22.02.2013 Views

International Congress BIOLOGICAL PRODUCTS - Gruppo di ...

International Congress BIOLOGICAL PRODUCTS - Gruppo di ...

International Congress BIOLOGICAL PRODUCTS - Gruppo di ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>International</strong> <strong>Congress</strong><br />

<strong>BIOLOGICAL</strong> <strong>PRODUCTS</strong>: WHICH GUARANTEES FOR<br />

THE CONSUMERS<br />

Main Sponsors<br />

SIPCAM SpA, Milano<br />

BioTecnologie B.T., To<strong>di</strong> PG<br />

Fondazione CARIPLO, Milano<br />

Milan<br />

October 15-16th 2002<br />

<strong>Congress</strong> Centre CARIPLO<br />

Via Romagnosi 6<br />

Milan<br />

Acknowledgement<br />

We are grateful to the CARIPLO Foundation for<br />

provi<strong>di</strong>ng their prestigious <strong>Congress</strong> Centre<br />

Co-sponsors<br />

Università <strong>di</strong> Milano<br />

Assometab, Cesena<br />

Shimadzu Italia, Milano<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Tuesday October 15 th<br />

9:30- 9:45 Registration<br />

9:45-10:15 Opening:<br />

Programme<br />

M. Trevisan (GRIFA president, University of Piacenza),<br />

L. Villa (Chairman of the Faculty of Pharmacy, University of Milan),<br />

On. L. Bellotti (Responsible of Biological Committee, MiPAF),<br />

M. Cocucci (Chairman of the Faculty of Agriculture, University of Milan),<br />

P. Cabras (University of Cagliari)<br />

SESSION 1 – Chairmen: M. Trevisan, E. Conti<br />

10:15-10:55 V. Rotondo<br />

FIAO, Italy<br />

The situation of organic farming in Italy: legislation and need for research<br />

10:55-11:15 Coffee break<br />

11:15-12:00 J. Casida<br />

University of California, Berkeley, USA<br />

Botanical insecticides: reflections and perspectives<br />

12:00-12:20 Y. Siderer, E. Anklam<br />

European Commission JRC, Geel, Belgium<br />

Need for research and appropriate analytical tools for organic food control<br />

12:20-12:40 C. Tuberoso<br />

Università <strong>di</strong> Cagliari<br />

Multiresidual methods for the determination of vegetable extract residues in<br />

products from organic farming<br />

12:40 -13:00 R. Lo Curto, F. Vilasi, T. Pellicanò, P. Munafò, G. Dugo<br />

Università degli Stu<strong>di</strong> <strong>di</strong> Messina<br />

Presence of ochratoxin in experimental wines related to pesticides treatments<br />

employed on grapes<br />

13:00-14:30 Lunch<br />

14:30-15:00 Poster session<br />

SESSION 2 – Chairmen: P. Cabras, M. Solfrizzo<br />

15:00-15:40 C. Regnault-Roger<br />

Université de Pau et des Pays de l'Adour, France<br />

Prospects for new botanical insecticides: the example of Me<strong>di</strong>terranean<br />

aromatic plants.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

2


15:40-16:20 G. Lozzia<br />

Università degli Stu<strong>di</strong> <strong>di</strong> Milano<br />

Reliability and perspectives for the biological control of phytophagous insects<br />

16:20-16:40 M. Kelderer, E. Elias<br />

Centro Sperimentale Laimburg, Bolzano<br />

Efficacy of Ranya speciosa as natural insecticide<br />

16:40-17:00 Coffee break<br />

17:00-17:40 S.K. Reilly<br />

U.S. Environmental Protection Agency, USA<br />

Biopesticides and their registration in the United States<br />

17:40-18:00 M. Rubbiani<br />

Istituto Superiore <strong>di</strong> Sanità, Roma<br />

Biopesticides: evaluation process following the application of the <strong>di</strong>rective<br />

91/414/CE<br />

18:00-18:20 A. Ragni<br />

BioTecnologie BT (Italy)<br />

Entomopathogenic nematodes in biological control: reality and prospectives<br />

20:00 Social <strong>di</strong>nner (SOCREA, via Cino del Duca 8)<br />

Wednesday October 16 th<br />

SESSION 3 – Chairmen: M. Taccheo Barbina, G. Lozzia<br />

9:00-9:40 L. Gullino, A. Garibal<strong>di</strong><br />

Università <strong>di</strong> Torino<br />

Crop defence from fungal pathogens in organic farming: problems, effective tools<br />

and perspectives<br />

9:40-10:20 M. Solfrizzo<br />

CNR, Bari<br />

Toxicity and analysis of micotoxins and their presence in some organic foodstuffs<br />

10:20-10:40 B. Beretta, C. Ballabio, F. Tacchini, A. Cattaneo, C.L. Galli, C. Gigliotti, P. Restani<br />

Università degli Stu<strong>di</strong> <strong>di</strong> Milano<br />

Determination of the content of mycotoxins in commercial products from organic<br />

and tra<strong>di</strong>tional farming<br />

10:40-11:00 Coffee break<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

3


11:00-11:40 A. Evidente<br />

Università <strong>di</strong> Napoli Federico II, Portici<br />

The fungal phytotoxins and their potential role as herbicides in control methods<br />

against weeds<br />

11:40-12:00 A. Santomauro, G. Tauro, M. Sorrenti, F. Faretra<br />

Università <strong>di</strong> Bari<br />

Protection of grapevine from powdery mildew by using natural substances and the<br />

microbial antagonist Ampelomyces quisqualis<br />

12:00-12:20 A. Di Muccio<br />

Istituto Superiore <strong>di</strong> Sanità<br />

Experiences in the controls of pesticide residues in Italian products from organic<br />

farming<br />

12:20-12:30 M. Benuzzi<br />

ASSOMETAB<br />

BioControl agents for organic agriculture: a devoloping field without<br />

appriopriate rules<br />

12:30-13:00 G. Imbroglini<br />

MiPAF<br />

The commitment of MiPAF for organic farming<br />

13:00-13:10 Closing remarks: M. Trevisan, P. Cabras<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

4


MAIN SPEAKERS<br />

• V. Rotondo FIAO, Italy 6<br />

• J. Casida University of California, Berkeley, USA 8<br />

• C. Regnault-Roger Université de Pau et des Pays de l'Adour, France 10<br />

• G. Lozzia Università degli Stu<strong>di</strong> <strong>di</strong> Milano 11<br />

• S.K. Reilly U.S. Environmental Protection Agency, USA 18<br />

• L. Gullino Università <strong>di</strong> Torino 19<br />

• M. Solfrizzo CNR, Bari 20<br />

• A. Evidente Università <strong>di</strong> Napoli Federico II, Portici 21<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

5


LA SITUAZIONE DEL BIOLOGICO IN ITALIA: ASPETTI NORMATIVI E FABBISOGNO DI RICERCA<br />

Vincenzo Rotondo<br />

In rappresentanza FIAO<br />

C/o Suolo e Salute S.r.l., P.zza Mazzini, 42 Nettuno <strong>di</strong> Roma<br />

Ad oggi il territorio italiano offre la maggiore produzione da agricoltura biologica dell’Unione Europea. Il trend <strong>di</strong><br />

crescita è sempre in aumento sia per le richieste del consumo che in offerta da parte della produzione. Dall’elaborazione<br />

dei dati forniti dagli Organismi <strong>di</strong> controllo operanti in Italia risulta che gli operatori del settore sono passati dai 54.004<br />

del 2000 ai 60.509 del 2001, sud<strong>di</strong>visi in 56.440 produttori agricoli ( <strong>di</strong> cui 1.600 produttori/trasformatori), 3.947<br />

trasformatori e 122 importatori.<br />

La <strong>di</strong>stribuzione degli operatori sul territorio nazionale vede il 65% nel sud del paese, il 23% nel centro, il 22 nel nord.<br />

Per quanto riguarda la loro presenza nelle <strong>di</strong>verse aree geografiche delle attività produttive, si rileva la prevalenza al sud<br />

dei produttori agricoli (68%, contro il 20% al nord e il 12% al centro), ed al nord dei trasfo rmatori(47% contro il 19% al<br />

centro ed il 34 al sud), e degli importatori (82% contro l’11% al centro ed il 7% al sud).<br />

La superficie interessata, in conversione o interamente convertita ad agricoltura biologica risulta pari a 1.237.640 ettari,<br />

pari all’8% circa della SAU. Le principali colture riguardano i foraggi ed i cereali (221.436 ettari), i prati e pascoli<br />

(241.157 ettari), che nel loro insieme rappresentano il 70% circa degli investimenti. Seguono in or<strong>di</strong>ne <strong>di</strong> importanza le<br />

coltivazioni arboree (olivo, vite, agrumi e frutta) con il 20% e le colture orticole ed industriali (leguminose da granella,<br />

prodotti orticoli, colture industriali) 4%.<br />

Per le produzioni animali, <strong>di</strong>stinte sulla base delle principali tipologie produttive, al 31.12.2001, si segnala la seguente<br />

situazione: bovini 330.701 (latte e carne), ovi-caprini 327.891, pollame 648.693, conigli 1.682, api, in arnie, 48.228.<br />

L’attività <strong>di</strong> controllo, esercitata dagli organismi autorizzati dal Ministero delle Politiche Forestali e dalla Provincia<br />

Autonoma <strong>di</strong> Bolzano, si è concretizzata in 72.896 visite ispettive, prelevamento ed analisi <strong>di</strong> 7.332 campioni. L’attività<br />

<strong>di</strong> controllo ha portato al rilevamento <strong>di</strong> 2.074 irregolarità ed all’applicazione, in via definitiva, <strong>di</strong> 1.367 sanzioni.<br />

Numero operatori sud<strong>di</strong>visi per regione ed attività (dati provvisori)<br />

REGIONE<br />

N. OPERATORI CONTROLLATI<br />

P T I<br />

6<br />

TOTALE GENERALE<br />

ABRUZZO 942 113 2 1.057<br />

BASILICATA 656 33 - 689<br />

CALABRIA 7.087 131 - 7.938<br />

CAMPANIA 1.782 174 4 1.960<br />

EMILIA ROMAGNA 4.535 531 39 5.105<br />

FRIULI VENEZIA<br />

243 58 1 302<br />

GIULIA<br />

LAZIO 2.415 225 - 2.640<br />

LIGURIA 314 65 4 383<br />

LOMBARDIA 1.023 379 23 1.425<br />

MARCHE 1.807 129 2 1.938<br />

MOLISE 476 34 - 510<br />

PIEMONTE 3.250 312 12 3.574<br />

PUGLIA 6.470 361 3 6.834<br />

SARDEGNA 7.798 88 - 7.886<br />

SICILIA 12.225 424 - 12.649<br />

TOSCANA 1.923 318 7 2.248<br />

TRENTINO ALTO<br />

551 97 2 650<br />

ADIGE<br />

UMBRIA 948 81 4 1.033<br />

VALLE D’AOSTA 18 2 - 20<br />

VENETO 1.257 392 19 1.668<br />

TOTALI 56.440 3.947 122 60.509<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Il settore oggi è regolamentato in ambito comunitario con i Regolamenti 2092/91 con tutte le integrazioni e<br />

mo<strong>di</strong>ficazioni successive ed il Regolamento 1804/99. In ambito nazionale il D.L. 220/95 è il riferimento del<br />

recepimento nazionale alla normativa comunitaria.<br />

A causa dello sviluppo consistente e della complessità nell’offrire la più ampia garanzia al consumo risulta necessario<br />

revisionare la normativa al fine <strong>di</strong> mo<strong>di</strong>ficare parte dei contenuti, sia a livello nazionale attraverso una legge delega che<br />

in considerazione della grande opportunità in prospettiva alla potenzialità del suo territorio, valorizzi ed incentivi le<br />

produzioni biologiche, sia a livello comunitario in modo tale da razionalizzare e contemplare in un’unica <strong>di</strong>sciplina <strong>di</strong><br />

settore la materia del biologico, determinando anche maggiore chiarezza, armonizzazione tra i vari comparti<br />

dell’agroalimentare , creare i giusti riferimenti per l’informazione, la promozione, la progettazione ed in modo<br />

particolare la ricerca.<br />

Grande assente ingiustificata è la ricerca nel settore dell’agricoltura biologica.<br />

Nel nostro paese la sperimentazione a supporto del metodo biologico è piuttosto limitata e trascurata dagli enti preposti,<br />

salvo rare eccezioni dovute a volontà in<strong>di</strong>viduali. Si registra altresì, uno scollegamento fra le realtà produttive e le unità<br />

<strong>di</strong> ricerca. Molti problemi <strong>di</strong> entità apparentemente complessa possono essere risolti attraverso lo sviluppo <strong>di</strong> attività<br />

sperimentali specifiche , da osservazioni e prove accurate che abbisognano <strong>di</strong> stu<strong>di</strong>o e tecnologie appropriate.<br />

Mancano fondamentalmente alternative valide per sostituire i prodotti rameici, conferme sull’utilizzazione <strong>di</strong><br />

determinati principi attivi e corretto impiego, soluzioni ai problemi tecnici delle nostre aree come il risanamento <strong>di</strong><br />

terreni inquinati dalle sostanze chimiche utilizzate decenni fa (clororganici), in<strong>di</strong>viduazione degli antagonisti dei<br />

parassiti e loro corretto impiego nella lotta biologica, incremento dello stu<strong>di</strong>o sulle foraggere proteiche sia per il<br />

fabbisogno zootecnico che come miglioratrici dei suoli, proteggere la bio<strong>di</strong>versità, aumentare l’attenzione sull’uso<br />

in<strong>di</strong>scriminato <strong>di</strong> sementi OGM, ecc. Il settore resta in attesa <strong>di</strong> interventi a favore <strong>di</strong> queste attività che porterebbero<br />

in<strong>di</strong>scutibilmente giovamento a chi produce e stimolo per chi vuole iniziare.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

7


BOTANICAL INSECTICIDES:<br />

REFLECTIONS AND PERSPECTIVES<br />

John E. Casida<br />

Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management,<br />

University of California, Berkeley, California 94720-3112, USA<br />

Importance and History. Insects are our main competitors for a limited supply of food and fiber. Pests destroy<br />

about one-third of the world food supply during growth, harvesting and storage, even with the use of pesticides and<br />

other control measures. The insecticides have evolved from inorganics to botanicals to synthetic organics. The inorganic<br />

insecticides have almost <strong>di</strong>sappeared from use on crops for reasons of inadequate effectiveness and safety. The<br />

botanicals and synthetic organics have many similarities yet important <strong>di</strong>fferences and limitations. The author presents<br />

some reflections and perspectives on these relationships from a half century of personal experience in insecticide<br />

research.<br />

Five Major Botanicals. There are five major botanical insecticides, i.e. pyrethrum, rotenone, nicotine, neem<br />

and ryano<strong>di</strong>ne. Pyrethrum extract from the flowers of the white daisy Chrysanthemum cinerariaefolium is the most<br />

important. The countries of production include Kenya, Tanzania and Australia. The effectiveness is enhanced and the<br />

economics improved by ad<strong>di</strong>ng piperonyl butoxide for stabilization from metabolic detoxification in insects. Pyrethrum<br />

is also important because its active ingre<strong>di</strong>ents, the pyrethrins, provided the model for the synthetic pyrethroids which<br />

now constitute 20% of the market value of all insecticides. Rotenone from the roots of Derris elliptica and<br />

Lonchocarpus utilis has for 150 years been used to control chewing insects and as a piscicide to kill unwanted fish.<br />

Rotenone has been the prototype for Complex I respiratory inhibitors but not for economically successful structural<br />

mo<strong>di</strong>fications. Home gardeners recommend rotenone use. Nicotine, the alkaloid of tobacco plants (and cigarettes), has<br />

declined in use for decades but seren<strong>di</strong>pitously served as the mode of action but not structural prototype of the new<br />

synthetic neonicotinoids of high effectiveness and apparent safety. Neem has important local uses in In<strong>di</strong>a and China<br />

and the extract with aza<strong>di</strong>rachtin active ingre<strong>di</strong>ent is an effective crop protectant acting as an antifeedant. Ryania is the<br />

ground stemwood of Ryania speciosa. The supply is limited but the effectiveness is high for lepidopterous larvae.<br />

Supply and Composition. One of the limitations of botanical insecticides is consistent supply with adequate<br />

standards of effectiveness and safety. This is a constant challenge even with the best producer organizations. Pyrethrum<br />

once had an allergen now removed by a defined cleanup procedure. We analyzed cubé resin (the commercial rotenone<br />

supply) and found 11 stilbenes and flavonoids and 29 rotenoids (inclu<strong>di</strong>ng one that incorporated chlorine from the<br />

solvent extraction con<strong>di</strong>tions). Nicotine has been extensively stu<strong>di</strong>ed except perhaps its environmental degradation<br />

products. Neem contains many active ingre<strong>di</strong>ents; we described nimbolide and epoxyaza<strong>di</strong>ra<strong>di</strong>one as cytotoxic agents.<br />

The principal active ingre<strong>di</strong>ent of Ryania was long described as ryano<strong>di</strong>ne until we found that 9,21-dehydroryano<strong>di</strong>ne<br />

was of even greater importance.<br />

Toxicology. Botanicals are more <strong>di</strong>fficult to evaluate toxicologically than synthetic insecticides. They usually<br />

have one or two major active ingre<strong>di</strong>ents (e.g. pyrethrins I and II in pyrethrum extract) but there may also be many<br />

related bioactive compounds (e.g. in neem). Unless highly purified they also have hundreds to thousands of other<br />

extractives or natural products which can vary with the plant source and processing. Critical evaluation of toxicology<br />

requires production and use samples of consistent composition. Toxicology stu<strong>di</strong>es on pyrethrum extract meet current<br />

standards but those for other botanicals are lacking in scope, although this does not necessarily mean hazards are<br />

involved.<br />

Residues of botanical insecticides are rarely a known problem. The pyrethrins photodecompose rapidly to<br />

compounds of greatly reduced neurotoxicity. The same applies to the rotenoids and ryania components. Natural<br />

products are generally considered to be easily metabolized. They have few or no halogens or refractory substituents.<br />

Quite the contrary they have phenol, alcohol and ketone substituents, and alkene moieties that are amenable to ready<br />

degradation. The analyses are more <strong>di</strong>fficult than with most synthetics: the lack of halogens limits the analytical<br />

detector sensitivity; multiple components and related but inactive analogs complicate the process.<br />

Mode of Action and Resistance. Mode of action is an important aspect of insecticide use, safety and<br />

toxicology. The same targets are involved in the most part with the botanicals and synthetics. Major insecticides act on<br />

four principal targets in the nervous system.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

8


target botanical synthetic<br />

so<strong>di</strong>um channel – pyrethrins DDT, pyrethroids<br />

voltage dependent<br />

chloride channel - picrotoxinin* cyclo<strong>di</strong>enes, lindane,<br />

GABA-gated fiproles<br />

acetylcholinesterase physostigmine* organophosphates<br />

methylcarbamates<br />

nicotinic receptor nicotine neonicotinoids<br />

*never a major commercial insecticide<br />

The synthetics in<strong>di</strong>cated above constitute about 90% of the insecticide market. This has major implications in the<br />

selection for resistance lea<strong>di</strong>ng to higher required doses and less effective control. Selection with the synthetics can lead<br />

to target site resistance to the botanicals, e.g. the use of synthetic pyrethroids and even DDT results in selection of<br />

strains resistant to pyrethrins.<br />

Prototypes. Botanicals and other natural products are primary sources and prototypes in the search for new<br />

insecticides. Screening of plant extracts enables the search of thousands of compounds as mixtures. This can be done at<br />

random or with knowledge of potential usefulness from practice or folklore. Bioassay-<strong>di</strong>rected isolation and modern<br />

characterization techniques can often lead to a defined structure in weeks. This practice for a half century has turned up<br />

potent compounds usually with problems of inadequate selectivity for insects versus mammals. The variety and source<br />

of organisms are not infinite and limitations in this approach are already evident in the number of new isolates that<br />

turned out to be previously known components with insecticidal activity. Me<strong>di</strong>cinal plants and herbs are frequently used<br />

or proposed to control insect pests. A literature search will usually reveal the active ingre<strong>di</strong>ent and often the mode of<br />

action. Isolation of the effective component will usually verify that one is using a new source of an old control<br />

chemical. The approach is still good but with increasing limitations.<br />

Botanicals are more likely than synthetics to give leads for completely new types of insecticides. With<br />

synthetics, the problem is to generate a new lead compound and then prepare massive numbers of analogs and rapidly<br />

optimize their structure. Combinatorial procedures help here. Fast throughput screening allows rapid sifting for<br />

effectiveness and mode of action.<br />

Organic Agriculture. Botanical insecticides and natural foods fit well together. Rapidly increasing knowledge<br />

helps choose the best materials and insures their effectiveness and safety. The natural chemical defenses of plants used<br />

as botanical insecticides offer continued benefits in organic agriculture with confidence that the consumer and<br />

environment will be adequately protected.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

9


PROSPECT FOR NEW BOTANICAL INSECTICIDES :<br />

THE EXAMPLE OF MEDITERRANEAN AROMATIC PLANTS<br />

Catherine Regnault-Roger<br />

Laboratoire d’Ecologie Moléculaire<br />

Université de Pau et des Pays de l’Adour-France<br />

BP 11 55 – F-64013 PAU Cedex<br />

catherine.regnault-roger@univ-pau.fr<br />

Fifty years of sustained struggles against harmful insect using chemical synthetic molecules has produced perverse<br />

secondary effects like mammalian toxicity, insect resistance ans ecological hazards. Now, IPM has to face up to the<br />

economic and ecological consequences of the use of pest control measures. The <strong>di</strong>versification of the approaches<br />

inherent to IPM is necessary for friendly environnemental management. Among the alternative strategies, the use of<br />

plants with insecticidal allelochemicals appaer to be promissing. The developpement of this ecochemical approache<br />

requires the identification of efficient extracts or compounds from new sources of tropical but also temperate plants.<br />

Aromatic plants are abundant on the Me<strong>di</strong>terranean periphery and they have been used as spices, pot-herb or me<strong>di</strong>cinal<br />

plants since Antiquity. Numerous industrial applications have then been implemented in perfumery, cosmetics and<br />

detergents, pharmacology and fine chemistry as well as aromatics for the food industry. A recently-appeared field, IPM,<br />

may also be prospected as an application field for aromatic Me<strong>di</strong>terranean plants: they contain a large range of<br />

allelochemicals, which develop insecticidal properties. These insecticidal activities could be considered as<br />

complementary or renewal strategies in IPM.<br />

In Southwestern of France, the use of aromatic plants as tra<strong>di</strong>tional protectors of stored products is an old custom. We<br />

evaluated in our laboratory the efficiency of these tra<strong>di</strong>tional customs: we observed that some plants were insecticidal,<br />

especially those belonging to Lamiaceae. Thymus spp, Origanum spp, Rosmarinus sp were among the most active.<br />

Our first insect model was Acanthoscelides obtectus Say (Bruchidae, Coleoptera) and its host plant Phaseolus vulgaris,<br />

Leguminosae. HPLC analyses were conducted to identify main components and bioassays to determine their biological<br />

activities on the beetle. The toxicity on adults and the inhibition of insect reproduction were evaluated. Essential oils<br />

were active, however not exclusively as some hydro<strong>di</strong>stillated residues also exerted a toxic activity. The main active<br />

compounds were identified as monoterpens and polyphenols.<br />

Then, their effects on insects of <strong>di</strong>fferent kinds like Ceratitis capitata (Diptera), Rhopalosiphum pa<strong>di</strong> and<br />

Metopolophium <strong>di</strong>rrhodum (Aphids) or Lepidoptera were tested. These evaluations showed that a large variability could<br />

be observed in the response of <strong>di</strong>fferent insect species to a same compound. Variability of plant chemical patterns<br />

induced by climatic, pedological and genetic variations was also noticed.<br />

Accor<strong>di</strong>ng to these results, structure-activity relationships are <strong>di</strong>scussed here in regard to their efficiency to control pest<br />

insects and to their suitability to be considered as potential biopesticides.<br />

References :<br />

C.REGNAULT-ROGER, B.J.R. PHILOGENE, C.VINCENT, 2002 : Biopesticides d’origine<br />

végétale, Lavoisier (Paris), pp 337.<br />

C.REGNAULT-ROGER : The potential of botanical essential oils for insect pest control, Integrated Pest Managements<br />

Reviews, 2, 25-34 (1997).<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

10


RELIABILITY AND PROSPECTIVES FOR THE <strong>BIOLOGICAL</strong> CONTROL OF PHYTOPHAGOUS<br />

INSECTS<br />

Giuseppe Carlo Lozzia, Ivo E. Rigamonti<br />

Istituto <strong>di</strong> Entomologia agraria, Università degli Stu<strong>di</strong> <strong>di</strong> Milano<br />

In the last years there has been an explosion in the widespread of foodstuffs and other “biological” products that are<br />

associated with an image of naturalness and hygienic safety by the public, even if these concepts are wrongly thought to<br />

be closely linked. In reality, notwithstan<strong>di</strong>ng the great emphasis on the use of “natural” techniques and of the exclusion<br />

of artificial products, biological agriculture is not so <strong>di</strong>fferent from the most modern “conventional” strategies, and is<br />

largely based on the use of active ingre<strong>di</strong>ents, which are natural but still toxic, that have all the problems of “pesticides”<br />

(residues on foodstuffs, side effects on non-target organisms, etcetera) but on a <strong>di</strong>fferent scale. This situation, both for<br />

biological and tra<strong>di</strong>tional agriculture, is not due to a “strategic” trust in pesticides but to a lack of total efficacy in low<br />

impact management techniques, and in particular to biological control.<br />

Up to now, as a matter of fact, there is no culture of a certain importance for which the pest management can be given<br />

solely to, or even mainly to, biological control. The situation is decidedly better if we only refer to animal organisms. In<br />

this case there are consolidated strategies, at least theoretically; which refer to the reconstitution of balances and to the<br />

improvement of the action against natural enemies, which are carried out in practice through the use of four<br />

“techniques”: the <strong>di</strong>ffusion of antagonists, the elimination of worrying sources and the adoption of environmental and<br />

cultural management measures. Furthermore, the use of pheromones and other “modern” methods gives the possibility<br />

to enlarge the possibilities of success. Modern strategies are based on this framework especially with the understan<strong>di</strong>ng<br />

that a culture is a real ecosystem where limiting natural factors have a considerably important role. The most recent<br />

research is analysing the influence of <strong>di</strong>fferent cultural practices on the coenosys settled in the agro-ecosystem. The aim<br />

of all this is, on the one hand to favour the <strong>di</strong>ffusion of techniques with beneficial effects, and on the other to limit the<br />

repercussions of harmful interventions which cannot be eliminated, as some phytosanitary treatments (Bassino, 1987).<br />

One of the areas where the use of biological control practices is widely used, is in glasshouses cultures. The quick<br />

succession of cultures one <strong>di</strong>fferent from the other, with brief periods when there are no cultures, create a very<br />

particular environment where techniques of permanent biological control of phytophagous insects have no possibility of<br />

success. For this reason, there are usually routine “inundative” releases of antagonists in glasshouses and in tunnels.<br />

Using this strategy the biological tool is almost like a chemical treatment. Large quantities of predators or parasitoids<br />

are introduced into the structure in order to quickly bring down the population of the target pest and to keep it thereafter<br />

under the damage level until the end of the cultivation cycle. Often the release has to be repeated over and over again<br />

and more than one species of antagonists are introduced. In these environments phytophagous insects with determinate<br />

characteristics tend to become affirmed (polyphagous, high number of generations, very prolific) which are able to<br />

damage the cultures that follow, that, as already mentioned, can be very <strong>di</strong>fferent one from another, and in any case the<br />

species always tend to be the same ones. Numerous Rhynchota are particularly abundant (whiteflies, aphids, scale<br />

insects), but Agromyzidae Diptera can also be easily found, as well as some Thysanoptera (Frankliniella occidentalis<br />

(Pergande), Heliothrips haemorrhoidalis (Bouché), Thrips tabaci Lindemann) and spider mites. The low number of pest<br />

species makes it possible for key antagonists to be restricted to a few units. All this has led to the birth and the <strong>di</strong>ffusion<br />

of structures, the commercial insectary, that have become similar in organisation to an industry, whereby the most<br />

important natural enemies of every phytophagous insect is bred in large quantities and after put on sale on a large scale.<br />

The bree<strong>di</strong>ng of auxiliaries is very complex (figure 1) requiring the development of refined and very reliable<br />

techniques.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

11


Preparation of the me<strong>di</strong>um<br />

(plant or <strong>di</strong>et)<br />

Figure 1 - Bree<strong>di</strong>ng process in a commercial insectary.<br />

Multiplication of the victim<br />

Multiplication of the auxiliary<br />

Collection<br />

Packaging<br />

Product quality control<br />

Delivery<br />

The high cost involved, together with the need to have a sure market has until now limited considerably the field of use<br />

to protected environments which, on the one hand, usually host highly precious and expensive cultures and, on the<br />

other, do not allow the <strong>di</strong>spersion of the antagonists, optimising their efficacy. Among the species to be found in<br />

bree<strong>di</strong>ng there are numerous Hymenoptera parasitoids as the Aphelinidae Encarsia formosa Gahan, active against<br />

whiteflies, or the Eulophidae Diglyphus isaea (Walker) which attacks the Agromyzidae Lyriomiza trifolii (Burgess),<br />

and among the predators the Neuroptera Crysopidae Chrysoperla carnea (Stephens) an enemy of many aphids and the<br />

Phytoseiid mite Phytoseiulus persimilis Athias-Henriot an antagonist of spider mites. To be fair, it has to be said that<br />

many micro-organisms, in a broad sense, are produced commercially for the same purpose as Bacteria (Bacillus<br />

thuringiensis Berliner), fungi (Beauveria bassiana (Bals.)) or Nematodes (Steinernema feltiae (Filipjev) and S.<br />

carpocapsae (Weiser)).<br />

For cultures to be found exclusively in the open field, an example of a nearly optimal situation can be supplied by<br />

viticulture, which in the last decades has led to the affirmation of <strong>di</strong>fferent practices of biological control which cover<br />

all the kinds of strategies that have been mentioned above. This evolution has been made easier by the pre-existence of<br />

a remarkably complex arthropod coenosys and therefore highly stable (Boller and Remund, 1986; Boller and Basler,<br />

1987). The brief description of the <strong>di</strong>fferent measures in the following paragraphs allows us to understand what are the<br />

lines of research and what is the path that makes the practical enactment possible.<br />

The first measure, the elimination of a worrying source, has been the rationalisation of the use of pesticides which, since<br />

the 80’s has helped to rebuild the populations of Phytoseiids, predator mites responsible for the biological control of<br />

Tetranychidae and Eriophyidae. It has been proved that the choice of products, in particular of fungicides are<br />

fundamental for the maintenance of Phytoseiids and since the effects tend to accumulate, even substances which are<br />

relatively little toxic can be extremely harmful if they are used repeatedly or in particular moments of the season.<br />

However, in answer to specific con<strong>di</strong>tions it may be possible to use active toxic substances as <strong>di</strong>thiocarbamates, <strong>di</strong>nocap<br />

or powdery sulphur. In this case it is necessary to know the characteristics and the critical moments for the dominating<br />

species in the concerned area, since they are <strong>di</strong>fferent in the various Italian regions. For example, Kampimodromus<br />

aberrans (Oudemans) is really sensitive and requires the use of the least harmful active ingre<strong>di</strong>ent possible from those<br />

on offer. Typhlodromus pyri Scheuten is more tolerant instead but has moments of high sensitivity when it has to be<br />

protected fully. In the more northern areas this period coincides with the regrowth of the vegetation, when there are a<br />

few females and in ad<strong>di</strong>tion they are very “stressed” due to the adverse winter con<strong>di</strong>tions. In the more southern areas<br />

this normally takes place in the summertime, as T. pyri does not like high temperatures very much. If done correctly, the<br />

effects can be limited to a selection pressure which favours the affirmation of the more resistant Phytoseiids without<br />

compromising their efficacy. The protection of these predators is furthermore enhanced by the support offered by the<br />

practices of habitat management aimed at the <strong>di</strong>ffusion of tree areas. Here, populations of Phytoseiids settle un<strong>di</strong>sturbed<br />

which interact with the culture thanks to the passive <strong>di</strong>ffusion of in<strong>di</strong>viduals carried over by the air currents and which<br />

give the possibility to overcome critical moments through the repopulating of populations decimated by erroneous<br />

cultural practices or even by the recolonisation of the culture (figure 2).<br />

12<br />

bree<strong>di</strong>ng of the victim<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

Stock


Vineyard<br />

Passive <strong>di</strong>ffusion<br />

Spontaneous flora<br />

Figure 2 - Phenology of the movements of Phytoseiid populations in the grapevine agroecosystem in Northern Italy.<br />

A general presence of trees and shrubs is not the only requirement but well defined elements able to host the interesting<br />

species for the culture is. Therefore K. aberrans is abundant in our regions on many hosts (Celtis australis, Corylus<br />

avellana, Ficus carica, Fraxinus excelsior) (Duso et al., 1993; Coiutti, 1993) while T. pyri is important only on Rubus<br />

fruticosus and Sambucus nigra (Lozzia and Rigamonti, 1990) to be added to Acer spp., Cornus sanguinea, Corylus<br />

avellana, Lonicera xylosteum and Ulmus spp. in Switzerland (Boller et al., 1988).<br />

At a later stage, measures of environmental management have been proposed, that involve, in <strong>di</strong>fferent periods of the<br />

season, both the natural vegetation and cultivation, able to obtain that Empoasca vitis Goethe be under the danger<br />

threshold. The evolution of the process has been long and hard. It has been known for a long time that E. vitis carries<br />

out its cycle on <strong>di</strong>fferent hosts and hibernates on conifers and other evergreen plants <strong>di</strong>fferent from those that it attacks<br />

(Vidano, 1958) and that, starting from the beginning of May, there is a mass migration from the plants where it<br />

overwinters towards the cultures as soon as they blossom. The plants that are involved in rapid succession are the<br />

following: firstly the apple tree, roses and some stone fruits then the grapevine, which seems to be the favourite plant on<br />

which most of the population concentrates (figure 3).<br />

13<br />

Trees<br />

Weeds<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


ose, bramble, dogrose<br />

birch<br />

hazelnut<br />

apple tree<br />

vine<br />

Picea sp.<br />

March April May June<br />

Figure 3 – Phenology of Anagrus atomus, adults and eggs , and of Empoasca vitis, adults and<br />

eggs , on <strong>di</strong>fferent host plants (from Cerutti et al., 1989, mo<strong>di</strong>fied).<br />

The species stays here until summer when, from the beginning of August, the hibernating females which leave the<br />

vineyards start to appear. The first step has been to identify the key antagonist, identified as Anagrus atomus Haliday,<br />

an Hymenoptera Mymaridae, oophagous parasitoid that controlled “naturally” in some vineyards this leafhopper, being<br />

able to hit a part between 20 and 82% of the germs (Arzone et al., 1988; Vidano et al., 1988; Cerutti et al., 1990). Later<br />

on Cerutti et al. (1989) stu<strong>di</strong>ed the cycles of E. vitis and of A. atomus highlighting the fundamental importance of the<br />

maintenance of plants on which the parasitoid spends the last stages of the season and passes the winter and above all,<br />

on which it starts again its activity in April just before the sprouting of the grapevine (figure 3). Therefore it is the adults<br />

of the first generation of the year that migrate on the culture starting from the end of May. The success of the<br />

colonisation of the vineyard by the parasite therefore depends on the presence of suitable host plants. They include<br />

<strong>di</strong>fferent Rosaceae (Rubus spp., Rosa spp., the apple tree), Lonicera sp., Corylus avellana and also Betula pendula. In<br />

such structured areas the action of A. atomus on the leafhopper is decisive. Very similar results had been obtained in<br />

North America too, where the species involved were Anagrus epos Gir. and Erythroneura elegantula Osb.. In this<br />

way in numerous cases the permanent control of these harmful leafhopper in <strong>di</strong>fferent European countries and in North<br />

America has been obtained. At present, though, the <strong>di</strong>ffusion of these strategies is obstructed by too low threshold<br />

levels which over-estimate the symptoms, such as the leaf reddening, which probably are of little importance. As a<br />

matter of fact the threshold level is 2 or even 1 specimen per leaf while it has been noted that there are no effective<br />

damages even if there are more than 3 specimens per leaf (Lozzia and Rigamonti, 1994). Also considering the <strong>di</strong>fferent<br />

sensitivity of the cultivars it would be a good idea to increase these threshold levels in order to avoid that useless<br />

treatments reduce parasitoid populations, obviously where the environmental con<strong>di</strong>tions described above exist or where<br />

it is thought they will start. In this general framework Jacobiasca lybica (Bergevin & Zanon) is not included. In Italy it<br />

is mainly to be found in Sar<strong>di</strong>nia, it is harmful at lower densities than with respect to the precee<strong>di</strong>ng species and does<br />

not seem, at present as far as is known, to be sufficiently controlled by natural antagonists.<br />

In the last years a programme of inoculative releases has been started in many regions, whose aim is to rebuild the<br />

balance between an exotic phytophagous insect, the Rhynchota Flatidae Metcalfa pruinosa (Say) and one of its<br />

parasitoids, the Hymenoptera Dryinidae Neodryinus typhlocybae (Ashmead). In this case, too, the introduction of the<br />

auxiliary in the environment is the final result of a long research process. The leafhopper arrived in Italy from Northern<br />

America at the end of the 70’s (Zangheri and Dona<strong>di</strong>ni, 1980) and since then it has spread in <strong>di</strong>fferent European<br />

countries. Thanks to the fact that it is polyphagous it has colonised the most <strong>di</strong>verse environments, inclu<strong>di</strong>ng many<br />

cultures to which it is harmful, especially due to its abundant production of honeydew and to the problems linked to<br />

this. In the first years after its arrival, the research for its natural enemies in the area of origin was carried out and the<br />

key antagonist N. typhlocybae was identified. After this a bree<strong>di</strong>ng on a small scale of this Dryinidae was started in<br />

order to evaluate its capabilities in the laboratory and with the specimens obtained the first experimental tests were<br />

carried out in the field. After having obtained a mass production, the launch on a large scale was started at the end of the<br />

90’s (Girolami et al., 1996). The technique is the classic one adopted in these cases. Taking advantage of the polyphagy<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

14


of the host, a relatively limited number of parasitoids is introduced on natural plants surroun<strong>di</strong>ng a plot. In this way the<br />

auxiliaries can multiply without the risk of being killed by phytosanitary treatments normally carried out on the<br />

grapevines. Once the population has reached a sufficient density level a flow of in<strong>di</strong>viduals begins and reaches the<br />

culture and settles there; if there are no harmful interferences the colonisation is permanent but even if this is not so the<br />

“reservoir” of the population on natural plants can guarantee a remarkable level of protection. The critical moments in<br />

these cases are usually the capability of the antagonist to adapt to the new environment, in particular the overcoming of<br />

the bad season, and its <strong>di</strong>ffusion potential on a large ra<strong>di</strong>us starting from the introduction points. At the present moment<br />

there are no definitive results as yet as to the success of this project.<br />

A last example, which includes the combination of more measures, is the control of the grape berry moths Lobesia<br />

botrana (Den & Schiff.) and Eupoecilia ambiguella (Hb.). The first solution is the progressive substitution of normal<br />

treatments carried out with pesticides with techniques with a progressively lower impact on the environment, as the use<br />

of growth regulators, of microbiological insecticides and lately with mating <strong>di</strong>sruption. This last strategy uses, as is<br />

known, large quantities of sexual pheromones whose aim is to “confuse” the males making them incapable of<br />

<strong>di</strong>stinguishing the traces secreted by the females, thus not allowing the coupling and as a consequence the reproduction.<br />

This solution, optimal from the environmental point of view, has <strong>di</strong>fferent “technical” limitations though, thus obtaining<br />

the best results only if it is used on large and homogenous areas and in the presence of low populations. This last<br />

constraint has led in the past <strong>di</strong>fferent Authors to suggest to bring down the moths populations with ad hoc treatments<br />

and this has not allowed the use of mating <strong>di</strong>sruption in many areas in Italy. Together with this, and to eliminate these<br />

limitations in part, habitat management measures are being introduced, whose aim is to improve the action of the<br />

natural antagonists of the moths, in particular of the parasitoids. Since the majority of these species in the adult stage is<br />

glyciphagous, it has been very important to guarantee them the presence of a suitable source of food, which is made up<br />

of nectar plants in flower within or near the vineyard. The critical points are therefore two: on the one hand the presence<br />

of species that produce nectar and are attractive for the parasitoids and, on the other hand, the continuous presence of<br />

plants in flower. This can be obtained by sowing suitable species and with the alternate mowing of the rows.<br />

These are clear examples of the holistic approach, which is typical of the most recent evolutions in cultural management<br />

strategies. The control of a phytophagous insect is obtained by putting together <strong>di</strong>fferent techniques both preventive and<br />

curative, which involve <strong>di</strong>fferent aspects of its biology and of its relations with the rest of the agroecosystem.<br />

Furthermore, practices such as wee<strong>di</strong>ng and alternate mowing have a more complex meaning. They allow to maintain a<br />

continuous presence of flowers, which are a fundamental source of food for many useful or in<strong>di</strong>fferent arthropods<br />

(figure 4), and they allow not only the increase of the number of their species but also the presence of denser and more<br />

stable populations (Remund et al., 1989; Remund et al., 1992).<br />

Nectar for Lepidoptera<br />

Nectar for parasitoids<br />

Urtica <strong>di</strong>oica X X X X<br />

Lamium maculatum X X X X<br />

Daucus carota X X X<br />

Aegopo<strong>di</strong>um podagraria X X X<br />

Galium mollugo X X X X<br />

Origanum vulgare X X<br />

Rosa canina X X X X X<br />

Rubus fruticosus X X X X X<br />

Lonicera xylosteum X X<br />

Figure 4 - Ecological meaning of the flora between the lines and in the adjoining areas of the vineyard with respect to<br />

the antagonists of grape berry moths, their alternative hosts and other auxiliary species.<br />

This data makes us suppose that in these environments a regulation of the harmful insects and mites at low population<br />

levels and a stability of the whole agroecosystem is possible. Numerous species of parasitoids and predators which find<br />

a great number of alternative hosts or preys among the insects and mites to be found on flowers and grass are<br />

favourably hit by this presence. The pollen of anemophile species, instead, when it reaches the grapevine, is an<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

15<br />

Oophagous parasitoids<br />

Larval parasitoids<br />

Pupal parasitoids<br />

Predatory mites<br />

Pollen for predatory mites<br />

Oophagous parasitoids of<br />

leafhoppers


important alternative foodstuff for the Phytoseiids (Wiedmer and Boller, 1990; Remund and Boller, 1992; Engel and<br />

Ohnesorge,1994) that are able to colonise even the grass flora, in particular many <strong>di</strong>cotyledons that then become<br />

another reservoir of useful species available for the grapevine (Lozzia and Rigamonti, 1998).<br />

Biological control, as can be seen from the above examples and from numerous other cases, has often been an<br />

efficacious and reliable instrument for a permanent solution linked to infestations of single phytophagous insects.<br />

However, it still cannot be considered suitable for the management of pests on the whole, not even limiting itself to<br />

animal organisms. Also in the case of the wine grapevine, which is perhaps the culture that today has the best situation,<br />

there have been problems following the expansion of flavescence dorée, a phytoplasma <strong>di</strong>sease carried by Scaphoideus<br />

titanus Ball, whose control requires the carrying out of treatments against the vector, interventions that risk to frustrate<br />

also the results obtained with biological control against other phytophagous insects of the grapevine. This situation can<br />

be generalised and applied to all viral, bacterial or phytoplasma <strong>di</strong>seases transmitted by vector organisms, whether they<br />

be insects, mites or nematodes. In these cases, in fact, it is necessary to maintain the populations of the parasite at<br />

extremely low density levels that cannot be obtained through the action of natural antagonists which for their own<br />

existence, need the presence of a suitable quantity of victims. Only the availability of resistant plants will make<br />

treatments against vectors superfluous in the future.<br />

The management of vector species, the one of key phytophagous insects of the various cultures for which usually<br />

“natural” control is not sufficient, the side effects of fungicide treatments are at present and in the near future the main<br />

obstacles to the creation of a phytosanitary defence against phytophagous insects only using biological control<br />

strategies. Another factor that must be considered and that today limits the reliability of biological control is the<br />

dynamic nature of agroecosystems. The appearance of new phytophagous insects, the pullulations of secondary or<br />

occasional species, the expansion of the area of numerous pests and so on, are highly probable events but they cannot be<br />

forecasted, and this makes it necessary to have continuous adjustments to the methods adopted even if they are widely<br />

experimented and to study new strategies. The same variability that exists between <strong>di</strong>fferent areas whereby a culture is<br />

<strong>di</strong>ffused implies the need not to generalise solutions but to find those more suitable to the single realities through a<br />

continuous process of experimentation. To sum up, we can say that biological control is without a doubt the main<br />

weapon on hand in modern agriculture for the management of phytophagous insects but it still requires many stu<strong>di</strong>es<br />

before all its potential can be used to the full and for a certain period of time it will be necessary to use more invasive<br />

techniques.<br />

BIBLIOGRAPHY<br />

ARZONE A., VIDANO C., ARNÒ C., 1988 - Predators and parasitoids of Empoasca vitis and Zygina rhamni<br />

(Rhynchota Auchenorrhyncha). In Vidano C. & Arzone A. (ed.), Proc. 6th Auchenorrhyncha Meeting. CNR-<br />

IPRA, Torino: 623-629.<br />

BASSINO J.P., 1987 - Principles of integrated protection in vine growing. A.A. Balkema Ed., Rotterdam, Proc.<br />

Meeting E.C. Experts’ Group “integrated Pest Control in Viticulture”, Portoferraio, Italy, 26-28/9/1 985: 329-<br />

336.<br />

BOLLER E., REMUND U., 1986 - Der Rebberg als vielfältiges Agro-Oekosystem. Schweiz. Z. Obst-Weinbau, 122 (2):<br />

45-50<br />

BOLLER E., BASLER P., 1987 - Pflanzenschutzmassnahmen in Weinbau im Rahmen der integrierte Produktion.<br />

Schweiz. Z. Obst-Weinbau, 123 (2): 61-63.<br />

BOLLER E.F, REMUND U., CANDOLFI M.P., 1988 - Hedges as potential sources of Typhlodromus pyri, the most<br />

important predatory mite in vineyards of northern Switzerland. Entomophaga, 33: 249-255.<br />

CERUTTI F., DELUCCHI V., BAUMGÄRTNER J., RUBLI D., 1989 - Ricerche sull’ecosistema “vigneto” nel Ticino:<br />

II. La colonizzazione dei vigneti da parte della cicalina Empoasca vitis Goethe (Hom., Cicadellidae,<br />

Typhlocybinae) e del suo parassitoide Anagrus atomus Haliday (Hym., Mymaridae), e importanza della flora<br />

circostante. Mitt. Schweiz. Ent. Ges., 62: 253-267.<br />

CERUTTI F., BAUMGÄRTNER J., DELUCCHI V., 1990 - Ricerche sull’ecosistema “vigneto” nel Ticino: III.<br />

Biologia e fattori <strong>di</strong> mortalità <strong>di</strong> Empoasca vitis Goethe (Homoptera, Cicadellidae, Typhlocybinae). Mitt.<br />

Schweiz. Ent. Ges., 63: 43-54.<br />

COIUTTI C., 1993 - Acari Fitosei<strong>di</strong> su piante arboree spontanee e coltivate in Friuli Venezia Giulia. Frustula entomol.,<br />

n.s. 16: 65-77.<br />

DUSO C., TORRESAN L., VETTORAZZO E., 1993 - La vegetazione spontanea come riserva <strong>di</strong> ausiliari:<br />

considerazioni sulla <strong>di</strong>ffusione degli Acari Fitosei<strong>di</strong> (Acari Phytoseiidae) in un vigneto e sulle piante spontanee<br />

contigue. Boll. Zool. agr. Bachic., Ser. II, 25: 183-203.<br />

ENGEL R. VON, OHNESORGE B., 1994 – Die Rolle von Ersatznahrung und Mikroklima im System Typhlodromus<br />

pyri Scheuten (Acari, Phytoseiidae) – Panonychus ulmi Koch (Acari, Tetranychidae) auf Weinreben. 1.<br />

Untersuchungen im Labor. J. Appl. Ent., 118: 129-150.<br />

GIROLAMI V., CONTE L., CAMPORESE P., BENUZZI M., MARTIR G. R., DRADI D., 1996 - Possibilità <strong>di</strong><br />

controllo biologico della Metcalfa pruinosa. Inf.re Agrario. 52 (25): 61-65.<br />

LOZZIA G.C., RIGAMONTI I.E., 1990 - Influenza dell'ambiente e delle tecniche agrocolturali sulla presenza dei<br />

fitosei<strong>di</strong> (Acarina: Phytoseiidae) in alcuni vigneti del Nord Italia. Atti Giornate Fitopatologiche 1990, 1: 449-<br />

458.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

16


LOZZIA G.C., RIGAMONTI I.E., 1994 - Modello <strong>di</strong> gestione integrata dell'agroecosistema vigneto. Atti Convegno<br />

"La <strong>di</strong>fesa integrata dell'uva da tavola e da vino per gli aiuti comunitari del regolamento CEE 2078/92", Latina,<br />

26 XI 1994: 75-98.<br />

LOZZIA G.C., RIGAMONTI I.E., 1998 – Effects of weed management on phytoseiid populations in vineyards of<br />

Lombardy (Italy). Boll. Zool. Agr. Bachic., Ser II, 30: 69-78.<br />

REMUND U., NIGGLI U., BOLLER E.F., 1989 - Faunistische und botanische Erhebungen in einem Rebberg der<br />

Ostschweiz. Einfluss der Unterwichsbewirtschaftung auf das Ökosystem Rebberg. Landwirtschaft. Schweiz.<br />

Band. 2: 393-408.<br />

REMUND U., GUT D., BOLLER E.F., 1992 – Beziehungen zwischen Begleitflora und Arthropodenfauna in<br />

ostschweizer Rebbergen. Einfluss der botanischen Vielfalt auf okologische Gleichgewichte. Schweiz. Zeit.<br />

Obst- Weinbau, 128 (20): 528-540.<br />

REMUND U., BOLLER E.F., 1992 - Blühende Rebberge in der Ostschweiz: 3. Ergänzende Pollenfrassversuche mit<br />

Raubmilben. Schweiz. Zeit. Obst- Weinbau, 128: 237-240.<br />

VIDANO C., 1958 - Le cicaline italiane della vite (Hemiptera Typhlocybidae). Boll. Zool. agr. Bachic., Ser. 11, 1: 61-<br />

115.<br />

VIDANO C., ARNÒ C., ALMA A., 1988 - On the Empoasca vitis intervention threshold on vine (Rhynchota<br />

Auchenorrhyncha). In Vidano C. & Arzone A. (ed.), Proc. 6th Auchenorrhyncha Meeting. CNR-IPRA, Torino:<br />

517-524.<br />

WIEDMER U., BOLLER E.F., 1990 – Blühende Rebberge in der Ostschweiz: 2. Zum Pollenangebot auf den<br />

Rebenblättern. Schweiz. Zeit. Obst- Weinbau, 126: 426-431.<br />

ZANGHERI S., DONADINI P., 1980 - Comparsa nel Veneto <strong>di</strong> un Omottero neartico: Metcalfa pruinosa Say<br />

(Homoptera, Flatidae). Re<strong>di</strong>a, 63: 301-305<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

17


BIOPESTICIDES AND THEIR REGISTRATION IN THE UNITED STATE<br />

Sheryl K. Reilly<br />

Chief, Biochemical Pesticides Branch<br />

Biopesticides and Pollution Prevention Division<br />

Office of Pesticides Programs<br />

U.S. Environmental Protection Agency<br />

Biopesticides play an important role in organic crop production. Their proper use can significantly enhance the quality<br />

and production of crops targeted to address specific “niche market” needs. Biopesticides are regulated by the U.S.<br />

Environmental Protection Agency (USEPA) as pesticides and the cost of commercial development can be significant.<br />

Of the two broad classes of pesticides currently recognized by the USEPA, namely conventional chemicals and<br />

biological pesticides (or biopesticides), a substantial number belong to the biopesticide class, specifically the<br />

biochemical category. By definition, a biochemical pesticide is classified as such if it can be shown to possess a nontoxic<br />

mode of action on the target pest, and if it is naturally occurring or structurally similar and functionally identical to<br />

a naturally occurring substance. Biochemical pesticides are generally active at low concentrations and fairly specific in<br />

terms of their effects on a pest. USEPA is required by law to assure that any pesticide use in commerce will not result<br />

in unreasonable adverse effects to humans or the environment. In order to make this assessment, data requirements<br />

(e.g., mammalian toxicology, product identification and analytical methods, non-target plant and animal toxicology,<br />

fate, etc.) have been established for pesticide product registration. Registrants must address each data requirement,<br />

either by submitting a valid study or a request for a waiver of those requirements, prior to receiving formal product<br />

registration by the USEPA. Waivers of required data are based on scientific rationale or information that is known in<br />

the publically available, peer-reviewed scientific literature. For biochemical pesticides, the acceptability of data and/or<br />

waivers, as well as any proposed label uses, are reviewed by the Biopesticides and Pollution Prevention Division<br />

(BPPD) in the Office of Pesticide Programs of the USEPA. This <strong>di</strong>vision of the USEPA was formed in 1994 to facilitate<br />

the development of biopesticide products which are important tools in an integrated pest management program and<br />

offer alternatives to conventional chemical pesticides. Given the time and expense associated with product<br />

development, commercialization, and registration, registrants should work closely with the USEPA, grower groups,<br />

university and extension personnel, trade group(s) and others to ensure a successful product development process.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

18


DIFESA DELLE COLTURE DAI PATOGENI FUNGINI IN AGRICOLTURA BIOLOGICA: PROBLEMI,<br />

MEZZI DISPONIBILI E PROSPETTIVE<br />

Maria Lodovica Gullino, Angelo Garibal<strong>di</strong><br />

DI.VA.P.R.A. – Patologia vegetale, Università <strong>di</strong> Torino<br />

La <strong>di</strong>fesa delle colture dall’attacco dei numerosi patogeni fungini da sempre rappresenta un problema <strong>di</strong> non facile ed<br />

imme<strong>di</strong>ata soluzione in molti sistemi colturali. Ciò è tanto più vero nel caso delle produzioni biologiche.<br />

La situazione può essere più o meno complessa nel caso <strong>di</strong> sistemi colturali <strong>di</strong>fferenti: ad esempio è attualmente<br />

possibilmente (ma non lo sarà forse più domani) proteggere la vite dagli attacchi <strong>di</strong> patogeni fungini mentre più<br />

complessa è la situazione per il riso o per le colture ornamentali.<br />

In questa relazione vengono pertanto presi in considerazione i principali problemi causati da patogeni fungini in alcuni<br />

sistemi colturali, evidenziando le <strong>di</strong>fficoltà che si incontrano o che si possono incontrare nel loro contenimento. Si<br />

esaminano i mezzi <strong>di</strong> <strong>di</strong>fesa <strong>di</strong>sponibili, valutando, ove possibile, criticamente le reali possibilità <strong>di</strong> impiego,<br />

sottolineando l’esigenza, anche per il comparto dell’agricoltura biologica, che tutti i prodotti ammessi passino il vaglio<br />

<strong>di</strong> una idonea valutazione, a tutela del produttore e del consumatore.<br />

Viene riba<strong>di</strong>to il concetto che, in modo particolare nel caso delle produzioni biologiche, la <strong>di</strong>fesa delle colture ini zia con<br />

l’adozione <strong>di</strong> tecniche colturali idonee e con l’impiego <strong>di</strong> varietà resistenti o scarsamente suscettibili nei confronti dei<br />

più importanti parassiti.<br />

Vengono forniti alcuni esempi relativi a colture <strong>di</strong> importanza economica in Italia e si <strong>di</strong>scutono criticamente le<br />

prospettive future.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

19


TOXICITY AND ANALYSIS OF MYCOTOXINS AND THEIR OCCURRENCE IN SOME ORGANIC<br />

<strong>PRODUCTS</strong><br />

M. Solfrizzo, M. Pascale, A. Visconti, G. Avantaggiato<br />

CNR, Institute of Science of Food Production, Viale Einau<strong>di</strong> 51, 70125 Bari, I taly<br />

Fumonisins, ochratoxin A, and deoxynivalenol are among the most important mycotoxins due to their toxicity and<br />

frequent occurrence in foodstuffs, inclu<strong>di</strong>ng cereals. Fumonisins are mainly produced by Fusarium verticillioides e F.<br />

proliferatum on maize before and soon after harvest. These toxins can cause equine leukoencephalomalacia, porcine<br />

pulmonary oedema, liver and kidney cancer in rodents, nephrotoxicity and immunosuppression. The occurrence of<br />

ochratoxin A in cereals depends on geographic areas and is related to the presence of Penicillium verrucosum and<br />

Aspergillus ochraceus. Ochratoxin A has a strong nephrotoxicity and, at higher dosage, is carcinogenic on renal<br />

proximal tubule. Deoxynivalenol occurs in wheat, barley, oats, rye, spelt and maize and less frequently in rice,<br />

sorghum, and triticale. It is produced by F. graminearum e F. culmorum two important plant pathogens. Recent<br />

toxicological evaluation by Joint FAO/WHO Expert Committee on Food Ad<strong>di</strong>tives have established provisional<br />

maximum tolerable daily intakes of 2 e 1 µg/kg of body weight for fumonisins and deoxynivalenol, respectively. The<br />

provisional tolerable weekly intake of ochratoxin A of 0.1 µg/kg of body weight has been confirmed.<br />

For the analysis of cereal based food aimed to assess mycotoxin intake the use of validated analytical methods is<br />

essential. At this regard the European Committee for Standar<strong>di</strong>zation (CEN) has established method acceptability<br />

criteria for each mycotoxin. Recently, we have developed and validated by a collaborative study a new HPLC method<br />

for the determination of fumonisins in maize and maize based foods which has been adopted by CEN as European<br />

Standard Method. Official standard methods based on HPLC are available for the analysis of ochratoxin A in cereals,<br />

whereas a suitable method that respond to CEN criteria needs to be produced for deoxynivalenol.<br />

The consumption of organic products in Europe has increased in the last years but few information are available on their<br />

mycotoxin contamination as compared to conventional products. It is well known that agricultural practices play a role<br />

on mycotoxin formation in cereals.<br />

A total of 461 cereal samples collected in Italy, inclu<strong>di</strong>ng 186 samples originating from organic production (136 soft<br />

wheat and 50 spelt) harvested in 1998-2000 and 275 samples from conventional production (138 soft wheat and 137<br />

durum wheat) harvested in 1999-2000 have been analysed for deoxynivalenol in our laboratory. A higher incidence of<br />

positive samples was found in organic wheat (65-100% of positive samples) and organic spelt (100% of positive<br />

samples) as compared to conventional wheat (38-80% of positive samples), whereas the highest levels of<br />

deoxynivalenol were found in conventional wheat (up to 6465 µg/kg). In particular, mean levels of deoxynivalenol in<br />

positive samples of organic soft wheat, organic spelt, conventional soft wheat and conventional durum wheat were 70-<br />

180 µg/kg, 148-192 µg/kg, 219-604 µg/kg e 251-1097 µg/kg, respectively.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

20


THE FUNGAL PHYTOTOXINS AND THEIR POTENTIAL ROLE AS HERBICIDES IN INTEGRATED<br />

CONTROL METHODS AGAINST WEEDS.<br />

Antonio Evidente<br />

Dipartimento <strong>di</strong> Scienze del Suolo, della Pianta e dell’Ambiente, Università <strong>di</strong> Napoli Federico II, Via Università 100,<br />

80055 Portici<br />

The man weed battle started long time ago due to the great hazard resulted from their wide <strong>di</strong>ffusion in<br />

agricultural crops and pastures. Weeds have created heavy problems in reforestation activities and in important<br />

economical infrastructures. In the last 50 years, beside the tra<strong>di</strong>tional agrarian practises, the most <strong>di</strong>ffused methods in<br />

controlling weeds are the use of chemical herbicides which are responsible for major environmental pollution with<br />

human and animal health risks.<br />

Therefore, numerous stu<strong>di</strong>es have been carried out to develop biological control using natural weed enemies as<br />

insects, viruses, bacteria and fungi but a particular interest has been <strong>di</strong>rected towards phytopathogenic fungi which are<br />

the most common plant pathogens that in respect to other microorganisms may be applied with safety and simplicity.<br />

Phytopathogenic fungi are responsible, together with other microbial agents, of severe damages to important<br />

agrarian forestall and ornamental plants Frequently, these fungal species produce phytotoxins, bioactive metabolites<br />

with <strong>di</strong>fferent chemical structure, mode of action, host specificity, biological activity and environmental impact. Toxins<br />

are generally substances which interfere with plant metabolism of which many are <strong>di</strong>rectly responsible of pathogenesis<br />

while others are not considered toxins at all 1,2 .<br />

Stu<strong>di</strong>es conducted in the last years have concentrated on controlling weed <strong>di</strong>ffusion in important agrarian crops.<br />

Fungal pathogens isolated from some infected tissue of weeds are generally belonging to important taxonomic genera<br />

(Alternaria, Ascochyta, Drechslera, Fusarium, Melanconis, Phoma, Pyrenophora ). Some phytotoxins were isolated and<br />

characterised to determine their role in developing new methods for weed control, Their <strong>di</strong>rect application or that of<br />

their derivatives or/and analogues with the pathogen may increase the herbicidal activity so improving the efficacy in<br />

terms of pathogenesis, virulence and herbicidal selectivity<br />

Structure elucidation and stereochemistry of phytotoxins may allow to plan their total enantioselective<br />

synthesis in order to obtain amounts suitable to carry out experiments in green houses and in fields to develop strategies<br />

for the biological integrated management of weeds. Some toxins may be derivatised to modulate their biological activity<br />

in terms of phytotoxicity and selectivity and to obtain new natural safe herbicides.<br />

Furthermore, phytotoxins can be used to develop a method for their analysis in complex samples. Therefore, if<br />

the phytotoxins are virulence features they may be used as biomarkers for in vitro selection of the best fungal strain to<br />

be used in the integrated management methods. In this communication, a brief overview will be presented on the results<br />

obtained on developing strategies to biologically control of Chenopo<strong>di</strong>um album, Striga hermonthica and Orobanche<br />

ramosa, infesting many important agrarian crops like maize, beet root, millet, sorghum, sunflower, tomato, legumes,<br />

etc 2,3 .<br />

References<br />

1. Ballio, A.; Graniti, A. Experientia, 1991, 47, 751-826.<br />

2. Evidente, A.; Motta, A Phytotoxins from fungi, pathogenic for agrarian, forestal and weedy plants. In Bioactive<br />

Compounds from Natural Sources, Tringali, C. (Ed.), Taylor & Francis, London, 2001. Chapter 12, pp. 473-525.<br />

3. Evidente, A.; Abouzeid, M.A. Characterization of Phytotoxins from Phytopathogenic Fungi and their Potential Use<br />

as Herbicides in Integrated Crop Management. In Handbook of Sustainable Weed Management, Harminder, P.S.<br />

(Ed.), The Haworth Press Inc., Binghamton, NY, USA (2002) in press.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

21


ORAL COMMUNICATIONS<br />

• E. Anklam European Commission JRC, Geel, Belgium 23<br />

• C. Tuberoso Università <strong>di</strong> Cagliari 24<br />

• T. Pellicanò Università degli Stu<strong>di</strong> <strong>di</strong> Messina 25<br />

• M. Kelderer Centro Sperimentale Laimburg, Bolzano 30<br />

• M. Rubbiani Istituto Superiore <strong>di</strong> Sanità, Roma 31<br />

• A. Ragni BioTecnologie BT (Italy) 32<br />

• P. Restani Università degli Stu<strong>di</strong> <strong>di</strong> Milano 38<br />

• A. Santomauro Università <strong>di</strong> Bari 39<br />

• A. Di Muccio Istituto Superiore <strong>di</strong> Sanità<br />

• M. Benuzzi ASSOMETAB 41<br />

• G. Imbroglini MiPAF 42<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

22


NEED FOR RESEARCH AND APPROPRIATE ANALYTICAL TOOLS FOR ORGANIC FOOD CONTROL<br />

Yona Siderer a, and Elke Anklam b<br />

a Inter<strong>di</strong>sciplinary Centre for Technological Analysis and Forecasting, at Tel Aviv University, Ramat -Aviv, Israel<br />

b European Commission, Joint Research Centre, Food Products Unit, B -2440 Geel, Belgium<br />

Organic farming and the organic food market are growing fast. Due to health concerns, environmental consciousness,<br />

social status considerations and other reasons, consumers are interested in the products of organic farming. At the same<br />

time, they want more information about these products.<br />

Inspection procedures for confirming the origin of products seem to be insufficient and need to be supported by<br />

analytical tools. Not only should the products purchased on the market be checked for their authenticity but also<br />

products used during the various production steps (e.g. fertilisers, soil, animal feed, pesticides). Analytical research<br />

work should accompany the expansion of organic farming and organic food production. This should take into<br />

consideration <strong>di</strong>fferent climate con<strong>di</strong>tions, the variety of soils and soil constituents, the variety of plants and plants<br />

strains, and husbandry of livestock related to animal welfare. At the same time, the products (vegetables, fruits, milk,<br />

meat, and processed food) should be stu<strong>di</strong>ed for their own qualities.<br />

Research into agricultural crops with various cultivation methods and the resulting natural or processed food is complex<br />

and lengthy. It is very <strong>di</strong>fficult to compare the contents of nutrients and vitamins, as the constituents of such substances<br />

depend heavily on storage time, con<strong>di</strong>tions and technology. Fast and general answers cannot be given on methods for<br />

verifying authenticity and safety. Attention should be focused on the planning of experiments, taking into consideration<br />

many variable parameters like soil quality, climatic and geographical con<strong>di</strong>tions and crop variety. It is important to<br />

study a large number of samples, to be able to deduce meaningful conclusions from the results of the research. The<br />

research protocol should involve a large enough number of research participants as well. The results of such a<br />

combined study could then be used as analytical tools for assessing organic products. Later on, a farmer or a retail outlet<br />

would be able to add to the label that the product was checked and, e.g., found “clean” of pesticides, or that mycotoxins<br />

were found to be below legal levels after harvesting. These tests would be beneficial for interested customers and for<br />

the organic market sustainability. It should be emphasised that this approach of collaborative structured stu<strong>di</strong>es is<br />

preferable to the work of a single researcher wanting to study a particular question of her or his interest (or the<br />

stakeholder’s interest).<br />

Once analytical tools have been developed, firstly for a small number of products, but in higher numbers along the<br />

years, then legislation on organic food products might be changed to include a call for analytical tests to support the<br />

inspection system.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

23


METODO MULTIRESIDUO PER LA DETERMINAZIONE DI RESIDUI DI ESTRATTI VEGETALI IN<br />

ALIMENTI BIOLOGICI<br />

C.I.G. Tuberoso<br />

Dip. <strong>di</strong> Tossicologia Università <strong>di</strong> Cagliari<br />

Via Ospedale, 72 Cagliari<br />

Nell'agricoltura biologica si effettua il controllo dei pestici<strong>di</strong> <strong>di</strong> sintesi, in quanto la normativa 2092/91 non ne consente<br />

l'uso, per cui la sola presenza <strong>di</strong> residui a livelli > <strong>di</strong> 0,01 mg/kg rende gli alimenti non conformi. I pestici<strong>di</strong> naturali per<br />

i quali è consentito l'uso invece, <strong>di</strong> norma, non vengono controllati, principalmente per carenza <strong>di</strong> meto<strong>di</strong>che analitiche<br />

rapide, semplici e con buona sensibilità. Anche a livello <strong>di</strong> ricerca gli stu<strong>di</strong> su questi pestici<strong>di</strong> naturali sono molto<br />

limitati, per cui la conoscenza del loro livello <strong>di</strong> residui negli alimenti è quasi completamente sconosciuta. Gli insettici<strong>di</strong><br />

estratti da piante più utilizzati sono quelli ottenuti dalla Aza<strong>di</strong>rachta in<strong>di</strong>ca, Derris elliptica, Ryania speciosa, e<br />

Chrysanthemum cinerariaefolium i cui principi attivi sono rispettivamente: aza<strong>di</strong>rachtin, rotenone, riano<strong>di</strong>na con<br />

deidroriano<strong>di</strong>na e piretrina I e II.<br />

Il presente lavoro propone una meto<strong>di</strong>ca che consente la determinazione <strong>di</strong> questi antiparassitari naturali in maniera<br />

semplice e sensibile. La tecnica utilizzata è la cromatografia liquida accoppiata alla massa (HPLC-MS)<br />

Inizialmente si è ottenuta la separazione cromatografica dei principi attivi utilizzando una colonna C18, un gra<strong>di</strong>ente <strong>di</strong><br />

H2O e CH3CN al flusso <strong>di</strong> 0,2 ml/min ed un rivelatore a serie <strong>di</strong> <strong>di</strong>o<strong>di</strong> settato alle lunghezze d’onda ottimali per la<br />

determinazione dei singoli principi attivi. Nella determinazione col detector <strong>di</strong> massa è stata impiegata una sorgente<br />

APCI e tutti gli antiparassitari sono stati analizzati in SIM con due meto<strong>di</strong> (<strong>di</strong>fferenti per le temperature del probe, CDL<br />

e Block) che permettono <strong>di</strong> ottimizzare la risposta per la deidroriano<strong>di</strong>na, la riano<strong>di</strong>na e l’aza<strong>di</strong>ractina (metodo 1) e per<br />

il rotenone e le piretrine (metodo 2).<br />

L’estrazione dei principi attivi da matrici vegetali è stata effettuata con acetato <strong>di</strong> etile, solvente che si è <strong>di</strong>mostrato<br />

ottimale per il recupero quantitativo <strong>di</strong> tutti i principi attivi. L'estratto non subiva alcuna purificazione in quanto non<br />

presentava alcun interferente. Nelle determinazioni quantitative la soluzione madre veniva preparata in estratto <strong>di</strong><br />

matrice non trattata per eliminare l'effetto matrice.<br />

I limiti <strong>di</strong> determinazione ottenuti sono compresi tra 2 e 10 ppb. Il rotenone è l’antiparassitario che fornisce la risposta<br />

migliore permettendo <strong>di</strong> rilevare fino a 2 ppb.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

24


PRESENCE OF OCHRATOXIN IN EXPERIMENTAL WINES RELATED TO PESTICIDES<br />

TREATMENTS EMPLOYED ON GRAPES<br />

R. Lo Curto*, F. Vilasi*, T. Pellicanò*, P. Munafò**, G.mo Dugo*,<br />

* Università degli Stu<strong>di</strong> <strong>di</strong> Messina, Dip.to Chimica Organica e Biologica.<br />

** Centro Analisi & Servizi S. r. l. via U. La Malfa, 18 - 98051 Barcellona P. G., Messina, Italia.<br />

Introduction<br />

Mycotoxins are a class of highly toxic chemical compounds produced, under particularly environmental con<strong>di</strong>tions, by<br />

several moulds developing in many foodstuffs. Their presence is depen<strong>di</strong>ng upon several factors such as: fungal strains,<br />

climate and geographical con<strong>di</strong>tions, cultivation techniques and foodstuffs conservation (1). Mycotoxins may occur in<br />

various vegetal products as cereals, dried fruits, coffee beans, cocoa and beverages as beer and wine (2-4). Among<br />

mycotoxins very important are the ochratoxins. This term in<strong>di</strong>cates a group of metabolites, having showing similar<br />

chemical structure, produced by strains of the genus Aspergillus (A. ochraceus) and Penicillium (P. ferrucosum) (1,5,6).<br />

The most stu<strong>di</strong>ed, both for its <strong>di</strong>ffusion and toxicological importance is Ochratoxin A (OTA) R-N-[(5-chloro-3,4<strong>di</strong>hydro-8-hydroxy-3-methyl-1-oxo-1H-2-benzopyran-7-yl)carbonyl]-phenylalanine.<br />

It has an oral DL50 level of 20<br />

mg/kg in rats and pig (7). OTA is highly toxic and causes severe animal and human intoxications, for example “Porcine<br />

nephropathy” and “Balcan Endemic nephropathy” (8-10). OTA exhibits nephrotoxic and teratogen activites and<br />

moreover suppressive actions on immune system, causing a <strong>di</strong>minution of immune globulin level and of other humoral<br />

factors in mice and chicken and a reduction of cell immune response (10,11).<br />

Recently, more attention was focused on Ochratoxin A levels in commonly consumed foods, especially fruits and<br />

cereals (12,13) and in their fermentation products like beer (14-16) and wine (17-25).<br />

As far as wine is concerned, available data regar<strong>di</strong>ng the presence of OTA are very <strong>di</strong>scordant, some Authors reported a<br />

high toxin concentration (up to 7.0 ng\ml) with considerable level of contamination (incidence up to 92%) in red wine<br />

produced in southern regions of Europe and in North Africa. Other Authors reported OTA contamination levels ranging<br />

3.9% for white wines to 16.6% for red wines, even if these data were obtained by <strong>di</strong>fferent analytical methods.<br />

Generally red wines contain a greater amount of OTA than white or rosè ones. These <strong>di</strong>fferences can be attributed to<br />

climatic factors, grape cultivation and storage con<strong>di</strong>tions apart from wine-making techniques. The content of OTA in 23<br />

samples of red and white wine, produced in the year 2000 by three experimental vite, situated in three <strong>di</strong>fferent Italian<br />

regions treated with <strong>di</strong>fferent pesticides see tables 1,2,3), is reported in this work (26).<br />

Materials and methods<br />

Chemicals and Reagents<br />

Standard of OTA, so<strong>di</strong>um chloride, polyethylene glycol (Peg 8000), so<strong>di</strong>um hydrogencarbonate, glacial acetic acid and<br />

toluene were obtained from Fluka (Milano-Italy). Immunoaffinity columns were purchased from Vicam (Waterton,<br />

MA, USA).Acetonitrile, methanol and water (HPLC grade) were supplied from Carlo Erba Reagents (Milano-Italy).<br />

Wine samples<br />

A total of 23 wine samples (16 white 7 red samples), produced in the year 2000 by three experimental vite, situated in<br />

three countries “Avellino”-Campania, “Catania”-Sicily and “Grosseto”-Tuscany, were analysed.<br />

Wine characteristics and pesticide treatments<br />

White wines came from Sicily and Campania in the crop year 2000. Sicilian wines were produced from 15 -20 years old<br />

plants, grown up on Etna (300 m asl, S. Venerina, Catania, Italy), in a vulcanic soil. Vines were grafted with Inzolia and<br />

Carricante varieties in 1:1 ratio. Wines from Campania were produced from 25 years old plants grown up on<br />

Montefredane hills (700 m asl, Avellino, Italy), in a clayey soil. Vines were grafted with Fiano d’Avellino variety. Red<br />

wines from Tuscany were produced from 25 years old plants, cultivated in Maremma Toscana coast (100 m asl,<br />

Grosseto, Italy), on a calcareous soil. Vines were grafted with Sangiovese variety, Morellino clone. Vinification process<br />

was run within 24 hours after grape harvesting and it was run using the following scheme:<br />

White Vinification<br />

Newly – cropped Vitis vinifera grapes from Sicily and Campania were crushed destemmed and then soft pressed by a<br />

pneumatic press. Must was treated with SO2 (30 g/hl), pectolitic enzymes (1.5 g/hl) and vitamin C (5 g/hl) to favour<br />

clarification before fermentation; temperature was maintained at 8°C for 24 hours. Clear must was spiked with 20 g/hl<br />

of thiamine and ammonium phosphate as fermentation coadjuvans and 30 g/hl of selected yeasts and fermentation was<br />

run at 15°C. In order to remove lees, after fermentation wine was decanted into a tank and spiked with SO2 (5 g/hl). Ten<br />

days later wine was decanted again and treated with SO2 (5 g/hl). Wine was finally filtered twice trough 1 µ and 0.45µ<br />

cardboards filters, spiked with SO2 (2-3 g/hl), bottled in dark bottles and maintained at 4°C for the duration of the<br />

experimentation. Each grape sample was separately vinificated, following the above mentioned protocol.<br />

Red vinification<br />

Newly – cropped Vitis vinifera grapes from Tuscany were crushed and destemmed, then spiked with SO2 (5<br />

g/hl), added with selected yeasts (30 g/hl) and let to ferment for 10 days at 28°C, making three fullings a day. Wine was<br />

drawn from the vat and the vinasses pressed by a hydraulic press. After 4 weeks, lees were removed and the wine<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

25


spiked with SO2 (2-3 g/hl). Wine was spiked again with SO2 (2-3 g/hl) and bottled in dark bottles at 4°C for the duration<br />

of the experimentation.<br />

Each grape sample was separately vinificated following the above mentioned protocol. All wines were stored in<br />

the dark at 4°C, and each sample was open imme<strong>di</strong>ately prior to analysis.<br />

Pesticide treatments.<br />

Pesticides were used at the doses recommended by the manufacturer and were sprayed with a manual sprayer in<br />

the three Italian vines. Each Sicilian samples but four, was subjected to a Sulfur treatment, followed by organic<br />

pesticide treatments, applied during grape ripening and repeated for six times every 15 days. Two samples were treated<br />

only with Sulfur (dry and wettable powder), one sample was treated only with organic pesticides (Dinocap –<br />

Penconazole) and one sample only with water in order to have a comparison with treated samples (table 1). Each<br />

sample from Campania but four, was subjected twice to Sulfur treatments every 10 days, followed by organic pesticide<br />

treatments applied during the vines maturation phase and repeated 6 times every 15 days. Two samples were treated<br />

only with Sulfur (dry and wettable powder), one sample was treated only with organic pesticides (Dinocap –<br />

Penconazole) and one sample only with water (table 2). Each Tuscan sample but four, was subjected twice to Sulfur<br />

treatments every 8 days, followed by organic pesticides tratments, applied during the vines maturation phase and<br />

repeated 9 times every 12 days. Two samples were treated only with Sulfur (dry and wettable powder), one sample was<br />

treated only with organic pesticides (Dinocap – Penconazole) and one sample only with water (table 3).<br />

Apparatus<br />

The analytical method proposed by Visconti et al. for OTA determination in wine was utilized. Utilizing commercial<br />

immunoaffinity columns and HPLC equipped whit a RF detector carried out Ochratoxin A determination.The<br />

chromatographic analysis was run by using a Shimadzu HPLC system equipped with a System Controller SCL-10 A, an<br />

RF-1AXL detector (λex=330 nm, λex=460nm), a LC 10A pump, a Rheodyne injector with a loop of 20 µl and a<br />

reversed-phase Supelco column C18 (15 cm x 4.6 mm, 5 µm particles) equipped with a guard filter (0.5 µm). Analyses<br />

were run at room temperature in isocratic con<strong>di</strong>tions with a mobile phase composed of water \ acetonitrile \ acetic acid<br />

99:99:2 v\v\v at a flow rate of 1 ml\min. OTA quantification was made by measuring peak areas at OA retention time<br />

and by comparing them with calibration curve. Using a wine sample added of OTA made confirmation of OTA<br />

identification standard. HPLC chromatogram of a standard solution of Ocratoxin A is shows in Fig.1. The sensibility<br />

test of analytical method was of 0.01 ng\ml.<br />

Results and <strong>di</strong>scussion<br />

Values of OTA found in wines are shown in tables 4 for Sicily and Tuscan respectively. OTA was not found in white<br />

wines produced in Campania while, of eight samples from Sicily, only six were found to be contaminated; the higher<br />

value found was 0.03 ng\ml in the sample treated with <strong>di</strong>nocap. The sample treated with quinoxifen and the treated with<br />

water were found not contaminated with OTA. Because of OTA concentration in this wine is very low, it is not possible<br />

to correlate its presence with pesticide treatments.Values of OTA found in red wines show that all samples are<br />

contaminated. The sample produced with grapes treated only with sulfur 80 PBWG, showed a Ochratoxin A content<br />

(2.00 ng\ml) higher than the other samples, followed by sample obtained from grapes treated with powdered sulfur<br />

(0.71 ng\ml). The concentration of OTA in the other samples spanned from 0.07 ng\mg in sample treated with<br />

“azoxystrobin” to 0.24 ng\mg in sample treated with “<strong>di</strong>nocap and penconazole”. The values of OTA found, are<br />

comparable with those reported in literature on micotoxins presence in red wines.<br />

The experimental viticulture located in Campania is not subject to pollution from OTA producing moulds. The<br />

experimental Sicilian cultivar seems is more easily contaminated with OTA since, of eight samples, six were found<br />

contaminated.<br />

Values of OTA found in red wines show that experimental vite located in Tuscany is strongly subject to infection from<br />

OTA producing fungi. Synthetic pesticides can reduce the OTA concentration from 96.5% in the sample treated with<br />

azoxystrobin, to 88% in the sample treated with <strong>di</strong>nocap and penconazole. Since OTA is strictly related to the growth of<br />

some toxigenic fungi on grapes, the <strong>di</strong>fferent Ochratoxin A content in detected wine samples can be considered an<br />

efficiency test of the pesticides used.<br />

References<br />

1. Capuano, A., Dugo, G.nni, Restani P. (1999). Le micotossine. Tossicologia degli alimenti Ed. UTET, Torino,<br />

Italia.<br />

2. Blanc, M., Pittet, A., Munozbox, R., Viani, R. (1998). Behavior of ochratoxin A during green coffee roasting<br />

and soluble coffee manifacture. J. Agric. Food Chem.,46, 673-675.<br />

3. Solfrizzi, M., Avvantaggiato, G., Visconti, A. (1998). Use of various clean-up procedures for the analysis of<br />

ochratoxin A in cereals. J. Chromatogr. A, 815, 67-73.<br />

4. Pittet, A., Tornare, D., Huggett, A., Viani R. (1996). Liquid chromatographic determination of ochratoxin A in<br />

pure and adulterated solubile coffee using or immunoaffinity column clean-up procedure. J. Agric. Food<br />

Chem., 44, 3564-3569.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

26


5. Hohler, D. (1998). Ochratoxin A in food and feed: Occurrence, legislation and mode af action. Z.<br />

Ernaehrungswiss., 37, 2-12.<br />

6. Blank, R., Hohler, D., Wolffram, S. (1999). Ochratoxin in the food chain-Occurrence, toxicity, and<br />

decontamination. Uebers. Tierernaehr., 27, 123-163.<br />

7. Cerutti, G. I fattori tossici naturali (1992). Il rischio alimentare Ed. Tecniche Nuove, Milano, Italia.<br />

8. Creppy, E.E. (1998). Human ochratoxicosis and nephropathy in Egipt. Hum. Exp. Toxicol., 17, 124 -129.<br />

9. Castegnaro, M., Plestina, R., Dirheimer, G., Chernozemsky, I. N., Bartsch, H. (1991). Mycotoxins. Endemic<br />

Nephropathy and Urinary Tract Tumours, IARC Scientific Publication No. 115, <strong>International</strong> Agency for<br />

Research on Cancer, Lyon, France.<br />

10. Castegnaro, M., Mohr, U., Pfohl-Leszkowicz, A., Esteve, J., Steinmann, J., Tillmann, T., Michelon, J.,<br />

Bartsch, H. (1998). Sex- and strain-specific induction of renal tumors by ochratoxin A in rats correlates with<br />

DNA adduction. Int. J. Cancer, 77, 70-75.<br />

11. Pfohl-Leszkowicz, A., Pinelli, E., Bartsch, H., Mohr, U., Castegnaro, M. (1998). Sex- and strain-specific<br />

expression of cytochrome P450s in ochratoxin A-induced genotoxicity and carcinogenicity in rats. Mol.<br />

Carginog., 23, 76-85.<br />

12. Scudamore, K. A., Nawaz, S., Hetmanski, M.T. (1998). Mycotoxins in ingre<strong>di</strong>ents of animal fee<strong>di</strong>ng stuffs: II.<br />

Determination of mycotoxins in maize and maize products, Food Ad<strong>di</strong>t. Contam., 15, 30-55.<br />

13. MacDonald, S., Wilson, P., Barnes, K., Damant, A., Massey, R., Mortby, E., Shepherd, M. J. (1999).<br />

Ochratoxin A in dried vine fruit: method developmentand survey. Food Ad<strong>di</strong>t. Contam., 16, 253-260.<br />

14. Degelmann, P., Becker, M., Herderich, M., Humpf, H.U. (1999). Determination of ochratoxin A in beer by<br />

high-performance liquid chromatography. Chromatographia, 49, 543-546.<br />

15. Nakajima, M., Tsubouchi, H., Miyabe, M. (1999). A survey of ochratoxin A and aflatoxins in domestic and<br />

imported beers in Japan by immunoaffinity and liquid chromatography. J. AOAC Int., 82, 897-902.<br />

16. Visconti, A., Pascale, M., Centonze, G. (2000). Detrmination of ochratoxin A in domestic and imported beers<br />

in Italy by immunoaffinity clean-up liquid chromatography. J. Chromatogr. A, 888, 321-326.<br />

17. Visconti, A., Pascale, M., Centonze, G. (1999). Determination of ochratoxin A in wine by means of<br />

immunoaffinity column clean-up and high-performance liquid chromatography. J. Chromatogr. A, 864, 89-<br />

101.<br />

18. Leitner, A., Zollner, P., Paolillo, A., Stroka, J., Papadopoulu-Bouraoui, A., Jaborek, S., Anklam, E., Lindner,<br />

W. (2002). Comparison of methods for the determination of ochratoxin A in wine. Analytica Chimica Acta,<br />

453, 33-41.<br />

19. Soleas, G. J., Yan, J., Goldberg, D.M. (2001). Assay ochratoxin A in wine and beer by high-pressure liquid<br />

chromatography photo<strong>di</strong>ode array and gas chromatography mass selective detection. J. Agric. Food Chem.,<br />

49, 2733-2740.<br />

20. Zimmerli, B., Dick, R. (1996). Ochratoxin A in table wine and grape juice: Occurrence and risk assessment.<br />

Food Ad<strong>di</strong>t. Contam., 13, 655-688.<br />

21. Majerus, P., Otteneder, H. (1996). Detection and occurrence of ochratoxin A in wines and grape juice. Dtsch.<br />

Lebensm.-Rundsch, 92,388-390.<br />

22. Burdaspal, P. A., Legarda, T. M. (1999). Ochratoxin A in wines and grape musts and juices produced in Spain<br />

and other European countries. Alimentaria, 299, 107-113.<br />

23. Otteneder, H., Majerus, P. (2000). Occurrence of Ochratoxin A (OTA) in wines: influence of the type wine and<br />

its geographical origin. Food Ad<strong>di</strong>t. Contam., 17, 793-798.<br />

24. Ospital, M., Cazabeil, J. M., Betbeder, A. M., Tricard, C., Creppy, E.E., Me<strong>di</strong>na, B. (1998). Ochratoxin A in<br />

wines. Rev. Fr. Oenol., 169, 16-18.<br />

25. Festas, I., Herbert, P., Santos, L., Cabral, M., Barros, P. (2000). Alves, Ochratoxin A in some Portuguese<br />

wines: Method Validation and screening in Port wine and Vinho Verde Am. J. Enol. Vitic., 51, 50-154.<br />

26. R. Lo Curto, T. Pellicanò, F. Vilasi, P. Munafò, G.mo Dugo Food. Chem.(2003) (in press)<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

27


Figure 1: HPLC chromatogram of standard OTA<br />

Table 1: Pesticide treatments on “Fiano <strong>di</strong> Avellino”(Campania) variety grapes<br />

Wine samples n° of pesticide treatments during grape ripening<br />

Sicily 1 1 Sulfur 80 Pb 6 Quinoxyfen250 SC<br />

Sicily 3 1 Sulfur 80 Pb 6 Fenarimol 12 SC<br />

Sicily 4 1 Sulfur 80 Pb 6 Azoxystrobin 250 SC<br />

Sicily 5 1 Dinocap 350 EC 6 Penconazole 100 EC<br />

Sicily 8 1 Sulfur 80 Pb 6 Sulfur 80 Pb<br />

Sicily 9 1 Sulfur 80 Pb 6 Dinocap350EC<br />

Sicily 10 1 Sulfur Powder 6 Sulfur Powder<br />

Sicily 11 1 Water 6 Water<br />

Table 2: Pesticide treatments on “Inzolia” and “Carricante”(Sicily) varieties grapes<br />

Wine samples n° of pesticide treatments during grape ripening<br />

Campania 1 2 Sulfur 80 Pb 6 Quinoxyfen 250 SC<br />

Campania 2 2 Sulfur 80 Pb 6 Fenarimol 12 SC<br />

Campania 3 2 Sulfur 80 Pb 6 Azoxystrobin 250 SC<br />

Campania 4 2 Sulfur 50 PS 6 Sulfur 50 PS<br />

Campania 5 2 Dinocap350EC 6 Penconazole 100 EC<br />

Campania 6 2 Sulfur 80 Pb 6 Dinocap 350 EC<br />

Campania 7 2 Water 6 Water<br />

Campania 8 2 Sulfur 80 Pb 6 Sulfur 80 Pb<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

28


Table 3: Pesticide treatments on “Sangiovese” (Tuscany) variety grapes<br />

Wine Samples n° of pesticide treatments during grape ripening<br />

Tuscan 1 2 Sulfur 80 Pb 9 Quinoxyfen 250 SC<br />

Tuscan 2 2 Sulfur 80 Pb 9 Fenarimol 12 SC<br />

Tuscan 3 2 Sulfur 80 Pb 9 Azoxystrobin 250 SC<br />

Tuscan 4 2 Dinocap 350 EC 9 Penconazole 100 EC<br />

Tuscan 5 2 Sulfur Powder 9 Sulfur Polvere<br />

Tuscan 6 2 Sulfur 80 PBWG 9 Sulfur 80 PBWG<br />

Tuscan 7 2 Dinocap 350 EC 6+3 Sulfur + Quinoxyfen 250 SC<br />

Table 4: Concentration of OTA in wine samples nd: not detected<br />

Wine Samples Ochratoxin A (µg L -1 )<br />

Sicily 1 n. d.<br />

Sicily 3 0.02<br />

Sicily 4 0.01<br />

Sicily 5 0.02<br />

Sicily 8 0.02<br />

Sicily 9 0.03<br />

Sicily 10 0.01<br />

Sicily 11 traces<br />

Tuscan 1 0.22<br />

Tuscan 2 0.11<br />

Tuscan 3 0.07<br />

Tuscan 4 0.24<br />

Tuscan 5 0.71<br />

Tuscan 6 2.00<br />

Tuscan 7 0.10<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

29


EFFICACIA DELLA RYANIA SPECIOSA, COME INSETTICIDA NATURALE<br />

Markus Kelderer, Ellen Elias<br />

Centro Sperimentale Laimburg (BZ)<br />

Ryania speciosa (Vahl) è un arbusto appartenente alla famiglia delle Flacourtiacee presente nel clima tropicale del<br />

Centro- e Sudamerica. Le prime notizie <strong>di</strong> questa pianta risalgono al 1897 quando Cortes segnaló <strong>di</strong> aver trovato una<br />

pianta con un alcaloide tossico chiamato dagli in<strong>di</strong>geni ‚Matacucaracha‘.<br />

Negli anni 40 in agricoltura il legno macinato <strong>di</strong> Ryania speciosa venne usata contro <strong>di</strong>versi insetti nocivi. (es. in<br />

frutticoltura contro Cy<strong>di</strong>a pomonella). Gli allegati 2b del Regolamento sull’agricoltura biologica 2092/91 inizialmente<br />

citavano preparati a base <strong>di</strong> Ryania speciosa come compatibili con i principi dell’agricoltura biologica. Con il Reg.<br />

1488/97 la Ryania speciosa venne tolta da tale lista poiché non era registrata come fitofarmaco in nessun paese della<br />

Comunitá Europea. In mancanza <strong>di</strong> alternative nel contenimento <strong>di</strong> alcuni tortrici<strong>di</strong> car<strong>di</strong>nali in frutticoltura biologica su<br />

richiesta delle associazioni dei produttori, l’argomento venne inserito tra i temi prioritari da affrontare nell’ambito dei<br />

progetti finalizzati ‚Difesa in agricoltura biologica‘. I lavori svolti nell’ambito dei 3 anni <strong>di</strong> ricerca sono:<br />

1) Raccolta bibliografica delle conoscenze finora presenti<br />

2) Sviluppo <strong>di</strong> un metodo <strong>di</strong> estrazione capace <strong>di</strong> estrarre il quantitativo maggiore <strong>di</strong> Ryano<strong>di</strong>na componente<br />

principale degli alcaloi<strong>di</strong> presenti nel legno <strong>di</strong> Ryania speciosa. A tale proposito si saggiarono <strong>di</strong>versi solventi<br />

(acqua, metanolo, etanolo, <strong>di</strong>clormetano, acetone, ecc.), <strong>di</strong>versi meto<strong>di</strong> <strong>di</strong> estrazione (Soxhlet, bollitura a riflusso,<br />

Ultraturrax, Estrazione con SFE, ) e <strong>di</strong>verse metodologie per determinare la Ryano<strong>di</strong>na (cromatografia su strato<br />

sottile TLC e HPLC).<br />

3) Biotest in laboratorio su <strong>di</strong>versi lepidotteri carpofagi (Cy<strong>di</strong>a pomonella, Lobesia botrana, Pandenmis heperana,<br />

Adoxophyes orana, Mamestra brassicae) confrontando legno macinato <strong>di</strong> Ryania speciosa, Ryano<strong>di</strong>na pura ed<br />

estratti standar<strong>di</strong>zzati. Vennero fatte sia prove contro le uova, le larve e gli adulti dei lepidotteri citati<br />

determinandone la DL50.<br />

4) Ricerca <strong>di</strong> sinergisti (Piperonilbutossido, ecc. ) per esaltare l’efficacia della Ryano<strong>di</strong>na come principio attivo.<br />

5) L’efficacia in pieno campo <strong>di</strong> <strong>di</strong>verse formulazioni a base <strong>di</strong> Ryania contro <strong>di</strong>versi fitofagi.<br />

6) Determinazione della persistenza del principio attivo in con<strong>di</strong>zioni <strong>di</strong> pieno campo.<br />

7) Determinazione dei meto<strong>di</strong> analitici per il riscontro dei residui.<br />

Risultati:<br />

Tra i meto<strong>di</strong> <strong>di</strong> estrazione si è <strong>di</strong>mostrato particolarmente efficacie e <strong>di</strong> facile esecuzione il metodo Soxhlet usando<br />

come solvente il metanolo; la determinazone della Ryano<strong>di</strong>na si è effettuata con HPLC/UV-VIS con colonna RP-18.<br />

In laboratorio gli estratti <strong>di</strong> Ryania Speciosa non hanno <strong>di</strong>mostrato <strong>di</strong> avere un efficacia contro adulti ne contro uova dei<br />

citati fitofagi. L’efficacia contro le larve si è <strong>di</strong>mostrata variabile in funzione della specie. L’aggiunta <strong>di</strong> sinergisti ha<br />

migliorato l’efficacia degli estratti. Tale aumento dell‘efficacia varia a seconda della specie in oggetto. Le prove <strong>di</strong><br />

campo confermano i risultati riscontrati in laboratorio.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

30


BIOPESTICIDES: EVALUATION PROCESS FOLLOWING THE APPLICATION<br />

OF THE DIRECTIVE 91/414/CE<br />

M. Rubbiani<br />

Istituto Superiore <strong>di</strong> Sanità<br />

Laboratorio <strong>di</strong> Tossicologia Applicata<br />

Viale Regina Elena 299 - 00161 Roma - ITALIA<br />

E mail: rubbiani@iss.it<br />

Directive 91/414/CE for new and existing (revision) biopesticides requests the same kind of full evaluation, in terms of<br />

risk assessment, provided for chemicals.<br />

The first application of the guidelines imme<strong>di</strong>ately showed the obvious <strong>di</strong>fferences between the two types of products<br />

(chemical and micro-organism based pesticides), and the need to <strong>di</strong>stinguish within the critical end points addressed to<br />

both of them.<br />

This yielded to revise the data requirements for risk assessment (Annex II part B and Annex III part B of the Directive),<br />

because of the foreseeable problems due to the specific nature of the micro-organisms based pesticides.<br />

The <strong>di</strong>fferent aspects regar<strong>di</strong>ng the critical end points of the evaluation process, such as mode of action,<br />

characterisation, toxicological and microbiological features, as well as the possible risk for human and environment are<br />

fairly highlighted.<br />

Moreover, the problems raised in relation to the use and handling of these products, as well as the possibility to develop<br />

new strategies for a more suitable toxicological and ecotoxicological evaluation (correctly hazard- and risk- based) are<br />

reported.<br />

The activity within Directive 91/414/CE evaluation procedures at EU level and the activity of the National Committee<br />

for the registration of biopesticides are also shortly described.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

31


ENTOMOPATHOGENIC NEMATODES IN <strong>BIOLOGICAL</strong> CONTROL: REALITY AND PROSPECTIVES<br />

M. Ricci and A. Ragni<br />

BioTecnologie BT srl Pantalla <strong>di</strong> To<strong>di</strong> 06050 Perugia Italy<br />

Tel: ++39 – 075 - 895091 Fax: ++39 – 075 – 888 776 E-mail: mricci.bt@parco3a.org, aragni@parco3a.org<br />

General description<br />

Entomopathogenic nematodes (EPNs) are small (about 1 mm in length) round worms and are obliged parasite of<br />

insects. In the last few decades, they have been stu<strong>di</strong>ed to develop new bio control agents (BCAs).<br />

EPNs belong to the phylum Nematoda, class Secernentea, order Rhab<strong>di</strong>tida, sub-order Rhab<strong>di</strong>tina, super-family<br />

Rhab<strong>di</strong>toidea, families Steinernematidae and Heterorhab<strong>di</strong>tidae. So far, about 35 species have been described, but every<br />

year new ones are added.<br />

Bio-insecticide products based on EPNs consist of the infective juveniles (IJs) which represents a stage of their life<br />

cycle that can survive out of the insect bo<strong>di</strong>es without fee<strong>di</strong>ng, relying on their fat reserves. IJs can survive in the soil<br />

for long periods (if the soil is wet they can survive for months) until locate a suitable insect host (Gaugler, 1988).<br />

Mode of Action and Life Cycle<br />

In the soil, the IJ searches for and infects a suitable insect host penetrating into its haemocoel via natural body openings<br />

(mouth, anus, spiracles). Once in the haemocoel, the IJs release a symbiotic bacterium (Photorhabdus or Xenorhabdus<br />

spp.) into the haemolymph. The bacteria rapidly multiply, killing the insect by septicaemia within 24-48 hours. The<br />

nematodes feed upon the bacteria and degraded insect tissue and develop to first generation adult males and females (in<br />

the Steinernematidae family) or hermaphro<strong>di</strong>tes (in the Heterorhab<strong>di</strong>tidae family). In both cases, after the eggs have<br />

been fertilized, they are laid in the insect body or remain in the mother body. The hatched larvae complete their cycle<br />

passing thorough 5 stages. EPNs can complete 1 to 3 generations, depen<strong>di</strong>ng on the host insect size. As the insect<br />

resource becomes exhausted, most of the juveniles <strong>di</strong>fferentiate into a particular third stage that becomes the survival<br />

form of the life cycle (Infective Juvenile). The insect cuticle then ruptures and the IJs escape into the surroun<strong>di</strong>ng<br />

environment (Wouts 1980; Poinar 1990).<br />

Behaviour<br />

Because of their potential as biological control agents for insect pests, a great deal of research has been conducted on<br />

their behaviour and ecology, in particular the behavioural ecology of host-fin<strong>di</strong>ng. Host-fin<strong>di</strong>ng typically involves five<br />

steps; (I) host habitat selection, (II) localized search, (III) host orientation, (IV) host acceptance (or attachment), and (V)<br />

host suitability (Vinson, 1975). In<strong>di</strong>vidual species adopt <strong>di</strong>fferent approaches to each of these steps. Host searching<br />

strategies can be <strong>di</strong>vided into two approaches. Ambushing, where the environment moves past a waiting animal, is most<br />

efficient against high densities of highly mobile hosts. Cruising, where the animal moves through the environment, is<br />

most efficient against sedentary and widely <strong>di</strong>stributed hosts (Huey and Pianka, 1981). The entomopathogenic<br />

nematodes Steinernema carpocapsae and Heterorhab<strong>di</strong>tis bacteriophora appear to occupy similar habitats and use<br />

similar hosts, yet they exhibit <strong>di</strong>fferent searching behaviours. S. carpocapsae appears to be an ambusher and H.<br />

bacteriophora appears to be a cruiser. For these two <strong>di</strong>fferent strategies energy reserves are potentially the most<br />

important endogenous regulatory factor. Nematode infective stages are non-fee<strong>di</strong>ng and rely on stored lipids as the<br />

principal energy reserve. S. carpocapsae is on average 30% lipid by dry weight (Womersley, 1990). The rate of decline<br />

in lipid levels may be correlated with their foraging activity. Thus, many parasite infective stages remain inactive unless<br />

stimulated. S. carpocapsae becomes inactive without stimulation while H. bacteriophora remains active (Gaugler and<br />

Campbell, 1991). Increased age, and the subsequent depletion of lipids, decreased the pathogenicity of S. carpocapsae<br />

and H. bacteriophora when the host was farther away (Vanninen, 1990).<br />

Symbiotic bacteria<br />

Symbiosis<br />

Entomopathogenic nematodes are symbiotically associated with specific bacteria. Steinernematidae have their<br />

mutualistic relationship with bacteria of the genus Xenorhabdus and Heterorhabi<strong>di</strong>tae are associated with bacteria of the<br />

genus Photorhabdus. The two bacteria genera are gram-negative, belonging to the family of Enterobacteriaceae.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

32


Xenorhabdus spp. and Photorhabdus spp. are carried in the intestine of the infective stages of nematodes; Steinernema<br />

spp. have a special intestinal vesicle where the bacteria are kept while Heterorhab<strong>di</strong>tis spp. have their symbionts in the<br />

lumen of the anterior part of the gut.<br />

Once the nematodes have penetrated a host, they release the bacteria symbiont in the haemolymph causing a<br />

septicaemia and the host <strong>di</strong>es. Inside the larval cadavers the bacteria growth and nematodes develop to adult stages,<br />

multiply and sexually reproduce. Although the nematodes can grow axenically (without any micro-organism) or on<br />

other bacteria, their reproduction is optimal only in presence of their natural symbiont. Thus, Xenorhabdus spp. and<br />

Photorhabdus spp. have the status of obligate symbiont because they provide essential nutrients for the correct<br />

multiplication of the nematodes (Boemare et al., 1997).<br />

The nematode-bacterium complex represents an exciting example of co-evolution that involves the interaction between<br />

the host and the nematode-bacterium complex, the relationship within the two symbiotic partners and the interaction<br />

between the bacterium and its bacteriocines. To investigate these three connections, it is necessary to study the insect<br />

defence reactions, the pathogenicity of the nematodes and the bacterium pathogenicity, symbiotic properties and<br />

lysogeny.<br />

Insects have an immune system based on phagocytosis and encapsulation of exogenous agents. The recognition of<br />

foreign bo<strong>di</strong>es is me<strong>di</strong>ated by the production of some humoral factors (Boemare et al., 1997). Entomopahtogenic<br />

nematodes are able to depress or to escape the immune defence of insect larvae. This is obtained both with nonrecognition<br />

by insect humoral factors and by escaping the phagocytosis and encapsulation. The nematodes secrete an<br />

immune-depressive factor against insect immuno-proteins <strong>di</strong>rected against the symbiotic bacteria. As been reported also<br />

that axenic nematodes produce toxin(s) able to cause paralysis and death of the host (Simoes, 1994). Symbiotic bacteria<br />

<strong>di</strong>splay also pathogenic action them-self: they produce toxins and secrete enzymatic complex (proteases, lipases and<br />

phospholipases) that help the establishment of septicaemia in the host. Thus both partners of the symbiotic complex<br />

collaborate to kill the host. It is also been reported that axenic S. glaseri or its sole symbiont X. poinarii, have no<br />

entomopathogenic action, but this was restored after re-association of both partners (Akhurst and Boemare, 1990). The<br />

observed lysogenity of the bacterial symbiont is also useful for the symbiosis relationship because it helps the<br />

symbionts to compete with closely related bacteria.<br />

Production of useful molecules<br />

Both Xenorhabdus and Photorhabdus spp. can be grown independently from they nematodes partners under standard<br />

laboratory con<strong>di</strong>tions. In vitro, bacteria secrete several extracelluar products: proteases, chitinases, lipases,<br />

phospholipases, antibacterial and antimycotic substances. Those compounds are produced also in vivo and the enzymes<br />

<strong>di</strong>gest the tissues of dead larvae in order to provide nutrients for both bacteria and nematodes. The antifungal and<br />

antibacterial products are used to preserve the cadavers from the colonisation of other microorganisms. Those active<br />

substances have also been tested for their use in biolgical control of phytopatogenic fungi (Ng and Webster, 1997).<br />

In vitro, X. nematophilus and X. bovienii produce aliphatic amides (Park and Paik, 2001) and <strong>di</strong>thiolpyrrolones tested<br />

for antineoplastic activity (Webster and Chen, 1999).<br />

Recently, strains of Photorhabdus capable to secrete exotoxins (Bowen et al., 1998), or to produce endotoxins (Ragni et<br />

al., 1997), with oral insecticidal activity, have been described. This new source of natural toxins could help both the<br />

fight against the development of insect resistance as well as novel sources of specific activities in combination with<br />

other known bio-pesticides.<br />

Target organisms<br />

Due to their poor resistance to dry con<strong>di</strong>tions, EPNs are mainly applied against soil dwelling insects. Otiorrhynchus<br />

sulcatus F. (Coleoptera, Curculionidae) is considered one of the major worldwide insect pests. The larvae feed on the<br />

root system of several plant species (mainly ornamentals and nursery stock) producing its consequent decay and very<br />

significant economic losses. A part other Curculionids such as Conorhychus men<strong>di</strong>cus, Balaninus elephas, Diaprepes<br />

abbreviatus and Cylas formicarius on ornamentals, berries, citrus, sugar beet and chestnuts, other pests are: Scarabeids:<br />

Popilia japonica, Maladera matrida, Phyllopertha horticola , Apho<strong>di</strong>us spp. on lawns, orchards, nurseries and sweet<br />

potatoes; Diptera: Sciarids, Phorids, Scatopsids, Cecidomids on mushrooms, greenhouses; Lepidoptera: Noctuids on<br />

vegetable crops. Several stu<strong>di</strong>es have been performed to find out if EPNs can be used on the aerial part of the plants<br />

against chewing and sucking insect, but, yet, without any important success.<br />

Application Technology<br />

Particular strategies must be developed in order to insure the successful delivery of the nematodes to the target site and<br />

target insect. Many parameters must be investigated to improve EPNs performance. One of these is the determination of<br />

target insect life-stage susceptibility, since <strong>di</strong>fferent life stages of <strong>di</strong>fferent species are not equally susceptible. It has<br />

been shown that pest population levels and behaviour have a great influence on nematode performance and must be<br />

considered carefully. Often, larval stages of insects such as borers are not accessible to nematodes. Selecting the most<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

33


appropriate nematode species and/or strain is important for efficacy and commercial development. Abiotic factors such<br />

as soil type, soil temperature and moisture, and biotic factors, inclu<strong>di</strong>ng pathogens and predators, can greatly influence<br />

the nematodes ability to effectively kill the target pest.<br />

Application strategies, inclu<strong>di</strong>ng field dosage, volume, irrigation and appropriate application methods, are very<br />

important, especially if nematodes are to be integrated with other control strategies. Compatibility with other<br />

agrochemicals has been demonstrated allowing the use of EPNs in existing Integrated Pest Management programs. Also<br />

crop morphology and plant phenology must be considered. Ad<strong>di</strong>tional researches have shown the potential for<br />

entomopathogenic nematodes to be used in other habitats (e.g. aquatic, foliar, and cryptic), and in manure.<br />

EPNs are applied to the crops by common sprayers (also by drip irrigation); attentions should be taken in order to avoid<br />

se<strong>di</strong>mentation of nematodes by continuous agitation and to avoid exposure of nematodes to <strong>di</strong>rect sunlight, preparing<br />

the suspension under a shade and applying the product at late afternoon. It is important to pre-irrigate the soil with at<br />

least 6 mm of water and an irrigation post application of about 6-12 mm of water. The treated area should be irrigated<br />

frequently (at least every 1-3 days with a minimum of 6 mm of water) to maintain appropriate soil moisture for EPNs.<br />

Production<br />

EPNs can be produced in vivo using insects (in general, the last instar larvae of the Lepidoptera Galleria mellonella).<br />

This method requires low technology but, in the other hand, requires a constant source of healthy insects and a large<br />

amount of manpower and thus costs are enormous, in particular, in western countries. EPNs can be produced in vitro,<br />

both in solid and in liquid me<strong>di</strong>a. The latter method is the most sophisticated because requires innovative know how and<br />

modern facilities and equipment; this method allows a strong reduction in the production process costs.<br />

Formulation<br />

Entomopathogenic nematode based-product requires a reliable and stable formulation. This has been a <strong>di</strong>fficult task,<br />

because the larger markets are deman<strong>di</strong>ng a product with a minimum shelf life of six months when stored at room<br />

temperatures (20°-25°C). Nematode products contain living animals that have certain temperature, oxygen and moisture<br />

requirements necessary for their survival and effectiveness as control agents, cannot reach this market requirements.<br />

While no nematode formulation has been completely successful in reaching these goals, some have come very close<br />

(Georgis, 1992) such as a product based on the nematode Steinernema carpocapasae formulated in granules. A part this<br />

exception, due to the particular physiology of this species, the most common available formulations are based on clays<br />

with a limited shelf life (1-2 months) at 5-10°C.<br />

Perspectives<br />

To broaden the use of EPNs in Biological Control or IPM Programs, it is necessary to achieve positive results in the<br />

following fields:<br />

New Agricultural Targets; for instance: Grillotalpa grillotalpa, Melolontha melolontha, Leaf miners, Fruit flies<br />

(Bactrocera sp., Ceratitis sp., Ragoletis sp.), Aleuro<strong>di</strong>ds, Aphids.<br />

Market Needs; following the market needs, several aspects need to be improved. The reduction of production costs may<br />

be achieved by new technology and/or new strains with new activity, higher infectivity and higher production. The<br />

product shelf life can be extended by new technology and new strains capable to live in dry con<strong>di</strong>tions.<br />

Extended applications; the following applications may extend the use of EPNs: foliar application, stock farm use (ticks,<br />

fleas, flies), domestic use (flies, cockroaches, fleas).<br />

Particular attention is de<strong>di</strong>cated to new entomopatogenic nematodes able to survive and parasitize hosts at extreme<br />

environmental con<strong>di</strong>tions such as cold, warm and dry environments and to the exploitation of the biological active<br />

molecules produced by the symbiotic bacteria. Related to these topics, BioTecnologie B.T., a small Biotech company,<br />

based in Umbria Region (Italy), is developing two innovative products: a new strain of EPN active at very low<br />

temperatures and an innovative bio-insecticide based on endotoxins produced by a particular strain of the nematode<br />

symbiotic bacterium Photorhabdus luminescens:<br />

- Entomopathogenic nematode active at low temperature<br />

Many soil dwelling insect pests can or should be controlled when the temperatures are below 12°C (late autumn or early<br />

spring). The most important representative is Otiorhynchus sulcatus (Coleoptera, Curculionidae), a serious pest of soft<br />

fruits and ornamental plants. The inadequacies of chemical pesticides, the banning of the most persistent ones (e.g.<br />

aldrin) and the increasing <strong>di</strong>spersal of the insect, has led to an urgent need of a new and safer pest control method<br />

(Zimmermann, 1996). The available EPN based products, lack on effectiveness at temperatures below 12-15°C.<br />

A nematode strain, belonging to the species Steinernema kraussei, has been <strong>di</strong>scovered and it is very active against O.<br />

sulcatus larvae even at 3°C (Ricci and Fridlender, 1999). The strain is also effective against larvae of B. elephas at 8°C.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

34


It can be reproduced in vivo at 15°C and in liquid culture at 20°C without loosing its cold activity. A product based on<br />

this nematode is actually under development.<br />

- Bio-insecticide based on endotoxins produced by a particular strain of the nematode symbiotic bacterium<br />

Photorhabdus luminescens<br />

It has been <strong>di</strong>scovered (Ragni et al., 1997) a newly characterize strain of Photorhabdus luminescens, denominated<br />

XP01, which is highly toxic when <strong>di</strong>rectly administered by food contamination assays to neonates larvae of the<br />

Lepidopetran pests Mamestra brassicae and Cy<strong>di</strong>a molesta. Further characterization made with Mamestra brassicae, as<br />

target insect, showed that the activity of this strain is caused by an intracellular compound that is not secreted into the<br />

culture me<strong>di</strong>a. In fact, the surnatant of fermented broth of XP01 had no toxic activity and this <strong>di</strong>scovery was <strong>di</strong>fferent<br />

from what was reported for the W-14 strain of P. luminescens (Bowen et al., 1998). It was demonstrated that the toxic<br />

effect of XP01 is maintained even when the bacterial cells are killed. The <strong>di</strong>scovery of Photorhabdus luminescens strain<br />

XP01 in<strong>di</strong>cates the existence of a presumably new family of entomotoxic proteins present in Photorhabdus and<br />

probably in Xenorhabdus spp. These insecticidal toxins could be used as an active bio-pesticide ingre<strong>di</strong>ent in a similar<br />

manner to the delta-endotoxins of B. thuringiensis. This new source of natural toxins could help both the fight against<br />

the development of insects resistance as well as serve as sources of novel specific activities in combination with other<br />

known biopesticides.<br />

Further stu<strong>di</strong>es could lead to understan<strong>di</strong>ng of the genetic control involved in the expression of XP01 insecticidal<br />

toxins.<br />

Conclusions: An Analysis of the Commercial Entomopathogenic Nematode Product<br />

In this type of analysis, commercial and scientific factors should be sorted into four categories either as ‘Strengths,<br />

‘Weakness’, ‘Opportunity’, or ‘Threat’ (source: Pest Management Resource Centre with the following information as<br />

available at the site: http://www.pestmanagement.co.uk/special/microb/com_prod.html).<br />

Product Strengths<br />

- Consistent supply available; supply will be consistent when sales forecasts is accurate and production levels are<br />

pre<strong>di</strong>ctable. Most EPN species can be produced on a large scale, up to a capacity of 80,000 litre fermenters, at a<br />

concentration of 150-300,000 infective juveniles per millilitre.<br />

- The product is safe and ‘natural’; comprehensive data packages have been developed to support the safety claims<br />

made about EPN products. Workers benefit from not having to wear protective clothing during product application.<br />

Stu<strong>di</strong>es have also shown that EPN applications do not have a significant impact on non-target insects (Georgis et al.,<br />

1991).<br />

- Products do not require registration; registration regulations vary from country to country and have not<br />

been standar<strong>di</strong>zed in Europe. In most countries EPN’s are regarded as animals and are exempt from pesticide<br />

regulations. This means that once efficacy data has been generated, products can be introduced. The commercial<br />

advantage of this is that product sales can begin at least three years faster than conventional products.<br />

- Products are easy to use; no ad<strong>di</strong>tional equipment is required to apply EPN products, instructions have been<br />

designed to be similar to conventional pesticides making their use familiar to growers.<br />

Product Weaknesses<br />

- The insect life cycle; the susceptible stage of the insect life cycle may be in an inaccessible niche, or in a niche<br />

unsuitable for EPN survival. For example, excessively wet-dry soil or foliage.<br />

- Insect behaviour; insect behaviour or physiology may reduce EPN product efficacy. Gaugler (1988) suggested<br />

that the tendency of quiescent soil insects, especially pupae, to release carbon <strong>di</strong>oxide in bursts rather than<br />

continuously reduced the ability of infective juveniles to follow a chemical gra<strong>di</strong>ent to the host. It has been reported<br />

that when exposed to infective juveniles of Steinernema carpocapsae Weiser (All strain) American cockroaches,<br />

Peripaneta americana (L), actively groomed nematodes from legs and antennae to prevent infection.<br />

- Efficacy may be limited at hot and cold temperature; for example, control of black vine weevil Otiorhynchus<br />

sulcatus (F.) larvae in blackcurrant crops by Steinernema carpocapsae was limited at temperatures below 15 °C.<br />

- Product formulation; products should have a shelf life at room temperature. This can provide more flexibility in the<br />

<strong>di</strong>stribution system. For example, a product shelf life at room temperature makes it easier to deliver and store the<br />

product in a warm climate, or the <strong>di</strong>stributor could reduce costs by taking more products at one delivery and risk a<br />

temporary reduction in sales. Conversely, if the growers have cold storage facilities, as in the mushroom market, a<br />

sophisticated formulation may not be required, reducing development costs.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

35


- EPN products must be applied to moist soil; EPN’s can survive dry con<strong>di</strong>tions (Womersley, 1990) but cannot search<br />

for and locate the insect host.<br />

Product Opportunities<br />

- The market value; it is important that the market supports growing sales of the newly introduced product at a<br />

price that imme<strong>di</strong>ately provides a return on the investment of the initial product development.<br />

- No chemical available / phytotoxic effects/ chemical not effective; For example, in American cranberry crops<br />

no conventional chemical is available to control the Cranberry Girdler Chrysoteuchia topiaria, or strawberry root<br />

weevil Otiorhynchus ovatus (L). Growers were limited to using cultural methods to prevent pest damage until an<br />

EPN product was developed. In mushroom crops application of insecticides reduced yields.<br />

- EPN searching behaviour; in field grown crops it is particularly <strong>di</strong>fficult to apply insecticides at the point<br />

where the pest is causing damage. In strawberry plants grown under plastic access to the roots where black vine<br />

weevil larvae cause damage can be <strong>di</strong>fficult. However, by applying EPN’s through T-Tape irrigation systems<br />

infective juveniles introduced below the soil surface can search for and infect larvae developing in the strawberry<br />

roots.<br />

- Knowledge of the pest life cycle; expert knowledge obtained from universities and extension services can be<br />

used to determine the correct time for product application. It is important that the insect biology is understood to<br />

prevent ‘mysterious’ product failures.<br />

Product Threats<br />

Grower confidence; any change in the product can cause problems with grower confidence. Even a change in the<br />

colour of the product container can cause suspicions that something is not quite right with the production system.<br />

Product education; in the initial stages of product introduction <strong>di</strong>stributor and grower education is vital. If the<br />

growers misuse the product and observe damaged crops it is unlikely that they will continue to take risks on a ‘new’<br />

idea. It is easy for a poor reputation to build up and almost impossible to recover confidence in the market.<br />

- Competitive conventional insecticides; the development of new conventional chemicals may address<br />

application problems, for example slow release formulations.<br />

References<br />

Akhurst, RJ and N. Boemare. 1990. Biology and taxonomy of Xenorhabus. In: Entomopathogenic nematodes in<br />

biological control R. Gaugler and H.K. Kaya, eds. CRC Press; Boca Raton FL. pp. 75-90.<br />

Boemare N., A. Givaudan, M. Brehélin and C. Laumond. 1997. Review article. Symbiosis and pathogenicity of<br />

nematode-bacterium complex. Symbiosis Vol. 22: 21-45<br />

Gaugler, R. (1988). Ecological considerations in the biological control of soil-inhabiting insects with entomopathogenic<br />

nematodes. Agriculture, Ecosystems and Environment 24 351-360.<br />

Bowen D.J., T.A. Rocheleau, M. Blackburn, O. Andreev, E. Golubeva, R. Bhartia, and R.H. ffrench-Constant. 1998.<br />

Insecticidal toxin from the bacterium Photorhabdus luminescens. Science. 280. 2129-2132<br />

Gaugler, R. and J. F. Campbell, 1991, Entomopathogenic nematode behavioural response to oxamyl, Ann. appl. Biol.<br />

119, p. 131-138<br />

Georgis, R., Kaya, H.K., and Gaugler, R. (1991). Effect of steinernematid and heterorhab<strong>di</strong>tid nematodes (Rhab<strong>di</strong>tida:<br />

Steinernematidae and Heterorhab<strong>di</strong>tidae) on non-target arthropods. Environ. Entomol. 20:815-822.<br />

Georgis, R. 1992. Present and future prospects for entomopathogenic nematode products. Biocontrol Science and<br />

Technology 2: 83-99.<br />

Huey, R. B., and E. R. Pianka, 1981, Ecological consequences of foraging mode, Ecology 62, 991-999.<br />

Ng K.K. and Webster J.M.. 1997. Antimycotic activity of Xenorhabdus bovienii (Enterobacteriaceae) metabolites<br />

against Phyotophthora infestans on potato plants. Can. J. Plant Pathology 19 (2): 125-136.<br />

Park S.H. & Paik S.U. 2001. Novel aliphatic amide having anticancer property. PCT Application WO01/49656<br />

Poinar, G. O., Jr., 1990, Biology and Taxonomy of Steinernematidae and Heterorhab<strong>di</strong>tidae, In Entomopathogenic<br />

Nematodes in Biological Control, R. Gaugler and H. K. Kaya Eds, CRC Press, Boca Raton. pp. 23-58<br />

Ragni A., Valentini F and Fridlender B.1997. “Insecticidal Bacteria”. PCTIL97/00246<br />

Ricci M. and Fridlender B., New entomopathogenic nematodes active at low temperatures. PCT/IL99/00218<br />

Simoes, N. 1994. Virulence factors produced by the entomopathogenic nematode Steinernema carpocapsae during<br />

parasitism. Proce. of the Vith Intern. Colloquium of Invertebrate Pathology Aug.28-Sept. 2. 1994. Montpellier, France<br />

p. 116-119<br />

Vanninen, I., 1990, Depletion of endogenous lipid reserves in Steinernema feltiae and Heterorhab<strong>di</strong>tis bacteriophora<br />

and effect on infectivity, Procee<strong>di</strong>ngs and Abstracts of the 5th <strong>International</strong> Collogium on Invertebrate Pathology and<br />

Microbial Control, Adelaide.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

36


Vinson, S. B., 1975, Biochemical coevolution between parasitoids and their hosts, In Evolutionary Strategies of<br />

Parasitic Insects and Mites, P. W. Price Ed., Academic Press, New York.<br />

Webster J.M & G. Chen. 1999. Dithiolpyrrolones and their correspon<strong>di</strong>ng and <strong>di</strong>oxides as antineoplastic agents. PCT<br />

Application WO99/12543.<br />

Womersley, C. Z., Dehydration Survival and Anhdrobiotic Potential, 1980. In Entomopathogenic Nematodes in<br />

Biological Control, R. Gaugler and H. K. Kaya Eds, CRC Press, Boca Raton.<br />

Wouts, W.M., 1980. Biology, life cycle and redescription of Neoaplectana bibionis Bovien, 1937 (Nematoda:<br />

Steinernematidae). J. Nematology 12 1 62-72.<br />

Zimmermann, G., 1996. Microbial control of vine weevil. Procee<strong>di</strong>ngs of the second international workshop on vine<br />

weevil (Otiorhynchus sulcatus Fabr.) (Coleoptera, Curculionidae). Braunschweig, Germany, May 21-23, 1996.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

37


DETERMINAZIONE DEL CONTENUTO DI MICOTOSSINE IN PRODOTTI COMMERCIALI<br />

PROVENIENTI DA AGRICOLTURA TRADIZIONALE E BIOLOGICA<br />

B.Beretta, C.Ballabio, F.Tacchini, A.Cattaneo, C.L.Galli, C.Gigliotti*, P.Restani<br />

Dipartimento <strong>di</strong> Scienze Farmacologiche - Università degli Stu<strong>di</strong> <strong>di</strong> Milano, via Balzaretti, 9 - 20133 Milano<br />

*Dipartimento <strong>di</strong> Produzione Vegetale - Università <strong>di</strong> Milano, via Celoria, 2 - 20133 Milano<br />

Le micotossine sono metaboliti secondari prodotti da alcuni funghi filamentosi che possono infestare le derrate<br />

alimentari. Questi composti sono stabili e permangono nell'alimento dopo la morte del micete produttore; sono resistenti<br />

ai lunghi perio<strong>di</strong> <strong>di</strong> conservazione ed ai comuni trattamenti industriali e casalinghi <strong>di</strong> preparazione dei cibi.<br />

Tra le micotossine più importanti dal punto <strong>di</strong> vista agro-economico e della salute pubblica si ritrovano le ocratossine e<br />

la patulina.<br />

La patulina è prodotta da alcune specie <strong>di</strong> Aspergillus e Penicillium che possono contaminare alcuni frutti e cereali ed in<br />

particolare la mela. E' una molecola relativamente instabile, ma è termoresistente se posta in ambienti acquosi e aci<strong>di</strong>.<br />

Diversi stu<strong>di</strong> hanno portato a considerare tale composto come potenziale cancerogeno per l’uomo, anche se ulteriori<br />

approfon<strong>di</strong>menti sono necessari per comprendere se l’effetto cancerogeno possa manifestarsi alle concentrazioni<br />

normalmente riscontrate negli alimenti.<br />

Le ocratossine sono prodotte da alcune specie <strong>di</strong> Aspergillus e Fusarium e sono note per la loro nefrotosicità. Il<br />

composto più tossico presente in questo gruppo è l'Ocratossina A (OTA), una molecola abbastanza stabile che può<br />

passare inalterata attraverso la catena alimentare e ritrovarsi intatta in carne, cereali e derivati,<br />

L’oggetto <strong>di</strong> questo stu<strong>di</strong>o si articola nella valutazione:<br />

• della presenza <strong>di</strong> patulina in omogeneizzati e succhi <strong>di</strong> mela provenienti da <strong>di</strong>verse strategie agricole (coltivazione<br />

tra<strong>di</strong>zionale, lotta integrata e agricoltura biologica);<br />

• della presenza <strong>di</strong> OTA in farine <strong>di</strong> cereali destinate alla prima infanzia, provenienti da <strong>di</strong>verse strategie agricole<br />

(coltivazione tra<strong>di</strong>zionale, lotta integrata e agricoltura biologica);<br />

• della qualità tossicologica dei prodotti analizzati in funzione della <strong>di</strong>versa provenienza agricola.<br />

Per la ricerca della patulina sono stati analizzati 23 omogeneizzati <strong>di</strong> mela provenienti da agricoltura tra<strong>di</strong>zionale,<br />

biologica e da lotta integrata e 21 succhi <strong>di</strong> mela provenienti da agricoltura tra<strong>di</strong>zionale e biologica.<br />

Per la ricerca dell'OTA sono stati analizzati 30 lotti <strong>di</strong> semolino, 33 lotti <strong>di</strong> crema <strong>di</strong> riso, 26 lotti <strong>di</strong> crema <strong>di</strong> mais e<br />

tapioca e 30 lotti <strong>di</strong> crema multicereali. Anche questi prodotti derivavano da agricoltura tra<strong>di</strong>zionale, biologica e da lotta<br />

integrata.<br />

Il protocollo <strong>di</strong> analisi prevede una prima fase <strong>di</strong> estrazione-purificazione del campione ed una seconda fase <strong>di</strong> analisi in<br />

HPLC.<br />

Tutti i campioni <strong>di</strong> omogeneizzati analizzati presentavano concentrazioni <strong>di</strong> patulina al <strong>di</strong> sotto del limite <strong>di</strong> legge<br />

stabilito in 50 µg/kg; la concentrazione maggiore riscontrata era <strong>di</strong> 6,39 µg/kg e 5,97 µg/kg per i prodotti da coltura<br />

tra<strong>di</strong>zionale e da lotta integrata, rispettivamente. L'analisi statistica non ha evidenziato <strong>di</strong>fferenze significative tra valori<br />

determinati nei campioni provenienti dalle due strategie agricole considerate.<br />

Il più alto valore <strong>di</strong> patulina riscontrato nei succhi <strong>di</strong> mele provenienti da agricoltura tra<strong>di</strong>zionale era 3,03 µg/kg, mentre<br />

i risultati relativi ai prodotti biologici erano estremamente variabili con un valore massimo <strong>di</strong> 28,24 µg/kg. Dal<br />

confronto dei dati, dal punto <strong>di</strong> vista statistico, si è evidenziata una <strong>di</strong>fferenza significativa tra le due tipologie <strong>di</strong><br />

prodotti inclusi nello stu<strong>di</strong>o.<br />

Per quanto riguarda la ricerca dell'OTA, nessun campione <strong>di</strong> crema <strong>di</strong> mais e tapioca e nessun lotto dei prodotti<br />

provenienti da lotta integrata conteneva la micotossina in quantità rilevabili. Tra i lotti <strong>di</strong> semolino analizzati<br />

provenienti da coltivazione tra<strong>di</strong>zionale, 2 dei 6 campioni risultati positivi superavano il valore limite fissato per legge<br />

in 0,5 µg/kg (0,58 e 0,65 µg/kg); mentre un solo lotto biologico presentava O,18 µg/kg <strong>di</strong> OTA. Tra le creme <strong>di</strong> riso<br />

incluse nello stu<strong>di</strong>o solo nei campioni biologici è stata rilevata la OTA ed in particolare due lotti superavano il limite <strong>di</strong><br />

legge, con valori <strong>di</strong> 0,7 e 0,74 µg/kg. Le analisi delle creme multicereali hanno evidenziato la presenza <strong>di</strong> OTA solo nei<br />

prodotti da agricoltura tra<strong>di</strong>zionale e nessun campione superava il limite <strong>di</strong> legge.<br />

Dai risultati ottenuti, il contenuto <strong>di</strong> OTA non sembra <strong>di</strong>rettamente correlabile alla pratica agricola seguita; infatti nei<br />

semolini i valori più alti si sono riscontrati nei campioni provenienti da agricoltura tra<strong>di</strong>zionale, mentre per le creme <strong>di</strong><br />

riso si è verificato l’opposto.<br />

Le conclusioni <strong>di</strong> questo stu<strong>di</strong>o suggeriscono che la presenza <strong>di</strong> micotossine è un problema quanto mai attuale; i<br />

prodotti in commercio da noi analizzati, pur essendo nella quasi totalità dei casi nei limiti <strong>di</strong> legge, in<strong>di</strong>cano la assoluta<br />

necessità <strong>di</strong> controllare le derrate alimentari e non trascurare i prodotti biologici che per le modalità <strong>di</strong> coltivazione e<br />

conservazione possono essere a maggior rischio <strong>di</strong> contaminazione.<br />

Beretta B., Gaiaschi A., Galli C.L., Restani P., 2000, Patulin in apple-based foods: occurrence and safety evaluation.<br />

Food Add. Contam., 17, 399-406.<br />

Beretta B., De Domenico R., Gaiaschi A., Ballabio C., Galli C.L., Restani P., 2002, Ochratoxin A in cereal-based baby<br />

food: occurrence and safety evaluation. Food Add. Contam., 19, 70-75.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

38


PROTECTION OF GRAPEVINE FROM POWDERY MILDEW BY USING NATURAL SUBSTANCES AND<br />

THE MICROBIAL ANTAGONIST AMPELOMYCES QUISQUALIS<br />

Agostino Santomauro (1) , Giuseppe Tauro (2) , Maurizio Sorrenti, Francesco Faretra (1)<br />

(1) Dipartimento Protezione delle Piante e Microbiologia Applicata, University of Bari<br />

(2) Centro <strong>di</strong> Ricerca e Sperimentazione in Agricoltura "Basile Caramia", Locorotondo (Bari)<br />

Powdery mildew, caused by Uncinula necator (Schw.) Burr., is one of the most common and severe <strong>di</strong>seases of<br />

grapevine, causing heavy yield losses wherever the crop is intensively grown. Many fungicides are available for its<br />

control. Recently, however, the rapid <strong>di</strong>ffusion of organic agriculture has stressed out the lack of solid experimental<br />

data on the effectiveness of natural substances and microbial antagonists that are potential alternatives to the use of<br />

chemicals.<br />

The present paper reports the results of field trials carried out in 1998, 2000 and 2001 in order to evaluate the<br />

effectiveness of natural substances and the mycoparasite Ampelomyces quisqualis Ces. for the control of grapevine<br />

powdery mildew.<br />

The statistical scheme of randomized blocks with four replications and plots of 8-10 plants was adopted in all<br />

trials. The first two sprays were always carried out at the beginning and at the end of blossoming. Afterwards,<br />

treatments were carried out at one-week intervals until véraison. The tested spray schedules are listed below.<br />

Tested compounds Formulates Rates Year of employment<br />

(g or ml/ha) 1998 2000 2001<br />

Ampelomyces quisqualis +<br />

AQ 10 (Bio Intrachem)<br />

50 + • • •<br />

Mineral oil<br />

Ultra Fine Oil (Bio Intrachem) 2000<br />

Ampelomyces quisqualis +<br />

AQ 10 (Bio Intrachem)<br />

50 +<br />

•<br />

Pinolene<br />

Vapor-Gard (Bio Intrachem) 2000<br />

So<strong>di</strong>um bicarbonate +<br />

RPH (Carlo Erba)<br />

5000 + • • •<br />

Mineral oil<br />

Ultra Fine Oil (Bio Intrachem) 2000<br />

So<strong>di</strong>um bicarbonate +<br />

RPH (Carlo Erba)<br />

5000 +<br />

•<br />

Pinolene<br />

Vapor-Gard (Bio Intrachem) 2000<br />

So<strong>di</strong>um bicarbonate RPH (Carlo Erba) 5000 •<br />

Foliar fertilizer Trym (Italpollina) 150 •<br />

Powder milk Vigor Latte (Mignini) 10000 •<br />

Mineral oil Ultra Fine Oil (Bio Intrachem) 10000 •<br />

Pinolene Nu - Film 17 (Chimiberg) 10000 •<br />

Pinolene Vapor-Gard (Bio Intrachem) 10000 • •<br />

Potassium salts of fatty acids MYX 403.2-050 (Mycogen) 10000 •<br />

Sulphur Zolfo WG (Bayer) 2500 •<br />

Sulphur Kumulus Tecno (Syngenta) 5000 •<br />

Symptom severity was assessed two to four times for each trial by observing 250-300 bunches per plot and<br />

counting infected berries. An empirical scale with 8 class of infection was used to calculate the following parameters:<br />

the percentage of infected organs (Tehon’s “prevalence”), the <strong>di</strong>sease severity (Tehon’s “destructiveness”) and its<br />

weighted average value (accor<strong>di</strong>ng to the McKinney Index). All data were submitted to variance analysis and mean<br />

values were separated by Duncan’s Multiple Range Test.<br />

During 1998 and 2000, powdery mildew infections interested 77% and 65% of bunches in untreated plots,<br />

respectively. The values of McKinney Index, however, were not very high, reaching 17% and 13%, respectively. Under<br />

these con<strong>di</strong>tions of me<strong>di</strong>um <strong>di</strong>sease pressure, all of the tested compounds showed to be effective against powdery<br />

mildew, decreasing significantly symptom severity on both berries and rachis, as compared to the untreated check. In<br />

particular, so<strong>di</strong>um bicarbonate (used either alone or in mixture with mineral oil) and pinolene showed the highest<br />

effectiveness, allowing reductions up to 90% of symptom severity. These results were substantially confirmed even<br />

under the higher <strong>di</strong>sease pressure occurred in the trial carried out in 2001. In that year, powdery mildew symptoms were<br />

observed on 88% of bunches in untreated plots, with a value of McKinney Index as high as 34%. Even under such<br />

con<strong>di</strong>tions, pinolene and so<strong>di</strong>um bicarbonate, used either alone or in mixture, allowed a significant reduction of the<br />

<strong>di</strong>sease. Moreover, very interesting results were obtained with powder milk that yielded the best control of the <strong>di</strong>sease.<br />

Repeated sprays with pinolene or potassium salts of fatty acids had some negative side effects on bunches, by<br />

removing waxes from the surface of berries and causing persistent bad smell. Repeated sprays with milk left visible<br />

residues, thus getting <strong>di</strong>rty bunches. Such effects represent a serious limitation for their usage on table grape, but should<br />

be negligible for wine grape.<br />

In conclusion, the tested natural substances and A. quisqualis showed an interesting, although not complete,<br />

effectiveness against grapevine powdery mildew. Yet, their exclusive usage in the protection of table grape seems can<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

39


not be recommended due to their partial effectiveness and negative side effects. On the other hand, they might found a<br />

larger application in the protection of wine grape from powdery mildew in organic agriculture as well as in integrated<br />

<strong>di</strong>sease management. However, further investigations are needed in order improve knowledge and rule out any<br />

detrimental effects on taste, flavor and other qualitative characteristics of wine.<br />

Acknowledgements: Work supported by the Italian Ministry of Agricultural and Forestry Policies in the frame of the<br />

research project “Technical tools for crop protection in organic agriculture” – Sub-project “Natural substances in crop<br />

protection from fungal <strong>di</strong>seases”.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

40


I MEZZI TECNICI PER L'AGRICOLTURA BIOLOGICA: UN SETTORE IN SVILUPPO SENZA LA CERTEZZA<br />

DELLA NORMATIVE CHE LO REGOLANO<br />

Massimo Benuzzi<br />

Presidente ASSOMETAB (Associazione Italiana dei produttori e <strong>di</strong>stributori <strong>di</strong> mezzi tecnici per l’agricoltura biologica<br />

e ecocompatibile)<br />

L’Agricoltura biologica è uscita da una fase pionieristica nella quale le cosiddette “scelte <strong>di</strong> vita” avevano maggior<br />

importanza nella gestione dell’azienda rispetto a decisioni <strong>di</strong> tipo impren<strong>di</strong>toriale; l’incremento delle superfici<br />

interessate e l’esigenza <strong>di</strong> sod<strong>di</strong>sfare la sempre più crescente domanda <strong>di</strong> “cibi puliti” pone il settore <strong>di</strong> fronte a precise<br />

scelte. Anche la Grande Distribuzione Organizzata ha recentemente <strong>di</strong>mostrato che il prodotto biologico può entrare<br />

nella sua gamma, promuovendo anche marchi propri che contrad<strong>di</strong>stinguono una specifica linea <strong>di</strong> agricoltura<br />

biologica. Nello stesso tempo <strong>di</strong>venta sempre più chiaro che i prodotti da agricoltura biologica potranno ulteriormente<br />

crescere in quantità e qualità, con le adeguate remunerazioni per tutti i soggetti della filiera, solo se verranno garantite in<br />

modo sicuro e trasparente la certificazione delle produzioni biologiche.<br />

Senza entrare nel merito del “controllo dei controllori” o dell’esistenza o meno <strong>di</strong> problemi nella catena <strong>di</strong><br />

certificazione, ASSOMETAB vuole mettere in evidenza quanto al momento attuale sia stato poco considerato il tema<br />

dei mezzi tecnici per l’agricoltura biologica.<br />

Prima <strong>di</strong> tutto è necessario sottolineare che Istituti <strong>di</strong> ricerca e Università stanno, attraverso le aziende interessate,<br />

sempre <strong>di</strong> più proponendo nuove soluzioni ai problemi tecnici che scaturiscono dalle esigenze degli operatori del<br />

biologico. Infatti negli ultimi anni sono stati risolti numerosi problemi fitoiatrici, non solo legati all’agricoltura<br />

biologica, con l’avvento <strong>di</strong> nuovi insettici<strong>di</strong> e fungici<strong>di</strong> <strong>di</strong> origine naturale, soluzioni tecniche alternative alla chimica.<br />

Fondamentale è il ruolo delle aziende legate a questo settore che hanno investito e stanno investendo nella ricerca, nella<br />

messa a punto <strong>di</strong> nuovi biopestici<strong>di</strong> (ma anche <strong>di</strong> fertilizzanti) e anche nelle relative registrazioni. Si riesce così a<br />

coniugare economia e ecologia, ovvero due cose che, fino a poco tempo fa, sembravano inconciliabili. Se non ci fossero<br />

aziende in<strong>di</strong>rizzate a questo settore dell’agricoltura probabilmente i produttori biologici dovrebbero attendere che anche<br />

le multinazionali agrochimiche decidano <strong>di</strong> muoversi per promuovere lo sviluppo del settore. Forse, in quel caso,<br />

dovrebbero armarsi <strong>di</strong> tanta pazienza……<br />

Il fatto che in Italia sia presente una Associazione come ASSOMETAB con aziende che investono nella ricerca <strong>di</strong><br />

fertilizzanti e fitofarmaci per il biologico proprio nel paese europeo con le superficie più ampia a biologico, forse, non è<br />

un caso.<br />

Anche gli operatori del biologico (agricoltori e tecnici) devono avere presente che scegliere aziende che investono nel<br />

biologico (come quelle <strong>di</strong> ASSOMETAB) significa dare una mano a soggetti che sicuramente reinvestiranno buona<br />

parte dei ricavi in nuovi prodotti per il biologico, innescando così un circolo virtuoso; magari un concime o un Bacillus<br />

thuringiensis <strong>di</strong> una multinazionale sono più economici, ma in un’ottica più lungimirante (quella che fa crescere un<br />

settore), privilegiare una azienda rispetto ad un altra equivale ad effettuare una scelta che potrebbe rivelarsi importante<br />

per lo sviluppo dl settore.<br />

Questo sviluppo è però attualmente minacciato dal Decreto 290, più specificamente dai punti 1 e 2 dall’articolo 38 che<br />

liberalizzando in modo assolutamente inadeguato il settore ha permesso ad aziende con poche scrupoli <strong>di</strong> mettere sul<br />

mercato mezzi tecnici non testati che possono scre<strong>di</strong>tare tutto il segmento.<br />

Riportiamo alcuni esempi <strong>di</strong> quali problemi tale DPR ha scatenato:<br />

- Come potranno gli enti certificatori garantire che i prodotti biologici siano sicuri quando i fitofarmaci per<br />

produrli non sono adeguatamente controllati ?<br />

- Come potrà la GDO garantire che i propri marchi siano realmente aderenti a quanto vantato nelle promozioni<br />

pubblicitarie ?<br />

- Perché aziende che hanno investito ingenti somme in registrazioni si devono trovare fronteggiare una<br />

concorrenza “sleale” che mette sul mercato fitofarmaci prodotti e controllati da “appren<strong>di</strong>sti stregoni” ?<br />

- Perché quando un insetticida biologico non è registrato su una coltura, quello simile (o che per lo meno vanta<br />

<strong>di</strong> esserlo con il nuovo DPR) può essere invece impiegato dovunque ? In pratica per i fitofarmaci registrati<br />

esiste la necessità <strong>di</strong> registrare i prodotti su ciascuna coltura in<strong>di</strong>cando anche i residui ammessi; nel caso <strong>di</strong><br />

prodotti “regolarizzati” con il DPR 290 invece non si pone alcun limite su nessuna coltura, creando <strong>di</strong> fatto una<br />

<strong>di</strong>sparità assolutamente assurda.<br />

- Perche il DPR 290 non specifica assolutamente niente circa i tempi <strong>di</strong> carenza; forse il rotenone regolarmente<br />

registrato deve avere 10 giorni <strong>di</strong> tempo <strong>di</strong> carenza e quello ammesso dal DPR 290 nessun giorno? I Bacillus<br />

thuringiensis registrati 3 e i Bacillus thuringiensis non passati al vaglio del Ministero della Salute nessuno ?<br />

Significa che è meglio non farsi controllare ?<br />

Questi sono alcuni punti che vorremmo far sapere a chi si interessa veramente del settore.<br />

ASSOMETAB ha avanzato al MIPAF sin dall’estate scorsa le sue proposte per una normativa chiara ed efficace sui<br />

mezzi tecnici per l’agricoltura biologica. In sintesi una registrazione semplificata che abbrevi significativamente i<br />

lunghi tempi (e i relativi costi) prima dell’immissione sul mercato, ma che mantenga elevate garanzie per il<br />

consumatore, l’agricoltore e l’ambiente.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

41


IMPEGNO DEL MIPAF NEL BIOLOGICO<br />

Giancarlo Imbroglini<br />

In questi ultimi tempi, si è osservata una notevole crescita dell’agricoltura biologica in Italia che ha portato il nostro<br />

Paese a detenere il primato in Europa per numero <strong>di</strong> aziende e per superficie coltivata a biologico ed a collocarsi al 3°<br />

posto nel mondo. Chi coltiva, alleva, prepara e importa, secondo il metodo <strong>di</strong> produzione biologico, deve sottostare alle<br />

<strong>di</strong>sposizioni contenute nel Regolamento della Comunità Europea n. 2092/91 e successive mo<strong>di</strong>fiche e integrazioni.<br />

Nell’allegato II B del suddetto Regolamento sono elencati i prodotti fitosanitari che possono essere impiegati per la<br />

<strong>di</strong>fesa delle colture. I prodotti ammessi sono, però, in numero esiguo, dotati, generalmente, <strong>di</strong> scarsa efficacia e inoltre,<br />

per alcuni <strong>di</strong> essi, quali i sali <strong>di</strong> rame, sono stati fissati limiti massimi <strong>di</strong> impiego. Questa situazione concorre fortemente<br />

a frenare la crescita delle produzioni biologiche. Gli approfon<strong>di</strong>menti scientifici che si rendono, pertanto, necessari<br />

devono tendere a fornire risposte esaustive alle numerose problematiche che gli operatori del biologico si trovano a<br />

dover affrontare ed a vagliare con cura le innovazioni strategiche per la <strong>di</strong>fesa non chimica delle colture. La ricerca in<br />

agricoltura biologica è caratterizzata da una maggiore complessità rispetto all’agricoltura convenzionale in quanto la<br />

gestione della produzione si fonda su sistemi olistici che rendono necessaria l’armonizzazione delle pratiche<br />

agronomiche nel loro complesso. Anche la <strong>di</strong>fesa fitosanitaria va inquadrata in un’ottica <strong>di</strong> sistema complesso e non<br />

come verifica del miglior prodotto per risolvere un problema specifico. Nell’ambito delle attività <strong>di</strong> tutela e sviluppo<br />

dell’agricoltura biologica, il Ministero delle Politiche Agricole e Forestali (MiPAF), autorità <strong>di</strong> controllo del settore a<br />

livello nazionale, ha promosso e sostiene un programma per la trattazione delle <strong>di</strong>verse tematiche che riguardano la<br />

<strong>di</strong>fesa delle piante coltivate secondo il metodo biologico con riferimento sia agli aspetti normativi che agli aspetti<br />

sperimentali. Ha cercato, in tal modo, <strong>di</strong> supportare l’agricoltura biologica con finanziamenti specifici. Con il progetto<br />

“Difesa delle Produzioni in agricoltura biologica”, <strong>di</strong> durata triennale, ci si è posti l’obiettivo <strong>di</strong> investigare sui mezzi<br />

tecnici utilizzabili per la <strong>di</strong>fesa in agricoltura biologica valutandone l’efficacia, cercando <strong>di</strong> mettere a punto i dosaggi<br />

ottimali, le epoche <strong>di</strong> trattamento più convenienti, il numero <strong>di</strong> trattamenti, nonché gli eventuali effetti secondari a loro<br />

ascrivibili. L’obiettivo è anche quello <strong>di</strong> in<strong>di</strong>viduare altri mezzi <strong>di</strong> <strong>di</strong>fesa, compatibili con il metodo <strong>di</strong> produzione<br />

biologico, in grado <strong>di</strong> contrastare le numerose avversità <strong>di</strong> pre e post-raccolta.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

42


POSTER<br />

1. Agosteo G.E., Ambrosio M.: Prove <strong>di</strong> lotta all'oi<strong>di</strong>o dello zucchino con prodotti alternativi in<br />

pieno campo<br />

2. Arnol<strong>di</strong> A., D'Agostina A., Boschin G.: Lupinus Albus, an ancient European legume<br />

particulary suitable for organic farming, may become an useful source of functional ingre<strong>di</strong>ents<br />

3. Barrese E., Benincasa C., Lombardo N., Mazzalupo I., Pellegrino M., Perri E., Sindona<br />

G.: Benzo(a)pyrene in organic virgin olive oils<br />

4. Cabizza M., Melis M., Cabras P.: Effetto delle cere epicuticulari <strong>di</strong> frutta e vegetali sulla<br />

fotodegradazione del rotenone<br />

5. Castagnoli M., Liguori M., Nannelli R., Simoni S.: Insettici<strong>di</strong> d'origine vegetale e acari<br />

6. Casucci C., Monaci E., Perucci P.: Changes of biochemical parameters in soil amended with<br />

moist olive husks<br />

7. Casulli F., Santamauro A., Tauro G., Gatto M.A., Faretra F.: Natural compounds in the<br />

control of powdery mildew on cucurbits in organic agriculture<br />

8. Citarrei F., Scribano M., Coranelli S., Cellerino C., Quattrocchi L., Concezzi L., Ragni A.:<br />

Methods for evaluation, in controlled con<strong>di</strong>tions, of the growth of oilseed rape promoted by<br />

bacteria<br />

9. Convertini G., Donato F., Sasanelli N., D'Addabbo T.: Effetto dello span<strong>di</strong>mento <strong>di</strong> residui<br />

dell'industria olearia sulla fertilità del suolo e su nemato<strong>di</strong> fitoparassiti<br />

10. D'Addabbo T., Sasanelli N.: Nematicidal activity of acqueous extracts from rue (Ruta<br />

Graveolens L.)<br />

11. Gargani E., Del Bene G.: Valutazione dell'efficacia insetticida <strong>di</strong> Ryania, Rotenone,<br />

Aza<strong>di</strong>ractina e Beauveria Bassiana<br />

12. Dugo G.mo, Giuffrida D., Drogo A., La Pera L.: Determination of Cd (II), Cu (II), Pb (II)<br />

and Zn (II) in biological and not biological citrus essential oils by derivative potentiometric<br />

stripping analysis (dPSA)<br />

13. Floris I., Satta A., Cabras P., Angioni A.: Impiego del timolo nel controllo della varroosi delle<br />

api. Efficacia, persistenza e residui<br />

14. Pertot I., Delaiti M., Forti D.: Assesment of phytotoxicity to Grapevine of tra<strong>di</strong>tional and new<br />

copper compounds used in copper reduction strategies in organic viticulture and its relationship<br />

with environmental con<strong>di</strong>tions and number of treatments<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

43


15. Fusari F., Petrini A.: Organic wheat quality and production: the results of three years of trials<br />

16. Iannotta N.: Il controllo della "mosca delle olive" (Bactrocera oleae Gmel.) con meto<strong>di</strong><br />

consentiti in coltivazione biologica<br />

17. Kelderer M., Casera C., Lardschneider E.: Il contenimento della ticchiolatura in frutticoltura<br />

biologica<br />

18. La Pera L., Lo Turco V., Lo Curto S., Mavrogeni E., Dugo G.mo: Influence of <strong>di</strong>fferent<br />

treatments on Cd (II), Cu (II), Pb (II) and Zn (II) content in Sicilian olive oils<br />

19. La Torre G.L., Pellicanò T.M., Pollicino D., Alfa M., Dugo G.mo: Determination of phenolic<br />

compounds in experimental wines subjected to <strong>di</strong>fferent pesticides treatments<br />

20. La Torre A., Donnarumma L., Lolletti D., Imbroglini G.: Control of apple scab in organic<br />

farming<br />

21. Maietti A., Mazzotta L., Saletti C., Mirolo G., Berveglieri M., Tedeschi P., Brandolini V.:<br />

Contaminazione da micotossine in alimenti <strong>di</strong> produzione biologica<br />

22. Maini P.: Peptidati <strong>di</strong> rame: prodotti innovativi a basso dosaggio a base <strong>di</strong> rame, chelato ad<br />

amino aci<strong>di</strong> e pepti<strong>di</strong><br />

23. Perri E., Lombardo N., Muzzalupo I., Urso E., Pellegrino M., Sindona G., Benincasa C.,<br />

Cavallo C.: Characterization of organic virgin olive oils from coratina cultivar<br />

24. Perri E., Mazzalupo I., Rizzuti B., Pellegrino M., Sindona G., Benincasa C., Cavallo C.:<br />

Characterization of organic virgin olive oils from ogliarola salentina cultivar<br />

25. Pertot I., De Luca F., Vecchione A., Zulini L.: Efficacy evaluation of biological control<br />

agents against Plasmopara viticola<br />

26. Pulga A., Valmori I.: Il controllo delle poerazioni <strong>di</strong> campo come base della rintracciabilità a<br />

garanzia del consumatore e dell'ambiente<br />

27. Ricci M., Colli M., Barcarotti R., Ragni A.: Eco-toxicity of the entomopathogenic bacteriumnematode<br />

symbiotic complex toward non-target organisms<br />

28. Ragni A., Valentini F.: Photorhabdus e Xenorhabdus: a new source of useful compounds for<br />

biological control<br />

29. Ricci M., Flek G., Colli M., Barcarotti R., Quattrocchi L., Coranelli S., Concezzi L., Fifi<br />

A.P., De Nicola R., Scribano M., De Berar<strong>di</strong>nis M., Citarrei F., Ragni A.: Bioassays for<br />

screening and quality control of products with insecticidal, fungicidal and nematocidal activity,<br />

based on plant extracts, microorganisms and chemical molecules<br />

30. Scribano M., Ragni A.: Isolation of new biological control agents from Umbria region<br />

terrotory<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

44


31. Pietri A., Bertuzzi T., Barbieri G., Rossi F.: Protein content and mycotoxins contamination in<br />

organic and conventional wheat<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

45


32. Tedeschi P., Maietti A., Mazzotta D., Vecchiati G., Romano P., Brandolini V.:<br />

Determinazione <strong>di</strong> residui metallici nelle pere e influenza sull'impatto ambientale<br />

33. Varvaro L., Antonelli M., Balestra G.M., Fabi A., Scermino D., Vuono G.: Investigations<br />

on the bactericidal activity of some natural products<br />

34. Crave<strong>di</strong> P., Molinari F. :Ricerca su insettici<strong>di</strong> utilizzabili secondo il metodo <strong>di</strong> produzione<br />

biologico <strong>di</strong> prodotti agricoli<br />

35. Salvo F., Saitta M., Di Bella G., La Pera L., Dugo G.mo: Fungicides and heavy metals in<br />

wine samples produced from experimental grapes subjected to <strong>di</strong>fferent pesticides treatments<br />

36. Capasso R., De Martino A., Cristinzio G., Di Maro A., Parente A.: New α-elicitin isoforms<br />

from Phytophthora hybernalis as protein elicitors for a potential employment in the biological<br />

pest mangement<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

46


1<br />

PROVE DI LOTTA ALL’OIDIO DELLO ZUCCHINO CON PRODOTTI<br />

ALTERNATIVI IN PIENO CAMPO<br />

G.E. Agosteo, M. Ambrosio<br />

Dipartimento <strong>di</strong> Agrochimica ed Agrobiologia - Università Me<strong>di</strong>terranea <strong>di</strong> Reggio Calabria<br />

Premessa<br />

La coltura dello zucchino in Calabria è ampiamente <strong>di</strong>ffusa sia pieno campo che in ambiente protetto. L’intensità delle<br />

infezioni <strong>di</strong> oi<strong>di</strong>o (Sphaerotheca fusca Blumer, Erysiphe cichoracearum D.C.) su questa coltura è particolarmente<br />

elevata. A <strong>di</strong>fferenza del melone che <strong>di</strong>spone <strong>di</strong> un’ampia gamma <strong>di</strong> varietà resistenti o tolleranti alla malattia, per lo<br />

zucchino è necessario ricorrere a ripetuti interventi <strong>di</strong> lotta chimica, pena il precoce deca<strong>di</strong>mento vegetativo delle<br />

piante. La gestione della lotta all’oi<strong>di</strong>o, per il rispetto degli intervalli <strong>di</strong> sicurezza dei fungici<strong>di</strong>, è complicata dalla<br />

scalarità della raccolta. Lo zolfo, unico fungicida antioi<strong>di</strong>co autorizzato in agricoltura biologica, può dare problemi <strong>di</strong><br />

selettività su alcune varietà <strong>di</strong> cucurbitacee, soprattutto in presenza <strong>di</strong> temperature elevate, quali quelle del periodo<br />

primaverile-estivo nel meri<strong>di</strong>one d’Italia.<br />

Con la presente prova si è inteso saggiare l’efficacia antioi<strong>di</strong>ca su zucchino in pieno campo, in un ambiente <strong>di</strong><br />

produzione meri<strong>di</strong>onale caratterizzato da forte pressione <strong>di</strong> malattia, <strong>di</strong> alcuni prodotti <strong>di</strong> origine minerale, quali<br />

bicarbonato <strong>di</strong> so<strong>di</strong>o e fosfato monopotassico, il cui impiego è stato sperimentato con successo in altri ambienti <strong>di</strong><br />

coltivazione (Minuto et al., 1998).<br />

Materiali e meto<strong>di</strong><br />

La prova è stata realizzata nell’anno 2001, nella Piana <strong>di</strong> Lamezia Terme (CZ), su zucchino, cv. Clarita, allevato in<br />

pieno campo, con un ciclo colturale <strong>di</strong> circa 70 giorni. Il trapianto è stato realizzato il 25 maggio, le piante hanno<br />

occupato il terreno in un periodo stagionale (giugno – luglio) caratterizzato da temperature particolarmente favorevoli al<br />

patogeno. E’ stato utilizzato uno schema sperimentale a blocchi randomizzati con 7 tesi (Tab.1) e 4 ripetizioni.<br />

Tab.1 - Tesi a confronto, dosi, intervalli tra le applicazioni<br />

Tesi Principio attivo<br />

Nome commerciale e/o p.a. (%) e Dosi (ml o g/hl) Intervallo tra<br />

società produttrice formulazione p.c. p.a. le applicazioni<br />

1 Zolfo bagnabile Zolfo bagnabile - Isagro 90 Pb 500 450 7 giorni<br />

2 Bicarbonato <strong>di</strong> so<strong>di</strong>o Solvay 100 Pb 750 750 7 giorni<br />

3 Bicarbonato <strong>di</strong> so<strong>di</strong>o Solvay 100 Pb 1000 1000 7 giorni<br />

4 KH2PO4 (0-52-34) Haifa Chemicals Ltd 100 Cris.sol. 1000 1000 7 giorni<br />

5 Trifloxystrobin Flint - Bayer 50 WG 25 12,5 14 giorni<br />

6<br />

Zolfo bagnabile,<br />

penconazole<br />

Zolfo bagnabile - Isagro<br />

Topas 10 EC - Syngenta<br />

90 Pb<br />

10,52 Le<br />

500<br />

35<br />

450<br />

3,5<br />

7 giorni<br />

14 giorni<br />

7 Testimone \ \ \ \ \<br />

Ciascuna parcella era costituita da 12 piante contigue sulla fila. I trattamenti hanno avuto inizio l’11 giugno, prima della<br />

comparsa dei sintomi, e sono stati effettuati con le cadenze riportate nella tab.1. Nella tesi 6 (trattamento aziendale),<br />

sono stati realizzati due interventi con zolfo seguiti, alla comparsa dei sintomi, dal penconazole. La lettura dei sintomi è<br />

stata realizzata a 42 e 60 giorni dall’inizio del ciclo, su 4 foglie per pianta (1 dei palchi basali, 2 dei palchi me<strong>di</strong> ed 1<br />

apicale), da 5 piante centrali a parcella, sulla base <strong>di</strong> una scala <strong>di</strong> malattia con 6 classi d’infezione (0=0; 1=0-1, 2=1-5,<br />

3=5-20, 4=20-40, 5= >40 % <strong>di</strong> area fogliare infetta) (EPPO, 1997).<br />

Sono stati determinati gli in<strong>di</strong>ci <strong>di</strong> <strong>di</strong>ffusione (percentuale <strong>di</strong> foglie infette), gravità G = Σ (f . v) n -1 ed intensità (in<strong>di</strong>ce<br />

<strong>di</strong> McKinney) (I = [Σf . v (N . X) -1 ] . 100), dove f = frequenza dei casi per ciascuna classe d’infezione, v= valore <strong>di</strong> classe<br />

corrispondente, n = numero <strong>di</strong> casi infetti, N = numero totale delle osservazioni, X = valore massimo della classe nella<br />

scala d’infezione. I dati sono stati sottoposti ad analisi della varianza, le me<strong>di</strong>e sono state separate con il test <strong>di</strong> Duncan<br />

per P=0,05 e P=0,01. I valori percentuali sono stati trasformati nei corrispondenti valori angolari.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

47


Risultati<br />

I risultati conseguiti sono riportati nella tab.2.<br />

Tab.2 – In<strong>di</strong>ci <strong>di</strong> malattia a 42 e 60 giorni dall’inizio del ciclo colturale<br />

Tesi<br />

Rilievo a 42 gg<br />

Diffusione Gravità Intensità<br />

Rilievo a 60 gg<br />

Diffusione Gravità Intensità<br />

1. Zolfo bagnabile 86,2 b AB 3,52ab A 60,7 b B 98,7 a AB 4,61ab AB 91,5 b AB<br />

2. Bicarb. <strong>di</strong> so<strong>di</strong>o 750 g/hl 83,7 b BC 3,45 ab A 57,2 bc BC 98,7 a AB 4,53 bc BC 89,5 bc B<br />

3. Bicarb. <strong>di</strong> so<strong>di</strong>o 1000 g/hl 78,7 bc BC 3,52 ab A 57,6 bc BC 96,2 ab AB 4,47 bcde BC 86,25 c B<br />

4. KH2PO4 1000 g/hl 83,7 b BC 3,20 b A 52,7 cd BC 100 a A 4,51 bcd BC 89,75 bc B<br />

5. Trifloxystrobin 26,2 d D 1,35 c B 7,5 eD 92,5 bc BC 4,32 de C 80 d C<br />

6 .Zolfo, Penconazole 75,0 c C 3,40 ab A 50,7 d C 97,5 ab AB 4,39 cde BC 86,75 c B<br />

7. Testimone 96,2 a A 3,72 a A 69,7 a A 100 a A 4,77 a A 95,5 a A<br />

Le me<strong>di</strong>e sono state separate secondo il test <strong>di</strong> Duncan. Valori seguiti da stesse lettere non <strong>di</strong>fferiscono<br />

significativamente fra loro per P= 0,05 (lettere minuscole) e P= 0,01 (lettere maiuscole)<br />

La pressione <strong>di</strong> malattia è stata molto elevata (96% e 100% <strong>di</strong> foglie infette nel testimone, rispettivamente, nei due<br />

rilievi). Alla data del 1° rilievo il trifloxystrobin, strobilurina <strong>di</strong> sintesi, ha fatto rilevare in<strong>di</strong>ci <strong>di</strong> malattia molto<br />

contenuti, con infezioni limitate alle sole foglie basali. Tutte le altre tesi si sono <strong>di</strong>fferenziate statisticamente dal<br />

testimone ma con in<strong>di</strong>ci <strong>di</strong> malattia elevati. Il fosfato monopotassico ha fatto rilevare una migliore attività antioi<strong>di</strong>ca<br />

rispetto allo zolfo ed un in<strong>di</strong>ce complessivo <strong>di</strong> malattia (intensità) non <strong>di</strong>fferente statisticamente dalla tesi <strong>di</strong> riferimento<br />

aziendale (zolfo, penconazole). Il bicarbonato <strong>di</strong> so<strong>di</strong>o (sia allo 0,75 che all’1%) ha mostrato un’attività analoga a<br />

quella dello zolfo.<br />

In prossimità della fine del ciclo colturale (2° rilievo) le <strong>di</strong>fferenze fra le tesi si sono notevolmente ridotte ed il<br />

contenimento della malattia è stato insod<strong>di</strong>sfacente. L’intensità <strong>di</strong> malattia è stata statisticamente <strong>di</strong>fferente dal<br />

testimone in tutte le tesi, grazie soprattutto ad un minore peso della gravità. Il trifloxystrobin ha mostrato i valori <strong>di</strong><br />

intensità più contenuti e, unico fra le tesi saggiate, una <strong>di</strong>ffusione statisticamente <strong>di</strong>fferente dal testimone. Il bicarbonato<br />

<strong>di</strong> so<strong>di</strong>o all’1% ha fatto rilevare un’intensità minore rispetto allo zolfo, in linea con la tesi aziendale (zolfo,<br />

penconazole). Alle dosi utilizzate non sono stati osservati effetti fitotossici sulle piante.<br />

Conclusioni<br />

Un sod<strong>di</strong>sfacente contenimento delle infezioni <strong>di</strong> oi<strong>di</strong>o su zucchino, negli ambienti <strong>di</strong> coltivazione meri<strong>di</strong>onali<br />

caratterizzati da forte pressione <strong>di</strong> malattia, richiede l’impostazione <strong>di</strong> programmi <strong>di</strong> lotta che facciano ricorso a<br />

fungici<strong>di</strong> con azione curativa. Fosfato monopotassico e bicarbonato <strong>di</strong> so<strong>di</strong>o hanno evidenziato un’attività significativa,<br />

migliore od analoga a quella dello zolfo, <strong>di</strong> cui costituiscono pertanto una valida alternativa in applicazioni <strong>di</strong> tipo<br />

preventivo.<br />

Lavori citati<br />

EPPO, 1997. Powdery mildew of cucurbits and other vegetables, PP 1/57(3). EPPO Standards. Guidelines for the<br />

efficacy evaluation of plant protection products. Vol. 2, EPPO Parigi, 81-85.<br />

MINUTO A., MINUTO G., GULLINO M.L., GARIBALDI A., 1998. Prove <strong>di</strong> lotta al mal bianco dello zucchino. In:<br />

Atti Giornate Fitopatologiche, 655-660.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

48


2<br />

LUPINUS ALBUS, AN ANCIENT EUROPEAN LEGUME PARTICULARLY SUITABLE FOR ORGANIC<br />

FARMING, MAY BECOME AN USEFUL SOURCE OF FUNCTIONAL INGREDIENTS<br />

Anna Arnol<strong>di</strong>, Alessandra D’Agostina, Giovanna Boschin<br />

DISMA, Section of Chemistry – University of Milan (anna.arnol<strong>di</strong>@unimi.it)<br />

Lupin is a protein rich grain legume typical of the Me<strong>di</strong>terranean region that produces seeds with a protein content, both<br />

qualitatively and quantitatively similar to that of soybean. A very interesting advantage of lupin in respect to soybean is<br />

that there are no commercially available genetically mo<strong>di</strong>fied varieties, which makes it an ideal crop for organic<br />

farming. In ad<strong>di</strong>tion it is particularly valuable in Me<strong>di</strong>terranean areas, owing to its drought resistant properties, and,<br />

being a legume, it may be used in rotation with other cultures to reduce the use of fertilisers. For these reasons the<br />

European Commission has included it in the list of plants that merit specific research efforts (1).<br />

The protein content of lupin, varying from species to species, is around 35 to 40% in Lupinus albus. About 10% of the<br />

total protein content consists of albumins, while the rest is represented by globulins, showing a 1:1 legumin<br />

(11S)/vicilin (7S) ratio. Ultracentrifugation of the protein solutions leads to 4 fractions with se<strong>di</strong>mentation coefficients<br />

of 15S, 11S, 7S and 2S. The major fractions are the 11S and the 7S fractions, which account for about 33 to 37% of<br />

total proteins (2). In ad<strong>di</strong>tion, lupin contains a specific protein fraction, conglutin γ, which accounts for about 5% of<br />

total proteins and has the exceptional characteristic of being a sulphur-rich protein, thus containing amino acids that are<br />

scarce in other grain legumes.<br />

In respect to soybean, lupin kernels contain lower amounts of antinutrients, potentially of consumer concern, when<br />

using protein ingre<strong>di</strong>ents in food preparations. Trypsin inhibitor concentration is, in fact, 0.18 mg/g in lupin vs. 17.90<br />

mg/g in soybean, phytate concentration is 0.44 mg/g vs. 1.59 mg/g, saponin concentration is 1.4 mg/g vs. 1.9 mg/g, and<br />

the concentration of oligosaccharides of the raffinose family is 4.6 mg/g vs. 5.7 mg/g (3). Lupin alkaloids, which, also<br />

for their bitter taste, represented a strong limitation for the human consumption of some old lupin varieties, have now<br />

been reduced to very low levels in the “sweet lupin” varieties (4). Sweet lupin flour has been suggested for use in bread,<br />

cookies and milk substitutes. Manufacturers advertise that these products have an increased <strong>di</strong>etary fibre content and<br />

high protein value. Ad<strong>di</strong>tionally lupin seeds do not contain phyto-hormones, in particular isoflavones that, accor<strong>di</strong>ng to<br />

recent literature data, have serious toxicological potentials.<br />

In the last decade, the increasing awareness of the health consequences of an incorrect <strong>di</strong>et and some scandals in the<br />

meat market (BSE, epizootic aphtha, contamination with polychloro-<strong>di</strong>benzo<strong>di</strong>oxines and/or furans residues) have<br />

encouraged the consumers to go back to legumes as a source of valuable proteins. In this situation, lupin seeds have all<br />

the characteristics to become one of the main source of vegetable food ingre<strong>di</strong>ents in the Me<strong>di</strong>terranean area.<br />

1. European Economic and Social Committee, Section for Agriculture, Rural Development and the Environment,<br />

‘New impetus for a plan for plant protein crops in the Community’, Brussels, 4 December 2001.<br />

2. Guegen J, Cerletti P. In New and Developing Sources of Food Proteins. Hudson, BJF ed., Chapman and Hall,<br />

London 1994, 145-193.<br />

3. Champ M. Procee<strong>di</strong>ngs 4th Europ. Conference on Grain Legumes, 2001, 109-113.<br />

4. Muzquiz M, Pedrosa MM, Cuadrado C, Ayet G, Burbano C, Brenes A In Recent Advances of Research in<br />

Antinutritional Factors in Legume Seeds and Rape Seeds. Jasman AJM et al eds, EAAP Publication N. 93,<br />

Wageningen Press, 1998, 387-390.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

49


3<br />

BENZO(a)PYRENE IN ORGANIC VIRGIN OLIVE OILS<br />

a Elena Barrese, b Cinzia Benincasa, a Nicola Lombardo, b Fabio Mazzotti, a Innocenzo Muzzalupo, a Massimiliano<br />

Pellegrino, a Enzo Perri, b Giovanni Sindona<br />

a) Istituto Sperimentale per l'Olivicoltura, 87030 Rende (CS)-Italy<br />

b) Dipartimento <strong>di</strong> Chimica, Università della Calabria, via P. Bucci, cubo 15/c I -87030 Arcavacata <strong>di</strong> Rende (CS)-Italy<br />

Introduction<br />

Polycyclic aromatic hydrocarbons (PAHs) are environmentally hazardous organic compounds because of their known<br />

or suspected carcinogenicity. PAHs are mostly formed during an incomplete combustion of organic material and they<br />

are known as highly stable contaminants present in many foods. This contamination can be a result of sorption from the<br />

environment or from food preparation methods. Air pollution is the main source of PAHs in the e<strong>di</strong>ble parts of plants.<br />

Hence, the determination of PAHs in foods such as olives and olive oil is important for human health. Benzo(a)pyrene<br />

(BaP) and Benzo(e)pyrene (BeP) are the best known PAHs and they have been often used as in<strong>di</strong>cators of the presence<br />

of PAHs in foods. Several authors have reported the presence of Benzopyrenes (BP) in e<strong>di</strong>ble oils and fats. However,<br />

there are few reports on the BP content in olive oils (Mariani et al., 1984; Menichini et al., 1991; Fiume et al.2002)<br />

while there has been no reports on the BP content in organic virgin olive oils. In general, the detected levels of BP in the<br />

olive oils analyzed were in the range of a few µg/kg of olive oil (Pupin et al., 1996; Vazquez Troche et al., 2000).<br />

However, olive oil refining involving deodorization, bleaching and charchoal treatment reduces the content of PAHs.<br />

Therefore, paradoxically, higher levels of BP may be found in virgin olive oils, irrespective of farming system adopted,<br />

since they are, by definition, unrefined and untreated.<br />

Currently no legislation exists regar<strong>di</strong>ng BP levels in vegetable oils in European Union. However, the <strong>International</strong><br />

Olive Council (IOC), the German food industries and some European nations (Italy, Spain and Portugal) recommend<br />

for olive-pomace oil and refined olive-pomace oil a BaP maximum level of 2 µg/kg. Therefore, there is a need to verify<br />

the level of BP in European olive oils before a regulation occur. The goal of this preliminary work was to assess the<br />

presence and determine the level of BP in organic virgin olive oils from the most important olive growing region of<br />

Italy: Apulia.<br />

Materials and methods<br />

Plant material. In 2000/2001 harvest, samples of organically cultivated olive drupes of Coratina cv from a farm at<br />

Andria (Bari, Italy) were collected 10 days before the tra<strong>di</strong>tional start of harvest, in the middle of the harvest period and<br />

10 days after the end of harvest time. The olives were handpicked each time from 5 olive tree of the same cultivar.<br />

Work-up of plant material. Olive drupes (10 Kg) were crushed with a hammer mill and the oil was extracted by<br />

centrifugation after 20 minutes of malaxation at RT.<br />

Analytical procedures.Extraction and clean-up procedure were conducted by slightly mo<strong>di</strong>fying Vazquez Troche et al.<br />

(2000) protocol. The final extract was analyzed by a Hewlett Packard HP 5973 Mass Spectrometer interfaced with a HP<br />

6890A GC (Agilent Technologies, Waldronn, GmbH) and BaP detected as molecular ion (m/z 252) by Selected Ion<br />

Monitoring (SIM) mode. Quantification was obtained by the external standard method.<br />

Results and <strong>di</strong>scussion<br />

Detection limit for BP in the acetonitrile eluate was 0.3 µg/kg of olive oil. The standard calibration curves obtained with<br />

a linear coefficient of 0,999 generated from triplicate 1 µl injections at <strong>di</strong>fferent concentration show a linear range from<br />

0.3 µg/kg to 5.4 µg/kg with good-to-excellent R 2 values. For reproducibility test three concentrations were analyzed and<br />

the average coefficient of variation (CV%) was 5%. The recovery obtained for spiked samples with 4 µg/Kg of BaP was<br />

66%. As expected, also the organic olive oils are affected with a PAHs. In fact, the levels of BaP and BeP in organic<br />

virgin olive oils from Coratina cv. at Andria (Apulia) ranged from 0.39 and 0.85 µg/kg, and 0.38 and 0.60 µg/kg ,<br />

respectively, while the average content was 0.56 µg/Kg and 0.52 µg/Kg, respectively (table 1). Although the BP values<br />

were low, the determination of the other “heavy” PAHs is still required to assess the real intakes of PAHs from the total<br />

<strong>di</strong>et of apulian olive oil consumer. Therefore, the determination of the most important “heavy” PAHs in organic virgin<br />

olive oil by GC-MS is in progress.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

50


Table 1. Benzo(a)pyrene and benzo(e)pyrene content in organic virgin olive oils from Coratina cv. at Andria<br />

(Apulia).<br />

Cultivar Origin Harvest time BaP (µg/Kg of olive oil) BeP (µg/Kg of olive oil)<br />

Coratina Andria (Apulia) 11/07/00 0.85 0,38<br />

Coratina Andria (Apulia) 12/11/00 0.45 0,60<br />

Coratina Andria (Apulia) 01/02/01 0.39 0,58<br />

Mean + Std. dev. 0.56+ 0.20 0.52+ 0.10<br />

Acknowledgements<br />

We thank Dr. Cosimo Cavallo (Regione Puglia), Dr. Nino Paparella (C.I.Bi., Bari), Dr. Nicola Panaro (C.I.Bi.,<br />

Bari) and Drs. Edoardo and Giancarlo Ceci Ginistrelli for olive sampling, data collection on farming systems and olive<br />

grove management. We thank also Prof. Angelo Putignano and Prof. Francesco Prudentino (I.T.A.S. of Ostuni-BR) for<br />

olive oil extraction.<br />

References<br />

F. Fiume, F. Ferrieri, G. Froio, S. Spinello, O Lattarulo, G. Fanuzzi, 2002, Determinazione <strong>di</strong> idrocarburi policiclici<br />

aromatici in oli alimentari, Riv. Ital. Sostanze grasse, LXXIV, 151-155.<br />

C. Mariani, E. Fedeli,1984, Idrocarburi policiclici aromatici negli oli vegetali, Riv. Ital. Sostanze Grasse, 61, 305 -315.<br />

E. Menichini, A. Bocca, F. Merli F., Ianni, F. Monfre<strong>di</strong>ni, 1991, Polycyclic aromatic hydocarbons in olive oils on the<br />

italian market, Food Ad<strong>di</strong>t. Contam., 8(3), 363-369.<br />

A. M. Pupin and Maria Cecilia Figueiredo Toledo, Benzo(a)pyrene in olive oils on the brazilian market, Food<br />

Chemistry, 1996, 55(2), 185-188.<br />

S. Vazquez Troche, M.S. Garcìa Falcòn, S. Gonzales Amigo, M.A. Lage Yusty, J. Simal Lozano, Enrichment of<br />

benzo(a)pyrene in vegetable oils and determination by HPLC-FL, Talanta 2000, 51, 1069-1076.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

51


4<br />

EFFETTO DELLE CERE EPICUTICULARI DI FRUTTA E VEGETALI SULLA FOTODEGRADAZIONE<br />

DEL ROTENONE<br />

M. Cabizza, M. Melis, P.Cabras<br />

Dip. <strong>di</strong> Tossicologia Università <strong>di</strong> Cagliari<br />

Via Ospedale, 72 Cagliari<br />

E' stato stu<strong>di</strong>ato l'effetto delle cere epicuticulari <strong>di</strong> frutta e ortaggi sulla fotodegradazione del rotenone alla luce solare<br />

La fotodegradazione è stata condotta utilizzando capsule <strong>di</strong> petri all'interno delle quali veniva posto il rotenone con (o<br />

senza) la cera <strong>di</strong> susine, nettarine, mele, pere, melanzane e pomodoro. Le capsule sono state esposte alla luce solare e i<br />

campioni prelevati a intervalli <strong>di</strong> tempo prestabiliti Dopo l'esposizione al sole i campioni sono stati ripresi con<br />

acetonitrile:acqua 50:50 (v/v), iniettati per l'analisi HPLC e sono stati determinati il rotenone e i suoi principali<br />

metaboliti: 6',7'-epoxy-rotenone α e β, rotenolone 6αβ,12αα, rotenolone 6αβ,12αβ, deidrorotenone.<br />

Il tempo <strong>di</strong> semivita del rotenone irra<strong>di</strong>ato alla luce solare senza cere era 1,0 ore. In presenza <strong>di</strong> cere <strong>di</strong> pomodoro non<br />

c'erano sensibili variazioni mentre con cera <strong>di</strong> nettarine e susine il tempo <strong>di</strong> semivita risultava maggiore. Le cere <strong>di</strong><br />

mele, pere e melanzane aumentavano la cinetica <strong>di</strong> fotodegradazione del p.a.<br />

Il rotenone irra<strong>di</strong>ato al sole in assenza <strong>di</strong> cere formava 5 metaboliti più importanti (6',7'epoxy-rotenone α e β,<br />

rotenolone 6αβ,12αα, rotenolone 6αβ,12αβ, deidrorotenone e un metabolita con tr 5,37) mentre irra<strong>di</strong>ando il rotenone<br />

in presenza <strong>di</strong> cere si avevano <strong>di</strong>fferenze nella formazione <strong>di</strong> tali metaboliti sia dal punto <strong>di</strong> vista qualitativo che<br />

quantitativo. Solo irra<strong>di</strong>ando il rotenone in presenza <strong>di</strong> cere <strong>di</strong> pomodoro tali metaboliti si formavano<br />

contemporaneamente mentre con tutte le altre cere impiegate esistono <strong>di</strong>fferenze nella loro formazione a seconda del<br />

tipo <strong>di</strong> cera utilizzato. La cera <strong>di</strong> pere inibisce la formazione <strong>di</strong> tutti i metaboliti ad eccezione del deidrorotenone e del<br />

rotenolone 6αβ,12αβ.<br />

Il metabolita rotenolone 6αβ,12αβ si forma sempre nel rotenone irra<strong>di</strong>ato sia in assenza che in presenza <strong>di</strong> cere ed è il<br />

metabolita quantitativamente più abbondante.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

52


5<br />

INSETTICIDI D’ORIGINE VEGETALE E ACARI<br />

Castagnoli M., Liguori M., Nannelli R., Simoni S.<br />

Sezione <strong>di</strong> Acarologia, Istituto Sperimentale per la Zoologia Agraria. Firenze<br />

Different formulations of extracts of neem, derris, equisetum, ryania, wormwood, garlic, chrysanthemum, and<br />

bitter wood were tested on the phytophagous mite Tetranychus urticae, the phytoseiid Neoseiulus californicus, the<br />

stored food mite Lepidoglyphus destructor to evaluate their <strong>di</strong>fferent toxicity on eggs and females and the effects on the<br />

female fecun<strong>di</strong>ty.<br />

On the whole, these botanical pesticides were more effective on eggs than on motile stages. The highest<br />

toxicity was registered on N. californicus.<br />

The extracts based on low concentrations of aza<strong>di</strong>rachtina and neem oil were the most toxic for the females and<br />

the eggs of the tetranychid and <strong>di</strong>d not significantly affect the survival and fecun<strong>di</strong>ty of the phytoseiid. Derris and<br />

wormwood extracts were the most effective on the stored food mite.<br />

KEY WORDS: Tetranychus urticae, Neoseiulus californicus, Lepidoglyphus destructor, neem, derris, ryania, wormwood,<br />

chrysanthemum, bitter wood.<br />

INTRODUZIONE<br />

Negli ultimi anni una maggiore sensibilità verso le conseguenze negative per l’ambiente determinate dall’uso<br />

<strong>di</strong> molti pestici<strong>di</strong> <strong>di</strong> sintesi ha determinato anche nel nostro Paese una crescita <strong>di</strong> interesse nei confronti dei prodotti<br />

d’origine vegetale ritenuti più facilmente degradabili. L'uso <strong>di</strong> questi prodotti commercializzati sia come insettici<strong>di</strong> o<br />

più genericamente come biostimolanti e coa<strong>di</strong>uvanti ad azione limitatrice nei confronti <strong>di</strong> artropo<strong>di</strong> nocivi si è<br />

particolarmente affermato in agricoltura biologica. Nell'ottica <strong>di</strong> una valutazione complessiva dei loro effetti, si rende<br />

quin<strong>di</strong> sempre più necessaria la verifica anche sulle specie non target.<br />

L’efficacia <strong>di</strong> sostanze naturali come rotenone, piretro e quassia è nota da tempo, più recente è l’interesse per i<br />

derivati <strong>di</strong> Aza<strong>di</strong>racta in<strong>di</strong>ca (A. Juss) ritenuti in grado <strong>di</strong> esplicare azione tossica, repellente, fagodeterrente e inibitrice<br />

della crescita su moltissime specie <strong>di</strong> artropo<strong>di</strong> (SCHMUTTERER, 1990). Per quanto riguarda gli acari le conoscenze sono<br />

molto limitate e, se poche sono le ricerche de<strong>di</strong>cate all'attività biologica <strong>di</strong> estratti <strong>di</strong> neem (MANSOUR et al.,1987,1997;<br />

SUNDARAN & SLOANE, 1995; SPOLLEN & ISMAN, 1996; MOMEN et al., 1997; PAPAIOANNOU-SOULIOTIS et al., 1997;<br />

TSOLAKIS et al., 1997), ancora meno sono quelle che prendono in esame altri principi <strong>di</strong> origine naturale (PERRUCCI,<br />

1995; GULATI & MATHUR, 1995; CASTAGNOLI et al., 2002).<br />

Nell' ambito <strong>di</strong> un più vasto programma <strong>di</strong> indagini, l’efficacia <strong>di</strong> alcuni principi attivi <strong>di</strong> origine vegetale è<br />

stata saggiata su tre delle più comuni specie <strong>di</strong> acari: Tetranychus urticae Koch, Neoseiulus californicus (McGregor) e<br />

Lepidoglyphus destructor (Schrank) (CASTAGNOLI et al., 2000; NANNELLI & SIMONI, 2001). Il primo è un fitofago<br />

estremamente polifago e in grado <strong>di</strong> causare seri danni su un’ampia gamma <strong>di</strong> colture, il secondo è un fitoseide<br />

predatore frequentemente associato al tetranichide e in grado <strong>di</strong> contrastarne le pullulazioni, mentre il terzo è un acaro<br />

astigmata che colonizza le più <strong>di</strong>sparate derrate alimentari immagazzinate che vanno dai cereali ai salumi e ai formaggi.<br />

MATERIALI E METODI<br />

I prodotti saggiati e le relative <strong>di</strong>luizioni, che corrispondono alle dosi massime consigliate dai produttori, sono<br />

elencati nelle tabelle 1-3. In laboratorio sono stati valutati gli effetti sulla schiusura delle uova e sulla sopravvivenza<br />

delle femmine su un totale <strong>di</strong> 80 esemplari o uova per prodotto. Per il fitofago e il predatore è stata presa in<br />

considerazione anche l’incidenza sulla fecon<strong>di</strong>tà.<br />

I meto<strong>di</strong> usati erano <strong>di</strong>versificati a seconda dello sta<strong>di</strong>o e delle caratteristiche della specie: “<strong>di</strong>p method” (HELLE &<br />

OVERMEER, 1985) e “microimmersion bioassay” (mo<strong>di</strong>ficato da DENNEHY et al., 1993) sono stati usati rispettivamente<br />

per tutte le uova e per le femmine del fitofago e del predatore, mentre per le femmine dell’astigmata è stato usato il<br />

metodo "impregnated filter paper bioassay" secondo THIND & MUGGLETON (1998).<br />

I risultati sono stati espressi come percentuale <strong>di</strong> tossicità globale (E), combinando mortalità e fecon<strong>di</strong>tà delle<br />

femmine del trattato e del non trattato (OVERMEER & VAN ZOON, 1982) o come mortalità <strong>di</strong> ABBOTT (1925), tenendo<br />

conto dell’eventuale mortalità naturale registrata nel testimone.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

53


RISULTATI<br />

Derivati del neem (Aza<strong>di</strong>rachta in<strong>di</strong>ca)<br />

In generale i prodotti saggiati sono risultati più efficaci sulle uova che sulle forme mobili delle tre specie. Per<br />

quanto concerne il fitofago, la maggiore efficacia sulle uova si è avuta con il prodotto in cui l'aza<strong>di</strong>ractina era<br />

ad<strong>di</strong>zionata all'olio <strong>di</strong> neem e con quello in cui questo principio attivo era miscelato ad oli vegetali e lecitina <strong>di</strong> soia<br />

(tab.1, prodotti 1 e 2). Questi stessi formulati non determinano un incremento della fecon<strong>di</strong>tà <strong>di</strong> T. urticae come invece<br />

è stato osservato per gli altri prodotti. Sul predatore N. californicus l'aza<strong>di</strong>ractina ad<strong>di</strong>zionata agli oli vegetali e lecitina<br />

<strong>di</strong> soia (tab.1, prodotto 2) oltre ad incidere pesantemente sulla schiusura delle uova determina la più alta mortalità delle<br />

femmine. Su L. destructor non si osserva una rilevante attività tossica <strong>di</strong> questo gruppo <strong>di</strong> prodotti; l'unico che<br />

determina un'apprezzabile riduzione della schiusura delle uova è quello con la più bassa percentuale <strong>di</strong> aza<strong>di</strong>ractina<br />

(tab.1, prodotto 5).<br />

Piretrine<br />

Mostrano azione tossica sulle uova del fitofago e soprattutto su quelle dell'astigmata, ma non sulle femmine <strong>di</strong><br />

queste due specie. Per quanto concerne il fitoseide l'azione varia dall'effetto positivo della formulazione con piretro al<br />

20% (tab.2, prodotto 1) a quello negativo del formulato con piretro al 25% (tab.2, prodotto 3). Ciò è imputabile quasi<br />

certamente alla <strong>di</strong>versa formulazione: in quest'ultimo le piretrine naturali sono miscelate ad oli vegetali, mentre il primo<br />

è una soluzione idroalcolica.<br />

Tabella 1. Estratti da neem (A = Aza<strong>di</strong>ractina A): composizione e dose dei prodotti usati e loro effetto (E = tossicità<br />

globale, Abb. = mortalità secondo Abbott) su femmine e uova <strong>di</strong> due specie <strong>di</strong> acari <strong>di</strong> interesse agrario ( T. urticae e N.<br />

californicus) e <strong>di</strong> una specie <strong>di</strong> acaro delle derrate (L. destructor).<br />

Prodotti T. urticae N. californicus L. destructor<br />

composizione dose<br />

1 0,4% A + 0,09%<br />

olio <strong>di</strong> neem<br />

2 n. 1 + oli veget.<br />

e lecit. <strong>di</strong> soia<br />

3 1% A + olio <strong>di</strong><br />

sesamo<br />

4 n. 3 + oli veg. e<br />

lecit. soia<br />

femmine<br />

E %<br />

uova<br />

Abb. %<br />

54<br />

femmine<br />

E %<br />

uova<br />

Abb. %<br />

femmine<br />

Abb. %<br />

uova<br />

Abb. %<br />

4g/l 12,98 100 15,00 9,08 -2,86 -4,35<br />

4g+2g/l 0,00 70,68 90,12 72,73 -3,90 17,39<br />

2,5g/l -50,86 20,05 4,88 33,76 -4,76 -26,09<br />

2,5g+2g/l -86,01 20,05 66,40 -2,59 -2,66 4,35<br />

5 0,15% A 3cc/l -17,56 20,05 -4,98 63,33 6,49 30,43<br />

6 3% A (Oikos) 1,5cc/l -16,65 15,94 8,94 0,00 12,50 21,74<br />

7 10% A<br />

(Neemazal)<br />

3g/l -17,87 28,99 35,50 -1,27 ---- ----<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Tabella 2. Piretrine: composizione e dose dei prodotti usati e loro effetto (E = tossicità globale, Abb. = mortalità<br />

secondo Abbott) su femmine e uova <strong>di</strong> due specie <strong>di</strong> acari <strong>di</strong> interesse agrario (T. urticae e N. californicus) e <strong>di</strong> una<br />

specie <strong>di</strong> acaro delle derrate (L. destructor).<br />

Prodotti T. urticae N. californicus L. destructor<br />

composizione dose<br />

femmine<br />

E %<br />

uova<br />

Abb. %<br />

55<br />

femmine<br />

E %<br />

uova<br />

Abb. %<br />

femmine<br />

Abb. %<br />

uova<br />

Abb. %<br />

1 piretro 20% 4,5cc/l -65,55 48,03 -23,37 -3,89 -8,42 91,30<br />

2 n. 1 + aci<strong>di</strong> grassi<br />

30%<br />

3 piretro 25%<br />

(Biopiren Plus)<br />

4,5cc+4g/l -18,04 10,72 -- -- 4,00 86,96<br />

1,6g/l -25,54 2,53 91,98 -1,27 ---- ----<br />

Derivati da altre sostanze vegetali<br />

I derivati del derris manifestano tossicità soprattutto nei confronti delle femmine e delle uova del predatore e<br />

dell’astigmata, sul fitoseide la mortalità delle femmine supera con due prodotti il 90%. Sul fitofago il rotenone 5% (tab.<br />

3, prodotto 1) ha efficacia nei confronti delle femmine e il rotenone 5% ad<strong>di</strong>zionato <strong>di</strong> oli vegetali e lecitina <strong>di</strong> soia<br />

(tab.3, prodotto2) risulta più tossico per le uova.<br />

Variabili sono gli effetti degli altri formulati: solo l'assenzio agisce contro le uova del fitoseide e del fitofago,<br />

mentre la quassia riesce a controllare moderatamente le popolazioni dell'astigmata (tab. 3).<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Tabella 3. Estratti da vegetali vari: composizione e dose dei prodotti usati e loro effetto (E = tossicità globale, Abb. =<br />

mortalità secondo Abbott) su femmine e uova <strong>di</strong> due specie <strong>di</strong> acari <strong>di</strong> interesse agrario (T. urticae e N. californicus) e<br />

<strong>di</strong> una specie <strong>di</strong> acaro delle derrate (L. destructor).<br />

Prodotti T. urticae N. californicus L. destructor<br />

composizione dose<br />

femmine<br />

E %<br />

uova<br />

Abb. %<br />

56<br />

femmine<br />

E %<br />

uova<br />

Abb. %<br />

femmine<br />

Abb. %<br />

uova<br />

Abb. %<br />

1 rotenone 5% 4g/l 46,92 32,04 57,69 42,85 78,30 26,09<br />

2 n. 1 + oli veg. e<br />

lecit. soia<br />

3 rotenone 6%<br />

(Rotena)<br />

4 riania 70% + oli<br />

veg. e lecit. soia<br />

4g+2g/l -3,85 93,33 99,66 62,33 44,32 34,78<br />

3cc/l ---- ---- 94,95 -1,27 ---- ----<br />

4g+2g/l 6,47 40,03 -35,75 -3,89 24,85 -30,43<br />

5 assenzio 80% 8g/l 26,74 37,37 -3,84 70,13 2,04 -26,09<br />

6 n. 5 + oli veg. e<br />

lecit. soia<br />

8g2g/l 27,65 18,71 13,57 25,97 9,86 -30,43<br />

7 aglio 85% 1g/l -1,80 16,05 33,56 0,00 -7,05 -30,43<br />

8 n. 7+ oli veg. e<br />

lecit. soia<br />

1g+2g/l 29,08 33,38 -10,13 0,00 37,82 -26,09<br />

9 quassia 50% 5cc/l -35,41 -6,66 ---- ---- 45,34 47,83<br />

10 n. 9 +<br />

aci<strong>di</strong> grassi 30%<br />

5cc+4g/l 20,00 -2,66 ---- ---- 52,76 34,78<br />

CONSIDERAZIONI CONCLUSIVE<br />

I prodotti con lo stesso principio attivo miscelati o ad<strong>di</strong>zionati con <strong>di</strong>fferenti bagnanti ed emulsionanti<br />

determinano una <strong>di</strong>versa mortalità sulle specie considerate da cui si deduce che anche gli ad<strong>di</strong>tivi possono con<strong>di</strong>zionare<br />

l’entità delle risposte.<br />

Nell’ambito dei prodotti saggiati, in generale, si può osservare che quelli che esplicano azione acaricida sono<br />

più tossici per il predatore che per il fitofago del quale aumentano spesso la fecon<strong>di</strong>tà. Per gli acari delle piante, i<br />

risultati più promettenti si hanno essenzialmente con il prodotto contenente aza<strong>di</strong>rachtina A a bassa concentrazione e<br />

olio <strong>di</strong> neem: questo formulato pur non essendo efficace sugli adulti del tetranichide, determina alta mortalità delle loro<br />

uova, e non incide invece sulla vitalità delle uova e delle femmine del fitoseide predatore, né sulla loro fecon<strong>di</strong>tà.<br />

Per l'acaro delle derrate, gli estratti <strong>di</strong> derris e quassia sono risultati i prodotti più tossici sugli sta<strong>di</strong> mobili<br />

mentre, sulle uova, gli estratti a base <strong>di</strong> piretro hanno determinato la più alta mortalità.<br />

RIASSUNTO<br />

I derivati da neem, derris, equiseto, riania, assenzio, aglio, crisantemo e quassia somministrati puri o con<br />

l’aggiunta <strong>di</strong> bagnanti od emulsionanti sono stati saggiati su Tetranychus urticae (specie fitofaga), Neoseiulus<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


californicus (fitoseide predatore) e Lepidoglyphus destructor (astigmata comunemente conosciuto come acaro delle<br />

derrate alimentari) per valutare la loro tossicità sulle uova e le femmine e gli effetti sulla fecon<strong>di</strong>tà.<br />

Su tutte le specie i prodotti saggiati sono stati più efficaci sulle uova che sulle forme mobili. La tossicità più<br />

alta sulle femmine è stata evidenziata sul predatore.<br />

Solo i prodotti a base <strong>di</strong> aza<strong>di</strong>ractina A a bassa concentrazione e olio <strong>di</strong> neem risultano efficaci sugli adulti e<br />

sulle uova del tetranichide incidendo poco sulla vitalità delle uova e delle femmine del fitoseide. Per l’acaro delle<br />

derrate gli estratti <strong>di</strong> derris e quassia sono risultati i più tossici.<br />

BIBLIOGRAFIA<br />

ABBOTT W.S., 1925 - A method of computing the effectiveness of an insecticide .- J. Econ. Entomol., 18: 265-267.<br />

CASTAGNOLI M., SIMONI S., GOGGIOLI D., 2000 - Attività biologica <strong>di</strong> sostanze vegetali nei confronti <strong>di</strong> Tetranychus<br />

urticae Koch (Acari Tetranichidae) e del suo predatore Neoseiulus californicus (McGregor)(Acari<br />

Phytoseiidae).- Re<strong>di</strong>a, 83: 141-150.<br />

CASTAGNOLI M., ANGELI G., LIGUORI M., FORTI D., SIMONI S., 2002 - Side effects of botanical insecticides on<br />

predatory mite Amblyseius andersoni (Chant).- J. Pest Science 75: 122-127<br />

DENNEHY T.J., FURNHANNM A.W., DENHOLM I., 1993 - The microimmersion bioassay: a novel method for the topical<br />

application of pesticides to spider mites.- Pesticide Sci., 93: 47-54.<br />

HELLE W., OVERMEER W.P.J., 1985 - Toxicological test methods.- In: Spider mites, their biology, natural enemies and<br />

control. Vol 1A, Elsevier, Amsterdam, New York, Oxford, Tokyo: 391-395.<br />

GULATI R., MATHUR S., 1995 - Effect of Eucalyptus and Mentha leaves and Curcuma rhizomes on Tyrophagus<br />

putrescentiae (Scrank) (Acarina Acaridae) in wheat.- Experimental & Applied Acarology, 19: 511-518.<br />

MANSOUR F.A., ASCHER K.R.S., OMARI N.,1987 - Effects of neem (Aza<strong>di</strong>rachta in<strong>di</strong>ca) seed kernel extracts from<br />

<strong>di</strong>fferent solvents on the predacious mite Phytoseiulus persimilis and the phytophagous mite Tetranychus<br />

cinnabarinus. - Phytoparasitica, 15: 125-130.<br />

MANSOUR F.A., ASCHER K.R.S., ABO-MOCH F., 1997 - Effects of Neemgard on phytophagous and predacious mites<br />

and spiders. - Phytoparasitica, 25: 333-336.<br />

MOMEN F.M., REDA A.S., AMER S.A.A., 1997 - Effect of neem Azal-F on Tetranychus urticae and three predacious<br />

mites of the family Phytoseiidae.- Acta Phytopathol. Hungarica, 32: 355-362.<br />

NANNELLI R., SIMONI S., 2001 - Valutazione della tossicità <strong>di</strong> sostanze vegetali su femmine e uova <strong>di</strong> Lepidoglyphus<br />

destructor (Schrank) (Acari Glycyphagidae).- Re<strong>di</strong>a, 84: 129-140.<br />

OVERMEER W.P.J., VAN ZOON A.Q., 1982 - A standar<strong>di</strong>zed method for testing the side effects of pesticides on the<br />

predacious mite Amblyseius potentillae (Acarina Phytoseiidae). - Entomophaga, 27: 357-364.<br />

PAPAIOANNOU-SOULIOTIS P., MARKOYANNAKI-PRINTZIOU D., ZOAKI-MALIOSSOVA D., 1997 - Side effects of Neemark<br />

(Aza<strong>di</strong>rachta in<strong>di</strong>ca A. Juss ) and two vegetable oils formulations on Tetranychus urticae Koch and its predator<br />

Phytoseiulus persimilis Athias-Henriot.- Boll Zool. agr. Bachic. (ser II), 32: 25-33.<br />

PERRUCCI S., 1995 - Acaricidal activity of some essential oils and their constituents against Tyrophagus longior a mite<br />

of stored food.- Journal of Food Protection, 58 (5): 560-563.<br />

SCHMUTTERER H.,1990 - Properties and potential of natural pesticides from the neem tree, Aza<strong>di</strong>rachta in<strong>di</strong>ca.- Annu.<br />

Rev. Entomol., 35: 271-297.<br />

SPOLLEN K.M., ISMAN M.B., 1996 - Acute and sublethal effects of a neem insecticide on the commercial biological<br />

control agents Phytoseiulus persimilis and Amblyseius cucumeris (Acari Phytoseiidae) and Aphidoletes<br />

aphi<strong>di</strong>myza (Diptera Cecidomyiidae).- J. Econ. Entomol., 89: 1379-1386.<br />

SUNDARAN K.M.S., SLOANE L., 1995 - Effects of pure and formulated aza<strong>di</strong>rachtin, a neem-based biopesticides, on the<br />

phytophagous spider mite Tetranychus urticae Koch. - J. Environ. Sci. Health, B, Pesticides Food Contam.<br />

Agric. Wastes., 30: 811-814<br />

THIND B.B., MUGGLETON J., 1998 - A new bioassay for the detection of resistance to pesticides in the stored product<br />

mite Acarus siro (Acari Acaridae).- Experimental & Applied Acarology, 22: 543-552.<br />

TSOLAKIS H., LETO G., RAGUSA S., 1997 - Effects of some plant materials on Tetranychus urticae Koch (Acariformes<br />

Tetranychidae ) and Typhlodromus exhilaratus Ragusa (Parasitiformes Phytoseiidae). - ANPP-Fourth Int.<br />

Conf. on pests in Agriculture, Montpellier 6-8 January, 1997, pp. 239-245.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

57


6<br />

CHANGES OF BIOCHEMICAL PARAMETERS IN SOIL AMENDED WITH MOIST OLIVE HUSKS<br />

Cristiano Casucci, Elga Monaci and Piero Perucci<br />

DIBIAGA, Ancona University, Via Brecce Bianche, 60131 Ancona, ITALY<br />

Key words: amendment, enzyme activity, soil fertility<br />

On the last twenty years the <strong>di</strong>sposal of organic residues coming from agricultural crop and food industry is a very<br />

important problem relating to ecological risk, in particular in the middle Italy where the production of olive husks from<br />

oil-mill is very <strong>di</strong>ffuse. Therefore, the use of olive husks like amendment can represent both a solution for problems<br />

connected to their <strong>di</strong>sposal than a contribution to give an answer to the impoverishment of soils organic matter content<br />

by actual agricultural practices. The aim of this research was to evaluate the influence, both in laboratory and in field<br />

con<strong>di</strong>tions, on some biochemical parameters correlated with soil fertility of the amendment with moist olive husks at<br />

<strong>di</strong>fferent dose.<br />

Field experiments were carried out for a short-time (three years) in two soils amended with legal dose (D, 20 ton ha -1<br />

for year, equivalent to 1.47 g of organic C/kg of soil) and double dose (2D). Laboratory experiments in the same soils<br />

were carried out for one year and an ad<strong>di</strong>tional dose of ten-fold field dose (10D) was employed.<br />

In field trials the biochemical parameters <strong>di</strong>dn’t show significant changes in comparison with no-amended soils and,<br />

when present, their generally were positive.<br />

Concerning laboratory experiment the results were:<br />

• microbial biomass-C content: no-significant increases at the beginning of experiment for D and 2D but significant<br />

and constant increases during the entire period for 10D were found;<br />

• soil oxidation capacity: an inhibiting effect due to amendment was observed at the beginning of the trial which<br />

<strong>di</strong>sappeared after the first month of incubation;<br />

• FDA-hydrolase capacity: an initial significant decrease at all doses, which <strong>di</strong>sappeared after two month from<br />

amendment;<br />

• o-DPO activity: amendment at D and 2D <strong>di</strong>dn’t cause significant changes, while a strong inhibition at 10D was<br />

observed. This tendency persisted during the early drawings;<br />

• β-glucosidase activity: the initial inhibiting effect (two months) was followed by an increase correlated with the<br />

organic amendment dose;<br />

• alkaline phosphatase activity: any influence was observed at D and 2D; 10D determined a significant decrease<br />

during the first two months, at the third month the activity value returned to the original values of controls.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

58


7<br />

NATURAL COMPOUNDS IN THE CONTROL OF POWDERY MILDEW ON CUCURBITS IN ORGANIC<br />

AGRICULTURE<br />

Fedele Casulli (1) , Agostino Santomauro (1) , Giuseppe Tauro (2) , Maria Antonia Gatto (1) , Franco Faretra (1)<br />

(1) Dipartimento Protezione delle Piante e Microbiologia Applicata, University of Bari, Italy<br />

(2) Centro <strong>di</strong> Ricerca e Sperimentazione in Agricoltura "Basile Caramia", Locorotondo (Bari), Italy<br />

In Italy, Cucurbitaceae are important vegetable crops grown especially in Central and Southern Italy (Sicily, Latium<br />

and Apulia). Melon (Cucumis melo L.), watermelon [Citrullus lanatus (Thunb) Matsum et Nakai], courgette (Cucurbita<br />

pepo L.) and cucumber (Cucumis sativus L.) are the prevalent species being cultivated on a surface of 21,400, 14,200,<br />

12,200 and 1,500 hectares, respectively (Istat, 2001). Powdery mildew, caused by Sphaerotheca fusca (Fr.) S. Blumer<br />

[syn. S. fuliginea (Schlecht. ex Fr). Poll.] is the most common and severe <strong>di</strong>sease on the crops. Many fungicides are<br />

available for an effective control of the pathogen, but in view of their negative side effects, people look to more<br />

consumer- and environment-friendly alternatives, inclu<strong>di</strong>ng natural compounds. The present paper reports the results of<br />

trials carried out under glasshouse and field con<strong>di</strong>tions in order to evaluate the effectiveness of natural compounds in<br />

the control of powdery mildew in organic agriculture.<br />

Zucchini squash (Cucurbita pepo L., cv. Striato pugliese) and cucumber plants (C. sativus, cv. Mezzo lungo <strong>di</strong><br />

Polignano) were grown in<strong>di</strong>vidually in plastic pots (10 cm in <strong>di</strong>ameter) in a glasshouse at 20-24°C and RH 70-80%,<br />

under daylight. Four-replicated plants, maintained at the two-three leaf stage by pruning were used for each thesis. The<br />

plants were artificially inoculated with S. fusca by spraying a suspension containing about 5⋅10 5 fresh coni<strong>di</strong>a per ml.<br />

The tested compounds, inclu<strong>di</strong>ng several natural substances allowed in organic agriculture (Table 1), were applied<br />

either 3 days before or 3 days after the artificial inoculation with the pathogen. Untreated check plants were sprayed<br />

only with water. Numbers and sizes of fungal colonies were assessed 11 days after inoculation on 10-cm 2 of the surface<br />

of each leaf.<br />

Natural substances were tested in field trials on melon (C. melo, cv. Barattiere) carried out during the summer. The<br />

statistical design was the complete randomised blocks with four replications and plots were made up of 8-10 plants in<br />

all trials. Spray schedules always were started before the appearance of first <strong>di</strong>sease symptoms; treatments were<br />

repeated at one-week intervals. The severity of powdery mildew symptoms was perio<strong>di</strong>cally assessed evaluating the<br />

percentage of infected leaf surface. All data were submitted to variance analysis and mean values were separated by<br />

Duncan’s Multiple Range Test.<br />

Accor<strong>di</strong>ng to the reduction of symptoms severity on treated plants as compared to the untreated check, the tested<br />

compounds were grouped in effective (higher than 70%), moderately effective (from 40 to 70%) or poorly effective<br />

(less than 40%) (Table 1).<br />

A good control of powdery mildew fungi was achieved in glasshouse as well as in field by fresh and dried milk (10%),<br />

which reduced infections over 90%. Among the other tested compounds, calcium and magnesium chloride, potassium,<br />

so<strong>di</strong>um or ammonium phosphate <strong>di</strong>basic, pinolene, so<strong>di</strong>um bicarbonate and the mixtures of mineral oil with so<strong>di</strong>um<br />

bicarbonate or so<strong>di</strong>um silicate, significantly reduced the severity of S. fusca on leaves. These compounds showed the<br />

highest effectiveness when applied 3-4 days after the artificial inoculation of S. fusca. In the field, the same compounds<br />

yielded a satisfactory control of powdery mildew on the upper leaf surface of cucurbits, but they showed poor<br />

effectiveness against infections on stems and lower leaf surface, especially under high <strong>di</strong>sease pressure. Mineral oil was<br />

effective when applied 3-4 days before artificial inoculation of S. fusca; this corroborate the fin<strong>di</strong>ng that the compound<br />

acts also as inducer of defence mechanisms in plants. Ammonium phosphate monobasic, so<strong>di</strong>um silicate, so<strong>di</strong>um<br />

hydroxide, triso<strong>di</strong>um and tripotassium phosphate proved poorly effective at non-phytotoxic concentration while calcium<br />

carbonate, calcium sulphate, calcium silicate, so<strong>di</strong>um and potassium chloride, so<strong>di</strong>um and potassium phosphate<br />

monobasic were poorly effective against S. fusca.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

59


Table 1. Effectiveness against Sphaerotheca fusca of natural compounds tested in greenhouse and in field (a) .<br />

Compounds Rates Trials<br />

(%) Glasshouse Field<br />

Pinolene 1 +++ +++<br />

Fresh milk 100 +++<br />

Dried milk 10 +++ +++<br />

Mineral oil 1 +++ +++<br />

So<strong>di</strong>um bicarbonate (NaHCO3) 0.5 +++ +++<br />

Mineral oil + so<strong>di</strong>um bicarbonate 1+0.5 +++ +++<br />

Mineral oil + so<strong>di</strong>um silicate 1+0.5 +++ +++<br />

Potassium phosphate <strong>di</strong>basic (K2HPO4) 0.5 +++ ++<br />

So<strong>di</strong>um phosphate <strong>di</strong>basic (Na2HPO4) 0.5 +++<br />

Ammonium phosphate <strong>di</strong>basic [(NH4)2HPO4)] 1 +++<br />

Calcium chloride (CaCl2) 0.5-1 +++<br />

Magnesium chloride (MgCl2) 1 +++<br />

So<strong>di</strong>um silicate (Na2O . 2SiO2) 0.5 ++<br />

So<strong>di</strong>um hydroxide (NaOH) 0.25 ++<br />

Ammonium phosphate monobasic (NH4H2PO4) 1 ++<br />

Tripotassium phosphate (K3PO4) 0.5 ++<br />

Triso<strong>di</strong>um phosphate (Na3PO4) 0.5 ++<br />

Potassium phosphate monobasic (KH2PO4) 1 +<br />

So<strong>di</strong>um phosphate monobasic (NaH2PO4) 0.5 +<br />

Potassium chloride (KCl) 1 +<br />

So<strong>di</strong>um chloride (NaCl) 0.3-0.5 +<br />

Calcium carbonate (CaCO3) 1 +<br />

Calcium sulphate (CaSO4) 1 +<br />

Calcium silicate (CaO . 2SiO2) 1.5-2 +<br />

(a) +++ effective; ++ moderately effective; + poorly effective.<br />

The results herein <strong>di</strong>scussed show that several compounds are effective in the early stages of infection or under low<br />

<strong>di</strong>sease pressure, when applied repeatedly at short time intervals. Their effectiveness against powdery mildew proved to<br />

be influenced by temperature, time of application and especially by the uniformity of <strong>di</strong>stribution on plants. In fact, field<br />

trials showed that one of their most important limits is the lack of control of powdery mildew on the lower surface of<br />

leaves. Cucurbits and other crops requiring sprays during a long harvesting time would benefit greatly from the usage<br />

of natural substances in crop protection.<br />

Acknowledgements: Work supported by the Italian Ministry of Agricultural and Forestry Policies in the frame of the<br />

research project “Technical tools for crop protection in organic agriculture” – Sub-project “Natural substances in crop<br />

protection from fungal <strong>di</strong>seases”.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

60


8<br />

METHODS FOR EVALUATION, IN CONTROLLED CONDITIONS, OF THE GROWTH OF OILSEED<br />

RAPE PROMOTED BY BACTERIA<br />

F. Citarrei, M. Scribano, S. Coranelli, C. Cellerino, L. Quattrocchi, L. Concezzi, and A. Ragni<br />

BioTecnologie BT srl Pantalla <strong>di</strong> To<strong>di</strong> 06050 Perugia Italy<br />

Tel: ++39 – 075 - 895091 Fax: ++39 – 075 – 888 776<br />

E-mail: aragni.bt@parco3a.org<br />

Abstract<br />

Growth promoters are microorganisms able to increase growth and productivity of plants by: atmospheric nitrogen<br />

fixation, mineral salts solubilization and siderophore synthesis (ferrous natural chelants), production of substances<br />

similar to plants hormones and with antagonistic effect towards phytopathogenic microorganisms. Growth promoters<br />

can influence the availability of nutritive elements or they can improve the phytosanitary con<strong>di</strong>tions of the plants. In the<br />

present work we have tested the ability of some bacteria strain to promote the growth of oilseed rape [Brassica napus<br />

(DC) Metzger var. oleifera, Brassiceae] by using two types of experimentations: in vitro, in laboratory and in vivo, in<br />

greenhouse. The in vitro test was conducted with sterile seedlings monoxenically associated with bacteria isolates. In<br />

the in vivo trials, the seeds were treated with bacteria prior to sawing. Both methods are able to select and evaluate the<br />

promoting action of the bacteria towards the oilseed rape although the in vitro is faster and <strong>di</strong>scriminate better the<br />

promoting effect of the bacteria. In vitro test<br />

Objective<br />

To test the ability of some bacteria strains to promote the rapeseed growth in vitro<br />

Materials and Methods<br />

Sterile rape seeds were sown on MS/2 culture me<strong>di</strong>a; sterile seedlings were transplanted in MS culture me<strong>di</strong>a inoculated<br />

with Pseudomonas sp. strain MK280 (Fig.1). This strain is able to produce siderophores that, as natural chelants, make<br />

iron available for plants. The treatments in the Pseudomonas test are reported in Table 1.The following growth<br />

parameters were checked at 15 and 30 days: plant height, plant fresh weight and plant dry weight. Table 1.<br />

Experimental con<strong>di</strong>tions of rape seed in vitro test with Pseudomonas sp. MK280<br />

Codes Treatment description<br />

FeCl3+MK280 Ferric chloride + bacteria MK280<br />

FeCl3<br />

Ferric chloride without bacteria MK280<br />

Fe - Without iron, without bacteria MK280<br />

FeEDTA+MK280 Chelated iron + bacteria<br />

FeEDTA Chelated iron without bacteria MK280<br />

Figure 1. Sterile seedlings of oilseed rape rapes transplanted<br />

in MS culture me<strong>di</strong>a in a plant cell culture vessel.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

61


Figure 2. Oilseed rape plants grown in vitro with <strong>di</strong>fferent treatments.<br />

For explication of codes, see Table 1.<br />

Fe - FeEDTA FeEDTA<br />

+ MK280<br />

FeCl3<br />

62<br />

FeCl3+MK280<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Figure 3. Effect of Pseudomonas sp. MK280 on rapeseed in vitro growth: plant height<br />

cm<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

FeCl3 + MK280 FeCl3 FeEDTA + MK280 FeEDTA Fe -<br />

Treatments<br />

63<br />

plant height 15 days<br />

plant height 30 days<br />

Figure 4. Effect of Pseudomonas sp. MK280 on rapeseed in vitro growth: plant fresh and dry weight<br />

Greenhouse trial<br />

g<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

FeCl3 +<br />

MK280<br />

FeCl3 FeEDTA +<br />

MK280<br />

Treatments<br />

fresh weight 15 days<br />

fresh weight 30 days<br />

dry weight 15 days<br />

dry weight 30 days<br />

FeEDTA Fe -<br />

Objective<br />

To test the ability of some bacteria strains to promote the rapeseed growth in controlled con<strong>di</strong>tions.<br />

Materials and Methods<br />

The trial was conducted using the following bacteria: Azospirillum brasilense (strain LMD78.36) or Pseudomonas sp.<br />

(strains MK280, Hv37a and AGS195B). The seeds were treated with bacteria strain cell suspensions; then the treated<br />

seeds were sown in a pot (one seed/pot) containing natural soil (Nitrogen= 0.08%; Organic matter =1.2%; Iron = 10.77<br />

mg kg -1 )The strains were tested on 20 plants, 10 plants were fertilized with Nitrogen (60 kg/ha) after 40 days from<br />

sowing; 10 were not fertilized. The following growth parameters were checked at 15 and 30 days: plant height, plant<br />

fresh weight and plant dry weight.<br />

Table 2. Colony Forming Unit from rape seeds treated with bacteria before sowing in greenhouse.<br />

Bacteria C.F.U/seed<br />

A. brasiliense LMD78.36 6 x 10 3<br />

Pseudomonas sp. MK280 1.2 x 10 5<br />

Pseudomonas sp. HV37a 6 x 10 5<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Pseudomonas sp. AGS195B 3 x 10 6<br />

Figure 5. Bacterial seed treatment effect on rapseed: plant height<br />

cm<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Control Hv37aR2 LMD78.36 AGS195B MK280<br />

Figure 6. Bacterial seed treatment effect on rapseed plant: dry weight<br />

g<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

Treatments<br />

Results and Conclusions<br />

Results of the Pseudomonas sp. in vitro test were reported in Figures 2, 3 and 4. The strain MK280 promoted the<br />

rapeseed growth when a little available iron form (FeCl 3 ) is present in the culture me<strong>di</strong>a. Results of the greenhouse trial<br />

were reported in Figures 5 and 6. In the treatment without Nitrogen, after 80 days from sowing, the plants treated with<br />

Pseudomonas sp. strain MK280 showed a higher height and dry weight then control and plants treated by others<br />

bacteria.<br />

The present study showed that both methods were able to select and evaluate the promoting action of the bacteria<br />

towards the oilseed rape although the in vitro was faster and <strong>di</strong>scriminated better the promoting effect of the bacteria.<br />

Acknowledgements<br />

The study was funded by GAL Alto Tevere Valle delle Genti, Citta <strong>di</strong> Castello (Leader II project).<br />

Research work of F. Citarei, M. Scribano and C. Cellerino was supported by grant of 3A Parco Tecnologico<br />

Agroalimentare dell’Umbria, in the frame of Umbria Region Training programm (European Social Forum found).<br />

64<br />

plant height 40 days<br />

plant height 80 days<br />

plant height 80 days + N<br />

Control Hv37aR2 LMD78.36 AGS195B MK280<br />

Treatments<br />

dry weight 40 days<br />

dry weight 80 days<br />

dry weight 80 days + N<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


9<br />

IMPROVEMENT OF SOIL PROPERTIES AND PHYTOPARASITIC NEMATODES SUPPRESSION BY<br />

COMPOSTED OLIVE MILL WASTE<br />

Convertini Grazia (1) , Ferri Donato (1) , Sasanelli Nicola (2) , D’Addabbo Trifone (2)<br />

(1) Istituto Sperimentale Agronomico (MIPAF) – Via Celso Ulpiani, 5 - 70125 Bari, Italy. E-mail:<br />

donatoferri.isaba@tuttopmi.it<br />

(2) Istituto per la Protezione delle Piante - Sez. <strong>di</strong> Bari - C.N.R. - Via Amendola 165/A, 70126 Bari, Italy. E -mail:<br />

nemans13@area.ba.cnr.it<br />

Summary.<br />

The effect of composted olive mill wastes (composted - OMW) soil amendments on phytoparasitic nematodes and on<br />

soil fertility was investigated in a sandy soil heavely infested by Meloidogyne incognita in southern Italy (Apulia<br />

region). Composted olive pomace obtained by mixing fresh solid cake coming from the three-phase decanter (for olive<br />

oil production) with farmyard manure (10, 20 and 40 t ha -1 ), another compost obtained by mixing exhausted solid<br />

cake (chemical extraction of residue olive oil) with wheat straw and poultry manure (10, 20 and 40 t ha -1 ) and raw<br />

sewage supplied at 40 and 80 m 3 ha -1 , were compared with two controls : i) untreated soil; ii) treatment with<br />

fenamiphos (tra<strong>di</strong>tional nematicide) at 0.3 t ha -1 . Tomato crop yield, soil nematode population and root gall index were<br />

recorded in all the plots. Soil fertility parameters, as total N, nitrates, ammonium, total, extracted and humified organic<br />

C, NaHCO3-P, exchangeable bases, heavy metals were determined for the most significant rate of each amendment.<br />

Crop yield was enhanced in all amended plots and pomace based composts were also suppressive on M. incognita.<br />

Moreover, compost amendments increased soil organic matter content, improved N availability and protected soil<br />

organic fractions from the fast decomposition occurring in the semi-arid con<strong>di</strong>tions of southern Italy.<br />

Keywords: Control, Meloidogyne incognita, nematodes, olive mill wastes, soil fertility.<br />

INTRODUCTION<br />

The <strong>di</strong>sposal of olive mill wastes (OMW), fresh pomace and raw sewage, represents a serious environmental<br />

problem in the areas of cultivation of olive, as large amounts of these materials are produced in a short period every<br />

year (Ranalli and De Mattia, 1996).<br />

The use of these materials as soil amendment could represent a possible alternative solution to this problem. Recent<br />

stu<strong>di</strong>es showed that in the soil characterized by poor fertility, OMW incorporation into the soil improves some chemical<br />

soil properties at <strong>di</strong>fferent texture in southern Italy (Ferri et al., 2001). Also soil porosity, aggregates stability,<br />

hydrological properties were improved by the application of OMW (Pagliai, 1996), although contrasting results derived<br />

from previous experiments (Bonari and Ceccarini, 1993 ).<br />

Moreover, a suppressive action on soil phytoparasitic nematodes has been also reported among the effects of olive<br />

mill wastes incorporation into the soil (Rodriguez-Kabana et al., 1995; D’Addabbo and Sasanelli, 1996, Sasanelli et al.,<br />

2002).<br />

Objective of the field experiment described in this paper was a comparative evaluation of the effect of fresh and<br />

exhausted composted olive pomace and raw sewage application on a population of the root-knot nematode<br />

Meloidogyne incognita and on the chemical properties of the soil.<br />

MATERIAL AND METHODS<br />

A sandy soil at Monteroni (province of Lecce, southern Italy), heavily infested by Meloidogyne incognita (Kofoid<br />

et White) Chitw. (Pi = 9 eggs and juveniles/cm 3 soil), was sub<strong>di</strong>vided in 12 m 2 plots, spaced 1 m each other, accor<strong>di</strong>ng<br />

to a randomized block design with four replicates for each treatment. Composted olive pomace obtained by ad<strong>di</strong>ng<br />

fresh solid cake (93%) from a three-phase decanter (for olive oil production) with farmyard manure (7 %) and a<br />

compost obtained by mixing exhausted pomace solid cake (91%) (after the chemical extraction of residue olive oil) with<br />

wheat straw (2%) and poultry manure (7 %) were <strong>di</strong>stributed on the plot surface at 10, 20 and 40 t ha -1 rates and then<br />

incorporated into the soil at 25 – 30 cm depth by rotavation. Raw sewage was added at the dosages of 40 and 80 m 3 ha -1 .<br />

Untreated soil and 300 kg ha -1 fenamiphos applied before transplanting were used as controls. One month old seedlings<br />

of tomato (Lycopersicum esculentum L.), cv. Ton<strong>di</strong>no <strong>di</strong> Zagaria, were transplanted into the plots three months after the<br />

treatments. During the growing season the field received the usual cultural practices.<br />

At the end of the crop cycle in each plot the tomato yield was recorded, the nematode gall infestation index on the<br />

roots was estimated on a 0 – 5 scale (0 for not galled roots and 5 for roots completely deformed by many large galls)<br />

(Di Vito et al., 1979) and the nematode population density was determined in the soil (Coolen, 1979).<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

65


Soil samples were collected in the plots treated with : i) no input (CONTR); ii) fenamiphos (300 kg ha -1 )<br />

(F.MPHOS); iii) raw sewage (80 mc ha -1 ) (R.S.); iv) exhausted pomace solid cake compost ( 20 t ha -1 ) (EOPC); v) fresh<br />

pomace solid cake compost (20 t ha -1 ) (FOPC), after the treatments and harvesting to evaluate soil N-NO3, N-NH4<br />

exchangeable, NaHCO3 - P (Olsen method), exchangeable bases, CEC, heavy metals concentration , total organic<br />

carbon (TOC), total extracted (TEC) and humified carbon (humic and fulvic acids, C HA + C FA ) (Sequi et al., 1986;<br />

Italian Ministry of Agricultural Resources, 1994). The degree of humification, DH% = (C HA + C FA )/TEC*100, the<br />

humification rate, HR% = (C HA + C FA )/TOC*100, and the humification index, HI= NH / (C HA + C FA ), were also<br />

calculated.<br />

Data were statistically analysed by the analysis of variance and means compared by Duncan’s Multiple Range Test<br />

(P=0.05).<br />

RESULTS AND DISCUSSION<br />

In the field experiment all the composts significantly increased the tomato yield compared to the untreated control,<br />

but were statistically lower than chemical treatment (Table 1).<br />

All the treatments significantly reduced the root infestation index and, with the exception of the lowest rates of raw<br />

sewage and exhausted pomace compost, the soil nematode population (Table 1).<br />

Results from this experiment and their comparison with those from the previous field experiments evidenciated that<br />

incorporation of OMW into the soil could result in a suppression, but not in a complete era<strong>di</strong>cation of phytoparasitic<br />

nematode populations and, at low initial soil infestation, also in a crop yield increase. Therefore, the aim of soil<br />

amendments with these materials should be a progressive reduction of infestation level under the tolerance limit of the<br />

target nematode species (Sasanelli, 1994).<br />

Table 1 - Effects of <strong>di</strong>fferent olive mill wastes amendments on Meloidogyne incognita on tomato (cv. Ton<strong>di</strong>no <strong>di</strong><br />

Zagaria).<br />

Treatment<br />

Dose<br />

(t x<br />

ha -1 )<br />

66<br />

Tomato<br />

yield<br />

(t x ha -1 )<br />

Root gall index<br />

(0 – 5)<br />

Eggs and<br />

juveniles/cm 3<br />

soil<br />

Untreated control - 25.4 a 4,5 b 19.8 d<br />

Fenamiphos 0,3 40.5 e 2,7 a 10.6 abc<br />

Raw sewage 4 32.3 bc 2,4 a 15.1 cd<br />

8 29.0 b 2,5 a 5.2 a<br />

Exhausted olive pomace compost 10 36.8 d 2,1 a 13.7 bcd<br />

20 36.6 d 2,2 a 9.2 abc<br />

40 36.3 d 2,2 a 11.2 abc<br />

Fresh olive pomace compost 10 32.1 bc 2,8 a 5.3 a<br />

20 33.7 cd 2,2 a 7.1 ab<br />

40 35.8 cd 2,6 a 9.3 abc<br />

Data are means of four replications; data followed by the same letter on the same column are not significantly<br />

<strong>di</strong>fferent accor<strong>di</strong>ng to Duncan’s Multiple Range Test (P = 0.01).<br />

In the Figure 1 A can be observed a poor increasing trend of soil N-NO3 contents respectively for “R.S.”,<br />

“EOPC”, “FOPC” treatments and lowest N-NO3 content in “fenamiphos-treated” plots.<br />

Soil NaHCO3-P content was unaffected from experimental treatments, but soil exchangeable K showed higher<br />

value in "fenamiphos-treated" plots (Figure 1A). On the contrary, in “FOPC-treated” plots higher “exchangeable-Ca”<br />

content was recorded , while similar trends were observed in exchangeable Ca in “fenamiphos-”, “R.S.-”, “EOPC-<br />

treated” plots. No <strong>di</strong>fferences were observed on exchangeable Na and Mg among treated plots compared with the<br />

“control” (Figure 1 B ).<br />

Among the heavy metals of the soil (Figure 1 C ), only Zn content was higher in “EOPC-“ and “FOPC-treated”<br />

plots probably because during the composting processes of solid residual cake of olive milling ( fresh or exhausted ) a<br />

Zn concentration could be verified.<br />

Soil organic C (Figure 1 D) contents (total and extracted) seem lower in the plots treated with OMW (raw or<br />

composted) in comparison to other treatments, because the incorporation into the soil of fresh organic matter improves<br />

biological activity (Ocio et al., 1991). No variations were recorded on humified organic C, probably for the short period<br />

of trial.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


(mg kg-1)<br />

(mg kg-1)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

b<br />

N-NO3 NaHCO3-P Exch.-K<br />

b<br />

n.s. n.s.<br />

b<br />

a<br />

Soil available nutrients<br />

a<br />

n.s.<br />

Zn Cu Pb<br />

Soil heavy metals<br />

b<br />

a<br />

b b b<br />

n.s.<br />

CONTR.<br />

F.MPHOS<br />

Soil properties reported in the Table 2 show that experimental treatments play a similar role on pH and<br />

CEC. The degree of humification (DH) results significantly higher in “R.S.-treated” plots than in<br />

“control” plots; on the other hand in “fenamiphos-” and “FOPC-treated” plots this parameter appears very lower<br />

than in “control” plots. Humification rate<br />

(HR) in all treated plots is lower than control. Finally humification index (HI) of “fenamiphos-“ and “FOPC-“ treated<br />

plots is higher than other plots similarly to the fin<strong>di</strong>ngs of degree of humification (DH).<br />

Table 2 - Variations of some soil properties as affected by experimental treatments.<br />

A<br />

R.S.<br />

EOPC<br />

FOPC<br />

CONTR.<br />

F.MPHOS<br />

R.S.<br />

EOPC<br />

FOPC<br />

Treatments pH CEC<br />

Humification parameters<br />

(meq/100 g) DH (%) HR (%) HI<br />

CONTR 8.30 9.55 20.4 b (1) 9.1 a 3.9 b<br />

F.MPHOS 8.32 10.13 16.0 c 7.4 c 5.2 a<br />

R.S. 8.20 9.81 22.7 a 8.1 b 3.4 b<br />

EOPC 8.29 9.06 21.3 b 8.1 b 3.7 b<br />

FOPC 8.23 9.29 16.3 c 6.1 c 5.1 a<br />

(1 ) – Values followed by the same letter are not significantly <strong>di</strong>fferent at P < 0.05<br />

accor<strong>di</strong>ng to Duncan’s Multiple Range Test.<br />

In conclusion OMW soil amendments could be suggested for integrated nematode management strategies, as it<br />

provides a good pest suppressivity.<br />

After the first year of trial is very hard to record soil fertility variations as affected by experimental treatments. The<br />

experimental data show that both OMW soil amendments and tra<strong>di</strong>tional nematicide (fenamiphos) don’t determine<br />

decrease of soil available nutrients, soil exchangeable bases. On the other hand the effects on soil heavy metals (Zn,<br />

Cu, Pb) are unsignificant, when were compared all the treatments with “control”. Very interesting trends were observed<br />

on soil organic C and humification parameters. The apparent increase observed on soil organic C (TOC, TEC) in the<br />

plots untreated (CONTR) and treated with fenamiphos (F.MPHOS) seems in contrast with a light increase of<br />

67<br />

(mg kg-1)<br />

2500<br />

2000<br />

1500<br />

1000<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

500<br />

0<br />

Ca Mg Na<br />

Soil exchangeable bases<br />

CONTR.<br />

F.MPHOS<br />

R.S.<br />

EOPC<br />

FOPC<br />

C 7<br />

a<br />

D<br />

6<br />

a<br />

b b b<br />

( g kg-1 )<br />

a ab<br />

b<br />

b<br />

ab<br />

n.s.<br />

Total Extract. Humified<br />

Soil organic Carbon<br />

Figure 1 – Soil fertility variations as affected by experimental treatments.<br />

(For each parameter columns followed by <strong>di</strong>fferent letters are significanty <strong>di</strong>fferent at P


humification parameters recorded in the other plots (R.S.-, EOPC-, FOPC-treated). Probably, the incorporation into the<br />

soil of OMW (raw or composted) determines an improvement of soil o.m. transformations.<br />

Moreover it is necessary to continue experimental research to verify when OMW and tra<strong>di</strong>tional nematicide effects<br />

are evident and eventually <strong>di</strong>fferent on soil fertility dynamics.<br />

Work carried out in the frame-work of the O.P. CNR-MURST, Law 95/95, National Research Program: “Reflui Agro-<br />

Industriali – Sottoprogetto Reflui Oleari”.<br />

REFERENCES<br />

Bonari E. e L. Ceccarini, 1993. Sugli effetti dello spargimento delle acque <strong>di</strong> vegetazione sul terreno agrario: risultati<br />

<strong>di</strong> una ricerca sperimentale. Genio Rurale, 5: pp.60-67<br />

Coolen W. A., 1979. Methods for the extraction of Meloidogyne spp. and other nematodes from roots and soil. In:<br />

Root-knot nematodes (Meloidogyne species) Systematics, Biology and Control. (F. Lamberti and C.E. Taylor Eds),<br />

Academic Press, London, UK, pp. 317-329.<br />

D’Addabbo T. and N. Sasanelli, 1996. Effect of olive pomace soil amendment on Meloidogyne incognita.<br />

Nematologia me<strong>di</strong>terranea, 24, pp. 91-94.<br />

Di Vito M., F. Lamberti e A. Carella. 1979. La resistenza del pomodoro nei confronti dei nemato<strong>di</strong> galligeni:<br />

prospettive e possibilità. Rivista <strong>di</strong> Agronomia 13: pp. 313-322.<br />

Ferri, D., G. Convertini, F. Montemurro e C. Vitti, 2001. Evoluzione <strong>di</strong> alcune proprietà chimiche <strong>di</strong> terreni pugliesi<br />

ammendati con reflui oleari. Atti Giornata <strong>di</strong> Stu<strong>di</strong>o “ Prospettive <strong>di</strong> utilizzzione agronomica dei reflui oleari” ( Bari, 14<br />

febbraio).<br />

MIRAAF, 1994. Meto<strong>di</strong> ufficiali <strong>di</strong> analisi chimica del suolo.<br />

Ocio J.A., P.C. Brookes and D.S. Jenkinson, 1991. Field incorporation of straw and its effects on soil microbial<br />

biomass and soil inorganic N. Soil Biol. Biochem. 23: pp.171-176.<br />

Pagliai M., 1996. Effetti della somministrazione <strong>di</strong> acque reflue <strong>di</strong> frantoi oleari sulle caratteristiche fisiche del suolo.<br />

Atti Convegno Int. su “Trattamento e riciclaggio in agricoltura dei sottoprodotti dell’industria olearia”. Lecce, 8-9<br />

marzo.<br />

Ranalli A. and G. De Mattia. 1996. Role of piloted biological processes in the purification of oil mill waste water.<br />

Riv. Ital. Sost. Grasse, LXXIII: pp.61-66.<br />

Rodriguez-Kabana R., V. Estaun, R.J. Pinochet and O. Marfa’, 1995. Mixtures of olive pomace with <strong>di</strong>fferent<br />

nitrogen sources for the control of Meloidogyne spp. on tomato. Journal of Nematology, 27 (4S), pp. 575 -584.<br />

Sasanelli N. 1994. Tables of Nematode-Pathogenicity. Nematologia me<strong>di</strong>terranea, 22: p.153-157.<br />

Sasanelli N., T. D’Addabbo, G. Convertini and D. Ferri, 2002. Soil Phytoparasitic Nematodes Suppression and<br />

Changes of Chemical Properties Determined by Waste Residues from Olive Oil Extraction. Procee<strong>di</strong>ngs of 12 th ISCO<br />

Conference, May 26-31, 2002 Beijing China. Vol. III: pp. 588-592.<br />

Sequi, P., M. De Nobili, L. Leita and G. Cercignani, 1986. A new index of humification. Agrochimica, 30: pp.175 –<br />

179<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

68


10<br />

NEMATICIDAL ACTIVITY OF AQUEOUS EXTRACTS FROM RUE (RUTA GRAVEOLENS L.)<br />

T. D’Addabbo and N. Sasanelli<br />

Istituto per la Protezione delle Piante- Cnr, Sezione <strong>di</strong> Bari<br />

Via G. Amendola 165/A – 70126 Bari. Italy<br />

E-mail: nematd12@area.ba.cnr.it<br />

Summary. The effect of leaf and root aqueous crude extracts and of root leachates of R. graveolens on the root-knot<br />

nematodes Meloidogine arenaria, M. hapla, M. incognita and M. javanica, and on the beet cyst nematode Heterodera<br />

schachtii was investigated in a in vitro experiment. Aqueous extracts were prepared by soaking green leaves or roots in<br />

<strong>di</strong>stilled water and root leachates were collected by drenching the rue cultivated soil with excess tap water. Egg masses<br />

of each Meloidogyne species and cysts of H. schachtii were incubated in the test solutions over a four weeks period.<br />

Immersion in rue extracts significantly suppressed juvenile emergence from the egg masses of all the four<br />

Meloidogyne species and from cysts of H. schachtii. Leaf extract was always more effective than root extract for<br />

Meloidogyne species, whereas no <strong>di</strong>fference resulted in H. schachtii. No synergic effect derived from the combination<br />

of the two extracts. No significant emergence reduction resulted from the immersion in rue root leachates for any of the<br />

tested nematode species.<br />

INTRODUCTION<br />

Several plants are reported to minimize nematode damage in vegetable and field crops by producing nematicidal<br />

(killing) and nematistatic (suppressive) organic compounds. These natural compounds can be released from the roots of<br />

living plants or by plant tissues incorporated into the soil as a green manure (Grainge and Ahmed, 1988).<br />

The biocidal effect of extracts from rue (Ruta graveolens L.) was previously reported on insects, fungi and weeds<br />

(Aliotta et al., 1994; 1999; Oliva et al., 1999), but few information is available on the effect on phytoparasitic<br />

nematodes. Therefore an experiment was undertaken to investigate the in vitro effect of leaf and root aqueous extracts<br />

and of root leachates of R. graveolens on four <strong>di</strong>fferent species of root-knot nematodes, Meloidogine arenaria (Neal)<br />

Chitw., M. hapla Chitw., M. incognita (Kofoid et White) Chitw.and M. javanica (Treub) Chitw. and on the beet cyst<br />

nematode Heterodera schachtii Schmidt.<br />

MATERIALS AND METHODS<br />

Aqueous extracts of rue were prepared by soaking 100 g green leaves or roots, or 50 g when in combination, in 400 ml<br />

<strong>di</strong>stilled water for 24 hrs. Tissues were then macerated in a blender and the suspension filtered through filter paper.<br />

Root leachates were collected from three month old plants, cultivated in fifteen 2,500 cm 3 clay pots, by drenching the<br />

soil with excess tap water. The leachates were then centrifuged at 1,300 g for 30 min, stored in plastic bottles, and kept<br />

in a freezer until required. In the experiment on H. schachtii each plant extract or root leachate was adjusted to 3 mM<br />

ad<strong>di</strong>ng an equal volume of 6 mM of zinc sulphate (Clarke and Shepherd, 1966).<br />

The four Meloidogyne populations were reared on tomato cv. Roma in a glasshouse at 20-25 °C, whereas H. schachtii<br />

was collected from an infested field at Avezzano (L’Aquila). Batches of twenty egg masses (averaging 20,000 eggs per<br />

mass) of each Meloidogyne species or 100 cysts of H. schachtii (123 egg/cyst) were placed on 2 cm <strong>di</strong>am sieves (215<br />

µm aperture) and each sieve in a 3.5 cm <strong>di</strong>am Petri <strong>di</strong>sh. Three ml of each test solution, were then added to four batches<br />

of egg masses or cysts. Distilled water (for Meloidogyne species) or 3 mM zinc sulphate solution (for H. schachtii) and<br />

a 5 µg/ml aqueous solution of fenamiphos were used as controls.<br />

The <strong>di</strong>shes were arranged in a complete randomized block design with four replicates of each treatment: egg masses of<br />

Meloidogyne species were incubated at 25 °C, whereas the cysts of H. schachtii were mantained at 20 °C. Emerging<br />

juveniles were removed and counted at weekly intervals, renewing the hatching solutions at the same time, over a nine<br />

or ten weeks period, respectively for Meloidogyne species and H. schachtii. Egg masses and cysts were removed from<br />

the test solutions after the first four weeks and the incubation continued in <strong>di</strong>stilled water or, for cysts of H. schachtii, in<br />

the zinc sulphate aqueous solution.<br />

At the end of the experiment the egg masses were immersed in a 1% so<strong>di</strong>um hypochlorite aqueous solution (Hussey and<br />

Barker, 1973), whereas the cysts were crushed, accor<strong>di</strong>ng to Seinhorst and Den Ouden (1966). Unhatched eggs from<br />

egg masses and cysts were then counted. Numbers of juveniles emerging weekly were expressed as cumulative percent<br />

of the total initial population. Data were statistically analysed and compared by LSD’s test.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

69


RESULTS AND DISCUSSION<br />

Emergence of juveniles from the egg masses immersed in leaf and root extracts of Ruta graveolens, either alone or<br />

combined, was significantly suppressed compared to the water control in all the four Meloidogyne species (Table 1).<br />

Leaf extract was always more effective than root extract and resulted statistically more suppressive also than<br />

fenamiphos solution. No synergic effect was derived from the combination of the two extracts, as final hatch was higher<br />

than in leaf extract alone. Egg masses immersed in root leachates gave a final hatch similar to control.<br />

The ultimate egg hatch of H. schachtii cysts incubated in single root and leaf extracts was significantly less than in 3<br />

mM zinc sulphate and fenamiphos (Fig. 1). Suppressivity of the extracts decreased when in combination, as no<br />

<strong>di</strong>fference there was in final hatch compared to the control. There was no <strong>di</strong>fference between leaf and root extracts,<br />

whereas their combination resulted in a significantly higher egg hatch. As found in Meloidogyne species, no significant<br />

emergence reduction was found for the root leachates.<br />

In conclusion, the experiment evidenciated the nematicidal properties of rue extracts. The nematicidal compounds<br />

seemed to be present in all the plant tissues, but especially in leaves. A possible antagonistic effect of leaf and root<br />

extracts emerged from the results, that could be attributable to a negative interaction of the active principles responsible<br />

for the suppressive effect. The absence of a nematicidal effect in root leachates in<strong>di</strong>cated that nematicidal compounds<br />

are present only in plant tissues, but not released into the soil.<br />

LITERATURE CITED<br />

Aliotta, G., and G. Cafiero, (1994). Potential allelochemicals from Ruta graveolens L. and their action on ra<strong>di</strong>sh seeds.<br />

Journal of Chemical Ecology 20 (11): 2761-2775.<br />

Clarke A.J. and A.M. Shepherd, (1966). Inorganic ions and the hatching of Heterodera spp. Annals of Applied<br />

Biology 58: 49–508.<br />

Grainge M. and S. Ahmed, (1988). Handbook of Plants with Pest-Control Properties. (J. Wiley and Sons eds.) New<br />

York, pp. 238-248.<br />

Hussey R.S. and K.R. Barker, (1973). A comparison of methods of collecting inocula of Meloidogyne spp. inclu<strong>di</strong>ng a<br />

new technique. Plant Disease Reporter 57: 1025-1028.<br />

Landolt, P. J.,R. W. Hofstetter and L. L. Bid<strong>di</strong>ck , (1999). Plant essential oils as arrestants and repellents for<br />

neonate larvae of the codling moth (Lepidoptera: Tortricidae). Environmental Entomology 28 (6): 954-960.<br />

Oliva, A. and E. Lahoz, (1999). Fungistatic activity of Ruta graveolens extract and its allelochemicals. Journal of<br />

Chemical Ecology 25 (3): 519-526.<br />

Seinhorst J.W. and H. Den Ouden (1966). An improvement of Bijloo’s method for determining the egg content of<br />

Heterodera cysts. Nematologica (12): 170-171.<br />

Table 1. Effect of root and leaf extracts and root leachates of rue (Ruta graveolens L.) on the total percent cumulative<br />

hatch of four <strong>di</strong>fferent Meloidogyne species.<br />

Treatments<br />

70<br />

Meloidogyne species<br />

M. arenaria M. hapla M. incognita M. javanica<br />

Leaf extract 12 6 12 3<br />

Root extract 59 43 61 23<br />

Root and leaf extract 20 21 49 21<br />

Root leachates 83 91 80 89<br />

Fenamiphos 38 47 29 31<br />

Distilled water 81 87 75 92<br />

L.S.D. 0.05 11 12 15 15<br />

L.S.D. 0.01 15 15 20 20<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


% cumulative hatch<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

LE RE LRE LCH FEN CTRL 0,05 0,01<br />

Fig. 1. Effect of rue (Ruta graveolens L.) extracts on the percent cumulative hatch of Heterodera schachtii (LE = leaf<br />

extract; RE = root extract; LRE = leaf + root extract; LCH = root leachates; FEN = 5 µg/ml fenamiphos aqueous<br />

solution; CTRL = 3 mM zinc sulphate solution).<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

71


11<br />

VALUTAZIONE DELL’EFFICACIA INSETTICIDA DI RYANIA, ROTENONE, AZADIRACTINA E<br />

BEAUVERIA BASSIANA<br />

Elisabetta Gargani, Giovanna Del Bene<br />

Istituto Sperimentale per la Zoologia Agraria – Via Lanciola, 12 A - 50125 Firenze.<br />

e-mail: giovannadelbene@virgilio.it<br />

Nell’ambito del P.F. MiPAF “Difesa delle produzioni in agricoltura biologica”, l’ISZA, sezione <strong>di</strong> Entomologia<br />

Agraria, ha effettuato prove sperimentali sull’efficacia insetticida <strong>di</strong> prodotti <strong>di</strong> origine naturale (Del Bene et al., 2000):<br />

ryania, rotenone, aza<strong>di</strong>ractina e Beauveria bassiana. Le prove sono state condotte in laboratorio, in serra e in campo su<br />

varie specie vegetali <strong>di</strong> interesse ortoflorovivaistico, infestate sia naturalmente sia artificialmente da insetti appartenenti<br />

agli or<strong>di</strong>ni dei Tisanotteri (Tripi<strong>di</strong> Heliothrips haemorrhoidalis e Frankliniella occidentalis), Rincoti (Triozide<br />

Lauritrioza alacris e Aleuro<strong>di</strong>de Trialeurodes vaporariorum), Lepidotteri (Gracillariide Phyllocnistis citrella) e<br />

Coleotteri (Crisomelide Pyrrhalta viburni). Sono stati inoltre stu<strong>di</strong>ati gli effetti collaterali nei confronti del parassitoide<br />

Imenottero Afelinide Encarsia formosa.<br />

I prodotti sono stati sperimentati in formulazioni e dosaggi <strong>di</strong>versi con una sola applicazione o 2-3 applicazioni a<br />

<strong>di</strong>stanza <strong>di</strong> 7 giorni. I controlli sono stati effettuati <strong>di</strong> norma a cadenza settimanale, conteggiando gli in<strong>di</strong>vidui vivi e<br />

morti, <strong>di</strong>stinti per sta<strong>di</strong>o <strong>di</strong> sviluppo. Sono state calcolate le percentuali <strong>di</strong> sopravvivenza e <strong>di</strong> mortalità (M) secondo<br />

Abbott.<br />

RYANIA<br />

Il principio attivo, costituito dagli alcaloi<strong>di</strong> ryano<strong>di</strong>ne, è estratto da Ryania speciosa, arbusto della famiglia<br />

Flacourtiaceae, nativo <strong>di</strong> Trinidad e del Bacino dell’Amazzonia. Le ryano<strong>di</strong>ne agiscono soprattutto per ingestione e<br />

hanno una persistenza <strong>di</strong> due settimane; sono tossiche per i mammiferi (Tremblay, 1985; Casida et al., 1987).<br />

Sono stati impiegati 2 formulati sperimentali, Tigosan liquido (3-6 ml/l) e Tigosan polvere (3-5 g/l), <strong>di</strong> cui solo quello<br />

in polvere ha <strong>di</strong>mostrato una certa efficacia (tab. 1).<br />

Tab. 1 – Percentuali <strong>di</strong> mortalità (sec. Abbott) ottenute con Ryania.<br />

Formulato Dose ml/l Insetto Sta<strong>di</strong>o Pianta % controllo<br />

Tigosan L 3 H. haemorrhoidalis Nean. - adulti viburno - labor. 7,5<br />

6 " " 22<br />

Tigosan WP 3 mirto - campo 22<br />

Tigosan WP 5 F. occidentalis Nean. - adulti pomodoro - serra 55,6<br />

5 fagiolino - labor. 40<br />

Tigosan WP 5 L. alacris Ninfe I-II alloro - labor. 45,2<br />

Ninfe III-V " " 10,5<br />

Tigosan WP 5 – 2tr. T. vaporariorum * Neani<strong>di</strong> I pomodoro - serra 11,5<br />

5 – 2tr. Nean. II-IV " " 10,4<br />

Tigosan WP 5 P. citrella Larve I-III agrumi - vivaio 0<br />

Tigosan WP 5 P. viburni Larve I viburno - labor. 100<br />

Larve II-III " " 53,3<br />

Larve I-II viburno - serra 82,5<br />

Adulti viburno - labor. 66,7<br />

Adulti viburno - campo 0<br />

* Nessun effetto su E. formosa (100% sfarfallamento)<br />

Ryania ha dato esiti variabili contro P. viburni: in laboratorio la mortalità delle larve <strong>di</strong> I età ha raggiunto il 100 % con<br />

la dose <strong>di</strong> 5 g/l, mentre quella delle larve <strong>di</strong> età superiore è stata del 55,3% e quella degli adulti del 66,7%; in serra è<br />

stata confermata l’efficacia sulle larve I-II (82,5 % M) mentre in campo non è stato registrato alcun controllo degli<br />

adulti. E’ risultata me<strong>di</strong>amente efficace nei confronti <strong>di</strong> F. occidentalis su pomodoro in serra (55,6%M) e selettiva nei<br />

confronti <strong>di</strong> E. formosa.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

72


ROTENONE<br />

Il principio attivo è estratto dalle ra<strong>di</strong>ci <strong>di</strong> Derris elliptica e <strong>di</strong> altre Papillionaceae appartenenti ai generi Lonchocarpus<br />

e Tephrosia; agisce per contatto e ingestione (La Torre et al., 2002). Ha bassa persistenza e si decompone rapidamente<br />

con l’esposizione all’aria e alla luce; non è selettivo nei confronti degli insetti utili né dei fitosei<strong>di</strong> (Tsolakis et al., 1997)<br />

ed è tossico per i vertebrati (Tremblay, 1985). In Italia il prodotto è stato registrato come liquido emulsionabile ad<br />

ampio spettro <strong>di</strong> azione, alla concentrazione del 6% <strong>di</strong> p.a. (“Rotena” Serbios, Tossico) e al la concentrazione del 4%<br />

(“Bioroten” Intrachem, Nocivo).<br />

Sono stati impiegati 3 formulati: Derisan (non registrato, 3-6 ml/l); Rotena (2,5 ml/l); Bioroten (3 ml/l) (tab. 2).<br />

Tab. 2 – Percentuali <strong>di</strong> mortalità (sec. Abbott) ottenute con Rotenone.<br />

Formulato Dose ml/l Insetto Sta<strong>di</strong>o Pianta % controllo<br />

Derisan 6 H . haemorrhoidalis Nean. - adulti viburno - labor. 50<br />

Rotena 2,5 – 2tr. viburno - campo 0<br />

Derisan 3 F. occidentalis Nean. - adulti pomodoro - serra 0<br />

fagiolino - labor. 13,4<br />

Bioroten 3 – 3tr. limonium - serra 49,3<br />

Derisan 6 E. phyllireae NinfeIV-V fillirea - labor. 0<br />

Rotena 2,5 L. alacris Ninfe I-II alloro - labor. 93,1<br />

Ninfe III-V " " 44,6<br />

Rotena 2,5 – 3tr. T. vaporariorum* Nean. I pomodoro -serra 55,7<br />

Nean. II-IV " " 60<br />

Rotena 2,5 P. citrella Larve I-II agrumi - vivaio 0<br />

Derisan 3 P. viburni Larve I viburno - labor. 7,9<br />

Bioroten 3 Larve I-II viburno - serra 100<br />

Rotena 2,5 Adulti viburno - labor. 93,3<br />

*Effetti negativi su E. formosa (sfarfallamento da 8, 75% a 32,5%)<br />

Rotenone è risultato me<strong>di</strong>amente efficace nei confronti <strong>di</strong> H. haemorrhoidalis con mortalità del 50% (Derisan) e<br />

verso le neani<strong>di</strong> <strong>di</strong> T. vaporariorum con 55,7 – 60% M (Rotena); assai efficace verso le giovani ninfe <strong>di</strong> L. alacris con<br />

mortalità del 93,1% (Rotena). Nei confronti <strong>di</strong> P. viburni, la resa del prodotto è stata assai <strong>di</strong>versa a seconda dello<br />

sta<strong>di</strong>o trattato e del formulato usato. Infatti mentre le larve <strong>di</strong> I età, sta<strong>di</strong>o più vulnerabile, sono sopravvissute in<br />

laboratorio al trattamento con Derisan, la mortalità <strong>di</strong> larve I-II trattate con Bioroten è stata del 100% e quella degli<br />

adulti trattati con Rotena è stata del 93,3%. Rotena ha avuto comunque effetti collaterali negativi molto pesanti su E.<br />

formosa, le cui percentuali <strong>di</strong> sfarfallamento sono state ridotte significativamente.<br />

AZADIRACTINA<br />

Dall’albero Aza<strong>di</strong>rachta in<strong>di</strong>ca (neem), della famiglia Meliaceae, originario dell’In<strong>di</strong>a, viene<br />

estratto un olio contenente numerosi principi attivi appartenenti alla classe dei limonoi<strong>di</strong> (aza<strong>di</strong>ractine), con proprietà<br />

antiparassitarie (Schmutterer, 1990; La Torre et al., 2002). L’estratto ha azione come regolatore <strong>di</strong> crescita,<br />

fagodeterrente e repellente e riduce la fecon<strong>di</strong>tà degli adulti e la vitalità delle uova (Rovesti e Deseo, 1990; Bezzi e<br />

Caden, 1991; Capella et al., 2000); agisce per ingestione e contatto e presenta un elevato potere <strong>di</strong> penetrazione (Isman<br />

et al., 1991). In Italia è commerciato come biostimolante vegetale (“Stardoor” Intrachem, EC 4,5%); inoltre sono stati<br />

registrati come insettici<strong>di</strong> due prodotti a base <strong>di</strong> aza<strong>di</strong>ractina A, che rappresenta la componente con le più elevate<br />

proprietà insetticide (“Oikos” Sipcam e “Diractin” Serbios, EC 3%, non classificati tossicologicamente).<br />

I formulati impiegati sono stati 4: Olnisan (non registrato, 2,5 ml/l); Stardoor (0,7 ml/l); Oikos (1-1,5 ml/l); Diractin<br />

(1,5 ml/l) (tab. 3).<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

73


Tab. 3 – Percentuali <strong>di</strong> mortalità (sec. Abbott) ottenute con Aza<strong>di</strong>ractina.<br />

Formulato Dose ml/l Insetto Sta<strong>di</strong>o Pianta % controllo<br />

Oikos 1,5 – 2tr. H. haemorrhoidalis Nean. - adulti viburno - campo 90,7<br />

Olnisan 2,5 F. occidentalis Nean. - adulti pomodoro - serra 9,4<br />

fagiolino - labor. 34<br />

Oikos 1,5 – 3tr. limonium - serra 89,9<br />

Diractin 1,5 – 3tr. " " 86,6<br />

Stardoor 0.7 L. alacris Ninfe I-II alloro - labor. 89,4<br />

Ninfe III-V " " 28,7<br />

Olnisan 2,5 Ninfe I-V alloro - vivaio 29,5<br />

Stardoor 0,7 T. vaporariorum* Nean. I pomodoro- serra 18,7<br />

Olnisan 2,5 P. citrella Larve I-II agrumi - vivaio 18<br />

Oikos 1,5 – 2tr. " " 48,1<br />

Diractin 1,5 – 2tr. " " 55,6<br />

Olnisan 2,5 P. viburni Larve I viburno - labor. 10,5<br />

Diractin 1,5 – 3tr. Larve I-II viburno - serra 90,6<br />

Stardoor 0,7 Adulti viburno - labor. 13,3<br />

Oikos 1 – 2tr. Adulti viburno - campo 0<br />

*Effetti negativi su E. formosa (sfarfallamento 17,5%)<br />

I <strong>di</strong>versi formulati, escluso Olnisan, hanno dato risultati positivi nei confronti delle ninfe <strong>di</strong> I e II età <strong>di</strong> L. alacris<br />

(Stardoor 89,4 % M), nei confronti <strong>di</strong> F. occidentalis (Oikos 89,9% M, Diractin 86,6% M) e H. haemorrhoidalis (Oikos<br />

90,7% M); hanno mostrato un ottimo contenimento <strong>di</strong> larve I-II <strong>di</strong> P. viburni (Diractin 90,6% M) e una certa efficacia<br />

contro larve I-II <strong>di</strong> P. citrella (Oikos 48,15% M, Diractin 55,6% M). Gli effetti collaterali nei confronti <strong>di</strong> E. formosa<br />

sono stati negativi con Stardoor .<br />

BEAUVERIA BASSIANA<br />

E’ un Deuteromicete agente del “calcinaccio” del baco da seta, scoperto nel 1835 da Agostino Bassi, che ne ipotizzò<br />

per primo l’uso nella lotta agli insetti dannosi. Le spore del fungo, a contatto con l’insetto, germinano penetrando<br />

attraverso la cuticola, me<strong>di</strong>ante una combinazione <strong>di</strong> azioni meccaniche ed enzimatiche: lo sviluppo successivo del<br />

fungo, accompagnato da produzione <strong>di</strong> tossine, determina la morte dell’insetto solitamente in 3-5 giorni (Magnano <strong>di</strong><br />

San Lio e Vacante, 1989; Benuzzi e Santopolo, 2001; La Torre et al., 2002). B. bassiana ha ampio spettro <strong>di</strong> attività e<br />

agisce per contatto in ambiente umido. Come bioinsetticida è stato prodotto a partire da un ceppo isolato su<br />

Anthonomus gran<strong>di</strong>s: il formulato registrato in Italia è “Naturalis” (Intrachem, Irritante), sospensione concentrata al<br />

7,16% <strong>di</strong> B. bassiana, contenente 2,3 x 10 7 coni<strong>di</strong>ospore/ml (tab. 4).<br />

Tab 4 – Percentuali <strong>di</strong> mortalità (sec. Abbott) ottenute con B. bassiana.<br />

Formulato Dose ml/l Insetto Sta<strong>di</strong>o Pianta % controllo<br />

Naturalis 1 – 2tr. H. haemorrhoidalis Nean. - adulti viburno - campo 41,3<br />

1,5 – 3tr. F. occidentalis Nean. - adulti rosa - serra 81<br />

limonium - serra 85<br />

1 P. citrella Larve I-II agrumi - vivaio 0<br />

1,5 – 3tr. P. viburni Larve I-II viburno - serra 81,1<br />

1– 3tr. Adulti viburno - labor. 55,3<br />

1 – 2tr. viburno - campo 3,4<br />

Naturalis (1-1,5 ml/l), a seguito <strong>di</strong> trattamenti ripetuti, ha assicurato un controllo sod<strong>di</strong>sfacente in serra <strong>di</strong> F.<br />

occidentalis (81 –85 % M) e <strong>di</strong> larve I-II <strong>di</strong> P. viburni (81,1% M), ma non <strong>di</strong> H. haemorrhoidalis in campo (41,35 %<br />

M), né <strong>di</strong> adulti <strong>di</strong> P. viburni in laboratorio (55,3% M) e in campo (3,4% M).<br />

Riassumendo, i prodotti biologici testati hanno dato risultati variabili a seconda dell’impiego in laboratorio o campo,<br />

in base alla <strong>di</strong>versa formulazione e dose, alla specie <strong>di</strong> insetto e alla sua fase <strong>di</strong> sviluppo al momento del trattamento.<br />

Risultati chiaramente positivi (controllo > 90%) sono stati ottenuti con:<br />

- ryania contro larve I <strong>di</strong> P. viburni (Tigosan WP: 100% M.);<br />

- rotenone nei confronti <strong>di</strong> P. viburni (adulti: Rotena: 93,3% M , larve I-II: Bioroten: 100% M) e <strong>di</strong> L. alacris (ninfe I-<br />

II: Rotena: 93,1% M);<br />

- aza<strong>di</strong>ractina contro H. haemorrhoidalis (Oikos: 90,7% M.) e larve I-II <strong>di</strong> P. viburni (Diractin: 90,6% M).<br />

Hanno comunque garantito un controllo superiore all’ 80%:<br />

- ryania nei confronti <strong>di</strong> larve I-II <strong>di</strong> P. viburni (Tigosan WP: 82,5% M);<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

74


- aza<strong>di</strong>ractina nei confronti <strong>di</strong> F. occidentalis ( Oikos: 89,9% M, Diractin: 86,6% M), ninfe I-II <strong>di</strong> L. alacris (Stardoor:<br />

89,4% M);<br />

- B. bassiana nei confronti <strong>di</strong> F. occidentalis (81% M su rosa, 85,05 % M su limonium) e <strong>di</strong> P. viburni (larve I-II 81,1<br />

% M).<br />

Nei confronti <strong>di</strong> E. formosa si sono avuti effetti collaterali negativi con Rotena e Stardoor, mentre ryania è risultata<br />

selettiva.<br />

Bibliografia<br />

BENUZZI M., SANTOPOLO F., 2001 – Naturalis: bioinsetticida a base <strong>di</strong> Beauveria bassiana.- Informatore<br />

Fitopatologico, 4: 61-64.<br />

BEZZI A., CADEN S., 1991 – Piante insetticide e pesticide.- Erboristeria domani. Ottobre: 65-79.<br />

CAPELLA A., GUARNONE A., DOMENICHINI P., 2001 – Aza<strong>di</strong>ractina: caratteristiche, attività biologica e strategie <strong>di</strong><br />

impiego su melo e ortive in coltura protetta.- Notiziario sulla protezione delle piante, 13: 59-63.<br />

CASIDA J.E., PESSAH I.N., SEIFERT J., WATERHOUSE A.L., 1987 – Ryania insecticide: chemistry, biochemistry and<br />

toxicology.- In Pesticide science and biotechnology. Procee<strong>di</strong>ngs of the 6 th international congress of pesticide<br />

chemistry., Ottawa, Canada, 10-15 August 1986: 177-182.<br />

DEL BENE G., GARGANI E., LANDI S., 2000 – Evaluation of plant extracts for insect control.- Journal of Agriculture and<br />

Environment for <strong>International</strong> Development, 94(1): 43-61.<br />

ISMAN M.B., KOUL O., ARASON J.T., STEWART J., SALLOUM G.S., 1991 – Developing a neem-based insecticide for<br />

Canada.- Memoirs of the Entomological Society of Canada, 159: 39-47.<br />

LA TORRE A., ALEGI S., IMBROGLINI G., 2002 – Mezzi <strong>di</strong> <strong>di</strong>fesa in agricoltura biologica.- Informatore Agrario, 16<br />

Suppl.1: 4-42.<br />

MAGNANO DI SAN LIO G., VACANTE V., 1989 – I funghi entomopatogeni nella lotta biologica contro i fitofagi.-<br />

Informatore Fitopatologico, 11: 17-25.<br />

ROVESTI L., DESEO K.V., 1990 – Aza<strong>di</strong>rachta in<strong>di</strong>ca A Juss (Neem) e sue potenzialità nella lotta contro gli insetti.-<br />

Informatore Fitopatologico, 11: 27-32.<br />

SCHMUTTERER H., 1990 – Properties and potential of natural pesticide from the neem tree, Aza<strong>di</strong>rachta in<strong>di</strong>ca.- Ann.<br />

Revue Entomology: 271-297.<br />

TREMBLAY E., 1985 – Entomologia Applicata. Vol. 1. Generalità e mezzi <strong>di</strong> controllo. Liguori Ed., Napoli: 203 pp.<br />

TSOLAKIS H., LETO G., RAGUSA S., 1997 – Effects of some materials on Tetranichus urticae Koch (Acariformes,<br />

Tetranichidae) and Typhlodromus exhilaratus Ragusa (Parasitiformes, Phytoseiidae).- 4th <strong>International</strong><br />

Conference on pest in agriculture, 6-8 January, Le Corum, vol. I: 239-245.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

75


12<br />

DETERMINATION OF Cd (II), Cu (II), Pb (II), AND Zn (II) IN <strong>BIOLOGICAL</strong> AND NOT <strong>BIOLOGICAL</strong><br />

CITRUS ESSENTIAL OILS BY DERIVATIVE POTENTIOMETRIC STRIPPING ANALYSIS (dPSA)<br />

Dugo Giacomo, Giuffrida Daniele, Drogo Alessandra, La Pera Lara<br />

Dipartimento <strong>di</strong> Chmica Organica e Biologica Università <strong>di</strong> Messina Salita Sperone, 31, 90166 S. Agata -Messina<br />

Citrus essential oils are complex mixtures of many classes of volatile (85-98%) and not volatile (15-2%)<br />

compounds (1); they are used in food and cosmetic farm as aromatizer and in pharmaceutical industry as ad<strong>di</strong>tives of<br />

some drugs (2). Their wide use implies a strict control of the presence of organic and inorganic contaminants as heavy<br />

metals. There is a lack of available data regar<strong>di</strong>ng to the presence of heavy metals: some reports concerning to the<br />

micro-elements composition of citrus peel extracts were found (3,4). Metals levels in citrus essential oils mostly<br />

depend on the type of soil, agrochemical treatments, but also on extraction procedures as scraping or pressing, since<br />

the fruits inevitably come in contact with metallic surfaces (5). In this work potentiometric stripping analysis is used to<br />

determine the content of Cd (II), Cu (II), Pb (II) and Zn (II) in lemon, mandarin, orange and bergamot non biological<br />

essential oils produced in Sicily and Calabria in the crop year 1999 (6). Moreover 13 samples of bergamot biological<br />

essential oils and 13 samples of non-biological essential oils produced in Calabria in the crop year 2000, were stu<strong>di</strong>ed.<br />

MATERIALS AND METHODS<br />

Reagents<br />

All oils are sampled in dark glassy bottles, with blind nipples, and stored at 4°C until the analyses. Ultra pure<br />

hydrochloric acid (34-37%), Hg (II) (1000 µgmL -1 , 1M in hydrochloric acid) and Cd (II), Cu (II), Pd (II), Pb (II), Zn (II)<br />

(1000 µgmL -1 , 0.5 N in HNO3) standard solutions were purchased by Panreac (Barcelona, Spain); Ga (NO3)3⋅3H2O (5 g,<br />

99.9%) was purchased by Aldrich Chem. Co. (Milwakee, WI, USA). The extracts were filtrated on a carbon column<br />

Supelclean ENVI-Carb SPE (0.5 g, 6 mL), purchased by Supelco (Bellefonte, PA, USA).<br />

Apparatus<br />

Metals analysis are carried out by a PSA ION 3 potentiometric stripping analyzer (Steroglass, S. Martino in Campo,<br />

Perugia, Italy), connected to an IBM-compatible personal computer. The analyzer operates under the control of the<br />

NEOTES 2.0.1 software package (Steroglass). The determination is carried out in a conventional three-electrode cell.<br />

The working electrode was a glassy carbon one coated with a thin mercury film; reference electrode was an Ag/AgCl<br />

electrode (KCl 3M), and a platinum wire auxiliary electrode was used.<br />

Procedures<br />

Hydrochloric acid extraction<br />

A 8.60 g (10.00 mL) sample aliquot and a 10 mL volume of 36% ultrapure-hydrochloric acid (Panreac, Barcellona), are<br />

introduced in a teflon beaker. The extraction was carried out for about 30 min under magnetic stirring at the temperature<br />

of 90 °C. The acid sample, was transferred in a separating funnel and let to cool for about 5 minutes. In order to favour<br />

the separation of the two phases, the mixture is spiked with 1.0 mL ultrapure methanol, then the acid layer was collected<br />

in a 20.00 mL flask. The organic layer is extracted again with 4.50 mL of concentrated hydrochloric acid for 5 min,<br />

under the same con<strong>di</strong>tions described, and then washed with 4.50 mL of boiling water; washings were added to the acid<br />

extracts and made up to the mark with water. The obtained solution was passed through a carbon column. The filtered<br />

solution was used for the simultaneous determination of Cd (II), Cu (II), Pb (II), and Zn (II).<br />

Potentiometric determination<br />

All analysis were executed in a conventional three electrodes cell; working electrode was a glassy carbon electrode<br />

coated with a Hg film, the reference one was an Ag/AgCl electrode, the counter was a Pt electrode. The concentrations<br />

of Cd (II), Cu (II), Pb (II), and Zn (II) were simultaneously determined. 1.00 mL of acid extract, 17.50 mL of ultrapure<br />

water, 1.00 mL of 1000 µg mL -1 Hg (II) as oxidant agent and 0.50 mL of 10 µg mL -1 Ga (III) - in order to prevent<br />

Cu-Zn complexes formation on the mercury film (6)- were put into the electrochemical cell. The quantitative analysis<br />

was executed by the multiple points standard ad<strong>di</strong>tions method. The potentiometric parameters are reported on table 1.<br />

Method performances<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

76


Recovery and repeatabilty tests were menaged by emploing the above described method to lemon, mandarin, orange<br />

and bergamot essential oils. Cd (II), Cu (II), Pb (II), and Zn (II) recoveries always spanned from 95.00-100.50%<br />

evidencing that metals quantification remained unaffected by the clean-up steps. The repeatability was > 95.00% for<br />

Cd (II), Cu (II), Pb (II), and Zn (II) in all types of oils. Detection limits obtained for the four analytes, ranged from<br />

0.10 to 0.98 ng g -1 in lemon, mandarin, sweet orange and bergamot essential oils.<br />

Application<br />

Figure 1 show the concentration of Cd, Cu, Pb and Zn in lemon, sweet orange, mandarin in Sicilian and Calabrian<br />

bergamot essential oils. It’s evident that Cd is the metal present in the lowest amount and Zn in the highest, in all types<br />

of essential oils. Cd concentration spanned from 2 to 23.3 ng g -1 ; Cu from 17.8 to 380.0 ng g -1 ; Pb ranged from 75.9 to<br />

180.3 ng g -1 and Zn from 804.5 to 1647.5 ng g -1 .<br />

Moreover, the concentration of Cd, Cu, Pb and Zn was determined in 13 samples of biological bergamot essential oils,<br />

and 13 non biological ones. Figure 2 evidences that there was any significant <strong>di</strong>fference between biological and non<br />

biological oils metals level.<br />

LITERATURE<br />

1. Di Giacomo A., Mincione B.Gli oli essenziali agrumari in Italia. 1994 Ed. Laruffa, p.196.<br />

2. Gorinstein S., Martin-Belloso O., Park Y. S., Haruenkit R., Lojek A., Ciz, M., Caspi A., Libman, I., Trakhtenberg<br />

S.Comparison of some biochemical characteristics of <strong>di</strong>fferent citrus fruit. Food Chem. 2001, 74, 309-315.<br />

3. Simpkins W.A., Honway, L., Wu M., Harrison M., Goldberg D. Trace elements in Australian orange juice and<br />

other products. Food Chem, 2000, 71, 423-433.<br />

4. Di Giacomo, A. Tecnologia dei prodotti agrumari. Parte II. 1988, duplicated lecture notes, Univrsità <strong>di</strong> Reggio<br />

Calabria, 95-120.<br />

5. La Pera L., Saitta M., Di Bella G., Dugo G.mo. Simultaneous determination of Cd (II), Cu (II) Pb (II) and Zn (II) in<br />

citrus essential oils by derivative potentiometric stripping analysis. J. Agric. Food Chem. 2003 in press<br />

6. La Pera L., Lo Curto S., Visco A., Dugo G.mo. Derivative Potentiometric Stripping Analysis (dPSA) used for<br />

determination of cadmium, copper, lead and zinc in in Sicilian olive oils. J. Agric. Food Chem. 2002, 50, 3090-<br />

3094.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

77


ng/g<br />

1600,00<br />

1400,00<br />

1200,00<br />

1000,00<br />

800,00<br />

600,00<br />

400,00<br />

200,00<br />

0,00<br />

Lemon Mandarin Sweet orange Bergamot<br />

Figure 1.Metals content of lemon, mandarin, sweet orange and bergamot essential oil from 1999.<br />

350<br />

300<br />

250<br />

200<br />

ng/g<br />

150<br />

100<br />

50<br />

0<br />

142,0<br />

200,4<br />

128,6<br />

Fig 2: mean metals content in biological and non biological bergamot essential oils produced in Calabria in the<br />

crop year 2000.<br />

78<br />

166,1<br />

343,2<br />

Cu Pb Zn<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

303,6<br />

Cd<br />

Cu<br />

Pb<br />

Zn<br />

Non bio<br />

Bio


13<br />

IMPIEGO DEL TIMOLO NEL CONTROLLO DELLA VARROOSI DELLE API.<br />

EFFICACIA, PERSISTENZA E RESIDUI.<br />

I. Floris 1 , A. Satta 2 , P. Cabras 3 , A. Angioni 3<br />

1 Dipartimento <strong>di</strong> Protezione delle Piante - Sezione <strong>di</strong> Entomologia agraria, Università <strong>di</strong> Sassari, Via De Nicola, 07100<br />

Sassari.<br />

2 Istituto per lo Stu<strong>di</strong>o degli Ecosistemi – Sezione Ecologia applicata e Controllo biologico - CNR Sassari, Via De<br />

Nicola, 07100 Sassari.<br />

3 Dipartimento <strong>di</strong> Tossicologia, Università <strong>di</strong> Cagliari, Via Ospedale 72, 09124 Cagliari.<br />

SUMMARY<br />

During the last years, after Varroa destructor resistance have been detected to some important synthetic acaricides,<br />

many alternative ways of varroa control based on natural products were tested. Accor<strong>di</strong>ng to the literature, thymol<br />

seems to deserve a strong interest for the treatment of varroa infestation. In this paper, the results of an apiary trial<br />

conducted during the summer of 2001 in a Me<strong>di</strong>terranean environment (Sar<strong>di</strong>nia, Italy) were reported. The<br />

effectiveness of thymol, the persistence in two acaricide formulations (gel - Apiguard and vermiculite – Api Life<br />

VAR®) and the residues in honey and wax were evaluated. Both the thymol formulations, after the treatments, reduced<br />

significantly the levels o mite infestations of both adult bees and sealed brood (average of about 90%). However, a<br />

considerable colony-to-colony variability in effectiveness was recorded. A moderate negative effect of the thymol<br />

treatments on the colony development was also observed. During two weeks of treatments, the bees removed about all<br />

the applied product (gel or vermiculite). Residues found in honey varied from 0.40 and 8.80 mg/Kg for Apiguard and<br />

from 0.12 and 4.03 mg/Kg for Api Life VAR®, but accor<strong>di</strong>ng to EU regulation No. 2377/90 thymol is a non-toxic<br />

veterinary drug, which do not need a MRL (maximal residue limit). The wax residues reached relatives higher levels<br />

than honey since thymol is a fat-soluble ingre<strong>di</strong>ent (average of 21.6±13.0 and 147.7±188.9 for Api Life VAR and<br />

Apiguard, respectively). However, after the treatment, thymol rapidly evaporates from wax.<br />

INTRODUZIONE<br />

L’acaro Varroa destructor Anderson & Trueman, agente della Varroosi delle api, rappresenta il più temibile parassita <strong>di</strong><br />

Apis mellifera L. ed il suo controllo in apiario impone il ricorso a trattamenti acarici<strong>di</strong>, spesso me<strong>di</strong>ante l’impiego <strong>di</strong><br />

sostanze <strong>di</strong> sintesi (Acrinathrine, Clorbenzialate, Chlorfenvinphos, Chlor<strong>di</strong>merform, Fenotiazine, Bromopropilate ,<br />

Fluvalinate, Amitraz, Coumaphos, Cymiazole, Flumethrin, Tetra<strong>di</strong>fon), con conseguenti problemi <strong>di</strong> farmaco-resistenza<br />

e <strong>di</strong> residui nei prodotti dell’alveare, già segnalati in letteratura (Milani, 1999; Wallner, 1999).<br />

Negli ultimi anni, si sta affermando, a livello mon<strong>di</strong>ale, l’impiego <strong>di</strong> sostanze <strong>di</strong> origine naturale, ed in particolare <strong>di</strong><br />

alcuni aci<strong>di</strong> organici (acido formico, acido ossalico e acido lattico) e del timolo (Imdorf et al., 1999; Calderone, 1999;<br />

Whittington et al., 2000).<br />

Nel presente lavoro, è stata stu<strong>di</strong>ata l’efficacia del timolo nel controllo della Varroosi in un ambiente me<strong>di</strong>terraneo,<br />

valutandone altresì i residui nel miele e nella cera e verificandone la persistenza nelle due <strong>di</strong>verse formulazioni<br />

commerciali impiegate.<br />

Materiali e Meto<strong>di</strong><br />

Prova in apiario<br />

La prova è stata condotta in un apiario della Sardegna centro-meri<strong>di</strong>onale (Oristano) nel periodo giugno-luglio del 2001.<br />

Una postazione <strong>di</strong> 15 alveari con arnie Dadant-Blatt standard da 10 favi e colonie derivate da Apis mellifera ligustica<br />

Spin., è stata ripartita in 3 gruppi <strong>di</strong> 5 alveari ciascuno, omogenei per consistenza ed infestazione, valutate,<br />

rispettivamente, me<strong>di</strong>ante rilievi preliminare sulla superficie <strong>di</strong> covata e tramite campionamento <strong>di</strong> api adulte (300 api<br />

per alveare) e <strong>di</strong> covata opercolata (300 cellette per alveare ) (Floris et al., 2001).<br />

Per il trattamento sono state utilizzate due formulazioni a base <strong>di</strong> timolo: Api Life VAR® e Apiguard. La prima,<br />

confezionata in tavolette <strong>di</strong> vermiculite da circa 12 g contenenti circa il 74% <strong>di</strong> timolo (pari a circa 9 g <strong>di</strong> timolo per<br />

tavoletta), il 3,7% <strong>di</strong> mentolo, il 3,7% <strong>di</strong> canfora e il 16% <strong>di</strong> eucaliptolo; mentre nella seconda formulazione il timolo<br />

era incluso in gelatina nella percentuale del 25% e confezionato in vaschette contenenti 50 g <strong>di</strong> gel (12,5 g <strong>di</strong> timolo).<br />

Un gruppo <strong>di</strong> alveari è stato trattato con Api Life VAR, uno con Apiguard ed il terzo è stato tenuto come testimone. Il<br />

trattamento è stato eseguito il 21 Giugno 2001 impiegando rispettivamente due mezze tavolette <strong>di</strong> Api Life VAR ed una<br />

vaschetta <strong>di</strong> timolo in gel per alveare. Un secondo trattamento è stato effettuato il 6 Luglio 2001.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

79


Durante l’esperimento, per due volte la settimana, è stato eseguito il conteggio delle femmine <strong>di</strong> Varroa cadute sul<br />

fondo dell’arnia. Alla fine della prova sono stati nuovamente eseguiti i rilievi, per valutare consistenza e livello <strong>di</strong><br />

infestazione degli alveari trattati e testimone.<br />

Prima, durante e dopo il trattamento, sono stati inoltre eseguiti i prelievi <strong>di</strong> miele e <strong>di</strong> cera da ciascun alveare trattato e<br />

testimone, nonché dei formulati dai soli alveari trattati, per valutare la persistenza e i residui del timolo.<br />

I campioni <strong>di</strong> miele (~ 5 g per campione) sono stati prelevati da 100 cellette <strong>di</strong>sopercolate scelte a caso da tre favi del<br />

nido <strong>di</strong> ciascun alveare, aspirandolo con una siringa. Il campione <strong>di</strong> cera (~ 10 g) è stato ottenuto tagliando 3 porzioni <strong>di</strong><br />

circa 2 cm 2 prelevati da <strong>di</strong>versi favi del nido <strong>di</strong> ciascun alveare. Infine, i prelievi delle formulazioni sono stati effettuati<br />

asportando un frammento <strong>di</strong> gelatina o <strong>di</strong> vermiculite. I campioni sono stati conservati in freezer (-18°C) fino al<br />

momento dell’analisi.<br />

L’efficacia dei trattamenti è stata valutata impiegando come parametro la percentuale <strong>di</strong> mortalità M (Henderson e<br />

Tilton, 1955) calcolata come:<br />

⎡ ⎛ Bc ⋅ At ⎞⎤<br />

M = 100 ⋅ ⎢1<br />

− ⎜ ⎟⎥<br />

⎣ ⎝ Bt ⋅ Ac ⎠⎦<br />

dove Bc e Bt rappresentano la percentuale <strong>di</strong> infestazione (degli adulti o della covata opercolata) prima del trattamento,<br />

rispettivamente negli alveari testimone (Bc) e in quelli trattati (Bt); Ac e At rappresentano la percentuale <strong>di</strong> infestazione<br />

dopo il trattamento, rispettivamente negli alveari testimone e in quelli trattati.<br />

Reattivi<br />

Gli standard analitici del Timolo (98%), Cineolo (99%), Mentolo (96%) e Canfora (96%) sono stati ottenuti dalla<br />

Aldrich Chemical, Janssen (Geel, Belgium), Carlo Erba (Milano Italia), rispettivamente. Le soluzioni madre (1000<br />

mg/Kg) sono state preparate in acetone (SupraSolv, Merck, Darmstadt, Germany). Le soluzioni <strong>di</strong> lavoro sono state<br />

preparate giornalmente, per <strong>di</strong>luizione con estratti in <strong>di</strong>etil etere <strong>di</strong> miele e cera non trattati (controlli). Il <strong>di</strong>etil etere era<br />

solvente per analisi (Merck, Darmstadt, Germany).<br />

Procedure <strong>di</strong> estrazione<br />

Formulati - Un g <strong>di</strong> ciascun formulato è stato pesato in un provettone da 50 ml con tappo a vite, venivano poi aggiunti<br />

20 ml of metanolo (Chromanorm per HPLC, Prolabo) ed il protettone agitato (15 min) in un agitatore rotante e poi<br />

sonificato per 5 min in un bagno ad ultrasuoni (Transsonic T460). Un’aliquota <strong>di</strong> metanolo (100 µl) veniva <strong>di</strong>luita a 5<br />

ml con acetone ed iniettata in GC.<br />

Miele - Un g <strong>di</strong> miele veniva pesato in un provettone da 15 ml con tappo a vite e veniva solubilizzato con 2 g d’acqua,<br />

venivano poi aggiunti 2 ml <strong>di</strong> etere <strong>di</strong>etilico, ed il protettone agitato (10 min) in un agitatore rotante. Dopo separazione<br />

delle fasi, un’aliquota dell’estratto era iniettata in GC.<br />

Cera - Si pesavano 0,5 g <strong>di</strong> cera in un provettone da 25 ml con tappo a vite, si aggiungevano 5 ml <strong>di</strong> miscela<br />

metanolo/acqua (1:1) ed il provettone veniva immerso in un bagnomaria a 70 °C fino a <strong>di</strong>ssoluzione della cera, e quin<strong>di</strong><br />

agitato in vortex per 1 min. Dopo raffreddamento a temperatura ambiente, venivano aggiunti 5 ml <strong>di</strong> etere <strong>di</strong>etilico, ed il<br />

provettone sottoposto ad agitazione per 15 min. in agitatore rotante. Dopo sepa-razione delle fasi, l’estratto etereo<br />

veniva centrifugato ed un’aliquota iniettata in GC.<br />

Recuperi<br />

Campioni non trattati <strong>di</strong> miele e cera venivano fortificati con 0,1, 0,5, 2,0 e 5,0 mg/Kg of timolo, mentolo, cineolo e<br />

canfora, ed analizzati secondo le meto<strong>di</strong>che descritte precedentemente. Le analisi sono state replicate quattro volte per<br />

ogni livello <strong>di</strong> fortificazione. La me<strong>di</strong>a dei recuperi ottenuti per il miele era 97% (range 84-111%) con un coefficiente <strong>di</strong><br />

variazione massimo (CV) del 5,6%; e per la cera 89% (range 82-98%) con un coefficiente <strong>di</strong> variazione massimo (CV)<br />

<strong>di</strong> 8,5%.<br />

Gascromatografo<br />

I campioni sono stati analizzati usando un gascromatografo HRGC 5160 Serie Mega equipaggiato con un detector FID<br />

80 , un’autocampionatore AS 800, un’iniettore split-splitless (Carlo Erba, Milano, Italia), e collegato ad un integratore<br />

HP 3396 A (Hewlett Packard, Avondale, PA, USA). La colonna era una capillare in silice fusa DB-5 MS (5% Phenyl-<br />

Methyl-Polysiloxane) 30 m x 0.25 mm id e 0.1µm <strong>di</strong> spessore del film (J&W Scientific, Folsom, CA). L’iniettore ed il<br />

detector erano tenuti ad una temperatura <strong>di</strong> 100 °C e 200 °C, rispettivamente. Le analisi dei formulati venivano eseguite<br />

iniettando 2 µl in modalità split, con rapporto <strong>di</strong> splitaggio <strong>di</strong> 1:10, mentre tutti gli altri campioni venivano analizzati<br />

iniettando 2 µl in modalità splitless (30 s). La temperatura del forno era programmata come segue: 60 °C (5 min), salita<br />

fino a 130 °C (2 °C/min) ed isoterma per 4 min, salita fino a 180 °C (10 °C/min). L’elio era il gas <strong>di</strong> trasporto e <strong>di</strong><br />

makeup a 1,8 e 30 ml/min, rispettivamente. La fiamma del FID era alimentata da aria ed idrogeno a 250 e 30 ml/min,<br />

rispettivamente. Le rette <strong>di</strong> taratura venivano calcolate fra le altezze dei picchi e le concentrazioni utilizzando il metodo<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

80


dello standard esterno. E’ stata trovata una buona linearità nel range 0,1-5,0 mg/Kg con un coefficiente <strong>di</strong> correlazione<br />

<strong>di</strong> 0,9994. Il cleanup non era necessario in quanto non vi erano picchi interferenti. Il limite <strong>di</strong> determinazione (Their and<br />

Zeumer, 1987) era <strong>di</strong> 0,1 mg/Kg.<br />

Analisi Statistica<br />

I dati acquisiti durante la sperimentazione sono stati sottoposti ad analisi statistica (ANOVA) previa trasformazione<br />

angolare (arcsin √y/100), nel caso <strong>di</strong> valori percentuali, al fine <strong>di</strong> ridurre l’eterogeneità della varianza. Nelle tabelle e<br />

nelle figure sono riportati I valori non trasformati. Quando I test F risultavano significativi, le me<strong>di</strong>e sono state separate<br />

applicando il test della Differenza Minima Significativa (LSD con α = 0,05).<br />

RISULTATI E DISCUSSIONE<br />

Efficacia dei trattamenti<br />

La tabella I evidenzia come, prima dell’ inizio degli esperimenti, nessuna <strong>di</strong>fferenza statisticamente significativa fosse<br />

riscontrabile fra i tre gruppi sperimentali, relativamente alla superficie <strong>di</strong> covata opercolata ed ai livelli <strong>di</strong> infestazione.<br />

La tabella II riporta i valori per gli stessi parametri registrati al termine del trattamento.<br />

Tab. I – Infestazione e consistenza degli alveari prima del trattamento.<br />

<strong>Gruppo</strong> <strong>di</strong> Alveari Infestazione covata Infestazione api adulte Superficie <strong>di</strong> covata<br />

opercolata (%)<br />

(%)<br />

(cm 2 )<br />

Api Life Var® 2,6 ± 1,2 3,1 ± 1,7 2.387 ± 1.071<br />

Apiguard 2,6 ± 1,0 2,8 ± 1,0 2.425 ± 1.128<br />

Testimone 2,8 ± 2,2 2,1 ± 0,9 2.368 ± 977<br />

Le me<strong>di</strong>e nella stessa colonna non sono significativamente <strong>di</strong>fferenti (ANOVA, P > 0,05)<br />

Tab. II – Infestazione e consistenza degli alveari dopo il trattamento.<br />

<strong>Gruppo</strong> <strong>di</strong> Alveari Infestazione covata Infestazione api adulte Superficie <strong>di</strong> covata<br />

opercolata (%)<br />

(%)<br />

(cm 2 )<br />

Api Life Var® 0,7 ± 0,5 a 0,4 ± 0,5 a 902 ± 319 a<br />

Apiguard 1,7 ± 0,6 a 1,5 ± 1,0 a 1.090 ± 263 a<br />

Testimone 8,4 ± 4,8 b 8,0 ± 6,1 b 1.598 ± 282 b<br />

Le me<strong>di</strong>e nella stessa colonna seguite dalla stessa lettera non sono significativamente <strong>di</strong>fferenti (ANOVA, P > 0,05 LSD<br />

test)<br />

I livelli <strong>di</strong> infestazione, sia della covata sia degli adulti, sono <strong>di</strong>minuiti nei trattati ed aumentati nel testimone, mentre la<br />

superficie <strong>di</strong> covata opercolata è <strong>di</strong>minuita in tutti e tre i gruppi anche se in misura maggiore nei trattati. Le <strong>di</strong>fferenze<br />

riscontrate sono risultate statisticamente significative solo tra i trattati ed il testimone. Tali <strong>di</strong>fferenze, evidenziano un<br />

effetto del timolo sulla consistenza delle colonie, con una flessione più marcata negli alveari trattati rispetto ai<br />

testimoni.<br />

L’efficacia, espressa in termini <strong>di</strong> percentuale <strong>di</strong> mortalità, nel gruppo trattato con Apiguard, è risultata pari a 90,4 ±<br />

8,3% ed a 95,5 ± 8,7%, considerando, rispettivamente, il livello <strong>di</strong> infestazione della covata e degli adulti. Nel gruppo<br />

trattato con Api Life VAR®, considerando i medesimi parametri nello stesso or<strong>di</strong>ne, sono stati riscontrati valori pari a<br />

74,8 ± 13,1% e <strong>di</strong> 81,3 ± 15,5%. Tali <strong>di</strong>fferenze non sono risultate statisticamente significative per effetto dell’elevata<br />

variabilità rilevata all’interno <strong>di</strong> ogni gruppo, che evidenzia un’azione <strong>di</strong> tale composto volatile presumibilmente<br />

con<strong>di</strong>zionata da fattori biologici e microclimatici interni all’alveare.<br />

L’andamento della caduta degli acari durante l’esperimento, è riportato nella Figura 1. La mortalità più elevata é stata<br />

riscontrata nel gruppo trattato con Apiguard durante la prima settimana <strong>di</strong> trattamento e, in seguito alla sostituzione<br />

delle vaschette, nella terza settimana.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

81


N° <strong>di</strong> varroe<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

17-21/VI<br />

21-25/VI<br />

25-28/VI<br />

Fig. 1- Andamento della caduta degli acari<br />

Persistenza e residui del timolo<br />

Apiguard Api Life Var Controllo<br />

28/VI-2/VII<br />

2-5/VII<br />

a) Metodo analitico<br />

La meto<strong>di</strong>ca messa a punto nel presente lavoro per l’estrazione del timolo è risultata estremamente rapida e non ha<br />

richiesto alcun clean-up rispetto ai meto<strong>di</strong> riportati in precedenti lavori (Bogdanov et al. 1998, Martel e Zeggane, 2002;<br />

Nozal et al. 2002), in quanto gli estratti non hanno evidenziato picchi interferenti. The average recovery for honey was<br />

97% (range 84-111%) with a maximum coefficient of variation (CV) of 5.6%; and for wax it was 89% (range 82-98%)<br />

with a maximum coefficient of variation (CV) of 8.5%. A good linearity was achieved in the 0.1-5.0 mg/Kg range with<br />

a correlation coefficient of 0.9994. Cleanup was unnecessary because there were no interference peaks. The limit of<br />

determination (Their and Zeumer, 1987) was 0,1 mg/Kg.<br />

b) Residui<br />

Inizialmente si è proceduto ad un controllo del titolo del timolo in entrambi i formulati. Secondo quanto riportato in<br />

etichetta una tavoletta <strong>di</strong> Api Life Var® dovrebbe contenere il 2,52% <strong>di</strong> vermiculite ed il resto <strong>di</strong> oli essenziali; un<br />

controllo da noi effettuato ha accertato la presenza <strong>di</strong> vermiculite in quantità superiore all’11% (11,4±0,64). A tale<br />

risultato si è pervenuti pesando dopo essiccamento in stufa, quantità note <strong>di</strong> Api Life Var®, precedentemente sottoposte<br />

all’estrazione degli oli essenziali secondo la meto<strong>di</strong>ca descritta. I titoli in timolo dell’Api Life Var e dell’Apiguard,<br />

determinati gas cromatograficamente, sono risultati essere del 56% contro il 74% e del 18% contro il 25% <strong>di</strong>chiarati.<br />

I campioni <strong>di</strong> Api Life Var ed Apiguard, prelevati durante l’esperimento, si presentavano “Propolizzati” (<strong>di</strong>sgregati<br />

dall’azione delle api).<br />

I residui <strong>di</strong> timolo nel miele prelevato dalle arnie trattate con Api Life Var® variano notevolmente da alveare ad alveare<br />

(Tab. III). Alla fine della prima settimana dal trattamento, la me<strong>di</strong>a dei residui <strong>di</strong> timolo nel miele, prelevato dalle 5<br />

arnie prese in considerazione, è stata <strong>di</strong> 1,97 ± 1,54 mg/Kg; tale valore è <strong>di</strong>minuito nel corso della seconda settimana<br />

fino a 0,75 ± 0,44 mg/Kg. A questo punto, sostituite le vecchie tavolette, i residui aumentano nuovamente nel corso<br />

della terza settimana (1,05 ± 1,01 mg/Kg) per decadere nel corso dei sette giorni successivi fino al valore <strong>di</strong> 0,62 ± 0,57<br />

mg/Kg. Da tale andamento si evince che il rilascio più abbondante del timolo nelle nuove tavolette viene in parte<br />

trattenuto dal miele, dal quale tuttavia evapora in parte nell’arco della seconda settimana.<br />

Nei campioni <strong>di</strong> miele prelevati dagli alveari trattati con Apiguard, possiamo notare la stessa grande variabilità <strong>di</strong><br />

concentrazione del residuo <strong>di</strong> timolo, con un’analoga decadenza della concentrazione tra prima e seconda e tra terza e<br />

quarta settimana <strong>di</strong> trattamento (Tab. IV). I valori alla fine della prima e della terza settimana sono significativamente<br />

più elevati rispetto a quelli riscontrati con l’uso <strong>di</strong> Api Life Var®. Ciò può essere messo in correlazione con la maggior<br />

concentrazione del timolo nell’Apiguard rispetto all’ Api Life Var® e con le <strong>di</strong>fferenti modalità <strong>di</strong> erogazione <strong>di</strong> tale<br />

composto.<br />

Nel miele prelevato dagli alveari testimone, la concentrazione <strong>di</strong> timolo, quando presente, è molto modesta (0,11 ± 0,21<br />

mg/Kg) (Tab. III).<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

82<br />

5-8/VII<br />

9-12/VII<br />

12-16/VII<br />

16-19/VII


Tab. III - Residui <strong>di</strong> timolo(mg/Kg) nel miele (Me<strong>di</strong>a±Dev.St.).<br />

Formulazione Prelievo a 7gg Prelievo a 14gg Prelievo a 7gg Prelievo a 14gg<br />

dal 1° tratt. dal 1° tratt. dal 2° tratt. dal 2° tratt.<br />

Api Life Var® 1,97±1,54 0,75±0,44 1,05±1,01 0,62±0,57<br />

Apiguard 3,07±1,80 0,89±0,70 2,55±3,50 0,96±0,61<br />

In generale, i residui nel miele si presentano altamente variabili come già riscontrato da Bogdanov et al. (1998). Tenuto<br />

conto che si tratta <strong>di</strong> un composto molto volatile, la variabilità potrebbe essere in funzione delle <strong>di</strong>fferenti con<strong>di</strong>zioni<br />

microclimatiche che possono verificarsi negli alveari in rapporto alle <strong>di</strong>verse con<strong>di</strong>zioni biologiche delle colonie.<br />

I residui <strong>di</strong> timolo nei campioni <strong>di</strong> cera, prelevati prima e al termine della quarta settimana <strong>di</strong> trattamento, sono riportati<br />

nelle tabella IV.<br />

Tab.IV - Residui <strong>di</strong> timolo (mg/Kg) nella cera (Me<strong>di</strong>a±Dev.St.).<br />

Formulazione Prima del trattamento Alla fine del trattamento<br />

Api Life Var® n.d. 21,6±13,0<br />

Apiguard 1,0±0,7 147,7±188,9<br />

Nei campioni <strong>di</strong> cera prelevati prima del trattamento dagli alveari testimone, la concentrazione del timolo, quando<br />

presente, ha valori pari a 2,9 ± 4,6 mg/Kg, alla fine del trattamento i valori sono <strong>di</strong> 1,5 ± 0,8 mg/Kg. La medesima<br />

natura apolare <strong>di</strong> timolo e cera comporta evidentemente una maggiore presenza del composto nella cera stessa piuttosto<br />

che nel miele.<br />

In definitiva, sulla base dei risultati acquisiti nel presente stu<strong>di</strong>o, si conferma la buona efficacia del timolo, in<br />

riferimento alle due <strong>di</strong>fferenti formulazioni testate, nel controllo della Varroosi in apiario, con una riduzione percentuale<br />

me<strong>di</strong>a dell’infestazione del 90 % e del 95% circa se riferita alla covata o alle api adulte. Questi risultati, comparati con<br />

quelli ottenuti con altri acarici<strong>di</strong> nello stesso ambiente (Floris et al., 2001; Floris et al., 2001), <strong>di</strong>mostrano la vali<strong>di</strong>tà del<br />

timolo, seppure con una modesta incidenza negativa del trattamento sullo sviluppo delle colonie, come mezzo<br />

alternativo agli acarici<strong>di</strong> <strong>di</strong> sintesi per il controllo della Varroa, con il vantaggio che, trattandosi <strong>di</strong> un composto <strong>di</strong><br />

origine naturale, non presenta alcun limite massimo <strong>di</strong> residuo nel miele (Imdorf et al., 1999; Wallner, 1999).<br />

BIBLIOGRAFIA<br />

Bogdanov S., Imdorf A., Kilchenmann V., 1998 - Residues in wax and honey after Apilife Var treatment. Apidologie<br />

1998, 29, 513-524.<br />

Calderone N.W., 1999 – Evaluation of formic acid and Thymol-based blend of natural products for fall control of<br />

Varroa jacobsoni (Acari: Varroidae) in colonies of Apis mellifera (Hymenoptera: Apidae). J. Econ. Entomol.,<br />

92(2): 253-260.<br />

Floris I., Cabras P., Garau V.L., Minelli E. V., Satta A., Troullier J., 2001 - Persistence and Effectiveness of Pyretroids<br />

in Plastic Strips Against Varroa Jacobsoni (Acari: Varroidae) and Mite Resistance in a Me<strong>di</strong>terranean Area. J.<br />

Econ. Entomol. 2001, 94(4): 806-810.<br />

Floris I., Satta A., Garau V.L., Melis M., Cabras P., Aloul N., 2001 - Effectivness, persistence, and residue of amitraz<br />

plastic strips in the apiary control of Varroa destructor. Apidologie 2001, 32, 557-585.<br />

Henderson C. F., Tilton E. W., 1955 - Tests with acaricides against brown wheat mite. J. Econ. Entomol., 1995, 48,<br />

157-161.<br />

Imdorf A., Bogdanov S., Ibáñez Ochoa R., Calderone N.W., 2001 – Use of essential oils for the control of Varroa<br />

jacobsoni Oud. In honey bee colonies. Apidologie, 30 (2-3): 209-228.<br />

Martel A.C., Zeggane S. – Determination of acaricides in honey by high-performance liquid chromatography with<br />

photo<strong>di</strong>ode array detection. Journal of Chromatography A. 954(1-2):173-180, 2002 Apr 19.<br />

Milani N., 1999 – The resistance of Varroa jacobsoni Oud. to acaricides. Apidologie, 30 (2-3): 229-234.<br />

Nozal M.J., Bernal J.L., Jimenez J.J., Gonzales M.J. Higes M., 2002 – Extraction of thymol, eucalyptol, menthol, and<br />

camphor residues from honey and beeswax – Determination by gas chromatography with flame ionization<br />

detection. Journal of Chromatography A. 954(1-2):207-215, 2002 Apr 19.<br />

Their H.P., Zeumer H., - 1987 – Manual of Pesticides Residues Analysis: VCH: Weinheim, Germany, Vol.1, pp. 37-74.<br />

Wallner K., 1999 - Varroacides and their residues in bee products. Apidology, 1999, 30, 235 -248.<br />

Whittington R., Winston M.L., Melathopoulos A.P., Higo H.A., 2000 – Evaluation of the botanical oils neem, thymol,<br />

and canola sprayed to control Varroa jacobsoni Oud. (Acari: Varroidae) and Acarapis woo<strong>di</strong> (Acari:<br />

Tarsonemidae) in colonies of honey bees (Apis mellifera L., Hymenoptera: Apidae). American Bee Journal, 140<br />

(7): 567-572.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

83


14<br />

ASSESMENT OF PHYTOTOXICITY TO GRAPEVINE OF TRADITIONAL AND NEW COPPER<br />

COMPOUNDS USED IN COPPER REDUCTION STRATEGIES IN ORGANIC VITICULTURE AND ITS<br />

RELATIONSHIP WITH ENVIRONMENTAL CONDITIONS AND NUMBER OF TREATMENTS<br />

Ilaria Pertot, Marco Delaiti, Diego Forti<br />

Istituto Agrario <strong>di</strong> S. Michele all’A<strong>di</strong>ge, via Mach 1, S. Michele all’A<strong>di</strong>ge, (TN), Italy<br />

ilaria.pertot@ismaa.it<br />

Introduction<br />

In organic viticulture Plasmopara viticola control is based almost exclusively on copper. The expected restrictions on<br />

copper used in organic agriculture in the European Union have stimulated the research of alternatives and the<br />

optimisation of copper allowed quantity. To compare efficacy against downy mildew of <strong>di</strong>fferent copper compounds<br />

several researches have been done, but phythotoxicity has received scant attention, particularly in relation to copper<br />

reduction strategies in organic viticulture. Phytotoxicity risk must be taken into consideration during grapevine<br />

phenological cycle, because copper compounds could affect the quality of grape and the vegetative balance of the plant.<br />

Researches have shown that, using the same Cu2+ dosage, efficacy and rainfastness of <strong>di</strong>fferent copper compounds and<br />

formulations are the same (Pertot et al., 2002). Reduction in annual copper quantity will be possible with a rationale<br />

use of dosages, that can vary between 30 to 70 g Cu2+/hl during the vegetative stage of the plant, depen<strong>di</strong>ng on weather<br />

con<strong>di</strong>tions and infection risk evaluation. The rationale dosages used must be associated with a careful protection against<br />

primary infections, the execution of treatments before forecasted rain and the increasing of frequency application in the<br />

period of maximum plant growth.<br />

Among new copper formulations, compounds and adjuvants only copper peptidate could allow a consistent reduction in<br />

copper annual quantity, giving at the same time a adequate efficacy level against the <strong>di</strong>sease (Pertot et al., l.c.).<br />

The aim of this research was: i) the evaluation, with low dosages, of phytotoxicity to grapevine in field of new copper<br />

formulations compared to the tra<strong>di</strong>tional ones; ii) the identification in controlled con<strong>di</strong>tions of the factors that induce<br />

phytotoxicity.<br />

Materials and metods<br />

The trials were done in the experimental organic vineyard of Istituto Agrario <strong>di</strong> S. Michele all’A<strong>di</strong>ge, located in<br />

Rovereto (TN, Italy). Chardonnay was the used cv. Test products, reference products and untreated control were<br />

arranged in a suitable statistical design (fully randomised design, with treatments replicated four times). Products were<br />

applied using a normal volume of 12 hl/ha, with a four times concentrated sprayer (tab.1). Phytotoxicity assessment was<br />

done following EPPO standars, guideline PP1/135(2). For each repetition twenty five leaves were randomly collected<br />

and classified using a scale depen<strong>di</strong>ng on the symptoms and the percentage of leaf surface affected.<br />

2001<br />

2002<br />

active ingre<strong>di</strong>ent commercial name Cu2+ g/ha active ingre<strong>di</strong>ent commercial name Cu2+ g/ha<br />

bordeaux mixture P. Bordolese Dispers<br />

copper hydroxide Kocide 2000<br />

copper sulphate Cutril<br />

cuprous oxide Cobre Nordox<br />

360, 600, 840<br />

bordeaux mixture<br />

copper hydroxide<br />

copper peptidate<br />

copper peptidate<br />

P. Bordolese Dispers<br />

Heliocuivre<br />

Peptiram 7 (2 times)<br />

Peptiram 7 (3 times)<br />

360, 600<br />

150<br />

copper peptidate<br />

copper peptidate<br />

Peptiram 5<br />

Peptiram 7<br />

300<br />

150<br />

cuprous oxide Cobre Nordox<br />

copper oxychloride ICC0087<br />

360, 600<br />

Tab.1 Field treatments in 2001 and 2002<br />

In greenhouse controlled con<strong>di</strong>tions the influence of temperature (5, 15, 25, 35° C), leaf wetness and number of<br />

treatments (1, 3, 5, 7) on phytotoxicity of copper peptidate (Peptiram 5) was evaluated. Potted plants, cv. Pinot gris,<br />

were used. For each treatment were used five plants with two shoots each. Phytotoxicity evaluation was done using<br />

three classes of intensity: low (from 0 to 0,5 % of leaf surface damaged), middle (from 0,6 to 5%) and high (from 5,1 to<br />

10 %) and in<strong>di</strong>cated as phytotoxicity index.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

84


phytotoxicity index (%)<br />

Results<br />

In field trials, phytotoxicity (fig. 3) was related to particular environmental con<strong>di</strong>tions (which were identified both in<br />

2001 and 2002 in prolonged leaf wetness), but the degree of damage depended on the copper compound used. Copper<br />

peptidates, followed by cuprous oxide, induced the highest phytotoxicity level (fig.1).<br />

Fig. 1 field results in 2001 (left) and 2002 (right). Same letter means that results are not significantly <strong>di</strong>fferent<br />

(P=0.05).<br />

phytotoxicity index (%)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

bordeaux mixture<br />

copper hydroxide<br />

copper sulphate<br />

cuprous oxide<br />

copper peptidate<br />

copper peptidate<br />

In controlled con<strong>di</strong>tions, low temperature, but also high ones, if associated with leaf wetness, induced phytotoxic effects<br />

(fig. 4), which were evident at cytological level before inducing macroscopic alterations on leaves. At cellular level<br />

copper precipitate was visible. Chemical composition of precipitates was determined by X ray microanalysis.<br />

Phytotoxicity increased with the increasing of the number of treatments.<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

phytotoxicity index (%)<br />

Fig. 2 Phytotoxicity index (percentage of leaf infected) on plants treated with an increasing number of application at<br />

<strong>di</strong>fferent temperature. Effect on dry plants (left) and on wet plants (rightside).<br />

85<br />

2.5<br />

2<br />

1.5<br />

a<br />

0.5<br />

a a<br />

a<br />

5°C 15°C 25°C 35°C<br />

d<br />

temperature<br />

c<br />

b<br />

1<br />

0<br />

bordeaux mixture<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

copper hydroxide<br />

bc<br />

cd<br />

copper peptidate<br />

copper peptidate<br />

d<br />

cuprous oxide<br />

b<br />

copper oxychloride<br />

5°C 15°C 25°C 35°C<br />

temperature<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

phytotoxicity index (%)<br />

a<br />

0<br />

1<br />

3<br />

5<br />

7


Fig 3 – 4 Symptoms of phytotoxicity in field and in greenhouse.<br />

Discussion and conclusion<br />

When long leaf wetness periods combined with low or very high temperatures are frequent it is necessary to be very<br />

careful in using copper compounds, as copper peptidate. Copper peptidate, which could be useful to reduce the annual<br />

allowed copper amount per hectar, must be used only when grapevine is less sensible to copper phytotoxicity, avoi<strong>di</strong>ng<br />

application until the end of flowering. Copper peptidate repeated treatments whithout periods of rains increase the risk<br />

of phytotoxicity. In this case could be useful to reduce dosages in the following treatments.<br />

Acknowledgements<br />

This work was funded by the Italian Ministry of Agriculture (MiPAF), research project “La <strong>di</strong>fesa delle colture in<br />

agricoltura biologica”.<br />

References<br />

I. Pertot, M. Delaiti, E. Mescalchin, M. Zini, D. Forti (2002) Attività antiperonosporica <strong>di</strong> nuove formulazioni <strong>di</strong><br />

composti rameici utilizzati a dosi ridotte e prodotti alternativi al rame impiegabili in viticoltura biologica, Atti giornate<br />

fitopatologiche 2002.<br />

AA.VV. (1997) Guidelines for the efficacy evaluation of plant protection products, vol. 1-2 OEPP/EPPO, France.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

86


15<br />

ORGANIC WHEAT QUALITY AND PRODUCTION: THE RESULTS OF THREE YEARS OF TRIALS<br />

Fabio Fusari, Antonella Petrini<br />

The relevant increasing of farms and areas interested in organic productions in Italy draws attention to the need of an<br />

experimentation which can help this sector for an equilibrate growth. CERMIS (Research and Experimental Centre for<br />

Plant Improvement “N. Strampelli”), in collaboration with ASSAM (Agency for Food and Agriculture Services in<br />

Marche region), has begun in 1998 an experimental project in the sector of autumn-vernal cereals in which the main<br />

objectives are identifying the varieties to employ and optimizing the cultivation techniques. A correct varietal choice is<br />

essential, in organic agriculture, in order to obtain acceptable productive and qualitative results. The morphological and<br />

physiological characteristics which make cultivars suitable for this kind of cultivation are: rusticity, resistance or<br />

tolerance to the main phytopathies, ability of competition with weeds and greater efficiency in the use of nitrogen. An<br />

other aspect to consider, especially in the case of bread wheat, is the qualitative one, because the milling industry<br />

requires <strong>di</strong>stinct technological characteristics of the stocks accor<strong>di</strong>ng to the <strong>di</strong>fferent kinds of product (bread, biscuits,<br />

‘panettone’, etc.). Qualitative characteristics, intrinsic in a specific variety, are also affected by pedological, climatic<br />

and agronomic factors; so the evaluation of each single variety within a cultivation system is fundamental, especially<br />

when the external inputs are reduced as in the case of organic agriculture.<br />

The activity within the project<br />

Since from 1998 a parcel trial for the varietal comparison of bread wheat has been carried out by an organic farm<br />

situated along the valley of Potenza river (Macerata, Italy) on a me<strong>di</strong>ally fertile, tendentially clayey, soil. The<br />

cultivation techniques which have been adopted are the ones usually employed by that farm, admitted by the EC Reg.<br />

2092/91. The main agronomic and qualitative attributes have been taken and statistically analysed in accordance with<br />

the methodologies adopted by the wheat national network in Italy. The twenty bread wheat varieties that have been<br />

evaluated have been chosen, between the ones registered to the national catalogue, on the basis of their agronomic,<br />

merchan<strong>di</strong>se (qualitative classes) and commercial characteristics. Also the old cultivar Abbondanza has been inserted in<br />

the trial, in order to verify its behaviour in the case of an organic method of cultivation.<br />

Table 1 - Production indexes (*) of the tested varieties<br />

Variety name 1999 2000 2001 average<br />

ABBONDANZA 108 101 134 114<br />

EUREKA 101 109 135 115<br />

SERIO 113 104 108 108<br />

CENTAURO 109 111 97 105<br />

BOLERO 93 110 94 99<br />

COLFIORITO 107 92 90 96<br />

SAGITTARIO 86 99 101 95<br />

ENESCO 91 101 87 93<br />

MIETI 109 95 63 89<br />

PANDAS 103 113 36 84<br />

SIBILLA 87 98 73 86<br />

VALLEROSA 95 86 67 83<br />

SANGIACOMO 98 81 61 80<br />

ETECHO 157 157<br />

GUADALUPE 140 140<br />

TREMIE 128 128<br />

TIBET 124 124<br />

GENIO 118 118<br />

BILANCIA 109 109<br />

SIRMIONE 78 78<br />

Field average (t/ha) 3,39 2,75 2,11 2,65<br />

(*) 100= field average<br />

YEAR<br />

Results<br />

From the analysis of mean results of the thirteen varieties common to the three years of trials, it’s evident that a<br />

progressive loss of yields over the years (graph 1), due mainly to the anomalous meteorological trend during the two<br />

last grain seasons, has taken place.<br />

87<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Graph 1 - Average yield (t/ha) of the 13 varieties<br />

common to the three years of trials<br />

1999 2000 2001<br />

Graph 2 - Mean alveographic parameters (W<br />

and P/L) during the three years of trials<br />

w P/L<br />

1999 2000 2001<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0


In particular the farming year 2000/2001 has been characterized by a mild and humid winter and by low temperatures in<br />

April, which have damaged the early varieties and the cultivars that are susceptible to some fungal <strong>di</strong>seases, mainly<br />

yellow and brown rust.<br />

In the table 1 the production indexes of the varieties tried out over the three-year period 1998-2001 are summarized.<br />

The cultivars which highlight the best performances are Abbondanza, Eureka and Serio which, in that period, have<br />

always given indexes above average. Also the mean index of the variety Centauro is above 100, while the production<br />

index of the cultivar Pandas decreases dramatically because of the chilling damages suffered during the grain season<br />

2000/2001.<br />

Among the varieties tested only during the farming year 2000/2001 the index of the cultivar Sirmione is below average,<br />

while Etecho and Guadalupe are in evidence for their very high indexes, even if for these varieties it is necessary to wait<br />

for further experimental evidences.<br />

Qualitative characteristics<br />

On a grain sample, mixture of the three repetitions, technological analyses (alveogram, falling number, protein and<br />

gluten content) have been performed in order to establish the qualitative characteristics of the harvested product.<br />

Examining the graph 2, where the mean data of the thirteen varieties common to the three years of trials are reported, it<br />

can be observed that W values are basically low, whereas the ratio P/L in<strong>di</strong>cates a tendential imbalance because of an<br />

excess of tenacity. Probably this qualitative decay is due to an unfavourable seasonal trend both in 1998/1999 and in<br />

2000/2001, and to a reduced nitrogen availability during the main stages of the vegetative cycle. Only in the grain<br />

season 1999/2000 the quality appears me<strong>di</strong>ally sufficient, so that in this case most of the varieties can be set in the<br />

respective qualitative classes accor<strong>di</strong>ng to the Synthetic Quality Index (ISQ) calculated on the basis of the protein<br />

content and of the alveographic and farinographic characteristics.<br />

Conclusions<br />

In general the results which have been obtained demonstrate that organic agriculture gives the chance for satisfying<br />

yields combined to a middle-low technological quality, anyhow sufficient for the production of biscuits and<br />

breadmaking flours. The improvement of technological quality for the wheat cultivated with the organic methods<br />

requires a careful varietal choice, and the use of techniques able to guarantee an adequate availability of assimilable<br />

nitrogen in the soil.<br />

*CERMIS – Centro Ricerche e Sperimentazione per il Miglioramento Vegetale “N. Strampelli”, Tolentino (MC) Email:<br />

cermis@tin.it<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

88


16<br />

IL CONTROLLO DELLA “ MOSCA DELLE OLIVE” (BACTROCERA OLEAE Gmel.) CON METODI<br />

CONSENTITI IN COLTIVAZIONE BIOLOGICA<br />

N. Iannotta<br />

Istituto Sperimentale per l’Olivicoltura, Rende (CS)<br />

E-mail: n.iannotta@irsaolivicoltura.it<br />

Introduzione<br />

Una cultura ecologista ed igienico-salutista recentemente instauratasi in Italia ed in altri Paesi europei e lo stimolo degli<br />

incentivi comunitari, ha portato un notevole flusso <strong>di</strong> olivicoltori in <strong>di</strong>rezione della coltivazione biologica. Le superfici<br />

olivicole investite in questa forma <strong>di</strong> coltivazione si sono enormemente <strong>di</strong>latate in questi ultimi anni, per effetto della<br />

accresciuta domanda <strong>di</strong> prodotti “certificati” e per l’aumentato interesse economico verso un tipo <strong>di</strong> produzione in<br />

grado <strong>di</strong> avvantaggiarsi dell’ulteriore valore aggiunto del “biologico”. Tale incremento <strong>di</strong> superfici investite nel<br />

comparto olivicolo, già <strong>di</strong> per sé economicamente importante in Italia (soprattutto nel Mezzogiorno), ha interessato<br />

nell’ultimo decennio <strong>di</strong>verse decine <strong>di</strong> migliaia <strong>di</strong> ettari e recenti indagini riferiscono che ben il 10% dell’olivicoltura<br />

convenzionale ha convertito la propria produzione ai sistemi biologici.<br />

La <strong>di</strong>fesa fitosanitaria in coltura biologica, specialmente negli ambienti meri<strong>di</strong>onali, si pone come un oggettivo limite<br />

alla competitività economica dell’olivicoltura, soprattutto in considerazione della lotta alla “mosca delle olive”, il più<br />

dannoso parassita dell’olivo, della quale non si può prescindere.<br />

Come è ben noto, i prodotti fitosanitari impiegabili in biologico sono contenuti nell’allegato II B del Reg. CEE 2092/91,<br />

ma le notizie reperibili in letteratura circa la loro efficacia, il loro impatto ambientale ed il loro impatto tossicologico<br />

sulla qualità del prodotto sono alquanto scarse ed incomplete.<br />

Da <strong>di</strong>versi anni l’Istituto Sperimentale per l’Olivicoltura ha avviato specifiche ricerche tendenti a verificare la reale<br />

efficacia <strong>di</strong> alcuni prodotti compresi nella citata tabella, ed in qualche caso anche la presenza <strong>di</strong> residui sul prodotto. In<br />

questa sede si illustrano le prove effettuate nell’ultimo biennio, concernenti il trappolaggio massale e la lotta al <strong>di</strong>ttero<br />

con principi attivi ammessi in coltivazione biologica.<br />

Materiali e metodo<br />

Le prove <strong>di</strong> mass-trapping si sono svolte negli anni 2000-2001 nel campo sperimentale dell’Istituto Sperimentale per<br />

l’Olivicoltura in Rende (CS), dove la “mosca” è presente in maniera massiccia causando notevoli danni, costituito da<br />

piante giovani (10-15 anni) <strong>di</strong> cultivar <strong>di</strong>verse. In questa ricerca è stato sperimentato il <strong>di</strong>spositivo bersaglio “Attract<br />

and Kill” (Suneco s.r.l). Esso è stato applicato manualmente alle piante <strong>di</strong> olivo, in numero <strong>di</strong> 100 x Ha (33 con<br />

bicarbonato d’ammonio e feromone; 67 con solo bicarbonato d’ammonio), in luglio dei due anni, e mantenuto fino alla<br />

raccolta (fine ottobre). Il campo così pre<strong>di</strong>sposto (tesi A) è stato confrontato con un’altra parcella (tesi B) trattata con<br />

metodo antidacico convenzionale (<strong>di</strong>metoato al superamento della soglia <strong>di</strong> intervento), e con una parcella testimone<br />

(tesi T), trattata solo con acqua. Nella parcella trattata convenzionalmente sono stati effettuati due trattamenti, uno ai<br />

primi <strong>di</strong> settembre e l’altro ai primi giorni <strong>di</strong> ottobre, con <strong>di</strong>metoato alla concentrazione <strong>di</strong> 60gr/hl <strong>di</strong> p.a.<br />

In un’altra parcella della stessa azienda è stato effettuato un trattamento con rame (ossicloruro <strong>di</strong> rame allo 0,5%).<br />

Le prove <strong>di</strong> lotta con rotenone e aza<strong>di</strong>ractina sono state effettuate negli anni 2000-2001 nel campo sperimentale<br />

dell’A.R.S.S.A. in Mirto-Crosia (CS). Ai fini della <strong>di</strong>fesa fitosanitaria, il campo è da <strong>di</strong>versi anni trattato con meto<strong>di</strong><br />

compatibili con la coltivazione biologica. Esso è stato sud<strong>di</strong>viso in tre parcelle corrispondenti ad altrettante tesi: A,<br />

trattata con rotenone (p.c. ROTENA) alla dose <strong>di</strong> 300 cc/hl, ad<strong>di</strong>zionato da 300 g/hl <strong>di</strong> olio bi anco e 50g/hl <strong>di</strong> bagnante;<br />

B, trattata con aza<strong>di</strong>ractina A (p.c. DIRACTIN) alla dose <strong>di</strong> 150 cc/hl, ad<strong>di</strong>zionata con 50g/hl <strong>di</strong> bagnante; C, trattata<br />

con sola acqua. I trattamenti sono stati effettuati, alle prime ore del mattino, al superamento della soglia del 20% <strong>di</strong><br />

infestazione attiva. Essi sono stati effettuati il 25 settembre del 2000, unico trattamento dell’anno, ed il 7 settembre e 4<br />

ottobre del 2001 (due trattamenti).<br />

I rilievi, per tutte le tesi, sono stati effettuati a scadenza deca<strong>di</strong>ca (da luglio a fine ottobre), ed hanno riguardato: a)<br />

andamento della popolazione adulta presente in campo, per ogni tesi, rilevato me<strong>di</strong>ante monitoraggio con cartelle<br />

cromotropiche; b) andamento dell’infestazione attiva, per ogni tesi, rilevato me<strong>di</strong>ante campionamento a random ed<br />

esame <strong>di</strong> 100 drupe.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

89


Risultati<br />

Nelle figg.1-2 sono riportati i dati (me<strong>di</strong>a nel biennio) riferiti all’andamento dei voli e dell’infestazione attiva nelle<br />

<strong>di</strong>verse tesi della prova <strong>di</strong> mass-trapping.<br />

Dalla fig. 1 si desume che la maggior presenza del fitofago si registra nella tesi testimone, dove ai rilievi del 15 e del 23<br />

ottobre raggiunge rispettivamente il numero <strong>di</strong> 81 e 192 esemplari catturati in me<strong>di</strong>a per trappola. Nello stesso periodo<br />

più contenute appaiono le catture delle rimanenti tesi, con valori fra loro non significativamente <strong>di</strong>fferenti. La fig. 2<br />

mostra i risultati relativi all’infestazione attiva rilevata nelle <strong>di</strong>verse tesi fino al 25 ottobre, epoca ritenuta ottimale per la<br />

raccolta nell’azienda dove si è svolta la prova. I dati relativi alle tesi trattate (A e B) evidenziano come l’andamento<br />

dell’infestazione attiva, da settembre in poi, sia in queste parcelle inferiore rispetto al testimone. Nel confronto fra esse<br />

si nota un migliore andamento della tesi A fino alla prima decade <strong>di</strong> ottobre; successivamente, a seguito del trattamento,<br />

la curva della tesi B subisce una flessione riportando l’andamento dell’infestazione attiva inferiormente a quella della<br />

tesi A.<br />

Le figg. 3-4 mostrano i dati relativi al trattamento con il rame (tesi A), posti in confronto al trattamento convenzionale<br />

con <strong>di</strong>metoato (tesi B) e con il testimone (tesi T).<br />

n°catture x trappola<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2/7<br />

12/7<br />

22/7<br />

2/8<br />

13/8<br />

23/8<br />

3/9<br />

13/9<br />

La fig.3 evidenzia una efficacia dei trattamenti contro gli adulti, con effetti simili tra loro (rame e <strong>di</strong>metoato), come<br />

<strong>di</strong>mostrano gli andamenti delle catture inferiori nelle tesi trattate rispetto al testimone. Dall’esame della fig. 4 si desume<br />

che la tesi trattata con ossicloruro <strong>di</strong> rame mostra un andamento inferiore al testimone e, per oltre un mese, anche<br />

rispetto alla tesi trattata con <strong>di</strong>metoato.<br />

Nella fig.5 si rappresentano gli andamenti della popolazione adulta nel campo della prova con<br />

impiego <strong>di</strong> rotenone e aza<strong>di</strong>ractina.<br />

Catture<br />

n° catture<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Tesi A<br />

Tesi B<br />

Tesi T<br />

Fig.5: Andamento della popolazione adulta negli anni in osservazione.<br />

24/9<br />

4/10<br />

15/10<br />

Fig.1: Andamento della popolazione adulta (catture) nelle <strong>di</strong>verse<br />

tesi.<br />

Tesi A<br />

Tesi B<br />

Tesi T<br />

Trattamento<br />

25/10<br />

2/7 12/7 22/7 2/8 13/8 23/8 3/9 13/9 24/9 4/10 15/10 25/10<br />

Fig.3: Andamento della popolazione adulta (catture) nelle <strong>di</strong>verse tesi<br />

Anno 2000<br />

trattamento<br />

8/7 18/7 7/8 17/8 28/8 7/9 18/9 28/9 9/10 20/10 30/10 9/11 20/11 30/11<br />

Tesi A (Rotenone) Tesi B (Aza<strong>di</strong>ractina) Tesi C (Controllo)<br />

90<br />

%<br />

Catture<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

25<br />

20<br />

15<br />

10<br />

0<br />

5<br />

0<br />

20<br />

15<br />

10<br />

5<br />

0<br />

3/7<br />

2/8<br />

Tesi A<br />

Tesi B<br />

Tesi T<br />

13/8<br />

23/8<br />

3/9<br />

13/9<br />

24/9<br />

4/10<br />

15/10<br />

Fig.2: Andamento dell'infestazione attiva (uova, larve,pupe) nelle<br />

<strong>di</strong>verse tesi.<br />

10/7<br />

17/7<br />

24/7<br />

Tesi A<br />

Trattamento<br />

Tesi B<br />

2/8 9/8 16/8 23/8 30/8 6/9 13/9 20/9 27/9 4/10 11/10 18/10 25/10<br />

Fig.4. Andamento dell'infestazione attiva<br />

(uova, larve, pupe) nelle <strong>di</strong>verse tesi.<br />

31/7<br />

7/8<br />

14/8<br />

Anno2001<br />

trattamento<br />

21/8<br />

28/8<br />

Tesi A (Rotenone) Tesi B (Aza<strong>di</strong>ractina) Tesi C (Controllo)<br />

4/9<br />

11/9<br />

18/9<br />

25/9<br />

2/10<br />

25/10<br />

trattamento<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

Tesi T<br />

9/10<br />

16/10<br />

23/10


Nel primo anno si può notare un andamento caratterizzato da picchi <strong>di</strong> presenza <strong>di</strong> adulti notevoli, registrati nel mese <strong>di</strong><br />

agosto, probabilmente a causa delle favorevoli con<strong>di</strong>zioni ambientali, ma dopo il trattamento è visibile l’effetto del<br />

rotenone che ha ridotto la presenza in campo del <strong>di</strong>ttero sia rispetto alla tesi controllo che rispetto alla tesi trattata con<br />

aza<strong>di</strong>ractina.<br />

Nel secondo anno, con le <strong>di</strong>verse con<strong>di</strong>zioni climatiche, i picchi <strong>di</strong> presenza si registrano in settembre ed ottobre,<br />

epoche in cui sono stati effettuati i trattamenti. Questi ultimi hanno prodotto, per entrambi i prodotti saggiati, una<br />

notevole riduzione delle catture nelle parcelle trattate.<br />

La fig.6 mostra i risultati ottenuti nei due anni nelle <strong>di</strong>verse tesi, in relazione all’infestazione attiva. L’esame<br />

complessivo dei dati in<strong>di</strong>ca l’efficacia dei trattamenti, sia relativamente al rotenone che all’aza<strong>di</strong>ractina, nel<br />

contenimento delle infestazioni daciche. Infatti, in entrambi gli anni in osservazione, i trattamenti hanno prodotto<br />

sempre una riduzione dell’infestazione attiva contenendone i valori intorno al 20%, fino al momento della raccolta.<br />

Nella tesi controllo, nelle stesse circostanze, i valori registrati sono risultati più alti, ben oltre il limite del 20%.<br />

%<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

21/8<br />

11/8<br />

Carolea (2000)<br />

Trattamento<br />

31/8<br />

20/9<br />

10/9<br />

10/10<br />

30/9<br />

Fig. 6: Andamento dell’infestazione attiva nel biennio 2000-2001<br />

20/10<br />

30/10<br />

Tesi A (Rotenone)<br />

Tesi B (Aza<strong>di</strong>ractina)<br />

Tesi C (Controllo)<br />

19/11<br />

9/11<br />

29/11<br />

La tab.1 riporta i risultati delle analisi relativamente ai residui <strong>di</strong> rotenone riscontrati su olive e olio (comunicazione<br />

personale del professor P. Cabras - Dipartimento <strong>di</strong> tossicologia dell’Università <strong>di</strong> Cagliari).<br />

Tab.1: Residui <strong>di</strong> rotenone (mg/Kg±SD) riscontrati in olive e olio a <strong>di</strong>versi giorni dal trattamento.<br />

Giorni dopo il trattamento Olive Olio<br />

0 0.99 ± 0.04 —<br />

2 0.52 ± 0.13 1.89 ± 0.18<br />

5 0.44 ± 012 1.05 ± 0.12<br />

9 0.19 ± 0.04 0.51 ± 0.05<br />

12 0.11 ± 0.02 0.53 ± 0.18<br />

Ricordando che il limite legale ammesso dalle normative vigenti è <strong>di</strong> 0.04 mg/Kg <strong>di</strong> residuo su olive a 10 giorni dal<br />

trattamento, risulta evidente come tale limite sia stato sempre superato, anche dopo 12 giorni dal trattamento. Inoltre i<br />

valori ottenuti su olio, ancorché privi <strong>di</strong> riferimenti legislativi, appaiono particolarmente elevati, in<strong>di</strong>ce <strong>di</strong> una tendenza<br />

alla liposolubilità del rotenone.<br />

Conclusioni<br />

Relativamente al mass-trapping, dai risultati ottenuti nei rilievi effettuati (catture, infestazione attiva), appare evidente<br />

l’azione <strong>di</strong> contenimento esercitato dal <strong>di</strong>spositivo bersaglio “Attract and Kill” contro la “mosca delle olive”. Inoltre,<br />

ove si considerino anche i benefici effetti conseguibili con questo innovativo metodo (assenza <strong>di</strong> rischi tossicologici per<br />

il prodotto, alta selettività <strong>di</strong> azione contro l’insetto e perciò con bassissimo impatto ambientale, economicità del<br />

metodo per il ridotto numero <strong>di</strong> <strong>di</strong>spositivi impiegati rispetto al mass-trapping tra<strong>di</strong>zionale) risulta ancor più evidente la<br />

vali<strong>di</strong>tà del suo impiego. Tuttavia la vali<strong>di</strong>tà assoluta del metodo va verificata ed ulteriormente sperimentata anche in<br />

altre realtà olivicole in <strong>di</strong>verse con<strong>di</strong>zioni ambientali, e, inoltre, va considerata quale utile mezzo <strong>di</strong> integrazione con<br />

altri sistemi <strong>di</strong> lotta “alternativa”, come ad esempio la raccolta effettuata nell’epoca ottimale.<br />

Circa i principi attivi saggiati (rame, rotenone ed aza<strong>di</strong>ractina), ammessi all’impiego nella coltivazione biologica, essi<br />

hanno mostrato buona efficacia nel contenimento <strong>di</strong> B. oleae . Tale efficacia è apparsa evidente contro la popolazione<br />

adulta, specialmente nel secondo anno <strong>di</strong> prove con due trattamenti, ma soprattutto contro la popolazione<br />

91<br />

%<br />

80<br />

60<br />

40<br />

20<br />

0<br />

3/8<br />

13/8<br />

Carolea (2001)<br />

Trattamento Trattamento<br />

23/8<br />

2/9<br />

12/9<br />

22/9<br />

2/10<br />

Tesi A (Rotenone)<br />

Tesi B (Aza<strong>di</strong>ractina)<br />

Tesi C (Controllo)<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

12/10<br />

22/10


preimmaginale. L’infestazione attiva, infatti, nelle tesi trattate e sulle <strong>di</strong>verse cultivar, si è sempre attestata su valori<br />

compresi entro il 20%, limite ritenuto valido per l’ottenimento <strong>di</strong> un prodotto (olio) <strong>di</strong> qualità. Nel confronto tra<br />

rotenone e aza<strong>di</strong>ractina, il primo ha mostrato avere una maggiore, sia pur lieve, efficacia rispetto alla aza<strong>di</strong>ractina.<br />

Quest’ultimo prodotto, in<strong>di</strong>cato come “fagoinibitore” e “regolatore <strong>di</strong> crescita”, ha in realtà funzionato come<br />

“insetticida” , visto l’effetto sull’abbattimento della popolazione adulta e la mortalità delle larve riscontrata nell’esame<br />

dei campioni <strong>di</strong> olive. Tuttavia nell’ipotesi <strong>di</strong> un loro più largo impiego in olivicoltura, destano notevole perplessità i<br />

risultati delle analisi sui residui del prodotto, che per il rotenone figurano in misura eccessiva, tanto nelle olive quanto<br />

nell’olio. Inoltre, non sono nemmeno noti gli effetti che questi prodotti provocano nell’impatto con l’ecosistema, per i<br />

quali, vista la loro attività insetticida non selettiva, non è <strong>di</strong>fficile immaginarne una incidenza negativa nei confronti<br />

dell’artropodofauna utile, soprattutto per l’aza<strong>di</strong>ractina che all’effetto insetticida unisce anche quello <strong>di</strong> fagoinibitore<br />

(alterazione delle abitu<strong>di</strong>ni alimentari) e <strong>di</strong> bioregolatore (alterazione ormonale della crescita e della metamorfosi).<br />

Occorrono ulteriori specifiche prove sperimentali per approfon<strong>di</strong>re le conoscenze al riguardo e, ove si accertassero<br />

negativi impatti ambientali e si confermassero rischiose presenze <strong>di</strong> residui nel prodotto, per questi principi attivi si<br />

imporrebbe una revisione della tabella IIB del REG.CEE 2092/91.<br />

Bibliografia<br />

Bagnoli B., Petacchi R., 2001- Problematiche relative all’utilizzo <strong>di</strong> prodotti <strong>di</strong> origine vegetale per il controllo della<br />

mosca delle olive. Pisa, aprile (in press).<br />

Belcari A., Bobbi E., 1999 – L’impiego del rame nel controllo della mosca delle olive, Bactrocera oleae. Informatore<br />

fitopatologico, 12: 52-53<br />

Delrio G., Lentini A., 1993 – Applicazione della tecnica delle catture massali contro il Dacus oleae in due comprensori<br />

olivicoli dalla Sardegna. Atti del Convegno “Olivicoltura”, Firenze 1991:41-45.<br />

Haniotakis G., Kozyrakis M., Fitsakis T., Antonidaki A., 1991 – An effective mass trapping method for the control<br />

of Dacus oleae. J. Econ. Entom. , 84<br />

Iannotta N., Perri L., Rinal<strong>di</strong> R., 1994 - Control of the olive-fly by mass-trapping in Calabria. Acta Horticulturae, n.<br />

356: 411-413.<br />

Iannotta N., Monardo D., Perri L., Tocci C., Zaffina F., 2000- Esperienze <strong>di</strong> lotta alla Bactrocera oleae (Gmel.) con<br />

sistemi conformi al Reg. CEE 2092/91. Atti Sem. “Meto<strong>di</strong> e sistemi innovativi dell’olivicoltura biologica e sostenibile”<br />

, Rende (Cs) :123-126.<br />

Iannotta N., 2001- La lotta naturale ai parassiti dell’olivo. Olivo e olio n° 5: 16-26.<br />

Iannotta N., 2001- Esperienze <strong>di</strong> lotta contro Bactrocera oleae (Gmel) con meto<strong>di</strong> conformi al Reg. CEE 2092/91.<br />

Relazione al convegno “L’olivicoltura biologica e la lotta contro la mosca delle olive”. Pisa, aprile (in press).<br />

Iannotta N., Lombardo N., Maiolo B., Parlati M.V., Scazziota B., 2002 - Controllo <strong>di</strong> Bactrocera oleae (Gmel.) con<br />

un prodotto fitosanitario naturale compatibile con la produzione biologica. Atti Conv. “Produzioni alimentari e qualità<br />

della vita”, 4-8 Sett.2000-Sassari: 333-338.<br />

Petacchi R., Rizzi I., Guidotti D., Toma M., 2001 – Informatizzazione della raccolta e gestione dei dati nei<br />

programmi finalizzati al controllo della mosca dell’olivo: l’esperienza della Regione Toscana nella tecnica delle<br />

“catture massali”, Pisa, aprile (in press).<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

92


17<br />

Il contenimento della ticchiolatura in frutticoltura biologica<br />

Markus Kelderer 1 , Clau<strong>di</strong>o Casera, Ewald Lardschneider<br />

Centro Sperimentale Agrario Forestale Laimburg (BZ)<br />

Spesso i produttori biologici sono obbligati dall’andamento del mercato a scegliere le stesse cultivar coltivate in<br />

frutticoltura convenzionale ed integrata. La maggior parte <strong>di</strong> queste sono abbastanza sensibili alla ticchiolatura e<br />

non è facile arrivare a fine stagione senza gravi danni. La ricerca condotta presso il Centro Sperimentale<br />

Laimburg <strong>di</strong>mostra che è possibile controllare la ticchiolatura delle pomacee usando bassi dosaggi <strong>di</strong> rame,<br />

polisulfuro <strong>di</strong> calcio ed argille acide in combinazione con lo zolfo. Il controllo è efficace se questi prodotti<br />

vengono usati nel giusto modo.<br />

I punti principali <strong>di</strong> questo lavoro sperimentale sono:<br />

a) Confronto e riduzione del dosaggio <strong>di</strong> <strong>di</strong>verse sostanze attive alternative al rame<br />

b) Tempi più appropriati <strong>di</strong> applicazione delle sostanze attive (preventivo, tempestivo, curativo)<br />

c) Tecniche <strong>di</strong> applicazione (atomizzatore, sistemi d’irrigazione per aspersione)<br />

d) Una particolare attenzione viene posta attualmente agli interventi sanitari per ridurre l’inoculo nel<br />

frutteto<br />

a) In cultivar molto sensibili alla ticchiolatura (es. Golden Delicious) l’efficacia delle miscele argille<br />

acide/zolfo a volte non sono sufficienti, mentre il rame <strong>di</strong>mostra una eccellente efficacia anche a<br />

dosaggi molto bassi (150g <strong>di</strong> rame metallico per trattamento ed ettaro), provocando però su certe varietà<br />

problemi <strong>di</strong> rugginosità. Tra le formulazioni a base <strong>di</strong> zolfo, è da segnalare in particolar modo il<br />

polisolfuro <strong>di</strong> calcio. Questo è abbastanza efficace e viene tollerato abbastanza bene anche dalla pianta.<br />

Da quando questo prodotto è stato introdotto negli allegati 2b del regolamento comunitario 2092/91 la<br />

maggior parte dei produttori usa questa sostanza attiva in dosaggi che variano da 10 a 30kg per<br />

trattamento ed ettaro in funzione dell’andamento climatico durante la stagione.<br />

b) Gli ultimi anni i produttori biologici hanno usato questi fungici<strong>di</strong> soprattutto in modo preventivo. Per<br />

ridurre il numero <strong>di</strong> trattamenti ed aumentarne l’efficacia, a partire del 1997 al Centro Sperimentale<br />

Laimburg, sono stati sperimentati sia in laboratorio che in pieno campo, trattamenti tempestivi (scab<br />

stop) su foglia bagnata e trattamenti curativi. I risultati dei trattamenti tempestivi su foglia bagnata sono<br />

incoraggianti e i produttori stanno introducendo queste tecniche nei loro frutteti. Il tempo ideale per<br />

effettuare questi trattamenti è abbastanza breve, perciò è necessario poter <strong>di</strong>sporre <strong>di</strong> una tecnica <strong>di</strong><br />

applicazione veloce ed efficace.<br />

c) Una possibile opzione nell’ambito delle tecniche <strong>di</strong> applicazione e l’uso del sistema <strong>di</strong> irrigazione per<br />

aspersione. In <strong>di</strong>verse prove vennero confrontati meto<strong>di</strong> <strong>di</strong> applicazione con atomizzatori e sistemi <strong>di</strong><br />

irrigazione per aspersione. I due meto<strong>di</strong> <strong>di</strong> applicazione a parità <strong>di</strong> dosaggio e principio attivo ad ettaro<br />

hanno fornito risultati confrontabili.<br />

d) La quantità <strong>di</strong> inoculo presente è determinante per il grado <strong>di</strong> pressione della malattia nel frutteto.<br />

Ridurre l’inoculo può <strong>di</strong>ventare determinante per riuscire a controllare certe patologie. A partire dal<br />

2001 sono in atto prove per determinare come possa essere ridotto l’inoculo nei frutteti e qual è l’effetto<br />

<strong>di</strong> queste misure preventive sull’incidenza della malattia.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

93


18<br />

INFLUENCE OF DIFFERENT TREATMENTS ON Cd (II), Cu (II), Pb (II) AND Zn (II) CONTENT IN<br />

SICILIAN OLIVE OILS<br />

La Pera Lara, Lo Turco Vincenzo, Lo Curto Simona, Mavrogeni Ekaterini, Dugo Giacomo<br />

Dipartimento <strong>di</strong> Chmica Organica e Biologica Università <strong>di</strong> Messina Salita Sperone, 31, 90166 S. Agata-<br />

Messina<br />

Metals can be found in fatty food as e<strong>di</strong>ble oils that are often subjected to refining, bleaching, and<br />

deodorization, during which they inevitably come in contact to metallic surfaces (1). Trace levels of some metal<br />

ions like Cu (II) could catalyse the oxidation reaction of fatty acid chains, with conseguent a deleterious effect on<br />

oil flavor and shelf-life of oils (2).<br />

Metals contamination of olive oil could be due to their presence in the soil, water and, particularly for<br />

lead, in the air (3). Many stu<strong>di</strong>es have been carried out in which the presence of trace metals in olive oils was<br />

correlated to agronomical techniques, harvesting methods, oil extraction and packaging procedures (4, 5). The<br />

purpose of this paper was to explore the correlation between the pesticide treatments occurred in olive growing<br />

and the content of metals found in oils.<br />

The analytical techniques frequently used for the subsequent determinations are emission and absorption<br />

spectrophotometric techniques as well as electroanalytical techniques (2,6).<br />

In this paper derivative potentiometric stripping analysis (dPSA) was used to determine copper (II), lead<br />

(II), cadmium (II) and zinc (II), in samples of virgin olive oils from Sicily (7-9).<br />

MATERIALS AND METHODS<br />

Samples<br />

Seven olive oils samples belonging to Nocellara del Belice variety, produced in the crop year 2000 -2001<br />

from plants grown up on sandy soils in the zone of Valle del Belice (Trapani), were stu<strong>di</strong>ed. Each of these<br />

samples was originated from olive grove subjected to <strong>di</strong>fferent pesticides treatments as <strong>di</strong>methoate/fenthion,<br />

<strong>di</strong>methoate, copper oxy-chlorine/<strong>di</strong>methoate, copper oxy-chlorine/fenthion; biological treatments as copper oxychlorine<br />

and biological fight and no treatment.<br />

Oil samples were stored in dark glassy bottles at 4°C for the time of analysis.<br />

Chemicals<br />

Ultra pure hydrochloric acid (34-37%), Hg (II) (1000 µgmL -1 , 1M in hydrochloric acid) and Cd (II), Cu<br />

(II), Pb (II), Zn (II), Ga (III) and Pd (II) (1000 µg mL -1 , 0.5 N in nitric acid) standard solutions were purchased<br />

by Panreac Quimica (Barcelona, Spain). The extracts are filtrated on a carbon column Supelclean ENVI-Carb<br />

SPE (0.5 g, 6 mL), purchased by Supelco (Bellefonte, PA, USA).<br />

Apparatus<br />

Determinations were carried out using a PSA ION 3 potentiometric stripping analyzer (Steroglass, S.<br />

Martino in Campo, Perugia, Italy), connected to an IBM-compatible personal computer. The analyzer operated<br />

under the control of the NEOTES software package (Steroglass).<br />

Electrode Preparation (plating) and potentiometric determination<br />

Working electrode was a glassy carbon electrode coated with a Hg film, the reference one was an<br />

Ag/AgCl electrode; the counter was a Pt electrode. The plating of the working electrode was effected putting in<br />

the electrochemical cell a 20 mL volume of a 1000 µgmL -1 Hg standard solution and carrying out the<br />

electrolysis, at –950 mV against the reference electrode, for 1 min.<br />

The determination of Cd, Cu and Pb in oily extract was executed at pH 0.5, putting in the electrochemical<br />

cell a 3 mL volume of elute, a 17 mL volume of ultra pure H2O and a 1 mL volume of Hg (II) standard solution<br />

as oxidant agent. The determination of Zn was executed at pH 1.8, putting in the electrochemical cell a 1 mL<br />

volume of elute, 18.5 mL of ultra pure H2O and 0.5 mL of Hg (II) standard solution as oxidant agent. The<br />

quantitatve analysis was carried out by the multiple standard ad<strong>di</strong>tion method. Metals determination was<br />

managed under analytical con<strong>di</strong>tions described in table 1.<br />

RESULTS AND DISUSSION<br />

Method<br />

The repeatability of the method was attested at 86.4 % for cadmium, at 94.9% for copper, at 99.0% for<br />

lead and at 98.9% for zinc. Recoveries were carried out by spiking a sample of olive oil at <strong>di</strong>fferent levels.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

94


Obtained recoveries percent were: 84.5±9.9% for Cd, 97.3±2.7% for Cu, 1 00.7±0.7 % for Pb and 83.4±1.7 % for<br />

Zn. Instrumental detection limits were: 1.2 ngg -1 for Cd, 3.6 ngg -1 for Cu, 5.9 ngg -1 for Pb and 14.3 ngg -1 for Zn.<br />

Application<br />

Obtained results are reported on Table 1. Cd (II) was not found in any olive oil sample. The highest<br />

content of Cu (II) was found in the sample originated from biological strategy (96.1±5.3 ng g -1 ). A lower<br />

content of the metal was presented by the samples produced from plants treated with organic pesticides<br />

associated or not to copper oxy-chlorine, such as copper oxy-chlorine/<strong>di</strong>methoate (91.4±5.1 ng g -1 ) and copper<br />

oxy-chlorine/fenthion (60.0±3.1 ng g -1 ). A smaller level of Cu was found in samples originated from<br />

<strong>di</strong>methoate/fenthion (56.8±3.3 ng g -1 ), <strong>di</strong>methoate (38.3±0.4 ng g -1 ) and no treated sample (44.8±1.5 ng g -1 ).<br />

The smallest Cu concentration was found in the oil originated from copper oxy-chlorine treatment (26.0±2.3 ng<br />

g -1 ).<br />

Oil samples produced from olive grove treated with organic pesticides - copper oxychlorine/fenthion<br />

(222.6±2.3 ng g -1 ), <strong>di</strong>methoate (179.2 ±1.9 ng g -1 ), <strong>di</strong>methoate/fenthion (165.0±1.5 ng g -1 ) - showed a higher<br />

lead amount respect to samples treated only with copper oxy-chlorine (47.5±0.5 ng g -1 ), no-treated sample<br />

(34.6±0.4ng g -1 ) and the sample from biological strategy (17.3±0.2 ng g -1 ), which presented the lowest Pb<br />

content (fig.1). An exception was represented by the sample treated with copper oxy-chlorine/<strong>di</strong>methoate<br />

(32.8±0.3 ng g -1 ).<br />

Samples produced from olive groves treated with copper oxy-chlorine/fenthion (576.0±6.3 ng g -1 )<br />

presented the highest content of Zn, followed by biological strategy (550.0±5.8 ng g -1 ) and copper oxychlorine/<strong>di</strong>methoato<br />

(433.2±4.7 ng g -1 ) samples; the oils treated with <strong>di</strong>methoate (176.0 ±1.9 ng g -1 ), copper<br />

oxy-chlorine (161.5±1.7 ng g -1 ), <strong>di</strong>methoate/fenthion (140.8±1.5 ng g -1 ), showed a Zn level remarkably<br />

lower. The smallest concentration of the metal was found in no-treated sample (59.8±0.7 ng g -1 ).<br />

CONCLUSION<br />

Samples produced from no treated olive grove and by plants treated only with copper oxy-chlorine,<br />

always showed a lower content of Cu (II), Pb (II) and Zn (II) respect to samples originated from olive grove<br />

treated with the organophosphorated pesticides <strong>di</strong>methoate and fenthion. These molecules, which contain S, P<br />

and O atoms, may influence the mechanism of metals uptake of the plants by complexing the cations (10).<br />

Samples originated from biological fight always present a high amount of the micronutrient Cu (II) and Zn (II)<br />

and a very low concentration of Pb (II).<br />

LITERATURE<br />

1. Martín-Polvillo M., Albi T. and Guinda A. Determination of trace elements in e<strong>di</strong>ble vegetable<br />

oils by atomic absorption spectrophotometry. J. Am. Oil Chem. Soc. 1994, 71, 347-350.<br />

2. Calapaj R., Chiricosta S., Saija G. and Bruno E. Method for the determination of heavy metals<br />

in vegetable oils by graphite furnace atomic absorption. At. Spectrosc. 1988, 9, 107-110.<br />

3. Paoletti R., Nicosia S., Clementi F., Fumagalli G. 1 st ed. “Tossicologia degli alimenti”, 1999,<br />

Utet, Torino.<br />

4. De Leonar<strong>di</strong>s A., Macciola V. and De Felice M. 1997. La determinazione del ferro e del rame<br />

negli oli vergini d'oliva me<strong>di</strong>ante spettrofotometria ad assorbimento atomico. Riv. Ital. Sostanze Grasse 74:<br />

149.<br />

5. Garrido M.D., Frías I., Díaz C. and Har<strong>di</strong>sson A. Concentrations of metals in vegetable e<strong>di</strong>ble<br />

oils. Food Chem. 1994, 50, 237-240.<br />

6. Wahdat F., Hinkel S. and Neeb R. Direct inverse voltammetric determination of Pb, Cu and Cd<br />

in some e<strong>di</strong>ble oils after solubilization. Fresenius' Z. Anal. Chem. 1995, 352, 393-396.<br />

7. La Pera L., Lo Curto S., Dugo G.mo, Lo Coco F. and Liberatori A. Determination of Copper<br />

(II), lead (II), cadmium (II) and zinc (II) in olive oils from Sicily by derivative potentiometric stripping<br />

analysis (dPSA). Presented at “European Conference of Advanced Technology for Safe and High Quality of<br />

Food”, Berlin, 5-7 December, 2001.<br />

8. La Pera L., Lo Curto S., Visco A., La Torre L. and Dugo G.mo Derivative potentiometric<br />

stripping analysis (dPSA) used for the determination of cadmium, copper, lead and zinc in Sicilian olive<br />

oils. J. Agric. Food Chem. 2002, 95, 3090-3093.<br />

9. La Pera, L.; Lo Coco, F.; Mavrogeni, E; Giuffrida, D.; Dugo, G.mo. Determination of Copper<br />

(II), Lead (II), Cadmium (II) and Zinc (II) in virgin olive oils produced in Sicily and Apulia by Derivative<br />

Potentiometric Stripping Analysis. Ital. J. Food Science 2002 in press.<br />

10. Kaim W.; Schwedersky B. Bioinorganic Chemistry: inorganic elements in the chemistry of<br />

life. V th ed. Wiley & Sons Ltd, West Sussex, England, 1996.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

95


Table 1. Analytical con<strong>di</strong>tions for determination of Pb, Cu, Cd and Zn.<br />

Pb Cu Cd Zn<br />

Integration range mV -580; -380 -380; -140 -760; -590 -1100; -750<br />

Potential range mV -1200; -100 -1200; -100 -1200; -100 -1200; -100<br />

Con<strong>di</strong>tioning potential mV 50 x 5 s 50 x 5 s 50 x 5 s 50 x 5 s<br />

Accumulation potential mV -1200 -1200 -1200 -1200<br />

Accumulation time min 2 2 2 2<br />

Stripping time s 10 10 10 10<br />

Acquisition final potential mV 0 0 0 0<br />

Sampling time µs 300 300 300 300<br />

Discharge potential mV -430 -260 -640 -950<br />

Agitation speed turn/s 2 2 2 2<br />

Cycles n. 4 4 4 4<br />

Standard ad<strong>di</strong>tions n. 2 2 2 2<br />

Table 2. concentration of Cd, Cu, Pb and Zn in olive oils from <strong>di</strong>fferent pesticides treatments<br />

Treatments Cd<br />

(ng g -1 Cu<br />

) (ng g -1 Pb<br />

) (ng g -1 Zn<br />

) (ng g -1 )<br />

Biological fight<br />


[Pb] (ng/g)<br />

250,00<br />

200,00<br />

150,00<br />

100,00<br />

50,00<br />

0,00<br />

Figure 1.Pb content found in olive oils from <strong>di</strong>fferent treatments<br />

97<br />

Copper-Fenthion<br />

Dimethoate-Fenthion<br />

Dimethoate<br />

No treatments<br />

Copper-Dimethoate<br />

Copper<br />

Biological fight<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


19<br />

DETERMINATION OF PHENOLIC COMPOUNDS IN EXPERIMENTAL WINES SUBJECTED TO<br />

DIFFERENT PESTICIDES TREATMENTS<br />

G. L .La Torre, T. M. Pellicanò, D.Pollicino, M. Alfa, G.mo Dugo<br />

Università degli Stu<strong>di</strong> <strong>di</strong> Messina; Dip.to <strong>di</strong> Chimica Organica e Biolog ica<br />

INTRODUCTION<br />

Wine is a complex fluid; it contains water, sugars, acids, alcohols and a wide range of phenolic compounds. The<br />

phenolics can be derived from grapes and wood, or they can be metabolites from yeasts. Phenolics occur<br />

naturally in various families of plants, but grapes and related products are considered one of the most important<br />

<strong>di</strong>etary sources of these substances (1, 2). Phenolic compounds are an important group of substances that<br />

contribute to several sensorial characteristics such as colour, flavour, astringency and hardness of wine.<br />

Furthermore, these compounds are important in food hygiene because of their bactericidal effects and,<br />

consequently, they constitute an interesting index for evaluating the quality of a wine (3 - 5). Some researchers<br />

suggest that a regular consumption of a moderate quantity of wine, especially red (6-8), is therapeutic for human<br />

health. This protective effect has been associated with an increase in the plasma of the level of high-density<br />

lipoprotein (HDL)-cholesterol and with a decrease of platelet activity, because of the effect of ethanol and<br />

polyphenolic components (9). Epidemiological stu<strong>di</strong>es have shown that a moderate wine consumption helps to<br />

prevent the development of coronary heart <strong>di</strong>sease (10,11).<br />

The major molecules responsibles for this physiologic protection are phenolic compounds such as resveratrol<br />

and flavonoids. Moreover, it has been reported that resveratrol, quercetin and other polyphenolics are cancer<br />

chemo-preventive agents, since through the inhibition of cyclooxygenase they restrain cellular events associated<br />

with tumour initiation, promotion and progression, and stimulate quinone reductase – an enzyme that detoxifies<br />

carcinogens (12,13). In recent years, interest has been focused on resveratrol (3,5,4’-trihydroxystilbene), a<br />

phytoalexin produced by the plant as a defence response to some exogenous stimuli, such as ultraviolet ra<strong>di</strong>ation,<br />

chemical stressor and, particularly, microbial infections (15). It is well-known that resveratrol is present in the<br />

chemical form of cis- and trans-resveratrol and of cis- and trans-piceid ( β-glucosides of resveratrol) (16). The<br />

presence of resveratrol has been detected in numerous types of wines, originating from various countries (USA,<br />

France, Italy, Spain, Japan), and large variations in its content are reported. They depend on grape cultivar,<br />

geographic origin, wine type, Botrytis infection and enological practices. Generally, many authors found that<br />

higher contents of trans-resveratrol (0.2 - 13 mg/L) are usually present in red wines that have had a prolonged<br />

contact between the must and skins, whereas lower concentrations (0.1 - 0.8 mg/L) are usually present in white<br />

wine (17, 18). In rosé wines the levels of resveratrol monomers were between white and red wines (18). About<br />

β-glucosides of resveratrol, no proportionality between the levels of cis- and trans-resveratrol and their<br />

glucosides were reported (19), whereas piceid concentrations from 0.3 mg/L to 9 mg/L in red wines and from 0.1<br />

mg/L to 2.2 mg/L in white wines have been detected (14). Stu<strong>di</strong>es on resveratrol content in wines are numerous<br />

(20-24); they are often focussed on the <strong>di</strong>fferent grape cultivars and associated with the identification of<br />

polyphenolic compounds, of potential biological activities, such as quercetin, myricetin, etc. The phenolic<br />

compounds are secondary plant metabolites that are contained within the skin, seed, and flesh of grapes and are<br />

extracted into wines (especially red) during the process of vinification. The types and concentrations of the<br />

phenolic compounds in wine may depend on a number of factors: grape variety and ripening stage, soil and<br />

climatic con<strong>di</strong>tions. Moreover, the processes of viticulture and vinification, which vary between countries,<br />

regions and wine-makers, determine the content and profile of phenolic compounds in wine (14). The<br />

concentration of phenolic compounds is marked by temperature, so places with high temperatures and drier<br />

con<strong>di</strong>tions <strong>di</strong>sfavour the presence of these compounds in wines.(16)<br />

The purpose of this study was to determine the polyphenolic compounds (resveratrol, piceid, and flavonoids) in<br />

wines from three <strong>di</strong>fferent Italian regions, obtained from grapes (Sangiovese, Fiano d’Avellino, Inzolia-<br />

Caricante (50/50)) treated with <strong>di</strong>fferent pesticides and to investigate the probable influence of the <strong>di</strong>fferent<br />

treatments on the quality of the wines.<br />

MATERIALS AND METHODS<br />

Chemicals and materials<br />

trans-Resveratrol was purchased from Sigma Chemical Co. Stock solution of cis-resveratrol was produced by UV<br />

irra<strong>di</strong>ation of trans-resveratrol in methanol for 30 min at 254 nm. Solid-phase extraction (SPE) cartridges were<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

98


Supelco Supelclean LC-18 SPE tubes (3ml). The other phenolic compoundswere quercetin, rutin (quercetin-3-Orutinoside),<br />

kaempferol, kaempferol-3-glucoside, kaempferol-3-rutinoside, rhamnetin, isorhamnetin, and were<br />

also supplied by Sigma.<br />

Wine Analysed<br />

The analyses were carried out on 23 Italian wine samples (red and white), coming from three <strong>di</strong>fferent Italian<br />

vineyards: one located in Tuscany, one in Campania and one in Sicily. In particular, wines from Tuscany were<br />

produced from 30 years old plants (vines were grafted with Sangiovese variety, Morellino clone) and each sample<br />

was vinified red. Wines from Campania were produced from 20 years old plants (vines were grafted with Fiano<br />

d’Avellino variety) and each sample was vinified white. Sicilian wines were produced from 15-20 years old<br />

plants (vines were grafted with Inzolia and Carricante variety in ratio 1:1) and each sample was vinified white.<br />

The vineyard was sub<strong>di</strong>vided in thesis; each thesis consisted of four rows of vines and the remotest was located<br />

with the function to prevent drift effect. The fungicides treatments were carried out at the end of blossoming and<br />

maturation. The scheme of experimental work provided the treatment of each thesis with <strong>di</strong>fferent antioi<strong>di</strong>cs and<br />

antiperonosporics: sulphur, azoxystrobin, <strong>di</strong>nocap, penconazolo, fenarimol, quinoxyfen (tab.1).<br />

Analysis of cis- and trans-resveratrolo<br />

cis- and trans-resveratrol were extracted from wines using the SPE cartridges prior to the HPLC analysis. For the<br />

analysis of total wine resveratrol was used an enzymatic hydrolysis method, improved by our working group (25).<br />

The wine resveratrol O-glycosides (trans- and cis-piceid) were totally hydrolysed in ~ 9 hours after incubation<br />

with β-glucosidase at 50°C; then the trans- and cis-aglycones were measured by HPLC after solid phase<br />

extraction (SPE). An ODS Hypersil 5µm (250x4,6 mm i.d.) column was used as the stationary phase and was<br />

preceded by a precolumn of the same material. The mobile phase consisted of phase (A) water/acetic acid (pH =<br />

3) and phase (B) acetonitrile/acetic acid (pH = 3). cis- and trans-resveratrol were eluted with a gra<strong>di</strong>ent time<br />

program and the eluted was monitored at 285 and 307 nm, where cis- and trans- isomers have absorbance<br />

maxima, respectively. All chromatographic experiments were performed at room temperature with a flow rate<br />

1ml/min. The chromatograms were recorded accor<strong>di</strong>ng to the retention time. Before the HPLC analysis the<br />

extract were filtered through a 0,45µm glass-microfiber GMF Whatman chromatographic filter.<br />

HPLC analysis methodology for flavonoids<br />

The analysis were carried out on aliquot of wine filtered through a 0,45 µm nylon Supelco chromatographic filter,<br />

using an HPLC system operating at room temperature with a flow–rate of 0,8 ml/min.. The spectrophotometric<br />

detector was a photo<strong>di</strong>ode array operating at wavelengths of 265 nm for aglycon-flavonoids and 254 for<br />

flavonoid-glucoside. The analytical column was a Alltech Alltime C-18, 5 µm ( 250 x 4,6 mm i.d.). A SUPELCO<br />

guard column packed with the same stationary phase was also used. The mobile phase consisted of<br />

H2O/CH3COOH at pH= 3 (phase A) and CH3CN/CH3COOH at pH = 3 (phase B). Elution was carried out in<br />

gra<strong>di</strong>ent.<br />

RESULTS AND DISCUSSION<br />

Analytical data related to the free isomeric forms of resveratrol (cis- and trans-) and to the total resveratrol (free<br />

and glucosides isomers) are reported in fig. 1,2 and 3. This investigation, once again, clearly shows that red wines<br />

have a greater resveratrol content than white wines, regardless of the pesticide treatments of the vines. Analysing<br />

the data related to wines from Campania, it can be noticed that in the samples Thesis 3, 4, 5 and 6 the amount of<br />

cis-resveratrol is between 0.04 and 0.05 mg/L, while the samples Thesis 1, Thesis 2 and Thesis 7 have an amount<br />

of cis-resveratrol impossible to verify with the adopted analytic method. The concentration of trans-resveratrol<br />

results highest in the sample Thesis 5 (0.13 mg/L), and a lowest in the sample Thesis 3 (0.07 mg/L). The total<br />

concentration of cis- and trans-resveratrol deserve a particular attention because, generally, it is similar in every<br />

sample while, this balance does not occur in free form of cis- and trans-resveratrol. In fact, the concentration of<br />

free trans-resveratrol is a little lower than that of total trans-resveratrol, but in sample Thesis 2 it is even almost<br />

identical; the same situation does not occur in cis-resveratrol. Examining the concentration of free cis-resveratrol<br />

to that of total, it results that the amount of cis-piceid is much higher than that of trans-piceid, regardless of the<br />

pesticides treatment. A completely <strong>di</strong>fferent situation is shown for wines produced and vinified in Sicily. In this<br />

case, the concentration of total trans-resveratrol (between 0.17 and 0.34 mg/L) is always higher than that of total<br />

cis-resveratrol (between 0.09 and 0.20 mg/L). Moreover, <strong>di</strong>fferently from what was noticed in wines produced<br />

and vinified in Campania, the cis- and trans-piceid concentration in each sample is comparable, and is between a<br />

minimum value of 0.03 mg/L and a maximum of 0.18 mg/L. The samples Thesis 4 and Thesis 5 <strong>di</strong>ffer from this<br />

general trend, as they are characterized by an amount of cis-piceid clearly higher than that of trans-isomer. As<br />

shown in fig.3, the wines obtained from cv Sangiovese have very <strong>di</strong>fferent quantities of free trans-resveratrol and<br />

they range from 0.22 to 1.76 mg/L. The same trend can be noticed with free cis-resveratrol, but in this case the<br />

concentrations are more homogeneous. Comparing total cis- and trans-resveratrol concentrations to those of the<br />

equivalent free isomers, it emerges that the levels of trans-piceid are approximately twice as high as those of the<br />

correspon<strong>di</strong>ng cis-piceid, except for samples Thesis 4 and Thesis 5 that present comparable levels. The<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

99


investigation of the flavonoids regarded the identification and quantification of seven components (quercetin,<br />

rutin, kaempferol, kaempferol-3-glucoside, kaempferol-3-rutinoside, rhamnetin, isorhamnetin) through a fast<br />

method that involves the use of wine as it is, as suggested by Viñas et al. (14).<br />

The wine samples from Campania are characterized by a higher content of flavonoids and flavonoid-glucosides<br />

and show a composition, both qualitatively and quantitatively, similar. Of the seven compounds analysed in the<br />

flavonoids group, quercetin (


12. Agullo, G.; Gamet, L.; Besson, C.; Domigne, C.; Remesy, C. Quercetin exerts a preferential cytotoxic<br />

effect on active <strong>di</strong>vi<strong>di</strong>ng colon carcinoma HT29 and Caco-2-cells. Cancer Letter 1994, 87, 55-63.<br />

13. Jang, M.; Pezzuto, J. M. Cancer chemopreventive activity of resveratrol. Drugs Experiments and Clinical<br />

Research 1999, 213, 65-77.<br />

14. Viñas, P.; Lòpez-erroz, C.; Marin-Hernàndez, J. J.; Hernàndez-Cordoba, M. Determination of phenols in<br />

wines by liquid chromatography with photo<strong>di</strong>ode array and fluorescence detections. J. Chrom. A 2000,<br />

871, 85-93.<br />

15. Langcake, P.; Pryce, R. J. The production of resveratrol by “Vitis Vinifera” and other members of the<br />

“Vitacee” as a response to infection or injury. Physiology and Plant Pathology 1976, 9, 77-86.<br />

16. Goldberg, D. M.; Yan, J.; Ng, E.; Diaman<strong>di</strong>s, E. P.; Karumanchiri, A.; Soleas, G.; Waterhouse, A. L. A<br />

global survey of trans-resveratrol concentrations in commercial wines. Am J. Enol. Vitic. 1995, 46 (2),<br />

159-165.<br />

17. Dugo, G.mo; Bambara, G.; Salvo, F.; Saitta, M.; Lo Curto, S. Contenuto <strong>di</strong> resveratrolo in vini rossi da<br />

uve alloctone e autoctone prodotte in Sicilia. L’enologo 2000, 12, 79-84.<br />

18. Romero-Pérez, A. I.; Lamuela-Raventòs, R.; Waterhouse, A. L. ; De La Torre-Boronat, M. C. Level of cis-<br />

and trans-Resveratrol and their glucosides in white and rosè Vitis Vinifera Wines from Spain. J. Agric.<br />

Food Chem. 1996, 44, 2124-2128.<br />

19. Waterhouse, A. L.; Lamuela-Raventòs, R. The occurrence of piceid, a stilbene glucoside in grape berries.<br />

Phytochemistry. 1994, 12, 571-573.<br />

20. Vrhovsek, U.; Wendelin, S.; Eder, R. Effectes of various vinification techniques on the concentration of<br />

cis- and trans-resveratrol and resveratrol glucoside isomers in wine. Am.J.Enol.Vitic. 1997, 48 (2), 214-<br />

219.<br />

21. Nevado, J. J. B.; Salcedo, A. M. C.; Penavo, G. C. Simultaneous determination of cis-and trans-resveratrol<br />

in wines by capillary zone electrophoresis. Analyst 1999, 124, 61-66.<br />

22. Sato, M.; Suzuki, Y.; Okutsuka, K. Contents of resveratrol, piceid, and their isomers in commercially<br />

available wines made from grapes cultivated in Japan. Biosci., Biotecnol., Biochem. 1997, 61 (11), 1800-<br />

1805.<br />

23. Chu, Q.; O’Dwyer, M.; Zeele M. G. Directed analysis of resveratrol in wine by micellar electrokinetic<br />

capillary electrophoresis. J. Agric. Food Chem. 1998, 46, 509-513.<br />

24. Ribeiro de Lima, M.T.; Waffo-Te’guo, P.; Teissendre, P.L.; Pujolas, A.; Vercauteren,J.; Carbanis, J. C.;<br />

Merillon, J. M. Determination of stilbenes (trans-Astringin, cis- and trans-Piceid, and cis- and trans-<br />

Resveratrol) in Portuguese Wines. J. Agric. Food Chem. 1999, 47, 2666-2670.<br />

25. La Torre, G. L.; Laganà, G.; Bellocco, E.; Vilasi, F.; Salvo, F.; Dugo, G.mo Enzymatic method for<br />

analysis of resveratrol glucosides in wine. Anal.Chim.Acta (Submitted).<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

101


Table 1 Scheme of experimental treatment of each wine sample with antioi<strong>di</strong>um and antiperonospora<br />

Wine Sample Pesticides n° treatments Pesticides n° treatments<br />

Campania<br />

Thesis 1 Powdered sulphur 2 Quinoxyfen 6<br />

Thesis 2 Powdered sulphur 2 Fenarimol 6<br />

Thesis 3 Powdered sulphur 2 Azoxystrobin 6<br />

Thesis 4 Dinocap 2 Penconazole 6<br />

Thesis 5 Wettable sulphur 2 Wettable sulphur 6<br />

Thesis 6 Wettable sulphur 2 Dinocap 6<br />

Thesis 7 Powdered sulphur 2 Powdered sulphur 6<br />

Sicily<br />

Thesis 1 Powdered sulphur 2 Quinoxyfen 6<br />

Thesis 2 Powdered sulphur 2 Fenarimol 6<br />

Thesis 3 Powdered sulphur 2 Azoxystrobin 6<br />

Thesis 4 Dinocap 2 Penconazole 6<br />

Thesis 5 Wettable sulphur 2 Wettable sulphur 6<br />

Thesis 6 Wettable sulphur 2 Dinocap 6<br />

Thesis 7 Powdered sulphur 2 Powdered sulphur 6<br />

Tuscany<br />

Thesis 1 Powdered sulphur 2 Quinoxyfen 6<br />

Thesis 2 Powdered sulphur 2 Fenarimol 6<br />

Thesis 3 Powdered sulphur 2 Azoxystrobin 6<br />

Thesis 4 Dinocap 2 Penconazole 6<br />

Thesis 5 Wettable sulphur 2 Wettable sulphur 6<br />

Thesis 6 Dinocap 2 Sulphur + Quinoxyfen 6 + 3<br />

Thesis 7 Powdered sulphur 2 Powdered sulphur 6<br />

Table 2 - Detection limits for the analyses of flavonoids<br />

Wine<br />

Sample<br />

Rutin Kaempferol-<br />

3-Rutinoside<br />

Kaempferol-<br />

3-Glucoside<br />

Kaempferol Quercetin Isorhamnetin Rhamnetin<br />

Thesis 1 2.72 < 0.64 2.54 < 0.25 7.52 4.16 10.02<br />

Thesis 2 2.79 < 0.64 2.58 < 0.25 7.52 4.16 10.02<br />

Thesis 3 2.72 < 0.64 2.57 < 0.25 7.58 4.17 10.03<br />

Thesis 4 2.72 < 0.64 2.56 < 0.25 7.59 4.17 10.02<br />

Thesis 5 2.72 < 0.64 2.57 < 0.25 7.53 4.17 10.02<br />

Thesis 6 2.72 < 0.64 2.56 < 0.25 7.52 4.16 10.02<br />

Thesis 7 2.72 < 0.64 2.46 < 0.25 7.51 4.16 10.03<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

102


Tab. 3 Flavonol content (µg/ml) in white wines from Campania<br />

Flavonoid µg/ml<br />

Rutin 0.03<br />

Kaempferol 0.25<br />

Kaempferol-3-glucoside 0.51<br />

Kaempferol-3-rutinoside 0.64<br />

Quercetin 0.52<br />

Rhamnetin 0.55<br />

Isorhamnetin 0.24<br />

Table 4 Flavonol content (µg/ml) in white wines from Sicily<br />

Wine Sample Rutin<br />

Kaempferol-<br />

3-Rutinoside<br />

Kaempferol-<br />

3-Glucoside<br />

Table 5 Flavonol content (µg/ml) in red wines from Tuscany<br />

103<br />

Kaempferol Quercetin Isorhamnetin Rhamnetin<br />

Thesis 1 2.72 < 0.64 2.41 < 0.25 < 0.52 < 0.24 10.06<br />

Thesis 2 2.90 < 0.64 2.39 < 0.25 < 0.52 4.20 10.02<br />

Thesis 3 2.85 < 0.64 2.39 4.29 < 0.52 4.17 10.03<br />

Thesis 4 2.84 < 0.64 2.56 4.29 7.51 4.17 10.02<br />

Thesis 5 2.88 < 0.64 2.39 4.29 < 0.52 4.17 9.98<br />

Thesis 6 2.74 < 0.64 2.38 4.29 < 0.52 4.16 10.02<br />

Thesis 7 2.85 < 0.64 2.38 4.29 < 0.52 4.17 10.02<br />

Wine<br />

Sample<br />

Rutin<br />

Kaempferol-<br />

3-Rutinoside<br />

Kaempferol-<br />

3-Glucoside<br />

Kaempferol Quercetin Isorhamnetin Rhamnetin<br />

Thesis 1 13.04 48.95 < 0.51 < 0.25 24.67 < 0.24 < 0.55<br />

Thesis 2 13.67 3.58 5.68 < 0.25 60.15 5.93 < 0.55<br />

Thesis 3 19.45 26.48 6.37 < 0.25 21.36 < 0.24 < 0.55<br />

Thesis 4 22.08 29.55 < 0.51 < 0.25 27.47 < 0.24 < 0.55<br />

Thesis 5 13.91 38.55 4.35 < 0.25 29.61 < 0.24 < 0.55<br />

Thesis 6 14.83 44.32 < 0.51 < 0.25 40.15 < 0.24 < 0.55<br />

Thesis 7 12.87 39.02 < 0.51 < 0.25 20.11 < 0.24 < 0.55<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


mg/L<br />

mg/L<br />

Fig.1<br />

0.36<br />

0.28<br />

0.21<br />

0.14<br />

0.07<br />

0.00<br />

0.17<br />

0.14<br />

0.11<br />

0.08<br />

0.05<br />

0.02<br />

0.00<br />

Fig. 2<br />

CONCENTRATION OF RESVERATROL ISOMERS<br />

IN WHITE WINES FROM SICILY<br />

Thesis 1 Thesis 2 Thesis 3 Thesis 4 Thesis 5 Thesis 6 Thesis 7<br />

CONCENTRATION OF RESVERATROL ISOMERS<br />

IN WHITE WINES FROM CAMPANIA<br />

Thesis 1 Thesis 2 Thesis 3 Thesis 4 Thesis 5 Thesis 6 Thesis 7<br />

Samples<br />

Samples<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

104<br />

trans-resveratrol<br />

trans-piceid<br />

total transresveratrol<br />

cis-resveratrol<br />

cis-piceid<br />

total cisresveratrol<br />

trans- resveratrol<br />

trans-piceid<br />

total trans- resveratrol<br />

cis-resveratrol<br />

cis-piceid<br />

total cis-resveratrol


mg/L<br />

Fig.3<br />

3,50<br />

3,00<br />

2,50<br />

2,00<br />

1,50<br />

1,00<br />

0,50<br />

0,00<br />

CONCENTRATION OF RESVERATROL ISOMERS<br />

IN RED WINES FROM TUSCANY<br />

Thesis 1 Thesis 2 Thesis 3 Thesis 4 Thesis 5 Thesis 6 Thesis 7<br />

samples<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

105<br />

trans-resveratrol<br />

trans-piceid<br />

total trans-resveratrol<br />

cis-resveratrol<br />

cis-piceid<br />

total cis-resveratrol


20<br />

CONTROL OF APPLE SCAB IN ORGANIC FARMING<br />

Anna La Torre, Lucia Donnarumma, Daniele Lolletti, Giancarlo Imbrogli ni<br />

Istituto Sperimentale per la Patologia Vegetale – Via C. G. Bartero, 22 - Roma<br />

Introduction<br />

Apple scab, which is caused by Venturia inequalis (Cke.) Wint., is considered the mayor <strong>di</strong>sease of apple. In<br />

organic agriculture, formulations of synthetic origin for defence are not admitted and plant protection is<br />

essentially based on the use of mineral products as copper and sulphur. Copper is more effective than sulphur<br />

(sulphur is ineffective at below 10°C, phytotoxic over 28°C and it has greater persistence). Use of copper<br />

involves several problems: it accumulates in soil, causes phytotoxicity phenomena, when employed on full<br />

vegetation, it gives rust phenomena on some varieties of apples. It is necessary to find protection alternatives<br />

strategies, limiting the negative effects of use formulations of this element and assuring, at the same time,<br />

sufficient protection against the <strong>di</strong>seases.<br />

Fig. 1: - Spilocea pomi coni<strong>di</strong>a Fig. 2: - Experimental field<br />

Materials and Methods<br />

The trial has been done in a farm near Latina (Latium, central Italy), which as been converted, in 1993, to the<br />

method of organic farming (cv Royal Gala grafted on M9). Treatments and doses are in<strong>di</strong>cated in table 1. Some<br />

compounds, for their formulation, release low amounts of copper. They are: Cuivrol, commercialized like<br />

fertiliser (18% of copper metal); Cuprobenton, composed by copper oxychloride and copper sulfate hydrate<br />

(15% of copper metal) coformulated with benthic clay (70%); Blue Copper Formula 2, made up with copper<br />

hydroxide (24% in shape of crystals of the <strong>di</strong>mension of 0,35 mµ). As alternative products have been tested<br />

Myco-sin (sulphureous clay, yeasts, equisetum extracts) and calcium polysulphide. The trials have been<br />

conducted as recommended in EPPO/OEPP PP 1/5(3). The esteem of the infectious risk has been assessed on<br />

the Mills criteria, monitoring instrumentally the climatic parameters by a thermoigrograph and a pluviometer.<br />

The assessments to estimate therapeutic efficacy have been carried out on 4 central plants of every parcel<br />

estimating the number of leaves for every treatment and percentage of leaves surface interested by apple scab,<br />

using a scale with 5 classes of attack. Results obtained, after arc sin trasformation, have been evaluated by<br />

Duncan test.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

106


Table 1 – Fungicides used during the trial<br />

Active ingre<strong>di</strong>ent Commercial<br />

Formula a.s. % o Dose f. c. Dose a.s. Dose Cu<br />

formula<br />

g/l ml - g/hl g/hl<br />

++<br />

g/hl<br />

Copper oxycloride Copper Pro 50 Water-<strong>di</strong>spersible 50 700; 600; 400; 350; 300; 350; 300;<br />

WDG<br />

granules<br />

340; 288; 200; 200; 170; 200; 170;<br />

100<br />

144; 100; 144; 100,<br />

(WDG)<br />

50 50<br />

Copper oxycloride,<br />

Cuprobenton DC Wettable powder 25 1100; 500 275; 125 165;75<br />

Copper sulfate hydrate<br />

5<br />

55; 25<br />

Copper hydroxide Rame Azzurro Suspension 350 220; 160 77, 56 52,8; 38,4<br />

Formula 2 concentrate<br />

Copper metal with B, Mo, Zn Cuivrol Wettable powder 18 700; 300; 270 126; 54; 126;54;<br />

48,6 48,6<br />

Calcium polysulphide Polisenio Liquid 80 18000; 1800;1500 14400;<br />

1440;<br />

1200<br />

Sulphureous clay, leavening Myco-sin* Wettable powder 1500; 1000;<br />

117; 60,8<br />

substances,equisetum extracts<br />

700; 500<br />

*The treatments have been done in accordance with Biagra company:<br />

at phenologycal phase “leaf fall” one treatment has been done with Bordeaux mixture (9kg/ha); at “beginning of bud swelling”, “bud<br />

burst” and “flowering” treatment with Myco-sin and wettable sulphur; at “bud swelling” “pre-flowering” and “fruit swelling”<br />

treatment with Myco-sin and sea-weed; at “fruit setting” one treatment has been done with copper sulfate (4 kg/ha).<br />

Results<br />

Table 2 shows the development of the infections during the trial and the activity of the various formulations over time.<br />

Table 2 – Percentage of infected leaves<br />

Treatments<br />

Assessment<br />

12/04/00<br />

Assessment<br />

18/05/00<br />

% infect leaves<br />

Assessment<br />

20/06/00<br />

Assessment<br />

20/07/00<br />

Assessment<br />

16/08/00<br />

Copper oxycloride 3.5 aA 15.3 aA 25.8 aAB 30.4 aA 33.9 aA<br />

Copper oxycloride,<br />

Copper sulfate<br />

hydrate<br />

4.3 aA 26.7 abAB 33.1 abABC 52.2 bB 53.3 bcBC<br />

Copper hydroxide 4.5 aA 17.1 aA 22.9 aA 38.3 aA 43.1 abAB<br />

Copper metal with B,<br />

Mo, Zn<br />

10.2 aAB 41.7 cBC 46.9 bcABC 61.9 cB 72.5 dD<br />

Calcium<br />

polysulphide<br />

1.0 aA 34.7 bcABC 45.1 bcABC 56.3 bcB 63.8 cdCD<br />

Sulphureous<br />

clay, leavening<br />

substances,equisetum<br />

extracts<br />

7.5 aA 46.9 cCD 48.6 bcBC 61.3 bcB 65.6 cdCD<br />

Control 23.1 bB 61.0 dD 51.9 cC 63.4 cB 68.5 dCD<br />

Different letters in<strong>di</strong>cate significant <strong>di</strong>fferent values by Duncan test (for P=0,05, lower-case letters, and for<br />

P=0,01 capital letters)<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

107


Temperature (°C) Relative Umi<strong>di</strong>ty (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Fig. 3 reports the assessment related to the degree of infection found on the leaves. On the fruits the first<br />

symptoms appeared on 11 May; results on the degree of protection offered by <strong>di</strong>fferent products are reported in<br />

table 3. During the trial, the climatic con<strong>di</strong>tions have turned out favourable for the development of pathogen<br />

(Fig. 4). Elevate infection degrees, found on the leaves and the fruits, caused low yields.<br />

INFECT LEAF INDEX (%)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Fig. 3 - Percentage of leaf damage at <strong>di</strong>fferent date for various products<br />

CC<br />

a<br />

a<br />

a<br />

CU<br />

a<br />

LEGENDA: = infections of apple scab<br />

RG= Bud burst OT= Mouse-ear stage MA= Appearance of flower buds BR= Pink bud PF= Full flowering<br />

CP= Petal fall AL=Fruit setting FN= Walnut fruit IF= Fruit swelling<br />

108<br />

a<br />

a<br />

b<br />

a<br />

a<br />

b<br />

IR<br />

a<br />

b<br />

a<br />

b<br />

a<br />

a<br />

CV<br />

THESES<br />

Different letters in<strong>di</strong>cate significant <strong>di</strong>fferent value by Duncan test for P=0,05<br />

a<br />

a<br />

b<br />

c<br />

d<br />

c<br />

a<br />

PS<br />

c<br />

d<br />

b<br />

c<br />

b<br />

c<br />

a<br />

M+S<br />

b<br />

c<br />

d<br />

c<br />

c<br />

d<br />

b<br />

TEST<br />

d d d<br />

e<br />

c<br />

18/05/00<br />

12/04/00<br />

16/08/00<br />

20/07/00<br />

20/06/00<br />

DATE<br />

OF ASSESSMENT<br />

Fig. 4 -Climate during the trial: <strong>di</strong>rections about phenologycal phases and about infections of apple scab<br />

Infections:<br />

March April May June<br />

JuLy Phenologic<br />

phases: RG OT MA BR PF CP AL FN IF<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

LEGEND<br />

CC = Copper<br />

oxicloride<br />

CU = Copper<br />

oxicloride, Copper<br />

sulphate hydrate<br />

IR = Copper hydroxide<br />

CV = Copper metal<br />

with B, Mo, Zn<br />

PS = Calcium<br />

polysulphide<br />

M+S = Sulphureous<br />

clay, leavening<br />

substances,<br />

equisetum extracts<br />

TEST = Control<br />

Rain<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Rain (mm)<br />

Mean temperature<br />

Mean relative humi<strong>di</strong>ty


Table 3 – Efficacy of <strong>di</strong>fferent treatment against apple scab on fruits (Scale OEPP/EPPO)<br />

Treatments<br />

%<br />

no attack<br />

Assessment<br />

20/07/00<br />

% Fruits with<br />

1-3 spots<br />

109<br />

% Fruits with<br />

more than 3<br />

spots<br />

%<br />

no attack<br />

Assessment<br />

18/08/00<br />

% Fruits with<br />

1-3 spots<br />

% Fruits with<br />

more than 3 spots<br />

Copper oxycloride 61.7 eD 26.2 aAB 9.6 aA 70.1 cD 18.9 aA 4.9 aA<br />

Copper oxycloride,<br />

Copper sulfate<br />

hydrate<br />

38.0 dC 39.0 cB 27.8 bB 55.3 bC 28.6 bAB 17.6 abABC<br />

Copper hydroxide 58.5 eD 28.7 abAB 11.7 aA 69.0 cD 19.6 aA 6.9 aAB<br />

Copper metal with B,<br />

Mo, Zn<br />

27.6 cBC 38.2 bcB 38.8 cB 48.8 bBC 33.0 bB 21.0 bcABC<br />

Calcium polysulphide 24.7 bcB 37.8 bcB 41.7 cBC 46.5 bBC 32.5 bB 24.3 bcBC<br />

Sulphureous<br />

clay, leavening<br />

substances,equisetum<br />

extracts<br />

18.1 bB 27.1 aAB 56.3 dCD 36.2 aAB 35.6 bB 32.6 cCD<br />

Control 6.1 aA 20.2 aA 68.2 eE 29.2 aA 28.3 bAB 46.1 dD<br />

Different letters in<strong>di</strong>cate significant <strong>di</strong>fferent values by Duncan test (for P=0,05, lower-case letters, and for<br />

P=0,01 capital letters)<br />

Conclusions<br />

By the results obtained in the operating con<strong>di</strong>tions of the trial, we can deduce that the various formulates have<br />

against apple scab an acceptable activity related to the degree of attack found in the control parcels. Best results<br />

have been obtained with copper oxicloride, reference product in our trials, and also copper hydroxicloride;<br />

second best results were obtained with the use of Cuprobenton (copper compounds and active bentonites).<br />

Calcium polysulphide has given partial protection, however, it is a positive result because its employment, also<br />

after grown resumption, is permitted by Reg. CE n. 1073/2000. Cuivrol, constituted from oligoelements B, Cu,<br />

Mo, Zn and Myco-sin, made up of sulphureous clay were less effective. Activity against apple scab, not always<br />

satisfactory, manifested by several products, could in part be related to the strong pressure of the pathogen that<br />

has found favourable climatic con<strong>di</strong>tions for the insurgence and spread of the <strong>di</strong>sease.<br />

References<br />

− Boschieri S., Mantinger H.,1991. Produzione biologico-organica del melo presso il centro per la<br />

sperimentazione <strong>di</strong> Laimburg. Otto anni <strong>di</strong> esperienze. L’informatore Agrario, 44: 97-101.<br />

− C.M.I. Descriptions of Pathogenic Fungi and Bacteria No.401,1974, Kew.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


− Direttiva del Consiglio 91/414/CEE relativa all’immissione in commercio dei prodotti fitosanitari (G.U.<br />

19.8.1991, n. L 230).<br />

− Donnarumma L., La Torre A., 2000. Sali <strong>di</strong> rame in agricoltura biologica e possibili alternative.<br />

Informatore Fitopatologico, 4: 27-31.<br />

− Gentili G., Ravagli S., 1994. Applicazione <strong>di</strong> tecniche <strong>di</strong> lotta guidata alle malattie crittogamiche dei<br />

fruttiferi e della vite in Emilia- Romagna: risultati delle sperimentazioni effettuate nel periodo 1986-<br />

1993. Atti Giornate Fitopatologiche,3: 79-86.<br />

− Govi G., 1955. Risultati <strong>di</strong> prove <strong>di</strong> lotta contro la ticchiolatura del melo. Frutticoltura VI: 517-531.<br />

− McKinney H.H.,1923. Influence of soil temperature and moisture on infection of wheat seedlings by<br />

Helminthosporium sativum. Journal of Agricultural Research, 5: 195-217.<br />

− Mills W. D., 1944. Efficient use of sulfur dust and sprays during rain to control apple scab. Ext. Bull.<br />

Cornell Agric. Exp. Sta., 630.<br />

− OEPP/EPPO, 1997. Directives pour l’evaluation biologique des produits phytosanitaires, vol. 2<br />

Fongicides & Bactericides, PP 1/5(3): 15-18.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

110


21<br />

CONTAMINAZIONE DA MICOTOSSINE IN ALIMENTI DI PRODUZIONE BIOLOGICA<br />

A. Maietti 1 , L. Mazzotta 1 , C. Saletti 2 , G. Mirolo 3 , M. Berveglieri 2 ,<br />

P. Tedeschi 1 , V. Brandolini 1<br />

1Dipartimento <strong>di</strong> Scienze Farmaceutiche – Università <strong>di</strong> Ferrara; 2 Dipartimento <strong>di</strong> Sanità Pubblica – Azienda<br />

USL <strong>di</strong> Ferrara; 3 A.R.P.A. – Ferrara<br />

INTRODUZIONE<br />

Le micotossine sono metaboliti secondari prodotti da muffe, tossici per gli animali superiori. La formazione <strong>di</strong><br />

queste sostanze è strettamente connessa alla crescita fungina anche se la presenza <strong>di</strong> funghi tossigeni in un<br />

prodotto non in<strong>di</strong>ca automaticamente la presenza <strong>di</strong> micotossine. Le tossine tuttavia possono persistere per lungo<br />

tempo dopo la crescita vegetativa e la morte del fungo. L’analisi micologica basata sulla numerazione delle unità<br />

vitali e l'identificazione delle specie fungine non permette <strong>di</strong> quantificare il rischio tossico proprio <strong>di</strong> un prodotto<br />

alimentare; questo rischio non può che essere determinato con un'analisi chimico-fisica.<br />

Le aflatossine sono un gruppo <strong>di</strong> micotossine prodotte da ceppi <strong>di</strong> Aspergillus flavus, A. parasiticus e A. nomius,<br />

con simile struttura chimica. Si ritiene che l'A. flavus produca le aflatossine B1 e B2, mentre l'A. parasiticus<br />

produca le aflatossine B1, B2, G1, G2. Le contaminazioni degli alimenti con aflatossine si verificano<br />

principalmente nelle zone a climi cal<strong>di</strong> e umi<strong>di</strong> come le zone tropicali e subtropicali, ma poiché i Paesi delle<br />

zone climatiche più fredde importano prodotti da queste aree, le aflatossine sono un problema mon<strong>di</strong>almente<br />

riconosciuto. L'aflatossina B1 è il tipo più frequentemente riscontrato, mentre la presenza <strong>di</strong> aflatossine B2, G1,<br />

G2 è generalmente associata alla presenza dell'aflatossina B1 e <strong>di</strong> solito sono presenti in quantità minore.<br />

Le muffe capaci <strong>di</strong> produrre micotossine sono contaminanti assai <strong>di</strong>ffusi negli alimenti e nei prodotti agricoli;<br />

crescita e produzione <strong>di</strong> tossine possono avvenire sia in campo che in magazzino.<br />

Le derrate alimentari possono subire una contaminazione <strong>di</strong>retta che avviene normalmente su matrici vegetali<br />

quali cereali, frutta secca, semi oleaginosi, spezie; oppure in<strong>di</strong>retta attraverso l’alimentazione degli animali da<br />

allevamento con foraggi e mangimi contaminati.<br />

La qualità delle materie prime, il controllo dell'ambiente <strong>di</strong> conservazione, i trattamenti fisici e chimici, la pulizia<br />

dei sili e dei trasporti, sono la chiave del controllo dello sviluppo fungino. La prevenzione della contaminazione<br />

fungina potrebbe essere pertanto più <strong>di</strong>fficoltosa nei prodotti biologici che per definizione possono essere<br />

sottoposti a trattamenti solo con prodotti naturali consentiti. Le micotossine possono causare vari effetti tossici <strong>di</strong><br />

tipo acuto, subacuto, teratogeno, mutageno, cancerogeno; esse evidenziano <strong>di</strong>versi tipi <strong>di</strong> tossicità in <strong>di</strong>pendenza<br />

della dose, dell'organo interessato, del sesso, dell'età e della specie.<br />

Per l'Italia, le micotossine rappresentano un problema connesso con l'importazione <strong>di</strong> derrate da Paesi a clima<br />

caldo e umido, mentre la contaminazione dei prodotti locali è poco frequente ed è a livelli piuttosto contenuti sia<br />

per motivi climatici che per le migliori tecniche agronomiche, <strong>di</strong> raccolta e <strong>di</strong> conservazione dei prodotti stessi.<br />

La Comunità Economica Europea con il Regolamento CEE n.1525/98 ha fissato dei limiti massimi accettabili<br />

sia per il contenuto globale delle aflatossine (4.0 µg/Kg) che per quello della sola aflatossina B1 (2.0 µg/Kg) e<br />

del suo metabolita aflatossina M1 nel latte (0.05 µg/Kg).<br />

Il consumo <strong>di</strong> prodotti da agricoltura biologica è in espansione ed è pertanto maggiore la quota <strong>di</strong> popolazione a<br />

rischio con particolare esposizione verso il settore ortofrutticolo (40%) seguito da pasta e riso (8%). Per tale<br />

motivo si è ritenuto interessante svolgere un'indagine mirata alla valutazione della eventuale presenza <strong>di</strong><br />

micotossine (Aflatossina B1 e totali), nei prodotti "biologici" commercializzati nella provincia <strong>di</strong> Ferrara al fine<br />

<strong>di</strong> incrementare le necessarie informazioni sotto il profilo della sicurezza alimentare.<br />

Le principali tipologie produttive dell'agricoltura biologica sulle quali si è incentrata la ricerca <strong>di</strong> micotossine<br />

sono state le seguenti: cereali e paste alimentari, Muesli biologico, pane integrale biologico; riso integrale<br />

biologico e riso soffiato biologico, farine biologiche, fette biscottate, crackers, gallette ed affini, e biscotti,<br />

composta <strong>di</strong> frutta biologica.<br />

MATERIALI E METODI<br />

I campionamenti sono stati effettuati presso la grande <strong>di</strong>stribuzione nel rispetto della normativa vigente ed i<br />

campioni raccolti sono stati analizzati per verificare la presenza <strong>di</strong> Aflatossine B1 e totali.<br />

Proce<strong>di</strong>mento <strong>di</strong> estrazione: 25 g <strong>di</strong> campione macinato ed omogeneizzato sono mescolati a 10 g <strong>di</strong> celite e<br />

<strong>di</strong>spersi in una miscela acetonitrile/acido acetico. Dopo 30 minuti <strong>di</strong> agitazione si filtra. Il filtrato viene trattato<br />

inizialmente con acqua, piombo acetato neutro e ammonio solfato, e successivamente estratto con toluene. La<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

111


fase organica è portata a secco ed il residuo ripreso con esano e acido trifluoroacetico, quin<strong>di</strong> riportato<br />

nuovamente a secco e ripreso con acetonitrile e acqua.<br />

La determinazione analitica è effettuata con un HPLC Perkin Elmer dotato <strong>di</strong> detector fluorimetrico SFM 25<br />

Kontron, iniettore Rehodyne con loop da 20 µl e colonna C18 (5 µm x 25 cm). La fase eluente è una soluzione<br />

costituita da acqua 79 %, acido acetico 7 %, alcol isopropilico 7 % e acetonitrile 7 %.<br />

RISULTATI E DISCUSSIONE<br />

I prodotti esaminati in questa ricerca sono tra quelli maggiormente ricercati dal consumatore nell’ambito dei<br />

prodotti derivati da agricoltura biologica. In questo lavoro sono presentati i dati riguardanti frutta secca, cereali e<br />

legumi, semi oleaginosi, spezie ed erbe infusionali realtivi a campionamenti effettuati negli anni 1999 e 2000.<br />

Nell’anno 1999 sono stati esaminati 82 campioni <strong>di</strong> frutta secca, cereali e legumi; 413 campioni <strong>di</strong> semi<br />

oleaginosi; 65 campioni <strong>di</strong> spezie ed erbe infusionali. Nell’anno 2000 sono stati esaminati 137 campioni <strong>di</strong> frutta<br />

secca, cereali e legumi; 430 campioni <strong>di</strong> semi oleaginosi; 29 campioni <strong>di</strong> spezie ed erbe infusionali.<br />

Ricerca:<br />

Aflatossine<br />

B1<br />

B1+B2+G1+G2<br />

Tot.<br />

camp<br />

LR* = limite <strong>di</strong> rilevabilità<br />

Ricerca:<br />

Aflatossine<br />

B1<br />

Campioni<br />

non<br />

Conformi<br />

3,7 %<br />

B1+B2+G1+G2<br />

FRUTTA SECCA, CEREALI E LEGUMI<br />

Anno 1999<br />

Camp<br />

pos.<br />

Numero <strong>di</strong> campioni<br />

< LR* 0-2 2-4 4-10 10-50 > 50<br />

112<br />

Standard <strong>di</strong><br />

riferimento<br />

(Circolare n.10<br />

del 9/6/99)<br />

82 3 75 4 1 1 1 2 µg/kg<br />

82 3 74 4 1 1 1 1 4 µg/kg<br />

Tot.<br />

camp<br />

B1<br />

LR* = limite <strong>di</strong> rilevabilità<br />

Camp<br />

pos.<br />

Campioni<br />

Conformi<br />

96,3 %<br />

137 1 135 1<br />

Campioni non conformi<br />

Anno 2000<br />

Campioni<br />

non<br />

Conformi<br />

3,7 %<br />

(B1 + B2 + G1 + G2)<br />

Campioni<br />

Conformi<br />

96,3 %<br />

Numero <strong>di</strong> campioni<br />

Standard <strong>di</strong><br />

riferimento<br />

< LR* 0-2 2-4 4-10 10-50 > 50 (Circolare n.10<br />

del 9/6/99)<br />

1 2 µg/kg<br />

121 1 119 1 4 µg/kg<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Ricerca:<br />

Aflatossine<br />

B1<br />

B1+B2+G1+G2<br />

B1<br />

Tot<br />

camp<br />

LR* = limite <strong>di</strong> rilevabilità<br />

Ricerca:<br />

Aflatossine<br />

B1<br />

Campioni<br />

non<br />

Conformi<br />

0,7 %<br />

Campioni<br />

non<br />

Conformi<br />

5,6 %<br />

B1+B2+G1+G2<br />

Camp<br />

pos<br />

Campioni non conformi<br />

SEMI OLEAGINOSI<br />

Anno 1999<br />

113<br />

Numero <strong>di</strong> campioni<br />

(B1 + B2 + G1 + G2)<br />

< LR* 0-2 2-4 4-10 10-50 > 50<br />

Standard <strong>di</strong><br />

riferimento<br />

(Circolare n.10<br />

del 9/6/99)<br />

413 23 387 3 5 7 6 5 2 µg/kg<br />

413 20 383 6 4 7 7 6 4 µg/kg<br />

Tot<br />

camp<br />

B1<br />

LR* = limite <strong>di</strong> rilevabilità<br />

Camp<br />

pos<br />

Campioni<br />

Conformi<br />

99,3 %<br />

Campioni non conformi<br />

Campioni<br />

Conformi<br />

94,4 %<br />

Anno 2000<br />

Campioni<br />

non<br />

Conformi<br />

0,8%<br />

Campioni<br />

non<br />

Conformi<br />

4,8 %<br />

Numero <strong>di</strong> campioni<br />

(B1 + B2 + G1 + G2)<br />

< LR* 0-2 2-4 4-10 10-50 > 50<br />

Standard <strong>di</strong><br />

riferimento<br />

(Circolare n.10<br />

del 9/6/99)<br />

430 18 408 4 5 2 5 6 2 µg/kg<br />

430 15 408 4 3 4 5 6 4 µg/kg<br />

Campioni<br />

Conformi<br />

99,2 %<br />

Campioni<br />

Conformi<br />

95,2 %<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Ricerca:<br />

Aflatossine<br />

B1<br />

B1+B2+G1+G2<br />

B1<br />

Tot<br />

camp<br />

LR* = limite <strong>di</strong> rilevabilità<br />

Ricerca:<br />

Aflatossine<br />

B1<br />

Campioni<br />

non<br />

Conformi<br />

4,2 %<br />

Campioni<br />

non<br />

Conformi<br />

3,1 %<br />

Camp<br />

pos<br />

Campioni non conformi<br />

SPEZIE ED ERBE INFUSIONALI<br />

Anno 1999<br />

Numero totale <strong>di</strong> campioni<br />

< LR* 0-10 10-20 20-50 > 50<br />

114<br />

(B1 + B2 + G1 + G2)<br />

Standard <strong>di</strong><br />

riferimento<br />

(Circolare n.10<br />

del 9/6/99)<br />

65 2 53 10 2 10 µg/kg<br />

65 2 53 10 1 1 20 µg/kg<br />

B1<br />

Tot<br />

camp<br />

Camp<br />

pos<br />

Campioni non conformi<br />

Anno 2000<br />

Numero <strong>di</strong> campioni<br />

(B1 + B2 + G1 + G2)<br />

< LR* 0-4 4-8 8-10 10- 0 > 50<br />

Standard <strong>di</strong><br />

riferimento<br />

(Circolare n.10<br />

del 9/6/99)<br />

29 1 26 2 1 10 µg/kg<br />

B1+B2+G1+G2 29 1 26 2 1 20 µg/kg<br />

LR* = limite <strong>di</strong> rilevabilità<br />

Campioni<br />

Conformi<br />

95,8 %<br />

Campioni<br />

Conformi<br />

96,9 %<br />

Campioni<br />

non<br />

Conformi<br />

3,5 %<br />

Campioni<br />

non<br />

Conformi<br />

3,1 %<br />

Campioni<br />

Conformi<br />

96.5 %<br />

Campioni<br />

Conformi<br />

96,9 %<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Campioni<br />

non<br />

Conformi<br />

3,4 %<br />

B1<br />

Campioni non conformi<br />

Campioni<br />

Conformi<br />

96,6 %<br />

115<br />

Campioni<br />

non<br />

Conformi<br />

3,4 %<br />

(B1 + B2 + G1 + G2)<br />

Campioni<br />

Conformi<br />

96,6 %<br />

Relativamente all’anno 1999 a seconda della matrice considerata il grado <strong>di</strong> contaminazione da aflatossina B1 e<br />

aflatossine totali è risultato variare dal 3 % nelle erbe infusionali e spezie, al 3,7 % nella frutta secca, al 6 % nei<br />

semi oleaginosi, mentre nei cereali e legumi analizzati non sono state reperite aflatossine.<br />

Il trend si è mantenuto nell’anno 2000 per quanto riguarda spezie ed erbe infusionali; per i semi oleaginosi è<br />

stata riscontrata una maggior percentuale <strong>di</strong> campioni conformi ai limiti in<strong>di</strong>cati dalla circolare n. 10 del 9/6/99.<br />

Per la categoria frutta secca cereale e legumi i campioni contaminati da aflatossine sono risultati al <strong>di</strong> sotto del 1<br />

%. Tale risultato è ancor più significativo se si considera che per questa categoria <strong>di</strong> prodotti il numero <strong>di</strong><br />

campioni analizzati è stato circa il doppio.<br />

All'interno delle <strong>di</strong>verse classi alimentari sono state in<strong>di</strong>viduate alcune matrici più a rischio: tra i semi oleaginosi<br />

i pistacchi e le arachi<strong>di</strong>; tra le spezie i peperoncini e le polveri derivate ed infine tra la frutta secca i fichi.<br />

I dati ottenuti confermano l'alto rischio alimentare per prodotti provenienti da paesi terzi (Turchia, In<strong>di</strong>a, Iran, e<br />

altri) dove non sempre le con<strong>di</strong>zioni <strong>di</strong> stoccaggio e trasporto delle derrate alimentari possono garantire la<br />

corretta conservabilità e salubrità dei prodotti.<br />

CONCLUSIONI<br />

Il consumo <strong>di</strong> prodotti da agricoltura biologica è in espansione ed è maggiore da parte <strong>di</strong> persone che hanno<br />

scelto un’alimentazione prevalentemente vegetariana. Il consumo maggiore <strong>di</strong> prodotti biologici viene registrato<br />

nel settore ortofrutticolo, con il 40% delle preferenze sul totale dei consumatori, seguito da pasta e riso con l’8 ed<br />

il 2-3% dei prodotti confezionati. I prodotti considerati nel presente lavoro hanno una larga <strong>di</strong>ffusione tra i<br />

consumatori <strong>di</strong> prodotti biologici.<br />

I risultati ottenuti dalla indagine effettuata in questo biennio sono stati sod<strong>di</strong>sfacenti e ci hanno permesso <strong>di</strong><br />

ricavare le seguenti informazioni :<br />

• Sono necessari controlli mirati sia allo stoccaggio presso i centri <strong>di</strong> produzione (per cereali <strong>di</strong><br />

produzione locale) sia nella grossa <strong>di</strong>stribuzione (ipermercati);<br />

• Un più attento controllo deve essere effettuata su matrici a particolare rischio quali semi oleaginosi<br />

(mandorle, pistacchi, arachi<strong>di</strong> e noci), spezie (peperoncino e polveri derivate), caffè; e in particolare quelle<br />

provenienti da paesi terzi dove non sempre le con<strong>di</strong>zioni <strong>di</strong> trasporto e stoccaggio garantiscono la salubrità<br />

dei prodotti;<br />

• Devono essere in oltre monitorati i prodotti locali insilati quali grano, riso, sfarinati.<br />

Infine va ricordato che gli alimenti che sono risultati maggiormente a rischio <strong>di</strong> aflatossine sono arachi<strong>di</strong> e<br />

derivati, mais e derivati, noci brasiliane, mandorle, fichi secchi, alcune spezie (peperoncino); ma che una cattiva<br />

conservazione può far comparire le aflatossine anche in prodotti non considerati a rischio.<br />

Bibliografia<br />

- Nasir M.S., Jolley M.E., “Development of a fluorescence polarization assay for the determination of<br />

aflatoxins in grains”. J. Agric. Food Chem. 50(11):3116-21 (2002).<br />

- Schatzki T.F., Haddon W.F., “Rapid, non-destructive selection of peanuts for high aflatoxin content by<br />

soaking and tandem mass spectrometry”. J. Agric. Food Chem. 50(10):3062-9 (2002).<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


- Sobolev V.S., Dorner J.W., “Cleanup procedure for determination of aflatoxins in major agricultural<br />

commo<strong>di</strong>ties by liquid chromatography”. J. AOAC Int. 85(3):642-5 (2002).<br />

- Regolamento CE 1525/98<br />

- Circolare n°10 del 09/06/99 Gazzetta Ufficiale della Repubblica Italiana<br />

- Barbieri G., Bergamini C., Ori E, Resca P. Journal of Food Science 1313 -1331(1994)<br />

- Finoli C., Ferrari M. Industrie Alimentari, 732-736 (1994)<br />

- Brera C., Miraglia M., Colatosti M.: Microchemical Journal, 59 (1), 45-49 (1998)<br />

- Brera C., Miraglia M. Microchemical Journal, 54 (4), 465 -471 (1996)<br />

- R.C. Garden, M.M. Wattman, P.J.L. Taylor and M.W Stow Journal of Chromatography, 648, 485-490<br />

(1993)<br />

- Brera C. Rapporti ISTISAN 34, 203-214 (1996)<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

116


22<br />

PEPTIDATI DI RAME: PRODOTTI INNOVATIVI<br />

A BASSO DOSAGGIO A BASE DI RAME, CHELATO AD AMINO ACIDI E PEPTIDI<br />

Paolo Maini<br />

U.R. GRIFA no. 42 - c/o SICIT 2000 SpA, Chiampo VI<br />

Il rame, insieme allo zolfo, è forse il più in<strong>di</strong>spensabile dei prodotti utilizzati per la <strong>di</strong>fesa delle colture<br />

nell'Agricoltura Biologica (AB). Vite, patata, pomodoro, olivo e molte frutticole non si potrebbero assolutamente<br />

produrre senza rame in AB.<br />

A livello europeo, i Paesi del Nord vorrebbero eliminare del tutto il rame dalla lista dei prodotti ammessi, a causa<br />

dell'inquinamento delle falde acquifere in quei suoli, principalmente aci<strong>di</strong>. Nel Sud Europa la prevalenza <strong>di</strong> suoli<br />

alcalini evita la percolazione e quin<strong>di</strong> il problema è meno sentito. E’ vero però che i Paesi del Nord sono i<br />

consumatori <strong>di</strong> una buona parte delle nostre produzioni biologiche e quin<strong>di</strong> le loro richieste devono essere tenute<br />

in debita considerazione. A livello normativo (Reg. CEE 2092/91) l’utilizzo del rame era stato concesso fino al<br />

31 marzo 2002, e ciò avrebbe significato la morte dell'AB, se non fossero intervenuti gli organismi dei<br />

produttori biologici con proposte <strong>di</strong> riduzione dell’uso al minimo. Fortunatamente, è stata accettata la proposta <strong>di</strong><br />

"…una riduzione graduale dell’uso del rame, con un limite massimo <strong>di</strong> 8 kg <strong>di</strong> rame metallico per ettaro e per<br />

anno. Dopo 4 anni, il rame dovrà essere ulteriormente ridotto e successive riduzioni verranno decise in base al<br />

progresso della ricerca sulle possibili alternative. La quantità <strong>di</strong> rame ad ettaro e per anno andrà calcolata come<br />

me<strong>di</strong>a quinquennale, in modo da poter fronteggiare annate climaticamente avverse con quantità leggermente<br />

maggiori <strong>di</strong> rame, per poi recuperare nelle annate meno <strong>di</strong>fficili."<br />

Ed è proprio sulla linea delle suddette normative che si posizionano i nuovi ed innovativi formulati a base <strong>di</strong><br />

rame complessato ad amino aci<strong>di</strong> e pepti<strong>di</strong> (PEPTIDATI o Polipeptidati <strong>di</strong> rame), capaci <strong>di</strong> ridurre fortemente i<br />

dosaggi del rame ad ettaro.<br />

Peptiram 5 e Peptiram 7, peptidati <strong>di</strong>m rame chelato ad amino aci<strong>di</strong> e pepti<strong>di</strong>, rispettivamente a base <strong>di</strong> solfato e<br />

<strong>di</strong> idrossido <strong>di</strong> rame e registrati dalla SICIT 200 SpA nell'aprile del 2002, si <strong>di</strong>fferenziano nettamente da tutti i<br />

prodotti fungici<strong>di</strong> convenzionali a base <strong>di</strong> rame. Essi possono rappresentare, pertanto, una nuova e valida<br />

alternativa nel controllo delle malattie fungine e batteriche delle colture agrarie, particolarmente nell'AB,<br />

tenendo in conto anche il fatto che il rame, pur essendo utilizzato da più <strong>di</strong> cento anni, non ha mai prodotto<br />

fenomeni <strong>di</strong> resistenza.<br />

I due nuovi Peptidati <strong>di</strong> rame sono caratterizzati da una speciale struttura basata su complessi del rame con<br />

amino aci<strong>di</strong> e pepti<strong>di</strong> (Figura 1). Il metallo, così legato, non segue più la normale via <strong>di</strong> penetrazione nelle<br />

cellule vegetali con meccanismo “cationico”, ma penetra con gli stessi meccanismi delle sostanze organiche. La<br />

forte riduzione dei dosaggi/ha <strong>di</strong> rame che ne deriva, può arrivare fino ad un quinto o ad un decimo,<br />

rispettivamente con Peptiram 5 e Peptiram 7.<br />

Figura 1: Esempi <strong>di</strong> chelati tra Rame ed amino aci<strong>di</strong>. A sinistra: 1 atomo <strong>di</strong> Cu, 2 moli <strong>di</strong> Glicina e 1 mole <strong>di</strong><br />

H2O; a destra:1 atomo <strong>di</strong> Cu , 1 mole <strong>di</strong> Isti<strong>di</strong>na e 1 mole <strong>di</strong> Asparagina .<br />

Forse proprio per questo meccanismo <strong>di</strong> facile penetrazione è da notare l'efficacia mostrata verso malattie<br />

fungine solitamente non controllate dal Cu, quali certe ruggini. Mentre in altre colture (ad es:. olivo,<br />

cucurbitacee) prevale l'azione stimolante degli amino aci<strong>di</strong> con notevoli rigogli vegetativi e produttivi, in alcune<br />

colture (ad es.: vite), a causa della rapida assimilazione, si possono verificare fenomeni fitotossici, in funzione<br />

della varietà, dello sta<strong>di</strong>o fisiologico o delle con<strong>di</strong>zioni ambientali. L'importanza dell'impiego del rame nella<br />

vite, ha portato a saggiare la sensibilità varietale su 16 cv., con buoni risultati, escluso il moscato.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

117


La necessità <strong>di</strong> dover ridurre i dosaggi <strong>di</strong> rame per ettaro, ha spinto vari Organismi regionali o affini, che si<br />

occupano <strong>di</strong> AB, a fare numerose prove con formulazioni o tecniche nuove. Negli ultimi due-tre anni anche i<br />

Peptiram sono stati inseriti in tali programmi e generalmente i risultati sono stati tra i più sod<strong>di</strong>sfacenti.<br />

Nel corso <strong>di</strong> questa ultima annata, dopo la registrazione dei due prodotti, sono state impostate anche numerose<br />

prove <strong>di</strong>mostrative su varie colture.<br />

L'impiego dei due Peptiram, inoltre, è del tutto sod<strong>di</strong>sfacente anche sul piano igienico-tossicolgico, in quanto<br />

analisi dei residui <strong>di</strong> rame su vite e pomodoro hanno evidenziato valori non <strong>di</strong>versi dai testimoni (Figura 2). Ciò<br />

potrebbe essere particolarmente interessante per i produttori biologici <strong>di</strong> vini passiti, ove, in qualche caso, si<br />

sfiorano i livelli residuali massimi.<br />

Residui Cu , mg/kg<br />

3<br />

1,5<br />

0<br />

0,91<br />

2,16<br />

Controllo Peptiram 5<br />

6 kg/ha<br />

1,42<br />

Peptiram 7<br />

1,5 kg/ha<br />

Figura 2: Residui <strong>di</strong> Cu (mgKg -1 ) da prove ed analisi secondo le BPL.<br />

118<br />

UVA<br />

POMODORO<br />

0,72<br />

Controllo Peptiram 5<br />

300 g/100L<br />

0,82 0,84<br />

Peptiram 7<br />

100 g/100L<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


23<br />

CHARACTERIZATION OF ORGANIC VIRGIN OLIVE OILS FROM CORATINA CULTIVAR<br />

E. Perri, N. Lombardo, I. Muzzalupo, E. Urso, M.<br />

Pellegrino<br />

Istituto Sperimentale per l’Olivicoltura<br />

C.da Li Rocchi, 87036 Rende (CS), Italy<br />

eperri@libero.it<br />

G. Sindona, C. Benincasa<br />

Dipartimento <strong>di</strong> Chimica<br />

Università della Calabria<br />

I-87030 Arcavacata <strong>di</strong> Rende (CS), Italy<br />

119<br />

C. Cavallo<br />

Regione Puglia<br />

I.P.A., Brin<strong>di</strong>si, Italy<br />

Introduction<br />

In spite of the growing interest in organically cultivated olive grove and organic olive oil in European and<br />

international markets, there are very few reports on the qualitative, nutritional and organoleptic characteristics of<br />

these products (Gutierrez et al., 1999; Perri et al., 1999; Perri et al., 2001; Perri et al., 2002). Recently, a<br />

research project dealing with the “Characterisation of olive oils from the South of Italy obtained by organic<br />

farming systems” has been co-funded by the EU and the Italian Ministry of Agriculture (B07 Project,<br />

Multiregional Operational Programme, 2 Measure). The principal aim of this research project was to classify and<br />

characterise the nutritional and organoleptic quality of organic olive oils and to compare the quality of organic<br />

olive oil of important Italian cultivars from selected producing areas to conventional and/or integrated olive oils<br />

from the same cultivars and areas. This paper presents some results of the second year of activity in Apulia of the<br />

above research project.<br />

Materials and methods<br />

Plant material. In 2000, triplicate samples of organically and integrated cultivated olive drupes of Coratina cv<br />

from two adjacent farms at Andria (Bari, Italy) were collected 10 days before the tra<strong>di</strong>tional start of harvest, in<br />

the middle of the harvest period and 10 days after the end of harvest time. To compare organically produced<br />

olive oils versus integrated olive oils the olives were handpicked from the same cultivars under comparable<br />

pedo-climatic, harvesting and productive con<strong>di</strong>tions and the analytical and sensory data compared on the basis of<br />

the same stage of olive maturity monitored by Jaen index (Gutierrez et al., 1999).<br />

Work-up of plant material. Olive drupes (10 Kg) were crushed with a hammer mill and the oil was extracted by<br />

centrifugation after 20 minutes of malaxation at RT.<br />

Analytical procedures. The measurements of free aci<strong>di</strong>ty, fatty acid methyl esters, peroxide index, specific<br />

extinction coefficients K232 and K270, ∆k, and panel test have been determined accor<strong>di</strong>ng to the European Official<br />

Methods of Analysis (EC Regulation N. 2568/91 July, 1991). Total phenols were determined by colorimetry<br />

using the Folin-Ciocalteu reagent using caffeic acid as external standard. Oleuropein (olp) was determined in<br />

virgin olive oil extracts by tandem mass spectrometry with Atmospheric Pressure Chemical Ionization (APCI-<br />

MS/MS) under Selected Reaction Monitoring (SRM) con<strong>di</strong>tion (Perri et al., 1999b).<br />

Results and <strong>di</strong>scussion<br />

The analytical data arising from the second year of sampling confirm the preliminary results published on the<br />

first paper (Perri et al., 2002): i) olive oil from Coratina cv. is characterised by high level of total phenols and<br />

high percentages of oleic acid in a wide range of stages of maturity of the drupes; ii) all the examined olive oil<br />

samples were ascribable to the extra virgin olive oil grade on the basis of analytical data relating to free aci<strong>di</strong>ty,<br />

peroxide number, specific extinction coefficients K232 and K270 , ∆k, fatty acid methyl esters, sterol and<br />

organoleptic score (panel test); iii) ecologically grown olives can produce high-quality oil thanks to the low<br />

Bactrocera oleae infestations; iv) as shown by the variance analysis (table 1), analytical and sensory data<br />

relating to organic and integrated olive oils are very similar. In fact, the only statistical significant <strong>di</strong>fference<br />

observed between organic and integrated olive oils correspon<strong>di</strong>ng to the means of the sensory score of integrated<br />

olive oil (table 1) may be considered negligible from the quality point of view.<br />

Acknowledgements<br />

The Italian Ministry of Agriculture and European Union (Multiregional Operational Programme, Measure 2, B07<br />

Project) supported this research work. We thank Dr. Nino Paparella, Dr. Nicola Panaro (C.I.Bi., Bari) and Drs.<br />

Edoardo and Giancarlo Ceci Ginistrelli for olive sampling, data collection on farming systems and olive grove<br />

management. We thank also Prof. Angelo Putignano and Prof. Francesco Prudentino (I.T.A.S. of Ostuni-BR) for<br />

olive oil extraction.<br />

Literature cited<br />

Gutierrez R. F., Arnaud T., Albi M., Influence of ecological cultivation on virgin olive oil quality, JAOCS, 1999,<br />

76:617-621.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Perri E., Palopoli A., Pellegrino M., Sirianni R., Miele D., 1999a, La caratterizzazione degli oli <strong>di</strong> oliva calabresi<br />

ottenuti da agricoltura biologica, Procee<strong>di</strong>ng of Seminario-Laboratorio “Meto<strong>di</strong> e sistemi innovativi<br />

dell’olivicoltura biologica e sostenibile: stato della ricerca e della sperimentazione”, Rende, april 14-16, pp147-<br />

153.<br />

Perri E, Raffaelli A., Sindona, 1999b, G., Quantitation of oleuropein in virgin olive oil by ionspray mass<br />

spectrometry-selected reaction monitoring, J. Agric. Food Chem., 47(10), 4156-4160.<br />

Perri E., Rizzuti B., Pellegrino M., Salvo F., Spartà G., 2001, Valutazione organolettica degli oli <strong>di</strong> oliva siciliani<br />

campionati nell’ambito del progetto POM B07 ”Caratterizzazione degli oli <strong>di</strong> oliva meri<strong>di</strong>onali da agricoltura<br />

biologica” nell’annata 1999-2000, in Corso per tecnici degustatori d’olio extravergine e vergine d’oliva,<br />

Regione Siciliana, Alcamo.<br />

Perri E., Rizzuti B., Pellegrino M., Paparella N., Panaro N., Cavallo C., 2002, Characterisation of italian virgin<br />

olive oils from organic farming systems, Atti “4th Intenational Symposium on olive growing”, Valenzano (BA),<br />

25-30 settembre - Acta Horticulturae (in corso <strong>di</strong> stampa).<br />

Perri E., Lombardo N., Parlati M.V., Fodale A., Mulè R., Pellegrino M., Salvo F., Spartà G., 2002,<br />

Caratterizzazione <strong>di</strong> oli <strong>di</strong> oliva da agricoltura biologica provenienti dalla Sicilia, Atti del Convegno<br />

Iternazionale <strong>di</strong> Olivicoltura, Spoleto, 22-23 aprile 2002.<br />

Table 1. Mean values of the main quality parameters of olive oil of Coratina cv. from Andria (BA) and<br />

significant <strong>di</strong>fferences in the means of the same treatment and between treatments.<br />

Ripeness index<br />

Parameter Culture 2.2 3.2 Mean (a)<br />

Aci<strong>di</strong>ty Organic 0.28 n.s. 0.23 n.s. 0.26<br />

Integrated 0.28 n.s. 0.28 n.s. 0.28<br />

n.s. n.s. n.s.<br />

Peroxide Organic 2.93 n.s. 3.20 n.s. 3.07<br />

Integrated 2.60 b 3.27 a 2.93<br />

n.s. n.s. n.s.<br />

Total phenols Organic 485.80 n.s. 418.13 n.s. 451.97<br />

Integrated 432.13 n.s. 382.20 n.s. 407.16<br />

n.s. n.s. n.s.<br />

Organoleptic score Organic 7.00 n.s. 7.53 n.s. 7.27<br />

Integrated 7.37 n.s. 7.53 n.s. 7.45<br />

* n.s. n.s.<br />

Oleic acid Organic 76.73 n.s. 74.86 n.s. 75.79<br />

Integrated 76.02 n.s. 76.31 n.s. 76.16<br />

n.s. n.s. n.s.<br />

Oleuropein (mg/kg) Organic 0.126 A 0.090 B 0.108<br />

(a) Overall means. Differences within the same row (Tukey test): n.s.=not significant; <strong>di</strong>fferent letters<br />

in<strong>di</strong>cate a significant <strong>di</strong>fferences at P 0.05 (Tukey test). Differences within the same column (Tukey test):<br />

n.s.=not significant; * P


24<br />

CHARACTERIZATION OF ORGANIC VIRGIN OLIVE OILS FROM OGLIAROLA SALENTINA<br />

CULTIVAR<br />

E. Perri, N. Lombardo, I. Muzzalupo, B.<br />

Rizzuti, M. Pellegrino<br />

Istituto Sperimentale per l’Olivicoltura<br />

C.da Li Rocchi, 87036 Rende (CS), Italy<br />

eperri@libero.it<br />

G. Sindona, C. Benincasa<br />

Dipartimento <strong>di</strong> Chimica<br />

Università della Calabria<br />

I-87030 Arcavacata <strong>di</strong> Rende (CS),<br />

Italy<br />

121<br />

C. Cavallo<br />

Regione Puglia<br />

I.P.A., Brin<strong>di</strong>si, Italy<br />

Introduction<br />

The organic extra-virgin olive oil would be able to have high nutritional and sensory quality as necessary<br />

requirement to become part of those Italian products that are able to survive in the national and international<br />

market. However, there are very few reports on the qualitative, nutritional and organoleptic characteristics of<br />

these products (Gutierrez et al., 1999; Perri et al., 1999a; Perri et al., 2001; Perri et al., 2002). Recently, a<br />

research project dealing with the “Characterisation of olive oils from the South of Italy obtained by organic<br />

farming systems” has been co-funded by the EU and the Italian Ministry of Agriculture (B07 Project,<br />

Multiregional Operational Programme, 2 Measure). The principal aim of this research project was to classify and<br />

characterise the nutritional and organoleptic quality of organic olive oils and to compare the quality of organic<br />

olive oil of important Italian cultivars from selected producing areas to conventional and/or integrated olive oils<br />

from the same cultivars and areas. This paper presents some results of the second year of activity in Apulia of the<br />

above research project.<br />

Materials and methods<br />

Plant material. In 2000/2001 harvest, triplicate samples of organically and conventional cultivated olive drupes<br />

of Ogliarola salentina cv. from two adjacent farms at Villa castelli (Brin<strong>di</strong>si, Italy) were collected 10 days before<br />

the tra<strong>di</strong>tional start of harvest, in the middle of the harvest period and 10 days after the end of harvest time. To<br />

compare organically produced olive oils versus conventional olive oils the olives were handpicked from the<br />

same cultivars under comparable pedo-climatic, harvesting and productive con<strong>di</strong>tions and the analytical and<br />

sensory data compared on the basis of the same stage of olive maturity monitored by Jaen index (Gutierrez et al.,<br />

1999).<br />

Work-up of plant material. Olive drupes (10 Kg) were crushed with a hammer mill and the oil was extracted by<br />

centrifugation after 20 minutes of malaxation at RT.<br />

Analytical procedures. The measurements of free aci<strong>di</strong>ty, fatty acid methyl esters, peroxide index, specific<br />

extinction coefficients K232 and K270, ∆k, and panel test have been determined accor<strong>di</strong>ng to the European Official<br />

Methods of Analysis (EC Regulation N. 2568/91 July, 1991). Total phenols were determined by colorimetry<br />

using the Folin-Ciocalteu reagent using caffeic acid as external standard. Oleuropein (olp) was determined in<br />

virgin olive oil extracts by tandem mass spectrometry with Atmospheric Pressure Chemical Ionization (APCI-<br />

MS/MS) under Selected Reaction Monitoring (SRM) con<strong>di</strong>tion (Perri et al., 1999b).<br />

Results and <strong>di</strong>scussion<br />

Accor<strong>di</strong>ng with the results of the first year of observation (Perri et al., 2002), from the data of quality parameters<br />

of table 1, it turns out that the olive oil from Ogliarola salentina cv. was characterised by me<strong>di</strong>um to low level of<br />

total phenols and low percentages of oleic acid. Moreover, only the olive oils produced in the first period of<br />

harvest were ascribable without any tolerance to the extra virgin olive oil grade on the basis of organoleptic<br />

score (panel test). This is probably due to an increase of the percentages of Bactrocera oleae infestations<br />

observed in the second harvest period. As shown by the variance analysis (table 1), analytical and sensory data<br />

relating to organic and conventional olive oils are very similar probably because of similar percentages of olive<br />

fly infestation due to ineffective pesticide treatments. Finally, an increase of olp content in olive oil versus Jaen<br />

index was also observed.<br />

Acknowledgements<br />

The Italian Ministry of Agriculture and European Union (Multiregional Operational Programme, Measure 2, B07<br />

Project) supported this research work. We thank Mr. Lorenzo Elia and Amalio Cassese for olive sampling, data<br />

collection on farming systems and olive grove management. We thank also Prof. Angelo Putignano and Prof.<br />

Francesco Prudentino (I.T.A.S. of Ostuni-BR) for olive oil extraction.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Literature cited<br />

Gutierrez R. F., Arnaud T., Albi M., Influence of ecological cultivation on virgin olive oil quality, JAOCS, 1999,<br />

76:617-621.<br />

Perri E., Palopoli A., Pellegrino M., Sirianni R., Miele D., 1999a, La caratterizzazione degli oli <strong>di</strong> oliva calabresi<br />

ottenuti da agricoltura biologica, Procee<strong>di</strong>ngs of Seminario-Laboratorio “Meto<strong>di</strong> e sistemi innovativi<br />

dell’olivicoltura biologica e sostenibile: stato della ricerca e della sperimentazione”, Rende, april 14-16, pp147-<br />

153.<br />

Perri E, Raffaelli A., Sindona, 1999b, G., Quantitation of oleuropein in virgin olive oil by ionspray mass<br />

spectrometry-selected reaction monitoring, J. Agric. Food Chem., 47(10), 4156 -4160.<br />

Perri E., Rizzuti B., Pellegrino M., Salvo F., Spartà G., 2001, Valutazione organolettica degli oli <strong>di</strong> oliva siciliani<br />

campionati nell’ambito del progetto POM B07 ”Caratterizzazione degli oli <strong>di</strong> oliva meri<strong>di</strong>onali da agricoltura<br />

biologica” nell’annata 1999-2000, in Corso per tecnici degustatori d’olio extravergine e vergine d’oliva,<br />

Regione Siciliana, Alcamo.<br />

Perri E., Rizzuti B., Pellegrino M., Paparella N., Panaro N., Cavallo C., 2002, Characterisation of italian virgin<br />

olive oils from organic farming systems, Atti “4th Intenational Symposium on olive growing”, Valenzano (BA),<br />

25-30 settembre - Acta Horticulturae (in corso <strong>di</strong> stampa).<br />

Perri E., Lombardo N., Parlati M.V., Fodale A., Mulè R., Pellegrino M., Salvo F., Spartà G., 2002,<br />

Caratterizzazione <strong>di</strong> oli <strong>di</strong> oliva da agricoltura biologica provenienti dalla Sicilia, Atti del Convegno<br />

Iternazionale <strong>di</strong> Olivicoltura, Spoleto, 22-23 aprile 2002.<br />

Table 1. Mean values of the main quality parameters of olive oil of Ogliarola salentina cv. from Villa Castelli<br />

(Brin<strong>di</strong>si, Italy) and significant <strong>di</strong>fferences in the means of the same treatment and between treatments.<br />

Ripeness index<br />

Parameter Culture 2.0 4.1 Mean (a)<br />

Aci<strong>di</strong>ty Organic 0.42 n.s. 0.37 n.s. 0.40<br />

(as % of oleic acid) Conventional 0.28 n.s 0.33 n.s. 0.30<br />

n.s. n.s. n.s.<br />

Peroxide (mg O2/kg) Organic 5.40 n.s. 5.80 n.s. 5.60<br />

Conventional 5.07 n.s. 5.40 n.s. 5.23<br />

n.s. n.s. n.s.<br />

Total phenols Organic 225.63 n.s. 180.13 n.s. 202.88<br />

(mg/kg) Conventional 266.23 A 177.10 B 221.67<br />

n.s. n.s. n.s.<br />

Organoleptic score Organic 7.00 A 5.53 B 6.27<br />

Conventional 6.66 a 5.53 b 6.00<br />

n.s. n.s. n.s.<br />

Oleic acid (%) Organic 66.22 n.s. 66.21 n.s. 66.22<br />

Conventional 65.15 n.s. 68.74 n.s. 66.94<br />

n.s. n.s. n.s.<br />

Oleuropein (mg/kg) Organic 0.073 A 0.120 B 0.096<br />

(a) Overall means.<br />

Differences within the same row (Tukey test): n.s.=not significant; means in row followed by the same letter are<br />

not significantly <strong>di</strong>fferent at P 0.01 (capital letters) or P 0.05. Differences within the same column (Tukey test):<br />

n.s.=not significant, * P


25<br />

EFFICACY EVALUATION OF <strong>BIOLOGICAL</strong> CONTROL AGENTS AGAINST<br />

PLASMOPARA VITICOLA<br />

Ilaria Pertot, Federica De Luca, Antonella Vecchione, Luca Zulini<br />

Istituto Agrario <strong>di</strong> San Michele all’A<strong>di</strong>ge, via E. Mach 1, S. Michele all’A<strong>di</strong>ge (TN)<br />

ilaria.pertot@ismaa.it<br />

Keywords<br />

downy mildew, Plasmopara viticola, biological control agents, organic agriculture.<br />

Introduction<br />

Downy mildew causal agent, Plasmopara viticola (Berk. et Curt.) Berl. et De Toni, is one of the most important<br />

grapevine pathogens, causing great losses if no protective treatments are applied (Kortekamp, 1997).<br />

Nowadays consumer and farmer are much more concerned about food, health and environment safety (Butt,<br />

2001). The con<strong>di</strong>tions for using copper will be restricted by European Union by fixing a ceiling on use expressed<br />

in terms of kilograms of copper per hectare per year in organic agriculture. Antagonist microorganisms could be<br />

a possible alternative to copper in downy mildew controlling. Epidemiological characteristics of downy mildew<br />

probably would not allow a complete field control based on a single biocontrol agent (BCA). A possible solution<br />

for improving efficacy of BCA could be the integration of several micro-organisms with <strong>di</strong>fferent action<br />

mechanisms on specific stages of <strong>di</strong>sease: i) during oospore overwintering and germination, for primary<br />

inoculum reduction ii) and during sporangia germination for protection against secondary infections.<br />

Materials and methods<br />

Micro-organisms were isolated from grapevine leaf material and rhizosphere of 18 <strong>di</strong>fferent vineyards located in<br />

the north –east of Italy. Vineyards were abandoned and chemically untreated for at least three years. Microorganisms<br />

were isolated on potato dextrose agar, malt agar and nutrient sucrose agar and grown at 20°C. Several<br />

isolation methods were used: inocula were based on leaf washing water, necrotic leaf portions grounded in sterile<br />

water with mortar and pestle, necrotic leaf pieces, infected leaf <strong>di</strong>sh maintained in contact with naturally<br />

degraded leaf material and root surface material. For each kind of material used, all morphologically <strong>di</strong>fferent<br />

colonies of fungi and bacteria were collected. A sample of 46 isolates was evaluated for sporangia germination<br />

and infection inhibition activity. A sample of 33 isolates was evaluated for overwintering oospores inhibition<br />

activity.<br />

The evaluation methods used were:<br />

i) oospore germination inhibition, based on a mo<strong>di</strong>fied floating leaf <strong>di</strong>sk method (Hill);<br />

ii) inhibition of sporangia germination, based on reduction percentage of sporangia germination in a 1:1<br />

water solution of the isolate culture broth and P. viticola sporangia;<br />

iii) infection inhibition, based on the reduction of the number of sporangiophore developed on isolate<br />

culture broth treated leaves.<br />

Results and <strong>di</strong>scussion<br />

Several micro-organisms have induced a partial inhibition of sporangia germination (tab. 1), but the complete<br />

control of infection on leaf can be achieved with only few of them.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

123


Tab. 1 - Biological Control Agents (BCA) efficacy on sporangia germination and<br />

infection process inhibition.<br />

BCA<br />

% germinated<br />

sporangia<br />

124<br />

Inhibition of infection<br />

process<br />

Level of<br />

inhibition<br />

1 3 yes C<br />

2 2 no A<br />

3 0 no B<br />

4 3 no A<br />

5 4 no A<br />

6 0 no B<br />

7 3 no A<br />

8 0 partial B<br />

9 2 yes B<br />

10 4 yes A<br />

11 0 no B<br />

12 0 no B<br />

13 untreated no -<br />

14 1 no A<br />

15 0 no B<br />

16 0 no B<br />

17 1 yes D<br />

18 1 no A<br />

A) No sporangia germination inhibition as well as infection process.<br />

B) Partial sporangia germination inhibition or infection process.<br />

C) Inhibition of infection process, but no inhibition of sporangia germination.<br />

D) Sporangia germination inhibition as well as infection process.<br />

Twenty micro-organisms have given a good control on coni<strong>di</strong>ophore development (fig.1) with less than thirty<br />

coni<strong>di</strong>ophore/cm2 developed. Best results have been found on oospore germination: 42% of the tested<br />

microorganisms completely inhibited of oospore germination (fig. 2), while the remaining 58% showed some<br />

degrees of efficacy on the oospore germination inhibition and on the time necessary for oospore germination in<br />

optimal con<strong>di</strong>tions.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Fig. 1 – Effects of Biological Control Agents (BCA) on sporangiophore development of P. viticola (in vitro leaf<br />

infections).<br />

Untreated<br />

Isolated<br />

18<br />

29<br />

22<br />

13<br />

15<br />

28<br />

20<br />

27<br />

1<br />

24<br />

5<br />

16<br />

19<br />

8<br />

14<br />

21<br />

25<br />

10<br />

3<br />

6<br />

26<br />

23<br />

17<br />

12<br />

11<br />

9<br />

7<br />

4<br />

2<br />

a<br />

ab<br />

bc<br />

abc<br />

0 10 20 30 40 50 60 70 80 90 100<br />

N° Sporangiophore/cm 2<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

bcd<br />

125<br />

cde<br />

def<br />

ef<br />

efg<br />

fg<br />

g


Fig. 2 – Efficacy evaluation of BCA on overwintering oospore germination.<br />

BCA Efficacy on overwintering<br />

oospore germination.<br />

Not sporulated<br />

42%<br />

Sporulated<br />

58%<br />

N° of sporulated <strong>di</strong>sk<br />

N° days for oospore<br />

germination<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

untreated<br />

112<br />

A strong reduction of the overwintering inoculum could be useful in downy mildew control, in fact new<br />

epidemiological stu<strong>di</strong>es have demonstrated that primary infections play an important role in the <strong>di</strong>sease<br />

development (Pertot et al., 2002). If biocontrol activity of the stu<strong>di</strong>ed micro-organisms is confirmed in field<br />

trials, the combined effect of several BCAs on the <strong>di</strong>fferent biological stages of the pathogen will be evaluated.<br />

In such way BCAs could help in reducing copper quantity in organic viticulture.<br />

Acknowledgements<br />

This work was funded by the Fund for Research of the Autonomous Province of Trento, Italy, Research project<br />

AGRIBIO.<br />

References<br />

Kortekamp A. (1997) Epicoccum nigrum Link: A biological control agent of Plasmopara viticola (Berk. et Curt.)<br />

Berl. et De Toni. Vitis 36 (4), 215-216.<br />

Butt T. M., Jackson C., Magan N. (2001) Introduction- Fungal Biological Control Agents: Progress, Problems<br />

and Potential. In: Fungi as biocontrol Agents. Progress, Problems and Potential. CABI Publishing, Wallingford,<br />

UK, 1-8.<br />

Hill G. () IOBC Bulletin.<br />

Pertot I., Gobbin D., Gessler C. (2002) Epidemiology of Plasmopara viticola: field <strong>di</strong>stribution of primary and<br />

secondary infections in the early stage of the season and microclimate impact on infection severity. In:<br />

Procee<strong>di</strong>ngs of the 4th <strong>International</strong> Workshop on Powdery and Downy Mildew in Grapevine. Napa, California,<br />

U.S.A., September 30-October 04, 2002.<br />

126<br />

BCA which have partially inhibited the<br />

overwintering oospore germination.<br />

98A<br />

119A<br />

35<br />

22A<br />

112<br />

86<br />

2A<br />

2A<br />

69<br />

13<br />

37<br />

93<br />

10A<br />

34<br />

99<br />

Isolate<br />

44<br />

77F<br />

120F<br />

13<br />

37<br />

49A<br />

59A<br />

69<br />

93<br />

10A<br />

untreated<br />

Time for oospore germination in samples treated with<br />

BCA which have which have partially inhibited the<br />

overwintering oospore germination.<br />

Isolate<br />

98A<br />

119A<br />

22A<br />

99<br />

44<br />

77F<br />

120F<br />

59A<br />

35<br />

86<br />

34<br />

49A<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


26<br />

IL CONTROLLO DELLE OPERAZIONI DI CAMPO COME BASE DELLA RINTRACCIABILITÀ A<br />

GARANZIA DEL CONSUMATORE E DELL’AMBIENTE<br />

Alessandro Pulga (AIAB – ICEA – Bologna)<br />

Ivano Valmori (Image Line – Banca dati Biolgest – Faenza)<br />

Dall’aprile del 2002 è stato creato un servizio su internet destinato alla gestione dei dati relativi alle operazioni<br />

colturali svolte presso le aziende agricole in coltivazione biologica.<br />

L’iniziativa ha avuto come obiettivo quello <strong>di</strong> raccogliere le informazioni relativamente a:<br />

- registrazione <strong>di</strong> tutti gli interventi <strong>di</strong> <strong>di</strong>fesa fitosanitaria e controllo delle avversità (svolta con prodotti<br />

fitosanitari, biologici e naturali, ausiliari e sistemi basati su trappole e feromoni);<br />

- registrazione delle fertilizzazioni minerali ed organiche;<br />

- registrazione <strong>di</strong> tutte le operazioni <strong>di</strong> campo (lavorazioni, sfalci, etc.);<br />

- registrazione delle operazioni colturali (potature, <strong>di</strong>radamenti, raccolta, etc.);<br />

- registrazione degli eventi atmosferici;<br />

- registrazione dei conferimenti;<br />

- gestione dei magazzini aziendali;<br />

- tenuta del quaderno <strong>di</strong> campagna in base alla normativa 290/01 (registro dei trattamenti effettuati).<br />

Il tutto viene reso fruibile <strong>di</strong>rettamente su Internet, sul sito www.quaderno<strong>di</strong>campagna.it, permettendo a tecnici<br />

ed agricoltori <strong>di</strong> interagire con il sistema. Gli agricoltori, <strong>di</strong> fatto unici depositari delle informazioni reali sul<br />

ciclo produttivo della merce, sono incentivati ad utilizzare il sistema in quanto ricevono dallo stesso una serie <strong>di</strong><br />

agevolazioni operative quali:<br />

- controllo incrociato delle registrazioni dei prodotti utilizzati in base alle banche dati dei fitofarmaci;<br />

- verifica del rispetto degli intervalli <strong>di</strong> sicurezza;<br />

- verifica delle giacenze e delle scorte <strong>di</strong> magazzino;<br />

- simulazione delle operazioni colturali al fine <strong>di</strong> verificarne la correttezza.<br />

I vantaggi del progetto.<br />

Per i tecnici:<br />

- erogare un servizio tecnico <strong>di</strong>rettamente dalla propria sede (ricetta on-line);<br />

- tenere traccia dei consigli forniti per ogni appezzamento <strong>di</strong> ogni agricoltore;<br />

- verificare la correttezza delle operazioni svolte.<br />

Per gli agricoltori:<br />

- massima semplicità <strong>di</strong> utilizzo del sistema;<br />

- possibilità <strong>di</strong> assolvere agli obblighi imposti dalla normativa vigente in materia <strong>di</strong> agricoltura biologica<br />

(registrazioni obbligatorie previste dal Reg. CEE 2092/91 e D.lgs. 220/95);<br />

- fornire tutti i dati utili richiesti dai clienti (in particolare dalla GDO);<br />

- nessun software da installare e aggiornare, ma collegamento al servizio tramite area riservata attraverso<br />

internet, anche con un semplice modem standard;<br />

- garanzia del salvataggio dei dati (backup);<br />

- <strong>di</strong>sponibilità della versione sempre più efficiente e con banche dati aggiornate settimanalmente.<br />

Per gli Organismi <strong>di</strong> Controllo e le autorità pubbliche <strong>di</strong> sorveglianza:<br />

- possibilità <strong>di</strong> acquisire tutte le informazioni – utili ai fini del controllo e della certificazione – in formato<br />

elettronico;<br />

- possibilità <strong>di</strong> <strong>di</strong>alogo e <strong>di</strong> scarico dei dati nei propri sistemi informatici;<br />

- i dati in formato elettronico sono più facilmente fruibili e permettono controlli più veloci ed efficaci.<br />

Per i consumatori ed il mercato:<br />

- massima trasparenza nel ciclo produttivo e garanzia <strong>di</strong> poter risalire all’origine del prodotto ed entrare<br />

nel dettaglio <strong>di</strong> tutti gli interventi effettuati dal campo alla tavola;<br />

- possibilità <strong>di</strong> sapere cosa si consuma.<br />

Questo sistema costituisce sicuramente un primo importante strumento per creare la base dati fondamentale per<br />

sviluppare sistemi <strong>di</strong> rintracciabilità, dalle fasi a monte della filiera produttiva fino al consumatore finale.<br />

Questo sistema, opportunamente implementato e validato da un Ente <strong>di</strong> certificazione <strong>di</strong> parte terza, può<br />

<strong>di</strong>ventare strumento utile a tutte le organizzazioni interessate, al fine dell’ottenimento <strong>di</strong> certificazioni volontarie<br />

<strong>di</strong> prodotto e della certificazione <strong>di</strong> rintracciabilità <strong>di</strong> filiera in conformità alla norma UNI 10939.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

127


27<br />

ECO-TOXICITY OF THE ENTOMOPATHOGENIC BACTERIUM-NEMATODE SYMBIOTIC<br />

COMPLEX TOWARD NON-TARGET ORGANISMS<br />

M. Ricci, M. Colli, R. Barcarotti and A. Ragni<br />

BioTecnologie BT srl Pantalla <strong>di</strong> To<strong>di</strong> 06050 Perugia Italy<br />

Tel: ++39 – 075 - 895091 Fax: ++39 – 075 – 888 776 E-mail: mricci.bt@parco3a.org<br />

Introduction<br />

In agriculture, the use of bio-control agents is growing; this is due, in particular, to their ability to avoid pest’s<br />

resistance and to their friendly environmental impact.<br />

A mini-review of the entomopathogenic bacterium-nematode symbiotic complex toward non-target organisms is<br />

presented; bibliographic data and original data coming from research are shown. In particular it is mentioned a<br />

work which first demonstrated specificity of the entomopathogenic bacterium-nematode symbiotic complex<br />

toward target organisms (insects).<br />

The present work concerns three sections related to the eco-toxicity of entomopatogenic nematodes: a) Short<br />

review; b) Demonstration of entomopathogenic nematodes host specificity; c) Laboratory results toward nontarget<br />

hosts: Earthwoms, Scorpions and Millipeds.<br />

a) Short review<br />

Poinar (1990) reported that although Steinernematids and Heterorhab<strong>di</strong>tids are considered entomopathogenic<br />

nematodes because all natural infections have involved insects, they do have the ability to enter and kill noninsect<br />

invertebrates, at least in the laboratory (Wayne et al., 1987). Steps of their infection process are normally<br />

completed in most insects but various obstacles to their completion occur with many non-insect invertebrates<br />

(Wayne et al., 1987). The effect of these nematodes on vertebrates is of a great concern. Off all the vertebrates<br />

(among the following classes: Pisces, Reptilia, Amphibia, Aves and Mammalia) thus far challenged with<br />

infective stage of Steinernematids and Heterorhab<strong>di</strong>tids, only young tadpoles of frogs and toads were vulnerable.<br />

But the reason was given to the fact that when penetrating into the host the nematodes were carrying foreign<br />

bacteria.<br />

b) Demonstration of entomopathogenic nematodes host specificity ( Ricci et al., 1994)<br />

Introduction<br />

Entomopathogenic nematode infective juveniles (IJs) locate and parasitise potential hosts. The success of this<br />

process depends with suitability of the host. Ricci et al. (1994) and Lewis et al. (1996), demonstrated that a<br />

nematode's subsequent degree of attraction to CO2, stimulated by contact with the cuticle of an arthropod,<br />

should signify that the exposed IJs recognize it as a potential host. The level of stimulation caused to S.<br />

carpocapsae, a nematode that forages primarily by ambushing passing hosts, by 12 potential hosts (3<br />

Lepidoptera, 4 Coleoptera, 1 Orthoptera, 1 Blattodea, 1 Diptera and 2 non-insect arthropods) was compared. To<br />

determine whether arthropods that stimulate a high level of attraction of IJs are suitable hosts, three parameters<br />

were tested: nematode induced mortality, nematode invasion rate and reproductive potential.<br />

Materials and methods<br />

Behavioral Recognition Assay: nematodes were exposed for a certain time to the cuticle of <strong>di</strong>fferent insects or<br />

non-insects or inert materials, then exposed to chemical volatile cues emitted by the insects Galleria mellonella<br />

in an apparatus called Agar Plate Arena (see Figure 1). After a certain time the nematodes that accumulated in<br />

the proximity of the cue emissions, were collected and counted.<br />

Nematode Infectivity Assay: host mortality was recorded after 2 days in Petri <strong>di</strong>shes at the concentrations of 200<br />

and 500 nematodes per host.<br />

Nematode Invasion Assay: Nematodes that penetrated the host during the Infectivity assay were counted.<br />

Reproductive Potential Assay: pre-weighed hosts were exposed to 500 IJs. After 2 days the cadavers were<br />

transferred on a nematode collecting trap. Every 2 days, the emerged IJs were collected until the exploitation of<br />

all the host tissues was completed.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

128


Results and Discussion<br />

S. carpocapsae was <strong>di</strong>fferentially stimulated to be attracted to G. mellonella volatiles by the contact of the<br />

cuticle of <strong>di</strong>fferent arthropods. Agrotis ipsilon pupa, Leptinotarsa decemlineata, Isopoda sp., Blattella<br />

germanica, Musca domestica and Diplopoda sp. were not significantly <strong>di</strong>fferent from the controls. A. ipsilon<br />

larva, Tenebrio molitor, Acheta domesticus, G. mellonella, Diabrotica virgifera virgifera and Popilia japonica<br />

induced a significantly higher "activation" to S. carpocapsae IJs compare to the controls. It seems that S.<br />

carpocapsae can <strong>di</strong>scriminate even among <strong>di</strong>fferent stage of the same species in fact the value of A. ipsilon larva<br />

is more than twice that of the pupa.<br />

The same hosts that induced the higher attraction to the volatiles were more susceptible to the nematodes.<br />

The nematodes, established (penetration rate and reproduction index) better in the group of arthropods that<br />

where better stimulated by G. mellonella volatiles.<br />

It has been demonstrated that, at least one entomopathogenic nematode, S. carpocapsae, could <strong>di</strong>scriminate<br />

among suitable and not suitable hosts.<br />

Figure 1: Agar Plate Arena<br />

Glass plate<br />

G. mellonella larvae<br />

Pipette<br />

tip<br />

Chamber with gra<strong>di</strong>ent<br />

Nematodes<br />

Agar substrate<br />

Rubber<br />

c) Laboratory results toward non-target hosts:<br />

Application point of nematodes<br />

The non-insect organisms, earthworms, scorpions and millipedes have been challenged with <strong>di</strong>fferent strains of<br />

entomopathogenic nematodes.<br />

Material and methods<br />

Hosts: the non-insect organisms, earthworms, scorpions and millipedes have been captured under stones, and<br />

stored at 12°C for 24 hours prior the experiment.<br />

Nematodes: were reared in Galleria mellonella last instar larvae by standard rearing procedures.<br />

For earthworms the following nematode strains were tested: Heterorhab<strong>di</strong>tis bacteriophora NJ, Steinernema<br />

kraussei N0093 and S. feltiae UK.<br />

For Scorpions and Millipedes: H. bacteriophora NJ, S. kraussei N0093, S. sp. N0166, S. sp. N0167, S. sp.<br />

N0168, H. sp. N0169, H. sp. N0170. The infectivity of nematodes was tested in parallel on 100 mg larvae of<br />

Tenebrio molitor (10 larvae per box with 1500 nematodes). There were 3 repetitions per treatment. Incubation<br />

was done at 23°C for 5 days. Controls (only water) were always included.<br />

Tests with Earthworms: in 10x7x5 cm plastic boxes, 50 g of peat with 75% humi<strong>di</strong>ty, 5 earthworm were<br />

challenged with 3000 infective nematodes. There were 3 repetitions per treatment. Incubation was done at 23°C<br />

for 7 and 14 days.<br />

Tests with Millipedes: in 10x7x5 cm plastic boxes, 50 g of peat with 75% humi<strong>di</strong>ty, 3 millipedes were<br />

challenged with 1500 infective nematodes. There were 3 repetitions per treatment. Incubation was done at 23°C<br />

for 5 days.<br />

Tests with Scorpions: they were tested in Petri <strong>di</strong>shes with 3000 nematodes per in<strong>di</strong>vidual for 5 days at 23°C.<br />

Results<br />

Mortality of Earthworms challenged with entomopathogenic nematodes (see Tab. 1) <strong>di</strong>d not <strong>di</strong>ffered among<br />

treatments both at 7 (P=05957) and 14 days (P=0,7520).<br />

129<br />

Plexiglas lid<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


Tab. 1<br />

Treatments Average Earthworm<br />

mortality at 7 days<br />

130<br />

Average Earthworm<br />

mortality at 14 days<br />

Steinernema feltiae UK 6,67 % 6,67 %<br />

S. kraussei N0093 20,00 % 20,00 %<br />

Heterorhab<strong>di</strong>tis bacteriophora NJ 0,00 % 0,00 %<br />

Control 33,33 % 33,33 %<br />

Mortality of the Insect Tenebrio molitor and the non-insects Millipedes and Scorpions challenged with<br />

entomopathogenic nematodes (see Tab. 2) revealed as follows: the effect of nematodes is not <strong>di</strong>fferent from the<br />

control in Millipedes (P=0,66) and in Scorpions (P=1)<br />

Tab. 2<br />

Treatments Tenebrio molitor<br />

larvae (insects)<br />

mortality<br />

Millipedes<br />

(non-insects)<br />

mortality<br />

Scorpions<br />

(non-insects)<br />

mortality<br />

S. kraussei N0093 73,33 % 0,00 % 0,00 %<br />

H. bacteriophora NJ 86,67 % 0,00 % 0,00 %<br />

S. sp. N0166 73,33 % 0,00% 0,00 %<br />

S. sp. N0167 93,33 % 0,00 % 0,00 %<br />

S. sp. N0168 40,00 % 0,00 % 0,00 %<br />

H. sp. N0169 6,67 % 11,11 % 0,00 %<br />

H. sp. N0170 96,67 % 11,11 % 0,00 %<br />

Control 0,00 % 11,11 % 0,00 %<br />

Conclusions and Discussion<br />

Unlike other microbial pesticides, such as Bacillus thuringiensis, viruses and fungi, entomopathogenic<br />

nematodes are exempt from registration in the USA and other countries.Currently, all available evidence<br />

(bibliography) in<strong>di</strong>cates that beneficial nematodes and their associated bacteria have no negative impact on nontarget<br />

organisms in the agrarian environment (Akhurst 1990; Georgis et al., 1991).<br />

Entomopathogenic nematodes have the ability to <strong>di</strong>scriminate among suitable and not suitable <strong>di</strong>fferent potential<br />

hosts.<br />

Recent experiments (see above), demonstrated that while <strong>di</strong>fferent strains of entomopathogenic nematodes were<br />

lethal to insect larvae (Tenebrio molitor), <strong>di</strong>d not infect non-target organisms such as Heartworms, Scorpions and<br />

Millipedes.<br />

In conclusion entomopathogenic nematodes are safe to humans and to non-target organisms, non-polluting and<br />

thus environmentally safe and acceptable.<br />

Acknowledgment<br />

This research was partially founded by MURST grant Cluster C06-07 L. 488-92<br />

References:<br />

Akhurst, R.J. 1990. Safety to nontarget invertebrates of nematodes of economically important pests. In: Laird et<br />

al., pp. 233-240.<br />

Georgis, R., Kaya, H.K. and Gaugler, R. 1991. Effect of steinernematid and heterorhab<strong>di</strong>tid nematodes<br />

(Rhab<strong>di</strong>tida: Steinernematidae: Heterorhab<strong>di</strong>tidae) on nontarget arthropods. Environ. Entomol. 20(3) : 815-822.<br />

Lewis E.E., Ricci M. and Gaugler R., 1996. Host recognition behaviour pre<strong>di</strong>cts host suitability in the<br />

entomopathogenic nematode Steinernema carpocapsae (Rhab<strong>di</strong>tida: Steinernematidae) Parasitology (1996) 113-<br />

6, 573-581<br />

Poinar Jr, G.O., 1990. Taxonomy and Biology of Steinernematidae and Heterorhab<strong>di</strong>tidae . In: (Eds. R. Gaugler<br />

and H.K. Kaya) Entomopathogenic nematodes in biological control, pp. 23-60. CRC Press, Boca Raton, U.S.A.<br />

Ricci M., Lewis E.E. and Gaugler R., 1994. Host <strong>di</strong>scrimination by Steinernema carpocapsae (Weiser) All strain;<br />

at Debrecen, Hungary: Cost 819 Symposium & Workshop on Entomopathogenic Nematodes. In: C.T. Griffin,<br />

R.L. Gwynn & J.P. Masson (Eds.) COST 819, Biotechnology, Ecology and transmission strategies of<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


entompathogenic nematodes. CSC-EC EAEC, Brussels, Luxembourg. p. 105 Smart Jr., G.C., 1995.<br />

Entomopathogenic Nematodes for the Biological control of Insects . Supplement to the J. of Nematology (27),<br />

529-534.<br />

Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H.,<br />

Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., Starr, M.P. and Truper, H.G., 1987. Report on the ad hoc<br />

committee on reconciliation of approaches to bacterial systematics . Int. J. Syst. Bacteriol., 37, 463.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

131


28<br />

PHOTORHABDUS AND XENORHABDUS: A NEW SOURCE OF USEFUL COMPOUNDS FOR<br />

<strong>BIOLOGICAL</strong> CONTROL<br />

A. Ragni and F. Valentini<br />

BioTecnologie BT srl Pantalla <strong>di</strong> To<strong>di</strong> 06050 Perugia Italy<br />

Tel: ++39 – 075 - 895091 Fax: ++39 – 075 – 888 776 E-mail: aragni.bt@parco3a.org<br />

IntroductionThe genera Photorhabdus and Xenorhabdus are symbiotic Enterobacteriaceae bacteria<br />

associated with entomopathogenic nematodes of the genera Heterorhab<strong>di</strong>tis and Steinernema, respectively. The<br />

characteristics of both Photorhabdus and Xenorhabdus genera have been reviewed by Forst & Nealson (1996),<br />

and by Forst et al. (1997).<br />

Recently Bowen et al. (1998a; 1998b) and Blackburn et al. (1998) <strong>di</strong>scovered and characterized an insecticidal<br />

toxin complex that it is secreted into the culture me<strong>di</strong>um by Photorhabdus luminescens strain W-14. Except for<br />

this specific strain, the insecticidal capability of entomopathogenic soil nematode symbiotic bacteria has been<br />

reported only when carried into the insect by the nematodes or artificially injected into their haemocel.<br />

This work reports the isolation of a unique strain Photorhabdus sp., named XP01, selected among 12<br />

Photorhabdus and Xenorhabdus isolates, that <strong>di</strong>splays an insecticidal activity when fed to the neonate larvae of<br />

several Lepidoptera pests.Materials and Methods.<br />

Bacteria isolation<br />

The bacteria strains tested were isolated as described by Akhurst (1980), from cadavers of Galleria mellonella<br />

infected with Heterorhab<strong>di</strong>tis spp. or with Steinernema spp. strains belonging to the collection of<br />

entomopathogenic nematodes held at BioTecnologie S.r.l (BT) laboratories. A list of the isolated strains is<br />

shown on Table 1. Cultures were maintained by weekly subculturing on Nutrient Agar plates and incubated in<br />

the dark at 25°C. Inocula for liquid cultures were prepared as fermented broth aliquots containing glycerol at a<br />

final concentration of 15% (v/v) and stored at -80°C.<br />

Bacterial preparations<br />

Whole cultures were obtained by growing the strains in a Casein peptone plus yeast extract liquid me<strong>di</strong>um in the<br />

dark at 25°C and shaking at 180 rpm , for a period of either 19 or 24 hours. Technical powder of XP01 was<br />

prepared by freeze-drying the pellet obtained by centrifugation the bacterial culture at 6,238 x g for 40 min. The<br />

pellet was washed three times in a neutral Ringer’s solution prior freezing. Freeze-drying resulted in cells dead<br />

since plating the resuspended technical powder gave no colony growing on Nutrient Agar.<br />

Insects rearing and bioassay techniques<br />

Colonies of Mamestra brassicae, Cy<strong>di</strong>a molesta, Spodoptera littoralis, Helicoverpa armigera, Scotia segetum<br />

and Agrotis ipsilon are continuously reared at BT insectarium under controlled environmental con<strong>di</strong>tions and fed<br />

with semi-synthetic <strong>di</strong>ets.<br />

Insecticidal activity of bacterial suspensions was measured by using an overlay technique bioassay. Bacterial<br />

preparations at <strong>di</strong>fferent serial <strong>di</strong>lutions were applied in 50 µl aliquots in the wells of a <strong>di</strong>et bioassay trays<br />

(surface area 175 mm 2 ) containing 1 g of an insect meri<strong>di</strong>c <strong>di</strong>et. As control, the insect <strong>di</strong>et was treated with<br />

deionized sterile water. After drying, one unfed 1st instar larva (neonate) was placed in each well. Each<br />

treatment was applied to 32 insects. Mortality was scored after 5 days of incubation at 27°C.<br />

Results.<br />

Preliminary Screenings<br />

A total of 12 Photorhabdus and Xenorhabdus bacterial isolates were assayed for insecticidal activity against<br />

neonates of Mamestra brassicae and of Cy<strong>di</strong>a molesta in a surface contamination assay. As shown in Figure 2,<br />

neonates of Cy<strong>di</strong>a molesta were more susceptible than those of Mamestra brassicae when exposed to fermented<br />

broths of Photorhabdus and Xenorhabdus isolates. Treatments with XP01 and XP04 fermented broths resulted in<br />

100 % mortality of C. molesta neonates. In this species the mortality rate ranged from 25 to 41% for treatments<br />

with XP136, XP1007 and XP127. Low activity (from 0% to 19% mortality) against C. molesta neonates was<br />

recorded when treatments were done with the remaining bacterial strains. A 100% mortality of Mamestra<br />

brassicae neonates was observed when the insects were treated with XP01. A lower mortality equal to 74% was<br />

observed when XP04 was used. A residual activity (5% larval mortality) was recorded when treatment was done<br />

with strain XP10.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

132


After this preliminary screening and due to the high activity of XP01 against both larvae insect tested, this strain<br />

was selected for further characterization of its insecticidal activity.<br />

The XP01 activity was further tested on several other lepidopteran species. For convenience purposes only<br />

macrolepidopteran species were used in these assays. Results of this second screening are shown in Figure 3.<br />

The whole culture of XP01 showed the capability to kill all the five species treated, being most effective against<br />

M. brassicae, S. segetum and A. ipsilon.<br />

The insecticidal activity of freezed dried technical powder, made from the cell pellet of fermented broth, was<br />

tested against neonates of M. brassicae. As seen before with other bacterial preparations, the observed mortality<br />

of insects was proportional to the applied dose (Figure 4).<br />

Discussion.<br />

Photorhabdus and Xenorhabdus species are bacteria known to live in symbiotic association with<br />

entomopathogenic soil nematodes. Mechanisms involved in the pathogenicity of these bacteria resulting from<br />

their release by entomopathogenic nematodes in insects, have been extensively stu<strong>di</strong>ed. A great deal of<br />

variability in the bacterial dose needed to kill <strong>di</strong>fferent insects has been reported. The effect both depen<strong>di</strong>ng on<br />

the bacterial strain used as well as the target insect stu<strong>di</strong>ed.<br />

The present study describes the <strong>di</strong>scovery of a newly characterize strain of Photorhabdus luminescens,<br />

denominated XP01, which is highly toxic when <strong>di</strong>rectly administered by food contamination assays to neonates<br />

larvae of several Lepidopteran pests inclu<strong>di</strong>ng Mamestra brassicae and Cy<strong>di</strong>a molesta.<br />

It was demonstrated that the toxic effect of XP01 is maintained even when a technical powder is used. Since<br />

technical powders do not contain alive cells, this result in<strong>di</strong>cates that once the toxin has been synthesized alive<br />

bacterial cells are not further required for activity. This characteristic of XP01 insecticidal capability is similar to<br />

what has been described for Bacillus thuringiensis toxins (Schnepf et al., 1998).<br />

The <strong>di</strong>scovery of the insecticidal activity of Photorhabdus luminescens strain XP01 in<strong>di</strong>cates the existence of a<br />

presumably new family of entomotoxic proteins present in Photorhabdus and probably Xenorhabdus spp. These<br />

insecticidal toxins could be used as an active bio-pesticide ingre<strong>di</strong>ent in a similar manner to the delta-endotoxins<br />

of B. thuringiensis. This new source of natural toxins could help both the fight against the development of<br />

insects resistance as well as serve as sources of novel specific activities in combination with other known<br />

biopesticides.Acknowledgements<br />

We thank G. Flek for rearing insects for tests, L. Quattrocchi and R. Lorenzini for their assistance in<br />

microbiology and bioassay works.<br />

References<br />

Akhurst, R.J. 1980. Morphological and Functional Dimorphism in Xenorhabdus spp., of bacteria symbiotically<br />

associated with insect pathogenic nematodes Neoplectana and Heterorhab<strong>di</strong>tis. J. Gen. Microbiol. 121: 303-<br />

309.<br />

Blackburn, M., E. Golubeva, D. Bowen, and. R.H. Ffrench-Constant. 1998. A novel insecticidal toxin from<br />

Photorhabdus luminescens, toxin complex a (Tca), and its histopathological effect on the midgut of Manduca<br />

sexta. Appl. Environ. Microbiol. 64: 3036-3041.<br />

Bowen, D.J., T.A. Rocheleau, M. Blackburn, O. Andreev, E. Golubeva, R. Bhartia, and R.H. Ffrench-Constant.<br />

1998a. Insecticidal toxin from the bacterium Photorhabdus luminescens. Science. 280: 2129-2132.<br />

Bowen, D.J., and J.C. Ensign. 1998b. Purification and characterization of a high-molecular-weight insecticidal<br />

protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl. Environ.<br />

Microbiol. 64: 3029-3035.<br />

Forst, S. and K. Nealson. 1996. Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus and<br />

Photorhabdus spp. Microbiol. Rev. 60: 21-43.<br />

Forst, S., B. Dowds, N.E. Boemare, and E. Stackebrandt. 1997. Xenorhabdus and Photorhabdus spp.: bugs that<br />

kill bugs. Annu. Rev. Microbiol. 51: 47-72.<br />

Schnepf, E., N. Crickmore, J. Van Rie, D. Lerecluse, J. Baum, J. Feitelson, D.R. Zeigler, and D.H. Dean. 1998.<br />

Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775 -806.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

133


Photorhabdus strain XP01cells showing inclusion bo<strong>di</strong>es.<br />

TABLE 1. Bacterial isolates tested<br />

Bacterial isolate Bacterial genus or species<br />

XP01 Photorhabdus luminescens<br />

XP1007<br />

XP127<br />

XP81<br />

XPHDO<br />

XPLon<br />

XPMib<br />

XP04<br />

XP05 Xenorhabdus sp.<br />

XP10<br />

XP136<br />

XP98<br />

FIG. 2. Mortality of neonates of two Lepidopteran pests treated with non-<strong>di</strong>luted fermented broth of several<br />

bacteria strains. Bacterial broths were normalized in terms of number of cells per ml before the use. Each bar<br />

represents the percent mortality obtained treating a total of 32 insects.<br />

Larval mortality (%)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

XP01 XP04 XP05 XP10 XP1007 XP127 XP136 XP81 XP98 XPHDO XPLon XPMib<br />

Strain<br />

Mamestra brassicae Cy<strong>di</strong>a molesta<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

134


FIGURE 3. Insecticidal activity of fermented broth of XP01 strain against neonates of Mamestra brassicae,<br />

Spodoptera littoralis, Helicoverpa armigera, Scotia segetum and Agrotis ipsilon. n= 32 larvae for each treatment<br />

FIGURE 4. Insecticidal activity of fermented broth XP01 strain and of XP01 technical powder (resuspended to<br />

the original broth concentration of suspended solids) against neonates of Mamestra brassicae. Each point<br />

represents the percent mortality obtained treating a total of 96 insects in 3 replicate bioassays with 32 insect<br />

each.<br />

Larval mortality (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Larval mortality (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1:1 1:4 1:8 1:16 untreated<br />

135<br />

Dilution<br />

Spodoptera littoralis Helicoverpa armigera Agrotis ipsilon<br />

Scotia segetum Mamestra brassicae<br />

1:1 1:2 1:4 1:8 1:16<br />

Dilution rate<br />

XP01broth XP01 F.D. Technical powder<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


29<br />

BIOASSAYS FOR SCREENINGS AND QUALITY CONTROL OF <strong>PRODUCTS</strong> WITH<br />

INSECTICIDAL, FUNGICIDAL AND NEMATOCIDAL ACTIVITY, BASED ON PLANT EXTRACTS,<br />

MICROORGANISMS AND CHEMICAL MOLECULES<br />

M. Ricci, G. Flek, M. Colli, R. Barcarotti, L. Quattrocchi, S. Coranelli, L. Concezzi, A.P. Fifi, R. De Nicola, M.<br />

Scribano, M. De Berar<strong>di</strong>nis, F. Citarrei and A. Ragni<br />

Introduction<br />

BioTecnologie BT srl Pantalla <strong>di</strong> To<strong>di</strong> 06050 Perugia Italy<br />

Tel: ++39 – 075 - 895091 Fax: ++39 – 075 – 888 776 E-mail: mricci.bt@parco3a.org<br />

A bioassay is an experiment where a living organism (insect, plant, phytopathogenic nematode and others) is<br />

used as test (Robertson J.L. & Preisler H.K.). It is a fundamental tool in the R & D of agricultural products.<br />

Bioassays are used to <strong>di</strong>scover new molecules and/or toxins, to compare <strong>di</strong>fferent pesticides, to evaluate the<br />

feasibility of excipients for formulations, attractants and/or repellents, and for the quality control of products<br />

ready for the market. Does not exist a universal bioassay: for each purposes a specific bioassy should be used or,<br />

if not available, should be developed (Ricci et al., 1996). A good bioassay should be cheap, fast, should allow the<br />

repeatability of the results in <strong>di</strong>fferent dates and <strong>di</strong>fferent sites, should <strong>di</strong>scriminate two products with little<br />

<strong>di</strong>fferences, and should pre<strong>di</strong>ct, as far as possible, the further performance of the product in field con<strong>di</strong>tions.<br />

Here, are presented a series of bioassays that are used, adapted and developed by the company BioTecnologie<br />

B.T. S.r.l., for its R&D programs or for services for third parties.<br />

Bioassays<br />

Commercial companies that produce and sell bio-products for agricultural use, based on Entomopathogenic<br />

Nematodes, Fungi, Bacteria and Viruses, have to set up a bioassay unit in order to perform screening programs<br />

and to carry out quality control of the production and quality control of final products.<br />

The bioassay should be a compromise between the need to assure scientific results and the need to save time and<br />

money.<br />

To support a rational bioassay unit, other sections are needed: Insectary, Plant Pathogen Maintenance and<br />

Greenhouses.<br />

Screenings<br />

Screenings are performed in order to <strong>di</strong>scover new active ingre<strong>di</strong>ents or to support the development of products.<br />

Accor<strong>di</strong>ng to the <strong>di</strong>fferent needs, <strong>di</strong>fferent bioassays are designed.<br />

At BioTecnologie B.T., since 1992, several procedures for bioassays have been developed.<br />

Toxicity bioassays and fee<strong>di</strong>ng behavior tests are performed daily for inside and outside (external service)<br />

research purposes.<br />

Quality Control of Bio-products for agricultural pest control<br />

The first duty of the quality control system is to assess what is declared on the label of the product in terms of<br />

product weight and titer of active ingre<strong>di</strong>ent.<br />

Even if bio-products are based on non-pathogenic (to human beings) microorganisms, the producer has to assure<br />

that his product is free of pathogenic contaminants (Ricci and Fridlender, 1998).<br />

Stability is an important parameter in terms of maintenance of the product characteristics during storage and<br />

transportation.<br />

The activity is the parameter that shows the ability of the product to control the target insects in real con<strong>di</strong>tions.<br />

This is the harder parameter to assess because a simple, cheap, fast and reliable laboratory bioassay has to be<br />

found in order to pre<strong>di</strong>ct the activity of the product under field con<strong>di</strong>tions<br />

Insectary<br />

A multiple-species insect rearing facility for research support on bio-insecticide development is operating at<br />

BioTecnologie B.T. S.r.l., in Umbria – Italy, since 1992.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

136


Several colonies of Lepidopteran, Coleopteran and Dipteran species have been established and are maintained on<br />

a regular basis whereas other species are reared on a temporary basis when needed. Standar<strong>di</strong>zed rearing<br />

procedures have been developed that ensure consistent quality of the test insects.<br />

The following species are currently reared:<br />

Lepidopteran:<br />

Agrotis ipsilon��Mamestra<br />

brassicae, Spodoptera littoralis, S. exigua, Helicoverpa armigera, Lobesia botrana,<br />

Cy<strong>di</strong>a molestaColeopteran:<br />

Otiorhynchus sp., Tenebrio molitorDipteran:<br />

Culex pipiens pipiens<br />

Plant Pathogen Colony Maintainance<br />

Several pathogens are maintained regularly in vitro to support the research and development of bio-phytosanitary<br />

products.<br />

The following fungi species are currently maintained:<br />

Fusarium culmorum, F. crookwellense, F. oxysprum <strong>di</strong>anthii, F. sambucinum, F. solani, F. graminearum, F.<br />

akuminatum, F. oxysporum, Rhizoctonia solani, Alternaria solani, Botrytis cynerea, Penicillum italicum,<br />

Cercospora beticola, Phytophthora cinnamoni, Pyranochaeta lycopersici, Phoma spp., Microdochium nivale<br />

The following phytopathogenic nematode species is currently reared:<br />

Meloidogyne incognita<br />

Greenhouses<br />

Modern and well-equipped greenhouses support the growth of <strong>di</strong>fferent plant species for insect and<br />

phytopathogenic nematode rearing, pathogen maintenance and for glasshouse assays.<br />

The following plants have been grown:<br />

Corn, Melon, Tomato, Pepper, Cyclamen, Impatient, Tobacco, Celery, Rapeseed .<br />

Conclusions:<br />

Due to its facility and its experience, BioTecnologie B.T., is able to design, develop and perform several<br />

bioassays for the development and the quality control of pesticides and biopesticides.<br />

References<br />

Ricci M., Glazer I. and Gaugler R., 1996. Comparison of Bioassays to Measure Virulence of Different<br />

Entomopathogenic Nematodes. Biocontrol Science and Technology (1996) 6, 235-245<br />

Ricci M. and Fridlender B., 1998. Quality Control of a Biological Insecticide Based on Entomopathogenic<br />

Nematodes: NEMA-BIT. At Gent, B: Cost 819 Workshop on Quality Control of Entomopathogenic Nematodes.<br />

p. 16 and 34-35<br />

Robertson J.L. &. Priesler H.K, 1992. Pesticide bioassays with arthropods. CRC Press, Boca Raton.<br />

Pictures<br />

Bioassay Tray: most of the screenings for micro-organisms<br />

and molecules against target insects are carried out in this<br />

particular tray where in<strong>di</strong>vidual insect is tested on an artificial<br />

<strong>di</strong>et<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

137


Tenebrio-Assay: researchers are carrying<br />

on a bioassay<br />

Phytopathogenic fungi: a bioassay to<br />

screen micro-organisms and molecules<br />

active against phytopathogenic fungi<br />

Insectary: the Lepidopteran room, where <strong>di</strong>fferent<br />

lepidopteran species are reared in standard con<strong>di</strong>tions<br />

138<br />

Greenhouse: a trial is the greenhouse<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

139


30<br />

ISOLATION OF NEW <strong>BIOLOGICAL</strong> CONTROL AGENTS FROM UMBRIA REGION<br />

M. Scribano and A. Ragni<br />

BioTecnologie BT srl Pantalla <strong>di</strong> To<strong>di</strong> 06050 Perugia Italy<br />

Tel: ++39 – 075 - 895091 Fax: ++39 – 075 – 888 776 E-mail: aragni.bt@parco3a.org<br />

Summary<br />

Samples of soil were collected in two areas of the Umbria region, Valnerina and Oasi <strong>di</strong> Alviano; the samples<br />

were used for the isolation of entomopathogenic agents through a selective technique based on the usage of<br />

bait. There were isolated 13 <strong>di</strong>fferent samples of entomopathogenic nematodes, 25 entomopathogenic fungi, 27<br />

sporogenous bacteria and 44 non-sporogenous bacteria. The activities of these microbiological agents were<br />

verified through in vitro and in vivo tests.<br />

Materials and Methods<br />

1. Sampling: 80 soil samples (1 Kg each) were collected till the depth of 20/25 cm from two natural areas of<br />

Umbria region: Valnerina and Oasi <strong>di</strong> Alviano.<br />

2. Baiting with Galleria mellonella 1 : the soil samples were put in containers together with a bait, larvae of the<br />

Galleria mellonella insect; they were incubated in the dark at 25°C. Perio<strong>di</strong>cally the boxes were controlled; the<br />

dead insects were collected and used later for the isolation of microbiological agents.<br />

3. Isolation of nematodes: the collection of nematodes was carried out through White-trap 1 : the gummyconsistence<br />

Galleria cadavers were placed on a filter paper imbibed with Ringer solution in order to allow the<br />

nematodes to emerge (fig1). The entomopathogenic power of collected nematodes was tested through infections<br />

of Galleria mellonella larvae 2 : 7 last-instar larvae of Galleria mellonella were treated with 100 nematodes per<br />

larva.<br />

4. Isolation of fungi 3 : the hyphae, developed on the surface of the turgid cadavers, were streaked on PDA (potato<br />

dextrose agar) Petri <strong>di</strong>shes containing 150 µg/ml of streptomycin. Than the <strong>di</strong>shes were incubated at 25°C.<br />

5. Isolation of bacteria:<br />

Non sporogenous bacteria: the flabby cadavers of Galleria were homogenized in a physiological solution; the<br />

suspension was plated on NA (nutrient agar) Petri <strong>di</strong>shes containing 150 µg/ml of nystatin. Than the <strong>di</strong>shes were<br />

incubated at 25°C.<br />

Sporogenous bacteria: an aliquot of the insect cadaver suspension was treated for 12 minutes at 78°C and then<br />

was streaked on NA.<br />

The entomopathogenic power of the isolated bacteria towards Mamestra brassicae (Lepidoptera) was verified<br />

though in vivo tests using an overlay technique bioassay 4 : 32 neonates of M. brassicae were treated with the<br />

fermented broths of the isolated bacteria. Identification of bacteria was performed with gallery API 50 CHB/E<br />

Me<strong>di</strong>um.<br />

Results:<br />

Only 3 out of 27 of the sporogenous bacteria caused 100% mortality towards Mamestra brassicae. API 50<br />

CHB/E test showed that two of three active bacteria strains were Bacillus thuringiensis species as confirmed by<br />

microscopical observation of the sporulating cells (fig.2). B. thuringiensis is the most important microbiological<br />

agent for control of pest insects 5 . The third strain is being identified.The entomopathogenic power of the 13<br />

isolated nematode strains were tested through infections of Galleria mellonella; the obtained mortality was high<br />

although variable, as illustrated in Table1.<br />

Conclusion<br />

The study has shown the possibility of isolating samples of micro-organisms useful for the biological control<br />

from natural habitats. The study will need more screenings in order to evaluate the entomopathogenic power,<br />

the con<strong>di</strong>tions of use and the possibility of production of the <strong>di</strong>scovered micro-organisms for using them in the<br />

integrated pest management.<br />

Acknowledgements<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

140


M. Scribano research work was supported by grant of 3A Parco Tecnologico Agroalimentare dell’Umbria, in the<br />

frame of Umbria Region Training programm (European Social Forum found).<br />

References<br />

1<br />

.K.V. Deseo Kovacs, L. Rovesti. 1992. Lotta biologica contro i fitofagi; Edagricole<br />

2.<br />

Bed<strong>di</strong>ng, R.A. & Akhurst, R. J. 1975. A simple technique for the detection of insect parasitic rhab<strong>di</strong>tid<br />

nematodes in soil;<br />

Poinar, G. O. 1979. In: Nematodes for biological control of insects. CRC Press, Boca Raton, Florida; pp.227.<br />

3<br />

Burge, M. N. 1988. Fungi in biological contol systems. Manchester Univ. Press, Manchester & New York;<br />

pp.296;<br />

4<br />

Deseo, K. V. 1991. Batteri entomopatogeni come mezzi <strong>di</strong> lotta microbiolo gica. Inf. Fitopat. 10, 7-13.<br />

5<br />

Li, R. S., Jarrett, P. & Burges, H. D. 1987.– Importance of spores, crystal and delta endotoxin in the<br />

pathogenicity of <strong>di</strong>fferent varieties of Bacillus thuringiensis in Galleria Mellonella. J. Invert. Pathol. 50; 277-<br />

284.<br />

Figure 1. White-trap with entomopathogenic nematode parasitized insects<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

141


Figure 2. Vegative (a) and sporulating cells (b) of B. thuringiensis isolate<br />

b<br />

a<br />

Table1. Mortality of last-instar larvae of G. mellonella<br />

treated with nematodes isolates at the dose of<br />

100 nematodes per larva. n=7<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

142


Nematode isolate % Mortality<br />

3 100<br />

4 40<br />

9 60<br />

12 100<br />

13 100<br />

14 100<br />

27 40<br />

29 55<br />

38 70<br />

39 100<br />

53 100<br />

58 100<br />

73 70<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

143


31<br />

PROTEIN CONTENT AND MYCOTOXINS CONTAMINATION IN ORGANIC AND<br />

CONVENTIONAL WHEAT<br />

Pietri A., Bertuzzi T., Barbieri G. and Rossi F.<br />

Istituto <strong>di</strong> Scienze degli Alimenti e della Nutrizione, Università Cattolica del Sacro Cuore, Facoltà <strong>di</strong> Agraria,<br />

Piacenza.<br />

Introduction<br />

The importance of organic farming in terms of foods production and consumer confidence is increasing.<br />

Numerous reports show as a growing number of people believe that organic foods are healthier than<br />

conventional ones, particularly for the absence of pesticide residue in organic foods. However cereals from<br />

organic production were sometimes found to have higher mycotoxins content than conventionally produced<br />

foods, probably because if synthetic pesticide are not used there is a lower crop protection towards parasite<br />

fungi. However due to some inconsistent results, a clear trend could not be identified. In respect of the proteins<br />

content, a trend to lower values in organically produced cereals was observed.<br />

Aim of this work was to verify the content of ocratoxin A (OTA), trichothecenes, ergosterol and crude protein in<br />

organic and conventional wheat produced in the area of Piacenza (North Italy).<br />

Materials and methods<br />

Thirty-five samples of wheat (20 organic and 15 conventional) were collected during storage and analyzed for<br />

theirs mycotoxins contamination and crude protein content. OTA was extracted with a mixture of CH3OH:3%<br />

NaHCO3 water solution(50:50) and purified using an immunoaffinity column (Ochraprep). OTA was determined<br />

by reversed-phase HPLC with fluorescence detection (λecc=333 nm e λem=470 nm); a Select-B RP-8 column,<br />

125x4mm (Merck), was employed at room temperature with a mobile phase of acetonitrile:aci<strong>di</strong>fied water (2%<br />

CH3COOH)(41:59) at 1.2 ml/min. The detection limit was 0.010 µg/kg.<br />

Deoxynivalenol (DON), 3 and 15-acetyl-deoxynivalenol (3-AcDON and 15-AcDON), nivalenol (NIV), HT-2<br />

and T-2 were determined. These trichothecenes were extracted with acetonitrile:water (84:16) for 90 minutes and<br />

an aliquot (6 ml) of the filtered extract was purified by Mycosep 227 column (Romer Labs). The final extract<br />

was derivatised with N-trimethylsilylimidazole and analysed by GC-MS using an ion trap detector.<br />

Trichothecenes were separated with a RTX-5 capillary column, 30mx0.25mm i.d. (Restek), and quantified by the<br />

selected ion monitoring technique; the detection limit was 2 µg/kg.<br />

Ergosterol analysis was performed accor<strong>di</strong>ng to AFNOR (Norme Francaise, 1991). After extraction with KOH<br />

alcoholic solution, an aliquot (20 ml) of the filtered extract was purified by Extrelut column (Merck). Ergosterol<br />

was determined by HPLC with UV detection (λ=280 nm); a Superspher Si 60 125x4 mm column (Merck) was<br />

employed with a mobile phase of n-hexane:isoamyl alcohol=98:2 at 1.0 ml/min. Detection limit was 0.4 mg/kg.<br />

The N content was determined using the Kjeldahl technique. Statistical analysis of data was performed with the<br />

statistical package SAS, using the PROC UNIVARIATE to verify the normality of data <strong>di</strong>stribution and PROC<br />

GLM and PROC NPAR1WAY for analysis of variance.<br />

Results<br />

The analyzed samples had a low contamination of mycotoxins, OTA levels were always lower than legal<br />

threshold of 3 µg/kg and no significant <strong>di</strong>fferences were observed between the two types of wheat. The 45% of<br />

organic samples were contaminated by OTA against a 40% in conventional wheat, however the most<br />

contaminated sample (0.53 µg/kg) was found in conventional cereals.<br />

The only detected trichothecene was DON, confirming the hypothesis that it is the most widespread in cereals.<br />

Only 25% of organic wheat showed a DON contamination (max value = 17.1 µg/kg) while all conventional<br />

samples were contaminated (max value =219.1 µg/kg). The DON content of organically produced wheat was<br />

significant lower than conventionally grown one (2.85 µg/kg vs 99.67 µg/kg; P


In our trial organic wheat showed a lower mycotoxins contamination than conventional wheat, on the other hand<br />

the adoption of organic production system leads to a reduction in crude protein content. Further stu<strong>di</strong>es are<br />

required in order to clarify the effect of organic cultivation system on nutritive value and content of<br />

antinutritional factor in wheat.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

145


32<br />

DETERMINAZIONE DI RESIDUI METALLICI NELLE PERE<br />

E INFLUENZA SULL’IMPATTO AMBIENTALE<br />

P. Tedeschi 1 , A. Maietti 1 , D. Mazzotta 1 , G. Vecchiati 1 , P. Romano 2 , V. Brandolini 1<br />

1 Dipartimento <strong>di</strong> Scienze Farmaceutiche – Università <strong>di</strong> Ferrara<br />

2 Dipartimento <strong>di</strong> Biologia, Difesa a Biotecnologie Agroforestali -Università della Basilicata<br />

INTRODUZIONE<br />

La presenza <strong>di</strong> residui <strong>di</strong> antiparassitari nelle derrate alimentari sia <strong>di</strong> origine animale (carni, latte, uova,<br />

burro, eccetera) sia <strong>di</strong> origine vegetale (ortofrutticoli freschi, conservati o lavorati industrialmente, vino, olio),<br />

determina, collateralmente alle preoccupazioni <strong>di</strong> or<strong>di</strong>ne igienico-sanitario, anche ripercussioni negli scambi<br />

commerciali, specialmente a livello internazionale. Al fine <strong>di</strong> limitare il più possibile la presenza dei residui <strong>di</strong><br />

fitofarmaci nelle derrate agricole e ridurre conseguentemente i rischi <strong>di</strong> intossicazioni acute e croniche per i<br />

consumatori, si stanno stu<strong>di</strong>ando e valutando sistemi <strong>di</strong> coltivazione che consentano l’applicazione delle più<br />

moderne tecniche <strong>di</strong> "produzione integrata" e <strong>di</strong> “produzione biologica”.<br />

Per quanto riguarda la <strong>di</strong>fesa dalle crittogame i formulati a base <strong>di</strong> rame sono prodotti chimici ammessi dai<br />

<strong>di</strong>sciplinari <strong>di</strong> produzione integrata e biologica. E’ stato <strong>di</strong>mostrato che il rame svolge un ruolo chiave in<br />

numerose funzioni biochimiche e metaboliche degli organismi ma un suo accumulo può provocare fenomeni<br />

tossici gravi. La <strong>di</strong>eta occidentale contiene abitualmente una quantità <strong>di</strong> rame più che sufficiente a ricoprire il<br />

fabbisogno giornaliero che per un adulto sano, <strong>di</strong> età compresa tra i 23 e i 50 anni, è <strong>di</strong> circa 2 mg (1,5-3 mg).<br />

Ne sono particolarmente ricchi i legumi, il pesce, i crostacei, la carne, i cereali e le noci.. Da stu<strong>di</strong> epidemiologici<br />

condotti precedentemente, risulta che per pazienti con elevati livelli <strong>di</strong> rame (> 1.43 mg/l) il rischio relativo <strong>di</strong><br />

morte per malattie car<strong>di</strong>ovascolari e tumori è quattro volte più elevato che nei soggetti con livelli normali<br />

(


per "strippare" i vapori nitrosi residui me<strong>di</strong>ante saturazione dell'ambiente con O2. Si scalda nuovamente ed<br />

infine si lascia definitivamente raffreddare: si ottengono così soluzioni limpide, più o meno incolori.<br />

Le analisi sono state effettuate in triplo e per la lettura dei campioni è stato utilizzato uno spettrofotometro per<br />

assorbimento atomico Perkin Elmer 1100B dotato <strong>di</strong> una lampada a catodo cavo, a singolo o multielemento, <strong>di</strong><br />

tipo Intensitron TM Perkin Elmer e <strong>di</strong> un bruciatore a premiscelazione al Titanio, a fen<strong>di</strong>tura singola <strong>di</strong> 10 cm,<br />

per fiamma ad aria /acetilene (2145/2400°C SIO S.p.A. Milano).<br />

Come prova <strong>di</strong> controllo (bianco) è stata eseguita una mineralizzazione con i soli reagenti al fine <strong>di</strong> osservare<br />

loro eventuali interferenze nella determinazione quantitativa dei metalli presenti.<br />

RISULTATI E DISCUSSIONE<br />

La prima parte del lavoro è stata incentrata sulla messa a punto del metodo <strong>di</strong> mineralizzazione ed analisi dei<br />

<strong>di</strong>versi campioni oggetto della ricerca. Per stimare gli eventuali effetti dovuti ad interferenze da matrice sono<br />

state eseguite numerose prove <strong>di</strong> recupero basate sul metodo delle aggiunte. In particolare ogni matrice<br />

considerata (terreno, foglie e pere) è stata ad<strong>di</strong>zionata (fortificata) con soluzioni standard <strong>di</strong> elemento in esame e<br />

tali da determinare sui campioni incrementi noti e pari a 0,1 e 1 µg/g.<br />

Dall’esame complessivo dei risultati ottenuti riportati in tabella 1, si può evidenziare come tutti i valori <strong>di</strong><br />

recupero siano compresi fra il 97,8% e il 102% per cui si può affermare che la metodologia in esame rientra<br />

pienamente nei criteri <strong>di</strong> atten<strong>di</strong>bilità previsti dalle raccomandazioni IUPAC.<br />

Nella tabella 2 sono riportate le concentrazioni me<strong>di</strong>e dei <strong>di</strong>versi metalli presenti nei campioni <strong>di</strong> foglie e terreno<br />

raccolti in tempi <strong>di</strong>versi all’interno delle parcelle sperimentali trattate secondo i criteri <strong>di</strong> “Difesa Biologica” e <strong>di</strong><br />

“Difesa Integrata”.<br />

Tabella 1. Valori me<strong>di</strong> <strong>di</strong> recupero (% ± SD) determinati per i <strong>di</strong>versi metalli presenti nelle matrici analizzate e<br />

ottenuti con il metodo delle aggiunte a <strong>di</strong>versi livelli <strong>di</strong> concentrazione ( µg/g).<br />

==================================================================<br />

Recupero (% ±SD)<br />

--- ----------------------------------------------------------------- ------------------------<br />

Terreno Foglie Pere<br />

Metallo ---------------------------------------------------------------------------------------------<br />

Concentrazioni ad<strong>di</strong>zionate ( µg/g)<br />

-- -------------------------------------------------------------------------------------------<br />

0.1 1.0 0.1 1.0 0.1 1.0<br />

___________________________________________________________________________<br />

Rame 100.5±1.2 100.3±1.7 98.2±2.1 99.6±1.5 98.2±1.9 100.1±1.6<br />

Ferro 99.8±2.3 97.9±3.1 101.0±1.9 98.0±2.7 99.2±2.8 101.1±2.1<br />

Zinco 100.3±2.1 98.2±2.8 96.4±3.8 99.1±2.7 101.2±2.8 100.0±1.4<br />

Magnesio 98.3±1.4 99.2±2.2 100.2±3.1 98.3±2.8 102.0±2.5 99.9±2.9<br />

Nichel 102.0±2.6 98.4±3.0 100.4±2.8 98.2±3.1 98.6±3.2 98.1±3.4<br />

Cromo 100.5±3.0 102.1±2.8 99.2±3.1 98.7±2.4 97.8±2.7 100.4±3.3<br />

==================================================================<br />

L’ipotesi nulla H0 sull’intercetta è stata valutata per p=0,01. Il limite <strong>di</strong> rivelabilità è stato calcolato secondo le<br />

raccomandazioni IUPAC per p=0,01.<br />

Il principale interesse della ricerca era incentrato sulla rilevazione delle concentrazioni <strong>di</strong> rame che si sarebbero<br />

determinate in relazione al numero e al tipo <strong>di</strong> trattamenti eseguiti, e da un primo gruppo <strong>di</strong> metalli considerati<br />

in<strong>di</strong>spensabili: ferro, zinco e magnesio. Da ciò e sulla base dei risultati ottenuti, si può osservare che il contenuto<br />

tali metalli nelle foglie e terreno aumenta considerevolmente dalla prima alla seconda raccolta nei campioni<br />

trattati e rispetto al testimone, mentre nella terza raccolta l’aumento è molto contenuto e non si <strong>di</strong>fferenzia<br />

significativamente per le due modalità <strong>di</strong> <strong>di</strong>fesa. Il testimone, costituito da piante che non hanno subito<br />

trattamenti chimici, presenta ridotti contenuti <strong>di</strong> rame.<br />

Le <strong>di</strong>fferenze riscontrate non sono significative nell’ambito <strong>di</strong> ciascuna raccolta, tuttavia, per il ferro, si nota che<br />

i campioni del testimone presentano costantemente concentrazioni superiori a quelle dei campioni trattati. Nichel<br />

e cromo sono rilevabili in concentrazioni limitate in tutte le tesi e permangono pressoché costanti per tutto l’arco<br />

della sperimentazione.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

147


Tabella 2. Concentrazioni me<strong>di</strong>e (µg/g) dei residui <strong>di</strong> metalli presenti nelle foglie e nei terreni provenienti dai<br />

campi sperimentali <strong>di</strong> <strong>di</strong>fesa biologica ed integrata. F = Foglie; T = Terreno.<br />

Difesa Prelievo Rame Ferro Zinco Magnesio Nichel Cromo<br />

F T F T F T F T F T F T<br />

Biologica 1° P 31,5 90,2 53,6 10983 n.d. 70,0 3505 5815 2,7 41,6 0,6 10,3<br />

Integrata 1° P 45,1 93,6 58,5 9076 n.d. 104,0 3471 6591 3,1 46,7 0,4 13,5<br />

Testimone 1° P 18,9 77,0 63,4 11329 n.d. 57,1 3741 6214 4,0 37,9 0,8 10,0<br />

Biologica 2° P 424,2 131,2 73,4 23010 45,7 127,0 3481 6289 3,9 42,5 1,1 10,3<br />

Integrata 2° P 401,0 125,7 69,4 22795 48,5 121,4 3192 6646 3,5 43,5 1,1 9,6<br />

Testimone 2° P 9,7 103,6 87,3 23779 46,8 131,4 3373 6507 5,1 43,3 1,0 11,3<br />

Biologica 3° P 462,3 97,7 75,7 22367 60,6 118,8 3811 6736 1,4 44,0 1,2 12,0<br />

Integrata 3° P 460,0 93,3 99,6 24114 55,2 109,4 3305 7078 2,2 45,5 1,4 13,8<br />

Testimone 3° P 18,6 91,4 100,1 24300 46,8 124,9 3732 7282 1,0 46,0 2,3 12,2<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

148


L’ultima parte della ricerca è stata de<strong>di</strong>cata alle determinazioni sui frutti. I risultati ottenuti sono riportati in<br />

tabella 3. Per quanto riguarda gli elementi in<strong>di</strong>spensabili ferro, zinco e magnesio si può notare che sono presenti<br />

a valori pressoché costanti e senza notevoli <strong>di</strong>fferenze tra i due sistemi <strong>di</strong> <strong>di</strong>fesa. Unica eccezione un leggero<br />

aumento delle concentrazioni del magnesio nel secondo prelievo specie utilizzando il sistema <strong>di</strong> <strong>di</strong>fesa integrata.<br />

Per il cromo va sottolineato come esso sia presente in concentrazioni molto ridotte in tutte le tesi e in tutte e tre<br />

le raccolte mentre per il nichel i valori sono risultati sempre al <strong>di</strong> sotto del limite <strong>di</strong> rivelabilità dello strumento.<br />

Tabella 3. Concentrazioni me<strong>di</strong>e (µg/g) dei residui <strong>di</strong> metalli presenti nei<br />

frutti provenienti dai campi sperimentali <strong>di</strong> <strong>di</strong>fesa biologica ed integrata.<br />

Difesa Prelievo Pere<br />

Rame Ferro Zinco Magnesio Nichel Cromo<br />

Biologica 1°P 2,64 3,04 1,40 70,85


CONCLUSIONI<br />

La ricerca intrapresa, anche se limitata ad una sola annata agraria per cui sono auspicabili ulteriori conferme, ha potuto<br />

mettere in evidenza alcuni punti <strong>di</strong> sicuro interesse. Innanzitutto vanno evidenziati i risultati relativi alle determinazioni<br />

eseguite sui frutti che, rappresentando la parte edule e commerciale, interessano principalmente i produttori e i<br />

consumatori.<br />

I risultati ottenuti evidenziano un quadro positivo; in particolare, si è <strong>di</strong>mostrata valida la <strong>di</strong>fesa biologica per quanto<br />

riguarda gli aspetti igienico-sanitari e <strong>di</strong> conservazione. Confrontando infatti le percentuali <strong>di</strong> frutti colpiti alla raccolta<br />

si può osservare che il valore più basso è quello relativo alla <strong>di</strong>fesa biologica (46,75%) contro il 54,87% della <strong>di</strong>fesa<br />

integrata e l’81% del testimone. Per ciò che concerne invece i residui <strong>di</strong> rame presenti nel terreno, nelle foglie e frutti<br />

trattati secondo le modalità <strong>di</strong> <strong>di</strong>fesa biologica e integrata, le relative concentrazioni risultano sempre inferiori al limite<br />

<strong>di</strong> tolleranza previsto dalla vigente legislazione e che per la frutta è fissato in 20 µg/g.<br />

Da queste in<strong>di</strong>cazioni si può quin<strong>di</strong> dedurre che le preparazioni a base <strong>di</strong> rame possono costituire un valido metodo <strong>di</strong><br />

<strong>di</strong>fesa anticrittogamica essendo selettive ed efficaci anche a basse concentrazioni oltre ad essere <strong>di</strong> sicuro interesse data<br />

la loro limitata pericolosità per ciò che concerne gli effetti antropotossici.<br />

La prosecuzione della ricerca potrà fornire ulteriori elucidazioni su altre colture ma soprattutto mettere in evidenza in<br />

un programma colturale completo quali siano i rischi/benefici dovuti all’applicazione delle più attuali strategie <strong>di</strong> <strong>di</strong>fesa<br />

al fine <strong>di</strong> migliorare le produzioni sia dal punto <strong>di</strong> vista quantitativo che qualitativo andando quin<strong>di</strong> maggiormente<br />

incontro alle pressanti richieste dei consumatori.<br />

Bibliografia<br />

- Aceto M., Abollino O., Bruzzoniti MC., Mantasti E., Sarzanini C., Malandrino M. (2002). Determination of metals in<br />

wine with atomic spectroscopy (flame-Aas, GF-AAS and ICP-AES); a review. Food Ad<strong>di</strong>t Contam. 19: 126-33.<br />

- Anderson R.A., Bryden N.A., Polansky M.N., Deuster P.A. (1995). Acute exercise effects on urinary losses and<br />

serum concentration of copper and zinc of moderately trained and untrained men consuming a controlled <strong>di</strong>et. Analyst<br />

120: 867-870.<br />

- Brandolini V., Tedeschi P., Capece A., Maietti A., Mazzotta D., Salzano G., Paparella A., Romano P. (2002).<br />

Saccharomyces cerevisiae wine strains <strong>di</strong>ffering in copper resistance exhibit <strong>di</strong>fferent capability to reduce copper<br />

content in wine. World Journal of Microbiology & Biotechnology. 18: 499-503.<br />

- Chow P.Y.T., Chua T.H., Tang K.F., Ow B.Y. (1995). Dilute acid <strong>di</strong>gestion procedure for the determination of lead,<br />

copper and mercury in tra<strong>di</strong>tional chinese me<strong>di</strong>cine by atomic absorption spectrometry. Analyst 120, 1221-1223.<br />

- Epsein L., Bassein S. (2001). Pesticide applications of copper on perennial crops in California, 1993 to 1998. J.<br />

Environ Qual. 30(5) : 1844-1847.<br />

- Hamey PY., Harris CA. (1999). The variation of pesticide residues in fruits and vegetables and the associated<br />

assessment of risk. Regul. Toxicol. Pharmacol. 30: 34-41.<br />

- Tahan J.E., Sànchez J.M., Grana<strong>di</strong>llo V.A., Cubillàn H.S., Romero R.A. (1995). Concentration of total Al, Fe, Hg,<br />

Na, Pb and Zn in commercial canned seafood determined by spectrometric means after mineralization by microwave<br />

heating. J. Agric. Food. Chem. 43: 910-915.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

150


33<br />

INVESTIGATIONS ON THE BACTERICIDAL ACTIVITY OF SOME NATURAL <strong>PRODUCTS</strong><br />

Varvaro L., M. Antonelli, G. M. Balestra, A. Fabi, D. Scermino e G. Vuono<br />

Dipartimento <strong>di</strong> Protezione delle Piante, Università degli Stu<strong>di</strong> della Tuscia,<br />

Via S. Camillo de Lellis, 01100, Viterbo, Italy<br />

The Council Regulation (EEC) no. 2092/91 shows the rules on organic production in agriculture to ensure both<br />

consumers and producers. The products for plant protection (copper compounds, propolis and so<strong>di</strong>um silicate) are listed<br />

in the Annex II part B of this regulation. The main chemicals used in organic agriculture to control bacterial plant<br />

<strong>di</strong>seases are cupric compounds. The last EEC Regulation (Reg. no. 473/2002) limits the use of copper and force the<br />

researchers to study new way in controlling bacterial <strong>di</strong>seases. The utilization of natural substances, such as propolis<br />

and so<strong>di</strong>um silicate, is one way susceptible to be investigated in order to better know their bactericidal or bacteriostatic<br />

effect on some host pathogen interactions.<br />

In particular, the activity of propolis and so<strong>di</strong>um silicate, alone or in association with <strong>di</strong>fferent copper<br />

compounds, were in vitro stu<strong>di</strong>ed toward a large number of phytopathogenic bacterial strains, both Gram positive and<br />

Gram negative. Furthermore, some in vivo tests were performed against some bacterial <strong>di</strong>seases of tomato, by spraying<br />

commercial products containing propolis and so<strong>di</strong>um silicate and on hazelnut using copper compounds. In vitro results<br />

show that propolis is active against the growth of the most of Gram positive bacterial strains, even at relatively low<br />

concentrations, while it is very poorly active on almost all essayed Gram negative ones. Antagonistic action of so<strong>di</strong>um<br />

silicate resulted evident only at high concentrations; in particular a certain in vitro inhibition was detected on<br />

Pseudomonas syringae pv. tomato the agent of bacterial speck of tomato, but it was not confirmed by in vivo tests. An<br />

inhibitory effect on epiphytic populations of Xanthomonas vesicatoria, the agent of bacterial spot of tomato, was<br />

observed till to 7 days after the treatment. So<strong>di</strong>um silicate was able to control also epiphytic populations of Clavibacter<br />

michiganensis subsp. michiganensis, the agent of bacterial canker of tomato. The in vitro and in vivo stu<strong>di</strong>es on the<br />

effect of <strong>di</strong>fferent copper compounds in controlling phytopathogenic bacteria showed some interesting results. Copper<br />

oxychloride and new chemicals, like tri-basic copper sulphate or pentahydrate copper sulphate, were sprayed on<br />

hazelnut plants showing <strong>di</strong>eback symptoms. The obtained results confirmed the preventive bactericidal effect of copper<br />

oxychloride against the pathogens and, moreover, pointed out the good effectiveness of the pentahydrate copper<br />

sulphate. In fact, even if this last compound is characterized by a copper concentration five time lower than the copper<br />

oxychloride, and although it has been sprayed at reduced field-doses, it gave the same results in controlling the hazelnut<br />

<strong>di</strong>sease.<br />

All results showed that propolis and so<strong>di</strong>um silicate could be useful in controlling epiphytic bacterial<br />

populations of some phytopathogenic bacteria on tomato, especially in organic agriculture. On the other hand, copper is<br />

confirmed to be used to <strong>di</strong>minish the populations of phytopathogenic bacteria and to reduce in such a way the <strong>di</strong>sease<br />

<strong>di</strong>ffusion. The opportunity to successfully use chemical products characterized by low copper concentration is important<br />

to safeguard the environment and the human health.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

151


34<br />

RICERCA SU INSETTICIDI UTILIZZABILI SECONDO IL METODO DI PRODUZIONE BIOLOGICO DI<br />

PRODOTTI AGRICOLI<br />

Fabio Molinari – Piero Crave<strong>di</strong><br />

Istituto <strong>di</strong> Entomologia e Patologia vegetale – Facoltà <strong>di</strong> Agraria U.C.S.C. – Piacenza – e-mail entomo@pc.unicatt.it<br />

Introduzione<br />

La protezione del pesco con il metodo biologico <strong>di</strong> produzione è attuata da alcuni anni con vari prodotti ad azione<br />

antiparassitaria <strong>di</strong> cui non è ben nota l’efficacia.<br />

Varia attività sperimentale è stata condotta negli anni con finalità non sempre aderenti alle esigenze del metodo.<br />

La valutazione dell’efficacia dei prodotti antiparassitari non può essere fatta prescindendo dal metodo complessivo <strong>di</strong><br />

coltivazione che è determinante nell’influenzare la sensibilità delle piante agli attacchi parassitari. La carenza <strong>di</strong><br />

informazioni sull’argomento non consente <strong>di</strong> avere un quadro preciso del ruolo che certi prodotti possono svolgere nella<br />

<strong>di</strong>fesa delle colture (pesco e <strong>di</strong> melone nella presente ricerca). L’obiettivo che ci si propone <strong>di</strong> ottenere dati che, tenendo<br />

conto della filosofia del metodo della produzione biologico, risultino valutabili secondo criteri scientifici.<br />

l’Istituto <strong>di</strong> Entomologia <strong>di</strong> Piacenza svolge dal 1998 una Ricerca su insettici<strong>di</strong> utilizzabili secondo il metodo <strong>di</strong><br />

produzione biologico <strong>di</strong> prodotti agricoli nell’ambito del Progetto: Difesa delle produzioni in agricoltura biologica<br />

promosso dal MINISTERO PER LE POLITICHE AGRICOLE.<br />

La ricerca si inserisce sulla “produzione integrata” nei pescheti che da anni l’Istituto <strong>di</strong> Entomologia <strong>di</strong> Piacenza sta<br />

conducendo in varie regioni italiane in collegamento con le principali istituzioni <strong>di</strong> ricerca europee.<br />

Materiali e Meto<strong>di</strong><br />

Sono state effettuate prove parcellari per determinare l’efficacia nel controllo <strong>di</strong> insetti <strong>di</strong> alcuni prodotti per<br />

l’agricoltura biologica.<br />

Inizialmente i prodotti da sperimentare erano quassine ed oli vegetali su afide verde del pesco e su Aphis gossypii su<br />

cucurbitacee, ryania su Cy<strong>di</strong>a molesta su pesco.<br />

In corso <strong>di</strong> svolgimento, anche in relazione all’interesse mostrato da parte dei produttori interpellati per l’esecuzione<br />

della sperimentazione, sono state inserite prove con Aza<strong>di</strong>ractina in sostituzione <strong>di</strong> quelle con oli vegetali, che non è<br />

stato possibile allestire per mancanza <strong>di</strong> interesse da parte <strong>di</strong> tecnici ed agricoltori; in fase avanzata sono state inserite<br />

prove per la valutazione <strong>di</strong> ryano<strong>di</strong>ne contro Cy<strong>di</strong>a funebrana.<br />

Pertanto le prove effettuate nel progetto sono state:<br />

Quassio contro M. persicae su pesco (su reinfestazioni dopo la fioritura)<br />

Quassio contro A. gossypii su melone (anguria)<br />

Ryania contro C. molesta su pesco<br />

Ryania contro Cy<strong>di</strong>a funebrana su susino<br />

Aza<strong>di</strong>ractina 3 contro C. molesta su pesco<br />

Aza<strong>di</strong>ractina 3 contro M. persicae su pesco<br />

Aza<strong>di</strong>ractina 3 contro A. gossypii su melone (anguria) 1 - Polvere micronizzata (400 g/hl)<br />

2 - polvere setacciata 180 mm, con contenuto <strong>di</strong> ryano<strong>di</strong>ne 0,1%. (600 g/hl)<br />

3 - Oikos, Sipcam (100 g/hl)<br />

Il progetto prevede una prima fase de<strong>di</strong>cata alla determinazione dell’efficacia, mentre nelle fasi successive verranno<br />

ricercati i criteri per un’utilizzazione ottimale dei prodotti.<br />

Lo schema <strong>di</strong> base è stato il seguente:<br />

Aphis gossypii. Prove parcellari secondo lo schema proposto dall’EPPO su cotone. Trattamento effettuato all’inizio<br />

dell’arrivo degli insetti alati e ripetuto dopo 7 giorni.<br />

Myzus persicae. Prove parcellari. 1998-1999: trattamenti effettuati sulle reinfestazioni in post-fioritura quando l’azione<br />

degli antagonisti inizia a manifestarsi e potrebbe essere influenzata negativamente da trattamenti a base <strong>di</strong> piretro o<br />

rotenone.<br />

2000-2001: concentrando maggiormente l’attenzione sull’aza<strong>di</strong>ractina, sono stati valutati gli effetti <strong>di</strong> trattamenti pre e<br />

postfiorali.<br />

Cy<strong>di</strong>a molesta. Prove parcellari. Trattamenti effettuati sulle larve della seconda generazione per meglio evidenziare il<br />

livello <strong>di</strong> efficacia.<br />

Cy<strong>di</strong>a funebrana. Prova a parcelloni sulle larve <strong>di</strong> seconda generazione. I trattamenti sono stati ripetuti 3 volte (2 per<br />

ryania) a <strong>di</strong>stanza <strong>di</strong> 8-10 giorni.<br />

Risultati<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

152


Vengono qui riportati i risultati <strong>di</strong> alcune prove rappresentative. Aphis gossypii: le scarse infestazioni nei campi<br />

sperimentali non hanno consentito <strong>di</strong> trarre in<strong>di</strong>cazioni chiare. Nella prova <strong>di</strong> Castellazzo Bormida (a)<br />

Myzus persicae: le prime prove hanno evidenziato una limitata attività del quassio sulle reinfestazioni, mentre più<br />

interessante è risultata l’azione <strong>di</strong> aza<strong>di</strong>ractina; buona l’efficacia prefiorale, chiaramente migliorata dalla ripetizione del<br />

trattamento in postfioritura (b).<br />

Cy<strong>di</strong>a molesta. Sia aza<strong>di</strong>ractina sia riano<strong>di</strong>ne hanno mostrato una attività variabile, ma complessivamente tale da<br />

suggerire ulteriori approfon<strong>di</strong>menti, sia sulle modalità applicative, sia sulle formulazioni; in particolare le riano<strong>di</strong>ne<br />

hanno presentato alcune <strong>di</strong>fficoltà in fase <strong>di</strong> preparazione e <strong>di</strong> <strong>di</strong>stribuzione, e nonostante ciò hanno fornito risultati<br />

quasi sempre in linea, e talvolta superiori a quelli dei preparati a base <strong>di</strong> Bacillus thuringiensis.. Un esempio è riportato<br />

in figura c.<br />

Cy<strong>di</strong>a funebrana. E’ stata effettuata una sola prova nel 2002 su parcelloni con 2 repliche. Dal grafico (d) si può<br />

osservare che nelle parcelle trattate con ryania e aza<strong>di</strong>ractina si è registrato un calo nell’infestazione, mentre in quelle<br />

trattate con Bacillus thuringiensis una scarsa azione può essere evidenziata solo dalla riduzione dell’incremento del<br />

fitofago, con un risultato finale comunque non <strong>di</strong>fferente rispetto al testimone.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

153


35<br />

FUNGICIDES AND HEAVY METALS IN WINE SAMPLES PRODUCED FROM EXPERIMENTAL<br />

GRAPES SUBJECTED TO DIFFERENT PESTICIDES TREATMENTS<br />

Salvo Francesco, Saitta Marcello, Di Bella Giuseppa, La Pera Lara, Dugo Giacomo<br />

Dipartimento <strong>di</strong> Chmica Organica e Biologica Università <strong>di</strong> Messina Salita Sperone, 3190166 S. Agata -Messina<br />

Wine is a wildely consumed beverage with thousand years tra<strong>di</strong>tions, so an accurate quantitative knowledge of<br />

the presence of toxic elements as pesticides and heavy metals, is very important from both toxicological and enological<br />

point of view. The use of pesticides is closely associated with viticulture (1). Many factors influence the presence of<br />

heavy metals in wine: type of soil, wine-processing equipment, vinification methods (2). The purposes of this work are<br />

both to quantify pesticides residues and trace metals in samples of Italian wines, and to study the possible correlation<br />

between the presence these contaminants (3).<br />

Wine farms that comply with the Rule Cee 2078/92 for wine grape defense, have to respect all the provided<br />

restrictions regar<strong>di</strong>ng to the use of pesticides.<br />

To control the growth of powdery mildew (Uncinula necator), the use of sulfur, azoxystrobin, <strong>di</strong>nocap,<br />

fenarimol, penconazole, quinoxyfen, is allowed. Mildew epidemic weakens the vines, causing huge production losses<br />

and negatively influencing the quality of wines. Also an incorrect use of fungicide and frequency of their applications,<br />

maight alter the quality of the final product.<br />

The determination of fungicide residues in wine is well documented, even if the reported extraction procedures<br />

are complex and expensive; meanwhile there is a lack of available data regar<strong>di</strong>ng to the extraction of <strong>di</strong>nocap residue.<br />

In this work a quick chromatographic method for the simultaneous extraction of azoxystrobin, <strong>di</strong>nocap, fenarimol,<br />

penconazole, quinoxyfen residues in wine samples is described (4).<br />

The same samples of wine were subjected to trace metal determination as Cd (II), Cu (II), Pb (II) and Zn (II).<br />

Heavy metals dosage was carried out by derivative potentiometric stripping analysis (3), which allowed to execute the<br />

determinations in a short time <strong>di</strong>rectly on the wine sample appropriately aci<strong>di</strong>fied. The presence of Cd (II), Cu (II), Pb<br />

(II) and Zn (II) in white and red wine sample, was correlated to the treatments applied on grapes.<br />

Samples description<br />

All the samples of white and red wine were produced in the crop year 2000-2001.White wines came from Sicily<br />

and Campania red wine from Tuscany. Sicilian wines were produced from Inzolia and Carricante grape variety; wines<br />

from Campania were produced Fiano d’Avellino grape variety. Red wines from Tuscany were vinified from Sangiovese<br />

grape variety, Morellino clone.<br />

The fungicide treatments were carried out on the end of blossoming and maturation; they were used at the doses<br />

recommended by the manufacturers and were sprayed with a manual sprayer every 7-12 days (9 treatments) The last<br />

treatments was executed about 28 days before the grape harvest. Only <strong>di</strong>nocap, which is generally used to start the<br />

defence strategy, was applied 3 times. A random-block scheme was used with four replications for each test, and each<br />

block contained 60 plants.<br />

HRGC analysis<br />

A HRGC 5300 mega Series Carlo Erba Instruments gas chromatograph was used for determination of five<br />

fungicides. It was fitted with an electron-capture detection (ECD) system and split-splitless injector, connected to a<br />

Hewlett Packard 3394 A reporting integrator.<br />

A SPB-5 fused – silica column (30 m x 0.25 mm i.d.) was employed, with 5% <strong>di</strong>phenyl 95% <strong>di</strong>methyl siloxane<br />

as liquid phase (film thickness 0.25 µm) (Supelco). The injector and detector were operated at 250° C and 280°C,<br />

respectively.<br />

The sample (1 µL) was injected in the split mode (1:3), and the oven temperature was programmed as follows:<br />

200°C (1 min) raised to 270°C (5°C/min), held for 20 min. Helium was the carrier gas and nitrogen the make-up gas<br />

both at 150 Kpa.<br />

Ten grams of wine was collected in an Erlenmeyer flask with a teflon-lined screw-cap. A 20 mL volume of<br />

hexane-ethyl acetate (9:1, v/v) was added, and the mixture was put in a sonicator (Transsonic T420, Elma) for 30 min.<br />

A 2 mL volume of supernatant was evaporated under nitrogen flow; 0.2 mL of the internal standard solution<br />

(bromophos-methyl 1.00 mg/L) was added, and the mixture was <strong>di</strong>rectly analyzed by gas chromatography. No clean-up<br />

was necessary because there were no interference in the chromatogram.<br />

Previously, a blank assay was employed to check for the absence of residuals in wine. Untreated samples of wine<br />

were fortified with 0.01, 0.1 and 1.0 mg/Kg of fungicides. The samples were allowed to equilibrate for 60 min prior to<br />

extraction, and were processed accor<strong>di</strong>ng to the above procedure. The recovery assays were replicated 3 times:<br />

recoveries ranged fro 75.9 to 121.5 %. The detection limits were evaluated as the peak height that is two times respect<br />

to the bottom noise. For azoxystrobin, fenarimol, penconazole and quinoxyfen the calculated detection limit is 5 pg/µL;<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

154


while for <strong>di</strong>nocap is 10 pg/µL. For the determination of sulfur residue, a HRGC Dani 86.10, fitted with a FPD Dani<br />

86/70 detector and a Mega 68 fused Silica column, were used; the detection limit was 2 ng/µL.<br />

Derivative potentiometric stropping analysis<br />

For metals determination an ION 3 Steroglass potentiometric stripping analyzer equipped with a conventional<br />

three electrodes cell, was used. The working electrode was a glassy carbon one covered with a thin mercury film.<br />

Before each analysis an appropriate volume of wine was treated with HCl 2M lowering the pH to 2, in order to ensure<br />

that all metals present remain in unbound –free forms. Cd (II), Cu (II) and Pb (II) were determined simultaniously, their<br />

oxidation potential were respectively –590 mV, -185 mV and –400mV. Zn was separately determined, its oxidation<br />

potential was –950 mV. Quantitative analysis was always carried out by the method of standard ad<strong>di</strong>tions.<br />

RESULTS and CONCLUSION<br />

The residues found in all wines were below the limits that Italian law (D.M. 19 may 2000) provides for grapes<br />

and wines. Particularly no quinoxyfen residues were found in the wines; also in wines originated from treated grapes,<br />

no <strong>di</strong>nocap residues were found probabily because of an inferior number of tratments applied on vines (table 1).<br />

Maximum accetable levels of Cd (II), Cu (II), Pb (II), and Zn (II) in wines, has been estabilished by the Italian<br />

Republic (5) and by the European Commission (6) respectively at 100<br />

ng L -1 , 1000 ng L -1 , 300 ng L -1 , and 500 ng L -1 . As tables 2 a-c evidence that the metals content of the stu<strong>di</strong>ed wines was<br />

always under the acceptable levels, particularly Cd was not found in any sample. The content of Cu, determined in<br />

wines coming from the three regions ranged from 10.5 to 415.7 ng mL -1 and was not influenced by fungicides<br />

treatments applied on grapes. The concentration of Pb spanned from 3.6 to 17.4 ng mL -1 and was regularly influenced<br />

by pesticides treatments (fig. 1): the highest amounts were extimated for samples treated only with sulfur and with<br />

azoxystrobin while the lowest were found in wines trated with quinoxyfen and <strong>di</strong>nocap. The level of Zn was in the range<br />

21.6-263.0 ng mL -1 and showed a regular behaviour respect to the treatments (fig.2) only in white wines: the highest<br />

amounts were extimated for samples treated with fenarimol and azoxystrobin, and as already observed, the lowest in<br />

samples treated with <strong>di</strong>nocap. For red wines the highest Zn contents were evaluated in samples treated with azoxstrobin<br />

and in the one trated with sulfur, the lowest in the sample treated with fenarimol.<br />

LITERATURE<br />

1. Fernadez-Cornejo, J. Environmental and economic consequences of technology adoption: IPM in<br />

viticulture. Agricultural Economics 1998, 18, 145-155.<br />

2. Golimowsky, J.; Valenta, P.; Wolfgang-Nurnberg, H. Toxic Trace Metals in Food II. A Comparative<br />

Study of The Levels of Toxic Trace Metals in Wine by Differential Pulse Ano<strong>di</strong>c Stripping Voltammetry and<br />

Electrothermal Atomic Absorption Spectrometry. Z.Lebensm. Unters. Forsh. 1979 b, 168, 439-443.<br />

3. Salvo, F.; La Pera, L.; Di Bella, G.; Nicotina, M.; Dugo, G.mo. Influence of mineral and organic<br />

pesticides treatments on Cd (II), Cu (II) Pb (II) and Zn (II) content determined by Derivative Potentiometric Stripping<br />

Analysis in Italian Red and white wines. J. Agric. Food Chem. 2003 in press<br />

4. Dugo, G.mo; Visco A.; Saitta M.; Vinci, V.; Di Bella G.Dosaggio <strong>di</strong> quinoxyfen su prodotti vitivinicoli<br />

siciliani. Vigne vini, 2001, 91, 7-8.<br />

5. Repubblica Italiana; Caratteristiche e Limiti <strong>di</strong> alcune Sostanze nel Vino. 1986, december D.M. 29.<br />

6. European Commission; 1997 Doc III/5125/95/ Rev.3.<br />

Table 1: Fungicide residues (µg /Kg + s.d.) in wine.<br />

azoxystrobin <strong>di</strong>nocap fenarimol penconazole quinoxyfen<br />

Sicily 21±6 n.d. 13±2 10±1 n.d.*<br />

Campania 5±1 n.d. 6±2 8±2 n.d.*<br />

Tuscany 12±2 n.d. 70±6 12±1 n.d.*<br />

n.d. < 10 µg /Kg<br />

n.d.* < 5 µg /Kg<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

155


Table 2 a, b, c: Cd (ng mL -1 ), Cu (ng mL -1 ), Pb (ng mL -1 ) and Zn (ng mL -1 ) concentrations in 8 samples of wines<br />

from Sicily (a), 8 from Campania (b), and 8 from Tuscany (c) : one of each group was treated with water only (blank),<br />

the others were subjacted to <strong>di</strong>fferent organic and inorganic pesticides treatment. Each value was the mean of three<br />

determinations.<br />

(a)<br />

Samples Treatments Cd Cu<br />

Pb<br />

Zn<br />

Blank Water n.d 20.6±0.7 9.0±0.9 21.6±1.1<br />

ORGANIC TREATMENTS<br />

1 Quinoxifen n.d 63.3±1.8 10.3±1.1 23.7±0.8<br />

2 Fenarimol n.d 27.8±1 11.4±0.9 53.1±0.3<br />

3 Azoxystrobin n.d 26.8±0.8 16.7±1.4 52.6±1.3<br />

4 Dinocap-Penconazole n.d 23.2±0.7 9.6±0.8 26.7±0.6<br />

5 Dinocap n.d 24.4±1.2 13.0±1.3 21.6±1.0<br />

mean ± sd 33.1±17.0 12.2±2.8 35.5±15.9<br />

INORGANIC TREATMENTS<br />

6 S WP n.d 36.1±1.2 13.8±1.0 47.2±1.6<br />

7 S DP n.d 29.4±1.3 26.0±1.3 53.7±2.0<br />

mean ± sd 32.8±4.7 19.9±8.6 50.5±4.6<br />

total mean ± sd 31.5±13.7 13.7±5.6 37.4±15.3<br />

n.d.= not detectable < 1.5 ng mL -1<br />

S WP= sulfur wettable powder<br />

S DP=sulfur dry powder<br />

(b)<br />

Samples Treatments Cd<br />

Blank Water n.d 31.0±0.8 3.6±0.3 77.6±2.0<br />

ORGANIC TREATMENTS<br />

1 Quinoxifen n.d 185.3±5.9 4.2±0.2 111.9±1.7<br />

2 Fenarimol n.d 184.2±2.7 5.1±0.3 205.5±4.3<br />

3 Azoxystrobin n.d 203.0±1.9 13.1±1.2 200.8±4.7<br />

4 Dinocap-Penconazole n.d 247.1±6.5 4.7±0.8 109.1±3.0<br />

5 Dinocap n.d 72.4±1.0 4.1±0.4 142.1±2.6<br />

mean ± sd 178.8±64.5 6.2±2.9 133.9±79.3<br />

INORGANIC TREATMENTS<br />

6 S WP n.d 110.8±4.0 12.6±0.2 178.8±2.5<br />

7 S DP n.d 174.6±4.0 15.4± 0.8 176.6±2.9<br />

mean ± sd 142.7±45.1 14.0±2.0 177.7±1.6<br />

total mean ± sd 151.1±72.7 7.8±4.9 150.3±47.2<br />

(c)<br />

Samples Treatments Cd<br />

Blank Water n.d 10.5±0.5 5.0±0.4 105.0±2.9<br />

ORGANIC TREATMENTS<br />

1 Quinoxifen n.d 415.7±12.5 12.6±0.9 263.0±8.0<br />

2 Fenarimol n.d 103.3±2.3 14.4±1.0 166.7±6.3<br />

3 Azoxystrobin n.d 397.0±14.9 17.4±1.1 103.3±5.2<br />

4 Dinocap-Penconazole n.d 253.9±10.0 9.0±0.8 179.3±7.0<br />

5 Dinocap n.d 325.2±7.3 9.5±0.7 152.2±5.4<br />

mean ± sd 304.4±128.7 12.6±3.5 172.9±58.0<br />

INORGANIC TREATMENTS<br />

6 S WP n.d 20.1±2.3 17.2±0.2 266.9±9.1<br />

7 S DP n.d 61.4±3.3 16.6±1.0 257.8±8.9<br />

mean ± sd 40.8±28.2 16.9±0.5 262.4±6.4<br />

total mean ± sd 198.4±169.3 12.7±4.5 186.8±68.2<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

156<br />

Cu<br />

Cu<br />

Pb<br />

Pb<br />

Zn<br />

Zn


[Pb](ng/ml)<br />

Figure 1: Pb content of wines samples from <strong>di</strong>fferent treatments<br />

[Zn] (ng/ml)<br />

30,0<br />

25,0<br />

20,0<br />

15,0<br />

10,0<br />

5,0<br />

0,0<br />

300,0<br />

250,0<br />

200,0<br />

150,0<br />

100,0<br />

50,0<br />

0,0<br />

Water<br />

Water<br />

Quinoxiphen<br />

Quinoxiphen<br />

Fenarimol<br />

Fenarimol<br />

Azoxistrobin<br />

Dinocap-Penconazole<br />

Azoxistrobin<br />

Dinocap-Penconazole<br />

Figure 2: Zn content of wines samples from <strong>di</strong>fferent treatments<br />

157<br />

Sulfur WP<br />

Dinocap ( Quinoxyfen)<br />

Sulfur WP<br />

Dinocap (Quinoxyfen)<br />

Sulfur DP<br />

Sulfur DP<br />

Sicily<br />

Campania<br />

Tuscany<br />

Sicily<br />

Campania<br />

Tuscany<br />

Sicily<br />

[Pb](ng/ml)<br />

Campania<br />

Tuscany<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint


36<br />

NEW α-ELICITIN ISOFORMS FROM Phytophthora hybernalis AS PROTEIN ELICITORS FOR A<br />

POTENTIAL EMPLOYMENT IN THE <strong>BIOLOGICAL</strong> PEST MANAGEMENT<br />

R. Capasso*, A. De Martino*, G. Cristinzio**, A. Di Maro*** and A. Parente***<br />

*Dipartimento <strong>di</strong> Scienze della Pianta, del Suolo e dell’Ambiente, Università degli Stu<strong>di</strong> <strong>di</strong> Napoli “Federico II”,<br />

Portici, Italy. E-mail: capasso@unina.it<br />

** Dipartimento <strong>di</strong> Arboricoltura, Botanica e Patologia Vegetale, Università degli Stu<strong>di</strong> <strong>di</strong><br />

Napoli “Federico II”, Portici, Italy.<br />

*** Dipartimento <strong>di</strong> Scienze della Vita, Seconda Università degli Stu<strong>di</strong> <strong>di</strong> Napoli, Caserta, Italy.<br />

The microbial naturally occurring compounds which are able to induce plant defence mechanisms against<br />

phytopathogenic fungi and bacteria are named elicitors and could be consequently employed in strategies for the<br />

biological control of plant <strong>di</strong>seases.<br />

The genus Phytophthora produces protein elicitors, named α- and β-elicitins, which show a relative molecular weight<br />

of 10 KDa and 98 amino acids. Their characteristic biological activities are the induction of a hypersensitive response<br />

(HR) and systemic acquired resistance (SAR) in tobacco with the formation of phytoalexins, PR proteins and salycilic<br />

acid; moreover, they induce protection against phytopathogenic microorganisms in tobacco and in some species of<br />

Brassicaceae 1 .<br />

In the present communication we describe the isolation and the preliminary data on the chemical characterization and<br />

elicitor activity on tobacco (Nicotiana tabacum L., cv Rustica) of three new elicitin isoforms H-α1, H-α2 e H-α3,<br />

produced in the culture filtrates of an isolate of Phytophthora hybernalis, the causal agent of rot of citrus fruits, isolated<br />

from <strong>di</strong>seased plants in the sorrentina peninsula.<br />

The three isoforms have been isolated by four purification steps, of which the final step was represented by a<br />

chromatographic purification on a reverse-phase column (RP-18) eluted at low pressure with a gra<strong>di</strong>ent of wateracetonitrile.<br />

It was determined their absolute molecular weight by MALDI Mass Spectrometry, obtaining values of 10239.24 for Hα1,<br />

10235.94 for H-α2 and 10244.28 uma for H-α3.<br />

In stu<strong>di</strong>es of elicitor activity carried out testing the hypersensitive response on tobacco, the three isoforms showed<br />

<strong>di</strong>fferent intensity responses, that is H-α1 proved to be the most active, followed by H-α2, whereas H-α3 proved to be<br />

inactive.<br />

Stu<strong>di</strong>es will be carried out on the determination of their primary structure and elicitor effects on other plants of<br />

agricultural interest. The very low dose required for their positive biological effects on tobacco, their protein nature<br />

and the no toxicity of the elicitins for adults 2 , render these new compounds and those previously described 1,3,4 very<br />

interesting for investigations on their possible use in biological pest management programs.<br />

REFERENCES<br />

1. Ponchet, M., Panabieres, F., Milat, M.-L., Mikes, V., Montillet, J.-L., Suty, L., Triantaphylides, C.,<br />

Tirilly, Y., Blein, J.-P., 1999. Are elicitins cryptograms in plant-Oomycete communications? Cell Mol.<br />

Life Sci. 56, 1020-1047.<br />

2. Mikes, V., Blein, J.-P., Milat, M.-L., Ponchet, M., Ricci, P., 1998. Use of elicitins as lipid carriers<br />

and their me<strong>di</strong>cal use. Patent PCT Int. Appl. 31 pp Coden; PIXXD2.<br />

3. Capasso, R., Cristinzio, G., Evidente, A.,Visca, C., Ferranti, P., Del Vecchio Blanco, F., Parente, A.,<br />

Elicitin 172 from an isolate of Phytophthora nicotianae, pathogenic to tomato. Phytochem. 50,<br />

703-709.<br />

4. Capasso, R., Cristinzio, G., Di Maro, A. Ferranti, P., Parente, A., 2001. Syringicin a new α-elicitin from<br />

an isolate of Phytophthora syringae, pathogenic to citrus fruit. Phytochem. 58, 257-262.<br />

PDF creato con FinePrint pdfFactory versione <strong>di</strong>mostrativa http://www.secom.re.it/fineprint<br />

158

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!