

For all aspects of practical amateur radio

simply
 Best

COSMOS \& CO: A GUIDE TO RUSSIAN
SATELITE RECEPTION

AERIAL DESIGN:

IN THE CELLS: GET MAXIMUM LITELERS FROM YOUR BAIIR

DATA FILE: LED ANALOGU CIRCUITS RF SIGNAL AMPS: PITFALLS OF DESIGN

Editor

Jim Chalmers
Assistant Editor
Duncan Leslie
Advertisoment Manager
Anne Brady
Publisher
Peter Williams
Ceneral Manager
Alan Golbourn

Publishod by

Radio \& Electronics World Magazines
Sovereign House
Brentwood
Essex CM144SE
England
Tel: (0277) 219876

ISSN

0262-2572
Printed
In Great Britain

Nowstrade salos

Seymour Press Ltd 334 Brixton Road London SW9 7AG Tel:01-733 4444
Subecriptions
Tel: 01-6843157

Auch Exmou ci Cireutifors

 Membership approved pending first audit Copyright 1884 Radlo \& Eloctronics World Magazines
Safoty in the shack

Some of the constructional projects featured refer to additions or modifications to equipment; please note that such slterations may prevent the item from being used in its intended role, and also that its guarantee may be invalidated.
When bullding any constructional Wroject, bear in mind that sometimes project, bear in mind that sometimes
high voitages are involved. Avoid even high voitages are involved. Avoid even
the slightest risk - safety in the shack please, at all times.

Whilat overy care is tuken whan accepting advertisements we cannot mccopt responsibil. however, thoroughly inveatigate any conplaints.
The viaws expresued by contributors are not necesiarity those of the pubitchers.
Every care is taken to ensure contents of this magazine are accurate, we ensume no ressonsplitity for any effect from

Cover Pholographs

Top - Microwave Modules MML144/200-S (courtesy of Microwave Modules (p4)
Bottom - M J Instruments 102 Oscilloscope (p10)

SPECLAL FEATURES

10 Special Readers' Offer
Free to our readers - £5 off the MJ Instruments 102 oscilloscope

15 Canal Plus

Nigel Cawthorne G3TXF describes Eúrope's first VHF/ UHF pay-TV service
18 Phased Vertical Arrays
A computer program for the design and modelling of phased vertical antenna systems

29 Russian Satellites

The first part of a series looking at the equipment used to decode signals from the USSR's navigation satellites

32 RF Small Signal Amplifiers

A look at some of the obstacles encountered when constructing radio frequency devices

37 Data File

Ray Marston continues with the opto-electronics theme and looks at LED sequencer and analogue-valve indicator circuits

46 Weather Satellite Update

Looking at the changes that have occurred and the addition of the new Polar Orbiting Satellite
47 A Night in the Cells
A few suggestions to help keep your batteries healthy

55 Principles of $\mathbf{Z 8 0}$ Morse Decoding

Dr M A Kiam-Laine tackles the problems of decoding Morse signals using a computer

REGULARS

4 Product News
11 News Desk
27 Amateur Radio World
50 Latest Literature
59 Short Wave News
62 QSO
65 DX-TV Reception Reports
70 ATV on the Air
74 Free Classified Ads
76 Small Ads

READER SERVICES

58 Subscription Order Form
 68 Amateur Radio Subscription Order Form
 72 Back Issues Order Form
 75 Free Classified Ad Order Form
 78 Advertisers Index
 78 Advertising Rates and Information
 NEXT MONTH

73 What's in Store for You

Next Issue

Cover date February 1985 on sale Thursday, 10 January
Publication Date
Second Thursday of the month preceding cover date

Poles apport - page 18

PRODUCT NEWS

Featured on these pages are details of the latest products in communications, electronics and computers. Manufacturers, distributors and dealers are invited to supply information on new products for inclusion in Product News.
Readers, don't forget to mention Radio \& Electronics World when making enquiries

200 WAIMNEAR

The new MML 144/200-S from Microwave Modules, featured on this month's cover, has been introduced to cater for the growing requirement for a high power 144 MHz solid state linear amplifier.
The amplifier provides an output power of 200 watts and is fully compatible with transceivers of 3,10 and 25 watts output. Input power level is manually selected, so the unit is suitable for use with mobile, portable or base station equipment.
Front panel mounted switches allow the linear power amplifier and the GaAsFET receive preamplifier to be independently switched in and out of circuit.
By means of an RF Vox circuit the linear will automatically switch onto transmit when 144 MHz drive is applied to the input socket. This facility can be over-ridden by the connection of an earth to the phono socket on the rear panel.

A/DCONV:Tits

The DTR1580 is the newest instrument in the CIL Microsystems range. It fulfils a demand for a very accurate high speed, large storage data recorder with intelligent programs to analyse data and transfer the results either to a terminal or computer via IEEE or RS232.
Up to now this type of instrument was only available at very high cost because of the expensive way of producing 16 -bit accuracy at high speed. CIL Microsystems, in conjunction with various universities, have developed a method of producing this type of conversion at low cost.
As already stated, the DTR1580 is a 16 channel 16 -bit $20 \mu \mathrm{~S}$ high speed A/D converter for use with the IEEE-488 BUS and RS232 link.
Recordings can be initiated by an external trigger (Schmitt input) which has programmable delay and gain $(\pm 100 \mathrm{mV}$ to $\pm 10 \mathrm{~V}$).
Although the micro-proces-
sor used is the $Z 80$, special programming and circuit techniques enable the gathering of information from the A/D converter at a maximum rate of 50 KHz . The standard model has 128 K memory with options of up to 512 K in steps of 64 K . The
ideal for use with any popular 2 metre transceiver and gives an excellent overall system noise figure.
Construction is to the usual high standard, and all necessary plugs are supplied.

Microwave Modules, Brookfield Drive, Liverpool L9 7AN.
Tel: (051) 5234011.

2. SPLIIEP/COM:INES

W \& G Instruments have added to their range of British manufactured signal processing components with the introduction of the 4 -way splitter/combiner type 3352 and the 6 -way splitter/ combiner type 3354.
Both units cover the frequency range 5 to 150 MHz , with isolation (mid-band) of 25 dB and insertion loss of 0.75 dB .

Amplitude balance is 0.3 dB and phase balance 4.0°.
The operating temperature Prange is $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
These high performance reactive components are designed for dividing or combining RF signals with minimum insertion loss and high isolation.

W \& G Instruments Ltd, Hatfield Components
Division,
Burrington Way,
Plymouth,
Devon PL5 3 LZ.
Tel: (0752) 772773.
he RF Vox has switched delay times for SSB and FM modes. Design of the PA stage ensures highly reliable and ultra-linear performance, making the unit ideal for all modes of communication (SSB, FM, AM \& CW).
The receive pre-amp design, employing dual-gate GaAsFETs in a noisematched configuration, is
standard 19 in 2 U rack case houses a motherboard and various plug-in boards. Thus, optionat increased memory is provided by inserting up to eight 64K RAM boards.
By using ASCII data transfer the unit has been made as simple as possible to operate;
with the options of IEEE and RS232 it can be used with the majority of computers.

CIL Microsystems Ltd,
Decoy Road,
Worthing,
Sussex BN14 8ND.
Tel: (0903) 210474.

Epson America has announced a new personal computer called the QX-16, which embodies both 16-bit 8088 and 8 -bit Z80 processors. European price and specification will be announced early in 1985.

The QX-16, which will go on sale initially in the United States, runs MS-DOS and CP/M, and is IBM-compatible through an optional emulator board.
Standard features of the QX-16 include 156K RAM, expandable to 512 K , and dual 5.25 inch disk drives. The disk drives provide 360 K of storage per disk on doubledensity format in the MS-DOS mode, and 720 K per disk on quad-density format in the CP/M mode, twice the storage capacity, says Epson, of its major competitors.

The QX-16's speciallydesigned keyboard simplifies the use of differing operating systems and applications programs. An upper row of function keys can be defined for either MS-DOS or CP/M applications simply by inserting an underlay. When used with Valdocs 2 software, key commands such as PRINT and CALC can be activated with a single stroke.

COLOUR VIDEO PRINIER

Mitsubishi Electric Corporation, who commercialised the world's first printer for instantaneous printout of pictures on a television screen last year, have recently succeeded in developing technology for a colour version.
The colour printer consists of five major blocks: a block where input National Television System Committee (NTSC) composite video signals are demodulated to obtain red, green and blue (RGB) signals, a block where each colour signal is converted into a colour digital signal by an analog-digital converter, a field memory for storing digital colour signals for a frame of picture, a block where the colour signals read from the field memory are converted into the three primary colours - yellow, magenta and cyan - of the subtractive colour process to obtain gradation colour signals, and a block where a

colour print is obtained by a thermal transfer system.
When the print button is pressed, digital colour signals for one frame are stored in the field memory consisting of 12 chips of 64 K dynamic random access memory (DRAM).
A full-colour print of 16 gradations is made by transferring heat-soluble ink of the three colours to plain paper
by the thermal transfer system.

One print can be made in about a minute and ink sheets can be changed in cassettes each holding sheets for 100 pictures.

Mitsubishi Electric
Corporation,
2-3 Marunouchi 2-chome,
Chiyoda-ku,
Tokyo, 100 Japan.

Epson (UK) Ltd,
Dorland House,
388 High Road,

Wembley,

Middlesex HA9 6UH.
Tel: (01) 9028892.

LOW-COST MULIMETARS

Five new low-cost digital multimeters have been introduced by Beckman Industrial under the Circuitmate name. The range comprises two full-size handheld meters, the DM40 and DM45, and three pocket-size meters the DM15, DM20 and DM25. All are $31 / 2$ digit models and incorporate the proven Beck-
man Industrial design concept of a single rotary centre switch operation.
The robust DM40 and DM45, ideal instruments for either field service applications or bench use, have accuracies of 0.8% and 0.5% Vdc respectively.
Features include five ranges each for ac and dc volts and current (six on the

DM45 which has a 10A input) and six different resistance ranges.
Display and input sockets are recessed for maximum safety and a tilt bail and antiskid pads facilitate bench use.
The DM45 also incorporates a buzzer for fast continuity testing and circuit tracing, and both instruments have a separate range or diode testing. The price of the DM40 is £49.00, and that of the DM45 £65.00.
The DM15, DM20 and DM25, which measure only 15.0×8.2 $x 2.5 \mathrm{~cm}$, are full-function meters with extras not found on most larger instruments, allowing measurement problems even outside traditional multimeter applications to be solved.

Each model has its own special dedication. Depending on the most frequent needs it is therefore possible to choose between additional capacitance measurement on the DM25 or additional transistor testing on the DM20. Model DM15 is the lowest priced version but, like the other two, also has a separate range for diode testing as well as a direct 10A input. Alt
three instruments have a Vdc accuracy of 0.8%.
Both the DM20 and DM25 measure conductance, which is very convenient when faced with very high resistances (up to 10000 Mohm). They also offer switch selection of high or low power on resistance ranges, the low power allowing convenient in-circuit measurements in sensitive electronic circuits. The top-of-the-range DM25 also incorporates a buzzer for continuity testing.

The prices for the DM15, DM20 and DM25 are £42.00, $£ 47.00$, and $£ 58.00$ respectively.
A full range of Beckman Industrial accessories is available for the Circuitmate meters.
All are covered by a comprehensive three-month warranty and are obtainable through Beckman Industrial's UK distributor network.

Beckman Industrial Ltd, Electronic Technologies Division,
Mylen House,
11 Wagon Lane, Sheldon,
Birmingham B26 3DU.
Tel: (021) 7427921.

Cirkit.Makingit per

Cirkit's got the kits you need to make your copy loud and clear.

In all there are over 100 kits to choose from. Selected and designed to offer the best possible standards at the best possible price.

Delivery is fast and reliable.
We keep in touch with the manufacturers and we know what's going on. So as soon as new products are available, Cirkit has them.

Cirkit means a bigger catalogue. A better company to deal with.

And a wide range of kits and products that's growing all the time.

At Cirkit, we're tuned in to your needs.

Just send for our catalogue or visit one of our three outlets at:

200 North Service Road, Brentwood, Essex.CM144SG;
53 Burrfields Road, Portsmouth, Hampshire. PO3 5EB;
Park Lane, Broxbourne,
Hertfordshire. EN10 7NQ.

Please add 15\% VAT to all advertised prices and 60 p post and packing. Minimum order value $£ 5$ please. We reserve the right to vary prices in accordance with market fluctuation.

10 MHz DFM

ADFM capable of operating at frequencies up to 10 MHz . The kit can be configured in six different measurement modes including: frequency, period. elapsed time and unit counter. Applications can be extended using the CIRKIT prescaler and preamp.

SPECIFICATION: Input signal: 2.0 V (min) TTL.
Frequency range: 0 to 10 MHz . Period measurement: 0.5 to 10 secs. Time measurements: up to 10 secs Output: BCD multiplexed. Display: 8 digit 12 mm LED. Supply: $6-9 \mathrm{VDC}$ at 100 mA (nom).

41-01500 $\quad 54.10$

DFM PRE-AMPLIFIER

The rise time of some low frequency signals, even apparent square waves, is often too slow to give a constant readout from a DFM. The use of a pre-amp ensures that these signals are input to the DFM at the correct level and with the correct shape. This simple addition greatly increases the effectiveness of a DFM at low frequencies.

SPECIFICATION: Frequency range: $1 \mathrm{~Hz}-5 \mathrm{MHz}$. Sensitivity: $1 \mathrm{~Hz}-3 \mathrm{MHz}: 20 \mathrm{mV}, 3 \mathrm{MHz}-5 \mathrm{MHz}: 40 \mathrm{mV}$ Max input voltage: 100 V (220 V instantaneous). Power supply:5V8mA. Input signal:Any.Output signal:TTL square wave.

41-01502
5.13

DFM PRESCALER

This prescaler is intended for use with the Cirkit 10 MHz DFM, although it is compatible with other frequency counters. The function of the prescaler is to divide the incoming frequency by ten and to shape it into a waveform suitable for the digital input requirements of the DFM. This enables the frequency range of the DFM to be extended up to 50 MHz .
SPECIFICATION:Supply voltage: 5VDC. Nominal current: 25 mA . Frequency range: $10 \mathrm{kHz}-50 \mathrm{MHz}$. Input sensitivity: 20 mV (typical). Output:5V TTL level. Dimensions: $80 \mathrm{~mm} \times 50 \mathrm{~mm}$.

$$
41-01501 \quad 8.55
$$

To: Cirkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire. EN10 7NQ.
l enclose 85 p. Please send me your latest catalogue and $3 \times\{1$ discount vouchers! If you have any enquiries please telephone us on Hoddesdon (0992) 444111.
Name
Address

2 m POWER AMP

A carefully designed $20 \mathrm{~W}, 144 \mathrm{MHz}$ linear power amplifier, to boost the output of hand-held and transportable transceivers such as the TR2400 IC2E,FT208, FT290 etc. With 10 dB gain to give a 20 W output from a 2 W input. Automatic changeover relay - switched from RF sense circuit High power - output relay, robust construction with die-cast box plus RX pre-amp.
SPECIFICATION: Bandwidth -3dB; 144-146MHz Power gain: min 10dB. Output power; 1W input: $10 \mathrm{~W}, 2 \mathrm{~W}$ input: 20 W . Supply voltage: $10-16 \mathrm{~V}$. Supply current (at 12 V): <3 amps-20W output. Input/Output impedance: 50Ω. Size (excluding sockets): $122 \times 96 \times 44 \mathrm{~mm}$. Pre-amp section spec as 2 m Pre Amp Kit.

41-01404
32.87

2m CONVERTER

Low noise 2 m to 10 m converter. This design uses low noise dual gate MOSFETs in the RF and mixer stages which, together with a TOKO pre-aligned helical filter and pre-wound coil, give a high specification and repeatable performance.
A reliable 116 MHz overtone oscillator circuit is tollowed by a double tuned stage which gives a very clean output, this reduces spurii to a minimum. As the circuit is basically linear any mode - AM, FM or SSB - can be converted. The complete circuit is built onto a double-sided PCB SPECIFICATION: Noise figure: Less than 2dB. Gain:Min 22 dB . 3 dB Bandwidth: $144-146 \mathrm{MHz}$. IF Output: $28-30 \mathrm{MHz}$. Input/Output impedance: 50Ω. Supply voltage: $10-16 \mathrm{~V}$. Supply current (at 12 V) 28 mA . Size: $97 \times 57 \times 22 \mathrm{~mm}$.

41-01306

2m PRE-AMP
Very compact low-noise MOSFET 2m pre-amp. The overall PCB is sufficiently small to be installed inside receivers or transceivers.
SPECIFICATION: Noise figure: Better than 1.5 dB . Gain: 18 dB Min. Input/Output impedance: 50Ω. Size: $34 \times 13 \times 10 \mathrm{~mm}$.
KIT INCLUDES: Double-sided PCB • All resistors All capacitors - MOSFET - Coils and cans.

fectly loud and clear:

70 cm CONVERTER

70 cm to 144 MHz low profile converter employing high level Schottky diode double balance mixer, pre-aligned helical filter and low noise transistors. The complete design gives a low noise figure and uses pre-aligned filters and pre-wound coils to give repeatable performance with minimum alignment

SPECIFICATION: Bandwidth: $430-440 \mathrm{MHz}$. RF Gain: 8 dB min. Noise figure: $<2.5 \mathrm{~dB}$. IF output: 144 146 MHz . Supply voltage: 10 V . Supply current 30 mA . Size: $97 \times 57 \times 15 \mathrm{~mm}$.
$41-01405 \quad 21.50$

70 cm 10W Power Amp

70 cm 10W POWER AMPLIFIER

The current generation of UHF handheld synthesised transceivers have almost all the facilities found in mobile/base transceivers, the only major limitation being their output power. For handheld operation 1 watt or so is adequate, but for mobile to mobile and for use wth higher power repeaters, the addition power provided by the CIRKIT amplifier increases the range considerably. This is especially noticeable, as is to be expected, at the limits of the service area
The Cirkit 70 cm Power Amp will boost the output power of hand held transceivers up to 12 W . Automatic relay switching between TX and RX, is provided via the RF sense circuitry. The finished unit is mounted in a tough pre-drilled die-cast box, which provides sufficient heatsinking while providing a rugged low profile housing.
SPECIFICATION: Power gain (2W/P): 7.2dB Output power (13.8 V) 2 W input: 10 W (min). Saturated power output: 14W. Supply voltage: $10-16 \mathrm{~V}$ (13.8 V nom). Input/Output impedance: 50 R .
 12W. Dimensions: $119 \times 94 \times 34 \mathrm{~mm}$

41-01505 33.82

70 cm PRE-AMPLIFIER

This high performance pre-amp offers increased receiver sensitivity and a corresponding extension of the useful communication range. The completed unit is sufficiently compact to be built into virtually any existing receiver and does not require the use of any test gear when setting up.
SPECIFICATION: 3 dB bandwidth: $425-445 \mathrm{MHz}$
Noise figure $<2 \mathrm{~dB}$. Gain: $13 \mathrm{~dB}(\mathrm{~min})$. 1 dB compression: $-3 \mathrm{dBm}(0.5 \mathrm{~mW})$. Saturated output: $-2 \mathrm{dBm}(0.7 \mathrm{~mW})$. Supply voltage: $8-12 \mathrm{~V}$ (12V nom). Input/Output impedance: 50R. Dimensions $50 \times 10 \mathrm{x}$ 17 mm .
$41-01506 \quad 4.78$

NOW AVAILABLE exclusively from CIRKIT, TAU high quality ATU kits and accessories.

Full HF coverage, tunes from 1.5 MHz continuously to 29.350 MHz . Based on the reknowned SPC transmatch configuration, TAU innovated this composite module design with large air-spaced capacitors rated at 5 kV , tested to 7 kV Roller inductor infinitely variable. Solid precision radio engineering. Heavy weight long life construction. Will tune any transmitter/aerial combination to optimum. A lifetime investment and should never need replacing. Power handling capabilities from a few milliwatts to above 3000 watts PEP. Undoubtedly the finest ATU module available today.
STU 5 K ATU Kit
$41-50500 \quad 130.00$
CABINET - custom-made for STU 5 K ATU
$1-50510 \quad 62.50$
DIGITAL TURNS COUNTER
Multi-turn, vernier scale with digital indication,for use with roller coaster, with or without cabinet. Turns counter

41-50520 27.94
BALUNS
To complete the ATU, we have the following Baluns:

Location		PEP	Ratio	Stock No.	Price
Outdoor	OB141	1 kW	$4: 1$	$41-50141$	27.35
Outdoor	OB111	1 kW	111	$41-50111$	27.55
Indoor	IB241	200 F	$4: 1$	$41-51241$	17.25
Indoor	IB141	1 kW	$4: 1$	$41-51141$	22.35

ROLLER COASTER

To complement existing equipment, covers 1 . $30 \mathrm{MHz}, 28 \mathrm{uH}$ inductance, tapered pitch for 10 and 15 meters.
Roller Coaster
41-50540 46.00

AKC AERIAL KIT
Unique clip-on spacer system for open wire feeders. Patented design manufactured from an ultra-violet resistant poly-propylene the spacer can be configured to give a $75,300,400$ or 600 ohm system. Kit contains 20 spacers, 1 Tee piece and 2 Ceramic insulators.

AKC Aerial Kit
41-50530 $\quad 12.70$

CIRKITELECTRONICS TOOLKIT Contains: 15W Soldering Iron, 2 spare bits, heat shunt, soider, pliers, cutters, and screwdriver $41-00007 \quad 15.56$

Selected Lines

PB2720	80 dB Piezo Buzzer	43-27201	0.55
10M15A	10.7 MHz Filter	20-10152	2.10
FC177	LCD Freq. Meter	39-17700	20.00
CM161	MinLCD Clock	40-80161	8.25
8×0.3 "	IC socket	28-00800	0.12
14×0.3	IC socket	28-14000	0.13
$16 \times 03^{\prime \prime}$	IC socket	28-16000	0.13
CX120P	COAX relay (PCB)	46-90120	11.96
CX520D	COAX relay (Ntype)	46-90520	6.98
CX540D	COAX Relay (BNC)	46-90540	26.98
HC6010	10M 2 DMM	56-06010	33.00
HC7030	0.1\%AccDMM	56-07030	43.0
Meteor	100 MHz DFM	56-00100	95.00
Meteor	600 MHz DFM	56-00600	121.00
Meteor	1000 MHz DFM	56-01000	165.00
CS240	Antex 17W Iron	54-22300	5.20
TCP3	Weller temp cont iron	54-20007	17.6

PU3D Weller 24V PSU ior TCP3 54-20026

30.74

Books

The Radio Amateurs: Q \& A
Reference Manual
Oscilloscopes:How to use
them, how they work
The World's Radio
Broadcasting Stations
The ZXSpectrum
Electronics Pocket Book
Practical Design
of Digital Circuits
Projects in Amateur Radio
Active Filter Cookbook
Beginners Guide to
Amateur Radio
CMOS Cookbook
Design of Active Filters
Design of Op-Amp Circuits
Design of Phase-Locked
Loop Circuits
Design of VMOS Circuits
Effectively Using the
Oscilloscope
Foundations for Microstrip
CircuitDesign
Handbook of Electronic
Tables Formulas
TTLCookbook
TV Antennas and Signa!
Distribution Systems

02-02157 5.95
02-21300 $\quad 4.35$
02-11564 7.00
$02-00100 \quad 5.95$
02-21309 7.50
02-11831 10.45
$02-21304 \quad 3.80$
02-21168 12.70
02-11262 4.50
$02-21398 \quad 11.85$
02-21539 10.15
02-21537 9.30
02-21545 9.30
02-21686 10.15
$02-21794 \quad 9.30$
$02-79447 \quad 21.00$
$02-21532 \quad 11.00$
02-10358 11.00
$02-21584 \quad 10.15$
(N1
6

Levell Electronics have announced the release of a new oscilloscope multiplexer. The type OM358 expands any oscilloscope to 8 channels.
The multiplexer has a bandwidth of 35 MHz and a calibration accuracy of 3%. Input impedance is $1 \mathrm{Mohm} / 20 \mathrm{pF}$ and the attenuator has four positions of $\times 100, \times 50, \times 20$ and ground. The trigger signal can be selected to come from any of the 8 input channels. A variable multiplex rate control ensures flicker free
operation at any timebase speed, and facilitates high speed multiplexed capture of multichannel single shot events.
Typical application areas include microprocessor based products, data transmission systems, analogue to digital converters, phase locked loops and frequency dividers.

Levell Electronics Ltd, Moxon Street,
Barnet,
Herts EN5 5SD.
Tel: (01) 4405028.

INSTRUMENTAHOUSINGS
The H9 'Proto-Pac' series has now been added to the range of standard instrument housings made by PMH Inc.
Versatile and economical, Proto-Pac series housings are particularly suitable for prototyping needs and are formed from extruded aluminium tubing. Front and back panel fixing is by way of $0-80$ holes tapped directly into the housing sidewalls giving the user more interior space,
access to both sides, and providing excellent shielding.

The Proto-Pac series are available in a large range of sizes and with options which include covers with mounting flanges, connector holes and chemical film or nickel plating.

Aspen Electronics Ltd, $2 / 3$ Kildare Close, Eastcote, Ruislip, Middlesex HA4 9UR. Tel: (01) 8681188.

VOLIAGE TESTERS

A range of inexpensive reliable and safe voltage testers, ideally suited to DIY and hobby applications, is available from Steinel (UK) Ltd. The testers are simple to use and provide a wide range of voltage indication enabling the rapid and safe testing of batteries, power supplies and mains voltages.
Using a simple LED and/or neon indicator system built into one of the two shockprotected probes, ac and dc voltages of up to 415 V can be detected, depending on the model chosen. A major feature of their design is their foolproof operation in all conditions likely to be encountered by the average DIY user.

Volt Check is simplicity itself to operate. It has just two LEDs indicating the presence of voltages either ac or dc in the range 4.5 to 415 V , with polarity indication. This is ideal for fault-finding applications, testing whether mains sockets/terminals are live etc.

Power Check is designed specifically for the indication of ac mains voltages, and using three neons indicates voltages of up to 110,240 and 415 V .

Hobby Check provides the same three-step voltage indication as the Power Check but with the added advantage of dc measurement covering the same voltage ranges and with polarity indication.

Steinel (UK) Ltd, 17 Reddicap Trading Estate, Sutton Coldfield,
West Midlands B75 7BU.
Tel: (021) 3782820.

GSC has introduced the Model 3000 digital capacitance meter, a precision test instrument designed for handheld battery operation.
Features include a $31 / 2$ digit resolution, accuracy to 0.2% of reading, capacitance measurements of 1 pF to 2000 μF, and switch selection of capacitance range.
The instrument has a 0.5 inch high numeric liquidcrystal display with annunciators to indicate low battery and excessive compensation of stray capacitance.
Designed to operate with a 9 V battery, the Model 3000 also has a front-panel zero 'adjust' control to permit nulling of stray and incidental capacitance, and a tilt stand for easy and convenient positioning.
Applications include quality control, inspection, production, design, calibration, field service and systems installation.
Available
accessories include a pair of test leads, fuses, battery, and an instruction manual.

Global Specialties

Corporation,
Shire Hill Industrial Estate, Saffron Walden,
Essex CB11 3AQ.

FRERUNCYNTIER

The TF600 is a battery or mains (ac adaptor) operated portable frequency meter with a large 0.5 in 8 -digit LED display.
The frequency range is 5 Hz to 600 MHz with a sensitivity of better than 10 mV RMS across the entire range.

There are two inputs. Input A is a high impedance input ($1 \mathrm{M} \Omega$) for the 10 MHz and 100 MHz ranges; a low pass filter (40 KHz) is provided. Input B is a 50Ω nominal input
for the 40 MHz to 600 MHz range.
The display reads out directly in KHz and also has indicators for overflow, gate and low battery.
The decimal point is positioned automatically on all of the ranges.

Thandar Electronics Ltd,
London Road,
St lves,
Huntingdon,
Cambridgeshire PE17 4HJ.
Tel: (0480) 64646.

THE ULTMATE BATERY?

AllBatteries have introduced to the UK the latest 'state of the art' battery.
Developed by the Altus Corporation, one of America's foremost battery manufacturers, the new high power Lithium Thionyl Chloride cells incorporate several unique features which make them superior to any other battery for many applications. Weight for weight and size for size, Altus cells contain more power than any other commercial cell.
Among the many special features are a number which make these new cells probably the safest battery available. Tests conducted by the UL prove that the cells can be subjected to heat, short circuit, crushing and even penetration by a metal object without any dangerous consequences.

Other patented features allow the cells to deliver high currents; the larger sizes can deliver up to 15A continuous and 30A pulse. All cells are rated at 3.6 V nominal and wilt operate over a wide temperature range.

AllBatteries stock a wide range of Altus disc and cylindrical cells with capacities from 0.23 to 18AH. They can advise on the best choice of battery and can construct special packs if required. Custom built cells with capacities up to 8000 AH are also possible.

Full details together with
copies of the UL report are available from the AllBatteries sales office on (0923) 770044.

AllBatteries,

Tolpits Industrial Estate,
Tolpits Lane,
Watford,
Hertfordshire WD1 8QY. Tel: (0923) 779297.

- PROTOCARD
 Protocard is a profes-

 sionally designed British product for the easy construction of prototypes or the development of new circuits.Six 16-pin DIL sockets have their pins brought out to large area solder pads on the PCB, which is also provided with transistor pads and supply and signal tracks which run the full length of the board.

Protocard can be re-used as often as required, providing a useful aid to circuit designers.
Also supplied with the board are a pack of Protocard Plancards (which are used to plan component layout), instrument wire in a selection of colours, and solder.
This product is invaluable to those constructing prototypes and test circuits, and does not suffer the problem of bad contacts sometimes encountered with push-in type boards.

E \& H Electronics, 33 North Street, Keighley,
West Yorkshire BD20 3SL.
Tel: (0535) 44103.

MULTLSTANDARD TERLXINAI

PNP Communications have announced the availability of a new 'matched-filter' type RTTY/CW receive-only terminal unit.

Primarily aimed at the serious short wave listener, the unit is suitable for interfacing a communications receiver to a home computer. The matched filter-rectifierintegrator design also makes it suitable for demodulating Morse code transmissions for CW reading programs.

The terminal unit comprises two active filter chains. One is fixed at 1275 Hz for space and the other is electronically switched to 1445 Hz for 170 Hz shift, 1700 Hz for 425 Hz shift or 2125 Hz for 850 Hz shift mark signals. This channel is used for Morse reception.

The TU also has the PNP ALC system to cater for a wide range of input signals and to compensate for signal fading. A bar-graph tuning indicator is provided to ensure accurate tuning, which is necessary for the reception of RTTY.

The TU is suitable for the reception of signals in excess of 200 baud and for the reception of AMTOR etc. TTL level outputs are provided for 'normal' and 'inverted' signals and power is available for a transmit tones generator.
All connections are by plug and socket and the TU has onboard rectifiers and power regulators. It is supplied as a built and aligned PCB complete with mains transformer, and measures $155 \mathrm{~mm} \times$ 107 mm . The price is $£ 32.50+$ VAT inc p\&p.
Kit versions will be available shortly.

PNP Communications, 62 Lawes Avenue,

Newhaven,

East Sussex BN9 9SB.
Tel: (0273) 514465.

ENSERUION GUIDES

A new line of insertion guides, ready loaded with collet pins for speedy and accurate collet pin insertion, are available from Aries Electronics.

Both single and double row insertion guides on 0.1 inch spacings are available, the single row versions having from 3 to 40 pins and the double row versions having 6 to 48 pins on 0.3 or 0.6 inch centres. After wave-soldering the pins to the board, the disposable insertion guide is simply removed.

Aries collet pins are available in 3 styles. All styles have a two-piece contact assembly, consisting of a machined four leaf (gold plated) closed entry contact within a screw machined outer sleeve. Collet contacts provide high reliability and accept .015 to .020 round leads and flat IC leads.

Aries Electronics (Europe), Alfred House, 127a Oatlands Drive, Weybridge,
Surrey KT13 9LB.
Tel: (0932) 57377.

[^0]announced the Model TPF 143 triplexer, which is designed to operate from dc to 18.0 GHz and provides passband channel bandwidths of dc to 2 GHz , 2 to 8 GHz , and 8 to 18 GHz .
The triplexer exhibits 1.0 dB maximum insertion loss (to within 5% of crossover), a crossover insertion loss of 4.5 dB maximum, a $2: 1$ maximum VSWR, and rejection of 55 dB to within 15% of crossover. The low profile triplexer is $3.7 \times 2.0 \times 0.5$ inches and uses SMA female connectors.

The triplexer is an integration of Suspended Substrate MIC (SSMIC) diplexers with crossover frequencies of 2 and 8 GHz . A series of SSMIC diplexers with crossover frequencies from 2.0 to 14.0 GHz have been designed on RT/Duriod.

These diplexers can be integrated to form many multiplexing functions.

Time Microwave,
398 Martin Avenue,
Santa Clara, CA 95050
408/970-8463.

IN-CAMERA RECORDER
The Ferguson Videostar C 3 V 41 , the latest concept in electronic photography which combines a video camera and recorder in one compact, lightweight unit, is the latest addition to the Ferguson Videostar range.

The new Ferguson Videostar C package includes a single unit camera and recorder, slimline rechargeable battery, battery charger, RF converter, detachable microphone, carrying handle, VHS C EC30 video cassette and instruction book. Supplied in an executive style custom fitted carrying case, the Videostar C is a truly portable home video system that includes everything needed to make home video recordings in colour and with sound, and to immediately replay them on a television receiver or in the electronic viewfinder provided.
Developed from VHS technology, the Ferguson Videostar C system is com-
pletely compatible with all VHS video cassette recorders. Designed for high performance with effortless operation, this camcorder is supported by a comprehensive range of accessories offering the opportunity to exploit and enjoy the full scope of video recording techniques, making it the ideal system for domestic and business use.

It weighs just $41 / 2 \mathrm{lb}$ and is only 13.5 cm high, 34 cm long and 20 cm wide, and is therefore very convenient for one handed use.

The Videostar C has high sensitivity in low light levels (down to 15 lux), which allows it to make excellent colour recordings under almost any lighting conditions. Varying light values are compensated for by the automatic iris control, but this can also be operated manually for creative effects.

Other features include an electronic viewfinder which can be mounted at various
angles and incorporates 8 recorder/camera mode indicators; instant playback through the electronic viewfinder; colour picture search (forward and reverse); back space edit; automatic quick review of each recording; LCD tape counter, including memory stop; and $6 x$ power zoom with manual over-ride.

The Videostar C is sup-
ported by a full range of accessories which allows the video enthusiast to gain full scope and more professional results from the system.

Thorn EMI Ferguson Ltd, Cambridge House,
Great Cambridge Road, Enfield,
Middlesex EN1 1UL.
Tel: (01) 3635353.

SPECLAL READERS OFFER - THE WU 102

NEWS DESK

Gallium arsenide plan

Plessey Research (Caswell) Limited announced recently that it has reached the first major milestone in a 550 M investment programme to establish a production facility for gallium arsenide integrated circuits.
Parts of the research centre have been completely refurbished to provide an additional 2000 square feet of advanced clean wafer fabrication facility and associated services. Plessey now has a total floor space of over 7000 square feet for clean gallium arsenide wafer fabrication.

The latest addition to the company's GaAs facilities will be dedicated to the engineering and pilot production of ICs prior to their transfer to full production at the Plessey Three-Five Group Limited in Towcester.
Plans are well established to add further clean facilities for assembly and testing early in 1985. The total cost of this new facility, its equipment and commissioning is £3M. Equipment
installation, including the dedicated ionimplantation facility, is now nearly complete.
Plessey has all the technology in its Caswell Laboratory to commercialise the first generation of integrated circuits and has been supplying small quantities to customers at home and abroad for some years. However, Plessey's $£ 50 \mathrm{M}$ investment objective is to be a leading world producer of circuits in volume manufacture and has a plan before DTI to do this.

Gallium arsenide exhibits higher electron mobility and saturated drift-velocity than silicon, giving speed advantages of up to 4:1 over silicon for digital circuits. Analogue circuits operating up to 20 GHz can be designed and fabricated at the present time. Silicon circuits have difficulty in achieving analogue bandwidths greater than a few GHz in IC form.
Applications of gallium arsenide ICs include satellite communications, phasedarray radars, navigation receivers, cellular-radio sys-

tems and high-speed computers.
In order to reduce testing time, increase yield and reduce packaged chip costs, an RF on-wafer testing capability prior to chip separation has been developed at Plessey Research. This equipment will be installed in the new wafer-fabrication facility during 1985.
Currently over 30 different gallium arsenide IC designs are in advanced phases of development, including chips to perform functions such as multiway switches, mixers, multipliers and oscillators for first generation MMICs.

RFI protective screening

A new zinc coating process which eliminates radio frequency interference (RFI) has been developed by Deccospray, part of the Eltron group of companies.
The process, called Deccoscreening, consists of the homogeneous application of molten zinc to the internal surfaces of plastic enclosures without deforming, discolouring, or weakening the base material.

Electromagnetic energy is absorbed by the coating, and external radio frequency interference is subsequently reflected. This interference can be caused by such mundane things as vehicle ignitions, fluorescent lights, radio transmitters, or welding equipment.

The problem of RFI has arisen where metals have been replaced by modern plastics to house electronic components. Although more aesthetically acceptable, cheaper, and lighter, plastics are transparent to radio waves, and so protective screening becomes essential to prevent damage or malfunctioning.
The Deccospray patented process has the added advantages of being quickly and permanently attached, avoiding short circuits, and is noncombustible. The process has been effective in solving interference problems in the computer, VDU, telecommunications, security, medical, and defence industries. The process can be applied to almost any plastic housing.

DIY graphics processors

The Camberley-based systems engineering company, EASAMS Limited, unveiled two new graphics processor packages at the International Test \& Measurement Exhibition held recently. These will spearhead the company's drive to strengthen its position in the fast-growing industrial market for low-cost computer graphics.
For manufacturers and others with limited CAD capability, the dedicated software packages, known as FLOW GEN and CD GEN, respectively offer generators for flowchart and circuit dia-
gram graphics. Both 12 K machine code programs take full advantage of the high resolution graphics and mem-ory-mapped screen possibilities of Apple II micros, with hard copy output provided by a Hewlett Packard plotter.
Flowcharts and circuits are to technical publications standard, and are produced with fine-line drawing office pens of sufficient quality for immediate reproduction-forprint. Complete hardware/ software packages can be supplied by EASAMS to satisfy users' needs for a lowcost automated drawing office capability.

Second generation mobile telephones

The Nordic market for mobile telephones has expanded at record speed since it first got under way in 1981. The rate of development has exceeded almost all expectations.

During the three years the NMT (Nordic Mobile Telephone) system has been in existence it has attracted more than 100000 subscribers. Of these, approximately 40000 are located in Sweden. The Nordic area is already the most active mobile telephone region in the world.

The second generation of mobile telephones is now being launched by Ericsson, one of 11 suppliers to the Scandinavian market, with their PT range.

These telephones are well equipped for future communications requirements. They are characterised by a drastic reduction in size they are almost half the size of previous models. One station unit therefore weighs only a couple of kilos and the control unit only 340 g . The small dimensions and negligible weight provide increased mounting possibilities.

The Ericsson PT telephones are already adapted and equipped for future data communications. In the future it will be possible to receive or transmit information from a mobile telephone computer terminal installed, for example, in a car.

WOOD \& DOUGLAS

VHFNHF COMMUNICATION PRODUCT

Despite the threat of BIG BROTHER hanging over us, 1984 has been a happy and busy year for the W \& D team. We would like to take this opportunity to thank all our customers for making it so, and to wish everyone a Happy Christmas and a prosperous New Year.

MIKE \star DAVE \star ROSE \star ALAN

Package Prices

1. 500 mW TV Transmit
2. 500 mW TV Transceiv
3. 10 W TV Transmit
4. 10 W TV Transceive
5. 70 cms 500 mW FM Transceive
6. 70 cms 10 W FM Transceive
7. 2 M Linear/Pre-amp 10W
8. 2 M Linear/Pre-amp 25 W
9.70 cms Synthesised tow Transcei 10. 2M Synthesised 10W Transceive 11. 2M Crystal Controlled 10W Transceiver 12. 70 cms Linear/pre-a Transceiver Kits and FM Transmitter (0.5 W) FM Receiver (with PIN RF c/o) Transmitter 6 Channel Adaptor Receiver 6 Channel Adaptor Synthesiser (2 PCB's) Synthesiser Transmit Amp Synthesiser Modulator Bandpass Filter
Converter (2M or 10M I.f.)
Converier (2
Receiver Converter (Ch 36 Output) Pattern Generator (Mains PSU) TV Modulator (For Transmission) Ch 36 Modulator (For TV Injection) Power Amplifiers (FWCW Uso) 50 mW to 500 mW
500 mW to 3 W
500 mW to 10 W
10W to 40 W
Combined Power Amp/Pre-Amp (Auto Changeover) Limears
500 mW to 3 W (Straight amp, no changeover) $3 W$ to 10 W (Auto Changeover) 1 W to 7 W (Auto Changeover) Pro-Amplifiers Bipolar Miniature (13 dB)
MOSFET Miniature MOSFET Miniature (14 dB) RF Switched (30W) GM EOUPMENT Converter (2M if) 2M EquipNENT
FM Transmitter (15W)
FM Receiver (with PIN RF Changeover) Synthesiser (2 PCB's)
Synthesiser Multi-Amp (1.5W O/P) Bandpass Filter
PIN RF Switch
Power Amplifiers (FWUCW Use)
1.5 W to 10 W (No Changeover)
1.5 W to 10 W (Auto-Changeover)

Linears
1.5W to 10W (SSB/FM) (Auto-Changeover) 2.5 W to 25 W (SSB/FM) (Auto-Changeover 1.0W to 25W (SSB/FM) (Auto-Changeover)

Pro-Amplifiors
Low Noise, Miniature
Low Noise, Improved Performance Low Noise, RF Switched, Full Changeover GENERAL ACCESSORIES
Toneburst
Piptones
Kaytone
Relayed Kaytone
Regulator (1.2 Vm , low differential)
Microphone Pre-Amplifier
Reflectometer
CW Filter
TV-Filter (Boxed)
FM TV MODULE
50 mW 420 MHz Source (Video Input)
50 MHz i.f. Processor
Varactor Multipler (Boxed)
Further details on our product range will gladly be forwarded on
receipt of an A5 size SAE. Technical help is available by 'phone receipt of an A5 size SAE. Technical help is available by 'phone
(NEW NUMBER) during normal office hours. Kits are usually available by return of post but please allow 28 days for unforseen delays. Please add 75 pence to your total order for postage and handling. Credit card orders are gladly accepted, please give us a call.
anyone can sell a kit. . . reputation sells ours
UNIT 13, YOUNGS INDUSTRIAL ESTATE ALDERMASTON, READING RG7 4PQ 포 Tel: 0735671444 TX: $848702 \square$

MJI 102 - a new number IN BRITISH 'SCOPES

Simple Operation - Fully Automatic Trigger Single Beam - 100mV to 50V/Div. - Sensitivity 10mS to 1μ S/Div. - Sweep - X - Y Facility Lightweight and Compact and at a very lightweight price send for detalls NOW!

MJ Instruments
HILLTOP HOUSE, THINGOE HILL, BURY St EDMUNOS, SUFFOLK, IP32 6BE Tel: (O284) 67104

THE C. R. SUPPLY CO 127 Chesterfield Rd, Sheffield S8 ORN Return posting

Radar recorder

Originally developed for and currently in use with the Royal Navy, the commercial variant of Walton's Radar Recorder is now in full production.

Seen to have many applications in the defence, maritime and civil aviation fields, the system means that instead of radar information being lost as the screen is updated, there can now be a permanent record. This is useful not only for post-incident analysis but in, say, air traffic control applications, as a valuable tool when planning preventative measures.
On the training front the radar recorder has been enthusiastically received because it enables operators to work with real radar. A whole library of tapes can be built up to give trainees the experience of a wide variety of situations, so they no longer have to wait for the appropriate conditions to arise.
The Walton Radar Recorder Interface can record radar synchronising pulse, radar video and antenna azimuth data onto $3 / 4$ in magnetic cassettes, as well as other data such as log, compass/gyro, secondary plot data, depth readings, voice and time code signals.

Record and replay are the basic modules of the system, but several options can be provided to suit individual requirements, such as video store, sequencer and tape copying modules.

Data processing equipment

Computerisation of British industry has now gained an unstoppable momentum, but penetration is still low and there is still a long way to go before replacement is the major determinant of demand, according to a new report on data processing equipment published by Market Assessment, which estimates that the market has grown from £1103M at MSP in 1978 to $£ 2866 \mathrm{M}$ in 1983.

UK production in the electronic computer industry is one of the few manufacturing sectors to have ridden the recession and actually expanded, even though some UK production reflects

assembly of imported parts rather than manufacture. Yet UK manufacturers' sales of data processing equipment is valued at $£ 1,962 \mathrm{M}$ out of the total $£ 2,866 \mathrm{M}$ market in 1983.

Advertising has increased phenomenally, reflecting both market growth and the proliferation of manufacturers. In 1978, media advertising of computers and calculators alone accounted for $£ 2.10 \mathrm{M}$. By 1983, this had grown to $£ 26.45 \mathrm{M}$ and this excludes trade exhibitions and direct mail. IBM and ICL are by far the largest advertisers, followed by DEC, ACT Apple, Hewlett Packard and Honeywell.

The report examines the performance and prospects of calculators, mainframe computers, small business computers, computer peripherals, encoders, disc drives, printers and tapedecks.
Data Processing Equipment: Market Assessment Product Group Report is published by Market Assessment Publications, 2 Duncan Terrace, London N1 8BZ. Tel: 278 9527/8/9.

Computer repairs

The looming nightmare of repairing hundreds of thousands of cheap home computers after their warranties expire has been solved by a new British company, Com-puter-fix Ltd of Camberley, Surrey.

Computer-fix has set up a national network, initially of 500 dealers, offering cheap, guaranteed repairs in only 48 hours plus postage time from the dealer to Camberley and back.

The network is based on a revolutionary British
diagnostic computer which can reveal a fault in any of the top ten brands of home micros in just seconds. The machine does not even need to be told the make or model of micro it is testing.

ACUMEN - Advanced Computer Memory Tester - is British designed and manufactured and if Computer-fix decided to sell it would cost around $£ 5000$ (somewhat less than existing advanced test equipment!).

Most home computers sold in Britain are still covered by their manufacturers' warranties, as sales started to boom only the Christmas before last. According to managing director Ray Johnson, the first hundreds of thousands of repairs out of warranty are just starting to explode on the market.
With his combination of revolutionary test equipment and a national network of dealers, Mr Johnson believes he can corner the British market for home micro repairs, especially when people see just how low his prices are (a 90-day guarantee on parts and labour is included).

Plans are under way to extend the principle, possibly on franchise, throughout Western Europe.

PCB-based product lines

RIFA have announced the introduction of a completely new line of products designed to simplify the design and production of PCB-based systems and modules.
At the centre of this new range of products is the unloaded PCB, which incorporates a full matrix of holes on 0.1in centres. This
may be mated at right-angles with a front panel which itself contains a PCB, and the resulting assembly fitted into an industry-standard 19in rack.

A variety of components, such as LED holders, fuse holders, switches, trimmers and test jacks etc, may be plugged or soldered directly into the host board or front panel, thus dramatically simplifying the assembly of both prototype and production board-based modules.

Third generation Mosfits

Motorola is using significantly improved process technology in its new ' A ' series of MosFET devices now in production. Utilisation of this new TMOS IIJ technology results in significant cost savings to customers, making MosFET devices an even more attractive and costeffective alternative to bipolar transistors in many applications.

The state-of-the-art design of TMOS III devices, accomplished through fine line geometry and spacing of source sites, increases the packing density to more than one million cells per square inch.

This smaller die size is less expensive to produce and yet retains the low on-resistance (ros(on)) figures of previous TMOS die with larger surface areas.

As an example, the industry standard bipolar transistor, the 2N3055 (with an equivalent on-resistance of 0.3 ohms), can now be replaced economically in many uses with the advanced Motorola power MosFET, the MTP3055A. This is a 60 volt, 12 amp device with an $r_{\text {DS(on) }}$ figure of 0.15 ohms.
Motorola has also recently expanded its discrete sur-face-mount product lines with a full range of $1 / 2$ watt and 1 watt Zener diodes in the form of the MLL34 and MLL41 leadless packages.
This company thus becomes the first US supplier of surface-mount Zeners, complementing its previously introduced lines of leadless Schottky and general-purpose rectifiers for powersupply (and circuit protection) applications.
R.W.C.'S BARGAIN WINDOWS - ONCE ONLY OFFERS

UT

Canal Plus started full time programme transmissions in early November 1984, just three years after the company was formed as France's first film channel TV.

Before Canal Plus

France, up until the arrival of Canal Plus, had three TV channels: TF1, Antenne 2 and FR3. These three channels were created following the breakup of the old ORTF, and all three are government run.
The transmission of all TV programmes in France is organised by the TDF (Telediffusion de France). The TDF owns and operates all the transmitters and the programme channels each pay a transmission fee to the TDF. All three programmes are transmitted on UHF and can be received by anyone with a TV receiver, just like the BBC1, BBC2, IBA1 and C4 transmissions in the UK.
The new Canal Plus however uses both Band III VHF and UHF.To appreciate the implications of using Band III VHF for a new fourth channel, it is worth briefly tracing through the history of TV, this being a history of 'lines'.

Lines and bandwidth

In the days of black and white television there were many different line standards in use. These reflected to some extent the date of commencing TV transmissions in each country. The UK was the first and selected the then technically feasible 405 line system. The USA selected 525 lines. Many European countries went for 625 lines. France however went even further in the 'lines' race and chose 819 lines for its VHF service.
Choosing more 'lines' meant that the bandwidth required to transmit the TV programme was that much greater. The UK black and white 405 line signal required 3.5 MHz of bandwidth between the vision and sound carriers, but as the number of lines increased, so did the RF
bandwidth required to transmit the signal. At 525 lines the vision-sound spacing was 4.5 MHz , at 625 lines 6 MHz , and the French 819 line system required 11 MHz . This meant that within a given frequency range (Band I was $41-68 \mathrm{MHz}$ and Band III was $174-225 \mathrm{MHz}$), fewer channels could be accommodated as the number of lines was increased. In the UK, Band I represented 5 channels, whereas across in France there was room for only 2 TV channels in the same bandwidth.

Colour: more standards - more chaos!

The arrival of colour TV transmissions in Europe standardized the number of lines at 625, but introduced international disagreement concerning the colour coding method to be used. France went one way with her SECAM system and Germany and the UK went another way, with PAL.
Even though the number of lines had been standardized to 625, pictures were still not interchangeable across borders because the colour standards were different (also the sound-vision carrier spacing was a little different, as was the modulation system used for the sound). International TV standards were still in chaos, so that the interchange of programmes between one broadcaster and another was made impossible without the use of expensive and quality degrading standard-convertors.
The arrival of Canal Plus in France comes at a time of some major changes in frequency spectrum uses, both within the UK and to some extent in Europe as well.

UHF planning

When the UHF four-channel network was planned in the UK, the basic objective was that a full four programme interference-free service on UHF would eventually be available almost everywhere in the UK.
The introduction of Channel 4 TV in the UK has been the final check on the
accuracy with which the original UHF TV network was planned. A full four channel service will soon be available in the UK for a very high percentage of the population. In France though things are different!
The planning of the French UHF transmissions did not envisage providing four UHF channels to the majority of the population. Three channels can be provided, but not the fourth.
The main problem to be overcome when planning a TV network that re-uses the same frequencies in different parts of the country is that of co-channel interference.
If a transmitter at one side of the country is on say, channel 26 at 511.25 MHz (vision carrier), can this frequency/channel be re-used at the other side of the country without an unacceptable level of interference? As an example, channel 26 is used by the $1,000 \mathrm{KW}$ ERP transmitter at Crystal Palace in London for BBC1. The same channel is also used by the 250 KW ERP TV transmitting station at Stockland Hill for BBC2 in the south-west of England. Detailed network planning had to be undertaken to ensure that for an adequately high percentage of the time there would be interference-free reception for the large majority of viewers.

DX curse

During times of the year when there is anomalous propagation at UHF (joyous DX openings to the amateur, but a curse to the TV network designer!), can a satisfactory signal be received from the local TV transmitter without undue interference from the other transmitter on the same frequency? The task of the network planner is to prepare an optimum frequency plan for the whole country.
Network planning techniques include the use of sophisticated computer models as well as detailed field strength measurements and analysis. Techniques such as frequency off-set, where the

Region	Main transmitter site Channel Power				$\begin{aligned} & \text { ays } \\ & \text { UHHF } \end{aligned}$	Total sites
Paris: Eiffel Tower	06 H	VHF	20KW	4	5	10
North: Lille	05 H	VHF	20 KW	3	1	
Rhône-Alpes: Lyons	10 H	VHF	20KW	11	4	16
Clermont	05 H	VHF	10 KW	3	1	5
Gex	05 V	VHF	4 KW	3	1	5
South: Marseilles	05 H	VHF	20KW	3	5	9
St Raphael	10 V	VHF	4 KW	-	-	1
Nice-St Alban	66 H	UHF	5 KW	1	1	3
Nice-La Madeleine	32 H	UHF	1 KW	2	-	3

Canal Plus has 57 transmitters: 9 main stations ($>1 \mathrm{KW}$) 30 VHF relays and 18 UHF relays. The network will be extended in 1985 to cover Normandy, Brittany and South-West France
carrier frequency of one transmitter is moved slightly relative to another cochannel transmitter, are used to reduce co-channel interference problems.

In the UK, the UHF TV network was planned on the basis that there would be four programme channels. Not so in France!

VHF and UHF

This is the background to why the new Canal Plus TV channel in France is obliged to use a mixture of VHF and UHF transmitters in order to reach its audience. Total coverage of France on a UHF only basis for the new fourth channel has proved to be impossible, so the possible complications of a new VHF Band III transmitter network start to set in.

Canal Plus'new transmitter network is a mixture of VHF and UHF transmitters. Of the 57 transmitters that are in service at the start of broadcasting in November 1984, 37 are on VHF and 20 on UHF (see table).

819 lines phased out

French black/white transmissions on VHF used to use 819 lines. All the 819 line transmitters on VHF have been closed down over the past few years, in the same way that in the UK the BBC and IBA have been phasing out their 405 line transmissions. But in France, things will be different again!
Whereas the UK is liberating both Band I and Band III for other services, in France the Canal Plus transmitters on VHF Band III will be a new service using 625 line transmissions in colour on VHF for the first time in France. In the UK, VHF transmissions were only ever on black/ white. The opening of Canal Plus in France means that VHF Band III is being used for a new French TV service, replacing the now defunct 819 line system, whereas in the UK, Band III is to be used for entirely different services after the 405 line VHF TV transmitters close down.

Subscription TV

Unlike the three other TV programme channels in France, Canal Plus will not be getting its income from the licence
fee and advertising revenues. Its income will be derived entirely from subscriptions and programme sponsoring.
Subscriptions will be on a monthly basis, with discounts being available for subscriptions taken out over long periods. The current subscription is 120 Francs per month (about £10).

In addition the Canal Plus viewer also has to pay a once and for all deposit on a decoder unit which is supplied through local TV dealers. The decoder is an essential part of the system, because transmissions are encoded so that viewers without a decoder will be unable to see the picture or hear the sound. The deposit on the decoder is 420 Francs (£37).

Canal Plus will not carry advertisements, but some programmes will be sponsored. A sponsoring company or organisation will pay to have its name, logo, jingle and slogans connected with a particular programme or series of programmes. This is similar to the sponsoring of sporting events that is now common in the UK. Sponsoring revenues will be Canal Plus' second source of income after viewers' subscriptions.

Encryption

A special decoder has to be plugged into the TV set in order to receive Canal Plus. Without a decoder the viewer will still be able to watch the three other channels (TF1, A2 and FR3), but will not have access to the Canal Plus programmes on the fourth channel.

Subscribers are given an 8 figure code for each of the months for which they have paid their subscription. The code has to be changed on the decoder unit each month by the subscriber, and one month's code will not work during the
following month. The subscriber receives from Canal Plus a list of the codes for all the months for which the subscription has been paid. The code for each individual subscriber is different.
The decoder unit can be taken with the subscriber when he goes on holiday. With his own decoder he will be able to watch Canal Plus on other TV sets which are not normally used for receiving the fourth channel.

VHF Antennae live again!

As French 819 line VHF transmissions have been phased out, French TV viewers have become 'all UHF', in the same way as it is now rare to find a VHF TV receiver being used in homes in the UK. Both in the UK and France VHF TV antennae have been left to rust away and eventually be blown down by gales!

Many would-be Canal Plus subscribers in France will have to re-install a VHF TV antenna in order to receive the new transmissions. In Paris for instance, there is a 20 KW VHF TV Canal Plus transmitter in the Eiffel Tower operating on French TV channel 06. Most Parisians have been receiving UHF-only signals for years. Canal Plus viewers have to buy and have installed a VHF antenna. This is a further cost to the subscriber.

Round-the-clock TV

The planners behind Canal Plus believe that there is a round-the-clock market for television in France. Monday to Thursday, Canal Plus will be on the air from 7am to 3am, but from Friday to Monday it will be on the air for 24 hours a day. Such a high concentration of programming will make the UK's 'breakfast television' look very tame in comparison!
Although it will be broadcasting for long hours there will be a large amount of 'repeat' material. The scheduling of the programme material, which will for the most part be films, has been done on the basis that viewers generally watch television in a regular pattern. Nightshift workers will be able to see films during the day that will be repeated for other viewers in the evenings and at other times of day.

From a transmission viewpoint, the arrival of Canal Plus will mean that the VHF Band III TV channels used will be on the air virtually all the time without a break in transmission. The table shows the location, channels and powers of the

French VHF Band III TV channels used by Canal Plus for 625 line colour transmissions

Channel	Vision carrier	Sound carrier
05	176.0	182.5
06	184.0	190.5
07	192.0	198.5
08	200.0	206.5
09	208.0	214.5
10	216.0	22.5

higher powered VHF Band III transmitters that were brought into service at the beginning of Canal Plus programming in November. But what is happening to these VHF Band III frequencies in the UK?

UK VHF Band III closes

As described in the November issue of Resw, the old VHF Band III TV frequencies in the UK are being given over to the land mobile service. This is where things start to get interesting from a spectrum usage viewpoint!

On one side of the Channel, there will be a number of high-power VHF TV transmitters on a round-the-clock schedule, whereas on this side there will be the new relatively low-power land mobile services. A formula for mutual interference problems!

Canal Plus will not be the only user of VHF Band III in France either. The French PTT is also putting land mobile radio services into parts of Band III. In the Paris region, the Radiocom 200 network is operating in the range 193

207 MHz which straddles the French Band III TV channels of 07 and 08. These TV channels will be put into service in other parts of France to carry Canal Plus. There may be interference problems in France too.
Only experience and a few days of good 'VHF lift' in the summer will tell whether or not the network planning has been sufficient to avoid mutual interference both within France and across the Channel, caused by using the same frequencies in adjacent countries for two very different types of service.

Vive la difference!

The French and English hardly ever agree on anything! Lamb, long-life milk, TV transmission standards and frequency spectrum management included!

On one side of the Channel VHF TV transmitters are being silenced forever, whereas just a few kilometres away on the other side, new VHF Band III transmitters are being switched on.
To be fair to both Canal Plus and

Canal Plus' high power TV transmitters in the first phase will cover the large population areas around Lille, Paris, Clermont, Lyons, Marseilles and Nice. The Eiffel Tower in Paris houses many transmitters including the new fourth channel Canal Plus

France, it is the UK that is the odd one out! Most European countries still use Band III for TV as well as in some cases Band I. Not all Band III services are fully duplicated on UHF, so that closing down VHF transmitters is not yet a practical possibility in many countries.

France's Canal Plus is the first TV programme channel to introduce subscription TV using direct VHF/UHF transmissions. Canal Plus is thus using on-the-air transmissions in the same way that the cable operator uses his cable, except that Canal Plus can only ever offer one programme. The viewer becomes a subscriber, with the power to cancel his subscription if he is not satisfied with what he receives.

Audience projections

Canal Plus is being shy in saying exactly how many subscribers have joined up, but their original target was to have 200,000 subscribers at the beginning of full-time programming in November 1984 and to grow to about 1,500,000 subscribers by November 1987. Daily measurements of audience levels will be taken so as to track closely the audience response to this new type of TV programming for the French viewer. Subscribers will receive material through the post to encourage them to keep up their subscription.

The new fourth channel TV service in France, Canal Plus, can claim a number of firsts for France, for both programming style (subscription TV with nonstop fitms) and television transmission techniques (mixed VHF and UHF).

COMPUTER MODELLING

hased vertical arrays have been used for many years by amateurs and professionals alike and are referred to in many publications. The amateur press, however, is usually very limited in its cover, often restricted to two element arrays with 90 degree phase shift. Just occasionally articles have touched on the versatility of these antennae.

Tedium

In one of these articles, in Ham Radio magazine, May 1977, K1AON described a method of calculating the relative field strengths around a phased vertical system using a programmable calculator. This was a great improvement on the 'cut and see' approach, but still required the tedium of hand plotting the results.

This program takes the next step by using a home computer to calculate the relevant field strengths and construct a horizontal polar diagram on the monitor screen.

The program has been written to deal with an array of up to five elements which may be arranged in any configuration, not just straight lines. The polar diagram is backed up with a numerical output, allowing accurate comparison between arrays as well as the overall impression of performance given pictorially.
Although the program was written using a BBC Model B computer it has been run successfully on an Acorn Electron. It is intended that enough guidance on the vital parts of the program have been included to help transposition to any other machine.

The model

The strength of the field at any point about an array of driven elements will be the phasor sum of the strengths due to each element. By phasor sum we mean that the relative phase angles are important as well as the magnitudes. Quantities in phase will result in a simple addition of the magnitudes, while a phase shift of 180 degrees leads to cancellation of part, or all (if the magnitudes are equal). Intermediate phase differences yield an intermediate result. A more detailed explanation can be found in any textbook on ac electricity if required.

The magnitude and phase angle of the relative field strength of each element is calculated and the results combined to give the total for a given array by the equation:

$$
P_{1}=\left|1+\sum_{n=1}^{N-1} K_{n} \cdot e^{j B_{n} \cos \left(S_{n}-1\right)-A_{n}}\right|
$$

where:
$P_{1}=$ relative field strength at angle I $K_{n}=$ relative current amplitude, element n
$N=$ total number of elements

PHASED VERTICAL ARRAYS

F HOUGHTON G3VZM
\& C A SWIFT

$\mathrm{B}_{\mathrm{n}}=$ distance between element n and reference
$\mathrm{S}_{\mathrm{n}}=$ spatial angle of element n
$A_{n}=$ phase angle of current in element n I = angle relative to centre of array

The program

A full analysis of the construction of and thinking behind the program is not really appropriate to this article. However some notes may be of help if it becomes necessary to debug the program after entry.

The arrays used to hold values entered and calculated results are dimensioned

in line 120.

The purpose of each procedure (subroutine) should be evident from the titles, eg PROCpolar which produces the polar diagram.
The first of the important procedures is PROCenter, located at line 250. This asks for the number of elements in the array and continues with a call to PROCinput, at line 270. PROCinput is in the form of a loop, repetition of which is controlled by the number of elements.
As the title suggests, this procedure controls the entry of the parameters of each element.

PHASED VERTICALARRAYS

PROCcorr, line 690, allows the correction of any errors in input and also allows the easy alteration of the parameters from within the program. The initial entry at first appears clumsy, but with practice this becomes second nature.

PROCresults, tine 380, displays the numerical results.
These results are derived from PROCcalc, line 410 , which is also used for the polar diagram. It is important to note the use of RAD to obtain functions of angles. The ABS function in line 520 is also essential to avoid system crashes.
PROCpolar, line 550, uses the results of PROCcalc at one degree intervals to plot the polar diagram. At line 590 the relative field strength is converted to rectangular form, providing X and Y co-ordinates for this display.

Using the program

When the program is run a menu is displayed which offers entry of data, numerical display of results, horizontal polar diagram, or an opportunity to leave the program.
On selecting 'Enter values' the program will respond with a series of prompts requesting numerical data for the
caiculations. It will start by requesting the total number of elements in the array, which may be $2,3,4$ or 5 . The number entered is used to set the limits on a loop which presents the following prompts:
'Current Magnitude' which, in this instance, is the ratio of the current magnitude in the given element to that in the reference element (E0). For most amateur purposes this will be 1 , ie equal current, but it has not been preset so that the effect of varying the ratio can be investigated at least in theory. Perhaps the design of current splitting networks could be a future subject.

Angular phase shift

'Current Phase Angle' is the angular phase shift between the element and E0. This is due to the length of the interconnecting feeder and is fundamental to the operation of this type of antenna. The phase angle can easily be varied by switching between feeders of different lengths and is likely to be the most readily altered parameter of a given array. The angle may be either positive or negative, the beam being 'rotated' through 180 degrees by switching from one to the other.
'Spatial Distance' is the linear distance separating the given element from EO. This must be entered in electrical degrees (one wavelength equals 360 degrees).
'Spatial Angle' is the angle between a datum line and the line between the given element and E0. If all the elements are in a straight line then the spatial angle will be zero. If they are arranged in any other shape then a datum must be defined, preferably a line through two or more elements.

On completion of data entry a press on the space bar will return to the menu for selection of the next operation.
'Display Numerical Results' will require one further data input. The Angular Increment of Plot can be any angle and is used to define the number of intervals around the circle at which the relative field strength will be calculated for display. When a full screen of output has been displayed the computer will wait until the SHIFT key is pressed, allowing time for note taking.

On completion of this operation, a press of the SPACE bar will return to the menu.
'Display Polar Diagram' instructs the


```
    236 IFG%=4FROCend
    240 F'FOCmenu: ENDFFROC
    250 DEFPROCenter:F'ROCtitle
    260 FEPEATPRINTTAE (4,9) "HOW MANY ELEMENTS DO YOU WISH TO"**"CONSIDEF"? ";:INFUT
" "N%: UNT ILN%>1 ANDN%<t: F'ROC input: ENDF'ROC
    270 DEFFRROCinput
    2B0 L%=0: FEFEAT:L%=L%+1
    290 FFOCCtitle
    306 F'RINTTAE(1,3)" ENTEF: VALUES FELATIVE TO REFERENCE";*" ELEMENT (E0)"
    319 FRINTTAB (13, 日) "ELEMENT ":L%
    $20 FFFINTTAE(6,10)"1.CURFENT MAGNITUDE...............""K(L%)
    330 FFINTTAE(0,12)"2.CURFENT FHASE ANGLE.............";A(L%)
    \Xi40 F'RINTTAB(0,14)"\Xi.SF'ATIAL DISTANCE,(Degs.Elect.)..";E(L%)
    359 FFINTTAB(6,16)"4.SPATIAL ANGLE...................."'5(L%)
    366 FEFEATF'ROCcorr:UNTILG%=89:UNT ILL%=N%-1
    370 FROCFey(31): ENDPROC
    380 DEFFROCresults:FFiOCtitle
    390 F'RINTTAB(1,4) "ANGULAR INCFEMENT DF FLOT DEGFEES": INFUTTAE (27,4)AI%:FRO
Ckey2
    406 I=6:VDU2B,0,29,39,6,14:FORY=1TO(360/AI%):FRDCcalc:FRINTTAB(S)"ANGLE ";I;T
AB(26)"STRENGTH ";INT(0*160)/100:I=I +AI%:NEXT:UDU15,26:FRDCREy(J1): ENDFFROC
    410 DEFFPFOCCalC
    420 L%=0:REFEAT:L%=L%+1
    436 E=B(L%)*COS (R'AD (S (L%)-I)) - A (L%)
    440 C(L%)=COS (RAD (E))
    450 D (L%)=SIN (F'AD (E))
    460R(L%)=K(L%)*C(L%)
    476 F (L%)=K(L%)*D (L%)
    489 LNT ILL%=N%-1
    490 T1=1:T2=0
    500 L%=0:F'EF'EAT:L%=L%+1
    519 T1=T1+Fi(L%):T2=T2+F(L%)
    520 O=S0R(ABST1~2+ABST2`2)
    5.G UNT ILL%=N%--1
    549 ENDFROC
    55G DEFF'FOCpolar:FFROCtitle
    566 MOVES69,512:DFAW946,512
    570 MOVE640.412:DFAW640,612
    580 FORI=9TOS60: PFOCcalc:MOVE640,512
    590 F'LDT69,640+(0*COS (FIAD (I)))*106,512+(0*SIN(FAD (I)) )*190:NEXT
    696 MOVE9,0
    616 FRINTTAB(31,16)"G";TAE(19,7)"96";TAB(5,16)"189";TAB(19,24)"270"
    629 『%=4
```

```
6.36 FRINTTAB(0,25) "ELEMENT
640 FRINTTAE (0,26) "CURFENT MAGNITUDE",K(\sigma), F゙(1),F(2),K(\Xi),K(4)
650 FRINTTAE(0,27)"FHASE ANGLE ",A(6),A(1),A(2),A(5),A(4)
660 FFINTTAB(0,2B)"SPATIAL DISTANCE ",B(0),B(1),B(2),B(Z),B(4)
670 FFINTTAB(6,29)"SFATIAL ANGLE ",S(0),5(1),5(2),5(.3),S(4)
680 G%=10:PROCkEy(Z1): ENDFROC
696 DEFFFOCcorr
760 COLOUF2:FEFEATFRINTTAB(4, उ1)"Are these figures correct (Y/N)? ":*FX15,9
716 G%=GET : UNT ILG%=780RG%=89
726 IFG%=89ENDFFOC
730 FEFEATFRINTTAB(2,\Xi1)"Type in No. of the value to be altered": COLDUR'S
746 G%=GET:UNT ILG% 48ANDG%GS%
756 G%=G%-48: X%=s4
760 IFG%=1Y%=19:FFOCal ter: INFUTTAB (X%,Y%)& (L%)
779 IFG%=2Y%=12: FROCal ter:INFUTTAB (X%,Y%)A(L%)
780 IFG%=3Y%=14:FFOCalter:INFUTTAB (X%,Y%) B (L%)
796 IFG%=4Y%=16: PROCal ter:INFUTTAB(X%,Y%)S (L%)
800 ENDFFOC
810 DEFFROCal ter: COLOUF2: FFINTTAB(6,\Xi1)SFC(3. ; TAB (X%,Y%);SFC(Z);TAB(9, S1); "En
ter the correct value";:COLOURS:ENDFF'OC
    826 DEFFFOCchoice([%)
    BE6 COLOUFZ:FEFEATFFINTTAB (B, З1) "Enter the appropriate number";:G%=GET:G%=G%-4
8: UNT ILG% `OANDG%%C%: COLDURZ
    840 ENDPFOC
    859 DEFFFROCkey (Y%)
    86G COLOUR2: REFEATFRINTTAB(G,Y%);SFC(S9);TAB(6,Y%)"Fress SF'ACE bar to continue
"::*FX15,0
    876 G%=GET: UNT I LG%=32: COLDUFZ: CLS
    8B6 ENDFFOC
    890 DEFFFOCkey2:COLOUF2:FRINTTAB(ङ, 心1) "F'ress SHIFT to scroll the screen"; :COLD
URS: ENDFFROC
    900 DEFFFOCtitle
    910 CLS:COLOUR2:FRINTTAB(10,1) "VEFTICAL AERIAL AFFAYS":COLOUFBG
    920 ENDFFOC
    986 DEFFFOCend:F'FOCtitle
    946 F'RINTTAB(7,13)"1......Continue with this Array"
    95% FRINTTAB(7,15)"2......For New Array"
    960 FRINTTAE(7, 17)"3......Finish with the Frogram"
    976 FFOCchoice(4)
    989 IFG%=1FFOCinput:FFROCmenu
    996 IFG%=2CLEAR:FUUN
1060 IFG%=SCLEAF: CLS: END
1010 FFOCend: ENDFFIDC
```


PHASED VERTICAL ARRAYS

program to calculate the values of relative field strength at intervals of 1 degree and to plot the results in graphic form. The horizontal axis of the display corresponds to the datum line mentioned earlier.

Scaling down

There may be occasions, especially when using the larger arrays, when the polar diagram is too large for the screen The scaling may be reduced by substituting a smaller number for the multiplier 100 in line 590.

NB this multiplier is used twice in the line and must be changed at each location to preserve symmetry.

The fourth menu option, 'Next/End', selects a secondary menu which has three options:
'Continue with this Array' provides a safeguard against unintentional selection of the Next/End choice.

For New Array' is the quickest way of changing to a completely different array as it causes the program to RUN again, clearing all resident data on array parameters.
'Finish with Program' is self-evident in its operation.

Testing the program

None of us are infallible in avoiding errors between page and keyboard, so the following two examples are given to check the program.

1 An array of two elements with equal current in each and a current phase shift

Fig 22 elements spaced a quarter wavelength and fed 90° out of phase
of 90 degrees. The two elements are spaced one quarter of a wavelength apart. (This is a common textbook example.)
Remember that one element is the reference, represented in the equation
by adding 1, so that only one set of element data is entered
On request enter the following
Number of elements ... 2
and for element 1 ,
Current magnitude
Current phase angle . . . 90
Spatial distance ... 90
Spatial angle... 0
The polar diagram should be as shown in Figure 2.

Try a phase angle of -90 , which should rotate the polar diagram through 180 degrees.

2 A three element array set out in the form of an equilateral triangle of side one quarter of a wavelength. Each element is fed in phase with the reference, with equal current magnitudes.
Two sets of element data will be requested. Enter the following
Number of elements... 3
For element 1.
Current magnitude... 1
Current phase angle... 0
Spatial distance... 90
Spatial angle... 0
and for element 2 ,
Current magnitude ... 1
Current phase angle... 0
Spatial distance... 90
Spatial angle... 60
This time the polar diagram should be as in Figure 3 (although there is some flattening of the circle on the printout, most likely due to the deficiencies of the printer used)

Fig 33 elements in an equilateral triangle of side one quarter wavelength. all fed in phase

NEW THIS MON'TH

These digital multimeter cases are moulded high impact black plastic and are oftered

DP2010 - $110 \times 80 \times 20 \mathrm{~mm}$ this 100 has cut-outs for range switches and terminals with a smart aluminum fasc a marked with ranges etc Bap

DP100 - Same size as above but this was to use as a digital thermometer so theres only a
single 9 mm o hole in the front panel 75 p .
2917 PSU Panel $320 \times 190 \mathrm{~mm}$ with MJ802 (30A 100 V 200 W on large heatsink 7 smalter heatsinks contain $2 \times 7805.7812 .7905 .2 \times M$ JE2955. 2SA473 caps multiway plugs and sockets etc Ex-equip working order Only $£ 850$
DIP BOARD
Fibreglass DIP Doard $158 \times 165 \mathrm{~mm}$ double sided 01 edge connector gold plated vero c3. 50

20 WAY RIBBON CABLE
Fwisted and tlat computer grade for lower for IDC connectors Onty 70 p 21 or $£ 25$ per 100 ft ree
$3^{1 / 2}$ DIGTT LCD DPM
Type goos selt powered input range $4 \cdots 3 \mathrm{~mA}$ Containe I in std DIN enclosure $96 \times 48 \times 100 \mathrm{~m}$.
E15.
'TORUS'
Computer controlled Robot built around the inc PCB. program listings lom BBC kit of parts soon E44.85 20W riooon cable micros recommended - 5 m better) $£ 130 \mathrm{~m}$ SAE for

motorised gearbox
These units are as used in a computerised tank and offer the exper menter in robotics the required in bulding remote controlled vehicles The unit has $2 \times 3 \mathrm{~V}$ motors linked by a magnetic clutch thus enapling turning of the vehicle and a gearbox contained within the black ABS housing reducing the fina drive speed to showing various options on driving the motors etc $\mathbf{5 5 . 9 5}$. Suitabie wheels also avalaple 79 mm Dia plastic with blue tyre drilled to push-tit on spinde 2 for E1.30 llimited aly) 3 in dia aluminum disc 3 mm thick drilled to push-fit on spindle 2 for 68 p .

nl-cad charger panel
$177 \times 114 \mathrm{~mm}$ PCB with one massive Varta Deac 57 $\times 50 \mathrm{~mm} 0$ rated 72 V 1000 mAH and anothe smaller Deac $32 \times 35 \mathrm{~mm}$ O rated 3.6 V 600 mA The
price of these Ni-Cad stacks new is over E 2 C Also on the panel is a mains input charge transformer with two separate secondapies wired via pride rectifiers smoothing capactors and a relay tc the output tags the panel weigh ikgm All this for jus: $\mathbf{8 8 . 0 0}$.
$1984 / 5$ CATALOGUE
84 page As size - Bigger Brighter. Better more components than ever beforet With each copy theres oiscount vouchers Bargain Lis! Form and Reply Pali Envelope
All for just E1.00!!

GREENWVED

- The Pack People!

More packs - more in them - more valuel All
oup packs contain brand new marked full sped components at a fraction of the normal price and offer constructors the widest range of parts at manufacturers ${ }^{\text {n }}$ how do we do it? By buying components Because we purchase from many sources. we have an extremely wide range of top
quatity parts -- too cosily to sort hence the packs described below. Our larger packs are ideal for schools. groups or clubs.

ESTABLISHED FAVOURITES

K517 RANSISTOR PACK - 50 assorted full spec marked plastic devices PNP NPN RF AF Type
 Retall cosi $\mathbf{\Sigma 7}$. Special low price $£ 2.75$

K523 RESISTOR PACK - 1000 - yes 1000 1/4 and 1/2 watt 5° o hi-stad carbon film resistors with pre-formed of preferred vaiues from a lew ohms to several megohms
Only $\mathbf{E 2 . 6 0} 5000$ £10 £20 000 E36.

K520 SWITCH PACK - 20 different assorted switches - rocker slide push, rotary toggle micro etc
Amazing vatue at only $\mathbf{£ 2}$.
K522 COPPER CLAD BOARD - All pleces too small for our etching kits Mostly double-sid
fibreglass. 250 g (approx 100 sq ins) for $\mathrm{\varepsilon 1}$.

K530 100 ASSORTED POLYESTER CAPS - all new modern components radial and exist leads.
All values from 0.01 to 1 uF at voltages from 83 to $1000^{\prime \prime}$
Supervalue at $\mathbf{£ 3 . 9 5}$

K 518200 DISC CERAMIC CAPS -
value variety of
vand voltages from a few DF to 2.2 LF .3 V to values and voltages from a few pF to 2.2 uF : 3 V to
$3 \mathrm{kV} £ 1$.
$3 \mathrm{kV} £ 1$.
K503 100 WIRE WOUND RESISTORS - From IW $10 \$ 2 \mathrm{~W}$ with a good range of values $\boldsymbol{\Sigma 2}$.
K505 20 ASSORTED POTENTIOMETERS - all types incluaing single ganged rotary and slider
$\mathbf{\varepsilon} .70$

W 4700 PUSH BUTTON BANKS - an assortment of latching and independent switches on banks

PCB MOUNTING NLCADS
Much sought atter $4.8 V 150 \mathrm{~mA}$ batts with PCE mntg tags on 25 mm pitch Batt size 25×160 Ideal
for paralleting 99 p ea $10-85 \mathrm{p} .25-700.100$. 60 p

FBRE OPTICS

Scoop purchase of single and twin cable For use with visible light or inira-red Core 1 mm dia overall 2.25 mm dia. Single $50 \mathrm{p} / \mathrm{m}$. 20 m coll $£ 6.30$

miniature relays

1w AMPLIFIER

2914 Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBAB20 chip Gives 1W output with 9V supply. Switch and vol control Just connect Datt and speaker Full
detals supplied Only E 150 10 for $£ 12$: 25 for $£ 25$ detalis supp
100 for $£ 75$

2915 Stereo version of above $115 \times 65 \mathrm{~mm}$ featuing $2 \times$ TBABCDM and duai vol control. $£ 3.5$ or $£ 65$ - 100 E 20

AM TUNER PANEL

2916 For use with mono amp above. Neat pane M-CAD CHARGER SCOOP!!
Ever-Ready model CH4, this charger will take u to 4 AA c or D cells plus 2 PP 3 if required. Smar

Stereo amp panel

Z908 Panel $147 \times 38 \mathrm{~mm}$ with $2 \times$ TDA 10046 W audio amp ic's not soldered in! so they can
easily be removed Also $1000 / 16$. $1000 / 10 \times 2$ 470.16 elecs ceramic discs. Ais also choke (Al) easily removed) Only $\mathbf{\Sigma 3 . 0 0}$ (IC's cost $£ 4$ ea)
Circult Supplied

SEAT BEIT ALARM

Orignally for sale at $£ 8.95$. these well made units $70 \times 50 \times 25 \mathrm{~mm}$ provide ooth audible and visual alarms. Uses 2 IC s. PB2720 transducer, etc instructions for just £3.95. Also avalable as PCB all components. Dox. Wire

GREENWELロ

Min Access order value $£ 5$ No min CWO value Official orders from shcools etc
welcome-min invoice charge $£ 10$.

Our srop has enormous stocks of components and is o

COMMUNICATION RECEIVER

uniden MODEL CR-2021

A compact communications receiver with full professional specifications and facilities.
\square Full Frequency coverage of 150 KHz to 29.999 MHz and 78 to 108 mHz .
\square Maximum sensitivity on AM/SSB/CW, also FM, with Narow/Wide filter.
\square Memory for any 6 AM/SSB and 6 FM frequencies, plus automatic scanning between any two frequencies.
Keyboard entry of frequency shown on LCD display
\square External sockets for aerial, earth, headphones, and loudspeaker.
\square Operation from internal batteries, 12VDC, or 240 VDC
\square Only £189.75 inc VAT and P\&P

LECMAR ELECTONICS
 Vectis Yard, Cowes, Isles of Wight Tel (0983) 293996

Dealer Enquiries Invited. Barclaycard. Access

Master
 Electronics-Microprocessors -Now! The PracticalWay!

Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
Recognise and handle all current electronic components and 'chips'.

Carry out full programme of experimental work on electronic computer circuits including modern digital technology
Build an oscilloscope and master circuit diagram.
Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment.

NewJob? New Career? New Hobby?

SEND THIS COUPON NOW.

FREE! COLOUR BROCHURE

 OR TELEPHONE US 073451515OR TELEX 22758 (24 HR SERVICE) CACC
\qquad 1 am interested in

ADDRESS

 ELECTRONICS\square micRoprocessors radio amateur licence CITY \& GUILDS EXAMS

British National Radio\&:Electronics School Reading.Berks.RGI IBR

BUT, DN THE OTHER HAND... 1CO2E [$\mathbf{C O H E}$ (70 cm).
 The new direct entry microprocessor controlled IC-02E

 is a 2 meter handheld jam packed with excellent features. Some of these features include: scanning, 10 memories, duplex offset storage in memory and odd offsets also stored in memory. Internal Lithium battery backup and repeater tone are of course included. Keyboard entry is made through the 16 button pad allowing easy access to frequencies, duplex, memories, memory scan and priority.

The IC-02E has an LCD readout indicating frequency, memory channel, signal strength, transmitter output and scanning functions. New HS-10 Headset, with earphone and boom microphone, which operates with either of the following:- HS 10-SB Switch box with pre-amplifier giving biased toggle on, off and continuous transmit. HS 10-SA Voice operated switch box, with pre-amplifier, mic gain, vox gain and delay. The IC-2E continues to be available

ICOM PRICESARE DOWN TO EARTH.

(Please contact us or your locall Icom dealer for current prices)

IC-745

ICOM's IC-745 is the all-in-one transceiver featuring an HF ail band SSB, CW, RTTY, AM (receive only) ham transceiver, plus a general coverage receiver. Options for FM transceive and an internal power supply make the IC-745 the complete transceiver in an all-in-one package.

The receiver section features a 100 KHz to 30 MHz general coverage receiver, this allows access to all HF bands plus all the frequencies in between. The IC-745 has an adjustable AGC circuit and DFM (Direct Feed Mixer) giving a wide dynamic range of 103dB with an intercept point at +18 dBm . Exceptionally clean reception is achieved with a low
 noise PLL circuit and a 70 MHz first IF

The IC-745's features include IF shift, 16 programmable memories with lithium battery back-up, passband tuning, a noise blanker both wide and narrow, threshold level control, notch filter, receive audio tone control and an all mode squelch. Also available is a front end switchable receiver preamp providing 12 dB gain. RIT has a $\pm 1 \mathrm{KHz}$ range.

We could go on all day about the 745 , get in touch with us and we will send you the full story.

CC290D

290 D is the state of the art 2 meter mobile, it has 5
 memories and VFO's to store your favourite repeaters and a priority channel to check your most important frequency automatically. Programmable offsets are included for odd repeater splits, tuning is 5 KHz or 1 KHz .

The squelch on SSB silently scans for signals, while 2 VFO's with equalising capability mark your signal frequency with the touch of a button. Other features include: RIT, 1 KHz or 100 Hz tuning/CW sidetone, AGC slow or fast in SSB and CW,Noise blanker to suppress pulse type noises on SSB/CW.

You can scan the whole band between VFO's/scan memories and VFO's. Adjustable scan rate 144 to 146 MHz , remote tuning with optional IC-HM1 microphone. Digital frequency display, Hi/Low power switch. Optional Nicad battery system allows retention of memory.

Agent: Gordon G3_EQ, or telephone Knutsford (0565) 4040
Please telephone first, anytime between 0900 - 2200 hrs.
Gordon also sells Yaesu products.

Special Offer as from 15th January ' 84 IC-290D reduced to $£ 469$ and the IC-290E to $£ 399$. Also 70 cm version IC-490E, £529 Take advantage of this money saving offer.

You can get what you want just by picking up the telephone. Our mail-order dept offers you: free, same-day despatch whenever possible, instant credif, interest-free H.P., telephone Barclaycard and Access facility and a 24 hour answering service.

Please note that we now have a new retail branch at 95 , Mortimer Street, Herne Bay, Kent. tel:69464. Give it a visit, BCNU.

FEATURES

$\star 25$ watts Tx output
\star GaAsFET RF stage
\star Transmit ALC circuit
\star 13.8V DC operated
\star Repeater shift (normal, simplex, reverse)
\star High level DBM mixer
\star LED Bargraph Power Meter

* RF Vox - Adjustable delay \& manual override

SPECIFICATION

General

Input freq range
Output freq range
Repeater shift
DC requirements

Transmit Section

Output power
Input level range
ALC range
Modes of operation
Spuribus outputs

Receive Section

Gain
N.F.

3rd order intercept
$28-30 \mathrm{MHz}$
$144-146 \mathrm{MHz}$
Simplex, normal, reverse
13.8 V DC \& 6 Amps

25 watts $+/-1 \mathrm{~dB}$
$1 / 4$ to 300 mW 20dB
SSB, FM, CW, AM
-65dB or better

HOURS:

MONDAY - FRIDAY
9-12.30, 1-5.00

TRANSVERTER MMT144/28-R

DESCRIPTION

This new transverter has been designed to allow users of existing HF band transceivers to establish a first-class transceive facility on the 144 MHz band
The MMT144/28-R incorporates many new and exciting features which combine to make this product simply superb.

Recelve Section

An NEC GaAsFET is \in mployed in a noise-matched configuration feeding a high level double balanced mixer via a bandpass filter. IF gain is achieved by a JFET post amplifier. This combination produces a good signal to noise ratio, excellent immunity to overload and cross modulation, resulting in a rugged receive system having a third order output intercept point of +19 dBm .
Two separate low-noise oscillators, operating at 116.00 and 115.40 MHz are included, running from a regulated 8.2 volt supply. Selection of the wanted oscillator is achieved by a quad op-amp circuit, controlled by the front panel mounted 'MODE' switch. This provides simplex, repeater and reverse repeater operation. The output of each oscillator feeds a JFET buffer amplifier via the quartz crystal which acts as a filtering element to reduce amplitude noise and reciprocal mixing products. The resultant high level injection is extremely pure and free from harmonics.

Transmit Section

The incoming 28 MHz signal, in the range $1 / 4$ to 300 mW , is initially fed to the RF VOX circuit, ALC control circuit and the input level control. This signal is then fed into a pair of MOSFETs in a balanced mixer configuration, together with the local oscillator injection, to produce the wanted signal in the range $144-146 \mathrm{MHz}$.
This signal is then amplified by several linear stages up to the specified output power of 25 watts. A visual indication of relative output power is provided by a front panel mounted LED bargraph display.
A rear panel mounted level control allows the user to adjust the sensitivity of the transverter to suit the transceiver in use, and a front panel mounted RF VOX delay control allows adjustment to suit SSB/FM modes.
The ALC circuit has a 20dB dynamic range and has been incorporated to ensure that a totally clean signal is produced by the transverter. This is a particularly useful feature which will virtually eliminate compressed signals and the resultant problems caused to local stations.

PRICE: $\mathbf{2 2 1 5}$ inc VAT ($p+p \mathbf{~} \mathbf{3 . 5 0}$)
 REW

MICROWAVE MODULES LTD Brookfield Drive, Aintree, Liverpool L9 7AN, England.
Telephone: 051-523 4011. Telex: 628608 MICRO G.

AMATEUR RADIO WORLD

Compiled by Arthur C Gee G2UK

0ne hears a lot these days about alternative sources of energy. One of the most plausible of these, which is already in widespread use, is of course solar energy.
Solar heating is now well past the experimental stage, and its use for heating swimming pools and as a supplementary source of house heating is well established even in this country. Additionally of course, practically all satellites use solar radiation for their power source.

A very interesting variation of the use of solar energy is to be found as a research project up in the mountains of southern France.

Here, near Fontromue in the Pyrenees Mountains, a solar furnace has been established. By means of myriads of small mirrors an intense beam of solar rays is focused on a small crucible, into which materials can be placed and the effect of the intense heat generated can be determined.

Our illustration this month is of this solar furnace and its environs, and shows the huge mirror made up of thousands of small mirrors with a total surface area of 10000 square metres. Things are so arranged that these mirrors can be kept focused on the crucible as the sun crosses the sky. The photo was taken by a friend of your scribe, during a holiday in the Pyrenees last summer.

An interesting 'reverse use' of the solar mirrors was carried out recently by some French radio amateurs.

The French electricity authorities gave them permission to use the mirror for an attempt to moonbounce TV signals on 1255 MHz . The crucible was replaced by a dipole antenna and the controlling computer reprogrammed to direct the mirrors towards the moon instead of towards the sun. FM modulated vision signals with a transmitter power of 140 watts were used.
It will be very interesting to hear what was achieved when the results of these tests come to hand.

New locator system

Beginning 1 January 1985, a new system of indicating the location of one's QTH comes into operation. There are of course numerous ways in which one can do this. The simplest is to give the nearest town. Or if you want to be more

accurate and have a suitable atlas, you can give your longitude and latitude.

Your scribe recently heard a Brazilian Beacon station on 28.300 MHz, PY2AM1, giving his QTH in this manner, viz, 22.45 degrees south and 47.16 degrees west. The signal gave the additional information that the power was 10 watts into a ground plane antenna.
However, radio amateurs have adopted a system better suited to their specific needs.

The first such system, which was commonly known as the QRA System, was introduced in Europe. Its main purpose was to enable accurate distances to be measured, which it would do down to a few kilometres between amateur radio stations, so that results of VHF contests and so on could be accurately measured. It became the custom for contests to actually require the QTH Locator, as it came to be known, to be given to the contacts made so that results could be easily determined.
The QTH Locator system was very much a local distance indicator however, and was not applicable for use over the whole of the world. To overcome this difficulty various proposals have been made over the years to produce a more versatile system and, after much discussion and debate, a system has been
devised which has met with the approval of most radio amateur authorities. All three regions in the International Amateur Radio Union have agreed to adopt it

New system

In the new system the world is divided along lines of latitude and longitude into areas known as 'fields'. Each field covers 20 degrees of longitude from west to east and 10 degrees of latitude from south to north.

The surface of the world is thus divided into 324 fields. These are labelled by two letters in the range A to R. The first letter gives the longitude of the field, starting from 180 degrees west and working eastwards. The second letter gives the latitude of the field, starting from 90 degrees south and working northwards. It is interesting to note that the squares of the new system coincide with those of the old QRA squares.
Finally, each of these squares is divided into a 24×24 grid of 'subsquares'. Each subdivision covers 5 minutes of longitude and 2.5 minutes of latitude, and is indicated by two letters, each in the range A to X, starting from the southwest corner of the square. The first letter of the subsquare gives the longitude and the second the latitude.

It all sounds pretty complicated, but no doubt once in practice it will all fall into place. Needless to say the system is very compatible with computers, and numerous programs are already available.
Readers who would like to know more about the system should consult an excellent article in the October 1984 issue of the RSGB's Radio Communication, by John Morris GM4ANB, which explains all and includes three computer programs designed to aid the process of adapting to the new system. (Or see last month's R\&EW).

RS6 satellite disappears

One of the most consistently reliable Russian amateur radio satellites quite suddenly went out of action towards the end of September last. It had been suffering from low battery voltages for some time and it was thought that these might have been nearing their end. But the demise came much sooner than expected.
It is always difficult to get specific information about the Russian satellites and this is certainly true in this case. Some mystery surrounds the rather sudden disappearance of the RS6 signals; it is reported that RS6 has 'ceased to exist' but whether this means it has disintegrated is not certain.
There have been 280 satellites launched into the same orbit as RS6 since 1970, so the sudden demise of this Russian satellite may be due to its destruction in a collision.
Quite a few problems are now appearing due to congestion on densely occupied orbits, and several satellites whose planned function has been completed, but which are still orbiting, have been moved out into higher orbits when possible to get them out of the way of satellites which are still active.
An example is that of GEOS-2. This satellite was launched into a geostationary orbit in June 1978 and completed its planned scientific mission in July 1980. In January 1984, it was moved from the densely occupied geostationary orbit into a higher and slightly asynchronous
orbit, where it drifted at a rate of 3.5 degrees of longitude per day.

However, due to the wish of the scientific community to obtain data over the whole of the 11 year solar cycle and to support the Active Magnetosphere Particle Tracer Experiment project, plus the fact that it was still in good condition, Switzerland and Germany requested it be reactivated, and this has now been done.

Careless talk

The quarterly magazine of the Ipswich Radio Club highlights a matter which your scribe feels needs far more publicity than it gets. This article, 'Discretion' by G4UKL, appeared in the January 1984 edition of The Cornish Link, the magazine of the Cornish Radio Amateur Club, and merits wide publicity. To quote:
'At a recent club meeting, it was wisely decided not to publish the names and addresses of members since, it was argued, such a list would provide a handy guide for house-breakers. Subsequently, listening around for a familiar voice on 2 metres, 1 heard a QSO between two operators with new G4 callsigns which was frightening because of the manner in which confidential information was being traded.
'It would seem that operator ' A ' had been to visit a well-known member's shack and was enthusiastically describing his visit to operator ' B '. This account included a list of the shack contents, how much the equipment cost, what manufacture, how old, and its various applications. Even the layout was graphically explained. Not to be outdone, operator ' B ' claimed knowledge of the shack and described its location by airing his geographical knowledge and asking ' A ' for confirmation of the QTH.

Worst but not first

'This is by far the worst I have heard, but by no means the first and it can serve no good purpose whatsoever. If members elect to give an inventory of their own shacks and QTH over the air that's their ego trip, but please do not invite
thieves to other members' homes by careless and irresponsible gossip. Use a telephone for any confidential chat.

Naive

'No radio ham can be so naive as to believe that only 'goodies' listen to their QSOs. It is an open invitation to the criminal fraternity (a current growth industry) to detail shack and house contents on any band. Being insured does not compensate for the shock and inconvenience of a rifled and desecrated house, or replace equipment no longer available but treasured.
'Can we please have some common sense and an awareness that going 'simplex' is not the equivalent of going 'private'? However flattered your friend may be by your admiration and envy, he or she will not be quite so amiable if 'put in the frame' by what is tantamount to a breach of confidence.
This is all very similar to your scribe's views and is reproduced here as he considers it deserves as much publicity as possible. He knows several amateurs who are very careful to avoid any reference whatsoever to a forthcoming holiday, so as not to broadcast around when their QTHs will be unoccupied.

Other news

The RSGB have appointed their first lady President. Mrs Joan Heathershaw will take office on 1 January 1985. She holds the callsign G4CCH and was formerly zonal representative on the RSGB Council for Zone A.
The ARRL has appointed an international Program Manager, JA8VRO. The idea is to encourage international contacts and friendship through travel, exchange holidays, etc. Those interested should write to JABVRO, International Program Manager, ARRL, 225 Main Street, Connecticut 06111, USA giving their name, callsign if any, address and the languages they can speak.
The Yaesu Owners Club has a new address, viz, PO Box 47, York YO1GA. Send an SAE to Freda for full details of membership of the club.

RUSSIAN \mathfrak{c} SATELLITES

A guide to the reception and decoding of VHF signals from the USSR's navigation satellites, with full details of
hardware, software and signal formatting

P Daly, D Bell and M Leybourne
Department of Electrical and Electronic Engineering University of Leeds and
PA Pitts
University Television Service University of Leeds

PART ONF GENERAL DESCRIPTION AND SIGNAL FORMATTING

Reception of signals at VHF frequencies from the low-orbiting navigational satellites belonging to the USSR is discussed in terms of circuit implementation and decoding of the 50 baud data. An interface with a minicomputer is described which allows automatic data logging followed by processing stages whose output defines the positions of the satellites in a group. This orbital data forms the basis for navigational computations enabling the observer to fix his position.

It is the purpose of this paper to describe receiving and processing equipment used to decode signals from all the satellites in the system, and to identify the different transmit frequencies in use.

1. INIRODUCTION

For the purposes of providing navigational position fixes by satellite the USSR and the USA operate systems giving worldwide coverage by means of low polar-orbiting satellites.
Both the USSR system ${ }^{1}$ - sometimes called 'Cicada' - and the USA system ${ }^{2}$ 'Transit', transmit very stable carrier frequencies at 400 and 150 MHz . Dual frequencies are used to provide enhanced accuracy by accounting for ionospheric effects, although many receivers attempt to provide fixes by means of one frequency only.

Data from the satellite is transmitted in both systems at 50 baud, but whereas the Transit satellites send data at both transmit frequencies, the Soviet satel-

Table 1		
Soviet number	Cosmos number	International designation
01	1448	$1983-023 A$
02	1386	$1982-069 \mathrm{~A}$
03	1428	$1983-001 \mathrm{~A}$
04	1459	$1983-042 \mathrm{~A}$
05	1464	$1983-048 \mathrm{~A}$
06	1417	$1982-102 \mathrm{~A}$
07	1338	$1982-003 \mathrm{~A}$
08	1181	
	$1980-039 \mathrm{~A}$	
11	1383	$1982-066 \mathrm{~A}$
12	1404	$1981-087 \mathrm{~A}$
13	1339	$1983-021 \mathrm{~A}$
14		

lites only transmit data at the lower frequency. The data modulation schemes used differ considerably between the two systems, the Transit system operating a PSK modulation with data encoded in doublet form, and the 'Cicada' satellites using audio tones for both data and synchronisation purposes.
At present the USSR's VHF navigation satellites orbit the earth with a period close to 105 minutes, with an orbital inclination of around 83° and a height of 1000 Km .
The satellites are divided into two groups, one with USSR identification numbers $1-8$ and the other with numbers 11-14. The orbital planes of neighbouring satellites in each group are spaced by either 30° (group 1-8) or 45° (group 11-14) with the result that worldwide reception of one or other satellite is possible, on average, every hour or so.
Soviet identification numbers together with Cosmos number and international designation for all satellites in orbit in September 1983 are given in Table1.
The longest period between passes is naturally experienced by observers at the equator, whereas those at either pole will receive from one or other satellite every few minutes.
Each satellite transmits a signal near 150 MHz towards earth, with a 50 baud data sequence $A M$ modulated onto the main carrier. The information is encoded by means of three tones at 3 and 5 KHz

Fig 1 a Frame format of 60-word message
(data differentially encoded) and 7 KHz (synchronisation pulse at the beginning of every second).

1. 1 Time

One word of information lasts one second and contains 50 bits, commencing with the local (Moscow) time and followed by 32 data bits. A block of data contains 7 words and there are 8 blocks per frame of one minute, leaving 2 empty words at the beginning and end of each minute.
The blocks contain information relating to the orbital position of the satellites in normalised floating point notation.
This information, together with additional measurements by the observer of range rate from the satellite, forms the basic data required by a hyperbolic navigation system to fix the observer's own position in three dimensions.

2. GENERAL DESCRIPTION

The overall function of the satellite receiver on the ground is to demodulate the VHF carrier, to separate out and identify the data and synchronisation tones, to implement in software the computer interface and to process the binary information into meaningful output parameters.
Since the signal format holds the key to the understanding of all the receiving sub-systems, this is first explained in some detail with examples of typical data streams. With an understanding of the message content, the reader is then in a position to follow the details of the hardware and software implementation which come after.

SIGNAL FORMATTING AND MODULATION

3.1 Modulation scheme

As mentioned briefly in the introduction, the VHF carrier is amplitude modulated by one of three audio tones at 3,5 and 7 KHz . Each tone lasts 20 mS and there are 50 tone bursts in one second. A transition between the 3 and 5 KHz tones indicates a binary 'one', and no change indicates a binary 'zero'.

At the beginning of each second the 7 KHz synchronising pulse, which remains on until the first non-zero data bit, is sent. The synchronising pulse may
last a minimum of 1 bit (20 mS) just before local midnight, to 18 bits (360 mS) at local midnight - see the next section on data format.

3.2 Frame format

The data format employed by the Cosmos navigation satellites uses one minute frames divided into 60 words, each word lasting 1 second and containing 50 bits.
The 60 words of a frame are split into 8 blocks of 7 words each, with two empty words at the beginning and at the end of each frame. The word number then corresponds to the current second, with the first block starting at second 2 and the last block ending at second 58.
The frame format is shown in Figure 1(a) together with word and bit structure.
Each word of 50 bits contains information concerning the time of transmission and one of the satellite parameters. The first bit of each word is left empty to allow the sync pulse to last for at least one bit.

The sync pulse terminates as soon as the first non-zero data bit after bit 1 is met. The time then occupies bits 2-18 and is encoded BCD into hours (bits 2-6), minutes (bits 7-12) and seconds (bits 1318) local Moscow time (MST - MST in summer is 3 hours ahead of GMT and 2 hours ahead of BST).

It follows that the sync pulse is shortest (1 bit long) when the hour number reaches 16 and that the sync pulse is longest (18 bits long) at midnight.

The binary data in each word from bit 19 to bit 50 contains information which, apart from some integer exceptions which are dealt with later, is encoded in the normalised binary floating point notation as follows:
bits 19-23: exponent E, with sign digit at bit 19 ;

Block		Block	
X COURD. (KM)	4700.98828	$\times \mathrm{COOH} \mathrm{s}$ (KM)	3661.92456
Y COORD. (KM)	1656.71277	Y COORL. (KM)	1487.82144
2 COORD. (KM)	5417.09277	z courd. (KM)	6200.61426
DX/DT (NM / S)	-5.37049544	*DX/DT (KM/S)	-.0960388798
DY/DT (KM / S)	-. 869208544	DY/DT (CH / S)	-. 999043137
DZ/DT (KM/S)	4.86554122	DZ/DT (kM/S	3.81632567
CODEWORD \#1	17	CODELORD	71
CODEWORD \#2	1279	CODELORD 2	7647
minute of day	48	minute of day	51
Block 3		Block 4	
X COORD. (KM)	4700.98828	X COORD. (KH)	3661.92456
Y COORD. (KM)	1656.71277	Y COORD. (KH)	1487.82144
2 COORD . (KM)	5417.09277	z COORD. (KM)	6200.61426
DX/DT (KM/S)	-5.37049544	*DX/D' (${ }^{\text {(KM/S }}$)	-6.14453519
DY/DT (KM / S)	-. 869208544	DY/DT (KM/S)	-. 999043137
DZ/DT (KM/S)	4.86554122	DZ/DT (kM/S)	3.81632567
CODELORD \#1	17	CODEWORD ${ }^{\text {a }}$	71
CODEWORD 2	1279	CODENORD \#2	764
minute of day	48	minute of day	51
Block		Block 6	
A.N.Long (Rad)	3.97636622	A.N.LONG (RAD)	1.94402662
ORBIT INC(RAD)	1.44774827	ORBIT INC(RAD)	1.44817853
identity number	$5{ }^{5} 372.0665$	identity number	
S.M.A (KM)	7372.06665	S.M.A (KM)	7369.49536
constant 1	1.116481322-03	CONSTANT	-1.85132402E-03
CONSTANT 2	-2.56720389E-03	CONSTANT 2 (MIN)	${ }_{1}^{2,30103353 \mathrm{E}-03}$
orbital time (min)	104.921764	Orbital time (min)	104.864092
time of node jun 29	12.29.51.7089844	time of node jun 29	22.18 .28 .0664063
Block 7		Block 8	
A.N.LONGITUDE (RAD)	4.42000401	A.N.LONGITUDE (RAD)	1.95412356
ORBIT INC (RAD)	1.44773558	ORBIT INC (RAD)	1.4477658
identity number	7	IDENTITY NUMBEK	
S.M.A (KM)	7376.48169	S.M.A (KM)	7373.69458
constant 1	-1,84923338E-03	CONSTANT 1	2.219097578-03
constant 2	-8,4672949E-04	CONSTANT 2	$2.1419897178-03$ 104.954191
orbital time (min)	105.015255	ORBITAL TIME (MIN)	
time of node jun 29	6.53.7.32421875	TIME OF NODE JUN 29	20.19.48.1933594

$\begin{array}{llll}0 & 0 & 128 & 0 \\ 0 & 0 & 128 & 0\end{array}$

Fig 1c Processed data for one Cosmos frame
bits 24-50: mantissa M, with sign digit at bit 24;
bit 25 is always 'one' and the binary point occurs between bits 24 and 25 .

The decimal equivalent is simply:

$$
M \times 2^{E}
$$

where the binary digits from 25-50 have been converted into a decimal fraction.
For example, the binary sequence 10101011010110010110110100100110 is converted to:

$$
\begin{aligned}
& E=10101 \text { (binary) }=-5 \\
& M=0.11011001 \ldots .=+.83733043 \\
& \text { Decimal }=+0.83733043 \times 10^{-5}
\end{aligned}
$$

The only data not so coded are some integer values, for example satellite identification number and timing data, which are simply decoded as BCD numbers. Clearly bit 25 need not be 'one' for integer data values.

3.3 Block structure

A one minute data frame has 8 blocks of 7 words each, split into two groups; blocks 1-4 contain positional data on the transmitting satellite, and blocks 5-8 contain parameters of the Keplerian orbit of up to 4 satellites. The first and last two words in each frame are spare.

Details of the block structure are given in Figure $1(b)$, which illustrates the
precise layout of both co-ordinate and parameter blocks.
Blocks 1-4 of each one minute frame are redundant co-ordinate blocks of the transmitting satellite's position at threeminute intervals. Redundancy is incorporated by repeating blocks 1 and 2 in blocks 3 and 4.
Blocks 5-8 contain orbital parameters for up to 4 satellites, and the same blocks of the following frame are reserved for data concerning an additional 4 satellites. Thereafter this data is repeated every two minutes.

3.3.1 Co-ordinate blocks

The first two blocks give position x, y, z (words 1-3) and velocity x, y, z (words 4-6) of the transmitting satellite at two consecutive three-minute intervals. Word 7 contains the relevant minute of the day encoded in bits 27-37. Bits 19-26 and bits $38-50$ of word 7 are not understood and merely decoded (codewords 1 and 2) as if they were integers. This data is repeated to give a total of 4 blocks.

3.3.2 Parameter blocks

The parameter blocks give details of the elliptic orbits of up to 4 satellites in the group (any others are given in the next frame). These parameters are as
shown in Table 2.
This description of the frame format is derived from the original data first published by Wood and Perry'. It is repeated and extended here to assist the reader in translating the binary data shown in Figure 1(b).

Figure 1(c) shows the decoded version of the binary data given in Figure 1(b), as the interested reader may verify.

NEXT MONTH
The receive chain
hardware is
described, with an outline of the requirements and the techniques adopted
$-R F$ -rustration is a common feeling to is no exception and, indeed, is full of potential pitfalls not only for beginners but also for the more experienced. Frequently, a project is started with great enthusiasm but, when the moment of 'switch-on' arrives, this changes to disappointment. There are many causes of circuit malfunction, and simple wiring errors account for a significant fraction. However, electronics has other weapons in its armoury with which to baffle constructors.
Once the relatively safe ground of low frequency analogue and digital circuits is left behind and radio frequencies loom on the horizon, there are many hidden obstacles. Some, like stray capacitances, are purely a matter of careful constructional practice. Others lie deeper in the art of circuit design and the physics of the components themselves. One such area is the small-signal RF amplifier. Let us look at this useful species of

SMAALL SUGNAL $=$ AMMPLLFYERS

A guide to over coming the pitfalls of circuit design and construction by James Dick

circuit and discover some of the science behind the art.

The simple amplifier

Perhaps the simplest single-transistor amplifier can be designed in the com-

Fig 1 Simple transistor amplifier

Fig 2 Frequency response of simple amplifier
mon-emitter configuration. Figure 1 shows the transistor and its dc bias components which ensure that the transistor is in its correct mode for amplification.

Let us, arbitrarily, decide on a supply voltage of 12 volts and a collector current of 1 mA . The emitter resistor is chosen to give a voltage of 1.5 volts at the transistor's emitter, so that changes in the voltage drop from the base to the emitter due to temperature variations do not significantly change the emitter voltage. The bias resistors are chosen so that 100 microamperes flows in the bias chain (Rb1, Rb2) and the voltage at the base is 700 mV above that at the emitter. The collector voltage is set by Rc to be mid-way between the emitter and supply voltages.

ac signals

So far, the dc operating conditions have been set. To couple ac signals into and out of the circuit, Ci and Co are chosen to have a small impedance at the lowest frequency of interest.

Because of the negative feedback provided by Re, the circuit would only have a gain of about 3; Rf and Cf are inserted to reduce this feedback: Cf prevents Rf shunting $R e$ at dc and so ruining the de bias. Now the gain, $A v$; is approximately Rc divided by Rf, or nearly 50. Indeed, connecting a small 1 KHz signal to the input, and an oscilloscope to the output shows that this is the case. Pass 'Go', collect £200. However, Figure 2 illustrates what happens to the gain as the input frequency is increased. Anybody for jail?

Why does the circuit not function at higher frequencies? After all, the design is simple and often used. The reasons are fairly straightforward. Figure 3shows the model of the transistor that we used to calculate the circuit values for Figure 1. 'rb' and re represent resistances within the transistor, while Rc and Re are the component values of Figure 1; Rf (via Cf) has been absorbed into Re. By tracing

Fig 4 Capacitances in the transistor
round loop A from point A to point B, we see that the input voltage is equivalent to that developed across rb by lb and that of (re + Re) by le, the emitter current:

$$
V_{I N}=r b \cdot l b+(r e+R e) . l e
$$

Since le is the sum of the base current, Ib, and the amplified base current in the collector (shown as the current source) we can then write:

$$
l e=l b+h \cdot l b
$$

where h is the small signal gain of the transistor specified by the maker. The output voltage, seen across Rc, is simply (by Ohms Law):

$$
\text { Vout }=h . l b . R c
$$

so the gain is:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{h . R_{c}}{r b+(h+1)(r e+R e)}
$$

Sincerb is small compared to $(h+1)(r e+$ Re), it may be ignored. 're' is near 25ohms and, on substituting in the other values, a gain of 50 is indeed obtained.

However, Figure 3 has totally ignored the capacitances present within the transistor (let alone those of stray wiring, etc). Figure 4 shows an improved model with two capacitances added: Cbc, between the base and the collector, and Cbe, between the base and the emitter. The former is caused by the varactor-like properties of the reverse-biased basecollector junction, and more will be said about it later. The latter is created by the charge transfer process within the semiconductor and it parallels re.

Split

At high frequencies, the current flowing in through rb splits: some goes through re while the remainder goes through Cbe and effectively robs the transistor of current. At high enough frequencies, the current gain falls to unity.

The frequency at which this happens is quoted by the maker in the transistor's specification under the name of f_{T}. There is a wide range in the values of f_{T}.

Fig 6 Cascode frequency response

High-power, germanium transistors can be given values as low as a few hundred kilohertz, while a modern RF device may have an f_{T} in excess of a gigahertz.

Because Cbe increases as the emitter
current in the transistor increases, its value has to be calculated from a simple equation:

Cbe $=\frac{l e(m A)}{2 \pi f_{T} .25}$

Fig 7 Long tailed pair configuration

So for le at $2 \mathrm{~mA}, f_{T}$ at 300 MHz , Cbe is 42 pF - quite significant at even low RF.

Miller effect

The effect of the collector-base capacitance is even more significant. Because one end of Cbe is on an inputsignal line and the other end is on the output point (transistor end of Re), the effect of Cbc on circuit operation is equivalent to a capacitor whose value is the product of Cbc and the lowfrequency voltage gain. Hence, even a small capacitance (4pF, say) as Cbc when multiplied by the low frequency gain (x 100) becomes significant (400 pF !). This is known as the Miller effect.

Another capacitor which limits the amplifier's frequency response is the load capacitance C_{L}. The effect of C_{L} is easily understood because each time the voltage on the transistor's collector changes, the charge difference on the capacitor has to be made up by current flowing through the collector resistance. Thus C_{L} tries to act like a small reservoir capacitor on a power supply and prevents high frequency operation.

Let us apply the capacitances to the circuit in Figure 1. The output frequency response is:

$$
f=\frac{1}{R_{L C}}
$$

So, when $R_{L}=5.1 \mathrm{~K}$ and $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{f}=$ 10 MHz , which is not too serious a problem. The capacitance between the emitter and collector is so small (a few pF) that it has been ignored here; however, it does become important in the higher HF and VHF regions.

The main response degradation comes from the effects of Cbe and Cbc. The resistance seen by an input signal is the small-signal gain, h, multiplied by the sum of re and Rf. 're' is the intrinsic emitter resistance (within the transistor), and is 250 hms at 1 mA (scales reciprocally with le). The capacitance is Cbe, as calculated above, and Cbc multiplied by the low frequency gain. So, with Cbe at $42 \mathrm{pF}, \mathrm{Cbc}$ at 6 pF , and h at 200:

$$
f=\frac{1}{h(25+100)(42 p F+6 p F \times 50)}
$$

we obtain $f=120 \mathrm{KHz}$. This will be dependent on exact transistor parameters and the variation of Cbc with the magnitude of the collector-base voltage, but it certainly gives us a ball-park figure for the start of the roll-off of the gain. Turning again to Figure 2, we see that the actual 3 dB point is near 150 KHz .

The cures

There are various cures for the capacitance problem. Transistor types should be carefully chosen to be designed for RF amplifiers - capacitances are then minimised. The transistors' operating current can be increased: this decreases re and so improves the frequency response. The circuit configuration may also be changed and, as this is the most interesting solution, we shall examine three designs which improve the HF response.
Earlier, we noted that the Miller effect - which multiplied the capacitance of Cbc by the low-frequency gain of the circuit - was caused by the large, asymmetric voltage variation across

Cbc. The fact that one end sees an amplified voltage relative to the other end causes a 'feedback current' to flow through Cbc. This can be reduced by the use of two circuit des!gns.
The first, shown in Figure 5, is the cascode circuit (not to be confused with cascade). When a signal is injected into the base of Tr1, the transistor's collector voltage changes by the same amplitudebut with an opposite polarity. Hence, Cbc only sees a voltage variation of twice the input signal. The capacitance is therefore not multiplied by the low-frequency gain and so remains a few picofarads in value.

Secret

But how does this circuit produce gain? The secret lies in passing the variation in current through Tr1 onto a second transistor: Tr2. The variation in current through its collector resistor creates the output voltage signal-such a buffer-type of action is possible by tying Tr2's base to a fixed voltage considerably higher than Tr1's collector voltage. Because a transistor behaves as a current source, and current sources have very high impedances, there is very little coupling of the output voltage to Tr1's collector and thence to its base - so the Miller effect is greatly reduced. Figure 6 shows the frequence response of the cascode circuit in Figure 5.
Although the cascode circuit is shown here with two bipolar transistors, Tr1 may be replaced by a FET (leaving Tr2 bipolar), or both may be replaced with FET types. The biasing arrangements change, of course, but the input resistance rises, and this is important in some applications where the signal source is of high impedance.
Another circuit design which avoids the Miller effect is the long-tailed pair as illustrated in Figure 7. Here, Tr1 is used as an emitter follower. Tr1's basecollector capacitance only sees the input signal variations across it because the collector is tied directly to the positive supply. Gain is obtained by transferring the variation in Tri's current to Tr 2 - this assumes that the resistor attached to the emitters of both Tr1 and Tr2 behaves like a constant current sink.

The variation in the collector current of Tr 2 causes the output voltage variation available at Tr2's collector. Note that Tr2 is really a version of the rarely-seen common-base amplifier, so called because the base of the transistor is 'common' to both input and output signals.
In this version of the long-tailed pair, the base of Tr2 is coupled to ground (for ac signals) by C2. The frequency response of this amplitier is similar to the cascode discussed above; the drop in gain around 3 MHz is caused by the capacitance Cbe, which may be minimised by careful choice of transistor.

The poor f_{T} used here is merely for illustration.
The circuit in Figure 7 may be changed to allow the gain to be voltage-controlled. By inserting a voltage-controlled current sink in the tail of the 'pair', the gain becomes variable - and lends itself to use in systems with AGC.
The last technique we shall look at is the tuned amplifier. Intended for amplifying a limited range of frequencies, a tuned circuit is inserted as the collector's ac load.
This has several advantages. The inductor/capacitor in the tuned load effectively nulls out troublesome circuit capacitances, while the near-zero dc resistance of the coil allows an arbitrary collector current to be set by the designer. The ac signal can be transferred between stages of the amplifier by transformers, with each 'side' acting as a tuned circuit. The most obvious application of this configuration is in intermediate frequency amplifiers where a broadband response is not required and the selectivity obtained by the successive tuned sections is an advantage.

However, despite the science introduced into HF amplifier design, the subject is still an art. The circuits depend so much on capacitance values that transistor types have to be carefully chosen - even then, the values are variable with circuit bias voltages and currents! With care, simple amplifiers may be built which give useful gain into the VHF region.

Other fields

While circuits with good HF responses are obviously required as RF signal amplifiers, there are other areas which have similar needs. In order to amplify pulses with sharp edges, the amplifier used must have gain up to ten times the pulse repetition frequency - to faithfully copy a 1 MHz square wave, constant gain to 10 MHz (at least) is required.
Such pulses are common when dealing with the output from Geiger-Muller tubes (used to detect nuclear radiation) and photo-multiplier devices in science. As fabrication techniques have improved, digital electronics have increased in speed - microprocessors with clock rates of 10 MHz and more are now in everyday use.

Because transistors in digital circuits are operated outside their linear region, other effects must be taken into account. The base of a saturated transistor stores charge and, when the base signal changes, the surplus charge delays the transistor's response. Delays of several hundred nanoseconds are not uncommon with general purpose transistors such delays can be the equivalent of a few processor cycles. The simplest way of preventing this performance degradation is to keep the transistor in its linear region - the penalty is paid in signifi-

Fig 8 AGC amplifier

Fig 10 Capacitances in the FET amplifier

Fig 11 Equivalent input stage

Fig 13 FET amplifier frequency response
the Miller effect in simple configurations. Of course, the cascode design will always reduce the effect of C_{gd} multiplication. The -3dB point is found by treating $\mathrm{R}_{\text {source }}$, the combined input capacitances (ie any signal-source capacitance and C_{gs}), and $\mathrm{C}_{\text {ga }}$ (multiplied by the low-frequency gain) as a simple serial RC circuit (Figure 11). Then:
 $f=\frac{1}{2 \pi R_{\text {source }}\left[\mathrm{C}_{9 s}+\mathrm{C}_{\text {source }}+(1+\text { gain }) \mathrm{C}_{\mathrm{g}}\right]}$
A simple amplifier is shown in Figure 12.
The source resistance was 10kilohms
and 20pF, $\mathrm{C}_{g \mathrm{~g}}$ was 2pF and $\mathrm{C}_{\mathrm{gs}} 4 \mathrm{pF}$. The
gain (measured at 1 KHz) was 7. From the
formula, the -3dB point should be
400 KHz ; the actual frequency response
is shown in Figure 13.
Rew $f=\frac{1}{2 \pi R_{\text {source }}\left[\mathrm{C}_{9 s}+\mathrm{C}_{\text {source }}+(1+\text { gain }) \mathrm{C}_{\mathrm{g}}\right]}$
A simple amplifier is shown in Figure 12.
The source resistance was 10kilohms
and 20pF, $\mathrm{C}_{g \mathrm{~g}}$ was 2pF and $\mathrm{C}_{\mathrm{gs}} 4 \mathrm{pF}$. The
gain (measured at 1 KHz) was 7. From the
formula, the -3dB point should be
400 KHz ; the actual frequency response
is shown in Figure 13.
Rew $f=\frac{1}{2 \pi R_{\text {source }}\left[\mathrm{C}_{9 s}+\mathrm{C}_{\text {source }}+(1+\text { gain }) \mathrm{C}_{\mathrm{g}}\right]}$
A simple amplifier is shown in Figure 12.
The source resistance was 10kilohms
and 20pF, $\mathrm{C}_{g \mathrm{~g}}$ was 2pF and $\mathrm{C}_{\mathrm{gs}} 4 \mathrm{pF}$. The
gain (measured at 1 KHz) was 7. From the
formula, the -3dB point should be
400 KHz ; the actual frequency response
is shown in Figure 13.
Rew $f=\frac{1}{2 \pi R_{\text {source }}\left[\mathrm{C}_{9 s}+\mathrm{C}_{\text {source }}+(1+\text { gain }) \mathrm{C}_{\mathrm{g}}\right]}$
A simple amplifier is shown in Figure 12.
The source resistance was 10kilohms
and 20pF, $\mathrm{C}_{g \mathrm{~g}}$ was 2pF and $\mathrm{C}_{\mathrm{gs}} 4 \mathrm{pF}$. The
gain (measured at 1 KHz) was 7. From the
formula, the -3dB point should be
400 KHz ; the actual frequency response
is shown in Figure 13.
Rew $f=\frac{1}{2 \pi R_{\text {source }}\left[\mathrm{C}_{9 s}+\mathrm{C}_{\text {source }}+(1+\text { gain }) \mathrm{C}_{\mathrm{g}}\right]}$
A simple amplifier is shown in Figure 12.
The source resistance was 10kilohms
and 20pF, $\mathrm{C}_{g \mathrm{~g}}$ was 2pF and $\mathrm{C}_{\mathrm{gs}} 4 \mathrm{pF}$. The
gain (measured at 1 KHz) was 7. From the
formula, the -3dB point should be
400 KHz ; the actual frequency response
is shown in Figure 13.
Rew $f=\frac{1}{2 \pi R_{\text {source }}\left[\mathrm{C}_{9 s}+\mathrm{C}_{\text {source }}+(1+\text { gain }) \mathrm{C}_{\mathrm{g}}\right]}$
A simple amplifier is shown in Figure 12.
The source resistance was 10kilohms
and 20pF, $\mathrm{C}_{g \mathrm{~g}}$ was 2pF and $\mathrm{C}_{\mathrm{gs}} 4 \mathrm{pF}$. The
gain (measured at 1 KHz) was 7. From the
formula, the -3dB point should be
400 KHz ; the actual frequency response
is shown in Figure 13.
Rew $f=\frac{1}{2 \pi R_{\text {source }}\left[\mathrm{C}_{9 s}+\mathrm{C}_{\text {source }}+(1+\text { gain }) \mathrm{C}_{\mathrm{g}}\right]}$
A simple amplifier is shown in Figure 12.
The source resistance was 10kilohms
and 20pF, $\mathrm{C}_{g \mathrm{~g}}$ was 2pF and $\mathrm{C}_{\mathrm{gs}} 4 \mathrm{pF}$. The
gain (measured at 1 KHz) was 7. From the
formula, the -3dB point should be
400 KHz ; the actual frequency response
is shown in Figure 13.
Rew
cantly higher power consumption.

FET capacitances

Just like their bipolar cousins, FET devices suffer from capacitive effects which degrade their performance as RF amplifiers. The model of the FET, with all capacitances shown, is illustrated in Figure 10. C1 is the dc-decoupling capacitor while C_{gd} and C_{gs} are internal capacitors within the device. Although both are specified for some devices with the above titles, manufacturers sometimes quote $\mathrm{C}_{\text {gss }}$ (also called $\mathrm{C}_{\text {iss }}$) and $\mathrm{C}_{\text {dss }}$ (also called $\mathrm{C}_{\text {oss }}$). However, $\mathrm{C}_{\text {gd }}$ and $\mathrm{C}_{\text {gs }}$ are both easily found from $\mathrm{C}_{\mathrm{gss}}$ and $\mathrm{C}_{\text {dss }}$ by the following formulae:

$$
\left(C_{g s}=C_{g s s}-C_{d s s}\right)
$$

and:

$$
\left(C_{g d}=C_{d s s}=(\text { approx }) C_{\text {rss }}\right)
$$

Note that $\mathrm{C}_{\text {rss }}$ is also occasionally used. This is the algebraic sum of C_{gd} and C_{ds}. The latter is an extremely small capacitance between the drain and source. It may be ignored in most instances. Typically, C_{gs} is around 4 pF and C_{gd} around 2 pF for JFETS intended for amplifiers; devices designed for analogue switches may have C_{gs} near 20pF.
Following on from the description of the bipolar circuitry, $\mathrm{C}_{\text {gd }}$ is amplified by

the highest quality
 from
 the most competitive prices

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended range that represents the best value for money available anywhere.

V-212	20 MHz Dual Trace	V- 209	20 MHz Mini-Portable
(illustrated)	V- 509	50 MHz Mini-Portable	
V-222	20 MHz Dual Trace	V-1050F	100 MHz Quad Trace
V-203F	20 MHz Sweep Delay	V-1100	100 MHz DMM/counter
V-353F	35 MHz Sweep Delay	V-134	10 MHz Tube Storage
V-422	40 MHz Dual Trace	VC-6015	10 MHz Digital Storage
V-650F	60 MHz Dual Timebase	VC- 6041	40 MHz Digital Storage

Prices start at $£ 299$ plus vat (model illustrated) including a 2 year warranty. We hold the complete range in stock for immediate delivery
For colour brochure giving specifications and prices ring (0480) 63570 Thuriby-Reltech, 46 High Street, Solihull, W. Midlands, B91 3 TB

Ray Marston continues his survey of opto-electronics principles and systems with an in-depth look at practical LED 'chaser' and 'bar-graph' circuits.

Ilast month's edition of Data File we gave a basic introduction to the general subject of opto-electronics, and went on to take a detailed look at LED (light-emitting diode) principles and at a number of practical LED 'flasher' circuits. In the present edition of 'The File' we'll look at a number of practical LED 'chaser', 'dot-' and 'bar-graph' display circuits.

'Chaser' principles \& the 40178

One of the most popular types of LED display circuit is the so-called 'chaser' or 'sequencer', in which an IC (or other electronic device) is arranged to drive an array of LEDs in such a way that individual LEDs (or small groups of LEDs) turn on and off in a predetermined and repeating sequence, thereby producing a visually attractive display in which a ripple of light seems to run along a chain.
Probably the most popular IC used in 'chaser' applications is the 4017B CMOS chip. This device is actually a decade counter/divider IC with ten decoded outputs, each of which can be used to directly drive an LED display. If desired, outputs can be coupled back to the IC control terminals to make the device count to, or divide by, any number from 2 to 9 and then either stop or re-cycle.
Numbers of 4017B ICs can easily be cascaded to give either multi-decade division, or to make counters with any desired number of decoded outputs. The 4017B is thus an exceptionally versatile device that can easily be used to 'chase' or 'sequence' an LED display of virtually any desired length.

Figure 1 shows the outline, pin designations, and the functional diagram of the 4017B, and Figure 2 shows the basic timing diagram of the device, which incorporates a 5 -stage Johnson counter and features CLOCK, RESET, and CLOCK INHIBIT input terminals.

The internal counters are advanced one count at each positive transition of the input clock signal when the CLOCK INHIBIT and RESET terminals are low. Nine of the ten decoded outputs are low, with the remaining output high, at any given time. The outputs go high sequentially, in step with the clock signal, with the selected output remaining high for one full clock cycle.
An additional CARRY OUT signal completes one cycle for every ten clock input cycles, and can be used to rippleclock additional 4017B ICs in multidecade counting applications.
The 4017B counting cycle can be inhibited by setting the CLOCK INHIBIT

Fig 1a Outline and pin designations of $4017 B$

Fig 16 Diagram and data for the 4017 B

Fig 2 Waveform timing diagram of the $4017 B$

Fig 3 10-LED chaser or sequencer can be used with <9V supply
terminal high. A high signal on the RESET terminal clears the counter to zero and sets the decoded ' 0 ' output terminal high.

40178 chaser/sequencer circuits

Figure 3shows the practical circuit of a

4017B 10-LED chaser, in which ICI (a 555 timer chip connected in the astable mode) is used as a variable-speed (via RV1) clock generator, and the 4017B is wired into the 'decade counter' mode by grounding its CLOCK INHIBIT (pin 13) and RESET (pin 15) control terminals.

DATA FILE

The action of the Figure 3 circuit is such that the visual display appears as a moving 'dot' which repeatedly sweeps from the left (LED ' 0 ') to right (LED ' 9 ') in ten discrete steps as the 4017B outputs sequentially go high and turn the LEDs on. The LEDs do not, of course, have to be arranged in a straight line: they can, for example, be arranged as a circle, in which case the 'dot' will seem to rotate.

Note that the LEDs in the Figure 3 circuit are not provided with currentlimiting resistors, and that the circuit can safely be used only with supply voltages up to 9 volts. The decoded outputs of the 4017B provide inherent current-limiting under short circuit conditions.

The manufacturers do not quote a maximum short-circuit current value, but practical experience indicates that currents of $10-15 \mathrm{~mA}$ are commonly available from the device. The maximum device dissipation-per-output-stage figure of 100 mW is quoted on some data sheets, indicating that a voltage drop up to about 7 volts can safely be developed across a 4017B output stage under maximum-current conditions.

Thus, the LED chaser circuit of Figure 3, which has each LED connected directly between an output and ground, can safely be used up to maximum supply values of 9 volts (allowing for a 2 volt drop across each 'on' LED).

Greater

At voltages greater than 9 volts, the circuit of Figure 4, which has a currentlimiting resistor wired in series with each LED, should be used. Note that the main purpose of these resistors is that of reducing the power dissipation of the 4017B.
A variant that is sometimes used is shown in Figure 5, and can be used with reasonable confidence at supply values up to 12 volts maximum.
Figure 6 shows a possible equivalent of this circuit when it is powered from a 15 volt supply, and illustrates the defect of the design. The action of the 4017B is such that, when a given LED is on, the anodes of all other LEDs are effectively grounded: R1 thus causes the 'off' LEDs to be reverse biased.
Because of the low reverse-voltage ratings of LEDs, it will often be found that one of the 'off' LEDs will zener at about 5 volts, giving the results shown in the diagram and possibly causing a destructive power overload in one of the 4017B output stages.
Thus, when the 4017B is used to drive LED displays in the 'moving dot' mode, the LEDs can be connected directly to the IC outputs if supply values are limited to 9 volts maximum. At supply values greater than 9 volts, the LEDs must be connected to the IC outputs via current-limiting resistors.
A variety of display circuits are shown in Figures 7 to 14.

Fig 4 This version of the $10-L E D$ chaser can be used with supplies $\leqslant 15 \mathrm{~V}$

Fig 5 This version of the chaser can be used with supplies $\leqslant 12 \mathrm{~V}$

Fig 6 Possible equivalent of the Fig 5 circuit with a 15 V supply

Alternative LED displays

The output stages of the 4017B can source or sink currents with equal ease. Figure 7 shows how the IC can be used in the 'sink' mode to make a 'moving hole' LED display, in which nine of the ten LEDs are on at any given time, with single LEDs turning off sequentially. If the

LEDs are arranged in the form of a circle, the circle will seem to rotate.
Note in this circuit that, since all LEDs except one are on at any given time, they must all be provided with currentlimiting resistors to keep the IC power dissipation within reasonable limits.
Moving dot displays are, in practice, far

Fig 7 10-LED moving hole display

Fig 9 4-LED intermittent 'moving dot' display with 50% blank' period

Fig 11 4-LED continuous 'accelerator' display
more popular than the moving hole types. Moving dot displays of the Figure 3 type can be used with fewer than ten LEDs by simply omitting the unwanted LEDs, but in this case the dot will seem to move intermittently, or to 'scan', since the IC takes ten clock steps to completely sequence and all LEDs will thus
be off during the 'unwanted' steps.
If a continuously-moving less-than-10LED display is required, this action can be obtained by connecting the first 'unused' output terminal of the 4017B to its pin-15 RESET terminal, as shown (for example) in the 4-LED circuit of Figure 8.
Alternatively, the circuit can be made

Fig 8 4-LED continuous 'moving dot' display

Fig 10 Circuit of a 4-LED 5 -step sequential turn-off display

Fig 12 4-LED intermittent accelerator display

Fig 15 Bar-graph indi

Fig 16 'Dot' indication

Fig 17 Block diagram

Fig 14 This 4-bank 5-step 20-LED chaser must be used with a supply >9V
multiplexing circuit, in which three lines of six intermittently-sequenced LEDs are sequentially enabled via IC3 and individual gating transistors, with only one line enabled at any one time. This basic circuit can in fact be expanded to control a ten line (100 LEDs) matrix display.

Finally, to complete this look at
'sequencer' circuits, Figure 14 shows the circuit of a 4-bank 5-step 20-LED chaser. Note here that a bank of four LEDs is wired in series in each of the five used outputs of the 4017 B , so that four LEDs are illuminated at any given time.

In practice, roughly 2 volts are dropped across each 'on' LED, giving a total drop of about 8 volts across each 'on' bank, so

sation of 7 V on a 10 V 10-LED scale

of 7 V on a $10 \mathrm{~V} 10-\mathrm{LED}$ scale

of the U237B -type bar-graph driver

$V I N$	1	2	3	4	5
1.0 V	OFF	OFF	OFF	OFF	OFF
0.8 V	OFF	OFF	OFF	OFF	ON
0.6 V	OFF	OFF	OFF	ON	ON
0.4 V	OFF	OFF	ON	ON	ON
0.2 V	OFF	ON	ON	ON	ON
0 V	ON	ON	ON	ON	ON

Fig 18 States of the U237B internal transistors at various input voltages
the circuit supply voltage must be greater than this value for the circuit to operate. A greater number of LEDs can be used in each bank if the supply voltage value is suitably increased.

'Bar-graph' displays

Another type of multi-LED indicator circuit is the so-called 'analogue-value'

DEVICE	STEP 1	STEP 2	STEP 3	STEP 4	STEP 5
U237B	200 mV	400 mV	600 mV	800 mV	1.00 V
U247B	100 mV	300 mV	500 mV	700 mV	900 mV
U 257 B	$0.18 \mathrm{~V} /-15 \mathrm{~dB}$	$0.53 \mathrm{~V} /-6 \mathrm{~dB}$	$0.84 \mathrm{~V} /-1.5 \mathrm{~dB}$	$1.19 \mathrm{~V} /+1.5 \mathrm{~dB}$	$2.0 \mathrm{~V} /+6 \mathrm{~dB}$
U 267 B	$0.1 \mathrm{~V} /-20 \mathrm{~dB}$	$0.32 \mathrm{~V} /-10 \mathrm{~dB}$	$0.71 \mathrm{~V} /-3 \mathrm{~dB}$	$1.0 \mathrm{~V} / 0 \mathrm{~dB}$	$1.41 \mathrm{~V} /+3 \mathrm{~dB}$

Fig 19 Step-voltage values of the U237 family of bar-graph driver ICs
indicator, which is designed to drive a chain of linearly-spaced LED s in such a way that the length of chain that is illuminated is proportional to the analogue value of a voltage applied to the input of the LED-driver circuit, ie so that the circuit acts like an analogue voltmeter. These circuits may be designed to produce either a 'bar-graph' display, as shown in Figure 15, or a 'dot' display, as in Figure 16. In a 'bar-graph' display, the input value is indicated by the total number of LEDs that are illuminated. In the 'dot' display, the input value is indicated by the relative position of a single illuminated LED.

Special ICs are available for operating LED analogue-value display systems. The most useful of these are the U237 family from AEG, and the LM3914 family from National Semiconductor.

The U237 family are simple 'dedicated' devices which can usefully be cascaded to drive a maximum of 10 LEDs in 'bar' mode only. The LM3914 family are more complex and highly versatile devices, which can easily be cascaded to drive as many as 100 LEDs, and can drive them in either 'bar' or 'dot' mode. Both types are listed as 'bar-graph driver ICs'.

IC-driven bar-graph displays make inexpensive and superior alternatives to analogue-indicating moving-coil meters. They are immune to 'sticking' problems, are fast acting, and are unaffected by vibration or attitude. Their scales can easily be given any desired shape.
In a given display, individual LED colours can be mixed to emphasise particular sections of the display, and 'over-range' detectors can easily be activated from the driver ICs and used to sound an alarm and/or flash the entire display under the over-range condition. They also have better linearity than conventional moving-coil meters, typical linear accuracies being 0.5%. Scale definition depends on the number of LEDs used; a 10-LED display gives adequate resolution for most practical purposes.

We'll look at a range of practical U237based bar-graph display circuits in the remaining section of this edition of Data File, and go on to look at some LM3914based designs next month.

U237 basics

The AEG U237 family of bar-graph
driver ICs are simple, dedicated devices, housed in 8-pin DIL packages and each capable of directly driving up to five LEDs.
The family comprises four individual devices. The U237B and U247B produce a linear-scaled display and are intended to be used as a 'pair', driving a total of ten LEDs. The U257B and U267B produce a log-scaled display, and are also meant to be used as a 'pair' driving a total of ten LEDs.

All ICs of the U237 family use the same basic internal circuitry, which is shown in block diagram form (together with external connections) in Figure 17.

The IC houses five complete sets of Schmitt voltage-comparator/transistorswitches, each of which has its threshold switching or 'step' voltage individually determined by a tapping point on the R1 to R6 voltage divider, which is powered from a built-in voltage regulator: the input of each comparator is connected to the pin-7 input terminal of the IC. The IC also houses a constant-current generator $(20 \mathrm{~mA}$ nominal), and the five external LEDs are wired in series between this generator and ground (pin 1), as shown in the diagram.

The basic circuit action is such that groups of LEDs are turned on or off by activating individual switching transistors within the IC. Thus, if Tr3 is turned on it sinks the 20 mA constant-current via LEDs 1 and 2, so LEDs 1 and 2 turn on and LEDs 3 to 5 turn off.

The U237B has step voltages spaced at 200 mV intervals, and Figure 18 shows the states of its five internal transistors at various values of input voltage. Thus, at zero volts input, all five transistors are switched on, so Tr1 sinks the full 20 mA of constant current, and all five LEDs are off. At 200 mV input, Tr1 turns off but all other transistors are on, so Tr2 sinks the 20 mA via LED1, driving LED1 on and causing all other LEDs to turn off, and so on.

Eventually, at 1.0 volt input, all transistors are off and the 20 mA flows to ground via all LEDs, so all five LEDs are on. Note that the operating current of the circuit is virtually independent of the number of LEDs turned on, so the IC generates negligible RFI as it switches transistors/ LEDs.

The four ICs in the U237 family differ only in their values of 'step' voltages,

PARAMETER	MIN	TYP	MAX
Supply voltage	8 V	12 V	25 V
Input voltage			5 V
Input current		25 mA	0.5 mA
Max supply current		3 mA	
Power dissipation (at $60^{\circ} \mathrm{C}$)	-30 mV		690 mW
Step tolerance		5 mV	+30 mV
Step hysteresis		100 KV	
Input resistance			1 V 0

Fig 20 General specification of the U237 family of ICs
which are determined by the R1 to R6 potential divider values. The table of Figure 19 shows the step values of the four ICs. Note that the U237B and U247B are linearly scaled, and can be coupled together to make a 10-LED linear meter with a basic full-scale value of 1 volt. The U257B and U267B are log scaled, and can be coupled together to make a 10-LED log meter with a basic full-scale value of 2.0 volts or +6 dB .

Figure 20 shows the basic specification of the U 237 family of ICs. Note that the supply voltage range is specified as 8 to 25 volts. In practice, the minimum supply voltage is one of the few design points that must be considered when using these ICs, and must be at least equal to the sum of the 'on' voltages of the five LEDs, plus a couple of volts to allow correct operation of the internal circuitry. Thus, when driving five red LEDs, each with a forward voltage drop of 2 V 0 , the supply value must be at least 12 volts. Different-coloured LEDs (with different forward voltage drops) can be used together in the circuit, provided that the supply voltage is adequate.

Another 'usage' point concerns the input impedance of the IC. Although the input impedance is typically 100 K , the IC in fact tends to become unstable if fed from a source impedance greater than about 20 K . Ideally, the signal feeding the input should have a source impedance less than 10K; if the source impedance is greater than this, stability can be enhanced by wiring a $10 n$ capacitor between pins 7 and 1.

Practical U237 circuits

Figures 21 to 26 show some practical ways of using the U237 family of devices. In all these diagrams, we have shown the supply voltage as being ' +12 to 25 volts', but the reader should keep in mind the constraints already mentioned.

Figure 21 shows the practical connections for making a 0-1 volt 5-LED linearscaled meter, using a single U237B IC, and Figure 22 shows how a U237B/U247B pair of ICs can be coupled together to make a 0-1 volt 10-LED linear-scaled meter.
Note in the latter case that the two ICs are operated as individual 'Figure 21 style circuits (needing only a '5-LED' supply voltage), but have their input

Fig 21 Connection for a O-1V 5-LED meter

Fig 22 Connections for a O-IV 10-LED meter

Fig 26 A 5-LED AF-level meter.
terminals tied together and have their is directly proportional to the transducer LEDs physically alternated, to give a 10LED display.

Figure 23 shows how the full-scale sensitivity of the basic circuit can be reduced by feeding the input signal to the IC via the R1 and R2-RV1 potential divider, which has a $15: 1$ ratio and thus gives a full-scale sensitivity of 15 volts.

Figures 24 and 25 show how the basic Figure 21 circuit can be used to indicate the value of a physical parameter (such as light, heat, etc) that can be represented by the analogue resistance value of transducer R_{T}.

In both cases, the transducer is effectively fed from a constant-current source, so that the input voltage to the IC

Fig 24 Indicating heat, light etc using a transducer sensor

Fig 25 Alternative to the Figure 24 circuit
resistance value.
In Figure 24, the transducer current is derived from the regulated supply line via R1-RV1, and current constancy relies on the fact that the regulated supply voltage is large relative to the 1 volt fullscale sensitivity of the meter. In Figure 25, current constancy is ensured by the ZD1-Tr1-etc constant-current generator.

Finally, to complete this month's edition of Data File, Figure 26 shows how the U267B 'log' IC can be used to make a 5-LED audio-level meter. A 10-LED meter can be made by connecting the R1-R2-R3-C1-D1 input circuit to the input of a U257B/U267B pair of 1 Cs connected in the Figure 22 configuration.

Fig 23 The Figure 21 circuit modified to O-15V

SkybriadeMail order q shop:
441 PRINCES ROAD 441 PRINCES ROAD,
DARTFORD, KENT DA1 IRB Telephone: (0322) 91454 ORDERING INFORMATION: P/P 50 on or orders less than 220 in value otherwise post free

CA	in slock. Phone for	$\frac{22 / 16}{22 / 25} \ldots$		${ }_{\text {skt }}^{\text {8NC square }} 100 \mathrm{p}$	D-type 11 ang. skt 15 W		Range of heat sinks avaidable	$\begin{aligned} & \text { Round } 12^{\prime \prime} \quad 2062 p \\ & 60 \mathrm{w} \end{aligned}$	TRANS. FORMERS
wire wrap.ip	in slock. Phone for	$\frac{22 / 25}{2235} \cdots \cdots 110$	18.432 M 26.54 M	skt ${ }^{\text {skt }}$ (ree skt. ${ }^{100}$ (10p	15 W ivpe it ang. kk	hommer panel . 45 p	Shank ava for	Round 12"	6-0.6V. 100 m
Red/white/black		22/35 $22 / 63$	${ }_{26.50 \mathrm{M}}^{26.0}$	BNC str. adapt.	25 W	1/4"p	tation.	loow	
11 colours . 4 p	CAPACITORS	$47 / 10$ 100	$26.64 \mathrm{M} \quad 2000$	ONC ${ }^{\text {a }}$ 100p	D-type r ang. plug	holder 20 mm	M	Round 12 4336p	${ }^{6.0 .6} \mathrm{~V}$ V. $\quad 185 \mathrm{mp}$
Hook-up ... 7/2	Plate ceramic	$47 / 16$ 11p	${ }_{26}^{26.69 M}$. 2000	BNC T adapt 300p	9W rich poa	20mm hold	Mniature buzzer	Round 15:	${ }_{90.9}^{250 \mathrm{VA}}$,
11 colours. . 30	18pF - 22nF 8p	47/25 . 13 p	${ }_{26}^{26.74 M} \quad \cdots .2000$	VHF plug 50.	$\mathrm{O}^{\text {D-type }} \mathrm{H}$ ang plug	holder ${ }^{1}$. ${ }^{\text {chassis }}$	6V of 12 V . 900 p	150W 71859	100 mA , 167p
Heavy duty 30/.2	Oisc	$47 / 35$ $47 / 63$	${ }_{26.8 \mathrm{M}}^{26 \mathrm{Mam}}$	Smath reducer 200	D-typer r ang. plug	holder - . $17 p$	Utrasonce	Round 15	9.0 .9 V
${ }_{\text {Extratiex }}$ colour $^{\text {a }}$....15p	47 pF 15p	400/10 3010	$26.995 \mathrm{M} \quad 2000$	Large reducer 200	25 W	Line holder ... 14p			250 mA
red/black	100 F . ${ }^{150}$	100/16 . . ${ }^{133}$	${ }_{27}^{27.045 M}$ (1095 $\quad 2000$	PL259 ramg. ${ }^{\text {Prem }}$		Fuse clips 20 mm fuses	Ellip	zoow flob	50 mA , 155p
Tinned copper per		${ }_{100 / 25}^{100 / 25.15 p}$	${ }_{27}^{27} 145 \mathrm{M} \quad 2000$	VHfsquare skt 50p	$\begin{array}{ll}\text { Covers } \\ \text { Covers } 25 & 1200 \\ & 1300\end{array}$	100 ma . 150 ma .	${ }^{198 p}$ Eliptical $\mathbf{6}^{\prime \prime} \times{ }^{4}$		12.0 .12 V .
402 re SWG	2200pF	100/63 ${ }^{\text {15p }}$	$27.195 \mathrm{M} \quad 200 \mathrm{p}$	Ebow adapt. . . poa	Laveres 9 300	$250 \mathrm{~mA}, 500 \mathrm{~mA}$.	262 p	P	100 mA , 171p
SWG18	201F F . 5p	$220 / 16$ …... 15p	27.245 M - 2000	Straigh adapt. 60 p	Latches $15 \ldots . .500$	1A, 1.5A, 2A, 3A.	Elliptical 7 " $\times 4$ "	$\begin{array}{ll}\text { tweeters } 2 \times & 2310 \\ 3 / 2\end{array}$	${ }_{250 \mathrm{~mA}}$
SWG20	0274 F - 0	220125 200	27.255 M … 200p		Latches 25...600	20 mm antisurge	${ }^{314 p}$ Elliptic	2^{2} "x6" horn 9380	0.12/0.12 V.
SWG22 980		220/35 $220 / 63$	CONNECTORS	${ }^{\text {remale }}$ adapt.... 180p	Power plug . 15p	fuses 500 mA , 1 A	${ }_{3} 38 \mathrm{p}$	${ }^{2}$ " $\times 1 \times{ }^{\prime \prime}$ "horn 7959	500 mA , 369 p
En cooper per 202	${ }_{4}^{4}{ }_{\mu} \mathrm{F}$ - 15p	270/16	Croc clips.... ${ }^{10 p}$	XLR line plug 180p	Power piug . . 15 p			${ }_{3}^{21 / 2}$ horn457p	${ }^{9.0 .9} \mathrm{~V}$, 12.1 A 283 p
reel SWG14 ...70p	Polystyrene	470/25 . . 279	Terminai post top	XLR chassis	2.5 mm . 15 p	$150 \mathrm{~mA}, 250 \mathrm{~mA}$.	5W ${ }^{\text {5 }}$	4"*10' 1435p	15.0 .15 V . 1 A 433 p
SWG16... . . 80 P	22pF13p	470/35 3p	1 mmplug ... 200		EEC line ski ...5sp	500 ma , 1a 2A		Crossovers	20.0 .20
SWG18......90p	${ }^{47 \mathrm{pF}} \times$	470/63 ... 48p	2 mm socker. ${ }^{\text {a }}$. 200	XLA line skt. . 230 p	EC chassis	3A. 5A, 10A. 13A.	8 W	2 way 15W 188p	$15 \mathrm{~A} \quad 538 \mathrm{p}$
SWG24105p	100pF 150 pF 1	$\begin{array}{ll}\text { 1000/16 } & \\ 1000 / 25 & \text { 21p } \\ \end{array}$	3 mm plug . . . 200	DIN plugs	${ }_{\text {IEC }}$ IEC Chassis skir	$1^{1 \prime}$ fuses 2	Miniature 1" 90p	$\frac{3}{3}$ way 25W	14.1
SWG26 . 105p	220pF $\quad 3$	$1000 / 35 \quad 45$	3 mmm socket . . 150	2 pin	Bulgin P429 . 500	5A, 13A	Miniature		
SWG28 105p	330pF . 8p	1000/63 ... 5pp	4 mm plug ... 55	Din plugs	Bulgin P646. ${ }^{1655}$	REW5\%	Misiature . 900	3 way 100w 1346p	12-0.12 V. 2 A 538 p
SWG30 110p	470pF . 8 p	2200/10 ... 39p		${ }_{3}^{3} \mathrm{Pin}$.	${ }^{\text {Bulgin P430. } 2150}$	E24 31		4 way 80w 628p	$0.12 / 012 \mathrm{~V}$.
SWG33	560p $\ldots \ldots$....8p	220016 . . 68	Phono line ski 20p	4 pin	${ }^{\text {Bugin P649 }} 1350$	4W 1\%	Miniature		2A 12.5380
SWWG36.....125p.	680pF 1000 pF	2200/35 $74 p$	Jack plug	DIN plugs	${ }^{\text {Bugin }}$ Bugin P635 100p	E24	$2^{\prime \prime}$...... 90p	SWITCHES	2A ${ }^{2}$
SWG38. 125p.	1500pF . 80	3300/25 …. 74	2.5 mm 15p	5 pin A	Bugin P636. . 130 p	${ }_{\text {E12 }}{ }^{\text {5 }}$	Miniature	Toggle	20.020 V. 247450
SWG40....150p.		3300/35 ... $92 p$	${ }_{3}$ Jack plug 5 . . 15 mp		Bulgin P5561. 3000	3W ww in-1R30p	Miniaute $21 / 2 \% 8 \mathrm{R}$	Std 47p	$30.0-30 \vee 24933$
${ }_{7 / 25}$ Figure ${ }^{\text {d }}$ per melie	330007 F 4700 pF	$4700 / 10$ $4700 / 16$	Jack skt	DIN plug 5 pin		${ }_{3}^{3 W} \mathrm{ww}$		Yopgle Std 62p	12.0.12 V 3A 721p
Cotoured ribb	${ }_{56000 \mathrm{oF}}^{4700 \mathrm{l}}$ 10p	$4700 / 16$ $4700 / 25$	2.5 mm . 15 p	$360^{\circ} \ldots . . .3 .30 p$		2R2	Miniature $24 / 2$	Toggle Min	
per foot	6800p $\quad 10 \mathrm{p}$	Non-pota	Jack skt 15p	DIN plug 6 pin 400	Butgin SA2404 95p	10W WW . 300		SPST 689	${ }_{90} 0.9 \mathrm{~V} .4 \mathrm{~A}$ 687p
10 way $\ldots \ldots .20{ }^{20 p}$	$01 \mu \mathrm{~F}$. 14p	1, kF F		DIN plug 7 pin 200	Bugin SA2190 50p	25W Ww 1700		Toggle Min	12.0 .12 V 4A 8450
20 way . 000	0224 F . 19 p	$2.24 \mathrm{~F} \cdots$. 250 Lj	2.5 mm matine 30p	DIN skts 2 pin. 10 p	Bubin SA 1882 50p	${ }^{W} \mathbf{W}$ Pots		SPDT M Min ${ }^{\text {Top }}$	0.15 V , 6A 999
Maway per metre?	.047 ${ }_{\text {1 }}$	3.34 F 4.74 F	Jack skt line	DiN skts 3 pin . 200	Bulgin SA211 200 p	3W High	Round 5" 60W	SPDT c/oft E3p	$\begin{aligned} & 6.0 .6 \mathrm{~V}, 8 \mathrm{f} \\ & 12.012 \mathrm{l} \end{aligned}$
core OVal 3A. 200	Polyester .	${ }_{6} 8.845 \times . \quad 50 p$		OiN skts 4 pin. ${ }^{\text {din }}$	Bulgin SA2019A	quan 258	15670	Tagle Min	8A 1615p
Round 6A, 35P		10,4 F205p	Jano Jono	5 pin $A \ldots \ldots . .15 p$		100 250 R . 500 R			Torods 30Vp.
- 3 core Round	${ }^{.015 \mu F} \quad 1080$		Jack plug x:"	DiN skis	ulgin SA2020	1k, 5k. 10k, 50k.	$\begin{aligned} & \text { Round } \\ & \text { 47p } \end{aligned}$	DPDT c/off 117p	
Round 6A . . 50p		${ }_{47 \mu \mathrm{~F}}^{33 \mu \mathrm{~F}}$ - 40 p	${ }_{\text {stereo }}^{\text {Jack ski \% }}$ \% ${ }^{\text {a }}$. 30 p	${ }_{5}^{5} \mathrm{pin}$ B $\quad .200$	Bulgin SA2367 ${ }^{\text {cop }}$		Round $5 \% / 15 \mathrm{~W}$	Toggle Min	
Round 13A ...800	.047~F Op	$100 \mathrm{FF} \quad 100 \mathrm{p}$	mono	DiN skts 7 pin. 20 p		DUCTORS		${ }_{\text {Togate }}{ }^{\text {Min }}$ 4PDT ${ }^{\text {20sp }}$	30 VA 15 V S50p
	.068иF9p	Thousands	Jack ski	OIN line ski	Bulgin SA2358 95p	is the	Round ${ }^{\text {Round }}$ (60 W	c/oft	30 VA ISV 950p
$1 \mathrm{~mm} \mathrm{TgE...40p}$	1FF.....isp	other capa	stereo	2 pin 15 p	Many other con-	range of isted se-		Push to make 20 p	50VA 6V 1150p
1.5 mm TEE . 45 p	$15 \mu \mathrm{~F}$ 20 F 150	slock ie.	Jack skt tine	D'N line ski		rs	月o	p	50VA 9V. 1150p
$2.5 \mathrm{~mm} \mathrm{~T} \mathrm{\& E} \mathrm{}$.	$\frac{2345}{33,5} \quad 119$	Silvered Mica, \%	mono 250	5 pin30p	\square leads in stock.	S.A.E. for details.	7w 433p	Key sw spst 250	50VA 12V 11500
6 mmTGE . 150 p		Polystruene Poly.	Jack skt line stereo	D-type plug	OPTO		Round 8". 6W 368p	Rotary 1P 12W 620	
TV COAX . ${ }^{40 p}$	684F $\quad 26 p$	Tantalum. Trim			LED Std red $10 p$	T03 100	Round 8		80 VA 22 V . 12000
Screened Single $17 p$	$1 \mu \mathrm{~F}$. 26 p	mer, Variable etc.	COAX plug . 150	15 W . ${ }^{\text {W }}$ 150p	LEO Sta green 10	1066 ... ${ }^{109}$	10w.	Rotary 4P 3W .62p	80 VA 30 V 1200p
Twin round . 20 p	2uF4sp	etc.	COAX skt surf 30p	--type plug 150p	LED Sti Yetiow 15p	DIL sockets 8 pin	2own 8 . . 503 p	Sude min	120 VA 30 V 1300p
Figure 8 min ${ }^{\text {min }}$	Electroytic som	CRYSTALS			LED Min green 18P	${ }_{14} \mathrm{pin}^{\text {pin }} \ldots . . .11 \mathrm{p}$	Round 8°	SPDT	300 VA 35 V 2000p
Figure 8 std $\ldots 300$ 4 40	$\underset{2}{\mu / 50} \ldots 1 / 63 \cdots .9 p_{p}$	${ }_{19}^{100 \mathrm{k}} \ldots \ldots .$.	COAX Coupler		LED Min	$\begin{array}{llll}16 \text { pin } & & & 12 p \\ 18\end{array}$	Row	SPDT ${ }_{\text {Sta }} \ldots \ldots .22 \mathrm{p}$	500 VA 35 V 2650p
Spiral wiap	${ }_{4} 7 / 163$.9.9p	2 M 2200	CAR aerial	D. rype skt		${ }_{20}^{18} \mathrm{pin} \ldots .169$	hown 700p	DIP 4W 105p	All toroids have
1/8	10/168p	3.2768 M . ${ }^{\text {a }}$	plug	15W...... 2000	LED Clip min. 3p		Hound 10	DIP $6 W$: 128 p	
4.........00p	10/25 ${ }^{8 \rho}$	${ }^{4 M} 12.1800$	FM aerial plug \% 2000	O-rype skt 250 p	Large renge of pap.	24 pin 21 p	20W ... 1113p		condaries at vorta-
	10/35 $10 / 63$	$\begin{array}{ll}4.19304 M & 3500 \\ 4.33619 M\end{array}$	BNC plug. ${ }^{\text {BNC }}$ (0und	D-type it ang. skt	Imptocters.	${ }_{29}^{28} \mathrm{pin}$. 240	Round 10" low		
Wide range of ca. ble markers, slee-	22/10 ${ }_{\text {8p }}$	6.144M . . 130 p	skt 100p	9 Wpon	de tuxe LEDs, etc.	40 pin359	30w		

RTTY and CW TRANSCEIVE with NO TERMINAL UNIT

This pantastic program interfaces direct with your rig. slas ing the cost of prev the very simple Split screen. type ahead. all the usual features and more. Tape and kilable. For CBM64 and VIC20 (- at least 8k). BBC-B coming soon. CW-only version for SPECTRUM £10.
LOCATOR ATH or Maidenhead locator or lat/long Distances, headings.
LOCATOR QTH or Maidenhead locator or lat/long Distances, headings. contest points. converts between locator and lat/long. Tape $£ 6$
LOGBOOK Date. band, mode, calland
MORSE TUTOR Britain's best. Learn fast in easy stages from absolute beginner to over 40 wpm.
join the hundreds who have succeeded with this program. Tape and full learning guide $£ 6$. For ZX81-16k afso.
RAE MATHS AIl the practice and testing you need. Tape and comprehensive reference sheet detailing all you need to know $£ 8 . V \mid C 20$ needs expansion (any). For $\mathbf{Z X 8 1 - 1 6 k}$ also. Don't let maths make you fall. PASS with this program.
All programs are very easy to use and come with full instructions. Prices include p\&p 1st Class
technical software (REW)
Fron, Upper Llandwrog, Caernarfon, Gwynedd LL54 7RF.
Tel: 0286881886

Reg. Ward \& Co Ltd. Axminster, Devon.
 South West's
 Official agents: Yaesu, Trio, Icom, FDK Complete range stocked Full demonstration facilities. Barclaycard, Access, Instant Credit Ancillary equipment by: Microwave Modules, muTek, Drae, BNOS, Himound, Kenpro. Welz. Hansen. Tono, Wood \& Douglas, Datong. Aerials by. Jaybeam. T.E.T.. G Whip, Hygain, Tonna and Mini products. Closed for Christmas from 24 December until 2nd January
 1 Western Parade, West Street Axminster, Devon EX13 5NY
 [ICOM
 Telephone: (0297) 34918
 Open: Tues - Sat 9-5.30. Closed Mondays

YOUR RADIO AMATEURS EXAM SUCCESS

Study at home - pass first time with

 RRC's Complete Home Tuition Service- Self-contained courses, regularly updated for The City \& Guilds Radio Amateurs Exam - Fully inclusive fees - No costly, time consuming text books to buy - Everything you need in booklet lecture form - Regular tests ensure you are fully prepared - Enrol at any time - Timetable to suit you - Continued tuition at no extra cost if you don't pass first time
FREE RADO AMATEURS PROSPECTUSBY RETURN ${ }^{-}$
Write or 'phone today for full details, and a FREE copy of our prospectus, without obligation to:

I RRC THE RAPID RESULTS COLLEGE

P.M. COMPONENTS LTD 0474813225 3 LINES
 8DEPT REW SELECTRON HOUSE, WROTHAM ROAD

INTEGRATED CIRCUITS

SEMICONDUCTORS

TS

$\begin{array}{ll}\text { STK437 } & \\ \text { STK.95 } \\ \text { STK39 }\end{array}$

NEW BRANDED CATHODE RAY TUBES

Lime outpur TRANSFORMERS		Eirt murnplers	
DECCA 100	7.95	$17 \mathrm{CVC20}$	6.35
DECCA 1700 MONO	9.95	ITTCVC3O	8.35
DECCA 1730	8.95	PHILIPSG8550	6.08
DECCAZ230	0.25	RANK TROA	6.91
GEC2040	-8.05	THORN 3000/3500	7.57 $\mathbf{5 . 5 0}$
GRUNDIG 1500 GRUNDIG 5010 -6010	15.45	THORN 85000	5.50 8.00
$2222.5011-6011$	13.45	UNIVERSALTRIPLER	3.45
$1 \mathrm{THCVC2O}^{\text {c }}$	8.20		
PHILIPS 68	8.25 8.50	RIPMCEIMONT ELECTROLYTIC	

 LC1043/05 MULLARD

\section*{| 4321 |
| :---: |
| |
| 4322 |}

20mm ant sumiz fuses	
100MA-800M4	15p each
1A-5AMP	12 p oech
20wn CuIck BLOw Puses	
100 MA	8p eech
200MA-5AMP	Speech

P.M. COMPONENTS LTD 0474813225 3 LINES DEPT REW SELECTRON HOUSE, WROTHAM ROAD MEOPHAM GREEN, MEOPHAM, KENT DA13 OQY

A SELECTION FROM OUR STOCK OF BRAMDED VALVES
,
-

1 M0079

0

 QQVO3-1
lard
QOV03-10

Terry Weatherley G3WDI

Since the last update appeared in Radio and Electronics World, several dramatic changes have occurred. By the time this appears in print, a new Polar Orbiting Satellite should have been launched.

NOAA-8

The attitude controls on NOAA-8 failed on June 11th, and the spacecraft began to tumble. There appears to be some chance of recovery, but at the present time no systems are being used operationally. The beacon on NOAA-8 is being left on when it does not conflict with the NOAA- 6 beacon on the same frequency.

NOAA-7

NOAA-7 has developed a serious power regulation problem caused by a loss of power supply shunt loads, but at the present time all systems continue to work nominally.

NOAA-6

This spacecraft has been re-activated to replace NOAA-8 as the primary morning spacecraft transmitting on 137.5 MHz . Since July 1st NOAA-6 has been transmitting two channels of infrared data during the night. Depending upon user-response, this experiment may be introduced on NOAA-7.

NOAA-F

NOAA-F was scheduled for launch on November 2nd, 1984. After launch it will be NOAA-9. It will be the primary afternoon satellite with an equator crossing at 1430 local time each day. The
period will be 102.2 minutes and the inclination 98 degrees. As well as instruments concerned with its weather measurements, the satellite will also carry a search and rescue package (SAR).

This package, first carried on NOAA-8, is part of a continuing demonstration to evaluate a satellite search and rescue system.

NOAA-next

The next NOAA in the series has been cancelled for budgetary reasons. However, three more satellites of the advanced TIROS-N type will be used to continue the series into the 1990s.

More trouble

The GOES geostationary satellites have also run into trouble. The failure of the second encoder lamp on GOES-east has had a major impact upon the GOES programme. The encoder lamps are tungsten filament lamps which are used in the control of the VISSR/VAS instrument. GOES-east covered an area from mid-west United States to western Europe and from Canada to South America.

GOES-west was moved to 98 degrees west to cover the Atlantic and part of the Pacific during the hurricane season, and provided vital information during the recent hurricanes. GOES-4 was reactivated at 139 degrees west.
Since GOES-west is not relaying WEFAX data both GOES-4 and GOESeast will be used to relay VISSR data called by GOES-west. GOES-1, stationed
at 131 degrees west, may be used to broadcast WEFAX data using a dish at the NASA/Goddard Space Flight Center if tests are successful. There was speculation that this satellite might be moved to 108 degrees west in November, and GOES-central would possibly then move to 113 degrees west. Life gets complicated up there doesn't it!
The Americans weren't the only ones with problems. Japan's GMS-2 suffered a partial failure of its imaging system in early 1984. GMS-1 was moved to 135 degrees east, GMS-2 being moved to 145 degrees east. During May and June GMS-1 suffered progressive failure in its imaging system. Complete failure occurred in July. Images at six-hourly intervals are still being received from GMS-2. GMS-3 was launched on August 2nd and should be on station at 140 degrees east (and operational) by now.

Celebration

As part of the celebration of the 25th anniversary of Weather Satellites, NOAA are requesting photographs of receiving stations and images received. They hope to make slides and displays showing the high level of professional and amateur achievement since the construction and operation of direct readout stations. This is an opportunity to give something back for all the information made so freely and readily available by NOAA. Material should be sent to:
United States Department of Commerce, National Oceanic and Atmospheric Administration, Washington DC 20233, United States of America. nem

When looking through advertisements in magazines and listening on the air, it is obvious to anyone with two brain cells to rub together that there is a lot of portable and even more mobile equipment being used these days. Most of this is powered by Nicads or lead-acid accumulators (the car battery-idiot!) yet how many people give a thought to the rough treatment that they dish out to their all-important (and expensive!) sources of power?
Considering the cost of all types of secondary cell it is worth taking some care to avoid abusing them beyond the point of no return.
I will deal firstly with the lead-acid accumulator; this type of cell has a nominal voltage of 2 V per cell and a low internal resistance when charged (typically 0.010 hms). I will not go into great detail about the chemical action of this cell, as this is not really necessary and is covered adequately in the many text books available. It is, however, worth noting that the cell is formed of two plates (or nets of plates), the negative being lead and the positive being lead peroxide, when the cell is charged. These are mounted on fead-antimony grids and the electrolyte is diluted sulphuric acid.
It is also important to realise that
during discharge both plates become lead sulphate and water is generated, which lowers the specific gravity of the electrolyte. Towards the end of a charging period it can be seen that oxygen and hydrogen are liberated inside the battery.

NOTE: oxygen and hydrogen in certain proportions are highly explosive. Always charge batteries in a well ventilated area, if not mounted on your car, and never use any naked flames near a battery under charge.
Now that that's over we can go on to the practicalities.

Battery life

How long will my battery stay charged? The best approximate answer to this, apart from your own experience of your power consumption, is to look at the manufacturer's data for your battery. Somewhere, you will find a specification known as ampere-hour capacity (AHC). This will probably be printed or stamped somewhere on the actual battery. The AHC is the product of the rate of discharge in amps and the time of discharge until the manufacturer's lowest charge level is reached.

It is very simple to understand; for example a battery with an AHC of 100 could deliver 100 amps for 1 hour,

Showing variation of terminal voltage

or

'How

not to

assault

your batteries'.

50 amps for 2 hours, 1 amp for 100 hours, 0.5 amps for 200 hours or 200 amps for half an hour etc. In each of these cases the product of current and time is equal to 100 - the AHC of the battery.
How well charged is my battery?
In general, as long as the manufacturer's instructions are adhered to and certain situations avoided your battery should give you a long life. However, you may be interested or need to know the state of charge of your battery.
There are two main indications of this; the terminal voltage and the specific gravity (Sg) of the electrolyte, ie how much water it contains.
As can be seen from the graph, the EMF of a freshly charged cell may be as high as 2.2 V ; however, this falls to 2.0 V almost as soon as the discharge begins. It then stays at this point for the remainder of the safe discharge period and only when the cell is nearly completely discharged will it fall below this level. If this happens there is a possibility that the cell may be permanently damaged.

False sense

So as can be seen, simply measuring the terminal voltage of your cell could lull you into a false sense of security; a much more reliable method is to measure the specific gravity of the acid in the battery.
If you remember, when a cell is discharging water is produced as a byproduct of the reaction. It is then a simple matter to compare the gravity of the diluted acid with that of pure water to find the degree of discharge.
A fully charged cell has a specific gravity of 1.25 but a discharged one only 1.18. The electrolyte goes from being 1.25 times as dense as water to 1.18 times; this can be measured on an instrument called
a hydrometer, which is available quite cheaply from most car accessory shops and is foolproof to use; just follow the instructions on the packet.
The much more informative variations of specific gravity are shown in the graph.

However, if you don't wish to go to this trouble there are other rough indications that a battery is charged.
If the plates are brown and grey alternately. due to the different substances on positive and negative plates, the battery can be assumed to be charged.

If when on charge the plates are gassing freely, then this shows that the battery is more or less fully charged. However, please remember that those fumes given off are highly explosive in certain circumstances.

Caring for your battery

Always keep your battery clean and dry. If possible smear the contacts with petroleum based jelly or grease; this will help to prevent corrosion caused by splashed acid which can come out of the vent holes when the cell is under charge. Keep the acid at the correct level (about $1 / 4$ inch above the plates) by topping up with distilled water when necessary. This is vital to prevent buckling of the plates.
Keep the air vents clear from any debris or you could find yourself in an explosive situation! Avoid heavy currents on charge or discharge or the cell will be damaged by the excessive heat caused. If you want to store the battery then leave it in a charged condition; failure to do so could lead to a fault known as sulphation which if allowed to occur would destroy the battery. Of course, as in all things, conform to the manufacturer's instructions as regards charging/discharging rates and use.

Main faults

There are three main faults that occur with lead-acid batteries. These are detailed below.
Sulphation; this is the formation of insoluble lead sulphate on both plates, caused by discharging the cell beyond safety limits, or by storing in a discharged state. If it is not too severe it can be cured by a long trickle charge, during which the sulphates will disintegrate and fall to the bottom of the battery. There is usually a well provided at the bottom for this type of debris to prevent it shorting the plates out.

Buckling of plates can occur if too large currents are drawn from, or put into, the battery; this can lead to internal short circuits in the plate network of the battery. In severe cases the plate may crack. The same effect can be caused by uneven chemical action on the plates if the electrolyte is not kept topped up. If this happens you may as well throw the battery away.

Showing variations of specific gravity

Corrosion of the terminals can occur when, during charging, acid splashes through the vents and reaches the terminals. These can simply first be wiped clean and greased lightly to prevent further corrosion.

If you follow these guidelines you should get many hours of life out of your battery, and more importantly it shouldn't pack up on you during a field day on a windy hilltop!

Nicads

Now on to the infamous Nicads which seem to power almost every other rig you see these days.

Nicad cells can be used as a direct replacement for dry primary cells in most applications, the only real difference being that they have a lower open circuit voltage of 1.2 V as opposed to the 1.5 V of a standard dry cell. These have one problem, in that their performance is limited below $0^{\circ} \mathrm{C}$, but that also applies to standard dry cells and doesn't really bother us greatly.

These cells have a very low internal

impedance so currents of several amps can be obtained: as with lead-acid cells, this will damage the cell if continued for more than several seconds. Because of this it is an idea to include a fuse in any circuit you are designing which could lead to the cells being shorted if a component were to malfunction.

Trouble free

Nicads are much more trouble free in maintenance, and if obvious precautions are observed, should give no trouble. Because of this, our main interest is in the expected life of the cell before it is worn out. This depends upon several factors, most of which are related to how it is used and charged.
A cell under normal use can be expected to have a usefullife of a couple of hundred charge/recharge cycles. One factor that can limit the life is that of extremes in temperature: both high and low can reduce the life span of the cell. so beware on cold frosty mornings! The cell. in fact, will work best and longest at proverbial room temperature, about 15 to $25^{\circ} \mathrm{C}$ suiting it well.
One area in which Nicads often fail is in charging; the manufacturer's instructions should therefore be carefully followed. Nicads have been known to explode when incorrectly charged, and this makes a mess of anything, or anyone, in the immediate vicinity. This does not, of course, mean that the very best, highly priced charger has to be bought; indeed with a reasonable junk box a suitable one can be built for a couple of quid. A simple yet effective circuit is shown later and is ideal for the given charging currents, or could easily be adapted to give others.

Two ways

There are two ways in which Nicads are often overcharged, both of which damage the performance of the cell in different ways. The first is when there is a slight but prolonged overcharging; this is not too serious and can be identified
by a slightly lower output voltage from the cell than normal. It can be cured by giving the affected cell(s) a deep discharge, but this will slightly shorten the life of the cell.

Excessive

The other type of damage is when the overcharge is excessive; this causes the temperature of the cell to rise and gases are given off. These should escape through a vent hole, but if the build-up is too rapid then the cell may explode. Even if things don't come to this then the life and capacity of the cell are severely impaired because of the loss of some of the active chemicals as gases. This is, unfortunately, incurable.

The best ways to overcome this are to use a charger with a timer or with automatic voltage limiting. When charging the cells they should be in a low state of charge or you may come across the 'memory effect' discussed later. Cells must only be charged in series because the current is constant; if they are charged in parallel each cell will pass a different current and some could be undercharged and others overcharged.

Conversely, if a deep discharge is called for, this should only be done with cells in parallel as each cell will hold a different charge. If they were charged in series it could lead to cells becoming reverse charged, which has a similar effect to excessive overcharging.

Memory effect

The 'memory effect' previously referred to is an interesting phenomena first detected by NASA. It happens when the cell is partially discharged a number of times. The accompanying graph is selfexplanatory for this condition. The effect

can be overcome with little damage to the cell by giving it a deep discharge.

It is fortunate that the memory effect is not sericus and has few long term effects, for how many of us give Nicads a deep discharge every time?

Talking of long term effects, if you are going to store Nicads for some time then do so when they are in a charged state. This will prevent formation of internal short circuits and/or the cell being damaged by formation of chemicals which the charging process will not reverse.

Long life

If all these precautions are taken and the cells well treated generally then they should last for quite some time longer than the manufacturer's rated minimum life.

Earlier on I mentioned a circuit for a

Nicad cell charger, the diagram for which you will find below. It will charge four type 'D' cells in series at constant current with automatic voltage limiting. Tr2 is the current source, with its base voltage stabilised at about 3 V by the two LEDs which also serve as a charge indication. This transistor can be a BC301 or similar. Tr1 gives a voltage limiting action when the voltage across the cells approaches that at the 1 K branch of the potential divider. This transistor can be a 2 N 3638 or similar.
The circuit values shown will give an initial charge current of about 260 mA , dropping to about 200 mA when the voltage across the cells reaches 5.5 V , and to almost zero when the voltage reaches 6.5 V . The cost of components (new), including the transformer, often the most expensive item, is somewhere about $£ 7$.

REW]

LATEST LITERATURE

Clubs, manufacturers, publishers and agents are invited to send details of new books; catalogues, data sheets, etc for inclusion on this page

THE GUIDE TO COMMODORE
 64 SOFTWARE

By John Darling
The author of this volume has compiled a catalogue of commercially available software for this computer, and worked with the co-operation of most of the software houses in Britain.

The programs available are split into seven sections, the first three covering games (arcade, adventure and traditional), the next two covering educational software (4 to 14 years and 14+ years) and the last two covering business software and utility programs.
Within each section the software is listed alphabetically, and each section begins with a short introduction.
All the software is fully described, although not reviewed, with the retailer, price and format (cassette, disk or cartridge). An appendix lists the addresses of the various software houses.
The most striking aspect of this book is the tremendous diversity of software available for the Commodore 64 and the imagination that goes into devising names for the programs (how about 'Revenge of the Mutant Camels'?).

Granada Publishing Ltd, £5.95

INIRODUCING MACINTOSH

By Francis Samish
The Macintosh computer was designed by Apple Computer to be intelligible to the 'average person.' It is intended for the small business user, and aimed at making it easier to operate a computer through using a 'mouse' pointer and pictograms on the screen.
Consequently this is not a 'how to program' book, the intention being that off-theshelf software is used. The author concentrates on describing how to use the
 tage, providing some simple worked examples.
The ideas are set out clearly, with some very good advice given concerning, for instance, copying programs and regularly 'saving' information in order to prevent power failure or operator error from spoiling anything in memory.
Advice is also given on buying software, with a warning to beware rushed-out 'quick-and-dirty' packages which do not make full use of the computer's abilities.
To complement this section there is a brief list of software, with good descriptions, which the author considers worthy of consideration.

The text concludes with a glossary of computing terms which is, unusually, truly 'user-friendly'.

Granada Publishing Ltd, £7.95

AMSIRAD COMPUTING

By Ian Sinclair
The new Amstrad CPC464, claimed to be a major step forward in computing, uses a dialect of BASIC which apparently requires learning almost from scratch if the user has previously used the simple version of the language on earlier makes of computer.
This book complements the manual of the CPC464, and was written while the author was using one of the computers, with the listings obtained from a printer connected to it.
The approach taken is to present the various commands in detail step by step. The author writes in a clear, idiot-proof style, beginning with a chapter on how to set up the computer. He progresses to elementary commands, and then expands on these in such a way that the reader has
covered a fair amount of ground before he has even realised that he is well on the way to programming.

Sound and graphics are covered, of course, as well as windows and other effects.

Granada Publishing, £6.95

THE BEC MICRO ADD-ON GUIDE
 By Allan Scott, Mike Scot

 Rohan and Philip GardnerThis book is intended to give an easily understood outline of peripherals available for the BBC, with an evaluation of quality and value for money.
It is not comprehensive, but of course this would be impossible considering the rapid rate of change in this market. The coverage of hardware available is good, with useful descriptions of the advantages and drawbacks of the various devices written in clear non-technical language (prices, too, are included).
Each type of peripheral has its own chapter, and the scope of the book extends so far as to give a brief mention to the field of control and robotics (which could fill several volumes itself).
The writers are clearly BBC enthusiasts of the first order, but this has not affected their discrimination when it comes to evaluating hardware (in fact it has probably enhanced it, since they will only want the best for their favourite computer!).
For those with a BBC Micro a book such as this will be an invaluable addition to their bookshelves. Others can benefit from the general descriptions of the uses of the various peripherals, but might well find themselves dashing out to buy a BBC after being infected by the authors enthusiasm.

Collins Professional
 and

 Technical Books, £6.95.

South West Aerials

The 1985 catalogue is now available from South West Aerials. This small illustrated booklet contains 21 pages of aerials, amplifiers, diplexers etc, covering most receiving requirements. Also included is a range of TV DXing equipment, including the Waltham 416 6in VHF/UHF TV for System B/G operation (made for the West German market).

The company can also obtain equipment for specific requirements that is not found in the lists. The catalogue is available for 60 pence.

South West Aerials, 11 Kent Road, Parkstone,
Poole, Dorset BH12 2EH.

Data I/O

The latest edition of Data I/O's Product Guide is now available from Microsystem Services (MSS) of High Wycombe, Bucks.
This free booklet illustrates Data I/O's range of PROM and logic device programmers,

GATALOCUES AND BROGHURES

programming systems and software; it also includes a description and specification for each product together with details of the most effective applications.

The wide range of products covered includes a system for programming up to eight EPROM-loaded boards at the same time, a complete design/programming system for over 130 programmable logic devices, and a standalone or host PC controlled system that can program over 1,200 devices.
Copies of the Data 1/O Product Guide can be obtained direct from Microsystem Services.

Microsystem Services,

PO Box 37,
Lincoln Road,
Cressex Industrial Estate,
High Wycombe,
Bucks HP12 3XJ.

Simpson

Simpson Electric Company's test equipment catalogue is available free of charge on application to the company.

This well illustrated publication is divided into five sections covering digital meters, analog VOMs and electrical testers, environmental test equipment, communications service test equipment, and accessories. Complete specifications of the units are included, with the prices prominently displayed.

[^1]

Motorola

Motorola Logic and Special Functions Division has announced the availability of the new Telecommunications Device Data Book.

This publication contains complete technical data for design engineers, and covers Motorola's semiconductor devices which are dedicated to applications in telecommunications.

As well as extensive data sheets, there are application notes and technical articles to aid understanding of systems and devices.

The Telecommunications Device Data Book costs $\$ 2.80$ with discounts for quantities of ten or more, and can be obtained from the nearest Motorola sales office or the company's literature distribution centre.

Motorola Literature

Distribution Centre,
Broadway Building \#1,
616 West 24th Street,
Tempe,
Arizona 85282, USA.

Thorn EMI

The Communications Division of Thorn EMI Electronics has recently published a new twelve page A4 brochure cutlining its capability in terrestrial and satellite communications.
The new shortform catalogue summarises the division's diverse product range, which includes digital microwave links operating at 4.5 , $7.5,13,15,19$ and $22 \mathrm{GHz}, \mathrm{Ku}$ band and C-band high-power travelling wave tube ampli-
fiers, and satellite earth station communications equipment.
Copies are available on application.

Public Relations Department, Thorn EMI Electronics, 120 Blyth Road, Hayes, Middlesex UB3 1DL.

Terrestrial and
Satelite
Communications
Shortrom Catalogue

Maplin

The 1985 edition of Maplin's Buyer's Guide to Electronic Components is now available from Maplin shops and branches of WH Smith.
By extensively sourcing new products worldwide the range of products has been extended over 1984, and all prices are featured alongside the products.
In many cases these prices are lower than before. The catalogue costs $£ 1.35$ retail, or £1.75 including p\&p mail order from Maplin.

Maplin Electronic

Supplies Ltd,
PO Box 3 ,
Rayleigh,
Essex SS6 8LR.

LINSLEY HOOD 300 SERIES AMPLIFIER KITS

Ultra high quality. Mosfet output, Hi-Fi amplifier kits by this famous designer. Two models of identical appearance are Careful design has made these amplifiers capable of superb Cound quality. The delicacy and transparency of the tone quality enables them to outperform, on a side by side comparison, the majority of commercial amplifiers. Building is very easy as almost all components are fitted on easily removed printed circuit boards. Subsequent setting up needs only a simple multimeter to obtain the full specified performance. Both kits come with very comprehensive building instructions
35 Watt Complete Kit - $\mathbf{c 7 9 . 5 0} 45$ Watt Complete Kit cas.so Reprints of Original Articles from 'Hi-Fi' News $\mathrm{C1}$ no

LINSLEY-HOOD CASSETTE RECORDER CIRCUITS

Complete record and replay circuits for very high quality low noise stereo cassette re corder. Circuits are optimised for our equalisation to cater for chrome and ferric tapes. Very easy to assemble on plug-in PC8s. Complete with full instructions.
Complete Stereo Record/Play Kit - $\mathbf{E 2 5 . 2 6}$
VU Meters to suit - E2.30 anch

LINSLEY-HOOD 100 WATT POWER AMPLIFIER

Our complete kit for this brilliant new design is the same size as our Linsley-Hood Cassette Recorded 2, Kit includes all parts tor two power amplifiers with large heatsink area, huge

ALPS FF317U FM FRONT END

Seautiful, precision make High Quality variable capacitor uned FM Front End with Dual-gate MosFet. 2-AM Gangs and 3.1 reduction gear
FM range 87 to $109 \mathrm{MHz} 12 v 30 \mathrm{~mA}$ Max. AGC and AFC. OUR PRICE ONLY £3.99 INCLUDING VAT AND POSTAGE (Circuit if required 35p).
Compact Varicap Copart Varicap tuned modules. U322 is used

COMPLETE STEREO TUNER MODULE

Three band LW/MW/FM Stereo Tuner fully assembled on PC8 $165 \times 85 \mathrm{~mm}$. Supplied with Ferrite rod aerial and band switch fully wired Facility provided to drive tuning meter and stereo only $£ 7.09$ inc. VAT and poot.

STEREO CASSETTE DECK

Following the runaway sellout of our last cassette deck have now obtained a small quantity of an even nicer one. Min features are full auto-stop. Chrome/Ferric Switch. Manual ecord level control (invaluable for computer use), twin VU meters and $3-d i g i a y$ circuitry control keys and cassette carrier/door Very ood quality and only E21.80 inc Vat and Post Circuit diagram and notes 33p.
SET OF 5 SUB-MINIATURE IF TRANSFORMERS for high quality AM tuner. THE SET ONLY 38p!
Application circuit required.
Suitable ferrite rod antenna.
AM VARICAP DIODE BARGAIN Due to a fantastic bulk purchase we are now able to offer the super SMV2012 varicap diodes at unbelievable prices. These are a wide range diode or use in AM tuner applications They are also supplied in metched pelr only 25p. Matched 4 only 80p.

AM TUNER COIL SET Set of 4 coils for long medium and short wave AM tuner. Coils are LW Osc. MW Osc, SW Osc and SW Aerial. Normally 30p each. OUR PRICE FOR THE SET ONLY 55p
Application circuit using coils and matched pair of SMV2012 varicaps. 35p 168A E162 455KHz IF Transformer30p ع1.30
ع1.00

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do your tapes lack treble? A worn head could be the problem. Fitting one of our replacement heads could restore performance to better than new! Standard mountings make fitting easy and our TC1 Test Cassette helps you set the azimuth spot-on. We are the actual importers which means you get the benern or fower prices for prime parts. Compare most popular heads, all are suitable for use on Dolby machines and are ex-stoc
HC20 Permalloy \$tereo Head. This is the standard head fitted as original equipment on most decks.............................5.11 HM90 High Bete Permalloy Hoad. A hard-wearing, higher performance head with metal capability $\mathrm{HS16}$ sendust Alloy \$uper Head. The best head we can find.

Longer life than Permalloy, higher output than Ferrite, | Longer life than Permalloy, higher output than Ferrite, |
| :--- |
| fantastic frequency response. | Hoss 1 4-Treck Hoed for auto-reverse or quadrophonic use. Full specification record and playback head.................... 89.73 M4481 Latest version Double Mono (2/2) record/Play head. Replaces R484... sm168 Standard Mounting 2/2 Erase head. Compatible with H524 Standard Erase Head. Semi double gap. high efficiency

1.50
8.90 H581 Metal Tape Erase Head. Full double gap ع4. 90 Piease consult our list for technical data on these and other
Special Purpose Heads.
HART TRIPLE-PURPOSE TEST CASSETTE TC1
One inexpensive test cassette enables you to set up VU level, head azimuth and tape speed. Invaluable when fitting new heads Only ca.es plus VAT and 50p postage.
rape tre build up of residual head magnotisation causin noise on playback - [4.54 Full details of the entire range of HART products is contained in our illustrated lists. Ask for your FREE copy NOW.
Enquires for lists are also welcome from overseas but please let us have three IRCs to cover the cost of surface post or 5 IRCs for armail.
Please add part cost of post, packing and insurance as follows
parts is $£ 114.46$ but our special introductory prices for all parts bought together is only $\sum 108.80$. PC Mounting Wav ع1.60 WLAMD OVEREEAS
Orders up to $£ 10-50 \mathrm{p}$ Postage at cost plus $£ 2$
Orders 2 io $\varepsilon a-2$ documentation and handing
All price exclude
VIT unless stated.
Please Note: New Phone Number: (0691) 652894
Personal callers are always very welcome but please note that we are closed all day Saturday.

GENERAL COVERAGE RECEIVER KIT FCR 130

This is a complete kit which allows you to build and learn as you go. Suitable for anyone who has an interest in radio and can manage a soldering iron. It really is within the scope of most beginners. You don't have to be a 'semi-professional amateur' to understand how it works as we supply very comprehensive and complete instructions, written in plain language. Well spaced components so its OK for fat fingers! The receiver tunes, in 3 bands from 1 to 30 Mhz . Solid aluminium tuning and control knobs and base panel. Black anodised front panel. Nice to build . . . nice to look at . . . nice to own

Model FCR 130 Receiver kit

* 30:1 Geared analogue tuning
* 3 Band switch with spare position
* Tape record socket
* Signal Meter
* Internal speaker + On/Off sw.
* A.F. Gain and Tone Control
* AM, CW, SSB

COMMUTECH (Devon) LTD

Chapel Street, Holsworthy,
Devon EX22 6AR Tel: (0409) 253504

Radio \& Electronics World
 PCB's

May '84 Signal Generator... 1.90
Frequency meter.
$£ 4.30$
S meter display
£0.99
Smeter control ... $£ 1.99$
July '84 VLF converter ... £1.60
Teleprinter Interface ... £1. 45
Sept '84 5ch Scanner main.. $£ .92$
5ch Scanner display.. £1.40
Nov '84 Base mic... £1.50
Prices include VAT \& P\&P
KITS and other PCB's also available SAE for full list.
Edwardschild Ltd. (0277) 216433 Usus 28 Shenfield Cres, Shenfield, Essex CM15 8BN

PRINCIPLES OF MORSE DECODING AND $Z 80$ MODE 2 INTERRUPTS

Radio amateurs in particular may be interested in some details of how to tackle the problem of decoding Morse signals with a computer, since it has become commonplace to be doing so nowadays.
The use of RTTY and data-transmissions over short wave links is spreading rapidly into its guaranteed future, along with visual display on TV monitors and error-checking repeat-request microprocessor circuits.
So this general field of activity is going to become normal procedure for radio operators before too long.
Having just written such a program to run on a Nascom-3, using 1 K byte of RAM, it was concluded that 95% of the work was not dependent on the machine being used and so could be of interest to all computer users.
Z80 code experts may like to know about the Mode 2 interrupt techniques employed, as it makes a change from inputting pulses via the conventional serial UART or PIO running on 1 bit, and furthermore the method of pulse analysis has applicability to many data streams other than Morse code, and so could be adapted to industrial uses.

Easy facillity

The Nascom bus line $22 \overline{I N T}$ is an open collector pulled up to +5 V , and any circuit sinking $6-10 \mathrm{~mA}$ can pull it to zero volts in order to cause a maskable interrupt. Thus an easy facility exists into which a Morse signal can be fed, and this will form the core of a routine which decides whether a space or mark (dot or dash) is being received, prior to counting delay loops to time the durations of either.
However, the pulses supplied to the computer should be clean and fairly square, so you may have to build an interface from your communications

DR. MA KIAM-LAINE

receiver. The Elektor (May 1983) circuit is an excellent solution for most situations, but does not sink enough current at its output in order to interrupt the Nascom. The simple addition of a PNP transistor will cure that aspect (see Figure 1).
Reference to any Z 80 book will show there to be three modes of maskable interrupt possible. Mode 1 always jumps to location 0038 HEX to find its processing routine, but this may not be convenient, especially if you have a ROM monitor over that area.

Careful use

Mode 0 jumps to any of eight restart addresses or executes a call instruction, but all require the interrupting device or peripheral to have circuitry to put a necessary instruction byte onto the databus at the right time. Provision of
such circuitry can be avoided by careful use of Mode 2, if you can determine what state your databus is in at the time of interrupt.
The principle of Mode 2 is a two stage jump. The first address is obtained by combining the I-register contents with the databus value; the $Z 80$ goes to that address to get the contents of it, plus the next RAM byte, to form the destination address at which the processing routine must be placed. Sounds complicated doesn't it? But it isn't too bad once you study it, and it allows great flexibility in multi-peripheral systems.
Now both the l-register and the two RAM bytes can be loaded by program to any value you want. The only problem is to know what value the databus will be at by itself at the time of interrupt, if no external circuits set it to any other value.

Fig 1 Interface circuit for cleaning the pulses supplied to the computer

One might think it would be all lines high at +5 V giving (FF) HEX, but on the Nascom at least it was found to be at (BE) HEX when exiting from a JR-2 loop, and (00) HEX from a NOP window provided by the instructions:

$|$| EI | enable interrupts
 NOP |
| :--- | :--- |
| window during which | |
| DI | INT is allowed to occur
 disable interrupts |

Thus it might be expected to be at other values, depending on the type of instruction being executed at the time of interrupt. Maybe these values are published somewhere?
Anyway the databus can only adopt 256 different states, so by filling a spare block of RAM with a chosen symmetrical (high byte same as low byte) first stage address one can catch it wherever it lands in that block, and then do a binary reduction on the block length to converge on its exact value, which we shall refer to as (WW) HEX.
So we now know how to use Mode 2 by program only - with no hardware:

IM2	set Mode2
LD A, ZZ) load l-register
LDI, A	\} with ZZ
El	
NOP	
DI	

The following must also be provided:

Address ZZWW (ZZWW +1)	Content YYX low byte YYigh byte start of processing
	routine

$(W W)=(B E)$ HEX in this case.
We can now progress to a mark or space discriminating routine:
$J R+3$

where location 10 B 2 is being used as a flag to record whether each previous loop was interrupted (yes $=01$) or not.
Returns from interrupt go back to the window and continue looping.
That is all we need to say about interfacing and interrupt catching; the rest is the more straightforward job of counting the lengths of each space and
mark to decide whether:
1 the marks are dots or dashes (dash should equal 3 dot lengths);
2 the spaces are inter-mark (should equal 1 dot length);
3 the spaces are inter-characters (should equal 3 dot lengths);
4 the spaces are inter-words (should equal 5 dot lengths).
Note the use of the word 'should'!

Erratic

Even if you are accustomed to reading Morse you may not have adequately appreciated how erratic most senders' styles are, although the ear/mind of a listener has the faculty to decide what the sender was probably intending to send rather than what electrically was transmitted.
One famous radio operator in the Ukraine regularly sends his own CQ and callsign at 100 wpm as one continuous string of dots and dashes, whereas the rest of the message comes in at 20 wpm . Ironically the poor computer can't cope with that sort of burst unless 'signature' storage routines are incorporated, but this is hardly worth the effort for normal non-espionage decoders like ourselves.
However, this underlines the need for our program to be able to automatically adjust itself as the incoming speed varies - at least over a defined range and to be tolerant of extra long gaps or dashes etc.
Most hand-sent Morse one hears is in the range $8-25 \mathrm{wpm}$, so the program should cover, say, $5-40 \mathrm{wpm}$ for normal
use. The method used for auto-adjusting the speed is to maintain a store of dot, dot*2, dot*3, and dot*4 lengths and continually update the values to that of the last dot which came in. All other lengths are compared with this store, so it will always provide a valid reference within its range.

The initial dot length setting is calculated for a nominal 12 wpm input to minimise the chance of the very first dash of a fast sequence being mistaken for a dot, but either way the first true dot would soon locate and immediately thereafter adjust.

Duration

Any duration less than dot*2 is said to be a dot or inter-mark separator.
Any duration $\geqslant d o t * 2$ but less than dot *4 is said to be a dash or inter-character separator.
Any duration $\geqslant \operatorname{dot} * 4$ is said to be an inter-word separator.
Regarding the so-called 'speed' of Morse, you have to note that its (X)wpm rating is a very imprecise statement on its pulse composition. Morse characters vary from 1 to 6 marks in length, and some contain all dots and others all dashes, so the shortest character is ' E ' at 1 dot length while ' O ' (5 dashes) is $5 * 3+4=19$ dot lengths.
20wpm plain language is officially reckoned to be equivalent to 16 wpm random code, since the latter contains fewer short characters like E, A, l etc, but even that statement is inadequate. Therefore, we must plan for worst-case

Many micro-computers use the $Z 80$ processor chip, including the Tatung Einstein (reviewed in R\&EW December)

sequences of all Es or all Os so that the program won't fail in such events.
It has been calculated that the worstcase dot length at 50 wpm should not be less than 10 mS .
Furthermore, regarding 'durations', you will need some perspective on the speed of 280 instruction execution relative to the incoming Morse as well as a short excursion into 'real time' programming.
Even though you think the Morse may be fast, the $Z 80$ is a thousand times faster, so if a pulse of say 100 mS was to be measured it would be unnecessary to look at it every $10 \mu \mathrm{~S}$ (giving a count of 10000). Instead we build a delay loop of known duration (about 2 mS in this case) and look at the pulse only once every 2 mS (giving a count of 50).
Many $Z 80$ machines run at 2 MHz , which means $1 / 2 \mu \mathrm{~S} /$ cycle, and the total time for any particular instruction to execute is published in most books.

So a loop such as:

LD A,7F (=127 DECIMAL)
\rightarrow INC IX $\underset{\substack{\text { TIME } \\ \text { CONSUMEAS } \\ 10 \mathrm{CYCLES}}}{\text { CYEC }}$
DEC IX\} CONSUMEAS 10 CYCLES
DEC A
4 CYCLES
12 CYCLES
will have a delay of $(10+10+4+12) * 1 / 2=$ $18 \mu \mathrm{~S} / \mathrm{loop}$, or $18 * 127=2.286 \mathrm{mS}$ to decrement the A-register to zero.
Actually the 'LD A, 7F' takes 7 cycles once on entry, and 'JPNZ' only takes 7 (instead of 12) cycles once on exit, but this hardly affects the calculation.

'Real time'

Incidentally, the definition of 'real time' programming simply means that the data for analysis by a program is only available for (usually short) durations. So, by contrast with permanent data which you could take all day to look at, the real time data has to be processed fast enough not to miss it or falsely measure it, and thus the actual cycle times of program steps becomes very important. Bad news for programmers who normally write yard long bird's nests of inefficient coding!
So: every time we call the 'mark' or 'space' routines we will also call 'delay' prior to adding one to a counter. Obviously we can only sum the count of a mark at the instant it changes to a space and vice versa, so the first instruction in a 'mark' routine has got to be to call 'space length' to sum the previous duration and vice versa.
An 8-bit location is used to store the
marks from an incoming character, and a pointer moves along it setting logic 1 for a dash and logic 0 for a dot, until a space \geqslant 'dot $\star 2$ ' says the character is complete and ready to decode and print, or display on the VDU. If the space is also $\geqslant{ }^{\prime} \operatorname{dot} * 4{ }^{\prime}$ the character must have been the last in a word, so output a VDU space as well.
'Decoding' consists of a table holding two HEX values for each Morse character. The first value is that of the 0 s and is built up in the character store, and the second is its ASCII equivalent required for printing. Thus the table has to be searched in steps of two to find the first value, then one more step to get its ASCII value.

Tricky

There are admittedly some tricky points to include in the general program, but all describable as 'normal' to experienced programmers, so no further detail is given at this stage.
The purpose of this article is to outline the primary approach techniques to the problem. Many programs to suit particular machines are nowadays advertised in magazines, so unless you are addicted to 'knowing how its done', you'll save a lot of headaches by just buying one for $£ 5!73$ and good DX...Dr Kiam-Laine.

FREQUENGY COUNTERS Low cost

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere.

* Measureing typically $2 \mathrm{~Hz} \quad 1.2 \mathrm{GHz}$
* Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at 1 GHz
* Setability 0.5 ppm
* High Accuracy
- Battery or Mains
* Factory Calibrated
* 1-Year Guarantee
* 3 Gate Times

NOW AVAILABLE WITH TCXO OPTION
PRICES (nc adaptoricharger, $\mathbf{P} \& \mathrm{P}$ and VAT)

	METEOR 100	$(100 \mathrm{MHz})$
METEOR 600	$(600 \mathrm{MHz})$	$£ 11.145$
METEOR 1000	$(1 \mathrm{GHz})$	$£ 192.55$

Illustrated colour brochure with technical specification and prices available on request.

PL Designed and Manufec
Britain.

Black

BLACK STAR LTD, 4 Stephenson Road, St Ives, Huntingdon, Cambs, PE17 4WJ, England. Tel: (0480) 62440 Telex: 32339

A GREAT MAGAZINE FOR ALL ASPECTS OF PRACTICAL AMATEUR RADIO

Bringing you better construction projects than any other magazine All the latest news in communications and electronics technology

- Reception reports Shortwave, DX-TV, ATV
- The latest news in the Amateur Radio World
- Computer hardware and software features

SUBSCRIBER BENEFITS

Take out a POST FREE (UK) Sub while offer lasts

- Delivery to your door by publication date each month
- Inflation proof-price guaranteed for 12 months

On sale NOW at your newsagent and at equipment dealers

SHORT WAVE NEWS FOR DX LISTENERS

By Frank A Baldwin

All times in GMT, bold figures indicate the frequency in KHz

n,the previous issue, some of the stations located in Bolivia and currently operating on the 60 metre band (4750 to 5050) were brought to the attention of readers. In this instalment some more Bolivian stations in this band are listed, together with those on the 90 metre band (3200 to 3400) which are reported from time to time in the SWL press.

Probably the most frequently reported Bolivian on the LF bands is Radio Illimani on 4945 located in La Paz, from where it is on the air from 1100 (Sunday from 0900) to 0400 (Sunday until 0300) but has recently been reported operating on a 24 -hour schedule. With a power of 10 KW , it identifies as La Voz de Bolivia and operates in parallel on 6025. The snag with the former channel is that it is also occupied by no fewer than three Brazilians, one Colombian and one Uruguayan, the real problem being Caracol in Neiva, Colombia on a 24-hour schedule in the Caracol network.

On 4991 there is the less frequently reported Radio Animas in Chocaya, which would be quite a catch for any UK based DXer to log. R Animas is scheduled from 1100 to 1400 , from 1500 to 1900 and from 2100 to 0400 , only the latter period of course being of any use to us here in these northern climes. The power is 1 KW and the snag is that the more powerful Radio Barquisimeto in Venezuela is on the adjacent 4990 channel from 1000 to 0400 at 15 KW .
Go up to 5030 sometime during its 2130 to 0100 (Saturday until 0300) operating period and you may be fortunate enough to hear Radio Cuarta Centenario in Tupiza from its 1 KW transmitter, through cochannel QRM caused by the 15KW Venezuelan Radio Reloj Continente in Caracas. This has been done by several UK DXers including the writer just recently.

That just about winds up the list of Bolivians that one could reasonably expect to log here in the UK with some dedication and luck, but before ending the Bolivian list of probabilities, mention will now be made of some even more difficult targets.
The 90 metre band is a difficult hunting ground for most of us DXers, to say the least.
It abounds in commercial QRM which necessitates the use of a highly selective communications receiver, preferably attached to an efficient outside aerial system via an aerial tuning unit.

Imparting information to active SWLs and DXers is the object of this monthly articlethe times, the channels and other relevant information are published here for guidance.

Central African Republic

Bangui on a measured 5034.5 at 0500, YL with the station identification Radio Centrafrique' and a newscast in French. With a power of 100 KW , Bangui is on the air from 0430 to 0700 and from 1630 to 2300 , but the frequency can vary from that shown down to 5032 on occasions. Bangui is a port on the River Ubangi and is the capital of the Republic.

Egypt

Cairo on 9475 at 1938, YLs with songs and local-style music in a programme of the Arabic Domestic Service, which may be heard on this channel from 1800 to 2345.

Djibouti Republic

Radio Djibouti on 4780 at 0328, OM with a talk in a local language, presumably Somali, the transmission overlaying some weak interference from the USSR station on the same channel. R Djibouti now has a 20 KW

On 3310 there is the often reported Radio San Miguel in Riberalta which, despite its low power of 0.5 KW , does succeed in putting a signal into the UK. Logged on several occasions by the writer and other DXers, its schedule is from 1000 to a variable closing time of 0300 . Any snags? Of course, aren't there always! This time it is the frequency that can be variable in addition to the closing time. However, just tune either side of the $\mathbf{3 3 1 0}$ mark and you may succeed with this one.
A recently reactivated Bolivian station is Radio Viloco,

Viloco on 3340. It is scheduled as operating from 1005 to 0130 with a power of 1 KW .

Lastly there is Radio Camargo, Chuquisaca on 3390 at which point on the dial it is listed as working from sign-on at 2230 to closing at 0200 (Sunday at 0100). It has a power of 1 KW but is rarely heard by DXers.
The main snag with these last two stations is the cochannel and surrounding commercial QRM, but then that is a feature of the 90 metre band one must contend with for any eventual success in the Bolivian quest on this LF band.

AROUND THE DIAL

transmitter and operates from 0300 to 0800 (Friday 0500 to 0900) and from 0900 to 1900 (Ramadan until 2200) in Somali, Afars and Arabic.

Gabon

Moyabi Relay on 21695 at 1540, with a relay of Radio Japan, Tokyo featuring a talk on Japanese traditional food during an English transmission directed to America, Europe, the Far and Middle East, timed from 1500 to 1600.

Mauritania

Nouakchott on 4845 at 0634, YL with chants in a local vernacular complete with pipe music accompaniment. This 100 KW transmitter is on the air from 0600 (Sunday from 0800) to 0900 and from 1800 to 2400.

Namibia

SWABC (South West Africa Broadcasting Corporation), Windhoek on 3270 at 1927, OM with a talk in vernacular then into a programme of light orchestral music - the CW QRM permitting! Windhoek is scheduled from 1615 to 2200 and from 0358 to 0515. There is also an All Night Service from 2200 to 0358.

Nigeria

FRCN Kaduna on 4770
at 2025, OM with a talk in Hausa. Kaduna is timed on the air from 0400 to 0100 with a power of 50 KW , and the transmission heard was that of Channel 2 which uses English and Hausa languages.

South Africa

RSA (Radio South Africa) Johannesburg on 25790 at 1315, OM with announcements during an English programme for Africa, Europe and the Middle East and timed from 1300 to 1600.

Tanzania

Dar-es-Salaam on 5050 at 1936, OM with a song in Swahili complete with accordion background music. Radio Tanzania on this channel is on the air from 0300 to 0700 with the National Service, and the Commercial Service from 1300 to 2015, all in Swahili. The power is 10 KW .

Tunisia

Sfax on 15225 at 2011, OMs with songs and music in the Arabic Domestic Service which may be logged on this frequency from 1800 to 2330.

Brazil AMERICAS
 Radio Educacao Rural, Campo Grande on 4755 at 0143, YL with a sad and slow

song in Portuguese then OM with the station identification complete with echo-effect at 0145. The schedule is from 0800 to 0500 and the power is 10 KW .
Radio Timbira do Maranhao, Sao Luis on 4975 at 0232, YL with a pop song in Portuguese. This programme was also in parallel on 5045 Radio Cultura do Para, Belem. Useful things these memory banks, one can rapidly switch from one channel to another in order to determine parallel operation. R Timbira operates from 0800 to 0300 with a power of 2.5 KW .

Colombia

Radio Super, Medellin on a measured 4877 at 0302, OM with a newscast of local interest in Spanish. The schedule of this 2 KW transmitter is around-the-clock but the frequency is variable from 4875 at times.

Ecuador

Emisora Gran Colombia, Quito on a measured 4910.8 at 0256, OM with folk songs in Spanish. This station is on the air from 1100 to 0500 with a power of 10 KW , but it is not quite as simple as that for those who aspire to log this one. The frequency can, and often does, vary from 4910 to 4911 and the transmission times can vary from closing at 0400 to 0500 but at times working around the clock.

China

Xinjiang PBS, Urumqi on 4735 at 0111, YL with a talk in the Uigher Home Service, which is on this channel from 2300 to 0125 and from 1030 to 1730, and including relays from R Beijing from 0030 to 0125 and from 1300 to 1355. Xinjiang also relays the R Beijing Foreign Service in Russian from 1800 to 2055, this being jammed by Moscow.

Radio Beijing on 7010 at 1920, YL with announcements then some Chinese music during the Rumanian programme for Europe timed from 1900 to 1930.
Radio Beijing on 7035 at 1923, YL with a talk in the Russian programme, jammed of course. Both these amateur band intrusions spoil the chances of any CW DX; I
most certainly have great sympathy for the 40 metre key bashers. In desperation around the times quoted I usually resort to using Top Band for my dots and dashes listening sessions - but see later.

India

AIR (All India Radio) Hyderabad on 4800 at 1557, YL with a talk in English about Vietnam. The schedule is from 0025 to 0215 and from 1200 (March to April inclusive from 1130) to 1740. There are English newscasts at 0032, 1230, 1530 and 1730.

AIR Delhi on 4860 at 1540 , OM with a newscast in English. This one operates from 0130 to 0135 and from 1235 to 1315 with a programme for the armed forces and from 1330 to 1335,1345 to 1415,1420 to 1435 , 1445 to 1630 (variable) and from 1730 to 1740 with English newscasts at 1430,1530 and 1730 with a power of 10 KW in the North Regional Service.
AIR Delhi on 11620 at 1929, OM with a song in Hindi, YL with announcements and the station identification in the English transmission for the UK and West Europe, scheduled on this channel from 1845 to 2230.

Pakistan

PBC Islamabad on a measured 4758.2 at 1526, OM with a talk in a local language, presumably Pushtu or Baluchi. Also heard a few days later when closing at 1600 but on a measured 4762.4, so the frequency is rather erratic to say the least.

United Arab Emirates

Dubai on 15320 at 2047, recitations from the Holy Quran, OM announcements and station identification in Arabic, the national anthem and off at the end of the Arabic Service directed to Europe and North Africa and scheduled from 1645 to 2050.

Vietnam

Hanoi on 10040 at 2041, YL with a talk about border violations. The English transmission is timed from 2030 to 2100 and beamed to the UK and Europe.

Yemen Arab Republic

Radio San'a on a measured

4852 at 0314, recitations from the Holy Quran. The schedule is from 0230 to 0700 (Friday until 1000) and from 1000 to 2130 (Ramadan until a variable closing around 2230). The power is 100 KW .

EUROPE
 Albania

Tirana on 9500 at 1941, YL with the news and programme in English for Africa timed from 1930 to 2000.

Greece

Athens on 15630 at 1846, OM with a newscast of local events in an English programme intended for Europe and scheduled from 1840.

Hungary

Budapest on 6025 at 1930, YL with station identification then OM with a newscast in the English transmission for Europe timed from 2000 to 2030.

Iceland

Rikisutvarpid on 13797 at 1910, YL and OM with a discussion in a relay of the Domestic Programme 1 for Icelandic seamen, scheduled from 1830 to 2000 but sometimes extended.

Rumania

Bucharest on 11940 at 1943, ballet music during an English presentation for Europe timed from 1930 to 2030.

SOUTH FAST ASIA
 Australia

Melbourne on 7205 at 1605, OM with a newscast of world events, this English transmission also being heard on the parallel 6035 channel. This newscast is timed from 1600 to 1610.

Indonesia

RRI (Radio Republik Indonesia) Ujung Pandang on 4719 at 1550 , YL with a slow sorrowful sounding song in Indonesian. The schedule is from 0800 to 1600 and the power is 50 KW .

RRI Jakarta on 4774 at 1554, OM with announcements in Indonesian and then into a programme of gamelan music.

Jakarta is on the air from 2158 to 0100 (Sunday until 0200) and from 0800 to 1300 (but sometimes until
1600). The power is 50 KW .

RRI Yogyakarta on 5046 at 1546, YL with songs in Indonesian, gamelan music as the accompaniment. The schedule is from 2200 to 1605 and the power is 50 KW .

RRI Pekanbaru on a measured 5882 at 1555, OM with a song in Indonesian. Pekanbaru is on the air around-theclock with a power of 1 to 5 KW and the frequency can vary from that reported here up to 5886 on occasions.

Singapore

SBC Singapore on 5052 at 1547, YL with a pop song in English, YL announcer. The schedule is from 2200 to 1605 and the power is 50 KW .

CLANDESTINE

'Voice of the United Muslim Fighters of Afghanistan' on 15050 at 1505 , OM with a talk in vernacular, presumably Pashto/Dari, being jammed with an overlay of a Moscow programme and identified in CW as 'Gl'. Also logged in parallel on 11630 with the attendant jammer 'BG'. The schedule of VoT United Muslim Fighters of Afghanistan is from 1500 to 1600.

NOW LOG THIS

Radio Difusora San Martin, Tarapoto, Peru on 4810 at 0443, OM with a folk song in Spanish then OM with the station identification. RD San Martin is on the air from 0930 to 0500 but sometimes works around-the-clock and has a power of 1 KW .

TOP BAND
Just for a change from listening on the broadcast bands, I occasionally venture on to the CW allocations of the amateur bands - just to keep my hand in as it were with the dots and dashes. Two quick visits to the limits 1835 to 1851 on successive evenings resulted in signals being heard from DL1GK/HB0, FOAHY/FC, Gl3YFY, I2AY, PAODIN, PA3CWL, SM6CST, UQ2GMB and UQ2PQ.

Well, at least it made a change, and if Toby Jug of Chatham on the CB Channel 13 at 0413 was atop the North Downs at Bluebell Hill then I can verify his signals were getting well into East Anglia.

COMPLETE RANGES OF:

*CAPACITORS:

Ceramic and electrolytic from pF to nF (typical quantity 2000).
Large value electrolytics up to $44000 \mu \mathrm{~F}$ (computer grade).
*RESISTORS: $1 / 8 \mathrm{~W}, 1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}$ (5\%)
Mostly carbon, some metal film (typical quantity 4000).
Resistor networks (S-I-L, D-I-L - typical quantity 2000).
Thermistors.

THOUSANDS OF...

*SWITCHES (SPDT, DPDT, etc - many high powered, also microswitches)
*CONNECTORS (jack sockets and plugs, chocolate blocks, fuse-holders, DIN plugs and sockets).
*TRANSFORMERS (audio, mains, PCB mounting, etc).
*INDICATORS (neon, large quantity,full range of colours).
*TRANSDUCERS (loudspeakers, buzzers).
*PONTENTIOMETERS (single and dual-gang, carbon and wire-wound, some switched, pre-sets).
*METERS (small current and signal meters).

* CHOKES and MAINS FILTERS

MISCELLANEOUS ITEMS INCLUDE: Cathode ray tubes, aluminium boxes, single-sided copper-clad board, heatsinks, nuts, bolts, washers, grommets.
Also various other items in smaller quanitities, including some rare and difficult-to-obtain pieces (We regret that due to the massive range of stock, no lists are available) Various top brands: Plessey, Siemens, ITT, Sprague, Papst, Philips, Motorola, NEC.

ENQUIRIES - Please contact:
Mr David,
Goldrange House,
20 Middlesex Street,
London E1.
Tel: 01-247 3328/3329
Telex: 892460

THIS MONTH:
 A special look at the Leicester Amateur Radio Show, where QSOs abounded

Friday 26 October saw us up bright and early in order to get away in plenty of time on the journey to Leicester for 1984's Leicester Amateur Radio Show.
We arrived at Granby Hall, venue for the show, after a trip blessed by a crystal clear sky and the first few hours of the day's glorious sunshine. (Duncan, this is a technical journal, not a breeding ground for poet laureates. Stop waxing lyrical: let's have some facts - Ed).
We found a substantial queue restlessly awaiting the opening of the doors, by then only a matter of minutes away.
This hall must be close to ideal for such a show. It is spacious and well-lit, with facilities which include an efficient cafeteria and a comfortable, well appointed lounge with a bar (although from early lunchtime the staff of these were hard-put to cope with the sheer number of people demanding service).
This is the twelfth amateur radio show staged here, of which two (this and the previous one) have been arranged by the present organisers. The show committee consisted of members of the Leicester Repeater Group and the Leicester Radio Society.

Exhibitors

There were about 60 exhibitors present, and John Theodorson G4MTP, the committee chairman, told me that they could easily have filled half as much space again.
However, John pointed out that the feeling amongst the organisers was that a larger show would have been at the expense of making it a more impersonal affair, losing something of the friendly and relaxed atmosphere.
In addition, of course, a show with more traders exhibiting and only a limited increase in attendance would mean greater competition for the available spending money, and consequently a smaller slice of the cake for each dealer. With the present arrangement it would seem that everybody's happy.
According to Geoff Dover G4AFJ, the committee treasurer, last year's show was hugely successful, with approximately five thousand people attending over the two days.
On the early showing (I talked to Geoff on Friday morning) this one seemed set to do rather better. Similarly, secretary Frank Elliot G4PDZ told me that last year all the exhibitors had been happy with the response (when we talked sometime
after the show he said this year he had certainly not received any unduly adverse reports).
Frank was certainly in a position to pass comment on this particular subject, since he runs a local electronics business and had a stand himself at this show (stategically sited near the entrance to the cafeteria and bar!).
Among the many interesting items on display at the show were some new products from some well established manufacturers.
On the day before the show South Midlands Communications had received three new Yaesu units, which were on display for the first time. These were the FRG8800 general coverage receiver, the FT270RH high power two metre mobile, and the FT270R $2 \mathrm{~m} / 70 \mathrm{~cm}$ full duplex rig.
Another relatively new product present was the TAU Systems SPC3000 ATU (which is fully reviewed in the December edition of Amateur Radio). The number of ATUs sold on the spot, with a price tag of $£ 350$ or so (a little more than pocket money for a show like this), is ample testimony to their quality.
Over on the muTek stand, their relatively recent transverter was 'shifting well', according to Chris Bartram. They also had a microwave system set up, using the new Gunn diode back end (see

Product News, November) and were maintaining a QSO with the Microwave Society in the club section (which certainly made a change from the numerous handhelds that are always in action at these events).
This club section was situated just off the main hall, and partly due to the lower ceiling here was given a somewhat more intimate (and warm!) atmosphere.
During the afternoon I talked to Glen Ross G8MWR on the Microwave Society stand, who said he had been swamped with enquiries during the morning. They had sold out of much of the equipment on offer, and had gained many new members (the society now includes a member from as far away as Nairobi; they love him, since he's the first ever to send three years' subscription in advance!).
Glen was providing a setting-up service for anyone bringing microwave equipment along to the rally, in return for which all he asked was a nominal few pence in the contributions box (he'll be applying for charitable status next!).
He said there has been a large increase in microwave operation in the last year or so (funnily enough, since the Microwave Society started up!), a view shared by Chris Bartram.
This may be due in part to the low cost of setting up on microwaves; Glen had a unit on his stand which cost about £30 in total.
This year the Microwave Society had an 82% renewal rate for subscriptions, which is very high considering the number of people who join such groups on impulse and don't usually renew.
Nearby on the G-QRP Club stand were three gentlemen who clearly took a very relaxed attitude to the show (appropriate perhaps?), but nevertheless professed

to being very busy. Fortunately one of them was able to summonup enough energy to leave his chair and talk to me!
He pointed out that you don't need state-of-the-art technology to succeed in the hobby, and you can get on the air for a very low figure. Anyone can build the HF transmitters involved (which is in itself an absorbing hobby), and the members of the G-QRP club include some very high-level technical experts. The design of equipment for QRP operation is really very good, and selectivity can be as good as, if not better than, commercially available black boxes.

Membership of the G-QRP Club is, of course, centred in the UK, but there are also a good many members in the USA. The club now has members in 68 countries, and recently gained their first member from the USSR, UA9CDC.

They already have members in most of the Eastern European countries, who are all enthusiastic participants (they must, through necessity, build all their own equipment).

The lads from the G-QRP club were at Leicester primarily to provide information, since they found at the NEC that they were deluged by people wanting to buy their merchandise.

BARTC

Another group who appeared to be overwhelmed at the Leicester show were the staff on the BARTG stand. There was considerable interest shown in data transmission, and when I talked to them during the afternoon they had already sold out of some of their equipment. The number of new members enrolled here was, I'm told, very good for such a show.

The Radio Amateur Invalid and Blind Club were represented. Francis Woolley G3LWY pointed out that they attend these shows to provide a meeting place for members, and to give out information to people who might know someone who could benefit from the organisation.

This club is worth sparing a thought for, since I know many enthusiasts are too
busy seeking the bargains at shows and rallies to give much notice to a stand taking such a low-profile stance as this.

The BATC, with membership at almost 2000 now, seemed happy with the response to their stand. Tom G3LMX said that, despite what many people think, the cost of ATV was really very low (this seems to have been a common theme in the club section).
If you are already on 70 cm the cost of setting up could be less than $£ 100$ (approximately $£ 30$ for a receive converter and £30 for a small transmitter, with cameras available quite cheaply at rallies).

On display at the Leicester Repeater Group's stand was their latest unit. This repeater consists of two receivers and two transmitters; one of each is operational at any time, and if it goes down for any reason the other is automatically switched on.

This repeater was commercially built for the group by LMW Electronics and operates on 434 MHz . Also operational are repeaters for 2 m and RTTY/data (the latter came on the air only that week), and a video repeater on 24 cm .

At lunchtime I was lucky enough to get a chance to talk to the man who had a large part in getting two of the repeaters built.

Some time ago, after the group had got GB3LE (70 cm) and GB3CF (2 m) on the air, Paul G4MQS said he felt somewhat despondent at the lack of activity after these two repeaters had been successfully completed. He therefore formulated a few ideas of his own concerning a TV and a data repeater. He was persuaded to present these ideas to the group, and then 'got dragged into the system'.

Having prompted the TV and data repeaters, Paul got on with building them. The TV one he did on his own, and the data repeater was done with Kevin G8MXV (without whom this repeater would not have been built, as he handled the complex software requirements).

When designing the data repeater, the
philosophy was to make it as complicated a transmission unit as they were likely to need, and all credit must go to the group that they achieved their goal (although not without a few headaches).
Now their ideas have snowballed, and they are thinking of some very advanced projects. Problems now arise with the state of play in the rest of the country (and attitudes within the RSGB), since if they get too far advanced provision just has not been made to cope with their ideas.
Paul is now aiming for what could be called a universal repeater, covering almost all bands and modes of transmission, (and a step further than the American Metroplex). This man certainly has ambition!

From far away . . .

Getting back to the exhibition, Dave G6YZZ on the LRG stand told me that five car loads of enthusiasts had come over from Ireland for the show, having saved for some time to be able to afford to stay for a few days.
In addition a coachload was expected from Newport, Gwent, for the Saturday.
The organisers had set up a special event station providing talk-in on various bands, and there was a raffle arranged with some worthwhile prizes.

Near the LRG stand, the RSGB were doing their usual brisk business in books and enquiries, and the bring-and-buy stall was also fairly busy.

Attendance this year turned out to be an impressive 6500+, a significant advance on last year's 5000 (which was itself deemed a great success). This show was the culmination of twelve months' hard work by the committee and the local enthusiasts helping them, and no doubt work will have started almost immediately for next year's show.

All those concerned with the staging of this event deserve a pat on the back for the splendid outcome of their efforts. Next year's show will certainly be well worth attending, judging by this year's high standard.

Antipodean radio

We have heard from John VK4QA, treasurer of Redcliffe Radio Club (PO Box 20, Woody Point, Queensland 4019, Australia), and editor of the club journal.

The club has been licensed since 1971, with callsigns VK4RC (full licence) and VK4VRC ('novice licence'), and equipment includes a Yaesu FT103Z. Preferred bands are $80 \mathrm{~m}, 15 \mathrm{~m}$ and 10 m .
The club is on the air Sunday and Wednesday on 3612 KHz from 0930UTC, and Saturday on 21190 KHz from 0400UTC.

These club nets will enable others to gain the Redcliffe City Award; VK/ZL/P29 = 6 points, the rest $=4$ points (club stations $=2$ points). A log extract of contacts made is required, plus \$A2 to cover p\&p.

Spring RTTY contest

Peter Adams G6LZB, the contests manager for the British Amateur Radio Teleprinter Group, has written with details of the spring RTTY contest. He also thanks R\&EW readers on behalf of the BARTG committee for their past support.

The contest will run from 0200GMT Saturday 23 March until 0200GMT Monday 25 March 1985 on bands 3.5, 7, 14, 21 and 28 MHz , with separate categories for single operator, multi-operator and short wave listener stations.

The ARRL DX countries list will be used.

Summary and log sheets are available from Peter (on receipt of an A4 size sae for addresses in the UK, or 3 IRCs for countries overseas).

Peter Adams G6LZB, 464 Whippendell Road, Watford, Herts WD1 7PT, England.

Forthcoming show

The Northern Amateur Radio Societies Association will be holding their 23rd Annual Radio \& Electronics Exhibition and Mobile Rally in the Central Hall, Belle Vue, Manchester on Sunday 10 March 1985.

Admission will be £1, and this venue has good facilities including car park, restaurant and bar. Talk-in will be on S22, SU8, or any other clear frequency.

SSB on 10 MHz

Increasing use of SSB on the 10 MHz band has been noted recently. Although this band is allocated for SSB, IARU Region 1 in its Band Planning proposals has recommended that only CW and RTTY should be used, due to the fact that it is only 50 MHz wide and thus cannot carry much traffic of the SSB type.

Oscar 10 RTTY

The 'official' attitude to the use of RTTY on Oscar 10 was that it is not a 'preferred' mode. This is because RTTY has a 'high duty' cycle and thus wastes power due to the continuous carrier. This was very much the case with the earlier satellites. A1A - space only - RTTY was at one time accepted but it did not catch on.
However, the advent of AMTOR and the successful use of this error correcting technique on Oscar 10 has put a new look on the matter and the pundits are having to revise their views on the use of RTTY on satellites.

Radio exhibition

On 21 October, Hornsea Amateur Radio Club. in cooperation with other local clubs (Scunthorpe, Scarborough, Hull, Goole etc), staged

DATES FOR YOUR DIARY

4 Jan Used Equipment Extravaganza Radio Society of Harrow. Meetings every Friday at The Harrow Arts Centre. Details from Dave Atkins G8XBZ.

10 Feb 'Hamfeast' Mobile Rally - Bury Radio Society, Mosses Centre, Cecil St, Bury. Further details from M B Priestley, G1BWN. (Talk-in on S22).

Madame la President in Hornsea
an exhibition to promote the hobby. Each club presented a different aspect of the amateur radio world, and working exhibits included slow and fast scan TV, RTTY, and satellite operation.
There was a limited number of trade stands, and clubs and traders alike reported an excellent result, with nearly 700 visitors.
The new RSGB president (?), Joan G4CHH, attended and reportedly got 'stuck in' at the sharp end.
Details of the Hornsea club can be obtained from Norman G4NJP, QTH.

Learning Morse

Following last month's article about learning Morse, we have received an interesting letter from C B Raithby G8GI:
...l cannot imagine anything more 'off putting' to many aspiring to learn Morse than, quote, You will also need access to a sound generating home computer, a tape recorder, a Morse key and bleeper. Never!
'All that is required is a key, an audio oscillator and a receiver with a BFO - preferably covering the short wave
bands as well as the amateur ones - plus determination and a friendly fully licensed amateur.
Mr Raithby has been a Morse operator for nearly 50 years, mostly as an amateur but with 5 years in a professional capacity.

In all fairness to the author of the article, I don't think he was proposing the purchase of a computer and tape recorder merely in order to pass the Morse test! In addition, how many determined licensees have the time to spare?

Beatle City

The 'Beatle City' Museum in Liverpool has activated a special event callsign block GB-BCL operated by the Merseyside Special Event Group.

Members involved are Paul G4UVB, Tony G4SYW, Tony G1DFQ, Phil G4KIW, Frank G4YPD, Mike G6ICR, Terry (QSL Manager) G4VKV, Mike G4HSF, Paul G6PZW and Henry G40JK.

The QSL card to be issued on successful contact will be accompanied by a small fact pack about 'Beatle City', for interest.

On these pages we present details of interesting contacts from clubs and individuals. We would be happy to receive any similar items from readers

RECEPTION REPORTS

Compiled by Keith Hamer and Garry Smith

Despite the decline in Sporadic-E activity, September wasn't all gloom and doom. According to reports from around the UK, short openings did occur with several instances of exotics in evidence, the 9th, 10th and 13th being the most spectacular days. Tropospheric enhancement permitted Band 111 and UHF reception on the 2 nd, 12 th, 13 th and 16th but openings were not as widespread and intense as those noted during the previous month.

Band I reception

Sporadic-E on the 2nd produced the Norwegian 'NORGE STEIGEN' PM5534 test card on channel E2 during the morning. This, incidentally, was seen in Aberdeen and as far south as Norwich. Many DXers noted activity on the 9th (this being a Sunday) from several European countries.

The most consistent signal came from Soviet television on channels R1 and R2 with programmes lasting for much of the day. Here in Derby at 1250BST a comedy and variety show was received from the USSR. This was followed at 1300 by a female announcer and ice hockey. Excellent quality sound was noted together with SECAM colour.
On the 10th an early morning opening provided DX enthusiasts in Leeds with reception from several countries including Sweden and Spain. Even the 100W relay at Birkfeld on channel E3 in Austria appeared simultaneously with transmissions on E2a and E4.
There was also a possible instance of double-hop Sporadic-E reception on channel E3 at 1037GMT on the 13th in the form of a slow-fading signal. It was the Spanish-style GTE test card but there

Kevin Jackson's DX-TV equipment displaying the Finnish FuBK test card on E4
were two images. It is thought that the signal may have originated from the Izaña transmitter in the Canary Islands rather than the Spanish mainland. Unfortunately, the Spanish TV service (TVE) tends to radiate the GTE test card for most of the test transmission periods each day, and this particular test card does not normally carry any form of regional identification.

DX log for September

This month we are featuring some of the highlights from Kevin Jackson's log received in Leeds.
2/9/84: Enhanced tropospheric conditions provided reception from the following services: TDF (France) on channel E39 from Dunkirk, E43 (Reims) and E7 (Rouen); NOS1 on channel E39 from the Netherlands (Wieringermeer); BRT (Belgium) on E10 from Wavre and E43 from Egem.
9/9/84: RAI (Italy) channel IA on programmes; TSS (Russia) R1, R2 (two stations) with progs; MTV (Hungary) R1 and R2 on progs; JRT (Yugoslavia) on channel E3 with programmes. All reception via Sporadic-E propagation.
10/9/84: TSS R1 on the 'UT 0167' electronic test card at 0736; SR1 (Sweden) on E3 and E4 with their 'TV1 SVERIGE' PM5534 test card; CST (Czechoslovakia) on R1 and R2 radiating the 'RS-KH' EZO-type electronic test card. CST were also noted on R2 using the PM5544 test card with the identification 'SR1 TV BRATISLAVA'; ORF (Austria) on E2a, E3 and E4 on programmes. The E3 reception was from the 100 W relay station at Birkfeld and was noted at 0823BST; JRT E3 and E4 on progs (there were two stations on E3); TVE (Spain) E3

Scene from the opening sequence used by RAI in Italy via Sporadic-E
on 'tve tve1' GTE colour test card with Spanish colour bars noted on channel E2; Switzerland was noted on E2 and E3 radiating the '+PTT SRG1' FuBK electronic test card; RAI IA with 'Televideo' teletext pages. All reception was via Sporadic-E.
12/9/84: TDF E39, E42 and E45 (all from the Dunkirk transmitter), channel E5 from Lille on test programmes, also a French 'CANAL PLUS' caption at 1207 and a PM5544 test card at 1558 with the identification 'TDF RESEAU 4'; BRT/RTB E43, E46 and E10; NOS1 on E39, NOS2 on E27 (from Lopik). All reception via improved tropospherics.
13/9/84: TDF E39; NOS1 E39 via trops; TVE E3 on 'tve tve1' GTE test cara at 1037 (the signal faded resembling typical reception via trop and there were two images. Kevin suspects reception to have originated from the E3 transmitter at Izaña in the Canary Islands via doublehop Sporadic-E).
16/9/84: NOS1 on channel E39 via tropospherics.
28/9/84: TDF E39, E42 and E5 on test transmissions with a 'CANAL PLUS' caption at 1229. Also received from France was the 'TDF RESEAU 4' PM5544 test card at 1558 with station closedown at 1559; BRT/RTB (Belgium) E43 and E46 via trop. Reception occurred along the cold-front of a weather system.

Our thanks to Kevin for sending details of his DX-TV successes.

Reception reports

After reading the article about long distance radio and television reception in Bands I, II and III via Sporadic-E (see R\&EW, August 1984), Martyn Stroud of Gillingham was sufficiently enthused to 'give it a go'. Armed with a secondhand upconverter and a home-made wideband Band I dipole, he was successful in receiving extremely good quality signals even though his hand-rotated aerial was indoors.
Martyn has received West Germany on channel E2 from Grünten on the FuBK test card, ORF (Austria) programmes on E2a, the PM5544 from RAI in Italy and Czechoslovakia on their 'RS-KH' electronic test card. During slightly improved conditions he also logged Norway (NRK),

Identification caption radiated by Ceskas lovenská Televise (CST)

Sweden (SR) and Hungary (MTV) via Sporadic-E. His reception shows wouldbe TV DXers just what can be achieved with the minimum of equipment.
Simon Hamer (New Radnor, Powys) has once again been busy with his portable DX-TV equipment atop a local hill. From his vantage point he received excellent quality signals from the UHF transmitters at Oxford, Mendip, Hannington, Ridge Hill, Bromsgrove, Sutton Coldfield, Sandy Heath, Winter Hill, Llandrindod Wells and Moel-y-Parc. He also received snow-free pictures from the RTE (Eire) channel H transmitter at Kippure.

Looking east!

On a recent trip to Eire, Simon couldn't help noticing the profusion of tall masts supporting UHF aerials for reception of programmes from the Welsh transmitter at Presely. In some communities there are even cable TV networks relaying British programmes.
Clive Athowe (Blofield, Norfolk) is in the throes of replacing his ailing Bush TV125 and TV161 DX monitors with hybrid Rediffusion Mk13 sets. These are 20 inch monochrome receivers and he reports excellent results. Clive has fitted selectivity filters (ex-Philips G8 colour TV sets) to the IF strips.
Keeping an ever watchful eye on channel E5/R6 he was rewarded with meteor-shower DX on several days. On the 14th and 24th it was a glimpse of the Czechoslovakian test card, the 'EZO' type. On the 20th he saw a game of chess in progress from Russia. Also via meteorshower, Clive saw the elusive 'JRT SA1' FuBK test card on channel E3 on the 27th.
Trops from Switzerland were in evidence on the 2nd and 13th, the latter being the most productive day. He received the '+PTT TSII' FuBK test card on channels E34 (La Dôle transmitter) and E35 (La Chaux-de-Fonds). On chan-
nel E31 the Swiss German language service was present with programmes from DRS/SRG1. The SRG1 network appeared in Band III as well on channels E6 (from the Rigi transmitter near Luzern) and E7 (Säntis). The French language service in Switzerland was received on E9 from the SSR1 transmitter at La Chaux-de-Fonds.
Kevin Jackson (Leeds) has received a QSL card from Elliniki Radiophonia Tileorassis (EPT) in Greece, confirming his channel E3 reception of August 4th. Full details were given in last month's column.
Several photographs arrived with his log. Some show the view from his excellent DX location high up in a tower block. One of the other pictures shows his DX equipment, which comprises a Philips 12 inch UHF portable fed from a D-100 DX converter which features switchable IF bandwidths. The receiver has been modified for positive or negative-going vision to allow reception of French system 'L' pictures.
Kevin's DX set-up looks quite impressive and would grace anyone's lounge. His indoor aerial can pick up several French, Belgian and Dutch coastal FM radio stations for most of the time, using a Grundig 'Concert Boy' receiver on its whip aerial. Not bad going at a distance in excess of 200 miles.
John Bray (St Neots, Cambridgeshire) has queried a blank PM5544 test pattern which is occasionally received at his location on channel E23. This is actually radiated by the IBA from the Crystal Palace transmitter after closedown. It has caused quite a lot of head-scratching in the past among many DX-TV enthusiasts.
Another mystery of John's was the sighting of colour bars on E2 on September 10th. Many enthusiasts have asked about this pattern, and we can only assume that the source is TVE (Spain) as
they have been noted using this pattern without any form of identification.
John has joined the ranks of the lucky few who have invested in a multistandard Luxor SX9-series receiver. He too noted the TSS reception on the 9th in glorious SECAM colour.
Bob Brooks (South Wirral) noted the excellent Sporadic-E of the 9th. He saw TSS on R1 with ice hockey. Sweden, Czechoslovakia, Spain and Austria were also around in Band I during the day. The 10th brought in Czechoslovakia on channel R2 radiating the 'SR1 TV BRATISLAVA' PM5544 at 1020BST. A little later in the day the Czech 'RS-KH' test card was received from various CST transmitters on R1 and R2. DX-TV signals are often noted from West Germany at Bob's location. He frequently sees the Bayerischer Rundfunk 'GRÜNTEN' FuBK on E2 and the 'SWF BADN1' FuBK on E4 from the Raichberg transmitter which is operated by Südwestfunk (SWF).
Norway and Sweden have also been regular visitors during the month via meteor-shower and Sporadic-E. Bob is also using a D100 DX converter and he's very pleased with its performance. Signals from Eire on channel H can now be easily resolved thanks to the narrow IF bandwidth settings. When using a typical wideband IF receiver (these are frequently used for DX purposes) he found that the local 405-line broadcasts obliterated the Eireann channels. This problem has been overcome by using the D100.

Way up north!

lain Menzies has written from Aberdeen to tell us that auroral disturbances have affected Band I frequencies during the second half of the month. These occurred on the 17th, 18th, 19th, 20th, $23 \mathrm{rd}, 26$ th and 30 th . The activity of the last day was described as 'mushy' but he managed to identify weak signals from

News programme broadcast by Sender Freies Berlin (SFB-1) on channel E7 in West Germany

American Forces Radio \& Television (AFRTS) news bulletin received from Berlin on channel A25

Italy, Austria, West Germany and Spain.
The Sporadic-E opening on the 9th brought in Italy on IA with the test card, the West German Südwestfunk outlet at Raichberg on E4, Bayerischer Rundfunk from Grünten on E2, Austria on E4 and Yugoslavia on E3. At 0820 an English language programme was noted on E2 and E3. This was eventually identified as a 'teach yourself English' programme from Switzerland. At 0850, Czechoslovakia appeared on R1 showing a cowboy Western.
lain has added a system 'L' 14 inch colour portable to his DX set-up. It's manufactured by Fidelity and caters for reception from France. He was fortunate enough to sample the French 'Canal Plus' service from Lille on channel 5 recently. Apparently, signals were 'romping in with colour showing disgusting videos and film clips which the BBC would never show!', according to lain. Channel 4 might, but not the BBC.

Arabian mysteries

The profusion of Arabic transmissions received during the early part of the Sporadic-E season has generated a lot of mysteries, many of which will never be solved. Gösta van der Linden (Rotterdam, Netherlands) has kindly sent us a few details from 'TV Logboek', as published in the July 1984 edition of the Benelux DX Club's magazine. Hopefully, the following notes will help DXers recognise some of the Arabic signals from the details given.

On May 23rd from 1603 until 1615BST a strong channel E2 signal with sound was present consisting of a female newsreader with a vignette to her right, above Arabic text. At 1615 the Koran appeared but the signal faded completely at 1621. Between 1643 and 1717, two E3 signals were resolved on E3 - both were of Arabic origin. From 1643 until 1655 a female newsreader was present but
without the vignette and Arabic text. A studio/station caption appeared at 1700 followed by an American film with subtitles, called 'Meet the Grangerrots'. A second film followed between 1740 and 1838. A further programme was noted which consisted of a woman talking. Arabic music was heard between 1813 and 1825.
On May 24th from 0910 until 0945 the Aramco TV service at Dhahran in Saudi Arabia was noted on E3. A sports programme was resolved featuring highlights of a hockey match. At 0940 a caption was seen displaying 'PRAYER INTERMISSION'.
In May's column we mentioned the possibility of Clive Athowe receiving Aramco TV on the 24 th, when a 'CHANNEL 3' caption appeared together with signals from Greece (EPT) and Jordan (JTV) shortly before his remarkable reception from Iran (IRIB). The above reception, noted in the Netherlands around the same time, does tend to confirm that Clive's signals were indeed from Saudi Arabia.

New DX publication

The reception of radio and television signals over long distances is a thriving hobby throughout the world. Today, there are many books which deal either with FM or TV DXing but few cover both subjects in one volume.
This situation has been rectified by West German DX enthusiast Norbert Kaiser. He has written a 180 page book which has just been published in German. It's very impressive, and so is its lengthy title: 'UKW/TV-DX Eine Einführung in das Hobby des Uberreichweitenempfangs'.
All the various modes of propagation are discussed, with detailed information about Sporadic-E, tropospherics, transequatorial skip, meteor scatter, lightning flash and aircraft reflection.

Apart from tables showing the parameters of all the main transmission standards, there is also a very useful list detailing the various systems used in most countries throughout the world. Colour systems are also mentioned.
There is a very informative 17 page section which deals with suitable aerials for FM radio (Band II) and TV DX work. It should be noted, however, that there are no details about aerial pre-amplifiers.

Suitable equipment for receiving FM and TV DX signals is covered briefly and in general terms. There are no circuit diagrams in the book, and information about improving the performance of equipment (such as receiver selectivity and the use of notch filters, etc) appears to have been omitted.
Other useful sections include: notes about using video recorders to obtain a permanent record of DX-TV reception; off-screen photography; a list of European FM stations with transmitter locations, ERPs and frequencies; addresses of European TV services; and a map showing all the time zones for Europe, Africa and Asia. There is also a section which lists magazines catering for radio and DX-TV enthusiasts. We're pleased to report that R\&EW is featured!
Finally, of special interest to television enthusiasts, there is a 20 page section featuring test cards used throughout Europe.

Further details about this most interesting publication (such as price and availability) are available from: Norbert Kaiser, Unterer Kreuzweg 6, D-8735, Oerlenbach 1, West Germany. We thoroughly recommend it to those who can understand German.

Service information

East Germany: The VHF channel E4 transmitter at Cottbus is expected to transfer to the UHF channel E53 in the early part of 1986.

The identification caption from TVP-1 (Poland), which was received in West Germany

Electronic test pattern radiated by AFRTS in Berlin on channel A25. Pics courtesy Jürgen Klassen

THE PERFECT COMPLEMENT TO RADIO \& ELECTRONICS WORLD Amateux

MORE NEWS,

MORE FEATURES,

1

For all two-way radio enthusiasts With regular features like:

* DX DIARY Don Field G3xTt with all the news of rare DX, contests and DXpeditions

\star ON THE BEAM Glen Ross

 G8MWR with all the news and comment from bands above 50 MHz* G3OSS TESTS Angus McKenzie the fairest, most comprehensive reviews available anywhere

* BACK TO BASICS ві

 Mantovani with a recipe for an RAE pass
MORE FUN, MORE STYLE

Make sure of your copy by placing a regular order at your newsagents or by faking out a post free, inflation proof subscription, with early delivery to your door each month

AMATEUR RADIO SUBSCRIPTION ORDER FORM

To: Subscription Department • Amateur Radio • 513 London Road •Thornton Heath • Surrey • CR4 6AR. Tel: 01-6843157

NAME
ADDRESS \qquad

Wertern

Step 1. You'll need a MAST!

SOME STAY UP ... SOME FALL DOWN! SORRY, WE ONLY SUPPLY THE FORMER TYPE! Since we make TOWERS OVER 300ft tall, all designed by qualified structural engineers to British Standards you can...

BUY WITH CONFIDENCE

We have the engineering calculation to justify our specifications ... beware of 'no or half-specs'.

We can offer:-

> TELESCOPIC STEEL 'Westower’ TELESCOPIC STEEL ‘Ulti-Mast' LATTICE ALUMINIUM 'Alu-Mast' (right)

THE UNIQUE ALUMAST

The ALUMAST is a $15^{\prime \prime}(375 \mathrm{~mm})$ wide triangular cross section lattice sectional aluminium mast based on a $10 \mathrm{ft}(3.05 \mathrm{~m})$ section length. It is supplied "knocked-down" in a tubular carton for ease of transport, but can easily be assembled needing no special tools or skills. The system includes top plate with bearing sleeve, rotor plate and a choice of a fixed base frame (FB-1) or one with hinge joints (HB-1) to enable the mast to be pivoted at ground level. Guy brackets are available for use at heights above 30 ft .

* Made from high strength corrosion resistant alloy using WESTERN'S EXCLUSIVE 'W' section leg extrusions.
* Easy assembly using stainless steel bolts and "Nyloc" locking nuts for security.
* Free-standing to $30 \mathrm{ft}(9.15 \mathrm{~m})$ with a typical tri-bander plus VHF/UHF antennas.
* Heights to 250 ft (75 m) with appropriate guy configurations (ask us for quotes).
* Lightweight - only 251 b (11 kg) per 10 ft (3.05 m) section.
$\star 30 \mathrm{ft}(9.15 \mathrm{~m})$ mast is delivered in a tube only $10 \mathrm{ft} 6 \mathrm{in}(3.2 \mathrm{~m})$ long, $6 \mathrm{in}(0.126 \mathrm{~m})$ dia.

FOR PULL SPECS PLEASE SEND S.A.E.

3 Easy Steps to get on top . : (of the pile-up)! . . .

FULL PRICE LIST

375/PSS/3	30ft mast (3 sections)...................... £299.00
375/PSS/1	Additional 10ft section $£ 100.05$
HB-1	Hinged base unit.............................. $\mathbf{\Sigma 5 2 . 9 0}$
FB-1	Fixed base unit £39.10
RMP-1	Rotor mounting plate $£ 19.55$
TP-1	Top plate with sleeve $£ 21.85$
GB-1	Guy brackets (set of 3) £19.55

Step 2. You'll need an ANTENNA!

for a "MAN-SIZED SIGNAL" you'll need a "MAN-SIZED ANTENNA" For a "MINI-SIGNAL" try a "Mini-Antenna" to PENETRATE THE "DX' we make the "DX-PENETRATOR" series of MAN-SIZED ANTENNAS PRICES (INC. CARR. AND VAT) ANTENNAS

Cax. Mo.			
	Price	1085 DX-31/32	Conversion Kit..................................... 51.75
		1085 DX-32/33	Conversion Kit..................................... 865.15
1075 DX-7/2	7MHZ, 2ele. Yagi, Gamma matched, 20 boom... $\mathbf{2 9 4 4 . 4 0}$	1087 DX-33/34	Conversion Kit......................................880.50
1076 DX-7/3	7MHZ, 2ele. Yagi, Gamma matched, 40 boom...5364,55	1089 DX-103	3 element fom YagiE90.85
1077 DX-51	Rotary dipole for $28,24,21,18$ and 14MHZ	1090 DX-105	5 element 10m Yagi 113.85
1080 DX-6V	10-80m Multi-band vertical plus 30m $\mathbf{£ 1 0 2 . 3 5}$	1093 DX-4K	Converts DX-31/23/4 to 40m dipole........... 569.00
1081 DX-31	Dipole 10/5/20m 2Kwp.e.p............................c83.95	1094 DX-27/1	Rotary dipole for 27MHZ C.B.................. 513.80
1082 DX-32	2element 10/15/20m 2 Kw p.e.p. 128880	1095 DX-27/3	3 eie. Beam for 27MHZ. Gamma matched... $\mathbf{4 0 . 2 5}$
1083 DX-33	3element 10/15/20m 2 Kw p.e.p. $¢ 188.60$	1096 DX-240	
1084 DX-34	4 element 10/15/20m 2 Kw р.e.p. 2644,50	1097 DX-260	2ele quad 2, 10, 15, 16\& 20m...................224.25

Step 3. Turn the ANTENNA! You'll need a ROTATOR ROTATORS . . . we only stock the best . . . buy RELIABILITY . . . buy EMOTO

. . . WE ARE THE SOLE U.K. DISTRIBUTORS

EMO

FAIRFIELD ESTATE, LOUTH, LINCS LN 11 O.JH Teli Louth (0507) 604955. Telex: 56121 WEST C

Presented by Andy Emmerson G8PTH

\mathbf{A}^{s}s befits your roving reporter I get around to a number of events which have some ATV interest, even if the connection at first appears slight. There is a lot to learn from these exhibitions nonetheless, and I was particularly impressed by the International Broadcasting Convention in Brighton and the Midlands VHF Convention which were held recently.

Shopping list

The IBC is where the broadcasters get together to plan their next year's shopping list. The Metropole exhibition area is occupied with stands from every manufacturer of broadcast TV (and radio) equipment, while on the seafront outside broadcast vans and satellite dishes are arrayed by the dozen. What a sight for sore eyes!
Ex-ATVer and present satellite king Steve Birkill was there on the SATVRN stand and David Stone G8FNR (Quantel) and other amateurs were around.
Of interest to TVers was the British Aerospace stand, where they had an array of TV screens and push buttons which enabled TV reception to be simulated from a number of satellites with different sizes of dish aerial and grades of LNA.
The BBC were issuing their customary booklet of new engineering techniques, and two projects in this struck me as having amateur applications.
One was the fully digital Test Card F, in which all the test pattern (including the colour picture of the girl and blackboard) is stored in digital memory. Hmm...
The other was the stereo sound-insyncs. Not that I am suggesting we put out stereo sound, but if a low cost method of sending sound in the picture line sync could be devised then we would solve the problem of sound accompanying vision on 70 cm , where subcarrier audio is not really feasible. I understand there are no simple integrated circuit designs for sound-in-syncs though, so perhaps we shall have to wait a few more years!

Best ever

The Midlands VHF Convention was held under the auspices of the RSGB on 13 October at the British Telecom Training Centre, Yarnfield (between Stafford and Stoke).
Just about everyone who went agreed it was the best ever, and if you have
previously thought of going but decided against it I suggest you make a resolution to do so next year. If you are interested in ATV you must also be keen on VHF and UHF, and this event is a must. The convention is a fairly cosy affair - no great crowds, but all the people there are VHF enthusiasts.
Among the attractions are a measurement bay where you can check out RF power, noise figures and so on, or else shock yourself by putting your homebrew transverter on the spectrum analyser!
A selected number of traders are invited - people such as Fortop, Piper Communications and Johnny Birkett, and there is also a bring-and-buy stall.

A lecture session and excellent catering complete the show - this year's lectures were excellent, ranging from antenna design to radio astronomy.

Product parade

Now l'd like to alert you to some product news.
A few columns back I mentioned that Sony were having a clearout sale of accessories at prices not to be missed.

The HVS2000P camera switcher/effects generator was singled out for attention since it is a very handy gadget in the ATV shack.
Apart from supplying dc power it will make a top class keyer for inlaying captions, and it will colourise them as well. I did not realise then how cheap it was; the new price is just £29.95, and it was good value even at the original price of $£ 69.95$. Grab one while you can - I have done so!
Not all dealers have them, so check the advertisements in magazines like What Video.

On test

At the RSGB's Woburn Mobile Rally I was walking around, minding my own business, when Alan Wood (of Wood \& Douglas fame) thrust a package into my unexpectant fist
'Take this, it's new,' he said. 'Try it out and let me know how it works'.
I did and I have done, and now l'll tell you too. The item in question is their 1250DC50, a tunable downconverter to match their VIDIF module released earlier. With this new unit (and the VIDIF) you can build a high performance receiver for 24 cm FM TV.
Unlike block downconverters which convert the $23 / 24 \mathrm{~cm}$ band down to Band IV/V in one lump, this unit is tunable and produces an IF output of 50 MHz , ready to feed into the Wood \& Douglas VIDIF demodulator (or any other similar device, such as the BATC IF board).
It comes in a rather fine-looking tinplate box; we are more accustomed to

You have got to go a long way to beat the BATC colour pattern generator, designed by Richard Russell (who had a hand in the BBC microcomputer and many of the electronic logos on BBC TV). This is Peter Delaney's version, with a neat electronic callsign inlay

diecast boxes, but with the need to ground the case effectively at RF a tinplate enclosure is probably a better bet.
In any case the tinplate case forces you to select a more decorative housing for your receiver, and I chose a number 202 Verobox, which gives room for the IF board as well (also in the same size tinplate box, which is available as a spare from Wood \& Douglas).

No DIY job

Most W\&D products are available in kit form, but this one is not. Many of the components are delicate and the RF can easily get lost in over-generous dollops of solder. Also the finished object needs to be swept for proper frequency response, so you can see why it is sold only as a finished unit.

Sneaking a look inside (after removing countless self-tapping screws) I was impressed by the high standard of assembly; I'd have a job to solder as neatly as that!

No circuit diagram is supplied, but you can see a bandpass filter at the input, which gain-matches the incoming signal to the GaAsFET first amplifier (MGF1100). The signal is now led through another filter to the discrete schottky ring mixer. Two BB 221 varactor diodes control an NE219 VCO and a BFR91 lifts the signal to a standard Plessey SL560 amplifier on the output.

Design

The design shows a lot of thought and it certainly works well. I use it mainly to monitor the Dunstable TV repeater, which is a consistent P1 signal here at Northampton, 35 miles away (I hope to improve this with some extra preamplification).

I have tried four 24 cm converter designs so far, and this is the best of them. Good limiting circuitry gives good rejection of radar interference and there are no spurious responses (one of the other converters can 'see' the Daventry DME beacon at 1320 MHz - in reality it's on 1198). Also the tuning is rock steady no drifting (which makes that other one an absolute pain to use). Price of the 1250DC50 is $£ 69.95$ plus 75 p postage. The VIDIF is $£ 38.95$ as a kit or $£ 54.25$ assembled and swept.

New repeaters

4 mentioned the Dunstable repeater a moment ago, which reminds me that there are several people planning new TV repeaters.

It's unfortunate that we do not have all the Phase 1 machines on the air yet but time will doubtless see to that. Listed below are new repeaters known to me, together with contacts if you want to get involved (although of course you can always go out and plan your own 'box').

CRAWLEY, GB3CT. They already have

Apart from the videotape cleaner Markplan also supply a low-cost telecine converter. Priced at £49 95 it undercuts similar products considerably, though it lacks some of the more sophisticated facilities of the Panasonic and Sony units
a callsign in mind and I understand the repeater is built as well.

The location is 2 L 08 h , which is 325 feet ASL, and tests indicate good coverage of north Sussex and Surrey. Power output is 20W to an Alford slot antenna.

Low-cost

The repeater was built from easily obtained parts and cost about £150. The logic is the GB3US concept with additional vision detector and switching circuitry.

The caption generator is the Cropredy Electronics test card (a previous R\&EW project) giving callsign, QRA and frequency. Further details from Bob G6LVN (QTHr) or Jack G4TVC on (0293) 28612.

CENTRAL SCOTLAND. This is the brainchild of Norrie Macdonald GM4BVU and his comrades. It is still at the planning stage so contact him in Hamilton for information. Telephone: (0698) 423121.

WEST YORKSHIRE, Dave Long G3PTU is the man in charge in Huddersfield. They have a site agreed - the top of Europe's tallest building, the Emley Moor TV tower! For details telephone: (0484) 606506.

SOLENT REGION. This was mentioned on page 70 of November's R\&EW.
Nick Foot G4WHO in Wimborne is coordinating this project, which may end up with two repeaters (perhaps linked?). One would serve Poole and Bournemouth, the other Southampton and the low-lying areas nearby.

All these repeaters will be on the FM system (of course!).

Video filth

Most VCR owners will know that domestic head cleaners in cassette housings cannot reach all the parts they need to, and in any case are not recommended by professionals. They are either too abrasive or merely serve to spread the dirt in a wet slurry from point A to point B.

A better plan would be to remove loose oxide from tapes before they deposit it in the machine, and such a tape cleaner has now come onto the market.

Distributed by Markplan it is available in the larger video shops at $£ 49.50$ and comes in both Beta and VHS versions. The VTC200 machine (as it is called) is mains powered and actually draws the tape out of the cassette placed in it, then pulls the tape past a capillary roller which draws trifluoroethane from a bath below.

Probably not for the average ATVer, but it should appeal to the keen videophile. It will also be useful in video libraries, where tapes can come back pretty filthy after rental.

HEW

> Make sure you get R\&EW every month for the latest broadcast and amateur TV news

NEXT ISSUE

Electionics
 For all aspects of practical amoteur racio M |OIId

DATA FILE

Ray Marston continues with the opto-electronics theme and looks at LM3914-based display circuits

TOUCH SENSITIVE JOY STICK

Peter Rouse describes the construction of a 'joystick' control that is self-centering and has no moving parts

AIRBORNE TV

Ray Herbert looks at some previously unpublished experiments made with TV transmissions from aircraft in flight before the last war

LOW-PASS FILTER

Duncan Walters G4DFV outlines the theory and construction of a high power low-pass filter

DIRECT BROADCAST BY SATELLITE

An outline of the DBS systems currently in use in the Western World

HORSESHOE NAIL SYNDROME

Ken Williams looks at how the short production life of modern ICs effects the purchaser

PLUS all the usual features!
New products News Reception reports...
DON'T MISS the February issue - on sale 10th January
To be sure of your copy of Radio \& Electronics World, complete the newsagents order form in this issue or take out a subscription

FREE CLASSIFIED ADS

FREE CLASSIFIED ADS CAN WORK FOR YOU
We are pleased to be able to offer readers the opportunity to sell your unwanted equipment or advertise your 'wants'.

Simply complete the order form at the end of these ads, feel free to use an extra sheet of paper it there is not enough space on the order form. We will accept ads not on our order form.

Send to: Redto 1 Electrontes World, Sovereign House, Brentwood, Essex CM14 4SE.

DEADUNE AND CONDTHONS

Advertisements will be inserted in the first available issue on a first come firs served basis. We reserve the right to edit and exclude any ad. Trade advertisements are not accepted.

FOR SALE

- Transverter FTV107 unused, under guarantee, complete with satellite 2 metre and 70 cms modules, FRB707 relay box included, plug in any Yaesu solid state Tx and go, cost £439, offered at $£ 385$, no offers. FT707 Tx excellent condition, FM fitted scanning Mic, MM 144/28 transverter mobile bracket, all three together package deal $£ 385$, no offers. G4WLD John 018578096
- Sony 2001 digital portable $5-30 \mathrm{MHz}$, as new, £110. Datong Morse Tutor, £30. Datong agite frequency audio filter, £20. Will swap for IC4E or possibly IC2E in good condition. Tel: 015172747 - One Trio R600 communication receiver in excellent condition, only 3 months old, price $£ 150$ ono. Contact: Mr Philip Stones, 78 Stanmore Road, Edgbaston, B'ham. Tel: 0214201112
- Lafayette HA700 general coverage receiver, $150 \mathrm{KHz}-30 \mathrm{MHz}$ good condition, $£ 60$ ono. Also Aiwa AD3500 cassette deck, with Dolby B and C Nr 3 head, soft touch controls, variable bias, good condition, $£ 60$ ono or px for Yaesu FRG7 (digital read out model). Tel: Leeds 663814 , after 1 pm
- Yaesu FT203 VHF synthesised handheld. Complete with $10-8 \mathrm{~V}$ Nicad pack and charger. All in excellent condition $£ 125$ ovno. Tel: Botley (Hants) 5628 after 8 pm please
- Exchange: Spectrum 48 K computer, Currah speech unit $+£ 70$ worth of games all as new, will exchange for Eddystone EC10 Mk11 must have battery container and handbook and be in good condition. Collectors item R1155 receiver, unmodified, immaculate PSU test unit, built in speaker and amplifier. Exchange for Vega 402DE TV receiver, must be in good condition with handbook. Borthwick, Torwood Lilliesleaf, Melrose Borders Region. Tel: 08357314
2 metre PA boards. 1 watt I/P 60 watts + output 24 V supply $£ 25.2 \mathrm{~V} 4 \mathrm{~A} / \mathrm{Hr}$ lead-acid batteries (unfilled) $£ 2.50$ each. $£ 12.50$ for 6.23 cm Ga AsFET pre-amp £25. Tel: 0277214406
- Yaesu YC601 digital frequency display for use with any 101, or 401 series rigs, $£ 65.00$; prefer buyer collects and inspects, or carriage extra. Maurice, G6IMV, 18 Mossvale Grove, Washwood Heath, Birmingham, B8 3QJ
- Complete 2 m station, FT-290R 144-148, 2.2AH Nicads, charger, case, helical, quarter wave flexi, $30 W$ HF-VHF dummy load, SWR meter, 17 m UR67, SMC colinear (6.4 dB gain) both never been used or outside, all boxed, $£ 289$. Buyer collects or pays carriage. Signal R528 airband scanner, new in July, crystals for Manchester, London, airways, helical, case, boxed, £95. Tel: Blackpool 025345431
- GW Morse key, solid brass (polished). Chip board base. In good condition, working order. $£ 10$. Paul Harris, 22 Avondale Court, Glynfach Porth, Rhondda SW CF39 9NH. Tel: Porth 687147
- Creed 444 telex/RTTY machine. Recently removed from service. Complete with additional Boyden sound proof cover and full Creed service manual. Beautiful condition. Can deliver in Midlands area but buyer inspect first. $£ 50$ or nearest offer. Tel: Yoxall (0543) 472054
- Manuals, valves, some parts for AR-88, national HRO, Hallicrafters, Hammarlund, Collins VFO, Nems-Clarke BC-221 freq meter and a few others. SAE to Bob Wright, 249 Sandy Lane, Hindley, Wigan, Lancs WN2 4ER. Tel: 094255948
- Heathkit HW12 80m SSB transceiver and HW32 20 m SSB transceiver and power supply, $£ 120$ ono. $70 \mathrm{~cm} x$ xats for pocket phones, Wood and Douglas FDK multi VII RB2 RB4 RB14 SU8 SU20 Rx. ATV Tx Converter crystals 38.666 MHz and 42 MHz . Tel: 0453 833411 or write 71 Norton Wood, Nailsworth, Glos WW2 sets. WS19 Mk3, spares and accessories WS62, WS46, WS31, 38AFV, C12, PSU for WS11, PSU for C29, R209, R109, R208, HRO, CR100, S27, R1392

Offers or exchanges for military gear, will send anything anywhere. Mr D Skilton, 40 Mid-Street South Nutfield, Surrey. Tel: Nutfield Ridge 2888 after 6 pm weekdays

- ZX81 16K Memopak $£ 10$; Hella universal hazard warning conversion for any car new £10; Solartron CD 1014/2 scope DB sweep runs but needs attention as stops after several hours good condition. £20. Phone Hythe Kent (0303) 68854
- LCL trans; modified 10 metre FM not used to transmit, in fact as new, £35.00. Woodstock 812278 - Wireless World 1960-1984, unbound. Valves V/holders, components, radios, circa 1940-60 Enquiries SAE please or Tel: (Long Ashton) 392811 Webber, office hours
- Icom 240 rig with SS-240 scanner, manual, mag mount antenna and power supply included, £100 Mint condition Apple 11+ computer with hi-res monitor, manuals, software etc, $£ 400$ ono. Tel: $01-$ 6938375
■ Ex-Govt. Portable test receiver. Built-in signal meter, variable oscillator and attenuator. Made to veryhigh standard. Excellent reception, $£ 35$. Rack mounted test receiver with integral oscilloscope and PSU data available from Eddystone, high quality construction. £50. Phone 047538998 after 5.30 pm
- Creed model 444 teleprinter complete with PSU/terminating unit. Stand available if required. Would exchange for HF receiver. Phone 047538998 after 5.30 pm
- Atlas 210X/215X de-luxe ac console, $£ 80$. Atlas 206 digital VFO, $£ 100$. All as new. Mirage B108 80 W. 2 m linear, new, $£ 80$. Gem Quad 2EL. Kit, new, $£ 85$. Jaybeam 14EL 2 m beam, new, £25. Sure 444 desk Mike, $£ 20$. Jim Taylor, G4ERU, 5 Luther Road, Winton, Bournemouth. Tel: 0202510400
- Honeywell Alpha numeric keyboard and logic boards $£ 30$. Rob Johns, 3 The Forge, Marsworth Rd, Pitstone, Beds LU7 9AS. Te!: 0926661555
- R1155 communication receiver, original condition, no mods, DF valves still in place, been stored, offers. Pair of Dymar handheld portables, three channel $F M$ frequency range $80 \mathrm{MHz}, 102 \mathrm{MHz}$, good condition complete Nicads, $£ 36$ pair. Pye UHF PFIs Rx/Tx, clean condition, complete Nicads, $£ 8$ pair. 2 amp 13.5 V regulated power supply suitable CB, £3.4C $\times 250 \mathrm{~B}$ valve new, $£ 10$. Other new valves, state requirements. Tel: (0903) 66329
- Scope. Telequipment S51R single beam, rack mounting with circuit diagrams, plus Solartron ac milli voltmeter and bag of parts. $£ 40$ the lot. Tel: 01 3972428 after 6pm. (South London area).
BBC $51 / 4$ disc drive, $1 / 2$ size (opus), 40 track, no PSU, plus BBC $51 / 4$ disc drive, full size with PSU in dual case. Sharp M28OK with disc interface and interface box and software. Offers to Michael. Tel: 0514492044
- Electronic piano, Sound City 'Joanna', 5 octave, portable, in working order but needs minor repairs to some of the key contacts. Sounds very similar to real piano. Buyer would have to collect. Nearest offer to $£ 40$ secures. Write to Brand, 4 Temple Park Crescent, Edinburgh EH11 1HT
- KDK2030 2 m FM 25W. New five months, never used mobile, boxed, manual, scan mic $5 / 8$ whip and mag mount, £150. Prefer buyer collects. Perfect wkg condition. G3BGR, QTHr. Tel: (0905) 356576. - Datong auto speech clipper ASP/A £40. Azden mic DX354 £18. Codar RQ10 Q mult valve $£ 8.50$. Akai stereo amp £30. Yaesu SP/02 ext spkr £35. SMC T3$170 \mathrm{~L} 3.5-170 \mathrm{MHz}$ SWR meter £15. All ono. Tel: Brighton (0273) 309127.
- Icom IC240 2 metre FM transceiver covering all repeater and simplex channels. In mint condition with original packing, instruction manual etc, £130. GM4/TE3ST. Not QTHr Tel: Bishopton (Renfrew-
shire) 862151
- FRDX400 amateur bands comm's receiver. 160 to 10,4 and 2 M . CW wide and narrow, SSB, AM wide and narrow, and FM. Notch filter, clarifier, S meter. 100 KHz and 25 KHz calibrator. AVC fast, slow, and off. Buyer inspects and collects, $£ 100$ no offers. G6XM, James, 43 Rosehill Drive, Bransgore, near Christchurch, Dorset BH23 8NR. Tel: (Bransgore) 73584
- Free to SWL or new ham, 90% of a 10 element 2 m yagi. Also $2 \log$ periodic antennae covering bands III, IV, V, £15 the pair. Steve G8KUX. Tel: (0449) 741366.
- $25-550 \mathrm{MHz}$ AM/FM Rx station, complete: AOR AR2001 + PSU, Discone ant, Triax VHF/UHF masthead preamp +12 V interface unit. (AR2001 still under guarantee little used), £320. Phone Ely (0353) 61323 any time
- Yaesu FRG7 SSB, AM, CW, LSB receiver new and boxed vgc, £125. Mr P Bailey, 103 Jarden, Jackmans Estate, Letchworth, Hertfordshire. Tel: LET 4995.
- Control data type BR5A6 hard disk drive 60 mb capacity. Fully maintained and recently serviced, £325. Ken Saunders Tel: (066689) 307
- Scale model radio controlled trawler elaborate detail with chargeable battery for electric motor. Complete with 4 ch radio gear. Cost $£ 200$, materials only $£ 110$, ono. Also radio controlled jeeps, two, with all gear charger etc, $£ 55$ each. All above in new condition. Walker, 23 Forest Hill, Yeovil BA20 2PF. Tel: 25225
- Oscilloscope 10 MHz S54A telequipment, good order, complete with manual, $£ 60$. Haywards Heath, Sussex Tel: (0444) 454029
Ekco ACT96 mains valve supzr-het rwdio receiver, made about 1935. Works OK, heavy bakelite case, swivel base. Very collectable, £55. Also a range of post-war valve mains radio sets most of which work OK, from $£ 10$. Help to preserve these great radios of years gone by. P Titlow, 13A High Street, Leiston, Suffolk. Tel: (0728) 831812. - Daiwa search 92 m receiver VFO 2 xtals fitted accepts 11 xtals base or mobile $£ 30$. Colonel FR360 transceiver freq 26.965-28.805 AM USB LSB digital readout $£ 70$. Pair celestion ditton 22 hi-fi speakers quality sound handling cap 80 W bargain $£ 65$ Grundig TK140 reel to reel plus mic \& tapes £20. Al above items in good condition, would consider exchange for portable colour TV or good scanne $e, 5 \times 200 \mathrm{~N}$ Bearcat etc. For details tel: Mr Lindley, Runcorn 711393 (Cheshire)
- Four Akai 4000D reel to reel's converted to four channel replay, £30 ono each. Tel: 015745265. - FT200 FP200 all 10 m xtals, mike, handbook, vgc, spare PAs $£ 195$. MM2000 RTTY receive converter mint conditon $£ 70$. Heathkit SW717 GC Rx, $£ 15$ Buyers collect or carriage extra. Wanted ATU 160 10 m KW Ezee match or similar. G3IMI QTHr. Tel Wellinborough 680181.
- Teletype model 33 ASR C/W plinth, paper tape service manuals, vgc, offers. Lábgear Preste terminal, brand new, boxed and unused, 880 ono Prefer buyer collects. Wanted any info on Acorn Atom, RTTY SSTV, CW, Wx sattelite reception, also roms, expansion boards etc. K D Galloway, 18 Trent Road, Corby, Northants NN17 2HD. Tel: Corby 200329.
- KW2000E in reasonable condition some spare valves, $£ 200$ ono. Semi automatic bug key $£ 15$ ono. 4 Grundig, office dictating machines $£ 5$ each ono Contact Keith GW4NBY QTHr. Tel: (0656) 56576.
- Tasco 610E conv'r RTTY and CW into VDU or TV Baudot ASC11 and Morse also code practice on screen has socket for key or phones cost, £175 asking $£ 120$, includes guide to press agency freqs and full instructions, ring Ted on Bacup 874928 after 7.00 pm .

WANIED

- NRD515 Rx, in good working order, preferably realigned, negotiate price. Mr Allen, 51 Island Road, Handsworth, Birmingham B21 8NS. Tel: 5237158 (after 6pm).
- MCP40, Tandy or similar four pen graphics printer and Thandar PFM200A frequency meter. Other frequency meters considered if cheapish. Needed for unfunded research project. Dr Andrew Brown, Dept of Oral Surgery, John Radcliffe Hospital, Oxford OX3 9DU. Tel: (0865) 65164.
- Roberts radios, especially early models such as M4Q, M4D, M5A, Junior, RP4, RMB, R66, R77, R88, RT1. Working condition of no consequence. Also any data or pamphlets relating to Roberts radios. Tel: Reading 883799.
- Freq meter for 174 MHz . Walker, 23 Forest Hill, Yeovil BA20 2PF. Tel: 25225.
- Manual or circuit R107 receiver. Also AM/FM generator, must be in good order. Good scope 20 MHz double beam. EF39 valves. Lots of odds and ends for sale. Write: Mr White, 29 Nunnery Street, Castle Hedingham, Essex CO9 3ND.
- Belcom FS1007P manual wanted, to purchase or borrow for a few days. Will pay postage. Dave Carter, 32 Welland Crescent, Stockton-on-Tees, Cleveland TS19 OUT. Tel: (0642) 582581.
- Philips 4307 reel to reel mono tape recorder. Anyone with a motor in working order, reasonably cheap. Cranshaw. Tel: Lymm 3335.
- 16 mm GSAP Bell Howell cine-gun camera, ex govt electric 24 V dc drive magazine load, with or without lens. Have for exchange, Bendix Rx GC aircraft Rx Hewlett Packard scope. Tel: Melksham (0225) 706795.
- Yaesu FT208R, nicads, charger, soft case etc. Vgc, about $£ 120$, or similar rig, eg $100 \mathrm{MO2E}$, TR2400 etc, maximum £180. Nicholas von Fircks, Applegarth, Lymington Bottom, Four Marks, Alton, Hants. Tel: Alton (0420) 63445.
- FDK Rx40 with accessories. Will buy or part exchange Rxs and CB hand-held new. Tel: (0274) 724144 (10am or 3pm). (0274) 676556 (after 6pm). - Circuit Eddystone 888A. Also BFO unit or just good coil for 888A. Price etc to: B E Viney, 10 Heol Meirion, Barmouth, Gwynedd LL42 1LA.
- Valve HF linear amp, 3.5 MHz to 28 MHz , power input 10 watts, output 100 watts. Must have own power supply. Also amateur radio software for Apple IIE. G4VJK, J H King, 36 Haroldslea Drive, Horley RH6 GDU. Tel: (02934) 3556.
- Marconi Atalanta for mains supply, vgc essential, no objection to dealer. Trower, 2 Natal Road, Brighton, Sussex BN2 4BN. Tel: (0273) 680723 (8.15am to 9am) Mon to Fri.
- Any amateur communications receiver, any condition, must be in working order. Have CB base station + aerial etc. Part exchange and/or cash. T Ikram, Steggall House, 341 Perth Road, Dundee, Tayside.
- Yaesu FRG7700/FRT7700 wanted in exchange for realistic DX-400 Chinon CE-4S Optomax 135 mm telephoto lens, Miranda wide angle lens. Tel: (0443) 755876.
- Names and addresses of companies or individuals willing (and able!) to produce finished and working equipment from the various kits advertised in this magazine. I am a handicapped SWL and am willing to pay for any services rendered. Write to: Flower, Avenue Labby 12 B-5989 Bossut, Gottechain, Belgium.
- Good clean HRO and one for spares. Coils, MW command Rx, BC348, HW101 or KW2000B. N A Maxwell GW3UMD, 1 Nantfawr Crescent, Cyncoed, Cardiff CF2 6JN. Tel: (0222) 761813.
- A service manual of Ekco valve mains radio Rx, A172 model (1954 approx date). Details of cord drive especially required (clear photostats accepted). M Horne, Barkwith House, Haylings Road, Leiston, Suffolk IP16 4DJ.
- Old Marconi marine receivers, manuals and catalogues. Books on submarine communications and ships aerials. Scrap T1154 for coils. Cossor ganging oscillator or similar. Woodhouse, 'Trenoweth', Porthpean, St Austell, Cornwall PL26 6AU.
- MMC435/600 converter. Also good scanner, ie Sx200N, Bearcat, PRO2001 etc, plus portable colour TV. See my For Sale ad in this issue. Mr Lindley. Tel: Runcorn, Cheshire. 711393.
- Bird type 43 elements $100 \mathrm{C}, 100 \mathrm{H}, 250 \mathrm{H}$ or WHY? R B Lever, 4 Hambleton View, Wigginton, York YO3 8PN. Tel: (0904) 768545.
- Oscilloscope, portable, dc to 10 MHz or higher, in good condition, with service manual. Will pay up to $£ 40$. E Schofield, 26 Birkenshaw Lane, Birkenshaw, Bradford, West Yorkshire BD11 2HA.
- Valves Thorpe K4, Cosmos SP18 and A45, Marconi Osram V24, and any valves made by 362 Radio Valve Company, east London. Manual Eddystone 680 X receiver. Buy or swap large selection new receiver valves 1930 onwards. Philip Taylor, 14 Willow Walk, Canewdon, Rochford, Essex SS4 3QH. Tel: (03706) 598.
- Wanted for Yaesu FT301 transceiver 600 Hz CW filter (XF-90C) and 6KHz AM filter (XF-90B), also external VFO FV301 or other suitable VFO. Tel: St Albans 39333
Z Spectrum hardware and software for RTTY, AMTOR, CW, etc. Also VHF/UHF equipment for satellite work. Edgar W Abraham, PO Box 1136, Klerksdorp 2570, Rep of South Africa. Tel: (018) 27380.
- RAE tutor requests help. Can anyone please loan me copies of the March, May and December 1984 (any or all) Radio Amateur Examination papers? Your help will be much appreciated by my enthusiastic but apprehensive students. Seven day return promised and expenses refunded. John G8PWO QTHr. Tel: Sevenoaks (0732) 62481.

FREE CLASSIFIED AD ORDER FORM

Send to: Radio \& Electronics World Classified Ads•Sovereign House • Brentwood Essex CM14 4SE

Classification: (tick appropriate box) If you want to insert ads under more than one classification use separate sheets for second and subsequent ads
For Sale
Wanted.
USE BLOCK CAPITALS (One word per box)
To avoid mistakes please write clearly and punctuate your ad

-	-	T	T-	-			
Nameladress							
						\square	

USE SEPARATE SHEET FOR MORE WORDS

Ensure that you have included your name and address, and/or telephone number

CONDITIONS: Your ad will be published in the first available issue. We will not accept trade advertisements. We reserve the right to exclude any advertisement.

RE0185

TECHNICAL INFO SERVICES
76 Church St - Larkhall - Lanarks
FULL SIZE SERVICE SHEETS
Any radio, audio $£ 2.50+$ I.s.a.e.
CTVs/MusC $£ 3.50+$ I.s.a.e. complete set
Worlds largest collection service manuals 30 's - date from $£ 4.50-£ 35$ each.
Comprehensive TV Repair Course Complete Radio Service \& Repair Course ONLY £9.50 EACH
Repair data/circuits almost
any named TV/Video for $£ 10.50$
Sae brings any quotation
FREE 50p mag, inc. service sheet! Pricelists unique elect. publications

FOR FAST QUOTES RING 0698883334

THE NEXT ISSUE OF Electronics
 IS ON SALE 10 JANUARY 1985

25, Stamford Street,Altrincham,Cheshire, WA14 1EX Tel: 0619413057 Standard 2 m and 70 cm - Jaybeam Telex: 666387 Standard 2 m and 70 cm - Jaybeam - Ant Antennae Antiference - Weltz - Sinclair computer spares
Colin G1 120
Gavin G11Z1
Your radio sold on commission basis

HAMPSHIRF

FARNBOROUGH
COMMUNICATIONS
97 Osborne Rd, North Comp, Farnborough. Tel 0252518009
Open: 6 days 10-6
Yaesu, lcom, FDKs, Mosley aerials, Jaybeams. G Whips

KENT

Thanet Electronics

0 ICOM
95 Mortimer St, Herne Bay Tel: 02273-69464
Open: Mon, Tues. Wed 9-5
Thurs 9-1, Fri, Sat 9-5.30
All mail order \& service enguiries to head office, $1+3$ Reculver Rd Tel: 02273-63859

LIVERPOOL

PROGRESSIVE RADIO
ELECTRONICS SPECIALISTS
47 Whitechapel Liverpool 0512365489
89 Dale St Liverpool 0512360154
93 Dale St Liverpool 0512360982
Open Tues-Sat 9.30-5.30
FOR ALL YOUR ELECTRONIC NEEDS.

LONDON

G W MORSE KEYS 4 Owen Close, Rhyl, Clwyd Wales LL 18 2LQ THE GW MORSE KEY		
THE GW MORSE KEY A joy to use and to look at this key is made from solid brass polished and mounted on a slate base here in GW land not JA		
polished and mounted on a slate base here in GW land (not JA) Mounting the key on slate stops all movement of the key when in use $£ 3450 \mathrm{pp} £ 200$ ea		
24 HR LCD CLOCK		
Clear $1 / 2$ high lod readout repeat alarm clock. battery powered (2 AA pencells) No R'F problems known Complete with batteries ¢9.50 pp 5050 ea		
GWHIP PRODUCTS		
The full range of Gwhips always in stock for quick and prompt delivery or collection		
\#EW**************************************		
NEW GWHIP PROD		
NEW AVAILABLE		
brass call plate		
Your callsign engraved on a brass plate for fixing to the GW morse		

Sixty years practise has perfected the fully guaranteed G3SRK MORSE KEY
$£ 10.00 \mathrm{incl}$ VAT and pp. Why pay more? Also Morse 60 min cassettes, beginner and advanced $£ 3.50$ each

J Sykes, 7 Top o' the Hill

Slaithwaite, Huddersfield HD7 5UA

XXX ADULT VIDEO CLUB

For the genuine adult films. Available only from ourselves. Ring

0924-471811 (24hrs)

For the intimate details or write
ADULT VIDEO CLUB
P.O. Box 12, Batley, W. Yorks.

Amtron Electronic Kits and instrument cabinets. Over 70 kits in our range plus special offer on obsolete kits. Send SAE for catalogue

Amtron UK Ltd
7 Hughenden Road, Hastings East Sussex TN34 3TG

Complete full-size sets any published service sheets $£ 2.50$ - large
SAE - except CTV s/Music Centres from $£ 350$ - large SAE SAE - except CTV s/Music Centres from $£ 350$ - large SAE Manuals trom 1930 to latest Quotations. free 50p magazine price lists unique technical publications, for large SAE
Comprehensive TV or Radio courses now only $£ 50$ each

TISREW

76 Church Street, Larkhall, Lanarkshire ML9 IHE Phone: 0698883334

SAVE THIS CHRISTMAS ON YOUR COMPUTER

Acorn Electron Computer under £189.95

 Save $£ 10$. Spectrum $48 \mathrm{~K} £ 120$, Save $£ 9.95$ All hardware and software for Commodore 64. Vic 20, Dragon, BBC etc Send SAE for list.Mr J Seaward, 7 St Olaf's Road, Stratton, Nr Bude, Cornwall.

AMTOR for the DRAGON 3264

Now you can run AMTOR directly on the DRAGON without expensive external hardware.

Program + Timer/interface module to add to your RECEIVE ONLY version E36.25 MF2 SWL Terminal unit $170 / 425 / 850 \mathrm{~Hz}$. Switched shift. - Morse capability $£ 32.00$

For full details send $2 \times 16 p$ stamps
Please add VAT at the current rate to all prices

PNP COMMUNICATIONS (REW)

 62 Lawes Avenue, NewhavenEast Sussex BN9 9SB. Tel: (0273) 514465

Used Equipment Centre

Buying or selling? Contact the Used Equipment Centre for the best deal 25 years of amateur radio experience, friendly advice, full no quibble guarantee on all equipment. Heard about our exchange plan, buy \& try? Why not contact me, David Cole G3RCQ Hornchurch 55733, evenings/weekends or send SAE for full details \& current list of equipment. G3RCQ 65. Cecil Avenue. Hornchurch. Essex. Urgent daytime enquiries 01-594-3495.

NEW FROM AUTRONICS

 NOW IN PRODUCTION BY OUR WORKSHOPS, THE KY3ELECTRONIC MORSE KEYER. Features include:- Variable Speed output. Relay and visual output. Input \& Output. Standard Jack sockets Input Voltage $=6-18$ Volts reverse protected Manufactured in a die-cast box, finished in Satin Black with a sitver front paner. Many prototypes
now in full production. Delivery by return of post.

ing VAT (a $55 \%=82295$ (DIscount for callers) Above Price includes Postage \& Packing. Callers Welcome during shop hours
AUIRONICS LTD 142 PRIORY ROAD, HALL CREEN BIRWNCHAW B28 OTB. Tel: 0214744638

MORSE TUTOR

$\mathbf{8 4 . 0 0}$ on cassette. $\mathbf{8 8 . 5 0}$ on microdrive for Sinclaire Spectrum. Also available for the QL at ع8.50. 4 to 19 words per minute, variable spacing, variable groups of random letters, numbers or mixed; Random sentences, own message, single characters and variable pitch. Feedback on screen, printer, or speech (Currah Micraspeech 48 K only) and repeat facility, 16 K and 48 K versions on one cassette 48 K anly on microdrive.

WD SOFTWARE
Hiltop, St. Mary, Jersey, C.Islands
Telephone (0534) 81392

Leam to make your own Printed Circuit Boards EXPERIMENTER'S PRINTED CIRCUIT KIT Laminate Boards. Chemicals, Instruction Book, also, Plans \& Circuits for 50 Interesting Projects you can buld with own parts and transistors $£ 2.50 \mathrm{p} \mathrm{\& p} 50 \mathrm{p}$.
Protect your premises with an efficient BURGULAR ALARM, PHOTOELECTRIC KIT $£ 5.50 \mathrm{p} \& \mathrm{p} 50 \mathrm{p}$. INVISIBLE BEAM OPTICAL KIT $£ 4.50 \mathrm{p} \& \mathrm{p} 50 \mathrm{p}$. Send SAE for details of all Kits \& Circuits and FRFE 5 transistors \& 5 diodes EXPERMETTAL EECTRONICS 335, Batiorsea Pk Rd London SW11. Tel: 017202683

RADIO \& RTTY BOOKS

CLANDESTINE CONFIDENTIAL New guide to rebel shortwave stations $£ 6.20+60 \mathrm{p}$ p\&p GUIDE TO RTTY FREQUENCIES 4500 stations listed worldwide $£ 8.85+60 p$ p\&p
RTTY TODAY beginners guide to RTTY decoding on home computers, etc $£ 6.20+60 \mathrm{p}$ p\&p

2 or more books p\&p free
INTERPRODUCT LIMITED
Dept RE3, Stanley, Perth PH1 400 Tel: 073882-575

This space could be yours for as little as £15.50 per month. Call the advertising department now on 0277 219876, or complete the coupon opposite.

Relectronics
 for all aspects of piactical amoteur radio Morld

This method of advertising is available in multiples of a single column centimetres (minimum 2 cms). Copy can be changed every month.

RATES

per single column centimetre
1 insertion £9.65, 3 - £9.15, 6 - $£ 8.65,12-£ 7.75$

RADIO \& ELECTRONICS WORLD SMALL AD ORDER FORM
TO: Radio \& Electronics World • Sovereign House Brentwood Essex CM14 45E •ngland (0277) 219876

PLEASE RESERVE..............centimetres by...............columns

FOR A PERIOD OF 1 issue........ $\square 3$ issues........ $\square 6$ issues....... $\square 12$ issues........ \square COPY enclosed........ \square to follow....... \square
PAYMENT ENCLOSED:
CHARGE TO MY ACCOUNT
COMPANY
ADDRESS
SIGNATURE TELEPHONE

C \mathbf{P} I
ADVERTISERS INDEX
Armon Electronics Ltd 28 RAS (Nottingham) 63
Blackstar 57 PM Components 44, 45
British National Radio School 23
Cirkit
Quartslab 57 6,7
Rapid Results College
Rapid Results College 43 43
Display Electronics 54
54 Reg Ward \& Co 43
Reltech Instruments 36
East Cornwall Components ..Inside Front Cover
Edwardschild 53
Sendz Components Outside Back Cover
Skybridge 43
Grandata 51 Systems Electronique (UK) Ltd 51
Greenweld Electronics Ltd 23 CR Supply Co 12
Hart Electronics 53
Hightech Antennas Inside Back Cover
M J Instruments 12
Tau Systems 53
Technical Software 43
Thanet Electronics 24, 25
Lecmar Electronics 23 Western Electronics (UK) Ltd 69
R Withers 14
Microwave Modules 26 Wood \& Douglas 12

DSPLAT 41		series rates for consecutive insertions			
depth $\mathrm{mm} \times$ width mm	ad space	1 issue	3 issues	6 issues	12 issues
61×90	1/8page	$£ 91.00$	¢86.00	£82.00	$£ 73.00$
128×90 or 61×186	7/4 page	$£ 160.00$	§150.00	§145.00	£125.00
128×186 or 263×90	1/2 page	£305.00	§290.00	¢275.00	£245.00
263×186	1 page	\$590.00	£560.00	¢530.00	£475.00
263×394	double page	§1140.00	£1070.00	£1020.00	¢910.00

A New Approach to HF Antennae Design

Compare these performance figures of Hightech Antennae's MBFr80 with the best 3 element antennae available today.

Front to Back Ratio
Forward gain
VSWR at Resonance
Max. Power input
input Impedance
Boom Length
Max. Element Length
Max. Wind Survival
Net Weight
Wind Load

Hightech Antennae's Spec for MBFr80
2 Parasitic + 1 Absorber Element 43 dBd
Better than 4.5 dBd
1.1:1

2 kW (100\% duty cycle) 5 kW peak 50 ohm
$4 m$
4.6 m

100 mph
8 kg
$100 \mathrm{mph}=23 \mathrm{~kg}$

The front to back ratio advantage from Hightech Antennae's MBFr80 is 18 dBd better than other antennae available today. Remember this is a 3 S -unit noise reduction in unwanted directions over and above other antennae.
$6 d B d=15$-unit
Massive front to back ratio. This is more important than forward gain on today's crowded amateur bands.
Flat VSWR across all HF bands.
No need for the purchase of ATU's for those with solld state PA's. No need for the purchase of baluns.
A complete break with the coil and capacitator trap arrangement with, of course, its associated losses, restricted bandwidth etc.
Expandability: Extra parasitic element (director)
Extra absorber element for even greater front to back ratio.
With the conversion kits available, a 3 element, 3 band beam with an enormous front to back ratio will become the standard for others to follow.

Antennae (Scotland) Ltd

[^0]: BROADBAND TRIPLEXER
 Time Microwave, Santa
 Clara, California, have

[^1]: Simpson Electric Company, 853 Dundee Avenue, Elgin, lllinois, USA.

