21.03.2013 Views

Life cycle variation and adaptation in jumping plant lice (Insecta ...

Life cycle variation and adaptation in jumping plant lice (Insecta ...

Life cycle variation and adaptation in jumping plant lice (Insecta ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History<br />

Vol. 43, Nos. 1–2, January 2009, 65–179<br />

<strong>Life</strong> <strong>cycle</strong> <strong>variation</strong> <strong>and</strong> <strong>adaptation</strong> <strong>in</strong> jump<strong>in</strong>g <strong>plant</strong> <strong>lice</strong> (<strong>Insecta</strong>:<br />

Hemiptera: Psylloidea): a global synthesis<br />

Ian D. Hodk<strong>in</strong>son*<br />

School of Biological <strong>and</strong> Earth Sciences, Liverpool John Moores University, Liverpool, UK<br />

(Received 1 February 2008; f<strong>in</strong>al version received 20 July 2008)<br />

This paper <strong>in</strong>tegrates the scattered <strong>in</strong>formation on the life histories of the jump<strong>in</strong>g<br />

<strong>plant</strong> <strong>lice</strong> or psyllids, exam<strong>in</strong><strong>in</strong>g those aspects of their biology that contribute to<br />

successful life <strong>cycle</strong> completion. Variation <strong>in</strong> life history parameters is reviewed<br />

across the world’s psyllids <strong>and</strong> the relative importance of phylogeny <strong>and</strong><br />

environment, <strong>in</strong>clud<strong>in</strong>g host-<strong>plant</strong> growth strategy, <strong>in</strong> determ<strong>in</strong><strong>in</strong>g life history<br />

strategies is assessed. Elements of life <strong>cycle</strong>s considered <strong>in</strong>clude: development rate<br />

<strong>and</strong> volt<strong>in</strong>ism, response to high temperature <strong>and</strong> drought, cold-hard<strong>in</strong>ess <strong>and</strong><br />

overw<strong>in</strong>ter<strong>in</strong>g strategy, seasonal polymorphism, diapause, metabolism, host-<strong>plant</strong><br />

selection <strong>and</strong> range, phenological <strong>and</strong> other <strong>adaptation</strong>s to host <strong>plant</strong>s, disease<br />

transmission <strong>and</strong> host amelioration, dispersal, reproduction <strong>and</strong> mate f<strong>in</strong>d<strong>in</strong>g.<br />

<strong>Life</strong> history parameters are analyzed for 342 species. While a phylogenetic signal<br />

can be identified with<strong>in</strong> the data, the ma<strong>in</strong> drivers for life history <strong>adaptation</strong> are<br />

environmental temperatures <strong>and</strong> water availability, act<strong>in</strong>g directly on the psyllids<br />

or mediated through their host <strong>plant</strong>s.<br />

Keywords: psyllid; life-history; phylogeny; temperature; water<br />

Introduction<br />

Jump<strong>in</strong>g <strong>plant</strong> <strong>lice</strong>, or psyllids (Psylloidea), comprise a group of around 3000 species<br />

of small <strong>plant</strong>-sap-feed<strong>in</strong>g <strong>in</strong>sects allied to the aphids <strong>and</strong> whiteflies. They occur<br />

throughout nearly all the world’s major climatic regions where suitable host <strong>plant</strong>s<br />

are found. This paper attempts to <strong>in</strong>tegrate the wealth of scattered <strong>in</strong>formation on<br />

the life histories of the psyllids <strong>and</strong> to exam<strong>in</strong>e those aspects of their biology that<br />

contribute to successful life <strong>cycle</strong> completion. A significant proportion of this<br />

<strong>in</strong>formation is conta<strong>in</strong>ed <strong>in</strong> relatively old or obscure sources, or is to be found <strong>in</strong><br />

current literature that escapes electronic abstract<strong>in</strong>g <strong>and</strong> is thus <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g danger<br />

of rema<strong>in</strong><strong>in</strong>g unrecognized. The broad <strong>variation</strong>s that occur with<strong>in</strong> psyllid life <strong>cycle</strong>s<br />

are documented <strong>and</strong> the modifications of biology <strong>and</strong> mechanisms by which psyllids<br />

adapt to exploit a diverse range of host <strong>plant</strong>s grow<strong>in</strong>g under vary<strong>in</strong>g environmental<br />

conditions are exam<strong>in</strong>ed. An attempt is made throughout to identify common<br />

themes <strong>and</strong> patterns. Table 1 draws together, <strong>in</strong> taxonomic sequence, the basic data<br />

<strong>and</strong> reference sources that are avilable for the life histories of the world’s Psylloidea<br />

species <strong>and</strong> this forms the foundation for the subsequent analyses.<br />

The great majority of psyllid species are narrowly host-specific <strong>and</strong> are<br />

predom<strong>in</strong>antly associated with perennial dicotyledenous angiosperms<br />

(Klimaszewski 1973; Hodk<strong>in</strong>son <strong>and</strong> White 1981; Hodk<strong>in</strong>son 1983a, 1986a, 1988a;<br />

Gegechkori <strong>and</strong> Log<strong>in</strong>ova 1990; Hollis 2004). A few species develop on monocots<br />

*Email: i.d.hodk<strong>in</strong>son@ljmu.ac.uk<br />

ISSN 0022-2933 pr<strong>in</strong>t/ISSN 1464-5262 onl<strong>in</strong>e<br />

# 2009 Taylor & Francis<br />

DOI: 10.1080/00222930802354167<br />

http://www.<strong>in</strong>formaworld.com


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

66 I.D. Hodk<strong>in</strong>son<br />

<strong>in</strong>clud<strong>in</strong>g Livia spp. on Carex <strong>and</strong> Juncus, Bactericera tremblayi (Wagner) <strong>and</strong> B.<br />

kratochvili (Vondracek) on Allium spp. (Alliaceae), <strong>and</strong> a few species on Palmaceae.<br />

These <strong>in</strong>clude an undescribed species on Bactris gasipaes <strong>in</strong> Colombia, five Hawaiian<br />

Megatrioza on Pritchardia, an undescribed Australian paurocephal<strong>in</strong>e species on<br />

Livistona <strong>and</strong> an undescribed Indian ‘‘Psylla’’ species on Areca catechu<br />

(Klimaszewski 1973; Pava et al.1983; Uchida <strong>and</strong> Beardsley 1988; Hodk<strong>in</strong>son <strong>and</strong><br />

Bird 2000; Mondal et al. 2003; Hollis 2004). Gymnosperms are similarly poorly<br />

exploited as host <strong>plant</strong>s, with just two species of Ehrendorferiana Burckhardt<br />

breed<strong>in</strong>g on Austrocedrus <strong>and</strong> Fitzroya (Cupressaceae) <strong>in</strong> Chile <strong>and</strong> Trioza colorata<br />

Ferris <strong>and</strong> Klyver <strong>and</strong> T. dacrydii Tuthill exploit<strong>in</strong>g Dacrydium (Podocarpaceae) <strong>in</strong><br />

New Zeal<strong>and</strong> (Tuthill 1952; Burckhardt 2005a). Conifers, however, as discussed<br />

later, play a highly significant role as overw<strong>in</strong>ter<strong>in</strong>g shelter <strong>plant</strong>s for adults from a<br />

wide range of psyllid species.<br />

The psyllid life <strong>cycle</strong> typically comprises of an egg stage, five larval <strong>in</strong>stars <strong>and</strong> a<br />

sexually reproduc<strong>in</strong>g adult stage, with males <strong>and</strong> females usually show<strong>in</strong>g only<br />

moderate deviation from a 1:1 sex ratio at emergence. Parthenogenetic reproduction,<br />

<strong>in</strong> which only females are found <strong>in</strong> the population, is rare but probably occurs <strong>in</strong><br />

some populations of Cacopsylla rara (Tuthill), Glycaspis operta (Moore), Glycaspis<br />

atk<strong>in</strong>soni Moore <strong>and</strong> Cacopsylla myrtilli (Wagner) (Hodk<strong>in</strong>son 1983b; Moore 1983;<br />

Hodk<strong>in</strong>son <strong>and</strong> Bird 2006a). The latter species appears as populations of<br />

parthenogenetic females throughout most of its circumboreal range but males<br />

become common at higher altitudes above tree l<strong>in</strong>e (Hodk<strong>in</strong>son <strong>and</strong> Bird 2006a).<br />

With<strong>in</strong> the equitable warm <strong>and</strong> wet conditions of lowl<strong>and</strong> tropical evergreen<br />

ra<strong>in</strong>forests psyllid life <strong>cycle</strong>s tend to be cont<strong>in</strong>uous, with multiple generations per<br />

year. This probably typifies the environment under which psyllids orig<strong>in</strong>ally<br />

radiated. This cont<strong>in</strong>uous multivolt<strong>in</strong>e life <strong>cycle</strong> – appropriate to a climatically<br />

benign environment – has, however, subsequently undergone considerable modification.<br />

Psyllids have adapted to exploit a range of host <strong>plant</strong>s that have themselves,<br />

over evolutionary time, diversified their physiognomy, physiology <strong>and</strong> phenology as<br />

they adapted to vary<strong>in</strong>g environmental conditions with<strong>in</strong> widely different major<br />

climatic zones. Such evolution is driven by two overrid<strong>in</strong>g variables, temperature <strong>and</strong><br />

precipitation, which vary <strong>in</strong> response to site latitude, altitude <strong>and</strong> cont<strong>in</strong>entality.<br />

Host <strong>plant</strong>s have also undergone concomitant chemical evolution <strong>and</strong> <strong>adaptation</strong><br />

dur<strong>in</strong>g which their unique chemistry, <strong>in</strong> particular their complement of characteristic<br />

secondary compounds, has evolved. This unique chemistry is thought to form the<br />

basis for host selection <strong>and</strong> host fidelity <strong>in</strong> the psyllids.<br />

In the only detailed study of psyllid <strong>plant</strong> coevolution, <strong>in</strong>volv<strong>in</strong>g host-specific<br />

legume feed<strong>in</strong>g psyllids on the Canary Isl<strong>and</strong>s, .60% of host associations resulted<br />

from phylogenetically conserved host switch<strong>in</strong>g among related legumes: strict<br />

cospeciation was only evident among more recent psyllid–host associations (Percy<br />

2003a, 2003b; Percy et al. 2004). Thus, while precise evolutionary track<strong>in</strong>g of host<br />

<strong>plant</strong>s may not always have occurred, related groups of psyllids tend usually to be<br />

typically associated with related host-<strong>plant</strong> taxa <strong>and</strong> <strong>in</strong>dividual psyllid species, with a<br />

few notable exceptions, display a high degree of host specificity (Hodk<strong>in</strong>son 1974,<br />

1986b; van Kl<strong>in</strong>ken 2000). The exceptions are usually north temperate multivolt<strong>in</strong>e<br />

pest species such as Bactericera nigricornis, B. trigonica Hodk<strong>in</strong>son <strong>and</strong> B. cockerelli<br />

feed<strong>in</strong>g variously on a range of host-<strong>plant</strong> genera with<strong>in</strong> the Solanaceae,<br />

Umbelliferae <strong>and</strong> Cruciferae (Pletsch 1947; Wallis 1955; Hodk<strong>in</strong>son 1981). Some


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 67<br />

species that were <strong>in</strong>itially thought to be polyphagous, such as the univolt<strong>in</strong>e Trioza<br />

rotundata <strong>in</strong> Europe (on Stellaria (Caryophyllaceae), Saxifraga (Saxifragaceae) <strong>and</strong><br />

Cardam<strong>in</strong>e (Cruciferae), (Conci <strong>and</strong> Taman<strong>in</strong>i 1987, 1991)) have subsequently been<br />

shown to be complexes of species, each with a narrow host range (Burckhardt <strong>and</strong><br />

Lauterer 2002).<br />

Many psyllids form galls on their host <strong>plant</strong>. These may <strong>in</strong>clude simple<br />

irregular distortions of the leaf or shoot, through leaf pit galls or roll leaf galls to<br />

complex enclosed gall structures on leaves, shoots, flowers rootlets <strong>and</strong> stems.<br />

Detailed <strong>in</strong>formation on gall formation <strong>and</strong> the morphological <strong>adaptation</strong>s for<br />

liv<strong>in</strong>g <strong>in</strong> different types of galls is reviewed by Hodk<strong>in</strong>son (1984) <strong>and</strong> Burckhardt<br />

(2005b). This study avoids detailed description of gall formation <strong>and</strong> focuses,<br />

where appropriate, on the adaptive significance of galls with<strong>in</strong> <strong>in</strong>dividual psyllid<br />

life <strong>cycle</strong>s.<br />

The paper <strong>in</strong>itially considers the important constra<strong>in</strong>ts, <strong>adaptation</strong>s <strong>and</strong><br />

modifications of psyllid biology that have shaped their life <strong>cycle</strong>s. It analyzes how<br />

these life <strong>cycle</strong> elements <strong>and</strong> <strong>adaptation</strong>s have been assembled <strong>and</strong> comb<strong>in</strong>ed to<br />

produce the wide range of life histories we observe among the world’s psyllid fauna<br />

today. The relative significance of phylogeny <strong>and</strong> environment are assessed as<br />

predictors of psyllid life histories.<br />

Important elements of psyllid life histories<br />

Development rate <strong>and</strong> volt<strong>in</strong>ism<br />

Ambient temperature is a major determ<strong>in</strong>ant of egg <strong>and</strong> larval development rates <strong>in</strong><br />

non-diapaus<strong>in</strong>g psyllids <strong>and</strong>, as such, governs the potential number of generations<br />

per annum (volt<strong>in</strong>ism). The slowest development rate recorded is for Stroph<strong>in</strong>gia<br />

ericae on Calluna at high elevation, which, <strong>in</strong>clud<strong>in</strong>g two periods of w<strong>in</strong>ter diapause,<br />

takes 2 years to complete one generation, (Hodk<strong>in</strong>son 1973b). By contrast,<br />

multivolt<strong>in</strong>e tropical/subtropical species such as Heteropsylla cubana, Diaphor<strong>in</strong>a<br />

citri, Trioza erytreae <strong>and</strong> Trioza magnicauda, with free-runn<strong>in</strong>g life <strong>cycle</strong>s, may<br />

complete between 8 <strong>and</strong> 16 generations per annum (Table 1). Development rates <strong>and</strong><br />

resultant generation times may, however, differ between seasons, depend<strong>in</strong>g on<br />

vary<strong>in</strong>g ambient temperatures as <strong>in</strong> Phytolyma fusca on Milicia, Ctenaryta<strong>in</strong>a<br />

spatulata on Eucalyptus <strong>and</strong> Diaphor<strong>in</strong>a citri on Citrus (Ledoux 1955; Bigornia <strong>and</strong><br />

Obana 1974; Shahid <strong>and</strong> Khan 1976; Perez Otero et al. 2005). Many temperate<br />

species are univolt<strong>in</strong>e, with a relatively short development period compressed with<strong>in</strong><br />

<strong>and</strong> synchronized with the early grow<strong>in</strong>g season of the host <strong>plant</strong> (Table 1). Arctic<br />

species, <strong>in</strong>clud<strong>in</strong>g many Cacopsylla, Psylla <strong>and</strong> Bactericera species, despite their<br />

<strong>adaptation</strong>s to harsher climates, almost <strong>in</strong>variably show a similar trend to<br />

univolt<strong>in</strong>ism (Table 1) (Hodk<strong>in</strong>son et al. 1979; Hodk<strong>in</strong>son <strong>and</strong> Bird <strong>in</strong> press).<br />

Among multivolt<strong>in</strong>e temperate species such as Trioza urticae on Urtica, various<br />

Cacopsylla spp. on Pyrus <strong>and</strong> Agonoscena cisti on Pistacia the number of generations<br />

per annum rarely exceeds six, <strong>and</strong> is usually no more than than three to four (Onillon<br />

1969; An et al. 1996; Lauterer 1998; Souliotis <strong>and</strong> Tsourgianni 2000). Some widely<br />

distributed species, such as Trioza c<strong>in</strong>namomi on C<strong>in</strong>namomum are univolt<strong>in</strong>e <strong>in</strong> the<br />

cooler parts of their range but become multivolt<strong>in</strong>e elsewhere (Miyatake 1969;<br />

Rajapakse <strong>and</strong> Kulasekera 1982). Stroph<strong>in</strong>gia ericae, cited previously, becomes unirather<br />

than semivolt<strong>in</strong>e at lower warmer altitudes (Hodk<strong>in</strong>son 1973b).


68 I.D. Hodk<strong>in</strong>son<br />

Table 1. <strong>Life</strong> history characteristics of the world Psylloidea. The psyllid classification follows White <strong>and</strong> Hodk<strong>in</strong>son (1985) updated to <strong>in</strong>clude recent<br />

changes. Where subfamilies comprise of a s<strong>in</strong>gle tribe the subfamily name is given. Note: abbreviations: climatic zone: TrM, tropical moist; TrD, tropical<br />

dry; TrS, tropical seasonal; M, Mediterranean; TeM, temperate moist; TeD, temperate dry; B, boreal; <strong>plant</strong> functional type of Raunkiær, based on<br />

overw<strong>in</strong>ter<strong>in</strong>g strategy: P,Phanaerophyte (tall trees <strong>and</strong> shrubs, overw<strong>in</strong>ter<strong>in</strong>g buds above soil surface); C, Chamaephyte (low grow<strong>in</strong>g or prostrate dwarf<br />

shrubs, overw<strong>in</strong>ter<strong>in</strong>g buds ,25 cm above soil surface); H, Hemicryptophyte (overw<strong>in</strong>ter<strong>in</strong>g bud at soil surface); G, Geophyte (overw<strong>in</strong>ter<strong>in</strong>g bud below<br />

soil surface); He, Helophyte (marsh <strong>plant</strong>s); T, Therophyte (overw<strong>in</strong>ter<strong>in</strong>g as seed); Par, parasitic on other <strong>plant</strong>s; d, deciduous; e, evergreen; s,<br />

semideciduous; overw<strong>in</strong>ter<strong>in</strong>g stage: E, egg; L, larva; A, adult; overw<strong>in</strong>ter<strong>in</strong>g site: on the host <strong>plant</strong>: T, trunk/stem; S, shoot; L, leaf; R, roots; B, buds;<br />

elsewhere: C, conifers/evergreen shrubs; LL, leaf litter; volt<strong>in</strong>ism: M, multiple generations per year, number not fully determ<strong>in</strong>ed, otherwise number of<br />

generations per annum stated; feed<strong>in</strong>g site: S, shoot apex; L, exp<strong>and</strong>ed leaf; F, flower; St, stem; R, roots; B, buds; gall type: D, general distortion of leaf<br />

<strong>and</strong>/or shoot; P, pit gall on leaf; R, roll leaf gall; Ro, root gall; Lf, leaf-fold gall; F, flower gall; El, enclosed leaf gall; Es, enclosed stem gall; Eb, enclosed<br />

bud gall; lerp formation <strong>in</strong>dicated by (X).<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

S Calluna Hodk<strong>in</strong>son (1973a,<br />

1973b), Park<strong>in</strong>son <strong>and</strong><br />

Whittaker (1975),<br />

Lauterer (1976),<br />

Whittaker (1985), Miles<br />

et al. (1997, 1998),<br />

Hodk<strong>in</strong>son et al. (1999),<br />

Butterfield et al. (2001)<br />

TeM Pe/C L S 1 or<br />

0.5<br />

Psyllidae<br />

Stroph<strong>in</strong>gi<strong>in</strong>ae Stroph<strong>in</strong>gia ericae<br />

(Curtis)<br />

TeM/M Pe/C L S 1 S Erica Rapisarda (1990a),<br />

Hodk<strong>in</strong>son et al. (1999)<br />

S. c<strong>in</strong>ereae<br />

Hodk<strong>in</strong>son


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 69<br />

Livi<strong>in</strong>ae Livia crefeldensis TeM H A S 1 S D Carex Ossiannilsson (1992)<br />

M<strong>in</strong>k<br />

L. junci (Schrank) TeM H A S 1+ S D Juncus Verrier (1929), Heslop-<br />

Harrison (1949b),<br />

Schmidt (1966),<br />

Gegechkori (1984)<br />

L. maculipennis TeM H A C 1? S D Juncus McAtee (1915), Weiss <strong>and</strong><br />

(Fitch)<br />

West (1922), Heslop-<br />

Harrison (1949b)<br />

L. mediterranea M/TeD H A C 1 S Juncus Gegechkori (1984)<br />

Log<strong>in</strong>ova<br />

Aphalar<strong>in</strong>ae<br />

Phytolym<strong>in</strong>i Phytolyma fusca TrS Ps ELA S M S/L El Milicia Vosseler (1906), White<br />

Alibert<br />

(1966, 1967), Ledoux<br />

(1955)<br />

P. lata (Walker) TrS Ps ELA S M S/L El Milicia White (1966, 1967),<br />

Cobb<strong>in</strong>ah (1986)<br />

Gyropsyll<strong>in</strong>i Gyropsylla ilicis TrS Pe A S 1 L R Ilex Mead (1983)<br />

(Ashmead)<br />

G. spegazz<strong>in</strong>iana TeM Pe E S 1 L R Ilex Brèthes (1921), Leite <strong>and</strong><br />

(Lizer)<br />

Zanol (2001)


70 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Aphalar<strong>in</strong>i Aphalara aff<strong>in</strong>is TeM H A C 1? L Stellaria Ossiannilsson (1992)<br />

(Zetterstedt)<br />

A. avicularis TeM H A C/L 2+ L P Polygonum Lauterer (1991),<br />

Ossiannilsson<br />

Ossiannilsson (1992)<br />

A. borealis Heslop- TeM H A C 1 Polygonum Lauterer (1979), Conci<br />

Harrison<br />

et al. (1993)<br />

A. calthae (L.) TeM He A C 1 S/L/F Caltha Ossiannilsson (1992)<br />

A. crispicola TeM H A C ? L P Rumex Lauterer (1982)<br />

Ossiannilsson<br />

A. exilis (Weber TeM H A C/L 1 S Rumex Lauterer (1976),<br />

<strong>and</strong> Mohr)<br />

Gegechkori (1984),<br />

Ossiannilsson (1992)<br />

A. freji Burckhardt TeM H A C 1–2 S Polygonum Gegechkori (1984),<br />

<strong>and</strong> Lauterer<br />

Lauterer (1991),<br />

Ossiannilsson (1992),<br />

Conci et al. (1993) (all<br />

as A. polygoni),<br />

Burckhardt <strong>and</strong><br />

Lauterer (1997)<br />

A. longicaudata TeM H A C/L 1 S Polygonum Lauterer (1976)<br />

Schaefer


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TeM H A C 1 L Polygonum Gegechkori (1984), Conci<br />

et al. (1993)<br />

TeD H A ? 1 ? Rumex Gegechkori (1984)<br />

Aphalar<strong>in</strong>i A. maculipennis<br />

Löw<br />

A. nigrimaculosa<br />

Gegechkori<br />

A. polygoni<br />

Foerster<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

TeM H A C 2 L Rumex Lauterer (1982),<br />

Gegechkori (1984),<br />

Ossiannilsson (1992)<br />

(all as A. rumicicola)<br />

Burckhardt <strong>and</strong><br />

Lauterer (1997)<br />

TeM H L R? 1 S Achillea Conci et al. (1993)<br />

Journal of Natural History 71<br />

TeM H L S 1 S Senecio Lauterer <strong>and</strong> Burckhardt<br />

(2004)<br />

Craspedolepta<br />

bulgarica<br />

(Klimaszewski)<br />

C. campestris<br />

Lauterer <strong>and</strong><br />

Burckhardt<br />

C. conspersa (Löw) TeM H L R? 1 S Artemisia Conci et al. (1993)<br />

C. crispata Lauterer TeM H L S 1 S Senecio Lauterer <strong>and</strong> Burckhardt<br />

<strong>and</strong> Burckhardt<br />

(2004)<br />

C. eas (McAtee) TeD H L S 1 St Phlox Wheeler (1994)<br />

C. flavipennis TeM H L S 1 S Leontodon Lauterer <strong>and</strong> Burckhardt<br />

(Foerster)<br />

(2004)


72 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TeM H L R? 1 S Artemisia Conci et al. (1993),<br />

Hodk<strong>in</strong>son<br />

(unpublished)<br />

TeM/B H L R 1 S Chamerion Lal (1934), Sampo (1975),<br />

Lauterer (1993a), Bird<br />

<strong>and</strong> Hodk<strong>in</strong>son (1999,<br />

2005), Hodk<strong>in</strong>son <strong>and</strong><br />

Bird (2006b)<br />

TeM H L R 1 L Achillea Lauterer (1991),<br />

Hodk<strong>in</strong>son<br />

(unpublished)<br />

Aphalar<strong>in</strong>i C. malachitica<br />

(Dahlbom)<br />

C. nebulosa<br />

(Zetterstedt)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

C. nervosa<br />

(Foerster)<br />

C. omissa Wagner TeM H L R 1? S Artemisia Lauterer (1991)<br />

C. sonchi (Foerster) TeM H L S 1? S Leontodon Lauterer <strong>and</strong> Burckhardt<br />

(2004)<br />

C. schwarzi B H L R? 1 S Chamerion Hodk<strong>in</strong>son <strong>and</strong> Bird<br />

(Ashmead)<br />

(1998, unpublished)<br />

C subpunctata TeM H L R 1 R/S Ro Chamerion Lauterer <strong>and</strong> Baudys<br />

(Foerster)<br />

(1968), Bird <strong>and</strong><br />

Hodk<strong>in</strong>son (1999,<br />

2005), Hodk<strong>in</strong>son <strong>and</strong><br />

Bird (2006b)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Aphalar<strong>in</strong>i C. veaziei (Patch) TeM/TeD H L S 1 S Solidago Journet (1984),<br />

Hodk<strong>in</strong>son<br />

(unpublished)<br />

M Th EL S 1 S Salicornia, Conci et al. (1993)<br />

Suaeda<br />

Salsola,<br />

Petrosimonia<br />

M Pe EL S 1 S Suaeda Conci et al. (1993)<br />

Rhodochlanis<br />

bicolor (Scott)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

R. salsolae<br />

(Lethierry)<br />

Rh<strong>in</strong>ocol<strong>in</strong>ae<br />

Rh<strong>in</strong>ocol<strong>in</strong>i Agonoscena<br />

cisti (Puton)<br />

Journal of Natural History 73<br />

M Pe A L 5–6 L Pistacia Lauterer et al. (1998),<br />

Souliotis <strong>and</strong><br />

Tsourgianni (2000)<br />

TeD Pe A T 2–5 L Pistacia Tokmakoglu (1973),<br />

Mohammed <strong>and</strong> Sheet<br />

(1989) (as targionii),<br />

Souliotis <strong>and</strong><br />

Tsourgianni (2000),<br />

Mehrnejad (2002),<br />

Mehrnejad <strong>and</strong><br />

Copl<strong>and</strong> (2005, 2006a,<br />

2006b)<br />

M Pe L L 3 L Ruta Heeger (1856), Douglas<br />

(1878), Boselli (1930),<br />

Ramirez Gomez (1960)<br />

A. pistaceae<br />

Burckhardt<br />

<strong>and</strong> Lauterer<br />

A. succ<strong>in</strong>cta (De<br />

Geer)


Table 1. (Cont<strong>in</strong>ued.)<br />

74 I.D. Hodk<strong>in</strong>son<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

M Pe A S M S Pistacia Davatchi (1958), Conci<br />

et al. (1993)<br />

TeM Pd E S 1 S Acer Löw (1880), Gegechkori<br />

(1984), Lauterer (1991),<br />

Rapisarda <strong>and</strong> Belcari<br />

(1999)<br />

M Pd EN S 1 S Acer Conci et al. (1993)<br />

Rh<strong>in</strong>ocol<strong>in</strong>i A. targionii<br />

Lichtenste<strong>in</strong><br />

Rh<strong>in</strong>ocola aceris<br />

(Foerster)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

TeD Pe L S 1 S Calligonum Log<strong>in</strong>ova (1970, 1976)<br />

R. fusca<br />

Burckhardt<br />

Acaerus calligoni<br />

(Baeva)<br />

A. dem<strong>in</strong>utus<br />

(Log<strong>in</strong>ova)<br />

A. luridus<br />

(Log<strong>in</strong>ova)<br />

A. memoratus<br />

(Log<strong>in</strong>ova)<br />

A. tumidulus<br />

(Log<strong>in</strong>ova)<br />

A. turkistanika<br />

(Löw)<br />

Pachypsylloides<br />

aemulus<br />

Log<strong>in</strong>ova<br />

Pachypsylloid<strong>in</strong>i<br />

TeD Pe L S 1 S Calligonum Log<strong>in</strong>ova (1970, 1976)<br />

TeD Pe L S 1 S Calligonum Log<strong>in</strong>ova (1970, 1976)<br />

TeD Pe L S 1 S Calligonum Log<strong>in</strong>ova (1970, 1976)<br />

TeD Pe L S 1 S Calligonum Log<strong>in</strong>ova (1970, 1976)<br />

TeD Pe L S 1 S Calligonum Log<strong>in</strong>ova (1970, 1976)<br />

TeD Pe L S .1 S Es Calligonum Log<strong>in</strong>ova (1970)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TeD Pe L S .1 S Es Calligonum Log<strong>in</strong>ova (1970)<br />

TeD Pe L S .1 S Es Calligonum Log<strong>in</strong>ova (1970)<br />

TeD Pe L S .1 S Es Calligonum Log<strong>in</strong>ova (1970)<br />

TeD Pe L S .1 S Es Calligonum Log<strong>in</strong>ova (1970)<br />

TeD Pe L S .1 S Es Calligonum Log<strong>in</strong>ova (1970)<br />

Pachypsy- P. argutus<br />

lloid<strong>in</strong>i Log<strong>in</strong>ova<br />

P. errator<br />

Log<strong>in</strong>ova<br />

P. patulus<br />

Log<strong>in</strong>ova<br />

P. pompatus<br />

Log<strong>in</strong>ova<br />

P. reverendus<br />

Log<strong>in</strong>ova<br />

Paurocephal<strong>in</strong>ae Camarotoscena<br />

speciosa (Flor)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 75<br />

M/TeD Pd A C 2? L R Populus Log<strong>in</strong>ova <strong>and</strong> Parfentiev<br />

(1958), Gegechkori<br />

(1984), Lauterer<br />

(1993b), Conci et al.<br />

(1993)<br />

TrM Pe ELA L C S/L T Morus Hsieh <strong>and</strong> Chen (1977)<br />

Paurocephala<br />

psylloptera<br />

Crawford<br />

P. russellae Mathur TrM Pe L L 7 L P Kydia Mathur (1935, 1975)<br />

Togepsyll<strong>in</strong>ae Togepsylla TeM Pe A C 1 L P L<strong>in</strong>dera Miyatake (1970)<br />

matsumurana<br />

Kuwayama


76 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TrM Ps ELA S C S Triplochiton Kudler (1968), Osisanya<br />

(1974a, 1974b)<br />

TrM Ps ELA S C S Triplochiton Osisanya (1974a, 1974b)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

TrM Pe ELA S C S Miconia Brown <strong>and</strong> Hodk<strong>in</strong>son<br />

(1988, unpublished)<br />

TrM Pe ELA S C S Miconia Burckhardt et al. (2005)<br />

TrM Pe ELA L C L Luehea Brown <strong>and</strong> Hodk<strong>in</strong>son<br />

(1988, unpublished)<br />

TrM Pe ELA S C S Conostegia Conconi (1973)<br />

TrM Pe ELA C L Ric<strong>in</strong>odendron Aléné et al. (2005a, 2005b)<br />

Euphyllur<strong>in</strong>ae<br />

Diclidophlebi<strong>in</strong>i Diclidophlebia<br />

eastopi<br />

Vondracek<br />

D. harrisoni<br />

Ossisanya<br />

D. longitarsata<br />

(Brown <strong>and</strong><br />

Hodk<strong>in</strong>son)<br />

D. lucens<br />

(Burckhardt<br />

et al.)<br />

D. nebulosa<br />

(Brown <strong>and</strong><br />

Hodk<strong>in</strong>son)<br />

D. tuxtlaensis<br />

(Conconi)<br />

D. xuani<br />

Messi et al.


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

M Pe A S 3+ S Olea Silvestri (1934), Ramirez<br />

Gomez (1958),<br />

Rapisarda (1990a),<br />

Conci et al. (1993), Del<br />

Bene et al. (1997),<br />

Arambourg <strong>and</strong><br />

Chermiti (1986),<br />

Tzanakakis (2003,<br />

2006)<br />

TrD Pe A S 1+ S Olea Thakur et al. (1989)<br />

Euphyllur<strong>in</strong>i Euphyllura<br />

oliv<strong>in</strong>a (Costa)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 77<br />

M Pe A S 1 S Olea, Phillyrea,<br />

Osmanthus<br />

E. pakistanica<br />

Log<strong>in</strong>ova<br />

E. phillyreae<br />

Foerster<br />

Loureiro Ferreira (1946),<br />

Ramirez Gomez (1958),<br />

Prophetou <strong>and</strong><br />

Tzanakis (1977,1986),<br />

Stavraki (1980),<br />

Lauterer et al. (1986),<br />

Rapisarda (1991),<br />

Conci et al. (1993),<br />

Prophetou (1993,1997),<br />

Del Bene et al. (1997),<br />

Tzanakakis (2003,<br />

2006)


78 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

M Pe A S 2–3 S Olea Mustafa (1984, 1989a,<br />

1989b), Mustafa <strong>and</strong><br />

Najar (1985)<br />

TeM Ps A C/L 1 S Ligustrum Konovalova (1976)<br />

Euphyllur<strong>in</strong>i E. stram<strong>in</strong>ea<br />

Log<strong>in</strong>ova<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

TeM/M Pe EL S ? S/St X Arbutus Ferris <strong>and</strong> Hyatt (1923)<br />

Pe ELA S up<br />

to 8<br />

TrS/M/<br />

TeM<br />

Ligustr<strong>in</strong>ia<br />

herculeana<br />

Log<strong>in</strong>ova<br />

Neophyllura arbuti<br />

(Schwarz)<br />

Ctenaryta<strong>in</strong><strong>in</strong>i Ctenaryta<strong>in</strong>a<br />

eucalypti (Ferris<br />

<strong>and</strong> Klyver)<br />

S Eucalyptus Fox Wilson (1924),<br />

Azevedo <strong>and</strong> Figo<br />

(1979), Bertaux et al.<br />

(1996), Malausa <strong>and</strong><br />

Giradet (1997),<br />

Rapisarda (1998),<br />

Hodk<strong>in</strong>son (1999),<br />

Olivares (2000), Purvis<br />

et al. (2002)<br />

TrS/TeM Pe ELA S M S Eucalyptus Hodk<strong>in</strong>son (2007 <strong>and</strong><br />

unpublished)<br />

C. peregr<strong>in</strong>a<br />

Hodk<strong>in</strong>son


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TrS/M Pe ELA S M S Eucalyptus Mansilla et al. (2004),<br />

Costanzi et al. (2003),<br />

Perez Otero et al. (2005)<br />

TeM Pe ELA S 3 S Boronia Mensah <strong>and</strong> Madden<br />

(1992a, 1992b, 1993a,<br />

1993b, 1994)<br />

Ctenaryta<strong>in</strong><strong>in</strong>i C. spatulata<br />

Taylor<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

C. thysanura<br />

(Ferris <strong>and</strong><br />

Klyver)<br />

Diaphor<strong>in</strong><strong>in</strong>ae<br />

Diaphor<strong>in</strong><strong>in</strong>i Diaphor<strong>in</strong>a citri<br />

Kuwayama<br />

Journal of Natural History 79<br />

TrS Pe ELA S 8–16 S Citrus Hussa<strong>in</strong> <strong>and</strong> Nath (1927),<br />

Atwal (1962), Mangat<br />

(1966), Catl<strong>in</strong>g (1970),<br />

Atwal et al. (1970),<br />

P<strong>and</strong>e (1971), Bigornia<br />

<strong>and</strong> Obana (1974),<br />

Shahid <strong>and</strong> Khan<br />

(1976), Mead (1977),<br />

Lakra et al. (1983), Tsai<br />

<strong>and</strong> Liu (2000), Liu <strong>and</strong><br />

Tsai (2000), Nakata<br />

(2006)


80 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Diaphor<strong>in</strong><strong>in</strong>i D. communis TrS Pe A L 9 S Murraya Beeson (1941), Mathur<br />

Mathur<br />

(1975)<br />

D. lycii Log<strong>in</strong>ova M/TeD Pe ELA S 5 Lycium Boselli (1960) (as putoni),<br />

Rapisarda (1990a)<br />

Psyllopse<strong>in</strong>i Psyllopsis TeM Pd E S 1–2 L R Frax<strong>in</strong>us Lal (1934), Gegechkori<br />

discrepans (Flor)<br />

(1984)<br />

P. dist<strong>in</strong>guenda TeM Pd E S 2 L R Frax<strong>in</strong>us Lauterer (1982), Conci<br />

Edwards<br />

<strong>and</strong> Taman<strong>in</strong>i (1990)<br />

P. frax<strong>in</strong>i (L.) TeM Pd E S 1–2 L R Frax<strong>in</strong>us Heslop-Harrison (1942),<br />

Log<strong>in</strong>ova (1954),<br />

Nguyen (1970b), Conci<br />

<strong>and</strong> Taman<strong>in</strong>i (1990)<br />

P. frax<strong>in</strong>icola TeM Pd E S 1–2 L Frax<strong>in</strong>us Lal (1934), Log<strong>in</strong>va<br />

(Foerster)<br />

(1954), Ramirez Gomez<br />

(1956), Conci <strong>and</strong><br />

Taman<strong>in</strong>i (1990)<br />

P. mach<strong>in</strong>osus M/TeD Pd E S 2 L ? Frax<strong>in</strong>us Log<strong>in</strong>ova (1968), Conci<br />

Log<strong>in</strong>ova<br />

<strong>and</strong> Taman<strong>in</strong>i (1990)<br />

P. meliphila (Löw) M/TeD Pd E S ? L Frax<strong>in</strong>us Rapisarda (1998)<br />

P. narzykulovi TeD Pd E S 2 L Frax<strong>in</strong>us Conci <strong>and</strong> Taman<strong>in</strong>i<br />

Baeva<br />

(1990)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

TeD Pd E S 2 L L Frax<strong>in</strong>us Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(1990)<br />

TeD Pd E S 2 L L Frax<strong>in</strong>us Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(1990)<br />

TrS Pe ELA L ? L El Baccharis Espirito-Santo <strong>and</strong><br />

Wilson Fern<strong>and</strong>ez<br />

(1998, 2002)<br />

TrD/M Ps ELA S M S Acacia Conci et al. (1993),<br />

Rapisarda<br />

(1985,1993a),<br />

Rapisarda <strong>and</strong> Belcari<br />

(1999)<br />

Ps ELA S M S Acacia Palmer <strong>and</strong> Witt (2006)<br />

Psyllopse<strong>in</strong>i P. repens<br />

Log<strong>in</strong>ova<br />

P. securicola<br />

Log<strong>in</strong>ova<br />

Aphalaroid<strong>in</strong>ae Baccharopelma<br />

baccharidis<br />

(Burckhardt)<br />

Acizzi<strong>in</strong>ae Acizzia<br />

acaciaebaileyanae<br />

(Froggatt)<br />

Journal of Natural History 81<br />

A. melanocephala<br />

Burckhardt <strong>and</strong><br />

TrD Ps ELA S M S Acacia Hoffman et al. (1975),<br />

Webb (1977), Webb<br />

<strong>and</strong> Moran (1978)<br />

Mifsud<br />

A. russellae Webb<br />

<strong>and</strong> Moran


82 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Heslop-Harrison (1949a)<br />

(as Neopsyllia <strong>in</strong>dica),<br />

Munro (1965), Koehler<br />

et al. (1966),<br />

Madubunyi (1967),<br />

Madubunyi <strong>and</strong><br />

Koehler (1974), Leeper<br />

<strong>and</strong> Beardsley (1976),<br />

Arzone <strong>and</strong> Vidano<br />

(1985), Rapisarda<br />

(1993a), Rapisarda <strong>and</strong><br />

TrD/M Ps ELA S M S Acacia,<br />

Albizzia<br />

Acizzi<strong>in</strong>ae A. uncatoides<br />

(Ferris <strong>and</strong><br />

Klyver)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Belcari (1999)<br />

TeD Pd A S 1 S Morus Chon (1964), Kuwayama<br />

(1971), Waku <strong>and</strong> Endo<br />

(1987), Arai (1991,<br />

1993)<br />

Anomoneur<strong>in</strong>ae Anomoneura mori<br />

Schwarz


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

S Leucaena Moxon (1984), Chazeau<br />

(1987), Oka <strong>and</strong><br />

Bahgiawati (1988),<br />

S<strong>in</strong>gh (1988), Yasuda<br />

<strong>and</strong> Tsurumachi (1988),<br />

Takara et al. (1990),<br />

Rauf et al. (1990), Patil<br />

et al. (1994), Aust<strong>in</strong><br />

et al. (1996), Ogol <strong>and</strong><br />

Spence (1997), Geiger<br />

<strong>and</strong> Gutierrez (2000)<br />

TrD Ps ELA S M (8–<br />

10)<br />

Ciriacrem<strong>in</strong>ae Heteropsylla<br />

cubana<br />

Crawford<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 83<br />

TrS Ps ELA S ,8 S Mimosa Willson <strong>and</strong> Garcia (1992)<br />

TrS Ps ELA S C S Prosopis Donnelly (2002)<br />

TeM/M Pe A S 2 S Cytisus Watmough (1968a, 1968b)<br />

H. sp<strong>in</strong>ulosa<br />

Muddiman et al.<br />

H. texana<br />

Crawford<br />

Aryta<strong>in</strong><strong>in</strong>ae Aryta<strong>in</strong>a genistae<br />

(Latreille)<br />

A. africana<br />

Heslop-Harrison<br />

M Pe E S 2 S Adenocarpus Rapisarda (1988) (as<br />

maculata), Rapisarda<br />

(1990a), Conci et al.<br />

(1993)


84 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

M Pe E S 1 S Genista Rapisarda (1989c), Conci<br />

et al. (1993)<br />

Aryta<strong>in</strong><strong>in</strong>ae Aryta<strong>in</strong>illa<br />

barbagalloi<br />

Rapisarda<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

A. cytisi (Puton) M Pe E ST 1 S Genista Rapisarda (1988, 1990a,<br />

Calicotome 1990b), Conci et al.<br />

(1993)<br />

A. spartiicola M Pe E S 1 S Cytisus Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(Sˇulc)<br />

(1985a), Conci et al.<br />

(1993)<br />

A. spartiophila M Pe E S 1 S Cytisus Heslop-Harrison (1951),<br />

(Foerster)<br />

Watmough (1968a,<br />

1968b)<br />

Cyamophila TeD C A ? 1 S Astragalus Gegechkori (1984)<br />

astragalicola<br />

Gegechkori<br />

C. caraganae TeD H A ? 1 S Caragana Gegechkori (1984)<br />

(Log<strong>in</strong>ova)<br />

C. caucasica TeD H A ? 1 S Glycyrrhiza Gegechkori (1984)<br />

(Baeva)<br />

C. coluteae Baeva TeD C A ? 2 S Colutea Gegechkori (1984)<br />

C. dicora Log<strong>in</strong>ova TeD C A S 1 S Astragalus Naeem <strong>and</strong> Behdad (1988)<br />

C. glycyrrhizae TeD/M H/C A ? 2–3 S Glycyrrhiza Gegechkori (1984)<br />

(Becker)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TeD/M H A ? 2 S Medicago Gegechkori (1984)<br />

TeD H/C A ? 1 S Hedysarum Gegechkori (1984)<br />

TeM H A C 1 S Anthyllis Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(1986a, 1989b), Conci<br />

et al. (1993)<br />

M Pe EL S 1 S Genista Conci et al. (1993)<br />

Aryta<strong>in</strong><strong>in</strong>ae C. medicag<strong>in</strong>is<br />

(Andrianova)<br />

C. megrelica<br />

(Gegechkori)<br />

C. prohaskai<br />

(Priesner)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Livilla bimaculata<br />

Hodk<strong>in</strong>son <strong>and</strong><br />

Hollis<br />

Journal of Natural History 85<br />

L. cognata (Löw) TeM Pe E/L? S 1 S Chamaecytisu, Conci et al. (1993)<br />

Lemboptropis<br />

L. horvathi (Scott) M Pe EL S 1 S Genista Conci et al. (1993)<br />

L. magna M Pe L S 2 S Genista Rapisarda (1988, 1990b),<br />

Hodk<strong>in</strong>son<br />

Conci et al. (1993)<br />

<strong>and</strong> Hollis<br />

L. pyrenaea TeM Pe AE S 1 S Genista Conci et al. (1993)<br />

(M<strong>in</strong>k)<br />

L. retamae M Pe E/L S 1 S Retama Rapisarda (1991, 1992),<br />

(Puton)<br />

Conci et al. (1993)<br />

L. spectabilis TeM/M Pe A/E S 1 S Spartium Rapisarda (1988, 1992),<br />

(Flor)<br />

Conci et al. (1993)


86 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Aryta<strong>in</strong><strong>in</strong>ae L. variegata TeM/M Pe E/L? S 1 S Laburnum Conci et al. (1993)<br />

(Löw)<br />

L. vic<strong>in</strong>a (Löw) TeM/M Pe A S 1 S Cytisus Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(1988), Conci et al.<br />

(1993)<br />

L. vittipennella TeM/M Pe L S 1 S Genista Conci et al. (1993)<br />

(Reuter)<br />

Psyll<strong>in</strong>ae Psylla alni (L.) TeM Pd E S 1 S Alnus Lal (1934), Lauterer<br />

(1976), Gegechkori<br />

(1984), Ossiannilsson<br />

(1992)<br />

P. alp<strong>in</strong>a Foerster TeM Pd E S 1 S Alnus Conci et al. (1993)<br />

P. betulae (L.) TeM Pd E S 1 S Betula Gegechkori <strong>and</strong><br />

Djibladzne (1976),<br />

Gegechkori (1984),<br />

Ossiannilsson (1992)<br />

P. betulaenanae B Pd E S 1 S Betula Ossiannilsson (1992),<br />

Ossianilsson<br />

Hodk<strong>in</strong>son <strong>and</strong> Bird (In<br />

press)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 87<br />

Psyll<strong>in</strong>ae P. borealis B Pd E S 1 S Alnus Hodk<strong>in</strong>son <strong>and</strong> Bird (In<br />

(Horvath)<br />

press)<br />

P. cordata M Pd E S 1 S Alnus Chiara et al. (1990), Conci<br />

Taman<strong>in</strong>i<br />

et al. (1993), Rapisarda<br />

<strong>and</strong> Belcari (1999)<br />

P. floccosa Patch TeM Pd E S 1 S Alnus Patch (1909)<br />

P. fusca<br />

TeM Pd E S 1 S Alnus Lauterer (1998),<br />

(Zetterstedt)<br />

Ossiannilsson (1992),<br />

Conci et al. (1993)<br />

P. negund<strong>in</strong>is TeM Pd E S 1 S Acer Mally (1894)<br />

Mally<br />

P. trimaculata TeM Pd E S 1 S Prunus Osborn (1922)<br />

Crawford<br />

Baeopelma M Pd E S 1 S Ostrya Rapisarda (1990b), Conci<br />

colorata (Löw)<br />

et al. (1993)<br />

B. foersteri (Flor) TeM Pd E S 1 S Alnus Lal (1934), Lauterer<br />

(1976), Gegechkori<br />

(1984), Ossiannilsson<br />

(1992), Conci et al.<br />

(1993)


88 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TeM/M Pe EL S 1 L D Buxus Lal (1934), Wilcke (1941),<br />

Nguyen<br />

(1965,1968,1969),<br />

Sampo (1975),<br />

Psyll<strong>in</strong>ae Asphagidella buxi<br />

(L.)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Malenovsky (1999)<br />

Spanioneura TeM/TeD Pe EA? S 1 or L Buxus Ramirez Gomez (1956),<br />

fonscolombei<br />

M?<br />

Conci et al. (1993)<br />

(Foerster)<br />

(literature disagrees)<br />

S. caucasica TeD Pe E S 1 ? Buxus Gegechkori <strong>and</strong><br />

Log<strong>in</strong>ova<br />

Djibladzne (1976)<br />

Cacopsylla sensu stricto<br />

Cacopsylla mali TeM Pd E S 1 S Malus Britta<strong>in</strong> (1922a, 1922b,<br />

(Schmidberger)<br />

1923a, 1923b), Speyer<br />

(1929), Przybylski<br />

(1970), Jonsson (1983),<br />

Gegechkori (1984),<br />

Lauterer (1999)<br />

C. peregr<strong>in</strong>a TeM Pd E S 1 S Crataegus Missonnier (1956), Sutton<br />

(Foerster)<br />

(1983, 1984),<br />

Gegechkori (1984)<br />

C. sorbi (L.) TeM Pd E S 1 S Sorbus Conci et al. (1993)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Psyll<strong>in</strong>ae C. ulmi (Foerster) TeM Pd E S 1 S Ulmus Gegechkori (1984),<br />

Lauterer (1999),<br />

Ossiannilsson (1992),<br />

Conci et al. (1993)<br />

Cacopsylla (Hepatopsylla) on Salix<br />

C. ambigua TeM Pd E S 1–2 S Salix Lal (1934), Lauterer<br />

(Foerster)<br />

(1976, 1999)<br />

C. brunneipennis TeM/B Pd A L 1 F/S Salix Gegechkori (1984), Hill<br />

(Edwards)<br />

<strong>and</strong> Hodk<strong>in</strong>son (1995),<br />

Lauterer (1999), Hill<br />

et al. (1998)<br />

C. compar TeD Pd A ? 1 ? Salix Gegechkori (1984)<br />

(Log<strong>in</strong>ova)<br />

C. elegantula B Pd A C 1 F/S Salix Ossiannilsson (1992),<br />

(Zetterstedt)<br />

Lauterer (1999)<br />

C. fraterna TeD Pd A C 1 ? Salix Gegechkori (1984)<br />

Journal of Natural History 89<br />

B P/Cd A L 1 F/S Salix Hodk<strong>in</strong>son (1997),<br />

Hodk<strong>in</strong>son <strong>and</strong> Bird (In<br />

press)<br />

TeM Pd E S 1 S Salix Lauterer (1999)<br />

(Gegechkori)<br />

C. groenl<strong>and</strong>ica<br />

(Sˇulc)<br />

C. <strong>in</strong>termedia<br />

(Löw)


Table 1. (Cont<strong>in</strong>ued.)<br />

90 I.D. Hodk<strong>in</strong>son<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Psyll<strong>in</strong>ae C. iteophila (Löw) TeM Pd A C 1 F/S Salix Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(1989a), Conci et al.<br />

(1993)<br />

C. macleani B Pd A L 1 F/S Salix Hodk<strong>in</strong>son et al. (1979)<br />

(Hodk<strong>in</strong>son)<br />

C. memor TeD Pd A ? 1 ? Salix Gegechkori (1984)<br />

TeM Cd A L 1 F/S Salix Gegechkori (1984),<br />

Lauterer (1993c, 1999),<br />

Ossiannilsson (1992),<br />

Hill <strong>and</strong> Hodk<strong>in</strong>son<br />

(1996)<br />

B Pd A C 1 F/S Salix Gegechkori (1984),<br />

Lauterer (1999),<br />

Ossiannilsson (1992)<br />

(Log<strong>in</strong>ova)<br />

C. moscovita<br />

(Andrianova)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

C. nigrita<br />

(Zetterstedt)<br />

C. palmeni (Löw) B Pd/Cd A L 1 F/S Salix Hodk<strong>in</strong>son et al. (1979),<br />

Ossiannilsson (1992),<br />

Hill <strong>and</strong> Hodk<strong>in</strong>son<br />

(1995), Hill et al. (1998)<br />

C. parvipennis TeM Pd/Cd A L 1 F/S Salix Ossiannilsson (1992)<br />

(Löw)<br />

C. phlebophyllae B C A L 1 F/S Salix Hodk<strong>in</strong>son et al. (1979)<br />

(Hodk<strong>in</strong>son)<br />

C. prop<strong>in</strong>qua B Pd A L 1 F/S Salix Ossiannilsson (1992), Hill<br />

(Schaefer)<br />

<strong>and</strong> Hodk<strong>in</strong>son (1995),<br />

Hill et al. (1998)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TeM Pd A C 1 F/S Salix Lauterer (1999),<br />

Ossiannilsson (1992),<br />

Conci et al. (1993)<br />

TeM Pd A C/L 1 F/S Salix Gegechkori (1984), Conci<br />

et al. (1993)<br />

Psyll<strong>in</strong>ae C. pulchra<br />

(Zetterstedt)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 91<br />

C. sa<strong>lice</strong>ti<br />

(Foerster)<br />

C. zaecevi (Sˇulc) B Pd/Cd A L 1 F/S Salix Hodk<strong>in</strong>son et al. (1979),<br />

Ossiannilsson (1992)<br />

Other Cacopsylla (Hepatopsylla)<br />

C. bidens (Sˇulc) TeM Pd A T 4–7 S Pyrus Lauterer (1979),<br />

Gegechkori (1984) (as<br />

C. vasiljevi)<br />

C. corcontum TeM Pd A C 1 S Sorbus Lauterer (1976, 1999),<br />

(Sˇulc)<br />

Ossiannilson (1992)<br />

C. hippophaes TeM/TeD Pd E T 1 S Hippophae Lauterer (1982, 1993a,<br />

(Foerster)<br />

1999), Gegechkori<br />

(1984), Conci et al.<br />

(1993)<br />

C. ledi (Flor) B Pd A ? 1 S Ledum Ossiannilsson (1992)<br />

C. notata (Flor) M Pd A T M S Pyrus Conci et al. (1993)<br />

C. myrtilli B Cd E S 1 S Vacc<strong>in</strong>ium Lauterer (1999),<br />

(Wagner)<br />

Ossiannilsson (1992)


Table 1. (Cont<strong>in</strong>ued.)<br />

92 I.D. Hodk<strong>in</strong>son<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Psyll<strong>in</strong>ae C. pyri (L.) TeM Pd A T 2–8 S Pyrus Wille (1950),<br />

Bonnemaison <strong>and</strong><br />

Missonnier (1955a,<br />

1955b, 1956), Nguyen<br />

(1964, 1967a, 1967b<br />

1970a, 1971, 1972a,<br />

1972b, 1973, 1975),<br />

Wojnarowska<br />

et al. (1960), Nucifora<br />

(1969), Lazarev (1979),<br />

Deronzier (1981, 1984),<br />

Deronzier <strong>and</strong> Atger<br />

(1980), Atger (1982),<br />

Gegechkori (1984),<br />

Rieux <strong>and</strong> d’Arcier<br />

(1990), Lyoussoufi et al.<br />

(1988, 1992, 1994),<br />

Stratopoulou <strong>and</strong><br />

Kapatos (1995a,<br />

1995b), Souliotis <strong>and</strong><br />

Broumas (1998),<br />

Kapatos <strong>and</strong><br />

Stratopoulou (1996,<br />

1999), Schaub et al.<br />

(2005)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TeM Pd A T 3–5 S Pyrus Sl<strong>in</strong>gerl<strong>and</strong> (1892), Ross<br />

(1919), Schaefer (1949),<br />

Siddiqui (1949), Wilde<br />

(1962, 1965), Wilde <strong>and</strong><br />

Watson (1963), Wong<br />

<strong>and</strong> Masden (1967),<br />

Rasmy <strong>and</strong> MacPhee<br />

(1970), Burts (1970),<br />

Oldfield (1970), Radjabi<br />

<strong>and</strong> Behechti (1975),<br />

McMullen <strong>and</strong> Jong<br />

(1972, 1976, 1977), Fye<br />

(1983), Mustafa <strong>and</strong><br />

Hodgson (1984),<br />

Sav<strong>in</strong>elli <strong>and</strong> Tetrault<br />

(1984), Krysan (1990),<br />

Krysan <strong>and</strong> Higbee<br />

(1990), Horton et al.<br />

(1990a, 1990b), Horton,<br />

Higbee, et al. (1994),<br />

Horton et al. (1998), An<br />

et al. (1996)<br />

Psyll<strong>in</strong>ae C. pyricola<br />

(Foerster)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 93


94 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Psyll<strong>in</strong>ae C. rhododendri TeM Pd E S 1 S Rhododendron Conci et al. (1993)<br />

(Puton)<br />

C. viburni (Löw) TeM Pd E S 1 S Viburnum Gegechkori <strong>and</strong><br />

Djibladzne (1976),<br />

Gegechkori (1984),<br />

Lauterer (1999)<br />

C. visci (Curtis) TeM Par on E S 2–3 S Viscum, B<strong>in</strong> (1970), Lauterer<br />

Pd<br />

Loranthus (1999), Hansen <strong>and</strong><br />

Hodk<strong>in</strong>son (2006)<br />

C. zetterstedti TeM/TeD Pd E T 1 S Hippophae Lauterer (1982, 1993a,<br />

(Thomson)<br />

1999), Ossiannilsson<br />

(1992), Conci et al.<br />

(1993)<br />

Cacopsylla (Thamnopsylla)<br />

C. aff<strong>in</strong>is (Löw) TeM Pd A C 1 S Crataegus Lauterer (1982, 1999),<br />

Sutton (1984) (as<br />

subferrug<strong>in</strong>ea)<br />

C. alaterni M Pe ELA S up to S Rhamnus Rapisarda (1989a, 1990a),<br />

(Foerster)<br />

5<br />

Conci et al. (1993)<br />

C. albipes (Flor) TeM Pd A C 1 ? Sorbus Gegechkori (1984), Conci<br />

et al. (1993)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TeM Pd A ? 1–2 S Sorbus Gegechkori (1984),<br />

Lauterer (1993c, 1999),<br />

Conci et al. (1993)<br />

TeD Pd A ? 1 ? Gegechkori (1984)<br />

Psyll<strong>in</strong>ae C. breviantennata<br />

(Flor)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 95<br />

C. cotoneasteris<br />

(Log<strong>in</strong>ova)<br />

C. crataegi TeM Pd A C 1 S Crataegus Ramirez Gomez (1956),<br />

(Schrank)<br />

Nguyen (1963),<br />

Gegechkori (1984),<br />

Ossiannilsson (1992),<br />

Lauterer (1999)<br />

C. eux<strong>in</strong>a M Pd ELA S M S Rhamnus Rapisarda (1989a)<br />

(Log<strong>in</strong>ova)<br />

C. fasciata TeD Pd A C 2 S Spiraea Gegechkori (1984)<br />

(Horvath)<br />

C. <strong>in</strong>certa (Baeva) TeD Pd A C 1 S Rhamnus Gegechkori (1984)<br />

C. limbata TeM Pd A C 1 S Rhamnus Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(Meyer-Dur)<br />

(1982, 1988), Conci<br />

et al. (1993)


96 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Lal (1934), Domenich<strong>in</strong>i<br />

(1967), Lazarev (1972),<br />

Sutton (1983),<br />

Gegechkori (1984),<br />

Lauterer (1999), Conci<br />

et al. (1993), Tedeschi<br />

TeM Pd A C 1 S Crataegus,<br />

Malus<br />

Psyll<strong>in</strong>ae C. melanoneura<br />

(Foerster)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

et al. (2002)<br />

S Myrthus Conci et al. (1993)<br />

C. myrthi (Puton) M Pe ELA S up to<br />

5<br />

C. picta (Foerster) TeM Pd A C 1 S Malus Harisanov (1966b) (as<br />

costalis), Lauterer<br />

(1999)<br />

C. pruni (Scopoli) TeM Pd A C 1 S Prunus Harisanov (1966a),<br />

Gegechkori (1984),<br />

Ossiannilsson (1992),<br />

Lauterer (1999), Conci<br />

et al. (1993), Labonne<br />

<strong>and</strong> Lichou (2004)<br />

C. pulchella (Löw) M Pd A C 1 S Cercis Burckhardt (1999), Conci<br />

et al. (1993), Rapisarda<br />

<strong>and</strong> Belcari (1999)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TeM/M Pd A C 1 S Pyrus Brocher (1926),<br />

Wojnarowska (1962),<br />

Lazarev (1975),<br />

Lauterer (1999),<br />

Ossiannilsson (1992)<br />

TeM Pd A C 1 S Rhamnus Gegechkori (1984),<br />

Lauterer (1999),<br />

Ossiannilsson (1992)<br />

TeD Pd A C 1 ? Ribes Gegechkori (1984)<br />

Psyll<strong>in</strong>ae C. pyrisuga<br />

(Foerster)<br />

C. rhamnicola<br />

(Foerster)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 97<br />

C. ste<strong>in</strong>bergi<br />

(Log<strong>in</strong>ova)<br />

Cacopsylla (Chamaepsylla)<br />

C. hartigii (Flor) TW Pd E S 1 S Betula Gegechkori (1984),<br />

Ossiannilsson (1992),<br />

Hodk<strong>in</strong>son<br />

(unpublished)<br />

Other Miscellaneous ‘Psylla’ spp.<br />

Psylla diospyri TrS Pd E S 2 L R Diospyros Ashmead (1881)<br />

Ashmead<br />

Psylla isitis TrS Pe ELA S C S Indigofera Grove <strong>and</strong> Ghosh (1914),<br />

Buckton<br />

Maxwell-Lefroy (1913),<br />

Mathur (1975)<br />

Psylla nr. simlae TrS Ps ELA S M up S Bauhenia Mathur (1935, 1975)<br />

Crawford<br />

to 11


98 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Spondyliaspididae<br />

Euphaler<strong>in</strong>ae Euphalerus hiuri TeM Pd E T 1 L Lf Caesalp<strong>in</strong>ia Miyatake (1973)<br />

Miyatake<br />

E. nidifex Schwarz TrS Pe ELA L M L X Piscidia Mead (1967), Russell<br />

(1971)<br />

E. ostreoides TrS Pe ELA L M L El Lonchocarpus Ferreira et al. (1990)<br />

Crawford<br />

E. vittatus TrS Pe E S 5 S Cassia Beeson (1941), Mathur<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Crawford<br />

(1935)<br />

Pachypsyll<strong>in</strong>ae Celtisapsis japonica TeM Pd E S 2 S X Celtis Miyatake (1968b, 1980,<br />

(Miyatake)<br />

1994)<br />

C. usabai Miyatake TeM Pd E S 1 S X Celtis Miyatake (1980, 1994)<br />

Pachypsylla TeM Pd L B 1 B/L B/El Celtis Riley (1890), Weiss<br />

celtidisgemma<br />

(1921), Walton (1960)<br />

Riley<br />

P. celtidis<strong>in</strong>ternis TeM Pd A ? 1 B B Celtis Weiss (1921), Walton<br />

Mally<br />

(1944), Smith <strong>and</strong><br />

Taylor (1953)<br />

P. celtidismamma TeM Pd A T 1 L El Celtis Riley (1890), Smith <strong>and</strong><br />

(Fletcher)<br />

Taylor (1953), Heard<br />

<strong>and</strong> Buchanan (1998)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 99<br />

Pachypsyll<strong>in</strong>ae P. celtidisvesicula TeM Pd A T 1 L El Celtis Riley (1890), Smith <strong>and</strong><br />

Riley<br />

Taylor (1953)<br />

P. venusta TeM Pd L L 1 L El Celtis Riley (1890), Smith <strong>and</strong><br />

(Osten-Sacken)<br />

Taylor (1953)<br />

Tetragonocephala TeM Pd A T 1 L X Celtis Riemann (1958)<br />

flava Crawford<br />

Spondyliaspid<strong>in</strong>ae Boreioglycaspis TrS Pe ELA L C L Melaleuca Purcell et al. (1997),<br />

melaleucae Moore<br />

W<strong>in</strong>eriter et al. (2003)<br />

Cardiasp<strong>in</strong>a TrS Pe ELA L 2–3 L X Eucalyptus Clark (1962, 1963a,<br />

albitextura Taylor<br />

1963b), Clark <strong>and</strong><br />

Dallwitz (1975),<br />

Morgan (1984), Collett<br />

(2001)<br />

C. densitexta TrS Pe ELA L 3 L X Eucalyptus White (1968, 1970b,<br />

Taylor<br />

1970c, 1973), Morgan<br />

(1984), Collett (2001)<br />

C. fiscella Taylor TrS Pe ELA L 5 L X Eucalyptus Campbell (1992)<br />

C. maniformis TrS Pe ELA L 4 L X Eucalyptus Campbell (1992)<br />

Taylor<br />

Creiis costatus TrS Pe ELA L 2+ L X Eucalyptus Clark <strong>and</strong> Dallwitz (1975)<br />

Froggatt


Table 1. (Cont<strong>in</strong>ued.)<br />

100 I.D. Hodk<strong>in</strong>son<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Spondyliaspid<strong>in</strong>ae Glycaspis baileyi TrS Pe ELA L 2+ L X Eucalyptus Moore (1961)<br />

Moore<br />

G. brimlecombei TrS Pe ELA L 2+ L X Eucalyptus Clark <strong>and</strong> Dallwitz<br />

Moore<br />

(1975), Morgan (1984),<br />

Brennan, Hrusa et al.<br />

(2001), Brennan <strong>and</strong><br />

We<strong>in</strong>baum (2001a,<br />

2001b, 2001c, 2001d)<br />

G. fuscovena TrS Pe ELA L M L X Eucalyptus Morgan (1984)<br />

Moore<br />

G. prepta Moore TrS Pe ELA L M L X Eucalyptus Clark <strong>and</strong> Dallwitz (1975)<br />

Spondyliapspis TrS Pe ELA L M L X Eucalyptus Solomon (1936)<br />

occidentalis<br />

Solomon<br />

Calophyidae<br />

Apsyll<strong>in</strong>ae Apsylla cistellata TrM Pe L S 1 S Es Mangifera Mathur (1935, 1946),<br />

(Buckton)<br />

Mani (1948), S<strong>in</strong>gh M<br />

(1959), S<strong>in</strong>gh S (1954,<br />

1960), Prasad (1957),<br />

Chaterjee <strong>and</strong> Sebastian<br />

(1965), S<strong>in</strong>gh <strong>and</strong> Misra<br />

(1978), Monobrullah<br />

et al. (1998)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 101<br />

Mastigimat<strong>in</strong>ae Mastigimas ernstii TrM Pe ELA L M L R Cedrela P<strong>in</strong>tera (1982)<br />

(Schwarz)<br />

Mastigimas TrM Pe ELA L M L R Cedrela P<strong>in</strong>tera (1982)<br />

schwarzi<br />

(Tuthill)<br />

Calophy<strong>in</strong>ae Calophya nigra TeM Pd A C 1 S Phellodendron Konovalova (1963),<br />

Kuwayama<br />

Miyatake (1992)<br />

C. nigril<strong>in</strong>eata TrS Pe ELA L M L P Tetragastris Iglesias (1983), Brown <strong>and</strong><br />

Brown <strong>and</strong><br />

Hodk<strong>in</strong>son (1988,<br />

Hodk<strong>in</strong>son<br />

unpublished)<br />

C. rhois (Löw) M/TeD Pd E or S 1 L P/R Cot<strong>in</strong>us Gegechkori (1984), Conci<br />

A<br />

et al. (1996)<br />

C. nigripennis TeM Pd L T 1 L Rhus Weiss <strong>and</strong> Nicolay (1918)<br />

Riley<br />

C. sch<strong>in</strong>i Tuthill TrS/M Pe ELA L M L P Sch<strong>in</strong>us Downer et al. (1988)<br />

C. sh<strong>in</strong>jii Sasaki TeM Pe A S 1 L Picrasma Miyatake (1992)<br />

C. triozomima TeM Pe L S 2 L D Rhus Wheeler <strong>and</strong> Rawl<strong>in</strong>s<br />

Schwarz<br />

(1993)<br />

Phacopteronidae<br />

Phacopteron TrS Pe L L 3 L El Garuga Mathur (1935, 1946),<br />

lentig<strong>in</strong>osum<br />

Raman (1987)<br />

(Buckton)


Table 1. (Cont<strong>in</strong>ued.)<br />

102 I.D. Hodk<strong>in</strong>son<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

M Pd E S 1 L Ficus Boselli (1929a), Ramirez<br />

Gomez (1956),<br />

Gegechkori (1984) (<strong>and</strong><br />

as viridis), Rapisarda<br />

(1989b) (as viridis),<br />

Conci et al. (1996b),<br />

Tuncer (2002), Gencer<br />

et al. (2007)<br />

TrM Pe ELA S M S Antiaris Akanbi (1980)<br />

Homotomidae<br />

Homotom<strong>in</strong>ae Homotoma ficus<br />

(L.)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

TeM Pd E L 1–2 L Firmiana D<strong>in</strong>g et al. (1987)<br />

Triozam<strong>in</strong>ae Triozamia lamborni<br />

(Newstead)<br />

Carsidaridae<br />

Carsidar<strong>in</strong>ae Carsidara limbata<br />

(Enderle<strong>in</strong>)<br />

Mesohomotoma<br />

tessmannii<br />

(Aulmann)<br />

TrM Pe ELA S M S/F Theobroma Entwistle (1972),<br />

Kaufmann (1973),<br />

Igboekwe (1983),<br />

Igboekwe <strong>and</strong> Adenuga<br />

(1983), Messi (1983a,<br />

1983b)<br />

TrM Pe ELA S M S Durio Gadug <strong>and</strong> Husse<strong>in</strong><br />

(1987)<br />

Allocarsidara<br />

malayensis<br />

(Crawford)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TeM Hel A C 2 L Comarum Lauterer (1982)<br />

Triozidae<br />

Trioz<strong>in</strong>i Bactericera<br />

acutipennis<br />

(Zetterstedt)<br />

B. albiventris<br />

(Foerster)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

TeM Pd A C 2 L Salix Gegechkori (1984),<br />

Lauterer (1976),<br />

Ossiannilsson (1992),<br />

Conci et al. (1996)<br />

B Pd A L 1 L Salix Hodk<strong>in</strong>son et al. (1979)<br />

Journal of Natural History 103<br />

B. atkasookensis<br />

(Hodk<strong>in</strong>son)<br />

B brassicae TeM H A ? 1 ? Brassica Gegechkori (1984)<br />

(Vasil’ev)<br />

B. bohemica (Sˇulc) TeM H A C 1? L Geum Gegechkori (1984),<br />

Ossiannilsson (1992),<br />

Conci et al. (1996)<br />

B. bucegica TeM H A C 1 L Ranunculus Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(Dobreanu <strong>and</strong><br />

(1991), Conci et al.<br />

Manolache)<br />

(1996)


Table 1. (Cont<strong>in</strong>ued.)<br />

104 I.D. Hodk<strong>in</strong>son<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Trioz<strong>in</strong>i B. cockerelli (Sˇulc) TeD C ELA L L/C 3+ L P/D Solanaceae Compere (1916), Essig<br />

(1917), Lehrman (1930),<br />

Knowlton <strong>and</strong> Janes<br />

(1931), Knowlton<br />

(1933, 1934), Knowlton<br />

<strong>and</strong> Thomas (1934),<br />

Davis (1937), Janes <strong>and</strong><br />

Davis (1937), List<br />

(1939a, 1939b) Swenk<br />

<strong>and</strong> Tate (1940), Pletsch<br />

(1947), Wallis (1946,<br />

1955), Liu <strong>and</strong> Trumble<br />

(2004, 2005, 2006,<br />

2007), Liu et al. (2006)<br />

B. crithmi (Löw) M/TeM H ELA L 2+ L Crithmum, Conci et al. (1996),<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Ferula Mifsud (1997)<br />

TeM Pd A C 1? L Salix Gegechkori (1984),<br />

Ossiannilsson (1992),<br />

Conci et al. (1996)<br />

TeM H A C 1–2 L Alchemilla B<strong>in</strong> (1972), Gegechkori<br />

(1984), Ossiannilsson<br />

(1992), Conci et al.<br />

(1996)<br />

B. curvat<strong>in</strong>ervis<br />

(Foerster)<br />

B. femoralis<br />

(Foerster)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 105<br />

Trioz<strong>in</strong>i B. harrisoni TeM H A C 1 L Geum Conci et al. (1996)<br />

(Wagner)<br />

B. kratochvili TeM G LA S 2–3 S Allium Lauterer (1965), Conci<br />

Vondracek<br />

<strong>and</strong> Taman<strong>in</strong>i (1991),<br />

Conci et al. (1996)<br />

B. modesta TeM H A L 1–3? L Sanguisorba, Lauterer (1991), Conci<br />

(Foerster)<br />

Poterium et al. (1996)<br />

B. nigricornis TeM H A C 2 L D Solanum He<strong>in</strong>z <strong>and</strong> Profft (1939),<br />

(Foerster)<br />

Ossiannilsson (1943),<br />

Biase (1983),<br />

Gegechkori (1984),<br />

Lauterer (1991), Conci<br />

et al. (1996)<br />

B. perrissii Puton TeM H A L/C 1 S Artemisia Lauterer (1982)<br />

B. reuteri (Sˇulc) TeM H A ? ? 2? L Potentilla Lauterer (1963),<br />

Ossiannilsson (1992)<br />

B. salicivora TeM Pd A C ? L Salix Gegechkori (1984),<br />

(Reuter)<br />

Ossiannilsson (1992),<br />

Conci et al. (1996a,<br />

1996b)


106 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Trioz<strong>in</strong>i B. striola (Flor) TeM Pd A C 2? L Salix Gegechkori (1984),<br />

Ossiannilsson (1992),<br />

Conci et al. (1996a,<br />

1996b)<br />

M/TeM G A C 7–10 S D Allium Tremblay (1958, 1961 (as<br />

nigricornis), 1965a,<br />

1965b), Annunziata <strong>and</strong><br />

Clemente (1980), Conci<br />

et al. (1996)<br />

TeM H A C 2–3 L D Daucus Biase (1983), Lauterer<br />

(1993a), Conci et al.<br />

(1996)<br />

TeM Pd/C A C 1 S D Rubus Sirr<strong>in</strong>e (1895), Smith<br />

(1911), Felt (1906),<br />

Petersen (1923), Mead<br />

(1966a), Stuart (1991)<br />

TeM Pd/C A C 1 L Rubus Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(1984b, 1986b), Conci<br />

et al. (1996)<br />

TrS Pe L L 1 L El Populus Mathur (1935), Beeson<br />

(1941)<br />

B. tremblayi<br />

(Wagner)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

B. trigonica<br />

Hodk<strong>in</strong>son<br />

Phylloplecta<br />

tripunctata<br />

(Fitch)<br />

P. trisignata<br />

(Löw)<br />

Egeirotrioza ceardi<br />

(Bergev<strong>in</strong>)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TrS Pe L S 1 S Es Populus Mathur (1935, 1975)<br />

E Pe L S 1 St Es Populus Pedata (1998)<br />

TeM Pe A L/S C 1 L R Eleagnus Miyatake (1978)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

TeM Pe A L/S C 1 L R Eleagnus Miyatake (1978)<br />

TeM Pe A L/S C 1 L R Eleagnus Miyatake (1978)<br />

Journal of Natural History 107<br />

TeD H A ? 1 ? Gegechkori (1984)<br />

TeM H L S 1 S Bupleurum Lauterer (1979, 1991)<br />

TeM H L S 2 S Bupleurum Lauterer (1965, 1979,<br />

1991)<br />

TeM Pd E S 1 L R Rhamnus Sampo (1975), Lauterer<br />

(1982), Ossiannilsson<br />

(1992), McLean (1993,<br />

1994, 1998), Conci et al.<br />

(1996)<br />

Trioz<strong>in</strong>i E. bifurcata<br />

(Mathur)<br />

E. populi<br />

(Horvath)<br />

Epitrioza<br />

marg<strong>in</strong>ata<br />

Miyatake<br />

E. mizuhonica<br />

Kuwayama<br />

E. yasumatsui<br />

Miyatake<br />

Eryngiofaga<br />

babugani<br />

Log<strong>in</strong>ova<br />

E. hungarica<br />

(Klimaszewski)<br />

E. lautereri<br />

Log<strong>in</strong>ova<br />

Trichochermes<br />

walkeri<br />

(Foerster)


Table 1. (Cont<strong>in</strong>ued.)<br />

108 I.D. Hodk<strong>in</strong>son<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

TrS Pe ELA L M L P Trichilia Brown <strong>and</strong> Hodk<strong>in</strong>son<br />

(1988, unpublished)<br />

TrS Pe L L 1 L El Psidium Butignol <strong>and</strong> Pedrosa<br />

(2003)<br />

Trioz<strong>in</strong>i Leuronota<br />

trichiliae Brown<br />

<strong>and</strong> Hodk<strong>in</strong>son<br />

Neotrioza tavearesi<br />

Crawford<br />

Trioza sensu lato<br />

TeM H A C 1? L Achillea Gegechkori (1984),<br />

Ossiannilsson (1992),<br />

Conci et al. (1996)<br />

T. abdom<strong>in</strong>alis<br />

Flor<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

T. agrophila Löw TeM H A C ? L Cirsium Gegechkori <strong>and</strong><br />

Djibladzne (1976),<br />

Gegechkori (1984),<br />

Lauterer (1991),<br />

Ossiannilsson (1992)<br />

T. alacris Flor M Pe A S 1–4 L R Laurus Essig (1917), Weiss (1917),<br />

Lizer (1918), Weiss <strong>and</strong><br />

Dickerson (1921),<br />

Borelli (1920), Miles<br />

(1928), Sampo (1977),<br />

Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(1985b), Ramirez<br />

Gomez (1958), de<br />

Meirleire (1971),<br />

Gegechkori (1984),<br />

Conci et al. (1996)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Ossiannilsson (1992),<br />

Conci et al. (1996) (as<br />

TeM H A C 1 L Anthriscus,<br />

Angelica<br />

Trioz<strong>in</strong>i T. anthrisci<br />

Burckhardt<br />

pallida)<br />

TeM H A S 1 S D Daucus Lundblad (1929), Bey<br />

(1931) (both as<br />

viridula), Balachowsky<br />

<strong>and</strong> Mesnil (1936),<br />

Laska (1964,1974),<br />

Rygg (1977),<br />

Gegechkori (1984),<br />

Ramert <strong>and</strong> Nehl<strong>in</strong><br />

(1989), Ossiannilsson<br />

(1992), Ellis <strong>and</strong><br />

Hardman (1992), Conci<br />

et al. (1996),<br />

Kristoffersen <strong>and</strong><br />

Anderbr<strong>and</strong>t (2007)<br />

M Pd/Pe A C 1? L P? Rapisarda (1993b)<br />

T. apicalis<br />

Foerster<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 109<br />

TeM Pd A S 1 L Hippophae Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(1984c)<br />

TeM Pe L L 1 L P Camphora Sasaki (1910), Sor<strong>in</strong><br />

(1959a)<br />

T. apicula<br />

Rapisarda<br />

T. b<strong>in</strong>otata Conci<br />

<strong>and</strong> Taman<strong>in</strong>i<br />

T. camphorae<br />

Sasaki


110 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

André (1878),<br />

Ossiannilsson (1992),<br />

Conci et al. (1996)<br />

T. cerastii (L.) TeM C A C 1 S D Cerastium Conci et al. (1996)<br />

TeM H/T A or S C 1 to M L D Centranthus,<br />

(ELA)<br />

Valerianella<br />

Trioz<strong>in</strong>i T. centranthi<br />

(Vallot)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

T. chenopodii TeM H/T A S 2–5 L D Chenopodium, Lauterer (1982), Baloch<br />

Reuter<br />

Atriplex, <strong>and</strong> Ghaffar (1984),<br />

Halimione Ossiannilsson (1992),<br />

Conci et al. (1996)<br />

T. chrysanthemi TeM H A C 1 L P Chrysanthemum Conci <strong>and</strong> Taman<strong>in</strong>i<br />

Löw<br />

(1991), Conci et al.<br />

(1996)<br />

T. c<strong>in</strong>namomi TeM Pe ELA L 1 to M L El C<strong>in</strong>namomum Miyatake (1969),<br />

Boselli<br />

Rajapakse <strong>and</strong><br />

Kulasekera (1982)<br />

T. cirsii Löw TeM H A C 1 L Cirsium Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(1990)<br />

T. diospyri TrS Pd E S 2+ L R Diospyros Mead (1966b)<br />

(Ashmead)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

L Citrus Moran <strong>and</strong> Blowers<br />

(1967), Moran (1968a,<br />

1968b), Catl<strong>in</strong>g <strong>and</strong><br />

Annecke (1968),<br />

Catl<strong>in</strong>g (1969a, 1969b,<br />

1970, 1971), van<br />

Vuuren <strong>and</strong> Moll<br />

(1984), van den Berg<br />

<strong>and</strong> Villiers (1987),<br />

Samways (1987), van<br />

den Berg <strong>and</strong> Deacon<br />

(1988), van den Berg<br />

(1990), van den Berg,<br />

Anderson, et al. (1991),<br />

van den Berg, Deacon<br />

<strong>and</strong> Steenekamp (1991),<br />

van den Berg, Deacon<br />

<strong>and</strong> Thomas (1991a,<br />

1991b), Messi <strong>and</strong><br />

Tamesse (1999),<br />

Tamesse <strong>and</strong> Messi<br />

(2004)<br />

TrS Ps ELA L M up<br />

to 8<br />

Trioz<strong>in</strong>i T. erytreae (Del<br />

Guercio)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 111


112 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

L P Syzygium Morgan (1984), Downer<br />

et al. (1991), Mead<br />

(1994), Dahlsten et al.<br />

(1995), Young (2003)<br />

TrS Pe ELA L M<br />

(3–5+)<br />

Trioz<strong>in</strong>i T. eugeniae<br />

Froggatt<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

T. flavipennis TeM H A C 1 L P Aegopodium Löw (1880), Conci et al.<br />

Foerster<br />

(1996)<br />

T. fletcheri m<strong>in</strong>or TrS Pe ELA L C L El Term<strong>in</strong>alia Mathur (1935), Beeson<br />

Crawford<br />

(1941), Mani (1948),<br />

Das et al. (1988)<br />

T. galii TeM H A C/LL 1+? S/L D/R Galium, Boselli (1929b),<br />

Aperula Burckhardt <strong>and</strong><br />

Lauterer (2006)<br />

T. hirsuta TrS Pe E S 2 L R Term<strong>in</strong>alia Mathur (1935, 1975),<br />

(Crawford)<br />

Beeson (1941), Mani<br />

(1948), Dhiman <strong>and</strong><br />

S<strong>in</strong>gh (2003, 2004)<br />

T. ilic<strong>in</strong>a (De M Pe L L 1 L P Quercus Conci <strong>and</strong> Taman<strong>in</strong>i<br />

Stefani Perez)<br />

(1985c), Rapisarda <strong>and</strong><br />

Belcari (1999), Conci<br />

et al. (1996)<br />

T. jambolanae TrS Pe ELA L 6–8 L El Syzygium Raman (1991)<br />

Crawford


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 113<br />

Trioz<strong>in</strong>i T. kiefferi Giard M Pe A T/S 1 L El Rhamnus Rapisarda (1989a), Conci<br />

et al. (1996)<br />

T. laserpitii TeM H A C 1 L Laserpitium Burckhardt <strong>and</strong> Lauterer<br />

Burckhardt <strong>and</strong><br />

(1982), Conci et al.<br />

Lauterer<br />

(1996)<br />

T. machilicola TeM Pe L L 1 L P Machilus Miyatake (1968a)<br />

Miyatake<br />

T. magnisetosa TeM Pd A ? 2 L Rhamnus Gegechkori (1984)<br />

Log<strong>in</strong>ova<br />

T. malloticola TrS Pe L L 2–3 L El Mallotus Mathur (1935, 1975),<br />

(Crawford)<br />

Beeson (1941), Mani<br />

(1948)<br />

T. magnicauda TrM Pe ELA L 9–11 L Diospyros Chang et al. (1995)<br />

Crawford<br />

T. magnoliae TrS Pe L L 1 L P Magnolia, Mead (1963), Leege (2006)<br />

(Ashmead)<br />

Persea<br />

T. munda Foerster TeM H A C 1? L P Knautia, Gegechkori (1984),<br />

Succisa, Ossiannilsson (1992),<br />

Scabiosa Conci et al. (1996)<br />

T. nana<br />

TeM H A ? ? 1 L Valeriana Gegechkori (1984)<br />

Gegechkori


114 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Trioz<strong>in</strong>i T. neglecta TeM Pd A ? ? 2 L Eleagnus Lauterer <strong>and</strong> Janicek<br />

Log<strong>in</strong>ova<br />

(1990), Lauterer (1993a)<br />

T. obsoleta TrS Pe L L 3 L El Diospyros Vaishampayan <strong>and</strong><br />

Buckton<br />

Bahadur (1980)<br />

T. pitiformis TrS Pe L L 4 L P Mallotus Mathur (1935, 1975)<br />

Mathur<br />

T. proxima Flor TeM H A C 1 L P Hieracium Conci et al. (1996)<br />

T. rapisardai Conci TeM H A C 1 L Laserpitium Conci <strong>and</strong> Taman<strong>in</strong>i<br />

<strong>and</strong> Taman<strong>in</strong>i<br />

(1984d, 1988), Conci<br />

et al. (1996)<br />

T. remota Foerster TeM Pd A C 1 L P Quercus Sor<strong>in</strong> (1959b), Gegechkori<br />

(1984), Lauterer (1991),<br />

Conci et al. (1996)<br />

T. rhamni TeM Pd A C 2 L P Rhamnus Löw (1877), Gegechkori<br />

(Schrank)<br />

(1984), Lauterer (1991),<br />

Conci et al. (1996)<br />

T. rotundata Flor TeM H A C 1 L/St P Cardam<strong>in</strong>e Gegechkori (1984), Conci<br />

(sensu<br />

<strong>and</strong> Taman<strong>in</strong>i (1987,<br />

Burckhardt <strong>and</strong><br />

1991), Conci et al.<br />

Lauterer)<br />

(1996), Burckhardt <strong>and</strong><br />

Lauterer (2002)


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 115<br />

Trioz<strong>in</strong>i T. rumicis Löw TeM H A C 1 F F Rumex Sampo (1975),<br />

Gegechkori (1984),<br />

Conci et al. (1996)<br />

T. saxifragae Löw TeM H/G A C 1–2 L Saxifraga Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(1986c), Lauterer<br />

(1993a), Conci et al.<br />

(1996)<br />

T. schrankii Flor TeM H A C 1 L Astrania Conci et al. (1996)<br />

T. scottii Löw TeM Pd/G A C 1 L R Berberis Sampo (1975),<br />

Gegechkori (1984),<br />

Conci et al. (1996)<br />

T. senecionis TeM H A C 1 L Senecio, Gegechkori (1984), Conci<br />

(Scopoli)<br />

Adenostyles et al. (1996)<br />

T. soniae M Pd A C 1 L P Quercus Rapisarda (1993b), Conci<br />

Rapisarda<br />

et al. (1996)<br />

T. tabebuiae TrR Pe L L M L R Tabebuia De Queiroz Santana <strong>and</strong><br />

Santana <strong>and</strong><br />

Burckhardt (2001)<br />

TeM H A C 1 L F Valeriana Burckhardt et al. (1991),<br />

Conci <strong>and</strong> Taman<strong>in</strong>i<br />

(1991), Conci et al.<br />

(1996)<br />

Burckhardt<br />

T. tripteridis<br />

Burckhardt et al.


116 I.D. Hodk<strong>in</strong>son<br />

Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Trioz<strong>in</strong>i T. urticae (L.) TeM H A C 1–4 L Urtica Lal (1934), Zhangeri<br />

(1954), Onillon (1969),<br />

Davis (1973), Sampo<br />

(1975), Gegechkori<br />

(1984), Conci et al.<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

(1996)<br />

TeD H E S 1 L Valeriana Gegechkori <strong>and</strong><br />

Djibladzne (1976),<br />

Gegechkori (1984)<br />

TeM H A C ? L Cirsium Gegechkori (1984),<br />

Ossiannilsson (1992)<br />

TeM Pe ELA L 2–5 L Pittosporum Carter (1949)<br />

T. valerianae<br />

Gegechkori<br />

TrS Pe L L 2 L El Litsaea Mathur (1935), Beeson<br />

(1941), Mani (1948)<br />

TrS Pe L L 1–2 L El Ficus Mathur (1935), Beeson<br />

(1941), Mani (1948),<br />

Abbas (1967), Negi <strong>and</strong><br />

Bisht (1989)<br />

TrS Pe L L 1 L El Buchanania Thenmozhi <strong>and</strong><br />

K<strong>and</strong>asamy (1992)<br />

T. viridula<br />

(Zetterstedt)<br />

T. vitreoradiata<br />

(Maskell)<br />

Pauropsyll<strong>in</strong>i Pauropsylla<br />

beesoni La<strong>in</strong>g<br />

P. depressa<br />

Crawford<br />

P. longispiculata<br />

Mathur


Table 1. (Cont<strong>in</strong>ued.)<br />

Host <strong>plant</strong>(s) References<br />

Lerp former<br />

Gall<br />

Feed<strong>in</strong>g site<br />

Volt<strong>in</strong>ism<br />

Overw<strong>in</strong>ter<strong>in</strong>g elsewhere<br />

Overw<strong>in</strong>ter<strong>in</strong>g on host<br />

Overw<strong>in</strong>ter<strong>in</strong>g stage<br />

Plant type<br />

Higher taxon Species Climate zone<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Pauropsyll<strong>in</strong>i P. purpurescens TrS Pe L L 3 L El Ficus Mathur (1935, 1975)<br />

Mathur<br />

P. trichaeta Petty M Pe ELA L M L P Ficus Awadallah <strong>and</strong> Swailem<br />

(1971)<br />

P. udei Rübsaamen TrS Pe ELA L M L El Ficus Hill (1982)<br />

Journal of Natural History 117


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

118 I.D. Hodk<strong>in</strong>son<br />

The relationship between the development rate of non-diapaus<strong>in</strong>g larvae <strong>and</strong><br />

temperature is asymptotic for species such as Agonoscena pistaciae, Diaphor<strong>in</strong>a citri,<br />

Cacopsylla pyri <strong>and</strong> Cacopsylla pyricola with<strong>in</strong> the temperature range 5–35uC<br />

(McMullen <strong>and</strong> Jong 1977; Kapatos <strong>and</strong> Stratopoulou 1999; Liu <strong>and</strong> Tsai 2000;<br />

Nakata 2006; Mehrnejad <strong>and</strong> Copl<strong>and</strong> 2006b). Development commences at the<br />

lower temperature threshold for development, rises approximately l<strong>in</strong>early to a<br />

maximum as temperature <strong>in</strong>creases, but then falls back at higher temperatures,<br />

presumably <strong>in</strong> response to <strong>in</strong>creas<strong>in</strong>g thermal stress. By contrast, other species such<br />

as Psyllopsis frax<strong>in</strong>i, Mesohomotoma tessmanni <strong>and</strong> Heteropsylla cubana appear to<br />

show a l<strong>in</strong>ear response, although the maximum experimental temperatures tested<br />

(30–32uC) were lower than <strong>in</strong> the previous examples <strong>and</strong> thus probably less stressful<br />

(Nguyen 1970a; Messi 1983b; Patil et al. 1994; Geiger <strong>and</strong> Gutierrez 2000). A similar<br />

difference <strong>in</strong> response occurs between the development rate of eggs (l<strong>in</strong>ear) <strong>and</strong><br />

larvae (asymptotic) of C. pyri over an identical temperature range, suggest<strong>in</strong>g a<br />

divergence <strong>in</strong> thermal sensitivity of their respective development rate at higher<br />

temperatures (Kapatos <strong>and</strong> Stratopoulou 1999).<br />

Temperature-specific development rates may also differ significantly among<br />

<strong>in</strong>stars, although there appears to be little consistency <strong>in</strong> the trend. For example, <strong>in</strong><br />

Ctenaryta<strong>in</strong>a thysanura <strong>and</strong> Trioza urticae, at a given temperature, speed of<br />

development is highest <strong>in</strong> the early <strong>in</strong>stars <strong>and</strong> progressively slows <strong>in</strong> the later <strong>in</strong>stars<br />

(Onillon1969; Mensah <strong>and</strong> Madden 1993b). By contrast, development rates <strong>in</strong> other<br />

species such as Heteropsylla cubana, Mesohomotoma tessmani, Trioza magnicauda,<br />

Trioza erytreae, Psyllopsis frax<strong>in</strong>i, Cacopsylla pyricola <strong>and</strong> Diaphor<strong>in</strong>a citri, appear<br />

highest <strong>in</strong> the <strong>in</strong>temediate <strong>in</strong>stars (2–4) (Moran <strong>and</strong> Blowers 1967; Nguyen 1970b;<br />

An et al.1996; McMullen <strong>and</strong> Jong 1977; Messi 1983b; Patil et al. 1994; Chang et al.<br />

1995; Geiger <strong>and</strong> Guttierez 2000; Tsai <strong>and</strong> Liu 2000; Liu <strong>and</strong> Tsai 2000).<br />

The lower temperature threshold for larval development is comparatively low<br />

relative to ambient temperatures <strong>in</strong> tropical/subtropical species such as Heteropsylla<br />

cubana (9.6uC), Trioza erytreae (8.6–9.2uC) <strong>and</strong> Diaphor<strong>in</strong>a citri (10.9–11.7uC) but<br />

significantly higher than <strong>in</strong> temperate species such as Stroph<strong>in</strong>gia ericae (c. 3uC),<br />

Trioza urticae (,6uC) <strong>and</strong> Cacopsylla pyricola (2–3uC) (Blowers <strong>and</strong> Moran 1968;<br />

Hodk<strong>in</strong>son et al. 1999; Kapatos <strong>and</strong> Stratopoulou 1999; Liu <strong>and</strong> Tsai 2000; Geiger<br />

<strong>and</strong> Gutierrez 2000).<br />

Field development times from hatch<strong>in</strong>g egg to emerg<strong>in</strong>g adult <strong>in</strong> nondiapaus<strong>in</strong>g<br />

tropical/subtropical species <strong>in</strong>clud<strong>in</strong>g Allocarsidara malayensis,<br />

Mesohomotoma tessmani, Diclidophlebia xuani, Heteropsylla cubana, Trioza<br />

erytreae <strong>and</strong> Trioza magnicauda typically range between 9.5–23 days (Blowers<br />

<strong>and</strong> Moran 1968; Messi 1983b; Gadug <strong>and</strong> Husse<strong>in</strong> 1987; Patil et al. 1994; Chang<br />

et al. 1995; Tsai <strong>and</strong> Liu 2000). However, some less typical tropical species, such as<br />

Euphalerus clitoriae on Clitoria may take up to 34 days to complete development<br />

(Junior et al. 2005). By contrast, development times of equivalent warm to cool<br />

temperate species, <strong>in</strong>clud<strong>in</strong>g Euphyllura oliv<strong>in</strong>a, Anomoneura mori, Asphagidella<br />

buxi, Cacopsylla melanoneura, C. pyricola <strong>and</strong> C. ambigua, typically span around<br />

22–44 days (Lal 1934; Loureiro Ferriera 1946; Kuwayama 1971). Development,<br />

however, can be significantly slower at temperatures just above the developmental<br />

threshold, extend<strong>in</strong>g to 190 days <strong>in</strong> T. urticae at 6uC, 56 days for Psyllopsis frax<strong>in</strong>i<br />

at 15uC <strong>and</strong> 47 days for Cacopsylla pyricola at 10uC (Onillon 1969; Nguyen 1970b;<br />

McMullen <strong>and</strong> Jong 1977).


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 119<br />

Response to high temperature <strong>and</strong> drought<br />

Psyllids <strong>in</strong> tropical/subtropical <strong>and</strong> desert ecosystems are often exposed to<br />

potentially lethal high temperatures, particularly when such temperatures are<br />

coupled with low humidity to produce a high Saturation Deficit Index (SDI). High<br />

temperatures/low humidity are known to <strong>in</strong>fluence strongly life <strong>cycle</strong> completion <strong>in</strong><br />

several psyllid species, where it results <strong>in</strong> reduced fecundity, <strong>in</strong>creased mortality <strong>and</strong><br />

slower rates of development at temperatures above the optimum for the species <strong>in</strong><br />

question. It may also limit the distribution of the psyllid with<strong>in</strong> the broader range of<br />

its potential host <strong>plant</strong>.<br />

Effect on mortality, reproduction <strong>and</strong> longevity<br />

The l<strong>in</strong>k between high temperature, SDI <strong>and</strong> mortality is particularly welldocumented<br />

<strong>in</strong> Trioza erytreae on Rutaceae, for which models have been produced<br />

to predict population densities from these climatic variables by def<strong>in</strong><strong>in</strong>g particularly<br />

lethal SDI values (Moran <strong>and</strong> Blowers 1967; Catl<strong>in</strong>g <strong>and</strong> Annecke 1968; Catl<strong>in</strong>g<br />

1969a, 1969b; van Vuuren <strong>and</strong> Moll 1984; Samways 1987; van den Berg, Anderson<br />

et al. 1991; Tamesse <strong>and</strong> Messi 2004). Similar l<strong>in</strong>ks between high temperature <strong>and</strong><br />

population crashes have been observed <strong>in</strong> Heteropsylla cubana (.36uC) <strong>and</strong><br />

Glycaspis baileyi on Eucalyptus, notwithst<strong>and</strong><strong>in</strong>g that larvae of the latter species<br />

secrete a protective cover<strong>in</strong>g or lerp (Moore 1961; Yasuda <strong>and</strong> Tsurumachi 1988;<br />

Geiger <strong>and</strong> Gutierrez 2000).<br />

The relationship between SDI <strong>and</strong> mortality at a given st<strong>and</strong>ard high<br />

temperature, however, is not l<strong>in</strong>ear. At a low SDI Acizzia russellae on Acacia died<br />

from thermal shock associated with low evaporative cool<strong>in</strong>g of host leaves. Survival<br />

rose to an optimum at a moderate SDI as evaporative cool<strong>in</strong>g became more effective<br />

but then decl<strong>in</strong>ed as the SDI <strong>in</strong>creased <strong>and</strong> desiccation became significant (Hoffman<br />

et al. 1975). Trioza hirsuta on Term<strong>in</strong>alia showed similar optimal survival with<strong>in</strong> the<br />

range 70–90% relative humidity (Dhiman <strong>and</strong> S<strong>in</strong>gh 2003).<br />

Among temperate species such as Cacopsylla pyricola, egg output per female <strong>and</strong><br />

longevity are reduced at temperatures (,35uC) that exceed the optimum of 26.7uC.<br />

Similar suppression of egg production at high summer temperature is found <strong>in</strong><br />

Cacopylla pyri (Stratopoulou <strong>and</strong> Kapatos 1995b; Souliotis <strong>and</strong> Broumas 1998).<br />

Even <strong>in</strong> tropical species, such as Diaphor<strong>in</strong>a citri, the optima for oviposition <strong>and</strong><br />

development are 25–28uC, with larvae fail<strong>in</strong>g to develop at 33uC (Liu <strong>and</strong> Tsai 2000).<br />

Gall-form<strong>in</strong>g species, despite liv<strong>in</strong>g with<strong>in</strong> humidity-buffered galls, are not<br />

immune from a high SDI, with species such as Euphalerus ostreoides on<br />

Lonchocarpus suffer<strong>in</strong>g high mortality among young larvae before gall formation<br />

(Ferreira et al. 1990). However, some species <strong>in</strong> cool temperate environments such as<br />

Craspedolepta nebulosa <strong>and</strong> C. subpunctata appear physiologically capable of<br />

withst<strong>and</strong><strong>in</strong>g at least short-term exposure, as older larvae, to high temperature<br />

(40uC), provided high humidity is ma<strong>in</strong>ta<strong>in</strong>ed (Bird <strong>and</strong> Hodk<strong>in</strong>son 1999).<br />

Often the precise choice of oviposition site on a <strong>plant</strong> determ<strong>in</strong>es whether or not<br />

a psyllid egg survives a low SDI. Those of Cacopsylla pyricola, for example are less<br />

susceptible to desiccation when laid along the mid ve<strong>in</strong> rather than on the leaf lam<strong>in</strong>a<br />

(Horton 1990a). This is probably l<strong>in</strong>ked to differences <strong>in</strong> the relative availability of<br />

water with<strong>in</strong> the leaf tissue for absorption through the basal pedicel of the psyllid<br />

egg, which is <strong>in</strong>serted <strong>in</strong>to the <strong>plant</strong> tissue (White 1968; Conci 2000).


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

120 I.D. Hodk<strong>in</strong>son<br />

Effects on distribution<br />

Temperature <strong>and</strong> humidity may thus affect both the absolute distribution <strong>and</strong> the<br />

relative breed<strong>in</strong>g success of a psyllid species across its range. Megatrioza species on<br />

Pritchardia <strong>in</strong> the Hawaiian Isl<strong>and</strong>s are conf<strong>in</strong>ed to altitudes above 425m, where<br />

temperatures are lower <strong>and</strong> humidity is higher (Uchida <strong>and</strong> Beardsley 1988). The<br />

range of Trioza erytreae <strong>in</strong> South Africa is limited by high temperature/SDI <strong>and</strong> even<br />

with<strong>in</strong> this restricted range populations tend to <strong>in</strong>crease with altitude (Catl<strong>in</strong>g 1969b;<br />

Green <strong>and</strong> Catl<strong>in</strong>g 1971; Human <strong>and</strong> Bedford 1985).<br />

Positive impact of drought<br />

Not all effects of low water availability <strong>and</strong> high temperature are negative for<br />

psyllids. Periods of atypically low w<strong>in</strong>ter ra<strong>in</strong>fall, for example, produce water stress<br />

<strong>in</strong> Eucalyptus fasciculosa that is strongly correlated with subsequent population<br />

outbreaks of the psyllid Cardiasp<strong>in</strong>a densitexta (White 1969, 1971). Stress <strong>in</strong> this<br />

<strong>in</strong>stance leads to <strong>in</strong>creased mobilization of soluble nitrogen with<strong>in</strong> the leaves, which<br />

<strong>in</strong> turn enhances their suitability for larval development (White 1969, 1971). The<br />

effect is similar to that observed <strong>in</strong> Cacopsylla pyricola when its host <strong>plant</strong> is<br />

fertilized with nitrogen (Pfeiffer <strong>and</strong> Burts 1983, 1984; Daugherty et al. 2007).<br />

Seasonal polymorphisms<br />

Morphological differences<br />

Several species of psyllid display environmentally determ<strong>in</strong>ed seasonal polymorphisms<br />

as part of their life <strong>cycle</strong>. This has, <strong>in</strong> the past, resulted <strong>in</strong> the seasonal forms<br />

be<strong>in</strong>g described as dist<strong>in</strong>ct species. Such polymorphisms are often closely l<strong>in</strong>ked to<br />

diapause <strong>and</strong> have major implications for life history completion, <strong>in</strong>volv<strong>in</strong>g key<br />

differences <strong>in</strong> performance, life history parameters <strong>and</strong> dispersal characteristics <strong>in</strong><br />

the species concerned. These implications are discussed <strong>in</strong> detail later <strong>in</strong> the context<br />

of the factors such as day length <strong>and</strong> temperature that determ<strong>in</strong>e onset <strong>and</strong> break<strong>in</strong>g<br />

of diapause. Seasonal polymorphisms occur <strong>in</strong> the adults of several multivolt<strong>in</strong>e<br />

species with<strong>in</strong> a number of distantly related taxa, <strong>in</strong>clud<strong>in</strong>g Agonoscena pistaceae on<br />

Pistacia, Cacopyslla pyricola, <strong>and</strong>C. pyri on Pyrus, Celtisaspis japonica on Celtis,<br />

Bactericera acutipennis on Comarum <strong>and</strong> Trioza chenopodii on various<br />

Chenopodiaceae (Bonnemaison <strong>and</strong> Missonnier 1955a; Wong <strong>and</strong> Madsen 1967;<br />

Oldfield 1970; Nguyen 1972a, 1985; Miyatake 1980; Lauterer 1982; Mustafa <strong>and</strong><br />

Hodgson 1984; Rieux <strong>and</strong> d’Arcier 1990; An et al. 1996; Mehrnejad 2002; Mehrnejad<br />

<strong>and</strong> Copl<strong>and</strong> 2005). Polymorhism may simply <strong>in</strong>volve marked seasonal differences <strong>in</strong><br />

overall size (Acizzia uncatoides <strong>and</strong> A. acaciaebaileyani on Acacia) or colour (Acizzia<br />

spp. <strong>and</strong> Bactericera perrissii on Artemisia) among generations (Koehler et al. 1966;<br />

Lauterer 1982; Rapisarda 1993a). More frequently it additionally <strong>in</strong>volves<br />

differences <strong>in</strong> such th<strong>in</strong>gs as the relative size, shape <strong>and</strong> venation of the forew<strong>in</strong>g,<br />

the presence or <strong>in</strong>tensity of forew<strong>in</strong>g colour patterns, the distribution <strong>and</strong> density of<br />

surface sp<strong>in</strong>ules <strong>in</strong> the forew<strong>in</strong>g cells, m<strong>in</strong>or differences <strong>in</strong> the shape of the<br />

term<strong>in</strong>alia, dark or light body colouration, <strong>and</strong> the relative length of the antenna <strong>and</strong><br />

its component segments. In Cacopsylla pyricola, C. pyri <strong>and</strong> A. pistaceae the morphs<br />

usually consist of a smaller lighter coloured spr<strong>in</strong>g form with little or less-<strong>in</strong>tense<br />

w<strong>in</strong>g colour pattern <strong>and</strong> an autumn form that is larger <strong>and</strong> darker, with a dist<strong>in</strong>ctive


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 121<br />

darker w<strong>in</strong>g colouration or pattern. Morph determ<strong>in</strong>ation is, however, not absolute<br />

<strong>and</strong> <strong>in</strong>termediate generations often display transitional characteristics between the<br />

extremes, or a few autumn forms may be produced even <strong>in</strong> summer generations<br />

(Mustafa <strong>and</strong> Hodgson 1984; Nguyen 1985; Rieux <strong>and</strong> d’Arcier 1990; Mehrnejad<br />

<strong>and</strong> Copl<strong>and</strong> 2005). There is evidence for C. pyri that different features of the<br />

polymorphism, such as w<strong>in</strong>g pattern or body colour are controlled to different<br />

extents by particular temperature <strong>and</strong> photoperiod exposures act<strong>in</strong>g dur<strong>in</strong>g the<br />

larval stages (Nguyen 1972a). In contrast to the aforementioned species, Trioza<br />

chenopodii unusually has its darker autumn form characterized by shorter <strong>and</strong><br />

broader w<strong>in</strong>gs (Lauterer 1982). The darker w<strong>in</strong>g-patterned autumn morph of<br />

Pachypsylla japonica additionally shows strong sexual dimorphism <strong>in</strong> w<strong>in</strong>g pattern.<br />

The adaptive significance of this is obscure, but such sexual pattern dimorphism also<br />

occurs sporadically <strong>in</strong> both other temperate (Livilla pogii on Genista) <strong>and</strong> tropical<br />

(Euphalerus fossiconis, host unknown) species (Conci <strong>and</strong> Taman<strong>in</strong>i 1984a; Brown<br />

<strong>and</strong> Hodk<strong>in</strong>son 1988). Other species, such as Crast<strong>in</strong>a log<strong>in</strong>ovae on Tamarix, show<br />

similar strong sexual dimorphism <strong>in</strong> general body colouration (Conci <strong>and</strong> Taman<strong>in</strong>i<br />

1983).<br />

Seasonal colour change <strong>in</strong> long-lived adults<br />

Long-lived adults of many temperate univolt<strong>in</strong>e species undergo marked colour<br />

changes throughout the season. This may have adaptive significance through<br />

camouflage (Sutton 1983). Changes can occur gradually over several months <strong>and</strong> are<br />

often associated with a reproductive diapause. In genera such as Cacopsylla <strong>and</strong><br />

Psylla, for example, the general body colouration changes gradually from pale<br />

colours such as green or yellow to deep red, brown <strong>and</strong> black. Adults of Cacopsylla<br />

peregr<strong>in</strong>a, for <strong>in</strong>stance, are bright green on emergence <strong>in</strong> spr<strong>in</strong>g, match<strong>in</strong>g the colour<br />

of the leaves of their host <strong>plant</strong>, Crataegus monogyna, on which they are <strong>in</strong>itially<br />

found. As the season progresses sexually matur<strong>in</strong>g adults move from the leaves on to<br />

the darker stems as a prelude to oviposition <strong>and</strong> this is accompanied by a change <strong>in</strong><br />

body colouration to a more cryptic brown <strong>and</strong> red (Sutton 1983).<br />

Consequences of size differences<br />

Temperature-<strong>in</strong>duced size polymorphism result<strong>in</strong>g from vary<strong>in</strong>g developmental rates<br />

has strong implications for life history completion at the edge of psyllid species’<br />

ranges. For example, Craspedolepta nebulosa <strong>and</strong> C. subpunctata are univolt<strong>in</strong>e<br />

species feed<strong>in</strong>g on Epilobium angustifolium. Both are widely distributed <strong>in</strong> the<br />

temperate northern hemisphere. C. nebulosa shows developmental flexibility by<br />

reduc<strong>in</strong>g its body size <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g its developmental temperature reaction norm as<br />

the day degrees available for larval development decrease along an altitud<strong>in</strong>al<br />

transect. C. subpunctata shows no such flexibility <strong>and</strong> is thus restricted to lower<br />

altitudes, thereby occupy<strong>in</strong>g a smaller portion of the host-<strong>plant</strong> range than C.<br />

nebulosa (Bird <strong>and</strong> Hodk<strong>in</strong>son 2005; Hodk<strong>in</strong>son <strong>and</strong> Bird 2006b). Atypically high<br />

temperature may also affect psyllid size. Both egg length <strong>and</strong> w<strong>in</strong>g length of<br />

Heteropsylla cubana on Leucaena <strong>in</strong> Thail<strong>and</strong> decreased with ris<strong>in</strong>g temperature over<br />

the range 20–30uC <strong>and</strong> this was thought to be a partial explanation for a population<br />

crash dur<strong>in</strong>g unseasonably hot weather (Geiger <strong>and</strong> Gutierrez 2000).


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

122 I.D. Hodk<strong>in</strong>son<br />

Induction of seasonal morphs<br />

The production of different seasonal morphs is primarly controlled by day length,<br />

with temperature often play<strong>in</strong>g a secondary role. For example C. pyricola eggs reared<br />

experimentally under short days (LD 12:12 h) produce autumn/w<strong>in</strong>ter-form adults;<br />

those reared under long day length (LD 16:8 or 18:6 h) produce summer forms<br />

(Mustafa <strong>and</strong> Hodgson 1984). The precise day length <strong>in</strong>duc<strong>in</strong>g the w<strong>in</strong>ter form<br />

varies, however, between studies <strong>and</strong> localities, with w<strong>in</strong>ter forms be<strong>in</strong>g produced at<br />

day lengths between 11 <strong>and</strong> 14 h <strong>in</strong> California <strong>and</strong> British Columbia respectively<br />

(Wong <strong>and</strong> Madsen 1967; Oldfield 1970; McMullen <strong>and</strong> Jong 1976). Day length acts<br />

on the early larval stages, but larvae become progressively less susceptible to a<br />

sudden switch <strong>in</strong> day length as they develop, becom<strong>in</strong>g <strong>in</strong>sensitive by the fourth or<br />

fifth <strong>in</strong>star (Mustafa <strong>and</strong> Hodgson 1984; An et al. 1996). The process at the relatively<br />

high experimental temperatures used appears relatively <strong>in</strong>sensitive to temperature<br />

(An et al. 1996). Seasonal polymorphism <strong>in</strong> C. pyri <strong>and</strong> Agonoscena pistaceae<br />

appears to be under similar control, with short day length (LD 12:12), but coupled<br />

with low temperature (15uC) act<strong>in</strong>g on <strong>in</strong>stars 1–3 to produce the autumn/w<strong>in</strong>ter<br />

form <strong>and</strong> long day length l<strong>in</strong>ked to higher temperatures (25uC) result<strong>in</strong>g <strong>in</strong> spr<strong>in</strong>g/<br />

summer forms (Bonnemaison <strong>and</strong> Missonnier 1955a, 1955b; Nguyen 1972a;<br />

Mehmejad <strong>and</strong> Copl<strong>and</strong> 2005).<br />

Significance of diapause<br />

For tropical multivolt<strong>in</strong>e psyllids species liv<strong>in</strong>g <strong>in</strong> non-seasonal environments, such<br />

as Diaphor<strong>in</strong>a citri <strong>in</strong> the Philipp<strong>in</strong>es, the host <strong>plant</strong> Citrus spp. rema<strong>in</strong>s suitable for<br />

psyllid development throughout the year <strong>and</strong> life <strong>cycle</strong> progression is usually<br />

un<strong>in</strong>terrupted (Bigornia <strong>and</strong> Obana 1974). However, for species liv<strong>in</strong>g <strong>in</strong> seasonal<br />

environments, close phenological synchrony of development with that of the host<br />

<strong>plant</strong> is a prerequisite for successful life <strong>cycle</strong> completion. Diapause provides the<br />

tim<strong>in</strong>g <strong>and</strong> synchronization mechanism through which psyllids are able to survive<br />

unfavourable periods, such as extended periods of cold or drought, when their host<br />

<strong>plant</strong> becomes unfavourable for development. Diapause, which <strong>in</strong>volves a slow<strong>in</strong>g<br />

down or cessation of development, may occur <strong>in</strong> one or more of the egg, larval <strong>and</strong><br />

adult stages, depend<strong>in</strong>g on species <strong>and</strong> circumstances. It is usually controlled by<br />

environmental cues, such as photoperiod <strong>and</strong> temperature, which signal changes <strong>in</strong><br />

the favourability of the external environment that will, when mediated through the<br />

host <strong>plant</strong>, affect psyllid development. The mechanisms that <strong>in</strong>stigate <strong>and</strong> control<br />

adult diapause are well understood for a few economically important multivolt<strong>in</strong>e<br />

psyllids such as Cacopsylla pyricola <strong>and</strong> C. pyri but rema<strong>in</strong> unknown for the vast<br />

majority of species. Interest<strong>in</strong>gly, diapaus<strong>in</strong>g adult C. pyricola are more <strong>in</strong>secticide<br />

tolerant than non-dipaus<strong>in</strong>g adults <strong>and</strong> this has implications for population contol of<br />

economically important species (Unruh <strong>and</strong> Krysan 1994).<br />

Developmental diapause <strong>in</strong> eggs <strong>and</strong> larvae<br />

Egg diapause occurs most frequently <strong>in</strong> univolt<strong>in</strong>e species associated with deciduous<br />

trees <strong>and</strong> shrubs <strong>in</strong> which eggs laid on exposed shoots <strong>and</strong> branches one year<br />

overw<strong>in</strong>ter, <strong>and</strong> hatch the follow<strong>in</strong>g year. Examples <strong>in</strong>clude Psyllopsis frax<strong>in</strong>i on<br />

Frax<strong>in</strong>us, Cacopsylla peregr<strong>in</strong>a on Crataegus <strong>and</strong> Psylla alni on Alnus (Lal 1934;


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 123<br />

Nguyen 1970b; Bonnemaison 1956). Overw<strong>in</strong>ter<strong>in</strong>g by diapaus<strong>in</strong>g larvae on bare<br />

shoots is less frequent but not unknown; Calophya triozomima, for example,<br />

overw<strong>in</strong>ters at the base of the bud of its host Rhus (Wheeler <strong>and</strong> Rawl<strong>in</strong>s 1993).<br />

Larval w<strong>in</strong>ter diapause is more frequently found <strong>in</strong> free-liv<strong>in</strong>g species that overw<strong>in</strong>ter<br />

on evergreen hosts such as Stroph<strong>in</strong>gia ericae on Calluna, Livilla magna on Genista<br />

<strong>and</strong> Asphagidella buxi on Buxus (Nguyen 1968; Conci et al. 1993; Miles et al. 1998;<br />

Butterfield et al. 2001). Larvae cease development <strong>in</strong> the autumn <strong>and</strong> recommence <strong>in</strong><br />

spr<strong>in</strong>g.<br />

This period of suspended development may <strong>in</strong> some species also embrace a large<br />

part of the previous summer. Several leaf-gall form<strong>in</strong>g species, for example, Trioza<br />

camphorae on Camphora, Trioza c<strong>in</strong>namomi on C<strong>in</strong>namomum, T. machilicola on<br />

Machilus, <strong>and</strong>T. obsoleta on Diospyros hatch <strong>in</strong> spr<strong>in</strong>g <strong>and</strong> develop to early-stage<br />

larvae before enter<strong>in</strong>g diapause: development to adult only recommences the<br />

follow<strong>in</strong>g spr<strong>in</strong>g (Sor<strong>in</strong> 1959a; Miyatake 1968a, 1969; Vaishampayan <strong>and</strong> Bahadur<br />

1980). A similar extended larval diapause is found <strong>in</strong> several Craspedolepta species<br />

<strong>in</strong>clud<strong>in</strong>g C. nebulosa <strong>and</strong> C. subpunctata on Epilobium, but <strong>in</strong> these latter species<br />

there is a larval migration onto the roots or the overw<strong>in</strong>ter<strong>in</strong>g shoots of their<br />

herbaceous perennial host (Bird <strong>and</strong> Hodk<strong>in</strong>son 1999, 2005). In these examples<br />

diapause serves to retard the production of adults <strong>and</strong> synchronize the life <strong>cycle</strong> of<br />

the psyllid with the optimum spr<strong>in</strong>g period for oviposition on the host. Summer<br />

larval diapause as <strong>in</strong> Trioza saxifragae on Saxifraga <strong>and</strong> species of Acaerus on<br />

Calligonum probably facilitates summer survival <strong>in</strong> particularly dry habitats<br />

(Log<strong>in</strong>ova 1970, 1976; Lauterer 1993a). By contrast, diapause <strong>in</strong> T. remota <strong>and</strong> T.<br />

soniae on Quercus leaves <strong>and</strong> Trioza kiefferi on Rhamnus, which delay adult<br />

emergence until autumn, probably corresponds with a period when mature host<br />

leaves have become unsuitable for development. Subsequent leaf senescence <strong>in</strong><br />

autumn then releases the soluble am<strong>in</strong>o acids required for development through to<br />

overw<strong>in</strong>ter<strong>in</strong>g adult (Conci et al. 1996).<br />

Reproductive diapause <strong>in</strong> adults<br />

Adult reproductive diapause, <strong>in</strong> which egg development by females is postponed,<br />

aga<strong>in</strong> achieves similar ends <strong>in</strong> different species. In several univolt<strong>in</strong>e species of<br />

Cacopsylla sensu stricto, such as C. mali on Malus, C. sorbi on Sorbus <strong>and</strong> C.<br />

peregr<strong>in</strong>a on Crataegus, <strong>and</strong> Psylla species such as P. betulaenanae on Betula <strong>and</strong> P.<br />

borealis on Alnus, adults emerge <strong>in</strong> late spr<strong>in</strong>g but egg development <strong>and</strong> oviposition<br />

on stems <strong>and</strong> branches is delayed until autumn (Britta<strong>in</strong> 1922a; Sutton 1983;<br />

Hodk<strong>in</strong>son <strong>and</strong> Bird <strong>in</strong> press). A possible advantage of postponed oviposition is that<br />

eggs are not exposed to predation or desiccation throughout the summer, although<br />

this must be offset aga<strong>in</strong>st the probability of reduced female survival throughout this<br />

period.<br />

Many psyllid species overw<strong>in</strong>ter as adults, either on their host or on shelter<br />

<strong>plant</strong>s (see later), <strong>and</strong> reproductive diapause ensures that eggs are not matured <strong>and</strong><br />

laid until the follow<strong>in</strong>g spr<strong>in</strong>g when the host becomes suitable for larval<br />

development. Thus, species that move onto shelter <strong>plant</strong>s dur<strong>in</strong>g w<strong>in</strong>ter undergo<br />

an extended diapause that delays sexual maturation of eggs until the flight to <strong>and</strong> the<br />

return from the w<strong>in</strong>ter host are completed. In multivolt<strong>in</strong>e species such as Cacopsylla<br />

pyricola, Cacopsylla pyri <strong>and</strong> Bactericera nigricornis it is the autumn generation that


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

124 I.D. Hodk<strong>in</strong>son<br />

undergoes this reproductive diapause (Nguyen <strong>and</strong> Ledoux 1973; Nguyen 1975;<br />

Mustafa <strong>and</strong> Hodgson 1984; Krysan 1990; Krysan <strong>and</strong> Higbee 1990; Lyoussoufi<br />

et al. 1994; Horton et al. 1998). Many adult overw<strong>in</strong>ter<strong>in</strong>g psyllids, <strong>in</strong>clud<strong>in</strong>g, for<br />

example, several Cacopsylla species on Salix, Livia junci on Juncus, Aphalara species<br />

on Polygonaceae, Euphyllura phillyreae Foerster on Olea <strong>and</strong> Togepsylla matsumurana<br />

on L<strong>in</strong>dera are, however, univolt<strong>in</strong>e (Heslop-Harrison 1949b; Miyatake 1970;<br />

Lauterer 1976, 1979; Prophetou <strong>and</strong> Tzanakakis 1977 (as oliv<strong>in</strong>a); Hill <strong>and</strong><br />

Hodk<strong>in</strong>son 1996; Tzanakakis 2003; Del Bene et al. 1997). They emerge <strong>in</strong> the<br />

previous spr<strong>in</strong>g or early summer, necessitat<strong>in</strong>g an even longer period of reproductive<br />

diapause to ensure host synchrony the subsequent year. Diapause may also play a<br />

role <strong>in</strong> survival dur<strong>in</strong>g summer dry periods. Diaphor<strong>in</strong>a lycii on Sard<strong>in</strong>ia has up to<br />

five generations per annum, but breed<strong>in</strong>g on the host Lycium is concentrated <strong>in</strong>to the<br />

wetter spr<strong>in</strong>g <strong>and</strong> autumn <strong>and</strong> adults undergo reproductive diapause dur<strong>in</strong>g the<br />

<strong>in</strong>terven<strong>in</strong>g summer (Rapisarda 1990a).<br />

Control of diapause<br />

Egg <strong>and</strong> larval diapause<br />

Little is known about the control of diapause <strong>in</strong> psyllid eggs <strong>and</strong> larvae. Among the<br />

few species studied, the univolt<strong>in</strong>e Asphagidella buxi on Buxus overw<strong>in</strong>ters <strong>in</strong><br />

southern France as a first <strong>in</strong>star larva beneath the chorion of the egg from which it<br />

has emerged <strong>in</strong> autumn. September–December represents a period of true diapause<br />

<strong>in</strong>itiated by cues unknown (Nguyen 1968). This is followed by a reactivation phase<br />

that leads up to the moult to second <strong>in</strong>star <strong>in</strong> March. Prolonged exposure to<br />

temperatures between 0–10uC for 10–30 days is necessary to break diapause but once<br />

broken the development rate dur<strong>in</strong>g the reactivation phase is positively correlated<br />

with temperature (Nguyen 1968). Developmental <strong>in</strong>hibition, act<strong>in</strong>g at different<br />

stages of larval development of Stroph<strong>in</strong>gia ericae on Calluna at high or low<br />

altitudes, controls whether the species undergoes a one or two year life <strong>cycle</strong>. At both<br />

altitudes eggs hatch over an extended summer period. In annual lowl<strong>and</strong><br />

populations, which overw<strong>in</strong>ter predom<strong>in</strong>antly <strong>in</strong> <strong>in</strong>star 3, long days (LD18:6 h)<br />

retard development through <strong>in</strong>stars 1–3, <strong>and</strong> development through to adult is<br />

delayed until the follow<strong>in</strong>g spr<strong>in</strong>g. Instars 4 <strong>and</strong> 5 respond positively to elevated<br />

temperature <strong>and</strong> long days, from mid-w<strong>in</strong>ter onwards. In biennial upl<strong>and</strong><br />

populations development is slower at lower temperatures <strong>and</strong> larvae overw<strong>in</strong>ter<br />

predom<strong>in</strong>antly <strong>in</strong> <strong>in</strong>stars 1 <strong>and</strong> 2. Development cont<strong>in</strong>ues the follow<strong>in</strong>g year but is<br />

<strong>in</strong>hibited by short autumn day length (LD 12:12 h) <strong>in</strong> <strong>in</strong>star 5, ensur<strong>in</strong>g synchrony<br />

with<strong>in</strong> the population <strong>and</strong> adult emergence <strong>in</strong> spr<strong>in</strong>g of the follow<strong>in</strong>g year (Miles<br />

et al. 1998; Butterfield et al. 2001).<br />

Adult diapause<br />

In seasonally polymorphic multivolt<strong>in</strong>e species, such as C. pyricola, C. pyri <strong>and</strong> A.<br />

pistaciae, the factors such as photoperiod <strong>and</strong> temperature that <strong>in</strong>duce the autumn<br />

morphological forms are the ones that simultaneously <strong>in</strong>itiate ovarian diapause <strong>in</strong><br />

overw<strong>in</strong>ter<strong>in</strong>g female adults (Wong <strong>and</strong> Madsen 1967; Oldfield 1970; McMullen <strong>and</strong><br />

Jong 1976; Mustafa <strong>and</strong> Hodgson 1984; Mehmejad <strong>and</strong> Copl<strong>and</strong> 2005). Less is<br />

known about the factors <strong>in</strong>duc<strong>in</strong>g ovarian diapause <strong>in</strong> spr<strong>in</strong>g emerg<strong>in</strong>g adults,


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 125<br />

although photoperiod, temperature <strong>and</strong> possibly host-<strong>plant</strong> condition are aga<strong>in</strong><br />

likely to be <strong>in</strong>volved. In Euphyllura stram<strong>in</strong>ea on Olea a mean temperature of .20uC<br />

rather than photoperiod or host-<strong>plant</strong> quality is thought to <strong>in</strong>duce summer diapause<br />

(Mustafa <strong>and</strong> Najar 1985). For overw<strong>in</strong>ter<strong>in</strong>g adult female psyllids ovarian diapause<br />

is usually broken at some po<strong>in</strong>t dur<strong>in</strong>g the w<strong>in</strong>ter to be followed by a period of<br />

quiescence at low temperature when ovarian development cont<strong>in</strong>ues to be depressed<br />

but once spr<strong>in</strong>g temperatures rise then egg development takes place. Adult longevity<br />

dur<strong>in</strong>g this late-w<strong>in</strong>ter period may, however, decl<strong>in</strong>e as temperatures rise (Hill <strong>and</strong><br />

Hodk<strong>in</strong>son 1996).<br />

For species with an extended long ovarian diapause commenc<strong>in</strong>g <strong>in</strong> the previous<br />

spr<strong>in</strong>g, such as Euphyllura phillyreae, then a succession of summer, w<strong>in</strong>ter <strong>and</strong> spr<strong>in</strong>g<br />

conditions are necessary to term<strong>in</strong>ate diapause (Prophetou <strong>and</strong> Tzanakakis 1986;<br />

Tzanakakis 2003). A comb<strong>in</strong>ation of <strong>in</strong>creas<strong>in</strong>g day length coupled with ris<strong>in</strong>g<br />

temperature dur<strong>in</strong>g w<strong>in</strong>ter, however, is still necessary to break ovarian diapause <strong>in</strong><br />

the univolt<strong>in</strong>e Cacopsylla moscovita overw<strong>in</strong>ter<strong>in</strong>g on Salix (Hill <strong>and</strong> Hodk<strong>in</strong>son<br />

1996).<br />

For multivolt<strong>in</strong>e species such as C. pyricola <strong>and</strong> C. pyri the effectiveness of long<br />

photoperiod <strong>in</strong> break<strong>in</strong>g female diapause dim<strong>in</strong>ishes as the w<strong>in</strong>ter progresses <strong>and</strong> the<br />

importance of ris<strong>in</strong>g temperature <strong>in</strong>creases (Nguyen 1964, 1967a, 1967b, 1968, 1975;<br />

Fields <strong>and</strong> Zwick 1975; McMullen <strong>and</strong> Jong 1976; Horton et al. 1998). However, <strong>in</strong><br />

the latter species exposure to temperatures above 25uC breaks diapause irrespective<br />

of photoperiod. The temperature required to term<strong>in</strong>ate ovarian diapause generally<br />

differs both with<strong>in</strong> <strong>and</strong> among species <strong>and</strong> habitats, depend<strong>in</strong>g on the characteristic<br />

temperatures that the species normally experience <strong>and</strong> the relative length of the<br />

w<strong>in</strong>ter period.<br />

By contrast with the reproductively suppressed females, newly emerged males of<br />

the autumn diapaus<strong>in</strong>g form of C. pyricola have active sperm <strong>in</strong> the testes <strong>and</strong><br />

sem<strong>in</strong>al vesicles, but rates of <strong>in</strong>sem<strong>in</strong>ation are depressed at short photoperiod (LD<br />

10:14). Initially, an exposure for 10 days at long photoperiod (LD 16:8) is required to<br />

release sexual activity but the exposure time required decreases as the w<strong>in</strong>ter<br />

progresses (Krysan 1990; Krysan <strong>and</strong> Higbee 1990). Repeated mat<strong>in</strong>g <strong>and</strong><br />

<strong>in</strong>sem<strong>in</strong>ation of females on the overw<strong>in</strong>ter<strong>in</strong>g host is evidenced by the presence of<br />

multiple spermatophores (mean 5.3 to 16.5 per female), with each spematophore<br />

represent<strong>in</strong>g one copulation (Burts <strong>and</strong> Fischer 1967; Krysan 1990; Krysan <strong>and</strong><br />

Higbee 1990). Psyllids collected from conifers on warm days dur<strong>in</strong>g late w<strong>in</strong>ter show<br />

similar promiscuous tendencies suggest<strong>in</strong>g that, for psyllids, the overw<strong>in</strong>ter<strong>in</strong>g<br />

period is far from be<strong>in</strong>g a quiescent <strong>and</strong> relatively unimportant phase of the life<br />

<strong>cycle</strong>. Mat<strong>in</strong>g, however, does not always lead to <strong>in</strong>sem<strong>in</strong>ation (Van den Berg,<br />

Deacon <strong>and</strong> Thomas 1991a).<br />

Mat<strong>in</strong>g, before or immediately after adult diapauses, usually ensures that egg<br />

development <strong>and</strong> maturation are completed ahead of the host <strong>plant</strong> becom<strong>in</strong>g<br />

suitable for oviposition, provided the temperature is sufficiently high. This applies to<br />

both summer diapaus<strong>in</strong>g species such as Euphyllura stram<strong>in</strong>ea <strong>and</strong> w<strong>in</strong>ter diapaus<strong>in</strong>g<br />

species such as Cacopsylla moscovita, Cacopsylla pyricola <strong>and</strong> Euphyllura phillyreae<br />

(Prophetou <strong>and</strong> Tzanakakis 1977, 1986; Mustafa <strong>and</strong> Najar 1985; Lyoussoufi et al.<br />

1994; Hill <strong>and</strong> Hodk<strong>in</strong>son 1996; Horton et al. 1998). Mature eggs of C. moscovita<br />

first developed <strong>in</strong> the field, for example, 6 weeks before the Salix catk<strong>in</strong>s on which<br />

they were to be laid (Hill <strong>and</strong> Hodk<strong>in</strong>son 1996).


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

126 I.D. Hodk<strong>in</strong>son<br />

The larger size of overw<strong>in</strong>ter<strong>in</strong>g morphs of multivolt<strong>in</strong>e psyllid species has<br />

implications for both reproductive performance <strong>and</strong> dispersal ability of <strong>in</strong>dividuals.<br />

There are often major differences <strong>in</strong> the ma<strong>in</strong> parameters of reproduction between<br />

summer <strong>and</strong> post-diapause w<strong>in</strong>ter morphs of the same species, <strong>in</strong>clud<strong>in</strong>g the length<br />

of the pre-reproductive <strong>and</strong> oviposition periods, the mean number of eggs produced<br />

per female <strong>and</strong> adult longevity. For example, optimum mean fecundity <strong>in</strong><br />

Agonoscena pistaceae varied between 893 <strong>and</strong> 1087 eggs per female <strong>in</strong> summer <strong>and</strong><br />

w<strong>in</strong>ter morphs respectively (Mehmejad <strong>and</strong> Copl<strong>and</strong> 2005). The difference is even<br />

more marked <strong>in</strong> pear psyllids with correspond<strong>in</strong>g figures for C. pyricola of 212<br />

(summer) <strong>and</strong> 486 (w<strong>in</strong>ter) <strong>in</strong> Canada <strong>and</strong> 387 <strong>and</strong> 486 <strong>in</strong> South Korea (McMullen<br />

<strong>and</strong> Jong 1977; Butt <strong>and</strong> Stuart 1986; An et al. 1996). C. pyri exhibits similar<br />

<strong>variation</strong> (342 <strong>and</strong> 471) (Nguyen 1970a; Kapatos <strong>and</strong> Stratopoulou 1996).<br />

The optimum temperature for maximum fecundity may also shift between<br />

generations to match the prevail<strong>in</strong>g ambient temperature. In laboratory experiments,<br />

egg output per female of C. pyricola was optimal at 15.6uC <strong>in</strong> the w<strong>in</strong>ter form but<br />

maximal at between 21.1 <strong>and</strong> 26.7uC <strong>in</strong> the summer form (McMullen <strong>and</strong> Jong<br />

1977). The pre-reproductive period is generally shortest <strong>in</strong> summer forms, but<br />

longevity is greatest <strong>in</strong> w<strong>in</strong>ter forms. The net result of these <strong>variation</strong>s is that egg<br />

output tends to be maximized at the start of the host-<strong>plant</strong> grow<strong>in</strong>g season. There<br />

may also be behavioural differences between the morphs, with summer forms<br />

show<strong>in</strong>g a strong ovipositional preference for leaves but w<strong>in</strong>ter forms preferr<strong>in</strong>g<br />

dormant bud-bear<strong>in</strong>g stems (Butt <strong>and</strong> Stuart 1986).<br />

Development of cold-hard<strong>in</strong>ess<br />

Overw<strong>in</strong>ter<strong>in</strong>g psyllids <strong>in</strong> temperate, montane <strong>and</strong> boreal habitats are frequently<br />

exposed, often over long periods, to sub-zero temperatures that may potentially<br />

damage or ultimately freeze the body tissues. Freeze tolerance is unknown among<br />

psyllids <strong>and</strong> survival depends on the ability of <strong>in</strong>dividual species, whether <strong>in</strong> the egg,<br />

larval or adult stage, to resist freez<strong>in</strong>g by lower<strong>in</strong>g the supercool<strong>in</strong>g po<strong>in</strong>t (SCP) of<br />

their body tissues. Adult <strong>and</strong> larval stages may mitigate the effects of low air<br />

temperature to some extent by seek<strong>in</strong>g out overw<strong>in</strong>ter<strong>in</strong>g sites beneath a protective<br />

snow blanket or, <strong>in</strong> the case of adults, on evergreen trees such as conifers (Bird <strong>and</strong><br />

Hodk<strong>in</strong>son 1999).<br />

Eggs<br />

Overw<strong>in</strong>ter<strong>in</strong>g eggs, however, are often exposed on tree branches to the full rigour of<br />

w<strong>in</strong>ter. Those of Cacopsylla mali <strong>in</strong> Norway, for example, display a mean SCP that<br />

varies between 228.0uC <strong>and</strong> 238.8uC, depend<strong>in</strong>g on whether or not eggs have been<br />

acclimated at sub-zero (25uC) temperature (Skanl<strong>and</strong> <strong>and</strong> Sömme 1981). This allows<br />

eggs to avoid freez<strong>in</strong>g, even at the very low w<strong>in</strong>ter temperatures recorded. The lowered<br />

SCP is achieved partly by the synthesis of cryoprotectants such as glycerol with<strong>in</strong> the<br />

egg, with highest concentrations found <strong>in</strong> midw<strong>in</strong>ter (Skanl<strong>and</strong> <strong>and</strong> Sömme 1981).<br />

Larvae<br />

Recorded mean SCPs for overw<strong>in</strong>ter<strong>in</strong>g <strong>in</strong>stars <strong>in</strong>clude Stroph<strong>in</strong>gia ericae<br />

(range5221.6 to 227.3uC), S. c<strong>in</strong>ereae (223.6 to 223.7uC), Craspedolepta nebulosa


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 127<br />

(221.6 to 223.5uC) <strong>and</strong> C. subpunctata (221.8 to 223.5uC) (Cannon 1983; Bird<br />

<strong>and</strong> Hodk<strong>in</strong>son 1999; Hodk<strong>in</strong>son et al. 1999). SCP was slightly lower <strong>in</strong> upl<strong>and</strong><br />

populations of S. ericae than lowl<strong>and</strong> populations, although there was no<br />

difference between the mean SCP of the S. ericae <strong>and</strong> S. c<strong>in</strong>ereae where they<br />

occurred together at the same site, despite the latter species be<strong>in</strong>g more typically<br />

Mediterranean than its congener. Similarly there was little <strong>variation</strong> <strong>in</strong> SCP of<br />

populations of C. nebulosa <strong>in</strong> lowl<strong>and</strong> UK <strong>and</strong> Tromsø, northern Norway. SCPs of<br />

all species studied to date, despite their vary<strong>in</strong>g evolutionary <strong>and</strong> geographical<br />

orig<strong>in</strong>s, fall with<strong>in</strong> a narrow range, suggest<strong>in</strong>g that larvae may posses attributes<br />

that predispose them to surviv<strong>in</strong>g cold. Sap feed<strong>in</strong>g, <strong>in</strong> particular, ensures that icenucleat<strong>in</strong>g<br />

food particles are absent from the gut. There is, however, evidence for<br />

all the aforementioned species <strong>and</strong> for Asphagidella buxi that the SCP should only<br />

be taken to <strong>in</strong>dicate the lower limit of cold-hard<strong>in</strong>ess (Nguyen 1969; Bird <strong>and</strong><br />

Hodk<strong>in</strong>son 1999; Hodk<strong>in</strong>son et al. 1999). In both long <strong>and</strong> short time survival<br />

experiments at sub-zero temperatures, mortality accrues above the SCP as<br />

temperatures fall: mortality is related to the period of exposure as well as to<br />

temperature per se. Furthermore, prior acclimation at high sub-zero temperatures<br />

(25 or210uC) enhances survival of fifth-<strong>in</strong>star A. buxi larvae at 215uC compared<br />

with controls at 215uC. Survival at low temperatures <strong>in</strong> species such as A. buxi<br />

may differ among overw<strong>in</strong>ter<strong>in</strong>g <strong>in</strong>stars, with later <strong>in</strong>stars perform<strong>in</strong>g better.<br />

However, <strong>in</strong> the aformentioned Stroph<strong>in</strong>gia <strong>and</strong> Craspedolepta species, such<br />

differences were not apparent (Bird <strong>and</strong> Hodk<strong>in</strong>son 1999).<br />

Adults<br />

Overw<strong>in</strong>ter<strong>in</strong>g adults of A. buxi <strong>and</strong> Cacopsylla melanoneura are significantly less<br />

cold-hardy than eggs or larvae, as previously discussed. The SCP of C. melanoneura,<br />

for example, varied between 26.8 <strong>and</strong> 214.7uC when acclimated at up to 11 days at<br />

6uC compared with 211.1 to 215uC when acclimated at 27uC (Nguyen 1969,<br />

Jackson et al. 1990). SCP values for adults of the overw<strong>in</strong>ter<strong>in</strong>g form of Cacopsylla<br />

pyricola (218 to 222uC), however, were comparable with larval values cited earlier<br />

<strong>and</strong> Trioza apicalis adults show high survival (71–87%) when exposed to 218uC for<br />

7 days (Rygg 1977; Horton et al. 1996; Lee et al. 1999). Freeze susceptibility,<br />

however, was markedly <strong>in</strong>creased (SCP changed from 215uC to22–15uC) when C.<br />

pyricola was placed <strong>in</strong> contact with surface moisture or bacteria such as<br />

Pseudomonas syr<strong>in</strong>gi, which act as ice-nucleat<strong>in</strong>g agents (Horton et al.1996; Lee<br />

et al. 1999).<br />

One of the mechanisms by which freeze susceptibility can be lessened is for<br />

overw<strong>in</strong>ter<strong>in</strong>g psyllids to reduce freezable body water content before the onset of<br />

w<strong>in</strong>ter, as occurs <strong>in</strong> adult C. melanoneura <strong>and</strong> Euphyllura stram<strong>in</strong>ea (Mustafa 1989b;<br />

Jackson et al. 1990). Psyllids that become active dur<strong>in</strong>g w<strong>in</strong>ter <strong>and</strong> beg<strong>in</strong> fluid<br />

feed<strong>in</strong>g dur<strong>in</strong>g temporary warm spells thus run the risk of lower<strong>in</strong>g their resistance to<br />

cold. Even <strong>in</strong> non-feed<strong>in</strong>g adults, metabolic production of water from stored fat<br />

reserves may aga<strong>in</strong> potentially <strong>in</strong>crease cold susceptibility (Jackson et al. 1990; Hill<br />

<strong>and</strong> Hodk<strong>in</strong>son 1996).<br />

Psyllids have thus evolved a variety of mechanisms to prevent w<strong>in</strong>ter mortality <strong>in</strong><br />

cold environments that appear largely <strong>in</strong>dependent of phylogeny.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

128 I.D. Hodk<strong>in</strong>son<br />

Metabolic <strong>adaptation</strong>s<br />

In pass<strong>in</strong>g through their life <strong>cycle</strong>s, psyllids <strong>in</strong>cur the metabolic cost of respiration:<br />

energy expended <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g body tissue becomes unavailable for growth,<br />

development <strong>and</strong> reproduction. It is thus advantageous to m<strong>in</strong>imize basal<br />

metabolism dur<strong>in</strong>g periods of seasonal <strong>in</strong>activity or growth cessation, especially<br />

when this is l<strong>in</strong>ked to diapause. Metabolic energy expenditure for <strong>in</strong>dividual species,<br />

measured as oxygen uptake, is <strong>in</strong>fluenced significantly by ambient temperature, body<br />

size <strong>and</strong> sex (Krawczyk <strong>and</strong> Migula 1979; Migula et al. 1980).<br />

Adult male psyllids generally tend to be smaller <strong>and</strong> more active than females<br />

<strong>and</strong>, with<strong>in</strong> any given species, have a higher metabolic rate per unit body weight.<br />

Similarly across adults of species represent<strong>in</strong>g the larger psyllid families Psyllidae<br />

<strong>and</strong> Triozidae there is a negative relationship between log respiration <strong>and</strong> log body<br />

mass, <strong>in</strong>dicat<strong>in</strong>g that smaller species tend to respire less ‘‘efficiently’’ than larger<br />

species.<br />

There are, however outliers to this general pattern: Rh<strong>in</strong>ocola aceris <strong>and</strong> Livia<br />

junci (Psyllidae) have much lower rates of metabolism than might be predicted from<br />

their body size, possibly <strong>in</strong>dicat<strong>in</strong>g their more sedentary nature (Migula et al. 1980).<br />

When measured over the range 15–25uC an array of species belong<strong>in</strong>g to Aphalara,<br />

Craspedolepta, Rh<strong>in</strong>ocola, Livia, Psyllopsis, Aryta<strong>in</strong>a, Psylla, Cacopsylla, Trioza,<br />

Trichochermes <strong>and</strong> Bactericera, genera with differ<strong>in</strong>g degrees of phylogenetic<br />

relatedness <strong>and</strong> contrast<strong>in</strong>g life history patterns, all showed significantly <strong>in</strong>creas<strong>in</strong>g<br />

respiration with temperature. The rate of <strong>in</strong>crease, however, varied significantly<br />

among species, result<strong>in</strong>g <strong>in</strong> considerable differences <strong>in</strong> metabolism among species at<br />

a given ambient temperature.<br />

While the species sample size is small, <strong>and</strong> the temperature range exam<strong>in</strong>ed<br />

rather high, there is clear evidence for differences <strong>in</strong> metabolic rate among <strong>in</strong>dividual<br />

species with different life history <strong>adaptation</strong>s (Migula et al. 1980). For example,<br />

widely distributed multivolt<strong>in</strong>e species such as Bactericera nigricornis, Trioza urticae<br />

<strong>and</strong> Cacopsylla pyri tend to have higher metabolic rates than their univolt<strong>in</strong>e<br />

congeners (Migula et al. 1980). Similarly, Aphalara species tend to have higher<br />

metabolism than the related Craspedolepta, which may reflect differences <strong>in</strong> their<br />

speed of development follow<strong>in</strong>g overw<strong>in</strong>ter<strong>in</strong>g as adults <strong>and</strong> larvae respectively.<br />

Among several species overw<strong>in</strong>ter<strong>in</strong>g on conifers, such as Aphalara exilis <strong>and</strong><br />

Bactericera nigricornis, metabolism is higher by between 20–38% dur<strong>in</strong>g spr<strong>in</strong>g<br />

reproductive activity than <strong>in</strong> autumn before overw<strong>in</strong>ter<strong>in</strong>g (Migula et al. 1980).<br />

Phenological synchrony with host-<strong>plant</strong> growth <strong>and</strong> host quality<br />

Under both temperate <strong>and</strong> tropical conditions a high degree of phenological<br />

synchrony between psyllid <strong>and</strong> host-<strong>plant</strong> growth is required for successful life <strong>cycle</strong><br />

completion. Among temperate psyllids that overw<strong>in</strong>ter as eggs, such as many<br />

Cacopsylla, Psylla <strong>and</strong> Psyllopsis species, egg hatch is generally timed to co<strong>in</strong>cide<br />

with bud burst, although the precise mechanisms ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g this synchrony are<br />

poorly understood (Nguyen 1970b; Lal 1934). In Cacopsylla mali <strong>and</strong> C. peregr<strong>in</strong>a,<br />

for example, on Malus <strong>and</strong> Crataegus respectively, larvae hatch with<strong>in</strong> a few days of<br />

the first buds break<strong>in</strong>g <strong>and</strong> move on to the newly develop<strong>in</strong>g <strong>plant</strong> tissues, especially<br />

the flower clusters (Przybylski 1970; Jonsson 1983; Sutton 1984; Lal 1934). This<br />

synchrony is generally strictly ma<strong>in</strong>ta<strong>in</strong>ed among different sites <strong>and</strong> years


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 129<br />

(Przybylski 1970). The importance of such close synchrony for the psyllids is<br />

emphasized <strong>in</strong> Crataegus by the rapid decl<strong>in</strong>e <strong>in</strong> the quality of their food resource,<br />

with soluble nitrogen concentrations of shoots <strong>and</strong> leaf clusters fall<strong>in</strong>g from around<br />

0.5 mg N dry weight 21 at bud burst to less than 0.1 mg N dry weight 21 1 month later<br />

(Sutton 1984). Tim<strong>in</strong>g of egg hatch <strong>in</strong> Homotoma ficus on Ficus appears to determ<strong>in</strong>e<br />

subsequent larval abundance (Gençer et al. 2007). Cacopsylla ambigua on Salix, <strong>in</strong><br />

contrast to the aformentioned species, is unusual <strong>in</strong> that eggs hatch well ahead of<br />

bud burst <strong>and</strong> the larvae rema<strong>in</strong> quiescent beneath the bud scales (Lauterer 1999).<br />

Non-gall-form<strong>in</strong>g univolt<strong>in</strong>e psyllids that overw<strong>in</strong>ter as adults <strong>and</strong> which already<br />

conta<strong>in</strong> fully developed eggs by early spr<strong>in</strong>g, such as Cacopsylla moscovita mentioned<br />

earlier, have the advantage of oviposit<strong>in</strong>g directly onto newly emerg<strong>in</strong>g foliage as<br />

soon as it appears. This is a more precise procedure with less natural wastage than<br />

one <strong>in</strong>volv<strong>in</strong>g small newly emerged larvae seek<strong>in</strong>g out actively grow<strong>in</strong>g tissues. Eggs<br />

laid, however, may then take further time to hatch. Cacopsylla aff<strong>in</strong>is <strong>and</strong> C.<br />

melanoneura larvae, for example, emerge 7–14 days after C. peregr<strong>in</strong>a on the same<br />

host (Sutton 1984). This direct spr<strong>in</strong>g oviposition strategy is employed by a diversity<br />

of species <strong>in</strong>clud<strong>in</strong>g Gyropsylla ilicis on Ilex, several Aphalara species on<br />

Polygonaceae <strong>and</strong> is probably best exemplified by Cacopsylla species feed<strong>in</strong>g on<br />

willow (Salix) (Mead 1983; Hodk<strong>in</strong>son et al. 1979; Hill <strong>and</strong> Hodk<strong>in</strong>son 1995; Hill<br />

et al. 1998; Hodk<strong>in</strong>son 1997).<br />

Many of these latter species develop on female Salix catk<strong>in</strong>s <strong>and</strong> life <strong>cycle</strong><br />

completion with<strong>in</strong> a narrow phenological w<strong>in</strong>dow is vital. Willow catk<strong>in</strong>s are of<br />

short persistence, develop<strong>in</strong>g early <strong>in</strong> the year before dry<strong>in</strong>g out <strong>and</strong> dehisc<strong>in</strong>g once<br />

the seed has developed. Catk<strong>in</strong> ‘‘life’’ for six species of willow <strong>in</strong> northern Alaska<br />

varied between 37–43 days, depend<strong>in</strong>g on species. The associated psyllids, Cacopsylla<br />

palmeni <strong>and</strong> C. phlebophylla developed from egg to adult with<strong>in</strong> 36–41 days, an<br />

exceed<strong>in</strong>gly tight phenological schedule (Hodk<strong>in</strong>son et al. 1979). Development rates<br />

of psyllid <strong>and</strong> host are, nevertheless, <strong>in</strong>dependently temperature-dependent. Later<br />

studies of C. palmeni, C. prop<strong>in</strong>qua <strong>and</strong> C. brunneipennis along altitud<strong>in</strong>al transects <strong>in</strong><br />

Norway showed that life <strong>cycle</strong> completion was determ<strong>in</strong>ed by the available thermal<br />

budget <strong>and</strong> its differential effect on psyllid <strong>and</strong> host development rates (Hill et al.<br />

1995). Each psyllid had a wide distribution along the transect but failed to complete<br />

its life <strong>cycle</strong> at a characteristic upper altitud<strong>in</strong>al limit because host growth became<br />

too slow to support development or the psyllid developed too slowly to exploit the<br />

phenological w<strong>in</strong>dow available. The upper limit for C. palmeni was, however,<br />

significantly higher than that for C. brunnepennis (Hill et al. 1995). Soluble nitrogen<br />

concentrations with<strong>in</strong> catk<strong>in</strong>s decl<strong>in</strong>ed slightly with <strong>in</strong>creas<strong>in</strong>g altitude but the<br />

decl<strong>in</strong>e over time dur<strong>in</strong>g catk<strong>in</strong> development at a given altitude was far steeper,<br />

imply<strong>in</strong>g a rapidly narrow<strong>in</strong>g time w<strong>in</strong>dow for psyllid development as catk<strong>in</strong>s aged<br />

(Hill et al. 1998; Hodk<strong>in</strong>son et al. 2001).<br />

MacLean (1983) extended these ideas to propose a simple temperature-driven<br />

phenological model of psyllid <strong>and</strong> host-<strong>plant</strong> development on a wider geographical<br />

scale. The latitud<strong>in</strong>al distribution of nearly all Alaskan psyllid species is more<br />

restricted than that of their host <strong>plant</strong>s (MacLean <strong>and</strong> Hodk<strong>in</strong>son 1980). The model<br />

demonstrates how a psyllid’s northern limit might be set by the failure of its host<br />

<strong>plant</strong> to develop <strong>and</strong> grow sufficiently quickly to support life <strong>cycle</strong> completion with<strong>in</strong><br />

one season. The southern limit, by contrast is determ<strong>in</strong>ed by the <strong>plant</strong> develop<strong>in</strong>g too<br />

quickly to permit psyllid development through to maturity. Furthermore, psyllids


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

130 I.D. Hodk<strong>in</strong>son<br />

may, because of phenological contstra<strong>in</strong>ts, exploit different host <strong>plant</strong>s <strong>in</strong> separate<br />

parts of their range or even exploit different tissues on the same host species. The<br />

Greenl<strong>and</strong> willow psyllid Cacopsylla groenl<strong>and</strong>ica, <strong>in</strong> the relatively benign climate of<br />

southern Greenl<strong>and</strong>, reproduces on four different Salix species, develop<strong>in</strong>g on both<br />

catk<strong>in</strong>s <strong>and</strong> grow<strong>in</strong>g shoot tips (Hodk<strong>in</strong>son 1997). Further northwards the thermal<br />

budget available for development decreases <strong>and</strong> the psyllid life <strong>cycle</strong> can be<br />

completed only on the catk<strong>in</strong>s of one species, Salix glauca, despite other species often<br />

be<strong>in</strong>g present.<br />

Among temperate species that overw<strong>in</strong>ter as larvae on evergreen <strong>plant</strong>s, such as<br />

Stroph<strong>in</strong>gia ericae on Calluna <strong>and</strong> Asphagidella buxi on Buxus, phenological<br />

synchrony is probably less important: once diapause is broken: the psyllids simply<br />

recommence development as the host <strong>plant</strong> resumes growth <strong>in</strong> the spr<strong>in</strong>g<br />

(Hodk<strong>in</strong>son 1973b; Nguyen 1968). Consequently, by contrast with the aforementioned<br />

Salix-feed<strong>in</strong>g species, S. ericae is less dependent on precise host synchrony<br />

<strong>and</strong> occupies the full altitud<strong>in</strong>al range of Calluna (Hodk<strong>in</strong>son et al. 1999).<br />

Several psyllids, particularly Craspedolepta species, feed <strong>and</strong> overw<strong>in</strong>ter as larvae<br />

on perennial herbaceous <strong>plant</strong> species that die back each year <strong>and</strong> pass the w<strong>in</strong>ter<br />

with the perennat<strong>in</strong>g buds usually present as small rosettes at the soil surface<br />

(Hemicryptophytes) or on tubers (Geophytes). These <strong>plant</strong>s, frequently associated<br />

with xerophytic conditions, often grow rapidly <strong>and</strong> flower early <strong>in</strong> the year,<br />

present<strong>in</strong>g a time-limited opportunity for psyllid exploitation. Overw<strong>in</strong>ter<strong>in</strong>g sites of<br />

the associated psyllid larvae are usually at or below the soil surface on the rosette<br />

buds (Craspedolepta nervosa), on f<strong>in</strong>e roots (C. nebulosa <strong>and</strong> C. subpunctata) orat<br />

the base of old woody stems (C. eas) (Wheeler 1994; Bird <strong>and</strong> Hodk<strong>in</strong>son 2005). In<br />

spr<strong>in</strong>g late <strong>in</strong>star larvae migrate to the rapidly grow<strong>in</strong>g shoot <strong>and</strong> quickly complete<br />

development. Larvae of the next generation then migrate back down to the<br />

overw<strong>in</strong>ter<strong>in</strong>g site before enter<strong>in</strong>g a long larval diapause, usually before midsummer.<br />

Close phenological synchrony is thus ma<strong>in</strong>ta<strong>in</strong>ed <strong>and</strong> long exposure to dry<br />

summer conditions avoided.<br />

Many species of psyllid <strong>in</strong> tropical <strong>and</strong> subtropical regions do not undergo an<br />

extended diapause <strong>and</strong> reproduction is cont<strong>in</strong>uous. However, many of their host<br />

species do not produce new shoots <strong>and</strong> leaves cont<strong>in</strong>uously but put out flushes of<br />

new growth <strong>in</strong> response to <strong>variation</strong>s <strong>in</strong> ambient temperature <strong>and</strong> moisture<br />

availability. Flush<strong>in</strong>g <strong>cycle</strong>s may be irregular <strong>and</strong> non-synchronous with<strong>in</strong> species<br />

<strong>and</strong> may vary over short geographical distances. Even with<strong>in</strong> <strong>in</strong>dividual host <strong>plant</strong>s<br />

there may be marked differences <strong>in</strong> leaf quality between sun <strong>and</strong> shade leaves.<br />

Diclidophlebia xuani on Ric<strong>in</strong>odendron, for example, tends to atta<strong>in</strong> higher<br />

population density on unshaded leaf shoots whereas psyllid galls on Persea tend<br />

to be more numerous on shade leaves (Aléné et al. 2006; Leege 2006). This aga<strong>in</strong><br />

presents synchrony problems <strong>in</strong> psyllids that need to seek out suitable tissues on<br />

flush<strong>in</strong>g trees on which to complete their life <strong>cycle</strong>.<br />

The relationship between the flush<strong>in</strong>g <strong>cycle</strong> of tree <strong>and</strong> shrub species <strong>and</strong> the<br />

breed<strong>in</strong>g success of their associated psyllid species has been widely documented.<br />

Good examples <strong>in</strong>clude Diclidophlebia harrisoni on Triplochiton, two Phytolyma<br />

species on Milicia, Diaphor<strong>in</strong>a citri <strong>and</strong> Trioza erytreae on Citrus, D. lycii on Lycium,<br />

Acizzia uncatoides on Albizzia, several Cardiasp<strong>in</strong>a <strong>and</strong> Glycaspis species on<br />

Eucalyptus, Mesohomotoma tessmanni on Theobroma, Protyora <strong>and</strong> Diclidophlebia<br />

species on Argyrodendron, <strong>and</strong> Heteropsylla cubana on Leucaena (Moore 1961; Clark


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 131<br />

1962; White 1967; Catl<strong>in</strong>g 1969a; Entwistle 1972; Osisanya 1974a, 1974b; Bigornia<br />

<strong>and</strong> Obana 1974; Clark <strong>and</strong> Dallwitz 1975; Leeper <strong>and</strong> Beardsley 1976; Lakra et al.<br />

1983; Cobb<strong>in</strong>ah 1986; van den Berg <strong>and</strong> Villiers 1987; Rapisarda 1990a; Basset<br />

1991). Similar examples have also been observed <strong>in</strong> milder temperate regions<br />

<strong>in</strong>clud<strong>in</strong>g Ctenaryta<strong>in</strong>a eucalypti on <strong>plant</strong>ed Eucalyptus <strong>in</strong> Europe <strong>and</strong> Trioza<br />

vitreoradiata on Pittosporum <strong>in</strong> New Zeal<strong>and</strong> (Carter 1949; Purvis et al. 2002).<br />

In both the aforementioned set of species <strong>and</strong> those non-tropical multivolt<strong>in</strong>e<br />

species with a w<strong>in</strong>ter diapause <strong>and</strong> several summer generations, such as Cacopsylla<br />

pyricola, successful host-<strong>plant</strong> usage depends on females correctly discern<strong>in</strong>g the<br />

physiological state <strong>and</strong> condition of the host-<strong>plant</strong> tissue at the time of oviposition<br />

(White 1970a; Nguyen 1972b; Moran <strong>and</strong> Buchan 1975; Butt <strong>and</strong> Stuart 1986; Stuart<br />

et al. 1989; Horton 1990a, b; Horton <strong>and</strong> Krysan 1990, 1991; van den Berg,<br />

Anderson, et al. 1991; Mensah <strong>and</strong> Madden 1992a; Puterka et al. 1993; Luft <strong>and</strong><br />

Pa<strong>in</strong>e 1997). Selection must favour young grow<strong>in</strong>g tissues rather than older mature<br />

leaves <strong>and</strong> shoots. For certa<strong>in</strong> pest species, such as Cacopsylla pyricola on Pyrus, for<br />

which detailed <strong>in</strong>formation is available on the temperature dependence of diapause<br />

term<strong>in</strong>ation, pre-reproductive period, oviposition period <strong>and</strong> development rates,<br />

phenological models can be used to predict psyllid population growth characteristic<br />

<strong>and</strong> densities for the follow<strong>in</strong>g summer period (Schaub et al. 2005). This can help<br />

determ<strong>in</strong>e when subsequent population control measures should be applied.<br />

Many species of psyllid persist with<strong>in</strong> enclosed or roll-leaf galls on the mature<br />

leaves of their host throughout much of the year. Even <strong>in</strong> these species, however, the<br />

tim<strong>in</strong>g of oviposition <strong>and</strong> subsequent gall <strong>in</strong>itiation, to correspond with the flush<strong>in</strong>g<br />

<strong>cycle</strong> of new growth, is important (Raman 1994, 2003). Gall <strong>in</strong>duction usually<br />

<strong>in</strong>volves the active modification of growth <strong>in</strong> young rapidly grow<strong>in</strong>g <strong>plant</strong> tissue <strong>and</strong><br />

<strong>plant</strong>s are thus most susceptible to gall<strong>in</strong>g at time of flush<strong>in</strong>g (Kumar et al. 1981).<br />

Subsequent growth of <strong>plant</strong> tissue through to maturity would normally correspond<br />

with a period of decl<strong>in</strong><strong>in</strong>g quality for psyllid feed<strong>in</strong>g that is overcome by the<br />

metabolic changes <strong>in</strong>duced with<strong>in</strong> the leaf as a result of psyllid feed<strong>in</strong>g that allow<br />

cont<strong>in</strong>ued development with<strong>in</strong> the gall.<br />

The close correspondence between new tissue growth <strong>and</strong> gall <strong>in</strong>itiation, <strong>and</strong><br />

<strong>in</strong>creas<strong>in</strong>g gall mortality on matur<strong>in</strong>g leaves, has been observed <strong>in</strong> many psyllids<br />

represent<strong>in</strong>g several different families, <strong>in</strong>clud<strong>in</strong>g Pachypsylla species on Celtis,<br />

Phacopteron lentig<strong>in</strong>osum on Garuga, Schedotrioza <strong>and</strong> Glycaspis species on<br />

Eucalyptus, Trioza simplifica on Term<strong>in</strong>alia, Trioza gigantea on Vacc<strong>in</strong>ium,<br />

Calophya spp <strong>and</strong> Ta<strong>in</strong>arys sordida on Sch<strong>in</strong>us <strong>and</strong> Baccharopelma baccaridis on<br />

Baccaris (Smith <strong>and</strong> Taylor 1953; Walton 1960; K<strong>and</strong>asamy 1980; K<strong>and</strong>asamy <strong>and</strong><br />

Krishnan 1981; Taylor 1987; Espirito-Santo <strong>and</strong> Wilson Fern<strong>and</strong>ez 1998, 2002; Saiz<br />

<strong>and</strong> Nunez 2000). In many of these species adult emergence from the gall is timed to<br />

correspond with a predictable seasonal flush of new growth <strong>and</strong> often <strong>in</strong>volves a<br />

larval or adult diapause designed to ma<strong>in</strong>ta<strong>in</strong> host-<strong>plant</strong> synchrony.<br />

A similar situation perta<strong>in</strong>s <strong>in</strong> several leaf pit-gall form<strong>in</strong>g species of Trioza<br />

<strong>in</strong>clud<strong>in</strong>g T. camphorae, T. c<strong>in</strong>namomi, T. machilicola, T. obsoleta <strong>and</strong> T. ilic<strong>in</strong>a <strong>in</strong><br />

which oviposition occurs on new flush spr<strong>in</strong>g growth <strong>and</strong> larval diapause<br />

corresponds with summer/w<strong>in</strong>ter leaf maturity (Sor<strong>in</strong> 1959a; Miyatake 1968a,1969;<br />

Vaishampayan <strong>and</strong> Bahadur 1980; Rapisarda <strong>and</strong> Belcari 1999). Synchrony <strong>and</strong><br />

survival may be further enhanced <strong>in</strong> species such as Pachypsylla venusta on Celtis<br />

<strong>and</strong> Trioza tabebuiae on Tabebuia <strong>in</strong> which the presence of galls prevents galled


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

132 I.D. Hodk<strong>in</strong>son<br />

leaves be<strong>in</strong>g shed dur<strong>in</strong>g normal autumn abscission <strong>and</strong> thus rema<strong>in</strong><strong>in</strong>g on the host<br />

tree (Smith <strong>and</strong> Taylor 1953; De Queiroz Santana <strong>and</strong> Burckhardt 2001). However,<br />

contrary to this trend, Celtis laevigata displays early abscission of leaves with<br />

Pachypsylla galls <strong>and</strong> this may serve as a <strong>plant</strong> defence mechanism (Stromgren <strong>and</strong><br />

Lanciani 2001). Even <strong>in</strong> tropical tree species, <strong>in</strong>clud<strong>in</strong>g Milicia excelsa, staggered loss<br />

of leaves by adult trees allows small populations of associated psyllids (e.g.<br />

Phytolyma fusca) to survive as galls through the dry season when the majority of<br />

trees are leafless (White 1967).<br />

Development on different hosts<br />

The relative success of a psyllid species <strong>in</strong> complet<strong>in</strong>g its life history may vary<br />

significantly among different potential host species or even among different<br />

provenances with<strong>in</strong> the same host species. Breed<strong>in</strong>g success is determ<strong>in</strong>ed by the<br />

<strong>in</strong>itial attractiveness of a particular host, the extent to which oviposition occurs <strong>and</strong><br />

the survival of these eggs through to adult emergence.<br />

In large-scale host-<strong>plant</strong> trials psyllids are often found to oviposit on a much<br />

wider range of <strong>plant</strong> species than those on which they can successfully complete<br />

development (Baloch <strong>and</strong> Ghaffar 1984). Prosopidopsylla flava, for example,<br />

oviposited on 57 of 58 host species (Legum<strong>in</strong>osae <strong>and</strong> Rosaceae) tested but<br />

developed successfully on just four species of Prosopis (Legum<strong>in</strong>osae) (van Kl<strong>in</strong>ken<br />

2000). Similarly, Boreioglycaspis melaleucae laid eggs on 27 out of 43 species of<br />

Myrtaceae but developed successfully on just two or three species of Melaleuca<br />

(Purcell et al. 1997; W<strong>in</strong>eriter et al. 2003).<br />

Different species of <strong>plant</strong> with<strong>in</strong> a given host range often vary <strong>in</strong> their<br />

susceptibility to the associated psyllid species, rang<strong>in</strong>g across a spectrum from highly<br />

susceptible to near resistant. Examples <strong>in</strong>clude Glycaspis brimblecombei on<br />

Eucalyptus spp, Ctenaryta<strong>in</strong>a thysanura on Boronia spp Cacopsylla pyricola on<br />

Pyrus <strong>and</strong> Heteropsylla cubana on Leucaena spp (Williams et al. 1963; Westigard<br />

et al. 1970; Mensah <strong>and</strong> Madden 1991; Brennan, Hrusa, et al. 2001; Mullen <strong>and</strong><br />

Shelton 2003; Pasqual<strong>in</strong>i et al. 2006; Center et al. 2007).<br />

Similar <strong>variation</strong> <strong>in</strong> susceptibility also occurs across provenances, cultivars <strong>and</strong><br />

varieties with<strong>in</strong> s<strong>in</strong>gle species of host <strong>plant</strong>, as <strong>in</strong> Phytolyma lata on Milicia excelsa,<br />

Acizzia melanocephala on Acacia nilotica, Cacopsylla pyricola <strong>and</strong> C. pyri on Pyrus<br />

communis, Heteropsylla cubana on Leucaena leucocephala <strong>and</strong> Bactericera cockerelli<br />

on Lycopersicon (Harris 1973; Chang <strong>and</strong> Philogene 1976; Butt et al. 1989; Cobb<strong>in</strong>ah<br />

<strong>and</strong> Wagner 1995; Berrada et al. 1995; Baldassari et al. 1996; Puterka 1997; Mullen<br />

<strong>and</strong> Shelton 2003; F<strong>in</strong>lay-Doney <strong>and</strong> Walter 2005; Liu <strong>and</strong> Trumble 2006;<br />

Pasqual<strong>in</strong>i et al. 2006; Palmer <strong>and</strong> Witt 2006). Such <strong>variation</strong> forms the basis for<br />

selective breed<strong>in</strong>g for host-<strong>plant</strong> resistance aga<strong>in</strong>st pest psyllid species or identify<strong>in</strong>g<br />

varieties of <strong>in</strong>vasive weed species susceptible to biological control (e.g. Nguyen <strong>and</strong><br />

Messi 1973; Lahiri <strong>and</strong> Biswas 1980; Palmer <strong>and</strong> Witt 2006; Center et al. 2006).<br />

Sometimes the with<strong>in</strong>-species <strong>variation</strong> <strong>in</strong> <strong>plant</strong> susceptibility may be as great or<br />

greater than the between-species <strong>variation</strong>. Asphagidella buxi, for <strong>in</strong>stance, breeds<br />

naturally on Buxus sempervirens var arborescens but not on var rotundifolia, yet it<br />

breeds successfully on B. macrophylla (Nguyen 1965). Comparable apparent<br />

anomalies are found <strong>in</strong> the host range of Heteropsylla cubana (Mullen <strong>and</strong> Shelton<br />

2003). Differences <strong>in</strong> susceptibility may even occur among <strong>plant</strong>s of the same


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 133<br />

provenance. The most strik<strong>in</strong>g example occurs <strong>in</strong> species of Myrtaceae that display<br />

heteroblasty, strong morphological differentiation between juvenile <strong>and</strong> mature<br />

foliage related to tree age (Brennan, We<strong>in</strong>baum, et al. 2001). Ctenaryta<strong>in</strong>a eucalypti,<br />

for example, oviposits <strong>and</strong> develops on juvenile shoots of Eucalyptus globulus<br />

whereas C. spatulata develops primarily on the mature foliage (Brennan <strong>and</strong><br />

We<strong>in</strong>baum 2001a, 2001b, 2001c).<br />

Variation <strong>in</strong> psyllid development success among host species <strong>and</strong> cultivars can<br />

usually be expla<strong>in</strong>ed by differences <strong>in</strong> the <strong>in</strong>itial attractiveness of the foliage,<br />

differential oviposition rates, larval survival rates <strong>and</strong> larval development period.<br />

Diaphor<strong>in</strong>a citri, when tested us<strong>in</strong>g four host Citrus species, developed most<br />

successfully on C. paradisi as a result of higher fecundity, faster development time<br />

<strong>in</strong> the f<strong>in</strong>al <strong>in</strong>star <strong>and</strong> higher larval survival (Tsai <strong>and</strong> Liu 2000; Nava et al.<br />

2007). Heteropsylla cubana developed more successfully on Leucaena leucocephala<br />

than on L. coll<strong>in</strong>sii <strong>in</strong> which slower colonization resulted <strong>in</strong> 46–63% fewer eggs<br />

be<strong>in</strong>g laid, a 67% reduction <strong>in</strong> larval survival <strong>and</strong> the production of smaller,<br />

probably less fecund adults (Lapis <strong>and</strong> Borden 1993a, 1993b). The host preference<br />

hierarchy <strong>in</strong> Bactericera cockerelli on Lycopersicon is similarly based on rates of<br />

oviposition, development <strong>and</strong> survival, although these parameters may differ<br />

between native <strong>and</strong> <strong>in</strong>vasive populations of the psyllid (Liu <strong>and</strong> Trumble 2004,<br />

2005, 2006, 2007). There are, however, apparently anomalous examples <strong>in</strong> which a host<br />

<strong>plant</strong> that is most attractive for oviposition is not the most suitable for larval<br />

development. Trioza erytreae, for example, oviposits preferentially on Citrus limon but<br />

the development period is shorter <strong>and</strong> the adult size atta<strong>in</strong>ed is greater on <strong>in</strong>digenous<br />

Rutaceae such as Vepris <strong>and</strong> Clausena (Moran 1968a, 1968b).<br />

The precise mechanisms that determ<strong>in</strong>e the preference hierarchy of host <strong>plant</strong>s<br />

appear to vary among psyllid species. In Cacopsylla pyricola, when offered three host<br />

<strong>plant</strong> species <strong>in</strong> the laboratory, host acceptance for oviposition appeared determ<strong>in</strong>ed<br />

by <strong>in</strong>teractions among <strong>plant</strong> species, female egg load <strong>and</strong> the time for which the<br />

psyllid was deprived of a suitable host (Horton <strong>and</strong> Krysan 1991). Cues received<br />

dur<strong>in</strong>g prob<strong>in</strong>g <strong>and</strong> settl<strong>in</strong>g released oviposition but egg lay<strong>in</strong>g ceased earlier on<br />

lower hierarchy species, suggest<strong>in</strong>g that further cues received dur<strong>in</strong>g oviposition were<br />

also <strong>in</strong>volved <strong>in</strong> prolong<strong>in</strong>g egg lay<strong>in</strong>g.<br />

Other factors implicated <strong>in</strong> establish<strong>in</strong>g preferences <strong>in</strong>clude host species<br />

phenology (Euphyllura phillyreae), amount of glaucous wax on the leaf surface<br />

(Glycaspis brimblecombei), physical hardness of the term<strong>in</strong>al shoot (Ctenaryta<strong>in</strong>a<br />

thysanura), leaf colour (Mesohomotoma tessmanni <strong>and</strong> G. brimblecombei), the<br />

presence of attractive chemicals such as caryophyllene (Heteropsylla cubana) <strong>and</strong> low<br />

concentrations of repellent chemicals such as phenolics (Cacopsylla pyricola),<br />

terpenoids (Boreioglycaspsis melaleucae) or glucos<strong>in</strong>olates (undescribed ‘‘Aphalara’’<br />

sp.) (Moran <strong>and</strong> Brown 1973; Louda <strong>and</strong> Rodman 1983; Messi 1983a; Ullman <strong>and</strong><br />

McLean 1988a; Mensah <strong>and</strong> Madden 1991; Luft <strong>and</strong> Pa<strong>in</strong>e 1998; Luft et al. 2001;<br />

Brennan <strong>and</strong> We<strong>in</strong>baum 2001a, 2001c, 2001d; F<strong>in</strong>lay-Doney <strong>and</strong> Walter 2005;<br />

Wheeler <strong>and</strong> Ordung 2005; Prophetou 1997). In Bactericera cockerelli on<br />

Lysopersicon jump<strong>in</strong>g <strong>and</strong> leaf avoidance behaviour was greatest on the most<br />

resistant cultivars, suggest<strong>in</strong>g active repellence <strong>and</strong> not just an antixenosis response<br />

(Liu <strong>and</strong> Trumble 2004). A s<strong>in</strong>gle gene (Mi-1.2) from wild tomato, Solanum<br />

peruvianum, confers resistance to B. cockerelli <strong>in</strong> some commercial tomato varieties<br />

(Casteel et al. 2007).


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

134 I.D. Hodk<strong>in</strong>son<br />

Host-<strong>plant</strong> amelioration, disease transmission <strong>and</strong> endosymbionts<br />

Host <strong>plant</strong>s, particularly when leaves are mature, provide a low quality source of<br />

soluble nutrients, especially available nitrogen <strong>in</strong> the form of am<strong>in</strong>o acids, for sapfeed<strong>in</strong>g<br />

psyllids. This frequently results, as noted earlier, <strong>in</strong> lower rates of<br />

reproduction, slower development <strong>and</strong> reduced longevity on mature versus young<br />

or senesc<strong>in</strong>g foliage (Nguyen 1972b). Psyllids, however, often display mechanisms<br />

through which they enhance, ameliorate or partly circumvent the condition of their<br />

mature host <strong>plant</strong> for larval growth <strong>and</strong> development (White 1970b).<br />

Feed<strong>in</strong>g <strong>in</strong>volves the <strong>in</strong>jection of saliva <strong>and</strong> its associated enzymes, such as<br />

amylase, <strong>in</strong>to the host, most frequently <strong>in</strong>to the phloem <strong>and</strong> its associated tissues or<br />

<strong>in</strong>to leaf mesophyll (Pussard 1939; Williams <strong>and</strong> Benson 1966). This may or may not<br />

result <strong>in</strong> wider salivary translocation with<strong>in</strong> the <strong>plant</strong>. Species of Cardiasp<strong>in</strong>a,<br />

Glycaspis, Creiis <strong>and</strong> Lasiopsylla on Eucalyptus blakeleyi <strong>and</strong> E. melliodora <strong>in</strong>duce<br />

localized symptoms of vary<strong>in</strong>g severity <strong>in</strong> phloem tissues that resemble premature<br />

senescence (Woodburn <strong>and</strong> Lewis 1973). In mesophyll-feed<strong>in</strong>g species such as<br />

Cardiasp<strong>in</strong>a retator on Eucalyptus camaldulensis feed<strong>in</strong>g similarly produces cell<br />

degeneration that resembles senescence <strong>and</strong> <strong>in</strong>volves the mobilization of lipids,<br />

am<strong>in</strong>o acids <strong>and</strong> soluble prote<strong>in</strong>s (Crawford <strong>and</strong> Wilkens 1996).<br />

Some psyllids, <strong>in</strong>clud<strong>in</strong>g known pest species such as Trioza apicalis (on carrot)<br />

<strong>and</strong> Bactericera cockerelli (on potato <strong>and</strong> tomato), <strong>in</strong>duce a wider systemic<br />

phytotoxaemia with<strong>in</strong> their host, result<strong>in</strong>g <strong>in</strong> severe growth distortion, cellular<br />

necrosis <strong>and</strong> yellow<strong>in</strong>g of leaves (Richards <strong>and</strong> Blood 1933; Eyer <strong>and</strong> Crawford<br />

1933; Eyer 1937; Sanford 1952; Laska 1964; Markkula <strong>and</strong> Laurema 1971), which<br />

aga<strong>in</strong> resemble senescence, with the associated mobilization of soluble nitrogen <strong>and</strong><br />

<strong>in</strong>creas<strong>in</strong>g the availability of nutrients to the psyllid (Laurema 1989). This may, as <strong>in</strong><br />

T. apicalis, be accompanied by an <strong>in</strong>crease <strong>in</strong> leaf monoterpenes concentrations <strong>and</strong><br />

result <strong>in</strong> reduced root growth (Niss<strong>in</strong>en et al. 2005, 2007). It may also be associated<br />

with the transmission of <strong>plant</strong> diseases, particularly mycoplasmas (see next section).<br />

Gall formation, which is largely outside the scope of this review, similarly br<strong>in</strong>gs<br />

about improvements <strong>in</strong> host tissue quality for feed<strong>in</strong>g psyllid larvae through the<br />

creation of metabolic s<strong>in</strong>ks with<strong>in</strong> the <strong>plant</strong> tissue (e.g.Raman 1987; Rajadurai<br />

et al.1990; Mani <strong>and</strong> Raman 1994; Yang et al. 2006).<br />

Enhanced amelioration may occur when psyllids feed <strong>in</strong> groups rather than<br />

s<strong>in</strong>gly. Cacopsylla pyri on Pyrus communis <strong>and</strong> Cardiasp<strong>in</strong>a densitexta on Eucalyptus<br />

fasciculosa, for example, showed higher reproduction, greater longevity or enhanced<br />

survival with <strong>in</strong>creas<strong>in</strong>g feed<strong>in</strong>g group density up to an optimum (White 1970b;<br />

Nguyen 1971). Galls of Pachypsylla celtidismamma on Celtis similarly grew larger<br />

when more than one gall was present per leaf (Heard <strong>and</strong> Buchanan 1998). However,<br />

feed<strong>in</strong>g by some species at high densities, such as Boreioglycaspis melaleucae on<br />

Melaleuca may promote <strong>in</strong>creased leaf abscision <strong>and</strong> a decl<strong>in</strong>e <strong>in</strong> host quality<br />

(Morath et al. 2006). Similarly, feed<strong>in</strong>g-<strong>in</strong>duced changes <strong>in</strong> the concentrations of leaf<br />

nutrients, chlorophyll, m<strong>in</strong>erals <strong>and</strong> phenolics may lead to an ultimate reduction <strong>in</strong><br />

food quality for Cacopsylla species on Pyrus (Scutareanu <strong>and</strong> Loxdale 2006).<br />

Significance of disease transmission<br />

Several psyllids are known vectors of <strong>plant</strong> diseases <strong>and</strong> as such are regarded as<br />

noxious pests. However, psyllids often show close association with these pathogens.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 135<br />

When viewed from the psyllids’ perspective, the association may prove highly<br />

beneficial by br<strong>in</strong>g<strong>in</strong>g about pathogen-<strong>in</strong>duced changes <strong>in</strong> the host <strong>plant</strong> that makes<br />

it more acceptable or more nutritious for psyllid development (We<strong>in</strong>traub <strong>and</strong><br />

Beanl<strong>and</strong> 2006). Pathogens may, for example, <strong>in</strong>duce physiological changes<br />

resembl<strong>in</strong>g the premature senescence noted previously or produce reduced levels<br />

of defensive chemicals. However, our knowledge of these psyllid–pathogen<br />

relationships is conf<strong>in</strong>ed to just a few crop <strong>plant</strong>s but similar pathogens occur<br />

widely <strong>in</strong> wild hosts where the <strong>in</strong>sect–vector relationships rema<strong>in</strong> to be established<br />

(We<strong>in</strong>traub <strong>and</strong> Beanl<strong>and</strong> 2006).<br />

The ma<strong>in</strong> <strong>plant</strong> diseases associated with <strong>and</strong> transmitted by psyllids (Table 2) are<br />

viruses, <strong>and</strong> bacteria with<strong>in</strong> three ma<strong>in</strong> groups, the liberibacters, the phytoplasmas<br />

(previously known as mycoplasma-type organisms) <strong>and</strong> fireblight. Several of the<br />

causative agents are taxonomically poorly def<strong>in</strong>ed, be<strong>in</strong>g identified solely from their<br />

RNA, <strong>and</strong> are <strong>in</strong>cluded <strong>in</strong> the C<strong>and</strong>idatus category of the bacterial classification. The<br />

disease organisms are <strong>in</strong>itially <strong>in</strong>gested dur<strong>in</strong>g psyllid feed<strong>in</strong>g <strong>and</strong> are then later re<strong>in</strong>jected<br />

back <strong>in</strong>to other <strong>plant</strong>s with the psyllid saliva. Phytoplasmas <strong>and</strong><br />

liberibacters <strong>in</strong> particular are restricted to the phloem sieve tubes <strong>and</strong> circulate with<br />

the <strong>plant</strong> sap, mak<strong>in</strong>g them ideal c<strong>and</strong>idates for transmission by psyllids. With<strong>in</strong> the<br />

<strong>in</strong>sect they cross the gut wall, multiply <strong>in</strong> the haemolymph <strong>and</strong> migrate <strong>in</strong>to the<br />

salivary gl<strong>and</strong>s ready for onward transmission <strong>in</strong> the saliva (Hib<strong>in</strong>o et al. 1971; Chen<br />

et al. 1973; Cous<strong>in</strong> <strong>and</strong> Boudon-Padieu 2002; Hung et al. 2004; We<strong>in</strong>traub <strong>and</strong><br />

Beanl<strong>and</strong> 2006).<br />

Both larvae <strong>and</strong> adults appear capable of transmitt<strong>in</strong>g phytoplasmas (Carraro,<br />

Loi, et al. 1998; Tedeschi <strong>and</strong> Alma 2004). Some evidence exists for transovariole<br />

transfer of these bacteria between female psyllids <strong>and</strong> their offspr<strong>in</strong>g <strong>in</strong> psyllids such<br />

as for Phytoplasma prunorum <strong>in</strong> Cacopsylla pruni (Tedeschi et al. 2006). However,<br />

Liberibacter asiaticum <strong>in</strong> Diaphor<strong>in</strong>a citri <strong>and</strong> Phytoplasma mali <strong>in</strong> Cacopylla<br />

melanoneura, by contrast, do not appear to be vertically transmitted between<br />

generations (Hung et al. 2004; Tedeschi et al. 2006). Interest<strong>in</strong>gly, <strong>in</strong>fection of potato<br />

by a virus provides cross-protection aga<strong>in</strong>st psyllid yellows phytoplasma transmitted<br />

by Bactericera cockerelli (Staples 1968).<br />

Psyllids may also benefit from a general weaken<strong>in</strong>g of the <strong>plant</strong> caused by sooty<br />

moulds grow<strong>in</strong>g on the larval excreta or honeydew deposited on the leaf or shoot<br />

surface. Examples <strong>in</strong>clude Cacopsylla pyricola on Pyrus <strong>and</strong> Ctenaryta<strong>in</strong>a thysanura<br />

on Boronia (Sav<strong>in</strong>elli <strong>and</strong> Tetrault 1984; Mensah <strong>and</strong> Madden 1992b).<br />

Significance of endosymbionts<br />

Endosymbiotic bacteria also play a more direct role <strong>in</strong> the nutrition of psyllids,<br />

which <strong>in</strong> common with aphids, whiteflies <strong>and</strong> pseudococcids, support such bacteria<br />

with<strong>in</strong>, or associated with, specialized cells (bacteriocytes) that aggregate to form a<br />

bacteriome with<strong>in</strong> the <strong>in</strong>sect’s body cavity (Tarsia <strong>in</strong> Curia 1934; Chang <strong>and</strong><br />

Musgrave 1969; Waku <strong>and</strong> Endo 1987; Fukatsu <strong>and</strong> Nikoh 1998; Thao et al. 2000a).<br />

Phloem sap, on which many psyllids feed, is rich <strong>in</strong> sugars but poor <strong>in</strong> am<strong>in</strong>o acids<br />

<strong>and</strong> it is thought that the endosymbionts synthesize essential am<strong>in</strong>o acids <strong>and</strong><br />

vitam<strong>in</strong>s such as riboflav<strong>in</strong> that then become available to the psyllid (Thao et al.<br />

2000a; Thao et al. 2001).


Table 2. List of <strong>plant</strong> diseases transmitted by psyllid vectors.<br />

136 I.D. Hodk<strong>in</strong>son<br />

Organism Disease Psyllid vector Reference<br />

Bacteria<br />

C<strong>and</strong>idatus status<br />

Liberibacter asiaticus Citrus Huanglongb<strong>in</strong>g<br />

Diaphor<strong>in</strong>a citri Halbert <strong>and</strong> Manjunath (2004), Davis et al. (2005),<br />

(<strong>in</strong> Asia <strong>and</strong> Florida) (HLB)5Green<strong>in</strong>g Disease<br />

Das et al. (2007)<br />

Liberibacter africanus Citrus Huanglongb<strong>in</strong>g<br />

Trioza erytreae Van den Berg et al. (1987), Anon. (1988)<br />

(<strong>in</strong> Africa)<br />

(HLB)5Green<strong>in</strong>g Disease<br />

Liberibacter americanus Citrus Huanglongb<strong>in</strong>g<br />

Diaphor<strong>in</strong>a citri Teixeira et al. (2005)<br />

(<strong>in</strong> S. America)<br />

(HLB)5Green<strong>in</strong>g Disease<br />

Phytoplasma Peach Yellow Leaf Roll (PYLR) Cacopsylla pyricola Purcell <strong>and</strong> Suslow (1984), Blomquist <strong>and</strong> Kirkpatrick<br />

(2002)<br />

Phytoplasma prunorum European Stone Fruit Yellows Cacopsylla pruni Carraro, Osler, et al. (1998), Jarausch et al. (2001),<br />

(ESFY)5Apricot Chlorotic<br />

Carraro et al. (2004), Labonne <strong>and</strong> Lichou (2004),<br />

Leafroll<br />

Delic et al. (2005)<br />

Phytoplasma mali Apple Proliferation (AP) Cacopsylla picta Fris<strong>in</strong>ghelli et al. (2000), Jarausch et al. (2003),<br />

C. melanoneura<br />

Tedeschi et al. (2002), Tedeschi <strong>and</strong> Alma (2004)<br />

Phytoplasma pyri (<strong>in</strong> Pear Decl<strong>in</strong>e (PD) Cacopsylla pyricola Jensen et al. (1964), Ullman <strong>and</strong> MacLean (1988b),<br />

Europe <strong>and</strong> N.America)<br />

C. pyri<br />

Davies et al. (1992), Giunchedi et al. (1994),<br />

Carraro et al. (1998), Ben Khalifa et al. (2007)<br />

Phytoplasma (<strong>in</strong> Taiwan) Pear Decl<strong>in</strong>e (PDTW) Cacopsylla qianli Liu et al. (2007)<br />

C. ch<strong>in</strong>ensis<br />

Phytoplasma Carrot Stolbur Bactericera trigonica Font et al. (1999), We<strong>in</strong>traub <strong>and</strong> Beanl<strong>and</strong> (2006)<br />

Léclant et al. (1974) (misidentification as B.<br />

nigricornis?)<br />

‘Rickettsia type organism’<br />

Wissadula Proliferation (WP) Paracarsidara dugesii (Löw) Dabek (1983) (as concolor)<br />

Family<br />

Enterobacteriaceae<br />

Erw<strong>in</strong>ia amylovora Fireblight of orchard trees Cacopsylla pyricola Wilde et al. (1971), Hildebr<strong>and</strong> et al. (2000)<br />

Psyllids generally<br />

Virus<br />

(SB26/29) Potato Rugose Stunt<strong>in</strong>g Virus Russelliana solanicola Tenorio et al. (2003)<br />

Undeterm<strong>in</strong>ed<br />

Zebra chip disease Bactericera cockerelli Munyaneza et al. (2007)<br />

Downloaded By: [University of Florida] At: 15:14 17 August 2010


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 137<br />

The psyllid endosymbionts fall <strong>in</strong>to two ma<strong>in</strong> groups, primary (P) <strong>and</strong> secondary<br />

(S). The P endosymbionts, found with<strong>in</strong> the bacteriocytes, are genetically similar<br />

throughout the psyllids, suggest<strong>in</strong>g that they have colonized the psyllids just once,<br />

<strong>and</strong> then co-evolved with their hosts (Thao et al. 2000b). They are def<strong>in</strong>ed as a s<strong>in</strong>gle<br />

taxon C<strong>and</strong>idatus Carsonella ruddii (Thao et al. 2001; Spauld<strong>in</strong>g <strong>and</strong> von Dohlen<br />

2001). The S endosymbionts, by contrast, are present <strong>in</strong> cells associated with the<br />

bacteriocytes <strong>and</strong> appear to be multiply derived, consist<strong>in</strong>g of several dist<strong>in</strong>ct groups<br />

with<strong>in</strong> the Eubacteriaceae (Spauld<strong>in</strong>g <strong>and</strong> von Dohlen 1998; Thao et al. 2001;<br />

Fukatsu <strong>and</strong> Nikoh 1998). Their function <strong>in</strong> psyllid nutrition is less clear than for the<br />

P endosymbionts (Thao et al. 2001). Secondary endosymbiont <strong>in</strong>fection levels may<br />

vary greatly among populations, as <strong>in</strong> Glycaspis brimblecombei, where <strong>in</strong>fection<br />

appears more associated with levels of parasitism than with nutrition (Hansen et al.<br />

2007).<br />

Dispersal<br />

Effective dispersal is a key element <strong>in</strong> the life history of psyllids irrespective of the<br />

habitat with<strong>in</strong> which they are found. In <strong>in</strong>sects that are capable of fly<strong>in</strong>g only limited<br />

distances under their own power, it serves several important purposes. In particular,<br />

it enables a species to track the chang<strong>in</strong>g spatial distribution of its host <strong>plant</strong> <strong>and</strong>/or<br />

the temporal availability of the food resource that it relies on for breed<strong>in</strong>g success. It<br />

allows psyllids to move between different host-<strong>plant</strong> species <strong>and</strong> to exploit non-host<strong>plant</strong><br />

species as overw<strong>in</strong>ter<strong>in</strong>g sites <strong>and</strong> it permits species to escape the effects of<br />

strong <strong>in</strong>traspecific competition <strong>and</strong> natural enemies. Among economically<br />

important species, such as Trioza erytreae, it expedites rapid colonization of<br />

cultivated Citrus hosts (metapopulation s<strong>in</strong>ks) by psyllids orig<strong>in</strong>at<strong>in</strong>g on <strong>in</strong>digenous<br />

host <strong>plant</strong>s with<strong>in</strong> the surround<strong>in</strong>g area (metapopulation sources) (van den Berg,<br />

Deacon <strong>and</strong> Steenekamp 1991).<br />

Dispersal distance<br />

There is strong evidence to suggest that, as a group, the psyllids are highly effective<br />

dispersers over both short <strong>and</strong> long distances, although <strong>in</strong> almost all cases dispersal<br />

is w<strong>in</strong>d assisted. Dispers<strong>in</strong>g psyllids belong<strong>in</strong>g to the genera Cardiasp<strong>in</strong>a,<br />

Ctenaryta<strong>in</strong>a, Eucalyptolyma, Psylla sensu lato <strong>and</strong> Bactericera have been taken <strong>in</strong><br />

drogue nets towed beh<strong>in</strong>d light aircraft <strong>in</strong> Australia, the Galapagos Isl<strong>and</strong>s <strong>and</strong> the<br />

USA or <strong>in</strong> kite mounted nets <strong>in</strong> the Canary Isl<strong>and</strong>s (Glick 1939; White 1970a, 1973;<br />

Ashmole <strong>and</strong> Ashmole 1988; Peck 1994). Psyllids form a major component of the<br />

<strong>in</strong>sect flotsom found on the surface of the sea at sites around the UK coastl<strong>in</strong>e <strong>and</strong><br />

off the west coast of the USA (Cheng <strong>and</strong> Birch 1978; Hardy <strong>and</strong> Cheng 1986).<br />

Species belong<strong>in</strong>g to several genera <strong>in</strong>clud<strong>in</strong>g Aphalara, Craspedolepta, Livia,<br />

Cacopsylla, Euphalerus sensu lato, Acizzia, Bactericera <strong>and</strong> Trioza are a common<br />

component of aerial deposition on high altitude snowfields <strong>in</strong> California <strong>and</strong><br />

Tenerife (Papp <strong>and</strong> Johnson 1979) or early successional volcanic areas <strong>in</strong> the Azores<br />

(Ashmole et al. 1996). Thirty-seven species have been recorded as vagrants <strong>in</strong> yellow<br />

water traps <strong>in</strong> northern Italy <strong>and</strong> several, <strong>in</strong>clud<strong>in</strong>g Cacopsylla melanoneura, C.<br />

aff<strong>in</strong>is, Bactericera albiventris <strong>and</strong> Trioza urticae, overw<strong>in</strong>ter on P<strong>in</strong>us <strong>in</strong> northern<br />

Engl<strong>and</strong> at a distance of around 13km from the nearest host <strong>plant</strong> (Hodk<strong>in</strong>son 1972,


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

138 I.D. Hodk<strong>in</strong>son<br />

1983c). Trioza apicalis similarly moves up to 1km on to its overw<strong>in</strong>ter<strong>in</strong>g shelter<br />

<strong>plant</strong>s (Kristoffersen <strong>and</strong> Anderbrant 2007).<br />

Tropical forest species may also move considerable distances. The coastal<br />

mangrove-feed<strong>in</strong>g Limbopsylla lagunculariae has been taken <strong>in</strong>l<strong>and</strong> <strong>in</strong> central<br />

Panama, many kilometres from the coast (Brown <strong>and</strong> Hodk<strong>in</strong>son 1988).<br />

Populations of Boreioglycaspis melaleucae, newly <strong>in</strong>troduced for the biological<br />

control of Melaeuca, spread at a rate of up to 10km per year. Further testimony to<br />

the rapid dispersal powers of psyllids is the time (,10 years) <strong>in</strong> which Heteropsylla<br />

cubana spread from an orig<strong>in</strong> <strong>in</strong> Central America to colonize virg<strong>in</strong> <strong>plant</strong><strong>in</strong>gs of its<br />

forage legume host Leucaenca leucocephala <strong>in</strong> the Pacific, Asia, Australia <strong>and</strong> Africa<br />

(Hodk<strong>in</strong>son 1988b).<br />

Experimental studies suggest that <strong>in</strong> species such as Aryta<strong>in</strong>illa spartiophila,<br />

Acizzia russelli <strong>and</strong> Trioza erytreae females disperse further than males, as evidenced<br />

by an <strong>in</strong>crease <strong>in</strong> the female: male sex ratio with <strong>in</strong>creas<strong>in</strong>g distance, 90–1500m<br />

depend<strong>in</strong>g on species, from the source (Dempster 1968; Webb 1977; van den Berg<br />

<strong>and</strong> Deacon 1988). However, this would be an <strong>in</strong>effectual strategy <strong>in</strong> species with a<br />

post-dispersal ovarian diapause. For psyllids liv<strong>in</strong>g on short herbaceous <strong>plant</strong>s, such<br />

as Trioza urticae, the effective dispersal boundary layer, with<strong>in</strong> which most directed<br />

dispersal movements take place, is probably less than 1m (Omole 1980). It is the<br />

<strong>in</strong>dividuals that stray above this height that are more likely to be w<strong>in</strong>d dispersed.<br />

Adaptive significance of dispersal<br />

Multivolt<strong>in</strong>e psyllids often show differences <strong>in</strong> dispersal behaviour among<br />

generations. Summer <strong>and</strong> autumn emerg<strong>in</strong>g adults of Cardiasp<strong>in</strong>a densitexta <strong>in</strong><br />

Australia, for example tend to show what White (1970c) calls ‘‘concentrative’’<br />

behaviour. Adults blown out of a given Eucalyptus tree usually fly back <strong>in</strong>to the<br />

same tree, <strong>and</strong> appear to neglect adjacent trees with significantly lower populations.<br />

This results <strong>in</strong> some trees support<strong>in</strong>g high psyllid densities while other nearby trees<br />

have low-density populations. By contrast, long-distance ‘‘dispersive’’ behaviour is a<br />

characteristic feature of the spr<strong>in</strong>g generation that has developed at shorter day<br />

length <strong>and</strong> lower temperatures. This parallels certa<strong>in</strong> multivolt<strong>in</strong>e north temperate<br />

species, such as Cacopsylla pyricola <strong>in</strong> which the w<strong>in</strong>ter morph, with its relatively<br />

longer w<strong>in</strong>gs produced under short day length, shows significantly greater dispersive<br />

behaviour than the spr<strong>in</strong>g or summer generation (Hodgson <strong>and</strong> Mustafa 1984;<br />

Horton, Burts, et al. 1994). The actual duration of the flight activity period is similar<br />

<strong>in</strong> the two morphs but flight frequency is much greater <strong>in</strong> the former (Horton <strong>and</strong><br />

Lewis 1996). The actual rate of dispersal of these w<strong>in</strong>ter forms out of pear orchards<br />

tends to be correlated with the rate of leaf fall, lower temperature <strong>and</strong> density (Fye<br />

1983; Horton, Burts, et al. 1994).<br />

Univolt<strong>in</strong>e species mov<strong>in</strong>g onto overw<strong>in</strong>ter<strong>in</strong>g shelter <strong>plant</strong>s, by comparison,<br />

exhibit both an autumn <strong>and</strong> a spr<strong>in</strong>g period of peak dispersal as they move to <strong>and</strong><br />

from their w<strong>in</strong>ter host. Where significant dispersal occurs <strong>in</strong> summer generations, as<br />

<strong>in</strong> Aryta<strong>in</strong>illa spartiophila, Acizzia russellae <strong>and</strong> Trioza erytreae it is usually<br />

associated with <strong>in</strong>terspecific competition aris<strong>in</strong>g from high populations <strong>and</strong> decl<strong>in</strong><strong>in</strong>g<br />

host-<strong>plant</strong> favourability or <strong>in</strong>creas<strong>in</strong>g pressure from natural enemies (Dempster<br />

1968; Webb 1977; van den Berg, Anderson, et al. 1991). Psyllids disperse to new,<br />

more favourable <strong>plant</strong>s.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 139<br />

Dispersal opens up the opportunity for host-<strong>plant</strong> alternation <strong>in</strong> multivolt<strong>in</strong>e<br />

psyllids but this behaviour, so typical of many aphid species, is rare <strong>in</strong> psyllids, with<br />

just two known examples. Bactericera crithmi on Malta undergoes a w<strong>in</strong>ter<br />

generation on Ferula dur<strong>in</strong>g the period when its normal host Crithmum is dormant<br />

(Mifsud 1997). It moves back to Crithmum <strong>in</strong> spr<strong>in</strong>g. Similarly, the vector of psyllid<br />

yellows disease of potato, Bactericera cockerelli overw<strong>in</strong>ters as source populations<br />

on Lycium <strong>and</strong> other wild Solanaceae <strong>in</strong> the warmer southern USA. In spr<strong>in</strong>g there is<br />

a general northwards w<strong>in</strong>d-assisted dispersal of adults to establish s<strong>in</strong>k populations<br />

breed<strong>in</strong>g on potato (Solanum) <strong>in</strong> regions far to the north (Knowlton 1933; Knowlton<br />

<strong>and</strong> Thomas 1934; Swenk <strong>and</strong> Tate 1940; Wallis 1946, 1955).<br />

Dispersal allows psyllids to track spatial <strong>and</strong> temporal changes <strong>in</strong> the availability<br />

of host-<strong>plant</strong> tissues suitable for growth <strong>and</strong> development. Many psyllids require<br />

flushes of young, rapidly grow<strong>in</strong>g leaf tissues on which to breed. As these leaves<br />

mature they become unsuitable for psyllid development <strong>and</strong> the psyllid must seek out<br />

new breed<strong>in</strong>g sites. This is most acute where <strong>in</strong>dividuals of particular tree species drop<br />

leaves completely but asynchronously. In some Australian species, such as Cardiasp<strong>in</strong>a<br />

densitexta <strong>and</strong> C. albitextura, this can result <strong>in</strong> progressive waves of psyllid outbreak<br />

<strong>and</strong> decl<strong>in</strong>e spread<strong>in</strong>g across the l<strong>and</strong>scape as psyllids track the flush<strong>in</strong>g pattern of<br />

their host Eucalyptus (Morgan 1984). This precludes the need for diapaus<strong>in</strong>g stages.<br />

The problem may be particularly acute for tropical ra<strong>in</strong>forest psyllids where <strong>in</strong>dividual<br />

host <strong>plant</strong>s are usually sparsely distributed with<strong>in</strong> a highly species diverse tree<br />

community <strong>and</strong> often flush asynchronously. A high level of dispersive behaviour by<br />

psyllids is necessary constantly to track the spatial <strong>and</strong> temporal availability of their<br />

food resource (Brown <strong>and</strong> Hodk<strong>in</strong>son 1988; Hodk<strong>in</strong>son <strong>and</strong> Casson 2000).<br />

Even <strong>in</strong> temperate regions <strong>in</strong>dividual host <strong>plant</strong>s may vary markedly <strong>in</strong><br />

suitability between successive years. Many species of Rosaceae, for example, exhibit<br />

biennial or irregular patterns of flower<strong>in</strong>g by <strong>in</strong>dividual <strong>plant</strong>s that may affect their<br />

suitability as psyllid hosts (Sutton 1984). It is unsurpris<strong>in</strong>g, therefore, that highly<br />

dispersive psyllids like Cacopsylla melanoneura <strong>and</strong> C. aff<strong>in</strong>is are associated with one<br />

such rosaceous <strong>plant</strong> species, namely Crataegus (Sutton 1984).<br />

Overw<strong>in</strong>ter<strong>in</strong>g on shelter <strong>plant</strong>s<br />

Many temperate species of psyllids are known to disperse to, <strong>and</strong> overw<strong>in</strong>ter as<br />

adults on, evergreen shelter <strong>plant</strong>s before mov<strong>in</strong>g back onto their true host <strong>in</strong> the<br />

spr<strong>in</strong>g (Reuter 1909; McAtee 1915; Hodk<strong>in</strong>son 1972; Ha˚gvar <strong>and</strong> Ha˚gvar 1975;<br />

Kristoffersen <strong>and</strong> Anderbr<strong>and</strong>t 2007) (Table 1). Such hosts are usually conifers,<br />

primarily species of P<strong>in</strong>us, Picea, Abies, Taxus, Tsuga, Cupressus <strong>and</strong> Juniperus but<br />

may also <strong>in</strong>clude thorny evergreen shrubs such as Ulex. InTrioza apicalis there<br />

appears to be a dist<strong>in</strong>ct order of preference, with Picea support<strong>in</strong>g higher<br />

populations than P<strong>in</strong>us or Juniperus (Kristoffersen <strong>and</strong> Anderbr<strong>and</strong>t 2007). The<br />

period spent on shelter <strong>plant</strong>s, which usually matches periods when the host is<br />

dormant or unfavourable for psyllid development, is normally accompanied by an<br />

ovarian diapause. This adaptive overw<strong>in</strong>ter<strong>in</strong>g strategy is found <strong>in</strong> almost all<br />

temperate psyllid families but is most frequent among species of Aphalara, Livia,<br />

Cacopsylla, Bactericera, Phylloplecta <strong>and</strong> Trioza. It is, however, recorded more<br />

sporadically <strong>in</strong> a wider range of genera <strong>in</strong>clud<strong>in</strong>g Pachypsylla, Calophya,<br />

Camarotoscena, Togepsylla, Ligustr<strong>in</strong>ia, Cyamophila, Livilla <strong>and</strong> Epitrioza (Table 1).


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

140 I.D. Hodk<strong>in</strong>son<br />

Psyllids on conifers are easily caught <strong>and</strong> observed whereas those overw<strong>in</strong>ter<strong>in</strong>g<br />

<strong>in</strong> leaf litter or grass tussocks are much less obvious. Careful studies on some species<br />

such as Bactericera perrisi, Aphalara avicularis, A. exilis <strong>and</strong> A. longicaudata show<br />

that <strong>in</strong>dividuals overw<strong>in</strong>ter both on conifers <strong>and</strong> <strong>in</strong> litter, perhaps rais<strong>in</strong>g the<br />

question for other species of what actual proportion of the overw<strong>in</strong>ter<strong>in</strong>g population<br />

is on conifers (Lauterer 1976, 1982, 1991). Furthermore, several species of Aphalara,<br />

Cacopsylla <strong>and</strong> Trioza, known to overw<strong>in</strong>ter on conifers, can also be overw<strong>in</strong>tered<br />

successfully <strong>in</strong> grass tussocks ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> pots (Heslop-Harrison 1937). These<br />

<strong>in</strong>dividuals tend to be much lighter coloured than those spend<strong>in</strong>g w<strong>in</strong>ter on conifers<br />

(Heslop-Harrison, 1937).<br />

One question that has not been fully answered is whether overw<strong>in</strong>ter<strong>in</strong>g psyllids<br />

feed on conifers or other shelter <strong>plant</strong>s. Experiments <strong>in</strong> our laboratory us<strong>in</strong>g P<strong>in</strong>us<br />

shoots labelled with C14 <strong>and</strong> P32 repeatedly failed to provide def<strong>in</strong>itive evidence for<br />

w<strong>in</strong>ter feed<strong>in</strong>g by Cacopsylla melanoneura, although the ma<strong>in</strong>tenance of body<br />

condition <strong>and</strong> levels of hydration suggest that some feed<strong>in</strong>g must take place (Jackson<br />

et al. 1990). There is, however, some evidence that overw<strong>in</strong>ter<strong>in</strong>g Cacopsylla pyricola<br />

may feed on transitory hosts such as Prunus persica (Ullman <strong>and</strong> McLean 1988b).<br />

Mate f<strong>in</strong>d<strong>in</strong>g <strong>and</strong> aggregation on host <strong>plant</strong>s<br />

Small dispersive <strong>in</strong>sects, such as psyllids, are faced with the problem of f<strong>in</strong>d<strong>in</strong>g<br />

suitable mates, either on their breed<strong>in</strong>g or overw<strong>in</strong>ter<strong>in</strong>g host <strong>plant</strong>s. Species are<br />

frequently found as highly-aggregated, mixed-sex colonies on the tissues of their<br />

host. Several are known to emit species- <strong>and</strong> gender-specific stridulation calls or to<br />

make drumm<strong>in</strong>g sound or vibrations with their tarsi on leaf surfaces (Campbell 1964;<br />

Ossiannilsson 1950; Heslop-Harrison 1961; KL Taylor 1985; Carver 1987;<br />

Tishechk<strong>in</strong> 1989, 2005, 2007; Percy et al. 2006), which are thought to aid mate<br />

location <strong>and</strong> aggregation. There is also some evidence for chemical mechanisms<br />

lead<strong>in</strong>g to aggregation <strong>and</strong> mate f<strong>in</strong>d<strong>in</strong>g. Male Cacopsylla pyricola are attracted to<br />

volatile chemicals emanat<strong>in</strong>g from pear shoots with receptive post-diapause females<br />

present or from shoots that have recently supported populations of such females.<br />

The precise nature of the chemical stimulus is unknown <strong>and</strong> it rema<strong>in</strong>s to be<br />

determ<strong>in</strong>ed whether the chemicals <strong>in</strong>volved orig<strong>in</strong>ate from the psyllid, the host <strong>plant</strong>,<br />

or a comb<strong>in</strong>ation of both (Horton et al. 2007; Horton <strong>and</strong> L<strong>and</strong>olt 2007). However,<br />

<strong>in</strong> some other species, such as Cardiasp<strong>in</strong>a albitextura, host-<strong>plant</strong> tissues previously<br />

occupied by psyllids appear less favourable for oviposition than formerly<br />

unfrequented sites (Clark 1962, 1963b).<br />

Variation <strong>in</strong> fecundity among species<br />

It might be predicted that the fecundity of psyllid species is related to their type of<br />

life <strong>cycle</strong>, with species hav<strong>in</strong>g larvae liv<strong>in</strong>g <strong>in</strong> protective galls or lerps produc<strong>in</strong>g<br />

fewer eggs than those liv<strong>in</strong>g on exposed grow<strong>in</strong>g tips. There is, however, surpris<strong>in</strong>gly<br />

little pattern <strong>in</strong> the fecundity of psyllid species (Table 3). Experimentally measured<br />

fecundity differs widely, even among species with<strong>in</strong> the same genus or family. Where<br />

repeated measures have been made on the same species <strong>in</strong> different localities or at<br />

different times, such as <strong>in</strong> Trioza erytreae, Heteropsylla cubana or Diaphor<strong>in</strong>a citri,<br />

mean fecundity may differ by a factor of two or more (Table 3). Furthermore, there<br />

is little to suggest major differences <strong>in</strong> fecundity related to taxonomic position.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 141<br />

Table 3. Fecundity of selected psyllid species on preferred host, illustrat<strong>in</strong>g <strong>variation</strong> <strong>in</strong><br />

potential reproductive output across the group. Numbers given are mean <strong>and</strong> maximum egg<br />

production per female under non-limited experimental conditions.<br />

Family Species Maximum Mean Reference<br />

Psyllidae Aphalara<br />

c. 300 Lauterer (1982)<br />

polygoni<br />

(as rumicicola)<br />

Paurocephala<br />

psylloptera<br />

640 {<br />

Hsieh <strong>and</strong> Chen (1977)<br />

Diclidophlebia<br />

eastopi<br />

502 Osisanya (1974a)<br />

Diclidophlebia<br />

harrisoni<br />

131 Osisanya (1974a)<br />

Diclidophlebia<br />

xuani<br />

532–758 Aléné et al. (2005a)<br />

Ctenaryta<strong>in</strong>a<br />

86–92 Mensah <strong>and</strong> Madden<br />

thysanura<br />

(1992a, 1993b)<br />

Agonoscena<br />

893–1087 Mehrnejad <strong>and</strong> Copl<strong>and</strong><br />

pistaceae<br />

(2005)<br />

Gyropsylla<br />

spegazz<strong>in</strong>iana<br />

180 108* Leite <strong>and</strong> Zanol (2001)<br />

Diaphor<strong>in</strong>a citri 807 630 {<br />

Hussa<strong>in</strong> <strong>and</strong> Nath (1927)<br />

Diaphor<strong>in</strong>a citri 748 Liu <strong>and</strong> Tsai (2000)<br />

Diaphor<strong>in</strong>a citri 858 Tsai <strong>and</strong> Liu (2000)<br />

Diaphor<strong>in</strong>a citri 700 266 Mangat (1966)<br />

Diaphor<strong>in</strong>a citri 520 210–300 P<strong>and</strong>e (1971)<br />

Cacopsylla<br />

melanoneura<br />

116 84 Domenich<strong>in</strong>i (1967)<br />

Cacopsylla<br />

pyricola<br />

664 Burts <strong>and</strong> Fischer (1967)<br />

Cacopsylla<br />

pyricola<br />

445 McMullen <strong>and</strong> Jong (1977)<br />

Cacopsylla<br />

pyricola<br />

665 Rasmy <strong>and</strong> MacPhee (1970)<br />

Cacopsylla<br />

pyricola<br />

387–486 An et al. (1996)<br />

Cacopsylla pyri 47–406 Kapatos <strong>and</strong> Stratopoulou<br />

(1996)<br />

Cacopsylla pyri 2527 Lyoussoufi et al. (1988)<br />

Cacopsylla pyri 471 Nguyen (1970a)<br />

Cacopsylla pyri 588 Nguyen (1973)<br />

Acizzia<br />

uncatoides<br />

463 {<br />

Koehler et al. (1966)<br />

Acizzia<br />

986 Madubuny <strong>and</strong> Koehler<br />

uncatoides<br />

(1974)<br />

Aryta<strong>in</strong>a genistae 962 435 Watmough (1968a)<br />

Aryta<strong>in</strong>illa<br />

spartiophila<br />

354 93 Watmough (1968a)<br />

Heteropsylla<br />

cubana<br />

758 Patil et al. (1994)


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

142 I.D. Hodk<strong>in</strong>son<br />

Table 3. (Cont<strong>in</strong>ued.)<br />

Family Species Maximum Mean Reference<br />

Heteropsylla<br />

cubana<br />

857 394 Takara et al. (1990)<br />

Heteropsylla<br />

texana<br />

100 Donnelly (2002)<br />

‘Psylla’ isitis 828 479 {<br />

Grove <strong>and</strong> Gosh (1914)<br />

Spondyliaspididae Euphalerus<br />

clitoriae<br />

1148 Junior et al. (2005)<br />

Cardiasp<strong>in</strong>a<br />

albitextura<br />

220 124* Clark (1962, 1963b)<br />

Cardiasp<strong>in</strong>a<br />

albitextura<br />

290 45 Morgan <strong>and</strong> Taylor (1988)<br />

Boreioglycaspis<br />

melaleucae<br />

78 Purcell et al. (1997)<br />

Calophyidae Apsylla cistellata 141–150 Monobrullah et al. (1998)<br />

Apsylla cistellata 141 Prasad (1957)<br />

Carsidaridae Carsidara limbata 1701 D<strong>in</strong>g et al. (1987)<br />

Allocarsidara<br />

malayensis<br />

50 Gadug <strong>and</strong> Husse<strong>in</strong> (1987)<br />

Mesohomotoma 61 48<br />

tessmanni<br />

{<br />

Igboekwe <strong>and</strong> Adenuga<br />

(1983)<br />

Triozidae Phylloplecta<br />

tripunctata<br />

202 94–164 Petersen (1923)<br />

Trioza erytreae 560 327 Moran <strong>and</strong> Blowers (1967)<br />

Trioza erytreae 787 Van den Berg, Deacon <strong>and</strong><br />

Thomas (1991a)<br />

Trioza erytreae 827 Van den Berg (1990)<br />

Trioza eugeniae 331 198 Young (2003)<br />

Trioza hirsuta 180 99 Dhiman <strong>and</strong> S<strong>in</strong>gh (2004)<br />

Trioza<br />

magnicauda<br />

692 Chang et al. (1995)<br />

Bactericera<br />

cockerelli<br />

1176 439 Pletsch (1947)<br />

Bactericera<br />

cockerelli<br />

1300 318 Knowlton <strong>and</strong> Janes (1931)<br />

Bactericera<br />

tremblayi<br />

803 431 Tremblay (1965b)<br />

Schedotrioza<br />

multitud<strong>in</strong>ea<br />

487 GS Taylor (1985, 1987)<br />

Trichochermes<br />

walkeri<br />

279 201 McLean (1998)<br />

Neotrioza<br />

taveresi<br />

219 Butignol <strong>and</strong> Pedrosa (2003)<br />

Pauropsylla<br />

depressa<br />

.150 Abbas (1967)<br />

Note: occasionally, where means were not calculated <strong>in</strong> the orig<strong>in</strong>al paper, they are calculated<br />

as (m<strong>in</strong>imum+maximum)/2 (<strong>in</strong>dicated by*); alternatively, some means (<strong>in</strong>dicated by { ) are<br />

calculated directly from raw data given <strong>in</strong> the orig<strong>in</strong>al paper; a range of values <strong>in</strong>dicates<br />

recorded differences <strong>in</strong> means among seasons.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 143<br />

Typically mean fecundity per female ranges from 40–50 to over 1000, with a majority<br />

of species ly<strong>in</strong>g with<strong>in</strong> the range 200–800. Lowest values (40–50) occur <strong>in</strong> some but<br />

not all Spondyliaspididae <strong>and</strong> Carsidaridae but highest values are often found <strong>in</strong> pest<br />

species of Psyllidae <strong>and</strong> Triozidae such as Agonoscena pistaciae, Trioza erytreae <strong>and</strong><br />

Bactericera cockerelli <strong>in</strong> which some <strong>in</strong>dividual females produce up to 1300 eggs.<br />

Oviposition usually occurs over an extended period with females often matur<strong>in</strong>g<br />

successive batches of eggs (An et al. 1996; Dhiman <strong>and</strong> S<strong>in</strong>gh 2004). In species such<br />

as Cacopsylla pyricola, Trioza erytreae <strong>and</strong> Agonoscena pistaciae, repeated mat<strong>in</strong>g is<br />

necessary for a female to produce a full egg complement (Burts <strong>and</strong> Fischer 1967;<br />

van den Berg, Deacon <strong>and</strong> Thomas 1991a; Mehrnejad 1998; Mehrnejad <strong>and</strong><br />

Copl<strong>and</strong> 2006a), emphasiz<strong>in</strong>g the importance of cont<strong>in</strong>uous mate f<strong>in</strong>d<strong>in</strong>g for<br />

successful life <strong>cycle</strong> completion.<br />

Factors <strong>in</strong>fluenc<strong>in</strong>g fecundity<br />

Several factors <strong>in</strong>fluence fecundity, <strong>in</strong>clud<strong>in</strong>g temperature, day-length <strong>and</strong> season,<br />

host condition <strong>and</strong> crowd<strong>in</strong>g. Fecundity, as noted earlier, tends to decl<strong>in</strong>e above <strong>and</strong><br />

below an optimum temperature, as <strong>in</strong> Acizzia uncatoides, Agonoscena pistaciae,<br />

Cacopsylla pyri <strong>and</strong> Bactericera cockerelli (List 1939a; Madubunyi <strong>and</strong> Koehler<br />

1974; Nguyen 1970a; Mehrnejad <strong>and</strong> Copl<strong>and</strong> 2006a). In multivolt<strong>in</strong>e species such as<br />

Agonoscena pistaciae, Diclidophlebia xuani, Cacopsylla pyri, Cacopsylla pyricola egg<br />

output per female also varies significantly between seasons, with day length as well as<br />

temperature often an important determ<strong>in</strong><strong>in</strong>g factor (Nguyen 1970a; Kapatos <strong>and</strong><br />

Stratapoulou 1996; Mehrnejad <strong>and</strong> Copl<strong>and</strong> 2005; Aléné et al. 2005b). Moderate<br />

crowd<strong>in</strong>g <strong>in</strong>itially enhances fecundity <strong>in</strong> species such as Trichochermes walkeri,<br />

Cardiasp<strong>in</strong>a albitextura, Cacopsylla pyri <strong>and</strong> Aryta<strong>in</strong>a genistae but <strong>in</strong>creas<strong>in</strong>g density<br />

beyond the optimum leads to decl<strong>in</strong><strong>in</strong>g fecundity (Watmough 1968a, 1968b; Clark<br />

1963a; Nguyen 1971, 1973; McLean 1998). The presence of eggs also acts as a<br />

deterrent to oviposition <strong>in</strong> Trioza eugeniae (Luft <strong>and</strong> Pa<strong>in</strong>e 1997).<br />

The previous discussion of life history parameters shows that psyllid species exhibit<br />

considerable <strong>variation</strong> <strong>in</strong> their life history characteristics <strong>and</strong> their adaptive response<br />

to their environment. It is now appropriate to exam<strong>in</strong>e the distribution of<br />

characteristics across the Psylloidea <strong>and</strong> to identify how the life <strong>cycle</strong> parameters<br />

are comb<strong>in</strong>ed with<strong>in</strong> the life histories of species both with<strong>in</strong> <strong>and</strong> among higher taxa.<br />

Analysis of psyllid life history characteristics<br />

Table 1 shows the detailed life history characteristics of 342 psyllid species culled<br />

from the literature. Species are arranged <strong>in</strong> descend<strong>in</strong>g taxonomic sequence by<br />

family, tribe <strong>and</strong> genus. The key references from which data are drawn are listed. In<br />

the large genus Cacopsylla the Salix-feed<strong>in</strong>g species with similar life histories are<br />

separated from the other species, which themselves are split <strong>in</strong>to subgenera.<br />

Information is provided for each species on the major climatic zone with<strong>in</strong> which it is<br />

found, the functional growth form of its host <strong>plant</strong>, the overw<strong>in</strong>ter<strong>in</strong>g stage(s), the<br />

overw<strong>in</strong>ter<strong>in</strong>g site, either on or off the host, volt<strong>in</strong>ism, feed<strong>in</strong>g site on the host <strong>and</strong><br />

whether or not the larva forms galls of a particular type or lerps on the host <strong>plant</strong>. A<br />

full explanation of the various life history categories <strong>and</strong> their abbreviations as used<br />

<strong>in</strong> this table are listed <strong>in</strong> the note of Table 1.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

144 I.D. Hodk<strong>in</strong>son<br />

Methods of cod<strong>in</strong>g <strong>and</strong> analysis<br />

The categorical life history data <strong>in</strong> Table 1 were numerically coded as the basis for a<br />

full analysis of the dataset, with each category of each characteristic given a separate<br />

numerical code. Volt<strong>in</strong>ism presented a slight problem of cod<strong>in</strong>g <strong>and</strong> species were<br />

coded as semivolt<strong>in</strong>e, univolt<strong>in</strong>e or multivolt<strong>in</strong>e, depend<strong>in</strong>g on the maximum life<br />

history duration. Taxonomic status of the psyllids was coded at the family, tribe <strong>and</strong><br />

genus level. The basic objective of the analyses was to test whether there were<br />

recognisable <strong>and</strong> consistent patterns <strong>in</strong> the data l<strong>in</strong>k<strong>in</strong>g particular life history traits<br />

with specific psyllid groups.<br />

Three separate multivariate analyses were employed to explore the structure of<br />

the dataset us<strong>in</strong>g the MINITAB 14 statistical package, namely Multiple<br />

Correspondence Analysis (MCA), L<strong>in</strong>ear Discrim<strong>in</strong>ant Analysis (LDA), <strong>and</strong><br />

Cluster Analysis (CA) of both the descriptive variables <strong>and</strong> of the species.<br />

MCA attempted to measure the extent to which different characters correspond<br />

with each other across the dataset <strong>and</strong> whether particular sets of characteristics<br />

correspond to particular taxonomic group<strong>in</strong>gs with<strong>in</strong> the psyllids. Analyses were<br />

<strong>in</strong>itially conducted us<strong>in</strong>g life history characters alone to explore relationships among<br />

these variables <strong>and</strong> then repeated with psyllid group<strong>in</strong>gs added. These analyses used<br />

the full dataset for all species.<br />

LDA tests whether suggested group<strong>in</strong>gs of species are justified on the basis of the<br />

measured life history variables. This analysis was conducted three times us<strong>in</strong>g genus,<br />

tribe <strong>and</strong> family as the suggested species group<strong>in</strong>g. The output displays how many<br />

species are correctly or <strong>in</strong>correctly allocated objectively to the proposed group<strong>in</strong>g. A<br />

high level of correct prediction <strong>in</strong>dicates that life history characteristics tend to be<br />

relatively uniform with<strong>in</strong> the group <strong>and</strong> are good predictors of taxonomic position.<br />

A low level suggests that life history characteristics are highly variable with<strong>in</strong><br />

proposed groups <strong>and</strong> thus poor predictors. This may, however, <strong>in</strong>dicate greater<br />

adaptive flexibility as species have evolved differ<strong>in</strong>g life <strong>cycle</strong>s to exploit vary<strong>in</strong>g<br />

opportunities with<strong>in</strong> different environments. In conduct<strong>in</strong>g these analyses it is<br />

necessary to remove monobasic genera <strong>and</strong> tribes from the dataset, where necessary,<br />

as a s<strong>in</strong>gle taxon cannot form a group.<br />

CA measured similarity among taxa or among variables with<strong>in</strong> the ma<strong>in</strong> dataset<br />

us<strong>in</strong>g Euclidean distance: cluster<strong>in</strong>g was by average l<strong>in</strong>kage.<br />

Results of analyses<br />

CA of variables (Figure 1) <strong>in</strong>dicates two major group<strong>in</strong>gs of characters <strong>and</strong> two<br />

outliers. The first group<strong>in</strong>g l<strong>in</strong>ks volt<strong>in</strong>ism <strong>and</strong> overw<strong>in</strong>ter<strong>in</strong>g stage, not unexpectedly,<br />

to climate. The second l<strong>in</strong>ks feed<strong>in</strong>g site <strong>and</strong> overw<strong>in</strong>ter<strong>in</strong>g site to <strong>plant</strong><br />

functional type. The two outly<strong>in</strong>g characters are gall type <strong>and</strong> lerp formation. Their<br />

separation from other characters appears to lie <strong>in</strong> the fact that lerp formation is<br />

largely concentrated with<strong>in</strong> one family, the Spondyliaspididae, while gall <strong>in</strong>stigation/<br />

type is spread broadly but rather haphazardly across taxa.<br />

Overall, the level of correspondence among characters <strong>in</strong> MCA (Table 4) was<br />

low, with cumulative correspondence across species along the first five axes totall<strong>in</strong>g<br />

only 26%. Introduc<strong>in</strong>g psyllid tribe as an additional character actually reduced<br />

correspondence further (19%). Gall <strong>and</strong> lerp formation were aga<strong>in</strong> the ma<strong>in</strong> outly<strong>in</strong>g<br />

characters.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 145<br />

Figure 1. Dendrogram illustrat<strong>in</strong>g the level of correspondence among life history parameters<br />

measured across psyllid species. Note: similarity is measured by Euclidean distance; cluster<strong>in</strong>g<br />

is by average l<strong>in</strong>kage.<br />

The total percentage of species allocated to the correct tribe by LCA was<br />

generally around a weighted mean of 47% (Table 5) but this hid wider <strong>variation</strong><br />

among taxa, with one large group the Trioz<strong>in</strong>i <strong>in</strong> particular, dragg<strong>in</strong>g the total down<br />

but with other smaller tribes, such as Acizzi<strong>in</strong>i, Gyropsyll<strong>in</strong>i, Mastigimat<strong>in</strong>i <strong>and</strong><br />

Phytolym<strong>in</strong>i, show<strong>in</strong>g good predictability. However, the correlation between group<br />

size <strong>and</strong> predictability (%) was non-significant (r50.01, p.0.05). Despite wide<br />

variability among taxa, predictability <strong>in</strong>creased stepwise from the genus (n5302,<br />

40% correct) to the family level (n5322, 50% correct). This suggests that<br />

differentiation <strong>and</strong> thus discrim<strong>in</strong>ation among taxa, related to life history traits,<br />

<strong>in</strong>creases with taxonomic level.<br />

Discussion <strong>and</strong> conclusions<br />

With<strong>in</strong> the Psylloidea there is considerable <strong>variation</strong> <strong>in</strong> the body form of the larvae<br />

related to phylogeny <strong>and</strong> one might predict that particular physiognomies are best<br />

Table 4. Results of multiple correspondence analysis across species show<strong>in</strong>g percentage of<br />

cumulative correspondence expla<strong>in</strong>ed by the first five axes.<br />

Cumulative Variation (%)<br />

Character set 1 2 3 4 5<br />

Exclud<strong>in</strong>g tribe 7 13 17 22 26<br />

Includ<strong>in</strong>g tribe 5 9 12 16 19<br />

Note: analyses are presented both with <strong>and</strong> without the <strong>in</strong>clusion of psyllid tribe as a<br />

character.<br />

Axis


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

146 I.D. Hodk<strong>in</strong>son<br />

Table 5. Percentage of species allocated to their correct tribe us<strong>in</strong>g l<strong>in</strong>ear discrim<strong>in</strong>ant analysis<br />

based on life history characteristics. n is the number of species on which the percentage is<br />

based.<br />

n % correct<br />

Acizz<strong>in</strong>i 3 100<br />

Aphalar<strong>in</strong>i 27 67<br />

Aryta<strong>in</strong><strong>in</strong>i 25 16<br />

Calophy<strong>in</strong>i 7 43<br />

Ciriacrem<strong>in</strong>i 3 0<br />

Ctenaryta<strong>in</strong><strong>in</strong>i 4 25<br />

Diaphor<strong>in</strong><strong>in</strong>i 3 33<br />

Diclidophlebi<strong>in</strong>i 7 100<br />

Euphaler<strong>in</strong>i 4 0<br />

Euphyllur<strong>in</strong>i 6 17<br />

Gyropsyll<strong>in</strong>i 2 100<br />

Livi<strong>in</strong>i 4 75<br />

Mastigimat<strong>in</strong>i 2 100<br />

Mesohomotom<strong>in</strong>i 2 50<br />

Pachypsyll<strong>in</strong>i 8 13<br />

Pachypsylloid<strong>in</strong>i 11 100<br />

Paurocephal<strong>in</strong>i 3 66<br />

Pauropsyll<strong>in</strong>i 6 33<br />

Phytolym<strong>in</strong>i 2 100<br />

Psyll<strong>in</strong>i 72 68<br />

Psyllopse<strong>in</strong>i 9 89<br />

Rh<strong>in</strong>ocol<strong>in</strong>i 6 33<br />

Spondyliaspid<strong>in</strong>i 11 91<br />

Stroph<strong>in</strong>gi<strong>in</strong>i 2 100<br />

Trioz<strong>in</strong>i 86 16<br />

Total 315 47<br />

adapted to exploit<strong>in</strong>g <strong>plant</strong>s <strong>in</strong> different ways (Log<strong>in</strong>ova 1982; White <strong>and</strong><br />

Hodk<strong>in</strong>son 1985). Thus, for example, larvae of many Triozidae <strong>and</strong> Calophyidae<br />

are strongly flattened <strong>and</strong> rounded <strong>and</strong> one might expect them to be best adapted for<br />

a sedentary existence, liv<strong>in</strong>g on the surface of leaves or with<strong>in</strong> open pit galls on the<br />

leaf surface. By contrast, larvae of many Psyllidae <strong>and</strong> Spondyliaspididae are less<br />

flattened <strong>and</strong> more robust, with relatively longer legs. They appear best adapted for<br />

a free liv<strong>in</strong>g existence on exp<strong>and</strong><strong>in</strong>g shoots or develop<strong>in</strong>g with<strong>in</strong> larger enclosed leaf<br />

galls. While many species conform to this expected typology others do not. Thus,<br />

many Triozidae <strong>and</strong> Calophyidae live on grow<strong>in</strong>g shoots or with<strong>in</strong> enclosed galls<br />

while several Psyllidae form pit galls <strong>and</strong> many Spondyliaspididae live on leaf<br />

surfaces. It is aga<strong>in</strong>st this phylogenetic history that <strong>in</strong>terpretations <strong>and</strong> conclusions<br />

regard<strong>in</strong>g psyllid life history <strong>adaptation</strong>s can now be made.<br />

Several important conclusions can be drawn from the analyses of the life history<br />

data. Firstly, <strong>and</strong> perhaps most significantly, the l<strong>in</strong>kage between phylogenetic<br />

group<strong>in</strong>g <strong>and</strong> life history characteristics, while discernible, is not of overrid<strong>in</strong>g<br />

significance <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the type of life history a psyllid undergoes. The<br />

phylogenetic signal, as revealed by MCA is marg<strong>in</strong>ally stronger at the family level


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 147<br />

than at the generic level but at best only expla<strong>in</strong>s about a quarter of the total<br />

<strong>variation</strong> observed. Similarly, LDA on average, us<strong>in</strong>g life history characteristics as<br />

predictors, only allocates species to the correct genus, tribe or family group with at<br />

best 50% mean accuracy. This aga<strong>in</strong> suggests high with<strong>in</strong> group <strong>variation</strong> <strong>in</strong> life<br />

history characteristics, even at ascend<strong>in</strong>g taxonomic levels. However, with<strong>in</strong> these<br />

average figures there do appear to be <strong>in</strong>dividual taxa that display a higher level of<br />

predictability, such as Craspedolepta, Aphalara <strong>and</strong> Psyllopsis, but this is<br />

compensated for by others such as the large genus Trioza that show low<br />

predictability. Nevetheless, these general f<strong>in</strong>d<strong>in</strong>gs accord with Danks (2006, p. 9)<br />

who reviewed published data on life history traits across the <strong>Insecta</strong>. He concluded<br />

that: ‘‘…phylogenetic history of a group or species does determ<strong>in</strong>e the core structure<br />

of seasonal responses… but that perhaps more strik<strong>in</strong>g is the large number of traits<br />

l<strong>in</strong>ked to habitat or its seasonal components that have evolved many times<br />

<strong>in</strong>dependently.’’ Among such traits he lists diapause, cold-hard<strong>in</strong>ess, reproductive<br />

pattern, paedogenesis, gall formation etc. (see also Danks (2002, 2005, 2007)). He<br />

concludes (2006, p. 9) that: ‘‘…how the different responses are <strong>in</strong>tegrated to provide<br />

coherent, seasonally relevant development trajectories can be understood only by<br />

reference to ecological dem<strong>and</strong>s.’’<br />

Extend<strong>in</strong>g these conclusions to the psyllids we can observe the manner <strong>in</strong> which<br />

environmental <strong>and</strong> host-<strong>plant</strong> factors overlay the phylogenetic signal to produce the<br />

wide <strong>variation</strong> observed <strong>in</strong> psyllid life history traits observed today. Thus, the CA for<br />

life history variables recognizes two major group<strong>in</strong>gs of l<strong>in</strong>ked parameters. First,<br />

volt<strong>in</strong>ism <strong>and</strong> overw<strong>in</strong>ter<strong>in</strong>g stage is l<strong>in</strong>ked to climatic environment. Second, larval<br />

feed<strong>in</strong>g site <strong>and</strong> overw<strong>in</strong>ter<strong>in</strong>g site is l<strong>in</strong>ked to <strong>plant</strong> functional type. Gall formation,<br />

by contrast appears to have evolved <strong>in</strong>dependently on several occasions across<br />

disparate psyllid taxa. Lerp formation is more tightly constra<strong>in</strong>ed with<strong>in</strong> the family<br />

Spondyliaspididae. It should be noted, however, that <strong>plant</strong> functional type is itself<br />

largely a <strong>plant</strong> response to climate.<br />

It now becomes possible to suggest how environmental <strong>and</strong> ecological<br />

constra<strong>in</strong>ts have led to the observed diversification of psyllid life histories <strong>and</strong> to<br />

draw together the various threads <strong>in</strong>to a coherent exposition of psyllid life history<br />

<strong>adaptation</strong> on a global stage. Global temperature <strong>and</strong> moisture gradients <strong>and</strong> the<br />

adaptive biology of host <strong>plant</strong>s provide the backdrop aga<strong>in</strong>st which such psyllid<br />

<strong>adaptation</strong>s have evolved.<br />

Psyllid species liv<strong>in</strong>g with<strong>in</strong> tropical moist habitats, as typified by lowl<strong>and</strong><br />

tropical ra<strong>in</strong>forest, probably suffer the least constra<strong>in</strong>t on their development. They<br />

are usually associated with evergreen phanerophytes <strong>and</strong> chamaephytes, undergo<br />

cont<strong>in</strong>uous reproduction <strong>and</strong> are thus typically multivolt<strong>in</strong>e. However, even <strong>in</strong> these<br />

benign habitats, host tree species frequently display <strong>cycle</strong>s of flush<strong>in</strong>g of suitable<br />

tissues for larval development, with <strong>in</strong>dividual trees at different stages of the flush<strong>in</strong>g<br />

<strong>cycle</strong> at any one time. In such high diversity forests, a cont<strong>in</strong>uous life <strong>cycle</strong> dem<strong>and</strong>s<br />

cont<strong>in</strong>uous <strong>and</strong> effective population dispersal to seek out the sparsely distributed<br />

trees of the host species <strong>in</strong> an appropriate phenological state for reproduction to<br />

cont<strong>in</strong>ue (Hodk<strong>in</strong>son <strong>and</strong> Casson 2000; Brown <strong>and</strong> Hodk<strong>in</strong>son 1988). It may also<br />

select for small <strong>and</strong> highly dispersive species (Hodk<strong>in</strong>son <strong>and</strong> Casson 2000).<br />

In tropical habitats with <strong>in</strong>creas<strong>in</strong>g seasonality of ra<strong>in</strong>fall an <strong>in</strong>creas<strong>in</strong>g<br />

proportion of host tree <strong>and</strong> shrub species are deciduous, with some host species<br />

be<strong>in</strong>g leafless for several months of the year <strong>and</strong> some tree species show<strong>in</strong>g various


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

148 I.D. Hodk<strong>in</strong>son<br />

levels of deciduousness between <strong>in</strong>dividuals. Under these circumstances adult <strong>and</strong>/or<br />

egg diapause allows associated psyllids, <strong>in</strong>dependent of taxonomic provenance, to<br />

arrest their life <strong>cycle</strong> <strong>and</strong> therby align development with the phenology of their host,<br />

but at the expense of a reduced number of generations per year. As tropical habitats<br />

become even more seasonally dry then deciduousness among hosts becomes the<br />

norm <strong>and</strong> seasonal diapause responses assume even greater significance for psyllid<br />

survival. Here aga<strong>in</strong> successful dispersal over a wide area may be necessary to<br />

relocate hosts follow<strong>in</strong>g periods of <strong>in</strong>activity.<br />

As one moves from the wet tropics <strong>in</strong>to the moist temperate regions or at higher<br />

altitudes with<strong>in</strong> the tropics a number of developments <strong>and</strong> trends <strong>in</strong> psyllid life <strong>cycle</strong>s<br />

are observed. There is a general reduction <strong>in</strong> the temperature threshold for<br />

development, development rates are often slower, volt<strong>in</strong>ism is reduced <strong>and</strong> life<br />

histories become strongly seasonal, with developmental or reproductive diapause<br />

becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly important for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g developmental synchrony with the<br />

host <strong>plant</strong>. Some species display morphologically dist<strong>in</strong>ct seasonal forms. W<strong>in</strong>ter<br />

survival mechanisms, <strong>in</strong>volv<strong>in</strong>g <strong>in</strong>creased levels of cold-hard<strong>in</strong>ess, assume <strong>in</strong>creas<strong>in</strong>g<br />

significance. There is also an <strong>in</strong>crease <strong>in</strong> the availablity <strong>and</strong> use of herbaceous host<strong>plant</strong><br />

species fall<strong>in</strong>g with<strong>in</strong> the hemicryptophyte <strong>and</strong> geophyte functional categories.<br />

Typically the grow<strong>in</strong>g tips of these <strong>plant</strong>s overw<strong>in</strong>ter at or below the soil surface,<br />

produce a flush of growth each year <strong>and</strong> then die back <strong>in</strong> the autumn. This<br />

necessitates a psyllid overw<strong>in</strong>ter<strong>in</strong>g strategy that <strong>in</strong>volves movement onto the w<strong>in</strong>ter<br />

bud or root or hibernation away from the host <strong>plant</strong> <strong>and</strong> movement back onto the<br />

new foliage <strong>in</strong> spr<strong>in</strong>g.<br />

Psyllids liv<strong>in</strong>g on temperate phanerophytes <strong>and</strong> chamaephytes have alternative<br />

life history possibilities. Many psyllid species on deciduous phanerophytes overw<strong>in</strong>ter<br />

as diapaus<strong>in</strong>g eggs on the buds or apical shoots where they are exposed to the full<br />

rigours of w<strong>in</strong>ter. Hatch<strong>in</strong>g is timed to co<strong>in</strong>cide with spr<strong>in</strong>g bud burst. Alternatively,<br />

adults may overw<strong>in</strong>ter either on the host or on shelter <strong>plant</strong>s. In both cases a<br />

reproductive diapause is necessary to delay oviposition until the spr<strong>in</strong>g growth of the<br />

<strong>plant</strong> commences. Movement onto <strong>and</strong> from w<strong>in</strong>ter shelter <strong>plant</strong>s necessitates the<br />

development of two phases of pre-reproductive dispersal <strong>in</strong> autumn <strong>and</strong> spr<strong>in</strong>g.<br />

On evergreen phanerophyte/chamaephyte species many psyllid species overw<strong>in</strong>ter<br />

as diapaus<strong>in</strong>g larvae on the green shoots or leaves. On such <strong>plant</strong>s the requirement<br />

for precise phenological synchrony with <strong>plant</strong> growth is less dem<strong>and</strong><strong>in</strong>g as larval<br />

growth simply recommences as shoots or leaves resume growth <strong>in</strong> the spr<strong>in</strong>g.<br />

Development time can, as a consequence, be potentially extended beyond one year.<br />

Overw<strong>in</strong>ter<strong>in</strong>g as mixed populations of eggs, larvae <strong>and</strong> adults also becomes feasible<br />

on such <strong>plant</strong>s.<br />

With<strong>in</strong> temperate regions, where ra<strong>in</strong>fall becomes strongly seasonal, as <strong>in</strong> areas<br />

of Mediterranean climate, periods of psyllid development <strong>and</strong> reproduction often<br />

become compressed <strong>in</strong>to the short period of the year, such as early spr<strong>in</strong>g, when<br />

temperatures are sufficiently high but not too hot <strong>and</strong> when ra<strong>in</strong>fall is adequate to<br />

stimulate the flush<strong>in</strong>g of new <strong>plant</strong> growth. Such compression of life histories, with<br />

long periods of spent <strong>in</strong>active as diapaus<strong>in</strong>g eggs, larvae or adults, becomes even<br />

more pronounced <strong>in</strong> psyllid species associated with host <strong>plant</strong>s grow<strong>in</strong>g <strong>in</strong> steppe <strong>and</strong><br />

desert environments.<br />

As one moves north from the temperate to the cold boreal regions psyllid faunas<br />

become much less diverse <strong>and</strong> <strong>in</strong>dividual species are usually associated with


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

prom<strong>in</strong>ent host taxa such as Salix, Alnus <strong>and</strong> Betula on which they typically undergo<br />

rapid annual life <strong>cycle</strong>s dur<strong>in</strong>g a short summer grow<strong>in</strong>g period. These woody host<br />

<strong>plant</strong>s almost <strong>in</strong>variably exhibit a low chamaephyte growth form: other herbaceous<br />

hemicryptophytes <strong>and</strong> geophytes appear less commonly as hosts. Overw<strong>in</strong>ter<strong>in</strong>g is<br />

either as eggs on grow<strong>in</strong>g shoots or as adults that overw<strong>in</strong>ter <strong>in</strong> leaf litter around the<br />

base of the <strong>plant</strong>s, often covered by a protective snow layer.<br />

It is reasonable to conclude on the previous evidence that the two prime<br />

environmental variables, temperate <strong>and</strong> moisture availability, act<strong>in</strong>g with<strong>in</strong> an<br />

ecological context, are either directly, or mediated through the physiognomy <strong>and</strong><br />

ecological <strong>adaptation</strong>s of host <strong>plant</strong>s, the major pressures act<strong>in</strong>g on the evolution of<br />

psyllid life histories. Together they have frequently resulted <strong>in</strong> similar strongly<br />

convergent life histories across taxonomically disparate sets of psyllid species <strong>and</strong><br />

divergent life histories among related species. Danks’s (2006) conclusions regard<strong>in</strong>g<br />

the comparatively low importance of group phylogenetic history <strong>in</strong> determ<strong>in</strong><strong>in</strong>g life<br />

history parameters are well supported by the psyllid data.<br />

References<br />

Journal of Natural History 149<br />

Abbas SR. 1967. Biology of Pauropsylla depressa Crawford (Homoptera: Psyllidae).<br />

Cecidologica Indica 2:43–52.<br />

Akanbi MO. 1980. Prelim<strong>in</strong>ary notes on Triozamia lamborni: a potentially dangerous pest of<br />

Antiaris africana. Entomol Mon Mag. 116:113–115.<br />

Aléné DC, Messi J, Quilici S. 2005a. Contribution a la connaissance de la faune d’arthropodes<br />

associéeaRic<strong>in</strong>odendron heudelotii Baill. (Euphorbiaceae) au Cameroun. Fruits 60:121–132.<br />

Aléné DC, Messi J, Quilici S. 2005b. Quelques aspects de la biologie de Diclidophlebia xuani<br />

Messi et al. (Hemiptera: Psyllidae), ravageur de Ric<strong>in</strong>odendron heudelotii Baill.<br />

(Euphorbiaceae) au Cameroun. Fruits 60:279–287.<br />

Aléné DC, Messi J, Quilici S. 2006. Influence of shade on the sensitivity of seedl<strong>in</strong>gs of<br />

Ric<strong>in</strong>odendron heudelotii (Baill.) to attacks of Diclidophlebia xuani Messi et al. <strong>in</strong> the<br />

natural environment <strong>in</strong> Cameroon. Fruits 6:273–280.<br />

An JH, Yiem MS, Kim DS. 1996. Effects of photoperiod <strong>and</strong> temperature on formation <strong>and</strong><br />

fecundity of two seasonal forms of Psylla pyricola (Homoptera: Psyllidae). Korean J<br />

Appl Entomol. 35:205–208.<br />

André E. 1878. Mémoire pour servir a l’histoire de la la Trioza centranthi Vallot. Annal Soc<br />

Entomol Fra. 8:77–86.<br />

Annunziata F di, Clemente N. 1980. La psilla della cipollo (Trioza tremblayi Wagn.). Inf<br />

Agrar. 36:10159–10161.<br />

Anon. 1988. Citrus green<strong>in</strong>g bacterium <strong>and</strong> its vectors Diaphor<strong>in</strong>a citri <strong>and</strong> Trioza erytreae<br />

(Homoptera Psyllidae). Bull OEPP 18:497–508.<br />

Arai Y. 1991. On the habitat of the adult of the mulberry sucker <strong>in</strong> w<strong>in</strong>ter Anomoneura mori<br />

Schwarz (Homoptera Psyllidae). J Seric Sci Jpn. 60:390–393.<br />

Arai Y. 1993. Observation on the mat<strong>in</strong>g behavior of the mulberry sucker, Anomoneura mori<br />

(Homoptera: Psyllidae). J Seric Sci Jpn. 62:297–302.<br />

Arambourg Y, Chermiti B. 1986. Psyllidae. Traite d’entomologie oleicole. Madrid (Spa<strong>in</strong>):<br />

Conseil Oleicole International.<br />

Arzone A, Vidano C. 1985. Il fitomiza Psylla uncatoides su mimosa <strong>in</strong> Liguria. Inf Fitopatol.<br />

35:31–34.<br />

Ashmead WH. 1881. On the Aphididae of Florida with descriptions of new species (Family<br />

Psyllidae). Can Entomol. 13:220–225.<br />

Ashmole NP, Ashmole MJ. 1988. Insect dispersal on Tenerife, Canary Isl<strong>and</strong>s: high altitude<br />

fallout <strong>and</strong> seaward drift. Arctic Alp<strong>in</strong>e Res. 20:1–12.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

150 I.D. Hodk<strong>in</strong>son<br />

Ashmole NP, Ormomi P, Ashmole MJ, Mart<strong>in</strong> JL. 1996. The <strong>in</strong>vertebrate fauna of early<br />

successional volcanic habitats <strong>in</strong> the Azores. Bol Mus Municipal Funchal. 48:5–39.<br />

Atger P. 1982. Le psylle du poirier. Paris (France): CentreTechnical Interprofessionnel des<br />

Fruits et Legumes.<br />

Atwal AS. 1962. Insect pests of citrus <strong>in</strong> the Punjab. Vol 1. Biology <strong>and</strong> control of citrus psylla<br />

Diaphor<strong>in</strong>a citri Kuwayama (Hemi: Psyllidae). Punjab Hortic J. 2:104–108.<br />

Atwal AS, Chaudhary JP, Ramzan M. 1970. Studies on the development <strong>and</strong> field population<br />

of citrus psylla Diaphor<strong>in</strong>a citri. J Res Punjab Agric Univ. 7:333–338.<br />

Aust<strong>in</strong> MT, Williams MJ, Hammond AC, Frank JH, Chambliss CG. 1996. Psyllid population<br />

dynamics <strong>and</strong> <strong>plant</strong> resistance of Leucaena selections <strong>in</strong> Florida. Trop Grassl<strong>and</strong>s.<br />

30:223–228.<br />

Awadallah KT, Swailem SM. 1971. On the bionomics of the sycamore-fig psyllid Pauropsylla<br />

trichaeta. Bull Soc Entomol Egypt. 55:193–199.<br />

Azevedo F, Figo ML. 1979. Ctenaryta<strong>in</strong>a eucalypti Mask (Homoptera, Psyllidae). Bolet<strong>in</strong>o<br />

Servicio de Plagas Forestales 5:41–46.<br />

Balachowsky A, Mesnil L. 1936. Les <strong>in</strong>sectes nuisibles aux <strong>plant</strong>es cultivées. Vol. 2. Paris<br />

(France): Mery.<br />

Baldassari N, Baronio P, Rocchetta G, Salvaterra I. 1996. Research on the development of<br />

Cacopsylla pyri (L.) (Hemiptera Psyllidae) on different mutants <strong>and</strong> selections of pear.<br />

Boll Ist Entomol ‘‘Guido Gr<strong>and</strong>i’’ Univ Stud Bologna. 50:201–213.<br />

Baloch GM, Ghaffar A. 1984. Natural enemies of Chenopodium spp <strong>in</strong> Pakistan with notes on<br />

Trioza chenopodii, a promis<strong>in</strong>g biocontrol agent. Entomophaga 29:409–414.<br />

Basset Y. 1991. The taxonomic composition of the arthropod fauna associated with an<br />

Australian ra<strong>in</strong>forest tree. Aust J Zool. 39:171–190.<br />

Beeson CFC. 1941. The ecology <strong>and</strong> control of the forest <strong>in</strong>sects of India <strong>and</strong> the neighbour<strong>in</strong>g<br />

countries. Dehra Dun (India): Vasant Press.<br />

Ben Khalifa M, Marrakchi M, Fakhfakh H. 2007. C<strong>and</strong>idatus Phytoplasma pyri <strong>in</strong>fections <strong>in</strong><br />

pear orchards <strong>in</strong> Tunisia. J Plant Pathol. 89:269–272.<br />

Berrada S, Nguyen TX, Lemo<strong>in</strong>e J, Vanpoucke J, Fournier D. 1995. Thirteen pear species <strong>and</strong><br />

cultivars evaluated for resistance to Cacopsylla pyri (Homoptera: Psyllidae). Environ<br />

Entomol. 1995:1604–1607.<br />

Bertaux F, Phalip M, Mart<strong>in</strong>ez M, Schumacher J-C. 1996. Le psylle de l’eucalyptus, nouveau<br />

ravageur des eucalyptus en France. Phytoma –Defense Veg. 487:48–50.<br />

Bey NS. 1931. Untersuchungen uber Mohrenblattsauger. Z Angew Entomol. 18:175–188.<br />

Biase LMD. 1983. La Trioza (Bactericera) nigricornis Forst e la Trioza trigonica Hod<br />

(Homoptera Psylloidea) nel fuc<strong>in</strong>o. Difesa Piante. 2:103–110.<br />

Bigornia AE, Obana SP. 1974. Studies on the population dynamics of Diaphor<strong>in</strong>a citri<br />

(Kuway.) <strong>and</strong> the flush<strong>in</strong>g rhythm of citrus. Philipp J Plant Ind. 39:37–52.<br />

B<strong>in</strong> F. 1970. Lygus viscicola Put. (Miridae) e Psylla visci Curt. (Psyllidae) r<strong>in</strong>coti del vischio<br />

nuovi per la fauna italiana. Boll Zool Agrar Bachic. 10:133–143.<br />

B<strong>in</strong> F. 1972. Presenza <strong>in</strong> Italia della Trioza femoralis Foerster e notize su due calcidoidei suoi<br />

parassiti. Entomologica, Bari 8:45–53.<br />

Bird JM, Hodk<strong>in</strong>son ID. 1999. Species at the edge of their range: the significance of the thermal<br />

environment for the distribution of congeneric Craspedolepta species (Sternorrhyncha:<br />

Psylloidea) liv<strong>in</strong>g on Chamerion angustifolium (Onagraceae). Eur J Entomol. 96:103–109.<br />

Bird JM, Hodk<strong>in</strong>son ID. 2005. What limits the altitud<strong>in</strong>al distribution of Craspedolepta<br />

species (Sternorrhyncha: Psylloidea) on fireweed? Ecol Entomol. 30:510–520.<br />

Blomquist CL, Kirkpatrick BC. 2002. Identification of phytoplasma taxa <strong>and</strong> <strong>in</strong>sect vectors of<br />

peach yellow leaf roll disease <strong>in</strong> California. Plant Dis. 86:759–763.<br />

Blowers JR, Moran VC. 1968. Notes on the female reproduction system of the South African<br />

citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). J Entomol Soc South<br />

Afr. 36:71–81.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 151<br />

Bonnemaison L, Missonnier J. 1955a. Influence du photoperiodisme sur le déterm<strong>in</strong>isme des<br />

formes estivales ou hivernales et de la diapause chez Psylla pyri (Homopteres). Comptes<br />

Rendus Acad Sci, Paris. 240:1277–1279.<br />

Bonnemaison L, Missonnier J. 1955b. Recherches sur le determ<strong>in</strong>isme des formes estivales ou<br />

hivernales et de la diapause chez le psylle du poirier (Psylla pyri L.). Ann Epiphyt C.<br />

4:457–528.<br />

Bonnemaison L, Missonnier J. 1956. Le psylle du poirier (Psylla pyri L) morphologie et<br />

biologie, methodes de lutte. Ann Epiphyt. 2:263–331.<br />

Borelli N. 1920. Contributo alla conoscenza della vita nelle galle dell’alloro. Boll Soc Entomol<br />

Ital. 51:3–37.<br />

Boselli FB. 1929a. Studii sugli psyllidi I. Contributio alla conoscenza della psylle del fico<br />

(Homotoma ficus L.). Boll Lab Zool Gen Agrar Fac Agrar Portici 21:218–251.<br />

Boselli FB. 1929b. Studii sugli psyllidi IV. Biologia e svillupo della Spanioza gallii<br />

asp<strong>in</strong>ovelut<strong>in</strong>a (Sˇulc). Boll Lab Zool Gen Agrar Fac Agrar Portici 23:13–27.<br />

Boselli FB. 1930. Studii sugli psyllidi (Homoptera: Psyllidae), VIII. Biologia e sviluppo della<br />

Rh<strong>in</strong>ocola succ<strong>in</strong>cta Heeger. Boll Lab Zool Gen Agrar Fac Agrar Portici 24:211–222.<br />

Boselli FB. 1960. Studii sugli psyllidi (Homoptera: Psyllidae o Chermidae) XI. Biologia e<br />

sviluppo di Diaphor<strong>in</strong>a putoni Loew specie nuova par la fauna italiana. Ann Sper Agri,<br />

Roma 14:149–156.<br />

Brennan EB, Hrusa GF, We<strong>in</strong>baum SA, Levison W. 2001. Resistance of Eucalyptus species to<br />

Glycaspis brimblecombei (Homoptera: Psyllidae) <strong>in</strong> the San Francisco Bay area. Pan-Pac<br />

Entomol. 77:249–253.<br />

Brennan EB, We<strong>in</strong>baum SA. 2001a. Effect of epicuticular wax on adhesion of psyllids to<br />

glaucous juvenile <strong>and</strong> glossy adult leaves of Eucalyptus globulus Labillardiere. Aust J<br />

Entomol 40:270–277.<br />

Brennan EB, We<strong>in</strong>baum SA. 2001b. Performance of adult psyllids <strong>in</strong> no-choice experiments<br />

on juvenile <strong>and</strong> adult leaves of Eucalyptus globulus. Entomol Exp Appl. 100:<br />

179–185.<br />

Brennan EB, We<strong>in</strong>baum SA. 2001c. Psyllid responses to colored sticky traps <strong>and</strong> the colors of<br />

juvenile <strong>and</strong> adult leaves of the heteroblastic host <strong>plant</strong> Eucalyptus globulus. Environ<br />

Entomol. 30:365–370.<br />

Brennan EB, We<strong>in</strong>baum SA. 2001d. Stylet penetration <strong>and</strong> survival of three psyllid species on<br />

adult leaves <strong>and</strong> ‘‘waxy’’ <strong>and</strong> ‘‘de-waxed’’ juvenile leaves of Eucalyptus globulus. Entomol<br />

Exp Appl. 100:355–363.<br />

Brennan EB, We<strong>in</strong>baum SA, Rosenheim JA, Karban R. 2001. Heteroblasty <strong>in</strong> Eucalyptus<br />

globulus (Myricales: Myricaceae) affects ovipositional <strong>and</strong> settl<strong>in</strong>g preferences of<br />

Ctenaryta<strong>in</strong>a eucalypti <strong>and</strong> C. spatulata (Homoptera: Psyllidae). Environ Entomol.<br />

30:1144–1149.<br />

Brèthes J. 1921. Un nuevo Psyllidae de la Republica Argent<strong>in</strong>a (Gyropsylla ilicicola). Rev<br />

Facult Agron, Univ Nacion la Plata. 14:82–89.<br />

Britta<strong>in</strong> WH. 1922a. The adult habits of the apple sucker (Psylla mali Schmidberger). Sci Agri.<br />

3:58–64.<br />

Britta<strong>in</strong> WH. 1922b. The apple sucker (Psylla mali). J Econ Entomol. 15:96–101.<br />

Britta<strong>in</strong> WH. 1923a. The European apple sucker. Bull Nova Scotia Dep Agri. 10:1–69.<br />

Britta<strong>in</strong> WH. 1923b. Injuries, life history <strong>and</strong> control of the apple sucker (Psylla mali<br />

Schmidberger). Sci Agri 3:176–188.<br />

Brocher F. 1926. Observations biologiques sur Psylla pyrisuga (Hemipt.). Ann Soc Entomol<br />

Fr. 95:183–188.<br />

Brown RG, Hodk<strong>in</strong>son ID. 1988. Taxonomy <strong>and</strong> ecology of the jump<strong>in</strong>g <strong>plant</strong>-<strong>lice</strong> of Panama<br />

(Homoptera Psylloidea). Entomonograph. Vol. 9. New York: EJ Brill.<br />

Burckhardt D. 1999. Cacopsylla pulchella (Löw) a <strong>plant</strong>-louse species on Cercis siliquastrum<br />

from Basel (Hemiptera, Psylloidea). Mitt Entomol Ges Basel 49:71–76.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

152 I.D. Hodk<strong>in</strong>son<br />

Burckhardt D. 2005a. Ehrendorferiana, a new genus of Neotropical jump<strong>in</strong>g <strong>plant</strong> <strong>lice</strong><br />

(<strong>Insecta</strong>: Hemiptera: Psylloidea) associated with conifers (Cupressaceae). Org Divers<br />

Evol. 5:317–319.<br />

Burckhardt D. 2005b. Biology, ecology, <strong>and</strong> evolution of gall-<strong>in</strong>duc<strong>in</strong>g psyllids (Hemiptera:<br />

Psylloidea). In: Raman A, Schaefer CW, Withers TM, editors. Biology, ecology, <strong>and</strong><br />

evolution of gall-<strong>in</strong>duc<strong>in</strong>g arthropods. Enfield (NH): Science Publishers Inc. p. 143–158.<br />

Burckhardt D, Conci C, Lauterer P, Taman<strong>in</strong>i L. 1991. Taxonomy <strong>and</strong> biology of Trioza<br />

tripteridis on Valeriana spp. (Homoptera: Psylloidea). Boll Soc Entomol Ital. 122:165–172.<br />

Burckhardt D, Hanson P, Madrigal L. 2005. Diclidophlebia lucens, n. sp (Hemiptera:<br />

Psyllidae) from Costa Rica, a potential control agent of Miconia calvescens<br />

(Melastomataceae) <strong>in</strong> Hawaii. Proc Entomol Soc Wash. 107:741–749.<br />

Burckhardt D, Lauterer P. 1982. Trioza laserpitii sp.n., a new Central European psyllid<br />

(Homoptera, Psyllodea). Reichenbachia 20:145–153.<br />

Burckhardt D, Lauterer P. 1997. Systematics <strong>and</strong> biology of the Aphalara exilis (Weber <strong>and</strong><br />

Mohr) species assemblage (Hemiptera: Psyllidae). Entomol Sc<strong>and</strong>. 28:271–305.<br />

Burckhart D, Lauterer P. 2002. Revision of the Trioza rotundata Flor complex (Hemiptera:<br />

Psylloidea): taxonomy <strong>and</strong> biology. Mitt Schwizerischen Entomol Ges. 75:21–34.<br />

Burckhardt D, Lauterer P. 2006. The palaeartic triozids associated with Rubiaceae<br />

(Hemiptera, Psylloidea): a taxonomic re-evaluation of the Trioza galii Foerster complex.<br />

Rev Suisse Zool. 113:269–286.<br />

Burts EC. 1970. The pear psylla <strong>in</strong> central Wash<strong>in</strong>gton. Wash Agri Exp Stn Circ. 516:1–13.<br />

Burts EC, Fischer WR. 1967. Mat<strong>in</strong>g behaviour, egg production <strong>and</strong> egg fertility <strong>in</strong> the pear<br />

psylla. J Econ Entomol. 60:1297–1300.<br />

Butignol CA, Pedrosa MJH. 2003. Biologia de Neotrioza tavaresi Crawford, 1925 (Hemiptera,<br />

Psyllidae), galhador da folha do aracazeiro (Psidium cattleianum). Rev Brasil Entomol.<br />

47:1–7.<br />

Butt BA, Stuart C. 1986. Oviposition by summer <strong>and</strong> w<strong>in</strong>ter forms of pear psylla Psylla<br />

pyricola on dormant pear budwood. Environ Entomol. 15:1109–1110.<br />

Butt BA, Stuart LC, Bell RL. 1989. Feed<strong>in</strong>g, longevity, <strong>and</strong> development of pear psylla<br />

(Homoptera, Psyllidae) nymphs on resistant <strong>and</strong> susceptible pear genotypes. J Econ<br />

Entomol. 82:458–461.<br />

Butterfield J, Whittaker JB, Field<strong>in</strong>g CA. 2001. Control of the flexible annual/biennial life<br />

<strong>cycle</strong> of the heather psyllid Stroph<strong>in</strong>gia ericae. Physiol Entomol. 26:266–274.<br />

Campbell KG. 1964. Sound production by Psyllidae (Hemipteta). J Entomol Soc Aust. 1:3–4.<br />

Campbell KG. 1992. The biology <strong>and</strong> population ecology of two species of Cardiasp<strong>in</strong>a<br />

(Hemiptera: Psyllidae) <strong>in</strong> plague numbers on Eucalyptus gr<strong>and</strong>is <strong>in</strong> New South Wales.<br />

Proc L<strong>in</strong>n Soc NSW. 113:135–150.<br />

Cannon RJC. 1983. Cold hard<strong>in</strong>ess <strong>in</strong> the heather psyllid Stroph<strong>in</strong>gia ericae (Homoptera:<br />

Psylloidea). Cryo Lett. 4:113–118.<br />

Carraro L, Ferr<strong>in</strong>i F, Labonne G, Ermacora P, Loi N. 2004. Seasonal <strong>in</strong>fectivity of Cacopsylla<br />

pruni, vector of European stone fruit yellows phytoplasma. Ann Appl Biol. 144:191–195.<br />

Carraro L, Loi N, Ermacora P, Gregoris A, Osler R. 1998. Transmission of pear decl<strong>in</strong>e by<br />

us<strong>in</strong>g naturally <strong>in</strong>fected Cacopsylla pyri. Acta Horti. 472:665–668.<br />

Carraro L, Osler R, Loi N, Ermacora P, Refatti E. 1998. Transmission of European stone fruit<br />

yellows phytoplasmas by Cacopsylla pruni. J Plant Pathol. 80:233–239.<br />

Carter MW. 1949. The Pittosporum chermid Powellia vitreoradiata Mask. NZ J Sci Tech. B<br />

31:31–42.<br />

Carver M. 1987. Dist<strong>in</strong>ctive motory behavior <strong>in</strong> some adult psyllids (Homoptera, Psylloidea).<br />

J Aust Entomol Soc. 26:369–372.<br />

Casteel CL, Wall<strong>in</strong>g LL, Pa<strong>in</strong>e TD. 2007. Effect of Mi-1.2 gene <strong>in</strong> natal host <strong>plant</strong>s on<br />

behavior <strong>and</strong> biology of the tomato psyllid Bactericerca cockerelli (Sˇulc) (Hemiptera:<br />

Psyllidae). J Entomol Sci. 42:155–162.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 153<br />

Catl<strong>in</strong>g HD. 1969a. The bionomics of the South African citrus psylla Trioza erytreae<br />

(Homoptera: Psyllidae) part 1. The <strong>in</strong>fluence of the flush<strong>in</strong>g rhythm of citrus <strong>and</strong> factors<br />

which regulate flush<strong>in</strong>g. J Entomol Soc South Afr. 32:191–208.<br />

Catl<strong>in</strong>g HD. 1969b. The bionomics of the South African citrus psylla Trioza erytreae<br />

(Homoptera: Psyllidae) part 3. The <strong>in</strong>fluence of extremes of weather on survival. J<br />

Entomol Soc South Afr. 32:273–290.<br />

Catl<strong>in</strong>g HD. 1970. Distribution of psyllid vectors of citrus green<strong>in</strong>g disease, with notes on<br />

biology <strong>and</strong> bionomics of Diaphor<strong>in</strong>a citri. FAO Plant Prot Bull. 18:8–15.<br />

Catl<strong>in</strong>g HD. 1971. The bionomics of the South African citrus psylla Trioza erytreae<br />

(Homoptera: Psyllidae) part 5. The <strong>in</strong>fluence of host <strong>plant</strong> quality. J Entomol Soc South<br />

Afr. 34:381–391.<br />

Catl<strong>in</strong>g HD, Annecke DP. 1968. The ecology of the citrus psylla <strong>in</strong> the Letaba district of<br />

Northern Transvaal. S Afr Citrus J. 410:1–7.<br />

Center TD, Pratt PD, Tipp<strong>in</strong>g PW, Rayamajhi MB, Van TK, W<strong>in</strong>eriter SA, Dray FA. 2007.<br />

Initial impacts <strong>and</strong> field validation of host range for Boreioglycaspis melaleucae Moore<br />

(Hemiptera: Psyllidae), a biological control agent of the <strong>in</strong>vasive tree Melaleuca<br />

qu<strong>in</strong>quenervia (Cav.) Blake. Environ Entomol. 36:569–576.<br />

Center TD, Pratt PD, Tipp<strong>in</strong>g PW, Rayamajhi MB, Van TK, W<strong>in</strong>eriter SA, Dray FA, Purcell<br />

M. 2006. Field colonization, population growth, <strong>and</strong> dispersal of Boreioglycaspis<br />

melaleucae Moore, a biological control agent of the <strong>in</strong>vasive tree Melaleuca qu<strong>in</strong>quenervia<br />

(Cav.) Blake. Biol Control. 39:363–374.<br />

Chang JF, Philogene BJR. 1976. The development <strong>and</strong> behavior of the pear psylla Psylla<br />

pyricola (Homoptera Psyllidae) on different pear rootstocks <strong>and</strong> cultivars.<br />

Phytoprotection 57:137–149.<br />

Chang KP, Lee CS, Hsiao WF. 1995. <strong>Life</strong> <strong>cycle</strong> of Philipp<strong>in</strong>e ebony persimmon psyllid, Trioza<br />

magnicauda Crawford (Homoptera: Psyllidae) <strong>and</strong> <strong>in</strong>secticide screen<strong>in</strong>g of their control.<br />

Plant Prot Bull Taichung. 37:423–432.<br />

Chang K, Musgrave A. 1969. Histochemistry <strong>and</strong> ultrastructure of the mycetome <strong>and</strong><br />

its ‘‘symbiotes’’ <strong>in</strong> the pear psylla, Psylla pyricola (Homoptera). Tissue Cell.<br />

1:597–606.<br />

Chaterjee PH, Sebastian VO. 1965. Inhibition of <strong>in</strong>florecence <strong>in</strong> Mangifera <strong>in</strong>dica L<strong>in</strong>n. by the<br />

gall-form<strong>in</strong>g psyllid Apsylla cistellata Buckt (Psyllidae- Homoptera). Control measures.<br />

Indian For. 91:228–230.<br />

Chazeau J. 1987. Le psylle du faux-mimosa en Asie du sud-est et dans la Pacifique: etat du<br />

probleme et perspectives de lutte (Leucaena leucocephala (Lam de Wit) – Heteropsylla<br />

cubana Crawford. Rev Elev Med Vet Nouv Caladonie. 9:23–27.<br />

Chen M, Miyakawa T, Matsui C. 1973. Citrus likub<strong>in</strong> pathogens <strong>in</strong> salivary gl<strong>and</strong>s of<br />

Diaphor<strong>in</strong>a citri. Phytopathology 63:194–195.<br />

Cheng L, Birch MC. 1978. Insect flotsam: an unstudied mar<strong>in</strong>e resource. Ecol Entomol.<br />

3:87–97.<br />

Chiara SR, Rapisarda C, Russo A, Zagami S. 1990. Alcuni fitofagi dell’otano napoletano <strong>in</strong><br />

Calabria. Inf Fitopatol. 40:25–30.<br />

Chon DR. 1964. Experiment on the life history <strong>and</strong> the control of Anomoneura mori Schwarz<br />

(mulberry psyllid). Seric J Korea 4:33–39.<br />

Clark LR. 1962. The general biology of Cardiasp<strong>in</strong>a albitextura (Psyllidae). Aust J Zool.<br />

10:537–586.<br />

Clark LR. 1963a. Factors affect<strong>in</strong>g the attractiveness of foliage for oviposition by Cardiasp<strong>in</strong>a<br />

albitextura (Psyllidae). Aust J Zool. 11:20–34.<br />

Clark LR. 1963b. The <strong>in</strong>fluence of population density on the number of eggs laid by females of<br />

Cardiasp<strong>in</strong>a albitextura (Psyllidae). Aust J Zool. 11:190–201.<br />

Clark LR, Dallwitz MJ. 1975. The life system of Cardiasp<strong>in</strong>a albitextura (Psyllidae) 1950–<br />

1974. Aust J Zool. 23:523–561.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

154 I.D. Hodk<strong>in</strong>son<br />

Cobb<strong>in</strong>ah JR. 1986. Factors affect<strong>in</strong>g the distribution <strong>and</strong> abundance of Phytolyma lata<br />

(Homoptera, Psyllidae). Insect Sci Appl. 7:111–115.<br />

Cobb<strong>in</strong>ah JR, Wagner MR. 1995. Phenotypic <strong>variation</strong> <strong>in</strong> Milicia excelsa to attack by<br />

Phytolyma lata (Psyllidae). For Ecol Manag. 75:147–153.<br />

Collett N. 2001. Biology <strong>and</strong> control of psyllids, <strong>and</strong> the possible causes for defoliation of<br />

Eucalyptus camaldulensis Dehnh. (red river gum) <strong>in</strong> south-eastern Australia – a review.<br />

Aust For. 64:88–95.<br />

Compere H. 1916. Notes on the tomato psylla. Mon Bull Calif Comm Horti. 5:189–191.<br />

Conci C. 2000. Iconography of eggs of Italian Psylloidea (<strong>Insecta</strong>: Homoptera). Atti Accad<br />

Roveretana Degli Agiati (Ser VII) 10B:5–32.<br />

Conci C, Taman<strong>in</strong>i L. 1982. Psylla limbata, nuova per l’Italia, da Rhamnus alp<strong>in</strong>us<br />

(Homoptera: Psylloidea). Atti Soc Ital Sci Nat Mus Civic Stor Nat Milan. 123:<br />

483–494.<br />

Conci C, Taman<strong>in</strong>i L. 1983. Crast<strong>in</strong>a (Eustigmatia) log<strong>in</strong>ovae n. sp. dell’Italia centrale, da<br />

Tamarix gallica, un genere nuova per l’Europa Centro-Occidentale. Atti Soc Ital Sci Nat<br />

Mus Civic Storia Nat Milan. 124:97–104.<br />

Conci C, Taman<strong>in</strong>i L. 1984a. Floria (Floria) poggii n.sp., from Sard<strong>in</strong>ia, host <strong>plant</strong> Genista<br />

corsica (Homoptera: Psylloidea). Ann Mus Civic Storia Nat Genova. 85:43–49.<br />

Conci C, Taman<strong>in</strong>i L. 1984b. Phylloplecta trisignata (Low, 1986), host <strong>plant</strong> Rubus sp., of the<br />

complex Rubi Corylifolii. Stud Trent Sci Nat, Acta Biol. 61:249–261.<br />

Conci C, Taman<strong>in</strong>i L. 1984c. Trioza (Hippophaetrioza n. subgen.) b<strong>in</strong>otata from Alto Adige,<br />

new for Italy (Homoptera: Psylloidea). Stud Trent Sci Nat, Acta Biol. 61:239–248.<br />

Conci C, Taman<strong>in</strong>i L. 1984d. Trioza (Trioza) rapisardai n.sp. from Piemonte, host <strong>plant</strong><br />

Laserpitium siler. Atti Soc Ital Sci Nat Mus Civic Storia Nat Milan. 125:201–208.<br />

Conci C, Taman<strong>in</strong>i L. 1985a. Aryta<strong>in</strong>illa spartiicola from Puglia, new for Italy (Homoptera:<br />

Psylloidea). Atti Accad Roveretana Degli Agiati (Ser VI) 25:123–136.<br />

Conci C, Taman<strong>in</strong>i L. 1985b. Lauritrioza n. gen. for Trioza alacris (Homoptera: Psylloidea).<br />

Atti Soc Ital Sci Nat Mus Civic Storia Nat Milan. 126:237–256.<br />

Conci C, Taman<strong>in</strong>i L. 1985c. Redescription of Trioza ilic<strong>in</strong>a (De Stefani Perez, 1901) comb.n.<br />

from Quercus ilex (Homoptera: Psylloidea). Boll Lab Entomol Agrar Filippo Silvestri,<br />

Portici. 42:33–46.<br />

Conci C, Taman<strong>in</strong>i L. 1986a. Cyamophila prohaskai from Alto Adige <strong>and</strong> Trent<strong>in</strong>o, genus <strong>and</strong><br />

species new for Italy. Stud Trent Sci Nat, Acta Biol. 62:59–68.<br />

Conci C, Taman<strong>in</strong>i L. 1986b. The nymph of Phylloplecta trisignata (Löw) <strong>and</strong> new data on the<br />

morphology <strong>and</strong> the life history of the species (Homoptera: Psylloidea: Triozidae). Boll<br />

Ist Entomol ‘‘Guido Gr<strong>and</strong>i’’ Univ Bologna Lab Entomol Agrar Filippo Silvestri,<br />

Portici. 41:93–100.<br />

Conci C, Taman<strong>in</strong>i L. 1986c. Trioza saxifragae <strong>in</strong> Trent<strong>in</strong>o, new for Italy from Saxifraga<br />

azoides (Homoptera: Psylloidea). Ann Mus Civici Rovereto 2:159–168.<br />

Conci C, Taman<strong>in</strong>i L. 1987. Observations on Trioza rotundata Flor (Homoptera: Psylloidea).<br />

Ann Mus Civici Rovereto 3:265–284.<br />

Conci C, Taman<strong>in</strong>i L. 1988. Rare or <strong>in</strong>terest<strong>in</strong>g species of Italian Psylloidea 1 (Homoptera).<br />

Atti Accad Roveretana Degli Agiati (Ser VI) 28B:47–72.<br />

Conci C, Taman<strong>in</strong>i L. 1989a. Cacopsylla iteophila <strong>in</strong> Alto Adige <strong>and</strong> Trent<strong>in</strong>o, new for Italy<br />

(Homoptera Psylloidea). Ann Mus Civici Rovereto 5:205–218.<br />

Conci C, Taman<strong>in</strong>i L. 1989b. <strong>Life</strong> history, nymphs <strong>and</strong> egg of Cyamophila prohaskai, host<br />

<strong>plant</strong> Anthyllis vulneraria ssp. alpestris (Homoptera: Psylloidea). Stud Trent Sci Nat,<br />

Acta Biol. 65:137–146.<br />

Conci C, Taman<strong>in</strong>i L. 1990. Notes on the genus Psyllopsis (Homoptera: Psylloidea). Atti<br />

Accad Roveretana Degli Agiati (Ser VI) 29B:57–85.<br />

Conci C, Taman<strong>in</strong>i L. 1991. Triozidae new or <strong>in</strong>terest<strong>in</strong>g for Italy (Homoptera: Psylloidea).<br />

Atti Accad Roveretana Degli Agiati (Series VI) 30B:37–60.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 155<br />

Conci C, Rapisarda C, Taman<strong>in</strong>i L. 1993. Annotated catalogue of the Italian Psylloidea. First<br />

Part (<strong>Insecta</strong>: Homoptera). Atti Accad Roveretana Degli Agiati (Ser VII) 2B:33–136.<br />

Conci C, Rapisarda C, Taman<strong>in</strong>i L. 1996. Annotated catalogue of the Italian Psylloidea.<br />

Second part (<strong>Insecta</strong>: Homoptera). Atti Accad Roveretana Degli Agiati (Ser VII)<br />

5B:5–207.<br />

Conconi RE de J. 1973. Biological observations on Paurocephala tuxtlaensis n.sp.<br />

(Homoptera: Psyllidae). Folia Entomol Mexican. 25–26:33–34.<br />

Costanzi M, Santana DLS, Terra AL, Penteado SR, Iede ET, Morey CS. 2003. Un nouveau<br />

psylle sur les eucalyptus de la Riviere Ligure et de la Côte d’Azur. Premieres observations<br />

de Ctenaryta<strong>in</strong>a spatulata Taylor dans le Bass<strong>in</strong> Mediterranean Occidental. Phytoma –<br />

Defense Veg. 566:48–51.<br />

Cous<strong>in</strong> MT, Boudon-Padieu E. 2002. Phytoplasmes et phytoplasmoses: vecteurs, methodes de<br />

lutte et themes de récherche. Cahiers Agri 11:115–126.<br />

Crawford SA, Wilkens S. 1996. Ultrastructural aspects of damage to leaves of Eucalyptus<br />

camaldulensis by the psyllid Cardiasp<strong>in</strong>a retator. Micron 27:359–366.<br />

Dabek AJ. 1983. Wissadula proliferation <strong>in</strong> Jamaica. Vol. 2. Psyllid transmission <strong>and</strong><br />

antibiotic therapy. Phytopathol Z. 107:345–361.<br />

Dahlsten DL, Kent DM, Rowney DL, Copper WA, Young TE, Tassan RL. 1995. Parasitoid<br />

shows potential for biocontrol of Eugenia psyllid. Calif Agri. 49:36–40.<br />

Danks HV. 2002. The range of <strong>in</strong>sect dormancy responses. Eur J Entomol. 99:127–142.<br />

Danks HV. 2005. Key themes <strong>in</strong> the study of seasonal <strong>adaptation</strong> <strong>in</strong> <strong>in</strong>sects I. Patterns of cold<br />

hard<strong>in</strong>ess. Appl Entomol Zool. 40:199–211.<br />

Danks HV. 2006. Key themes <strong>in</strong> the study of seasonal <strong>adaptation</strong> <strong>in</strong> <strong>in</strong>sects II. <strong>Life</strong> history<br />

patterns. Appl Entomol Zool. 41:1–13.<br />

Danks HV. 2007. The elements of seasonal <strong>adaptation</strong> <strong>in</strong> <strong>in</strong>sects. Can Entomol. 139:1–44.<br />

Das AK, Rao CN, S<strong>in</strong>gh S. 2007. Presence of citrus green<strong>in</strong>g (Huanglongb<strong>in</strong>g) disease <strong>and</strong> its<br />

psyllid vector <strong>in</strong> the North-Eastern region of India confirmed by PCR technique. Curr<br />

Sci. 92:1759–1763.<br />

Das PK, S<strong>in</strong>gh RN, Brahmachari BN, Sharan SK, Sengupta K. 1988. Seasonal <strong>in</strong>tensity of<br />

<strong>in</strong>festation of the gall <strong>in</strong>sect Trioza fletcheri m<strong>in</strong>or Crawford on Term<strong>in</strong>alia tomentosa <strong>and</strong><br />

Term<strong>in</strong>alia arjuna <strong>and</strong> its control through systemic <strong>in</strong>secticides. Indian J Seric. 27:117–121.<br />

Daugherty MP, Briggs CJ, Welter SC. 2007. Bottom-up <strong>and</strong> top-down control of pear psylla<br />

(Cacopsylla pyricola): fertilization, <strong>plant</strong> quality, <strong>and</strong> the efficacy of the predator<br />

Anthocoris nemoralis. Biol Control. 43:257–264.<br />

Davatchi AG. 1958. Étude biologique de la faune entomologique des Pistacia sauvages et<br />

cultivés. Rev Pathologie Veg Entomol Agri Fr. 37:1–166.<br />

Davies DL, Guise CM, Clark MF, Adams AN. 1992. Parry’s disease of pears is similar to pear<br />

decl<strong>in</strong>e <strong>and</strong> is associated with mycoplasma-type organisms transmitted by Cacopsylla<br />

pyricola. Plant Pathol. 41:195–203.<br />

Davis AC. 1937. Observations on the life history of Paratrioza cockerelli (Sˇulc) <strong>in</strong> southern<br />

California. J Econ Entomol. 30:377–379.<br />

Davis BNK. 1973. The Hemiptera <strong>and</strong> coleopterous fauna of st<strong>in</strong>g<strong>in</strong>g nettle <strong>in</strong> East Anglia. J<br />

Appl Ecol. 10:213–237.<br />

Davis RI, Gunua TG, Kame MF, Tenakanai D, Ruabete TK. 2005. Spread of citrus<br />

huanglongb<strong>in</strong>g (green<strong>in</strong>g disease) follow<strong>in</strong>g <strong>in</strong>cursion <strong>in</strong>to Papua New Gu<strong>in</strong>ea. Aust<br />

Plant Pathol. 34:517–524.<br />

Del Bene G, Gargani E, L<strong>and</strong>i S. 1997. Observations on the life <strong>cycle</strong> <strong>and</strong> diapause of<br />

Euphyllura oliv<strong>in</strong>a (Costa) <strong>and</strong> Euphyllura phillyreae Foerster (Homoptera: Aphalaridae).<br />

Adv Horti Sci. 11:10–16.<br />

Delic D, Mart<strong>in</strong>i M, Ermacora P, Carraro L, Myrta A. 2005. First report of fruit tree<br />

phytoplasmas <strong>and</strong> their psyllid vectors <strong>in</strong> Bosnia <strong>and</strong> Herzegov<strong>in</strong>a. J Plant Pathol.<br />

87:150–150.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

156 I.D. Hodk<strong>in</strong>son<br />

De Meirleire H. 1971. Le Psylle du laurier sauce. Phytoma 226:38.<br />

Dempster JP. 1968. Intra-specific competition <strong>and</strong> dispersal as exemplified by a psyllid <strong>and</strong> its<br />

anthocorid predator. In: Southwood TRE, editor. Insect abundance. Oxford (UK):<br />

Blackwell Scientific Publications. p. 8–17.<br />

De Queiroz Santana DL, Burckhardt DH. 2001. A new triozid pest (Hemiptera, Psylloidea,<br />

Triozidae) on ornamental trumpet trees (Tabebuia spp., Bignoniaceae) <strong>in</strong> Brazil. Rev<br />

Suisse Zool. 108:541–550.<br />

Deronzier S. 1981. Bioécologie et dynamique des populations de Psylla pyri L. (Homoptera:<br />

Psyllidae) [doctoral thesis]. [Marseille (France)]: University of Marseille.<br />

Deronzier S. 1984. Dynamique des populations de Psylla pyri L. en verger ab<strong>and</strong>onné dans le<br />

sud-est de France. Agronomie 4:549–556.<br />

Deronzier S, Atger P. 1980. Elements d’étude de la dynamique des populations de<br />

Psylla pyri L. dans la basse vallée du Rhône: periode hivernale et pr<strong>in</strong>taniere. Acta<br />

Oecol. 1:247–258.<br />

Dhiman SC, S<strong>in</strong>gh S. 2003. Some ecological aspects of Trioza hirsuta Crawford (Homoptera:<br />

Psyllidae): A pest of Term<strong>in</strong>alia tomentosa. J Exp Zool India. 6:373–376.<br />

Dhiman SC, S<strong>in</strong>gh S. 2004. Biology of Trioza hirsuta Crawford (Homoptera: Psyllidae), a pest<br />

of Term<strong>in</strong>alia tomentosa W & A. Indian For 130:680–690.<br />

D<strong>in</strong>g J, Du J, Zhang Y, Yu J, Wu G. 1987. Studies on Thysogyna limbata Enderle<strong>in</strong><br />

(Homoptera: Psyllidae) <strong>in</strong> Nanj<strong>in</strong>g. J Nanj<strong>in</strong>g Agri Univ. 3:47–57.<br />

Domenich<strong>in</strong>i G. 1967. La Psylla melanoneura Foerster (Homoptera) nel Nord Italia. Boll Zool<br />

Agrar Bachic. 8:169–180.<br />

Donnelly GP. 2002. The host range <strong>and</strong> biology of the mesquite psyllid Heteropsylla texana.<br />

Biocontrol 47:363–371.<br />

Douglas JW. 1878. The natural history of Psylla succ<strong>in</strong>cta. Entomol Mon Mag. 15:68–69.<br />

Downer JA, Avihra P, Mol<strong>in</strong>ar RH, Fraser JB, Koehler CS. 1988. New psyllid pest of<br />

California pepper tree. Calif Agri. 42:30–32.<br />

Downer JA, Koehler CS, Pa<strong>in</strong>e TD. 1991. Biology <strong>and</strong> management of the the eugenia psyllid<br />

Trioza eugeniae Froggatt. J Environ Horti. 9:137–141.<br />

Ellis PR, Hardman JA. 1992. Pests of umbelliferous crops. In: McK<strong>in</strong>lay RG, editor.<br />

Vegetable crop pests. Boca Raton (FL): CRC Press. p. 327–383.<br />

Entwistle PF. 1972. Pest of Cocoa. Bristol (UK): Longman.<br />

Espirito-Santo MM, Wilson Fern<strong>and</strong>ez G. 1998. Abundance of Neopelma baccharidis<br />

(Homoptera: Psyllidae) galls on the dioecious shrub Baccharis dracunculifolia<br />

(Asteraceae). Environ Entomol. 27:870–876.<br />

Espirito-Santo MM, Wilson Fern<strong>and</strong>es GW. 2002. Host <strong>plant</strong> effects on the development <strong>and</strong><br />

survivorship of the gall<strong>in</strong>g <strong>in</strong>sect Neopelma baccharidis (Homoptera: Psyllidae). Aust<br />

Ecol. 27:249–257.<br />

Essig EO. 1917. Tomato <strong>and</strong> laurel psyllids. J Econ Entomol. 10:433–444.<br />

Eyer JR. 1937. Physiology of psyllid yellows of potatoes. J Econ Entomol. 30:891–898.<br />

Eyer JR, Crawford RF. 1933. Observations on the feed<strong>in</strong>g habits of the potato psyllid<br />

(Paratrioza cockerelli Sˇulc) <strong>and</strong> the pathological history of the psyllid yellows which it<br />

produces. J Econ Entomol. 26:847–850.<br />

Felt EP. 1906. Bramble flea louse. Mem NY State Mus. 1:688–689.<br />

Ferreira SA, Wilson Fern<strong>and</strong>es G, Carvalho LG. 1990. Biology <strong>and</strong> natural history of<br />

Euphaleurus ostreoides (Homoptera: Psyllidae) a gall former on Lonchocarpus<br />

guillem<strong>in</strong>iaus. Rev Brasil Biol. 50:417–424.<br />

Ferris GF, Hyatt P. 1923. The life history of Euphyllura arbuti Schwarz (Hemiptera:<br />

Chermidae). Can Entomol. 55:88–92.<br />

Fields GJ, Zwick RW. 1975. Elim<strong>in</strong>ation of ovarian diapause <strong>in</strong> pear psylla Psylla pyricola <strong>in</strong><br />

the laboratory. Ann Entomol Soc Am. 68:1037–1038.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 157<br />

F<strong>in</strong>lay-Doney M, Walter GH. 2005. Discrim<strong>in</strong>ation among host <strong>plant</strong>s (Leucaena species <strong>and</strong><br />

accessions) by the psyllid pest Heteropsylla cubana <strong>and</strong> implications for underst<strong>and</strong><strong>in</strong>g<br />

resistance. Agri For Entomol. 7:153–160.<br />

Font I, Abad P, Alb<strong>in</strong>ana M, Esp<strong>in</strong>o AI, Dally EL, Davis RE, Jorda C. 1999. Amarilleos y<br />

enrojecimiento en zanahoria: una enfermedad a diagnostico. Boll Sanidad Veg Plagas<br />

25:405–415.<br />

Fox Wilson G. 1923. The eucalyptus psyllid Eurh<strong>in</strong>ocola eucalypti. Gardener’s Chron. 76:425.<br />

Fris<strong>in</strong>ghelli C, Delaiti L, Gr<strong>and</strong>o MS, Forti D, V<strong>in</strong>dimian ME. 2000. Cacopsylla costalis (Flor<br />

1861) as a vector of apple proliferation <strong>in</strong> Trent<strong>in</strong>o. J Phytopathol. 148:425–431.<br />

Fukatsu T, Nikoh N. 1998. Two <strong>in</strong>tracellular symbiotic bacteria from the mulberry psyllid<br />

Anomoneura mori (<strong>Insecta</strong>, Homoptera). Appl Environ Microbiol. 64:3599–3606.<br />

Fye RE. 1983. Dispersal <strong>and</strong> w<strong>in</strong>ter survival of the pear psylla. J Econ Entomol. 76:311–315.<br />

Gadug S, Husse<strong>in</strong> MY. 1987. The biology of the durian carsidarid Tenaphalara malayensis<br />

Crawf. Pertanika 10:243–246.<br />

Gegechkori AM. 1984. Psyllids (Homoptera: Psylloidea) of the Caucasus. Tibilisi (Georgia):<br />

Academii Nauk Gruz<strong>in</strong>skoi SSR.<br />

Gegechkori AM, Djibladzne DS. 1976. The psyllids of Colchida. Tibilisi (Georgia): Institut<br />

A.C. Pushk<strong>in</strong>.<br />

Gegechkori AM, Log<strong>in</strong>ova MM. 1990. The psyllids (Homoptera: Psylloidea) of the USSR.<br />

Tibilisi (Georgia): Academii Nauk Gruz<strong>in</strong>skoi SSR.<br />

Geiger CA, Gutierrez AP. 2000. Ecology of Heteropsylla cubana (Homoptera: Psyllidae):<br />

psyllid damage, tree phenology, thermal relations, <strong>and</strong> parasitism <strong>in</strong> the field. Environ<br />

Entomol. 29:76–86.<br />

Gençer NS, Coskuncu KS, Kumral NA. 2007. The colonization preference <strong>and</strong> population<br />

trends of larval fig psylla, Homotoma ficus L. (Hemiptera: Homotomidae). J Pest Sci.<br />

80:1–8.<br />

Giunchedi L, Poll<strong>in</strong>i CP, Biondi S, Bab<strong>in</strong>i AR. 1994. PCR detection of MLOs <strong>in</strong> quick<br />

decl<strong>in</strong>e-affected pear trees <strong>in</strong> Italy. Ann Appl Biol. 124:399–403.<br />

Glick PA. 1939. The distribution of <strong>in</strong>sects, spiders <strong>and</strong> mites <strong>in</strong> the air. Technical Bull US<br />

Dep Agri. 673:1–151.<br />

Green GC, Catl<strong>in</strong>g HD. 1971. Weather Induced mortality of the citrus psylla Trioza erytreae<br />

(Homoptera Psyllidae), a vector of green<strong>in</strong>g virus <strong>in</strong> some citrus-produc<strong>in</strong>g areas of<br />

Southern African. Agri Meteorol. 8:305–317.<br />

Grove AJ, Gosh CC. 1914. The life history of Psylla isitis Buckt. (Psyllopa punctipennis<br />

Crawford). The ‘‘psylla’’ disease of <strong>in</strong>digo. Mem Dep Agri <strong>in</strong> India (Entomol.)<br />

4:329–357.<br />

Ha˚gvar EB, Ha˚gvar S. 1975. Studies on the <strong>in</strong>vertebrate fauna on branches of spruce Picea<br />

abies dur<strong>in</strong>g w<strong>in</strong>ter. Nor J Entomol. 22:23–30.<br />

Halbert SE, Manjunath KL. 2004. Asian citrus psyllids (Sternorrhyncha: Psyllidae) <strong>and</strong><br />

green<strong>in</strong>g disease of citrus: A literature review <strong>and</strong> assessment of risk <strong>in</strong> Florida. Fl<br />

Entomol. 87:330–353.<br />

Hansen AK, Jeong G, Pa<strong>in</strong>e TD, Stouthamer R. 2007. Frequency of secondary symbiont<br />

<strong>in</strong>fection <strong>in</strong> an <strong>in</strong>vasive psyllid relates to parasitism pressure on a geographic scale <strong>in</strong><br />

California. Appl Environ Microbiol. 73:7531–7535.<br />

Hansen LO, Hodk<strong>in</strong>son ID. 2006. The mistletoe associated psyllid Cacopsylla visci (Curtis,<br />

1835) (Homoptera, Psyllidae) <strong>in</strong> Norway. Nor J Entomol. 53:89–91.<br />

Hardy AC, Cheng L. 1986. Studies <strong>in</strong> the distribution of <strong>in</strong>sects by aerial currents. Vol. 3.<br />

Insect drift over the sea. Ecol Entomol. 11:283–290.<br />

Harisanov A. 1966a. Biological <strong>and</strong> ecological studies on the peach psyllid (Psylla pruni<br />

Scopoli). Nauchni Trudove-Vissh Selskostopanski Institut Plovdiv 15:249–259.<br />

Harisanov A. 1966b. Biological studies on the southern apple leaf hopper Psylla costalis Flor.<br />

Nauchni Trudove-Vissh Selskostopanski Institut Plovdiv 15:261–270.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

158 I.D. Hodk<strong>in</strong>son<br />

Harris MK. 1973. Host resistance to the pear psylla <strong>in</strong> a Pyrus communis6P. ussuriensis<br />

hybrid. Environ Entomol. 2:883–887.<br />

Heard SB, Buchanan CK. 1998. Larval performance <strong>and</strong> association with<strong>in</strong> <strong>and</strong> between two<br />

species of hackberry nipple gall <strong>in</strong>sects, Pachypsylla spp. (Homoptera: Psyllidae). Am<br />

Midl<strong>and</strong> Nat. 140:351–357.<br />

Heeger E. 1856. Beitrage zur naturgeschichte der Insecten. Sitzung Akad Wiss Wien, Math<br />

Naturwiss. 18:33–47.<br />

He<strong>in</strong>ze K, Profft J. 1939. Uber Psylliden und Psyllidenschaden an der Kartoffel. Arb Physiol<br />

Angew Entomol Berl<strong>in</strong>-Dahlen 6:198–208.<br />

Heslop-Harrison G. 1937. Observations on the biology of certa<strong>in</strong> British Psyllidae.<br />

Entomologist 70:1–4.<br />

Heslop-Harrison G. 1942. Notes on the genus Psyllopsis Loew (Hem., Psyllidae) with special<br />

reference to the British species found on Frax<strong>in</strong>us. Entomol Mon Mag. 78:155–160.<br />

Heslop-Harrison G. 1949a. A new Indo-Malayan genus <strong>and</strong> species of the family Psyllidae<br />

(Hemiptera-Homoptera). Entomol Mon Mag. 85:161–164.<br />

Heslop-Harrison G. 1949b. The subfamily Livi<strong>in</strong>ae Loew of the homopterous family Psyllidae<br />

II. Ann Mag Nat Hist (12th ser.) 2:241–270.<br />

Heslop-Harrison G. 1951. The Aryta<strong>in</strong><strong>in</strong>i of the subfamily Psyll<strong>in</strong>ae, Hemiptera-Homoptera,<br />

family Psyllidae. Ann Mag Nat Hist (12th ser.) 4:417–454.<br />

Heslop-Harrison G. 1961. Sound production <strong>in</strong> the Homoptera with special reference to the<br />

sound produc<strong>in</strong>g mechanisms <strong>in</strong> the Psyllidae. Ann Mag Nat Hist. 3:633–640.<br />

Hib<strong>in</strong>o H, Kaloostian G, Schneider H. 1971. Mycoplasma-like bodies <strong>in</strong> the pear psylla vector<br />

of pear decl<strong>in</strong>e. Virology 43:34–40.<br />

Hildebr<strong>and</strong> M, Dickler E, Geider K. 2000. Occurrence of Erw<strong>in</strong>ia amylovora on <strong>in</strong>sects <strong>in</strong> a<br />

fire blight orchard. J Phytopathol. 148:251–256.<br />

Hill DS. 1982. Hong Kong <strong>in</strong>sects. Vol. 2. Hong Kong: The Urban Council. p. 33–34.<br />

Hill JK, Hamer KC, Hodk<strong>in</strong>son ID. 1998. Variation <strong>in</strong> resource exploitation along an<br />

altitud<strong>in</strong>al gradient: the willow psyllids (Cacopsylla spp.) on Salix lapponum. Ecography<br />

21:289–296.<br />

Hill JK, Hodk<strong>in</strong>son ID. 1995. Effects of temperature on phenological synchrony <strong>and</strong><br />

altitud<strong>in</strong>al distribution of jump<strong>in</strong>g <strong>plant</strong> <strong>lice</strong> (Hemiptera, Psylloidea) on dwarf willow<br />

(Salix lapponum) <strong>in</strong> Norway. Ecol Entomol. 20:237–244.<br />

Hill JK, Hodk<strong>in</strong>son ID. 1996. Effects of photoperiod <strong>and</strong> raised w<strong>in</strong>ter temperatures on egg<br />

development <strong>and</strong> tim<strong>in</strong>g of oviposition <strong>in</strong> the willow psyllid Cacopsylla moscovita.<br />

Entomol Exp Appl. 78:143–147.<br />

Hodgson CJ, Mustafa TM. 1984. The dispersal <strong>and</strong> flight activity of Psylla pyricola Foerster<br />

<strong>in</strong> southern Engl<strong>and</strong>. Lutte <strong>in</strong>tegré contre les psylles du poirier. Bull OILB/SROP, p.<br />

330–353.<br />

Hodk<strong>in</strong>son ID. 1972. Long range dispersal of certa<strong>in</strong> species of Psyllidae <strong>in</strong> the Northern<br />

Penn<strong>in</strong>es. Entomol Mon Mag. 108:21–22.<br />

Hodk<strong>in</strong>son I. 1973a. Population dynamics <strong>and</strong> host <strong>plant</strong> <strong>in</strong>teractions of Stroph<strong>in</strong>gia ericae<br />

(Curt.) (Homoptera: Psylloidea). J Anim Ecol. 42:565–583.<br />

Hodk<strong>in</strong>son ID. 1973b. The biology of Stroph<strong>in</strong>gia ericae (Homoptera Psylloidea) with notes<br />

on its primary parasite Tetrastichus actis (Hymenoptera Eulophidae). Norsk Entomol<br />

Tidsskrift 20:237–243.<br />

Hodk<strong>in</strong>son ID. 1974. The biology of the Psylloidea (Homoptera): a review. Bull Entomol Res.<br />

64:325–338.<br />

Hodk<strong>in</strong>son ID. 1981. Status <strong>and</strong> taxonomy of the Trioza nigricornis complex (Hemiptera:<br />

Homoptera:Triozidae). Bull Entomol Res. 71:671–680.<br />

Hodk<strong>in</strong>son ID. 1983a. Facultative parthenogenesis <strong>in</strong> Psylla myrtilli (Homoptera: Psyllidae):<br />

the saga cont<strong>in</strong>ues <strong>in</strong> Norway. Fauna Nor Ser B. 30:1–2.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 159<br />

Hodk<strong>in</strong>son ID. 1983b. The psyllids (Homoptera, Psylloidea) of the Austro-Oriental, Pacific<br />

<strong>and</strong> Hawaiian zoogeographical realms – an annotated check list. J Nat Hist. 17:341–377.<br />

Hodk<strong>in</strong>son ID. 1983c. Psyllids (Homoptera: Psylloidea) collected <strong>in</strong> yellow water trays <strong>in</strong><br />

northern Italy. Entomol Gaz. 34:279–280.<br />

Hodk<strong>in</strong>son ID. 1984. The biology <strong>and</strong> ecology of the gall-form<strong>in</strong>g Psylloidea. In:<br />

Ananthakrishnan R, editor. The biology of gall form<strong>in</strong>g <strong>in</strong>sects. London: Edward<br />

Arnold. p. 59–77.<br />

Hodk<strong>in</strong>son ID. 1986a. Co-evolution between psyllids (Homoptera: Psylloidea) <strong>and</strong> ra<strong>in</strong> forest<br />

trees: the first 120 million years. In: Chadwick AC, Sutton S, editors. Tropical ra<strong>in</strong> forest:<br />

the Leeds symposium. Leeds: Leeds Philosophical Society. p. 187–194.<br />

Hodk<strong>in</strong>son ID. 1986b. The psyllids (Homoptera: Psylloidea) of the Oriental zoogeographical<br />

region: an annotated checklist. J Nat Hist. 20:299–357.<br />

Hodk<strong>in</strong>son ID. 1988a. The hitchhiker’s guide to foreign food. New Sci. 118(1611):47–51.<br />

Hodk<strong>in</strong>son ID. 1988b. The Nearctic Psylloidea (<strong>Insecta</strong>: Homoptera): an annotated check list.<br />

J Nat Hist. 22:1179–1244.<br />

Hodk<strong>in</strong>son ID. 1997. Progressive restriction of host <strong>plant</strong> exploitation along a climatic<br />

gradient: The willow psyllid Cacopsylla groenl<strong>and</strong>ica <strong>in</strong> Greenl<strong>and</strong>. Ecol Entomol.<br />

22:47–54.<br />

Hodk<strong>in</strong>son ID. 1999. Biocontrol of eucalyptus psyllid Ctenaryta<strong>in</strong>a eucalypti by the<br />

Australian parasitoid Psyllaephagus pilosus: a review of current programmes <strong>and</strong> their<br />

success. Biocontrol News Inf. 20:129N–134N.<br />

Hodk<strong>in</strong>son ID. 2007. A new <strong>in</strong>troduced species of Ctenaryta<strong>in</strong>a (Hemiptera: Psylloidea)<br />

damag<strong>in</strong>g cultivated Eucalyptus parvula (5parvifolia) <strong>in</strong> Europe. Dtsche Entomol Z.<br />

54:27–33.<br />

Hodk<strong>in</strong>son ID, Bird JM. 1998. Host-specific <strong>in</strong>sect herbivores as sensors of climate change <strong>in</strong><br />

arctic <strong>and</strong> Alp<strong>in</strong>e environments. Arctic Alp<strong>in</strong>e Res. 30:78–83.<br />

Hodk<strong>in</strong>son ID, Bird JM. 2000. Sedge <strong>and</strong> rush-feed<strong>in</strong>g psyllids of the subfamily Livi<strong>in</strong>ae<br />

(<strong>Insecta</strong>: Hemiptera: Psylloidea): a review. Zool J L<strong>in</strong>n Soc. 128:1–49.<br />

Hodk<strong>in</strong>son ID, Bird JM. 2006a. Facultative parthenogenesis <strong>in</strong> Cacopsylla myrtilli (Wagner)<br />

(Hemiptera: Psylloidea) <strong>in</strong> northern Sweden. Entomol Tidskrift 127:157–160.<br />

Hodk<strong>in</strong>son ID, Bird JM. 2006b. Flexible responses of <strong>in</strong>sects to chang<strong>in</strong>g environmental<br />

temperature – early season development of Craspedolepta species on fireweed. Global<br />

Change Biol. 12:1308–1314.<br />

Hodk<strong>in</strong>son ID, Bird JM. In press. The jump<strong>in</strong>g <strong>plant</strong> <strong>lice</strong> or psyllids (Homoptera: Psylloidea)<br />

of Greenl<strong>and</strong>. In: Bocher J, editor. The <strong>in</strong>sects of Greenl<strong>and</strong>. Copenhagen (Denmark):<br />

Danish Polar Centre.<br />

Hodk<strong>in</strong>son ID, Bird JM, Hill JK, Baxter R. 2001. Host <strong>plant</strong> growth characteristics as<br />

determ<strong>in</strong>ants of abundance <strong>and</strong> phenology <strong>in</strong> jump<strong>in</strong>g <strong>plant</strong>-<strong>lice</strong> on downy willow. Ecol<br />

Entomol. 26:376–387.<br />

Hodk<strong>in</strong>son ID, Bird JM, Miles JE, Bale JS, Lennon JJ. 1999. Climatic signals <strong>in</strong> the life<br />

histories of <strong>in</strong>sects: the distribution <strong>and</strong> abundance of heather psyllids (Stroph<strong>in</strong>gia spp.)<br />

<strong>in</strong> the UK. Funct Ecol. 13:83–95.<br />

Hodk<strong>in</strong>son ID, Casson D. 2000. Patterns with<strong>in</strong> patterns: abundance-size relationships with<strong>in</strong><br />

the Hemiptera of tropical ra<strong>in</strong> forest or why phylogeny matters. Oikos 88:509–514.<br />

Hodk<strong>in</strong>son ID, Jensen TS, Maclean SFJ. 1979. The distribution, abundance <strong>and</strong> host <strong>plant</strong><br />

relationships of Salix feed<strong>in</strong>g psyllids (Homoptera: Psylloidea) <strong>in</strong> Arctic Alaska. Ecol<br />

Entomol. 4:119–132.<br />

Hodk<strong>in</strong>son ID, White IM. 1981. The Neotropical Psylloidea (Homoptera, <strong>Insecta</strong>) – an<br />

annotated check list. J Nat Hist. 15:491–523.<br />

Hoffmann JH, Moran VC, Webb JW. 1975. Influence of host <strong>plant</strong> <strong>and</strong> saturation deficit on<br />

temperature tolerance of a psyllid (Homoptera). Entomol Exp Appl. 18:55–67.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

160 I.D. Hodk<strong>in</strong>son<br />

Hollis D. 2004. Australian Psylloidea. Jump<strong>in</strong>g <strong>plant</strong> <strong>lice</strong> <strong>and</strong> lerp <strong>in</strong>sects. Canberra<br />

(Australia): Australian Government, Australian Biological Resource Study.<br />

Horton DR. 1990a. Distribution <strong>and</strong> survival of eggs of summer form pear psylla<br />

(Homoptera: Psyllidae) affected by leaf mid-ve<strong>in</strong>. Environ Entomol. 19:656–661.<br />

Horton DR. 1990b. Oviposition by overw<strong>in</strong>ter<strong>in</strong>g morph of pear psylla (Homoptera,<br />

Psyllidae) with <strong>in</strong>formation on condition<strong>in</strong>g. Environ Entomol. 19:357–361.<br />

Horton DR, Broers DA, H<strong>in</strong>ojosa T, Lewis TM. 1998. Ovarian development <strong>in</strong> overw<strong>in</strong>ter<strong>in</strong>g<br />

pear psylla, Cacopsylla pyricola (Homoptera: Psyllidae): seasonality <strong>and</strong> effects of<br />

photoperiod. Can Entomol. 130:859–867.<br />

Horton DR, Burts EC, Unruh TR, Krysan JL, Coop LB, Croft BA. 1994. Phenology of fall<br />

dispersal by w<strong>in</strong>terform pear psylla (Homoptera, Psyllidae) <strong>in</strong> relation to leaf fall <strong>and</strong><br />

weather. Can Entomol. 126:111–120.<br />

Horton DR, Guedot C, L<strong>and</strong>olt PJ. 2007. Diapause status of females affects attraction of<br />

male pear psylla, Cacopsylla pyricola, to volatiles from female-<strong>in</strong>fested pear shoots.<br />

Entomol Exp Appl 123:185–192.<br />

Horton DR, Higbee BS, Krysan JL. 1994. Postdiapause development <strong>and</strong> mat<strong>in</strong>g status of<br />

pear psylla (Homoptera, Psyllidae) affected by pear <strong>and</strong> nonhost species. Ann Entomol<br />

Soc Am. 87:241–249.<br />

Horton DR, Krysan JL. 1990. Prob<strong>in</strong>g <strong>and</strong> oviposition-related activity of summerform pear<br />

psylla (Homoptera, Psyllidae) on host <strong>and</strong> nonhost substrates. Environ Entomol.<br />

19:1463–1468.<br />

Horton DR, Krysan JL. 1991. Host acceptance behavior of pear psylla (Homoptera:<br />

Psyllidae) affected by <strong>plant</strong> species, host deprivation, habituation <strong>and</strong> egg load. Ann<br />

Entomol Soc Am. 84:612–627.<br />

Horton DR, L<strong>and</strong>olt PJ. 2007. Attraction of male pear psylla, Cacopsylla pyricola, to female<strong>in</strong>fested<br />

pear shoots. Entomol Exp Appl. 123:177–183.<br />

Horton DR, Lewis TM. 1996. Tethered flight activity of pear psylla, Cacopsylla pyricola:<br />

seasonal, host <strong>and</strong> morphotypic effects. Entomol Exp Appl. 78:39–49.<br />

Horton DR, Lewis TM, Neven LG. 1996. Reduced cold-hard<strong>in</strong>ess of pear psylla (Homoptera:<br />

Psyllidae) caused by exposure to external water <strong>and</strong> surfactants. Can Entomol.<br />

128:825–830.<br />

Hsieh FK, Chen S. 1977. Morphology <strong>and</strong> bionomics of the Taiwan mulberry psyllid<br />

Paurocephala psylloptera Crawford. Plant Prot Bull. 19:37–46.<br />

Human NB, Bedford ECG. 1985. Relationship between meteorological factors <strong>and</strong> the<br />

<strong>in</strong>cidence of citrus psylla Trioza erytreae (Del Guercio) at Rustenburg from 1978 until<br />

1982. Subtropica 6:19–23.<br />

Hung T-H, Hung S-C, Chen C-N, Hsu M-H, Su H-J. 2004. Detection by PCR of C<strong>and</strong>idatus<br />

Liberibacter asiaticus, the bacterium caus<strong>in</strong>g citrus huanglongb<strong>in</strong>g <strong>in</strong> vector psyllids:<br />

application to the study of vector–pathogen relationships. Plant Pathol. 53:96–102.<br />

Hussa<strong>in</strong> MA, Nath D. 1927. The citrus psylla (Diaphor<strong>in</strong>a citri Kuw.) (Psyllidae: Homoptera).<br />

Mem Dep Agri India 10:5–27.<br />

Igboekwe AD. 1983. Studies on the damage to young cocoa seedl<strong>in</strong>gs by the cocoa psyllid<br />

Tyora tessmanni (Aulmann) (Homoptera, Psyllidae). Café Cacao Thé 27:67–70.<br />

Igboekwe AD, Adenuga AO. 1983. Studies on the bionomics of cocoa psyllid Tyora tessmanni<br />

(Aulmann) (Homoptera: Psyllidae). Rev Zool Afr. 97:896–904.<br />

Iglesias CA. 1983. Incidencia de la fenologia foliar de Tetragastris panamensis en la<br />

distribucion de Calophya sp. (Homoptera: Psyllidae). Conciencia 10:28–30.<br />

Jackson CS, Hodk<strong>in</strong>son ID, Stanley P. 1990. Cold-hard<strong>in</strong>ess <strong>in</strong> the hawthorn psyllid<br />

Cacopsylla melanoneura (Foerster) (Homoptera: Psylloidea). Entomologist 109:224–230.<br />

Janes MJ, Davis AC. 1937. Observations on the life history of Paratrioza cockerelli <strong>in</strong><br />

California. J Econ Entomol. 30:377–378.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 161<br />

Jarausch B, Schw<strong>in</strong>d N, Jarausch W, Krczal G, Dickler E, Seemuller E. 2003. First report of<br />

Cacopsylla picta as a vector of apple proliferation phytoplasma <strong>in</strong> Germany. Plant Dis.<br />

87:101.<br />

Jarausch W, Danet JL, Labonne G, Dosba F, Broquaire JM, Saillard C, Garnier M. 2001.<br />

Mapp<strong>in</strong>g the spread of apricot chlorotic leaf roll (ACLR) <strong>in</strong> southern France <strong>and</strong><br />

implication of Cacopsylla pruni as a vector of European stone fruit yellows (ESFY)<br />

phytoplasmas. Plant Pathol. 50:782–790.<br />

Jensen DD, Griggs WH, Gonzales CQ, Schneider H. 1964. Pear decl<strong>in</strong>e virus transmission by<br />

pear psylla. Phytopathology 54:1346–1351.<br />

Jonsson N. 1983. The life history of Psylla mali (Homoptera, Psyllidae) <strong>and</strong> its relationship to<br />

the development of the apple blossom. Fauna Nor Ser B. 30:3–8.<br />

Journet ARP. 1984. Associations of Craspedolepta species (Homoptera: Psylloidea) with<br />

goldenrod (Solidago spp.) <strong>in</strong> Quebec, Canada. Rev Entomol Quebec. 29:22–26.<br />

Junior M, Barros R, da Silva FR, de Vasconcelos GJN. 2005. Occurrence <strong>and</strong> biological<br />

aspects of the Clitoria tree psyllid <strong>in</strong> Brazil. Sci Agricol. 62:281–285.<br />

K<strong>and</strong>asamy C. 1980. A new leaf gall by Trioza gigantea Craw. (Homoptera, Psyllidae) on<br />

Vacc<strong>in</strong>ium neilgherrense (Vacc<strong>in</strong>iaceae). Curr Sci. 49:754–754.<br />

K<strong>and</strong>asamy C, Krishnan BH. 1981. First record of leaf galls on Litsea stocksii (Meissn) Hook<br />

F (Lauraceae) caused by a psyllid. Curr Sci. 50:967–968.<br />

Kapatos ET, Stratopoulou ET. 1996. Demographic study of the reproductive potential of pear<br />

psylla, Cacopsylla pyri. Entomol Exp Appl. 80:497–502.<br />

Kapatos ET, Stratopoulou ET. 1999. Duration times of the immature stages of Cacopsylla<br />

pyri L. (Hom., Psyllidae), estimated under field conditions, <strong>and</strong> their relationship to<br />

ambient temperature. J Appl Entomol. 123:555–559.<br />

Kaufmann T. 1973. Biology <strong>and</strong> ecology of Tyora tessmanni (Homoptera: Psyllidae) with<br />

special reference to its role as cocoa poll<strong>in</strong>ator <strong>in</strong> Ghana. J Kansas Entomol Soc.<br />

46:285–293.<br />

Klimaszewski SM. 1973. The jump<strong>in</strong>g <strong>plant</strong> <strong>lice</strong> or psyllids (Homoptera: Psyllodea) of the<br />

Palearctic: an annotated checklist. Ann Zool Warsaw. 30:155–286.<br />

Knowlton GF. 1933. Note on host <strong>plant</strong>s of Paratrioza cockerelli. J Econ Entomol. 26:730.<br />

Knowlton GF, Janes MJ. 1931. Studies on the biology of Paratrioza cockerelli (Sˇulc). Ann<br />

Entomol Soc Am. 24:283–291.<br />

Knowlton GF, Thomas WL. 1934. Host <strong>plant</strong>s of the potato psyllid. J Econ Entomol. 27:547.<br />

Koehler CS, Kattoulas ME, Frankie GW. 1966. Biology of Psylla uncatoides. J Econ<br />

Entomol. 59:1097–1100.<br />

Konovalova ZA. 1963. On the biology of Calophya nigra Kuw. Trudy Akad Nauk Sootsza<br />

SSR, Vladivostok 17:91–95.<br />

Konovalova ZA. 1976. Leafhoppers (Homoptera, Psylloidea) <strong>in</strong> Primorsky Kray. Trudy Biolpochvennogo<br />

Inst (New Ser.) 43:3–5.<br />

Krawczyk A, Migula P. 1979. Metabolism <strong>in</strong> Psyllodea. Acta Physiol Polonica. 30:114.<br />

Kristoffersen L, Anderbrant O. 2007. Carrot psyllid (Trioza apicalis) w<strong>in</strong>ter habitats – <strong>in</strong>sights<br />

<strong>in</strong> shelter <strong>plant</strong> preference <strong>and</strong> migratory capacity. J Appl Entomol. 131:174–178.<br />

Krysan JL. 1990. Laboratory study of mat<strong>in</strong>g behavior as related to diapause <strong>in</strong> overw<strong>in</strong>ter<strong>in</strong>g<br />

Cacopsylla pyricola (Homoptera, Psyllidae). Environ Entomol. 19:551–557.<br />

Krysan JL, Higbee BS. 1990. Seasonality of mat<strong>in</strong>g <strong>and</strong> ovarian development <strong>in</strong> overw<strong>in</strong>ter<strong>in</strong>g<br />

Cacopsylla pyricola (Homoptera, Psyllidae). Environ Entomol. 19:544–550.<br />

Kudler J. 1968. Diclidophlebia eastopi (Vondracek) a psyllid harmful to Triplochiton<br />

scleroxylon (K Schum). Technical Newsletter, Forest Products Research Institute,<br />

Ghana, 11–14.<br />

Kumar SU, Raman A, Kader MSA. 1981. Physiological alterations <strong>in</strong> the leaves of<br />

Buchanania lanzan due to psyllid galls. Curr Sci. 50:963–964.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

162 I.D. Hodk<strong>in</strong>son<br />

Kuwayama S. 1971. Observastions on the biology of the mulberry sucker. Jpn J Appl Entomol<br />

Zool. 15:115–120.<br />

Labonne G, Lichou J. 2004. Data on the life <strong>cycle</strong> of Cacopsylla pruni vector of European<br />

stone fruit yellows (ESFY) phytoplasma, <strong>in</strong> France. In: Llacer G, editor. Proceed<strong>in</strong>gs of<br />

the XIXth <strong>in</strong>ternational symposium on virus <strong>and</strong> virus-like diseases of temperate fruit<br />

crops: fruit tree diseases. Leuven (Belgium): International Society for Horticultural<br />

Science. p. 465–470.<br />

Lahiri AR, Biswas S. 1980. Observations on the relative <strong>in</strong>tensity of <strong>in</strong>fection on three species<br />

of cultivated citrus <strong>plant</strong>s by Psylla murrayi Mathur (Homoptera: Psyllidae) at Shillong,<br />

Meeghalaya. Bull Zool Surv India. 2:123–127.<br />

Lakra RK, S<strong>in</strong>gh Z, Kharub WS. 1983. Population dynamics of citrus psylla Diaphor<strong>in</strong>a citri<br />

Kuwayama <strong>in</strong> Haryana. Indian J Entomol. 45:301–310.<br />

Lal KB. 1934. The biology of the Scottish Psyllidae. Trans R Entomol Soc Lond. 82:363–385.<br />

Lapis EB, Borden JH. 1993a. Components of resistance of Leucaena coll<strong>in</strong>sii (Legum<strong>in</strong>osae) to<br />

Heteropsylla cubana (Homoptera: Psyllidae). Environ Entomol. 22:319–325.<br />

Lapis EB, Borden JH. 1993b. Olfactory discrim<strong>in</strong>ation by Heteropsylla cubana (Homoptera:<br />

Psyllidae) between susceptible <strong>and</strong> resistant species of Leucaena (Legum<strong>in</strong>osae). J Chem<br />

Ecol. 19:83–90.<br />

Laska P. 1964. Zusammenfassung: Beitrag zu Bionomie und Bekampfung der Trioza apicalis<br />

Forst. (Triozidae, Homoptera). Zool Listy. 13:327–332.<br />

Laska P. 1974. Study of Trioza apicalis (Triozidae: Homoptera). Prirodoved Prace Ustavu<br />

Ceskoslovenske Akad Ved v Brne 8:1–44.<br />

Laurema S. 1989. Free am<strong>in</strong>o acids <strong>in</strong> the psyllid Trioza apicalis (Homopt., Triozidae) <strong>and</strong> <strong>in</strong><br />

carrot leaves. Ann Agri Fenn. 28:113–120.<br />

Lauterer P. 1963. A contribution to the knowledge of the psyllid fauna of Czechoslovakia. Cas<br />

Morav Mus, Brne. 48:145–156.<br />

Lauterer P. 1965. A contribution to the knowledge of the psyllid fauna of Czechoslovalia II.<br />

Cas Morav Mus, Brne. 50:171–190.<br />

Lauterer P. 1976. Psyllids of wetl<strong>and</strong> nature reserves of the German Democratic Republic with<br />

notes on their biology, taxonomy <strong>and</strong> zoogeography. Faun Abh Dresden. 6:111–122.<br />

Lauterer P. 1979. New <strong>and</strong> <strong>in</strong>terest<strong>in</strong>g records of psyllids from Czechoslovakia (Homoptera:<br />

Psylloidea). Cas Morav Mus, Brne. 64:93–102.<br />

Lauterer P. 1982. New data on the occurence, bionomics <strong>and</strong> taxonomy of some<br />

Czechoslovakian Psylloidea (Homoptera). Cas Morav Mus, Brne. 67:133–162.<br />

Lauterer P. 1991. Psyllids (Homoptera: Psylloidea) of the limestone cliff zone of the Pavlovske<br />

Vrchy Hills (Czeckoslovakia). Cas Morav Mus, Brne. 76:241–263.<br />

Lauterer P. 1993a. Notes on the bionomics <strong>and</strong> occurrence of some psyllids (Homoptera:<br />

Psylloidea) <strong>in</strong> Czechoslovakia <strong>and</strong> the Balkan Pen<strong>in</strong>sula. Cas Morav Mus, Brne.<br />

77(1992):147–156.<br />

Lauterer P. 1993b. Psyllids (Homoptera: Psylloidea) from the area flooded by the Nove<br />

Milyny reservoir system <strong>and</strong> its environs <strong>in</strong> southern Moravia. Cas Morav Mus, Brne.<br />

78:165–200.<br />

Lauterer P. 1993c. Three faunistic novelties from the order Homoptera <strong>in</strong> the Czech <strong>and</strong><br />

Slovak Republics (Auchenorrhyncha <strong>and</strong> Psylloidea). Cas Morav Mus, Brne.<br />

78:213–214.<br />

Lauterer P. 1998. Results of the <strong>in</strong>vestigations on Hemiptera <strong>in</strong> Moravia, made by the<br />

Moravian Museum. Cas Morav Mus, Brne. 83:99–126.<br />

Lauterer P. 1999. Results of the <strong>in</strong>vestigations on Hemiptera <strong>in</strong> Moravia, made by the<br />

Moravian Museum (Psylloidea 2). Cas Morav Mus, Brne. 84:71–151.<br />

Lauterer P, Baudys E. 1968. Description of a new gall on Chamaenerion angustifolium (L.)<br />

Scop. produced by the larva of Craspedolepta subpunctata (Foer.) with notes on the<br />

bionomics of this psyllid. Cas Morav Mus, Brne. 53:243–248.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 163<br />

Lauterer P, Broumas T, Drosopoulos S, Souliotis C, Tsourgianni A. 1998. Species of the genus<br />

Agonoscena (Homoptera, Psyllidae), pests on Pistacia <strong>and</strong> first record of A. pistaciae <strong>in</strong><br />

Greece. Ann Inst Phytophathol Benaki. 18:123–128.<br />

Lauterer P, Burckhardt D. 2004. The west palaearctic species of the Craspedolepta<br />

flavipennis (Foerster) complex (Hemiptera: Psylloidea). Mitt Schweiz Entomol Ges.<br />

77:251–275.<br />

Lauterer P, Janicek R. 1990. Trioza neglecta Log<strong>in</strong>ova, a new species for the fauna of Hungary<br />

<strong>and</strong> Bulgaria (Homoptera: Psylloidea). Folia Entomol Hung. 51:163–165.<br />

Lauterer P, Prophetou DA, Tzanakakis ME. 1986. Occurrence of Euphyllura phillyreae<br />

Foerster (Homoptera: Aphalaridae) on olives of the Greek ma<strong>in</strong>l<strong>and</strong>. Ann Entomol Soc<br />

Am. 79:7–10.<br />

Lazarev MA. 1972. The crimean apple sucker Psylia melanoneura taurica new-form<br />

(Homoptera: Psylloidea). Entomol Obozr. 51:23–26.<br />

Lazarev MA. 1975. New data on the biology of the pear sucker Psylla pyrisuga (Homoptera:<br />

Psylloidea) <strong>in</strong> the Crimea. Entomol Obozr. 54:758–759.<br />

Lazarev MA. 1979. New data on the biology of the common pear psylla Psylla pyri<br />

(Homoptera, Psyllidae) <strong>in</strong> the Crimea. Entomol Obozr. 58:53–56.<br />

Léclant F, Marchoux G, Giannotti J. 1974. Mise en evidence du rôle vecteur du psylle Trioza<br />

nigricornis Forst (Insecte, Homoptere) dans la transmission d’une maladie a proliferation<br />

de Daucus carota L. Comptes Rendus Acad Sci, Paris Ser D. 278:57–59.<br />

Ledoux A. 1955. Obsevations sur la biologie de Phytolyma lata Scott varieté fusca, Psylloidea,<br />

gallicole sur l’Iroko (Clorophora excelsa). Ann Sci Nat, Zool (11th Ser.). 291–310.<br />

Lee RE, Litzgus JD, Mugnano JA, Lee MR, Horton DR, Dunley J. 1999. Evaluation of icenucleat<strong>in</strong>g<br />

microorganisms for reduc<strong>in</strong>g the supercool<strong>in</strong>g capacity <strong>and</strong> cold-hard<strong>in</strong>ess of<br />

Cacopsylla pyricola (Hemiptera: Psyllidae). Can Entomol. 131:715–723.<br />

Leege LM. 2006. The relationship between psyllid leaf galls <strong>and</strong> redbay (Persea borbonia)<br />

fitness traits <strong>in</strong> sun <strong>and</strong> shade. Plant Ecol. 184:203–212.<br />

Leeper JR, Beardsley JWJ. 1976. The biological control of Psylla uncatoides (Homoptera:<br />

Psyllidae) on Hawaii. Proc Hawaiian Entomol Soc. 22:307–321.<br />

Lehrman RS. 1930. Some observations on the life history of the tomato psyllid (Paratrioza<br />

cockerelli Sˇulc) (Homoptera). J NY Entomol Soc. 38:307–312.<br />

Leite MSP, Zanol KMR. 2001. Biologia e morfologia de Gyropsylla spegazz<strong>in</strong>iana (Lizer y<br />

Trelles) (Hemiptera, Psyllidae). Acta Biol Parana. 30:19–34.<br />

List GM. 1939a. The effect of temperature upon egg deposition, egg hatch <strong>and</strong> nymphal<br />

development of Paratrioza cockerelli (Sˇulc). J Econ Entomol. 32:30–36.<br />

List GM. 1939b. The potato <strong>and</strong> tomato psyllid <strong>and</strong> its control on tomato. Bull Colo Agri Exp<br />

Stn. 454:1–33.<br />

Liu D, Johnson L, Trumble JT. 2006. Differential responses to feed<strong>in</strong>g by the tomato/potato<br />

psyllid between two tomato cultivars <strong>and</strong> their implications <strong>in</strong> establishment of <strong>in</strong>jury<br />

levels <strong>and</strong> potential of damaged <strong>plant</strong> recovery. Insect Sci. 13:195–204.<br />

Liu D, Trumble JT. 2004. Tomato psyllid behavioral responses to tomato <strong>plant</strong> l<strong>in</strong>es <strong>and</strong><br />

<strong>in</strong>teractions of <strong>plant</strong> l<strong>in</strong>es with <strong>in</strong>secticides. J Econ Entomol. 97:1078–1085.<br />

Liu D, Trumble JT. 2005. Interactions of <strong>plant</strong> resistance <strong>and</strong> <strong>in</strong>secticides on the development<br />

<strong>and</strong> survival of Bactericerca cockerelli (Sˇulc) (Homoptera: Psyllidae). Crop Prot.<br />

24:111–117.<br />

Liu D, Trumble JT. 2006. Ovipositional preferences, damage thresholds, <strong>and</strong> detection of the<br />

tomato-potato psyllid Bactericera cockerelli (Homoptera: Psyllidae) on selected tomato<br />

accessions. Bull Entomol Res. 96:197–204.<br />

Liu D, Trumble JT. 2007. Comparative fitness of <strong>in</strong>vasive <strong>and</strong> native populations of the<br />

potato psyllid (Bactericera cockerelli). Entomol Exp Appl. 123:35–42.<br />

Liu HS, Chen CC, L<strong>in</strong> CP. 2007. Detection <strong>and</strong> identification of the phytoplasma associated<br />

with pear decl<strong>in</strong>e <strong>in</strong> Taiwan. European J Plant Pathol. 117:281–291.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

164 I.D. Hodk<strong>in</strong>son<br />

Liu YH, Tsai JH. 2000. Effects of temperature on biology <strong>and</strong> life table parameters of the<br />

Asian citrus psyllid, Diaphor<strong>in</strong>a citri Kuwayama (Homoptera: Psyllidae). Ann Appl Biol.<br />

137:201–206.<br />

Lizer C. 1918. Sobre la presencia en Argent<strong>in</strong>a de un psilido exotico (Trioza alacris F.). Ann<br />

Zool Apl. 5:16–21.<br />

Log<strong>in</strong>ova MM. 1954. On the biology of leafhoppers of the genus Psyllopsis Löw <strong>in</strong> the<br />

Stal<strong>in</strong>grad region. Trudy Zool Inst Acad Nauk SSR, Len<strong>in</strong>grad. 38:88–104.<br />

Log<strong>in</strong>ova MM. 1968. New data on the fauna <strong>and</strong> biology of the Caucasian Psylloidea<br />

(Homoptera). Trudy Vses Entomol Obschchestva. 52:275–328.<br />

Log<strong>in</strong>ova MM. 1970. New psyllids (Homoptera: Psylloidea) from Soviet Central Asia.<br />

Entomol Obozr. 49:370–385.<br />

Log<strong>in</strong>ova MM. 1976. Psyllids of the Tribe Pachypsylloid<strong>in</strong>i. Zool Zhurnal. 55:612–614.<br />

Log<strong>in</strong>ova MM. 1982. Structure <strong>and</strong> morpho-ecological types of the psyllid nymphs<br />

(Homoptera: Psylloidea). Trudy Zool Inst Acad Nauk SSR, Len<strong>in</strong>grad. 105:20–52.<br />

Log<strong>in</strong>ova MM, Parfentiev VJ. 1958. Leafhoppers (Homoptera: Psylloidea) <strong>in</strong>jurious to<br />

Populus diversifolia <strong>and</strong> P.pru<strong>in</strong>osa <strong>in</strong> the vic<strong>in</strong>ity of Lake Bakhash, Kazakhstan.<br />

Entomol Obozr. 38:88–104.<br />

Louda SM, Rodman JE. 1983. Ecological patterns <strong>in</strong> the glucos<strong>in</strong>olate content of a native<br />

mustard, Cardam<strong>in</strong>e cordifolia, <strong>in</strong> the Rocky Mounta<strong>in</strong>s. J Chem Ecol. 9:397–422.<br />

Loureiro Ferreira J. 1946. Algumas observacoes biologicas e biometricas efectuadas em<br />

Euphyllura oliv<strong>in</strong>a Costa. Agron Lusit, Lisbon. 7:63–95.<br />

Löw F. 1877. Zur Biologie un Charakteristik der Psylloden nebst Beschreibung. Verh Zool-<br />

Bot Ges Wien. 26:187–216.<br />

Löw F. 1880. Mitteilungen uber Psylloden. Verh Zool-Bot Ges Wien. 29:549–598.<br />

Luft PA, Pa<strong>in</strong>e TD. 1997. Behavioral cues associated with oviposition by Trioza eugeniae.<br />

Entomol Exp Appl. 84:293–299.<br />

Luft PA, Pa<strong>in</strong>e TD. 1998. Potential biotic factors <strong>in</strong>fluenc<strong>in</strong>g settl<strong>in</strong>g of Trioza eugeniae<br />

nymphs (Homoptera: Triozidae) on young foliage. Environ Entomol. 27:1425–1430.<br />

Luft PA, Pa<strong>in</strong>e TD, Redak RA. 2001. Limit<strong>in</strong>g the potential for <strong>in</strong>traspecific competition:<br />

regulation of Trioza eugeniae oviposition on unexp<strong>and</strong>ed leaf tissue. Ecol Entomol.<br />

26:395–403.<br />

Lundblad O. 1929. Morotbladloppan Trioza viridula Zett. dess biologi och upptrad<strong>and</strong>e som<br />

skadedjur i Sverige. Medd Cent Lantsbruksentomologiska Avd. 350(55):1–45.<br />

Lyoussoufi A, Arm<strong>and</strong> E, Rieux RDAFF. 1992. Population dynamics of pear psylla Psylla<br />

pyri (L.) (Homoptera: Psyllidae) <strong>and</strong> beneficials <strong>in</strong> a sprayed orchard of south-eastern<br />

France. Acta Phytopathol Entomol Hung. 27:413–417.<br />

Lyoussoufi A, Gadenne C, Rieux R, Faivredarcier F. 1994. Diapause development of the pear<br />

psylla, Cacopsylla pyri (L.) under natural conditions. Entomol Exp Appl. 70:193–199.<br />

Lyoussoufi A, Rieux R, Faivre d’Arcier F. 1988. Evolution du potentiel de ponte et de l’efectif<br />

des oeufs du pylle du poirier Psylla pyri (L.) au cours de la periode hivernale et<br />

pr<strong>in</strong>taniere dans la basse vallée du Rhône. J Appl Entomol. 106:97–107.<br />

MacLean SF. 1983. <strong>Life</strong> <strong>cycle</strong>s <strong>and</strong> the distribution of psyllids (Homoptera) <strong>in</strong> arctic <strong>and</strong><br />

subarctic Alaska. Oikos 40:445–551.<br />

MacLean SF, Hodk<strong>in</strong>son ID. 1980. Distribution of psyllids (Homoptera: Psylloidea) <strong>in</strong> Arctic<br />

<strong>and</strong> subarctic Alaska. Arctic Alp<strong>in</strong>e Res. 12:369–376.<br />

Madubunyi LC. 1967. Ecological <strong>in</strong>vestigations on the albizzia psyllid Psylla uncatoides<br />

(Ferris <strong>and</strong> Klyver)(Homoptera: Psylloidea) [masters thesis]. [Berkeley (CA)]: University<br />

of California.<br />

Madubunyi LC, Koehler CS. 1974. Development, survival <strong>and</strong> capacity for <strong>in</strong>crease of<br />

albizzia psyllid at various constant temperatures. Environ Entomol. 3:1013–1016.<br />

Malenovsky I. 1999. Contribution a la faunistiqe des psylles d’Alsace (Hemiptera: Psylloidea).<br />

Bull Soc Entomol Mulhouse., (April–June):17–34.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 165<br />

Mally CW. 1894. Psyllidae found at Ames, Iowa. Proc Iowa Acad Sci. 2:152–171.<br />

Malausa JC, Giradet N. 1997. Lutte biologique contre le psylle de l’eucalyptus. Phytoma –<br />

Defense Veg. 498:49–51.<br />

Mangat BS. 1966. Biology <strong>and</strong> controlof citrus psylla Diaphor<strong>in</strong>a citri Kuw. Plant Prot Bull, N<br />

Delhi. 18:18–20.<br />

Mani MS. 1948. Cecidozoa <strong>and</strong> zoocecidia from India. J R Asiatic Soc Bengal. 14:27–195.<br />

Mani T, Raman A. 1994. Biochemical changes <strong>in</strong> relation to growth <strong>in</strong> two leaf gall systems<br />

<strong>in</strong>duced by Trioza jambolanae <strong>and</strong> Microceropsylla longispiculata (Homoptera:<br />

Psylloidea). Phytophaga 6:59–64.<br />

Mansilla JP, Pérez R, Del Estal P, Blond A. 2004. Deteccíon en España de Ctenaryta<strong>in</strong>a<br />

spatulata Taylor sobre Eucalyptus globulus Labill. Bol Sanid Veg, Plagas. 30:57–63.<br />

Markkula M, Laurema S. 1971. Phytotoxemia caused by Trioza apicalis (Homoptera,<br />

Triozidae) on carrot. Ann Agri Fenn. 10:181–184.<br />

Mathur RN. 1935. On the biology of the Psyllidae (Homopt.). Indian For Rec (New Ser.)<br />

1:35–71.<br />

Mathur RN. 1946. On the immature stages of some Psyllidae. Indian J Entomol. 8:224–236.<br />

Mathur RN. 1975. Psyllidae of the Indian Subcont<strong>in</strong>ent. New Delhi (India): Indian Council of<br />

Agriculural Research.<br />

Maxwell-Lefroy H. 1913. The Psylla disease of <strong>in</strong>digo <strong>in</strong> Behar. Agri J India. 8:1–26.<br />

McAtee WL. 1915. Psyllidae w<strong>in</strong>ter<strong>in</strong>g on conifers about Wash<strong>in</strong>gton DC. Science 41:940.<br />

McLean IFG. 1993. The host <strong>plant</strong> association <strong>and</strong> life history of Trichochermes walkeri<br />

(Forster) (Psylloidea: Triozidae). B J Entomol Nat Hist. 6:13–16.<br />

McLean IFG. 1994. The population dynamics of a gall form<strong>in</strong>g psyllid. In: Leather SR, Watt<br />

AD, Mills NJ, Walters KFA, editors. Individuals, populations <strong>and</strong> patterns <strong>in</strong> ecology.<br />

Andover (UK): Intercept. p. 97–107.<br />

McLean IFG. 1998. The population ecology of Trichochermes walkeri. In: Dempster JP,<br />

McLean IFG, editors. Insect populations <strong>in</strong> theory <strong>and</strong> practice. London: Klewer<br />

Academic Publishers. p. 341–366.<br />

McMullen RD, Jong C. 1972. Influence of temperature <strong>and</strong> host vigor on fecundity of the pear<br />

psylla (Homoptera, Psyllidae). Can Entomol. 104:1209–1212.<br />

McMullen RD, Jong C. 1976. Factors affect<strong>in</strong>g <strong>in</strong>duction <strong>and</strong> term<strong>in</strong>ation of diapause <strong>in</strong> pear<br />

psylla (Hemiptera, Homoptera, Psyllidae). Can Entomol. 108:1001–1006.<br />

McMullen RD, Jong C. 1977. Effect of temperature on developmental rate <strong>and</strong> fecundity of<br />

the pear psylla Psylla pyricola (Homoptera, Psyllidae). Can Entomol. 109:165–170.<br />

Mead FW. 1963. A psyllid, Trioza magnoliae (Ashmead) (Homoptera: Psyllidae). Fl Dep Agri,<br />

Div Plant Ind, Entomol Circ. 15:1–2.<br />

Mead FW. 1966a. The blackberry psyllid Trioza tripunctata (Fitch). Fl Dep Agri, Div Plant<br />

Ind, Entomol Circ. 52:1–2.<br />

Mead FW. 1966b. Persimmon psyllid Trioza diospyri (Ashmead) (Homoptera: Psyllidae). Fl<br />

Dep Agri, Div Plant Ind, Entomol Circ. 50:1–2.<br />

Mead FW. 1967. A nest-mak<strong>in</strong>g psyllid Euphalerus nidifex <strong>in</strong> Florida. Homoptera: Psyllidae<br />

Fl Dep Agri, Div Plant Ind, Entomol Circ. 67:1–2.<br />

Mead FW. 1977. The Asiatic citrus psylla Diaphor<strong>in</strong>a citri Kuwayama (Homoptera: Psyllidae).<br />

Fl Dep Agri, Div Plant Ind, Entomol Circ. 180:1–4.<br />

Mead FW. 1983. Yaupon psyllid Gyropsylla ilicis (Ashmead) (Homoptera: Psyllidae). Fl Dep<br />

Agri, Div Plant Ind, Entomol Circ. 247:1–2.<br />

Mead FW. 1994. Eugenia psyllid, Trioza eugeniae Froggatt (Homopter: Psyllidae). Fl Dep<br />

Agri, Div Plant Ind, Entomol Circ. 367:1–3.<br />

Mehrnejad MR. 1998. Evaluation of the parasitoid Psyllaephagus pistaciae (Hymenoptera:<br />

Ecyrtidae) as a biocontrol agent of the common pistacio psylla Agonoscena pistaciae<br />

(Hemiptera: Psylloidea) [doctoral thesis]. [London (UK)]: University of London. 271.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

166 I.D. Hodk<strong>in</strong>son<br />

Mehrnejad MR. 2002. Bionomics of the common pistachio psylla, Agonoscena pistaciae, <strong>in</strong><br />

Iran. In: Batlle I, Hormaza I, Espiau MT, editors. Proceed<strong>in</strong>gs of the 3rd International<br />

Symposium on Pistachios <strong>and</strong> Almond. Leuven (Belgium): International Society<br />

Horticultural Science. p. 535–539.<br />

Mehrnejad MR, Copl<strong>and</strong> MJW. 2005. The seasonal forms <strong>and</strong> reproductive potential of the<br />

common pistachio psylla, Agonoscena pistaciae (Hem., Psylloidea). J Appl Entomol.<br />

129:342–346.<br />

Mehrnejad MR, Copl<strong>and</strong> MJW. 2006a. Host-stage selection <strong>and</strong> oviposition behaviour of<br />

Psyllaephagus pistaciae, parasitoid of the common pistachio psylla Agonoscena pistaciae.<br />

Biol Control. 36:139–146.<br />

Mehrnejad MR, Copl<strong>and</strong> MJW. 2006b. Biological parameters of parasitoid Psyllaephagus<br />

pistaciae <strong>and</strong> its host Agonoscena pistaciae <strong>in</strong> relation to temperature. J Entomol Res Soc.<br />

8:1–20.<br />

Mensah RK, Madden JL. 1991. Resistance <strong>and</strong> susceptibility of Boronia megastigma cultivars<br />

to <strong>in</strong>festations by the psyllid Ctenaryta<strong>in</strong>a thysanura. Entomol Exp Appl. 61:189–198.<br />

Mensah RK, Madden JL. 1992a. Factors affect<strong>in</strong>g Ctenaryta<strong>in</strong>a thysanura oviposition on<br />

Boronia megastigma term<strong>in</strong>al shoots. Entomol Exp Appl. 62:261–268.<br />

Mensah RK, Madden JL. 1992b. Feed<strong>in</strong>g behaviour <strong>and</strong> pest status of Ctenaryta<strong>in</strong>a thysanura<br />

Ferris <strong>and</strong> Klyver (Hemiptera: Psyllidae) on Boronia megastigma Nees <strong>in</strong> Tasmania. J<br />

Aust Entomol Soc. 31:71–78.<br />

Mensah RK, Madden JL. 1993a. Development <strong>and</strong> application of an <strong>in</strong>tegrated pest<br />

management programme for the psyllid, Ctenaryta<strong>in</strong>a thysanura on Boronia megastigma<br />

<strong>in</strong> Tasmania. Entomol Exp Appl. 66:59–74.<br />

Mensah RK, Madden JL. 1993b. <strong>Life</strong> history <strong>and</strong> biology of Ctenaryta<strong>in</strong>a thysanura Ferris<br />

<strong>and</strong> Klyver (Hemiptera: Psyllidae) on Boronia megastigma Nees ex Bartl. (Rutaceae) <strong>in</strong><br />

Tasmania. J Aust Entomol Soc. 32:327–337.<br />

Mensah RK, Madden JL. 1994. <strong>Life</strong> table <strong>and</strong> key factor studies of Ctenaryta<strong>in</strong>a thysanura<br />

Ferris <strong>and</strong> Klyver (Hemiptera: Psyllidae) on Boronia megastigma Nees. ex Bartl.<br />

(Rutaceae) <strong>in</strong> Tasmania. J Aust Entomol Soc. 33:353–361.<br />

Messi J. 1983a. Facteurs <strong>in</strong>fluecant le comportement de ponte de Mesohomotoma tessmanni<br />

Aulmann, psylle parasite de cacoyer. Bull Soc Entomol Fr. 88:368–374.<br />

Messi J. 1983b. Influence of temperature <strong>and</strong> photoperiod on the embryonic <strong>and</strong><br />

postembryonic development of Mesohomotoma tessmanni Aulmann (Homoptera,<br />

Psyllidae) a pest of the cacao <strong>plant</strong>. Bull Inst Fondam Afr Noire, Ser A, Sci Nat.<br />

45:274–287.<br />

Messi J, Tamesse JL. 1999. Fluctuations numeriques des populations de Trioza erytreae (Del<br />

Guercio), psylle des agrumes dans un verger fruitier a Yaounde (Hemiptera:<br />

Psylloidea:Triozidae). Ann Soc Entomol Fr. 35:238–241.<br />

Mifsud D. 1997. The jump<strong>in</strong>g <strong>plant</strong>-<strong>lice</strong> (Hemiptera: Psylloidea) of the Maltese Isl<strong>and</strong>s<br />

[masters thesis]. [Msida (Malta)]: University of Malta. 84 p.<br />

Migula P, Glowacka E, Krawczyk A. 1980. Respiratory metabolism <strong>in</strong> jump<strong>in</strong>g <strong>plant</strong> <strong>lice</strong><br />

(Psylloidea, Homoptera). Prace Naukowe Uniwersytetu Slaskiego w Katowicach<br />

375:185–205.<br />

Miles HW. 1928. The bay psyllid. Northwest Nat, Arbroath. 3:8–14.<br />

Miles JE, Bale JS, Hodk<strong>in</strong>son ID. 1997. Effects of temperature elevation on the population<br />

dynamics of the upl<strong>and</strong> heather psyllid Stroph<strong>in</strong>gia ericae (Curtis) (Homoptera:<br />

Psylloidea). Global Change Biol. 3:291–297.<br />

Miles JE, Bale JS, Hodk<strong>in</strong>son ID. 1998. <strong>Life</strong> <strong>cycle</strong> regulation <strong>in</strong> the heather psyllid<br />

Stroph<strong>in</strong>igia ericae: responses to temperature <strong>and</strong> photoperiod. Physiol Entomol.<br />

23:376–381.<br />

Missonnier J. 1956. Note sur la biologie du psylle de l’aubep<strong>in</strong>e (PsylIa peregr<strong>in</strong>a). Ann<br />

Epiphyt 7:253–262.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 167<br />

Miyatake Y. 1968a. A new Japanese species of Trioza from Machilus thunbergii, with<br />

descriptions of the immature stages <strong>and</strong> notes on biology. Trans Shikoku Entomol Soc.<br />

10:1–10.<br />

Miyatake Y. 1968b. Pachypsylla japonica sp. nov., a remarkable lerp-form<strong>in</strong>g psyllid from<br />

Japan (Homoptera: Psyllidae). Bull Osaka Mus Nat Hist. 21:5–12.<br />

Miyatake Y. 1969. On the life history <strong>and</strong> the immature stages of Trioza c<strong>in</strong>namomi (Boselli),<br />

with the redescription of the adult (Hemiptera: Psyllidae). Bull Osaka Mus Nat Hist.<br />

22:19–30.<br />

Miyatake Y. 1970. Some taxonomical <strong>and</strong> biological notes on Togepsylla matsumurana<br />

Kuwayama (Hem., Psyllidae). Bull Osaka Mus Nat Hist. 23:1–10.<br />

Miyatake Y. 1973. Notes on the genus Euphalerus of Japan with description of a new species<br />

(Homoptera Psyllidae). Bull Osaka Mus Nat Hist. 27:23–28.<br />

Miyatake Y. 1978. Notes on the genus Epitrioza of Japan with descriptions of two new species<br />

(Homoptera: Psyllidae). Bull Osaka Mus Nat Hist. 31:93–111.<br />

Miyatake Y. 1980. Notes on the genus Pachypsylla of Japan with description of Pachypsylla<br />

usubai new species (Homoptera: Psyllidae). Bull Osaka Mus Nat Hist. 33:61–70.<br />

Miyatake Y. 1992. A revision of the genus Calophya from Japan (Homoptera: Psylloidea).<br />

Bull Osaka Mus Nat Hist. 46:11–23.<br />

Miyatake Y. 1994. Further knowledge on the distribution <strong>and</strong> biology of two species of the<br />

genus Celtisaspis (Homoptera: Psylloidea: Spondyliaspididae). Bull Osaka Mus Nat Hist.<br />

48:27–30.<br />

Mohammed MA, Sheet AI. 1989. Ecological study on the pistachio psyllid (Agonoscena<br />

targionii (Licht.)) (Homoptera, Psyllidae) <strong>in</strong> Mosul region, Iraq. Arab J Plant Prot.<br />

7:138–142.<br />

Mondal S, Ray R, Mukhopadhyay TK. 2003. Destruction of Areca catechu by Psylla sp.<br />

(Hemiptera: Psyllidae). Bionotes 5:93.<br />

Monobrullah M, S<strong>in</strong>gh PP, S<strong>in</strong>gh R. 1998. <strong>Life</strong>-history <strong>and</strong> morphology of different stages of<br />

mango shoot gall psyllid, Apsylla cistellata Buckton (Homoptera: Psyllidae). J Entomol<br />

Res, N Delhi. 22:319–323.<br />

Moore KM. 1961. Observations on some Australian forest <strong>in</strong>sects 8. The biology <strong>and</strong><br />

occurrece of Glycaspis baileyi Moore <strong>in</strong> New South Wales. Proc L<strong>in</strong>n Soc NSW.<br />

86:185–200.<br />

Moore KM. 1983. New species <strong>and</strong> records of Glycaspis Taylor (Homoptera,<br />

Spondyliaspidae) with phyletic group<strong>in</strong>gs. J Aust Entomol Soc. 22:177–184.<br />

Moran VC. 1968a. The development of the citrus psylla Trioza erytreae (Homoptera,<br />

Psyllidae) on Citrus limon <strong>and</strong> four <strong>in</strong>digenous host <strong>plant</strong>s. J Entomol Soc South Afr.<br />

31:391–402.<br />

Moran VC. 1968b. Prelim<strong>in</strong>ary observations on the choice of host <strong>plant</strong>s by adults of the<br />

citrus psylla Trioza erytreae (Homoptera: Psyllidae). J Entomol Soc South Afr.<br />

31:403–410.<br />

Moran VC, Blowers JR. 1967. On the biology of the South African citrus psylla, Trioza<br />

erytreae (Del Guercio) (Homoptera: Psyllidae). J Entomol Soc S Afr. 30:96–106.<br />

Moran VC, Brown RP. 1973. The antennae, chemoreception <strong>and</strong> prob<strong>in</strong>g activity of the citrus<br />

psylla Trioza erytreae (Del Guercio) (Homoptera:Psyllidae). J Entomol Soc S Afr.<br />

36:191–202.<br />

Moran VC, Buchan PR. 1975. Oviposition by the citrus psylla Trioza erytreae (Homoptera,<br />

Psyllidae) <strong>in</strong> relation to leaf hardness. Entomol Exp Appl. 18:96–104.<br />

Morath SU, Pratt PD, Silvers CS, Center TD. 2006. Herbivory by Boreioglycaspis melaleucae<br />

(Hemiptera: Psyllidae) accelerates foliar senescence <strong>and</strong> abscission <strong>in</strong> the <strong>in</strong>vasive tree<br />

Melaleuca qu<strong>in</strong>quenervia. Environ Entomol. 35:1372–1378.<br />

Morgan FD. 1984. Psylloidea of South Australia. Woolman DJ, editors. H<strong>and</strong>book of the<br />

Flora <strong>and</strong> Fauna of South Australia. Adelaide: South Australia, Illustrated. Paper.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

168 I.D. Hodk<strong>in</strong>son<br />

Morgan FD, Taylor GS. 1988. The white lace lerp <strong>in</strong> southeastern Australia. In: Berryman<br />

AA, editor. Dynamics of forest <strong>in</strong>sect populations. patterns, causes, implications.<br />

London: Plenum Press. p. 130–140.<br />

Moxon JE. 1984. D.P.I. Entomology Bullet<strong>in</strong> 43, Psyllid pest of Leucaena. Harvest 12:19–22.<br />

Mullen BF, Shelton HM. 2003. Psyllid resistance <strong>in</strong> Leucaena. Part 2. Quantification of<br />

production losses from psyllid damage. Agrofor Syst. 58:163–171.<br />

Munro JA. 1965. Occurrence of Psylla uncatoides on Acacia <strong>and</strong> Albizzia with notes on<br />

control. J Econ Entomol. 58:1171–1172.<br />

Munyaneza JE, Crossl<strong>in</strong> JM, Upton JE. 2007. Association of Bactericera cockerelli<br />

(Homoptera: Psyllidae) with ‘‘zebra chip’’, a new potato disease <strong>in</strong> southwestern<br />

United States <strong>and</strong> Mexico. J Econ Entomol. 100:656–663.<br />

Mustafa TM. 1984. Factors affect<strong>in</strong>g the distribution of Euphyllura oliv<strong>in</strong>a (Hom. Psyllidae)<br />

on olive. Z Angew Entomol. 97:371–375.<br />

Mustafa TM. 1989a. Bionomics of the olive psylla Eupyllura oliv<strong>in</strong>a Costa (Hom. Psyllidae) <strong>in</strong><br />

Jordan. J Biol Sci Res. 20:159–166.<br />

Mustafa TM. 1989b. Seasonal changes <strong>in</strong> fat <strong>and</strong> water content <strong>in</strong> field populations of olive<br />

psylla Euphyllura oliv<strong>in</strong>a Costa (Homoptera, Psyllidae). Insect Sci Appl. 10:181–186.<br />

Mustafa TM, Hodgson CJ. 1984. Observation, diapause <strong>in</strong>duction <strong>and</strong> term<strong>in</strong>ation <strong>in</strong> Psylla<br />

pyricola <strong>in</strong> Engl<strong>and</strong>. Lutte <strong>in</strong>tegré contre les psylles du poirier, Bull OILB/SROP,<br />

127–138.<br />

Mustafa TM, Najar YH. 1985. Contributions to the reproductive biology of olive psylla<br />

Euphyllura oliv<strong>in</strong>a (Homoptera, Psyllidae). Z Angew Entomol. 100:79–83.<br />

Naeem A, Behad E. 1988. The biology of the gas psyllid. Entomol Phytopathol A. 55:111–121.<br />

Nakata T. 2006. Temperature-dependent development of the citrus psyllid, Diaphor<strong>in</strong>a citri<br />

(Homoptera: Psylloidea), <strong>and</strong> the predicted limit of its spread based on overw<strong>in</strong>ter<strong>in</strong>g <strong>in</strong><br />

the nymphal stage <strong>in</strong> temperate regions of Japan. Appl Entomol Zool. 41:383–387.<br />

Nava DE, Torres MLG, Rodrigues MDL, Bento JMS, Parra JRP. 2007. Biology of<br />

Diaphor<strong>in</strong>a citri (Hem., Psyllidae) on different hosts <strong>and</strong> at different temperatures. J Appl<br />

Entomol. 131:709–715.<br />

Negi DS, Bisht RS. 1989. On the biology of the psyllid Pauropsylla depressa Crawford<br />

(Homoptera: Psyllidae). Uttar Pradesh J Zool. 9:253–257.<br />

Nguyen T-X. 1963. Note prélim<strong>in</strong>aire sur quelques psyllides du sud-ouest de la France. Rev<br />

Pathol Veg Entomol Agri Fr. 42:169–176.<br />

Nguyen T-X. 1964. Observations prélim<strong>in</strong>aires concernant l’élim<strong>in</strong>ation de la diapause chez<br />

Psylla pyri L. Rev Pathol Veg Entomol Agri Fr. 43:3–12.<br />

Nguyen T-X. 1965. Observations sur la ponte preferentielle de Psylla buxi L (Homopteres<br />

Psyllides) sur les differentes variétés de buis. Bull Soc Hist Nat Toulouse. 100:299–311.<br />

Nguyen T-X. 1967a. Influence des facteurs externes sur l’élim<strong>in</strong>ation anticipée de la diapause<br />

de Psylla pyri L. (Homoptères-Psyllidae). Comptes Rendus Acad Sci, Paris Ser D.<br />

264:1445–1448.<br />

Nguyen T-X. 1967b. Observations sur l’élim<strong>in</strong>ation de la diapause de Psylla pyri (Hom.<br />

Psyllidae) dans les conditions naturelles. Ann Soc Entomol Fr (New Ser.) 3:151–164.<br />

Nguyen T-X. 1968. Rôle de la temperature dans l’évolution et élim<strong>in</strong>ation de la diapause<br />

larvaire de Psylla buxi (Hom. Psyllidae). Ann Soc Entomol Fr (New Ser.) 4:69–74.<br />

Nguyen T-X. 1969. Étude de la resistance au froid et de la capacité d’acclimation de<br />

Psylla buxi L (Homoptera: Psyllidae). Comptes Rendus Acad Sci, Paris Ser D. 268:<br />

1410–1413.<br />

Nguyen T-X. 1970a. Influence de la temperature et de la photopériode sur la reproduction<br />

d’un psylle du poirier, Psylla pyri L. (Insecte: Homoptera-Psyllidae). Comptes Rendus<br />

des Academie de Sciences, Paris Ser D. 271:2336–2338.<br />

Nguyen T-X. 1970b. Récherches sur la morphologie et la biologie de Psyllopsis frax<strong>in</strong>i (Hom.<br />

Psyllidae). Ann Soc Entomol Fr (New Ser.) 6:757–773.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 169<br />

Nguyen T-X. 1971. Effet de groupement sur la reproduction et la longevité dePsylla pyri L.<br />

(Insectes, Homoptera-Psyllidae). Comptes Rendus Acad Sci, Paris Ser D. 272:1782–1784.<br />

Nguyen T-X. 1972a. Études de la diapause imag<strong>in</strong>ale de Psylla pyri L. (Homoptera: Psyllidae)<br />

1. Determ<strong>in</strong>isme du polymorphisme saisonier des adultes. Ann Zool Ecol Anim.<br />

4:281–309.<br />

Nguyen T-X. 1972b. Influence de la nature des <strong>plant</strong>es hôtes sur la longevité et la fecondité de<br />

Psylla pyri (L.) (Insecte, Homoptera-Psyllidae). Comptes Rendus Acad Sci, Paris Ser D.<br />

274:546–548.<br />

Nguyen T-X. 1973. Action de surpeuplement sur la reproduction de Psylla pyri (L.) (Insectes,<br />

Homoptere, Psyllidae). Comptes Rendus Acad Sci, Paris Ser D. 276:2389–2390.<br />

Nguyen T-X. 1975. Évolution et la term<strong>in</strong>ation de la diapause ovarienne de Psylla pyri<br />

(Homoptera-Psyllidae) dans les conditions naturelles de la region Toulousa<strong>in</strong>e. Bull Soc<br />

Zool Fr. 100:241–246.<br />

Nguyen T-X. 1985. Établissement d’une échelle morphométrique pour les Psyllidae (<strong>Insecta</strong>-<br />

Homoptera); polymorphisme saisonnier de Psylla pyri L. Comptes Rendus Acad Sci,<br />

Paris Ser D. 301:369–372.<br />

Nguyen T-X, Ledoux A. 1973. Évolution de la diapause ovarienne des femelles de Psylla pyri<br />

L. (Homoptera: Psyllidae) pendant la periode automne-hiver. Comptes Rendus Acad Sci,<br />

Paris Ser D. 277:2385–2387.<br />

Nguyen T-X, Messi J. 1973. Observations sur la ponte des femelles de Aryta<strong>in</strong>a genistae elevée<br />

sur des genets d’orig<strong>in</strong>e differente. Comptes Rendus Acad Sci, Paris Ser D. 276:<br />

1691–1696.<br />

Niss<strong>in</strong>en A, Ibrahim M, Ka<strong>in</strong>ula<strong>in</strong>en P, Tiilikkala K, Holopa<strong>in</strong>en JK. 2005. Influence of<br />

carrot psyllid (Trioza apicalis) feed<strong>in</strong>g or exogenous limonene or methyl jasmonate<br />

treatment on composition of carrot (Daucus carota) leaf essential oil <strong>and</strong> headspace<br />

volatiles. J Agri Food Chem. 53:8631–8638.<br />

Niss<strong>in</strong>en A, Vanhala P, Holopa<strong>in</strong>en JK, Tiilikkala K. 2007. Short feed<strong>in</strong>g period of carrot<br />

psyllid (Trioza apicalis) females at early growth stages of carrot reduces yield <strong>and</strong> causes<br />

leaf discolouration. Entomol Exp Appl. 125:277–283.<br />

Nucifora A. 1969. La Psylla piri (L.) nei frutteti dell’Etna. Tecnica Agri, Catania 21:<br />

348–361.<br />

Ogol CKPO, Spence JR. 1997. Abundance, population dynamics <strong>and</strong> impact of the leucaena<br />

psyllid Heteropsylla cubana Crawford <strong>in</strong> a maize-leucaena agroforestry system <strong>in</strong> Kenya.<br />

Insect Sci Appl. 17:183–192.<br />

Oka IN, Bahgiawati AH. 1988. Comprehensive program towards <strong>in</strong>tegrated control of<br />

Leucaena psyllid, a new <strong>in</strong>sect pest of Leucaenca trees <strong>in</strong> Indonesia. Indones Agri Res<br />

Devel J. 10:23–30.<br />

Oldfield GN. 1970. Diapause <strong>and</strong> polymorphism <strong>in</strong> California populations of Psylla pyricola<br />

(Homoptera. Psyllidae). Ann Entomol Soc Am. 63:180–184.<br />

Olivares TS. 2000. Ctenaryta<strong>in</strong>a eucalypti (Maskell,1890): el psilido de eucalipto en Chile<br />

(Hemiptera: Sternorryncha: Psylloidea: Spondysliasp<strong>in</strong>ae). Gayana 64:239–241.<br />

Omole MM. 1980. Attraction to colour traps <strong>and</strong> height of flight <strong>in</strong> Trioza urticae (Hemiptera,<br />

Heteroptera, Psyllidae). Entomol Mon Mag. 116:173–175.<br />

Onillon JC. 1969. Effect of the numerical density of Trioza urticae (Homoptera, Psyllidae) on<br />

the ovarian activity of Tetrastichus upis (Hymenoptera, Tetrastichidae). In: Labeyrie V,<br />

editor. Colloques <strong>in</strong>ternationaux de centre national de la récherche scientifique No. 189.<br />

l’<strong>in</strong>fluence des stimuli externes sur la gametogenese des <strong>in</strong>sectes. Paris (France): Centre<br />

National de la Récherche Scientifique. p. 57–70.<br />

Osborn H. 1922. <strong>Life</strong> history notes on Cranberry Lake Homoptera. Technical Publication of<br />

the New York State College of Forestry at Syracuse 16:87–104.<br />

Osisanya EO. 1974a. Aspects of the biology of Diclidophlebia eastopi <strong>and</strong> Diclidophlebia<br />

harrisoni (Homoptera: Psyllidae). Bull Entomol Res. 64:9–18.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

170 I.D. Hodk<strong>in</strong>son<br />

Osisanya EO. 1974b. Seasonal fluctuations of a natural population of Diclidophlebia eastopi<br />

<strong>and</strong> Diclidophlebia harrisoni (Homoptera: Psyllidae). Bull Entomol Res. 64:289–296.<br />

Ossiannilsson F. 1943. Studier over de Svenska potatifaltens <strong>in</strong>sectfauna och dess betyldelse<br />

for spridn<strong>in</strong>g av virussjukdomar. 1. Hemiptera, Forekmost och utbredn<strong>in</strong>g. Statens<br />

Vaxtskyddsanstalt Medd. 39:1–72.<br />

Ossiannilsson F. 1950. Sound production <strong>in</strong> psyllids (Hem. Hom.). Opusc Entomol. 11:82–84.<br />

Ossiannilsson F. 1992. The Psylloidea (Homoptera) of Fennosc<strong>and</strong>ia <strong>and</strong> Denmark. Fauna<br />

Entomol Sc<strong>and</strong><strong>in</strong>. 26:1–347.<br />

Palmer WA, Witt ABR. 2006. On the host range <strong>and</strong> biology of Acizzia melanocephala<br />

(Hemiptera: Psyllidae), an <strong>in</strong>sect rejected for the biological control of Acacia nilotica<br />

subsp <strong>in</strong>dica (Mimosaceae) <strong>in</strong> Australia. Afr Entomol. 14:387–390.<br />

P<strong>and</strong>e YD. 1971. Biology of citrus psylla Diaphor<strong>in</strong>a citri (Hemiptera, Homoptera, Psyllidae).<br />

Israel J Entomol. 6:307–311.<br />

Papp RP, Johnson JB. 1979. Orig<strong>in</strong>s of psyllid fallout <strong>in</strong> the central Sierra-Nevada of<br />

California. Pan-Pac Entomol. 55:95–98.<br />

Park<strong>in</strong>son JD, Whittaker JB. 1975. A study of two physiological races of the heather psyllid<br />

Stroph<strong>in</strong>gia ericae (Homoptera, Psylloidea). Biol J L<strong>in</strong>n Soc. 7:73–81.<br />

Pasqual<strong>in</strong>i E, Civolani S, Musacchi S, Ancarani V, Dond<strong>in</strong>i L, Robert P, Baronio P. 2006.<br />

Cacopsylla pyri behaviour on new pear selections for host resistance programs. Bull<br />

Insectol. 59:27–37.<br />

Patch EM. 1909. Downy psyllid of alder, Psylla floccosa, new species. Can Entomol.<br />

41:301–303.<br />

Patil NG, Baker PS, Pollard GV. 1994. <strong>Life</strong> history parameters of the leucaena psyllid<br />

Heteropsylla cubana (Crawford) (Homoptera: Psyllidae) under various temperature <strong>and</strong><br />

relative humidity regimes. Insect Sci Appl. 15:293–299.<br />

Pava OJ, Gonzalez OA, Castillo CE, Pat<strong>in</strong>o CH. 1983. Interest<strong>in</strong>g phyto sanitary aspects of<br />

the chontaduro palm Bactris gasipaes <strong>in</strong> some regions of Valle <strong>and</strong> Choco, Colombia.<br />

Acta Agron Palmira 33:25–36.<br />

Peck SB. 1994. Aerial dispersal of <strong>in</strong>sects between <strong>and</strong> to isl<strong>and</strong>s <strong>in</strong> the Galapagos<br />

Archipelago, Ecuador. Ann Entomol Soc Am. 87:218–224.<br />

Pedata PA. 1998. Morpho-biological observations on Egeirotrioza (Astutia) populi Horvath,<br />

new for Italy. Atti Accad Roveretana Degli Agiati (Series VII) 8B:75–86.<br />

Percy DM. 2003a. Legume-feed<strong>in</strong>g psyllids (Hemiptera, Psylloidea) of the Canary Isl<strong>and</strong>s <strong>and</strong><br />

Madeira. J Nat Hist. 37:397–461.<br />

Percy DM. 2003b. Radiation, diversity, <strong>and</strong> host–<strong>plant</strong> <strong>in</strong>teractions among isl<strong>and</strong> <strong>and</strong><br />

cont<strong>in</strong>ental legume-feed<strong>in</strong>g psyllids. Evolution 57:2540–2556.<br />

Percy DM, Page RDM, Cronk QCB. 2004. Plant–<strong>in</strong>sect <strong>in</strong>teractions: Double-dat<strong>in</strong>g<br />

associated <strong>in</strong>sect <strong>and</strong> <strong>plant</strong> l<strong>in</strong>eages reveals asynchronous radiations. Syst Biol.<br />

53:120–127.<br />

Percy DM, Taylor GS, Kennedy M. 2006. Psyllid communication: acoustic diversity, mate<br />

recognition <strong>and</strong> phylogenetic signal. Invertebr Syst 20:431–445.<br />

Perez Otero R, Mansilla Vazquez JP, Mansilla Sal<strong>in</strong>ero P. 2005. Distribucion y biologia de<br />

Ctenaryta<strong>in</strong>a spatulata Taylor sobre Eucalyptus globulus Labill. en la prov<strong>in</strong>cia de<br />

Pontevedra. Bol Sanid Veg Plagas. 31:25–30.<br />

Petersen A. 1923. The blackberry psyllid, Trioza tripunctata Fitch. Bull NJ Agri Exp Stn.<br />

378:1–32.<br />

Pfeiffer DG, Burts EC. 1983. Effects of tree fertilization on numbers <strong>and</strong> development of pear<br />

psylla Psylla pyricola (Homoptera: Psyllidae) <strong>and</strong> on fruit damage. Environ Entomol.<br />

12:895–901.<br />

Pfeiffer DG, Burts EC. 1984. Effect of tree fertilization on prote<strong>in</strong> <strong>and</strong> free am<strong>in</strong>o-acid content<br />

<strong>and</strong> feed<strong>in</strong>g rate of pear psylla Psylla pyricola (Homoptera Psyllidae). Environ Entomol.<br />

13:1487–1490.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 171<br />

P<strong>in</strong>tera A. 1982. Some observations on the ecology <strong>and</strong> population dynamics of psyllas found<br />

on cedar. Poeyana Inst Zool Acad Ciencias Cuba. 252:1–12.<br />

Pletsch DJ. 1947. The potato psyllid Paratrioza cockerelli (Sˇulc). Its biology <strong>and</strong> control. Bull<br />

Montana Agri Exp Stn. 446:1–95.<br />

Prasad D. 1957. On the distribution, bionomics, <strong>and</strong> control of the mango shoot gall psyllid,<br />

Apsylla cistellata Buckton. Indian J Entomol. 19:78–83.<br />

Prophetou DA. 1993. Diapause term<strong>in</strong>ation <strong>and</strong> phenology of the olive psyllid, Euphyllura<br />

phillyreae on two host <strong>plant</strong>s <strong>in</strong> coastal northern Greece. Entomol Exp Appl. 67:<br />

193–197.<br />

Prophetou DA. 1997. Occurrence of immature stages of olive psyllid Euphyllura phillyreae<br />

(Hom, Aphalaridae) <strong>in</strong> Phillyrea latifolia <strong>and</strong> Olea europaea <strong>in</strong> coastal northern Greece. J<br />

Appl Entomol. 121:383–387.<br />

Prophetou DA, Tzanakakis ME. 1977. Seasonal development <strong>and</strong> number of generations of<br />

Euphyllura oliv<strong>in</strong>a (Hemiptera-Psyllidae) <strong>in</strong> Halkidiki (N Greece). Ann Entomol Soc Am.<br />

70:707–710.<br />

Prophetou DA, Tzanakakis ME. 1986. Diapause term<strong>in</strong>ation <strong>in</strong> the olive psyllid Euphyllura<br />

phillyreae <strong>in</strong> the field <strong>and</strong> <strong>in</strong> the laboratory. Entomol Exp Appl. 40:263–272.<br />

Przybylski Z. 1970. Studies on the synchronization of phytophenological phenomenon with<br />

the development of Psylla mali (Psyllidae). Ekol Polska Ser A. 18:1–40.<br />

Purcell MF, Balciunas JK, Jones P. 1997. Biology <strong>and</strong> host-range of Boreioglycaspis<br />

melaleucae (Hemiptera: Psyllidae), potential biological control agent for Melaleuca<br />

qu<strong>in</strong>quenervia (Myrtaceae). Environ Entomol. 26:366–372.<br />

Purcell AH, Suslow KG. 1984. Surveys of leafhoppers (Homoptera: Cicadellidae) <strong>and</strong> pear<br />

psylla (Homoptera: Psyllidae) <strong>in</strong> pear <strong>and</strong> peach orchards <strong>and</strong> the spread of peach yellow<br />

leaf roll disease. J Econ Entomol. 77:1489–1494.<br />

Purvis G, Chauzat MP, Segonds-Pichon A, Dunne R. 2002. <strong>Life</strong> history <strong>and</strong> phenology of the<br />

eucalyptus psyllid, Ctenaryta<strong>in</strong>a eucalypti <strong>in</strong> Irel<strong>and</strong>. Ann Appl Biol. 141:283–292.<br />

Pussard MR. 1939. Contribution a l’étude de la nutrition des psyllides. Presence d’une amylase<br />

dans les gl<strong>and</strong>es salivaires de quelques psyllides adultes. Comptes Rendus Soc Savantes<br />

Paris 71:291–292.<br />

Puterka GJ. 1997. Intraspecific <strong>variation</strong> <strong>in</strong> pear psylla (Psyllidae: Homoptera) nymphal<br />

survival <strong>and</strong> development on resistant <strong>and</strong> susceptible pear. Environ Entomol.<br />

26:552–558.<br />

Puterka GJ, Bell RL, Jones SK. 1993. Ovipositional preference of pear psylla (Homoptera,<br />

Psyllidae) for resistant <strong>and</strong> susceptible pear. J Econ Entomol. 86:1297–1302.<br />

Radjabi G, Behechti ND. 1975. Bioecological studies <strong>and</strong> control of Psylla pyricola<br />

(Homoptera, Psyllidae) <strong>in</strong> Esfahan. Entomol Phytopathol Appl. 39:39–53.<br />

Rajadurai S, Mani T, Balakrishna P, Raman A. 1990. On the digestive enzymes <strong>and</strong> soluble<br />

prote<strong>in</strong>s of the nymphal salivary gl<strong>and</strong>s of Trioza jambolanae Crawford (Trioz<strong>in</strong>ae:<br />

Psyllidae: Homoptera), the gall maker on the leaves of Syzygium cum<strong>in</strong>i (L.) Skeels<br />

(Myrtaceae). Phytophaga 3:47–53.<br />

Rajapakse RHS, Kulasekera K. 1982. Some observations on the <strong>in</strong>sect pests of c<strong>in</strong>namon <strong>in</strong><br />

Sri Lanka. Entomon 7:221–223.<br />

Raman A. 1987. On the cecidogenesis <strong>and</strong> nutritive tissues of the leaf galls of Garuga p<strong>in</strong>nata<br />

Roxburgh (Burseraceae) <strong>in</strong>duced by Phacopteron lentig<strong>in</strong>osum Buckton (Pauropsyll<strong>in</strong>ae:<br />

Psyllidae: Homoptera). Phytophaga 1:141–159.<br />

Raman A. 1991. Cecidogenesis of leaf galls on Syzygium cum<strong>in</strong>i (L.) Skeels (Myrtaceae)<br />

<strong>in</strong>duced by Trioza jambolanae Crawford (Homoptera, Psylloidea). J Nat Hist.<br />

25:653–663.<br />

Raman A. 1994. Adaptational <strong>in</strong>tegration between gall-<strong>in</strong>duc<strong>in</strong>g <strong>in</strong>sects <strong>and</strong> their host <strong>plant</strong>s.<br />

In: Ananthakkrishnan TN, editor. Functional dynamics of phytophagous <strong>in</strong>sects. New<br />

Delhi (India): Oxford & IBH Publish<strong>in</strong>g Co. p. 249–275.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

172 I.D. Hodk<strong>in</strong>son<br />

Raman A. 2003. Cecidogenetic behavior of some gall-<strong>in</strong>duc<strong>in</strong>g thrips, psyllids, coccids, <strong>and</strong><br />

gall midges, <strong>and</strong> morphogenesis of their galls. Oriental Insects 37:359–413.<br />

Ramert B, Nehl<strong>in</strong> G. 1989. Alternative <strong>plant</strong> protection methods <strong>in</strong> small scale cultivation.<br />

Vaxtskyddsnotiser Suppl. 2:1–39.<br />

Ramirez Gomez C. 1956. Los psilidos de Espana. Bol Real Soc Esp Hist Nat (Biol.)<br />

53:151–219.<br />

Ramirez Gomez C. 1958. Los psilidos de Espana. Bol Real Soc Esp Hist Nat (Biol.)<br />

54:63–106.<br />

Ramirez Gomez C. 1960. Los psilidos de Espana. Bol Real Soc Esp Hist Nat (Biol.) 57:4–87.<br />

Rapisarda C. 1985. Sulla presenza <strong>in</strong> Italia di Acizzia acaciae baileyanae (Froggatt)<br />

(Homoptera,Psylloidea), nuovo parassita di acacie ornimentali. Inf Fitopatol. 35:45–49.<br />

Rapisarda C. 1988. Note tass<strong>in</strong>omiche e bio-ecologiche sulle specie di psilloidei viventi su<br />

Genist<strong>in</strong>ae <strong>in</strong> Sicilia (Homoptera). In: Proceed<strong>in</strong>gs of the XV Italian National Congress<br />

of Entomology, l’Aquila. p. 497–504.<br />

Rapisarda C. 1989a. Contributo alla conoscenza degli psilloidei viventi su Rhamnus alaternus<br />

L. <strong>in</strong> Italia (Homoptera: Psylloidea). Phytophaga 3:21–60.<br />

Rapisarda C. 1989b. Presenza <strong>in</strong> Sicilia della psilla verde del fico (Homotoma viridis<br />

Klimaszewski) e descrizione della sua n<strong>in</strong>fa di ultima eta (Homoptera: Psylloidea). Bol<br />

Soc Entomol Ital. 121:13–18.<br />

Rapisarda C. 1989c. A new Sicilian species of Aryta<strong>in</strong>illa Log<strong>in</strong>ova (Homoptera: Psylloidea),<br />

from Genista aetensis (Biv.) DC, with notes on its biology. Frustula Entomol (New Ser.)<br />

9:23–39.<br />

Rapisarda C. 1990a. Faunistic <strong>and</strong> ecological notes on the psyllids of Sard<strong>in</strong>ia (Homoptera:<br />

Psylloidea). Mem Soc Entomol Ital. 69:7–52.<br />

Rapisarda C. 1990b. Morphological <strong>and</strong> biological notes on Aryta<strong>in</strong>illa cytisi (Homoptera,<br />

Psylloidea). Phytophaga 3:115–130.<br />

Rapisarda C. 1992. Nymphal description <strong>and</strong> life-<strong>cycle</strong> of Livilla retamae (Puton) <strong>and</strong> Livilla<br />

spectabilis (Flor) (Homoptera Psylloidea). Boll Zool Agrar Bachic. 24:195–204.<br />

Rapisarda C. 1993a. Seasonal dimorphism <strong>in</strong> two Acacia-feed<strong>in</strong>g psyllids of the grenus Acizzia<br />

(Homoptera: Psylloidea). Phytophaga 3:131–146.<br />

Rapisarda C. 1993b. Trioza soniae <strong>and</strong> T. apulica n. spp., on Quercus spp., from southern<br />

Italy. Mem Soc Entomol Ital. 72:175–188.<br />

Rapisarda C. 1998. New data on the Sicilian psyllids (Homoptera: Psylloidea). Atti Accad<br />

Roveretana Degli Agiati (Ser VII). 8B:97–104.<br />

Rapisarda C, Belcari A. 1999. Notes on some psyllids (Homoptera: Psylloidea) <strong>in</strong>fest<strong>in</strong>g urban<br />

trees <strong>in</strong> Italy. In: Lemattre M, Lemattre P, Lemaire F, editors. International symposium<br />

on urban tree health. Louva<strong>in</strong> (Belgium): International Society Horticultural Science. p.<br />

155–164.<br />

Rasmy AM, MacPhee AW. 1970. Studies on the pear psylla <strong>in</strong> Nova Scotia. Can Entomol.<br />

102:586–591.<br />

Rauf A, Hidayat P, Maryana N, W<strong>in</strong>asa IW. 1990. Biology <strong>and</strong> demography of Heteropsylla<br />

cubana Crawford (Homoptera: Psyllidae). In: Napompeth NA, editor, Leucaena psyllid:<br />

problems <strong>and</strong> management. Bangkok: W<strong>in</strong>rock Institute of Agricultural Development. p.<br />

114–118.<br />

Reuter OM. 1909. Charakteristik und Entwickelungeschichte der Hemipteren-Fauna<br />

(Heteroptera, Auchenorryncha und Psyllidae) der Palaearctischen Coniferen. Acta Soc<br />

Sci Fenn. 36:1–129.<br />

Richards BL, Blood HL. 1933. Psyllid yellows of the potato. J Agri Res. 46:189–216.<br />

Riemann JG. 1958. Notes on the host <strong>and</strong> biology of Tetragonocephala flava Crawford<br />

(Homoptera: Psyllidae). J Kansas Enomol Soc. 31:256.<br />

Rieux R, D’Arcier FF. 1990. Seasonal polymorphism of Psylla pyri L. (Homoptera, Psyllidae)<br />

adults <strong>in</strong> natural populations. J Appl Entomol. 109:120–135.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 173<br />

Riley CV. 1890. Hackberry psyllids. In: Packard AS, editor. Forest <strong>and</strong> shade tree <strong>in</strong>sects.<br />

United States Entomological Commission 5th Report, Wash<strong>in</strong>gton. p. 614–622.<br />

Ross WA. 1919. The pear psylla <strong>in</strong> Ontario. Annu Rep Entomol Soc Ont. 49:81–90.<br />

Russell LM. 1971. Notes on Euphalerus nidifex Schwarz <strong>and</strong> related nest-mak<strong>in</strong>g New World<br />

psyllids. Fl Entomol. 54:3–12.<br />

Rygg T. 1977. Biological <strong>in</strong>vestigations on carrot psyllid Trioza apicalis Forster (Homoptera,<br />

Triozidae). Meld<strong>in</strong>ger Nor L<strong>and</strong>brukshogskole 56:1–20.<br />

Saiz F, Nunez C. 2000. Cecidias de hoja y de rama de Sch<strong>in</strong>us polygamus (Cav.) Cabr.<br />

(Anacardiaceae): doble agente formador o secuencia temporal de cecidias formadas por<br />

huespedes diferentes? Rev Chilena Entomol. 27:57–63.<br />

Sampo A. 1975. Di alcuni psillocecidi nuovi o poci noti della valle d’Aosta. Rev Valdota<strong>in</strong>e<br />

Hist Nat (Aosta) 29:153–174.<br />

Sampo A. 1977. La psilla del lauro (Trioza alacris Flor). Il Floricultore, Milan 14:79–83.<br />

Samways MJ. 1987. Weather <strong>and</strong> monitor<strong>in</strong>g the abundance of the adult citrus psylla Trioza<br />

erytreae Del Guercio (Homoptera, Triozidae). J Appl Entomol. 103:502–508.<br />

Sanford GB. 1952. Phloem necrosis of potato tubers associated with <strong>in</strong>festation of v<strong>in</strong>es by<br />

Paratrioza cockerelli Sˇulc. Sci Agri. 32:433–439.<br />

Sasaki C. 1910. On the life history of Trioza camphorae n.sp. of camphor tree <strong>and</strong> its <strong>in</strong>juries. J<br />

Coll Agri Imperial Univ Tokyo. 2:277–285.<br />

Sav<strong>in</strong>elli CE, Tetrault RC. 1984. Analysis of pear psylla (Homoptera: Psyllidae) populations<br />

<strong>and</strong> associated damage <strong>in</strong> a Pennsylvania pear orchard. Environ Entomol. 13:278–281.<br />

Schaefer HA. 1949. Biologische und okologische Beobachtungen an Psylliden (Hemiptera).<br />

Verh<strong>and</strong>lungen Naturforschenden Ges Basel 60:25–41.<br />

Schaub L, Graf B, Buttur<strong>in</strong>i A. 2005. Phenological model of pear psylla Cacopsylla pyri.<br />

Entomol Exp Appl. 117:105–111.<br />

Schmidt E. 1966. Cycle biologique et phases cecidogenes de Livia juncorum Latr. Marcellia<br />

33:223–235.<br />

Scutareanu P, Loxdale HD. 2006. Ratio of nutrient <strong>and</strong> m<strong>in</strong>erals to defensive compounds<br />

<strong>in</strong>dicative of <strong>plant</strong> quality <strong>and</strong> tolerance to herbivory <strong>in</strong> pear trees. J Plant Nutr.<br />

29:629–642.<br />

Shahid M, Khan S. 1976. Biology <strong>and</strong> control of Diaphor<strong>in</strong>a citri Kuw (citrus psylla) <strong>in</strong><br />

Pashawar. Pakistan J Sci Res. 28:24–28.<br />

Siddiqui ZA. 1949. Occurrence of Psyllia pyricola Forst on apple <strong>and</strong> pear trees <strong>in</strong> Kamaum.<br />

Indian J Entomol. 8:237.<br />

Silvestri F. 1934. Psyllidae. Compendio di Entomologia Applicata. Portici: Tipografia<br />

Ballavista. p. 368–387.<br />

S<strong>in</strong>gh G, Misra PN. 1978. The mango shoot gall psyllid Apsylla cistellata Buckton <strong>and</strong> its<br />

control. Pesticides 12:15–16.<br />

S<strong>in</strong>gh MP. 1959. Studies on the mango shoot gall psyllid Apsylla cistellata 1. Description of<br />

development stages <strong>and</strong> habits. Indian J Entomol. 21:273–281.<br />

S<strong>in</strong>gh P. 1988. Heteropsylla cubana Crawford, a new pest of Leucaena <strong>in</strong> India. Indian For.<br />

114:200–205.<br />

S<strong>in</strong>gh SM. 1954. Studies on Apsylla cistellata Buckton caus<strong>in</strong>g mango galls <strong>in</strong> India. J Econ<br />

Entomol. 47:563–564.<br />

S<strong>in</strong>gh SM. 1960. Studies on the mango shoot gall <strong>in</strong> Tarai region of UP, its causes <strong>and</strong> control.<br />

II Distribution, nature, extent, <strong>in</strong>tensity of damage <strong>and</strong> bionomics of the pest. Horti Adv.<br />

4:97–114.<br />

Sirr<strong>in</strong>e FA. 1895. The bramble flea louse. Annu Rep NY State Agri Exp Stn. 14:619–623.<br />

Skanl<strong>and</strong> HT, Sömme L. 1981. Seasonal-<strong>variation</strong> <strong>in</strong> cold-hard<strong>in</strong>ess of eggs of the apple<br />

psyllid Psylla mali (Schmidb.) <strong>in</strong> Norway. Cryo-Letters 2:87–92.<br />

Sl<strong>in</strong>gerl<strong>and</strong> MV. 1892. The pear tree psylla. Cornell Univ Agri Exp Stn Bull. 44:161–186.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

174 I.D. Hodk<strong>in</strong>son<br />

Smith JB. 1911. The bramble flea louse Trioza tripunctata Fitch. Annu Rep NJ Agri Exp Stn.<br />

32:416–418.<br />

Smith RC, Taylor RS. 1953. The biology <strong>and</strong> control of the hackberry psyllids <strong>in</strong> Kansas. J<br />

Kansas Enomol Soc. 26:103–115.<br />

Solomon ME. 1936. Description <strong>and</strong> life-history of a new western Australian psyllid. J R Soc<br />

West Aust. 22:41–48.<br />

Sor<strong>in</strong> M. 1959a. On the life history <strong>and</strong> immature stages of Trioza camphorae Sasaki<br />

(Psyllidae, Homoptera). Kontyu 27:244–248.<br />

Sor<strong>in</strong> M. 1959b. On the life history <strong>and</strong> immature stages of Trioza remota Foerster<br />

(Homoptera: Psyllidae). Kontyu 27:181–186.<br />

Souliotis C, Broumas T. 1998. Study of the population dynamics of the Cacopsylla pyri L.<br />

(Homoptera: Psyllidae) <strong>and</strong> its predators <strong>in</strong> Eastern Attiki. Ann Inst Phytophathol<br />

Benaki. 18:97–109.<br />

Souliotis C, Tsourgianni A. 2000. Population dynamics of Psyllidae on pistachio (Pistacia<br />

vera): Bioecological data on Agonoscena pistaciae Burck. <strong>and</strong> Laut. (Homop.<br />

Sternorrhyncha). Boll Zool Agrar Bachic. 32:49–58.<br />

Spauld<strong>in</strong>g AW, von Dohlen CD. 1998. Phylogenetic characterization <strong>and</strong> molecular evolution<br />

of bacterial endosymbionts <strong>in</strong> psyllids (Hemiptera: Sternorrhyncha). Mol Biol Evol.<br />

15:1506–1513.<br />

Spauld<strong>in</strong>g AW, von Dohlen CD. 2001. Psyllid endosymbionts exhibit patterns of co-speciation<br />

with hosts <strong>and</strong> destabiliz<strong>in</strong>g substitutions <strong>in</strong> ribosomal RNA. Insect Mol Biol. 10:57–67.<br />

Speyer W. 1929. Der Apfelblattsauger, Psylla mali Schmidb. Berl<strong>in</strong> (Germany): Spr<strong>in</strong>ger.<br />

Staples R. 1968. Cross protection between a <strong>plant</strong> virus <strong>and</strong> potato psyllid yellows. J Econ<br />

Entomol. 61:1378–1380.<br />

Stavraki HG. 1980. Biologie de Euphyllura sp. (Homoptera: Psyllidae) dans un oliveraie<br />

d’attiki (Greece). Mededel<strong>in</strong>gen van de Faculteit L<strong>and</strong>bouwwetenschappen, Universiteit<br />

Gent 45:603–611.<br />

Stratopoulou ET, Kapatos ET. 1995a. Distribution of population of immature stages of pear<br />

psylla, Cacopsylla pyri, with<strong>in</strong> the tree <strong>and</strong> development of sampl<strong>in</strong>g strategy. Entomol<br />

Hell. 10:5–10.<br />

Stratopoulou ET, Kapatos ET. 1995b. The dynamics of the adult population of pear psylla,<br />

Cacopsylla pyri L. (Hom., Psyllidae) <strong>in</strong> the region of Magnesia (Greece). J Appl Entomol.<br />

119:97–101.<br />

Stromgren ES, Lanciani CA. 2001. Early abcission <strong>in</strong> hackberry leaves bear<strong>in</strong>g Pachypsylla<br />

galls (Homoptera: Psyllidae). Fl Entomol. 84:727–728.<br />

Stuart LC. 1991. Blackberry psyllid. In: Ellis MA, Converse RH, Williams RN, Williamson B,<br />

editors. Compendium of raspberry <strong>and</strong> blackberry diseases <strong>and</strong> <strong>in</strong>sects. St. Paul (MN):<br />

American Phytological Society Press. p. 73–74.<br />

Stuart LC, Butt BA, Bell RL. 1989. Effect of host phenology on ovipositional preference of<br />

w<strong>in</strong>ter form pear psylla (Homoptera, Psyllidae). J Entomol Soc BC. 86:34–38.<br />

Sutton RD. 1983. Seasonal colour changes, sexual maturation <strong>and</strong> oviposition <strong>in</strong> Psylla<br />

peregr<strong>in</strong>a (Homoptera: Psylloidea). Ecol Entomol. 8:195–202.<br />

Sutton RD. 1984. The effect of host <strong>plant</strong> flower<strong>in</strong>g on the distribution <strong>and</strong> growth of<br />

hawthorn psyllids (Homoptera, Psylloidea). J Anim Ecol. 53:37–50.<br />

Swenk MH, Tate HD. 1940. The potato flea beetle <strong>and</strong> the potato psyllid <strong>in</strong> Nebraska. Bull<br />

Neb Agri Exp Stn. 327:1–19.<br />

Takara JM, D<strong>in</strong>ker RJ, Nagam<strong>in</strong>e WT, Teramoto KK. 1990. Biology <strong>and</strong> reproductive rate of<br />

leucaena psyllid, Heteropsylla cubana Crawford. Proc Hawaiian Entomol Soc. 30:23–30.<br />

Tamesse JL, Messi J. 2004. Facteurs <strong>in</strong>fluencant la dynamique des populations du psylle<br />

africa<strong>in</strong> des agrumes Trioza erytreae Del Guercio (Hemiptera: Triozidae) au Cameroun.<br />

Int J Trop Insect Sci. 24:213–227.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 175<br />

Tarsia <strong>in</strong> Curia I. 1934. La simbiosi ereditaria <strong>in</strong> Trioza alacris Flor. Archiv Zool Ital.<br />

2:215–235.<br />

Taylor GS. 1985. The taxonomic status of Schedotrioza multitud<strong>in</strong>ea (Psylloidea: Triozidae)<br />

with notes on its biology. J Aust Entomol Soc. 24:305–312.<br />

Taylor GS. 1987. The gall form<strong>in</strong>g Psylloidea of Eucalyptus obliqua <strong>in</strong> the Mount Lofty<br />

Ranges of South Australia. J Aust Entomol Soc. 26:223–228.<br />

Taylor KL. 1985. A possible stridulatory organ <strong>in</strong> some Psylloidea (Homoptera). J Aust<br />

Entomol Soc. 24:77–80.<br />

Tedeschi R, Alma A. 2004. Transmission of apple proliferation phytoplasma by Cacopsylla<br />

melanoneura (Homoptera: Psyllidae). J Econ Entomol. 97:8–13.<br />

Tedeschi R, Bosco D, Alma A. 2002. Population dynamics of Cacopsylla melanoneura<br />

(Homoptera: Psyllidae), a vector of apple proliferation phytoplasma <strong>in</strong> northwestern<br />

Italy. J Econ Entomol. 95:544–551.<br />

Tedeschi R, Ferrato V, Rossi J, Alma A. 2006. Possible phytoplasma transovarial<br />

transmission <strong>in</strong> the psyllids Cacopsylla melanoneura <strong>and</strong> Cacopsylla pruni. Plant<br />

Pathol. 55:18–24.<br />

Teixeira DD, Danet JL, Eveillard S, Mart<strong>in</strong>s EC, Junior WCJ, Yamamoto PT, Lopes SA,<br />

Bassanezi RB, Ayres AJ, Saillard C. 2005. Citrus huanglongb<strong>in</strong>g <strong>in</strong> Sao Paulo State,<br />

Brazil: PCR detection of the ‘‘C<strong>and</strong>idatus’’ Liberibacter species associated with the<br />

disease. Mol Cell Probes. 19:173–179.<br />

Tenorio J, Chuquillanqui C, Garcia A, Guillen M, Chavez R, Salazar LF. 2003.<br />

S<strong>in</strong>tomatologia y efecto en el rendimiento de papa por el achaparramiento rugoso.<br />

Fitopatologia 38:32–36.<br />

Thakur JR, Sharma PC, Gupta PR. 1989. Ocurrence of olive psylla Euphyllura pakistanika<br />

Log<strong>in</strong>ova (Homoptera: Aphalaridae) on olive <strong>in</strong> India, a new record. Trop Pest Manag.<br />

35:331.<br />

Thao ML, Clark MA, Baumann L, Brennan EB, Moran NA, Baumann P. 2000a. Secondary<br />

endosymbionts of psyllids have heen acquired multiple times. Curr Microbiol.<br />

41:300–304.<br />

Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P. 2000b.<br />

Cospeciation of psyllids <strong>and</strong> their primary prokaryotic endosymbionts. Appl Environ<br />

Microbiol. 66:2898–2905.<br />

Thao ML, Clark MA, Burckhardt DH, Moran NA, Baumann P. 2001. Phylogenetic analysis<br />

of vertically transmitted psyllid endosymbionts (C<strong>and</strong>idatus Carsonella ruddii) based on<br />

atpAGD <strong>and</strong> rpoC: Comparisons with 16S–23S rDNA-derived phylogeny. Curr<br />

Microbiol. 42:419–421.<br />

Thenmozhi K, K<strong>and</strong>asamy C. 1992. Studies of the biology of gall psyllids of India 1.<br />

Pauropsylla longispiculata Mathur (Psyllidae, Homoptera). Agri Biol Res. 8:44–47.<br />

Tishechk<strong>in</strong> DY. 1989. Acoustic signalization <strong>in</strong> the psyllids (Homoptera, Psyll<strong>in</strong>ea) from the<br />

Moscow Oblast, Russian SSR. Vestnik Moskovskogo Universiteta Seriya XVI Biologiya,<br />

20–24.<br />

Tishechk<strong>in</strong> DY. 2005. Vibratory communication <strong>in</strong> Psylloidea (Hemiptera). In: Drosopoulos<br />

S, Claridge MM, editors. Insect sounds <strong>and</strong> communications. London: CRC Taylor &<br />

Francis. p. 357–363.<br />

Tishechk<strong>in</strong> DY. 2007. New data on vibratory communication <strong>in</strong> jump<strong>in</strong>g <strong>plant</strong> <strong>lice</strong> of the<br />

families Aphalaridae <strong>and</strong> Triozidae (Homoptera, Psyll<strong>in</strong>ea). Entomol Rev. 87:394–400.<br />

Tokmakoglu C. 1973. The studies on some features of biology <strong>and</strong> control methods of<br />

Agonoscena targionii Licht. Bitki Koruma Bülteni 13:67–72.<br />

Tremblay E. 1958. La Trioza nigricornis Foerster (Nota prelim<strong>in</strong>are). Boll Lab Entomol Agrar<br />

Filippo Silvestri, Portici. 16:160–170.<br />

Tremblay E. 1961. La psilla e il misur<strong>in</strong>o della cipolla. Laboratorio Enomologia Agrar ‘‘F.<br />

Silvestri’’ Oss Mal Piante, Portici, Circ. 24:1–10.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

176 I.D. Hodk<strong>in</strong>son<br />

Tremblay E. 1965a. Risultati di prove di lotta contro la psilla della cipolla (Trioza tremblayi<br />

Wagner). Ann Fac Sci Agrar Univ Napoli. 30:15–27.<br />

Tremblay E. 1965b. Studio morfo-biologico sulla Trioza tremblayi Wagner (Hemiptera:<br />

Homomptera, Psyllidae). Boll Lab Entomol Agrar Filippo Silvestri, Portici. 23:37–138.<br />

Tsai JH, Liu YH. 2000. Biology of Diaphor<strong>in</strong>a citri (Homoptera: Psyllidae) on four host<br />

<strong>plant</strong>s. J Econ Entomol. 93:1721–1725.<br />

Tuncer C. 2002. Investigations on the biology of Homotoma ficus L. (Homoptera:<br />

Homotomidae) <strong>and</strong> the development threshold for eggs <strong>in</strong> Samsun Prov<strong>in</strong>ce. Turkiye<br />

Entomol Dergisi 26:33–44.<br />

Tuthill LD. 1952. On the Psyllidae of New Zeal<strong>and</strong>. Pac Sci. 6:83–125.<br />

Tzanakakis ME. 2003. Seasonal development <strong>and</strong> dormancy of <strong>in</strong>sects <strong>and</strong> mites feed<strong>in</strong>g on<br />

olive: a review. Neth J Zool. 52:87–224.<br />

Tzanakakis ME. 2006. Insects <strong>and</strong> mites feed<strong>in</strong>g on olive. Distribution, importance, habits,<br />

seasonal development <strong>and</strong> dormancy. Leiden (The Netherl<strong>and</strong>s): Brill.<br />

Uchida GK, Beardsley JWJ. 1988. Taxonomy <strong>and</strong> biology of Megatrioza palmicola group<br />

(Homoptera, Psyllidae) <strong>in</strong> Hawaii. Proc Hawaiian Entomol Soc. 28:57–100.<br />

Ullman DE, McLean DL. 1988a. Feed<strong>in</strong>g behavior of the w<strong>in</strong>ter-form pear psylla Psylla<br />

pyricola (Homoptera, Psyllidae) on reproductive <strong>and</strong> transitory host <strong>plant</strong>s. Environ<br />

Entomol. 17:675–678.<br />

Ullman DE, McLean DL. 1988b. The prob<strong>in</strong>g behavior of the summer-form pear psylla.<br />

Entomol Exp Appl. 47(2):115–126.<br />

Unruh TR, Krysan JL. 1994. Reproductive diapause <strong>and</strong> host <strong>plant</strong>s afffect <strong>in</strong>secticide<br />

tolerance of adult pear psylla (Homoptera, Psyllidae). J Econ Entomol. 87:858–865.<br />

Vaishampayan SM, Bahadur A. 1980. Observations on biology <strong>and</strong> bionomics of tendu gall<br />

fly, Trioza obsoleta Buckton (Homoptera: Psyllidae), <strong>and</strong> assessment of losses to tendu<br />

Diospyros melanoxylon Roxb. Proceed<strong>in</strong>gs of the 2nd Forestry Conference Dehra Dun,<br />

India. p. 1–7.<br />

van den Berg MA. 1990. The citrus psylla Trioza erytreae del Guercio (Hemiptera: Triozidae),<br />

a review. Agri Ecosyst Environ. 30:171–194.<br />

van den Berg MA, Anderson SH, Deacon VE. 1991. Population studies of the citrus psylla<br />

Trioza erytreae: factors <strong>in</strong>fluenc<strong>in</strong>g dispersal. Phytoparasitica 19:283–290.<br />

van den Berg MA, Deacon VE. 1988. Dispersal of the citrus psylla Trioza erytreae<br />

(Hemiptera, Triozidae) <strong>in</strong> the absence of its host <strong>plant</strong>s. Phytophylactica 20:361–368.<br />

van den Berg MA, Deacon VE. 1989. Flight activities of the citrus psylla Trioza erytreae<br />

(Hemiptera, Triozidae). Phytophylactica 21:391–396.<br />

van den Berg MA, Deacon VE, Steenekamp PJ. 1991. Dispersal with<strong>in</strong> <strong>and</strong> between citrus<br />

orchards <strong>and</strong> native hosts <strong>and</strong> nymphal mortality of citrus psylla Trioza erytreae<br />

(Hemiptera, Triozidae). Agri Ecosyst Environ. 35:297–310.<br />

van Den Berg MA, Deacon VE, Thomas CD. 1991a. Ecology of the citrus psylla Trioza<br />

erytreae (Hemiptera Triozidae) 3. Mat<strong>in</strong>g, fertility <strong>and</strong> oviposition. Phytophylactica<br />

23:195–200.<br />

van den Berg MA, Deacon VE, Thomas CD. 1991b. Ecology of the citrus psylla Trioza<br />

erytreae (Hemiptera, Triozidae) 4. Settl<strong>in</strong>g <strong>and</strong> general behaviour of nymphs.<br />

Phytophylactica 23:201–206.<br />

van den Berg MA, de Villiers EA. 1987. Psyllids, aphids <strong>and</strong> whiteflies. Bull Dep Agri Water<br />

Supply Repub S Afr. 411:43–48.<br />

van den Berg MA, van Vuuren SP, Deacon VE. 1987. Cross-breed<strong>in</strong>g <strong>and</strong> green<strong>in</strong>g disease<br />

transmission of different populations of the citrus psylla Trioza erytreae (Hemiptera:<br />

Triozidae). Phytophylactica 19:353–354.<br />

van Kl<strong>in</strong>ken RD. 2000. Host-specificity constra<strong>in</strong>s evolutionary host change <strong>in</strong> the psyllid<br />

Prosopidopsylla flava. Ecol Entomol. 25:413–422.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 177<br />

van Vuuren SP, Moll JN. 1984. Population dynamics <strong>and</strong> green<strong>in</strong>g transmission by the psyllid<br />

Trioza erytreae (Del Guercio). In: Proceed<strong>in</strong>gs of the green<strong>in</strong>g symposium, Citrus &<br />

Subtropical Fruit Research Institute, Nelspruit, p. 90–94.<br />

Verrier ML. 1929. Contribution a l’étude de la cecidie de Livia juncorum Latr. (Hem Psyllidae)<br />

sur Juncus conglomeratus L. Bull Soc Entomol Fr. 19:77–80.<br />

Vosseler J. 1906. E<strong>in</strong>e Psyllide als Erzeuger<strong>in</strong> von Gallen am Mwulebaum (Chlorophora<br />

excelsa (Welw.) Benth et Hook). Z Wiss Insectenbiol. 2:276–285 <strong>and</strong> 305–316.<br />

Waku Y, Endo Y. 1987. Ultrastructure <strong>and</strong> life <strong>cycle</strong> of the symbionts <strong>in</strong> a Homopteran Insect<br />

Anomoneura mori Schwartz (Psyllidae). Appl Entomol Zool. 22:630–637.<br />

Wallis RL. 1946. Seasonal occurrence of the potato psyllid <strong>in</strong> the North Platte Valley. J Econ<br />

Entomol. 39:689–694.<br />

Wallis RL. 1955. Ecological studies on the potato psyllid as a pest of potatoes. Tech Bull US<br />

Dep Agri. 1107:1–24.<br />

Walton BCJ. 1944. The biology of Pachypsylla celtis-gemma Riley (Homoptera: Psyllidae) <strong>and</strong><br />

the relationship of the parasite to the bud of Celtis occidentalis [doctoral thesis]. [New<br />

York]: Fordham University.<br />

Walton BCJ. 1960. The life <strong>cycle</strong> of the hackberry gall-former Pachypsylla celtidis-gemma<br />

(Homoptera: Psyllidae). Ann Entomol Soc Am. 53:265–277.<br />

Watmough RH. 1968a. Notes on the biology of Artyta<strong>in</strong>a spartiophila <strong>and</strong> Artyta<strong>in</strong>a genistae<br />

(Homoptera, Psyllidae) on broom Sarothamnus scoparius. J Entomol Soc South Afr.<br />

31:115–122.<br />

Watmough RH. 1968b. Population studies on two species of Psyllidae (Homoptera:<br />

Sternorhyncha) on broom Sarothamnus scoparius. J Anim Ecol. 37:283–314.<br />

Webb JW. 1977. The life history <strong>and</strong> population dynamics of Acizzia russellae (Homoptera,<br />

Psyllidae). J Entomol Soc South Afr. 40:37–46.<br />

Webb JW, Moran VC. 1978. Influence of host <strong>plant</strong> on the population dynamics of Acizzia<br />

russellae (Homoptera Psyllidae). Ecol Entomol. 3:313–321.<br />

We<strong>in</strong>traub PG, Beanl<strong>and</strong> L. 2006. Insect vectors of phytoplasmas. Annu Rev Entomol.<br />

51:91–111.<br />

Weiss HB. 1917. The bay flea-louse, Trioza alacris Flor, as a new pest <strong>in</strong> New Jersey. Can<br />

Entomol. 49:73–75.<br />

Weiss HB. 1921. Notes on the life history of Pachypsylla celtidis gemma Riley. Can Entomol.<br />

53:19–21.<br />

Weiss HB, Dickerson EL. 1921. Notes on Trioza alacris Flor <strong>in</strong> New Jersey. Psyche 25:59–63.<br />

Weiss HB, Nicolay AS. 1918. The life history <strong>and</strong> early stages of Calophya nigripennis. J Econ<br />

Entomol. 11:467–471.<br />

Weiss HB, West E. 1922. Notes on Livia maculipennis (Fitch) (Homoptera: Chermidae).<br />

Psyche 29:226–229.<br />

Westigard PH, Westwood MN, Lombard PB. 1970. Host preference <strong>and</strong> resistance of Pyrus<br />

species to the pear psylla, Psylla pyricola Foerster. J Am Soc Horti. 95:34–36.<br />

Wheeler AG. 1994. Craspedolepta eas: distribution, host, <strong>and</strong> habits of a phlox specialist<br />

(Homoptera: Psylloidea: Aphalaridae). Proc Entomol Soc Wash. 96:91–97.<br />

Wheeler AG, Rawl<strong>in</strong>s JE. 1993. Calophya triozomima Schwarz, a sumac-feed<strong>in</strong>g psyllid new to<br />

the eastern United States (Homoptera: Psylloidea: Calophyidae). Proc Entomol Soc<br />

Wash. 95:99–106.<br />

Wheeler GS, Ordung KM. 2005. Secondary metabolite <strong>variation</strong> affects the oviposition<br />

preference but has little effect on the performance of Boreioglycaspis metalencae: a<br />

biological control agent of Melaleuca qu<strong>in</strong>quenervia. Biol Control. 35:115–123.<br />

White IM, Hodk<strong>in</strong>son ID. 1985. Nymphal taxonomy <strong>and</strong> systematics of the Psylloidea<br />

(Homoptera). Bull Brit Mus (Nat Hist.) 50:153–301.<br />

White MG. 1966. The problems of the Phytolyma gall bug <strong>in</strong> the establishment of Clorophora.<br />

Inst Pap Commonw For Inst. 37:1–52.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

178 I.D. Hodk<strong>in</strong>son<br />

White MG. 1967. Research <strong>in</strong> Nigeria on the iroko gall bug (Phytolyma sp.) <strong>in</strong>jury to iroko<br />

tree (Chlorophora sp.). Niger For Inf Bull (New Ser.) 18:1–72.<br />

White TCR. 1968. Uptake of water by eggs of Cardiasp<strong>in</strong>a densitexta (Homoptera, Psyllidae)<br />

from leaf of host <strong>plant</strong>. J Insect Physiol. 14:1669–1683.<br />

White TCR. 1969. An <strong>in</strong>dex to measure weather-<strong>in</strong>duced stress of trees associated with<br />

outbreaks of psyllids <strong>in</strong> Australia. Ecology 50:905–909.<br />

White TCR. 1970a. Airborne arthropods collected <strong>in</strong> South Australia with a drogue-net towed<br />

by a light aircraft. Pac Insect. 12:251–259.<br />

White TCR. 1970b. The nymphal stage of Cardiasp<strong>in</strong>a densitexta (Homoptera, Psyllidae) on<br />

leaves of Eucalyptus fasciculosa. Aust J Zool. 18:273–293.<br />

White TCR. 1970c. Some aspects of the life history, host selection, dispersal <strong>and</strong> oviposition of<br />

adult Cardiasp<strong>in</strong>a densitexta (Homoptera, Psyllidae). Aust J Zool. 18:105–117.<br />

White TCR. 1971. Lerp Insects (Homoptera: Psyllidae) on red gum Eucalyptus camaldulensis<br />

<strong>in</strong> South Australia. S Aust Nat. 46:20–23.<br />

White TCR. 1973. Aerial dispersal of adult Cardiasp<strong>in</strong>a densitexta (Homoptera, Psyllidae) <strong>in</strong><br />

South Australia. Trans R Soc S Aust. 97:29–31.<br />

Whittaker JB. 1985. Population <strong>cycle</strong>s over a 16-year period <strong>in</strong> an upl<strong>and</strong> race of Stroph<strong>in</strong>gia<br />

ericae (Homoptera: Psylloidea) on Calluna vulgaris. J Anim Ecol. 54:311–322.<br />

Wilcke J. 1941. Biologie en morphologie van Psylla buxi. Tijdschr Plantenzeikten 47:41–89.<br />

Wilde WHA. 1962. Bionomics of the pear psylla, Psylla pyricola Foerster, <strong>in</strong> pear orchards of<br />

the Kootenay Valley of British Columbia 1960. Can Entomol. 94:845–849.<br />

Wilde WHA. 1965. The pear psylla, Psylla pyricola Foerster, <strong>in</strong> Ontario (Hemiptera:<br />

Chermidae): a review. Proc Entomol Soc Ont. 95:5–10.<br />

Wilde WHA, Watson TK. 1963. Bionomics of the pear psylla, Psylla pyricola Foerster, <strong>in</strong> the<br />

Okanagan Valley of British Columbia. Can J Zool. 41:953–961.<br />

Wilde WHA, Carpenter J, Liberty J, Tunnicliffe J. 1971. Psylla pyricola (Hemiptera:Psyllidae)<br />

vector relationships with Erw<strong>in</strong>ia amylovora. Can Entomol. 103:1175–1178.<br />

Wille HP. 1950. Untersuchungen uber Psylla piri L. und <strong>and</strong>ere Birnblattsaugerarten im<br />

Wallis. Eidgenossischen Technischen Hochschule <strong>in</strong> Zurich: 1–113.<br />

Williams MW, Benson NR. 1966. Transfer of C14 components from Psylla pyricola Foer. to<br />

pear seedl<strong>in</strong>gs. J Insect Physiol. 12:251–254.<br />

Williams MW, Batjer LP, Degman ES, Burts EC. 1963. The susceptibility of some pear species<br />

to <strong>in</strong>jury from pear psylla. Proc Am Soc Horti Sci. 82:109–113.<br />

Willson BW, Garcia CA. 1992. Host specificity <strong>and</strong> biology of Heteropsylla sp<strong>in</strong>ulosa (Hom,<br />

Psyllidae) <strong>in</strong>troduced <strong>in</strong>to Australia <strong>and</strong> Western-Samoa for the biological control of<br />

Mimosa <strong>in</strong>visa. Entomophaga 37:293–299.<br />

W<strong>in</strong>eriter SA, Buck<strong>in</strong>gham GR, Frank JH. 2003. Host range of Boreioglycaspis melaleucae<br />

Moore (Hemiptera: Psyllidae), a potential biocontrol agent of Melaleuca qu<strong>in</strong>quenervia<br />

(Cav.) S.T. Blake (Myrtaceae), under quarant<strong>in</strong>e. Biol Control. 27:273–292.<br />

Wojnarowska P. 1962. Psylla pyrisuga Foerst. Red pear psylla. Prace Naukowe Inst Ochrony<br />

Rosl<strong>in</strong> 4:153–177.<br />

Wojnarowska P, Baranowna I, Lipowa I. 1960. Psylla pyri L. Prace Naukowe Inst Ochrony<br />

Rosl<strong>in</strong> 2:143–161.<br />

Wong TTY, Madsen HF. 1967. Laboratory <strong>and</strong> field studies on the seasonal forms of pear<br />

psylla <strong>in</strong> northern California. J Econ Entomol. 60:163–168.<br />

Woodburn TL, Lewis EE. 1973. A comparative histological study of the effects of feed<strong>in</strong>g by<br />

nymphs of four psyllid species on the leaves of eucalypts. J Aust Entomol Soc.<br />

12:134–138.<br />

Yang MM, Liao LH, Lou MF, Chen WC, Huang SS, Tung GS, Weng YC, Shen CC. 2006.<br />

Diversity, biology, <strong>and</strong> nutritional <strong>adaptation</strong> of psyllids <strong>and</strong> their galls <strong>in</strong> Taiwan. In:<br />

Ozaki K, Yukawa J, Ohgushi T, Price PW, editors. Gall<strong>in</strong>g arthropods <strong>and</strong> their<br />

associates: ecology <strong>and</strong> evolution. Tokyo (Japan): Spr<strong>in</strong>ger-Verlag Tokyo. p. 33–42.


Downloaded By: [University of Florida] At: 15:14 17 August 2010<br />

Journal of Natural History 179<br />

Yasuda K, Tsurumachi M. 1988. Seasonal prevalence of leucaena psyllid Heteropsylla cubana<br />

Crawford (Homoptera: Psyllidae) <strong>in</strong> relation to temperature <strong>in</strong> Ishigaki Isl<strong>and</strong>. Proc<br />

Assoc Plant Prot, Kyushu. 34:208–211.<br />

Young GR. 2003. <strong>Life</strong> history, biology, host <strong>plant</strong>s <strong>and</strong> natural enemies of the lilly pilly<br />

psyllid, Trioza eugeniae Froggatt (Hemiptera: Triozidae). Aust Entomol. 30:31–38.<br />

Zhangeri S. 1954. Nota sulla Trioza urticae L. Boll Ist Entomol Univ Bologna. 20:257–273.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!