06.04.2013 Views

The phylogenetic distribution of resupinate forms ... - Clark University

The phylogenetic distribution of resupinate forms ... - Clark University

The phylogenetic distribution of resupinate forms ... - Clark University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Systematics and Biodiversity 3 (2): 1–45 Issued ???? 2005<br />

DOI: 10.1017/S1477200005001623 Printed in the United Kingdom C○ <strong>The</strong> Natural History Museum<br />

<strong>The</strong> <strong>phylogenetic</strong> <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> across<br />

the major clades <strong>of</strong> mushroom-forming fungi<br />

(Homobasidiomycetes)<br />

Manfred Binder1 , David S. Hibbett∗,1 , Karl-Henrik Larsson2 , Ellen Larsson2 , Ewald Langer3 & Gitta Langer3 1Biology Department, <strong>Clark</strong> <strong>University</strong>, 950 Main Street, Worcester, MA 01610, USA<br />

2Göteborg <strong>University</strong>, Botanical Institute, Box 461, 405 30 Göteborg, Sweden<br />

3Universität Kassel, FB 18, Naturwissenschaften, Institut für Biologie, FG Ökologie, Heinrich-Plett-Str. 40,<br />

D-34123 Kassel, Germany<br />

submitted January 2004<br />

accepted September 2004<br />

Contents<br />

Abstract 1<br />

Introduction 2<br />

Material and methods 3<br />

Clade names 3<br />

Taxon sampling, molecular techniques and alignment 4<br />

Phylogenetic analyses 4<br />

Results 5<br />

Sequences and alignment 5<br />

Analyses <strong>of</strong> the core dataset 6<br />

Two-step heuristic analyses <strong>of</strong> the full dataset 6<br />

Equally weighted PR analyses <strong>of</strong> the full dataset 6<br />

Six-parameter weighted PR analyses <strong>of</strong> the full dataset 9<br />

Discussion 9<br />

Overall <strong>phylogenetic</strong> resolution 9<br />

Relationships <strong>of</strong> Homobasidiomycetes to heterobasidiomycetes 11<br />

Basal Homobasidiomycetes 13<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> within the Homobasidiomycetes 15<br />

Conclusions and future directions 40<br />

Acknowledgements 41<br />

References 41<br />

Abstract Phylogenetic relationships <strong>of</strong> <strong>resupinate</strong> Homobasidiomycetes (Corticiaceae s. lat. and others) were studied<br />

using ribosomal DNA (rDNA) sequences from a broad sample <strong>of</strong> <strong>resupinate</strong> and non<strong>resupinate</strong> taxa. Two datasets were<br />

analysed using parsimony, a ‘core’ dataset <strong>of</strong> 142 species, each <strong>of</strong> which is represented by four rDNA regions (mitochondrial<br />

and nuclear large and small subunits), and a ‘full’ dataset <strong>of</strong> 656 species, most <strong>of</strong> which were represented only by nuclear<br />

large subunit rDNA sequences. Both datasets were analysed using traditional heuristic methods with bootstrapping, and<br />

the full dataset was also analysed with the Parsimony Ratchet, using equal character weights and six-parameter weighted<br />

parsimony. Analyses <strong>of</strong> both datasets supported monophyly <strong>of</strong> the eight major clades <strong>of</strong> Homobasidiomycetes recognised<br />

by Hibbett and Thorn, as well as independent lineages corresponding to the Gloeophyllum clade, corticioid clade and Jaapia<br />

argillacea. Analyses <strong>of</strong> the full dataset resolved two additional groups, the athelioid clade and trechisporoid clade (the latter<br />

may be nested in the polyporoid clade). Thus, there are at least 12 independent clades <strong>of</strong> Homobasidiomycetes. Higherlevel<br />

relationships among the major clades are not resolved with confidence. Nevertheless, the euagarics clade, bolete<br />

clade, athelioid clade and Jaapia argillacea are consistently resolved as a monophyletic group, whereas the cantharelloid<br />

clade, gomphoid-phalloid clade and hymenochaetoid clade are placed at the base <strong>of</strong> the Homobasidiomycetes, which<br />

is consistent with the preponderance <strong>of</strong> imperforate parenthesomes in those groups. Resupinate <strong>forms</strong> occur in each <strong>of</strong> the<br />

*Corresponding author. Email: dhibbett@black.clarku.edu<br />

1<br />

T1


2 Manfred Binder et al.<br />

major clades <strong>of</strong> Homobasidiomycetes, some <strong>of</strong> which are composed mostly or exclusively <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> (athelioid<br />

clade, corticioid clade, trechisporoid clade, Jaapia). <strong>The</strong> largest concentrations <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> occur in the polyporoid<br />

clade, russuloid clade and hymenochaetoid clade. <strong>The</strong> cantharelloid clade also includes many <strong>resupinate</strong> <strong>forms</strong>, including<br />

some that have traditionally been regarded as heterobasidiomycetes (Sebacinaceae, Tulasnellales, Ceratobasidiales). <strong>The</strong><br />

euagarics clade, which is by far the largest clade in the Homobasidiomycetes, has the smallest fraction <strong>of</strong> <strong>resupinate</strong><br />

species. Results <strong>of</strong> the present study are compared with recent <strong>phylogenetic</strong> analyses, and a table summarising the<br />

<strong>phylogenetic</strong> <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> taxa is presented, as well as notes on the ecology <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> and related<br />

Homobasidiomycetes.<br />

Key words Corticiaceae, corticioid fungi, heterobasidiomycetes, Parsimony Ratchet, Polyporaceae, systematics, taxonomy,<br />

rDNA sequences<br />

Introduction<br />

<strong>The</strong> Homobasidiomycetes is a group <strong>of</strong> Fungi with approximately<br />

16 000 described species (Kirk et al., 2001), including<br />

such familiar <strong>forms</strong> as gilled mushrooms, polypores, coral<br />

fungi and gasteromycetes. In addition to these, the Homobasidiomycetes<br />

includes relatively simple <strong>resupinate</strong> <strong>forms</strong> that<br />

have flattened, crust-like fruiting bodies. Resupinate Homobasidiomycetes<br />

resemble each other in gross morphology, but<br />

they are diverse in anatomical, ecological, physiological and<br />

genetic attributes, and they have long been regarded as polyphyletic.<br />

Untangling the relationships <strong>of</strong> this assemblage has<br />

proven to be one <strong>of</strong> the most difficult challenges <strong>of</strong> fungal<br />

systematics. <strong>The</strong> purpose <strong>of</strong> this study was to use molecular<br />

characters to provide an overview <strong>of</strong> the <strong>phylogenetic</strong> <strong>distribution</strong><br />

<strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> among the Homobasidiomycetes.<br />

In the classical system <strong>of</strong> Fries (1821), <strong>resupinate</strong> <strong>forms</strong><br />

were distributed among the <strong>The</strong>lephoraceae, Meruliaceae,<br />

Hydnaceae and Polyporaceae, according to their hymenophore<br />

configurations. Later, with the application <strong>of</strong> anatomical characters,<br />

the diversity <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> and their relationships<br />

to non-<strong>resupinate</strong> taxa started to become apparent<br />

(Karsten, 1881; Patouillard, 1900). <strong>The</strong> early work in taxonomy<br />

<strong>of</strong> Aphyllophorales was summarised by Donk (1964)<br />

in his ‘Conspectus <strong>of</strong> the families <strong>of</strong> Aphyllophorales’. Donk’s<br />

work marked a major advance toward a <strong>phylogenetic</strong> classification<br />

<strong>of</strong> the non-gilled/non-gasteroid Homobasidiomycetes,<br />

which he divided into 21 families. In 1971, Donk admitted two<br />

more families to the Aphyllophorales.<br />

Resupinate <strong>forms</strong> occur in 12 families <strong>of</strong> the Aphyllophorales<br />

sensu Donk (1971). Approximately 60 genera <strong>of</strong> <strong>resupinate</strong><br />

<strong>forms</strong> were included in the Corticiaceae (Donk, 1964).<br />

Others were distributed among the Clavariaceae (e.g. Clavulicium),<br />

Coniophoraceae (Coniophora), Gomphaceae (Ramaricium),<br />

Hericiaceae (Gloeocystidiellum), Hymenochaetaceae<br />

(Hymenochaete), Lachnocladiaceae (Scytinostroma), Polyporaceae<br />

(Poria), Punctulariaceae (Punctularia), Stereaceae (Xylobolus),<br />

<strong>The</strong>lephoraceae (Tomentella) and Tulasnellaceae<br />

(Tulasnella). Donk considered most <strong>of</strong> these latter families to<br />

be more or less natural (the Polyporaceae and Clavariaceae being<br />

exceptions), and they have remained largely intact in recent<br />

classifications. Donk was clearly unsatisfied with the status <strong>of</strong><br />

the Corticiaceae, however, which he described as “chaotic”,<br />

a “big Friesian conglomerate” and an “amorphous mass”<br />

(1964, p. 288; 1971, p. 5–6). <strong>The</strong> major problems in the systematics<br />

<strong>of</strong> <strong>resupinate</strong> Homobasidiomycetes still concern the<br />

relationships <strong>of</strong> the members <strong>of</strong> the Corticiaceae sensu Donk.<br />

Some authors (Eriksson, 1958; Talbot, 1973; Hjortstam<br />

et al., 1988a) have employed a broad concept <strong>of</strong> the Corticiaceae<br />

that is based on Donk’s circumscription <strong>of</strong> the family,<br />

while acknowledging that the group is unnatural. Parmasto<br />

(1986) adopted a narrower concept <strong>of</strong> the Corticiaceae than<br />

did Donk, and divided the group into 11 subfamilies. A radical<br />

approach to the taxonomy <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong>, and basidiomycetes<br />

in general, was proposed by Jülich (1981), who<br />

distributed the genera <strong>of</strong> Corticiaceae sensu Donk among approximately<br />

35 families in 16 orders. Jülich’s classification was<br />

largely adopted by Ginns & Lefebvre (1993) in their compilation<br />

<strong>of</strong> lignicolous corticioid fungi <strong>of</strong> North America. Other<br />

major taxonomic treatments <strong>of</strong> <strong>resupinate</strong> Homobasidiomycetes<br />

include those <strong>of</strong> Jülich & Stalpers (1980), Hjortstam<br />

(1987), Hjortstam & K.-H. Larsson (1995), Hansen & Knudsen<br />

(1997), Hallenberg (1985) and Gilbertson & Ryvarden (1986,<br />

1987, poroid <strong>forms</strong>).<br />

<strong>The</strong> first major <strong>phylogenetic</strong> study <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong><br />

was that <strong>of</strong> Parmasto (1995), who used 86 morphological characters<br />

to study relationships <strong>of</strong> 156 genera, representing 1225<br />

species <strong>of</strong> corticioid fungi. <strong>The</strong> strict consensus tree produced<br />

in that study was poorly resolved, indicating that morphology<br />

alone is not useful for estimating <strong>phylogenetic</strong> relationships in<br />

<strong>resupinate</strong> Homobasidiomycetes. A few <strong>resupinate</strong> <strong>forms</strong> started<br />

to appear in molecular <strong>phylogenetic</strong> studies in the 1990s,<br />

but the sampling was sparse (Gargas et al., 1995a; Hibbett &<br />

Donoghue, 1995; Nakasone, 1996; Hibbett et al., 1997; Bruns<br />

et al., 1998; Pine et al., 1999; Hallenberg & Parmasto, 1998).<br />

<strong>The</strong> first molecular study with a significant emphasis on <strong>resupinate</strong><br />

<strong>forms</strong> was that <strong>of</strong> Boidin et al. (1998), who analysed<br />

nuclear ribosomal DNA (nuc rDNA) internal transcribed<br />

spacer (ITS) sequences in 360 species <strong>of</strong> Aphyllophorales and<br />

other basidiomycetes. <strong>The</strong> results <strong>of</strong> Boidin et al. should be<br />

viewed with caution because the ITS region is too divergent<br />

to be aligned across distantly related clades, and their analysis<br />

included no measures <strong>of</strong> branch support. Nevertheless, many<br />

<strong>of</strong> the terminal groupings in their trees are consistent with certain<br />

anatomical characters and have been supported in other<br />

studies (e.g. the Hericiales).<br />

Hibbett & Thorn (2001) presented a “preliminary <strong>phylogenetic</strong><br />

outline” <strong>of</strong> the Homobasidiomycetes that summarised


the results <strong>of</strong> diverse molecular <strong>phylogenetic</strong> studies. This<br />

“outline” divided the Homobasidiomycetes into eight major<br />

clades, which were given informal names (polyporoid clade,<br />

euagarics clade, etc.). Hibbett & Thorn indicated that <strong>resupinate</strong><br />

<strong>forms</strong> occur in all <strong>of</strong> the major clades, but also noted<br />

that these <strong>forms</strong> had been undersampled in earlier studies.<br />

Recently, there have been several large <strong>phylogenetic</strong> studies<br />

focusing on the broad <strong>phylogenetic</strong> <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong><br />

<strong>forms</strong>, including works by Hibbett & Binder (2002), E. Langer<br />

(2002), K.-H. Larsson et al. (2004) and Lim (2001; also Kim &<br />

Jung, 2000). <strong>The</strong>re have also been several other studies with<br />

large numbers <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> that have focused on more<br />

restricted clades, including the russuloid clade (E. Larsson &<br />

K.-H. Larsson, 2003), hymenochaetoid clade (Wagner &<br />

Fischer, 2001, 2002a) and thelephoroid clade (Kõljalg et al.,<br />

2000, 2001, 2002).<br />

<strong>The</strong> present study represents a continuation <strong>of</strong> the research<br />

reported by Hibbett & Binder (2002), who studied relationships<br />

among 481 species <strong>of</strong> Homobasidiomycetes, including<br />

144 <strong>resupinate</strong> <strong>forms</strong>. <strong>The</strong> ataset <strong>of</strong> Hibbett & Binder<br />

(2002) included overlapping sets <strong>of</strong> sequences from nuclear<br />

and mitochondrial (nuc, mt) large and small subunit (lsu, ssu)<br />

rDNA regions, with a total aligned length <strong>of</strong> 3800 bp. One<br />

hundred and seventeen species in the dataset had all four regions,<br />

78 species had three regions and 12 had two regions.<br />

All taxa were represented by the nuc-lsu rDNA, and 274 taxa<br />

had only this region. One hundred and seventy-four nuc-lsu<br />

rDNA sequences in Hibbett & Binder’s (2002) study were<br />

published by E. Langer (2002) or Moncalvo et al. (2000). <strong>The</strong><br />

intention <strong>of</strong> Hibbett & Binder’s (2002) sampling regime was to<br />

allow the taxa with three or four regions to provide a backbone<br />

for the higher-level relationships (i.e. the major clades sensu<br />

Hibbett & Thorn, 2001), while using the taxa with only nuc-lsu<br />

rDNA to provide taxonomic breadth.<br />

<strong>The</strong> eight major clades proposed by Hibbett & Thorn<br />

(2001) were recovered in the study <strong>of</strong> Hibbett & Binder<br />

(2002), although bootstrap support for these clades was generally<br />

weak (Hibbett, in press). Resupinate <strong>forms</strong> occurred in<br />

each clade, with the major concentrations in the polyporoid,<br />

russuloid and hymenochaetoid clades. Several additional small<br />

groups were also resolved: (1) a group <strong>of</strong> five <strong>resupinate</strong> species<br />

including Vuilleminia comedens and Dendrocorticium roseocarneum,<br />

which was labelled the “dendrocorticioid clade”;<br />

(2) a group <strong>of</strong> five species including Sistotremastrum niveocremeum<br />

(as Paullicorticium niveocremeum) and Subulicystidium<br />

longisporum, which was labelled the “Paullicorticium clade”;<br />

(3) a group <strong>of</strong> three pileate species, including Gloeophyllum<br />

sepiarium, Neolentinus lepideus and Heliocybe sulcata,which<br />

was labelled the “Gloeophyllum clade”; and (4) the <strong>resupinate</strong><br />

species Jaapia argillacea, which was placed as the sister<br />

group <strong>of</strong> the bolete clade plus euagarics clade. Ancestral<br />

state reconstruction on several different trees using parsimony<br />

and maximum likelihood methods suggested that the common<br />

ancestor <strong>of</strong> the Homobasidiomycetes was <strong>resupinate</strong>, as suggested<br />

by Parmasto (1986, 1995) and others (Oberwinkler,<br />

1985; Ryvarden, 1991). <strong>The</strong> plesiomorphic form <strong>of</strong> many <strong>of</strong><br />

the major clades (polyporoid clade, russuloid clade, etc.) was<br />

ambiguous, however.<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 3<br />

<strong>The</strong> studies by K.-H. Larsson et al. (2004), E. Langer<br />

(2002) and Lim (2001) are also major contributions to the systematics<br />

<strong>of</strong> <strong>resupinate</strong> Homobasidiomycetes. K.-H. Larsson<br />

et al. (2004) analysed nuc-lsu rDNA in 178 species, E. Langer<br />

(2002) analysed a combined dataset <strong>of</strong> nuc-lsu rDNA and several<br />

morphological characters in 220 species, and Lim (2001)<br />

used nuc-ssu rDNA to study relationships <strong>of</strong> 73 Homobasidiomycetes,<br />

including 48 <strong>resupinate</strong> species. Lim (2001) also<br />

performed analyses <strong>of</strong> ITS sequences in several clades <strong>of</strong><br />

Homobasidiomycetes that include <strong>resupinate</strong> <strong>forms</strong>. <strong>The</strong><br />

<strong>phylogenetic</strong> trees presented in these studies have many similarities<br />

with those <strong>of</strong> Hibbett & Binder (2002), but there are<br />

also some discrepancies, which are discussed later.<br />

It is <strong>of</strong>ten difficult to reconcile the studies <strong>of</strong> Hibbett &<br />

Binder (2002), K.-H. Larsson et al. (2004), E. Langer (2002)<br />

and Lim (2001) because they employ overlapping but nonidentical<br />

sampling regimes. Adding to the confusion, each <strong>of</strong><br />

these studies employs different names for certain clades. For<br />

example, the Paullicorticium clade sensu Hibbett & Binder<br />

(2002) is called the trechisporoid clade by K.-H. Larsson et al.<br />

(2004) or the paullicorticioid and subulicystidioid clades by<br />

E. Langer (2002). Similarly, the Dendrocorticium clade sensu<br />

Hibbett & Binder is called the corticioid clade by K.-H.<br />

Larsson et al. (2004) or the laeticorticioid clade by Lim (2001).<br />

<strong>The</strong> present study draws together a large body <strong>of</strong> data<br />

from recent <strong>phylogenetic</strong> analyses <strong>of</strong> <strong>resupinate</strong> Homobasidiomycetes<br />

and adds 158 new sequences from 76 species.<br />

<strong>The</strong> dataset contains 656 OTUs (operational taxonomic units),<br />

with multiple representatives <strong>of</strong> some species. Following the<br />

same general strategy as Hibbett & Binder (2002), some taxa<br />

are represented by four rDNA regions but the majority are<br />

represented only by nuc-lsu rDNA sequences, including almost<br />

all the relevant sequences that were available in GenBank<br />

(http://www.ncbi.nlm.nih.gov/Genbank/) as <strong>of</strong> June 2002. <strong>The</strong><br />

occurrence <strong>of</strong> missing sequences in the dataset may be a source<br />

<strong>of</strong> error, and it certainly increases the computational burden.<br />

Even without missing data, a 656-OTU dataset would present<br />

an analytical challenge. This study employed the Parsimony<br />

Ratchet (Nixon, 1999), which has been shown to be an effective<br />

alternative to traditional heuristic search strategies for large<br />

datasets (e.g. Tehler et al., 2003).<br />

Material and methods<br />

Clade names<br />

<strong>The</strong>re is a great deal <strong>of</strong> inconsistency in the use <strong>of</strong> clade names<br />

in recent <strong>phylogenetic</strong> studies <strong>of</strong> Homobasidiomycetes (Kim &<br />

Jung, 2000; Hibbett & Thorn, 2001; Lim, 2001; Hibbett &<br />

Binder, 2002; E. Langer, 2002; K.-H. Larsson et al., 2004). <strong>The</strong><br />

present study adopts the terms athelioid clade, trechisporoid<br />

clade, corticioid clade and phlebioid clade sensu K.-H. Larsson<br />

et al. (2004). Contrary to K.-H. Larsson et al. (2004), however,<br />

this study uses the term polyporoid clade in the broad sense<br />

<strong>of</strong> Hibbett & Thorn (2001) and Hibbett & Binder (2002).<br />

<strong>The</strong> restricted group that K.-H. Larsson et al. (2004) called<br />

the polyporoid clade appears to be equivalent to a clade that<br />

Hibbett & Donoghue (1995) called “group 1” in a study <strong>of</strong>


4 Manfred Binder et al.<br />

polypore phylogeny. This study refers to the group 1 clade<br />

as the “core polyporoid clade”. Other clade names follow<br />

Hibbett & Thorn (2001).<br />

Taxon sampling, molecular techniques<br />

and alignment<br />

<strong>The</strong> full dataset includes nuc-ssu, nuc-lsu, mt-ssu and mtlsu<br />

rDNA sequences from 656 isolates, including eight species<br />

<strong>of</strong> Auriculariales and ten Dacrymycetales, which were<br />

included for rooting purposes. One hundred and forty-two<br />

isolates have sequences <strong>of</strong> all four regions and form the core<br />

dataset; 102 isolates have three regions; 18 isolates have two<br />

regions; and 394 isolates have one region. All species are<br />

represented by nuc-lsu rDNA sequences. Many <strong>of</strong> the sequences<br />

used in this study are derived from earlier studies<br />

in our laboratory (Hibbett, 1996; Hibbett et al., 1997, 2000;<br />

Hibbett & Donoghue, 2001; Binder & Hibbett, 2002; Hibbett &<br />

Binder, 2002). <strong>The</strong> dataset also includes 167 nuc-lsu rDNA<br />

sequences from Moncalvo et al. (2002), 82 nuc-lsu rDNA sequences<br />

from E. Langer (2002), 46 nuc-lsu rDNA sequences<br />

from Wagner & Fischer (2001, 2002a, b) and 19 nuc-lsu rDNA<br />

sequences from K.-H. Larsson (2001). Six unpublished sequences<br />

<strong>of</strong> Tomentella and Pseudotomentella and three unpublished<br />

sequences <strong>of</strong> Marchandiomyces were generously<br />

provided by Urmas Kõljalg and Paula DePriest, respectively.<br />

One hundred and fifty-eight new sequences were generated<br />

for this study, including 44 nuc-ssu, 57 nuc-lsu, 29 mt-ssu<br />

and 28 mt-lsu rDNA sequences. Collection/isolate numbers<br />

and GenBank sequence accession numbers for all materials<br />

are available as supplementary data. This has been deposited<br />

as hard copy in the Biological Data Collection, General<br />

Library, <strong>The</strong> Natural History Museum, London (Email:<br />

genlib@nhm.ac.uk; Website:http://www.nhm.ac.uk/library).<br />

An electronic version is available on the Cambridge Journals<br />

Online website at http://uk.cambridge.org/journals/journal<br />

catalogue.asp? mnemonic=sys.<br />

<strong>The</strong> goal <strong>of</strong> the taxon sampling scheme was to include<br />

representatives <strong>of</strong> as many independent clades <strong>of</strong> <strong>resupinate</strong><br />

<strong>forms</strong> as possible. Two hundred and fifty-nine <strong>resupinate</strong> species<br />

in 111 genera were included, which includes 87 genera<br />

that are recognised in Hjortstam’s (1987) checklist <strong>of</strong> 218 corticioid<br />

genera. <strong>The</strong> potential for misidentifications is especially<br />

worrisome in this study because <strong>resupinate</strong> taxa are <strong>of</strong>ten difficult<br />

to identify. To provide a check for identification errors,<br />

12 <strong>of</strong> the <strong>resupinate</strong> species in the dataset are represented by<br />

multiple isolates. Nineteen isolates are only identified to the<br />

generic level.<br />

<strong>The</strong> dataset emphasises <strong>resupinate</strong> <strong>forms</strong>, so pileate and<br />

gasteroid <strong>forms</strong> are somewhat under-represented. For example,<br />

the euagarics clade contains approximately 63% <strong>of</strong> the described<br />

species in Homobasidiomycetes (Kirk et al., 2001)<br />

but is represented by only 35% <strong>of</strong> the species in the dataset.<br />

In contrast, the hymenochaetoid clade, russuloid clade, cantharelloid<br />

clade and the polyporoid clade are over-represented,<br />

owing to the concentrations <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> in these<br />

groups.<br />

DNA was extracted from cultured mycelium or dried<br />

herbarium specimens using a SDS-NaCl extraction buffer,<br />

with phenol-chlor<strong>of</strong>orm extractions and ethanol precipitations<br />

(Lee & Taylor, 1990). PCR reactions were performed for two<br />

nuclear and two mitochondrial rDNA regions using the primer<br />

combinations LR0R-LR5 (nuc-lsu), PNS1-NS41 and NS19b-<br />

NS8 (nuc-ssu), ML5-ML6 (mt-lsu) and MS1-MS2 (mt-ssu).<br />

<strong>The</strong> PCR products were cleaned with the GeneClean Kit I<br />

(Bio101, La Jolla, California). Sequencing reactions using the<br />

ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction<br />

Kit (Applied Biosystems, Foster City, CA) were performed<br />

with primers LR0R, LR22, LR3, LR3R, LR5 (nuclsu),<br />

PNS1, NS19bc, NS19b, NS41, NS51, NS6, NS8 (nucssu),<br />

ML5, ML6 (mt-lsu) and MS1, MS2 (mt-ssu) (Vilgalys &<br />

Hester, 1990; White et al., 1990; Hibbett, 1996; Moncalvo<br />

et al., 2000), and were run on an ABI 377 automated DNA<br />

sequencer (Applied Biosystems). Sequences were assembled<br />

using Sequencher 4.1 GeneCodes, Ann Arbor, MI) and were<br />

manually aligned in the editor <strong>of</strong> PAUP*4.0b510 (Sw<strong>of</strong>ford,<br />

2003).<br />

Phylogenetic analyses<br />

Four sets <strong>of</strong> <strong>phylogenetic</strong> analyses were performed: (1) analyses<br />

<strong>of</strong> the core dataset including 142 OTUs (species) with all<br />

four rDNA regions; (2) a two-step heuristic parsimony analysis<br />

<strong>of</strong> the full dataset with all 656 OTUs and all sequences; (3) a<br />

Parsimony Ratchet (PR) analysis <strong>of</strong> the full dataset; and (4) a<br />

PR analysis <strong>of</strong> the full dataset using six-parameter weighted<br />

parsimony. Analyses 1–3 used equally weighted parsimony.<br />

All analyses were performed on Macintosh G4 computers with<br />

477 or 500 MHz processors and 512 or 576 MB <strong>of</strong> RAM, running<br />

OS9.<br />

Analyses <strong>of</strong> the core dataset<br />

<strong>The</strong> goals <strong>of</strong> these analyses were to determine whether there<br />

is significant conflict between the nuclear and mitochondrial<br />

data partitions and to resolve the major groups and backbone<br />

phylogeny <strong>of</strong> the Homobasidiomycetes. Independent<br />

bootstrapped parsimony analyses were performed <strong>of</strong> the mtrDNA<br />

(ssu + lsu) and nuc-rDNA (ssu + lsu) partitions (100<br />

replicates, 1 random taxon addition sequence per replicate,<br />

MAXTREES = 10000, TBR branch swapping, keeping 1000<br />

trees per replicate). Bootstrap consensus trees were created<br />

and taxa with positively conflicting positions in the two data<br />

partitions, each supported by bootstrap values >90%, were<br />

deemed to exhibit significant conflict. Subsequently, the nucrDNA<br />

and mt-rDNA partitions were combined and a heuristic<br />

search was performed with 1000 random addition sequences,<br />

MAXTREES = 10000, TBR branch swapping, saving<br />

100 trees per replicate. A bootstrap analysis <strong>of</strong> the combined<br />

dataset was also performed (1000 replicates, 1 random<br />

taxon addition sequence per replicate, MAXTREES = 10000,<br />

TBR branch swapping, keeping all trees per replicate).<br />

Two-step heuristic analyses <strong>of</strong> the full dataset<br />

A two-step search protocol was employed. In the first step, a<br />

heuristic search was performed with 10 random taxon addition<br />

sequences (MAXTREES = 10000, TBR branch swapping,


keeping 10 trees per replicate) were performed. In the second<br />

step, TBR branch swapping was performed on the shortest<br />

trees found in the first step, keeping all trees up to the limit <strong>of</strong><br />

MAXTREES. A bootstrap analysis was also performed, using<br />

100 replicates (MAXTREES = 1000, 1 random taxon addition<br />

sequence per replicate, keeping 10 trees per replicate).<br />

Equally weighted Parsimony Ratchet (PR) analyses<br />

<strong>of</strong> the full dataset<br />

Traditional heuristic searches are hill-climbing procedures and<br />

are susceptible to being trapped in local optima. To improve<br />

the chance <strong>of</strong> finding the global optimum, heuristic searches<br />

typically use many replicate searches, each beginning with a<br />

unique starting tree. This approach can be effective, but it is<br />

time consuming, especially if each search attempts to recover<br />

all equally most parsimonious trees. PR analysis (Nixon, 1999)<br />

is a strategy for finding the most parsimonious tree(s) from<br />

large datasets that is designed to address some <strong>of</strong> the limitations<br />

<strong>of</strong> traditional heuristic searches. PR analysis is incorporated<br />

in NONA (Golob<strong>of</strong>f, 1998) and can also be implemented<br />

in PAUP* using the companion program PAUPRat (Sikes &<br />

Lewis, 2001). <strong>The</strong> analytical settings <strong>of</strong> the PR in PAUPRat and<br />

NONA differ slightly. This study used PAUPRat and PAUP*<br />

to perform PR analyses.<br />

A PR analysis begins like a traditional heuristic search,<br />

with a single starting tree that is rearranged by branch swapping.<br />

Initially, all characters are subject to a uniform weighting<br />

regime. Periodically, a randomly selected subset <strong>of</strong> characters<br />

are reweighted (from two-fold to five-fold in PAUPRat), and<br />

branch swapping proceeds under this perturbed weighting regime<br />

(starting with the best tree obtained with the original<br />

weights). Following a period <strong>of</strong> branch swapping under the<br />

perturbed weights, the characters are returned to the original<br />

weights, which completes one iteration. <strong>The</strong> next iteration proceeds<br />

using the best tree found under the perturbed weights,<br />

which may be shorter, longer or equal in length to the best tree<br />

obtained before the data were reweighted.<br />

<strong>The</strong> branch swapping routines that are performed under<br />

the original and perturbed character weights in each iteration<br />

are each susceptible to being trapped in local optima<br />

(tree ‘islands’), just like standard heuristic analyses. <strong>The</strong> critical<br />

feature <strong>of</strong> PR analysis is that by periodically perturbing<br />

the character weights, the parsimony surface <strong>of</strong> treespace is<br />

distorted, which may make it possible (one hopes) to move<br />

away from a topology that was a local optimum under the<br />

original weighting regime. In this way, a PR search wanders<br />

through treespace, occasionally crossing ‘valleys’ that a traditional<br />

heuristic search cannot overcome. PR analyses are<br />

faster than traditional heuristic searches because they do not<br />

require that multiple starting trees be obtained by taxon addition<br />

(or another method) and subsequently refined through<br />

branch swapping. In addition, PR analysis does not attempt to<br />

find and swap through all the trees in any given island.<br />

PR analyses <strong>of</strong> the full dataset were performed in batch<br />

mode using PAUP* and PAUPRat. Three sets <strong>of</strong> PR analyses<br />

were performed: (1) 20 runs with 200 iterations each<br />

(20 × 200) and 15% <strong>of</strong> the characters randomly reweighted in<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 5<br />

each iteration; (2) 20 × 200 iterations with 5% perturbation;<br />

and (3) 20 × 200 iterations with 25% perturbation.<br />

Six-parameter weighted PR analyses <strong>of</strong> the full dataset<br />

A set <strong>of</strong> PR analyses was performed under a six-parameter<br />

weighting regime (Stanger-Hall & Cunningham, 1998), which<br />

obtains weights for parsimony analyses based on rates <strong>of</strong><br />

nucleotide substitutions estimated with maximum likelihood.<br />

Nucleotide transformation rates were estimated in PAUP*<br />

under a general time-reversible model, with equal rates <strong>of</strong> evolution<br />

for all sites and empirical base frequencies, using a tree<br />

and data matrix from Binder & Hibbett (2002) that includes<br />

93 species, each with nuc-ssu, nuc-lsu, mt-ssu and mt-lsu<br />

rDNA. Rate matrices were converted to step-matrices for parsimony<br />

analysis using an Excel spreadsheet provided by Clifford<br />

Cunningham (http://www.biology.duke.edu/cunningham/),<br />

which takes the natural logarithm <strong>of</strong> the rates and converts<br />

them to proportions. Rates and weights for nuc-rDNA and<br />

mt-rDNA were estimated separately. For nuc-rDNA, the<br />

step-matrix values were A-C = 3, A-G = 2, A-T = 2, C-G = 2,<br />

C-T = 1, G-T = 3; for mt-rDNA, the step-matrix values were<br />

A-C = 2, A-G = 1, A-T = 2, C-G = 3, C-T = 1, G-T = 2.<br />

Six-parameter weighted PR analyses were performed with<br />

PAUP* and PAUPRat, with ten batches <strong>of</strong> 200 iterations each,<br />

with 15% <strong>of</strong> the characters reweighted in each iteration.<br />

Results<br />

Sequences and alignment<br />

<strong>The</strong> nuc-ssu sequence <strong>of</strong> Piriformospora indica contained a<br />

345 bp group I intron at position 1509 (Gargas et al., 1995b)<br />

that was removed prior to alignment. Nuc-ssu rDNA sequences<br />

<strong>of</strong> Lentinellus spp., Artomyces (Clavicorona) pyxidata and<br />

Panellus stypticus have also been shown to contain group I<br />

introns, but at a different position (Hibbett, 1996); sequences<br />

<strong>of</strong> these taxa in this dataset have had the intron sequences removed.<br />

Excluding the P. indica sequence, the nuc-ssu rDNA<br />

sequences ranged from 1059 bp (an incomplete sequence) in<br />

Coniophora puteana to 1790 bp in Physalacria inflata. <strong>The</strong><br />

nuc-lsu rDNA sequences ranged from 870 bp in Albatrellus<br />

ovinus to 972 bp in Scytinostroma renisporum. <strong>The</strong> nuc-lsu<br />

rDNA <strong>of</strong> Antrodia xantha had a 65 bp insertion at position<br />

830, which was also removed prior to alignment. No other<br />

major insertions or deletions were observed in the nuc-rDNA.<br />

<strong>The</strong> mt-ssu rDNA sequences ranged from 418 bp in Cylindrobasidium<br />

laeve to 613 bp in Hydnochaete olivacea. <strong>The</strong> mt-ssu<br />

rDNA sequences were divided into three blocks (blocks 3, 5,<br />

7) to exclude hypervariable regions (Bruns & Szaro, 1992;<br />

Hibbett & Donoghue, 1995). <strong>The</strong> mt-lsu rDNA sequences<br />

ranged from 376 bp in Dacryobolus sudans to 680 bp in<br />

Repetobasidium mirificium.<strong>The</strong>5 ′ end <strong>of</strong> the mt-lsu fragment<br />

is highly variable and was trimmed prior to alignment. <strong>The</strong> total<br />

aligned length <strong>of</strong> all four regions is 3807 bp, distributed as follows:<br />

nuc-ssu = 1859 bp, nuc-lsu = 1103 bp, mt-ssu = 485 bp<br />

(block 3 = 137 bp, block 5 = 262 bp, block 7 = 86 bp), and mtlsu<br />

= 360 bp. One hundred and three positions were considered


6 Manfred Binder et al.<br />

Perturbation level 5% 25% 15% 15%<br />

Weighting regime ∗ EP EP EP WP<br />

Runs × iterations 20 × 200 20 × 200 20 × 200 10 × 200<br />

Best tree overall 29821 29820 29819 50092<br />

No. times found 8 1 25 2<br />

In n runs (run nos.) 1 (3 a ) 1(17 a ) 3(2 a ,3,13) 2(1,6 a )<br />

Runtime in h 270 396 322 2259<br />

Trees < 29838 found in 17 h, 6 min 29 min 1 h, 8 min n/a<br />

Best tree found in 38 h, 21 min 325 h, 45 min 28 h, 11 min 197 h, 39 min<br />

CI 0.149 0.149 0.149 0.146<br />

RI 0.610 0.611 0.611 0.621<br />

∗ EP = equally weighted parsimony, WP = six-parameter weighted parsimony; a Illustrated in Fig. 2.<br />

Table 1 Performance <strong>of</strong> Parsimony Ratchet analyses <strong>of</strong> the full dataset with different levels <strong>of</strong> perturbation<br />

ambiguously aligned and were excluded from analyses (nuclsu:<br />

83 positions; mt-lsu: 20 positions). <strong>The</strong> same alignment<br />

was used for the analyses <strong>of</strong> the core dataset (142 OTUs) and<br />

full dataset (656 OTUs).<br />

Analyses <strong>of</strong> the core dataset<br />

With only the 142 core species included, the nuc-rDNA partition<br />

had 534 variable positions and 831 parsimony-informative<br />

positions, and the mt-rDNA partition had 120 variable positions<br />

and 501 parsimony-informative positions. <strong>The</strong>re were<br />

no positively conflicting clades in the independent bootstrap<br />

analyses <strong>of</strong> the nuclear and mitochondrial regions that were<br />

supported with bootstrap values greater than 90% in both<br />

partitions, so the data were combined without pruning taxa<br />

or sequences. <strong>The</strong> most strongly supported conflict involved<br />

Stephanospora caroticolor, which was supported as a member<br />

<strong>of</strong> the euagarics clade (nuc-rDNA, bootstrap = 72%) or<br />

athelioid clade (mt-rDNA, bootstrap = 87%).<br />

Parsimony analysis <strong>of</strong> the combined core dataset resulted<br />

in 97 equally most parsimonious trees (MPTs; 14 204 steps,<br />

CI = 0.234, RI = 0.498). <strong>The</strong> eight major clades <strong>of</strong> Homobasidiomycetes<br />

proposed by Hibbett & Thorn (2001), and the<br />

athelioid clade and the corticioid clade <strong>of</strong> K.-H. Larsson et al.<br />

(2004) were recovered as monophyletic groups in all MPTs,<br />

but the ‘backbone’ phylogeny was weakly supported (Fig. 1).<br />

<strong>The</strong> bolete clade, the russuloid clade, the cantharelloid clade,<br />

the gomphoid-phalloid clade and the thelephoroid clade received<br />

the highest bootstrap values (85–99%). <strong>The</strong> corticioid<br />

clade was moderately supported by 72%, while the hymenochaetoid<br />

clade (65%), the euagarics clade (59%), the athelioid<br />

clade (54%) and the polyporoid clade (54%) were weakly supported.<br />

<strong>The</strong> phlebioid clade and core polyporoid clade were<br />

supported at 91% and 95%, respectively. <strong>The</strong> placement <strong>of</strong><br />

Gloeophyllum sepiarium (the only representative <strong>of</strong> the Gloeophyllum<br />

clade in this analysis) was unresolved. Jaapia argillacea<br />

was placed as the sister group to the bolete clade plus<br />

the athelioid clade and the euagarics clade (bootstrap = 62%).<br />

<strong>The</strong>re were no representatives <strong>of</strong> the trechisporoid clade in the<br />

core dataset.<br />

Two-step heuristic analyses <strong>of</strong> the full dataset<br />

With all 656 OTUs included, the dataset had 2399 variable positions<br />

and 1732 parsimony-informative positions. <strong>The</strong> first step<br />

<strong>of</strong> the analysis produced 10 trees (29 864 steps, CI = 0.149,<br />

RI = 0.610), which were used as input trees for TBR branchswapping<br />

in the second step. Ten thousand shorter trees (29 838<br />

steps, CI = 0.148, RI = 0.611) were found in the second step<br />

<strong>of</strong> the analysis, which was aborted after 307 hours. Several<br />

<strong>of</strong> the major clades that were resolved in the core dataset<br />

analysis collapsed in the strict consensus <strong>of</strong> all trees, including<br />

the euagarics clade, the hymenochaetoid clade, the cantharelloid<br />

clade and the polyporoid clade. Bootstrap support<br />

> 50% was received for the bolete clade (93%), the gomphoidphalloid<br />

clade (69%), the corticioid clade (81%), the Gloeophyllum<br />

clade (54%), the thelephoroid clade (97%) and the<br />

trechisporoid clade (69%). <strong>The</strong> trechisporoid clade was nested<br />

within the polyporoid clade in 86% <strong>of</strong> the trees. In the other<br />

14% <strong>of</strong> the trees, however, it was placed as the sister group <strong>of</strong><br />

the hymenochaetoid clade. <strong>The</strong> position <strong>of</strong> Jaapia argillacea<br />

was again resolved as the sister group to the bolete clade, the<br />

athelioid clade and the euagarics clade.<br />

Equally weighted PR analyses <strong>of</strong> the full dataset<br />

A series <strong>of</strong> PR analyses was performed with 5%, 15% and 25%<br />

<strong>of</strong> the characters perturbed (reweighted) (Table 1). PR analyses T2<br />

were characterised in terms <strong>of</strong> the minimum length <strong>of</strong> the trees;<br />

the number <strong>of</strong> minimum length trees; the number <strong>of</strong> individual<br />

runs that recovered minimum length trees; overall runtime; and<br />

the time required to find trees equal in length to the trees from<br />

the two-step heuristic search. In all PR analyses, the best tree(s)<br />

were found at relatively low frequency. <strong>The</strong> analysis with 15%<br />

<strong>of</strong> the characters perturbed had the best results, finding 25<br />

shortest trees (29 819 steps, CI = 0.149, RI = 0.611; i.e. 19<br />

steps shorter than the shortest trees found with the two-step<br />

heuristic search) that were recovered in three different runs<br />

(Fig. 2, Tables 1–2). In contrast, the analysis with 5% <strong>of</strong> the<br />

characters perturbed found eight trees <strong>of</strong> 29 821 steps in one<br />

run, and the analysis with 25% <strong>of</strong> the characters perturbed<br />

found one tree <strong>of</strong> 29 820 steps in one run. An increase in the


58<br />

85<br />

50 changes<br />

52<br />

95<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 7<br />

72<br />

52 Polyporus melanopus<br />

Polyporus varius<br />

79 * Polyporus tuberaster<br />

92<br />

Datronia mollis<br />

Polyporus squamosus<br />

* 99<br />

Cryptoporus volvatus<br />

56<br />

Fomes fomentarius<br />

Daedaleopsis confragosa<br />

55<br />

Polyporus arcularius<br />

Ganoderma australe<br />

Pycnoporus cinnabarinus<br />

100<br />

82 Physalacria inflata<br />

Wolfiporia cocos<br />

Junghuhnia subundata<br />

87 Lenzites betulina<br />

Dentocorticium sulphurellum<br />

Tyromyces chioneus<br />

Laetiporus sulphureus<br />

Sparassis spathulata<br />

core<br />

polyporoid<br />

clade<br />

Fomitopsis pinicola<br />

87<br />

99 Oligoporus lacteus<br />

Oligoporus leucomallelus<br />

Oligoporus balsameus<br />

54<br />

97<br />

65<br />

Oligoporus rennyi<br />

Amylocystis lapponica<br />

Auriporia aurea<br />

Dacryobolus sudans<br />

Antrodia carbonica<br />

100<br />

99<br />

Abortiporus biennis<br />

Podoscypha petalodes<br />

Panus rudis<br />

Albatrellus syringae<br />

Steccherinum fimbriatum<br />

“residual”<br />

polyporoid clade<br />

Meripilus giganteus<br />

“Athelia epiphylla”?<br />

99<br />

Ceriporia viridans<br />

100<br />

59<br />

Gloeoporus taxicola<br />

100<br />

Ceriporiopsis subvermispora<br />

Phlebia albomellea<br />

Ceriporia purpurea<br />

“Lindtneria trachyspora”<br />

Phlebiopsis gigantea<br />

91<br />

Bjerkandera adusta<br />

Phanerochaete chrysosporium<br />

54<br />

Phlebia radiata<br />

Pulcherricium caeruleum<br />

Candelabrochaete africana<br />

82<br />

92<br />

100<br />

100<br />

Asterostroma andinum<br />

Scytinostroma aluta<br />

Peniophora nuda<br />

Scytinostroma renisporum<br />

Amylostereum laevigatum<br />

Echinodontium tinctorium<br />

*<br />

100<br />

Russula compacta<br />

Russula exalbicans<br />

Clavicorona pyxidata<br />

Auriscalpium vulgare<br />

Lentinellus omphalodes<br />

68<br />

*<br />

96<br />

89<br />

100<br />

66<br />

Dentipellis separans<br />

Laxitextum bicolor<br />

Hericium coralloides<br />

Bondarzewia berkeleyi<br />

Bondarzewia montana<br />

Xenasma rimicola<br />

90<br />

100<br />

Heterobasidion annosum<br />

Albatrellus skamanius<br />

Polyporoletus sublividus<br />

72 55<br />

100<br />

98 Acanthophysium cerrusatum<br />

Stereum hirsutum<br />

Gloeocystidiellum leucoxanthum<br />

Dendrocorticium roseocarneum<br />

Laetisaria fuciformis<br />

Galzinia incrustans<br />

corticioid clade<br />

Gloeophyllum sepiarium<br />

Gloeophyllum clade<br />

62<br />

80<br />

55<br />

100<br />

Cyphellopsis anomala<br />

Lachnella villosa<br />

Halocyphina villosa<br />

Nia vibrissa<br />

Favolaschia intermedia<br />

*<br />

65<br />

98<br />

58<br />

Schizophyllum commune<br />

100<br />

Physalacria bambusae<br />

Physalacria maipoensis<br />

Gloiocephala aquatica<br />

Chondrostereum purpureum<br />

Henningsomyces candidus<br />

96<br />

Typhula phacorrhiza<br />

Inocybe sp.<br />

Stropharia rugosoannulata<br />

51<br />

*<br />

100 Laccaria amethystina<br />

Laccaria pumila<br />

Amanita muscaria<br />

Cortinarius iodes<br />

59<br />

60<br />

100<br />

63<br />

89<br />

Agaricus bisporus<br />

Lycoperdon sp.<br />

Entoloma strictius<br />

Pluteus sp.<br />

Limnoperdon incarnatum<br />

Pleurotus ostreatus<br />

Pleurotus tuberregium<br />

51<br />

90<br />

Humidicutis marginata<br />

62<br />

62<br />

99<br />

54<br />

53<br />

91<br />

96<br />

100<br />

Hygrophorus sordidus<br />

Athelia arachnoidea<br />

100 “Hyphoderma praetermissum”? athelioid clade<br />

Stephanospora caroticolor<br />

Plicaturopsis crispa<br />

100<br />

99<br />

Boletus satanas<br />

Phylloporus rhodoxanthus<br />

94<br />

Paragyrodon sphaerosporus<br />

100<br />

Calostoma cinnabarinum<br />

Scleroderma citrinum<br />

97 Chroogomphus vinicolor<br />

69 Gomphidius glutinosus<br />

100 98 Suillus cavipes<br />

Suillus sinuspaulianus<br />

Rhizopogon subcaerulescens<br />

Serpula himantioides<br />

Tapinella atrotomentosa<br />

Tapinella panuoides<br />

100<br />

Coniophora arida<br />

87 98<br />

Coniophora puteana<br />

Jaapia argillacea<br />

Sarcodon imbricatus<br />

<strong>The</strong>lephora sp. thelephoroid clade<br />

Bankera fuligineo-alba<br />

Jaapia<br />

65<br />

100<br />

*<br />

95<br />

Phellinus gilvus<br />

86 *<br />

Phellinus igniarius<br />

Coltricia perennis<br />

Repetobasidium mirificium hymenochaetoid clade<br />

Resinicium meridionalis<br />

Hyphodontia alutaria<br />

100<br />

Gautieria otthii<br />

Gomphus floccosus<br />

Ramaria stricta gomphoid-phalloid clade<br />

Sphaerobolus stellatus<br />

67<br />

100<br />

85<br />

Sistotrema eximum<br />

Botryobasidium isabellinum<br />

Botryobasidium subcoronatum<br />

Ceratobasidium sp. GEL5602<br />

Hydnum repandum<br />

Cantharellus<br />

tubaeformis cantharelloid<br />

clade<br />

Auricularia auricula-judae<br />

Dacrymyces chrysospermus<br />

Figure 1 Phylogenetic relationships <strong>of</strong> Homobasidiomycetes based on parsimony analysis <strong>of</strong> the combined core data set with 142 species.<br />

One <strong>of</strong> 97 equally parsimonious trees. Bootstrap values greater than 50% are indicated above branches. Nodes marked with<br />

asterisks collapse in the strict consensus tree. Names <strong>of</strong> <strong>resupinate</strong> taxa are written in bold type. Species names in quotation marks<br />

followed by question marks indicate mislabelled isolates.<br />

Antrodia<br />

clade<br />

phlebioid<br />

clade<br />

russuloid clade<br />

polyporoid clade<br />

bolete clade<br />

core euagarics clade<br />

euagarics clade


8 Manfred Binder et al.<br />

tree length<br />

29909<br />

29899<br />

29889<br />

29879<br />

29869<br />

29859<br />

29849<br />

29839<br />

29829<br />

29819<br />

29909<br />

29899<br />

29889<br />

29879<br />

29869<br />

29859<br />

29849<br />

29839<br />

29829<br />

29819<br />

29909<br />

29899<br />

29889<br />

29879<br />

29869<br />

29859<br />

29849<br />

29839<br />

29829<br />

29819<br />

50160<br />

50150<br />

50140<br />

50130<br />

50120<br />

50110<br />

50100<br />

50090<br />

A<br />

B<br />

C<br />

D<br />

5% perturbation<br />

15% perturbation<br />

25% perturbation<br />

15% perturbation, six-parameter weighted<br />

1 25 50 75 100 125 150 175 200<br />

number <strong>of</strong> iterations<br />

Figure 2 Performance graphs <strong>of</strong> equally weighted PR analyses with 5%, 15% and 25% perturbation levels (A–C), and one six-parameter<br />

weighted PR analysis with 15% perturbation (D). Each graph represents one run, with 200 iterations. Runs shown are those that<br />

found minimum length trees (for that perturbation level). Arrows indicate the number and the position <strong>of</strong> the shortest tree(s) found.<br />

<strong>The</strong> dotted line in A–C represents the length <strong>of</strong> the shortest trees (29 838 steps) obtained with the unperturbed two-step search<br />

approach.


Run no. Topology Iteration no.<br />

2a A 150<br />

B 151, 153<br />

C 152<br />

D 169, 170, 171<br />

E 162<br />

3 B 170, 178, 186<br />

D 169, 172, 173, 174, 177<br />

13 B 125, 126, 127<br />

D 69, 71, 73, 119, 120, 121<br />

a Illustrated in Fig. 3.<br />

Table 2 Distribution and topology classes <strong>of</strong> shortest trees<br />

recovered with the equally weighted PR analysis at 15%<br />

perturbation level<br />

number <strong>of</strong> perturbed characters was correlated with increased<br />

runtimes, which were 270, 322 and 396 hours, with 5%, 15%<br />

and 25% <strong>of</strong> the characters perturbed, respectively.<br />

<strong>The</strong> progress <strong>of</strong> the PR was strongly affected by the<br />

choice <strong>of</strong> perturbation levels (Fig. 2A-C). For example, the<br />

analysis with 5% <strong>of</strong> the characters perturbed (Table 1, Fig. 2A)<br />

advanced slowly, with long ‘plateaus’, up to 20–40 iterations<br />

in duration, in which no progress was made in tree lengths.<br />

While the 5% perturbation level yielded the most gradual progress,<br />

the 25% perturbation level yielded the most chaotic<br />

search pr<strong>of</strong>iles, with dramatic shifts in tree length between iterations<br />

(Fig. 2). <strong>The</strong> analysis with 25% perturbation found<br />

trees equal in length to the trees from the two-step heuristic<br />

search faster than the analyses with 5% and 15% perturbation<br />

levels (29 minutes, vs. 17 hours, 6 min. and 1 hour, 8 min.,<br />

respectively), but never found trees as short as those recovered<br />

by the analysis with 15% perturbation level. <strong>The</strong> three runs<br />

with 15% perturbation that recovered the shortest trees found<br />

those trees between iterations 150–171 (run no. 2; eight trees),<br />

169–186 (run no. 3; eight trees), and 69–127 (run no. 13; nine<br />

trees; Table 2).<br />

In all <strong>of</strong> the shortest trees, the major clades <strong>of</strong><br />

Homobasidiomycetes sensu Hibbett & Thorn (2001) and the<br />

athelioid, trechisporoid, corticioid and Gloeophyllum clades<br />

were resolved as monophyletic (Figs 3–4). Several other major<br />

topological features were shared by all trees (Figs 3–4):<br />

(1) the euagarics, bolete and athelioid clades formed a monophyletic<br />

group in all trees, with Jaapia argillacea as its sister<br />

group; (2) the trechisporoid clade (K.-H. Larsson et al., 2004)<br />

was nested within the polyporoid clade; (3) the cantharelloid,<br />

gomphoid-phalloid, and hymenochaetoid clades occupied a<br />

basal position; and (4) the Gloeophyllum and corticioid clades<br />

were sister groups (except in tree G, Fig. 3). None <strong>of</strong> these<br />

groupings received strong bootstrap support, however.<br />

<strong>The</strong> minimum-length trees can be divided into five classes<br />

<strong>of</strong> topologies (A-E; Fig. 3), based on the variable aspects <strong>of</strong><br />

the relationships among major clades. Topologies A, C and E<br />

were each found only once (i.e. one tree with each <strong>of</strong> these<br />

topologies was found), but trees with topology B were found<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 9<br />

eight times and trees with topology D were found 14 times<br />

(Table 2). Trees with topologies B and D were found in all<br />

three batches that recovered minimum-length trees (Table 2).<br />

Six-parameter weighted PR analyses<br />

<strong>of</strong> the full dataset<br />

Two shortest trees (50 092 steps, CI = 0.146, RI = 0.621) were<br />

found in two different runs (Table 1). Under equally weighted<br />

parsimony, these trees were 29 925 and 29 929 steps long<br />

(i.e. 106–110 steps longer than the shortest trees obtained<br />

in the equally weighted PR analyses). For comparison, the<br />

25 shortest trees obtained in the equally-weighted PR analyses<br />

were 50 257–50 306 steps long under the six-parameter<br />

weighting regime (i.e. 165–214 steps longer than the shortest<br />

trees obtained in the six-parameter PR analysis).<br />

<strong>The</strong> six-parameter PR analysis was very time consuming.<br />

Ten runs with 200 iterations each required 2259 hours <strong>of</strong><br />

computer time. <strong>The</strong>re are several differences in higher-level<br />

relationships implied by the two optimal trees. <strong>The</strong> most striking<br />

difference is that in one topology the trechisporoid clade<br />

is nested in the polyporoid clade (as in all shortest trees recovered<br />

with equally weighted PR analysis), whereas in the<br />

other topology the trechisporoid clade is placed as the sister<br />

group <strong>of</strong> the hymenochaetoid clade (Figs 3–4).<br />

Discussion<br />

Overall <strong>phylogenetic</strong> resolution<br />

Bootstrap support for the major clades <strong>of</strong> Homobasidiomycetes<br />

was generally weak in the analysis <strong>of</strong> the full dataset.<br />

Missing sequences, or the presence <strong>of</strong> certain taxa whose positions<br />

are particularly labile (due to homoplasy), may have<br />

contributed to the low bootstrap values. One possible example<br />

<strong>of</strong> a ‘destabilising’ taxon is Stephanospora caroticolor,which<br />

was represented by all four rDNA regions, and was placed<br />

in either the euagarics clade or athelioid clade depending on<br />

whether the mt-rDNA or nuc-rDNA was analysed. As the number<br />

<strong>of</strong> taxa sampled increases, the chance <strong>of</strong> including species<br />

with aberrant sequences also increases. <strong>The</strong>refore, it is not<br />

surprising that there is weak bootstrap support for many major<br />

clades in recent densely sampled <strong>phylogenetic</strong> studies <strong>of</strong><br />

Homobasidiomycetes (e.g. Moncalvo et al., 2000; Hibbett &<br />

Binder, 2002; E. Langer, 2002; Moncalvo et al., 2002).<br />

PR analysis was much more effective at finding minimum-length<br />

trees than the two-step heuristic search strategy.<br />

However, the success <strong>of</strong> the PR was sensitive to the choice <strong>of</strong><br />

perturbation levels, and even with the optimal 15% perturbation<br />

level only 3 out <strong>of</strong> 20 runs found minimum-length trees,<br />

and no more than nine shortest trees were found in any single<br />

run. In contrast, Nixon (1999, p. 413) reported that “approximately<br />

three out <strong>of</strong> four” PR analyses <strong>of</strong> the 500-species rbcL<br />

dataset <strong>of</strong> Chase et al. (1993) recovered minimum-length trees.<br />

Apparently, the full dataset analysed in this study presents a<br />

more difficult parsimony landscape than the Chase et al. dataset.<br />

<strong>The</strong> results <strong>of</strong> this study highlight the importance <strong>of</strong> doing<br />

multiple PR runs with appropriate perturbation levels and an<br />

adequate number <strong>of</strong> iterations per run.


10 Manfred Binder et al.<br />

euagarics<br />

athelioid<br />

bolete<br />

Jaapia<br />

argillacea<br />

thelephoroid<br />

corticioid<br />

Gloeophyllum<br />

russuloid<br />

polyporoid<br />

hymenochaetoid<br />

Resinicium<br />

meridionale<br />

gomphoid-phalloid<br />

cantharelloid<br />

Auriculariales<br />

Dacrymycetales<br />

euagarics<br />

athelioid<br />

bolete<br />

Jaapia<br />

argillacea<br />

russuloid<br />

thelephoroid<br />

corticioid<br />

Gloeophyllum<br />

polyporoid<br />

cantharelloid<br />

hymenochaetoid<br />

Resinicium<br />

meridionale<br />

gomphoid-phalloid<br />

Auriculariales<br />

Dacrymycetales<br />

euagarics<br />

athelioid<br />

bolete<br />

Jaapia<br />

argillacea<br />

A B C<br />

russuloid<br />

thelephoroid<br />

corticioid<br />

Gloeophyllum<br />

polyporoid<br />

hymenochaetoid<br />

Resinicium<br />

meridionale<br />

gomphoid-phalloid<br />

cantharelloid<br />

Auriculariales<br />

Dacrymycetales<br />

euagarics<br />

athelioid<br />

bolete<br />

Jaapia<br />

argillacea<br />

thelephoroid<br />

corticioid<br />

Gloeophyllum<br />

russuloid<br />

polyporoid<br />

cantharelloid<br />

hymenochaetoid<br />

Resinicium<br />

meridionale<br />

gomphoid-phalloid<br />

Auriculariales<br />

Dacrymycetales<br />

euagarics<br />

athelioid<br />

bolete<br />

Jaapia<br />

argillacea<br />

russuloid<br />

polyporoid<br />

thelephoroid<br />

corticioid<br />

Gloeophyllum<br />

hymenochaetoid<br />

Resinicium<br />

meridionale<br />

gomphoid-phalloid<br />

cantharelloid<br />

Auriculariales<br />

Dacrymycetales<br />

euagarics<br />

athelioid<br />

bolete<br />

Jaapia<br />

argillacea<br />

corticioid<br />

Gloeophyllum<br />

thelephoroid<br />

russuloid<br />

polyporoid<br />

hymenochaetoid<br />

* * *<br />

D E F<br />

*<br />

euagarics<br />

athelioid<br />

bolete<br />

Jaapia<br />

argillacea<br />

G H<br />

russuloid<br />

corticioid<br />

thelephoroid<br />

Gloeophyllum<br />

polyporoid #<br />

hymenochaetoid<br />

Resinicium<br />

meridionale<br />

trechisporoid<br />

gomphoid-phalloid<br />

cantharelloid<br />

Auriculariales<br />

Dacrymycetales<br />

*<br />

*<br />

Resinicium<br />

meridionale<br />

gomphoid-phalloid<br />

cantharelloid<br />

Auriculariales<br />

Dacrymycetales<br />

euagarics<br />

athelioid<br />

bolete<br />

Jaapia<br />

argillacea<br />

russuloid<br />

thelephoroid<br />

corticioid<br />

Gloeophyllum<br />

*<br />

polyporoid<br />

hymenochaetoid<br />

Resinicium<br />

meridionale<br />

cantharelloid<br />

gomphoid-phalloid<br />

Auriculariales<br />

Dacrymycetales<br />

Figure 3 Simplified topologies <strong>of</strong> the shortest trees recovered using PR analysis with 15% perturbation. A–E = equally weighted analyses<br />

running 20 × 200 iterations. A = single tree obtained in one run. B = 8 trees obtained in three runs. C = single tree obtained in one<br />

run. D = 14 trees obtained in three runs. E = single tree obtained in one run. F = strict consensus <strong>of</strong> 25 trees A–E.<br />

G–H = six-parameter weighted analyses running 10 × 200 iterations. Alternative topologies G = tree one and H = tree two obtained<br />

in two different runs (see Fig. 4. for details). Polyporoid* = the polyporoid clade including the ‘core’ polyporoid clade, the<br />

trechisporoid clade, and the phlebioid clade. Polyporoid# = the polyporoid clade without the trechisporoid clade.


Six-parameter weighting increased the runtime <strong>of</strong> PR<br />

analysis approximately seven-fold relative to the equally<br />

weighted PR analysis with 15% perturbation. <strong>The</strong> increased<br />

runtime may be worthwhile, because character-state weighting<br />

based on realistic models <strong>of</strong> molecular evolution can improve<br />

the accuracy <strong>of</strong> parsimony analysis (Huelsenbeck, 1995;<br />

Cunningham, 1997). <strong>The</strong> six-parameter trees share many features<br />

<strong>of</strong> the equally weighted trees, but there are also some<br />

differences, perhaps the most notable <strong>of</strong> which is that in one <strong>of</strong><br />

the six-parameter trees (topology G, Fig. 3) the trechisporoid<br />

clade is the sister group <strong>of</strong> the hymenochaetoid clade. <strong>The</strong><br />

position <strong>of</strong> the trechisporoid clade was also quite labile in the<br />

analyses <strong>of</strong> Hibbett & Binder (2002), where it was placed in<br />

or near the polyporoid clade, hymenochaetoid clade, russuloid<br />

clade or Auriculariales.<br />

<strong>The</strong> differences among the trees produced here and those<br />

obtained in earlier studies (Binder & Hibbett, 2002; Hibbett &<br />

Binder, 2002) indicate that there is considerable uncertainty<br />

about the higher-level <strong>phylogenetic</strong> relationships <strong>of</strong> Homobasidiomycetes<br />

(Fig. 3). Nevertheless, the trees recovered in<br />

PR analyses all support the monophyly <strong>of</strong> the eight major<br />

clades <strong>of</strong> Homobasidiomycetes sensu Hibbett & Thorn, as well<br />

as the corticioid clade, athelioid clade, Gloeophyllum clade and<br />

trechisporoid clade (which was nested within the polyporoid<br />

clade in most trees) (Hibbett & Thorn, 2001; K.-H. Larsson<br />

et al., 2004). In this regard, the results <strong>of</strong> the PR analyses <strong>of</strong><br />

the full dataset are consistent with the results <strong>of</strong> the core dataset<br />

analysis. Other aspects <strong>of</strong> the higher-level topology shared<br />

by the core and full dataset analyses include the monophyly<br />

<strong>of</strong> the clade that contains the bolete, euagarics, and athelioid<br />

clades, and its sister group relationship with Jaapia argillacea,<br />

and the basal position <strong>of</strong> the cantharelloid, gomphoid-phalloid,<br />

and hymenochaetoid clades (see below). Thus, it appears that<br />

the species with multiple regions in the full dataset were able<br />

to provide a ‘backbone’ for the phylogeny, even though 60%<br />

<strong>of</strong> the OTUs were represented only by the nuc-lsu rDNA.<br />

Relationships <strong>of</strong> Homobasidiomycetes<br />

to heterobasidiomycetes<br />

This study sampled representatives <strong>of</strong> four <strong>of</strong> the five orders<br />

<strong>of</strong> ‘heterobasidiomycetes’ sensu Wells (1994; Wells &<br />

Bandoni, 2001), including the Auriculariales, Ceratobasidiales,<br />

Dacrymycetales and Tulasnellales but did not<br />

sample the Tremellales.<br />

Auriculariales s. str.<br />

PR analyses suggest that the Auriculariales s. str. (bywhich<br />

we mean Auriculariales excluding Sebacinaceae; see below)<br />

is a paraphyletic assemblage <strong>of</strong> lineages from which the<br />

Homobasidiomycetes have been derived (Figs 3–4). Several<br />

other studies have also concluded that the Auriculariales is<br />

closely related to the Homobasidiomycetes, whereas the Dacrymycetales<br />

and Tremellales have a more basal position in the<br />

Hymenomycetes (Swann & Taylor, 1993, 1995; Gargas et al.,<br />

1995a; Begerowet al., 1997; E. Langer, 2002; K.-H. Larsson<br />

et al., 2004). Analyses by E. Langer (2002) and Weiß &<br />

Oberwinkler (2001) suggest that the Auriculariales s. str.<br />

is monophyletic, but with weak bootstrap support, while<br />

Hibbett & Binder (2002) recovered trees that showed the group<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 11<br />

to be monophyletic or paraphyletic (as in the present study).<br />

Thus, it remains ambiguous whether the Auriculariales s. str.is<br />

monophyletic or paraphyletic. Six <strong>of</strong> the eight isolates <strong>of</strong> Auriculariales<br />

s. str. included in this study are <strong>resupinate</strong> (Fig. 4).<br />

<strong>The</strong> pileate <strong>forms</strong> include Pseudohydnum gelatinosum,which<br />

has a hydnoid hymenophore, and Auricularia auricula-judae,<br />

which has a smooth hymenophore. <strong>The</strong>se two species are apparently<br />

not closely related (as was also shown by Weiß &<br />

Oberwinkler, 2001), which suggests that there have been multiple<br />

origins <strong>of</strong> pileate fruiting bodies within the Auriculariales<br />

s. str. (Fig. 4).<br />

Dacrymycetales<br />

<strong>The</strong> Dacrymycetales is strongly supported as monophyletic<br />

(bootstrap = 100%, Fig. 4). Nine <strong>of</strong> the Dacrymycetales in<br />

this study have erect fruiting bodies that are variously coralloid,<br />

spathulate, pendulous, or lobate, but one species, Cerinomyces<br />

grandinioides, has a <strong>resupinate</strong> fruiting body. <strong>The</strong> tree in Fig. 4<br />

suggests that the <strong>resupinate</strong> fruiting body <strong>of</strong> C. grandinioides is<br />

the product <strong>of</strong> reduction, but bootstrap support for the internal<br />

topology <strong>of</strong> the Dacrymycetales is weak.<br />

Tulasnellales, Ceratobasidiales and Sebacinaceae<br />

<strong>The</strong> placements <strong>of</strong> Auriculariales s. str. and Dacrymycetales in<br />

this study are consistent with the traditional division between<br />

heterobasidiomycetes sensu Wells and Homobasidiomycetes<br />

(e.g. Stalpers, in Kirk et al., 2001). However, PR analyses place<br />

the Tulasnellales, Ceratobasidiales and Sebacinaceae (Auriculariales<br />

s. lat.) in the cantharelloid clade (Fig. 4). <strong>The</strong>se taxa<br />

include <strong>forms</strong> with highly reduced <strong>resupinate</strong> to incrusting<br />

or coralloid fruiting bodies. Parenthesomes are imperforate in<br />

Tulasnellales (Moore, 1978; G. Langer, 1994; Wells, 1994) and<br />

Sebacinaceae (Khan & Kimbrough, 1980), and perforate with<br />

large pores in Ceratobasidiales (Müller et al., 1998; Wells &<br />

Bandoni, 2001). Basidial morphology is quite varied. <strong>The</strong><br />

basidia <strong>of</strong> Ceratobasidiales are deeply divided by fingerlike<br />

sterigmata, but are not septate, whereas those <strong>of</strong> Tulasnellales<br />

have inflated epibasidia that develop adventitious septa, and<br />

those <strong>of</strong> Sebacinaceae are longitudinally septate. Spore repetition<br />

has been demonstrated in all three groups (Wells &<br />

Bandoni, 2001). Based on these characters, the Tulasnellales,<br />

Ceratobasidiales and Sebacinaceae have been classified as heterobasidiomycetes<br />

(Wells & Bandoni, 2001).<br />

<strong>The</strong> relationships among heterobasidiomycetes and<br />

Homobasidiomycetes suggested by the present study conflict<br />

with the findings <strong>of</strong> a recent study by Weiß & Oberwinkler<br />

(2001), which suggested that: (1) the Auriculariales s. lat.<br />

is composed <strong>of</strong> three independent clades, including Auriculariales<br />

s. str. (43 species), Sebacinaceae (nine species), and<br />

a minor clade including Ceratosebacina calospora and Exidiopsis<br />

gloeophora; (2) the Sebacinaceae is the sister group <strong>of</strong> all<br />

other Hymenomycetes; (3) the Ceratobasidiales (represented<br />

by Ceratobasidium pseudocornigerum) and Dacrymycetales<br />

are sister taxa; and (4) the Ceratobasidiales-Dacrymycetales<br />

clade is the sister group <strong>of</strong> the Homobasidiomycetes. <strong>The</strong>se<br />

results were based on a 600 bp region <strong>of</strong> nuc-lsu rDNA that<br />

was analysed with neighbour-joining. Taylor et al. (2003) obtained<br />

similar results, again based on analyses <strong>of</strong> up to 600 bp<br />

<strong>of</strong> nuc-lsu rDNA.


12 Manfred Binder et al.<br />

100<br />

Cyclomyces fuscus CBS 100.106<br />

Cyclomyces tabacinus CBS 311.39<br />

Stipitochaete damaecornis DSH 98-006<br />

Hymenochaet e adusta TAA 95-37<br />

Hymenochaet e bertero i CBS 733.86<br />

Hymenochaet e pseudoadusta TAA 95-38<br />

Hymenochaet e boidini i CBS 762.91<br />

Hymenochaet e separabilis CBS 738.86<br />

Hymenochaet e rhabarbarina GEL4809<br />

Hymenochaet e ochromarginat a CBS 928.96<br />

Hymenochaet e rubiginos a TW 22.9.97<br />

Hymenochaet e cinnamome a LK 27.9.97<br />

Hymenochaet e nanospor a CBS 924.96<br />

Hymenochaet e fuliginos a CBS 933.96<br />

Hymenochaet e carpatic a TW 27.9.97<br />

Hymenochaet e separat a TAA 95-24<br />

Hymenochaet e cruenta HB 149/80<br />

Hymenochaet e denticulat a CBS 780.91<br />

Hymenochaet e pinnatifida CBS 770.91<br />

Hydnochaet e duporti i CBS 941.96<br />

Hydnochaete japonica CBS 499.76<br />

Hymenochaet e acanthophysat a CBS 925.96<br />

Hymenochaet e cervinoide a CBS 736.86<br />

Phellinus igniarius FPL-5599<br />

Phellinus lundellii TN 5760<br />

Phylloporia ribis FPL-10677<br />

Phellinus laevigatus TN 3260<br />

Phellinus conchatus 89-1014<br />

Inonotus hispidus FPL-3597<br />

Mensulari a hastifera 84-1023a<br />

Hymenochaet e corrugata FP-104124-Sp.<br />

Pseudochaet e tabacina LK 12.10.97<br />

Hydnochaet e olivacea CLA 02-003<br />

Fomitiporia punctata 85-74<br />

Onnia triquetra TW 411 Fuscoporia contigua TW 699<br />

Phellinus gilvus FPL-5528<br />

Fuscoporia torulosa Pt 4<br />

Fuscoporia ferruginosa 82-930<br />

Fuscoporia ferrea 87-8<br />

Coltricia montagnei 96-96<br />

Coltricia perennis DSH 93-198<br />

Phellinidiu m ferrugine<strong>of</strong>uscum TN 612 1<br />

Asterodon ferruginosus Dai 3186<br />

Phellopilus nigrolimitatus 85-823<br />

Tubulicrini s gracillimus HHB-13180-Sp.<br />

Tubulicrini s subulatus GEL5286<br />

Basidioradulum radula FO-23507a<br />

Fibricium rude GEL212 1<br />

Trichaptum abietinum FPL-8973<br />

Hyphodontia alutacea GEL2937<br />

Hyphodontia niemelaei GEL5068<br />

Schizopora radula GEL3798<br />

Hyphodontia serpentiformis GEL3307<br />

Schizopor a paradoxa GEL2511<br />

Hyphodontia nudiset a GEL5302<br />

Hyphodontia aff. breviset a GEL4214<br />

Hyphodontia nespor i GEL4190<br />

Hyphodontia crustos a GEL5360<br />

Hyphodontia sambuc i GEL2414<br />

Hyphodontia aspera GEL2135<br />

Repetobasidium mirificiu m FP-133558-Sp.<br />

Sphaerobasidium minutum GEL5373<br />

“H yphodontia alutaria”? GEL2071<br />

Resinicium bicolor FP-135104-Sp .<br />

Hyphodontia palmae GEL3456<br />

Hyphodontia cineracea GEL4875<br />

Hyphodontia pallidul a GEL4533<br />

Schizopor a flavipor a GEL3545<br />

Hyphodontia alutari a GEL4553<br />

Oxyporus populinus FO35584<br />

Tubulicrini s sp. GEL5046<br />

Subuliciu m sp. GEL4808<br />

Resinicium meridionale FP-150236<br />

Trechispor a araneosa KHL 8570<br />

Trechispor a sp. KHL 10715<br />

Trechispor a confinis KHL 11064<br />

Trechispor a subsphaerospor a KHL 8511<br />

Trechispor a incisa EH 24/98<br />

Trechispor a kavinioide s KGN 981002<br />

Trechispor a hymenocystis KHL 8795<br />

Trechispor a regulari s KHL 10881<br />

Trechispor a farinacea KHL 8451<br />

Trechispor a farinacea KHL 8454<br />

Trechispor a farinacea KHL 8793<br />

Hyphodontia gossypin a GEL5042<br />

Subulicystidiu m longisporum GEL3550<br />

Porpomyces mucidus KHL 8471<br />

Porpomyces mucidus KHL 8620<br />

Porpomyces mucidus KHL 11062<br />

Tubuliciu m vermiculare GEL5015<br />

Sistotremastru m niveocremeu m FO29191<br />

Sistotremastru m niveocremeum EL 96-97<br />

Sistotremastru m sp. FO36293b<br />

Anthurus archeri GEL5392<br />

Pseudocolus fusiformis DSH 96-033<br />

Gastrosporium simplex WÜ2768<br />

Hysterangium stoloniferum WÜ3706<br />

Geastrum saccatum DSH 96-048<br />

Geastrum sessile GEL5319<br />

Sphaerobolus stellatus DSH 96-015<br />

Ramaria stricta TENN HDT-5474<br />

Gautieria otthii REG636<br />

Gomphus floccosus DSH 94-002<br />

Ramaria formosa M-95<br />

Ramaria obtusissima GEL4416<br />

Clavariadelphus ligulus KHL 8560<br />

Clavariadelphus pistillaris n/a<br />

Lentaria micheneri RV98/147<br />

Ramaricium alb<strong>of</strong>lavescen s DAOM 17712<br />

Kavini a himantia FP-101479<br />

Hydnum repandum DSH 97-320<br />

Hydnum rufescens MB18-6024/1<br />

Hydnum albidum MB11-6024/2<br />

Sistotrem a brinkmanni i GEL3134<br />

“S istotremastru m niveocremeum” ? FO36914<br />

Multiclavula mucida DSH 96-056<br />

Clavulina cinerea 33<br />

Sistotrema eximum RGT42 0<br />

Sistotrem a sernanderi CBS 926.70<br />

Botryobasidium subcoronatum GEL4673<br />

Botryobasidium subcoronatum GEL5397<br />

Botryobasidium subcoronatu m FCUG 1286<br />

Botryobasidium agg. vagum GEL4181<br />

Botryobasidium vagum GEL212 2<br />

Botryobasidium isabellinum GEL2108<br />

Botryobasidium isabellinum GEL2109<br />

Botryobasidium sp. GEL4968<br />

Botryobasidium sp. GEL5132<br />

Botryobasidium agg. candican s GEL2090<br />

Botryobasidium candican s GEL3083<br />

Ceratobasidium sp. GEL 5602<br />

Uthatobasidium sp. FO30284<br />

Uthatobasidium fusisporum HHB-102155-Sp.<br />

Thanatephorus praticola IMI-34886<br />

Tulasnella pruinos a DAOM 17641<br />

Tulasnella viole a DAOM 222001<br />

Tulasnella sp. GEL4461<br />

Tulasnella sp. GEL4745<br />

Piriformospora indica DSM 11827<br />

Serendipita vermifera CBS 572.83<br />

Pseudohydnum gelatinosum DSH 97-041<br />

Auricularia auricula-judae GJW-855-10<br />

Exidiopsis calcea HHB-15059-Sp.<br />

Exidia thuretiana GEL5242<br />

Heterochaet e sp. GEL4813<br />

Basidiodendron sp. GEL4674<br />

Bourdotia sp. GEL4777<br />

Basidiodendron caesiocinereu m GEL5361<br />

Calocera cornea FP-102602-Sp.<br />

Cerinomyces grandinioide s GEL4761<br />

Dacryopinax spathularia GEL5052<br />

Dacrymyces sp. GEL5083<br />

Dacrymyces stillatus GEL5264<br />

Dacrymyces chrysospermus FPL11353<br />

Ditiola radicata GEL4014<br />

Dacryomitra pusilla FO38346<br />

Femsjonia sp. FO28211<br />

Guepinia spathularia FO45821<br />

Figure 4 For Legend see facing page.<br />

A<br />

69<br />

69<br />

Auriculariales s. str.<br />

Dacrymycetales<br />

Hymenochaetaceae<br />

trechisporoid<br />

clade<br />

gomphoid-phalloid<br />

clade<br />

bootstrap<br />

65-79%<br />

80-89%<br />

90-100%<br />

50 changes<br />

hymenochaetoid<br />

clade<br />

Resinicium meridionale<br />

Cantharellus tubaeformis DSH 93-209<br />

Craterellus cornucopioides DSH 96-003<br />

Cantharellus cibarius n/a<br />

cantharelloid<br />

clade


To compare results <strong>of</strong> the present study with those <strong>of</strong><br />

Weiß & Oberwinkler (2001), the sequences <strong>of</strong> Sebacinaceae,<br />

Ceratobasidium pseudocornigerum, Ceratosebacina calospora<br />

and other taxa were downloaded, combined with a<br />

subset <strong>of</strong> sequences from the present study, and subjected<br />

to bootstrapped parsimony analyses (Hibbett, unpublished).<br />

<strong>The</strong> sequences <strong>of</strong> Sebacinaceae from the study <strong>of</strong> Weiß &<br />

Oberwinkler (2001) and Serendipita vermifera from the<br />

present study were moderately strongly supported as a clade<br />

(bootstrap = 89%), confirming that S. vermifera is an appropriate<br />

‘placeholder’ for the Sebacinaceae, but Ceratobasidium<br />

pseudocornigerum and Ceratosebacina calospora could not<br />

be placed in any clade with confidence (bootstrap < 50 %,<br />

Hibbett, unpublished). <strong>The</strong>se results suggest that the Ceratobasidiales<br />

as presently delimited could be polyphyletic. In addition,<br />

analyses <strong>of</strong> mt-lsu rDNA by Bruns et al. (1998) suggested<br />

that Waitea circinata, which is placed in the Ceratobasidiales<br />

(Tu et al., 1977; Roberts, 1999), is closely related to<br />

the <strong>resupinate</strong> homobasidiomycete Piloderma croceum,which<br />

is probably a member <strong>of</strong> the athelioid clade (see below). Conflicting<br />

results were obtained by DePriest and colleagues (unpublished),<br />

who performed analyses <strong>of</strong> ITS and partial nuclsu<br />

rDNA sequences that suggested that Waitea circinata is<br />

in the corticioid clade (see below). <strong>The</strong> placement <strong>of</strong> Waitea<br />

will remain unresolved until additional loci and isolates are<br />

examined. Nevertheless, neither <strong>of</strong> the analyses cited above<br />

suggest that it is closely related to the cantharelloid clade.<br />

<strong>The</strong> isolates <strong>of</strong> Ceratobasidium, Thanatephorus and<br />

Uthatobasidium included in the present study are strongly<br />

supported as monophyletic and are placed in the cantharelloid<br />

clade in the PR analyses. Bootstrap support for the cantharelloid<br />

clade is weak in the full dataset analyses, but in<br />

the core dataset analysis, Ceratobasidium sp. is nested in the<br />

cantharelloid clade, with moderately strong bootstrap support<br />

(85%, Figs 1, 4). Taking the results <strong>of</strong> previous studies into<br />

account, the Ceratobasidiales as a whole may be polyphyletic,<br />

but Ceratobasidium, Thanatephorus and Uthatobasidium appear<br />

to form a monophyletic group within the cantharelloid<br />

clade.<br />

Serendipita vermifera is strongly supported as the sister<br />

group <strong>of</strong> the root symbiont Piriformospora indica (Verma<br />

et al., 1998) and the Serendipita–Piriformospora clade is<br />

placed as the sister group <strong>of</strong> the Tulasnellales, in the cantharelloid<br />

clade (Fig. 4). Monophyly <strong>of</strong> the Serendipita–Piriformospora–Tulasnellales<br />

clade is weakly supported (Fig. 4). Nevertheless,<br />

these results are consistent with the results <strong>of</strong> mt-lsu<br />

rDNA analysis by Bruns et al. (1998), which resolved a clade<br />

that includes Tulasnella irregularis and “Sebacina sp.” and<br />

placed it as the sister group <strong>of</strong> Cantharellus with strong (98%)<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 13<br />

bootstrap support (also see Kristiansen et al., 2001). Weiß &<br />

Oberwinkler (2001) did not include Tulasnellales in their<br />

analyses <strong>of</strong> nuc-lsu rDNA sequences, but they cited unpublished<br />

analyses <strong>of</strong> nuc-ssu rDNA sequences, which apparently<br />

placed the Tulasnellales near the Auriculariales. In contrast,<br />

E. Langer (1998) found strong support (bootstrap = 95%) for<br />

a clade including Tulasnella eichleriana and two species <strong>of</strong><br />

Botryobasidium, which is a member <strong>of</strong> the cantharelloid clade<br />

(see below), based on mt-ssu rDNA sequences. In addition,<br />

Kottke et al. (2003) and Bidartondo et al. (2003) found moderately<br />

strong (bootstrap = 88–89%) support for a clade including<br />

three species <strong>of</strong> Tulasnella, several liverwort symbionts,<br />

and Multiclavula mucida, which is also a member <strong>of</strong> the cantharelloid<br />

clade, based on nuc-lsu rDNA sequences. Comparable<br />

results were obtained by Hibbett & Binder (2002) and<br />

Hibbett & Donoghue (2001). Tulasnellales have highly divergent<br />

nuclear rDNA sequences (Weiß & Oberwinkler, 2001;<br />

Hibbett, unpublished), so it is possible that the results described<br />

by Weiß and Oberwinkler are due to ‘long branch attraction’.<br />

Basal Homobasidiomycetes<br />

<strong>The</strong> cantharelloid clade, gomphoid-phalloid clade and hymenochaetoid<br />

clade appear to be among the earliest-diverging<br />

groups in the Homobasidiomycetes (Figs 1, 3, 4). In addition,<br />

the trechisporoid clade is placed as the sister group <strong>of</strong> the<br />

hymenochaetoid clade in one <strong>of</strong> the topologies obtained with<br />

six-parameter weighted PR analysis (Figs 3, 4). Bootstrap support<br />

for the placements <strong>of</strong> these clades are weak (Figs 1, 4),<br />

but ultrastructural characters <strong>of</strong> septal pores are consistent with<br />

the view that they occupy basal positions.<br />

Imperforate parenthesomes have been found in the<br />

cantharelloid clade (Botryobasidium, Cantharellus, Piriformospora,<br />

Sebacina, Tulasnella), gomphoid-phalloid clade<br />

(Geastrum, Ramaria), hymenochaetoid clade (Basidioradulum,<br />

Coltricia, Hymenochaete, Hyphodontia, Schizopora,<br />

Trichaptum, etc.), and trechisporoid clade (Hyphodontia<br />

gossypina, Subulicystidium longisporum), as well as the<br />

Auriculariales and Dacrymycetales (Traquair & McKeen,<br />

1978; Moore, 1980; 1985; G. Langer, 1994; Verma et al.,<br />

1998; Müller et al., 2000; Hibbett & Thorn, 2001; Wells &<br />

Bandoni, 2001; E. Langer, 2002; K.-H. Larsson et al., 2004).<br />

Most other Homobasidiomycetes have perforate parenthesomes<br />

(examples are known in the euagarics, polyporoid,<br />

bolete, thelephoroid and russuloid clades), which probably<br />

represent a derived condition (E. Langer, 1998; Hibbett &<br />

Thorn, 2001; E. Langer, 2002). However, imperforate parenthesomes<br />

have been reported in the polyporoid clade (Phanerochaete<br />

sordida) and perforate parenthesomes have been reported<br />

in the gomphoid-phalloid clade (Clathrus), cantharelloid<br />

Figure 4 Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> among the Homobasidiomycetes, based on six-parameter weighted PR analyses <strong>of</strong> the<br />

full 656-OTU dataset. This phylogram represents topology G (Fig. 3); see figure for branch length scale. Ranges <strong>of</strong> bootstrap values<br />

obtained using equally weighted parsimony greater than 65% are indicated with shaded dots on branches (white = 65–79%;<br />

grey = 80–89%; black = 90–100%). Exact bootstrap values for major clades are also written along branches, where they are above<br />

50%. Species names are followed by strain numbers that were used to generate 25S sequences. Species names in quotation marks<br />

followed by question marks indicate mislabelled isolates. Names <strong>of</strong> <strong>resupinate</strong> taxa are written in bold type. Major clades <strong>of</strong><br />

Homobasidiomycetes are indicated with brackets. This is part <strong>of</strong> the <strong>phylogenetic</strong> tree, including Dacrymycetales, Auriculariales and<br />

basal clades <strong>of</strong> Homobasidiomycetes.


14 Manfred Binder et al.<br />

A<br />

B<br />

“Athelia arachnoidea”?<br />

Leptoporus mollis<br />

“Lindtneria trachyspora?”<br />

Phlebia centrifuga Bip<br />

Ceriporia purpurea<br />

“Athelia epiphylla”?<br />

Ceriporia viridans<br />

Byssomerulius sp.<br />

Gloeoporus taxicola<br />

Ceriporiopsis subvermispora<br />

Cystidiodontia isabellina<br />

Phlebia albomellea<br />

Phlebia nitidula<br />

Ceraceomyces serpens Bip<br />

Ceraceomyces eludens<br />

Ceraceomyces microsporus<br />

Phlebia lilascens<br />

Hapalopilus nidulans<br />

Phlebiopsis gigantea<br />

Phlebia deflectens<br />

Pulcherricium caeruleum<br />

Phanerochaete chrysosporium Bip?<br />

Phanerochaete sordida<br />

“Sistotrema musicola”?<br />

Bjerkandera adusta Bip<br />

Phlebia acerina<br />

Phlebia rufa Bip<br />

Phlebia lindtneri<br />

Phlebia subochracea Bip<br />

Phlebia radiata Bip<br />

Phlebia tremellosa Bip<br />

Climacodon septentrionalis HHB 13438<br />

Climacodon septentrionalis DSH 93-187<br />

Mycoacia aurea<br />

Phlebia sp.<br />

Phlebia livida<br />

Phlebia subserialis<br />

Phlebia chrysocreas<br />

Phlebia uda<br />

“Peniophora sp.”?<br />

Scopuloides hydnoides<br />

Phanerochaete chrysorhiza<br />

Mycoacia aff. fuscoatra Bip<br />

Gelatoporia pannocincta Bip<br />

Candelabrochaete africana<br />

Hyphoderma nudicephalum<br />

Hyphoderma setigerum Bip<br />

Hyphoderma definitum<br />

Meripilus giganteus<br />

Physisporinus sanguinolentus<br />

Hypochnicium eichleri<br />

Hypochnicium geogenium<br />

Hypochnicium sp.<br />

Phlebia bresadolae<br />

Abortiporus biennis<br />

Podoscypha petalodes<br />

Hypochnicium polonense<br />

Phanerochaete sanguinea<br />

Steccherinum fimbriatum Tet<br />

Ceriporiopsis gilvescens<br />

Albatrellus syringae<br />

Phlebia queletii<br />

Panus rudis Tet<br />

Spongipellis pachyodon Bip<br />

Antrodiella romellii<br />

Antrodiella semisupina<br />

Junghuhnia nitida Tet<br />

Datronia mollis Tet<br />

Polyporus squamosus Tet<br />

Polyporus melanopus<br />

Polyporus tenuiculus<br />

Polyporus tuberaster Tet<br />

Polyporus varius<br />

Cryptoporus volvatus Tet<br />

Perenniporia medulla-panis Tet<br />

Fomes fomentarius Tet<br />

Daedaleopsis confragosa<br />

Ganoderma australe<br />

“Gloeophyllum trabeum”? Bip BR<br />

Ganoderma lucidum Tet<br />

Ganoderma applanatum<br />

Lentinus tigrinus Tet<br />

Polyporus arcularius Tet<br />

Grammothele fuligo<br />

Pycnoporus cinnabarinus Tet<br />

Lenzites betulina Tet<br />

Physalacria inflata<br />

Wolfiporia cocos BR<br />

Trametes suaveolens Tet<br />

Junghuhnia subundata<br />

Dendrodontia sp.<br />

Dentocorticium sulphurellum<br />

Diplomitoporus lindbladii Bip<br />

Trametes versicolor<br />

Sparassis brevipes BR<br />

Sparassis spathulata BR<br />

Skeletocutis amorpha<br />

Tyromyces chioneus<br />

Climacocystis sp. Tet<br />

Oligoporus balsameus Tet BR<br />

Oligoporus lacteus Bip BR<br />

Oligoporus leucomallelus BR<br />

Oligoporus rennyi BR<br />

Oligoporus caesius Tet BR<br />

Dacryobolus sudans Tet BR<br />

Ischnoderma benzoinum Bip<br />

Amylocystis lapponica Tet BR<br />

Auriporia aurea BR<br />

Phlebia grise<strong>of</strong>lavescens<br />

Oligoporus placentus Bip BR<br />

Antrodia carbonica BR<br />

Antrodia xantha BR<br />

Cyphella digitalis<br />

dendrotheloid sp.<br />

Grifola frondosa<br />

Pycnoporellus fulgens BR<br />

Laetiporus sulphureus Bip BR<br />

Phaeolus schweinitzii BR<br />

Parmastomyces transmutans Tet BR<br />

Fomitopsis pinicola Bip BR<br />

Piptoporus betulinus Bip BR<br />

Antrodia serialis BR<br />

Daedalea quercina Bip BR<br />

Neolentiporus maculatissimus Bip BR<br />

tree 1<br />

BR = brown rot<br />

Tet = tetrapolar<br />

Bip = bipolar<br />

“residual” polyp. clade<br />

core polyporoid clade<br />

Antrodia clade<br />

phlebioid clade<br />

bootstrap<br />

65-79%<br />

80-89%<br />

90-100%<br />

50 changes<br />

polyporoid clade<br />

Trechispora araneosa<br />

Trechispora sp.<br />

Trechispora confinis Bip<br />

Trechispora subsphaerospora<br />

Trechispora incisa<br />

Trechispora kavinioides<br />

Trechispora hymenocystis<br />

Trechispora regularis<br />

Trechispora farinacea KHL 8451<br />

Trechispora farinacea KHL 8454<br />

Trechispora farinacea KHL8793<br />

Hyphodontia gossypina<br />

Porpomyces mucidus KHL 8471<br />

Porpomyces mucidus KHL 8620<br />

Porpomyces mucidus KHL 11062<br />

Subulicystidium longisporum<br />

Tubulicium vermiculare<br />

Sistotremastrum niveocremeum<br />

Sistotremastrum sp.<br />

Sistotremastrum niveocremeum<br />

Bjerkandera adusta DAOM 215869<br />

Hapalopilus nidulans KEW211<br />

Phlebiopsis gigantea FCUG 1417<br />

Phlebia deflectens FCUG 1568<br />

Pulcherricium caeruleum FPL-7658<br />

Phanerochaete chrysosporium FPL-5175<br />

Phanerochaete sordida GEL4160<br />

“Sistotrema musicola”? FPL-8233<br />

Leptoporus mollis KEW122<br />

“Lindtneria trachyspora” CBS 290.85<br />

Ceriporia purpurea DAOM 21318<br />

“Athelia arachnoidea”? GEL2529-1<br />

Phlebia centrifuga FCUG 2396<br />

“Athelia epiphylla”? HHB-8546-Sp.<br />

Ceriporia viridans FPL7440<br />

Byssomerulius sp. FO22261<br />

Gloeoporus taxicola KEW213<br />

Ceriporiopsis subvermispora FP90031-Sp.<br />

Cystidiodontia isabellina GEL4978<br />

Phlebia albomellea CBS 275.92<br />

Phlebia nitidula FCUG 2028<br />

Ceraceomyces serpens FP-102285-Sp.<br />

Ceraceomyces eludens JS22780<br />

Ceraceomyces microsporus KHL8473<br />

Phlebia lilascens FCUG 1801<br />

Phlebia acerina FCUG 568<br />

Phlebia radiata FPL6140<br />

Phlebia rufa FCUG 2397<br />

Phlebia lindtneri FCUG 2413<br />

Phlebia subochracea FCUG 1161<br />

Phlebia tremellosa FPL-4294<br />

Climacodon septentrionalis HHB-13438<br />

Climacodon septentrionalis DSH 93-187<br />

“Peniophora sp.”? GEL4884<br />

Scopuloides hydnoides GEL3139<br />

Mycoacia aurea GEL5339<br />

Phlebia sp. GEL4492<br />

Phlebia livida FCUG 2189<br />

Phlebia subserialis FCUG 1434<br />

Phlebia chrysocreas FPL-6080<br />

Phlebia uda FCUG 2452<br />

Phanerochaete chrysorhiza T-484<br />

Mycoacia aff. fuscoatra GEL5166<br />

Gelatoporia pannocincta FCUG 2109<br />

Candelabrochaete africana FP-102987-Sp.<br />

Phanerochaete sanguinea FO25062a<br />

Steccherinum fimbriatum FP-102075<br />

Ceriporiopsis gilvescens AH 980718<br />

Albatrellus syringae CBS 728.85<br />

Phlebia queletii FCUG 722<br />

Panus rudis DSH 92-139<br />

Spongipellis pachyodon FO22184h<br />

Antrodiella romellii GEL4231<br />

Antrodiella semisupina KEW65<br />

Junghuhnia nitida FO24179a<br />

Hypochnicium eichleri GEL3137<br />

Hypochnicium geogenium GEL4081<br />

Hypochnicium sp. GEL4741<br />

Phlebia bresadolae FCUG 1242<br />

Hyphoderma nudicephalum GEL4727<br />

Hyphoderma setigerum GEL4001<br />

Hyphoderma definitum GEL2898<br />

Meripilus giganteus DSH 93-193<br />

Physisporinus sanguinolentus GEL4449<br />

Abortiporus biennis KEW210<br />

Podoscypha petalodes DSH 98-001<br />

Hypochnicium polonense GEL4428<br />

Ischnoderma benzoinum GEL2914<br />

Datronia mollis DAOM 211792<br />

Polyporus squamosus FPL-6846<br />

Polyporus melanopus DAOM 212269<br />

Polyporus tenuiculus GEL4780<br />

Polyporus tuberaster DAOM 7997B<br />

Polyporus varius DSH 93-195<br />

Cryptoporus volvatus DAOM 211791<br />

Perenniporia medulla-panis CBS 457.48<br />

Fomes fomentarius DAOM 129034<br />

Daedaleopsis confragosa DSH 93-182<br />

Ganoderma australe 0705<br />

“Gloeophyllum trabeum”? CFMR 617-R<br />

Ganoderma lucidum RZ<br />

Ganoderma applanatum GEL4206<br />

Lentinus tigrinus DSH 93-181<br />

Polyporus arcularius VT959<br />

Grammothele fuligo GEL5391<br />

Pycnoporus cinnabarinus DAOM 72065<br />

Lenzites betulina DAOM 180504<br />

Physalacria inflata HHB-13443-Sp.<br />

Wolfiporia cocos FPL4198<br />

Trametes suaveolens DAOM 196328<br />

Junghuhnia subundata LR-38938<br />

Dendrodontia sp. GEL4767<br />

Dentocorticium sulphurellum FPL11801<br />

Diplomitoporus lindbladii KEW212<br />

Trametes versicolor DSH 93-197<br />

Sparassis brevipes ILKKA96-1044<br />

Sparassis spathulata zw-clarku001<br />

Skeletocutis amorpha KEW51<br />

Tyromyces chioneus KEW141<br />

Climacocystis sp. KEW215<br />

Oligoporus balsameus KEW35<br />

Oligoporus lacteus KEW55<br />

Oligoporus leucomallelus KEW29<br />

Oligoporus rennyi KEW 57<br />

Oligoporus caesius KHL 11087<br />

Dacryobolus sudans FP-150381<br />

Amylocystis lapponica HHB-13400-Sp.<br />

Auriporia aurea FPL-7026<br />

Phlebia grise<strong>of</strong>lavescens FCUG 1907<br />

Oligoporus placentus CFMR 698<br />

Antrodia carbonica DAOM 197828<br />

Antrodia xantha KEW43<br />

Cyphella digitalis T-617<br />

dendrotheloid sp. GEL4798<br />

Grifola frondosa CBS 480.63<br />

Pycnoporellus fulgens T-325<br />

Laetiporus sulphureus DSH 93-194<br />

Phaeolus schweinitzii DSH 93-196<br />

Parmastomyces transmutans L-14910-Sp.<br />

Fomitopsis pinicola DAOM 189134<br />

Piptoporus betulinus DSH 93-186<br />

Antrodia serialis GEL4465<br />

Daedalea quercina DAOM 142475<br />

Neolentiporus maculatissimus Rajchenberg 158<br />

Figure 4 Continued Polyporoid clade. Tree 1 represents topology G, in which the trechisporoid clade is the sister group <strong>of</strong> the<br />

hymenochaetoid clade, and tree 2 represents topology H, in which the trechisporoid clade is nested within the<br />

polyporoid clade (Fig. 2). Mating systems for taxa where this is known are indicated in tree 1 (Tet = tetrapolar,<br />

Bip = bipolar). Species that produce a brown rot are also indicated (BR).<br />

clade (Ceratobasidiales, Sistotrema brinkmannii), hymenochaetoid<br />

clade (Hyphoderma praetermissum) and trechisporoid<br />

clade (Trechispora subsphaerospora) (Eyme &<br />

tree 2<br />

“residual” polyp. clade<br />

core polyporoid clade<br />

Antrodia clade<br />

trechisporoid clade<br />

phlebioid clade<br />

polyporoid clade<br />

Parriaud, 1970; E. Langer & Oberwinkler, 1993; G. Langer,<br />

1994; Keller, 1997; Wells & Bandoni, 2001). <strong>The</strong>se reports,<br />

which should be confirmed, suggest that there has been


B<br />

bootstrap<br />

65-79%<br />

80-89%<br />

90-100%<br />

50 changes<br />

C<br />

97<br />

54<br />

81<br />

84<br />

79<br />

100<br />

73<br />

88<br />

100<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 15<br />

Asterostroma medium CBS 119.50<br />

Asterostroma ochroleucum HB 9/89<br />

“Coronicium alboglaucum”? GEL5058<br />

Asterostroma andinum HHB-8546-Sp.<br />

Scytinostroma aluta CBS 762.81<br />

Scytinostroma caudisporum CBS 746.86<br />

Scytinostroma portentosum GEL3225<br />

Scytinostroma ochroleucum CBS 767.86<br />

Peniophora nuda FPL4756<br />

Dichostereum durum CBS 707.81<br />

Dichostereum pallescens CBS 717.81<br />

Dichostereum effuscatum CBS 516.80<br />

Vararia insolita CBS 667.81<br />

Vararia parmastoi CBS 647.84<br />

Vararia sphaericospora CBS 700.81<br />

Scytinostroma eurasiatico-galactinum CBS 666.84<br />

“Amphinema byssoides”? HHB-13195-Sp.<br />

Scytinostroma renisporum CBS 770.86<br />

Amylostereum chailetii FCUG-2025<br />

Amylostereum laevigatum CBS 623.84<br />

Echinodontium tinctorium DAOM 16666<br />

Laurilia sulcata CBS 365.49<br />

Gloeocystidiellum clavuligerum JS16976<br />

Lactarius corrugis RV 88/61<br />

Lactarius volemus RV95/150<br />

Russula romagnesii JJ60<br />

Russula compacta Duke s.n.<br />

Russula mairei RV 89/62<br />

Russula virescens JSH s.n<br />

Russula earlei n/a<br />

Russula exalbicans REG MB 95-111<br />

Gloeocystidiellum aculeatum n/a<br />

Gloeocystidiellum porosum FCUG 2734<br />

Gloeocystidiellum sp. NH13258<br />

Gloeocystidiellum sp. NH12972<br />

Lentinellus montanus VT242<br />

Lentinellus omphalodes DSH 96-007<br />

Lentinellus vulpinus KGN 980825<br />

Auriscalpium vulgare DAOM 128994<br />

Gloiodon strigosus GEL5335I<br />

Aleurocystidiellum disciformis NH13003<br />

Aleurocystidiellum subcruentatum NH12874<br />

96<br />

Albatrellus ovinus REG Ao1<br />

Albatrellus subrubescens REG As1<br />

Albatrellus cristatus REG Ac1<br />

Albatrellus confluens REG Aco2<br />

Albatrellus fletti BG <strong>The</strong>sis<br />

Albatrellus skamanius DAOM 220694<br />

Polyporoletus sublividus DAOM 221078<br />

Dendrothele candida HHB-3843-Sp.<br />

Xenasma rimicola FP-133272-Sp.<br />

Bondarzewia berkeleyi 73BO<br />

Bondarzewia montana DAOM 415<br />

Heterobasidion annosum RGT 931030/23<br />

“Cymatoderma caperatum”? HHB-9974-Sp.<br />

Dentipellis separans CBS 538.90<br />

Laxitextum bicolor CBS 284.73<br />

Creolophus cirrhatus GEL4351<br />

Hericium coralloides DSH 93-189<br />

Hericium erinaceus FO23203<br />

Stereum armeniacum GEL4857<br />

Stereum hirsutum FPL 8805<br />

Stereum gausapatum GEL4615<br />

Stereum rugosum HHB13390<br />

Acanth<strong>of</strong>ungus rimosus Wu9601_1<br />

Acanthophysium bisporum T614<br />

Acanthophysium cerrusatum FPL-11527<br />

Aleurodiscus lapponicus FP100753<br />

Aleurodiscus laurentinus HHB11235<br />

Acanthophysium sp. GEL5022<br />

Aleurodiscus botryosus CBS 195.91<br />

Stereum annosum FPL-8562<br />

Xylobolus frustulatus FP106073<br />

Xylobolus subpileatus FP106735<br />

Acanthophysium lividocaeruleum FP100292<br />

Aleurodiscus abietis T330<br />

Gloeocystidiellum leucoxanthum CBS 454.86<br />

Aleurodiscus mirabilis Wu9304_105<br />

Aleurodiscus oakesii FP101813<br />

Acanthobasidium norvegicum T623<br />

Acanthobasidium phragmitis CBS 233.86<br />

Aleurodiscus weirii FP134813<br />

Aleurodiscus penicillatus T322<br />

Aleurodiscus amorphus HHB15282<br />

Aleurodiscus grantii T541<br />

Dendrocorticium polygonioides FO36469g<br />

Dendrocorticium roseocarneum FPL1800<br />

Punctularia strigoso-zonata HHB-11897-Sp.<br />

Vuilleminia comedens T-583<br />

Marchandiomyces corallinus ATCC200796<br />

Marchandiomyces lignicola n/a<br />

Marchandiomyces aurantiacus CBS 718.97<br />

Galzinia incrustans HHB-12952-Sp.<br />

Tomentella ferruginea 78<br />

Tomentella stuposa 21<br />

Tomentella coerulea 75<br />

<strong>The</strong>lephora sp. DSH 96-010<br />

<strong>The</strong>lephora palmata 31/38<br />

<strong>The</strong>lephora vialis Thv1<br />

Hydnellum sp. DSH 96-008<br />

Sarcodon imbricatus REG Sim1<br />

Bankera fuligineoalba DAOM 184178<br />

Phellodon tomentosus BG <strong>The</strong>sis<br />

Pseudotomentella mucidula 60<br />

Pseudotomentella nigra 16<br />

Pseudotomentella ochracea EL99-97<br />

Gloeophyllum sepiarium DAOM 13786<br />

Neolentinus dactyloides E5252A<br />

Veluticeps berkeleyi RLG-7116-Sp.<br />

Gloeophyllum odoratum FO23521<br />

Heliocybe sulcata D.797<br />

thelephoroid<br />

clade<br />

Gloeophyllum<br />

clade<br />

/ amylostereaceae<br />

/ bondarzewiaceae<br />

/ gloeocystidiellum II<br />

/ russulales<br />

/ gloeocystidiellum I<br />

/ auriscalpiaceae<br />

/ aleurocystidiellum<br />

/ bondarzewiaceae<br />

/ hericiaceae<br />

/ stereales<br />

/ albatrellus<br />

corticioid<br />

clade<br />

/ peniophorales<br />

russuloid<br />

clade<br />

Figure 4 Continued Gloeophyllum, thelephoroid, corticioid, and russuloid clades. Groups within the russuloid clade correspond to groups<br />

recognised by E. Larsson and K.-H. Larsson.<br />

extensive homoplasy in parenthesome evolution, possibly including<br />

reversals from perforate to imperforate parenthesomes<br />

(K.-H. Larsson et al., 2004). Nevertheless, the occurrence <strong>of</strong><br />

imperforate parenthesomes in the Auriculariales s. str. and<br />

Dacrymycetales, and their preponderance in the cantharelloid,<br />

gomphoid-phalloid, hymenochaetoid, and trechisporoid<br />

clades suggests that this is the plesiomorphic condition in the<br />

Homobasidiomycetes, which is consistent with the topology<br />

inferred with rDNA sequences. <strong>The</strong> core dataset tree and five<br />

<strong>of</strong> the topologies obtained in PR analyses <strong>of</strong> the full dataset<br />

suggest that the cantharelloid clade is the sister group <strong>of</strong> the<br />

other Homobasidiomycetes, but bootstrap support is weak<br />

(Figs1,3,4).<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong><br />

within the Homobasidiomycetes<br />

Resupinate <strong>forms</strong> occur in every major clade <strong>of</strong> Homobasidiomycetes<br />

(Hibbett & Binder, 2002; K.-H. Larsson et al.,<br />

2004). <strong>The</strong> following sections and Table 3 provide a clade-byclade<br />

overview <strong>of</strong> the <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong>, based<br />

on this and other studies. Notes on ecology are also provided.<br />

More detailed commentary on the morphology and taxonomy<br />

<strong>of</strong> many <strong>of</strong> the <strong>resupinate</strong> <strong>forms</strong> in this study can be found in<br />

E. Larsson (2002), E. Langer (2002), and other works cited<br />

below. It is not the purpose <strong>of</strong> this study to infer the historical<br />

pattern <strong>of</strong> transformations between <strong>resupinate</strong> and


16 Manfred Binder et al.<br />

C<br />

93<br />

Marasmius capillaris DED4345<br />

Physalacria sp. GEL5189<br />

Marasmius delectans DED 89/62<br />

Crinipellis campanella DAOM 17785<br />

Crinipellis maxima DAOM 196019<br />

“Lopharia mirabilis”? FRI 330-T<br />

“Trechispora farinacea”? HHB 9150<br />

Vararia ochroleuca CBS 465.61<br />

Vararia gallica CBS 656.81<br />

Lycoperdon perlatum DSH 96-047<br />

Lycoperdon sp. DSH 96-054<br />

Calvatia gigantea DSH 96-032<br />

Lepiota clypeolaria VPI-OKM22029<br />

Leucoagaricus rubrotinctus DUKE-JJ100<br />

Leucocoprinus fragilissimus DUKE-JJ84<br />

Agaricus arvensis SAR 93/494<br />

Agaricus bisporus SAR 88/411<br />

Agaricus campestris VPI-OKM25665<br />

Chlorophyllum molybdites NY-EFM891<br />

Macrolepiota rachodes VPI-OKM19588<br />

Leucoagaricus naucinus VPI-OKM15134<br />

Leucocoprinus cepaestipes NY-EFM518<br />

Lepiota procera DSH 96-038<br />

Macrolepiota procera DUKE-JJ168<br />

Podaxis pistillaris J119<br />

Coprinus sterquilinus C123<br />

Montagnea arenaria J117<br />

Lepiota cristata DUKE1582<br />

Cystolepiota cystidiosa MICH18884<br />

Lepiota acutesquamosa DUKE-JJ177<br />

Tulostoma macrocephala Long 10111 FH<br />

Tulostoma sp. GEL5402<br />

Coprinopsis atramentaria C114<br />

Coprinopsis sp.C192<br />

Coprinopsis cinerea C13<br />

Coprinopsis kimurae C78<br />

Coprinopsis quadrifida RGT 930622/01<br />

Coprinellus bisporus C148<br />

Psathyrella candolleana J181<br />

Psathyrella gracilis J130<br />

Psathyrella delineata J156<br />

Parasola nudiceps C159<br />

Lacrymaria velutina J100<br />

Crepidotus inhonestus MCA638<br />

Crepidotus mollis OKM26279<br />

Crepidotus variabilis REG JE 5.3<br />

Inocybe cervicolor EL 27-99<br />

Inocybe sp. RV7/4<br />

Inocybe geophylla JM96/25<br />

Anellaria semiovata SAR s.n.<br />

Panaeolus acuminatus J129<br />

Panaeolina foenisecii J152<br />

Bolbitius vitellinus SAR 84/100<br />

Conocybe rickenii J183<br />

Ripartitella brasiliensis NY-EFM744<br />

Hypholoma sublateritium JM96/20<br />

Hypholoma subviride JJ69<br />

Stropharia rugosoannulata Hopple D258<br />

Pholiota squarrosoides JJ7<br />

Kuehneromyces mutabilis DSM1684<br />

Psilocybe silvatica RV5/7/1989<br />

Cortinarius stuntzii SAR 85/358<br />

Psilocybe stuntzii VT1263<br />

Hebeloma crustuliniforme SAR 87/408<br />

Cortinarius bolaris REG MB 96-086<br />

Dermocybe marylandensis JM96/24<br />

Rozites caperatus G96-3<br />

Cortinarius iodes Moncalvo96/23<br />

Laccaria amethystina DSH s.n.<br />

Laccaria pumila DSH s.n.<br />

Laccaria bicolor JM96/19<br />

Cortinarius sp. JM96/40<br />

Crucibulum laeve REG Crul1<br />

Cyathus striatus REG Cyst1<br />

Callistosporium luteoolivaceum RV10/1<br />

Resupinatus dealbatus T-818<br />

Resupinatus trichotis GEL4221<br />

Resupinatus sp. VT1520<br />

Resupinatus alboniger RV/JMs.n.<br />

Arrhenia auriscalpium Lutzoni 930731-3<br />

Arrhenia lobata Lutzoni & Lamoure 910824-1<br />

Caulorhiza hygrophoroides DAOM 172075<br />

Conchomyces bursaeformis RV95/302<br />

Pleurotus eryngii D643<br />

Pleurotus fossulatus D1822<br />

Pleurotus populinus D765<br />

Pleurotus ostreatus D850<br />

Pleurotus abieticola RHP6551.1<br />

Pleurotus pulmonarius D700<br />

Pleurotus calyptratus D1839<br />

Pleurotus djamor D1847<br />

Pleurotus cornucopiae D383<br />

Pleurotus cystidiosus D420<br />

Pleurotus dryinus F91/1116<br />

Pleurotus smithii D478<br />

Pleurotus tuberregium DSH 92-155<br />

Pleurotus purpureoolivaceus RV95/486<br />

Hohenbuehelia sp. RV95/214<br />

Hohenbuehelia tristis n/a<br />

Chrysomphalina chrysophylla SAR. 7700<br />

Chrysomphalina grossula Gulden 417/75<br />

Hygrophorus bakerensis SAR s.n.<br />

Hygrophorus sordidus RV94/178<br />

Humidicutis marginata Moncalvo96/32<br />

Hygrocybe citrinopallida Lutzoni 930731-1<br />

Athelia arachnoidea DNA815<br />

75<br />

“Hyphoderma praetermissum”? L-16187-Sp.<br />

Athelia fibulata GEL 5292<br />

Phlebiella sp. GEL4684<br />

Deflexula subsimplex FO41017<br />

Stephanospora caroticolor IOC 137/97<br />

Radulomyces molaris GEL5394<br />

Lentaria albovinacea GEL5388<br />

Plicaturopsis crispa FP-101310-Sp.<br />

Boletus retipes SAR<br />

Xerocomus chrysenteron TDB-635<br />

Boletus satanas TDB-1000C<br />

Phylloporus rhodoxanthus SAR 89/457<br />

Paragyrodon sphaerosporus TDB-420<br />

Paxillus filamentosus REG 304<br />

Hydnomerulius pinastri REG 412<br />

Calostoma cinnabarina MSC 362913<br />

Scleroderma citrinum REG Sc1<br />

Leucogyrophana mollusca REG 447<br />

Suillus cavipes TDB-646<br />

Suillus sinuspaulianus DAOM 66995<br />

Suillus luteus JM96/41<br />

Chroogomphus vinicolor TDB-1010<br />

Gomphidius glutinosus TDB-953b<br />

Rhizopogon subcaerulescens F-2882<br />

Coniophora arida REG 373<br />

Coniophora olivacea REG 402<br />

Coniophora puteana REG 410<br />

Coniophora marmorata REG 411<br />

Leucogyrophana arizonica REG 404<br />

Leucogyrophana olivascens REG 397<br />

Leucogyrophana romellii REG 401<br />

Serpula himantioides HHB-17587-Sp.<br />

Serpula lacrymans REG 697<br />

Serpula incrassata REG 406<br />

Leucogyrophana pulverulenta REG 819<br />

Tapinella atrotomentosa REG 310<br />

Tapinella panuoides REG 318<br />

Pseudomerulius aureus FP-103859-Sp.<br />

Jaapia argillacea REG 425<br />

athelioid clade<br />

Jaapia<br />

bolete<br />

clade<br />

Clitocybe clavipes JM96/22<br />

Limnoperdon incarnatum IFO30398<br />

Clitocybe lateritia Lutzoni 930803-1<br />

Limacella glioderma VT(L18)<br />

Pluteus primus JB94/24<br />

Pluteus sp. JM96/28<br />

Limacella glischra VPI-GB505<br />

Amanita jacksonii TV 96/1<br />

Amanita farinosa RV 96/104<br />

Amanita muscaria AR s.n.<br />

Amanita solitariiformis DD 97/12<br />

Amanita virosa JM 97/42<br />

Amanita citrina var. grisea HKAS 32506<br />

Amanita flavoconia RV 5Aug96<br />

Clitopilus prunulus RV88/109<br />

Entoloma odorifer TB 6366<br />

Entoloma strictius Moncalvo 96/10<br />

Ossicaulis lignatilis DUKE483<br />

Tricholoma giganteum IFO31860<br />

Tricholoma caligatum KMS 452<br />

Tricholoma inamoenum REG MB 96-071<br />

Tricholoma atroviolaceum KMS 400<br />

Tricholoma vernaticum KMS 246<br />

Tricholoma pardinum KMS 278<br />

Tricholoma venenatum KMS 393<br />

Tricholoma myomyces JM98/700<br />

Tricholoma focale KMS 426<br />

Tricholoma imbricatum KMS 356<br />

Tricholoma subaureum KMS 590<br />

Tricholoma intermedium KMS 593<br />

Tricholoma portentosum KMS 591<br />

Lyophyllum decastes JM 87/16<br />

Termitomyces cylindricus JM/leg.R.S.Hseu.s.n.<br />

Podabrella microcarpus PRU3900<br />

Termitomyces heimii JM/leg.S.Muid.s.n.<br />

Fistulina antarctica CBS 701.85<br />

Fistulina hepatica DSH 93-183<br />

Figure 4 Continued Jaapia argillacea, bolete clade, athelioid clade, and euagarics clade.<br />

100<br />

83<br />

Fistulina pallida CBS 508.63<br />

Porodisculus pendulus HHB-13576-Sp.<br />

Auriculariopsis ampla NH-1803-Spain<br />

Schizophyllum commune REG Sco1<br />

Lachnella villosa FO25147<br />

Dendrothele griseo-cana FP-101995-Sp.<br />

Dendrothele acerina GEL5350<br />

Flagelloscypha minutissima CBS 823.88<br />

Calathella mangrovei 1-30-01Jones<br />

Favolaschia intermedia L-13421-Sp.<br />

Halocyphina villosa IFO32086<br />

Nia vibrissa REG M200<br />

Clitocybe connata JM90c<br />

Cyphellopsis sp. GEL4873<br />

Dendrocollybia racemosa DED5575<br />

Cyphellopsis anomala GEL4169<br />

Clitocybe ramigena RV87/19<br />

Cyphellopsis anomala CBS 151.79<br />

Hypsizygus ulmarius JM/HW<br />

Merismodes fasciculata HHB-11894<br />

Henningsomyces candidus GEL4482<br />

Pleurocybella porrigens OKM19644<br />

Phyllotopsis nidulans RV96/1<br />

“Bulbillomyces farinosus”? FO24378<br />

Macrotyphula cf. juncea MIN DM-975<br />

98 Typhula phacorrhiza DSH 96-059<br />

Panellus serotinus DSH 93-218<br />

Mycena rutilanthiformis JM96/26<br />

Mycena clavicularis RV87/6<br />

Mycena flavoalba GEL4649<br />

Panellus stipticus DSH 93-213<br />

Resinomycena acadiensis DAOM 169949<br />

Mycena haematopoda GEL3777<br />

Favolaschia sp. GEL4781<br />

Favolaschia sp. GEL4835<br />

Xeromphalina cauticinalis RV86/11<br />

Panellus ringens S. Jacobsson s.n.<br />

Pleurotopsis longinqua RV95/473<br />

Chondrostereum purpureum HHB-13334-Sp.<br />

85 Gloeostereum incarnatum 3332<br />

Hydropus scabripes DAOM 192847<br />

Baeospora myosura GEL3962<br />

Baeospora myriadophylla DAOM 188774<br />

Armillaria tabescens D290<br />

Armillariella ostoyae GEL4424<br />

Oudemansiella mucida GEL4363<br />

Xerula furfuracea JM96/42<br />

Xerula megalospora DAOM 196115<br />

Strobilurus trullisatus DAOM 188775<br />

Cyptotrama asprata DAOM 157066<br />

Gloiocephala menieri DAOM 170087<br />

Gloiocephala aquatica CIEFAP 50<br />

Rhizomarasmius pyrrhocephalus DED4503<br />

Flammulina velutipes SAR s.n.<br />

Rhodotus palmatus VT356<br />

Physalacria bambusae CBS 712.83<br />

Physalacria maipoensis 2373Inderbitzin<br />

Cylindrobasidium laeve GEL5380<br />

Cylindrobasidium laeve HHB-8633-T<br />

100 Cylindrobasidium sp. GEL5043<br />

Campanella junghuhnii GEL4720<br />

Campanella subdendrophora DAOM 175393<br />

Gerronema strombodes Kuyper 2984<br />

Gerronema subclavatum Redhead 5175<br />

Henningsomyces candidus T-156<br />

Rectipilus fasciculatus GEL4485<br />

Neonothopanus nambi RVPR27<br />

Omphalotus nidiformis T1946.8<br />

Lampteromyces japonicus JMlegMURAKAMI<br />

Micromphale perforans RV83/67<br />

Marasmius alliaceus GEL4610<br />

Marasmiellus ramealis DED3973<br />

Rhodocollybia maculata RV94/175<br />

Collybia dryophila RV83/180<br />

Collybia polyphylla RV182.01<br />

Lentinula edodes ATCC 42962<br />

Lentinula lateritia DSH 92-143<br />

bootstrap<br />

65-79%<br />

80-89%<br />

90-100%<br />

50 changes<br />

core euagarics clade<br />

euagarics clade


Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 17<br />

Isolates b<br />

Clade<br />

Subclade/species Sequences a This study Other studies<br />

Athelioid clade<br />

‘Amphinema byssoides’ 1,2 − HHB 13195-Sp. A + EL 11-98<br />

Athelia arachnoidea 1,2 + 815 B − ‘GEL 2529.1’<br />

2 − ‘GEL 2529.1’<br />

Athelia decipiens A + JS 4930<br />

‘Athelia epiphylla’ 1,2,3,4 − HHB-8546-sp A + EL 12-98<br />

Athelia fibulata 2 + GEL 5292 B − GEL 5292<br />

Atheliopsis subinconspicua A + KHL 8490<br />

Byssocorticium pulchrum A + KHL 11710<br />

Piloderma byssinum A + KHL 8456<br />

Piloderma lanatum A + JS 24861<br />

Tylospora asterophora<br />

Bolete clade<br />

A + KHL 8566<br />

Coniophora arida 1,2,3,4 + MB-1823-sp A + KHL 8547<br />

B + AF098375<br />

C + SFC 990911-57<br />

Coniophora marmorata 2 +411<br />

Coniophora olivacea 2 + 402<br />

Coniophora puteana 1,2,3,4 + FP-102430sp<br />

Hydnomerulius pinastri 2 +412<br />

Leucogyrophana arizonica 2 + 404<br />

Leucogyrophana mollusca 2 + 447<br />

Leucogyrophana olivascens 2 + 397<br />

Leucogyrophana pulverulenta 2 +819<br />

Leucogyrophana romellii 2 + 401 A + KHL 11066<br />

Pseudomerulius aureus 1,2,3 + FP-103859sp A + B.Norden<br />

C + SFC 970927-4<br />

Serpula himantioides 1,2,3,4 + HHB-17587sp B + GEL 5395<br />

Serpula incrassata 2,4 + 406<br />

Serpula lacrymans<br />

Cantharelloid clade<br />

2 + 697<br />

Botryobasidium agg. candicans 2 + GEL 2090 B + GEL 2090<br />

Botryobasidium agg. vagum 2 + GEL 4181 B + GEL 4181<br />

Botryobasidium botryosum A + KHL 11081<br />

Botryobasidium candicans 2 + GEL 3083 B + GEL 3083<br />

Botryobasidium isabellinum 2 + GEL 2108 B + GEL 2108<br />

1,2,3,4 + GEL 2109 C + GEL 2109<br />

Botryobasidium sp. 2 + GEL 4698 B + GEL 4698<br />

2 + GEL 5132 B + GEL 5132<br />

Botryobasidium subcoronatum 2 + GEL 4673 B + GEL 4673<br />

2 + GEL 5397 B + GEL 5397<br />

1,2,3,4 + FCUG 1286 C + GEL 1286<br />

Botryobasidium vagum 2 +GEL2122<br />

Ceratobasidium sp. 1,2,3,4 + GEL 5602<br />

Haplotrichum conspersum A + KHL 11063<br />

C + SFC990123-15<br />

Membranomyces delectabilis A + KHL 11147<br />

Multiclavula mucidac 1,2,3 + DSH 93-056 C + DSH 93-056<br />

Piriformospora indicac 1,2,3 + DSM 11827<br />

Table 3 Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> and other selected reduced species among the major clades <strong>of</strong> Homobasidiomycetes and<br />

outgroups (Auriculariales and Dacrymycetales), as estimated by the present study, K.-H. Larsson et al. (2004), Langer (2002), Lim<br />

(2001; nuc-ssu rDNA analyses only), and Kim & Jung (2000)


18 Manfred Binder et al.<br />

Isolates b<br />

Clade<br />

Subclade/species Sequences a This study Other studies<br />

Serendipita vermiferad 2 + CBS 572.83<br />

Sistotrema alboluteum A+UK166<br />

Sistotrema brinkmannii 2 + GEL 3134 A + NH 11412/2206<br />

B + FO 31682<br />

B+GEL3134<br />

Sistotrema confluensc A + PV 174<br />

Sistotrema coronilla A + NH 7598/785<br />

Sistotrema diademiferum C + SFC990521-13<br />

Sistotrema eximum 1,2,3,4 + RGT 420<br />

Sistotrema sernanderi 2,3 + CBS 926.70<br />

‘Sistotrema muscicola’ 1,2,3 − FPL 8233 A + KHL 8794<br />

Thanatephorus praticola 1,2,3 + IMI-34886<br />

Tulasnella obscura B + GEL 4624<br />

Tulasnella pruinosa 2,3,4 + DAOM 17641<br />

Tulasnella sp. 2 + GEL 4461 B + GEL 4461<br />

2 + GEL 4745 B + GEL 4745<br />

Tulasnella violea 2,3 + DAOM 222001<br />

Uthatobasidium fusisporum 1,2,3 + HHB 102155sp<br />

Uthatobasidium sp.<br />

Corticioid clade<br />

2 + FO 30284 B + FO 30284<br />

Corticium roseum A + EL 13-98<br />

C+ eSFC 991231-9<br />

Dendrocorticium polygonioides 2 + FO 36469g B + FO 36469g<br />

Dendrocorticium roseocarneum 1,2,3,4 + FPL 1800 A + FPL 1800<br />

Dendrothele maculata A + HHB 10621<br />

Erythricium laetum A + GB/NH14530<br />

Galzinia incrustans 1,2,3,4 + HHB-12952sp<br />

Laetisaria fuciformis 1,2,3,4 + NJ-2 Jackson<br />

Marchandiomyces aurantiacus 2 + DePriest<br />

Marchandiomyces corallinus 2 + DePriest<br />

Marchandiomyces lignicola 2 + DePriest<br />

Punctularia strigoso-zonata 1,2 + HHB-11897sp A + LR 40885<br />

Vuilleminia comedens 1,2,3 + T-583 A + EL 1-99<br />

B + GEL 4110<br />

C + SFC 990326-21<br />

Vuilleminia macrospora<br />

Euagarics clade<br />

A + EL 21-99<br />

Amylocorticium cebennense A + JS 24813<br />

Amylocorticium subincarnatum A+˚AS-95<br />

Anomoporia bombycina A + GG u612<br />

Anomoporia kamtschatica A + KHL 11072<br />

Athelia bombacina C + no data<br />

Auriculariopsis amplac 2,3,4 + NH 1803<br />

‘Bulbillomyces farinosus’ 2, + FO 24378 B + FO 24378<br />

Calathella mangroveic 1,2,3 + 1-30-01Jones<br />

Calyptella campanulac B+<br />

Ceraceomyces tessulatus ?KHL 8474<br />

Chondrostereum purpureum 1,2,3,4 + HHB-13334sp A + EL 59-97<br />

B + GEL 5348<br />

C + SFC 971001-13<br />

C + CBS 427.72<br />

Table 3 Continued.


Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 19<br />

Isolates b<br />

Clade<br />

Subclade/species Sequences a This study Other studies<br />

Coronicium alboglaucum 2 + GEL 5058 A − NH 4208/377<br />

B − GEL 5058<br />

Cylindrobasidium laeve 1,2,3,4 + HHB-8633-T A + Ulvesund<br />

2 + GEL 5380 B + GEL 5380<br />

C + SFC990121-8<br />

Cylindrobasidium sp. 2 + GEL 5043 B + GEL 5043<br />

Cyphellopsis anomalac 1,2,3,4 + CBS 151.79 B + GEL 4169<br />

2 +GEL4169<br />

Cyphellopsis sp. c + GEL 4873 B + GEL 4873<br />

Cystostereum murraii C + CBS 257.73<br />

Dendrothele acerina 2 + GEL 5350 B + GEL 5350<br />

Dendrothele griseocana 2 + FP 101995-sp<br />

‘dendrotheloid’ sp. B + GEL 4798<br />

Favolaschia intermediac 1,2,3,4 + L-13421-sp<br />

Flagelloscypha minutissimac 1,2,4 + CBS 823.88<br />

Gloeostereum incarnatumc 2 + NH 3332<br />

Halocyphina villosac 1,2,3,4 + IFO 32086<br />

Henningsomyces candidus2 1,2,3,4 + GEL 4482 B + GEL 4482<br />

Hypochniciellum subillaqueatum A + KHL 8493<br />

Lachnella villosac 1,2,3,4 + CBS 609.87 B + FO 25147<br />

Merismodes fasciulatusc 1,2,3 + HHB-11894<br />

Mucronella calva B + GEL 4458<br />

Mycoacia copelandii C + SFC990710-6<br />

Phlebiella pseudotsugae A + NH 10396/1953<br />

Plicaturopsis crispac 1,2,3,4 ?FP 101310-sp B − GEL 4132<br />

C − SFC 990320-8<br />

Rectipilus fasciculatus B + GEL 4485<br />

Schizophyllum communec Gloeophyllum clade<br />

1,2,3,4 + DSH 96-026 B + GEL 4623<br />

Boreostereum radiatum C+CBS417.61<br />

Donkioporia expansa C + CBS 299.93<br />

Gloeophyllum sepiariumc 1,2,3,4 + DAOM 137861<br />

Heliocybe sulcatac 1,2,3 + D. 797<br />

Veluticeps berkeleyi<br />

Gomphoid-phalloid clade<br />

1,2,4 + RLG-7116-sp C + CBS 725.68<br />

Kavinia alboviridis A + EL 16-98<br />

Kavinia himantia 1,2,3,4 + FP-101479sp A + LL-98<br />

Kavinia sp. B − FO 25092<br />

Ramaricium alb<strong>of</strong>lavescens<br />

Hymenochaetoid clade<br />

1,2,4 + DAOM-17712<br />

Asterodon ferruginosum A + KHL 11176<br />

Basidioradulum radula 1,2,3 + FO 23507a A + NH 9453<br />

B+GEL4107<br />

C + no data<br />

Fibricium rude 2 + GEL 2121 B + GEL 2121<br />

Hyphoderma guttuliferum A + NH 12012/2438<br />

Hyphoderma praetermissum 1,2,3,4 − ‘L-16187-sp.’ A + NH 9536/1708<br />

B + GEL 4845<br />

Hyphodontia aff. breviseta 2 + GEL 4214 B + GEL 4214<br />

Hyphodontia alienata A + EL14-98<br />

Hyphodontia agg. alutaria B + GEL 2034<br />

Table 3 Continued.


20 Manfred Binder et al.<br />

Isolates b<br />

Clade<br />

Subclade/species Sequences a This study Other studies<br />

Hyphodontia alutaria 1,2,3,4 + ‘GEL 2071’ C + ‘GEL 2071’<br />

2 + GEL 4553<br />

Hyphodontia alutacea 2 + GEL 2397 B + GEL 2937<br />

Hyphodontia aspera 2 + GEL 2135 A + KHL 8530<br />

B + GEL 2135<br />

Hyphodontia barbajovis B + GEL 3806<br />

Hyphodontia borealis A + JS 26064<br />

Hyphodontia breviseta A + JS 17863<br />

Hyphodontia cineracea 2 + GEL 4875 B + GEL 4875<br />

Hyphodontia crustosa 2 + GEL 5360 B + GEL 5360<br />

Hyphodontia nespori 2 + GEL 4190 B + GEL 4190<br />

Hyphodontia niemelaei 2 + GEL 5068<br />

Hyphodontia nudiseta 2 + GEL 5302 B + GEL 5302<br />

Hyphodontia pallidula 2 + GEL 4533 B + GEL 4533<br />

Hyphodontia palmae 2 + GEL 4536 B + GEL 3456<br />

Hyphodontia quercina A + KHL 11076<br />

Hyphodontia sambuci 2 + FO 42008 B + GEL 2414<br />

Hyphodontia serpentiformis 2 + GEL 3307 B + GEL 3307<br />

Oxyporus populinusc 2 + FO 35584 B + FO 35584<br />

Repetobasidium mirificium 1,2,3,4 + FP-133558sp<br />

Resinicium bicolor 1,2,3 + FP-135104sp A + NH 11540/2228<br />

B − GEL 4664<br />

C + HHB 10103<br />

C + CBS 253.73<br />

Schizopora flavipora 2 + GEL 3545 B + GEL 3545<br />

Schizopora paradoxa 1,2,3 + GEL 2511 B + GEL 4188<br />

C − GEL 2511<br />

Schizopora radula 2,3 + GEL 3798<br />

Sphaerobasidium minutum 2 + GEL 5373 B + GEL 5373<br />

Subulicium sp. 2 + GEL 4808 B + GEL 4808<br />

Trichaptum abietinumc 1,2,3 + FPL 8973 B + GEL 5237<br />

Tubulicrinis gracillimus 1,2 + HHB-13180sp<br />

Tubulicrinis subulatus 2 + GEL 5286 A + KHL 11079<br />

B + GEL 5286<br />

Tubulicrinus sp.<br />

Hymenochaetaceae<br />

2 + GEL 5046 B + GEL 5046<br />

Fomitoporia punctata 2 + 85-74<br />

Fuscoporia contigua 2 + TW 699<br />

Fuscoporia ferrea 2 + 87-8<br />

Fuscoporia ferruginosa 2 + 82-930<br />

Hydnochaete olivacea 1,2,3 + CLA 02-003<br />

Hymenochaete acanthophysata 2 + CBS 925.96<br />

Hymenochaete adusta 2 + TAA 95-37<br />

Hymenochaete berteroi 2 + CBS 733.86<br />

Hymenochaete boidinii 2 + CBS 726.91<br />

Hymenochaete carpatica 2 + TW 27.9.97<br />

Hymenochaete cervinoidea 2 + CBS 736.86<br />

Hymenochaete cinnamomea 2 + LK 27.9.97 A + EL 6-99<br />

Hymenochaete corrugata 1,2,3 + FP-104124sp<br />

Hymenochaete cruenta 2 + HB 149/80<br />

Hymenochaete denticulata 2 + CBS 780.91<br />

Table 3 Continued.


Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 21<br />

Isolates b<br />

Clade<br />

Subclade/species Sequences a This study Other studies<br />

Hymenochaete duportii 2 + CBS 941.96<br />

Hymenochaete fuliginosa 2 + CBS 933.96<br />

Hymenochaete japonica 2 + CBS 499.76<br />

Hymenochaete nanospora 2 + CBS 924.96<br />

Hymenochaete ochromarginata 2 + CBS 928.96<br />

Hymenochaete pinnatifida 2 + CBS 770.91<br />

Hymenochaete pseudoadusta 2 + TAA 95-38<br />

Hymenochaete rhabarbarina 2 + GEL 4809 B + GEL 4809<br />

Hymenochaete rubiginosa 2 + TW 22.9.97<br />

Hymenochaete separabilis 2 + CBS 738.86<br />

Hymenochaete separata 2 + TAA 95-24<br />

Hymenochaete sp. 2 A + KHL 11024<br />

Mensularia hastifera 2 + 84-1023a<br />

Phellinidium ferrugine<strong>of</strong>uscum 2 + TN 6121<br />

Phellinus laevigatus 2 + TN 3260<br />

Phellopilus nigrolimitatusc 2 + 85-823<br />

Pseudochaete tabacina<br />

Jaapia<br />

2 + FPL 3000<br />

Jaapia argillacea<br />

Polyporoid clade<br />

core polyporoid clade<br />

1,2,3,4 + Reg 425<br />

Dendrodontia sp. 2 + GEL 4767 B + GEL 4767<br />

Dentocorticium sulphurellum 1,2,3,4 + FPL 11801 C + FPL 11801<br />

Diplomitoporus crustulinus C − CBS 443.48<br />

Diplomitoporus lindbladii 1,2 + KEW 212 B + GEL 4653<br />

Grammothele fuligo 2 + GEL 5391 B + GEL 5391<br />

Junghuhnia subundata 1,2,3,4 + LR-38938<br />

Lopharia cinerascens A + EL 63-97<br />

C + CBS 486.62<br />

Lopharia mirabilis 1,2,3 − FRI 330-T C + SFC 990623-11??<br />

Perenniporia medulla-panis 1,2,3 + CBS 45<br />

Wolfiporia cocos<br />

phlebioid clade<br />

1,2,3,4 + FPL 4198 C + ATCC 13490<br />

Anomoporia albolutescens C + CBS 337.63<br />

Bjerkandera adustac 1,2,3,4 + DAOM 21586 C + DAOM 21586<br />

Byssomerulis corium A + KHL 8593<br />

Byssomerulius sp. 2 + FO 22261 B + FO 22261<br />

Ceraceomyces eludens 2 + JS22780 A + JS 22780<br />

Ceraceomyces microsporus 2 + KHL 8473<br />

Ceraceomyces serpens 1,2,3 + FP-102285-sp A + KHL 8478<br />

Ceriporia purpurea 1,2,3,4 + DAOM 21318 C + DAOM 21316<br />

Ceriporia viridans 1,2,3,4 + FPL 7440 A + KHL 8765<br />

B + FO 24398<br />

Ceriporiopsis subvermispora 1,2,3,4 + FP 90031-sp. C − CBS 525.92<br />

Climacodon septentrionalec 2,4 + HHB 13438-sp<br />

2 + DSH 93-187<br />

Cystidiophora castanea C + SFC 980119-2<br />

Cystidiodontia isabellina 2 + GEL 4978 B + GEL 4978<br />

Gelatoporia pannocincta 2 + FCUG 2109<br />

Gloeoporus taxicolac 1,2,3,4 + KEW 213 A + 98<br />

C + SFC 000111-3<br />

C + SFC 950815-16<br />

Table 3 Continued.


22 Manfred Binder et al.<br />

Isolates b<br />

Clade<br />

Subclade/species Sequences a This study Other studies<br />

Irpex lacteus C + ??SFC 951007-39<br />

C + IFO 5367<br />

‘Lindtneria trachyspora’ 1,2,3,4 + CBS 290.85<br />

Lopharia spadicea C + CBS 474.48<br />

Mycoacia aff. fuscoatra 2 + GEL 5166 B + GEL 5166<br />

Mycoacia aurea 2 + GEL 5339 A + NH 14434<br />

B + GEL 5339<br />

Mycoacia uda B+GEL3102<br />

Mycoaciella bispora A + EL 13-99<br />

Oxyporus latemarginatus C + ATCC 9408<br />

Phanerochaete chrysorhiza 2 + T-484<br />

Phanerochaete chrysosporium 1,2,3,4 + FPL 5175 C + FPL 5175<br />

Phanerochaete sordida 2 + GEL 4160 B + GEL 4160<br />

C + SFC 980201-11<br />

Phlebia acerina 2 + FCUG 568<br />

Phlebia albomellea 1,2,3,4 + CBS 275.92<br />

Phlebia centrifuga 2 + FCUG 2396 B + AF 141618<br />

Phlebia chrysocreas 1,2,3 + FPL6080 A + KHL 10216<br />

Phlebia deflectens 2 + FCUG 1568<br />

Phlebia lilascens 2 + FCUG 1801<br />

Phlebia lindtneri 2 + FCUG 2413 A + NH 12239/2413<br />

Phlebia livida 2 + FCUG 2189<br />

Phlebia nitidula 2 + FCUG 2028<br />

Phlebia radiata 1,2,3,4 + FPL 6140 A + NH 12118/2423<br />

B + AF 141627<br />

B + GEL 5258<br />

C+FPL6140<br />

C + ??KCTC 6759<br />

Phlebia rufa 2 + FCUG 2397 A + NH 12094/2397<br />

Phleba sp. 2 + GEL 4492 B + GEL 4492<br />

Phlebia subochracea 2 + FCUG 1161<br />

Phlebia subserialis 2 + FCUG 1434<br />

Phlebia tremellosa 2,3 + FPL 4294 A + NH 10162/1813<br />

Phlebia uda 2 + FCUG 2452<br />

Phlebiopsis gigantea 1,2,3,4 + FP-101815-sp B + GEL 2500<br />

Pulcherricium caeruleum 1,2,3,4 + FPL 7658 C + ??IFO 4974<br />

C + FPL 7658<br />

Rigidoporus vinctus C + ATCC 32575<br />

Scopuloides hydnoides<br />

Antrodia clade<br />

2 + GEL 3139 B + GEL 3139<br />

B + GEL 3859<br />

Antrodia carbonicac 1,2,3,4 + DAOM 197828 C + DAOM 197828<br />

Antrodia serialisc 2 + GEL 4465 B + GEL 4465<br />

Antrodia xantha 1,2,3 + KEW 43<br />

Auriporia aurea 1,2,3,4 + FPL 7026<br />

Dacryobolus karstenii C + SFC 971006-13<br />

Dacryobolus sudans 1,2,3,4 + FP-150381<br />

Parmastomyces transmutans 1,2 + L-14910-sp<br />

Melanoporia nigra<br />

residual polypores (incertae sedis)<br />

C + CBS 341.63<br />

Antrodiella americana − CBS 386.51<br />

Antrodiella romellii 2 + GEL 4231 B + GEL 4231<br />

Table 3 Continued.


Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 23<br />

Isolates b<br />

Clade<br />

Subclade/species Sequences a This study Other studies<br />

Antrodiella semisupinac 2 + KEW 65 B + GEL 4513<br />

Candelabrochaete africana 1,2,3,4 + FP-102987-sp<br />

Ceriporiopsis gilvescens 2 + KEW 16<br />

Columnocystis abietina C + HHB 12622-sp<br />

Columnocystis ambigua C + CBS 136.63<br />

Cyphella digitalisc 2,3 + Thorn-617<br />

‘dendrotheloid’ sp. 2 + GEL 4798<br />

Hyphoderma definitum 2 + GEL 2898 B + GEL 2898<br />

Hyphoderma incrustatum A + KHL 6685/2029<br />

Hyphoderma nemorale A + EM 2793/2324<br />

Hyphoderma nudicephalum 2 + GEL 4727 B + GEL 4727<br />

Hyphoderma obtusum A + JS 17804<br />

Hyphoderma occidentale A + KHL 8469G<br />

Hyphoderma roseocremeum A + NH 10545/1945<br />

Hyphoderma setigerum 2 + GEL 4001 A + KHL 8544/1264<br />

B + GEL 4001<br />

Hypochnicium eichleri 2 + GEL 3137 B + GEL 3137<br />

Hypochnicium geogenium 2 + GEL 4081 B + GEL 4081<br />

Hypochnicium polonense 2 + GEL 4428 B + GEL 4428<br />

Hypochnicium sp. 2 + GEL 4741 B + GEL 4741<br />

Junghuhnia nitida 2 + FO 24179a B + FO 24179a<br />

C − SFC 940903-7<br />

Phanerochaete sanguinea 2 + FO 25062a B + FO 25062a<br />

Phlebia bresadolae 2 + FCUG 1242<br />

Phlebia grise<strong>of</strong>lavescens 2 ?FCUG 1907<br />

Phlebia queletii 2 + FCUG 722<br />

Physisporinus sanguinolentus 2 + GEL 4449 B + GEL 4449<br />

Skeletocutis amorphac 2 + KEW 51<br />

Skeletocutis subincarnatac B + GEL 3129<br />

Steccherinum fimbriatum<br />

Resinicium meridionale<br />

1,2,3,4 + FP-102075<br />

Resinicium meridionale<br />

Russuloid clade<br />

1,2,3,4 + FP-150236<br />

Acanthobasidium norvegicum 2 + T-623<br />

Acanthobasidium phragmitis 2 + CBS 233.86<br />

Acanth<strong>of</strong>ungus rimosus 2 + Wu 9601-1<br />

Acanthophysium bisporum 2 +T614<br />

Acanthophysium cerrusatum 1,2,3,4 + FPL11572 A + NH 11910/2350f Acanthophysium lividocaeruleum 2 + FP 100292<br />

Acanthophysium sp. 2 + GEL 5022 B + GEL 5022<br />

Aleurocystidiellum disciformis 2 + T529<br />

Aleurocystidiellum subcruentatum 2 + GEL 5288<br />

Aleurodiscus abietis 2 + T-330<br />

Aleurodiscus amorphus 2 + HHB 15282 C + no data<br />

Aleurodiscus botryosus 1,2,3 + CBS 195.91 C + CBS 195.91<br />

Aleurodiscus grantii 2 + T541<br />

Aleurodiscus lapponicus 2 + FP-100753-Sp<br />

Aleurodiscus laurentianus 2 + HHB 11235<br />

Aleurodiscus mirabilis 2 + Wu 9304<br />

Aleurodiscus oakesii 2 + FP 101813<br />

Aleurodiscus penicillatus 2 + T-322<br />

Table 3 Continued.


24 Manfred Binder et al.<br />

Isolates b<br />

Clade<br />

Subclade/species Sequences a This study Other studies<br />

Aleurodiscus weirii 2 + FP 134813<br />

Amylostereum areolatum c A + NH 8041/1080<br />

B − GEL 5265<br />

C + CBS 334.66<br />

Amylostereum chailettii 1,2,3 + FCUG 2025 C + CBS 480.83<br />

Amylostereum laevigatum 1,2,3,4 + CBS 623.8<br />

Asterostroma andinum 1,2,3,4 + HHB-9023-sp<br />

Asterostroma laxum A + EL 33-99<br />

Asterostroma medium 2 + CBS 119.50<br />

Asterostroma musicola A + GB/KHL9573<br />

Asterostroma ochroleuca 2 + HB 9/89<br />

Dendrothele candida 2 + HHB 3843-sp<br />

Dentipellis separans 1,2,3,4 + CBS 538.90<br />

Dichostereum durum 2 + CBS 707.81<br />

Dichostereum effuscatum 2 + CBS 516.80 A + GG 930915<br />

Dichostereum pallescens 1,2,3 + CBS 717.8<br />

Gloeocystidiellum aculeatum 2 + AF265546<br />

Gloeocystidiellum clavigerum 2 + JS 16976<br />

Gloeocystidiellum leucoxanthum 1,2,3,4 + CBS 454.86 C + CBS 454.86<br />

Gloeocystidiellum porosum 2,3 + CBS 510.85<br />

Gloeocystidiellum sp. 2 + NH 13258<br />

Gloeocystidiellum sp. 2 + NH 12972<br />

Gloeocystidiellum subaerisporum A + KHL 8695<br />

Gloeodontia discolor A + KHL 10099<br />

Gloeohypochnicium analogum A + NH 12140<br />

Gloeopeniophorella convolvens A + KHL 10103<br />

Gloiothele lactescens A + EL 8-98<br />

Lachnocladium sp. c A + KHL 10556<br />

Laurilia sulcata 1,2,4 + CBS 365.49<br />

Laxitextum bicolor 2 1,2,3,4 + CBS 284.73 A + NH 5166/1350<br />

C + CBS 284.73<br />

Peniophora cinerea A + NH 9808/1788<br />

Peniophora incarnata A + NH 10271/1909<br />

Peniophora nuda 1,2,3,4 + FPL 4756 C + FPL 4756<br />

‘Peniophora sp.’ 2 − GEL 4884 B − GEL 4884<br />

Scytinostroma aluta 1,2,3,4 + CBS 762.81 C + no data<br />

Scytinostroma caudisporum 1,2,4 + CBS 746.86<br />

Scytinostroma euarasiatico-galactinum 1,2,3 + CBS 666.84<br />

Scytinostroma ochroleucum 2 + CBS 767.86<br />

Scytinostroma odoratum A + KHL 8546<br />

Scytinostroma portentosum 2,3,4 + CBS 503.48 B − GEL 3225<br />

Scytinostroma renisporum 1,2,3,4 + CBS 770.86<br />

Stereum armeniacum c B + GEL 4857<br />

Stereum gausapatum c B+GEL4615<br />

C + CBS 348.39<br />

Stereum hirsutum c 1,2,3,4 + FPL 8805 A + NH 7960/1022<br />

B + GEL 4599<br />

C + FPL 8805<br />

Stereum ostrea c C + SFC 960921-8<br />

Stereum rugosum c 2 + HHB 13390-sp A + NH 11952/2353<br />

Stereum subtomentosum c C + ??SFC 990709-12<br />

Table 3 Continued.


Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 25<br />

Isolates b<br />

Clade<br />

Subclade/species Sequences a This study Other studies<br />

‘Vararia gallica’ − ?CBS 656.81<br />

Vararia insolita 1,2,3 + CBS 667.81<br />

Vararia investiens A + 164122<br />

‘Vararia ochroleucum’ 2 − CBS 683.81<br />

Vararia parmastoi 2,3 + CBS 647.84<br />

Vararia sphaericospora 2,3 + CBS 700.81<br />

Vesiculomyces citrinus A + EL 53-97<br />

Xenasma rimicola 1,2,3,4 + FP-133272-sp<br />

Xylobolus annosumc C + ??CBS 490.76<br />

Xylobolus frustulatus 2 + FP 106073<br />

Xylobolus subpileatus<br />

<strong>The</strong>lephoroid clade<br />

2 + FP 106735<br />

Amaurodon viridis A + 149664<br />

Pseudotomentella mucidula 2 + Koljalg 60<br />

Pseudotomentella nigra 2 + Koljalg 16<br />

Pseudotomentella ochracea 2 + GB, EL99-97 B + AF092847<br />

Pseudotomentella tristis A + 159485<br />

Tomentella botryoides A + KHL 8453<br />

Tomentella caerulea 2 + Koljalg 75<br />

Tomentella ferruginea 2 + Koljalg 78<br />

Tomentella stuposa 2 + Koljalg 21<br />

Tomentella terrestris A + 159557<br />

Tomentellopsis echinospora<br />

Trechisporoid clade<br />

A + KHL 8459<br />

Hyphodontia gossypina 2 ?GEL 5042 B + GEL 5042<br />

Porpomyces mucidus 2 + KHL 8471<br />

2 + KHL 8620<br />

2 + KHL 11062<br />

Sistotremastrum niveocremeum 2 + EL 96-97 A + EL 96-97<br />

2 + FO 29191g B + FO 36914<br />

B + FO 29191<br />

‘Sistotremastrum niveocremeum’ 2 − FO 36914<br />

Sistotremastrum sp. 2 + FO 36293b B + FO 36293b<br />

Sublicystidium longisporum 2 + GEL 3550 B + GEL 5217a<br />

Sublicystidium sp. A + KHL 10780<br />

Trechispora araneosa 2 + KHL 8570 A + KHL 8570<br />

Trechispora confinis 2 + KHL 11064 A + KHL 11064<br />

A + KHL 11197<br />

Trechispora farinacea 2 + KHL 8451 A + KHL 8793<br />

2 + KHL 8454<br />

2 + KHL 8793<br />

‘Trechispora farinacea’ 2 − HHB 9150<br />

Trechispora hymenocystis 2 + KHL 8795 A + KHL 8795<br />

Trechispora incisa 2 + EH 24/98<br />

Trechispora kavinioides 2 + KGN 981002 A + PN 1824<br />

Trechispora nivea A + G.Kristiansen<br />

Trechispora regularis 2 + KHL 10881 A + KHL 10881<br />

Trechispora sp. 2 + KHL 10715<br />

Trechispora subsphaerospora 2 + KHL 8511 A + KHL 8511<br />

Tubulicium vermiculare 2 + GEL 5015 B + GEL 5015<br />

Tubulicium vermiferum A + KHL 8714<br />

Table 3 Continued.


26 Manfred Binder et al.<br />

Isolates b<br />

Clade<br />

Subclade/species Sequences a This study Other studies<br />

Auriculariales<br />

Basidiodendron caesiocinereum 2 + GEL 5361 B + GEL 5361<br />

Basidiodendron sp. 2 + GEL 4674 B + GEL 4674<br />

Bourdotia sp. 2 + GEL 4777 B + GEL 4777<br />

Exidia thuretiana 2 + GEL 5242 B + GEL 5242<br />

Exidiopsis calcea 1,2 + HHB-15059-sp A + KHL 11075<br />

Heterochaete sp.<br />

Dacrymycetales<br />

2 + GEL 4813 B + GEL 4813<br />

Cerinomyces crustulinus A + KHL 8688<br />

Cerinomyces grandinioides 2 + GEL 4761 B + GEL 4761<br />

Paullicorticium ansatum<br />

Incertae sedis<br />

A + KHL 8553<br />

Deflexula subsimplexc 2 ?FO 41017 B − FO 41017<br />

Phlebiella sp. 2 ?GEL 4684 B − GEL 4684<br />

Radulomyces confluens A + KHL 8792<br />

Radulomyces molaris 2 − GEL 5394 A + ML 0499<br />

B + GEL 5394<br />

Radulomyces rickii A + JK 951007<br />

a Key to sequences: 1 = nuc-ssu, 2 = nuc-lsu, 3 = mt-ssu, 4 = mt-lsu; numbers in bold type indicate sequences newly reported in this study.<br />

b Symbols preceding isolate numbers: + indicates that species is placed in this clade; – indicates that species was placed in a different clade; the<br />

placement in this table reflects hypothesised correct placement; ? indicates that species is placed in this clade, but there is uncertainty about the<br />

placement or the identification <strong>of</strong> the isolate; ?? indicates that it is not certain if this isolate was the source <strong>of</strong> the sequence; names and strain numbers in<br />

quotation marks indicate that isolate may be misidentified. Other studies referenced: A = K.-H. Larsson et al. (2004); B = Langer (2002); C = Lim (2001)<br />

and Kim & Jung (2000).<br />

c Non-<strong>resupinate</strong> species.<br />

d As Sebacina vermifera.<br />

e As Laeticorticium roseocarneum.<br />

f As Aleurodiscus cerrusatus.<br />

g As Paullicorticium niveocremeum.<br />

erect <strong>forms</strong>. Readers interested in this subject should refer to<br />

Hibbett & Binder (2002) and K.-H. Larsson et al. (2004).<br />

This study included 39 genera <strong>of</strong> <strong>resupinate</strong> Homobasidiomycetes<br />

that are represented by more than one species<br />

(Table 3). Of these, 27 are not resolved as monophyletic<br />

(not considering certain taxa where misidentifications are<br />

likely; i.e. ‘Sistotrema muscicola’and‘Trechispora farinacea’,<br />

see below), which indicates how much work there is to be done<br />

in the taxonomy <strong>of</strong> <strong>resupinate</strong> Homobasidiomycetes (Fig. 4).<br />

<strong>The</strong>re are also many individual isolates whose placements<br />

conflicted with their expected positions based on morphology<br />

or molecular data from other isolates. Some <strong>of</strong> these results are<br />

probably due to misidentifications, which underscores the importance<br />

<strong>of</strong> studying multiple accessions <strong>of</strong> individual species<br />

when working with taxonomically challenging organisms.<br />

Other problematical results may be due to the usual vagaries <strong>of</strong><br />

molecular systematics, including PCR contamination and clerical<br />

error. Because we cannot positively identify the sources <strong>of</strong><br />

error in most cases, the problematical sequences are designated<br />

as ‘mislabelled’.<br />

1. Cantharelloid clade<br />

Support for the monophyly <strong>of</strong> the cantharelloid clade was<br />

discussed previously. <strong>The</strong> cantharelloid clade includes a seemingly<br />

heterogeneous assortment <strong>of</strong> taxa that have been regarded<br />

as Homobasidiomycetes or heterobasidiomycetes. Basidial<br />

morphology is remarkably diverse, including not only the various<br />

‘heterobasidioid’ <strong>forms</strong>, but also clavate or urniform holobasidia<br />

with six or eight sterigmata (e.g., Botryobasidium<br />

subcoronatum, Sistotrema brinkmannii), and elongate cylindric<br />

holobasidia with two to four sterigmata (e.g., Clavulina<br />

cinerea, Cantharellus cibarius). <strong>The</strong> topology in Fig. 4 implies<br />

that holobasidia may be derived within the cantharelloid<br />

clade, and therefore may not be homologous with holobasidia<br />

in the rest <strong>of</strong> the Homobasidiomycetes. Admittedly, this hypothesis<br />

is based on a weakly supported topology within the<br />

cantharelloid clade (Fig. 4). Nevertheless, it is consistent with<br />

observations that holobasidia in the cantharelloid clade are<br />

stichic (meaning that the axis <strong>of</strong> the first meiotic division is<br />

oriented parallel to the length <strong>of</strong> the basidium) whereas holobasidia<br />

in the remaining clades <strong>of</strong> Homobasidiomycetes are


chiastic (first meiotic spindle is oriented transversely) (Pine<br />

et al., 1999; Hibbett & Thorn, 2001).<br />

<strong>The</strong> cantharelloid clade includes a mixture <strong>of</strong> <strong>resupinate</strong><br />

and non-<strong>resupinate</strong> <strong>forms</strong>. Non-<strong>resupinate</strong> <strong>forms</strong> include<br />

Cantharellus spp., Craterellus cornucopoides, Hydnum<br />

spp., Clavulina cinerea and Multiclavula mucida. Resupinate<br />

<strong>forms</strong> occur in six well-supported clades: (1) Tulasnellales;<br />

(2) Piriformospora-Serendipita; (3) Ceratobasidiales;<br />

(4) Botryobasidium;(5)Sistotrema eximum and S. sernanderi;<br />

and (6) Sistotrema brinkmannii and ‘Sistotremastrum niveocremeum’<br />

(Fig. 4). <strong>The</strong> first three groups have already been<br />

discussed.<br />

Botryobasidium is represented by eleven sequences from<br />

at least four species, most <strong>of</strong> which were included in the<br />

analysis <strong>of</strong> E. Langer (2002). Basidia and basisidiospores<br />

are highly variable in Botryobasidium (G. Langer, 1994;<br />

G. Langer et al., 2000). For example, B. subcoronatum has six<br />

sterigmata per basidium and smooth navicular spores, whereas<br />

B. isabellinum has four sterigmata and spiny globose spores<br />

(G. Langer, 1994). Other Botryobasidium species have as few<br />

as two or as many as eight sterigmata (and in this way resemble<br />

Sistotrema) and spores that are elliptic, cylindrical, ovoid or<br />

‘bananiform’ (G. Langer et al., 2000). Nevertheless, many<br />

Botryobasidium species share anatomical characters, including<br />

a unique rectangular hyphal branching and production <strong>of</strong><br />

a Haplotrichum anamorph (G. Langer, 1994). Botryobasidium<br />

is strongly supported as monophyletic (Fig. 4).<br />

<strong>The</strong> two groups that contain Sistotrema isolates are not<br />

resolved as sister taxa. Comparable results were obtained by<br />

K.-H. Larsson et al. (2004), who suggested that the basidia<br />

with 6–8 sterigmata have been overemphasised as a generic<br />

character. <strong>The</strong> Sistotrema brinkmannii-‘Sistotremastrum niveocremeum’<br />

clade is placed as the sister group <strong>of</strong> Multiclavula<br />

mucida, which suggests the occurrence <strong>of</strong> a transformation<br />

between clavarioid and <strong>resupinate</strong> fruiting body <strong>forms</strong>. Two<br />

potentially mislabelled sequences involve these groups (Fig. 4,<br />

Table 3). <strong>The</strong> first is the isolate labelled ‘Sistotremastrum<br />

niveocremeum’ (FO36914), which is placed as the sister group<br />

<strong>of</strong> Sistotrema brinkmannii (Fig. 4). Two other isolates <strong>of</strong><br />

S. niveocremeum are included in this analysis, as well as one<br />

isolate labelled Sistotremastrum sp., and all three are tightly<br />

clustered in the trechisporoid clade. <strong>The</strong> second problem is<br />

an isolate labelled ‘Sistotrema muscicola’ (FPL8233) that is<br />

placed in the phlebioid clade. K.-H. Larsson et al. (2004) examined<br />

a different isolate <strong>of</strong> S. muscicola and found that it is<br />

placed in the cantharelloid clade, as are the three other species<br />

<strong>of</strong> Sistotrema included here.<br />

<strong>The</strong> composition <strong>of</strong> the cantharelloid clade in this study<br />

agrees with the findings <strong>of</strong> K.-H. Larsson et al. (2004) and<br />

E. Langer (2002), who sampled many <strong>of</strong> the same groups<br />

that were included in this study. Resupinate taxa that K.-H.<br />

Larsson et al. (2004) sampled that were not represented in the<br />

present study include Haplotrichum conspersum, which is an<br />

anamorph <strong>of</strong> Botryobasidium,andMembranomyces delectabilis,<br />

which was originally classified as a species <strong>of</strong> Clavulicium.<br />

Basidia in Clavulicium and Membranomyces have two<br />

to four sterigmata, which (when two-spored) resemble basidia<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 27<br />

<strong>of</strong> the coral fungus Clavulina (Eriksson & Ryvarden, 1973;<br />

K.-H. Larsson et al., 2004). Clavulicium has been placed<br />

in the Clavulinaceae (Donk, 1964; Parmasto, 1968), but<br />

Eriksson & Ryvarden (1973) retained it in the Corticiaceae.<br />

<strong>The</strong> analysis <strong>of</strong> K.-H. Larsson et al. (2004) placed<br />

M. delectabilis as the sister group <strong>of</strong> Clavulina cristata,which<br />

provides another example <strong>of</strong> a <strong>resupinate</strong>-clavarioid transformation<br />

in the cantharelloid clade. Another noteworthy taxon that<br />

was included in the analysis <strong>of</strong> K.-H. Larsson et al. (2004) but<br />

not the present study is Sistotrema confluens, which produces<br />

pileate-stipitate fruiting bodies with a poroid to hydnoid hymenophore.<br />

<strong>The</strong> analysis <strong>of</strong> K.-H. Larsson et al. (2004) placed<br />

S. confluens as the sister group <strong>of</strong> a clade containing Sistotrema<br />

muscicola and Hydnum repandum. Taken together, the<br />

results <strong>of</strong> K.-H. Larsson et al. (2004) and the present study suggest<br />

that there have been numerous transformations between<br />

<strong>resupinate</strong> and non-<strong>resupinate</strong> <strong>forms</strong> in the clade containing<br />

Sistotrema, Clavulicium, Multiclavula, Clavulina, Hydnum<br />

and Cantharellaceae (Fig. 4).<br />

Species in the cantharelloid clade have diverse nutritional<br />

modes. Botryobasidium is reportedly saprotrophic<br />

(G. Langer et al., 2000). <strong>The</strong> Ceratobasidiales and Tulasnellales<br />

include saprotrophs, orchid symbionts, liverwort symbionts<br />

and economically important plant pathogens (Stalpers &<br />

Andersen, 1996; Roberts, 1999; Hietala et al., 2001; Kristiansen<br />

et al., 2001; Wells & Bandoni, 2001; Bidartondo et al.,<br />

2003; Kottke et al., 2003). Sikaroodi et al. (2001) showed that<br />

a lichenicolous (lichen-inhabiting) asexual fungus, which they<br />

called “marchandiomyces-like”, is closely related to Thanatephorus<br />

praticola and “Rhizoctonia sp.”, and may therefore<br />

be a member <strong>of</strong> the Ceratobasidiales (other Marchandiomyces<br />

species are in the corticioid clade; see below). <strong>The</strong> Cantharellaceae,<br />

Clavulina and Hydnum are well known as ectomycorrhizal,<br />

and recently it has been demonstrated that Sebacinaceae<br />

also form ectomycorrhizae, orchid mycorrhizae, ericoid<br />

mycorrhizae and associations with liverworts (Warcup, 1988;<br />

Kristiansen et al., 2001; Berch et al., 2002; Selosse et al.,<br />

2002; Bidartondo et al., 2003; Kottke et al., 2003; Urban<br />

et al., 2003). Piriformospora indica is a recently discovered<br />

root symbiont with no known fruiting body that has been<br />

shown to promote the growth <strong>of</strong> some plant hosts (Varma et al.,<br />

1999). It is strongly supported as the sister group <strong>of</strong> Serendipita<br />

vermifera, but it does not form the mantle or hartig net associated<br />

with typical ectomycorrhizae. Finally, Multiclavula mucida<br />

is a basidiolichen (Gargas et al., 1995a; Lutzoni, 1997).<br />

Thus, the cantharelloid clade provides an excellent opportunity<br />

to study the evolution <strong>of</strong> symbioses in Homobasidiomycetes,<br />

including switches between diverse hosts and apparent shifts<br />

between parasitism and mutualism.<br />

2. Gomphoid-phalloid clade<br />

Monophyly <strong>of</strong> the gomphoid-phalloid clade is strongly<br />

supported in the core dataset analysis (bootstrap = 100%)<br />

but only weakly supported in the analysis <strong>of</strong> the full dataset<br />

(bootstrap = 69%). Nevertheless, the gomphoid-phalloid clade<br />

is strongly supported in other <strong>phylogenetic</strong> studies (Bruns<br />

et al., 1998; Hibbett et al., 2000; Humpert et al., 2001;


28 Manfred Binder et al.<br />

Binder & Hibbett, 2002; K.-H. Larsson et al., 2004). This<br />

relatively small clade contains an amazing diversity <strong>of</strong> gasteroid<br />

and hymenomycetous fruiting body <strong>forms</strong>, which have<br />

been discussed previously (Hibbett et al., 1997; Pine et al.,<br />

1999; Humpert et al., 2001). Resupinate taxa in the gomphoidphalloid<br />

clade in the present study include Kavinia himantia<br />

and Ramaricium alb<strong>of</strong>lavescens (Fig. 4). <strong>The</strong>se results agree<br />

with those <strong>of</strong> Bruns et al. (1998), Humpert et al. (2001) and<br />

K.-H. Larsson et al. (2004), who found strong support for<br />

the inclusion <strong>of</strong> Kavinia alboviridis in the gomphoid-phalloid<br />

clade. In contrast, the analysis <strong>of</strong> E. Langer (2002) did not resolve<br />

the gomphoid-phalloid clade as monophyletic and placed<br />

an isolate <strong>of</strong> ‘Kavinia sp.’ as the sister group <strong>of</strong> a clade including<br />

Coronicium alboglaucum and Scytinostroma portentosum,<br />

with strong support (bootstrap = 96%). Results <strong>of</strong> the present<br />

study suggest that these taxa are actually members <strong>of</strong> the<br />

russuloid clade (see below), suggesting either that Kavinia is<br />

polyphyletic (with one part in the russuloid clade) or the isolate<br />

<strong>of</strong> Kavinia studied by E. Langer (2002) was mislabelled.<br />

Ramaricium has a smooth, corticioid fruiting body,<br />

whereas the fruiting body <strong>of</strong> Kavinia is composed <strong>of</strong> spines<br />

arising from a loose subiculum (Eriksson & Ryvarden, 1976;<br />

Eriksson et al., 1981). Spores are variable in these genera,<br />

being either smooth or warted, and cyanophilous or not. <strong>The</strong><br />

occurrence <strong>of</strong> warted cyanophilous spores as well as green<br />

staining reactions to iron salts suggest a relationship to Gomphaceae<br />

(Eriksson, 1954; Donk, 1964; Ginns, 1979). <strong>The</strong> basal<br />

position <strong>of</strong> Kavinia in Fig. 4 is consistent with the view that<br />

<strong>resupinate</strong> <strong>forms</strong> are plesiomorphic in the gomphoid-phalloid<br />

clade, but the internal topology <strong>of</strong> the group is weakly supported<br />

in this study, as was also the case in the analyses <strong>of</strong> Bruns<br />

et al. (1998), Humpert et al. (2001) and K.-H. Larsson et al.<br />

(2004).<br />

Ginns (1979) and Ginns & Lefebvre (1993) reported that<br />

K. alboviridis and Ramaricium spp. are saprotrophs that are<br />

associated with a white rot and <strong>of</strong>ten occur on wood that is<br />

dry and suspended <strong>of</strong>f the ground. In contrast, Eriksson &<br />

Ryvarden (1976, p. 757) reported that the fruiting bodies <strong>of</strong><br />

K. himantia occur on well decayed wood and are “<strong>of</strong>ten spreading<br />

over loose debris and soil”, and Eriksson et al. (1981,<br />

p. 1246) reported that in North Europe R. alboochraceum has<br />

been collected “only in the basal parts <strong>of</strong> moss carpets”. <strong>The</strong>se<br />

observations suggest that Ramaricium and Kavinia have diverse<br />

ecologies. <strong>The</strong> fruiting behaviour reported by Eriksson<br />

and colleagues is consistent with a mycorrhizal habit (e.g. as in<br />

Tomentella), although there has been no demonstration (that<br />

we are aware <strong>of</strong>) that either Kavinia or Ramaricium <strong>forms</strong><br />

mycorrhizae.<br />

3. Trechisporoid clade<br />

<strong>The</strong> trechisporoid clade was discovered after the ‘overview’ <strong>of</strong><br />

Homobasidiomycetes by Hibbett & Thorn (2001). <strong>The</strong> trechisporoid<br />

clade is here represented by 20 nuc-lsu rDNA sequences,<br />

which originate from the studies <strong>of</strong> K.-H. Larsson<br />

(2001) and E. Langer (2002). In the present study and that<br />

<strong>of</strong> E. Langer (2002), the group received only moderate support<br />

(bootstrap = 69% and 76%, respectively), but in analyses<br />

by K.-H. Larsson (2001) and K.-H. Larsson et al. (2004) the<br />

group was strongly supported (bootstrap > 95%). E. Langer<br />

(2002) found 100% bootstrap support for two subclades, which<br />

he called the paullicorticioid and subulicystidioid clades, and<br />

K.-H. Larsson (2001) found strong support for the separation<br />

<strong>of</strong> Trechispora and Porpomyces mucidus (bootstrap = 100%).<br />

In the present study, the groups identified by K.-H. Larsson<br />

(2001) and E. Langer (2002) are interdigitated, with the<br />

paullicorticioid clade sensu E. Langer (which includes only<br />

S. niveocremeum and ‘Sistotremastrum sp.’) placed as the sister<br />

group <strong>of</strong> the rest <strong>of</strong> the trechisporoid clade, with strong<br />

support (Fig. 4).<br />

<strong>The</strong> higher-level placement <strong>of</strong> the trechisporoid clade<br />

is very unstable. Depending on the analysis, the trechisporoid<br />

clade is placed in or near the polyporoid clade, russuloid clade,<br />

hymenochaetoid clade or Auriculariales (K.-H. Larsson, 2001;<br />

Hibbett & Binder, 2002; E. Langer, 2002; K.-H. Larsson et al.,<br />

2004; Fig. 3). Two species in the trechisporoid clade, Sistotremastrum<br />

niveocremeum and Trechispora confinis, have been<br />

reported to have bipolar mating systems, which is a relatively<br />

rare condition in Homobasidiomycetes (Boidin & Lanquetin,<br />

1984; Nakasone, 1990a). <strong>The</strong> occurrence <strong>of</strong> bipolar mating<br />

systems in these species is consistent with the placement <strong>of</strong><br />

the trechisporoid clade in the phlebioid clade (a subgroup <strong>of</strong> the<br />

polyporoid clade; see below), as suggested by some analyses<br />

(Fig. 4, tree 2). Unfortunately, only nuc-lsu rDNA sequences<br />

are available for the trechisporoid clade. Obtaining sequences<br />

<strong>of</strong> additional genes from this group, as well as more data on<br />

septal pore ultrastructure and mating systems, should be a priority.<br />

<strong>The</strong> trechisporoid clade is composed primarily <strong>of</strong> <strong>resupinate</strong><br />

species with smooth, poroid or odontioid hymenophores,<br />

although some taxa in Trechispora become flabelliform<br />

or stipitate (K.-H. Larsson, 2001). Diverse anatomical<br />

characters occur in this clade, including hyphal cords and<br />

ampullate septa (Trechispora, Porpomyces), ampullate septa<br />

(Trechispora), rooted lyocystidia (Tubulicium), cystidia or<br />

subicular hyphae with various <strong>forms</strong> <strong>of</strong> crystalline ornamentation<br />

(Subulicystidium, Hyphodontia gossypina, Trechispora<br />

spp.) and basidia with six sterigmata (Sistotremastrum) (Keller,<br />

1985; G. Langer, 1994; K.-H. Larsson, 1994, 2001; E. Langer,<br />

2002; K.-H. Larsson et al., 2004). K.-H. Larsson et al. (2004)<br />

stated that there are no obvious anatomical, physiological or<br />

ecological characters that unite this group. <strong>The</strong> occurrence <strong>of</strong><br />

Hyphodontia gossypina in the trechisporoid clade is surprising<br />

because most species <strong>of</strong> Hyphodontia occur in the hymenochaetoid<br />

clade (see below). Based on cystidial morphology,<br />

E. Langer (2002) predicted that several other species <strong>of</strong> Hyphodontia<br />

will eventually be placed in the trechisporoid clade. One<br />

isolate in this study labelled ‘Trechispora farinacea’ (HHB<br />

9150) is placed in the euagarics clade (Fig. 4, Table 3). <strong>The</strong>re<br />

are three other isolates <strong>of</strong> T. farinacea clustered in the trechisporoid<br />

clade, indicating that the isolate in the euagarics clade<br />

is mislabelled.<br />

4. Hymenochaetoid clade<br />

<strong>The</strong> hymenochaetoid clade includes the Hymenochaetaceae,<br />

several groups <strong>of</strong> <strong>resupinate</strong> and poroid fungi that<br />

have traditionally been classified in the Corticiaceae and


Polyporaceae sensu Donk (1964), and possibly certain pileatestipitate<br />

<strong>forms</strong> that have been classified in the Tricholomataceae<br />

(Cantharellopsis, Omphalina, Rickenella) and<br />

Podoscyphaceae or Corticiacae (Cotylidia) (Reid, 1965;<br />

Talbot, 1973; Eriksson & Ryvarden, 1975; Singer, 1986;<br />

Hibbett & Thorn, 2001; Moncalvo et al., 2002; Redhead et al.,<br />

2002). <strong>The</strong> hymenochaetoid clade is weakly supported in both<br />

the core dataset analysis (bootstrap = 65%) and the analysis<br />

<strong>of</strong> the full dataset (bootstrap < 50%, Figs 1, 4), and a previous<br />

analysis <strong>of</strong> nuc-ssu rDNA alone failed to support monophyly<br />

<strong>of</strong> the group (Kim & Jung, 2000). Nevertheless, it received<br />

moderate support in the analysis <strong>of</strong> K.-H. Larsson et al. (2004,<br />

bootstrap = 77–86%), and strong support in the four-region<br />

analyses <strong>of</strong> Binder & Hibbett (2002, bootstrap = 95–98%),<br />

albeit with a much reduced sample <strong>of</strong> taxa.<br />

<strong>The</strong> Hymenochaetaceae has long been regarded as a natural<br />

group with several unifying features (Oberwinkler, 1977),<br />

including the xanthochroic reaction (blackening in KOH), absence<br />

<strong>of</strong> clamp connections, production <strong>of</strong> a white rot and presence<br />

<strong>of</strong> setae in many species. <strong>The</strong> close relationship between<br />

the Hymenochaetaceae and taxa that lack this combination <strong>of</strong><br />

features is surprising. Nevertheless, almost all the species <strong>of</strong><br />

the hymenochaetoid clade investigated have imperforate parenthesomes,<br />

which is consistent with their grouping based on<br />

rDNA sequences (Traquair & McKeen, 1978; Moore, 1980,<br />

1985; E. Langer & Oberwinkler, 1993; Müller et al., 2000;<br />

Hibbett & Thorn, 2001). One other species <strong>of</strong> the hymenochaetoid<br />

clade, Coltricia perennis, was reported to have perforate<br />

parenthesomes (Moore, 1980) but was later shown to<br />

have imperforate parenthesomes (Müller et al., 2000).<br />

<strong>The</strong> one member <strong>of</strong> the hymenochaetoid clade that<br />

has been demonstrated to have perforate parenthesomes is<br />

Hyphoderma praetermissum (Hallenberg, 1990; E. Langer &<br />

Oberwinkler, 1993). K.-H. Larsson et al. (2004) showed that<br />

H. praetermissum and H. guttuliferum are in the hymenochaetoid<br />

clade (however, their analysis also showed that other<br />

Hyphoderma spp. are in the polyporoid clade, see below).<br />

In contrast, the analysis <strong>of</strong> E. Langer (2002) suggested that<br />

H. praetermissum is outside <strong>of</strong> the hymenochaetoid clade and<br />

is the sister group <strong>of</strong> Resinicium bicolor. <strong>The</strong>se results may<br />

be a consequence <strong>of</strong> the high weight given to parenthesome<br />

type in the combined analysis <strong>of</strong> molecular and morphological<br />

characters by E. Langer (2002). <strong>The</strong> analysis <strong>of</strong> K.-H. Larsson<br />

et al. (2004) and the present study suggest that Resinicium<br />

is in the hymenochaetoid clade (Fig. 4, Table 3). This study<br />

included one isolate labelled ‘H. praetermissum’ (L-16187)<br />

that was placed in the athelioid clade; this is almost certainly<br />

a mislabelled isolate (Fig. 4, Table 3).<br />

<strong>The</strong>re are numerous <strong>resupinate</strong> <strong>forms</strong> within the Hymenochaetaceae.<br />

Most are in Hymenochaete, which is traditionally<br />

limited to taxa with a smooth hymenophore.<br />

Wagner & Fischer (2002a) showed that Hymenochaete is<br />

paraphyletic, and they suggested that Hydnochaete duportii<br />

and H. japonica (<strong>resupinate</strong> <strong>forms</strong> with hydnoid hymenophores)<br />

should be transferred to Hymenochaete, along with<br />

Stipitochaete damaecornis (pileate-stipitate with a smooth hymenophore),<br />

Cyclomyces fuscus, andC. tabacinus (pileate<br />

with a concentrically lamellate hymenophore). <strong>The</strong>y also<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 29<br />

demonstrated that Hymenochaete tabacina is distantly related<br />

to other species <strong>of</strong> Hymenochaete, and they erected the segregate<br />

genus Pseudochaete to accommodate it. Results <strong>of</strong><br />

the present study suggest that the <strong>resupinate</strong> species Hymenochaete<br />

corrugata and Hydnochaete olivacea are closely related<br />

to P. tabacina, and are therefore candidates for transfer<br />

to Pseudochaete (Fig. 4). Resupinate fruiting bodies also occur<br />

in other genera <strong>of</strong> Hymenochaetaceae (e.g. Phellinus, Fuscoporia<br />

and Asterodon), which indicates there have been numerous<br />

transformations between pileate and <strong>resupinate</strong> fruiting<br />

body <strong>forms</strong> in the Hymenochaetaceae, as described by<br />

Wagner & Fischer (2002a, b).<br />

<strong>The</strong> paraphyletic assemblage <strong>of</strong> ‘non-Hymenochaetaceae’<br />

in the hymenochaetoid clade is dominated by <strong>resupinate</strong><br />

<strong>forms</strong>, including Hyphodontia (by far the largest genus, with<br />

approximately 64 species; Kirk et al., 2001), Basidioradulum,<br />

Fibricium, Hyphoderma pro parte, Repetobasidium, Schizopora,<br />

Sphaerobasidium, Subulicium and Tubulicrinis (Fig. 4,<br />

Table 3). Hyphodontia and related taxa have been studied<br />

in detail using molecular and morphological approaches by<br />

E. Langer (1994, 1998, 2002) and E. Langer & Oberwinkler<br />

(1993). Most <strong>of</strong> the sequences <strong>of</strong> these taxa in this analysis<br />

were published by E. Langer (1998, 2002). Two sequences<br />

<strong>of</strong> Hyphodontia alutaria are included in this analysis. One<br />

isolate (GEL4553) is nested in a clade with H. pallidula and<br />

Schizopora flavipora, whereas the other (GEL2071) is grouped<br />

with Resinicium bicolor (FP-135104-Sp.). Both clades receive<br />

strong support (Fig. 4). Hyphodontia alutaria and H. pallidula<br />

are morphologically very similar (Eriksson & Ryvarden,<br />

1976), suggesting that isolate GEL2071 is mislabelled.<br />

<strong>The</strong>re is considerable variation in cystidia in these groups,<br />

including variation in position (tramal vs. hymenial), shape<br />

(tubular, capitate, rooted, etc.), and presence or absence <strong>of</strong><br />

crystalline incrustation (E. Langer, 1994). Cladistic analyses<br />

<strong>of</strong> morphological and molecular characters (E. Langer, 1994,<br />

1998, 2002) suggested that Hyphodontia is not monophyletic<br />

and that cystidial morphology can provide clues to relationships.<br />

<strong>The</strong> groups recognised by E. Langer (2002) are not<br />

resolved as monophyletic in this analysis (Fig. 4), suggesting<br />

that there may be more homoplasy in the evolution <strong>of</strong> anatomical<br />

features than previously realised.<br />

One noteworthy group in the hymenochaetoid clade<br />

is that containing Repetobasidium mirificum and Sphaerobasidium<br />

minutum (the latter represented by a sequence from<br />

E. Langer, 2002). Repetobasidium is distinguished by the production<br />

<strong>of</strong> ‘repeating’ basidia, which arise from inside the base<br />

<strong>of</strong> pre-existing spent basidia (Eriksson et al., 1981). <strong>The</strong> results<br />

<strong>of</strong> the present study support suggestions by Eriksson et al.<br />

(1981, 1984) that Sphaerobasidium and Repetobasidium are<br />

closely related, which were based on the shape <strong>of</strong> the basidia<br />

and the shared presence <strong>of</strong> capitate cystidia that are encrusted<br />

by oily exudates.<br />

Non-<strong>resupinate</strong> <strong>forms</strong> in the basal part <strong>of</strong> the hymenochaetoid<br />

clade in this study include Trichaptum and<br />

Oxyporus, which have been included in several studies using<br />

different isolates and molecular regions (Hibbett & Donoghue,<br />

1995; E. Langer, 2002; K.-H. Larsson et al., 2004; Wagner &<br />

Fischer, 2002b). <strong>The</strong> giant polypore <strong>of</strong> the Pacific Northwest


30 Manfred Binder et al.<br />

<strong>of</strong> the USA, Bridgeoporus nobilissimus, has also been shown<br />

to be a member <strong>of</strong> this group based on mt-ssu rDNA sequences<br />

(Redberg et al., 2003). Perhaps the most surprising taxa to be<br />

placed in the hymenochaetoid clade are certain minute agarics<br />

(Omphalina pro parte, Rickenella, Cantharellopsis) and<br />

stipitate stereoid <strong>forms</strong> (Cotylidia). Analyses by Moncalvo<br />

et al. (2002) and Redhead et al. (2002) group these taxa with<br />

representatives <strong>of</strong> the hymenochaetoid clade, but with weak<br />

bootstrap support (60–68%). Nevertheless, K.-H. Larsson<br />

et al. (2004) included a sequence <strong>of</strong> Rickenella fibula, which<br />

was also placed in the hymenochaetoid clade, with moderate<br />

support (bootstrap = 77–86%).<br />

Many members <strong>of</strong> the hymenochaetoid clade fruit on substantial<br />

woody substrates, produce a vigorous white rot, and<br />

act as saprotrophs or parasites <strong>of</strong> woody plants, including timber<br />

pathogens (e.g. Phellinus weirii, which causes laminated<br />

root rot) and the causal agent <strong>of</strong> the ‘black measles’ grapevine<br />

disease (Fomitoporia punctata; Larignon & Dubos, 1997).<br />

<strong>The</strong> pileate-stipitate polypore Coltricia perennis fruits on soil<br />

and has been reported to form ectomycorrhizae (Danielson,<br />

1984). We can only guess at the nutritional mode <strong>of</strong> many<br />

<strong>of</strong> the <strong>resupinate</strong> <strong>forms</strong>, however, especially those that produce<br />

ephemeral fruiting bodies on well-decayed wood (e.g.<br />

Repetobasidium mirificum) (Eriksson et al., 1981). Another<br />

ecologically enigmatic member <strong>of</strong> the hymenochaetoid clade<br />

is Bridgeoporus nobilissimus, which is associated with a brown<br />

rot but cannot be cultivated from spores (Burdsall et al., 1996;<br />

Redberg et al., 2003). <strong>The</strong> agaricoid and stipitate stereoid<br />

<strong>forms</strong> are associated with mosses and liverworts, indicating<br />

yet another nutritional mode in this clade (Redhead et al.,<br />

2002). Finally, the <strong>resupinate</strong> <strong>forms</strong> Hyphoderma praetermissum<br />

and H. guttuliferum are reported to trap and kill nematodes<br />

by means <strong>of</strong> adhesive stephanocysts (Tzean & Liou, 1993).<br />

5. Polyporoid clade<br />

<strong>The</strong> polyporoid clade contains one <strong>of</strong> the major concentrations<br />

<strong>of</strong> <strong>resupinate</strong> Homobasidiomycetes, including true corticioid<br />

<strong>forms</strong> (those with smooth hymenophores), as well as<br />

<strong>resupinate</strong> polypores that have previously been classified in<br />

Poria s. lat. Other taxa in the polyporoid clade include pileate<br />

polypores, agarics (Lentinus, Panus), stipitate stereoid <strong>forms</strong><br />

(Podoscypha) and the ‘cauliflower fungus’ Sparassis. Members<br />

<strong>of</strong> the group are ecologically important as wood decayers<br />

and timber pathogens. <strong>The</strong>re are no documented mycorrhizal<br />

species.<br />

<strong>The</strong> monophyly <strong>of</strong> the polyporoid clade is controversial.<br />

Several single-gene analyses have suggested that the group is<br />

polyphyletic or paraphyletic, including studies based on nuclsu<br />

rDNA (Hibbett & Vilgalys, 1993; E. Langer, 2002; K.-H.<br />

Larsson et al., 2004), nuc-ssu rDNA (Kim & Jung, 2000)<br />

and mt-ssu rDNA (Hibbett & Donoghue, 1995). Nevertheless,<br />

in the four-region analyses <strong>of</strong> Binder & Hibbett (2002) and<br />

the present study (Fig. 1) the group has consistently been<br />

resolved as monophyletic. In analyses <strong>of</strong> the full dataset in<br />

the present study, the polyporoid clade is either monophyletic<br />

or paraphyletic. In the latter case, the trechisporoid clade is<br />

nested within the polyporoid clade (Figs 3, 4).<br />

Numerous subgroups have been resolved within the polyporoid<br />

clade and have been given informal and Linnaean names<br />

(Hibbett & Donoghue, 1995; Boidin et al., 1998; Kim & Jung,<br />

2000; Hibbett & Donoghue, 2001; Lim, 2001; E. Langer, 2002;<br />

K.-H. Larsson et al., 2004; de Koker et al., 2003). <strong>The</strong> polyporoid<br />

clade is here divided into three main groups, the core<br />

polyporoid clade, Antrodia clade and phlebioid clade. Relationships<br />

among these groups are not well resolved, and some<br />

‘residual’ taxa are not assigned to any group. <strong>The</strong> following<br />

discussion emphasises three suites <strong>of</strong> characters that have been<br />

important in polypore taxonomy: decay mode (white rot vs.<br />

brown rot), mating system (bipolar vs. tetrapolar), and hyphal<br />

system (mono-, di- or trimitic construction).<br />

<strong>The</strong> core polyporoid clade is equivalent to a clade that<br />

Hibbett & Donoghue (1995) recognised based on mt-ssu rDNA<br />

sequences, which they called “group 1” (also see Hibbett &<br />

Donoghue, 2001; Binder & Hibbett, 2002). It is also equivalent<br />

to the “polyporoid clade” sensu K.-H. Larsson et al.<br />

(2004), the Polyporaceae sensu Kim & Jung (2000) and the<br />

“Trametes group” <strong>of</strong> Lim (2001). <strong>The</strong> clades “polyporoid 14”<br />

and “poroid-dendrotheloid 24” <strong>of</strong> E. Langer (2002) are also<br />

in this group, as are the Perenniporiales and Trametales sensu<br />

Boidin et al. (1998). <strong>The</strong> core polyporoid clade is strongly<br />

supported in the analysis <strong>of</strong> the core dataset (bootstrap = 95%,<br />

Fig. 1), where it is represented by 16 species, but it is weakly<br />

supported in the analysis <strong>of</strong> the full dataset, where it is represented<br />

by 29 species (Fig. 4).<br />

Most taxa in the core polyporoid clade produce a white<br />

rot, are dimitic or trimitic, and have a tetrapolar mating system<br />

(Gilbertson & Ryvarden, 1986, 1987; Hibbett & Donoghue,<br />

1995, 2001; Fig. 4). Apparent exceptions include Diplomitoporus<br />

lindbladii, which is bipolar, and Wolfiporia cocos,which<br />

produces a brown rot (Gilbertson & Ryvarden, 1986, 1987).<br />

However, the analysis <strong>of</strong> Kim & Jung (2000) suggested that<br />

Wolfiporia cocos is not in the core polyporoid clade, but rather<br />

is closely related to Laetiporus sulphureus and Phaeolus schweinitzii<br />

(Cantharellus tubaeformis is also in this group in their<br />

analysis, which is surely an artefact). Wolfiporia cocos, L. sulphureus<br />

and P. schweinitzii are united by the production <strong>of</strong> a<br />

brown rot and the habit <strong>of</strong> growing as saprotrophs or pathogens<br />

on the roots and bases <strong>of</strong> living trees (Gilbertson & Ryvarden,<br />

1986, 1987), which suggests that they may be closely related.<br />

<strong>The</strong> isolate <strong>of</strong> ‘W. cocos’ in this analysis is strongly supported<br />

as a member <strong>of</strong> the polyporoid clade (Fig. 1), however, and it<br />

might be mislabelled. Thus, the placement <strong>of</strong> Wolfiporia cocos<br />

needs to be tested with additional isolates.<br />

In the analysis <strong>of</strong> the full dataset, Sparassis spathulata<br />

and S. brevipes are nested within the core polyporoid clade<br />

(Fig. 4). This result contradicts the results <strong>of</strong> the analysis <strong>of</strong><br />

the core dataset (Fig. 1), which groups Sparassis and Laetiporus<br />

(Fig. 1), as well as a multi-gene analysis (mt-rDNA,<br />

nuc-rDNA and RNA polymerase II; Wang et al., 2004), which<br />

groups Sparassis, Phaeolus and Laetiporus. Sparassis spp.<br />

produce a brown rot and form fruiting bodies at the bases <strong>of</strong><br />

living trees, as do Phaeolus and Laetiporus (and Wolfiporia).<br />

<strong>The</strong>refore, the placement <strong>of</strong> Sparassis in the analysis <strong>of</strong> the<br />

core dataset (Fig. 1) is probably correct. Another problematical<br />

result in the core polyporoid clade concerns the isolate labelled<br />

‘Gloeophyllum trabeum’, which is nested with three isolates<br />

<strong>of</strong> Ganoderma spp. (Fig. 4). Gloeophyllum trabeum has a bipolar<br />

mating system, dimitic construction, brown context, and


produces a brown rot, all <strong>of</strong> which justify its placement in<br />

Gloeophyllum (Gilbertson & Ryvarden, 1986). It is likely that<br />

the ‘G. trabeum’ isolate included here is actually a Ganoderma<br />

that has been mislabelled. Another incongruous taxon<br />

in this clade is Physalacria inflata, which produces minute,<br />

capitate, monomitic fruiting bodies (Singer, 1986). <strong>The</strong>re are<br />

no obvious characters that would support its strongly supported<br />

placement here as the sister group <strong>of</strong> Wolfiporia cocos<br />

(Figs 1, 4), which should be confirmed with additional isolates<br />

and genes.<br />

Resupinate <strong>forms</strong> in the core polyporoid clade include<br />

polypores (Diplomitoporus lindbladii, Grammothele fuligo,<br />

Junghuhnia subundata, Perenniporia medulla-panis and Wolfiporia<br />

cocos) and corticioid <strong>forms</strong> (Dendrodontia sp. and<br />

Dentocorticium sulphurellum). Dendrodontia sp. and Dentocorticium<br />

sulphurellum are strongly supported as sister taxa<br />

(Fig. 4), which is consistent with suggestions that Dendrodontia<br />

and Dentocorticium are closely related (Boidin & Gilles,<br />

1998; Fig. 4). Dentocorticium sulphurellum is dimitic with<br />

skeletal hyphae and has dendrohyphidia (Larsen & Gilbertson,<br />

1974). Hjortstam & Ryvarden (1980a, b) suggested that it resembles<br />

Scytinostroma, but that is in the russuloid clade (see<br />

below).<br />

Non-<strong>resupinate</strong> <strong>forms</strong> in the core polyporoid clade include<br />

Polyporaceae (e.g. Polyporus spp., Pycnoporus cinnabarinus,<br />

Lenzites betulina, Fomes fomentarius), Ganodermataceae,<br />

and Lentinus s. str. A clade containing the polypores<br />

Tyromyces chioneus (pileate) and Skeletocutis amorpha<br />

(<strong>resupinate</strong> to effused-reflexed) is resolved as the sister group<br />

<strong>of</strong> the core polyporoid clade (Fig. 4). This placement is weakly<br />

supported, but it is consistent with the possession <strong>of</strong> dimitic<br />

hyphal construction, tetrapolar mating system, and white rot<br />

in both T. chioneus and S. amorpha (Gilbertson & Ryvarden,<br />

1987).<br />

<strong>The</strong> term “Antrodia clade” was introduced by Hibbett &<br />

Donoghue (2001) for a group <strong>of</strong> 14 species that produce a<br />

brown rot (except Grifola frondosa, which produces a white<br />

rot) and have bipolar mating systems (as far as is known). <strong>The</strong><br />

Antrodia clade contains several groups that have been recognised<br />

previously, including “group 6” <strong>of</strong> Hibbett & Donoghue<br />

(1995), the Fomitopsidaceae and Laetiporaceae sensu Kim &<br />

Jung (2000), the Fomitopsidales and Phaeolales sensu Boidin<br />

et al. (1998), the clade “polyporoid 15” <strong>of</strong> E. Langer (2002),<br />

and the “Brown rot group” <strong>of</strong> Lim (2001). In the present<br />

study, the Antrodia clade contains 26 species with support<br />

in the analysis <strong>of</strong> the full dataset. In the analysis <strong>of</strong> the core<br />

dataset, the entire Antrodia clade is again weakly supported<br />

(bootstrap = 65%), but the node above Antrodia carbonica<br />

(the sister group to the rest <strong>of</strong> the clade) is strongly supported<br />

(bootstrap = 97%; Fig. 1).<br />

At least two species in the Antrodia clade produce a<br />

white rot including Climacocystis sp. and Grifola frondosa<br />

(Gilbertson & Ryvarden, 1986). <strong>The</strong> apparent reversals to<br />

white rot in these taxa suggests that their brown rot precursors<br />

may have retained the genes for lignin-degrading enzymes<br />

(Hibbett & Donoghue, 2001). <strong>The</strong> white rot polypore Ischnoderma<br />

benzoinum is placed in the Antrodia clade in some<br />

topologies, but in others it is placed among other white rot species<br />

in the ‘residual’ polypores (Fig. 4; see below). <strong>The</strong> latter<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 31<br />

placement suggests a more parsimonious scenario for the evolution<br />

<strong>of</strong> decay modes.<br />

Six species in the Antrodia clade are reported to be<br />

tetrapolar, including Amylocystis lapponica, Climacocystis<br />

sp., Dacryobolus sudans, Parmastomyces transmutans,<br />

Oligoporus balsameus and O. caesius (Gilbertson &<br />

Ryvarden, 1986, 1987; Nakasone, 1990a). <strong>The</strong> mingled <strong>distribution</strong><br />

<strong>of</strong> bipolar and tetrapolar mating systems in the Antrodia<br />

clade (Fig. 4) suggests that mating loci in this group are subject<br />

to rearrangements or ‘self-compatible’ mutations that can<br />

interconvert bipolar and tetrapolar systems (Hibbett & Thorn,<br />

2001).<br />

Resupinate <strong>forms</strong> in the Antrodia clade include the polypores<br />

Antrodia carbonica, A. xantha, Auriporia aurea, Parmastomyces<br />

transmutans, and the corticioid <strong>forms</strong> Dacryobolus<br />

sudans, Phlebia grise<strong>of</strong>lavescens and an isolate labelled<br />

‘dendrotheloid sp.’ from the work <strong>of</strong> E. Langer (2002). <strong>The</strong><br />

placement <strong>of</strong> P. grise<strong>of</strong>lavescens away from other species <strong>of</strong><br />

Phlebia in the phlebioid clade is striking, but Eriksson et al.<br />

(1981, p. 1122) indicated that it is “not a very typical member<br />

<strong>of</strong> the genus”. Data on decay type would be useful to evaluate<br />

its placement, because other species <strong>of</strong> Phlebia are associated<br />

with a white rot (Nakasone, 1990a; Ginns & Lefebvre, 1993).<br />

Another potentially problematical taxon in the Antrodia clade<br />

is Cyphella digitalis (type species <strong>of</strong> the Cyphellaceae). <strong>The</strong>re<br />

are no obvious characters that support this placement, which<br />

should be tested. Finally, the analysis <strong>of</strong> K.-H. Larsson et al.<br />

(2004) suggested that the stereoid fungus Lopharia cinerescens<br />

is in the core polyporoid clade, whereas the analysis <strong>of</strong> Kim &<br />

Jung (2000) suggested that L. spadicea is in the phlebioid<br />

clade. If both results are correct, then Lopharia is polyphyletic.<br />

<strong>The</strong> delimitation <strong>of</strong> the phlebioid clade adopted here deviates<br />

slightly from that <strong>of</strong> K.-H. Larsson et al. (2004), who<br />

introduced the term. Here, it is based on the results <strong>of</strong> the<br />

analysis <strong>of</strong> the core dataset, which recovered a strongly supported<br />

clade (bootstrap = 91%) that contains 12 species, including<br />

taxa that Hibbett & Donoghue (1995, 2001) identified<br />

as “group 5” or the “Phlebia clade”. In the analysis <strong>of</strong> the full<br />

dataset, the phlebioid clade is a weakly supported group <strong>of</strong><br />

44 isolates, which is the least inclusive clade that contains all<br />

12 species <strong>of</strong> the phlebioid clade resolved in the analysis <strong>of</strong><br />

the core dataset (Figs 1, 4). <strong>The</strong> phlebioid clade overlaps with<br />

the Phanerochaetaceae and Steccherinaceae sensu Kim & Jung<br />

(2000), the Phanerochaetales and Phlebiales sensu Boidin et al.<br />

(1998), clades “phanerochaetoid 19.1” and “phlebioid 19.2” <strong>of</strong><br />

E. Langer (2002), the “Irpex group”, “Phanerochaete group”,<br />

and “Phlebia group” <strong>of</strong> Lim (2001), and clades A-D (clade A<br />

was called the “Phanerochaete core group”) <strong>of</strong> de Koker et al.<br />

(2003).<br />

Members <strong>of</strong> the phlebioid clade are distinguished by<br />

the combination (in most taxa) <strong>of</strong> a monomitic construction,<br />

bipolar mating system and production <strong>of</strong> a white rot (Hibbett &<br />

Donoghue, 2001; K.-H. Larsson et al., 2004). Taxa that have<br />

been demonstrated to have bipolar mating systems include<br />

Bjerkandera adusta, Ceraceomyces serpens, Gelatoporia pannocincta,<br />

Lopharia spadicea, Phlebia centrifuga, P. radiata,<br />

P. rufa, P. subochracea, P. subserialis and P. tremellosa<br />

(Domanski, 1972; Gilbertson & Ryvarden, 1986; Nakasone,


32 Manfred Binder et al.<br />

1990a; Ginns & Lefebvre, 1993). However, Phlebia chrysocreas<br />

has been listed as “possibly tetrapolar”, and Irpex lacteus,<br />

Phanerochaete chrysosporium and P. sordida have been suggested<br />

to be homothallic (Nakasone, 1990a: 252). Hyphal anatomy<br />

is also variable in the phlebioid clade; Lopharia spadicea<br />

and Rigidoporus vinctus, which Kim & Jung (2000) showed<br />

to be in the phlebioid clade, are both dimitic with skeletal<br />

hyphae (Eriksson & Ryvarden, 1976; Gilbertson & Ryvarden,<br />

1987).<br />

<strong>The</strong> phlebioid clade contains many <strong>resupinate</strong> taxa, including<br />

the large corticioid genera Phanerochaete (63 spp.)<br />

and Phlebia (50 spp., Kirk et al., 2001), neither <strong>of</strong> which is resolved<br />

as monophyletic (Fig. 4). Other corticioid taxa include<br />

Byssomerulius sp., Ceraceomyces spp., Gloeoporus taxicola,<br />

Mycoacia spp., Phlebiopsis gigantea, Pulcherricium caeruleum<br />

and Scopuloides hydnoides (Fig. 4, Table 3). Eriksson<br />

and colleagues (Eriksson & Ryvarden, 1973, 1976; Eriksson<br />

et al., 1978, 1981, 1984) commented on similarities among<br />

many <strong>of</strong> these genera and Phlebia and Phanerochaete, particularly<br />

with regard to hymenial anatomy (with basidia forming<br />

a dense palisade).<br />

One potentially problematic isolate in the phlebioid<br />

clade is that <strong>of</strong> Lindtneria trachyspora, which is a <strong>resupinate</strong><br />

form. Lindtneria trachyspora was expected to cluster with<br />

the false truffle Stephanospora caroticolor, but in this analysis<br />

S. caroticolor is placed in the athelioid clade (see below;<br />

Fig. 4). Lindtneria trachyspora and S. caroticolor share a characteristic<br />

coarse ornamentation <strong>of</strong> the spores (Oberwinkler &<br />

Horak, 1979; Jülich, 1981) and an uncommon chemical compound<br />

in fungi, 2-chlor-4-nitrophenol (Hellwig: 1999: 110).<br />

Moreover, analyses with additional L. trachyspora isolates<br />

and the S. caroticolor sequence from the present study (K.-H.<br />

Larsson, unpublished) suggest that L. trachyspora is closely related<br />

to S. caroticolor, as well as two species <strong>of</strong> the <strong>resupinate</strong><br />

genus Cristinia. All three genera have a cyanophilous granulation<br />

in immature basidia and strongly cyanophilous spore<br />

walls. Based on these characters, Eriksson & Ryvarden (1975)<br />

suggested that Cristinia and Lindtneria might be related. Thus,<br />

it is likely that the isolate <strong>of</strong> ‘L. trachyspora’ used in this study<br />

is mislabelled.<br />

Other problematical results in the phlebioid clade concern<br />

the isolates labelled Athelia arachnoidea, A. epiphylla, Sistotrema<br />

muscicola and Peniophora sp., which were expected to<br />

be placed in the athelioid, cantharelloid and russuloid clades<br />

(see those sections). It is likely that all four are mislabelled.<br />

Resupinate polypores in the phlebioid clade include<br />

Ceriporia spp., Ceriporiopsis subvermispora and Gelatoporia<br />

pannocincta (Fig. 4). Pileate polypores include Bjerkandera<br />

adusta, Climacodon septentrionale, Hapalopilus nidulans and<br />

Rigidoporus vinctus (Fig. 4). In addition, Kim & Jung (2000)<br />

showed that Oxyporus latemarginatus is in the phlebioid clade<br />

and is closely related to Rigidoporus vinctus. Other studies<br />

have suggested that Oxyporus populinus is in the hymenochaetoid<br />

clade and is closely related to Bridgeoporus nobilissimus,<br />

which was formerly placed in Rigidoporus (Fig. 4;<br />

Hibbett & Donoghue, 1995; Burdsall et al., 1996; Wagner &<br />

Fischer, 2002b; Redberg et al., 2003). Collectively, these results<br />

suggest that Oxyporus and Rigidoporus s. lat. are poly-<br />

phyletic, with some species in the polyporoid clade and others<br />

in the hymenochaetoid clade.<br />

Twenty-three ‘residual’ species in the polyporoid clade<br />

could not be placed in the core polyporoid clade, Antrodia<br />

clade or phlebioid clade (Fig. 4). Resupinate <strong>forms</strong> among<br />

these taxa include the corticioid <strong>forms</strong> Hyphoderma spp.,<br />

Hypochnicium spp., Candelabrochaete africana, Phanerochaete<br />

sanguinea, Phlebia bresadolae, andP. queletii, the<br />

hydnoid fungus Spongipellis pachyodon, and the polypores<br />

Antrodiella romellii, Ceriporiopsis gilvescens, Junghuhnia<br />

nitida and Physisporinus sanguinolentus (Fig. 4). Pileate taxa<br />

include polypores (Abortiporus biennis, Albatrellus syringae,<br />

Meripilus giganteus), agarics (Panus rudis) and stipitate stereoid<br />

<strong>forms</strong> (Podoscypha petalodes). <strong>The</strong>se taxa overlap with<br />

the Steccherinaceae and Podoscyphaceae sensu Kim & Jung<br />

(2000), the Hyphodermatales and Podoscyphales sensu Boidin<br />

et al. (1998), and clades “hyphodermoid 20–23”, which formed<br />

a paraphyletic assemblage in the analysis <strong>of</strong> E. Langer (2002).<br />

In the present analysis, the residual taxa and phlebioid clade<br />

form a weakly supported monophyletic group (Fig. 4) that<br />

corresponds to the phlebioid clade sensu K.-H. Larsson et al.<br />

(2004).<br />

<strong>The</strong> Podoscyphaceae <strong>of</strong> Kim & Jung (2000) is a weakly<br />

supported group (bootstrap = 56%) that includes Cymatoderma<br />

caperatum (a stipitate stereoid form), along with Podoscypha<br />

petalodes and Panus rudis. Boidin et al. (1998) also<br />

found a close relationship between Podoscypha and Cymatoderma,aswellasHypochnicium<br />

cystidiatum. An isolate identified<br />

as C. caperatum is included in the present analysis, but<br />

it is placed in the russuloid clade (Fig. 4). Based on the results<br />

<strong>of</strong> Kim & Jung (2000) and Boidin et al. (1998), it is likely that<br />

the isolate <strong>of</strong> ‘C. caperatum’ in this study is mislabelled.<br />

With additional data, it is possible that some <strong>of</strong> the residual<br />

taxa will be placed in the phlebioid or core polyporoid<br />

clades, but probably not the Antrodia clade, which includes<br />

mostly brown rot taxa. For example, Hyphoderma spp., which<br />

are monomitic corticioid <strong>forms</strong> that have bipolar mating systems,<br />

may be correctly placed in the phlebioid clade, as suggested<br />

by K.-H. Larsson et al. (2004). <strong>The</strong> same could be said<br />

for Spongipellis pachyodon, which is also monomitic and bipolar<br />

(Gilbertson & Ryvarden, 1987). In contrast, Junghuhnia<br />

nitida and Panus rudis are dimitic and have tetrapolar mating<br />

systems (Gilbertson & Ryvarden, 1986; Johnson & Methven,<br />

1994, for P. conchatus), and Hypochncium spp. are monomitic<br />

with tetrapolar mating systems (Nakasone, 1990a,dataonmating<br />

systems for Hypochnicium spp. were not taken from the<br />

same species sampled in the present study). <strong>The</strong> heterogeneity<br />

in anatomical and genetic characters in the residual polypores<br />

and the low bootstrap support for the node uniting them with<br />

the phlebioid clade (Figs 1, 4) are the reasons why these species<br />

are not classified in the phlebioid clade in this study.<br />

6. Gloeophyllum clade<br />

Gloeophyllum sepiarium was placed as an isolated species<br />

in analyses <strong>of</strong> homobasidiomycete phylogeny by Hibbett &<br />

Donoghue (1995), Hibbett et al. (1997) and Binder & Hibbett<br />

(2002), and the recent Dictionary <strong>of</strong> the Fungi 9th edn. lists<br />

Gloeophyllum as the sole genus in the Gloeophyllaceae (Kirk


et al., 2001). Several recent studies have identified close relatives<br />

<strong>of</strong> Gloeophyllum, however. Thorn et al. (2000) performed<br />

analyses <strong>of</strong> nuc-lsu rDNA sequences, which showed that<br />

G. sepiarium is in a clade with Heliocybe sulcata, Neolentinus<br />

lepideus, N. kauffmanii and N. dactyloides (bootstrap = 71%).<br />

Monophyly <strong>of</strong> these taxa was confirmed in a combined analysis<br />

<strong>of</strong> nuc-ssu and mt-ssu rDNA sequences by Hibbett &<br />

Donoghue (2001; G. sepiarium, N. lepideus, H. sulcata;<br />

bootstrap = 97%). Analyses <strong>of</strong> nuc-ssu rDNA sequences by<br />

Kim & Jung (2000) suggested that G. sepiarium is closely<br />

related to Donkioporia expansa, Boreostereum radiatum and<br />

Veluticeps berkeleyi, but with weak (52%) bootstrap support.<br />

In addition, the analysis <strong>of</strong> Kim & Jung (2000) placed Columnocystis<br />

abietina in the polyporoid clade, which contradicts<br />

the suggestion that Columnocystis and Veluticeps are synonyms<br />

(Hjortstam & Tellería, 1990; Nakasone, 1990b). Lim<br />

(2001) performed an analysis <strong>of</strong> nuc-ssu rDNA sequences that<br />

provided stronger support (bootstrap = 86%) for the monophyly<br />

<strong>of</strong> G. sepiarium, V. berkeleyi and B. radiatum (using the<br />

same sequences as in Kim & Jung, 2001), but the analysis did<br />

not include D. expansa. In the present study, the Gloeophyllum<br />

clade includes G. sepiarium, G. odoratum, N. dactyloides and<br />

V. berkeleyi (Fig. 4). Bootstrap support is weak (54%) but the<br />

resolution <strong>of</strong> this clade is consistent with the results <strong>of</strong> the<br />

studies cited previously.<br />

Members <strong>of</strong> the Gloeophyllum clade have diverse fruiting<br />

bodies, including pileate-sessile poroid to lamellate <strong>forms</strong><br />

(Gloeophyllum), pileate-stipitate lentinoid agarics (Heliocybe,<br />

Neolentinus), <strong>resupinate</strong> polypores (Donkioporia) and<strong>resupinate</strong><br />

to effused-reflexed stereoid <strong>forms</strong> (Boreostereum radiatum,<br />

Veluticeps berkeleyi). <strong>The</strong> unifying features <strong>of</strong> the<br />

group are ecological and anatomical. All members <strong>of</strong> the<br />

clade are wood decayers and are either dimitic with skeletal<br />

hyphae, or trimitic (Redhead & Ginns, 1985; Gilbertson &<br />

Ryvarden, 1986; Chamuris, 1988; Nakasone, 1990b).<br />

Gilbertson & Ryvarden (1986) commented on the anatomical<br />

similarity between Gloeophyllum and Donkioporia.<br />

Decay chemistries are variable in the Gloeophyllum<br />

clade. Most members <strong>of</strong> this group have been shown to produce<br />

a brown rot, including Gloeophyllum spp., Heliocybe<br />

sulcata, Neolentinus spp. and Veluticeps berkeleyi (Martin &<br />

Gilbertson, 1973; Redhead & Ginns, 1985; Gilbertson &<br />

Ryvarden, 1986; Nakasone, 1990a, b). <strong>The</strong> exceptions are<br />

Donkioporia expansa and Boreostereum radiatum, which are<br />

reported to produce a white rot (Gilbertson & Ryvarden, 1986;<br />

Nakasone, 1990a). <strong>The</strong> mode <strong>of</strong> decay in Boreostereum radiatum<br />

is somewhat ambiguous, however. Substrates associated<br />

with fruiting bodies have been found to show either brown rot<br />

or white rot, and cultural studies for the presence <strong>of</strong> extracellular<br />

oxidases have yielded conflicting results (Chamuris, 1988;<br />

Nakasone, 1990a).<br />

Mating systems are also variable in the Gloeophyllum<br />

clade. Neolentinus and Gloeophyllum are reported to have bipolar<br />

mating systems (Redhead & Ginns, 1985; Gilbertson &<br />

Ryvarden, 1986), whereas Veluticeps has a tetrapolar mating<br />

system (Martin & Gilbertson, 1973), which is very unusual for<br />

a brown-rot fungus (Ryvarden, 1991), and Boreostereum has<br />

been presumed to be homothallic (Chamuris, 1988; Nakasone,<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 33<br />

1990a). Thus, the Gloeophyllum clade provides an excellent<br />

system in which to study transformations between different<br />

mating systems and decay modes (as well as fruiting body<br />

<strong>forms</strong>) in closely related taxa.<br />

7. <strong>The</strong>lephoroid clade<br />

This clade is equivalent to the order <strong>The</strong>lephorales, which<br />

contains two families: <strong>The</strong>lephoraceae, with angular and<br />

pigmented spores, and Bankeraceae, with hyaline ornamented<br />

spores (Stalpers, 1993). Donk (1964) suggested that the<br />

Bankeraceae and <strong>The</strong>lephoraceae are not closely related, but<br />

later authors have united them (Jülich, 1981; Stalpers, 1993;<br />

Kirk et al., 2001). Analyses by K.-H. Larsson et al. (2004)<br />

and Binder & Hibbett (2002) found moderately strong support<br />

for the monophyly <strong>of</strong> the <strong>The</strong>lephoraceae plus Bankeraceae.<br />

<strong>The</strong> present study includes two species <strong>of</strong> Bankeraceae<br />

(Bankera fuligineoalba and Phellodon tomentosus) andten<br />

species <strong>of</strong> <strong>The</strong>lephoraceae, which are strongly supported as a<br />

clade (bootstrap = 97%, Fig. 4). <strong>The</strong> Bankeraceae appears to<br />

be nested within the <strong>The</strong>lephoraceae, but the basal nodes in<br />

the thelephoroid clade are not strongly resolved (Fig. 4). <strong>The</strong>se<br />

results corroborate those <strong>of</strong> K.-H. Larsson et al. (2004), who<br />

also studied multiple exemplars <strong>of</strong> Bankeraceae and <strong>The</strong>lephoraceae.<br />

<strong>The</strong> thelephoroid clade contains <strong>resupinate</strong>, clavarioid<br />

and pileate <strong>forms</strong>, with smooth, hydnoid or poroid hymenophores.<br />

Taxonomy <strong>of</strong> the <strong>resupinate</strong> <strong>forms</strong> has been studied<br />

by Kõljalg and colleagues (Larsen, 1968, 1974; Kõljalg, 1996;<br />

Kõljalg et al., 2000, 2001, 2002), using morphological and<br />

molecular approaches. Resupinate taxa in this analysis include<br />

Tomentella and Pseudotomentella. <strong>The</strong> pattern <strong>of</strong> relationships<br />

in Fig. 4 suggests that there have been multiple transformations<br />

between <strong>resupinate</strong> and erect <strong>forms</strong> in the thelephoroid<br />

clade. K.-H. Larsson et al. (2004) sampled several <strong>resupinate</strong><br />

<strong>The</strong>lephoraceae that were not included in this study, including<br />

Tomentellopsis echinospora and Amaurodon viridis.<br />

Non-<strong>resupinate</strong> <strong>The</strong>lephorales fruit on soil and have been<br />

regarded as ectomycorrhizal, whereas <strong>resupinate</strong> <strong>The</strong>lephorales<br />

typically fruit on wood and have been interpreted as saprotrophic<br />

(e.g. Stalpers, 1993). However, molecular studies<br />

(Bruns et al., 1998; Taylor & Bruns, 1999; Kõljalg et al.,<br />

2000, 2001, 2002) have demonstrated that many (perhaps all?)<br />

<strong>resupinate</strong> <strong>The</strong>lephorales are ectomycorrhizal, <strong>of</strong>ten forming<br />

a dominant component <strong>of</strong> the mycorrhizal community.<br />

8. Corticioid clade<br />

This is a recently discovered clade (Boidin et al., 1998; K.-<br />

H. Larsson et al., 2004) that was not included in the overview<br />

<strong>of</strong> Homobasidiomycetes by Hibbett & Thorn (2001).<br />

One species in this group, Dendrocorticium roseocarneum,<br />

was included in the analysis <strong>of</strong> Binder & Hibbett (2002;<br />

also see Hibbett & Donoghue, 2001), where it was placed<br />

(without bootstrap support) as the sister group <strong>of</strong> the rest <strong>of</strong> the<br />

Homobasidiomycetes. Other taxa that are probably placed in<br />

the corticioid clade based on this and other studies include<br />

Corticium roseum, Cytidia salcina, Dendrocorticium polygonioides,<br />

Dendrothele maculata, Duportella tristicula, Erythricium<br />

laetum, Galzinia incrustans, Laetisaria fuciformis,


34 Manfred Binder et al.<br />

Limonomyces roseipellis, Marchandiomyces aurantiacus<br />

(teleomorph Marchandiobasidium aurantiacum; Diederichet<br />

al., 2003), M. corallinus, Punctularia strigoso-zonata, Vuilleminia<br />

comedens and V. macrospora (Boidin et al., 1998;<br />

Hallenberg & Parmasto, 1998; Lim, 2001; Sikaroodi et al.,<br />

2001; Hibbett & Binder, 2002; E. Langer, 2002; K.-H. Larsson<br />

et al., 2004; V. Andjic, unpublished; P. DePriest et al., unpublished;<br />

Table 3). Members <strong>of</strong> the corticioid clade have been<br />

classified as the Vuilleminiales (Boidin et al., 1998; E. Langer,<br />

2002). K.-H. Larsson et al. (2004) showed that Dendrothele<br />

maculata is a member <strong>of</strong> the corticioid clade, but they also<br />

cited unpublished analyses that suggest that Dendrothele is<br />

highly polyphyletic. In the present study, D. acerina and<br />

D. griseocana are placed in the euagarics clade, D. candida is<br />

placed in the russuloid clade, and an isolate labelled “dendrotheloid”<br />

from the study <strong>of</strong> E. Langer (2002) was placed in the<br />

polyporoid clade (Fig. 4).<br />

<strong>The</strong> delimitation <strong>of</strong> the corticioid clade proposed here<br />

(Table 3) conflicts somewhat with the results <strong>of</strong> Boidin et al.<br />

(1998) and P. DePriest et al. (unpublished). <strong>The</strong> ITS analysis<br />

<strong>of</strong> Boidin et al. (1998) suggested that (1) Erythricium laetum<br />

is closely related to Athelia decipiens (athelioid clade, contra<br />

K.-H. Larsson et al., 2004) and (2) Duportella tristicula and<br />

other Duportella species are nested in Peniophora (russuloid<br />

clade, contra Hallenberg & Parmasto, 1998). However, the<br />

analysis <strong>of</strong> Boidin et al. (1998) did support monophyly <strong>of</strong> a<br />

clade containing Corticium, Dendrocorticium, Punctularia<br />

and Vuilleminia, which is consistent with the present analysis<br />

and other studies cited above. Analyses by P. DePriest et<br />

al. (unpublished) based on nuclear rDNA sequences suggested<br />

that Rhizoctonia zeae and its teleomorph Waitea circinata<br />

(Ceratobasidiales) and Tretopileus sphaerophorus (mitosporic<br />

fungi) are in the corticioid clade. Waitea circinata is reported<br />

to have pinkish white basidiocarps and a probasidial stage<br />

(Roberts, 2003), which are also found in other taxa in the corticioid<br />

clade (see below). However, a study by Bruns et al.<br />

(1998) suggests that Waitea circinata is in the athelioid clade<br />

(see below), and evidence from multiple studies that were<br />

discussed previously suggests that other taxa <strong>of</strong> the Ceratobasidiales<br />

are in the cantharelloid clade. At this time, the placements<br />

<strong>of</strong> Waitea circinata and Tretopileus sphaerophorus must<br />

be regarded as unresolved.<br />

<strong>The</strong> sample <strong>of</strong> taxa in the corticioid clade in this study<br />

largely overlaps with that in the study <strong>of</strong> K.-H. Larsson et al.<br />

(2004). In both analyses, the group is moderately to strongly<br />

supported (bootstrap = 81% in this study, 93–96% in K.-H.<br />

Larsson et al., 2004). <strong>The</strong> higher-level position <strong>of</strong> the corticioid<br />

clade differs in this study and that <strong>of</strong> K.-H. Larsson<br />

et al. (2004), but in neither analysis is it placed as the sister<br />

group <strong>of</strong> the Homobasidiomycetes (as in the analysis <strong>of</strong><br />

Binder & Hibbett, 2002). Diederich et al. (2003) showed that<br />

Marchandiobasidium has perforate parenthesomes, which is<br />

consistent with the view that the corticioid clade is not one<br />

<strong>of</strong> the basal clades <strong>of</strong> Homobasidiomycetes (contra Binder &<br />

Hibbett, 2002). In additon, Corticium roseum (as Laeticorticium<br />

roseum)andC. boreoroseum (as Laeticorticium lundellii)<br />

were also reported to have perforate parenthesomes (Keller,<br />

1997).<br />

<strong>The</strong>re is no obvious synapomorphy for the corticioid<br />

clade. Most members <strong>of</strong> the group are <strong>resupinate</strong>, but Punctularia<br />

strigoso-zonata <strong>forms</strong> effused-reflexed fruiting bodies,<br />

Cytidia salicina <strong>forms</strong> fruiting bodies that are almost cupulate,<br />

and Marchandiomyces spp. are lichen-inhabiting asexual<br />

<strong>forms</strong> that produce sclerotia. Several taxa produce dendrohyphidia<br />

(branched hymenial hairs), including Corticium<br />

roseum, Cytidia salicina, Dendrocorticium polygonioides,<br />

D. roseocarneum, Dendrothele maculata, Punctularia<br />

strigoso-zonata and Vuilleminia comedens. In this analysis,<br />

the members <strong>of</strong> the corticioid clade that produce dendrohyphidia<br />

are strongly supported as a monophyletic group (Fig. 4),<br />

although that is not the case in the study <strong>of</strong> K.-H. Larsson et al.<br />

(2004). Another feature shared by some taxa in this group is<br />

the production <strong>of</strong> pink, red or orange pigments in the fruiting<br />

bodies, which occurs in Corticium roseum, Cytidia salicina,<br />

Erythricium laetum, Galzinia incrustans and Marchandiomyces<br />

spp. In addition, Laetisaria fuciformis and Limonomyces<br />

roseipellis produce characteristic pink-red hyphal masses on<br />

infected grasses, and Punctularia strigoso-zonata is reported<br />

to produce pink mycelial mats in culture (Nakasone, 1990a).<br />

<strong>The</strong> chemical nature <strong>of</strong> the pigments is not known.<br />

<strong>The</strong> corticioid clade is ecologically diverse. Most species<br />

are apparently saprotrophic and are associated with a white<br />

rot, primarily <strong>of</strong> angiospermous wood (Eriksson & Ryvarden,<br />

1975; Eriksson et al., 1981; Chamuris, 1988; Hjortstam et al.,<br />

1988b; Nakasone, 1990a; Ginns & Lefebrve, 1993; Wu &<br />

Chen, 1993). Several taxa produce fruiting bodies on attached<br />

branches and standing trunks (e.g. Corticium roseum, Cytidia<br />

salicina, Dendrocorticium roseocarneum, Dendrothele maculata,<br />

Vuilleminia comedens) and have anatomical features that<br />

have been interpreted as adaptations for xeric habitats, including<br />

the production <strong>of</strong> a catahymenium and delayed basidial<br />

maturation (Eriksson & Ryvarden; 1975, 1976; Eriksson et al.,<br />

1981; Chamuris, 1988; Hjortstam et al., 1988b). <strong>The</strong>se features<br />

may allow the fruiting body to remain viable during periods<br />

<strong>of</strong> drought and rapidly produce basidiospores during brief intervals<br />

when moisture is available (Hallenberg & Parmasto,<br />

1998). Other taxa in the corticioid clade do not inhabit exposed<br />

substrates. For example, Eriksson & Ryvarden (1975)<br />

reported that Erythricium laetum (which was sampled by<br />

K.-H. Larsson et al., 2004) occurs under moist conditions on<br />

decayed wood and branches <strong>of</strong> deciduous trees, dead leaves<br />

and wet soil. Similarly, Galzinia incrustans occurs on decayed<br />

wood in moist environments (Eriksson & Ryvarden, 1975).<br />

Biotrophic nutrition also occurs in the corticioid clade.<br />

Laetisaria fuciformis (which was included in the core dataset<br />

analysis, but inadvertently excluded from the other analyses;<br />

Fig. 1) is a plant pathogen that causes ‘red thread’ disease<br />

<strong>of</strong> turfgrasses (Stalpers & Loerakker, 1982). Analyses by<br />

V. Andjic (unpublished) based on ITS sequences suggest that<br />

L. fuciformis is closely related to Limonomyces roseipellis,<br />

which causes a similar ‘pink patch’ disease <strong>of</strong> turfgrasses. An<br />

unusual ecological habit is found in Marchandiomyces aurantiacus<br />

and M. corallinus, which are parasites <strong>of</strong> corticolous<br />

or saxicolous (rock-inhabiting) lichens (Etayo & Diederich,<br />

1996; Sikaroodi et al., 2001; Diederich et al., 2003). Finally,<br />

Burt (1926) reported that Erythricium laetum occurs on living


mosses (as well as wood), which suggests that it may also have<br />

the capacity for biotrophic nutrition.<br />

9. Russuloid clade<br />

<strong>The</strong> russuloid clade includes agaricoid <strong>forms</strong>, polypores, coral<br />

fungi, hydnoid fungi and many <strong>resupinate</strong> taxa. Most members<br />

<strong>of</strong> this group are saprotrophic, but there are also ectomycorrhizal<br />

species (Russulaceae, Albatrellus pro parte) and<br />

timber pathogens (Heterobasidion, Echinodontium). Some lignicolous<br />

species in the russuloid clade form symbiotic associations<br />

with insects, including woodwasps (associated with<br />

Amylostereum; Slippers et al., 2001) and bark beetles (associated<br />

with Entomocorticium; Hsiau, 1996; Klepzig et al., 2001).<br />

Many members <strong>of</strong> the russuloid clade have spores with amyloid<br />

walls or ornamentations and gloeoplerous hyphae and cystidia.<br />

Based on these characters, Donk (1964, 1971) suggested that<br />

there are relationships among many <strong>of</strong> the species now placed<br />

in this clade, and Oberwinkler (1977) grouped many <strong>of</strong> them<br />

in the order Russulales (also see Stalpers, 1996).<br />

In the present study, the russuloid clade is represented<br />

by 85 isolates (82 species). <strong>The</strong> clade is weakly supported<br />

in the analysis <strong>of</strong> the full dataset, but strongly supported in<br />

the analysis <strong>of</strong> the core dataset (bootstrap = 90%, 23 species;<br />

Figs 1, 4). Groups within (or equivalent to) the russuloid clade<br />

that have been resolved in other molecular <strong>phylogenetic</strong> studies<br />

with a broad taxonomic focus include the Russulales, Hericiales,<br />

Lachnocladiales and Peniophorales sensu Boidin et al.<br />

(1998), the Stereaceae, Hericiaceae, and Amylostereaceae<br />

sensu Kim & Jung (2000), the clade “russuloid 12” <strong>of</strong><br />

E. Langer (2002) and the “russuloid clade” and “peniophoroid<br />

clade” sensu Lim (2001). Several <strong>phylogenetic</strong> studies have<br />

focused on groups within the russuloid clade, including Aleurodiscus<br />

s. lat. and related taxa (Wu et al., 2001), Stereum and<br />

Xylobolus (Lim, 2001), Peniophora (Hallenberg & Parmasto,<br />

1998), the Gloeocystidiellum porosum-clavuligerum complex<br />

(Larsson & Hallenberg, 2001), and the Russulaceae<br />

(S. L. Miller et al., 2001, 2002). Many mt-lsu rDNA, nuclsu<br />

rDNA, and ITS sequences <strong>of</strong> ectomycorrhizal Russulaceae<br />

have been analysed in ecological studies (e.g., Taylor & Bruns,<br />

1997; Bruns et al., 1998; Bergemann & Miller, 2002).<br />

By far the most thorough <strong>phylogenetic</strong> study <strong>of</strong> the russuloid<br />

clade as a whole is that <strong>of</strong> E. Larsson & K.-H. Larsson<br />

(2003), who studied relationships among 127 isolates that represent<br />

c. 120 species. <strong>The</strong> dataset emphasised <strong>resupinate</strong> taxa,<br />

many <strong>of</strong> which have been traditionally classified in Gloeocystidiellum<br />

s. lat. Based on analyses <strong>of</strong> nuc-lsu rDNA, 5.8S<br />

rDNA, and ITS sequences, E. Larsson & K.-H. Larsson (2003)<br />

divided the russuloid clade into 13 major clades, which were<br />

labelled using the notation convention adopted by Moncalvo<br />

et al. (2002; e.g. ‘/russulales’). <strong>The</strong> following discussion is<br />

organised according to the classification <strong>of</strong> E. Larsson &<br />

K.-H. Larsson (2003), which should be consulted for detailed<br />

information about relevant characters and prior taxonomy.<br />

/stereales. This group contains lignicolous <strong>resupinate</strong>,<br />

discoid and effused-reflexed to pileate taxa that have been<br />

classified in the Stereaceae s. str.(Stereum, Xylobolus), Aleurodiscus<br />

s. lat. and its segregates (e.g. Acanthophysium), and<br />

Gloeocystidiellum s. lat. <strong>The</strong> latter is represented in this study<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 35<br />

only by Gloeocystidiellum leucoxanthum, but many other<br />

Gloeocystidiellum segregates were included in this group by<br />

E. Larsson & K.-H. Larsson (2003; e.g. Boidinia). <strong>The</strong> /stereales<br />

is moderately to strongly supported in this analysis<br />

(core dataset bootstrap = 100%, full dataset bootstrap = 79%),<br />

and was strongly supported by E. Larsson & K.-H. Larsson<br />

(2003; bootstrap = 97%), as well as Kim & Jung (2000;<br />

bootstrap = 93%).<br />

/hericiaceae. This clade includes <strong>resupinate</strong> (Dentipellis<br />

separans), effused-reflexed (Laxitextum bicolor) and pileate<br />

(Hericium spp.) <strong>forms</strong>, all with spores that have amyloid echinulae<br />

(Stalpers, 1996). An isolate labelled as ‘Cymatoderma<br />

caperatum’ appears in this clade in the present study, but that<br />

is most likely an artefact, as discussed previously (see above).<br />

In other respects, the results <strong>of</strong> the present study (Figs 1, 4)<br />

agree with those <strong>of</strong> E. Larsson & K.-H. Larsson (2003) for this<br />

clade.<br />

/bondarzewiaceae and /amylostereaceae. <strong>The</strong>re are minor<br />

differences between the results <strong>of</strong> the present study and that<br />

<strong>of</strong> E. Larsson & K.-H. Larsson (2003) with respect to these<br />

groups. <strong>The</strong> present study recovered a moderately supported<br />

(bootstrap = 88%) clade that includes the stereoid, effusedreflexed<br />

species Amylostereum chailettii, A. laevigatum and<br />

Laurilia sulcata, and the pileate, hydnoid form Echinodontium<br />

tinctorium (Fig. 4). <strong>The</strong>se taxa all have incrusted cystidia,<br />

which is consistent with the view that they are closely related<br />

(Eriksson & Ryvarden, 1973; Gilbertson & Ryvarden, 1986;<br />

Chamuris, 1988). However, the study <strong>of</strong> E. Larsson & K.-H.<br />

Larsson (2003) grouped Amylostereum spp. with the coral<br />

fungus Artomyces (= Clavicorona) pyxidatus in the /amylostereaceae<br />

(bootstrap = 73%), and placed L. sulcata and<br />

E. tinctorium with the polypores B. berkeleyi and H. annosum<br />

in the /bondarzewiaceae (bootstrap = 78%). Here,<br />

Bondarzewia spp. and H. annosum form a paraphyletic group<br />

from which /albatrellus is derived (Fig. 4). In contrast,<br />

Bondarzewia and Heterobasidion were strongly supported<br />

(bootstrap = 91%) as monophyletic in the analysis <strong>of</strong> Bruns<br />

et al. (1998). Both cause white rot in the heartwood, roots,<br />

and bases <strong>of</strong> living trees, and H. annosum is a serious timber<br />

pathogen (Gilbertson & Ryvarden, 1986).<br />

/albatrellus. <strong>The</strong> analysis <strong>of</strong> the full dataset recovered a<br />

strongly supported clade (bootstrap = 96%) that includes the<br />

pileate-stipitate polypores Albatrellus pro parte and Polyporoletus<br />

sublividus (A. syringae is in the polyporoid clade, however;<br />

Fig. 4). Some species <strong>of</strong> Albatrellus have amyloid spores<br />

and gloeoplerous hyphae (the latter are also found in P. sublividus),<br />

which is consistent with their placement in the russuloid<br />

clade, as suggested by Stalpers (1992).<br />

<strong>The</strong> corticioid <strong>forms</strong> Dendrothele candida and Xenasma<br />

rimicola form a paraphyletic group at the base <strong>of</strong> the /albatrellus<br />

clade in this study (Fig. 4), but this placement is weakly<br />

supported and is not suggested by any obvious morphological<br />

characters. E. Larsson & K.-H. Larsson (2003) found that a<br />

similar species, Pseudoxenasma verrucisporum (which shares<br />

similarly ornamented spores and pleurobasidia), is in the russuloid<br />

clade, but could not identify its closest relatives (Eriksson<br />

et al., 1981; Hjortstam et al., 1988b; Stalpers, 1996). It is possible<br />

that X. rimicola and P. verrucisporum are closely related,


36 Manfred Binder et al.<br />

and it would be desirable to include them in the same analysis.<br />

<strong>The</strong>re are no obvious characters that support the placement <strong>of</strong><br />

D. candida as a close relative <strong>of</strong> Albatrellus and Polyporoletus<br />

(Fig. 4), although it also has amyloid spores (Lemke, 1964b,<br />

as Aleurocorticium candidum).<br />

Another <strong>resupinate</strong> form that may be related to /albatrellus<br />

is Byssoporia terrestris, which was sampled by Bruns et al.<br />

(1998). Byssoporia terrestris has smooth inamyloid spores<br />

and no gloeoplerous system (Eriksson & Ryvarden, 1973, as<br />

Byssocorticium terrestre), which is unusual for a member <strong>of</strong><br />

the russuloid clade. Nevertheless, it is reported to be ectomycorrhizal,<br />

as are Albatrellus ovinus and A. fletti (Kropp &<br />

Trappe, 1982; Gilbertson & Ryvarden, 1986; Agerer et al.,<br />

1996). Other russuloid species <strong>of</strong> Albatrellus and P. sublividus<br />

may also be ectomycorrhizal, but this is controversial<br />

(Gilbertson & Ryvarden, 1986; Ginns, 1997; Albatrellus<br />

syringae in the polyporoid clade is thought to be lignicolous).<br />

Neither the present analysis or that <strong>of</strong> E. Larsson &<br />

K.-H. Larsson (2003) suggest that the russuloid species <strong>of</strong><br />

Albatrellus are closely related to the Russulaceae (Figs 1, 4).<br />

<strong>The</strong>refore, the Albatrellus group, including B. terrestre and<br />

P. sublividus, probably represents an independent origin <strong>of</strong> the<br />

ectomycorrhizal habit in the russuloid clade.<br />

/aleurocystidiellum. <strong>The</strong> present study finds strong support<br />

(bootstrap = 100%) for the monophyly <strong>of</strong> Aleurocystidiellum<br />

disciformis and A. subcruentatum, which were segregated<br />

from Aleurodiscus sensu lato (Lemke, 1964a), but do not resolve<br />

their closest relatives with confidence (Fig. 4). <strong>The</strong>se<br />

results mirror those <strong>of</strong> E. Larsson & K.-H. Larsson (2003).<br />

/auriscalpiaceae. This weakly suported clade includes<br />

agaricoid (Lentinellus spp.) and hydnoid taxa (Auriscalpium,<br />

Gloiodon; Fig. 4). E. Larsson & K.-H. Larsson (2003) recovered<br />

a moderately supported clade (bootstrap = 86%) with<br />

the same genera represented by more species and isolates<br />

than in the present study, plus Dentipratulum bialoviesense.<br />

Gloiodon and Dentipratulum are <strong>resupinate</strong> or effusedreflexed,<br />

whereas the others are pileate. O. K. Miller (1971)<br />

found that Lentinellus cochleatus produces a coralloid fruiting<br />

body when cultured at low temperatures, which suggests that<br />

developmental programs in this clade may be quite labile.<br />

/gloeocystidiellum I and /russulales. One <strong>of</strong> the most<br />

striking findings <strong>of</strong> E. Larsson & K.-H. Larsson (2003) is that<br />

the Russulaceae is nested within a clade <strong>of</strong> <strong>resupinate</strong> taxa traditionally<br />

classified in Gloeocystidiellum s. lat. <strong>The</strong> same result<br />

is obtained in the present study. Here, a clade equivalent to<br />

/gloeocystidiellum I (G. porosum and two unidentified isolates)<br />

is moderately supported as the sister group <strong>of</strong> /russulales<br />

(Fig. 4). <strong>The</strong> latter is strongly supported (bootstrap = 100%)<br />

and includes Gloeocystidiellum aculeatum, which agrees with<br />

the findings <strong>of</strong> E. Larsson & K.-H. Larsson (2003), who<br />

sampled additional <strong>resupinate</strong> taxa (Gloeopeniophorella spp.,<br />

Boidinia spp.) that form a paraphyletic group in /russulales.<br />

It is remarkable that the Russulaceae, with its agaricoid, gasteroid<br />

and pleurotoid <strong>forms</strong>, is derived from simple corticioid<br />

<strong>forms</strong>. It remains an open question whether the switch to an<br />

ectomycorrhizal nutritional mode in Russulaceae (including<br />

pleurotoid <strong>forms</strong>, Henkel et al., 2000) is either a cause or<br />

consequence <strong>of</strong> the shift from corticioid to pileate <strong>forms</strong>.<br />

/gloeocystidiellum II. <strong>The</strong> clade /gloeocystidiellum II<br />

is here represented only by a single isolate <strong>of</strong> G. clavuligerum,<br />

whereas E. Larsson & K.-H. Larsson (2003) included<br />

five isolates representing G. clavuligerum, G. bisporum and<br />

G. purpureum. In both studies the closest relatives <strong>of</strong> /gloeocystidiellum<br />

II are not resolved with confidence (Fig. 4).<br />

/peniophorales. In the present analysis, the /peniophorales<br />

clade includes <strong>resupinate</strong> taxa that have been classified<br />

in the Lachnocladiaceae (Asterostroma, Dichostereum,<br />

Scytinostroma, Vararia; Reid, 1965; Hallenberg, 1985) and<br />

Corticiaceae s. lat. (Peniophora nuda, Amphinema byssoides<br />

and Coronicium alboglaucum; Fig. 4). However, in the analysis<br />

<strong>of</strong> K.-H. Larsson et al. (2004), Amphinema byssoides is<br />

placed in the athelioid clade and C. alboglaucum is placed in<br />

the euagarics clade, suggesting that the positions <strong>of</strong> these taxa<br />

here could be artefacts.<br />

Monophyly <strong>of</strong> the /peniophorales is weakly supported in<br />

the present study, but it was strongly supported in the analysis<br />

<strong>of</strong> E. Larsson & K.-H. Larsson (2003, bootstrap = 95%). <strong>The</strong><br />

latter study included the same groups that were sampled here<br />

(excluding A. byssoides and C. alboglaucum) as well as several<br />

corticioid taxa representing Gloeocystidiellum s. lat. (Gloeocystidiellum<br />

irpiscescens, Gloiothele spp. Vesiculomyces citrinus),<br />

Confertobasidium spp. and Metulodontia nivea. Also<br />

included in their study was an unidentified isolate <strong>of</strong> Lachnocladium,<br />

which is a group <strong>of</strong> tropical coralloid fungi that may<br />

be related to the tropical cantharelloid genera Dichantharellus<br />

and Dichopleuropus (Reid, 1965; Corner, 1966, 1970). Except<br />

for these last three genera, the /peniophorales contains<br />

only <strong>resupinate</strong> or effused-reflexed <strong>forms</strong>. Nevertheless, the<br />

/peniophorales is very diverse in anatomical characters, including<br />

species with smooth or ornamented, amyloid or inamyloid<br />

spores, with or without a gloeoplerous system, and with<br />

or without dextrinoid dichohyphidia or asterohyphidia<br />

(Hallenberg, 1985; Stalpers, 1996; E. Larsson & K.-H.<br />

Larsson, 2003). <strong>The</strong> latter have been regarded as diagnostic<br />

for the Lachnocladiaceae, which is not resolved as monophyletic<br />

in this study or that <strong>of</strong> E. Larsson & K.-H. Larsson<br />

(2003).<br />

<strong>The</strong> higher-level relationships <strong>of</strong> the Lachnocladiaceae<br />

have been controversial. Donk (1964) classified the genera<br />

<strong>of</strong> the Lachnocladiaceae in two subfamilies <strong>of</strong> the Hymenochaetaceae,<br />

the Vararioideae (Vararia and Lachnocladium)<br />

and Asterostromatoideae (Asterostroma), but placed<br />

Scytinostroma in the Corticiaceae. He suggested that the<br />

Asterostromatoideae could be a link between the Vararioideae<br />

and Hymenochaetoideae (Hymenochaetaceae in the present<br />

sense). This idea may have been based in part on the presence<br />

in Asterodon ferruginosum <strong>of</strong> ‘asterosetae’, which are stellate<br />

structures that resemble the asterohyphidia <strong>of</strong> Asterostroma<br />

(Corner, 1948). Müller et al. (2000) showed that A. ferruginosum<br />

has imperforate parenthesomes, which is consistent<br />

with its placement in the Hymenochaetaceae. Later, Wagner &<br />

Fischer (2001) used nuc-lsu rDNA sequences to study relationships<br />

<strong>of</strong> A. ferruginosum and Asterostroma spp., which they<br />

found to be nested in the Hymenochaetaceae and Lachnocladiaceae,<br />

respectively. This result severed the last possible link<br />

between the Lachnocladiaceae and Hymenochaetaceae, and


supported Oberwinkler’s (1977) suggestion that the Lachnocladiaceae<br />

is related to the Russulales.<br />

10. Bolete clade and Jaapia<br />

<strong>The</strong> bolete clade (= Boletales) is a major contingent <strong>of</strong> ectomycorrhizal<br />

fungi in the Homobasidiomycetes that includes<br />

a considerable diversity <strong>of</strong> fruiting body morphologies. Resupinate<br />

<strong>forms</strong> among the Boletales are brown-rotting saprotrophs<br />

and parasites with preference for coniferous woods –<br />

deciduous trees are less frequently attacked. Some species<br />

like the dry rot fungi Serpula lacrymans and S. himantioides<br />

decay timber and cause significant structural damage in buildings<br />

(Jennings & Bravery, 1991). Coniophora puteana and<br />

other Coniophora spp. are commonly called ‘cellar fungi’<br />

and require higher humidity levels (hence the name wet rot)<br />

to colonise and decay wooden structures in basements (see<br />

Ginns, 1982, for details). Nilsson & Ginns (1979) demonstrated<br />

that the brown-rotters among the Boletales, including<br />

stipitate-pileate <strong>forms</strong>, show a particular degrading mode by<br />

breaking down pure cellulose in vitro, despite the lack <strong>of</strong> cellulolytic<br />

activity which is a typical reaction <strong>of</strong> brown-rotting<br />

fungi when pure cellulose is <strong>of</strong>fered as substrate. Exceptions<br />

in Nilsson & Ginns’ study were Pseudomerulius aureus and<br />

Tapinella atrotomentosa, which retrieved negative test results<br />

for cellulase. <strong>The</strong> nutritional mode <strong>of</strong> T. atrotomentosa is still<br />

somewhat ambiguous. Kropp & Trappe (1982) found that rotten<br />

logs on which T. atrotomentosa fruits contain abundant<br />

conifer roots. <strong>The</strong>y traced the mycelium <strong>of</strong> a T. atrotomentosa<br />

fruiting body to nearby western hemlock roots, which were<br />

covered with the same mycelium. A pure culture synthesis <strong>of</strong><br />

hemlock seedlings and T. atrotomentosa mycelium was not<br />

successful. Kämmerer et al. (1985), however, used a different<br />

system testing T. atrotomentosa and Jaapia argillacea positive<br />

for cellulase, suggesting that both fungi are brown-rotters<br />

(so-called ‘Coniophoraceae rot’).<br />

<strong>The</strong> bolete clade is monophyletic, as shown in various<br />

nuc-lsu rDNA analyses (Jarosch, 2001; Binder & Bresinsky,<br />

2002; K.-H. Larsson et al., 2004), and it receives 93–99% bootstrap<br />

support in the present study (Figs 1, 4). It is supported<br />

in other studies using different loci, for example, atp6 amino<br />

acid sequences provided bootstrap support <strong>of</strong> 99% (Kretzer &<br />

Bruns, 1999) and mitochondrial large subunit sequences moderately<br />

supported the bolete clade by 70% (Bruns et al., 1998).<br />

<strong>The</strong> euagarics clade was strongly supported (94%) as the sister<br />

group <strong>of</strong> the bolete clade (bootstrap = 100%) using a four region<br />

dataset (nuc-ssu, nuc-lsu, mt-ssu, mt-lsu rDNA) including<br />

a 82 species sampling <strong>of</strong> Homobasidiomycetes (Binder &<br />

Hibbett, 2002). <strong>The</strong> present study sampled 30 Boletales species<br />

including 14 <strong>resupinate</strong> species mostly drawn from Bresinsky<br />

et al. (1999), which are distributed in the genera Coniophora,<br />

Leucogyrophana, Pseudomerulius, Serpula (Coniophorineae)<br />

and Hydnomerulius (Paxillineae).<br />

<strong>The</strong> Jaapia clade, consisting <strong>of</strong> a single species, J. argillacea,<br />

was discovered in the study <strong>of</strong> Hibbett & Binder (2002)<br />

and it is placed as the sister group <strong>of</strong> the euagarics clade, bolete<br />

clade and athelioid clade (Figs 1, 4). Jaapia has been listed<br />

in the Coniophoraceae (e.g. Jülich, 1981) based on <strong>resupinate</strong>,<br />

cream coloured fruiting bodies having a farinous texture,<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 37<br />

light yellow and smooth, fusiform, thick-walled, cyanophilous<br />

spores. Hallenberg (1985), however, found the combination<br />

<strong>of</strong> morphological characters not convincing enough to place<br />

Jaapia in the Coniophoraceae and left the genus among the<br />

corticioid fungi. Chemical findings that could assist placing<br />

Jaapia are lacking as yet, since Besl et al. (1986) did not<br />

detect any pigments in a Jaapia culture including pulvinic<br />

acids and derivatives, which are the major pigments <strong>of</strong> the<br />

Boletales. If the placement <strong>of</strong> Jaapia argillacea in the present<br />

study using the same isolate as Kämmerer et al. (1985) and<br />

Besl et al. (1986) is correct, then this might suggest that <strong>resupinate</strong><br />

fruiting bodies, lack <strong>of</strong> pigments, and saprotrophy<br />

with a Coniophoraceae-type rot (or some combination) are<br />

plesiomorphic conditions for the euagarics clade, bolete clade<br />

and athelioid clade.<br />

<strong>The</strong> most comprehensive study on <strong>resupinate</strong> Boletales is<br />

the study <strong>of</strong> Jarosch (2001) using multiple isolates <strong>of</strong> 15 species<br />

in five genera. Jarosch (2001) received 96% (neighbourjoining)<br />

bootstrap support for the Coniophorineae, conflicting<br />

with the results <strong>of</strong> the present study and the studies <strong>of</strong><br />

Bresinsky et al. (1999) and Binder & Bresinsky (2002), in<br />

which the Coniophorineae was not resolved as monophyletic<br />

(bootstrap < 50%). <strong>The</strong> studies <strong>of</strong> Bruns et al. (1998) and<br />

Kretzer & Bruns (1999) also suggest that the Coniophorineae<br />

is polyphyletic, but neither study included Leucogyrophana<br />

spp. Besl et al. (1986) analysed the occurrence <strong>of</strong> pulvinic<br />

acids and their derivatives and additional compounds in the<br />

Coniophoraceae and noticed that the <strong>distribution</strong> <strong>of</strong> pigments<br />

is not only complex, but some unique chemical patterns correspond<br />

to the pigments found in stipitate-pileate members<br />

<strong>of</strong> the Boletales. <strong>The</strong>se findings suggested several morphological<br />

transformations from <strong>resupinate</strong> to stipitate-pileate fruiting<br />

bodies and that Leucogyrophana sensu Ginns (1978) is<br />

polyphyletic. Based on secondary metabolites, Besl et al.<br />

(1986) predicted relationships between Serpula lacrymans and<br />

Austropaxillus statuum (syn. Paxillus statuum), Hydnomerulius<br />

pinastri (syn. Leucogyrophana pinastri) andPaxillus<br />

involutus, L. mollusca and Hygrophoropsis aurantiaca, and<br />

L. olivascens and Tapinella panuoides. Except for the latter<br />

hypothesis, all the other relationships assumed by Besl et al.<br />

(1986) received strong support in several <strong>phylogenetic</strong> studies<br />

(Bresinsky et al., 1999; Jarosch, 2001; Jarosch & Besl,<br />

2001). Recently, Jarosch (2001) showed another remarkable<br />

morphological transformation between Coniophora spp. and<br />

two southern hemisphere species, ‘Paxillus’ chalybaeus from<br />

New Caledonia and ‘Paxillus’ gymnopus from Colombia,<br />

with paxilloid habit (stipitate-pileate, lamellate hymenophore<br />

and involute margin), nested within the Coniophora clade<br />

(bootstrap = 100%).<br />

<strong>The</strong> present study supports in addition a close relationship<br />

<strong>of</strong> Pseudomerulius aureus and Tapinella spp. with 86%,<br />

which is controversial to the placement <strong>of</strong> Tapinella in Jarosch<br />

(2001), where it is nested between Coniophora and Leucogyrophana<br />

(bootstrap = 81%). Little is known about the pigments<br />

<strong>of</strong> P. aureus (Gill & Steglich, 1987) and microscopical characters,<br />

except for the identical rhizomorph type <strong>of</strong> P. aureus<br />

and T. panuoides (Agerer, 1999, p. 33), do not indicate its<br />

relationship to Tapinella. K.-H. Larsson et al. (2004) found


38 Manfred Binder et al.<br />

support > 80% for P. aureus and Bondarcevomyces taxi as<br />

a basal clade in the Boletales, not including Tapinella spp.<br />

Bondarcevomyces taxi is a brown-rot fungus with a bright orange<br />

pileus and a poroid hymenophore that has been separated<br />

from Hapalopilus (polyporoid clade) by Parmasto & Parmasto<br />

(1999) and it was provisionally placed in the Sparassidaceae.<br />

Additional <strong>phylogenetic</strong> analyses support a Pseudomerulius–<br />

Bondarcevomyces–Tapinella clade (= Tapinellaceae) with values<br />

> 90% (Binder, unpublished).<br />

11. Athelioid clade<br />

This group, which is exclusively composed <strong>of</strong> <strong>resupinate</strong><br />

<strong>forms</strong>, was identified by K.-H. Larsson et al. (2004). In their<br />

analysis, the athelioid clade is moderately to strongly supported<br />

(bootstrap = 77–97%) and includes Athelia epiphylla,<br />

A. decipiens, Piloderma byssinum, P. lanatum, Tylospora asterophora,<br />

Byssocorticium pulchrum, Athelopsis subinconspicua<br />

and Amphinema byssoides. This is probably the<br />

same clade that Boidin et al. (1998) identified based<br />

on ITS sequences, which they called the Atheliales. <strong>The</strong><br />

Atheliales sensu Boidin et al. (1998) included Amyloathelia<br />

amylacea, Leptosporomyces roseus and Fibulomyces<br />

septentrionalis, which are <strong>resupinate</strong> taxa with<br />

an athelioid form (Eriksson & Ryvarden, 1975, 1976;<br />

Hjortstam & Ryvarden, 1979), as well as Athelia epiphylla<br />

and A. arachnoidea. However, the analysis <strong>of</strong> Boidin<br />

et al. (1998) placed A. decipiens as a close relative <strong>of</strong> Erythricium<br />

laetum, which K.-H. Larsson et al. (2004) found to be<br />

in the corticioid clade (see above). In the present analysis, the<br />

athelioid clade receives moderate support (bootstrap = 75%)<br />

and is represented only by Athelia arachnoidea, A. fibulata<br />

and an isolate labelled ‘Hyphoderma praetermissum’ (Fig. 4),<br />

which is probably mislabelled, as noted previously. In addition,<br />

two isolates in the present study labelled ‘Athelia epiphylla’<br />

and ‘A. arachnoidea’ were placed in the phlebioid clade, and<br />

one isolate labelled ‘Amphinema byssoides’ was placed in the<br />

russuloid clade (Fig. 4). Based on the results <strong>of</strong> K.-H. Larsson<br />

et al. (2004), these three isolates are also probably mislabelled<br />

(see Table 3 for sources).<br />

Both the present analysis and that <strong>of</strong> K.-H. Larsson et al.<br />

(2004) resolved a monophyletic group that includes the athelioid<br />

clade, bolete clade and euagarics clade, albeit with weak<br />

bootstrap support. <strong>The</strong> analysis <strong>of</strong> K.-H. Larsson et al. (2004)<br />

placed the athelioid clade as the sister group <strong>of</strong> the bolete<br />

clade, but all analyses in the present study placed it as the<br />

sister group <strong>of</strong> the euagarics clade (Figs 1, 3, 4). Similarly,<br />

the analysis <strong>of</strong> Bruns et al. (1998) placed a clade containing<br />

Piloderma croceum and Waitea circinata as the sister group<br />

<strong>of</strong> a clade containing most <strong>of</strong> the euagarics clade (except the<br />

Hygrophoraceae), although again bootstrap support was weak.<br />

Taken together, the results <strong>of</strong> these studies suggest that the<br />

athelioid clade is closely related to the euagarics clade, and<br />

may be its sister group.<br />

<strong>The</strong> athelioid clade clusters with a paraphyletic assemblage<br />

that includes an odd mixture <strong>of</strong> <strong>resupinate</strong><br />

(Radulomyces molaris, Phlebiella sp.), coralloid-clavarioid<br />

(Lentaria albovinacea, Deflexula subsimplex), pileate (Plica-<br />

turopsis crispa) and hypogeous gasteroid (Stephanospora caroticolor)<br />

<strong>forms</strong> (Fig. 4). Bootstrap support for this group<br />

is weak in the analysis <strong>of</strong> the full dataset (Fig. 4), but in<br />

the core dataset analysis the clade containing S. caroticolor,<br />

Athelia arachnoidea and ‘H. praetermissium’ receives moderately<br />

strong support (bootstrap = 91%; Fig. 1). Results from<br />

K.-H. Larsson et al. (2004) and additional analyses with an extended<br />

dataset (K.-H. Larsson, unpublished) indicate that the<br />

species that cluster here with the athelioid clade may represent<br />

several independent clades, including one clade that contains<br />

S. caroticolor and the <strong>resupinate</strong> <strong>forms</strong> Lindtneria trachyspora<br />

and Cristinia spp. (see above, under phlebioid clade). In the<br />

present analyses these clades are too sparsely sampled to be<br />

resolved, however. Additional data are needed to determine if<br />

this heterogeneous assemblage is an artefact.<br />

Members <strong>of</strong> the athelioid clade share a <strong>resupinate</strong> habit<br />

with a typically ‘loose’ monomitic hyphal construction, <strong>of</strong>ten<br />

with rhizomorphs (Eriksson & Ryvarden, 1973; Eriksson<br />

et al., 1981; Hjortstam et al., 1988b). Spores in the group<br />

are generally smooth and ellipsoid to globose, but Tylospora<br />

has angular spores that are smooth or warted, for which reason<br />

it has been placed in the <strong>The</strong>lephorales (Stalpers, 1993).<br />

In contrast to its morphological simplicity, the athelioid<br />

clade displays great diversity in ecological strategies. Species<br />

<strong>of</strong> Amphinema, Byssocorticium, Piloderma and Tylospora<br />

enter into ectomycorrhizal symbioses, and <strong>of</strong>ten form a major<br />

component <strong>of</strong> mycorrhizal communities (Danielson & Pruden,<br />

1989; Ginns & Lefebvre, 1993; Erland, 1996; Bradbury et al.,<br />

1998; Eberhardt et al., 1999; Kernaghan et al., 2003; Lilleskov<br />

et al., 2002; Shi et al., 2002). Athelia spp. are not known to<br />

form mycorrhizae, but they enter into other kinds <strong>of</strong> biotrophic<br />

associations. Athelia arachnoidea (and its Rhizoctonia anamorph)<br />

acts as a lichen parasite or a pathogen <strong>of</strong> carrots in<br />

cold storage, and also functions as a saprotroph on leaf litter<br />

(Arvidsson, 1976; Gilbert, 1988; Adams & Kropp, 1996).<br />

Athelia epiphylla has been suggested to form lichens with<br />

cyanobacteria, and it also acts as a primary decayer <strong>of</strong> leaf and<br />

needle litter and is associated with white rot <strong>of</strong> Populus tremuloides<br />

(Jülich, 1978; Lindsey & Gilbertson, 1978; Larsen et al.,<br />

1981). Finally, Matsuura et al. (2000) described a symbiosis<br />

involving Athelia sp. (as Fibularhizoctonia sp.) and termites,<br />

in which the fungus <strong>forms</strong> sclerotia that mimic termite eggs.<br />

Worker termites handle the sclerotia as if they were eggs, and<br />

the presence <strong>of</strong> sclerotia in termite nests appears to enhance<br />

egg viability. <strong>The</strong> benefit to the fungus (if any) is not clear, but<br />

might include dispersal to new substrates (Matsuura et al.,<br />

2000). Reconstructing the pattern <strong>of</strong> shifts in ecological<br />

strategies in Athelia is hampered by the difficulty <strong>of</strong> species<br />

identification in this group (Adams & Kropp, 1996). Indeed,<br />

the results <strong>of</strong> the present analysis and others cited previously<br />

indicate that isolates <strong>of</strong> Athelia spp. are <strong>of</strong>ten mislabelled.<br />

12. Euagarics clade<br />

With over 8400 species, the euagarics clade is by far the largest<br />

<strong>of</strong> the eight major clades recognised by Hibbett & Thorn<br />

(2001). <strong>The</strong> majority <strong>of</strong> taxa are agaricoid and correspond<br />

(in large part) to the suborder Agaricineae <strong>of</strong> Singer (1986)


and its many gasteroid derivatives. It is now recognised that<br />

there are also scattered clavarioid <strong>forms</strong> in the group (Hibbett<br />

et al., 1997; Pine et al., 1999; Hibbett & Thorn, 2001; K.-H.<br />

Larsson et al., 2004; Moncalvo et al., 2002). <strong>The</strong> most comprehensive<br />

<strong>phylogenetic</strong> study <strong>of</strong> the euagarics clade so far<br />

is that <strong>of</strong> Moncalvo et al. (2002), which included 877 isolates<br />

represented by nuc-lsu rDNA sequences. <strong>The</strong> only species that<br />

approaches a ‘<strong>resupinate</strong>’ form in that study is Gloeostereum<br />

incarnatum, which produces sessile conchate fruiting bodies<br />

that may be <strong>resupinate</strong> at the point <strong>of</strong> attachment (Petersen &<br />

Parmasto, 1993). Several other studies have shown that certain<br />

<strong>resupinate</strong> <strong>forms</strong> are in the euagarics clade (Kim & Jung,<br />

2000; Lim, 2001; E. Langer, 2002; K.-H. Larsson et al., 2004),<br />

but the sampling <strong>of</strong> agaricoid taxa has generally been too limited<br />

to address the placements <strong>of</strong> the <strong>resupinate</strong> <strong>forms</strong> on a<br />

fine scale (but see Langer, 2002, which included 54 species<br />

from the euagarics clade). <strong>The</strong> present study included a large<br />

sample (206 sequences) <strong>of</strong> non-<strong>resupinate</strong> <strong>forms</strong> in the euagarics<br />

clade, most <strong>of</strong> which are from the studies <strong>of</strong> Moncalvo<br />

et al. (2000, 2002).<br />

<strong>The</strong> euagarics clade receives weak bootstrap support in<br />

the analyses <strong>of</strong> both the core and full datasets (Figs 1, 4).<br />

Nevertheless, the general topology, with the Hygrophoraceae<br />

as the sister group <strong>of</strong> the ‘core euagarics clade’, is consistent<br />

with the strongly supported results <strong>of</strong> Binder & Hibbett<br />

(2002). One problematical aspect <strong>of</strong> the results here concerns<br />

the placements <strong>of</strong> the unclassified taxa that form a paraphyletic<br />

group at the base <strong>of</strong> the athelioid clade, including the corticioid<br />

<strong>forms</strong> Phlebiella sp. and Radulomyces molaris, both represented<br />

by sequences from the work <strong>of</strong> E. Langer (2002; also see<br />

Hibbett & Binder, 2002; Fig. 4). In the analysis <strong>of</strong> E. Langer<br />

(2002) these taxa were nested in the euagarics clade, although<br />

their closest relatives were not identified with confidence. Similar<br />

results were obtained by K.-H. Larsson et al. (2004), who<br />

found a well supported (bootstrap > 80%) clade containing<br />

three species <strong>of</strong> Radulomyces, Phlebiella pseudotsugae and<br />

Coronicium alboglaucum, which was weakly supported as the<br />

sister group <strong>of</strong> the clavarioid <strong>forms</strong> Typhula phacorrhiza and<br />

Macrotyphula juncea. Taken together, the results <strong>of</strong> these analyses<br />

suggest that Radulomyces, Phlebiella and Coronicium<br />

are nested within or closely related to the euagarics clade. It<br />

would be valuable to obtain additional sequences <strong>of</strong> these taxa,<br />

which at present are represented only by nuc-lsu rDNA sequences.<br />

Other than their corticioid habit, there are no obvious<br />

characters that suggest a close relationship among Radulomyces,<br />

Phlebiella and Coronicium (K.-H. Larsson et al., 2004).<br />

At least four groups <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> are nested in the<br />

core euagarics clade (Fig. 4). One <strong>of</strong> these groups is an odd<br />

assemblage including two Lachnocladiaceae (Vararia ochroleucum,<br />

V. gallica), Lopharia mirabilis and Trechsipora farinacea<br />

(Fig. 4). In this and other studies (Lim, 2001; K.-H.<br />

Larsson et al., 2004), sequences <strong>of</strong> these genera are placed in<br />

the russuloid clade, polyporoid clade and trechisporoid clade<br />

(respectively), suggesting that their placement in the euagarics<br />

clade is erroneous, possibly reflecting misidentifications.<br />

Dendrothele. Two isolates <strong>of</strong> the polyphyletic corticioid<br />

genus Dendrothele (D. griseocana, D. acerina) arenestedin<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 39<br />

a moderately supported (bootstrap = 83%) clade that also includes<br />

cyphelloid and aquatic Homobasidiomycetes (Fig. 4).<br />

This result is consistent with the results <strong>of</strong> the study <strong>of</strong><br />

E. Langer (2002), which was the source <strong>of</strong> the sequence <strong>of</strong><br />

D. acerina and several <strong>of</strong> the cyphelloid <strong>forms</strong>. In that analysis,<br />

these taxa were grouped in clade “cyphelloid 35”. A<br />

clade including Schizophyllum commune and the cupulate Auriculariopsis<br />

ampla is weakly supported as the sister group <strong>of</strong><br />

the Dendrothele-cyphelloid clade (Fig. 4), which is consistent<br />

with the results <strong>of</strong> Binder et al. (2001) and Nakasone (1996).<br />

Chondrostereum, Gloeostereum and Cystostereum. <strong>The</strong><br />

effused-reflexed, stereoid fungus Chondrostereum purpureum<br />

and Gloeostereum incarnatum are moderately supported<br />

(bootstrap = 85%) as a monophyletic group. <strong>The</strong>se results are<br />

consistent with those <strong>of</strong> Moncalvo et al. (2002) who showed<br />

that G. incarnatum is in the euagarics clade, and Kim & Jung<br />

(2000), E. Langer (2002), K.-H. Larsson et al. (2004), and<br />

Lim (2001), who showed that C. purpureum is in the euagarics<br />

clade. <strong>The</strong> studies <strong>of</strong> Kim & Jung (2000) and Lim (2001)<br />

also suggested that the <strong>resupinate</strong> to effused-reflexed stereoid<br />

fungus Cystostereum murraii is in this group.<br />

In contrast to Kim & Jung (2000) and Lim (2001), the analysis<br />

<strong>of</strong> Boidin et al. (1998) suggested that Cystostereum murraii<br />

is in the phlebioid clade (Phanerochaetales). Cystostereum<br />

murraii is dimitic, whereas C. purpureum is monomitic, which<br />

might seem to support the results <strong>of</strong> Boidin et al. (1998). Nevertheless,<br />

both taxa have hyphae in the context with swollen,<br />

bladderlike ends. <strong>The</strong> arrangement <strong>of</strong> these cells in the two<br />

species is strikingly similar in the illustrations <strong>of</strong> Eriksson &<br />

Ryvarden (1973, 1975), which supports the conclusions <strong>of</strong><br />

Kim & Jung (2000) that C. purpureum and C. murraii are<br />

closely related. In C. murraii the vesicles contain oil droplets.<br />

<strong>The</strong> “embedded gloeocystidia” described in G. incarnatum<br />

(Petersen & Parmasto, 1993, p. 1214) might be homologous.<br />

Moncalvo et al. (2002) showed that Cheimonophyllum<br />

candidissum, which is a minute pleurotoid agaric, is the sister<br />

group <strong>of</strong> G. incarnatum, and named the resulting clade<br />

the /gloeostereae. <strong>The</strong> sister group <strong>of</strong> the /gloeostereae included<br />

the pileate-stipitate agarics Hydropus scabripes, Baeospora<br />

myosura and B. myriadophylla (Tricholomataceae s.<br />

lat.), which were classified as the /baeosporoid clade. <strong>The</strong><br />

sister group relationship <strong>of</strong> /gloeostereae and /baeosporoid is<br />

weakly supported in this analysis, which includes many <strong>of</strong> the<br />

same sequences as in Moncalvo et al. (2002). Nevertheless, if<br />

this topology is correct, then it suggests a transformation series<br />

from pileate-stipitate agarics (Baeospora spp., H. scabripes),<br />

to pleurotoid agarics (C. candidissimum), conchate-partly <strong>resupinate</strong><br />

<strong>forms</strong> with a reduced hymenophore (G. incarnatum),<br />

and finally effused-reflexed or fully <strong>resupinate</strong> stereoid <strong>forms</strong><br />

(C. purpureum, C. murraii).<br />

Cylindrobasidium. Three isolates <strong>of</strong> the corticioid genus<br />

Cylindrobasidium, including two from the study <strong>of</strong> E. Langer<br />

(2002) are strongly supported (bootstrap = 100%) as a monophyletic<br />

group (Fig. 4). As in the analysis <strong>of</strong> E. Langer (2002),<br />

Cylindrobasidium is nested in a clade that includes the agaric<br />

genera Armillaria and Oudesmansiella (many others are included<br />

in the present study; Fig. 4). <strong>The</strong> analysis <strong>of</strong> K.-H.


40 Manfred Binder et al.<br />

Larsson et al. (2004) weakly supported monophyly <strong>of</strong> Cylindrobasidium<br />

laeve and Chondrostereum purpureum. Ifthe<br />

taxa that were not sampled by K.-H. Larsson et al. (2004)<br />

were pruned from the trees produced in the present study, then<br />

C. laeve and C. purpureum would again be resolved as sister<br />

taxa (Fig. 4).<br />

One problematical result concerns a sequence <strong>of</strong> the corticioid<br />

fungus Bulbillomyces farinosus, which is placed in a<br />

clade with the clavarioid <strong>forms</strong> Typhula phacorrhiza and Macrotyphula<br />

juncea, the pleurotoid agarics Phyllotopis nidulans<br />

and Pleurocybella porrigens, and the cyphelloid Henningsomyces<br />

candidus (Fig. 4). This group is equivalent to the clade<br />

“collybioid, clavarioid 28” that was resolved in the study <strong>of</strong><br />

E. Langer (2002). <strong>The</strong> monophyly <strong>of</strong> Bulbillomyces, Typhula<br />

and Macrotyphula is strongly supported (bootstrap = 98%),<br />

but there are no characters that would support this placement.<br />

Bulbillomyces farinosus produces a sclerotial anamorph<br />

(Aegerita candida), and in this regard it superficially resembles<br />

Typhula phacorrhiza, which also produces sclerotia,<br />

but the sclerotia differ in size, colour and anatomical features<br />

(Remsberg, 1940; Jülich, 1974). Analyses with alternative sequences<br />

<strong>of</strong> Bulbillomyces farinosus derived from two different<br />

cultures and one Aegerita candida isolate suggest that Bulbillomyces<br />

farinosus is closely related to Hypochnicium spp. in<br />

the residual polypore clade, which is a more explicable position<br />

(K.-H. Larsson unpublished, M. Binder & D. Hibbett,<br />

unpublished).<br />

Finally, K.-H. Larsson et al. (2004) resolved a weakly<br />

supported clade containing two <strong>resupinate</strong> polypores (Anomoporia<br />

bombycina and A. kamtschatica) and four corticioid<br />

fungi (Amylocorticium spp., Ceraceomyces tessulatus,<br />

Hypochniciellum subillaqueatum), which was placed as the<br />

sister group <strong>of</strong> the rest <strong>of</strong> the euagarics clade. None <strong>of</strong> these<br />

species were sampled here, although three different species <strong>of</strong><br />

Ceraceomyces were included in both the present study and<br />

that <strong>of</strong> K.-H. Larsson et al. (2004) and found to be in the phlebioid<br />

clade (see above). Analyses with additional sequences<br />

<strong>of</strong> Ceraceomyces tessulatus and Anomoporia spp., including<br />

A. albolutescens, have upheld the <strong>phylogenetic</strong> position suggested<br />

in Larsson et al. (2002) (K.-H. Larsson, unpublished).<br />

In contrast, the analysis <strong>of</strong> Kim & Jung (2000) placed<br />

A. albolutescens in the Antrodia clade. This placement would<br />

be consistent with the reported production <strong>of</strong> a brown rot by<br />

A. albolutescens (Gilbertson & Ryvarden, 1986), but it is inconsistent<br />

with the results <strong>of</strong> K.-H. Larsson et al. (2004) which<br />

are based on multiple isolates. It is likely that the ‘A. albolutescens’<br />

isolate studied by Kim & Jung (2000) is mislabelled.<br />

Bootstrap support for the basal nodes <strong>of</strong> the euagarics clade<br />

was weak in the study <strong>of</strong> K.-H. Larsson et al. (2004), so it<br />

remains unclear whether these last <strong>resupinate</strong> taxa are actually<br />

members <strong>of</strong> the euagarics clade. Even if they are, the fraction<br />

<strong>of</strong> species that are <strong>resupinate</strong> in the euagarics clade is much<br />

lower than in other major groups <strong>of</strong> Homobasidiomycetes<br />

(c. 4% in this dataset). One possible explanation for this pattern<br />

is that the abundance <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> in groups such as the<br />

hymenochaetoid clade, russuloid clade and cantharelloid clade<br />

reflects a plesiomorphic condition in these more basal groups<br />

(Hibbett & Binder, 2002). Alternatively, the rate <strong>of</strong> reversals to<br />

<strong>resupinate</strong> <strong>forms</strong> (or the rate <strong>of</strong> speciation <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong>)<br />

may be lower in the euagarics clade than in other clades <strong>of</strong><br />

Homobasidiomycetes.<br />

Conclusions and future directions<br />

Resupinate <strong>forms</strong> are scattered throughout all <strong>of</strong> the major<br />

clades <strong>of</strong> Homobasidiomycetes, as well as heterobasidiomycetes.<br />

Some <strong>of</strong> the recently recognised groups <strong>of</strong> Homobasidiomycetes,<br />

such as the athelioid clade, corticioid clade and<br />

trechisporoid clade (K.-H. Larsson et al., 2004), and the lone<br />

taxon Jaapia argillacea, are composed entirely, or almost entirely,<br />

<strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> (Fig. 4). <strong>The</strong> present study analysed<br />

one <strong>of</strong> the larger <strong>phylogenetic</strong> datasets in fungi to date (but see<br />

Moncalvo et al., 2002; Tehler et al., 2003), but it still included<br />

less than half <strong>of</strong> the genera <strong>of</strong> corticioid fungi recognised by<br />

Hjortstam (1987). As sampling <strong>of</strong> <strong>resupinate</strong> taxa continues,<br />

it is possible that new major clades will be discovered. Such<br />

discoveries could aid analyses <strong>of</strong> higher-level <strong>phylogenetic</strong> relationships<br />

<strong>of</strong> Homobasidiomycetes by identifying taxa that<br />

break up internodes deep in the tree (including those that determine<br />

the boundary between the Homobasidiomycetes and<br />

heterobasidiomycetes), many <strong>of</strong> which have proven difficult to<br />

resolve (Binder & Hibbett, 2002).<br />

Designing a sampling scheme for the remaining <strong>resupinate</strong><br />

taxa will be challenging. For many groups, there are<br />

few anatomical characters to provide clues to higher-level relationships,<br />

and the monophyly <strong>of</strong> individual genera is <strong>of</strong>ten<br />

questionable. For example, Hyphoderma is now understood<br />

to include species in the hymenochaetoid clade and polyporoid<br />

clade. Similarly, species <strong>of</strong> Veluticeps and Columnocystis,<br />

which were once proposed as generic synonyms, occur<br />

in the Gloeophyllum clade and polyporoid clade. <strong>The</strong>se examples<br />

are particularly dramatic, but numerous other genera<br />

<strong>of</strong> <strong>resupinate</strong> fungi have been found to be polyphyletic in this<br />

and other studies cited previously (e.g. Sistotrema, Hyphodontia,<br />

Schizopora, Phlebia, Phanerochaete, Aleurodiscus, Gloeocystidiellum,<br />

etc.). Many <strong>of</strong> the older genera have been split<br />

into smaller, putatively natural groups, but even some <strong>of</strong> these<br />

have been found to be polyphyletic (e.g. Boidinia; E. Larsson &<br />

K.-H. Larsson, 2003). Thus, an exemplar-based approach to<br />

sampling could lead to significant underestimates <strong>of</strong> the <strong>phylogenetic</strong><br />

diversity <strong>of</strong> <strong>resupinate</strong> Homobasidiomycetes.<br />

Ultimately, it will be necessary to construct phylogenybased<br />

classifications that include all the species <strong>of</strong> <strong>resupinate</strong><br />

and non-<strong>resupinate</strong> Homobasidiomycetes. Moreover, it will be<br />

necessary to include multiple accessions <strong>of</strong> individual species,<br />

because they can reveal misidentifications (which the present<br />

study shows are common), as well as provide insight into<br />

biogeography and intraspecific variation.<br />

To develop comprehensive <strong>phylogenetic</strong> classifications<br />

will require either simultaneous analyses <strong>of</strong> very large datasets,<br />

or analytical approaches that reconcile overlapping datasets,<br />

such as supertree methods (Sanderson et al., 1998). Simultaneous<br />

analyses have certain advantages, not the least <strong>of</strong> which<br />

is that they permit the estimation <strong>of</strong> branch lengths, which are<br />

necessary for molecular clock studies and maximum-likelihood<br />

analyses <strong>of</strong> character evolution. However, simultaneous


analyses <strong>of</strong> large datasets are computationally challenging,<br />

especially if model-based methods are employed. Using the<br />

Parsimony Ratchet, the present study succeeded in analysing<br />

a 656-OTU dataset with six-parameter weighted parsimony,<br />

but even this large dataset included only about one fifth <strong>of</strong> the<br />

3130 nuc-lsu rDNA sequences <strong>of</strong> Homobasidiomycetes that<br />

are available in GenBank as <strong>of</strong> this writing.<br />

Given the limitations <strong>of</strong> current computer hardware and<br />

algorithms, a rigorous simultaneous analysis <strong>of</strong> all the available<br />

homobasidiomycete sequences would be very difficult.<br />

To develop detailed <strong>phylogenetic</strong> hypotheses within individual<br />

clades will require more focused efforts, as exemplified by the<br />

studies <strong>of</strong> E. Larsson & K.-H. Larsson (2003) in the russuloid<br />

clade and Moncalvo et al. (2002) in the euagarics clade. At<br />

the same time, analyses <strong>of</strong> multigene datasets <strong>of</strong> exemplars<br />

from the major groups will be needed to estimate higher-level<br />

relationships. In the present study and that <strong>of</strong> Binder & Hibbett<br />

(2002), a dataset with four mitochondrial and nuclear rDNA<br />

regions was used for this purpose. It should be a priority to<br />

sequence these same regions in exemplars <strong>of</strong> the major clades<br />

that have so far been studied only with single genes, such as<br />

the athelioid clade and trechisporoid clade. Of course, not all<br />

nodes will be resolved with rDNA alone (e.g. the polyporoid<br />

clade; Binder & Hibbett, 2002), so exploration <strong>of</strong> proteincoding<br />

loci will also be necessary to resolve the <strong>phylogenetic</strong><br />

relationships <strong>of</strong> <strong>resupinate</strong> Homobasidiomycetes.<br />

Acknowledgements<br />

<strong>The</strong> authors are indebted to their colleagues and the institutions who<br />

provided cultures, specimens, DNA samples, sequence data, and access<br />

to unpublished results, including Vera Andjic, Helmut Besl, Paula<br />

DePriest, Margit Jarosch, Urmas Kõljalg, Phillip Franken, the USDA<br />

Forest Products Laboratory, Canadian Collection <strong>of</strong> Fungal Cultures<br />

and Centraalbureau voor Schimmelcultures. This research was supported<br />

by National Science Foundation awards DEB-9903835 (to<br />

DSH) and DEB-0128925 (to DSH and MB).<br />

References<br />

ADAMS,G.A.&KROPP, B. R. 1996. Athelia arachnoidea, the sexual<br />

state <strong>of</strong> Rhizoctonia carotae, a pathogen <strong>of</strong> carrot in cold storage.<br />

Mycologia 88, 459–472.<br />

AGERER, R. 1999. Never change a functionally successful principle:<br />

the evolution <strong>of</strong> Boletales s. l. (Hymenomycetes, Basidiomycota)<br />

as seen from below ground features. Sendtnera 6, 5–91.<br />

AGERER, R., KLOSTERMEYER, D., STEGLICH, W., FRANZ, F. &<br />

ACKER, G. 1996. Ectomycorrhizae <strong>of</strong> Albatrellus ovinus (Scutigeraceae)<br />

on Norway spruce with some remarks on the systematic<br />

position <strong>of</strong> the family. Mycotaxon 59, 289–307.<br />

ARVIDSSON, L. 1976. Athelia epiphylla (Berk.) Jül., and its influence<br />

on epiphytic cryptogams in urban areas. Göteborgs Svampklub<br />

˚Arsskrift 1976, 4–10.<br />

BEGEROW, D.,BAUER, R.&OBERWINKLER, F. 1997. Phylogenetic<br />

studies on nuclear large subunit ribosomal DNA sequences <strong>of</strong> smut<br />

fungi and related taxa. Canadian Journal <strong>of</strong> Botany 75, 2045–2056.<br />

BERCH, S.M.,ALLEN, T.R.&BERBEE, M. L. 2002. Community<br />

structure and phylogeny <strong>of</strong> ericoid mycorrhizal fungi. Plant and<br />

Soil 244, 55–66.<br />

BERGEMANN, S.E.&MILLER, S. L. 2002. Size, <strong>distribution</strong>, and<br />

persistence <strong>of</strong> genets in local populations <strong>of</strong> the late-stage ectomycorrhizal<br />

basidiomycete, Russula brevipes. New Phytologist 156,<br />

313–320.<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 41<br />

BESL, H.,BRESINSKY, A.&KÄMMERER, A. 1986. Chemosystematik<br />

der Coniophoraceae. Zeitschrift für Mykologie 52, 277–286.<br />

BIDARTONDO,M.I.,BRUNS,T.D.,WEIß,M.,SÉRGIO,C.&READ,D.<br />

J. 2003. Specialized cheating <strong>of</strong> the ectomycorrhizal symbiosis by<br />

an epiparasitic liverwort. Proceedings <strong>of</strong> the Royal Society London<br />

(Series B) 270, 835–842.<br />

BINDER, M.&BRESINSKY, A. 2002. Derivation <strong>of</strong> a polymorphic<br />

lineage <strong>of</strong> Gasteromycetes from boletoid ancestors. Mycologia<br />

94, 85–98.<br />

BINDER, M.&HIBBETT, D. S. 2002. Higher-level <strong>phylogenetic</strong> relationships<br />

<strong>of</strong> Homobasidiomycetes (mushroom-forming fungi)<br />

inferred from four rDNA regions. Molecular Phylogenetics and<br />

Evolution 22, 76–90.<br />

BINDER, M.,HIBBETT, D.S.&MOLITORIS, H.-P. 2001. Phylogenetic<br />

relationships <strong>of</strong> the marine gasteromycete Nia vibrissa. Mycologia<br />

93, 679–688.<br />

BOIDIN, J.&GILLES, G. 1998. Contribution àl’étude des genres<br />

Dendrocorticum, Dendrodontia et Dentocorticium (Basidiomycotina).<br />

Cryptogamie, Mycologie 19, 181–202.<br />

BOIDIN,J.&LANQUETIN, P. 1984. Répertoire des données utiles pour<br />

effectuer les teste d’intercompatibilité chez Basidiomycètes III.<br />

Aphyllophorales non porées. Cryptogamie, Mycologie 5, 193–245.<br />

BOIDIN,J.,MUGNIER,J.&CANALES, R. 1998. Taxonomie moleculaire<br />

des Aphyllophorales. Mycotaxon 66, 445–491.<br />

BRADBURY,S.M.,DANIELSON,R.M.&VISSER, S. 1998. Ectomycorrhizas<br />

<strong>of</strong> regenerating stands <strong>of</strong> lodgepole pine (Pinus contorta).<br />

Canadian Journal <strong>of</strong> Botany 76, 218–227.<br />

BRESINSKY, A.,JAROSCH, M.,FISCHER, M.,SCHÖNBERGER, I.&<br />

WITTMANN-BRESINSKY, B. 1999. Polyphyletic relationships<br />

within Paxillus s. l. (Basidiomycetes, Boletales): separation <strong>of</strong><br />

a southern hemisphere genus. Plant Biology 1, 327–333.<br />

BRUNS, T.D.&SZARO, T. M. 1992. Rate and mode differences<br />

between nuclear and mitochondrial small-subunit rRNA genes in<br />

mushrooms. Molecular Biology and Evolution 9, 836–855.<br />

BRUNS, T.D.,SZARO, T.M.,GARDES, M.,CULLINGS, K.W.,PAN, J.<br />

J., TAYLOR,D.L.,HORTON,D.R.,KRETZER,A.,GARBELOTTO,M.<br />

&LI, Y. 1998. A sequence database for the identification <strong>of</strong> ectomycorrhizal<br />

basidiomycetes by <strong>phylogenetic</strong> analysis. Molecular<br />

Ecology 7, 257–272.<br />

BURDSALL,H.H.JR,VOLK,T.J.&AMMIRATI,J.F.JR. 1996. Bridgeoporus,<br />

a new genus to accommodate Oxyporus nobilissimus (Basidiomycotina,<br />

Polyporaceae). Mycotaxon 60, 387–395.<br />

BURT, E. A. 1926. <strong>The</strong> <strong>The</strong>lephoraceae <strong>of</strong> North America XV. Annals<br />

<strong>of</strong> the Missouri Botanical Garden 13, 173–354.<br />

CHAMURIS, G. P. 1988. <strong>The</strong> non-stipitate stereoid fungi in the northeastern<br />

United States and adjacent Canada. Mycologia Memoirs<br />

14, 1–247.<br />

CHASE, M.ET AL. 1993. Phylogenetics <strong>of</strong> seed plants: an analysis <strong>of</strong><br />

nucleotide sequences from the plastid gene rbcL. Annals <strong>of</strong> the<br />

Missouri Botanical Garden 80, 528–580.<br />

CORNER, E. J. H. 1948. Asterodon, a clue to the morphology <strong>of</strong><br />

fungus fruit-bodies: with notes on Asterostroma and Asterostromella.<br />

Transactions <strong>of</strong> the British Mycological Society 31, 234–<br />

241.<br />

CORNER, E. J. H. 1966. A Monograph <strong>of</strong> Cantharelloid Fungi. Oxford<br />

<strong>University</strong> Press, London.<br />

CORNER, E. J. H. 1970. Supplement to ‘A monograph <strong>of</strong> Clavaria and<br />

allied genera’. Nova Hedwigia Beihefte 33, 1–299.<br />

CUNNINGHAM, C. W. 1997. Is congruence between data partitions a<br />

reliable predictor <strong>of</strong> <strong>phylogenetic</strong> accuracy? Empirically testing<br />

an iterative procedure for choosing among <strong>phylogenetic</strong> methods.<br />

Systematic Biology 46, 464–478.<br />

DANIELSON, R. M. 1984. Ectomycorrhizal associations in jack pine<br />

stands in northeastern Alberta. Canadian Journal <strong>of</strong> Botany 62,<br />

932–939.<br />

DANIELSON, R.M.&PRUDEN, M. 1989. <strong>The</strong> ectomycorrhizal status<br />

<strong>of</strong> urban spruce. Mycologia 81, 335–341.<br />

DE KOKER, T. H., NAKASONE, K. K., HAARHOF, J., BURDSALL,<br />

H. H. JR &JANSE, B. J. H. 2003. Phylogenetic relationships <strong>of</strong>


42 Manfred Binder et al.<br />

the genus Phanerochaete inferred from the internal transcribed<br />

spacer region. Mycological Research 107, 1032–1034.<br />

DIEDERICH,P.,SCHULTEIS,B.&BLACKWELL, M. 2003. Marchandiobasidium<br />

aurantiacum gen. sp. nov., the teleomorph <strong>of</strong> Marchandiomyces<br />

aurantiacus (Basidiomycota, Ceratobasidiales). Mycological<br />

Research 107, 523–527.<br />

DOMANSKI, S. 1972. Fungi Polyporaceae I (resupinatae) Mucroporonaceae<br />

I (resupinatae). National Center for Scientific, Technical<br />

and Economic Information, Warsaw.<br />

DONK, M. A. 1964. A conspectus <strong>of</strong> the families <strong>of</strong> Aphyllophorales.<br />

Persoonia 3, 199–324.<br />

DONK, M. A. 1971. Progress in the study <strong>of</strong> the classification <strong>of</strong> the<br />

higher basidiomycetes. In: PETERSEN, R. H., Ed., Evolution in the<br />

Higher Basidiomycetes. <strong>University</strong> <strong>of</strong> Tennessee Press, Knoxville,<br />

pp. 3–25.<br />

EBERHARDT, U.,WALTER, L.&KOTTKE, I. 1999. Molecular and<br />

morphological discrimination between Tylospora fibrillosa and<br />

Tylospora asterophora mycorrhizae. Canadian Journal <strong>of</strong> Botany<br />

77, 11–21.<br />

ERIKSSON, J. 1954. Ramaricium n. gen., a corticioid member <strong>of</strong> the<br />

Ramaria group. Svensk Botanisk Tidskrift 48, 188–198.<br />

ERIKSSON, J. 1958. Studies in the Heterobasidiomycetes and Homobasidiomycetes<br />

– Aphyllophorales <strong>of</strong> Muddus National Park in<br />

North Sweden. Symbolae Botanicae Upsalienses 16, 1–172.<br />

ERIKSSON, J.,HJORTSTAM, K.&RYVARDEN, L. 1978. <strong>The</strong> Corticiaceae<br />

<strong>of</strong> North Europe. Vol. 5, Mycoaciella-Phanerochaete.<br />

Fungiflora, Oslo.<br />

ERIKSSON, J.,HJORTSTAM, K.&RYVARDEN, L. 1981. <strong>The</strong> Corticiaceae<br />

<strong>of</strong> North Europe. Vol. 6, Phlebia-Sarcodontia. Fungiflora,<br />

Oslo.<br />

ERIKSSON, J.,HJORTSTAM, K.&RYVARDEN, L. 1984. <strong>The</strong> Corticiaceae<br />

<strong>of</strong> North Europe. Vol. 7, Schizopora-Suillosporium.<br />

Fungiflora, Oslo.<br />

ERIKSSON, J.&RYVARDEN, L. 1973. <strong>The</strong> Corticiaceae <strong>of</strong> North<br />

Europe. Vol. 2, Aleurodiscus-Confertobasidium. Fungiflora, Oslo.<br />

ERIKSSON, J.&RYVARDEN, L. 1975. <strong>The</strong> Corticiaceae <strong>of</strong> North<br />

Europe. Vol. 3, Coronicium-Hyphoderma. Fungiflora, Oslo.<br />

ERIKSSON, J.&RYVARDEN, L. 1976. <strong>The</strong> Corticiaceae <strong>of</strong> North<br />

Europe. Vol. 4, Hyphodermella-Mycoacia. Fungiflora, Oslo.<br />

ERLAND, S. 1996. Abundance <strong>of</strong> Tylospora fibrillosa ectomycorrhizas<br />

in a South Swedish spruce forest measured by RFLP analysis <strong>of</strong><br />

the PCR-amplified rDNA ITS region. Mycological Research 99,<br />

1425–1428.<br />

ETAYO,J.&DIEDERICH, P. 1996. Lichenicolous fungi from the western<br />

Pyrenees, France and Spain. II. More Deuteromycetes. Mycotaxon<br />

60, 415–428.<br />

EYME,J.&PARRIAUD, H. 1970. Au sujet de l’infrastructure des hyphes<br />

de Clathrus cancellatus Tournefort, champignon gasteromycete.<br />

Compte Rendu de l’Academie des Sciences Paris (Serie D) 270,<br />

1890–1892.<br />

FRIES, E. M. 1821. Systema Mycologicum, sistens fungorum ordines,<br />

genera et species huc usque cognitas. Vol. I. Berling, Lund.<br />

GARGAS,A.,DEPRIEST,P.T.,GRUBE,M.&TEHLER, A. 1995a. Multiple<br />

origins <strong>of</strong> lichen symbioses in fungi suggested by ssu rDNA<br />

phylogeny. Science 268, 1492–1495.<br />

GARGAS,A.,DEPRIEST,P.T.&TAYLOR, J. W. 1995b. Positions <strong>of</strong> multiple<br />

insertions in SSU rDNA <strong>of</strong> lichen-forming fungi. Molecular<br />

Biology and Evolution 12, 208–218.<br />

GILBERT, O. L. 1988. Studies on the destruction <strong>of</strong> Lecanora conizaeoides<br />

by the lichenicolous fungus Athelia arachnoidea. Lichenologist<br />

20, 183–190.<br />

GILBERTSON,R.L.&RYVARDEN, L. 1986. North American Polypores.<br />

Vol. 1. Fungiflora, Oslo.<br />

GILBERTSON,R.L.&RYVARDEN, L. 1987. North American Polypores.<br />

Vol. 2. Fungiflora, Oslo.<br />

GILL, M.&STEGLICH, W. 1987. Pigments <strong>of</strong> fungi (Macromycetes).<br />

Progress in the Chemistry <strong>of</strong> Organic Natural Products 51, 1–317.<br />

GINNS, J. 1978. Leucogyrophana (Aphyllophorales): Identification <strong>of</strong><br />

species. Canadian Journal <strong>of</strong> Botany 56, 1953–1973.<br />

GINNS, J. 1979. <strong>The</strong> genus Ramaricium (Gomphaceae). Botaniska<br />

Notiser 132, 93–102.<br />

GINNS, J. 1982. A monograph <strong>of</strong> the genus Coniophora (Aphyllophorales,<br />

Basidiomycetes). Opera Botanica 61, 1–61.<br />

GINNS, J. 1997. <strong>The</strong> taxonomy and <strong>distribution</strong> <strong>of</strong> rare or uncommon<br />

species <strong>of</strong> Albatrellus in western North America. Canadian<br />

Journal <strong>of</strong> Botany 75, 261–273.<br />

GINNS, J.&LEFEBVRE, M. N. L. 1993. Lignicolous corticioid fungi<br />

(Basidiomycota) <strong>of</strong> North America: systematics, <strong>distribution</strong>, and<br />

ecology. Mycologia Memoirs 19, 1–247.<br />

GOLOBOFF, P. 1998. NONA. Computer program and s<strong>of</strong>tware. Published<br />

by the author. INSUE Fundación e Instituto Miguel Lillo<br />

Miguel Lillo 205, 4000 S. M. de Tucumán, Argentina. http://www.<br />

cladistics.com/aboutNona.htm<br />

HALLENBERG, N. 1985. <strong>The</strong> Lachnocladiaceae and Coniophoraceae<br />

<strong>of</strong> North Europe. Fungiflora, Oslo.<br />

HALLENBERG, N. 1990. Ultrastructure <strong>of</strong> stephanocysts and basidiospores<br />

in Hyphoderma praetermissum. Mycological Research<br />

94, 1090–1095.<br />

HALLENBERG, N.&PARMASTO, E. 1998. Phylogenetic studies in<br />

species <strong>of</strong> Corticiaceae growing on branches. Mycologia 90, 640–<br />

654.<br />

HANSEN, L.&KNUDSEN, H.,EDS, 1997. Nordic macromycetes, 3.<br />

Heterobasidioid, aphyllophoroid and gastromycetoid basidiomycetes.<br />

Nordsvamp, Copenhagen.<br />

HELLWIG, V. 1999. Isolierung, Strukturaufklärung und chemotaxonomische<br />

Untersuchung von Sekundärmetaboliten aus Pilzen.Ph.D.<br />

<strong>The</strong>sis, Universität München, Fakultät Chemie und Pharmazie.<br />

HENKEL, T.W.,AIME, M.C.&MILLER, S. L. 2000. Systematics<br />

<strong>of</strong> pleurotoid Russulaceae from Guyana and Japan, with notes on<br />

their ectomycorrhizal status. Mycologia 92, 1119–1132.<br />

HIBBETT, D. S. 1996. Phylogenetic evidence for horizontal transmission<br />

<strong>of</strong> Group 1 introns in the nuclear ribosomal DNA <strong>of</strong><br />

mushroom-forming fungi. Molecular Biology and Evolution 13,<br />

903–917.<br />

HIBBETT, D. S. (in press). Trends in morphological evolution in Homobasidiomycetes.<br />

Systematic Biology.<br />

HIBBETT, D.S.&BINDER, M. 2002. Evolution <strong>of</strong> complex fruiting<br />

body morphologies in Homobasidiomycetes. Proceedings <strong>of</strong> the<br />

Royal Society London (Series B) 269, 1963–1969.<br />

HIBBETT, D.S.&DONOGHUE, M. J. 1995. Progress toward a <strong>phylogenetic</strong><br />

classification <strong>of</strong> the Polyporaceae through parsimony analyses<br />

<strong>of</strong> ribosomal DNA sequences. Canadian Journal <strong>of</strong> Botany<br />

73 (Supplement 1), S853–S861.<br />

HIBBETT, D.S.&DONOGHUE, M. J. 2001. Analysis <strong>of</strong> character<br />

correlations among wood decay mechanism, mating systems, and<br />

substrate ranges in Homobasidiomycetes. Systematic Biology 50,<br />

215–242.<br />

HIBBETT,D.S.,GILBERT,L.-B.&DONOGHUE, M. J. 2000. Evolutionary<br />

instability <strong>of</strong> ectomycorrhizal symbioses in basidiomycetes.<br />

Nature 407, 506–508.<br />

HIBBETT,D.S.,PINE,E.M.,LANGER,E.,LANGER,G.&DONOGHUE,<br />

M. J. 1997. Evolution <strong>of</strong> gilled mushrooms and puffballs inferred<br />

from ribosomal DNA sequences. Proceedings <strong>of</strong> the National<br />

Academy <strong>of</strong> Sciences USA 94, 12002–12006.<br />

HIBBETT,D.S.&THORN, R. G. 2001. Basidiomycota: Homobasidiomycetes.<br />

In: MCLAUGHLIN,D.J.,MCLAUGHLIN,E.G.&LEMKE,<br />

P. A., EDS, <strong>The</strong> Mycota VII, Systematics and Evolution. PartB.<br />

Springer Verlag, Berlin, pp. 121–168.<br />

HIBBETT, D.S.&VILGALYS, R. 1993. Phylogenetic relationships <strong>of</strong><br />

Lentinus (Basidiomycotina) inferred from molecular and morphological<br />

characters. Systematic Botany 18, 409–433.<br />

HIETALA,A.M.,VAHALA,J.&HANTULA, J. 2001. Molecular evidence<br />

suggests that Ceratobasidium bicorne has an anamorph known as<br />

a conifer pathogen. Mycological Research 105, 555–562.<br />

HJORTSTAM, K. 1987. A check-list to genera and species <strong>of</strong> corticioid<br />

fungi (Hymenomycetes). Windahlia 17, 55–85.<br />

HJORTSTAM, K. & LARSSON, K.-H. 1995. Annotated check-list<br />

to genera and species <strong>of</strong> corticioid fungi (Aphyllophorales,


Basidiomycotina) with special regards to tropical and subtropical<br />

areas. Windahlia 21, 1–75.<br />

HJORTSTAM, K.,LARSSON, K.-H. & RYVARDEN, L. 1988a. <strong>The</strong> Corticiaceae<br />

<strong>of</strong> North Europe. Vol. 1. Introduction and keys. Fungiflora,<br />

Oslo.<br />

HJORTSTAM, K.,LARSSON, K.-H., RYVARDEN, L.&ERIKSSON, J.<br />

1988b. <strong>The</strong> Corticiaceae <strong>of</strong> North Europe. Vol. 8. Phlebiella,<br />

Thanatephorus-Ypsilonidium. Fungiflora, Oslo.<br />

HJORTSTAM,K.&RYVARDEN, L. 1979. Notes on Corticiaceae (Basidiomycetes)<br />

IV. Mycotaxon 10, 201–209.<br />

HJORTSTAM, K.&RYVARDEN, L. 1980a. Studies in tropical Corticiaceae<br />

(Basidiomycetes) I. Mycotaxon 10, 269–287.<br />

HJORTSTAM, K.&RYVARDEN, L. 1980b. Studies in tropical Corticiaceae<br />

(Basidiomycetes) II. Mycotaxon 12, 168–184.<br />

HJORTSTAM,K.&TELLERÍA, M. T. 1990. Columnocystis, a synonym<br />

<strong>of</strong> Veluticeps. Mycotaxon 57, 53–56.<br />

HSIAU, P. 1996. <strong>The</strong> taxonomy and phylogeny <strong>of</strong> the mycangial fungi<br />

from Dendroctonus brevicomis and D. frontalis (Coleoptera: Scolytidae).<br />

Ph.D. thesis, Iowa State <strong>University</strong>, Ames, Iowa.<br />

HUELSENBECK, J. P. 1995. Performance <strong>of</strong> <strong>phylogenetic</strong> methods in<br />

simulation. Systematic Biology 44, 17–63.<br />

HUMPERT, A.J.,MUENCH, E.L.,GIACHINI, A.J.,CASTELLANO,<br />

M. A. & SPATAFORA, J. W. 2001. Molecular <strong>phylogenetic</strong>s <strong>of</strong><br />

Ramaria and related genera: evidence from nuclear large subunit<br />

and mitochondrial small subunit rDNA sequences. Mycologia 93,<br />

465–477.<br />

JAROSCH, M. 2001. Zur molekularen Systematik der Boletales: Coniophorineae,<br />

Paxillineae und Suillineae. Bibliotheca Mycologica<br />

191, 1–158.<br />

JAROSCH,M.&BESL, H. 2001. Leucogyrophana, a polyphyletic genus<br />

<strong>of</strong> the order Boletales (Basidiomycetes). Plant Biology 3, 443–448.<br />

JENNINGS, D.H.&BRAVERY, A.F.,EDS, 1991. Serpula lacrymans:<br />

Fundamental biology and control strategies. John Wiley & Sons,<br />

New York.<br />

JOHNSON, J.E.&METHVEN, A. S. 1994. Panus conchatus: Cultural<br />

characters and mating data. Mycologia 86, 146–150.<br />

JÜLICH, W. 1974. <strong>The</strong> genera <strong>of</strong> the Hyphodermoideae (Corticiaceae).<br />

Persoonia 8, 59–97.<br />

JÜLICH, W. 1978. A new lichenized Athelia from Florida. Persoonia<br />

12, 149–151.<br />

JÜLICH, W. 1981. Higher taxa <strong>of</strong> Basidiomycetes.Cramer,Lehre.<br />

JÜLICH,W.&STALPERS, J. A. 1980. <strong>The</strong> <strong>resupinate</strong> non-poroid Aphyllophorales<br />

<strong>of</strong> the temperate northern hemisphere. Verhandelingen<br />

der Koninklijke Nederlandse Akademie van Wetenschappen,<br />

Afd Natuurkunde, Tweede Reeks. North-Holland Publishing Company,<br />

Amsterdam.<br />

KÄMMERER, A.,BESL, H.&BRESINSKY, A. 1985. Omphalotaceae<br />

fam. nov. und Paxillaceae, ein chemotaxonomischer Vergleich<br />

zweier Pilzfamilien der Boletales. Plant Systematics and Evolution<br />

150, 101–117.<br />

KARSTEN, P. A. 1881. Enumeratio Boletinarum et Polyporearum<br />

Fennicarum, Systemate novo dispositarum. Revue Mycologie<br />

(Toulouse) 3, 1–19.<br />

KELLER, J. 1985. Les cystides cristalliferes des Aphyllophorales.<br />

Mycologia Helvetica 1, 277–305.<br />

KELLER, J. 1997. Atlas des Basidiomycetes. Union des Societes<br />

Suisses de Mycologie, Neuchâtel.<br />

KERNAGHAN,G.,SIGLER,L.&KHASA, D. 2003. Mycorrhizal and root<br />

endophytic fungi <strong>of</strong> containerized Picea glauca seedlings assessed<br />

by rDNA sequence analysis. Microbial Ecology 45, 128–136.<br />

KHAN,S.R.&KIMBROUGH, J. W. 1980. Septal ultrastructure in some<br />

genera <strong>of</strong> the Tremellaceae. Canadian Journal <strong>of</strong> Botany 58, 55–<br />

60.<br />

KIM, S.Y.&JUNG, H. S. 2000. Phylogenetic relationships <strong>of</strong> the<br />

Aphyllophorales inferred from sequence analysis <strong>of</strong> nuclear small<br />

subunit ribosomal DNA. Journal <strong>of</strong> Microbiology 38, 122–131.<br />

KIRK, P. M., CANNON, P. F., DAVID, J. C. & STALPERS, J. A.<br />

2001. Ainsworth and Bisby’s Dictionary <strong>of</strong> the Fungi, 9th edn.<br />

Cambridge <strong>University</strong> Press, Cambridge.<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 43<br />

KLEPZIG, K.D.,MOSER, J.C.,LOMBARDERO, F.J.,HOFSTETTER,<br />

R. W. & AYRES, M. P. 2001. Symbiosis and competition: complex<br />

interactions among beetles, fungi, and mites. Symbiosis 30, 83–96.<br />

KÕLJALG, U. 1996. Tomentella (Basidiomycota) and related genera in<br />

temperate Eurasia. Synopsis Fungorum 9, 1–213.<br />

KÕLJALG, U., DAHLBERG, A., TAYLOR, A. F., LARSSON, E.,<br />

HALLENBERG, N.,STENLID, J.,LARSSON, K.-H., FRANSSON, P.<br />

M., KAREN, O.&JONSSON, L. 2000. Diversity and abundance<br />

<strong>of</strong> <strong>resupinate</strong> thelephoroid fungi as ectomycorrhizal symbionts in<br />

Swedish boreal forests. Molecular Ecology 9, 1985–1996.<br />

KÕLJALG,U.,ERZSÉBET,J.,BÓKA,K.&AGERER, R. 2001. Three ectomycorrhiza<br />

with cystidia formed by different Tomentella species<br />

as revealed by rDNA ITS sequences and anatomical characteristics.<br />

Folia Cryptogamica Estonica 38, 27–39.<br />

KÕLJALG,U.,TAMMI,H.,TIMONEN,S.,AGERER,R.&SEN, R. 2002.<br />

ITS rDNA sequence-based <strong>phylogenetic</strong> analysis <strong>of</strong> Tomentellopsis<br />

species from boreal and temperate forests, and the identification<br />

<strong>of</strong> pink-type ectomycorrhizas. Mycological Progress 1, 81–<br />

92.<br />

KOTTKE, I.,BEITER, A.,WEIß, M.,HAUG, I.,OBERWINKLER, F.&<br />

NEBEL, M. 2003. Heterobasidiomycetes form symbiotic associations<br />

with hepatics: Jungermanniales have sebacinoid mycobionts<br />

while Aneura pinguis (Metzgeriales) is associated with a<br />

Tulasnella species. Mycological Research 107, 957–968.<br />

KRETZER, A.M.&BRUNS, T. D. 1999. Use <strong>of</strong> atp6 in fungal <strong>phylogenetic</strong>s:<br />

an example from the Boletales. Molecular Phylogenetics<br />

and Evolution 13, 483–492.<br />

KRISTIANSEN, K.A.,TAYLOR, D.L.,KJØLLER, R.,RASMUSSEN,<br />

H. N. & ROSENDAHL, S. 2001. Identification <strong>of</strong> mycorrhizal<br />

fungi from single pelotons <strong>of</strong> Dactylorhiza majalis (Orchidaceae)<br />

using single-strand conformation polymorphism and mitochondrial<br />

ribosomal large subunit DNA sequences. Molecular Ecology<br />

10, 2089–2093.<br />

KROPP,B.R.&TRAPPE, J. M. 1982. Ectomycorrhizal fungi <strong>of</strong> Tsuga<br />

heterophylla. Mycologia 74, 479–488.<br />

LANGER, E. 1994. Die Gattung Hyphodontia John Eriksson. Bibliotheca<br />

Mycologica 154, 1–298.<br />

LANGER, E. 1998. Evolution <strong>of</strong> Hyphodontia (Corticiaceae, Basidiomycetes)<br />

and related Aphyllophorales inferred from ribosomal<br />

DNA sequences. Folia Cryptogamica Estonica 33, 57–62.<br />

LANGER, E. 2002. Phylogeny <strong>of</strong> non-gilled and gilled basidiomycetes:<br />

DNA sequence inference, ultrastructure and comparative morphology.<br />

Habilitationsschrift, Universität Tübingen, Tübingen,<br />

Germany.<br />

LANGER,E.&OBERWINKLER, F. 1993. Corticioid Basidiomycetes. I.<br />

Morphology and ultrastructure. Windahlia 20, 1–28.<br />

LANGER, G. 1994. Die Gattung Botryobasidium Donk (Corticiaceae,<br />

Basidiomycetes). Bibliotheca Mycologica 158, 1–459.<br />

LANGER, G.,LANGER, E.&CHEN, C.-J. 2000. Botryobasidium musaisporum<br />

sp. nov. collected in Taiwan. Mycological Research<br />

104, 510–512.<br />

LARIGNON,P.&DUBOS, B. 1997. Fungi associated with esca disease<br />

in grapevine. Europe an Journal <strong>of</strong> Plant Pathology 103, 147–157.<br />

LARSEN, M. J. 1968. Tomentelloid fungi <strong>of</strong> North America. State<br />

<strong>University</strong> College <strong>of</strong> Forestry at Syracuse <strong>University</strong>, Technical<br />

Publication No. 93, 1–157.<br />

LARSEN, M. J. 1974. A contribution to the taxonomy <strong>of</strong> the genus<br />

Tomentella. Mycologia Memoirs 4, 1–145.<br />

LARSEN, M.J.&GILBERTSON, R. L. 1974. Dendrocorticium and<br />

Dentocorticium, gen. nov. (Aphyllophorales, Corticiaceae) as<br />

segregates from Laeticorticium. Norwegian Journal <strong>of</strong> Botany 21,<br />

223–226.<br />

LARSEN,M.J.,JURGENSEN,M.F.&HARVEY, A. E. 1981. Athelia epiphylla<br />

associated with colonization <strong>of</strong> subalpine fir foliage under<br />

psychrophilic conditions. Mycologia 73, 1195–1202.<br />

LARSSON, E. 2002. Phylogeny <strong>of</strong> corticioid fungi with russuloid characteristics.Ph.D.<strong>The</strong>sis,Göteborg<br />

<strong>University</strong>, Göteborg, Sweden.<br />

LARSSON, E.&HALLENBERG, N. 2001. Species delimitation in the<br />

Gloeocystidiellum porosum-clavuligerum complex inferred from


44 Manfred Binder et al.<br />

compatibility studies and nuclear rDNA sequence data. Mycologia<br />

93, 907–914.<br />

LARSSON, E.&LARSSON, K.-H. 2003. Phylogenetic relationships <strong>of</strong><br />

russuloid basidiomycetes with emphasis on aphyllophoralean taxa.<br />

Mycologia 95, 1037–1065.<br />

LARSSON, K.-H. 1994. Poroid species in Trechispora and the use <strong>of</strong><br />

calcium oxalate crystals for species identification. Mycological<br />

Research 98, 1153–1172.<br />

LARSSON, K.-H. 2001. <strong>The</strong> position <strong>of</strong> Poria mucida inferred from<br />

nuclear ribosomal DNA sequences. Harvard Papers in Botany 6,<br />

131–138.<br />

LARSSON,K.-H.,LARSSON,E.&KÕLJALG, U. 2004. High <strong>phylogenetic</strong><br />

diversity among corticioid homobasidomycetes. Mycological<br />

Research 108, 983–1002.<br />

LEE,S.B.&TAYLOR, J. W. 1990. Isolation <strong>of</strong> DNA from fungal mycelia<br />

and single cells. In: INNIS,M.A.,GELFAND,D.H.,SNINSKY,<br />

J. J. & WHITE, T.J.,EDS, PCR protocols, a guide to methods and<br />

applications. Academic Press, San Diego, pp. 282–287.<br />

LEMKE, P. A. 1964a. <strong>The</strong> genus Aleurodiscus (sensu lato) inNorth<br />

America. Canadian Journal <strong>of</strong> Botany 42, 213–282.<br />

LEMKE, P. A. 1964b. <strong>The</strong> genus Aleurodiscus (sensu lato) inNorth<br />

America. Canadian Journal <strong>of</strong> Botany 42, 723–768.<br />

LILLESKOV,E.A.,FAHEY,T.J.,HORTON,T.R.&LOVETT, G. M. 2002.<br />

Belowground ectomycorrhizal fungal community change over a<br />

nitrogen deposition gradient in Alaska. Ecology 83, 104–115.<br />

LIM, Y. W. 2001. Systematic study <strong>of</strong> corticioid fungi based on molecular<br />

sequence analyses. Ph.D. <strong>The</strong>sis, School <strong>of</strong> Biological<br />

Sciences, Seoul National <strong>University</strong>, Korea.<br />

LINDSEY,J.P.&GILBERTSON, R. L. 1978. Basidiomycetes that decay<br />

aspen in North America. Bibliotheca Mycologica 63, 1–406.<br />

LUTZONI, F. M. 1997. Phylogeny <strong>of</strong> lichen- and non-lichen-forming<br />

omphalinoid mushrooms and the utility <strong>of</strong> testing for combinability<br />

among multiple datasets. Systematic Biology 46, 373–406.<br />

MARTIN, K.J.&GILBERTSON, R. L. 1973. <strong>The</strong> mating system and<br />

some other cultural aspects <strong>of</strong> Veluticeps berkeleyi. Mycologia 65,<br />

548–557.<br />

MATSUURA, K.,TANAKA, C.&NISHIDA, T. 2000. Symbiosis <strong>of</strong> a<br />

termite and a sclerotium-forming fungus: sclerotia mimic termite<br />

eggs. Ecological Research 15, 405–414.<br />

MILLER,O.K.JR. 1971. <strong>The</strong> relationship <strong>of</strong> cultural characters to the<br />

taxonomy <strong>of</strong> the agarics. In: PETERSEN,R.H.,ED., Evolution in the<br />

Higher Basidiomycetes. <strong>University</strong> <strong>of</strong> Tennessee Press, Knoxville,<br />

pp. 197–215.<br />

MILLER,S.L.,AIME,M.C.&HENKEL, T. W. 2002. Russulaceae from<br />

the Pakaraima Mountains <strong>of</strong> Guyana. I. New species <strong>of</strong> pleurotoid<br />

Lactarius. Mycologia 94, 545–553.<br />

MILLER, S.L.,MCCLEAN, T.M.,WALKER, J.&BUYCK, B. 2001.<br />

A molecular phylogeny <strong>of</strong> the Russulaceae including agaricoid,<br />

gasteroid and pleurotoid taxa. Mycologia 93, 344–354.<br />

MONCALVO, J.-M., LUTZONI, F. M., REHNER, S. A., JOHNSON,<br />

J. & VILGALYS, R. 2000. Phylogenetic relationships <strong>of</strong> agaric<br />

fungi based on nuclear large subunit ribosomal DNA sequences.<br />

Systematic Biology 49, 278–305.<br />

MONCALVO, J.-M.,VILGALYS, R.,REDHEAD, S.A.,JOHNSON, J.E.,<br />

JAMES, T.Y.,AIME, M.C.,HOFSTETTER, V.,VERDUIN, S.J.<br />

W., LARSSON, E.,BARONI, T.J.,THORN, R.G.,JACOBSSON, S.,<br />

CLÉMENÇON, H.&MILLER, O.K.JR. 2002. One hundred and<br />

seventeen clades <strong>of</strong> euagarics. Molecular Phylogenetics and Evolution<br />

23, 357–400.<br />

MOORE, R. T. 1978. Taxonomic significance <strong>of</strong> septal ultrastructure<br />

with particular references to the jelly fungi. Mycologia 70, 1007–<br />

1024.<br />

MOORE, R. T. 1980. Taxonomic significance <strong>of</strong> septal ultrastructure<br />

in the genus Onnia Karsten (Polyporineae/Hymenochaetaceae).<br />

Botaniska Notiser 133, 169–175.<br />

MOORE, R. T. 1985. <strong>The</strong> challenge <strong>of</strong> the dolipore septum. In: MOORE,<br />

D., CASSELTON, L.A.,WOOD, D.A.&FRANKLAND, J.C.,EDS,<br />

Developmental Biology <strong>of</strong> the Higher Fungi. Cambridge <strong>University</strong><br />

Press, Cambridge, pp. 175–212.<br />

MÜLLER,W.H.,STALPERS,J.A.,VAN AELST,A.C.,VAN DER KRIFT,<br />

T. P. & BOEKHOUT, T. 1998. Field emission gun-scanning electron<br />

microscopy <strong>of</strong> septal pore caps <strong>of</strong> selected species in the Rhizoctonia<br />

s.l. complex. Mycologia 90, 170–179.<br />

MÜLLER, W.H.,STALPERS, J.A.,VAN AELST, A.C.,DE JONG, M.<br />

D. M., VAN DER KRIFT, T.P.&BOEKHOUT, T. 2000. <strong>The</strong> taxonomic<br />

position <strong>of</strong> Asterodon, Asterostroma and Coltricia inferred<br />

from the septal pore cap ultrastructure. Mycological Research 104,<br />

1485–1492.<br />

NAKASONE, K. K. 1990a. Cultural studies and identification <strong>of</strong> woodinhabiting<br />

Corticiaceae and selected Hymenomycetes from North<br />

America. Mycologia Memoirs 15, 1–412.<br />

NAKASONE, K. K. 1990b. Taxonomic study <strong>of</strong> Veluticeps (Aphyllophorales).<br />

Mycologia 82, 622–641.<br />

NAKASONE, K. K. 1996. Morphological and molecular studies on<br />

Auriculariopsis albomellea and Phlebia albida and a reassessment<br />

<strong>of</strong> A. ampla. Mycologia 88, 762–775.<br />

NILSSON,T.&GINNS, J. 1979. Cellulolytic activity and the taxonomic<br />

position <strong>of</strong> selected brown-rot fungi. Mycologia 71, 170–177.<br />

NIXON, K. C. 1999. <strong>The</strong> Parsimony Ratchet, a new method for rapid<br />

parsimony analysis. Cladistics 15, 407–414.<br />

OBERWINKLER, F. 1977. Das neue System der Basidiomyceten. In:<br />

FREY, H.,HURKA, H.&OBERWINKLER, F.,EDS, Beiträge zur<br />

Biologie der niederen Pflanzen. G. Fischer, Stuttgart, pp. 59–105.<br />

OBERWINKLER, F. 1985. Anmerkungen zur Evolution und Systematik<br />

der Basidiomyceten. Botanische Jahrbücher für Systematik,<br />

Pflanzengeschichte und Pflanzengeographie 107, 541–580.<br />

OBERWINKLER, F.&HORAK, E. 1979. Stephanosporaceae, eine neue<br />

Familie der Basidiomycetes mit aphyllophoralen und gastroiden<br />

Fruchtkörpern. Plant Systematics and Evolution 131, 157–164.<br />

PARMASTO, E. 1968. Conspectus systematis corticearum. Tartu.<br />

PARMASTO, E. 1986. On the origin <strong>of</strong> Hymenomycetes (What are<br />

corticioid fungi?). Windahlia 16, 3–19.<br />

PARMASTO, E. 1995. Corticioid fungi: a cladistic study <strong>of</strong> a paraphyletic<br />

group. Canadian Journal <strong>of</strong> Botany 73 (Supplement 1),<br />

S843–S852.<br />

PARMASTO,E.&PARMASTO, I. 1999. Bondarcevomyces, a new genus<br />

<strong>of</strong> polypores (Hymenomycetes, Basidiomycota). Mycotaxon 70,<br />

219–225.<br />

PATOUILLARD, N. T. 1900. Essai taxonomique sur les familles et les<br />

genres des Hyménomycètes. Declume, Lons-le-Saunier, pp. 1–184.<br />

PETERSEN, R.H.&PARMASTO, E. 1993. A redescription <strong>of</strong> Gloeostereum<br />

incarnatum. Mycological Research 97, 1213–1216.<br />

PINE,E.M.,HIBBETT,D.S.&DONOGHUE, M. J. 1999. Evolutionary<br />

relationships <strong>of</strong> cantharelloid and clavarioid fungi. Mycologia 91,<br />

944–963.<br />

REDBERG, G.L.,RODRIGUEZ, R.,AMMIRATI, J.&HIBBETT, D.S.<br />

2003. Phylogenetic relationships <strong>of</strong> Bridgeoporus nobilissimus inferred<br />

from rDNA sequences. Mycologia 95, 836–845.<br />

REDHEAD, S.A.&GINNS, J. H. 1985. A reappraisal <strong>of</strong> agaric genera<br />

associated with brown rots <strong>of</strong> wood. Transactions <strong>of</strong> the Mycological<br />

Society <strong>of</strong> Japan 26, 349–381.<br />

REDHEAD, S.A.,MONCALVO, J.-M.,VILGALYS, R.&LUTZONI, F.<br />

2002. Phylogeny <strong>of</strong> agarics: partial systematics solutions for bryophilous<br />

omphalinoid agarics outside <strong>of</strong> the Agaricales (euagarics).<br />

Mycotaxon 82, 151–168.<br />

REID, D. A. 1965. A monograph <strong>of</strong> the stipitate stereoid fungi. Nova<br />

Hedwigia Beihefte 18, 1–382.<br />

REMSBERG, R. 1940. Studies in the genus Typhula. Mycologia 32,<br />

52–96.<br />

ROBERTS, P. 1999. Rhizoctonia-forming fungi: A taxonomic guide.<br />

Royal Botanic Gardens, Kew.<br />

ROBERTS, P. 2003. New British records. 234 Waitea circinata Warcup<br />

&P.H.B.Talbot.Mycologist 17, 63.<br />

RYVARDEN, L. 1991. Genera <strong>of</strong> polypores: nomenclature and taxonomy.<br />

Synopsis Fungorum 5, 1–363.<br />

SANDERSON,M.,PURVIS,A.&HENZE, C. 1998. Phylogenetic supertrees:<br />

assembling the trees <strong>of</strong> life. Trends in Ecology and Evolution<br />

13, 105–109.


SELOSSE,M.A.,BAUER,R.&MOYERSOEN, B. 2002. Basal hymenomycetes<br />

belonging to Sebacinaceae are ectomycorrhizal on temperate<br />

deciduous trees. New Phytologist 155, 183–195.<br />

SHI, L.B.,GUTTENBERGER, M.,KOTTKE, I.&HAMPP, R. 2002. <strong>The</strong><br />

effect <strong>of</strong> drought on mycorrhizas <strong>of</strong> beech (Fagus sylvatica L.):<br />

changes in community structure, and the content <strong>of</strong> carbohydrates<br />

and nitrogen storage bodies <strong>of</strong> the fungi. Mycorrhiza 12, 303–311.<br />

SIKAROODI,M.,LAWREY,J.D.,HAWKSWORTH,D.L.&DEPRIEST,P.<br />

T. 2001. <strong>The</strong> <strong>phylogenetic</strong> position <strong>of</strong> selected lichenicolous fungi:<br />

Hobsonia, Illosporium, andMarchandiomyces. Mycological Research<br />

105, 453–460.<br />

SIKES,D.S.&LEWIS, P. O. 2001. Beta S<strong>of</strong>tware, version 1. PAUPRat:<br />

PAUP* implementation <strong>of</strong> the Parsimony Ratchet. Distributed<br />

by the authors. Department <strong>of</strong> Ecology and Evolutionary Biology,<br />

<strong>University</strong> <strong>of</strong> Connecticut, Storrs, USA. http://viceroy.eeb.uconn.<br />

edu/paupratweb/pauprat.htm.<br />

SINGER, R. 1986. <strong>The</strong> Agaricales in Modern Taxonomy, 4th edn.<br />

Koeltz, Koenigstein.<br />

SLIPPERS, B.,WINGFIELD, M.J.,COUTINHO, T.A.&WINGFIELD, B.<br />

D. 2001. Population structure and possible origin <strong>of</strong> Amylostereum<br />

areolatum in South Africa. Plant Pathology 50, 206–210.<br />

STALPERS, J. A. 1992. Albatrellus and the Hericiaceae. Persoonia 14,<br />

537–541.<br />

STALPERS, J. A. 1993. <strong>The</strong> Aphyllophoraceous fungi I: keys to the<br />

species <strong>of</strong> the <strong>The</strong>lephorales. Studies in Mycology 35, 1–168.<br />

STALPERS, J. A. 1996. <strong>The</strong> Aphyllophoraceous fungi II: keys to the<br />

species <strong>of</strong> the Hericiales. Studies in Mycology 40, 1–185.<br />

STALPERS, J.A.&ANDERSEN, T. F. 1996. A synopsis <strong>of</strong> the taxonomy<br />

<strong>of</strong> teleomorphs connected with Rhizoctonia s.l. In: SNEH,<br />

B., JABAJI-HARE, S.,NEATE, S.&DIJST, G.EDS, Rhizoctonia<br />

Species Taxonomy, Molecular Biology, Ecology, Pathology and<br />

Disease Control. Kluwer Academic, Dordrecht, pp. 49–63.<br />

STALPERS,J.A.&LOERAKKER, W. M. 1982. Laetisaria and Limonomyces<br />

species (Corticiaceae) causing pink diseases in turf grasses.<br />

Canadian Journal <strong>of</strong> Botany 60, 529–537.<br />

STANGER-HALL,K.&CUNNINGHAM, C. W. 1998. Support for a monophyletic<br />

Lemuriformes: overcoming incongruence between data<br />

partitions. Molecular Biology and Evolution 15, 1572–1577.<br />

SWANN,E.C.&TAYLOR, J. W. 1993. Higher taxa <strong>of</strong> basidiomycetes:<br />

an 18S rRNA gene perspective. Mycologia 85, 923–936.<br />

SWANN, E.C.&TAYLOR, J. W. 1995. Phylogenetic perspectives on<br />

basidiomycete systematics: Evidence from the 18S rRNA gene.<br />

Canadian Journal <strong>of</strong> Botany 73 (Supplement 1), S862–S868.<br />

SWOFFORD, D. L. 2003. PAUP*: Phylogenetic Analysis Using Parsimony<br />

(*and other methods). Version 4.0b510. Sinauer Associates,<br />

Sunderland, Massachusetts.<br />

TALBOT, P. H. B. 1973. Aphyllophorales I: General characteristics;<br />

<strong>The</strong>lephoroid and cupuloid families. In: AINSWORTH, G.C.,<br />

SPARROW,F.K.&SUSSMAN,A.S.,EDS, <strong>The</strong> Fungi, an Advanced<br />

Treatise, Vol. IV B. Academic Press, New York, pp. 327–350.<br />

TAYLOR,D.L.&BRUNS, T. D. 1997. Independent, specialized invasions<br />

<strong>of</strong> ectomycorrhizal mutualism by two nonphotosynthetic<br />

orchids. Proceedings <strong>of</strong> the National Academy <strong>of</strong> Sciences USA<br />

94, 4510–4515.<br />

TAYLOR,D.L.&BRUNS, T. D. 1999. Community structure <strong>of</strong> ectomycorrhizal<br />

fungi in a Pinus muricata forest: minimal overlap<br />

between the mature forest and resistant propagule communities.<br />

Molecular Ecology 8, 1837–1850.<br />

TAYLOR, D.L.,BRUNS, T.D.,SZARO, T.M.&HODGES, S.A.<br />

2003. Divergence in mycorrhizal specialization within Hexalectris<br />

spicata (Orchidaceae), a nonphotosynthetic desert orchid. American<br />

Journal <strong>of</strong> Botany 90, 1168–1179.<br />

TEHLER, A.,LITTLE, D.P.&FARRIS, S. J. 2003. <strong>The</strong> full-length<br />

<strong>phylogenetic</strong> tree from 1551 ribosomal sequences <strong>of</strong> chitinous<br />

fungi. Fungi. Mycological Research 107, 901–916.<br />

Phylogenetic <strong>distribution</strong> <strong>of</strong> <strong>resupinate</strong> <strong>forms</strong> <strong>of</strong> mushroom-forming fungi 45<br />

THORN,R.G.,MONCALVO,J.-M.,REDDY,C.A.&VILGALYS, R. 2000.<br />

Phylogenetic analyses and the <strong>distribution</strong> <strong>of</strong> nematophagy support<br />

a monophyletic Pleurotaceae within the polyphyletic pleurotoidlentinoid<br />

fungi. Mycologia 92, 241–252.<br />

TRAQUAIR, J.A.&MCKEEN, W. E. 1978. Ultrastructure <strong>of</strong> the dolipore<br />

septum in Hirschioporus paragamenus (Polyporaceae). Canadian<br />

Journal <strong>of</strong> Microbiology 24, 767–771.<br />

TU, C.C.,KIMBROUGH, J.W.&ALDRICH, H. C. 1977. Cytology<br />

and ultrastructure <strong>of</strong> Thanatephorus cucumeris and related taxa <strong>of</strong><br />

the Rhizoctonia complex. Canadian Journal <strong>of</strong> Botany 55, 2419–<br />

2436.<br />

TZEAN,S.S.&LIOU, J. Y. 1993. Nematophagous <strong>resupinate</strong> basidiomycetous<br />

fungi. Phytopathology 83, 1015–1020.<br />

URBAN,A.,WEIß,M.&BAUER, R. 2003. Ectomycorrhizas involving<br />

sebacinoid mycobionts. Mycological Research 107, 3–14.<br />

VARMA, A., VERMA, S., SUDHA, SAHAY, N., BÜTEHORN., B. &<br />

FRANKEN, P. 1999. Piriformospora indica, a cultivable plantgrowth-promoting<br />

root endophyte. Applied and Environmental<br />

Microbiology 65, 2741–2744.<br />

VERMA, S., VARMA, A., REXER, K.-H., HASSEL, A., KOST, G.,<br />

SARBHOY, A.,BISEN, P.,BÜTEHORN, B.&FRANKEN, P. 1998.<br />

Piriformospora indica, gen. et sp. nov., a new root-colonizing<br />

fungus. Mycologia 90, 896–903.<br />

VILGALYS, R.&HESTER, M. 1990. Rapid genetic identification and<br />

mapping <strong>of</strong> enzymatically amplified ribosomal DNA from several<br />

Cryptococcus species. Journal <strong>of</strong> Bacteriology 172, 4238–<br />

4246.<br />

WAGNER, T.&FISCHER, M. 2001. Natural groups and a revised system<br />

for the European poroid Hymenochaetales (Basidiomycota)<br />

supported by nLSU rDNA sequence data. Mycological Research<br />

105, 773–782.<br />

WAGNER, T.&FISCHER, M. 2002a. Classification and <strong>phylogenetic</strong><br />

relationships <strong>of</strong> Hymenochaete and allied genera <strong>of</strong> the Hymenochaetales,<br />

inferred from rDNA sequence data and nuclear<br />

behaviour <strong>of</strong> vegetative mycelium. Mycological Progress 1, 93–<br />

104.<br />

WAGNER, T.&FISCHER, M. 2002b. Proceedings towards a natural<br />

classification <strong>of</strong> the worldwide taxa Phellinus s.l. and Inonotus<br />

s.l., and <strong>phylogenetic</strong> relationships <strong>of</strong> allied genera. Mycologia<br />

94, 998–1016.<br />

WANG,Z.,BINDER,M.,DAI,Y.&HIBBETT, D. S. 2004. Phylogenetic<br />

relationships <strong>of</strong> Sparassis inferred from nuclear and mitochondrial<br />

ribosomal DNA and RNA polymerase sequences. Mycologia 96,<br />

1013–1027.<br />

WARCUP, J. H. 1988. Mycorrhizal associations <strong>of</strong> isolates <strong>of</strong> Sebacina<br />

vermifera. New Phytologist 110, 227–231.<br />

WEIß, M.&OBERWINKLER, F. 2001. Phylogenetic relationships in<br />

Auriculariales and related groups – hypotheses derived from nuclear<br />

ribosomal DNA sequences. Mycological Research 105, 403–<br />

415.<br />

WELLS, K. 1994. Jelly fungi, then and now! Mycologia 86, 18–48.<br />

WELLS, K. & BANDONI, R. J. 2001. Heterobasidiomycetes. In:<br />

MCLAUGHLIN, D.J.,MCLAUGHLIN, E.G.&LEMKE, P.A.,EDS,<br />

<strong>The</strong> Mycota VII. Systematics and Evolution. Part B. Springer-<br />

Verlag, Berlin, pp. 85–120.<br />

WHITE, T.J.,BRUNS, T.D.,LEE, S.&TAYLOR, J. 1990. Amplification<br />

and direct sequencing <strong>of</strong> fungal ribosomal RNA genes for<br />

<strong>phylogenetic</strong>s. In: INNIS, M.A.,GELFAND, D.H.,SNINSKY, J.J.<br />

&WHITE, T.J.,EDS, PCR Protocols, a Guide to Methods and<br />

Applications. Academic Press, San Diego, pp. 315–322.<br />

WU, S.-H. & CHEN, Z.-C. 1993. <strong>The</strong> genus Duportella Pat.<br />

(Corticiaceae s.l., Basidiomycotina) in Taiwan. Bulletin <strong>of</strong> the National<br />

Museum <strong>of</strong> Natural Science 4, 101–112.<br />

WU,S.-H.,HIBBETT,D.S.&BINDER, M. 2001. Phylogenetic analyses<br />

<strong>of</strong> Aleurodiscus s.l. and allied genera. Mycologia 93, 720–731.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!