Computers\& Electro

Printers for Small Computers Radio Shack's New Micro Color Computer Testing the Microbuffer II Printer Interface Compact Disc Digital Audio Systems

A New Micrpprocessor For Next-Ge pration
Personal Compiters

Also In This Issue:
The Latest Flat-Panel Displays First Look at Magnavox's CD Record Player

REFINED LUBRICANT

You can wait for industry standards to mandate improved performance. Or you can have it now on Maxell. The Gold Standard.

The refinements of The Gold Standard, from oxide particles to lubricant to jacket, are uniquely Maxell. And therefore, so are the benefits.
Our unique, uniform crystals assure dense oxide packing. So you begin with an original signal of extraordinary fidelity. A signal we safeguard in ways that leave industry mexem standards in our wake.
An advanced binder bonds oxides to the base material preventing time and money-wasting dropouts. Calendering then smooths the surface for a read/write signal that stays
clear and accurate. And lubricants reduce friction between head and disk for a longer media and head life. To house it, we then constructed a new jacket heatresistant to $140^{\circ} \mathrm{F}$ to withstand drive heat without warp or wear. And created the floppy disk that leads the industry in error-free performance and durability.
All industry standards exist to assure reliable performance. The Gold Standard expresses a higher aim: perfection.

maxell

IT'S WORTH IT.

The KLH Sole

Price Slashed

List Price S199-Suggested Retail $\$ 169$ January 1983 Dealer Cost $\$ 106$ NOW $\$ 68$

It's been killing us. We bought these KLH stereos in April, but we agreed not to sell them till June. You see, the local KLH dealers still had lots of them in stock. Most were selling the Solo for $\$ 169$ (the very cheapest discount ad we've seen was $\$ 129$). And, the dealers had to have time to sell out their stock before our ads hit. So, we've been raring to go since April, while we've sat on DAK's best buy ever.

The KLH Solo was built to sell for $\$ 169$ to $\$ 199$ and to wholesale for $\$ 106$. It represents the very top end, state of the art in electronics. It's the audiophile's choice in personal stereos. But, unfortunately because of our last recession there just haven't been as many rich audiophiles around. So KLH ended up with 14,000 of these remarkable stereos.

DAK bought them all for cold hard cash. So if you're into absolutely the best sound in cassettes, complete with autoreverse, dual flywheel anti-rolling design, and if you'd like incomparable FM reception from the included FM stereo tuner pack, the KLH Solo is for you.

And don't worry. All of our KLH Solos are brand new factory sealed direct from the manufacturer.

The KLH Solo will make the sound of your cassettes and FM stereo explode with life. It gives

 you auto-reverse. The sound is simply breathtaking, and so is the incredible $\$ 68$ price.It's vibrant. And, the sound seems to be alive. The KLH Solo brings thunderingly powerful realism to personal stereo. And frankly for its $\$ 169$ price tag, it had better sound great.

In a market flooded with cheap Hong Kong imports, the KLH stands out as the Audiophile's choice. And even though DAK is able to offer the KLH Solo to you for just $\$ 68$ (a $\$ 101$ saving), let's look at what has made it worth $\$ 169$.

The anti-rolling transport of this deck is incredibly stable. It uses twin matched stabilization flywheels in conjunction with a specially designed motor to give you rock stable bi-directional play.

With auto reverse, your cassette need never stop. It just plays back and forth over and over again. It makes listening while you're on the run a real pleasure.

And, at home or in the office, with our optional home stereo cable you can plug this auto-reversing deck into any 'aux' jacks on your stereo system for an evening or a day of uninterrupted music.

Wait till you hear the quality of the sound from this audiophile cassette deck. And, while this deck is plugged into your stereo system, you can copy cassettes by playing them on the Solo and copying them on your home cassette deck.

FABULOUS FM STEREO TOO

Here's where you can really hear the difference. The Solo provides FM reception that is incredible. We think you'll get more and cleaner FM stations than with any other personal stereo.

But don't take our word for it. Test it yourself. Start at the bottom of the dial and compare station to station with any
other high end personal stereo.
Then, when you've left them in the dust, do the same test against the tuner in your own stereo system. You might just be in for a very big surprise.

The FM tuner pack simply fits into the Solo like a cassette. And retracting pins direct-connect it with the Solo.

The FM signal goes directly into the amplifier, not through the head and it works off the deck's power. It uses the headphone cable as a super antenna.

There's no tape/tuner switch because the KLH Solo is intelligent enough to know when its tuner pack is inserted.

But, all of the above wouldn't mean anything if it weren't for the incredibly sensitive FM tuner circuit. It utilizes a sophisticated 20 pin integrated circuit to produce dramatically alive FM sound.
ALL THE BELLS AND WHISTLES
The Solo comes with a heavy duty protective leatherette case, a matching case that holds 3 cassettes, a shoulder strap and a removable wrist strap.

You can attach the case to your belt or look at this, there's a 'screw-on' living hinge belt or waist band clip too.

So many features. There's a metal/ normal equalization switch. The Solo reverses automatically plus even its reverse button is power assisted.

There are 2 LED arrows to show tape direction. And while we're on the subject of 2 s , there are 2 headphone jacks and 2 volume controls.

Along with the 2 stability flywheels, there are 2 capstans. There's only one mute button. But, it cuts off the sound on 2 channels to hear the outside world.

The stereophones are the latest Samarium Cobalt mylar ${ }^{\text {© }}$ diaphragm type that deliver earth shaking thunderous sound with such precise definition and detail, that music is almost three dimentional.

BUT IT'S THE SOUND

Take the KLH Solo to your local HiFi store. Compare its dramatic sound and
super stability with other top of the line stereos, then you'll really appreciate the achievement that the Solo represents.

The Solo is only $1 / 4^{\prime \prime}$ wider than a cassette box ($\left.412^{\prime \prime} \times 312^{\prime \prime} \times 1 \frac{1}{2^{\prime \prime}}\right)$. It operates on only two AA batteries (not included). And, it's backed by a limited 90 day warranty by KLH.

TRY THE KLH SOLO RISK FREE

Take the Solo on walks, as you commiute to work, while you work or relax.

Don't put it away when you get home or to the office. With our optional cable, you can plug into your home or office stereo system for continuous nonstop play of your favorite cassettes. Here's a stereo you can use all the time.

If you aren't 100% satisfied, simply return it to DAK in its original box within 30 days for a courteous refund.
To order your KLH Solo with FM Tuner Pack risk free with your credit card, call toll free or send your check not for the the $\$ 169$ suggested retail price or even the $\$ 103$ Jan 1983 dealer cost. Send just $\mathbf{\$ 6 8}$ plus $\$ 3$ for postage and handling. Order No. 9683. CA res add 6\% tax.

And there's more. We have a bonus cable that you plug into an earphone jack on the Solo and into any stereo 'aux' inputs on your home stereo. Just add \$4 ($\$ 1$ P\&H) Order No. 9200.

Never buy batteries bonus. We'll include a charger and 4 nicad batteries (that's two in and two charging) so you'll always have music. It's a $\$ 24.65$ retail value, but it's yours for just $\$ 12.99$ (\$1.50 PGH) Order Number 9206.

DAK
INDUSTRIES INCORPORATED
TOLL-FREE 1-800-423-2636 If busy, after hours, on weekends or in CA CALL TOLL-FREE . . 1-800-228-1234 10845 Vanowen St., N. Hollywood CA 91605

ComputersaElectronics

A SUPER CHIP FOR NEXT-GENERATION 30 PERSONAL COMPUTERS
Tony Zingale/A look at Intel's upcoming iAXP 188 CPU.
COMPACT DISC DIGITAL AUDIO SYSTEMS
40 David Ranada/How the new digital audio 4.7" playback record system works.
\section*{HIGH-GRADE DATA CONVERTER FOR THE}
\section*{63}
Robert C. Nicklin/Part 2: Checkout, calibration and use.

PRINTERS FOR SMALL COMPUTERS
Al Burawa/Guidelines to buying impact-type printers.

THE SOUL OF CP/M
M. Waite \& R. Lafore/Part 4: The most hidden part of CP/M-the BIOS.

LEARNING 16-BIT MICROCOMPUTER TECHNOLOGY
George Meyerle/Part 6: How to use machine language programming.

TELETEXT EXPERIMENTS BY NETWORKS
Leslie Solomon/Providing worldwide software distribution.

ENGLISH BROADCASTS AUDIBLE
IN NORTH AMERICA/Glenn Hauser

EQUIPMENT REVIEWS

MAGNAVOX MODEL FD1000SL COMPACT DISC PLAYER

53 RADIO SHACK TRS-80 MODEL 4

60 radio shack mc-10 MICRO COLOR COMPUTER

78 MICROBUFFER II PRINTER INTERFACE FOR

12 computer video games

LES SOLOMON ON COMPUTER HARDWARE

The "Truly Portable" Sinclair/Timex.

24 COMPUTER SOURCES

THE ELECTRONICS SCIENTIST

Forrest M. Mims, III/Flat Panel Displays/A Tunable $60-\mathrm{Hz}$ Hum Filter.

EDITORIAL/Art Salsberg
 Friendly Computers.

NEW PRODUCTS

104 COMPUTER MART/ELECTRONICS CLASSIFIED

120 advertisers' index

COVER ART BY JAMES HEGEDUS

COPYRIGHT - 1983 BY ZIFF-DAVIS PUBLISHING COMPANY. All rights reserved. Computers \& Electronics (ISSN 0032-4485) August 1983, Volume 21, Number 8. Published monthly by Ziff-Davis Publishing Co., at One Park Ave., New York, NY 10016. Richard P. Friese, President; Selwyn Taubman. Treasurer; Bertram A. Abrams, Secretary. One year subscription rate for U.S. and Possessions. $\$ 15.97$; Canada, $\$ 20.97$; all other countries, $\$ 23.97$ (cash orders only, payable in U.S. currency). Second Class Postage Paid at New York. N.Y. 10016 and at additional mailing offices. Authorized as second class mail by the Post Office Dept., Ottawa, Canada, and for payment of postage in cash. POPULAR ELECTRONICS including ELECTRONICS WORLD trademark registered. Indexed in the Reader's Guide to Periodical Literature. Ziff-Davis also publishes Boating, Car and Driver, Cycle, Flying, Popular Photography, Skïng, Stereo Review, Electronic Experimenter's Handbook, and Tape Recording \& Buying Guide. POSTMASTER: Send address changes to COMPUTERS \& ELECTRONICS. Circulation Dept. P.O. Box 2774, Boulder, CO 80302. Please allow at least eight weeks for change of address, enclosing, if possible, an address label from a recent issue. Permissions. Material in this publication may not be reproduced in any form without permission. Requests for permission should be directed to Elizabeth Amado, Rights and Permissions, Ziff-Davis Publishing Co., One Park Ave., New York. NY 10016.

IF PEREONAL COMPUIERS

 = computer for persons. Not just wealthy persons. Or whiz-kid persons. Or privileged persons.

But person persons. In other words, all the persons whom Apple, IBM, and Radio Shack seem to have forgotten about (including, most likely, you).

But that's okay. Because now you can get a high-powered home computer without taking out a second mortgage on your home.

It's the Commodore 64, We're not talking about a low-priced computer that can barely retain a phone number. We're talking about a memory of 64K. Which means it can perform tasks most Apple is a registered trademark of Apple Computer. Inc
TRS-80 is a registered trademark of Tandy Corn IBM is a registered trademark of International Business Machines Corp

Friendly Computers

Are computers "friendly"? I suppose if I asked that question of 100 people, 99 would probably respond with a resounding "No!" But what is a friendly computer anyway? Let's dodge the question for a bit, and examine some other supposedly friendly machines.

The first one to come to mind is the television receiver. Is it truly friendly? Consider TV's purpose: to bring entertainment and information into the home. Now how much effort does it take to accomplish this purpose? Just turn on a switch-very friendly. However, think back to the time when you first bought the TV. If it had a mechanical tuner, you just plugged it in, turned it on, and selected a channel. But if it had pushbutton electronic tuning, you had to set (or fine tune) the desired sta-
tions before the TV progressed into its friendly mode.
How about an electronic typewriter? Usually it's a cinch to slide paper into the machine, turn it on, and produce hard copy. Truly a friendly machine you might say. But how about when you try to take advantage of some of its special features, such as automatic tabs and error correcting-or what about the basics such as setting margins and centering copy? Does a typewriter seem a little less friendly now? Let's also mention that both the TV and the typewriter are "dedicated" machines, meant to do one specific job.
Before we return to our original question, let's look at the computer in contrast to the other machines. Firstly, the computer is not a dedicated machine. It can handle a wide variety of tasks as we all know. Secondly, when a computer is used to accomplish a task, the user usually wants it to perform many sophisticated functions. Take word processing as an example. We are not satisfied to place a sheet of paper in a printer and use the computer's keyboard to produce hard copy. We want the computer to do all the normal tasks like setting margins, centering, etc. We also want it to check spelling, move paragraphs around, add footnotes, and maybe even suggest (thesaurus-like) possible alternate words to use. No wonder it seems unfriendly at times!

But hardware manufacturers and software authors are really striving to make the computer more friendly. In the hardware area, we are seeing prod-
ucts like the mouse, touch pad, light pen, and touch-sensitive video screen. In the software area, authors are using metaphors and icons, and, in general, a more graphic approach to the interface between man and machine.

Machines such as Apple's Lisa have taken a giant step in the direction of the friendly computer. Of the less-expensive machines, Epson's QX-10 and Radio Shack's Model 100 appear to be moving in the right direction with important applications packages built in. Current machines such as the IBM Personal Computer and the Commodore 64 will become more friendly with the addition of software such as VisiCorp's VisiOn, which is an easy-to-use window-oriented software system, and Commodore's Magic Desk, which uses pictorial images to convey information to the user.

Are computers friendly? The answer right now is no. Will they be more friendly in the future? Yes, definitely. Will they ever be friendly in the same sense as a TV or typewriter? Probably not. But then again, you can never hope to accomplish with a TV, typewriter, or any other dedicated and "dumb" machine the same things you can accomplish with a computer.

ComputerssElectronics

formerly Popular Electronics

[^0]Consumer Computers \&
Electronics Magazine Division
$\begin{array}{lr}\text { Larry Sporn } & \begin{array}{r}\text { President } \\ \text { J. Scott Briggs }\end{array} \quad \text { Vice President, Marketing }\end{array}$
Carole Mandel Vice President, Circulation
Eileen G. Markowitz Vice President
General Manager
Creative Director
Peter J. Blank
President
Ziff-Davis Publishing Company
Richard P. Friese
President, Consumer Magazine Division
Furman Hebb Executive Vice President
Paul H. Chook
Phillip T. Heffernan
Sidney Holtz
Edward D. Muhlfeld
Philip Sine
Baird Davis
Vice Presidents
George Morrissey
Selwyn Taubman
Treasurer
Bertram A. Abrams
Executive Vice President
Executive Vice President
Marketing and Circulation
Senior Vice Presidents

Editorial correspondence: COMPUTERS \& ELECTRONICS, I Park Ave, New York, NY 10016. Editorial contributions must be accompanied by return postage and will be handled with reasonable care; however, publisher assumes no responsibility for return or safety of manuscripts, art work, or models submitted.

The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this issue.

wabash diskettes \$1.29 each!

Now get Wabash Quality at a CE Price

For over 17 years, Wabash has been making high quality and dependable computer products. Wabash diskettes are made to provide error-free performance on your computer system because every diskette has been totally and hypercritically tested. Since you can now buy Wabash computer products directly from CE, the world's largest distributor of magnetic media, you can now get maximum savings on every order. You can even order toll-free.

New Wabash Six Year Warranty

The quality of Wabash diskettes is stressed throughout the entire manufacturing process. After coating, all Wabash diskettes go through a unique burnishing process that gives each diskette a mirror-smooth appearance. Wabash then carefully applies a lubricant that is specially formulated to increase diskette life. Then, to keep out foreign particles, a unique heat seal bonds the jacket and liner together to help prevent contamination. After 100% hypercritical testing and certification, Wabash then packages each diskette, (except bulk pack) in a super strong and tear resistant Tyvek ${ }^{\oplus}$ evelope. The final Wabash product is then shrink-wrapped to insure cleanliness and reduce contamination during shipment. Wabash diskettes are so very reliable that Wabash now offers a six year warranty in case of defects in materials or workmanship on all diskettes purchased directly from Communications Electronics.

New...Wabash Diskette Duplication Services

Communications Electronics has teamed up with Wabash to provide a single-source solution for the diskette duplication requirements of software developers, OEM's and distributors. All service is in-house, to give you fast, dependable service. In most cases, delivery can be completed in five days. Whether you require $100,1,000$, or 10,000 copies per week, call CE first for a no obligation price quote. For additional information, please write us on your letterhead with your requirements.
 Product Description
$8^{\prime \prime}$ SSSD IBM Compatible (128 B/S, 26 Sectors) $8^{\prime \prime}$ SSSD Shugart Compatible, 32 Hard Sector $8^{\prime \prime}$ SSDD IBM Compatible ($128 \mathrm{~B} / \mathrm{S}, 26$ Sectors) $8^{\prime \prime}$ DSDD Soft Sector (Unformatted) 8" DSDD Soft Sector (256 B/S, 26 Sectors) $8^{\prime \prime}$ DSDD Soft Sector ($512 \mathrm{~B} / \mathrm{S}, 15$ Sectors) 8" DSDD Soft Sector (1024 B/S, 8 Sectors) $51 / 4^{\prime \prime}$ SSSD Soft Sector w/Hub Ring
$51 / 4$ " Same as above, but bulk pack w/o envelope 5114" SSSD 10 Hard Sector w/Hub Ring 51/4" SSSD 16 Hard Sector w/Hub Ring
$51 / 4^{\prime \prime}$ SSDD Soft Sector w/Hub Ring $51 / 4^{\prime \prime}$ Same as above, but bulk pack w/o envelope 51/4" SSDD 10 Hard Sector w/Hub Ring 51/4" SSDD 16 Hard Sector w/Hub Ring 51/4" DSDD Soft Sector w/Hub Ring $51 / 4^{\prime \prime}$ Same as above, but bulk pack w/o envelope 51/4" DSDD 10 Hard Sector w/Hub Ring 51/4" DSDD 16 Hard Sector w/Hub Ring $51 / 1^{\prime \prime}$ SSQD Soft Sector w/Hub Ring (96 TPI) 51/4" DSQD Soft Sector w/Hub Ring (96 TPI) 51⁄4" Tyvek Diskette Envelopes - Price per 100 Pack
F111 1.89 F31A $\quad 1.89$ F131 2.39 F14A 2.99 F144 2.99 F145 2.99 F147 2.99 M11A $\quad 1.49$ M11AB $\quad 1.29$ M41A M51A $\quad 1.49$ M13A $\quad 1.79$ M13AB $\quad 1.59$ M43A $\quad 1.79$ M53A $\quad 1.79$ M14A $\quad 2.69$ M14AB $\quad 2.49$ M44A $\quad 2.69$ M54A $\quad 2.69$ M15A $\quad 2.59$ M16A 3.69 TE5 $\quad 12.00$

SSSD = Single Sided Single Density; SSDD = Single Sided Double Density; DSDD = Double Sided Double Density; SSQD = Single Sided Quad Density; DSQD $=$ Double Sided Quad Density; TPI $=$ Tracks per inch.

Quantity Discounts Available Wabash diskettes are packed 10 disks to a carton and 10 cartons to a case. The economy bulk pack is packaged 100 disks to a case without envelopes or labels. Please order only in increments of 100 units for quantity 100 pricing. With the exception of bulk pack, we are also willing to accommodate your smaller orders. Quantities less than 100 units are available in increments of 10 units at a 20% surcharge above our 100 unit price. Quan-
 tity discounts are also available. Order 500 or more disks at the same time and deduct $1 \% ; 1,000$ or more saves you 2%; 2,000 or more saves $3 \% ; 5,000$ or more saves $4 \% ; 10,000$ or more saves $5 \% ; 25,000$ or more saves $6 \% ; 50,000$ or more saves $7 \%, 100,000$ or more saves $8 \%, 500,000$ or more saves 9% and 1,000,000 or more disks earns you a 10% discount off our super low quantity 100 price. Almost all Wabash diskettes are immediately available from CE. Our efficient warehouse facilities are equipped to help us get you the quality product you need, when you need it. If you need further assistance to find the flexible disk that's right for you, call the Wabash compatibility hotline. Dial toll-free 800-323-9868 and ask for your compatibility representative. In Illinois or outside the U.S. dial 312-593-6363 between 9 AM to 4 PM Central time.

Buy Wabash Diskettes with Confidence

To get the fastest delivery from CE of your Wabash computer products, we recommend you phone your order directly to our Computer Products Division and charge it to your credit card. Be sure to calculate your price using the CE prices in this ad. Written purchase orders are accepted from approved government agencies and most well rated firms at a 30% surcharge for net 30 billing. For maximum savings, your order should be prepaid. All sales are subject to availability, acceptance and verification. All sales are final. All prices are in U.S. dollars. Prices, terms and specifications are subject to change without notice. Out of stock items will be be placed on backorder automatically unless CE is instructed differently. Minimum prepaid order is $\$ 50.00$. Minimum purchase order $\$ 200.00$. All shipments are F.O.B. Ann Arbor, Michigan U.S.A. No COD's please. Non-certified and foreign checks require bank clearance.
For shipping charges add $\$ 8.00$ per case or partial case of 1008 -inch flexible disks or $\$ 6.00$ per case or partial case of $1005 \frac{1}{4}$-inch mini-diskettes for U.P.S. ground shipping and handling in the continental U.S.A.
Mail orders to: Communications Electronics, Box 1002, Ann Arbor, Michigan 48106 U.S.A. If you have a Visa or Master Card, you may call and place a credit card order. Order toll-free in the U.S. Dial 800-521-4414. In Canada, order toll-free by calling 800-265-4828. If you are outside the U.S. or in Michigan dial 313-994-4444. Telex anytime 810-223-2422. Order your Wabash diskettes today.

OrderToll-Free! wabash 800-521-4414
 In Michigan 313-994-4444

818 Phoenix \square Box $1002 \square$ Ann Arbor, Michigan 48106 U.S.A. Order TOLL-FREE 800-521-4414 or outside U.S.A. 313-994-4444

NEW PRODUCTS

RCA ALL-PURPOSE TERMINALS

RCA's line of all-purpose terminals (APT) for multi-database timesharing and dedicated, direct computer-connected applications have either full stroke or membrane keys and come with or without a $12^{\prime \prime}$ terminal. Features include menu-controlled operation; programmable "personality" to match communication requirements for each database; built-in, direct-connect 300 -baud modem; tone or pulse auto-dialing of up to 26 stored phone numbers; and automatic log-on. Standard 60-key alphanumeric keyboard includes two user selectable keys and there is also a 16 -key calculator pad. Full-keystroke with terminal (shown): $\$ 598$

Circle No. 83 on Free Information Card

CAR AUDIO CASSETTE RECEIVER

The YCR-900 cassette receiver from Yamaha features 18 $\mathrm{W} /$ channel output into 4 ohms , both channels driven. It also has electronic synthesizer tuning, automatic reversing, and a bot-tom-loading tape transport with full logic control. Tuner section has automatic "seek" and manual tuning in both directions, 6

AM and 6 FM illuminated station presets, Yamaha's FM Automatic Noise Control, and adjustable muting threshold. Specs: sensitivity, $17.3 \mathrm{dBf} ; 50-\mathrm{dB}$ quieting, 20.7 dBf ; alternate channel selectivity, $80 \mathrm{~dB} ; \mathrm{S} / \mathrm{N}, 65 \mathrm{~dB}$; frequency response, $30-15,000$ Hz. $\$ 550$.

Circle No. 84 on Free Information Card

(- $-1=$

BRIEFCASE COMPUTER WITH DISK DRIVE

The Pied Piper has a full ASCII keyboard, is built around the Z80A CPU, and has an integral slim-line minifloppy disk drive with 748 K bytes (formatted) and accommodations for a second 748 K -byte floppy drive. The STM Electronics Corp. computer has 64 K RAM, 4 K ROM, 2 K video display buffer, and 2 K ROM for character generation. A 5 M - or 10 M -byte hard-disk subsystem can be added. It can interface a standard CRT monitor providing a 24 -line by 80 -character format. An r-f modulator is also available. For hard-copy printout, there is a parallel port for Centronics/Epson-style printers. The Pied Piper operates on CP/M 2.2 and the Perfect Software package (word processing, spelling dictionary, electronic spreadsheet, and data filing/merging system) is included. Dimensions: $4^{\prime \prime} \times 20^{\prime \prime} \times 11^{\prime \prime}$; weight: $12.5 \mathrm{lb} . \$ 1299$.

Circle No. 85 on Free Information Card

LOW-COST DOT-MATRIX "BANANA"

The Gorilia/"Banana" dot-matrix printer, features 50 cps print speed, dot-addressable graphics, 5×7 dot matrix, tractor paper feed, self-inking ribbon cassette, parallel or serial interface, and $10^{\prime \prime}$ carriage. From Leading Edge Products, it can print either 10 or 5 cpi, the former providing 80 columns. Printhead pressure is adjusted with a 7 -position switch. Four special character sets are included for US, UK, Germany, and Sweden. Has rotating thumbwheel advance and single-hammer construction. Weighs 10 lb . $\$ 249.95$.

Circle No. 87 on Free Information Card

16K TIMEX SINCLAIR 1500

The Timex Sinclair 1500 features 16 K RAM (expandable to 32 K), extended BASIC, and 40 moveable keys. Each key can perform as many as six functions including keyword entry. The 1500 is said to be compatible with all of the peripherals and software available for the TS 1000 . Additionally, instant-load software cartridges can be inserted into a low-cost interface that plugs into the computer. $\$ 79.95$

Circle No. 88 on Free Information Card

PORTABLE COMPUTER IS IBM-PC COMPATIBLE

The Columbia VP is an 8088-based microcomputer said to provide IBM compatibility in a portable package. It features a $9^{\prime \prime}$ video monitor, two $51 / 4$ " half-high floppy-disk drives, IBM-standard keyboard, 128 K RAM (expandable to 256 K), an RS 232 interface, and parallel printer interface. Video display is 600×200 or 320×200 pixels. Disk drives are 320 K double-sided, double-density. Dimensions: $18^{"}$ $\times 14^{\prime \prime} \times 8^{\prime \prime}$; weight: 32 lb . $\$ 2995$.

Circle No. 89 on Free Information Card

TELEVISION WATCH

Claiming it to be the first television watch, Seiko has introduced a digital wristwatch that also contains a 1.2" LCD TV screen and weighs less than 2 oz. Accompanying the wrist unit are a pocket-size powerpack/tuner and stereo headphones (which also contain the antenna). The set will receive all 82 vhf and uhf channels and FM stereo radio. The display has 31,920 elements. $\$ 495$.

Circle No. 90 on Free Information Card

"I built this 16-bit computer and saved money. Learned a lot, too."

Save now by building the Heathkit H-100 yourself. Save later because your computer investment won't become obsolete for many years to come.
Save by buiding it yourself. You can save hundreds of dollars over assembled prices when you choose the new H-100 16-Bil/8-Bit Computer Kit - money you can use to buy the peripherals and software of your choice
H-100 SERIES COMPUTER SPECIFICATIONS:

USER MEMORY:
128K-768K bytes**
MICROPROCESSORS:
16-bit: 8088
8-bit: 8085
DISK STORACE:
Built-in standerd
5.25" disk drive,

320K bytes/disk
KEYBOARD:
Typewriter-style,
95 keys, 13 furction keys, 18-key numeric pad GRAPHICS:

Always in graghics mode. Software 640h/225v resolution; up to eight colors are available :*:

COMMUNICATIONS: Two RS-232C Serial Interface Ports and one parallel pcrt

The H-100 is easy to build - the step-by-step Heathkit manual shows you how. And every step of the way, you have our pledge - "We won't let you fail." Help is as close as your phone, or the nearest Heathkit Electronic Center. And what better way to-learn state-of-the-art computing techniques than to build the world's only 16 -bit/8-bit computer kit? To run today's higher-speed, higher-performance 16 -bit software, you need an H-100. It makes a significant difference by processing more information at faster speeds.
Dual microprocessors for power and compatibility. The H-100 handles both high-performance 16 -bit software and most current Heath/Zenith 8 -bit software.
Want room to grow? The H-100's standard 128 K byte Random Access Memory complement can be expanded to 768 K bytes - compared to a 64 K standard for many desktop computers.
And the industry-standard S-100 card slots support memory expansion and additional peripheral devices. increasing future upgradability of the $\mathrm{H}-100$.
High-capacity disk storage, too. The H-100's $5.25^{\prime \prime}$ floppy disk drive can store 320 K bytes on a single disk. The computer also supports an optional second $5.25^{\prime \prime}$ and external $8^{\prime \prime}$ floppy disk drives. And an optional multimegabyte internal Winchester disk drive will be available in the near future.

The H-100 gives me the moșt for my computer dollar!

Critical circuits are pre-assembled, making the H-100 easier and faster to build!

Want teautiful high-resolution graphics? You can create extensive charts, drawings, graphs and symbols to meet your needs - using the H-100's bit-mapped' graphics and its 640×225 pixel video display.
The H-100 gives you total communications flexibility. Three interface ports let you plug in dot-matrix and tetter-cuality printers, as well as other peripheras.

Compare the H-100's exceptional capabilities with other deshtop computers:

finformation current as ot $8 / 31 / 82$. $k=$ External disk storage available soon.
Learn by building. When yo \lrcorner build and operate the $-1-100$, you learn more about this sophisticated computer system and its unicue 16 -bit/8-bit software capabilities

Learn from outstanding documentation. One of the most important parts of any computer system is documentation - and Healhkit documentation is among the industry's best. Our instruction and operating manuals are fully delailed, in the world-famous Heathkit tradition.
Learn ty doing. Many of our sottware programs come with a complete set-up and operating manual. More complete than most other software documentation. each manual not only tells you what the program will do - it shows you the easiest way to accomplish each task.
We back you all the way. With Heathkit computer products, technical assistance and expertise is as close as your te ephone - or the nearest Heathkit Electronic Center.- Complete eechnical assistance and service is available at over 60 locations nationwide.
Buy from a leader. When you croose a Heathkit computer, you get the backing and reliability of the world's leader in quality electronic kits for over 50 years! You can count on us for quality service, reliability and value at kit prises that give you more computer for your dollar! See the $\mathrm{H}-100$ in action. Wisit your nearby Heathkit Elec-

Always in graphics mcde, you can control each of the $\mathrm{H}-100$'s 144,000 screen dots! (Colo* graphics optional)

Heathkit Electronic Centers ere units of Veritechnology Electronics Corporation. Heath Company and Veritechnology Electronics Corporation are subsidiaries of Zenith Rad o Corporation. Prices, product avaulability and specificalions are subject to change withou* nozice

Hands-On Reviews of Recently Released Game Software

ONE of the more intriguing developments for what are traditionally hometype computers is the rash of "serious software" products coming out for such machines as the Atari 800 and the Commodore VIC-20. Foremost as members of this group are the several word-processing programs we've seen-some fairly venerable, others brand new.

Atari has had its own WP for quite a while; and though it is more complex than most, it comes with a tutorial tape cassette that helps make life easier for the complete neophyte. Atari also reports a new, improved WP program. We haven't seen it yet, but it's supposed to be extra-easy to learn.

One that's been out for a while and that we found especially easy and quick to learn is DataSoft's "Text Wizard." The various command functions are a breeze to assimilate, and the supplier has thoughtfully provided a quick-reference crib card-something that would be very helpful from every software supplier. Maybe they did it this way because they're primarily a game vendor and used to putting concise instructions on a card in the package.

A brand new one is the "Bank Street Writer," just landed from Broderbund Software. It comes with a tutorial on the reverse side of the diskette. To retrieve the tutorial, play the diskette upside-down-a feat that's possible with the Atari disk drive. Unlike most other lowcost WP programs, Bank Street Writer presents the screen display the way it will appear on the printed page instead of jumbling it all together in one mishmash. This is a definite plus, and the designers are to be congratulated on their thoughtfulness and thoroughness in putting this package together.

For the VIC-20, we have two entries of import: the Quick Brown Fox and Wordcraft 20. They're both on plug-in ROM cartridges. The Q.B.F. is supercheap (about $\$ 65$), a price probably made possible by the fact that it's been around for a while and just recently surfaced in a VIC version. In its unexpanded version, the ROM cart provides about 2 K of space for creating files. Adding memory expansion is a big help here. Like most such programs, it relies heavily on your willingness to save the goodies on a cassette tape at your earliest convenience. All the usual features
are there: variable page parameters, rapid scroll, find and replace, etc. And it's easy to use.

The principal problem with the Q.B.F.-as with most anything you run on the VIC-20-is the fact that the computer has a nonstandard printer output and you need a special interface converter such as the one from Cardco (about $\$ 79$) that lets the computer run with any parallel printer. It is a cheap and quick way to get word processing on a low-cost computer.
Another VIC-20 entry, Wordcraft 20 from U.M.I. (another game house), costs a bit more (about $\$ 150$), but has some additional features that make up for the higher price tag. For one thing, it doesn't require that special interface to run the printer. Instead, it has specific programming addresses built in so it will drive just about any parallel printer right from the VIC's user port.

Also, the Wordcraft has a 40 -column screen display converter built into its circuitry, which makes the VIC somewhat more feasible as a word processor than does its normal 23 -column display. You do need a special connecting cable for most typical printer hookups, but any good computer store will make this up for you. When you compare Wordcraft with Q.B.F., neither one comes off with a particular price edge, since the Wordcraft has features built in that are otherwise available only with additional hardware when you use the Q.B.F. But the latter system has a big attraction-the low initial cost, which makes it painless to buy and add to later.

One thing about all these word processors-whether they're for the Atari or the VIC-a decent-quality monochrome monitor is important in order to read print on the screen easily. Substituting an excellent amber-and-black-screen monitor for a color-TV set made an enormous difference! Both the VIC and the Atari have a composite video output at a five-pin DIN connector, so attaching the monitor was no problem at all. All that was needed was a $\$ 5$ DIN-to-RCA adapter.

ARCHON

Diskette for Atari 400/800
Electronic Arts, 2755 Campus Drive, San Mateo, CA 94403, 415-571-7171. $\$ 40.00$

Graphics $\star \star \star \star$

Gameplay $\star \star \star \star$

Type: Joystick strategy/adventure game
Memory Required: 32K

Once in a while, we come across a new company with some really brilliant computer game concepts. This is one of those rare cases. The emergence of Electronic Arts with its line of "thinking" computer games may show the way for a lot of successful entries in the future. We've had a peek at some of the other games to come from this company, and we think they'll be real winners.
Archon is a combination of several

types of games. It starts out looking something like a chess board, except the players are mostly fantasy-allegorical characters such as the wizard, sorceress, unicorn, phoenix, shapechanger, and others. Each playing piece, called an "icon," has particular move limits that it can make on the board; and each has its own special way of doing battle.

This is best played as a two-player game, although you may elect to play against the computer-in which case, you may not stand a chance. Each icon has a specific battle weapon, and you engage an enemy piece by trying to occupy the same square on the chessboard that the enemy is on. When you press your fire button to "engage," the screen changes, and the two of you square off on a field of battle that has many trees and shrubs to act as obstacles and shields.

Some pieces, like the knights and goblins, are sword-swingers and club wielders, so their range of effectiveness is limited. But when you play against the computer, watch out for those lowly goblins; they're fast and mean! Other icons have long-range weapons such as fireballs, lightning bolts and arrows. The phoenix has a field of fire, while the wizard and sorceress (on opposing teams) can throw fireballs. They can also cast a number of very useful spells such as teleport, heal, revive (a dead icon), summon an element (wind, water, fire, etc. to act as combatants), imprison (a troublesome opposing icon), or reverse time. Each spell can be used just once during a game, and it's important to remember what you have left and to
(Continued on page 16)

Predictable.

A flawless future is in sight with 3M diskettes.

When it comes to keeping track of precious data, predictable means reliable. Being able to count on every diskette, every time. At 3 M , reliability is built into every diskette. We've been in the computer media business for over 30 years. And we've never settled in. We're constantly improving and perfecting our product line, from computer tape and data cartridges to floppy disks.
3 M diskettes are made at 3M. That way, we have complete control over the entire manufacturing process. And you can have complete confidence in the reliability of every 3M diskette you buy.
Look in the Yellow Pages under Computer Supplies and Parts for the 3M distributor nearest you. In Canada, write 3M Canada, Inc., London, Ontario. If it's worth remembering, it's worth $3 M$ diskettes.

3M hears you...

How to quickly re

If you'd like to turn the agony of small business bookkeeping into the ecstasy of total control, you've come to the right place.
Because even if you're starting with a shoe box full of invoices or a pile of checks hiding under a pile of deposit slips, we can tell you how to centralize, organize and monitor all that information, and manipulate it in ways that will make your business a
pleasure-all with an Apple ${ }^{*}$ III Personal Computer.

Attain instant financial status.

An Apple III, teamed with the BPI General Accounting Package, can put every basic accounting function right at your fingertips.

Technically, that means

General Ledger, Accounts Payable, Accounts Receivable and Payroll-all in one package.
Meaningfully, that means you can turn numbers into answers.
With BPI, your Apple III can give you a snapshot of your company's financial condition, an up-to-the-instant balance sheet. It
can also generate instant and detailed
reports

gain yourbalance.
 on your customers and vendors.

So you know who owes whom, how much, and how come.

And just how well your cash flow is flowing.

And where to give credit where credit is due (a customer inquiry

Your Apple can generate instant income statements (with expense ratios) or balance sheets, and let you compare them to last month's or year's, then print them out to suit your banker.
feature allows you to make credit decisions based on the most current information).

You can also list your purchases by discount dates. And take advantage of them in no uncertain net terms. You can even keep payroll records without paying more, because it's part of the same package.

Profit from history.

In business as in life, experience is the best teacher. And the Apple/BPI system can provide you with instant comparisons of this-month-this-year vs. this-month-last-year, or this-year-to-date vs.
last-year-to-date.
So you can quickly spot changing expense ratios and make decisions with 20/20 foresight.

The BPI General Accounting Package also lets your income statements be coded by location, department or product line. So you know where your money's coming from.

And where it's not.

It can also allow you to take full advantage of merchandise disiounts. So you'll know whom so pay when to pay, how much to pay-and save a lot of clams in the proiess.

Make a timely statement.

Add an Apple Dot Matrix or Daisywheel printer to your Apple III, and you can print out your entire balance sheet in minutes.

Or any number of reports, from cash receipts to payroll ledger to income. You can even print checks and customer statements.

The impressively professional

results will make an important statement to everyone you deal with-including your banker.

More ways Apples pay.

There are more people in more places doing more things with

To atoid fishy transactions, you can instantly display customer's payments, charges and current balance. In this case, a few more cans of tuna would put Mr. Moser over his $\$ 2,000$ limit.

Apples than with any other personal computer in the world.

Because for one thing, there's more soffware for Apples than for any other personal computer in the world. So the same Apple that handles all your accounting needs can also handle financial spreadsheets, word processing and electronic filing.

Ycu'll also find programs that are designed specifically for your kind of business. Be it dentistry, architecture or swine herding.
Of course, the best way to learn all the ways Apples can help you make better business decisions is to visit any one of over 1500 authorized Apple dealers.

So drop in. For a full account.

apple

The most personal computer.
use them before you lose the game. When you lose your Wizard (or Sorceress) the game is over-just as a chess game ends when your King is checkmated.

There are so many built-in, adven-ture-like variations and combinations that it's really impossible to do them justice in a short review. The game rates extra high on the scales.

ZAXXON

Cassette or Diskette for Atari 400/800
DataSoft, Inc., 9421 Winnetka Ave., Chatsworth, CA 91311; 213-701-5161. $\$ 39.95$
Graphics $\star \star \star \star$
Gameplay $\star \star \star \star$
Sustained Interest $\star \star \star \star$
Type: Joystick action game
Memory Required: 16 K cassette; 16 K or 32K diskette

Zaxxon is already enshrined among those favorite arcade games that we'd like to be able to bring home, and DataSoft has finally made it possible. The game is currently available in three versions: a 16 K cassette and a diskette with both 16 K and 32 K versions (one on each side) for the Atari computer and a 48 K disk for the Apple.

The game presents a three-dimensional scene as you pilot your attack jet fighter through four different screens attacking first the enemy's floating fortress complete with walls, laser barriers, anti-aircraft cannon, and the hazard of crashing into the very objects you want to blast to smithereens. Your view of the screen is at an angle so you can watch the three-dimensional scenario. You move your fighter up and down and from side to side; your control is complete, but you can easily get blasted.

Finish the first screen (fortress) and you face an armada of defending enemy jet fighters. Screen three is a much more difficult fortress with really difficult laser barriers. This is where some fancy flying comes in handy. As with the arcade version, about the only way to gauge your altitude properly for squeezing safely through these barriers is to shoot at the wall and see where your

cannon shells explode. Then gauge your approach altitude accordingly.

If you succeed in getting through this screen, you face the deadliest challenge of all-the armored robot. I haven't succeeded in getting this far yet, but the game is exciting and an unbelievable grabber. Just when I thought I had finally outgrown all of those outer-space type shoot-em-ups, this one had to come along! It's actually kept me up later than some of my all-time favorites, which I won't mention here.

Like so many computer games, skill develops with time and practice. Unlike many such games, smaller memory versions are missing some of the refinements. The 16 K version, for example, has no surface-to-air missiles defending the enemy fortress. Also, you can't change your ship's altitude during the outer-space dogfight with the enemy fighters.

If you have a choice, and especially since the price is the same for all versions, don't get the cassette; it takes forever to load into the computer. When using the diskette version, start with the 16 K game and play it until you get more proficient. Then switch to the 32 K side of the diskette. Also, if you have a printer/modem interface for your Atari, make sure it's turned off before loading, or you'll find the game erasing from RAM each time you lose your third attack fighter.

ANDROID

Diskette for Atari 400/800

PDI (Program Design, Inc.), 95 East Putman Ave., Greenwich, CT 06830; 203-661-8799. \$29.95

Graphics $\star \star \star \star$

Gameplay $\star \star \star \star$

Sustained Interest $\star \star \star$

Type: Joystick maze and action game Memory Required: 40 K + Atari BASIC cartridge
Maze lovers will jump into this disk with both feet. According to the directions, it's really two different games: "Android" and "Captivity"-but in reality, it's just two different kinds of maze games with the same basic diskette.

Like PDI's earlier release, "Moonbase IO", this disk is accompanied by a voice-track cassette that plays through your Atari's cassette recorder, if you have one. Unlike Moonbase IO, playing the cassette isn't really necessary; it contains no control tracks for the gameplay, but the sound track definitely makes the game more interesting. It supplies the robot-like voice of your re-mote-controlled Android which has
traveled to the black asteroid beyond Jupiter's orbit. The android tries to seize treasures hidden in the labyrinth beneath the asteroid's surface.

The sound track is ingenious and amusing, containing the android's mechanized voice reporting on various status elements-such as, "Radioactivity present, earthquake potential," and "Coke machine operational" (Coke machine???). You find out that it's a real Coke machine, as the android dumps some change into it and then says, "Darn it, I just lost my quarter." Apparently soda is a lot cheaper once you enter the dark asteroid's labyrinthine treasure house.
The treasures are guarded by armed robots, and you need to retrieve keys to get from one level to the next. There are two screens-an overall view of the maze from the top, showing your location-and an eye-level three-dimensional view of the maze from the top, showing your location-and an eye-level three-dimensional view with excellent graphics. In Version 1, a compass pointer indicates which direction you're traveling with the overview of the maze as your map vantage point. Version 2 eliminates the compass and is therefore much harder.

There are natural hazards-such as absorbing too much radioactivity, or getting hit by a blast from a robot guardian. A time bomb can also explode catching your android in its blast, and there's an engulfing slime which is very dangerous. Earthquakes come and go at random, knocking down walls and blocking corridors-often the very ones you wanted to explore. Also, your android can simply run out of energy-in all of these cases, the game ends when your android is destroyed. If you can't complete the tasks, you can at least go for points when new at the game.

The Captivity version is a straight maze/escape game in which you have to find your way out of the maze in a given time period. There are 10 versions with a compass and 10 versions without. Every time you take a peek at the overhead view, it costs you points.

After you ask what it cando for you now, ask what itcan do for you

 later.If you're about to buy a personal computer, you need to consider two basic issues: What your needs are now, and what they're likely to be a few years from now.

That's why the HP-86 has to be your best choice. It's got the software and the hardware to go the distance.

Software for today and tomorrow.

Save \$255^ on the Personal Productivity Pac. Here's
 a good way to get started. With software that, if bought separately, would cost you $\$ 750{ }^{* \star}$ We're offering it at the reduced price of $\$ 495^{\star \star}$ You'll get VisiCalc ${ }^{\circledR 1}$ PLUS, the world-famous electronic spreadsheet for "what-if" planning. (The "PLUS" is a Hewlett-Packard bonus: extra programs to quickly turn your spreadsheet into bar graphs, line graphs, or pie charts.) Plus WORD/80, for word processing. And FILE/80, for record keeping without paperwork.
$\mathbf{C P} / \mathbf{M}^{8}$ Buy this plug-in module, and you'll extend your HP-86 system to accept many popular programs written under the CP/M operating system - programs such as WordStar ${ }^{\mathrm{mm}}$ and dBASE II. ${ }^{\text {M }}$
Graphics Presentations. When combined with the HP 7470A plotter, our graphics software lets you produce professional-quality pie and bar charts, line graphs, text pages, and overhead transparencies. And you can do it all in color.
Data Communications. If you decide you want it, an optional accessory lets you access The Source, the

The HP-86
 Personal Computer. Chances are, you'll find what you're looking for.

 wide information sources. When the time comes for more, consult our 450 -page software catalog.

Hardware that expands with your needs.
While your computer's ability to expand depends largely on software, naturally, the hardware must keep up.
That's why the HP-86 system has a modular design. So you can add a printer or plotter as easily as you hook up a tape deck to your stereo. And operate up to 14 peripherals at once, if you wish.

When you find yourself facing lengthy problems or spreadsheet analyses, simply add more memory - up to 640 K bytes.

As you demand more of your HP-86, you'll find that it keeps up. Whether you need a broad range of hardware, software, or peripherals, the HP-86 makes expansion easy, giving you a hard-working system tailored to help solve your specific problems.

If you need more good news, try this: The basic system is only $\$ 2820^{\star \star}$ (128 K computer/keyboard, $12^{\prime \prime}$ monitor and single $31 / 2^{\prime \prime}$ disc drive).

Get a hands-on demonstration of the system that works for you now, and will still be working for you later.

For the authorized HP dealer or HP sales office nearest you, call TOLL-FREE 800-547-3400 and ask for operator 96. M-F, 6 a.m.-6 p.m. PST.

The future belongs to the creative electronics technician.

There are a lot of good jobs out there in electronics. But the best jobs go to the people who can think and work creatively. Those who can conceive and design circuits and equipment . . those who can initiate ideas and carry them through... those who can turn theoretical concepts into reality. These are the people commanding up to $\$ 18,000$ as starting salaries, earning $\$ 30,000$ or more with experience and ability. And NRI can help you join their company.

The First Complete Program of Its Kind

Now, for the first time in the history of home study, NRI offers you a new and exciting course in Electronic Design Technology. A course that starts with the fundamentals and builds from there to
prepare you for an electronic career where the growth is. You're trained for exciting jobs in the creation of communications equipment, computers, consumer products, anything that needs electronic circuits.

Only NRI gives you such complete and concentrated training in the design of electronic circuits. And you learn at home in your spare time, without quitting your job or wasting time, travel, and gas going to night school. You learn with NRIdeveloped training methods that combine knowledge with practical experience.

NRI Circuit Designer Gives Hands-On Experience

You learn by doing. No ivory-tower, strictly theoretical course here. You actually design and build modern electronic
circuits, run tests, and verify specs. You learn how various systems interact, design your own circuits to perform specific tasks,

.ELECTRONIC
 LOGY

get the famous Texas Instruments Tl-30 engineering calculator to speed and simplify circuit analysis and design. It's a true engineering instrument that includes trigonometric functions as well as square root, logarithms, and memory. Together with your Circuit Designer, they work to give you a sound basis of practical experience.

NRI Fast-Track Training
Although the NRI Electronic Design technology program carries you through advanced electronics, the unique NRI lesson concept simplifies and speeds learning. Especially written for individual instruction, each lesson covers its subject fully and thoroughly. But extraneous material is eliminated, language is clear and to the point, organization is logical and effective.

You'll start with subjects like Fundamentals of Electronic Circuits, progress rapidly through Circuit Theory to SolidState Electronics and on to Digital Electronics, Computers, and Microprocessors. Hand in hand with your theory will be practical Design Lab experiments, circuit demonstrations, and test/measurement procedures that make it all come to life.

No Experience Necessary

You need absolutely no electronic experience to be successful with this modern course. If you're a high school graduate with some algebra, you should handle it without any trouble. We even include, at no extra charge, the NRI Math

Refresher Module, designed to help you brush up on your math and teach you any new concepts you may need from basic algebra through phasors and circuit analysis.

Free Catalog, No Salesman Will Call

There's so much to tell you about this exciting new course for the electronic 80 's, we can't do it all here. Send the

postage-paid card for our free, 100-page catalog with all the facts about this and other NRI electronics courses. We'll rush it right to ycu without obligation. Look it over and discover for yourself why only NRI can frepare you so well for your future. If card has been removed, please write to us.

NRI SCHOOLS
McGraw-Hill Continuing Education Center
3939 Wisconsin Ave. Washington, D.C. 20016

A "truly portable"' Sinclair/Timex

Wouldn't it be nice to be able to enter a program in your Sinclair/Timex computer and, when you remove the ac power, have the program remain in memory? This, of course, makes the Sinclair/Timex a truly portable computer that can be carried from video terminal to video terminal (or TV receiver to TV receiver). I'd like to tell you how you can do it by building a very simple add-on circuit for your computer. I'll also show you a simple little circuit that will reset your T 1000 when you want to "start over."

Even you are not interested in portability, the circuit to be discussed adds one other very useful feature-it provides an uninterruptable power supply that maintains the computer's data integrity if it is connected to the wall socket and commercial power fails.

The circuit (Fig. 1) is a basic diode switcher that has been around for many years. When the power supply is delivering a voltage higher than that of the battery, silicon diode $D l$ is forward-biased (acts like a closed switch), while silicon diode $D 2$ is reverse-biased (acts like an open switch). This effectively
isolates the battery from the system. Thus, the line-operated power supply runs the computer. If the line-operated supply is removed-either by physically unplugging the supply from the wall socket or if power fails for any reason-D2 becomes forward-biased, D/ becomes reverse-biased, and the battery supplies power to the computer. Battery power cannot be fed back to the wall unit (a possible discharge path) since, under these conditions, reversebiased D1 acts as an open switch.

Now, which battery to use? A conventional 9-V transistor radio type will run a minimum computer, but since its 9 V is higher than the approximate 7 V supplied by the wall-supply that comes with the computer, it will soon ran down to 7 V -a waste of power. Besides, a conventional 9-V radio battery is limited as to how much current it can deliver over a long period. When RAM or a printer is added to the basic computer, the power demands increase rapidly.

There is one battery that works very well, and best of all, you can get it free. And this battery can deliver 6 V with a lot of current for quite a long time.

I'm talking about the flat battery that comes in Polariod film packs. If you know anyone with a Polariod camera, ask him to save you the plastic frame that is left after all the film has been used up. (The frame is usually thrown away.) Break open the plastic enclosure and you will find a flat, very thin battery about $2^{\prime \prime}$ by $3^{\prime \prime}$. Electrical connections are made via a pair of metallic contacts on one side. You can determine, and mark, the polarity of the two contacts.

If you are into hardware experimentation, get a couple of these special batteries and use low-value (high wattage) resistors as a load while monitoring voltage across it. You will be surprised at the amount of power.

In the circuit shown here, the two diodes, the Polariod battery, and the physically small POWER switch were fitted together and covered with a layer of black electrical tape. A connector was used to interface to the plug at the end of the wall-mounted supply, and a small cable terminated with a suitable plug was used to connect the package with the computer's power input receptacle. Since solder doesn't adhere very well to the two electrical contacts on the battery, I used a pair of "bobby" pins that were scraped to make good contact.

The taped package can be mounted to the top surface of the computer using double-sided adhesive tape, with the output cable plugged into the computer input receptacle. When the wall supply is plugged into the battery package, and the POWER switch turned on, the system works as normal. When the wall supply connector is removed (or wall power fails), the battery runs the system. When the battery runs down, simply slit the tape, and wire in a new battery.

Adding a Reset Switch. One of the small "goodies" not included on the Sinclair Timex T 1000 computer is a "reset" switch to be used when things really go berserk. If you do any programming, you know what that means. To add a reset switch to these machines, connect one end of a slender insulated lead to pin 26 of $I C 3(\mathrm{Z} 80)$ or to the junction of $R 15$ and $C 5$ as shown in Fig. 2. Connect one end of a similar slim lead to any ground pad. Connect the free ends of these two leads to the connectors of a physically small, normally open pushbutton switch (makes no difference which lead goes where). Mount the pushbutton switch as desired on the plastic enclosure and mark it reset. Now, when the screen goes blank at any time, depress this switch for a restart. δ

Fig. 1. At left is a circuit using a Polaroid battery to power your computer.

Fig. 2. Below is a circuit for adding a reset button for starting over.

THE MOST GOMPLETE GOMPUTER INFORMATION RESOURCE

WHEN YOU JOIN THE LIBRARY OF COMPUTER AND INFORMATION SCIENCES

You simply agree to buy 3 more books-at handsome discounts-

This up-to-date Second Edition contains:

- Over 1,670 pages of revised, expanded, and updated text
- 550 articles on virtually every aspect of the computer sciences
- Writteh by 301 distinguished authorities
- Profusely illustrated with over 500 photos, and over 250 diagrams, graphs and charts

ust published, the ENCYCLOPEDIA OF COMPUTER SCIENCE AND ENGINEERING. Indispensable to consultants, business people, data processing professionals, and enthusiasts, it is a veritable data base of information on:

- Hardware
- Software
- Programming languages
- Artificial intelligence
- Computer applications
- Personal computing and much more!
The Encyclopedia is organized to make finding and using its wealth of information an ease. Articles are alphabetically arranged and are cross-referenced to related articles and to specific subject matter. The clear and expanded appendices include abbreviations, acronyms, special notation and terminology, as well as numerical tables, the mainstay of applied technologies. A complete 5,000-term index contains
references to sub-categories, doubles as a computer science dictionary, and is an invaluable tool for locating specific information.

Praise For the First Edition:

Called "Impreșsive. . comprehensive well done" by Datamation, and "... a real treasure cache" by Business Management, the new Second Edition promises to eclipse Computer Management's statement on the original of "There isn't another book like it." Send for your free 10 -day trial.
The Library of Computer and Information Sciences is the oldest and largest book club especially designed for the computer professional. In the incredibly fast-moving world of data processing, where up-to-date knowledge is essential, we make it easy for you to keep totally informed on all areas of the information sciences. In addition, books are offered at discounts up to 30\% off publishers' prices. Begin enjoying the club's benefits today!

MEMBERSHIP BENEFITS: In addition to getting the ALL NEW Encyclopedia of Computer Science and Engineenng for only $\$ 2.95$, when you join, you keep saving substantially on the books you buy. Also you will immediately become eligible to participate in our Bonus Book Plan, with savings of wo to 70\% off the publishers' orices. At 3-4 week intervals (16 times per year) you will receive the Book Club News cescribing the cominn Main Selection and Alternate Selec. tions, together with a dated reply card. If you want the Main Selection, do nothing and it will be senf to you automatSelection, do nothing and it will be sent to you automat-
ically. If you prefer another selection, or no book at all. simply indicate your choice on the card, and return it by the date specified. You will have at least 10 days to decide. If because of late mail delivery of the News, you should receive a book you do not want, we guarantee retirn postage.

The Library of Computer and Information Sciences

7-BY5:
fthe oldest and most respected computer
book clut in the world)
Riverside, New Jersey 08075
Please accept my application for trial membership and send me the ÁLL NEW Encyclopedia of Computer Science and Engineering (44904) for $\$ 2.95$. This 1,670 page volume contains 550 articles and over 700 charts and photos. I agree to purchase at least three additional Selections or Alternates over the nexi 12 months. Savings range up to 30% and occasionally even more. My membership is cancelable any time after I buy these three books. A shipping and handling charge is added to all shipments.
No-Risk Guarantee: If you are not satisfied-for any reason-you may return the Encyclopedia within 10 days and your membership will be canceled and you will owe nothing
Name
Name of Firm
(It you want subscription sent to your office)
Address _ Ap
Clity
State \qquad Zip
Otter good in Continental U.S. and Canaca only Prices. siightly higher in Canada.) Computer \& Electronics $8 / 83$

Hardware

IBM Autodialer Modem. The PC212A is a Bell-compatible 212 A modem that fits into any slot in the IBM-PC. It can store up to 10 telephone numbers, operates to 300 bps asynchronously in low speed, and 1200 bps synchronously in high speed. It also features an RS232C asynchronous serial port with an internal microprocessor allowing control, operation, and optioning of the modem from the IBM-PC keyboard. A "Help" list of commands is provided, and the modem features auto/manual dial, auto dial next number if first number is busy, instant re-dial once or until answered, and single keystroke dialing of last number dialed even if it was not one of the 10 stored. Battery protection is provided. $\$ 495$. Address: Rixon Inc., 2120 Industrial Pkwy., Silver Spring, MD 20904 (301-622-2121).

TRS-80 Multi-Function Board. The CMJ-IF is a multi-function subsystem for the TRS-80 Color Computer and the TDP-100 Personal Computer, that plugs into the cartridge port and provides speech synthesis accessed from BASIC, two parallel ports allowing the use of a parallel printer, two counter/

timers for use as a real-time clock, a serial communications port for serial printers or modems, and an extender port that enables the user to access a disk controller or ROMpack. 4 K or 8 K bytes of EPROM/ROM space is also provided. Under \$200. Address: Magnum Distributing Inc., 1000 S. Dixie HY \#3, Pompano Beach, FL 33060 (305-785-2002).

Floppy Protection. The Infoguard is a magnetically shielded floppy-disk enclosure that protects the diskette against X -rays or magnetic damage during shipping. These include accidental exposure to magnetic environments due to lightning storms, passing nearby radiating electric/electronic equipment,
power generating equipment, careless handling, or deliberate vandalism via permanent magnets. $\$ 9.50$ for $5 \frac{1}{4} 4^{\prime \prime}$ size, and $\$ 14.50$ for the $8^{\prime \prime}$ version. Address: Ad-Vance Magnetics, Inc., 625 Monroe St., Rochester, NY 46975 (219-2233158).

Apple EPROM Programmer. The Model 2300 EPROM Programmer for the Apple II can handle TI 2516 and 2532; Intel 2716, 2732, 2732A, 2764, 27128, and 2816; and SEEQ 5213 and 5213 H . The modes of operation include EPROM to disk file, EPROM to memory buffer, read/print contents of EPROM, verify erasure of EPROM, load and program disk file into EPROM, program memory buffer contents into EPROM, read/print memory buffer contents, modify contents of memory buffer from keyboard, and program EPROM addresses directly from keyboard. \$429. Address: Software Specialties Inc., 305 Larchway Dr., Springboard, OH 45066 (513-748-0471).

Hard Disk for TI 99/4. The WDS/ 100 Disk and Controller System allows up to 10 M bytes hard disk to connect to the TI Peripheral Expansion System in a TI 99/4A or 99/4 computer. The Unix-like Directory Management System is resident on both the utility diskette and the Personality Card ROM. The WD/ $100-$ 5 stores 5 M bytes while the WD-100-10 stores 10 M bytes. Cost is $\$ 2599$ and $\$ 2999$ respectively. There is a clock option available for $\$ 50$. Address: Myarc, Inc., PO Box 140, Basking Ridge, NJ 07920 (210-766-1700).

IBM Winchester. The Interface Series of Winchester drives for the IBM-PC is available with 5.3 M bytes ($\$ 1695$), 10.6 M bytes ($\$ 1995$), and 15.9 M bytes ($\$ 2295$) of formatted storage. Each system includes all pertinent hardware and software (JEL) for 1.1 DOS. There are 345 tracks/inch. Track-to-track access time is 2 ms , and average access time is 85 ms . Other features include a 512 -byte full sector buffer, a 32 -bit ECC, and automatic interleaving capabilities. Operation is also provided on 220/240 volts at 50 Hz . Address: Interface Inc., 7630 Alabama Ave., Canoga Park, CA 91304 (213-341-7914).

System Controller. This $4^{\prime \prime}$ by $41 / 2^{\prime \prime}$ controller on a board features a Z8671 that contains a Tiny-BASIC interpreter, up to 6 K bytes of RAM and EPROM, an RS232 serial interface with selectable baud rates, and two parallel ports. The system is expandable to

124 K bytes and is optimized as a dedicated controller. Connecting a CRT terminal allows immediate BASIC or ma-chine-language programming. Programs can be transferred to 2732 EPROMs for autostart applications. \$199. Address: The Micromint, Inc., 561 Willow Ave., Cedarhurst, NY 11516 (516-374-6793).

VIC Tape Interface. The Vik-Dubber cassette interface allows VIC-20/64 users to save and load data using a standard cassette tape recorder. It also allows connecting two cassette recorders at the same time to make backups. An

indicator is provided to help adjust the cassette controls for proper operation. Power comes from the computer so no batteries are required. $\$ 34.95$. Address: Bytesize Micro Technology, PO Box 21123, Seattle, WA 98111 (206-2362983).

Apple Remote Control. The PC-1 plugs into any I/O slot on an Apple II or II + and provides control of up to 256 Leviton/BSR remote control devices via the normal household power line. The device both sends and receives digital commands at the line carrier frequency of 121 kHz . Included on the board is a bi-directional carrier interface, a CMOS real-time clock with battery backup of two months life and full recharge capability, and switchselectable interrupts of one hour, one minute, one second, and 1024 Hz . Demonstration software is provided on disk. On-board firmware (2 K of ROM) holds all system software, no additional memory is required. $\$ 265$. Address: BiComm Systems, Inc., 10 Yorkton Industrial Court, St. Paul, MN 55117 (612-481-0775).

TTL Pinouts. The MicroChart \#6 covers pinouts for virtually all $54 / 7400$ TTL ICs on its two-sided, two-color,
full-page plastic sheet. The data covers the part number, family type, description, and pin out. The data is reduced from some 500 pages of data books. \$5.95. Address: Micro Logic Corp., PO Box 174, 100 2nd St., Hackensack, NJ 07602 (201-342-6518).

Sinclair/Timex Analog Interface. The high-speed analog interface board features eight channels of A / D and eight channels of D/A for the Sinclair/Timex machines. The board plugs into the rear expansion connector, and on-board jumpers and switches permit maximum versatility. Sequential A/D conversions can occur at 200 K samples per second. The electrical specifications include $1.6-\mu \mathrm{S}$ A/D conversion time with $100-\mathrm{ns}$ sample-and-hold window; $1-\mu \mathrm{s}$ D/A settling time with $0.13 \mathrm{~V} / \mu \mathrm{s}$ slew rate; 2.5 - or 5 -volt full-scale option; and eight bits resolution and accuracy. $\$ 195$ with manual. Box and cable is $\$ 15$. Address: Computer Continuum, 301 16 th Ave., San Francisco, CA 94118 (415-752-6294).

IBM Telecommunications. The PConnection is a plug-in for the IBMPC that contains a direct-connect modem, a real-time clock, and an additional serial I/O port. The modem is Bell 103/113 compatible and provides autodial (Touch Tone or pulse dialing), and autoanswer in both answer and originate modes. The asynchronous card also contains an additional RS232 port. A firmware timer manages dialer routines, and an autodisconnect is provided in case of failure or carrier loss. The real-time clock allows the board to autoanswer the telephone or autodial predetermined telephone numbers at a preset time. $\$ 375$. Address: Microperipheral Corp., 2565152 nd Ave., NE, Redmond, WA 98052 (206-881-7544).

Software

Terminal Program Operates up to 9600 Baud. MicroTerm, a new terminal program for TRS-80, IBM, Zenith, and Apple computers, features both standard ASCII and error-free, directline transmissions. It has a function that allows the operator to have up to 10 user-defined keys that transmit up to 63 characters at a single stroke. The program will adjust video width, turn on the printer, open the buffer and do many other things before returning to the terminal mode without missing any information. It can emulate any kind of terminal hardware and auto dial up to

The Safe Video Head Cleaner is Dry.

Yes, dry!

The Discwasher Video Head Cleaner is the only truly nonabrasive dry head cleaner on the market today.
Its superior cleaning action is the result of its textured fabric matrix, not the result of abrasive properties (like those often utilized in aluminum oxide cleaners). This exclusive matrix safely cleans not only the video heads, but the audio and sync heads as well.
The Discwasher Video Head Cleaner is less abrasive than both the video head and video drum. In fact. it's even less. abrasive than video tapes themselves. And best of all...it works. Easily, safely, and quickly.

The graph below represents approximate hardness ratings of individual VCR components and various tapes and cleaners using the Temper scale, developed by industry to measure materials. A diamond, one of the hardest materials known, rates T-10.

discwasher

1407 N. PROVIDENCE RD. P.O. BOX 6021, DEPT. CE, COLUMBIA, MO 65205 USA A DIVISION OF ,IENSEN an ESMARK Company

Circle No. 66 on Free Information Card
FOR INFORMATION OR ORDERING-CALL TOLI FREE (800) $221-8180$ IN NEW YORK (212) 732-8600

10 preset numbers at the touch of a key. It fully supports most major brands of modems. Spooled printer output allows even slow printers to stay on line with the MicroTerm system. $\$ 70$ for any version. Address: Micro-Systems Software Inc., 4301-18 Oak Circle, Boca Raton, FL 33431 (800-327-8724).

Circuit Analysis Program. ACNAP is an ac circuit analysis program available for $8^{\prime \prime}$ or $5^{1 / 4} 4^{\prime \prime} \mathrm{CP} / \mathrm{M}$ machines, or TRS-80 Model I/III with TRSDOS. It is designed to analyze circuits consisting of resistors, capacitors, inductors, a voltage source, and controlled current sources. It can calculate a 5 -node circuit in 0.8 seconds. It also works with component tolerances to provide worst-case and Monte Carlo analysis. It calculates the minimum, maximum, mean, and three sigma points of a circuit's gain and phase response to any frequency input including linear or logarithmic frequency sweeps. It can also calculate the circuit's noise-equivalent bandwidth. Other design utilities are also provided. \$39.95. Address: BV Engineering, PO Box 3351, Riverside, CA 92519 (Tel: 714-781-0252).

Language Teacher. Using the Hangman format, and designed for the TRS80 Model I, III, and 4 computers, these programs are available in Spanish, French, and Latin. Other programs cover literature, word power, and German and Russian practice. $\$ 29.95$ per program. Address: George Earl, 1302 South General McMullen, San Antonio, TX 78237.

Numismatics. The Coin Collector for the Apple II series consists of six programs in which collection information can be entered, deleted, changed, searched, sorted, and printed. It catalogs foreign or domestic lists by denomination, country, description, year, value, or source. A Meeting List allows sorting and selecting meetings by date and location, a Source List gives sources for coins, supplies, and information on trades and liquidations. The File Transfer utility allows transferring data to other computer via phone links. $\$ 49$. Address: Andent, Inc., 1000 North Ave., Waukegan, IL 60085 (Tel: 312-223-5077).

IBM-PC Communications. RELAY enables one IBM PC to link to another, act as a TTY, an APL terminal, or a 3270 device. It provides full error detection and correction while transferring data in both directions at the same time.

Features include full support for autodial and autoanswer modems, simultaneous exchange of files and messages between PCs while printing and editing locally, split screen communication between PCs, directory of frequently used services, support for APL with a substitution character set, 3270 emulation on VM/370, full screen editor, and an unattended mode for sending and receiving files without an operator. \$149. Address: VM Personal Computing, 60 E. 42nd St., NY, NY 10165 (Tel: 212-697-4747).

Casino Blackjack. Casino Blackjack Counter/Tutor for the TRS-80 Models I and III teaches play strategy as well as point counting. The program will suggest the best possible play for any hand. Five hands are shown with the computer playing the first two hands, the player the middle hand, and the computer the last two hands. All cards are played face up to facilitate point counting. Three dealing speeds are provided, and with each bet opportunity, the program will show the correct count is requested and
make a recommendation on the size of the bet. The player can play against one to six decks. Requires a TRS-80 Model I or III, $32 / 48 \mathrm{~K}$ disk system. $\$ 21.95$. Address: Manhattan Software, PO Box 1063, Woodland Hills, CA 91365 (Tel: 213-453-6943).

Commodore 64 Programs: DIARY 64 keeps track of phone numbers, birthdays, appointments, etc., and files by dates or page number. $\$ 59.95$. CHECKBOOK MANAGER has a capacity of 250 checks, 100 deposits, and 50 account charges. It has built-in password security. $\$ 39.95$ for disk, $\$ 34.95$ for cassette version. 64 MAILING LIST holds 250 names and addresses per file and features full screen editing, and sort. $\$ 34.95$ for disk, $\$ 29.95$ for cassette. VANILLA PLOT features 19 editing commands for Turtle Graphics to change directions and draw lines of any length. The Turtle has a pallette of 16 colors. Sound is also available. $\$ 29.95$ for disk or cassette. Address: Computer Marketing Sves., 300 W. Marlton Pike, Cherry Hill, NJ 08002 (Tel: 609-795-9480). \diamond

Logic Design. Micro-Logic enables engineers to draw logic diagrams directly on a CRT screen. The net list required for simulation is automatically generated from the diagram, or may be directly typed in. A timing-level simulation can be performed to evaluate design before building hardware. The system will handle 500 to 2000 gates with all gates
user-programmable as to delay, truth table, and input/output clocking. The system also handles macros of up to 16 pins enabling direct modelling of 16 -pin MSI functions. Currently available for IBM-PC with Apple II coming soon. $\$ 450$. Address: Spectrum Software, 690 W. Fremont Ave., Suite 11, Sunnyvale, CA 94087 (Tel: 408-738-4387).

No wonder they call it the SUPERFONE!

 At Last-a Cordiess Phonewith TWICE the Range, Sound
Fidelity to Rival Phones with
Cords, and a Privacy Code
System-All This in a Phone
Less Than an Inch Thick!

The Super Fone is less than l" thick. The base unit has a built-in speaker phone, a fully independent intercom and is 110 volt- 220 volt switchable.

Until now, cordless phones have given you wonderful convenience. But they've had two problems:

1. The range is limited to 600 to 700 feet.
2. Some of them sound as though you're talking inside a barrel.
As cordless phones have become enormously popular, another problem has arisen: two people, living near each other, can have the same channel. Not only is there line confusion, but someone else can literally make a long distance call on your phone.

No more. Never again.

Range: 1500 Feet OR MORE!

The SuperFone 650 uses state-of the-art electronics to bring you the ultimate cordless phone. Sound quality is superb - and it stays superb, 1500 feet or more from the base station. That's more than twice the distance of standard cordless phones.

Only SuperFone 650 has a secret code system to prevent interference and false operation of the phone. You choose from 512 possible "code" combinations. Both the base unit and the phone are locked onto that code, which you can change when you want to.

No other phone can interfere. No other unit can share the signal. No one else can hear or speak on your carrierwave.

Enormous Range

We say the SuperFone 650 has a range of 1500 feet.

Notice we didn't say "up to" or "as far as" 1500 feet. There's no hedging, because this seems to be the minimum, not the maximum range.

Users report 1800 and 2000 feet. That's nearly half a mile. SuperFone 650 is a radiophone, not a toy, and that's why its signal doesn't break up or start hissing or crackling when you get half a block away.

You can tell when you heft it. It's a Little Giant. You can feel the power inside. What a marvel of electronic engineering it is! And it's tough, too. It fits into your shirt pocket, and you can bounce it around all day without damaging it.

Speakerphone, Intercom Everythingl

SuperFone 650 is The Everything Phone. Anything any phone can do, it can do.

First, the base station is a speaker phone. Touch a button and you can have a hands-free conference conversation in the room in which the base station sits.

Next, it's an intercom. You can page the handset from the base unit and have a private conversation. You have a true wireless intercom, not just a signal.

Third, you have a privacy button. Push that button and you'll still be able to hear anything the other party says, but he or she won't be able to hear you until you take the button off "hold.'"

Fourth, you have an automatic redial. Touch the key and the SuperFone will redial the last complete number.

What else? A security switch which makes it impossible for anyone to call out on the remote phone, without changing the ability to receive calls. A volume control for the speaker on the base unit. A call button to page the base from the cordless phone. THIS PHONE HAS EVERYTHING!

30-Second Installation

Plug your SuperFone 650 into any wall AC outlet. Push its standard modular terminal into the telephone plug. You're in business.

Every component is heavy-duty, from the built-in condenser microphone (with automatic gain control) to the LED indicator lights. This phone is designed for hard use.

The SuperFone 650 is yours for $\$ 249.95$ in regular pulse-dial version, $\$ 269.95$ in Touch Tone ${ }^{\text {(.) }}$. If you want the SuperAntenna with it, giving you a range of a mile - or even more - you can have both for $\$ 319.95$ (rotary pulse) or $\$ 339.95$ (Touch Tone). Or you can get the SuperAntenna alone for $\$ 79.95$.

We Absolutely Guarantee!

Use the SuperFone 650 (or any electronic instrument you acquire from us) for up to 30 days. Iffor any reason you decide not to keep it, return it for a 100% refund.
The SuperFone 650,
rotary pulse dial - $\mathbf{\$ 2 4 9 . 9 5}$
phone and SuperAntenna - $\mathbf{\$ 3 1 9 . 9 5}$.
The SuperFone 650,
Touch Tone dial - \$269.95
phone and SuperAntenna - \$339.95.
The SuperAntenna,
no phone included - $\mathbf{\$ 7 9 . 9 5}$.
Multi-Line Adapter, lets you plug several lines into one SuperFone - $\$ 39.95$.
Add $\$ 4.50$ per total order for shipping.

Rotary Phone or Touch Tone ${ }^{\circledR}$? SUPERFONE

Is Available For Euther!

Most cordless phones work on "pulse" (rotary) only. You can't use them for MCI, Sprint, or any of the other systems requiring TouchTone - including talking to a computer.

The SuperFone 650 now has a Touch Tone model, so you can have the unmatched diouble convenience of a cordless phone and tone dialer!
(Touch Tone model slighty higher.)

IRIPLE THE RANGE OF ANY CORDLESS PHONE!

The SuperAntenna will give your cordless phone, regardless of make or model, three times the range it has now.

If the range is 700 feet, it'll leap to over 2,000 . If it's 1500 feet, it could be as far as one mile!

Easy to install. Only $\$ 79.95$ complete. Add $\$ 4.50$ for shipping.

For instant service, if you have a VISA. or MasterCard, call toll-free 24 hours a day, seven days a week:

1-800-824-7888

Ask for Operator 551
(in California: 1-800-852-7777)

NEWHORIZONS

Dept. CE8, 1 Penn Plaza. Suite 100 New York, NY 10119

For everyone who's tried to top the MX-80, bad news. We just did.
Epson.

The Epson MX-80 is the best-selling dot matrix impact printer in the world. It has been since its introduction. And despite the host of imitators it spawned, no one has been able to top it. Until now.

FX-80: Son of a legend.

The new Epson FX-80 is far more than just doo-dads added on to last year's model. It's the most astonishing collection of features ever assembled in a personal printer.

For starters, it's fast: 160 CPS. And clean. All the print quality Epson is famous for in a tack-sharp 9×9 matrix.

But that hardly scratches the surface.
Create your own alphabet.
With the new FX-80, you aren't limited to ASCII characters. You can create your own. Any character or symbol that can be defined in a 9×11 matrix can be added to the FX-80's already impressive library of type styles and stored in its integral 2K RAM.

So you can create "Sally's Gothic" or "Tom's Roman" just by downloading and modifying standard characters. Or you can create a custom set from scratch. Either way, you can store up to 256 new characters. And if you don't need a new alphabet, the RAM functions as a 2 K data input buffer.
Who knows graphics better than Epson?
Nobody, that's who. And if you don't believe it, witness the FX-80.

With a 12 K ROM capacity, the FX-80 gives you a few things the others don't. For example, not one, not two, but seven different dot addressable graphic modes are program
selectable. And can be mixed in the same print line. Everything from 72 DPI (dots-per-inch) Plotter Graphics to the 640 dots per line resolution designed to match the remarkable monitor clarity of the Epson QX-10 personal computer.

And that is in addition to an astonishing array of 136 different user-selectable type styles including Proportional, Elite and Italic as well as the more conventional faces you get on other printers.

Hard-to-beat hardware.

The FX-80 has all the hardware features you've come to know and love on the MX Series: logic seeking, bidirectional printing, the by-now-famous disposable printhead, and more.

The FX-80 features an adjustable pin platen or optional friction/tractor feed, so you can use fanfold, roll or sheet paper... backwards or forwards. The FX-80 even gives you reverse paper feed.

And if you're printing forms, the FX-80 has a feature you're gonna love: a function that allows you to tear off the paper within one inch of the last print position.
Be the first on your block.
We'd be willing to bet that the FX- 80 - like the MX-80 - will have its share of imitators. Don't be fooled. To make sure you get the genuine article, rush down to your local computer store right now and let them show you everything the FX-80 can do.

And while you're there ... ask them to show you how it works with our computers.

Asuper Chip FOR NEXT GENERATION PERSONALCOMPUTERS

> Intel's 68-pin iAPX-188 combines an enhanced 8088 16-bit CPU and up to 20 support ICs in a single package for double the performance and much lower device and assembly costs

By Tony Zingale

Microprocessors represent a great advance in electronics owing to their small size, programmability, and low cost. Developing them is as much an art as it is a science since considerations extend beyond performance and reliability. Production cost, peripheral availability and cost, and software availability are important factors, too. The sum can determine the success of the CPU in the marketplace-how many computers will be designed around it

Since the introduction of the microprocessor in the mid-1970s with Intel Corporation's 16-pin 4004 CPU, leading to the 40 -pin bug-like package of the 8080 CPU and others, there has been a swift evolution in the design of these "computers on a chip." Zilog, for example, quickly followed with its Z80 CPU, which is much like an 8080 that combines a clock generator and a systems controller into one IC instead of having three separate devices. Other microprocessor makers followed suit with their designs, each playing "can you top this" with new products. This lead to the development of 16-bit CPUsZilog's Z-8000, Motorola's 68000, and Intel's 8088, among them. Their larger word size makes them more powerful than the 8 -bit CPUs.

The beat goes on with the announcement of a next-generation CPU in Intel's advanced processor family-the iAPX 188. It shows great promise in becoming a very popular nucleus for personal and small-business computers for a host of reasons. With a square shape and 68 -pin package, it's apparent that this is a different type of CPU than the ordinary one. Actually, the single chip incorporates a number of ICs, combining up to 20 equivalent chips that constitute essential microprocessor building blocks that are ordinarily separate support chips.

The CPU partition itself is really an
enhanced 8088 microprocessor, the same one used in the IBM-PC and similar machines. Although the two chips are object-code compatible, 10 more instructions have been added. The logic within the iAPX 188 is shown in Fig. 1.

Physically, the iAPX 188 is not compatible with the 8088 since its JEDEC Type A, 68-pin, leadless package has 17 pins on each of its four sides, as shown in Fig. 2. It does directly address 1 megabyte of memory, is compatible with $8282 / 83 / 86 / 87,8288$ and 8289 bus support components, and requires a single 5 -volt power supply.

Since the data path is only 8 bits wide, there is a saving in parts, and a reduction of board space of about $1 / 3$ can be realized over a 16-bit approach. Direct peripheral interfacing is also easier since most reasonably priced peripherals handle data 8-bits at a time. With an 8 -bit system requiring eight 64 K -bit memory chips for each 64 K -byte block, this is cheaper than going to 16 -bit wide memory. Since the iAPX 188 (80188 is the part number) combines high-performance 16-bit internal architecture with an 8-bit bus interface, this allows 20 megabyte addressing and 64 K -bytes of I/O addressability, which is becoming a "standard" in modern microcomputers. In performance, the 80188 can provide up to 65% to 95% of the performance of its 16 -bit relatives while retaining the interface advantages of the 8-bit data bus.

Besides the CPU, several functions have been integrated on the 80188. One of these is the clock generator that provides an $8-\mathrm{MHz}$ system clock. Other functions include two 16 -bit programmable timer/counters for implementing baud-rate generation, real-time clocks, and delay counters, with a third counter (not externally connected) used to implement time delays and which can be used as a prescaler.

Also included are two high-speed, in-

Fig. 1. Block diagram of the various parts of the IAPX 188.

dependently programmable DMA channels to provide data transfers between system memory and I/O devices. DMA transfers can occur between memory and I/O or within the same space (M-M, or I/O-I/O). Each DMA channel maintains two 20 -bit source and destination pointers that can be incremented, decremented, or left unchanged after each transfer. Data transfers occur a byte at a time, and can be anywhere within the 1 -megabyte addressable memory space. This allows a maximum transfer rate of $1 \mathrm{Mb} / \mathrm{s}$. The user can specify several different modes of operation via the on-chip DMA channel control word.

A multi-level programmable interrupt controller that can resolve priority among up to five external interrupts plus interrupts from the five internal sources (timer, DMA, etc.) is also provided in the chip. Each interrupt has a programmable priority level and a preassigned interrupt vector type used to derive an address to a table in memory where the interrupt service routines are stored. This enhancement makes the iAPX 188 interrupt response time about 50% faster than the 8088. Multiple

Fig. 2. The 68-pin, leadless package has 17 pins on each side.

8259A's can be cascaded to provide up to 128 external interrupts.

Integrated programmable memory and peripheral chip-selects, plus a programmable ready generator, replace many of the conventional TTL devices required to interface system memory and I/O devices to the CPU. The waitstate generator is necessary so that the CPU can interface to memory and I/O devices of varying speeds. The result of the integrated logic eliminates external propagation delays, thus speeding up the data flow. Three memory ranges (lower, middle, upper) can be programmed to variable lengths ($1 \mathrm{~K}, 2 \mathrm{~K}$, $4 \mathrm{~K}, \ldots 256 \mathrm{~K}$) so that a variety of memory chip sizes can be used. Also, anywhere from zero to three wait states can be programmed so either high-speed or low-cost and slower memories can be used.

The added functionality of the 80188 (i.e., timers, DMA, interrupt controller, chip selects), uses on-chip 16-bit registers for each integrated device contained in a 256 -byte control block. This logic is shown in Fig. 3. The control register block may be $1 / O$ or memory mapped based on initialization for a new control block pointer in the CPU. Except for these additions, the register architecture of the 80188 is identical to the $8086 / 8088$.

A local bus controller provides the required address, data, and control signals to the local system bus. The pipelined architecture of the 80188 allows savings in memory cost since instructions are prefetched into a 4-byte execution queue, high performance can be maintained while using slower (thus less expensive) memory. Other cost savings come from the use of an 8 -bit rather than a. 16 -bit external data bus. A typical iAPX 188 computer is shown in Fig. 4.
Since the iAPX 188 is software compatible with the 8086 and 8088 CPU's, compilers, operating systems, and application programs written for the 8086/8088 will run on systems using the new CPU. Current operating systems include Intel's iRMX 86/88; Digital Research's CP/M-86, and CP/NET; and Microsoft's MS-DOS and Xenix (a Unix implementation). All popular programming languages are available, including BASIC, Fortran, Pascal, Cobol,

Fig. 3. Block diagrams of the DMA control logic (top), three timer circuits (center), and interrupt controller (bottom). On-chip 16-bit registers are used for each integrated device.

Because it lets you try Sundex's Personal Payables ${ }^{\text {TM }}$ program, designed to take over tedious bill paying chores.

Personal Payables: ${ }^{\text {m }}$

- writes checks - standard or continuous form
- alerts you to pouments coming due
- stores amounts payable for regular payments
- keeps continuous, accurote bolance
- handles up to 10 checking accounts
And We've Taken the Feor Out of Truing . . . our easy-English manual and on-screen instructions make it easy for anyone in the family to do it.
Start now to write off writing checksl
To Tru It-send $\$ 19.95$ for
full use of progrom (limited to writing 8 checks). When you're ready to buy it, call us toll free for the access code and we'll bill you for the bolonce ($\$ 80.00$). To Buy It NOW-send $\$ 99.95$ and never write onother check

Yes, I want to take advantage of your TRIAL OFFER-\$19.95I'm convinced, send me your Personal Payables ${ }^{\text {™ }}$ Program- $\$ 99.95$

Specify:	\square IBM 128K	$\square I B M 64 K$
	\square COMPAQ	\square Osborne
	\square Apple II	\square TI Professional
	\square Rpple lle	

Poument: \square Check \square VISA \square MasterCord Colo. residents add 3\% soles tax

Cord"
Exp. Dote
Slgnoture
Name
Adotess
Cly \qquad $21 p$
Mall to: Sundex Software Corp. Dept CE082
Sundex 3000 Pearl St.
Boulder, CO 80301 Phone orders: 1-800-835-3243 In Colorodo coll: 1-303-440-3600

Fig. 4. Block diagram of a typical way in which the 80188 (iAPX 188) could be used in a computer

PL/M, and C. And applications programs that can run on computers based on the iAPX 188 already abound.

As previously mentioned, new instruction types have been implemented on the new CPU. These include a block move, push or pop all registers, rotate/shift immediate, and multiply immediate. These new instructions not only increase the raw computing speed of the CPU, but they also apply to highlevel languages and multitasking implementations.

The iAPX 188 delivers about twice the performance of the $5-\mathrm{MHz} 8086 /$ 8088. This is attributed to some hardware enhancements. For instance, effective address (EA) calculation typically involving the addition of a segment register plus a displacement and some index value to a given segment is performed by an on-chip microcode sequence in the $8086 / 8088$. In the 80188 , this calculation is performed by a dedicated hardware adder in the Bus

Interface Unit (BIU) of the CPU. Additionally, the 80188 executes many instructions in fewer clocks than the 8086/8088.

The use of the 8087 Numeric Processor Extension allows operations such as arithmetic, trigonometric, exponential, and logarithmic instructions to show an increase in speed of some two orders of magnitude. Other chips, such as the 82720 GDC, 82730 Text Coprocessor, and the 82586 Ethernet Controller are also compatible with the iAPX 188.

In sum, the iAPX 188 represents another evolutionary step forward in microprocessors. Its performance is said to double that of its 8088 cousin, while cost is half as much. Moreover, software compatibility with the 8088 is maintained. You can expect to see computers incorporating this chip in the very near future. The next move is up to competitive processor makers, who will likely follow with their new-generation CPUs.

Commodore - 64 Word Processors

SCRIPT 64 EXECUTIVE WORD PROCESSOR

Rated best by COMMODORE. This is the finest word processor available. Features include line and paragraph insertion/deletion, indentation, right and left justification, titles, page numbering, characters per inch, etc. All features are easy to use and understand. With tabs, etc. SCRIPT-64 even includes a dictionary/spelling checker to make sure your spelling is correct. The dictionary is user customizable to any technical words you may use. Furthermore, all paragraphs can be printed in any order so doctors, lawyers, real estate agents, and homeowners will find contract writing and everyday letters a snap. To top things off, there is a 100 page manual and help screens to make learning how to use SCRIPT-64 a snap. This word processor is so complete we can't think of anything it doesn't have. When combined with the complete database you have a powerful mallmerge and label program that lets you customize any mailing list with personalized letters. List \$99.95. Sale \$79.00. (plus postage) Disk Only.

COMPLETE DATA BASE

This is a user friendly database that makes any information easy to store and retrieve. The user defines the fields and then can add change, delete and search for any category he wants. When combined with the SCRIPT-64 Executive Word Processor you can search out any category (zip codes, hair color, etc.) and print super personalized letters. List $\$ 89.00$. Sale $\$ 69.00$. (plus postage) Disk Only.

TOTAL WORD PROCESSOR PLUS 5 . 2

This top quality word processor was specially designed for PROTECTO ENTERPRIZES. Features include line and paragraph insert and delete, right and left justification, multiple copies, and line spacing. Extra functions include mallmerge, embedded footnotes, extra user defined character sets, plus a complete label program. List $\$ 69.90$. Sale $\$ 56.00$. (plus postage) Disk add $\$ 7.00$.

QUICK BROWN FOX WORD PROCESSOR

(Cartridge). Nationally advertised all purpose word processor that uses menu control to lat you manipulate your text. Includes the features most often asked for including right and left justification, wordwrap, and more. List $\$ 69.00$. Sale $\$ 59.00$. (plus postage).

- LOWEST PRICES • 15 DAY FREE TRIAL• 90 DAY FREE REPLACEMENT WARRANTY - BEST SERVICE IN U.S.A. - ONE DAY EXPRESS MAIL • OVER 500 PROGRAMS • FREE CATALOGS

Learning electronics is no picnic.

 At any level it takes work and a few sacrifices. But with CIE, it's worth it.

Whoever said, "The best things in life are free,' was writing a song, not living a life. Life is not just a bowl of cherries, and we all know it.

You fight for what you get. You get what you fight for. If you want a thorough, practical, working knowledge of electronics, come to CIE.

You can learn electronics at home by spending just 12 hard-working hours a week, two hours a day. Or, would you rather go bowling? Your success is up to you.

At CIE, you earn your diploma. It is not handed to you simply for putting in hours. But the hours you do put in will be on your schedule, not ours. You don't have to go to a classroom. The classroom comes to you.

Why electronics training?

Today the world depends on technology. And the "brain" of technology is electronics. Every year, companies the world over are finding new ways to apply the wonders of electronics to control and program manufacturing, processing...even to create new leisure-time products and services. And the more electronics applications there are, the greater the need will be for trained technicians to keep sophisticated equipment finely tuned and operating efficiently. That means career opportunities in the eighties and beyond.
Which CIE training fits you? Beginner? Intermediate? Advanced? CIE home study courses are designed for ambitious people at all entry levels. People who may have: 1. No previous electronics knowledge, but do have an interest in it;
2. Some basic knowledge or experience in electronics;
3. In-depth working experience or prior training in electronics.

You can start where you fit and fit where you start, then go on from there to your Diploma, FCC License and career.

Many people can be taught electronics.

There is no mystery to learning electronics. At CIE you simply start with what you know and build on it to develop the knowledge and techniques that make you a specialist. Thousands of CIE graduates have learned to master the simple principles of electronics and operate or maintain even the most sophisticated electronics equipment.

CIE specializes exclusively in electronics.

Why CIE? CIE is the largest independent home study school that specializes exclusively in electronics. Nothing else. CIE has the electronics course that's right for you.

Learning electronics is a lot more than memorizing a laundry list of
facts about circuits and transistors. Electronics is interesting! It is based on recent developments in the industry. It's built on ideas. So, look for a program that starts with ideas and builds on them. Look to CIE.

Programmed learning.

That's exactly what happens with CIE's Auto-Programmed ${ }^{\oplus}$ Lessons. Each lesson uses famous 'programmed learning' methods to teach you important principles. You explore them, master them completely, before you start to apply them. You thoroughly understand each step before you go on to the next. You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics gear (the things you see in technical magazines) to actually let you perform hundreds of checking, testing, and analyzing projects.

Experienced specialists work closely with you.

Even though you study at home, you are not alone! Each time you return a completed lesson, you can be sure it will be reviewed, graded and returned with appropriate instructional help. When you need additional individual help, you get it fast and in writing from the faculty technical specialist best qualified to

YES...I want to learn from the specialists in electronics - CIE. Send me my FREE CIE school catalog...including details about the Associate Degree program...plus my FREE package of home study information.
Print Name
Address Apt.
City
State Zip
Age \qquad Phone (area code)
Check box for G.I. Bill bulletin on Educational Benefits: \square Veteran \square Active Duty
MAIL TODAY!
answer your question in terms you can understand.

CIE prepares you for your FCC

License.

For some jobs in electronics, you must have a Federal Communications Commission (FCC) License. For others, some employers tend to consider your license a mark in your favor. Either way, your license is government-certified proof of your knowledge and skills. It sets you apart from the crowd.

More than half of CIE's courses prepare you to pass the governmentadministered exam. In continuing surveys, nearly 4 out of 5 graduates who take the exam get their licenses! You can be among the winners.

Associate Degree

Now, CIE offers an Associate in Applied Science Degree in Electronics Engineering Technology. In fact, all or most of every CIE Career Course is directly creditable towards the Associate Degree.

Today is the day. Send now.

Fill in and return the postage-free card attached. If some other ambitious person has removed it, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17th Street, Cleveland, Ohio 44114.

COMPACT DISC DIGITAL AUDIO SYSTEMS

How the new digital audio 4.7-inch playback record system works By David Ranada

Compact Disc players-the hottest new products to appear on the audio scene in quite some time-are probably the most complex and sophisticated electronic devices for the home ever offered to the consumer. They are designed to play back, with extraordinarily high audio fidelity, up to 75 minutes of music recorded on mirror-finish 12 centimeter ($4.7^{\prime \prime}$) acrylic discs. The system does not wear out or damage the discs while it is playing them since only a light beam contacts the disc to read it out; that light comes from a semiconductor laser.

CD players combine aspects of a home computer's disc drives (in the player's disc-drive and laser-tracking servos), a specially programmed microprocessor (to handle a player's control functions), a digital signal processor (to decode and correct the digital-audio bit stream), and a high-quality, high-precision digital-to-analog conversion system (to change the digital audio data into normal audio signals of high sonic quality). How do all these systems interact to make a CD player work?

Digital Audio Basics. A digital-audio recording/playback system converts a smoothly changing, analog waveform into a series of binary numbers describing the waveform, records those numbers as pulses on a suitable medium (magnetic tape or the master disc for Compact Disc pressings), plays back those pulses, converts them into numbers, and finally reconverts the numbers into a smoothly varying analog waveform (Fig. 1). How can such a system provide the high audio quality claimed by advocates of digital audio? After all, typical Compact Disc player specifications claim a dynamic range of more than 90 dB , flat ($\pm 0.2 \mathrm{~dB}$) frequency response to $20,000 \mathrm{~Hz}$, distortion of less than 0.01%, and no wow or flutter.

The answer lies in the way the two basic operations of digital audio are performed. The first operation is called sampling. If the amplitude of a waveform-any waveform-is somehow captured or frozen at regular,
closely spaced intervals, the waveform is said to be sampled. The waveform in Fig. 1A gets sampled in Fig. 1B, the samples being the points at the ends of the vertical lines. Mathematical models of this activity say that as long as samples are made at least twice as frequently as the highest frequency contained in the signal being sampled, no information is lost. From the information contained in the samples the waveform can be exactly reconstructed, as long as the waveform did not contain any frequencies greater than the sampling rate. The Compact Disc system's designers wanted it to have a frequency response extending to $20,000 \mathrm{~Hz}$, so the audio signal for Compact Disc master tapes is sampled 44,100 times per second. The sampling rate is 44.1 kHz , more than twice the highest frequency desired by a slight margin.

Quantization-the second basic operation of digital audio-is shown in Fig. 1 B and 1 C . It is simply the measurement of the amplitude of the samples, the results of which are shown here in arbitrary numerical units in both decimal and binary representation. Binary representation is used by analog-to-digital converter (ADC) circuits in digitalaudio equipment.

Note that the measurements are not infinitely precise; there is some "rounding off' to the closest integer value. Making an infinitely precise measurement would generate a number with an infinite number of digits (or bits); there has to be a practical limit imposed to the resolution of the measurement. This limitation creates noise and distortion in the reproduced signal, but the noise and distortion can be reduced to any level by increasing resolution of the ADCs.

In the Compact Disc system, audio is encoded with 16 bits of resolution, meaning that the ADCs used in Compact Disc mastering can distinguish changes in voltage levels of 1 in 2^{16}. This translates to 1 in 65,536 or the equivalent of $1^{\prime \prime}$ in about 1 mile. With this degree of resolution, the signal-to-noise ratio or dynamic range of the CD system can be greater than 90 dB , the theo-
retical limit being a little better than 97 dB. Since quantization error is also responsible for nearly all the distortion in the digital audio process, it too is reduced to very low levels with 16 -bit encoding.

The digital numbers from the ADC are converted into a pulse train (Fig. 1D) for recording on tape or on a Compact Disc master. Since it has only two possible values (high and low, corresponding to 1 and 0), this waveform is far more immune to distortion and noise in the recording and playback process than the original analog waveform. Distortions that can and do occur in the data-storage media (tape or optical disc) only rarely change the recorded pulse train enough to confuse the decoding circuitry as to whether a high or low value was intended.

In playback-this is where a CD player comes in-the original pulse waveform is recovered from the recorded waveform (Fig. 1E). After it is converted into the original numerical sequence (Fig. 1F) the series of digits is fed into a digital-to-analog converter (DAC) which changes them into discrete voltage levels (Fig. 1G). Because the numbers are clocked into the DAC at the same rate as they were generated at the ADC during the recording process, variations in the speed of the playback medium do not affect the reproduced waveform. Therefore, wow and flutter are eliminated!

An output-smoothing circuit removes the inaudible ultrasonic components that give the staircase waveform it's disjointed character. The filtered waveform makes up the output of the digital audio system, an output that is a very high-fidelity replica of the original input signal.

The Compact Disc and Player. Before exploring some of the processing that goes on inside a Compact Disc player let's take a look at what a CD player has to play, the Compact Disc itself. Audio information is recorded on a CD pressing in a track of microscopic "pits" on the surface of a transparent acrylic disc 12 centimeters in diameter, as shown in an accompanying photo. These pits average slightly less than 1 micrometer in length; each revolution of the track is 1.6 micrometers away from the next. Data is contained in the length and spacing of the pits and the spaces ("lands") between them.

A cross-section of a CD pressing is shown in Fig. 2A. In it you can see that, though the pits (P) are made as indentations, they appear as "bumps" to the

Fig. 1. Basic operations of digital audio: sampling (B); quatization (C); recover of data (E, F); and reconversion of data into an audio signal (GH).
scanning laser beam. It comes up through the bottom of the disc, hits the aluminized signal surface (AL), and is reflected out again. Changes in the intensity of reflected light are detected (Fig. 2B) and converted to a digital bit stream (Fig. 2C). The pits are protected on one side by the bulk of the disc's plastic substrate (S), and on the other by a tough lacquer coating and a label (PR).
A typical mechanical arrangement of a Compact Disc player is shown in Fig.

3 and the illustration on page 40. It consists of an optical scanner, containing a semiconducter laser and a photodiode, mourted on a tracking device that allows the scanner to move across the face of the spinning disc. The disc spins counterclockwise in relation to the laser beam and the track of pits starts toward the center of the disc and moves toward the outside edge, both movements being opposite to those with analog (blackdisc) records. The speed of rotation

Compare Radio Shack's TRS-80 Model 4 With IBM and Apple

Model 4 Wins! And You Save Up to ${ }^{\text {s }} 1014$

Description	Radio Shack Model 4	IBM PC	Apple IIe
Two-Drive Unit	\$1999	\$1864	\$1995
Formatted Disk Capacity	174Kb each (TRSDOS)	$\begin{aligned} & 180 \mathrm{~Kb}(\mathrm{DOS} 2.0) \\ & 160 \mathrm{~Kb}(\mathrm{DOS} 1.0) \end{aligned}$	124 Kb (DOS 3.3)
80-Column	Included	Included	Included
Monitor	Included	\$345	Included
Monitor Adapter	Not Required	\$335	Not Required
First Drive	Included	Included	Included
Second Drive	Included	\$289	\$395
Parallel Printer Interface	Included	Included	\$165
Serial Interface	Included	\$120	\$195
Reference Books	Included	Included	\$50
Numeric Pad	Included	Included	\$159.95
Diskette Operating System	Included	\$60	Included
Total	\$1999*	\$3013	\$2959.95

TRS-80 Model 4 Is the Logical Choice. For performance and price, our Model 4 desktop computer is the professional approach to improving your productivity. It has features built-in that cost extra in other computers-features that will make your job a lot easier.
Designed to Make Hard Work Easy. The easy-to-read 80 -character bv 24 -line display and 64,000-character memory make Model 4 perfect for complex spreadsheet analysis. To speed operations, our "MemDisk" emulates a super-fast disk drive in memory for keystroke-quick responses instead of time-consuming disk access. A built-in print spooler lets you work on one job while printing another.
Versatile and Powerful. We designed Model 4 to be completely compatible with our existing line of word processing, time management, electronic filing-in fact, all TRS-80 Model III software. And soon you'll be able to choose from thousands of CP/M ${ }^{\top}$-based programs.
See It Today. Get a demonstration of the TRS-80 Model 4 (Cat. No. 26-1069) at your nearest Radio Shack Computer Center, store or participating dealer. Be sure to ask about our leasing, training and service plans, too.

The biggest name in little computers ${ }^{\circledR}$
A DIVISION OF TANDY CORPORATION

- Price applies at participating Radio Shack stores and dealers. IBM is a registered trade mark of International Busine.ss Machines Corp. Apple is a registered trademark of Apple Computers. CF/M is a registered trademark of Digital Research, Inc. Prices based on manutacturer's literature.

slows down between the start of a disc and its finish.
It starts out spinning at around 500 rpm and ends up spinning at about 200 rpm if the program extends close to the edge of the record. The speed is controlled by servo networks so that the track is always passing over the laser at between 1.2 and 1.4 meters per second. The steady decrease in rotation speed increases the amount of information that can be held on the disc. If the rotation rate were constant, the pits and alternating lands near the start of the disc would be unnecessarily large.

Data on Disc. It would be a stupendous and misleading oversimplification to say that digital-audio data gets recorded on a Compact Disc exactly as it emerged from the digital-audio master recorder. There is a good deal of digital signal manipulation on the audio data before it finds itself on the signal-surface of a Compact Disc. Most of this processing is undone by a CD player in its operations to recover the original digi-tal-audio. Then why is all the processing necessary? The three main reasons are: to increase the playing time of a $C D$, to make it audibly immune to disc damage (scratches, fingerprints, small pressing defects), and to provide special digital control and data signals for advanced Compact Disc applications.

Figure 4, as complicated as it appears at first glance, summarizes all the main digital operations performed to a digi-tal-audio signal on its way to the master Compact Disc. The digital data on a CD is gathered into units called frames and the diagram depicts the encoding process for one frame (which takes only about 136 microseconds to be scanned by a CD player's laser).

The digital-audio signal content of a CD frame consists of enough information to make up six sampling periods (Fig. 4A). Since there are 32 bits generated in one sampling period (16 bits per stereo audio channel every 22.68 microseconds) there are $32 \times 6=192$ audiodata bits per frame (Fig. 4B). Each 16 bit sample is broken down the middle into two 8 -bit bytes, called symbols in CD terminology (Fig. 4C). One symbol contains the 8 most significant bits of the sample, the other contains the 8 least significant bits. This repartitioning of the data yields 24 symbols containing only digital-audio data per frame.

The first major signal-processing operation on the audio data during the encoding process is depicted in Fig. 4D and E. These two lines depict the functions that make the data stream immune to transmission errors due to disc defects or damage.

They start with the generation of redundant data that a $C D$ player will use

Fig. 2. A 1.2-mm thick Compact Disc (A) consists of three layers: an acrylic substrate (S), an aluminized reflecting "signal surface" (AL), and a lacquer coating and label (PR).
The pits (P) are pressed from above but the laser beam scans from below.
The reflected intensity of the beam varies as the pits pass by (B) and these variations hold the digital-audio data (C)
to detect and correct for any errors in the data stream as read by its laser (see box on page 45). Simply put, the redundant data is a mathematical summary of the digital-audio data contained in the frame and is a special form of paritycheck code (for those of you familiar with digital data transmission). The first error-correction symbols to be generated are the four Q symbols which find their places in the middle of the frame.

Next comes interleaving, a process for making the recorded signal immune to disc scratches and other relatively large-scale defects (see accompanying box). Interleaving scrambles the symbols from a large number of frames preceding and following the one being encoded in the diagram. This scrambling (depicted by the arrows between Fig. $4 D$ and E) is performed in a very strictly defined way, which moves originally consecutive symbols to distantly separated frames, and which moves symbols from distant frames into the one under construction. The Q-parity symbols also undergo this shuffling process. No data is left out or repeated-the number of digital-audio symbols per frame is still 24, the number of Q-parity symbols is still 4 -its just that 28 previously consecutive symbols find themselves strewn over about 40 different frames in a very regular, and undoable pattern.

After interleaving, four P-parity er-ror-detection/correction symbols are calculated from the 24 audio and 4 Qparity symbols now in the frame. This additional parity data is tacked onto the end of the frame. The whole parity/ interleaving scheme is called CIRC (Cross-Interleave Reed-Solomon Code).

To the start of the frame is added one 8 -bit symbol containing control and display (C\&D) bits. At present this symbol is used only to hold data about the timings of each musical selection on a Compact Disc, and data signalling where each selection begins and ends. This information is used by a CD player to cue up individual selections.

Future applications of the C\&D symbol include text data for lyrics; graphics data for computer-type displays on TV's and monitors; and ultimately video data in conjunction with a video frame-store system. The C\&D symbol can also be made to carry a telephonequality digitally encoded voice signal
for sing. or play-along recordings. (Since the C\&D symbols contain 8 bits and occur 7,350 times per second-once per frame-a voice signal with a signal-to-noise ratio of about 45 dB and a frequency range up to about $3,500 \mathrm{~Hz}$ can be carried.)

Players for all these advanced functions have not yet been issued. In fact, some or the most technically complex options, like computer graphics and video, are still in the planning stages.

Modulations. At this stage (Fig. 4E), the frame consists of 338 -bit symbols of digital-audio (24 symbols), parity-check (8 symbols), and control/display data (1
symbol). This symbol sequence is then fed into a digital modulation circuit which converts, via a read-only-memory look-up table, each 8-bit symbol into a 14 -bit word in a process called EFM (Eight-to-Fourteen Modulation). Essentially the 8 -bit symbols modulate a bit pattern 14 bits wide (Fig. 4F and G). Why is this done?

The full answer to that question is rather complex, but it boils down to the fact that about 25 per cent more information can be stored on a Compact Disc if the 8 -bit symbols are converted to 14 bit words with certain special properties. To the CD user this increase of "information density" means longer

ERROR CORRECTION

Analog stylus-in-a-groove recordings are very susceptible to all sorts of sonic degradations from defects in the manufacturing process or damage inflicted by the user. What record buyer hasn't had the unpleasant experience of a bad pressing or hasn't heard the noise added by fingerprints or scratches on an analog disc's surface. Digital audio offers salvation from these problems since specially encoded digital signals can be made immune to what are called "transmission errors." By the incorporation in the pit/land track on a CD of extra information which is mathematically redundant to the original digitalaudio signal, a Compact Disc player can eliminate to a substantial degree the sonic side effects of even gross disc damage like scratches and fingerprints.
The theory of error-correction coding can get extremely involved, mathematically speaking, but the basic principles of how error correction is applied in the CD system can be illustrated by a simple analogy. Figure A illustrates what is called a magic square. As you might recall from gradeschool arithmetic, a magic square is an array of numbers, the rows, columns, and diagonals of which all add up to the same number. In this case each row, column, or diagonal adds up to 15 . If you were to transmit the numbers contained in the magic square along with the sum of any row or column, and if one of the numbers were to be incorrectly received, you would still be able to regenerate the magic square completely and exactly. Why? Because you know that each row or column or diagonal adds up to 15. If an incorrect number is received as in Fig. B, the rows, columns, and diagonals will not add up correctly. The offending number can be easily located and corrected. The location is at the intersection of the row and column which do not add up correctly; the correct value is that number which makes the sum come out correctly.
By transmitting the sum value along with the numbers in the magic square you were

Figs. A and B. Magic squares with and without the correct numbers.
transmitting redundant information, a mathematical summary of the numbers contained in the square. The receiver is able, using this redundant information, to calculate and correct more than one transmission error even if one of the errors occurs with the sum value. Of course, correcting the sum value isn't helpful if all you are interested in is the magic square's numbers, but at least that this example shows that the transmission of redundant information makes the detection and correction of transmission errors much easier.

The Compact Disc system makes use of a similar, but much more complex, process to protect the digital-audio data from transmission errors. About 25 per cent of all the data encoded on a Compact Disc is mathematically redundant to the digital-audio information. These error-correction symbols are derived by binary computation in much the same way the sums for the magic square's rows and columns were obtained. Naturally the numerical data on a $C D$ is not placed in magic squaresdigitally encoded music doesn't create sequences of numbers that are easily fitted into magic squares. Instead, the CD encoding system creates unique patterns of bits which are hard to confuse with one another without being able to find and correct for errors.

No error correction system is perfect, however. Eventually enough errors can occur that exact reconstruction of the tansmitted signal is impossible. In the magic square example, for instance, if four or more numbers were altered in transmission there would be no unique solution to the square. There may be severial different arrays of numbers which will make up a valid magic square. Likewise with the Compact Disc system. Eventually there may be so many errors in the data stream, due to extensive disc damage, that exact correction of the digital-audio data cannot be performed. A CD player will then interpolate the correct data from valid data by taking an average of the number before the erroneous digits and the number after them.

In the CD system, if one out of every thousand data bits were incorrect (giving a bit error rate or BER of 10^{-3}), interpolation will be performed about 1,000 times per minute. A BER of 10^{-3} corresponds to a very well scratched disc. If only 1 out of every 10,000 bits is in error ($B E R=10^{-4}$), a typical value for an undamaged CD pressing), the interpolation rate drops to about one 16 -bit sample in every 10 hours of playing time.

There is a very small possibility that an undetected error will sneak through the CD error-correction system. With the magic square this would mean that several numbers were changed in such a way that the square is still "magic" but not the same one as transmitted. In digital audio, an undetected error can lead to a "click" in the reproduced sound. The CD error correction system will produce fewer than one click for every 750 hours of playing time with a disc having a BER of 10^{-3}. In practical terms this means that a reasonably well cared for Compact Disc pressing will never generate clicks or pops in playback. The listener is spared from these by the actions of the Compact Disc error-correction system on the data stream.
playing times. Accompanying this increase of playing time, EFM decreases the CD system's sensitivity to disc and optical-system defects and production tolerance variations.

The signal created in a CD player's photodiode detector circuitry by the EFM sequence of pits and lands has two more important properties: it has low dc ($0-\mathrm{Hz}$) content and it is "self-clocking". Low dc content is important because the servo systems which keep a CD player's laser "on track" utilize low-frequency control and feedback signals. Any dc content in the signal from the photodiode detector can throw off the tracking of the laser. (Think of a very long pit or land as having substantially higher dc content than rapidly alternating, small pits and lands.) EFM has very little $0-\mathrm{Hz}$ in its waveforms since the spacing and lengths of pits and lands is strictly controlled.
A CD player must synchronize its operation with the data coming from the disc and must also synchronize the rotation rate of the disc with the operation of the CD-decoding circuits. EFM has self-clocking properties allowing a CD player to determine which bit belongs to
which symbol during decoding.
While the 8 -bit symbols are converted into 14-bit EFM words, three additional bits are added to each word. These "merging bits" are calculated to further reduce the dc content of the signal. Finally, the end of the frame is marked by a sync signal of 24 -bits length together with three merging bits. In all, a frame which started out as 192 audio bits now contains 588 channel bits. These are recorded onto a Compact Disc so that a 1 in the channel-bit sequence turns into the edge of a pit. A CD player's decoder circuits really don't care if they are scanning pits or lands; the circuits are sensitive to pit edges. It makes no difference whether a logic " 1 " is encoded as a pit or a land.

Inside a CD Player. A Compact Disc player has to undo all the encoding steps just described in order to recover the original 16 -bit digital audio samples. The process, very simply described, follows this sequence:

1. Light from the player's semiconductor laser is focussed through a prism/lens optical system onto the surface of the spinning disc.

Fig. 4. Read from top to bottom, this chart summarizes the operations applied to a digital audio signal before it gets on a Compact Disc. Read from bottom up, it summarizes the CD player recovery process.
2. The reflected laser beam returns through the same optical system but is diverted to a light-sensitive detector (a photodiode array).
3. The photodiode output, after amplification and filtering, is converted into a squared-off pulse train by the use of comparator circuitry.
4. The pulse train of zeros and ones (corresponding to Fig. 4H) is demodulated according to the rules of EFM into 8-bit symbols carrying audio data, pari-ty-check information, and C\&D data.
5. Data control/error-detectioncorrection/memory circuits de-interleave and correct the data using the CIRC decoding rules.
6. Sixteen-bit digital-audio samples are assembled from the error-corrected symbols and sent to the 16 -bit digital-toanalog converters where they are converted into analog voltages.
7. The staircase-shaped DAC outputs are smoothed by sharp-cutoff lowpass filters and the resulting analog signals make up a CD player's audio output.

This brief summary pays short shrift to the complexity and sophistication of the operations and circuitry involved. Semiconductor lasers are not universally used components, let alone in massmarket consumer products like CD players. Steps 4 and 5 make use of complex LSI chips, without which the building of a practical and affordable CD player would be impossible. For example, the three Sony-developed chips performing steps 4 and 5 and used by them and several other companies in their first CD players contain the equivalent of about 7,500 gates, not including a 16 kilobit RAM necessary for the processing. Sixteen-bit DACs weren't even available in low-cost monolithic form five years ago.

Tracking. That short list of CD-player functions also glosses over two of the most fascinating applications of servoloop techniques: the turning of the disc and the tracking of the track of pits by the laser/optical system. These two operations are controlled by digital/ analog/electromechanical servo loops of fascinating complexity. They are so intricate, in fact, that only a very broad description of them can be given here.

As mentioned before, the rotation rate of the disc is locked to the frame rate, which itself is determined by characteristics of the disc's data stream. Phase-lock techniques are used to keep the rate of disc rotation generally synchronized with the frame rate. Exact synchrony is not necessary because of

Now. Tektronix 60 MHz Performance is just a free phone call away!

These easy to order scopes are proof that it's not expensive to have advanced, 60 MHz performance from Tektronix on your bench. It's just practical! Feature for feature, the Tek 2213 and 2215 set a price/performance standard unmatched arnong portable scopes. And are backed by the industry's first three-year warranty on all labor and parts, including the CRT.

So advanced they cost you less: $\$ 1200^{\star}$ for the $2213!\$ 1450^{*}$ for the dual time base 2215! These low costs are the result of a new design concept that utilizes
fewer mechanical parts than any other scope.

Yet there's no scrimping on performance and reliability. You have the bandwidth for digital and analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families. And delayed sweep for fast, accurate timing measurements.
Scope. Three-year warranty.** Probes and expert advice. One free call gets it all! You can order, or obtain literature, through the Tektronix National Marketing Center. Technical personnel, expert in oscil-
loscope applications, will answer your questions and can expedite delivery. Direct orders include probes, operating manuals, 15-day return policy, full Tektronix warranty and worldwide service back-up.

Order toll-free: 1-800-426-2200 Extension 55

In Oregon call collect: (503) 627-9000 Ext. 55

[^1]the self-clocking nature of the data modulation scheme; EFM demodulation chips can determine where each bit belongs from the signal itself.
Servo-loop feedback techniques also keep the laser trained and focussed on the pit track. The precision of the servos
systems that accomplish this is very high. Taking tracking as an example, the laser system must be guided over a spiral of pits with a pitch of only 1.6 micrometers. Disc eccentricity and player tolerance may cause the track to swing from side to side; the maximum

INTERLEAVING

Interleaving is a process used in the encoding of Compact Disc data that reduces the system's susceptibility to what are called "burst errors." These are errors in the data stream which occur to many bits in succession. They can result from interference to the scanning laser caused by relatively large disc damage (fingerprints, long scratches).
A simple example can easily demonstrate the effectiveness of interleaving (Fig. A). Suppose you transmitted the message LOW-DISTORTION-AND-LOWNOISE, but a burst error of six characters occured during reception. The receiver would then have a hard time figuring out what was meant by LOW-NOISE-A?????DISTORTION (Figure A1). You could have made the transmission more immune to the loss of several consecutive characters by first arranging them in columns, then transmitting them by rows (Figure A4). The transmitted signal is thus a regularly scrambled-interleaved-version of the original signal. If six successive characters are now obliterated, the receiver can dein-
terleave the message by rearranging it in rows and reading it out by columns (Fig. A5 and 6). The result is a much more intelligible signal; the burst error has been dispersed into separated "random" errors (Fig. A7).
Just as these random errors are much more easily handled by readers of English, they are more easily handled by a CD player's error-correction circuitry. In fact, readers of English supply a "context" to the received message to make it intelligible. Generally speaking, a CD player does the same thing with the redundant error-correction data placed on the disc. The redundant data provides a mathematically defined and standardized "context" in which to interpret random errors in the data stream.
In the CD encoding process interleaving is accomplished by writing the audio data into a digital memory and then reading it out in a different order-the equivalent to the row/column changeover in the example. A CD player periorms the opposite operation in the de-interleaving process. \diamond
permitted swing is 300 micrometers Yet for accurate decoding, the tracking servo must allow the laser beam to follow the pits to with 0.01 micrometers and also must absorb the effects of vibrations and jolts applied to the player chassis.

When it comes to focussing the laser beam onto a CD's inner signal surface, the focus servo must be able to cope with disc warps of up to 1 millimeter. The focussing system, however, must maintain focus on the signal surface to tolerances 1,000 times smaller: ± 1 micrometer

A CD player performs such feats of electromechanical precision by monitoring the shape and/or intensity of the laser beam after it is reflected off the signal surface and back into the optical system. Deviations in the shape or intensity of the beam as detected by a photodiode array are used to move the optical system's objective lens nearer or farther from the disc surface to cope with focussing errors), or to move the optical system as a whole across the surface of the disc (to correct for tracking error)

What's Next. Even though the Philips/Sony Compact Disc is a tremendous engineering achievement, it is only part of the start of what will probably be a revolution in information-storage technology: the optical age. In its present form, a Compact Disc can hold about 16 gigabits of raw data. If the EFM modulation system is used to store computer data, a CD will hold about 9.14 gigabits or 1.14 gigabytes. If half of that capacity is used as redundant data for error detection and correction, one Compact Disc could hold about 570 megabytes of digital data, about 1,000 times the amount of a high-density floppy disc. (The error-correction system for the audio CD, as good as it is, still lets through too many interpolated and undetected errors to be tolerated in data-only applications, thus the very conservative assumption of 50 percent data redundancy.)

Since its small size increases production yields and lowers production costs over its larger (12") LaserVision videodisc counterpart, don't be surprised if the high information capacity of the CD system becomes a standard medium for mass distribution of software and data bases. The enormously larger data-carrying capacity of the $12^{\prime \prime}$ LaserVision system can even make it impractical for mass distribution purposes; who needs all that data anyway?

Software distribution won't be the only data application of the Compact

WIH MAXELYTDEOTAPE,EIEN ATIER30O PLISOU CANSIILISAY.

Disc system. Efforts are being made at a number of companies to come up with a practical, inexpensive method of recording on Compact Discs and optical videodiscs. Not only will home digitalaudio disc recorders become possible with the development of such technology but home computers could easily use a recordable CD for storage of large amounts of information. Even an unerasable CD recording system could be useful.

At present, research efforts are being directed towards a suitable laser/recording substrate combination. The semiconductor lasers used in audio CD players are too weak to directly "write" on Compact Discs.

All that relates to developments five to ten years away from reaching commercial reality. Much closer to appearing on your electronics dealer's shelves
is a digital signal processor for audio signals. Already, relatively slow microcomputers in typical home computers are being put to good use in audio via specialized Fast-Fourier-Transform measurement system (like the IQS system Julian Hirsch uses in testing audio equipment). Now under development are ultra-fast, special-purpose arithmetic processors which, under control of a microprocessor, can be made to perform such audio tricks as filtering, reverberation simulation, compression, expansion, click and pop removal, and sound synthesis and mixing while an audio signal is still in digital form. Among the many advantages that all-digital signal processing promises are no audible degradation in signal to noise ratio or distortion levels, the capability of extraordinarily complex realtime operations on an audio signal,
and, last but certainly not least, software based processing.

Imagine an audio component looking much like a popular video-game console. Just plug in a cartridge and the system becomes a digital ambience synthesizer, or a digital multi-band equalizer, or a tick/pop remover for playing these old-fashioned stylus/groove recordings. Technologically such a system is possible today; a commercial system may see the light of day as soon as two years from now. By then CD players will be supplied with direct digital-audio data outputs so a direct link from recording studio to a home stereo system's power amplifier will be possible. The CD players and recordings available today are the start of our digital audio future, a future which promises extraordinary operating flexibility, convenience, and-above all-sound quality. 仓

A Hands-On Look at Magnavox's FD1000SL Compact Disc Player

Manufactured by the parent company, Philips of Holland, the Magnavox Model FD1000SL is the simplest, most compact, and least expensive of the "first generation" of CD (Compact Disc) players to reach the United States market. It resembles a small, top-loading cassette deck, with a hinged clearplastic compartment cover that swings up for loading and removing discs. The sloping upper-front portion of the case contains several pushbutton operating controls. The machine is enclosed in a satin-silver-colored polystyrene case that measures $125 / \mathrm{g}^{\prime \prime}$ W x $10^{1 / 2^{\prime \prime}}$ D x $27 / 8^{\prime \prime} \mathrm{H}$ and weighs approximately 11 lb . Suggested retail price is $\$ 800$.

General Description. The CD is the long awaited "digital disc," about
which we have heard so much in recent years. Analog programs are sampled at a $44.1-\mathrm{kHz}$ rate and converted to 16 -bit digital form. The digital information controls a laser beam that burns microscopic pits into a master disc, forming a spiral pattern somewhat like that of a conventional analog record.

In its final form, the compact disc is silver colored and measures $43 / 4$ " in diameter. Recording is on only one side, the flip side being used for the label. The recorded surface is protected by a tough transparent plastic coating, making the disc relatively immune to damage from normal handling. (Fingerprints, for example, have no effect on the sound quality of a digital disc.) And, since no mechanical contact is made with the laser-read disc during playback, it does
not wear out or lose fidelity with repeated playings. Play is from the inside toward the perimeter. During play, the disc's rotating speed varies from 500 to 200 rpm to maintain an approximately constant linear scanning velocity of 1.2 to 1.4 meters per second.

The sonic performance of the compact disc is vastly superior to that of any medium previously available for home reproduction, surpassing even the most advanced professional analog tape recorders. Specifications of the Magnavox FD1000SL, typical of those for most CD players, include a frequency response of 20 to $20,000 \mathrm{~Hz} \pm 0.3 \mathrm{~dB}, \mathrm{dy}-$ namic range and signal-to-noise ratio that exceeds 90 dB , and harmonic distortion of less than 0.005% at maximum output. An almost literally zero flutter percentage is obtained, thanks to playback timing being controlled by a quartz crystal oscillator.

Within the player, a laser scans the pits on the revolving disc, and its reflection from or absorption by the disc (a function of the recorded pattern) is sensed by a photodiode and forms a series of digital words. The bit stream is converted to analog form by 16 -bit D/A converters and filtered to remove all content beyond $20,000 \mathrm{~Hz}$. Unlike most CD players that use physical filters, the FD1000SL employs digital filtering.

The operating controls are reminiscent of those on a cassette deck including play, PaUSE, and STOP, as well as high speed FWD and REV SEARCH. Other smaller buttons control special programming features.

Donitlet price get in the way ofowning a quality printer:

Adding a peinter to your computer makes sense. But deciding which printer to add can be tricky. Do you se:tle for a printer with limited functions and an inexpensive price tag or buy a more versatile printer that costs more than your computer? Neither choice makes sense.

Here's a refreshing option - the new, compact STX-80 printe from Star Nicronics. It's the under $\$ 200$ printer that's whisper-quiet, prints 60 cps and is ready to run with most popular personal computers.

The STX-80 has deluxe features you would
expect in higher priced models. It prints a full 80 columns of crisp, attractive characters with true descenders, foreign language characters and special symbols. It offers both finely detailed dotaddressable graphics and block graphics.

And, of course, the STX-80 comes with Star Micronics' 180 day warranty (90 days on the prirt element).

The STX 80 theumal printer from Star PJicronics. It combines high performance with a very low price So now, there is nothing in the way of owning a quality printer.

THE RONER BEHIND THE PRINIED WORD.
Comprael Peripherals Qivision, 1120 Empire Central Place.
Sule 216, Dallas, IX 75247 (21.4) 631-8560

ctorn

The newSTX-80 printer

 for only $\$ 99$When the machine's disc-compartment cover is raised by pressing a button at its front-left corner, a spindle is exposed onto which the disc is placed, recorded side down. The cover is then closed manually. Pressing play causes the disc to spin for a few seconds, supplying information on the number of separate selections and their precise locations on the disc (similar to the action of a computer/disc catalog). Green LEDs, visible through the window on the front panel, light up to show the total number of programs, up to a maximum of 15 . Normally, as the disc is played in sequence from the first selection, a second green LED lights below the track "catalog" to show which program is being played, advancing at each subsequent selection. At end of play, the unit shuts down.

The CD player may be programmed to play tracks in any sequence, by choosing either those tracks to be played, or those to be omitted from the playing sequence. This is done with the STORE and SELECT buttons, and the track indicator lights show which have been programmed and which is being heard at any moment. The high speed SEARCH buttons can be used to slew the laser pickup to any point on the disc and resume play from that point when the button is released. Although most music records have fewer than 15 tracks or programs, the FD1000SL is not limited to that number. However, it considers everything following the track 15 to be part of that program, and cannot be specifically programmed for higher numbered selections.

Laboratory Measurements. Tests of the Magnavox unit were made using special test discs from Philips and Sony. The frequency response (identical for both channels) was measured with the Philips 410055-2 record, and was found to be flat within $\pm 0.15 \mathrm{~dB}$ from 20 to $20,000 \mathrm{~Hz}$, with the variation being in the form of small "ripples" between 4,000 and $20,000 \mathrm{~Hz}$. Output from a " 0 dB " $1000-\mathrm{Hz}$ recording was 2.03 volts, and the A-weighted S / N (measured with an IVIE IE-30A Audio Analyzer), was 99.2 dB referred to that level. The harmonic distortion, playing the 1000 Hz test tones of the Sony YEDS 2 record, which are recorded at levels from 0 to -90 dB , was -95 dB (0.0018%) at 0 dB . Since the distortion components remain at about the same amplitude for all signal levels, the percentage increased at lower recorded levels. Eventually it was masked by system noise, but even at a -20 dB level the

THD was -70 dB , or 0.03%.
Intermodulation distortion was also measured at levels of 0 and -20 dB , with readings of 0.004% and 0.039% respectively (for an SMPTE measurement with 60 and 7000 Hz tones at a $4: 1$ amplitude ratio.) Channel separation at 1000 Hz (averaged for the two directions of crosstalk) was 99 dB , and at $20,000 \mathrm{~Hz}$ it was 93.5 dB . As expected, the flutter was unmeasurable, reading the instrument residual of 0.001% on our flutter meter (the same reading was obtained using the meter's internal crystal controlled $3150-\mathrm{Hz}$ signal).

We made limited measurements of the model's ability to withstand physical shock without mistracking. All CD players are susceptible to losing optical contact with the recorded track if they
> "The total lack of noise, distortion, crosstalk, or flutter . . .transcends anything previously available . .

are jarred, and the Magnavox unit is no exception. However, it is at least the equal of a good record player in this respect, and has the advantage of being immune to acoustic feedback that can cause howling or simply a muddying of the sound when playing LP records.

An important consideration for a compact disc player is its ability to correct for bit errors, which are inevitable during playback. All available machines employ fairly elaborate error correction systems, typically designed to cope with interruptions of up to 3000 or more bits without loss of tracking or even a noticeable gap or noise in the program. To evaluate the effectiveness of these error correction circuits, we used a special Philips test disc on which a wedgeshaped portion of the information layer (recorded with music) is "damaged," so that the length of the dropout can be determined by reference to the disc portion being played. It also has dots of different sizes painted on the transparent protective layer to evaluate the effect of external dirt or scratches on information retrieval, as well as a simulated fin-
gerprint formed of parallel-ruled lines. The Magnavox FD1000SL was outstanding in this test, being completely unaffected by any of the errors on the test disc.

User Comment. The Magnavox FD1000SL worked perfectly in extend-ed-use tests, playing a number of com-mercial-music CD records and sampler discs. The programming system was flawless, with the sound beginning exactly at the start of each programmed selection. However, the movement of the pickup to the programmed position, or under the control of the REV and FWD SEARCH buttons, was very slow compared to other machines we have used. For example, if selection \# 15 was the first programmed for playing, the unit required more than 18 seconds to reach it from the starting point, compared to typical times of 1 to 6 seconds for other machines.

The Compact Disc is in its infancy, of course, and whatever opinions one might form on the basis of incomplete information or hearsay are likely to become modified in the future. Our reaction to it is overwhelmingly enthusiastic. The total lack of noise, distortion, crosstalk, or flutter results in a listening experience that transcends anything previously available to an audio enthusiast.

Not every digital recording is so outstanding (many come from analog masters, and cannot be better than the master tape), but the medium is everything that has been claimed for it. It will not replace the LP record for some time, if ever, but will supplement it much as tape has supplemented records for decades. Inevitably, the price of the CD players will come down to the level of any reasonably good turntable or cassette deck, and at that time anyone who is serious about good sound will have added digital disc capability to his music system.

It is important not to confuse the Compact Disc with the so-called "Digital Discs" that have been on the market for some time, and which are really conventional analog LP records made from digital master tapes. They are indeed likely to be superior to standard-type LPs. However, our experience suggests that a CD made from a good analog master tape is likely to be much better than an LP made from a good digital master. CD discs are expected to sell for $\$ 17$ to $\$ 22$ each, a premium price for a premium sound and long-lived fidelity.
-Julian D. Hirsch
Circle No. 95 on Free Information Card

RADDOSHACKS NEW TRS 80 DESKIOPPER

When the carly T.RS-8C. Phextel I computers affecared, pionsering wiclely avsilable, modestly priced personal computers, datractors jeerel ar the athsence of lower-ciase leller, color video, and calcuratcr keybsare, calling them by the nathe, "TRASH-Ke" ${ }^{-1}$ Like "Yankere Dexel e," the name suck and became an atiectionate one The computer ilself evolsed lirough sezeral modificatien improve nents and calaneed versigals of heverne one of the most propular computerserer built.

Recenlld, when I repere led oni my lrip toFi. Womband the Racire Shach Mexicl I(O), I iremsiomed how I alsos sam: andes wraps in the bath oflee, the latest model in this successfut series-phe TFiS-x() Mixlel 4

When I lowked at the Morlel 4, my firsi Itouydis were, "O) 1 , it white Model III, that's oice." When I began tor use its however, and uinderstand its Feitures and soflware. 1 kept sixying "ferrific, terrifice" £o I want to ofter a new and well descrded name, "TERRIFIC-86," for the lewes amd best of the margue.

If is met unnil you sit down al the keyboatd, lumi i on, and stivt to use lie computer thet the diflicuaces become afnearent. The CR'T display is 8 (chat= acters by 24 limes inslead o the of characters hy If I ares of the Madel III. Ac= tua. lly there are six viden inodes

- While or black (umem.ind
- 3lack on white
- 54 characters by 16 liacs (Mindel 111 mote)
- 32 chatacters by 16 lines (Mexdel IIt moxe)
- 8 (y cejaracters by 24 lines (Model 4 musele)
- fi) enaracters by 24 Jines (Model 4 mede)
The display carr slonv dice fisii ASCU character set and of graphic: chanacters.

The heybuard of the Mexle 4 loons similar to that of the Mexdel III Ilowever, the former lais several added heys dan were serely missed by usiors. Oite is at Cors key, which provides lice useful caps-ioch liunclion. The whers ate dee CiRI (Conlrol) key, which wals missing (in) the Mentel III heybuate, ame SHII:

Kevis localed on cither side of the bortopn 12)w. Tiere ale also three user-delined fanclion heys narked fl, liz, and 13. Tinescesere used in application progatans. 1.) provide single heystroke datal cinty.

The major physical difleremes besween the hew exnmpuler and the Moded IIt allc imerinat. In Ibis casce, it's what soua dor is see that comitis.

Tine Mexdel + comains oth hyles of Leser memory, which c:an he upgrated 10 12ak leyes. The additional otk byles are usid as menory pseode-lish called Mematiak. The Model 4 can also be used wish a Ractio Slarek hard-disk drive.

This Memdiss feature is a very inlerexting comicepr. It lets you add a sulid-

NTS Electronics

Learn Robotics, Microcomputers, Microprocessors, Digital Video, Test Equipment and more with NTS ITTRDMIL" home training. Courses include state-of-the-art equipment, lessons and texts to make your hands-on programs exciting and down-toearth practical.

HERO 1 is included in two courses, one basic and one advanced. You'll cover principles of industrial electronics, microprocessor troubleshooting, fundamentals of mechanics, and robotic applications in industry. You'll learn analog and digital skills, radio control, fluidic, pneumatic and servo-mechanisms, as well as computer interfacing and robotic programming. HERO 1, complete with arm, gripper and speech synthesis board, is a fully self-contained electro-mechanical robot-the featured unit in the most exciting training programs ever offered in home study

NTS Intronic Training is a carefully developed and tested learning system providing a thorough intergration of advanced electronic hardware with modern lesson texts. The relationship between theory and practical applications is made clear through the hands-on experience of building and assembling kits of state-of-the-art equipment. Courses include a wide variety of test instruments, both digital and analog, as well as other units not shown here. And, depending on the NTS program you select, you can earn up to 30 CEU credits for successful completion. Our fullcolor catalog has complete details: NTS has taught industrial skills for over

78 years-a record that has no equal.

Training..........
 FIRST WITH TOMORROW's

 TECHNOLOGY1. Advanced "Z Chassis" NTS/HEATH "Smart Set" with computer space command remote control and space phone. Originate or receive telephone calls through this set and the number appears on the screen-store your police and other emergency numbers into memory which may be recalled and auto-dialed at any time. Traditional and incomparable picture quality. Unit has Quartz Controlled Tuning, 178 channel capacity, remote antenna switch accessory for reception of VCR, VDR, Broadcast, Cable, Video Games, and Personal Computer Input (no cable change) plus computer- controlled color. Featured in all-new Video Technology Course.

2. NTS/HEATH HN89A Microcom-

 puter is included in two programs. This famous and reliable unit features Floppy Disc Drive, 48K Memory on Board, CRT Terminal with its own Z-80 Processor, and standard keyboard as well as Numerical Input Keyboard. The growing importance of computer knowledge and skills have made these programs increasingly significant. The experience gained in assembling these kits is invaluable in the understanding of computer troubleshooting skills.3. NTS Microprocessor Trainer is included in our Industrial and

Microprocessor Technology Course. It is a portable unit, contained in
a convenient high-impact carrying case. Hardware/
Firmware includes Monitor Operating System-
Expandable User Memory-User Experimental OnBoard Section-Breakpoint Editor-Single Step TraceCassette I/O.

NO OBLIGATION NO SALESMAN WILL CALL

\square NATIONAL
 \square TECHNICAL

TECHNICAL TRADE TRAINING SINCE 1905 Resident and Home-Study Schools 4000 So. Figueroa St., Los Angeles, CA 90037

Use the maili-in card or fill out and mall the coupon. Indicate the tield of your choice. (One, only please.) FAEE tull color catalog will be sent to you by return mall.

NATIONAL TECHNICAL SCHOOLS
4000 South Figueroa Street, Los Angeles, CA 90037
Please send FREE color catalog on course checked below:

\square Robotics	\square Computer Electronics
\square Digital Electronics	\square Video Technology
\square Auto Mechanics	\square Home Appliances

\square Air Conditioning/Solar Heating

Name Age
Address
Apt \qquad City

State Zip
\square Check if interested in G.I. information.
\square Check if interested ONLY in classroom training in Los Angeles
state "disk" to the system, which keeps its files in memory. Files stored this way can be accessed, read, and written to with much more rapidity than ordinary disk files on a floppy. You can also use the Memdisk feature if you only have 64 K of RAM, but its principal use is with the extra bank of memory that the Model 4 will support. All TRSDOS utilities treat the Memdisk files exactly like any other drive, so you can COPY, BACKUP, REMOVE, PURGE, ATTRIB (protect), and display the directory of the files on the Memdisk.

Like the Model III, the Model 4 comes with a parallel printer interface; however, there is an optional serial RS232C interface.

One of the new options of the Model 4 in the ability to use CP/M Plus, the latest version of the "universal operating system." This makes the entire library of CP/M-80, user controlled software available to TRS-80 Model 4 users.

Of course, the Model 4 uses the latest version of Radio Shack's operating system, TRSDOS, as it major system. This is TRSDOS 6.0. This version is substantially different than previous versions of

TRSDOS. To TRS-80 experts it will look like an operating system that was written for Models I and III, called LDOS. The reason for this is that it is the latest edition of LDOS!

When Radio Shack first decided to release its disk system for the TRS-80 Model I, the decision was made to use a Radio Shack DOS rather than adopt one of the major disk operating systems available for licensing. A new system was written and released as TRSDOS 1.0, but it has bugs in it like all the new systems. These were corrected and the system was extended as it went through various updates.

Other companies came out with alternate operating systems for the TRS-80 computers, some of them compatible with TRSDOS and some not. Each gained some users. After a while, those TRS-80 owners who were considered expert came to respect LDOS from Logical Systems as a superior DOS. Radio Shack now sells it as an alternate for the Model III.

When it came to providing a new operating system for the Model IV, Radio Shack broke with its tradition and went
to Logical Systems for a new version of TRSDOS that was based on LDOS. The result is TRSDOS Version 6.0, a really fine system. It has features that are found in very few personal computer operating systems.

Radio Shack has gone to a great deal of trouble to ensure compatibility with previous versions of TRSDOS and with LDOS. The version of TRSDOS used with the Model III is 1.3 and it is compatible with the Model 4. However, there are a few differences. An application program running under TRSDOS 1.3 prints larger and fewer characters on the screen than one running TRSDOS 6.0. This is because it is designed for the 64 -character screen on the Model III. TRSDOS 1.3 commands work slightly differently than TRSDOS Version 6, but the differences are clearly explained in the manual.

The two versions of TRSDOS format disks differently. There is a conversion program on Version 6 called CONV to move files stored on a Version 1.3 diskette to a Version 6 diskette. This is not necessary in order to run Model III programs on Model 4.

TRSDOS 6.0 has many more features than I can mention in this article, but some are important because they are not found on many other systems.

ATtrib: Assigns passwords and attributes to a particular file or group of files. The level of file protection can be

VIC 20 40-80 COLUMN BOARD only $\$ 0000$

Now you can get 40 or 80 Columns on your T.V. or monitor at one time! No more running out of line space for programming and making columns. Just plug in this board and you immediately convert your VIC-20 computer to 40 or 80 columns! PLUS, you get a Word Processor, Mail Merge program, Electronic Spreadsheet (like VISICALC) and Terminal Emulator! These PLUS programs require only 8 K RAM memory and comes in an attractive plastic case with instructions. List $\$ 149$ Sale $\$ 99$

- COMMODORE 64 COMPUTER - "80 COLUMN BOARD" LIST \$275 SALE \$179 (LLess $\$ 20$ Acoessony 2 uxchase Discount)
"15 DAY FREE TRIAL"
- We have the loweat VIC-20 prices
- We have over 500 programs
- Visa - Mastercharge - C.O.D.
- We love our cuetomeral

PROTECTO
ENTERPRIZES (we ove oun customeas)
BOX 550, BARAINGTON, ILLINOIS 60010
Phone 312382.5244 to order

MAKE YOUR VIC-20 COMPUTER TALK

VOICE SYNTHESIZER

You can program an unlimited number of words and sentences and even adjust volume and pitch. You can make: - Adventure games that talk - Real sound action games
This voice synthesizer is VOTRAX based and has features equivalent to other models costing over $\$ 370.00$. To make programming even easier, our unique voice editor will help you create words and sentences with easy to read, easy to use symbols. The data from the voice editor can then be easily transferred to your own programs to make customized talkies.

set to be restricted to a person who enters a password. Moreover, the protection can be set up in levels so that a password can only EXECUTE (Run) a program, READ a program, update a program, wRITE to a program, REname a file, or remove a file. This kind of protection is usually only found on larger systems.

COMM: A built-in communications program that lets two computers talk to each other via a device, usually the RS232C serial communications. COMm lets the Model 4 be used as a terminal in communications and to transfer files to and from another computer. In addition it can be used to spool output from another computer to the printer. COMM
also allows the computer to access Bulletin Board Systems Networks, and Electronic Mail Systems. While this type of thing is common, it is rarely built into an operating system. It is not only a money saver, but a great convenience that many users will appreciate.

The function keys F1 and F3 actually have many more possible functions

The Micro Color Computer

For a long time there has been a rumor that Radio Shack was about to come out with a new, low-cost, color computer. I asked about it during a recent trip to Fort Worth to see some other new models, but all I got from the Radio Shack people at that time was a smile.

One day shortly after I returned to home base, I got a phone call advising that I was about to receive a package "that I had asked about." I was as eager as a kid before Christmas, waiting for UPS to deliver that package. When it did arrive, I opened it with great expectation. Inside was a rare jewel, a little computer, $2^{\prime \prime}$ high by $81 / 2^{\prime \prime}$ long by 7 " wide, called the Model MC-10 "Micro Color Computer." It comes with an external power supply and a TV switch.

There is an excellent manual and a quick reference card to teach you how to run and program the little fellow. This is really a
course in Micro Color BASIC, a dialect that is almost the same as TRS-80 Color Basic for the CoCo, the Shack's Color Computer. The keyboard has small keys (shaped somewhat like Chiclets), but they are large enough for most purposes. The keys cover the usual QWERTY characters, numerals and
punctuation marks, plus cursor commands and graphics characters. There is a second shift level entered using the control key. With this level, you can perform single key BASIC commands inscribed above the keys. These include such commands as RUN, CONT, CLOAD, NEW, LIST, CLEAR, CLSD, PRINT, STOP, END, SET, RESET, READ, RESTORE, FOR, NEXT, STEP, INKEY\$, INPUT, GOSUB, RETURN, IF, THEN, GOTO, SOUND, PEEK, and POKE. The trig functions and RND function are also available as sin-gle-key entries.

This is a color computer and can produce nine distinct colors. It can also produce sound under program control. In addition to the graphic characters, the MC-10 can use point graphics with a 64 by 32 grid. This is not very high resolution, but still good for such a small computer. It is like the dancing dog, which can not dance very well, but it is a wonder that he dances at all!

The MC-10 also has the capability of being connected to a tape recorder for data storage and through a serial port (DIN connector) to a serial printer. The Radio Shack TP-10 printer may be
 used. This is a 32 -character, $4^{\prime \prime}$-wide printer that's capable of printing all the MC10 graphics characters. Further, the Radio Shack LP VII or LP VIII or the DMP-100, DMP-120, DMP-200, or DMP-400 printers may be used. You can also connect the MC-10 to the CG-115 or FP-215 Flatbed Plotters.
The MC-10 comes with only 3 K of user memory, but there is a cover plate protecting a card edge connector that brings out an expansion bus.

I liked this small computer very much at the announced price of $\$ 119$.
through combinations of the CLEAR key and the function keys. This is used in the COMM program to control many communication application functions involved in "handshaking" between interconnected devices, сомm is the program that enables the Model 100 to download its information into the TRS80 Model 4.

CONV: Converts the data files from a Model III diskette to a Model 4 diskette.
DEbUG: Enters, tests, and runs machine language programs for debugging. This is a very valuable function.
spool: Establishes a FIFO (First-in, First-out) buffer for a device, usually a printer. It enables the computer to print data while other operations are performed on the computer.

FORMS: Another unusual and useful command in TRSDOS 6.0. It allows printing a form larger or smaller than a standard-size page. Another feature not often found in an operating system, but nice to have.

JCL: The TRSDOS Job Control Language is one of the most powerful features of the TRSDOS 6.0. It permits the writing of programs that perform a variety of functions such as FORMAT, and BACKUP and have TRSDOS run them when a single command is typed in. This makes the system much more "user friendly.'

These features and many others cause people to applaud TRSDOS 6.0 as a major contribution to personal computing software. It not only provides a jump-ing-off place for new and better systems, it does it without obsoleting the large stock of TRS-80 programs already in the Library.

In addition to providing a selection of operating systems, Radio Shack has also provided a choice of langauges for every purpose. These include MBASIC, BASIC Compiler, and FORTRAN from Microsoft; CBASIC from Digital Research; Pascal from Alcor; Radio Shack Graphics BASIC (649×240 resolution); RM COBOL from Ryan McFarland; and an Assembly Language Development System including Macro Assembler.

Adding up the number of application programs, languages, and systems that are available for the Model 4 in TRSDOS 1.3, CP/M-80, and LDOS, this has to be one of the best-supported new computers ever released. In addition, Radio Shack has converted its line of business software into Model 4 format.

We say again, the Model 4 is really the TERRIFIC-80. -Stan Veit

For more

 information on advertised products, equipment tested, etc., circle appropriate number on postpaid Free Information Card.
NewInmacCatalog jam-packed

 withcomputer/ wpsupplies. Yoursfree!Accurately colled "the bible of the industry," its looded with great products ond ideas for your personal computer, minicomputer or word processing system. You'll enjoy

- One stop shopping. Over 2,000 products to choose from
- Easy ordering. Mall, phone, or TWX Verbal P. O.s welcome
For fastest delivery of your free 100-page Inmac catalog, call 1 (800) 547-5444. 1(800) 547-5447 in California.
 I \int Please be sure to include your phowe number.

NAME	$(\mathrm{CHONE}$
PHON	

COMPANY

- Fast delivery. 24 -hour shipment Overnight emergency shipments ovoullable - 45-day trial. Full refund if not complelely sotislied
- Cuaranteed quality, All products field rested to highest standords - Lower shipping costs. 8 fully stocked distribution centers serving the U.S

ADDRESS
CITY STATE LIF
Circle No. 10 on Free Information Card

If you are in a hurry for your catalog please send the coupon to Mcintosh. For non rush service send the Reader Service Card to the magazine. CIRCLE No. 31 on free information card

Last Night We Exchanged Letters With MOM,THEN HAD A PARTY FOR Eleven People in Nine Different States AND ONLY HADTO WASH ONE GLASS...

That's CompuServe, The Personal Communications Network For Every Computer Owner

And it doesn't matter what kind of computer you own. You'll use CompuServe's Electronic Mail system (we call it Email ${ }^{\text {m" }}$) to compose, edit and send letters to friends or business associates. The system delivers any number of messages to other users anywhere in North America.

CompuServe's multi-channel CB simulator brings distant friends together and gets new friendships started. You can even use a scrambler if you have a secret you don't want to share. Special interest groups meet regularly to trade information on hardware, software and hobbies from photography to cooking and you can sell, swap and post personal notices on the bulletin board.

There's all this and much more on the CompuServe Information Service. All you need is a computer, a modem,
and CompuServe. CompuServe connects with almost any type or brand of personal computer or terminal and many communicating word processors. To receive an illustrated guide to CompuServe and learn how you can subscribe, contact or call:

CompuServe

Consumer Information Service. P. O. Box 20212 5000 Arlington Centre Blvd.. Columbus, OH 43220
800-848-8990
In Ohio call 614-457-0802

DATA CONVERTER FOR THE APPLE II

By Robert C. Nicklin

Part 2: Checkout, calibration, and use

Last month, we discussed the principles of A/D and D/A conversion and described a converter for the Apple II. Here are the software and instructions needed to operate the converter.

Checkout \& Calibration. Plug one end of a ribbon cable with DIP headers on each end into Port A at SO4 on the interface adapter. Then, making sure the Apple computer is powered down, install the VIA in slot 5 of the computer. Plug the other end of the cable into a solderless-socket breadboard and use wire jumpers to connect D0 through D7 to ground at pin 11. Switch on the computer and wait for the prompt to appear onscreen. Measure the voltages at pins 50,33 , and 25 of the computer's bus connector; they should read +12 , -12 , and +5 V , respectively.

For the following discussion, the interface is assumed to be plugged into slot 5 of the computer and all data lines are grounded.

Enter and run Program 1 to test the input to Port A. Displayed on-screen should be a running column of Os read in from Port A. One at a time, remove the data line jumpers from ground and note the change in status dis-
played on-screen. As each data line is ungrounded, it should display a 1 on the screen. If it doesn't, the interface adapter most likely isn't plugged into slot 5 of the computer and/or the program hasn't been correctly entered. If the problem still persists after making sure that the adapter is in slot 5 and the program has been properly entered, use a dual-trace oscilloscope to check the IC7 delay circuit. For proper operation, the signal observed at pin 6 of $I C 7$ should be delayed by about 180 ns with respect to the signal at pin 1 .

Remove the ground connections
from D0 through D7 and load and run Program 2 to test the output. For Byte $=0$, there should be no voltage (0 volt) between each data line and ground; for Byte $=255$, each data line should be at +5 volts; for Byte $=55$, D0 through D7 should be 10101010, etc.

Load and run Program 3 to test control line CA2. Making measurements at J6, CA2 should be 0 V for $\mathrm{PC}=12$ and +5 V for $\mathrm{PC}=14$.
To test Port B, power down the computer and move the DIP cable to SO3. Repeat the above three tests, changing the POKE and PEEK addresses for DDRB and ORB as detailed in Table I. The PCR address doesn't change, but the values for PC change to 192 for 0 V and 224 for +5 V to operate CB2.

Having ascertained proper port and control operation, remove the ICs from the Data Converter assembly, power down the computer, and plug the 16-pin DIP cable into SO3, the Port B connector. Power up the computer and confirm that +12 , -12 , and +5 V are present at the appropriate IC socket pins. (Bear in mind that under these no-loak conditions some non-power pins will measure high.) Having con-
firmed that the proper voltages are present at the appropriate pins, power down the computer, insert the ICs in their respective sockets (take care to observe proper orientation), and power up once again.
Connect a voltmeter to $J 2$ and ground the center connector of $J l$ to begin testing the analog amplifier. Set the project's galn switch to 1 and adjust trimmer $R 3$ for a $0-V$ output. Set the GAIN switch to 500 and adjust $R 3$ for minimum positive output. To check calibration of the GAIN control, remove the short from across $J l$ and replace it with a 10,000 -ohm potentiometer connected across a D cell (use the wiper and one end lug of the pot to make connections to the converter circuit) to provide the de signal input. Make up a table of input vs output for each of the six positions of the GAIN switch for use in making software corrections to compensate for nonlinearities in gain.

If you have access to an audio oscillator and an oscilloscope, feed sine waves into $J 1$ and monitor $J 2$ to observe that the amplifier has reasonably flat response from dc to 15 kHz .
Enter and run Program 4 to check D/A conversion. A voltmeter connected between DAC $J 5$ and ground should indicate 0 V when DB is 0 and 2.55 V when DB is 255 .

Use Program 5 to generate a square wave whose pitch is controlled by the value of P for checking the audio amplifier. This square-wave signal can be observed at $J 5$ with a scope.

Program 6 sets $D D R B=0$ for all inputs for testing the digital I/O lines. DI through D6 will float high while D0 and D7 are checked. The running display produced by this program will change according to whether D0 or D7 is shorted (see Table II).

A/D conversion is tested with Program 7 . This simple diagnostic program is written in BASIC, which is slow enough to complete a conversion before being read. Results are continuously displayed on-screen. With $J /$ grounded and the Gain switch set to 1 , the reading should be 0 on de and about 127 on ac. Connect the pot/D-cell assembly to $J /$ and slowly vary the setting of the pot (dc input level). The on-screen display should follow the changes. Make sure the -9 -volt reference is present at pin 2 of IC2. A scope connected to Trig $J 6$ should reveal CB2 going high for about one-third or one-quarter of the pulse cycle. Without this pulse, no A/D conversion is possible.

Set AC/DC switch $S 2$ to DC for ampli-

PROGRAM 1

```
100 REM PROGRAM # 1
120 REM PORT A INPUT TEST
130 REM 6522 VIA IN SLOT 5
150
160 REM
SET PORT A DDRA
    FOR INPUT
170 D=0
180 POKE 49363, D
190
200 REM READ ORA WHILE
    CHANGING
210 REM JUMPERS FROM DO-D7
    TO GROUND
220 PRINT PEEK (49375)
230
240 FOR PAUSE = 1 TO 200: NEXT
250 GOTO 220
```


PROGRAM 2

100 REM	PROGRAM \# 2
120 REM	PORT A OUTPUT TEST
130 REM	6522 VIA IN SLOT 5
$150:$	
160 REM	SET PORT A DDRA
	FOR OUTPUT
170 D $=255$	
180 POKE	$49363, D$
190 :	
200 INPUT	"BYTE"; B
210 REM	OUTPUT BYTE TO
	PORT A
220 REM	TEST DO-D7 WITH
	VOLTMETER
230 POKE	49375, B
240 GOTO	200

PROGRAM 3

100 REM	PROGRAM \#3
120 REM	PORT A CONTROL
125 REM	LINE CA2 TEST
130 REM	6522 VIA IN SLOT 5
$150:$	
160 REM	CA2 GOES LOW ON 12
170 REM	AND HIGH ON 14
180	
190	INPUT
200 POKE	"PCR BYTE $=? " ;$ PB
210 GOTO	190

PROGRAM 4

100 REM	PROGRAM \# 4
120 REM	DAC TEST
130 REM	6522 VIA IN SLOT 5
150	
160 REM	SET DDRB FOR OUT
170 POKE	49362,255
180	
190 REM	SET CB2 HIGH SO DAC
200 REM	CHIP ENABLE IS LOW
210 POKE	49372,224
220	
230 REM	OUTPUT DB TO DAC
240 INPUT	AR ORB
"DAC BYTE $=? " ;$ DB	
250 POKE	49360, DB
260 GOTO	240

PROGRAM 5

100	REM	PROGRAM \#5
120	REM	AUDIO AMP TEST
130	REM	6522 VIA IN SLOT 5
150		
160	REM	SET DDRB FOR OUTPUT
170	POKE	49362,255
180		
190	REM	SET CB2 HIGH SO DAC
200	REM	CHIP ENABLE IS LOW
210	POKE	49372,224
220		
230	INPUT	"PAUSE BYTE = ?'; P
240	POKE	49360,0: GOSUB 290
250	POKE	49360,255: GOSUB 290
260	GOTO	240
270	END	
290		AUSE $=0$ TOP: NEXT: RETURN

PROGRAM 6

100 REM	PROGRAM \#6
120 REM	DIGITALLIO TEST
130 REM	6522 VIA IN SLOT 5
$150:$	
160 REM	SET DDRB FOR INPUT
170 POKE	49362,0
$180:$	
190 REM	GROUND DO OR D7
	(4 WAYS)
200 PRINT	PEEK (49360)
210 GOTO	200

PROGRAM 7

100 REM	PROGRAM \# 7
120 REM	ADC TEST
130 REM	6522 VIA IN SLOT 5
$150:$	
160 REM	SET DDRB FOR INPUT
170 POKE	49362,0
180	
190 REM	MAKE READ HIGH
	(WITH CB2)
200 REM	AND START
210 POKE	CONVERSION
49372,224	
$220:$	
230 REM	MAKE READ LOW
240 REM	(WITH CB2)
	CONEPARE TO READ
250 POKE	49372,192
$260:$	
270 REM	READ ADC
280 PRINT	PEEK (49360)
$290:$	
300 GOTO	210

Therfinimuter Enok Chio ${ }^{\circ}$
Your source for software and books at substantial savings!

More programs, more projects, more ways to use your micro for home, hobby, and business! Select any 6 books $_{\text {(values to }}$ S125.70) for only $\$ 2.95$ when you join

ist $\$ 16.95$
List $\$ 21.95$

ist $\$ 16.95$

List \$13.95

1062
List $\$ 14.95$

$\underset{\text { List }}{\mathbf{1 4 9 1}} \mathbf{\$ 2 3 . 9 5}$

1332
List $\$ 16.9$

List $\$ 11.95$

1875
List $\$ 18.95$

List $\$ 21.95$

List \$17.95

List \$13.95

7 very good reasons to try The Computer Book Club ${ }^{\text {® }}$

Blue Ridge Summit, PA 17214

- Reduced Member Prices. Save 20\% to 75% on books sure to increase your computer know-how
- Satisfaction Guaranteed. All books returnable within 10 days without obligation
- Club News Bulletins. All about current selections-mains, alternates, extras-plus bonus offers. Comes 13 times a year with dozens of up-to-the-minute titles you can pick from - "Automatic Order." Do nothing, and the Main selection will be shipped automatically! But .. if you want an Alternate Selection-or no books at all-we'll follow the instructions you give on the reply form provided with every News Bulletin
- Continuing Benefits. Get a Dividend Certificate with every book purchased after fulfilling membership obligation, and qualify for discounts on many other volumes
- Extra Bontises. Take advantage of added-value promotions, plus special discounts; on software, games, and more - Exceptional Quality. All books are first-rate publisher's editions, filled with useful, up-to-the-minute information

\square Micno
 The, Homputer Brok Chia ${ }^{\text {a }}$
 Blue Ridge Summit, PA 17214

Please accept my membership in The Computer Book Club ${ }^{*}$ and send the 6 volumes circled below, billing me $\$ 2.95$ plus shipping and handling charges. If not satisfied, I may return the books within ten days without obligation and have my membership cancelled. I agree to purch ase 4 or more books at reduced Club prices (plus shipping/handling) during the next 12 months, and may resign any time thereafter.
$\begin{array}{llllllll}336 & 1050 & 1062 & 1141 & 1160 & 1195 & 1205 & 1228\end{array}$ $\begin{array}{lllllllll}1251 & 1271 & 1277 & 1295 & 1332 & 1369 & 1394 & 1398\end{array}$ $\begin{array}{lllllll}1406 & 1414 & 1423 & 1442 & 1455 & 1468 & 1473\end{array}$ $\begin{array}{lllllll}1485 & 1491 & 1496 & 1506 & 1533 & 1535 & 1620\end{array}$
Name
Phone

Address

City
State
Zip
Valid for new members only. (Orders outside U.S or Canada must be prepaid in International MoneyOrders in U.S. dollars. Canada must remit in U.S. dollars.) This order subject to acceptance by The Computer Book Club ${ }^{\oplus}$. PECC-883
tude calibration. Apply the full potential from the \mathbf{D} cell to $J 1$. Assume this to be 1.46 V , the voltmeter will indicate 7.01 V with the GAIN switch set to 5 . This means that gain is actually 4.80

TABLE I-6522 VIA ADDRESSES, SLOT 5

Starting address	$49360(\$ C O D O)$
DDRA	49363
ORA	49375
DDRB	49362
ORB	49360
PCR	49372
ACR	49371
TABLE II-DICITALI/O TEST	

D7	D6	D5	D4	D3	D2	D1	D0	Screen
0	1	1	1	1	1	1	0	126
0	1	1	1	1	1	1	1	127
1	1	1	1	1	1	1	0	254
1	1	1	1	1	1	1	1	255

(7.01/1.46), although the A/D converter actually "sees" 7.01 V . Measure reference voltage $\mathrm{V}_{\text {REF }}$ between $J 3$ and ground. Assume it to be 8.56 volts. With full scale for the converter being 255 for any $\mathrm{V}_{\mathrm{REF}}$, the A / D converter will produce 209 (7.01/8.56). Working backward, we find that $\mathrm{V}_{\text {INPUT }}=(\mathrm{A} / \mathrm{D}$ output/gain) $\times\left(\mathrm{V}_{\mathrm{REF}} / 255\right)$. This means that conversion accuracy depends on voltmeter accuracy. Often, true $\mathrm{V}_{\text {INPUT }}$ isn't needed, since relative amplitude will be sufficient.

Frequency accuracy requires use of a frequency counter to set a square-wave generator to 1000 Hz (the actual frequency isn't important as long as it is known). Feed the square waves into $J /$ and use Table III to run the A/D converter fast enough to digitize the waveform. The Apple monitor program can be used to "look at" the bytes in memory. Another way to do this is to use a short BASIC program written to PEEK the bytes onto the screen. In either case, count the number of bytes per complete
cycle of the square wave and multiply by the frequency to obtain A/D conversion sampling rate. If the A / D timing bytes are changed, this frequency calibration can be performed and recorded for a range of digitizing rates.

Operation Under Assembly Language. For A / D or D / A at rates of less than 50 samples per second, such BASIC programs as those in Programs 1 through 7 are adequate. To realize rates up to 17,000 samples per second for A/D and output rates to 33,000 bytes per second with D/A, both converters must be operated with assembly-language programs. Table III is for A/D, while Table IV is for D/A code.

Operation of Table III code is similar to operation of Program 7. Port A DDRA is set for input with the A/D converter getting a high on its Read line via CA2 to initiate conversion. A loop of at least 20μ s allows the A/D section to convert the input signal. When the Read line goes low, via CA2, conversion

TABLE III-ADC ASSEMBLY LANGUAGE

\$9300	A9 00	START	LDA	\$00	
02	A8		TAY		INITIALIZE Y
03	85 FE		STA	MEM	SET START OF DATA STORAGE-
05	A9 88		LDA	\$88	ALTER FROM BASIC
07	85 FF		STA	MEM +	
09	A9 00		LDA	\$00	MAKE PORT A ALL INPUTS
OB	8D D3 C0		STA	DDRA	
OE	78 EA EA		SEI		
11	A9 0E	ADC	LDA	\$0E	MAKE READ HIGH, START CONVERSION
13	8D DC CO		STA	PCR	
16	A2 05		LDX	\$05	GIVE ADC > 20 MICROSECONDS
18	CA	WAIT1	DEX		TO CONVERT
19	DO FD		BNE	WAIT1	
1 B	A9 0C		LDA	\$0C	MAKE READ LOW, PREPARE TO
1D	8D DC Co		STA	PCR	READ ADC
20	AD DF Co		LDA	ORA	READ ADC
23	91 FE		STA	(MEM), Y	STORE DATA
25	204093		JSR	MSEC	DELAY BETWEEN SAMPLES
28	C8		INY		
29	D0 E6		BNE	ADC	
2 B	E6 FF		INC	MEM +	PREPARE TO FILL NEXT MEMORY PAGE
2 D	A6 FF		LDX	MEM +	WITH DATA
2 F	E0 92		CPX	\$92	CHECK FOR END OF MEMORY
31	D0 DD		BNE	ADC	
33	58		CLI		
\$9334	60		RTS		
\$9340	A9 00	MSEC	LDA	\$00	SET VIA TIMER 2 FOR ONE-SHOT
42	8D DB C0		STA	ACR	TIME INTERVAL
45	A9 E8		LDA	\$E8	\$03E8 GIVES ABOUT 1 msec
47	8D D8 C0		STA	T2L	INTERVAL-POKE CHANGES
4A	A9 03		LDA	\$03	FROM BASIC
4 C	8D D9 C0		STA	T2H	
4 F	A9 20		LDA	\$20	TIMER 2 INTERRUPT FLAG MASK
51	2C DD Co	WAIT2	BIT	IFR	IS FLAG SET?
54	F0 FB		BEQ	WAIT2	IF NOT, THEN LOOP
56	AD D8 C0		LDA	T2L	TIMED OUT-CLEAR FLAG
\$9359	60		RTS		

TABLE IV-DAC ASSEMBLY LANGUAGE

\$9200	A9 FF		LDA	\$FF	SET UP PORT A FOR OUTPUT
02	8D D3 CO		STA	DDRA	TO DAC
05	A5 FE		LDA	FE	SAVE CONTENTS OF TWO ZERO PAGE
07	48		PHA		ADDRESSES USED FOR MEM AND MEM +
08	A5 FF		LDA	FF	IN (IND), Y ADDRESSING
OA	48		PHA		
OB	EA		NOP		
OC	A9 00	START	LDA	\$00	INITIALIZE Y FOR (IND), Y MEMORY SCAN
OE	A8		TAY		
OF	85 FE		STA	MEM	START DATA READOUT AT \$8800
11	A9 88		LDA	\$88	
13	85 FF		STA	MEM +	
15	EA		NOP		
16	78		SEI		MAKE DAC OUTPUT GLITCHLESS
17	A9 0C		LDA	\$0C	MAKE CA2 LOW TO TURN OFF DAC
19	8 DCC C0		STA	PCR	
1 C	A9 0E		LDA	\$0E	MAKE CA2 HIGH TO TRIGGER SCOPE
1E	8D DC C0		STA	PCR	AND ENABLE DAC
21	EA		NOP		

NOTE: CA2 GETS INVERTED BEFORE IT GETS TO DAC, BY 7416 HEX INVERTER

22	B1 FE	DAC	LDY	(MEM), Y	DISPLAY MEMORY CONTENTS
24	8D DF C0		STA	ORA	ON SCOPE
27	205092		JSR	DELAY	
2 A	C8		INY		DAC GETS ONE PAGE AT A TIME
2B	DO F5		BNE	DAC	
2D	E6 FF		INC	MEM +	MOVE TO NEXT PAGE
2 F	A6 FF		LDX	MEM +	TO CHECK FOR TOP LIMIT
31	E0 92		CPX	\$92	
33	DO ED		BNE	DAC	
35	EA		NOP		
36	58		CLI		
37	C6 FD		DEC	NSCAN	HAVE N SCANS BEEN COMPLETED?
39	A5 FD		LDA	NSCAN	
38	DO CF		BNE	START	
3D	EA		NOP		
3E	68		PLA		
3F	85 FF		STA	FF	REPLACE ZERO PAGE CONTENTS
41	68		PLA		
42	85 FE		STA	FE	
\$9244	60		RTS		
\$9250	A2 02	DELAY	LDX	\$N	DELAY BYTE
52	CA		DEX		
53	D0 FD		BNE		
55	60		RTS		

TABLE V-CLEAR MEMORY ASSEMBLY LANGUAGE

\$9280	A0 00		LDY	\$00	INITIALIZE Y FOR (MEM), Y
82	A5 FE		LDA	FE	SAVE CONTENTS OF TWO ZERO PAGE
84	48		PHA		MEMORY LOCATIONS USED FOR
85	A5 FF		LDA	FF	(IND), Y ADDRESSING OF
87	48		PHA		MEM AND MEM +
88	A9 88		LDA	\$88	START CLEARED AREA AT PAGE \$88
8A	85 FF		STA	MEM +	
8 C	A9 00		LDA	\$00	
8E	85 FE		STA	MEM	
90	A9 00		LDA	\$00	BYTE TO FILL MEMORY
92	91 FE	CLEAR	STA	(MEM), Y	
94	C8		INY		FILL MEMORY
95	D0 FB		BNE	CLEAR	
97	E6 FF		INC	MEM +	
99	A6 FF		LDX	MEM +	
9 B	E0 92		CPX	\$92	
90	D0 F3		BNE	CLEAR	
9F	68		PLA		REPLACE ZERO PAGE CONTENTS
AO	85 FF		STA	FF	
A2	68		PLA		
A3	85 FE		STA	FE	
A5	60		RTS		

TABLE VI-APPLE ADC LOCATIONS (SLOT 5 ASSUMED)

Hex	ress Decimal	Explanation
\$9300	37632	Start of ADC Assembly language program
9306	37638	Set beginning of data storage pages \$88-\$91 (136-145)
930 C	37644	DDRA LOW \$D3 (211) DDRB LOW \$D2 (210)
930 D	37645	DDRA high \$C0 (192) DDRB HIGH \$CO (192)
9312	37650	READ HIGH (CA2 OR CB2) START CONVERSION*
931 C	37660	READ LOW PREPARE TO READ CONVERSION*
9321	37665	ORA LOW \$DF (223) ORB LOW \$D0 (208)
9322	37666	ORA HIGH \$C0 (192) ORB HIGH \$C0 (192)
9330	37680	SET END OF DATA STORAGE MEMORY
9346	37702	T2L BYTE
934 B	37707	T2H BYTE
9359	37721	LAST OP CODE (90 BYTES)
	low	high
CA2	\$0C	\$0E
	12	14
CB2	\$C0	\$E0
	192	224

TABLE VII-APPLE DAC LOCATIONS (SLOT 5 ASSUMED)

Hex	Address Decimal	Explanation	
$\$ 9200$	37376	BEGINNING	
9203	37379		DDRA LOW BYTE (211)

TABLE VIII-CLEAR MEMORY LOCATIONS (SLOT 5 ASSUMED)

Address		Explanation
\$9280	37504	BEGINNING OF PROGRAM
9289	37513	SET HIGH BYTE, START OF CLEARED AREA
928D	37517	SET LOW BYTE, START OF CLEARED AREA
9291	37521	BYTE TO FILL MEMORY WITH
929C	37532	Page NuMber for end of CLEARED AREA
		-DON'T CLEAR BEYOND THIS (PAGE 146 MAXIMUM)
		--PAGE 146 (\$92) MEANS \$91FF IS LAST LOCATION
92A5	37541	THAT WILL BE CLEARED LAST BYTE OF PROGRAM

[^2]is latched so it can be read out from ORA. The sample is stored and a delay subroutine is called. The program determines if alotted memory is full; if it isn't, it sends a Read high for another conversion.

Operation of the D/A converter under the listing given in Table IV proceeds as in the BASIC listing in Program 7. Port A DDRA is set for output. A high on CA2 triggers a scope connected to $J 6$ and, after inversion by IC4, pulls low the D/A converter's Chip Enable line. A byte is then fetched from memory and sent to the D/A converter via ORA. The program then checks whether or not the memory specified has been scanned; if it hasn't, another byte is sent to ORA. After completing a set number of scans, the program returns to the routine that called it.

Table IV can be used to clear a specific block of memory before filling it with data from the A/D converter, or before storing the output from the D/A converter. Although memory clearing can be performed from BASIC, it's too slow for more than a 1 K -byte block of memory used for repeated measurements.

Operation Under BASIC. The various assembly-language programs presented in this article are best used as subroutines called from a BASIC driver program. It's easy to set memory limits and data rates and change to the alternate port by POKEing new values into the assembly-language code. This permits use of the fast assembly-language routines without having to be familiar with assembly-language programming. The BASIC listings for Apple DAC, Apple ADC, and Clear Memory contain the three assembly-language programs discussed. Tables VI, VII, and VIII list the POKE values required to tailor the routines to your purposes.

These programs all assume you're using an Apple II Plus computer with 48 K of user RAM and slot 5 in the computer. The memory map in Table IX reveals where everything is stored. If you're using a disk drive, you can keep the DOS from overwriting the machine-language program by booting the DOS, setting HIMEM:34815 and then loading the BASIC program. This protects operation by putting data storage and machine language above BASIC and below the DOS. Memory locations 34816 through 37375 are for data storage; 37376 through 37721 for the D/A, Clear, and A/D; and 37722 through 38399 for data or expansion.

The three assembly-language routines can be easily relocated, since
except Apple ADC, they contain no absolute addresses. Because delay routine MSEC calls $\$ 9326$ (memory location 37670) and $\$ 9327$ (location 37671), Table III must be changed to fit the new location. If slot 5 in the computer isn't used, the correct VIA address for the slot must be POKEd.

Capturing Waveforms. The Waveform Program combines D/A, A/D, and Clear routines and illustrates use of the VIA and Data Converter. The purpose here is to capture an audio waveform and display it on the CRT screen of an oscilloscope.

Load the Waveform Program, connect a microphone to $J l$ and a scope to $J 2$, and set $S 2$ to AC. Sing a steady "o-o-o-h-h-h" tone into the mic and set the

GAIN switch for a peak-to-peak signal level of less than 9 volts. Connect a lead from TRIG $J 6$ to the scope's trigger input and adjust the scope for a triggering. RUN the program while holding a note.

The computer will capture and display 1280 samples of the waveform. Since these samples are stored in memory, they can be SAVEd on disk, written to a printer, or plotted on a strip chart, or the waveform could be Fourier analyzed if desired.
With some minor changes in the BASIC program, 256 samples of each of 10 different waveforms could be captured and selectively analyzed. Alternatively, they could be plotted in HIRES with about a 25% loss in vertical resolution, on 192 vertical points for 256 from the A/D converter.

TABLE IX—APPLE DATA CONVERTER MEMORY MAP
HEX DECIMAL

SFFFF	APPLE USES	65535
\$C100		49408
\$COFF	PERIPHERAL CARD I/O SPACE FOR	49407
\$C080	6522 VIA (8 SLOTS)	49280

APPLE USES		
$\$ B F F F$	DOS	49151
$\$ 9600$		38400
\$95FF	SPACE FOR MACHINE LANGUAGE	38399
\$935A	PROGRAMS (MLP) OR CONVERTER DATA	37722
$\$ 9359$	ADC MLP	37721
$\$ 9300$		37632

80 BYTES FOR MLP		
$\$ 92 A 5$	CLEAR MEMORY MLP	37541
$\$ 9280$		37504

	40 BYTES FOR MLP	
$\$ 9257$	DAC MLP	37463
$\$ 9200$		37376
\$91FF	ADC/DAC DATA STORAGE	37375
$\$ 8800$	(PAGES 136-145)	34816
S87FF	FOR BASIC PROGRAMS	34815
$\$ 6000$	(SET HIMEM:34815)	24576
\$5FFF	HIGH RESOLUTION GRAPHICS	
\$2000		24575
\$1FFF		8192
\$0C00		
FOR BASIC PROGRAMS		
\$0000	APPLE USES	8191

5 MHz CPU Card

- Intel 8085A-2 microprocessor \square Hardware floating point Performs calculations six times faster than other CPUs \square On-board monitor in PROM \square 1K RAM scratch pad \square Keyboard or RS232C terminal Variable clock frequency

PRICE—\$450
(California residents add 6% saies tax)

Call or write Artec for details.

Guidelines to Buying Impact-Type Printers

By Al Burawa

Ir's not surprising that a printer often heads one's ist of most cesirable computer peripherals. After all, most people want hard copies of their work.

For mest ipplications, he choice of a printer comes down to an impact type rather than a thermal, ink-jet or other form of nonimpact design. So we will focus here on this most popular class of printers, which has the) categories: fully-formed-character printers and inpact dot-matrix printers.

Letter-Quality Printers. If you want print qualits that is irdistinguishable from that of a typewriter's characters, the popular daisy-wheel printer will likely come to mind, even though there are other methods used to achieve a similar goal. The daisy wheel is simply a flat wheel with individual-character spokes attached to .t. When a key on a keyboard is pressed, it causes the wheel to rotate to the spoke that ies the selected letter or number, and a hammer strikes the spoke so that the character hits a
carbon ribbon against paper te make the primed impression.

Should you wish to produce hundreds \mathfrak{y} letters, making them appear as if a seeretary had typed each one individually, then a letter-quality printer is the way to go. The price you pay for this is higher cost and lower speed than dotmatrix printers--plus giving ap special graphics.

Formed-letter printers sucic as Diablo, Qume. NEC, and similer models could have a suggested retail p-ice in the neightorhood of $\$ 2500$; though others, such as Smith-Corona's moded is below the $\$ 1000$ mark. Substantial discounts are commonly offerred, thoug 1 . In contrast, the low end of impact det-matrix printers is around $\$ 250$. For lypesetting speed, formed-character printers generally range from about 12 cps (characters per second) to 60 cps , whereas dot-matrix printers usually operate at speeds from 50 to 200 cps .

Formed-character puinters provide sharp, continuous characters, like those you're now reading, in a variety of sizes and fonts (styles). The actual print element is very similar to that found in the standard office typewriter. In fact, a formed-character computer printer can be tho⿺ght of as an electric t-pewriter minus keyboard. (Printing commands are generated by the computer, either
directhy lrom the computer's keyboard or from software.) And, as in typewrilers, the elemcits that actually strike characters on paper are on metal or plastic "slugs" affixed to the ends of srringy lever arms. In all, the daisy wheel has 96 sug/arm assemblies that radiate from a central hut, enough for the entire upper- and lower-case alphabetic, numeric, punctuation, and special ASCII character set.

An allernatise to the daisy wheel is the print "thimble" element used in NEC Personal Computer Division's populer "Spinwriter" series of printers. Ciaracter slugs are arranged on the thimble's lever arms in much the same manner as on the daisy wheel, except theit there are :wo characters per slug, one abave the other. The lever arms are "folded" so that the entire assembly fakes on the shape of a thimble. Alternate characters on each slug/arm assembls are accessed by a shift command similar to that used in typewriters.

To cur knowledge, all print thimbles are made of highly durable plastic that's eapable of delivering a useful life of several tens of millions of print impressions. Daisy-wheel print elements can be made of either netal or plastic, the aster with about the same useful life as :or the thimble. Metal daisy wheels, costing several times more than plastic
units, are designed mainly for highly intensive use, where they'll be in operation the entire business day.

Although the formed-character printer isn't capable of providing the graphics capability available with even the lowest-level dot-matrix printer, it has one very appealing advantage. That is the ability to provide an almost unlimited variety of sizes and styles of type simply by changing from print element to print element. The variety is limited only by what's available in the marketplace.

Daisy-wheel and thimble formedcharacter printers operate in the same manner to strike characters onto paper. Since they're invariably impact mechanisms, both have their character slugs struck from behind by a "hammer" that forces character impressions onto the paper through an inked or carbon ribbon as previously cited. In the case of the thimble whose alternate character is to be struck, a shift operation occurs.

Formed-character printers generally feature full-page-width (80 columns on $81 / 2^{\prime \prime}$-wide paper), although many models are able to accommodate $14^{\prime \prime}$-wide paper for printing up to 132 columns horizontally. Except in the lowestpriced models, selectable pitch is common. (Pitch defines the number of printable characters per horizontal inchpica is 10 , elite is 12 , and micro is 15 to 17 characters per inch.) To obtain different pitches, printwheels or thimbles must be interchanged.

With formed-character printers, there is a choice among different fonts (print styles), including a variety of standard Roman, italic, and even bold
faces. The fonts can even be mixed in a single letter or document, though the procedure can be time-consuming, since each change requires that the printwheel or thimble be changed.

Being able to change pitch and font is only part of the flexibility picture for formed-character printers. Using other options, available with hardware and/ or software, you can give a report or letter a professional printed appearance, especially when variable pitch and font changes are used in conjunction with proportional spacing, left and right margin justification, and proper hyphenation. (In proportional spacing, characters are assigned only enough horizontal space for neat, legible printing. Lower-case characters i, l, and l are assigned narrower space than such stan-dard-width characters as a, b, c, etc., while the extra-wide M, W, m, and w are assigned commensurately more space. Additionally, spaces between words can be varied to suit the demands of the justification and proportional-spacing parameters.) A finished printed document, then, could have an appearance very similar to the professionally printed copy on this page.

As a rule, formed-character serial printers churn out copy at a much slower speed than is possible with the typical dot-matrix printer because certain laws of physics must be observed. During printing, whenever a slug is to be struck to print a character, the appropriate slug must be spun into position between hammer and ribbon. Then the entire print mechanism, printwheel plus the mechanical hammer/carrier assembly, must be brought to a full stop and pause

to permit settling. Only then can the hammer be activated to make the character impression. This entire procedure must be repeated for each character to be printed. Without the pauses between strikes, printed characters would smear, and the print element itself might be damaged.

Every pause to strike a character slug consumes time that reduces printing speed. The length of each pause is a function of the momentum of the movements in the entire printing mechanism as it sweeps horizontally across the paper in its track. More important, much time is consumed by having to rely on only the natural springiness of the print element's slug arm and the mass of the slug/arm assembly to return the character slug to its neutral position.

Dot-Matrix Printers. In dot-matrix printing, an entirely different approach to character formation is used, almost totally unrelated to that used in the traditional typewriter and formed-character printer. The only similarity to the formed-character printer is that it strikes characters on paper by impact. (There's also a thermal dot-matrix approach that doesn't require impacting.)
To begin with, there's no multitude of print slugs used. Instead, the 96 or more printable characters are all produced by a wire or needle matrix of so many dots wide by so many high ($5 \times 7,5 \times 9$, 9×9, or any other combination). Although the matrix might be specified as consisting of so many dots wide by so many dots high, this doesn't mean that the actual dot-matrix printhead has 35 print pins for a 5×7 matrix, 45 print pins for a 5×9 matrix, etc. Actually, modern dot-matrix printheads have only one or, at most, two vertical columns of print pins.

As a rule, for a dot-matrix printer, the fixed matrix for each printable alphabetic, numeric, punctuation, special, and block graphics character is programmed into one or more ROMs resident in the printer. A number of recently introduced dot-matrix printers offer a wide choice of characters, including several international character sets. For the bit-graphics mode in which each dot can be individually selected (instead of being preprogrammed into a ROM), a feature currently exclusive to dot-matrix printers, the vertical element of the matrix is fixed, but any number of dots can make up the horizontal element, such as $9 \times n$, where n can be any number up to the maximum that can be printed across the page. Text characters could also be generated in the graphics

Get all the facts about the IBM Personal Computer

Get PC Magorzine!

whether you already own an IBM Personal Computer or you're thinking about buying one, you need $P C$ Magazine.
$P C$ Magazine is the independent guide to IBM Personal Computers. Each monthly issue is packed with the latest information for everyone who's interested in IBM Personal Computers.
This is the magazine for finding out how to put together the best IBM "PC" system... and how to get the most out of it. Every month you'll receive hundreds of colorful pages of evaluations, insights, and straight talk from respected ex-perts-professionals in computer science as well as lawyers, businessmen, writers, educators and many others.
$P C$ covers software, hardware, applications, and every other topic of importance to the thousands of IBM Personal Computer users who read it. To make sure that we give you the facts you need, we include a special "User-to-User" section, a "PC Wish List," and news about IBM Personal Computer clubs, events and publications.
Right now you can save up to 33% on an introductory subscription. And if you're ever dissatisified with $P C$, just write and tell us-you'll receive a prompt refund for all the unmailed issues remaining in your subscription.
琹 Yes! I want to subscribe to $P C$, the independent guide to IBM Personal Computers:
8H237
CHECK ONE:Payment enclosed. Bill me later
Mr./Mrs./Ms. \qquad
Company
Address
City \qquad State \qquad Zip
Offer valid only in the U.S. its territories and possessions. Please allow 30 to 60 days for delivery of first issue.
mode, but since each would have to be constructed as needed, this would be very time-consuming and would require slow single-direction printing.

Virtually any character, text or graphic, can be generated and printed in a matrix of dots, provided the matrix is large enough. In a 9×7 matrix, for ex-

A Qume 130-char. daisy wheel.
ample, it's possible to construct the standard ASCII character set in upperand lower-case Roman and italic characters as well as superscripts and subscripts and underlining. Additionally, by controlling other parameters during printing, one can obtain different levels of legibility quality.

Data-quality printing is the least legible, revealing gaps between the dots. However, data-quality printing is still extensively used in noncritical applications because its basic advantage is its high-speed throughput.

Moving up in legibility, we come to so-called "correspondence" quality dotmatrix printing. Here we find each character is more or less continuous, with no gaps between the dots. Corre-spondence-quality characters have an unfinished, slightly ragged appearance, though they're a vast improvement over data-quality characters. To obtain this level of quality, each character is struck more than once (usually twice to fill in the gaps) as the printhead sweeps across the paper. Consequently, printing in correspondence quality is slower than for data-quality printing by as much as 50%.

For maximum legibility, some of the latest dot-matrix printer models feature a mode called "near-letter-quality" (NLQ) printing. As the name implies, characters generated in this mode are generally continuous and therefore
much less ragged in appearance than in the correspondence-quality mode. At first glance, they could almost be taken as having been generated by a formedcharacter printer, the only immediate giveaway being the unavoidable slight raggedness of descenders for the g, y, and j. As it's improved, this mode will probably become acceptable for even letter and report writing that have exclusively been the province of formedcharacter printers.

Combining near-letter-quality printing with the capability of mixing in graphics without having to change printers will further add to the appeal of the dot-matrix printer in the future. Of course, to obtain near-letter-quality printing, one must sacrifice something. In this case, it's printing speed, which may be as little as 25% of the speed obtainable with the same printer in the data-quality printing mode, since several passes are required to provide the desired printed dot density.

Aside from providing different levels of legibility, dot-matrix printers offer another feature that greatly adds to their appeal. That is the ability, under software control, to change pitch and density of the print. Typically, characters can be printed out condensed, normal, and expanded, representing three different pitches. Furthermore, in all three pitches, they can be doublestruck, emphasized, or emphasized double-struck. Depending on the capabilities built into any given printer, you can have at your command a range of fonts/sizes/densities for type that can't be matched by any typewriter and few, if any, formed-character printers. Not all dot-matrix printers currently on the market offer this full range of facilities, of course. And even among those that do, one might offer these standard, while another might provide them as ex-tra-cost options.

With dot-matrix printers, you have a much wider variety of types and models from which to choose. For a minimal investment of, say, $\$ 100$ or less, you can choose a partial-page-width (20 to 40 columns horizontally) nonimpact thermal printer. This miniature model is an excellent companion for the compact battery-operated portable computer and, in some applications, for a desktop computer. However, if you plan to use your system for word processing or other serious applications, a full-pagewidth printer capable of printing 80 to 132 columns would be a much more practical choice.

Full-page-width dot-matrix printers can be obtained with a thermal printing
mechanism but without most of the bells and whistles available in more expensive printers at relatively low cost. Bear in mind, however, that the specially treated paper for thermal printing may not be readily available in your area and that it's more costly than ordinary paper.

A full-size impact-type dot-matrix printer is preferable for all-around data/word processing and printing of computer graphics. This category has the broadest range of models available, at prices from as low as $\$ 250$ on up to and beyond $\$ 2000$. Almost all such printers feature the same or similar basic printing mechanism; so how much you pay for a given model will depend on what you're looking for in terms of speed, versatility, reliability, operating convenience, etc. As a rule, the faster, more versatile, and convenient a printer is to operate, the greater its cost.

A completely different design approach and different materials are used in the dot-matrix printing scheme. Consequently, many of the constraints imposed by formed-character printers are eliminated or dramatically reduced, making it possible for the dot-matrix printer to operate at much faster printing speeds than is possible with the typical formed-character printer.

To begin with, there are no spinning character slugs in the dot-matrix printer. Therefore, the only positioning motion is the horizontal sweep of the print head across the paper. Pauses occur only when a carriage-return/line-feed or line-feed-only operation is encountered in the drive data coming from the computer during the uninterrupted sweep. Very small and lightweight pins in the printhead are selectively "fired" and withdrawn at lightning speed to form letters. Even though the printhead is in motion, therefore, there's no time for the dots to smear as they're being printed.

Elimination of a spinning print element and pausing for settling time and striking, plus the fact that the print pins
are power fired and retracted, make it possible for the dot-matrix printer to operate at speeds up to 400 cps in the most expensive models. For moderately priced printers, speed is more like 100 to 200 cps , which is two or more times faster than that available with very expensive formed-character printers. Even low-end economy-priced dot-matrix printers offer speeds in a range between 60 to 150 cps .
The speed specification for a dot-matrix printer can be misleading. Virtually all dot-matrix printers that have been introduced into the marketplace during the past few years are designed to operate at two or three speeds, depending on the print function activated. The fastest specified printing speed is for standard single-pass "data-quality" printing, in which dots are printed with blank space between the dots.
So-called "correspondence-quality" printing, introduced a few years ago to improve legibility, is achieved with twopass (sometimes called "overstriking") printing, which fills the normally blank spaces between the dots with more dots to form more or less continuous characters, though actual printed characters will have a somewhat ragged, unfinished appearance. Operating a dot-matrix printer in the correspondence-quality mode usually halves the speed.

More recently, so-called "near-letterquality" printing, in which printed characters have a more finished appearance, has been introduced. This level of printing quality can be achieved in either of tw ρ ways. In older model printers, it is obtained with a multiple-pass technique, each pass reducing the speed commensurately. For example, if four passes are required to achieve near-let-ter-quality printing in a $200-\mathrm{cps}$ printer, speed will be only 50 cps . A more efficient technique is used in the newest printers, which have printheads with
two separate columns of print pins that permit high-density-dot printing in the two-pass mode, only halving the speed obtained with data-quality printing.

Other factors govern how fast a printer can operate, too. For example, defeating the bidirectional printing capability, now more or less standard in new dotmatrix printer introductions, wastes time in returning the printhead from the right margin to the left margin. Also, you should be aware that printing graphics isn't as fast as alphanumerics, punctuation, and special characters.

Most dot-matrix printers operated in the graphics mode are slower than in the text mode because printing is in only one direction. There are a few exceptions to this, of course. For example, Centronics recently introduced a line of dot-matrix printers capable of printing graphics bidirectionally.)

The cost of a printer is directly related to the number of precision mechanical parts that go into its design. Oddly, the very complex electronic portions of printers are dirt cheap when compared to the high-precision metal and plastic elements. This accounts for the much higher demand for formed-character printers, which have a much higher pre-cision-parts count than is required in the dot-matrix printer. Each of the mechanical elements in the formed-character printer must be machined to very close tolerances, at a very high cost.

In contrast, the dot-matrix printer is a relatively simple mechanical but complex electrical device. Its relatively few precision mechanical parts are contained in the printhead and linear headpositioning/track assembly. Considering that a much greater number of mechanical elements are used in the typical printing assembly of a formedcharacter printer than there are in an entire dot-matrix printer, it's not difficult to understand why the latter is so much less expensive.

Selecting a Printer. Your choice of a particular make and model printer should be based on an intelligent study of your current and future needs and a
study of what's available in the marketplace. If your major or exclusive use of the printer is for generating mailable letters and/or professional-quality printing, plan on a letter-quality formed-character printer. However, if you require fast printing speed, such as for regularly typing hundreds or thousands of mailing labels at one time, or you must keep hard copies of accounting and financial records, or you wish to print out graphics, etc., your better choice would be a dot-matrix printer.

For strictly home use, the dot-matrix printer is perhaps best because of its relatively low cost, versatility, and sufficient print quality for general use.

Let's detail the important factors you must consider when it comes time to make your buy decision. Make up a master list as follows:

1) Do I need letter-quality printing or will data- or correspondence-quality printing suffice? If your needs are exclusively for letter and report writing, plan on a formed-character printer; otherwise, specify a dot-matrix printer. Bear in mind the differences in print quality obtainable at different price levels. If you need high-quality legibility, note this alongside your dot-matrix entry. Remember, too, that a number of recently introduced dot-matrix printers are capable of generating near-letterquality printed characters that will almost always suffice for the high-quality copy required for letter/report writing in which a true professional appearance isn't essential.
2) What is my printing volume? An-

At top are print samples from an Epson FX printer.
Below is a near-letter-quality sample from a Centronics Model 353.
swer "light" if your printing needs are infrequent and usually limited to 10 pages or less per session. For strictly nonprofessional home use, figure your printing volume to be light. Answer "moderate" for normal daily business office use in which 100 to, say, 300 letters, memos, and envelopes are to be printed daily. Answer "heavy" for more intensive use, as in daily printing out of large volumes of mailing labels and in word processing, where the printer will be going for 35% or more of the time in an eight-hour day.
3) What printing speed do I need? For occasional light printing volume, any printer capable of churning out copy at even the slowest speeds will suffice. For moderate volume, be conservative and note 75 cps or more. For heavy volume, plan on a minimum of 150 cps .
4) Do I need variable pitch? If you do, don't think you must spring for an expensive formed-character printer. Most dot-matrix printers offer selectable expanded, normal, and condensed characters, without having to change the printhead. This feature will frequently be enough to fill your printing needs. Also, some of the new computers that feature bit-addressable graphics capability will allow you to custom design and program in one or more user-callable character sets on a compressed or expanded matrix format.
5) Do I need proportional-spacing capability? Although this is a nicety that most users will instinctively desire, it's not essential, except in such rare applications as publishing, fancy corporate report drafting, and other professional printing applications. Almost all formed-character and a few newly introduced dot-matrix printers offer this capability. Those printers that do usually include it at little or no extra cost.
6) Do I need superscript and subscript capability? The same remarks given for 5) above apply here, except that those who need this feature will usually be mathematicians, scientists, engineers, and publishers and report writers.
7) What kind of paper feed do I need? If you're going to be printing exclusively on pin-feed fan-fold printer paper, ordinary pin-feed will do. But if you're going to be printing mainly on single sheets (called "cut-sheet paper"), your choice of printer should have friction feed. For most reliable printing on all types of paper, including envelopes and mailing labels, a combination friction/tractor (F / T) feed is best. In the past, this was an option that had to be added to the basic printer, usually at
high cost. However, more and more printer manufacturers are beginning to offer friction/tractor feed as a basic part of their products at no extra cost.
8) Do I need graphics capability? If your answer to this question is "yes," plan on restricting your choice to the dot-matrix printer category. Be aware that not all dot-matrix printers are capable of printing out everything that can be displayed on a computer's video display screen on a dot-for-dot basis. Some printers are able to print only the "block" graphics characters contained in preprogrammed ROMs inside the printers. Unless a manufacturer specifies that his product can print dot-addressable graphics, assume it can't.
9) Do I need alternate character sets? This question applies exclusively to dotmatrix printers, since all formed-character printers by nature of their interchangeable printwheels or thimbles are inherently capable of alternate character set selection. With dot-matrix printers, one doesn't pop out one head and replace it with another to obtain a different character set. Alternate character fonts must be obtained with the existing matrix head, using software, which may be in preprogrammed ROMs inside the machines themselves. Some of the newest dot-matrix printers on the market come standard with up to eight different character sets that can be selectively switched in and out as desired. Others have on-board sockets into which optional character-set ROMs can be plugged and called at will from software.
10) How much should I pay? This question usually tops the uninformed prospective buyer's list. In practical terms, it should be way down on the list, as it is here, because the answer will be based on the answers to all the preceding questions. It would be extremely foolhardy-and expensive- to let budgetary considerations overshadow your needs. Don't plunge in and choose an inexpensive printer that isn't capable of meeting all your current needs, much less leave room for growth, or an expensive full-featured printer with features you'll never use. Such a move will prove costly in the long run, since it won't be long before you have to trade up anyway. By the same token, buying a very fast full-featured printer with lots of bells and whistles you'll never use will prove costly right at the dealer's counter.

The best advice we can give for choosing a printer is: Select what you need. If you require a model that's too costly for your present budget, it's better to wait a
few months, socking away a few extra bucks until you have enough to buy the model that best suits your needs, than to make a hasty purchase that won't satisfy you.

For the business office, keep in mind that it's not necessary to buy a printer for each computing station, since it's a rarity for every station to require print outs at the same time. In fact, under ordinary data- and word-processing circumstances, a printer will be idle more than 75% of the time! Therefore, you can plan your printer purchases with station sharing in mind. You have two choices here. The simpler choice is to reserve one of the several stations for basically print-only operations. The alter-

native is to have two or more computing stations share one printer, without having to install special-and expen-sive-multiple-user hardware and software. This latter approach is implemented by installing an optional switching box between the printer and sharing stations. Most such switching accessories offer print buffers, standard or optionally, to ensure efficient word/data processing.

With the first approach, the computer/printer station might be idle for long periods of time. The second approach is more practical because all stations can be active simultaneously for processing, and there's no need to have operator shuffling from one station to another.

Other Considerations. Printers connect into a computer in either of two ways: parallel (Centronics) or serial feed (RS232C). In most cases, the parallel interface is built into the printer, while the serial interface electronics is optional even though the printer has a plug-in facility on the back marked accordingly. Perversely, most computers come with a serial port, but require an optional parallel port to be added. Accordingly, the user will often have to spend extra money to get his printer up and running. Bit-parallel interfaces transfer data a word at a time, while bitserial runs bits one character at a time. Consequently, a parallel-interface setup is a speedier one.

Most printers contain 1 K to 2 K of

RAM buffer memory to store incoming data that's being received too fast for the printer to handle. Buffer memory can be expanded, of course, either by an external printer buffer or, in some cases, with an internal board, if you regularly dump a lot of copy from the computer to the printer.
All printers aren't alike, though most share many similar features. For example, low-cost impact dot-matrix printers often feature 5×7 dot matrix. If it has a lower-case facility, the letters won't produce true descenders, so that the bottom of, say, the letter " g " will be in line with the bottom part of, say, the letter "b." Perhaps this is good enough for you, given the savings in money, but you should know what you're going to get in return.

Is the paper drive a friction or tractor type? The former uses roll paper that's less costly, while the latter will enable you to print accurately and automatically on a given sheet of fan-fold paper or on mailing labels. Some printers come with both facilities at no additional charge.

Among other considerations are: the paper width the printer can handle, number of copies it can make, paper "out" alarm, addressable tabbing, overall dimensions, compressed and expanded print, and dot-addressable graphics provisions.

No matter how sophisticated a printer you decide to buy, you'll need the proper software to take advantage of its specific features. In fact, if you're putting together a sophisticated wordprocessing system, review your needs with an eye to both printer and driving software.

If you select a printer that offers true underlining, superscripting and subscripting, proportional spacing, etc., capabilities, get a software package that will allow you to access these features. Don't forget that any feature you add to a basic printer or package will add to its cost, however; so plan your purchases accordingly. If you buy more printer than you need, you'll be throwing away money that can be better spent on something else you might want or need for your system.

Good high-level word-processing packages, such as Word Star and Magic Wand, will almost always permit you to take advantage of virtually every feature built into modern printers. Basic lowcost packages, however, may not. Before you buy a software package for your computer/printer system, carefully study its description to determine if it fills your needs. The several hundred

Printer operations are light years slower than any computer's flow of data. So when a computer is spitting out large amounts of data to a typical dot-matrix or daisy-wheel printer, you're forced to wait until everything is printed before you can work at the console again.

What a waste of time for both you and a sporadically idling CPU! What's the solution? It's simple: take some memory, an inexpensive microprocessor, some support logic, and make the whole thing look like a fast printer to the computer. The computer can now dump the data to this external memory at 4000 plus cps (characters per second) and the additional microprocessor can then send them to the printer at the slower rate. Put the whole thing in a box and you have yourself a printer buffer!

The clever people at Practical Peripherals (31245 La Baya Drive, Westlake Village, CA 91362) have done just that, and they have a line of buffers to fill every need. For the Apple II computer they have come up with the Microbuffer II, which at $\$ 259$ comes with 16 K of onboard memory that is user-expandable to 32 K . It also has an onboard microprocessor and an EPROM that contains the software to handle the buffering as well as some rather clever features. The whole thing is a plug-in card about twice as long as a normal Apple printer card.

The card tested was for a parallel "Centronics" interface. Even though it is a parallel interface it looks like a serial interface to the Apple. This is to maintain compatibility with both Pascal and CP / M. The card is installed like a normal Apple card. I placed it in slot 1 (although it can be used in any slot except 0). The card has a detachable cable with the standard parallel connector on one end and a standard Apple multipin connector on the other.

The card is transparent in operation if you don't want to do anything fancy. You notice the difference that the buffer makes right away: a standard screen full of data loads into the card in about two seconds as opposed to about a minute without the buffer. The card responds to the conventional commands. These
dollars asked for the software to provide professional printing capabilities will be well worth the investment since, in the long run, it can actually save you money in more efficient and flexible processing. Conversely, if you don't need all the sophistication built into professionalgrade software, find a package that suits
your requirements. Such packages are usually sold at considerable savings over individual items.

Finally, like so much computer hardware, printer prices appear to be at an all-time low. Leading Edge's "Gorilla/ Banana" impact dot-matrix printer, for example, has a suggested retail price of
only $\$ 249.95$. Models that have been around for a while are being sold with considerable discounts. An Epson MX80, the machine that brought logic-seeking to moderately priced printers, can be bought for less than $\$ 500$, while Smith-Corona's TP-1 letter-quality dai-sy-wheel printer is being sold for below
are prefixed by sending a Control I [CHR\$(9) in BASIC], followed by one or more parameters. For example, to go from printing 40 to 80 columns, you would first turn the card on with the normal PR \# 1 and then enter a Control I followed by an 80 N .

With 16 K of memory, you can dump about 11 pages of text to the buffer. If you upgrade or purchase the 32 K version, you will double the amount of storage. Once the buffer fills up and if you have more data to send, the system slows down to the normal crawl. As the card sends one line to the printer from the bottom of the buffer, a new line from the computer is entered at the top of the buffer.

You may wonder about the use of the card at this point since the system is bogged down waiting for the printer, just like the old days. But don't forget that the buffer is still full. At some point the computer will send all the data and be free once again, while the buffer continues to churn out the 16 K or 32 K that was filled. It may not be as fast as having unlimited buffer area, but it still saves a good one-third to one-half of the normal printing time. As I rarely print large documents, I get by very nicely with the 32 K . Without reaching the buffer limit, you can save close to 90% of your printing time.

So much for the "dumb" mode of operation. If the card just buffered the printing it would be well worth the cost. But since you have a microprocessor on the card already, you may as well give it some smarts. This card has 25 text formatting and printer control commands, as well as eight graphics commands for dumping the Apple HiRes graphic screens to the printer.

Some of the text formatting and printer control commands are: send a linefeed after carriage return, set a left margin, set the print width, clear the buffer, and verify the operation of the card (self check). Among the more interesting commands is one to format BASIC listings so that each one of multiple statements on a line is displayed on its own line, indented from the margin. This is very useful if you do any pro-
gramming or would like to follow someone else's work. It takes a little time to get used to the format but, once you do, it makes life a lot easier.

Another useful command is a screen dump. This will dump the 40 -column Apple text screen to the printer. You can print the whole screen or specify a starting line, in which case it will print from that line to the bottom. The manual specifies that this command is useful for printing a Visicalc window, but I couldn't figure out how to interrupt Visicalc so I could send the command code. The manual doesn't elaborate either. It's a shame that they allude to something and yet don't explain at all how to achieve the desired effect.

The HiRes graphic dump commands are a nice bonus. They allow you to dump HiRes Apple graphics to your printer, provided it can handle dot-addressable graphics. You must specify what printer you have when you purchase the card as each printer requires a different EPROM.

The graphic dump commands give you many options including printing double sized, rotating the image 90 degrees, inverting the image so black is white and white is black, and emphasized so that twice as many dots are printed giving a darker image. The card will print both the primary HiRes page (HGR) or the secondary HiRes page (HGR2). It even allows printing mixed HiRes and Text screen. An additional feature is the Chart Recorder Mode. This allows two pictures to be printed contiguously, resulting in a larger picture. This can allow for greater detail by using both of the Apple HiRes screens and joining them at print time.

The Microbuffer II is an excellent product. It serves its purpose as a buffer simply and elegantly. It follows the standard Apple commands for ease of use. It also offers many features not normally found in a printer card. If you have ever shopped for a printer card, you soon realize that there is too much variety in the marketplace. Some cards offer straight printing with no bells and whistles, some offer buffering, some offer graphics dump routines and little
else, some offer bells and whistles but are not compatible with anything.

The Microbuffer II offers the cake and the icing, too. In fact, I used the card for a long time as a straight buffer without having to modify any of my programs. I was oblivious to the other wonderful features. Now I use it more extensively, especially for formatting BASIC listings, with the left margin set where the text is comfortably centered on the page. No more moving the tractor feed to accommodate my word processor's spacing, while my BASIC listings are printing on the feed holes! And the graphics dumps are wonderful, convenient and versatile.

There are a few annoying things about the card, the worst being the manual. It is far from complete. It gives you enough to get started, but leaves you on your own for the rest. I am still trying to dump my Visicalc screens because it said I could, but I am not going to spend an hour trying to find out. The other complaint is a lack of a larger technical section. It has the standard "for machine language programmers, the following information will be useful," but what if I want to go deeper? For example, what if I wanted to access the graphic dump routines directly? At least, if you don't want to release source code, give entry points or even tips and examples.

For the dollar, though, I dont' think you could do better than this card. The combination of functions with the relative ease of use and compatibility make it unbeatable.

If you don't have an Apple II, but would still like buffered printing, one of Practical Peripherals' inline buffers may be the answer. These buffers go between the computer and printer and direct the flow from there. They offer several models in both serial and parallel interface and up to 256 K of memory. That's about 175 pages of text! There's even a model that will fit inside the Epson printers.

So, if you are tired of waiting for your printer while you're computing, consider a buffer. And if you're considering a buffer, check out the Practical Peripherals' line.
$\$ 600$. And if these are beyond your budget, there's still no excuse for not having hard copy at your disposal because you can go the thermal printer route, such as with Star Micronics' new STX-80 80column printer for under $\$ 200$ suggested retail. Moreover, new models are available that boast more features than
ever, such as faster printing speed and they are available in most locations, at surprisingly moderate prices.
Some unusual concepts are around, too. These include, among others, Qume's "personality" modules for its daisy-wheel printers that simplify mating it with the most popular computers,

Riteman's $27 / 8^{\prime \prime}$-high 10 " -wide-carriage impact dot-matrix printer that fits into an attache case, and Max and Mannesmann Tally's battleship-construction impact dot-matrix machines that allows one to set up a variety of characteristics from its front panel and store it in nonvolatile memory.

This series of articles is condensed from a forthcoming book, Soul of CP/M, * by Mitchell Waite and Robert Lafore

Since beginning this series, we've been working our way deeper and deeper into what we call the "soul" of CP/M-the hidden part not usually visible to the casual user of this operating system. Now we're going to penetrate to the most hidden part of CP / M, the BIOS (Basic Input/Output System)! You could call BIOS the innermost soul of CP / M.

What is the BIOS? For BDOS to be able to execute its duties, it must at some point communicate with the actual physical devices (disk drives, video screen, keyboard, printer, etc.) connected to the computer. Since these peripherals can be from a variety of manufacturers and operate in different
ways, subroutines that drive them must be different for each piece of this equipment. This collection of the subroutines is what constitutes the BIOS. Each of these driver subroutines "drives" a particular peripheral device. When you change from one kind of printer to another, you must modify the printer driver in BIOS to be able to "speak" to the new printer.

Although the BIOS is at the innermost core in CP/M (Fig. 17), it has a direct connection with the outside world. In fact, it's the only part of CP/M that
can actually communicate with physical devices.

Now that you know where BIOS resides and what it does, let's explore how to modify a driver routine so that your CP/M can operate with a different printer. The techniques involved will also work for adding or changing other peripherals. Changes to the disk drives are considerably more complicated and should probably be left to the dealer unless you're a very ambitious (experienced) programmer.

Because every system uses different
*Copyright © 1983 The Waite Group, Inc. All rights reserved. To be published in 1983 by Howard W. Sams \& Co., 4300 W. 62 St., Indianapolis, IN 46206.
Cat. No. 22030. Reproduced with permission of the publisher.

If you own a Timex Sinciair, a ZX81, or any other Sinclair computer, you've probably discovered that the big microcomputer magazines cover only the bigger computers Where can you find helpful articles on the Sinclair? In Sync!

Sync is the one magazine that's written exclusively about Clive Sinclair's marvelous inventions, the Sinclair computers. And it's the one magazine to read if you want to get more from your Sinclair.

You'll find program listings for games, helpful programming techniques, hardware upgrades, math and science programs, news of new products for the Sinclair-in short, everything you need to use and enjoy your Sinclair to the fullest.

In just two recent issues, for example, we covered:
\square Putting a Reverse Character in a String
\square How to Double Your Memory
\square Least Squares Data Analysis With the ZX80 / 81
\square Space Warp: A Graphics Space Game
\square How to Reduce "Blank Screen Time"
\square Storing Three-Letter Words in an Array
\square Software Review: ZX Galaxians
\square An Introduction to Expression Evaluation
\square Short Programs Just for FurıThe ZX81 Parser and User-Defined Commands
\square Understanding Floating Point Arithmetic
\square Hiandling Strings from Anather Dimension
\square Book Review: Understanding Your ZX81 ROM
\square How to Add a Keyboard to Your Sinclair
\square Transiating Other Basics: DEF on the ZX81
\square Six Outer Space Games-With Program Listings
\square Hardware Review: Sinclair ZX Spectrum High Resolution Color/Sound Computer
If you own a Sinclair microcomputer, Sync is the only computer magazine you really need. Subscribe now to Sync, and you can save up to 33% ! Just complete and return the post-age-paid reply card or the coupon at right.

SAVE UP TO 33\% ONSYNC!

ㅍT픈

CN $1986 \cdot$ Morristown, NJ 07960
$\mathbf{Y}=S$ Please send me Sync for:
\square One year (6 issues) for \$12.97I save 19%.

- Two years (12 issues) for \$22.97I save 28%
\square Three years (18 issues) for $\$ 31.97-1$ save 33%.
Savings based on full 1-year subscription price of $\$ 16$.

Mr .
Mrs
Ms.
(piease print fuli name)
8 H 15
Address_Ap__ Apt.__
City
State \qquad Zip

CHECK ONE:

\square Payment enclosed. \square Bill me later.
Offer valid in U.S and possessions only. Please allow 60 to 90 days for delivery of first issue.

NEW SUBSCRIBERS ONLY

FORSINCLAIR aND TIMEX SINCLAIR OWNERS ONLY
hardware, every BIOS will be different. We can't, therefore, tell you exactly how to modify your specific BIOS, but we can show you an example that can be used as a guide for modifying your BIOS to suit your system's needs.

There are three steps involved in writing a new BIOS driver: (1) learning your way around BIOS-you must be able to find the existing driver so you can see what it looks like, how it relates to the rest of BIOS, and where to put the new driver; (2) writing the new driver routine and then testing it; (3) inserting the new driver into the BIOS file and writing the new BIOS to the system tracks of your disk.

What You Need. There are two things you need before you can modify your BIOS. The first is the ASM file of the BIOS, usually supplied with CP/M, which contains the 8080 code that communicates with I/O devices. This file is usually called something like IOBIOS.ASM, GBBIOS.ASM, or some similar name with BIOS in it. If the file contains the I/O for the disk system, it will be very long- 20 or more printed pages. If this section is left out, the printout will be fairly short-six pages or so.

The BIOS.ASM file is what you're going to modify, using a word-processing program to alter a section of it.

Fig. 17. BIOS, at the real center of CP/M, still connects to the world.

You'll then reassemble it with ASM and write it back onto the system tracks of your disk.

The second thing you'll need is the specifications table for your UART (universal asynchronous receiver/ transmitter) or serial I/O board. The UART IC is installed on the serial board and allows the computer to communicate in serial mode with external devices. The spec sheet for the UART will tell you what numbers to output to what "port" in the UART to send signals to various I/O devices.

Some versions of the BIOS.ASM file include information on the UART at the beginning of the listing, making it
possible to modify your BIOS without the actual spec sheet-provided the UART is already installed and operating and your listing has this information. It's also easier if you have a device alrcady operating which is similar to the one you plan to install.

If you already have a printer running and want to change to another printer, you may not need the spec sheet or comments in the listing. You can use the existing driver as a model. Of course, if you don't have a printer, you'll need the spec sheet.

Sample BIOS. Bear in mind that the particular BIOS we'll be describing in

Fig. 18 is only one example of the hundreds of possible versions in circulation. Yours may be somewhat different, but it should be similar enough that you can follow in your BIOS the steps we'll describe here. Reading your BIOS listing will make the most sense if you assemble it with ASM and then refer to the PRN listing, since often the hex values given are important.

BIOS Introduces Itself. When called from disk, BIOS introduces itself, as shown in the beginning of the BIOS listing in Fig. 18. BIOS starts out by describing itself, where it comes from, and what it's for. Our example comes from

TIMEX / SINCLAIR PRODUCT DIRECTORY

INSTRUCTIONS:

This Product Directory will help you locate manufacturers and suppliers of Timex / Sinclair products and services. If you would like further information, please fill in the coupon completely and circle the number corresponding to the company(s) you would like more information from.

Mail to:
Sync Magazine
One Park Avenue
New York, N.Y. 10016

SYNC MAGAZINE

One Park Avenue, New York, N.Y. 10016
Name
Title
Occupation
Company Name
Address
City State

1. How many microcomputer(s) do you own?
A. \square None
B. $\square 1$
C. \square^{2} \square $\square 3$ Or More
2. Which Brands? (Check all that apply)
A. \square
B. \square
C. \squareAtari Radio Shack/Tandy/ TRS 80
D. Commodore/PET
F. Digital Equipment/ DEC
G.
H. \square Heath / Zenith Other (please specify)

I would like more information on the foilowing companies:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60

WW Components, is for the Imsai 8080 computer, and is Version 2.7.

Address Location Arithmetic. All BIOS listings contain some calculations at the outset that define and set up the beginning address of BIOS in memory. Addresses are usually calculated according to a set of rules laid down by Digital Research. They start out by specifying the memory size with which BIOS is working, which is 56 K in our example in Fig. 18. If your BIOS has other statements in it at this point, such as various options that must be set to true or false, ignore them; they won't influence this discussion.

The magic " N "

In Fig. 18, we see that MSIZE (computer's memory size) is set at $56(28 \mathrm{H})$. All BIOS.ASM files should have such an equate (EQU). If you want to change your BIOS to work with a machine with a different memory size, the first thing you would do is change this number to a value that will permit you to take advantage of maximum available memory.

The next important number is for BIAS. (In other listings, it may have a different name, such as IOBIAS.) This number specifies the distance in memory between where the CP/M system is on your system and where it is on a CP / M disk as it comes from the factory. A brand new system is configured for 20 K of memory and then moved up to the top of memory, where it will reside in a particular computer. BIAS is related to a certain "magic" number, which we call N .

BIAS is then used to define the starting locations of the major parts of the CP/M system (CCP, BDOS, and BIOS). Location 3400 is the "standard" starting point for the bottom of CCP in a 20 K system. CCP is 806 H bytes long in our listing, since BDOS starts at CCP $+806 \mathrm{H} . \mathrm{CCP}$ and BDOS together are 1600 H bytes long; so in our 56 K system, at least, BIOS starts at D200H.

1/O Equates and More. In the next section of the listing, headed "I/O Definition Equates," BIOS tells us something about the UART, namely the meaning of each bit when we read the status of an I/O device. Following this is a series of equates, which are places where certain variables and addresses in BIOS are given values. The CRT status port (CRTST) is at 03 H , keyboard data port is at 14 H , etc. Notice especially the printer status (PRTST) and printer data (PRT) ports. We'll be using the numbers they're equated to $(23 \mathrm{H}$ and 22 H$)$ when we write our printer driver.

ORG Statement \& Jump Table. In the next section of the listing, "User Customized I/O Devices," we finally get to the ORG statement, which is the beginning of our program. Usually, this location is defined in terms of various other locations that are, in turn, defined in terms of the computer's memory size, among other things. In this case, ORG is at the beginning of BIOS because all disk system drivers are located there, between D200H and D200H +0 C 70 H . Our listing is really only a small portion of BIOS, since it contains no disk information.

If we add instructions to BIOS and reassemble it to insert our new driver, the starting addresses of all drivers following the one we changed will be different. How will BDOS find them? The answer is that it makes use of a clever programming tool called a "jump table."

A jump table is merely a number of jumps at the beginning of the listing. Each jump goes to one of the driver routines. Since these jumps are part of the listing we're going to reassemble, the values in their address fields will change when we reassemble the file. So BIOS doesn't care about the locations of the driver routines themselves, only where the jump table is located. The jump table is always at the beginning of the listing. BIOS calls one of the locations in the jump table, and the jump takes BDOS to the proper driver.

Notice, however, that BDOS assumes the jumps in the table will always be in the same order. When it calls on the second jump in the table, it expects to find the jump to LISTIO, not some other driver. This is why the listing has the caution "Do not rearrange jump table" in it.

IOBYTE. Now we can actually start to follow a trail through the listing to our destination. The second jump in the table is to LISTIO, the list device. CP/M
permits different physical devices to be assigned to different logical devices-console (CON:), reader (RDR:), punch (PUN:), and list (LST:). There are also various physical devices like TTY:, CRT:, and LPT:. You can change the assignments of physical to logical devices by using STAT. When you do this, STAT changes the IOBYTE at location 3 in memory.

Now, when BIOS gets a call to the LIST routine, it doesn't know what physical device it's intended for until it checks the IOBYTE. Based on what it finds there, it will go to either the driver for the printer or to some other driver. That's why LISTIO and LISTSTIO (the latter being list status I/O) are a different form of jump table, rather than driver routines (see "List Out - LST" entry under "User Customized I/O Devices" in Fig. 18).

This section first calls the DISPATCH routine, which looks at the IOBYTE and determines which of the four routines to go to for the four possible physical I/O devices. Because the line printer is usually assigned to the LST: device, DISPATCH determines this from the IOBYTE and jumps to the address in the third DW statement in this routine-LPTOUT (line printer output).

In some BIOS versions, the IOBYTE isn't used and this section of code is omitted. This is true of the BIOS example provided in the "CP/M Alteration Guide" supplied by Digital Research. In other versions, it's implemented in a different manner.

Refer now to the section of Fig. 18 titled "List Character In C," which takes us to LPTOUT. We've found the instructions that tell the UART to accept a character and send it on to the printer. This is the routine we're going to modify. For a change, it doesn't call another routine. So we've reached the end of the line. Printer status (PRTS) at 23 H and printer (PRT) at 22 H are the "ports" we're going to access with IN and OUT instructions.

IN and OUT Instructions. These are the chief means by which the 8080 microprocessor communicates with the outside world. IN gets data from a port and puts it in register A, while OUT sends data from register A to a data port. Of the 256 possible data ports, the appropriate one is specified by the twodigit hex number (or label equated to it) in the address field.

Data ports and their addresses are not the same as memory and its addresses. Data ports consist of a separate group of registers. Since there are only 256 of
them, the ports are addressed by twodigit numbers. Thus, the 5A in the instruction "IN 5A" refers to a data port, not to memory address 5A.

The byte read into register A can be either data, such as an A character (41 H) read from the keyboard, or a "status byte" whose purpose is to inform your program about the status of a UART or I/O device. The values of a status byte must be known from the operator's manual for the UART or I/O device.

OUT takes an 8-bit byte from register A and puts it into the port specified in the operand field of the instruction. This byte can be either data to be transferred to an output device, such as the character A to be printed on the CRT screen, or a "function byte" that tells the UART or I/O device what to do. The values to be used in a function byte must be known from the operator's manual for the UART or I/O device.
XRI Instruction. This instruction performs an exclusive-OR of the onebyte data in the instructions with the data in register \mathbf{A}. This instruction is useful for testing bit patterns because it immediately tells you if all bits in a certain bit configuration are set to 1 . Simply XRI the bit pattern you want to examine with the bit pattern in register A. If all the bits you specify are set, but nothing else is, the result will be zero. For example, if register A contains 07 H and you XRI it with 85 H , you'll have:

register A	00000111	
constant	1000	0101
result	1000	0010.

The result is not zero. However, if register A contains 85 H , you'll get:

| register A | 10000101 |
| :--- | :--- | :--- |
| constant | 10000101 |
| result | 00000000. |

Note that the result is now zero.
The first thing we do in LPOUT is read the status of the printer port to see if the printer is ready to receive data. We do this with an IN instruction to the port that holds the printer status $(23 \mathrm{H})$, which returns a byte that looks like that shown in Fig. 19.

Now, what we want to see when the printer is ready to receive a character is that DSR, TxE, and TxRDY bits are set. The other bits can be anything at all. We first mask off the other bits with an ANI instruction, using 85H (10000101 binary). As a result, only bits 7,2 , and 0 can have a value other than zero; these bits can either be zero or one. The values
of all of the other bits must be zero.
Next, we want to make sure that bits 7,2 , and 0 are indeed zero. So we XRI register A with 85 H again. If the result is not zero, we go back to check again with the JNZ instruction.

Once all bits are properly set in the status word, we're ready to receive data. The data byte has been in register C all along (your program put it there before doing a call to BDOS). So we move it to register A and then OUT it to printer port 22 H . Then we return.

I/O Initialization. Usually, the particular UART you're using must be initialized before it can function properly. Thus, there's a section of code in BIOS that's activated every time you do a warm or cold boot. This routine is shown in Fig. 18 under the heading "Init User I/O IE. Console, Punch and List Dev."

Different UARTs require different kinds of initialization. You can find out what yours requires from its spec sheet. In our example, the UART must be told " $0,0,0,40$, AE, 27" before it can do anything. Examining the listing, you'll note that every time an OUTCRTST is executed, the value in register A is sent to the CRT status register (3 H). Also, every time an OUT PRTS is executed, the value is sent to the printer status port $(23 \mathrm{H})$. Hence, the sequence of numbers referred to above is sent to both the CRT and printer ports of the UART.

If you're changing from one printer to another, you probably won't have to add anything to this initialization process. But if you add a driver that wasn't originally there, you'll have to add code in this section to initialize the new ports in your UART.

ModifyIng a Printer Driver. To create a new driver for your BIOS, you must first determine the kind of driver program to write. You must know what kind of printer you have and which communication "protocol" it uses. Protocol is another term for procedure. In this case, it means the procedure by which the printer tells the computer it's
ready to accept data for printing.
With some printers, you can simply wait until they're ready, throw a character at them, wait for ready again, throw another character, and repeat until you're done. Such a printer will print each character just fine. The printers made by Epson are typical examples of such "standard serial" or "teletypelike" printers. Other more complex printers, such as the daisy-wheel models, require one of two advanced protocols: "xon/xoff" or "etx/ack." The NEC printer, for example, requires etx/ack, while the Diablo 630 likes xon/xoff. These protocols are designed to allow a printer to work with more than one character at a time.

XON/XOFF Protocol. You've probably used xon/xoff without even knowing it. Xon/xoff is the same as the "con-trol-s/control-q" (ctrl-s/ctrl-q) CP/M uses to freeze and unfreeze the scrolling of the display on the CRT screen. In CP / M, ctrl-s freezes the display; striking any key thereafter generates a ctrl-q that unfreezes scrolling. Ctrl-s means xoff (turn off transmission), while con-trol-q means xon (turn on transmission).

A printer uses xon/xoff when it has a built-in "buffer" that can hold a certain number of characters (1024, for example) for printing. The buffer allows the computer to send characters to the printer at a fairly fast rate and then hold them while the slower printer mechanism prints them out. While the buffer in the printer is emptying, the computer can be used for more processing, such as editing a file, during the print operation, without slowing down your text editor. You should notice a delay in processing only when the printer calls for more characters to fill its buffer.

This operation is as follows. After your printer driver sends each character, it reads a status word from the printer and looks to see if the printer is sending back a ctrl-s. If it detects a ctrls , it tells the driver to stop sending because the buffer is full and to suspend transmission of characters until the buffer is once again empty. If no ctrl-s is sent back, the computer will continue to

Fig. 19. The printer port is read to see if it can receive data.
send characters to the printer until one is detected. Upon detection of a ctrl-s, the computer goes into a wait loop and waits for a ctrl-q, the signal that buffer is empty, to come from the printer.
$E T X / A C K$ Protocol. This protocol is similar to xon/xoff, except that it's implemented differently. In this case, a block of characters (usually 128) is sent to the printer, followed by an etx character $(03 \mathrm{H}=$ ctrl-c), which translates to "end of text." After the entire block of characters has been printed out, the printer sends an ack $(06 \mathrm{H}=$ ctrl-f), which means "acknowledged; last transmission received."

Writing a Sample Driver. When we explored the BIOS listing, we found a driver for the simplest kind of printer-a teletype-like device with no advanced protocol. We're now going to write a driver for a printer that uses xon/xoff. Our example will assume a Diablo 630 daisy wheel printer connected to our CP/M system through a serial board that's running at 1200 baud and uses an Intel 8251 UART.

Look back at the driver in the last section. When it wants to know if it can send a character, it checks to see if three bits are sent: 7 for data set ready (DSR), 2 for transmitter empty (TxE), and 0 for transmitter ready (TxRDY), as shown in Fig. 20.

Using xon/xoff is somewhat more complicated. We must ask the UART two questions. First, is it ready to receive a character from BIOS and, second, does it have a character ready to give to BIOS. In the first case, we ask the UART whether bits 0 and 2 are set. In the second case, we want to know whether bit 1 ($\mathrm{R} \times \mathrm{RDY}$) is set.

With xon/xoff, there are two things that can occur when a program calls the driver to send a character to the printer. In either case, a character gets sent to the UART to transmit it to the printer. Then, either (1) the UART will not have sent an xoff, in which case control will return to the calling program so that it can get another character; or (2) the UART will have sent an xoff, in which case the driver won't return to the calling program but will wait until xon is received before it goes on.

The listing for the new driver is shown in Fig. 21. We're assuming here that we don't have to do anything else to initialize the UART. If we did, we'd have to add the appropriate instructions to the initialization part of the program. From the comment given in Fig. 21, you shouldn't have any trouble following operation of the driver.

Fig. 20. The driver wants to know if it can send a character.

Testing the Driver. Inserting the new driver into the BIOS and writing it on the system tracks of a diskette is somewhat involved. What we need is a way to test our driver routine without going through this process. Here's how:

1) We put the driver routine at 100 H , just like any other program, using DDT and the a command. (It can also be assembled with ASM.)
2) We put a "jmp 100" instruction at the start of the printer driver routine in the BIOS.

We'll assume at this point that you've
written an appropriate driver routine of your own. It may not be perfect, but it's ready for a preliminary test. Hence, as we describe how to test our routine, you can follow the same steps with your routine.

First, you must know where to put the jmp 100 instruction. This isn't difficult if you've assembled your existing BIOS into a PRN file. Simply look through the listing for the printer driver routine and make a note of the address where it starts (DF35H in our 56K system, as you can see from the last section

; LIST CHARACTER INC		
*********		************************)
; (was justaRETreturn instruction.)		
LPTOUT: in	pris	; input 8251 status
ani	05 h	; AND 8251 for ready to send
xri	05h	; exclusive-OR to get zero flag
jnz	Iptout	```; loop until UART register is ready```
mov	a, c	; get list character from C to A
out	prt	; output to UART dataregister and send
in	prts	; is UART ready with a character?
ani	02h	; does receiver have a character ready?
xri	02h	; mask
rnz		; if not zero then continue normally
in	pr t	;yes - get the character
cpi rnz	13h	```iisitactrl-sfreeze(xoff)? ;no-skipit```
lpt1: in	prts	```; it was actrl-s, so now wait fora cctrl-qtoreturn```
ani	02 h	
xri	02 h	
jnz	lpt 1	
in	prs	; character is ready
cpi	11 h	;isitacrtl-q(xon)?
jnz	lpt 1	$\underset{\text { let }}{\text { le, so loop untilitis; i.e. }}$
		;printer buffer empty
ret		finallyactrl-q; returnfor next character

Fig. 21. Listing for the new driver.

DISCOVER THE MAGAZINE THAT HELPED LAUNCH THE MICROCOMPUTER INDUSTRY

Incredible as it may seem, Popular Elec tronics helped launch the microcomputer industry Back in 1975, we published plans for building the first powerful microcom puter based on the 8080 cpu . These plans generated incredible excitement-and started the world thinking about persona! computing

Since then, we've added more coverage of personal computing. Today, so much of the magazine is devoted to microcom puters that we ve changed our name to

Computers \& Electronics

Computers \& Electronics continues the Popular Elecironics tradition of helping our readers experience the advances of the future-today. We do it with clearly written, in-depth articles explaining each innovation .. slans for building useful money-saving projects incorporating the newest technology ... reviews of the latest mass-produced equipment. Whether it's microcomputer equipment, audio, video or personal electronics, Computers \& Electronics will make it possible for you to enjoy the newest, the most sophisticated, the most innovative technology around

Helpful buying guides

Computers \& Electronics compares and contrasts computers and other electronics gear in meaningful buyer's guide articles. We discuss features and options, what to look for, and how to get the best value Recent buyer's guides have covered computer printers, pocket computers, sophisticated telephones, video cassette recorders and high-tech audio cassettes.

World-famous test reports

In every issue of Computers \& Electronics you'll find our famous in-depth test reports We take a new product, test it and analyze the results. Recently we've tested the Radio Shack TRS-80 Model III, the IBM Personal Computer and the Sinclair ZX-81 Microcomputers by Apple, Atari, Hewlett-Pack ard, Intelligent Systems and Netronics. Plus an interactive data terminal software,

and a variety of audio, video and testing equipment

Innovative construction projects

If you're a do-it-yourselfer, you'] love the construction projects in Computers \& Electronics Not only did we oring the world the first successful micrecomputer kit, but also projects for building the first low-cost modem. The first computer keyboard integrated with the compluer (SOL)

The first low-cost voice synthesizer The first low-cost logic analyzer. The first 1802 based microcomputer (ELF). The first low-cost function generator The first gaslaser communicator (awarded a place in the Smithsonian Institution). The first lowcost color graphics computer module. An interface to transfer narrow line listings from your TRS-80 Pocket Computer to either a printer or CRT screen

As you can see, our construction projects, while not necessarily complex (thanks to multifunction IC chips), will keep you at the forefront of technological development-at remarkably low cost And in the future, we'll be bringing you con struction projects to help you make your microcomputer more useful-whether it's an enhancement, an application, or a merging of technology with external controls and products

Get the leader in the fieldat up to $\mathbf{3 3 \%}$ off!

Computers \& Electronics is the world's most widely read computer and personal electronics magazine. Now you can subscribe at big savings: up to 33% off. At our New Subscriber rates, a one-year subscription is only $\$ 12.97$. Take advantage of this offer-complete and return the coupon or postage-paid reply card today

Computersd Electronics p.o. Box 2774, Boulder Colorado 80322

YES! Send me one year (1č issues) of Computers \& Electronics at \$12.97-1 save 19\%
\square I prefer two years for \$22.97I save 28\%
\square Make that three years for $\$ 31.97$ I save 33\%
Savings based эn full one year subscriphon price of $\$ 1597$
$\mathrm{Mr} / \mathrm{Mrs} / \mathrm{Ms}$
(please prinf full name)
4N146
Addres:
Apt \square

CHECK ONE \square Payment enclosed \square Bill me later Offer valid in U.S and possessions only Please allow 30 to 60 days for delivery of first issue
of our BIOS listing given in Fig. 18).
You can write your driver with a word-processing program, assigning the file the name NEWDRIVE.ASM, assemble it to get a HEX file, and call it from DDT by the assigned file name. Alternatively, you can type it in directly from DDT using the a command. In either case ORG it at 100 H .

At this point, your printer shouldn't be operating, since you haven't toggled it on with a ctrl-p. Use the a command to insert a jmp 100 at the start of the driver routine in BIOS. For our particular BIOS, it would be:

$$
\begin{aligned}
& \text {-adf35 } \\
& \text { DF35 jmp } 100 \\
& \text { DF38. }
\end{aligned}
$$

Note that you're modifying the very BIOS with which you're operating. If you do something wrong, the system

Finding a new address.
may die; so save your files before you get in too deep.

Now comes the moment of truth. Toggle on the printer with a ctrl-p and hit return a few times. The printer should respond. Now type something and hit return. Whatever you type should be printed out, including the return. If something other than what you typed or nothing at all is printed, either your driver is defective or your jmp 100 is in the wrong place.

Installing the New Driver. Once you've gotten your driver to work in this nonstandard location, it's time to install it in your CP/M system. However, before you can complete this process, you must learn about the MOVCPM and SYSGEN utilities in CP/M and that magic number N .
$M O V C P M$. This amazing program actually contains CCP and BDOS, which is most of the CP/M operating
system. It may also have part of the BIOS in it. If the people who configured your system didn't put the disk part of BIOS in the BIOS.ASM file, they put it in MOVCPM. What MOVCPM may not have in it are the drivers for the other I/O peripherals, which are probably in the BIOS.ASM file. MOVCPM may have these routines in it, but they may not work on your equipment or they may merely be skeletal drivers that won't work on any system.

When you call MOVCPM, it loads three things into memory: MOVCPM itself; CCP, BDOS, and maybe part of BIOS in the form of a COM file; and a bit map that tells it which bytes of the COM file must be "relocated" and which don't.

MOVCPM can't put the COM file in high memory, where CP/M normally goes, since the system we're operating with is already there. Remember, you can't make major changes to the same sections of code that constitute your operating system without getting into trouble. So MOVCPM keeps this version of CP/M in low memory, starting at location 900 H , which leaves just enough room for the program and the bit map below it. This version of CP / M is called the system image, which means that the instructions of code look just like the actual operating version of CP / M in high memory but are in the wrong place to actually execute properly (see Fig. 22).

When you call MOVCPM from CP/M, you must specify the memory size of your computer, such as 64 K , and tell it whether you want the CP/M image to be moved to high memory and execute. This is something you almost never want, since the CP/M image is probably incomplete and won't work, resulting in a "crashed" system if you attempt to execute it. If you don't want this to happen, you can type an asterisk after the size: "A $>$ movepm 566^{*} " in which the " 56 " means that you want to generate a 56 K CP/M system and the "*" specifies that the image is to remain in low memory, where it's not to be relocated or executed.

You can also use an asterisk in the memory field if you want to simply use all available memory: "A > movcpm * *" (takes 64 K in a 64 K system, 48 K in a 48 K system, etc.). In our particular case, we can't do this because the upper 8 K in our computer, although present, is used for special video drivers. (The routine determines how much memory the computer has by testing higher and higher addresses to see if it can put something into and read it out of each
location. When it no longer can, that's the top of memory.)
In moving this image of CP/M to high memory, MOVCPM starts off with all 8080 instructions written as if they were in a 20 K system. It then determines the difference ("bias") between a 20 K system and the size we specified, like 56 K . Finally, it uses the bit map to change only those bytes that represent addresses in the code (the last two bytes of a jmp instruction, for instance). That's it. The resulting new image sits in low memory waiting for the next thing we want to do with it. Even though the addresses are changed-as if the bios were in high memory-it isn't actually moved there.

Now we save this image, using the SAVE utility. MOVCPM is very helpful

Fig. 22. The system image of $C P / M$.
here because it tells us just what to type: A > movepm 56 *
CONSTRUCTING 56K CP/M vers 2.2
READY FOR "SYSGEN" OR "SAVE 45 CPM56.COM" A>
At the A > prompt, we type "save 45 cpm56.com". The image is 45 256-byte "pages" long, and MOVCPM suggests that we call the file "CPM56.COM".

Urge to Merge. Once we have the CPM56.COM file of the CP/M image safely stored on disk, we merge the BIOS.ASM file, which we've modified by putting our new driver into it, into CPM56.COM. To do this, we use a special technique in DDT and the magic number, \mathbf{N}. Then we take the resulting complete image and write it onto the system tracks of a formatted, blank disk, using SYSGEN. We'll call this file "CPM56n.COM," where n is "new."

The Magic Number $N . \mathrm{N}$ is simply the difference between where MOVCPM puts the CP / M image and where CP / M actually goes in high memory, as shown in Fig. 23. Notice here how the CP/M image placed in low memory by MOVCPM is related to the CP/M image that will be placed on the system tracks of the new disk. This new image will occupy exactly the same addresses as the CP / M currently running in high memory, except for the changes made to BIOS by the new driver.

CCP is located at 980 H in the system image but will be at BCOOH in our 56 K system when actually installed and running; BDOS is located at 1186 H in the image but will be at C406 when running, etc. You can see that all these pairs of numbers are related by the same constant, which can be found by subtracting any two of them.

Finding Addresses. To find the magic number N, we must know at least one pair of addresses-one in the MOVCPM image in low memory, the other in running CP / M in high memory. A good one to work with is CBASE, which is the bottom of CCP. The first half of this is easy because in the system image, CCP is always at 980 H , no matter what size system you have. CBASE for high memory isn't quite so easy to find. However, if you examine locations 6 H and 7 H in memory while CP/M (not DDT) is running, you'll find an address that's close to the start of BDOS. CCP is usually about 800 H bytes long; so if you subtract 800 H from this address, you obtain CBASE, in our case, C406-800 $=\mathrm{BC} 06$. Knowing that CCP starts on a
page boundary, we figure it's probably at BCOOH .

Another way to find CBASE is to examine the BIOS.PRN (not ASM) listing. CBASE and several other fascinating addresses are often part of the address location arithmetic in the beginning of the file. Checking this file, we find that BCOOH is, in fact, the start of CCP.

DDT has a handy function that performs arithmetic on hexidecimal numbers. While in DDT, you can use this function by typing "hx,y" after the prompt, where x and y are four-digit hex numbers. For any two hex numbers, DDT will print out the sum $(x+y)$ and difference $(x-y)$. In this case, we want to know the difference between, say, 980 H and BCOOH . It would also be nice if we obtained a negative number so we could later simply add it to other numbers to perform the conversions.
If you type "h980,bc00" after the DDT prompt, DDT would respond with "C580,4D80". It's the latter difference number, 4D80, we want, which is our so-called "magic" number. We must know this number for two reasons. First, we want to be able to look at certain sections of code in the MOVCPM image in low memory and know what we're looking at. We know where things are in BIOS in high memory, from BIOS.ASM, and we must be able to translate this into equivalent locations in low memory. The magic number does this, as we shall see.
The second reason we must know this number is that we're going to use DDT's ability to load a HEX file with a "bias" (offset) instead of at the ORG

address of the file. Thus, if we have a HEX file ORGed at, say, D200 and we want to load it into memory somewhere else-say, at 1F80-we simply find the difference between these two numbers and type it into DDT following the r (read) command. As you can see, this is the same old magic number, 4D80. For example, if we want to load with bias a HEX file called NEWBIOS.HEX that is ORGed at D200, we'd do the following:

$$
\begin{aligned}
& \text {-inewbios.hex } \\
& \text {-r4d80 }
\end{aligned}
$$

and the file will be placed in memory at location 1F80.

Inserting the New Driver. At this point, you should have a working driver routine that you're ready to insert into your CP/M operating system. The first thing you want to do is create a new version of the BIOS.ASM file, one that incorporates the new driver. (Remember that this file might have a different name, depending on your system, such as BIOS.ASM, GBBIOS.ASM, etc.)

Start by making a copy of the old BIOS.ASM file and call it newbios.asm by typing "pip newbios.asm= biosio.asm" after the A> prompt. Bring NEWBIOS. ASM into your wordprocessing or text-editing program. Delete the program lines for the existing driver. Then either type in the assembly code for the new driver or, if your word processor will permit it, copy the file containing the new driver directly into the correct location in NEWBIOS.ASM. Also, if you have to add anything to the initialization part of BIOS, to get the UART off on the right foot, now is the time to do it.

Reassemble the new BIOS by typing "asm newbios" after the A $>$ prompt. You now have NEWBIOS.HEX and NEWBIOS.PRN files. You can now use MOVCPM to create the CP/M image, as described above. If you already have the system image (CPM56.COM or whatever) stored as a file, you can skip this step.

You're now going to use DDT to do the actual merging of the new driver into the system. Load the system image as you call DDT by typing "ddt cpm56.com" after the A> prompt. (Don't forget that the number after cpm in the file name will be different for dif-ferent-size memory systems.) To make certain that everything is where you think it is, use DDT to explore this image by looking at the beginning of CCP, as shown in Fig. 24. It should be the same as the running CCP in high memory. You can check this out by typing
a"dbc00" after the DDT prompt; it should be as in Fig. 25. Note that the address column, should now read "BC00, BC10, BC20, etc." instead of the lowmemory addresses.
Using the d command lets us see that the sign-on message is really there. Check the beginning of BIOS to see if this is where the jump table is:

$$
\begin{aligned}
& \text {-11f80 } \\
& \text { 1F80 JMP D3D3 } \\
& \text { 1F83 JMP D334 } \\
& \text { 1F86 JMP DE79 } \\
& \text { 1F89 JMP DE7C } \\
& \text { (etc.). }
\end{aligned}
$$

A look at the running BIOS in high memory should be the same, again with exception of the addresses. Now find the older driver routine, if there was one, in the system image and in the running BIOS. They may not be the same.

Merge In New bios File. We're now going to use DDT to merge the NEWBIOS.HEX file into the CP / M image in low memory. This is where we use offset number N. Although NEWBIOS.HEX is ORGed in high memory (at DE70 in our case), we want to lay it down on top of the BIOS part of the system image in low memory (at 2BF0 in our system).

Type "inewbios hex" after the DDT prompt to put the file name in FCB. Then type "r4d80" to read in the file with an offset of 4 d 80 . Now look at the image with the l command to ascertain that the new driver is where you want it to be. If it is, you're ready to save the image as a file back onto the disk:
-g0 A > save 45 cpm56n.com
The 45 is the same number of 256 -byte pages that MOVCPM told you to save; this number will remain the same unless

your modification has expanded BIOS past a page boundary. The n simply means "new."

We're now ready to create a new system disk. Start by placing in drive B a formatted disk. SYSGEN is often used to simply copy the current CP/M system from the system tracks of the working disk to those of a formatted disk. In that case, no file name is specified when SYSGEN is called. However, we want to use the CPM56n.COM file when we

Fig. 24. The image at the beginning of $C C P$.

```
-dbc00
BC00 C3 5C BF C3 58 BF 7F 00 20 20 20 20 20 20 20 20.\.. X...
BC10 20 20 20 20 20 20 20 20 43 4F 50 59 52 49 47 48 COPYRIGH
BC20 54 20 28 43 29 20 31 39 37 39 2C 20 44 49 47 49T(C) 1979, DIGI
(etc.)
```

Fig. 25. The running CCP in high memory.

```
SYSGEN VER 2.0
DESTINATIONDRIVE NAME (OR RETURN TO REBOOT)b
DESTINAT ION ON B, THEN TYPE RETURNRETURN
FUNCTION COMPLETE
DEST INATIONDRIVE NAME (OR RETURN TO REBOOT) RETURN
```

Fig. 26. SYSGEN replies to the prompt for the new file.
generate our new system; so we type "sysgen cpm56n.com" after the A> prompt (don't forget the n). SYSGEN will reply as shown in Fig. 26. Note that you must type a b to specify the destination drive and a RETURN once the destination disk is on B:. SYSGEN will write the new version of the operating system onto the system tracks of the new disk.

You're done! You now have a new custom-configured operating system that you've made yourself. Test it using DIR, and use TYPE to see if it will really print out when you toggle your printer with a ctrl-p. If you're testing an xon/xoff or etx/ack printer, you'll have to send enough characters at one time to fill up the print buffer.

Driver Installation Summary. Once you become very familiar with this installation process, this is what you'll be typing on-screen. (We're assuming you aren't going to check memory at all with DDT.) Of course, memory size and the number of pages to SAVE will depend on your specific system.
A $>$ pip newbios.asm $=$ biosio. asm
You add your driver to NEWBIOS.ASM with a word processor and then store the revision as NEWBIOS.ASM:

A > asm newbios
A $>$ movepm 56 *
A > save $45 \mathrm{cpm} 56 . c o m$
These last two steps won't be needed every time.

> A >ddt cpm56.com
> -inewbios.hex
> -r4d80
> $-g 0$

A > save 45 cpm 56 n.com
A > sysgen.
That's all there is to it. By going through this procedure a few times, you'll be gaining valuable understanding of the BIOS in general and experience in manipulating it according to specific needs.

Comes the End. This concludes our series, which was excerpted and condensed from the forthcoming book The Soul Of $C P / M$. We've covered here only highlights of portions of what the book covers in greater detail. We hope you've enjoyed your journey through the fascinating realm of CP / M and have added considerably to your knowledge of this powerful popular operating system for small computers.

Samman 16BIT MICROCOMPUTER TECHNOLOGY

 Part 6: How to Use Machine Language Programming By George Meyerle

Previous articles in this series should have convinced you that, before you can understand, repair, or design microcomputers that use the latest generation of hardware, you must have had at least an introduction to machine/assembly language programming. By using machine language subroutines in conjunction with BASIC or other high-level languages, it is possible to increase execution speed and, in some cases, allow operations that are not possible using the high-level interpreter alone. This month we will discuss how to learn ma-chine-language programming painlessly

TABLE VI-I/O PARAMETER SETTINGS

Baud rate	S1-3	S1-2	S1-1
110	On	On	On
150	On	On	Off
300	On	Off	On
600	On	Off	Off
1200	Off	On	On
2400	Off	On	Off
4800	Off	Off	On
9600	Off	Off	Off
Parity disabled: S1-4 on			
Parity enabled: S1-4 off			
Parity odd: S1-5 on			
Parity even: $\mathbf{S 1 - 5}$ off			

and we will gain some practice using it with the monitor program resident in the IBM-compatible, 16-bit Explorer 88/PC microcomputer.

Quickly reviewing the design of the Explorer 88, recall that it can be set up to operate in 3 different modes. The first, and least expensive mode ($\$ 400$), allows accessing the monitor program using a standard terminal connected to the RS232 port. The second choice (about $\$ 600$ more) is to add an IBMcompatible keyboard, color board, and either a color or black/white monitor. This gets you that much closer to being truly IBM-compatible. The next step involves the addition of a floppy-disk card and up to four floppy drives. At this point, you can run IBM-PC DOS or any of the many IBM-compatible disk operating systems, including Digital Research CP/M-86, all of which include fine monitor or debugging programs. The following applies to any configuration selected.

Monitor Programs. In its simplest form, a monitor program is a collection of routines that allow programs to be generated, tested, modified, and saved for future use. The original microcomputer monitors consisted of a front panel array of switches and LEDs that allowed access to the CPU and memory.

However, the flashing LED approach was hard to use and scared away many casual observers. On the other hand, ROM-based monitors, including that used in the Explorer 88, are easy to use and understand; and, with a litle practice, you should be able to write short programs in 16-bit 8088 machine language. Since it is not practical to write long programs or subroutines without the help of an assembler, once the basics are learned, it is suggested that you invest in one of the many available assembler programs.

Monitor Overview. All 8088 microprocessors auto-boot on power-up or reset to location FFFF0H. This location, in the Explorer monitor, contains a jump to location FEOOOH which is the beginning address of the upper-most 8 K of ROM and of the monitor program

TABLE VII-MEMORY MAP

$00000-0 F F F F$	RAM
FE000-FFFFF	ROM
$00000-00003$	Divide-by-zero interrupt
$00004-00007$	Single-step interrup
$00010-00013$	Overflow interrupt
$0000 \mathrm{C}-0000 \mathrm{~F}$	Monitor-trap
$00010-0002 F$	System
$00030-00033$	UART interrupt
$00034-0 F E F F$	System

Fig. 18. Flowchart of the monitor program.
whose flowchart is shown in Fig. 18. Note in this flowchart that, before the program is ready to accept commands from the keyboard, a preliminary hardware check is made. If any hardware test fails, the CPU is automatically halted. The program begins by checking the CPU. All registers, including the flags, are tested. If they are OK, the program continues with a PROM check-sum
test. This adds the contents of all 8 K of ROM and compares the results with the correct answer.

The next component tested is channel 1 of the timer. If the timer test is OK, channel 1 is programmed to provide the refresh clock signal to the DMA controller. Next the DMA controller is tested. The count and command registers are tested by writing various pat-
terns and then checking the results by reading the registers. If all tests are passed, the count register is set for a 64 K system and channel 0 is enabled so that the RAM refresh process can begin.

The program then sets up the interrupt controller mode registers and masks off all interrupts. This is followed by the initialization of the 8255 system and timer control ports. The monitor then sets up the data and stack segment registers and the stack pointer. It also clears the console input and output buffers. The 8250 UART is then initialized. This process involves reading the switch \# 1 at port B of the 8255 . These switch settings determine the baud rate and parity selections (Table VI) to which the UART will be initialized. The monitor also downloads the interrupt jump vectors to the lowest locations in RAM as shown in the memory map in Table VII. Note that the top 256 bytes in the first 64 K bank are reserved for the stack and other monitor operations.

After testing the hardware and setting the UART, the monitor idles at the Command Entry Point awaiting entries from the keyboard. The program is set up so that it will only accept valid commands. All invalid entries will result in the display of "??" and the abortion of the process attempted. Valid commands are:

D Display memory contents
R Register display/modification
B Block move of memory
M Memory modification/ display
I Input one byte from an I/O device
O Output one byte to an I/O device
CO Cassette output from memory to cassette
Cl Cassette input from cassette to memory
T Trace instructions
TR Trace instructions with register report
G Go run from memory with optional breakpoint
GR Go run from memory with optional breakpoint and register report
HT Hardware tests of ROM,
RAM, cassette, interrupt controller, timer, DMA controller and UART.

In future issues, we will show how to use the ROM-based monitor in practical programming.
(To be continued)

TELETEXT EXPERIMENTS BY NETWORK

Computers may cover the world on this latest communication network, now being tested in the U.S.

By Leslie Solomon

While we computer types have been busy designing new computers and putting new software together, others have also been very busy (and very quiet) doing something that might affect the future of computing as we know it.
A couple of times during the past few years, I have written about signal activity during the vertical interval of the NTSC TV signal. To see this interval and the activity, all one has to do is adjust the vertical speed of any TV receiver until the wide, dark horizontal bar appears in the display area. This dark bar is the vertical interval and it occupies some 20 horizontal lines. If you look at the lines immediately above the picture, you will see several strangelooking sets of dots and bars, some in color and some appearing to be in motion. If you have a good scope and access to the receiver video signal, you can take an even closer look at the interval between the vertical sync and the begin-
ning of the next field's video information.

Until recently, the vertical interval contained engineering test signals such as multiburst, color bar test, a composite test signal, VIR (for auto color setting), and various forms of digital test signals used by the networks-nothing very exciting except for those people interested in such doings.
Most of us have heard of "Teletext," and usually associated it with happenings in European TV-the BBC has been using it for years, and the French have been involved with their Antiope approach. Some might have even been aware that there is some Teletext activity next door in Canada, and that Japanese stations were testing a form of this new digital signal.

Now, Teletext is here in the USA, and being tested by NBC and CBS. If you take a look at lines 15 through 18 of the current vertical interval being teansmit-

Top and center are Teletext signals on NBC and CBS respectively. At bottom are closed-caption signals on PBS.
ted by these networks, you will see some full lines of very busy signals. An example of each is shown in the accompanying photos. The Teletext signals occupy the four horizontal line intervals leading up to the conventional test signals. (If you are looking at the interval on a TV receiver, the Teletext signals are those "grassy" lines slightly above the top of the picture.) These signals are not to be confused with the closed captioning currently used by ABC and PBS as an aid to the deaf.

According to the North American Broadcast Teletext Specification, this activity may be extended to encompass lines 10 through 14 , and may even reach the full field. Hardware people should keep in mind that this data is being transmitted through a $4-\mathrm{MHz}$ channel (begins to look like a disk to you?).

What is being transmitted? At the present, only test data. But even this can consist of a very large number of pages, selectable via a hand control attached to the TV decoder. The user can page through the system in the same way as paging through the menus on The Source, Compuserve, or any other data base, and thus pick and choose his/her subjects. Unlike the data base, the received data can be in color, and even reasonably high-resolution color graphics can be displayed (using the color-TV receiver as the monitor). And there is almost no end to the number of pages that can be sent. Page updating can occur in real time as fast as someone can type.

It is not beyond the range of probability that a computer can be used to download data from this TV source, with all types of software being made available. Furthermore, with a telephone attachment, interacting (or even data storage) can be attained. One other thought: now that we have batterypowered TV receivers, battery-powered computers, and direct satellite-to-home TV in the offing, we are in a position to have worldwide software distribution. Computers will really cover the world in the very near future, even if you are in a canoe paddling up the Amazon.

We shall have to keep an eye on further Teletext operations.

Flat-Panel Displays
A Tunable $60-\mathrm{Hz}$ Hum Filter
By Forrest M. Mims, III
Flat-Panel Displays
Will Revolutionize Information Processing

More and more new products are exploiting the rapidly advancing state of liquid-crystal and other flat-screen display technologies. These products will revolutionize the way many of us process information both at home and at work.

They will, for instance, make "personal" computers truly personal. After all, have you actually considered as "personal" a computer system that fills a tabletop with its television monitor, keyboard, disk drives, and other paraphernalia, all connected by a bird's nest of cables and wires?

Portable computers with all the features of today's desktop units will be made possible in part by large-capacity liquid-crystal and other flat-panel displays. Applications for these portables will go beyond the standard word-processing, spreadsheet, and communications packages. For example, a portable computer with a flat-panel display could be used as an oscilloscope

The display on the new Radio Shack Model 100, for example, has 64 by 240 or 15,360 elements or pixels (Fig. 1), This is more than adequate for a lowresolution solid-state oscilloscope. Indeed, many of you may recall the series of "Experimenter's Corner" columns several years ago in this magazine in which I described various kinds of do-ityourself flat-screen LED oscilloscopes The maximum resolution of those simple scopes was only 10 by 16 elements.

Considering the peripherals already available for existing personal computers, one can envision a new family of highly sophisticated peripherals for the new generation of portable computers represented by machines like the Model 100.

For example, consider the Model 85 aScope ${ }^{\text {t" }}$ module that transforms the Apple II into a powerful, programmable dual-trace oscilloscope with memory capability and a $50-\mathrm{MHz}$ bandwidth. This computer accessory, which is made by Northwest Instrument Systems, Inc. (PO Box 1309, Beaverton, OR 97075), and others like it have greatly expanded the potential role of personal computers and, at the same time, alarmed makers of conventional test equipment. And if the conventional test equipment companies are worried now, just wait until instrumentation peripherals become available for the portables (rest assured they will).

Hopefully by now you can understand my enthusiasm for the new flatpanel display technology. But you'll have to actually see and use a product with a large-capacity flat-panel display to fully appreciate the convenience and portability it offers. You'll probably have that opportunity soon, considering the rate at which new products are being announced. Meanwhile, let's examine some of the technical aspects of flatpanel displays.

Liquid-Crystal Displays. Thus far liquid crystals are dominating the commercial flat-panel display market. A few years ago makers of the comparatively simple liquid-crystal readouts used in digital watches took a beating due to severe competition. Many companies either abandoned or were forced out of the liquid-crystal readout business.

The market for high-resolution, flatpanel, liquid-crystal displays, however, was unaffected by this development.

The market for non-watch liquid-crystal displays, for example, more than doubled between 1980 and 1982.

Among the first commercial "highresolution" liquid-crystal displays was the 16 by 16 element unit used in Mil-ton-Bradley's "Blockbuster" handheld game. I was so impressed when this toy was introduced several years ago that I immediately bought one for my son. Today, of course, the resolution of the "Blockbuster" screen is downright primitive when compared to the 220 by 240 display elements (pixels) of Toshiba's handheld television receiver. This receiver's two-inch screen is made by applying a thin film of nematic liquid crystal to a 51.4 by $41.4-\mathrm{mm}$ silicon chip containing an array of 220 by 240 PMOS switching transistors.

A single pixel consists of a PMOS transistor and a capacitor. When the gate of the transistor is strobed by the video scan signal, the capacitor is charged to the appropriate video signal level. The capacitor holds its charge until refreshed by the next strobe signal.

Toshiba's researchers found that the electrodes that interconnect the picture element transistors must be highly reflective and as smooth as a mirror. Otherwise, undesirable scattering of light within the display would greatly reduce its apparent contrast. They eventually selected platinum for the reflective electrode since it appears very white and is therefore well suited for a black and white television display.

Figure 2 is a simplified block diagram of Toshiba's display chip. Note the presence of two gate bus drivers (to address the rows) and connections to both ends of the drain buses (to address the columns). This redundancy is part of a clever design ploy to salvage chips that may have defective bus driver elements or bus lines. Such built-in redundancy has become a standard design technique for very large scale integrated circuits

(VLSI), especially memory chips.
Figure 3 is a cross section of the edge of the Toshiba display. The silicon chip, which is very thin and fragile, is mounted on a very flat and sturdy glass substrate. A 10 -micron layer of mixed nematic liquid crystals is applied to the chip. The assembly is topped by a protective window that includes a transparent conductive film on its inner surface. This provides the display's counter electrode.

Since the chip includes its own gate bus drivers, actually multiplexers, only twelve bonding pads are necessary to access all 220 gate buses. Only one of the two gate bus drivers is used in prac-
tice, so only six of the bonding pads are required!

Toshiba's display is typical of what can now be done with high-resolution liquid-crystal flat-panel displays. Its display achieves a contrast ratio of $20: 1$ and has a response of only 30 ms . While I've not been able to determine the power consumption of the display alone, the complete miniature television receiver in which it is used consumes only 1.3 W . This is certainly higher than a portable radio of similar size, but it is less than the 1.8 W consumed by Sony's miniature television, which uses a flat cath-ode-ray tube.

After miniature computers and tele-
vision receivers, a third major market for flat-panel liquid-crystal displays is compact oscilloscopes. The pioneer in this field is England's Royal Signals and Radar Research Establishment. Display technology developed there has been used by Scopex, Ltd. to produce the Voyager flat-screen scope.

The Voyager has a screen resolution of 128 by 256 elements for a total of 32,768 pixels. Easily viewed in bright sunlight, an advantage shared by most liquid-crystal displays, the Voyager has a frequency response of 150 kHz and weighs 2.5 kilograms. It operates for up to 12 hours from self-contained rechargeable batteries.

Fig. 2 (above). Toshiba's liquid crystal display.
Fig. 3 (below). Cross section of Toshiba's LCD.
Fig. 4 (right). Construction of Sinclair flat CRT.

At $\$ 6000$ the Voyager is not intended for the general market. Instead, it's targeted for use in explosive atmospheres and for applications requiring the ultimate in portability. Considering the rapid advances in flat-panel display technology, I'm sure it's only a matter of time before compact battery-powered scopes with liquid-crystal displays become available for a few hundred dollars.

Other Flat-Panel Displays. Considerable work has been undertaken over the years to develop various kinds of flatpanel displays. Most effort has centered around the ubiquitous cathode-ray tube (CRT). Among the first firms to develop a viable flat-panel CRT for miniature equipment is England's Sinclair Research (Fig. 4).

In a conventional CRT, electrons are propelled at right angles toward a phos-phor-coated screen. In Sinclair's tube, the electron gun is located to one side of the phosphor screen. The electron beam is propelled across the surface of the screen and then bent toward the screen by an electrostatic field. The screen is viewed through a window coated with a transparent film of tin oxide which serves as one of the focusing electrodes.

According to Sinclair, since the observer views the phosphor screen from the side struck by the electron beam, the screen appears twice as bright as the screen of a conventional CRT having the same beam energy.

Though Sinclair Research announced in 1981 that it was entering a four-year program aimed at putting its miniature flat-screen CRT into volume production, Japan's Sony Corporation was the first company to introduce a miniature television receiver using a remarkably similar flat-screen CRT.

The operating principle of the Sony
tube is virtually identical to that of the Sinclair tube. The only significant difference between them is their physical appearance. The Sinclair tube is shaped like a flat rectangle. The electron gun of the Sony tube is enclosed in a neck-like extension projecting from one side of the square display portion of the tube. Figure 5 illustrates the physical difference between the two tubes.

Figure 6 shows a demonstration version of still another kind of flat-panel display, a plasma dot-matrix readout panel made by Sigmatron Nova (1901 Oak Terrace Lane, Thousand Oaks, CA 91320). The Sigmatron displays are available with from 1.3 to $150 \mathrm{~cm}^{2}$ of active display area. At least two versions are now in production. Model TE 1×32 is a 32 by 32 array having 1024 pixels, and Model TE 1×56 is a 56 by 56 array having 3156 pixels. Both arrays have an active display area of 2.6 by 2.6 cm .

These demonstration plasma panels are installed in an enclosure complete with $12-\mathrm{V}$ rechargeable batteries, ana\log and digital input ports, and microprocessor routines derived from an 8 K EPROM and a 4 K RAM. Demonstration routines include alphanumeric characters, graphics, scrolling, and a real-time oscilloscope. These are just some of the possibilities.

Because of the nature of their written language, Japanese companies have always been highly motivated to design very high-resoluion flat-panel displays. One of their latest entries in plasma display technology is a Sony panel with 512 by 1024 addressable dots for a total of 524,288 pixels! This remarkable display has a resolution of 127 lines per inch. It easily displays complex Chinese and Japanese characters and provides excellent graphics capabilities.

Other flat-panel display technologies are also being developed. Although con-
siderable work has been expended on light-emitting diode arrays, they require much more operating current than most other displays. More promising are electroluminescent and cathodoluminescent devices. We will probably hear more of this in the future.

Comparing Flat-Panel Displays.

Each of the various flat-panel technologies has relative advantages and disadvantages. Liquid-crystal panels use very little power and are ideal for batterypowered equipment. Furthermore, they are easily viewed in direct sunlight, something that surely cannot be said of some light-emitting displays.

On the other hand, liquid-crystal displays are relatively fragile and temperature sensitive. And they can sometimes be tricky to view. For example, the display of the Model 100 can be difficult to view when observed at some angles. When the external lighting is just right for the operator, others wishing to read the display may have to stand behind the operator.

Light-emitting diode displays have the potential of being much more rugged and having much longer operating lifetimes than other kinds of displays. But they are expensive to make and they use considerable current so their popularity depends on these factors.
Like liquid-crystal displays, plasma and cathodoluminescent displays are made largely from glass and are therefore fragile. Worse, these displays require considerably higher operating voltages than those using liquid crystals or light-emitting diodes. This greatly increases the difficulty of designing suitable drive circuitry. Electroluminescent displays are sturdier than those that require glass packaging, but they, too, require relatively high drive voltages.
(Continued on page 100.)

Fig. 5. Comparison of Sinclair and Sony miniature, flat CRTs.

Take the mystery out of clectronics and computers

tronic circuit works? How a computer computes? What to look for when buying audio, video, communications or computer equipment?
You'll ind the answers to these ques-tions-and practically every other basic personal electronics question-in the 1983 Invitation to Electronics!
Invitation to Electronics is the complete guide to home electronics products from the Editors of Computers and Electronics magazine (formerly Popular Electronics). With photographs, drawings and detailed articles, it explains the inner workings of:

PERSONAL COMPUTERS.

What a computer is and how it works ... the truth about computer intelligence... memory ...peripherals...software ...disk drives ... printers...modems...languages ... pocket computers... features of the newest models of microcomputers.

AUDIO EQUIPMENT.

How should systems get the music to your ears...amplifiers...preamps... ...turntables...receivers...tuners...cassette decks ...speaker systems...headphones ...signal processors...car stereos...the new compact optical discs...microcassette...how to choose audio components.

VIDEO EQUIPMENT.

Videocassette recorders and videodiscs
and how they work ...the difference between Beta and VHS formats ...optical versus capacitance electronic disc videodiscs...home satellite television...how a television set creates its image ...component television...projectiontv... how stereo tv will revolutionize the field.

HOBBY COMMUNICATIONS

GEAR.
The two basic elements of any communications system...the superhet receiver...why you need an antenna ...shortwave receivers...DXing (picking up broadcasts from around the world)...public safety scanners...CB ...marine and ham radio.
PLUS: You'll learn all about electronic circuitry...components and how to identify them...integrated circuits and "microchips"... how to solder and desolder ... how to build projects ...sample
projects. And, there
are complete glossaries of audio and computer technical terms!

Invitatior to Electronics. It contains everything you need to know to get staried in the exciting world of electronics anc computers. Order your copy today!

ONLY \$3.95!

INVITATION TO ELECTRONICS
 CN 1914 • Morristown, NJ 07960

Please send me INVITATION TO ELECTRONICS. I enclose $\$ 4.95$ ($\$ 3.95^{*}$ plus $\$ 1.00$ postage and handling). $\$ 6.00$ outside U.S.A.
Mr./Mrs./Ms \qquad
Address
(please printfull name)
Addres \qquad State

[^3]
An Easily Adjusted Switched-Capacitor $60-\mathrm{Hz}$ Hum Filter

In the "Project of the Month," in September 1982, I described two active notch filters designed to block $60-\mathrm{Hz}$ hum. Both these fitters used a single operational amplifier and six or seven outboard resistors and capacitors.

Newly developed switched-capacitor filters such as National Semiconductor`s MF-10 can provide improved 60 Hz hum rejection. A basic $60-\mathrm{Hz}$ notch filter requires only thee external resistors and no capacitors. A 300- or 600Hz clock signal is required, however, so there are no component savings over conventional op-amp $60-\mathrm{Hz}$ notch filters.

Though they are more expensive than conventional op-amp active filters, the center frequency (f_{o}), gain, and Q of a switched-capacitor notch filter are all easily adjusted. This means virtually any degree of $60-\mathrm{Hz}$ rejection can be

FOR ORDERS OMLY! TOLL FREE (800) $221-0828$

FOR ORDERS OALY TOLL FREE- 800-221-0828 Circle No. 18 on Free Information Card

Fig. 7. Switched capacitor $60-\mathrm{Hz}$ hum filter.

Fig. 8. Frequency response of filter in Fig. 7.
achieved. Furthermore, a switched-capacitor notch filter designed for $60-\mathrm{Hz}$ rejection can be easily retuned to reject any frequency up to 30 kHz .

How it Works. Figure 7 is the circuit for a straightforward $60-\mathrm{Hz}$ notch filter designed around the MF-10. The filter, which is operated in the inverting mode, provides a voltage gain of $-R 2 / R 1$. The Q is $\mathrm{f}_{\mathrm{o}} / \mathrm{BW}$ (bandwidth at the -3 dB points).

The solid line in Fig. 8 is a logarithmic plot of the frequency response I measured for the circuit in Fig. 15. The dashed line in Fig. 8 is a logarithmic plot of the filter's response when $R 2$ is reduced to 1 K . This simultaneously reduces the gain to -0.1 and increases the Q 1010

Notice the excellent sharpness of the second notch. Note also that both notches are precisely centered at 60 Hz and that theirstopband and notch maxi-
mums are separated by 20 dB . (A volt age gain of 1 is 0 dB , and a voltage gain of ± 0.1 is -20 dB .)

The filter is calibrated by setting the clock adjust potentiometer $(R 5)$ to 100 times the desired notch, f_{0}, or about 6000 Hz . For best results, the filter should be fine-tuned with the help of a $60-\mathrm{Hz}$ signal coupled into pin 4 of the MF-10 via R1. Adjust $R 5$ while observing the $60-\mathrm{Hz}$ output waveform at pin 3 of the MF-10. The filter is precisely luned when the amplitude of the wave is at a minimum.

The clock frequency of the test circuit I built was 5964 Hz when the filter was fine-tuned for a maximum notch at 60 Hz . This corresponds to a clock fre-quency-to-f f_{0} ratio of 99.4:1. The MF10 BN chip I used is specified for a clock frequency-to- f_{0} ratio of $99.35: 1, \pm 0.6 \%$ (pin 12 low). The particular chip I tried in building my circuit was within 0.1% of the specified ratio.

engilish BROADCASTS Audiblein No. AMERICA
 (Continued from last month)

By Glenn Hauser

$\begin{gathered} \text { TIMEI } \\ \text { EST } \end{gathered}$	$\begin{aligned} & \text { TIME } \\ & \text { UTC/GMT } \end{aligned}$	STATION	QUAL ${ }^{2}$ FREOUENGIES, $\mathrm{kH}_{2}{ }^{3}$	
7:00 p.m.-4:00 a.m.	. 0000-0900	UN Radio	A	6055 (when in session)
7:05-8:55 p.m.	0005-0155	Spanish Foreign R.	8	11880, 9630
7:30-8:00 p.m.	0030-0100	R. Prague	C	6055
7:30-8:00 p.m. $(+)$) 0030-0100	R. Budapest	8	$17710,15220,11910,9835,9585$ $6025 \text { (Wed. \& Sat.) }$
7:30-8:00 p.m.	0030-0100	La Cruz del Sur, Bolivia	D	4875 (Mon. onty)
7:30-8:15 p.m.	0030-0115	BRT Beigium	C	11625,9880
7:30-8:30 p.m.	0030-0130	HCJB, Ecuador	A	15175
7:30-9:00 p.m.	0030-0200	R. Mexico	C	17765, 15430, 11770, 9705, 5985 (Sat.)
7:30-9:30 p.m.	0030-0230	SLBC, Sri Lanka	C	15425
7:30-9:30 p.m.	0030-0230	BBC	A	$\begin{aligned} & 15260,15070,11835,11750,9915 \text {, } \\ & 9515,9410,7325,6175,6120, \\ & 5975 \end{aligned}$
7:30-12:00 p.m.	0030-0500	HCJB, Ecuador	B	15155,9745
7:50-8:15 p.m.	0050-0115	Vatican Radio	8	11845, 9605, 6015
8:00-8:20 p.m.	0100-0120	RAI, Italy	8	11800,9575
8:00-8:25 p.m.	0100-0125	Kol Israel	A	11655, 9815, 7410
8:00-8:30 p.m.	0100-0130	R. Argentina	C	15345, 11710 (not Mon.)
8:00-8:30 p.m.	0100-0130	R. Japan	C	17755
8:00-8:30 p.m. (+)) 0100-0130	R. Budapest	B	17710, 15220, 11910, 9835, 9585, 6025 (not Mon.)
8:00-8:30 p.m.	0100-0130	La Voz de la Mosquitia, Honduras	C	4910
8:00-9:00 p.m.	0100-0200	R. Canada International	A	9755, 5960 (Tue.-Sat.)
8:00-8:50 p.m.	0100-0150	V. of Germany	A	15105, 11865, 9590, 9565, 9545, 6145, 6085, 6040
8:00-8:55 p.m.	0100-0155	R. Prague	B	$\begin{aligned} & 11990,11970,9740,9630,9540 \\ & 7345,6015,5930 \end{aligned}$
8:00-8:55 p.m.	0100-0155	R. Beijing	B	17855, 15120
8:00-9:00 p.m.	0100-0200	V. of Free China	C	17890, 15345, 11825
8:00-9:00 p.m.	0100-0200	V. of Nicaragua	B	5950
8:00-9:00 p.m.	0100-0200	R. Zinica, Nicaragua	C	6120 (variable; Tue.-Sat.) (time varies)
8:00-9:00 p.m.	0100-0200	VOA	A	21460, 17735, 7205, 6873-USB
8:00-9:00 p.m.	0100-0200	AFRTS, Los Angeles	A	$25615,21570,15430,15330,11790,$
8:00-10:00 p.m.	0100-0300	WRNO, Now Orieans	A	9705 (not all Eng.)
8:00-10:30 p.m	0100-0330	R. Australia	B	21740
8:00-11:50 p.m	0100-0450	R. Habana Cuba	B	17735,9525
8:20 p.m.-12:10 a.m.	m.0120-0510	R. Belize	C	3285, 834
8:30-8:40 p.m.	0130-0140	V. of Greece	8	11645, 9865,9420 (not Sunday)
8:30-8:57 p.m.	0130-0157	Austrian Radio	8	9770,5945
8:30-8:55 p.m.	$0130-0155$	R. Tirana	8	9750, 7120 , 1770
8:30-9:00 p.m.	0130-0200	R. Moscow	A	$\begin{aligned} & 17700,15425,12010,11780,11770 \text {, } \\ & 9710,9700,9610 \end{aligned}$
8:30:-9:15 p.m. (+)) 0130-0215	R. Berlin International	C	11975,9730
8:30-9:30 p.m.	0130-0230	R. Japan	C	21640, 21610, 17825, 15195
8:30-10:30 p.m.	0130-0330	AWR, Guatemada	C	6090, 12180, 18270, 24360, 30450
8:45-9:15 p.m.	0145-0215	Swiss R. International	A	15305, 11715, 9725, 6135
9:00-9:25 p.m.	0200-0225	Kol Israel	A	12025, 11655, 9815
9:00-9:30 p.m.	0200-0230	R. Canada International	A	9755, 5960 (Sun. \& Mon. also 15190, 11845, 9535)
9:00-9:30 p.m. t $^{\text {+ }}$)) 0200-0230	R. Budapest	B	$\begin{aligned} & 17710,15220,11910,9835,9585, \\ & 6025, \end{aligned}$
9:00-9:30 p.m. (t)) 0200-0230	R. Kiev	B	$17900,17860,15180,11770,11720$
9:00-9:40 p.m.	0200-0240	R. Polonia	C	15120, 11815, 9525, 7270, 7145, 6135, 6095 (length varies)
9:00-9:55 p.m.	0200-0255	R. Bucharest	C	$\begin{aligned} & 11940,11810,9690,9570,9550 \\ & 6155,5990 \end{aligned}$
9:00-9:55 p.m.	0200-0255	R. Beijing	B	15120
9:00-9:57 p.m.	0200-0257	R. RSA	8	9615, 6020, 5980
9:00-10:00 p.m.	0200-0300	VOA	A	21460, 17735, 7205, 6873-USB
9:00-10:00 p.m.	0200-0300	R. Moscow	A	$\begin{aligned} & 17700,15425,12010,11780,11770 \\ & 9700,9610 \end{aligned}$
9:00-10:00 p.m.	0200-0300	A. Nacional, Brazil	A	17830, 15290
9:00-10:00 p.m.	0200-0300	R. Korea	C	11575, 11810
9:00-10:00 p.m.	0200-0300	V. of Free China	8	11740 (via WYFR)
9:00-10:30 p.m.	0200-0330	R. Cairo	B	12000, 9475
9:00-11:00 p.m.	0200-0400	VOA to Latin America	A	$\begin{aligned} & 17640,15205,9650,6130,5995 \text {. } \\ & 1580 \end{aligned}$
9:00-11:30 p.m.	0200-0430	AFRTS, Los Angeles	A	$21570,17765,11790,6030$
9:00-12:00 p.m.	0200-0500	R. Australia	B	17795 10869 SSB 10454-SSB
9:15-9:30 p.m.	0215-0230	UN Radio	A	15435, 10869-SSB, 10454-SSB, 6190 (Sat.)
9:30-9:45 p.m.	0230-0245	R. Pakistan	C	21470, 21595, 17840
9:30-9:55 p.m.	0230-0255	R. Tirana	B	9750,7120
9:30-10:00 p.m.	0230-0300	RAE, Argentina	C	15345, 11710, 6060 (not Mon.)
9:30-10:00 p.m.	0230-0300	R. Sweden	B	11705, 15420, 17840-SSB
9:30-10:00 p.m.	0230-0300	R. Lebanon	D	11955
9:30-10:15 p.m. (+)	+ 0230-0315	R. Berlin International	C	11975, 11890, 11840, 9560
9.30-10.25 p.m.	0230-0325	R. Nederland	A	9590, 6165 (Mon. 0230-0320)

PREVENT HI-TECH HEADACHES

clean up interference.
curb damaging power line spikes and lightring bursts.

ISO-1 Isolator

3 isolated sockets; quality spike suppression; basic protection. . . $\$ 76.95$

1SO-3 Super-Isolator

3 dual isolated sockets; suppressor;
commercial protection.
1SO-17 Magnum Isolator
4 quad isolated sockets; suppressor: laboratory grade protection. . . 200.95

ASE\% Eleotronic Specialists, Inc.

171 S. Main St., Box 389 , Natick. MA 01760
Toll Free Order Desk 1-800-225-4876
MasterCard, VISA, American Express

CIrcle No. 51 on Free Informatlon Card

ENGLISH BROADCASTS

HP. 1OC Scientific
$H P-11 \mathrm{C}$ Psogrammable HP-12C Financial HP-15C Programmabie HP-16C Hexadecimal HP-41C Alpha Prog.. HP-4iCV Full Memory
HP-41 System Case HP-41 System Case

Por t-X-Tender 10	82104A Card Reader
149.99	82143A Printer... 82153A Wand HP.75C Computer 82700A 8K Mem tor 75C 82160A HP-IL Module 9499 HP-97 Desk Pior ROM Gall lor Low Prices on all Accestorles and Soltware

Texas inztrumenta $99 / 4 \mathrm{~A}$ C
Extended BASIC Module
Extended BASIC Module
Peripheral Expansion Box
Exeripheral Expansion
Disk Controller Card
Expansion Box Disk Drive
Compact Computer 40

18999
8999
9.95
REBATE

189.99
2499

${ }_{199.99}^{2499}$ ON 99/4A

Ollvettl Praxis 35 Triple.pitch Electronic Typewriter
Shapp PC-1250 Pocket Extended BASIC Computer CE- 125 Printer/Microcassette for PC-1250 PC-1500 Advanced Handheid Computer. CE-150 Cassette Intric/ 4-color Printer-Plotter CE-151 4K Memory Expansion for PC-1500
CE- 155 BK Memory Expansion for PC-1500 CE-158 RS-232C \& Parallel Interface for PC-1500 CE-159 \&K Memory Expans with Battery Back-up

FX-702P Handheld Computer, 1680 Steps FA-2 Cassette Interface for FX. 702 P FP-10 Printer for FX-702P FX-602P Alph anumeric Programmabie. 512 Steps MI-45 Keyboard with Chords. Bass. Rhythms. MT-65 Home Entertainment Keyboard CT-701 Advanced Electronic Memory Organ Call us for low prices on tamous Casio digital wathes! Pari. 5904 Two-speed. Two-hour Recorder... S901 Two-speed. Two-hour Tape Counter
s801 Two-speed. Compact. Memory Hewind X-01 Ultra-thin All Electronic
SR- 11 FM Stereo Microcassette w/Headphone Olympus Pearlcorder Microcassettes...... 10 for 24.99
 CA res auc Os Subject to avaliability. USA prxes
ORDER
800-421-5188

am's Inc, Dept CE-8 14932 Garfleld Ave Paramount, CA 90723 (213) 633-3262

Circle No. 42 on Free Information Card

CONVERTERS

Largest Selection

 of Equipment Available\$Bu' Warehouse Direct \& Save \$

36 channel
wired remote
converter only
\$8895

Send $\$ 2$ for complete catalog of converters and equipment Quatity Discount • Vind • Manct (harge Add 5%, hipping - Mich residermade $4 \sigma_{0}$ salks lan

9:30-10:30 p.m. 0230-0330 BBC

9:51-9:58 p.m. $(+) \quad 0251-0258 \quad$ V. of Yerevan 10:00-10:25 p.m. 0300-0325 R. Polonia
10:00-10:25 p.m. 0300-0325 R. Mexico
10:00-10:30 p.m. $(+$)0300-0330 R. Budapest

10:00-10:30 p.m. 0300-0330 R. Japan
R. Canada Internationa

10:00-10:30 p.m. 0300-0330 R Portuga
10:00-10:30 p.m. 0300-0330 \quad R. Australia to Antarctica 10:00-10:50 p.m. 0300-0350 V. of Free China 10:00-10:55 p.m. 0300-0355 R. Prague

10:00-10:55 p.m. 0300-0355 R. Beijing 10:00-11:00 p.m. 0300-0400 VOA 10:00-11:00 p.m. 0300-0400 TIFC Costa Rica 10:00-11:00 p.m. 0300-0400 F. Bree China

10:00-11:00 p.m. 0300-0400 HRVC, Honduras 10:00-11:00 p.m. 0300-0400 R. Uganda 10:00.1.00 p.m. $0300.0400 \quad$ V. of Turkey $10: 00-11: 30 \mathrm{p.m}$. $0300-0430$ VOA to Africa

10:00-12:00 p.m. 0300-0500 WRNO. New Orleans $10: 00$ p.m. $200 \mathrm{a}(+) 0300-0700$ R. Moscow

10:25 p.m.-fade	0325.	A. One, Zimbabwe
10:30-10:55 p.m.	0330-0355	R. Tirana
10:30-10:57 p.m.	0330-0357	Austrian Radio
10:30-11:00 p.m.	0330.0400	U.A.E. Radio, Dubai
10:30-11:30 p.m.	0330-0430	R. Cultural, Guatemala
10:30-11:30 p.m.	0330.0430	BBC
10:30 p.m. 1:00 a.m.	0330-0600	R. Habana Cuba
10:40-10:47 p.m.	0340-0347	V. of Greece
10:50-11:10 p.m.	0350-0410	RAI, italy
11:00-11:30 p.m.	0400-0430	R. Bucharest
11:00-11:30 p.m.	0400-0430	R. Norway
11:00-11:55 p.m.	0400-0455	R. Beijing
11:00-12:00 p.m.	0400-0500	R. Sofia
11:00-12:00 p.m.	0400-0500	V. of Nicaragua
11:00-12:00 p.m.	0400-0500	R. Australia
11:00-12:00 p.m.	0400-0500	FEBA, Seychelles
11:00 p.m. 1:00 a.m.	.0400-0600	VOA
11:00 p.m. 1:00 a.m.	.0400-0600	TWR, Bonaire
11:15 p.m. -11:30 p.m.	.0415-0430	A. France Int.
11:30-1 1:57 p.m.	0430-0457	Austrian R.
11:30-12:00 p.m.	0430-0500	VOA to Atrica
11:30-12:00 p.m.	0430-0500	Swiss R. International
11:30-12:00 p.m.	0430-0500	RAE Argentina
11:30 p.m.-12:45 a.m.	.0430-0545	BBC
11:30 p.m.-1:00 a.m.	.0430-0600	AFRTS. Los Angeles
11:30 p.m.-1:30 a.m.	0430-0630	TWR, Swaziland
11:45-12:00 p.m. (+)	0445-0500	R. France International
11:55 p.m.-3:00 a.m.	.0455-0800	V. of Nigejla
12:00-12:15 a.m.	0500-0515	Kol Israel
12:00-12:20 a.m. $(+)$	0500.0520	Vatican Radio
12:00-12:30 a.m.	0500-0530	R. Japan
12:00-12:30 a.m.	0500-0530	R. Norway
12:00-12:45 a.m.	0500-0545	R. Nationale, Cameroons
12:00-12:50 a.m.	0500-0550	V. of Germany
12:00-1:00 a.m.	0500-0600	R. Korea
12:00-1:00 a.m.	0500-0600	R. Australia
12:00-1:00 a.m.	0500-0600	VOA
12:00-2:00 a.m.	0500-0700	HCJB Ecuador
12:00-3:00 a.m.	0500-0800	A. Kuwalt
12:00-3:00 a.m.	0500-0800	R. Nigeria, Kaduna
12:30-12:40 p.m.	0530-0540	R. Garoua, Cameroon
12:00-5:00 a.m.	0500-1000	WRNO, New Orleans
12:30-1:00 a.m.	0530-0600	R. Portugal
12:30-fade	0530-	R. Ghana
12:30-1:15 a.m. (+)	0530-0615	R. Berlin International
12:30-1:25 a.m.	0530-0625	R. Nederiand
12:30-1:30 a.m.	0530-0630	Spanish Foreign R.
12:45-1:00 a.m.	0545-0600	UN Radio
12:45-2:30 a.m.	0545-0730	BBC
12:55-3:25 a.m.	0555-0825	V. of Malaysia
1:00-1:30 a.m.	0600-0630	V. of Germany
1:00-1:30 a m.	0600-0630	R. Australia
1:00-2:00 a.m.	0600-0700	AFRTS, Los Angeles
1:00-2:00 a.m.	0600-0700	VOA
1:00-2:30 a.m.	0600-0730	R. Kiribati
1:00-2:30 a.m.	0600-0730	Solomon IsI. Broadcasting
1:00-2:30 a.m.	0600.0730	VOA to Atrica
1:00-3:00 a.m.	0600-0800	WYFR
1:00-4:00 a.m.	0600-0900	A. Cook Istands
1:10-2:10 a.m.	0610-0710	V. of Free China
1:15-1:30 a.m.	0615-0630	R. Canada International
1:25-3:40 a.m. (+)	0625-0840	TWR, Monte Carlo
1.30-1.45	0630-0645	RTVC, Congo

1:30-1:45 a.m. 0630-0645 RTVC Congo

A (15070 trom 0300) 11750, 9915. 9515, $9410,7325,6175$ 6120, 5975
B $\quad 17900.17870,15180$
C $15120,11815,9525,7270,7145$, 6135, 6095 (length varies) 17765, 15430, 11770, 9705, 5980 (Sun.)
$17710,15220,11910,9835$, 9585, 6025 (MOn; 0300-0312 Wed. \& Sat.)
C 17755 -9755,5960 11925,9765
17750 (Fri) 17800 15345, 11825 11990, 11970, $9740,9630,9540$ 7345,6015, 5930 $17855,17680,15520$
21460, 17740, 9670, 7200, 6040 21460, (Mon. 0235-0435) 5985 (via WYFR)
Some of: 21585, 15400, 11935. 9745
4820 (Mon.)
15325 (irregular)
$9585,7270,5980,4990,3230$ 15752-USB, 15240, 15185, 15175, 10877.5-USB, 10869-USB, 7280 , 6035
A $\quad 6185$ (not all Eng.)
17900, 15425, 15180, 15100
(12050 from 0330; 11750 and 11710 from 0530)

$C \quad 3396$ (exc. Sun.)

7300,6200
9770,5945
17775. 15300 (length varies)

3300 (Mon. 0030-)
15070, 12095, 9410, 6175, 5975
11760, 17735
11645, 9865,9420 (not Sun.)
17795, 15330, 11905
11940, 11810, 9690, 9570. 9550
6155, 5990
15175, 11870, 9610 (Mon.)
17680, 15120

1 1860 \dagger

5950
$21680,21650,17795,15320,15160$
11800, 15200 (Sat. \& Sun.)
15205, 9670, $7200,6040,5995$
9535,800 (length varies)
7135, 11735, 11875
15165, 11665
15752-USB, 15240, 15185, 15175,
10869.USB, 7280, 6035

11715, 9725
15345, 11710, 6060 (not Mon.)
15070. 12095, $9510,9410,7160$.

6175, 5975
11790, 15330, 6030
7925, 3200
9795. 11735, 11875

15185, 15120
$21710,15585,12025,15105,9815$,
$6185,9645,11725,15190$
15300
17840, 15175, 11870 (Mon.)

11905, 11705, 9690, 9545, 5960
5575, 11820, 11810
$21680,17870,17725,15240,15160$
15752-USB, 15345, 15185,
10869-USB, 7280, 6035
$11910,9745,6095$
15345
4770 (not all Eng.)
5010
6185 (Sun) (not all Eng.)
9575, 6075 \dagger
3366 (4915 from 0600)
11890, 9560
9715, 6165 (Mon. 0530-0620)
11880, 9630
15105, 11740 (Sat.)
15070, 11955, 9640, 9510, 9410,
15295, 12350
15295, 12350, 9750
$17875,15275,11905,11765,9700$ 21680, 17795, 17755, 15160, 9570 15205, 9670, 7325,7200 , 6060 15205, $670,7325,7200,6060$, 16433-SSB

15752-USB, 15345, 15330, 11915 10869-USB, $9530,7280,6125$, 10869-USB,
A $\quad 15130,11805,9680$
A $\quad 11760$, or 9695 or 5045
(not all Eng.)
A $\quad 11960,11825,11775,9760,6140$ (Mon-Fri)
9492.5 (Sun. 0625-1000)

9715 (Mon.-Fit.) (irr.)

1:30-2:00 a m.	0630-0700	R. Australia	B	$\begin{aligned} & 21680,17870,17725,15240,15160, \\ & 15115,9570 \end{aligned}$
1:30-2:00 a.m.	0630-0700	Radio Polonia	8	9675, 7270
1:30-2:30 a m.	0630-0730	R. RSA	C	17780, 15220, 11900
1:30-2:00 a m.	0630-0800	17. Habana Cuba	A	11725 (1)
1:45-2:00 a m.	0645-0700	R. Canada International	B	$\begin{aligned} & 11960,11825,11775,9760,6140 \\ & \text { (Mon.-Fri.) } \end{aligned}$
1:57-4:55 a.m.	$0657-0955$	V. of Philippines	C	9578 (not all English)
2:00-2:15 a.m.	0700.0715	R. Japan	C	15300, (15235 via
2:00-2:20 a.m.	0700-0720	R. Nederland	C	Portugal) $21480,15560,1+930,9895$
2:00-2:30 a.m.	0700-0730	Swiss Radio International	C	$21520,15305,9560,9535$
2:00-3:00 a.m.	0700-0800	ELWA, Literia	C	11830
2:00-3:00 a.m.	0700-0800	\checkmark of Vietnam	C	9840
2:00-3:30 a.m.	0700-0830	HCJB, Ecuador	C	11835†, 9720†
2:00-4:00 a.m.	0700-0900	R. Australia	B	15115, 12290-SSE (9570 to 0800)
2:00-6:00 a.m.	0700-1100	HCJB. Ecuador	C,	11925, 6130, (9745, 0700-1030)
2:10-2:15 am.	0710-0715	UN Radio	A	17815, 15195, 11875, 9555 (Sat.)
2:30-3:25 a.m.	0730-0825	A. Nederland	B	9770, 9715
2:30-4:00 a.m.	0730-0900	BBC	B	15070, t 1955, 9640, 9510
2:30-6:30 a.m.	0730-1130	Solomon isl. Broadcasting	C	5020 (not all Eng.)
2:30-9:00 a.m. (-)	0730-1402	ABC Melbourne	C	9680
2:30 a.m.-fade	0730	Action Radio, Guyana	c	5950
2:45-4:30 a.m.	0745-0930	KTWR, Guam	B	11840
3:00-3:15 am. (t)	0800-0815	AWR, Portuga	C	9760 (Sun.)
3:00-3.15 a.m.	0800-0815	UN Radio	A	17860. 15235, 15120,11740 (Sat.)
3:15-3:30 a.m.	0815-0830	R. Vanuatu	D	7260, 3945
3:30-4:25 a.m.	0830-0925	R. Nederland	B	9715
3:30-5:00 a.m.	0830-1000	FEBC, Philippines	C	11890
3:30-7:15 a.m. (-)	0830-1215	R. New Zealand	C	15485, 9620
3:45-4:45 a.m.	0845-0945	R. Japan	C	15235, 11875
24 Hours	24 Hours	CFRX, Toronto	C	6070
24 Hours	24 Hours	WWV, Colorado	A-B	20000, 15000, 10000, 5000, 2500

Explanatoryivotes

1. Times in first column are CDT. For EDT add 1 hour; MDT subtract 1 hour; PDT subtract 2 hours. Days of week
. Quality. A-Strong signal and very reliable reception. 8-regular reception. C-occasional reception under fa vorable conditions. D-rarely audible. These ratings are for locations in the central USA European and African stations are in general, more relably received in eastern North America. Asian and Pacific stations are more reliably received in western North America. North American stations are received well except in areas too close to the ransmittersire
. The information in the listing is correct to press time. However, frequencies and schedules are constantly changing. Listen to "SWL Digest" on R. Canada International for late changes. Friday at 2240 Saturday at 2135: Unday at 1930: GMT Mondays at 0206; and to "World of Radio" on WRNO, GMT Sundays at 0230 and 2330. R.-Radio; V.-Voice

+) = time one hour later after DST period (Europe, last Sunday in Sept.; Soviet Union, Oct.1:Canada and USA ast Sunday in Oct.)
$(-)=$ time one hour earlier during southern hemisphere DST (starting last Sunday in Oct.)

ACCESSORIES FOR TIMEX Einclair 1000 and ZX81
 TIMEX Ginclair 2040

BOOKS

30001 Natlonal CMOS Data Book (f981)
30003 National Linear Data Book (1982) $\$ 11.85$
30008 National Memory Data Book (1980) S6.85
3000 (aba pages) RAMs, ROMs, RROMs. EPROMS Series
Inlırsil Dala Book (1983)
(1356 pages) Complete In
30010 National AudioiRadio Handbook (1980)
55.95
Stereo. Power Amps

11 Nation al Lins ar Application Mandbook (1980)....... 515.95
$30012 \begin{aligned} & \text { National PAL Dara Book (1982). } \\ & (176 \text { Dages) Application Noles, Linear Briets, etc. }\end{aligned}$
30013 Zllog Data Book (1983)
$2 \mathbf{2} 0830$ Intel Memory Components Handbcook (1983),
(798 pages) Contains all Appllcatlon Notes, Aricile

ATARI

RS232 SERIAL SELECTO-SWITCH - Swithes all lines of asynchronous data - Eas
serial ports - Connectors are temale 0825 type
$\begin{array}{ll}\text { GRS232-AB } & \text { 2.Way Switch } \$ 139.95\end{array}$ GRS232.ABC 3.Way Switch $\$ 179.95$
DB25 PARALLEL SELECTO-SWITCH - TAS-80. Apple, and IBM compatitle - Switches 24 lines (Ine is ground) - Connectors are temale OB25 type GP24.AB 2-Way Switch $\$ 139.95$ GP24.ABC 3.Way CENTRONICS.STYLE SELECTO-SWITCH - Switches all 36 lines $\underset{\text { OEscription }}{\text { - Connectors are temale Centronics }}$ Palce

Micro-Logic Corp
MICRO-CHARTS

CONTROL DATA KEYBOARDS

* 7 -bit Parallel ASCI
* SPST Switching
* FTZ Shielded Base
* N-Key Rollover
* 128 Character ASCII
* Non-Slip, Non-Glare Keycaps
* CDC752 Terminal Keyboards

Attractive Case
Thase Control Data Keyboards consist of a base, cover, the keyboard assembly, and an intertace cable. Color (case): Harvest gold and black. Color (keycaps): Black,
blue, and red. Electrical requirements: +5 V (a) 600 mA , $-12 \mathrm{~V} @ 50 \mathrm{~mA}$, Size: $211 / 2^{\prime \prime} \mathrm{W} \times 9^{\prime \prime} 0 \times 31 / 2^{\prime \prime} \mathrm{H}$. Weight: 6 its. All units brand new in original boxes, specifications

Keytronics 90-Key Soft-Programmable Keyboard

 Part No. KB270
$\$ 79.95$ each

,

POWER SUPPLY 4-Channel Switching - Ap

$\$ 10.00$ Minimum Order - U.S. Funds Only
California Residents Add $61 / 2 \%$ Sales Tax
Shipping - Add 5% plus $\$ 1.50$ Insurance
Send S.A.S.E. for Monthly Sales Flyer!
Spec Sheets - 304 each

MasterCard

VISA

1355 SHOREWAY ROAD, BELMONT, CA 94002
8/83 PHONE ORDERS WELCOME - (415) 592-8097 Telex: 176043

JE664 EPROM PROGRAMMER K TO $64 K$ EPROMS - 24 AND 28 PIN PACKAG - PROGRAMS 2716's IN 16 SECONDS-- PROGRAMS 2764's IN 64 SECONDS -

 JE664-A EPROM Programmer $\$ 995.00$ JE665 - RS232C INTERFACE OPTION - The J J655 RS232C Interace
 JE664-ARS Eppom Prog, w/IE655 Optan $\$ 1195.00$ EPROM JUMPER MODULES - The JEG644's SUMMEA MODULE (Peesorozal

$\stackrel{\text { Part }}{\substack{\text { No }}}$	EPRom	EPRom manufacturer	Paice
23	$270{ }^{1}$	Amp, Molorea, vailional Ime Til	\$14.95
	S2	Iniel Metarcta, National. NEC.	95
	TM52716	Meturele. T 1 $\left(+5,+22_{2}+12\right)$	
	[M52532	Moterota, TI	81495
	2732		
		Fuilisu	
	MCM681764	Moto	518.95
	2764		
4c	2564		

iii's Black Hole EPROM Eraser 9 Chips - 8 minutas

 anming the 9 erases EPROMs and turns ot mewer
PART NO. PRICE

IBM MEMORY EXPANSION KIT

SAVE HUNDREDS OF $\$ \$ \$$ BY UPGRADING MEMORY BOARDS YOURSELF!

64 K . $128 \mathrm{~K}, 192 \mathrm{~K}$, or 256 K . The 18 M 64 K Kil will populite these boards nine $64 K$ RAM chips in ine provided sockets and set the two group

IBM64K (Nine 200ns 64K RAMs) \$59.95 EXPAND YOUR MEMORY TRS. 80 to $16 \mathrm{~K}, 32 \mathrm{~K}$, or 48 K
Model $1=$ From 4 K to 16 K Raquires (1) One Kit
Modal $3=$ Fram 4 K to 48 K Requires (3) Three Klts
Color $=\quad$ From 4K to 16K Requiras (1) One Kit Model 1 squipped wan Expansion Bosed up to aka Two kna hoquired

TRS-16K3 *200ns for Color \& Model III

TRS-80.Color 32K of 64K Conversion Kit

Easy to install kit comes complete with \& 8a. 4164.2 (200ns) 64 K
dynamic RAMs $\&$ conversion documentation Converis TRS computers with E circuit boards. \& all new color computers to 32 K .

TRS.64K2
$\$ 54.95$
51/4" Mini-Floppy Disk Drive FOR TRS-80 MODEL I. COLOR COMPUTER

FDD100-8. . \$169.95 ea.

4164 "repme

STATIC RAMS

2101	256×4	(450ns)	1.95
5101	256×4	(450ns) (cmos)	3.95
2102-1	1024 x 1	(450ns)	89
2102L-4	1024×1	(450ns) (LP)	. 99
2102L-2	1024×1	(250ns) (LP)	1.49
2111	256×4	(450ns)	2.49
2112	256×4	(450ns)	2.99
2114	1024×4	(450ns)	8/9.95
2114L-4	1024×4	(450ns) (LP)	8/12.95
2114L-3	1024×4	(300ns) (LP)	8/13.45
2114L-2	1024×4	(200ns) (LP)	8/13.95
2147	4096×1	(55ns)	4.95
TMS4044-4	4096×1	(450ns)	3.49
TMS4044-3	4096×1	(300ns)	3.99
TMS4044-2	4096×1	(200ns)	4.49
MK4118	1024×8	(250ns)	9.95
TMM2016-200	2048×8	(200ns)	4.15
TMM2016-150	2048×8	(150ns)	4.95
TMM2016-100	2048×8	(100ns)	6.15
HM6116-4	2048×8	(200ns) (cmos)	4.75
HM6116-3	2048×8	(150ns) (cmos)	4.95
HM6116-2	2048×8	(120ns) (cmos)	8.95
HM6116LP-4	2048 $\times 8$	(200ns) (cmos)(LP)	5.95
HM6116LP-3	2048×8	(150ns) (cmos)(LP)	6.95
HM6116LP-2	2048×8	(120ns) (cmos)(LP)	10.95
Z-6132	4096×8 ((300ns) (Ostat)	34.95

TMS4027 UPD411
 MM5280 MK4108 MM5298 $4116-300$ $4116-300$ $4116-250$ $4116-200$ $4116-200$ $4116-150$ $4116-150$ $4116-120$ 4116-120 2118
 4164-200
 4164-150

DYNAMIC RAMS

EPROMS			
1702	256×8	(1us)	4.50
2708	1024×8	(450ns)	3.95
2758	1024×8	(450ns) (5v)	5.95
2716	2048×8	(450ns) (5v)	3.95
2716-1	2048×8	(350ns) (5v)	5.95
TMS2516	2048×8	(450ns) (5v)	5.50
TMS2716	2048×8	(450ns)	7.95
TMS2532	4096×8	(450ns) (5v)	5.95
2732	4096×8	(450ns) (5v)	4.95
2732-250	4096×8	(250ns) (5v)	8.95
2732-200	4096×8	(200ns) (5v)	11.95
2764	8192×8	(450ns) (5v)	9.95
2764-250	8192×8	(250ns) (5v)	14.95
2764-200	8192×8	(200ns) (5v)	24.95
TMS2564	8192×8	(450ns) (5v)	17.95
MC68764	8192×8	(450ns) (5v)(24 pin)	39.95
$5 \mathrm{v}=$ SIngle 5 Volt Supply			

Z-80

$280-\mathrm{CPU}$
280-CTC
280-CTC
280-DART
280-DAR
Z80-DMA
280-PIO
z80-S10/0
$280-\mathrm{S1O} / 1$
280-SiO/2
280-SIO/9
4.0 Mhz
Z80A.CPU Z80A-CTC Z80A-DART Z80A-DMA
Z80A-PIO
Z80A-S10/0
Z80A-SIO/1
Z80A-SIO/2
z80A-S10/9
6.0 Mhz

Z808-CPU	11.95
Z80B-CTC	13.95
Z80B-PIO	13.95
Z80B-DART	19.95
ZILOG	
Z6132	34.95
Z8671	39.95

\section*{| CRYSTALS | |
| :--- | ---: |
| 32.768 khz | 1.95 |
| 1.0 mhz | 4.95 |
| 1.8432 | 4.95 |
| 2.0 | 3.95 |
| 2.097152 | 3.95 |
| 2.4576 | 3.95 |
| 3.2768 | 3.95 |
| 3.579535 | 3.95 |
| 4.0 | 3.95 |
| 5.0 | 3.95 |
| 5.0688 | 3.95 |
| 5.185 | 3.95 |
| 5.7143 | 3.95 |
| 6.0 | 3.95 |
| 6.144 | 3.95 |
| 6.5536 | 3.95 |
| 8.0 | 3.95 |
| 10.0 | 3.95 |
| 10.738635 | 3.95 |
| 14.31818 | 3.95 |
| 15.0 | 3.95 |
| 16.0 | 3.95 |
| 17.430 | 3.95 |
| 18.0 | 3.95 |
| 18.432 | 3.95 |
| 20.0 | 3.95 |
| 22.1184 | 3.95 |
| 32.0 | 3.95 |
| | |}

CRT CONTROLLERS	
6845	14.95
68845	19.95
HD46505SP	15.95
6847	11.95
MC1372	6.95
68047	24.95
8275	29.95
7220	99.95
CRT5027	39.95
CRT5037	49.95
TMS9918A	39.95
DP8350	49.95
KEYBOARD CHIPS	
AY5-2376	11.95
AY5-3600	11.95

3.95
4.49

8000

8000	
8035	5.95
8039	6.95
INS-8060	17.95
INS-8073	24.95
8080	3.95
8085	5.95
$8085 A-2$	11.95
8086	29.95
8087	$C A L L$
8088	39.95
8089	89.95
8155	6.95
$8155-2$	7.95
8156	6.95
8185	29.95
$8185-2$	39.95
8741	39.95
8748	24.95
8755	24.95

8200		6883 68047	22.95 24.95
8202	24.95	68488	19.95
8203	39.95	$6800=1 \mathrm{MHZ}$	
8205	3.50	68800	10.95
8212	1.80	68802	22.25
8214	3.85	68809E	29.95
8216	1.75	68809	29.95
8224	2.25	68810	6.95
8226	1.80	$68 \mathrm{B21}$	6.95
8228	3.49	68845	19.95
8231	call		5.95
8237	19.95	68850 6880	5.95
8237-5	21.95		

UARTS	
AY3-1014	6.95
AY5-1013	3.95
AY3-1015	6.95
PT1472	9.95
TR1602	3.95
2350	9.95
2651	8.95
TMS6011	5.95
IM6402	7.95
IM6403	8.95
INS8250	10.95
GENERATORS	
BIT-RATE	
MC14411	11.95
BR1941	11.95
4702	12.95
COM5016	16.95
COM8116	10.95
MM5307	10.95
FUNCTION	
MC4024	3.95
LM566	1.49
XR2206	3.75
B038	3.95

6800

68000	59.95
6800	3.95
6802	7.95
6808	13.90
$6809 E$	19.95
6809	11.95
6810	2.95
6820	4.35
6821	3.25
6828	14.95
6840	12.95
6843	34.95
6844	25.95
6845	14.95
6847	11.95
6850	3.25
6852	5.75
6860	9.95
6862	11.95
6875	6.95
6880	2.25
6883	22.95
68047	24.95
68488	19.95
6800	1 MHZ
68800	10.95
68802	22.25
$68809 E$	29.95
$68 B 09$	29.95
$68 B 10$	6.95
$68 B 21$	6.95
$68 B 45$	19.95
$68 B 50$	5.95
$68 B 00$	$=2$

74LS00

 74LSO1 74LSO274 LS03 74 LSO3
74 LSO4 $74 L S 04$
$74 L S 05$ 74LS05 $74 L S 08$
$74 L S 09$ 74LS 13 74LS14 74 LS15
74 LS 20
74 LS 2 74LS22 74LS 74LS

74 LS 3
74 LS 3
74LS00
.69
.55
24 7415173

74 LS17

 74LS 74 L

74LS00

74LS10 $\quad .29 \quad$ 74LS192 $\begin{array}{lll}74 \text { LSS11 } & .25 & \text { 74LS193 } \\ 74 \text { LSS12 } & .35 & 74 \text { S194 }\end{array}$ $74 L S 174$
$74 L S 175$ 74LS190 8.95
.89
.89 .89
.89
.79
$\begin{array}{ll}.25 \\ .25 & 7 \\ 24\end{array}$
$\begin{array}{ll}.24 & 7 \\ .25 & 7 \\ .28 & 7\end{array}$
$74 L S 194$
$74 L S 195$
$74 L S 196$
$74 L S 197$
$74 L S 196$
74197
74LS221
$74 L S 240$
$\begin{array}{ll}\text { 74LS241 } & .95 \\ \text { 74LS242 } & .99\end{array}$
$74 L S 242$
$74 L S 243$
$\begin{array}{lr}74 L S 243 & .99 \\ 74 L S 245 & .99\end{array}$
$\begin{array}{lr}74 L S 245 & 1.49 \\ 74 L S 247 & .75\end{array}$
$\begin{array}{ll}\text { 74LS248 } & .99 \\ \text { 74LS249 } & .99 \\ 74 L S 251 & 59\end{array}$
74LS251
74LS253
74LS257
74LS258
74LS259
$\begin{array}{rr}74 L S 266 & .59 \\ 74 L S 273 & 1.49\end{array}$
$\begin{array}{ll}74 L S 273 & 1.49 \\ 74 L S 275 & 3.35 \\ 74 L S 279 & 49\end{array}$
$\begin{array}{lr}74 L S 279 & .49 \\ 74 L S 280 & 1.98\end{array}$ 74LS28 74LS293

$74 L S 295$ | $74 L S 295$ | .99 |
| ---: | ---: |
| $74 L S 298$ | .89 |
| $74 L S 299$ | .75 | $\begin{array}{rr}74 L S 298 & .89 \\ 74 L S 299 & 1.75 \\ 74 L S 323 & 1.75\end{array}$

VISIT OUR RETAIL STORE

HOURS: M-W-F, 9-5 T-Th., 9-9 Sat. 11-3
please use your customer numeer when ordeaing TERMS: For shipping include $\$ 2$ for UPS Ground or $\$ 3$ tor UPS Blue Label Air. Hems over 5 pounds require addilional shipping charges. Foreign orders, include sufficient amount for shipping. There is a $\$ 12$ minimum order. Bay Area and Los Angeles Counties add $61 / 2 \%$ Sales Tax. Other Cainornia resicents add bio Saica Tax. We reserve the right to subatiute mamiacturer. Nol responsible for typographica beat any competitor's price provided it is not below our cost.

2114 s50 ns $8 / 89^{95}$
 $2114_{\text {so ns }} 8 / 810^{95}$

7400

LINEAR

LM301	. 34	LM340 (see 7800)		LM566	1.49	LM1800	2.37
Lm301H	79	LM348	. 99	LM567	. 89	LM1812	8.25
LM307	. 45	LM350K	4.95	NE570	3.95	LM 1830	3.50
LM308	. 69	LM350T	4.60	NE571	2.95	LM 1871	5.49
LM308H	1.15	LM358	69	NE592	2.75	LM 1872	5.49
LM309H	1.95	LM359	1.79	LM709	. 59	LM 1877	3.25
LM 309K	1.25	LM376	3.75	LM710	. 75	LM1889	1.95
LM310	1.75	LM377	1.95	LM711	. 79	LM1896	1.75
LM311	. 64	LM378	2.50	LM723	49	UL N2003	2.49
LM311H	. 89	LM379	4.50	LM723H	. 55	LM2877	2.05
LM312H	1.75	LM380	. 89	LM733	98	LM2878	2.25
LM317K	3.95	LM380N-8	1.10	LM741	. 35	LM2900	. 85
LM317T	1.19	LM381	1.60	LM741N-14	. 35	LM2901	1.00
LM318	1.49	LM382	1.60	LM741H	. 40	LM3900	. 59
Lm318н	1.59	LM383	1.95	LM747	. 69	LM3905	1.25
LM319H	1.90	LM384	1.95	LM748	. 59	LM3909	98
LM319	1.25	LM386	89	LM1014	1.19	LM3911	2.25
LM320 (see	7900)	LM387	1.40	LM1303	1.95	LM3914	3.95
LM 322	1.65	LM389	1.35	LM1310	1.49	LM3915	3.95
LM323K	4.95	LM390	1.95	MC1330	1.69	LM3916	3.95
LM324	. 59	LM392	. 69	MC1349	1.89	MC4024	3.95
LM329	. 65	LM394H	4.60	MC1350	1.19	MC4044	4.50
LM331	3.95	LM399H	5.00	MC1358	1.69	RC4136	1.25
LM334	1.19	NE531	2.95	MC1372	6.95	RC4151	3.95
LM335	1.40	NE555	. 34	LM1414	1.59	LM4250	1.75
LM336	1.75	NE556	. 65	LM1458	59	LM4500	3.25
LM337K	3.95	NE558	1.50	LM1488	. 69	RC4558	. 69
Lm337t	1.95	NE561	24.95	LM1489	69	LM13080	1.29
LM 338K	6.95	NE564	2.95	LM1496	. 85	LM13600	1.49
LM339	. 99	LM565	. 99	LM1558H	3.10	LM13700	1.49

RCA
CA 3023
CA 3039
CA 3046
CA 3059
CA 3060
CA 3065
CA 3080
CA 3081 2.75
1.29
1.25
2.90
2.90
1.75
1.10
1.65
A 3160

74S00

 \section*{
 \section*{74500
 \section*{
 \section*{74500

 4500}
 $\begin{array}{lll} & & \\ 00 & .32 & 74 \text { S } 163 \\ 02 & .35 & 74 S 168 \\ 03 & .35 & 74 S 169\end{array}$} 74 S74 S
74 S
$74 S$
$74 S$
$74 S$

(RIC담XNN800-346-5144

[^4]
SUMMER PROJECTS START WITH SHACK ${ }^{\circ}$ PARTS

No Minimum Order! No Mail-Order Delays! See Before You Buy!

Ceramic TV-Sound Filters

NEW!

- Replace Costly Transformers
- Pre-Tuned, No Tweaking Needed

SFE4.5MB. Perfect for video projects! Will also replace 4.5 MHz sound transformer in many solidstate circuits. 3 dB bandwidth: 105 kHz , typical. 272-1304

69 C
CDA4.5MD3 Discriminator. Ceramic differential peak detector. Works great with our FM detector IC \#276-1759. 272-1305

Sale! $10 \times 10 \mathrm{~cm}$ Solar Cell

Save ${ }^{\text {s } 5}$

Reg. 17.95
12^{95}
Harness "Free" Power That's Available Every Sunny Day!
Build a panel for charging batteries or powering projects. This quality cell. approximately $4^{\prime \prime}$ square, produces 0.42 VDC at 2 amps in full sun. Wire several in series for more voltage. 276-128

Sale 12.95

Deluxe LCD Aütoranging

The DVM that thenks Youchoose the function, it selects range automatically-even if test leads are reversed. Selectable continuity and rangechange "beep" indicator. Makes highly accurate low-resistance measurements, Low-battery and overrange indicators. Measures up 1000 volts DC, 500 voits AC, 200 milliamps ($A C$ and DC). 2 megs resistance. Accuracy: ± 1 digit $63 / \mathrm{n} \times 31 / 2 \times 13 / \mathrm{a}^{7}$. With spare fuse, test leads and manual Requires two "AA" batteries. 22-192

Over-Voltage Sensor IC

NEW!
 159

Protects Sensitive Electronic Circuits

8-Pin Dip With Data
MC3423. Monitors the supply rail and triggers an external LED or a crowbar SCR in the event of line transients or loss of regulation. Operates with supply voltages from 4.5 to 50 volts DC. 276-1717
1.59

Super Timer IC
 NEW! 2^{49}

μ A2240 Programmable Timer Counter. Provides very accurate timing from microseconds to days. Consists of a time-base oscillator an eightbit counter, a control flip-flop and a voltage regulator. Frequency of the time base is set by external resistor and capacitor and can be synchronized or modulated. A time-base output may be used to monitor frequency or provide pulse to other circuitry. The eight outputs are TTL. DTL and CMOS compatible. 5 to 15 VDC operation, single supply. 16-pin DIP with specs and data.
276-1735

Orange. high brightness type. Can be stacked vertically or horizontally. 276-074

Panel

Lettering 259 Cut Four sheets with rub. on leterers. symbols. numbers and calitior: | lion maks |
| :--- |
| $270-201$ |

Tantalum Capacitors

Double Closed Circuit Jack $159 \begin{gathered}\text { 3-Conductor } \\ \text { Type }\end{gathered}$
For $1 / 4^{\prime \prime}$ phone plug. Can be wired to disconnect speakers automatically when stereo headphones are plugged in. 274-1240
Tone-Dialing Encoder (1)

NEW! 3^{99}
Dependability At a Bargain Price! TCM5089. Accurate. stable dual tone output-meets industry standards without adjustment. Just add keyboard (a pushbutton switch matrix will do), resistor, colorburst crystal (\#272-1310) and power source to operate. Electronic input. too-usable in an auto-dial modem. Powered from phone line or 9VDC
276-1301
SPST Toggle Switch

LOW PRICE! 199 Shown actual size-ideal for crowded boards. SPDT contacts: 1 A at 125 VAC . 55 -ohm coil. 275-240
Manufacturer's Prime Microwave Devices
[A] MRF-901. Low-noise NPN transistor for use up to 2 Gigahertz. 300 mW maximum dissipation.
276-2044
. 2.99
(B] H-P 5082-2835. Low-noise Schottky barrier diodes. Ideal for UHF and microwave mixers. 1 pF maximum capacitance.
276-1124 Pkg. of 2/1.99

Micronta Precision DC Panel Meters	
NEW	
PRICES!	
7 Each	
- Jeweled D'Arsonval Movem	
Know "what's going on" in critical DC circuits All are $23 / 4 \times 21,4 \times 1 / 4$ and 0 to 50 Microamps. 270-1751 . 7.95	
0 to 15 volts. 270.1754	

Layout Template

Know "what's going on" in critical DC circuits All are $23 / 4 \times 21 / \mathrm{A} \times 11 / 4$ and 0 to 50 Microamps. 270-1751 . 7.95 0 to 1 Milliamp, 270-1752 $\quad 7.95$

Half 149
Price $\begin{gathered}\text { Reg. } \\ 2.99\end{gathered}$

Durable, transparent stencil with 53 useful shapes. Really handy.
$4^{1 / 2 \times 6 \times 1 / 40^{\prime \prime} .276-181 \ldots . . . S a l e ~} 1.49$

Transformer, 6VAC
Save ${ }^{\text {s }} 1$ ${ }^{\text {Reg. }} \mathbf{2 9} \mathbf{1 9 9}$

Primary: 120VAC. Secondary 6.3VAC at 450 mA maximum. $17 / 16 \times 2^{3 / 8} \times 1^{1 / 2^{\prime \prime}}$. Cut. 33\%. 273-1364 …. Sale 1.99

Computerse Electronics Marketplace

FOR SALE

GOVERNMENT and industrial surplus receivers, transmitters. snooperscopes, electronic parts, Picture Cata$\log 25$ cents. Meshna. Nahant, Mass. 01908.
ELECTRONIC PARTS, semiconductors, kits. FREE FLYER Large catalog $\$ 1.00$ deposit. BIGELOW ELECTRONICS Bluffton. Ohio 45817.
BUILD AND SAVE. TV EARTH STATION. DETECTIVE ELECTRONICS. Video Recorders, Color Cameras, ad vanced Telephone Projects. BROADCAST Electronics. 50 page color catalog of unusual electronic projects AIR MAILED $\$ 3.00$; with 3 hour audio cassette dramatization of our catalog $\$ 5.00$. Don Brition Enterprises. PO Drawer G, Waıkik।, Hawaiı 96815
RECONDITIONED TEST EQUIPMENT $\$ 1.00$ for catalog WALTER'S TEST EQUIPMENT. 2697 Nickel, San Pablo, CA 94806. (415) 724-0587.

ELECTRONIC PARTS. Stamp for flyer, $\$ 1.00$ deposit for catalog. DAYTAPRO ELECTRONICS, 3029 N. Wilshire Arlington His., IL 60004
ELECTRONIC CATALOG. Over 4,500 items. Parts, \& components. Everything needed by the hobbyist or technician. $\$ 2.00$ postage \& handling (United States Only) refundable with first $\$ 15.00$ order. T \& M Electronics. 472 East Main St., Patchogue. NY 11772. (516) 289-2520
PRINTED CIRCUIT BOARDS, your artwork. Quick delivery. Reasonable. Atlas Circuits, Box 892. Lincolnton, NC 28092. (704) 735-3943

SATELLITE TELEVISION...HOWARD/COLEMAN boards to build your own receiver. For more information write... ROBERT COLEMAN Rt. 3, Box 58-APE, Travelers Rest. S.C. 29690.
SOUNDSYNTHESIZER KITS—Surf $\$ 19.95$, Wind $\$ 19.95$ Wind Chimes $\$ 24.95$. Musical Accessories, many more Catalog free. PAIA Electronics. Box $\mathbf{J 1 4 3 5 9 \text { , Oklahoma }}$ City. OK 73114.

SATELLIIE TV

 fantastic 80 TV ChannelsNew antenna constuction pians plus biq 8×11 book loaded with aiming info, kits, LNAS and re, Cevers at wholesate prices Far better than cable
IV' Enjoy Crystal clear reception Send $\$ 9.95$ toTVV Enjoy crystal clear reception Send $\$ 9.95$ to-
day Add $\$ 000$ for 1 st class (ar mail) or call our day. Add $\$ 200$ for 1 st class (air mall) or call our
24 hr COD order ine (305) $862-5068$ Now
Global TV Electronics. PO Box $219-\mathrm{E}$ Matland. FL 32751
RF MODULATORS for SATELLITE TELEVISION, MICROCOMPUTERS, CCTV. Also monitors, cameras, kits. FREE vIDEO CATALOG. Phone (402) 987-3771. Dealers Welcomed. ATV RESEARCH, 13-P Broadway, Dakota City, NE 68731.

CABLE TV CONVERTERS \& EQUIPMENT. Plans and parts. Build or buy. For more information send \$2.00: C \& D ELECTRONICS INC., P.O. Box 21, Jenison, M 49428.

FREE FLYER! IC's, resistors, capacitors. jacks, etc., plus SSM music synthesizer/audiolC's, power amp modules, analog delay IC's, computer books, and more. Also plans for analog delay/chorus unit! PGS Electronics. Route 25 Box 304 Terre Haute, IN 47802.

SATELLITE TV

- SYSTEMS - COMPONENTS • LNA'S • - ANTENNAS • RECEIVERS • WE CAN HEP YOU

HIGH FRONTIER

2230 E. Indian School Rd., Phoenix, AZ 85046
(602) 954-6008

TELETYPE EQUIPMENT: COpy Military, Press, Weather Amateur, Commercial Transmissions. Catalog $\$ 1.00$ WEATHER-MAP RECORDERS: Copy Satellite Photo graphs. National-Local Weather Maps. Learn How! \$1.00 Atlantic Sales, 3730 Nautilus Ave.. Brooklyn. NY 11224 Phone: (212) 372-0349.
PRINTED CIRCUIT BOARDS. ${ }^{\circ}$ QUICK PROTOTYPES* production. design, reflow solder. Send print or descrip tion for quote to: KIT CIRCUITS. Box 235. Clawson. M 48017.

CABLE TV SECRETS, the informative publication the cable companies are trying to ban. HBO, Movie Channel Showtime converters, etc. Sena $\$ 8.95$ tc: CABLE FACTS, Box 711 -PE. Pataskala. Ohio 43062.

CABLE TV
Buy Drrect a Save SUPER SPECIALS

Advanced Solid State design and Cir
cuitry allows you to recelve mid cuitry allows you to recelve mid \&
super band channels Restores prosuper band channels Restores
gramming to Video Recorders

REPAIR ATARI GAMES AT HOWE

Complete repair course on 3 hour video tape (Beta o VHS) plus schematics and technical literature enables you to start earning money right away. All popular repair parts in stock for immediate shipment. \$1.00 for parts/price list and additional information retundable with order. Exclusive National Distributor

ELECTRONICS WAREHOUSE CORP
1910 Coney Island Avenue Dept. CE-7
Brooklyn, N.Y. 11230 (212) 375-2700
FREE FLYER 99 cent kits. Parts. Bargains Galore! ALLKIT, 434 West 4th St., West Islip. New York 11795.
RESISTORS, $1 / 4 W 1 / 2 W 5 \%$ C.F., 34 ea., 1% Metalfilms. NO MINIMUMS. Quantity Discounts. Write: JR INDUSTRIES 5834-A Swancreek, Toledo, OH 43614.

IF YOU ARE READY TO bUY OR SELL games or software, you need.

Camputer SHapper

Over 100 pages each month. Deal with individuals nation

 wide. Low ad rate. only 12° a word. Subscription: $\$ 10 /$ year MC \& VISA. Money back guarantee 407 S. Washington P.O. Box F599. Titusville. FL 32780 (305) 269-3211
GABLE TY

CONVERTERS \& EQUIPMENT
We have the largest selection of JERROLD and OAK cable converters and equipment. Such as: Jerrold SB-3, Oak N12 and Jerrold 61 channel remote control converter with FULL features DRX3-DIC-105. Plus others.

CABLE TV KITS

Cable TV Kit (Jerrold gated pulse) 39.95. We also have a large selection of cable TV and kits including all parts, silk screen, PC board and complete instructions.

Send for informative catalogue $\$ 2.00$

J \& w ELECTRONICS, INC.
 P.O. BoX 61-K
 CUMBERLAND, RI. 02864

BIG SAVINGS ON CONY TRANSMITTERS-Up to 30% OFF: Send two stamps for catalog. S.E. Corp., Box $1132-$ PC, Yorba Linda, CA 92686.

HI-FI SPEAKER KITS and raw drivers from the world's finest manufacturers. For beginners and audiophiles. Free information. A\&S SPEAKERS, Box 7462C, Denver, CO 80207. (303)399-8609.

SATELLITE TV RECEIVER BREAKTHROUGH! Build your own commercial quality receiver now! Instruction manuals. schematics, circuit boards! Send stamped envelope: XANDI, Box 25647. Dept 22N. Tempe, AZ 85282.
PCB 154 sq-in. FREE DRILLING. Quantity Discounts. International Enterprise, 6452 Hazel Circle. Simi-Valley. CA 93063
WHOLESALE: MATV/CATV/VCR equipment, Antennas. Audio, Cables, Adapters. Original and Replacement Cartridges, Styli. Telephone Accessories. Radios. Cassette Recorders. Speakers, etc. Send letterhead for catalog, 212-897-0509, D\&WP, 66-19 Booth, Rego Park, NY 11374.
FREE CATALOG. Large selection of electronic kits and parts. Chaney Electronics, Box 27038. Denver, Colorado parts. Chaney Electron
80227. (303) $781-5750$.

SATELLITE ANTENNAS, Build wood or metal from $\$ 60$, send \$2. Prototype Engineers. Box 1812, Deming, NM 88030
ELECTRONIC KITS-Low cost Power Supplies. Amplifiers, Alarm Systems, etc. Catalog \$0.25. CBBI, Box 222 North Granby, CT 06060.
SUCKING SOLDER MADE EASY. Finally, one-handed desoldering with your gun. Superb results with surplus vacuum pump. Tip assembly $\$ 14$ postpaid. Complete instructions, free brochure. Gerkman Engineering. Box 28251 , Detroit, MI 48228.
SATELLITE TELEVISION: Receivers $\$ 300$. Dishes $\$ 100$. LNA's, Microwave equipment. Catalog \$5.00. Satellite Systems, Box 184, Milpitas, CA 95035.

SATELLITE RECEIVING SYSTEMS, COMMUNICATION AND ELECTRONIC SPECIALTIES computerized pushbutton TELEPHONES from $\$ 13.95$. CORDLESS TELEPHONES 700 ' range from $\$ 99.95$. satellite tvro systems. choose from 12 different manufacturers, from $\$ 1880.00$. write: STAR SYSTEMS. P.O. Box 245. Ontonagon. Mi 49953. (906) 884-4877.

POLICE CODE UNSCRAMBLERS; lets you hear the coded messages of Police. Fire and Medical channels; plus other scanner accessories: satisfaction guaranteed: DNE, Inc. Rt. 7. Box 257A. Hot Springs. AR 71901. 501-623-6027.
PRINTED CIRCUIT BOARDS and Electronic Components. Gemini Projects, P.O. Box 35251, Chicago, IL 60635 or 312/456-4709.
TELEPHONES and ACCESSORIES. FCC registered. Send $\$ 2.00$ for 72 page catalog (refundable). UNIQUE COMMUNICATIONS, INC.. P.O. Box 5234 , Mensfield, OH 44901 .
TINKERTRON: Write for summer 1983 Electronics Catalog. Includes Voltage and Current Variable Power supplies. Audio Amp Modules. Remote Wireless switches and Electronic Parts. LOWEST PRICES-SAVE UP TO 50% or MORE! Send 25 C to: TinkerTron, Department C, P.O. Box 53128. Lubbock. Texas 79453

ELECTRONICS BARGAIN CATALOG-Write: Opal East Co., Box 0-38, 323 Franklin Bldy. S., Suite 804. Chicago, IL 60606 .

CLOSEOUT SPECIALS-Detector Circuits (for count ing, security systems, etc.) developed for fibreoptic sensing- 7 channels, with 5 VDC Power supply, with $A /$ D conversion. Schematic supplied, \$20.00. 3-Digit Dec mal Counter PC Boards-with readout and reset button requires + 5VDC-7IC's. Schematic supplied, $\$ 15.00$ Transformers -Triad 12.6 CT Volts-50/60 Hz F44X-2 AMP 115v Primary-1 $15 / 16 \times 35 / 16 \times 2, \$ 5.00$. Potentiome ters-VRN INT, -20K, Ten Turns, 3/4 W., \$.25. Rectifier Bridges-Motorola 312 case, 50 VRM, 45a, MDA 100, $\$ 1.00$ TTL'\$ 74LS32N-Quad 2 -input OR gate $\$.35,74$ LS 123-Dua One Shot \$.90, 74LS90-Decade Counter \$.60. OP Amps LM324 Quad \$1.05. LED's-FLV 100 \$.10. Metal Oxide Var istors-MOV 150v-V150 LA 10A \$.75. MINIMUM ORDER $\$ 10.00$. Mass. residents add 5% sales tax. Certified check, M.O.-Freight prepaid. C.O.D.'s-Freight post paid. PROGRAMS \& ANALYSIS INC., Dept JPC, 21 Ray Avenue, Burlington, MA 01803, (617) 272-7723, Ext. 198.

COMPUTER EQUIPMENT/PARTS

SAVE 90% Build Your own Minicomputer. Free Details. Di gatek. 2723 west Butler Dr.. Suite 20C, Phoenix, AZ 85021. APPLE SERIAL CARD. Communicate with MODEM or terminal. Switch selectable serial printer protocol, $\$ 46.95 / \mathrm{kit}$ $\$ 61.95 / \mathrm{assm}$. Comprehensive manual, DB-25 connector 6 month warranty. CHECK or C.O.D. B\&D ELECTRONICS Box 3651. Lawrence. KS 66044

WANT A PLEASANT SURPRISE? Call or write for quotes Atari, Commodore, Timex, T.I., Corona (IBM work-alike) Amdek, Anadex, Apple \& IBM accessories, Hayes, More GET SURPRISED! HARDWARE SOFTWARE ANYWARE CO., 10 Coles Street. Brooklyn, NY 11231, (212) 596-3592. WIN RADIO SHACKS new TRS-80 Model 4 computer, 64 K 2 disks, RS 232 Interface $\$ 10.00$ entry: SASE. (250 EN TRIES OR ALL RETURNED). H. Whitten, ECO/Teque Plaza, Suite 7A, Box 1151, Sonora, CA 95370
TIMEX/SINCLAIR/VIC20. Soffware/schematic pack ages. RAM, I/O, key board beep, RS232, Monitor modifi cation, Data sheet, maintenance aid for Timex/Sinclai $\$ 5.95$. Add $\$ 2.00$ for ham package. RAM, Port Bread board. MX80 Interface, program listings for VIC20 $\$ 3.95$ Free product sheet. Santa Fe, 2335 S. Commerce Rd Walled Lake, MI 48088.
BEST OFFER-Basic four group CPU48K Model 4212 with 1-20666 1-12588 screens $2-4226$ discs one 4231 Printer Call 305-592-9572.
HARD DISK DRIVE LIQUIDATION. Major OEM is liquidat ing inventory of unused Shugart 8" SA 10025.33 megabyte hard disk drives, $\$ 380$ each. Western Digital's controller, \$350. Call: LIQUIDATORS, 803-877-9828, or send check/money order to: 105 S. Main St., Greer. SC 29651.

SALES PERSON/DEALERS WANTED for imported com puter equipment/parts. Free details. WORLD ENTER PRISES, 3227-D Riverview Place, Columbus, OH 43202 VIC-20 WAVY-ELIMINATOR! Simply plug-In. Clean. stable computer display. $\$ 19.00$. Kouh, Box 31, Gaithers burg, MD 20877.
DIGITIZER/GRAPHICS TABLET. $16^{\prime \prime} \times 20^{\prime \prime}$. For VIC20/64 Atari and all computers accepting Atari paddles, $\$ 44.95$ Persimmon Peripherals, Route 2, Box 2306A-CE, Clay ton, GA 30525
APPLE BUILDERS-Send stamp for our flyer of Apple parts. IC sets. ROM sets, component packages, Shu gart-Apple modification kits, Apple 9 -track tape drives etc. Electrovalue. P.O. Box 376-P. Morris Plains, NJ 07950.
SC-01A SPEECH SYNTHESIZER CHIPS. 64 phonemes Easily interfaced to VIC-20, Atari, IBM, etc. $\$ 27.00$ plus $\$ 2.00$ shipping, prepaid. Alien Group, 27 W. 23rd Street, New York. NY 10010

COMPUTER SOFTWARE

VIC-20 USERS GROUP, receive newsletter, programs, discounts and more. Send SASE for information. P.O. Box 459. Dept 7, Ladson, South Carolina 29456

APPLE. TRS-80. Stock market software. Free information. Stock Market Computers, 235 Mesa Avenue, New bury Park. CA 91320. (213) 884-6900.
TIMEX-SINCLAIR USERS: Join the group of newsietter subscribers who receive free programs every month Software discounts, Free program, issue and catalog. Z WEST, Box 2411, Vista, CA 92083.
TI-99/4A MOON TRIP animated graphic program on cassette. Guide module through astroid belt. Then land on moon. Speech synthesizer and joyst capability. $\$ 12.00$ postpaid. JAG Software, P.O. Box 2225, Dept 1CE, Ocean New Jersey 07712.
DISCOUNT SOFTWARE-Available for Apple, TRS. 80, IBM/PC and TI 99/4 personal computers. Professional applications for the doctor, dentist, attorney, school administrator, teacher, contractor and general office personnel. Catalog \$1.00. Write for MONTHLY SPECIAL OFFERS! Creative Discount Software, 256 S. Robertson Blvd., Suite 2156, Beverly Hills, CA 90211.
COMPUTER PAPER-SAVE\$\$\$: Lowest single carton prices. Free samples. Bob's Charts, 405 East Third, Long Beach, CA 90802.
ATARI, APPLE, IBM-PC: Extensive line educational, entertainment, business. FREE BRO. CHURE. New Dimension Software, 39010 Baroque, Mt. Clemens, Michigan 48044.
TI-99/4A PROGRAMMERS: Affordable Software! Catalog, only \$1. PROGRAMS SOFTWARE, 1435 Burnley Square North, Columbus, Ohio 43229.
QUALITY COMPUTER SOFTWARE, VIC-20, COmmodore 64, Atari. Games, Home, Ham radio. Largelist, SASE. Am ateur Accessories, Harvest Court, Flemington, New Jer sey 08822. (201) 782-1551
FREE money saving bulletin on popular brand name pro grams and books for your small computer. Superior, Dep CE, 8030 Westchester Road, Westchester, OH 45069.
FREE Timex/VIC-20/T199-4A programs! SASEs/cata logs. Low prices! EZRAEZRA, Box 5222-C, San Diego California 92105
FREE VIC-20 Software-Hardware catalog. Lighthouse Sales. Dept. A, P.O. Box 68, Trenton, MI 48183.
BUSINESS GRAPHS. ZX81/TS 1000 16K software cas sette \$14.95. Spharler Software, Nine Springbrook Cir cle, Sacramento, California 95831
TI-99/4A OWNERS. Send for free list of new and exciting low cost software. D.E., Box 124, Hicksville, NY 11801.
DISCOUNT SOFTWARE \& books! Business \& professional applications. Free catalog. PBSoftware, Box 366 Dayton, OH 45401
STOCK MARKET Investment Software, Detect cycles, generate BUY/SELL decisions. For detalls contact: S.M DECISIONS, BOX 362, Dublin, PA 18917.
EPROM (2716) burner for VIC-20 or Commodore 64. Includes software on tape. $\$ 135.00$ for assembled and tested or ask for free info. JAT Electronics, Box 1222, Riverside. CA 92502.
EXCHANGE TI-99/4A cassette programs you've created with others. Also, 8-10 GREAT cassette programs only $\$ 5$. "THE EXCHANGE", CE-3, P.O. Box 46, Sterling, Virginia 22170
VIC(5K)/BSR-X 10 INTERFACE. Complete software (tape) and hardware plans, $\$ 10.95$. Simple to build-only two chips. SemiSoftware, 105 Whittier Place, Port Jefferson, NY 11777.
VIC-20 USERS GROUP, Programs, discounts, reviews, SASE, National VIC-20 Program Exchange, 102 Hickory Court. Portland, Indiana 47371
COLOR COMPUTER FACSIMILE-All rates screen and printer Gore Software, 2023 Castleridge, San Antonio Texas 78227.
PAYOFF CHARGE ACCOUNTS, credit cards, save money 16 K TS 1000 cassette program, \$12.95, JGS, 2 E. Oak Ave., Moorestown. NJ 08057
SINCLAIR—Discount programs $\$ 2.00$. Send SASE for free listings. LDS Software, Box 999, College Station, TX 77841 TI-99/4A CASSETTE GAMES. $\$ 5.00$ each, any two $\$ 7.95$ 754 p\&h. Moon Landing. Submarine Hunt, Hangman Mastmind. List. Cassette Software, 4129 Abercorn Road Knoxville, TN 37921
ZX81 GAMES, Bankman, Moon Landing $\$ 8.95$ each. Price list $\$ 1.00$ refundable. Box 1180 , Reserve, LA 70084.
A/D CONVERTER BOARD FOR APPLE. 8 bit, 8 channels Send \$27 for kit, \$10 for software (DVM, oscilloscope, strip chart recorder), SASE for info. Inquire for Timex, Com modore boards. HUANG \& BERRY, 25 W . Wheelock St. Hanover, NH 03755.

COMPUTER PUBLICATIONS
FREE Catalog of special function IC's and quality components. Goldsmith Scientific, Box 318M, Commack, New York 11725.
TRANSIENT ANALYSIS and NETWORK THEOREMS. two hew texts by Dr. Harry E. Stockman. Request Flyer. Sercolab, Box 78B, Arlington, MA, 02174.
SOFTWARE AUTHORS: Join the National Association of Freelance Programmers (NAFLP) and receive NAFLP's monthly SOFTWARE MARKET LETTER. Learn how and where to sell your software and get programming contracts. For info, write: NAFLP, Box 813CE, Vienna, VA 22180; 703-938-9191.

COMPUTER HARDWARE

CHADWELL'S MONTHLY SPECIAL-ZX81 16K Expan sion cartridge. $\$ 40.95 \mathrm{US}+\$ 2.50$ p.h., VIC20 16K Expansion cartridge, $\$ 69.96$ US $+\$ 2.50$ p.h., VIC 2032 K Expansion cartridge, $\$ 99.95$ US + \$3.50p.h., VIC20 $16 \mathrm{~K}+$ Cartridge slot Expansion cartridge, $\$ 74.95 \mathrm{US}+\$ 2.50 \mathrm{p} . \mathrm{h}$., Z $\times 81$ High Resolution Graphics Expansion cartridge $\$ 89.95$ US $+\$ 3.50$ p.h. Send $\$ 1.00$ for catalogue: CHADWELL'S SOFTWARE, \#230.4144A-97 Street, Edmonton, Alberta. Canada T6E 5Y6. US orders welcome.

AMATEUR RADIO

RADIO AMATEUR CALLBOOKS: 1983 Directories of Radio Amateurs around the world. U.S. Callbook $\$ 23.00$; Foreign Callbook $\$ 22.00$, shipping included. See your Dealer or write for FREE catalog. RADIO AMATEUR CALLBOOK. Dept CE, 925 Sherwood Dr., Lake Bluff, IL 60044
VIDEOSCAN 1000 Slow Scan TV - HIGH RESOLUTION (amateur, phone line, monitoring, teleconferencing). CODE \&STAR - DECODE MORSE, RTTY, ASCII. LARGE EDs or connect computer/printer. MORSE-A-KEYER CW Keyboard. TRI-VOLTAGE POWER SUPPLY. Kits/ASsembled. FREE brochures. MICROCRAFT CORPORA TION, Box 5 13-PE, Thiensville, WI 53092. (414) 241-8144.

TIMEX/SINCLAIR

FREE SOFTWARE/HARDWARE CATALOG for your TS/ZX81 18K: New programs. JPR SOFTWARE, BOX 4155 , Winter Park, FL 32793.
KROPK,, STAR SEARCH, NOAH'S ARK, finest programs available. Machine Language action, graphics. SASE Brown Cottage, 5486 Bright Hawk, Columbia, MD 21045. "MUST-HAVE"! Utility SOFTWARE. Cassettes-relocatable machine language. SASE for information. SIRIUS WARE, 6 Turning Mill Rd., Lexington, MA 02173.
ANTI-SLIP COMPUTER CUSHION. Insures accurate, vibration free typing. $\$ 4.95$ complete. EDCOMPCO, 998 Farmington Ave., West Hartford, CT 06107.
TIMEX/SINCLAIR SOURCEBOOK. Catalog of Software, hardware and books available for T/S computers. De scription, equipment required, price and ordering information provided for- 600 PRODUCTS FROM 160 OIFFERENT SUPPLIERS-Free details. $\$ 8.95$ postpaid. NDC, Dept. C8, Box 280, Carrollton, Texas 75006
TIMEX/SINCLAIR 1000/ZX81. HOW-TO Hardware upgrade book. Covering: Buffered expansion interface, Serial output, Std. printer interface and more. \$7.95. Inner Knowledge Computers \& Peripherals, 5944 N.E. Sandy Blvd., Portland, Oregon 97213

C.B.EQUIPMENT

IMPROVE CB PERFORMANCE! Modification hardware, books, plans, Catalog \$2. CBC INTERNATIONAL, Box 31500PE, Phoenix, AZ 85046.

CABLE TV

CHANNEL 3-60ab notch filter. 63.5 MHz . $\$ 32$. Crosley, Dept. 607. Box 840, Champlain, NY 12919

PLANS AND KITS

ROBOTICS-BOOKS-build your own robot. Write now for FREE catalog! HD. Kohn/CE2, Box 16265, Alexandria. VA 22302.
NEW! COLOR YOUR COMPUTER'S SCREEN! Videoflex Color Kit boosts fun and efficiency. Free details, Write Videoflex-3A, Box 149. Netcong, New Jersey 07857.
ALARM SYSTEM, battery powered, Protessional features. Complete kit w/o chassis $\$ 59.95$. Free info. Silicon Machines Co., P.O. Box 1536, Wahiawa, HI 96786.

MAILING LISTS

COMPUTER SHOW ATTENDEES N.Y., N.J.: 15,000 NAMES. \$30/M. P/S labels. For info, (201) 297-2526.

ALARMS

BETTER EQUIPMENT, Longer Guarantee. You'll save! Catalog 504, refundable. AAS, 414A Lorna Square, B'ham, AL 35216.
BURGLAR ALARM BUYERS GUIDE-Educational manuals. Employment-business opportunities everywhere. Information $\$ 2.00$. Security Electronics International, P.O.B. 1456-QA. Grand Rapids, Michigan 49501

HIGH FIDELITY

diamond needles and Stereo cartridges at dISCOUNT PRICES for ShURE, PICKERING, STANTON, EMPIRE, GRADO, AUDIO TECHNICA, ORTOFON, ADC, SONUS, MICRO-ACOUSTICS and LaST. Send S.A.S.E. free catalog. LYLE CARTRIDGES. Dept. P., Box 69, Brooklyn, NY 11218. For fast COD service Toll Free 800-221-0906. N.Y. State (212) 871-3303. 9AM-8PM except Sunday.

GOVERNMENT SURPLUS

IS IT TRUE YOU CAN BUY JEEPS FOR $\$ 44$ THROUGH THE U S. GOVERNMENT? Get the facts today! Call (312) 7421142 Ext. 4649

TUBES

TUBES: "Oldies", Latest. Supplies, components, schematics. Catalog Free (stamp appreciated). Steinmetz, 7519-PE Maplewood, Hammond, Ind. 46324.

HUGE INVENTORY! Thousands of types. Wholesale prices. FREE CATALOG! ETCO Electronics, DEPT. 290. Plattsburgh, NY 12901

PERSONALS

MAKE FRIENDS WORLDWIDE through internationat correspondence, illustrated brochure free. Hermes-Verlag. Box $110660 /$ Z. D- 1000 Berlin 11, W. Germany.
CORRESPONDENCE FOR FRIENDSHIP IN PHILIPPINES. MALAYSIA. Free information. AAWS-(PE), Box 2777. Orcutt. California 93455-0777.

PENFRIENDS-ENGLAND-USA, through correspondence. Send age. interests. Free reply, Harmony, Box 89PE, Brooklyn, New York. 11235.
SCANDINAVIAN LADIES, sincere, seek correspondence for friendshıp. Details-Send stamp: Scannaclub, Box 4(CE), Pittsford. NY 14534.
ORIENTAL SINGLES seeking cultural exchange, friendship, sharing, marriage. Write: CHERRY BLOSSOMS. Box 1021P, Honokaa. Hawaii 96727
FREE: WORLD'S LARGEST PARTNER-PHOTO-CATALOG for friendship and marriage. Personalized introductions. INTERCONTACT, Box 12, Toronto, Canada M4A2M8. U.S. Inquiries.

BEAUTIFUL PHILIPPINE LADIES, Seeking friendship, Romance, Marriage! Fhotos, Information Free! TranscorB, Box 2321. Manila, Philippines 2801.

INSTRUCTION

LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing detalls. strange catalog free! Autosuggestion, Box 24-ZD. Olympia. Washington 98507.
MEDICAL ELECTRONICS TECHNOLOGY. home study. Troubleshoot medical instruments. WTI, P.O. Box 3124. Fresno, CA 93650-3124

UNIVERSITY DEGREES BY SPECIAL EVALUATION of existing credits and Job Experience. Fast, inexpensive. Call (614) 863-1791. Or write: EVALUATION, Box 13151-A8, Columbus, Ohio 43213.
REPAIR ELECTRONIC ORGANS-Revised home study course covers all current makes and models. Free booklet. Niles Bryant School, P.O. Box 20153. Sacramento, CA 95820
f.c.c. Commercial radiotelephone li-

CENSE. Home Study. Fast, Inexpensive! Free de-
tails. COMMAND, Box 26348-P, San Francisco 94126.

YOUR OWN RADIO STATION AM, FM. Cable, licensed, unlicensed. low cost transmitter! Free information BROADCASTING. BOX 130-A8. Paradise, CA 95969.
UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D.s . . Free revealing details. Counseling, Box 317-PE8, Tustin, California 92680

FORINVENTORS

PATENT AND DEVELOP your invention. FREE PATENT INFORMATION Richard L. Miller, P.E., 3612-E, Woolworth Building, New York, NY 10007. (212) 267-5252.
INVENTIONS, IDEAS, NEW PRODUCTS WANTED! Industry presentation/national exposition. Call free 1-800-528-6050-Arizona, 1-800-352-0458. X831

INVENTORS! IDEAS HAVE VALUE!

Ever think of an idea, forget it and see it later on the market? Many people don't forget, act quickly and are rewarded by American Industry. Write down your idea! We offer free disclosure registration and initial consultation regarding your idea's potential value. Call or write without delay for your free information package.

AMERICAN INVENTORS CORPORATION 82 Broad St., Depi. CE
 Westfield, MA 01086
 (413) 737-5376
 A fee Based Marketing Company Otfices Coast to Coast

BUSINESS OPPORTUNITIES

FREE CATALOGS. Repair air conditioning, refrigeration. Tools, supplies, full instructions. Doolin, 2016 Canton, Dallas, Texas 75201.
MECHANICALLY INCLINED individuals desiring ownership of Small Electronics Manufacturing Business-without investment. Write: BUSINESSES, 92-K8 Brighton 11 th. Brooklyn. New York 11235.

ERASE DEBTS with little-known law-create wealth!! Details FREE—Wealth Kit, No. EE8. Billings, NY 12510.
MAILORDER OPPORTUNITY! Start profitable home business without experience or capital. Information free. Mail Order Associates Inc.. Dept 760, Montvale. NJ 07645.
ONE MAN CRT FACTORY. T.V.'s, Business machines, Monitors, Scopes, VDT's. $\$ 3.00$ rebuilding nets $\$ 100-\$ 500$ each tube. Higher profits overseas, New/used. FACTORY, 190e Louise, Crystal Lakn, IL 60014, (815) 459-0666.
MAKE MONEY SELLING ELECTRONICS. Wholesale deater catalog $\$ 5$. (redeemable). ETCO. Dept. 532. Box 840, Champlain, N.Y. 12919.
BORROW \$300-\$30,000 INTEREST FREE! Keep indefinitely! Free Details. Write: American, 1601 Main, Plainfield. Indiana 46168
I HAVE MADE A FORTUNE in Mail Order, selling information. Let me show you how. Write Kash CE701, Box 31051, Indianapolis, IN 46241.
BORROW $\$ 30,000$ without interest! All eligible. Repay anytime. Free detaits! Infohouse-508CE, 533 Sutter, San Francisco, CA 94102.

BUMPER STICKER PRINTING DEVICE. Cheap. Simple, Portable. Free details, Bumper, POB 22791 (PE). Tampa, FL 33622.
MAKING MONEY WITH PERSONAL COMPUTERS! 3 cassette package $\$ 19.95$, with book $\$ 25.00$. Computer Resources, 1659 Mills Street, Chula Vista, CA 92010.
LCD WATCH $\$ 2.50$. Penwatch $\$ 3.60$. Catalogue $\$ 1.00$. Reliant Engineering Company, P.O. Box 33610, Sheungwan, Hong Kong
HOME BURGLAR ALARMS-Educate yourself. Sales-installations. Extra income source. Information \$2.00. Security Electronics International, P.O.B. 1456-BG, Grand Rapids, Michigan 49501
PICTURE TUBE REBUILDING EQUIPMENT-new and used. ATOLL TELEVISION, 6425 Irving Park, Chicago, II used. ATOLL TELEVISION,
linois $60634,(312) 545-6667$

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open. Details FREE. Aviation Employment Information Service. Box 240E. Northport, New York 11768

JOBS OVERSEAS - Big money fast. $\$ 20,000$ to $\$ 50,000$ plus per year. Calt 1-216-453-3000, ext. 4607.
GOVERNMENT JOBS-Thousands of vacancies must be filled immediately. $\$ 17,634$ to $\$ 50,112$. Call (716) 842-6000. Ext. 3904

BOOKS \& MAGAZINES

PUBLISHERS' OVERSTOCKS. BARGAIN BOOKS 2,000 titles, all subjects! Free catalog: Hamilton's, 98-85 Clapboard, Danbury, CT 06810 .
DIRECTORY of Radio Collectors and Suppliers. 2000 listings. \$4. Free catalog. ARS Electronics, 3030 Pheasant Creek Drive, Northbrook, Illinois 60062.

RECORDS/TAPES

RECORDS-TAPES! Discounts to 73%. All labels: no purchase obligations: newsletter; discount dividend certificates. 100% guarantees. Free details. Discount Music Club, 650 Main St., PO Box 2000, Dept. 5-0883, New Rochelle, NY 10801.
TOTAL COMPUTER MUSIC-MOSt sophisticated ever. Classical. rock, oriental, funkola, space-age, etc. Half hour sampler cassette and catalog \$3. MACROFUSION*. 40879-F Highway 41. Oakhurst. CA 93644.

REAL ESTATE

NEW...FREE CATALOG! Top real estate values coast to coast! Please specify types, property and location desired. UNITED FARM AGENCY, 612-EP West 47 th. Kansas City, MO 64112.

RIJBBER STAMPS

RUBBER STAMPS, BUSINESS CARDS. Free catalog 1 -800-851-4945, Jackson's. E-100, Brownsville Rd., Mt. vernon, III. 62864.

RETAIL ROSTER

ALASKA

JUNEAU ELECTRONICS-1000 Harbor Way, 99801, (907) 586-2260. Apple, Osborne Hardware/Software/Peripherals. Full service and support.

CALIFORNIA

P.C. COMPUTERS, 10166 San Pablo Ave., El Cerrito, CA 94530. (415) 527-6044. Commodore Specialists! Epson Computers! Pied Piper! Call or write today. Excellent prices!

MASSACHUSETTS

SAUGUS-ROUTE 1. LAND OF ELECTRONICS. Walnut Place Shopping Center, (617) 581-3133. Apple, AltosHardware! Software/Peripherals. Service, Classes, Seminars.

NEW HAMPSHIRE

COMPUTER MART Of NEW HAMPSHIRE, 170 Main Street, Nashua 03060. 603-883-2386. THE APPLE SPECIALISTS. Full line Hardware/Software. Training/Service

OHIO

COLUMBUS-HEATHKIT ELECTRONIC CENTER. 2500 Morse Rd., 43229. (614) 475-7200. Heath/Zenith Computers, Sottware, Peripherals, Robotics, Training

PENNSYLVANIA

MARKETLINE SYSTEMS INC., 975 Jaymor, Southhampton 18966, 215-355-5400. Microcomputers, terminals. printers, supplies, monitors. modems, diskettes, etc.

WASHINGTON

TACOMA-COMPUTERS + 2504 Jefferson Avenue 98402. (206) 272-2329. Atari/Commodore computers. Atari/Commodore/TRS-80 Training.

WISCONSIN

MILWAUKEE-HEATHKIT ELECTRONIC CENTER, 5215 W. Fond du Lac. 53216. (414) 873-8250. Heath/Zenith Computers, Software, peripherals, robotics.

TRS-80 DISCOUNT COMPUTERS

CALL US
LAST for
the LOWEST price!

918-825-4844

it will be worth the call!

MERICAN Bustuss
COMPUTERS
118 S. MILL ST. PRYOR, OK. 74161
CIRCLE NO. 91 ON FREE INFORMATION CARO

DISKETTES
5 $1 /$ " $^{\prime \prime}$ Diskette 1D Single Side
$\$ 29^{\circ 0}$
51/4" Diskette 2D
Double Side Double Density
$839^{\circ 0}$
Soft* Box of 10 Soft* Box of 10 * Add ${ }^{1.75}$ for Plastic Library Case $8^{\prime \prime}$ and other brands also available.
\rightarrow Bi:
COD ACCEPTED
DEALER INQUIRIES INVITED

CALL TOLL FREE
800-848-1101 In N.Y.S. (716) 631-3925 BETSY BYTES Division BB Internatio Buffalo, NY. 1422

TERMS: Prepaid orders receive tree shipping within continental U.S.A. Add 3\% (\$2.00 minimum) shipping and handling charge on all COO and credit card orders. N.Y. res. add 7% tax

CIRCLE NO. 94 ON FREE INFORMATION CARD

TIMEX-Sinclair

64K MEMORY \$119. ${ }^{95}$ KIT \$129. ${ }^{55}$ W\&T WHY PAYMORE? MODEM \$119.95 KIT S149.\% w\&т RS-232 PRINTERINTERFACE Only $\$ 59.96$ KIT $569 . \times$ wat

CONTROL MODULE $\$ 59 .{ }^{96}$ KIT

8 Relays, 8 Inputs, 8 LED's \$69. ${ }^{95}$ W\&T
Expand your 16 K to 32 K with our M-16
\qquad
90 -Day Warranty On All Modules.
0-Day Return Priviledge
ORDER PHONE 803-532-5812
Add $\$ 4.95$ shipping \& handling to all orders.
BYTE-BACK CO.
Rt. 3 Box 147 Brodie Rd
Leesville. S.C. 29070
THOUSANDS IN USE WITH PROVENR
ALL MODULES IN STOCK

Wasting Money! We Have the World's Most Cost Effective Development System Includes HexKit 1.0, a pow editor/debugger utility program that makes coding for -bit Micros a snap. vigram from Commodore IK-20 keyboard into buil JKRM emulator Jumper
 Test programs in circuit - Built-in EPROM program mer and power supply
 ROMQUEEN CARTRIDGE \$199, U.S.: \$269, CAN. Distributed in U.S. by Arbutus Total Soft, Inc., 4202 Meridian, Suite 214 Belingham. WA 98226. Whone 800-426-1253, in washington $206-733-0404$ Distnbuted in Canada by ibc 4047 Cambie St ancouver, BC V5Z 2x9. Phone 604-879-7812 Visa/MC accepted Promqueen $64 \$ 299$.
 8K board/w 1 Eprom $\$ 29.95$
 C-64 board/w 1 Eprom $\$ 39.95$

CIRCLE NO. 92 ON FREE INFOAMATION CAAD

${ }^{5} 4500^{00}$ WEEKLY

 working one or two hours a day with your personal computer. GUARANTEED. Simple program process. No special skills or experience. Free details/application. BOND INDUSTRIES 7115 Blanco Road Dept. 114.178San Antonio. TX 78216

CIRCLE NO. 95 ON FREE INFORMATION CARD

PROIECT YOUR COMPUTER EROM DESTRUCTIVE POWER LINE SURGES
yurf eme AC Dower line Unchecked suiges con distupl normiol compu
 personat compulters

- Botm moders protect your system from losing memory, misreg,stering programs, and blowing oul componenis
- Both models contain a unique three-stage filter that ciamps limiss, and dissipates incoming surge insionioneousiy for rellable and effective
- Both models are compatibie with all mokes of computers ond accessories
DON'T DELAY-PROTECT YOUR INYESTMENT NOW, ORDER TODAY

SURGE-SOCK-IT Protected duo ouliet that replaces any exislining grounded ouller lor permanent
on-sile protection 125 . 15 A

SURGE BLOCK (shown) Por roble prolected duc outter thot plugs inlo ony 3 w we oustel includes
neon hight inol moniors pioleclor ond ground poin

CIRCLE NO. 93 ON FREE INFORMAYION CARO
TIMEX-SINCLAIR Mermocrac
MemOTEXT

ZX81	TS1000	TS1500	TS2000

Memocalc Spreadsheet (16.64 K) Memotext Word Processor (16.64 K) MemoAssembler (16-64K) TIMEX-Sinclair "-2000" Color Computer TIMK $\$ 14895$ 48K TIMEX-Sinciair 2040 Printer Seikos Parallel Intentace \& Cablel
Memopak $16,3264 \mathrm{KRAM}$
\$48.95, $\$ 89.95, \$ 138.95$ Basicare Megabyle System. Call or Write Memotech Keyboard $\quad \$ 89.95$ 70 Ordor: Send chech. Money order. or VISA MC number and exp dare plus $\mathbf{S 2}$. OO shipping in the USA. MN res add 6 pales tax.

E. Arthur Brown Company

Alexandra,
Pn. $612 / 762 \cdot 8847$

Radio Shack and TDP-100

COMPUTERWARE ${ }^{\circledR}$ Box 668 .
6809 Special.s15 Encinitas. CA 92024 (619) 436-3512

TRS-80

— COLOR COMPUTER

Quality Software on:

- DISK

- CARTRIDGE
- CASSETTE

Send for our free catalog clip and mail

Box 10234
Austin, TX 78766 (512) 837-4665

Name
Address

CIRCLEE NO 101 ON FAEE INFORMATION CARO

Home Control System for the VIC 20

Control up to 256 ughts 8 applances

 - ON OFF ALLON Alloff Commands 9 levels of BrightnessManual a fime Control Sothware - Uses 8SA remate switches -Plugs into User Por $\$ 59^{95}$
MasterCard or VISA Accepted GENESIS COMPUTER CORP. 144 Linden striet

SAVE 90\%

YES you can save up to 90% on a computer system for home or office.

68000 microsystem (8 MHz) with 128 KB \& three RS-232C ports, $\$ 252.00$

8086 microcomputer with 128 KB \& three RS-232C ports, $\$ 204.00$

Z80A 4 MHz micro with 64 KB \& two RS-232C ports, $\$ 110.00$

Floppy Interface as little as $\$ 60.00$
FREE BROCHURE TODAY
DIGATEK CORPORATION Suite 7
2723 West Butler Drive
Phoenix, Az. 85021
ROLL-YOUR-OWN TECHNOLOGY AND SAVEA BUNDLE

CIRCLE NO. 89 ON FREE INFORMATION CARD

TIWEX-SINGLAIR ZX81 1000

1983 Directory

Where to find: Disk Drives, RAM Extensions. Print ers, Modems, Keyboards. Game \& Serious Software, Books. Periodicals, Programming AIds, and Other Exciting Accessories
Articies on: Special applications :ike Control Circuitry, Enhanced Graphics, Voice Generation, Music Synthesis, Video Inversion, Light Pens, Joysticks, elct
Complete Descriptions: We'll tell you what it is, what it does, how much it costs, and where to buy it.
Jam-packed w/photographs: We knew you'd want to see what these products look like. So, we

Only 55.95 Postpaid!
Sent First Class in the US.A To Order: Send check. money order, or VISA/MC number and expiration date. MN residents add 6\% sales tax.

Dealer Inquiries welcome
E. Arthur Brown Company

GLDUCESTER CGMPUTEA

$\mathrm{P}[\mathrm{LL}$, all features of Promqueen less mimic mode. Software enhanced to include EPROM OC utilities, RS232 communication, printouts. 28 pin ZIF socket. Reads. edits runs and programs all 5 volt 2500 and 2700 series EPROMS plus variety of EEPROMS all without personality modules. Commodore C64 host computer. Inquire about the mimic mode capability in our VIC Promqueen.
$\$ 299.00$
ROM Packs Industrial quality circuit cards are socketed, solder masked. fully bypassed. and include a ground plane for low noise operation. Includes 1 EPROM. 8K \& 16K models for VIC-20 and C-64. Specity 2732 or 2764 EPROM type. Molded plastic case. $\$ 39.00$ GIDUCESTER CDMPUTER 1 Blackburn Center, Gloucester, MA 01930 617-283-7719 CIRCLE NO. 104 ON FREE INFORMATION CARD

IT'S HERE!! The keyboard you have been waiting for!

A LARGE 60 KEY TACTILE FEEL KEYBOARD (MEASURES $10^{\prime \prime} \times 4^{\prime \prime}$) THAT PLUGS INTO THE SAME CONNECTORS AS EXISTING KEYBOARD ON YOUR 2×11 OR TIMEX SINCLAIR 1000 . IT HAS ALL SILKSCREENED LEGENOS IN 3 COLORS ON THE BASE, MOLDED LEGENOS \& GRAPHICS ONKEY TOPS. 6 AUTOMATIC SHIFT KEYS (NO SHIFTING REQUIREO)
FOR EOIT, OELETE. SINGLE A OOUBLE QUOTES, COLON. SEMI-COLON, FUNCTION \& STOP 5° SPACE BAR: 2 SHIFT KEYS: NUMERIC KEY PAO

ONLY $\$ 84.95$

MASS. AESIOENTS ADO 5\% SALES TAX
SHIPPING \& HANOLING S.O0/UNIT
OELIVERY $4-6$ WEEKS QUANTITY DISCOUNTS WE WILL ACCEPT MC/VISA PLEASE INCLUDE IS. EXP OATE ANO SIGNATURE, FOR MORE INFORMATION SENO SASE. SENO INQUIRIES, CHECK OR MONEY OROER TO:

SUITE 75 E 711 SOUTHERN ARTERY OUINCY. MASSACHUSETTS 02169 (617) 773-1187

CIRCLE NO. 100 QN FREE INFORMATION CARD

COMPLETE CONTROL FROM YOUR TIMEX. SINCLARR 1000 	
- 12 Unbuffered T - 8 Unbuffered A ($\mathrm{O}-5 \mathrm{~V}$) - 8-Bit Analog To - LED Status Indic - Clock/Calenda - Buffered Digital (500 m.a.) - Triac Outputs zero-Crossing (IOC 24-4 hos IOC 24-12 has 1 - Regulated 5V. The Power Supp Computer - Programmable - Sample Prograr	Digital $1 / 0$ Lines log Inputs gital Converter ors utputs 400 V. 2 Amp tically Isoloted IIAC Outputs. RIAC Outputs) wer Source Using Of The ripheral Interface ncluded
GCM Electronics, Inc. PO Box 6152 Fi. Smith AR 72906 Phone 501-846-2100	Description Price IOC $24-4$ 189.95 IOC $24-12$ 249.95 CABLE 12.95 Checks, VISA. Master Cord Sory-no COD.

CIRCLE NO. 102 ON FREE INFORMATION CARD

CIRCLE NO. 105 ON FREE INFORMATION CARO

I WILL BEAT ANY COMPETITOR'S PRICE
PROVIDED IT IS NOT BELOW MY COST. TRY TO BEAT THESE IC PRICES

DYNAMIC RAM		
64K	200 ns	\$5.25
64K	150 ns	5.35
64K	120 ns	5.90
16K	200 ns	1.35
EPROM		
2764	300 ns	\$6.25
2732	450 ns	4.05
2716	450 ns	3.20
2532	450 ns	4.60
STATIC RAM		
6264LP-15	150 ns	\$60.00
6116P-3	150 ns	4.10
2114	200 ns	1.45
Z80A FAMILY		
CPU, CTC.	PIO	\$3 39
DART		7.99
DMA or SIO		12.50

MasterCard VISA or UPS CASH COD Factory New, Prime Parts MICROPROCESSORS UNLIMITED 4.000 South Peoria Ave
(918) 267-4961

Phies subiectio change Call lor volume orices subiec
CIACLE NO 106 ON FREE INFORMATION CARD

MICROSETTE

51/4-inch DISKETTES

- Single or double sided, all double density (SSDD, DSDD)
- Soft sector, reinforced hub

CASSETTES

- Error-free computer grade

ITEM	10 PACK	50 PACK
SSDD	$\$ 25.00$	$\$ 100.00$
DSDD	35.00	150.00
C-10	7.50	32.50
C-20	9.00	39.00
C-60	11.00	50.00
C-90	15.00	70.00
UPS SHIPPING INCLUDED		
In Continental USA		
CA Customers add taxes		

MICROSETTE CO. 475 Ellis St., Mtn. View, CA 94043 (415) 968-1604

COMPUTERS
Buy By Direct Mail
1-800-841-0860 Call For Your Discount Prices
Write For Free Price List Cz commadore •EPSON Efm emith-ctarana FRANKLIN • OKIDATA EaGLE - TRS-80
MICRO MANAGEMENT SYSTEMS telemarket oept. 12

$$
2803 \text { Thomasville Rd. E. Cairo, Ga. }
$$

912-377-7120

Get more out of your Apple with the MICRO on the Apple Series
Vols. 1, 2, \& 3
$\$ 24.95$
$+\$ 2.00$ shipping each volume
Each book includes more
than 30 programs all on DISKETTE
Machine Language Aids
1/O Enhancements
Runtime Utlities
Graphics \& Games
Hardware \& Reterence Information

To order toll free:
1-800-345-8112
In PA 1-800-662-2444
MICRO INK, Dept. CE
P.O. Box 6502

Amherst, NH 03301
603-889-4330
CiRZCLE NO. 40 ON FREE INFORMATION CARD

VIC-20

TS1000 ZX81

3-Colar Keyboard Symbols with Conversion Instructions

- Plastic TS1000-ZX81 keyboard symbols in Black, Red and Blue. Opaque background. Will fit all standard-size keys. Adhesive backing for easy application
- Simple illustrated instructions will show you how to convert a cheap (about $\$ 20$) surplus keyboard to a full-sizeTS $1000 / 2 \times 81$ console
.as easy as stringing wire on a fence
- Do's and Don'tsfor selecting a surplus keyboard.
- Bonus for the "pro" - Schematic Diagram of Computer

MULE Electronics

Dept 310
444 Lincoin Elvd
Venice. California 9ロ291
*Add $\$ 1.50$ P\&H. Galiformlaresidents add 6.5% tax. Money-back guarantee, of course.

CIRCLE NO. 111 ON FREE INFORMATION CARO

ELECTRONIOS

SEMICONDUCTOR PARTS \& PRODUCTS
FACTORY PRIME
DEVICES INCLUDE:
Capacitors - all types
\& styles - Chokes 8
Coils • Connectors
Oigital a Linear IC's
Hardware \& Accessories
IC Sockels • Memory
Resistors - fired 8

8 то 16 BIT UPGRADE
true 16 bit processing

- Z8001 Microprocessor (upgradable to 28003)

V7e-20 SOFTWARE -

Did you know that you can transfer just about any software on expansion ROM cartridges for the VIC-20 onto cassette

- $2 \mathrm{~K} \times 16$ Eprom with Monitor Program
- 16 vectored Interrupts tape or disc for your own use?

Well, with our board, which plugs into the VIC-20 expansion port and 8 k or 16 k of expansion RAM, you can copy games (Sargon Chess ${ }^{\text {™ }}$) programming aids (VICMON ${ }^{\text {™ }}$), music, word processors, and just about anything else on expansion cartridges, for about the price of one cartridge
$\$ 34.95$ (ossages ead in cont. ss)
Calif. Res add sales tax

To order

Call 1-800-821-8858, in New Mexico 1-505-523-0975 Micro Solutions inc. Include check or money or Micro Solutions inc New Mexico residents add ituas El Paseo 4.5\% sales tax

Las Ciruces, NM 88001 visa and Master Card welcome

A nimrod compułer 3823 OCEAN VIEW BLVD. MONTROSE, CA 91020, SUITE 433

CIRCLE NO. 115 ON FREE INFORMATION CARO

COT A TS. 1000 ?

 GET STARTED WITH bOSS SOfIWARE

CASSETTE PROGRAMS FOR THE TIMEX 1000/1500 COMPITTERS
GAMES, BUSINESS, EDUCATION, TUTORIAL

START YOUR OWN SOTTWARE COMPANY ONA SHOEGRINC DUPLICATE S TO SO CASSE TTES WITH THE DIGITALITER AMPIFILD CIEAN COPM OUTPUT, INEXPENSME. PROFESSOONAL CASSETTE DUPLICATINC EQUIPMENT

AND WE SHOW YOU HOW

WRITE FOR FREE CATALOG

$$
\begin{gathered}
\text { EULYN ENTERPRISES } \\
\text { 4N 650 RIDGE WOOD } \\
\text { BENSENVILLE, IL., 60106 } \\
\text { (312) 832-1599 }
\end{gathered}
$$

CIRCLE NO. 116 ON FREE TMFORMATION CARD

TAIWAN

- Manufacturing is both cheaper and quality controlled.
- Are manufacturing cost cutting deeply into your profits?
- We can save you from 25 to 35% Mfg part or whole. All orders accepted after exchange of samples.
- We Mfg., Computer parts, Plastic, Steel, Cast Iron, \& Others.
- If you have a sample or a blue print, write for a quotation to:
- G.S.C IMPORT \& EXPORT Products Research \& Mfg. P.O. Box 901

So. Pasadena, CA 91030
Telex: 295385 GSCC UR

CIRCLE NO. 117 ON FAEE INFORMATION CARO

COMMODORE OWNERS!

New Releases From Home Software Co.

Nutridata - food value program The Wizard - 5 level math futor Mediguide - home health oid The Black Book - phone list Compucise - exercise guide

13.95-Tape 17.50-Disk FREE BROCHURES

Home Soffware Co. P.O. Box 206 Bridgewater, VA (703) 434-8418
for useful home sofware
CIRCLE NO. I18 ON FREE INFORMATION CARD

Texas Instruments

Atari 400, 800, and the new 1200XL Commodore 64, Vic 20, Eagle, ACE 1000, Hewlett Packard, Kaypro II Osborne, Sanyo, Otrona, NEC, Columbia, Data, Altos, Amdek, Okidata

Call us toll-free for low prices and friendly service.
Full line of hardware and software. * Fast service - most orders shipped within 24 hours.

Toll-free 800-327-8133 In FL 305-266-5981 9AM-6PM EST

InterContinental Computer 5724 SW 20 Street, Miami, FL, 33155
All our products are new warranted equipment. Please call for handling charges or C.O.D. Non certified checks allow 1 to 2 weeks to clear.

CIRCLE NO. 119 ON FREEINFORMATION CARD

Put 64K CP/M 22

 8921 S. Sepulveda 208 Los Angeies, CA. 90045 213) $641 \cdot 3101 \quad(800) 421.2418$ TLX: 664.688 Interline LSA
LOOK!!

LOW PRICES

RAMS		EPROMS	
4116 (200ns)	1.10	2708	2.50
4116 (150ns)	1.25	2716	3.20
4164 (200ns)	4.65	2716.1	5.00
4164 (150ns)	4.85	TMS 2716	4.75
2114 (200ns)	1.50	2732	3.95
$6116 \mathrm{P} \cdot 3$	4.25	2532	4.50
MICROPROCESSORS		2764	8.00
Z-80A	4.50	REGULATORS	
8085A	6.00	TO-220	

[^5]in your TRS-80 Model III.
Our plug-in Shuffle. board Ill comes with 16 K and gives you the full power of 64 K CP/M 2.2 the industry standard
operating system.
Tap into over 2.000 off-the-shelf business programs such as dBASE II, SuperCalc, WordStar. etc. READ/WRITE and RUN soft ware from Osborne. Xerox. Superbrain. Kaypro II, HP 125 and TeleVideo You can even READ/WRITE IBM PC software for CP/M 86.

Simple to install. Shuffleboard III plugs into two existing sockets inside your Model III. No permanen modifications, no cut traces, no soldering. You'll be up and running in minutes. For only $\$ 299$. Includes MBASIC Interpreter, a software manual and a first class user's manual. Coming soon: an 80×24 Video Board and a Floppy Disk Controller. See the Shuffleboard at your local computer store or order directly from us. Credit card orders shipped directly from stock. Sorry, no COD's. Free 12 page brochure. Call (415) 483-1008 iDmamorp
Helmerchant

POWER LINE PROBLEMS?

SPIKE-SPIKERSTm...The Solution!
Minimize equipment damaging spikes and conducted RF noise to or from sensitive equipment. Transient surge protection plus low poss RFI hosh filtering. All units 120V 15A

DELUXE \$79.95 Dual 5-stage filtered ckits 8 switch sockers

Kalglo Electronies C_{0}., Ine
MINI II \$44.95
Wall Mount
3-stage filter
2 sockets
QUAD II \$59.95
Woll mount Dual 3 -stoge filter
4 sockets $\&$ light

6584 Ruch Rd. Dept C Order Foctory Direct
Bethlehem, PA 18017
215-837-0700
ofalers inviteo Out of Stote

Pa Res. Add 6°
CIRCLE NO. 116 ON FREE IMFORMATION CARD

FRES CATALOG!

Just let us know and we'll mail you a FREE Creative Comput ing Catalog-16 pages filled with books, buyer's guides, magazines, and more!
To get your FREE catalog, write to: Creative Computing Catalog, Dept NA1X 39 East Hanover Ave., Morris Plains, NJ 07950.

ARBITRARY WAVEFORM
GENERATOR ONLY $\mathbf{\$ 3 4 5 !}$
Generate any custom waveform
with the Apple Computer.

- analog and digital outputs
- up to 20 volts p-p output
- $125 \mathrm{~ns} / \mathrm{pt}-1 \mathrm{sec} / \mathrm{pt}$ - up to 2048 points - 8 bit resolution

IGOGATE 5 ROAD

TRS-80
 COMPUTER DISCOUNTS

- Factory Direct
- Best Prices Anywhere
- No Out-of-State Taxes
- 100\% Radio Shack Warranty
- Free Price List

SCOTT TASSO ASSOCIATES
175 North Delsea Drive Vineland, N.J. 08360 800-257-0426

TIMEX/SINCLRIR 2X/B1「프프즌 1ПT'レ
P.O. Box 50 Utica, MI 480 B 7

Full Size
43 Key
Keyboard
with

Single Key Selection of FUNCTION, SHIFT LOCK and GRAPHIC MODES. 2 LED Mode Indicators

- Simple Plug In Installation
- Fully Enclosed. . Only $59.95 \square$

64 K RRM PRCK 99.95
16 K RAM PRCK
$\cdot 39.95$
Keyboard
(case \& numeric pad) 89.95
Seikosha GP 100 printer and interface
for Sinclair s359.00
Hi Res Graphics Board . $49.95 \square$
16 K 5DFTWRRE '9.95
Horse Master \square Panzer SS
Bill Master \square Budget Master Appointment Planner
Check or Money Order. Add $\$ 5.00 \mathrm{~s} / \mathrm{h}$ Michigan Residents Add 4\% Tax
CIRCLE NO: 128 ON FHEE INFORMAMON CAKD

\$1,295.00 Z-80-6502 COMPUTER SYSTEM
 DISK DRIVE, DRIVE CARD, MONITOR

SYSCOM* $\$ 550.00$ ORANGE* $\$ 650.00$ FRANKLIN $\$ 375.00$ $\$ 375.00$

Hayes Micromodern \$275. Incredible Jack Slimine Drive $\quad \$ 255$.Regular Drive 80 Col. Card $\quad \$ 1102-80$ Card Disk Drive Card $\$ 6516 \mathrm{~K}$ Card Bare Board $\$ 55$ Parallel Printer Card $\$ 65$.
!! WE WILL BEAT ANY PRICE!! Softsell Systems
9600 Roosevelt Blvd., Suite 100, LL
Philadelphia, Pa. 19115
(215) 665-5639

CIRCLE NO. 129 ON FREE INFORMATION CARD

Full Size Keyboard Conversion

For

Your
2X81/
TS1000
SUN KD. 81
${ }^{5} 69^{95}$
Easy To Install
41 Kays with Ful Size Soace Bar - Allows Touch Typlmg Same Key Layouris as Sinclair. Two Color Koytops Keyboard Case Hoids Both Keyboard and Compuier Commands and Grapilics Spelled Out on Keytops Rear Cutout tor Any RAM or Expansion Modulas

16K Piggyback RAM Module

SUNTRONICS CO., we.
in Call Call 213-644-1149
Surside Caif $C_{a} 1$ 1-800-421-5775 Or send Check or M. . to
P.D. Box 1957 Hawthorne CA 90250 Caidumiar ressidenis ade 6% hid sales tax.

CIRCLE NO. 130 ON FREE INFORMATICN CARD

2-BIT SOFTWARE, P.O. Box 2036 Dept. CED3, Del Mar, CA 92014 (619) 481-3629

DEALER INQUIRIES INVITED
CIRCLE NO. 133 ON FAEE INFORMATION CARD

G(O)NMDSETTE

- Precision 5 Screw Cassette
- Premium Quality Tape
- Labeled Both Sides
- Individually Boxed
- Freight Paid On All Orders
- Guaranteed Against Defects

	COMPUSETTE (5 MIN PER SIDE	COMPUSETTE 10 MIN PER SIDE
25	\$20.00 (80')	\$22.50 (90')
00	\$70.00 (70')	\$80.0
	\$330.00 (66)	\$365.00 (7

OUT OF STATE (800)527-1227
TEXAS (214)349.0081 C.O.D

BUY NOW SAVE 10\%
P.O.BOX 38651 DALLAS, TX 75238

CIRCLE NO. 131 ON FREE INFORMATION CAAD
\star MICROCOMPUTER \star
CONVERT ANY TV
TO A HIGH QUALITY MONITOR

Kit permits Dual Mode oper-
ation on B\&W or Color sets

- Hi.resolution - Up to 80
$34 \stackrel{9}{2 \mathrm{~cm}}$
characters per line - Wide
Video - Safe-Easy installation
A full line of Iow cost Monitors and Receiver/Moni tors avatable.

COMPUTER MART FORMAT $2^{\prime \prime} \times 3^{\prime \prime}$

PICTURE YOUR AD HERE! past insiend al UPS add 51. | Hard Box | \square | 2.50 | \square |
| :--- | :--- | :--- | :--- | Outaide Conlineniaiusa add $\$$?

FOA IMMEDIATE SHIPMENT
UEZ YOU ViA OR MASTEICANO CALL $213 / 710-1430 ~$
yoik 10 "Computerware
24573 Kottridqe St. P1 Canaga Park. CA 91307
CIACLE NO. 136 ON FAEE INFORMATION CARO
deal for audio amps, CRT monitors and computers where low hum is required.
Includes mounting wash er with center hole for screw.

Examples of $117 \mathrm{~V}-60 \mathrm{~Hz}$ transformers in stock. Size-Welght Secondarie:" Unit price in qiy

ODKH	Volte/Current	1	$2-4$
$(2 \times 8.5 \mathrm{~V} / 2.3 \mathrm{~A} \mid$			

$40 \mathrm{VA}-1.1 \mathrm{bbs} \quad 2 \times 12 \mathrm{~V} / 1.67 \mathrm{~A} \mid$
$2.8^{\prime \prime} \times 13^{\prime \prime} \quad\left\{\begin{array}{l}2 \times 15 \mathrm{l} \\ 2 \times 15 \mathrm{~V} / 133 \mathrm{~A} \\ 2 \times 24 \mathrm{~V} .83 \mathrm{~A}\end{array}\right\} \quad \$ 29.00 \quad \$ 24.40$
$2 \times 8.5 \mathrm{~V} / 5.8 \mathrm{~A}$
$100 \mathrm{VA}-2.2 \mathrm{lbs} \quad 2 \times 12 \mathrm{~V} / 4.1 \mathrm{~A}$

$3.7^{\prime \prime} \times 1.4^{\prime \prime}$	$2 \times 15 \mathrm{~V} / 3.3 \mathrm{~A}$

$340 \mathrm{VA}-3.3 \mathrm{lbs} |$| $220 \mathrm{~V} / 1.55 \mathrm{~A}$ | $\$ 53.60$ | $\$ 46.50$ |
| :--- | :--- | :--- |
| $2 \times 24 \mathrm{~V} / 7.1 \mathrm{~A}$ | $\$ 5650$ | $\$ 4.50$ |

$4.5^{\prime} \times 2.3^{\prime \prime}$	$2 \times 30 \mathrm{~V} / 5.7 \mathrm{~A}$	$\$ 56.50$	$\$ 46.50$

Call to order or write for listing of of-the-shelf torordal trans. formers 20 VA 600 VA
Terms: C.O.D., VISA, MASTERCARD or Money Order
Shipping: Add $\$ 1.00 / \mathrm{lbs}$ for UPS $1+\$ 1.50$ for C.O.D.
(301) 459 6B98 TOROIO CORPORATION OF MARYLAND

CIACLE NO. 132 ON FAEE JNFORMATION CARD

UNIVAIR INTERNATIONAL
9024 St. Charles Rock Road
ST. LOUIS, MISSOURI U.S.A. 63114
(314) 426-1099

CIACLE NO. Y34ON FAEE INFORMATION CARD

BUSINESS

 SOFTWAREMEDICAL MGMT... DENTAL MGMT... INSURANCE AGENT LEGAL BILLING..... PROPERTY MGMT.. AND MUCH MORE!
"

Box 411. Los Angeles, CA 90028
(213) 466.5533
leader fits all standard recorders.
SATISFACTION GUARANTEED OR MCNEY BACK
 quantity discounts. Calit. masi-
dents add zales las. SHIPPIWG HAMDLING (UPS) 1 doz. $\$ 2$ 2 doz. $53.50 ; 3$ doz. 54.50 : ea additional tozz. 5.50 . For partel
COMPUTER CASSETTES

THE WORLD'S FINEST Data media for all microcomputers. Used nationwide by software manufacturers, hobbyists, schools and businesses. Premism 5-screw shell with

10	$\square 8.00$	$\square 14.40$
.20	$\square 1000$	$\square 1800$

 BASF -DPS

64K INSIDE!!

T/S 1000

No wobbles!

No bulky add-ons! No fear of crashing if bumped!
The 64 KT and 64 KZ are 64 K of user transparent memory which mount INSIDE the TS 1000 or ZX8 1 (respectfully)
In installs in aminute with NO soldering, and easy to follow instructions. Ot, if you prefer get the memory you want in a kit that you can put together, all the parts needed are included.

The $64 \mathrm{KT}=$ TS 1000 with ser, no. prefix F or P The $64 \mathrm{KZ}=$ TS 1000 with ser no. Tor D or $Z \times 81$

> 64 KT or 64 KZ 64 KTK or 64 KZK (kit) 115.00 .00

To order, send the part number you need, and check or money order (add 4.00 for shipping and handling) to:

INDEPENDENCE RESEARCH
P.O. BOX 1497

OREM, UTAH 84057

EPROM Programmer Only \$146

- 4K internal ram buffer storage capacity
no personality monule rfeuired.
power can be removen from zif socket when LOADNG EPROMS
binary address and data display
independent unit - verifies, programs, inputs data from rinary keyboard, Loads data from and changes any beat of data.
RMCO Elfetronics corp.
P.O. ROX 112

107029
212-685-6336
-
212.

Mall ORDERS: PLEASE ADO $\$ 3$. 0 for handling Charge
NEW JERSEY R ESIDENTS: PLEASE ADD G\% SALES TAX

CIRCLE NO. 138 ON FREE INFORMATION GARO

Now we can make any computer sing as well as talk, for only \$219.

ed in Ciarcia's Circuit Cellar. BYTE" Magazine September. October 1982

MICROVOX is a completely self contarned protessiona vaice quality text-to-speech synthesizer MICROVOX may be easily interiaced to any computer modem RS-232C serial or parallel output device

- Fro2 Microprocessor based text-10-speech algorithm
- SC-01A phoneme based speech synthesizer
- 64 crystal controlied inflection levels
- 3000 character hutfer
- RS-232C and paral lel port interfaces
- On boara power supply
- Music and sound eftecis capability
mVot Microvox Assembled \& Tested

1. 5299.00 MV02 Microvox, complete kit S219. 00

To Order: Cail Toll Free To Order Cail
$1.800 \cdot 645 \cdot 3479$ In N.Y. 1-516-374-6793 MICROMINT. INC. 561 Willow Avenue Cedarnurst NY 11516

CIRCLE NO. 139 ON FREE INFORMATION CARD

TRS-80 + MOD I, III, COCO, T199/4a TIMEX 1000, OSBORNE, others

GOLD PLUG - 80

Eliminate disk reboots and data loss due to o dized contacts at the card edge connectors GOLD PLUG 80 solders to the board edge connector. Use your existing cables. (if gold plated)

GOLD PLUG $80 \operatorname{Mod} \operatorname{I}(6)$ Keyboard/El (mod I) Individual connectors cOCO Disk Module (2) Ground tab extensions Disk Drives (all R.S.)
Gold Disk Cable 2 Drive
Four Drive Cable
GOLD PLUG 80 Mod III (6)
Intemal 2 Drive Cable
Mod III Expansion port
USA shipping \$1.45 Foreign $\$ 7$.
 (817) 498-4242
$\$ 54.95$ 18.95 9.95 18.95 1.00 9.95 29.95 39.95 54.95 29.95 10.95

Can/Mox \$4. EXAS 5\% TAX

Conscious?
How you can organize your copies of Computersas Electronics

Now your magazines can be a handsome addition to your decor, well organized, and easy to find, thanks to these durable libraryquality cases or binders. They're made of luxury-look leatherette over high-quality binders board. And both styles are customdesigned for this or any magazine you save, with size, color, and imprint selected by the publisher. FREE transfer foil included for marking dates and volumes.

store your issues for individual reference. $\$ 6.95$ each: 3 for $\$ 19.75$; 6 for $\$ 37.50$. Mixed titles OK for quantity prices.

CHARGE ORDERS ONLY-
for your convenience PHONE 24 HRS TOLL-FREE 800-526-0790. in NJ only 201.540-0445.

Computers \& Electronics

P.O. Box 5120, Philadelphia, PA 19141

Please send: \square Cases $\quad \square$ Binders
TITLE
QUIANT.
Computers \mathcal{E} Electronics:
(Other): \qquad -
\square ENCLOSED IS $\$$ \qquad * Add $\$ 1.00$
per order for post. \mathcal{E} handling. Outside USA add $\$ 2.50$ per unit ordered. Send U.S. funds only.
\square CHARGE (Min. \$10): \square VISA
\square American Express \square Master Charge
Card \#
-
Exp. Date
Signature
Print Name
Address
City/State/Zip \qquad

ADVERTISERS INDEX

RS no.
ADVERTISER
PAGE no

50	Active Electronics 105
3	All Electronics Corp. 105
35	Apple Computer 14-15
55	Artec Electronics 69
	C \& Electronics 102
	Classified Advertising 111-120
	Cleveland Institute of Electronics, Inc 36.39
29	Commodore Computer 3
19	Communications Electronics 5
60	CompuServe 62
11	Computer Mail Order............. . . 70
67	DAK Industries 1
14	Digi-Key Corp. 108-109
66	Discwasher 25
51	Electronic Specialists 101
25	Epson America................. 28-29
26	Firestik Antenna Corp. 101
18	Focus 100
24	Heath Co. 8-11
65	Hewlett-Packard 17
10	INMAC 61
21	Jameco Electronics 104
22	JDR Microdevices 106-107
23	J \& R Music World 25

20 Leading Edge

Cover 4

Macmillan Book Clubs, Inc. 23

McIntosh Laboratory, Inc.
Cover 2, 49

National Technical Schools. 54-57
Netronics R \& D L.td.
NRI Schools

- 21

40,69 Protecto Enterprises
35,59
Radio Shack
43,110

Scientific Systems
103

Star Micronics103

Sundex Corp.
Cover 3, 51

39
65
42 TAMS, Inc.
102

When it comes to superior performance, we study our lines very carefully.

Superior printer parformance is not a fluke. It evolves from analyzing printed line after printed line. Taking the time to test and retest. After 30 years of marufacturing precision parts, we know that there are no shortculs.

And so we took the Gemini-10X and methodically put it through its 120 cps pace. We achieved a print head life of over 100 million characters with an extremely precise dot alignment creating each arisp character.
So far sc good.
Next, sophisticated performance demanded versatility. A wide choice of character sets, a buffer expandable to 8 K , ard the ability to interface with all popular perscnal computers. We added macro

THE POWIR BEHIND THE PRINIED WORD.
Computer Peripherals Division
2803 N.W. 12th Sireet. Dallas/FI. Worth Alrpent, TX 75261
instruction, giving Gemini-10X the capability to perform up to 16 operations with one commard. We included as standard a paper feed system that has a friction and fully adjustable tractor feed. Then we even built in the dexterity to print graphics and text on the same line.

Done.
And, of course, staying the best means constant reviewing and fine-tuning. Keeping the Gemini casy to find, easy to afford and so reliable it can be warranted for up to twice as leng as its major competitors.

Only the most careful engineering has built the new hard-working Gemini-10X. You'll applaud its performance.

[^0]: Editorial and Executive Offices
 One Park Avenue
 New York, New York 10016
 212 725-3500
 Sales Offices
 New York Office
 Tom Ballou 212 725-3578
 Ken Lipka 212 725-3580
 Midwestern
 Suite 1400, 180 N. Michigan Ave.,
 Chicago, IL 60601312 346-2600
 Sales: Robert Vanek
 Western
 J.E.M. Associates

 Francisco Bay Office Park
 1750 Montgomery Street
 San Francisco, CA 94111 415-989-4643 Joe Mesics

 Representation in Japan
 J.S. Yagi

 Iwai Trading Co., Ltd. 603 Ginza Sky Heights Bldg.
 18-13, Ginza 7-Chome
 Tokyo, Japan 104

[^1]: *Price F.O.B. Beaverton, OR. Price subject to change.
 *Three-year warranty applies to 2000 Family oscilloscopes purchased after 1-1-83.

[^2]: NOTE: $\$ 8800-\$ 91 F F$ ARE SET ASIDE FOR ADC, DAC. DATA STORAGE \$9200-\$93FF ARE SET ASIDE FOR DAC, CLEAR MEMORY AND ADC ASSEMBLY LANGUAGE PROGRAMS

[^3]: *Residents of CA, CO, CT, DC, FL, IL, MA, ML, MO NJ, NY State and VT add applicable sales tax.

[^4]:

[^5]: TERMS: Check, Visa, Mastercard. Call for C.O.D. U.S. Funds only. California residents add $61 / \% \%$ sales tax
 SHIPPING: Add $\$ 2.00$ for Ground and $\$ 5.00$ for Air. ALL MAJOR MANUFACTURERS ALL PARTS 100% GUARANTEED

