sure the coil leads are at least 30 mm (1-1/2 inches) long and are scraped clean of insulation. Next, fold a $30-\mathrm{cm}$ (12-inch) length of the same type wire in half. Twist this pair of wires until you have at least eight twists per 25 mm , or 8 twists per inch. (This is called a bifilar pair.)

Now, using the bifilar pair, wind on the same form a three-turn winding and secure it. This coil should be wound in the area not used by the previous winding, but it isn't important that it be exactly placed or spaced in this area. Next clean off each of the wire ends; then, with an ohmmeter, identify each coil separately. They will be used to complete the connections identified in the filter drawings as C, C^{\prime}, D, and D^{\prime}.

After each winding has been identified, the ends opposite each other can be connected to provide the center-tapped winding signified as C^{\prime} and D in fig. 1. This toroid will contain three coils. Now, on a second core of the same type, wind two eight-turn windings of the bifilar pair and scrape the four ends. Again, with an ohmmeter, identify each coil. These ends can be designated A, A^{\prime}, B, and B^{\prime}.

Mount each coil on the PC board as shown (fig. 2). If you're not using the board, mount the coils about 30 mm (1-1/2 inches) apart. Don't tighten the coils yet. Next, mount the crystal between each toroid, then wind a single turn of 0.2 mm (no. 32) enameled wire on each toroid, terminating one end of each coil on a crystal terminal or the switch, whichever the case may be. The other two coil ends should be connected together.

If your receiver has selectable sideband filters, a single crystal will be required. If not, then wire it as shown in the filter diagram (fig. 1) and include all three crystals. In this case, a selector switch must be used at the filter location. If this is the case, connect the link ends from the two coils to the appropriate switch contacts. Reed switches can be used and provide excellent low-loss control.

The filter components are for 10.7 MHz but will work at 9 MHz with different crystals. The compo-
nents can be juggled to work around that frequency range. Lower frequencies will, of course, have a higher inductance value.

The crystals can be purchased from any of the manufacturers currently advertising in most of the amateur magazines. It's best to use fundamental-frequency crystals mounted in an HC6/U holder, with wire leads to make soldering easy. This doesn't preclude other types of holders or pin-mounted crystals; however, some of the alignment procedures will be a little more difficult, particularly if pressure-type holders are used.

checkout and test

Connect a signal generator and scope or rf voltmeter through terminating resistor R as shown in the test setup. Set the indicator to a high sensitivity and the signal generator to a high output level. Carefully tune the signal generator across 10.7 MHz . An indication with a very sharp upswing in level will occur when passing through crystal resonance. Carefully adjust the signal generator to the peak of the upswing. Then, with an insulated screwdriver, adjust the $9-35 \mathrm{pF}$ capacitors for future increase. The scope sensitivity and the signal-generator output level will have to be reduced as the resonance of each coil is reached. Frequent readjustment of the signal generator will be required to keep it centered at crystal resonance. As the adjustments proceed you'll notice that the sharp increase at the crystal frequency will become easier to adjust.

If a three-crystal unit is to be constructed, make these adjustments at the passband center or with the a-m crystal in the circuit. The other two crystal frequencies are as sharp as that of the a-m resonant frequency and will be within the inductor resonant frequency.

To use the RD in the ssb mode with a single i-f passband filter, it won't be necessary to offset tune the receiver. Simply use it as you normally would. It's like having a crystal controlled bfo - simply switch in the appropriate crystal.

RD construction

The reciprocating detector is simplicity itself to construct. Attention to component placement is similar to that of any high-frequency device. The filter leads can be connected, after filter adjustment, to those points shown (fig. 1) that are alphabetically marked. Use leads as short as possible.

A slight tweaking of the filter might be required after it's installed in the receiver. Use care as to the length of the lead to the RD if input. This is a twoway street: if the lead is too long, external pickup can cause interference to the hf i-f stages; if the lead is

fig. 3. Component placements for the reciprocating detector circuit board.
shielded and too long, it can detune the i-f stage to which it is connected. So a short signal path is required, or an emitter or source follower will be required to reduce these effects.

The choice of how the audio is routed is up to you. It can be connected as shown in the references or used with an external amplifier. Since the output level is in the 100 -millivolt level, it can easily drive an external amplifier.

power supply

Power requirements for the new RD are further simplified. The older unit required a dual balanced supply source, but this unit requires a single 12 -volt supply at 40 milliamperes. The RD supply can be taken from the receiver supply filter output if it's 12 volts. Or you can use a higher-voltage supply, such as found in a tube reciver, if you use the alternative supply scheme shown in fig. 1.

I will be pleased to hear from anyone who has used the RD and will communicate with all who write. Please include a self-addressed, stamped envelope with your letter.

reference

1. Stirling Olberg, WISNN, "Reciprocating Detector," ham radio, March, 1972, pages 32-35.

bibliography

[^10]ham radio
...pacesetter in amateur radio

The TS-520S, the most popular Amateur Radia transceiver inthe world

...provides a foundation for an expanding series of accessories designed to please any ham... from Novice to Amateur Extra.

The TS-520S transceiver provides full transmit and receive coverage of all Amateur bands from 160 through 10 meters. It also receives 15.0 (WWV) to 15.5 MHz and another $500-\mathrm{kHz}$ range of your choice in the auxiliary band position. With the optional DG-5, you have a large digital frequency readout when transmitting and receiving, and the DG-5 also doubles as a $40-\mathrm{MHz}$ frequency counter. The TS-520S includes a built-in AC power supply. and, with the addition of the optional DS-1A DCDC converter, it can function as a mobile rig. It features a very effective noise blanker, RIT, eightpole crystal filter, $25-\mathrm{kHz}$ calibrator, front-panel carrier level control, semi-break-in CW with sidetone, built-in speaker, heater switch, 20-dB RF attenuator and easy phone-patch connection. RF input power is 200 W PEP on SSB and 160 W DC on CW. Carrier suppression is better than -40 dB and sideband suppression is better than -50 dB . Spurious radiation is less than -40 dB . Receiver sensitivity is $0.25 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$. Selectivity is 2.4 kHz at $-6 \mathrm{~dB} / 4.4 \mathrm{kHz}$ at -60 dB and, with the optional CW-520 CW filter, is 0.5 kHz at $-6 \mathrm{~dB} / 1.5 \mathrm{kHz}$ at -60 dB .
See your local Authorized Kenwood Dealer for more information, and a super deal!

A great station . . . at an affordable price! The TS-520S with its companion accessories . . including two new units. The AT-200 antenna tuner provides a versatile tool in any station. The other is the TV-502S, Kenwood's 2 meter transverter for SSB and CW operation from 144 to 146 MHz .

Kenwood's finest 2-meter rig... all modes for all occasions

STILL THE SAME FINE, TIME PROVEN RIG. BUT NOW WITH THE SIMPLE ADDITION OF A PLUG-IN CRYSTAL, THE TS-700SP WILL BE ABLE TO UTILIZE THE NEW REPEATER SUB-BAND (144.5 to 145.5 MHz) STILL FEATURES ALL OF THE FINE ATTRIBUTES OF THE TS-700S: A DIGITAL FREQUENCY DISPLAY, RECEIVER PRE-AMP, VOX, SEMI-BREAK IN, AND CW SIDETONE. OF COURSE, IT'S ALL MODE, 144-148 MHZ, VFO CONTROLLED . . AND KENWOOD QUALITY THROUGHOUT.

TS-700sp

Features: 4 MHz band coverage (144 to 148 MHz)

- Automatic repeater offset capability on all FCC authorized repeater subbands including 144.5 . 145.5 MHz - Simply dial receive frequency and radio does the rest . . . simplex, repeater, or reverse. Same features on any of 11 crystal positions- Transmit/Receive capability on 44 channels with 11 crystals - Operates all modes: SSB (upper and lower), FM, AM and CW - Digital readout with "Kenwood Blue" digits - Receiver pre-amp - Built-in VOX - Semi break-in on CW CW sidetone - All solid-state • AC and DC capability. 10 watts RF output on SSB, FM, CW • 3 watts on AM - 1 watt FM low-power switch $0.25 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ SSB/CW sensitivity $0.4 \mu \mathrm{~V}$ for 20 dB quieting FM sensitivity.
10 watts RF output on SSB, FM, CW - 3 watts on AM -1 watt $F M$ low-power switch $-0.25 \mu \mathrm{~V}$ for 10 $\mathrm{dB}(\mathrm{S}+\mathrm{N}) / \mathrm{N}$ SSB/CW sensitivity $\cdot 0.4 \mu \mathrm{~V}$ for 20 dB quieting FM sensitivity.

The TS-700SP shown with the matching VFO-700S and SP-70. Also shown is Kenwood's new MC-30 noise cancelling hand held microphone, HS-4 headphone set and the MC-50 dynamic microphone.

- dual demodulator terminal unit

Continuing in the digiratt series, the PLL^{2} demodulator uses dual phase-locked loops to help eliminate loss of signal due to fading

Phase-lock loop terminal units have been around in various forms for several years. As a means of receiving RTTY signals inexpensively, they are certainly worth considering. The one common drawback to PLL terminal units is that they decode only half the available information present in the RTTY signal. Many comments have been made by amateurs over the years that this fact really isn't a drawback at all, because there are only two possible states that the RTTY signals can be in at any one time and the absence of one condition indicates the existence of the other.

There is, however, an occurrence known as selective fading which can completely eliminate one half of the RTTY signal while leaving the other intact. If you happen to be tuned to the particular tone which fades out, you'll find your printer ceasing to operate until the tone returns.

PLL terminal units have several good points. Among these are:

1. They will follow a drifting signal until it leaves their passband.
2. Since they are inherently frequency selective, they do not require passive input filters.
3. They are not expensive.

It follows then that if a means could be found to use PLL circuits to decode both RTTY signals (mark and space), the overall usefulness of the terminal unit would be improved.

The original Digiratt PLL terminal was an attempt to design a low-cost vhf terminal unit and AFSK generator. ${ }^{1}$ I received letters from all over the world which led me to believe that there is a large amount of interest in a simple means of decoding RTTY signals. The Digiratt PLL ${ }^{2}$ is the direct result of those letters and is presented here as one possible approach to the need for such a unit.

The Digiratt PLL2 is composed of two identical tone demodulators, using the 567 phased-lock loop.

fig. 1. Schematic diagram of the 567 phase-locked loop used as a demodulator. In this case, two 567s are used; the first will demodulate the space signals while the second is for the mark frequency.

A two-stage active filter is included, and may be switched into the circuit ahead of the PLL inputs in order to detect low-level signals. Additionally, a very novel logic circuit, which has the capability to regenerate missing information during selective fading, follows the PLL portion of the terminal unit.

circuit description

The description of the PLL circuits themselves can be found in the original Digiratt article; this unit uses the same decoder circuitry. Decoder A (see fig. 1) is tuned to the mark frequency of 2125 Hz , with decoder B tuned to the space frequency (2295 Hz). The A decoder capture frequency is slewed low and the B decoder slewed high so that there exists an area from approximately 2190 Hz to 2220 Hz where neither PLL will conduct. The exact procedure for accomplishing this operation will be covered in the alignment section.

SELCOMP is a name the author has given to the logic responsible for the SELective fading COMPensation which is part of the Digiratt PLL. ${ }^{2}$ The schematic diagram is shown in fig. 2. In order to understand its operation, two separate conditions will be
explained, normal full-signal operation and operation under "no space" conditions.

Normal. A low-going mark signal is buffered by U5A and then sets the RS latch, U6. The output from the latch causes the multiplexer, U8, to select its pin 5 input. The mark signal then appears at the base of Q1, the selector magnet driver circuit. A subsequent low-going space signal will reset the RS latch, causing the multiplexer to select the pin 6 input. Since the space input from the decoder is a low true signal, it is inverted by U4. Therefore, the output from the

fig. 2. Under normal conditions, the multiplexer switches between the mark and $\overline{\text { space }}$ signals. If either signal is lost, the logic will continue to use the remaining signal as the drive for the selector magnets. The \mathbf{Q} and $\overline{\mathbf{Q}}$ outputs from U8 allow you to use either normal or inverted data. The 100 $V d c$ for the selector magnets comes from the power supply shown in fig. 5.
multiplexer will be low for mark and high for space. Also, the complement signal from the multiplexer can be used to provide for normal and inverted signals.

No Space. Now, assume that space data is lost. When this occurs, the RS latch will never reset and the magnet driver will receive only mark data. If mark data is lost, the selector magnet is driven by space data because the RS latch is never set and therefore

fig. 3. Schematic diagram of the 2-stage active filter. Using an LM3900, this filter provides 23-dB gain, with a designed center frequency of 2210 Hz . All resistors are 1/4 watt, 1 per cent tolerance. C1 and C2 are polystyrene capacitors.
the multiplexer always looks at the incoming inverted space data.
Because of this logic scheme, selective fading is greatly minimized. There is one condition which the logic will not correct, and that is a selective fade during a 22 ms character element. In other words, if a single bit is lost there is very little any simple system such as SELCOMP will do for the problem.

Fortunately, such rapid selective fading is relatively rare. A much more common occurrence is printer noise or external impulse type noise, which your receiver's noise blanker will generally handle.

The active filter, as shown in fig. 3, is a two-stage device with a gain of approximately 23 dB and a Q
of 25 . The center frequency is 2210 Hz . For the reader who wishes to design his own filter, the formulas are included in the appendix.
Unfortunately, the use of an active filter, and its added performance, is offset due to the rather large additional cost of 1 per cent resistors.

The back-to-back diodes, across the audio input, are required to prevent front-end overloads. These diodes should be used if the active filter is not built. In that case, the diodes are connected across the common feed point.

construction

Construction of the PLL2 is straightforward, with

fig. 4. The circuit board for the PLL² is shown in A, with the parts placement diagram shown in B.
the entire circuit mounted on a single printed circuit board.* A copy of the printed circuit board and its parts placement are shown in fig. 4. The cabinet, which housed the prototype, measured $15 \times 29 \times$ $9 \mathrm{~cm}(5-7 / 8 \times 11-3 / 8 \times 3-1 / 2$ inches). \dagger Use shielded audio cable from the input connectors to the circuit board. For difficult RFI problems, you can apply $0.01-\mu \mathrm{F}$ capacitors at the $\mathrm{V}_{\mathrm{cc}} \mathrm{pin}$ of each IC.

alignment

The Digiratt PLL ${ }^{2}$ should be aligned as follows:

1. Apply a $2125 \mathrm{~Hz}, 1$-volt, p-p sinewave into the audio input of the unit.
2. Adjust the decoder A until the mark-indicating LED illuminates.
3. Change the audio input to 2295 Hz and repeat the procedure for decoder B .
4. Reset the audio source for 2190 Hz and adjust decoder A until the mark LED goes out.
5. Reset the source for 2125 Hz and verify that the mark LED illuminates.
6. Again reset the source to 2190 Hz and verify that the mark LED goes out.

When the above conditions can be met, the mark portion of the circuit is aligned.

Decoder B is adjusted in the same manner, using 2220 and 2295 Hz . If you now sweep the frequency
-A complete kit of parts is available from Circuit Board Specialists, Box 969, Pueblo, Colorado 81002 for $\$ 31.10$. The circuit board alone costs $\$ 7.50$.
tAvailable from Radio Shack - RS270-282.

In the foreground is the RY generator board (ham radio, January, 1978). From left to right, Prototype PLL twin decoders and Sel-comp logic, low voltage supply, 100 VDC. 100 mA loop supply is on the extreme right.

fig. 5. Power supply for the Digiratt PLL. ${ }^{2}$ When mounting the LM309Ks, ensure that an adequate heat sink is provided.
from 2050 to 2350 Hz , the mark LED should illuminate at 2125 Hz , remaining on until 2190 Hz . At 2220 Hz the space LED should light until you reach 2295 Hz . Between 2190 and 2220 Hz , neither LED should be be on.

summary

The Digiratt PLL ${ }^{2}$ is not the ultimate terminal unit, however the builder can expect very satisfactory results from it in all but the most adverse conditions.

The following persons have been most helpful to me over the past year or so during which I have been designing the various Digiratt projects: Don Smith, W9EPT; Bernie Holtman, W4GO; and Gus Bezy, K9FUI.

appendix

Design equations for a two-stage, bandpass filter using an LM3900 Norton amplifier. 2
$R 1, R 4$, and $R 6=\frac{25}{6.283 \times F_{o} \times C_{l}}$
where $F_{o}=$ center frequency in Hertz
$C_{1}=$ chosen value in Farads
$R 2=R 1 \times 1.5306$
$R 3=\frac{R 1}{623.34}$
$R 5=2 R 1$
$R 7=3 R I$
$R 8=\frac{R l \times R 7}{R l+R 7}$
C1, C2 $=$ Any convenient value
These equations will yield a two-stage filter with a gain of 23 dB and a Q of 25 . Use 1 per cent resistors.

references

1. John Loughmiller, WB9ATW, "Digiratt - RTTY AFSK Generator and Demodulator," ham radio, September, 1977, page 26.
2. "The LM3900," Linear Applications, Volume I, National Semiconductor Corporation, Santa Clara, California, 1976.
ham radio

there's a world of difference in TEN-TEC's all-new hf transceiver

OMNI-THEALL-INCLUSIVE. Because OMNI has it all. Designed to give you every advantage, every capability, whatever your operating specialty. Designed to give you new conveniences and new levels of performance. Designed to give you the world of Amateur Radio with a world of difference-the OMNI world of unique features. An unusual combination not found in any other.
FUNCTIONAL STYLING. The "look" you requested. "Clamshell" aluminum case clad in textured black vinyl. Complementary nonreflective warm dark metal front panel. Extruded satin aluminum trim bezel and tilt bail. Convenient controls. Fully shielded. And everything in a larger, easier-to-use size: $5 \frac{3}{4} " h \times 141 / 4 " w \times 14^{\prime \prime} \mathrm{d}$.
TOTALLY SOLID-STATE. Sharing the TEN-TEC heritage of solid-state design leadership with its companion transceivers, the highly successful $540 / 544$. OMNI has all the advantages of proven solid-state technology-reliability, long life, cool performance, better stability.
8-BANDS. The world now and in the future. OMNI covers 160, 80, 40, 20, 15, and 10 meters now (crystals included for all present Amateur bands, $18-30 \mathrm{MHz}$). And it has convertible 10 MHz and "AUX" band positions for the future.
BROADBAND DESIGN. Permits changing bands without tune-up, without danger of out-of-resonance damage to the final stage.
ANALOG OR DIGITAL READOUTS. OMNI-A features an analog dial with 1 kHz dial markings. OMNI-D has $0.43^{\prime \prime}$ LED readouts with the 5 most significant in red and the 6th in green to show 100 Hz increments. BUILT-IN VOX AND PTT. Smooth VOX action with 3 easy-to-adjust front panel controls. PTT control is available at both front and rear panel jacks: an external microphone switch may be used.
BUILT-IN SQUELCH. Unusual in an hf rig, but handy for tuning or monitoring for a net or sked.
BUILT-IN 4-POSITION CW/SSB FILTER. 150 Hz bandwidth with 3 selectable skirt contours for optimum CW reception
8-POLE CRYSTAL FILTER. 2.4 kHz bandwidth, 1.8 shape factor.
SEPARATE MODE SWITCH. Permits using all filters in any mode.
2-SPEED BREAK-IN. Switch to "fast" or "slow" receiver muting to accomodate any band condition or mobile operating.
2-RANGE OFFSET TUNING. Switch-select the $\pm 5 \mathrm{kHz}$ range for off-frequency $D X$ work or the $\pm 0.5 \mathrm{kHz}$ range for fine tuning.
OPTIMIZED RECEIVER SENSITIVITY. Ranges from 2 uV on 160 m to 0.3 uV on $10 \mathrm{~m}(10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N})$ to achieve ideal balance between dynamic range and sensitivity.
GREATER DYNAMIC RANGE. Typically exceeds 90 dB to reduce possible overload from nearby stations. Also includes switchable 18 dB PIN diode attenuator for additional overload prevention.
WWV RECEPTION. On the 10 MHz band switch position.
FRONT PANEL CONTROL OF LINEAR/ANTENNA BAND. SWITCHING. Auxiliary bandswitch terminals on back panel for simultaneous control of external relays or circuits with the OMNI bandswitch.

BUILT-IN PHONE PATCH JACKS. Provide interface to speaker and microphone audio signals for phone patch connection.
BUILT-IN "TIMED" CRYSTAL CALIBRATOR. In the OMNI-A a pulsed 25 kHz calibrator desensitizes the receiver and provides an automatic 5 to 10 second "on" time for easy two-hand dial skirt adjustment.
BUILT-IN ZERO BEAT SWITCH. Permits placing your transmitted signal exactly on the listening frequencies of CW stations.
BUILT-IN SWR BRIDGE. The " S " meter electronically switches to read SWR every time you transmit to provide a continuous antenna check.

FRONT PANEL MICROPHONE AND PHONE JACKS.

ADJUSTABLE AUTOMATIC LEVEL CONTROL. For setting output power level from low power to full output, for retaining low distortion at desired drive power to linear amplifier.
SEPARATE RECEIVING ANTENNA CAPABILITY. Rear panel switch and jack connect receiving section to common antenna or separate receiving antenna. Also acts as receiving antenna by-pass when used with instant break-in linear amplifiers.
BUILT-IN ADJUSTABLE SIDETONE. Variable pitch and volume. DUAL COMPRESSION-LOADED SPEAKERS. Larger sound out put, lower distortion, no external speaker needed.
POWER INPUT. 200 watts when used with 50 ohm load. Proven, conservatively-rated, solid-state final amplifier design with full warranty for first year and pro-rata warranty for 5 additional years.
$\mathbf{1 0 0 \%}$ DUTY CYCLE. Ideal for RTTY, SSTV, or sustained hard usage. PLUG-IN CIRCUIT BOARDS. For fast, easy field service.
POWER. Basic 12 VDC operation for convenient mobile use: external supply required for 117 VAC operation.
OPTIONAL ACCESSORIES. As all-inclusive as OMNI is, there are a few options: Model 645 Keyer, 243 Remote VFO. 248 Noise Blanker, 252M Power Supply.

Model 545 OMNI-A $\$ 899$ Model 546 OMNI-D $\$ 1069$
Experience the world of difference of OMNI, see your TEN-TEC dealer or write for details.

SEVIERVILLE, TENNESSEE 37862

1 Receiver RESONATE control for peak sensitivity
2 Recerver Dual Range OFFSET TUNING control tor off-trequency Work
3 ZERO BEAT switch. spring-loaded, momentary contact
46 -Digit LED FREOUENCY READOUT for 100 Hz accuracy
5 OFFSET TUNING LED indicates OT switch is on
6 MAIN TUNING KNOB; big, easy-t0-grip with integral spinner
7 AUTOMATIC LEVEL CONTROL LED indicates ALC-region operation 8 Combination "S" and SWR METER, switches automatically.

9 Combination ALC control and NOISE BLANKER on/oft switch. 10 DRIVE control for final stage.
11 SQUELOH combination on/off switch and control
12 4-Position SELECTIVITY switch for SSB and CW
13 4-Position MODE switch, automatic SSB Normal. Reverse, CW and Lock (key down)
14 Combination push-pull POWER swith and AUDIO LEVEL control 15 Combination RF AT TENUATOR on/oft switch and controi. 16 VOX GAIN control

17 VOX DELAY control
18 VOX ANTI-TRIP control
19 11. Position BAND SWITCH
20 MICROPHONE jack. hi-2 input
21 HEADPHONES jack
22. RECEIVER OFF-SET TUNING SWITCH. 3-position Max-Min-OH

23 VOX-PTI SWITCH
24 OSK (full break-in) SWITCH. 2-position. Fast-Slow.

high-sensitivity preamplifier for frequency counters

Discussion of the design requirements for a counter preamplifier, which in addition to high sensitivity and input impedance also exhibits frontend overload protection

Frequency counter design has been greatly simplified since the introduction of the Intersil 7207/7208 and the recent 7216/26 integrated circuits. Several designs have appeared in ham radio 1,2 which make use of the 7207/7208 chip set with simple preamplifiers. Since a frequency counter's performance is largely limited by the preamplifier used to condition its input signal, this stage should receive significant attention during the design phase.

Such a preamplifier should have high input impedance, much like that of an oscilloscope vertical amplifier. It should also have enough sensitivity to permit the use of a X10 oscilloscope probe for minimum circuit loading, even at high frequencies. The preamplifier should be able to handle large input signals without overload, necessitating some form of input attenuator. Since the 7208 is a $5-\mathrm{MHz}$ counter, the preamplifier should have a $50-\mathrm{MHz}$ bandwidth for use with a prescaler. For proper counting of low-frequency signals with slow rise and fall times, the preamplifier should make use of a Schmitt trigger with hysteresis to prevent multiple triggering. A lowpass filter is also useful for counting noisy low-frequency signals.

preamplifier design

One method of achieving the high input impedance is to use an fet input stage followed by a broadband integrated circuit amplifier for high sensitivity.

fig. 1. Schematic diagram of the high-sensitivity $0-50 \mathrm{MHz}$ preamp and vhf prescaler. Input sensitivity ranges from less than 5 mV at 1 MHz to about 21 mV rms at 50 MHz . Note that the 733 uses the 14 -pin DIP package. The filter (S2) is used to ensure accurate counting while measuring noisy low-frequency signals.

Overloading of the fet input stage can be prevented by a diode limiter and an attenuator. Since there are a variety of TTL integrated circuits available with Schmitt trigger inputs, one of these devices can provide the hysteresis and also the TTL signal conditioning. With the Schmitt trigger operating correctly, enough gain can be added ahead of it to provide sensitivity into the low-millivolt region.

The circuit that resulted from this approach appears in fig. 1. I've also included the vhf preamplifier and prescaler discussed by K4JIU.

The hysteresis and TTL signal conditioning are provided by a 74S 132, which has a worst-case hysteresis of 0.8 volts. Therefore, I needed a preceding voltage gain of at least 100 to attain a sensitivity of a few millivolts. A 733 broadband amplifier seemed to be just

fig. 2. Circuit board layout for the preamp: bottom of board, right; component side, left.
the device, since it will provide a voltage gain of 400 to approximately 40 MHz .

During the breadboard testing, I found that the 733 would break into oscillation whenever I connected a X10 oscilloscope probe to its output. I was able to eliminate the problem by connecting a small resistor in series with the probe, thus reducing the capacitive probe loading on the 733 output. For this same reason, it seemed like a good precautionary measure to include some resistance between the 733 output and the 74S132 input. I chose R11 to be as large as possible and yet provide for proper sinking of the 74 S132 input current by the 733 output under worstcase conditions.

The fet buffer amplifier, composed of Q1, O2, and Q3, has the high-input resistance and low-input capacitance necessary for an oscilloscope-type input. In this stage, O 2 is a current source which offers several important benefits. First, it provides a highsource impedance for Q1 so that its voltage gain is nearly unity. Second, it serves as an active current sink to pull down the base of Q3 on negative-going

fig. 3. Parts placement diagram for the high-sensitivity preamplifier.
half cycles of the input signal. Lastly, it provides a measure of temperature compensation so that the maximum signal swing is available over a wide range of operating temperatures.

A significant reduction in the input capacitance of an fet preamplifier can be obtained by driving the input transistor's drain in phase with the input signal. This technique, implemented by C3 and R4, virtually eliminates the drain to gate capacitance of Q1, thus reducing its input capacitance by as much as 5 pF .

I spent most of my design time on the components

fig. 4. Input sensitivity curve for the counter preamplifier.
in the gate circuit of Q1. These components control input capacitance, input resistance, overload characteristics, and lowpass filtering. At low frequencies, and for small signal amplitudes, the input circuit consists of only R1. The gate bias current is supplied by CR1, CR2, and R2. As the low-frequency input signal increases in amplitude, CR1 and CR2 begin to conduct and form a 100-to-1 voltage divider between R1 and R2, thus limiting the Q1 gate voltage. Lowpass filtering is provided by R1 and C2, which have a 16kHz corner frequency. With high-frequency input signals, C1 compensates for the input capacitance of the Q1 gate components and keeps the voltage gain of the stage roughly constant. The price paid for this is the unavoidable lowering of the input impedance of the preamplifier as frequency increases. The R1-R2 attenuator rapidly loses effectiveness as the input frequency increases above 1 MHz . Again, this is due to the shunting effect of C 1 . An input attenuator, R3 and S 1 , solves this problem so that it is possible to connect as much as 60 volts rms directly to the counter input at 5 MHz and still obtain correct counting of the input signal. Without this attenuator, the preamplifier would saturate at 3 volts rms input at frequencies above 10 MHz .

construction

A printed circuit layout and component assembly appear in figs. 2 and 3. The two-sided printed circuit board contains the high-frequency preamplifier as well as the $500-\mathrm{MHz}$ prescaler. Short conductor lengths and liberal use of bypass capacitors have kept the circuit stable and free of oscillations in the four preamplifiers which have been assembled.

The attenuator switch and filter switch are designed for printed circuit board mounting and may be diffi-

fig. 5. Equivalent circuit for the input of the preamplifier. At signal tevels up to 50 mV rms, the amplifier has an equivalent input impedance of 4 megohms shunted by 10 pF .
cult to procure. However, there is no requirement that they be mounted this way. Actually, a decrease in input capacitance may be obtained by mounting them off the printed circuit board.

In order to reduce the input capacitance, C20 was mounted between T3 and the input BNC connector. A 1.5 -megohm resistor may be connected between T3 and T4 to standarize the input- to one megohm shunted by 10 pF .

The preamplifier will require approximately 70 mA from the +5 volt supply and 40 mA from the -5 volt supply.

performance

The only adjustment needed to get the preamplifier operating properly is the setting of the sensitivity potentiometer, R8. The adjustment is easily accomplished by applying a 30 to 50 MHz signal to the preamplifier input and adjusting R8 for a steady pulse train out of the 74S132. The signal can then be reduced and R8 readjusted. This process should be repeated until the adjustment of R8 produces maximum sensitivity.

A plot of the input sensitivity of the preamplifier appears in fig. 4. The sensitivity remains constant from a few Hz to 5 MHz and then begins to increase to 21 mV rms at 50 MHz .

I measured the input impedance from these threshold levels up to 50 mV rms and found it to be equivalent to 4 megohms shunted by 10 pF . An equivalent circuit of this input is shown in fig. 5.

As the input amplitude increases above 50 mV rms, the diode attenuator begins to lower the input impedance so that at amplitudes greater than 300 mV rms the input impedance is determined by $\mathrm{R} 1, \mathrm{C} 1$, and R2. It is possible to design an input network such that the input impedance at higher frequencies is still very high, but it would suffer from the lack of protection afforded by this design. Fig. 6 is a plot of the
maximum input signal for proper counting (attenuator off) as a function of frequency. The maximum low-frequency input of 140 volts rms is limited by the $1 / 4$-watt dissipation of R1. At high frequencies, the input buffer will overload when the $\mathrm{Q1}$ gate voltage reaches 10 to 15 volts pk -to-pk. Counting errors will occur when this level is exceeded. The input attenuator, to a point, helps relieve the overloading. However, as 50 MHz is approached, the input impedance due to C 1 is only slightly greater than 100 ohms. The maximum input at 50 MHz would therefore be approximately 9 volts rms.

conclusions

This preamplifier, in conjunction with the K4JIU counter, performs admirably as an inexpensive laboratory frequency counter. The input impedance and sensitivity of the preamplifier worked out in practice to be as the design predicted and certainly adequate for most measurements. However, one thing did sur-

fig. 6. Maximum signal levels for an input impedance of 100k ohms and 33 pF.
prise me, the effect of input capacitance in lowering the input impedance at high frequencies. Although the preamplifier's input impedance is no worse than the typical input impedance of an oscilloscope, it still presents a very low impedance at 50 MHz .

references

1. John H. Bordelon, K4JIU, 'Simple Front Ends for a $500-\mathrm{MHz}$ Frequency Counter," ham radio, February 1978, page 30.
2. Holton E. Harris, W1WP. "Simplifying the Digital Frequency Counter," ham radio, February 1978, page 22.
ham radio

twin-diode mixer

a new microwave mixer

A new microwave mixer using two diodes and half-wavelength lines yields an approximately 6 dB noise figure

This article describes a new microwave mixer, unique in that it has few parts and does not require boards or complicated metalwork. You can build it in a minimum of time, and with confidence of having a good mixer when you're done. The $1296-\mathrm{MHz}$ model to be described has a 6.4 dB noise figure including a 1.2 dB i-f noise figure. Other features include the following:

1. A very low local-oscillator power requirement of -3 dBm
2. The local oscillator frequency is half that normally used
3. No dc return is necessary

4. There is no tuning

5. There is high isolation between all ports

mixer theory

A diagram of the ideal mixer is shown in fig. 1. The ideal filters pass currents only at the rf or i-f frequency, with the switch toggled at the normal LO frequency, $f_{r f}-f_{i f}$. Thus, energy from an rf source is converted to the $\mathrm{i}-\mathrm{f}$ and delivered to a load at the i-f port. There is no energy lost in the mixer, and the receiver's noise figure is that of the i-f.
In a real mixer, the switch takes the form of a diode which is turned on and off by the local oscillator. However, the diode is never a perfect open or short circuit, and as such will absorb some energy. Losses also occur in the circuitry surrounding the diode; the total loss depends in a complicated way upon the mixer circuit, the pump level, and, to a lesser extent, the diode itself. All high-performance mixers attempt to achieve the conditions of the ideal case shown in fig. 1.
Mixer performance can be characterized by the following equations:

$$
\begin{align*}
T_{s s b} & =\left(L_{c}-1\right) T_{0} \tag{1}\\
T_{d s b} & =\left(L_{c}-2\right) T_{0} \tag{2}\\
L_{c} & =\frac{i \cdot f P_{i n}}{r f P_{o u t}} \tag{3}
\end{align*}
$$

fig. 1. Diagram of the ideal mixer operating at 1296 MHz . The switch will toggle at a $1268-\mathrm{MHz}$ rate, causing the $1296-\mathrm{MHz}$ input to be converted to 28 MHz .
where
$T_{s s b}$ is the ssb mixer noise temperature
T_{0} is the physical temperature of the mixer in degrees Kelvin.
$T_{d s b}$ is the double sideband mixer noise temperature.

Note that eq. 3 requires an input signal at the i-f frequency to directly measure conversion loss. The loss going the other direction is generally different. The loss of a dsb mixer is never less than 2, since i-f energy is equally converted to signal and image frequencies. However, as shown by eq. 2, the noise figure is not limited to 3 dB .

Eq. 2 is complicated by the problem of measuring the dsb mixer noise figure. The equivalent ssb noise performance in terms of the indicated noise figure is

$$
\begin{equation*}
F_{s s b}=2 F_{m}-1 \tag{4}
\end{equation*}
$$

where

$$
F_{m} \text { is the measured noise figure. }
$$

For example, if the meter indicates 4 dB for a dsb mixer, the ssb noise figure is actually 6 dB , not the 7 dB obtained by simply adding 3 dB to the indicated noise figure.* This common mistake introduces substantial error for low noise figures. For each type mixer, ssb system noise temperature is given by the following:

Component mounting configuration at the rf and LO ports.

ssb mixer

$$
\begin{equation*}
T_{S Y S}=\left(L_{c}-1\right) T_{0}+L_{c} T_{i \cdot f}+T_{a n t} \tag{5}
\end{equation*}
$$

dsb mixer

$$
\begin{equation*}
T_{S Y S}=\left(L_{c}-2\right) T_{0}+L_{c} T_{i \cdot f}+2 T_{a n t} \tag{6}
\end{equation*}
$$

twin-diode mixer

An alternative to using a single diode is to use a pair of parallel-connected diodes, of opposite polarity, and pumped by a local oscillator at one-half the normal frequency. Each diode is turned on once during the LO cycle, 180 degrees apart, and both are off when the LO voltage is zero. Thus, a pair of diodes

fig. 2. Schematic diagram of the twin-diode mixer. The halfwavelength lines are 5 mm (3/16 inch) wide and mounted 1.5 $\mathrm{mm}(1 / 16$ inch) above the ground plane. Ensure that the line on the right is connected to the ground plane, while the one on the left remains open. Since the local-oscillator frequency is approximately one-half that of the input rf, the grounded half-wavelength line will look like an open circuit to the LO port and also like a low impedance to the rf port. L1 is 3 cm (1 inch) no. 28 AWG (0.3 mm) wire; 12 is 15 turns no. 32 AWG $(0.2 \mathrm{~mm})$ wire wound to a diameter of $1.5 \mathrm{~mm}(1 / 16$ inch).
pumped at 634 MHz performs identically to a single diode pumped at 1268 MHz .

Fig. 2 shows a full-size mixer circuit for 1296 MHz which takes advantage of the frequency relation in the twin-diode scheme. On each side of the diode pair is a half-wavelength line at the if frequency, and thus a quarter wavelength at the local oscillator frequency. At each frequency, an open circuit exists at the respective port, with a short on the opposite side of the diode pair. This ideally gives total isolation between the ports. The i-f and local oscillator ports may be dc or ac coupled, but the rf port must be capacitively coupled so that it presents an open circuit to the i-f. The bandwidth of the mixer is about 20 per

[^11]fig. 3. Test setup for the mixer conversion loss and isolation measurements. All ports are terminated in 50 ohms.

cent, so line lengths as well as component values are not critical.

mixer evaluation

The mixer was tested by measuring the noise figure and also by measuring the actual conversion loss. The results were in good agreement. The conversion loss test setup is shown in fig. 3. The input level was $-30 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$ at 28 MHz . This level was used because more signal causes undesired higher-order products in the output, and less signal is difficult to accurately measure. The LO level is -3 dBm , which was found to be optimum both in the conversion loss and noise figure measurements. The spectrum analyzer was calibrated for absolute level at 1296 MHz so that the overall accuracy of the conversion loss measurement is $\pm 0.5 \mathrm{~dB}$.

Fig. 4 shows the output as observed on the analyzer. All LO harmonics are 37 dB down (-40 dBm) from the input at 634 MHz . The desired signal and its primary image are both $6 \mathrm{~dB}(-36 \mathrm{dBm})$ below the $28-\mathrm{MHz}$ input level. Other responses are down enough that they can be neglected.

As can be seen, the device is indeed a double-sideband mixer, so that ssb receiver noise temperature is found from the following:

$$
\begin{aligned}
T_{e} & =\left(L_{c}-2\right) T_{0}+L_{c} T_{i \cdot f} \\
& =2(297 K)+4(92 K) \\
& =962 K
\end{aligned}
$$

View of the microwave mixer showing overall layout. Built on 3 mm ($1 / 8$ inch) aluminum this mixer used brass shim stock for the lines. BNC connectors were used at all ports.
where

$$
\begin{aligned}
L_{c} & =\text { the conversion loss } 6 \mathrm{~dB}=4 \\
T_{0} & =\text { the mixer operating temperature } 297 \mathrm{~K} \\
T_{i . f} & =\text { a } 1.2 \mathrm{~dB} \text { i-f noise figure } 92 \mathrm{~K}
\end{aligned}
$$

The single sideband noise figure is

$$
F_{s s b}=1+T_{e} / 290=6.4 d B
$$

Addition of a good input filter should lower the conversion loss to 3 to 4 dB and thus give an overall noise figure of 5 dB or less. However, care must be taken to keep filter losses low or else this improve-

fig. 4. Mixer output as observed on the spectrum analyzer. The local oscillator was 634 MHz at $-\mathbf{3 d B m}$. The $\mathbf{2 8 - M H z}$ i-f input was at $\mathbf{- 3 0} \mathbf{d B m}$. The output levels are read directly in dBm .
ment will not be obtained, In view of the fact that the mixer, as described, is probably better than most in use today, I haven't taken time to build a filter.

summary

In this article I have presented a new mixer configuration for use at 1296 MHz . The circuit can be used at higher microwave frequencies by simply scaling the half-wavelength lines. The device exceeds the performance of most available doubly balanced mixers by producing a 6.4 dB noise figure, nearly 40 dB isolation between all ports, and an LO requirement of only -3 dBm . In addition, the LO frequency is onehalf that normally required, a most attractive feature.

A brief review of mixer theory, including noise performance, was presented to give a better understanding of twin-diode mixer operation. The noise relationships can be used to properly characterize receiver system performance using the twin-diode mixer or any other ssb or dsb mixer.
ham radio

Wharenimaral| 8 Eacorictocuil

CRYSTAL TYPES

(GP) for "General Purpose" applications
(CS) for "Commercial" equipment
(HA) for "High Accuracy" close temperature tolerance requirements
International Crystals are available from 70
KHz to 160 MHz in a wide variety of holders. WRITE FOR INFORMATION

F605-SL

F-13

INTERNATIONALCRYSTAL MFG. CO., INC.
10 North Lee, Oklahoma City. Oklahoma 73102

YOU ASKED FOR IT YOU GOT IT

 DSI QUIK-KIT®
550 MHZ COUNTER KIT

 Performance You Can Count On

OPERATES ON

- Batt 6-C Size -DC 8.2 To 14.5 VDC -AC Batt. Eliminator

$\$ 99.95$

MODEL 3550 KIT

DSI OFFERS THE BEST OF TWO WORLDS . . .

An unprecendented DSI VALUE in a high quality, LSI Design, 550 MHZ frequency counter kit. And, because it's a DSI innovation, you know it obsoletes any competitive makes, both in price \& performance. The basic 550 MHZ counter \& time base are factory assembled, tested and burned-in. The problems of bad LEDS, IC's, capacitors, are a thing of the past with DSI QUIK-KIT®. But you can take pride in assembling the power supply, PC mounted selector switch, input connectors, and the final mechanical assembly of your 550 MHZ counter, into its' handsome cabinet. GO WITH THE LEADER . . . BUY A DSI FREQUENCY COUNTER KIT. SAVE TIME \& MONEY AND BE ASSURED IT WILL WORK THE FIRST TIME.

SEE YOUR LOCAL DEALER OR

> VISA $~$ MC AMERICAN EXPRESS CK - MONEY ORDER COD CALL TOLL FREE (800) 854-2049 Californa Residents, Call Collect (714) 565-8402 DSI INSTRUMENTS, INC.
7914 Ronson Road No. G, San Diego, CA 92111

SPECIFICATIONS

Time Base TCXO 1PPM 65° to $85^{\circ} \mathrm{F}$ Frequency Range 50 HZ to 550 MHZ
Resolution 1 HZ to $55 \mathrm{MHZ}, 10 \mathrm{HZ}$ to 550 MHZ
Gate Time 1 second $-1 / 10$ second
Sensitivity $25 M V 150$ \& 250 MHZ 75 MV 550 MHZ
Display Eight $1 / 2$-inch LEDS
Input Two SO239 Connectors
Power 6C-Size Batt., 15HR, or 8.2VDC to 14.5VDC
Current 150 Ma standby 300 Ma operational

3550 KIT INCLUDES

- Pre-assembled, tested counter board
-Case, power supply, connectors, hardware
- Built-in prescaler \& preamp
- Gate Light - Automatic Zero Blanking
- Automatic Decimal Point
- One to two hours assembly time
- One Year Warranty on all parts
- All new parts - not factory seconds or surplus

3550 Kit .
$\$ 99.95$
T-101 Telescopic Antenna.............. 3.95
AC-9 Battery Eliminator 7.95
Cigarette Lighter DC Adapter 2.95
TEAMS: Orders to U.S and Canada, add 5% to maximum of $\$ 10.00$ per ordor for shipping, handling and insurance. To all othar countries, add 15% of total order. Califormia Fesldents add 6% State Sates Tax

two-meter preamplifier

 for handitalkies
A simple, two-meter, one-transistor preamp is used to overcome the lack of receiver sensitivity

Does your 2-meter HT suffer from the lack of receiver sensitivity? A simple single transistor preamp can do wonders, especially if you use an external power amplifier while operating near the repeater fringes. One problem that frequently arises is that they can hear you, but you can't hear them!

I have a Regency HRT-2 hand-held, which I also use mobile with a Heath HA-201 10-watt amplifier located in the trunk. After a few months of operation, I became annoyed at the received signal dropout and static near the fringe of the repeater coverage. My friends all told me my transmitted signal was excellent - full quieting into the repeaters; 1 tried a $1 / 4$-wavelength whip in the center of my car roof, and finally a $5 / 8$-wavelength whip, but to no avail. The noise and breakup persisted.

The HRT-2 has a receiver sensitivity of $0.7 \mu \mathrm{~V}$ for 20 dB of quieting, quite adequate in the city and compatible with the 2-watt output of the transmitter. However, as a mobile unit with 10 watts of output
capability, the $0.7 \mu \mathrm{~V}$ sensitivity leaves much to be desired. A preamplifier seemed to be the solution.

simple preamplifier

There are a variety of circuits available for two meter-preamplifiers, but I wanted to keep it simple, low cost, and fairly compact, so it would fit inside the case if possible. Also, I felt it would be desirable to increase the receiver sensitivity from $0.7 \mu \mathrm{~V}$ to about

fig. 1. Schematic diagram of the wideband rf amplifier. Only the portion to the left of the dotted line is used. All resistors are $1 / 4$ watt, and all capacitors are disc ceramics.
0.1 or $0.2 \mu \mathrm{~V}$, typical of most high-quality mobile radios; this meant a gain of about 17 dB . Another requirement was that it be broadband, so that tuning for each repeater would not be necessary. The last requirement was that it have the capability of being switched into the circuit during receive and switched out during transmit without the need for relays.

By Herbert L. Bresnick, WB2IFV, 16 Creekside Drive, Honeoye Falls, New York 14472

fig. 2. Schematic diagram of the Heath 2-meter amplifier (A) and the changes made to incorporate the receiving preamplifier (B). Power for the preamp can be obtained from the 13.6 volt line. D7 and D8 are aiso added to the existing circuitry.

A search through the literature revealed that all of these requirements would be tough to meet in one circuit. However, a simple and inexpensive wideband if amplifier was found ${ }^{1}$ which met most of the original objectives (fig. 1). Two transistors were used in the original circuit, but in my case only one was used with a gain of 14 dB . Although tuned circuits are recommended for improved selectivity, the amplifier was built up as a broadband unit to see how it would work. When externally connected to the HT the results were excellent. Clean reception was now possible with all the local repeaters, including two that
previously were extremely noisy, and there was no evidence of overloading from undesired signals.

construction

The next problem was how to wire it into the HT. After a quick look inside the case, it appeared to be a major task to dismantle the entire set. And the thought of upsetting the rf circuits or breaking other connections was disgruntling.

A search for solid-state switching circuits did not reveal any that would be compact enough to fit inside the case. Suddenly, it occurred to me that the
answer was inside the Heath power amplifier. It already contained a solid-state TR switching network, a quite clever one at that. I decided to place the preamp within the power amplifier, since all the required connections were right there.
The Heath 10 -watt power amplifier is a single, rfswitched transistor. The amplifier is automatically coupled to the circuit as soon as one watt of signal appears at the input. A pair of switching diodes then conduct, routing the signal to the transistor. When the HT is switched to receive, the diodes no longer conduct, and the received signal is passed through two $1 / 4$-wave transformers to the receiver. A pair of switching diodes at the junction of the two transformers provide a short circuit to ground during transmission, preventing any if feedback.
To connect the preamplifier, it was merely necessary to break the center connection between the two $1 / 4$-wave transmission lines, insert the preamp, and add another pair of switching diodes to the input of the preamp, leaving the existing pair at the output. The revised circuit is shown in fig. 2. The additional diodes were obtained from Heath, and are 1N4149 or equivalent. The 12 -volt supply for the preamplifier was obtained from a convenient tie point in the HA-201. The preamp was mounted by its own leads, as close as possible to the coiled transmission cables, with connecting leads kept as short as possible. Mounting did not seem to be critical. However, I would recommend using plastic tape or other insulating material between the preamp and the case to prevent accidental shorting.

results

The results have been gratifying. Received signals are now clear and free from static and breakup at distances over 40 kilometers (25 miles) from the repeater sites. A slight readjustment of the HA-201 power amplifier was necessary to compensate for the capacitance effects of the added circuit, but there is no evidence of power loss with a wattmeter connected before and after the modification.

This solution may not work everywhere, particularly if there are strong nearby signals. If this should be a problem on some repeater frequencies, it may be possible to add a switch to short out the preamp when it is not needed. A little experimentation before modification of the HA-201 will probably determine the best arrangement for your own location.

references

[^12]ham radio

with exclusive Dual-Speed Control!

For antennas up to 10.7 sq. ft. of wind load area. Mast support bracket design permits easy centering and offers a positive drive no-slip option. Automatic brake action cushions stops to reduce inertia stresses. Unique control unit features DUAL-SPEED rotation with one five-position switch. SPECIFICATIONS: Max, wind load bending moment- 10,000 in.-Ibs. (side-thrust overturning); Starting torque - 400 in. Ibs.; Hardened steel drive gears; Bearings $-100-3 / 8^{\prime \prime}$ diameter (hardened); Meter - D'Arsonval, taut band (backlighted). There's much, much more - so get the whole story!

Incredible...

Incredible, that's the word people are using to describe the CT-50 frequency counter. Why? Simple, the CT-50 is an achievement in design; exceptionally low in cost, compact, easy to use and unmatched in performance and reliability.

Features of the CT-50 include; easy pushbutton operation, fully automatic decimal point positioning, quality shielded metal case, and dependable LSI circuitry. Full eight digit readout allows resolution to 1 Hz at $65 \mathrm{mHz}, 10 \mathrm{~Hz}$ at 650 mHz , and the decimal point is always correct. Input protection to 50 volts insures against accidental burnout or overload. And, the best feature of all is the easy assembly. Clear, step by step instructions guide you to a finished unit you can rely on.

Use the order blank below or call us direct and order yours today!

CT-50, 60 mHz Counter Kit

CT-50 WT, 60 mHz counter, wired, tested
$\$ 89.95$
CT-600, 600 mHz prescaler option
for CT-50, add
29.95

ACCESSORIES

DC probe, direct input, general purpose type $\quad \$ 12.95$
High impedance probe, does not load circuit 15.95
Low pass probe, used when measuring audio 15.95
High pass probe, reduces low freq pickup 15.95
VHF flexible rubber antenna, BNC connector 12.95
Color burst adapter, for calibration, high accuracy $\quad 14.95$
typically 0,001 ppm accuracy, stability

ismsay elearimious

P.O. Box 4072 Rochester NY 14610

SPECIFICATIONS

Frequency range: 5 Hz to $65 \mathrm{mHz}, 600 \mathrm{mHz}$ with CT-600 Resolution: 10 Hz @ 0.1 sec gate, 1 Hz @ 1 sec gate Readout: 8 digit, $0.4^{\prime \prime}$ high LED, direct readout in mHz Accuracy: adjustable to 0.5 ppm
Stability: 2.0 ppm over 10° to $40^{\circ} \mathrm{C}$. temperature compensated
Input: BNC, 1 megohm/20 pt direct, 50 ohm with CT-600 Overload: 50VAC maximum, all modes
Sensitivity: less than 25 mv to $65 \mathrm{mHz}, 50-150 \mathrm{mv}$ to 600 mHz
Power: 110 VAC 5 Watts or 12 VDC @ 400 ma
Size: $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$, high quality aluminum case, 2 lbs
ICS: 13 units, all socketed
CT-600: 600 mHz prescaler option, fits inside CT-50
CB-1: Color burst adapter, use with color TV for extreme accuracy and stability, typically 0.001 ppm

You've requested it, and now it's here! The CT-50 frequency counter kit has more features than counters selling for twice the price. Measuring frequency is now as easy as pushing a button, the CT- 50 will automatically place the decimal point in all modes, giving you quick, reliable readings. Want to use the CT- 50 mobile? No problem, it runs equally as well on 12 V dc as it does on 110 V ac. Want super accuracy? The CT-50 uses the popular TV color burst freq. of 3.579545 MHz for time base. Tap off a color TV with our adapter and get ultra accuracy - . 001 ppm ! The CT-50 offers professional quality at the unheard of price of $\$ 89.95$. Order yours today!
CT-50, 60 MHz counter kit . $\$ 89.95$
CT. $50 \mathrm{WT}, 60 \mathrm{MHz}$ counter, wired and tested.
CT-600, 600 MHz prescaler option for CT-50, add. 159.95
. 29.95

CLOCK KIT
6 digit 12/24 hour

Want a clock that looks good enough for your living room? Forget the competitor's kludges and try one of ours! Features: jumbo . $4^{\prime \prime}$ digits, Polaroid lens filter, extruded aluminum case available in 5 colors, quality PC boards and super instructions. All parts are included, no extras to buy. Fully guaranteed. One to two hour. assembly time. Colors: silver, gold, black, bronze, blue (specify).
Clock kit, DC-5
$\$ 22.95$
Alarm clock, DC. 8,12 hr only 24.95 Mobile clock, DC-7
25.95

Clock kit with 10 min ID timer, DC-10 ... 25.95 Assembled and tested clocks available, add \$10.00

CHEAP CLOCK KIT	$\mathbf{\$ 8 . 9 5}$	PC Board
DC-4 Features	Does not	$\$ 2.95$
$\bullet 6$ digit $4^{\prime \prime}$ LED	include board	Transformer
$\bullet 12$ or 24 format	or transformer	$\$ 1.49$

VIDEO TERMINAL KIT \$149.95

CAR
 CLOCK

KIT \$27.95

- Onotat buatywit		Autewatusity mith
		a
Combieter Kn , be It	ser ${ }^{\text {an }}$	For OC 11 Car cliox.

600 MHz
 PRESCALER

Extend the
Extend the range of your counter to 600 MHz . Works with all counters. Less than 150 mv
sensitivity. Specify -10 or -100 Wired, tested, PS-1B $\quad \$ 59.95$ Kit, PS 1B \$44.95

5314 Clock	$\$ 2.95$
74500	.35
745112	.75
7447	.79
7473	.35
7475	.50
$7490 A$.55
74143	3.50

30 watt $\quad 2$ meter
Power Amp
The famous RE class C power The famous RE class C power
mp now availabte mail order! Four amp now available mail order Four
Watts in for 30 Watts out, 2 in for 15 out, 1 in for 8 out, incredible value, out. 1 in for 8 out, incredible value,
complete with all parts, instructions and details on T.R relay. Case not included.
Complete Kit, PA 1 $\$ 22.95$

CALENDAR ALARM CLOCK Has every feature one coudd ever ask for Kit includes everything except case, buitd it into wall, station or even car! FEATURES - Rattey hack ap Aith buit in on chip Complete Kit, less case. DC. 9 $\$ 34.95$

TRANSISTORS

MRF 238 30W VHF $\$ 11.95$ NPN 2 N3904 twpe PNP 2N3906 rvpe NPN Power trpe PNP Power Tab 40 W FET MPF Tab 40 W FET MPF 102 type UJT 2N2646 type 2 N3055 NPN Power
$10 / \$ 100$ $10 / \$ 1.00$ 0/\$1.00 $3 / \$ 1.00$ 3/\$1.00 $3 / \$ 2.00$ 3/\$2.00
$.50 / \$ 2.00$ FERRITE BEADS
with info and specs
$15 / \$ 1.00$
6 hole Balun Beads
$5 / \$ 1.00$

TELEPHONE ORDERS WELCOME

UTILIZES NEW MOS-LSI CIRCUITRY

SPECIFICATIONS

Sensitivity: less than 25 mv .
Frequency range: 5 Hz to 60 MHz , typically 65 MHz
Gatetime: 1 second, $1 / 10$ second, with automatic decimal point positioning on both direct and prescale
Display: 8 digit red LED . $4^{\prime \prime}$ height
Accuracy: $2 \mathrm{ppm}, .001 \mathrm{ppm}$ with TV time basel
Input: BNC, 1 megohm direct, 50 Ohm with prescale option
Power: 110 V ac 5 Watts or $12 \mathrm{~V} \mathrm{dc} @ 0.4 \mathrm{Amp}$
Size: Approx. $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$, high quality aluminum case
Color burst adapter for . 001 ppm accuracy
CB-1, kit . $\$ 14.95$

MINI-KITS
TONE DECODER KIT
A complete fone decoder on a single PC Board.
Features $400-5000$ Hf Features $400-5000 \mathrm{~Hz}$ adiustable Ireauency
rampe. votrape regulation, 567 IC Usetul for lanve. wollape regulation, 567 IC Uletul for
touch tone decodimg, tone burst detection. FSK demod, signating. and many other uten Uue 7
for 12 button touchtone decoding. Aums on 5 for 12 bution tuachtone decoding. Aumi on 5 to 12 volts
Complete Kit, TD 1

SUPER SLEUTH AMPLIFIER

A super-sensitive amplifier which will pick up a pin drop at 15 feet! Great for monitoring baby's room or as a general purpose test amplifier. Full 2 watts of output, runs on 6 to 12 volts, uses any type of mike. Requires 8-45 ohm speaker.
Complete Kit, BN-9 $\$ 4.95$

FM WIRELESS MIKE KIT

Transmit up to 300^{\prime} to any FM broadcast radio, uses any type of mike. Runs on 3 to 9 V . Type FM-2 has added super sensitive mike preamp. FM-1 $\$ 2.95$ FM-2 $\$ 4.95$

COLOR ORGAN/MUSIC LIGHTS

See music come alive! 3 different lights flicker with music or voice. One light for lows, one for the mid-range and one for the highs. Each channel individually adjustable, and drives up to 300 watts. Great for parties, band music, nite clubs and more.
Complete Kit, ML-1 $\$ 7.95$

LED BLINKY KIT

A great attention getter which alternately flashes 2 Jumbo LEDs. Use for name badges, buttons, or warning type panel lights. Runs on 3 to 9 volts.
Complete K it $\$ 2.95$
POWER SUPPLY KIT

$$
\text { Complete Kit, PS JLT } \$ 6.95
$$

SIREN KIT

Produces upward and downward wail characteristic of police siren. 5 watts audio output, runs on $\mathbf{3 - 9}$ volts, uses $8-45$ ohm speaker. Complete Kit, SM-3
$\$ 2.95$

DECADE COUNTER PARTS

Includes: 7490A, 7475, 7447, LED readout, current limit resistors, and instructions on an easy to build low cost frequency counter. Kit of parts, DCU-1

$$
\begin{aligned}
& \begin{array}{l}
\text { Complete unple regulated power supply pro } \\
\text { videt varatie } \$ 15 \text { vols at } 200 \mathrm{~mA} \text { and t5 poirs }
\end{array} \\
& \begin{array}{l}
\text { videt variabie } 15 \text { volts at } 200 \mathrm{~mA} \text { and }+5 \text { woits } \\
\text { at } 1 \text { Amp. } 50 \mathrm{mV} \text { load repulation good tifter ing }
\end{array} \\
& \text { and umail sies. Kit lest tyantormes hequire }
\end{aligned}
$$

general coverage using the Collins 75S receiver

A recent article in $O S T 1$ detailed a relatively simple and inexpensive method for extending the frequency coverage of the 75S-1. However, this particular method did not allow for proper operation of the receiver, especially with regard to transceive operation, since the correct tuned circuits for the preselector, rf, amplifier, and crystal oscillator circuitry are not necessarily selected. The method l've employed for some

fig. 1. Schematic diagram of the change to the $75 S$-series receivers to permit general coverage while still maintaining transceiver capabilities. The two additional sockets are mounted on a small metal bracket above the present crystal bank.
months does allow for split or transceive operation, is somewhat more flexible, and requires only a slight modification to the receiver.

An aluminum bracket is drilled to accept two crystal sockets and a miniature spdt switch. One socket accepts $\mathrm{HC}-17 / \mathrm{U}$, and the other, HC-6/U crystals. The bracket is secured to the left side rail over the
existing crystal sockets. The dimensions of the bracket allow its right side to rest on the tops of the crystals in sockets 1, 2, and 3 E , providing more rigidity.

The switch is mounted with the handle pointing left/right for instant recognition of NORMAL or GENERAL COVERAGE. Two solder lugs are attached under the socket nearest the switch for coax braid connections. The coax lead that normally goes from V3B, pin 2, to the arm of S1A, was broken at the V 3 side and passed through the hole near the front panel to the new switch. A new piece of coax is run from the switch to V3B. The rest of the wiring is done with hookup wire. Attachment to the common point of the sockets may be made at crystal socket 3E.

With the switch in the NORMAL position, the 75 S -1 operates with the standard compliment of crystals. In the GENERAL COVERAGE position, a properly chosen crystal may be inserted and with the band switch selecting the proper frequency range, operation outside the amateur bands (or extended 10 -meter coverage, for instance) is accomplished. The bandswitch position is especially important when operating the receiver in transceive with the 32 S series transmitters. A similar modification could be made to the transmitter, although this has not as yet been attempted.

Paul Pagel, N1FB

reference

1. Vernon L. Gibbs, W4JTL, "An extended Frequency Range for the Collins 75S-1," $Q S T$, October, 1977.

new product detector for the R-4C

As mentioned in a previous article, 1 the product detector in the Drake R-4B and R-4C leaves room for improvement. The present design allows the audio to leak back into the last i-f stage, from where it is detected, causing the AGC to vary at an audio rate. To correct this error we developed a reasonably simple product detector which eliminated the problems. Unfortunately, as stated in the article, the main disadvantage

fig. 2. Schematic diagram of the TL442 product detector. All components are mounted on a $4.5 \times 4.5 \mathrm{~cm}(1-3 / 4 \times 1-3 / 4$ inches) piece of $100-\mathrm{mil}$ Vector board. The resistor and capacitor in the 14 -volt line provide some additional filtering and also drop the voltage down to approximately 11.8 Vdc .
of the MC1496 was the high number of external components.

In recent correspondence with Howard Sartori, W5DA, he suggested another device which has also proved suitable as a product detector, the TL442 from Texas Instruments. As seen in fig. 1, the

[^13]circuit is extremely simple, yet provides essentially the same performance as the MC1496.*
To begin installation, it is first necessary to remove Drake parts CR2, CR3, C83, C84, and R60. Next, the wires connecting the output of T11 and the printed circuit board are removed. The $0.01 \mu \mathrm{~F}$ coupling capacitor to be installed should connect between the transformer pins and the IC socket. There shouldn't be any connections on the circuit board for either the BFO of i-f inputs. Completing the installation only requires that the IC, socket, and associated components be mounted on a small piece of 100 -mil Vector board and mounted in the same location as the MC1496 version. All other connections can be made according to fig. 1.
Audio output is slightly higher than a stock R-4C. The combination of R61 and the original $0.05 \mu \mathrm{~F}$ bypass capacitor provide the proper highfrequency rolloff. In this configuration, and also in the original, the product detector will accept a 20 dB increase in signal level before it overloads.
As an addendum, several people have reported an audio oscillation problem after incorporating the $0.0015 \mu \mathrm{~F}$ capacitor referred to in the original article. We've found that this can be cured by inserting a 4700 -ohm resistor in series with the added capacitor and also connecting a $0.01 \mu \mathrm{~F}$ capacitor across the headphone jack.

reference

1. J. Robert Sherwood, WB0JGP and George B. Heidelman, K8RRH, '"Present-Day Receivers Some Problems and Cures," ham radio, December, 1977, page 10.

Rob Sherwood, WB@JGP George Heidelman, K8RRH Sherwood Engineering

preprogramming the Kenwood TR7500

A Kenwood TR7500 was recently obtained for mobile usage, and has proven excellent for that purpose. It

Table 1. Diode programming information for the TR7500.

frequency	P1	P2	P3	P4	P5	P6
146.16	0	0	0	0	0	0
146.19	1	0	0	0	0	0
146.22	0	1	0	0	0	0
146.25	1	1	0	0	0	0
146.28	0	0	1	0	0	0
146.31	1	0	1	0	0	0
146.34	0	1	1	0	0	0
146.37	1	1	1	0	0	0
146.40	0	0	0	1	0	0
146.43	1	0	0	1	0	0
146.46	0	1	0	1	0	0
146.49	1	1	0	1	0	0
146.52	0	0	1	1	0	0
146.55	1	0	1	1	0	0
146.58	0	1	1	1	0	0
146.61	1	1	1	1	0	0
146.64	0	0	0	0	1	0
146.67	1	0	0	0	1	0
146.70	0	1	0	0	1	0
146.73	1	1	0	0	1	0
146.76	0	0	1	0	1	0
146.79	1	0	1	0	1	0
146.82	0	1	1	0	1	0
146.85	1	1	1	0	1	0
146.88	0	0	0	1	1	0
146.91	1	0	0	1	1	0
146.94	0	1	0	1	1	0
146.97	1	1	0	1	1	0
147.00	0	0	1	1	1	0
147.03	1	0	1	1	1	0
147.06	0	1	1	1	1	0
147.09	1	1	1	1	1	0
147.12	0	0	0	0	0	1
147.15	1	0	0	0	0	1
147.18	0	1	0	0	0	1
147.21	1	1	0	0	0	1
147.24	0	0	1	0	0	1
147.27	1	0	1	0	0	1
147.30	0	1	1	0	0	1
147.33	1	1	1	0	0	1
147.36	0	0	0	1	0	1
147.39	1	0	0	1	0	1
147.42	0	1	0	1	0	1
147.45	1	1	0	1	0	1
147.48	0	0	1	1	0	1
147.51	1	0	1	1	0	1
147.54	0	1	1	1	0	1
147.57	1	1	1	1	0	1
147.60	0	0	0	0	1	1
147.63	1	0	0	0	1	1
147.66	0	1	0	0	1	1
147.69	1	1	0	0	1	1
147.72	0	0	1	0	1	1
147.75	1	0	1	0	1	1
147.78	0	1	1	0	1	1
147.81	1	1	1	0	1	1
147.84	0	0	0	1	1	1
147.87	1	0	0	1	1	1
147.90	0	1	0	1	1	1
147.93	1	1	0	1	1	1
147.96	0	0	1	1	1	1
147.99	1	0	1	1	1	1

became apparent, however, that dialing up the commonly used frequencies could be, for this operator at least, hazardous while driving because of the need to watch the frequency read-out dial while changing channels.
Users of the TR7500 should be aware that the transceiver has fortyfour preprogrammed channels - all ARRL band-plan frequencies between 146 and 148 MHz , including all repeaters, and simplex frequencies. However, the transceiver also offers six blank channels, which are designed to be user programmed, by use of a diode matrix, for frequencies not included in the preprogrammed sequence. These frequencies must be on standard 30 kHz centers. Complete instructions for programming these additional channels, are in the transceiver operating manual.

The thought occurred to me that regular channels could also be programmed into the blank channels, rather than having to dial them out in the regular sequence. A review of the circuit and the programming instructions lead to a simple exercise in binary numbering, and a complete programming table was worked out. With this information, the six blank channels were quickly programmed.

The plan has worked out very nicely. The six channels are programmed for three repeaters, and three simplex frequencies, which completely handles local driving requirements. While driving, a quick glance identifies which of the six channels the radio is set on, with subsequent changes made by feel. Of course, any of the other regular channels is immediately available, simply by dialing up the appropriate channel in the normal manner.

Table 1 shows the complete diode programming instruction for all channels from 146.16 MHz to 147.99 MHz . Note that the columns are headed by designators P1 through P6, as used in the diode programming instructions of the operating manual.

Bob Locher, W9KNI

WE KNOW YOU WANT THE VERY BEST!

In a market already over crowded by others, all making claim to being "THE BEST', we knew we had to be better. *COMMUNICATOR I our 6 channel, 3 watt handheld, and COMMUNICATOR II our 800 channel synthesized 25 watt mobile offer all the
features of the "BEST" - and a few extra, including our one year warranty and a toll free 800 number answered by other hams who speak your language.

PACE COMMUNICATOR - THE VERY BEST!

pace COMMUNICATOR

AMATEUR PRODUCTS GROUP PATHCOM INC. 24105 SOUTH FRAMPTON • HARBOR CITY, CA 90710 * Communicator I will be available in the tall. Communicator II is in stock tor immediate shipment.

NEW CoaxProbe* NEW
 Coaxial RF Probe for Frequency Counters and Oscilloscopes That Lets You Monitor Your Transmitted Signal Directly From the Coax Line.

FINALLY! A RF PROBE that lets you connect into your coax cable for frequency measurements and modulation waveform checks directly from the transmitter.
JUST CONNECT THE CoaxProbe* into your transmission line and plug the output into the frequency counter or oscilloscope. Insertion loss is less than .2db so you can leave it in while you operate.
A NECESSITY IN ANY WELL-ORGANIZED HAM SHACK, the CoaxProbe* eliminates "jerry-rigging" and hassles when tapping into the coax line is desired.
A SPECIAL METHOD OF SAMPLING keeps output relatively constant with a wide variation of power. Power output of 8 watts gives .31 v out, while 800 watts will give 1.8 v out. (rms 3-30 mhz.) 2000 watts PEP rating too!
-Trademark of Coaxprobe Co. for it sampling device. 1978 by Coaxprobe Co

USE IT ON 2 METER RIGS TO ADJUST FREQUENCY. The CoaxProbe* has a range of 1.8 to 150 mhz .
MONITOR YOUR MODULATION WAVEFORM. With an oscilloscope of proper bandwidth, you can check your modulation for flat-topping, etc. Ideal for adjusting the speech processor.
NOW YOU CAN MONITOR SIGNALS when connected to the dummy load, eliminating unnecessary on-the-air radiation.
AVAILABLE FOR THE FIRST TIME TO AMATEURS. Try it for 10 days. If not satisfied, send it back for refund (minus shipping charges).
Order today from:

CoaxProbe Co.
 P.0. Box 426, Portage, MI 49081
 Dealer Inquiries Invited

$$
\begin{aligned}
& \text { MADISON } \\
& \text { ELECTRONICS SUPPLY, INC. } \\
& 1500 \text { Mckinmer } \\
& \text { HOUSTON, TEXAS T7002 } \\
& \text { 713/658-0230 } \\
& \text { Niten 713/497.5883 }
\end{aligned}
$$

NEW! EXCITING! BREAKTHROUGH! YAESU FT 901DM Transceiver \& Accessories

FT 901DM
\$1,459.00
Speaker/Patch
CW Filter
FV-901 VFO

CALL FOR quotes on:
 YAESU
 FT901 DM TS820S
 FT625 TS520S
 FT225 TR7400A
 ALDA, AMCOMM, ETO ALPHA TEMPO VHF ONE PLUS

ETO - ALPHA

Buy The Best First!
Full Power + C.C.S. Ratings.

76 A	$\$ 1,395.00$
76 PA	$1,695.00$
374 A	$1,795.00$
78	$2,395.00$

76A
\$1,395.00
76PA
78
2,395.00

MADISON FABULOUS FALL BUYS

KLM: Antennas, Linears, Accessories All In Stock. Free balun w/2 meter base antenna.
FINCO AMATEUR BEAMS in Stock - Call! 6N2 and 2
Meter. $\$ 61.00$
2 + 2 Horizivertical . \$37.50
BIRD 43 Wattmeter plus slugs, in stock, prepaid freight.
BENCHER keyer paddles in stock
$\$ 39.95$; chrome $\$ 49.95$
YAESU
FT-301D + Free FP301 $\$ 935$
FT-301 + Free FP301 . $\$ 769$
YAESU FT-901D series . Call for Quote
MICROWAVE MODULES MMT 432-28S $\mathbf{\$ 2 5 9}$
UPS Paid
F9FT TONNA antennas: $144 / 16$ el. $\mathbf{\$ 6 5 . 9 5}$
9/19 OSCAR
$\$ 63.95$
JANEL Preamps QSA-5 . \$41.95
TECHNICAL BOOKS: AMECO, ARRL, Sams, TAB, TI, Rider, Radio Pub., Callbook, Cowan, TEPABCO, many others . .. call
HAM X ROTOR (New Model) Turns 28 sq. ft . of antenna.
List \$325. In stock. Your Price \$249
CDE HAM-III $\$ 129.00$
SWAN METERS: WM 6200 VHF Wattmeter $\$ 49.95$
SWR 3 Mobile . $\$ 9.95$
TELEX HEADSETS: . in stock
CETRON 572B . $\$ 27.95$ ea.
RAYTHEON 572 B $\$ 3.45$;
CABLE $5 / 32^{\prime \prime}, 6$-strand, soft-drawn guy cable. For mast or light tower, $3 ¢$ foot.
BELDEN COAX CABLE: 9888 double shield RG8 foam coax 100% braid, suitable for direct bury 39c ft., 8237 RG8 214 ft .8214 RG8 foam $25 \mathrm{c} / \mathrm{ft}$., 84488 -wire rotor cable 16 cft ., 821072 ohm kw twinlead $\$ 19 / 100 \mathrm{ft}$., 8235 300 ohm kw twinlead $\$ 12 / 100 \mathrm{ft}$., Amphenol PL-259, silverplated 59c. UG 175 adapter 19c. PL- 258 dbl female \$1.00. BNC female chassis mount 59c ea;
BELDEN 14 gauge cop. stranded antenna wire. $\$ 5 / 100 \mathrm{ft}$.
TIMES $1 / 2$ " foam hardline $604 / \mathrm{ft}$. Connectors $\$ 15.00 \mathrm{ea}$.
718^{*} Foam Hardline 1.50 ft Connectors $\$ 25.00$ ea.
KESTER SOLDER $1 \mathrm{lb} .60 / 40$, 062 . $\$ 6.50$
LEADER GDM LDM815 . $\$ 89.95$
MALLORY 2.5A/1000 PIV epoxy diode 19c ea.
001 MFD 20KV CAP. $\$ 1.95$
GE receiving tubes. 50\% off list
GE6146B, 8950 . $\$ 7.95$ ea.
SWAN 750CW + Free PSU-3 . $\$ 675$

THIS MONTH'S SPECIAL
KENWOOD TR7500A2249
16 ELEMENTS - F9FT - 144 MHz

The 'Tonna' You've been hearing about
17.8 dBi $144 / 146 \mathrm{MHz}$ SWR 1.2:1 Wt. 4.4 kg . Horiz./Vert. length 6.4 m . F/B ratio 22 dB Horizontal aperture $2 \times 16^{\circ}(-3 \mathrm{~dB})$ Vertical aperture $2 \times 17^{\circ}(-3 \mathrm{~dB})$ Side lobe attenuation 60 dB
$\$ 65.95$
MADISON
ELECTRONICS SUPPLY, INC. 1508 Mekinney HOUSTON, TEXAS 77002

713/858-0268

NHes 7134497.5es3

TERMS: All prices FOB Houston. Prices subject to change without notice All items Guaranteed. Some items subject to prior sale. Send letterhead for Amateur dealers price list. Texas residents add 5% tax. Please add postage estimate

Drake R-7 receiver

The new Drake R-7 receiver is presently in the design and prototype stage, with first shipments scheduled for early 1979. Preliminary specifications are listed in table 1. The receiver is 100 per cent solid state, fully synthesized with a permeability tuned oscillator (PTO) for smooth tuning. It has continuous tuning from $0-30 \mathrm{MHz}$, and offers both a digital readout and an analog dial.

As with the Drake TR-7 transceiver, the R-7 receiver features upconversion to a first i-f at 48 MHz ; a special high-level, double-balanced mixer provides a high intercept point and strong signal handling characteristics. The receiver uses a full set of bandpass "window filters" that operate from 30 MHz , through VLF, to zero MHz . This permits performance in the MF/LF/VLF range that is very similar to that in the highfrequency range. As a result, external VLF preselectors or converters are not required.
The bandswitch selects various groups of window filters and determines the frequency limits of each range. Any $500-\mathrm{kHz}$ segment within these limits is selected by simply
depressing the UP or DOWN pushbuttons until the desired segment is reached. Tuning within the segment is accomplished by the PTO, which is connected to the main tuning knob.
A $10-\mathrm{dB}$, pushbutton-selected preamp can be activated on all ranges above 1.5 MHz . This preamp improves the overall sensitivity from approximately $0.5 \mu \mathrm{~V}$ to approximately $0.2 \mu \mathrm{~V}$. As with any rf amplifier, however, its use lowers the intercept point by approximately the same amount as its gain. Therefore, preamp use should be limited to weak signal environments for best overall front-end performance.

The second $i-f$ of the R-7 operates at 5645 kHz , and the selectable 8 -pole crystal filters operate in this range. A choice of $300 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1800 \mathrm{~Hz}$, and 4.0 kHz filters are available, in addition to the $2.3-\mathrm{kHz}$ ssb filter. Any of these filters may be selected from the front panel with a 5 -position switch. It should be noted that the MODE
switch operates independently of these filters, and can select either a special new synchro-phase a-m detector, or the product detector. Excellent international a-m shortwave and broadcast band reception can be realized with the low-distortion synchro-phase a-m detector.

The third i-f operates at $50-\mathrm{kHz}$ and features a tunable i-f notch filter for heterodyne rejection. The notch depth is approximately 40 dB .
Extremely flexible selectivity combinations may be realized by the proper choice of an 8-pole crystal filter, notch adjustment, and positioning of the passband tuner, which is also employed in the R-7 receiver. The passband tuner is full range and enables the operator to properly set the passband position, in relation to the selectivity filter, for any mode continuously from RTTY to CW or any sideband. Various positions of agc, from OFF to SLOW, are also available from the front panel.
table 1. Preliminary specifications for the new Drake R-7 communications receiver.
Frequency coverage $\quad 0-30 \mathrm{MHz}$ with DR-7 digital readout general coverage board; 0.5 MHz
$0.5-2.0,2.5-3.0,3.5-4.0,4.5-5.0,7.0-7.5,14.0-14.5,21.0-$ $21.5,28.5-29.0 \mathrm{MHz}$ without Aux-7 (Aux-7 adds any eight $500-\mathrm{kHz}$ segments from 0 to 30 MHz)
Frequency stability
Readout accuracy
Less than 100 Hz drift after warmup
Analog dial: better than $\pm 1 \mathrm{kHz}$ when calibrated to nearest marker
Digital: $15 \mathrm{ppm} \pm 100 \mathrm{~Hz}$
Sensitivity ($500 \mathrm{kHz}-\mathbf{3 0} \mathrm{MHz}$) $0.5 \mu \mathrm{~V}$ or less for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ on ssb and CW; $0.2{ }_{\mu} \mathrm{V}$ or less with preamp turned on
$2.0 \mu \mathrm{~V}$ or less for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ on a-m (30\% modulation);
$1.0 \mu \mathrm{~V}$ or less with preamp turned on
(Preamp not operational below 1.5 MHz)
($0-500 \mathrm{kHz}$)

Selectivity

Agc
Intermodulation

Image and i-f rejection
Audio output
Power supply
Dimensions
$2.0 \mu \mathrm{~V}$ or less for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ on ssb and $\mathrm{CW} ; 1.0 \mu \mathrm{~V}$ or less for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ on a-m
Same as TR-7 (ultimate selectivity greater than 90 dB)
Same as TR-7
Intercept point at +20 dBm , minimum; two-tone dynamic range, 95 dB
Greater than 80 dB
2.5 watt with less than 10% TGD into 4 -ohm load
$110 / 220 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ or $11-16 \mathrm{Vdc}$
Same as TR-7

The R-7 will transceive with the Drake TR-7, and these functions are pushbutton controlled. The R-7 also has a unique antenna switch/toroidal splitter so that both the R-7 and the TR-7 may be used on the same antenna for simultaneous dual receive. This will be a boon to DXers who wish to monitor an out-of-band DXpedition and the in-band pile-up at the same time. The antenna selector also permits alternate antennas to be used on the receiver and a main antenna on the transceiver, or vice versa. The alternate antenna may also be split between the two units.

The receiver features receiver incremental tuning (RIT), so that the receiver frequency may be varied independently of the transmit frequency when operated in transceive with the TR-7. As with the TR-7, the digital readout in the R-7 may be used as an external counter to 150 MHz .

The receiver's built-in power supply operates from either 12 Vdc or 120/240 Vac. The styling, color, and size of the R-7 matches that of the TR-7, and either the internal speaker or an external MS-7 speaker may be used. Further information and prices will be available from the R.L. Drake Co. by the end of 1978.

Racal RA6700 receiver

The Racal RA6700 is a fully synthesized, tunable, solid-state communications receiver designed for all modes of reception over the frequency range of 15 kHz to 30 MHz . The internal synthesizer provides singleknob frequency control that allows rapid tuning across the complete frequency range with the feel and smoothness of a VFO, while retaining the accuracy and stability of the in-

Antenna Baluns

All Palomar Engineers products are made in U.S.A. Since 1965, manufacturars of Amateur Radio equipment only.

1 Kw CW, 3 Kw PEP input.
For dipoles, inverted Vees, beams, quads.
Dependable. Takes temporary overloads in stride.
Specify 1:1 or 4:1 ratio.
Model 1K \$22.50

2 Kw CW, 6 Kw PEP input.
Far more rugged than any other balun made for amateur use.
Specify 1:1 or 4:1 ratio.
Model 2K \$42.50

2 Kw CW, 6 Kw PEP input. Our heavy duty balun with mounting bracket for 2 '" mast or boom.
Specify 1:1 or 4:1 ratio.
Beam Balun \$47.50

Only Palomar Baluns Have All These Features

- RF toroidal core for highest efficiency.
- Teflon insulated wire.
- Stainless steel hardware. Won't rust.
- Epoxy filled case. Waterproof.
- Wideband 1.7 to 30 MHz .
- White case to reflect the sun.
- Lightning protection built in.

Free brochure sent on request
How many lightweight baluns have you burned out already? Install the balun that will stay up there working year after year.

To order, add $\$ 2$ shipping/handling. California residents add sales tax.

Palomar Engineers

Box 455, Escondido, CA. 92025 • Phone: [714] 747-3343

- UP TO 18 TELEPHONE or control numbers retrieved with a one or two key punch.
- AUTOMATIC RE-DIAL of last number manually dialed.
- SAFE AUTOPATCH CALLS even in heavy traffic.
- 10 NUMBER RAM easily programmed in moments from the keypad.
- OPTIONAL PLUG-IN 8 NUMBER PROM custom-programmed by factory is available for $\$ 4.95$. A Prom Order Card is packed with each AD-1.
- PROGRAMMABLE TONE-LENGTH AND DURATION ensures accessing virtually any repeater having strict timing requirements. Ask any veteran autopatch user and he will tell you that this feature is an absolute must!
- EASY INTERFACING with virtually any amateur transceiver using the coil cord provided.
- CRYSTAL CONTROLLED TIMEBASE assures high stability over a wide temperature range.
- MADE IN U.S.A.

All these features and more are possible thanks to the exclusive AEA 197701 MOS Microcomputer Chip. (OEM inquiries invited).

ADVANCED ELECTRONIC APPLICATIONS, INC. P.O. BOX 2160, LYNNWOOD, WA. 98036
ternal frequency standard. In addition, the operator can select either a $100-$ or $10-\mathrm{Hz}$ tuning rate, with the separate MHz control knob, permitting rapid changes from one end of the frequency range to the other.
The RA6772 incorporates the very latest techniques in mixer and signal path refinements to produce improved dynamic range and to reduce intermodulation products, reciprocal mixing, cross modulation, blocking, and spurious responses to a degree that exceeds the capabilities of any other general-purpose receiver currently in production. The basic receiver will accommodate six i-f filters; two may be asymmetrical ssb filters with either $3-$ or $6-\mathrm{kHz}$ nominal bandwidths. Provisions are also available for additional filters if the standard $300-\mathrm{Hz}, 3-\mathrm{kHz}$, and $8-\mathrm{kHz}$ filters are not adequate. During CW reception, the internal BFO provides $\pm 3 \mathrm{kHz}$ tuning range.
The receiver is ruggedly constructed to permit operation under extreme conditions. Yet the internal layout permits easy access for servicing, all components being accessible without the use of extension leads or adapters. The rear panel contains all input and output connectors, with many internal connections making possible the use of the receiver as the basis for a more sophisticated receiver system.
To enhance receiver versatility and flexibility for communications, surveillance, and direction-finding applications, a number of options and variations are available. In addition to the normal modes of reception provided in the basic RA6772, additional units can be added within the receiver to permit reception of ISB and FSK signals, along with AFC operation. When configured for teletype, one or two machines may be directly connected to the receiver without the need for external power supplies.

The RA6700 receiver series is well suited for single- or multiple-receiver systems, with numerous options and configurations possible. As an ex-
ample, the RA6774 can be controlled by a computer, or, as in the case of the RA6780, by either local or remote manual control. For additional information, contact RACAL Communications, Inc., 5 Research Place, Rockville, Maryland 20850.

Sherwood Engineering crystal filters

Sherwood Engineering has recently expanded still further its already extensive line of high-performance crystal filters. To complement their filters for the Drake R4C, they've now added a $2.1-\mathrm{kHz}$ a-m filter (CF$2.1 \mathrm{~K} / 8 \mathrm{AM}$) which plugs directly into a normal a-m filter socket. This 8-pole ladder filter, which can be used to replace the normal $4-$ or $6-\mathrm{kHz}$ filters, exhibits a -6 dB bandwidth of 2.1 kHz and is 3.6 kHz wide at the -60 dB point.

To help you take advantage of the extensive filter capability that can be obtained by using the full line of Drake-type filters, Sherwood Engineering is now offering a custommade, dual function switch for the front panel of the R4C. This switch, which replaces the present AGC switch, makes it possible to switch each filter from the front panel. In addition, the new concentrically mounted AGC switch provides five AGC positions, instead of the original four (off, fast, medium, and slow). This offers the operator the option of incorporating an additional AGC speed for greater time-constant flexibility. The switch itself does not replace the Sherwood Engineering relay kits, but is offered as an alternative to the normal toggle switches.

In addition to filters for the Drake R4C, Sherwood Engineering is also manufacturing the CF-350/8, a $350-$ Hz CW filter for use with the TR4, TR4C, or the TR4Cw. This 8-pole filter has a shape factor of 2.43:1 (as compared with the $4: 1$ factor for the normal $500-\mathrm{Hz}$ filter supplied in the TR4Cw), yet it is easily installed in many TR4s in less than two hours.

CUSHCRAFT IS THE FM ANTENNA COMPANY.

Cushcraft manufactures the world's most complete line of quality antennas for amateur VHF-FM repeater service including high-gain multi-element vertical beams, stacked collinear arrays, $5 / 8$-wavelength mobile whips, half-wavelength Ringo" verticals, and the world-famous Ringo Ranger ", which features stacked vertical half-wavelength elements for 4.5 dBd omnidirectional gain. Whether your favorite repeater is next door or across the state, Cushcraft has a VHF-FM antenna which is exactly engineered to your needs.

5/8 wave Mobile

Ringo Ranger

UPS SHIPPABLE
In Stock With Dealers World Wide P.O. Box 4680, Manchester, N. H. 03108

NEW - IMPROVED

 Model 1500 - Binoural Synthesizer-Filter with Tone-Tog Uses 8 " ${ }^{\prime}$ " Cells - Less Botteries $\quad \$ 86.00$ ppd, U.SModel 1501 -Requires your 12 to 15 volt DC input, 100 ma . nom. (internal regulation) $\$ 89.00 \mathrm{ppd}$, U.S.

Wall Tronsformer 115 V AC supply rated of 12 volts, 350 mo . for use with Model 1501 or . . . $\$ 4.95$
*A new bolanced bipolor Tone-Tog modulator system replaces diode modulators of Models 1100 and 700
GET BETTER THAN 100 HZ EFFECTIVE SELECTIVITY ON CW, A SELECTABLE NOISE BANDWIDTH OF LESS THAN 150 HZ PLUS PERIPHERAL HEARING IN BINAURAL SOUND . . . ALL WITHOUT LISTENING THROUGH THE TINKLING ROAR OF A NARROW -BAND FILTER OR FUSSING WITH SELECTIVE SQUELCH SYSTEMS. . . EXPERIENCE THE BINAUR AL FUNCTION ON SIDE BAND VOICE . . . Just connect to your receiver's headphone or speaker jock and plug in two 8 Ohm speakers arranged stereo fashion . . . odditional jack provided of lower power to protect your stereo heodset.

See HR magazine articles on Nov.' 75 and Nov.'76 . . Ask for our note on listening with binaural and Tone-Tog systems
HILDRETH ENGINEERING BOX 60003 SUNNYVALE CA94088

HAND HOLDING? . . . LET

DATA SIGNAL put rings on your lingers

with our SUB-MINIATURE ENCODERS

The world's smallest hand-held goes hand-inhand with the world's smallest, lightest and least expensive T-T Pads.

MODEL SME - Smallest available Touch Tone Encoder. Thin, only . $05^{\prime \prime}$ thick, keyboard mounts directly to front of handheld portable, while sub-miniature tone module fits inside. This keyboard allows use of battery chargers. Price $\$ 29.00$, with your choice of keyboards. SME (less keyboard) $\$ 24.00$

DTM

or,

표
 프뭄

 무뭄

MODEL DTM - Completely self-contained miniature encoder for hand-held portables. Only $5 / 16^{\prime \prime}$ thick. Three wire con nection. Automatic PTT keying optional. With your choice of keyboards. Price DTM - $\mathbf{\$ 3 9 . 0 0}$, DTM-PTT - $\mathbf{\$ 4 9 . 0 0}$. *Touch-Tone is a registered trade name of AT\&T.

And $\mathfrak{B e l l}_{\text {s on }}$ Your $^{\text {Joes }}$

with our AUTOPATCH - Ready to go!

A Complete Autopatch facility that requires only a repeater and a telephone iine. Features inciude single-digit access disconnect, direct dialing from mobile or hand-heid radios. adjustable amplifiers for transmitter and telephone audio, and tone-burst transponder for acknowiedgement of patch disconnect.
RAP-200 P. C. Card $\$ 199.50$
RAP-200R Rack Mount $\$ 249.50$

Be sure to ask about our new keyers and CW memory for CW buffs. DATA SIGNAL, INC.

2403 COMMERCE LANE ALBANY, GEORGIA 31707 912-883-4703

For the TR4Cw, installation can be accomplished in less than five minutes.
Other new products include $350-\mathrm{Hz}$ CW filters for both the Kenwood TS-820 (CK-350/8) and the Signal One (CS-350/8). Each is a custommade, 8 -pole ladder filter which exhibits a $6 / 60-\mathrm{dB}$ shape factor of 2.43:1. Both are direct replacement filters which can be installed in minutes. The CS-350/8 has a lower insertion loss, in many cases, than the hard-to-find deluxe factory CW filter.
For the CW operator who wants the best, Sherwood Engineering has developed a $125-\mathrm{Hz}$ CW filter for the new Drake TR-7. This filter is excellent for the high selectivity demanded during DX and contest work. The new filter will mount directly on the TR-7 filter board. Or, for the person with both Drake CW filters already installed, a plug-in filter board can be obtained to add the additional flexibility afforded by incorporating all filters.
For complete details and price information on all products, contact Sherwood Engineering, 1268 South Ogden Street, Denver, Colorado 80210.

Alliance heavy-duty rotator

The HD-73 Heavy-Duty rotator, combining wind- and ice-resistant features plus two-speed rotational control never before incorporated into a unit of its size and performance, is offered by the Alliance Manufacturing Company Inc., of Alliance, Ohio.
Designed especially for the serious amateur who wishes to increase his capability with in-tower or mastmounting option, the HD-73 features a unique dual-speed control with one five-position switch. It provides a one-minute-per-revolution speed for
rotating over an extended arc, and a slower speed permitting pinpoint adjustments for the best signal on receive and transmit.

Improved automatic brake action not only simplifies positioning, but also reduces risk of antenna damage by sudden stops that impose high inertial stress on antenna, tower, and rotator.

Designed to move antennas with a maximum of 1 square meter (10.7 square feet) of load capacity, the HD73 develops a wind-load bending moment capable of withstanding the most severe prevailing wind conditions. Icing, another weather hazard for rotators, is overcome by the heaviest hardened-steel pitch-gear teeth of any rotator in its size and price range. The consistently high performance of the unit in all weather conditions is enhanced by a factoryinstalled lubricant that withstands temperature ranges of +49 to $-29^{\circ} \mathrm{C}$ (+120 to $-20^{\circ} \mathrm{F}$).
The HD-73's 20 -volt ac, capacitoroperated, split-phase, reversible motor and its transformer are doubly protected by fuse and thermal protectors against shorts, possible connection error, and prolonged operation. No voltage on the motor or leads exceeds Underwriters Laboratory safety limits.

The meter, a dc, D'Arsonval, tautband type, is calibrated in bold S-W-N-E-S lettering as well as with a degree-graduated scale for full 360° position recording. The voltage supply for meter indication is solid-state regulated to assure accuracy regardless of wide line-voltage or load variation. The bar switch permits dual-speed rotor control with utmost accuracy and fingertip ease.

The power required is 117 volts ac, 60 hertz. The mast mounting size range is 35 mm ($1-3 / 8 \mathrm{inch}$) to $63 \mathrm{~mm}(2-1 / 2 \mathrm{inch})$ O.D.; it requires a six-conductor cable. Total shipping weight of the rotator with two pairs of brackets and control box is 7.7 kg $(17 \mathrm{lbs})$.

ATB-34. Three Band
Cushcraft manufactures a full range of highfrequency antennas which are performance engineered for the most discriminating amateur. For the amateur who demands top performance in a multiband Yagi beam there's the incomparable ATB-34 three-band beam for broadband. high-gain coverage on 10. 15 and 20 meters.
And for the Amateur with limited antenna space and budget who wants reliable, multiband radio communications there are three Cushcraft multiband verticals to choose from: the threeband ATV-3 for 10.15 and 20 ; the four-band ATV-4 for 10, 15, 20 and 40 meters: and the ATV-5 for low VSWR five-band performance from 80 through 10 meters.
Cushcraft high-frequency antennas are quality engineered for top performance: they are often

AIV-4. Four Band imitated, but never duplicated

UPS SHIPPABLE
In Stock With Dealers World Wide P.O. Box 4680. Manchester, N. H. 03108

Radio Voorld

Featuring Yaesu, Icom, Allas, Dentron, Ten-Tec, Swan, Regency, Standard, Tempo, KLM. Hy-Gaın, Mosley, Larsen. Midland. Wilson. Southwest Technical Products. Tristao Towers. MFJ, KDK, and Microwave Module. We service everything we sell' Write or call tor a quote. YOU WON'T BE DISAPPOINTED

We are just a few minutes off the NYS Thruway (1-90) Exit 32

Yarran	ONEIDA COUNTY AIRPORT TERMINAL BUILDING	
ORISKANY, NEW YORK 13424		
K21XN	$315-337-2622$	Bob
WA2MSH		

See your nearest Alliance Distributor, or write to Alliance Manufacturing Company, Inc., Alliance, Ohio 44601.

compact amateur handheld from Standard Communications

A compact new 1-watt, 2-meter handheld amateur fm transceiver is now available from Standard Communications Corp. of Carson, California. This transceiver, designated C-118, is approximately the height and width of a dollar bill, and permits the user to transmit up 600 kHz , down 600 kHz , or receive and transmit on the same frequency with just one crystal. This provides 18 -channel capability with only six crystals.

The C-118 also incorporates a builtin capacitor microphone and LED status lights for CHANNEL BUSY and TRANSMIT. Also included at no additional charge is a BNC connector with flexible antenna, provisions for an external dc power supply, and earphone. It has a frequency range of $144-148 \mathrm{MHz}$ and comes equipped with one crystal for operation on 146.94 simplex and $146.34 / 94 \mathrm{MHz}$.

To obtain a free copy of the C-118 data sheet, write Standard Communications Corp., P. O. Box 92151, Los Angeles, California 90009.

500-watt rf transformer

Palomar Engineers has a new broadband rf transformer. It matches vertical and mobile antennas to 50 ohm coaxial cable. Impedance values of $8,12.5,16,22,32$, and 50 ohms can be selected by a convenient switch.

The transformer is mounted in a die-cast aluminum case $10 \times 12 \times$ $5 \mathrm{~mm}(4 \times 5 \times 2$ inches) fitted with UHF (SO-239) connectors. The rf ferrite toroid core is wound with tef-lon-insulated wire and is rated at 500 watts in continuous commercial service. Operating frequency range is $1-30 \mathrm{MHz}$ ($1-10 \mathrm{MHz}$ below 20 ohms).

Price is $\$ 35$ plus $\$ 2$ for shipping in the United States and Canada. For a free descriptive brochure, write to Palomar Engineers, Post Office Box 455, Escondido, California 92025.

Stolen Equipment

STOLEN: June 30, 1978, Rochester, NY from K2DHA. 2 meter transceiver, KDK model FM144-10SXRII Seria 45670. Scanner adapter attached to above. Amateur Wholesale Electronics, FMSC-1, no serial M. Amateur Wholesale Electronics Touch Tone Pad, Model FMTP.1. If tendered for trade, sale, or service, please notity: K2DHA, A. C. Peed, L66 Monteroy Road, Rochester 14618 or: Brighton Police Dept., 2300 Elmwood Ave., Rochester, N.Y. 14618.

CUSHCRAFT IS THE VHF-UHF ANTENNA COMPANY.

Cushcraft precision engineered VHF/UHF Yagi beams have become the standard of comparision the world over for SSB and CW operation on 6 meters through 432 MHz . Built by skilled craftsmen from the best available materials, these beams represent that rare combination of high electrical performance, rugged construction. and durability.

Quad Array
Cushcraft's Quad Arrays for 144, 220. and 432 MHz use fout matched 11 -element Cushcraft Yagis and are the ultimate in a high-performance Yagi array These arravs have been carefully engineered for maximum forward gain, high front-to-back ratio. and broad frequency response All antennas provide a low VSWR match to 50 -ohm coaxial feedine

20 Element DX Atray

Cusheratt s wide yanetr of VHF/MHI Beams includes an antenna tor every amateur activity above 50 MHz whether local ragchewing or long haul over the horizon DX All models have Deen carefully optimizea tor maximum forward gain with high front to back tatio the heav- wall bright hard-drawn aluminum booms and elements are combine d with heavy formed aluminum brackets and plated mounting hardware for long operating life and survival in sevete wedthet

UPS SHIPPABLE
In Stock With Dealers World Wide P.O. Box 4680. Manchester, N H 03108

DRAKE OWNERS

Please note that our Las Vegas Repair facility is being closed in early September to allow staff personnel to return to our main plant in Ohio to help meet the fantastic demand for the TR-7 and other exciting new Drake products.

The need for a western factory service center has been reduced in recent months as our western dealers have expanded their service capabilities.

R. L. Drake Co.

540 Richard Street
Miamisburg, Ohio 45342
Phone 513-866-2421
Telex 288-017

CURTIS 8043 retires with honors

but look
at our
NEW STARS!
8044; Keyer 0 n -A-Chip ${ }^{}$ (heplaces 8043) . . $\$ 14.95$ Apr '75 HR,Fab '75 aSt, Radlo Mdok '75, ARRL Hdbk '77-78 * 8044-3; IC,PCB,Socket,Manual. 24.95 *8044-4; Semi-Kit. 54.95 $\star 8045$; Morse Keyboart-On-A-Chip IC. . . . 59.95丸 8045-1; IC, PCB, FFO, Sockets, Manual . . . 89.95 \star 8047; Message Memory-On-A-Chip IC. . . 39.95 \star 8047-1; IC,PCB,RAM,Sockets,Manual. . . 69.95 (add $\$ 1.75$ on above for postape and handiling)
EK-430; CMOS Keyer* (Feb '76 0ST) 124.95
IK-440A; Instructokeyer* (Mar '76 0sT) 224.95 "now with dash memery as standard
System $\mathbf{4 0 0 0}$ Ham Computer (see Jan '78 08t). (write) Curtis Electro Devices, Inc. visa (415) $964-3136$ Box 4090, Mountain View, CA 94040

TEST EQUIPMENT

All equipment listed is operational and unconditionally quaranteed. Money back if not satisfied. Prices listed are FOB Monroe.

HP120B 450 kHz gen pur scope
HP170A(USM140) 30 mHz Scope with
reghoriz, dual irace vert plugs
eas Mod 80 Stand sig gen
$2-400 \mathrm{MHz}$ with calib attn.
Quantech 303 Wave Anal
Tek565 Dual beam 10 mHz scope less plug ins (3 series).
Tek 58580 MHz gen pur scope less plugin.
URM25 Stand Sig Gen $10 \mathrm{kHz}-50 \mathrm{MHz}$ calib attn.
.225
For complete list of all test equipment send stamped, self addressed envelope

GRAY Electronics

P.O.Box 941, Monroe, Mich. 48161 Specializing in used test equipment

BE PREPARED FOR CYCLE 21 GET HY-GAIN'S NEW LONG-JOHNS "THE STACKABLES"

With sunspot cycle 21 now in the upswing, you should be prepared for the DX available on the 3 top HF bands, if not, our new "Long-Johns" are for you. The new 5 element "Long-John" monobanders are ideal for the serious DX'er. Each utilizes Hy-Gain's unique Beta-match for optimum power transfer. Also each antenna uses taperswaged tubing for minimum wind load and maximum strength. For maximum durability each "Long-John" uses Hy-Gain's rugged boom-to-mast clamp.

Specifications:

Order Number	$\mathbf{3 7 7}$
Model Number	$\mathbf{2 0 5 B A}$
Gain	11.6 dB
Front-to-back ratio	20 dB minimum
SWR lat resonanceJ	Less than $1.5: 1$
Impedance	50 ohms
Power rating	Maximum Legal
2:1 VSWR Bandwidth	400 KHz
Longest Element	$361 / 2^{\prime \prime}$
Boom Length	34^{\prime}
Boom Diameter	$2^{\prime \prime}$
Turning Radius	25^{\prime}
Surface Area	$9.0 \mathrm{sq}. \mathrm{ft}$.
Wind Load at 80 mph	230 lbs.
Maximum Wind Survival	80 mph
Mast DIA Accepted	$11 / 4^{\prime \prime}$ to $21 / 2^{\prime \prime}$

376	$\mathbf{3 7 5}$
$\mathbf{1 1 5 B A}$	$\mathbf{1 0 5 B A}$
12.0 dB	12.0 dB
20 dB minimum	20 dB minimum
Less than 1.5:1	Less than $1.5: 1$
50 ohms	50 ohms
Maximum Legal	Maximum Legal
500 KHz	1.5 MHz
$241 / 2^{\prime \prime}$	$181 / 2^{\prime}$
26^{\prime}	24^{\prime}
$2^{\prime \prime}$	$2^{\prime \prime}$
$171 / 2^{\prime \prime}$	15^{\prime}
$5.2 \mathrm{sq} . \mathrm{ft}$.	$3.9 \mathrm{sq} ft.$.
133 lbs.	100 lbs.
100 mph	100 mph
$11 / 4^{\prime \prime}$ to $21 / 2^{\prime \prime}$	$11 / 4^{\prime \prime}$ to $21 / 2^{\prime \prime}$

HY-GAIN ELECTRONICS 8601 Northeast Hwy 6
Lincoln, Nebraska 68505
(402) 467-5321 telex: 48-4324

Clegg is

 Headquarters

Dozens of Distributors offer you a selection of YAESU products. Some might even quote you a slightly lower price. But-no one can serve you better than Clegg when you choose any item from YAESU's extensive product line. Because:

1. We have YAESU products in stock.
2. We know YAESU products inside and out.
3. We service all YAESU products. If you are considering upgrading your station with a new YAESU FT901-or an FT225RD—or an FT301—or merely a YAESU clock-call us TOLL FREE today.
YAESU and Clegg guarantee your satisfaction with the product and with the service.

Call Clegg TOLL FREE 1-(800)-233-0250, for YAESU or any other requirement for your station.

Clee9
Communications Corp. 1911 Old Homestead Lane Lancaster, PA 17601

Toss 80 and 40 meters in your briefcase.

only $\$ 79.95$

Kantronics 8040-B Receiver
It weighs about as much as a loaf of bread!
The Kantronics $\mathbf{8 0 4 0 - B} \mathbf{C W}$ receiver measures $3^{\prime \prime} \times 5$ '" $\mathbf{x 7}$ '"(HWD) and runs on two 9 volt transistor batteries. It's small enough to fit in your briefcase, light enough to take on a hiking trip and sensitive enough to pick up signals at a microvolt.

Now you can copy code from 3.650 to 3.750 MHz on 80 meters and 7.050 to 7.150 MHz on 40 meters almost anywhere you have room for a pad and pencil! A simple dipole brings in armchair copy on both bands.

Check with your dealer about the $\mathbf{8 0 4 0}-\mathbf{B}$, or order direct from our address below.

1202 East 2nd Strot The Lightweight Champs. Laurrice Kansen (66044 mony orbis Prow 93 8427745

If you expect to invest in a new ham antenna in the next 90 days, invest 154 postage to get Antenna Specialists' brand new, complete ham catalog today.

FREE decal just for fun! Name Address

Cily State

Zip
the antenna specialists co.

RTTY Can Be Easy!

Have You Wondered What Owning a RTTY Station Would be Like?
 Have You Thought ... About Finding Out but Didn't Know Who to Ask?

ASK THE GUYS AT HAL!

Our sales and service staff will be happy to assist you in your choice of RTTY equipment, answer questions about RTTY, and provide assistance if problems do arise. In addition. all HAL amateur RTTY equipment manuals can be purchased for $\$ 10.00$ each for an advance look (applicable to future purchase of that unit).

Answers to common RTTY questions are featured in the center fold of our new amateur radio catalog. Such questions as "What do I need?". "How do I hook it up?", and "What frequencies do I use?" are dis cussed. Technical points concerning RTTY pulses, FSK and AFSK, and high-tones vs low-tones are covered.

Write today for HAL 'S new catalog and RTTY guide and discover how much fun RTTY can be.

State of the ant

CRYSTAL FILTERS and DISCRIMINATORS

9.0 MHz FILTERS

OSCAR - J FILTER

Suppress 2 m Tx Third Harmonics. Low 2 m loss (0.5 dB typ.). High loss at 435 (35 dB typ.) MMf 200

432 MHz SSB TRANSVERTERS

Use your HF Transceiver on the 432 MHz band with the addition of the MMt432 linear Transverter. The MMt432 operates on all modes; SSB, CW AM, FM. It contains BOTH the linear transmit up-converter and the receive down-converter. An internal PIN diode T/R connects to your Trans ceiver T/R line. The MMt432 is FT101 and similar HF rig compatible. Ad the 70 /MBM48 MULTIBEAM and operate direct into OSCARS 7 a Write for application note.
Specifications:
Output Power Drive, 10 Meters Receiver N.F. Receiver gain $\begin{array}{ll} & 3.0 \mathrm{~dB} \text { typ }\end{array}$ Prime Power $\quad 30 \mathrm{~dB}$ typ Shipping: $\$ 3.50$ MMt432-28 MMt432-50 $\$ 257.50$
$\$ 265.00$ MMt432-144 $\quad \$ 319.95$
ANTENNAS (FOB CONCORD, VIA UPS) 144-148 MHz J-SLOTS
8 OVER 8 HORIZONTAL POL +12.3 dBd D8/2M $\$ 45.95$ BY 8 VERTICAL POL. \quad D8/2M-VERT. $\$ 53.95$ $8+8$ TWIST $8 \times Y / 2 M \quad \$ 47.65$
 154.95 $\$ 154.95$

48 EL. GAIN $+15.7 \mathrm{dBd} 70 / \mathrm{MBM} 48$
$\$ 49.95$ $88 \mathrm{EL} \quad \mathrm{GAIN}+18.5 \mathrm{dBd} 70 / \mathrm{MBM} 88$ $\$ 73.50$
UHF LOOP YAGIS
$\begin{array}{ll}26 \text { LOOPS } & \text { GAIN }+20 \\ 1250.1340 \\ 1650 & \mathrm{MHz} \\ 1296-\text { LY }\end{array}$
$\begin{array}{lrr}1250.1340 & \mathrm{MHz} & 1296 . \mathrm{LY} \\ 1650.1750 \mathrm{MHz} & 1691 . \mathrm{LY}\end{array}$
$\$ 56.95$

Send 30 c (2 stamps) for full details of KVG crystal products and all your VHF \& UHF equipment requirements.
Pre-Selector Filters Amplifiers Varactor Triplers Crystal Filters Varactor Pre-Scalers Antennas Frequency Meters Oscillator Crystals Oscillator Crystals

SSB Transverters FM Transverters VHF Converters UHF Converters

Spectrum
International, Inc. Post Office Box 1084 Concord, Mass. 01742, USA

里
 GREGORY ELECTRONICS
 The FM Used Equipment People.

New Low Price!

2 Meter Portable G.E. MASTR PR 36
$132-150 \mathrm{MHz}-5$ Watts
ALL SOLID STATE with Ni-Cad Battery

Reg.

Vehicular Charger 4EP63A (sold only with unit) \$25.
A.C. Charger (subject to availability)................ \$25.

Speaker/Mike Type EM36 \$15.
GREGORY ELECTRONICS CORP.
245 Rt. 46, Saddle Brook. N.J. 07662 Phone: (201) 489-9000

ATLAS 210x/215x

5 BAND - 200 WATT - ALL SOLID STATE HF SSB CW TRANSCEIVER

Don't let its small size, and light weight fool you ... the Atlas $210 x / 215 x$ is a top notch performer, with all the power and performance that you find in rigs twice as big, and costing twice as much. And none of the others have as many superior features as our little Giant Killer, regardless of their size.

- ALL SOLID STATE DESIGN.
- 200 WATTS PEP.
- NO TRANSMITTER TUNING.
- 5 BAND COVERAGE,
(210x covers $10-80$ meters, $215 x$ covers 15-160 meters).
- PLUG-IN CIRCUIT BOARDS .
- SUPERIOR SELECTIVITY, with exclusive 8 pole crystal ladder filter.
- EXCEPTIONAL IMMUNITY TO STRONG SIGNAL OVERLOAD AND CROSS MODULATION.
- SLIPS IN AND OUT OF SPECIAL MOBILE MOUNTING BRACKET OR AC CONSOLE IN SECONDS, with connections for DC power input, antenna jack, and mic jack made automatically.

417 Via Del Monte Oceanside, CA 92054
Phone (714) 433-1983
Special Customer Service Direct Line
(714) 433-9591

MADE IN U.S.A.

ALL－MODE VHF amplifiers

115V／230VAC OPERATION FOR BASE STATION \＆REPEATER USE

\＆No Power Supply Needed
\＆AM－FM－CW－SSB－RTTY
\＆ 60 dB Harmonics
字 60 dB Spurious
\＆Heavy Duty Design

立 Illuminated Panel Meter
\＆Internal T／R Switch
古 Fully Protected
f $+13 \mathrm{~V} / 3 \mathrm{~A}$ Accessory Socket मे U．S．Manufactured

FCC Type Accepted Models also available，Parts 89，91，93．

model	frequency	input	output	$\begin{gathered} \text { SIZE } \\ \text { W×D×H } \end{gathered}$	wegat	FAN KIT Aequired	Price
v70	144.148 MHz	10－15W	75－90w	$216 \times 330 \times 178 \mathrm{~mm}$	11.7 kg 1281	NO	\＄315．00
V71	144.148 MHz	1.3 W	75.90 W	$216 \times 330 \times 178 \mathrm{~mm}$	11.7 kg （26 ibs）	NO	＊349．00
vi8o	144.148 MHz	8．15w	170－200w	$216 \times 330 \times 178 \mathrm{~mm}$	13.5 kg （30 1bs）	CWEFM	－3539．00
－V350	144.148 MHz	10.20 W	$350-400 \mathrm{~W}$	$432 \times 330 \times 178 \mathrm{~mm}$	$202 \mathrm{~kg}(451 \mathrm{bs})$	YES	\＄875．00
V1308	220.225 MHz	10.15 W	70.86 W	$216 \times 330 \times 178 \mathrm{~mm}$	11．7kg（26 16s）	NO	632900
$\checkmark 1358$	$220-225 \mathrm{MHz}$	25－35W	140.160 W	$216 \times 330 \times 178 \mathrm{~mm}$	$117 \mathrm{~kg}(26 \mathrm{lbs}$	CWEFM	3469.00
F110	FAN KIT，115VAC FAN KIT，230VAC 19 INCH RACK ADAPTOR			$135 \times 135 \times 50 \mathrm{~mm}$	1 kg 12.2 fbs	－	－ 33.00
F220				$135 \times 135 \times 50 \mathrm{~mm}$	$1 \mathrm{~kg}(22 \mathrm{lbs})$	－	－ 33.00
RM． 1				$483 \times 3 \times 178 \mathrm{~mm}$	1 kg （2．2 2 bs ）	－	＊ 25.00

other frequencies available on request． CALL FRANK KALMUS－WATSPR

RF POWER LABS，INC．
POWER LABS

Frequency Counters

BUDWIG MFG．Co．ро вох 97н，Ramana，с＾ 92069

All band operation ($160-10$ meters) with any random length of wire. 200 watt output power capability-will work with virtually any transceiver. Ideal for portable or home operation. Great for apartments and hotel rooms-simply run a wire inside, out a window, or anyplace available. Efficient toroid inductor for small size: $4-1 / 4^{\prime \prime} \times 2-3 / 8^{\prime \prime} \times 3^{\prime \prime}$, and negligible loss. Built-in neon tune-up indicator. SO-239 connector. Attractive bronze finished enclosure.

only $\$ 29.95$

THE ORIGINAL Random Wire Antenna Tuner. . . in use by amateurs for 6 years

SST T-2 ULTRA TUNER

Tunes out SWR on any coax fed antenna as well as random wires. Works great on all bands ($80-10$ meters) with any transceiver running up to 200 watts power output.
Increases usable bandwidth of any antenna. Tunes out SWR on mobile whips from inside your car.
Uses efficient toroid inductor and specially made capacitors for small size: $5-1 / 4^{\prime \prime} \times 2-1 / 4^{\prime \prime} \times 2-1 / 2^{\prime \prime}$. Rugged, yet compact. Negligible line loss. Attractive bronze finished enclosure. SO-239 coax connectors are used for transmitter input and coax fed antennas. Convenient binding posts are provided for random wire and ground connections.

only
 $\$ 19.95$

SST T-3

Mobile Impedance Transformer

Matches 52 ohm coax to the lower impedance of a mobile whip or vertical. 12 -position switch with taps spread between 3 and 52 ohms. Broadband from 1-30 Mhz. Will work with virtually any transceiver- 300 watt output power capability. SO-239 connectors. Toroid inductor for small size: $2-3 / 4^{\prime \prime} \times 2^{\prime \prime} \times 2-1 / 4^{n}$. Attractive bronze finish.

only \$29.95
849.95 wire and tested

SST A-1 VHF Amplifier Kit

1 watt input gives you 15 watts output across the entire 2 meter band without re-tuning. This casy-to-build kit (approx. $1 / 2 \mathrm{hr}$. assembly) includes everything you need for a complete amplifier. All top quality components. Compatible with all 1-3 watt 2 -meter transceivers. Short and open protected-not damaged by high SWR.
Kit includes:

- Etched and drilled G-10 epoxy solder plated board.
- Heat sink and mounting hardware. All componentsincluding pre-wound coils.
- Top quality TRW RF power transistor.
- Complete assembly instruction with details on a carrier operated T/R switch.
\square

ATTENTION KENWOOD \& YAESU OWNERS!!!

the W6TOG* RECEIVER MODIFICATION KIT

- INCREASES SELECTIVITY
- IMPROVES SENSTTIVITY
- LOWERS INTERNAL NOISE
- COMBATS BLOCKING FROM LOCAL SIGNAL
- IMPROVES NOISE BLANKER OPERATION

TS-520 KIT	$\ldots \ldots .$.	$\$ 27.50$	
TS-520S KIT		.	32.50
TS-820 \& 820S KIT	.	34.50	
FT-101 SERIES KIT	\ldots	32.50	
FR-101 SERIES KIT	..	34.50	

EXPLICIT INSTRUCTIONS MAKE MODIFICATION A CINCH *WELL KNOWN DXer WITH OVER 300 COUNTRIES CONFIRMED.

Order from

S-F AMATEUR RADIO SERVICES 4384 KEYSTONE AVE., CULVER CITY, CA. 90230 (213) 837-4870

IT'S MAGIC-IT'S "MAGICOM" PROCESSOR MODIFICATION KIT

IMPROVES AUDIO PUNCH • IMPROVES PROCESSED SPEECH QUALTTY
Converts TS-820 speech processor from RF compressor to RF clipper

The "MAGICOM" RF processor module provides up to 6 db increase in output with smooth, clean, non-distorted audio and more penetration for those pile-ups.

Price $\$ 27.50$ ENDORSED BY W6TOG AND BIG GUN DXers WORLD WIDE

SATISFACTION GUARANTEED OR MONEY REFUNDED All prices postpaid - in Calif add 6% sales tax - Mastercharge \& Visa accepted

The revolutionary Swan 100 MX: 100% new, 100% solid state, 100% portable from home station to mobile!

Introducing a superb "get up and go" transceiver, superbly designed for 100% mobility and control, as only new Swan space-age technology could do it!
100% solid state 100 MX : the compact HF unit you can take seriously - anywhere you choose to operate.

At home, set into Swan's unique new style-coordinated station, with matching antenna tuner and power supply.

Or on the road - it's easy to relocate 100 MX . Instantly. Just two simple connections on the back panel: snap out, snap in. and run!
100% improved audio quality: home or mobile, transmit or receive. 100 MX electronics cut through SSB sound barriers -
producing a natural clarity reported comparable to AM !

Your most-wanted extras, 100% built-in: like noise blanker and VOX. Like a preselector to optimize signals. Like a real RF GAIN control, and CW sidetone.

Swan includes the RIT control ($\pm 1.5 \mathrm{kHz}$) you'd like too. Plus, for stability, a permability tuned oscillator with 1 Kc readout.

A powerful package, delivering a minimum 100 watts PEP output on all bands, 10-80 meters.

Setting a 100% new state of art: 100 MX and our matched-station units. Ready for check out today at your Swan dealer, the first major breakthrough in Swan's new program dedicated to changing the face - and performance - of ham equipment $100 \% \ldots$ inside and out!

Swan 100 MX: $\$ 849.95$
Matching Power Supply PSU-5: $\$ 179.95$
Matching Antenna Tuner ST-3: $\$ 169.95$

a nember of the Cubic Corporation family of companies

305 Airport Road, Oceanside, CA 92054

 (714) 757.7525Swan' contaumg comatitnent to product improvement may alfect specificatiotis and prices whout notice

BULEET ELEETEOMICS

 P. O. Box 19442 Dallas, TX. 75219 (214) 823-3240MC3301P HOUSE \#
4 OP AMPS IN ONE PACKAGE USES SINGLE SUPPLY, (4 to 28 VDC) INTERNALLY COMPENSATED. SIMILAR TO MC3401, BUT HIGHER GAIN. 494

MC1437P DUAL 709 OP AMP HIGH OPEN LOOP GAIN, LOW NOISE. 14 PIN DIP

3/1.00
 MC1351P FM-IF AMP
AND DISCRIMINATOR

USED IN FM \& TV SOUND
CIRCUITS. REQUIRES MNI-
MUM EXTERNAL COMPO-
NENTS. 14 PIN DIP. DIRECT
REPLACEMENT FOR HEPC
G060. ECG 748 and MANY
OTHERS. HOUSE \#
WITH SPECS WITH SPECS

HOUSE\#
LM3900 QUAD NORTON AMP WE BOUGHT A LARGE QUANTITY OF THESE HOUSE NUMBERED PARTS AT A BARGAIN PRICE THAT ALLOWS US TO SELL THEM AT A LOW, LOW 394

MPF131 N-CHANNEL

DUAL GATE MOSFET

504
DESIGNED FOR AMPLIFIER AND MIXER APPLICATIONS TO 200 MHZ. PLASTIC CASE. UNITS ARE HOUSE NUMBERED WITH ARE HO
SPECS.

1N4148 DIODES

 LEADS ARE TARNISHED BUT CLEAN UP EASILY. THE BOSS SAYS "DUMP 'EM"...SO CHECK THIS PRICE!50/1.00

IL-1 OPTO ISOLATORS
BY LITRONIX 6 PIN DIP STANDAFD PINOUT LEDTRANSISTOR COMBINATION. W0c WHILE THEY LAST!

HOUSE \# PNP POWER ro-3
 IDENTICAL TO 2N3790 $\quad 1.00$

ALL COMPONENTS 100\%

 GUARANTEEDCA3011 WIDEBANDIFAMP w/specs 2N3569 NPN EPOXY IW 741 OP AMP 8 PIN DIP 723 VOLTAGE REG. 14 PIN DIP MPS6530 NPN HOUSE \# 725 OP AMP LOW NOISE HOUSE \# 7815 15V 1A REGULATOR HOUSE \# LM340T-12 12V 1A VOLT. REG. w/specs TCA430 QUAD OSCILLATOR 1/specs 2N4343 P CHANNEL JFET 2N6111 PNP MED PWR 40W TO-220 2N6028 PROGRAMMABLE UNIJUNCTION w/specs TRIAC 200 V BA UNMARKED
FND510 69 COMMON ANODE READOUT $1 / 2^{\prime \prime}$ CHARACTER LIMIT 24 PER CUSTOMERI

LED'S JUMBO: RED $5 / .89$

 GREEN $4 / .89$MEDIUM: RED . 15 MINI \Longrightarrow GREEN .16 RED. 10 YELLOW . 16

$$
1.5 \mathrm{~V} 10-30 \mathrm{ma}
$$

WArBLE ALArM Kit

 A tun EASY kit to assemble that emits an ear European siren sound. Great for alarms or toys. Operates from $5-12 \mathrm{VDC}$ at up to 1 amp (using $12 \mathrm{VDC}=8$ ohm speaker). Over five thousandhave been sold. All parts including PC board
less sueaker.
ORDER WB-02
\qquad
2.50

* SEND CHECK M.O. OR CHARGE CARD NO.
* PHONE ORDERS ACCEPTED ON
PHONE ORDERS ACCEPTED ON
VISA AND MASTERCHARGE ONLY

MC1469R POSITIVE VOLTAGE REGULATOR
$1 / 2$ AMP COMPLETE SPECS AND APPLICATIONS SHOW HOW TO BUILD FIXED OR VARIABLE POWER SUPPLIES FROM 3 TO 30VDC. DRIVE EXTERNAL SERIES PASS FOR CURRENT TO 20 AMPS!
1.25 EA.

$10 / 10.00$
HOUSE

10

INCANDESCENT PANEL LAMP

WITH TINNERMAN NUT YOUR CHOICE OF RED, GREEN, YELLOW, WHITE 154 24VDC
\qquad ecs 6/1.00

5/1.00

 50¢ 8/1.00 994 69 c $75 ¢$ 69 c$4 / 1.00$ 3/1.00 504

POWER SUPPLY METERS
\qquad 154

FANTASTIC SOUND EFFECTS

 CHIPavailable only from bulleti
THIS 28 PIN MARVEL CONTAINS A LOW FREQUENCY OSCILLATOR, VCO, NOISE OSCILLATOR, ONE SHOT, MIXER AND envelope control with a page MANUAL. 5 to 9VDC

CAPACITORS

COMPLIMENTARY PNP, NPN DARLINGTON POWER TRANSISTORS. 8 AMPS. WE SUPPLY A SCHEMATIC TO BUILD A HIGH POWER (35W) LOW DISTORTION AUDIO AMP WITH ONLY ONE ADDITIONAL TRANSISTOR AND A DOZEN INEXPENSIVE COMPONENTS! TO-3 CASE STYLE BUY A PAIR FOR $\$ 3.00$!
\$3.OO!
FANTASTIC SOUND EFFECTS
CHIP
AVAILABLE ONLY FROM BULLETI
THIS 28 PIN MARVEL CONTAINS A LOW
FREQUENCY OSCILLATOR, VCO, NOISE
OSCILLATOR, ONE SHOT, MIXER AND
ENVELOPE CONTROL WITH B PAGE
MANUAL.. 5 TO 9VDC

POWER SUPPLY KIT

 PS-14- Better than 200MV load and line regulation Foldback Current Limiting
Short Circuit Protected
Thermal Shutdown
Less
Case.
mer - Thermal Shutdown Limiting meters

- All parts supplied including heavy duty trans
former - Quality plated fiterglass PC board.

$$
42.95 \text { us sestime }
$$

OVERVOLTAGE PROTECTION KIT 6.95

Provides cheap insurance for your expensive equipment. Trip voltage is adjustable from 3 to 30 volits. Overvaltage
instantly fires a $25 A$ SCR and shorts the output to protect instantly fires a 254 SCR and shorts the ountpure fused. Di. rectly compatible with the PS. 12 and PS. 14 . All electronics supplied. Drilled and plated PC board. (Order OVP-1)

- ADD 5\% FOR SHIPPING

* TX. RES. ADD 5\% STATE SALES TAX
* ORDERS OF $\$ 50$. \& OVER TAKE 10% DISCOUNT
* FOREIGN ORDERS ADD 10\%
(20\% AIRMAIL) U.S. FUNDS ONLY.

WATCH FOR IT! Coming next month, a special kit for HAMS!
 \section*{MITI ORANDPATMER CLOCR HIT}

Chimes the hour lie: 3 times for 30

MK-03A CLOCK/TIMER KIT
Features 24 hour Zulu time and up to 24 hours of elapsed
time on the same set of six digit LED readouts. Totally independent operation of both furictions. Clock has presettable alarm with 10 minute snooze. Timer has reset, hold, and count functions. Full hoise and overvoltage
protection. 24 hour only. Readonts has dimmer feature or they can be turned off without disturbing the clock or timer. Timebase included (. 01% accuracy). Because of the
many options and mounting considerations the case and many options and mounting considerations the case and switches are not included. Switches are standard types.

Unique "swinging" LED penduturm
Tick tock sound matches pendulum swing.
Large 4 digit. $5^{\prime \prime}$ LED read
Complete electronics includiny transformer \& speaker;
drilled and plated PC boards measure $4.5^{\prime \prime} \times 6.5^{\prime \prime}$ BEAUTIFUL SOLID WALNUT

Custom case for above kit. Over $9 \frac{1}{4}$ " tall. 19.95
39.95

fled market

RATES Non-commercial ads $10 \mathbb{C}$ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.
HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the noncommercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N.H. 03048.

MOBILE IGNITION SHIELDING provides more range with no noise. Avaliable most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 93862.

HAPPY BIRTHDAYI Now ten years fighting TVI. The RSO low pass filter. For brochure write: Tayior Communications Manufacturing Company, Box 126, Agincourt, Ontarlo, Canada MIS 384.

UNLIMITED VHFIUHF EQUIPMENT is at Radios UNlimited. From transverters to specialized transceivers, from mobile whips to E-M-E arrays. Plus all accessories. Authorized dealer for top manufacturers. (Also all your needs from 160 to 10) RUN in, write or phone - Radios UNlimited, 1760 Easton Avenue, Somerset, New Jersey 08873, 201-469-4599 - Hours 1 to 8 Mon-Fri; 10 to 8 Sat.

ELECTRONIC EQUIPMENT HOTLINE is a new classified advertising newsletter for buying and selling professional, industrial, and surplus electronic equipment. Subscriptions $\$ 6 /$ year, ads 50 c/word. Prepublication offer: $\$ 1$ off subscriptions and 20% off all ads postmarked by October 1, 1978. Electronic Equipment Hotline, P.O. Box 4768, Panorama City, CA 91402.

Foreign Subscription Agents for Ham Radio Magazine	
Ham Radio Austria Karin Ueber Postfach 2454 D. 7850 Loerrach West Germany	Ham Radio Holland MRL Ectronics Postbus 88 NL-2204 Delf! Holland
Ham Radio Belgium Stereohouse Brusselsesteenweg 416 8-9218 Gent Belgium	Mam Radio Italy STE, Via Maniago 15 I-201 34 Milano Italy
Ham Radio Canada Box 114. Goderich Ontario, Canada N7A 3Y5	Harn Radio Switzerland Karin Ueber
Ham Radio Europe	Postfach 2454 0.7850 Loerrach
Box 444 S. 19404 Upplands Vasby Sweden	West Germany
Ham Radio France Christiane Michel F-89117 Parly France	Ham Radio UK P. O. Box 63. Harrow Midalesex HA36HS. England
Ham Radlo Germany Karin Ueber Postlach 2454 D. 7850 Loerrach West Germany	Holland Radio 143 Greenway Greenside, Johannesburg Republic of South Africa

CANADIANS: $1,000,000$ surplus electronic parts. Hundreds of fantastic bargainsl Good deals on Yaesu \& Icom. Free catalog. ETCO-HR, 183G Hymus Blvd., Pointe Claire, Quebec H9R 1 E9.
BUY-SELL.TRADE. Send $\$ 1.00$ tor catalog. Give name, address and call ietters. Complete stock of major brands new and reconditioned equipment. Call for best deals. We buy Collins, Drake, Swan, etc. SSB \& FM. Associated Radio, 8012 Conser, Overland Park, KS 66204. 913-381-5900.

PORTA PAK the accessory that makes your mobile really portable. $\$ 67.50$ and $\$ 88.00$. Dealer inquires invited. P.O. Box 67, Somers, Wisc. 53171.
FREE CATALOG of new merchandise. Resistors, capacitors, IC's, semiconductors, and more. Send to: Key Electronics, Box 3506H, Schenectady, New York 12303.

MOTOROLA HT220, HT200, and Pageboy service and modifications performed at reasonable rates. WA4FRV (804) 320-4439, evenings.

AUTHORIZED DEALER for DenTron, KLM, Larsen, Bearcat, etc., Big Catalog 201-96\%.-4695 Narwid Electronics, 61 Bellot Road, Ringwood, N.J. 07456.

RECONDITIONED TEST EQUIPMENT for sale. Catalog \$.50. Walter, 2697 Nickel, San Pablo, Ca. 94806.
TELETYPEWRITER PARTS WANTED: for all machines manufactured by: Klienschmidt Corp., Teletype Corp. and Mite. Any quantity, top prices paid send list for my quote. Phil Rickson, W4LNW, Rt. 6, Box 1103G2, Brooksville, FI. 33512.

VERY In-ter-est-lng! Next 3 issues $\$ 1$. "The Ham Trader', Sycamore, IL 60178.

OSL CARDS 500/ $\$ 10.400$ illustrations, sample. Bowman Printing, Dept. HR, 743 Harvard, St. Louis, MO 63130.

HOMEBREWERS: Stamp brings component list. CPO Surplus, Box 189, Braintree, Mass. 02184.
ELECTRONIC BARGAINS, CLOSEOUTS, SURPLUS! Parts, equipment, stereo, industrial, educational. Amazing values! Fascinating items unavailable in stores or catalogs anywhere. Unusual FREE catalog. ETCO-012, Box 762, Plattsburgh, N.Y. 12901. SURPLUS WANTED.

TELETYPE EQUIPMENT for beginners and experienced operators. RTTY machines, parts, supplies. Beginner's special: Model 15 Printer and demodulator $\$ 139.00$. Dozen black ribtons $\$ 6.50$; case 40 rolls $11 / 16$ perf. tape $\$ 17.50$ FOB. Atlantic Surplus Sales, 3730 Nautilus Ave., Brooklyn, N. Y. 11224. Tel: (212) 372-0349.

THE "CADILLAC" of OSL's! Samples: $\$ 1.00$ (Refundable) - W5YI, Box "1171-D; Garland, Texas 75040.

TELETYPEWRITER PARTS, gears, manuals, supplies, tools, toroids. SASE list. Typetronics, Box 8873, Ft. Lauderdale, FL. 33310. N4TT Buy parts, late machines.

EXCLUSIVELY HAM TELETYPE 24th year, RTTY Journal, atticles, news, DX, VHF, classified ads. Sample 354. $\$ 3.50$ per year. 1155 Arden Drive, Encinitas, Calli. 92024.

MANUALS for most ham gear made 1937/1970. Send only 254 coin for list of manuals, postpaid. HI, Inc., Box H864, Council Bluffs, lowa 51501.
OSL FORWARDING SERVICE - 30 cards per dollar. Write: QSL Express, 30 Lockwood Lane, West Chester, PA. 19380.

RECEIVE PARTS UISTS regularly for $\$ 4 / y$ y. Surplus Parts, P.O. Box 7057, Norfolk, VA 23509.

WANT UP.TO-DATE INFORMATION? Radio-Hobbyist Newsletter issued every 2 weaks. Only $\$ 5.00$ year. W5YI, Box 1171.D, Garland, Texas 75040.
EZ deals are the bestl Try me and see for Yaesu, Drake, KLM, Swan, Cushcraft, DenTron, VHF Eng, ICOM, CDE, Hustler, Wilson and more. Call, see or write WeEZ, Bob Smith Electronics, RFD 3, Hwy 169 \& 7, Fort Dodge, IA 50501. (515) 576-3886

THE MEASUREMENT SHOP has used/reconditioned test equipment at sensible prices; catalog. 2 West 22nd St., Baltimore, MD 21218.

WANTED: COLLINS 51S-1 CABINET. W9JUV, Box 406, Glenview, IL 60025.
AMATEUR MICROPROCESSOR EXPERIMENTERS: 10 $\mathrm{MHz} \pm 20 \mathrm{ppm}$ Coldweld crystals. 1 ppm/yr. $32 \mathrm{pF} . \mathrm{C}_{\mathrm{o}} 6$ pF. $\$ 4.25$ ea, postpaid. Savoy Electronics, Inc., P.O. Box 5727, Ft. Lauderdale, FL 33310. 305-563-1333.

AUTHORIZED DISTRIBUTOR FGFT Antennas, Microwave Modules, RIW Products' new tandem reflec. tor, 19 element, 432 MHz Yagi - Radio Clinic - N2MB (formerly WA2BIT) 212-327-4952.

430-450 MHz

UHF POWER MODULE 430-450 MHz - Factory New, leading manufacturer. 200 Milliwatts input at 430-450 MHz will get 12 Watts output. Input Voltage is 13.6 Volts DC. No tuned circuits required. Hook-up supplied and all units tested before shipment.
$\$ 10.00$ ea. ppd.
Highest Quality E. F. Johnson Trimmer Caps. Hard-tofind P.C. board mount. . $5-11 \mathrm{mmid}$. No junk.
$90 \mathrm{caach} ; 10$ for $\$ 7.50 \mathrm{ppd}$.
In-Line Fuseholder - Complete with 5 Amp fuse. 50 c ea. ppd.

C=
XTAL Socket - Standard
HC-6 style
10c ea.ppd.

Vertical Mount Trimmer Pots - All highest quality. No junk. 100-1000-2000 -5000-10K - 20K - 25K 50K - 250K - 500K Ohms. All have thumbscrew adjust. Your choice 5 for $\$ 1.00 \mathrm{ppd}$.

Transformer - 115 VAC Primary. 12 Volt AC 200 mA Secondary. PC board type.
$\$ 1.00$ ea. ppd.
Mini-LEDs - Factory New - Color red.
15c ea. ppd.
$\begin{aligned} & \text { Germanium Diodes - } 1 N 34 \mathrm{~A} \text {. Factory } \\ & \text { New - full leads. } \\ & \text { 12c ea. ppd. }\end{aligned}$
1N914-1N4148 Type diodes - full leads. $\quad 10 c$ ea. or 100 for $\$ 8.00$
6 toot AC Line Cords. 2 conductor heavy duty. Color white.

40c ea. ppd.
SUPER-BUY - 5000 mid. @
40 volt electrolytic cap. factory
dow and complete w/all hard-
nse $\quad \$ 1.35$ oa. ppd.

1000 volt PIV 2 amp diodes . 10 ea.

88 mHy unpotted toroids $\quad 5$ for $\$ 3.50$
S0239 Coax Fittings 50c ea.
PL259 Coax Fittings 50c ea.

Transiormer: 115V AC Primary, Secondary 17-D-17V @ 7 Amps. We tested and find good for 10 Amps intermittent duty. Ideal for 2 M rigs! $\$ 8.00$ ea. ppd.

ALL ITEMS PPD USA SEND STAMP FOR LIST OF BARGAINS PA RESIDENTS ADD 6% SALES TAX FONE 412-863-7006

SLEP SPECIALS
 RADIO RECEIVERS, TRANSCEIVERS

 R-390/URR Receiver, tunes 500 kHz thru 30.5 rack moun, $115 \mathrm{~V} / 60 \mathrm{~Hz}$ R-390A/URR Receiver, tunes 500 kHz thru 30.5 MHz , digital tuning, mechanical filters, $19^{\prime \prime}$ rack mount, $115 \mathrm{~V} / 60$ Hz
$\$ 595.00$ R-389/URR VLF Receiver, tunes 15 kHz thru 1500 $\mathrm{kHz}, 19^{\prime \prime}$ rack mount, digital tuning, $115 \mathrm{~V} / 60 \mathrm{~Hz}$ HAMMARLUND SP-600JX Receiver, tunes 500 kHz thru $54 \mathrm{MHz}, 19^{\prime \prime}$ rack mount, $115 \mathrm{~V} / 60 \mathrm{~Hz} \$ 375.00$ R-388/URR' Receiver, military version of the $51 \mathrm{~J} \cdot 3$, tunes 500 Hz to $30.5 \mathrm{MHz}, 19^{\prime \prime}$ rack mount, $115 \mathrm{~V} / 60 \mathrm{~Hz}$ R-392/URR Receiver, tunes 500 kHz thru 32 MHz , digital tuning, mechanical filters, in cabinet size $111 / 2 \mathrm{H} \times 140 \times 11^{\prime \prime} \mathrm{L}$, takes 28 volts DC .5 amps to operate. $\$ 275.00$
0 MHz . URR-13 Receiver, tuneable UHF, 225.400 MHz Used to monitor military and satellite frequencies. In Cabinet, $115 \mathrm{~V} / 60 \mathrm{~Hz}$ 5175.00 COLLINS KWM- 2 Xcvr w/516F-2 pwr sup. $\$ 900.00$ NEMS.CLARKE 1432 Telemetry Receiver, 215 to 260 MHz , FM , phase lock 100 p decter. By removing stops, can operate 15 to 260 MHz or further by using a converter. A fine lab rcvr. $\$ 165.00$ COLLINS RT-594/ARC-38A Aircraft Transceiver. 2.0 thru 25 MHz , synthesized channels 35,250 (20 preset), 100 watts PEP SSB, FSK, AM, CW, size $24^{\prime \prime} L \times 15 \frac{1}{2} 2^{\prime \prime} \mathrm{W} \times 73 / 4{ }^{\prime \prime} \mathrm{H}$, weight 65 lbs. requires 28 volt DC power supply. MODEL VOX-2 Technical Material Corp. Variable Frequency Oscillator. Tuneable 2 thru 64 MHz , oven controlled, $115 \mathrm{~V} / 60 \mathrm{~Hz}$

TEST EQUIPMENT

COLLINS 479T-2 VOR/ILS Signal Generator. 108 135.9 MHz and 329.3 . 335 MHz output sigs. in clude VOR, LOC, glideslope \& 1000 CPS. Operated 28 VDC port. or bench pwr source. $\$ 225.00$ TS.510A Signal Generator, military version of HP608D, $10.420 \mathrm{MHz}, \mathrm{AM}, \mathrm{CW}$, pulse, buitt-in calibrator. $\$ 425.00$ TS. 497 /URR Signal Generator, 2.400 MHz 1000 100,000 microvolts, calibrated output, 400, 1000 Hz modulation. AN/URM- 25 Signal Generator, 10 kHz thru 50 $\mathrm{MHz}, A M / C W$, MOD $400 \& 1 \mathrm{kHz}$, RF output $0-2 \mathrm{~V}, 0 \mathrm{R} 0$-. iv from precision 50 ohm stop at- $\$ 285.00$ tenuator
$\$ 285.00$ AN/URM-26 Signal Generator, 4.405 MHz in 6 bands, 400 \& 1 kHz MOD, attenuator variable $\$ 350$ $\begin{array}{ll}\text { UV to } \\ \text { SG. } 12 & \text { FM } \\ \text { Signal Generator, } & 20.100 \\ \mathrm{MHz} \text { in } 5\end{array}$ bands, RF output 5 UV to 5 V , deviation 0.100 kHz in 3 ranges, internal modulations $\$ 185.00$ SG-3 FM Signal Generator, $50-400 \mathrm{MHz}$ in ${ }^{3}$ bands, RF output 110.1 V , variable 50 ohm attenuator, deviation $0-150 \mathrm{kHz}$ in 3 ranges, internal $\$ 385.00$ modulation. $\$ 385.00$ HEWLEIT PACKARD 612A UHF Signal Generator, $450-1230 \mathrm{MHz}$, output . IUV to .5 V , modulation 0.90%, imternal 400 and 1 kHz . $\$ 650.00$ MEASUREMENTS MODEL 65B Signal Generator, 75 kHz thru 30 MHz , calibrated output, fully metered, $19=$ rack mount, $115 \mathrm{~V} / 60 \mathrm{~Hz} \$ 175.00$ HP410B VTVM measure AC/RF voltages 0.300 V RF to 700 MHz , resistance to $500 \mathrm{ME} ~ \$ 95.00$ HP416A Ratio Meter, measures reflection co. efficient of a load, SWR and response of an RF sys. tem forward \& reverse sigs. automatically. $\$ 145.00$ HP205AG Audio Oscillator, range 20 Hz to 20 kHz , input $50,200,500,600$ ohms, two meters with attenuators. $\$ 165.00$ HP400D AC V in 12 ranges, frequency response 10 Hz to 4 MHz
 5 ranges to 10 GHz . $\$ 60.00$ HP415BR VSWR Indicator and Amplifier, used for precise VSWR measurements and a null amplifier in bridge applications. $\$ 85.00$ GENERAL RADIO 916AL Impedance Bridge, range 50 kHz to 5 MHz , measures resistance $0-1000$ ohms and reactance 5000 ohms at $1 \mathrm{MHz} \$ 285.00$ BOONTON 250A RX Meter, measures R-C-L, a self contained bridge, range 500 kHz to 250 MHz in 8 contained bridge, range
ranges. TEKTR wertronix 545A Osciloscope, DC to $\$ 550.00$ with dual trace CA plug-in. ${ }^{\text {TEKTRONIX }} 535$ Oscilloscope, DC to 15 MHz with type "L" fast rise, high gain plug-in. $\$ 350.00$ tektronix 525 Television Waveform Monitor, 5" CRT. Used to monitor broadcast video waveforms. TS.1379A SPECTRUM ANALYZER, range 0.30 MHz in 6 bands, 5" CRT display, 8 sweep widths from . 15 to 30 kHz , sweep rate 1 sec to 10 sec , has fast sweep mode for rapid tuning. Dynamic KAY ELECTRONIC 154 C Solid State Wide Band Sweep Oscillator, 50 kHz to 110 MHz with PM 7650 pulse marker plug-in. $\$ 375.00$ 7650 pulse marker pleg-ed. Satisfaction Guaranteed or money refunded. Send check, Master Charge or VISA FOB OHto, N. C. N. C. residents add 4% sales tax Phone (704) 524-7519.
ELEP ELECTRONXCE GANCO
P. O. Box 100, Highway 441, Dept. HR-10 Otto, North Carolina 28763

RADIO MUSEUM NOW OPEN. Free admission, 15,000 pieces of equipment from 1850 telegraph instruments to amateur and commercial transmitters of the 1920s. Amateur station W2AN. Write for information: Antique Wireless Assn., Main St., Holcomb, NY 14469.

TEST EQUIPMENT CATALOG listing used Tektronix, HP and GR equipment at bargain prices. PTI, Box 8699 , White Bear Lake, MN 55110 . Price $\$ 1.00$ refundable with first order.
STOP LOOKING for a good deal on amateur radio equipment - you've found it here - at your amateur radio headquarters in the heart of the Midwest. We may not have a toll free number but we'll save you more in the long run! We are factory-authorized dealers for Kenwood, Drake, Yaesu, Collins, Wilson, Ten-Tec, Atlas, COM, DenTron, MFJ. Tempo, Regency. Hy-Gain, Mosley, Alpha, CushCraft, Swan, and many more. Write or call us today for low quote and try out personal and friendly Hoosier service. HOOSIER ELECTRONICS, P.O. Box 2001, Terre Haute, Indiana 47802. (812) 238-1456.

NEW CONCEPT - Novice instructional package, theory tape \& study material. Complete license study package, \$17.95. General study package, \$19.95. MARI, 1320 Canary Drive, West Columbia, SC 29169

COMMUNICATIONS ENGINEERS - SENIOR TECHNICIANS $23-36 \mathrm{~K}$ after six month apprenticeship. We have openings for highly competent self motivated professionals with in depth knowledge of analogue and digital circuits and proven "hands on" troubleshooting ability. You will have full responsibility for maintenance of complex shipboard communications, electronics navigation, and computer systems and handle all ships communications. A second class FCC radiotelegraph license is required. If you lack the FCC license but are otherwise qualified we can train you. Outstanding vacation and tringe benetits. Submit resume in confidence to: Radio Officers Union, Attn: IME. 70 Hudson Street, Rm. 710, Hoboken, New Jersey 07030 or telephone (201)659-7370.

TR-7, IC-701, Ten-Tec 544, IC-211, Midland 510, Mark II, KDK, WE-800, MLA-2500, VHF One-Plus, IC-280...and on, and on. Shopping price? Better drop us a card or call us or our low, low cash quote. The Comm Center, Inc., Laurel Plaza - Rte. 198, Laurel, Maryland 20810. Telephone (301)792-0600.

WANTED - Radio transcription discs. Any size or speed. Larry, W7FIZ Box 724, Redmond, Washington 98052

SIGNAL ONE: CX-78 mint condition $\$ 995$. Have matching speaker, CW filter, spare finals, documentation plus many extras. W3.JW, 4513 Mountain Road, Pasadena, MD 21122. (301)437-0171

SELLING OUT COMPLETE STATION. Brand new HW-101, all accessories, much more. SASE for list. R. Broomfield, Route 289, Lebanon, Conn. 06249.

COLLINS R392 USERS GROUP now forming. Contact lan H. Grant, 49 Silverstone Drive, M905, Rexdale, Ontario, Canada M9V 3G2.

WILL PAY $\$ 25.00$ TO ANYONE who can give me a demonstration of Hal, Into-Tech, or Microlog in Morse mode. W2OQK, Tracy Diers, 58-14-84th Street, Elmhurst, N.Y. 11373, Tel. (212)651-2798.

TI PROGRAMMABLE 58 CALCULATOR. Mint. s65. See HR, May, p. 45. WD4GRI, 1907 Lodgepole Ave., N. Augusta, S.C. 29841.
FOR SALE: 16 Digit Touch Tone Converter Regenerator. Factory built Data Signal DCR-71. NEVER USED, Tested on bench and works perfectly. Like New, Cost $\$ 325$. Sell tor $\$ 210$ including shipping. Leo Wilson, Rt. 4, Box 1851, Huntsville, AL 35803; Phone (205)881-2028.

SLOW SCAN ROBOT MODEL 70 monitor, Model 61 viewfinder, Model 80 Camera. Drake T4XC, R4c, L4 Linear, TC-2, TC-6, SC-2, SC-6, CC-1, Power Supply, Calibrator, WV-4, ZEA W-4, AC-4, MS-4. Sell as complete station. Will not ship. Prefer you examine and pick up only if your bid is accepted. R. Leaf, P.O. Box 202, Dabel Branch. Dayton, Ohio 45420. No telephone calls. Letters only

SHACK CLEANOUTi NOVICES: Heath HR-1680 receiver, HS-1661 speaker, SBA-104-1 noise blanker, $\$ 200$. HW-100 with CW filter, AC power supply, $\$ 150$. HG-10B VFO, $\$ 40$. George Ritter, WB8EPE. (216)368-3738 (days): (216)368-4923 (nights); (216)725-4394 (weekends).

PC BOARDS FROM YOUR 1:1 ARTWORK. 40 c per square inch plus $\$ 1.00$ tor postage and handling. If drilled ic per hole. Please specity. Screen printing and screened component layouts available. Send for quote. Reserve right to reluse any non acceptable artwork. SP Enterprises, RT, "5, Mt. Sterling, KY. 40353.

LABORATORY GRADE 12V POWER SUPPLIES at ham prices. SST antenna tuners. Catalog. SST Electronics, P.O. Box 1, Lawndale, CA 90260. (213)376-5887 A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from \$69.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from \$29.95.

SYNTHESIZER KITS from 50 to 450 MHz . Prices start at \$119.95.

Now available in KIT FORM GLB Model 200 MINI-SIZER.
Fits any HT. Only 3.5 mA current drain. Kit price $\$ 159.95$ Wired and tested. \$239.95
Send for FREE 16 page catalog. We welcome Mastercharge or VISA

GLBELECTRONICS
 1952 Clinton St., Buffalo, N. Y. 14206

RF DIRECTIONAL WATTMETER with VARIABLE RF SIGNAL SAMPLER - BUILT IN IN STOCK FOR PROMPT DELIVERY

AUTHORIZED DISTRIBUTOR
Webster
associates
115 BELLARMINE ROCHESTER, MI 48063
CALL TOLL FREE
800 - 521-2333
IN MICHIGAN $313-375 \cdot 0420$

The world's most popular 2 meter amateur hand-helds now are even better!!!

with the miniature-sized Wilson 2.5 watt MARK II and 4.0 watt MARK IV amateur hand-helds

Wilson hand-helds have been known world-wide for exceptional quality and durable performance. That's why they have been the best selling units for years.

Now the American made Mark Series of miniature sized 2 meter hand-helds offers the same dependability and operation, but in an easier to use, more comfortable to carry size . . . fits conveniently in the palm of your hand. Like its size, the price is also the smallest on the market.

To obtain complete specifications on the Mark II and Mark IV, along with Wilson's other fine products, see your local dealer or write for our Free Amateur Buyer's Guide.

SPECIFICATIONS

- Range: $144-148 \mathrm{MHz}$
- 6 Channel Operation
- Individual Trimmers on TX and RX Xtals
- Rugged Lexan® outer case
- Current Drain: RX 15 mA TX - Mark II: 500 mA
TX - Mark IV: 900 mA
- 12 KHz Ceramic Filter and 10.7 Monolithic Filter incl.
- 10.7 MHz and 455 KHz IF
- Spurious and Harmonics: more than 50 dB below carrier
- BNC Antenna Connector
- 3 Microvolt Sensitivity for 20 dB Quieting
- Uses special rechargeable Ni-Cad Battery Pack
- Rubber Duck and one pair Xtals 52/52 included
- Weight: 19 oz . including batteries
- Size: $6^{\prime \prime} \times 1.770^{\prime \prime} \times 2.440^{\prime \prime}$
- Popular accessories available

Illustrated with optional Chomarics or Digitran Touch Pad.

8080 SOFTWARE - Learn and practice copying CW and transmit using your microcomputer. Full program documentation plus source and object listings for $\$ 6.00$. TRANSCRIBIT, P.O. Box 194, Northfieid, N.J. 08225.

QRQ ORQ QRQ for the greatest thrill in ham radio, join the 40 to 60 WPM code operators. Learn to use that high speed read-out you aiready have in your head: High Speed Code Receiving and Keyboard Touch Typing Course, $\$ 3.95$ postpaid USA. Introductory offer. Com-Viz Publications, Box 215, Sherman, IL 62684.

TELETYPE EQUIPMENT AND PARTS Model 33 KSR and many parts for sale cheap. Lee Zanteson WA6FPO, (213)792-8909.

COLLIN'S FILTERS, $\mathbf{5 4 5 . 0 0}$ EACH. F455D-31 and F455H-60. Latter easily adapted to $75-\mathrm{A}-4$ receiver. Certified check or money order. Ken Hager W7KQ. Rt. 1, Box 186, Burton, WA 98013.

CERTIFICATE for proven two-way radio contacts with Amateurs in all ten USA call areas. Award suitable to frame and proven achievements added on request. SASE brings TAD data sheet from W6LS, 2814 Empire, Burbank, CA 91504.

OLD TELEPHONE WANTED, Handled upright with or without dial. Also Old spring suspended mike \& Old Key. DelPopwell,W. Peiper,P.O. Box326,D-7880Sackingen 11.

RTTY - NS-1A PLL Demodulator W/T \$26.95 ppd. Parts kit including board $\$ 19.95$ ppd. SASE for info. Nat Stinnette Electronics, Tavares, FL 32778.

S100 FINDER'S FEE FOR YOU (even if finder is seller) for lead to item made by J. J. Duck Co. If I buy. $\$ 50$ for lead to crowsfoot glass telegraph battery if I buy. Dr. A. E. Richmond, 7809 SW 4th Ave., Portiand, OR 97219.

FOR SALE: MAKE OFFER Sony Betamax 317200 K-60 Tapes ICOM IC-211; Drake FS-4, R-4C, T-4XC, AC-4, MS-4, 7075 Filters. Noise blanker. Atronics Code Reader, Heathkit phone patch/Weather station. Conar 400 trans. 500 receiver. Jerry Bayless, 316 S. Deimar, Decatur, IL (217)428-8218.
$\$ 100$ EACH OR BEST OFFER? New Atlas 220CS (210X power supply), National HRO 50, coil sets, TEK 561A, Dumont 303-A, Want 2 M FM, Hustier RM20S, 40S, MO2. Reid W6MTF, 2701 Durant, Apt. 9, Berkeley, CA 94704.
CALL PINS 3 lines $1-1 / 4 \times 3-1 / 4 \$ 1.55$ each. Call - First Name and Club. Colors black, red or blue with white letters. (Catalog) Arnold Linzner, 2041 Linden Street, Ridgewood, N.Y. 11227.

I WOULD LIKE TO TRADE my Western Data Systems 6502 based computer for an SSB xmtr, SSB xcvr, or 2 meter FM xcvr. WB6WDI, P.O. Box 234, Mt. Shasta, CA 96067.

HAM RADIO MAGAZINES - Vol 1 No. 1 through today (complete set) in HR binders - Mint! \$225 or trade for model railroad brass. Steve Hyett, 1440 Royal St. George, Naperville, IL 60540 .

Coming Events

OCTOBER 1 - Talk-in WR4ADH - 146.34/146.94. North West Georgia ARC Hamfest Fairgrounds, Rome, GA WA4IBI Scott Lomax, (404)278-2581.

MICHIGAN: R.A.D.A.R. The Repeater Association of Downriver Amateur Radio is holding its 2nd annual swap \& shop on Sunday, Oct. 22, 1978 at Kennedy High School in Taylor, Michigan. Located on Northline Rd. East of Telegraph Rd. (U.S. 24). Admission $\$ 2.00$. For info write R.A.D.A.R. Inc., P.O. Box 1023, Southgate, Michigan 48195.

MASSACHUSETTS: Hampden County Radio Association's annual Ham and Electronic Equipment auction, Friday, October 6, Feeding Hills Congregational Church, Feeding Hills. Doors open - 7PM - Auction 8PM. For info Larry Soltz, WB1CJH, (413)567-6707.

MARYLAND: The Foundation for Amateur Radio's annual Hamtest, Gaithersburg Fairgrounds, Gaithersburg. Sunday, October 8. Flea market, food, exhibits, ladies and children's programs. Picnic grounds and free parking. Fee: $\$ 2.00$, flea market space $\$ 5.00$ each, commercial $\$ 15.00$ each. Pre-registration required prior to October 4. Talk-in provided. For info Ron Levin, W3GBU, 802 Greenview Court, Reistertown, MD 21136. (301)833-1816.

NEW YORK: LIMARC Hamfest, Islip Speedway, Islip Avenue (Rt. 111), Islip, Long Island, October 15. Gate opens $9: 30$ AM. Admission: $\$ 1.50$. Ladies and children under 12 tree. Sellers and exhibitor's spaces $\$ 3.00$ each. Limarc tune-up clinic (bring your own power cord). Talkin 146.25/85 or 52. For info, Hank Wener, WB2ALW, 53 Sherrard St., East Hills, NY 11577 - (516)484-4322 evenings or Ken Denston, WB2RYC (516)379-6463 evenings.

DIPOLE HEADQUARTERS
Famous "W2AU" Balun

COLLINS \& MORE Ham Gear

Collins 312B4, Sta. Cntl., rd., exc.
Collins $312 \mathrm{B5}$, Vfo Console, exc. Collins 312B5, Vfo Console, exc.
Collins 32 S 3 , Transmitter, rnd., exc. Collins $51 \mathrm{~S} 1,2-30 \mathrm{MHz}$ rcvr
Collins R-388/51J3 receiver, vy gd Hammarlund SP-600JX, rcvr Collins CP-1 Crystal Pack Racal $6217 \mathrm{E}, .5-30 \mathrm{MHz}$ receiver $\$ 195$ New R390A revr avail. Call for quote. Collins 312B4 Console, rnd., new, orig. box
Collins 30S1 Linear, wing, excellent $\$ 1695$ National NCL 2000, 2kW Linear, exc. $\$ 550$ Johnson 2kW Matchbox w/swr meter $\$ 225$ Collins 302 C 3 wattmeter, vy gd Collins 75 S 2 ham receiver, vy gd Collins 32S3 ham transmitter, vy gd Yaesu FTDX-570 transceiver, vy gd

Test Gear
Boonton Radio 225A 10-500MHz sig. gen., like new
HP-200CD wide-range oscillator HP-202H $54-216 \mathrm{MHz}$ AM/FM sig. gen. $\$ 695$ HP-608D $10-420 \mathrm{MHz}$ sig. gen.

$$
\text { \#605, } 6 \mathrm{VDC}, 500 \mathrm{~mA} \text {, lab. p/s }
$$

$$
\begin{aligned}
& \text { \#605, 6VDC, 500mA, lab. p/s } \\
& \# 1210,12 \mathrm{VDC}, 10 \mathrm{~A}, ~ l a b, ~ p / s
\end{aligned}
$$

$$
\begin{aligned}
& \text { \#1210, 12VDC, 10A, lab, p/s } \$ 95 \\
& \text { Measurements Mod. 65B, LF sig. gen. } \$ 325
\end{aligned}
$$ 260A Q-meter, exc. $\$ 450$ Model $80,2.400 \mathrm{MHz}$ sig. gen. $\$ 350$ Tek 465 portable 'scope, excellent $\$ 1650$

We stock good, used equipment from Collins, Drake, Heath and other manufacturers. Hundreds of test items also available. Call for specific re quirements, or

write for free catalog.

DAMES COMMUNICATION SYSTEMS
201-998-4256
10 SCHUYLER AVENUE
NORTH ARLINGTON, N. J. 07032
All equipment sold checked
and realigned

sonir dryinernation ABOUTOUR allweatherantenas

Sooner or later almost all ordinary ham antennas are going to become victims of bad weather.

But Shakespeare's brand new line of two meter and HF antennas is anything but ordinary.

We're new to the ham market, but we've been making marine and military antennas for 26 years.

Andthose 26 years have taught us how to make a ham antenna that'll take just about anything Mother Nature can dish out.

Look at our 5705 omnidirectional VHF base antenna, for example.

Its radiating elements are non-ferrous brass and copper, the finest practical material available for conductivity and corrosion resistance. Surrounding the radiating elements and electrical components is a tough, flexible fiberglass shield. A shield that gives the antenna the strength to withstand winds in excess of 120 miles-per-hour.

The fiberglass keeps out rain, sleet and snow too. So the antenna's radiation pattern won't change, no matter how bad the weather.

And you don't have to worry about radials breaking off, because the 5705 doesn't have any.

But it does have seven vertically polarized and phased $1 / 2$ wave elements, stacked in colinear array.

And you can get optional style 5709 reflector that blocks out unwanted coverage in one direction and gives you an additional gain in the opposite direction.

And here's another important piece of information: the 5705 is pre-tuned at our factory to operate in all environments. So you will never have to have it re-tuned.

Our full ham antenna line is featured in our new catalog: The Complete Works of Shakespeare. And the catalog is yours. For free. All you have to do is ask for it.

Just drop us a line at Shakespeare, Electronics and Fiberglass Division, Department C, Post Office Box 246, Columbia, South Carolina 29202.

Or call National Sales Manager John Hughes, WA4EAU or (803) 779-5800.

BIG REGENCY FM CLOSEOUT

Don't pass up the Savings!

HR-2B $2 \mathrm{~m} \mathrm{Fm} \mathrm{Xcvr}. \mathrm{15w}, \mathrm{12ch} \mathrm{w/.94} \mathrm{crystals}$, mic \& mt. (Reg. \$229) . . . CLOSEOUT $\$ 139.00$

HR-312 2 m FM Xcvr. 30w, 12ch T/R w/.94, mic \& mt. (Reg. \$269) CLOSEOUT $\$ 169.00$

HR-6 6 m FM $X_{\text {cvr. }} 25 \mathrm{w}, 12 \mathrm{ch}$ T/R w/52.525, mic \& mt. (Reg. \$239) . . . CLOSEOUT $\$ 149.00$
HR-220 220 MHz FM Xcvr. 12 ch T/R w/223.5, mic \& mt. (Reg. \$239) . . . CLOSEOUT $\$ 149.00$

HR-440 440 MHz FM Xcvr. 10 w , 12 ch w/ 446.0 , mic \& mt. (Reg. \$349) . . . CLOSEOUT $\$ 249.00$
AR-2 2 m FM Power Amplifier. 13.8 vdc - 9 A . max. 5 db power gain. 10 to 25 w input for 32 to 80 w output. (Reg. \$119)

CLOSEOUT $\$ 99.00$
HRT-2 Basic 2 m FM Hand-Held Xcvr. 2 or Iw. 5 ch w/ 94 crystals. Whip antenna. No other accessories (Reg. \$179)

CLOSEOUT $\$ 99.00$
HRT-2 Deluxe. As above, but includes Nicad Battery. Charget, Flexible Antenna, External Microphone, Earphone, Case and DC Cord with plug (Reg. \$295)

CLOSEOUT $\$ 195.00$

All NEW - Full Warranty!

Extra crystals for $2 / 6 \mathrm{~m}-\$ 5.00$ each, $220 / 440$ MHz - $\$ 10.00$ each. Quantities Limited. Order direct from this ad. Send Check, Money Order or use your Mastercharge or BankAmericard (VISA). Allow $\$ 5.00$ for UPS shipping charges.

Write for FREE 1978 CATALOG

AMATEUR ELECTRONIC SUPPLY ${ }^{*}$

4828 West Fond du Lac Avenue
Milwaukee, Wisconsin 53216
Phone (414) 442.4200
BRANCH STORES:
28940 Euclid Avenue; Wickliffe, Ohio 44092
Phone: (216) 585.7388
621 Commonwealth Ave.; Orlando, Fla. 32803 Phone: (305) 894-3238
Note: Branch Stores are set-up to handle Walk-in business or telephone orders only. They oo not have facilities to respond to written inquiries.

NEW JERSEY: Knight Raiders VHF Club Auction \& Flea Market, St. Joseph's Church, East Rutherford, Saturday, October 14. Doors open 10:00 AM. Free admission/parking. Flea market tables - $\$ 6.00$ /full or $\$ 3.50 /$ half. Talk-in 146.52 and 144.65/145.25. For info: Bob Kovaleski, (201)473-7113 or Bob Czyzewski (201)791-5651. Evenings only.
INDIANA: Marshall County ARC's 3rd annual Swap and Shop Hamfest, the Armory, 11th and West Madison Sts., Plymouth, October 29, 7:00 to 4:00. Donation $\$ 2.00$. Free tables. For info and res. tables: Melvin Mahler, P.O. Box 151, Plymouth, IN 46563.
MISSISSIPPI: Gulf Coast Ham/Swap Fest, Sunday, October 22, International Plaza, west end of Biloxi/Ocean Springs bridge, Highway 90, Biloxi. Donation: $\$ 1.00$. Tables $\$ 2.00$. Talk-in 146.13/73 and 146.52. For info, advance tickets and tables: Irvin L. Kelly, K5YIN, 116 Wiltshire Blvd., Biloxi, MS 39531. (601)374-3340.

MISSOURI: Mo-Kan Council of ARC's ARRL Convention, Hilton Airport Plaza Inn, Kansas City. October 13, 14, and 15. Exhibits, Ladies' program, luncheon, fashion show, Saturday night banquet ($\$ 12.00 /$ person). Pre-registration $\$ 3.00$. Checks to Mo-Kan Council of ARCs, P.O. Box 704, Kansas City, MO 64141.
NEW YORK: Radio Amateurs of Greater Syracuse 14th annual Hamfest, New York State Fairgrounds, Arts and Home Center, Syracuse, Saturday, October 7. 9AM to 6PM. Talk-in 90/30 - 31/91. Exhibits, indoorloutdoor flea market, ladies programs. Tickets before October 1 $\mathbf{\$ 1 . 5 0}$. $\$ 2.00$ gate. Under 12 free. Overnight and trailer parking available. For info R.A.G.S., P.O. Box 88 , Liverpool, N.Y. 13088.
ONTARIO: London Amateur Radio Club wil hold its 10th annual RSO Convention October 13th, 14th and 15th at the Downtown Holiday Inn City Center Tower, London, Ontario. A Friday night Oktoberfest-type Eyeball is FREE to all registrants and their spouses. Events and programs for the weekend include contesting, antennas, DXing, CW-FM-RTTY-ATV-SSB discussions, technical topics, computers and AMSAT. R.S.O. - CARF - CRRL forums, and DoC discussion. Saturday night banquet, prizes, and dancing to the big band sounds. Sunday flea market, and much, much more. Talk-in (VE3RSO) 75 ssb, 3775 kHz ; 2-meter FM 146.46/147.06 (VE3LAC). For more information write London Amateur Radio Club, Inc. Attention: Convention Tickets, P.O. Box 82, Station B, London, Ontario N6A 4V3.
NEW YORK: The annual United States Air Force Military Affiliate Radio System (USAF MARS) Region One Convention will be held in Albany, New York on October 13-15, 1978. For more information write Convention Committee, P.O. Box 1978, Boiceville, N.Y. 12412.

NEW JERSEY: Livingston ARC Annual Fleamarket, Saturday, October 14, 1978 from 10AM until 4PM at the Fairfield United Methodist Church, corner of Plymouth and Horseneck Road, near Route 80 and only one block from Route 46. Registration \$4 per car space; buyers and lookers free. Refreshments. For more information, write LARC, 116 Orton Road, W. Caldwell, N.J. or call LARC, 116 (201)226-7943.
ISLAND DX AWARD: Sponsored by Radio Amateurs residing on Whidbey island, the IDX Award is available to all Radio Amateurs and SWLs of the world who can meet some simple requirements: QSL confirmations from 50 , 100, 150, or 162 (max possible) islands including Whidbey island. Special band and mode endorsements are added features of this attractive award certificate. since not all islands are qualified contacts, each Amateur should have the IDX special Island Listing and a copy of the rules. As an added incentive, a special IDX wall plaque will be awarded to the first Radio Amateur who confirms the maximum possible number of recognized islands. Please send large business-size SASE to Bill Gosney, WB7BFK, 2665 North, 1250 East, Whidbey Island, Oak Harbor, Washington 98227. Foreign amateurs please include 5 IRCs.

JAMBOREE ON THE AIR: annual gathering of Scouts, former Scouts and interested hams on the Amateur Radio bands reaches a milestone in October - it's twenty-first birthday! The jamboree-on-the-air will be held over the weekend of 21st and 22nd October starting at 0001 LOCAL time on Saturday. October 21, 1978 and terminating 2359 LOCAL time on Sunday, October 22 , 1978. However, each station is permitted to select its own operating schedule, including Friday evening, if desired. Frequencies suggested: Phone: 3940, 7190, 14290, 21360,28990 and $52500 \mathrm{kHz} . \mathrm{CW}: 3590,7030$, 14070, $21140,28090 \mathrm{kHz}$. SSTV: normal SSTV frequencies. The Worid Scout Bureau plans to operate from a special camp about 15 km . from Geneva, Switzerland, and will use the callsign HB9S/portable. They plan to be on all bands simultaneously and all modes including SSTV, RTTY, and OSCAR. For more information, write: Harry A. Harchar, W2GND/K2BSA, Boy Scouts of America, North Brunswick, N.J. 08902; telephone (201)2496000.

Practical experience with Superior Quality Materials and Construction that's...

Tristao isn't just a trade name... it's a man called Lou, and he's been designing towers for hams all his life...the pioneer. That's why Tristao towers above all. And because he knows hams, he engineers quality at prices you can afford. From Mini-Masts to the giants, it's TOWER POWER all the way with Tristao.
WRITE RIGHT NOW FOR FULL SPECS and dealer nearest you. PROMPT DELIVERY.

LRISTAO TOWER

Division of Palmer Industries, Inc.
415 E. 5th St. - P.O. Box 115
Hanford, CA 93230 / Ph. (209)582.9016

ALDELCO ELECTRONICS COMPANY

RF DEVICES

2N3375 3W $400 \mathrm{MHz} \ldots 5.502 \mathrm{~N} 60804 \mathrm{~W} 175 \mathrm{MHz}$. N 3866 IW 400 MHz 2N5589 3W 175 MHz 2N5590 10W 175 MHz 2N5591 25W 175 MHz .99 4 N 608115 W 175 MHz 4.75 7 N 608225 W .85 MHz 2 N 608330 W 175 MHz 10.95 2 N 608440 W 175 MHz
 \qquad

 ALD-1158 12 Watts. 200 MHz . T0117. Has 8/32 Heat Sink Stud. Similar to 2SC1177. Fits Standards.Only $\$ 12.30$
OVERVOLTAGE PROTECTION. OV-12 Provides protection from runaway Power Supply Voltage. Triggers (46 16V. 25 Amp rated. 1 piece moulded unit for 12 Volt DC fused Power Supply $\$ 7.950 \mathrm{~V}-5$ for 5 Volf PS triggers at $7 \mathrm{~V} \$ 7.95$.
ACCUKEYER KIT Similar to Handbook version Includes PC Board ACCUKEYER KIT. Similar to Handbook version. Includes PC Board, IC's. Sockets \& all parts
$\$ 19.95$
ACCUKEYER MEMORY KIT. Matches our Accukeyer and many other keyers. Two memories of 30 Characters each. (2 1101 Memory Chips). Includes PC Board. IC S. SOCkets and all parts. 12 or 24 HOUR CLOCK KIT. NOW WITH A NEW WALNUT WOOD GRAIN CABINET. Model ALD 5-W. Six Big 0.5 Displays. Only $\$ 49.9512$ or 24 Hour Operation -
Each Clock controlled separately,
Freeze Feature for Time Set - Easy
assembly for clock and Cabinet.
115131835131
ALD 1158 Replaces SD1177 12 Watts
2N5590 RF Transistor 10 Watts 175 MHz
ALARM CLOCK KIT Six 0.5 LED Display Readouts. Elapsed Time indicator. 12 Hour Format with 24 Hour Alarm Snooze feature. AM/PM $\begin{array}{lr}\text { indicator. Power Supply power falure indicator. } & \text { Only } \$ 19.95 \\ 12 \text { or } 24 \text { Hour Clock Kit. } 0.5 \text { Display LED's } & \$ 18.95\end{array}$ Wood Grain Cabinet
TUNABLE AMATEUR TV CONVERTER. Receive Fast Scan ATV in the 420 MHz Band with any TV Set. Low noise high gain Amplifier stage with Varactor Tuned input and output. Buitt-in 110 VAC Supply. Two $1 / 8^{\prime \prime}$. Factory Wired \& Tested. 2 Year Guaranty \quad Only $\$ 49.95$ Adjustable Power Supply Kits. 500 mA 5 to 15 Volts $\quad \mathbf{\$ 6 . 9 5}$ 12 to 20 Volts
Power Supply Kit of Parts, 5 Voit 6 Amp
$\$ 17.95$
Add 6% for Shipping. Min. Order $\$ 10.00$ out of USA send Certified Check or Money Order. Include Postage.

A

2281 H Babylon Turnpike, Merrick, N. Y. 11566 (516) $378-4555$

Send 1st class stamp for our catalog

YOUR BEST BUY IN KITS

 6 GOOD REASONS FOR BUYING A HAL-TRONIX FREQUENCY COUNTER(1) 100% COMPLETE KIT, (2) EASY ASSEMBLY, (3) COMPLETELY ENCLOSED IN METAL CABINET, (4) IC SOCKETS USED THROUGHOUT FOR EASY TTL REPLACEMENT (5) EASY ON YOUR POCKET BOOK, AND (6) NO EXPENSIVE CHIPS TO REPLACE (EXAMPLE - IF YOU LOSE A DECODER, LATCH OR DRIVER IN A HAL.TRONIX COUNTER, THE AVERAGE COST OF REPLACEMENT OF THE LOW-COST TTLS IS LESS THAN \$1.00 EXCLUDING THE PRESCALE CHIP. IN SOME OF THE NEWER COUNTERS NOW BEING MARKETED BY MY COMPE. TITION, THEY ARE USING THE EXOTIC SINGLE CHIP AND WOULD COST YOU CLOSE TO $\$ 30.00$ TO REPLACE). THIS IS
SOMETHING YOU SHOULD CONSIDER. SOMETHING YOU SHOULD CONSIDER.

ANALOG-DIGILAB

 KIT \$139.50DESIGNED BY HAL-TRONIX AND MIKE GOLDEN OF R, E,T,S, ELECTRONICS SCHOOL OF DETROIT. FOR RUGGED CLASSROOM USE. FOR THE RADIO AMATEUR, STUDENT, EXPERIMENTER OR DESIGNER SPECIFICATIONS: OUTPUT VOLTAGES: $+5 \mathrm{~V},+12 \mathrm{~V},-12 \mathrm{~V}$; USABLE CURRENT: 750 mA ; $\%$ Regulation at $500 \mathrm{~mA}: 0.2 \%$; Short-circuit limited at 1.0 amp; Thermal overload protected. Power requirements: $117 \mathrm{VAC}, 60 \mathrm{HZ}, 40$ Watts. Function Generator: Frequency range: 1 HZ to 100 HZ in 5 bands. Amplitude adjustable from 0 to 10 VPP. DC offset adjustable from 0 to $\pm 10 \mathrm{~V}$, Waveforms: Sine, square, triangular and TTL Clock. TTL Clock 0 to +5 V level, 200 ns rise and fall time. Frequency determined by Function Generator, Output impedance 1.2 K ohm.
Most of all, it's easy to construct and service. PC boards are predrilled, plated thru and solder flowed. Over 1000 units sold to schools.

NNEW
 FROM HAL-TRONIX FIRST TIME OFFER

sia-UIGi: ALARM CLOCK KIT for home, camper, RV, or field-day use. Operates on-12-volt AC or DC, and has its own $60 \cdot \mathrm{~Hz}$ time base on the board. Complete with all electronic components and two-piece, pre-drilled PC boards. Board size $4^{\prime \prime} \times 3^{\prime \prime}$. Complete with speaker and switches. If operated on DC, there is nothing more to buy. ${ }^{\circ}$
PRICED AT
$\$ 16.95$
Twelve-volt AC line cord for those who wish to operate the clock from 110 -volt AC.
$\$ 2.50$
${ }^{\circ}$ Fits clock case advertised below

6-DIGIT CLOCK
 12/24 HOUR

COMPLETE KIT CONSISTING OF 2 PC G10 PRE-DRILLED PC BOARDS, 1 CLOCK CHIP, 6 FND 359 READ-OUTS, 13 TRANSISTORS, 3 CAPS, 9 RESISTORS, 5 DIODES, 3 PUSHBUTTON SWITCHES, POWER TRANSFORMER AND INSTRUCTIONS INCLUDED DON'T BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXTRA.
PRICED AT
$\$ 12.95$

ATTENTION RADIO CLUBS

For club or group projects, request FREE information about our DISCOUNTS on any of the HALTRONIX kits. Discounts range from $10-25 \%$ depending upon the quantity needed.
We are experienced in supplying kits in volume quantities to schools, laboratories, clubs, and commoninterest groups. Nobody beats HAL. TRONIX quality and price. Just TRONIX quality and price.
try und see for yourself.

CLOCK CASE Avalable and will fit any one ot the above clocks Regular Price . . . $\$ 6.50 \quad$ But Only $\$ 4.50$ when bought with clock

60-HZ TIME BASE

CRYSTAL TIME BASE KIT. WILL ENABLE MOST ALL DIGITAL CLOCKS TO OPERATE FROM 12 VDC LOW PROFILE UNIT. EASY 3. WIRE HOOKUP. ACC 2PPM, ADJUST ABLE.
COST ONLY $\$ 4.95$ EACH OR 2 FOR $\$ 9.00$ CHASE ONLY $\$ 4.50$ WITH CLOCK PURCHASE

$10-\mathrm{MHz}$ CRYSTALS

HI-QUALITY CRYSTALS, DESIGNED FOR FREQUENCY CONTROL AND ELECTRONIC TIME PIECES; AGING FACTOR SPPM. MEETS OR EX. FACTOR SPPM, MEETS OR EX-
CEEDS MIL-C. 3098 SPECS, MADE ESPECIALLY FOR HAL-TRONIX BY SENTRY. OR FOR $\$ 10.00$ PRICE $\$ 5.95$ OR 2 FOR $\$ 10.00$

00
 WATCH FOR FUTURE ANNOUNCEMENTS OF NEW HAL-TRONIX KITS ON THE WAY:

- POCKET-SIZE FREQUENCY COUNTERS
- CAPACITANCE METERS
- FUNCTION GENERATOR
distributor for A P PRODUCTS, INCORPORATED
 SS-2
PRICE
$\$ 17.00$

FREQUENCY COUNTERS

BY POPULAR DEMAND - we are continuing to offer with any purchase of $\$ 99$ or more from ad or flyer, a Fairchild clock module FCS-8100A (suggested retail price $\$ 20$).

Look at these Summer Specials

COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE HAL-600A 7-DIGIT COUNTER WITH FREOUENCY RANGE OF ZERO TO 600 MHz . FEATURES TWO INPUTS: ONE FOR LOW FREOUENCY AND ONE FOR HIGH FREQUENCY: AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR . 1 SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY \pm $.001 \%$, UTILIZES $10-\mathrm{MHz}$ CRYS. TAL 5 PPM.
COMPLETE KIT . . . \$149. . . $\$ 129$

HAL-300A 7 -DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 300 MHz . FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY, AUTOMATIC ZERO SUP. PRESSION. TIME BASE IS 1.0 SEC OR I I SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY $\pm .001 \%$, UTILIZES 10 . MHZ CRYSTAL 5 PPM.
COMPLETE KIT . . . $\$ 224$. . . $\$ 109$

HAL-50A 8-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 50 MHz OR BEITER. AUTOMATIC DECIMAL POINT, ZERO SUPPRES. SION UPON DEMAND. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY INPUT. AND ONE ON PANEL FOR USE WITH ANY IN TERNALLY MOUNTED HALTRONIX PRE-SCALER FOR WHICH PROVISIONS HAVE ALREADY BEEN MADE 1.0 SEC AND 1 SEC TIME GATES. ACCURACY $\pm .001 \%$ UTILIZES $10 \cdot \mathrm{MHz}$ CRYSTAL 5 PPM.
COMPLETE KIT . . . $\$ 224 \ldots$.

ATTENTION RADIO CLUBS
For club or group propects. request FREE intormation about our DISCOUNTS on any of the HAL-TRONIX kits Discounts range from $10-25 \%$, depending upon the quantity needed
We are experienced in supplying kirs in volume quantities to schools laboratories. clubs. and common-interest groups. Nodody beats HAL-TRONIX quality and price. Just try us and see for yoursetf

NNEW

FROM

HAL-TRONIX

DELUXE 12-BUTTON TOUCHTONE ENCODER KIT uttilizing the new ICM 7206 chip. Provides both VISUAL ICM 7206 chlyp Provides both VISUAL
AND AUDIO indications' Comes with its ANO AUDIO indications Comes with is own two tone anodized aluminum cabr-
net. Measures only $2 \% \times 3 \% 6^{+}$Comnet. Measures only
piete with Touch-Tone pad. board. piete with ouch -ione pasa, board. crystal. chip and
PRICED AT
$\$ 29.95$
For those who wish to mount the encoder in a hand-held unit. the PC board measures ony $9 / 16^{\prime \prime} \times 13 / 4^{\prime \prime}$ This partial kit with PC board, ctystal, chip and comPRICED AT

PRE-SCALER KITS

HAL 300 PRE $\$ 19.95$ (Pre-drilled G10 board and all components
HAL 300 A/PRE $\$ \mathbf{\$ 2 4 . 9 5}$ (Same as above dut with preamp) HAL 600 PRE $\$ 34.95$ Pre-drilled Gio board and all components) HAL 600 A/PRE .$\$ 39.95$ (Same as above but with preamp)
SPECIAL - duw to OVERSTOCK (while they last!) FAIRCHILD FND. 70
common cathode readouts (can replace FND-359 ...same pin-out)

Oty.	Price each	Amount
10	40 c	$\$ 4.00$
100	35 c	35.00
500	30 c	150.00
1000	25 c	250.00

HAL-TRONIX
PO BOX 1101, SOUTHGATE, MI 48195 PHONE (313) 285-1782

"HAL"
AROAD

HAROLD C. NOWLAND
W8 XXH

SHIPPING information

ORDERS OVER $\$ 1500$ WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REOUESTED ON $\$ 100$ FOR HANDLING AND MAILING CHARGES SEND SASE FOR FREE FLYER

8-POLE 350-H2 FILTER FOR SIGNAL/ONE TRANSCEIVERS $\mathbf{\$ 1 2 0 . 0 0}$
Finally! Superior 8-Pole CW Selectivity for Drake TR-4, TR-4C, TR-4 Cw

At Last! Superior 8-Pole CW Selectivity for Kenwood TS-820

600 Hz 6-Pole First-IF Filter for Drake R-4C
(xxo wirne
 CF $600 / 6$ sion 00 Neler miteh kit $\$ 1300$
125 Hz 8-Pole Second-IF Filter for Drake R-4C

These crystal filters. are for you!
All filters contain specially-treated high-Q crystals. Sherwood Engineering Inc.

1268 South Ogden St.
Denver, Colo. 80210 (303) 722-2257

Money back if not satisfied
Add $\$ 3$ per order shipping:
Dealer Inquiries Welcome
vish

The Only thing you need to know about Quartz Crystals is:

1-405-224-6780

\star Best Delivery plus Emergency Service with Guaranteed Delivery
\star Highest Quality with gold MIL-C-3098 Process

* Ask for Sentry Technology Manual

And, order Toll Free 1-800-654-8850

CRYSTAL PARK CHICKASHA, OKLAHOMA 73018

TRANSFORMERS

American made, 115 V Pri. All ppd.
$12 \mathrm{~V} 1.2 \mathrm{amp} \quad \$ 2.84 \mathrm{ea}$. $12 \mathrm{~V} 3 \mathrm{amp} \quad \$ 4.48 \mathrm{ea}$. $12 \mathrm{~V}, 1 / 4 \mathrm{amp}$ for P.C. $\$ 1.66 \mathrm{ea}$. $36 \mathrm{VCT}, 1 \mathrm{~A} ; 14 \mathrm{VCT}, 400 \mathrm{Ma}$ $44 \mathrm{VCT}, 1 \mathrm{~A} ; 6.3 \mathrm{~V} 1 / 4 \mathrm{amp}$ tap $48 \mathrm{VCT}, 1 \mathrm{~A}, 6.3 \mathrm{~V}, 1 / 4 \mathrm{amp}$ tap

PILE-UP TESTED!

Model HF5V-11 - . Automatic bandswitching 80-10 meters.
Model HFAV-II . . Automatic bandswitching 40-10 meters.
Model HF3V . . Automatic bandswitching 80-20 meters

Model MF5V-5 . . Automatic bandswitching 80-10 meterz

Model HF4V-5 . . Automatic bandswitching 40-10 meters.
MODEL TBR . . 160 Meter base resonator unit.
The most choice in vertical antennas from

ROUTE 1: LK. CRYSTAL, MN. 56055

Phone: (507) 947-3126

at your dealer or factory direct... FREE INFOI
$6.3 \mathrm{~V}, 1 \mathrm{amp}$ shielded
UNPOTTED TOROIDS - Center tapped. 88 MHY - $5 \mathrm{oz} .5 / \$ 2.95 ; 9 \mathrm{oz} .-5 / \$ 3.49 \mathrm{zth}$ 44 MHY - $5 / \$ 3.95$
3000 MFD Capacitors. (4) 30 Volts
$1^{\prime \prime}$ Dia. $\times 3^{\prime \prime}-90 e^{\circ}$ ea. or $3 / \$ 2.25$
NEW - LINE CORDS - US - 7 AMP
6^{\prime} - Bik - 50 c ea. $4 / \$ 1.50$ ppd.
8^{\prime} - Gray - 60 c ea. 4/\$1.90 ppd.
EDGEVIEW METERS $250 \mu \mathrm{a}$ 'S' METERS
NEW - $\$ 2.65$ ea. $3 / \$ 7.25$ ppd.
m. weinschenker
electronic specialties-BOX 353, IRWIN, PA 15642

"OVER 50 BRANDS IN STOCK"

- KENWOOD • YAESU • KDK • DENTRON • WILSON • MFJ • SWAN • DRAKE • LARSEN •
- TEMPO - KLM • BEARCAT • B \& W - ARRL PUBLICATIONS • MOSLEY • REGENCY • ASTATIC •
- CUSHCRAFT - MICROLOG - HAM KEY - CDE - PIPO • ICOM - TEN TEC • PANASONIC -
- DAYBURN INSULATORS • BIRD • AMECO • HUSTLER • CALL BOOK • SAXTON • ALLIANCE •

\star COMPLETE RADIO SERVICE SHOP \star

- FAST EFFICIENT SERVICE - WE REPAIR ALL BRANDS -- ALL WORK GUARANTEED - AMATEUR EXTRA / FIRST CLASS LICENSES -- SEND US YOUR DEFECTIVE EQUIPMENT U.P.S. COLLECT -
- FREE SHIPPING BOTH WAYS IF WORK IS DONE -
- MOST REPAIRS DONE AND SHIPPED WITHIN 7 DAYS \star OUR FINE REPUTATION SPEAKS FOR ITSELF \star "YOU SHIP IT - WE FIX IT"
* NEW AND USED EQUIPMENT - "Get on our used equipment mailing list" -
* TRADES WELCOME - "The best allowances anywhere" - "We buy good used SSB gear" -
* FREE CATALOG - "Prices of all major manufacturers" -
* SAME DAY U.P.S. SHIPPING - "Just a phone call away" -

Call or write for your super quote today!

SPECIFICATIONS:

FREQUENCY RANGE: 144.148 MHz
MODES: USB/LSB, FM, AM, CW
INPUT POWER: 13 VDC or 115 VAC
FUNCTIONS: PTT, VOX, Semi-Breakin CW with Sidetone
POWER OUT: 10 Watts RF on SSB, FM, CW
3 Watts AM
1 Watt FM - Low Power Switch
RECEIVER: 0.25 MV for 10 dB (S $\& \mathrm{~N}) / \mathrm{N} \mathrm{SSB} / \mathrm{CW}$ 0.4 MV for 20 dB Quieting FM

LIST PRICE: \$729.00 YOUR SPECIAL DEAL... BUY A TS-700SP AND GET A BIRD MODEL 43 WATTMETER FREE

A DIVISION OF TREVOSE ELECTRONICS

CALL TOLL FREE FOR QUOTES 0.020

FT-227 "MEMORIZER" OWNERS: SCANNER KIT

- Selectable sweep width (up to full band)
- Scans only the portion of band you select
- Scans at the rate of 200 kHz per second
- Switch modification on mike allows you to scan past, or lock on, any occupied frequency
- Complete kit with detailed instructions
- Installs inside rig; no obtrusive external connections
- Rig can easily be returned to original condition whenever desired
- Scans to preset limits and reverses
- Automatic bypass of locked frequency in 3-1/2 seconds unless you press lock-on switch
Kit $\mathbf{\$ 3 4 . 9 5}$ preassembled and tested $\mathbf{\$ 5 4 . 0 0}$ add $\$ 1.50$ postage and handling
Also available: Scanners for your IC-22S;
$\$ 29.95$ kit; \$39.95 assembled DEALER INQUIRIES INVITED
 MONTREAL, QUEBEC, CANADA H3R 2H6 TEL. 514-737-7293

At Your Se
 IF YOU'RE INTO COMPUTERS, THIS IS THE BEST PART

Econoramis memories are known throughout the industry for reliability and the ability to mate with all S. 100 buss mainframes.... and they're the design, full buffering, high speed/low power parts, intelligent mechanical design, and an enviable reputation for quality
These boards are available in 3 forms: unkit (with sockets and bypass caps pre-soldered in placel, assembled and tested, and qualified under the Cer tified Systems Components program. CSC boards are assembled, tested, guaranteed to run at 4 MH burned in for 200 hours, and serial numbered. We exchange (not repair) the board if failure occurs within one year of invoice date.

16K ECONORAM IV

\$279 unkit

Current under 2000 mA ; manual write protect for 4 K blocks; use with or without phantom line. Excellent where you need a big chunk of cost-effective memory.

OUR TOP OF THE LINE:

24K ECONORAM VII

 \$445 unkitAssembled \$485, CSC $\$ 605$.

A full feature dense memory with current under 2000 mA . Configuration as two 4 K and two 8 K blocks, with independent write protect for each block: use with or without phantom lines; and provision for two unused qualifiers.

TRS-80 CONVERSION KIT $\$ 190$ (3/\$
Upgrade your 4 K TRS. 80 mainframe with our Con version Kit; chips are also compatible with Memory Expansion Module. Includes eight uPD16 16 K RA Ms, sion. (Many, and instructions for mainframe conver chips to expand memory in APPLEs). We back up these parts with a 1 year warranty.

MA1003 CLOCK MODULE $\$ 16.50!$ Needs only 12 V DC and 3 time-setting switches for operation in boat, truck, van, car, or home. 4 digit, 0.3^{*} green flourescent display with blinking colon. When wired in car, display turns off when ignition is oft. Accurate to $\pm 1 / 2$
thanks to built-in crystal timebase.

Finally here is a clock that is simple to build, good looking, and at our price, inexpensive.

RF TRANSISTORS

\#2NRF1 2 GHz power transistor. Pd max 3.5 W Pout minimum 1.0 W , Pin 310 mW , efficiency 30% Similar to RCA 2N5470, \$4.95
\#2NRF2 2 GHz power transistor, Pd max 8.7W, Pout $\min 2.5 \mathrm{~W}$, Pin 300 mW , efficiency 33% Similar to RCA TA8407 $\$ 5.95$
\#2NRF3 2 GHz power transistor. Pd max 21W Pout min 5.5 W . Pin 1.25 W , efficiency 33%. Similar to RCA 2N6269. $\$ 6.95$
\#2NRF4 2 GHz power transistor. Pd max 29 W Pout 7.5 W , Pin 1.5 W , efficiency 33%. Factory selected prime 2N6269. \$7.95
GODOBOOR TERMS: Add $\$ 1$ to orders under $\$ 15$ COD orders OK with strest address for UPS Cal res add sales tax
VISA /Mastercharger orders call out 24 hour answering ser
vice at (415) $562-0636$. Thank you for your Dusiness

RTTY for ALL Systems

YOUR MARK II \& MARK IV HEADQUARTERS!

MARK II MARK IV 2.5.WATT $\$ 229^{95}$ Pur in STOCK

THEY WORK AS GOOD AS THEY LOOK!

SHOWN WITH OPTIONAL TT PAD

Q SPECTRONICS
 (312) $848-6777$ wax mant in

BENCH POWER SUPPLY 5 to 30 VDC ADJUSTABLE

 chip provides outstanding features at low cost.

An honest value at $\$ 48.50$ Prepaid UPS anywhere in USA (Please Include Street Address)
 Harper-Stanley Co. 305 University Tower Bldg. Little Rock, Ark. 72204

FACSIMILE

COPY SATELLITE, PHOTOS WEATHER MAPS, PRESS!
The Fax Are Clear - on our full size ($18-1 / 2^{\prime \prime}$ wide) recorders. These commercial-military units now available at surplus prices Learn how to copy with our FREE Fax Guide. ${ }_{\text {ATL }}^{\text {ATL }}$

Tel.: (212) 372-0349
BROOKLYN. N.Y. 11224

SURPLUS WANTED

space buys more and pays Military sur plus, espectally on Collins equipment or parts We pay freight Call collect now tor our high offer 201 440-8787 SPACE ELECTRONICS CO.

35 Ruta Court. S. Hackensack, N.J. 07606

SYNTHESIZERS

We have the worlds largest selection of synthesizers for receivers, transmitters and transceivers. For complete details see our $1 / 3$ page ad in the April 1976 issue of this magazine or call or write for additional information. Phone orders accepted between 9 AM and 4 PM EDT. (212) 468-2720

VANGUARD LABS

196-23 JAMAICA AVENUE HOLLIS, N. Y. 11423

1800 Hz 8 pole xtal FILIER

YAESU AND KENWOOD FT-7, FT-101, FR-101, FT-301, TS-520, R-599

SSB OPS! Win the Battle against orm!

What can you 00 when two single sideband signals overiap? At present, not much in most oider sets. If you are correctly tuned to one signal, and an adjacent one comes on, his high or low-frequency components will be within your passband and while you are not able to "read" him you will surely know he is there
Many of the newer receivers seek to solve this overiap problem by providing continuously variable ift bandwidth or pass band shifting - both difficult to adapt to existing designs So, you can solve your problem by buying a new set! Not a pleasant prospect at today's prices.

A simple, less expensive, but effective alternative is to supplement the existing SSB filter in your tried-and-tested presant rig with our high-quality, $1800-\mathrm{Hz}, 8$-pole unit. Installa: tion using our dual diode switch board is easy and permits the addition (now or in the future) of a second, sharp CW filter Selection of the standard or sharp fitters (SSB or CW) is achieved by flipping a single miniature toggle switch which can usually be mounted in an existing hole.
Our complete line of filters is listed below. All units are \$50 except as indicated. Prices are likely to rise. Better buy now.

VISA \& MASTER CHARGE ACCEPTED

"THE PROFFSSIONALS"

The New Model CTR-2A Serles Counters are designed and built to the highest standards to fulfill the needs of commercial communications, engineering labs and serious experimentors. With an accuracy of,$+ 00005 \%$ (oven option) the CTR-2A can handie the most critical measurements and is about half the cost of other commercial counters.

If you need a reliable counter at an affordable price, the CTR - 2 A is the answer.

- Built-in Pre-Amp 10 mv @ 150 MHz - Period Measurement (Optional)
- 8 Digit . 3" LED Display
- High Stability TCXO Time Base
- Input Diode Protected
- Built-in VHF.UHF Prescaler
- Automatic Dp Placement

12V-DC Operation (Optional)

- Oven Controlled Crystal (Optional) $\pm .5 \mathrm{ppm}$
- TCXO Std. ± 2 ppm
- Selectible Gate Times - 1 \& 1 sec.

500 MHz Kit CTR $2 \mathrm{~A} \cdot 500 \mathrm{~K}$ 500 MHz Assembled CTR-2A-500A
1 GHz Kit CTR-2A-1000K
1 GHz Assembled CTR-2A-1000A
OPTIONS
02) Oven Crystal
03) $43^{\prime \prime}$ LED
$\$ 49.95$
10.00
10.00
04) $12 \mathrm{~V} \cdot \mathrm{D}$
$\$ 249.95$
349.95
399.95
549.95

PROBES
Hi-Z $\$ 15.00$
10.00

VISA
05) 10 sec. Time Base $\$ 5.00$
7) Handle

DAVIS ELECTRONICS 636 Sheridan Dr., Tona., N.Y. 14150 716/874.5848

QUARTZ CRYSTALS

"IN A HURRY"
SINCE 1970

CRYSTALS AVAILABLE FOR:

- CB - Synthesizers
- Amateur - HF, VHF, UHF
- Industrial
- Scanner
- Marine - LB \& VHF
- Conversion Crystals
- Special Attention to R \& D.
- Micro-processor Types.

DISCOUNTS AVAILABLE TO DEALERS \& MANUFACTURERS

CALL "BONNIE" FOR PRICES \& DELIVERY

VISA \& MASTER CHARGE VISA credit cards accepted.

CAL CRYSTAL LAB, INC. 1142 N. Gilbert Street Anaheim, CA 92801 (714) 991-1580

ALIGNMENT

Alignment and check out of your transmitter or receiver by our FCC licensed technician. Xmitters checked for harmonics, chirp, etc. Fast sevice and professional work. Only \$15 plus shipping. Send radio with check in reusable carton (insured) or \$1 extra for new carton to:

Wolverine Radio

P.O. Box 426

Portoge, Michigon 49081

You're just a few digits away from

 name brand radio equipment AT DISCOUNT PRICES!

YAESU KENWOOD DRAKE ICOM STANDARD EDGECOM KDK

DENTRON HY-GAIN MOSLEY CUSHCRAFT WILSON HUSTLER LARSEN
CALL TOLL FREE
 Commumications Center
1072 N. Rancho Drive
Las Vegas, Nevada 89106
In Nevada Call (702)647-3114

TAYLOR	E.T.O. ALPHA
SWAN	VHF ENGINEERING
TEMPO	BERK-TEK CABLE
TEN-TEC	CONSOLIDATED TOWER
MIDLAND	SAY
CDE	SHURE
AUTEK	TELEX

plus many more
1-800-228-4097 CALL TOLL FREE FOR
1-800-634-6227 ANTENNAS

HY-GAIN
TH6 DXX
TH3MK III
18 AVT/WB

MOSLEY
CLASSIC 33
CLASSIC 36
TA-33

CUSHCRAFT
ATB-34
ARX-2
A-147-20T

HUSTLER	WILSON
4BTV	SYSTEM 1
$66-144 A$	SYSTEM 2

Specials on CDE Rotors
Ham III - \$125.00
Tailtwister - \$225.00

HOURS: Monday - Friday 8 a.m. - Midnight Saturday 8 a.m. 8 p.m.
Sunday Noon-8p.m.
SAME DAY SHIPPING ON MOST ITEMS
We carry all major lines of antennas
at DISCOUNT PRICES call for quotes: 1-800-228-4097

Ham Radio's guide to help you find your loca

Alabama

LONG'S ELECTRONICS

2808 TH AVENUE SOUTH
BIRMINGHAM, AL 35202
800-633-3410
Call us Toll Free to place your order

Alaska

RELIABLE ELECTRONICS
3306 COPE STREET
ANCHORAGE, AK 99503
907-279-5100
Kenwood, Yaesu, DenTron, Wilson, Atlas, ICOM, Ron, Tri-Ex.

Arizona

HAM SHACK

4506 A NORTH 16TH STREET
PHOENIX, AZ 85016
602-279-HAMS
Serving all amateurs from beginner to expert.

RYDER ELECTRONICS

5520 NORTH TH AVENUE NORTH TH AVE. SHOPPING CTR. PHOENIX, AZ 85013
602-249-3739
We service what we sell.

POWER COMMUNICATIONS
6012 NORTH 27th AVE.
PHOENIX, AZ 85017
602-242.6030
Arizona's \#1 Ham Store.
Kenwood, Drake, ICOM \& more.

USA 599 AMATEUR RADIO CENTER 11 SOUTH MORRIS STREET MESA, AZ 85202
602.833-8051

Eimac Distributor. New \& Used
Equipment, Parts - Surplus too!

California

C \& A ELECTRONIC ENTERPRISES 22010 S. WILMINGTON AVE.
SUITE 105
P. O. BOX 5232

CARSON, CA 90745
213-834-5868
Not the Biggest, but the Best since 1962.

HAM RADIO OUTLET
999 HOWARD AVENUE BURLINGAME, CA 94010 415-342-5757
Visit our stores in Van Nus and Anaheim.

QUEMENT ELECTRONICS

1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1933

TOWER ELECTRONICS CORP.
24001 ALICIA PARKWAY
MISSION VIEJO, CA 92675
714.768-8900

Authorized Yaesu Sales \& Service.
Mail orders welcome.

Colorado

MILE-HI COMMUNICATIONS, INC.
1970 SOUTH NAVAJO
DENVER, CO 80223
303-936.7108
Rocky Mountain's newest
ham store. Lee Tingle KøLT.

Connecticut

AUDIOTRONICS INC.
18 ISAAC STREET
NORWALK, CT 06850
203.838-4877

The Northeast's fastest growing Ham Dept. dedicated to service.

Florida

ALL ELECTRONICS, INC.
1800-B DREW ST.
CLEARWATER, FL 33515
813-461-HAMS
West Coast's only full service
Amateur Radio Store.
AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305.573-8383

The place for great dependable names in Ham Radio.

MARC'S

CENTRAL EQUIPMENT CO., INC.
18451 W. DIXIE HIGHWAY
NORTH MIAMI BEACH, FL 33160
305-932-1818
See Marc, WD4AAS, for complete
Amateur Sales \& Service.

RAY'S AMATEUR RADIO

1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813.535-1416

West coast's only dealer:
Drake, Icom, Cushcraft, Hustler.

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420.8629
"Amateur Excellence"
ERICKSON COMMUNICATIONS, INC.
5935 NORTH MILWAUKEE AVE.
CHICAGO, IL 60646
312-631-5181
Hours: 9:30-5:30 Mon, Tues, Wed,
Fri; 9:30-9:00 Thurs; 9:00-3:00 Sat.
SPECTRONICS, INC.
1009 GARFIELD STREET
OAK PARK, IL 60304
312.848-6777

Chicagoland's Amateur Radio leader.

Indiana

HOOSIER ELECTRONICS, INC.
P. O. BOX 2001

TERR HAUTE, IN 47802
812-238-1456
Ham Headquarters of the Midwest.
Store in Meadows Shopping Center.

RYDER ELECTRONICS

GEORGETOWN NORTH
SHOPPING CENTER
2810 MAPLECREST RD.
FORT WAYNE, IN 46815
219-484-4946
We service what we sell. 10-9 T,
TH, F; 10-5 W, SAT.

Iowa

BOB SMITH ELECTRONICS

RFD \#3, HIGHWAY 169 and 7 FT. DODGE, IA 50501
515-576-3886
For an EZ deal.

Kansas

```
ASSOCIATED RADIO
8012 CONSER P.O.B. }432
OVERLAND PARK, KS }6620
913-381-5901
Amateur Radio's Top Dealer.
Buy - Sell - Trade
```


Amateur Radio Dealer

Kentucky

COHOON AMATEUR SUPPLY

HIGHWAY 475
TRENTON, KY 42286
502-886-4535
Yaesu, Ten-Tec, Tempo, DenTron. Our service is the BEST.

Maryland

THE COMM CENTER, INC.
9624 FT. MEADE ROAD
LAUREL PLAZA RT. 198
LAUREL, MD 20810
301.792.0600
R.L. Drake, Ten-Tec, Icom, Wilson,

Tempo, DenTron, Mosley, Cushcraft

PROFESSIONAL
ELECTRONICS CO., INC.
1710 JOAN AVENUE
BALTIMORE, MD 21234
301.661-2123

A professional place for amateurs.
Service-sales-design.

Massachusetts

TEL-COM, INC.
675 GREAT RD. RT. 119
LITTLETON, MA 01460
617-486-3040
The Ham Store of New England you can rely on.

TUFTS RADIO ELECTRONICS
209 MYSTIC AVENUE MEDFORD, MA 02155
617-395-8280
New England's friendliest ham store.

Michigan

ELECTRONIC DISTRIBUTORS
1960 PECK STREET
MUSKEGON, MI 49441
616.726-3196

Dealer for all major amateur radio product lines.

RADIO SUPPLY \& ENGINEERING 1207 WEST 14 MILE ROAD CLAWSON, MI 48017
313-435-5660
10001 Chalmers, Detroit, MI
48213, 313-371.9050.

Minnesota

PAL ELECTRONICS INC.
3452 FREMONT AVE. NORTH MINNEAPOLIS, MN 55412 612-521.4662
The Midwest's Fastest Growing Ham Dealer.

Missouri

HAM RADIO CENTER, INC.
8340-42 OLIVE BLVD.
ST. LOUIS, MO 63132 800-325-3636
For Best Price and Fast Delivery Call toll free 1-800-325-3636

MIDCOM ELECTRONICS, INC. 2506 SO. BRENTWOOD BLVD. ST. LOUIS, MO 63144 314-961-9990
At Midcom you can try before you buy!

Nebraska

COMMUNICATIONS CENTER, INC. 443 NORTH 48 ST.
LINCOLN, NE 68504
800-228-4097
Kenwood, Yaesu, Drake and more at discount prices.

Nevada

COMMUNICATIONS CENTER WEST 1072 RANCHO DRIVE
LAS VEGAS, NV 89106
800-634-6227
Kenwood, Yaesu, Drake and more at discount prices.

New Hampshire

EVANS RADIO, INC.
BOX 893, RT. 3A BOW JUNCTION CONCORD, NH 03301
603-224.9961
Icom, DenTron \& Yaesu dealer.
We service what we sell.
New Jersey
ATKINSON \& SMITH, INC.
17 LEWIS ST.
EATONTOWN, NJ 07724
201-542-2447
Ham supplies since " 55 ".

METUCHEN RADIO
216 MAIN STREET
METUCHEN, NJ 08840
201.494-8350

New and Used Ham Equipment WA2AET " T " Bruno

RADIOS UNLIMITED
1760 EASTON AVENUE
SOMERSET, NJ 08873
201.469.4599

New Jersey's newest
complete Amateur Radio center

THE BARGAIN BROTHERS
216 SCOTCH ROAD
GLEN ROC SHOPPING CTR.
WEST TRENTON, NJ 06828 609-883-2050
A million parts - lowest prices
anywhere. Call us!

New Mexico

ELECTRONIC MODULE
601 N. TURNER
HOBBS, NM 88240
505.397-3012

Yaesu, Kenwood, Swan, DenTron,
Tempo, Atlas, Wilson, Cushcraft

New York

ADIRONDACK RADIO SUPPLY, INC. 185 W. MAIN STREET AMSTERDAM, NY 12010 518-842-8350
Yaesu dealer for the Northeast.

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-682.3869
Drake, Atlas, Ten-Tec, Midland,
Hy-Gain, Mosley in stock

HAM-BONE RADIO

3206 ERIE BLVD. EAST
SYRACUSE, NY 13214
315-446-2266
We deal, we trade, all major brands!

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
315-337-2622
New \& Used ham equipment.
See Warren K2IXN or Bob WA2MSH.

Ohio

AMATEUR RADIO
SALES \& SERVICE INC.
2187 E. LIVINGSTON AVE.
COLUMBUS, OH 43209
614-236-1625
Antennas for all services.

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG, (COLUMBUS) OH 43068
614-866-HAMS
Drake, Yaesu, Ten-Tec, KDK, Wilson, DenTron, Tempo, Sigma.

Oklahoma

RADIO STORE, INC.
2102 SOUTHWEST 59th ST. (AT 59th \& S. PENNSYLVANIA) OKLAHOMA CITY, OK 73119 405-682-2929
New and used equipment parts and supply.

Oregon

PORTLAND RADIO SUPPLY CO.
1234 S.W. STARK STREET
PORTLAND, OREGON 97205
503-228-8647
Second location, 1133 S. Riverside Avenue, Medford, OR 97501.

Pennsylvania

ARTCO ELECTRONICS
302 WYOMING AVENUE
KINGSTON, PA 18704
717-288-8585
The largest variety of semiconductors in Northeastern Pennsylvania

ELECTRONIC EXCHANGE

136 N. MAIN STREET
SOUDERTON, PA 18964
215-723-1200
Demonstrations, Sales, Service
New/Used Amateur Radio Equip.
"HAM" BUERGER, INC.
68 N . YORK ROAD
WILLOW GROVE, PA 19090
215-659-5900
Delaware Valley's Fastest Growing
Amateur Radio Store

HAMTRONICS, DIV. OF TREVOSE ELECTRONICS 4033 BROWNSVILLE ROAD TREVOSE, PA 19047 215-357-1400
Same Location for 30 Yaars.
Call Toll Free 800-523-8998.

Tennessee

GERMANTOWN AMATEUR SUPPLY 3203 SUMMER AVE.
MEMPHIS, TN 38112
800-238-6168
No monkey business. Call
Toll Free.

Texas

AGL ELECTRONICS

3068 FOREST LANE, SUITE 309
DALLAS, TX 75234
214-241-6414 (within Texas)
Out-of-State, Call our toll-free number 800-527-7418.

HARDIN ELECTRONICS
5635 E. ROSEDALE
FT. WORTH, TX 76112
817-461.9761
Your Full Line Authorized Yaesu Dealer.

TRACY'S ELECTRONIC MODULE
5691 WEST CREEK DRIVE
FORT WORTH, TX 76133
817-292-3371
We Handle and Service
All Major Lines.

Wisconsin

AMATEUR

ELECTRONIC SUPPLY, INC.
4828 WEST FOND du LAC AVENUE MILWAUKEE, WI 53216 414-444-4200
Open Mon \& Fri 9.9, Tues, Wed, Thurs, 9-5:30, Sat, 9-3.

Washington

AMATEUR RADIO SUPPLY CO.
6213 13TH AVENUE SOUTH
SEATTLE, WA 98108
206-767-3222
First in Ham Radio in Washington Northwest Bird Distributor

REGULAR $\$ 59.50$ Value, NOW ONLY 53595 *
MODEL 12751 - connects in line between mic. and transmitter requiring no modification to transceiver automatic 1 to 10 min . timer -5 to 40 wpm adjustable code speed - built-in squelch tail e auto or manual modes © ideal for repeaters - $5^{\prime \prime} \times 7^{\prime \prime} \mathrm{PCB}$ and 20-page
manual manual.

FACTORY PROGRAMMED MEMORY IDer KITS

MODEL 11764 - semi-auto. MCW IDer - adjustable audio level - programmable code speed, tone and repeat interval $17^{\prime \prime} \times 3^{\prime \prime}$ PCB. $\$ 29.95 /$ kit $^{\circ}$
MODEL 97710 - manual CW IDer • programmable code speed \bullet IDs upon request © ideal for contesting or repeated messages © $1.5^{\prime \prime} \times 2.2^{\prime \prime}$ PCB. $\$ 24.95 /$ kit *
MODEL 11765 - beacon CW IDer programmable code speed \bullet great for 1750 -meter band © $1.3^{\prime \prime} \times 2^{\prime \prime}$ PCB. \$19.95/kit*
(additional pre-programmed memory elements available)
${ }^{-}$Include $\$ 3$ shpg/hdig., $\$ 5$ foreign. CA res. add 6% tax. CODs accepted. Send check or MO, allow 3 weeks on personal checks. Write for ad-

Securitron Co.
ditional information
P. O. Box 24899

Phone (408) 294-8383 San Jose, Ca 95154

Other tubes and Klystrons also wanted. See last month for other items available.
The Ted Dames Company
308 Hickory St.
$\begin{aligned} & \text { Stlington, N.J. } 07032 \\ & (201) \\ & 998-4246\end{aligned} \quad \begin{gathered}\text { Avenings (201) 998-6475 }\end{gathered}$

NEW FM/CW EXCITER KITS

BUILD UP YOUR OWN GEAR FOR MODULAR STATIONS, REPEATERS, \& CONTROL LINKS - Rated for Continuous Duty - Professional Sounding Audio - Built-in Testing Aids

T50 Six Channel, 2W Exciter Kit for 2M, 6M, or 220 MHz $\$ 49.95$

\section*{FAMOUS HAMTRONICS PREAMPS let you hear the weak ones!
 Great for OSCAR, SSB, FM, ATV. Over 10,000 in use throughout the world on all types of receivers.
 | P9 Kit | $\mathbf{\$ 1 2 . 9 5}$ |
| :--- | :--- |
| P14 Wired | $\mathbf{\$ 2 4 . 9 5}$ |
 Deluxe vhf model for app-
 }

$\bullet 1-1 / 2 \times 3^{\prime \prime} \bullet$ Covers any 4 MHz band $\bullet 12 \mathrm{Vdc}$ \bullet - Ideal for OSCAR •Diode protection $\cdot 20 \mathrm{~dB}$ gain MODEL RANGE P9-LO $\quad 26-88 \mathrm{MHz}$ P9-HI $\quad 88-172 \mathrm{MHz}$ P9-220 $\quad 172-230 \mathrm{MHz}$ P14 Wired Give exact band
P8 Kit $\quad \$ 10.95$ P16 Wired $\$ 21.95$ Miniature VHF model for - Covers any 4 MHz band tight spaces - size only $\bullet 20 \mathrm{~dB}$ gain $\quad 12 \mathrm{Vdc} 1 / 2 \times 2-3 / 8$ inches.

$$
\begin{array}{ll}
\text { MODEL } & \\
\text { RANGE } \\
\text { P8-LO } & \\
\text { P8-HI } & 83-83 \mathrm{MHz} \\
\text { P8-220 } & 220-230 \mathrm{MHz} \\
\text { P16 Wired } & \text { Give exact band } \\
\hline
\end{array}
$$

P15 Kit \$18.95

P35 Wired $\mathbf{\$ 3 4 . 9 5}$

- Covers any 6 MHz band in UHF range of $380-520 \mathrm{MHz}$ - 20 dB gain - Low noise

YOU ASKED - HERE THEY ARE! VHF Linear PA's

- Use as Linear or Class C PA's © For XV-2 Xmtg Converters, T50 Exciters, or any 2W Exciter
 LPA 2-15 Kit $\$ 59.95$
- 15W out (linear) or 20W (class C) - Solid State T / R Switching - Models for $6 \mathrm{M}, 2 \mathrm{M}$, or 220 MHz

LPA 2-45 Kit \$109.95 - 45W out (linear) or 50W (class C)

- Models for 6 M or 2 M

LPA 8-45 Kit $\$ 89.95$
For $2 \mathrm{M}, 8-10 \mathrm{~W}$ in, 45 W out

AT LAST! 6M, 2M, \& $1 / 4 M$ SSB TRANSMITTING CONVERTERS At a price you can afford

Use inexpensive recycled $\mathbf{1 0}$ or 11 meter ssb exciter on VHF bands!

FEATURES:

- Linear Converter for SSB, CW, FM, etc.
- A fraction of the price of other units
- 2 W p.e.p. output with 1 MW of drive
- Use low power tap on exciter or attenuator pad - Easy to align with built-in test points

XV2-() TRANSVERTER KIT $\mathbf{\$ 5 9 . 9 5}$
A25 Optional Cabinet for Xverter\& PA $\$ 20$

New VHF\&UHF Converter Kits

let you receive OSCAR signals and other exciting SSB, CW,\& FM activity on your present HF receiver.

MODEL	RF RANGE (MHZ)	1-F RANGE
C50	50-52	28-30
C144	144-146	28-30
C145	145-147 (OSCAR)	28-30
C146	146-148	28-30
C110	Aircraft	28-30
C220	220 band	28-30
Special	Other i-f \& rf ran	available

MODEL
$\frac{\text { C432-2 }}{432-434}$
1-F RANGE
C432-5 $\quad 435-437$ (OSCAR) $\quad 28-30$
$\begin{array}{llll}\text { C432-7 } & 427.25 & 61.25\end{array}$
C432-9 $439.25 \quad 61.25$
Special Other if \& rf ranges available
A9 Extruded Alum Case/Connectors $\$ 12.95$

ONLY $\$ 34.95$
including crystal

VHF UHF FM RCVR KITS

* NEW GENERATION RECEIVERS
* MORE SENSITIVE *MORE SELECTIVE (70 or 100 dB)
* COMMERCIAL GRADE DESIGN
* EASY TO ALIGN WITH BUILT-IN TEST CKTS
* lower overall cost than ever before

R70 6-channel VHF Receiver Kit for $2 \mathrm{M}, 6 \mathrm{M}$, 10 M 220 MHz , or com'l bands. $\$ 69.95$ Optional xtal filter for 100 dB adj chan 10.00

R90 UHF Receiver Kit for any 2 MHz segment of $380-520 \mathrm{MHz}$ band. $\$ 89.95$

FREE 1978 CATALOG*

NEW JUNE 1978 CAT. IS YOURS FOR THE ASKING!

IT'S EASY TO ORDER!

©CALL OR WRITE NOW FOR FREE CATALOG OR TO PLACE ORDERI
© PHONE 716-663-9254. (Answering service evenings and weekends for your convenience. Personal service 9-5 eastern time.)

OUse credit card, c.o.d., check, m.o.
OAdd $\$ 2.00$ shipping \& handling
IN CANADA, send to Comtec; 5605 Westluke Ave; Montreal, Que H4W 2N3 or phone 514-482-2640. Add 38% to cover duty, tax, and exchange rate.

We're Proud of Our Flock!

RTR
ALL MODELS AND TABLEI ELEMENTS IN STOCK. WE ALSO CARRY OTHER BIRD PRODUCTS . . WRITE!

NEW PRICE $\$ 125.00$
MODEL 43
AUTHORIZED BIRD DISTRIBUTOR - DEALER INQUIRIES INVITED.
We are also Dealers for:
Alopleand
QKENWOOD
 KLM cushcraft electronics Wilson

ALL PREPAID \& CREDIT CARD ORDERS SHIPPED NO CHARGE IN U.S. SALES TAX 4\% TO VIRGINIA RESIDENTS ONLY. SPECIALISTS IN HANDLING FOREIGN ORDERS —

ELECTRONIC EQUIPMENT BANK, INC.

51EH MLI STREET, VENNA, , VA 21380
CALL 703-938-3511

JOIN THE COSMIC QUEST!

- Subscribe now to COSMIC SEARCH and share the provocative articles and latest news about mankind's most exciting venture, the search for intelligent life in space. Get COSMIC SEARCH starting with its first issue, out December 1 .
- COSMIC SEARCH is for everyone who has ever wondered about life in the universe.
- Featured in the first issues of COSMIC SEARCH are articles by RONALD BRACEWELL, JOCELYN BELL BURNELL ARTHUR C. CLARKE, NORMAN COUSINS, FRANK D. DRAKE, CARL SAGAN, WALTER SULLIVAN and many other world-famous persons.
- Will communication be by radio, gravity waves or neutrino beams? Are there cosmic languages? Will long transmission times make us cosmic archeologists? These and many other questions are discussed in COSMIC SEARCH in a popular, authoritative manner.
- Exclusive interviews with noted researchers, book reviews and an extensive book list for further reading are regular special features of COSMIC SEARCH.
- COSMIC SEARCH award papers on SETI topics by students and others under 30 will add new talent.
- COSMIC SEARCH is published 6 times per year. First issue January 1979. Out Dec. 1, 1978.

COSMIC SEARCH, Radio Observatory, P.O. Box 293, Delaware, Ohio 43015 Tel. 614-363-1597
Single copies $\$ 2.50$ ($\$ 15$ a year). Subscription rate: $\$ 12$ for 1 year, $\$ 22$ for 2 years. SPECIAL PRE-PUBLICATION rate $\$ 10$ for 1 year, $\$ 18$ for 2 years
SPECIAL PREPAID PRE-PUBLICATION rate $\$ 8$ for 1 year, $\$ 15$ for 2 years
| Enter my subscription to COSMIC SEARCH, Box 293, Delaware, Ohio 43015
At special pre-publication rate: $\$ 10$ for 1 year $\square \$ 18$ for 2 years \square and bill me later.
At special PREPAID pre-publication rate: $\$ 8$ for 1 year $\square \$ 15$ for 2 years \square
\square Check or Money Order enclosed \square MASTERCHARGE \square VISA (BankAmericard)
| Account \#
MC Interbank \#
Exp. date
| Name
| Address
| City
State
Zip

Regency Scanner BRINGS
YOU THE
NEWS
WHILEITS
HAPPENING

10 channels covering
all 5 bands. AC/DC operation.

SAVE 40
 LIST-s129.95

$\xrightarrow{\square}$1,000's OF CRYSTALS

- H25C Case Scanner Monitor -10.7 Amateur Ham - 2 Meter, CB, Standard

1 to 9	10 to 49	50 and UP
$\$ 3.70$	$\$ 3.00$	$\$ 2.50$

CRYSTAL BANKING SERVICE P.O. BOX 683 LYNNFIELD, MASS. 01940

BARBER

TONE ENCODER

FEATURES:

- Crystal

Controlled.
Digitally Synthesized Tones.

- Low Current Drain CMOS Logic.

- RF1 Immune
- 16-Button Tactile Feedback Keyboard.
- Will Interface to Transceivers Using Dynamic Microphones with Only Two Wires.
- Provisions for Three Wire Interface Are Provided,
- Gold-Plated Keyboard Contacts Provided for Maximum Reliability.
- Operating Voltage Range 9-18VDC.
- Size; $2.1^{\prime \prime} \times 2.1^{\prime \prime} \times .250^{\prime \prime}$ Without Case. $2.1^{\prime \prime} \times 2.1^{\prime \prime} \times .312^{\prime \prime}$ With Case.
- $2^{\prime \prime}$ Square Velcro Available for Convenient Mounting - Dashboard - Sun Visor - Radio - etc.
Tone Encoder $\$ 46.00$
Case $\$ 2.00$
Velcro
$\$.50$
NEW! GOLDLINE AMP - 2M
1.4 Watts In, 7.25 Watts Out
$\$ 46.50$
Ohio Residents Add 4.5% Sales Tax
Send Check or Money Order To:

WREN CO.

8630 WINTON RD.
CINCINNATI, OHIO 45231

One Good Turn Deserves Another... LET US INTRODUCE YOU to the

 $4 / / s_{0 / / \sigma_{1}} s_{t_{t_{t}}}$

$80-75,40,20$

Totally
Broadbanded
$31 / 4^{\prime \prime} \mathrm{H} \times 9^{\prime \prime} \mathrm{W} \times 12^{1 / 2^{\prime \prime}} \mathrm{D}$
8.25 lbs

For Only \$495 you get

 all these plus:Receiver Sensitivity 0.5 mV for 10 dB S $+\mathrm{N} / \mathrm{N}$ and 3 watts minimum audio output - ideal for mobile - and a drain of only 5.5 watts - including meter and dial lamps.

ACCESSORIES:

Microphone	$\$ 14.95$
Mobile Mount	$\$ 3.95$
Noise Blanker	$\$ 39.95$
Calibrator Portable AC \quad Supply	$\$ 19.95$
Heavy-Duty AC Supply	$\$ 84.95$
	$\$ 149.95$

Communications Specialists Serving Hams - since 1939 -
 ELECTRONIC DISTRIBUTORS, INC.

1806 BEIDLER ST.
TELEPHONE (616) 726-3196
MUSKEGON, MICHIGAN 49441
TELEX 22-8411

ALL BAND TRAP ANITENINSS

PRETUNED - COMPLETLY ASSEMBLED -
ONLY ONE NEAT SMALL ANTENNA FOR UP TO 6 BANDSI EXCELLENT FOR CONGESTED HOUSING AREAS - APARTMENTS LIGHT - STRONG - ALMOST INVISIBLEI COMPLETE AS SHOWN with 90 ft . RG58U-52 ohm feedline, and PL259 connector, insulators, 30 ft . molded, sealed, weatherproof, resonant traps ${ }^{\prime \prime} \times 6^{\prime \prime}$-you just switch to band desired for excellent worldwide operation - transmitting and reclevingl WT. LESS THAN 5 LBS.
80-40-20-15-10 bands 2 trap -102 ft . with 90 ft . RG58U - connector - Model 998BU . . $\$ 49.95$ $40-20-15-10$ bands 4 trap $\cdots-54 \mathrm{ft}$. with 90 ft . RG58U coax - connector - Model 1001BU... $\$ 48.95$ 20-15-10 bands 2 trap -. 26 ft . with 90 ft . RG58U coax - connector-Model 1007BU.... $\$ 47.95$
SEND FULL PRICE FOR POST PAID INSURED DEL. IN USA. CCanada is $\$ 5.00$ extra for postage clerical - customs - etc.) or order using VISA Bank Americard - MASTER CHARGE . AMER. EX PRESS. Glve number and ex. date. Ph PRICES MAY INCREASE SO- ORDER NOW AND SAVEI All ain
back trial I Made in USA. FREE INFO. AVAILABIE ONLY FROM.
WESTERN ELECTRONICS
Dept. AR-10

CLASS AMATEURSI
FOR ALL MAKES \& MODELS OF AMATEUR TRANSRECEIVERS - TRANSMITTERS TRANSRECEIVERS - TRANSMITTERS * GUARANTEED FOR 2000 WATTS SSB

Kearney, Nebraska, 68847

THE RADIO AMATEUR ANTENNA HANDBOOK by William I. Orr, W6SAI and Stuart D. Cowan, W2LX
\square RP-AH Brand NEWI One of Amateur Radio's most notable authors Bill Orr, W6SAI has combined his efforts and knowledge with W2LX to provide you with a clearly written, understandable book on antennas. All types of beam, quad, torizontal and sloping wire antenna information is included in this super volume. Location decisions, height. ground loss, towers, rotors, SWR meter reading - it's all here in one great book. 148 illustrations, charts and diagrams. A new book you have just got to read!... 190 pages...(c)1978.

Softbound \$6.95

Z-80 MICROCOMPUTER HANDBOOK by William Barden, Jr.

$\square 21500$ Zilog Model Z-80 represents a microprocessor that has become extremely sophisticated and useful to many computer buffs. This brand new volume is organized into three sections, the first concentrates on hardware: the second on software; and the third on microcomputers built around the Z-80. This handbook will provide the current user and the prospective user with essential information on the tascinating technology of the Z-80. 304 pages (c) 1978

Softbound $\$ 8.95$

LOG BOOK
New from HRCB
\square HR-LB Here is the finest book you've ever used. 80 big pages of clear, legibly ruled stock, all spiralbound to lie flat for easy writing. You'll find room for your entries on both sides of each page, thus giving you twice as much space and for less cost than the log book you are probably using now. This is unquestionably the best log book value anywhere $8.1 / 2 \times 11$ size.. 80 pages.

Spiralbound \$1.50

RADIO ANGELS

by Paul Jerome Stack, WA6IPF
\square HR-RA This brand new, exciting book depicts the heroic. glorious efforts of Amateurs around the world serving their fellow man during the times of need. Daring rescues, emergency assistance and human compassion all in one super volume. This book was over two years in the mak ing. Get your thrilling copy now!... 160 pages...(c) 1978.

Softbound \$4.50

303 DYNAMIC ELECTRONIC
 CIRCUITS by Frank Tedeschi and Raymond McIntyre

$\square \mathrm{T}$-1060 Complete circuit descriptions, detailed schematics, parts lists, modification instructions and efficient application ideas - this new book has circuits for nearly everything. Applications for automobiles, games, hobbies, electronic organs, musical instruments, audio and RF amplifiers, oscillators, detectors, electronic timers, test circuits and computers. If you need a circuit or idea this book has got it... 308 pages...(c) 1978.

Softbound \$6.95

> USE EASY
> ORDER FORM
> ON OPPOSITE
> PAGE

Send to: Ham Radio's Communications Bookstore, Greenville, NH 03048
\square AR-HB 1978 ARRL Handbook
\square RP-AH Radio Amateur Antenna Handbook. \$6.95
$\square 21500$ Z-80 Microcomputer Handbook
$\$ 8.95$
\square HR-RA Radio Angels
$\square \mathrm{T}-1060303$ Dynamic Electronic Circuits.
\square Check or Money Order Enclosed
\square VISA \square Master Charge
Order
$\mathrm{T}-1060$
Total books checked \qquad net cost \$
plus $\$ 1.00$ for shipping = TOTAL $\$$ \qquad

Acct,
Expires $\square \square \square$ MC Bank \square DI

Name
Address \qquad
CALL TOLL FREE 800-258-5353

City State \qquad Zip

One neighbor sued him for interfering with Lawrence Welk. Another filed a complaint about that "monstrosity" in his back-yard-a tribander at 40 feet.

7,781 tangled with the law

The K6SSS case is an example of what can happen to you these days. No matter where you live. It is hypothetical. But real lawsuits are being fought right now by people like K50VC. W2LTP. WB7NOM, W8NRM and W6UFJ/N6QQ to name a few. Last year nearly 8.000 unsuspecting hams and CB'ers ran afoul of the law. Sure, they re taking their fight to court - but they re losing! Never mind that they ve got building permits for their towers. Or that the FCC says their rigs are clean." Judges are ruling against them. The alarming part is that every suit lost makes it that much easier to nail the next guy. Prosecuting attorneys love to cite recent adverse decisions during a trial

Legal ammunition available

The tragedy is that suits are being lost that could have been won. But TVI/RFI and tower cases fall into a little-known area of the law. Unless your lawyer is a specialist. he could spend hundreds of hours researching court decisions. And still not be sure he's put together the strongest defense possible. It's expensive (expect to spend an average $\$ 4,000$ to $\$ 8,000$ if you re sued) And risky. Which is why we formed the non-profit Personal Communications Foundation* To provide your lawyer with legal ammunition.

Who we are

We're a handful of ham lawyers, professors and judges (all volunteers) who wanted to help before it s too late. We re putting together the first research library of personal communications and zoning law. And having briets written by the best legal brains. It's all available to your lawyer. For 104 a page. We can't guarantee you'll win. We can't try the case for you. But if you or your lawyer contacts us, we'll sure make sure you get a fighting chance.

Give us a fighting chance

To be even more successful in future battles, we re building an arsenal of weapons to use in court. For example. we re commissioning a study by real estate experts on the effect of a backyard tower on neighborhood property values. The pricetag is a stiff $\$ 11,000$. But without the study, more cases will be lost. And more dangerous precedents will be set
We are winning. But it takes money to keep fighting. You can help us fight by sending a check. The ARRL did. Think of us as your insurance policy against a lawsuit. All checks are 100\% tax-deductible.

Please act today. We ve already got a late start

- Non-prott Cal membership corp \#788-085

Kenneth S. Widelitz, WA6PPZ. President

Personal Communications Foundation*
Suite 1504
10960 Wilshire Blvd
Los Angeles, CA $90024 \quad$ (213) 478-1749
I want to give you a fighting chance. Enclosed is my 100\% tax-deductible membership application.
\square Life member \$250 \square Contributing member \$100
\square Full member $\$ 25 \square$ Associate member $\$ 10$
All members receive our free legal kit and newsletter
name
call
address
PCF ${ }^{\frac{1}{\Delta \Delta}}$
Defending the rights of hams

IMPORTANT NEWS FROM YAESU

This is to advise that early Yaesu advertisements for the NEW FT-225RD were incorrect, in that they tend to indicate that the memory unit was included in the price whereas in fact it is an option. We apologize for this error, and hope this has caused our valued customers no inconvenience.

Vy 73 ,

Yaesu Electronics

MOVING? KEEP HAM RADIO COMING .. .

If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we'll take care of the rest.
ham
radio
Allow 4.6 weeks for correction.
Magazine
Greenville, NH 03048
Thanks for helping us to serve you better.

Pound for pound. there is no match for the hf engineering ps-25M Power Supply

The competition
Weighs about 10 lbs. less than the PS-25M (\$12.63 per lb.) \$139.00

PS-25M - 21 lb .6 oz . Wired \& Tested . . . \$179.95
 (\$8.42 per lb.)
Kit (\$7.25 per lb.) . \$154.95
25 Amp regulated power supply with fold back current limiting, over voltage and transient protection. Also, output voltage and current meters

You might find a cheaper power supply, but you can't find one as well built with top quality components. Other power supplies with lighter weight transformers and components are no match for the VHF engineering PS-25M. It is rated at 20 amps continuous duty (not 10 amps). This power means extra dependability and versatility when you need it.

FEATURES

- Over-voltage protection crowbar.
- Electrostatic shield for added transient surge protection.
- A foldback output limiter operates for loads outside of the operating range.
- Isolation from ground. The circuit is isolated from the case and ground.
- 115/220 volt input - 50/60 cycle.
- Units are factory wired for 110 volt AC, 50/60 cycle power. A simple jumper will reconfigure the input for 220 volt AC, 50/60 cycles.
- Temperature range-operating 0 to +55 C .
- Black anodized aluminum heatsink.

SPECIFICATIONS

Voltage Output:
adjustable between 11-15V Load Regulation:

2\% from no load to 20 amps

 Current Output:25 amps intermittent
(50\% duty cycle)
20 amps continuous
Ripple:
50 mV at 20 amps
Weight:
25 pounds
Size:
$1214^{\prime \prime} \times 6 \frac{1}{\prime \prime} \times 71_{2}^{\prime \prime}$ 320 WATER STREET / BINGHAMTON, N.Y. 13901 / Phone 607-723-9574 Prices and specifications subject to change without notice. / Export prices slightly higher.

Advertisers check-off

... for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space detween name and number. Ex: Ham Radio 234

INDEX

$A B C \quad 571$	Icom _ 065
AED _ 710	Integ. Circuits _ 518
Adv. Elect. Appl 677	Int. Crystal 066
Aldelco _ 347	Jameco _ 333
Alliance _ 700	Jan 067
Aluma - 589	Jones __ 626
Ama, Elect. Supply *	K-Enterprises __ 071
Antenna Spec. - 010	Kantronics _ 605
Atlantic Surplus _ 644	Kenwood*
Atias _ 198	Larsen _ 078
Barry *	Long's _ 468
Bauman __ 017	Lunat _ 577
Budwig _ 233	Lyle _ 373
Bullet _ 328	MFJ 082
Butternut *	Madison *
Cal Crystal $\quad 709$	Palomar Eng._093
Clegg__ 027	Partridge 439
CoaxProbe 726	Pathcom _ 705
Communications	Personal Comm. *
Center _ 534	RF Power Labs _ 602
Comm. Spec. _ 330	Racal 728
Cosmic	Callbook _ 100
Search *	Radio World *
Crystal Banking __ 573	Ramsey _ 442
Curtis Electro 034	SST 375
Cushcraft _ 035	S-F A. R. S. $\quad 640$
DSI _ 656	Savoy _ 105
Dames Comm. 551	Securitron_461
Dames, Ted __ 324	Sentry _ 600
Data Signal __ 270	Shakespeare _ 729
Davis Elect. 332	Sherwood _ 435
DenTron__ 259	Slep 232
Drake ${ }^{\text {* }}$	Space _ 107
E.T.O. *	Spectronics _ 191
Electrocom __ 663	Spectrum Int._ 108
Elec. Distr. 044	Standard 109
Elec. Equip. Bank _ 288	Swan _ 111
Fox-Tango 657	TPL 240
GLB 552	Ten-Tec*
Godbout _ 647	Thomas Comm. 730
Gray 055	Tristao _ 118
Gregory*	Tufts 321
Group III_ 701	VHF Eng - 121
Gull 635	V.I.P. 583
Hal	Vanguard Labs __ 716
Hal-Tronix 254	Varian_043
H.R.C.B. 150	Webster
H. R. Magazine _ 150	Assoc. _ 423
Hamtronics, NY _ 246	Weinschenker __ 122
Hamtronics, PA *	Western *
Harper-Stanley _ 713	Whitehouse 378
Heath 060	Witson_123
Henry 062	Wolverine Radio _ 731
Hildreth _ 283	Wren _ 702
Hy -Gain_064	Yaesu - 127

-Please contact this advertiser directly. Limit 15 inquiries per request.

October, 1978
Please use before November 30, 1978
Tear off and mail to
HAM RADIO MAGAZINE - "check off"
Greenville, N. H. 03048
NAME.

CALL

StREET

CITY

STATE.

ALPHA POWER... Rugged, Cool \& Quiet

When you buy an ALPHA linear amplifier you make a long term investment in dependable power and operating pleasure.

You can take your ALPHA for granted - it will go on delivering that big, clean, maximum-legalpower signal no matter how tough the contest or how long the SSTV or RTTY QSO's.

We strive constantly to make every ALPHA even better. If we can't improve it, we don't change it. DURABILITY? You get TWO YEARS of factory warranty protection with your new ALPHA other manufacturers give you 90 days.
CONVENIENCE? Every ALPHA is self-contained, compact, and smooth-tuning. All 76A - 374A - 78 models can be shipped via economical, door-todoor UPS.

VERSATILITY? The new ALPHA 374A delivers full legal power (in any mode) on all amateur HF bands WITHOUT TUNE-UP and with excellent efficiency. (On 160M you peak the output manually; new FCC rules permit easy owner modification to restore full 10M capability, too.)

The ALPHA 78 combines the best of everything: full instant CW break-in (QSK) and NO-TUNE-UP bandchange! And of course all ALPHAs substantially exceed every applicable FCC requirement.

For detailed literature and fast delivery of your new ALPHA, contact your dealer or ETO direct. While you're at it, ask for a free copy of our brief guide, "Everything You Always Wanted to Know About (Comparing) Linears . . . But Didn't Know Whom to Ask.'

ALPHA - Sure you can buy a cheaper linear . . . But is that really what you want?

Longs Suggest You try swan Call Toil Fre 1-800-633-3410

 IN ALABAMA CALL 1-800-292-8668 9:00 AM TIL 5:30 PM CST

 IN ALABAMA CALL 1-800-292-8668 9:00 AM TIL 5:30 PM CST}

SWAN TB3HA 3 element tri-band beam
The heavy duty TB3HA features: Gain 8dB • Front to back $20-22 \mathrm{~dB}$ • Boom length $16^{\prime} \cdot$ Longest element $28^{\prime} 2^{\prime \prime} \cdot$ Wind surface area 4 sq . ft . - 10-15-20 meters.
199.95 list price. Call for quote.

SWAN TB4HA 4 element tri-band beam
All four elements active on all three bands. The heavy duty TB4HA features: - Gain 9dB - Front to back 24-26 dB - Boom length 24° • Longest element 28 ft .10 in . Wind surface area 6 sq. ft. - 10-15-20 meters.
259.95 list price. Call for quote.

SWAN WM-3000 precision PEAK/RMS wattmeter
Read forward or reflected power with maximum accuracy from 3.5 to 30 MHz - RMS readings available with the flick of a switch - Four scales from 0 to 2000 watts. Requires 117 V AC power source. 87.95 Call for yours today.

SWAN HFM-200 SWR \& power meter
Frequency $1.8-30 \mathrm{MHz}$. Two power ranges: $0-20$ and $0-200$ watts. VSWR 1:1-3:1. For mobile installation. directional coupler may be located separate from main indicator. Meter is lighted for night use.
49.95 Call for yours today.

SWAN WM-2000

 in-line wattmeterFrequency 3.5 to 30 MHz .3 scales: $0-200,1000$ and 2000 watts. VSWR scale permits reading from $1: 1$ to 3:1. Uses two SO-239 connectors 64.95 Call for yours today.

Remember, you can Call Toll Free: 1-800-633-3410 in the U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.

FRG-7

SYNTHESIZED

ALL SOLID STATE
HI-PERFORMANCE GENERAL COVERAGE RECEIVER AND QTR-24 WORLD CLOCK

The Model FRG-7 is a precision-built communications receiver with continuous coverage (500 kHz to 29.99 MHz) featuring:

- Drift Canceling Circuit
- RF Attenuator
- Noise Suppression Circuit
- 5 kHz Direct Dial Readout
- Ceramic IF Filters
- AC-DC or Internal Battery
- HiSensitivity
- Excellent Stability
- USB/LSB/AM/CW
- Triple Conversion

Completely Solid State Circuitry for Stable Trouble-Free Operation Built-in Front Mounted Speaker RF Attenuator for Reception of Local or High Powered Stations Outstanding Frequency Stability through the use of Drift Cancellation Circuit (Wadley Loop) Recording Output Jack provides Constant Output Level Regardless of Audio Volume Control Settings 3-Position Audio Range Selector 1. Normal (Broad) 2. Narrow (Hi \& Low Cut Off) 3. Low (Hi Cut Off) Excellent IF Receiver for VHF/UHF Converters.

arma

YAESU ELECTRONICS CORP., 15954 Downey Ave., Paramount, CA 90723 - (213) 633-4007 YAESU ELECTRONICS Eastern Service Ctr.,9812 Princeton-Glendale Rd.,Cincinnati, OH 45246

EIMAC's new Pyrogrid can run hotter so your transmitter can run better.

No easier way to generate 50 kW for AM, FM, and VHF-TV service. The pyrolytic graphite grid in EIMAC's newest tough tetrode, the 4CX40,000G, has triple the screen dissipation of earlier tetrodes. Which means:

1. A previous limiting factor in tetrode design, screen dissipation, is virtually eliminated.
2. Primary grid emission is eliminated.
3. Secondary grid emission is eliminated, improving linearity.
4. Hot and cold spacing between grids remains constant, allowing closer spacing between elements and improved performance.
High gain, better reliability.
With over 20 dB power gain,

EIMAC's Pyrogrid 4CX40,000G tetrode can follow a solid state driver, allowing a smaller, more efficient transmitter.

The stability of pyrolytic graphite assures better tube reliability.
Available today for tomorrow's single tube transmitters. For complete infor mation about the tough new EIMAC tetrode for tomorrow's AM, FM broadcast
and VHF-TV linear amplifiers, contact Varian, EIMAC Division, 301 Industrial Way, San Carlos, CA 94070. Telephone (415) 592-1221. Or any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.

人NVdWOO HVヨH

enjoy the world's leading electronic kit catalog...

THE ALL-NEW HEATHKIT CATALOG

Nearly 400 build-it-yourself
kits that the entire family
can enjoy
Send for your free copy today!

[^0]: 1. W. Ryder, W6URH, "High Performance General Coverage Communications Receiver," ham radio, November, 1977, page 10.
 2. J. Pollack, WB2DFA, "Six Digit $50-\mathrm{MHz}$ Frequency Counter," ham radio, January, 1976, page 18.
 3. P. Rand, W1DBM, "A Versatile Digital Frequency Display," QST, November, 1977, page 21.
 4. D. Lancaster, "The Buttenworth Filter Cookbook," Parts I and II, CQ, November and December, 1966.
 5. E. Wetherhold, W3NQN, "Modern Filter Design for the Amateur," QST, September, 1969, page 42.
 6. Stout and Kaufman, Operational Amplifier Circuit Design, McGraw-Hill, New York, New York, 1976.
 7. F. Gardner, Phaselock Techniques, Jan Wiley \& Sons, New York, New York, 1976.
 8. D. Nelson, WB2EGZ, 'What's This We Hear About Op Amps?', ham radio, November, 1969, page 6.
[^1]: *The device is manufactured by the Nippon Electric Company (NEC) in Japan and is being marketed by California Eastern Laboratories (CEL), Post Office Box 915, One Edwards Court, Burlingame, California 94010. Cost is $\$ 17$ each in quantities of 1.9 , decreasing to $\$ 15$ each for quantities of 10-99.

[^2]: *To reduce problems with spurious signals, the local oscillator should be above the signal frequency. Editor.

[^3]: 1. F. Langford-Smith, Radiotron Designer's Handbook, 4th edition, 1952, page 1002.
 2. William I. Orr, W6SAI, Radio Handbook, 20th edition, 1975, page 19.31.
[^4]: Gentlemen, please send me my free Heathkit Catalog.

[^5]: *Microwave Associates transistors are available from G. R. Whitehouse, Newbury Drive, Amherst, New Hampshire 03031.

[^6]: -A minimum loss pad is a resistance pad which will provide an impedance match between unequal terminations with the smallest possible attenuation.

[^7]: *For a small modulation index, as in a hard-limiting oscillator there is no difference between fm and a-m noise.

[^8]: 'Sherwood Engineering, Inc., Dept. A, 1268 South Ogden Street, Denver, Colorado 80210 .
 tMini-Circuits Laboratory, 2625 East 14th Street, Brooklyn, New York 11235.

[^9]: The "reciprocating detector" was designed by R.S. Badessa at M.I.T. The RD features a carrier-synthesized reference signal and requires no external bfo. The circuit offers advantages over conventional detectors in that it adjusts its bfo level automatically in proportion to the average signal level received. First introduced in ham radio in March, 1972, the RD has gone through several metamorphoses. The version presented here uses ICs and can be used in modern receivers using semiconductors. Also included is a design for a $10.7-\mathrm{MHZ}$ ssb filter for single-passband receivers. Editor.

[^10]: Olberg, Stirling, W1SNN, " $5-\mathrm{MHz}$ WWV Receiver," ham radio, November, 1972, pages 44-49.
 Olberg, Stirling, W1SNN, "Reciprocating Detector Converter," ham radio, September, 1974, pages 58-63.

[^11]: - With F_{m} equal to 4 dB , converting to a ratio will vield 2.5
 $6 \mathrm{~dB}\left|10 \log _{10}(2 \cdot 2.5-1)\right|$.

[^12]: 1. Randall Rhea, WB4KSS, "General Purpose Wideband RF Amplifier," ham radio, April, 1975, page 58.
[^13]: *A parts package for this product detector is avail able from G. R. Whitehouse, Newbury Drive, Amherst, New Hampshire 03031.

