

HOW TO SAVE TIME AND MONEY THROUGH YOUR IRC DISTRIBUTOR...YOUR ONE-STOP REPLAGEMENT GONTROL SOURGE

Full Replacement Control Coverage without Shopping or Waiting

Here's a new convenience that's going to save you hours of time-and some dollars too. For now there's a replacement control line so complete that no technician need shop or wait for the units he wants. One stop at your IRC Distributor covers all your replacement needs.

295 New Factory Assembled
 Exact Duplicate Controls...

Maybe you prefer the convenience and simplicity of factory-assembled Exact Duplicate Controls. Or maybe you like the wide coverage and faster servicing at lower stock cost you get with Universal Replacements. Either way, IRC gives you just what you want. The new IRC Replacement Line includes 295 new factory assembled Exact Duplicate Controls and 2 new, simplified CONCENTRIKITS with Exact Duplicate Shafts.

Full Coverage of 295 Different Concentric Duals Handling 416 Manufacturers' Parts Numbers Specified in over 5,000 TV Models

This is what you get with either IRC Factory-Assembled Exact Duplicates or IRC improved CONCENTRIKITS. 295 new IRC Exact Duplicate Controls provide satisfactory mechanical fit and electrical operation for over 90% of TV controls. And 2 new, four-piece IRC CONCENTRIKITS with Exact Duplicate Shafts and versatile Base Elements give you the same broad, dependable control coverage.

Guaranteed Reliable Fit and Operation or Double Your Money Back

Every IRC Factory-Assembled Exact Duplicate and every IRC new Universal Replacement-employing K-2 or K-3 CONCENTRIKITS-must operate and fit satisfactorily ! If it fails to do sodouble your money back! This is IRC's guarantee of dependability.

New IRC Exact Duplicate Controls Feature:

- Accurate Dependable Specifications.
- Factory assembly under rigid quality control.
- Both carbon and wire-wound types.
- Easy installationno modification needed.
We build these new IRC Exact Duplicates to carefully prepared specifications. Shaft lengths have not been compromised so there's no need to improvise, to reverse connections or to alter controls in any way. Shaft ends are accurately machined for good knob fit. And electrical characteristics are carefully engineered to assure satisfactory operation. IRC Exact Duplicates are easy to install and they operate efficiently.

New Four-Piece IRC CONCENTRIKITS

Feature:

- "Less-than-a-minute" Assembly in Shop or Home.
- No fling, slotting, hammering, soldering or cutting of shafts.
- Assembly of both Carbon and Wire Wound Concentric Duals.
- New reduced prices.

You'll need no special tools or skills to assemble these new, simplified CONCENTRIKITS. With each one, we furnish easy-to-follow pictorial instructions that show you how to make actual assembly in less than a minute. No alterations are needed; shafts are supplied in proper lengths and with factory-tooled ends for accurate fit.

New, Dealer Assortments for Widest Coverage at Lowest Cost

You'll have less money tied up in in-ventoriesand you'll lose fewer parts through obso-
lescence-when you buy IRC's new CONCENTRIKITS in low-cost, convenient CONCENTRIPAKS. These handy assortments include Base Elements, Exact Duplicate Shafts and Switches for specific brands of TV controls. Contained in large, sturdy, partitioned plastic stock boxes, with full replacement data. CONCENTRIPAKS give you wide coverage at a fraction of the cost of factory-assembled controls.

Make Your IRC Distributor Your One-Stop Source of TV Replacement Controls

You'll save time and cash by scheduling your trips to your IRC Distributor-and buying all your Replacement Concentric Duals from him. And you'll be sure of Concentric Dual efficiency, too. For IRC's guarantee protects you on Universal Replacements or Factory Assembled Exact Duplicates. Remember-Double your money back if fit or operation is unsatisfactory!

Full Detalls and Free Replacement Data Yours for the Asking
For full information on IRC's new Replacement Control Line, get new Catalog Data Bulletin DC1C. Complete replacement data by Manufacturers' Parts Numbers also is yours at no charge. Specify Form SO12. Just send post card to us for
 your IRC Distributor.

423 N. Brood Street - Philadelphic 8, Po.

Pick of the Trade

The 1952 Edition of "Special Days, Weeks, and Months" -for sale by the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C.-comprises some 400 leading events of interest to retailers.

There are 130 special events devoted to the promotion of business, and 96 "week-Long" promotions ranging from advertising and baseball to valentines, watches and wines. That there are only 52 weeks in a year is of little moment because there are few conflicts in public appeal. One industry's National Cotton Week does not interfere with another's efforts on behalf of National Frozen Food Week.

Twenty-five special occasions are by Presidential proclamations, requested by resolution of Congress and supported by Governors' Proclamations. For 15 c it is quite an informative booklet.
\star *
PRICE WARS, LIKE ALL WARS are destructive. There is no bottom to price. If you cut the price of a product, you'll always find someone who will cut deeper than you do ... Cut prices, fantastic premiums, exorbitant trade-in allowances, and the like, stimulate business for a while. But these benefits are only tem-porary-merely 'shots in the arm.' . . . Just as dangerous as dope . . . They're habit-forming-and the need for increased dosages continues until they result in ruination."
E. R. Taylor, vice-president marketing, Hotpoint, Inc., in a letter to dealers.
$\star \star \star$
RADIO HAMS have almost been driven off the air during the last three years because of blaming all interference on them. Because amateurs can play an important part in civil defense it is essential they be allowed to continue their activities, provided they do so properly and within regulations laid down for them by FCC. As a result, joint action of the RTMA Service Committee and the RTMA Amateur Committee will be fostered, with the objective of making servicemen more cognizant of the problems of amateurs, how to recognize genuine Ham interference when it exists, and how to cope with it.

Radio \& Television Retailing-April, 1952

SERVICE MEN can play a key role in keeping the public posted on what should be generally expected from a rebuilt picture tube, and how to identify a rebuild. It's an important assignment which no Service Man should shirk. The consumer will be extremely grateful for this valuable counsel.
TUBE REBUILDING is a complex problem, not within the sphere of operations of a service shop or even a small tube plant which might not have the facilities for uniformly processing the tube and controlling quality, or providing suitable glass inspection to prevent implosion, or adequate baking to outgas the tube.
If it does become necessary to provide a rebuilt tube because of type unavailability, the consumer should be told that the tube has been repaired and as such cannot provide the maximum efficiency which the tube was able to offer in its brand-new stage.
L. W. in Radio-Television-Electronic Service-March, 1952

UHF CONVERTERS for customers' sets are being considered as part of the UHF station investment by some UHF applicants who have already contacted TV manufacturers for quantity prices on such converter units. The UHF stations would purchase the UHF converters in quantities and then sell them locally (at onehalf or one-third cost) to present TV set owners, to build UHF audience for the new stations.

Tele-Tech-April, 1952
IF SOMEBODY SAYS "POLITICS," what associations pop into your head? Probably some words that are pretty cynical, such as "dirty," "machine," "influence," "graft," "the interests," "smoke-filled room." Some of us look upon politics as something to be snooted, and regard politicians as not very nice people.

The trouble with politics is that it can't be shoved aside the way an old pair of fishing pants can be thrown into a cellar closet. We may insist we don't want any part of it, but it takes a part of us. The way the sum total of politics turns out really sets the pattern for how we live from day to day, what we get with what we earn, what sort of security we can count on, what kind of citizens our children have an opportunity to become.

Herbert L. Brown, Jr., Managing Editor Changing Times, The Kiplinger Magazine

AND TECHNICAL DIGEST

VOL. $2 \cdot$ NO. 3
MAY-JUNE; 1952

JAMES R. RONK, Editor
Ediforial Staff: Merle E. Chaney - Robert B. Dunham Ann W. Jones - Arthur R. Kozik - Glenna M. McRoan Glen E. Slutz - Margaret Neff
Technical Director: W. William Hensler
Art Direcfors: Anthony M. Andreone - Pierre L. Crease
Production: Archie E. Cutshall • Douglas Bolt
Prinfed by: The WALDEMAR Press; Joseph C. Collins, Mgr.

CONTENTS

Shop TalkMilton S. Kiver5
DC Restoration and Sync Separation
W. William Hensler and Merle E. Chaney 7
Radio and TV Fuse ReplacementArthur R. Kozik13
U. H. F.
Merle E. Chaney 23
The Value of Waveform Analysis (Part III)
W. William Hensler and Glen E. Slutz 29
In the Inferest of Quicker Servicing Glen E. Slutz 33
Examining Design Features
Merle E. Chaney. 37
Audio Facts
Robert B. Dunham 41
Dollar and Sense Servicing John Markus 47
Photofact Cumulative Index No. 32 Covering Photofact Sets Nos. 1-170 Inclusive 49

+ More or Less - 94

HOWARD W. SAMS, Publisher
COPYRIGHT $1952 \cdot$ Howard W. Sams \& Co., Inc. 2201 East 46 th Street - Indianapolis 5, Indiana
The PF (PHOTOFACT) INDEX and Technical Digest is published every other month by Howard W. Sams \& Co., Inc. at 2201 East 46th Street, Indianapolis 5, Indiana-and is included as a part of PHOTOFACT folders from PHOTOFACT Distributors withouf odditional cost.
SUBSCRIPTION DATA: For those desiring the convenience of delivery to their homes or shops, Howard W. Sams \& Co., Inc. will mail each issue of the INDEX direct, promptly upon publication. The subscription charge is $\$ 2.00$ for eight issues in the United States and U. S. possessions. Acceptance under Section 34.64 P. L. \& R. authorized at Indianapolis, Indiana.

ABOUT THE COVER: The photograph is of Harold Maxeiner, owner of the United Radio and Sinclair Service Station, of Okawville, Illinois. Mr. Maxeiner calls attention to the fact that although he files Photofact Folders in the recommended manner, he does have a slight variation with respect to Notes, the Photofact Index and the Television Course. He files all of these in a separate looseleaf folder so that they can be centrally located and easily referred to. This looseleaf folder can be seen adjacent to Volume 13 in the illustration.

if you use television picture tubes

IuMOIT
 PICTURE TUBE

Telseridx
TELEVISION'S FINES
PICTURE TUBE

-

The March-April issue (No. 31) of the PF INDEX and Technical Digest carried a reference in this column to several technical publications of receiver or component manufacturers, recommending subscription to them, and outlining how to obtain them. We have since received a note from Mr. Fred Donati thanking us for our interest in the Aerovox Research Worker and pointing out that Aerovox has an established procedure which will assist the service technician in this connection.

Instead of contacting the Aerovox Corporation direct, as suggested in this column, simply make your request for the Aerovox Research Worker to your local Aerovox distributor and he will follow through for you.

- Ed.

HORIZONTAL DISTORTION. A fairly common type of picture defect - and one which gives many technicians a considerable a mount of trouble - is distortion of the picture along its horizontal dimension. The picture may be compressed or elongated at the left or right-hand sides, there may be alternate light and dark vertical striations across a portion of the screen, or the picture may contain a series of ripples or perhaps possess two or three closely spaced dark lines. These are the most commonly encountered troubles; there are others such as the keystone effect or horizontal foldover, but by and large these are rather quickly corrected since certain specific remedies are available and well known.

Probably a major reason why the service technician encounters as much trouble as he doesin repairing horizontal defects of the type mentioned above stems, to a large extent, from his haziness in appreciating some of the finer points of horizontal sweep circuit operation. Known to all is the fact that within this section of the receiver there is generated a saw-tooth wave (of the type shown in Figure 1)

Figure 1. The Input Waveform to the Horizontal Output Amplifier. This Will Tend to Vary with Different Sets.
which, when applied through an output amplifier to the deflection yoke, serves two specific purposes: To sweep the beam horizontally across the screen and to develop a high potential during retrace. As a side function or by-product of the tremendous energy which is unleashed during the retrace interval, a damper tube serves not only to suppress oscillations which are set in motion by the energy release, but perhaps more important, to capture and convert some of this energy into useful DC power to aid and abet the DC power supplied to the tubes in both sweep systems.

This is the bald, overall operation of the horizontal section of most TV receivers. And it forms a basis for the servicing of such obvious defects as tube and/or resistor or capacitor failure. However, in order to do an efficient job when picture distortion (rather than complete picture failure) occurs, the technician should possess greater familiarity with some of the inter-relationships that exist within this system.

A good point to start is with the current flowing through the horizontal deflection yoke. This current has a saw-tooth form and under the drive of the magnetic field which it establishes, the beam travels from left to right across the screen. Now, if we take this saw-tooth current and analyze it, we come upon a rather enlightening fact. We find that it (the current) is produced by the combined efforts of two circuits, the damping circuit and the horizontal output circuit, rather than the more natural assumption that it is all due to the power delivered by the horizontal outpuc circuit. In fact, you will find that the initial 40 per cent (approximately) of the deflection current is produced by the damping tube and only the final 60 per cent of the power is furnished directly by the horizontal output tube.

Here is how this comes about. When the sawtooth wave of Figure 1 is applied to the grid of the horizontal output tube, grid current flows for the most positive region of the wave, producing a gridleak bias which actually keeps the output tube cutoff for the most negative portion of this driving voltage. If we match up the grid input wave with the saw-tooth deflection yoke current, we see (Figure 2) that for the first 40 per cent of the beam travel across the screen the horizontal output tube is not even conducting. This being so, where is the power coming from?

The answer is to be found in the damper tube. Immediately after beam retrace, the damper tube begins to conduct, absorbing the retrace energy which has been built up. The damper circuit is so designed that this absorption of energy occurs in a linear manner and points X to Y of the saw-tooth deflection current curve indicates this. At point Y this energy

Smoother-than-ever response, wider range

e.ontinuing Astatic research has topped one of its own outstanding accomplishments, the extremely popular ACD Series Turnover Cartridges. Destined to become successors to these fine performers are the new Astatic Models 10L3 and 11L3, which duplicate the ACD units in physical dimensions and replacement applications. You will immediately note the main improvement in the new cartridges - the smoothest response you have heard to date. Astatic engineers achieved it with a unique application of damping, a vital aspect being that they were able to maintain output level and compliance. Wider range is a second major improvement, and you will be amazed how the superior smoothness of the new cartridges holds through the higher frequencies. The improved quality of reproduction is apparent even to the less discriminating listeners, as is the absence of listening fatigue. There is just no mistaking the finer performance. Try the new Astatic 10L3 or 11L3 at your first opportunity and see if you don't put it at the top of your preferred list.

Write for New Directory of Record Players and Record Playing Attachments with Replacement Guide for Astatic Cartridges,

DC Restoration and Sync Separation

by W. Willican
 and Merle E. Chaney

In order to understand the operation of the various circuits in a television receiver, it is necessary to take into account the nature of the transmitted signal. In addition to picture and sound intelligence, blanking and synchronizing pulses must be transmitted to properly control the receiver. These requirements result in a very complex amplitude modulated signal being transmitted by the picture transmitter. The output of the sound transmitter is a conventional frequency-modulated signal similar to that employed in FM broadcasting.

The first step in the transmission of a picture is that of converting light energy into electrical energy. This function is performed in the television camera. The camera employs appropriate circuits for scanning the televised scene one line at a time, resulting in an output of a train of varying electrical pulses. The output is then amplified to a level suitable for proper modulation.

In order to reassemble these scanned lines in the proper relationship at the receiver, a means of synchronization must be employed. Synchronizing (sync) pulses generated at the transmitter are used to time the scanning of the camera, and are also added to the transmitted intelligence sothat they may be used for purposes of synchronization at the receiver.

Blanking pulses generated at the transmitter are also included as a portion of the transmitted signal to accomplish cutoff of the beam in the receiver picture tube during retrace time.

Thus, it has been established that three signals are required to make up the composite video signal. These, as shown in Figure 5-1A, are the sync pulses, blanking pulses, and picture information. These three signals are then combined to form the composite video signal, as shown in Figure 5-1B. It is this combination signal that is used to modulate the picture transmitter.

The tips of the blanking pulses are placed at the level representative of black. Picture elements are combined with these pulses at a level which maintains the proper relationship between electrical and light values. Sync pulses are then added to the top of the blanking pulses, placing them in the "blacker-thanblack" region.

The modulation process of the transmitter is such that a fixed level of output is maintained at the blanking pulse and sync tip levels. The average level or AC axis of the picture signal components will vary, however, according to the lighting of the televised scene. Since the blanking pulse level is at a fixed amplitude, regardless of the brightness of the tele-

Figure 5-1. The Composition of a Video Signal.
vised scene, it can be used as a reference at the receiver to re-establish, or "restore," the proper shading to the picture. In actual practice, the circuits in most receivers employ the tips of the sync pulses to perform this function. This is possible since the sync tips are also maintained at a constant level in the transmitted signal.

In addition to establishing a reference level, this constant amplitude signal can be used to control the AGC circuits of the receiver. It also lends itself to more efficient operation of the sync separator and amplifier circuits, the proper functioning of which is extremely important in satisfactory television reception.

Negative modulation is employed as a standard in the United States. This means that in the United States system of transmission, the electrical energy representative of black results in a greater amplitude in transmitter output. Thus, sync pulses being in the "blacker-than-black" region result in maximum output of the transmitter. Therefore, the waveforms of Figure 5-1B will result in a transmitted signal as shown in Figure 5-2.

Figure 5-2. A Composite Video Signal.

DC RESTORATION

The purpose of a DC restoration circuit in a television receiver is to provide the correct amount of background illumination in the reproduced picture. This illumination corresponds to the lighting of the
scene scanned by the television camera. Since illumination of the picture tube screen is a function of the tube bias it is necessary to vary this bias to correctly represent dark or light scenes:

The composite video signal consists of the following components that are essential for correct reproduction of a picture at the receiver.

Picture Information
(a) AC Components
(b) DC Components

Blanking Pulses
Sync Pulses
AC components are those portions of the video required for modulation of the picture tube. DC components are those levels of DC upon which the AC components are superimposed. Blanking pulses establish the black level and provide blanking during retrace time. Sync pulses are used to maintain the scanning of the picture tube in synchronization with the scanning of a scene by a camera.

The level of the blanking pulses is transmitted ât a constant 75% of signal amplitude and represents the black level as far as picture information is concerned. Signal voltages representing shaded objects approach this black level, while those signal voltages portraying light objects swing away from the black level.

Figure 6-1. Waveforms of Two Signals Representing Dark and Light Scenes.

Your dollar buys more "instrument" ... in our Model
 6, 3

 by R. L.Triplett presidentBecause we build every major part of our instruments the quality is carefully controlled. For example, we know we have more torque driving our pointers because we designed and built the complete instrument. We know we have sustained dependence in the shafts and switch contacts of our test equipment for the same reason. Cycle tests for switches exceed several times the rigid requirements of the armed forces.

There is another important value to you. Because we make our own components we eliminate the profit another manufacturer would make in selling them to us. And this "profit" is passed on to you.

Consider these features of Model 630 V.O.M., for example-

One Hand Operation-One switch with large recessed knob has a single position setting for each reading. Leaves one hand free. Eliminates switching errors, trouble, saves time.

Ranges-AC-DC Volts: 3-12-60-300-1200-6000 (AC, 5000 Ohms/Volt; DC, 20,000 Ohms/Volt). 60 MicroAmps. 1.2, 12, \& 120 Mil Amps. DB scales at 1.73 V on 500 Ohm line, $0-66$ DB output.

Highest Ohm Reading-To 100 Meg. in steps of $1000-10,000-$ 100,000 Ohms- 100 Megohms

Yes, with us it's a matter of personal pride to make "Triplett" stand for better construction and more service for your test equipment dollar.

TRIPLETT ELECTRICAL INSTRUMENT CO.
Bluffton, Ohio
TRINELET EROV.O.M. anly $\$ 3950$

Figure 6-1 shows the waveforms of two video IF carrier signals. Figure 6-1 A represents a scene scanned under strong light conditions while $6-1 \mathrm{~B}$ illustrates a carrier signal when the same scene is scanned under a darker condition. These signals when applied to the video detector are rectified, freeing the modulation envelope from the carrier, resulting in the signals shown in Figure 6-1C and 6-1D. Note that blanking pedestal peaks occur at the same level of amplitude. The AC components, containing the picture information, however, are at different amplitudes. This places the AC axis for the two signals at different levels. The axis also represents the average DC associated with each video signal. Since the level of DC is less for the video signal representing the light scene, it follows that the amount of DC associated with a scene determines the amount of shading or background illumination in the reproduced picture. This is illustrated in Figure 6-2, which shows the average brightness as plotted on the grid drive characteristics curve of a picture tube. These values of illumination would be obtained from two signals having different AC axis. Note that the tops of the blanking pedestals for both signals are placed at the beam cutoff point.

Figure 6-2. The Position of the AC Axis of a Signal Determines Picture Tube Illumination.

DIRECT COUPLED VIDEO AMPLIFIERS

The voltage swing of the video signal at the video detector is inadequate to properly modulate the picture tube, requiring the use of video amplifiers for signal amplification.

As previously noted, DC components are present at this stage. If direct coupling is employed
between stages from the video detector to the picture tube, DC components are retained. This is true because direct coupled amplifiers are also direct current amplifiers.

Normally only one stage of video amplification is employed when direct coupling is used. This maintains the $B+$ potentials at a medium value, thus eliminating the necessity for higher $B+$ supply voltages.

CAPACITIVELY COUPLED VIDEO AMPLIFIERS

If capacitive coupling is used between the video detector and the picture tube, DC components of the video signal are lost due to the blocking action of the coupling capacitor. Without a DC reference for the video signal, the average bias on the picture tube remains constant, since variations of the signal in a positive direction are balanced by the variations in the negative direction.

To see more clearly why this occurs, refer to the simple RC coupled circuit of Figure 6-3A. Assume for the moment that a sine wave of 40 volts amplitude is present at the plate of V1. Since a sine wave is symmetrical, the AC axis of the signal will be equidistant between the peaks of the signal. Although a potential of 50 volts is measured with a DC meter at the plate of V1, the voltage swing is actually from 30 volts to 70 volts. This sine wave voltage at point X is shown in Figure 6-3B. C1 serves as a DC blocking capacitor and the voltage read with a meter at point Y will be zero since R1 is returned to ground. This signal is also shown in Figure 6-2B. Note that the voltage swing is now from plus 20 volts to minus 20 volts.

If a symmetrical square wave is applied to the network, the signal at points X and Y is as shown in Figure $6-3 C$. Since the square wave is symmetrical, the AC axis is equidistant between the peaks of the signal. Note that the shaded areas of the portion above and below the axis are equal.

If an asymmetrical square wave, as shown in Figure 6-3D, is applied to the network, conditions are quite different. Since the square wave is not symmetrical, the AC axis is no longer equidistant between the peaks of the signal. The voltage swing at the plate of V1 is now from 40 volts to 80 volts. After the signal is passed by the coupling capacitor, the voltage swing is now from minus 10 to plus 30 volts. Thus it can be seen that the wave shape, in addition to the amplitude, determines the positive and negative swing of the signal at the grid of V2.

So far our discussion has been dealing with signals of equal amplitude. The composite video signal is not only asymmetrical but varies in amplitude. As the signal level varies, the AC axis shifts with respect to the peaks of the signal as shown in Figures $6-3 \mathrm{E}$ and F . The signal at E is representative of a rather dark scene while that at F represents a much lighter scene. Note that in one case (F) the sync pulse tip is 35 volts above the AC axis, while that at E is only 20 volts above the axis. If these two signals were applied to the cathode of a picture tube, the two scenes would appear to have the same bright-

OUTSTANDIMG MEGHANIGAL SPEGIFICATIONS

Port	Material	Yiold Strength	Size	
		psi	-.d.	Wall
Most (golv.)	H/4 Thinwoll Steal Conduit	32,000	0.972"	.04\%
targe Folded Dipole	$331 / 2 \mathrm{MAl}$.	19,000	500\%	048
Small Folded Dipol*	$3 \mathrm{~S} 1 / 2 \mathrm{NAL}$.	19.000	.375**	04\%
Renector	$331 / 2 \mathrm{Nax}$.	19.000	500°	040"
Crowserm	3 SNAl .	26,000	875*	065*
Conter Suppoit \& Costing	Al. Alloy 45.000 pri tensile strength			

EXGELLENT RADIATION PATTERNS
These are the radiation patterns of the AMPHENOL Inline antenna at $58 \mathrm{mc} ., 66$ mc. and 88 mc ., in the low band, and $174 \mathrm{mc} ., 194 \mathrm{mc}$., and 215 mc . in the high band. Notice the uniformity of these lobes at all frequencies. The lack of lobes off the sides and negligible ones off the back maintains high front-to-back and front-to-side ratios necessary for the rejection of various interferences. The

Morizonfol radiation pottern of Amphanal TV Antenno Model No, 114-00s.

presence of a single forward lobe is usually a very desirable feature, especially when it is wide enough to provide adequate interception area for some differences in transmitter location, changes in the wave front's direction of travel, or physical movement of the antenna in high winds. Furthermore, it is not too critical of orientation. It is necessary only to aim it and forget it.

HIGHER GAIN

These gain curves of the AMPHENOL Inline antenna represent the intercepted voltage of the AMPHENOL Inline Antenna as plotted against the intercepted voltage of a reference folded dipole cut to the frequency being compared. There is no channel in either the low band or high band where there is more than a three decible change within the channel that can cause picture modulation or "fuzziness." Gain of the AMPHENOL Inline antenna is quite flat over all channels.

You will find more gain designed into the high band because of greater need for it, due to higher losses at these frequencies. Also, notice the drop-off on channel six. This is at the edge of the FM band and is subject to FM interference, so the Inline's gain is purposely held down at that frequency.
The excellent broadband characteristics, impedance match, single forward lobe radiation patterns on all channels, maximum gain, lightning protection, and superior mechanical features of the AMPHENOL Inline Antenna make it the antenna for greatest TV picture quality!

for All the factors defermining BETTER TV PICTURE QUALITY

Write for this book containing the characteristics and test performance data of various types of antennas.

Figure 6-3. Illustrations Showing how the AC Axis of a Signal Varies in Position.
ness since the bias on the picture tube remains the same. Also the lower amplitude of the blanking pulse of Figure 6-3E might result in visible retrace lines. This is illustrated in Figure 6-4 which shows two signals that have the DC component missing. The average brightness is the same but the blanking level of the lower signal does not extend to the beam cutoff point which will result in visible retrace lines. Compare this figure to that of Figure 6-2, which has the DC components restored.

Several methods are employed commercially to effect DC restoration. Following is a description of the most commonly used circuits.

DIODE DC RESTORER

DC restoration is accomplished in a diode circuit by clamping the black level of the blanking pulse of a video signal to the black or cutoff level of the picture tube. A basic diode restorer circuit is shown in Figure 6-5. Negative going sync pulses are applied through the coupling capacitor C1 to the control grid of the picture tube. Also negative excursions of the video signal are conducted through the low resistance of R1 and the low resistance of the diode to ground. R1, a $5 \mathrm{~K} \Omega$ resistor, isolates the picture tube input circuit from the shunting capacity effect of the diode. C1, a .05 mfd . coupling capacitor, is now charged to approximately the peak voltage of the video signal or to about sync pulse tips. As the signal alternates in a positive direction, the diode becomes non-conductive and C1 starts to discharge through R1 and R2 to ground. The RC time of this

Figure 6-4. The Effect on Picture Tube Illumination by Two Signals Having a Fixed AC Axis.
combination is 50,000 microseconds, or more than the time of one whole frame of scanning. Between each horizontal line, therefore, C1 will discharge only a very small amount.

A positive potential now exists on the picture tube grid which decreases the total picture tube bias. The brightness control may now be manually adjusted for best picture without evidence of retrace lines or excessive brightness. Once the correct setting of

- Please turn to page 85 .

Figure 6-5. A Basic Diode Restorer Circuit.

WHY CBS-HYTROR CYLINDRICAL?

To eliminate reflected glare? How? Simple as ABC: A. Imagine a cylinder; slice it vertically. B. You now have the shape of the face plate of a cylindrical tube: curved horizontally; straight, vertically. C. Light falling on this surface at an angle from above is reflected at the same angle...downward. Tilting the tube directs glare downward even more, away from the viewer's eyes.

why CBSoHYTRON shielded Lens?

With this shielded lens in the electron gun, greater depth of field and better definition are achieved. Just as when you stop down the diaphragm of a large, fast camera lens ($\mathrm{f} / 3.5$) to a small aperture ($\mathrm{f} / 16$). Distortion caused by interaction of external electrostatic fields used to focus and accelerate the electron beam is avoided. Focusing is easier, less critical. Slight changes in voltages and currents do not cause drift.

WHY CBS=HYTRON BLUE-WHITE SCREEN?
Ever notice how a shirt laundered with bluing appears whiter? With the CBSHytron blue-white screen, whites appear whiter; blacks, blacker. Picture definition is crisper. In fringe areas, the expanded gray scale of the blue-white screen gives noticeably clearer pictures. No wonder CBS-Hytron's original blue-white screen is fast becoming the standard preferred by consumers for best definition.

These are just a few reasons why it's smart to demand CBS-Hytron... orig. inal studio-matched rectangulars. Try the new CBS-Hytron cylindricals yourself. Discover for yourself why 9 out of 10 leading set manufacturers pick CBS-Hytron.

The glass tube fuses found in many radios, television receivers and related electronic equipment are safety devices that prevent the equipment or its components from being damaged by excess current. There are a multitude of types and sizes available today, each of which is designed to meet certain specifications. In nearly all cases, fuses can be replaced and often types interchanged without destroying the electrical protection that fusing affords.

These fuses consist of a glass tube having metal caps on either end. A filament, or element of a fusible metal, is connected between the two caps. This type construction allows the element to be entirely enclosed, and prevents the possibility of physical damage to the element, as well as eliminating a fire hazard when the fuse operates.

The materials incorporated for the fusible element vary widely. Low voltage fuses used in conjunction with automobiles are the S. F. E. type and use a zinc element. The amperage ratings of the S. F. E. fuses were selected so as to form a geometric progression, each one being 50% greater than the one preceding. They were also designed so that each amperage rating be of a different length, as can be seen in Figure 1. In this manner the over-fusing of a circuit becomes impossible with fuses of this type.

Zinc, however, is not too satisfactory for electronic applications, and after years of research it

Figure 1. S. F. E. Standard Glass Tube Fuses.
was found that an element of a copper alloy proved much more efficient for this purpose. Elements consisting of this alloy provide for relatively close control, low reaction to ambient temperature, and very little formation of explosive gasses.

In some of the finer instrument type fuses, a filament of platinum or tungsten is used. It is interesting to note that the filament used in the $1 / 500$ ampere instrument fuse is .000017 inches in diameter. To appreciate the delicate nature of this filament, compare it with that of the human hair, which is approximately .003 inches in diameter. A silver jacket is placed upon this wire during manufacturing, and is removed at the time that the wire is placed into the fuse. Figure 2 illustrates a fast acting fuse. Some of these fuses incorporate a silver jac'set to increase the strength and decrease the resistance of the wire. The jacket is removed only from a small portion of the wire, thus making the fusible link quite short in comparison with the entire length of the wire.

Figure 2. Glass Tube Fuse with Support for Delicate Fuse Link.

These fast acting or instrument fuses have an exceedingly short time lag. A 300% load will cause the fuse to function in approximately .1 second. Therefore any transients that would last for this period of time would blow the fuse.

Since some circuits do have transients that may blow this type fuse, a slow acting fuse is manufactured that offers a long time lag. A 300% load upon this type fuse would take approximately 8 seconds before opening, a characteristic which is very desirable in many cases. A very novel method is incorporated to produce the time lag. A spring generally made of beryllium copper is placed in such a manner that tension is applied to the element. (See Figure 3.) A heating device is then incorporated to heat the element to such a temperature that the spring pulls the element apart. Of course, with an overload far in excess of its rating, the time delay is lost.
(See replacement charts on pages 17, 18, 19, and 21.)

- Please turn to page 79 *

Figure 3. Glass Tube Fuses with Long Time Lag.

	$\begin{aligned} & \text { 山⿳亠二口欠刂 } \\ & \text { 崖 } \end{aligned}$			
	$\frac{\text { 즌 }}{6}$			
$\left\|\frac{2}{2}\right\|$	$\stackrel{\ddots}{\circ}$			
	$\frac{\grave{n}}{\frac{1}{4}}$			－
旡				

UNIT TO be replaced	Ratings			REPLACEMENT		
PHYSICAL DIMENSIONS	AMPS	VOLTS	ACTION	BUSS TYPE	LITtelfuse	
					CAT．NO．	TYPE
	$\begin{array}{\|c} 4 \\ 6 \\ \begin{array}{c} 49 \\ \# 14 \\ \# 14 \\ 20 \\ 30 \\ 50 \end{array} \end{array}$	$\begin{aligned} & 32 \\ & 32 \\ & 32 \\ & 32 \\ & 32 \\ & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & \text { MED } \\ & \text { MED } \end{aligned}$	SFE 4 SFE 9 SFE 14 SFE 30 AGY 50	307004. 307009. 307014. 307020. 306050.	
（G）	1 2 2 3 4 5 10 10 15 15 15 20 20 25 25 30 30 35 35 40 40 50 50 60 60	$\begin{array}{r} 250 \\ 250 \\ 250 \\ 252 \\ 32 \end{array}$	MED MED MED MED MED MED MED MED MED MED	AGU 1 AGU 2 AGU 3 AGU 5 AGU 10 AGU 15 －．－ AGU 20 AGU 25 AGU 30 AGU 35 AGU 40 AGU 50 AGU 60		
	\dagger These Fuses with 511 Prefix have twisted elements．					

	岂		
	ㅈㅡㅡ닁	 	
	$\stackrel{\cong}{O}$		
	$\sum_{<}^{n}$		

空	岂	HEHFHHEHEHEH 	
	$=\left\lvert\, \begin{aligned} & \text { 을 } \\ & \dot{c} \\ & \dot{c} \end{aligned}\right.$		
	$\begin{aligned} & \stackrel{\mu}{2} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$		
	즌	 	
	$\stackrel{\cong}{\partial}$	呺只品品品品品品品品品第	
	$\frac{\grave{2}}{\Sigma}$		

NOW... the RCA UMIFIED test position
 Provides the best in television-servicing facilities

The new RCA 4-position deluxe rack will add beauty and convenience to your test set-up. You'll like the way this serviceengineered rack increases your operating efficiency . . . you'll be surprised to see how precious bench space is conserved. Furthermore, you'll be amazed how easy it is to get one of these handsome 4-position racks from your RCA Test Equipment Distributor. The rack accommodates four test instruments as illustrated.

Television Calibrator. Variable frequency oscillator provides fundamental output over entire range, with crystal-controlled check points at $2.5-\mathrm{Mc}$ and $0.25-\mathrm{Mc}$ intervals. Provides $4.5-\mathrm{Mc}$ crystal-oscillator signal for intercarrier alignment and for dual markers at TV carrier frequencies. The WR-39C is a heterodyne frequency meter, a crystal standard (with 3 crystals supplied), a bar-pattern generator, and a TV re-broadcast transmitter.

WR-59
Television Sweep Generator Covers all TV channels on preser fixed positions. Continuous tuning range from 300 Kc to 50 Mc covers video and intermediate frequencies. High-precision vibrating capacitor provides up to $12-\mathrm{Mc}$ maximum sweep width, flat within $\pm 1 \mathrm{db}$, with good linearity. Has dual-piston attenuator for varying output voltage from 0.1 volt to 5 microvolis. Includes blanking for zeroreference line on 'scope.

Television Oscilloscope. Uses 7" CR tube and direct-coupled, 3 stage, push-pull, vertical and horizontal amplifiers. Dual controls for "coarse" and "fine" adjustments. Frequency-compensated and voltage-calibrated attenuators on both amplifiers. Response flat within -2 db from dc to 500 Kc , within -6 db at 1 Mc . Vertical deflection sensitivity, 10.6 rms millivolts per inch. Magnetic shield on CR tube reduces effects of external fields.

Master VoltOhmyst*: Has big $81 / 2^{\prime \prime}$ easy-to-read meter. Measures dc voltages accurately in high-impedance circuits, even with ac present. It also reads rms values of sine waves and the peak-to-peak values of complex waves or recurrent pulses, even in the presence of dc. Measures resistance from 0.1 ohm to 1000 megohms, current from 10 microamperes to 15 amperes. Features $\pm 1 \%$ tolerance multiplier and shunt resistors, a meter movement having an accuracy within $\pm 2 \%$ and a tracking error of only $\pm 1 \%$ high input resistance, zero-center scale adjustment for discriminator alignment, dc polarity-reversing switch, and sturdy metal case for good rf shielding.

For complete detalls, see your RCA Test Equipment Distributor, or write Commercial Engineering, Section EX67, Harrison, New Jersey, for descriptive folders on the individual instruments.

Reg. U.S. Pat. Off

	范	$\begin{array}{llll}1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1\end{array}$		
			\％＇1：＇：＇1：＇：	
	ㅈㅡㅡㄹ			
	$\frac{\cong}{0}$			
	$\frac{\omega}{2}$			

	$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \stackrel{y}{5} \\ & \hline \end{aligned}$			
	$\begin{aligned} & \text { 号 } \\ & \approx \\ & \end{aligned}$		 	
	ㅈㅡㅡㄴ		 	
	$\stackrel{\cong}{\partial}$	受号员品品品		
	$\sum_{\dot{x}}^{\check{c}}$	¢으ํํํํㅇ		

MERIT

tv full-line* components give universal coverage

"COSINE' YOKES
Complete with leads \& network.

NEW IMPROVED HVO-7 FOR GREATER COVERAGE
Tapped AFC Winding. Covers Admiral Chassis 21-24 Series.

MWC-1 UNIVERSAL WIDTH COIL
(3-27 MH) A Tapped Secondary for AGC or AFC.

IF-RF COILS
Only complete line of TV replacements.

KIT NO. 1000
MATCHED SET FOR SPEEDY
PROFITABLE SERVICE!

MERIT. .. HQ for PRACTICAL TV Service Aids

- MERIT'S 1952 Catalog No. 5211 with new MERIT IF-RF Coils.
Other MERIT service aids:
- TV Repl Guide No. 404, 3500 models \& chassis.
- Cross Ref Data, IF-RF Coils, Form No. 14. See your Jobber or write: Merit Coil and Transformer Corp., 4425 Clark Street, Chicago 40.

These three MERIT extras help you:

- Exclusive: Tapemarked with specs and hook-up data. Full technical data packed
with every item.
Listed in Howard Sams Photofacts.
*Merit is meeting the TV improvement, replacement and conversion demand with a line as complete as our advance information warrants!

A description of circuits and equipment for Ulira High Frequency reception.

by MERLE E. CHANEY

Standard Coil Products Company has announced an 82 channel turret type tuner for use in television receivers. It is designed to tune all the present VHF channels and the 70 UHF channels. This tuner is shown in Figure 1.

The tuner consists of a UHF section containing a preselector, mixer and oscillator, and a VHF section consisting of a cascode tuner very similar to the Standard Coil 12 channel VHF tuner. The UHF section employs 9 positions for its operation while the VHF section has 15 positions (12 for normal VHF reception and 3 additional positions used for UHF reception).

Electrically, while operating on a UHF channel, the tuner employs a double conversion system for providing signals to the video IF circuits of the receiver. For purposes of tuning, the UHF band is divided into 8 groups. (See Figure 2.) The UHF section of the tuner is designed with broad bandpass characteristics to tune in all the channels in any one group. This is illustrated in the table below.

$$
\begin{aligned}
& \text { UHF SWITCH POSITION UHF CHANNELS } \\
& \text { 1. } 14 \text { through } 19 \\
& \text { 2. } 20 \text { through } 29 \\
& \text { 3. } 30 \text { through } 39 \\
& \text { 4. } 40 \text { through } 49 \\
& \text { 5. } 50 \text { through } 59 \\
& \text { 6. } 60 \text { through } 69 \\
& 8 . \\
& 70 \text { through } 79 \\
& 80 \text { through } 83
\end{aligned}
$$

When the UHF switch is in position 1, UHF channels 14 through 19 are tuned. In position 2, UHF channels 20 through 29 are tuned, etc. Note that the

Figure 1. Standard Coil 82 Channel Turret Tuner.
position of the UHF switch designates the tens digit of the UHF channel group. This fact is utilized in the decimal type indexing system for indicating any desired UHF channel. This feature will be described later in more detail.

In zero position of the UHF switch, the UHF section of the tuner is made inoperative and the VHF antenna is automatically switched to the input of the VHF section. In this position, VHF signals are received as with the usual VHF tuner. In positions 1 through 8 of the UHF switch, the output of the UHF section is connected to the input of the VHF section. The output of the UHF section consists of all the signals within the selected channel group. However, by frequency conversion, an incoming signal is converted to a frequency that can be accepted by the VHF tuner section. The VHF tuner section then acts as a variable IF. It is tuned to the output signal of the UHF circuit and again frequency conversion provides the desired frequency to the receivers' video IF circuits.

The converted signal from the UHF section is designed to fall within frequency limits described as channels 7 to 13 on the cascode tuner section plus three additional channels spaced 6 megacycles apart. The reason for the three additional VHF positions is to provide 10 positions on the VHF tuner section spaced 6 mc apart. In this manner, the output of the UHF converter section falls within the frequency spectrum of 10 consecutive VHF channels, as shown in Figure 2. This fact is utilized to accomplish the decimal system of tuning employed in the 82 channel tuner.

Through the use of the dials and shutter mechanism shown in Figure 3, any channel to which this is set will be indicated through an opening in the dial assembly. The tens digits dial (Figure 3C) is stamped with the channel group numbers around its face. This dial is secured to the large shaft that operates the UHF turret section. A circular stationary mask (Figure 3A), mounted in front of this dial, has a small window opening to permit only one tens digit to be visible at a time. Between this mask and the tens digits dial, is the units digits dial (Figure 3B). This units digits dial has digits 0 through 9 around its face, with a small window opening adjacent to each number. When any units digit is visible, the opening in the dial also allows the tens digit to be visible. Thus a two-digit number is always visible in UHF position. For example, if channel 53 is tuned, the tens digits dial is turned until 5 is visible through the window opening. The units digits dial is turned until 3 is visible through the mask window opening. To complete the tuning process the fine tuning knob is rotated for best picture and sound.

NEW CENTRALAB SERVICE TOOL

eliminates "cut and try" methods of installing H -pads

New TV Aftenuator Switch saves you testing timeassures no overloading of sets

Here's a new service tool that will save you time determining the amount of attenuation required to get the best TV reception in multi-station areas.

Four different H-Pads are mounted permanently in the attractive metal case of Centralab's Attenuation Switch. You simply hook up the 300 ohm antenna twin-lead . . . and turn the dial to the H-Pad that gives you the proper amount of attenuation. Then, unhook the leads and install the proper H-Pad. Takes only a few minutes for the whole installation.

Then too, for your customers who want a permanent installation, this switch is ideal.

Your Centralab distributor will be glad to give you full specifications on this handy, time-saving service tool. See him today.

Centralab

A Division of GLOBE-UNION INC.
942 E. Keefe Avenue - Milwaukee 1, Wisconsin

Figure 2. Block Diagram Illustrating a Scheme for Channel Selection.

The units digits dial also has a row of numbers on its face corresponding to VHF channels. Because of a shutter mechanism, these VHF channel numbers are not visible in UHF position. When the tens digits dial is rotated to position UHF "OFF" the shutter mechanism actuates and covers up the UHF channel numbers. Thus, only the VHF channel numbers are visible.

Figure 3. A Method of Tuning Dial Indexing to Provide VHF or UHF Channel Selection.

In Figure 4, the 82 channel turret tuner is shown mounted for display purposes with the tuning knobs and dial mechanism in place.

To summarize, a possible scheme of operation for this 82 channel tuner in the UHF region is shown in the block diagram of Figure 5. Both a VHF and UHF antenna are connected to the UHF-VHF antenna switch in the tuner unit. For the purpose of illustration assume that channel 50 and channel 57 television signals are picked up by the UHF antenna. For a channel 50 signal, the picture and sound carriers are 687.25 mc and 691.75 mc respectively. The picture and sound carriers for channel 57 are 729.25 and 733.75 mc respectively. With the antenna switch in the position for UHF reception, the two signals are then fed from the UHF antenna through the antenna switch to a high pass filter. This filter is for the purpose of blocking signals below 470 mc , while UHF signals are permitted to pass through unattenuated. From the high pass filter, the two UHF signals are fed to a preselector. The preselector is designed for broad bandpass characteristics so that both signals are accepted by this circuit. Feeding channels 50 and 57 signals to the mixer results in two signals of lower frequency due to the heterodyning of the UHF oscillator signal with the incoming signals. With the UHF oscillator set at 530 mc (tens digits dial set to 5), when receiving channels 50 and 57 , the resultant beat frequencies in the mixer output, as noted in Figure 5, are 157.25 mc and 161.75 mc for a channel 50 signal, and 199.25 mc and 203.75 mc for a channel 57 signal. Through a provision in the UHF-VHF switch, the mixer output frequencies are switched directly to the input of the cascode tuner or variable IF.

For the clearest picture of campaign progress...

Rauland picture tues

Man, what a year for TV-and TV service profits! The richest menu of regular attractions ever offered to viewers... PLUS the party conventions, the campaign, the elections and inauguration! When viewers need replacement picture tubes, they'll want them fast and good.
So remember that Rauland alone
offers these replacement profit advantages:

- The most complete line of replacement picture tubes . . . a far better supplement for your regular tube line than a second line of receiver tubes.
- The faster, surer installation adjustment made possible by the patented Indicator Ton Trap.
- The dependable, uniform extra quality that so many smart service men depend on for assured customer satisfaction,

Remember, Rauland research has developed more "firsts" in picture tube progress since the war than any other maker. And this leadership pays off . . . in your customers' satisfaction.

THE RAULAND CORPORATION

Figure 4. Tuner Mounted to Show Control Knobs in place.

The operation of the variable IF or cascode tuner section may be easily understood from the fact that it functions in the same manner to accept the UHF mixer output signals as when receiving VHF signals. The relatively sharp tuning of the variable IF section (6 mc bandwidth) permits it to differentiate between signals of different frequencies. Thus, in tuning the channel 57 signal, the variable IF is turned to a position to receive 199.25 mc and 203.75 mc , or channel 11 position. Because of the shutter mechanism on the dials, the VHF channel number is covered while at the same time making visible a new number (number 7) representing the units digit designation of channel 57. (See Figure 3B.) Through frequency conversion in the variable IF section, the correct frequencies are presented to the receiver IF strip (41.25 mc sound carrier and 45.75 mc picture carrier).

The variable IF section functions in the same manner to receive the channel 50 signal. Note that the UHF mixer output for the channel 50 signal contains frequencies of 157.25 mc and 161.75 mc representing picture and sound carriers that do not fall on any of the regular VHF channels. For this reason, three channel positions were added to the cascode tuner section to accommodate UHF mixer outputs whose frequencies do not fall on a regular VHF channel. The added channel positions of the cascode tuner section are spaced 6 mc apart down from channel 7. The UHF mixer output, therefore, falls upon a channel position 18 mc below channel 7 or at 156 to 162 mc . Again observing the dial in Figure 3 B , note that the third position below channel 7 is numbered " 0 " for UHF designations, while there is no equivalent VHF channel number. The variable IF section, by frequency conversion, then provides a 41 mc IF output which is fed to the receiver IF strip.

For operation on VHF channels, the antenna switch connects the VHF antenna to the input of the cascode tuner. The UHF circuits are disabled since they are not required for VHF operation.

The Standard Coil 82 channel tuner exhibits several unique features. Of particular importance is the fact that the tuner is a complete unit designed to form an integral part of a television receiver. Thus, complete control over VHF or UHF channel selection is provided by the television receiver's front panel control knobs. Of equal interest is the use of turret type tuning. This tuning method lends itself to the decimal system for indicating the desired channels.

We wish to acknowledge the cooperation of the Standard Coil Products Co., Inc., in supplying us with data which was used in this presentation.

Figure 5. Block Diagram Showing Function of Tuner Circuits for Two Available UHF Signals.

DISTRIBUTORS: You can still join this great band of JENSEN Needie Distributors. Get the full profitsplus story from us at the show . . . or write us direct NOW!

The Value of

Waveform Analysis

by W. WILLIAM HENSLER and GLEN E. SLUTZ

PART III

In order to fully appreciate the oscilloscope the service technician would do well to take every opportunity to use it in his work. An understanding of the waveforms which might be expected at various points in the average television receiver, together with a working kinship with his scope, will give the service technician added skill in diagnosing service problems. This is the third in a series of articles which have been written for the purpose of helping the serviceman toward a realization of the above goal. Parts I and II are not required for an understanding of the following material; however, if reference to them is desired, they can be found in the last two issues of the PF INDEX. (Part I - - Jan-uary-February issue, No. 30; Part II - - March-April issue, No. 31.)

The oscilloscope is very useful as a signal tracer in the picture circuits of a television receiver. This is especially true if the signal being traced is the standard television signal. Due to the fact that the complex nature of this signal cannot be adequately depicted by a vacuum tube voltmeter or similar output indicator, the oscilloscope is the preferred equipment for this purpose.

With radio receivers a popular initial step in signal tracing procedure is the "finger" test whereby a set is figuratively split in two. By placing a finger on the volume control tap, the technician is able to tell by the hum in the speaker, or the absence of hum, whether the cause of the set being dead lies in the RF and IF sections or whether it is somewhere in the audio amplifiers. A like test is applicable to the picture circuits in television receivers. By checking the waveform at the video detector load (point W6 in

Figure 2. Waveform at Video Detector Load (W6); Receiver Operating Normally.

Figure 1) and obtaining a pattern similar to that shown in Figure 2, the technician may with confidence concentrate his investigation in the stages following the detector. If, however, he finds considerable distortion in this waveform, or if it is absent entirely, he might better look to the tuner and IF strip for the trouble. In the following presentation, the latter task is treated in some detail along lines which call for the use of the oscilloscope. Naturally, the problem of alignment comes to mind immediately as demanding the oscilloscope in one of its major roles. But since this field is too large for adequate treatment here, alignment procedure will be set aside in favor of less recognized oscilloscope applications.

Because even a wide-band oscilloscope will not respond to frequencies much over 2 to 3 megacycles, it is not possible to observe signals in the RF and IF sections of a television receiver directly

Figure 1. Typical Video IF Amplifier Section with Video Detector. Method of AGC Clamping is Shown.

THE INSTRUMENT THAT DEMANDS FROM THE TUBE UNDER TEST!

-IPIRIECHISTICNV- SERIES 10-12 Electronamic 'Tube PERFORMANCE Tester

with 12 element free-point Master Lever Selector System

MODEL 10-12-P (illustrated) in sloping, portable hardwood case with tool comparment and hinged removable cover Sizes $133 / 4^{\prime \prime \prime} \times 171 / 4^{\prime \prime} \times 63 / 4^{\prime \prime} \quad \$ 101.75$ MODEL 10-12-C (Counter Type) $\$ 106.50$ MODEL 10-12-PM (Panel Mount) \$106.50

* Facilities to 12 element prongs
* Filament voltages from $3 / 4$ to 117 V .
* Tests Noval 9 pins; 5 and 7 pin acorns: double-capped H.F. amplifiers: low power tronsmitting tubes, etc., regardless of filament or any other element pin positions.
* Isolates each tube element regardless of multiple pin positions.
* Dual Hi-Lo short check sensitivity for special purpose tube selection.

To test modern tubes for only one characteristic will not necessarily reveal overall Performance Capabilities. Modern tube circuits look for more than just mutual conductance or other single factor.

It has been conclusively proven that even though a tube may work well in one circuit, it might fail to work in another-simply because different circuits demand different relative performance characteristics, such as amplification factor, plate resistance, power output, emissive capability, etc

In the PRECISION "ELECTRONAMIC" Circuit, the tube under test is made to perform under appropriately phased and selected individual element potentials, encompassing a wide range of plate family characteristic curves. This COMPLETE PATH OF OPERATION is electronically integrated by the indicating meter circuit in the positive performance terms of Replace-Weak-Good.

The efficiency of this "Electronamic" test results from encompassing several fundamental tube characteristics, NOT JUST ONE. Accordingly, when a tube passes this demanding OVERALL PERFORMANCE test, it can be relied upon, to a very high degree, to work satisfactorily.

* Simplified, High Speed, 12 element Short-Check system, uses consecutive push-button switching.
* Battery Tests under dynamic load conditions.
* $41 / 2^{\prime \prime}$ Full Vision Meter.
* Built-in Dual-Window, high speed geared roller chart
* Free Replacement Roll Charts \& sup plementary tube test data service.

See the "Precision" Master "Electronamic" Tube Testers at leading Radio Equipment at leading Radio Equipment 1952 "Precision" catalog.

Figure 3. Detector Probe for Use with Oscilloscope.
with a scope. However, most oscilloscope manufacturers have made available an attachment called a demodulator or detector probe; and through the use of this piece of equipment, in conjunction with the oscilloscope, the modulation intelligence of the high frequency signal may be viewed and studied.

The schematic of a typical detector probe is shown in Figure 3. A 1 N 34 germanium crystal functions as the detector. The 10 K resistor serves as its load and the 220 ohm resistor with the pair of .0015 mfd . capacitors forms a bypass filter for RF. Reversing the crystal polarity from the way it is shown in the schematic does nothing more than invert the waveform on the oscilloscopic screen. This is not a complex circuit, and the ease with which a probe such as this might be assembled and constructed in the shop depends principally upon the choice for its physical form. Features to be considered in making this choice are compactness and facility of handling.

In a discussion about the use of this probe, two aspects of its operation should be mentioned before going further. First of all, loading effects may be experienced in the receiver circuits to which the probe is connected. These may take the form of signal attenuation or in some cases detuning may occur. Secondly, the high frequency response of the detector probe does not equal that of the conventional video detector stage in a television receiver, and as a consequence the shaping of horizontal scanning information is poor. Yet despite these limiting factors, profitable use can be made of the probe.

For example, a check was made to determine the amplifying characteristics of the video IF strip shown in Figure 1. The waveforms obtained with the probe at the grids of the successive video IF amplifiers are pictured in Figures 4 through 7 inclusive. All of these waveforms were photographed with the oscilloscope sweep set at 30 cps and with the vertical gain of the scope held constant. A waveform was observed also at the input to the video de-

Figure 4. Waveform at Wl; Receiver Operating Normally with AGC Clamped.

Figure 5. Waveform at W2; Receiver Operating Normally with AGC Clamped.
tector (point W5), but it is not pictured because its high amplitude took it off the scope screen. The receiver under test was operating normally, with the exception that the AGC line was clamped as indicated in Figure 1. This was done with a battery of dry cells in order that a true indication of the amplification of each stage could be obtained. If clamping were not done, the aforementioned loading effect of the probe would have attenuated the signal. This would have caused reduction of the AGC voltage fed back to the first stages, increased the gain of those stages, and as a result would have produced an exaggerated rise in signal strength at the probe. The amount of clamping voltage depends upon the strength of the signal being received. The usual method is to measure the voltage on the AGC line while the signal is being received and to clamp the line at that voltage. Note that the waveforms of Figures 4 through 7 show very little amplification. This is a normal condition when appreciable AGC voltage is applied. A stage need not be suspected of being defective unless a definite loss or overload condition is revealed.

This introduces the matter of the significance and value of this check. Quite often it happens that a dead video IF stage does not completely kill the signal in a television receiver. There may be sufficient capacity in the tube and socket that, at the high frequencies involved, considerable signal gets fed on through the inoperative stage. Except for poor sensitivity, the set operates almost normally. Faced with such a situation, the technician might very well perform the check described above. A definite loss of signal strength would be indicated across the dead stage.

Still another possible trouble might be caused by one of the IF stages overloading on strong signals. Frequently this condition manifests itself in a loss of vertical sync. In extreme cases, a white blankout

Figure 6. Waveform at W3; Receiver Operating Normally with AGC Clamped.

JFD JETENNA, the conical with the jet-action assembly, has absolutely no separate parts to put together-the slowest part is opening the carton! Just swing out the elements, tighten two " T " bolts and two wing nuts and it's assembled! Front elements automatically fan out as they are swung forward. Reflector elements are spring-loaded to lock into position for tightening. $1^{\prime \prime}$ square seamless crossarm, seamless elements and element brackets are of high tensile strength aluminum - unbreakable head is of all weather, high dielectric material. Solid, unbreakable "vibration dampers" do not absorb moisture or swell and will not rot out. SEE YOUR JOBBER OR WRITE FOR FURTHER INFORMATION ABOUT THIS REVOLUTIONARY NEW ANTENNA.

JFD MFG. CO., BROOKLYN 4, N.Y. BENSONHURST 6-9200 world's largest manufacturer of TV antennas and uccessories

[^0]
In the Interest of . . . Quicker Servicing

by GLEN E. SLUTZ

Tracing the Source of Hum

Hum trouble in a television receiver can usually be identified either by the characteristic horizontal pulling which occurs in the picture or, if the hum content is great enough, by the loss of vertical sync and the bright and dark horizontal bars which appear in the picture. If the hum frequency is 120 cycles, these bars are four in number, two light and two dark; if the hum is 60 cycles, on the other hand, only two broad bars appear.

120 cycle hum is ordinarily a result of filter capacitor failure. Bridging the two or three capacitors in the power supply filter with units which are known to be good will generally lead to the source of trouble. If an oscilloscope is used to test for hum voltage on the $B+$ lines, it should be kept in mind that a certain amount of 120 cycle hum is normal and that a small 60 cycle ripple may exist in the lines, due to the operation of the vertical sweep circuits. In order to interpret the scope pattern correctly, therefore, it may be advisable for the technician to familiarize himself with normal conditions by examining the B+ circuits of a properly operating receiver.

Figure 1. Video Signal with 60 Cycle Hum.
Figure 1 shows the video signal present at the modulated element of a picture tube when an appreciable amount of 60 cycle hum is accompanying the signal. This type of hum is most frequently the result of coupling between the filament supply and the signal circuits in the receiver.

The coupling, in most cases, comes about through filament-to-cathode leakage in an RF, video IF, or video amplifier tube. It may even be due to leakage between heater and cathode in the picture tube itself. Rather than test all the tubes one at a time by substitution, a convenient means of locating the bad tube is by the use of an oscilloscope.

Connect the ground terminal of the scope lead to the common $B-$, which in most cases is the chassis of the receiver. Set the oscilloscope for a 30 cycle horizontal sweep and connect the vertical input to the cathodes of each of the suspected tubes in turn. (See

Figure 2. Setup for Tracing Hum with Oscilloscope.
Figure 2.) The cathode which registers the largest amplitude of 60 cycle voltage will usually be that of the defective tube. This test applies only to tubes using cathode bias.

There are instances where the 60 cycle hum enters a stage through the AGC line. An oscilloscope may be used to check this possibility in a manner similar to that described above. If 60 cycle hum is found on the AGC line, the tubes associated with the development of the AGC voltage should be tested.

Checking the Ringing Coil
in a Horizontal Multivibrator
A frequently encountered control system for horizontal sweep circuits is pictured in Figure 3. Variations of this basic circuit are found in many television receivers. The standard cathode coupled multivibrator has been altered by the addition of a resonant tank circuit in series with the plate load of the first triode section (V1). The coil (L1) in this tank circuit has an adjustable slug, which is brought out as a service control, and in some instances a variable trimmer capacitor ($C 4$) is also included, as shown in Figure 3. These controls are referred to by various names, such as horizontal frequency control, horizontal stabilizing control, or horizontal lock adjustment. The coil is often called a "ringing coil." This expression probably arose out of the analogical relationship betwen the action of the tank circuit and the ringing of a bell. A bell, when struck by a hammer, begins to vibrate or oscillate at a certain pitch

Did You Get Your Copy of the NEW
 BUSS television FUSE LIST? Itifree!

The new BUSS Television Fuse List gives complete up-to-the minute information on all fuses used in today's T-V sets. Plus the latest Auto Radio Fuse List.

Shows what fuse to use - how fuse is mounted - and circuit fuse protects.
Chart can be hung on wall for ready reference - or - carried in pocket or tool kit when making service calls.
On back of chart are illustrations and dimensions of all fuses specified in listings, to be of added assistance in selecting proper fuse to use.

This complete fuse list helps Service or Counter men know what fuses are needed to service any T-V set - and helps storekeeper know what fuses he should stock.

IF You Can Use a Copy ... Write Us Today

 BUSSMANN MFG. CO.University af Jefferson Sp. Louis 7, Mo.
Division of McGraw Electric Company

9\% Nunt Gooch
Budnen

Figure 3. Horizontal Multivibrator with Ringing Coil. determined by its physical construction; the ringing coil is set into resonant oscillation by the plate current which flows through it, and this oscillation is maintained by the current change produced each time the triode (V1) cuts off.

The voltage which is developed across the tank circuit is in the form of a sine wave having a frequency governed by the setting of the coil slug and the trimmer. This voltage adds to the multivibrator square wave pattern and produces at the plate of V1 the waveform pictured in Figure 4. The control grid of the second triode (V2) receives this composite wave through coupling capacitor C2. Figure 5 shows the waveform of voltage as it appears on the control grid of V2. The cutoff voltage of V2 has been indicated on the figure as a dashed line.

Figure 4. Waveform on Plate of V1.

Figure 5. Waveform on Grid of V2.

Figure 6. Waveform on Grid of V2 with Ringing Coil Shorted out.

In order to show the ringing coil's stabilizing effect, it was shorted out, and the circuit was permitted to operate as a standard multivibrator. Figure 6 is a picture of the waveform on the grid of V2 with the ringing coil shorted out. The cutoff level is indicated again by the dashed line. Compare Figures 5 and 6 . It can be seen that the grid voltage curve rises toward the cutoff level much more sharply and positively in Figure 5 than in Figure 6. This signifies that when the ringing coil is used, conduction of V2 will take place with precision timing and the triode will be less sensitive to possible noise pulse trigger ing.

The proper adjustment of this type of horizontal sweep generator calls for setting the resonant tank circuit so that the picture "locks-in" over all or most of the horizontal hold control range. The natural resonant frequency of the ringing coil with its capacitor will be very nearly 15,750 cycles per second, which is the established horizontal scanning frequency. Consequently, the range of frequency covered by the coil slug adjustment, and trimmer if one is used, extends between 12 and 17 kilocycles approximately.

Figure 7. Setup for Checking Ringing Coil.
In case of trouble in the horizontal sweep system, the resonant tank circuit may be checked quickly and efficiently by the use of the setup shown in Figure 7. An audio generator is coupled through a pair of isolating resistors to the ringing coil. A meter which operates as a vacuum tube voltmeter in the AC position is also connected across the ringing coil. Then the audio frequency is varied until a peak voltage is indicated on the meter. The frequency at which this occurs will be the natural resonant frequency of the circuit. This is due to the fact that a parallel LC circuit offers maximum impedance at the frequency to which it is resonant and less impedance at all other frequencies. Therefore a maximum voltage is developed only at the resonant frequency.

The resonant frequency at various settings of the slug and trimmer can be checked by the above method. If the range of frequencies is in the neighborhood of 12 to 17 kilocycles, the ringing coil and its associated capacitors may be considered as functioning properly. If, however, the resonant fre-

ANOTHER STANCOR "FIRST"

21 Top Servicemen from All Parts of the United States Will Tell Stancor What's Wanted at your Service Bench

The members of the Serviceman Advisory Board have been chosen from the best men in their locality. They have an average of $41 / 2$ years experience in TV servicing (except those in non-TV areas) and over 17 years of practical experience in electronics. Most of them are officers or active participants in local servicing organizations.
They know their business-and they know the serviceman's problems.
These men have been retained to help Stancor do a better job for you. They will work for you by
advising Stancor on your replacement transformer problems. As we produce new components and publish new literature, the Serviceman Advisory Board represents YOU in our planning.
When new Stancor transformers are offered, they incorporate the practical suggestions of men like yourself, who are actively engaged in the servicing and maintenance of TV and radio equipment.
Here is another reason for you to "Specify Stancor" for the best in transformers.

STANDARD TRANSFORMER CORPORATION

by MERLE E. CHANEY

MAGNAVOX CT-331

The Magnavox CT-331 has an unusual system of video detection and 1st sound IF amplification. These two functions are combined in a single pentode tube type 6AU6.

A partial schematic illustrating this portion of the receiver is shown in Figure 1. Note that the video detector and sound IF tube is unbiased and that this stage and the 3 rd video IF stage are connected as a voltage divider network between $\mathrm{B}+$ and ground. This provides the desired level of $B+$ to the two stages for correct operation.

The video IF signal at the 3rd video IF output is transformer-coupled to the grid of V2. With no bias applied to V2, the positive swings of the IF signal result in grid current flow, while the negative swings of the signal cut off grid current flow. The action then of the cathode and grid of V2 is identical to that of a diode. As far as video detection is concerned, the plate and screen connections could be removed and the detection action of the grid and cathode would not be affected.

A unidirectional flow of current is obtained in the grid circuit due to signal rectification and this represents the modulation on the IF carrier signal. The rectified signal is developed across the 5600Ω load resistor, R7. C5, a 10 mmf . capacitor, is the RF filter for eliminating IF carrier components from the video signal. The inductor L4 and the parallel combination of L5, R6 and C9 form a series peaking network for maintaining high frequency response. A shunt peaking inductor, L6, extends the frequency response by maintaining constant load conditions. The video signal appearing across the diode load is

Figure 2. Photograph of Adjustable Horizontal Output Transformer and Centering Control.
fed to V3, a 6CB6 tube, for the required amplification before application to the picture tube.

Intercarrier sound is employed in the Magnavox CT-331 chassis. An intercarrier sound IF is obtained by the beating together of the video and sound IF carriers at a detector stage. Since the grid and cathode of V2 operate as a video detector, the applied carriers to the grid will beat forming a new IF carrier frequency, 4.5 megacycles. This 4.5 megacycle signal is amplified by V2. Note that the plate load for V2 is a 4.5 megacycle sound takeoff transformer (L3). At resonance, or 4.5 megacycles, maximum output of the tube is obtained. At other frequencies the plate load is sharply reduced which

Figure 1. Combined Video and First Sound IF Stage.

means that only a 4.5 megacycle signal can appear in the output of V2. The 4.5 megacycle sound IF at the secondary of L3 is coupled by a 56 mmf . capacitor to the sound stages for limiting, detection, and audio amplification.

The features of these circuits are the combination of video detection and sound IF amplification in a single tube, and the fact that the sound IF signal is taken off at a low level. Thus, any overload conditions which might occur in the video amplifier will not produce "sync buzz" in the sound since the signal is removed ahead of this stage.

MOTOROLA CHASSIS TS-325, TS-326

Horizontal Size and Centering

One of the features of the Motorola television receiver Chassis TS-325 and TS-326 is the unique method for horizontal size adjustment. This adjustment is made by controlling the amount of air gap in a leg of the horizontal output transformer. This varies the transformer inductance which, in turn, varies the amount of voltage supplied to the horizontal deflection yoke coils.

To facilitate this adjustment, a shaft is screwed to an extension on a leg of the transformer and extended to the rear apron of the chassis. (See Figure 2.) As the shaft is turned, the screw threads on the end of the shaft pull the core apart, increasing the air gap and causing a decrease in picture width.

This arrangement has a tendency to lessen the chance of horizontal foldover. Since the flyback time is primarily a function of the natural resonant frequency of the horizontal circuit, the reduction of the total inductance in the circuit will make for faster retrace time. Thus, by adjusting the width control to
obtain the proper width, the retrace time is made as short as possible, thereby lessening any tendency to foldover.

Horizontal centering is provided by a 50Ω control mounted on the supporting frame of the horizontal output transformer. (See Figure 2.) A shaft extends from the control, through the rear of the chassis to facilitate adjustment.

Area Selector Switch

The adjustment of the gain of the TS-325 and TS-326 chassis for operation under a wide variety of signal conditions is accomplished by means of a 3 position selector switch located on the back of the chassis. The position settings of the switch are for "local, suburban and fringe" areas; or strong, medium and weak signals. As the switch is turned progressively toward "suburban" and "fringe" positions, the AGC voltage is decreased, providing increased gain.

A partial schematic of this switch and associated circuits is shown in Figure 3. In "local" position, the AGC voltage developed is unaffected by the switch setting. In "suburban" position, the AGC is decreased by applying a voltage divider network to the AGC line. At the same time, in these two positions, R3, the one megohm video amplifier grid resistor is connected to ground for improved noise limiting action.

For best operation of the receiver, the "area selector switch" should be set according to the strength of the signal normally received. An incorrect setting of this switch may result in unstable receiver operation.

* * *

Figure 3. Partial Schematic Showing Area Selector Switch.

$$
\begin{aligned}
& \text { HOW TO MARE } \\
& \text { ALL YOUR CARTRIDGE } \\
& \text { REPLACEMENTS } \\
& \text { EFFECTVELY and } \\
& \text { INEXPENSIVELY! }
\end{aligned}
$$

Also available as ceramic cartridge (same price)amended commended in areas where
heat and humidity make use of conventional crystal cartridges impractical.

This "Dual Voltage" cartridge is an excellent allararound replacemont for old-style 78 r.p.m. carridges. It guarantees improved performance in many cases. A unique "Slip-On" condenser barness provides choice of output voltage- 1.5 with condenser hareness installed and 3.25 without condenser. For fine quality at low cost your best bet is the Model W42BH at only $\$ 4.95$ list.

This "Vertical Drive" "all-purpose" cartridge provides superlative reproduction for all types of records. Low tracking pressure (only 6 grams) and high needle compliance guarantee faithful tracking and longer record life. Uses exclusive Shore "Unipoint" needle, scientifically designed for maximum performance and long life.
5. This "Vertical Drive" "turnover-type" cartridge provides extended frequency response (50 to 10,000 c.p.s.) at extremely low needle point pressure-only 8 grams. One of the most popular, widely used cartridges in original equipment. Highly recommended as replacement in phonegraphs equipped with turnover mechanism. Individual needles- one for fine-groove and the other for standard records-guarantee maximum results.
F. Offers all the advantages provided by the Model
6. W22AB, plus a long. life turnover mechanism. Furnishes replacement of old, worn-out turnover mechanisms as well as cartridges. Also am excellent replacement for converting all-purpose phonographs into turnover type.

W 26 B

W 22 AB

W 22 AB-T

for 3 speed changers

The sane engineering design and quality controll which contribute to the consistent high quality of Shure cartridges for original equipmint also so into the manufacture of all Shire replacement cartridges. They are much more than mere. replacement units: they have response characteristics and output voltages which furnish equal, or (in most cases) sureriot performance to other makes.

SHURE BROTHERS, Inc.
225 W. HURON ST. - CHICAGO 10, ILLINOIS

MANUFACTURERS OF MICROPHONES
I AND ACOUSTIC DEVICES
Cable Address: SHUREMICRO

ALTEC LANSING

The Altec Lansing Model A-333-A Power Amplifier, shown in Figure 1, with the A-433-A Remote Amplifier, is an example of a commercially available high quality amplifier using a beam power push-pull output stage. This is a well engineered amplifier in which the high quality of design, component parts and workmanship, total up to good listening, with the added satisfaction of operating "high class" equipment.

Some of the published ratings are:
Frequency Response $20-20,000 \mathrm{cps} 0$ to -1 db Frequency Response $10-90,000 \mathrm{cps}+1$ to -2 db

Less than 0.5% harmonic distortion at 15 W . output Less than 2% harmonic distortion at 20 W . output Less than 5% harmonic distortion at 27 W . output

Figure 1. A-333-A Amplifier and A-433-A Preamplifier.

Figure 2. A-333-A Amplifier.

Assured Balanced

 Performance on Both Audio and Video Signals
When You Buy A RADIART YAGI tV ANTENNA

YAGl response curves for all channels available from your RADIART distributor . . . or wrife direct to us . . Specify Form F885.

You KNOW it covers the entire 6 Megacycle Band width in the specific channel for which it was designed

The perfect answer to the need for maximum signal pickup in "fringe" areas. Each YAGI is cut for a specific channel and may be used singly or doubly stacked. Nothing skimpy or shortcut in their manufacture either - each RADIART YAG! covers the full band width of its channel.

CHECK THESE FEATURES:

- Pre-assembled Fold-out Design for FAST Installations
- Over 8 db . Forward Gain
- Excellent Front-to-Back Ratio
- Narrow Beam Width That Develops High Signal-toNoise Ratio
- Low Standing Wave Ratio
- Sturdy Construction For Lasting and Dependable Performance.

the RADIART corporation Cleveland 13, OHIO

To meet these specifications, thorough engineering was necessary in designing a stable "high fidelity" amplifier employing beam power output tubes and negative feedback. An output transformer built to rigid specifications, and the correct amount of feedback, are used to take advantage of the high power sensitivity and capabilities of the 6L6G output tubes, while maintaining stability and low distortion.

The circuit of the A-333-A power amplifier (Figure 2) is fairly conventional and not complicated. Direct coupling of the 6SJ7 tube V5 to the grid of the 6 J 5 phase inverter tube (V6) is made possible by the high voltage on the cathode of the split load phase inverter. This type phase inverter has the advantages of simplicity, good balance and the elimination of at least one grid resistor and coupling capacitor. These characteristics far outweigh the disadvantage of the fact that the stage provides no gain.

By using a single OA3/VR75 voltage regulator tube (V10) in series with the screens of the 6L6G tubes (V7 \& V8) and the inherent good regulation of the choke input filter, sufficient voltage regulation is obtained for the class AB1 operation of the output stage, to hold distortion to a low level.

Terminals are provided for connecting a 4,8, or 16 ohm speaker. The feedback connection is made from the 16 ohm tap of the output transformer secondary through the 4700 ohm resistor (R31) to the cathode of the 6SJ7, V5.

Since this power amplifier was designed to be mounted in some convenient out of the way location and has no controls, provisions are made to plug in the A-433-A Remote Amplifier for operating re-
motely, via cables. A four contact socket provides for connection to the power switch on the volume control of the A-433-A Remote Amplifier, through a four wire cable, which also furnishes 6.3 volts AC for the tubes and pilot light in this preamplifier. A three-contact socket acts as the signal input connector as well as $\mathrm{B}+$ and ground connections to the preamplifier. Two six-foot cables are provided, but longer cables can be purchased.

The A-433-A Remote Amplifier (Figure 1) is well shielded and totally enclosed in a well ventilated metal cabinet. Resting on clear plastic feet, it can be placed in any location convenient for operation of the controls or, by remaving the feet, it can be mounted in a panel by means of the brackets provided.

Three inputs (see Figure 3): 1. PHONO; 2. RADIO; and 3. SPARE; are selected by a threeposition Channel Selector Switch. In the No. 1 (PHONO) position, one triode section of the 12AX7 tube (V1) operates as a preamplifier for a magnetic pickup, such as the General Electric or Pickering. When in this No. 1 position, a feedback network, from the .01 mfd . coupling capacitor C 2 , back to the grid of V1, provides three crossover frequencies controlled by the Record Crossover Switch. This compensation is necessary to take care of the variations in recording techniques and give the correct balance in bass and treble. Position 1 gives a crossover frequency of 250 cycles, Position 2800 cycles, and Position 3450 cycles. Position 1 is recommended for most imported and some of the older domestic recordings. Position 2 affords good results with some 78 rpm recordings. The equalization in Position 3 is suitable for $33-1 / 3 \mathrm{rpm}$ long playing records and, with the bass and treble controls in

Figure 3. A-433-A Preamplifier.

"It pays to replace Federal(a)
 The Original Miniature Selenium Rectifier!

IT PAYS YOUR CUSTOMERS in finest quality and dependable, long-life performance - proved by over $30,000,000$ units shipped to the field!

IT PAYS YOU, Mr. Serviceman, in customer satisfaction and goodwill-and a good profit on every job!

Here Are Other Specific Reasons Why "Federal" Is Your No. 1 Choice for Servicing the Big, Growing Radio-TV Replacement Market:

- Tests by receiver manufacturers show a life expectancy of well over RTMA guarantee.
- Over 250,000 tests prove superior immunity to shelf-aging.
- Federal's synthetic barrier layer stops change during long storage.
- Quality rigidly controlled. All units fully tested before release
- Units available either packed in the attractive Federal resale box or in bulk.
- Constant research keeps you up-to-date on rectifier progress.

SAVE TIME-SERVE YOURSELF from Federal'g new

America's Oldest and Largest Manufacturer of Selenium Rectifiers

Federal Telephone and Radio Corporation

Figure 4. Frequency Response of Input Channels.
normal position (indicated by dot on panel), it follows the AEC standard reproducing curve for all records. The settings of the Crossover Selector Switch and the treble and bass controls should be selected for most pleasing results when playing the many different recordings. Channels 2 and 3 are for radio tuner input, crystal phone pickup, high level microphone, tape recorder playback and such. The graphs in Figure 4 show the response of the channels with different control settings.

High frequency response is controlled by negative feedback from the cathode of the cathode follower output tube (V4), to the cathode circuit of V2; through the control R22, capacitor C15 and resistor R10. Feedback is also applied to the cathode of V2 by C11, R13 and R12, with the shunting effect of C14 and R15 reducing the feedback at frequencies above 2500 cycles.

Bass Control is obtained with the variable voltage divider network composed of control R20, resistors R18, R19 and R21 and capacitors C12 and C13. With the Bass Control (R 20) in maximum clockwise position, shunting C12 out of the circuit, the increased reactance of C13 to lower frequencies provides a boost in the signal appearing at the grid of V4. R20, in maximum counterclockwise position, allows the greater reactance of C 12 to low frequencies to add to the divider effect and reduce the signal at the grid of V4.

The cathode follower output permits the use of any length of connecting cable up to several hundred feet without any appreciable loss in high frequencies. The output lead is in the shielded three wire cable mentioned above, with the $\mathrm{B}+$ and ground leads.

The feedback circuits aid in holding the distortion to a low level in the A-433-A Remote Amplifier. As a result the intermodulation distortion of the combined preamplifier and power amplifier is held well within the 1% limit at 12 watts output.

Figure 5 illustrates the Altec Lansing 303-A AM-FM Tuner, which has the A-433-A preamplifier circuit built in, as is evident by the control layout. The four wire cable is not needed with the tuner, but by using the three wire cable and the A-333-A power amplifier an excellent, complete system is formed.

Figure 5. A-333-A Amplifier and 303-A Tuner.

Revolutionary VEE-D-X Super Power All-Channel 515

How the Q-TEE Functions

 By Sydney E. Warner, VEE-D-X Chief Engineer The Q-TEE is a new engineering approach to the all-channel TV antenna problem. Entirely new in design, this antenna incorporates a revolutionary feature, Electronic Channel Separators. The result is a unique antenna with better gain and directivity, higher front-to-back ratio, greater ease of assembly, increased mechanical strength and better appearance. Figure 1 shows the basic antenna assembly. On the low channels, elements (A-A) form a half-wave dipole, with elements ($B-B$) as the reflector. On the high channels, elements (C-C) form a full wave dipole with elements (E-E) as a half-wave director. Isolation filters (F-F) are antiresonant at the center of the high channels (195 mc) and isolate the low channel dipole (A-A) from the high channel dipole ($\mathrm{C}-\mathrm{C}$). The center matching and phasing section performs a dual function and accounts for the unique operational characteristics of this antenna. In the high channels elements (D-D) are "T" match sections which tap the dipole (C-C) and provide a 300 ohm termination at (L-L). The high channel antenna

Featuring Patented Built-In

VEE-D-X engineers have done it again! Here is the antenna that brings to allchannel reception the brilliant performance and clean design of the famous VEE-D.X single channel arrays, the " JC " and the "Long John". Patented Electronic Channel Separators plus amazing, newly engineered

Q-TEE FEATURES

- All-Channel Performance.
- Ideal for Primary, Near Fringe and Fringe Areas.
- Higher Average Gain Than Other Braadband Antennas.
- Smaller, Lighter, Better Looking.
- Higher Uniform Gain Over All Channels.
- Better Front-to-Back Ratio.
- Perfect 300 Ohm Match on Both High and Low Channels.
- Lower Standing Wave Ratio Than Any Other Broadband Antenna.
- More Easily Installed and Stacked.
- VEE-D-X Pre-assembled Construction.

VEEDX

all-channel power give the Q-TEE better gain and directivity, higher front-to-back ratio, increased mechanical strength and better appearance. Light in weight, the Q-TEE has rugged VEE-D-X pre-assembled construction. It is ideal for all multichannel requirements, easily adaptable for stacked arrays. The Q-TEE's pronounced directivity minimizes co-channel interference and results in less noise pickup. The Q-TEE has perfect 300 ohm match on all channels and a lower standing wave ratio than any other broadband antenna (maximum 1.15).
EASILY STACKED FOR FRINGE AREAS SINGLE BAY for primary areas.
2-STACK ARRAY for near fringe areas provides a gain increase of 40% or better.
4-STACK ARRAY for frinpe areas provides a gain increase of 100% or better.
Q-TEE is shipped preassembled and the elements fold open into position.
problems exist. On the high channels, the front-to-back ratio is as high as 8 db on the center of the band.
The directional characteristics of the antenna give less noise pickup since signals off the side and back are rejected to a much greater degree than they are in a conical type antenna. Conicals designed for good response on the high channels are poor on the lows, while those designed for the low channels are poor on the highs. Q-TEE does not have these limitations.

Fig. 2

is, therefore, a full wave antenna "T" matched, with a half-wave director. On the low channels the isolation filters (F-F) have a low impedance (inductive) since they operate below resonance. The high channel dipole ($\mathrm{C}-\mathrm{C}$) combined with element (D-D) form a double "T" match which taps dipole (A-A) to provide a 300 ohm termination at ($\mathrm{L}-\mathrm{L}$). The close proximity of (A-A), (C-C) and (D-D) provides a driven element with very low " Q ". This low " Q " in effect represents a driven element of a large electrical diameter and which in turn accounts for the broad (all-channel) frequency characteristics of the antenna.

Figures 2 and 3 show the horizontal directivity pattern of the Q-TEE. Note that the directivity is quite pronounced. The front-to-back ratio on the low channels will run from 6 db to as high as 12 db . This is an important consideration in This is an important consideration in -

Dollar and Sense Servicing

SQUEALS. Magnetic tape recordings of hungry baby pigs are being used in conjunction with Terralac, a new synthetic sow's milk, to lower the price of pork chops. With this electronic aid to chemical feeding, the piggies can be taken away from their mother just eight hours after birth, leaving mama free to raise some more. The little pigs would sleep for hours without eating unless awakened by a squeal from one of their own number, so an automatic timer turns on the squeal symphony at regular intervals. Up rush the piggies to the trough to drink their fill of Terralac and get fat quick.

For other unique uses of "Scotch" Sound Recording Tape, see the latest issue of " The Sounding Board", published by Minnesota Mining \& Manufacturing Co. Here, among other things, are tape techniques for teaching parakeets to talk. Another story tells how to change ones habits or memorize long passages by feeding endless-tape recordings to headphones worn while sleeping. An appliance dealer is using an endless loop of recorded tape to make a refrigerator give a talk to a prospect when someone opens its door.

They' re even trying out on tape the triumphant cackle of a hen that's just laid an egg, to see if it' ll encourage other hens to do likewise; incidentally, scientists have finally proved that the gleaming china eggs we used to put in nests for this purpose do no good at all.

Anyway, keep posted on tape recording, because it's really going to town. The triumphant announcement that television programs can be recorded on tape with full $4-\mathrm{mc}$ fidelity is expected soon.

BOOMTOWN. That's the nickname for the new desert settlement in Nevada where live the scientists and engineers that are setting off atom bombs for test purposes.

The first televised boom made a deep impression on those who watched, more for the portent of the event than for the clarity of the picture. Technical troubles developed that gave the effect of loss of sync on receivers, making people reach for the hold controls.

The bomb was dropped while the TV picture was jumping around and blanking out. As the 22 remaining seconds to the explosion were counted off, many a TV serviceman forgot his own troubles in thinking about those frantic TV engineers who had an entire nation waiting for them to find and fix the trouble.

TOUGH DECISION. To get to the base of the antenn tower atop Empire State, you go up a couple flights of stairs from the tourist observation gallery,
then straight up a steel ladder and through a small trapdoor out onto the very top of the building proper. Here, on a bare steel platform crowded with tower girders and huge copper coax runs, the wind is cold and loud and strong and you feel isolated from the Big City sprawled out below. You look up to bay after bay of antenna arrays and meditate on how they got up there. You hear about the engineer who has gone right to the top over 300 times for installation, maintenance and construction work--inside a protective cage for the first two antennas, but right on the outside of everything for the top three antennas--and decide that he can have it.

You meditate on what you would do if accidentally locked up there at night, with the nearest person far below and completely out of hearing. The trapdoor to the antenna is locked each night, after checking to see if anyone is up on the tower, but sometimes the top of the tower is in the clouds and a worker might be hidden from sight. There are two choices--stay all night on that cold, wind-swept steel platform, or climb two flights down on a steel ladder going out and down over the conical aluminum dome of the building to a landing having a telephone. Our choice would be to go down, but blindfolded :

GLASS MASTS. When metal shortages threatened, possibility of using glass masts for TV antennas was thoroughly investigated. The conclusion was that they would be too expensive, costing five times more than steel or aluminum masts of comparable strength. Fishermen who have bought glass casting rods can verify this.

WINDOW WASHING. Orchids to DuMont, Amer son and other manufacturers who are now making the safety glass removable from the front of the TV set for cleaning its inside surface and for cleaning the face of the picture tube.

SAYING GOODBYE. To inspire the kind of goodwill that gets you recommended to neighbors, do just as good a job of saying goodbye as you do in repairing a set.

One easy way is to compliment the customer on his choice of that particular receiver. Remember that the average customer feels a bit low when the set of his choice goes bad, especially if the bill for repairs is up into two figures. Assure him that such trouble could happen to any set at any time. Well-known makes of modern sets are all comparable in quality, so you can with honesty say that he has one of the finest sets made, and can look forward to many years of enjoyable viewing or listening with it. Try this friendly goodbye on your next 50 calls, and watch the results.

- Please turn to page $88 * *$

SERJICMAN'S DNRY ...by Ben Grim
 1 CAN GET A NEW PICTURE TUBE WHOLESALE - YOU WOULDN'T MIND JUST PLUGGING IT IN FOR ME WOULD YOU?

 Now! bulplat: hich-voltace CERANICS
 Complete Ratings for 1,000, 1,500 and 6,000 Volts at all Sprague distributors

Your Sprague distributor now has these tiny, high-voltage flat plate ceramics in all popular capacitance ranges needed in TV sets. They're absolute tops in dependability for replacing molded micas, tubular ceramics and paper tubulars. Small size, extra heavy moisture-resistant insulation coating, and conservative ratings for $85^{\circ} \mathrm{C}$. operation are just what the doctor ordered for TV and other tough jobs.

nother

SPRAGUE PRODUCTS COMPANY - 105 Marshall St., North Adams, Mass.

NEW UNIVERSAL HIGHVOLTAGE "DOORKNOB"' TV CAPACITORS
The new Sprague Type 20DK-T5 molded-case ceramic capacitor recently announced by the Sprague Products Company, North Adams, Mass. offers a simple solution to a vexing problem faced almost daily by television technicians.

This 500 mmf ., 20,000 volt "doorknob" filter has been designed as a truly universal replacement for the dozen or more similar types used as original manufacturer's parts but which differ only in the type of terminal used.

This new capacitor is equipped with female-threaded brass inserts on both faces of the plastic case and is furnished with a complete set of thread-in terminals. From these, the serviceman can select any two he needs to fit the particular receiver he is repairing.

Thus, only one Sprague universal capacitor instead of a dozen or more exact replacements need be carried in the kit to assure on-the-spot repairs.

The new Sprague Type 20DK-T5 ceramic unit has a moisture-resistant, non-flammable case of thermosetting plastic. Molded guard rings surrounding the terminals lengthen the creepage path and protect against troubles from conducting dust particles which may collect on capacitors after installation.

HANDY WALL CHART FOR SERVICE SHOPS

A giant wall chart for use in busy service shops is now being offered to servicemen by Sprague Products Company, North Adams, Mass. Beautifully lithographed in colors, size $22^{\prime \prime} \times 28^{\prime \prime}$ the chart includes handy service application data; details of common circuit troubles and their remedies; replacement data on electrolytics; formulas; transformer, resistor and capacitor color codes; schematic symbols, and other information. The Charts are available free from Sprague distributors.

INDEX ro PHOTOFACT

radio and television service data folders

No. 32

Covering Folder Sets Nos. 1 thru 170

HOW TO USE THIS INDEX

To find the PHOTOFACT Folder you need, first look for the name of the receiver (listed alphabetically below), and then find the required model number. Opposite the model, you will find the number of the PHOTOFACT Set in which the required Folder appears, and the number of that Folder. The PHOTOFACT Set number is shown in bold-face type; the Folder number is in the regular light-face type.

IMPORTANT-1. The letter " A " following a Set number in the Index listing, indicates a "Preliminary Data Folder." These Folders are designed to provide you immediately with preliminary basic data on TV receivers pending their complete coverage in the standard, uniform PHOTOFACT Folder Set presentation.
2. Models marked by an asterisk (*) have not yet been covered in a standard Folder. However, regular PHOTOFACT Subscribers may obtain Schematic, Alignment Data or other required information on these models without charge. (When requesting such data, mention the name of the Parts Distributor who supplies you with your PHOTOFACT Folder Sets.)
3. Production Change Bulletins contain data supplementary to certain models covered in previously issued PHOTOFACT Folders, and are listed in this Index immediately following the listing of the original coverage of the model or chassis. These Bulletins should be filed with the Folders covering the models to which the changes apply.

ADMIRAL-AIRLINE

ADMIRAL-Cont.	admiral-Cont.	AIRCASTLE-Cont.
Models $26 \times 35,26 \times 36$,	Models 39x16A, 39x17A	12C, 12T Tel. Rec.
	Tel. Rec. ISee	(See Model 14C).
Model 26×30 As, sich. ${ }^{\text {che }}$	Ch. 2401 (Sel (03) and	$14 \mathrm{C}, 14 \mathrm{~T}$ To1. Rec....... $140-3$
21 E1 and Radio Ch. 5D2)	Models 39x168, 39×178	160, 16 T Tel. Rec.
(See Chassis 2181) . . 118	Tel. Rec. S See	(See Model 14C
Model 26×37 Tel. Rec. 103	Ch .24 D 1 (Set 103) and	17 T Tel. Re
	Radio Ch. 502 [Set 118)]	Model 1
	Model $39 \times 17 \mathrm{C}$ Tel. Rec.	
Rec. (See Ch. $24 \mathrm{DL11} .103$	(See Ch. 2181) . ${ }^{\text {co. }} 118$	88.
Models $26 \times 55,26 \times 56$,	odels 39x25, 39×26	
26×57 Tel. Rec.	Tel. Rec. [see	1028
(See Ch. 2401)...... 103	Ch. 24Di (5 et 103) ond	
odels $26 \times 55 \mathrm{~A}, 26 \times 56 \mathrm{~A}$,	Radio Ch. SD2 [Set 118)]	$150,153 \ldots \ldots \ldots \ldots \ldots 126$
28x57A Tel. Rec. ${ }^{20}$		171, 172 96 96-1
(See Ch. ${ }^{\text {2 }}$	Tel. Rec.	198 83-1
	(5ee Ch. ${ }^{2181)} \ldots \ldots \ldots 118$	200139 ${ }^{139}$
(See Ch. 2401)...... 103		201 81-1
Models $2 \Delta \times 65 A, 26 \times 00 A$,	(See Che kel 118	
26×67 A Tel. 'Roc.	Models 12ikis, izikio,	212 88 -3
(See Ch. 2181)...... 118	$121 \mathrm{Kl7} \mathrm{Tel}. \mathrm{Rec}. \mathrm{~S}^{\text {Soes }}$	2271, 227w 81
Models 26×75, 26×770 Tel. 103	Ch. 21Fl) (Also See	312 Tel. Rec.
Rec. (See Ch. 2401) , 103	Prod. Chge. Bul. 30,	Model 14C)
Models $\begin{gathered}\text { Tel. } \\ \text { Rec. } \\ \text { Rec }\end{gathered}$	56.2)	316 Tel. Rec. 15 ee
(50e\% Ch. 2181)......118	Models $\begin{gathered}\text { Tel. Rec. } \\ \text { L }\end{gathered}$	${ }^{350}$ Model 14C) \ldots...... 130
odels 27 K 12 Tei. Rec. 135	Ch. 21 Fi$) \ldots135$	358 vM 137. 127
(5ee Ch, 21F1)...... 135	dels $221 \mathrm{k} 26,221 \mathrm{k} 28$	412 Tel. Rec. (See
odels $27 \mathrm{~K} 15, \mathrm{~A}, \mathrm{~B}$, $27 \mathrm{~K} 16 . \mathrm{A}, ~ 8,27 \mathrm{~K} 17, \mathrm{~A}$	Tel. Rec. (Seo	Model 14 C$)$
	Ch. 21 11) $\ldots \ldots \ldots \ldots 135$	416 Tol. Rec. 150 e
${ }^{\text {B }}$ (Seel Rec. Ch. 21F1)..... 135	仿:	Model 14 Cl .
Modeits 27K25, A, B,	Ch. 21Fi)	${ }_{472.053 V M}^{472 . \mathrm{MP25,}}$ 472.MP26 ...168-1
${ }^{27 \times 26, ~ A, ~ B, ~} 27 \times 27$,	odels 221k45, 221 K46,	
	${ }^{2211} 477$ Teal. Rec. (See	$568.200^{\text {a }}$ …..........141-2
(See Ch. 21F1) 135	Ch. 21F1) (Also See	568.205.1 15ee
	Bul. 30,	Model 200)
27K36, A, B ${ }^{\text {ceil. Roc. }} 135$		568.305 (See Modal
Models $27 \mathrm{~K} 46, \mathrm{~A}, \mathrm{~B}$ Tel.		568.205)
Models (See Ch. 21F1).. 135	Ch. 2181$)$	
Models $27 \mathrm{~K} 85,27 \mathrm{~K} 86$,	Model 320R25 (Ch. 2iJi)	
27×87 Tol. Rec. 15 Se	Tel. Ree. (See	${ }_{603-P R-8.1}$............ 133
${ }^{21 F 1)}$ (Also See	Ch. 2181$) \ldots . . .{ }^{\text {a }} 118$	
Chge. Bul. 30,	Odel 320 R 28 /C	606-400WB119-2
Sel 158.2$)$, 130	Tel. Rec. (See 118	607.314, 607.315122-2
Models $29 \times 15,29 \times 16$,	Ch. 2181$)$	607.316, -1, 607.317, 1.138-2
	Models 321 is $321 F 10$	610.0200 142
Models $29 \times 25,29 \times 26$,	(Soe Ch. $21 / \mathrm{Fl}$ Set 135	
${ }_{29 \times 27 \text { Tel }}$	and Ch. SD2 Set 118)	621 (Ch. FJ.91) 14-2
(See Ch. 2401)...... 103	Models 321 IF27 Tel. Rec.	
Model 29x25A Tel. Rec.	(See Ch. 21F1 Set 135	${ }_{651}$ ….............. 15-1
(See Ch. 218 1)...... 118	and Ch. 3D2 Set 118)	652.A25, 852.435 169
Model $29 \times 26 \mathrm{~A}$ Tel. Rec.	Models 321F35, 321 F38	652.505 168
(see Ch. 2, mi) ${ }^{\text {a }}$ (18	Tel. Rec	659.511, 659.5
(5)	(Seet Ch. 21 Fl Set 135	915 w
(See Ch. 30AT)...... 57	ond Ch. 302 Set 118)	93
odels 30A14, 30ATS, ${ }^{\text {a }}$	Models 321F46, 321F47,	${ }^{9651, ~ W, ~ 965 k 1, ~ W ~}$
30A16, Tolevision Re-	(See Ch. 21 Fl (Ser	(See Model 9151).
ceiveri (see Ch, 30A1). 57	and Ch .502 Sel 118)	$1400 \mathrm{C}, 1400 \mathrm{~T}$ Tel. Rec. (See Model 14C)..... 140
Models 30B15, 30816. 30817 (S or SN)	Models 321F65, 321F66,	
Tel. Rec. (150e Ch. 3081) 71	321 F 67 (Ch. 21 NT ond	(See Model 14C)...
odels 30C15, 30C1	Chassis see Ch, 21F1 ond	2000 CTel I. Rec.
	Prod. Chge. Bul. 30, Set	(See Model 14C).
Models 30F15, A, 30F16,	156-2; for Rodio Chossis	3170 Tel. Rec. (See Model
A, 30F17, A Tel. Rec.	see Ch. 2181, Set 118)	14 C set 140 and
		4170 Tel. Rec. (See Model
Models $32 \times 15,32 \times 16$ Tel.	(See Ch. 21F1 Set 135	
Rec. (5ee Ch. 20XI and 4511 100	ond Ch, 3Cl Sel 117)	Model 350 Ser 136
Models $32 \times 26,32 \times 27$ Tel.	odel 321 K 27 Tel . Rec.	5000, 5001 16-2
Rec. ISee Ch. 20×1	(See Ch. 21 F1 Set 135	, 5005,50
and 582) ….... 100		5008, $50009^{\circ} \ldots \ldots \ldots \ldots . .46$ 46-1
Models $32 \times 35,32 \times 36$ Tol. Rec. (See Ch. 20XI	Models $321 \mathrm{~K} 35,321 \times 36$ Tel. Rec.	5010, 5011, 5012
Rec. 1See Ch. 20×1 ond 5B2) 100	(See Ch. 21F1 Set 135	${ }_{5015.1}^{(\mathrm{Ch} .110)} \ldots \ldots \ldots \ldots . .11^{18-4}$
Models 34R15, A, 34R16,	and $\mathrm{Ch}, 3 \mathrm{3C1}$ Set 117)	5020 16-3
	Models 321 K46, 321 K47,	5022123-2
(See Ch. 20 Tl) 117	$321 \times 49 \mathrm{Tel}$. Rec.	${ }_{5024}$. \ldots........... ${ }^{\text {45-1 }}$
	(See Ch. 21Fl Set 135	${ }_{5027}^{5025}$. ${ }_{49}{ }^{24-2}$
(See Ch. 2181),118	and Ch. 3C1 Set 117 (
		${ }_{5029} 528$................. ${ }^{\text {41-1 }}$
	Ch. 21F1) (Also See	5035 46-2
	dishee. Bul. 30.	5036 . .f. ${ }^{72-2}$
(See Ch. 24 d 1 (5 et 103)	el 158-2) ……... 135	
and Radio Ch. 5B2 (Set 100)]	AERMOTIVE	5052 …............ 45-2
Models $36 \times 35 \mathrm{~A}, 36 \times 36 \mathrm{~A}$,	181-AD 12-1	
$36 \times 37 \mathrm{~A}$ Tel., Rec. Stise		
	Airadio	6053 97-1
	SU-410 ${ }^{\text {S }}$	6514 18-4
	SU.52A, B, C (Receiver) : 13-2	6541 . 6 97
	TRA-1A, B, C (Tronsmitter) ${ }^{13}$	
(See Ct. 21FI Set 135 and Ch. 5D2 Set 118)	310037-1	6541)
Models 37F27, $\mathrm{A}^{\text {, }} \mathrm{B}$,	AIRCASTLE	6631, $6632,6634,6635$ 15-2
	c-300 136-3	7000,7001 14-3
	DM-700	7004 ,
and Ch. 302 Set 118)	Ev. 700 (See Model	7015 Early ${ }^{\text {57-2 }}$
	DM.700) G.516, G-518	7553 45 - ${ }^{3}$
15ee Ch. 21 Fl Sel 135		90081, 9008w 99-2
and Ch. 502 Set 118)		90091, 9009W 90121.
Models 37F55, 37F56, 37F67		${ }_{10002}{ }^{\text {a }}$. ${ }^{\text {56-1 }}$
		10003.1 … $\ldots \ldots \ldots \ldots \ldots{ }^{56-2}$
Redio Ch. Sozt Tel, Rec.		10005 62-3
Ch .21 Fl , for TV	PAM-4 ….......... 101-1	$10021.1,10022.1$..... 59.3
Chassis 2101 l see Ch .		${ }_{10024.1}^{10023} \cdots \cdots \cdots \cdots \cdots \cdots{ }^{\text {a }}$ 58-2
21P1; for Rodio Ch.		108014, 108504 57-4
Models $37 \times 15, A, B$,		
	REV248 -127-2	
(See Ch. 21 Fl S Set 135	${ }^{\text {RZU2248 }}$ (SEV248) Model 127	
and Ch. 3C1 Set 117)		132564 69 69-1
(See Ch. 21Fl Set 135		
and Ch .3 Cl Set 1171		147114 $56-3$
Models $37 \mathrm{~K} 35, \mathrm{~A}, \mathrm{~B}$	хВ702, хВ 703 Tel. Rec... 93 A .9	149654, 150084 ${ }^{\text {a }}$, \ldots... 71-4
	XL750, XP775 Tel. Rec... 93A. 1	159144 (15ea Model
(See Ch. 21 FI Set 135 and Ch. 3C1 Set 1171	$O A \cdot 358-V M$	1391441 59
Models $37 \times 55,37 \mathrm{~K} 56$.		AIR Chief (5ee firestone)
${ }^{37 \mathrm{~K}} 57 \mathrm{~T}$ Tal. Rec. (See Ch.	52	AIR KING
1) (Also See P	50	AIN KiN
156-2) 135	Soe Model 14C) 140	$\text { A. } 403$ 20

AIr king	AIRLINE-
A. 410	05WG. 3036A, B Tel. Rec.
${ }_{\text {A. }}^{\text {A.410 }}$ (Revised) \ldots....... ${ }^{40}$	
A. $501,4.502$ (Ch, $465-4)^{31} 3^{43}-3$	148
A.51, A. 5	OSWG.3038A Tel. Rec.... 129-4
20	05WG.3039A, B Tel. Rec.
	ISee Model OSWG.
	3030C) 148
A.650 ……........ 45-4	05WG-3039C, D Tel. Rec.
A.1000, A. 1001 S	05
Tel. Recesiver 58-3	O5w. 3032 B
${ }^{\text {Al }} 1001$	OSWG.3045
2000, A2001, A	Tsee
Tel.' Rec. ISee Mod	O5WG-3038A)
Tel. Rec. (See Model 75	${ }_{1}^{158 R-15368,158 R-15378 .}$
2010 Tel. Rec. ISee	15 Br.15A
Model AlOO1A)	15BR-1547A 143
2012 Tel. Rec. IS	158 R -2756
model Al001A)	158R-2757A 148
${ }_{\text {cli }}$	15BR-3035A Tel. Rec.... 15
$12 \mathrm{TI}, 12 \mathrm{~T} 2 \mathrm{Tel}$. Rec.	${ }_{1}^{58 R-3048 A}$ Tel. ${ }^{\text {a }}$
(Soe Model iocli..... 121	$1588-3054 \mathrm{~A}$ Tel. Rec.
TI Tel. Rec	15GAA.995A 168
(See Model 16C1).... 121	15 GHM .934 A (See Model
$\mathrm{cl}_{1,1} 16 \mathrm{C} 2,16 \mathrm{C} 5$	O5GHM.934A)
Tel. Rec.121-3	15 GHm .935
S	15 CHM
See model	1564 M .93
I, Tel. Re	15 CSE -2764
(See Mode	15 GSE-304
16 TIB Tel. Rec ${ }^{\text {a }}$ (SC)	$1565 E-3047 \mathrm{~A}$, B T
(See Model (icl)	$15 \mathrm{GSE-3047C}$ Tol.
Tel. Rec.	${ }_{1}$
${ }^{8} 1 \mathrm{Ch}$	$1565 \mathrm{~A}, \mathrm{~B}, 15 \mathrm{C}$
el. Rec. (B, 15GSL
d, 702	WW.154
Reals. 00.96)	15WG.1548
Rec. (See model lic2). 15	15WG-2745C 130
	15WG.274
Rec. (See Model 17C2) ${ }^{\text {P1 }}$	$15 \mathrm{WG}-2$
700.130) Tel. Rec. . . 150-2	15 WGG .27761 A
M1 (Ch. 700.961	model 15
	15WG-2765A
Model 17C21 151	${ }^{15 W G .2745 C)}$ (.... .130
Tel	Wo
del $17 C 21$	1 Model 15 WG .3046
C1 Tel.	Tel. Rec.
(See Model 16C1), . 121	$15 W \mathrm{G} .3049 \mathrm{~A}, \mathrm{~B}$ Tel
(eite Rec. (Sh. $700-93$)	15 WG -3050A, B Tel. Rec. 145
Rec. (See	15WG.3051A, B,
K1 (Ch. 700.95)	Tel. Rec. (s
Tel. Rec. (See	15WG.3046A)
al Rec. (See 151	15 WG .3059 ATEl .
M1 (Ch. 700.93)	25 GAA -994B
	25 GDC .994 A
Model 17C2)	25GSE-3057A Tel
(Sse Model (16C1)121	25WG-77050 (See
${ }_{2017 \text { R Tel. Rec........1i1-2 }}$	SA4R.1501A, 548 BR -
4601 (See Model 4609)... 11	${ }_{54}^{5} 5$
4603 3-36	
$4604 \ldots \ldots{ }^{\text {a }}$ - 25	$1508 \mathrm{~A}, \mathrm{~B}$
46040 (See	54KP-12
4607, 4608 $\ldots \ldots \ldots \ldots .{ }^{3}$	54 WG
(See Model 4607)	18018
4609 , 4610 11	5 WG-2500A,
4^{625}................ 13--8	848
4700 39-1	6ABR.91 OB ISee Model
4704 . 4705 12-2.	
${ }_{4705}^{4705}$ (5ce Model 4704) . ${ }^{\text {a }}$, ${ }^{\text {a }}$	648R-917A
4708 (See Model 4704)... 12	64BR9178 (See Model
AIR KNIGHT (SKY KNIGHT)	$648 \mathrm{R917A}$)
	ofer-10sta
CB-500P …........... 17-31	
N5-RD291 17-3	OABR-1205A, GAER. $1208 \mathrm{~A}, 10-3$
	64BR-1208A 16-4
AIRLINE	64BR-15038, 648R.
3R-30218 Tel. Rec. ...150-	ISee Models
OSER-3021C Tel	1504A. B, C).
	048R-1513A, \%;
SBR-3024C Tel. Rec.....) *	648R-1514A, B
OSBR-3027A Tel. Rec.	648R.1808A
Model O588.30218) ... 150	${ }_{648 \mathrm{ER}-1208 \mathrm{~A} \text {] }}$
058R-30278 Tel. Rec	
SBR-3041A Tel. Recter	$64 \mathrm{BR} .7100 \mathrm{~A}, 64 \mathrm{BR}$
OSBR-3044A Tel. Rec.....	${ }_{648 R .} 71204$ A
OSGAA.992A	
	6ABR-7810A, S4BR-7820A
SGCB-3019A Tel. Rec... 116	64WG-1050A 10-2
OSGCD-3658A ….... 151	64WG.1050B, 64 W
GHM-934A167-3	1050C. 64 Wc .
05GHM. 1081 A -	${ }_{\text {S4WG. } 1050 \mathrm{~A} \text {) }}$
${ }_{\text {CSE-3020 }}$	
Rec. (Also see Pr	
	64WG.1052A)
GSE.3037A Tel.	64WG. 12078 18-5
(See Model $\text { 05GSE-3020A) } 117$	${ }^{15118, ~ o f W G . l ~}$
OSGse-3020A 17	64WG-15128...... 5-5
	WG. 1801 C (ISee Models
(See Model OSGSE. 3020A) (Also see Prod	S4WG. 1801A, B) 64WG. $1804 \mathrm{~A}, \mathrm{~B}$
Chg. Bul ${ }^{36-}$	64WG-1804C' (See Model ${ }^{\text {a }}$
	64WG.1804A).
94 WG-1811A) 99	61WG.1807A, 64WG.1807
WG. 1813 A . C 127	64WG.1809A, 64 W
G-2748C, D, E [See	18098 ISee M
Model 9 WWG-2748A).. 139	64WG.15114
G-27490 ….....1129-3	SUWG
WG.2752 - 1 -1... 100-3	$64 \mathrm{WG}-20078$
WG. $3016 \mathrm{~A}, \mathrm{~B}$ Pel. Rec. (See Model 94 WG .3006 A	${ }_{64 W G} \mathbf{W}$ 2009
Set 72 and Set 110	
Foider ${ }^{21}$	WG. 2500 A is
WG.3030A Tel. Rec.... 119-3	del 54WG-2500A)
WG-3030C Tel. Rec.... 148-2 WG-3031A Tel. Rec.... 109-1	WG -2700A,
05WG-3031B Tel. Re 05WG-3032B Tel.	Models 54 WG - 2500 A : swG-2700A)

NE	ARVIN-Cont.
Ar.23TV. 1 Tel. Rec.... 80	
MST12, MST14, Tef. Rec. . 170	Tel. Rec.
TR, ${ }^{\text {LTR, Tel. Rec. }}$	${ }_{4} 0801$ (Ch. TE282)
1 (See Model MST12)	${ }_{408 \mathrm{rac}}^{\mathrm{Rec}}$
17CD (1st Prad.) Tel. Rec. (See Model MST12) ... 170	(See Model 40807) ... 104
$17 C R R$ (Ist Prod. Tel. R	4162 CM (Ch. TE.288)
(See Model MST12).... 170	5170, 5171, 5172, 5i73
(See Model MST1 2) ... 170	(C'́n. TE302, TE302-1)
${ }^{20 C D}$ (1)st Prod.) Tel. Rec	5175. 5178 (Ch, TE320)
TR Tel. Rec	Tel. Rec.
See Model MST12).... 170	5204. 5206 (Ch. TE300)
$112 \times$ Tel. Rec.	
Mode!	52
	TE315, ${ }^{-1}{ }^{-2}$
(See model MSTI 2).... 170	Chg. Bul. 37-
See Modei MST12).... 170	Set 106-21
76	Ch
819 Tel. Rec. (See Model MST12). . . 170	${ }_{\text {Ch. }}^{\text {R4] }}$ Re-200
${ }_{31} 163 C R$ Tel. Rec.	Ch. RE. 200M (See Model
(See Model MST 12).	444 M)
O3CR, 8193CM Tel.	RE-201
	RE.
ARVIN	552AN)
P (Ch. Re.209)	Ch. RE-204 (See Model
150.TC, 151-TC	8)
(Ch. 'RE-228) (Late) . . . 25-7	664
soic. 1517 c	RE-206-1, 200-2
(Ch. RE-228-1)	
182 TFM (Ch. RE-237) ... 32	Ch. RE-228 (See Model
$240 . \mathrm{P}$ (Ch. RE-243)	is01C)
1 P 24	Ch. RE-228
RE-244, RE-25E, RE-259)	Model 150 TC late) Ch. RE-229 (See Model
242T, 243 ((Ch, RE-251). 52-3	$665)$
$250 . \mathrm{P}$ (Ch. RE-248) 250 O	RE-231 (See Model
${ }^{\text {253T, }}$ 254T, 25ST, 256 (552 AN) $\ldots 13$
264T. 2659 (Ch. RE-265) 64-2	RE-232 (See Model 49
$2807 \mathrm{TM}, 281$ IFM	Ch. RE-233 (See Model
(Ch. RE.2531 ….... ${ }^{44-2}$	1527)
341 T (Ch. RE-274)	Ch. RE. 237 (See Mod
Sap (Ch. Re-26)	182TFM)
350.PL (Ch. PE.267.2) 100	RE-242 (See Model
35P (Ch. RE-267) (See	S47
Model 350P) 69	${ }_{240 \mathrm{P})}{ }^{\text {Re-243 }}$. (See Model 42
1.PB (Ch. RE.	Ch. RE-244 [See Model
351.PL (Ch. RE-267.	
	. RE-248 (See
RE-267-2) [See M.	
350.p日) ...	Ch. RE-251
3551 (Ch. RE-213)	Ch. RE-252 (See Model
ee Model 356T	253T) 53
	RE-253 (See Model
(See Model 152-T) 33	280TFM) . ${ }^{\text {a }}$, .a... 44
SOTFM, 361TFM ICh.	
RE-260) … . . ${ }^{70-2}$	
40T. 4411 ((Ch. RE-278) ${ }^{\text {96- }}$	360 TFM) …......... . 70
	Ch. RE-265 (See Model
	264T) 64
(Ch. RE-200M) 23-3	Ch. RE-267 (S
16 P (Ch. RE-280)	
4501. 451 T (Ch. RE-281	(See Model 350.PB)... 100
460T, 461 T (Ch. RE-284) . . 107 --3	, RE. 273 (See
$462 . \mathrm{CB}, 462 . \mathrm{CM}$	356T)
(Ch. RE-287-1) ${ }_{\text {chen }}$	h. RE-274 (See Mod
$4801 F M, 481$ TFM (Ch. RE.277, RE-277.1) 107-4	$34+17 \%$
82 CFB , 482 CP	(See Model 480
Ch. RE-288-11 -117-4	Ch. RE-278
${ }^{540 \%}$ (Ch. RE-278) .a... 143-4	(See Model 54
542 T (See Model 440	Ch. RE-280 (See
	Model 446P)....... 106
5444 (Ch. RE-201) ${ }_{\text {42-7 }}$	Ch. RE-281
	Model 450
	${ }_{\text {Ch. RE-284 }}^{\text {Model }}$ (S007)
RE	Ch. RE. 287.1
(Ch. RE.202)! 13-9	(See Model 46
553 (Ch. RE-308)	
	Ch. RE. 297
(Ch. RE-306) _(Ch.... 155-3	${ }^{\text {Chee Model } 5517)}$. ... 154
657-T(Ch. RE307)168-5 ${ }_{588}$	Ch. RE. 306
S80TFM (Ch. RE. ${ }^{\text {Si3) }}$....152-2	(See Model 554CCB).. 155
	${ }^{\text {Che }}$ isee Model $657.71 . \ldots 168$
O64. 664 A (Ch. RE-206) 3-23	Ch. Re-308
	(5ee Model 553)...... 159
4, 864 (Ch. RE-208-1), 0640 (Ch. Re-208-2)	Ch. RE-310 ${ }^{\text {che }}$
605 (Ch. RE-229)....... 18	
2120 CM (Ch. TE289.2,	Model 580 TFM)
TE289.3] Tel. Rec. (Also	TE-272-1
See Prod. Chge. Bul. 20 120-3	See Model 310078)... 80
21TM (Ch. TE289-2, TE289.3) Tel. Rec.	TE282 (See Mod
(See Model 2120 CM)	408011 ….....
(Also See Prod. Chge.	TE-286
Bul. $20-$ Set 134-11... 120	(See Model 4162 CM) . 130
$\underset{\text { 2122TM (Ch. TE-289) }}{\text { Tel. Rec. }}$ 27A.1	
2123 TM (Ch. TE-289-2],	Ch. TE-289-2, TE-289.3
TE289-3) Tel. Rec.	(See Model 1120CM) . . 120
(See Model 2120CM)	
Bul. $20-5$ et 134-1) . . 220	Ch. TE300 (See Model
2124 CCM (Ch. TE289.2.	5204) …...... 149
TE289.3) Tel. Rec. (See Model 2120 CM)	Chassis TE302, TE302-1 (See Model 5170)..... 142
(Also see Prod. Chise	Ch. TE315 (See Model
Bul. 20-Ser 134.1] . 120	52101 (............ 15
2126 CM (Ch. TE289-2,	Ch. TE. 32015 ee
TE289-3) Tel. Rec. (See Model 2120 CM)	Models 5175,5176$).$
tso See Prod.	
Bul. $20-5$ et 134-1) , . 120	ASTRASONIC
2160, 2161, 2162, 2164 (Ch. TE-290) Tel. Rec. . 126-3	
$3100 \mathrm{~TB}, 3100 \mathrm{TM}, 3101 \mathrm{CM}$, $3120 \mathrm{TM}, 3121 \mathrm{TM}$ (Ch. TE-272-1, TE-272-2)	atlas

Endix	RUNSWICK-Cont
C172 Tel. Rec.......... 134-5	T. 60
(See Model 2051) ...111	T.60005x, ${ }_{\text {T. }}$
Clibs, B Tel. Rec.	(See Modol T-40
(See Model 2051) 111	T.9000 (See Model D
C182 Tel. Rec.	512,513 Tel. Rec....... 163
${ }_{\text {(See Model }} \mathbf{C 1 7 2)}$	812,816 Tel. Rec.
C192 Tel. Rec. (See Model	(Soe Model 512)
C200 Tel. Rec.	$9228, \mathrm{M}$ Tel. Rec.
(Soe Model C172).... 134	5000 42-
170 Tel. Roc.	5125
(Soe Model 2051)111	(See Model 512) 163
(Ssee Model (172).... 134	6165 Tel. Rec.
T173 Tol. Rec.	8125, 8165 Tel. Rec.
(See Model 2051) 111	(See Model S12)
	buick
\% See Model 20571	980690, 980733
O5260	980744, 980745
-	9807
Par	980
${ }_{5}^{5512} \times$	980868
${ }_{55 \times 4} 58$.	980979 (See
	Model 980868) 104
7585, 75 MS , 75 M 8 ,	butler bros.
75Pb, 75W5 59	(See Air Knight or Sky Rover)
M7	Cadillac (Auto Radio)
9583, 95M3, 95M9 Fiw. 60-7	7241938
110, $110 \mathrm{w}, 111$.	7253207
22, 118. 115....... 41-3	7256609
23581, 235 m	7258155
MA,	725875
Tel. Re	7260205 (See Model
00, 300W, 301, 302... 40)
	7260405
	7260905 isee
$626.4106264) \cdots \cdots \cdots 12$	$\begin{array}{ll}1651 \\ 1604057 & 1652,1653,1654\end{array}$
$636 \mathrm{~A}, 636 \mathrm{C}$......... ${ }^{15-4}$	Tel. Rec.
${ }^{6360}$ (See	
846A	19161917 Tol
656A	1920,
6788, 676c, 6760....... ${ }^{5-23}$	1020,
8874 $81{ }^{\text {83 }}$	1924 ee model
${ }^{6974}$................ ${ }^{26}$	1924 el. Rec
7368 10	(See Modil 1916
847.8 ${ }^{27}$	$2016,2017 \mathrm{Iel}^{1} \mathrm{Re}$
847.5 "Facto Meter".... 28	(5ee Model 1916)
951, 95:W 136	20. 2021 T
1217, 12178, 12170..... ${ }^{29}$	See Model 19
12170 (late) $\because 7 . \quad$ O... ${ }^{\text {46-5 }}$	
$158,1519,1524$.	
531	CALIMASTER (See Lyman)
2001 , 2002 Til Rec.	CAPEHART
2020, 2021 Toi. Rec. ${ }^{\text {a }}$	${ }_{\text {B. 504-P16 Tel, Rec. (t }}$
(See Model 2001). 84	Model 46IP Set
2025 Tel. Rec........... 99	7 S
2051 Tel. Rec.	TC. 20 (Ch. C-297)
Prod. Chge. Bul.	
126.11111-3	1 117Mx (ch. ci-27) Tel.
So Tel. Ree.	Ch. Cl
See Model 2051) (A	Omx 1 Ch . CT
${ }_{\text {Set }}$ See Prod. 26.11 Chge. Bul. 10.111	
	Rec. (5 ee Ch, CT. 27
(5ee Model 2051) 111	10 (ch. C.312) 160
71 Tel. R	$9 \mathrm{NH}_{4} 211 \mathrm{P}, 24$
Soe Prod. Chgo. Bul. ${ }_{\text {Set }} 126$	
3001,3002 Tel. Rec.	34 P 10 (See Model 32P9).. 64
(See Model 2001).	3597 (Ch. P7)...i.e. 135
3030, 3031 Tel. Rec	11N4. 116 Na 4.
3033 Tel Rec	
(See Model 2025)...... 99	$115 \mathrm{P} 2 \times$.
51 Tel. Rec.	$9 \mathrm{PX} . \mathrm{MX}(\mathrm{Ch}, \mathrm{CT}-27)$ T
${ }_{\text {S }}$ (See Model 2	Rec. (See Ch. CT. 27) 160
See Prod. Chge. Bul, 16	${ }^{0.8 .8 .3300-M(~} \mathrm{CH}$.
${ }_{6001}$ Sel. Rec.	(See Modol 323 M) (A) so
(See Model 2051) (Also	See Prod. Chge. Bul. 13
See Prod. Chge. But. 16	Set 122.1 \& Bul. 24
Set 126-11 1	Set 142-11) 112
O2 Tol. Rec	3208 XX MX (Ch. CT. 27) T
See Model 2025) 99 03	Rec. 1 See Ch . CT.
(50e Model 2051) (Also	${ }^{\text {32labx, AMX }}$ Tel. Rer. (See Ch.
See Prod. Chge. Bul. 16	(1.27) 160
-5et 126-11 111	21.8, 321-M, 322-B,
(See Model 2051)	322 -M $\mathrm{Ch} . \mathrm{CX}-33$ rel.
see Prod. Chge. Bul.	\|Also See Prod. Chge.
Set 128-11 111	Bul. 13-Set 122.1 an
Model 2051	Bul. 24 - Set 142.11. . 112
ee Model 2051) (Al	2RABX. RAMX (Ch .
$\begin{aligned} & \text { see Prod. Chgei Bul. } \\ & 16-S e 1 \\ & 1126-11 \end{aligned} 11$	(T-27) Tel. Rec. (See Ch. CT-27)
bOgen (See David Bogen)	23 Mm (Ch. Cx. 33 F), 324 $325 \mathrm{~F}, 325-\mathrm{M}$ (Ch. Cx-
brewster	Rec. (Also See
	142.11 112
brook	3248 Bx ($\mathrm{Ch} . \mathrm{Cr} .27$) Tel
00 (See Model 10C).... 41	
24............... 89-3	(A) so See Prod. Chge.
browning	${ }_{\text {Bul. }}^{13}$-Set 122.18
PF.12, RJ-12 47-4	${ }_{326 \mathrm{MX}}(\mathrm{Ch} . \mathrm{CT}-27)_{\text {Tel }}$
	Rec. (See Ch. СТ.27) 160
J.14A	
(See Model RJ-12A) ... 56	Tel. Rec.
20 ……............132-3	
J-22 (See Model RJ20). . 67	
V.10 $\ldots \ldots \ldots \ldots \ldots \ldots$. ${ }^{46-6}$	(See Model 323M) (A) ${ }^{\text {a }}$
$\text { RV-10A } \text { RV-1) (Seo Modal RV-10). }{ }^{131-3}$	See Prod. Chge. Bul
	13.Set 122-1 \& Bul. 24112
Brunswick	338 mx (C.. CT-45) Tel. 160
0.1000. 0.1100 ….... 56-7	3 Rec. (See Ch. CT. 27), 160
. 6876 "Buckingham" (See Model T-4000)	$340 \mathrm{X}, 341 \mathrm{X}$ (Ch. CT-45) Tel. Rec. (See Ch. CT-27). 160
T. $4000, \mathrm{~T}-40001 / 2$ Buck.	$413 P, 414 P$
$\begin{aligned} & \text { in sham } 44001 / 2{ }^{29-5}-61-4 \\ & \text { T. } 4400, \text { T. } \end{aligned}$	See Model 115P2).... 67

CAPEHART-CO	Clark
$501 \mathrm{P}, 502 \mathrm{P}, 504 \mathrm{P}$ Tel.	PA-10 ${ }^{12-6}$
Rec. (See Model 461 P	PA.10A 18-12
$\mathrm{Setet}^{\text {et }}$ 87 and 35 PP Set	
${ }_{\text {10P, }} 1351 \mathrm{l}$, 661P Tel. Rec. $95 \mathrm{~A}-1$	
$1003 \mathrm{M}, 1004 \mathrm{~B}$ (
	CLEARSONIC
3597 0058,	U. S. Tele
0058	COLLINS AUDIO PRODUCTS
Ch	FMA.6 99
(1) ${ }^{\text {a }}$ (Ch. C.318) . 150	45.D 72
3001,3002 (Ch. $\mathrm{Cx}-30 \mathrm{~A} \cdot 2$,	COLLINS RADIO
od. C-272] Tel. Rec	75A-1 34-4
$3004 . \mathrm{M}$ Ch. Cl CX.31, Prod.	
2681 Tel. Rec.	
(ch. cx 32, Prod.	
6.M (ch. ©x.31) Pro	COMMANDER INDUST
c. 274) Tel. Rec. (See	Commander 3 Tube
del 3004-M)	Recard Player 17-10
7 19
3008 lCh cx 32	CONCORD
278 Tel. Rec. ${ }^{\text {cheo }}$	Concord
Model 3005)	IN434, IN435,
$11 \mathrm{~B}, \mathrm{M}, 3012$	
Ch.	IN437
[See Model 323M] . . . 112	INS49 (Similar to
-01-M (Ch. Cx-31,	INs51 (Similar to
C.268) Tel. Rec. (See	INS54, ins5s
Modal 3004-M)	INS5imilar 10 Chassis).... S5-10
$4002 . \mathrm{M}$ (Ch. Cx. 3	(Simitar to Chassis). . . 109
C-274) Tel. Rac. (See 93 A	N559 (Similar
Ch. $C .312$ (See Model 10] 163 A	IN560 (Similar to Chassis) 109-7
Ch. $\mathrm{C}-31815 \mathrm{sea}$	IN 56
Model 1007AM) 150	(Similar to Chossis).... 97-8
ст. 27 (ch. Series	inso3 Isimilo
x-330x1	${ }^{1} \mathrm{~N} 819$ (simila
cT. 38 ich	
330	
(See Ch. CT. 27) ...	6E518
cT-45 ${ }^{\text {ch }}$. ${ }^{\text {S }}$	OR3ARC
(1)	7R3APW (See Model
	6R3ARC) 21
(See Model 323M).... 112	6T61W 22-11
Cx-330x Series Jol. Re	${ }_{1.402, ~ 1.403}$
See Ch. (T-27).	1.411 , 1.403 48
CAPITOL	1.501 (See 6E518
0.17 30-4	$1.51{ }^{1} 1.517$
U.24 29 ${ }^{\text {29 }}$	1.601, ${ }_{\text {(See }} 7$ 7626C)
CARDWELL, ALLEN D.	1.606 …........... 45
CE-26 14 -6	${ }^{1.608}$ (See 6F26W)
CAVENDISH (See Bell Air)	1.611 46
	1-120
CENTURY (Also See	2-105 (See 315WLI) 53
Industrial Televislon)	2.106 2018
226,326 (Ch. 17.26R	
Tr-35R, (T-39R, (T-48R)	
iT.21Rj Tol. Rec....... 97A-8	
CENTURY (20Hh)	(See 2.1061 …... 54
100x, 101, 104...	CONRAC
300 21-6	36) Tel. Ree.
Challenger	(See Ch. 36).......... 110
CC18 67-7	(See Ch. ${ }^{36) \text {........ } 110}$
cc30 68	12.M.36. $12 . \mathrm{W} \cdot 36$
$\mathrm{CC60}^{\text {a }}$. ${ }^{\text {70-3 }}$	($\mathrm{Ch} .36{ }^{36}$ Tel.
${ }^{\text {ccol }} 8$.	
	(3-B-36 (Ch. 36) Tall Rec. 110
${ }_{608}^{208}$................ 62 62-7	14-M.36, 14-W-36
200 (See Model 20R).... 69	(Ch. 36$) \mathrm{To}$
600 (See Model (SOR).... 62	(See Ch. 36) [..... 110
CHANCELLOR (See Radionic)	
35 P 30-25	16-8.36 (Ch. 36)
${ }_{985792}^{\text {CHEVROLET }}$ (${ }^{\text {a-5 }}$	17.P.39 (Ch. 391
${ }_{985793}^{98792}$ …............. 19-5	18 M- $39,18 . \mathrm{W}-39$ OCh. ${ }^{\text {cos }}$
985988 …............	Tel. Rec. (See Ch. 30). 110
986067 90-2	20-M-39, $20 . \mathrm{W} .39 \mathrm{CCh} .39)$
${ }_{986240}^{888140}$ …............ ${ }^{28-6}$	
${ }_{986241}$................. ${ }^{\text {s8-7 }}$	${ }_{\text {1 }}$ (See Ch. 361....... 110
986388 104-5	22-P-39 (Ch, 39) Tel. Rec.
	(5ee ch. 36) 1110
988516150-6	23-M-390, 23-W-390
CHRYSLER (5ee Mopar)	
	$24 . \mathrm{M}-36$ (Ch .36$)$ Tel. Rec.
cısco	(See Ch. 36) .-... 1110
145 37-4	25.W. 36 (Ch. 36) Tel. Rec.
9AS 20-3	${ }_{361} 1$
	-8.36 (Ch. 361) Tol. Rec. 110
clarion 1-5	$27-\mathrm{M}-40$, 27 -W-40 ich. 40 r
C101 5-9	Tel. Rec. (See Ch. 40). 140
C102 9 9-6	${ }^{28-8-40}(\mathrm{Ch} .40$) Yel. Rec.
C103 6-6	29. P. 40 (Ch. 40) Tel. Rec.
${ }_{\text {ClO }} \mathbf{C 1 0 4}$ (See Model Cloul)..	
C105A 6-7	$30 . \mathrm{M}-40$, $30 . \mathrm{W} \cdot 40 \mathrm{lCh} .40)$
C108 (Ch. 1011........) 5-8	Tel. Rec. (See Ch. 401.140
150	${ }^{31 . P .40 ~ C h . ~} 40$) Tel. Rec. 140
11011 1-............. 17-8	32.M.44, 32-W-44 (Ch. 44)
11305 …............. 18-11	Tel. Rec. (See Ch. 40). 140
\|1411-N ${ }^{30-5}$	${ }^{33 \cdot \mathrm{~B} .44}$ (Ch. 44) Te.
11801 …7.......... 23-6	See Ch. ${ }^{401}$ - $1 . . .140$
${ }_{11802 \mathrm{M}}^{11801}$ (See Model	
12110 M $54 .-5$	36, 39, Tel. Ret
12310 W 31-6	40 Series Tel. Rec. 140
12708	${ }^{44} \mathrm{Tel}$
12801 ${ }^{61}$	Ch.
14601 60-9	
14985 Tol. Rec............... 102	(See Skyweight)

DELCO

DELCO

$42-7$
$15-6$
R-1230-A, R-1231-A,

TV-71, TV.71A Tol. Roc.... 99
TV.101, TV.102 Tel. Rec.. 88
TV-160 Tel. Rec,........ 85
TV-201 (Television Receiver) 59
Desoto (See Mopar)

DEwald
A500, A5001, A500W

ASO1, A502, ASO3.	22
A504, A505	16-9
A. 507	26-10
A. 509	31-9
A. 514	27
A602, A605	16-10
A608 (See Model A602)	
$8-400$	35-3
8.401	34
B. 402	45
B-403	52-7
B-504	43
B-506	38
8.510	34
8.512	35
8.515	63-6
B. 612	42
B-614	56
BT-100, 8T-101 Tel. Rec.	79
C-516	64
C-800	69-7
$\begin{aligned} & \mathrm{CT} .101 \mathrm{Tel} \text { Rec. } \\ & \text { (See Model BT-100) } \end{aligned}$	79
CT-102, CT-103, CT-104	
Tel. Rec.	82
D.E517A	167
D. 508	106
D. 517	131
D. 518	100-5
D519 (See Model B-506)	38
0.616	102
DT-120, DT-122 Tel. Rec	100
T-160 T	

YOUR PHOTOFACT DISTRIBUTOR

The easiest way to own the world's finest Radio-TV Service Data is to subscribe to PHOTOFACT Folder Sets with your distributor, who will see to it that you receive each Set as published (issued 2 to 4 Sets per month).
PHOTOFACT Folder Sets, Each Only
.$\$ 1.50$
Deluxe Binders for filing PHOTOFACT Sets, Each Only.
3.39

Complete PHOTOFACT Volumes, Each Only
18.39
(Each Volume includes 10 Sets of PHOTOFACT Folders in Deluxe Binder. Vol. 1 contains Sets 1-10; Vol. 2 contains Sets 11-20, etc.)
PHOTOFACT EASY-PAY PLAN. You can own a library of PHOTOFACT Volumes for a down payment of only
18.39

Easy monthly payments-no interest or carrying charges. For full Easy-Pay details, see your distributor or write to Howard W. Sams \& Co., Inc.

DEWALD-Cont.
DT. 161 Tel. Rec
DT. 161 Tel. Rec.
(See Model DT-120) 100 (See Model DT-120).... 100
DT-162, DT-163 TeI. Rec.. $118-5$
DT.162R DT.163A. DT. 162 R, DT. 163 A,
DT. 163 R Tel. Rec....... 136 - 7
DT. 190 Tel Rec OT-190 Tel. ReC.
(See Model DT. $1821 \ldots 118$
DT. 1900 Tel. Rec (See Model DT.162R). 136 (Soe Model DT.
DT- 1020, DT. 1020 T Tel.
Rec. (See Model DT-120) 100 DT-1030, DT-1030A Tel.
Rec. (See Model DT-120) 100
 ET-140, ET-141 Tel. Rec.
(See Model OT. (See Model DT.
ET. 140 R , ET-141R
(See Model DT. 162R)... 136
ET-170, ET.171, ET-172
Tel. ReC.
(See Model DT-162R). 136
ET-190D, ET-190R
Tel. Rec.

DODGE (See Mopar)
DORN'S (See Bell A
Buying Syndicate)
$17 \mathrm{CG1}, 17 \mathrm{TW}$ Tel. Rec
17CG1, 17TW Tel. Rec.
(Similar to Chassis)....149-13 DUMONT
RA. 101 Tel. Rec......
RA-102B1, RA. 10282,
RA-102 $\mathrm{B3} 3$ Tel. Rec......
RA.103 Tel. Rec. (Also
See Prod, Chge. Bul. 6 See Prod. Chge. Bul. 6
Set 108.1 . ${ }^{2}$. $90-3$
RA- 1030 Tel. Rec. (Also RA. 1030 Tel. Rec. (Also
See Prod. Chgo. Bul. 9
Set 114.1 . 93
RA. 104 A Tel. Rece. .
 (See Modet RA.103D)
(Also See Prod. Chge.
Bul. 9 . Set $114-1$).... 93

 RA-106 Tel. Rec. (Supp.
to RA.105, Sei 72) (Also
See Prod. Chge. Bul, 6
Set 108.1)
Set 108.1.
RA-108A Tel. Rec.
(See Mod RA.
RA109B).
RASAS Tel. Rec....
(Soe Model RA.-105B)..
RA109A-FAS Tel. Rec....
RA-109-A1, A2, -A3,-AS,
-A6,-A7 Tel, Rec.
RA-109-A1, -A2, -A3
-A6, A7 Tel, Rec.
(Also See Prod. Che
Also See Prod. Chge.
Bul. 14 Set 124-1) ...110-7 RA. 110 A Tel. Rec.
(See Model RA-103D)
(Also See Prod. Chge. (Also See Prod. Chge. 93
Bul. 9 Set 114 -1) 93
RA-111A Tel. Rec....... 106 -
RA-112A, RA-113 Tel. Rec. RA- 112 A, RA-113 Tel. Rec.
(Also see Prod. Chg.
Bul. 38 Set $170-1)_{\text {. }}$. $119-5$
RA-1 13 Tel Rec. RA-1 13 Tel. Rec.
(See Model RA-112A) . 119
RA-117A Tel. Rec........ 13

DUOSONIC

ECHOPHONE
(Also See Hallicrafters)

EICOR

electro
ELECTROMATIC
APH301-A, APH301.C

ELECTRO-TONE
706, 712 (See Model 555) 13^{13-16}

- 3

ELECTRONIC CORP.
OF AMERICA (see ECA) ELEGTRONIC SPECIALTY CO. (See Ranger)

E/L (ELECTRONIC LABS

75 (Sub-Station) (See
Model $76 R \mathrm{RU}$).
$76 \mathrm{E}, 76 \mathrm{~K}, 76 \mathrm{M}, 76 \mathrm{~W}$

EMERSON

501, 502 ICh. 120000 ,
$\begin{array}{lll}120029) & \\ 503(\mathrm{Ch} .120000, & 120029) & \text { 2-18 } \\ 504(\mathrm{Ch} .12000 & 120029) & \end{array}$ 504 (Ch. 120000, 120029) (See Models 501, 502)
505 (Ch. 120002)
505 (Ch. 120041) (See 505 (Ch. 1200021) (Se
Model 523) . . 506
507
508
507
508
509
510,

511
511
512

541 (See Model 521).
543 , 544 (Ch. 120046)
545^{\prime} (Ch. 120047) Tel. Rec Photofact Servicer
(Ch. 120049).
547 A (Ch. 120050). 547 A (Ch. 120050).
548 (Ch. 120051).
549 (Ch. 120051).

5501 C Mod 550

.
551
552
553

5

Television k .aceiver \ldots.... 46-25
571 (Ch. $1200 \& 6 \mathrm{~B}$)
Tel, Rec.
571 (Ch.
Tel. Rec.
572 (Ch. 120065) iSee.... 76-14
572 (Ch. 120065 (Sae
Model 540 ACh . 20042)
Model
5738 (Ch, 1200398)..... 42-11
574 (Ch. 120064)
(See Model 570)....... 97
575 (Ch, 120068 A .
120068 B)
120068 B)
578 A ($\mathrm{Ch}:$
577 B (Ch. 1200012 A).
578 (Ch. 120050) (See
Model 547A Ch. 120050)
579A (Ch. 120034A)..... 61-6
580 (Ch. 120064)
(See Model 570)
(See Model 570).
581 (Ch. 120014A,
582 (See Model 548).
583 (See Model 5738).
585 (Ch. 120025 B)
585 (Ch. 1200888,
120090 B
Tel. Rec.

EMERSON-CONT.
650F (Ch. 120138-8)
Tel. Rec. 133-1A
 Rec. (See Model 629B) 119
651 C (Ch. 120109) Tel. Rec. (See Modal os31). 93A
$651 \mathrm{C}(\mathrm{Ch} .120124) \mathrm{Tel}$. 651 C (Ch. Mol 124 T Tel.
Rec. (See Model 629 D) 116 Rec. (She Model
Rec. (See Model 6290) 116 $652(\mathrm{Ch}$. 120032 B)
(Ses) (See Model 642)....... 9
653 (Ch. 120080 B)
 654,6548 (Ch. 120118 B) (See Model 650)...... 113
6540 (Ch, 120123.B) 6540 (Ch. 120123 - B)
Tel. Rec (S5e
Model 6500)
.109
OS4F (Ch. 20138.B) Tel.
Rec. (See Model 650 F). 133-1
655 B (Ch. $120123 . \mathrm{B}$)
Model 850D)
655 F (Ch. $120138-\mathrm{B}) \mathrm{Tel}$ 109
Rec. (See Model 650F). 133-1A
656 B , 657 B (Ch. 120122B) $111-5$
858B (Ch. 120124,8$)$ Tel.
Rec. (See Model $629 D) 116$
658C (Ch. 120124) Tel.
Rec. (Sec Made 629 $) 116$
Rec. (See Model 6
6580 (Ch. 120124B)
Tel. Rec.
600B (Ch. 20133 B)
Tel. Rec.

Tel. Rec.
$6628,663 \mathrm{~B}$ (Ch. $120127 . \mathrm{B}$,
$120128 . \mathrm{B})$ Tel. Rec.
(Also See Prod. Chige.
But. 18. Set 130.11 - 6 -
S64B (Ch. $120133-\mathrm{B}) \mathrm{TEL}$.
ReC. (See Model 680 B . 131
$865-\mathrm{B}$ (Ch. 120131 -
$665-\mathrm{B}$ ($\mathrm{Ch} .120131-\mathrm{B}$ and
Rodio Ch. 120130.8)
Tel. Rec.
606B $/ \mathrm{Ch}, 120135 \mathrm{~B}$ G H and Radio Ch 120132 B)
Tel. Rec. (Also See Prad
Chge. Bul. 27 Set
Chge. Bul. 27-Set
$148.11,133-5$
$6678,668 \mathrm{~B}$ (Ch. 120134 B,
6678, 668B (Ch. 120134 B,
G, H) Tel. Rec.
(See Model 601 B) 137
(See Model M67B)...... 137
6698 (Ch. $12129 . \mathrm{B}$)
Tel. Rec. (Also See Prod.
Tel. Rec. (Also See Prod.
Chge. Bul. 24 Set
$142 . i$ She

671 D (Ch. 120137D)
(See Model 671 B) 118
672 C (C. $120097-8$)131——7 6738 (Ch. 120133 -B) Tel.
Rec. (See Model 6608). 131
6748 (Ch. 120134B)
Tel. Rec.

EMERSON-CONT.
695 B (Ch. 120146-B), . H) 162-5
696B (Ch. $120144 \mathrm{G}, \mathrm{H})$
696 B (Ch. $120144 \mathrm{G}, \mathrm{H})$
Tel. Rec.
(See (Codel 670 B)
(See Model 676D)...
696F (Ch. 120143B, H)
Tel. Rec. (See Model
Tel. Rec. (See Model
o76F). 148
96 L (Ch, 120142.B)

697 B (Ch, 120129 B) Tei.
Rec. (See Model 669 B)
(Also See Prod. Chge.
Bul 24 - Set $142-1$). 126
S 88 ich. 1201278) Tel.
Bul. 24-Set 142-1). 126
698B (Ch. 120127 B) Tel.
Rec. (See Model 662 B). 125
Rec. (See Model 662B). 125
6990 (Ch. 120180-B)
Tel. Re.
$700 \mathrm{~B}, 701 \mathrm{~B}$ (Ch. .
$120153-\mathrm{B}) \mathrm{Tel}$. Rec....169-6
$700 \mathrm{o}, 7010 \mathrm{Ch} .120158-\mathrm{B})$
Tei. Rec.

7028 (Ch. $120136-\mathrm{BI}$

709A (Ch. 120162-A)
Tel. Rec.167-6
1002 . 16 14
1003 (See Model 1002)... 16

EMPRESS

55, 56
ESPEY (Also see Philharmonic)

652,653 See Model
751 See Model 1881
$6511,6511.2,6511.5$,

FFMAN-Cont.	international
Ch. 151 (See Model 830) 97A	TELEVISION
Ch. 152 (See Model 917) 97A	E. 16 Tel. Rec
	JACKSON
Ch. 156 (See Model 847).. 97A	DP. 51
Ch. 157 (Seo Model 860).. 97A	JP. 30
Ch. 164 (See Model 946). . 97 A	
$C^{\text {C. } 170.171} 1750$	10C, 10 T Tel. Rec 12C, 12T Tel. Rec
Ch. 172 (5ee Model 950). 127	(See Modal 10C) 132
Ch. 173 (See Model 630) 150	$14 \mathrm{C}, 14 \mathrm{~T}$ Tel. Rec.
Ch. 1744 (500 Model 950).127	$16 T$
C. 175 (See Model 630). 150	161 Te
${ }_{\text {Ch. }} \mathrm{Ch} .183$ (Sees Model 636). . 141	$17 \times \mathrm{CC}, 17 \times \mathrm{Tel}$. Rec.
(See Model ${ }^{\text {cjobs). }}$	$20 \times \mathrm{C}, 20 \times \mathrm{xT}$ Tel. Rec.
	(See Model 10C)
	${ }_{150} 9 \mathrm{Cl}$ (............... 130
HOWARD	153 (See Model 150). . 130
472AC, 472AF, 472 C 472F 31-14	$312 \text { tel. Rec. }$
${ }_{47}{ }^{\text {a }}$, 32-12	316 Tel. Rec.
475 TV Tel, Photofor	ISoo Model
	412 Tel . Rec. (5ee Model 10C) 132
P01A.E, 901A.H, 901A.1,	6 Tel . Rec
$901 \mathrm{~A} . \mathrm{M}, 901 \mathrm{~A} . \mathrm{W}$ (See	$150 e \mathrm{Mo}$
901A Series)	H009 Tal. Rei
	(Seec Model lioc) 132
	17000, \% Tel. Rec.
906. 906 C 17-18	2000 C Tel. Rec.
7	(See Model loc
7	5000, 505
hudson (Auto Radia)	${ }_{5000}{ }^{\text {a }}$ Tel. Rec........ 88
D847 (Fact. No. ¢MH089) $^{\text {25-16 }}$	5600, 5650 (See Model
	50001 Tel, Rec........ 88
225908 149-6	Ch. 114 HTel . Rec., . . . 162
225908 (Late) (Ch. 749-1)	Ch. $116 \mathrm{H}, 117 \mathrm{H}$ Tel. Rec. (See Ch. 114 H) 162
229403 (Ch .749 .2$)$ (se	$\mathrm{Ch}, 120 \mathrm{H}$ Tel. Rec.
Model 225908 "Late'] 167	(See Ch. 114 H) 162
HUDSON (Dept. Stores)	JEFFERSON-TRAVIS
T144.056 Tel	
(Simitar to Chassis)	
(1)AA.058 Tol. Rec.	JEWEL
(Simlor to Chassis) . . . 72-4	${ }^{304} \times 1{ }^{3}$
31874 Tol. Rec.	$500 \mathrm{~A}, \mathrm{~B}, \mathrm{C}: 501 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ $502 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, 503 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$
(Similar to Chassis)... $85-38$ 8T4S Tel. Rec.	504A, B, C; 505A, B, C 15-14
(Similar io Chossis).... 85-3	
31874.872 Tel. Rec.	
318TSA Tral. Rec. (Simular to Chassis) 85-3	910 (See Model 910].... 99
1816 A 950 Tel . Rec.	${ }_{920}$
${ }^{\text {(Simitor }}$ (10 Chassis).... $85-3$	935 (See Model 920).... 55
(Similar to Chassis)... 78-4	949
SIBTSA Tel. Rec.	
[Similar to Chassis).... 85-3	
(Similor to Chasis).... 78-4	985 (See Model 910) 99
(Similor to Chossis).... 78-4	5010
(Similar to Chossit).... 78-4	${ }_{5040}^{5020}$................. 1360 10-5
231816 A-954 Tel. Rec.	5050 … 128
(Similar io Chossis).... 85-3	5057 U
231879A.912 Tel. Rec.	5100 E ,
[Simiar to Chassis.... 78-4	KAISER-FRAZER
hudson electronics	100170 128
332.4 123	100205 139
${ }_{350}^{34781} \ldots \ldots \ldots$........121-8 ${ }^{\text {26-6 }}$	${ }_{200002}^{20001}$ …............... ${ }^{35-13}$ 56-13
of Pair	KAPPLER
AR14L Tel. Rec. 169-8	1027
ARITL Tel. Rec.	karadio
MSTI2, MSTld Tel. Rec. . . 168-9	${ }^{80.6}$ C $172 . \ldots$........ 66-10
14 TR , 16 TR Tel. Rec.	${ }_{1276}^{275.12754 ~} 115$
(See Model MST12) . ${ }^{\text {a }} 168$	
(Soe Model MSTİ). Rec. 168	kayehalaert
CD (2nd Prod.) Tel) Rec.	O12 (Ch. 243) Tel. Rec. 169
(See Model AR141)... 169	014 (Ch. 233) Tol, Rec.
${ }^{17 C R R}$ (1) st Prod.) Tel. Rec. 168	${ }^{024}$ (See model 014). 148
CRR (2nd Prod.) Tel. . Rec.	033, 034, 035, 036, 037
(See Modol AR1 4l).... 169	(Ch. 242) Tel. Rec....
(${ }^{\text {ROGG }}$ (2nd Prod.) Tel. Roc.	(See Model 014) 14
(See Model AR1 41)... 169	074, 076, 077 (Ch. 253)
CD (1st Prod.) Tel. Rec. 168	Tel. Rec.
(See Model AR141).... 169	Tel. Rec.
20 TR Tel. Rec.	231, 232, 233, 234, 235,
	${ }_{240}^{236,241)}$ (Ch. 231 or
(See Model MST12)... 168	242i) Tel. Rec.
2030 (2nd Prod.) Tel. Rec.	${ }^{15} 50$ Model 014) ${ }^{\text {a }}$. 146
(See Model ARIALI . . . 169	714, 724 (Ch. 253) Tel. 146
${ }_{(S S e e ~ M o d e l ~ M S T I 2) ~ . ~ . ~ . ~}^{168}$	
OTel. Rec. MSt12, 168	Tol. Rec.
(See Model MST12).... 168	15 Soo Model 0331
(See Model AR14L).... 169	
S3CR Tel. Rec.	Tel. Rec.
(See Model MST12) ... 168	(See Model 014)
8193 CM Tel. Rec. (See Model MST121.... 168	777 (Ch, 253) Tel, Rec. (Ste Model 014). $.146$
doustrial elecrronic	
CORP. (See Simplon) (Similar to Chassis).... 85-3	
	$921 \cdot \mathrm{C}, 921-\mathrm{T}$ Tel. Rec.
INDUSTRIAL TELEVISION (Also See Century)	$\begin{aligned} & \text { Ch. Dx'253 } \\ & \text { (See Modal 114DX) ... } 170 \end{aligned}$
IT-40R, IT-42R ICh. IT-26R,	Ch. 231 (See Model 033) 139
[T-3'5R, if-39R, [T.46R])	Ch. 242 (See Model 033). 139
99 A.7	Ch. 243 (See Madel 012)

IMPORTANT

How to obtain a sample PHOTOFACT Folder

Service Technicians who have not yet enjoyed the advantages of the world's finest Radio-TV service data, may obtain a Free Sample PHOTOFACT Folder and see for themselves how they can save time and earn more. To get your free sample, simply state the PHOTOFACT Set Number and the Folder Number (not applicable to listings bearing suffix letter "A" or an asterisk *). Mail your request on your business letterhead (or enclose your business card) to:

HOWARD W. SAMS \& CO., INC.
 Department P
 2201 East 46th Street
 Indianapolis, Indiana

This offer is limited to one sample Folder. (PHOTOFACT Distributors do not stock sample Folders.)

MERCURY-Cont. 8 MM890 (Ch. 8E90) (8M-18805-B)	MOTOROLA-CONT. OE2 (5ee Ch. BA). 46 OE6 (OIdsmobile)
8мм990 (8M.18805-8) .. 69-10	(See Model CTO)
	OE8, OE9 (See Ch, 8A).
MIDLAND	${ }_{\text {PC2 }}$ (See Ch. 8A)..... 46
M6B 2-30	PCob (fontiac)
MIDWEST	PCB, PC9 (See Ch. ${ }^{\text {a }}$ (
P.6. P8.6	PCP-A
R.12, RG-12, RT.12	
	SR6, SRE, 5R9 (580 Ch .
(Ch. RGT.12) 44-13	$\left.{ }^{84}\right)^{180}{ }^{46}$
16, RG.16, RT-16	SR9A 15
(Ch. RGT-16) 45-16	VF102, A, C Tel. Rec. (See Model VKIO1).... 51
	VF103, VFio3M (Ch. TS.8)
S 12, sc-12, ST-12	Tel. Rec. 73-8
Ch. SGT-i21 - 21-23	VK101. M Tel. Rec.
10, SG-16, ST-16 (Ch. SGT.161 21-24	Rec. Photofact Servicer. 82
C12 (Ch. TR-12)	VK106. VK106B, VK106M
Tel. Rec.	Tel. Rec. (See M
716, 716A	vitios
(See Model 5.16) 21	VK106, VKIO7 (Ch. TS-9E, TS.9E1) Tel. Rec...... 77-6
minerva	VTT1 (Ch. TS.48 Thru J) ${ }^{\text {d }}$
1.702 (See W-7028).... 12	vi.73. Ree. VT.73A Chassis. 55-16
L.728, W.728	TS.4) Lotel Tel. Rec. 71-12
	VTIO1 Telerision Receiver 51-14
w.7028 12-20	VT105 (Ch. TS-90) Tol
W710, W710A (W119) . 5	Res. Phototact Serv
W. 728 (See Model L. 728	VTIOS, VT105M (Ch. TS.
410,411 41-	
	vtioi (Ch. TS.90) Tel. 67
729 (porrapa)	Rec. Phototact Servicer. 82
MIRRORTONE (Also Soe Meck)	VT107, VT107M Tel
16 MC M M, 17 Mc , MT,	Tel. Rec.
(See Model 14MTS) . . 163	WR6 (Ch. HS-18)
$7 \mathrm{PC}, 17 \mathrm{PT}$ (Ch. 9025)	WR7, WR8 (See Model
,	WR6)
C, MT	SIC (See Willys Mo
Tel. Rec. (See Model	
	SAS (Ch. H5.15) 3-11
	5AT (Ch. HS-62).
(See model 177C).....	5ATA (Ch. HS.62A) ... 29-16
Mitchell	SC2 (Ch. HS.258)
T16-B, M, T16-2KB,	(See Model
-2kM, T17-B, M	${ }^{5 C 3}$ ($\left.\mathrm{Ch} . \mathrm{HS}-262\right)$
Rec	(See model
	${ }_{\text {(Soe Model }}$ SC1) . . . ${ }^{\text {a }} 116$
	5 Cs (Ch.
1256 ${ }^{156}$	See Model SC1)...... 116
267 158	(Ch. Hs-272)
12688	See Model SC1)
MOLDED INSULATION CO. (Also see Vix)	(Ch. HS.244)117-9 5 Jl (Ch. HS.250),
MR.6 (Wiretons) 41-15	$\begin{aligned} & 51 \mathrm{U}(\mathrm{Ch} . \mathrm{HS}-224), \ldots 100-7 \\ & 5100 \end{aligned}$
MONITOR	(Ch. HS-224)
M.403 (Foct. No. 470.2) - 22-20	
M-500 (Foct. No. 475) \cdots 28-23	51 (Ch. HS-250), 5LIU (Ch. MS.224) (See
	Model 511 . ${ }^{\text {a }}$ (100
	512 (Ch. HS-250),
TAS6M, TW56M 6-18	(Ch. H5.224)
	See Model SJ1) $3 . .100$
(Radio Apparafus)	(Ch. HS.249, HS-223). .101-7
AR-1 164	51AA, 5R12A, 5R13A,
	5R14A, 5R15A, 5R16
M.101159-9	(Ch. HS.280) [See
MONTGOMERY WARD (See Airline)	5R1IU, 5R12U, 5R13U. 5RIAU, 5RISU, 5R16U (Ch. HS-242) ……115-8
MOPAR	5x11u, 5x12U, 5×130
${ }^{602}$ (Calonial Model ${ }_{\text {bl }}$ (19--20	
${ }_{603}{ }^{\text {a }}$................ 65 -9	
	6F11, 61
606 133-9	(Ch. H5-264) -117-10
607 (1) $170-11$	811, ol2 (Ch, HS -226) . . $102 \rightarrow 7$
${ }_{802}^{802}$ (Philco C-4608) 18	6×110
${ }^{803}$ (Philco PD-4908) 66-12	(Ch. Hs-265)
${ }^{804}$. ${ }^{\text {a }}$. 67-12	7VT1, 7VT2, 7VTS ICh.
${ }^{805}$...i......... 71	
${ }^{808} 808$ (See Model 803) ${ }^{866}$	
809 (S5e Model B05) 71	(Ch. H5.247)121-9
812, 813 139-8	9FM21, 9 PM 218
814 1...31 137	
${ }_{\text {8 }}$ (See Model 812)....139	Rec. (See Model 7VTI).
motorola	
AR.96.23 (M-5) $\ldots \ldots \ldots$. $11-16$	7 VII) .i.a....... 83
CR.b (Chrysler) 20-24	Tel. Rec. (See Modols
CR-76 25-21	Vk106 Ch. TS.9E) . . . 77
${ }^{\text {CTO }}$ (See Model CT9).... ${ }^{82}$	10Vk12 (Ch. TS14, A, B)
	Tel Rec. (See Modol
	10 Vk 22 (Ch. TSi4, A, B)
	Tel. Rec. (See Model
	1072) 92
FD.8 (Ford)	10VT3 (Ch. TS-9E, TS-9E1)
FD7 (Ford) (See Model	Tel Rec. (Seo Model 77
	10 Vrio (Ch. TS14, A, B)
GMOT (See Ch. 10 A) ... 106	Tol. Rec. (See Model
GM97 (See Ch. ${ }^{\text {8A) }}$, ${ }^{\text {a }}$ 46	
HNS. HNS (See Ch. BA).. 46	10721
110 TC (See Ch. 10A).... 106	12 Kl (Ch. TS. $23, \mathrm{~A}$, 日)
KR1 (Seo Ch. 1A) 134	
KR8. KR9 (See Ch. 8A). ${ }^{46}$	1012
H6 (Nash) 9-24	$1012)$.............. 92
	$\underset{\text { Tel. }}{12 \mathrm{~K} 2 \text { (} \mathrm{Ch}, \mathrm{ch} .} \mathrm{TS} \cdot 53$)

motorola-c

 (See Model 14 KIBH
$17 \mathrm{K2BE}, 17 \mathrm{~K} 2 \mathrm{E}$ (Ch.
TS-172) Tel. Rec.
(SSe Model 14 KiBH $\ldots . \ldots 12$ $17 \mathrm{K3}, 17 \mathrm{K3B}$ (Ch.
TS. 118 I Tel. Rec
(See Model 14 KjBH) . 121
17 K 3 A ($17 \mathrm{~K} 3 \mathrm{BA}(\mathrm{Ch}$ $17 \mathrm{~K} 3 \mathrm{~A}, 17 \mathrm{~K} 3 \mathrm{BA}$ (Ch.
TS.89) Tel. Rec.
(See Model 14 KIBH$) \ldots 12$

 Model 14K1BH)
$17 K 5 \mathrm{C}(\mathrm{Ch}, \mathrm{TS}-174)$
 17K5E (Ch. TS-221-Al
Tel. Rec.
17K0 (Ch. TS.118).....159-10 17 Ko (Ch . TS.-1i8)
Tel. Rec. (See Model 14K1 BH)
17 K 6 C (Ch. TS-174)

 Model 14 KIBH),
$17 \mathrm{K7BC}, \mathrm{C}(\mathrm{Ch}$. $\mathrm{TS}-174)$ Tel. Rec. (See
Model 14 KIBH)
In
 Tel. Rec.
(Soe Model 17F11).... 16 17K9, B (Ch.TS-220) Tol.
Rec. (See Model 17KSE) 159 Rec. (See Model 17K5E) 159
17K9A, BA (Ch. TS.228) 179A, BA (Ch. TS.228)
Tel. ReC.
(See Model 17F11) 165 17K9BC (Ch. TS-221,-A)
Tel. Rec. (See Model 17K5E).... 159
17K10,M M (Ch. TS-228) (See Model 17F11) 16 17 Kec 10 A (Ch. TS. 174)
Tel. Rec. (See Model
 7K12, A, B, BA, W, WA
(Ch. TS.325, TS.326)
Tel. Rec. ${ }^{\text {Tel. }}$ (TI, Rec. 1711 B (Ch. TS.118) ${ }^{\text {167-1A }}$ Tel. Rec. (See
Model 14 Kl 18 H) $\ldots . . .12$ 17T1A, 17T1BA (Ch.
TS.89) Tel. Rec. (See
Model 14KIBH)..... 12 Model $14 \mathrm{K1BH}$)
17T2A,
TS.89) Tel
(
 17T2, 172B (Ch. TS-118)
Tei. Re2. (See
Model 14KIBH) $\ldots \ldots .12$

 (See Model 17K5E).... 15
17TJXI (Ch. TS.118A, B)
Tel. Rec. (See Model
$14 K 1 \mathrm{BH}$)

 Model 14K1BH)
17T4E (Ch. TS-221, A)
Tel. Rec.
(See Model 17K5E) 159 17T5A (Ch. TS-214) Tel.
Rec. (See Model I7FII) 165 17T5C (C. T5.228) Tel.
Rec. (See Model I7F1) 165 17T5D (Ch. TS.236)
Tel. Rec. (See Model
177 K 8) 152
17T5E, FiCh. TS 314A, B,
TS. 315 A, B) Tol Rer,
TS.315A, B) Tol. Rec.
(See Model $17 \times 10 E$)... 167
17TSBD, C, D [Ch, TS. 236]
Tel. Rec. (See Model
17K8) 1............152-dA
716BF, F (Ch. TS.228)
1716BF, F (Ch. TS.228)
Tel. Rec.
Rec. (See Model 17F11) 165
17 ToG (Ch. TS. $314 \mathrm{~A}, \mathrm{~B}$,
TS-315A, B) Tel. Rec.
(See Model 17KiOE)... 167
17T7, A (Ch. TS-32
TS. 326) Tol. Rec

MOTOROLA-CONt.

MUNTZ

431 (Ch. TV.ioaz)
Tel. Rec. (See
Model M30).
31 (Ch. TVI7A2)..... 108
Tel. Ree. RViTA3) Tel.. 116-10
M31R (Ch. TVI
Rec. (See Model M31). 116
M31R, M 32 (Ch. TV.16Aj)
Tel. Rec. (See
Model M30)........ 108
Model M30).
M32 (Ch. TVITA2) Tel. 108
Rec. (See Model M31). 116 Rec. (See Model M31). 116
M32, M32R (Ch. TVITA3)

(See Model M31)
M33 (Ch TVI7A4) Tel
116

Rec. (For Tel. Rec.
Chassis See Model M31) 116 Chassis See Model M31) 116
M11, M42 (Ch. TV17A3A)
Tel. Rec.
(See Model M31)..... 116 (See Model M31)
M46 (Ch. TV17AT) M46 (Ch. T. (See
Tel. Rec.
Model M31)

 M.159A, B Tel. Rec........ 974.-10
M- 169 Tel. Rec........
961750. 1751 1, 1752 iCh.
$17 A 3 A)$ Tel. Rec. (See 17A3Al Tel. Rec. (See
Model M3I) (Als see
Prod. Chae. Bul. 33
Prod. Chge. Bul. 33, 116
Set $159-3) .17 A O$ Tal Rec. 2053 (Ch. 17A7) Tal. Rec.
(See Model M31) (Also
see Prod. Chge. Bul. 33
see Prod. Chge. Bul. 33,
Set 159.31 . $116 \ldots \ldots 1$ 2053A (Ch. $17 \mathrm{BI}, 17 \mathrm{B2}$)
Tel. Rec. (5ee Ch. 17 B 1) 163 2054 (Ch. 17A7) Tel. Rec.
(See Model M31) (Also
see Prod. Chge. Bul. 33,
Set 159.31

$2055(\mathrm{Ch} .17 \mathrm{FA}) \mathrm{Tel}$. Rec
(See Model M3) (Also
(See Modet M31) (Also
see Prod. Chge. Bul. 33,
Set 159.3)116
2055 A (Ch. 17B1, 17 B 2)
Tel. Rec. (See Ch.
1781).................. 163
2055B (Ch. 1782) Tel Rec. 163
(See Ch. 1781)......... 163

2056 (Ch. 17A7) Tel. Rec.
(see Model M31) (AAso
see Prod. Chge. Bul. 33
see Prod. Chge. Bul. 33
Set 159.3).............
Seet 159.3)........ 116
2056A (Ch. 17B1, 1782)
Tel. Rec. (See Ch. 17B1) 163
Tel. Rec. (See Ch. 17B1) 163-6-164-6
2060 Tel . Rec..........
$2158 \mathrm{~A}, 2159 \mathrm{~A}$ (Ch. 1785,
17 B) Tel Rec. (See
Ch. 17 BI) 16
2162A (Ch. 17B5, 17B6)
Tel. Rec. (See Ch. 17B1)163
2457A |Ch. 17B3, 1784)
Tel. Rec. (See Ch. 1781) 163

MUNTZ-Conf.
2461A (Ch. 1783, 17B4)
Tel. Rec. (See Ch, 17BI)
Tel. Rec. $15 \mathrm{See} \mathrm{Ch}, 17 \mathrm{~B}$
Ch
$178 \mathrm{~B} 1,17 \mathrm{B2}, 17 \mathrm{B3}$,
$1784,1785,17 \mathrm{B6}$

1784, 1785, 1786 Tel. Res. 163-8	
MURPHY	
112	2-15
113	2-2
122 (See Model 112)	2
MUSITRON	
PT. 10	15-20
PX	16-28
SRC-3 (See Model 101)	13
101 "Piccolo"	13-21
103 "Piceolo"	15-21
105	21-26
202	21-27

MUTUAL BUYING SYNDICATE
NASH

nATIONAL CO.
 TV. 1201 Tel. Rec......... 119
TV.1226 Tel. Rec.
(See Model TV.1201). . 119 TV.15ee Model TV.1201). . 119
TV-1601 Tel. Rec.
(See Model TV. 1201). . 119 (See Model TV. 1201). 119
TV.1625 Tel. Rec.
(See Model TV-1201). 119 (See Model TV-1 201). . 119
TV.I70, TV. 1702
Tel. Rec.
TV-1725, TV.1727 Tel....145-7
TV-1725, TV. 1727 Tel.
Rec. ISee
Model TV. 17011 145
TV.1729 TV. 1730
TV. 1729, TV-1730,
VV-1731, TV-1732
Tel. Rer.
(S.e Model TV-1701). 145
TV. 2029 TV. 2030 Tel. Rec.
(See Model TV-1701).. 145
TV-2029, TV. 2030 Tel. Rec.
(See Model TV-1701).. 145

NATIONAL UNION

571, 571A, 57
NEWCOMB

NIELSON
1018 Tel. Rec
1618 Tel. Rec
NOBLITT SPARKS (See Arvin)
NORELCO
PT200, PT300 Tel. Rec... 155 - 164
PT200, PT300 Tel. Rec... 164
588A Tel, Rec............ 164
1200A Tel. Rec.
(See Model 588A) 164

OLDSMOBILE	
982375	20-25
982376	
982399	$59-14$
982420	57-12
982421	87
982454	60-16
982455	
982543 . 157 -7	157
982544 . 982573 96	
982543) 157	
982697.982698	
(See Model 982544)... 96	
OLYMPIC	
$\text { DX-214, DX. } 215$	
DX. 019 , DX. 620, DX-621,	
DX-622 rel. Rec. (See	
Model DX-214).....	106
Dx.931. Dx. 932	
Tel. Rec. (SeeModel DX-214)	
DX.950 Tel. Rec. (See	
Model Dx.214) 106	

olympic－Cont．		Packard－bell－Cont	
RTU．3H（Ouplicator）	62－15		31－23
TV．104，TV． 105 Tol．Rec．	67－15	${ }^{880}$ ，880A（See	
TV．106，TV．107，TV． 108		Model 673A）	
Tei．Rec．（See Model		88	7－17
TV－922 Television Recteiv	58－14		74－6
－9221 Tol．Rec．		1052，1052A	
（see Model TV．	67	$1054{ }^{\text {B }}$	
TV928 Tel，Rec．		1063	
（See Model IVg22）	58	1091 Tel．Re	
TV．944，TV．945，TV．946		1181，1181A	5－12
Tel．Rec．（See Model		1272	＊
TV－104）	67	1273	46－19
TV．947 Tel．	85－10	12917	
TV．948 Tol．		1472	48－17
Model	67		
TV．949，TV． 950 Tol．Rec．		2001 TV ，2002TV Tel．Re	98－8
12．$\times 1.211$		102	
		5a	
		dodel	
Model XL－210）．	109	2	
801．503	－10		
o－solv－u isee model		22901 TV 2299TV．	
		2296 TV Tal．Rec	$82-10$
S01w．U．		2297．TV De	
iw 6 do			
6．601w， 6.60		Model 22	82
仡		2298－TV Tel．Rec	
6．604V．110， 6.604 V .220 ，		Soee Model 229	${ }^{82}$
		$2301 . \mathrm{TV}$	
130， $6.604 \mathrm{~W}-220$（see	22	2302 Tel．Rec． （See Model 2301	
．06	4－36	2311 Tel Rec．	1－6
0．606－A		$2601-T V$ Tel．	22－6
6．606．U	11	2602 Tel ．Res	
		See Mode	
6．617U（See Model 6．617		992	
7－421V，7．421W，7．A21X	57－13	ISeo Mod	
$7-435 \mathrm{~V}, 7-435 \mathrm{~W}$	34－13	$2801 . T V, 2814 . T V$	
7.532 W ，			
7.537		28051	98－8
7－622， 7.638	30	28114	
7.724	29	See Model	
7.728 （5se Model	29	2991 TV Tel	
7．925，7．934，7．936		3191， 3192	
7.939	31－22	3381 Tel．R	
8.451	48	4580 Te	
${ }_{8.618}^{8.533 v}$	57	${ }^{46917 V}$ Tel．Rec	
8， 8.618	35－16		
9.435 V 9．435\％		PATHE	
$51.421 \mathrm{w}^{\text {a }}$	52	17－N25，17－RPC，17－RPT	
35－W（Soe model		Similar to chassis）．	－12
${ }^{4351}$			
752U，753，753U，		PHILCO	
	，	C－4608（See Mopar Model	
（Soe Model 752 ）．			18
755， 7550 Tel ．		C－4608（Revised）（s	
Mode			2
782 Teld Rec．．．．．．		M0	
4， 764 U Tel．		CR． 2	
765 Tel．Rec．		CR．4，CR． 6	
［See Model 752］	126		38－13
\％Tol．Rec．			
（See Model 752）．	126	CR－12	39－16
767 Tel．Rec．		CR． 503	${ }_{128-10}$
769 Tel，Rec．${ }^{\text {See }}$ Model		CR． 505	0
（See Modei 752］．	126	P． 4635 （See Packard	
73 Tel ．Re		Model PA－382042）	20
（See Mod	26	－ 4733 （See Packard	
3 Tol ．Roci		Model PA．393607）	57
ISee Model	139	PD． 4908 （Seee Mopar	
See Model 70	139	5．4624， 5.4625 （Seo Stu－	66
7，968，970 Tel．		4624． 5.4625 （Se0 Stu－	21
（Seo Model 762）．	139	5－4626，5－4627（See Stu－	
operadio		（debaker Model（5－4626）．	
		UN6－400	
1435	33－15	UN6．450	18－26
14.5	48－16	UN6．500	17－24
1465	52－14	UN6－550	31－24
1470.4	${ }^{47} 48$	46.131	5－13
14740	46－17	46－131	32－16
A A S3－E	101－8	46.132	
$4{ }^{\text {a }} 30 \cdot \mathrm{~A}$	102	46.142	36－16
4A35，4A55	100	46.200 Serles	
4ASO－A，1ASI．A		46－200－1．16．201，46．202，	
M2SC		48.200	
11455	113－6	${ }_{46-250}{ }^{46-200}$ ， $46.250 \cdot 1,46.251$	2－12
530，531， 1335		46.350	10－24
＇Soundcoster＇＂	37－14	46．420，46．420－1	6－22
		46．421，16．421－1	5－12
ORTHOSONIC		46.427	2－25
（See Electronic Labs．）		${ }^{4} 6.480$	19－25
		${ }_{46.1201}^{46-1201 ~(R e v i s e)}$	
Packard		$46-1203$	6－23
PRA－382042	20－26	46－1209	13－24
115387	160－7	46.1226	15－24
${ }^{1} 16394$	145－8	47－204，47－205	33－18
		47－1227	25－22
PACKARD－8ELL		47.1230	${ }^{22} \square^{23}$
C1362 $C 1461$	12－21		（$25-23$ $34-16$ 15
SDA	16－29	48－200，48－200－1	33－19
S01		48.206	37－16
P9	1－29	${ }^{48} \mathbf{8}-214$（Seo Model 48.2001	
100 261		${ }_{48-250,}^{48.225,48.230-1}$	$33-15$ $32-17$
4	30－22	48.300	37－17
55	2－7	48.360	－38－14
${ }_{551}^{551.0}$（See Model 551）．．．		${ }_{48-461}^{48-460,48-400-1}$	
${ }_{563}$（See Model 561 ）		48.464	－ $26-20$
588 （See Model 551）	2	48－472，48－472－1	43－15
${ }_{5}^{588}$	19	${ }_{48.472}^{4.475}$（Revised）	48－18
${ }_{571}^{571}$（See Model 572）		48.475 $48-482$	退 $40-14$
${ }_{581}^{572}$（See Model SD日）	${ }_{44}^{22-22}$	${ }_{48.485}^{48-482}$	$30-24$ $47-19$
651 ．．．．．．．．．．．．		48.700 Tel．	
${ }_{601}^{601}$	${ }^{8} 8$	${ }_{\text {48－100 }}^{\text {Tel．}}$ Rec．${ }^{\text {Code }}$ 121）	
$673 \mathrm{~A}, 673 \mathrm{~B}$	13－22	．1000，48．1000－5	
${ }_{7}^{882}$	54－16	（Code 122 Tel．Rec．．	53－17
881 （．a．．．．．．．．．．．．．	44	48.1000 （Cole Tel．Rec． R	

PHILCO－Cont．
51．T2130（Code 121）
S1－T2102） 132
51－T2132， $51-\mathrm{T} 2133$ iCode 121）Tel．Rec．（See
（Model $51 . \mathrm{T} 2102$ ）．．．．． 132 51－T2134（Code 124）
Tel．Rec． 132
（Sae Model $51-\mathrm{T} 2102$ ）． 132 （Sae Model 51－T2102）． 132
51－T2136（Code 124）
Tel．Rec．
（See Model 51－T2102）． 132 （See Model 51－T2102）． 132
51T2138（Code 124）
Tel．Rec．
（See Model 51 －T2102）． 132
51．T2170（Code 121） （See Model 51－T2102）． 132
S5．T2170（Code 121）
Tel．Rec．
（Seo Model 51．T2102）． 132 （Seo Model 51．T2102）
51－T2175， 51.12176
（Code 124）Tel．Rec． （Sode Model 51 －T2102）． 132
51.530

122
$122-10$
$136-13$
$136-13$

 52－Ti802 Code 123 Rec．（See Model
$52-1810$ Code 123） 148
$52-\mathrm{T1} 804$ Code 122 Tel． Rec．（See Model
$52 . \mathrm{F} 1810$ Code 122 ）．．． 14
$52-\mathrm{T} 1804$ Code 123 Tel ．
 Rer．（Sop Model
$52 . T 1810$ Code 122） 148
52. T1810（Code 122，1231 52．17810（Code 122，123）
Tel．Rec．（See Model $51 . T 1800) \ldots(122,123)^{148}$
$52 . T 1812(C$ ode 12 Tel．Rec，（See Model
S1－T1800）．
52 T1831 Code 122 Tel．．．． 52．T1831 Code 122 Tel．
Rec．（Sse Mode
52.71810 Codel 122 ）．．． 148
$52-\mathrm{T} 1839$ Code 122 Tel． 52－T1839 Code 122 Tel．
Rec．（See Model
$52-\mathrm{T} 1810$ Code 122 ）．．． 14
$52 . \mathrm{T1} 839$ Code 123 Tel $52-\mathrm{T1} 1810$ Code 122）．．． 148
$52 . \mathrm{Tl} 839$ Code 123 Tel．
Rec．（Seos Model
52.71810 Code 123）．．． 148 $52-\mathrm{F} 1810$ Code 123）， 14
$\begin{aligned} & \text { 52－T1840（Code 1 22，123）} \\ & \text { Tel．Rec．（See Model }\end{aligned}$ Tel．Rec．（See Model
51．T180）． 148
52－T1841L Code 123 Tel． 52 Rec． 1 See Model
$52 . \mathrm{T} 1810$ Cod
 Tel．Rec．（See Model
51.1800 ）． 51． 1800 ）．
S2－T1842L Code i
Rec．（See Model
R2－T1810 Code 122）．．．1． 148
$52-\mathrm{T1} 844$（Code 122，123）
Tel．Rec．（See Model
$51-\mathrm{T} 1800$ ）
.148
Rec．（15ee Model
$52-1810$ Code 122） 148
52 T1882（Code 122）
52－T1882（Code 122）
Tel．Rec．（Soe Model
51－T2102）．．．．．．．．．．．
$52-\mathrm{T} 2110$（Code 121）
52－T2110［Code 121］．．．．132
Tel．Rec．．．．．．．．．．．．．．．159－2A
52－T2110（Code i22）．
Tel．Rec．（See Model
51．T21021
Tel．Rec．（See Model
5. T2102）．
$52 \cdot \mathrm{~T} 2142$（Code iz2）
Tel．Rec．（See Model
51－T2102）．Model
52． 2144 （Code 121）Tel．

PHILHARMONIC

C－S161 Tel．Rec．
（See Model T．616

Model 1．616）	
T－616 Tel．Rec．．．．	
100 C	38－16
1007	33－20
149．C， $249 . \mathrm{C}$	55－19
$349-\mathrm{C}$	58－17
1116 Tel．Rec． （See Model T－616	＊
5000 Tel．Rev．	160
5200,5201 Tel．Rec． （See Model 5000）	
5250 Tol ．Rec．	

	REGAL-(TOK-FONE)-Cont. 16 T 36 Tel Rec...			
			312 PW isce Model ${ }^{2}$	
			位	
		$\begin{gathered} \text { SEARS-RC } \\ \text { (See } 5 \end{gathered}$		
			Soe Model 313.11 .30	
	${ }^{200331,2}$			
			cole	
			${ }^{401}$	
		,	40	
M-200 A ich.			400	
	$\begin{aligned} & 1207 \\ & \text { 120, } 1250 \end{aligned}$	$\begin{aligned} & 103 \\ & \hline 10.3 \\ & \hline 10 \end{aligned}$		
	(1230	$\begin{aligned} & 1,143 \\ & 1 \\ & 1,313 \end{aligned}$		
			$4{ }^{419}$	保
	1718			
				(e)
	7251			
			Sele	
			(2)	114
		Wuzis		
75	S			
	cismo			
				257
	Stion "lse			
	RENARD			127 -12 ich 1 110.700
(en				
${ }^{\text {a }}$				
	Sco			
	Mreons			
	${ }_{30}^{300}$ oio. Rece.............			
$\begin{gathered} 1 \\ \substack{421 \\ \text { che } \\ \hline} \end{gathered}$				
		231, 223 W		$1{ }^{\text {ato }}$
		(ex)		
recordio (wilcox-Gay)		305		
2Al0 Reorose				
		MPOR		
				331
	How to obtai	ervice Data on	-War Model	
			rior	
			ACT subscriber	
	$0 ¢$ each (ddition	e supplied	
	minal cos	When requestin	war data, pleas	cole
	ention the nam	of the Parts Distributo	who supplies yo	
		ACT Folder Sets.		

SILVERTONE

Ch. (See Model 7054) \ldots.
Ch. $101.808-1 \mathrm{C}, 101.808$ -
Ch. $101.808-1 \mathrm{C}, 101.808$ -
io (See Model 8052).
Ch .101 .809
Ch. (See Model 7080).
Ch. $101.809-1$ A. B.

Ch. | 101.809-1A, B, |
| :--- |
| i01.809-2, $101.809-3 C$ |
| (See Model 7080)..... | $\mathbf{5 8}$

$\begin{aligned} & \text { (See Model 7080) } \ldots \ldots . \\ & \text { Ch. } 101.810 \\ & \text { iSee Model } 7090 \text {) } \ldots . . \\ & \text { Ch. } 101.811\end{aligned}$
(Seo Model 7100) 17
Ch. 101.813
iSee Model 8050) _.... 13
Ch. $101.814,101.814 .1 \mathrm{~A}$
(See Model 7085).....
$\mathrm{Ch}_{\mathrm{j}}^{101.814 .28,}$
101 $814.38,101.814 .5 \mathrm{C}$
$101.814 .38,101.814 .5 \mathrm{C}$,
101.814 .6 C (See

(Soe Model 7070) 30
Ch. 101.819A
(See Model 7226) 31
Ch. 101.820
(See Model 7210) 32
Ch. 101.821
(See Model 8090) 49
Ch. $101.822,101.822 \mathrm{~A}$
(See Model 8270]..... 57
(See Model 8270)
$\mathrm{Ch} 101.823,101.823 \mathrm{~A}$
$\mathrm{i} 1 \mathrm{~A} .823 .1,101.823 .1 \mathrm{~A}$
$\begin{aligned} & \text { 101.823.1, } 101.823 .1 \mathrm{~A} \\ & \text { (See Model } 7166 \text {). } \\ & \text { Ch. } 101.825,101.825-1 A,\end{aligned}$
i
101.825 .18 (See
Model 7115)

Model 71151
$C h .101 .825 .2 C, 101.825$. 16
$30,101.825-3 E$,
$101.825 .3 \mathrm{~F}, 101.825-4$

Ch. 101.829 .1
isee Model 81321).... 66
Ch. $101.831,101.831$ A.
$101.831,101$.
$101.831-1$ (See
$101.831-1(5 \mathrm{ee}$
Model 8127)........ 41

(See Model 8072) 34
Ch. 101.835

Ch. 101.835
(See Model 8230)......
$\begin{array}{c}101.839\end{array}$
(See M.

(See Model 8051)..... 49
(101.846

Ch. 101.850
(See Model 9280$) \ldots . .$.

(See Model 8080)..... 52
Ch. 101.854
(See Model 8132)..... 66

(See Model 1058)...... 162 (Soe Model 9122)..... 66
Ch. 101.865
(Ses Model 9119)
Ch. 101.865 .1
(See Model 9120 A)....
Ch. 101.866
(See Model 9133)
(See Model 9133) 95
Ch 101.867 .
(See Model 9121 *
(See Modal 9121).....
Ch 101.868
(See Model 9122A) \ldots.
Chee Model 109.626
(See Mod M12A) 7152)...... 25
Ch. 109.627
(See Model 7153)...... 26
Ch. 109.631
Ch 109.631
iSee Model 8145) 45
Ch. 109.632
iSee Model 8148$\} \ldots . .44$
(See Model 8148\}..... 44
Ch. 109.633
(See Model 8149) 48
Ch. 108.834
(See Model 8150) 32
$\mathrm{Ch}_{\text {(See Model } 109.635,109.635 .1}$
(See Model 8153).....
$\mathrm{Ch}_{\text {. }} 109.636,109.636 \mathrm{~A}$
(See Model 8160).....

Ch. $110.451,110.452$
(See Model 8051)..... 13
Ch. 110.454
(See Model 6072)..... 1
(See Model 6072).....
$\mathrm{Ch}_{\text {. } 110.46 \delta, 110.46 \delta-1}$
(See Modal 7086)..... (See Model
$\mathrm{Ch}, 110.473$

(See Model 9123) 79
Ch $_{\text {M }}^{110.499 .1}$
(See Model 9124) 79
$\mathrm{Ch}_{\text {[See Model }} 110.499-2$ M126) 79
Ch. $110.700,-1,-10,-40$
$[$ Soe Model $\mid 16) \ldots . . .139$
[Soe Mode1 116]
Ch $110.700-2,-20$
$(5$ ee Model 134).
Ch. $110.700-90$
$\mathrm{Ch}_{i 10} 110.700-96$

(5ee Model $1116-16$)...
Ch.

Ch. 132.807-2 ${ }_{\text {(See Model 7025) } 29}$
$\mathrm{Ch} .132 .816,132.816 \mathrm{~A}$
(See Model 6011).
(See Model 6011)..... 15
Ch. 132.818
(See Model 8002)
Ch. 132.818 .)
Ch. ${ }^{\text {isee Model }}$
Ch. 132.820

SILVERTONE-CORf.

(Ch. 4E10)
201
$1000,1001,1003$
$1005.1217)$
$1005,1006,1007$
92-6 126-12 91-12
 1010 (Ch. 7L7)
1015 (See Model
10 in
$10 \mathrm{BW7SPA} 1 . \ldots$
$020,1021,1023$
(See Model 1000).... 80
1030, 1030A (Ch. 6(8)... 37—22
$1031,1031 \mathrm{~A}$
(See Model 1030) $\ldots .$.
$1035,1035 A, 1036, \ldots$
$1036 A_{i}, 1037,1037 \mathrm{~A}$,
$1039,1040,1041$
(Ch. 918) $\ldots . .$.

$141 \times x)$
$1051,1052(\mathrm{Ch} .689) \ldots . .126$
58 1051,1052 (Ch. 8899).
$1058,1059,1060,1061$.
1064,10711072 1064, 1071, 1072
(See Model 121).
(See Model 121)......
(Ch. 9.8 sA$)$
(See Model 4900 VV)... (See Model
1080A (Ch. 8LIO)
(See Model 141
(See Model 141A)....
1081 (Ch. 9士8A)
(See Model 4900TV)...
081A (Ch. 8110)
1081A (Ch. 8L10)
(See Model 141A)....
1085, 1088 (Ch. 8WiO)

(See Model 141 KX) ..
4900 TV (Ch. 24 TVPC,
3TV9C, 9 LBA) Tol. Rec
3TV9C, 9 i8A) Te1. Rec
$4916,4917,4918(\mathrm{Ch}$.
$24 \mathrm{~T} 10,3 \mathrm{~T}(10,6510)$
Tel. Rec. 4922 ($\mathrm{Ch} . \mathrm{Cl}$
4920, 4921, ?
920,
24TMiO) Tel. Rec.
(See Model 4916)...... 164
(See Model 4916).
4935 (Ch. 23TClO)

(Ch. 24TV9, 3TV9) Tel.
Rec. (See Model
4900 TV)
4900TV)
4942 (Ch. 23 FcIo
Tel. Rec. (See
Tel. Rec. (Soe
Model 935)

ARION-Cont.	steelman
5.26Ps 5 S	
(See Model 5AM26PS).	350, 35
Ch. 689 (See Model 1051) 58	
Ch. 818 (See Model 1030) 37	162
Ch. 6.06	163
Ch. 717 (See Model 1010135	Stewart-warner
Ch. 7.46 (See Model 1010) 35	STEWART-WARNER
(See Model 7am46)	AVCode (Code 905 C) AV)
Ch. 819 (See Model 121). 57	Code 9054-A) Tel. Rec. 64-12
Ch. 81910 (see Model 141A) 92	1 Tl (Code 9020-A).
Ch. 8510 (See Model 141A) 92	A51T2 (Code 9020-B),
Ch. 81×10 (Seo Model	AsIT3 (Code 9020.C),
8.46	4 Codo 902
8-46 ${ }^{\text {dodel }}$ 8AM46).	A61CR1 (Code 9034-C),
	Code 903
Ch. 8.57 (See Model 1005) 29 Ch. 918 (See Model 1035) 62	AblCR3 (Code 9034-E). ${ }^{\text {a }}$
Ch. 9184	9036-A),
See Model 4900TV).... 64	P2 (Code 9036.8),
ise.78PA	A61 P3 (Code 9036-C) . . 42
(See Moder 108W7.6pa) 15	2 T 1 Code 9026
127 ssee mow	A7272 (Code 9028.
Ch. 19 issiof 191510A 104	A72T3 (Code 9026.C), A72T4 (Code 9026-D). . 32-24
Chassis 215172	A92CR3, A92CR35
Sem	(Code 9028.C). A92CRO ${ }^{\text {a }}$
237810	Cras ICod
(See Model 498	$51 \mathrm{II}, \mathrm{BSIT2}$, B5iT3
23TCl0 (See Mod	Code 9044A, B, C).... 58-22
4935, 4942, 4954,	B61T1, B6IT2 (Code
Ch. 239010	9046A, B
(See Model 5002).... 102	
h. 24 TB10	892CR4, 892CR8,
(See Model 4944) 86	892CR9, B92CR10
28 t 10	des 9043
SSee Model	(M)
(Seo Model 4916).	1/ (Codo 9054-A). ${ }^{\text {a }}$
247 R 10 (See Model	(11) (Code 9031-A)
052)	Tel. Rec. 95A-12
Ch. $24 \mathrm{TVg} ,24 \mathrm{TV9C}$	T. $711 \mathrm{M} / \mathrm{Code}$
(See Model 4900TV)... 64	Tel. Rec.
isee Model 5288)	T.712 (Code 9031-8)
h. 25 RO190	Tel. Rec.
(See Model 5085)..... 139	(See Model T-711).... 95A
Massis 25sDI	C.721 ICode 9037-4
25SD201 (See Model	Tel. Res.
	(See Model T-711)
assis 2550202	51756 (Code 9024.C) .. 39-
(See Model	26 (Code 9018-C)
25TK10A (See Model	
5006 X) 265D160, 265D170,	
5180, E, L	61 Tl 6 (Code 9022-A),
(See Model 5025) ... 128	61726 (Code 9022-8).
$C^{\text {Chi }}$ See Model ${ }^{\text {285017 }}$	Code 9023
ee Model 515	9023.
hassis 26SDI71 (See Model 5165X).... 166	62T26 (Code 9023-E). 62 TC36 (Code 9023.F). 2-21
Chassis 26SD172, A	72CR16, 72CR28 18-28
(See Model 32 C)	9000 -
Chassis 26sDi72C 167	9001.
(See Model S207) 167	9002-A, 9002-B, 9002-P,
Chassis 265517000	05.
(See Model S107]	9007 A, F, G. $\ldots10-30$
Chassis 2655171.	Models $9100 \mathrm{~A}, 91008$,
(See Modet 5io ${ }^{\text {a }}$]	9100C. $91000,9100 \mathrm{E}$,
(See Model 5207).	$9100 \mathrm{~F}, 9100 \mathrm{G}, 9100 \mathrm{H}$ Tel Rec 75-15
Ch. 417	$9103-\mathrm{B}, \mathrm{C}, \mathrm{O}$ Q $104-\mathrm{A}, \mathrm{B}, \mathrm{C}$
(Seee Model 48W17) ... 50	Tel. Roc. .a......... 105-10
(Seob Model 48WITA). . 49	
Ch. 686A (See Model 6-66A).... 51	9108A, B, 9109A, B Tel. Rec. (See Model 9106A) 118
	A Tol. Rec.
SPIEGEL (See Aircastle)	(See Model 9106A).
stark	,
	$9124-A$ Tel. Roc.
1020 89-5	9125.4 Tel. Rec.
Starrett	
Stankel 1012	9150-B, 9150-D, 9150.0Z 140-12
Gotham Tel. Rec....... $101-12$	9151.A \ldots............106-14
Henry Hudson, Henry Parks	
hn Honcock Tel. Rec.... 96	
Othan Hole Tell. Rec.... 87-12	9161-A, 8, C.........170-12
Isag. Lee	91624, ' ' ' . . .l.......168-13
(Seo Model Henry $\begin{aligned} & \text { Hudson) } \\ & \text { al }\end{aligned}$	9200-A, C, -D,
AlJCG 1 (Ch. 1751$)$	
Tel Rec 1705	DDA, E, F, FA Tel. Rec. 158-12
Al7G. $1(\mathrm{Ch}$, Rec. See Model	9203 A Tel. Rec........166-14
AlフCG.1) ${ }^{\text {a }}$	9204-A Tel. Rec......... 164
$20 \mathrm{C}-2$ (Ch. 1851)	stratovox
	579-1-58A 6-32
A 20 CD .1 (Ch .1851)	STROMBERG-CARLS
Tel. Rec. ${ }_{\text {S }}$ (Seos Model Al7CG-1). 165-2A	Stromberg-Cartson
A207G (Ch. 1851 (1)	
Tel. Rec.	AP.50, A..............130-13
(See Model Al7CG.1).165-2A	
Tel. Rec. .1si. 149-13	
${ }^{208 m}$ (Ch. 1551)	AU-33 134-10
Tel. Rec. (See Model	
	AU-35 ${ }^{138}$
Yet Rec. (See Model 1789	AV-38, AV-39 153-14
29AM1 (Ch. 14S1)	
Tel. Rec. (See Model 149	Prod. Chge. Bul. 1 - Sel
178M1) 15511149	103.19) 79-17
${ }^{308 \mathrm{mal}}$ Tel. Rec. (Soe Model	TC.19 Tol. Rec......... 97-17
	Series Tel.' Rec........ 72-12
	TV-101, TV.101W (112020)
AM1 (Ch. 14S1)	Tel. Rec.
Tol. Rec. (See Model	TV.10PM, TV.1OPY $\{112025$, 1120221 Tel. Res.....
Chassis 1751, 1851 (See Model Al7CG-1).165-2A	TV. 12 Series PHOTOFACI Servicar . 88

STROMBERG-CARLSON-TELE-TONE

ELE-KING-Cont.	TEle-tone-Cont.
17. 117C, 11710 Tel.	TV-316 (Ch. TAH)
Rec. (Seee Model 114). 14	${ }_{\text {Tel }}$. Rec.
[For TV Ch	TV318 (Ch. TAM)
Model 1141 141	Tel. Rec.
162 Tel. Rec.129-12 172 (Ch. TVG) Tel. Rec.	TV322. TV323 (CM. TAM) ${ }_{\text {Tel }}$
(See Model 201)..... 131	TV318)
174 (Ch. TVG) Tel. Rec.	TV324, V325, TV326
201202 Tel	Ch. TAP
203 (Ch. TVG) Tel., Rec.	IV328. TV329 RCh. TAP, 127-12
(See Model 201).....131	
210 Tel. Re	
310 Tel. Re	TV32
410 Tel. Rec., 88-12	TV.330, ${ }^{\text {TV}}$
(5ee Model 162) 129	Tel. Rec.
510 Tel . Re	335, TV336 ICh.
(See Model 410)...... 88	$1, \mathrm{TA}$
Itel. Rec	
515 Tel. Rec	TAP.2] Tel Rec iap 1 ,
(See Model 114) 141	Model TV324) (.... 127
2 Tel . Rec	345 ICh. TAP.
(See Model 410)...... 88	TAP-2) Tel
	${ }_{\text {TV348, }}^{\text {Model TV3 }}$
712 Tel. Rec. ${ }^{\text {a }}$ (1).... 88	2) Tel. Rec.
(5ee Model 410)..... 88	(See Model TV324) ... 127
Rec.	TV. 352 Tel. Rec.
(Soe Model 162) 129	(See Model IV
Model 162) 129	(See Model TV.330). 145
oc Tel, Rec.	-355-U ICh. 8010,
(See Model 162	80161 Tel. Re
Scar Tel., Rec	TV357 [Ch. 800
(For TV Ch. only, 129	8003) Tel. Rec. (Sees Model TV. $3301 \ldots$ 145
	TV.357.U. Ch . 8010,
See Model 114)..... 141	${ }_{\text {80, }}^{8016) \text { Tel. Rec }}$
	TV.358, TV. 359
see Model 114). ${ }^{\text {a }} 141$	(See Model TV.324) ... 127
920 (Ch. TVG) Tel. Re	TV. $379 . \mathrm{U}$ (Ch. 8010,8016)
Camal 201	Tel. Rec. ${ }^{\text {M }}$
1014 (Ch . TVG)	Model TV. $353 . \mathrm{U}$
(See Model 201)131	TV. 360. TV. 385 (Ch. 8001,
(See Model 201). ${ }^{\text {a }} 131$	(See Model TV. 330)
, TVG Tel. Rec	1 Ch 80
(5ee Model 201)..... 131	${ }^{8016)} \mathrm{Tel}$.
(See Mode! K21)	$\begin{aligned} & \text { See Model TV. } 355-\mathrm{U} \\ & 1374 \text { 1Ch. } 8001 \text {, } 8002 \text {. } \end{aligned}$
TELEQuIP	(el TV330)
Ch. 127 R , 14T, $14 T \mathrm{TR}$	Prod Chge. Bul. 35 ,
16TR, 19t, 197R	-37
tol.	
C316MF Tel. Rec	dode IV.
C317MF Tel. Rec	384-U Ch. 8010
${ }^{\text {C32 }}$ C5160 Tel. Rec	$8016)$ Tel. Rec.
C5170 Tol. Rec	Model TV.
${ }_{\text {C } 5190}$ Tel. Rec.	TV-385-U, TV. 386 -U (Ch.
C6170 Tel. Rec.	8013,80151 Tel
C6190 Tel. Rec.	(See Model TV.355-U
C6200 Tel. Rec	Ch. Series Ai.
${ }_{\text {chen }}^{\text {c7200 Tel Rec. }}$	109 (Ch. Serles)
T2161 Tel. Rec.,	110 (See Model 117.A)
T2172 Tel. Rec.	
T4160 Tol. Rec	119,120 (See Model
T4170 Tel. Rec.	(17.A)
	122. 123 isee Modoliool
5135, 5136, 5140A 11-24	124.15 See Model 117-A).
telesonic (Medso)	125 (See Model 100).... 39
1635 20-22	$127.130,131$
1636 21-33	(S'ee Model 100) 39
1642 $20-23$	132 (See Model 117.a)
1643 21-34	133
-TONE	134
TVis	
TV149 Television Rec.... 56	138 (Ch. Series N)
TV.170 Tel. Rec........ 83-12	${ }^{139}$, 140. 141 (Ch, Seties
TV. 208 Tel. Rec.	M) (See Model 135)
TV2081R Tel. Rec	2, 143, 144
(Also See Prod. Chge.	148 (Ch. Series 5) 24-26
	${ }^{149}$ (Ch. Series H)
(Sbe model iv. 2491	
(Also Soe Prod. Chge.	151 (Ch. Series si $\cdots \cdots \cdots$
Bu1. 21.5 Set 136-11.... 57	[See Model 148]
[See Model TV208TR). . 95	152 (Sh. Series R) ${ }_{\text {(See Model } 145 \text {) } \ldots . . .23}$
TV-245, 246 Tel. Rec....) *	156 (Ch. Series U) …... 35 35-23
TV-249, Television Rec	157 (Ch. Serier H)
	(5ee Model 135].
	157 (Ch. Series AE).... 49
TVV250 Tel. Rec........ 91-13	158 (Ch. Series AT)..... 59
TV-255, TV.250	161.162 (Ch, Series T) ${ }^{\text {a }}$ (${ }^{\text {36-24 }}$
(Ch. TS) Tel. Rec..... 101-13	(See model 150].
(See Model TV249).	
TV-282 Tel. Rec......... 71-14	165 (Ch. Series AG) 50-20
- ${ }_{\text {- } 5 \text { ee model }}$	
TV-284 Tel. Rec........ 93-10	167. 168, 171 (Ch. Series
	T) (See Model 150).
Rec. (See Model TV. 284) 93	${ }^{172}$ (SCh, Series U)
TV-300, TV. 301 (Ch. TAA,	174 (Ch . Series T)
TVAB) Tel. Rec. 99A-12	(See Model 150)
(Ch.' TW) Tel. Rec. 107-10	(78 (Ch. Series U) ${ }_{\text {ise Model }}$
TV. 304, TV. $305 \mathrm{ICh}, \mathrm{TAA}$,	
TAB) Tel. Rec.	183 a.............. 53-24
	185 190 190 (Ch. Ser. Series AH) Series AZ)
Tel. Rec. ISee	
Model TVV.3001. . . . 107	198 (See Model 158)..... 59
TV.306, TV. 307 (Ch. TY, TZ)	
TV.1.1. Rec.	201 (Ch. Series AX).... 74-9
TV.308 (Ch. TAC) . . . 109-14	${ }_{206}^{205}$ (Ch. Series BD)..... ${ }^{737-12}$
TV314 Clch. TAJ)	214 ich. Series
	(See Model 190).
Tel. Rec.115-13	${ }^{215}$ (See Model 205).

TELE-TONE-Cont.	thordarson	TRUEICNE-COnt.
228 (Ch. BL) 144-13		D1046C, D
${ }^{232}$ (Ch. Series BP)		D1090 Tel. Rec.........
235 (Ch. BC) 1411 14	T-31W25A $\ldots \ldots \ldots \ldots . . .9$ 9-33	01092 Tel. Rec.
Ch. Series A		
See Model 100)..... 39	T.32W00, T-32W10 76-18	${ }^{0} 16122^{1644}$............. 28-34
	ne pak	
Ch . Series $A E$	24-28	D1747, 01748 -
Model 157)..... 49	trad	01732 (Fatiory 7901-14) - 34-25
Ch. Series AG ${ }_{\text {a }}$ (See Model 105)..... 50	T.20. A Tel. Rec. 133-14	$\left.{ }_{25486} 856\right)^{\text {a }}$......... 44-25
Ch . Series AH	T-20-E Tel. Rec.......165-17A	D1836, D18384 (Factory 45-25
Cr (See Modol 185)..... 52	TRANSVISION	
Chisee Model 158) 59	Chassis Model A Tel. Rec. 107-71	
Ch. Series AX ISeo Model	Chassis A-3 Tel. Rec...... 130-15	${ }^{01845}$ 01846A B, C
	WRS-3 Tel. Rec.........112-10	
iSee Model 190)..... 81	transvue	D1949 …e.......... 60-20
$\begin{array}{ll}\text { (assis Series BD } \\ \\ \text { Soe Model } & \text { 205) } \\ \end{array}$	17XC, $17 \times \mathrm{T}$ Tel. Rec.	
	(Similor to Cobosis)132-8	D1952 (See Model Di949) 60
(See Model 195)..... 7	20XC, 20XT Tel. Rec. (Similar to Chossis).... 132-8	01990, 11992 (Foctory No.
	$160-4(\mathrm{Ch} .12 \mathrm{~A} \times 211)$	TAF22) Tel. Rec. 69-13
go	${ }_{601}$ (Ch, $160 \times 23.25,269$	D1994 Tel. Rec........ 77-11
(See Model 235)...... 141	Tol. Rec.	D1990 Tel. Rec ISee Model
(Sees Model 134) 13	(Similor to Chassis)...6 99-14	D1997A Tel. Rec.
Ch. Series $\mathrm{CA}^{\text {a }}$	810 Cel. ${ }_{\text {Ch. }}^{\text {Rec. }} 16$ AX23,	D1998A Tel. Rec.
(Soe Modol 133)..... 11	(Similar to Chassis).... 99-14	${ }^{\text {D2017, }}$ 02018 101-15
Series D ${ }^{\text {S }}$ Sel Model 117	1400 T Tel. Rec	
(See Model 177)	(Similar 10 Chos	26A99-906) 83-14
(Soer Modol 135) 14	1700C, T Tel. Rec. (Similar to Chassis). . . . 132-8:	
. Series K (See Model	${ }^{2000 C}$ Tel. Rec.	D2603 (Foctory No. 46i). 13-33
Ch. Serles N	(12AX2) (See model	02604 13-34
(See Modol 138)...... 23	$180-1)$........	${ }^{\text {D2605 (Factory Model }}$ 2AW2) ${ }^{\text {a }}$
(See Model 145)...... 23	trav-ler	02606 …..........6 65-15
Ch . Series s		02612 (Code SW.9022-G) ${ }^{3-9}$
(See Modet 148)..... 24	12150, A Tel. Rec.........108-13	02613 © 015
Series ${ }^{\text {S }}$ S	121 Tel. Rec. (See Model	Model 6D110) 2-18
ISee TAA, TAB (See	101). $\ldots 14.1 . . .{ }^{86}$	02616 (Factory
Model TV-3151 115	Tel\|' Rec. ${ }^{\text {a }}$ (See	Model 6D1171 10-32
. TAC ISee	Model 12L50)........ 108	
Ch. TAM ${ }^{\text {Modeol }}$-308)....... 109	16 c 50 A Tel. Rec. (See	${ }_{02620}$
(See Model TV-316)... 135	16R50A, 16T50A	02621 ${ }_{14}^{4-32}$
TA) (See model	Tel. Rec. (Sea	
TV314) $\ldots \ldots125$	Model 12150$)$	02623 (1)
That (See Model	St Tell. Rec. (See Model	D2626 (Fact. No. 457-2).. $52-22$
Ch. TAO (SEe	Chge. Bul.	02630 SFactory
Model TV-330) 145	Set 156-31 86	27014-602 (1stue A) ... 1-10
TAP, TAP-1, TAP-2	${ }_{20450}$ Tel. Rec. 146	02634 12-31
(See Model TV324) ...127	62R50, 63R50 Tel. Rec.. 150-13	
is ${ }^{\text {TS }}$	64R50, $64 \mathrm{R} 50-1$	02644 (Faciory No. 101 Cl$)_{11} 12$
ISee Mod	$64850-2$ Tel. Rec	02645 ….......... 4-39
Modei TV-300) 107		02601 (Factory 4819) ${ }^{2-23}$
TYee TZ Mod TV. 3061, 104	65G'50-2 Tel	
See Model TV-306).. 104	(See Model 20A50) . . 146	
isee Model 156)...... 35		02692 (.........o. 39-28
Series Y	(See Model 20A50). . . 146	${ }^{2} 2709$ (Factiory No. 470) - 27-30
See Model 1601..... 36	$14-1 \mathrm{~A}, .2$ Tel. Rec. 1 See	
Ch. 8001, 8002, 8003 (See Model TV. 330) . . . 145	$\xrightarrow{\text { Model }} 11.3$ ¢2RSO1....... 15	D2718 [Factory No. $23-31$
Chassis 8010		227014-6381U) 23-32
ISee Model	119.5 Tel. Res. isee	${ }_{0}^{02743}$-274 ${ }^{2}$
Chasis 8013	Model 62RS0)	${ }_{\text {D2748 (}}$
(See Model TV-3 (Sassis 8015,8016	7-15, 217.16 ich.	
assis 8015,8016 See Model TV-355-U)	34A2) Tel. Rec........ 170-14	D2806. D2807 (Faciory Model 181) 44—26
	$11 \mathrm{~A})$) Tel. Rec...... 162-14	2810 (Foctory No. 36
tele-vogue (See Muntz)	${ }^{220.9}{ }^{3} \mathbf{2} 220.98 \mathrm{lCh}$	
	5000 See Model Soooil 139-2A	D2819 (Factory No.
televox	50001 .	${ }^{2848282-738)}$. ${ }^{35-24}$
22-29	5002 Serios (Ch. 109) 12-28	02906 (Factory No. 189). .69-14
1B-2W ${ }^{20-32}$	5007, 5008, 5009	02910 65-16
		D2919 (Fact. No. 60F21). 59-22
P-T 22-28	5010, $\left.{ }_{\text {(Ch. }} 501105\right)^{\text {a }}$.	02963 73-13
	5015 ${ }^{36-25}$	
TEL-VAR (See Audar)	5019: 23 -30	
temple	${ }_{5021} 5020$ (Ch. 8001 43	D2987 (See Model 1990)
	${ }_{5022}$. 101 -14	
E.510 ….............. 2-3	${ }_{5028}^{5027}$............... ${ }^{31}{ }^{31}$ - 30	${ }^{02990}{ }^{\circ} \mathrm{Tel}$. Rer
E-511		D3615 (Factory 258D2.606) $18-32$
E.512, E.S14 (See Model	${ }_{5030}{ }^{5029}$ 5031 $\ldots \ldots \ldots \ldots \ldots$ 32-25	03619 (Factory 5P110) ... 10-33
E.SiO)	${ }_{5036} \ldots \ldots . . \cdots \cdots \cdots \cdots{ }^{\text {a }}$ 54-19	
	${ }_{5049} \times$............... ${ }^{45-24}$	
F.611 ${ }_{9}$	${ }_{5054}^{5051}$.a.	03722 (Foct. No. 472)... 51-24
F-616 ${ }^{5-38}$		
F.617 \ldots........... $12-27$	5080, 5081 ……....116-11	03810 ….......... 39-27
.410 ${ }_{43} \mathbf{1 8}^{28}$	5066 ${ }^{42-24}$	
	5170 163-13	
	6040 49-25	
${ }_{515}$ …............ 17.34	${ }^{6050}$ ־70. \ldots........ ${ }_{59}^{56-23}$	1408111 74-10
.516 …............ 18-31		04142A $\ldots142-14$
G-518 ${ }^{29}$-27		D4620 (factory No. SC12)
G.521 28-33	7016, 7017 M.......... 89.17	
	${ }_{7023} \ldots \ldots \ldots \ldots \ldots \ldots{ }^{83}-13$	D4818 (Foct. No. 1340x) $45-26$
	7036112-14	
${ }_{\text {G-722 }}^{\text {G-722 }}$ (See Model C-722). ${ }^{44}$	Ch. 11 A 2	
6.722 ……1...... $24-27$		$26021.81)$. $\cdot \ldots . . .{ }^{50-21}$
G.723 (See Model G.722). 24		201088 A Tel. Rec.105-11
		$2 \mathrm{2D10888}$ Tel. Rect...... 145-1A
	(See Model 217.15) . . 170	${ }_{20}^{201089 A ~} 1089$ Tel. Rec.
4108 ISee Modol	Chossis 10	${ }_{201091}$ Tel. Rec........161-10
G-4-418) 26		201093A, 201094 A
	(15ee Model 50io).... 2	
	Chassis ${ }_{\text {S }}$ See Mo9	201095 l lCh.
H. 521 (See Model G.521) 28	Chastis 501 (Sod S002)..... 12	Tel. Rec.
	(SSee Model 7003).... 12	${ }_{2}^{201185 A}$ Tel. Rec.....154-13
	Chassis (See Model 5001) 5021 11.	201191 A (Ch . ${ }^{\text {a }}$
TV-1778, TV-1779	(See Model 5021)..... 11.	brC20ay 221 Tel.
Tel. Rec. 66 --16	TRELA	2 D 11944 Tel . Rec...... 151
	HW301 14-28	
POTONE	UETONE	2 L 2043 A Tel. Rec.
TEmpletone (See Temple)	D1034A, B, C (See Model D1046A) : 102 D1046A, B102-15	(See Madel 201091)... 161 2020478 Tel. Rec. (See Model 2D1091). . . 161

ETONE-Cont.	estinghouse
2049A (Ch. 16AY210)	04, H-105 4-11
$\mathrm{Iel}^{2} \mathrm{Rec}$	H-104A, H. 105 Sa , H.107A,
(See Model 201095) . . 134	08A \cdots O-10... 21-36
(See Model 201095) ... 134	107, H-108, H-110, 4-19
$164 Y 210)^{\text {a }}$ Tel. Rec	H.113, H.ii4, H.11\% 4-19
2052 C (Ch. 17AY23)	(See Mo
Tel. Rec.	H-117, H-119 11-34
2020520	
17 A	
202053 Tel. Rec.	(5)e
$22^{2149 A ~(C h . ~ 17 A Y 212) ~}$	H-125, H-126
Tel. Re	e Mod
2152A	H.13
	38
ultradyne	H.1. $\mathrm{H} \cdot 14$
	H-148 15
	48A (Seo Model H-148)
UNITED MOTORS SERVICE	H-153, H-1
(See Delco or Bu	Ch. V-2103) - ${ }^{\text {a }}$ (${ }^{\text {35-25 }}$
rrolet, Oldsmobile	H-154 (See Model H-104A) ${ }^{\text {a }}$
Pontiac)	${ }^{\text {H. } 156}$ ISee M
	H-157 (Ch. V.21
television	H-161 (Ch. V.2118) 34-27
C10030 Tel. Rec....... 99A-12	H-162 (See Model H-117). 11
C19031 Tel. Re	H-164 (Ch. V.2119-1) ... 36-28
(See Model	H-165 32-29
O823 Tel.	H-166
S033 Tel. Rec	d
See Model	H-168, H-16
031 Te	Ch
(See Model C160	M
[See Model 5C80 Eorly). 17	${ }_{\text {H-169 }}$
	(Ch. v-2103) (s
	Modol H-153)
5 566 Early 17-9	H-178 (Ch. V-2123)
${ }^{\text {8-16M }}$ (Dumbarton) 26-29	et.
UNITONE	H-182 (Ch. V-2128),
88 5-26	H-183, H.183A ${ }^{\text {a }}$ 48-
V-M	H-184 (See Modol
150 139	185 (Ch. V. 21
970 …	H-186M, H.187
165	(Ch. 'v-2132)
-12	H-188 (Ch. V.2133)
	H-190, $\mathrm{H}-191, \mathrm{H}-191$
1001 -A 10	Ch. v-2134) .i.... 59-23
- Camp	H-195 (See model H
576-1.6A 7-	${ }_{\text {H.198A (}}$ (CHV-2130-1)
	Tei. Rec. (Seo Mod
(See Videola)	H196A 10
videodrne	v -2130-120x) Tel.
10FM, $107 \mathrm{~V}, 12 \mathrm{FM}, 12 \mathrm{TV}$	H-198 (Ch. V.2137-2) ... 73
Tel. Rec. 69-15	H-199 (Ch. V.2137.11... 69-16
	H-202 (Ch. V-2128-2).... 50-22
LA	H-203 (Ch. V-2137) ... 62
Vs.180, vs-161 Tel. Rec.. 92-9	H-204 (See Model H-202) So
165, V5.166, V5.167,	
VS-168 Tel. Rec. (See Model V5-160). ... 92	$\begin{aligned} & \text { V-2137) Tel. Rec. (See } \\ & \text { Model H-196) } 65 \end{aligned}$
VIDEO PRODUCTS	V-2130.110x or
$630-\mathrm{DXC} \mathrm{Tel}$	V-2130.120x and Radio
O-DX24C Tel. Rec	(See Model H196A
(See Model b30-D оFm3B, 830к3B	[0x]
Tel. Rec.	H207B (DX) (Ch.
0-k3C Te	V.2130-210x or
ISee Model 630	V-21 $30-220 \mathrm{X}$ ond Rad
$30-\mathrm{K} 2 \mathrm{AC}$ Tel. Rec. See Model 630.	Ch. V. 2137 (See Model
	[0x]) 84
ewione	H-210,
RC.201A, RRC-201 11-32	
ION MAST	Model $\mathrm{H}-203)$......
MC, MT	H.214, H-214A (Ch.
(Similar to Chassis) . . .117-8	$\xrightarrow{\mathrm{V}-2103.31}$
MC. 10 MTT . 16 N	
$16 \mathrm{MXC5}, 16 \mathrm{M}$ 16 MXTS Tel. R	V-2149.1) Tal. Roc..... 97 A
(Similar to Chossis) . . . $117{ }^{\text {a }}$	H-217, $\mathrm{H}-217 \mathrm{~A}$ (Ch
MC. 17 MT , 17MXC, ${ }^{\text {a }}$	$2140.110 \mathrm{X}, \mathrm{V}-21$
17 MXTS Tel. Rec. (Similar to Chassis). . . 117-8	to H.2178, Set 911. H.2178 (Ch. V-2146-350X,
viz	Tel. Rec. ${ }^{\text {a }}$
(1) 14-31	H-220 (See Model M-190).
vogue	
32 A-P 11-33	H-225 (DX) (C
Ch. Models 553R, 554R .. 8-32	
WARWICK (See Clarion)	-
	[(0x])
atterso	H-226 (Ch. 2146-210
	2146.250
	Tel. Rec.
4582 …............. 6^{634}	V.2137.3
4782 24-31	V-2137-3S, V-2149.2)
90 \cdot.............. 16-34 ${ }^{16}$	
4800 43-23	H. 242 (Ch. 2150-31) Yel.
webster-chicago	H-251 ch. v-2iso.
34-26	${ }^{84}{ }^{\text {H01is }}$
$100-608$ $100-621$	
	H. 302 Ps (Ch. V.215i.1). $91-15$
161.1 55-23	H303P4, H304P
	(Ch. V2153)
288117-14	30777, H -30877
${ }_{762} 760$ Ssee Model 362).... 100^{12-12}	$\text { \{Ch. V-2156\| } 101$
762 (See Model 362).... 105	H.310T5, H-310TSU,
WEbSter electric	$\xrightarrow{\mathrm{H} \cdot 31155, \mathrm{H} \cdot 3115 \mathrm{SO}}$
-15, 81.154142	(ch. ${ }^{\text {a }}$
-25. 82-23A, 83.25... 143	
	H-314P4, H.314PAU,
8^{85-25}.............. $144{ }^{14}$	H-315P4, H-315P4U ${ }^{\circ}$
WEBSTER (Telehome)	(Ch. V-215J.1) H-316C7 (Ch. V.2136-1).112-13
8064 $\ldots \ldots \ldots \ldots \ldots .{ }^{\text {56-24 }}$	H-316C7 1-h. vilisoli
604M …….......... 57-23	del
ESTERN AUTO (See Trueton	318T5.

WESTINGHOUSE-ZENITH

WESTINGHOUSE-Cont.	WESTINGHOUSE-Cont.
Ch. V.2130.110x, V.2130-120× (See	Ch. V.2192, 1 (See Model H-639T17) 133
Model H196A [0X])... 84	Ch. V-2192-2,
h. V.2130-210X,	See Model H
Model H190A [[XX]) . . 84	V.2194-1' ${ }^{\text {V }}$ (${ }^{\text {ee }}$
Ch. V.2130.31Dx, ${ }^{\text {che }}$	Model H.642K20A) . . 137
V.2130.320x (See	Ch. V-2194.2, -3
Model H1904 [DX1]... 84	(Soe Model H-638k20).
V.2131, v-2131-1	Ch. V -2200.1
${ }_{\text {(Soel }}^{\text {(Sop }}$ Model H-185) ... 54	(S5ee Model H648720). 154
${ }^{\text {Chi }}$ (See Model H-186M) . . 60	
V. 2133 (Ch. V.2202-2 isee Model
(See Model H-188).... 51	
V. 2134	Ch. V.2203-1 (See Model
H-30777) 100	
V.2136.1	Ch. V.2206-1 (See Model
(See Model H-316C7). 112	H.665T16)
. V -2138-2	Ch. V-2210-1 (See Model
(See Model H-324T7). 213	H.653K24)
Chi V-2136-4	Chassis V-2214
(Soe Model H-328C7) . 137	(See Model
Model H-33417UR) 149	${ }^{(S \text { See Model H.667T17). } 167}$
v-2136-5U	Chassis v-2217.1
(See Model H-334T7U). 142	(See Model H. 673 K 21
V.2137	v.2219.1
	ISee Model H
(See Model H.199).... 69	WILCox-gay
Cassis V -2137-2	
[See Model H-198).... 73	(Also See Majestic)
v. v -2137.3.	(Also See Recordio)
V-2137-35 (Soe 97	G.306, G.402, G.403,
Ch. V -2144, V-2144-1 ${ }^{\text {M }}$	
isee Model H-210).... 61	Moiestic Model (272).. 108
Ch. V -2146.05 (See Model	G .414 Tet . Rec. ($\mathrm{Seos}^{\text {en }}$
H-216) ${ }^{\text {(10) }}$ 97A	
Ch. V-2146-110X (See 99A	(See Majestic Model)
V-2146-21DX,	12T2) . 21.1108
V.2146-25DX	
(See Model H-2178) 91	${ }_{\text {G. }}$ See Majestic Modol
is.en Model H-2178) 91	G-914 Tel. Rec. isee
V.2146-45	Majestic Model G-414)
(See Model H-216)..... 97A	OD-446M (OD Series)
Ch. V. 2149	Tol. Roc.) 98
${ }^{(5000}$ Modol H-217B) ... 91	O(See Modol OD-446M) . 101
(Soe Model H.216) 97A	Ol Series Tel.
Ch. V -2149-3	9 Sories Tel.
(See Model H-603C12), 100	OW Series Tel. Rec
	wiliys-overland
Ch. V -2150-31 ${ }^{\text {a }}$	8030 (670777) 50-23
(See Model H.242) . . . 97A	670777 (See Model 8030
Ch. V-2150-41	677012 156
(See Model H-600T16) . . 98	
V.2150.51 (5ee	WILMAK
	W.446 "DENchum" 21-11
(See Model ' H . 6000716). 98	woolaroc
Ch. V-2150.81, -82, -84	3.1A (Ch. 6.9022 -J)
(See Model H2S1)..... 99A	
Ch. V.2150.91 A	3-3A (Code $7-9003 \cdot \mathrm{D})$... ${ }^{6-38}$
(Seo Modol H-604t10).. 99A	
Model H-604T10, Al... 99A	
Model 1-6097101..... 95	
Ch. V.2150-101 (See 97	3-13A, 3-14A, 3-15A,
	3.164 ㄱ.......... ${ }^{34-28}$
${ }^{\text {Che }}$ (Sees Model H-606K12). 120	3-17A, 3-18A ${ }_{24-29}$
Ch V -2150.136	${ }_{3.29 \mathrm{~A}}^{3.204}$ a............... ${ }_{\text {7-31 }}$
(See Model H.610r12). . 105	3.61 A (See Model 3.71A) 36
Model H-613k161..... 107	3.704 \ldots............ 31-34
Ch. V-2150.178, U	3.714 ……........ 36-29
(See Model A-617712) . 103	zenith
Model H-617712) 103	G500 (Ch. 5640) 83-16
Ch. V-2150.186, A, C, CA	6503 (Ch. 5G41)) 99-19
(See Model H-617T12). 103	GS10, GSIOr (Ch. 5G02). 84-14
V-2150-197	G511, G511, G51
(See Model H.302P5) . . 91	G615, G615W, G615Y
, V 2152-01 (See	(Ch. 66051
Model НоозС12) 100	G600, G663, 6605
	G724 (Ch. $7 \mathrm{G02)}$......103-18
	G725 (Ch. $7 \mathrm{G01}$)......101-18
Ch. V.2153-1 (Soe Model	G881, G882, G883, G884,
H-312P4) 98	G885 (Ch. 8G20) … 98-16
$\mathrm{Ch} . \mathrm{V}-2156$	G.2322 (Ch. 23G22)
(See Model H-342PSUU) 138	G. 2322 Rec, Re, $23 \mathrm{G} 24211{ }^{\text {a }}$
	G-232221 (Ch. 23G2421)
$\begin{aligned} & -2,-20 \text { (See Model } \\ & H-318 T 5) \end{aligned}$	G23272 (Ch. 23 G 24)
Ch. V-2157.30 5 (5ee	Tel. Rec.
Model $\mathrm{H} \cdot 327 \mathrm{~T}$ ($\mathrm{U}^{\text {a }}$	(See Model G23227)
Ch. v.2157-4U	G.2340, R (Ch. ${ }^{\text {23G22 }}$
(See Model H.355T5).. 161	G2340RZ, 7 (Ch. 23G24)
Ch. V.2161, V. 2161 U	(See Model G2322Z) ... 91A
$\begin{array}{cc} \text { (See Mod } \\ \text { V- } \mathrm{V}, \mathrm{ll} \end{array}$	
${ }^{\text {Ch }}$ (See Model H-633C17). 122	Tel. Rec. (isee Modol
Ch. V-2175-1, -3, -4, 5	
	G23sort, T (el. Rec (Ch. 23624)
	(See Model G23227) ... 914
Model H-626T16) 116	G2353E (Ch. 23622)
Ch. V-2178,-1,-3 (Seo	Tel. Rec. (See Model G2322) \qquad 98
h. V 2180-1	G2353EX (Ch. 23G24)
(See Modal H35OT7) . . 154 Ch. V . 2180.2	
${ }^{\text {Chi }}$ (See Model $\mathrm{H}-354 \mathrm{C} 7$) . 158	
Ch. V-2180-3 H-660C17)	Tel. Rec. G236EZ (Ch 23G24)
Ch. V. 2180.5 (See Model H-357C10). 161	Tel. Rec. (See Model G2322Z) . . 91A

ZENITH-Cont.

$$
\begin{aligned}
& \text { Tel. Rec, } \\
& \text { G3173RZ, } \text { ich. } 23 G 24, \\
& 8 G 20 / 22 \text {) Tel. Rec. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8G20/22) Tel. Rec. } \\
& \text { (See Model G3157RZ).. 91A } \\
& \text { G3174RZ (Ch. 23G24, }
\end{aligned}
$$

$$
\begin{aligned}
& 8 G 20 / 22) \text { Tel. Rec. } \\
& \text { (5ee Model G3157RZ) . } 91 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { G3259RZ (Ch, } 24 \mathrm{G} 26 . \\
& 8 \mathrm{G} 20 / 221 \text { Tel. Rec. } 91 \mathrm{~A} \cdot 12,13 \\
& \mathrm{G} 3259 \mathrm{RZ1}(\mathrm{Ch}, 24 \mathrm{G} 2621)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tel. Rec. } \\
& \text { G3262Z (Ch, } 24 G 22, \\
& 8 G 20 / 22 \text {) Tel. Rec. }
\end{aligned}
$$

$$
\begin{aligned}
& 8 \mathrm{G} 20 / 22 \mathrm{Tel} \text { Rec. } \\
& \text { (See Model G3259R).. } 91 \mathrm{~A} \\
& \text { G326271 (Ch. 24G2621) } \\
& \text { Tol. Rec. }
\end{aligned}
$$

$$
\begin{gathered}
\text { G3275RZ(Ch. } 24 \mathrm{G} 26, \\
8 \mathrm{G20} / 22 \text {) Tol. Rec. }
\end{gathered}
$$

$$
\begin{aligned}
& 8 \mathrm{G20} / 22) \text { Tol. Rec, } \\
& \text { (See Model G329RZ)... } 91 \\
& \mathrm{G} 32762 \text { (Ch. 24G26. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{G} 32762 \text { (Ch. } 24 \mathrm{G} 26, \\
& 8 \mathrm{G} 20 / 221 \mathrm{Tel} \text {. Rec. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Revised) } \\
& \text { H880RZ (Ch, 8H20)......127-14 } \\
& \text { H-1083E (Ch 10H20) } \\
& \text { (See Modol H2437E)...120 }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}-1083 \mathrm{E} \text { (Ch 10H20) } \\
& \text { (See Modol H2437E) ... } 120 \\
& \text { H1086R, H1087R (Ch. }
\end{aligned}
$$

$$
\begin{array}{r}
\text { H1086R, H1087R } \\
10 H 20\} \text { (Sea } \\
\text { Model H2437E) }
\end{array}
$$

$$
\begin{aligned}
& \text { Model H2437E) } 120 \ldots 120 \\
& \text { H2029R, H2030E, H2030R }
\end{aligned}
$$

$$
\begin{aligned}
& \text { H2O29R, H2O3OE, H2O3OR } \\
& \text { (Ch. } 20 \mathrm{H} 20 \text { Tel. Rec....144-15 } \\
& \text { H2O41R (Ch. 2OH2O) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { H2041R (Ch. 20H20) } \\
& \text { Tet. Rec. } \\
& \text { (See Model H2029R). . } 144
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H} 2052 \mathrm{R}, \mathrm{H} 2053 \mathrm{E}(\mathrm{Ch} . \\
& 20 \mathrm{H} 20 \text {) Tel. Rec. }
\end{aligned}
$$

$$
\begin{aligned}
& 20 \mathrm{H} 20 \text {) Tel. Rec. } \\
& \text { (See Model H2029R) . . } 144 \\
& \text {-2220E. R. H2227E. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H} 2226 \mathrm{E}, \mathrm{R}, \mathrm{H} 2227 \mathrm{E}, \\
& \mathrm{H} 2227 \mathrm{R} \text { (Ch. 22H2O) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tel. Rec. } \\
& \text { H2229R. H2230E, R } \\
& \text { (Ch. } 22 \mathrm{H} 21) \text { Tel. Rec... 1514-13 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Ch. } 22 \mathrm{H} 21 \text { Tel. Rec... } 151 \text { - } \\
& \text { H224R (Ch. 2H21) } \\
& \text { Tel. Rec. (See Model } \\
& \text { H2229R) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tel Rec. (Soe Model } \\
& \text { H22229R) } \\
& H 2242 E, R \text { (Ch. } 22 \mathrm{H} 22 \text {) }
\end{aligned}
$$

ZENITH-Conf.	ZENITH-Cont.
2250 (Ch.	J1083E, Jl083EZ
22 H 20) Tel. Rec.	(Ch. 10H20Z)
(See Model H2226R)... 114	(See Model H2229R]. . 151
H2252R, H2253E (Ch.	Jlo86, Jlo86R, Jl086RZ
$22 \mathrm{H} 21)$ Tel. Rec. (See	(Ch. 10H2OZ)
Model H2229R) 151	(See Model H2229R).. 151
H2254R (Ch. 22H22)	J1087, 110872
Tel. Rec. (See Model	(Ch. 10H2OZ)
H2229R) 151	(See Model H2229R). . 151
H2255E (Ch. 22H2O)	J2026R (Ch. 20J21)
Tel. Rec. (See	Tel. Rec. . ${ }^{\text {a }}$ -159-18
Model H2226R) 114	J2027E, R, J2029E, R,
H2328E, EZ, R, RZ (Ch.	J2030E, R (Ch. 20J21)
23H22, Z) Tel. Rec... . . 118 -11	Tel. Rec. (See Model
H2329R, RZ (Ch. 23H22,	J2026R) $\cdots \cdots \ldots159$
2) Iel. Rec. (See	J2040E, J2042R, J2043R,
Model H2328EZ) 118	J2044E, R (Ch. 20121)
H2330E, R ((h. 23M22)	Tel. Rec. (See Model
Tel. Rec. (See Model	J2026R ${ }^{\text {a }}$. 159
H2328E) …..... 118	J2051E, J2033R, J2054R,
H2341R (Ch. 23H22)	J2055R (Ch. 20122) Tel.
Tel. Rec. (See Model	Rec. (See Model
H2328E) 118	J2026R) 159
H2352R, RZ, H2353E, EZ	J2126R (Ch. $21 / 21$) Tel.
(Ch. 23H22, z) Tel. Rec	Rec. (See Model
(See Model H2328EZ). . 118	J2026R) ㄱ......... 159
H2437E, R, H2438R,	J2127E, R, J2129E, R,
H2439R (Ch .24 H 20)	J2130E, R (Ch. 21 J 20)
Tel. Rec. 120-13	Tel. Rec. (See Model
H2443R (Ch. $24 \mathrm{H2O}$)	J2026R) 159
Tel. Rec. (See Model	J2140E, J2142R, J2143R,
2437E) 120	J2144E, R (Ch. 21J20)
H2445R (Ch. 24H2I) Tel.	Tel. Rec. (See Model 159
Rec. (See Model	J2026R) ${ }^{\text {d }}$. 159
H2437E) \cdots. . . . 120	J2151E, J2153R, J2154R.
H2447R (Ch. $24 \mathrm{H21}$) Tel.	J2155R (Ch. 21J21) Tel.
Rec. (See Model	Rec. (See Model
H2437E) 120	12026R) …...... 159
H2449E (Ch. 24 H 20) Tel.	
Rec. (See Madel	Radio Ch. 8H2OZ) Tel.
H2437E) 120	Rec. (See Model
H2868 (Ch. 20H20, Radio	J2026R) 159
Ch. 8H20E) Tel. Rec...	J2968R (Ch. 211208
H3068R (Ch .22 H 2 I) Tel.	Radio Ch. 8H20Z) Tel.
Rec. (See Modal	Rec. (See Model
H2229R) 151	J2026R) 159
H3074 (Ch. 20H20) Tel.	J3069E (Ch. 201218
Rec. (See Model	Radio Ch. 10H202)
H2029R, Set 144.15,	Tel. Rec.
and Radio Ch. 10H20Z,	(See Model J2026R) . . 159
Set 151-13)	
H3168R (Ch. 23 H 22 and	Radio Ch. 10H202)
radio Ch. 8H20) Tel.	Tel. Rec.
Rec. (See Model H2328E	(See Model J2026R). . . 159
Set 118 and Model	4G800 (Ch. 4E41) 35-27
H880RZ Set 114)	4G800WZ, 4G800YZ,
H3267, R (Ch. $24 \mathrm{H2O}$ and	4G800Z (Ch .46412$). . .5323$
Radio Ch. 8H20) Tel.	4G903, 4G903Y (Ch .
Rec. [See Model H2437E	4F40) 76-20
(Set 120) and Model	4K016 (Ch. 4C52) 6-39
H880RZ (Set 114)]	4K035 (Ch. 4C53) 6-40
H3273E, H3274R (Ch.	50011, 50027
22 H 21 and Radio Ch.	(Ch. 5CO1, 5C012) 3-17
10H2OZ) Tel. Rec. (See	50810 (Ch. 5E02) 54-21
Model H2229R]151	$5 \mathrm{SG003}$ (Ch. 5C40) 17-35
H3284R (Ch. 22 H 22 and	$5 \mathrm{G0032}$ (Ch. 5C40Z).
Radio Ch. 10h20Z) Tel.	5G00322 (Ch. 5C4022) 30-31
Rec. (See Model	5G036 (Ch. 5C51) 30-32
H2229R1 151	5R080-5R086
H3467R (Ch. 24 H 20 and	(Ch. 5C02, $5 \mathrm{CO4}$) 4-4
Radio Ch. 10H20) Tel.	6D014, ${ }^{\text {SDO14W, }}$ (0029.
Rec. (See Model	60029G (Ch. 6C01) ... 9-35
H2437E) 120	60015, 60015Y, 60030
H3469E (Ch. 24 H 20)	(Ch. $8 \operatorname{COS}$, $6 \operatorname{CO5Z}$) ... 3-24
Tel. Rec. (See	60815. 0 D815W.
Model H2437E)...... 120	60815Y (Ch. 6E05).... 55-24
H3475R (Ch. $24 \mathrm{H2O}$ and	6G001, 6G001Y
Radio Ch. 10H20) Tol.	(Ch. 6 C40) 3-14
Rec. (See Model	6G00iYz1 (See Model
H2437E) . . .i. 120	6G001) ${ }^{3}$
H3477R (Ch. 24 H 21 and	6G004Y (Ch. 6C41) 20-35
Rodio Ch. 10H20) Tel.	6G038 (Ch. OC50) .-..... 32-30
Rec. (See Model 120	6G801 (Ch. 6E40)....... 53-26
H2437E) 120	6 R060
H3478E (Ch. 24 H 21 and	8R084 (Ch. ©C21) 20-36
Radic Ch. 10H20) Tel.	6R087 (Ch. 6C22) 7-32
Rec. (See Model	6R888 (Ch. 6E02) 34-30
H2437E) 120	7H820, 7 H 820 W
.1880. J880R (Ch. 8H20Z).168-14	(Ch. 7E01) 43-24

ZENITH-Cont.	
7H822 (Ch. 7 CH 22 WZ 7H82), 7H822	
(Ch. 7E02Z)	55-25
7H918 (Chassis 7F03).	75-18
7H920, 7H920W (Ch.	
7 FOII	77-13
7H921 (Chassis 7F04)	73--16
$7 \mathrm{H922}$ (Ch. 7F02).	$87-15$
7 0 070 (Ch. 6C06)	37-25
$7 \mathrm{P887}$ (Ch. 7E22)	54-22
8 GOOSY (Ch. 8C40)	7-33
8G005YT (Z1) (Ch. 8C40T)	
(Z1), 8G005YT) (22)	
(Ch. 8(40T) (22)	53-27
$8 \mathrm{H023}$ (Ch. 8CO1).	4-10
8H032, 8H033	
(Ch. 8C20)	1-33
8 HO 34 (See Model 8HO23)	4
8H050, 8H051, 8H052.	
${ }_{8}^{8 H 061 ~(S e e ~ M o d e l ~}$	
8H832, 8H861 (Ch. 8E20) 52-24	
9H079, 9H079E, 9H079R, 94081 9H082R 9H085R	
$9 \mathrm{H} 881,9 \mathrm{H} 882 \mathrm{R}$, 9H885.	
9H888R (Ch. 9E21)	43-25
9H984, 9H984LP	
(Ch. 9F22)	64-14
9H995 (Chassis 9E21Z)... 74-12	
12H090, $12 \mathrm{HO91}$, 22 H 092 ,	
$14 \mathrm{H789}$ (Ch. 13022)	
27T965R (Ch. 27F20) Te	
Rec. (See Model G2951)	5
287925 E, R (Chassis 28F22)	
Tel. Rec.	64-15
28T926E, 28T926R(Chassis 28F25)	
Tel. Rec. (See Model28T925)	
28F202, 288211	
Tel. Rec. (5ee	
287964 R (Chossis	
28F23) Tel. Rec.	74-13
371996 RLP (Ch.	
28F23, 9E21Z) Tel.	
42T999RLP and 9H995). 74	
371998 RLPU (Chasis28F20. $9 E 21 \mathrm{Z}$) Tel. Rec.	
28F20. 9E21z) Tel. Rec.[See Model 289925 (Set	
64) and Model $9 \mathrm{H995}$(Set 741)	
421999RLP (Chassis 28F23,	
Radio Ch. 13022) Tel.	
Rec. See Model 74	
Ch. 4C52	
(See Model 4 KO	
Ch. $4 \mathrm{C53}$	
Ch. 4 See Model 4 K 035	
Ch. (See Model 4G800).... 35	
Ch. 4 E 41 Z	
(See Model 4G800Z)... 52	
Ch. 4F40 (See Model	
4G9031 76	
Ch. 4 H 40	
Ch. 5 COO . 5 COIz	
(See Model 5001	3
Ch. 5C02, 5CO2Z	
(See Madel 5R080)	4
Ch. 5CO4	
(See Model 5R080)	4
(See Model 56003) . . 17	
Ch. 5C40Z, 5C4022	
(See Model 5G003Z).	30
Ch. 5C51	
(See Model 5G036).	30
Ch. 5E02	
(See Model 50810)...	

ZENITH-Cont. Ch. 5GOI (See Model GSIII	85
Ch. 5602 (See Model	
Ch. 5603 (See	
Model G516)	
Ch. 5G40 (See Model	
Ch. 5641	
(Sem Model G503)..... 99	
$\text { H511) } 147$	
Ch. 5H40 (See Model H500)	
Ch. 5H41 (See Model	
Ch. $6 \mathrm{CO1}$	
(See Model 6DO14).	9
Ch. 6 C05, 6 C05Z	
Ch. 8 Cos	
(See Model 7 RO 070).	
Ch. 8 C21	
(Soe Model 6RO84).	
Ch. 8 C 22	
(See Model 6R087).	7
Ch. 6 C40	
${ }^{\text {(See Model }} 66001$	
(See Madel 6G004Y	20
Ch. 6 C50	
(See Model 6G038).	
Ch. 6E02	
(Soe Model 6R886)	
$\text { h. } 6 E 05$	
Ch. 6 E4O	
(See Model 6G801)	
Ch. $6 \mathrm{GO1}$	
Ch. 6 G05	
Ch. 6 G20	
(See Model G2957)	
Ch S $\mathrm{HO1}$ (5 ee	
Ch. 6 HO 2 (See Model	
H664)	149
Ch. 7 EOS	
(See Mode! 7H820)	
Ch. 7E02, 7E02Z	
(See Model 7H822).	
Ch. 7E22	
Ch. 7F01 (See Model	77
Ch .7502	
Chassis 7 FO 3	
Chossis 7FO4	
Ch. 7G01	
(See Model G725)	
$\mathrm{Ch} .7 \mathrm{G01z}$	
Ch. 7G02	
(500 Model G724).... 103	
Ch. 7 GO 4 (See Model G723).... 104	
Ch. 7HO2 (See Modal	
Ch. 7 H 022	
Ch. 7h022I	
Ch. 7HOA (See Model	
Ch. 7H04Z (See Model	
$\mathrm{Ch} .7 \mathrm{HOAz1}$	
Ch. 8COI	
(See Model 8H023).	.. 4
Ch. 8C20 (See Model 8H032)	
Ch. 8 C 21 (See M	

ZENITH-COnt.
Ch. 8C4O
(See Model 8G005Y)... 7
 (See Model 8H832).... 52
Ch. 8 G 20
(See Model G881)..... 98 (See Model G88)......
ChG20/22 (See Model
G3157RZ) 914

 Ch. 8H2OZ
Ch. SEe Model J2026R)... 159 (See Model 9
Chassis $9 E 212$ Ch. (See Model 9H995) ... 7
(See Model 9 H984).... 6 (Seo Model H2437E).... 120
Ch. 104202 (See Model
H2229R) Ch. $11 \mathrm{C21}$
(See Model 12H090)............ (See Model 14H789) ... 41
Ch. 20 H 20
(See Model H2029R)... 144
Ch. 20J21 (See Model Ch. 20J21) (See Model
(2026R) 159
Ch. 20122 (See Mo....... 159 Ch. 21120 (See Model 159 $C_{\text {Ch } 21121}$ (See Model .159 Ch. 22 H 20 (See
Model H222
M 114 Ch. 22H21 (See Model
H2229R)
$\mathrm{Ch}_{\mathrm{h}}^{22 \mathrm{H} 22}$ Ch. ${ }^{23 \mathrm{G} 22}$ (Soe Model Ch. 23G23 (See Model
G2957) 98
Ch 23 G 24 (Seo Model
 (See Model G2322Z1).
Ch. 24 G 26
(See Model G2437RZ). 91A Ch. 24G26Z1 G2441Z1). *
(See Model 24 H 20 24H21 (See Mod 2 H2437E) . . 120
Ch. 27 F20 (See Model 27T965R)... 95
Ch. 28F20, 28F20Z, 28F21, Ch. 28F20, $28 \mathrm{FF20Z}{ }^{28 \mathrm{E}}{ }^{28}$ 28 F 22 (S
Ch. 28523
Ch. 28 F23
(See Model 28T964R).. 74
Ch. 28 F 25 (See Model 28T925)... 6
Ch. 29 G 20 (See Model G2951).... 95
Ch. $23 \mathrm{H22} 23 \mathrm{H22Z}$
(See Model H-2328E) . . 118 (See Model H-2328E). . 118
Ch. 24 G 20 (See Model G2420E
Ch. $24 G 20-\mathrm{OX}$ (S.e. Model
G2420E) Ch .24 G 21 (Se . Modol
G2454R Ch. 24G21.OX (See Model
G2454-ROX) Ch. 24G22/23
Ch. 24G24 G2441R)... 98
Ch. $24 \mathrm{G24} / 25$
(See Model $3059 \mathrm{RI} \ldots$$\ldots 98$

RECORD CHANGERS

CM-1) indicates service data also available in Howard W. Sams 1947 Record Changer Manual. (CM-2) indicates service data available in Haward W. Sams 1948 Record Changer Manual. (CM.3) indicates service data available in Howard W. Sams 1949, 1950 Record Changer Manual.

ADMIRAL	FARNSWORTH	OAK		trav-ler	WEBSTER-Cont.
RC-150 (CM-1) 26-31	P-51, P56 (CM-1) 13-36	6666	(CM-1) 19-35	A (CM-3) 72-13	256 (CM-2) 88-13
RC-160, RC-160A, RC-161,	P-72, P73 (CM-2) 75-8	9201	(CM-3) 111-10		346 3 $3 . \cdots$. . (CM-3) 100-12
RC-161A (Supplement to	GARRARD				356, $357 \ldots .$. (CM.3) 106-16
	RC. 60(CM-2) 81-7	Philco DIO, DIOA		100(CM-1) 36-30	
RC.170, RC-180, $\mathrm{RC}-170 \mathrm{~A}$	RC. 80 157-5	M-4,	(Cm-1) 25-30	UTAH	WESTINGHOUSE
RC-182 SC-181 (CM-2) 76-1		M-7	(CM-1) 28-35	550(CM-1) ${ }^{8}$	V4914 (CM-2) 47-28
		M-8	(CM-2) 83-7		
RC210, RC211, RC212	P6 (CM-2) 79-8	M-9C	(CM-2) 74-7	7000(CM-1) 27-31	V6235 134-13
(CM.3) 72-1	GENERAL INDUSTRIES	M.12C	(CM-3) 109-9	CM-2) 83-15	V6676 136 -15
RC-221, RC-222 ... (CM-3) 79-1	RC1301 (CM-1) 22-33	M. 20	(CM-3) 103-11	V.M	ZENITH
RC220, RC221, RC222 3108	GENERAL INSTRUMENT			$200 \cdot \mathrm{~B}$......... (CM.1) 15-36	S11468(CM-1) 23-35
Changes …..(CM-3) 108-2	204(CM-1) 23-34	RCA		400 (CM-1) 26-33	
RC320, RC321, RC322 (See	205 …......... $(\mathrm{CM}-1) 10$	RP168	($\mathrm{CM}-3) 72-10$	400 (lote) (CM-2) 90-13	\$14001 …......(CM-2) 75-17
Changes)		RP-176	(CM-1) 25-31	402, 400C (CM-2) 82-12	\$13675, 514002 ,
RC400 … 1n4-1	PC-206A(CM-1) 18-33	RP-177	(CM-2) 44-27	402D. 400D \ldots...(CM-2) 87-14	S14006, 514008 (CM-2) 85-15
RC500 1 1s2-2		RP-178	($\mathrm{CM}-2)$ 79-12	404 (See Model 405)	S14004, 514007 ...(CM-2) 79-18
	MAGUIRE	RP-190 Se	144	(CM-3) 73	S14012, S14014 (CM-3) 110-14
AERO	ARC-1(CM-1) 7			405(CM-3) 73-14	
46A(CM-1) 19-34	MARKEL	Setburg	(CM-1) 11-36	400, 407 (CM 3) 102 - 16	
47A (CM-2) 77-2	70. $71(C M-2) 84-8$		(CM-1) 24-34		S14024, S14025 (See
	74, $75(C M-3), 91$ - 7		(CM-1) 32-19	802 (CM.3) 77-12	S14026 [See Model ${ }^{\text {M }}$
AVIOLA	74, 75 Supplement......131-11	S, SQ	(CM-2) 78-12	802 … (CM.3) 1115 - 14	S14023)(CM-3) 105
100(CM-1) 33-32	MILWAUKEE ERWOOD				S1 4027 (See Model
	10700(CM-1) 16-37	SILVERTO		950 Supplement...........131-17	S14022) $\ldots . .(\mathrm{CM}-3) 112$
BELMONT	11200 (CM-2) 86-6	101.761 .2 $101.762-2$	2) 77-10		$\begin{aligned} & \text { S-14028, S-14029. } \\ & \text { S.14030, S-14031 } \ldots \text { 145-13 } \end{aligned}$
C.9(CM-2) 34-31	$\begin{aligned} & 11600 \\ & 12300 \end{aligned} \cdots \cdots \cdot(\mathrm{CM}-3) \text { 73-7 } 13 \mathrm{~B}-5$	101.761.3.	2) 77-10	${ }_{50}^{\text {WESESTER }}$ (CM-1) $24-35$	
columbia		101.762-3	(CM-2) 83-11	56 (CM-1) 14-36	(See Model S.14028) . . 145
104 4 . . 124-2	M24RC, B25RC,	$\begin{array}{r} 101.762 \\ 101.763 \end{array}$	(CM-2) 88-11	70 (CM-1) 29-28	
	B27RC, B28RC .. (CM-1) 12-35			77-1 137-14	MISCELLANEOUS
CRESCENT	RC30 . ${ }^{\text {a }}$. ($(\mathrm{CM}-2)$ 80-9	5PARTON		100 135-14	Series 700 F(CM-2) 89-9
C-200 (CM-1) 20-37	RC36, RC36A 147-8	C48	($\mathrm{CM}-2) 87-11$	106 146-12	Series 700F 33/45 (CM.3) 75-11
6 Serles (CM-3) 89-4	RC.36C (See Model RC36) 147			133 (CM-2) 82-13	Series 700FLP ... (CM-2) 101-6
250 Series (CM-2) 78-5	RC37 141-8	Thorens		148(CM-2) 86-12	Series 700F5(CM.2) 104-8
350 Series (CM-2) 80-3	RC-40 (See Madel RC37).141	CD-40	(CM.1) 39-29	246(CM-2) 74-11	Series 700R(CM-2) 91-8

AMPRO	CRESCENT-Cont.	$\begin{aligned} & \text { EICOR } \\ & 1000 \ldots \ldots .(\mathrm{CM} \cdot 3) 90-4 \end{aligned}$	MASCO DC37R (See Model D37R). 148	SILVERTONE $70 \text { (Ch. } 567.230 \text {, }$
731 (For electrical unit see	H-19 Series "Steno"122-3		037 (See Model D37R). . 148	${ }^{70} 567.2311$..........121-11
Folder 186.5; for me-	H.22A1 125-4			771 …......(CM-1) 26-32
chanical unit see Folder 133-4)	M-2000 Series120-4	5, i04-4, 5, (CM-3) $116-12$		101.774-2, 101774.4
BRUSH) SOUND MIRROR	M-2001 Series (See Model M-2000 Series). 120	101-8, 101.9, 102.9.	375 Model 3 37R) (CM-3) 117-7	(CM.3) 114-10
BRUSH SOUND MIRROR ${ }_{\text {BK-401 }}$		103.8 Recorder \cdots.... 170-6		ST. GEORGE
BK.403 …........(CM-2) 78-3	Model M-2000 Seriest. 120	109, 110, 111, 112.....152-5	153-10	ST. GEORGE 1100 Series(cm-1) 40-24
BK.416(CM-2) 81-4	M-3000 Series	GENERAL INDUSTRIES	9T-3C $162-9$	
BK.437, S, BK.439,	[See M-2000 Series) . . 120		RCA	WEBSTER-CHICAGO
$\begin{aligned} & 8 K-441: \text { BK-442; } \\ & \text { BK-443P } \end{aligned}$	M. 3001 Series (See Model M-2000 Series). 120	INTERNATIONAL ELECTRONICS	M1-12875(CM-2) 85-12	
BRUSH MAIL-A-VOICE	M. 3500 Series (See	P13\{CM.2) 88-4	REELEST	$\begin{aligned} & 178 \\ & 210\end{aligned} \cdots \cdot \ldots . . .(C M-3) 113-12$
BK-501, BK.503	Model M-2000 Series). 120 1000 Series(CM-2)	KNIGHT	REVERE	228 156 - 13
CONCERTONE 401 155-4	1000 Series Revised (CM -3) 77-4	LEAR DYNAPORT WC.311-D(CM-2) 80-8	$\begin{aligned} & \text { T. } 100 \\ & \text { TR-200 (For electrical unit } \end{aligned}$	WEBSTER ELECTRIC (See Ekotape)
CRESCENT H-1A … 130-5	CRESTWOOD	MAGNECORD AUDIAD	see Folder 165.10, for mechanical unit see	WIRE RECORDING COR
H-2AI Series(CM-3) 119-4	CP.201 (CM-3) 118-4	AD-1R (CM-2) 84-7	Folder 149-11)	WP (CM-2) 76-19

ADDITIONAL PHOTOFACT BENEFITS

From time to time, PHOTOFACT Folder Sets include valuable
"bonus" aids, as well as useful data of a special nature. The fol-
lowing materials are extra benefits incorporated in the PHOTOFACT Folder Sets indicated, at no additional cost.

Set No.	Set No.	Set No
1-RTMA Production Source Code (Jan. 1, 1952).	8-Replacement of Disc \& Plote Type Ceramic Capacitars	13-CR Tube Dimension Chart.
2-TRADE DIRECTORY- Parts Manufacturers 12	9-Certificate entitling subscriber to PHOTO- FACT Volume Labels for Vols. 1-10.... 62	Characteristics Chart
3-National Electrical Code on Antennos... 88	10-Certificote entitling subscriber to PHOTO-	15-CR Tube Interchangeability Chart. 112
4-Record Changer Cross Reference by Manufacturer and Model. 118	FACT Volume Labels for Vols. 11-20.. 102	16 -NPA mointenance and repair information
5-Mica Capocitor Color Codes..... 48	100 Doar Knob Hangers 80	
6-Ion Trap Alignment. 62	12-Photofoct Television Course	
7-"Ler's Look at the Sync Pulses". 64	oppearing seriolly in. 38,51, 54	18-General Electric Clock Doto 160

ANNOUNCING..

MODEL AS-1-ECONOMY 61/2" P.M. SPEAKER KIT

REAR SEAT AUTO SPEAKERS

Designed by Quam Speaker Engineers after thorough investigation of the installation and performance problems peculiar to this type of speaker. These two models are the result -quality speakers both, simple to install and superior in performance. Always specify Quam.

Quam $61 / 2^{\prime \prime}$ P.M. Adjust-a-Cone

 Speaker with $3 / 4^{\prime \prime}$ voice coil and capacity to handle full output of any single-ended auto set. Kit includes 3 -position switch for dash mounting, ample cable for installation, flocked grill screen, baffle plate, miscellaneous hardware and complete instructions.

Quam heavy duty $6^{\prime \prime} \mathrm{x}$ 9" P.M. Adjust-a-Cone Speaker with $1^{\prime \prime}$ voice coil and ample capacity to handle full output of the most powerful auto set. Kit includes 3 position switch for dash mounting, sufficient cable, flocked grill screen, baffle plate, sponge rubber gasket, miscellaneous hardware and instructions.

QUAM-NICHOLS COMPANY

ALSO MANUFACTURERS OF QUAM ADJUST-A-CONE SPEAKERS, QUAM FOCALIZER UNITS, ION TRAPS AND TRU-MATCH OUTPUT TRANSFORMERS

COTTAGE GROVE \& 33RD PLACE, CHICAGO 16, ILLINOIS

Figure 7. Waveform at W4; Receiver Operating Normally with AGC Clamped.
of the picture occurs. Figure 8 shows two waveforms representing signals that have undergone distortion as a result of passing through one or more overloaded stages of IF amplification. Notice the decrease in signal level during vertical blanking intervals. This accounts for vertical sync loss. What happens is this: the bias on the grid of the tube, while it may be enough to keep the tube operating properly while low level picture information is being transmitted, is not sufficient to handle the sustained high level of signal during the vertical blanking interval. Therefore the bias on the grid is overcome, the grid draws current, the tube is self-biased, and a sharp drop occurs in the gain of the stage. Thus the low output during vertical blanking time, as shown in Figure 8; results. Once picture information returns to the grid, the tube is no longer overdriven so severely and is able once again to amplify with little distortion.

Figure 8. (A) Waveform at W3; Slight Overloading.

Figure 8. (B) Waveform at W4; Heavy Overloading.

Possible causes for an overdriven stage of video IF amplification are:

1. A defect in the AGC circuit of the set.
2. A leaky coupling capacitor to the afflicted stage.
3. A defect in the cathode bias circuit.
4. Too strong a signal input.

The first of these, a defect in the AGC circuit, may be checked with a vacuum tube voltmeter on the grids of the controlled stages. A change in bias should be registered when the receiver is tuned to various television stations. The strongest signals will cause the development of the greatest AGC bias voltage under narmal operation.

A leaky coupling capacitor will produce a bias change on the grid to which it is connected; this in turn can result in an overload situation arising in the stage. In the same way, a fault in the cathode bias of a stage can cause the symptoms of overload to appear in the waveforms on the grids of succeeding stages.

The fourth cause listed above, that of too strong a signal input, is included because it has proved to be a major problem in sets which are used very close to television transmitters. Signals of as much as 12 volts peak-to-peak have been found on the grids of second video IF stages in these sets.

The waveform which is pictured in Figure 9 illustrates a condition which might be produced by undesirable coupling between the horizontal sweep circuit of a television receiver and the tuner or video IF strip. Insufficient shielding is a common cause of this type of trouble. Notice the similarity between the waveform of Figure 9 and that obtained with overload in Figure 8. Actually the end result of each case is very much the same. A loss of vertical sync is a symptom common to both. When a strong hgrizontal sweep pulse is coupled into a stage of RF or IF amplification, a modulating action occurs which alters the modulation of the original signal. This action increases the amplitude of the original signal during horizontal sync intervals to the extent that overloading of the ensuing stages results.

The cases described above are just a few of the possible instances where practical use may be made of the oscilloscope. Experience with the instrument will lead the way to still more applications.

Figure 9. Waveform at W4; Horizontal Output Plate Coupled by Gimmick to Grid of 1st Video IF.

solves a basic problem for the service man

the ERIE
 413 "UNIVERSAL"

- You stock one body type of Ceramicon. An assortment of terminals such as illustrated above enables you to replace any one of a multitude of terminal combinations as found in receivers of different manufacturers.

With a fraction of the inventory otherwise required you are able to service practically any receiver on the market rated at 20 KV or lower . . . quickly and profitably.

Order through your jobler.

XCELITE INCORPORATED

Farmerly Park Metalware Co., Inc.
Dept. Q, Orchard Park, N.Y.
Originators...
Not Imitators
700
Originality took ro XCELITE

"SHOP TALK" (Continued from page 5)

Figure 2. The Various Current and Voltage Relationships in the Horizontal Deflection Output Circuit.
begins to die off, and at this moment the output tube swings into conduction. The electron scanning beam is now 40 per cent of the way across the screen. For the remaining 60 per cent, the deflection current is obtained directly from the output tube drive.

To the TV serviceman, this sequence of events carries the key to servicing problems arising from the horizontal distortion previously outlined. Thus, if the picture is impaired on the left-hand side, the defect is most likely to exist in the damper tube circuit (i. e., from the plate of the horizontal output amplifier to the deflection yoke). On the other hand, if it is the right-hand side of the picture which is distorted, the most likely place to look for the defect is in that portion of the horizontal sweep system extending from the horizontal oscillator up to and including the output tube.

Also, from the foregoing reasoning, ripples in the picture caused by a defective capacitor in the deflection yoke, or foldover caused by a defective damper tube, or light and dark stripes caused by misadjustment of the linearity coil, all quite naturally fall at the left-hand side of the picture because they arise from the damper-tube circuit. In place here, too, are the dark stripes of Barkhausen oscillations since these occur after the output tube has been cut off and the beam has just been returned to the lefthand side of the screen.

On the other hand, foldover or compression at the right-hand side of the picture is produced when the value of the grid resistor of the horizontal output tube is decreased sharply.

Most frequent defects in the damper stage include the damper tube, any damping resistors that may be used, the two filter capacitors, C79 and C78 in Figure 3, and finally, the linearity coil.

In the horizontal output stage, check the following :

1. Lowered grid resistor (R93 in Figure 3).
2. Defective screen-grid bypass capacitor (C75 in Figure 3).
3. Leaky coupling capacitor (C72 in Figure 3).
4. Bad horizontal output tube.
5. Defective cathode bias resistor or capacitor.

Figure 3. A Typical Horizontal Sweep System.

Alprodeo ALUMINUM TOWERS

$T V \cdot F M \cdot A M$

BROADCASTING AND RECEIVING

The Height of Perfection

ALPRODCO AIRCRAFT

 ALUMINUM TOWERSLower Cost per Installation
Easy to Install Light Weight

Long Lasting
Attractive

Alprodco Towers are sold through local parts distributors. Write for literature and full details. ADDRESS DEPT, D

Alprodeo,Inc.
 KEMPTON, INDIANA

 MINERAL WELLS, TEXAS DUBLIN, GEORGIA

In most instances the general location of the defect, as revealed by the section of the picture which is affected, is fairly well defined. However, because a boost B+ voltage developed by the damper tube is fed back to the horizontal output tube (and frequently to other tubes in the horizontal system as well), a certain amount of interaction between the various sections is bound to occur. For example, changes in the boost B+ filter network components will have an effect on both sides of the picture although the lefthand side will be the section principally affected. Or, again, insufficient driving voltage applied to the grid of the output tube will have its greatest effect on the right-hand side of the picture. But since the boost B+ voltage developed depends upon the drive voltage, the left-hand side of the picture will suffer, too. Thus, while the circuits directly associated with each portion of the picture will have their greatest effect on that section, the close relationship between all circuits will produce disturbances in the other portions of the picture as well.

There is still another feature of horizontal sweep system operation that is worth noting. This is the peak-to-peak amplitude of the driving voltage fed to the grid of the output amplifier tube. The width of the picture is governed by this voltage as well as the high-voltage for the picture tube and the boost $\mathrm{B}+$ in the damper circuit. As little as a 10 per cent decrease in the amplitude of this wave can result in a significant change in the items related to it. It is an important check point in the horizontal system and measuring its value early in the servicing analysis is strongly recommended.

In no other section of the receiver does a decrease in driving or signal voltage have such a marked effect on the picture you see on the screen.

REVIEW: The article reviewed this month concerns an aspect of television servicing which is just as important to the economic well-being of the service industry as technical know-how. Entitled "Saving Time and Labor in TV Servicing," this article describes time-saving methods in television antenna installation.
"Saving Time and Labor in TV Servicing"
by Hugh P. McTeigue
Service Magazine, January, 1951

Published by
Bryan Davis Publishing Co., Inc.
52 Vanderbilt Avenue, New York 17, N. Y. Subscription Price $\$ 2.00$ per Year U. S. A. and Canada

In large industrial firms there is almost invariably found a time study department whose principal function is to evolve ways and means of speeding up the industrial processes through which the various products pass, removing the unnecessary and wasteful operations. While some people erroneously believe that time study is simply management's way of speeding up work at the expense of the worker, those who are familiar with such methods know that this is not so at all. Time study engineers strive to improve operating efficiency by removing the wasteful, the unnecessary, and the unproductive steps in an operation. The pace of the worker remains unchanged, but because he is required to do fewer things to complete a job, his output rises and his overall work becomes more efficient.

Time study investigations, on an elementary scale, are consciously or unconsciously conducted by all wide awake business men, including the TV service shop owner. Unfortunately, it takes a professional engineer to do a really thorough job and most firms cannot afford such additional assistance. As an illustration of the improvement that can be accomplished, when it is seriously undertaken, the following report concerns an experimental study program which was run on a number of antenna installations by R. C. A. The results revealed that where previously it was customary to use two men for a standard antenna installation, now it was possible to use one man with the same results.

Much of the success in developing this new technique arose out of the application of everyday common sense. Thus, before starting out for a job, the serviceman made certain that he was ready to start; that is, that he had all the tools and equipment he needed, that he knew where to go and how to get there by the shortest route. ("Knew that all the time," you say. Sure you did, but do you follow this routine? There's the rub.)

The next step, upon reaching his destination, was to do first things first. This was perhaps the most important single discovery made in the survey and as we follow through on a typical installation, the meaning of this phrase will become evident from the way in which things are done.

Upon arriving at the house where the installation is to be performed, the serviceman can, on leaving his truck, take with him those tools that he knows he will be using for his work within the house - tool case, drop cloth, polishing cloth, etc. These can be dropped off at the house on the initial trip there. The next step in the installation is a complete survey inside and outside the house to determine where the antenna is to be placed, how the lead-in wires are to be run, where the wire is to enter the house and how it will be routed from this point to the receiver. The point chosen for the antenna on the outside should be the most practical, the most accessible (for installing and for subsequent repair work, if any) and last, but not least, the place where it will look the best. During this preliminary period, find out from the set owner where he (or she) wishes to have the set placed and then note whether this location is a practical one. In strong signal areas this latter consideration may not be a matter of much concern, because almost any reasonable length of lead-in wire may be employed; in weak signal areas every additional foot of line means a weaker signal at the receiver.

Once the survey is completed, the serviceman is ready to start the actual installation work itself. This begins with the erection of the extension ladder. For safety's sake, this ladder should be equipped with safety shoes - spiked ends for use on soft surfaces, flat rubber feet for use on hard surfaces. Other safety features include lashing the ladder securely once it is in position, never setting it up directly in front of a window, etc. A second ladder that the technician might need is a hook ladder if the roof is sloping.

With the ladders in position, the serviceman returns to his truck to collect all the equipment he

Your most valuable business asset is a SATISFIED CUSTOMER!

insure customer good will with DEPENDABLE OTHTMTESESITANCE UNITS

Don't endanger your business reputation by using "just-as-good" replacement parts. Protect customer good will with OHMITE resistance units - known the world over for dependability.

Servicemen, amateurs, and engineers everywhere agree that these quality components provide extra reliability and long life. Insist on OHMITE resistance units . . . it's good business!

OHMITE MANUFACTURING COMPANY, 4871 Flournoy St., Chicago 44, III.

COYNE
 SHOP-TESTED TECHNICAL BOOKS

Radio • Television - Electronics

Distributed by
HOWARD W. SAMS \& CO., Inc., Indianapalis 5, ind. APPLIED PRACTICAL
 RADIO.TELEVISION Brand new! Over 1500 pages on the latest in Radio and TV-EUEN Over 5.000 subjects. 1.000 illustrations. Shows how to install. align. balance all Radio and TV sets . . . how to use test instruments for TV service ... latest data on adaptors, convertors, much more, Get this 5-Volume Library now.

No. CTB-11-Vol. 1.
No. CTB-12-Vol. 2,
No. CTB-13-Vol. 3.
No. CTB-13-Vol. 3.
No. CTB-14-Vol. 4 .
No. CTB-15-Vol. 5.
o. CTB-15-Vol $5 \ldots \ldots .3 .2$

CYCLOPEDIA OF TELEVISION Complete, Up-to-Date Reference Manual Fact-packed reference book that covers every phase of Television, including COLOR TV and UHF. Gives you complete understanding of how IV keep them operating properly spekeep themplete section on plture pattern servicing (dozens of actual photos) 750 pages, over 450 photos, diagrams, charts, drawings, test patterns. In quick reference alphabetical order. Order your copy now.

No. CTB-1
$\$ 5.95$
PRACTICAL
TELEVISION SERVICING, TROUBLE-SHOOTING MANUAL SHOWS YOU HOW TO: align service: install, adjust and tune every part of the audio and video sections, handle all problems. Covers sweep oscillators, frequency control. FM amplifiers, tuners. etc. Latest data on COLOR TV and UHF! 18 blg chapters, 300 illustrations (many in 4 colors)- 1500 TV facts. Complete, practical, up-to-date.

No. CTB-4
. $\$ 4.25$
ELECTRONICS

Electricians will find this book a "gold mine" of easy-to-follow "on-the-job" electronic data. Starts right at the begin-ning-explains in simple language all the basic principles of electronics. Fully itustrated wind helpre Endorsed by leading grams, and tablus und cators, 400 pages. cators, 400 p No. CTB-2
$\$ 3.75$

MODERN RADJO INSTRUMENTS

AND TESTING METHODS
This up-to-the-minute book tells all about modern radio and electrical testing equipment and how to use it. Packed with mon-ey-making shortcuts on trouble-shooting, servicing, construction and other jobs. Over 350 pages, 220 photistors Ohmmeters, Osers Multipliers, Renintor. Oh subjects, All ciloscopes and -etested and checked in the Coyne radio shops.

> No. CTB-3
$\$ 3.25$
RADIOMAN'S HANDBOOK
Here is a remarkable radio "answer" book. 3,000 facts packed into 350 pages give you complete instructions to speed trouble-shoorts. cuits and short-cuts. Fully indexed.
No. CTB-5
\$2.75
Order These COYNE Publications From Your PHOTOFACT Distributor

JENSEN MANUFACTURING COMPANY
division of the muter company
6601 S. LaRamie ave., chicago 38, illindis
in canada:
COPPER WIRE PRODUCTS, LTO. LICENSEE

Oval speakers in $4^{\prime \prime} \times 6^{\prime \prime}, 5^{\prime \prime} \times$
$7^{\prime \prime}$, and $6^{\prime \prime} \times 9^{\prime \prime}$ sizes are included in Viking line as well as conventional types from $31 / 2^{\prime \prime}$ to $12^{\prime \prime}$, all P.M. Viking speakers-manufactured with the same engineering and production skills which go into every Jensen productare designed especially for low-cost replacement and utility applications. An accessory bracket, designed for the Viking series, solves chassis and transformer mounting problems.
will require for his work outside. For roof installations, the antenna mounting bracket (usually of the chimney type) is the first item to consider. Other types of brackets that might be used include wall and roof brackets, but whichever are needed, time will be saved if they are completely assembled at the truck and carried to the roof ready for mounting. Since these brackets are seldom large or heavy items, the serviceman should also take with him a ground wire, stake, extension cord, electrical drill, and hammer. This will save him a return trip to the truck later on,
(The investigation revealed that not only should a certain sequence of operations be followed, but each trip from the house to the truck, or vice versa, should be made as fruitful as possible.)

In mounting the chimney bracket on the roof, it was found that the job will proceed faster and smoother if the serviceman has an extra piece of wire which he can loop over the chimney to hold the bracket temporarily while the strap is being installed. Use of the strap eliminates the more dangerous job of standing on the ladder to drill holes into the wall as a means of mounting the bracket.

Once the mounting brackets are secured, the serviceman returns to the truck to assemble the antenna and attach the mast. The assembly of this item, like that of the mounting bracket, should be completely performed at the truck, from attaching the antenna and standoff insulators to the mast, to connecting the transmission line to the antenna. It is further suggested by R. C. A. that a portable transmission line reel-holder, placed on the ground near the house, should be used. This will unwind freely as the serviceman carries the antenna assembly up to the roof, permitting the technician to use as much line as he needs without requiring him to do any estimating until the final step when the line is ready to be brought into the house. And, of course, having the line contained on a reel-holder presents a much neater appearance than having it wound in a roll (which usually has a tendency to unravel).

The antenna is mounted in the bracket previously prepared for it and oriented initially in the same manner as the other antennas in the neighborhood. A good' item to use,

UNIT*
make a 3 -way system from your coaxial or a 2-way from a single speaker

cemsem

JENSEN MANUFACTURING COMPANY
DIVISION OF THE MUTER CDMPANY
6601 S. LARAMIE AVE., CHICAGO 38, ILLINOIS
in canada.
COPPER WIRE PROOUCTS, LTD., LICENSEE
Improve the realism of your sound reproduction by adding this new compact advanced-design h-f unit to your present coaxial or extended range speaker. Sits atop cabinet or mounts flush on baffle or panel. Gives smooth, clean highs from 4,000 cycles to limits of audibility. List Price, \$56. Write for free illustrated folder EA, with complete installation data.

NOW-A Catalog with Real S.A.*

Here are the
*SERVICE APPEAL
 tance on calibrated
microhmo scale - Detects
both shorted and open elements

- Tests all tubes from $.75 \vee$ to 117
filament volts - Built-in roll chart - $41 / 2^{\prime \prime}$ meter.
Model R206 BP $\$ 83.50$
MODEL 204
Tube-Battery-Ohm Capacity Tester
Tests all tubes including Noval and sub-miniature
Tests resistance to 4 megohms - Tests condensers from 01
to 1 mfd . Tests all
batteries under rated load.
Model 204 (oak case). . . $\$ 55.90$
Write Dep't. PF - 5-6 for FREE catalog.

at this point, is an antenna rotator since it permits the serviceman to determine, at the set, which is the preferred orientation for the array. He may also find in locations, where signals of more than one station are to be received, that a rotator should be made a part of the final installation. If so, this can be brought to the attention of the set owner since there is usually an additional charge for this unit.

In running the transmission line down from the roof, there are certain basic rules which it will pay the serviceman to observe. These are:

1. Horizontal runs should not be made unless absolutely necessary.
2. Transmission lines should not run down the front of the house, across windows, or within six inches of telephone or electrical wires.
3. The line should contain approximately one full twist per linear foot. This is to minimize interference pickup as much as it is possible to do with an unshielded line.
4. Standoff insulators should be spaced approximately six feet apart.
5. The path of the transmission line from the antenna to the point of entry into the house should be as direct as possible.

The transmission line is run into the house, either directly into the room where the set is located, or, perhaps first into the basement and then up into the first floor receiver room. A lightning arrestor should be installed at the point of entry not only to protect the set, but more important, the house and
its occupants. Now the amount of lead-in still required to complete the job can be estimated quite closely and cut from the reel.

Within the house, the lead-in is brought up to the set and connected to the receiver input terminals. The receiver is checked for picture and sound on each channel within normal range. With the automatic antenna rotator, the serviceman orients the antenna for best reception of the low-frequency channels. This done, he returns to the roof to note how the antenna is pointing and to indicate its position. Back at the set, the rotator is used again, this time to determine the optimum orientation of the high-frequency array. When this has been found, the serviceman returns for his final trip to the roof; the rotor assembly is removed and the mast tightened in the bracket with each antenna facing in the proper direction. The installation job is now substantially complete, with the serviceman checking each of the receiver's controls for proper picture height, width, linearity and hold-in. If necessary, the customer is given complete and careful operating instructions, repeated several times until he (or she) can tune in a station by themselves, unaided. This is a most important point because whether the set is operating poorly or the customer is unfamiliar with its controls, costly recalls almost invariably result.

The foregoing discussion has outlined in some detail a standard one-man installation which study has shown to be as efficient as this type of operation can be made. There will be many locations where one man will not be able to effectively do the job; however, even in these installations, the sequence of steps outlined will prove useful in reducing the time needed to perform the job.
"FUSES" (Continued from page 15)

Figure 4. Glass Tube Fuses with Pigtails.
Underwriters Laboratories, Inc., is an organization which tests electrical appliances and their respective electronic components, to determine their safety against shock and fire hazards. Through these tests this organization can arrive at standards for the rating of fuses.

The voltage rating of a fuse is determined by the arc that is created by the opening of the element. It is desirable to extinguish this arc quickly and clear the circuit. Obviously, the greater arc, which is more difficult to extinguish, will be produced by the higher voltages. Hence the reason for voltage ratings.

Underwriters Laboratories, Inc., establishes the voltage ratings of the low voltage fuses, through the use of a DC circuit of the rated voltage, delivering 10,000 amperes. A fuse blown in such a test must remain intact without producing sufficient flame or molten metal to ignite surgical cotton completely surrounding it, when opening the circuit. In normal operation, the fuse is not subjected to such severe treatment, and the above is to illustrate the rigid standards. Care should be exercised in the replacement of fuses to insure that the proper voltage ratings are observed as well as current ratings.

The current ratings of fuses are also established by the Underwriters Laboratories. Fuses other than those mentioned earlier (S. F. E., instrument, and slow-acting types) must carry 110% of their rated load indefinitely, and are known as medium acting fuses. These fuses must open within 60 minutes at 135% load, and within 2 minutes with a loading of 200%. This is considered an adequate test and any fuse meeting these requirements will not create a fire hazard.

Before the advent of television, fuses were normally mounted in clips or a suitable holder, to

FILTERED

DC POWER SUPPLY

Leading Manufacturers Say . .."It's the only one 10 withstand continuous high overloads, so we specify the Model "B" for servicing." Exclusive application of selenium rectifiers, aided by conduction cooling, doubles rectifier power rating and dissipates over 3 times the heat with lowest cosi per ampere output. 1 to 20 amperes continuous duty with peak instantaneous rating of 35 amperes. Operates 2 auto radios with pushbutton solenoids simultaneously.
Other Uses . . . Operates many low power 2-way mobile radios, phone circuits, relays, instruments, low voltage devices. Battery charging and electroplating.
*Names on request.
Low Cost Model "B J"POWER SUPPIY - 6 Volts DC, 1 to 12.5 Amps. (U1)

ELECTRO PRODUCTS

LABORATORIES
$4501-\mathrm{Fb}$ Ravenswood Ave., Chicago 40 , III. In Conada: ATLAS RADIO CÓRP., LTD., Tóronto

GRAYBURNE CORPORATION, 103 Lafayette St., New York 13, N. Y.
make the replacement without tools easily accomplished. Since these units are nearly always replaced by a qualified technician, a fuse may be soldered in place nearly as quickly as in the case of clips. Therefore, fuses with pigtails are used by many television manufacturers. These pigtail fuses are the same as those described earlier, with the addition of tinned leads soldered to them as shown in Figure 4.

Fuses may be encountered in various circuits while servicing electronic equipment. The AC line is very commonly fused and often they may be found in the $\mathrm{B}+$ or B - circuits. It is not uncommon to find a fuse in the B+ lead feeding the horizontal output stages of television receivers. Wherever fuses are found, a safety condition has been established, either for the entire unit or its component parts. Improper replacement of the fuse may in turn cause damage to this unit or its costly components. It is suggested also that fuses manufactured by a reputable concern be used. No saving will be effected if the equipment is destroyed by faulty fuse operation.

The chart included in this issue of PF INDEX and Technical Digest was drawn up to serve as an
aid to the technician, particularly in those applications where no published recommendations are available.

Should a fuse be encountered with only the voltage and current rating indicated, a visual inspection should be made to determine whether it is a slow acting or regular type and the chart may then be consulted to ascertain the type number. All illustrations in this chart are of actual size and are to be used for a comparison to the original fuse. The correct replacement listing will be found on the same line with the voltage and current ratings corresponding to those of the fuse to be replaced.

Fuses have been placed in electronic circuits to provide a safety factor for the appliance or its components. A fuse that blows consistently is indicative of a faulty circuit that should be thoroughly checked. Over-fusing may create a fire and this practice should not be considered as a remedy for the faulty operation of the equipment.

We wish to express our thanks to the Bussman Manufacturing Company and Littelfuse, Inc., for supplying the material to make this article possible.

"QUICKER SERVICING" (Continued from page 35)

quency doesn't change with movement of the slug or trimmer, or if the resonant frequency is far outside of the above limits, then something is defective in the tank circuit. The slug may be broken or a capacitor may have opened or some other trouble may have occurred. Should the ringing coil check okay, then the horizontal hold control, the coupling capacitors and the various other parts should be tested.

Because the various components in a horizontal sweep system are so highly interacting, an elimination type of trouble-shooting procedure often becomes necessary when dealing with this circuit. This means that each component or small group of components has to be examined to determine whether it might be causing the trouble. This method is in contrast to the straight forward method wherein a certain symptom tells of a definite part defect. The test just described for the ringing coil falls in the category of an elimination test and is useful as such.

A Voltage Calibrator
 with a Meter Indicator

Reference is often made to the amplitude of certain voltages as being so many volts peak-to-peak. This scale of measurement is coming into increasing use with the complex, nonsinusoidal voltages that are encountered in television. To meet the need of service technicians for an accurate means of measuring such voltages, voltage calibrators for use with oscilloscopes have been developed and marketed.

The Hickok Model 630 Television Voltage Calibrator pictured in Figure 8 is one such instrument. With this piece of equipment, it is possible to determine the peak-to-peak amplitude of a complex voltage by comparing it with the known output of the calibrator. This comparison is done on an oscilloscope.

The "direct-calibrate" switch selects the output to the oscilloscope; in "direct" position, the test voltage, which is connected to the "external voltage input" terminals, is applied directly to the "voltage

Figure 8. Hickok Model 630 Television Voltage Calibrator.
output" terminals and hence to the scope. In "calibrate" position, the 420 cycle square wave signal, generated within the unit and passed through the attenuator system, is available at the "voltage output"' terminals.

The attenuator system consists of the "vernier" control and the "voltage range selector." There are four ranges extending the output from 0 to 100 volts peak-to-peak; each range is designated on the meter as well as the range selector.

By using this instrument together with an oscilloscope, the technician may, if he wishes, measure the stage gain of a video or audio amplifier. The procedure, with a video amplifier, is to view on the oscilloscope the input and output of the stage during normal operation. For each waveform determine the blanking-to-white level amplitude (see Figure 9) by means of the calibrator. The stage gain is the ratio of the output voltage to the input voltage thus measured. The signal observed can be obtained from a patterngenerator, or may be an actual televised signal provided the picture remains nearly the same during the two measurements.

SEERIES

OF COMPLETELY [and we mean completely] PRE-ASSEMBLED

ANTENNAS beaturing
FOR ALL T-V INSTALLATION PROBLEMS

4 PRODUCTS 152 SANDFORD ST. B̀KLYN. 5, N.

"Quick-As-A-Wink"

 CONSTRUCTION Incredible engineering magic eliminates all nuts and bolts. Not a nut, wing-nut, or thumb-serew of any kind to tighten. The time saved by using these "Ouick-As-A.wink" pre-assembled antennas, will permit at least 1 extra installation every day.- Amazingly powerful signal reception on all channels. - All-aluminum construction.
- Lifetime factory warranty.
- Sold thru selected, legitimate distributors only. WRITE FOR NEW COMILLETE CUTAING - 16

These 2 Boyce Books Pay for Themselves!
You can master anything in TV, Radio and Electronics with this Library Set. These handbooks are your lifelong
tools use them every day on the board, at the bench, or tools use them every day on the board, at the bench, or in the field-for construction, production. servicing, in-
stallation or operatlon for adiusting. troubleshooting, stallation or operation for adjusting. troubleshooting, TV. Radio \& Electronics-in practical form-in plain talk, all terms explained; schematicn, working diagrams and pietures all clearly illustrated for your quick and easy rcference. These authoritative books are prepared by the well-known engineers. Joseph J. Roche and Morton mous for the preparation of hundreds of bandbooks an manuals for the U. S. Signal Corps. U. S. Navy, U. S. Air Force. Western Electric Co.. General Electric Co., Bell Laboratories. etc. Endorsed by leading schools for instruction and reference. The armed services make them the field. Engineers, Draftsmen, Laboratory and Produc tion men in every induatry have purchased over 50,000 of these books making them the most widely used in Radio \& TV. The practical help. the daily usefulness you will the price. See the set at your Parts Jobber, bookstore, or order by mail today.

Radio Electronics Mandbook (No. BB-1) ... $\$ 4.95$
Video Handbook (No. BB-2) $\$ 5.95$

Order from your Radio Parts Jobber or write direct to
Howard W. Sams \& Co., Inc., Indianapolis 5.

Laughs in the Life of a TV Serviceman

"I know nothing about the repair job-besides I'm shampooing - please come back when my husband's home"

When you do see the lady of the house about her Raytheon you'll find, like thousands of other servicemen, that Raytheon TV receivers are easy to service.

One reason is that you are sure of a steady flow of replacement parts and tubes from your Raytheon distributor. The factory usually ships distributor orders in 24 hours;
complete stocks are carried forboth in-warranty and out-of-warranty sets.

With Raytheon TV you know you can keep the set in operation three or four years later, and not have it sitting in your shop waiting for parts . . . Raytheon Manufacturing Co. (Belmont Radio Corp., 5921 West Dickens Avenue, Chicago 39, Ill.)

Its... KESTER

FLUX - CORE SOLDER

IN DEMAND and used by the manufacturers of original equipment .. Best for you, what could be better... Kester Rosin-Core, "ResinFive" and "Specialized" Solders! KESTER SOLDER COMPANY 4232 Wrightwood Ave., Chicago 39 Newark 5, N. J. - Brantford, Can.

Figure 9. Measurement for Voltage Gain Determination.

With an audio amplifier, stage gain is determined by a similar means except that the signal may be a simple audio frequency sine wave. The peak-topeak voltages at the input and output are compared to give the stage gain. In the event that the input impedance of the stage under investigation is relatively high, the 630 may be used as its own source of signal for this check. Connect the calibrator across the input to the stage, and with the scope at the output, introduce just enough signal so as not to overdrive the stage. Record the input voltage. Then connect the calibrator directly to the scope and find the value of the output signal which the scope had registered. The ratio of output to input is the stage gain.

Along with the latter method above, the frequency response of the stage may be checked. This

Figure 10. Distortion of Square Wave Caused by (A) Poor Low Frequency Response; and (B) Poor High Frequency Response.
is done through examination of the shape of the square wave output. A square wave consists of the fundamental frequency (in this case, 420 cycles), plus the odd harmonics of the fundamental. Figure 10 A is a sketch of the output wave when the low frequency response of the stage is poor. (The 630 will serve to check frequencies down to 420 cycles.) The sketch in Figure 10 B is the waveform which indicates poor high frequency response in the stage.

The Hickok Model 630 may also be used as a generator for signal tracing in audio or video circuits. The output of the unit is through a 0.25 mfd . coupling capacitor which is rated at 400 volts. When coupling is made to points having voltages near or exceeding this value, an additional, large capacitance should be placed in series with the generator lead as a precautionary measure.

When you specify Seletron "Safe Center" Selenium Rectifiers you eliminate arc-over danger, short circuits and heating at the center contact point. Assembly pressure, or pressure applied in mounting the rectifier cannot affect its performance-a Seletron feature accomplished by deactivating the area of the plate under the contact washer.

The millions of Seletron Selenium Rectifiers in satisfactory service as original equipment in the products of leading manufacturers are millions of reasons why you can specify Seletron and be safe!

Consult your local jobber!

You'll find

Mandy lists of Iroubles that may occur in each section of the TV receiver and the exact procedures for correcting each.
Large clear block diagrams of ypical commercial circuits for uners, focus control systems, R-F voliage supply, sync separator systems and all other basic TV
receiver circuits.

Now original photographs show ing actual symptoms of irouble on Vereens to aid identification
Full explanation of unusual, hard ro-find Iroubles and how to fix hem, as well as all ordinary defects.

Complete instruction on the use of testing equipment, and oscillocope patterns to facilitate the checking of test results.
Ways of improving overall per formance; how to improve gain reduce ghost reception, minimize interference.
Special servicing instruction for color TV and for VHF and UM receivers.
and much more your working reference shelf?

Fischer's
RADIO \& TV MATHEMATICS
"An extremely useful reference," wrote Radio News about this unique book. Here are step-by-step solutions, showing what formulas to use and what numerical values to substieute, for HUNDREDS of typical sadio and TV servicing, construction, and operational problems, arranged under radio topics for quick reference.

Noll \& Mandl's TELEVISION \& FM ANTENNA GUIDE

A basic course on antenna theory combined with a complete handbook on antennas and their installation. Shows how to pick the ight antenna for the site, derermine the best position for it, instal transmisston line for maximum efficiency and all other practical
details for getting the most out of the antenna system.

Noll's TV FOR RADIOMEN

Explains very clearly and fully all basic principles of television re ception, the essentials of TV trans mission, and the construction and operation of each part of modern TV receiving systems; and gives tep-by-step instruction in installaion, adjustment, alignment, and basic trouble-shooting procedures. A basic book for anyone in television servicing, noted for clarity and completeness. Here are all the fundamental why's and how's by man known throughout the country as a leading authority on the technical aspects of television

For solving special problems as they arise on radio and TV jobs; for FCC license exams and job advancement; for in-service or professional training-TURN TO THESE BOOKS. Confdent that you'll find them excellent, we'll be glad to send you copies for FREE EXAMINATION.

Just write to Dept. TV
THE MACMILLAN CO., 60 FIFTH AVE., N. Y. 11

the brightness control is made it should be unnecessary to readjust it for any given signal. This manual operation sets the picture tube bias to a point where the blanking pedestals just drive the tube to beam cutoff.

If the scene suddenly changes to one with less illumination, the amplitude of the signal is reduced. The charge on C1 leaks off until the negative peaks of the signal effect diode conduction. C 1 is now charged to a potential dependent upon the amplitude of the signal peaks. Less positive potential is reflected on the picture tube grid, thus increasing the tube bias and decreasing illumination.

It is interesting to note that the voltage developed across the diode load is readily measured with a voltmeter. If the diode is removed, the voltage measured on the picture tube grid is zero since only an AC signal is present. With the diode back in the circuit, DC is restored to the video signal and a DC voltage is present. The measured voltage is representative of the background illumination of the scene.

GRID LEAK BIAS DC RESTORATION

Another type of DC restorer circuit uses grid leak bias on the final video amplifier tube for reinsertion of the DC component to the video signal. A basic grid leak bias circuit is shown in Figure 6-6. With no incoming signal, the video amplifier tube remains unbiased. As soon as the signal, which has positive going sync pulses, is applied to the amplifier grid, tube bias is developed. Peaks of the sync pulses drive the grid positive with respect to the cathode. This causes grid current flow, charging the coupling capacitor C 1 to the peak of the positive going sync pulses. The discharge time of C1 is governed by the values of the grid resistor R1 and C1. Since the capacitor is charged to a potential equal to the amplitude of the sync tips, the picture information, being of lower amplitude, has no effect upon the developed grid bias. The next sync tip again adds a small amount of charge to compensate for the slight discharge of Cl during the time of a horizontal line. In other words, the bias on the video amplifier is clamped at the sync tips which are used as a reference. By adjustment of the brightness control the proper cutoff point of the picture tube can then be established.

Figure 6-6. Grid Leak Bias Type of DC Restorer.

The DC component is now restored to the video signal at the grid of the final video amplifier. For the DC component to be retained, the video amplifier is direct-coupled to the grid of the picture tube.

Grid leak bias type of DCrestoration is similar to that of the diode restorer in that the grid and the cathode of the video amplifier perform the same function as the plate and cathode of the diode restorer. However, the grid leak biased video amplifier provides both DCrestoration and signal amplification.

SYNC SEPARATION

Sync pulses are included in the composite video signal to provide synchronization of the receiver sweep oscillators. These pulses are transmitted at a fixed level of amplitude, so that they may be readily separated from the composite video signal by means of amplitude separation circuits.

To effect correct operation, the sync pulses must fulfill certain requirements after separation as follows: sync pulses free of blanking pulses and picture information; sync pulses of sufficient amplitude for application to the horizontal and vertical sync shaping circuits; sync pulses free of large amplitude noise pulses; and sync pulses with a fixed level of amplitude over the range of signals normally received.

Dynamic type of sync separation circuits are employed to free the desired sync pulses from the composite video signal. The unique characteristics of various vacuum tubes make them particularly adaptable to these circuits. Normally a sync separator tube is designed to operate non-linearly, being biased at a level so that only sync pulses may effect conduction. Saturation of a tube is provided by maintaining plate voltage at a low level. Cutoff is achieved by components of the signal, such as blanking pulses and picture information, driving the tube to a non-conductive state.

Sync separator tubes usually operate without the application of external bias. Exception to this is in those cases where a small amount of external bias is applied to insure proper operation under low signal conditions. In most cases, bias is obtained through rectification of the incoming signal. The amount of bias is determined by the amplitude of the applied signal. Diodes, employed as sync separators, operate with a form of delayed bias in such a manner that only sync pulses effect diode conduction.

There is a close similarity between the operation of DC restorer circuits and that of sync separators. Both employ a form of signal rectification. In the case of DC restorers, the rectified voltage is used to provide the correct bias in the picture tube. Sync separators employ this rectified voltage for automatic biasing which allows the separator tube to conduct only sync pulses. The functions of DC restoration and sync separation, because of their close parallel of operation, are often combined in a single tube.

An important fact to remember when reviewing the operation of sync separator circuits is that the polarity of the applied sync pulse is all important to its operation.

Figure 6-7. Triode Sync Separator Plus Sync Clipper and Phase Inverter.

The polarity of this applied sync pulse may be determined by noting the polarity of the signal at the video detector and, keeping in mind the signal inversion in each video amplifier stage, trace the signal to the sync take-off point.

If this take-off point is nearer the picture tube than the video detector, determine whether the cathode or grid of the picture tube is the modulated element. If the grid is modulated the sync pulse is negative going. If the cathode is modulated the sync pulse is positive going. Then by tracing backward through the video amplifier stages, the polarity at the take-off point can be determined.

The following description illustrates various types of sync separator circuits employed commercially in television receivers.

A frequently used type of sync separator circuit is shown in Figure 6-7. Note that the sync separator triode has no applied bias. A signal with positive going sync pulses is fed from the output circuit of the video amplifier through a decoupling network to the grid of a triode section of a 6SN7 tube. Grid rectification of the signal charges the .047 mfd . coupling capacitor to approximately the peak potential of the signal or the sync tips. The separator tube is biased by the slow discharge of the coupling capacitor through the large valve grid resistor. The discharge of the capacitor between the time of each sync pulse, or approximately 63 microseconds, is so slow that the bias on the tube is maintained at a fairly constant level. Grid rectification occurs for subsequent sync pulses during sync peaks only, to supply the small amount of voltage discharged from the capacitor between the period of the sync pulses. In effect, the sync tips of the applied signal are clamped at ground potential. The video portion of the signal composed of blanking pulses and picture information is negative going and accomplishes plate current cutoff in the
tube. To aid the signal in driving the sync separator tube to cutoff, the plate voltage is held at a low value. This is accomplished by connecting the plate to a voltage divider network composed of R55 and R56 which also forms the plate load.

In the plate circuit of this tube appear sync pulses of negative polarity that are coupled through a .022 mfd capacitor to the other unbiased triode section of V12.

This stage of the sync separator clips the peaks of the sync pulses as well as any large amplitude noise pulses, thus providing a constant level in the output. This is achieved by the negative going pulses driving the tube to cutoff.

The sync pulse voltage in the output of the sync clipper is in a positive direction and is applied through a . 01 mfd . capacitor (C 45) to the grid of a triode tube connected as a sync phase inverter. Clamping action is again provided at the grid of the inverter due to the use of a very large grid resistor (R59, 8.2 megohm). Noise immunity in the complete sync circuit is good, resulting from peak limiting of noise pulses in the plate of the clipper and the grid of the inverter.

Inverter plate voltage is effectively reduced by application of a positive voltage to the cathode from a voltage divider network in the $\mathrm{B}+$ circuit (R 63 \& R64). As a result of the low plate voltage and clamping action of the grid, sync separation is also provided in this tube. Complete separation action is thus accomplished.

In addition to the previously described functions the sync phase inverter provides a push-pull horizontal sync pulse for application to the horizontal sync circuits, and a positive sync pulse from the cathode circuit for feeding to the vertical integrator circuit.
(To be continued in a later issue.)

SPARE PARTS. More and more receiver manufacturers are swinging to the philosophy of rendering a service rather than merely selling a product. This means seeing that needed spare parts will be available to servicemen during the expected life span of each set, long past the original guarantee or warranty period.

Spares must be ordered before the first set comes off the production line to get the price savings of high-volume production orders. Men with long experience in this type of crystal-gazing are needed to predict just how many of each such part will be needed by servicemen in the next ten years. If they guess short, the parts have to be made up by hand at a cost many times that for which they are sold.

One manufacturer does a swell job however. Their catalog of homeinstrument service parts has more than 16,000 items, some for sets over 10 years old. Over two-thirds of their employees in the parts department have been in it over 15 years, predicting and meeting future needs.

- Please turn to page 91 *

-the ceramic with the

million dollar body!

Never before such uniformity, such dependability in ceramic capacitors! TINY MIKE is C-D through and through. Even the ceramic body is made by C-D, in its brand new ceramic body plant, electronically controlled at every stage!

Write for Catalog Dept. R-111 Cornell-Dubilier Electric Corp. South Plainfield, N.J.

CAPACITORS
Plants in South Plainfield, N. J., New Bedford, Worcester and Cambridge, Mass,; Providence, R. I.; Indianapolis. Indiana; Fuquay Springs, North Carolina, and subsidiary, The Radiart Corporation, Cleveland, Ohio.

Model 610-A

First choice TV Alignment generator. - Accurate, complete IF Marker coverage with expanded scale. Absolute linearity. - FM sweep frequency.

- Complete IF and RF frequency coverage. Temperature compensated. Low amplitude modulation. - High stable output. - Sweep phasing control. - Useful Harmonic outputs to over 900 mc for UHF. More in use than all others combined. Complete with leads.

Model 680

HICKOK Model 680 television RF Marker crystal controlled calibrator. Provides crystal controlled front-end markers to $.05 \%$ accuracy. 53-89 MC and 173-217 MC on fundamentals - Harmonic output on VHF and UHF. HICKOK quality, moderately priced. Designed as the ideal companion to the HICKOK 610-A for accurate VHF-UHF alignment.
The 680 will check the frequency of TV local oscillators, as well as calibrate any signal generator to a $.05 \%$ accuracy by means of an exclusive HICKOK magic-eye zero-beat indicafor. Provides choice of 3 crystals from front panel (2.5 MC crystal supplied).

How Will You Service The New VHF-UHF Television Receivers?

HICKOK has the answer - Three fine instruments of versatile design to work together as a set and still provide the specific features necessary for their individual use in accurate servicing of other TV equipment.
Thousands of you Service Technicians already have the famous HICKOK Model 610-A TV Alignment Generator. The high $610-A$ output is usable to view over-all response curve of UHF television receivers - to 900 mc on harmonics. You will be glad to hear that for a small cost you can add the new HICKOK Model 680 Crystal Calibrator to your bench to provide RF Markers of crystal accuracy in servicing VHF-UHF television receivers.
To complete the service set, in the absence of a good Oscillograph, the HICKOK new Model 670 Oscillograph provides the extra sensitivity and range necessary to properly view the wave forms and response curves in the accurate alignment of these new VHF-UHF television receivers.
HICKOK advanced engineering has always pioneered with the most practical solution to all Service Technician's problems. Be sure to see these 3 quality instruments demonstrated at your Jobber's, or write today for complete information.

Model 670

Stable, accurate, 5 inch Oscillograph - Perfect companion to the 610-A and 680 combination. High sensitivity - to 10 MV per inch to accurately show TV response curve. - DC amplifiers for perfect square wave response on both high and low frequency. - Astigmatic focus control provides sharper trace. P Push-pull Amplifiers, polarity reversing switches, Z-axis modulation, demodulator circuit, negative and positive synchronizing, phasing control and provision for direct connection to both horizontal and vertical plates of CR fube are a few of the plus features that make the
 HICKOK 670 Today's Biggest 'Scope Value.

For VHF-UHF Servicing, these 3 instruments give you the finest combination available today. Write for technical bulletins 670, 680, 610A - today!

THE HICKOK ELECTRICAL INSTRUMENT COMPANY

For best results use the yoke that's failored to the tube

Check these features . . .

$\sqrt{\text { Distributed windings of }}$ modifed "cosine" design for sharp corner focus
Negligible pattern distortion
freedom from insulation breakdown
Yerminals securely mounted
Sturdy molded housing

Why take chances with "compromise" yokes when RCA "originals" cost no more?

Remember-RCA deflecting yokes set the engineering standards of the field. That's because RCA deflecting yokes and RCA picture tubes are designed to work as a team. Mechanically and electrically, RCA yokes "fit like a glove". . . work best with the picture tubes they're specifically designed for.
Always the leader-RCA deflecting yokes were the first to use Ferrite cores . . . first to use distributed windings
providing negligible barrel and pincushion distortion. And... RCA yokes were the first to be constructed with a molded housing of solid plastic that affords increased insulation between windings and core, insures high resistance to humidity, and holds terminal lugs firmly.
RCA yokes are best fitted to restore original performance in the many makes of TV receivers you service. When a replacement is called for, play safe ... use the yoke that "fits the tube." That's RCA!

See your local RCA Parts Distributor for "Original" RCA TV Components.

RADIO CORPORATION OF AMERICA
ELECTRONIC COMPONENTS

CLOSE RACE. In 1951, almost as many battery radios were made as home radios. The RTMA final figures are 6.75 million home radios for 53% of the total, with 4.5 million auto radios and 1.4 million port ables making up the remaining 47%. Servicing business plans for the future should take into account this trend to battery-operated sets, occurring mostly in auto radios.

PINCUSHION. If some guy is getting on your nerves repeatedly, here's a recipe for keeping calm. Buy a small stuffed boy-doll, put the name of the guy on it, and nail it on your bench alongside a box of straight pins. When your temper is ready to let go, reach for a pin instead, and stick it in him.

SERIALS. Large ads were run recently in New York City newspapers by a distributor, warning the public against buying any TV receiver from which the serial number had been removed. The ad showed photos of sealed console cartons having holes ripped into one side for scraping off serial-number labels without taking the set out of the carton. Manufacturers are refusing to honor parts warranties when serial numbers have been removed or altered.

One reason for obliterating serial numbers is trans-shipment of sets by an authorized distributor to some dealer outside of his own territory, contrary to manufacturer franchise regulations, to get rid of slowmoving models even at a loss. Another reason is unloading by authorized dealers to unauthorized dealers. A third reason is to prevent tracing of sets stolen from warehouses.

So prevalent are these practices in some areas that many manufacturers now place serial-number labels in two or even three locations in each set. Commonest second location is under the picture tube, where it cannot be removed without first taking out the chassis and then the picture tube. A third place of concealment is inside the high-voltage power supply.

BREAKDOWNS. The pattern for troubles in TV sets has changed only slightly from what it was two years ago. The breakdown now for service calls is: picture tubes 5%; other tubes 40%; readjusting backof -set controls 15%; false calls, when nothing is found to be wrong or fixable 8%; capacitors 7%; resistors 7%; tuners 6%; other components 4%; antennas 3%; realignment 2%; correction of deficiencies in circuit design 2%; soldered joints 1%.

Antenna calls have thus gone down a lot, with people either fixing the antennas themselves or letting them rust away, but false calls stay the same as ever. Capacitor troubles unexpectedly stay the same even though sets are getting older, except in certain deepSouth humid locations.

HOTEL TV. Nearly every big hotel in the larger cities offers television in some way to its guests. The trend is to use standard table-model sets operating either from their own indoor antennas or from a master antenna system. Average screen size is about 14 inches. Where the sets are permanently installed in rooms, the charge is hidden in the regular price of the room. The guest pays from $\$ 1$ to $\$ 3$ a day for TV, in the room bill or as an optional extra. The sets used must have few front controls and be simple to operate, as many guests have never seen or operated a TV set before.

Keep Picture Quality UP Keep Service Calls DOWN

Spray Krylon on antenna and lead-in terminals

Krylon prevents corrosion and pitting, even in salt-spray areas. It seals antennas and connections in a waterproof Acrylic (not vinyl) blanket. (When aluminum finish is desirable, use special aluminum Krylon.)

Spray Krylon on high voltage circuits

Spray Krylon on the high voltage coil and insulation... in the socket of the high voltage rectifier . . . on component parts of rectifier circuit. Helps prevent corona because of its high dielectric strength.

Two types-clear and non-conducting aluminum. Both have exactly the same qualities. Packed in 12 oz . aerosol spray cans. List prices: $\$ 1.95$ clear, $\$ 2.25$ aluminum. Also available in gallons for application by brushing or dipping. See your jobber, or write direct.

Advertised in the Saturday Evening Post

the acryllc spray that prevents tv trouble M:MLON NE Mer Dept. 255
2601 No. Broad St., Philadelphia 32, Pa.

FINDEX

AND TECHNICAL DIGEST

INDEX TO ADVERTISERS May-June 1952 Issue

Page No.Alprodco, Inc. 74
American Phenolic Corporation 12
Astatic Corporation, The 6
Belmont Radio Corporation 82
Burgess Battery Co 92
Bussman Manufacturing Co. 34
Carter Motor Co. 86
Centralab (Div. Globe-Union, Inc.) 24
Clarostat Mfg. Co., Inc. 80
Cornell-Dubilier Electric Corp. 88
Coyne Electrical and Television- Radio School 76
DuMont Laboratories, Allen B. 4
Electro Products Laboratories 80
Electro-Voice, Inc. 16
Electronic Instrument Co., Inc. 88
Electronic Measurements Corp. 78
Erie Resistor Corporation 72
Federal Telephone \& Radio 44
General Cement Mfg. Co. 94
Grayburne Corporation 80
Halldorson Co., The 78
Hickok Electrical Instrument Co 89
Hytron Radio \& Electronics Corp. 14
Industrial Television, Inc. 84
Insuline Corporation of America 78International Resistance Co. . 2nd CoverJackson Electrical Instrument Co. . . 74
Jensen Industries, Inc74
Jensen Manufacturing Co 28
JFD Manufacturing Co., Inc 32
Kester Solder Co. 82
Krylon, Inc. 91
La Pointe Plascomold Corp., The 46
Littelfuse, Inc. 4th Cover
Macmillan Co., The 84
Merit Transformer Corp. 22
Ohmite Manufacturing Co. 76
Precision Apparatus Co., Inc. 30
Quam-Nichols Company 70
Radiart Corporation 42
Radio Corporation of America 20, 90
Radio Electronics 94
Radio Receptor Company, Inc. 83
Rauland Corporation, The 26
Regency Division, I. D. E 8ams \& Company, Inc.,
Howard W. 82
Shure Bros., Inc. 40
Simpson Electric Products Co. 38
Sprague Products Company 48
Standard Transformer Corp. 36
Sylvania Electric
Products, Inc. ver
Sarkes Tarzian, Inc. 93
Technical Appliance Corp. 86
Triplett Electrical
Instrument Company 10
T-V Products Company 82
United Catalog Pub. Inc. 86
V -M Corporation 72
Xcelite, Inc. 72

While every precaution is taken to insure accuracy, we cannot guarantee against the possibility of an occasional change or omission in the preparation of this Index.
mR. SERVICEMAN:
You Need These 3 GC Tilerison Chemimals

2 NEW GIC RED-X CORONADOPE

Prevent corona short on high voltage TV circuits with this new G-C dope. Easy to apply. Air dries faster. Excellent high voltage insulating qualities. No. 50-2 2 oz . bottle List $\$ 1.20$

G-C TELEVISION CEMENT
Popular cement for completing repairs on TV sers and for in. stallation work. Seal antenna lead connectors: keep bolts and nuts tight. Useful on speakers, antennas, rotors, many others. No. 34.2 2 oz. tube List $\$ 0.55$

G-C TELEVISION TUBE KOAT
Fast-drying conductive
3 coating for re-coating ourside of picture tubes where scratched or peeling. Use also to coat inner part of TV cabinet to prevent high voltage leaks and static discharges.
No. $19.2 \quad 2$ oz. tottle
List $\$ 1.20$.
List $\$ 1.20$
free catalog ... Write today! GENERAL CEMENT MFG. CO. 903 Taylor Ave., Rockford, III.

Your guide to better SERVICING

Gives you the latest each month in TELEVISION • RADIO • AUDIO

ON SALE AT PARTS DISTRIBUTORS SUBSCRIPTION RATES
1 Year $\$ 3.50 \quad 2$ Years $\$ 6.00 \quad 3$ Years $\$ 8.00$

+ More or Less -

Now that spring fever is on the wane (supposedly), wouldn't it be wise for the electronic service industry to turn its attention and planning toward alleviation of a perennial problem; namely, the so-called "dog days" of the summer month service activity.

Reports and opinions from previous years would make you believe that the months of June, July, and August are devoted entirely to a period of mass migration where all TV sets and radios are turned off, the car packed, and the beauties of nature appreciated (at least, beauties in one form or another).

There's only one catch in this theory. Somebody stayed at home last year and bought approximately two million dollars' worth of replacement picture tubes during this period. Additionally, we have to account for about twenty million dollars' worth of receiving tubes, and it is doubtful if portables and auto sets provided quite this much volume.

This doesn't mean that there should be any lack of alertness to the potential portable and auto radio service business. It does strive to point out that people do watch television programs and continue their radio listening during the summer months. Granted that they travel more, they still regard radio and television as highly entertaining and relatively inexpensive means of relaxation or recreation.

The summer months of 1952 are particularly promising with respect to radio and TV audiences, and, consequently, electronic maintenance work.

The month of July, for example, includes unprecedented radio and television coverage of the two political nominating conventions in Chicago. The Republican Convention starts on July 7th and the Democratic on July 21st.

Of course, there is normally tremendous interest in these events, but this year, it is even higher than in the past, not only because of the domestic and international situations which prevail, but also because of the announced intentions of the major radio and television networks to give the most complete coverage ever attempted.

This wirter hasn't checked yet to see if the "All Star Baseball Game" on July 8th, at Philadelphia, is going to be televised; however, it has been carried on TV in the past and it is probable that it will be carried again.

Thus, it is not too risky to predict, in view of the foregoing, that the rate of installation and repair jobs will be maintained during the major portion of the summer.

As a clincher, it is doubtful if major television manufacturing names would have appropriated the vast sums of money for sponsorship of these events, if they were not convinced of the impetus they will provice to radio and television sales and service.

Make your summer service plans tie in with these programs. The televising of the Kefauver committee hearings demonstrated conclusively that the viewing public is genuinely interested in governmental affairs, and no activity of government, or the political arena, can exceed the color provided by presidential nominating colıveniions.

Those service firms located in areas soon to be connected for TV network service should be especially prepared for heavy demands upon their facilities.

This summer promises to be one of highly profitable opportunities for the service field. Be sure to get your share.

Sylvania Tube Distributors offer trade-in allowance on more than 40 picture tube types . . . of any make.

Sylvania's GLASS ALLOWANCE PROGRAM is proving mighty profitable for service dealers. You can make up to $\$ 5.25$ more on the picture tubes you sell.

You also protect your reputation by installing only new, fully guaranteed Sylvania Picture Tubes in your customers' sets. The process is simple! No strings attached!

Here's all you do!

1 Return old picture tubes to your Sylvania tube distributor.

1. Sylvania has made it possible for him to give you a GLASS ALLOWANCE CREDIT up to $\$ 5.25$ per used tube on the purchase of any new Sylvania picture tube.
7 Return tubes may be of ANY MAKE but must be types shown
2. on the suggested Sylvania Glass Allowance Price List. (See list below.)
3. Returned tubes must be under vacuum and free from chips,
4. scratches, etc.
5. New tubes purchased need not be the same as those re-
6. turned. You may choose any type Sylvania has for sale.

Sylvania reserves the right to change cash values or tubes shown on the suggested Glass Allowance Price List. SO ACT NOW. Take your used picture tubes to your Sylvania Dis-
tributor . . TODAY! For further details call your Sylvania Representative or Sylvania Electric Products Inc., Glass Department, Seneca Falls, New York.

From:

Servicemen can cover 94% of fuse replacements with this kit

One-Call Kit Contains 45 TV fases
(6 most in demand types) and \in TV snap on fuse holders in a clear plastic hinged-cover bench box.
Another LITTELFUSE first.
Call your jobber today. Litelfuse, Inc.,
1865 Miner Street
Des Plaines, Illinois
VAnderbilt 4-1188

[^0]: JT160 SINGLE BAY 12.50 LIST
 T161 STACKED 26.40 LIST
 JT164 DOUBLE STACKED 56.80 LIST

