6th ANNUAL TELEVISON NUMBER

RADIO

 III:CIRONIC:S
LATEST IN TELEVISION•SERVICING•AUDIO

In this Issue:
Articles by Guy, Rider, Tilton • Directories and listings of: TV Receivers, Boosters, Antennas Components, Kinescopes, Channels • U. H. F. Articles and Circuitry •

DO ITRIGHTDO IT WITH DUMONT

How far ahead can you be

Send for this free CREI booklet today ...

 and find out!TTHIS BOOKLET can mean the difference between small, w-i-d-e-l-y s-p-a-c-e-d salary increases-and rapid advancement. Between routine work-and challenging opportunity. Between constantly defending your job against better-trained men-and dynamic confidence. Between short-circuited hopes-and high-powered ambition.

An exciting new world has opened up with such super. speed that even the most optimistic electronic experts fall short in their predictions of expansion.

Think of the 113 TV stations now on the air and the 2,500 stations nade possible by the FCC unfreeze. Think of the over $18,000,000$ TV sets now in use. That's $5,000,000$ more than we were supposed to have by 1954. Think of the $100,000,000$ radios in current operation. (95% of the nation's homes have one or more sets.) Think of the tremendous defense orders now being placed for electronic equipment and installations.

Think of the thousands of radio-equipped fire and police departments throughout the U.S. Of the many radioequipped railroads, of the hundreds of cities with 2 -way radio service for cars and cabs. Think of the wide-ranging field of aviation communications-radio-controlled aircraft, navigation-and-traffic control, airport stations.

Think of the maritime world with its navigational aids, fathometers, ship-to-shore and ship-to-ship communications and radar. Think of electronic heating, fax and ultra-fax, of electronic medicine, and all the other applications of clectronic know-how.

Countless positions must be filled-in development, research, design, production, testing and inspection, manufacture, broadcasting, telecasting and servicing. Who will get those positions? You-if you prepare today-if you are alert and have the ambition to advance your knowledge. You-if you take 2 minutes to send for a free copy of "Your Future in the New World of Electronics."

This helpful book shows you how CREI Home Study leads the way to greater earnings through the inviting opportunities described above.

However, being an accredited technical school, CREI does not promise you a "bed-of-roses." You have to translate your willingness to learn into saleable technical knowledge
-via study. Since its founding in 1927, CREI has provided thousands of professional radiomen with technical educations. During World War 11, CREI trained thousands for the Armed Services. Ieading firms choose CREI courses for group training in clectronies at company expense, among them United Air Lines, Canadian Broadcasting Corporation, Trans Canada Airlines, Bendix Products Division, AllAmerican Cables and Radio, Inc., RCA-Victor Division, and the Machlett Laboratories.

CREI courses are prepared by recognized experts, in a practical, easily-understood manner. You get the benefit of time-tested materials, under the personal supervision of a CREI Staff Instructor. This complete training is the reason why CREI graduates find their diplomas kevs-tosuccess in Radio, TV and Electronics. CREI alumni hold top positions in America's leading firms.

At your service is the CREI Placement Bureau, which finds positions for students and graduates. Although CREI does not guarantee jobs, requests for personnel currently exceed supply by far.

Talk to men in the field and check up on CREl's high standing in electronics instruction. Determine for yourself right now that your earnings are going to rise with your knowledge-and that you get your rightful place in the Age of Electronics. All this CREI can promise you, provided you sincerely want to learn. Fill out the coupon and mail it today. We ll promptly send you your free copy of "Your Future in the New World of Electronics." The restthe future-is up to you.

MAIL COUPON FOR FREE BOOKLET

CAPITOL RADIO ENGINEERING INSTITUTE

Dept. 141, 322416 th St., N.W., Washington 10. D. C.
Send booklet "Your Future in the Now World of Electronics" and course outline. CHECK \square TV,FM \& Advanced AM Servicing \square Aoronautical Radio Engineering FIELD of (—Practical Television Envineering
GREATEST (D Broadeast Radio Engincering (AM, FM, TV) IMTEREST D Practical Radio Engineering

Name. Street.

City........ Zone. . . . State.
if residence sc.nool in Wosh., D. C. preferred, check here \square

RADIO III:C:TRONICS

Formerly RADIO-CRAFT - Ineorporoting SHORT WAVE CRAFT - TELEYISION NEWS - RADIO \& TELEVISION*

Huga Gernsback Editar-in-Chief
M. Harvey Gernsback Editorial Director
Fred Shunaman
Managing Editor
Robert F. Scott
W2PWG, Technical Editop Martimer Bernstein Associate Editor 1. Queen

Editorial Associate
Matthew Mand
Television Consultant Angie Pascale

Production Managep
Wm. Lyon McLaughtin
Tech. Illustration Directar Sol Ehrlich

Art Director

Lee Robinsan
General Manager John J. Lamson

Sales Manager G. Aliqua

Circulation Manager Robert Fallath

Promation Manager

CONTENTS

JANUARY 1953
6TH ANNUAL TV ISSUE
Editarial (Page 29)
New Television Trends by Hugo Gernsbock 29
Television (Poges 30-84)
UHF Opens Up by Raymond F. Guy 30
IV Distributian Systems .. by Eric Leslie 34
European TV Network .. 37
The New UHF Chor
by John F. Rider
New TV Areas
by Edward Sieminski
NTSC Color TV
. by E. P. Tilton
TV DX in 1952
.by Fred King
Two More U.H.F. Converters
by Robert F. Scott
 U.H.F. Circuitry

Television Antenna Products Directory
TV Comes to Portland by Victor Bery
Kinescape Replacement Chart by E. W. Scott
Television Companents for Conversion or Repair
TV Service Clinic Conducted by Matthew Mondi
TV Booster Choracteristics
Directory of TV Receiver Characteristics
.

Audia (Pages 96-104)
Push-Pull Drivers George Fletcher Cooper 96
Eectronic Music-The Eosiest Way, Part II by V. Fostenaekels 102
Servicing-Test Instruments (Pages 106.116)
Crystal Morkers for Sweep Generator by Bruce Morrissette 106
Quick Copocitor Chezker .. by George Kelly II
Construction (Pages 118-135)
Polarized Power Plugs :or the Expermenterby L. B. Hedge 118
§W Converter by Richard Graham 122
Improving Oscillator and A. V. C. Operation by James Sareda 130
New Design (Pages 138.139)
New Long Lite Cell Boon ta Portab'es 138
ANNiUAL Radio-Electronics INDEX ... 168
Departments
The Radio Month 12 Try This One 152
Radio Business 18 Question Box 156
With the Technicion 136 Technotes 159
Hew Patents 140 People 165
New Devices 143 Miscellany 168
Radio-Electronic Circuits 146 Communications.................. 175 Brok Reviews 176 Vol. XXIV, No. I

EXECUTIVE, EDITORIAL and ADVERTISING OFFICES: 2i. West Broadmay, New York i. N. Y. Telephone REctor 2-8630. Gernshark Puhlications. 1ne. Itugo Gernsback,

shing coples 3ye. All uther foreign countries $\$ t 511$ a year. \$s. no for twn years: $\$ 1 t$ on for three years

 \#14. K. L. Kannappa sludaliar. Itedras 2. Pakistan: i'aradise book Stall, Karachi 3. "Trademark registered L.s. Patent office. Inda: Broaduay .etry Centre, Dadar, Bombay

as a mational schools graduate ThERE'S A PLACE FOR YOU IN THIS EXPAMDING INDUSTRY...Mever before such a demand for you! For never before such a growing industry as today's Television, Radio and other Electronic fields. This industry needs you... TODAY... and it needs you as a trained man . . . the kind of man you will be as a National Schools graduate. So don't wait. Start your National Schools training NOW...and enjoy big money, jok security, SUCCESS!
LEARN from EXPERTS! BE A SUCCESSFUL
MAN YOURSER! You learn from men who are themselves successful Radio, Television and Electronics technicians. You learn the practical way ... by doing... with equip. ment we send you. And you advance quickly, step by step. Get All the facts from FREE lbook and sample lesson. Mail coupon below NOW. Absolutely no obligation.

All yours at no extra cost!

You can qualify FAST for these big-pay jobs...plus many more

Radio Station Technician - Your own Sales and Service Shop • District Service Managet • Inspector Technician - Aircraft Radio Inspector - Specid Govt, Positions. Service Specialist - Sound Truck Operator • and many others!

ONLY NATIONAL SCHOOLS

 GIVES YOU THIS PROFESSIONAL MULTI-TESTER
Ready to use. Easy to operate. Light enough to carry on service calls.
DRAFT AGE? National Schools training helps you get into special service classifications-get higher grades, better pay!

GEt YOUR TRAINING fROM THE RADIO-TV CAPITAL OF THE WORID

Let Na-
tional Schools -a resident technical trade school for nearly 50 years-train you at home for today's unlimited opportunities in Radio-TV.

NATIONAL SCHOOLS GRADUATES IN BIG DEMAND. You'll find National Schools graduates in good jobs everywhere. For these are the jobs National Schools trains you for. Such complete, shop-method home training can be your ticket to success... your key to the job happiness you've always wanted. It's up to you. Mail coupon NOW!
FRIENLLY GUIDANCE AS STUDENT AND graduate. Our special Welfare Department is constantly at your service. Helps you with your technical and personal problems. Gives you the benefit of its wide industry contacts and experience in helping you after graduation. Write National Schools, 4000 Soutl Figueroa St., Los Angeles 37, California.

NATIONAL SCHOOLS

Los Angeles, Calif. • Est. 1905 • In Canada: 193 Hostings Si., Vancouver, B.C. ACY YOU GET ALL THE PARTS INCLUDING TUBES for this superheterodyne receiver... and lots of other equipment...to keep!

Don't put it off! Mail coupon NOW!

NATIONAL SCHOOLS, Dept. RG-13 4000 South Figueroa Street

Mail in envelope or paste an Los Angeles 37, California postal card

Send me FREE book "My Future in Radio-Television and Electronics." Also a. FREE sample lesson. I understand no salesman will call on me and that there is no obligation.
NAME \qquad
ADDRESS
CITY \qquad

These signals find the way

When you dial a telephone number, high-speed switching mechanisms select your party and connect you. Through a new development of Bell Telcphone Laboratories, similar mechanisms are doing the same kind of job in private wire teletypewriter systems which America's great businesses lease from the telephone company.

Company X, for example, operates an air transportation business with scores of offices all over the country. At one of these offices, a teletypewriter operator wishes to send a message, let us say, to Kansas City. Ahead of the message, slie types the code letters "KC". The letters become electric signals which guide the message to its destination.

Any or all stations in a network, or any combination of stations, can be selected. Switching centers may handle 50 or more messages a minute . . . some users send 30,000 messages a day. Delivery time is a few minutes.

Defense manufacturers, automobile makers, airlines and many other American businesses are bencfiting by the speed and accuracy of the new equipment - another example of how techniques developed by the Laboratories for telephone use contribute to other Bell System services as well.

BELL TELEPHONE LABORATORIES
Improving telephone service for Amorica provides
carcers for creative men in scientific and technical fields.

MILITARY SERVICE!

Get BOTH of these colorful, information- packed folders
 FREE

If you're subject to military service, the information we have for you should prove

DeFORESTS TRAINING, INC. DEPT. RE-I-J
2533 N. Ashland Avenue, Chicago 14, III.

I would like valuable

information-packed folders showing how I may get started toward a good job or my own business in Television. Radio-Electronics.

ends low line voltage hazard" CREST LVB-117

Line Voltage Booster ACCURATE VOLIAGE BOOST!

End low line hazard*. . . sub-normal line voltage may cause damage op improper operation of TV set or electrical appliance.

The LVB-117 is engineered to restore peak performance to any TV set set or electrical equipment.

Insures full strength, width, and height of the TV picture when low line voltage weakens or shrinks picture. Corrects intermittent sync and oscillator drift caused by low line voltage.

6 unique features for the ultimate in ACCURATE VOLTAGE BOOST

300 WATT RATING . . . ample for most requirements

V SIMPLE EXTERNAL PLUG-IN . . . 10 second installa. tion aids over the counter sales
\checkmark AUTOMATICALLY OPERATED ... turns on and off with set or appliance
F MULTI-TAP SELECTOR SWITCH . . . permits exact voltage boost
\checkmark VISUAL INDICATOR . . . assures exact selection of required boost
\checkmark OVERLOAD CUT OUT . . . protects against unsafe line voltage increase.

Available af local jobbers or write for full details and name of nearest representative.

LABORATORIES, INC. 84-11 Rockaway Beach Blvd. Rockaway Beach 93, N. Y. Far Rockaway 7-2732

TELS HOW...
WE GUARANTEE
HERE IS YOUR GUARANTEE
If you fail to pass your Commercial lieense exam If you fail to pass your course, we guarantee to any after compleling thue your training without additional coss of anmercial timue your training witholy obtais your Commercia kird, unfil you succes first sit for this examin.
license, provided you

TELLS HOW...

Our Amazingly Effective JOB-FINDING SERVICE

TO TRAIN AND COACH YOU AT HOME IN SPARE TIME UNTIL YOU GET

YOUR FCC LICENSE

If you have had any practical experience-Ama-

Profitable TV Testing

Value-wise you can't make a smarter buy. For if you have a good Signal Generator to use as a marker with 3435, this new Triplett Sweep saves you real money! Performance-wise it's Triplett Engineering at its best. There are no complications in use. Continuous range coverage to 240 MC for all TV carrier and IF frequencies. There are no gaps in frequency, and continuous tuning is provided over all TV and FM bands. Note MAIN frequency dial, marked with channels as well as frequencies; continuously variable sweep width, effective from 500 KC to 12 MC ; the PHASE controlled sweep voltage for scope horizontal input; the STANDBY switch for temporary silencing of generator during other testing. These and many other features make Triplett 3435 an outstanding "buy." See it today at your distributor's.

YOU CAN USE ANY A.M. SIGHAL GENERATOR

. . . but if you are critical you'll appreciate this Wide Range Test Oscillator - Triplett 3432. Five fundamental ranges- 165 KC to 40 MC. Two Harmonic ranges $36-120$ MC, directly calibrated. Completely Shielded. Seven directly calibrated 330° scales. Illuminated Dial. Try it today.

Triplett 3432

TRIPLETT ELECTRICNL INSTRUMENT COMPANY, BLUFFTON, OHIO
 an expert radio serviceman. Study the theory and principles first. These are vitally important. Then roll up your sleeves and actually work with radios - assembling, experimenting, trouble-shooting, repairing. That way you learn radio from the inside out.

Which explains why I.C.S., in its new Radio Course, concentrates on equipment. You get the best. Matched parts for an excellent 5 -tube superheterodyne receiver. Your own professional-quality multitester. A complete signal generator

kit. High-grade servicemen's tools. "Rider's Perpetual Trouble-Shooter's Manual." Plus lesson material and instruction service second to none. Also included is Principles of Television, which is a steppingstone to TV installation and service. And there's a new course in $F M$ and Television that includes COLOR TV!
Learn by doing! That's the famous I.C.S. method. Practical. Modern. Success proved. The coupon below brings you full details-on radio servicing or any of the 391 I.C.S. Courses. Mail it today!

INTERNATIONAL CORRESPONDENCE SCHOOLS

BOX 2880-8, SCRANTON 9, PENNA.

The Rradio Month

You can build a reputation on Tung-Sol Quality

TUNG-50L.
 RADIO, TV TUBES, DIAL LAMPS

TUNG-SOL ELECTRIC INC, Newark 4, N. J. Soles Offices: Atlanta - Chicago - Culver City Dallas - Denver - Detroit - Newark

Tung-Sol makes All-Glass Sealed Beam Lamps, Miniature Lamps, Signal Floshers, Picture Tubes, Radio, TV and Special Purpose Electron Tubes.

RCA SHOWS TRANSISTOR progress in a wide range of radio, television, and industry applications. The demonstration was held November 17, at the David Sarnoff Research Center in Princeton, N. J.

Transistors were shown operating a portable television receiver, radio sets,

The transistor push-pull output stage. loudspeaker systems, miniature transmitters, parts of electronic computers, and other experimental devices.
The portable TV set was a singlechannel battery-operated recever with a five-inch screen, no largen than a portable typewiter (12 x 13×7 inches). With only a built-in loop antenna the 27 -pound receiver produced satisfactory pictures on channel 4 five miles from the Empire State Building. A small "rabbit-ear" antenna boosted its range to fifteen miles.

The experimental receiver has 37 transistors. its total power consumption is ouly 14 witts, less than $1 / 10$ th that of a standard table-model set.

An experimental push-button-tuning automobile radio with 11 transistor's provided comparable audio output to standard present-day types.

An important feature of this alltransistor set is the elimination of the B supply (vibrator, transformer. and rectifier). The transistors operato directly off the six-volt automobile battery. 'Total battery drain with the experimental receiver is only une amp (including two pilot lights).

An entirely new kind of audio power
amplifier was also shown. This consists of nothing but the four experimental junction transistors shown in the photograph.

These are pairs of $p-n-p$ and $n-p-n$ transistors in a bridge arrangement, acting as a push-pull amplifier and driving a speaker voice coil directly. Such a device can do the job that now requires two or more tubes, a phase inverter, an output transformer, and other components.

MICROWAVES MAKE MEALS to

 order in seconds in new Lunch-O-Mut slot-marhine restaurant. Radar cooking, developed some years ago by Raytheon Manufacturing Company, is being used successfully for large-scale food preparation on the new S.S. United States and in many hotels and institutions. Refrigerated meats. soups, and beverages are cooked thoroughly in less than 15 seconds, without destroying vital nutritional elements. This appears to be the first successful attempt to use it in a vending machine.Heart of the Lunch-O-Mat's hot-food section is the hand-size magnetron oscillator shown in the photograph.

COMMUNITY ANTENNAS have

 reached the stage of big business. A plan under consideration for Vancouver, Canada, would call for an expenditure of $\$ 10$ million. It is being considered as a serious business proposition by Famous Players Canadian Corp., and would bring programs from Seattle and Bellingham, Washington, to residents of Vancouver. Coaxial cable distribution and a coin-meter service is included in the plan. The antenna would be 300 feet high, mounted on high ground near the city.In Corsicana, Texas, the city commission is considering an ordinance which would grant a 10 -year franchise to a local company for a city-wide TV master antenna system. Tentative charges as proposed would be $\$ 125$ for connection to the system and from $\$ 3.50$ to $\$ 4.50$ a month as rental fee. A central tower high enough to assure the subscribers excellent television reception would be erected.

Latest arrival in the vending machine field is this coin-in-the-slot Radarange.

THE ONLY COMPLETE CATALOG FOR EVERYTHING IN TY, RADIO AND Industrial Electronics

get your 1953 FREE ALLIED 236-PAGE CATALOG

it's complete

it's value-packed

THE WORLD'S LARGEST STOCKS

Send for it today!

- TV and Redio Parts
- Test Instruments
- Hi-Fi and P.A. Equipment
- Custom TV Chassis
- AM, FM Tuners \& Radios
- Recorders and Supplies
- Amateur Station Gear
- Builders Supplies
- Equipment for Industry

SEND TODAY FOR RADIO'S LEADING BUYING GUIDE

Quick
EXPERT
SERVICE

0

satisfaction. Get the latest 1953 allied
Catalog. Keep it handy -and save time and
money. Send for your FREE copy today!

EVERYTHING IN ELECTRONICS

Here's the one authoritative, complete Buying Guide to Everything in Electronics-packed with the world's largest selections of quality equipment at lowest money-saving prices. See the latest in TV custom chassis, TV antennas and accessories; AM and FM tuners and radios; High-Fidelity Custom Sound components; latest P.A. Systems and accessories; recorders; Amateur receivers, transmitters and station gear; specialized industrial electronic equipment.; test instruments; builders' kits; huge listings of parts, tubes, tools, books-your choice of the world's most complete stocks of quality equipment.
allied gives you every buying advantage; speedy delivery, expert personal help, lowest prices, liberal time payment terms, assured satisfaction. Get the latest 1953 allied Catalog. Keep it handy-and save time and

ALLIED RADIO

World's Largest Electronic Supply House

EASY-PAY TERMS

Take advantage of ALlifen's liberal Easy Payment Plan-Radio's best terms-only 10% down, 12 months to pay -no interest if you pay in 60 days. Available on $\mathrm{Hi}-\mathrm{Fi}$ and P. A. units, recorders, TV chassis, test instruments, Amateur gear, etc.

TV 2 HI-FI SPECIALISTS

To keep up with developments in TV and High-Fidelity, look to allied! Count on us for all the latest releases and largest stocks of equipment in these important fields. If it's anything in Television or HighFidelity equipment-we have it in stock!

to prepare for a good job or a business of your own in TV SERVICING

There are today more good jobs open in TV Servicing than there are trained and experienced men to fill them. Yes, thousands of opportunities exist now for good-pay jobs offering employment security for years and years to come. Thousands of TV Servicing jobs are goiang begging. Do you want one of them?

Experts agree, that because of the critical shortage of trained and experienced TV Servicemen, and the tremendous future growth of the industry, no vocational field today offers more opportunities than TV Servicing.

The Big New Industry with a Great Future

Television is just in the beginning stages of its big industrial boom. Look at these amazing facts:

- Lifting the freeze on new TV stations will open many new TV areas and will improve the coverage of existing areas. The result will be an enormous demand for TV receivers.
- Within a few years over 1000 TV stations will be telecasting compared with 108 TV stations row on the air.
- Nearly one-half of all families living within the present TV areas do not yet own TV receivers.
- The new trans-continental video network plus better and more interesting programs plus larger viewing screens and color TV will increase the installation of new receivers, will induce present owners of 12 -inch and smaller size viewing screens to buy newer model receivers.
- The power increases of many existing stations and improved reception range of current receivers will result in receivers being iastalled and serviced in the fringe areas of present stations.
- Under the FCC proposal, over 70 per cent of all communities will be served by UHF channels exclusively. This means TV servicemen must know UHF receivers before the new UHF stations in their area are opened.
- No one yet knows how great the industrial TV market will be

RCA Institutes Home Study Course prepares

 you for a Career in TV ServicingThe addition of the RCA Institutes TV Service Training to your present radioelectronics experience will qualify you to step out and grasp the golden opportunities that now exist in television-America's fastest growiag industry.
Learn at home-in your spare time-while you study the practical how-to-do-it techniques with how-it-works information. Easy-to-read and easy-to-understand lessons under the supervision of RCA engineers and experienced instructors quickly train you to qualify for the many good jobs now waiting for trained TV servicemen. Don't pass up this lifetime opportunity for financial security and a bright future in TV. Learn TV Servicing from RCA - pioneers and leaders in radio, television and electronic developments.

RCA Institutes conducts a resident school in New York City offering day and evening courses in Radio and TV Servicirg, Radio Code and Radio Operating, Radio Broadcasting. Adxanced Tecnnology. Write for free catalog on resident courses.

Send for FREE BOOKLET

Moil the coupon-leday. Get complete information on the RCA INSTITUTES Home Study Ceurse in Television Servicing. Booklet gives you a general outline of the course by units. See how this prectical home study course trains you quickly, easily. Moil coupen in anvalope or paste on postal cord.

MAIL COUPON NOW!

RCA INSTITUTES, INC. Home Study Pepartment RE-153 350 West Fourth Street, New York 14, N. Y.

Without obligation on my part, please send me copy of booklet "RCA INSTITUTES Hame Study Course in TELEVISION SERVICING." (No salesman will call.)

MOTOROLA= DETROIT CO.

one of the country's largest distributors of television sets and appliances

SAYS

IS A PROFITABLE ITEM TO STOCK FOR 2 REASONS

1. TV SERVICEmEN buy it

"Our customers use Krylon and plenty of it," reports MotorolaDetroit parts manager, Paul Wallace 'The spray nozzle makes it easy to insulate the complete chassis in a matter of minutes." Because of its high dielectric strength, Krylon helps prevent corona.

Indoor service chief, John Workman, reports, "We use Krylon clear plastic coating to spray the bell part of metal picture tubes. Krylon stops dust from adhering to the tube and prevents arcing. We find Krylon is a must in television service operations."

QRM ON CHANNELS 4 AND 5 is heing caused by fixed-relay stations in the $72-76-\mathrm{mc}$ band, according to a complaint filed with the FCC by the NARTB and station WCCO-TV, Minneapolis. In asking the Commission to reconsider assignments in the 4 -me nonTV gap between the channels, John M Sherman, technical director of WCCO TV, cited severe interference over large areas in Wisconsin and Minnesota from police relay stations operating on 73.22 and 74.5 mc .

A SERIES OF SCIENCE FILMS will be shown this fall on national TV network programs sponsored by the American Telephone \& Telegraph Company. The 13 one-hour features will be made for AT\&T by Hollywood producer Frank Capra. First two films to be presented are titled "The Sun" and "The Moon", with cost of production estimated at $\$ 200,000$ each.
U.H.F.-TV SIGNALS give practically the same degree of coverage as v.h.f. signals with the same transmitter power, reports the RCA Victor Division of RCA. Surveys made on KPTV, Portland, Oregon-the nation's first comnercial u.h.f. station-show Class A coverage over a 20 -mile radius, assuring good reception to 95% of the city's residents. Outlying districts within 30 to 40 miles of the transmitter get Class B coverage over favorable terrain. These signals reach 88% of the surrounding population, only 6% less than the estimated coverage for v.h.f. transmission. (See ulso page 62.)

END OF RADIO LICENSE FEES and opening of television field to private broadcasters were demanded by Canada's Liberal Party Council. The 25;member Council, in session at Ottawa, voted the demands over the objections of Revenue Minister McCann, who defended the Government's policy of resting exclusive television rights in the Canadian Broadcasting Corporation.

WEST GERMANY'S TV NETWORK

now stretches from Hamburg to Cologne, carries two hours of regular programs daily. The NWDR (Northwest German Radio) plans to extend the chain of u.h.f. relay links to southern Germany, and share programs with Intch and Belgian TV networks, which also use the continental 625-line standard.

THE "TELEPROMPTER," a device which unrolls a prepared script that can be seen only by the speaker, will he available to public speakers, nationally on a rental basis from the RCA Service Company, Inc. First brought to the public's attention at the national political conventions last July, the device feeds the manuscript, in letters an inch high, at a speed suited to the speaker's rate of delivery, and has been used for several years in TV studios. Synchronized multiple installations allow the speaker to move freely around the set or platform without losing sight of the written material.

PRIVATE RADIO-MESSAGE service, already established in New York, Cincinnati, and other U. S. cities, was inaugurated in Cleveland December 15. Subscribers hear personal code signals on vest-pocket receivers pre-tuned to 43.58 mc , then call service office for message. The system is similar to the Air-Call, operated in New York City by Telanserphone, and described in this magazine in October, 1951.

BLASTS AT TV PROGRAMS are no novelty, but Frank P. Walsh of West Hempstead, N. Y., hit the headiines (and the family TV receiver) on October 20 , when he made his with a 38 caliber revolver. Walsh, who works nights as a plant security guard, tried vainly to sleep while his wife, mother-in-law, and five children watched a coast-to-coast comedy broadcast. Finally, because "it was playing too loud," he put an end to the program with one well-aimed shot through the picture tube. His wife called police, but Walsh was not held.

BETTER DRY BATTERIES are now

 being made by micropulverizing the chemical ingredients with ultrasonic vibrations. The method was invented by George Hunrath of Asbury Park, N. J., and is covered by U. S. Patent No. 2,613,877 . Reducing the particles to the smallest possible size by supersonic agitation increases their chemical activity by exposing more surface to chemical activity.
CANADIAN WIRED-RADIO-TV

 service is being sued for copyright infringement. In a test case, Canadian Admiral Corporation has asked the Exchequer Court to hold Rediffusion, Inc. liable for damages in retransmitting Admiral-sponsored football telecasts without authorization. Rediffusion, Inc. rents radio and TV receivers, and supplies prograns over leased wires to subscribers in Montreal.
AUDIO ENGINEERING SOCIETY

 elected the following new officers at its recent convention in New York City president, F. Sumner Hall, F. Sumner Hall, Inc.; executive vice-president, Jerry B. Minter, Measurements Corp.; central vice-president, Walter S. Pritchard, Ohio Bell Telephone Co.; western vice-president, Richard L. Burgess, Allied Recording Mfg. Co.; secretary, C. J. LeBel, Audio Instruments Co., Inc.; treasurer, Ralph A. Schlegel, WOR Recording Studios; governors, Price E. Fish, Columbia Broadcasting System; Jay H. Quinn, Fairchild Recording Products Corp.; Carleton H. Sawyer, Bell Telephone Laboratories.
BLACKMAILING TV-CHANNEL

 applicants is a new racket reported from Washington. The blackmailer threatens to file a competitive application for an unopposed channel assignment unless paid off in cash or with an interest in the station. This new variation on the old shake-down theme is blamed on the shortage of FCC examiners to handle contested applications without delay.END
 UHF?
$\mathrm{JFO}^{2} \mathrm{HF}^{2} \mathrm{Clum}$. Bmath No. 111500

2 GREAT BOOKS
By Mifion S. Kiver
IF YOU SERVICE TV -YOU NEED THEM!

"TV Servicing Short-Cuts
 Based on Actual Case Histories"

shows you how to solve commonly

 recurring troubles
the book thot really

 teaches fast, expert service techniquesThis book describes a series of actual TV service case histories, each presenting a specific problem about a specific receiver. The srmptoms of the rouble are described and then followed by a step-by-step explanation of how the service technician localized and tracked down the defect. Finally, there is a detailed discussion of how this particular trouble can be tracked down and solved in any TV set. The discussions which follow each case history are invaluable they explain how to apply the proper time-saving servicing techniques to any TV receiver. Here, in one volume, is the successful experience of experts-to make your service work easier, quicker, more profitable. Over 100 pages, $51 / 2 \times 81 / 2^{\prime \prime}$, illustrated. Pays for itself on a single service job. ORDER TK-1. Only.
$\$ 1.50$

"HOW TO UNDERSTANB AND USE

 TV TEST IMSTRUMENTS"
shows you how to get the most from your test instruments
Provides basic explanations of how each test instrument operates; describes functions of each control and shows their proper adjustment to place the instrument in operation. Covers: Vacuum Tube Voltmeters, AM Signal Generators, Sweep Signal Generators, Oscilloscopes, Video Signal Generators, Field Intensity Meters, Voltage Calibrators. Describes each in detail; explains functions; tells proper use in actual servicing; shows how to avoid improper indications. Because this book gives you a clear, complete understanding of your test instruments, you get more out of them, save time, and add to your earning power. Over 175 pages, $81 / 2 \times 11^{\prime \prime}$, illustrated.
ORDER TN-1. Only
. $\$ 3.00$
HOWARD W. SAMS \& CO., INC.
Order from your Parts Jobber loday, or write direct to Howard W. Sams \& Co., Inc. 2205 East 46th Sireet, Indianapolis 5, Ind.
My (check) (money order) for \$. . .

enclosed. Send the following books:

\square TK-1 (\$1.50)
TN-1 (\$3.00)
Name
Address..
City y..............Zone....State.

BAROMETER of the PARTS INDUSTRY

During November, 50 of the leading 400 manufacturers of Radio-Television-Electronic parts and equipment made changes ir their lines. Actually there was a decrease in "change activity" as compared to October. In price revisions by the number of manufacturers and products affected, the following summary illustrates the comparative trend for the months of October and November.

	Nr. of Manufacturers	
	October	November
Increased prices	13	16
Hecreased prices	11	7

	No. of Proxucts	
	Octoher	November
Increased prices	68	204
Decreased prices	49	136

For a summary of the most active product categories, see the following table:

Product Group	Increased Prices		1)ecreased Prices		New Products		Discontinued Products	
	No. of Mifs.	No. of Products	No. of Mfrs.	No. of Products	No. of Mfre.	No. of Products	No. of Mfrs.	No. of Products
Autennas \& Acces.	2	12**	3	128*	7	124**	6	102**
Capacitors	0	0	0	0	2	4***	0	()
Controls \& Resistors	0	0	0	0	1	1**	1	4*
Sound \& Audio Prod.	2	10*	2	2*	6	61**	7	113*
Test Equipment	4	6*	0	0	2	5*	1	2**
Iransformers	1	36*	0	0	5	57*	1	$13{ }^{*}$
Tubes	5	49*	1	5**	11	44**	4	14*
Wire \& Cable	2	91*	1	1*	2	11**	0	11
* Increase over (m tober ** Decrease from (rotober					$\begin{aligned} & \text { * Jucre } \\ & \text { ** Decre } \end{aligned}$	ease over () erse from	ctober czober	
Comment: There is an apparent trend inward increaned pricen by the leading TV Tube Manufacturers. While "change artivity" continuey to center around the introduction of new items, it is noticeable at this time that there is a decrease in the number of rasnufacturers involved.								

This data is prepared by the stafj of United Cataloy Publighers, Inc., 110 Lafayette Street,
Nifw York. publigher, of RADIO'S MASTER, the Offid Buying Guide of the Parts Industry.

Merchandising and Promotion

I'. R. Mallory \& Co., Inc., Indianapolis, is backing up its u.h.f. converter sales with an aggressive promotion campaign. The merchandising plan includes a consumer product display, colorful banners, and envelope stuffers. Newspaper mats are also available in addition to suggested news releases for local news-

papers. The entire campaign has been tied together by advertising in consumer and trade publications.

Alliance Manufacturing Co., Alliance, Ohio, has prepared a series of oneminute TV spot film commercials in co-operation with its advertising agency, Foster \& Davies, Inc., Cleveland. The commercials demonstrate the new Alliance Cascamatic booster which mounts out of sight on the back of the TV set, is pretuned to all v.h.f. stations and requires no manual controls.

Jensen Industries, Inc., Chicago, has prepared a new replacement phonograph
needle wall chart designed to simplify the work of the service technician and record dealer. The unique guide also aids in inventory control and shows authorized needle substitutions. The chart is available either directly from Jensen Industries or from its distributors.

The Sylvania Television l'icture Tube IVivision, Seneca Falls, N. Y., is shipping its TV tubes for renewal sales in

a new factory-sealed carton which provides easy and safe handling. The new carton also adds an attractive note when displayed in service technicians' shops.

Allen B. Du Mont Laboratories, cath-ode-ray tube division, Clifton, N. J.,

YOU LEARN SERVICING

 by practicing with equipment I furnish

TELEVISION is Today's Good Job Maker

In 1951 over $15,000,000$ homes had Television sets, more are being soid every day. 108 TV stations are already operating, over 1800 are now authorized and many hundreds are expected to be on the air in 1953. This neans new jobs, more jobs and better pay for trained men. The time to act is NOW ! Start learning Radic-Television servicing or communications. Want to get ahead? America's fast growing industry offers good pay, a bright future and security. Cut out and mail card now. J. E. Smith President, National Radio Institute, Washington, D.C.

YOU LEARN COMMUNICATIONS

 by practicing with equipment I furnishAs part of my Communications Course I send you kits of parts to build the low power broadcasting transmitter shown at right and many other circuits common to Radio and Television You use this equipment to get practical experience putting a station "on the air," performing procedures demanded of Broadcast Station operators. I train you for FCC Commercial Operator's License. Mail Card for Sample Lesson and 64-Page Book. FREE!

There are Good Jobs, Good Pay, Success in Radio-TV! SEE OTHER SIDE

CUT OUT AND MAIL THIS CARD NOW

Sample Lesson \& 64-Page Book

Both FREE

The ABC's of
SERVICING
This card entitles you to Actual Lesson on Servicing, shows how you learn Radio-Television at home. You'll also receive my 64-Page Book, "How to Be a Suecess in Radio-Television." Mail card now

NO STAMP NEEDED ! WE PAY POSTAGE

Mr \& E SMITH President
National Radio Institule Washingion 9 D C
Mail me Lesson aad Book. "How to Be a Success in RadioTelevision." (No Salesman will call. 1'lease write plainly.)

NAME
AGE

AIDDRESS

CITY
ZONE STATE

Woild Radio A B C D

America's Fast Growing Industry

Do you want good pay, a job with a bright future, security? Would you like to have a profitable business of your own? If so. find out how you can realize your ambition in the fast growing RADIO-TEIEVVISION industry. Even without Television, the industry is bigger than ever before. 105 million home and auto radios, 2900 Radio Broadcasting Stations, 108 TV Stations with 1800 more now authorized. Expanding use of Aviation and Police Radio, Micro-Wave Relay, 「Two-Way

Radio for buses, taxis, etc., are making opportunities for Servicing and Communications Technicians and FCC Licensed Operators

You Learn by Practicing with Kits I Furnish

With both my Servicing Course and my NEW Communications Course 1 send you many Valuable Kits of Parts. They "bring to life" theory you learn in my illusirated texts. Mail card for my big 64 -page book. It shows photos of equipment you build from kits I send

My Training Includes Television

 Both my Servicing and Communications Courses include lessons on TV principles. Yoư get practical experience by working on circuits common to both Radio and Television. My graduates are filling jobs, making good money in both Radio and Television. Remember, the way to a successful carcer in 'relevision is through experience in Radio
Send NOW for 2 Books FREE

Mail the Postage-free Card NOW!
What will YOU be doing one year from loday... will you be on your way toward a good job of your own in a Radio and Television service shop or business?
Decide now that you are going to know more and earn more! ACT N()W! Tak the important first step to a career and security. Send the postage-free card now for my FREE DOUBL.E OFFER. You get Actual Servicing Lasson. Also my 64 -page book, "How to Be a Success in Radio-Television." Read what my graduates are doing, earning; see equipmen you practice with at home. Mail card now. J. E. SMITH, President, National Radio Institute, Washington 9, D.C. Our 39th year.
J. E. Smith, President

Notional Rodio Institufe

The men whose letters are published helow were not born successful. At one time they were doing exactly as you are acted. They decided they would know more ...s. they could earn more! They acted! Mail the card now for my? books FREE.

I trained these men

Mandicopped
but Successful
II ath now (hhef tinglneer at Whaw. My
left hand ls off the the wrlat. A mancando If he wante to." R.

Trained Men Make Money In TV Televily now servtithr erubled the to reprair TV recelvers witnout
any rouble.. any trouble.
('urrer, Fuir Haven, Bi

 be Impostble. P

Find Out What RadIO-TV Offers You

Want Your Own Business?

Many N.R.I. trained men start their own business with capital earned in spare time. Let me show you how you can be your own boss... Robert Dohmen, New Prague, Minn., (whose st ore is shown at rightl says, "Am now tied in with two television outfits and do warranty work for dealers. Often fall back to N.R.I. textbooks for informa-

For faithful tone reproduction．．．high fidelity at low volume level－use Centralab＇s Compentrol

Centralab components are safest for guaranteed servicing

YOU can stake your service reputation on the Centralab Compentrol．That＇s because this combination volume control and Printed Elcetronic Circuit faithfully repro－ duces the high－pitched tones of the operatic soprano－ or the deep bass notes of the boogic woogie beat when volume is set at low level．

In fact，Compentrol was especially developed to better reproduce the apparent bass and treble response of radios，audio amplifiers，phonograph combinations and television sets．Use it as a business builder as well as for replacement service．It actually improves original perform－ ance！What＇s more，its low price will fit any pockethook．

Because of its design CRL＇s Compentrol needs m ad－ ditional amplification．There is no insertion loss when you use Compentrol．

The Centralab Compentrol is furnished in $1 / 2$ or 1 meg ． －plain or switch types．Switch is SPST，and an insulated switch shield is furnished for a－c shielding．Most ampli－ fiers use a plain type．For complete details，a．sk your Centralab distributor，or use the coupon．

> Make your Centralab distributor
> headquarters for
> excat electronic replacements

Centralab

A Division of Globe－Union Inc． Milwaukee 1，Wisconsin
In Canada， 635 Queen Street East，Toronto，Ontario The Centralah Compenteol is only one
of the more than 470 notw itenis listed
in Centralab＇s new Cazalog 2h．（iet Four cory of this 32 －pase i dex to the Your cory in this 3 －pase twex to the latest developments in the fast－ctanging electronk hed．plus a zourgistributor or use the coupen

日 日 昌 昌 昌 昌 昌

reported its recent Tele-Mirror promotion as one of the most successful yet undertaken by the Division, according to Edwin B. Hinck, sales manager for the Replacement Sales Department of the division. Based on the success of this campaign, similar promotions directed to the service technician will be forthcoming.

Cornell-Dubilier Electric Corp., South Plainfield, N. J., is giving away a useful clear plastic compartment case with the purchase of each of six new C-D Twist Prong Capacitor Kits. The see-through

compartments are ideal for storing screws, tubes and small parts of all kinds.

Allied Radio Corp., Chicago, in cooperation with the American Radio Relay League, distributed a free booklet, "You Can Be There," to radio clubs, classes, and other groups of radio or electronics students or hobbyists. The booklet tells the story of the romance which amateur radio operation offers young men.

RMS (Radio Merchandise Sales), New York City, conducted another in its series of forums for TV service technicians in Portland, Ore. The forum, which was co-sponsored by Pacific Stationery and Central Distributors, TV parts distributors, and arranged by the Burt Porter Co., RMS representative in the Pacific Northwest, emphasized u.h.f. antenna problems.

Production and Sales

The RTMA reported that $3,670,591$ TV sets and $6,689,535$ radios were produced during the first nine months of 1952. The association pointed out that September, 1952, production of 755,665 TV sets was 124% over industry output for September, 1951.

Shipments of receiving tubes by members of the RTMA totaled $34,196,286$, valued at $\$ 24,432,747$, a substantial increase over shipments for the previous month and for September, 1951. During the first nine months of $1952,245,689$,629 tubes were shipped, compared to

Merit's TV full-line offers the most

complete line possible for universal replacement plus exact replacements where required. A new Merit TV
Replacement Guide No. 405-
including universal components and exact replacements for over 6000 models and chassis-can be obtained from your Jobber or by writing: MERIT COIL AND TRANSFORMER CORP., 4425 N. Clark Street, Chicago 40.

Merit IF-RF Coils include a complete line of TV replacements.

$280,795,338$ during the 1951 period.
General Electric Tube Department's manager of marketing, E. P. Peterson, Schenectady, predicted production of $6,200,000 \mathrm{TV}$ sets during 1953 , the highest since the record year of 1950 . He said that $435,000,000$ receiving tubes would be produced during 1953, as compared with an estimated total of 375,000,000 for 1952.

Westinghouse Television-Radio Division plant at Sunbury, Pa., reported an unprecedented high in employment and production figures. Employment figures were running 28% over the similar period of 1951; production topped last year's figures by 35%.

New Plants and Expansions

CBS-Hytron, Danvers, Mass., is constructing an addition to its TV picture tube plant and large warehouse for TV picture tubes at Newburyport, Mass. The additions will enable the company to handle the production of 24 - and 27 inch picture tubes in volume. The company expects that the construction of the new buildings will be completed by the middle of 1953.

Clarostat Manufacturing Co., Ine., Dover, N. H., opened an additional plant in the Chicago area. The new plant, now in operation, was purchased so that the company would be in a better position to serve its Midwest and Western customers.

Raytheon Manufacturing Co., Waltham, Mass., is constructing a new $\$ 2,000,000$ electronics laboratory in Bedford, Mass., designed to be one of the most modern and efficient of its kind. The new building is being constructed by Raytheon for the Navy and will be used by the company as a research and development center.

General Electric is now producing u.h.f tuners for its TV sets at its Receiver Department plant, Auburn, N. Y. One hundred and fifty employees were added to the payroll to handle this new production.

General Cement Manufacturing Co., Rockford, Ill., opened new warehouse facilities in Los Angeles to provide West Coast parts distributors and service technicians with better service and faster deliveries.

Synthane Corp., manufacturer and fabricator of laminated plastics for industry, added a two-story brick wing to its plant at Oaks, Pa. The new wing marks the eleventh plant expansion since the company's original factory was built.

Hammarlund Manufacturing Co., New York City, leased an additional 12,000 square feet of space at 541 W .34 th Street.

Radio City Products Co., New York City, moved all its test equipment production facilities to its Easton, Pa., plant. The Engineering, Sales, and Purchasing Departments and the general offices will remain in New York City. Walter Jonas, production manager, will direct operations at both plants. Burt Levy was appointed sales manager of the Jobber and Industrial Division. end

You are if you're using makeshift replacements instead of brand new tubes. You may think you'll save a little money but you could lose your good reputation. Play it safe. Use the tubes that are given 101 rigid quality tests and cbecks to insure their electrical and mechanical perfection...

TELEVISION PICTURE TUBES

These brand new tubes, the precision products of a multi-million dollar corporation, are creating satisfied customers with their superb performance wherever they are installed. And this quality performance is enhancing the reputation of the Service Technicians who install them. Protect your future with RAYTHEON TV PICTURE TUBES.

Use RAYTHEON TELEVISION PICTURE TUBES
They're Right for Sight . . . and light for You . . . and Always New ! TUBE

Only Syl̃ania tubes showed NO FAILURES after 1400 hours ... at accelerated voltages

Exhaustive tests conducted under the supervision of an outside impartial laboratory, the United States Testing Company, showed Sylvania Picture Tubes lasted longer than any others tested.

These tests included the picture tubes of nine leading manufacturers. All tubes were placed in identical test racks and tested under identical accelerated voltages. At the end of 1400 hours, only the Sylvania

Picture Tubes showed no failures. These tests definitely establish the outstanding dependability of Sylvania Picture Tubes. They prove that these tubes will best uphold your reputation for fine performance in the sets you manufacture, sell or service. Send today for complete details about Sylvania Picture Tubes. Sylvania Electric Products Inc., Dept. 3R-1701, 1740 Broadway, New York 19, New York.

RADIO TUBES; TELEVISION PICTURE TUBES; ELECTRONIC PRODUCTS; ELECTRONIC TEST EQUIPMENT; FLUORESCENT tubes, fixtures, sign tubing, wiring devices; light bulbs; Photolamps; television sets

TRAINING TO FIT YOU

FOR THE BETTER PAY JOBS

Thousands of new johr will apen up right in bulur fiwn state．nuw that the guvern ment has lifked restricilins on new TV scathons．My simple，succespful methods hare helped hundrecs on men－most of them with No PHEVIOUS TRAINING find places in Ameriea＇s twoming TViLE VISION and flectronics indistries．You tend can get the surcesy and hamplness you always vanted out of life within months．．．studying al bume ．．．as 1 trably you to becoms zull－fledged TV TFCHNICIAN．Mary ，If my students make as mwch as $\$ 25.00$ theek repairing Radiu－TV sets in thelr spare time while fearning．．I ay their entire tralning al． mosi from the very lewindiny from spare time carnings．．．start their own proft． able service business．
But 1 dun＇t stop after 1 qualify you as a IV Technician ．．．although right there you can choome from among dozens of fiscinating carcers！I continue to train you－AT NO FXTHA COST－to qualify ir even better pay in the Br TTHN JOBS that demand FCC licenses．with my

FREE FCC COACHING COURSE

 PREAARES YOU AT MOME FOR，YOUR THE GEST JOBS IN TVAANO RADIOMEQU RE AN FCC LICENSTE． Given at Nu EXIRA SOST after．TV Theory and Practice＂is completed．
NOW！fm－TV AVANCED
If ymu have previous Atmad Forces or Civiliall ridio experbence－Iny ADVANCED coulkse call save veu touths of tratining Full theory and practeal training Complete with kits，inclading BIG SCirer： Coaching Cuurse．Fick FCC Licens

FREE EMPLOYMENT ASSISTANCE

uity vorational adviser wilt help you ob Lain a good－faylus iob in the locality of

RADIO－TELEVISION TRAINING ASSOCIATION

1629 Broadway，Radio City Station，New York Giy 19，N．Y LICENSED BY THE STATE OF NEW YORK
both free！New
I lustraled Eook and Sample
Lesson．Learn
How My
Simple
Method
Make
Succes
Easy！

MORE value！

YOU GET A ROUND TRIP TO NEW YORK CITY AT NO EXTRA COST FROM ANYWHERE IN THE U．S．OR CANADA －I pay your way to New York and return， PI，US 2 FRFE，weeks， 50 hours of advanced Anstruction and shop training at the PIERCE SCHOOL OF RADIO \＆TELEVISION．You use moderin electrontes equipment．Includ－ ing student－operated TV and Radio staitons． You go behind the scenes of New York＇s big Radio－TV centers，to study firat gand． And I give rou all this AT NO EXTRA COST：tApplies to complete Radlo－TV curse only．）

I GET MY

GRADUATES GOOD PAYING JOBS

 Recelver Tester scud Federal Tele．
phene anc Radio．：
－I＇m making suod money in my own Lusiness．repeiring and in－ talling radio und TV sets－ training
－Irwin
＂Your excellent instruction heloed me get my present job as an car Alriline．－Eugene E．Berko
＂I＇ll always be grateful to your trainitg which helped meget my Parts Manager． \qquad
Many others worming at NBC，MCA，CES other leading firme．

VETERANE！量领筑

my schools fuly approved to thain veterans under new G．I．BILLI If discharged affer June 27， 1950 －CHECK COUPON BELOW！ Also opproved for RESIDENT FRAINING MAIL COUPON TODAY！${ }^{\text {a }}$ in New Yerk City．．．qualifies yau for

IMPORTANT NOTICE!

*Changes in television demand changes in present antennas! New UHF and VHF stations mean more channels! Current FCC rulings have assigned channel changes to nearly one-third of all VHF stations. This makes single-channel antennas and other fixed position antennas obsolete! Prepare now. Meet the coming changes in television with ALLIANCE TENNA-ROTOR.

WRRD

 antennas have
all the UHF-VHF answers!

UHF only for old installations Add it to present VHF installations and you have a
 complete UHF-VHF Antenna . . . covers all UHF channels with high gain . . small, neat and preassembled. JAZZ TROMBONE is the first new UHF only antenna ... an exclusive WARD development.

UHF-VHF for new installations

Here is the sensational, new WARD Antenna that
 brings in all-channels, all-frequencies - both VHF and UHF-with one single Antenna... the completely universal WARD TRONBBONE. For new installafions nothing compares with WARD TROMBONE.

This brand new WARD item completely solves the problem

	of lead-in lines, where separate UHF and VHF Antennas
OIPIEXER	
	are employed. Simply attach the two lines to THE DIPLEXER-
	receiving set.

the URRD PRODUCTS CORP.
 dIVISION OF THE GABRIEL COMPANY

1148 Euclid Avenue - Cleveland 15, Ohio in Conodo: Allos Rodio Corp., Itd., Toronto, Ont.

See EICO's other ad on Inside Back Cover of this magazine.

NEW TELEVISION TRENDS

Vital new developments in television . . .

|NOW BECOMES apparent that television, as far as entertainment is concerned, will take a distinctively new road in the near future. With a few exceptions, radio broadcasting in the past made it possible for listeners to receive almost every imaginable program that could be broadcast. (These few exceptions were primarily major prize fights which were not broadcast because the promoters felt that their gate receipts would suffer.)

With television, broadcasting no longer is blind. The promoters of sports, Broadway shows, operas, and similar events are convinced that television would be a far-toopowerful competitor if such entertainment were broadcast free of charge.

I foresaw this situation 20 years ago in an article entitled "The Tele-Theater" in the January-February 1932 issue of my former publication, Television News. This situation was amplified in an editorial entitled "The TeleTheater" in the January 1951 issue of Radio-Electronics. It is now no longer news that recently important sports events have been televised exclusively to theater chains in various parts of the country, where admission is charged to view the event.

As this issue of Radio-Electronics goes to press, the first closed circuit telecast of Metropolitan opera is about to be shown in a number of theaters in the U.S. (December 11th.)

To expand its activities, as well as its income, the Metropolitan Opera Association, Inc. arranged to have the entire opera "Carmen" broadcast in conjunction with the Theatre Network Television, Inc. This particular telecast runs for more than three hours, and takes in the entire opera from beginning to end. Over 30 theaters in the principal cities from coast to coast signed up as participants in this trial event. The price scale in each theater was determined by local management, but it was stressed that the tickets were sold at reasonable prices. The Metropolian Opera Association, Inc. shares in the returns from the theaters on a percentage basis.

It appears certain that important Broadway plays will soon follow this innovation. The trend is bound to follow this particular pattern, and it looks as if the teletheater is with us to stay, for a long time to come.

At present it would probably not pay sponsors to offer free broadcasts to the televiewing public of Broadway plays, grand opera, and other important entertainment events. It will be possible, however, in the future, when there are as many television sets as radio receivers in the country.

The question has been frequently asked: "Where does the private television set owner fit in this type of arrangement?", At the moment he simply is not being considered at all, for the simple reason that the new trend is away from broadeast television. It is a private endeavor of a group of entrepreneurs bent on filling their theaters which have been more or less emptied by the terrific competition of broadcast television.

Fortunately, the television owner may not always be barred from seeing a Metropolitan Opera broadcast, or a

Broadway play broadcast, in his own home. Once more science is coming to the rescue. Indeed, it may be quite possible that in a few years a television owner may not have to go to his local theater to see an important Metropolitan Opera. My editorial, "Magnetic Tape TV Recording," in the November 1952 issue of Radio-Electronics, pointed out that it will soon be possible to record television programs on a magnetic tape. When the final bugs have been eliminated, the way will be open for a central distributing agency to sell magnetic television recordings or rent reels of important productions-the Metropolitan Opera included-to everybody in the land. All that the home television owner will need is a special television tape reproducer which can be put on top of or near the television receiver and connected to its circuits without disturbing it. Then by merely pressing the switch the recording will reel off and the action will appear on the screen.
It should be possible to mass-produce the magnetic tapes at a reasonable price so that play or opera performances can be sold or rented at a reasonable rate. Quite possibly Broadway producers and opera companies will realize even more money thus than from theater television. If only 25% of the television set owners would subscribe to the tape service, it would work out to a very substantial figure, exceeding the amount paid by the theaters many times. At this moment it is anyone's guess how much the magnetic tape reels will be sold or rented for.

Naturally, the television set owner still would have to pay a fee to participate in such an entertainment setup, but it is quite probable that most people would not object to this.

In the meanwhile, new owners of television sets will have little to complain about because the price of television receivers is continuously going down. This is also a welldefined trend. Already several of the large television manufacturers are selling high-grade 21 -inch-screen sets below $\$ 200$, which is an important reduction from former price levels for similar sets.

Indeed, the lower prices will probably continue for quite a while. With new engineering techniques, such as transistors, appliqued-the so-called plated-circuits, it will be possible in the future to make still greater price concessions. The reason is that in television sets the labor cost is a very appreciable portion of the total manufacturing cost of the receiver. With the appliqued circuits, the cost can be reduced still more. It therefore would appear that $21^{\prime \prime}$ screen and larger sets selling around $\$ 150$ and less are not at all impossible within the next few years.

This trend is in the right direction because it paves the way for color television. At one time it was thought that a good color television receiver would cost between $\$ 400$ and $\$ 500$, but in the light of new techniques it would appear that when and if color television sets are marketed, they will probably sell for between $\$ 200$ and $\$ 250$, and perhaps even lower.

Most likely these sets will also include magnetic tape equipment to view-at a cost-Broadway shows, operas and other closed circuit features not normally broadcast.

UHF OPENS UP

By RAYMOND F. GUY*

The author, left, congratulates Victor Bary on the record Portland installation.

MOMENTOUS events, of deep significance to the readers of Radio-Electronics, are taking place in television. In the May, 1952, issue, an article by this author outlined the "TV Pattern for the Future", based upon events, developments, and trends immediately prior to the lifting of the television freeze. That lon awaited event is now history, and already the Federal Communications Commission is well advanced on its program of authorizing television station construction permits. Initiation of TV service in scores of communities is now imminent, millions of new receiver installations will be necessary, and the readers of these pages will be vitally concerned with the installation and servicing of these receivers. It is again timely to look to the present and future responsibilities and opportunities placed before you.

Following a number of years of basic research and investigation of u.h.f. wave propagation and the development of tubes and circuitry, the Radio Corporation of America and the National Broadcasting Company on December 29, 1949, placed in operation in the Bridgeport-Stratford (Connecticut) area their historic experimental station KC2XAK, the u.h.f. pathfinde: for the industry. On August 23, 1952, this station signed off for the last time. Within four days, the antenna, tower, and apparatus had been completely dismantled and were on the way to Portland, Oregon.

Within 60 hours of its arrival at Portland, it had been installed on a hilltop site recommended by this writer and was ready to render the first TV broadcast to Portland. Within a few days the FCC granted special temporary authorization for the service to start and thus the Bridgeport veteran transmitter embarked on a new career in virgin territory as the world's first commercial u.h.f. TV station, bringing TV for the first time to nearly 1,000 ,

[^0]000 people. Only about three weeks from the time the apparatus was signed off at Bridgeport, it began commercial operation in a city 3,000 miles away.

The excitement and impact of this momentous event- in Portland and throughout the industry beggars description. Transcending all other topics of local conversation and news, it established a precedent which others will strive to equal, perhaps in your community. Coming unexpectedly soon, the rush to acquire receivers and converters sparked off crash programs among the manufacturers, distributors, dealers, and service companies to rush equipment to the area and meet the demand. During the first three months of TV service in Portland, it was anticipated that at least 60,000 receivers would be purchased and installed without substantially blunting the sharp edge of the feverish demand. In one large store alone, a million dollars worth of receivers were sold in 10 days and list prices are the order of the day.
What happened in Portland may happen in your community. The press and radio gave almost hourly bulletins on the activities at Council Crest Park where the new TV station was being built. Local columnists speculated with every new edition as to the probable opening date for the station. A cor.test was held-with a new TV set as a prize-for the citizen who most closely guessed the day, hour, and minute that the station would officially open. People from all over the area flocked by the thousands to the transmitter site to see their first TV station being built. All available parking space was filled and workmen engaged in the project in some cases had to park a quarter of a mile from the site. During the early afternoon hours a police detail was assigned to the area to regulate traffic and at times had to conduct sightseers in large groups on 20 -minute cycles to give all of the sidewalk superintendents a view of the proceedings.

TV's debut in Denver was equally exciting. Eleven days after the FCC
started on July 1 to make post-freeze grants, a construction permit was issued to KFEL-TV. Only one week later special temporary authority was granted by the FCC to begin telecasting, which was inaugurated within three days with an immediately available v.h.f. 500 -watt RCA transmitter.

Television service thus has come with startling rapidity to the two largest markets heretofore without it. The imagination and enterprise which accomplished it will also bring it to many other communities in like manner. It is to your interest to keep informed and be prepared to take advantage of the opportunities it may present to you.

FCC processing procedure

When will your commurity reccive TV service or an extension of your presert service? Unfortunately it is not possible to publish an explicit timetable. But it is possible to inform you of trends and possibilities.

When preparing its Sixth Report and Order (the TV thaw-out) of April 14,1952 , the Commission was faced with a truly monumental task in processing the hundreds of applications for station grants. Having adopted voluminous standards and rules as the framework for the great nation-wide service of the future, how could they best proceed with the granting of applications with promptness, fairness, and efficiency? In hundreds of cases a:i individual channel in a given community would be applied for by not only one but many different applicants. Ur-der our democratic processes in such cases, public hearings are indicated to enable the FCC to determine which of the applicants is best qualified to serve the public interest, convenience, and necessity. Some of these cases apply to cities with existing service and others do not. In some instances, there would be but one applicant for a channel. In other cases, existing stations require only a change of frequency to conform with the new allocation plans.
(Continued on page 32)

POSSIBLE V.H.F.and U.H.F. TV COVERAGE AS EStimated last year

Extent of possible tv coverage according to present standards

Complex and difficult legal problems and lengthy procedures were involved.

The objective was to make television service available to the greatest number of people in the shortest possible time. Obviously it could not be done by processing applications in the order in which they were received, because uncontested applications from unserved areas would have had to await the completion of time-consuming hearings involving competitive applications (in many instances from large cities already well served). For many weeks prior to the April thaw, the Commission roughed out tentative processing procedures and priorities, with co-operation from the FCC Bar Association and the Society of Federal Communications Consulting Engineers. When the $31 / 2$-year freeze ended on April 14, 1952 , the plan was ready.

Applicants were given until July 1 to submit new applications and amend old ones before any grants would be made. A number of procedural simpli. fications were adopted to save time and speed up the processing, and the following temporary priority system was established:

Priority A 1

The 30 existing stations which, under the new allocations plan, will be required to change their channel frequencies to reduce interference. These stations were listed in "TV Pattern for the Future" in the May issue of Radio-Electronics. WKY-TV, Oklahoma City, is omitted in the new list.

Priority A 2

New stations in cities 40 miles or more from any existing TV transmitter. In other words the Commission will concentrate on providing service to unserved areas. (Portland, Ore., and Denver, Colo., are examples.)

Priority B 1

Stations for communities where only u.h.f. channels are allocated and where the separation may be less than 40 miles from an existing transmitter (excluding educational stations).

Priority B 2

U.h.f. stations for communities where all possible v.h.f. channels are in operation.

Priority B

Stations for cities having no service and which may be less than 40 miles from not more than one existing station.

Priority B 4

Stations for cities having only one existing station and which are 40 miles from any other TV transmitter.

Priority B 5

Stations for cities less than 40 miles from any two or more existing transmitters.
With 491 new applications on file on

July 1, 1952, the Commission commenced the processing of the "postfreeze" applications for new television broadcast stations. Scores of competitive applications were designated for hearing and nearly 200 additional applicants were advised that their applications were competitive with others. In September the Commission announced, that, because of the limited number of examiners and other staff members engaged in hearing work, it would not have been possible to try such cases until the existine backlog was removed, and no useful purpose would have been served by designating additional applications for hearing them.

For this reason the interest of parties who had filed or who would file competitive applications would not have been adversely affected by the processing of only noncompetitive applications, for a time. It is likely that the hearings in the cases now designated for hearing and those additional competitive applications already processed by the Commission will not be concluded for a considerable period.

The Commission will continue to process noncompetitive applications in the order of priorities set forth. If mutually exclusive applications are amended so as to remove the conflict, the Commission will consider such applications at that time. The Commission will re-examine its hacklog of hearing cases from time to time. When it appears that Commission personnel will be available for handling additional cases, the Commission will resume the processing of competitive applications. With the elimination, for the time, of competitive applications in favor of noncompetitive ones, many cities will receive grants much more quickly.

Small communities

Can small communities have TV stations? 835 cities, about 60 percent of the total list of 1,430 in the FCC assignment plan, have populations of 25,000 or less. Already, over 60 applications for stations in these communities are on file. The existing list of such grants will grow quickly.

The interests of the small communitics have been well protected by channel assignments. Nearly 500 communities of less than 10,000 population are allocated one or more channels. Over 300 communities of less than 25,000 but more than 10,000 population are provided for.

Grades of service

U.h.f. is new to practically all service technicians. Terrain irregularities create greater losses and much more severe shadow areas in the ultra-highfrequency band than in the very-highfrequency channels. These effects do not occur abruptly. There is a gradual change as the frequency increases, starting with the lower frequencies of channel 2 and continuing on up to the top of the u.h.f. band. The FCC has attempted to take account of this
change by authorizing higher power at the higher frequencies. Channels 2 through 6 will be limited to 100 kw effective radiated power, 7 through 13 to 316 kw , and all u.h.f. to $1,000 \mathrm{kw}$. These power differentials are intended to equalize the service radii of the various stations, and take into account the increased signal intensities needed at the higher frequencies to provide equivalent picture quality and freedom from noise and interference.

In standard broadcasting at 540 to 1600 kc , the primary service range of a station may be expressed with relative simplicity because the field intensity falls off at a fairly uniform rate, with large fill-in behind hills and obstacles. But with increasing frequency, fill-in diminishes and local scattering effects increase. These random effects are far more noticeable at v.h.f. and are severe at u.h.f. Therefore the local field intensities vary widely, depending on terrain conditions. For this reason the service ranges for television stations are expressed in statistical terms to more nearly reflect actual conditions.

Two grades of television service are recognized in the new rules and standards:

Grade A service

Grade A service is so specified that a quality acceptable to half the people (the median observer) is expected to be available for at least 90% of the time at the best 70% of receiver locations at the outer limit of this service. Expressed in terms of inicrovolts per meter Grade A service requires:

$$
\begin{gathered}
\frac{\text { Channels 2-6 }}{2,500} \quad \frac{\text { Channels } 7-13}{3,850} \\
\frac{\text { Channels } 14-83 \text { (u.h.f.) }}{5,000}
\end{gathered}
$$

Grade B service

Grade B service differs from Grade A in that the acceptable quality would be obtainable at only 50% of the locations instead of 70%. The field intensities in microvolts per meter are shown below for Grade B:

$$
\begin{gathered}
\frac{\text { Channels } 2-6}{224} \quad \frac{\text { Channels } 7-13}{630} \\
\frac{\text { Channels }}{14-83 \text { (u.h.f.) }} \\
1,585
\end{gathered}
$$

Service ranges

When these grades of service are expressed in miles distance it becomes possible for the service technician to evaluate roughly the service he may expect in his area. Judging by the many and continuing requests received by this author from service organizations, dealers, and others for information on TV service ranges, this information may be of value. The tables at the right represent average values based upon FCC's methods of interpretation. The actual radii may vary widely downward, particularly in the u.h.f. channels, if terrain conditions are poor.

Antenna installations

Locating the u.h.f. receiving antenna will require more care tian for v.h.f. in the marginal areas. In v.h.f. an increase in antenna height will normally produce higher field intensity and improve the margin of signal over noise levels. But, while the same relationship applies on the average over a large number of u.h.f. installations, the voltage picked up may vary widsly and at random in individual cases. An increase in height may actually reduce the signal level. And large variations may occur with horizontal movement.
During the Bridgeport investigations, careful studies were made at 91 typical residential locations to determine the average variation of signal intensity as the antenna was moved horizontally at a 30 -foot height. The mo ement was over a range of only about 5 feet in most cases, to cover several wavelengths. The maximum and minimum values of intensity were recorded and analyzed. At 2.0% of the locations the displacement over these few feet produced variations of more than 2 to 1 . At 10% of the locations it produced variations of 3 to 1 . At 5% of the locations it produced variations of 4 to 1 . And in one location it was 7 to 1!
The optimum antenna locations for u.h.f. are relatively unpredictable and the service technician who is thorough and conscientious may find it necessary to explore for them while communicating with an observer at the receiver.

Flat or tubular plastic transmission line has very low losses when properly routed and dry. But it should be isolated from nearby metallic objects such as pipes, which change its characteristics markedly at u.h.f. It should be sheltered from rain and sleet if losses are of importance.

Frequency shifts

The frequency shifts which are scheduled for 30 stations previously referred to have in many cases been covered by applications and grants. The Commission proposes to permit the stations to work out the time schedules for the shifts at their own convenience, if possible. The schedules will be determined by procurement problems and most will take place early in 1953. Several were made in 1952.

New station grants

At the time of writinc the number of applications for station construction permits on file was rapidly approaching 1,000 . Of these, about 60% are for v.h.f. and the other 40% for u.h.f. grants. The total number of grants made since the Commission started processing is well over 100 , of which about 80% are for u.h.f. stations.

Prior to revising its processing routine, the Commission granted an average of 1 construction permit per week for v.h.f. stations, and 5 per week for u.h.f. stations. If this rate were continued through 1952, the year-end total of new station grants would be 25

TransmittingAntenna Height in Feet		Grade A Service Radii(in miles) for Powers Shown (Effective Radiated Power)					Grade B Service Radii (in miles) for Powers Shown Effective Radiated Power)				
		$\underset{\mathrm{kw}}{1}$	$\begin{aligned} & 10 \\ & \mathrm{kw} \end{aligned}$	$\begin{aligned} & 100 \\ & k w \end{aligned}$	$\begin{gathered} 316 \\ \mathrm{kw} \end{gathered}$	$\begin{gathered} 1,000 \\ \mathrm{kw} \end{gathered}$	$\underset{\text { kw }}{1}$	$\begin{aligned} & 10 \\ & \mathrm{kw} \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{kw} \end{aligned}$	$\begin{aligned} & 316 \\ & \mathrm{kw} \end{aligned}$	1,000
300		$\begin{aligned} & 7 \\ & 7 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 12 \\ & \hline 12 \\ & 9 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 15 \end{aligned}$	$\begin{array}{r}28 \\ 20 \\ \hline\end{array}$	26	$\begin{gathered} 22 \\ 17 \\ 9 \end{gathered}$	$\begin{aligned} & 35 \\ & 28 \\ & 15 \end{aligned}$	$\begin{aligned} & 50 \\ & \begin{array}{l} 40 \\ 26 \end{array} \end{aligned}$	45 31	40
500	$\begin{array}{lc} \hline \begin{array}{ll} \text { Ch } & 2-6 \\ \text { Ch } & 7-13 \\ \mathrm{Ch} & 14-83 \end{array} \end{array}$	$\begin{aligned} & \hline 9 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 27 \\ & 28 \\ & 20 \end{aligned}$	$\begin{array}{r}35 \\ 25 \\ \hline\end{array}$	23	$\begin{aligned} & 28 \\ & 22 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 43 \\ & 35 \\ & 20 \end{aligned}$	$\begin{aligned} & 57 \\ & 46 \\ & 32 \end{aligned}$	$\begin{aligned} & \mathbf{5 2} \\ & 40 \end{aligned}$	47
700		$\begin{gathered} 11 \\ 11 \\ 8 \end{gathered}$	$\begin{aligned} & 19 \\ & 20 \\ & 13.5 \end{aligned}$	$\begin{aligned} & \hline 31 \\ & 34 \\ & 23 \end{aligned}$	${ }_{30}^{40}$	37		$\begin{aligned} & 47 \\ & 40 \\ & 23 \end{aligned}$	$\begin{aligned} & 63 \\ & 50 \\ & 37 \end{aligned}$	$\begin{aligned} & 57 \\ & 45 \end{aligned}$	52
1,000	$\begin{array}{ll} \hline \mathrm{Ch} & 2-6 \\ \mathrm{Ch} & 713 \\ \mathrm{Ch} & 14-83 \end{array}$	$\begin{gathered} 13 \\ 13.5 \\ 9 \end{gathered}$	$\begin{aligned} & 23 \\ & 25 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 37 \\ & 40 \\ & 28 \end{aligned}$	35	43	$\begin{gathered} 39 \\ 39 \\ 16.5 \end{gathered}$	$\begin{aligned} & 54 \\ & 46 \\ & 28 \end{aligned}$	$\begin{aligned} & 70 \\ & 57 \\ & 43 \end{aligned}$	$\begin{aligned} & 63 \\ & 50 \end{aligned}$	59
2,000	$\begin{array}{ll} \hline \mathrm{Ch} & 2-6 \\ \mathrm{Ch} & 7-13 \\ \mathrm{Ch} & 14-83 \end{array}$	$\begin{aligned} & 19 \\ & 21 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 34 \\ & 40 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 54 \\ & 41 \\ & \hline \end{aligned}$	$\begin{aligned} & 61 \\ & 49 \\ & \hline \end{aligned}$	57	$\begin{aligned} & 52 \\ & 47 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 69 \\ & 61 \\ & 41 \\ & \hline \end{aligned}$	$\begin{aligned} & 86 \\ & 74 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 65 \end{aligned}$	74

v.h.f. and 125 u.h.f. granis, or a total of 150. This auihor expects this total to be met and possibly exceeded because of the revised processing schedule. The accelerated processing may result in a large increase in the number of v.h.f. grants, if there are included power increases for existing v.h.f. stations in the lower priority categories.

New stations

Using temporary equipment, station owners in Denver and Portland have created brilliant examples of what can be done to establish service quickly. But transmitting equipment is not available to permit wide-scale duplication of these feats. On the tasis of plans which many grantees have disclosed, we may expect to see about 12 more stations before the end of 1952 , most of them in new television areas. Based upon similar information, 35 may be added in the first half of 1953, many of these also in new TV cities. From that point on, plans now being made will come to fruition with more rapid increases in the rate of new starts. Barring critical material complications it is estimated that 150 new stations may be added in 1953, frequency changes will be completed at the 30 stations slated to switch channels, and power will be increased by most of the existing 109 v.h.f. stations, if permitted.

Your writer believes that by the end of 1954 there may be 400 new stations; by the end of 1955 over 600, perhaps half in presently unserved cities; by 1956750 ; and by 1957 possibly 1,000 or more.

Possible national service

In "TV Pattern for the Future" in the May issue a map was published showing the extent of possible national TV service from the combined u.h.f. and v.h.f. stations, with powers and standards originally proposed by the FCC. But those actually adopted went further than had been contemplated. The accompanying map shows the extent of the total possible service areas of all TV stations listed in the FCC allocation plan, utilizing the maximum powers now permitted and judging by the Commission's criteria for gauging the service areas. If these criteria are sound, the entire United States, ex-
cepting only the areas shown in color, could be given TV service.
Because of economic problems such a degree of service cannot be realized for a long time. The very small communities cannot support a television station, and particularly a station of maximum power. But when and if the time comes that a service can be supported, the spectrum space and the channels will be available. TV will not be handicapped by the saturation and lack of channels which have through the years prevented so many small communities from having standard broadcasting primary service.

There has been much discussion and speculation concerning the minimum size of a community necessary to support its own TV station. Estimates of 25,000 to 100,000 population frequently have been mentioned. There is evidence that it can be accomplished successfully at 25,000 . It is this writer's opinion that the demand for TV is so great that people would pay almost any amount within reason to have it, and that the figure of 25,000 will shrink considerably as the ingenuity and resourcefulness of our industry is applied to the solution of this problem, which is altogether one of economics.

Installation and servicing

Denver and Portland were unprepared for the demand for receivers and technical service. Both receivers and service technicians were rushed inthe technicians to help with tha overflow with which the local service companies were swamped. In all probability it will happen again elsewhere because the avalanche of demand in new TV cities comes almost overnight. Interest in and desire for TV have been whipped to a sharp edge and an overwhelming ready-made demand exists in all unserved communities.

TV receivers are relatively complicated instruments. Few owners attempt to build or maintain them, fortunately. But they are an essential, indispensable part of the TV system which starts in the camera tube and terminates in the home kinescope. You, Mr. Service Technician, have the responsibility for your part of the system! Its proper discharge will keep you on your toes and pay you well when "T day" comes to your community.
end

TV DISTRIBUTION SYSTEMS

"Master antenna systems" are increasing in both

importance and use

By ERIC LESLIE

FROM the earliest days of television, owners, dealers, and service technicians have needed some way of connecting two or more sets to an antenna. Two-set and larger distribution systems were soon worked cut. These were originally rather crude and wasteful of the precious signal, but have so developed that today almost any number of receivers can be operated as part of a distribution system, and a signal of any desirable level can be applied to their inputs.

Earliest and simplest of all distribution systems is a simple resistor network. It matches the input impedance of the receiver to the line and isolates one receiver from another by the attenuation of the resistors. Fig. 1 is a. diagram of a typical system. If signals are sfrong enough, more than two receivers may be connected by choosing the resistors so that the parallel

Fig. 1-Simplest distribution system.

Fig. 2-An efficient two-set coupler.

The Electro-Voice 3100 has outputs for four receivers and a second unit.
resistance of all the branches is 300 ohms. Thus for three receivers, the resistors on each side of the receiver iuputs would be 300 ohms each, giving us three 900 -ohm branches which have a parallel resistance of 300 rhms.

Such systems work reasonably well in strong-signal areas, where some signal attenuation may be a good thing rather than the contrary. But energy is wasted. Even in a two-rcceiver setup half the signal is dissipated in resistors, and the proportion is increased with the number of receivers. A less wasieful method is needed even for moderate-signal areas.

A number of systems using methods similar to r.f.-transformer or impedance coupling were next to appear. Of these, possibly the Brach two-set MulTel coupler is the best known. The antenna is divided into two artificial lines, as shown in Fig. 2. The correct

Fig. 3-A system made up of boosters.
impedances are approximated by bifilar windirgs, which also act as a highpass filter, shorting out interference below about 50 mc .

Interaction between receivers is reduced by impedance mismatch. The antenna looks into a matched 300 -ohm impedance, but each receiver looks into a circuit of considerably higher impedance, formed by the line and the other receiver in series. So, while energy is transferred efficiently from the line to the receivers, any signal fed back from the receivers is greatly attenuated.

The Mid-Tel couplers may have two or four outputs, and where there is enough signal, a four-output unit may be fed to four other couplers rather than direct to receivers, making a 16set distribution system.

A distribution system which will work where there is not enough signal for the types just described is often needed. A system that would pep the signal up a little to make up for the losses along transmission lines, rather than attenuate it, would be valuable in many installations. Ordinary TV bousters were first used to make up such a system. The simplest form appears in Fig. 3. Units marked IT-75A are home type boosters, the IT-77A's are conmercial types. The isolating resistors prevent one TV set from radiating to another, and also cut down possibility of oscillation in the boosters themselves.

More than one television manufacturer modified his home type boosters for 24-hour operation, operating the tubes and parts at conservative ratings. Thus the IT (Industrial Television, Ine.) 77A's are comneecial types, and 75A's honie versions of the

Left-The Amplitel uses channel strips with several tubes each. Right-The junction boxes show ingenious design.
same booster, and some BlonderTongue boosters carry the same model number with the prefix CA for commercial and HA for home types. The next and obvious step was to put two outputs on a single booster.

The earliest two-output boosters were designed by coupling the coil in the r.f. amplifier's piate circuit to two output eoils instead of one. More refined systems were developed to isolate the outputs from each other, and mul-tiple-output distribution amplifiers were born. These may have two, four, or eight outlets in practical equipment. Amplification may be slight; in same cases there may be a slight loss through each unit. A typical system is that of Electro-Voice, using the model 3100 unit (Sea photo). This unit has four outputs for receivers and another line output to which a second distribution unit may be attached.

Where stations are weak, a booster may be added at the antenna, and where the signal is weakened in long runs of transmission line, an ordinary one-output line booster can bring it up to original (or greater) strength.

Another approach to the mister antenna problem suggested itselí-or rather was remembered, for it is an elaboration of the amplified master radio antenna system introduced by PCA in the 1920's. In this system there is a large central amplifier, with other amplifiers fior receivers or groups of receivers if necessary. In its television form, the central amplifier is actually a number of single-channel amplifiers whose outruts are connected through a mixer and fed through coaxial lines to the various receivers.

The largest units of this type-made by RCA, Jerrold, G-E, and otherswill be discussed in a separate article, on community antennas. A typical intermediate type is the Amplitcl. made by Transvision for the company of that name. As shown, it consists of \approx number of channel units, or' "strips." Each of these is a multitube amplifier, with the stages staggered to give fu: 6-mc
bandwidth. Separate antennas are used for each strip. Since each antenna receives from a single station, high-gain Yagis are generally used, and a strong signal can be put into the amplifier. In the Amplitel system, the low-channel strip amplifiers have five tubes and have a voltage sain of about 7,000. The higher v.h.f. channel amplifiers have six tubes, but the gain is not as great -about 4,000.

The signals from the various strips are mixed in an ingenious way. Each amplifier is connected to the mixer by a section of 72 -chm line a quarterwavelength long at its channel frequency. A quarter-wave lin: acts as an impedance transformer. In this case its 72-ohm impedance ($\mathrm{Z}_{\mathrm{m}}=$ $\sqrt{\left.Z_{\text {n }} \times Z_{\text {out }}\right)}$ transforms the approximately $350-0 h m$ output of the strip amplifier down to 15 ohms, the impedance of the mixing box, where $Z_{m r}$ is the impedance of the matching section, $Z_{\text {uи }}$ is the output impedance of the strip,
and $Z_{1 n}$ is the mixer input inipedance. Although the ends of the matching sections are simply paralleled, the impedance remains at 15 ohms. Each line is a matching transformer at its own frequcucy, but presents a much higher impedance at any other frequency. Thus there is very little interaction between the various sections.

Cutput of the matching section is a group of five 75 -chm cables, paralleled to have a total impedance of 15 ohms. Each of these goes to a distribution box which feeds 15 receivers. As can be seen from the photo, each of the branches consists of two resistors, 1,000 ohms in series with the hot antenna lead, and 100 ohms between that and ground. The 100 -ohm input is effectively shunted by the $1,000-$ ohm resistor and cable capacitances, giving an impedance of about 70 ohms, which can be transformed up to 300 ohms with a matching transformer whenever necessary.

Fig. 4-High- and low-band strips of the Blonder-Tongue MA4-1. Constants vary slightly with frequency; these two are typical for channels $7-8$ and 4 .

A link between the simple distribution systems (which are in effect wideband boosters with some means of splitting the output and reducing interaction between sets), and the larger community type systems is the BlonderTongue mixer-amplifier system. The MA4-1 unit which is the heart of this system accommodates four plug-in strips plus one wide-band input which can be used for strong signals (any signals that can tolerate 10 db attenuation). The output is distributed through 2- or 8-receiver (DA2-1 or DA8-1) distribution amplifiers, which add a little gain of their own. If long runs have to be made, a commercial type booster (CA-1) can step the signal up 28 db over the whole spectrum.

A system of this type parmits using sensitive Yagis for the weaker signals, while putting stronger ones through the system without amplification, thus economizing on amplifier strips in areas where there is one strong station and others are desired, or where there is a local FM station, but TV stations are remote. Each of the strips has a gain of between 16 and 18 db . Two tubes are used, a 6AB4 and a 6CB6. Circuit is slightly different for high and low bands, as indicated in Fig. 4. Two of the units can be used in tandem, for more than four channels.
Lowest-priced of all the multipleantenna systems, the MA4-1 is economically practical even for single TV receivers in had areas, and can be
used by stores, small apartments, groups of neighbors in fringe-area districts, and others who would find the simpler systems unsatisfactory and the large community systems expensive.

Some antenna systems resemble in their equipment the larger community types, though they may be intended chiefly for apartment-house application. A typical example is Tacoplere, which (though not normally sold as a community antenna system) includes a number of features not found in the simpler distribution systems. Fir. 5 shows a simplified diagiam of a system using Taco units. Basic unit is a chassis-power supply, on which a number of strips and a mixer unit can he mounted. The mixer may or may not

Brach two-set coupler shown in Fig. 2.

Hlonder'Tongue MA4-1 mixer-amplifier, described as usable "for I set or 2,000 ."

Fig. 5-Simplified drawing showing Taco components in a versatile system.
be electronic, depending on the signal level desired and the number of trunk lines to be fed.

An installation may have a number of other refinements. For example, a weak signal from a high-band v.h.f. station (channel 18 in the diagram) may be received on an antenna cut to its frequency, boosted by an antennatop amplifier, then fed to a converter which changes its frequency to that of an unused low-band channel (channel 2). This reduces attenuation in long runs of coaxial cable.

Where there are long runs of cable between the original mixer and the receivers, the cable may be terminated in a signal separator, a unit with one input for the composite signal, and separate outputs for each frequency being handled by the system. These single-channel signals are again amplified through strip amplifiers, mixed, and sent on to the various outlet boxes, which may also be either electronic or nonelectronic.

eUROPEAN TV METWORK

Microwave-relay or coaxial-cable runs thousands of miles long are impossible in Europe. In a scant 750 miles, the engineer has to contend with problems of national boundaries and differences in definition standards and systems of transmission, and even different national tastes in prograns! This international network was therefore considered a mild triumph in the European television world. Problems of changing standards and systems were solved optically at one blow, by simply rephotographing the programs from a television receiver screen. Thus at Paris, a 441 -line TV camera was focused on an 819line receiver kinescope screen to change the 819 -line picture to 441 lines for the older Paris transmitter, and again at Cassel, where the program changed over to the British 405 -line standard. Besides being picked up by televiewers in France, England, and Scotland, the frograms were received on numbers of Belgian TV sets direet from the Lille Transmitter.

819

The original artwork and description of the system from which this material was prepared was created and supplied to us by our friend and contributor A. V. J. Martin, editor of Télévision (Paris, France).
SOINO甘1つヨ7ヨ－OIOVy

Chan－ nel	Mc	Pix Carrier	Wave－ lengths in inches	Sound Carrier	Wave length in inches	Chon－ nel	Mc	Pix Corrler	Wave－ lengths in inches	Saund Corrier	Wove． length in inches
14	470.476	471.25	25.0455	475.75	24.8087	49	680．586	681.25	17.3251	685.75	17.2114
15	476－482	$47 \overline{7} .25$	24.7307	481.75	24.4997	50	686－692	． 687.25	17.1738	691.75	17，0621
16	482－488	483.25	24.4236	487.75	24.1983	51	692－698	693.25	17.0252	697.75	16.9154
17	488－494	489.25	24.1241	493.75	23.9043	52	698－704	699.25	16.8791	703.75	16.7712
18	494－500	495.25	23，8318	499.75	23.6173	53	704－710．	705.25	16.7355	709.75	16.6294
19	500－506	501.25	23.5466	505.75	23.3371	54	710.716	711.25	16.5943	715.75	16.4900
20	506－512	507.25	23.2681	511.75	23.0635	55	716.722	717.25	16.4555	721.75	16.3529
21	512－518	513.25	22.996	517.75	22.7962	56	722－728	723.25	16.3190	727.75	16.2181
22	518－524	519.25	22.7303	523.75	22.5350	57	728.734	729.25	16.1847	733.75	16.0855
23	524－530	525.25	22.4707	529.75	22.2798	58	734.740	735.25	16.0527	739.75	15.9550
24	530－536	531.25	22.2169	535.75	22.0303	59	740－746	741.25	15.9227	745.75	15.8266
25	536－542	537.25	21.9688	541.75	21.7863	60	$746-752$	747.25	15.7949	751.75	15.7003
26	542－548	543.25	21.7261	547.75	21.5476	61	752－758	753.25	15.6691	757.75	15.5760
27	548－554	549.25	21.4888	553.75	21.3142	62.	758．764	759.25	15.5452	763.75	15.4536
28	554－560	555.25	21.2566	559.75	21.0857	63	764－770	765.25	15.4233	769.75	15.3332
29	560－566	561.25	21.0293	565.75	20.8621	64	770－776	771.25	15.3034	775.75	15.2146
30	566.572	567.25	20.8069	571.75	20.6432	65	$776-782$	777.25	15.1852	781.75	15.0978
31	572－578	573.25	20.5891	577.75	20.4288	66	782－788	783.25	15.0689	787.75	14.9829
32	578－584	579.25	20.3759	583.75	20.2188	67	788.794	789.25	14.9543	793.75	14.8696
33	584－590	585.25	20.1670	589.75	20.0131	68	．794．800	795.25	14.8415	799.75	14.7580
34	590－596	591.25	19.9623	595.75	19.8115	69	800－806	801.25	14.7303	805.75	14.6481
35	596－602	697.25	19.7617	601.75	19.6140	70	806－812	807.25	14.6209	811.75	14.5399
36	602－608	603.25	19.5652	607.75	19.4204	71	812.818	813.25	14.5130	817.75	14.4332
37	608－614	609.25	19.3725	613.75	19.2305	72	818.824	819.25	14.4067	823.75	14.3280
38	614.620	615.25	19.1836	619.75	19.0443	73	824－830	825.25	14.3020	829.75	14.2244
39	620.626	621.25	18.9983	625.75	18.8617	74	830.836	831.25	14.1988	835.75	14.1223
40	626－632	627.25	18.8166	631.75	18.6826	75	836.842	837.25	14.0970	841.75	14.0217
41	632.638	633.25	18.6383	637.75	18.5068	76	842－848	843.25	13.9967	847.75	13.9224
42	638.644	639.25	18.4634	643.75	18.3343	77	848－854	849.25	12.8978	853.75	13.8246
43	644.650	645.25	18.2917	649.75	18.1650	78	854－860	855.25	13.8003	859.75	13.7281
44	650－656	651.25	18.1232	655.75	17.9988	79	860－866	861.25	13.7042	865.75	13.6329
45	856－662	657.25	17.9577	661.75	17.8350	80	866.872	867.25	13.6094	871.75	13.5391
46	662.668	663.25	17.7953	667.75	17.6754	81	872－878	873.25	13.5159	877.75	13.4466
47	668－674	669.25	17.6357	673.75	17.5180	82	878－884	879.25	13.4236	883.75	13.3553
48	．674－680	675.25	17.4790	679.75	17.3633	83	884－890	885.25	13.3326	889.75	13.2652

MAN sections of the United States will receive television for the first time in the near future. Will the servicing personnel in these new areas make the same mistakes as those who have worked in TV areas for several yearsor will they learn from the experiences of others? That's the big question.

The public has not been too happy with the TV technician. It is debatable where the fault lies. Experience has shown that certain acts of commission and omission by the TV service technician have irritated the public, and these operations have certainly been to the technicians' disadvantage. We are going to give a capsule review of a few of these malpractices in the hope that it will benefit service technicians in new TV areas, and those yet to be developed.

The solemm promise

Failure to inspect a defective television receiver, or to retırn a repaired television receiver on the date promised has irked the public very much. It has been, and still is a deplarably common practice. It can be explained in many ways, but no amount of apology satisfies a disappointed customer. The housewife who waits all day for the service technician who never shows up, is not interested in explanations. Especially if she had something important to do, and changed her plans to keep the appointment.

It may be unfair to place the entire burden on the servicing industry. Where extenuating circumstances prevent keeping a promised date the courtesy of a phone call requesting a change of appointment is imperative. Regardless of how busy you are, or how difficult it may have been to procure a certain replacement part-both common excuses for broken promises-the customer is always right. It's an axiom of good public relations, and there is no way around it. The TV service technician or small shop is hurt badly if lakeled unreliable. It reflects on his competence, too.

[^1]In the TV servicing business word-ofmouth advertising by the public can do much good or harm. The smaller the community, the more important this is. Even in large metropolitan centers, experience has shown that goad publicity over the canasta or bridge table can help a small service shop grow, or drive it out of business and make the large service facility even larger.
The small service-shop owner cannot wage an advertising or sales-promotion war with the large facility: He does not have the necessary funds; therefore, he must do everything that will make his customers speak in his favor. One of these is to keep the promise to call or to deliver. Since the service facility rather than the customer sets the time and day, it is a solemn responsibility on the part of the facility to see that it is kept. We know one TV set owner who was so angry because of a broken promise that he asked all of his friends in the neighborhood not ta patronize the local service shop. in order to teach him a lesson.

The repeat call

The repeat call is treated as a nuisance by many service organizations. It is handled as if the service shop were doing the set owner a favor. It's considered a profitless call, but whose fault was it in the first place? On second thought is it really profitless? Not only does it create good customer relations, but every service facility takes into account a certain number of repeat calls when it figures the costs on which it bases its service charges. (If it doesn't do this, it should.)

Making customers wait for you to correct an unsatisfactory lepair is a sure way to make them angry. People let off steam by talking; panning the daylights out of a TV service fauility always finds ready listeners and sympathetic ears.

Some service outfits wilfully ignore repeat calls. They know that it means the loss of a customer, but they feel that there are others. They forget that a dissatisfied customer-particularly one whose complaint is justified-can do more harm to an outfit's reputation
than the praise of a dozen satisfied customers can possibly overcome.

We're not going to be so foolish as to say that there should be no repeat calls to hegin with. Sometimes they can't be helped, but we do say they can be redueed substantially. Every wellconducted and well-managed service facility considers repeat calls a reflection on the technician who did the work. In some organizations he is not paid for. making the repeat call. If tro many occur' he's out of a job.

The fact that repeat calls are not asked for is no sign that every repair job was done properly. As self-pratection, TV service shops should determine the custoner's reaction to the repair a week ar more after the receiver is restored to service.

Giving the public the benefit of the fact that they do not understand the workings of a television receiver, rather than condemning them for it, will reduce the widespread demands for legislation and licensing. The customer will respect a firm stand when a charge is warranted and the case is properly pre-sented- that is, without arrogance or insolence, But it is equally important to arlmit it when the shop is at faultnot necessarily by merely saying so, but by doing whatever is required to produce a properly functioning receiver. Servicing is a technical business, but it is not without its selling aspects, Poditeness and understanding are essential.

Using service dere properly

Repeat calls are costly on several counts. Not only in the time involved, but also because they imply technical incompetence. This has been the loudest cry on the lips of the TV-receiverownirg public. It has to be anticipated in each new area, because fully trained and experienced personnel cannot be made available concurrent with the initial sale of TV receivers. But this is the industry's problem and not the public"s. If receivers are sold, service should be available. If the servicing industry does not want competition from factory-service organizations, it must be ready for action when a new area opens up.

The set-buying public has the right to expect that the individuals who offer their services and facilities as TV service technicians have some sort of technical background. As a rule, these men are experienced radio service technicians. The main fault lies in the fact that many of them, in areas where TV is anticipated, wait until demand for TV service arrives before they make any move to acquire the necessary background. This has been the pattern time and again, and each time it has harmed not only the men themselves but the industry of which they are a part.

With radio servicing as a background, a knowledge of TV can be developed by reading-that is, if it is impossible to attend a school. Admittedly, a reading knowledge alone is of limited usefulness when work must be done-at least in the beginning -but it is better than no background at all. As time passes, more and more experience is gathered and the endproduct improves. In the meantime a definite mental attitude for selfimprovement must prevail. This has been lacking in many instances. Its consequences have been costly.

Every individual knows the extent of his capabilities. The more limited his experience, the more imperative it is for the TV service technician to use every device which will help compensate for this shortcoming. The most valuable of these are the service notes. There are many important reasons why TV-set-manufacturers' service manuals must be read and used. Not only for the schematics and circuit voltages, but for the circuit descriptions, installation and disassembly notes, manufacturers' production changes, and the trouble-shooting charts. Cures for troubles which may have appeared in a particular receiver, and which the set manufacturer has incorporated in subsequent production runs of that model, are also contained in these notes.

The less experienced the individual, the more vital this information is. It is paradoxical, but the more-experienced TV service technician makes greater use of the set-manufacturer's service manuals than the inexperienced man. The reverse should be true. Trial-and-error methods of servicing are costly to the beginner and to the public. The inexperienced technician spends hours doing what might be done in a fraction of the time.

How much repair time can a technician afford to spend on a TV receiver, and how much repair time can he charge for? How high can the labor charge be without arousing the ire of the public? How can the public be pacified when the so-called repaired receiver is not functioning properly?

The answers to these questions lie in the full and proper use of the setmanufacturer's service manuals, in taking full advantage of the guidance which they offer, and in following the instructions which they contain. In addition, the proper use of service in-
formation increases your technical background. It compensates for limited experience or lack of school training.

The uncompleted repuir job

When the public raises the cry of incompetence against the TV service technician, they group many things under one name. They hang the same label on the man who is careless as on the man who doesn't know. For example, tube failures are common faults in TV receivers. Simple tube replacements frequently correct a fault, but many times it is only a temporary repair. While time is of the essence in repair operations, the need for speed (and minimum cost) does not warrant a total disregard of other operations which may be necessary when a tube has to be replaced.

Tube failure may occur because of a defect in the circuit-the kind of a defect which eventually wears out the tube, but does not become evident immediately when a new tube is put into the socket. Perhaps thoughtlessness or carelessness on the part of the service technician accounts for his failure to make the necessary circuit tests. Or it may be that the service shop sets a time schedule for the field man which prohibits such tests. It is not uncommon for set manufacturers to recom-
 mend a circuit change in order to prevent frequent tube failures at one position in the receiver. The last item gets us back to the service manual again. Putting a new tube in this position will restore operation, but unless the circuit change also is mace, the new tube will fail in a relatively short time.

Many tube replacements involve fre-quency-sensitive circuits. Not all brands of tubes may function equally well in a particular circuit nor does the first few minutes of operation of a new tube in a circuit indicate the performance an hour later.

In frequency-sensitive circuits, mere tube replacement may not always be the complete answer. The circuit may call for readjustment in order that the receiver perform correctly, not just "good enough." A complete readjustment may not be required, but the need for it should be checked. This increases the time spent on the job, and must be recognized in any field-service program which a service shop puts into effect. The lack of it accounts for some of the complaints that "After the service technician was here, the receiver did not function as well as before."

In any case operators in new TV areas should do everything they can to avoid such occurrences.

Replacement parts

Some service shops (not many, for-
tunately) have committed the unforgivable sin of using surplus parts as replacements in TV receiver repairs This is too big a risk to take without knowing the history of the part, its age or its electrical condition. The public and the set manufacturer have the right to expect better treatment. Using a part of this kind even occasionally because it may not be convenient to get the exact replacement part, is no excuse. It just is not fit for this type of duty! It may work perfectly at first, but even this is no justification, because such a part cannot be guaranteed. If a service technician attaches any sort of a guarantee to a surplus part used for replacement purposes he should have his head examined.

We must stress one more point on the subject of replacement parts. This is the use of a compromise part as a replacement. By compromise we mean one that is not the exact equivalent of the part being replaced. This does not imply that every replacenent part must be an exact duplicate. It is not always practical to procure exact duplicates and still satisfy the time requirements on repairs. But it should be standard practice to make certain that the replacement part you use fits the needs of the receiver to which it is applied; and that it does this without requiring major alterations on the chassis to accommodate the replacement part. The customer should not have to be charged for time spent in this manner.

Many replacement parts available on the open market from parts jobbers satisfy the physical and electrical performance requirements of the receiver. If they do not, get exact duplicates from the set manufacturers' distributor even if it means waiting for delivery. For its own protection, the servicing industry must pay closer attention to the replacement-parts situation There is no such thing as "good enough" in this case. The public has every right to expect you to use the proper parts, and that they will perform perfectly.

A nother point of deep concern to all service technicians and service shopsespecially those just beginning their activities in new TV areas-is the charge for replacement parts. Although there is no apparent reason why the TV servicing business should be seasonal, it has its ups and downs. It has its seasons of great activity and slow periods.

Active periods must provide operating funds for the bad times. This can not be done unless service charges are high enough to return a profit, and the parts used in repairs are sold to the set owner at list price, so that the full margin of profit is realized. This is an absolute must. Service facilities can juggle the labor costs if they wish, in accordance with the level of efficiency developed in the shop, but the full profit must be made on the parts.

Some TV service technicians base their selection of replacement parts on
price alone. This is wrong. Price must be considered secondary to performance. The replacement part is paid for by the customer, and the technician should not lose sight of the difference in profit when the higher-priced item is sold. You are not taking advantage of the public if price reflects quality. Always bear in mind, whether buying or selling, that the best is the cheapest in the long run. If this approach requires greater selling pressure on the part of the service facility, then use it.

Improved techniques

Let's consider a few items that relate to servicing or trouble-shooting techniques. We say that these are native to old TV areas only because that is where TV now exists. The suggestion to improve techniques in TV areas yet to be opened fits the old areas too, because we think that many represent improvements that many old TV areas have yet to put into effect.

First there is the matter of capacitor testing. Leaky capacitors are a major item in TV receiver troubles. The standard procedure has been to check for low insulation resistance with an ohmmeter. This is not an adequate test. It can be misleading because the test conditions do not conform with the conditions of use.

The test voltage available in an ohmmeter is about 1 to 3 volts. In a few cases it may run as high as 30 volts. Even this highest voltage is not sufficient to show up capacitor leakage on an ohmmeter test, unless the insulation resistance has fallen to a very low level. The result is that many ohmmeter tests indicate a good capacitor, but when the part is reinstalled in the receiver its operation is faulty because its insulation resistance may have fallen below the value permitted by the circuit voltage.

The answer is to test for capacitor leakage by applying the same voltage as in the receiver, using a voltmeter and milliammeter as the indicators. With this test the findings are conclusive, and much time is saved.

Another prominent trouble-shooting weakness which has demonstrated itself in old TV areas is in placing too much dependence on d.c.-resistance values of certain components-especially coils and transformers. This is especially true when low values of resistance are involved. The problens associated with the measurement of very low ohmic values-crowded meter scales, contact resistance, and tolerance in the parts-have caused many substitutions which were never necessary.
D.c.-resistance ratings of windings are average values, and can vary by 10% or more in many instances and not indicate a fault. On the other hand, when the correct values are less than 1 ohm , a defect may not show up on a resistance test because an imperfect contact at a clip connection can add enough circuit resistance to offset the result of the fault.

An alternative, which will find increased application as suitable test equipment becomes available, is to measure an a.c. characteristic of the part. Many of the specifications for inductor. type components are in a.c. values. In the meantime, determine the condition of the component by measurement under signal conditions with a scope and vacuum-tube voltmeter. Unfortunately, these pieces of equipment do not see as much use as they should. Properly used, they save much time because they lead to positive conclusions. This, in turn, saves much more time that would ordinarily be wasted in removing and substituting components unnecessarily.

Another item which should interest service technicians in new TV areas is the limited utility of tube checkers as guides to the condition of tubes used in TV receivers. This comment does not deny the general utility of a tube checker; it is still an important item, but no test equals the simple substitution.
Many tubes will show O.K. on a tube checker, yet will not perform well in a multivibrator stage of the television receiver. The same tube will more than likely work perfectly in some other socket.

Another interesting item is the measurement of grid waveforms and peak-to-peak voltages in stages which depend on the drive for the bias.
As far as test equipment is concerned, the greatest weakness has been the failure to use the scope for these measurements. Although a great many scopes have been sold to the servicing industry, they are not used as much as they should be. The scope has tremendous capabilities, and anyone who is active in television servicing, yet who is not familiar with scope applications, is not taking advantage of the greatest timesaving device available.

It must be admitted that the trace on the scope screen requires interpretation, but unlimited reference information is available for guidance in service manuals. A cardinal requirement for TV service technicians is to gather data from experience-that is, to associate changes in waveforms with certain types of defects. This is not too difficult. Even if it requires spending some time in supplementary study, it is more than worth while, because it leads to faster, more economical servicing.

The bill for service

The usual form of invoice for service submitted to the set owner by a TV service shop can be improved to make the life of the shop owner much easier. Making out a simple bill which lumps all the services into one sum and then shows the total price of the
parts replaced as another sum, places the shop at a disadvantage. This is especially true where there is a substantial charge for labor and time, and a relatively small bill for parts.

The ratio between these two amounts is generally high-anywhere from 10 to perhaps 20 to 1 in favor of labor and time. The public just does not understand that the time and labor charge may not be any greater for replacing a $\$ 20$ part than for a part that cost only $\$ 1$. They cannot be expected to understand because no one has taken the trouble to tell them.
Recognizing the difficulty of educating the public, the best thing is to use the service bill for educational purposes. Make the bill show everything involved in completing the repair. Itemize the different operations sep-arately-travel time, removing the chassis from the cabinet (if necessary), inspection, pickup and delivery, etc. Virtually every service job involves at least six or eight operations of this type. Show them all. Then list the charges for the parts replaced.
Making out bills in this fashion is the psychological approach. A $\$ 10$ time and labor charge doesn't look so bad with respect to a $\$ 1$ part, when handled in this fashion. It is a perfectly honest presentation. The additional time spent making out an invoice of this kind will save much explaining.

The points we have raised in this article are known to every person who has sold his services to the TV-set-owning public. Service facilities may have viewed some of them as relatively unimportant. This is completely wrong. Drops of water falling on a stone will eventually wear it away. Snall things have irritated the TV set owner time and again. Patience will wear out in time.

The service technician views his activity as a profession. That is fine as far as it relates to ethics and pride in his work. But it is still a business, and the fundamentals of operation which are axiomatic in sound business must be practiced.

A number of actions of TV service facilities over the years have bothered the public. Men opening shops in new TV areas should learn from these. Public complaints have not always been just, but many of them are wellfounded. They are not beyond correction; it does not make good sense for new shops to follow in the footsteps of some of the old ones and repeat their failings. Every one should learn from -and profit by-the experiences of others!

END

AYEAR or so ago anyone who expressed a preference for a particular color-TV system ${ }^{1}$ was likely to find himself in the center of a heated argument. Now, at last, time and technical progress are clearing the air, and a new system-NTSC-has emerged out of the confusion.

Named after its sponsor, the National Television System Committee, the new system is the joint development of a broad cross-section of the radio-television industry.

NTSC background

NTSC was created in 1940 by the Radio-Television Manufacturers Association (then called the RMA) to assist the FCC in developing and formulating a set of standards for black-and-white television. These standards are now the hasis of our present TV system.

The committee was reactivated in the late 40 's when the FCC was holding hearings to establish standards for U.S. color television. Its new purpose was to gather background information on the general problem.

In 1950 the famous "Ad Hoc" (singlepurpose) Committee was set up under Dr. W, R. G. Baker for a concentrated study of the state of the art. It examined the work of several laboratories working on various systems of color transmission with the idea of deciding if one or more of their methods offered promise as a compatible color system. On the basis of the ad hoc report, the RTMA reorganized NTSC into nine panels made up of prominent engineers. In the spring of 1951 these panels launched an intensive and extensive program of organizing, selecting, and testing the best features of all color television systems. The panels will set

[^2]up system standards based on the results of these tests, and NTSC is expected to embody these in a formal proposal to the FCC in the near future. The work being done by NTSC has become an outstanding example of engineering co-operation and achievement.

Before going into the wondrous complexity of NTSC transmission let us first review the current status of color TV in the United States.

Field-sequential color TV

The present U.S. standard systemthe only one permitted for commercial color-TV transmissions-is the nowcompatible field-sequential system sponsored by CBS'. A program transmitted by this method cannot be displayed either in monochrome or in color on a standard television receiver without extensive circuit modifications (especially in the horizontal and vertical sweep sections). There is practically no audience for these color programs. This lack of a large audience discourages sponsors. Lack of sponsors discourages station construction. Without stations, there will be no audience, and without a prospective audience there will be no receiver procluction. As yet, no way has been found to break this vicious circle.

Engineeringwise the field-sequential system suffers fundamental handicaps. Briefly, it transmits three complete pictures in sequence: representing first the red, then the green, then the blue light picked up by the camer'a televising a color scene. However, the $6-m \mathrm{c}$ bandwidth of a regular television channel is just enough to carry only ome such picture in full detail. The necessity for trimming all three color signals to crowd them into this meager channel space results in degraded picture detail, objectionable flicker, and color instability with fast motion.

The field-sequential method does have
excellent color rendition and very desirable simplicity. Belaboring it here for its weaknesses is done only to indicate the room for improvement.

NTSC Color TV

NTSC transmission was born in the same ideas that inspired RCA's dotsequential system, but the NTSC system is not sequential. It is a simultaneous system, since the three primary colors in the picture are encoded electrically, not one after the other, but all three contimuously. Many independent laboratories have contributed to its development.

It is a high-efficiency system, in which the equivalent of a 12 -megacyclewide picture (4 mc for each color) is transmitted within a G-megacycle-wide channel", the same bandwidth used for conventional television.

In a nutshell, the new system transmits an ordinary black-and-white television picture, to which is added a modulated subcarrier signal conveying information about the coloring in the picture. From that viewpoint it could be called "colored" television. Although a color receiver is needed to display the colored picture, the system is compatible; that is, it will reproduce the picture on an ordinary television set in black-and-white (monochrome) without altering the set in any way.

Most of us have been taught that for a circuit to carry more information in a unit time the bandwidth of the circuit must be increased (provided the information is sent strictly in its original form, as in standard AM broadcasting).

How does the NTSC overcome this rule? Theoretical analysis provides the answer. It shows that any conventional television scene, when translated into a video signal occupying a given channel, does not fill that channel space completely. In fact, there is a regular

Developmental model of color-television receiver designed to the NTSC proposals. Chassis at right is a power supply.

Pig. 1—Black-and-white TV signal sidebands form clusters separated by 15,750cycle gaps. NTSC color-TV system uses these blank spots to send color signals.
series of vacant intervals in the transmitted frequency hand. If the same theoretical analysis is applied to the color information of the televised scene, it, too, is revealed as a regular series of discrete frequency components sepalated by uniform gaps.

Obviously the gaps in the black-andwhice picture signal can be utilized for transmitting some other kind of information. Why not the frequency components of the color signal? The monochrome signal and the color signal are then said to be "interleaved." Fig. 1 shows a small slice of the frequency band of the channel, indicating how frequency components of the picture signal and of the color signal are spaced over the same channel bandwidth.

To utilize this method it is necessary only to select a color subcarrier frequency which is calculated by multiplying half the horizontal line frequency by any odd number. At this writing the NTSC subcarrier frequency is: 15,750
$\frac{2}{2} \times 495 .=3,898.125$ cycles.

color separation sics

Fig. 2-Block diagram of the NTSC non-sequential color-TV transmitter.

On paper the idea may look fine, but does it woris in practice? The answer is that it does-not perfectly, but quite acceptably. A fine-grain crawling checkerboard-like pattern is noticeable to anyone standing close to the picture tube and looking for it. The usual viewer does not see it, hence this interference is described as "low-visibility".

There is nothing quite as good as a block diagram: for examining a complicated system. Fig. 2 is a simplified outline of the transmitter half of the system.

Color encoding

In Fig. 2. the camera supplies electrical signa:s G, R, and B, which correspond to the green, red, and blue components of the light in the televised scene. These separate colar-signal voltages are combined in the proportions shown, to make up the luminance signal Y. The proportions of G, R, and \mathbf{B} are based on the relative sensitivity of the human eye to light of those colors.

All information about variations in
brightness-that is, the detorl in the televised scene-is wrapped up in the luminanre signal. All information concerning the color in the scene is restricted to the chrominanco signal.

Now for the encoding of the color'. [1] The R, G, and B voltages are fed through low-pass filters which cut down the bandwidth. passing the equivalent of three degraded single-color pictures. [2] Two of these, I and B, are added electrically to the lumimance signal Y, whose polarity has been inver'ted to -Y, thereby creating color-difference signals $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$. A similar manipulation to obtain G-Y turns out to be superfluous, for the following reasons: G information already exists in the Y signal. We transmit $R-Y$ and $B-Y$, and can easily extract $G-Y$ from these signals at the receiving end. Therefore there is no point in handling $G-Y$ since it is already present (although not apparent) in the transmitted intelligence.
[3] Continuing with Fig. 2, R-Y and $\mathrm{B}-\mathrm{Y}$ modulate two sinc-wave volt-
ages which have exactly the same frequency but are 90° out of phase. The combined result, the chrominance signal, becomes a two-phase subcarrier, with each phase amplitude-modulated by picture-coloring information.

Our video signal is now complete, the liminance and chromimance signals providing all the information needed to reconstruct the color scene. A station transmitter handles it substantially as it would any normal black-and-white picture. Fig. 3 shows the makeup of the transmitted frequency spectrum.

The synchronizing signal is the same as the one used for monochrome television, except that a color-sync signal is inserted on the "back porch" of each horizontal sync pulse (Fig. 4). In the receiver this burst synchronizes the local "color oscillator" which is used to demodulate the color signals.

The receiver

At the receiver, Fig. 5, all circuitry up to the output of the picture detector is conventional.

Let us start with the band-pass tilter. This rejects all frequency components of the signal except the region containing the chrominance signal (see Fig. 3). The output of the band-pass filter feeds separate red and blue chrominance demodulators. The color-difference signals $R-Y$ and $B-Y$ are extracted by reversing the process of subcarrier modulation at the transmitter. The local color oscillator supplies two sine-wave signals having exactly the same frequency and phase as the subcarrier which was used for encoding at the transmitter. (These oscillators are synchronized with the color subcarrier by the bursts mentioned above.) The demodulation is a zero-beat form of heterodyning sometimes called "synchronous detection".

In the matrix-circuit block the $\mathrm{R}-\mathrm{Y}$ and $B-Y$ signals are mixed in predetermined polarities and proportions to produce the $G-Y$ signal.

Finally, the three decoded color-difference signals are combined with the main luminunce signal to reproduce the G, R, and B color signals which originally left the camera of Fig. 1. For example, adding $\mathrm{R}-\mathrm{Y}$ to Y leaves R alone. The R, G, and B voltages are applied separately to the tricolor picture tube to re-create the scene.

Color reproduction

The great advantage of the NTSC system lies in its economical handling of color information. In Fig. 1 we noted that the R, G, and B signals were each limited to a bandwidth of about 1 me implying the transmission of a limited amount of coloring information. The luminance information (picture detail) occupies the full 4 -me bandwidth.

This bandwidth relation makes sense when you understand how the eye sees.

Fig. 3, top-Relative positions of the picture carrier and the color subcarrier in the upper sideband of transmitted signal. The vestigial lower sideband and the sound carrier have been omitted. Fig. 4, next to top-Color-syne bursts consisting of nine cycles of the 3.898125 me color subcarrier are sent on the unused "back porch" of each regular horizontal sync pulse. Fig. 5, above-Block diagram of the receiver color circuits. All sections of the receiver ahead of the color unit are conventional. Fig. 6, right-Color combinations produced by blending colored lights (additive mixing).

Visible light produces three separate and distinct sensations: brightuess (relative intensity or luminance), hue (recognition of red, orange, yellow, etc.) and purity ar saturation (the degree to which the color is off-white, ranging from zero saturation, or white, to 100% saturation, meaning a deep, vivid color, a pure hue). The human eye is extremely sensitive to brightness variations but surprisingly insensitive to changes in hue. The NTSC transmit. picture information only to the extent that the human eye is capable of appreciating it.

One more puzzling question, color mixing, deserves attention. The tricolor picture tube operates on the principle of additive color mixtures. A good example of this is a cluster of partially overlapping colored lights, as in Fig. 6. The overlapped areas show some examples of additive mixing. Mixing colored paints, or looking through superimposed color filters are examples of subtractive color mixing.

The phenomenon of color sensation is in direct contrast to the sense of hearing. Most of us can identify the instruments being played from the general character of the sound, and a trained musician can even recognize the individual notes which make up complex musical tones. The eye has no corresponding ability to recognize the individual components of a color mixture. The eye perceives only the overall result of the mixing. With the proper set of primary colors, such as the red, green, and blue used in NTSC, we are able to reproduce practically the entire range of colors.

A word about the color picture tube, without which the NTSC system would be almost entirely useless. The shadowmask type three-gun tricolor tube has received much attention. Rapid progress has been made toward one or more color-tube designs suitable for mass production at reasonable prices.

Receivers for the tricolor tube are being developed by several companies. The big problem is to simplify the circuitry.

Test transmissiors with the NTSC system have been made in New York, Chicago, Philadelphia, and Syracuse. Assuming that transmission standards are successfully formulated and the FCC adopts the system, it would probably take at least two years before the NTSC system could become a commercial reality.

END

References

${ }^{1}$ Color Television Systems. Fred Shuna. man, Radia-Electranics, January, 1951, page 20.
:Color Television-U.S.A. Standard. P. C. Galdmark, J. W. Christensen, and J. J. Reeves, Praceedings of the I.R.E., Octaber, 195I, page 1288.
3An Analysis of Color Television System. A. V. Laughren and C. J. Hirsch, Electranics, February, 1951, page 92.
${ }^{4}$ A New Pieture Tube for Color TV. RadiaElectranics, June, 1950, page 27.

Propagation

students
 and $d x$ hounds
 had an
 TV DX in
 1952

interesting

year
By XPERIENCED TV dx observers and amateurs who watch the 50 mc band for signs of dx all agree that 1952 was definitely subnormal in incidence of sporadic-E skip. For readers who may be just getting into this business of TV dx, sporadic-E skip is the means by which TV signals are bounced back to earth from the ionospherie E-layer, some 50 miles aoove the earth's surface, providing reception at distances ranging from 400 to 1,200 miles and more.

Ionospheric dx wasn't supposed to happen in the v.h.f. region, and the truth is that it occurs only a very small percentage of the time, but when it does develop it causes low-band TV signals to do amazing things. The reflection qualities oi the sporadically ionized patches of the E layer become well-nigh perfect at times, with the result that signals from hundreds of miles away may come in with unbelievable strength, knocking out or seriously interfering with local stations.

Many observers, both in television

and amateur radio, have tried their hands at predicting the occurrence of sporadie-E skip in advance. They have met with a measure of success, and more is being learned about this amazing phenomenon all the time, but it is still very much a horse race. Perhaps that's just as well, for if we were able to turn on our TV sets or our $50-\mathrm{mc}$ ham rigs at an appointed time to receive dx signals or work 50 me stations halfway across the country on schedule, both pursuits would soon lose their appeal.

Meanwhile, we have a fascinating hobby, and one that is being put to good use. By careful observation and recording, v.h.f. amateurs and TV dxers have made available great masses of data for scientific study. During 1952 the people listed at the end of this article have contributed several hundred individual observations of TV dx , summaries of which appear in graph form herewith. A number of interesting facts are apparent from a study of these graphs.

A plot of the observations by months appears in Fig. 1. The upper portion shows the number of days that $d x$ was observed; the lower shows the number of reports each month. Look back at a similar presentation ${ }^{1}$ for 1951 and see how symmetrically these graphs rise and fall, showing the now wellestablished rhythm of the sporadic-E dx seasons. The major period is the months of May, June, and July, but another well-defined peak develops around Chyistmas time. Both periods are spread equally either side of the longest and shortest days of the year. Despite this cyclic effect, dx never quite runs out; there is rarely a month when no dx at all is reporied by the sharper observers.
The effect of frequency sh ws clearly in Fig. 2. Breaking the observations down by cnannels, we see that the lowest, channel 2, accounted for 38% of the reports, with only 14% of the sta-
${ }^{1}$ TV DX in 1951-Radio-Electronics, January. 1952, page 40.

Fig. 1, left-A year of sporadic-E dx by months. The November and December figures are for 1951. Fig. 2, right-Dx reports by channels compared to the number of stations per channel. Black lines are stations, colored ones reports.
tions in North America. Percentages of reports and stations are just about equal for channel 3. The most heavily populated channel, 4 , with 38% of the stations brought in only 33% of the reports. Channels 5 and 6 together having the same number of stations as channel 4 , accounted for only 18% of the reports between them. There were no reports of high-band $d x$ that could be positively identified with ionospheric effects.

Geographical location of the transmitting station is an important factor. Stations in the South and Middle West monopolize the top spots in the tahulation of reports by stations. As in 1951, KPRC, Houston, Texas, leads the pack by a 3 -to- 1 margin. The four Cuban stations, though their dx field is confined to little more than a 90 . degree segment, are nrentioned in 12% of the reports. Nearly half of the TV stations now using the low channels are above Latitude 40, but they accounted for less than 53% of the $d x$ reported.

Some outstanding reports

TV dx observations come from some surprising places, some of them localities where there is no regular TV service. Observer Canning, Halifax, Nova Scotia, is 400 miles from the nearest TV station, yet his log includes 44 stations in 36 cities. He is the holder of the Western Hemisphere dx record, having logged PRF-;3, Sao Faulo, Brazil, in the summer of 1951.

A growing group of dx-ers in the Halifax area keep in touch with each other by telephone. During the height of an aurora borealis display on September 29, several of them noted that the signal of WJAR, Providence, R.I., channel 11, was strong on both sound and video, but the two could not be received simultaneously. This condition had been noted previously when selective boosters were used, but this time removal of the boosters made only a slight implovement. If this was the result of auroral conditions it is the first time that aurora effects have been noted above 200 mc .

Strong but fading signals were received on channels ; and 5 the same evening. On September 5, a coastal inversion brought in signals from WBZ, Boston, 4; WNBT, New Ycrk, 4 ; WAHD, New York. 5; W FII, Philadelphia, 6; and WJAR, 11. Audio only was heard from WCBS, New York, 2, bearing, out the observation that tropospheric effects increase with frequency.

Several multiple-hop dx observations (in excess of 1,500 miles or so) were reported during the summer peak. Leader in this department was Observer Royal, of Red Bay, Ala. Bob caught KRON, San Francisco, 4; KING, Seattle, 5; KSL, Salt Lake City, 5 ; KOB, Albumuerque, 4 ; KPHO , Phoenix, 5; and KTLA, Los Angeles, 5 , in a single evening. In a 24 -hour period, June 13-14, Royal identified 26 dx stations. Another Florida observer, Simkin, of Orlando, reports 48 stations
logged there, and another 11 picked up from a location in Arlington, Cal.

Florida Observers Hali of Miani and Sloan of Braden Castle, report fine tropospheric reception of the Ctiban stations. Hall qets them more or less satisfactorily the year around, and Sloan pulls them through beginning in May. He also sees the Jacksonville station, WMPR, 4, most of the time over a 200 -mile hop,

To the average home viewer who looks at one or two stations for his TV entertainment, the totals of stations logged by the more avid dx enthusiasts seem almost incredible. Observer Lowther, Alexandria, Ind., lists 55 stations identified over a $\$ 1 / 2-$ year period, including such choice high-band tropospheric dx as WJAC, Johnstown, Pa., 13, 350 miles, WNBF, Binghanton, N. Y., 12,520 miles; and WJZ, 7, WOR, 9 , and WPIX, 11, all of New York City, more than 600 miles!

In three weeks ending june $15, \mathrm{Ob}$ server Merkel of Detroit logged 31 stations, 14 of them in the high band. Observer Dull, Washington, D. C., had 31 calls on his list. Then he took his equipment on a vacation in southwestern Pennsylvania in July and August, running up a total of 49 stations in two months. Patrick of Abilene, Texas, has 40 stations in 18 states, Cuba. and Mexico. DeGroat, Salamanca, N. Y., has 26 low-band dx stations. Whitfield, Altoona, Pa., identified dx on 25 days between April 29 and August 13.

One of our northernmost observers, A. E. Wilson of Port Arthur, Ontario, logged a total of 25 low-band stations, all sporadic-E dx with the possible exception of Chicago and the Twin Cities, which might be just in the tronospheric range under the best conditions. His most consistent dx reception was WSB, Atlanta, (ia., 2, wit' KPRC, Houston. Tex., 2, came second. Practically all of Wilson's $d x$ came from the area represented by the amateur W4 and Wう call areas, as does a large part of the $50-\mathrm{me}$ dx worked by our friends north of the border. Only toward the end of July was any eastern dx recorded.

Vilson noted interesting coincidence with weather conditions as indicated or. weather maps telecast by several stations he received. On consecutive openings in June, weathor maps showed pronounced cold fronts at right angles to the transmission path, just ahout midway between transmitting and receiving locations. On July 7, When WFMY, Greensboro, N. C., 2, was in solidiy from $10: 30 \mathrm{pm}$ to midnight, a cold front extended along the line to the transmitting location. On July 27, when a cold front swung around to the midpoint of the path, New York, Boston, Philadelphia, and Washington appeared. Both amateur and TV dx-ers have noticed that spo-radic-E skip is predominantly across areas of low barometic pressure; almost never in or across pronounced highs.

Unquestionably the most prodigious job of observation and reporting in 1952 was turned in by Louis M. Matullo, of Washington, Pa. He is able to do a phenomenal job of logging dx on both high and low channels from his 2,956-foot elevation in Southwestern Pennsylvania. I'ndor normal conditions Mike receives 20 or more stations over a radius of nearly 300 miles, around three-fourths of his horizon. He has kept a daily record of stations received for more than a year. They include 53 calls, 37 of which have been received without the aid of spo-radic-E skip. At least 18 different highband stations have been logged, including WENR, 7, and WGN, 9, both of Chicago, nearly 500 miles away.

New receivers a factor

Much more high-bard $d x$ was reported in 1952 than in previous years, largely as a result of the improved righ-band performance of the newer receivers. Increased awareness of the possibility of high-band dx was also a contributing factor. Observer Gehrlein, Erje, I’a., reports frequent reception of WSI'I), Toledo, 13, 185 miles, and WXYZ, Detroit, 7, 165 miles. Runnells and Holmes of Ottunwa, Iowa, report WENR and $W G N, 250$ miles. McGough of Milwankee staggers us with $\mathrm{KL} \Lambda \mathrm{C}$, Los Angeles, 13, on June 12. We'd like to know more about this one, as it exceeds by several hundred miles the best amateur or TV dx ever reported on frequencies above 100 mc . It can happen, though-sol-me radar sets have picked up targets 1,700 miles distant:

The period September $\mathrm{i}-10$ provided an unprecedented opportunity for highband dx of a tropospheric neture. During that time amateurs using the $144,2 \cdot 2$, and $420-\mathrm{mc}$ bands worked dx bevond their wildest dreams.: Thn 9th was the jiggest date, Matullo logging 3. stations at Washington, Pa., between 4:30 pm and 1:55 am the following morning: These included just about every high-band station to the sonth, west and northwest, within a radius of 500 miles. Landek, W9WOK, Bensenville, Ill., took time out from a big night of 144 -me amatenr d: to log 2° stations on 11 channels in 10 states: ll!inois, Inciana, Wisconsin, Michigan, Ohio, lowa. Missouri, Minnesota, Penns!lvania. and Tennossee. The best dx was WICU, Erie, Pa., 12, 450 miles.

This all came about as a stable highpressure center moved slowiy across the Great Lakes and over to the Atlantic Seaboard, a stabl: air-mass boundary forming along its trailing edge.

TV dx was not without its hunorous sidelights. One unintentior.al joker was a publicity blurb writer for one of the leading TV manufacturers. In a release sent to magazine editors he credited a Colorado owner of one of his client's new consoles with the "world's record for long-distance television reception."

[^3]The viewer in question had reported picking up stations as much as 1,200 miles away! The staff at Radio-Electronics concludes that there is at least one person who doesn't read our TV dx reports!

And Observer Samuels, Mount Vernon, N. Y., says that the way of the TV dx-er is hard. Most people just don't appreciate it. When Dan called in his next-door neighbor to show off his reception of a Washington, D.C., station, over 200 miles to the south, the only comment was, "Lot of snow on it, isn't there?"

LIST OF OBSERVERS, 1952

Aliaga, Frank, El Paso, Tex. Ambrose, G. W., Randallstown, Md. Amery, Gordon, Braymer, Mo. Ashcraft, Calvin E., Coolidge, Ariz. Baldwin, G. H., Hamilton, Ont.
Bashta, William, Los Alamos, N. Mex.
Redrosian, Peter, Newburyport, Mass.
Rente, Waldemar, Dennison, Ohio.
Billings, R. A., Shiro, Tex.
Canning, L. A., Halifax, N. S.
Cantwell, William, Denver, Col.
Carnes, P. C., Orangeburg, S. C.
Collier, J. W., Arlington, Va.
Conover, R., Stone Ridge, N. Y.
Croy, John E., Dayton, Ohio
DeGroat, F. E., Salamanca, N. Y.
Dochak, Mike, Sudbury, Ont.
DeGeer, M. W., Tulsa, Okla.
Dempster, M. K., Tyndall, S. Dak.
Dull, R. E., Washington, D.C.
Edens, L., San Antonio, Tex.
Elberburg, Columbus, Miss.
Evans, L. M., Gaylord, Mich.
Ferguson, G. A., San Antonio, Tex.
Foyer, Joe, Westville, Ill.
Gandol, Jose, Preston Orierte, Cuba.
Garcia, Albor Otero, Varadero Beach, Cuba.
Gehrlein, James, Erie, Pa.
Glenn, Quentin D., Carlisle, Pa.
Golden, S. J., Oak Bluffs, Mass.
Green, Vernon F., Saratoga, N. Y.
Green, M. F., Casper, Wyo.
Groves, A. L., Brooke, Va.
Hall, E. R., Miami, Fla.
Hammond, Clarence and Nina, Malin, Ore.
Hansen, Floyd, Waukegan, Ill.
Hart, Wm. C., Washington, Pa.
Hogan, Marvin H., Atlanta, Tex.
Huckert, Mrs. Joe, Hereford, Tex.
Henderson, Wayne, Sebring, Ohio.
Kern, Roy, Scranton, N. Dak.
Kindervater, John, Pottstown, Pa.
King, Virgil, Springfield, Ohio.
Kinney, Thomas A., Shelby, N. C.
La Bella, Victor, Middletown, Conn.
Landeck, John, Bensenville, Ill.
Lowther, G. W., Alexandiia, Ind.
McGough, Robert, Milwaukee, Wis.
McKinney, J. J., Indianapolis, Ind.
McLaughlin, C. F., Birmingham, Ala.
McPherson, Ross, Woodstock, Ont.
Markle, Leonard, Greenfield, Ill.
Mayernick, Joseph, Monessen, Pa
Mays, A. J., Devol, Okla.
Manning, Walter, Milwaukie, Ore.
Matullo, Louis, Washington, Pa.
Merkle, Bob, Detroit, Mich.
Meyer, Sgt. Danile, San Marcos, Tex.

Dx Reports by Station and Channel

Channel 2, 54-60 me; 11 stations, 301 reports
KPRC, Houston, Texas 114
CMQ, Havana, Cuba
CMQ, Havana, Cuba 32 32
WCBS, New York City 24
WSB, Atlanta, Ga.
WSB, Atlanta, Ga. 22 22
WMAR, Baltimore, Md. 28
XeW, Mexico City 25
WFMY, Greensboro, N. C. 25
WJBK, Detroit, Mich. 21
KNXT, Los Angeles, Calif. 7
KS2XBS, Chicago, Ill.KTSL, Hollywood, Calif.2(
Channel 3, 60-66 mc; 7 stations, 84 reports
KMTV, Omaha, Neb. 23
WBTV, Charlotte, N. C. 13
WPTZ, Philadelphia, Pa. WDTV, Pittsburgh, Pa. 5
WLWC, Columibus, Ohio4 ,
Channel $4,66-72 \mathrm{mc} ; 30$ stations, 258 reports
CMUR, Havana, Cuba 35
KRLD, Dallas, Texas
Rock Island, Ill. 7
WKY, Oklahoma City, Okla. 30
WTVJ, Miami, Fla. 17
WTCN, Minneapolis, Minn. 15
XHTV, Mexico City 14
WTAR, Norfolk, Va. 13
WOI, Ames, Iowa 13
WMCT, Memphis, Tenn. 13
WDAF, Kansas City, Mo. 12
WNBT, New York City 12
9
8
WBRC, Birmingham, Ala. 8 WGAL, Lancaster, Pa. 7
WLWT, Cincinnati, Ohio 6
WRGB, Schenectady, N. Y 6
WBKB, Chicago, Ill. 6
KOB, Albuquerque, N. Mex. 5
WBEN, Buffalo, N. Y. 4
WNBK, Cleveland, Ohio 4
KRON, San Francisco, Calif. 4
WWJ, Detroit, Mich. 4
KNBH, Los Angeles, Calif. 3
WAVE, Louisville, Ky. 1
XELD, Matamoras, Me
WGAL, Lancaster, Pa. 1
Channel $5,76-82 \mathrm{mc} ; 19$ stations, 80 reports
WBAP, Ft. Worth, Texas 23 2
CMQ, Havana, Cuba 10
WOC, Davenport, Iowa.
WSAZ, Huntington, W. Va. 2
KTSP, St. Paul, Minn. 7 WABD, New York City 2WTTG, Washington, D. C. 5 WAGA, Atlanta, Ga.
KFYL, San Antonio, Texas WAVE, Louisville, Ky. 12
WNBQ, Chicago, IIl. WEWS, Cleveland, Ohio
KTLA, Los Angeles, Calif. KING, Seattle, Wash. 1
KSL, Salt Lake City, Utah 1 KPHO, Phoenix, Ariz.
KPIX, San Francisco, Calif. 1
Channel 6, 82-88 mc; 11 stations, 57 reports
CMQ, Havana, Cuba 20
WDSU, New Orleans, La. 10
KOTV, Tulsa, Okla. 7
WTVN, Columbus, Ohio 5
3Millot, Dan, Louisville, Ky.
Mulligan, Eldon, Ottawa, OntNichols, Dan, Mason, Mich.Oberto, G. P., Richmond, Va.
Patrick, M. C., Abilene, Tex.
Penc, Stanley, Utica, N. Y.
Randall, John W., Hanover, Mass.
Rees, Mackworth G., Naples, Fla.
Richards, Warsaw, Ind
Robins, Howard L., Tampa, Fla.
Royal, Robert, Red Bay, Ala.
Runnells, R. J., Ottumwa, Iowa.
Sagel, Leslie, Wildwood, N. J.
Samuels, Dan, Mt. Vernon, N. Y.
Schmidt, Harry, Markham, Ont.
Seay, J. Chester, Dothan, Ala.
Simkin, Gordon, Orlando, Fla. and
Arlington, Calif.
Sloan, S. W., Braden Castle, Fla.
Stanek, John A., New Kensington, Pa.
WTVR, Richmond, Va. 3
WHAM, Rochester, N. Y. 3
WOW, Omaha, Neb. 3
WFIL, Philadelphia, Pa. 2
WNHC, New Haven, Conn. 1

Storie, Clarence A., Tulsa, Okla.
Storch, Clarence L., San Antonio, Tex.
Smith, B. L., Sundown, Tex.
Tisdale, J. W., Tulsa, Okla.
r:=dale, J. W., N. Little Rock, Ark.
Van Sandt, R. L., Ft. Worth, Tex.
Vanderstelt, Paul, Muskegon Heights, Mich.
Wallace, William, Santa Anna, Tex.
Warren, Bud, Cocoa, Fla.
Waterhouse, F. T., Springfield, Mass.
Whitfield, Lawrence A., Altoona, Pa.
Wilcox, W. W., Richmond, Va.
Wilkerson, S. W., Vancouver, B. C.
Wilson, A. E., Port Arthur, Ont.
Walker, John L., Albion, Pa.
Yeager, Claude C., Wichita, Kan.
96 observers, representing 29 States, plus Ontario, Nova Scot:a, British Columbia and Cuba.

TWO MORE U.H.F. CONVERTERS

The Zenith v.h.f.-u.h.f. turret tuner and Mallory

"Inductuner" preselector

By FRED KING*

ZENITH sets now have a new turret tuner designed for top performance on both u.h.f, and v.h.f. channels. The over-all size has been reduced considerably, the channel strips are easier to replace, and special shielding and parts placement minimize oscillator radiation.

Fig. 1 shows the new tuner with all shields in place. The a.g.c., B plus, and heater leads terminate in a plug and the i.f. output terminates in a coaxial connector so that the entire unit can be removed from the chassis for repair or replacing channel strips without removing the chassis from the cabinet.

Fig. 2 is the tuner with external shields removed. Two sets of the removable channel strips are shown in the foreground. Those nearest the tuner are u.h.f. strips. The oscillator and interstage circuits are on the right-hand segments and the antenna-r.f.-input circuits are at the left.

Fig. 3-a is a block diagram of the tuner circuit with a pair of v.h.f. channel strips in position. The triode section of the 6U8 is the local oscillator; the pentode section functions as the mixer. The twin-triode 6BK7 is a cascode i.f. amplifier. Fig. 3 -b is a block diagram of the tuner with a pair of u.h.f. strips in position. All the circuit changes indicated in going from Fig. 3-a to Fig. 3-b are made by simply turning the turret from a v.h.f. to a u.h.f. channe!.

Fig. 4 is a simplified schematic of the tuner on u.h.f. channels. There are two tuned circuits in the preselector and a tuned multiplier circuit. These three resonant circuits and the two crystals are mounted in a casting.

To cover all 70 u.h.f. channels the oscillator tunes from 172 mc to 234 mc . The germanium multiplier crystal acts as a harmonic generator to provide u.h.f. oscillator power for the mixer.

The germanium multiplier crystal is capacitance-coupled to the oscillator and conducts only on the extreme peaks of the oscillator sine wave. The

[^4]resultant straight-sided pulses in the multiplier circuit are rich in ascillator harmonics. The tuned output circuit of the multiplier selects the clesired harmonic and applies it to the crystal mixer to beat with the incoming signal. The oscillator's third harmonic (516702 mc) is used for the low u.h.f. channels and the fourth harmonic $(688-936 \mathrm{mc})$ for the high u.h.f. channels. The mixer crystal is biased to operate at its point of maximum sensitivity, so that minimum oscillator power is required. The output of the mixer is at the $41-\mathrm{mc}$ i.f. of the receiver. The GBK7 and the pentorle section of the gU8 become additional 41me i.f. amplifiers to make up for the conversion loss in the crystal mixer.

The u.h.f. tuned circuits are very tiny. They are mounted in cylindrical holes in the casting about $1 / 4$-inch in diameter and $1 / 2$-inch deep. The antenna and multiplier coils are less than $1 / 2$ inch long and $1 / 8$ inch in diameter. Series-tuning capacitance for the preselector and nultiplier circuits is provided by 1-72 machine screws which enter one end of each coil through an insulating bushing. The inductive coupling between the two preselector circuits is provided by a small pin pressed into a recessed hole in the casting between the two coils. The junction between the coils is returned to the casting through this pin, which is an inductance common to both circuits. The
casting shields the preselector and multiplier circuits from each other and from external influences.

The oscillator-interstage strip holds the oscillator coil with its disc ceramic capacitor, the cascode plate coil, and the mixer grid coil. The oscillator coil is adjusted to frequency by a small screw which enters the coil and changes its inductance. Each set of u.h.f. strips tunes over $1 / 3$ of the band, so three sets cover all 70 channels.

Performance data supplied by the manufacturer is as follows:

Frec. (me)	Chornel	Noise Figure (db)	Image Rejection (db)	$\begin{gathered} \text { i.f. } \\ \text { Reiection } \end{gathered}$ (db)	Relative Gain (\%)
57	2	4.5	87	50	100
85	6	6.0	80	55	67
177	7	8.5	70	70	63
213	13	9.0	68	72	63
535	24	14.0	5 C	60	81
670	47	14.0	50	59	72
820	72	17.0	45	58	65

Mallory u.h.f. inductuner

As a result of considerable experience in the design and construction of variable-inductance tuning mechanisnıs, Mallory developed a special Inductuner for continuous coverage of the $470-890-\mathrm{mc}$ u.h.f. TV band. These u.h.f. Inductuners are available as one-, two- three-, and four-section ganged units. The three-circuit mocel is shown in Fig. 5. Some manufacturers use these as the tuning systems in their converters.

Fig. 2-The Zenith separate coil strip tuner with shielding removed.
ferent type sections. When used as preselectors with an external tank capacitance of $1 \mu \mu \mathrm{f}$, these units will tune the u.h.f. TV band with 10 mc to spare on each end. When used with a 6AF4 oscillator working on the low side of the signal, an external tank capacitance of 1.5 muf is required.

TV-101 u.h.f. converter

Figs. 7 and 8 show front and rear views of the Mallory TV-101 u.h.f. converter chassis. The schematic is shown in Figure 9. The converterdesigned around a three-section Induc-tuner-covers channels 14 through 83. The antenna input impedance is 300 ohms, and the output imperlance can be either 75 or 300 ohms. The popular line-up of preselector, crystal mixer, oscillator, and cascode i.f. amplifier is used. The gain is approximately 2 when used with the 300 -ohm input and output. The converter i.f. is 82 mc so that either channel 5 or 6 may be used.

Preselector

The preselector uses two sections (2 and 3) of the Inductuner to provide double-tuned selectivity and an impedance match ahead of the mixer. The preselector elements are shaped to track with the oscillator. The antenna coupling method is a compromise between energy transfer (from different types of antennas or lines), alignment problems, oscillator radiation, and noise figure. The r.f. chokes across the antenna terminals to ground act as static drains. They also act as capacitors in the u.h.f. band. Their capaci-

Each Inductuner section employs a parallel-lines tuning system with the lines consisting of edge-mounted strips pressed into grooves in a mica-filled, phenolic-base material which provides mechanical strength and excellent electrical properties. They are arranged in a noninductive concentric path pioviding the required inductance range in $270^{\prime \prime}$ rotation of the shaft controlling the shorting bar. There are three different types of sections: wide-strip; narrow-strip; and shaped-strip tuning sections, to provide proper tracking in the preselector, mixer, and oscillator resonant circuits. Shaping of the elements provides more accurate tracking for various converter intermediate frequencies at approximately 40, 80 , and 130 mc . The rotor arm which holds the dual contactor (shorting bar'l is fastened securely so a phenolic shaft. Two-, three-. or four-section units may then be used without interaction.

Fig. 6 shows typical frequency versus dial-retation curves for an 82 -me conver'ter i.f. (channel 5 or 6). Measurements by the manufacturer show circuit parameters of individual Irductuner sections approximately as follows:

Distrïbuted capacitance at maximunt intluctance $2 \mu \mu \mathrm{f}$
Maximum inductance $04 \mu \mathrm{~h}$
Q at $100 \mathrm{mc}$.
These values vary slightly with dif-

Fig. 3-(a) Block diagram of the Zenith tuner on v.h.f. channels. (b) Block diagram of the tuner circuit in one of the u.h.f. positions. Three sets of oscillator and preselector cwil strips are required to cover all 70 u.h.f. channels.

Fig. 4-Simplified schematic of the tuner circuit in one of the u.h.f. positions.
 converter.
Fig. 8 (Right)-Rear view of the Mallory TV-101.

Fig. 9-Schematic of the TV-101 u.h.f. converter using the spiral Inductuner.

Local-distance switching plus

 more anti-noise sync circuitryBy ROBERT F. SCOTT

i.f.-amplifier stages and through a $1.5-$ negohnl isolating resistor (R1) to the r.f.-amplifier and mixer grids in the tuner. In the suburban position (that shown in Fig. 1) a.g.c. voltage is removed from the tuner, and the r.f.amplifier and mixer grids are returned to ground. The FRINGE position is used when the incoming signals are weak, and the set must operate with maximum sensitivity. This grounds R1 and lowers the a.g.c. voltage on the i.f.amplifier tubes to one-half the value applied in the local and suburban positions. In this position the video amplifier grid resistor is returned to grourd to improve noise limiting ahead of the sync take-off point. The area selector control should be adjusted to the position which gives the clearest and most stable picture on all active chanuels.

Olympic local-fringe control

The Olympic model 762 receiver has the local-fringe circuit shown in Fig. 2, When the switch is set to Local (in strong-signal areas), the r. f. amplifier and firsi, second, and third videoi.f. amplifiess are supplied with the full a.g.c. voltage across the 8,200 -ohm video-detector load resistor. In this position the a.g.c. line is connected through a 1 -megohm resistor to the junction of a $100.000 \cdot \mathrm{ohm}$ resistor and the contrast control. The arm of the control is grounded and the $100,000-$ ohm resistor connects to plus 220 volts.

When the signal is strong, the contrast control is usually adjusted for maximum resistance in the cathode circuit of the video amplifier. This

Fig, 2-Local-Distance switching used in Olympic TV models 762,783 , and 967 .

MANY modern television sets have auxiliary controls on the thack for adjusting the sensitivity for optimum performance in weak-, medium-, and strong-signal areas. Fig. 1 shows the area-control circuit used in the Motorola TS-395A and TS-400A chassis. Slightly different versions are used in other late Motorola receivers. The local, suburban, and fringe settings adjust the sensitivity of the receiver for strong, medium, and weak signals, respectively.

In the local position, iull a.g.c.taken from the video detector outputis applied to the first and second video

Fig. 3-Noise-canceller sync eircuits of G-E 21 T 4 and 21 T television receivers.
grounds the a.g.c. line through the 1 -megohm resistor, and maximum a.g.c. voltage is used to reduce sensitivity and prevent overloading.

When the set is tuned to a weaker channel, the contrast control is moved up to reduce the bias on the video amplifier. A positive voltage now appears at the junction of the $1-m e g o h m$ resistor and the lower leg of the contrast control. This positive voltage charges the 0.22 -uf a.g.c. filter capacitor and bucks the negative a.g.c. Foltage across the detector load. This positive voltage (a.g.c. delay bias) prevents the a.g.c. voltage from reducing the circuit gain until the incoming signal is strong enough to overcome it.

Advancing the contrast control to compensate for weaker signals brings more of its resistance into the voltage divider circuit and increases the delay bias applied to the line. The bias varies from 0 to about 4 volts as the contrast control is varied from maximum to minimum setting. Thus, varying the control automatically sets the a.g.c. delay bias to the proper point for best operation. In weak-signal areas the switch is set in DISTANCE position, disconnecting the a.g.c. bus from the contrast control circuit.

Noise-immune sync circuits

In past issues, we have discussed some of the various systems which manufacturers are using to insure maximum sync stability in the presence of severe noise.*

Now let's look at Fig. 3 which shows the G-F moise-canceller circuit used in the 21 T 4 and 21 T 5 models. The circuit is designed to prevent noise from entering the sync-clipper circuit and causing loss of sync through premature triggering of the sweep oscillators.

The composite video signal from the video detector is fed through a cascaded two-stage video amplifier into the grid of the picture tube along with any noise pulses which may be picked up with the signal. The negative-going sync pulses and noise (e) are tapped off the grid of the picture tube and fed to the grid of the sync amplifier ($1 / 2$ 6SL 7 -GT). This combination of noise and sync pulses is amplified and appears with positive polarity at the plate of the 6SL. 7 .

At the same time that the amplified noise and sync pulses appear at the grid of the sync amplifier, the umamplified negative-going noise and syre pulses (a) from the video detector output are applied to the cathode of the 6AQ7 noise-canceller tube through a 1-uf coupling capacitor. The grid of the 6AQ7 is biased negatively from the a.g.c. line. The cathode is biased positive by returning it to a point on a voltage divider composed of R1, R2, and the picture stabilizer R3. Control R3 is set so the 6AQ7 is biased to cutoff until the negative-going noise pulse

[^5]

Fig. 5-Stromberg-Carlson receivers use this keyed noise-clipper sync circuit.
on the cathode exceeds the amplitude of the sync pulses. R4 is a load resistor common to the 6SL7 and 6AQ7. The GAQ7 operates as a grounded-grid amplifier with input and output signals in phase. Since the two output signals arc of opposite polarity, the waveform across R 4 at any tim2 will be the algebraic sum of the two signals. When the GAQ7 conducts, it shunts the output of the sync amplifier and prevents any signal from being fed through to the sync clipper.

Waveforms a, b, c, c, and e show the operation of the circuit. Waveform a is the unamplified composite video with a superimposed noise burst. The waveform at the plate of the 6AQ7 during conduction is shown in waveform b. The pattern at c would appear at the plate of the 6SL7-GT if the 6AQ7 were heavily biased or removed from the circuit. The pattern at d shows the result of combining the waveforms at b and c in the common load resistor R4.

When the noise-pulse duration is
longer than the time of several horizontal lines, all sync information is wiped out, but sync is not lost because of the flywheel characteristics of the sweep generator.

RCA noise-suicide circuit

A number of recent RCA TV receivers employ a moise-suicide circuit which prevents noise from causing vertical jitter in weak-signal areas. The video i.f. amplifier strip is designed so the grid of the fourth vides i.f. tube (Fig. 4) does not draw grid current with normal signal levels. However, strong noise pulses drive the grid positive.

Each time a noise pulse arrives, grid current flows, and negative pulses appear in the plate and screen-grid circuits. The negative pulse across the 47,000 -ohm screen resistor (R1) is tapped off and fed to the grid of the vertical sync separator ($1 / 2$ 6SN7-GT) through an R-C network consisting of a $.033-\mu \mathrm{f}$ capacitor and 100,000 - and

47,000 -ohm resistors in series.
The negative noise pulse in the plate circuit of the 6 CB 6 is rectified by the video detector. The noise pulse next appears as an amplified positive pulse in the plate circuit of the 6AG7 video amplifier. This positive pulse is also fed to the grid of the vertical sync separator. The amplitudes of the positive and negative noise pulses are such that they cancel in the grid circuit of the vertical sync separator. Thus, noise is suppressed before it can reach the vertical oscillator and cause instability.

Another interesting feature of these sets is the use of separate vertical and horizontal sync separators. These provide better sync stability than do simpler systems in which vertical and horizontal sync signals are passed through a common separator-amplifier system.

Keyed noise clipper

To minimize the effects of noise bursts on the stability of the sweep oscillators, Stromberg-Carlson uses a keyed noise clipper in a number of its receivers. A typical circuit is shown in Fig. 5. The composite video signal is applied to the grid of V1 so the positivegoing sync pulses arrive at the same instant that positive pulses (from the horizontal output circuit) are applied to its plate. This combination of positive pulses on plate and grid causes V1 to conduct. C1 charges rapidly to the peak of the sync pulses through the output resistance ($1 / \mathrm{gm}$) of the cathode follower noise reference tube V1. In the absence of pulses on the plateabout 90% of the total time-C1 tends to discharge through R1 in series with the internal resistance of the video amplifier. However, the time-constant of the discharge circuit is so long that the next sync pulse arrives on the grid before the charge on C1 can drop appreciably from the level of the sync tips.

The cathode of the 6AL5 diode noise clipper is biased positive to the level of the sync tips by the charge on C1. Noise pulses which exceed the sync level cause the diode to conduct and short-circuit the excess noise voltage to ground through C1 so it cannot appear at the input of the sync separator. The clipped portion of the noise pulse does not contribute substantially to the

Fig. 6-Automatic width-control circuit in some recent Philco television models. JANUARY, 1953
charge on C1 because R3 gives the charging circuit-a time-constant which is long compared to the duration of the noise. Besides, any noise voltage which may be added to C 1 will leak off through R1 and the video amplifier, so the charge on C 1 is about normal when the next sync pulse arrives from the video circuits.

The noise pulse sees the grid-cathode circuit of V1 as a diode whose operation and characteristics are similar to those of the clipper diode. R2 in series with the grid of V1 gives the gridcathode charging path a time-constant which is too long to permit noise to cause a substantial increase in the voltage across C1.
The ability of the noise clipper to distinguish between noise and sync pulses depends on maintaining the charge on C 1 equal to the peak of the sync pulses. Its effectiveness in this operation is determined by the ratio of R2 to $1 / \mathrm{gm}$.

Automatic width confrol

Adjusting the brightness control on a TV set varies the bias on the picture tube and causes the beam current to change. If the second anode is supplied from a source which has poor regulation, the changing beam current shifts the load on the supply and causes the second-anode voltage to rise or fall. Increasing the bias on the picture tube-for a darker picture-lightens the load on the supply and the high voltage rises. This causes the picture to shrink. Decreasing the bias to give a bright picture increases the load on the supply, the high voltage drops, and the picture tends to expand since the reduced velocity of the electron bean makes it easy to sweep over a large area.

Philco TV receivers using the type 71 or 42 r.f. chassis and G-1 or G-2 deflection chassis incorporate a circuit whi h tends to keep the picture width constant regardless of the setting of the brightness control. The simplified circuit is shown in Fig. 6.
The grid and cathode of the picture tube and the screen grid of the 6BQ6GT are supplied with voltages from two voltage dividers connected in parallel across the 240 -volt B plus line. Both dividers return to ground through the arm of the brightness control. When the control is set for minimum brightness (maxinum bias on the picture tube) the grid of the picture tube is at ground potential and its cathode is approximately 90 volts positive. This lightens the load on the high-voltage supply and the picture would expand if it were not for the fact that at this setting the 6BQ6 screen voltage is reduced to 120 . This lowers the high voltage just enough to compensate for the increase brought about by the higher picture-tube grid bias.

Setting the control for maximum brightness raises the 6BQ6 screen voltage to 140 to compensate for the drop in high voltage when the bias on the picture tube is reduced.

EQUIPMENT INVESTMENT

RADIO-TV service terhnicianlike the biggest industria: corpora-tions-has a large part of his money tied up in tools and test equipment that either wear out in normal use or become obsolete as new methods or better devices come on the market. One of the vital dollars-and-cents factors that Big Business knows-but that the average technician doesn't even drea.n aboutis that it doesn't pay to use your equipment past a certain point in its life, even though it may still be quite serviceable. Industrial engineers get fat fees for figuring out the point where it actually costs less to buy brand-new equipment than to continue using the old. You can do your own engineering with just a little simple arithmetic.
The Gawler-Knoop Co... of Caldwell, N. J., Wyncote, Pa., and Silver Spring, Md., have condensed the whole procedure into a few simple steps. Figures are based on an expected life of 10 years for electronic test equipment, an 8% return on your original investment, and a maintenance cost of 5% per year, with no salvage value at any time. (While these conditions apply more to laboratory instruments that get the best of care than to service-type equipment, the shorter life in service work is offset by the fact that your used equipment usually has some resale or trade-in value.)

OLD EQUIPMENT

A-Present book value $=$ (original cost)
(original cost \times years in service)
B-Depreciation cont $=$ original cost
up to l0th year, "0" thereafter
C-Average interest cost =
(present book value $\times 0.08$)
$\times \frac{(11-y e a r s ~ i n ~ s e r v i c e)}{10}$
D-Taxes and insurance $=$ present value $\times 0.025$
E-Maintenance and repair = original
cont $\times 0.05$ (may be higher for old
equipment)
$\mathbf{F}-\mathbf{B} \underset{\text { equipment }}{+(\mathbb{I}}+\mathbf{E}=$ annual cost of old

NEW EQUIPMENT

If L is larger than K minus F, the new equipment will pay for itself in less than one year. $L-(K-F)=$ annual savings from use of new equipment.
Note: As an example, a $\$ 1,000$ purchase of new equipment is worth while to replace equipment 5 years old which originally cost $\$ 500$, if the new gear will save 24 minutes per day with labor at $\$ 1.50$ per hour.

End

TELEVISION? it's a cinch!
 By E. Aisberg

Translated from

La Télévision? . . . Mais c'est très simple!
by Fred Shunaman

First conversation: Frequencies, v.h.f., and video.

Will-Ken, I need some advice for my Uncle Jack.
KEN-O.K.-something about his radio, I suppose?
Will-Not exactly. He's interested in television now. He's had a bad attack of arthritis, so he hasn't been able to get out of the house for a couple of months. You know what a movie fan he's always been. So now that he can't get out to see five pictures a week, he wants to get a TV set to bring the movies to him.
Ken-Good idea! I'll be glad to lend a hand. Let's drop over to your uncle's right now, and see where we can put up the antenna.
Will-That's not going to be so easy. Didn't you know my uncle has been living in northern Maine for almost a year now?
KEN-Why didn't you tell me? You'd better just get your uncle a case of aspirin. He won't get television in northern Maine-at least not till we get a few more stations.
Will-Why not? What about the programs from the Empire State Building?
Ken-He can't even get programs from Massachusetts stations. Sixty miles is about as far as you can be sure of getting dependable TV reception. Sometimes you may pick up programs a lot farther away. But your uncle in northern Maine hasn't much chance of getting entertainment out of a TV set.

The earth is round

Wili-If TV stations don't get out any better than that, why don't they increase their power?
Ken-Because it wouldn't help-much. Most television is transmitted between 54 and 216 megacycles, in what they call the very-high-frequency band-between 30 and 300 megacycles; or on ultra-high frequencies, which means in the spectrum between 300 and 3,000 megacycles. The u.h.f. TV band runs from 470 to 890. Now, the higher you go in frequency-or the shorter the waves get, if you like to put it that way-the more they act like light waves. Longer radio waves -like those in the broadcast band-can bend and follow the curve of the earth, but v.h.f. waves travel in straight lines and can't get around the bend in the earth's surface.

Will-Does that mean that the receiving antenna must be in sight of the transmitting antenna to pick up TV signals?

KEN-Well, not quite. Of course, what the engineers call "optical visibility" is best for reliable reception. But v.h.f. waves are a lot longer than light waves and are not quite so set on following a straight line. V.h.f. waves do reach a little beyond the visible horizon, and can curve around small obstacles.

Will-Wait a minute! I think I get it. Because the earth is round, its curvature hides the transmitting antenna after a certain distance. The waves travel in straight lines, so they just keep on going over our heads and out into space?
Ken-You've just described in one sentence what has been called "The Tragedy of Television."

Will-Why "tragedy"?
KEN-Because that's what makes it tough or impossible for large areas of

Readers of Radio-Electronics can start with this issue what is probably the world's greatest book on the fundamentals of television. It has already been published in the original French, in German and in Spanish, and is in process of translation into Italian. The author, E. Aisberg, is the publisher of the French magazines Toute la Radio, Télévision, and Radio Constructeur et Dépanneur. He has also written many books on electronic subjects, including the famous La Radio-Mais c'est tres simple! to which this book is the television sequel. Television-It's a Cinch! is translated from the original French by special arrangement with M. Aisberg. Radio-Electronics has the exclusive North American rights for the translation of La Television? . . . Mais c'est tres simple! and no extract from it may be published without our permission and that of Mr. Aisberg.
the country to get good TV service. The transmitting range is so short that it would be too costly to put up enough stations to cover the whole country.

Getting up in the air

Will-Isn't there any way of getting around this "tragedy"? Maybe people who live too far from TV stations could find some way of hooking onto those waves that are going by way over their heads. Why couldn't they use kites or captive balloons to hold up their antennas?
KEN-I don't think any TV set owner has gone that far, but some communications companies use antennas on captive balloons (Kytoons) to test sites for antenna towers. Most TV stations try to get their antennas as high as they can, though. That's why you see television antennas on the Empire State Building, on Mount Wilson, and on other such high points.
Will-So you see there is a way out! Why do they make such a good start and then stop short?
Ken-I don't get you.
Will-Why don't they put the transmitter in an airplane, and get up even higher? A plane flying around in the stratosphere could cover a quarter of the country, and my uncle Jack could see his flickers!

Ken-Congratulations, Will! You've just invented stratovision. That's what Westinghouse called just such a system some years ago. But they don't seem to have got it on a practical basis yet.

Shedding a little light

Will-Then why in blazes do they have to keep television on such short waves? Just because it's so new is no reason for putting it in the third subbasement. Can't we reallocate or shut down three or four broadcast stations or commercial transmitters and put TV on the short or medium waves-where it really ought to be? Just think, if we only had one wavelength in the broadcast band we could put up three or four stations strong enough to cover the whole country. . .

Ken-You're off the deep end that time, chum! Getting TV into the broadcast band would be about as easy as getting an elephant into a snailshell.

Will-What's the connection between an elephant and television?
KEN-Easy, boy. Sit back and relax. Now think about the signals you get on your AM receiver. You have a carrier that sort of takes an audio signal along on its back. How wide a band does that need?

Will-Well, the lowest audio notes are around 30 cycles and the highest about 15,000 cycles. I know for a fact, though, that most AM stations don't modulate much above 7,500 cycles.
KEN-In other words, when you remember that you have the audio signal on both sides of the carrier, most AM stations have a bandwidth of 15 kilocycles. Did you ever stop to figure out why an AM station should be limited
to 15 kc ? to 15 kc ?

Will-I may not know all the reasons, but the most important one is to cut down interference on adjacent channels. You couldn't get much above 5,000 cycles with the equipment they had when broadcasting started, and frequency allocations were made on that basis. Now the official signpost is 7,500 cycles for each sideband. Lots of stations go beyond that today, if they can do it without causing too much interference on neighboring channels. What's all this got to do with TV?

KEN-Plenty! But first, have you any idea of how television images are transmitted?

Will_Of course! You can't transmit a whole picture at one time, so it's broken down into very tiny elements and then these elements are transmitted successively . . . KEN-Whoa! You lost me there, chum! W
Will-Ever look real close at a picture in a newspaper?
Ken-Yes.
Will-And it looked like what?
KEN-Like a bunch of dots-some light, some dark.
Will-It's the same in TV. We take a picture and break it down into little bits, some light, some dark. Only we don't call 'em dots, we say elements (or sometimes points).
KEN-And this business about "transmitted successively"?
Will_That's just the way the engineers say "one after another." The television transmitter changes each element into a voltage. Transmission is negative . . .

KEN_Hold it again! Just what is "negative transmission"?
Will-It just means that the dark part of a picture produces mcre voltage than a light part. A black element produces the strongest voltage.

KEN-And a point that isn't so black?
Will-Just that much less.
KEN-And what if you have just a white space?
Will-You can't catch me on that one. A white space gives zero voltage.
Ken-Or at least a very low one. But how do we manage to pick out all the points of a picture and then transmit them one after another?

Will-Easy. A scene is scanned exactly like you'd read the lines on the page of a book. You could think of each letter as an image element. All the lines on a page are scanned one after the other to form an image. When we've finished one page, we start scanning the next one ...

KEN-Correct! And how fast is this "reading" done?
WILL-Well, the pictures have to follow each other fast enough so the eye Wees one continuous moving picture. The movies use 24 pictares a second. In television they follow each other at the rate of 30 a second.
KEN-Or about half a minute to read "Gone with the Wind"! But we're getting away from why we don't have a TV station in the broadcast band.
Will_Go ahead. I'm listening.
KEN-We've agreed that the voltage produced by any picture element depends on how dark it is. So when we transmit a signal that describes all the elements of a television scene, we're going to jump around from a very large voltage for a dark element to a very weak voltage for a bright one. And we're going to transmit all the elements of a complete picture in $1 / 30$ th of a second. Does that mean that the sidebands will be very wide?

Will-Does it?

Ken-It certainly does! This signal that expresses the brightness of each element in a TV picture is called a video-frequency signal. It's really a wide band of frequencies-something like the audio frequencies in an AM receiver.

Will-I suppose it can even be zero frequency sometimes. If you televise an all-white or all-black surface, all the little elements will be the same, and will produce the same voltage while the whole surface is being scanned.

Ken-That's true. But if the elements along the line being scanned are not all of the same brightness, the signal voltage varies. Now, when is that variation fastest, or in other words, when will we get the highest video frequency? Will-Probably when a lot of adjoining elements in a line differ in brightness.
KEN-Exactly. The frequency is maximum when we scan a line composed of elements which are black, white, black, white, successively. The highest frequency you could get would be with an image made of black vertical lines one element wide, separated by white intervals, also one element wide.
Will_Then each element would give us one cycle of signal, and . . .
Ken-Easy, boy, easy! A white bar produces a very weak voltage and a black bar a very strong one. So scanning two adjoining elements-one black and the other white-produces a weak and a strong voltage. As we scan, the voltage alternates from weak to strong, back to weak, and so on. It takes the two bars, one black and one white, to make one cycle. And since one cycle can Will-Is half the number of image elements!
Will-Is half the number of
KEN-This time you're right.

UHF circuitry

 between them is the newer Standard Coil u.h.f. strip. Some of its components are electrical rather than physical. C2, C3, and C4 are capacitances between the brass screw and silver tab on the ceramic coil form. C6 may be 5 兜f or $2.2 \mu \mu \mathrm{f}$ depending on the channel. L4, C4, and C1 form a circuit tuned to the 2nd, 3 rd, or 4 th harmonic of the local oscillator.

The circuit at the top of the page is the RCA u.h.f. selector U70. It covers the whole u.h.f. spectrum from channel 14 to 83. Its output may be on either channel 5 or 6 , at 300 ohms, while the u.h.f. input may be either 75 or 300 ohms. (V.h.f. input is specified as 300 ohms balanced.) The TV receiver may be plugged into a receptacle on the selector, so that both v.h.f. receiver and selector can be operated by the selector's "on-off" switch. To receive v.h.f. programs, the switch is turned to V.H.F., which turns the selector on and puts it in stand-by condition. For u.h.f. signals, the switch is turned to U.H.F. and the v.h.f. receiver set to channel 5 or 6 .
The schematic in the center is that of the G-E UHF-103 Translator described briefly in last month's issue ("More u.h.f. Converters", page 52).

Circuit at lower left is the RCA U1 (U1A, U1B), an adapter which permits receiving any single u.h.f. TV station when employed with a v.h.f. receiver. Its output is also on channel 5 or 6 . U1A has a 7 -pin miniature adapter socket for use with sets having a 6AQ5 audio output stage; U1B has an octal socket for use with a 6 K 6 or 6 V 6 output socket.

Diagram at lower right is the tuner used with the Sylvania chassis 1-510-2 and labelled in their schematic "Sarkes Tarzian u.h.f. tuner."

 of any two u.h.f. TV stations (within range) when used with a v.h.f. recejver. lt has four switch positions: UHF, UHF, VHF, and off. Either channel 5 or 6 may be used as the first i.f. The oscillator operates in the $200-300-\mathrm{mc}$ range, and the second or third harmonic of the ascillator is applied to the crystal mixer. Normally the second harmonic is used for channels 14 to 46 and the third for 47 to 83.

Like some of the other RCA con-

JANUARY, 1953

All Channel Antenna Corp.
60-07 Queens Blvd.
Woodside 77, N. Y
Motorless all-direction, high-gain, broad-band, v.h.f. and u.h.f. antennas; bi-directional doubledouble V's; turnstile antennas; double ${ }^{\text {biconicals } \text {; turnsther mirror-image re- }}$ biconicals with mirror-image re-
flectors; super-directional fans, flectors; super-directional fans,
folded high-folded low, straight high-straight low, antennas ; fan dipoles; v.h.f. and u.h.f. 5-, 8and 10 -element Yagis; special u.h.f. high-gain reflectors; spe-cial-purpose antennas. 32 models. Masts; antenna switches.
Alliance Mfg. Co.
Lake Park Blyd.
Alliance. Ohio
Antenna rotators.
Alpar Mig. Corp.
1486 El Camino Real,
San Carlos, Calif.
Standard aluminum vertical antennas or antenna towers in two types: tubular TV and amateur type in 12-foot sections to rise 132 feet; triangular broadcast and communications type in 12 foot sections to rise 300 feet.

American Phenolic Corp.

1830 S. 54 Ave.
Chicago 50, III.
In-line antennas, single-bay and stacked arrays, piggy-back and indoor antennas, u.h.f. antennas indoor antenna, Lightning arrestand reflectors, Lightning arrest-
ers, standoff insulators, and ers, standoff
mast sections.

Antenna Products

3628 N. Lincoln Ave.
Chicago, III
Folded dipole arrays. 5- and 8 element Yagi antennas; 6-, 8-, 10- and 12- element conical arrays; single and stacked V's; u.h.f. corner-reflector, Yagi, V and parabolic antennas. Thirtytwo antenna models. Masts, fittings, mounts, wire, accessories.

Baker Mfg. Co.

Evansville, Wisc.
Forty-foot tower; 20-, 30- and 40 -foot telescopic masts ; double rock-up foot mount and peak roof mount.

Beacon Corp.

2846 Milwaukee Ave.
Chicago 18, 111.
Spiral-type horizontal-element indoor antenna. One model, in aluminum or gold anodized finish.
Bell Television, Inc.
552 W. 53 rd St.
New York 19, N. Y
Amplified master antenna systems, individually engineered for each installation.

Birnbach Radio Cc., Inc.

145 Hudson St.
New York 13, N. Y
Indoor flexible folded dipoles, u.h.f. antennas, aluminum ground wire, rotator cable, RG. 59/U coaxial cable, ground rods, loom, standoffs, guy wire, guywire kits, lightning arresters. filters, anchor bolts, mounting straps, clamps, couplers, switches.

Blaco Mfg. Co.

6541 Euclid Ave.
Cleveland 3, Ohio
Adjustable ground clamps and standoff straps.

Blonder-Tongue Laboratories 526-536 North Ave.
Westfield, N. J.
Line-amplifiers, mixer amplifiers, distribution units, line splitters matching transformers, line-loss equalizers, weatherproof housinys, remote-control units.

C'amburn. Inc.

32-40 37th St., W oodside 77, N. Y. Super-X conicals and biconicals. -, 8-, and 10 -element Yagis, window antennas, masts, indoor dipoles, Zoom-mp antennas, traight-line and V antennas. Installation accessories. Eighteen models.
Cass Machine Co.
691 Antoinette St.
Detroit 2, Michigan
Conical, single, stackerl and double-stacked antennas; hi-low, in-line, and indoor antennas. Less mast or kit form, Side mounts, roof mounts, hardware. Thirty antenna models,

Channel Master Corp.

Ellenville, N. Y
V.h.f. antennas includink Yagis, broad-band Yagis, fan antennas, high-low combinations, and 10 element Yagis. U.h.f. triangular dipoles with or without screen. stacked V's, comer reflectors and Yagis. Combination u.h.f.v.h.f. antennas. Telescoping masts, triangular towers, and other accessories.

Copperweld Steel Co.

Gilassport, Pa.
Ground rods, stranded guy wire, rrounding wire, and single conductor antenna wire.

Davis Electronics

4313 W. Magnolia Blvd.
Burbank, Calif.
Special type all-channel v.h.f. "Super-Vision" antenna. One model. U.h.f antenna.

Easy-Up Tower Co.

427 Romayne Ave.

Racine, Wis.
TV towers, three models ; roof mounts, twelve models ; antenna accessories.

Energy Farm Equipment Co.

Monticello, Lowa

Hydraulic sectional TV mast, compressed height 22 feet, extended height about 60 feet.

The Finney Co.

4612 St. Clair Ave., Cleveland, Ohio U.h.f. and v.h.f. ultra-high-gain fringe-area TV antennas. Communication and special purpose antennas.

Fretco, Inc.

1041 Forbes St
Pittsburgh 19, Pa.
Yagis, conicals, v.h.f., u.h.f., broad-band, collinear arrays, "Fretarays," corner reflectors, dipoles, special arrays, slot antennas. Sixty models.

Giadgets, Inc.

3629 N. Dixie Dr.
Dayton, Ohio
"Circlatron" indoor circular adjustable dipole.
Gee-Lar Mfg. Co.
1330 10th Ave
Rock ford, 111.
Single-, 2-, and 4-bay all-channel conical antennas. Three models.

General Cement Mfg. Co.
919 Taylor Ave.
Rockford, III.
Single-, 2-, and 4-bay all-channel conical antennas. U.h.f. double-
X and special bow-tie conical.

(ileam Mig. Co.

740 N. Leavitt st
('hicago 13, III.
Model-boat type indoor antenna. One model.

Gonset Co.

801 S. Main St.
Burbank, Calif
U.h.f. and v.h.f. fringe-area high-gain arrays. 375 -ohm and $450-\mathrm{ohm}$ open-wire line.

Don Good, Inc.

1014 Fair Oaks Ave.
South Pasadena, Calif.
U.h.f. and v.h.f. lead-in, openline and sheathed against unfavorable atmospheric conditions. Two models (two colors each model). Interference trans and filters.
Hamilton Electronics Corporation

2726 Pratt Avenue

Chicago 45, Ill.
lmpedance-matching, isolating couplers for operating two to six TV receivers from a common antenna. Three models.

Haydon Iroducts Corp.

1801 8th Ave.
Brooklyn 15, N. Y.
Stationary and adjustable chimney, wall, roof, eave, and pipe mounts; yalvanized and stainmounts, (alvanin. mast-stand ess-steel and screw-eye insulators; off and screw-eye insulators: hardware. Forty model.
Hi-Lo TV Antenna Corp.
3540 N. Ravenswood Ave.
Chicago 13, Ill.
Indoor, outdoor spiral antennas, v.h.f., high-low bands inductively coupled Two models with stand coupled. Two models, with stand
or window mount.

Hi-Par Products Co.

347 Lunenburg St.
Fitchburg, Mass.
Dipole-reflector antennas, single and stacked: conicals; double diamonds ; 4-, 5-, and 8-element Yagis; in-line antennas; Twen-ty-four models.

Holub Industries. Inc.

413 DeKalb Avenue
Sycamore, III Installation tools and hardware: masonry drills, lead-in clamps, screw anchors, wire stripners.

Hy-Lite Antennae. Inc.

Hy-Lite Antenn
242 E. 137th St.
242 E. ${ }^{137 t h}$ St. N . York 51, Wide-band-V, conical-V and conical antennas; low- and highband folded and straight dipoles single-channel 4-. 5-. 8-, and lo-element Yagis. Twenty-two models.

I E Mfg.

325 N. Hoyne Ave
Chicago, Ill.
Wide- and narrow-band antennas, u.h.f. antennas, straigh conicals, fringe-area clover-les? antennas.
Imperial Radar \& Wire Corp.
4342 Bronx Blyd.
Bronx 66, New York
Open-line lead-in wire, openwire matching transformers, feed-through insulators; antenna and mast accessories.

Insuline Corp. of America
3603 35th Ave.
Long Island C'ity, N. Y.
Yagi, stacked-Yagi, biconical, stacked-biconical, conical. stacked-conical, folded-dipole, stacked-folded-dipole, simple-dipole, stacked-simple-dipole, flex-ible-indoor, indoor-dipole, and window antennas. Masts, acces sories, kits and preassembled units. Sixty-five mordels.
Javex
P. O. Box 646, Redlands, Calif. Custon-molded wall-plate antenna outlets in single-, double-, triple-, switching and dualcoupler types for flush mounting: sntenna couplings, con nectors, polarized plugs and sockets, combination plugs, sockets, terminals and junc tions feed-throurhs and an tenna weatherheads.

Jerrold Electronics Corp.

26th and Dickinson Sts.
Philadelphia 46, Pa.
Master antenna systems for apartment houses, dealers, and communities ; single-channel and wide-band amplifiers ; distribution amplifiers; solderless co-axial-line connectors; antennaand line-matching transformers: all TV distribution-system accessories.
JFI) Mfg. Corp.
6101 16th Ave.
Brooklyn 2̄̄, N. Y.
"Jet 283"' u.h.f.-v.h.f. all-channel conical, bow ties with straight reflectors, corner reflectors, and 6-element Yagis. ultrs-V beams, rhombics, double and stacked V's. All-aluminum and part-aluminum conicals. single-stacked and 4-bay. Alland part-aluminum Yagis, sin-gle-channel, dual-channel and broad-band, single-stacked and 4-bay (in 5-. 10 -element wide spaced Kaline models). 151 an tenna models. Antenna kits jumper bars, aluminum and stee telescoping masts, lock-joint and fitted-joint masts. Lightning arresters, single-channel boosters, two- and four-set couplers, pre amplifying couplers, three- and four-way antenna switches. Mast mounts. Installation accessories. Wave trans. "NUT" universel Standoffs Over 600 TV products.
Jontz Mfg. Co.
1101 E. McKinley
Mishawaka, Ind.
Towers masts, and roof mounts. Kay-Townes Antenna Co.

Box 586

Rome, Ga
Broadside arrays, end-fire conicals, double-reflector conicals, V's, and special types ; five models. Masts, two types-24-foot and 34 -foot. Chimney mounts,
roof mounts, installation acces-

eries

enwood Eng. Co., Inc

65 Colfax Ave.

Kenilworth, N. J mounts. Antenna accessories and hardware.
LaPointe Plascomold Corp
155 W. Main St.

Rockville, Conn.

Q-Tee, broad-band, v.h.f. (three
models-single, double, (uuad) heavy-duty Q-Tee (three mod els-single, double, quad) ; Ultr Q-Tee, all v.h.f.-u.h.f. channels (2-83), (three models-single double, quad). Ultra Q-Tce Sub urban, broad-band v.h.f. fringe area u.h.f. (three models-single, double, quad)
V.h.f. antennas: singlechannel 4-. 5-, 12 element Yagis; broadband collinear arrays; dipole-and-reflector models, conicals Eighteen models. U.h.f anten nas: single-channel, 8 -and 12 element Yagis; collinear, broad band arrays; side-by-side-stack collinear broad-band arrays broad-band primary-area V an tenna and reffectors

Louis Kros.

343 E. 16 th St
Los Angeles 23, Calif.
Conical, folded-dipole, Yagi, dou-ble-V, and all-channel u.h.f. and v.h.f. antennas. Masts and antenna kits. Sixty-five models.

Mechanical Steel Tubing Corp.

1801 8th Ave
Brooklyn 15, N. Y
Dualcote and Alumacote steel TV masts, 5 - and 10 -foot sections, 15-, 18-, and 20-gauge. Twenty-four models.

Mosley Electronies

125 Lackland Rd.

Overland 14, Mo.
Weatherproof lead-in entrances ; lead-in flush sockets; TV-antenna switches; 2-set TV couplers; open-wire accessories; $300-\mathrm{ohm}$ transmission line plugs, sockets, connectcrs, and splicers: rotator-cable connectors.

Neal Electronics Co.

505 Seminole

Huntsville, Alabama

Five- and 10 -element extra-highgain Yagis; all-channel Yagi. U.h.f. Yagim, conicals, V's, and quare-corner antennas now in process.
Thio Aerial Co.
4553 Lewis Ave
Conical antenna (triple fronthorizontal reflector bars) and stacked arrays. No distribution mutside Michigan and Ohio.
Peerless Products Industries
812 N. Pulaski Road
Chicago 51, Ill.
Indoor adjustable dipoles. Three models.
Penn Boiler Barner Mfg. Corp.
Fruitville Road
Lancaster, Pa.
Sectional towers, 10 -foot sec tions, guy supported, to 100 feet gnd more; telescopic towers (with detachable hoist), 3 sec tions, guy supported, with maximum height of 29 feet plus pole height. Two models.

Philson Mfe. Co., Inc.

60-66 Sackett St.

Brooklyn 31, N. Y
Straight and folded dipoles, coni cals, Yagis, double-V's, in-line antennas, and mounting brack. ets. Six different antenna types.
Plymouth Electronics Corp.

50 Kingsbury St.

Worcester 10, Mass
Roof, wall, und chimney mounts ; guy wire; channel-transfer switches; couplers; interference filters. Fourteen models.

Kadelco Mfg. Co.

7580 Garfield Blvd.
Cleveland 25, Ohio
"Bar-X" all-channel, v.h.f. antennas, six models; hi-low allchannel, v.h.f. antennas, six models; in-line, all-channel, v.h.f. antennas, three models: all-channel u.h.f., one model;
indoor antenna, one model ; sin-yle-channel Yagis ; masts, wall and chimney mounts, ground rods, lightning arresters, other accessories.

he radiart Corp

3455 Vega Ave., Cleveland 13, Ohio lsoad-band and cut-to-channel antennas in all popular types. Thirty-eight models for v.h.f. U.h.f. models to be released soon. Indoor antennas, stacking kits, chimney mounts, lightning arresters.
Radio Corporation of America
415 S. 5th Street, Harrison, N. J.
Twelve-channel TV antennas, folded dipoles with reflectors, V attachments, reversible-beam arrays. Arresters, mounting brackets, guy rings, other accessories.
Radio Merchandise Sales, Inc.
2016 Bronxdale Ave.
Bronx, N. Y.
Five-, 8-, and 10 -element arrays, conicals (quick-rig and preassembled), end-fire-V arrays assembled), end-fire-V arrays
and conical V 's; corner arrays, and conical V 's; corner arrays,
folded hi-low, straight hi-low, folded hi-low, straight hi-low,
for v.h.f. and u.h.f.; window antennas, indoor antennas, masts, kits. Antenna switches, set couplers, chimney mounts, and all accessory hardware Over twenty-six antenna models.
The Radion Corp.
1130 W. Wisconsin Ave.
Chicago, III.
Porcelain and phenolic lightning arresters; indoor TV antennas, V-type straight dipoles for v.h.f. and u.h.f.; printed circuit antennas for v.h.f. and u.h.f.; conical and folded dipole outdoor antennas; masts, mounts, and related accessories.

Ramsey Radio \& Television Co

Box 297. Ramsey, III.
Welded tubular-steel towers for roof or ground mounting, in 10 . foot sections, five models; telescoping steel masts, two models.

Ray Co.

441 Summit St., Toledo, Ohio Four-way, motorless, nondirectional ; diamond stacked dipole array. Six models.

Kohn Mfg. Co.

2108-10 Main St., Peoria 5, Ill. Self-supporting steel towers, foldover towers and kits, drivein tower bases, tower accessories. Six models.

Walter L. Schott Co.

3225 Exposition Place

Los Angeles 18, Calif
Directional, conical, and doubleV wide-band arrays in various models: antenna kits; u.h.f. broad-band, corner-reflector, fan and double-V antennas. Fifteen models.
S/C Laboratories, Inc
37 George St., Newark 5, N. J.
Six- and 8-element standard conicals; 6- and 8-element deluxe conicals; folded v.h.f. highband adapter; dual=V.

Snyder Mfg. Co.

22nd and Ontario Sts
Philadelphia 40, Pa.
"Directronic" antennas, outdoor and indoor, for v.h.f. and u.h.f.; Yagis, biconicals; fringe-area high-xain "Directronics"; u.h.f corner-reflector, Yagi, and bowtie types; end-fire V's; kits; preassembled units; 300 -ohm flat and Tri-A transmission lines masts ; antenna-mounting acces sories. Thirty models.

South River Metal Products Co., Inc

 377-379 TurnpikeSouth River, N. J.
Mounting brackets, chimney mounts, wall brackets, snap-in
mounts, vent-pipe mounts, ad justable wall brackets, peak and flat-roof mounts, eave mounts Guy rings and clamps, banding. banding replacement kits, ground rods, screw-type insula tors, standoffs, mast tubing.

Spirling Products Co., Inc.

62 Grand St.. New York 13, N. Y. Indoor antennas. Four models.
Tabet ilfg. Co., Inc.
254 W. Tazewell St.
Norfolk 10, Va
Sectional aluminum towers
Three models (Economy, 24 feet
Standard, 30 feet: Reinforced,
90 feet maximum height). Tower sections and equipment.
Technical Appliance Corp.
1 Taco St.
Sherburne, N. Y
Broad-band, all-channel anten. nas, conical and high-low types for v.h.f.; u.h.f.-v.h.f. fan and reflector types; twin-driven 5 element and 10 -element Yagis ; indoor, simple-dipole and foldeddipole antennas. Seventy-three models. Accessories, mast mounts, lightning arresters, antenna amplifiers. Master anten-na-distribution systems.
Tel-A-Ray Enterprises, Inc.
Box 332, Henderson, Ky.
U.h.f.-v.h.f. 3-, 5-, and 8-element Yagis. Broad-band butterfly antennas, window, attic, and 1 -, 2-, and 4-bay arrays, Broad-band u.h.f. antennas. Fifty-six models. Steel towers.
Television Laboratories, Inc.
5045 W. Lake St., Chicago 44, III. Printed-circuit antennas, builtin u.h.f. and v.h.f. antennas, un-der-rug antennas. Eleven models.
Television Radio Electronics
Route No. 1, Box 291
Merced, Calif
V.h.f. 10-element in-line Yagi u.h.f. 5-element Yagi with screen or reflector: corner-reflector u.h.f. bow-tie antennas; 5 -element cut-to-channel v.h.f. antennas.
Telrex, Inc.
Asbury Park, N. J.
V.h.f. conical-V-beams, Yagis, window antennas, indoor "Hat Wings" ; n.h.f. conical-V-beams duplex Yagis, double-V-beams, duplex Yagis, double-V-beams, corner reflectors; masts
cessories. Sixty models.

Tempo TV Products

2450 Ramona Blvd.
Los Angeles 3:, Calif.
Fourteen sizes of steel telescopic
masts, from 20 to 80 feet.

Tennalab

Quincy, III.
V.h.f. multichannel Yagis; v.h.f. and u.h.f. single-channel Yagis; V.h.f. all-channel array. Fortynine models.
Tenna-Trailer Co
321 N. Plum St., Pontiac, III. Portable two-wheeled unit with telesconing 50 -foot mast for demonstrating TV in fringe areas. Lightweight 50 -foot mast for permanent installations. Three models.
Thomas Mold \& Die Co
Box 126, Wooster. Ohio
Hydraulic-telescoping, 40-, 60-, 80 , and 100 -foot steel or aluminum masts. Masts to 200 feet and mobile units to specifications.

Tricraft Products Co.
 Ave

Chicago 22, III.
Loaded dipoles, hi-low folded dipole and reflector, single and stacked conical types, cut-tochannel Yagi, all-wave Yagi, electrically loaded and covered spiral indour types, window an-
tennas. u.h.f. antennas, masts:
kits and preassembled units Twenty-nine models.

Trio Mfg. Co

Griggsville, Ill
Wide-band high-gain Zig-Zag an-
tennas for all v.h.f. channels. Eight models.
TV Development Corp.
2024 McDonald Ave.
Brooklyn 23, N. Y.
All-band conicals, V's, folded and straight dipoles with reflectors, indoor antennas, and ntasts. Six models.
T-V Products Co.

152 Sandford St.

Brooklyn 5. N. Y
Wide- and narrow-band arrays 5 - and 10 -element Yagis, single and twin-driven-, preassembledand plug-in type conicals, hi-low folded and straight dipoles, in line antennas, V-type end-fir arrays, u.h.f. broad-band and single-channel types. Chimney wall, and peak roof mounts mast-joiners, antenna hardware. 132 models.

Unimac Division

Marvin Radio-Television
8906 Buckeye Rd.
Cleveland, Ohio
Chimney mounts. 6*, 12- and 18 . inch wall mounts.

Universai Products

$\$ 1100$ Taylor Ave., Racine, Wis. Conical antenna, one model : roof mounts, four models; steel towers, three models; masts, four models.
Video Electronic Laboratory
304 Ridgers Road
Des Moines, Iows
Broad-band antennas; 90° cor ner reflectors, and V-type dipole and reflectors for v.h.f. band. U.h.f. corner reflectors and horizontally polarized helicals. Ten models.
Walnut Machine Co., Inc.
1525 S. Walnut St.
South Bend 14, Ind.
Aluminum all-channel v.h.f. antenna. One model.
Ward Products Corp.
Div. of the Gabriel Co

1523 E. 45 th St.

Cleveland 3, Ohio

Combination u.h.f.-v.h.f. antennas, folded dipoles, in-lines, conicals, Yagis, in kit form and as preassembled units. Twenty-five models.
Wells \& Winegard
1511 Mt. Pleasant St.
Burlington, lowa
Wide- and narrow-band arrays. combination-channel Yagis, and high-gain all-channel primary-high-gain all-channel primary-
and fringe-area arrays. Six and fr
models.
Western Coil \& Electrical Co
215 State St., Racine, Wis.

TV comes to PORTLAND

Record installation speed

gives "City of Roses" first

commercial u.h.f. station

By VICTOR BARY*

THE FCC's announcement last April of the v.h.f.-u.h.f. allocations plan for new television stations ended the work of various experimental u.h.f. television stations throughout the country.

One of these, RCA-NBC station KC2XAK in Stratford (near Bridgeport), Connecticut (Radio-Electronics, August, 1950), played a major part in speeding up the "thaw" by broadcasting continuously for two years and eight months according to strict commercial standards, and by making its facilities and test data available to the entire TV industry and to the public. During the 32 months of its career, KC2XAK broadcast u.h.f. TV programs 14 hours a day, 5 days a week, and served as the experimental guinea pig for the TV industry.

Aside from its routine program operations this pioneer station furnished answers to vital problems of tube and component performance at u.h.f., circuit stability data, and transmittingantenna design information. It also helped TV-receiver manufacturers design and field-test u.h.f. receivers, antennas, and converters, and aided testequipment manufacturers in designing and testing frequency- and modulationmonitoring equipment for future commercial service. The final sign-off took place on August 23. Bill McAlister and myself, who had started with KC2XAK as the two-man operational staff and had lived with it through its more than two-and-a-half years' existence, were assigned to go along with the station and get it going again in its new home.

Just 26 days later, on September 18 , 1952, the KC2XAK transmitter came on the air again as a television station in Portland, Oregon. Under new call letters, it then became the world's first commercial u.h.f. TV station two days afterward when it signed on the air officially as KPTV, channel 27, ending the television famine for a city of over half a million people. In transmitting a test pattern exactly 10 days after the first piece of electronic equipment was moved into the still-uncompleted transmitter building, KPTV not only surprised the broadcast industry, but

[^6]
'Ihis survey crew checked Klolv's first broadcast. The corner-reflector antenna can be raised 70 feet above the street.
set off the frantic rush of receiver sales and installations which will keep Portland's radio and TV technicians redeyed and sleepless for many a month.

Operation on TV channel 27,548-554 mc , instead of the original $529-535 \mathrm{mc}$ meant that a new antenna and filterplexer had to be-built, the transmitter retuned, and a new control crystal ground. In a brief 26 days we tagged,
dismantled, and packed the complete transmitter and tower, anxiously followed their progress on the 3,000 -mile haul from the East to the West Coast, and reassembled it at its new location.

After the transmitter was retuned to the new frequency at Bridgeport, it was broken down into paired frames and racks; heavy or fragile components were removed, packed, and crated in-

dividually, and loaded immediately aboard a transcontinental motor van. The tower and antenna were disassem bled, marked, and loaded aboard a fastfreight railroad car-the tower destined for Portland, and the antenna to be returned to RCA in Camden, New Jersey, as it was unsuitable for operation at the higher frequency. The transmitter reached Portland September 8, and the tower and new antenna arrived three days later.

We went to work immediately, keeping the same floor plan and general layout used in Bridgeport. In this way, we were able to use the original interconnecting cables, so that work proceeded rapidly. An Indian-head monoscupe and synchronization generator were added to the original video equipment, along with additional amplifiers for the temporary studio. When the $60-\mathrm{kva}$ service line was finally brought in five days later we were able to fire up and deliver full power to the dummy load the same day.

Meanwhile, the tower had been erected, the $31 / 8$-inch transmission line installed, and the new transmitting antenua checkefl. KPTV's owner was kept informed of our daily progress, and made immediate application for temporary authorization to broadcast. Work went on without interruption and in the next five days, a film camera chain was set up ard checked, and a sound-isolated studio was constructed-complete with video- and audio-monitoring equipment and program lines. Construction work on the building itself was still going on, and we were forced to compete for work space with bricklayers, carpenters, plembers, and electricians. The complex co-ordinated effort-including authorization from the FCC, and the Portland City Commission, and planning, manufacturing, and construction by RCA, NBC, and the Empire Cail Com-pany-culminated in the station's official signton on September 20. KPTV's ground-breaking ceremony in August had set off a flood of local rumors and speculation as to the opening day. Daily construction pregress was reported in print and picture.

Needless to say, KPTV's early arrival JANUARY, 1953

Right-Victor Bary checks Kl'TV's "filterplexer," which feeds sound and video signals to a single transmitting antenna. Above-K PTV's chief station engineer Russ Olsen (seated)
 and Bill McAlister of NBC.
surprised even the most optimistic prognosticator: Portland was able to see its first televised World Series.

A rapid, but extensive reception survey was undertaken by RCA as soon as the channel 27 test pattern hit the air, and the coverage proved immensely gratifying, with good clear pictures being received 25 to 30 miles away. Usable-picture reports also came from Salem (45 miles away) and other localities, with one report of good reception (the furthermost one at that time) at 90 miles distance.
Dominating the city from a height of over 1,000 feet, the 17 -kilowatt effective radiated power developed from the basic 1-kilowatt transmitter output by the RCA TFU-24 antenna, is beamed downward over a service area which is topographically a virtual plain, an ideal situation for good u.h.f. reception. Terrain and foliage-shadow problems, though minimized by the exceptional transmitting height, were nevertheless present and accounted for poor pictures in some areas. A rough estimate based on this early survey showed 10% of the locations checked were getting poor signals or none at all. Many of these locations, behind high hills, tall buildings, or shadowed by high trees, were able later to get acceptable pictures with highergain antennas, with elevated antennas, or by reorienting so that they worked from a strong reflection; and by using more sensitive u.h.f. converters. From the installer's viewpoint, each of these cases was a "special," as the time required to search for a signal, and substitute higher-efficiency components meant losing valuable time at a period when the technician could least afford it.

Performance reports on various makes of converters and antennas showed that good results were ontained with both built-in (turret-strip) and external converters; with dipole anten-
nas (single and stacked "bow-ties") ; as well as with Yagis, corner reflectors, parabolas, and vees. Performance of dual-purpose antennas could not be evaluated fairly as no v.h.f. signal was available but the dual's performance on u.h.f. did not always match the ones designed strictly for u.h.f. reception. Three days after KPTV's test signals appeared on the air, not a turnbuckle, stand-off insulator, spool of lead-in or guy wire or other equipment needed for antenna installation could be bought from local suppliers. Receivers and converters were arriving hourly by truck, railroad, and air freight. These were rushed immediately to hastily-set-up test points in warehouses, where they were checked over by crews working round-the-clock. The larger service organizations imported experienced crew chiefs to train and instruct local teams in the techniques of handling u.h.f. TV, and to assist independent service technicians in getting started.
Two days after the first test pattern transmission, KPTV signed on officially, with a program originating in the temporary studio in the cransmitter building. The opening program included an address by Herbert Mayer, head of KPTV and the Empire Coil Co.; a documentary film on the history of u.h.f. TV; the NBC network's All-Star Review, and the Show of Shows. Later, the 1952 World Series played to standing-roomonly audiences in automobile showrooms, furniture stores, and appliance stores throughout town.
After a hectic three weeks I left KC2XAK-KPTV and Portland to return East. Bill McAlister stayed on to help put on the finishing touches, wrap up loose ends, and train a technical staff, as well as to help plan and construct KPTV's proposed studios in the heart of the city.

Television had come to Portland at last.

KINESCOPE REPLACEMENT CHART

By E. W. SCOTT

This chart simplifies comparisons of the principal characteristics of most television picture tubes

fig. 4

Tube type

10 oinch glass round, 50 degrees

121/2-inch glass mand, 40 degreesr elcctrostatic focus

```
12AP4
```

12 UP 4
$146 P 4$
$14 E P 4$
$14 C P 4$
$14 D P 4$
\qquad
16
16
16

16	$13 / 16$
16	$13 / 16$
$163 / 4$	
16	$3 / 4$

Double
Single
Cavity Cavity
Cavity
Cavity
14-inch glass rectangular, 70 degrees, h.v. electrostatic focus

The modern TV service technician has found that many of the big-screen picture tubes of a few years ago are either practically extinct or-like the 20 AP 4 -now cost several times as much as newer tube types of equal size or larger. Converting the set to use one of the new tube types is often the most practical and economical solution to the problem.
At this point, the technician has the problem of selecting the most suitable replacement tube. The logical solution is to select a tube which can be installed with the fewest possible changes in the circuit and the receiver cabinet. This tabulation of magnetic-deflection tubes has been prepared to help the technician select the logical tube for any conversion or replacement.

Tubes are listed accordirg to size, shape, diagonal deflection angle, and method of focusing. Types with angles of 50 to 60 degrees can usually be interchanged without modifying the receiver circuits. The flyback transformer and yoke should be replaced when the replacement tube is a round type with a 66- to 70 -degree deflection angle or a rectangular type having a 70 -degree diagonal deflection angle.

Sweep and operating voltages to give adequate picture size and brightness with the new tube can be obtained by selecting suitable horizontal-output and deflection components, and applying conversion techniques described in the many conversion articles which have been published in Radio-Electronics. A complete tabulation of yokes, hori-zontal-output and flyback transformers, and other conversion components is included on page 66 of this issue.
Note: Recently-made RCA 10BP4, 12LP4, and 16AP4 tubes have a new type gun. Although they operate satisfactorily with double-field beam-benders used with earlier types they are designed to work with single field beam-bender. If trouble develops, substitute a singlefield PM type ion-trap magnet designed for the 16 GP 4 .

FOOTNOTES

a-Tube has na exteriar canductive caating. Add $500-\mu \mu \mathrm{f}$, high-valtage filter capacitor when using tube as replacement far type having exterior caating. When this type is replaced by tube having autsile coating, ground the coating to the chassis.
refer to diagrams of sets using 2 grid. Far circuitry. types. Alter receiver circuits where necessary to suit ube being used for replacement necessary to suit c-This tube has 2.5 -volt 2 l-omp.
have 6 . 3 -volt 600 2.5-volt, 2.1 -amp heater: all others d-Faceplate curvature has 20 .
in this group have 40 -inch radius 20 -inch radius; all others - Requires JETEC.RTMA type 106
in this group use type 109 focus coil 106 focus coil; others
f-Faceplate curvature hos 56 -inch radius; others in this group have 27 -inch radius.
g-Deflection angle is 50 degrees. The deflection ongle for other tubes in this group is 60 degrees. h-Rodius of faceplate curvature is 56 inches. i-Rodius of faceplate curvature is 40 inches: all others in this group hove 27 -inch radius
ing5: 17BP4-A and B hove outside conductive caot ings: 17BP4 has not.
ond covity to 15DP4 except it hos gray faceplote m-Cylindrical foce contact.
n-Tube with suffix " A " has external conductive coating.
p-Identical sutix has cyindrical foce
is recessed-cavity type.
r-Tubehas low-voltage etectrostatic focus electrode s-Tube has high-voltoge electro trode. END

television Components

THE SUCCESS of any TV conversion or repair job in terms of customer satisfaction depends on high-quality materials and highgrade workmanship. From the technician's viewpoint, there's also the question of profit. The technici has the ability and equipment to do the job profitably, so he needs only to supply high-quality, long-lasting components to win and hold a satisfied customer. This tabulation will enable him to select the desired components for any job quickly and accurately.

Before beginning any service job that requires the replacement of the horizontal output transformer or deflection yoke, it is advisable-whenever possible-to check the tubes and all operating voltages to insure that the balance of the set is working with maximum efficiency. Do not operate a television receiver with the deflection yoke disconnected or the plate cap removed from the horizontal output tube. The first is likely to cause damage to the focus control potentiometer and the latter will quickly damage the output tube.

After installing the now components, carefully readjust the horizontal frequency and drive controls and the setting of the ion trap in accord with the set manufacturers' service instructions. Failure to do this may result in abnormal or subnormal sweep, high and boosted B plus voltages, and a damaged picture tube.

When yoke and output transformer are to be replaced, manufacturers' matched sets are desirable whenever possible. When using unmatched units, try connecting the width coil and deflection yoke across the various taps on the secondary of the transformer to determine which gives the best performance.

Corona and arc-over often occur after a new high-voltage transformer has been installed. Higher operating voltages, changes in lead dress, grimeencrusted insulation materials, and poor placement of parts cften combine to cause these troubles.
Corona which occurs from a highvcitage point close to the chassis, highvoltage cage, or other grounded body will often cause a shiny spot to appear on the grounded body directl:" opposite th.e spot where corona occurs. A pitted or burned spot will be seen at the point of an arc. These troubles can be eliminated by rounding off all sharp edges and by increasing separation between ground and the high-voltage component. One quick method of eliminating these troubles is to coat the highvoltage point with anti-coron. dope or lacquer and use a large ball-peen hammer to make a concave dimple in the cage cover directly opposite the point where the corona or arc occurred.

LINEARITY COLLS

Mr. and Type No.	RCA-G-E Equiv.	Inductance (mh)
DU MONT LIA1		
G-E RLD-016		
MERIT MWC-1		$0.3-27$
MERIT MWC-2		$0.1-4.0$
MERIT MWC-3		$20-60$
RAM 201R3		$15.0-20.0$
RAM 201R522		$0.55-2.3$
RAM 201R10		$3.5-29.5$

Mif. and Type No.	RCA-G-E Equiv.	Inductance (mh)
RCA 201R3		$5.5-20.0$
RCA 201R5		$0.55-2.3$
RCA 207R1		$1.3-4.3$
RCA 209R1		$1.3-4.1$
RCA 213R1		$1.5-8.3$
STAN S-958	201R3	
STAN S-980	77J4	
TECH 1R3	201R3	
TECH 1R522	201R5	
TECH 9R1	209R1	

FOR CONVERSION OR REPAIR

HORIZONTAL OUTPUT AND H.V. TRANSFORMERS (continued)

Mir. and Type No.	Mar. ky	Det. Angle (deg.)	Core	Typical Oatput Tuber	H.V. Rect.	Mir. ${ }^{\text {s }}$ Matching Yoke	Equiv. IG.E-RCA Transformer
RAM XO6528 ${ }^{21}$ RAM X066 ${ }^{3}$ RAM X06828 RAM X069 ${ }^{28}$ RAM X070 RAM X071 RAM X072	$\begin{gathered} 14-15 \\ 14 \\ 11-13.5 \\ 16-17.5 \\ 13 \\ 15 \\ 15 \end{gathered}$	$\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 70 \\ & 70 \\ & 70 \\ & 70 \end{aligned}$	Air Ferrite Ferrite Ferrite	$\begin{aligned} & \text { 6BQ6.GT } \\ & \text { Same as XO32 } \\ & \text { 6BG6.G } \\ & \text { 6AV5.GT } \\ & \text { Same as Xo32 } \\ & \text { 6CD6. } \\ & \text { 6BQ6.GT } \end{aligned}$			
RCA 211 TI	9	50-57	Pow. iron	6BG6-G	183-GT	201 D1?	
RCA 211 T3 RCA 223TI RCA 224Ti	$\begin{aligned} & 8.75 \\ & 14 \\ & 14 \end{aligned}$	$\begin{gathered} 50-57 \\ 70 \\ 66-70 \end{gathered}$	Pow, inon Ferite Ferrite	68G66-G 6AU5-GT 6BQ6-GT	183-GT 183 CT $183-6 T$	201D1 209D1 209D1	
RCA 225 TI	16	66-70	Ferrite	6B06-GT	183-GT	211 Dz 209 DI	
RCA 230 Tl	18	66-70	Ferrite	${ }_{6}^{\text {6ACDG6-G }}$	183-GT	211D1	
RCA 231T12 ${ }^{32}$	15	50-70	Ferrito	All types	183-GT	${ }_{\text {Ali }} 21102$	
RCA 23ET13 28 a2	16	50-70	Ferrite	All types	$\begin{aligned} & \text { 1V2, } 1 \times 2-A \\ & 1 \times 2,-A,{ }_{2} \\ & 1 B 3-G T \end{aligned}$		
ROOT SRJI ROOT SR-2533	14 21	70 90	Ferrite	6BG6-G 6BQ6-GT 6CD6-G (2) 6BQ6-GT	$\begin{aligned} & \text { 183-GT } \\ & 1 \times 2 \end{aligned}$ (2) 183-GT		77J1
STAN S-948 STAN S-968 STAN S-978 STAN S-988 STAN S-999	$\begin{gathered} 9 \\ 12 \\ 13.5 \\ 14.3 \\ 14.5 \end{gathered}$	$50-57$ $50-57$ $50-57$ $50-57$ 70	Pow. iren Pow. iren Pow. iron Pow. iron Ferrite	6BG6-G 6BG6-G 6B66.C 6B66-G 6BQ6-GT	$\begin{aligned} & \text { 183-GT } \\ & 183 .-\mathrm{GT} \\ & 183-G T \\ & 12183-G T \\ & 1 \times 2 \end{aligned}$		$\begin{aligned} & 211 \mathrm{T1} \\ & 21 \mathrm{~T} 3 \\ & 211 \mathrm{~T} 5 \\ & 211 \mathrm{~T} 5 \\ & 77 \mathrm{Ji} \end{aligned}$
STAND A-8119 STAND A-8127 STAND A-8128 STAND A-8129 STAND Ar8130 STAND A-813117 STAND A-8133	$\begin{gathered} 13 \\ 10 \\ 11 \\ 13 \\ 14 \\ 13 \\ 12.5-15 \end{gathered}$	53 53 53 70 70 70 70	Pow. iron Pow. iran Pow. iron Ferrite Ferrite Air Ferrite		(2) 183-GT 183-GT 183 CT 183-GT 183-6T	$\begin{aligned} & \text { DY-1 } \\ & \text { DY-1 } \\ & \text { DY-1 } \\ & \text { DY-7 } \\ & \text { DY-7 } \end{aligned}$	$\begin{aligned} & 21115 \\ & 211 \mathrm{~T} 3 \end{aligned}$
$\begin{aligned} & \text { TECH 15T1 } \\ & \text { TECH } 11 \mathrm{~T} 5 \\ & \text { TECH 23T1 } \\ & \text { TECH } 7 \mathrm{JI} \end{aligned}$	10 13.5 14 15	$\begin{aligned} & 53 \\ & 60 \\ & 70 \\ & 70 \end{aligned}$	Ferrite Ferrite Ferrite	6BG6-G 6AU5-GT Most types	$\begin{aligned} & 1 \mathrm{B3}-\mathrm{GT} \\ & 1 \mathrm{B3}-\mathrm{GT} \\ & 1 \times 2-\mathrm{A} \end{aligned}$		$\begin{aligned} & 215 \mathrm{TI} \\ & 211 \mathrm{~T} 5 \\ & 223 \mathrm{T1} \\ & \text { 77J1 } \end{aligned}$
$\begin{aligned} & \text { TODD CS21 } \\ & \text { TODD CS24 } \\ & \text { TODD CS24-AGC } \\ & \text { TODD CS2-AGC } \\ & \text { TODD CS } \\ & \text { TODD CS- } 30 \end{aligned}$	$\begin{gathered} 15 \\ 15 \\ 16 \\ 16 \\ 10-14 \\ 23 \end{gathered}$	$\begin{gathered} 50-70 \\ 70 \\ 70 \\ 70 \\ 50-70 \\ 70-90 \end{gathered}$	Ferrite Ferrite Ferrite Ferrite Ferrite Ferrite				
TRIAD D-1	14	70	Ferrite	6BG6-G	1×2-A		77.J1
TRIAD D-2	14	70	Ferrite	$\begin{aligned} & \text { 6BO6.GT } \\ & 68 G 6-G \end{aligned}$	$\begin{aligned} & \text { 1B3-GT } \\ & \text { 1B3-GT } \end{aligned}$		
TRIAD D-11	10	70	Iron	68G6-G		Y-11	
TRIAD D-14	14	70	Fersite	6BG6-G 6BO6.CT	133-GT	Y-12	77.11
TRIAD D-15	14	70	Ferrite	6BG6-G	183-GT	Y-12	
TRIAD D.19\%	16	70	Ferrite	6AV6.GT	183-GT	Y-17	225 Tl
TRIAD DA-20	14	70	Air	6BQ6.GT 6AV6-GT 6BQ6-GT	183-GT	Y. $\begin{aligned} & \mathrm{Y} \\ & \mathrm{Y}-20\end{aligned}$	74951

FOCUS DEVICES

Mir. and Type $\mathbf{N o}_{0}$.	$\begin{aligned} & \text { JETEC } \\ & \text {-RTMA } \\ & \text { Equir. } \end{aligned}$	C-R Tube High Volts (k v)	D.e. Res. (ohms)	Current (ma)
G-E RLF-038			1,400	30
HALL EM700 HALL EM 701	$\begin{aligned} & 106 \\ & 109 \end{aligned}$	to 10 to 16	$\begin{aligned} & 247 \\ & 470 \end{aligned}$	$\begin{array}{r} 75-200 \\ 75-140 \end{array}$
MERIT MF-1 MERIT MF-2 MERIT MF-3 ${ }^{15}$ MERIT MF-4 MERIT MF- 5	106	10 14 14 15 15	247 470 360 1,000 1,500	200 150 150 75 75
QUAM Q: L^{16} QUAM QF2 ${ }^{1 \text {. }}$	$\begin{aligned} & 106 \\ & 109 \end{aligned}$	to 12 abore 12	Permanent Magnet Type,	
RCA 202DI	106	8-12	247	75-200

Mir. and Type No.	$\begin{gathered} \text { JETEC } \\ - \text { RTMA } \\ \text { Equiv. } \end{gathered}$	C-R Tube High Volis (kv)	D.e. Res. (ohms)	Current (man)
RCA 202D2	109	9-14	470	75-140
STAND FC-10 STAND FC-11 STAND FC. 12			247 470 370	200 140 165
TECH 2DI TECH 2D2 TECH 2D1PM ${ }^{16} 20$ TECH 2D2PM ${ }^{11} 2137$	$\begin{aligned} & 106 \\ & 109 \\ & 106 \\ & 10943 \end{aligned}$	10-12	247 470	115 95
TRIAD B. 160 TRIAD B-247 TRIAD B-470 TRIAD B-1000	23 24 25 25		160 247 470 1,000	210 170 125 85

WIDTH COILS

Mfr. and Type No	No. Matching Horiz. Output Transformer	Inductance (mh)
DUMONT W1A1 ${ }^{39}$	HiAl	
G-E RLD-019	RT0-085	
MERIT MWC-1 $1^{14.39}$ MERIT MWC-2 MERIT MWC-3	$\begin{aligned} & \text { HVO-6, }-7 \\ & \text { HVO-8., } \\ & \text { HVO-5, } \\ & \text { HVO-8, }-9 \end{aligned}$	
RAM 201R1 RAM 201 R4 RAM 201R10. RAM 201R1139	X032 XO35 XO45 XO32, X035 X053	$\begin{aligned} & .05-0.25 \\ & 0.17-0.61 \\ & 3.5-29.5 \\ & (\text { Pri.) } \\ & 0.160 .7 \\ & (\text { Sec. } .7 \\ & 3.2-9.0 \end{aligned}$
RCA 201R1 RCA 201 R2 RCA 201 R4 RCA 206R1 RCA 211R1 RCA 212R1		$\begin{array}{\|l\|} \hline .05-0.25 \\ 85-240 \\ 0.17-0.61 \\ 0.47-1.7 \\ 1.65-9.2 \\ 2.9-16.0 \end{array}$
STAN S-957 STAN S-98139 STAN S-984	$\begin{array}{\|l} \hline \text { S-998 } \\ \text { S-999 } \end{array}$.05-0.25
STAND WC-51	All Stancor	4.0-39 A.g.c. $\underset{2.7-7.6}{\substack{\text { winding }}}$
$\begin{aligned} & \text { TECH 1R1 } \\ & \text { TECH 1R4 } \\ & \text { TECH 1R4-AG } 39 \\ & \text { TECH 1R4-J } \\ & \text { TECH 1R4-E } \end{aligned}$	$\begin{aligned} & \text { 11T1, 15T1 } \\ & 11 T 5 \\ & 11 \mathrm{TI}, 11 \mathrm{~T} 5 \\ & \mathrm{TJI} \\ & \mathrm{TJ} 1 \end{aligned}$	

TV-TUBE MASKS

 Type No.	Size Tube (inches)	Color	Material
CRON CK-14	$14^{\prime \prime}$ rect.	Gold	Glass
CRON CK-16	$16^{\prime \prime}$ rect.	Gold	
CRON CK-17	$17^{\prime \prime}$ rect.	Gold	Glass
CRON CK-20	$20^{\prime \prime}$ rect.	Gold	Glas
CRON CK-21	$21^{\prime \prime}$ rect.	Gold	Glass
JFD BR63-14	$14^{\prime \prime}$ rect.		ic
JFD BR63-16	$16^{\prime \prime}$ rect.		stic
JFD BR63-17	$17^{\prime \prime}$ rect.		stic
JFD BR63-19	$19^{\prime \prime}$ rect.		Plastic
JFD BR63-20	$20^{\prime \prime}$ rect.		Plastic
JFD BR63-16R	$16^{\prime \prime}$ round		astic
JFD BR63-19R	$19^{\prime \prime}$ round		Plastic
TELE 712W	$121 / 2^{\prime \prime}$ round	Gold	Lucite
TELE 714R	$14^{\prime \prime}$ rect.	Gold	Lucite
TELE 716R	$16^{\prime \prime}$ rect.	Gold	Lucite
TELE 716W	$16^{\prime \prime}$ round	Gold	Lucite
TELE 717R	$17^{\prime \prime}$ rect.	Gold	Lucite
TELE 719W	19" round	Gold	Lucite
TELE 720R	$20^{\prime \prime}$ rect.	Gold	Lucite
TELE 721R	$21^{\prime \prime}$ rect.	Gold	Lucite
TELE 724W	$24^{\prime \prime}$ round	Green	Lucite
TELE 227R	$27^{\prime \prime}$ rect.	Gree	Lucite

Note: Croname mask and esculcheon assemblies listed above consist of a heavy green-sprayed aluminum mask, $1 / 4$-inch tempered safety glass and a gold-finished escutcheon.

Tele Plastics masks listed above mount from rear of the cabinet. Masks which mount from the front of the cabinet have suffix "S." For example: 720W-S, and 727R-S.

MOUNTING SLEEVES

Mir. and Type No.	Tube Types
TECH PL-4	Long-neck $16^{\prime \prime}$ metal round
TECH PL-4S	Short-neck $16^{\prime \prime}$ metal round
TECH PL-17R	17" metal rectangular
TECH PL-19	$19^{\prime \prime}$ metal round

Note: Set consists of polyethylene sleeve, retainer ring, and rubber band. Insulated for more than 30,000 volts.

Faatnates for TV campanents tables:

1. Has a.g.c. winding which can be left open if no*
2. Tapped secondary ta match vakes fram 8 to 30 mh
and provide up to 15 kv output (16 kv with 232 Tl).
For type 630 circuits.
Damping resistors built-in. R-C network supplied.
3. Camplete with built in R.C netwark.
4. Especially for 19 -inch round and 20 -inch rectan-
gular fubes.
5. Designed far autatransfarmer type flyback transformer.
6. Has facus-coil mounting bracket

Casine yoke.
Equivalent to 201 DI.
Same as 201D1 with different terminal cannections.
Same as 201 D , with malded care.
Equivalent to 20IDI, 203D3 and 201 DI 2
5. Far 10 -or 12 -inch tubes.
16. PM facus magnets witt adiustable centering cantrals.
Any 70 -degree yake.
Equivalent of 209DI, 20601, and Y2A.
Same as 2111 DI except for clamping netwarks
Any valtages suitable far 10. ar 12 -inch tubes.
Any voltages suitable for any 70 -degree tubes.
Tapped linearity cail.
3. Cail and terminal assembly anly. Care pieces ta
be taken fram transformer being replaced.
Admiral part number.
5. Hos separate a.g.c. ar width-cail winding.
6. Has separate a.g.c. winding.

Similar ta XO45, but operates an lawer valtage.
Autotransfarmer.
Used in CBS sets.
31. Used in late Emersan sets.
32. Universal type.

DEFLECTION YOKES

Mir. \& Type No.	Defl. Angle (deg.)	Max. Tube Size (inches)	Induct. Horiz. Winding (mh)	Induct. Vert. Winding (mh)	Core
DUMONT Y2A15	70	Any	10.5	42.0	Ferrite
DUMONT Y2A2	70	Any	10.5	42.0	Ferrite
DUMONT Y2A3 ${ }^{\text {² }}$	70	Any	10.5	42.0	Ferrite
DUMONT Y2A55	70	Any	10.5	42.0	Ferrite
G-E RLD-024 ${ }^{58}$	70	24	15.0	30.0	Ferrite
G-E RLD-025	70	24	15.0	30.0	Ferrite
HALL DF600	53	16	8.3	50.0	Iron
HALL DF601	70	24	8.5	50.0	Ferrite
HALL DF602	70	24	13.5	50.0	Ferrite
HALL DF603	70	24	30.0	3.5	Ferrite
HALL DF604	70	24	30.0	50.0	Ferrite
MERIT MD-12 ${ }^{18}$	53	16 round	8.3	50.0	
MERIT MD-13	53	16 round	30.0	50.0	
MERIT MDF-3018	70	24	30.0	3.0	Ferrite
MERIT MDF-7018	70	24	10.3	45.0 50.0	
MERIT MDF-71	70	24	30.0		
RAM Y701085	70	16	8.3	50.0	Iron wire
RAM Y70F08 ${ }^{5}$	70	17	8.3	50.0	Ferrite
RAM Y70F10 ${ }^{5}$	70	24	10.3	50.0	Ferrite
RAM Y70F14 ${ }^{5}$	70	20	14.0	50.0	Ferrite
RAM Y70F175	70		17.0	50.0	Ferrite
RAM Y70F20 ${ }^{5}$	70		20.0	50.0	Ferrite
RAM Y70F30 ${ }^{5}$	70		30.0	50.0	Ferrite
RAM Y70F30/3 ${ }^{\text {\% }}$	70	24	30.0	3.3	Ferrite
RCA 201D1211	50-57	16	8.3	50.0	Iron wire
RCA 205D111	50-57	12	12.5	50.0	Molded iron
RCA 206D19	66-70	17	10.3	41.5	Ferrite
RCA 207D1 ${ }^{12}$	50-57	16	8.4	55.0	Molded iron
RCA 209D1 ${ }^{9}$	66-70	17	13.3	41.0	Ferrite
RCA 211D19	66-70	21	13.3	41.0	Ferrite
RCA 211D24 ${ }^{32}$	66-70	21	13.3	41.0	Ferrite
STAND DY-110 ${ }^{18}$	53		8.3	50.0	Molded iron
STAND DY-89 ${ }^{3 \times}$	70		8.5	50.0	Ferrite
STAND DY-99 3*	70		13.5	50.0	Ferrite
STAND DY-10938	70		30.0	3.5	Ferrite
TECH 11D1	70	Any $70{ }^{\circ}$	13.3	41.5	Ferrite
TODD CF303	70	24	30.0	3.0	Ferrite
TODD CF850	50-66	16	8.3	50.0	Ferrite
TODD CF1041	70	24	10.0	41.0	Ferrite
TODD CF1050	70	24	10.0	50.0	Ferrite
TODD CF1156	90	30	11.0	56.0	Ferrite
TODD CF1441	70	24	14.0	41.0	Ferrite
TODD CF1450	70	24	14.0	50.0	Ferrite
TODD CF1850	70	24	18.0	500	Ferrite
TODD CF2056	90	30	20.0	56.0	Ferrite
TODD CF3050	70	24	30.0	50.0	Ferrite
TRIAD Y-115	50	12	8.3	50.0	
TRIAD Y-12-9	70	12	8.3	50.0	Ferrite
TRIAD Y-179	70	17	13.5	41.5	Ferrite
TRIAD Y-19 ${ }^{9}$	70	17	23.0	41.5	Ferrite
TRIAD Y-20 ${ }^{9}$	70	24	30.0	3.3	Ferrite

Composite 90 -degree deflectian and high-voltage MERIT-Merit Transformer Carp., $4427 \mathrm{~N} . \mathrm{Clark}$ St. Composite 90 -degree dellecticaga 40, 1
SuplV. Universal trap. May be used as single.field PERF-_Perfectian Electric Ca., 2535 S . Wabash Ave type by removing small ring-shaped magnet.

Chicago 16. 111
QUAM-Quam-Nichols Co., 33 rd Place and Cottage
Grave Ave., Chicago is, 11'. South 8uekhout st
RAM—Ram Electronic Sales Co.. Sauth 8uekhout St.,
RCA-Radia Corp. af America, Tube Dept.. Marrison. N. J. Roat Mfg. Corp. 391 Saw Mill River ROOT-Square Roat Mig. Carp.. 3 , Saw Mill River
STAN-'Stanwyek Winding Ca., Inc., P. O. Box 70. Newburgh. N. Y. Ave. Chicago 18, 11 . TECH-T'ech Master Praducts Ca. 443 Broadway.
New York, N. Y. Ca., Divisian af Willmax Mfg. Ca., 202 Broadway. Braaklyn 11. N. Y.
TODD-Todd-Tran Carp., IS8 Gramatan Ave., Mt.
TODD-Todd-Tran Carp., IS8 Gramatan Ave., Mt. Vernon. N. Y.
IAD-Triad Transfarmer Mig. Ca., 405S Redwaod
Ave., Venice, Calif.

Appearance of screen when cosine yoke is used without the corrector magnets.

MANY queries regarding the features and insta'lation factors of the Standard cascode tuner have been received by the Clinic. When old tuners are replaced with the cascode type a $2-1$ improvement in gain can be realized. Besides this, there is a reduction of 35 tes 50% in noise (snow effect) over a pentode tuner. These advantages are due to the cascode principle, plus use of the 5 BQ 7 , 6 BK 7 , or the newer $6 \mathrm{BZ7}$ tubes. (A detailed discussion of the cascode type front end is given in RadioElectronigs, April, 1952, page 4ti.)

The cascode tuner made by the Standard Coil Products Co. is model TV-2000, 2:300 series and is designed to replace most of the older tuners of conventional size. The Standard tuner is $418 / 32$ inches deep and $31 / 4$ inches wide. Another model, the TV-2032, is electrically identical to the TV-2000 except that both the fine tuning and station selector shafts are extra long so that they may be cut as desired.

The tuner is for use with intercarrier or other receivers where sound take-off is not within the tuner eircuit (at mixer output). For receivers requiring a $21.25-\mathrm{mc}$ sound take-off coil, part No. XM-752 must be used, as shown in Fig. 1. This cail can be mounted on the chassis near the tuner. The capacitor designated C_{r} is not supplied with the tuner or coil and shouli he approximately 2 to $4 \mu \mu f$. If grea. udio output is required, the circu.
swn in Fig. 2 can be used.

The output intermediate frequency is set at $22.3-\mathrm{mc}$ at the factory, but the output is adjustathle between 19 and 26 megacycles to suit the particular i.f. input system of the receiver. A screw set at an angle on top of coil L9 permits changing the output frequency within the range provided. The tuner tracking is preset at the factory and no other adjustments are normally necessary. If required, the oscillator coils can be adjusted individually for the different channels by centering the fine tuning control and using a noninductive screwdriver through the

- Author: Mandl's Telerision Servicing.
hole adjacent to the selector shaft.
In fringe areas best results are obtained by using the maximum plate voltage of 250. An a.g.c. (or manually controlled) bias of -0.8 to -1.1 volts applied to the white a.g.c. lead gives best sensitivity. The hlack lead goes to the 6.3 -volt a.c. source for the heater, while the red lead requires 135 volts plus and the blue 250 volts.

For u.h.f. reception. individual channel strips are available. These can replace any unused channel plug-in coils at the v.h.f. frequencies (channels 2 to 13). A separate u.h.f. strip must be used for every u.h.f. channel desired. Once the oscillator and antenna coil strips have been inserted, the selector shaft is rotated to the u.h.f. channel strip's operating position.

If the fine tuning doesn't produce the best picture at the mid-point of its range, the u.h.f. oscillator slug can be adjusted as previously mentioned for the v.h.f. stations. The u.h.f. strips contain an r.f. preselector, a crystal mixer, and a crystal harmonic generator to convert the ultra-high frequency carrier to the receiver i.f.

Conversion to 21 inches

I would like to convert a 630 type receiver to a 21-inch tube. The receiver alrendy uses a $16 \mathrm{HF}_{4} 4$ tube with a highwoltage doubling system. What wiring changes and tube types do you recommend? W. H., Astoria, L. I.

The 16 HP 4 has a 60 -degree deflection angle. This means the present horizontal output transformer and yoke will not give satisfactory results for the 21 -inch tubes, which have 70 degrees of deflection. Thus, a wide-angle transformer and yoke are necessary.

You could use a 91 EP 4 A , which is a rectangular tube with a cavity highvoltage contact, single-magnet ion trap, and a 70 -degree deflection angle. This is the curved-face tube which minimizes room glare. If a cosine yoke (widefocus) is used, corrector magnets will have to be installed (see a discussion of this in the June, 1952, issue of RadioElectronics, Television Service Clinic). Without the corrector magnets, pin-

Fig. 1-How a sound take-off and trap can be installed in the cascode tuner.

Fig. 2-Circuit for more sound output.
cushioning and nonlinearity will be difficult to correct. The photograph shows a test pattern on a 21 EP 4 A tube without the use of corrector magnets. Despite the best adjustments of linearity contros, the inner circle shows defects in linearity.

A self-focus tube such as the 21 KP 4 A tube can also be used. The existing focus-coil assernbly must be removed from the tube neck because focus is correct when the ion trap is placed at maximum brilliancy. The focus coil can be replaced with a resistor of the same d.c. resistance value.

16GP4 to 17BP4

What electrical changes would be necessury to change a receiver's 16GP4 to a $16 \mathrm{RP}_{4}$ or a 17 BP 4 ? E. C., New Orleans, La.

As the 16GP4 is a 70-degree deflection tube, no changes should be necessary. If a $16 R P 4$ is used, a doublemagnet ion trap is necessary and the high voltage must be applied to the cavity contact receptacle of the glass tube. The 17BP4A has an external conductive coating and the 17BP4 does not. Both tubes use a single-magnet ion trap and a cavity-type high-voltage contact.

END

Manuficturer	Worlel	Band selection	Channel tuning	Tulve(s)	Cireuit	In-tal- lation	()ther leature:
Nliance Manufacturing Co. Lake Park Blvd.. Alliance, Ohio	Tenna scope Al3 - ascamat ic 1313	Sep. amps switching . Automatic wide-hand	Slug Slug	$\begin{aligned} & 2-6 . \mathrm{Ji} \\ & 2-6 \mathrm{j} / \mathrm{f} \\ & 1-\mathrm{BBH} 7 \mathrm{~A} \end{aligned}$	T.p.t.g. Cascode	st. st.	Aito. Auto.
Anchor Radio Corporation 2215 So. St. Louis Ave. (hicago 23, 111.	$\begin{aligned} & \text { ARC-101-75 } \\ & \text { ARC-101-100 } \end{aligned}$	All-channel switching All-chammel switchinı	Sug Shys	$\begin{aligned} & 1-6.1 \mathrm{k} 5 \\ & 2-6.1 \mathrm{k} 5 \end{aligned}$	1.p.t.g. 2-stage	st. st.	Gain control Gain control
Approved Electronic Inst. Corp. 928 Broadway, New York 10, N. Y'.	$\begin{aligned} & \text { ATVH } \\ & \text { A-TH } \\ & \text { lS-VHF } \end{aligned}$	$\begin{aligned} & \text { Chan } 1 \geqslant-13 \\ & \text { Yh.f. } \\ & \text { Vh.f. } \end{aligned}$	Intuned Intuner! I ntumed		$\begin{aligned} & \text { 2-stage } \\ & \text { 2-stage } \\ & \text { 2-stage } \end{aligned}$	$\begin{aligned} & \text { st. } \\ & \text { st. } \\ & \text { si. } \end{aligned}$	A.c. operation A.c. operation
The Astatic Corporation Conneant, Ohio	CT-1	Tumed ckts. switching	shige	$\begin{array}{ll} 1 & \text { lib1327 } \\ 1 & 6.166 \end{array}$	q-stage neut. p p.	st.	Anlo.. by-pass switch. 7 -or 360 -ohm input and onfput
Btonder-Tongue Labs. Inc. 526-536 North Ave. Westfield, N.J.	11.1-2 intensifier 11.1-3 13-T Booster (1-1 Comntercial - Intellsifior (cil-chanme) So. Channel -trip Amplifier	All-ehamoel wide-band Alfethamel wide-hand All-chanted wide-band Sinsle chambel	Intuned Intuned Intuned Factory preset		4-stage carcadert 3 -stage cascaded 4-stage cascarled Q-stape micaded	si. st. st. sit or Ant.	Dilo. et dhmain 13y-piss swith Suto. If dby gaiat control-whth 28 db gain control (on-0 Hf^{2} sw. Pilot lisht Plags into B-T mixer-amplitier
David Bogen (Co., Inc. 29 Ninth Ave. Vew York 14, N. Y'.	$\begin{aligned} & \{1131-1 . \mid B 1-13 \\ & 1113-1 \\ & \{118-1 \end{aligned}$	Sep. amp. switching Wide-hand Wide-Wand	slug	$\begin{aligned} & \because-i .56 \\ & +-6 i . J i \\ & +\quad 6 . J i \end{aligned}$	$\begin{aligned} & \text { T.p.t.g. } \\ & \text { S-t.t-stage } \\ & \text { S-t.t-stage } \end{aligned}$	sit. sit. list.	Auts. Auto. Control at set
Brach Hanufacturing Corp. 200 Ceniral Ave., Newark, N. J.	H1535 01630	sep. amps wide-band s(r). amps wide-band	Alug adjust. I ntuned	$\begin{array}{ll} 1 & 6.165 \\ 1-6 C 136 \\ 3-6.56 \\ 1 & -12.1177 \end{array}$	'I'p.t.g. Cascade p.p.	st. st.	
Electro-Voice, Inc. Buchaman, Mich.	Sth	Sep. amps wide-band	Intuned	1-6.Jti	2-stage broad-band	st.	Aito. 1 -ar s-ant. input
	ank anto	Siep amp wide-hand sep. amps. wide-band	Intuned Intumed	$\begin{aligned} & \pm- \text { iBK } 7 \\ & +-i \mathrm{~J} ; \end{aligned}$	1 -stage wide-band Q-stage hread-band	St. Snt.	Auto. Aifto. 1-ar Q-ant. input
	(3)12	Ep. amps wide-hathed	Intuned	\therefore cil3 7	1-stage wide-hand	Int.	Anto. 1-or Q-ant. innut
1.D.E.A Ine. 700) Pendleton Pike Indian:ıpolis 26, Ind.	licgenes 113-5き0	All-chamat switching	Shy	1-6.) ${ }^{\text {c }}$	r.p.t.y.	st.	Pisr. ontlet for reve.
Industrial Trelevision, Inc. 36^{9} Lexington Ave. Clifton, N. J.	11-10\%.	All-chammel broad-band!	Intuned	±-613178	t-stage	Rear	18 db gain Auto
	15.90 A 13	IIt-chatmel sep. amp-	Intuned	$\begin{aligned} & 1-6 . .16 \% \\ & 1-6(136 \\ & =6 i B 67 \\ & 1-6 \mathrm{~K}+ \end{aligned}$	3-stage cascode	Rear	Anto., sep. gain rontrol for each hand
	17-96.113	Single chanmel	Fixed	1-c.j 6	2-stage	Rear	Iuto.

CHARACTERISTICS

Manufacturer	Model	Fhan！ aclection	Channel tuning	＇Toloe＇s）	（ irchit	Jastal－ lation	Other features
JFD Manulacturing Co． ＋101－23 Sixteently Ave． Brooklyn 4 V．Y．	VB ichan．No．）${ }^{1}$	sungle channel	Factory preset Fuctory preset ［intuned	I－6．） 6	＇Tpleg．	Rear	
	SW（chan．No．）${ }^{\text {a }}$	Sinugle chamal		1－6idi	T．pt．g．	Rear	Bypass switch
	KC 5 ＊	All－channel broad－band		$2-6 \mathrm{~B}^{2} 77$	2－stage	Rear	4 outputs
The La Pointe－Plascomold Corp． Rockville，Conn．	Vee－I）－X Ontboard Vee－I）－X Rocket	Single chanuel Single channel	Slug Adjust． Slug Adjust．	$\begin{aligned} & 1-6.56 \\ & 1-6,4 \end{aligned}$	$\begin{aligned} & \text { T.p.t.g. } \\ & \text { T.p.t.g. } \end{aligned}$	Rear	Auto．
						Art．	Auto．
Mark Simpson Mfg．Co．，Inc． 32－28 49th St．， Long Island City 3，N．Y．	Sky Chief Super Sky Chief	All－channel switching All－channel switching	Slug	2 － ti （ 6	T．p．t．g．	St．	
			Slog	＋ 6 6． $\mathrm{N}=$	T．p．t．g．	St	2 separately tuned sections
National Co．，Inc． 61 Sherman St．，Malden，Mass．	TVB＋2BX	．Il－channel turret	Capacitor	1－6．AKi	T．p．t．g．	St	Separate output tuming control
The Radiart Corporation 3455 Vega Ave．，Cleveland 13，Ohio	TVE－1	All－channel switching	Slug	1－60	T．p．t．g．	st．	
Radio Merchandise Sales，Inc． 2016 Bronxdale Ave． New York 60，N．Y．	SP－6	Ali－channel －watching All－channel switching	Slug Slug	1－6i．\K5	T．p．t．g．	st．	Gain control
	SP－0．J			1－6iJ 0_{0}	T．p．t．g． （neut．）	st．	
Regency－See I．D．E．A．							
Sutton Electric Co． 426 West Short St． Lexington，Ky．	1613	All－channel －witching single chammel	Slug	1－6．5\％	T．p．t．g．	st．	
	5 A			1－1\％．16	T p．t．g．	Ant．	Auto．，sep． power lead All v．h．f．and u．h．f．channels
	SEC	Bonster－ converter	Slug	$\begin{aligned} & 1-6.1 F 4 \\ & 1-6.16 \end{aligned}$	T．p．t．g．	st．	
Tech－Master Products Company， 443－445 Broadway，N．Y．13，N．Y．	＇TVI	All－channel switching	Capscitor	1－1ヵさバ5	Tuncd plate	st．	Kit form
＇Technical Appliance Co． Sherburne，N．Y．	＇Taew 1688	Single chammel	Factory preset	1－4AK5	T．p．t．g．	Ant．	Auto．
The Turner Company Cedar Rapids，Iowa	TV－z	（Bntinnons $54-216 \mathrm{mc}$	Induc－ thiner	$1-12117$	Cascode	St．	Aito．
Videon Electronic Corp． 222 East Obio St． Indianapolis 4，Ind．	$\begin{aligned} & \text { B-192 } \\ & \text { 13-138 } \\ & \text { B-2 } \end{aligned}$	All－channel －witching AII－clammel switching	SlugSlug	1－6．16	＇T．p．t．g．	St．	A．c．outlet for TV
				1－6．56	${ }^{\text {T．p．t．g．}}$	St．	

TERMS AND ABBREVIATIONS
Wide－band－Uperoting aver one or both v．h．f．
bonds without turing．
－Switching－Using seporate omplifiers for each band．
All－chonnel－Refers to v．h．f．channels only：a baoster which funes channels 2－13．
T．p．t．g．－Tined－plote tuned－grid．
JANUARY， 1953 St．－Standard mounting．（In separate cabinet） Rear－Mounted at rear of set．Does not need tuning for each stotion．
Auto－Turns on and off cutomatically with the

	$\begin{aligned} & \overline{\#} \\ & \frac{0}{3} \end{aligned}$	Chassis Number	AM-FM-SW							Video I. F. (MC)	$\begin{aligned} & \text { 皆 } \\ & \stackrel{E}{E} \\ & E \\ & = \end{aligned}$			
Industrial Television, Inc. 369 Lexington Ave., Clifton, N. J.	$\begin{aligned} & \text { IT-76R } \\ & \text { IT-89R } \end{aligned}$	$\begin{aligned} & 1376 \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned} .$	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Ord } \\ & \text { Ord }^{2} \end{aligned}$	$\begin{array}{\|l} 3 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 21.85 \\ & 21.9 \end{aligned}$	Strip Strip	$\begin{array}{r} 8 \\ 18 \end{array}$	$\begin{aligned} & \text { Tur } \\ & \text { Tur } \end{aligned}$	No RC, Com
Jackson Industries Inc. 500 E. 40 th Street Chicago 15, 111.	$\begin{aligned} & 17 \mathrm{XC}, 917 \mathrm{C} \\ & 17 \mathrm{XT}, 217 \mathrm{~T}, 977 \mathrm{~T} \\ & \text { z0XC, } 280 \mathrm{C} \\ & \text { zUXT, 377T } \\ & 221 \mathrm{~T}, 477 \mathrm{~T} \\ & 317 \mathrm{C} \\ & 320 \mathrm{C} \\ & 321 \mathrm{C} \\ & 621 \mathrm{C} \end{aligned}$	317 A 317 A 320 A 320 A 321 A 317 A 320 A 321 321	$\begin{aligned} & \text { No } \\ & \text { AM } \\ & \text { AM } \\ & \text { AM } \\ & \text { AM.FM } \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 211 \\ & 20 \\ & 21 \\ & 21 \\ & 27 \\ & 20 \\ & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { les } \\ & \text { les } \end{aligned}$	Key Key Key Kes Key Key Key Kеу Kеу	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	25.75 45.75 25.75 25.5 2.5 .5 25.75 25.75 25.75 25.75	Strip Atrip Strip Strip Strip Strip Atrip Strip Strip			No No No No No No No No No
Jewel Radio Corp. 900 Passaic Ave. E. Newark, N. J.	17TW7 q0CW7, q0TW73 ${ }^{3}$ 21CW7, 21TW7 ${ }^{3}$ 680CW7, 621 CW 7	$\begin{aligned} & \text { TV7 } \\ & \text { TV7 } \\ & \text { TV7 } \\ & \text { TV7 } \end{aligned}$	No No No No No	$\begin{aligned} & 17 \\ & 20 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \\ & 15.5 \\ & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & z 1 \\ & z 1 \\ & z 1 \\ & z 1 \\ & z 1 \end{aligned}$	$\begin{aligned} & \text { Yes. } \\ & \text { les } \\ & \text { lies } \\ & \text { lies } \\ & \text { Yes } \end{aligned}$	O_{rd} O_{rd} ()rd (Ord Ord	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 26.0 \\ & 26.0 \\ & 26.0 \\ & 26.0 \\ & 26.0 \end{aligned}$	Strip strip Strip Strip Strip	$\begin{array}{r} 5 \\ 10 \\ 10 \\ 6 \\ 6 \end{array}$	Tur, (" Tur. C^{7} 'Tur, ('it 'Mur, C^{7} Tur. ${ }^{\text {T }}$	IPJ, V1113 I'J, VIIB IPJ, V1113 IDJ, V'H1B I.J. VIII3
Kaye-Halbert Corp. 3623 Easthams Dr. Culver City, Calif.	None None	$\begin{aligned} & 25310 X \\ & 243 \end{aligned}$		$\left\lvert\, \begin{aligned} & 20-24 \\ & 20-24 \end{aligned}\right.$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Key } \\ & \text { Kеу } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { Strip } \\ & \text { Strip } \end{aligned}$	$\begin{aligned} & 18 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { 'Tur, C } \\ & \text { 'lur, } \end{aligned}$	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$
J. H. Keeney \& Co., Inc. 2600 West 50th St. Chicago 32, Ill.	2RF17TMX zRFQ1TMX C-17TM14 (-.21TM14 C. $21 \mathrm{CM}^{14}$ K-17TM K-17CM K-21TM K-21CM	No No No No No No No No No	No No No No No No No No No	$\begin{aligned} & 17 \\ & 21 \\ & 17 \\ & 21 \\ & 21 \\ & 17 \\ & 17 \\ & 21 \\ & 21 \end{aligned}$	11.5-13.5 11.5-13.5 11.5-13.5 11.5-13 . 5 11.5-13.5 11.5-13.5 $11.5-135$ 11.5-13.5 11.5-13.5	$\begin{aligned} & 20 \\ & 20 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	Y'es Yes Yes l'es Yes Yes Yes les Yes	K"ey Key Ord Ord Ord ()rd Ord Ord $\mathrm{Ord}_{\mathrm{rd}}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	26.75 26.75 26.75 26.75 46.75 26.75 26.75 20.75 26.75	Strip Atrip	$\begin{aligned} & 5 \\ & 8 \\ & 5 \\ & 5 \\ & 5 \\ & 8 \\ & 5 \\ & 8 \\ & 5 \\ & 5 \end{aligned}$	Tur, Tur, Tur Tur Tur Tur Tur 'Tur 'Tur	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$
Lion Manufacturing Corp. 2640 Belmont Ave., Chicago 18, Ill.	$\begin{aligned} & 21537 \\ & 21638,21739.21840 \end{aligned}$	$\begin{aligned} & 537 \\ & 537 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\left\lvert\, \begin{aligned} & 21 \\ & 21 \\ & 21 \end{aligned}\right.$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Ord Ord	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 26.4 \\ & 46.4 \end{aligned}$	Strip	$\begin{array}{r} 6 \\ 10 \end{array}$	Tur, C 'lur, C	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$
The Magnavox Co. Fort Wayne, Indiana	MV45L (Normandy) M V68L (French Provincial) MV90L (Wedgewood) MV91L (Wedgewood) MV92L (Belvedere) MV93L (Belvedere) M V94L (French Provincial) MV100L (Contemporary) MV109L (Empire) MV゙103L (IIoliday) MV104H (Envoy) MV106L (Constellation)		$\begin{aligned} & \text { No } \\ & \text { AM-FM } \\ & \text { No- } \\ & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & q 1 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & z 1 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 20 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 21 \\ & 31 \\ & 31 \\ & 24 \\ & 24 \\ & 31 \\ & 31 \\ & 31 \\ & 31 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$	Yes Yes les Yes Yes Yes Yes Yes Yes Yes	Key Key Key Key Key Key Key Key Key Key	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 3 \end{aligned}$	2.5 .75 25.75 25.75 25.75 25.75 45.75 25.75 25.75 25.75 25.75	Int Conv Int Conv lint Conv lut Conv Int Conv Int Conv Int Conv Int Cons Int Conv lut Conv $^{\circ}$	12 (2) 12 12 18 (2) 10 (2) 12 (2) 12 12 12 8	$\begin{aligned} & S_{w} \\ & S_{w} \\ & S w \\ & S w \\ & S w \\ & S w \\ & S_{w} \\ & S_{w}, C \\ & S w \\ & S w \\ & S w \end{aligned}$	No 1'h Ph Ph Plı Ph Pl_{1} No No No

-

	$\begin{aligned} & \vec{\nabla} \\ & \stackrel{\rightharpoonup}{x} \\ & \hline \end{aligned}$										$\begin{aligned} & \text { 络 } \\ & = \\ & =1 \end{aligned}$			
RCA Victor Division（Continued）	21T175DE Benton 21T176DE Suffoik 21T177DF Donley 21T178DE Rockingham 21T179DE Clarendon z1Tetz Westland 21 T24 Penfield 21＇T197DE Sunderland	KCs68I K（ 688 KCs 68 F KCs68F KCN68 $\mathrm{KCs} \% \mathrm{D} 1$ KC 78 D 2 $\mathrm{KCS68H}$	No No No No No AM AM－FM AMFM	21A1＇t 21Al＇t 21AP＇t 21AP＇t 21AP＇t 21AP＇ 21AP＇t 21AP＇	17.5 17.5 17.5 17.5 17.5 13.6 13.6 17.5	45 25 05 25 05 0.5 20 33 34	les Yes Yes Yes Yes Yes les Yes	Key Key Key Rey Rey Key Key Key	1 4 4 4 1 1 1 3 3 1 4	+1 +1 +1 +1 +1 21 21 +1	F，Conv，X lis Conv，X Fid Conv，X Fix Conv，X Ex Conv， X Ex Conv Ex Conv Ex Conv，X	12 18 12 12 12 12 12 12 12	$\begin{aligned} & S w, C \\ & S w \\ & S w \\ & S w \\ & S w, C \end{aligned}$	
Regal Electronics Corp． 603 West 130th St． New York 27，N．Y．	$\begin{aligned} & 17 \mathrm{C}^{11}, 17 \mathrm{H}^{11}, 17 \mathrm{~T}^{3}, 11 \\ & 20 \mathrm{C}^{11}, 20 \mathrm{~T}^{3}, 11 \\ & 21 \mathrm{C}^{1}, 21 \mathrm{H}^{11}, 21 \mathrm{~T}^{3}, 11 \end{aligned}$	$\begin{aligned} & \mathrm{CH}-20-98 \\ & \mathrm{CH}-20-98 \\ & \mathrm{CH}-20.98 \end{aligned}$	No $\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { No }\end{aligned}$	17 20 21	12．5		Yes Yes Yes	Ord Ord Ord	201	26.1 26.1 20.1	Strip Strip Strip	$\begin{array}{\|l} 8 \\ 8 \\ 8 \end{array}$	Tur，C Tur， Tur， C	No No No
Scott Radio Labs． Plymouth，Ind．	$\begin{aligned} & \text { 817'TU-817CU } \\ & 820^{\prime} \mathrm{TU}-820 \mathrm{CU} \end{aligned}$	$\begin{aligned} & 9030 \\ & 9030 \end{aligned}$	$\begin{aligned} & \mathrm{No} \\ & \mathrm{No} \end{aligned}$	$\begin{aligned} & 17 \mathrm{HP} 4 \\ & \text { gOHI' or } \end{aligned}$	12.5	20	les	Ord	4	26.1	Strip	10	＇Tur，C	No
	1510TA	9089	AM－FM	21Fl＇t 2011	12.5	20	les	Ord	t	26.1	Strip	10	＇Tur，C	No
				$215{ }^{\text {P1 }}$	12.5	21	Yes	Ord	t	26.1	Strip	12^{12}	Tur， C	1 h
	924 ${ }^{\text {NW }}$	9031	No	24．1P4	16.5	20 20 20	Yes	Ord	4	26.1	Strip	10	Ture ${ }^{\text {The }}$	No
	1000 ${ }^{\text {NTC }}$	9031	AM-FM	24．AP＇	16.5	20	Yes	Ord	t	26.1	Strip	15^{12}	Tur，C	Ph
Sentinel Radio Corporation 2100 Dempster Street	$1 \mathrm{U} 45+\mathrm{TM}$		No No	171P4 21FP4	15	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	Yes	Ord	3 3	26.4 26.4	Strip	6	Tur，C	No No
Evanston，Illinois	11＇456CM，－CB， 1 L 457 CM ，－CB		No	21FP4	15	18	Yes	Ord	3	26.4	Strip	6 10	Tur，C	No
	11058 TM			171194	15	26	Yes	Key	4	26.4	Strip	6	Tur，C	No
	1 L ＋59TM，－TB			21P1＇A	15	26	Yes	Key	4	26.4	Strip	6	Tur，C	No
	$1 \mathrm{~L} 460 \mathrm{CM},-\mathrm{CB}, 1 \mathrm{~L}+61 \mathrm{CM},-\mathrm{CB},-\mathrm{FP}$			21 FP 4 A	15	26	Yes	Key	4	26.4	Strip	10	＇Tur，C	No
				27 EP 4			Yes	Ord	3	26.4	Strip	12	＇Tur，C	No
Setchell－Carlson，Inc． New Brighton，Minn．	$53,531$ －31以R， 531 WR 5301， 5309	152	No	$211 P 4 A$	15	$\begin{aligned} & 24 \\ & 25 \\ & 20 \end{aligned}$	Yes	Key Key	4	25.6	Strip	10	Tur, C	HSIIV，IC
New Brighton，Minn．	j3WR，531WR，5301， 5302	152	AM	21F1＇4	15	125	Yes	Key	4	25.6	Strip	10	Tur. C	$11 \mathrm{BHV}, 1 \mathrm{C}$
Shaw Television Corp． 195 Front St．，	221，1521，2021，2221，2321， 2421，2021，3021，3221，													
Brooklyn 1，N，Y．	3421，3521，3621， 3721 路1，1521，2021，䖪思1，2321，	$22+1$	No	21MP4	15	23	No	Ord	3	$\begin{gathered} 26.75 \\ * \end{gathered}$	Strip	12\＆（2） 5	Tur，C	13
	2491，2621，3021，3221， $3421,3521,3621,3721$	224． 2 R5	AM－FM	21MP4		28	No	Ord	3	26.75	Strip	12\＆（2） 5	Tur，C	Ph
	$2724,2824$	224 X	No	24．AP4	15	23	No	Ord	3	26.75	Strip	12\＆（z） 5	Tur，${ }^{\text {C }}$	PJ
	2724， 2824	224．NR5	AM．FM	24．AP4	15	28	No	Ord	3	26.75	Strip	128（2） 5	Tur，C	Ph
Sheraton Television Corp．	17MT80	530－DX	No	17	14	23	Yes	Key	4	26.75	Strip	6	Tur，C	PJ
370 7th Ave．	21BT10，21MT10	530－DX	No	21	14	23	Yes	Key	4	26.75	Strip	6	Tur，${ }^{\text {c }}$	1．${ }^{\text {d }}$
New York 1，N．Y．	$21 \mathrm{BC10}, 21 \mathrm{BD} 10,21 \mathrm{MC10}, 21 \mathrm{MD} 10$	$530-\mathrm{DX}$	No	21	14	\|x	Yes	Key	4	20.75	Strip	12	Tur. C	$1{ }^{1} \mathrm{~J}$
	27MC10， $27 \mathrm{MD10}$	$530-\mathrm{DX}$	No	27	18	3%	Yes	Key	\pm	26.75	Strip	12	$\text { Tur, } \mathbf{C}$	1．J
												6 in Table		
Harold Shevers，Inc．		B2178		17－21	18－14	17	les	Ord	8	25		Console	Tur	
123 W． 64 th St．		P217		8AP4	8	17	Yes	Ord	3	25	Strip	$\begin{aligned} & \text { Cor } \\ & 4 \times 6 \end{aligned}$	Tur	
New York City 23，N．Y．		2278		17	9	27	Yes	Ord	$+$	83.75	Strip	（\％	Tur	A．（＇．－1）．C．
		3188		21	14	18	Yes	Ord	3	25	－trip	（i）	Inur	
		$319{ }^{\circ}$		21	12	19	Y＇es	Ord	3	25	Strip	（i）	Tur	1．${ }^{\text {c－－1）}} \mathrm{C}$
		323^{8}		21	14	23	les	Ord	3		Strip		Tur	

$>$ Sonora Radio \＆＇lelev．Corp． $z 2023$ W．Carroll，Chicago 12，Ill．	$\begin{aligned} & 421,422 \\ & 423,424.42 .5,426 \end{aligned}$	$\begin{aligned} & 131 \mathrm{R}^{\prime} \\ & 1 \mathrm{SN} T \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & 17^{\prime} \mathrm{Tl}^{4} \\ & 21 \mathrm{Ml}{ }^{2} \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { les } \end{aligned}$	（0）d Ord	3	$\begin{aligned} & \because 6.4 \\ & 26.4 \end{aligned}$	$\begin{aligned} & \text { Arip } \\ & \text { strip } \end{aligned}$	$\begin{aligned} & x \\ & 8 \end{aligned}$	$\begin{aligned} & T u r \\ & T ı r \end{aligned}$	$\begin{aligned} & \lambda_{0} \\ & ڭ_{0} \end{aligned}$
```> Sparton Radio-Television < 2400 E. Ganson St. < Jackson, Mich. - w```	```5301 （1）anbury） \\ 5325 （Devonshire） \\ 5340 （Glenhurst） \\ 5342 （Gilmore） \\ 5362 （Radford） \\ 5380 （Courtland） \\ 5382 （Carrington），5384（Crestwood）， \\ 5386 （Courtney） \\ 5392 （Cambridge）```	215173   25D173．1   215213   25D 213   25D173A   215213   45D 213   25D213	$\begin{aligned} & \text { No } \\ & N_{0} \\ & \text { AM-FXI }{ }^{9} \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 21 \\ & 21 \\ & 21 \\ & 17 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 16 \\ & 14 \\ & 14 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 21 \\ & 2 . \\ & 21 \\ & 21 \\ & 25 \\ & 25 \\ & 21 \\ & 2 . \\ & 25 \\ & 2.5 \end{aligned}$	Yes；   Yes   Yes   Yes   Yes   lies   Yes   les	Ord   Key   Ord   Key   Key   Ord   Key   Key	3 4 3 4 4 3 4 4 4	26 25   26.25   26.25   26.25      26.25   26.25   26.25	strip Strip Strip Strip Strip Strip Strip Strip	$\begin{gathered} 6 \\ 6 \\ 6 \\ 6 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \end{gathered}$	Tur， 1   ＇Iur， 1   Tur，${ }^{\circ}$   ＇Tur，C   Tur，${ }^{\circ}$   ＇Tur，C＇   Tur，C   Tur，${ }^{C}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$
Starrett Television 601 W．26th St．   New York 1，N．Y．	$\begin{aligned} & 17 \mathrm{CG} \\ & 17^{\prime} \mathrm{TG}, 1 \pi^{\prime} \mathrm{TW} \\ & 20^{\prime} \mathrm{TG}, 20 \mathrm{TW} \\ & 80 \mathrm{CD}, 80 \mathrm{C} 8 \end{aligned}$	$\begin{aligned} & 17 \mathrm{~S} 1 \\ & 17 \mathrm{~S} 1 \\ & 18 \mathrm{~S} 1 \\ & 18 \mathrm{~S} 1 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { No } \\ & \text { No } \end{aligned}$	17   17   20   20	$\begin{aligned} & 13.3 \\ & 13.3 \\ & 13.3 \\ & 13.3 \end{aligned}$	20   20   20   20	Yes   Yes   Yes   Y＇es	Ord   （）rd   Ord   （）Md	3 3 3 3 3	25.7   25.75   25.75   25 ． 75	$\begin{aligned} & \therefore(\text { rip })^{19} \\ & \text { Strip }{ }^{19} \\ & \therefore \text { trip }{ }^{19} \\ & \text { Srip }{ }^{19} \end{aligned}$	$\left\{\begin{array}{l} 8 \\ 5 \\ z \\ 8 \end{array}\right.$		$N_{01}$ $N_{11}$ $N_{01}$ $N_{01}$ $N_{11}$ $N_{01}$ $N_{01}$
Stewart－Warner Electric 1300 N．Kostner Ave． Chicago 51，III．	$\begin{aligned} & 20 \mathrm{C}-9124-\mathrm{A} \\ & 21 \mathrm{~T}-9132-\mathrm{A} \\ & 21 \mathrm{~T}-9210-\mathrm{A}, 21 \mathrm{~T}-9211-\mathrm{B},-\mathrm{C} \\ & 21 \mathrm{C}-9211-\mathrm{D},-\mathrm{F},-\mathrm{F} \\ & 27 \mathrm{C}-9212-\mathrm{A} \end{aligned}$		$\begin{aligned} & \text { AM-FM } \\ & \text { No } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 20CP'4 } \\ & \text { 21A1'4 } \\ & \text { 21A1'4 } \\ & \text { Q1A1'4 } \\ & \text { R7NP'4 } \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \\ & 12.5 \\ & 12.5 \\ & 18 \end{aligned}$	$\begin{aligned} & 31 \\ & 26 \\ & 19 \\ & 19 \\ & 21 \end{aligned}$	les   Yes   Yes   Yes   Yes	Key Key Ord Ord $\mathrm{O}_{\mathrm{rd}}$	4 1 3 3 3 3	$2(6.7 .5$ 26.75 26.75 26.75 $2(6.75$	Arip   Strip   Strip   strip   Strip	$\begin{gathered} 19 \\ 6 \\ 6 \\ 6 \times 9 \\ 6 \times 9 \end{gathered}$	Tur   Tur， 1   Tur．C   ＇Tur，C   ＇Tur，（＇	
Stromberg－Carlson Co． Rochester 3，N．Y．	Classic 21 （521C5I）ee．）   Classic 21 （521C50）   Classic 21 （521（ 5 M ）   Yorkshire（581（＇I）N）   Invader II（521（M）   Panavue（521＇T）	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \end{aligned}$	Yes   les   Yes   Yes   Yes   Yes	Key   Key   Key   Key   Key   Key	4 4 4 4 4 4	26.4   26.4   20.4   264   264   $2(6.4$	$\therefore$ itrip   Strip   Strip   Strip   strip   Strip	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 81 / 2 \\ & 512 \end{aligned}$	Tur，C   Tur．${ }^{(1)}$   Tur，C   Tur．${ }^{\circ}$   ＇Tur．（＂   Tur．（＂	
Sylvania Electric Corp． Radio \＆Tel．Division 254 Rano St． Buffalo，N．Y．	$\begin{aligned} & 105 \\ & 180 \\ & 126 \\ & 150 \\ & 155 \\ & 174,176,177 \\ & 175 \\ & 178 \\ & 187 \end{aligned}$	504－1   510－1   510－1   4．37－3   437－3   508－1   508－1   508－1 TV   603－1 Radio   509－1	$\begin{aligned} & \text { No } \\ & \text { AM-FM } \\ & \text { No } \end{aligned}$	$\begin{aligned} & 17 \\ & 21 \\ & 21 \\ & 17 \\ & 17 \\ & 21 \\ & 21 \\ & 21 \\ & z 1 \\ & 27 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 17 \\ & 17 \\ & 17 \\ & 29 \\ & 29 \end{aligned}$	$\begin{aligned} & 24 \\ & 23 \\ & 24 \\ & 24 \\ & 24 \\ & 48 \\ & 28 \\ & 28 \\ & 38 \\ & 35 \end{aligned}$	Yes   les   Yes   les   les   les   les   les   Yes	Key   Key	4 4 4 4 4 4 4 4 4	26.8   15.75   45.75   264   264   45.35   45.75   45.75   4.5 .75	「HF＂   1H1＂「   IIIDT   bix Conv Ex conv ITIFT ［111＂   HINT   Int Tune	$\begin{aligned} & 612 \\ & 61 / 2 \\ & 8 \\ & 81 \\ & 61,2 \\ & 61 / 2 \\ & 110 \\ & 61,2 \\ & 12 \\ & 10 \end{aligned}$		No   No   No   No   No   Halo   Halo   lato，lht   Halo， RC
Tech－Master Products Co． 443 Broadway，   New York 13，N．Y．		$\begin{aligned} & \mathrm{C} 30 \\ & 630 \mathrm{D} 24 \\ & \\ & 630 \mathrm{~S} 24 \\ & \\ & 1930 \mathrm{RC} \\ & 2430 \\ & 2431 \\ & 2431 \mathrm{C} \\ & 5219 \\ & 5321 \end{aligned}$	$\begin{aligned} & N_{0} \\ & N_{0} \\ & N_{0} \\ & N_{0} \\ & \mathrm{No}_{0} \\ & \mathrm{No} \\ & \mathrm{No} \\ & \mathrm{No}_{0} \end{aligned}$	$\begin{aligned} & 24 \\ & 1 \text { lp to } 24 \\ & 1 \text { P to } 24 \\ & 21 \\ & 21 \\ & 1 p \end{aligned}$	$\begin{aligned} & 15.5 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 31 \\ & 31 \\ & 19 \\ & 21 \end{aligned}$	$\begin{aligned} & N_{0} \\ & N o \\ & N_{0} \\ & N_{0} \\ & N_{0} e s \\ & \text { Nes } \end{aligned}$	Ord Key Ke： Key Key Key Key （）ril Ord	4 4 4 4 4 4 4 3 3	26.4 45 $-204$ 25.75 $-264$ 264 26 26.4 264 244 $24!$	$\therefore$ trip   strip   Stip	$\begin{gathered} 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 8 \\ 8 \end{gathered}$	$\begin{aligned} & \text { Tur, ( } \\ & \text { 'lur, ( } \\ & \text { Tur, C } \\ & \text { Tur, ( } \\ & \text { Tur, ( } \\ & \text { Tur, C } \\ & \text { Con } \\ & \text { Tur } \\ & \text { Tur } \end{aligned}$	


	$\frac{\overline{0}}{0}$		定						$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	Video I. F. (MC)	U.II.F. Tuning		若	
Tele King Corp. 601 W. 26th St. New York, N. Y.	K11, K1113   K72, K7213, K74   KC11, KC11B, KDı1. KDı1B,   KD12C, KD12M, KD13   KC71, KC7213   KD11X, KD11XB   KD27, KD28   KD71X, KD71XB	TVJ   TVJ   TVJ   TVJ   TVJ   TVJ87   TVJ	No   No   No   No   AM   No   AM	21   17   21   17   21   27   17	$14-15$ $14-15$ $14-15$ $14-15$ $14-15$ $17-18$ $14-15$	17 17 17 17 $17^{t}$ 17 17	les lies Yes les Yes lies Yes	Ord   Ord   Ord   Ord   Ord   Ord   Oril	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	25.1 25.1 25.1 25.1 25.1 25.1 25.1	Int Conv Int Conv   Int Conv	4 x 6   $4 \times 6$   10   10   10   10   10   10	Sw $S_{w} w$ Sw $S_{w}$ $S_{w}$ $S_{w}$ Sw	No No No No SPl No SPl
Trad Television Corp. 1001 1st Ave., Asbury Park, N. J.	$\begin{aligned} & \text { C2052 } \\ & \text { C2152 } \end{aligned}$	$\begin{aligned} & \text { T1853 } \\ & \text { T1853 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & 20 \mathrm{HP} 4 \\ & 21 \mathrm{Fl}^{2} 4 \end{aligned}$	$\begin{array}{r} 13.5 \\ 13.5 \\ \hline \end{array}$	$\begin{array}{r} 18 \\ 18 \\ \hline \end{array}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \mathrm{Ord} \\ & \mathrm{Ord} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\left.\begin{aligned} & 26.75 \\ & 26.75 \end{aligned} \right\rvert\,$	Strip	$\begin{array}{r} 8 \\ 10 \end{array}$	$\begin{aligned} & \text { Tur } \\ & \text { Tur } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$
Transvision, Inc. 460 North Ave., New Rochelle, N. Y.	A- 6		FM ${ }^{7}$	17-21	12	25	No	Ord	4	26.25	Ex Conv	6x9	Sw	
Trav-Ler Radio Corp. 571 West Jackson Blvd. Chicago.6, Illinois		$217-31$ $217-32$ $217-33$ $217-37$ $220-34$ $290-35$ $291-36$	No No No No No No No	$\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 20 \\ & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 11.2 \\ & 11.2 \\ & 11.2 \\ & 11.2 \\ & 11.2 \\ & 11.2 \\ & 11.2 \\ & \hline \end{aligned}$	21 21 21 21 21 21 21 21 21	les les les les les les Yes Yes	Ord   Ord   Orol   Ord   Oril   ()rd   Ord	$\left[\begin{array}{l} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \end{array}\right.$	$\begin{aligned} & 26.25 \\ & 26 \\ & 26 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 . \\ & 20.25 \\ & 26 \\ & 26 \end{aligned}$	Strip   Strip   Strip   Strip   Strip   Strip   Strip	$4 \times 6$ $6 x 9$	Tur, C Tur. C Tur, C Tur, C Tur, C Tur. Tur. C	No No No No No No No
Video Products Corp. Red Bank, New Jersey	$\begin{aligned} & 530 \\ & 630 \end{aligned}$	530DX $630 \mathrm{DXC}, 630 \mathrm{~K} 3 \mathrm{C}$ $630 \mathrm{~K} 94, \mathrm{DXC}$ $630 \mathrm{~K} 24-\mathrm{DXC}$		$\begin{aligned} & 16-21 \\ & 16-21 \\ & 24 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { No } \\ & \hline \end{aligned}$	Key Ke;   Key	$\left\lvert\, \begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}\right.$	$\begin{aligned} & 26.25 \\ & 26.25 \\ & 26.25 \end{aligned}=$	Strip   Strip   Strip	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Tur, C } \\ & \text { Tur, C } \\ & \text { Tur, C } \end{aligned}$	$\begin{aligned} & \mathrm{PJ} \\ & \mathrm{PJ} \\ & \mathrm{PJ} \end{aligned}$
Westinghouse Electric Corp. Television-Radio Division Sunbury, Penna.	H-667T17, H-668T17 H-676T\&1 H-681T17 H-681T17 H-68K17, H-679K17 H-688K24 H-689T16 H-673K21, H-690K21, H-691K21 H-692T21 H-695K21 H-699K17, H-702K17, H-703K17, H-705K17 H-700T17, H-701TT17 H-704T17 H-706T16 H-708T20 H-710T21 H-711T21 H-713K21, H-714K21, H-720K21 H-721K21	$V-2216-1$ $V-2217-1$ $V-2215-1$ $V-2215-2 \&-9$ $V-2216-1$ $V-2219-1$ $V-2214-1$ $V-2217-1$ $V-2217-2$ $V-2217-2$, $V-2217-3$ $V-2216-8$ $V-2216-2$ $V-2216-2$, $V-2216-4,-5$ $V-2207-1$ $V-2220-1$, $V-2220-3,-11$ $V-2217-2$ $V-2217-3,-4$ $V-2917-5$ $V-2217-2$ $V-2217-2$ $V-2217-3 \&$	No	$\begin{aligned} & 17 \\ & 21 \\ & 17 \\ & 17 \\ & 17 \\ & 24 \\ & 16 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 16 \\ & 20 \\ & 20 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 16 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \end{aligned}$		lies les Yes les Yes Yes les Yes lies Yes Yes   Y'es Yes Yes Yes Yes Yes   Yes   les   les   Yes	Key   Key Key Key Key Key   Key   Key Key Key Кеу	$\left[\begin{array}{l} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \end{array}, .\right.$	45.75 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44	Int Conv   Int Conv Int Conv Int Conv Int Conv Ex Conv Ex Conv Ex Conv Int Conv Int Conv Int Conv Int Conv Int Conv Int Conv	$51 / 4$ $51 / 4$ $51 / 4$ $51 / 4$ 10 10 $51 / 4$ 10 $51 / 4$ 10 10 10 $51 / 4$ $51 / 4$ $51 / 4$ $51 / 4$ $51 / 4$ 10 10 10		No



Our 21st Year Training Men for Greater Incomes and Security in Radio-Television

## I SEND YOU 18 BIG KITS

of Radlo Television parts and equipment.
Mucts of your fraining will be actual constructlon and experimentation. the kind of truly PRACTICAL instruction that prepares you Cor your Radio-Television career.


## YOU BUILD

the Television set and thr powerful superhet radio recelver showin sthow. INADDITION to the other test units lack of space). All equipment 1 bend you is YOURS TO KEEP


## SP

MAFL COUPON TODAY!
MO OBLIGATION


I invite you to get all the facts-


YOU

## RADIO TELEVISION BOOKS

my new $10-$ wionth kadio-Twlevision Traning -without cost! Buht coupon for my three big Radio Television books: "How to Make Money in Radiotetin PLUS an accuad sample Sprayberrs Lesson-ALI FREE. No obligation and to salesman will call. Mal coupon NOW!
C. The new Sprayberry "package" plan includes many blg hits of genuine, pro-
fessional Radio-Television equipment. You perform over 3 no demonstrations, experiments and construction projects. You build a powerful 6-tuke 2 -band radio set, multi-range test meter, signal generator. signal tracer, many other proje:ts. All equipment and lessons are yours to keep. . . you have practically everything you need to set up your own profitable Radio-Televiaion service shop.

## NEW! NO OBLIGATION PLAN

You Have No Monthly Payment Contract to Signt Pay For Your Training as You Earn and Leam You can get into Radio-Television, today's fastest growing big money opportunity field, in months insteal of years! My completely new "packape unit" training plan prepares you in as little as 10 months or even less! No monthly payment contract to sign-thus NO RISK to you! This is America's finest, most complete, practical training-gets you ready to handle any practical job in the booming Radio-Television industry Start your own profitable Radio-Television shop ... or accept a good paying job. I have trained hundreds of successful Radio-Television technicians during the past 21 years-and stand ready to train you, even if you have no previous experience! Mail coupon and get all the facts-FREE!

Earn Extra Money While You Learn!
All your 10 months of training is IN YOUR HOME in spare hours. Keep on with your present job and income while learning. With each training "package unit, you receive extra plans and "Business Builder" ideas for spare time Radio-Television jobs, Ncw telcvision stations everywhere, open vast riew opportunities for trained Radio-Television Technicians-and those in training. If you expect to be in the armed fcrces later, there is no better preparation than practical Sprayberry Radio-Television training.

111 NORTH CANAL ST. Dept. 20-S, Chicage 空, III.

SPRAYBERRY ACADEMY OF RADIO, Dept. 20-S,
111 North Camal St., Chicago 6, 111.
Please rush to me alt information on your $10-\mathrm{MONT}$ it Rad.o Tryievision Training Plan. I understand this does not obligate me and tha: no salesman will call upon me. Be sure to include 3 booss FREL.

## Name

$\qquad$

Cits

	$\begin{aligned} & \overline{\#} \\ & \frac{8}{2} \\ & \hline \end{aligned}$		AM－FM－SW											
（Continued from Page 82）	H．715K21，H－721K21 H－718K20 $\mathrm{H}-793 \mathrm{~K} 21$ $\mathrm{H}-794 \mathrm{~T} 20, \mathrm{H} .725 \mathrm{~T} 20$ $\mathrm{H}-730 \mathrm{C} 21$		$\begin{aligned} & \text { No } \\ & \text { N-FM } \end{aligned}$	$\begin{aligned} & 21 \\ & 20 \\ & 21 \\ & 21 \\ & 21 \\ & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	23 23 91 21 23 21 29	$\begin{aligned} & \text { Yes } \\ & \text { yes } \\ & \text { les } \\ & \text { yes } \\ & \text { yes } \\ & \text { Yes } \end{aligned}$	Kev Kes Kes Key Key Key	3 3 3 3 3	$\begin{aligned} & 44 \\ & 44 \\ & 44 \\ & 44 \\ & 44 \\ & 44 \end{aligned}$	Int Conv   Fx Cony   Int（＇onv   Int Conv   Ex Conv   Int Conv	$\begin{aligned} & 10 \\ & 51 / 4 \\ & 10 \\ & 10 \\ & 51 / 4 \\ & 10 \end{aligned}$	$\begin{aligned} & S w, C \\ & S w, C \\ & S w \\ & S w, C \\ & S w, C \\ & S w \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Ph } \end{aligned}$
		（IRadio V－2180－9）	AM．FM	Q1	13.5	29	Yes	Key	3	$44$	Int Conv	$10$	$s_{w}, \mathrm{C}$	Ph
	$\underset{\mathrm{H}-732 \mathrm{C} 21}{ }$	$\begin{aligned} & \text { V-2218-1 } \\ & \mathrm{V}-2218-11 \& 2 \end{aligned}$	$\mathrm{AM}-\mathrm{FM}$	21	13.5	29	Yes	Key	3	$44$	Int Conv	$10$	Sw	$\mathrm{Ph}$
	H－733C21	（Radio V－2180－10）	AM－FM	21	13.5	29	Yes	Key	3	44	Int Conv	10	Sw，C	I ${ }^{\prime}$
	H－754K21	$\begin{aligned} & \text { V-2217-4 } \\ & \text { V. } 2217-5 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 13.5 \end{aligned}$	29 29	Yes	Key Key	3	$\begin{aligned} & 44 \\ & 44 \end{aligned}$	Int Conv Int Conv	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	Sw， C	No
		19 K 22	No	17	$1+$	19	Yes	Key	3	＋1． 25	Strip	4	Tıur	R17
Chicago 39，Illinois	K1815R，K1815F．K 1810 R ，K1820F，	19 K 20	No	17	14	19	－ T	Ke．	3	＋1． 25	Strip	$51 / 4$	＇liur	R19 ${ }^{7}$
	K1846R，K1850R，K1850E．	19K20	No	17	14	27	Yes	Key	3	41.85	Strip	10	Tur	R137
	K1880R	19K20 \＆8H20\％	AM－FM	17	14	27	les	K－y		41.25	Strip	110	Tur	No
		19 K 23		$21$	$14$	19	Yes	Key	3	$+1.85$	Strip	$51 \frac{1}{4}$	Tur	No
	K2286R   K9930R K2930E K9940H	19 K 23 \＆ 7 K 21	AM	$21$	$14$	26	les	Key	3	$+1.25$	Strip	$\begin{aligned} & 71 / 2 \\ & 51 / 2 \end{aligned}$	＇Tur	$\mathrm{Ph}$
	K2240E，K29601，K2263E， K2966R，K2967E，K2268R	21 K 20 or 21 K 20 Z	No	21	18	21	Yes	Key	3	41.25	Strip	10	Tur	No
	K2987R	21 K 20 or 21 K 202   \＆81120Z	AM－FM	21	18	29	Yes	Key	3	41.45	Strip	12	Tur	Ph
	K2990R，K2991E	21 K 20 or 21 K 20 Z $\& 101120 \%$	AM－FM	21	18	31	Yes	Key	3	41.25	Strip	12	Tur	I＇h
	K2879R，K2879E	28K20	No	27	18.5	88	Yes	Key	3	41.85	Strip	（ 2 ） 10	＇Tur	No




# NEW Freathkit "Q" METER KIT 

- A hIGH QUALITY Q METER AT LOW COST.
- Firs! Q METER within the price range of all.
- Read Q's of 0.500 directly on calibrated scale.
- Stable oscillator supplies R.F. frequencies of 150 ke to 18 megacycles.
- Calibrated capacitor with range of 40 mmf to 450 mmf with vernier of $\pm 3 \mathrm{mmf}$.
- Simple, easy operation.
- Can be used to measuro small inductances or capacitors.
- Measures $Q$ of condensers, RF resistance and dis. tributed capacity of coils.
- Measures capasity by substitution, capacity by resonance, inductance by resonance.
Slanted panel for convenient operation.


## Heathkit DECADE RESISTANCE KIT

The HEATHKIT DECADE RESISTANCE KIT is widely used by schools, experimenters and laboratories because of the extremely wide resistance range offered and the useful, dependable service provided. The DECADE conprovided. The DEC 2 deck ceramic wafer switches with. silver plated contacts and twenty $1 \%$ precision resistors in a circuit which provides the resistance tange of 1 ohm (1) 99,999 ohms in 1 ohm steps. The HEATHKIT DECADE RESISTANCE K1T is simple to construct and is housed in a beautiful polished birch cabinet with an attractive panel. The DECADE will furnish years of accurate trouble-free service.
Individual decade sections of above can be purchased separately for special applications.

## NEW Heathkit DECADE CONDENSER KIT

Extremely useful in all experimental and design work such as determination of condenser values for: compensating networks, filters, bridge impedances, tuned circuits, etc. Uses all precision silver mica condensers wifbin $\pm 1 \%$ accuracy. Values run in three decades from 100 MMFD to 0.111 MFD in steps of 100 MMFD . Smooth acting, positive detent, highest quality ceramic wafer switches make all capacitor values easy to set up and keep losses to a minimum. Low loss dielectric terminal board mounts on outside of panel for easy cleaning. Heathkit binding posts accommodate a wide variety of test leads. Comes complete with all parts including polished birch cabinet.
Individual decade sections of above can be purchased separately.


MODEL DC-1 SHIPPING
WT. 4 LBS.
$51<50$

## NEW R'eathleit OSCILLOSCOPE KIT

- NEW WIDE BAND VERTICAL AMPLIFIER $\pm 2$ DB 10 CYCLES TO 1 MC.



Sofoul 0.5 me
WI $=$ syne pulse
correctly.

## $=-54350$

- New wider band vertical amplifier $\pm 2 \mathrm{db}$ from 10 cycles megacycles.
- High sensitivity in vertical amplifier. 025 volis RN:S per inch deflection
- New 3 step input artenuatar input ranges $\times 1$, $\times 10, \times 100$. - New SCPI intensifier type tube for greater brilliance.
- Terminal board and rear cabinet opering provisions for cabinet opering provisions for
direct connections ta defleding direct
- Newly styled formed and ventilated aluminum cabinet. 15 Wide band sweep generator, 15 sycles to over 100 kc . Will signal.
- 10 tube circuit feaiuring push pull aperation of vertical and horizontal amplifiers.
- Internal synchronization an either pasitive ar negative peaks.
- Repraduces faithfully the fronl and back porches of TV sync: pulses. Excellent square wave repraduction to over 100 kc
- Optional Intensifier hit available for 2200 volt operation.

Proudly announcing the new 1953 HEATHKIT Model 0.8 OSCILLOSCOPE featuring the firest performance ever offered an this extremely popular kit instrument. Improved wider band ecrical amplater featuting new 3 -step input attenuaror volts per inch vertical arsitivie Passibility overloading the vertical irpet circuit is minimy of Greater band width in the verrical channel is derided advantage to TV service men. Permits clear observation of al. TV syac pulse detail and excellent
square wave reproduction over 100 kc . 5 CP 1 intensifier type CR tube movides a brilliant race with normal acrelerating voltages. A handsome, ventilated cabiner with smooth rounded corners and a snug fitting drawn panel adds to the smartly style.d professional apprarane. Longer life is assured firough cooler instrument operation. Push pull output stages in both vertical and horizontal amplifiers for balanced deffection of she spot. All of the many fine features of the frevious model tave been retained. Rear cabinet access to terminal board for direct connection to CR plates. The entire kit of ah 10 tubes. parts. cabinet and panel as well as detailed construction manual for assembly and operation of the instrument insluded.

INTENSIFIER KIT: For exereme trace brilliance in sperial applications such as photography, group demonstra tiens or operation in brıthdy lighted areas an optional Intensifier kit providing 2200 volt operation of the $C R$ sube is available. Eit int;Iudes high voltage filter condenser, high voltage selenium rectifier, etc. $\$ 7.50$


SCOPE

Trouble stootirg or aligning TV, RF, IF an 1 video stages requires demodu larion of high frequency signals before Oscilloscope obscrvation. The HEATHKIT SCOPE DEMODULATOR PROBE KIT was specifically de No. 337 veloped for this application. Kit consists of a probe NHIP Wit $\$ 4.50$ housing crystal diode decertor circuir shiel and spade lugs. Assembly is simple and tine probe will quichly prove its usefulness as an Oscilloscope accessory:
new Heathkit
VOLTAGE CALIBRATOR KIT


MODEL VC.
SHIPPING
WH. 5 LBS. $\$ 1$

Use the Heathkit Voltage Calibrator with your oscilloscope to measure peak-to-peak TV complex waveshapes. TV manufacturer's specifications indicate correct peak-to-peak yoltages and this keak-vill permit making and this kit will permis making
A big help to engincers in circuit work. Makes peak-e-peak voltage measurements of complex waveshapes of all kinds. Flat topped semi-square wave outpur of calibrator assures Last and easy measurement of any voltage between .01 and 100 V peak-to-peak.

The Valtage Caliorator can remain connected to you: oscilloscope at all rimes for instant use. 'Signal", position connects signal undes, study directly through calibrator and into scope inpu: circuit for direct observation. Eliminates transfering leads from calibrator. A wonderful scope accessory

## Heathkit ELECTRONIC SWITCH KIT

A fewi dollars spent for this accessory will increase the usefulness of a scope immeasurably. An electronic switch will open up a whole new field of scope applications tor 5 eu. The $\mathrm{S}-2$ allows TWO SIGNALS oo be obierved at the SAME TIME - this important feature allows you to immediately spor phase shift, dipping. distortion, erc. The two signals unping, distortion, etc. The two signals un-
der observation can be superimposed or separated for irdividual study. Each sig. nal input has an individual gain control for properly adjusting scope trace patterns. Fias both coarse and fine frequency controls for adjusting switching cime. Multividrator switching frequency is from less than 10 ps to over 2000 cps in thiee overlapping ranges. Kit comes complete including 5 rubes, power tanasformer, all conerols, instruction manual, etc. Every scope owner should have one!


MODELS-2 SHIPPING WT. 11 LBS.
$\$ 19.50$

- New $112^{\prime \prime}$ volt low range instead of less than $3 / 4^{\prime \prime}$ found on 5 volt range type.
- Increased accuracy due to expanded scales.
- New 1500 voli DC high range
gives $50 \%$ greater coverage.
- Seven ranges in all. $11 / 2,5$,
$15,50,150,500$ and 1500 volts 15, $50,150,500$ and 1500 volts DC ( 1000 volts maximum AC only).
- Provides proper service ranges 150 valis for $A C D C$ work and 500 volts for AC type service.
- High inpur impedance, 11 megotms minimizes circuit loading.
- Variety of accessory probe kits available.
- $1 \%$ precision resistors in multiplier circuits
- 200 microampere Simpson
- Center scale zero adjust.
- Transformer operated.
- Test leads included.
- New cabinet styling.
- Large, clearly marked meter DC volis and DB.
The 1953 Heathkit V. 6 VTVM has improved ranges! The Tonert range thas been moved hay down to 1.5 V full sale. This gives 31 " of actual scale langth for the 1.5 V covered - Hat's - ': inebes per sott!' Now you can make your low level measurements faster and with greates accuracy.
And the upper range has been roved up. Re flings "p to 15001 ' DC can be readily made with new, improved
VTVM - plus reading un to 1000 V on AC . Higher ranges VTVA - plus reading up to 1000 V on AC. Higher range for extended use. space for really casy wiring - no t ght corners to worr
 space for rually casy uiring- no t ght corners ro worr
about. [ es only highest quality components throughour Simpson 200 microanpere meter mevement combined witi- 1 '; precision resistors in multiplier circuit insure highly aczurate and dependable readings. DV , $5 \mathrm{~V}-15 \mathrm{~V}-50 \mathrm{~V}-150 \mathrm{~V}-500 \mathrm{~V}-1500 \mathrm{~V}$. ( 1000 V max. rading on AC ) -a tota of seven ranges for conmenient. actu ate reaci, igs, In"rument also meavures resist.nce from . 1 venient multiples of 10 with no skip. Has Db stale in red for eass andentitication.
Now pancl has tough batked on esamel finih夕 for frecderm from scratches and maximum durability. Mindern segled, formed, compact abinet with rounded edges and wactle finish is truly handsome. Comprehensive, detailed instruction manual with ste - b;-step instructions, figures, pictorias, cic. makes assembly 2 cinch.

Feathkit R. F.   PROBE KIT   SHIP. WT   1 LBS. $\$ 5.50$   No. 309   Extends RF range of HEATIIKIT 11 meg. ohm VTVM to 250 megacycles $\pm 10 \%$.	Feathkit 30,000 V. D.C. PROBE KIT   SHIP. Wr.   2 LBS   No. 336   s5.50   Provide; DC multiplication factor of 100 for any 11 megohm VTVM.	Feathkit PEAK TO PEAK VOLTAGE PROBE KIT   SHIP. WT.   2 LBS.   No. 338   s6.50   Reads on DC cale of any 11 megohm VTVM 5 kc to 5 megacicle ange.

Feathkit R. F. PROBE KIT


## NEW Zeathkit

 BATTERY TESTER KITThe new Heathkit Battery Tester meeasures all types of dry batteries between $11 / 2$ volts and 150 volts undes actual load conditions. Readings are made directly on a three-color GOOD-WEAK-REPLACE scale that your customers can readily understand. Operation is extremely simple and merely requires that the leads be connected to the battery under test. Only one control to adjust in addition to a panel switch for A or B battery types.
The Heathkit Battery Tester features compact assembly. An accurate meter movement and wire woind control mount in the portable, rugged plastic case.
Use the BT-1 to check portable radio batteries, hearing aid batteites, lantern batteries and photo flash gun batteries.

$\$ 750$

## \#eathkit ac vacuum tube VOLTMETER KIT

A new AC VTVM that makes possible those sensitive AC neasurements required by laboratories, audio enthusiasts and experiment ers. Ten full scale ranges of .01 (0) $, 1,3,1,3,10,30,100$ and $3(0)$ volts RMS. 10 DB ranges trom -52 to +52 DB . Frequen. yy response within I DB from 20 cycles to 50 kc . Simpson 200 mi croampere meter with large plainly marked meter scales. Precision multiplier resistors. Two amplifier stages using miniasure thbes. A unique bridge rectiner meter cir cuit and a clean layout of parts Order the AV-2 today and become acquainted with the interesting possibilities offered by this
instrument.
MODEL AV- 2
SHIPPING
WT. 5 LBS.

$\$ 2950$

# NEW Heathket GRID DIP METER KIT 

- CONVENIENT ONE HAND OPERATION.


Complete unit easly
held and operated with one hand.

## MODEL GD-1 <br> SM:PPING <br> wian <br> $\$ 1950$

- New GRID DIP METER with cossembled calibrated coils.
- Uses quality Simpson 500 micraampere meter.
- One hand operation, extremely compact. Only $2 \sqrt[V]{2 \prime \prime}$ wide by $3^{\prime \prime}$ high by $7^{\prime \prime}$ long - Variable meter sensitivity control.
- Uses newest type 6AF4 high frequency triode in a Colpitts oscillator cirevit.
- Continuous coverage from 2 megacycles to over 250 megacycles in 6 ranges - Head phone monitoring jack.
- AC power pransformer operated for maximum safety.


The HEATHKIT IMPED. ANCE BRIDGE is especizlly useful in educational training farograms. industrial laboratories and for experimental wort The it for measuring AC and DC resistance value of resistors. determination of condenser capacitance and dissipation factor, finding cont inductance ind storage factor, electrical measuremens work. etc. Quality components. GR 1010) eycle hummer. GR main control. Mallory ceramic wafer silus plated contact switches ! 2 precision resistors, ect. The basic circuit is a self powered, if arm bridge. Che ce of Whearsonc. Capacitance comparison. Maxwely or Hay buidge circuits. Resistance trom 10 millichm to 10 megohm. Capacitance 10 mmf to 100 mfd . Inductance 10 microhentr to 100 hen-ies. Dissipation factor 002 to 1 . Storage facter (Q) 1 to 1000 . The IMPED.ANCE BRIDGE has provisions for external generator use fo: measurement at other than the 1 (0) of cycle level. Take the guess work out of clecrical measurements. The HEATHKIT JMPEDANCE BRIDGE mounted in a beautiful polisked birch cabinet with large easy reading panel calibrations will furnish years of accurate. trouble free measurement service.

## Heathkit HANDITESTER KIT

The HEATHikit Model M-1 HANDITESTER fulfills requirements for a portable volt ohm milicammeter. This kit features preciston lar resistors. 3 dech swith for troubie free mounting of Fapts, specially designed bat. tery bradet. smooth acting ohms adjust control, berutiful molded bakclite case and a 40 micreampere meter novement. 5 convenient $A C$ and $D C$ voltage ranges as follow: $10-30-300$ 10t) 0 - 5000 volts. Ohms ranges 0 ) $=000$ and ( $1.300,(\mathrm{~K}) 0$. DC milliampere ranages 0 - 0 milliamperes and $0-100$ milliarnperes. The inst:ument is easily assembled from complete instructions and pittorial diagrams. Test leads are includec: Car:y the HEATHKIT M. 1 HANDITESTER in your tool box at all times for those simple jobs and eliminate that evera trip for additional test.ng cquipment


MODEL M. 1
SHIPPING
WT. 3 LBS.
$\$ 13^{50}$.

# zemper AUDIO GENERATOR KIT 



Low impedance output High voltage output

- Improved design - new low price.
- Frequency coverage in five ranges from 20 cyoles per second to 1 megacycle. - Response flat 1 DB from 20 cycles to 400 kilocycles. Down 3 DB at 600 kilocycles. Down only 8 DB af 1 megacycle.
- Five calibrated oulput voltage ranges, continuously variable $1 \mathrm{mv}, 10 \mathrm{mv}, 100$ $m \mathrm{v}, \mathrm{I} \mathrm{v}, 10 \mathrm{v}$.
- Low impedance oulput circuit. 600 ohms.
- Distortion less than 4 of $1 \%$ from 100 cycles per second through the audible range.
- New HEATHKIT universal lype binding posts.
- Durable infra-red baked enamel panel.
- Transformer operated for safe operation.
- Siurdy, ventilated steel cabinet.

A new Audio Generator with features heretofore found in
Sine wave oulput from 20 cycles to 1 megacycle.
 only the most expensive generators. Such features as complete coverage from 20 cycles to 1 Mc - response flat $\pm 1 \mathrm{db}$ from 20 cycles to 400 Kc , down 3 db at 600 Kc and down only 8 db at 1 Mc .

And it has calibrated output . . . Calibrated continuously variable and step attenuator output controls allow you to easily set calibrated output voltage. Moreover, distortion is less than 4 of $1 \%$ from 100 cps through the audible range.

Oscillator section consists of a two stage resistance coupled amplifier (6SJ7 and 6AK6) utilizing both positive and negative feedback for oscillator operation and reduction of distortion. Oscillator section drives a cathode follower output power amplifier ( 6 AK 6 ) which isolates the oscillator from variations in load and presents a low impedance output ( 600 Ohms ). Power supply is transformer operated and utilizes 6 X 5 rectifier with 2 sections of RC filtering.

An unbeatable dollar value - for here is an audio generator with wide frequency coverage, excellent frequency response, stepped and continuously variable calibrated output, high signal level, low impedance output, and low inherent distortion.


## New Feathkit AUDIO OSCILLATOR KIT



A new Audio Oscillator with both sine and square wave coverage from 20 to 20,000 cycles . . An instrument designed to completely fulfill the needs of the audio engineer and enthusiast Has numerous advantages such as high level output (up to 10 V obtinable across the entire range), distortion less than $6 \%$, and low impedance output.

Special design features include the use of a thermistor in the second amplifier stage for keeping the outpur essentially

MODEL AO. 1 SHIPPING WT. 14 LBS.
$5 \because / 150$ flat across the entire range.

A cathode coupled clipper circuit produces good, clean, square waves with rise time of only 2 microseconds. Oscillator section uses $1 \%$ precision resistors in range multiplier circuit for greatest accuracy.

You'll like the operation of this fine new kit.


## NEW Fieathlets <br> VISUAL-AURAL <br>  <br> Traces signals from antenna clear through speaker. <br> - Permits visual signall abserwotion as well os aural oper tion. <br> - Two separate input channels. Tremendous RF channel sensitivity. Adequate for actual signal detection of receiver input. <br> - Separate high gain RF and low gain audio chennels. <br> The new heathkit visual aural SIGNAL TRAGER represents one of the most convenient and useful instruments the <br> - A unique ond usefill noise locater circuit. <br> - Built-in calibrated wattmeter. <br> - Two separate shielded prabes hor RF and audio application. <br> - Adiditional test teads supplied. output transformer eliminates necessity for ppeoiner remaval in service work <br> - Usility amplifier. Check recard changers, "uners, micro phomes, instrument pictups, fic. minals. <br> - 5 tube tramsfarmer aperated ciravit. <br> NEW Hteathkit CONDENSER CHECKER KIT

# SIGNAL TRACER KIT 

## - NEW NOISE LOCATOR AND WATTMETER CIRCUITS.

 service work. The electron ray beam indicator conseantly monitors both input channels for visual observation of the signal. Now, see and hea the signa: level for easier estimation of signal strength and gen per stage in a receiver circuit. Separate high gain channel and sperial shielded demodulator probe for RF circuit work. Low gain channel for aud, o circuit investigation and for use as a ncise locater. In this ieature, approximately 200 volts $D C$ is applied to a suspected circuit component and the action of the voltage in the component can be seen and hesrd to determine sarisfactory operatibn. This featute alone will prove tremendously helpful in locating the source of objectionable noises in coils, transformets, resistors, condensers, cold solder joints, controls. etc. A convenient wattmeter permits rapid pre!im!nary check for vol:age distribution circuit breakdown as well as rarsformer failures. Use the $\mathrm{T}-3$ as a universal test speaker and substitution transtormer and save service time by eliminating the necessity for speaker removal on every service call. Additional service uses are: as a urility amplifier for checking the output of record changers, tuners, microphones, instrument pickups, etc. Separate panel terminals permir utilizatson of other shop equipment such as your Oscilloscope or VTVM. Entire kit supplied complete with $S$ tubes, all necessary construction material along with a detailed step by step instruction manual for the assembly and operation of the instrument.

MODEL C. 3
SHIPPING
WT. 7 LBS

## \$1950.

Arnouncing the new improved Modet C- 3 HEATHKIT CONDENSER housed in a new smartir sryled professional ap-
pearing cabiner featuring pearing cabinet featuring
rounded corners and snug fitrounded corners and snug fit.
ting drawn panel. Adequate provisions for ventilation insures longer initrument life through cooler operation. Use the C-3 to accurazely measure those unknown condenser and resistor values. All readings of condensers and resistors are ruad litecely on the calibrated scales Range of curidensel measurements is from 00001 mfd to 1000 mfd . Calibrated resistance measurements can be made from 100 ohms to 5 megohms. A condenser operating squaling under actral woltage load cordicions. The spring return feakage test switth actomatically discharges the condensep under test and eliminates shock hazard. An elearon ray beam indicator tube is csed in a new leakage rest circuiv for added sensitivity. The inserument is trensformer operared for safcty and will prove an exinemely wel come addition to your shop equipment. The tit is furnished complece with all necessazy pares. test leads and includes a step by step derailed construc. tion manual for assembly and operavion.

## \#eathkit tv alignment GENERATOR KIT

MODELTS-2 SHIPPING WT. 20 LBS.

## s395:

Here is an excellent TV ALIGNMENT GENERA TOR designed to do TV TOR designed to do TV
service wouk quickly, easily
 and properly. The Model TS-2 when used in conjunction with an Oscilloscope provides a means of correctly aligning TV receivers. The instrument furnishes a frequency modelated signal covering in 2 bands the range of 10 to 90 megacycles and 150 to 230 megacycles. An absorption type frequency marker covers from 20 to 75 megacycles in 2 ranges: therefore you have a simple, convenient means of checking IF's independent of oscillator calibration. Swecp width is variable from 0 to 12 megacycles. Other excelleat fearures are horizontal sweep voltage controlled with a phasing conerol - both step and continuously variable attentuation for setting the output sigal to the desired level - a convenient stand by switch and blanking for establishing a single trace with a base reference level. Make your work easier, save time and repair with confidence. Order your HEATHK:T TV ALIGNMENT GENERATOR now.

# Heathbert TUBE CHECKER KIT 

MODEL TC-1 SHIPPING WT. 12 LBS:


Checks 7, 8, 9 prong tubes, octals, 5 prong Hytrons, pilot lights.

- Beautiful counter type
birch cabinet.
- 41/2r simpson 3 color meter.
- Simplified setup proce-
dure. Built-in gear driven roll
chart.
- Checks emission, shorted
elements, open elements and continuity.
- Complete protection against obsolescence.
- Sockets for every mod-
ern tube.
- Blank for new types.
- Individual element
switches.
- Contact type pilot light test socket.
- Line adjust contral.

PORTABLE TUBE CHECKER KIT MODEL TC-1P
Same as TC.I excent supplied
with polished birch cabinet (with with polished birch cabinet (with
removable lid) instead of counter type cabinet. Shipping weight 14 lbs.
$\$ 34.50$
No. 365 Polished Birch Tube Checker Cabinet only. Shipping
Weight $7 \mathrm{bs} . . . . . . . . . . . .$.
$\mathbf{7} .50$

With the HEATHKIT TC-1 TUBE CHECKER test all types of tubes commonly encountered in AM-FM and TV receiver circuits. Test setup procedure is simplified, rapid and flexible. Tube quality is read directly on a beautiful $412 / 2$ Simpson three color BAD - ?- GOOD scale that your customers can readily understand. Panel sockets accommodate 4,5,6 and 7 prong tubes. octals. loctals. 7 and 9 prong miniatures. 5 prong Hytrons, a blank socket for new tubes and a contact type socker for quick checking of pilot lights. Built-in gear driven roll chart for instant reference. Neon short indicator, individual three position lever switch for each tube element. spring return test switch. line set control to compensate for supply voltage variations. At this low price, no service man need be without the advantages offered by the HEATHKIT TUBE CHECKER.

## Feathkit TV PICTURE TUBE

## TEST ADAPTER

## Use your HEATHKIT TUBE CHECKER with this new TV TEST ADAPTER to

 determine picture tube qual'iy. Check for emission and shorts, power supply. Consists of standard 12 pin TV tube socker, 4 feet of table. octal socket connector and data shect. Quickly prove TV piccure sube condition to vourself and your cus-somer.


## Heathkit RESISTANCE SUBSTITUTION BOX KIT

MODEL RS- 1 SHIPPING
WT. 3 IBS.
$\$ 550$

## NEW HEATHKIT RESISTANCE SUBSTITU-

 TION BOX KIT provides switch selection of any single one of 36 RTMA 1 watt 10 ce standard value resistors, ranging from 15 ohms to 10 megohms. This coverage available in 2 ranges in decades of $15,22,33,47.68$ and 100 . Housed in rugged plastic cabiner featuring new HEATHKIT universal type binding posts. The entire kit priced less than the retail value of the resistors alone.
## Feathkit <br> battery eliminator kit

A clean 6 volt d-c supply source is definitely required for successful automobile raously variable d-c output from 0) to 8 volts. It can be safely operated at a steady 10 am pere level and will deliver up to 15 amperes for intermittent periods. The voltage output terminals are completely isolared from the chassis to acice applications such as supplying bias voltages or d-c substitution voltages tor battery operated tube filament circuits.

The output of the Battery Eliminater is constantly monitored by a d-c voltmeter and a d-c ammeter. The circuit features an automatic overload relay of self resetting rype. For additional protection, a panel mounting fuse is provided. Build this kit in a few hours and pocket a substantial savings.


MODEL 3E-3 SHIPPING WT. 20 L.BS.
s $24^{50}$


Repair time is valuable, and the Heathkit Vibrator Tester will save you hours of work. Instantly tells the condition of the vibrator under test - and the cheek is thorough and complete. Checks vibrator for proper starting, and the easy-to-read meter indicates the quality of cutput on large BADGOOD scales. Tests both interrupter and selfrectifier types of vibrators

## Heathkit <br> VIBRATOR TESTER KIT

 Five different sockets for checking hundreds of vibrators.Operates from any battery eliminator capable of delivering continuously variable voltage from $4-6 \mathrm{~V}$ at 4 amps . The Heat!kit BE-3 Battery Eliminator is ideal for operating this kit.

Faulty vibrators can be spotted within
the


## Heathkit INTERMODULATION ANALYZER KIT



MODEL IM-1 SHIPPING WT. 18 LBS.

## 5395.

The HEATHKIT MODEL IM-I is an extremely versatile instrument specifically cesigned for measuring the degree of interaction hetween two signals caused by a specituc piece of apparatus. or a chain of equiprnent. It is primaril. intended for ests of sudio equipment bur may be used in other applications such as making tests of microphones, records. record:ng equipment. phonograph pickups and loud speakers. Use it for checking cape or disc recordings. as a sensitive AC voltmerer, as a high pass noise meter for adjusting tape bias. cutting needle pitch or other applications. Higin and low test frequency ssurce, intermodulation section, power supply and - IC roltmeter a! : $n$ one complere Lnit. Percent intermodulation as diectly read on three caibrated ranges. $30 \% \%, 10 \%$ and $j^{c}$ r full :cale. Both 4 to 1 and 1 to 1 ratios of low to high frequencies easily set up. At this low kit price YOU can enjoy the benefirs of Intermodulation anaiysis fot accurate audio interpretations.

## Heathkit laboratory regulated POWER SUPPLY KIT



MODEL PS 2
SHIPPING WT. 20 LBS.

## s29.5.

New HEATHKIT LAB. ORATORY POWER SUPPLY provides continuously variable regu. lated DC voltage ourput from 160 volts to - 100 solts deperding on load. Patnel terminals sapply separate 6.3 V . AC supply at 4 ampees for filament circuits. A 3 1, 2 " plastic cased panel mounted meter provides accurate metered output for cither voltage of curren: measurements. Exceptionally low ripple content of in 12 é admirably qualifies the HEATHKIT LABORATORY POWFR SUPPLY for high gain audio appications. Icca! for laboracory work requiring a reference volrage for meter calibration or for plotting tube characteristics. In service work, it can be used as a separate variable voltage supply (1) derermine the desirable operating voltage in a specific circuit. Use it as a DC substitution voltage in trouble shooting TV circuits exhibiting symptoms of extrancous undesirabie components in plate supply circuits. En:ire kit, inclucing all 5 tubes now available at this low price.

## The HIEATH COIVPAN MICHIGAN

## whitais wive AMPLIFIER KIT

The new HEATHKIT WILLIAMSON TYPE AMPLIFIER incorporates the latest improvements described in Audio Engineering's "Gilding the Lily." 5881 output tubes and a new Peerless output transformer with additional primary taps afford peak power output of well over 20 watts. Fre quency response $\pm 1 \mathrm{db}$ from 10 cycles to 100 kc . allows reproduction of highs and lows with equal crispness and clarity. Harmonic and intermodu. lation distortion have been reduced to less than $1 / 2$ of $1 \%$ at 5 watts. This eliminates the harsh unpleasant qualities which contribute to listening fatigue. Make this amplifier the heart of your radio system to achieve the fine reproduction that is the goal of all music lovers.

The HEATHKIT PREAMPLIFIER (available separately or in combination with the amplifier kit) features inputs for magnetic or low level cartridges, crystal pickups and tuners, turnover control for I.P or 78 type records, individual bass and treble tone controls each providing up to 15 DB of boost or attenuation. Special notched shafts on preamplifie controls and switches adaptable to custom installation. The preamplifier can be mounted in any position and a liberal length of connecting cable is supplied. No radio experience is required to conseruct this amplifier. All punching, forming, or drilling has already been done. The completc ki includes all necessary parts as well as a detailed step by step construction manual with pictorial diagrams to greatly simplify the construction.

ACROSOUND TRANSFORMER OPTION. If desired, the output transformer use of this transformer permits ultra-linear operation as described in Audio Engineering's "Ultra-Lincar Operation of the Williamson Amplifier.


Heathkit FM TUNER KIT


MODEL FM- 2 SHIPPING WT. 9 LBS.

## \#eathkit high fidelity 20 Watt AMPLIFIER KIT

Feathkit ECONOMY 6 WATt AMPLIFIERKIT


MODEL A. 7
SHIPPING
WT. 10 LBS.
$5 7 \longdiv { 1 5 0 }$

The HEATHKIT Model A-7 amplifier features beam power, push pull output with frequency response flat $\pm 11 / 2 \mathrm{DB}$ from 20 to response fat $\pm 1 / 2 \mathrm{DB}$ from 20 to
20,000 cycles. Separate volume, bass and treble controls. Two input circuits, output impedances of 4,8 , and 15 ohms. Peak power output rated at full 6 watts. High quality components, simplified layour, attractive gray finished chassis, break off type finished chassis, break off type adjustable length control shatts
and attractive lettered control panel.
THE MODEL ATA amplifier incorporates a preamplifier stage with special compensated network to provide the necessary voltage gain for operation with variable reluctance or low out put level phono cartridges. Excellent gain for microphone operation in a moderate powered sound system.

EM tuner. Operate it through your of rue FM own FM tuner. Opy all the advantages of supply to or cadio and enjformer opetated power syonstems. reception. Transforme to all types of audio tubes and simplify connections complete with all 8 tubcion. A The kit is supplied required for constru assembly necessary material requanual simplifies assembly complete instru

The HEATHKIT MODEL A. 8 amplifier kir was designed to deliver high fidelity performance with adequate power ourput at moderate cost. The frequency response is within $\pm 1 \mathrm{DB}$ from 20 to 20,000 cycles. Distortion at 3 DB below maximum power output at 1000 cycles is only $.8 \%$. The amplifier features a Chicago power transformer in a drawn steel case and a Peerless output transformer with outpat impedances of 4,8 and 16 ohms available. Separate ances of 4, 8 , and 16 ohms available. Separate
bass and treble tone controls permit wide range bass and treble tone controls permit wide range
of tonal adjustment to meet the requirements of the most discerning listezer. The amplifier uses a 6SJ7 voltage amplifier, a GSN7 amplitier and phase splitter and two 6L6's in push pull output and a SU4G rectifier. Two input jacks for either crystal or tuner operation. The kit includes all


MODEL A. 8
ShIPPING WT. 19 LBS.
$\$ 2550$ necessary material as well as a detailed step by step construction manual.
MODEL A8-A features an added 6SJ7 skage (preamplifier) for operating from a variable reluctance cartridge or other low output level phono pickups. Can also be used with a microphone. A 3 position panel switch affords the desired input service.
$\$ 35.50$

## Pieathest <br> SUPERHETERODYNE RECEIVER KITS

```
- High goin dual iron core tuned type IF transformers
 - AC transformer operation for safety
 - Continususly variable tone control
 - Siurdy punched and plated steel chassis
 - Ideal for custom installation
 - Eull AVE action
 - Imverse feedback for improved frequency response
 - Xir supplied with all necessary construction material except speaker and
 cabinet. (Available separalely if desired).
```

$4 \begin{aligned} & 5 \text { tube broadcase band } \\ & 550 \text { to } 1600 \text { kc cove }\end{aligned}$ shipping we. ll coverage, Model BR-1 $\$ 19.50$

6 rube sll wave circuit. 3 rabe cos, continuous cov3 ranges, 550 kc to over 20 erage megacodes, shipping wt. 11 lbs .

Model AR-1
$\$ 23.50$


Two excellent radio receiver kits featuring clean design and open layour for simplified construction. Satisfy that urge to build your own radio receiver and select the model which mects your requirements. 3oth receivers feature continuously variable tone control, a radio phono switch and phono input and an $A C$ recepracle for the phono moror. A six inch calibrated slide rule type dial with a 9 to 1 ratio vernier dial drive insures easy tuning.

## SH\|PP\|NGINFORMATION

ON PARCEL. POST ORDERS include postage for weight shown and insurance. (We insure all shipments.) Don't korry about sendirg more than the correct amount - if you send us too much, every extra cent will be promptly returred.

ON EXPRESS ORDERS do not include transportation charges. They will be zollected by Express Ageacy on delivery.

ORDERS FROM CAN.ADA must include full remittance for merchandise.
Orders processed on the same day received. Customers notified of unaroidable delay.
U. S. postal or express monev orders, bank drafts or checks are acceptable. Do not send loose coins or stamps.



[^7]

By GEORGE FLETCHER COOPER

T-HE previous article irdicated how important it was to preserve an accurate balance in the pash-pull stages of an amplifier and described some of the phase splitters which are used, but which fail to guarantee the needed permanent balance. There are two basic ways to solve the problem. One of these will te the subject of this article.
The best way to produce two equal voltages with opposite phases is to pass a current through two ecual resistors in series. If we use the simple equivalent for a tube we have the arrangement shown in Fig. 1. We can match the resistances as closely as we like, and obtain virtually perfect balance. Most of our problems will arise from the difficulty of achieving this ideal circuit when we must add the supply voltages and input for the tube. So long as we are concerned oally with the ideal case we can see that the tube load is 2 R , which should be equal to the optimum load given in the tube characteristics, and the gain of the stage to cach push-pull grid is:

$$
\frac{\mu \mathrm{R}}{\mathrm{R}_{\mathrm{p}}+2 \mathrm{R}}
$$

or half the gain for a single-ended load of $2 R$.

Now let us consider the practical applications of the circuit. Terminal G must be grounded. because that is what the push-pull stage demands. The practical circuit must therefore look something like Fig. 2-a. This, of course, is still a rather theoretical circuit, because the grid of the tube is floating about in mid-air: we proceed to fix the working point of the tube by adding the components $R_{k}, R_{k}$ and $C_{k}$ (Fig. 2-b). These are the standard components for the tube. $R_{k}$ sets the tube to its correct bias, $\mathrm{C}_{\mathrm{k}}$ eliminates the negative feedback caused by $\mathrm{R}_{\mathrm{k}}$ at all frequencies for which $2 \pi f C_{k} R_{k} \gg 1$ and $R_{k}$ is the usual grid resistor, which normally
must not exceed about 500 kilohns for tubes operated with cathode bias.
We can apply the input signal between $X$ and $Y$, provided that the source has no ground on it. For practical purposes this implies the use of an input transformer, giving the circuit shown in Fig. 3, which now includes a decoupling resistor $\mathrm{R}_{8}$ in the supply lead. We can draw the exact equivalent circuit for this arrangement in two clifferent ways, depending on whether we are interested in the lowfrequency or the high-frequency end of the response. For the low-frequency end we have Fig. 4.

## What happens in the circuit

The general form of Ohm's law$\mathrm{I}=\mathrm{E} / \mathrm{Z}$-can be applied to this circuit fairly easily, though the expressions are rather long because they contain nine variables. We can set by straightforward reasoning what will happen, however. At low frequencies $C_{k}$ will no longer act to decouple the cathode resistor $R_{n}$, so that the gain will fall in just the way I described in one of the early articles on Audio Feedback Design. As we usually take a cathode resistor approximately equal to $\mathrm{R}_{\mathrm{p}} / 4$ the gain will fall by about $4-6 \mathrm{db}$ if we use a triode, or 6 db if we use a pentode. This drop applies to the current round the loop, and affects both the push-pull outputs equally: it does not affect the balance of the outputs at all. Notice, however, that this is because we took output $B$ from the top of $\mathrm{R}_{1,2}$, not from the cathode of the tube. By taking output 13 from the cathode we will add a new effect, because as the current drops, due to the feedback, the impedance across which the voltage is taken rises, so that the output voltage at $B$ will not drop as much as it does at $A$.

In the other half of the push-pull drive, the current flows through $\mathrm{R}_{\mathrm{t}, \mathrm{I}}$ and the parallel combination of $R_{s}$ and
C. The impedance thus rises from $\mathrm{R}_{\mathrm{t}, 1}$ to ( $\mathrm{R}_{\mathrm{L}, 1}+\mathrm{R}_{n}$ ), giving, if the current were constant, a rise in response of $20 \times \log \left(1+R_{s} / R_{\mathrm{L}, 1}\right) \mathrm{db}$. This rise in response is not balanced by anything which happens in the $\mathrm{R}_{1,}$ circuit, so that at very low frequencies we have an unbalance of about $R_{s} / R_{1,1}$. This calculation applies fairly well to a pentode, but the unbalance is not so great with a triode, because of the effect of the finite tube impedance.

It is attractive to suggest that we should take $R_{s}=R_{x}$ and $C_{n}=C_{x}$, and derive output $B$ from the cathode. Then the circuit would stay balanced right down to the lowest frequencies. Can we do this? The answer is no. A typical value of $\mathrm{R}_{\mathrm{k}}$ will be 500 ohms (or 470 if you stick to preferred numbers, which make arithmetic so tedious), and Ca can be 100. This gives us ${ }^{11} \mathrm{C}_{k} \mathrm{R}_{\mathrm{h}}=1$ if (1) $=20$ (using (1) to denote 2 if$)$. The characteristic frequency is about 3 cycles per second. We could use an electrolytic capacitor of 100 uf for $C_{n}$, but it is bulky and expensive: we are much more likely to use a 1 -॥f capacitor with $\mathrm{R},=5-10$ kilohms. Remember why we insert this decoupling circuit. We decouple tubes because the plate supply unit has a finite impedance, and the current drawn ly one tube affects the voltage supplied to another. This finite supply-unit imperlance, with its current fluctuations, is in series with $\mathrm{R}_{\text {. }}$, so our elegant calculations on this single stage are vitiated thy the external circumstances. We must just decoupie cathode and plate efficiently.

At high frequencies the circuit takes the form showr in Fig. 5, $\mathrm{C}_{1}$ and C , are the capacitances of the following push-pull stage, and will be equal; $\mathrm{C}_{1}$ is the capacitance from the bottom of the input-transformer secondary to ground, together with the cathodeheater capacitance of the tube. In addition to these there is the important


## every reception area, near or far!

You can depend on Telrex for all your UHF antenna sequirements. The same sterling-quality construction featured in VHF models combined with reliable factory ratings assure antenna satisfaction of every UHF installation. The complete Telrex line for UHF
inciudes famous Conical-V-Beams, Fishbones, Yagis and Bat Wings. There's a Telrex UHF antenna for every area-city, suburban or remote-from-transmitter. When you think o: UHF or VHF-think of Teirex!

Baf Wing Model FOR UHF AND VHF
RANGE-FROM 5 TO 10 MILES


UH Duplex Yagi


## Tetrex

 hURRICANE-BUILT to survive bad weather!Weather durable materials and superb workmanship continue to make every genuine Telrex antenna super dependable under all climatic extremes. You can be sure of your antenna installation, if it's a Telrex!

> "CDNICAL-V-BEAMS" are covered
by Patent No. 23,346 CANADIAN and FOREICN PATENTS PENDING

Clover-V-Beam


UHF AND VHF ANTENNA RANGEFROM 10

Model UHBD
UHF AND
VHF SERVICE

RANGEFROM 10 TO 30 MILES

## Corner Reflector

 SERVICE ONLY
RANGEFROM 10 TO 60 MILES


## UH DUBL

Conical-Y-Beam


FOR BOTH UHF AND VHF
RANGEFROM 10 TO 50 MILES


Fig. 1-The best type of phase splitter, shown above, is simply two resistors with their junction grounded. The voltages have to be equal and opposite as long as the two resistors maintain their equal resistance. This circuit also has some practical applications.


Fig. 2-Two steps toward making a more practical circuit from the one shown in Fig. 1 above. A tube is inserted between the two resistors to supply the necessary current through them and to modulate that current as desired.


Fig. 3-A practical form of the circuit. Transformer input solves problems of providing a grid return path and of balancing the input to ground.


Fig. 4-How the circuit of Fig. 3 appears to low audio-frequency signals.


Fig. 5-This is the equivalent circuit of Fig. 3 for signals at the high end.


Fig. 6-By grounding one side of the input and using a blocking capacitor, we can abandon the unpopular transformer input. This reduces the gain because of degenerative cathode feedback.
plate-grid capacitance, which provides a "Miller" capacitance in parallel with that of the grid and cathode and affects the overall frequency response. It does not have any effect on the balance, however, so we need not discuss it here. We can concentrate our attention on the unbalance effect produced by the capacitor $C_{4}$.

We can get an idea of what this capacitance will do by putting in some numbers. Typical values of $R_{L, 1}$ and $R_{1,3}$ will be 50 kilohms, so that for a top frequency of 16,000 cycles, a capacitance of $200 \mu \mu \mathrm{f}$ will be tolerable, from the frequency-response point of view. If feedback is being applied round this stage, the phase shift will be an embarrassment, but in any event we shall be using a modification which eliminates some of this capacitance.

## The practical applications

We very rarely want to use an input transformer, and the reader may ask why we have spent so long considering this circuit, which in spite of its very good balance presents difficulties in connecting the input. The answer is that we can apply our analysis to other arrangements which have a grounded input. Knowing that we have a good arrangement so far as the push-pull character is concerned, we can press on to an examination of other input circuits, without having to worry about the output circuit.

Fig. 6 is a conventional arrangement, in which a blocking capacitor has been added in series with the grid circuit. So far as $B$ is concerned, this stage is just a cathode follower and since $R_{\mathrm{I}}$ is large there will be slightly less than unity gain from the input to output B. As we have already shown, the phase-splitter is well balanced, so that in this form we need to apply to the input just about the same voltage as each of our final push-pull tubes will require. We can omit $C_{h}$, because


Fig. 7-This more refined circuit overcomes the reduced gain by taking advantage of the cathode-follower circuit's high input impedance. By using a pentode in the first stage, the combined gain of the two stages is excellent.
we have already so much feedback from $R_{\mathrm{K}, 2}$ that a little extra will not make any differeace.

## Two important problems

Before adding some notes on the design of this circuit, two matters have to be discussed. The cathode of the tube is suspended, like Mahomet's coffin, between heaven and earth. Usually it will be at least 50 volts above ground, and we must take care not to let it exceed the maximum voltage given by the tube maker, which is often 90 volts. When a separate heater winding can be provided for this tube there is no problem at all, but I prefer to moor my heater center-point to a +20 -volt point obtained by tapping with high resistors across the plate supply. This not only helps to reduce the heater-cathode voltage in this phase-splitter stage, but also reduces the hum in earlier stages of the amplifier.

The second point becomes important only in advanced feedback circuits, or if the following tubes draw grid current. At B, the apparent generator impedance is that of a cathode follower, and is low: at $A$, the impedance is that of a tube with a great deal of current feedback, and is very high.

The design conditions are fairly easily studied. We take our selected tube, say one-half of a 12AT7, and choose the bias resistor, 500 ohms, and the plate load, say 50 kilohms. This 50 kilohms we split in two, giving 25,000 ohms for each of the resistors $\mathbf{R}_{\mathrm{L} 1}$ and $\mathrm{R}_{\mathrm{t}, 2}$.

Applying this load line to the tube characteristics with a supply of 250 volts we get a current of $3-4 \mathrm{ma}$, and a bias of $1.5-2$ volts. The cathode is then between +75 and +100 v , and the stage gain will be
$\frac{\mu R_{\mathrm{L}, 1}}{\mathrm{R}_{\mathrm{p}}+(\mu+1) \mathrm{R}_{\mathrm{r}, 2}} \bumpeq \frac{40 \times 2,500}{15,000+(41 \times 25,000)} \bumpeq 0.98$

## Ifs Newl

Now
finally found
antenna we ha Servicemen the answer
job because itve ever hadell us itser in your get before. it pulls in It really the best

Fringe Area Headang's
Here's How V. 8 ANTENNA Solved Mr. Harfong's

$$
\begin{aligned}
& \text { Now, we } \\
& \text { V8 antem } \\
& \text { ntenna } \\
& \text { ob becau } \\
& \text { et before }
\end{aligned}
$$

Try One On Your
Toughest Location

$$
d r h / i w
$$



# 'SCOPES ARE "GOLD MINES" 

## ... when you know how

to use them fully on all types of service jobs


AND THIS BOOK
MAKES IT EASY TO LEARN ALL ABOUT THEM!

No question about it! 'The rathode ray oscilloscope is the handiest, mont useful instrment in radio-TV servicing today. sertiremen who master it lots faster-and are headed for even bigger things in the future!

## MODERN OSCILLOSCOPES AND THEIR USES

of Allen B. Du, What Iatmratories. Inc
$\checkmark$ When, where, why and exactly how to use them

$\checkmark$ How to interpret patterns<br>$V$ How to handle tough jobs easier and faster

Nom the oscillosecper wan' "slumb" som- not fammos hmok! It contans mo mwohed mathematics -mo puzzling and complieated dizenssions. Instead. it goes right to work explaining owrilloscopes fully and showing yon mactly how to bse thena in lat, work and on AM, F゙M and TV service wor:-from locaring troubles to landling tongh real wmment jols. Each operation is carefally explained inchanden determining where and :ww wor the scope; making fommections, aliusting ritronit remmoments, setting the combrols and matavaing patterns fint and accurately. 370 illustration, intudume derem- of pattern photon make thing dombly cleal'.

No other type of specific service method training con meon so much to you in terms of it today. See for yourself how this book can help you-before you buy!

## READ IT 10 DAYS . . , at our risk:

Dept. RE-13 RINEHART BOOKS. Inc.
Technical Division.
232 Madison Ave., New York 16, N. Y.
Gelld MIODEIRS OS('ILIOSC'OPES ANI)
 If 1 decide to keep the look, I will then remit \$6.tan plus a few cents pootage in full pasoment. If not. 1 will retura book poat matal and one you mothins.

Addres
City, Zune. Ninte
if beow is

The input impedance (by virtue of the negative feedback caused by the cathode resistor') is very high indeed. This fact enables us to get adequate gain in a complete amplifier in spite of the wastage in the phase-splitter. Let us see why we have such a high input impedance. Suppose that we apply 1 volt positive to the input terminal: the cathode will rise to 0.98 volts, leaving only 0.02 volts across the grid leak. If this is 100 kilohms, the current through it will be $0.2 \mu \mathrm{a}$. At the input it will appear as though 1 volt has produced $0.2 \mu$ a current, so the apparent input impedance will be 5 megohms. We can use this very high resistance as the load for a pentode amplifier stage and obtain a correspondingly high increase in its voltage gain. This will make up the loss of gain in the triode phase splitter, because the two stages together would hardly have shown such a high gain normally, anyway.

## A more refined circuit

Fig. 7 shows the way in which the circuit is arranged. The supply to tul)e 1 passes through $R_{i}, R_{z}$ and $R_{t}$ in series, with $R_{1}$ as the useful part of the load. The load on tube 1 is $R_{1}$ in parallel with $R_{i}$ multiplied by the feedback effect in tube 2. The impedance in shunt across X and Y is of the order of megohms, so that tube 1 has a very high gain; so high indeed that we can use the simple $\mathrm{gmR}_{\mathrm{r}}$. expression for the gain of a pentode ( $\mathrm{R}_{1}=\mathrm{R} 1$ ). $R_{z}$ is needed to prevent $Y$ from being grounded by the decoupling capacitor $\mathrm{C}_{\mathrm{a}}$, and $\mathrm{R}_{\mathrm{n}}$ is, for a.c., in parallel with $R_{1}$, the cathode load resistor of tube 2. Since $R_{1}$ settles the voltage at which the cathode is set, and the steady current conditions in tube 2, it cannot be made too large. We must therefore reduce the value of the plate load of tube $2, \mathrm{R}_{\mathrm{i}}$, and tube 2 will not be operating under ideal conditions. The values shown in Fig. 7 represent a reasonable compromise, however. (The values are all even numbers-the nearest preferred values will work in a practical circuit.)
Perhaps the most serious disadvantage of this circuit is the fact that the gain depends on the amplification factor of a pentode, a number which you never see in the hooks. Just how constant this quantity is I do not know.

We can, of course, stabilize the gain of the complete amplifier by using negative feedback. but here we meet another difficulty. The plate capacitance of tube 1. together with the capacitance of the unit to ground, will be in parallel with the very high pentode plate load. Perhaps with care these can be kept down to $20 \mu \mu \mathrm{f}$ but with a 5 -megohm effective load the characteristic frequency is 1,600 cycles. This means that the response will be 6 db down at 3,000 cycles, so that the feedback will only have half the expected effect on the third harmonic of 1,000 cycles, while as this stage alone is 18 db down at 12,000 cycles we shall need a relatively large feedback just to flatten the response.

This last analysis is over-developed, if you examine it critically. The average small pentorle has a plate impedance of about 1 megohm, which is in parallel with tne load, so that this alone shifts the characteristics frequency up to about 9 ke . Furthermore, there is no gain to be olstained by pushing up the load from say 2 megohms to 5 megohms. We shall probably do better, indeed, to drop $R$, to 33,000 , get more current through our tube and thus increase its amplification factor, at the same time widening the response slightly. We shall still get about 60 db from our two tubes, so that if the final stages need 20 volts drive we can operate with 20 mv input. But this is neglecting the gain reduction caused by the negative feedloack which I hone all my readers use lavishly.

The circuits shown in Figs. 6 and 7 are two of the most important phasesplitter circuits. They provide a very well balanced output, are almost independent of the characteristics of the phase-splitter tube over the range of commercial tolerances, and involve no trick circuitry. The only disadvantages are that the tube must have good heater-cathode insulation (both to prevent breakdown under the voltage stress and to prevent the leakage of 60 -cycle hum into the cathode resistor') and that one tube must provide sufficient swing to drive both the push-pull grids.

Thus if each grid requires 20 volts, the tube must be capable of giving 40 volts under normal amplifier conditions. When driving class-B amplifiers, such as the EL;34 stage I described some time ago, which needs 40 volts peak for each grid, this demand for 80 volts peak is too much for a small tube. Some designers have therefore followed a phase-splitter of this type with a push-pull intermediate driver. I am not enamored of this solution, which puts in an additional double triode to do work which could be done better by a single tube elsewhere in the circuit.

In the article which will follow this I propose to discuss the other main type of phase-splitter. As I said in the first article, this obtains its balance by using very large amounts of negative feedback. It must not be confused with the circuit discussed above, in which the negative feedback is an unwanted result of our desise to ground one side of the input. In the circuits which follow, the negative feedback is deliberately introduced to force the two outputs to halance. But that will be another story.

END


# Booster periormance depents on noise figured 

 Gain alone is NOT enough!
## CHANNEL MASTER

## a new kind of SIIMGLE CHANNEL TV BOOSTER

 with the
## Highest gain

Lowest noise in booster history!

- GAIN: 12 Times (22 DB), low band;
8.5 Times (18.6 DB), high band.
- NOISE: 4.5 DB, low band; 6.5 DB, high band.
- The only single channel booster with CASCODE-type CIRCUIT - Uses famous low-noise 6BQ7 tube.
- Double-tuned transformers for peaking both video and sound.
- Antenna by-pass switch.

Adual Perfermance Figures prove that Katy-B tops 3 leading boosters!

	KATE-1	Booster A 1	Bowsiter 8	Bobster C
Gain   (fight no. preferred)	8.5 Times	4.2 Times	5.9 Times	6.2 Times
Neise (low no. ppeferred)	6.5	14.3	8	9.1
VSWR (low ratio preferred)	1.5:1	$9: 1$	2.5:1	3.8:1
Balance-to-Unbalance Ralio   (high rotio preferrec)	10:1	1.4:1	5.8.1	7.1:1
Typical Comparison on	annel 12			

FREE: Educational new bookfer-
"The 4 Stundord's of Bcoster Performonse."
Ask your Cbannel Moster distributor
for your ropy.
$\$ 2440$ he set and booster. The amount of noise present depends primarily upon the first tube in the receiving system.

This means 1hat where a booster is used, the amount of "snow" in the picture depends almost entirely upon the performance of the booster, and the tube(s; it uses. Most single channel boosters bn the market today have poorer Noise Fïgures shan modern TV front ends. Therefore, while these boostet's mary contribute gain, they actually deteriorate picture quality by adding noise.

## Katy-B is the first

 modern single channel booster. It employs the famous, low-noise 6BQ7 tube in a Cascode-łype cirćuit, which gives the lowest Noise Figure and highest gain ever obtained in a television booster.
# Electronic 

MUSIC...the esisest way

PART II

NOW FOR some of the constructional features of the Ondiovox. The parts most likely to be unfamiliar are the keyboard and the metal-tubing base pedestal, but neither of these should present any great difficulty if you can use simple woodworking tools and an electricians' "hickey".

Taking the keyboard assembly first, you can get a general idea of the layout from Photo A. Details are shown in Fig. 1-a and 1-b. The entire assembly was mounted on a steel foundation
plate 17 inches long, 3 inches wide, and $1 / 4$ inch thick. This slab just happened to be available, and a shallow metal radio chassis could be used as well. The base plate is just long enough to accommodate the 21 hand-made keys. These were cut from oak strips, but there is no reason why you can't use a section of an old piano or organ keyboard. The base plate or chassis is simply made long enough to accommodate the over-all width of the 21 keys.

The key switch contacts are mounted side by side on a full-length bakelite

By V. FASTENAEKELS



Photo A (upper left)—Keyboard construction. Photo B (upper right)—Keyboard and chassis assembly. Large bulb is European neon lamp. Photo $C$ (lower left)-Complet ed Ondiovox. Photo $D$ (lower right)-Expression control.

# Get More Jobs Done In A Day 

There's no profit in sets waiting to be repaired. Profits depend on lurning out more jobs . . and cutting down on time wast. ing call-backs.


Midgetrols ${ }^{\text {(2) }}$ are designed for fast, easy installation in any set, TV or radio.

Round tubular shafts can be cut arcurately and quichly... fit split-knurl or flatted-type knobs.
$A C$ switches can be attached instantly without dizaszem. bling the control.

Their unique design simplifies inventory problems. . . always available from your Mallory Distributor.
Midgetrols are engineered to duplicate the precise characteristics of original equipment. They will give equal . . . and often better performance and life than the original control.
Save time . . . find extra minutes to turn out more finished jols. . . . be sure of dependable, precision quality for all your TV and radio repairs... ask for Mallory Midgetrols the next time you call your distributor.

Another time saver. Get your copy of the Mallory Control Guide. It is a complete cross reference between set manufacturers' part numbers and the equivalent Nallory control.

# CRYSTAL MARKERS for SWEEP GENERATOR 

## By BRUCE MORRISSETTE

## This simple marker

 generator converts an inexpensive sweep generator into a precision instrument.

Photo A -'The calibrator before wiring.

SWEEP generators for aligning wide-band i.f. amplifiers in television and FM sets usually need highly accurate marker signals or pips for identifying frequency points along the response curve. Accurate markers are especially important for peaking individual coils and setting sound and adjacent-channel traps. Intercarrier receivers also require an accurate $4.5-\mathrm{mc}$ unmodulated signal for aligning sound-take-off windings and discriminators.

The two most common sources of marker signals for sweep alignment are the built-in marker (either a calihrated tunable oscillator, or a passive, ahsorption-type network), and the external marker oscillator or signal gencrator. The absorption-type marker is useful for locating points along the response curve but cannot serve as a single-frequency r.f. source for aligning individual stages. A variable marker oscillator, internal or external, not only will mark points on the curve but may be used to tune individual coils and traps.

Both types leave much to be desired with respect to accuracy of calibration. Most modern i.f. systems are staggertuned at various fractional frequencies like $25.3 \mathrm{mc}, 23.1 \mathrm{mc}$, and 21.7 mc . Even the best tunable marker oscil.ators and signal generators may he off calibration by as much as 0.5 mc , making it practically impossible to align a set
exactly at the specified frequencies. A few of the more expensive TV generators are equipped with crystal calihrators which give accurate marker pips every 2.5 me or 5 me along the curve.

The low-cost, easy-to-construct unit described here not only gives accurate merkers at 0.5 -me intervals, but provides a $4.5-\mathrm{mc}$, crystal-controlled, pure r.f. signal for intercarrier alignment. The wide range of marker pips is adequate for almost any servicing or design need, and all have the high accuracy and stability associatel with a well-designed crystal oscillator.
Although this marker oscillatormixer was constructed to fit a Heathkit model TS-2 sweep generator, it can be installed in almost any other make or model, or built as an independent unit. The choice of crystal frequencies and the use of either separate or mixed outputs gives the unit unusual versatility. It consists of separate $4.5-\mathrm{mc}$ and 5 -me erystal oscillators. Either crystal or both may be disabled by switching ofi the B supply to the appropriate oscillator, and each section has its own output-control potentiometer. A mixeramplitude control adjusts the combined outputs of the two crystals to any desired level, and a simple mixing network added to the sweep-generator combines the sweep signal and the crystal-marker frequencies at the sweep output terminals.

## Circuit details

Fig. 1 is the schematic diagram of the dual-marier unit. Each section of the 6 J 6 is connected as a Pierce crystal oscillator. Using r.f. chokes rather than resistors in the plate circuits increases the output on the higher harmonics essential in this application. Amplitude of oscillation is controlled by individual potentiometers which vary the B plus voltage to each plate. Switches on these controls tarn the individual oscillators off and on, by opening or closing the $B$ plus line. With a single crystal switched on, the cathode potentiometer (R1) functions as the load resistor of a conventional cathode follower, providing the correct low-impedance match for connecting the marker in parallel with the output of the sweep generator.
When both crystals are operating, the 6 J 6 functions as a mixer. since the two triodes have a common cathode resistor. The output contains the frequency difference between the two crystals ( 0.5 mc ) and harmonics of 0.5 mc extending to 50 mc and even higher. Sum frequencies also appear in th combined output ( 9.5 me and its harmonics), but they are superimposed on $0.5-\mathrm{me}$ pips. The 0.5 -me pips are given uniform amplitude by adjusting the relative outputs of the two crystal oscillators with potentiometers R2 and R3.
The height of the pips on the alignment curve itself is controlled by



Fig. 1 (left)-Schematic of the dualfrequency calibrator. Operating power may be obtained from the sweep generator or from the power supply in Fig. 2. Fig. 2 (right)-Dower-supply schematic.


## Low-loss tubular twin-lead <br> for better reception on VHF and UHF



SEAL THE ENDS IN 60 SECONDS Simply heat with match or cigarette ligh ${ }^{\circ} \mathrm{er}_{\text {. }}$ then squeeze ends together with pliers or knife blade.

USE YOUR REGULAR HARDWARE Synkote OVALTUBE fits into the usual slotted stand-off insulator quickly and easily. No special threading, no special hardware required.


Here is a unique, practical down-lead that minimizes the effects of dirt, salt air and moisture on TV picture quality, Smooth, rounded exterior - no place for dirt to accumulate. Fits the same hardware and handles as easily as ordinary twin-lead, but gives excellent, trouble-free reception under all weather conditions!

Synkote OVALTUBE turin-lead is available now. Ask your Plastoid representatice . . . or mail coupont today.

cathode-potentiometer R1. (Like all marker signals, they should be kept at the lowest possible level to avoid distorting the response curve. About oneeighth to one-quarter inch is right for
the average pattern on a 3-inch or 5 -inch oscilloscope.)

The $50-\mu \mu f$ ceramic capacitors across the grid resistors give added reliability of operation in the Pierce circuit. Plate-


Photo B - Underchassis view of the completed unit. Miniature capacitors and tube reduce the overall dimensions.


Photo C-A top view of the finished calibrator. The output controls and on-off switches are at the ends of flexible leads.

Photo D (below)The marker unit installed below the chassis on the panel of a Heathkit model TS-2 sweep generator.

supply decoupling is accomplished by resistors R4 and R5 and capacitors C1 and C2. Capacitors C3 and C4 isolate the crystals from the d.c. on the oscillator plates. C5 couples the output from R1 through a 100 -ohm isolating resistor, which reduces interaction between the marker circuit and the sweep gener sor. The supply voltages for the marker unit are taken from the sweep generator, or the small power supply shown in Fig. 2 may be added. The total drain with both crystals functioning is less than 5 ma.

## Construction

The photographs (A, B, and C) show the unit during and after construction, and $D$ and $E$ show the unit mounted on the front panel of the Heathkit TS-2. The small aluminum chassis $(13 / 4 \times 31 / 8 \times 1$ inch) is a standard commercial type and is supported firmly by the shaft bushing of control potentiometer R1. An aluminum bracket may be added if desired.

The photos show the layout of the tube socket, crystal holders, "outboard" tie-points for the r.f. chokes, and the triple-0.1- $\mu \mathrm{f}$ bathtub capacitor. Potentiometers R2 and R3 are mounted on the sweep-generator front panel, the $4.5-\mathrm{mc}$ control at the left and the 5 -me control at the right. The parts values in the output circuit should be followed closely, since they were chosen to reduce interaction between the crystal markers and the sweep generator to a minimum. The only moderately expensive items are the crystals. A wellknown mail-order house (Allied Radio) offers Bliley 5 -me crystals at $\$ 2.80$ and $4.5-\mathrm{mc}$ crystals for $\$ 3.25$, bringing the total cost of the unit to about $\$ 10.00$.

## Using the marker unit

Testing and using the complete unit involves straightforward procedures. It is assumed that the reader is already familiar with the technique of applying the sweep generator to the mixer or first i.f. grid; with connecting the oscilloscope across the video-detector load resistor (preferably through an isolating resistor of about 25,000 ohms); and with supplying the scope sweep with synchronized horizontal input from the sweep generator.

First, connect the sweep generator with the built-in marker unit to a television or other wide-band-i.f. amplifier known to be approximately in alignment, or at least capable of passing the i.f. signal. Phase the sweep response curve on the scope screen ol throw the blanking control-if one is provided-to the ON position for singletrace operation.

Adjust the curve to normal height with the sweep-generator attenuator, and switch on the 5 -me crystal. With cathode control R1 well advanced, rotate output control R3 until a 5 -me harmonic pip in the pass band of the i.f. strip appears on the curve. Most television-i.f. amplifiers include 25 mc somewhere near the flat top of the curve (see Fig. 3). Keep the pip ampli-

RADIO-ELECTRONICS


ULTRA Q-TEE Suburban Operates similar to Ultra PeTe (above) but is designed for all-channel VHF and fringe area UHF.


## ULTRA P-TEE

The sensational primary area all-channe! UHF.VHF antenne that employs patented a printed
circuit channel separators and uses only one transmission line.

UHF COLINEAR High gain broad band fringe
area UHF antenna. Four mod. area UHF antenna. Four mod. els cover entire in side-by-side. Also available in side-by-side
array with special stacking kit.


UHF LONG JOHN VAGI <br> \section*{don't be
a victim of <br> \section*{don't be
a victim of <br> <br> don't be
a victim of <br> <br> don't be
a victim of <br> <br> Antennitis*} <br> <br> Antennitis*}
ragi for both primary and fringe areas. Also available in twelve-element Long Long John with fiberglass boom.


UHF "Y"
An all-channel primary area UHF antenna. Provided either plain or with Mighty Match for use in combination with present VHF antenna, using single transmission line.


DIRE OTMVIV

## With <br> Be Sure wite mine

 parbomanace provenALL-CHANNEL Q.TEE The brilliant all-channel VHF performer with patented printed circuit channel separa. tors. Also may be stacked for additional gain.


sC MAGI
The original, most popular and most powerful five-element vagi. Also available in new low priced DC series.

LONG JOHN
The original eight-element high gain single channel ragi. Also the super high gain twelve. element Long Long John. Both series also available with econ. omy-priced Delta Match.


FREE!
UHF ANTENNA GUIDE
Already in its second printing. this authentic guide to UHF antenna systems tells "how, what and where" for every area.


Only VEE-D-X offers you a truly complate line of performance-proven antenner and accessories for every area-every reception conditionevery possible combination of VHF and UHF stations.
MIGHTY MATCH MM-30
A small device destined to play a mighty role in combingwith with a single transmission line. Entirely automatic in opera-


* Antennitis-o present day epidemic of needless confusion concerning UHF-VHF antenna installations.

THE LaPOINTE - PLASCOMOLD CORPORATION - ROCKVILLE, CONN.
$\qquad$
$\qquad$
CITY. . . . . . . . . . . ZONE. . . . STATESend UH Antenna GuideSend complete VEE-D-X catalog



BURSTEIN-APPLEBEE CO.
1012-14 McGee St., Kansas City 6, Mo.

- Send Free B-A Catalog No. 531. $\square \mathrm{My}$ order is sttached for items from below \$........................enclosed.



12-TUBE FM-AM CHASSIS COMPLETE
Here at a Big SAVING you get a complete celebrated make AM-FM Radio Chassis for modernizing old sets, for new custom installations, Luilt-ins, etc.
Top make latest dcsign, with built-in preamp for Phono operation with cither reluctance or crystal type pick-up. Tunes standard hroadcast 550 to 1700 KC and FM 88 to 108 MC .
Wide range audio response (push-pull 6V6 output) and bass boost tone contrul. Tubes: GIBE6, 2-613A6, 2-12AT7, 2-6SQ7, 6SH7. 6AL5. 2-6V6GT and 5Y3GT rectifier. Attractive lighted slide rule dial.
Supplied ready to operate. complete with tubes. antennas, escutcheon and hdwe. for mtg. in a table or console cabinet, built-ins. etc. Chassis size $133^{\prime \prime}$ wide $\times 9^{\prime \prime}$ high $\times 9^{\prime \prime}$ deep. Cutout required for dial escutcheon $7 \% \times 2 \mathrm{~N}^{\prime \prime}$. Operates on 115 V 60 cycle AC. Output impedance 3-4 ohms. for any PM or Co-Axial peaker.
wt. 20 lhs. onty................. $\$ 56.88$
No. 31118. onty
No. 31 B18. ONLY
combination deal $\$ 92^{88}$


Consists of above Chassis, a top make \$51.50 List Value 3 Speed Changer with GE Variable reluctance turnabout Cartridge and a $\$ 32.50$ reluctance turnabout Cartridge
List
DEAL NO. 31A273. Shpg. wt. 38 lbs \$203.50 List Value.
\$92.88

## 6AK5 TUBES



Made by Sylvania and bears the name "Standard" because they were originally intended for use in Standard Boosters-otherwise the identical 6AK5 you would obtain if buying tubes bearing the Sylvania name and for which you pay up to $\$ 2.06$ Net Each (List Price $\$ 3.90$ Ea.). Here you get 6 for little more than the regular price of 2 and believe us-they are perfect-newin Radio. TV. Boosters, etc.
No. 70A98. Pkg. of SIX 6AK5
$\$ 4.79$
Sylvania Made Tubes, Only.

## meluea allowance for postact <br> aLL oveitharmine terumpes.

BURSTEIN-APPLEBEE CO. 1012-14 MLGEE ST. KANSAS CITY, MO.


Photo E-Panel of the modified sweep generator showing the added marker oscillator controls.
tude at a minimum; too much signal from the marker will distort the curve.

Now turn off the 5 -me crystal and switch on the $4.5-\mathrm{mc}$ section. The same amplitude-regulating procedure (this time with R2) will give a pip at any harmonic of 4.5 mc which lies in the i.f. pass band. In ordinary TV receivers, the 22.5 -me pip will be prominent on the curve. Well-designed wide-band i.f. amplifiers will also show the next harmonic pip at 27 mc (see Fig. 4).

If both harmonic pips of the $4.5-\mathrm{mc}$ crystal are visible, the bandwidth characteristics of the amplifier can be seen at a glance, since the separation of the two markers is the $4.5-\mathrm{mc}$ difference that separates video and sound carriers, and which is fundamental to the design of ideal i.f. circuits.
When each crystal is oscillating satisfactorily, as indicated by its harmonic pips, switch them both on. Adjust contrals R2 and R3, and the cathode control R1, to produce a line of uniform markers of convenient height, each of which is separated from the next by the crystal diference frequency of exactly 0.5 mc . The response pattern should then have the appearance of Fig. 5. Output control R1 should be used to adjust the amplitude of the $0.5-\mathrm{mc}$ pips with respect to the alignment curve.

The 0.5 -me pips may be identified by noting the nearest $r$-ference pip from either the $5-\mathrm{mc}$ or the $4.5-\mathrm{mc}$ crystal, and counting the order of the $0.5-\mathrm{mc}$ pip in question from that point. For example, the first pip above 25 mc would be 25.5 mc , the second, 26 mc ; the first pip below 25 mc is 24.5 mc , the second, 24 mc , and so on.
Some of the newer i.f. systems will need a $45-\mathrm{mc}$ pip as a refercnce point. Since any television-i.f. response curve must have a bandwidth of about 4.5 mc , there will always be a 4.5 - or 5 -mc reference point on the curve.
In the Heathkit and similar instruments the built-in absorption marker can be checked against the 4.5- and $5-\mathrm{mc}$ pips and then used to identify the value of a $0.5-\mathrm{mc}$ pip, although its
accuracy without the crystal-marker guide is insufficient for precise work. Of course, an external signal generator or other active marker device may also be included in the setup, especially when it is desired to set such a device to some fractional frequency, as discussed earlier. Since there are no tuned circuits to adjust in the crystal-marker unit, its accuracy is limited only by the precision of the crystals used (in this case $\pm .02 \%$ ).

In testing or aligning an i.f. amplifier, turn on the 0.5 -me pip series as soon as the response curve appears. Bandwidth between any two critical points can be determined almost instantly. The point at which the picturecarrier should appear, as shown in the service information for the set, is located by counting pips or running the tunable marker along the pips. If the picture carrier is not at its proper position (usually exactly halfway up on one side of the response curve) the i.f. stages must be adjusted to correct the misalignment. The vestigial-sideband transmission employed in television requires that modulating frequencies extending approximately 1 mc above and below the video carrier be amplified by the same amount as the higher-frequency villeo components for which only one side band is transmitted.

The sound i.f. carrier point, on the other hand, must be almost at the bottom at the opposite end of the curve to avoid sound interference in the picture, and to minimize 60-cycle sync buzz in intercarrier receivers. Many of the better intercarrisr sets have a "sound shelf" or flat portion near the bottom of the curve for the sound i.f. carrier. Ordinary marker systems cannot be relied on to identify this point without significant error, but the marker pips from the crystal unit will locate it exactly.

With the sweep generator on standby, the output of the 4.5 -me crystal can be used for intercarrier sound alignment. (The 5 -me crystal is turned off during this operation.) Service manuals explain the manner in which the


CBS-HYTRON IS FAMOUS...
"EASY TO SELL. The magic letters "CBS" are plugged for you on racio and TV station breaks .. . 102 BILLION times a year! CBS is known and respected by all your customers. CBS-Hytron is the profitable brand with endless sales assistance.

3. CBS-HYTRON LEADS IN TV

TUBES. You know them. CBS-Hytron TV originals: $1 \mathrm{AX} 2,1 \mathrm{X} 2 \mathrm{~A}, 6 \mathrm{BQ} 6 \mathrm{GT}$, 12A4, 12B4, 12BH7, 12BY7, 12BZ7, 25EQ6GT, and the original rectangular 16RP4. Even CBS-Hytron standard TV tubes are designed for-TV...tested-for-TV .. to give you peak performance anc profit.

## 5 CBS-hYtRON IS MATCHEC.-TO.

 THE-5ET. Combined engineering skills of leading set makers and CBS-Hytron work hand in glove for you. CBS-Hytron tubes are originally set-engineered right into the sets of 9 out of 10 leading set manufacturers. No wonder CBS-Hy tron is your logical matched-to-the-set replacement tube.IT PAYS TO BE FUSSY! Just any standard brand won't do. If you want: Trouble-free, advanced performance. Maximurn customer satisfaction. Minimum call-backs. More profit. Five big reasons point the way: Insist on CBS-Hytron!


This latest innovation in all channel antennas consists of Rytel's superior VHF antenna plus the new DOUBLE-O UHF design which showed such excellent results in Portland, Oregon tests, outperforming all other UHF models. Pick the stand-out performer to satisfy VHF customers and bring in the new business that UHF television broadcasting will mean.
Due to the variance in space required between UHF and VHF, it is advisable that the VHF be stacked in the conventional manner with the. UHF stacked as shown. Your distributor can supply technical information.

## MODEL ROV-I-A skillfully-engineered

 VHF antenna including:New type head made of latest "high impact" plastic; will not break, crack or swell. Unique locking design with flat metal strap to insure complete inetal-to-metal contact. This means 300 times more effectiveness in electric contact, superior mechanical gripping power.
Special locking of twin leads before attaching to terminals which eliminates breaking loose of leads.
Reinforced elements with closed ends.

MODEL RDO-14-83-The new DOUBLE-O for UHF may be ordered as a separate for UHF may be orde
unit. Features include:
2 circle antennas fed 90 degrees out of phase with a gain of 3.8 db , plus 1 db gain over a single dipole in each of 2 circles for an overall gain in forward direction of 5.8 db .

The Double-O uses air as the dielectric and is supported at a current node (ground potential).
Greater directivity along a horizontal plane. Low pickup response in vertical directions. Noise and multipath reflections cancelled out at feed-point.


RYTELELECTRONICS MFG. CO. 9820 Irwin Avenue • Inglewood, California

Also connector clips, impedance matches, tube reactivätors, tube-pullers, etc. Over 700 Rytel distributors in the United States. Write for further information.
sound-take-off coil and the FM-detector-transformer primary and secondary are to be peaked with the $4.5-\mathrm{mc}$ signal. The precision required in "his operation is shown in the following statement from an Admiral service manual (19A1): "Before proceeding, be sure to check the signal generator used in alignment against a crystal calibrator or other frequency standard for absolute frequency calibradion at the $4.5-\mathrm{mc}$ point. Accuracy required within one kilocycle." The 4.5-me signal from this dual-crystal unit has the required accuracy (. $02 \%$ of $4.5 \mathrm{mc}=.0002 \times 4,500,000=0.9 \mathrm{kc})$ and eliminates all need for additional equipment or special frequency checking in this important operation.

## Finding fractional frequencies

For extreme precision in tuning individual i.f. coils and traps, or in experimental design work with wideband television- or radar-i.f. amplifiers, this


Fig. 3-Typical i.f. response curve with $\mathbf{2 5 - m e}$ marker pip from crystal calibrator.
unit allows the technician or experimenter to set an ordinary tunable marker generator to hair-line frac-tional-megacycle values. Suppose a certain i.f. stage must be peaked at exactly 22.3 mc . An ordinary signal generator set at this frequency may be putting out a signal anywhere be-


Fig. 4-Two marker pips from the $4.5-\mathrm{mc}$ crystal show i.f.-amplifier bandwidth.
tween 22 and 23 mc . But If the output of this external generator is applied to the circuit under test along with the sweep and the $0.5-\mathrm{mc}$ pips from the crystal oscillator-mixer, the tunable marker pip may be set visually at a point between the 22.0 - and the 22.5me crystal pips corresponding in frequency to 22.3 mc . This can generally be done with very great accuracy.


Fig. 5-With both crystals in operation the over-all response curve shows accurate marker pips every half-megacycle.

This dual crystal marker unit installed in your sweep generator will convert it into an instrument of laboratory precision at the cost of about ten dollars and a few hours construction time.

END


I'm sure proud of my CRESCENT SCHOOL certificate ... now I can really start on a big career!



$\square$
Approved under the G.li. Bill, CRESCENT SCHOOL has trained thousands for BIG careers in the fost-growing TELEVISION industry


## ACT TODAY to start on a profitable career in TELEVISION!

Get your sample lesson $B=$

## CRESCENT SCHOOL <br> Depr.EI

500 Pacific St., B'klyn 17, N. Y.
Sirs: Rush your FREE sample lesson and full details about the CRESCENT SCHOOL Course-at no obligation to mel $\square$ Home Study Course $\square$ Residentiol Course
NAME
ADORESS
CITY
2ONE
STATE


## Model 670

Accurate television service requires a GOOD 'Scope. This HICKOK 670, designed with D. C. amplifiers provides excellent square wove response on both high and low frequency. The extra sensitivity in this HICKOK 670, properly shows the response curve, even when TV receiver is far out of alignment.

## Look At These

## FEATURES:

- Wide bond vertical amplifier-flat to 600 KC, within 3 db , usable to beyond 5 MC.
- Horizontal amplifier 0 to 250 KC.
- Astigmatic focus control provides new standard in trace sharpness.
- Excellent square wave response on both high and law frequency.
- Reversing switches for both horizontal and vertical deflection.
- Fixed sweep frequency for accurate viewing of TV wave forms 30 and 7875 cycles.
- Recurrent linear sweep 3 cycles to 50,000 cycles.
- Direct coupled, balanced (push-pull) amplifiers for verfical and horimontal deflection.
- Line frequency phosing control (approx. $180^{\circ}$ ).
- Direct connection to horizontal and vertical plates of CR tube.
- Demodulator circuit for viewing modulation on RF signal.
- Negative and positive synchronizing.
- Provision for Z-axis modulation.

You'll like this Model 670. If's a perfect companion ta the HICKOK 610A for accurate TV alignment. Write for complete technical details TODAY!
THE HIGKOK: ELECTRICAL INSTRUMENT CO. 10531 Dupont Avenue - Cleveland 8, Ohio


Two views of the capacitor checker. It is built into a plastic cigarette case.

# QUCK CAPACITOR CHECKER 

By GEORGE KELLY*



S$\int$ in profitable servicing. Here is a pocket-sized checker that not only speeds your work but makes many tests that cannot be made with an ordinary meter. It shows open, shorted, or intermittent capacitors, leaky electrolytics, and circuit continuity. In addition it indicates whether voltage in a circuit is a.c. or d.c.

Fig. 1 shows the extremely simple circuit. The checker can be built breadboard style, or can be fitted into a plastic cigarette case (as above). If the case has a metal top the pin jacks can be mounted as shown, with the insulating shoulder washers usually supplied. If you like, a plastic top may be substituted. Mount the rectifier, capacitor, and tie lug on a small piece of bakelite or plastic, then wire in the neon lamp, resistors, and line cord. Make a small notch in the side of the case to pass the line cord.

The circuit can be checked after wiring by connecting a jumper between the red and black pin jacks, and plugging the unit into the line. The neon lamp should glow brightly. Slip the unit into the case and it is ready for use. Make two suitable test leads with insulated phone tips for the checker pin jacks at one end, and alligator clips at the other.

## Using the checker

To check paper, mica, or ceramic capacitors, disconnect one side of the capacitor completely from the circuit, connect the test leads to the red and black pin jacks, and plug the checker into the line. Good capacitors will show a single flash on the initial charge. (With small capacitance values the flash will be faint.) Intermittent or repeated flashing indicates leakage. If the neon lamp glows steadily the capacitor is shorted. There will be no flash or glow at all if the capacitor is open.

The output of the power supply is approximately 155 volts d.c. with 117 volt a.c. input. Do not use the checker
on any capacitor rated at less than 150 volts or ou any equipment that is groumded or connected to the power line.

When checking electrolytic capacitors, polarity as well as working voltage must be observed. The red jack is connected to the positive side of the capacitor. The bulb will glow brightly at first, and as the capacitor charges this glow will grow dimmer until the bulb goes out. If the lamp flashes more than once per second, the electrolytic is too leaky to trust in a circuit. Flashes at the rate of one per second or longer are normal, as all electrolytics have a small leakage current.

This unit can indicate a leakage of over 300 megohms, and can be used for many types of continuity checks where an accurate resistance measurement is not required.

When using the instrument for continuity checks on resistors, appliances, or ignition systems, the lamp should


Fig. 1-The checker uses few parts.


How it is set up to check a capacitor.
RADIO-ELECTRONICS

 turers of TV sets, Sangamo Type PL "Twist-Tab" electrolytics are exact replacements. They assure long life and dependable performance at $85^{\circ} \mathrm{C}$ and under conditions of high surge voltages and extreme ripple currents of ten found in TV applications.
show a steady glow. The glow will be less bright with high circuit resistances. This provides an excellent test for the quality of the capacitor in auto ignition systems.

The checker also will test the electrical continuity of photoflash bulbs without discharging them. This will often save good flash bulbs which did not fire because of low battery voltage or defects in the flash-gun or shutter switch. A good flash bulb produces a steady glow.


The shecker set up in breadboard form.
The green and black pin are used for voltage checks. The unit should not be plugged into the line for these checks. When the glow surrounds both electrodes in the neon bulb, the circuit voltage is a.c. The lamp will ignite on 65 volts and operate up to 500 volts. Only one electrode glows on d.c., igniting at 90 volts and operating up to 500 volts.

The unit also will indicate the presence of r.f. voltage around a transmitter circuit by merely bringing a single lead near the circuit while holding the other lead in the hand. Caution: Do not make an actual connection to the circuit or to the a.c. line in this case.
(This little gadget was tried out by one of the editors of Radio-Electronics and shown to students at one of the largest radio and TV schools in New York. It made such a hit that over 500 were turned out in less than a month, and each new enrollee insists on building one as soon as he learns the difference between a resistor and a capacitor. Some handy modifications were worked out by the more ingenious students. One was to add a compact d.p.d.t. slide switch with one section in series with the a.c. line, and the other section across the red and black output terminals. With the line switch open, the other section shorts the output terminals and discharges both the internal filter capacitor and the capacitor being tested. This eliminates the danger of a shock from the test leads even with the line disconnected, since the electrolytic filter capacitor will retain its charge of 150 volts or more for a considerable time.

Another refinement was the addition of a detachable line cord. A standard television "cheater" receptacle fits neatly in the side of the case, and allows the cord to do double duty.) END

# DEALERS GETTNG WESTINGHOUSE tubes Profit from heavy LICAL ADVERTISNG AT NO COST 

Service dealers are getting powerful local advertising support from new Westinghouse REIIATRON Tube Distributors. In cities now served by Westinghouse Distril,ators, dealers get local newspaper advertising, a complete kit of store display and imprinted mailing material.
All of it-local ads and kits-are designed to huild TV-radio service business in the dealcr's local area.
Best of all, none of it costs the dealer a penny!
You can get your store listed in two local newspaper ads at no charge, and get a kit to hoot. If Westinghouse Tubes are now sold in your area, see your Westinghouse Disiributor and take advantage of this $\$ 900$ -worth-of-alvertising-at-no-cost offer.



## COMING YOUR WAY

If Westinghouse Tubes are not yet distributed in your area. be patient. Distributors are being established in all market areas as fast as product availability and good service permit.
You'll soon have the chance to buy RELIATRON Tubses. Keep this tremendous opportunity in mind: you'll get newspaper advertising at no cost! Imprinted material for mailings! Imprinted signs for your window!

All of it is local advertising which sells your service in your own area wliere it counts.
For the name of your Westinghouse Distributor, or the approximate date when Westiffghouse Tubes will be available in your area, drop a postal card to Dept. H-201 or have your regular distrilontor contact Dept. H-201 for information on how he can better serve you.

#  

it RON YOUCANBE SURE...IFIT'S
TUBEDDIVISION

## Westinghouse Electric Corporation

Box 284, Elmira, N. Y.

## TOP-SELLING TV-RADIO PUBLICATIOMS distributad by HOWARD W. SAMS \& CO., IMC.

## COYNE FAmous shop-tested REFERENCE BOONS

## "Latest Testing Instruments

 for Servicing Radio-TV' New 1952 edition tells all about modern electronic testing equipment and how to use it most effectively. Packed with moneymaking short-cuts on troubleshooting, servicing, construction and other subjects involving use of test instruments. Covers Multipliers, Resistors, Ohmmeters, Oscilloscopes, etc. All data shopProfusely illustrated, 350 pages. ORDER CTB-3. Only. . . . . . $\$ 3.25$
"TV Servicing Cyclopedia"-A Best Seller The fact-packed TV reference book by H. P. Manly. Covers every on color and UHF. Shows you how TV works, how to service sets. Special sections on picture pattern servicing; testing and measuring; alignment; full treatment of amplifiers, antennas, controls, ion traps, sync. circuits, power supplies. video IF amplifiers, sweep oscillators, adapters, converterscovers everything. 750 pages. ORDER ств-ו. Only


## "Television and Radio Handbook

1952 edition of the farmous TV and radio "answer" book. Over 3000 facts packed into a single volume to speed trouble-shooting. Covers solutions to most frequent TV. radio service troubles; offers Shorl-cut time-saving tips; data on sion methods, etc. 375 pages, hundreds of illustrations pages. hundreds of illustrations.
ORDER CTB-5. Only


## BOYCE <br> AUTHORITATIVE TV \& RADIO HAHDBOOKS

[^8]
# polarized power plugs FOR THE EXPERIMENTER 

By L. B. HEDGE

"APOLARIZED plug makes certain that the chassis is always grounded through the a.c. supply," I told a friend, recently, while explaining a new gadget in my shop. I was surprised to have him reply: "But who wants to buy polarized a.c. receptacles for all the places he may want to plug the thing in?"
I say his reply surprised me-it would not surprise me now, because, after questioning many friends and acquaintances and reading through a variety of electrical engineers' and electricians' handbooks, practical wiring manuals, fixture and appliance cata$\operatorname{logs}$, and all manner of related publications, I find that few people seem to know, and few publications mention the fact, that virtually all power receptacles and convenience outlets used on ordinary a.c. installations are polarized. If you're as skeptical of this statement as most of my friends were, look at the receptacles in the room you're in-they're polarized if one slot is longer than the other. The opening which gives access to the white metal (grounded) contact should be not less than 0.045 inch (about $3 / 64$ inch) longer than the slot to the dark metal (hot) contact. (Fig. 1.)


Fig. 1-Practically all modern outlets are polarized with the wider blade tied to the grounded side of the line.

Polarized plugs-plugs which will enter these receptacles only when correctly oriented-are obtainable from most electrical supply houses on special order, ard a few of the larger ones will have them in stock. An ordinary (nonpolarized) plug can be easily polarized, however, by soldering a U-shaped piece of wire around one of its blades to increase its width. The large loop of an ordinary paper clip (Fig. 2) serves well


Fig. 2-Paper clip soldered around the edge of one prong polarizes the plug.
for this purpose. Cut it to length; fit it around the edge of one blade of your plug; back the blade with an asbestos


500 FORMULAS TO SUCCESS


66 PAGES, 47.000 WOROS IN TEXT
Send "or "Soo Formulas AND REClPES" today. En
cont now or iater. Sold on a moneybonck guarante.
NATIOVALIPLANS COMPANY


When writing to advertisers please mention Radio Electronics



It's said you can't tell a book by its cover. And it's tough to tell what's going on inside a TV mast until rust and water from corrosion leave an ugly streak on the roof or house wall-then it's too lace.
That's one reason smart service men are guarding their reputations for good work by installing J\&L PERMA-TUBE TV masis. PERMA-TUBE is completely protected against corrosion by being pre-treated with vinsynite and coated inside and out with an exclusive metallic-pigmented vinyl resin base. In addition-PERMA-TUBE is made of special high-strength J\&L steel that stays up in storms that would flacen masts made of ordinary conduit and other types of tubing.
You can obtain PERMA-TUBE in standard lengths, diameters and wall thicknesses. It's easy and economical to install-PERMA-TUBE's new POSITIONED-FITTED joints can be slipped together in a matter of secon ds .

HERE'S INSIDE INFORMATION ON WHAT CORROSION DOES


Section of PERMA-TUBE affer 500 hours salt spray test shows no evidence of corro sion. Strength has been retained and the chance of rust streaks on owner's home are eliminated. Note sturdier wall thickness of Perma-tube sample.

## FOR COMPLETE INFORMATION-MAIL THIS COUPON TODAY



## Construction

sheet (Fig. 3) and solder it on. Clean off the extra solder and open up the hole in the blade and you have a first-class polarized plug (Fig. 4) -it will not go wrong-way-to into the receptacle. You can convert a dozen plugs this way in half an hour and the whole conversion will only cost a few cents.


Fig. 3-How plug is held for soldering.
In view of the widespread ignorance of the polarization of receptacles, it will be wise for you to check the wiring on those with which you plan to use polarized plugs. A neon tester or an a.c. volt-meter-even a lamp with test leads at-tached-with one side grounded (to a water pipe if your outlet is not a metal conduit and box system, to one of the mounting screws into the box if the conduit and boxes are grounded) will identify the hot side. The shor't slot should


Fig. 4-The completed polarized plug. be the hot one.

While you're doing this work it's not a bad idea to check all of the outlets in the house, reversing those you find improperly connected. With this done you can put polarized plugs on any hot frame or chassis devices you have and you'll be sure they're shockproof. This treatment will probably cure some of your humming audio gadgets-at least it will simplify the filtering necessary to eliminate the hum-and it will add stability to oscillators, v.t. voltmeters, and similar test gear that is not permanently wired into the 117 -volt supply.

END

# BUY TEST EOUTJTEMT ON THIS RADICALLY NEW <br> Hen monem phav NO INTEREST!! - NO CARRYING CHARGES!! 

## USE CONVENIENT TIME PAYMENT ORDER BLANK BELOW



## VOLT-OHM MILLIAMMETER

Seasitivity- 1000 ohms per volh Wises latest design $2 \%$ accunate 1 Wil. ID'Arsonfal type
meter. © Sanue zero adjuxtment hold. for both realatance ranges. It is not recessary to readjust when switching from out. resistanve range to another. This is an important time-
saring feature nerer before included in a V.O.M. In thio price range. - Housed in round-cornered, molded case. Benutiful black etched panel. Lepressed letter: flled with SPECIFCATIONS:
6 A.C. VOLTAGE RANGES: $0.15 / 30 / 150 / 300 / 1500 / 3000$ 6 O.C. VOLTAGE RANGE8: $0-7.5 / 15 / 75 / 150 / 750 / 1500$ 4 D.C. CURRENT RANGES: $0-1.5 / 15 / 150$ MA. $0-1.5$ 2 RESISTANCE RANGES: 0-500 Ohms 0-1 Megohm.
Model 770 is an ateurate pocket-size V.O.m. Meze--90 The Model 770 somes complate with
IGET
self-containad battorios, test leadn and
all operating instructions.

## sis JUNIOR SUPER-METER



${ }^{x} 570{ }^{\circ} x^{1 / 4}$ enmatoto
with all t
structions
strurtions $G$ NET

## 



50
provides complete data for all tubes. Phono jack on front panel for plugging in sither phones or ontubes or noise due to faulty elements
and loose external connections. tubes or noise due to faulty elements
and loose external connections.

## Superior's New <br> TV BAR GENERATOR

THROWS AN ACTUAL BAR PATTERN ON ANY TV RECEIVER SCREENI!


Connects direct to antenno past. No connec. tion inside receiver.

Features-Can be used when no stations ore on the oir. - Provides linear patterns to adjust vertical and horizontal linearity - Provides vertical and horizontal sweep signals - Provides signal for testing video am.



## NEW TIME PAYMENT PLAN

 order blankMOSS ELECTRONIC DISTRIBUTING CO.. INC.
Dept. B- 3 . 38 Murray Street. New Yoris.
Please send me the units checked below. I am enclosing the down pay mant with order and agree to pay the monthly oalance as shown. If is understood there will be na carrying, interest or any other charges, proshould I fail to make payment when due, the full unpaid balance shall become immediately due and payable.
I] MODEL 770 ............................................................... Price $\$ 14.90$ $\$ 2.90$ down payment. Balance $\$ 2.00$ monthly for 6 months.
MODEL TV-1 .......................................................... Price $\$ 47.50$ JUNIOR SUPER
4.00 monthiy $1 . . . . .$. . Total Price $\$ 21.40$ $\square$ TELEVISION BAR GENERATOR .............................Total Price $\$ 39.95$ - $\$ 9.95$ down payment. Bclonce $\$ 5.00$ monthly for 6 months.
$\square$ MODEL 670-A .......................................................... Price $\$ 28.40$ $\$ 7.40$ down payment. Balance $\$ 3.50$ monthly for 6 months.
$\square$ Iencloses
D. for the down payme as da

Signature
Name
Address
City $\qquad$ Zon $\qquad$ Stot

- Uses the new self-cleaning Lever Action Switches for individual alement testing. Because ofl lements are numbered according to pin number in the RMA bose numbering ays. tem. the user can instontly identify which element is under test. Tubes hoving topped filaments and tubes with filaments terminating in more Modal TV.II as any af the with the Model TV-Il as any af the pins may when placed in the neutral posifiom tion type socivets Instead indiridual sachets are sod for each typs of tube. Thus it is impassible to damage a tube by isserting it in the wrano a fube by isserting if in the wrang socket. Free-moving built-in roll or plugging in oither phones or or.

pt. B-43. 38 Murray Street. New Yori meter plus capacity reactance in. ductonce and decitel measurements
SPECHFICATIONS:
D.C. VOLTS: 0 to $7.5 / 15 /: 5 / 150 / 750 / 1.500 /$ A. C. VOLTS: 0 to $15 / 30 / 150 / 300 / 1,500 / 8,000$ OUTPUT VOLTS: 0 to $15 / 30 / 150 / 300 / 1,500 /$ D.C. CURRENT : 0 to $1.5 / 15 / 150 \mathrm{Me}$. 0 to $1.5 / 15$ RESISTANCE: 0 to $1,000 / 100.000$ Ohme 0 ta 10 CAPACETYY: 001 to 1 Mtd. 1 to 50 Mid (QualREACTANCE: 54 to 2.500 Ohms 2.500 Ohme to INOUCTANCE: 15 to 7 Emaries 7 to 7,000 DECIBELS: -6 to $+18+11$ to $+38+34$ to +58
crackim. finish in rugred, net complated whel cabl. leads and in with test structions, size $61 / 3^{\prime \prime} \times 91 / 2^{*}$ 4/3.


## $\$ 99_{\text {NET }}^{40}$

The Model 670 . FEATURE
6000.040 quality bof oloctrolytice condonsors at


## easy-fo-use

 packaged
## Iv

service information if's complefe... accurafe...

## factory-

 authorizedafyour jobbers

## now...

only
\$2 per pack
dependoble replacement ports listing beginning with Pack 57

480 Canal Street, New York 13, N. Y.


Front-panel view of shortwave converter.
SW CONVERTER

## By RICHARD GRAHAM

$T$HIS converter is a simple one-tube affair that will convert your present broadeast set to receive signals on the internationai short-wave broadcast bands, between 5.5 and 15 nk. With it you can break the chains that bind your set to the American broadcast band and multiply your listening enjoyment. Many fine educational, cultural, and musical programs can be heard daily. These originate in countries all over the world. including. of course, those from onr own Voice of America stations, Many short-wave enthusiasts attempt to receive, identify,
and verify as many of these foreign stations as they can, and this is a use to which this converter is well suited.

Although the converter uses only one tube, its performance far exceeds that of the simple one- or two-tube receivers. This is because it takes advantage of the selectivity and sensitivity of your present broadcast set. The result is plenty of "snap." Its performance will generally be equal to the lower-priced communications receivers. Even when the converter was used with a cheap a.c.-d.c. set and a 4 -foot antenna, the results were surprising. English, Amer-


The r.f. tuning capacitor is mounted underneath the chassis.
 VHF chanoels.

## TRIO ROTATOR

A morthy comperlen io the ZIG ZACS ANTENINA. Teried sind pigren yedue erery concterahie condition of load, westher. frisin and Athre. Twa molon, onn lor esch elation. diectiac Ponitioe ifseticel itses biewnd dewhat of aver-totetion. Positivn biake action, se dilit tren when twpporling hery awoy in AO Whit dola. Percilen buily of finert metridity ane URI. CONOMONALLY GUARANTEED BY THO Io TWO YEARS SMARTL. STVLED DIREC. THON INOKATOR hor sory te read dac foem oad seay to wee flinger neigh contion. A aratifol initrumest yoell be pooid te owil.



# Almerican Beauty Electric Soldering Irons are Service Proven... <br> <br> Since 1894 

 <br> <br> Since 1894}

These features make American Beauty the Standard-ofPerfection on the world's production lines . . . where dependability, long life and efficiency are demanded.


TEMPERATURE REGULATING STAND

Thermastatically canfralled to mainfair heat af Iran at any dosired femperafure while at rest.

- Nickel-coated, corrosion-resistant tips, easily and quickly replaced
- Super-flexible cord, American Beauty made, resists wear due to flexing
- Heating element of chrome-nickel ribbon resistance wire
- Insulated with pure mica
- Built-in adapter for ground wire

WRITE FOR FREE LITERATURE

AMERICAN ELECTRICAL HEATER COMPANY
DETROIT 2, MICHIGAN
ican, and South American stations rolled in at full volume, actually overloading the speaker.

## A superhet tuner

Circuitwise, the converter is very similar to the mixer circuit used in the front end of many superheterodyne receivers. It changes the short-wave signal to 1500 kc by beating it with another signal from an oscillator in the converter which is 1500 ke higher (or lower) than the received signal. Converting the short-wave signal to 1500 kc enables us to tune it in on any ordinary broadcast set.


Schematic of the 1-tube converter.
The broadcast receiver-which has been set to 1500 kc -then acts as the i.f., detector, and audio sections to complete the receiver. To avoid r.f. and oscillator tracking problems, which can be very nasty for a novice at these frequencies, the r.f. and oscillator capacitors are adjusted separately for best reception.

For economy reasons, the converter was made a.c.-d.c. To avoid serious shock, no connection is made to the chassis from the power line. But because the rotor of a variable capacitor is automatically grounded to the chassis when mounted on a panel and because of hand capacitance effects, it is necessary to ground the chassis to the line for r.f. The . $005-\mu f$ capacitor between line and chassis and the .01- $\mu \mathrm{f}$ capacitors in series with the stators of the two variables isolate them from the line at 60 cycles while affecting them very little at frequencies between 5 and 15 mc . While it is still possible to get a "tickle" if the line plug is not polarized correctly, it will not be serious because of the high reactance of the capacitors at the power-line frequency of 60 cycles. The solution, of course, is simply to turn the plug over in the wall socket.

Another interesting feature is the use of a $3-\mu$ capacitor in series with the filament to drop the line voltage to 12 volts for the 12 BE 6 . This was actually made up of three $1-\mu \mathrm{f}, 200$-volt capacitors connected in parallel. These are seen in the left side of the photograph of the bottom wiring. If desired, a 697ohm, 20 -watt resistor can be substituted for the $3-\mu \mathrm{f}$ capacitor. Since a capacitor does not dissipate power, the whole converter will consume about 2

## 2-0 <br> YOUR HEADQUARTERS OF RADIO-TV SERVICE AIDS Products of the Month

G-C - the company that pioneered the radio-TV service aid field - now makes more products for servicemen (and mose exclusive with G-C) than anyone else. Besides this variety, you get more quality, more value for your money. That's why it pays you to insist upon getring G-C products from your jobber . . . finer products like the axes shown on this page.



G-C RADIO SERVICE CEMENT High grade cement for radio and speaker work. Original and finest made, piders, loose grid caps and spiders, loose grid caps and rube bases, etc. Water-proof, No. 30-2-2-02. Bottle List 65 c

G-C DE-NOIZ
CONTACT GLEANER
New secret ingredients dis. solve corrosion and oxidation and stop noise on contacts, volume controls, tuners, de cents, switches, relays, etc noise disappears. Applicator No. 51.2-2-oz. Bottle List $\$ 1.60$


G-C RED-X CORONA DOPE
New red colored corona dope To prevent corona shorts on TV sets. Fast drying, Same material as used by leading set manufacturers. Use on Brush in cap. No. 50-2-2-02. Bottle List $\$ 1.20$
 Fasi-drying conductive coat ing for recoating outside of pacture tubes where the sur. race is scratched or peeling. Norhing Brush in cap service work. Brush in cap.
No. 49-2-2.0z. Bottle List \$1.20


G-C DELUXE
TV ALIGNMENT TOOL KIT
Derable leatherette roll type rase with 16 marched rooks. Tools are fanest quality, with steel tips of hardened spring steel; used and approved by. eading TV set manulactusers. $\$ 15.00$ list value.
Nc. 8280
List \$12.90


G-C EUPLEX TUBE PIN STRAICMTENER Handiest tube pin straightHandiest tube pin straight-
ener yo ever saw! Straightener yom pins on borh miniarure and jumbe miniature tubes, both 7 and 9 -pin types. both 70 and epin types. molded in durable plastic. No. 8655

## G.C MAG-NETIK

MEAD CLEANER
Qeans recording heads on rape and wire recorders. Nothing Like it on market; original and best available. Removes oxide accumulation, cleans winout leaving scum or resi due. Renews head for im Use regularly. Applicaior. No. 53-2-2.02. Bottle List $\$ 1.60$

FREE all these G-C catalog plus new supplements. Shows postcard right away. No obligation!



## Read

 ESSENTIALS OF MICROWAVESBy Robert B. Muchmore, Hughes Aircraft Co. An expert's practical survey of the phys:cal principles of microwaves and applications of microwave equipment. Word-pictures replace complicated
mathematics. September Write for copy on 10 -day approval JOHN WILEY \& SONS, INC.
440 Fourth Avenue New York 16, N. Y.

## TIMESAVER!

TELEVISION TECHNOTES-
Gerasback Library Book No. 46 128 Pages. 58 Illustrations $\$ 1.50$

A real boon to TV service fect. nicians. List the symptoms, causes and cures for 607 actual froubles found in scores of sets mode by 27 manufacturers. Cuts down routine trouble-shooting time.

gernsback publications, inc
Publishers of RADIO-ELECTRONICS
25 West Broadway, New York 7, N. Y.
watts. With a resistor substituted for filament voltage dropping, the power consumption will be approximately 18 watts.

While there is nothing tricky or critical in the wiring of the unit, it is well to remember to keep all r.f. leads short and as direct as possible. Leads in this category would include those from the coils and variable capacitors. Other wiring such as the power supply circuit, filament, and other a.c. wiring may be conveniently wired and then cabled if desired. This is what was done in the unit shown.

Since the converter covers a rather wide band of frequencies, it is well for the constructor to invest in some sort of vernier dial. This will make tuning much easier and smoother. The dial shown in the unit constructed has been calibrated with both a $0-100$ scale (for accurate logging) and a frequency scale. The dial can be calibrated by "on the air" observations and a radio log (available at most newsstands) .

A word of caution concerning frequency calibration so the constructor may avoid a confusing pitfall. To make the unit simple, the r.f. and oscillator capacitors were tuned separately. Now, if an oscillator (for example) is set at 6 mc and the intermediate frequency is fixed at $1500 \mathrm{kc}(1.5 \mathrm{mc})$, the incoming signal can be either on $6+1.5$, which would be 7.5 mc , or 6-1.5, which would be 4.5 mc . The frequency that is selected is determined by the r.f. tuned circuit. In many instances the r.f. capacitor can be made to tune to either
frequency; as in the example above. Thus you can tune in two different signals at one dial setting of the oscillator capacitor. With the r.f. capacitor plates in furthest, the frequency will be the lower of the two possible received frequencies. This is the best way of operating the converter, and should cause no confusion.

A switen $\mathbb{S 1}$ has been provided to turn the a.c. to the converter on or off and, simultaneously, to switch the antenna from the converter to the broadcast set when the power to the converter is off,


Layout shows input-output coil shield.


##  2mes OSEILISSGOPE <br> "precise

ACCEPT NO SUBSTIIUTE-INSIST on this latest PRECISE Original-No other ${ }^{4}$ scope" ${ }^{\text {can }}$ compare with this newest test instrumert- BECAUSE: PRECISE Uses NO SUUPPLUS - only the finest components in our precisionengineered products. PRECISE offers an iron-clad guaranty with every purchase. AND PRECISE gives you an instructively illustrated, 3 color, "step-by. step" construction book-the most comprehensive in the market today!
here are a few of the numerous precise features in the NEW OSCILLOSCOPE:

1. True electronic sweep magnifier
2. Astigmatism control
3. Push-Pull vertical from input thru outpul; push-pull horizontal
4. Internal blanking and $Z$ madalation with blanking amplifier
5. Driven ond non-driven sweep
6. Over $5 M C$ flat response-DC amplifiers
7. Cathode follower input on vertical and horizontal
8. Internal calibrator
9. Horizontal and vertical stepping attenuator
10. NEW 7" Tube to PRECISE specifications
11. Highest sensitivity available aside from finest laboratory scapes



A BROAD BAND, 3 TUBE, 3 STAGE, FULLY AUTOMATIC BOOSTER WITH ALL-CHANNEL GAIN IN EXCESS OF 16 db . ans ant 3 3g5


What John wanted most and found hard to get, Was a booster what boosted, with no knobs to set.

"Knobs." he complained, "makes tuning more tough," And, "Lord knows", he cried, "My set has enough."

"You'd laugh if I cranked my car like we useter, So why have old-fashioned knobs on a booster?"

But, John had a Tech-man who knew his TV Who showed John the booster made by B-T.


NO knabs to set. NO channel funing. NO bond-switching.

Lower noise foctor. Attractive hammertone steel cabinet.


BLONDER-TONGUE LABORATORIES, INC. WESTEIELD, NEW JERSEY
and vice versa. This is the sw-BC switch shown on the front panel of the converter. It is shown in the "converter" position in the schematic.

## Alignment and operation

After the unit is completed, it is necessary to align the converter by adjusting L1. All that is necessary is to hook up the unit to both the broadcast set and antenna as indicated in the schematic. Next turn the power on to both the converter and broadcast set. Then set the dial of the broadcast set to $15 * 0$ kc. If an interfering broadcast signal is heard, there is no harm in shifting the dial slightly either way to tune it out. Now adjust L1 for maximum background noise or-better yet-find a short-wave station and adjust L1 for maximum volume. A good point to remember is that when returning to shortwave from the broadcast band be sure to reset the broadcast set to exactly where it was when the converter was aligned. This setting determines the sensitivity as well as the accuracy of the frequency calibration.

There is little likelihood of image interference, since the $1500-\mathrm{kc}$ i.f. separates stations that might cause this trouble by a full 3 mc . Harmonics of the receiver oscillator may give spurious reception at some points.

Materials for converter
Resistors: 1-270, 1-22,000 ohms, 1/2 watt: 1-2,200 ohms. I watt. If desired (see text). 1-697 ohms, 20 watts.
Capecitors: (Mica) 1-50 $\mu \mu$ f; 2-. $005 \mu$ f. (paper) 2-. $01 \mu \mathrm{f}$ : $\mathrm{i}^{-3} \mu \mathrm{f}$ (or three $1-\mu \mathrm{f}$ units); (electrolytic) $2-40 \mu \mathrm{f}, 150$ volts: (variable) 2-140 $\mu \mu \mathrm{f}$ oir voriables.
Miscellaneous: $1-20-\mathrm{mo}$ selenium rectifier: $1-12 \mathrm{BE}$ tube: 1-3.pole, 2 -position switch.

## Coil Dafa

```
LI }100\mathrm{ furns on 1/2-inch diometer slug form, No
```

    34 wire
    4 turns of hookup wire over LI
    \(\begin{array}{ll}\text { L2 } & 23 \text { turns, topped of } 5 \text { turns from bottom, wound } \\ \text { on } & 1 / 4 \text {-inch form, } 5 / / \text {-ineh long, No. } 22 \text { wire }\end{array}\)
    417 on \(3 / 4\)-inch form, \(5 / 3\)-inch long, No. 22 wire
    L4 17 furns, $3 / 4$-inch form, $5 / 8$-inch. long,
LS
4
LI, L3, L4 close-wound with enamel-covered wire

The actual frequency range of the converter is 5.5 megacycles to 16 megacycles. This covers all the important international short-wave ioroadcast bands as well as the 40 - and 20 -meter ham bands and a host of other commercial services.

"Have you got a five hour spool? I want my wife to hear what she sounds like?"

- GUARANTEED 10 times more powerful than stacked 10 element Yagis.
- GUARANTEED to extend fringe area reception an additional 40 miles.
- Motorless All Direction reception - nine different antennas im one.
- Broad band UHF - VHF plus FM reception.
- Half the cost of single channel stacked Yagis - Patented to insure price protection, U. S. Pat. Nos. 2,585,670 - 2,609,503, others pending.
- Pre-assembled, quick-rig, flip-out.
- Nationally advertised.

The only TV antenna that instantly beams the television set directly to the signal without a retor.
The biggest antenna news of the year. TV technicians are marveling at this amazing powerful high gain antenna. The only antenna that brings strong signals from all directions to weak signal areas instantly . . . with a flick of the nine position switch located near the TV set.

NINE ANTENNA SWITCH COMBINATIONS


Available at local jobbers or write for name of nearest representative.


Includes Stacked Antenna Array. 9 Position Switch. Completely Wired Stacking Hamess. A.I.M.Automatic. Impedance Matching Coupler.

Individually packaged with complete instructions.



MONEY BACK GUARANTEE To outperform any present day antenna array using a rotor motor, including stacked 10 element Yagis, 4 bay conicals, fans, double $V$ 's, etc.


Proved by the hundreds in use by TV manufacturers' and dealers' technicians


Judging by ratio of sales to market potential, this laboratory grade 5" oscilloscope is preferred by the great majority of television and electronic technicians. The specifications explain why such is the case.

Specifications

Vertical Amplifier - Push-pull amplifiers provide flat response within 1.5 db from 20 cycles thru 4.5 Mc.
Sensitivity Ranges-The sensitivity ranges are .018, .18, 1.8, .25, 2.5, 25 RMS volts-per-inch.
Horizontal Ampiifier - Push-pull with sensitivity of .55 RMS volts-per-inch. Input Impedances-Vertical 1.5 megohms shunted by 20 mmfd . Direct to plates, balaniced 6 megohms shunted by 11 mmld . Horizontal: 1.1 megohms. Linear Sweep Oscillator-Saw tooth wave 20 cycies to 50 Kc in 5 steps. 60 cycle sire wave clso available as well as provision for using external sweep. Input Voltage Catibration-Provides a standard voltage against which to measure voltages of signal applied to vertical input.

Vertical Polarity Reversal - For reversing polarity of voltage being checked or for choosing either positive or negative sync. voltages.
Return Trace Blanking-Electronic blanking provides clear, sharp trace to prevent confusion in waveform analysis.
Synchronizing Input Control-to choose among INTERNAL, EXTERNAL, 60 CYCLE, or 120 CYCLE postions. Intensity Modulation-60 cycle internal or external thru front panel binding posts.
Accessory-Model CR-P Probe for demodulating $R F$ and $I F$ voltages.

Prices: Model CRO-2, Users' Net $\$ 197.50$ Mode: CR-P Probe, Users' Net $\$ 9.95$

See your electromes distributor for more, information, or write

## IMPROVING OSCLLLATOR AND A.V.C. OPERATION

By JAMES SAREDA

N/HILE experimenting with all types of receivers over a period of years, I have worked out several ways of improving the performance of the loral oscillator and a.v.c. circuits in small superhets of the commercial and home-grown types.

Oscillator-pulling is one of the major problems in the design and construction of shortwave superhets. Any change in the tuning of the r.f. circuit affects the oscillator frequency whenever there is the slightest coupling between the two circuits. It is particularly bad with pentode mixers where the oscillator grid is coupled to the mixer grid through a small capacitor, but it is also noticeable in pentagrid mixers with separate oscillators when the oscillator grid and injector grid are tied together. Pulling can be reduced by taking the oscillator output from the plate, but this causes a serious reduction in the injection voltage fed to the mixer circuit from the oscillators.


Fig. 1-Oscillator-buffer arrangement.
My solution to the problem of oscillator pulling is to use the oscillator circuit shown in Fig. 1 as a replacement for the existing oscillator circuit. I use a double triode with one section connected as the oscillator and the other as a cathode follower which acts as a buffer coupling the oscillator signal to the mixer. Since the tube is a dual triode, no extra holes, sockets, or mounting brackets are required. Simply wire in the circuit and connect the point which formerly went to the oscillator plate or grid to the cathode of the cathode follower.
The circuit shown uses tickler feedback but any other type of oscillator may be used. Simply tie the grids of the oscillator and cathode follower together. You can use any double triode as long as it has separate cathode connections. The 6SN7-GT is good for broadcast and slightly higher frequencies. A 7 F 8 is recommended for use above about 14 megacycles.

Another advantage of this circuit is that it makes approximately $90 \%$ of the oscillator voltage available at the mixer. Since the cathode follower has a low-impedance output, the lead between it and the mixer can be made long without the ill effects encountered when using plate-output circuits.
One trouble frequently encountered

# Make this resolution for 1953 



## Read RADIO-ELECTRONICS every month!

This year promises to be the biggest yet for TV-and for the entire electronics field for thet matter. New TV stations are mushrooming up all over the country-UHF is on the march, and one after another, new developments are rolling out of the electronic research labs and production plants of the na-tion-servicing and replacements will be at a new peak. How can you possibly keep up with this feverish progress? Very easy-just read RADIO-ELECTRONICS regularly. It gives you the latest and best articles on TV, radio and high-fidelity with emphasis on servicing, operation, construction and reports on the new and interesting.

CHECK THESE FEATURES
Scheduled for Future Publication

- A Successful TV Service Business
- High-Gain Stacked Rhombic TV Antenna
- TV Oddities
- Artificial Delay Lines
- Tubeless Amplification with diodes
- High Quality AM Tuner
- Adapting Relays
- Electropsychometer
- Hazards on the Bench

Three Years	sgoo
Two Years	600
One Year	s350



## RESISTOR ASSORTMENTS



## ALL FOR THE PRICE OF RESISTORS ALONE！

Here＇s a handy all－plastic resistor cabinet that＇s a real time－saver．Five drawers，each with eight individually－labeled compart－ ments，make it easy to locate the right re－ sistor and to maintain visual stock control．

The $1 / 2$－watt assortment contains 1.50 carefully selected Ohmite＂Little Devil．＂ individually marked，insulated composi－ tion resistors．The 1 and 2－watt assort－ ments each contain 125 resistors．The assortments include the 40 values（ 10 ohm． to 10 megohms）most frequently used by servicemen．

This cabinet is offered at the price of the resistors alone．See your jobler．


CABINETS CAN BE STACKED ON EACH OTHER A dovetail joint is pro－ vided on top and botton of each cabinet so they ran be stacked one on top of another．

OHMITE MANUFACTURING CO．， 4894 W．Flournoy Street，Chicago 44，III．

## Be Right weth OHM』T⿷匚⿳丨コ丨卜丿．

RHEOSTATS • RESISTORS• TAP SWITCHES
in superhet circuits is caused by high harmonic output from the local oscil－ lator．Oscillator harmonics beat with harmonics of strong local signals to produce spurious beats in the i．f．range． These beats cause a series of whistles which can be distinguished from images by the fact that they tune in and out very sharply．

I find that the harmonic output of such oscillators can be markedly re－ duced by rewiring the circuit to use plate－circuit tuning instead of the usual tuned－grid circuit．The circuits in Fig． 2 show tuned－plate oscillators．The cir－ cuit at $a$ is used with two－winding coils and the circuit at $b$ uses tapped coils． The triode shown may be the oscillator section of a converter tube or a sepa－ rate oscillator．

## A．v．c．eircuits

The circuit in Fig．3－a shows the detector－a．v．c．arrangement used in most simple superhets．This system is satisfactory in most respects but it pro－


Fig．2－Two methods of reducing oscil－ lator harmonics by plate－circuit tuning． duces a lot of distortion with high per－ centages of modulation on the signal． The villain is the 1 －megohm a．v．c．filter resistor which shunts the 500,000 －ohm diode load resistor．With the values shown，the presence of the a．v．c．circuit can produce distortion as high as $23 \%$ on a $100 \%$ modulated signal．


Fig．3－（a）Standard a．v．c．circuit． （b）Modification for less distortion．
The remedy is to use one of the diodes of the usual duo－diode－triode used as a separate a．v．c．rectifier connected as shown in Fig．3－b．The change is easy to make．The $100-\mu \mu \mathrm{f}$ capacitor and the

## for BETTER PERFORmance <br> for LASTING PERFormance



Write for Catalog
QUAM-NICHOLS CO.
521 E. 33rd Place
CHICAGO 16, ILLINOIS
Also Manufacturers of
QUAM Focalizer Units
Ion Traps, and
Tru-Match Transformers

## EASY TO LEARN CODE

 It to ansy 10 Josirs or increase spoed Aftords the cuickevi and most urac. Aral method yet der loped. For heginnerx or adranred atudents. Arall-sble tapes for beglr, ner's alnhabet to typical mesaraes enl all subjecty. speed range

ENDORSED BY THOUSANDS!


 Write today for codine with the inntructopraph syatem.

4701 Steridan Fid., Dept RC, Chieapo 40. Ill.
2.2-megohm resistor are the only components which must be added. In this circuit, the a.v.c. has little effect on the detector and distortion is reduced.

## Novel a.v.c. circuit

In almost all modern sets, a.v.c. voltage is applied to the control grids of remote-cutoff tubes in the r.f. or i.f. sections of the set. The circuit in Fig. 4 shows a system of applying the a.v.c. voltage to the screen grids of the controlled tubes. This circuit eliminates the elaborate a.v.c. network. Also, since the control-grid voltage does not change


Fig. 4-Circuit for supplying a.v.c. voltage to r.f.- and i.f.-a mplifier screen grids for improved control action.
nearly so much as it does when the a.v.c. voltage is applied to it, the amplifiers are being operated at all times over the most linear portions of the characteristic. This reduces distortion often caused by operating remotecutoff tubes over the curved portions of the characteristic on strong signals. In the later i.f. stages where cross-modulation is not a problem, sharp-cutoff tubes can be used.


Fig. 5-Suggested detector circuit for developing positive control voltage.

The control tube in Fig. 4 is a high transconductance, sharp-cutoff pentode. R2, R3, and R4 make up a voltage divider which supplies proper operating voltages to the screen and cathode of the control tube. The resistors are proportioned so the screen operates with maximum permissible voltage and the cathode is $3-4$ volts positive with respect to the grid. R1 is the dropping resistor supplying the screen grids of the r.f. and i.f. amplifiers controlled by a.v.c. It should be adjusted so the screen voltages are normal with no signal.
The grid of the control tube connects to a point which goes positive with increasing signal. The positive control voltage can be obtained by modifying the detector to conform with that in Fig. 5. However, if the set has a plate or infinite-impedance detector, take the control voltage from the detector cathode. In this case. bias the cathode of the control tube 3-4 volts highe. than the no-signal cathode bias of the detector.
When a signal is received, the grid of the control tube goes increasingly positive and the drop across R1 increases. This lowers the screen voltage and reduces the gain of the r.f. and i.f. stages Do not connect the circuit to the screen of a converter tube unless a separate oscillator tube is used because the changes in screen voltage cause frequency shift.


PRACIICAI, TELEVISION SERVICING by J. R. Johnson and J. H. Newitt 3.34 pages, 25.3 helpful illustrations

Herc, for only a small fraction of the price you might expect to pay is concise, clearly understandable television training of the most practical sort It is the ideal book for those who alearly know something alout basic rantio service and now want to forge alead in the better-paid,
television field, elevision ficla
First you learn where
and how TVV differs and how TV differs
from ratio. You learn from tarlio. You learn
what equiponent is what equipment is
needed am! where and how t10 use it properly oil all kinuls of TV iobs. Every phase of troableshooting is explained r.m a practical, un-thejow stanipoint - NoT byathematics and meaningless theory. Far inmigkess neory. pages of qRACTICA1 Tages of VISION SERVIC. cating commun troubles just by visual observa-

DATF. BASED DN ACTUAL SERVICE SHOP EXPERIENCE
Dozens of actual serv ice case histories help make puzzling jobs easier to hantle. Over 2.4) illustritions and
patten photos explain pattern photos explain datails steb by step.
Other subjects include (ampuncolt raplacement data, wiring details, hints on 1esting and inforniation on subjects foum fringe area recepfion to improving picture lincarity in ilificult locations.

The book that helps redio men CASH IN ON TV SERVICE PROFITS!

Covers every phase of television. CONSTRUCTION OPERATION

## VISUAL

 TROUBLESHOOTING INSTRUMENT TROUBLESHOOTING SERVICINE COMPONENTS COMPONENT REPLACEMENT PATTERN ANALYSIS SHOP HINTS. ete$\qquad$ can easily under. stand.
A great book to help you jarse TV aminatiozo!


I READ IT 10 DAYS . . . AT OUR RISK
I Dept. RE-13, RINEHART BOOKS, INC. Technical Division
232 Madison Ave., New York 16, N. Y.
Scmi Phan"ucal, Thievision shebielic or 10 DAY EXABINATION. If I decile to keell the I
 Oherwise, I whit return hook nozepald and owe you (17) Alatres
('ity. Zone, slate
timnloner's Nabue \& Alitress
OHTSTHE US.A.--Price $\$ 4.50$ cash only vioney |

# Brighter, Sharper, TV Reception 



## with the TITEB Model TV-2 Booster

You get clearer, sharper pictures with a minimum of annoying interference and snow even in weak signal areas with the TURNER TV-2 Booster. It's designed with an eye to beauty as well as outstanding performance. The rich, mahogany plastic cabinet is a handsome addition to any room ... the high quality cascode circuit reduces noise and snow, producing an excellent picture even in extreme fringe areas.
The TURNER Booster is simple in operation. A single tuning knob permits fine adjustment for best reception of picture and audio over all 12 TV channels. The unit is quickly and easily installed on any television set. Get the best possible TV reception...get the TURNER Model TV-2 Booster!


The right part when you need it, for service This prrmanent, hard cover Official Buying Gwide of the electronic-TV parts and equipment industry with its comprehensive detailed index, eliminates the need for maintaining files of small catalogs and manufacturers' Fiterature. RADIO'S MASTER catalogs $90^{\prime}$; of TV and electronic equipment. Not merely part number listingscomplete descriptions, specifications and illus. trations written and compiled by each manufacturer. Enables you to make comparisons o substitutions right now

UNITED CATALOG PUBLISHERS, INC.
 110 Lofayette St., New York 13

## LINEAR SWEEP GENERATOR

A bootstrap type sawtooth generator produces an output waveform which is more linear and has a wider voltage range than any other type of sawtooth generator. Its principal disadvantage is the relatively long time which must elapse between sweep cycles. The basic bootstrap generator is shown in Fig. 1.

V1 is the control tube which must be triggered by a negative pulse each time a sweep stroke is desired. This tube is normally conducting heavily, drawing its current through diode V3 and resistor R1. Because of the large voltage drop across R1, C2 charges to a voltage approximately equal to $\mathrm{E}_{1} . \mathrm{C} 1$ is substantially discharged while V1 is conducting


Fig. 1-The basic bootstrap generator.
A negative trigger pulse on the grid of V1 cuts it off and C1 begins to charge through V:3. If the cathode of V3 remained at a fixed voltage level, the charge on (:l would increase exponentially to produce a nonlinear sawtooth. In this circuit, the grid of V2 becomes more positive and the voltage drop across $R 2$ increases in proportion to the charge on Cl . The rising voltage across R 2 is applied to the cathode of $\mathrm{V}: 3$ so the voltage drop across R1 and the charging current of Cl are substantially constant so the output voltage is a linear sawtooth.

At the end of the sweep stroke, the trigger voltage drops to zero. V1 conducts and C1 discharges rapidly through it. C2 recharges through the resistance


Fig. 2-Modification for higher rates.
of V3 in series with R2. Since C2 is usually about 10 times as large as Cl , its recharging time will be considerably longer than the discharge time of C 1 . A new sweep stroke cannot be initiated until C2 has recharged to its original state. It is this recharging time that limits the repetitive rate of the trigger.

The circuit in Fig. 2 is a modified version of the bootstrap generator designed to provide a much higher repetition rate than the circuit in Fig. 1. The circuit is described in patent No. $2,606,287$ issued to David O. McCoy. In this circuit, the grid of the cathode follower V2 connects directly to the cathode of V3 and to the plate of V1 through a .001-uf capacitor. Another . $001-\mu \mathrm{f}$ capacitor is connected between the plate of V1 and ground.

Now, during the recovery or flyback period, the lower capacitor discharges rapidly through the resistarce of V1 while the upper capacitor recharges through V3 and V1 in series. Since the two capacitor values are equal and the resistances in series with the:n are approximately equal, the recovery time of this circuit is nearly equal to the flyback time so the trigger repetition rate is increased.
Linearity can be improved by replacing the 47,000 -ohm resistor with a con-stant-current pentode connected as shown by dashed lines.

## INDIVIDUAL PHONOGRAPH

Habitual playing of code or lan-guage-training records on the home phonograph is one sure way of making the family unhappy, particularly if the phonograph is a part of the family radio or TV combination. You will probably want to listęn to your records when others in the family would rather listen to a soap opera or watch TV.


## Maferials for amplifier

Miscellaneous: I-470, I-3,300 ohm. I-watt resistors; I-I-megohm volume contral with switch: 1 -a.f. choke, 150 henries or more (Thordarsan T20C50, Stoncor C-2300, or equivalent): I-16-uf, 25 -volt, $1-20$-, 2- $40-\mu \mathrm{f}, 450$-volt electrolytic capacitors: I- 0.1, Ichoke, 80 mh ; I-halt-wave power tronsformer, 125 volts, 15 ma and 6.3 valts, 0.6 -omp secandaries (Stancor PS-8415 or equivalent); I-6C5 tube. Socket, chossis, input and output connectars.

You can keep the family happy by constructing the one-tube phono amplifier shown in the diagram and allowing the others the exclusive use of the radio combination.
The amplification of the single 6C5 is sufficient to provide good headphone volume when used with a crystal pickup. The L-C network across the input terminals reduces scratch and needle hiss.-A. Iuaniwsky


## OPPORTUNITY AD-LETS


 Radio-Electronics, 25 W. Brondway, New York 7, N. Y.
 Chàictio For a falr deal send decails to B . N Genster. W2L... . 15 Literts. . . Y. 6. N. I.
15 TESTFI ONE-T1TBF CHRCDITS 25C, 1NCLIDING "Radiobuilder," "atalog. Jaborumetes, $1131 \cdot \mathrm{~B}$ Valota, WANTED-TOL PHICES PADD-Aary Selsyns 1 M , IF
 AN/APM-1. Lectronte Mesearch. 712 Arch st. P’hlladelphia. Ps.



 W. R. Mooly. Jeerhoic
Blierolath. Marylame

Alf TYPBN of ANTENNAS FOR AMATETH AND

 houmenhark 2. Mass. Lowest prlces. Wholesale Supply cio.
 Willanas Fiertrontc's ('o., 168 Washington sta N. Y. e.
 Components listed below)

Dan't Waste valuable time waiting for a replacement-carry it in stock!

STANCOR		COVER 70\% Reliacements*
$\begin{gathered} \text { STANCOR } \\ \text { SEHETHTHN} \\ \text { YOKES } \end{gathered}$	(tay	COVER 70\% REPLACCEMENTS*
$\begin{aligned} & \text { HORIZNTAL } \\ & \text { OEFECNTON } \\ & \text { OTPTUTS } \end{aligned}$	$\begin{aligned} & A-8127 \\ & A-8127 \\ & A-8138 \end{aligned}$	
$\begin{gathered} \text { VERICAL } \\ \text { DEELECAON } \\ \text { OUTPUTS } \end{gathered}$		COVER 70\% Replacements*
$\begin{aligned} & \text { VERTICAL } \\ & \text { BLOCKING } \\ & \text { OSCILLATORS } \end{aligned}$	$\begin{aligned} & A=81+1 \\ & A=8+12 \\ & A-8122 \end{aligned}$	$\begin{aligned} & \text { COVER } 65 \% \\ & \text { Reflacervenis } \\ & \hline \end{aligned}$

* Based on a statistical analysis of all replacement recommendations in the Stancor TV Replacement Guide. Stancor Iransformers are listed in HOWARD W. SAMS' Photofact folders and JOHM RIDER'S Tek-Filos.


> HOW TO GET
> THE MOST OUT OF BASC TEST EQUPMENT

for A.M. - F.M.-TV


## 'SERNICING BY SICNAL SUBSTITUTION A BEST SELLER FOR OVER 12 YEARS! (NEW, UP-TO-Date, 12in EDITION)

EThe Modern, Simplified, Dynamic Approach to Receiver Adjustment \& Alignment Problems.

* Nothing complicated to learn * No extra equipment to purchase * Universal... non-obsolescent * Employs only Basic Test Instruments Ask for "S.S.S." at your local Rodio Popts Jobber or remit $40 \&$ in small stomps or coin directly fo factory.

PRECISION APPARATUS COMPANY, INC. 92.27 HORACE HARDING BIVD., EIMHURiT 4, N. K.

## B. C. ABANDONS BULLETIN

The Bulletin, long the offisial organ of the service technicians of Vancouver, and more recently, of the British Columbia Council of the Radio Electronic Technicians Association, has been discontinued. Abandonment of the paper was decided upon at the provincial council meeting at Nanaimo last September. The reason was the lack of an editor with journalistic training.

It was not learned whether the Vancouver association intends to continue carrying on a local paper of its own.

## NEW PHILADELPHIA GROUP

A new organization to be known as the Television Servicing Dealers Association has been formed in Philadelphia. President of the new group is Dave Krantz, chairman of the Federation of Radio Servicemen's Associations of Pennsylvania, and its secretary is Ddward J. Strychowski. Louis J. Smith is vice-president, and Sam Brown treasurer.

Reasons for a new organization in Philadelphia, which already has the Philadelphia Radio Service Men's Association (PHSMA) and the Television Contractors Association (TCA), were not given.

## FRSAP TO HEAR EDITOR

The Pennsylvania Federation of Radio Servicemen's Associations (FRSAP) has tentatively arranged a series of lectures at Pittsburgh, York, Williamsport, Harrisburg, Wilkes Barre, Scranton, Reading, and Altoona. The proposed schedule at time of writing was:

January	6	Pittsburgh
January	7	York

January 8 Williamsport
January 19 Harrisburg
January 20 Wilkes Barre
January 21 Scranton
Schedules for Reading and Altoona were not fixed when this issue was made up.

The lectures are to be delivered by Mort Bernstein, Associate Editor of Radio-Electronics, a radio engineer and professional television instructor as well as a radio-television editor.

## CHICAGO MOVES TO LICENSE

The Chicago City Council has requested the Illinois State Legislature to amend the Cities and Villages Act to permit the city of Chicago to license radio and television service technicians. The request, made at the end of October, cannot be acted upon until the Legislature meets this month (January), and could not be enacted into law until July 1.

If approved, the city will then hold the necessary hearings to determine what type of licensing, if any, is desirable, and how a license law should be enacted and enforced.

Sponsors of municipal licensing in Chicago include Frank Moch, president of the Television Installation Service Association, and E. T. Wood, business manager of Local 1639, International Brotherhood of Electrical Workers, a

RADIO.ELECTRONICS
local of 700 television repairmen. Opposing it was Norman Brahmstedt, of the National Appliance and Radio-TV Dealers Association, who reported that his association would inake a formal statement of its views at a later date, probably before the State Legislature.

## BBB KNOCKS $\$ 1$ CALLS

The Better Business Bureau of New York City-in a special bulletin issued late last October-urged that advertising of specific prices for TV service be discontinued. The bulletin stated that the Bureau has been increasingly concerned with "apparently flat-rate lowprice offers, such as ' $\$ 1$ per call plus parts'" and that complaints about such service are increasing.

The Bureau recommended that in advertisements of television service:

1. No prices should be mertioned.
2. "Free estimate" offers shculd not be used.
3. "Guarantees" should be specific as to duration and actual terms.

## frSap to present plaque

The Pennsylvania Federation will present its plaque-awarded annually to the person or organization who has done most for the benefit of radio service technicians during the yearat Harrisburg on January 13.

Last year's plaque was awarded to John Rider, long-time champion of the service technician and publisher of servicing aids.

## TV GYP CHARGE HOLDS TWO

Charges of larceny have been preferred against two television service technicians whose firm levied a charge of $\$ 34.13$ for "repairing" a $s^{-t}$ whose only fault was a bad tube. The men were employed by Sibko Tclevision Service Corporations, of Queens, one of the boroughs of New York City. It is said to be one of the larges: " $\$ 1.00$ plus parts" concerns in that area.

The set was a "planted" one, with all parts marked invisibly, and one dead tube. The receiver was removed to the shop because "the high-voltage circuit was out" and allegedly returned later with a bill for $\$ 34.13$, which itemized a new flyback transformer, a capacitor, and two resistors. All the supposedly replaced parts still had their original code markings, however. A warrant was issued for the man who removed the set from the house and for the bench man who gave the estimate for replacing the non-replaced parts. END

"The Best Yagi"

## TRAIN Att Hame FOR OPPORTUNITIES IN. <br>  <br> Set Your Own Pace with This Practical Program! <br> Get in on the ground floor of this fast-growing field. Ticin

 SERVICINGL now to cash in on the opportunities that are yours in UtifTV SERVICING with proven, procticol T.C.I. fraining. Here is non-mothermatical training that's complete . . . dowr-tocoses . . up-tothe-minute. Here is training you take in ycur spore time, without leaving your present job! Think of itin your own home you learn TV set conversion, moster antenng installotion, the lotest in UHF.TV, money-moking shory cuts and muen more. You learn to troubleshoot, test ond repair TV sets the only practical way-by octually doing this work yourself!
Here's How You Learn By Doing! You get the experience you need by working on a large screen, modern TV receiver thot's given to you with the course and is yours to keep. As on optional feoture you get two weeks of field experience on service calls and on the repair bench with one of Chicogo's lorgest independent TV servicing organizotions. You profit from the experience and know-how of men in the field. Not through books alone but by octually doing the work yourself, yow get the knowledge you need to qualify for opportunities in UHF.TV SERVICING! Age is no barrier. Monv T.C.I. students ore over 40! Mail Coupon for full facts.. FREE Cotolog ond SAMPLE LESSON. Act NOW!


# TELEVISION COMMUNICATIONS <br> INSTITUTE 

205 WEST WACKER DR., DEPT. RE-13, CHICAGO 6, ILL.

## VETERANS

discharged since June 27. 1950 are eligible for G. I. benefits. Check
coupor.

## MAIL NOW FOR FREE B00KLET

 TELEVISION COMMUNICATIONS INSTITUTE 205 W. Wocker Dr., Depl. RE-13, Chieago 6, ith. YES! Rush full foets on WHF-TV troining, inc fude FREE Cotolog ond Sample Lesson. I om not obligated. Solesman will not coll

## PEN-OSCIL-LITE

 serving: alikmment © Small as a pen © Epl!
puwtrd
 Wrile for informatio Used by Slana: Co*n
GENERAL TEST EQUIPMENT 38 Argyle Ave. Buffalo 9, N. Y.

## OPEN WIRE LINE

$\$ 995$ postpaid in u.s.a. Per 100 Feet
100. 150, 200, 250 Ft . REELS

- Extremely Low Lass
- Polystyrene Spacers 6" Apart
- No. 18 Copperweld Wire
- Ideal for Fringe Areas
- Very Finest Quality
- Immediate Delivery Via P.P.
R. J. BUCHAN CO.

Box 9
GRICELTN, MINN.


## New Long-Life Cell Boon to Portables

The newly developed $11 / 2$-volt allialine type dry cell is now being used in new long-life $\mathbf{A}$ and B batteries for personal portable receivers. The new $671 / 2$-volt $B$ battery is $22 \% / 4$ smaller than ordinary $671 / 2$-volt dry batteries yet increases playing time up to $100 \%$ in personal type portables. The cornpanion $1 \frac{1}{2}$-volt $A$ battery (size $G$ ) is $75 \%$ longer than conventional size I) batteries but it provides up to five times the playing life.

Two of these new-type $11 / 2$-volt alkaline dry cells connected in parallel balances the life of one $671 / 2$-volt type and enables a personal portable to play up to ten times longer without hattery change. One alkaline type $671 / 2$-volt battery and two alkaline type $1 / 2 / 2$-volt batteries in parallel have the equivalent playing life of two standard $671 \%-$ volt batteries and 10 to $1211 / 2$-volt $A$ batteries.

The crown type alkaline cell used


How the new battery compares in size with the popular RCA VS 016 model.


RADIO-ELECTRONICS
in these new batteries measures only 0.9 inch in diameter and 0.23 inch high. The positive electrode can, the positive and negative electrodes, and the electrolyte pad are sandwiched together inside a protective plastic ring between twn "Jottle caps" which - rro as positive and negative terminals.

Emploded Viow of Alkoline Cdl
Uned in RCA VS 216


Schematic view of the new B-battery.
The cells, which use zinc for the negative pole and manganese dioxide for the positive pole, and an alkaline electroIvte, are stacked together in paper tubes. The number of cells which go into a


Battery complement of a new portable. Ilaying time is enormously increased.
battery depends on its voltage and current ratings. The completed battery is enclosed in a steel shell which resists swelling and prevents it from wedging in the radio.

END

## ELECTRONIC POSTMAN?

Electronic mail-sorting devices and supervisory TV systems are to be installed in Canadian Post Offices. The average human handler can reach only about 60 pigeonholes in sorting mail. Pushbutton electronic selectors will enable each man to reach 300 slots and climinate multiple handling. Closed circuit TV installations will permit postal inspectors to watch operations anywhere from a central point, instead of from the peephole galleries now used.


## IMpROVED (emmar elp TV BOOSTER IOW COST




He doesn't gamble with mediocre transformers, he installs the choice of leading set manufacturers-Utah. Don't hazard your reputation with unproven parts, specify "Utah" Transformers and be sure of a job well done.
POWER TRANSFORMERS VERTICAL OUTPUT TRANSFORNERS FILTER CHOKES VERTICAL BLOCKING OSCILLATORS - AUDIO OUTPUTS


WRITE TODAY FOR Complete TRANSFORMER INFORMATION, UTAH TRANSFORMER DIVISION, CATALOG T-100


SPECTACLE-TYPE HEARING AID
Patent No. 2,613,282
Alan M. Scaife, Pittsburgh, Pa.
Some hard-of-hearing persons object to wearing a hearing aid because it is conspicuous. This invention hides the hearing aid within a pair of spectacles. All components are located within the frames or the bridge. No external wiring is needed. The microphone is located in the Jridge. needer. The mond is picked when the an the person turns his hoad toward the shonker. The device and its circuit are shown below.


Assembly and circuit of hearing aid.
The amplifier is built into the left-hand bow of the spectacles as shown. 1t uses 3 transistors. transformer coupled. Reproducer $R$ may be of the bone conduction type. It presses against the bone just back of the ear. A tiny volume control is also included in this frame. together with a ring type switch which is operated by the fingers. The right-hand frame carries three batteries. A supplies 1.5 volts to energize the carbon microphone M. It also biases the emitter of the first transistor, T1. The battery $B$ provides a valtase is volts to bias the cmitters of the other transistors, T'2, T3. C is a 30 -volt battery for the collectors.

## TV MARKER GENERATOR

Patent No. 2,610,228 George F. Devine, Marcellus, N. Y. (assigned to General Electric Co.)

This invention reduces the number of crystals needed for correct $T V$ alignment. It uses one crystal to mark the desired picture earrier (i.f. or r.f.). A second crystal provides markers at or r.f.). A secund crystal provides markers at L.b-nic intervals on either side of the pix carrier.
Thus it automatically indicates the adjacent sound Thus it automatically indicates the adjacent sound rarrirr and the arcompanying sound carriar. Also.
the thind harmonic of the $1.5-m e$ crystal may be used to align intercarrier sound stages.
A swetp gencrator is connected as usual to the TV under test and to the sync terminal of an oseilluseone. The $1.5-m e$ oscillator provides a fundamental and harmonic frepuencies which mix with the desired picture carrier signal. The latter may be i.f. or any r.f. channel. Due to modulation, the detector output contains a large
pip which indicates the picture carrier and smaller pins at intervals of 1.5 mc .

These pins identify picture and sound carriers for correct alignment. The third harmonic of the $1.5-\mathrm{me}$ crystal is used to align intercarrier sound.

## VOLTAGE LEVEL SELECTOR

## Patent No. 2,612,550

George T. Jacobi, Schenectady, N. Y. (ossigned to General Electric Co.)
This is a high-speed switch useful in quantizers and oscillograph recorders. It indicates signal amplitude by steps. For example, when the amplitude lies bet ween 0.1 unit, it energizes the "No. 1 " circuit. For a level between 1-2 units. "No. 2" eircuit is energized, and so on. This indication hy stens is called quantizing.
See Fig. a. B1 and B2, are 6-v. supplies. All divider resistors are equal, to provide the voltages shown. The upper values are given with respect to point A, the lower ones relative to B. With zero signal at $T$, these values are also correct with espect to ground.
Note the 5 pairs of rectifiers, X1Y1, X2Y2. If a rectifier passes current, it feeds one of the load resistors R1, R2. . . . Current through any load can flow in only one direction. In this circuit only one rectifier pair can remain non-conducting at any time. For example, assume zero signal at T. Then X3Y3 is the only non-conducting pair since these have no voltage across them. Line 3 is grounded but all others are negative.
Now assume an input signal. Let $A$ be 2 volts positive and B 2 volts negative. Now the original voltages (marked on the diagram) are changed. The upper values are increased 2 volts, the lower values decreased 2 volts. Therefore X1Y1, with no) voltage across them, are non-conducting. All other Y rectifiers are blocked, but the other X rectifiers have negative cathodes so they conduct Now Line 1 is at ground potential, but all others are negative. In this way, only one line is at ground potential at any time.
Fig. b shows how the level selector may be connected to a bank of triodes. At any time, only one tube has its grid grounded. All other tubes are blocked by the negative bias on their grids. The tubes may feed an oscillograph. END


JANUARY, 1953


## 



13 Tubes give you features and power to sparc. $\$ 550$
FM tuning range $88-108$ megacyeles. AM tuning
 Amplifier. Added RF Tuhe on FM. Separate inout imeks for crystal and reluctance pickups. Will ace
conimodate two sprakers (i.e. $1-12^{\prime \prime} \& 1-5^{\prime \prime}$ for very high notes-Extra 82 ). Its wide range, 30.15,000 cyclos. has an excellent Tone Comtrol Systent using separate Rass and Treble tone controls. Tuner and Antplifier on one chassis makes installation very easy. AM IBand has interstation noise control suppression. Phono Motor outct provided COMPLETE, READI


Wigh Quality fipaker. Multicwlored slide rule dial. AM toon Antenna. Knobs, Fectory $123 / 4 \times 101 / 2 \times 73 / 4$ High. RCA I-icensed. New Merchandise. Original

CONPLETE RADIO-PHONO CONSOLE COMBINATION

With Webster Changer \& G.E. Vari. able Reluctance Pickug. In Mahogany
Finish. ( $\$ 10$ additional for bond.
JAN ELECTRONIC DIST. CO., 222 FULTON ST., N. Y. 7.

Srder Yours To. day by Mail or Come in for a Free blo.00 on Cion. Orders.

## teamed together for BmadiN Pramadecalatiy

 acteristics, Amphenol Tubular Twin-Lead has been recommended by leading TV manufacturers and authorities for any installation where UHF is, or will be available.


This illustration clearly shows that the concentrated field of energy between the two conductors, which are 7 strands of \#28 copper weld wire, is contained by the tubular construction. This important field of energy is unaffected by any exterior conditions.

Your free copy of this book is available from your Authorized Amphenol Distributor. It contains complete factual and test data on the factors which determine Better TV Picture Quality.



## crest, hew 630-DX CHASSIS

 terrific savings-immediate deliveryIncludes newest developments-Cascode Tuner-30 Jubes-For 16 The great 630 with all the up-to-date improvements! Wonderful reception on lang range up to 200 miles. Without o booster, is yours foday of this
low-low price. Gives 3 -times normal reception. Special super high-gain standard coil tuner gives greater sensitivity, top performonce on any channel. Aligned and tested for 5 hours, molded condensers, 4 micro horizontal linear lock and is di rectly adaptable for color \& UHF.

$$
\begin{aligned}
& \text { Model } 630 \mathrm{DX}-1: \text { RMA } \\
& \text { Guaranteed Factory } \\
& \text { Wired, ready to play, } \\
& \text { compere with 1at } \\
& \text { speaker, hardware and } \\
& \text { knobs. }
\end{aligned}
$$

FREE: New Trouble Shooting book with any chassis!

SUPER 630 DX-2 IY CHASS1S Includes the same feature
chassial olus the following:

- Koyed AGC lovel control
* Cornell-Dubilier plastic molded cond
intemerence
* Phomo input \& swith which cuts out high - RCA matched $70^{\circ}$
- RCA matched

Four (4; 6CB6 tubes

* RCA 12 PM Speaker


Universal Mounting Brackets ....S5.95
orator IV Cabinet
For $17^{\prime \prime}, 20^{\prime \prime} \& 21^{\prime \prime}$
Pfeture Tubes Pfeture Tubes Chossls.
Every beautiful cabinet is richly finished hogany and made by our own cabinetmakers. They are custom
styled, guaranteed new styled, guaranteed new
\& perfect. Ineludoe mask oc mounting also availablo with
blank control panel to blank control panel to Now Model 200: Original
list $\$ 99.95$ Now $\$ 49.50$ Bonde inish. add TV PICTURE TUBES
Full Year's Guarantee - Black Face Brand New, Standard Brands
08P4 \$15.95 16AP4A $\$ 32.95$ 20CP4A $\$ 35.95$ $\begin{array}{lllll}12 \mathrm{LP} 4 A & 22.95 & { }^{16 \mathrm{GPP}} \\ 16 \mathrm{KPA} & 26.95 & \text { 2IEP4A } & 36.95\end{array}$ $\begin{array}{llllll}4 \mathrm{BP4} & 23.95 & 17 \mathrm{BP} 4 \mathrm{AA} & 23.95 & \text { 24AP4 } & 68.95\end{array}$ 14CP4 23.95 19AP 4 AA
Order now fis immiediate delivery. SUPER DELUXE 630-DX.3
CHASS IS with Push-Pull CHASSIS wit
Audio Output
Includes some features os $630 \mathrm{DX}-2$ chassls, plus the following: $\qquad$

* Push.pull audio output
Frequency rexponse from
so-15,000 cycles at $\pm 1.5$ a


SCOOPI AM Radio tuner, made especially for onr 630 or 630 DX Chassis. Comnlete, ready to

install, fits in the well of TV | chasalis. |  |
| :---: | :---: |
|  | $\begin{array}{c}\text { Rose } \\ \text { Special }\end{array}$ |



## Tubes

Brand New, Standard Brands Fully Guaranteed, Individu ally boxed

 1
Genuine MOLDED CONDENSERS Fresh Stock! All mineral oil filled - Fully molded - 100 Centigrade - Meets Jan. C9
GUARANTEED All 600 Volts

Cad. per 10 GUARANTEED All $100 \mid$ Can. per 10 per 100 Cad. per 10 per 100 \begin{tabular}{cc|r|ccc|ccc}
Cap. \& per 10 \& per 100 \& Cap. \& per 10 \& per 100 \& Cad. \& der 10 \& der 100 <br>
001 \& $\$ .79$ \& $\$ 6.90$ \& .005 \& $\$ .79$ \& $\$ 6.90$ \& .05 \& $\$ 1.09$ \& $\$ 9.90$

 

\& .79 \& 6.90 \& .01 \& .89 \& 7.90 \& .1 \& 1.25 \& 11.50
\end{tabular}

De. Noiz, for radio and TV controls
ush as volume controls, detents, tuners,
 cecording heads of tope and wire rether residue.

NEW TRANSFORMER
Blonder-Tongue Labs, 526 North Ave.
Westfield. N. J., onnounce a $75-300$ Westfield, N. J., onnounce a $75-300$
ohm motching franstormer, model MT-I. The unit provides a 2 .times in-
crease in signal voltage ond signal-

to-noise rotio when tronsforming trom
75 to 300 ohms. It is built into a smoll metal case, which moy be mounted at AUTOBOOSTER Perma-Power Co., 4721 North Damon
Ave., Chicogo 25 , 111 ., is producing a
new outobooster tronsformer which in. outobooster picture-tube filoment voltoge

ned for
dila-
RADIO KITS
Rodio Kits Inc. 120 Cedor Street,
new " $Q$ "' line, ovoiloble in $k$ " $\dagger$ or com
pletely assembled form. Madel QS is

quency range of $550-1600 \mathrm{kc}$ : morle
SOLDERING IRON

## American Electrical Heoter Co., b1


an angle type electric solderina eghs 10 ounces has a $\mathrm{t} / \mathrm{4}$-inch plu
ypr t.p. an input of 60 watts, and

TUBE REJUVENATOR
 D. designed to operate with all series

## V.H.F. ANTENNA

## Davis Electranics, 4313 W . Mognolin Blvd., Burbonk, Calif, hos onnounced

 intenna, the super.Vision. Monufacghosts, 10 db or more gain on $\mathrm{h} \mathrm{ch}^{\mathrm{ch}}$

MULTIPLIER PROBE
nsuline Corporotion of Americo, 3602 35 th Avr., Long Islond City 1, N. Y.,
heis announced o multinlier probe that ertends the d.c. voltage ronges of ines. The device, known of the "100x"


## If the meter has a normol top ionge

 with the probe; if it has o ronge of 500 olts, it reads up to $50,00 \mathrm{~g}$ volts. The insulated handle hos o fingerguxird. The probe is $81 / 2$ inches long ond has a 5 foot flexible cord and accorn of the card has a micraphone enc screw-on connector. An odopter plug (No. 33) permits the use of the probe

## MOBILE CONVERTERS

Rodio Monufocturing Engineers, Divi
sion of Electro-Voice, Peorio 6, llh., has announced three robile converters fo


## PICTURE-TUBE BRIGHTENER

Standard Transformer Corp., 3580
Elston Ave. Chiceco 18 , Ill. is praducing the Starcor P. 892 C.R tube $v$ ce designed tc odd months to the useful life of a television picture tube. me unit can be e" ed w"th all electro. size, where dimming is due to low Easy to install, the new booster meas. ures only in dianieter. It does not require a.c. line cannection, and is equipped
with high-ow swith providing two with high-ow swits providing two
levels of brilliance Ot actoformer con.

U.H.F. ANTENNAS

Technical Appliance Corp., Sherburne, N. Y. hos two new anternis. The u.h.f.
cntennis Catalogue No. 3008 , known as the Bow. Ti, is a itacked, known as cntenns ro: maximurt zain. The four mast, ectisun complete with 0 -boat standoff iasulators, and titting an addi-
tional $4 . f$ ot section of mast included o provide clearance abave the roof. The Bow-iow cansi ts of a Bow.Tie antenns with an itra-efficient all-
channel antenna designed for mounting

NEW CARTRIDGES


TUBE TESTER

## Burleigh St.. Milwaukee i', Wis., hos

 anno ncey a new tube tes-er, the Tele-test, whith reduces testing time on most receivers by eliminating switching
 through is single adopter cord asted
plug while in the receiver chassis.


HI-FI FM-AM TUNER

## The Radio Craftsmen, Inc., 4401

 Rovenswood, chicago, ill., have announced production of the new modelC800 high fidelity FM.AM tuner for custon installations. Frart-panel conor Eu:osean recording characteristics a.f.c. on.off switch for FM tuning, and :ontinuously variabte boss and
treble controls from 15 db boost through 15 dt attenuation with flat position double sharked. Also featu


The C800 has a total comp'ement of tuba and can be mounted in the

## TUBULAR CAPACITORS

Industrial Condenser Corp.a 3243 N .
Californio Ave California Ave., Chicago 18 . Ill., has stud - ubular oil-filled copacitors. Added to tre line are an 8 -ph and a
dual 4 -uf, 800 volt d.c. capacitor, a dual $4-14, \quad 600 \cdot v o l t$ d.c. capacitor, a
$4-1!f$ I 1900 -volt d.c. unit, anid similar


All specifications given on these pages are "rom manufacturers' data.

## Nem

## RADIO COURSE

 andy $\$ 250$

MADE MONEY FIRST UEEK
You should get more money for your Course. The first week I studied it, I made $\$ 10.00 \mathrm{re}$ pairing sets. I built myy own test course from details given in this to dase.
Signed: Robert C. Hammel
120 W. 13th, Davenport, Iowa
COMPLETED IN 8 WEEKS "I am very satisfied with the cosson I started repairing tarlio It took me two months to rasioster your course." Froni a master written by Roger Lanolois. 1679 Poupart St., Montreal, Canedu

MODERN, UP-TO-DATE
"Your course is modern and up-to-date. There is not one page in the whole course which anyone can afford to miss. Your course started me on the road to a well faid iob and has repaid me many tinese." Charles Alapach, 433 Eln
St., Reading

## AMAZING BARGAIN OFFER

Here is a practical home-stady course that will teach you how to repair all radio sets faster and better. These newly reprinted 22 lessons cover all topics just like other correspondence courses selling for over $\$ 1.50 .00$. Our amazing offer permits you to obtain the course complete for only $\$ 2.50$, nothing else to pay. Easy-to-follow, well illustrated sections on test equipment, circuit tracing, alignment, F.M., use of oscilloscope; amplifiers, ant every other topic needed to be an expert in radio repairing. Trouble-shooting hints, circuits, short cuts, service suggestions, new developments. Send coupon today, and use the complete course at our risk. Satisfaction guaranteed. All 22 lessons, in large manual form, + self-testing questions, complete, your cost only
${ }^{5} \mathbf{2}^{50}$

## INTRODUCTION TO TELEVISION

These practical lessons making up this course-book are easy to follow. and apply to actual radio jobs. Use this training to get ahead in radio and as an introduction to television. Hundreds of radio facts that puzzled you will be quickly cleared up. You will find yourself doing radio repairs in minutes instead of hours - quickly finding faults or making needed adjustments. Every new radio development of importance and thousands of time-saving radio facts are packed into this complete course-manual. For example, there is a large lesson on servicing F.M. sets and another full lesson on audio amplifiers. Use coupon below to order Course for 10-day examination in your own home. Look over the material, read a few lessons, apply some of the hints. Then decide to keep the lessons at the bargain price of $\$ 2.50$ (full price), or return the material and get a cash refund. TOffer may be wrthdraun at any time.l


## Supreme Radio \& TV Manuals

 v diagrams and service dataded RADlO and falues. Still sold at pre-liorea. Most amazing for most volumes. Every hadio manual contains lurge schematics, all needed alimment facts. parts lists, voltare baltes. trimmers, dial stringng, and service hints. Each TV manual is a practical treatise on servicing the jear's sets, With giant blueprints. patterns, waveforiss, hints, harts, suggested changes. See coupon at right
## Supreme Publications

Sold by All Leading Radio Jobbers
JANUARY 1953

## NO-RISK TRIAL ORDER COUPON

## SUPREME PUBLICATIONS, 3727 W. 13th St., Chicago 23, ILL.



## $\square$ $\square$ $\square$ $\square$

吕Send Radio and TV manuarls checked $\triangle$ at left and below. Satisfaction guarabteed or money back.
$\square$ Complete RAOIO COURSE (22 lessons + ) $\$ 2.50$
$\square 1952$ Television Manual, $\$ 3$. $\square 1951$ TV, $\$ 3$. $\square 1950$ Televlsion Manual. $\$ 3 . \quad \square 1949$ TV, $\$ 3$. 1948 TV, \$3. $\square 1947$ TV \& FM, only $\$ 2$
$\qquad$
$\qquad$

Address:

## SHORT-WAVE PRESELECTOR

A good r.f. preselector can be used with any type of receiver from the simplest blooper to the deluxe superhet to pull those weak dx signals up out of the noise. A two-stage preselector covering from 200 to 10 meters was described by I1AHR in Rassegna di Radiotecnica (Ravenna, Italy).

A pair of 1851 pentodes were used in the original model, but you will probsibly get better results with a 6AC7. The latter is electrically identical to the 1851 with a redesigned grid
structure for improved high-frequency performance. Gain is controlled by varying the 5,000 -ohm resistor in series with the cathodes of the tubes. Selectivity is varied by tuning the $100 \cdot \mu \mu \mathrm{f}$ capacitor across L2.

The coils are wound on standard $11 / 4$ inch plug-in forms. The antenna coils are on 6-prong forms. Four-prong forms are recommended for the r.f. (interstage) coils to insure that the coils are plugged in to the correct sockets.

Winding data is given in the table. On the antenna coils, L2 is interwound with L3, and L1 is spaced below the


	COIL TABLE		
Band   (Meters)	Coil	Turns	Wire
$200-80$	L1	15	22
	L2	32	22
	L3-L5	50	20
	L4	20	22
$80-40$	LsL	7	22
	L2	14	22
	L3-L5	24	28
	L4	10	22
$40-20$	L1	6	22
	L2	8	$2 ;$
	L3-L5	11	18
	L4	8	22
$20-10$	L1	4	22
	L2	4	22
	L3-L5	5	16
	L4	3	22

ground end of L3. Spacing between L1 and L3 is $5 / 32$ inch for $200-80$ meters, $1 / 8$ inch for 80-40 meters, $1 / 4$ inch for 40-20 meters, and 1.8 inches for $20-10$
 630 Deluxe 31-Tube TV Chassis FOR $1^{\prime \prime}$ TO $4^{\prime \prime}$ PICTURE

Standard Cascode low-noise Tuner
$70^{\circ}$ Cosine Deflection Yoke
Original 630 Sync Choin gives Stability 16 KV gives extro brightness and definition Fast Action Keyed AGC
High Fidelity 12" PM Speaker
Closely follows original RCA 630 design, with added improvements $\star \star \star \star \star \star \star \star$

NATIONALLY KNOWN MFR.

COMPLETE with oll tubes, hord- $S 150.50$
ware, universol mounting brackets. ware, universol mounting brackets, 45

Dress Up Your Home With This


Consolette Cabinet of Artistic Design. Size $40^{\prime \prime}$ high $\times 26^{\prime \prime}$ wide $\times 23^{\prime \prime}$ deep. Price includ. ing mosk and excise tax $\ldots$. \$9.95 Extra for glass

 \$ \$ MONEY SAVER KITS FROM EDLIE ELECTRONICS


5 TUBE AC.DC SUPERHET KIT
Kit \#1-Five Tube superheterodyne kit, A.C.-D.C. contains all components required to construct this latest design. highly sensitive superheterodyne broadcast receiver complete with black bakelite cobinet fexcludes wire $\$ 7,95$ and solder)
Extro for a kit of 5 tubes (12AT6, 12BA6, 12BE6, 35WA, 50C5). Price $\$ 3.25$.


6-TUBE KIT
Kit \#2-A low-priced 6 TUBE KIT designed for high sensitivity, excellent selecrivity and good tone quality. Uses 25L6, 2526, 6SQ7, 6SA7, 6SK7, 6SK7 in on easiy constructed circuit. he blube Kit is shipped with all parts, including punched chassis, resistors, condensers, etc.
And at a closeout price of only (less tubes ond cabinet) Extra for matched set of six tubes for kit

Electronic Gode Practice Oscillafor \& Blinker Kif AC/DC or Battery OperatedI Kit
Practice
Once On of the most practical Code Practice oscillators ever desi oned. yet one of the simplest to build and operate. head.
Can be used with any number of heal phones.
Adjusiable Pitth Control-Any sype of headphome can be used.
No warmup time-ready to operate instantly. Simple and safe to operate.
 Learn Blinker Code with faahing light. International morse Code included. Kit each \$1.95 Assembled $\$ 2.95$
Kit \#A-easice ${ }^{2}$ tube training rit. Simple
to construct complete with all parts one tibe to construct complete with all darts one tube
and he adet diar dimy and instructions in-
and




THREE TUEE PHONO AMPLIFIER An assembled Unit ready tion using tone and reody for installa, using and volume control and six feet of rubber
$\$ 2.95$ with Complete Set of Tubes .... $\$ 3.95$ Complete set or Tubes .. PHONO ÓSCILLATOR Nat a Kit!

Wireless phono oscillator transmits recording for crystol pickups or voice from corbon mike through rodio without wires. Con also be used as on | intercomm by using P.M. speaker |
| :--- |
| as mike. Price (excluding |
| $\mathbf{2}$ | as mike. Price (excluding

tubes)
2.
2. 95 With Complete Set of Tubes .... $\$ 3.95$

Satisfaction guaranteed on all merchandise. All prices subject to change without notice.
meters. L4 is interwound with the ground end of L5. If the $140-\mu \mu \mathrm{f}$ tuning capacitors are ganged (they should be for easy tuning), L3 and L5 should have exactly the same number of turns and the same winding length. The antenna and r.f. coils should be shielded, and the sections of the $140-\mu \mu \mathrm{f}$ bandset and $35-\mu \mu \mathrm{f}$ bandspread capacitors should be separated by a partition shield to prevent oscillations.

## TVI REDUCTION KINK

Most articles on amateur TVI elimination stress the need for very low harmonic output and the elimination of v.h.f. parasitics in the transmitter. Various types of high-pass filters, harmonic traps, and parasitic suppressors have been described. Writing in The Radio Amoteur, G5JU, a British ham, described a simple device for reducing harmonic output, eliminating parasitics, and increasing the radiation for heat from transmitting tubes.

The device consists of a length of $1 / 2$-inch wide copper or brass strip cut to the approximate shape shown at $a$, and then bent to shape and bolted to the cap of the tube as shown in drawings $b$ and $c$. The $21 / 4 \times 1 / 2$-inch "plate" is located close to and parallel with the metal shield separating the power amplifier from the driver and other portions of the transmitter. The plate and interstage shield form a small capacitor between the tube plate (anode) and ground. This capacitor bypasses high-order harmonics which may be generated in the tank circuit or fed into the tube via the grid. The inductance of the capacitor lead is exceptionally small, thus minimizing the possibility that the inductance and capacitance of the unit may form a resonant circuit which will accentuate harmonics rather than suppress them.

The effectiveness of the capacitor depends on the area of its plate and the distance between the plate and the grounded shield. When constructed as shown, its capacitance is large enough to bypass harmonics and suppress parasitics without causing any appreciable reduction in the $L-C$ ratio of the plate tank circuit at frequencies be-


the 5-Inch scope with true square wave response


Unrelouched photogrophs of 60 cycle and 50 Kc squore waves reproduced en screens of WO.88A, Note fost return.
A rugged scope of high stability, the WO-88A is ideally suized for general TV servicing as well as production-line applications. The outstanding feature of the WO-88A is its remarkably true square wave response. Other features include:

Direct-coupled, push-pull, 2 stage vertical amplifier; push-pull horizontal amplifier.

- Frequency-compensated, and voltage-calibrated attenuators.
- Front penel source of 1 -volt peak-to-peak calibrating voltages.
- Grapn screen scaled directly in peak-to-peak voltages.
- Magaetic-shielded CRT gun to minimize hum pickup.
- Extro-fast sweep oscillator retrace.
- Built-in 60-cycle sweep with phasing control.

Used with the new low capacitance WG-216B probe, the input resistance is 10 megohms, shunted by less than 10 mmfd . The frequency response of the vertical amplifier is flat from de to 100 Kc ; within -3 db at 500 Kc ; cnd within -10 db at 1 Mc . Sweep circuit frequency is provided in four ranges, from 15 cycles to 30 Kc . Deflection sensitivity of the vertical amplifier is 25 rms volts per inch. Operates from 105/125 volt, 50/60 a.c.

Dimensions: $131 / 2^{\prime \prime}$ high, $9^{\prime \prime}$ wide, and $161 / 2^{\prime \prime}$ deep. Weighs 25 pounds.


NOTE: Prices Net. F.O.B., N.Y.C. Subject to chenge without notice.


## DIAMOND NEEDLES



Our main business is the manufacture of dia mond styli for broadcasting srations and high fidelity sound equipment. As a service to the peneral public we offer to retip your present rerlaceable needle with a genu ne, uncoridition ally guaranteed broadrast quality diamond tip for eitber LP or Standard recerds.
Send us your replaceable needle (or complete cartidge except Pickering) tosether with check cartidage except fickering tosether with check
or moncy order for $\$ 10.50$ plus 254 for shipping

THE TRANSCRIBER CO. 176 Green Street Dept. R Boston 30. Mass.


E® HERE IS LATE INFORMATION IN A HANDY FORM FOR RADIO \& TELEVISION REPAJRMEN, SERVICEMEN \& STUDENTS


## 2VOLS. ${ }^{5} 6$ fomplerisiano.

## IT PAYS TO KNOWI

AUDELS T.V.-RADIO SERVICE LIBRARY presents the important subjects of Modern tadio. Television, Industrial Electronics, F.M. Public Address Systems, Auto, Marine . Aircraft Radio, Phonograph Pick-Ups, etc. Covers Basic Principles-Construction-Installation - Operation - Repairs - Trouble Shooting. Shows How to get Sharp. Clear T.V. Fictures. Install Aerials-How to Test. Explains Color Systems \& Methods of ConVersion. 1001 Facts-Over 1260 Pages- 625 Mluatrations-Parts \& Diagrams-Valuable for Quick Ready Reference \& Home Study. Tells How to Solve T.V. \& Radio

Get this Information for Yourself.
7 DAY TEST - ASK TO SEE ITI
------MAIL ORDER
AUDEL Publishers 49 W. 23 St, M.Y. 10



Mend
nadrpas
Occupation
Emproyed by

## Please Mention Radio-Electronics

 when answering advertisementstween 10 and 20 meters. At 40 meters or lower frequencies, the size of the plate should be increased accordingly.

With an 813 or similar tube running at 2,000 volts or so, the spacing between capacitor plate and shield should be about $1 / 4$ inch. Reduce the spacing proportionately at lower voltzges.

## TV LINEARITY CHECKER

Now that many TV stations are televising program material from early morning until late at night, it is becoming increasingly difficult to tune in a test pattern for checking the linearity of TV receiver sweep circuits. A simple circuit for generating a grid of vertical and horizontal bars on a TV screen is described in La Radio-TV Revue (Antwerp, Belgium).

The instrument uses two 6SL7-GT's as multivibrators, a 6SJ7 r.f. oscillator, and a $117 \mathrm{Z} 3-\mathrm{GT}$ rectifier. V1 is the multivibrator which generates the vertical lines. Varying the setting of the 50,000 ,ohm potentiometer in the grid circuit varies the frequency from approximately 20 to 200 kc to produce a maximum of approximately 18 bars. V2 is a

7 through 13 are covered by second harmonics. The suppressor grid is modulated by the signal from the vertical oscillator and the screen grid is modulated by the rectangular-wave output of the horizontal oscillator. The signal is radiated into the input of the receiver by a telescopic whip type antenna or a piece of bus bar 12-20 inches long.

The original r.f. oscillator coil consisted of 8 turns of $10 / 12$ Litz wire spacewound on a $1 / 4$-inch form. Litz wire being difficult to obtain in this country, we recommend a National AR-5 or equivalent coil.

## BAND-EDGE CRYSTAL MARKER

A novel and exceptionally useful circuit for checking the calibration of the tuning dial is built into the ARC-5 and SCR-274-N command transmitters. It consists of a quartz crystal and a tuning eye which closes when the v.f.o. is tuned to the same frequency as the crystal.
The band-edge marker or calibrator shown in the diagram is an adaption of this circuit designed to be added to
 lines.


# grecs seat CUSTOM TV RECEIVERS 



TABLE MODELS
Model T-17 With 17" Piefure Tube. Cobinet siza:
 $24^{\prime \prime} H_{0} 24^{\prime \prime} W^{2} 22^{\prime \prime} \mathrm{D}$. Your Net Cost......... $\$ 179.50$ $24^{\prime \prime} \mathrm{H}, 24^{\prime \prime} \mathrm{W}$ With $22^{\prime \prime}$ "' Picture Tube, Cabinet Size: $^{\text {M }}$ 24" H, 24" W, 22"D. Your Net Cost.......... $\$ 184.50$

## COMPLETELY ASSEMBLED Super Deluxe DX-TV Chassis in TELESOUND CABINET

with Picture Tube and Speaker-Ready to Operafe!

## An Outstanding Line of Fine TV Receivers at Amazingly Low Prices!

Famaus Make Super Deluxe DX Chassis features Sensationally new Cascode Tuner ESPECIALLY ADAPTED FOR FRINGE AREA RECEPTION: Gracefully proportioned, smartly styled ribbon stripe mahogany veneer cabinets, with gold picture tube frame.

## CONSOLE MODELS

Model C-17 With $17^{\prime \prime}$ Picture Tube, Cobinet Size: $371 / 2^{\prime \prime} 4$ 22" W, 191/2" D. Your Net Cost.


## TeleSsound CUSTOM-BUILT TV CABINETS

DIRECT FROM MANUFACTURER TO YOU-COMPARE PRICE and QUALITY!

Be price conseious! TELESOUND Wholesale Prices enable you to sell more, make a BETTER PROFIT for yourself!


H:25", D:21/2", W:25" TABLE MODEL 500	Wgt: 50 Lbs. \$42.00
As above, for $24^{*}$ H:31". D:24", W:27" Wgt: 60 lbs.	Pictura Tube +555.80



H:481/2", $0: 24^{\prime \prime}, W:$ 5. Wgt: 100 lbs. CONSOLE
MOOEL 800
$\$ 82.50$

$H: 401 / 4^{\prime \prime}$, D:221/2". W:251/4"


## FAMOUS MAKE TV PICTURE TUBES

All standard erands-
NATIONALLY ADVERTISED
FULL ONE YEAR GUARANTEE
DON'T BE MISLED-DEMAND GUABANTEED STANDARD
BRANDS 121/2" Blaek or White.
$14^{\prime \prime}$ Glass Roct. (Bla) $16^{\circ}$ Glass Roct. (BIN) $16^{\prime \prime}$ Glass Roet. (B) Bik) $19^{\prime \prime}$ Roctangular (B) 20" Rectangular (Bik) 21" Rectangular (B|k) 24" Motal 27" Rect. $\qquad$

All TeleSound cobinats lllustroted are avalable tibbon Stip
hogany. Model cabinets llustroted are available In Ribbon Stripe MaBlonde Korina at $10 \%$ additional. Thesa cobinets are custom be had in drilled to fit standard 630 type chassis. We can suppiy them with und and ponel to fit any ather chassis yau specify. Complete cabinet undriled orailable on request. All prices subject to crange without natice.


Here's the "PACKAGE DEAL" You've Waited for!

* SAVE MONEY! Order the cabinet of your choice from the TeleSound models illustrated, in combination with the famous 630 TV Chassis, (Regal or Video), $12^{\prime \prime} \star$ speaker, and your choice of picture tube. If Video 630DX DeLuxe Chassis is desired, add $\$ 10$ to com.
* bination price. For DeLuxe Techmaster 2431P Chassis, add $\$ 50$. Check these sensationally low prices:
$\star \begin{gathered}\text { CABINET } \\ \text { STYLE }\end{gathered} \frac{\text { COMBINED WITH Super } 630 \text { Chassis, } 12^{\circ} \text { Speoker, and }}{17^{\prime \prime} \text { CRT } 20^{\prime \prime \prime} \text { CRT } 21^{\prime \prime} \text { CRT }}$

Pleose include $25 \%$ deposit with orders, balance C.O.D. All shipments F.O.B. NYC


421 West 28th Street New Yorh 1, N.Y. Phone: W" 7 -0719

# CORROSION...the iron curtain of TV reception 

One of the major reasons for poor television reception is a corroded antenna and in most cases you won"t know when your antenna is corroded.

Corrosion changes the electrical characteristics of the antenna . . . results in imperfect - even poor - reception.

Only with antennas that do not corrode can you be sure of good reception.

Tel-a-Ray antennas can't corrode! They are constructed of Dural, with stainless steel fittings . . . alt elements sealed by the exclusive Tel-a-Roll process.

You get perfect television reception all the time. Whether you are replacing a worn antenna or installing a new one - buy Tel-a-

## Ray. <br> Tel-a-Ray Antennas "FIRST-BECAUSE THEY LAST"

$T E L-A=R A Y$ enterprises, INC.<br>P. O. BOX 332, DEPT. C, HENDERSON, KY.



Clearer, Brighter Pictures
when these transformers match antenna impedance to line, or line to TV receiver. Signal input may be improved as much as four times! Designed to couple lowimpedance antenna to standard 300 -ohm line; or 300 -ohm antenna to 72 -ohm twinlead or low-loss 52 -ohm coaxial cable. At receiver, low-impedance line matched to standard 300 -ohm input. Housed in impregnated, weather-tight aluminum shield.

Dimension: $3 / 4^{\prime \prime}$ by $3 / 4^{\prime \prime}$ by $1 \cdot 3 /^{\prime \prime}$
Cat. No. Impedance Ratio List Price $6161 \quad 52 / 300$ or $300 / 52 \quad \$ 2.75$ $6162 \quad 72 / 300$ or $300 / 72 \quad \$ 2.75$

existing v.f.o.'s. It was developed by GI3EVU and was described in Short IVace Magazine (London, England). The original circuit uses a Y63 elec-tron-l'ay indicator tube. A 6E5, 1629, 6 G 5 , or any similar type may be substituted without changing the values of the components, as the tubes are very similar.

L1 is the oscillator, buffer, or doubler plate coil. L2 is a $2-5$-turn link coupled fairly closely to the cold end of L1. Adjust the coupling between L1 and L2 so the eye is almost fully closed when the signal source is tuned to the crystal frequency. Mount the tube so it projects through a hole in the panel close to the v.f.o. tuning dial, and in a position where it will not be obscured by the operator's hand while tuning.


The crystal frequency is not critical as long as it is within the frequency range of the circuit to which it is coupled. A $3.5-\mathrm{mc}$ crystal is perhaps the most useful because it marks the lowfrequency end of the $80-, 40-, 20-$, and 10 -meter bands. If the v.f.o. operates in the 40 -meter band, a $7.0-\mathrm{mc}$ crystal should be substituted.
(If you are accustomed to operating close to both edges of any band, you can add suitable crystals to mark the upper edges. The crystal should he commected in parallel with the one shown in the circuit. We have used four 80 -meter crystals in parallel to mark the edges of the band and two net frequencies. The arystals do not oscillate continuously, so there is no danger of intelaction between them.

Be sure you know the exact frequencies of the crystals you use. It is highly advisable to borrow a good frequency meter and check the crystals in the marker circuit before you begin operating within a few kc of the band edges. Otherwise the system will have greater dangers than advantages.Editor)

END


There! That's the kind of topcoat I want?"

## Carry This ONE Astatic Dual-Output Cartridge

Toat picture tube without removing it or chassis from cabinol.


AND YOU ARE READY FOR MOST 78 RPM REPLACEMENTS

Y OU ARE virtually never at a loss when you carry the amazingly versatile Astatic L-12-U Crystal Cartridge. It's the one cartridge that replaces the great majority of 78 RPM units you encounter in your day-to-day business and, at the same time, gives assurance of reproduction qualities better or equal the previous cartridge when new! It isn't a CURE-ALL. But it is the closest thing to it that has been developed since the early days of the industry. It is your best answer for simplification of inventory, for avoiding lost time and problems of servicing. WITHOUT SACRIFICE OF QUALITY RESULTS. Performance, in every application, where recommended, is guaranteed by Astatic, the leader.

## export department

 401 Broadway. New York 13, N. Y Cable Address: ASTATIC, New YorkViddire Electronics Mig. Co Mirs. of TV color equlpment, TV Em
Electnonio Devlees Factorys Lynbrook, L. I., N. Y.
Nat'I. Sales Onfes Not'I. Sales Ofles 6 E. 39 St.

## Get This Valuable Book ${ }^{-2}$ Just for Examining CoYNE'S New 6-Volume Set



Yes, you get this big, brand new book, " 150 Radio-Television Picture Patterns and Diagrams Explained", absolutely FREE! Just off the press! Gives complete wiring circuits and diagrams on the latest Radio and Television Sets. Easy-to-read, large $81 / 2 \times 11^{\prime \prime}$ pages, with full instructions on how to read and use the diagrams. A "must" in every Radio and Television service-man's repair kit. You get this valuable book as a FREE Gift for asking to see Coyne's great new 6-book set, "Applied Practical Radio-Television"! Here's "Know-How" That Makes You Worth More! You'll get into the big money faster in TELEVISION-RADIO if you know where to find the answer to servicing problems. quicklyt For basic "know-how" that is easy to understand. you'll fnd everything you want in volumes 1 to 5 which contain over 5000 practical facts and data. They cover every step from principles to installing, servicing, trouble-shooting and aligning all types of radio and TV sets. So up-to-date it includes COLOR TV and UHFF adanters. So up-to-date
762.-Poge Television Cyclopedia Inr:luded

And then. for speedy on-the-jov use. you get volume 6-the fanious Coyne TELEVISION CYCLOPEDIA. It answers today's television problems on servicing, alignment, installation and others. In easy-to-find ABC order. cross indexed. Use this 6 volume TV-RADIO LIBRARY free for 7 days; get the valuable Servicing Book ABSOLUTELY FREE!

on 7 days free trial. We'll includ mail coupon for 6 -volume set \& Diagrams. If you month until $\$ 23$ you keep the set, pay $\$ 3$ in 7 days and $\$ 3$ per month until $\$ 23.00$ plus postage is paid. (Cash price $\$ 22.00$ ). Or you can return the library at our expense in 7 days and owe nothPatterns is BE THE JUDGE. Either way, the book of TV-Radio Patterns is yours FREE to keep! Offer is limited. Act NOW!

## FREE BOOK-FREE TRIAL COUPON!

COYNE ELECTRICAL $G$ TELEVISION-RADIO SCHOOL, Dept.
$\overline{\text { SUŪ}} \overline{5}$. Paulina St., Chicago 12 , Ill.
YES! Send b-volume, "A
TRIAL per your affer. Include Practical Rodio-Talevision" for 7 doys FREE TRIAL per your affer. Include TV-Radio Patterns \& Diagram Book FREE.
$\qquad$

```
Address.
```

City.
Where Employed
( Check tere if you want ibrary sent COO. You pay postman $\$ 22$ plus COD postage on delivery. 7-doy money-back guarantee

## If you're in television

## THESE BOOKS CAN BE

 IMPORTANT TO YOU
## Movies for 70

By Jobn Bastison. The practical iaformation you need for making the most effec. tive use of movies on TV programs. Explains why some types of pictures ade better than others; how to make lighting and special effects; what types of commes to use; various wars to present causes of technical flaws and how cials; causes of technical naws and her infor avoid them, and a weath of other, and mistion on

## Painting with Light

By Jobn Alfon. A leading Hollywood Director of Phocography, winner of the 1951 "Oscar" for photography, explains his professional lighting rechniques-What equipment to use and how to place it for a particular mood of effect. indoors or out; how, for instance, to get candlelight or moving train at night. What lighting to use for rain, for close-ups, and hundreds of other special scenes-information as vital for good TV pictures $\begin{aligned} & \text { as } \\ & \$ 6.75\end{aligned}$ movies.

## Mandl's Television Servicing

By Matthow Mandl. Detailed, illusurated instructions for locating and corfecting every flaw or failure you're likely to encounter. including those hard-ro-find troubles. Simple signal tracing procedures, trade tricks in diagnosing troubles in minimum time, essentials of VHP and UHF servicing, complete mastet trouble chart. Fully and clearly explains each stage in today's receivers, showing what faules may occur in each and why. \$5.50

## Television <br> for <br> Radiomen

By E. M. Noll. Very clear, nonmathematical explanations of the fuaction and operating priaciples of every element and circuit in TV reception, together with practical inseruction on the installation allignment, adjustment and trouble shooting of modern receivers. Provides the Thooting of modern recervive TV needed for effective servicing. $\$ 7.75$

## Television and $7 m$ Antenna Guide

By E. M. Noll \& Massbew Mandt. Are interference, fringe reception, ghost reinterference, friage reception, gook tells you how to overcome them-how to im. prove gain, minimize noise from the transmission line, get the MOST out of the antenna system at any location. A brief the antenna sysem at ray locacoa. Allowed clear course in antenns theory is follow by instructions for determinias the right type of antenna for the site, the best posi. tion for it, the tight installation, with full ested data on all types of antennas iacluding those for UHF and VHF locations.
$\$ 6.25$
See these most belpful books at your book store, or write for onapproval copies to
THE MACMILLAN COMPANY
. 60 Fifth Avenue,
New York 11, N.Y.

## AM-FM ANTENNA SWITCHING

When using an AM-FM broadcast and shortwave receiver such as the Hallicrafters SX-62, a miniature d.p.d.t. knife switch will enable you to switch quickly from a long-wire shortwave or broadcast antenna to a 300ohm FM dipole without introducing mismatch between the 300 -ohm lead-in and receiver. When the switch is wired as shown in the diagram, throwing it to the AM position automatically connects the $G$ (ground) terminal to one

of the D (dipole) terminals. The short is removed and the 300 -ohm lead-in connected when the switch is thrown to FM. I used a switch mounted on an insulated block measuring only $1 \times 11 / 4$ inches. The spacing between its blades is only $1 / 2$ inch. This preserves the symmetry of the 300 -ohm ribbon and minimizes reflections and mismatch. The switch is mounted on a polystyrene angle bracket at the rear of the re-ceiver.-Arthur Trauffer

## NOVEL CONTROL CIRCUIT

Because of distance or other factors, it is often impractical to run more than two control leads to a remote electrical device. With the usual circuitry, the two leads would be required to control a single device. This circuit shows how this same pair of lines may be used to control two separate devices.
With S1 and S2 open, the rectifier polarities prevent current flow through either relay rectifiers. When $S 1$ is closed, rectifier 1 is shorted out. Rectifier 3 conducts when the negative halfcycle of the line voltage makes its cathode negative. At the same time,


rectifier 2 conducts because its anode is positive. These two rectifiers pass current through relay 1 and cause its contacts to operate. Relay 2 operates when S2 is closed. Both relays operate when S1 and S2 are closed. C1 and C2 may be of any value large enough to keep the relays from chattering.
To avoid insulation problems and heavy lines, you may use low-voltage relays and supply the circuit from a step-down transformer.
D.c. may be used as the power source, thus eliminating rectifiers 1 and 3. Circuits are selected by reversing the polarity of the applied voltage. With d.c. operation, it is impossible to operate the relays simultaneously.-Carleton Phillips

## Thousands depend on PHOTOFACT! <br> they tell you why

Unsolicited letters tell what the world's finest TV and Radio Data means to Service Technicians



William T. Duarre 8 Harbourd Road Johnston.9, R. I.
"Thanks for introducing me to such a wellcompiled and tremendously helpful data service as your PHOTOFACT.'
N. A. Jacobsen

562 Martha St.
Grand Rapids, Mich.
"Your folders were' recommended to me by another serviceman. I'm discovering that I should have them before I tackle any job that looks the least bit lough. It sure was my lucky day when I was introduced to your folders. Really, I don't know how one could service a set intelligently without having the PHOTOFACT Folder on it."


## John J. Duplex

Duplex TV E Radio 5153 W. Huron 5 t. Chisago, III.
'il find your PHOTOFACTS a necessary must, and would not consider servicing without them."

## NOW! GET THE PROOF FOR YOURSELF!



We'll send you a Free Phot ofact Folder on any receiver listed in "PF Index \& Technical Digest."

Learn for yourself-at our expense-how PHOTO. FACT pays for itself by earning bigger repair profits for you! Select any Folder from the PF Index (if you haven't an index, get a copy from your distributor). When you write us for your Free Folder, be sure to state Photofact Set and Folder Number as shown in the Index. Get your Free Folder now. Examine, use, compare-see why you can't afford to be without PHOTOFACT!

HOWARD W. SAMS \& CO., INC.
2205 E. 46th St., Indianapolis 5, Ind.

## HOWARD W. SAMS \& CO., INC.

## DON'T BUY A 630 TV CHASSIS KIT, CABINET, C.R.T. OR PARTS!

## 

 HIGHLIGHTS OF TV OFFERS FOR $1953^{\prime \prime}$
## \#630 TV KITS COMPLETE WITH TUBES . . . as low as 593.78 CUSTOM-BUILT TV CABINET for any TV . . . as low as $\$ 39.89$ PICTURE TUBES in factory sealed cartons . . . as low as ${ }^{5} 18.36$

## COMPLETE \#630 TV RECEIVERS . lower than ordinary TV Sets RADIOS . TV \& RADIO PARTS . TEST EQUIPMENT at wholesale



BUILDING YOUR OWN f630 TV CHASSIS is now simulifiod with this COMPNETE SET OF BUILDING
$\&$ WIRING INSTRUCTIONS Covers gll Gin's \& WIRING INSTRUCTIONS. Covers all $\# 630^{\circ} \mathrm{s}$. from the RCA $10^{\circ}$ SET to the latest SUPER DE LUXE
3 I- tube $16^{\prime \prime}$ to $24^{\circ}$ RECEIVER.
EVERYTHING AT A GLANCE-LAYOUT CHARTS show chassis and components in actual LIFE-SIZE GUESSWORY is side the illustrations.
GUESSWORK IS ELIMINATED by specially pre parad SCHEMATKC DIAGRAMS. LOCATIDN GUID. ANCE, CODE CHARTS, AI-HGNMENT PROCEDURE COMPLETED CHASSIS (ussembled from these instructions) clearly showing placement of each component. INDISPENSABLE for BUILDING COHVERTING or TROUBLESHOOTING any \#630 TV SET.

Popular priced at only.... Postpaid Incheding "HIGHLIGHTS OF TV OFFERS FO₹ 1953 "

## THE NEW CASCODE TUNER

can now be installed in ANY TV set with the
Brooks CASCODE MANUAL
Illustrations, Schematics and easy to follow, step by step Instructions

only 51 Postpaid<br>Including "Highlights of TV Offers for 1953'

$\square$ - Hints for Better Pictures on s3orv - 633TV Diagrem with Modifíations

- llustroted tV Conversion Manval
- Pulse Key: of AGC Circuit Diagram - RMA Resistor \& Mica Code Charts




## HOTTEST TV PACKACE for "ONE BUCK'ग

EVERYONE INTERESTED IN TELEVISION should own this TV literoture packoge . . . The information will be found useful on any make TV set. It's different and right to the point. It earries instructions that are up to the minute ond not yet found in expensive text books. Indispensable to the TV technician yet ecsy enough for anyone with even a limited knowl edge of TV to understand and follow.
SAVE MONEY ON REPAIRS - Important common oceurrence are corefully analyzed and corrective procedures are suggested. You are told what to do-WHEN THE RECEIVER FAILS TO OPERATE, WHEN THERE ARE GHOSTS, INTERFERENCE, NO PICTURE, PICTURE FOLD-OVER, NO RASTER, PICTURE BLOOMS, DISTORTED PICTURE, PICTURE ROLLS, NO SOUND, DISTORTED SOUND, CORONA EFFECTS, ETC. PICTURE TUBE ASSEMBLY and PATTERN ADJUSTMENTS are outlined in detail (the ion trap adjustment caution may save you the price of a new picture tubel. The HORIZONTAL SYNC, RCA TUNER and STANDARD TUNER step by step adiustments alone are worth many times the cost of this package.
TUNING GUIDANCE and ANTENNA ADVICE will enable you o enjoy peak performance of its best. The HIGH VOLTAGE CAUTION will give you that free and eosy feeling of sofety while hondling the chassis or any of its parts.
Just think of being able to convert any $10^{\prime \prime \prime}$ TV set into a life-size $24^{* \prime}$ receiver in os little as one hour . . . The ILLUSTRATED TV CONVERSION MANUAL makes that possible. The \#630 CIRCUIT DIAGRAM, KEYED AGC DIAGRAM, RE. SISTOR \& MICA CODE CHARTS need no emphasis os to the ir usefulness.

YOU have nothing to lose. your money will be Cheerfully refunded if not completely satisfied.

## ....... USE HANDY COUPON




## FOR FINEST TV RECEPTION

## for use wherever tough weather conditions prevall TESTED AND RECOMMENDED FOR FINEST UHF - VHF RECEPTION

GOODLINE SHEATH-LEED-a NEW DON GOOD PRODUCT-is our fine Standard *GOODLINE AIRLEAD encased in a tubing of pure polyethylene of finest quality to protect it under all-weather and all-elimatic conditions. It is especially recommended for use in coastal areas where salt spray encrusts the regular leadline, in hot humid areas, where much alternate rainfall and strong sunlight prevails and where leadlines are subjected to frost, snow and iey conditions.


Exhaustive tests made after two years have shown that the average flat or round 300 ohm leadline installed within two blocks from the ocean will give but 2 to 4 weeks of satisfactory operation due to salt spray deposits encrusting the leadline. With GOODLINE SHEATH-LEED protection, the product gives highly satisfactory service for a year and more.
For finest trouble-free reception-even in areas where more favorable weather PrevailsINSIST UPON HAVING GOODLINE SHEATH-LEED INSTALLED FOR YOUR LEADLINE.
NO. 803-GS SHEATH-LEED: STANDARD BROWN GOODLINE AIRLEAD. Sheathed in pure Polyethylene Standard Brown LEED.SHEATH (another new Don Good product). For 300 ohm use. 1,000 foot reels-standard length... Shorter lengths available.
NO. 823-GS SHEATH-LEED: Color-Golden-Clear Goodline Air Lead. Sheathed in SilverGray Pure Polyethylene LEED.SHEATH (another new Don Good Product). GOLDEN.CLEAR GOODLINE AIRLEAD is electronic polyethylene in its purest form, and when shielded from ultra-violet light with Silver-Gray LEED-SHEATH, the installation will give years of troublefree service. For 300 ohm use. 1,000 foot reels-standard length... Shorter lengths available.
NO. 733-GA: *GOODLINE AIRLEAD. THE BASIS OF FINEST TV RECEPTION.
FEATURES: 1-Sharp, clean, "snow-free" pictures-with $80 \%$ of loss producing dielectric web removed. 2-Correct inpedance for "ghost-free" reception. Nominal 300 ohms. 3-Lower in cost than other leadlines purported to accomplish same results. 4-Correct spacing for minimum radiation loss. Less than $1 \%$ of operating wave length. 5-Fully insulated-approved by salety experts. 6-Pure, electronic polyethylene insulation-specially treated by our chemists for extreme weather. 7-Highly efficient conductors: Flexible, stranded-to insure long life. 8-Easily installed with standard insulators. 9 - Packaged: 100'-250-500'-$1,000^{\prime}-2,500^{\prime}$. Colors: Standard Brown, Golden-Clear and Silver-Gray.
if your jobber or tv dealer cannot supply, write for samples and new literature
*Pafent Pending. "Trade Mark. U.S. and Foreign Pafents Pending
EXCLUSIVE LICENSEE AND SOLE MANUFACTURER


OUTSTANDING GOODLINE PRODUCTS:
DON GOOD, INC. Manufacturers: Sheath-Leed \& Leed-Sheath Protection. Goodline Airlead.


Standard brands NEW
individually boxed

146	. 48	6AU6	. 59	$12 \mathrm{AU7}$	. 85
183	. 84	6 AY6	. 49	12SA7	. 68
1 C 6	. 53	6BC5	. 61	12BA7	. 89
$1 \mathrm{C7}$	. 58	8BG6	1.85	$125 K 7$	.63
$1{ }^{105}$	. 47	6896	1.15	12597	. 68
107	. 68	6CB6	. 58	$125 N 7$	. 73
304	. 52	6H6	. 50	3516	. 51
$5{ }^{5} 3$	. 47	6.16	. 71	35 W 4	. 43
544	. 58	6 K 6	. 63	3525	. 47
5 V 4	. 93	6SJ7	. 68	5085	. 51
648	. 89	6SN7	. 80	$50 \mathrm{C5}$	. 51
6 AC7	. 1.02	6V6	. 63	5016	. 57
6 AG5	. 78	6 W 4	. 58	75	. 83
6 AK5	. 89	$6 \times 4$	. 48	955	. 40
6 ALS	. 58	$12 \mathrm{AT7}$	. 78	1 N34	. 52

H'rite for New Free c'atalogue
GENERAL ELECTRONIC DIST. CO.
98 Park Place-New York 7. New York


## CORONA DISCHARGE

Corona discharge in some TV sets and oscilloscopes is annoying because its effects are often mistaken for other faults and its source is sometimes hard to localize. In a TV receiver, this trouble is likely to cause breaks in the line structure of the raster, variations in brightness, and sometimes irregular black bars on the screen. In a scope, it causes variations in intensity and erratic breaks in the trace. You may hear clicks or frying sounds from the high-voltage compartment or the base of the $C-R$ tube.

If corona discharge is suspected, sniff around the back of the set. If you smell ozone, turn out the lights and look over the power supply, the C-R tube and rectifier sockets, and the highvoltage leads. Watch for a bluish glow. Try blowing your breath on the highvoltage points. A soda straw or piece of spaghetti is handy for this.

When you locate the source of trouble, dress down all sharp corners and edges and smooth off rough solder joints with a hot iron.

If the discharge is on an insulator, replace it because it has probably broken down under the high potential. Discharge from a lead can be cured by replacing the lead with one designed for high-voltage operation. Keep the lead as much in the clear as possible. If this fails, try increasing the size of the offending conductor or connection. Keep everything as large and smooth as possible.-R. A. Cunningham

## WELLER SOLDERING GUNS

If your Weller soldering gun is slow in heating, look at the nuts that hold the tip in place. If they are the least bit loose, they will introduce enough resistance into the circuit to seriously reduce the tip current. Try tightening these nuts with a wrench and note how quickly the gun heats up.-Charles Erwin Cohn

## TV HIGH-VOLTAGE TROUBLES

Sometimes the 1 B3-GT/8016 rectifiers fail to light under load in sets having flyback power supplies. This may be caused by a poorly soldered connection in one of the filament pins. The resistance of the connection may be high enough to prodnce a serious drop in filament voltage. A remedy for this condition is to reheat the filament pins with a hot soldering iron.-Leonard Pfeiffer

## PRECISION RESISTORS

Replacement heating elements for electrical appliances such as small radiant heater's and hot plates can be used to make excellent high-wattage precision resistors for meter shunts and multipliers. When fully stretched out, the wire has a resistance of about 0.2 ohm per inch. The wire can be wound around a ceramic or bakelite tube. Screw-type terminals make the best connections.-RichardJ. Sandretto END
the Bigiginal a n d Ontge

## CO-Laferal TV ANTENNA <br> PA TENT NO. $\therefore .566 .287$



## HoWEFST you vet HoW WELL vo woen HOW MUCH yound <br> depends a whale of a lot on your ability to

## USE ELECTRONIC

 TEST INSTRUMENTS effectively!

Here at last is a complete lhe-u of how 10 -use-it drta
on ALL TYPE OF MODENN SEMVICE INSTKUMENTS! stood terms, you learn all about over 60 different in struments. You are shown ex-
gruly when, where, why and actly when, where, why and
how to use them-on all kinds of service jobs.
use familidr instruments mare fully.
And you galn a frst-hand
working knowledge of the working knowledge of the
many newer types such as many newer types such as and marker generators TV IInearity pattern generators. dis turton meturs, suase wave
senerators and others that are
BASIC ELEGTRONIE TESTINSTRUMENTS by Rufus P, Turner New anel completel revised edition pages, ${ }^{6 "}{ }^{\prime \prime}$ b so "ssential in servicing to

Everything you
need to know about ALL instrument types used in modera Radio-TV service:

## R-Simpla Merters

Current \& Volfoge 2-Ohmmers Ohm-Milliammeters 3-Vocuum-tube Voltmete 8 Meters Impedance Meter 8 Measurements Copocitor Checke 6-Inductonce Checker 8 -Special-purpose Bridges \& Accessori -Oscilloscopes and Their Uses 10—R-F Test Oscillators \& Signal Generators 1-Audio Test Oscilla. fors
-Measuring Rodio Frequencies
3-Meosuring Audio Frequencies 14-Audio-Amplifier Testing Devices 15-R-F Signal Tracers

## 6-Tube Characteristics <br> \& Tube Checkers <br> 10-DAY FREE EXAMINATIOL

Dept. RE-13. RINEHART BOOKS, Inc. Technieal Division
232 Madison Ave., New York 16. N. Y
Send Turner's BASIC ELECTRONIC TEST TNSTRUMENTS for 10 -day FREE I will then remit $\$ 4.00$ plus postage. Otherwise I will return book postpaid promptly and owe you nothing.
Name
I Address
I City, Zone, State.
I Fmployer's Name and Address
OUTSIDE U.S.A.-Prire \$4.50, cash only. Haney bark if book is returned postpaid in 10 day.

## RHOMBIC ANTENNA QUERY

? I am about 200 miles from TV stations on channels 2 and 5 in Atlanta, Ga. The receiving antenna is a rhombic with 55 -foot legs terminated with a 789-ohm resistor and fed with 300 -ohm ribbon line. The antenna is 45 feet wide at the center. I seldom get a picture, but when I do, reception is fair on channels 2 and 5. Is there any way in which $I$ can modify the antenna to improve reception on channel 2?-D. A. D., Knoxville, Tenn.
A. We assume that your rhombic is as large as you can conveniently make it, so we won't suggest making it larger. Its proportions are good and we would not suggest changing them. You may be able to improve reception by careful orientation of the antenna and by correctly matching the antenna to the transmission line.

A rhombic antenna for $d x$ reception is very critical and must be oriented in the vertical and horizontal planes so the main lobe points directly at the transmitting station and lines up with the angle of arrival of the incoming signal.
Horizontal orientation or alignment of a rhombic is an exacting task when the installation is beyond the line of sight from the transmitter. Buy (from a local airport or aviation supply house) a regional airways navigation map showing the receiving and transmitting locations. Mark these points on the map and draw a straight line between them. Use a protractor to measure the angle that this line makes with magnetic north. Use the bearing of this line in laying out the base line of the rhombic. A surveyor will probably stake out the antenna base line for about the same fee as would be charged by a local TV technician for a standard antenna installation. If you do not care to hire a surveyor for the job, a surplus military marching compass can be used to lay out the antenna location. When laying out the base line, be sure that the compass is not thrown off by magnetic-metal tools, keys, belt buckles, and the like. Keep such material as far as possible from the compass. Make several sightings from the same point and lay out the base line midway between the two extremes.

Since you do not know the angle of arrival (wave angle) of the incoming signal, you will have to adjust the antenna after it is erected. The supporting lines for the sides and the terminated end should run through pulleys fastened to the tops of the supporting masts. This enables you to tilt the plane of the antenna and adjust its wave angle to correspond with the angle of arrival of the TV signal. For your antenna, the terminated end should be about 18 feet lower than the end to which the lead-in is connected. You can adjust the plane of the antenna for best reception and least noise when receiving a signal. Keep the terminated end at least 10 feet above ground.


ANTENNAE SPECIALS


## DAA D

1697 BROADWAY • NEW YORK 19, N.Y.
BOTH BODKS
FREE



 Radio or Tolevision munuals if you need a clrcuit at any thme. this IN1)EX will tell you where to get it. (iet both
books in 2-in-1 volume FItEE; just send stamp for potaze. SUPREME PUBLICATIONS $\begin{aligned} & 3727 \\ & \text { chicago } \\ & 23\end{aligned}$

## PLEASE MENTION RADIO-ELECTRONICS when writing advertisers

A 300 -ohm transmission line does not provide a good match to a rhombic which has an impedance of approximately 800 ohms. Connect a 490 -ohm quarter-wavelength matching section between the antenna and lead-in. Use No. 12 wire spaced $21 / 2$ inches center-to-center or standard open-wire TV lead-in. The length of the matching section in inches equals 2,880 divided by the center frequency of the TV
channel in megacycles.
Since you are interested in reception on two channels, you should have a separate matching section and lead-in for each. Use 57 mc for channel 2 and 79 me for channel 5 when calculating the lengths of the matching sections.

Use a d.p.d.t. antenna change-over relay at the antenna to connect the antenna to the matching section and lead-in being used.

## FIELD-STRENGTH METER FOR TV MEASUREMENTS

, I would like to construct an inexpensive TV field-strength meter for use in antenna orientation and experiments. I have heard that one can be constructed from a TV booster or front-end. Please tell me how this is done.- L. McC., Schenectady, N. Y.
A. Such a meter usually resembles the video section of a TV receiver. The output of the tuner works into a conventional video i.f. strip. The output of the video detector is measured with a high-resistance voltmeter or the detector load current is read on a sensitive microammeter. A multiplier-resistor network is usually included to permit the unit to be used for a wide range of signal strengths. The i.f. strip is usually sharply tuned to the video carrier frequency for greater sensitivity. This calls for careful shielding and bypassing $t$, prevent oscillations. Sensitivity may be controlled by varying the bias on one or more of the i.f. tubes.

The circuit of a tuned r.f. field-
strength meter is shown here through courtesy of Cornell-Dubilier Electric Corporation. The output of the booster feeds a full-wave bridge detector circuit consisting of two resistors and two silicon diodes. A $100-\mu 3$ meter and a $5,000-\mathrm{ohm}$ wire-wound potentiometer

are connected in series across the output of the bridge. The reading of the meter is proportional to the strength of the signal fed into the booster. The $\overline{5}, 000$-ohm calibration control permits the meter to be set to a predetermined reference point. Silicon diodes are more efficient at TV frequencies than most germanium types.

## CONVERTING A G-E 260 PORTABLE FOR A.C. OPERATION

? I have a G-E model 260 portable receiver which I would like to convert for a.c. operation only. I want to retain the original tubes and eliminate the 2-volt storage battery. Please print a diagram of a suitable power supply and show how it can be connected to the re. ceiver.-R. W. O., Minneapolis, Minn.
A. The diagram shows the circuit of an a.c. operated power supply (battery eliminator) and the method of connecting it to the receiver.
Disconnect the low-voltage end of the $10,000-\mathrm{ohm}$ resistor in the original power supply from the lead going to pin 3 of the first i.f. amplifier and to the 82,000 -ohm screen dropping resistor for the 1LC6. Connect the lead to pin 3 of the 1LN5 to the 90 -volt lead from the power supply. Disconnect the lowvoltage end of the $1,500-\mathrm{ohm}$ resistor in the original supply from the $B$ plus
line supplying the $3 Q 5,1 \mathrm{LH} 4,1 \mathrm{LN} 5$ second i.f., 1 LC6 plate, and 1LN5 r.f. amplifier. Connect this B plus line to the 95 -volt point on the 5,000 -ohm voltage divider in the supply.

Connect a $5.6-\mathrm{ohm}$ resistor across the low-voltage (filament) supply output and adjust the 3 -ohm resistor for exactly 2 volts output. Remove the 5.6 -ohm resistor and connect the 2 -volt lead to the tap on the r.f. choke.
The low-voltage choke is made by winding as many turns of No. 22 enameled wire as possible on the core of an old a.c.-d.c. filter choke. The rectifier may be a Mallory 1B8R or equivalent, and the power transformer is a halfwave type designed for use with selenium rectifiers.


## FIELD STRENGTH METER

## Saves $\mathbf{5 0 \%}$ of Installation Cost

## Pays for itself on 3 or 4 jobs

## NO TV SET NEEDED

## Works from antenna.

Measures actual picture signal strength directly from antenna. Shows antenna orientation maxima Campares gain of antenna systems. Measures TVI on all channels. Checks receiver reradiation (local oscillator). Permits one man anterna installation.
PREVENT WASTE OF SERVICING TIME! By checking antenna performance with the Field Strength Meter, the serviceman can determine whether the TV sel or antenna, or both, are the source of trouble. Call backs are eliminated.


Wide range: Measures field strength from 10-50,000 microvolts. Has Fringe Area Switch for weak signal areas 13 channel selector. Individually calibrated on every channel.

## ADAPTABLE for UHF

Model FSM-2, for IIOV AC only. Complete with tubes. Wt. 13 lbs . ................net $\$ 59$.
Model FSM-3B, for 110 V AC and Battery Operation (all batteries and cables included). Wt. 22 lbs -

## Order direcr from factory:

TRANSVISION INC., NEW ROCHELLE, N. Y.



> Pickering Hiyh Fidelity Components are aqailable through leading Radio Parts distributors eqerywhere; detailed literature sent upon request.
Oceanside, L. I., New York $||||||||||\mid$

Scientifically engineered
for MAXIMUM SAFETY!


Fastest selling lighening arrester in the country. Precision made to alsure moximum protection. Supplied with aitegrip birding washers to eliminate pecessity of etripping insulation.
Model 6113-Attach to any conven
ient base. Can be used indoors,
List $\$ 1.25$
Model 6114-Includes metal strap.
$\begin{array}{ll}\text { or securing to metol pipes of } 1 / 2^{\prime \prime} & \text { list } \$ 1.50 \\ \text { o } 21 / 2^{\prime \prime} \text { diameter. }\end{array}$
 Write Dept. RE-1
for Lafest Catalog.

## insuline

CORPORATION OF AMERICA INSULINE BUILDRNG 36-02 35th AVENUE Weang ISLAND CITY. N. Y.
Weat Coast Branch and Warthouse: Calif Exclusive Conadien, Safea Agents:
CANADIAN MARCONI COMPANY, Toronto


## Flying

 Saucers?Frankly se don't know if they're fact or fiction .. but it they are fact it wouldn't surprise us a bit to learn that some extraterrestrial manufacturer has incorporated Seletron Seleniums Rectifiers and R. R. Co. Germanium Diodes into the design.
That's because-as pioneers in the field of electronic develop-ment-reve had out hand in some of the mose difficult projects and met some of the stiffest requirements ever cooked up! Making drawing board dreams come true are daily choses at Radin. Receptor Co.!


## ADMIRAL AM-FM TUNERS

Oscillations which cause motorboating or whistles in the center of the AM band when the loop antenna is used are the result of excessive regeneration in the converter stage of the 4.J1 and 4 K 1 chassis. The AM peaking coil L606 (between pin 6 of the 12 AT 7 and the plate lead of the first $A M$ i.f. trans former) is used to provide positive feedback in the converter stage. This eliminates grid loading, inherent with a triode mixer, and provides greater conversion grain. If the resistor shunting the peaking coil increases beyond its specified tolerance, the set will oscillate in the middle of the band.

To verify this as the cause of the trouble, place your hand across the loop antenna. If oscillations stop, replace the damping resistor and the peaking coila $475-\mu \mathrm{h}$ unit coded with a blue dotwith a new $120-\mu$ h coil (part No. 73A510) coded with a black dot.

If oscillations are present when the new peaking coil is used, look for trouble in the first AM i.f. transformer. In some cases, the silver mica capacitors in the transformer open up and cause the converter to oscillate. Replace the trans-former.-Admiral Service Lulletin

## BUZZ IN SENTINEL SETS

If station buzz is excessive and is not caused by the contrast control being advanced too far clockwise, adjust the discriminator secondary tuning slug for minimum buzz. Make sure that this position is between two maximum buzz peaks which will be noticed when the tuning slug is turned to the right and to the left of the minimum buzz position.

This adjustment screw is located on top of the discriminator coil shield and between the GAL5 sound detector tube and the 6AU6 sound i.f. amplifier tube. -Sentinel Service Notes

## MOTOROLA TS-174 CHASSIS

A vertical roll which cannot be stopped with the hold control may be caused by a change in the value of the fixed resistor in series with the vertical hold control. In one case, the value of the resistor had increased from 220,000 to 320,000 ohms.-Stephen A. Quering
(The vertical oscillator circuit varies with different production runs and versions of the chassis. In sets which use a $6 J 5-G T$ blocking-tube oscillator, the series resistance is 220,000 ohms. If the sweep generator is a $12 \mathrm{AU7}$ multivibrator, the series resistance should be 330,000 ohms. When checking voltages and component values, be sure to refer to the manufacturer's service data and notes on production changes.-Editor)

## RCA TV RECEIVERS

A light 2-3-inch horizontal band which drifts slowly across the face of the picture tube may be caused by oscillations in the 6BQ7 r.f. tube in the 17T150, 17T160, 17 T 170 (chassis KCS 66 ) and 21 T 160 (chassis KCS68) models. In most cases, this trouble can be cured by replacing the tube.-Gerald J. Macheak

# STANDARD BRANDS standard warranty New Low Prices 



Many other types equally low priced-include off your tube needs with your order.
One of the largest stocks in the countryf
One of the largest stocks in the countryf
All prices subject to change without notice. F.O.8. New Yordance C.O.D.
ele $/$ ision Materials corp


## THE NEW

## Sky $7 i$

## HYDRAULIC MAST

Now you can have the SKY-HI mast in steel or aluminum with latches or without, in any heigh up to and including 200 feet.

Your choice of hand pump, 110 volt or 6 volt electric driven pump, or in many cases available water pressure is sufficient for operating the aluminum mast.

Also complete trailer and mast assembly up to 100 feet for survey work ready to put into service.

These products are approved and used by many government and commercial agencies.

We welcome comparison with any other mast built when you are considering speed of erection and lowering, and all around versatility.

## Write for details.

WOOSTER, OHIO



GET INTO ONE OF THESE GREATER OPPORTUNITY FIELDS fectidivor
Rifinision
Cowne:
Come to the Great shops of Coyne in Chicago. Get practical training in TELEVISION-RADIOELECTRICITY - ELECTRONICS - vital in Industry or higher rating in Aow for a better job in Approved for Veterans fina Forces.
Approved for Veterans-finance plan-enroll now. pay most of tuition later. Part time employment service while training if needed. Special
FREE BOOK Clip coupon for Big Free Illussalesman will call. Act NOW. No obligation. No
B. W. Cooke Preste


셜….................................
ADDRESS......................................
CIT


## Rockeł Directronic

 MOTORLESSTV ANTENNA
$360^{\circ}$ Electrically Switched Beam
No Motori
No Root Orientation No Eletrie Power No Ghosts
Flick of Switch Clear i
$\$ 16.95$ Flick of Switch Clua BEAM SELECTOR_Provides same elear turos as sotaling aarials costing 4 times as much. Elec. tronically beams in all directions with full $360^{\circ}$ rota.
tion. You seloet direction with
Directronic Solector locatod at set. Model AX. 599 stacked array includes 18 hi-tensile aluminum elements. I sot con. netcing stubs, Universal U.Clamps for mast, Diree.


FREE
With each order of s sio or moreyou will receive our hocket fot ther


FULLY GUARANTEED-INDIVIDUALLY BOXED tubes limited!

FEATURES: Monufocturer licensed un- der RCA patents - 30 tube TV receiver (including 3 rectifiers) FREE replacement on defective tubes and priminator Chonnel coverage DisImproved picture brilliance * AFC horizontal hold keyed ACC Stabilized vertical hald 3 stoge motic brightness control * 4 Mc band width . Highest quality parts used. All stondard tubes "19" For oll Cothode Roy tube Fringe Areo Reception.-Will work where most sets foil to operate.

630 DF Chassis-Extra power for fringe areas. No need fo tenna

516150
$\$ 4.95$
1 man
and
and
1 14650 1 S
A.13 Power Amplifier and Speaker............ $\quad \mathbf{8 9 . 5}$

## FREE! FREE!

Write for lotest cotolog of
hundreds of "rock bettom" volues!


TV ANTENNA PRECAUTIONS
Always disconnecti a TV or FM receiver from the line by pulling the plug before making any adjustments on the outside antenna. If the set must be turned on while orienting the antenna, be sure that you wear heavy gloves and that you do not permit any exposed part of the body to contact the antenna or mast. Failure to observe these precautions may cause serious injur; . Don't rely on the switch. Pull the plag!

I have been shocked several times while reinstalling or orienting TV antennas. In most instances, the shock came when I touched the radiator connected to the lead-in. I don't believe that I got the full line voltage, but it was strong enough to be uncomfortable. In a nother case, I received a severe shock when I touched the mast while standing on a metal ladder. This time, the shock could have caused me to lose my balance and fall to the ground. Now, I pull the plug whenever possible and I wear heavy work gloves during antenna orientation.Alexander Kauders

## TV SERVICING TOOL

The gadget shown in the illustration is handy for adjusting the rear controls on large TV cabinets while watching the picture from the front. The tool is made from an auto radio flexible con-

trol shaft, a length of copper tubing, and a short piece of windshield-wiper hose. The copper tubing controls the degree of bend to prevent whipping and binding. The rubber hose slips over the shaft of the control to be adjusted.Motorola Service and Installation Bulletin

## CORONA TROUBLES

The cheaper fiberboard type highvoltage insulation materials tend to absorb moisture in coastal areas where humidity is high. This causes loss of high voltage and severe corona troubles. In one 16 -inch set, a faint blue was observed all over the insulation and high-voltage leads when a blanket was thrown over the high-voltage cage to darken it. The condition was cleared up by replacing the fiberboard with plastic and the socket with a porcelain type.

Severe corona will often cause a horizontal output tube to fail within a few weeks. Metal shielding which is too close to the plate cap of the output tube will show a polished or bright circle opposite the cap if corona exists at this point.

AMERICA'S FASTEST GROWING TV ANTENNA MANUFACTURER DAVIS ELECTRONICS

## THERE MUST BE A REASON

THE REASON IS: The DAVIS SUPER-vISION Is the finest an tenna built for V.h.f. ALL CHANNEL and for FRINGE AREA and DX RECEPTION...A steady flow of enthusiastic letters from tisers all over the U.S. attests to this fact-and is outstanding proof of its UNIVERSAL ACCEPTABILITY.


DAVIS SUPER-VISION<br>"The original antenna sold WITH A MONEY-BACK GUARANTEE"

1. EXCELLEMT FOR FRINGE AREA and DX RECEIV-ING-and broad band receiving with high gain on all channels-2 through 13 .
2. Clearer pictures up to 125 miles or more -from the station.
3. GHOST PROBLEMS REDUCEO or eliminated due to excellent pattern.
4. Proyioes 10 dB dr more gain on high CHANNELS where gain is needed most.
5. EXCELLEWT FRONT TO BACK RATIO on a!I channels. Mo co-channe! interference.
6. MINIMIZES INTERFERENCE: Airplane Flutter X-Ray-Industrial-Etc. X-Ray - Industrial-Etc.
7. Eliminates double stacked arrays, and out-performs 2 bay yagis on low band and 4 bay yagis on high channels.

## DAVIS ELECTRONICS

4313 WEST MAGNOLIA BLVD. BURBANK, CALIFORNIA
Manufacturers of V.H.F. and U.H.F. Antennos Backed by Over a Quarter Century of Eloctronic Experience

Spot TV trouble symptoms at a glance . . . fix them twice as fast!

## NOW! SAVE HUNDREDS OF DOLLARS IN TV SERVICING TIME!



## PIX(0)•戶X

## TV TROUBLE FINDER GUIDE

advantages of the davis super-vision WITH ELECTRONIC DIPOLE SEPARATORS:
8. ONLY ONE TRANSMISSION LINE NECESSARY.
9. NO WORRY OVER POSSIBLE CHANNEL CHaNGES on either high or low channels.
10. CAN BE Tippeo without tilting mast to take advantage of horizontal wave lengths.
11. Can be used with antenna rotor

AT YOUR JOBBERS, OR WRITE TO:
 4313 West Magnolia Blvd., Burbank, Californla SIRS: RUSH INFORMATION TO ME AS CHECKED BELOW:
$\square$ Send Free Technical Data on new SUPER-yISION antenna.
$\square$ Send Name and Address of nearest robber.
Name
Street
city $\qquad$


The short cut way of handling up to 90\% of your television troubleshooting by the easy PICTURE ANALYSIS METHOD!

## Hours of tedious, it is most likely to occur. But this $t 1 \mathrm{mb}-\mathrm{con}$ ouming is only the beginning !

trouhleshooting can The Pix-O-Fix Guide not only helps
be eut to minutes. The

## 24 COMMON etelevisten

 trouble: iffontinied by actual TV serean photes.190 POSSIBLE causes of these troubies identifled and loeal. lased to the particular staee of the receiver where they are most likely to oecur.

253 DEFINITE, casily under. stood remedies for these troubles.
4.500 WORDS In CAUSE
and REMEDY section to explain

Repaifs can minutes. sou locate the trouble quickly but then Rwice as fast! mado PIX.O-FIX TV The new Chirardi
GUIDE until the GUIDE until the getual TV screen likely, the particular component most hoto appearing in its "reindreen likely to be faulty is specified. Quick matches the scroen plicture on window" parts to apply to it are explained. If defectipe set you are repairing. The peffective than an instrement to more proper Trouble Key Number also an- is recommended.
the tabulation giving ull directs you to pears on the guide. This directs you to PIX-O-FIX is applicable to all teleof this particular trouble and the stake simple. Money-back gusantes if sou're section of the rwceiver in which not more than satisfled!
NOTE! Ghirard's PIX.O-FIX is designed and sold as a professlonal TV service device for servicemen-NOT as a "fix-lt-yourself" gadgef for use by consumers. hows you exactly how to fir it sit step repair instructions follow. In most likely to be farticular component is puocified. quick part substitution is likely to be more effective than an instrement test, this PIX-O-FIX

## Only $\$ 1$. To day Morey hack Giraratee

 232 Madison Ave.. New York 16, N. Y.

$$
\text { Enclosed is } 11 \text { for which please rush a PIX-O-FIX }
$$ TROUBLE FINDER GUIDE If not satish a PIX-O-FIX turn it postpad within 10 days and you guarantee to refund my $\$ 1$.

Name
Street
City, Zone, State
PRICE OUTSIDE U. S. A. $\$ 1.25$ cash-same return priblege.

# RC leads the field again ... with the finest ... MIDGETSCOPE 

 MODEL 533M
## WEIGHS ONLY 9 LBS.!

## SIZE: $113 / 4^{\prime \prime} \times 73 / 4^{\prime \prime} \times 51 / 8^{\prime \prime}$

THE MIGHTY MIDGET-Here is a truly miniaturized professional oscilloscope for convenience of operation without loss of performance. A new concept in electronic oscilloscopes.
CHECK THIS PERFORMANCE!
SENSITIVITY: Vertical-20 millivolts (. 020 volts for 1 " rms deflection on CRT face.) Horizontal- 6 volts.
FREQUENCY RESPONSE: 2 db from 20 cycles to 180 kilocycles. Excellent Transient Response.
PUSH-PULL DEFLECTION: For indistorted Response-Eliminates Parallax. Full Vertical and Horizontal Expansion of Trace.
INPUT IMPEDANCE: Vertical- .5 megohms shunted by 70 MMF. Horizontal-. 5 megohms shunted by 70 MMF.
TUBE COMPLEMENT: 12AT7, 12AU7, 12AX7, 6J6, !17Z6, 3MPI CRT.
 -Smart brushed aluminum face-Fuse protected completer ready

- for $105-125$ volt, 60 eycele AC operation. Write for the new RCP catalog to Dept. RE-I


Choice of 3 Time Saving

OHMITE
Famous 'Little Devil'' RESISTOR ASSORTMENTS


\footnotetext{
The $1 / 2$ watt assortment exntains 150 carefully selected ohnuite "Little Devil" individually marked, insulated composition resistors. 1 and 2 watt assortments each contain 125 resistors. All assortments include the 40 values ( 100 hms to 10 megohms) most frequently used by servicemen. All plastic cabinet has five drawers, each with a ndividually $1 / 2$ watt $\$ 15.00$
1 watt assortment $\$ 18.75$ labeled compartments. Offered at the $\$ 25.00$ price of the resistors alone.

Address Orders To Dept. RE Write For Free FY 1 FLYER


## ENGINEERS



Make this your hame for impartant wark under ideal conditions

TV Receiver Design Eng.

Test $\mathcal{E}$ Inspection Eng.

## Electronics Eng.

Field Engineers
Lab Technicians

## TO WORK ON:

Radar, G C. A., Mobile Radio, Aula Radio, Airbarne Cammunication \& Novigation Equipment, Television, Antennas, Microwave Equipment. Serva Mechanisms, Guided Missiles and Test Equip. ment.

## YOU BENEFIT


from high wages, a modern, air-conditioned plant, paid vocatians and holidays, group insurance and a good chance for advancement. Housing immediately available in the beautiful suburbon and country areas that surround the Bendix plant.

## Bendix Radio

DIVISION OF BENDIX AVIATION CORP.
BALTIMORE-4, MD. Phone: TOWSON 2200


## KNOW TUBES-

and you'll know radio RADIO TUBE FUNDA MENTAL5-Gernsback Library Book No. 45. 96 Poges. $\$ 1.00$
Tubes ore the heart of radio, yet how many tech. nicions really understand the theory behind them? Here's a book that lifts the cloud with a minimum of math-and no engineering talk. it's a real gem of this price.
(Available af leading parts distributors)
GERNSBACK PUBLICATIONS, INC. Publishers of RADIO-ELECTRONICS 25 West Broadway New York 7, N. Y.

STROMBERG-CARLSON 421 SERIES
Repeated failure of the 6BL7-GT vertical oscillator and output tube (V18) in the 421 series chassis has been cor rected in all chassis dated $52-20-1$ by substituting a 6 C 4 for the vertical oscil lator section of the 6 BL 7 . A 6 C 4 tube was installed in an unused socket hole in the left front corner of the chassis. Grid, plate, and cathode leads (pins 4, 5 , and 6) were disconnected from the 6BL7-GT (V18) and connected to pins 6,5 , and 7 , respectively, of the 6 C 4 Pins 3 and 4 of the 6C4 were connected to the filament line and the unused pins (4, 5, and 6) of the 6 BL 7 were grounded.

If an earlier 421 receiver with a 6BL7 that causes vertical roll and which does not incorporate the 6 C 4 is encountered, it is suggested that the 6BL7 be replaced by one of the improved types. These can be identified by referring to the coding etched into the envelope beneath the 6BL7 tube designation. All Sylvania 6BL7-GT's are now of this improved version, so tubes coded E2E or later (F2E, G2E, H2E, etc.) are satisfactory replacements. If desired, the changeover to a 6 C 4 described in the first paragraph, can be made.-Strom-berg-Carlson Current Flashes

## EICO 425K OSCILLOSCOPE

Improper operation of the intensity control-indicated by excessive brightness at minimum setting-is usually caused by heavy leakage in capacitor C25 in the intensity modulation input circuit. The original capacitor is a 0.25 $\mu \mathrm{f}$ unit, rated at between 1,000 and 1,200 volts. However, the normal voltage at grid 1 of the 5BP1 is 1,380 volts $\pm 20 \%$. This capacitor may check good under normal resistance checks but its

resistance drops when voltage is applied. This places an excessive drain on the high-voltage supply and causes a high negative voltage to appear across the INT MOD terminals.
Replace this capacitor with a unit rated at 1,600 volts or more, even if it has not shown the symptoms of leakage or breakdown. If it breaks down in use operator may get a severe shock or equipment connected to the INT MOD terininals may be damaged.-G. $P$. Oberto


## ENCYCLOPEDIA ON CATHODE.RAY

 OSCILLOSCOPES AND THEIR USES by Rider and UslanThe most complete source of practical. usable knowledge concerning the oscilloscope ever published. Covers practically every kind of scope manufactured during the past ten years. Hundreds of pages alone are devoted to actual application plus complete, detailed treatments of auxiliary equipment, measurements, wave forms, visual alignment of AM.FM.TV receivers and more, much more. A "must" for anyone using an oscilloscope. Com pletely indexed, with 992 pages ( $81 / 2 \times$ 11") 3,000 illustrations .................. $\$ 9.00$

## 2 TV TROUBLESHOOTING AND REPAIR GUIDE BOOR

## by R. G. Middleton

A new practical book designed to make your tv servicing easy. It tells-in easy-toread language - how to spot receiver troubles... and how to correct them permanently. You'll find enough practical data in one chapter to repay the low cost of this book many times over. Typical chapters include: Receiver Differences and Waveforms; Visual Alignmeat; Troubleshooting Sync Circuits; Locating Sweep Troubles; Causes and Cures of Receiver Buzz; Test Equipment Kinks. Indexed and illustrated with over 190 ( $81 / 2 \times 11^{\prime \prime}$ ) pages bound in durable art cover
.$\$ 3.90$

## 3 UHF PRACTICES AND PRINCIPLES

by A. Lytel
A new, up-to-the-minute book that clears away the confusion and misunderstanding most people have about LiHF. Written in clear, easy-to-understand terms, this book covers both fundamental theory and practical, working applications with special emphasis on television. Present-day brand name converters-UHF test equipmentcircuit components - tubes, etc. Here is profitable and practical reading for anyone who will be working with UHF for service bench, school or laboratory use. Typical chapters include• UHF Receiving Antennas ; Electromagnetic Radio Waves: Transmission Lines; Waveguides. Illustrated and indexed with approx. 400 ( $51 / 2 \times 81 / 2^{\prime \prime}$ ) pages bound in cloth cover.

Buy these books now at your jobbers . . .leading bookstores... or -


## COMPARE THESE EXCLUSIVE FEATURES! <br> (1) Special clamp for easy installation on rear of TV set, wall, or outside of window. <br> $(2$ Felt-lined bracket to protect cabinet finish. <br> (3) 3-section di-poles telescope to desired length for allchannel reception. <br> Plated - brass construction. <br> (5) Ball socket plus swivel joint for quick extension in any direction. <br> channel master CLAMP-ON <br> Antenna at <br> this price with all these features - <br> Act and Save

6 Easy-to-attach lead-in wire with lugs. NOW . . . They're moving fast!
EXTRA! Mention this ad at your nearest federated Supply Center to obtain 10 antennas for $\$ 12.50$. Cash in on this money-saving offer now!


- New York City 7, N. Y., 66 Dey St., - Newark, N. J., 114 Hudson St..
- Allentown. Pa., 1115 Hamilton St.,
- Easton, Pa., 925 Northampton St.,
- Los Angeles 15. Cal., 911 So. Grand Ave.

Nation's Only Coast-To-Coast Electronics Distributor



RADIO-ELECTRONIC\&

Dr. John Ruze joined the Gabriel Laboratories, Division of The Gabriel Co., Needham Heights, Mass., as director of research. The laboratories provide research and development facilities in


Dr. J. Ruze assistant director Laboratory.
A. L. Champigny was promoted to supervisor of replacement sales promotion for General ElecTric's Tube Department in Schenectady, N. Y. He will direct the promotion of G-E tube sales through distributors. He was formerly promotion service supervisor for the company's Large
 A. L. Champigny Motol and Generator Department.

George Gemberling was named Western

G. Gemberling a-half years.
I)r. James W. McRae, vice-president of Bell Telephone Laboratories, was elected president of the Institute of Radio Engineers for 1953. He succeeds Dr. Donald B. Sinclair of the General Radio Co. S. R. Kantebet of the Government of India Overseas Com-
 munications sucDistrict manager for the Alliance Manufacturing Co., Alliance, Ohio, maker of TennaRotors, boosters and other electronic components. He has been with the company for the past two-andceeds Harold Kirke vicepre ceels Harold L. Kirke as vice-president of the I.R.E. Stuart L. Bailey, of Janskey and Bailey, and B. E. Shackelford of the RCA International Division were elected I.R.E. directors for 1953-1955.

Mike Meyers joined RMS (Radio Merchandise Sales) New York City, as chief field engineer. He will assist distributors and service technicians with antenna problems and help conduct the RMS technical forums now being given throughout
 the country. Meyers has had wide experience in the field.

## great TV news! Pringe Beam Highest power-gain Antenna ever!

## 10 Element Yagi with

* $100 \%$ more power gain than an 8 element yagi $\star 75 \%$ more power gain than usual 10 element yagi $\star$ Fringe-Beam gives HIGHEST POWER regardless of number of elements
Extensive tests . . . under all conditions; in FRINGE, near fringe and primary areas-in the North, South, East and West-conclusively proved that Fringe-Beam outgains any antenna. It's beyond comparison with any in today's market.
Leading installation companies, dealers and servicemen recommend the Fringe-Beam io element yagi vith full confidence. Customers are grateful.


Fringe-Beam exClusive features:

- Low standing wave ratio, I.I to I or less - Excellent pattesn and front-to-back ratio far nearperfect match ta 390 ohm line Free stacking bars
- Boom braced on both high and low - Lightweight, well constructed with seamless channels
- 4-element dipole with large area presents low $Q_{i}$ maximum pick-up and braad response for both picture and sound
- $95 \%$ power gain aver a single bay when antenno is stacked tubing, plated screws and nuts with high grade
Micarfa for low lass insulation. Well balanted, good appearance
- Pre-assemoled for fast, easy installation. All elements crimp of ends
- Guaranteed
- Escellent profits
- Assures satisfied cuslomer

JOBBERS-REPS! Some major terfitories available.
Get complete data; volume sales and unusual profits!

## NEAL ELECTRONIC CO. <br> Huntsville, <br> Alabama

## Now JSC Announces . . . Expanded 300 Ohm TV Lead-in Wire Line!



22 gavge copper	20 gauge copper
40 mil	40 mil
55 mill	155 mil
70 mil	70 mil
80 mil	90 mil
100 mil	100 mil
4-Conductor Rotor Wire	
Perforated 300 Ohm Open Wirs	

JSC has highest quality wire of lowest possible prices.
Lithographic spools of orange and blue individuaily packed 1006 feet to the metal spool.

See your nearest JSC distributor who proudly displays the Blue and Orange disc of quality.

## SERVICE TECHNICIANS

What was your most unusual service case? Not necessarily the most difficult one, but the one you will remember longest, either because of the problem itself or because of other conditions surrounding the job. If the experience was interesting to you, it probably will be to other readers of Radio.Electronics. We will pay \$10 for each "My Most Unusual Service Job" item we consider outstanding enough to publish in this magazine. If the item is striking enough or carries sufficient technical information to be worth more than $\$ 10$ in our opinion, it will be paid for at our regular space rates. Address your stories to

> Unusual Service Job
> RADIO-ELECTRONICS

25 West Broadway
New York 7, N. Y.

##  Especially Designed for the ELECTRONICS Industry



Steel is Finished in Polymerized Shock-Proof Insulating Enamel.

Equiplo's especially designed Electronics Equipment is used by thousands of the country's largest radio, television and electrical service shops and stores. Combining strongest possible construction with moderate prices, even the small budget shop can take full advantage of Equipto's complete line of storage and work shop equipment.

Merchandise displayed on Equipto's well-styled units always boosts sales. These units give better than ONE-THIRD more display and storage space for items now occupying the same area. Have you a storage or display problem? We'll be glad to help you.

## SHOOT TROUBLE FAST!


RUSH COUPON NOW!
H. G CISIN, CONSULTING ENGINEER, (Depl. E.17) 200 climen Street, Browly 2, N. Y.

```
Enclosed find $1. Fush both books
```

> Name
Adtuees
City.


Chicago 25, Illinois
Manufacfurers of Efectronic Equipment Since 1928
of radar installation and television during the past 16 years.

Earl Kirk was promoted to distributor sales manager of the Regency Division of I.D.E.A., Indianapolis, Ind., manufacturer of boosters, converters, and other electronic equipment. He was formerly assistant sales manager. At the same time,
 Richard W. Mitch-
E. Kirk ell, sales manager, announced that Edward M. Sheridan had joined the company as industrial sales manager. Sheridan was formerly with RCA.

## Personnel Nołes

Brigadier General David Sarnoff, Chairman of the Board of the Radio Corporation of America, was named by the U.S. Department of Defense to head the Citizens Advisory Commission on Manpower Utilization in the Armed Services.

Tom Cox, long associated with the electronics industry in sales and engineering positions, joined National Union Radio Corp. as district manager for the Renewal Sales Division in the New Jersey and Eastern Pennsylvania territory.

Harris D. Myers and Elmer G. Fiood joined the Sound Equipment Division of Stromberg-Carlson, Rochester, N. Y., as field engineers. At the same time, A. L. Sebastian and Henry A. McMichael joined the company as sales engineers in the Sound Equipment Division. All have had wide experience in the field.

Charles Maechling, Jr., was appointed government relations officer of the RTMA. He was formerly in the Office of the General Counsel of the Department of the Air Force. The association also named Stanley H. Manson of Stromberg-Carlson as vice-chairman of public relations on the RTMA Public Relations and Advertising Committee. He succeeds James M. Toney, who resigned after being assigned to a new position within RCA.

Dr. Allen B. Du Mont was re-elected president of Allen B. Du Mont laboratories. Other officers re-elected were Stanley F. Patten, vice-president; Paul Raibourn, treasurer; Bernard Goodwin, secretary, and Irving Singer, assistant treasurer.

Edward l’orter Robinson was promoted to plant manager of the ESPEY Manufacturing Co., New York City.

Dr. Francis M. Wiener joined SPEN-CER-Kennedy Laboratories, Cambridge Mass., as section head in the Engineering Department. He was formerly with Bell Telephone Laboratories.

Leon Marshall, who formerly oper-radio-electronics
ated his own art service, joined Insuline Corp. of America, Long Island City, N. Y., as assistant to Alfred S. Chambers, advertising manager.

Reinhold W. Schmidt was promoted to manager of Equipment Engineering and Maintenance of the Cathode-Ray Tube Division of Allen B, Du Mont laroratories.
F. Sumner Hall, of Audio Equipment Sales Co., was installed as fifth president of the Audio Enginfering Society. Other officers include: Jerry B. Minter, Measurements Corp., Executive vice-president; Walter S. Pritchard, Ohio Bell Telephone, Central vice-president; Richard L. Burgess, Allied Record Manufacturing Corp., Western vice-president; C. J. LeBel, Audio Instrument Co., secretary; and Ralph A. Schlegel, WOR Recording Studios, treasurer.

Dan D. Halpin, general sales manager of the Receiver Division, Allen B Du Mont Laboratories, was elected an Honorary Life Member of the Radio Änd Television Executives Society. He was so honored as a past president of ...the American Television Society which with the Radio Executives Club merged into the new organization.

Frank Toler joined the Hallicrafters Co., as district sales manager with headquarters in Nashville, Tenn. He was formerly with Tempco, Inc.

Abraham Hyman, formerly the supervisory electronic engineer for the Civil Aeronautics Administration in New York, joined JFD Manuractubing Co., as an electronic consultant.

Donald N. Kirkpatrick was appointed chief engineer of the National Co., Malden and Melrose, Mass., manufacturer of communication radio receivers, electronic equipment and components. He formerly held a similar position with Boonton Radio Corp.

Edward A. Malling, a former sales manager on the staff of the General Electric Receiver Department, was appointed manager of marketing for the Components Department.
R. Gordon lougherty, a veteran of the action in Korea, joined I.D.E.A., Indianapolis, as a field representative of the Regency Division. Before entering the service, Dougherty was a sales representative for I.D.E.A.
... Marshall A. Williams was appointed regional manager of the Government and Industrial Division of Philco Corp. with headquarters in the Beverly Hills office. He was formerly with Hughes Aircraft.
. . . Eugene M. Keys was elected executive vice-president and director of sales of Edwin I. Guthman \& Co., Inc., Chicago. He was also appointed a member of the Board of Directors. Keys was formerly vice-president in charge of sales.

END


## TECHNICAL APPLIAMCE CORPORATION SHERBURNE, N. Y.

## TV Receiver Sensitivity <br> Measurements made Simple with

The Neen "SensiMMeter Portable


SERVICEMEN EVERYWHERE
acclaim this remarkable new book! HERE'S A TYPICAL LETTER

to the

## ELECTRICAL

## ENGINEER

or
PHYSICIST
with experience in

## RADAR

or

## ELECTRONICS

Here is what one of these positions offers you:

## THE COMPANY

Hughes Research and Development Laboratories, located in Southern California, are presently engaged in the development and production of advanced radar systems, electronic computers and guided missiles.

## THE NEW OPENINGS

The positions are for men who will serve as technical advisors to government agencies and companies purchasing Hughes equip-ment-also as technical consultants with engineers of other companies working on associated equipment. Your specific job would be essentially to help insure successful operation of Hughes equipment in the field.

## THE TRAINING

On joining our organization, you will work in the Laboratories for several months to become thoroughly familiar with the equipment which you will later help users to understand and properly employ. If you have already had radar or electronics experience, you will find this knowledge helpful in your new work.

## WHERE YOU WORK

After your period of train-ing-at full pay - you may (1) remain with the Laboratories in Southern California in an instructive or administrative capacity. (2) become the Hughes representative at a company where our equipment is being installed, or (3) be the

Hughes representative at a military base in this country or overseas (single men only). Compensation is made for traveling and moving household effects, and married men keep their families with them at all times.

## YOUR FUTURE

In one of these positions you will gain all-around experience that will increase your value to our organization as it further expands in the field of electronics. The next few years are certain to see large-scale commercial employment of electronic systems. Your training in and familiarity with the most advanced electronic techniques now will qualify you for even more important future positions.

How to apply:

## HUGHES

RESEARCH AND DEVELOPMENT LABORATORIES

Engineering Personnel Department Culver City,
Los Angeles County, California

Hughes Research and Development Laboratories, one of the nation's leading electronics organizations, are now creating a number of new openings in an important phase of their operations.


can you tell...

##  <br> which transformer is the RAM?

If yau can't tell any difference between the ariginal and replacement Aybacks these days, there's goad reason. They're TWINS--they're BOTH RAMS!

Yes, the great majarity of famous TV set manufacturers order their original fybacks built to their own specifications by RAM. They know that a RAM-built original surpasses their every quality and perfarmance standard.
Under the special RAM twin-transformer manufacturing technique, in mast instances the ariginals destined far the TV set maker and the replocements destined for the RAM-brand and your jabber's shelf are both made at exactly the same time, during the identical proauction runl

That's why you can be certain-9 times out of 10-that a RAM-brand replacement is the best replacement, for highest efficiency and durability. And that's why RAM components are lowest-priced in the industry, far highest profits for you. ONLY RAM manufactures 29 types of transformers, 10 types of defection yakes and 15 types of linearity and width cails-the industry's most complete, most diversified sweep replacement line. See them at yaur local distributar.
FREE! RAM 1953-edition Replacement \& Conversion Manval-over 5000 sweep

## 

## OAK RIDGE CRT TESTER


"CATHETTE"
is the ONLY CRT tester*
that checks ALL the following:

- HIGH VOLTAGE BREAKDOWN
- BEAM CURRENT MEASUREMENT
- ELECTRON GUN CONDUCTANCE
- SHORTS BETWEEN ANY ELEMENTS

Ask to see this INDISPENSABLE new tool at your nearest jobber. You'll agree that it's a MUST for every TV Serviceman today! MODEL 106 "CA- $\$ 995$
THETTE"CRT Tester, net

Check these additional patented features:


- Checks leakage
- Ehecks orightness control voltage Easy- to -read calibrated
$(0.500 \mathrm{~V}, 0-15 \mathrm{KV})$
DC Voltago
- Easy-to-rsad tubs tost scales
- Surplied with duo-decal plue and socket. (Special adaptora availablo as actessories)
- Pocket size: $51 / 2 \times 33 / 8 \times 21 / 4^{*}$. Shpg. wt. 3 lbs.


Send naw for your copy of our com.
plefe new

 IDGE PRODUCTS
OAK RIDGE PRODUCTS
OAK RIDGE PRODUCTS, DepI. RE-
92-15 172nd St., Jamaica, N. Y.
Please send your complele new OAK RIDGE I Catalog at once, to:

Name
92-15 172nd Street - Jamaica, N. Y. I Address
Mifg. Div. of VIDEO TELEVISION INC.

Replacing tubes with Ciystals, quartz, calibrating

DIATHERMY-See Electranics DISTORTION-See Audia

EDITORIALS
Service Technicions' Evolution Oct. 51 21
Radio-Electronic Giant Nov. 51 23
Is the Vacuum Tube Doomed? Dec. 5123
Television at the Crossroods Jan. 5225
Television Servicing
Microwove Evolution
Anti-Collision Cars
Feb. 5221
Mar. 5221
Go Electronic, Young Man! May 52.29
1,945 New Television Stations Jun. 5225
53 Million TV Sets by 1960 Jul. 5225
Electronic Brains
Status of European Television
sep. 5227
Magnetic Tape TV Recording
How to Enter the Electronic Dec. 5229 Industry
ELECTRONICS—See also
Industrial Electranics
Bismuth in magnetic fields
Cosmotron
Nov. 5141
Counting rate instrument
Door controller, automatic
Flasher, saturoted-core
Oct. 5244
Jan. 52125

Garage door opener Oct. 5150
Magnetic amplifiers Jun. 5256
Medical-See aiso Ultrasonics
Diathermy machine Sep. 5258
Relaxacisor Nov. 5249
Organs, electronic-See Audio
Rain detector
Apr. $52 \quad 62$
Tachometer, Rotalyzer Dec. 5275
Timer, long-interval Jan. 52119
Timer, rodio, long-period Aug. 5248
Switch, sound-operated Apr. 5236

## FICTION

Noise Neutralizer Apr. 5252
Pedro and the Incentive Plon Mar. 5232
The Pest
The Toughest Customer
FREQUENCY
Divider
Jul. 5242

Meters-See Measurements
Spotter, crystal
Jan. 5244
Oct. 5178

FREQUENCY MODULATION
British test results
525

Receivers
Gated-beam discriminators. Oct. 5272 aligning
Glow-lamp applications
May 5282
INDUSTRIAL ELECTRONICS
Flame control
Feb. 5258
Hammer, electronic
Painting, electrostatic
Precipitator, electrostatic
Precipitators, inexpensive
Recorder, Servograph
Apr. 5276
May 5266
Jan. 52121
$\begin{array}{lll}\text { Jan. } & 52 & 121 \\ \text { Aug. } & 52 \quad 35\end{array}$
INTERCOMS-See Audio
LOUDSPEAKERS—See Audio
M
Magnetic phenomena (bismuth
Nov. 5141 wire)
Mathematics, Boolean algebra Dec. 5146
In electronic design
Feb. 5255
MEASUREMENTS AND METERS
Audio-See Audio
Capacitance checker
Meters-See also Audio
Application in home-built Oct. 5134 instruments
Brightness
Field-strength, television
Frequency, 0-50 kc
Grid-dip
Milliompere, multirange
Multimeter, electronic
RADIO-ELECTRONICS


Multitest   Ohm, Edison-effect type   Ohm, open-scale   Volt, r.f., sensitive   V.t.v.m., audio   V.t.v.m. low-cost	Mor. 5244   Jun. 5276   Oct. 52 \| 24   Mor. 5295   Oct. 5274   Dec. 5246
MOBILE RADIO	
Base transmitters, remote control of	Nov. 5286
Equipment, mointenance	Oct. 5184
Interference suppression in	Sep. 5262
Maintaining two-way	Mor. 5246
Servicing two-way	Apr. 5270
Servicing, universal tester for	Nov. 5190
V.t.v.m. in	Jon. 52105
TV service unit	Oct. 5122
Model control, plone	Jun. 5248

## ORGANS, ELECTRONIC-See Audio <br> \section*{OSCILLATORS}

Audia-See Audio
Harmonic, crystal-controlled Dec. 5150 Transistor, crystal-controlled Apr. 5256
Vorioble-frequency-See Amoteur Output meter-See Audio; Meters

Photodiode, subminioture POWER SUPPLIES

Reguloted
250.400 -volt, $150-\mathrm{ma}$

300-volt, 200-ma
Vibrator circuits
Voltage regulation
Of r.f. supply
Mor. 5262 Dec. 5162

Apr. 5266 Aug. 5272 Oct. 5156 Nav. 5137 Aug. 5247 Sep. 5284 Production-type tube checker Aug. 5232

##  <br> Radio control, n.odel plane

RECEIVERS-See olso Amoteur
Fixed-tune broadcost (ROK)
One-tube
Three-tube, superheterodyne
A.g.c. for, suppressor type

Bandspread circuits
Battery, power conservation
Codan circuits for
Communications
B.f.o. trouble in

Voriable-selectivity i.f. for
Crystal
Jun. 5248 Nov .5272
Dec. 52.78
Fob. 5278
$\begin{array}{lll}\text { Fob. } & 52 & 78 \\ \text { Nov. } 51 & 107\end{array}$
Apr. 5255
Oct. 5255
Jun. 5238
Feb. 5232
Feb. 5286
Jul. 5241
Oct. 51102
Mor. 5283
Oct. 52102
Miniature, superregenerative, Aircall
Motorola plated chossis
Pilot light addition to
Push-button tuner for
Regenerative bandswitching
S-meter for
Squelch circuit for
WWV
Dec. 5244 Oct. 5270 $\begin{array}{lll}\text { Jul. } & 52 & 52 \\ \text { J.c. }\end{array}$ Jquel Jon. 52145

Rejuvenotor, TV tube-See Tubes RELAYS
Capacitance-operated, for
window disploy
Sensitive
Sound-operated
Resistors, making precision Schools, selection of
SERVICING
Bench for

With swing-out panel
Business manogement in
Carrying case for
High-voltage safety in
Oct. 5138
instruments for-See M
Instruments
$\begin{array}{rlll}\text { Legal obligations of technicions } & \text { Feb. } & 52 & 22 \\ \text { Moy } & 52 & 34\end{array}$


## Now... with complete swivel for better lighting and easier servicing!

EVERY SERVICEMAN, experimenter, model-maker needs this handy item. No need to work in the dark . . . ample light is provided by \& $71 / 2$ watt, 110 volt bulb that remains cool at all times
Scientifically-designed, unbreakable aluminum reflector directs maximum light to point of work A REAL TIME AND LABOR SAVER.
Wide openirg spring clamp will hold firmly to sides of wherever it is attached to inside of TV cabinet. Rubber covering on clamp prevents scratching or marring of surface. Both hands are free to wark with this service aid . . HANDIER THAN A FLASHLIGHT

Carried by leading jobbers!
Have you seen our other TV service aids .. "TV Service Cord" and "TV Picture Tube Extension Cable"?
We manufacture cord sets
and cables to government and civilian specifications.
"National distributors ond warehouse
for ANACONDA densheath television ANACOND
and radio wires and cables"


## All Channel Booster

- Braad band single knob control pro-amplifiar buuse regeneration and attonvation of simay
- only the mattison 630 chassis has an all channel tuneable bUILT-IN BOOSTER THAT INCREASES SIGNAL STRENGTH UP TO 10 TIMES, the silver rocket will out.perFORM ANY CHASSIS MADE AND IS PRICED RIGHT TO SELL FAST WITH an extraordinagy margin of PROFIT FOR YOU. WRITE FOR CDN. FIDENTIAL PRICE SCHEDULE.

MADE IN MATTISON'S OWN CABINET FACMADE IN MATTISON'S OWN CABINET FACTORY. 36 breathtaking dosigns that blond pe


The BERKSHIRE 21'
Genuine Mahogany, Deeply paneled $11 / 3^{\sim}$ thitek
doors. Crotch Mahogany design doors. Crotch Mahogany dosign and Hl-light Chassis is sido mounted. Dimersions: height $40^{\circ}$. width $321 / 2^{\prime \prime}$, depth $23 V_{2}{ }^{\text {n }}$

DEALERSI SERVICE DEALERS! Here is you Opportunity to become the "important" TV TOM-BUILT LINE OF TV RECEIVERS. FREEII Write for Mattison's merchandising porttolio, explaining the "UNASSEMBLED PLAN" and " $\$ 1,000,000$ FLOOR PLAN."

Mobile equipment-See Mobile Nuisance call elimination Receivers Auto radios
Dummy antenna for Gated-beam discriminatars

Lood meter use
Midge $\dagger$
Old, rejuvenation of
Pilot light servicing
Oscillators
Squeals
Tuning wand use
Ralling table for
Service-aid instrument Small shop advantages
Speaker, universal Substitution box far
Television receivers Control troubles

Brightness
Diagnosis of picture faults
Fix-It books
Flybock squeal
Hard-to-find troubles
High-voltage circuits
Horizontal locks
In customer's home
Intercarrier buzz elimination
Mobile shop
Picture tube replacement chart
TV receiver as signal tracer
Vertical sync instability
With simple instruments
Wheelchair shop
SIGNAL GENERATORS-See Test Instruments; Audio
$T$
TAPE RECORDERS—See Audio TELEVISION

Antennas-See also Antennas Balancer for
V.h.f.-u.h.f.

Coupler, multi-antenna
Design formulas
Installation, indoor antenna
Manufacturer directory
Safe installation of
Master systems
Distribution amplifier
Transmission line tuner
U.h.f.

Ultro Q.Tee
Boosters
Chain amplifier
Commercial model list Single-channel, low-band Circuits, new 1952
For fringe reception
Dx. 1951 summary

Eidophor system
Eyestrain reduction
Ghost analysis
Interference
Filter for
1.f.

From police transmitters
Military instruction with
Motion-picture theater use
Network map
Prospects
Receivers
630-type
Sound improvement in
Screen size increase
Appearance improvement Color

CBS-Columbia
Conversion to

Nov. 5248
Oct. 5284
Sep. 5254
Jun. 5282
Feb. 5237
Jan. 5260
Jan. 52116
Jun. 5234
Jan. 5247
Jan. 5254
Sep. 5242
Jon. 5234
Sep. 5266

Feb. 5262
Jan. 5262
Aug. 5225
Jan. 5230
Apr. 5246
Jan. 5240
Oct. 5234
Sep. 5232
Apr. 5245
Jul. 5234
May 5244
Feb. 5240
Oct. 5129
Jan. 5243
Mar. 5222
Jan. 5228
Jan. 5226
May 5230

Dec. 5143
Jan. 5256
Jun. $52 \quad 26$
Nov. 5124
Oct. 51. 26


* 28 fewer element connections $\star 8$ integral elements US. 40
$\star$ Pre-assembled-Quick rigtime
* Extra heavy-all aluminum
* Amazing reception to 150 miles

The Skyline foldable colinear ontenno possesses higher gcin with respect to signal strength because the elements are integrall

No loss of signal strength through a multiplicity of mechanical connections.

Only the Skyline continues to maintain high gain in relation to signal strength over an indefinite period of sime.

The Skyline colinear ontenna, with its new engineering developments, is fost replocing all other types in fringe areas.

SEE YOUR LOCAS DLALE POR MORE IMEOEmatIOM
SKYLINE MFG.CO.
1458C4 East 17 th Street
Cleveland 14, Ohio

## TELEVISION

Big demand for graduates
8.S. DEGREE IN 27 MONTHS in radio including TV engineering-VHF, UHF, AM and FM. Students use over $\$ 100,009$ worth of equipment including ${ }^{2}$ Iarge commercia type tronsmitiers in new IV lab. mothematies science and odvanced design in radio and TY.
Hundreds of young men each ymor are marning engineering degreas in this recognized institution. Start ony querter. Many carn a maior port of expenses in this isdustrial center. Low tuition. Competent in struction. Thorough, intense, practical program. Also B.S. DEGREE IN 27 MO. in Aeranauticol Chemical, Civil. Electrical ond Mechanical Engineering. G.I. Gov't opproved. Enter March, June Sept., Dec. Free cololog. ENROLL NOW
INDIANA TECHEICAL COLLEGE 1713 E. Washington Blyd., Fort Wayne 2, Indiana


here are 23 Triad Television Replacement items listed below. They will take care of $85 \%$ of your service needs. Always keep a supply on hand. They eliminate excessive inventories, speed servicing and simplify reordering. Your Triad jobber carries them in stock. Call him today.
DEFLECTION YOKES:
HORIZONTAL OUTPUTS:
(Flybacks)

Write for Catalogs TR.52B and TV.52B



We continue to receive encouraging reports from Herschel Thomason, radio technician of Magnolia, Arkansas, on the progress of his four-year-old son, Freddie, who, as most of our readers know, was born without arms or legs. Freddie's courage and patience seem unending, and his father's latest letter tells us that he "is walking better every day, although he still needs a little help for his forward motion. We feel sure that when his legs are readjusted he will be able to walk over any level surface by himself.'

And there, in the word "readjusted," we have the crux of the matter-the main concern of the Help-Freddie-Walk Fund. For not only will Freddie be always dependent upon mechanical devices for the simplest acts that we more fortunate ones take so for granted, but for many, many years these appliances will have to be constantly adjusted and readjusted to meet Freddie's growing needs.

Although the Fund has reached a grand total of over $\$ 10,000$, many more thousands of dollars will be needed before we can consider our job well-done. We are most appreciative of the enthusiastic response from our readers during the past three years, and ask only that it be continued. At this time we would like to make special mention of a contribution of $\$ 2.00$ received from the Signal Corps Inspection Office, Hi-Q Division, Aerovox Corp., Olean, New York.

We urge each and every reader to "start the New Year right" by sending in a contribution-large or small-to this worthy cause. Make all checks, money orders, etc., payable to Herschel Thomason. Address all letters to

HELP-FREDDIE-WALK FUND
c/o Radio-Electronics Magazine
25 West Broadway
New York 7, New York
FAMILY CIRCLE CONTRIBUTIONS
Balance os of October 20, 1952 ...\$571.50 FAMILY CIRCLE Contributions as of
November 17, 1952 ............. 571.50
RADIO-ELECTRONICS CONTRIBUTIONS
Balonce as of October 20, 1952 . . $\$ 9,571.47$ Anonymous, Cambridge, Mass. .... 1.00 Arthur Chretien, Methuen, Moss... 1.00 Joseph T. Corrigan, New York, N. Y. 5.00 Vernon C. DeWerff, Morrisonville, Illinois
5.00

Alvin J. Jacobson, Williston, N. Dakota 2.00 Mr. \& Mrs. Thos. F. Maloney, Arlington, Virginia 3.00 Clodovaldo Rossetto, Soo Poulo, Brazil $\quad 1.00$ Signal Corps Inspection Office, Hi-Q
Division, Aerovox Corp., Olean,
New York 2.00

RADIO-ELECTRONICS Contributions as of November 17, 1952 ....... $\$ 9,591.47$ FAMILY CIRCLE Contributions . TOTAL CONTRIBUTIONS es of November 17,1952 ............... $\$ 10,162,97$

PLATT BEST BUYS! WELL KNOWN MAKE



## COMmANO SET BC-4S5-6 \%o 9.3 mC . Excellent. $95 \%$

 completely wiredi-a few minor parts. included requireassempling. Instuctions nocluded.
ONLY $\$ 6.95$


MINIMUM ORDER $\$ 2.00$

PLATT ELECTRONICS CORP.
Dept. B, 489 Broame St., N, Y. 13, N. Y. PHONES: WO 4-0827 and WO 4-0828 BRANCH STORE: 159 Greenwich St., N.Y.C.

## REMOTE-CONTROL PROBLEM

## Dear Editor:

In reply to Mr. Waelder's switching problem in the October issue of RadioElectronics, one solution is to mount chassis type a.c. outlets on the back of the tuner or control amplifier, and add an extra deck to the input-selector switch to feed 117 -volt a.c. to each unit in the corresponding switch position. The extra deck should be well separated or shielded from the audio-input deck to minimize 60 -cycle hum pickup. (The switch contacts must be heavy enough to carry the required a.c. loads.Editor)

I have used this system for a year and a half in a home-built radio-phono combination and it has given good results.

## Leon Carter

North Charleston, S.C.
(Mr. Waelder asked for suggestions on automatically turning on and off a.c. power to various units (such as a phono turntable and preamplifier, separate $A M$ and $F M$ tuners, or a tape recorder), from an audio-control unit that has only a signal-input selector switch.-Editor)


## Rondr Reviews

THE AUDIO PERFORMANCE OF


- Nine distinct positions for record playback provide complete bass and treble equalization for hest-known recordings.
- Bass effective to 15 cycles resutid in improved transient response that makes all bass tones sound more natural.
Write for complete technical data, and be sure to listen to the new BROOK at your local dealer's Sound Department.
BROOK ELECTRONICS, INC.
34 Dehart place, Elizabeth 2, N.J.
Dept. EA. 3


## FOR THE BEST



IT'S THE NEW SECOND EDITION

## BETTER TV RECEPTION

In fringe and low-signal areas
Here's the baok which has talen the failure out of many unsuccessful fringe area installatians, and has improved the picture far many discauraged TV owners. Practical and easy ta understand. Haw to reduce interference, minimize fading, eliminate "ghasts." How ta chaase the best boosters and receivers, transmis. sian lines and antennas.
\$2.50 per capy (plos any tax)
FOR ADDITIONAL COVERAGE:
RADIO HANDBOOK, 13 th editian

WORLD'S RADIO TUBES (Vade Mecum)
SURPLUS RADIO CONVERSION MANUAL

$$
\text { in } 2 \text { valumes }
$$

Each volume

ELECTRICAL FUNDAMENTALS OF COMMUNICATION, Second Edition, by Arthur L. Albert. Published by Mc-Graw-Hill Book Co., 330 W. 42nd St., New York 36, N. Y. $6 \times 9$ inches, 531 pages. Price \$7.00.
This is a beginner's book in communication. It is clearly written and well illustrated. Interest is maintained by many numerical examples worked out in detail. Chapter summaries, review questions, and problems are provided at the end of each chapter.

The book starts with elementary principles of d.c. and a.c. Resistive, inductive, and capacitive circuits are analyzed and solved numerically. One chapter deals with measuring instruments of the d.c. and a.c. type.

More advanced material appears in the last half of the book. Impedance relationships, network theorems, transmission lines, and propagation are among the subjects discussed. One chapter is devoted to vectors and how to use them. This subject often proves difficult to nonmathematical readers, but it is clearly described here. Filter networks and bridge circuits are briefly covered.

The last few chapters discuss tube and crvstal circuits. including oscil-

# Radio School Directory 

## Unlimited Opportunities in RADIO ENGINEERING

DEGREE IN 27 MONTHS
Complefe Radio Engineering course including lalev., U. H. F. ond F. M. Bocfielor of Science Degree also in Mech., Civil, Elect., Chem., and Aerc. Eng.; Bus. well equipped labs. Low cost. Prep courses. Personat ired, practical instruction. Founded 1884. Placement fiph service. Growing shortage of engineers III Enter Jonuary, March, June, September. Fing TRISTATE COLLECE


2413 College Ave. ANGOLA, IND.

## GET INTO TV SERVICING

Send for FEEE 24-poge illustroled booklef which Amells you How to Become A Successful TV Technicion. speciolized troining progrom that amits non-essentiol moth \& design theory. You concentrote on rodio \& TV servicing only. You gel prolessionot troining \& experience right in our fully-oquipped shops \& loborotories. Send for this Booklet today. Write Dep't E-12. No obl'gotion-no solesmon will coll. APPROVED FOR VETERANS
WESTERN TELEVISION INSTITUTE
341 W. 18th S1., Los Angeles 15, Calif.

## PLEASE MENTION RADIO.ELECTRONICS

When Answering Advertisements




## FOR THE FIRST TIME!

For several years you've read about the Don Martin School now-for the first time-we are prepared to offer a course by mail. You can obtain your first class radio telephone operator's license from this special course. Operstors are desperately needed now by radio and TV stations as well as the aircraft industry Secure your future.
Be certain that your training is of the best. enjoy the school recognized by the profeasion. Write today for full information.

THE DON MARTIN SAHOOL OF RADIO AND TELEVISION ARTS AND SCIENGES 1655 No. Cherokee, Hollywood 28, Calif. HU. 2.3281

RADIO and TELEVISION ELECTRONICS   New Chasses (Day ac Evening) 1 RR Of Dece Mal J Junfos FREE PLACEMENT SERVICE for graduates   For Free Catalog write Dept. RC-53 RCA INSTITUTES, iNC.   A Service of Rodio Corporation of America 350 West 4th St., New York 14, N. Y.



##  <br> Intensire, sprcialized course Including strong basi in mathematics anil elevtical engineering, adranced risdlo theory and design. t+levision. Modern lab. Loww tultion. theory and design, t+levision. Modern lab. Low tultion. in Aeronautical. Chemical. Civll. Electrical. and Iechanlcal Engineering. G.I. Gov't approved. Enter <br> INDIANA TECHNICAL COLLEGE



## Become an ELECTRICAL ENGINEER in 36 MONTHS

## Bachelor of Science Degree - Major in Electronics or Power

It is estimated by 1955 there will be at least two positions for every engineering and technician graduate. This college offers a tested plan that permits you to enter these vast empioyment opportunities at an early date. Save a valuable year through optional year round study. Receive advanced credit for prior training gained in the armed forces, other schools or fleld experience. ENTER BOTH RADIO AND TELEVISION 12 months or one-third of the B. S. de gree course (Electronics major) - also brings you the Radio Technician's certificate. An added 6 -month course quallifes you for the Radio-TV Tech. nician's certiflcate. Recent develop ments open unlimited opportunities for TV technicians and engineers.

THE PROVEN "UNIT CHASSIS SYSTEM" of teaching was developed here. It "breaks cown" the TV set by stages. You learn every component of all types and makes -and are prepared for future design changes, including the advent of color. 6 TO 12-MONTH TELEVISION SERVICE COURSE ... trains for good servicing jobs and shop ownership in the shortest prac tical time under expert instructors.
Terms open April, July, October, January. Over 48.000 former students from all states and 23 overseas countries. Fac ulty of trained specialists Modern laboratories and equipment.
Write for free 110 -page catalog, 48 -page pictorial booklet "Your Career" and 'Occupational Guidance Bulletins."

## MILWAUKEE SCHOOL OF ENGINEERING


Make barry your source for FAST-DELIVERY, on all
tyepat We carry all the standard brids. All tube?
individually cartoned and carry standard RMA Guar-
antee.


$$
A
$$

Allilman,

## ADVERTISING INDEX

## 

American Electrical "ieater co.
American Electronics co.
Amplifier corn olic corp.
Arkay hadlo kite
Astatic Corp.
Barry Electronics.
Bell Telephone Labs
Bendix Fadio
Blonder
BlonderroTongue Mab
Brook Electronics,
Bra
Brook Electronicsy tnc.
Brooks Redio Ciy Corp.
Buchan Co., Richard J .
Buchan Co.p Richard 1.
Burstein Applebee
So.

Centralab-Div. of alo
Channel Master Corp.
Cinin. M. Gi
Cinin. H. G.
Columpia Wire Supply co.
Commiss ioned Electronics.
Cornell-Dubilier Electric Corp.
Coyne Electrical
Crescent Radio, Television school.
Crest
Davis
De
Electrator ics,
De
Davis Electronics
De Cray
DeForest Astoctates.
DeForest's Training,
OuMone Labs.inc.,
Editors En Engineers.
OuMone Labs. Inc,
Editors Engineers
Edie Eectronics.
Edie Electronicz
Electronic
Electro-Voice, Ince
Electranic instrumen
Eleetrovovice, Inc.
Equipto

Feliter Engineerin
Finney Co.
General Cement.
Gineral Cement
Genmeral EEectronic Dist.
General Test Equipment.
General Test Equip
Good, Ine. Don
Greylock Eilectronic suppiyco.
Maldorson Transformer Co.
Harvey Radio Coor
Heath Co.
Hickok
Electical insirument
Hickok TVAntenna
Hudson Radio
HV Corp.

Hughts Research Eit Bevelop
Hytron Radio C Electronics
Indiana Technical Colloge
Indiana Technical
Instructograph $\mathbf{C o}$

International corrospondemee Schoo
Jackson Electrical Jost.. The.
Jan Electronic Distributing Co.
Jar Electronic Distributing Co.

Krylon, Inc.
LAPointe-pla
LaPointe-Playcomola co
Leutze chadio corp.
Macmillan Co., The
Malloory Co. The. $: ~$
Matsison Television
Mecraw-Hill Book co. Nadio
Michel Man Mracturing Cor Co
Miles Reproduce
Millez Reproducer
Miller Co.jJ, W.
Mosley Eiectronice
Mossey Electronicz
Masion Eectronic
National Elibuting co
Motionectronic Distributing co..
National EEfetronics of Cloveland
National Plang Co.
National Pat Patio Institut
National Schools
Neal Electronic co
Neal Electronic co.
Oak
Onmite
Ohmite Whanufacturl
Opportunity Adiets
Opportunity
Permapowe
Pickering
Pickerino
Plastoid
plo


Prentice-Mal!
Pres-Probe Co.
Quam Nichols
RCA Institutes.
RCA nstitutes, inc.
RCA Vitor Division indio corporation
Rod America)

SELENIUM RECTIFIERS

Current (Continuous)	Full-Wave Bridge Types			
	18/14	36/28	54/42	130/100
	Yolts	Volts	Volts	Volts
1 Amp.	\$1.35	\$2.15	\$3.70	\$7.50
2 Amps.	2.20	3.60	5.40	10.50
21/2 Amps.			6.00	13.00
4 Amps.	3.75	6.75	10.25	
5 Amps.	4.25	7.95	12.95	25.25
6 Amps.	4.75	9.00	13.50	33.00
10 Amps.	6.75	12.75	20.00	40.00
12 Amps.	8.50	16.25	25.50	45.00
20 Amps.	13.25	25.50	39.00	79.50
24 Amps.	16.25	32.50	45.00	90.00
30 Amps .	20.00	38.50		
36 Amps.	25.00	48.50		

- New. Selenium Rectifier Transformers

PRI: 115 V. ${ }^{60}$ cycles ${ }^{\text {In. }}$. ${ }^{4}$ Amps......s. 8.75 Made to nur aneen. fnr continumus. heapy-duit une 35



 Wwr Supply. New-in compant suitcase (orig. cont
over $\$ 500$ An oxcellent buy for only
Western Electric Marine 4-Channel Radotetelephons


136 IJberty Street, N.Y. 6, N.Y. REctor 2-2562 Terms: 23\% with ordor. balance C.O-D.-Send a fow

RADIO SCHOOL DIRECTORY PAGE 177 Electronics Institute, inc. $\quad$ TcA intitutes
Indiana Technical College


Radio-Television Training Assn.
Ram. Electronics Sales Co. ....
Raulinn CorD.C The Co.
Raytheon Manufaturing co.
Megency Mivn (l.D.E.A. Inc.)
Rek-o.Kut co.
Rek-O.Kut Co. Clin
nider. Inc., Jotin


Sangamo Electric Co.
Schott Co. Water
Service initrument

Simpson Electric Cos.
Skyine Manufacturing co
Soundronics Labs.
Sprague Product

Stan-gurn Madio \& lectronic
Standard Transformer Corp
Standard Transformer corp.
Steveri Electronice Corp.
Supreme Publications
Supreme publications
Syivania Electric oroduct
TYManis Electr.
Tab
Tallen compang inc
Teen-master Product
Technical Appliance
Telan- Ray Entererises. Inc,
Telematic Industries, Inc.
Telersound Corp.
Television Communications.
Television communications instituon
Tele


Trio Manufacturing co coiruini co
Tung-501 Electric co.
Tunter co. Tho
United Cathlog Pubilisier
Utan Radio Products $C_{0}$.
Vidaire Television $\mathbf{C o}$
Vidaire Television Co
Warar products Corp.
Wells sales
Wells salez
Wentinghouse Eieoctric 'Coorp...
Wholesale Rad io Part Co.,
Wiley sons. inc.
Wincharger corp.
Radio-Electronics daes not assume responsibility for any errors appearing in above Index.

## WHEN YOU ORDER wats here's what YOU GET <br> - IMMEDIATE DELIVERY FROM STOCK (in any quantity) Q FINEST QUALITY OF FAMOUS BRANDS G GENERALLY LOWER PRICES ©RETURN PRIVILEGE FOR FULL CREDIT IF NOT SUITED TO YOUR REQUIREMENTS

The valuable service Wells provides to the industry is being used by many of our greatest manufacturers as a matter of course.

Our vast stock (the world's largest) may contain just the components you need to fill urgent orders - at a substantial savings in time and cost.

ADEL CLAMPS - ANTENNAS, Insulators, Mast Sec. fions BINDING POSTS BLOWERS CABLE ASSEMBLIES CHOKES COILS CONDENSERS Oil Filled, Bolhtub, Hearing Aid, Transmitting Micas, Silver Micas, Ceramic. Voriable, Trimmer : CRYS:
TALS FILTERS FUSES \& MOUNFINGS - GEN. TALS FILTERS FUSES \& MOUNFINGS * GEN.
ERATORS GROUND RODS ERATORS GROUND RODS • HEADSETS • I.F.
COIIS JACKS JACK BOXES KEYS. Telegraph KNOBS : LAMPS : LORD MOUNTS MOTORS \& BRUSHES PIUGSS MOTORS \& BRUSHES * PLUGS © RECIIFIERS Selenium, Copper Oxide, Meter, Diode $\quad$ RESISTORS-All
Iypes SELSYNS SOCKETS SWITCHES AYpes Aireraft, Micro, Switchettes, TOggle TIMERS . TUB. Aireraft, Miero, Switchettes, Toggle TIMERS TUB*
ING-Flexible. TUNING SHAFTS TRANSFORMERS All Types : VIBRATORS WALKIE TALKIES

## DYNAMOTORS



DM 32A - DM 53A - PE 86 - PE 101 C DM 33A - D 101 - PE 94, efc
large quantities of brushes for all types of dynomotors and motors.

Write us for quofations. Advise us your requirements.

A complete Signal Corps stock number listing of items in our stock. Write for listing No. SG-200. (for government agencies and contractors only.)
Manufacturers and distributors-write for new Condenser Catalog C-10 now available. Write, Wire, Phone Your Requirements all phones: SEeley 8-4143


833 W. CHICAGO AVE., DEPT. 2, CHICAGO 22, ILL.
RADIO-ELECTRONICS

## TV ENGINEERS

(Experienced in TV Receiver \& Broadcast Radio Design)
Bendix Radios' Expansion $M_{\text {eans }}$ Opportunity for You!

A large expansion program in our oxcellent opanings for TV hav oiver and Broadcast Radio 0 osien Engineers. 1t means you have the floor . . . an opportunity for rapld advancement.

At Bendix Radia, the wark is interesting and challenging. There is wark an chassis design and develapment an current sets; there is research in the field of calar U. H. F., ete.

At Bendix Radio, you work under ideal conditions in our modern, arom conditioned plant. You beneft group insuraree and many om ployee benefts .o olus good living
in the beautifui country and subur. an areas that surround our olant.

Send résumé to Mr. E. O. Cole, Dept. T

## Bendix Radio

oivision of benorr aviation corp.
-ALTIMORE.4, MD. Phone: TOWSON 2200

## TUBES 둘

Top Quallty of Terrific Savinge RTMA Guaranteed


## IMMEDIATE DELIVERY!

Wriae for quotations, many other types arallable. $20 \%$ lepusit with order, halance C.O.I). All tuhes subjer WRITE, WIRE, CALL-TODAYI

- Buy Anylhing in Eloctronics
large or small Quamsities.
lower frequencies. Then it proceeds with u.h.f. techniques and illustrates equipment.
One important chapter deals with transmission lines and how they are used as tuning elements, filters, and transformers. Waveguides are shown to be developed from lines. Other chap ters deal with u.h.f. circuits and tubes. Butterfly circuits, travelling wave tubes, and others are included. An interesting chapter describes and illustrates several types of TV converters. Transmitters, test equipment, and h.f. measurements are also described in the book.-IQ

FUNIDAMENTALS OF ENGINEERING ELECTKONICS, Second Edition, by William G. Dow. Published by John Wiley \& Sons, Inc., 440 Fourth Ave. New York 16, N. Y. $5^{3 / 4}$ x 9 inches 627 pages. Price $\mathbf{\$ 8 . 5 0}$.

This book concentrates on tubes and semiconductors, rather than circuits The level is suitable for college junior students. It is also well arranged for reference use. Physical explanations, and many illustrations and mathematical analyses are provided.

The first chapters establish basic principles of potential distribution, electron ballistics, and cathode rays. Then material is presented on fields within a tube, capacitance effects, tube characteristics, and thermionic cathodes An important chapter describes electrons in metals and semiconductors to provide a good understanding of transistors, rectifiers, and photosensitive devices. There are also chapters on amplifiers, oscillators, and microwave tube types.

The remainder of the volume explains phenomena within gas tubes and photosensitive devices. Arcs, glow tubes, and gas rectifiers are illustrated and described in the final chapters.-IQ

ELECTROMAGNETICS by Robert M. Whitner, published by Prentice-Hall, Inc., New York, N. Y. $51 / 2 \times 81 / 4$ inches, 270 pages. Price $\$ 6.65$.

This is a book for engineering students. It emphasizes field theory and prepares the reader for a good understanding of fields and waves. A knowledge of calculus is required. It introduces the reader to vectors, after which this type of analysis is used freely. The mathematical treatment is effective and clear.

The first chapter describes charge, field and potential. Then electrostatics, d.c., magnetics, and a.c., are discussed in turn. The author shows the meaning and application of gradient, divergence curl, and other concepts. Later chapters derive Maxwell's equations and other important laws. Advanced topics relating to fields and waves are covered in the final chapters.

Each chapter ends with a series of problems.-IQ

END

TV CONSULTANT, by Harry G. Cisin, was reviewed in the November issue under the eironeous title: "Rapid Trouble Shooting and Alignment." Our apologies to Mr. Cisin for the error.


New 11th Edition Just Out?

## RADIO OPERATING

QUESTIONS AND ANSWERS

## By J. L. Hornung

Hopkins Enginecring Company and Alexander A. Mckirnzie Associate Editor, Electronics

## 545 pages, 139 illustrations

## 1900 answers, $\$ 6.00$

1 F YOU had taken your first FCC exam back In I92I, the heavy odds are you'd have gotten ready for it by studying the first edition of Hornung's book (then it was the famous "Nilson and Hornung's Questions and Answers"). It belped thousainds then: it's since gone through ten edi tions that have kept the fast pace of changes in FCC requirements and big advances in the field.

Now comes the new eleventh edition brought up to date to follow the new FCC study guide question for question . . . arranged by opics so that it's easy to study, handy for reftopics so that it's easy to study, handy hor ref-
erence . . built for lasting value by showing erence . built for lasting value by shawing
you how to keep up with month - to monte changes

In this book you get a full, accurate "passing" answer to every question in the FCC Stedy Guide -an answer so complete that, no matter how the question is phrased on the exam, you will be able to get it right.

What you get in the new edifion
of this long-popular and proved book:
Answers to all questions suggested for atudy in Answers to all questions suggested fur atudy in Commerifial Radio Operator Examinations, Kovised February 1, 1951." The book gives cormplete sperific information on radio law, operating practice, and throry -for commercial radio operator examinations of all the various license grades

- Coverage of every element in the FCC exams induding the advanced olles of elemeat (air raft radin-telegraph) and element 8 (shig radar)
- The newer Q-codes for special parpeses. time signal information, word lists, and the like Now material cosering changes in the $\mathrm{L} w$, radar and operating practice, particularly as it alpulies to the newer mobile services lofler good in L.S. cilly


## - SEE THIS BOOK 10 DAYS FREE— -

MeCraw-lHill thook Co., 327 W. 41 St., MYC 36, Sond me Hornung and MrKenzie's RAMDO OPEK. ATING QUESTIONS AND ANSWEIRS for to days: pamination on approval. In 10 days I will remil | \$0.00. flus a few cents for delivery, or setaral the (Weok postpaid. (Way for delivery if you ( with this roupon; same relurn prisilege)
\| Name.
Address.
City...
Position.
Zone.... State. ...........


866A KIT AND XFORMER
 Unexcelled ror No－Loss VMF testing，Ultra－
sensitlye subm inlature－envelope．New，wo
data



LO．VOLT PHOTOFLASH K1T


VARIABLE CONDENSERS
 Cardueti Neut $2 T / 12 \mathrm{mmm} 500$ Volt
Vernier orive 10 to $369 m m f$, each
Midget 3 to 15 mmf Mhline，each

 Pliers listed Alove Duty．．．．．． 79 ＂TA日＂Sped Tial

## 

 A日＂Special＇

＊From This Special List We Ship $\$ 10.00$ and Up Tube Orders At Our Expense（Post
paid）Within Continental Limits af U．S．A







220K SIG GEN
KIT !12,45 WIRED $\$ 2795$
322 K SIG GEN


315K DELUXE SIG GEN. KIT \$39.9:


1040k BATTERY ELIM.
KIT 525.75 WIRED $£ 34.95$

KITS-Wired Instruments For Laboratory Precision at Lowest CostFor Laboratory Precis lok to EICD! the leaders Look to Wity does CBS.Columbia. Inc. One of America s Instruments on its new Television production lines and Eajestic, and many DSR, CEF like Emerson. Tele-King. Teletone. Majestic. and maws that another famous TV manciacin delivers all 10 E/CD NOMICAL features ONIY EICD TEST LQUO 7. Latest Engineering 1. Laboratory Precision
2. Lowest Cost
4. Speedy Operation 5. Rugged Construction 5. Rugged Components 6. Quality Components 6. Qually Guarantee Befcre You buy any higher-priced as Kit form!' Each jadge-compare, the EICO line-in Wired as vable value. YOU be the judge-cor-and is jam-packed with odsts roday - in stocl at your Catalog 1-C. See ERE $\mathbf{S A Y}$ ! Write NOW for FRE sa



950K R.C bricgit \% C. COMP. KIT Si9
WIRED $\$ 2995$

 20.000 CHMS VOIT

MULYIMETEE
KIT $\$ 12.90$. FES. DECADE BOX 1600 Ohms. VOLT M.IT $\$ 1995$

8. Super-Simplified

Use Instructions Appearance 9. Laboratory-Styled Appearod 9. Exclusive EICO Make-Good Eus



AMEPICA'S GREATEST INSTRUMENT


ELECTRONIC INSTRUMENT CO., INC 84 Withers Street, Erooklyn II, N. Y.
$\qquad$


RCA safeguards your reputation... with tubes of unequaled quality

In RCA Tubes and Kinescopes the difference is top-quality control




[^0]:    Manager, Radio and Allocations Engineering National Broadcasting Company, Inc.

[^1]:    * President, John F, Rider Publisher, Inc.

[^2]:    * Sylvania Electric Products Inc., Bayside. New York.

[^3]:    For a compilation of v.h.f. dx worked during this period, see November. 1952. QST, page 45.

[^4]:    *Chief Engineer, WELI, New Haven. Conn.

[^5]:    * Zenith's Fringelock-July, page 38,

    Philco noise-immune sync-September. page 45.

[^6]:    - Engineer, National Broadcasting Co.

[^7]:    JANUARY, 1953

[^8]:    "Video Handbook"
    Covers entire subject of TV ; gives expert data on design, construc-
    tion, production, installation, tion, production, installation,
    operation and servicing. Fourteen operation and servicing. Fourtien of IV exte sections cover the field treated practically and simply for easy understanding. A remarkable handbook widely used by schools. engincers, experimenters. and industrial technicians. 892 pages. OIRDER B8-2. Only.
     ORDER Be-2. Only . . . . . . . $\$ 5.95$

    ## "Radio and Electronics Handboak"

    Here is the basic knowledge and data of Radio and Electronics digested in 18 sections; complete, easy-to-locate data. Clearly explains radio and electronic theory, and covers all phases of the sulb ject in detail. The most widely
    used handbook of its kind-absoused handbook of its kind-ahsolutely invaluable to anyone interested in radio or electronics. 890
    pages; illustrated. ORDER BB-I. Only
    

    ## HOWARD W. SAMS \& CO., INC.

    Urder irom your F̄aris jabber iociay, or write direct to Howard W. Sams \& Co.,
    2205 East 46 th St., Indionapolis 5, Ind.
    \$........enclosed. Send the following books: $\square$ CTB-3
    CTB-1
    $\qquad$
    Name........................................
    Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

