30.04.2013 Views

Vol. 15 - Deutsches Primatenzentrum

Vol. 15 - Deutsches Primatenzentrum

Vol. 15 - Deutsches Primatenzentrum

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LEMUR NEWS<br />

The Newsletter of the Madagascar Section of the IUCN/SSC Primate Specialist Group<br />

<strong>Vol</strong>. <strong>15</strong>, 2010 ISSN 1608-1439<br />

Editors<br />

Christoph Schwitzer (Editor-in-chief)<br />

Bristol Conservation and Science Foundation, Bristol Zoo Gardens, UK; cschwitzer@bcsf.org.uk<br />

Claudia Fichtel<br />

German Primate Center, Göttingen, Germany; claudia.fichtel@gwdg.de<br />

Jörg U. Ganzhorn<br />

University of Hamburg, Germany; ganzhorn@biologie.uni-hamburg.de<br />

Rodin M. Rasoloarison<br />

German Primate Center, Göttingen, Germany; kirindy@simicro.mg<br />

Jonah Ratsimbazafy<br />

GERP, Antananarivo, Madagascar; gerp@wanadoo.mg<br />

Anne D. Yoder<br />

Duke University Lemur Center, Durham, USA; anne.yoder@duke.edu<br />

IUCN/SSC Primate Specialist Group<br />

Chairman Russell A. Mittermeier, Conservation International, Arlington, VA, USA<br />

Deputy Chair Anthony B. Rylands, Conservation International, Arlington, VA, USA<br />

Coordinator – Section on Great Apes Liz Williamson, Stirling University, Stirling, Scotland, UK<br />

Regional Coordinators – Neotropics<br />

Mesoamerica – Liliana Cortés-Ortiz, Museum of Zoology & Department of Ecology and Evolutionary<br />

Biology, University of Michigan, Ann Arbor, MI, USA<br />

Andean Countries – Erwin Palacios, Conservation International Colombia, Bogotá, Colombia and<br />

Eckhard W. Heymann, <strong>Deutsches</strong> <strong>Primatenzentrum</strong>, Göttingen, Germany<br />

Brazil and the Guianas – M. Cecília M. Kierulff, Instituto para a Conservação dos Carnívoros<br />

Neotropicais – Pró-Carnívoros, Atibaia, São Paulo, Brazil, Fabiano Rodrigues de Melo, Universidade<br />

Federal de Goiás, Jataí, Goiás, Brazil, and Maurício Talebi, Universidade Federal de São Paulo, Diadema,<br />

São Paulo, Brazil<br />

Regional Coordinators – Africa<br />

West Africa – W. Scott McGraw, The Ohio State University, Columbus, OH, USA<br />

Regional Coordinators – Madagascar<br />

Jörg U. Ganzhorn, Hamburg University, Hamburg, Germany, and Christoph Schwitzer, Bristol Conservation<br />

and Science Foundation, Bristol Zoo Gardens, Bristol, UK<br />

Regional Coordinators – Asia<br />

China – Long Yongcheng, The Nature Conservancy, China<br />

Southeast Asia – Jatna Supriatna, Conservation International Indonesia Program, Jakarta, Indonesia, and<br />

Christian Roos, <strong>Deutsches</strong> <strong>Primatenzentrum</strong>, Göttingen, Germany<br />

IndoBurma – Ben Rawson, Conservation International, Hanoi, Vietnam<br />

South Asia – Sally Walker, Zoo Outreach Organization, Coimbatore, Tamil Nadu, India, and Sanjay Molur,<br />

Wildlife Information Liaison Development, Coimbatore, Tamil Nadu, India<br />

Editorial assistants<br />

Nicola Davies, Rose Marie Randrianarison<br />

Layout<br />

Heike Klensang, Anna Francis<br />

Front cover: The Endangered golden-crowned sifaka (Propithecus tattersalli) at the edge of an area devastated<br />

by gold mining activities in the Daraina region of north-eastern Madagascar. © Pete Oxford/naturepl.com<br />

Addresses for contributions<br />

Christoph Schwitzer<br />

Bristol Conservation and Science Foundation<br />

Bristol Zoo Gardens<br />

Clifton, Bristol BS8 3HA<br />

United Kingdom<br />

Fax: +44 (0)117 973 6814<br />

Email: cschwitzer@bristolzoo.org.uk<br />

Lemur News online<br />

All <strong>15</strong> volumes are available online at www.primate-sg.org, www.aeecl.org and www.dpz.eu<br />

This volume of Lemur News was kindly supported by the Margot Marsh Biodiversity Foundation<br />

(through Conservation International’s Primate Action Fund) and by WWF Madagascar.<br />

Printed by Goltze GmbH & Co. KG, Göttingen, Germany<br />

Jonah Ratsimbazafy<br />

GERP<br />

34, Cité des Professeurs<br />

Antananarivo 101<br />

Madagascar<br />

Email: gerp@wanadoo.mg


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 1<br />

Editorial<br />

I am writing this Editorial only a couple of days after another<br />

attempted (and failed) Coup d’Etat in Madagascar,in which a<br />

faction of the army tried to topple the Transition Government.<br />

For nearly two years now, since the start of the political<br />

crisis in early 2009,the country has not seen a week without<br />

demonstrations, tensions between different political<br />

parties and attempts from international mediators to get<br />

power-sharing agreements signed by all sides. Most donors,<br />

governments and multinational organisations alike, have<br />

frozen all non-humanitarian aid for Madagascar,which has led<br />

to severe funding shortages in the environmental and conservation<br />

sector. The political crisis has thus quickly turned<br />

into a full-blown environmental crisis, with large-scale illegal<br />

logging taking place mainly in eastern Madagascar (Marojejy,<br />

Masoala, Makira), and unseen levels of lemur poaching all<br />

across the island.To keep people aware of the seriousness of<br />

the situation we have decided to run another feature on<br />

Madagascar’s environmental crisis in this issue of Lemur News,<br />

with an excellent update on illegal logging by Erik Patel as<br />

well as a case study of ongoing threats to lemurs and their<br />

habitat in Sahamalaza National Park by Melanie Seiler and<br />

colleagues.<br />

The conservation situation of lemurs has also been a big concern<br />

in several presentations given at the most recent 23rd<br />

Congress of the International Primatological Society in<br />

Kyoto, Japan. The talk that I remember best was by Lemur<br />

News co-editor Jonah Ratsimbazafy, who reminded the audience<br />

in a very emotional way that scientists and conservationists<br />

working in Madagascar had a moral responsibility to<br />

respond to the "cries of the lemurs", as otherwise these<br />

would remain unheard by the Malagasy and international<br />

community.In the biennial discussion session of "Primates in<br />

Peril", the list of the world’s top 25 most endangered primates,<br />

issued jointly by the IUCN/SSC Primate Specialist<br />

Group and IPS,lemurs remained a very high priority and will<br />

again make up 20% of the 25 listed species in the next biennium.Sadly,Madagascar<br />

thus retains its first place (along with<br />

Vietnam) as the country harbouring the highest number of<br />

the top 25. It can only be hoped that the political classes of<br />

Madagascar come to agree a way out of the current crisis<br />

sooner rather than later, as otherwise we run the very serious<br />

risk,during the UN Decade of Biodiversity 2011-2020,of<br />

losing a substantial proportion of the endemic biodiversity of<br />

this amazing megadiversity country.<br />

Alison Jolly with Russ Mittermeier at the IPS Lifetime Achievement<br />

Award 2010 ceremony in Kyoto. (Photo: R. Mittermeier)<br />

For a change,on a very positive note,I am thrilled to say that<br />

Alison Jolly was awarded the IPS Lifetime Achievement<br />

Award for her long-term commitment to lemur conservation<br />

and environmental education in Madagascar (see News<br />

and Announcements). My two daughters (now 4 and 2 years<br />

old) and I particularly enjoy reading Alison’s children’s book<br />

on Bitika,the mouse lemur,as,I am sure,do lots of children in<br />

Madagascar and elsewhere in the world.<br />

It is encouraging to see that this volume of Lemur News is<br />

again full of articles and short reports not only on lemur species<br />

red-listed in one of the Threatened categories (VU, EN<br />

or CR),but also on Data Deficient nocturnal species such as<br />

Mirza zaza,Lepilemur leucopus and the recently rediscovered<br />

Cheirogaleus sibreei (see the articles by Rode et al., Fish, and<br />

Blanco, respectively). As Johanna Rode and colleagues point<br />

out in their short report on Mirza zaza,Madagascar is in the<br />

unusual situation that 45 % of its primate species are redlisted<br />

as Data Deficient,which is a far higher percentage than<br />

in any other primate habitat country and mainly derived<br />

from the discovery of dozens of cryptic species in the genera<br />

Lepilemur and Microcebus over the last couple of years. Many<br />

of those species are only known from their type localities<br />

and may in fact be highly endangered. The more research is<br />

conducted and published on them, the easier it will become<br />

to assign them a conservation status and target them with<br />

conservation measures. It will require a concerted effort of<br />

the lemur research and conservation community over the<br />

next decade or so to to reduce the number of Data Deficient<br />

species to a level comparable to other regions (or, ideally, to<br />

zero).<br />

Another encouraging development is the frenzy of research<br />

and conservation activities now under way for Prolemur simus<br />

at various locations both south and north of the Mangoro<br />

River,reported by Dolch et al.as well as Rajaonson et al.in this<br />

volume. The greater bamboo lemur undoubtedly remains<br />

one of the most endangered of Madagascar’s lemurs. However,<br />

with several additional populations having been discovered<br />

over the last two years, workshops having been conducted<br />

that have led to a joint-up approach to this species’<br />

conservation,and the ex situ population having been included<br />

as an integral part of conservation efforts, I now think that<br />

we stand a real chance of saving Prolemur simus from extinction.<br />

As Jörg Ganzhorn announced in his editorial to Lemur News<br />

14, I have taken over the coordination of this newsletter<br />

from him after the 2009 volume, hence this is now the first<br />

volume that I have helped produce (which is my humble excuse<br />

for its slightly late publication). Jörg has been involved<br />

with Lemur News since its inception in 1993,first as a member<br />

of its Editorial Board and from volume 3 (1998) as its Editor.I<br />

am thus pleased to say that we will not lose his experience<br />

and backing,as he has kindly agreed to remain part of the editorial<br />

team. Likewise, Jonah Ratsimbazafy and Rodin Rasoloarison,who<br />

have been the newsletter’s Malagasy coordinators<br />

since 2006, and Anne Yoder, who represents the Duke<br />

Lemur Center, will carry on as editorial team members, for<br />

which I am grateful.I am indebted to Heike Klensang,who has<br />

been doing the layout for Lemur News now for more than a<br />

decade and is still not tired of it,and to Anna Francis,who has<br />

designed the beautiful new logo and front cover. Very many<br />

thanks also to Stephen D. Nash for the wonderful lemur silhouettes<br />

that we printed on the inside back cover.<br />

This volume of Lemur News was kindly supported by the<br />

Margot Marsh Biodiversity Foundation through Conservation<br />

International’s Primate Action Fund, and by the WWF<br />

Madagascar and West Indian Ocean Programme Office.


Page 2 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

I very much look forward to helping to take Lemur News into<br />

the UN Decade of Biodiversity together with the editorial<br />

team and with its base of loyal contributors and readers,and I<br />

will do my best to ensure that the newsletter will continue to<br />

help promote the conservation of lemurs as it has done for<br />

the last 17 years.<br />

Christoph Schwitzer<br />

Feature: Madagascar’s<br />

Environmental Crisis<br />

Madagascar’s illegal logging crisis: an update<br />

and discussion of possible solutions<br />

Erik R. Patel<br />

Cornell University, 211 Uris Hall, Ithaca, NY 14850, USA,<br />

patel.erik@gmail.com<br />

How sure are you that your favorite rosewood or ebony<br />

acoustic guitar was not made from rare,illegally logged trees<br />

in Madagascar;an exceptional biodiversity hotspot with desperately<br />

little original forest remaining? What is the origin of<br />

the wood in the expensive oriental-style rosewood furniture<br />

which is heavily advertised for sale on the internet? Unfinished<br />

rosewood boards from Madagascar are openly sold<br />

even in the United States (www.gilmerwood.com/boards_<br />

rosewood-exotic_unique.htm) and the United Kingdom (www.<br />

exotichardwoods.co.uk/Woods_List/Madagascar_Rosewood.asp).<br />

Can such vendors prove that the rosewood was legally (and<br />

ethically) obtained? The answer is usually "no".These can be<br />

difficult questions for consumers to answer, but purchasing<br />

these products can prolong the ongoing logging crisis in<br />

northeastern Madagascar in some of the most unique and biologically<br />

diverse forests in the world.<br />

Consumers should be suspicious since none of these rapidly<br />

disappearing Madagascan rosewood and ebony species are<br />

yet protected under CITES,the Convention on International<br />

Trade in Endangered Species. In November of last year, Gibson<br />

Guitars, one of the two largest U.S. stringed-instrument<br />

companies,came under federal investigation for violating the<br />

Lacey Act by allegedly using illegal rosewood from Madagascar<br />

which had first been shipped to Germany and then the<br />

United States (Michaels, 2009). Most of the illegally logged<br />

rosewood in Madagascar is used for the manufacture of furniture<br />

in China. Some of this is known to be sold in China as<br />

luxurious "Ming Dynasty style" furniture (Global Witness<br />

and Environmental Investigation Agency, 2009). Some may<br />

well be exported to western countries. China is the world’s<br />

leading exporter of furniture.According to the Office of the<br />

United States Trade Representative, the United States imported<br />

16 billion dollars of Chinese furniture in 2009,making<br />

it the USA’s fifth largest import from China.<br />

Illegal logging of rosewood (Dalbergia spp.) and ebony (Diospyros<br />

spp.) has emerged as the most severe threat to Madagascar’s<br />

dwindling northeastern rainforests. In 2009, a year<br />

of political upheaval in Madagascar due to an undemocratic<br />

change of power,approximately 100,000 of these trees were<br />

illegally cut in the UNESCO World Heritage Sites of Masoala<br />

National Park,Marojejy National Park,the Makira Conservation<br />

Site, and Mananara Biosphere Reserve (also a national<br />

park).Needless to say,the wood is extremely valuable.Rosewood<br />

can sell for US$5,000 per cubic meter,more than double<br />

the price of mahogany.Several hundred million dollars of<br />

these precious hardwoods were cut in 2009 in protected<br />

areas. The overwhelming majority of these profits are taken<br />

by a rosewood mafia of a few dozen organizing individuals,<br />

many of whose identities are well known.Few others benefit.<br />

Harvesting these extremely heavy hardwoods is a labor intensive<br />

activity requiring coordination between local residents<br />

who manually cut the trees, but receive little profit<br />

(about US$5/day), and a criminal network of exporters, domestic<br />

transporters, and corrupt officials who initiate the<br />

process and reap most of the enormous profits. This is a<br />

"tragedy with villains" unlike habitat disturbance from subsistence<br />

slash-and-burn agriculture which has been well described<br />

as a "tragedy without villains" (Barrett et al., 2010;<br />

Débois, 2009; Global Witness and Environmental Investigation<br />

Agency,2009;Patel,2007,2009;Randriamalala and Liu,in<br />

press;Schuurman and Lowry,2009;Schuurman,2009;Wilme<br />

et al., 2009; Wilme et al., in press).<br />

Globally, illegal logging results in an estimated US$10 billion<br />

lost per year to the economies of timber producing countries<br />

(Furones, 2006). In addition to depriving the government<br />

of Madagascar of millions of dollars of taxable revenue,<br />

illegal logging of this precious wood has decimated tourism<br />

in northeastern Madagascar, which had become a growing<br />

source of local income. Although selective logging results in<br />

less absolute forest loss than clear-cutting, it is often<br />

accompanied by substantial peripheral damage such as decreases<br />

in genetic diversity and increases in the susceptibility<br />

of the impacted areas to burning and bushmeat hunting.<br />

Documented long-term ecological consequences of selective<br />

logging in Madagascar include invasion of persistent,<br />

dominant non-native plant species, impaired faunal habitat,<br />

and a diminution of endemic mammalian species richness<br />

(Gillies, 1999; Cochrane and Schultze, 1998; Brown and<br />

Gurevitch, 2004; Stephenson, 1993). In actual practice, rosewood<br />

logging has turned out to be far less "selective" than<br />

originally believed. Often rafts made of a lighter species of<br />

wood (Dombeya spp.) are constructed to float the much<br />

more dense rosewood logs down rivers. Approximately five<br />

Dombeya trees are cut as "raft wood" for every one rosewood<br />

tree (Randriamalala and Liu,in press).Tall adult trees of<br />

a variety of species, that simply happen to be very close to<br />

rosewood trees, must often be cut simply to gain access to<br />

cut down a rosewood tree. This has been observed in<br />

Marojejy (pers. obs.).<br />

Red ruffed lemurs (Varecia rubra) are probably the most negatively<br />

impacted lemur since many were hunted by these loggers<br />

and this species is known to feed on ebony trees<br />

(Diospyros spp.) as well as pallisandre (Dalbergia spp.) in<br />

Masoala (Vasey, pers. comm.). Varecia rubra probably also<br />

feeds on the fruits and leaves of the logged "raft wood"<br />

Dombeya spp. trees like Varecia v. editorium in Manombo Forest<br />

in southeastern Madagascar (Ratsimbazafy, 2007). In<br />

Mantadia National Park, Indri indri and Propithecus diadema<br />

consume young leaves of one species of actual rosewood<br />

(Dalbergai baronii) which is also consumed by Milne-Edwards’<br />

sifakas (Propithecus edwardsi) in Ranomafana National Park<br />

(Powzyk and Mowry,2003;Arrigo-Nelson,2007).Propithecus<br />

diadema at Tsinjoarivo consume the unripe fruit of ebony<br />

trees (Irwin, 2006). In Marojejy, silky sifakas (Propithecus<br />

candidus) not uncommonly feed on the young leaves of pallisandre<br />

(Dalbergia chapelieri) which is also a preferred sleeping<br />

tree (pers. obs.).<br />

When discussing the impacts of precious wood logging, it is<br />

important not to forget how damaging all this has been to local<br />

communities as well.Local residents have suffered as foreign<br />

and domestic elites have corrupted the forest service,<br />

leading to losses of sustainable employment in tourism, re-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 3<br />

search, and conservation. In some cases, community life has<br />

suddenly changed as gambling, prostitution, and crime have<br />

increased in rural communities. Moreover, the risks of local<br />

food shortages and nutritional deficiencies mount when<br />

farmers abandon subsistence agriculture for temporary,physically<br />

dangerous illegal logging work (Global Witness and<br />

Environmental Investigation Agency,2009;Patel,2007,2009).<br />

Moreover,illegal loggers trample on the beliefs and taboos of<br />

local people.In traditional Sakalava culture,ebony is a sacred<br />

wood only cut by priests who conduct traditional ceremonies<br />

with ebony staffs. The chief of Ankalontany, a Sakalava<br />

Malagasy village in the northeast, explained that "Some<br />

strangers from outside our village came here. They started<br />

cutting ebony and they clearly had no right. We asked for<br />

their authorization but they said they didn’t have to show us<br />

papers.They said they had police clearance and we can’t stop<br />

them." Laurent Tutu, president of the forest association of<br />

Ankalontany, remarked "It hurts us to see our trees cut like<br />

this. The forest loses its personality" (Cocks, 2005).<br />

Although illegal logging in Madagascar has received some media<br />

attention recently, confusion still remains regarding a<br />

number of key facts. The aim of this report is to provide an<br />

update (at the time of writing: May 25, 2010), dispel a few<br />

myths,discuss some of the possible solutions to this ongoing<br />

crisis, and present a comprehensive bibliography of articles,<br />

photos, films, and videos related to this topic.<br />

Four myths about illegal logging in Madagascar<br />

Myth #1: "Plenty of Madagascar rosewood is harvested legally…"<br />

says Bob Taylor, founder of Taylor Guitars. Quote<br />

from Gill, C. (2010). Log Jam. Guitar Aficionado. Spring Issue.<br />

P. 68<br />

This is simply not true. A vast amount of published evidence<br />

clearly shows that very very little,if any,of the rosewood logging<br />

in Madagascar is legal.The overwhelming majority of exported<br />

Madagascar rosewood is illegally logged within Masoala<br />

National Park and Marojejy National Park (which are part<br />

of a UNESCO World Heritage Site) as well as Mananara Biosphere<br />

Reserve (also a national park) and the vast Makria<br />

Conservation Site (Barrett et al., 2010; Débois, 2009; Global<br />

Witness and Environmental Investigation Agency,2009;Patel,<br />

2007, 2009; Randriamalala and Liu, in press; Schuurman and<br />

Lowry, 2009; Schuurman, 2009; Wilme et al., 2009; Wilme et<br />

al., in press).<br />

Myth #2: The current ban has stopped illegal logging.<br />

In late March, the government of Madagascar announced a<br />

new two to five year ban on export and cutting of ebony and<br />

rosewood. The decree #2010-141 officially passed on April<br />

14, 2010. Clearly this was an important and large step forward.<br />

However, the decree does not apparently include<br />

pallisandre, a precious hardwood in the same genus (Dalbergia)<br />

as rosewood. Illegal logging of pallisandre has heavily<br />

impacted some reserves such as Betampona Natural Reserve<br />

(Kett, 2005; Bollen, 2009). At the time of writing (May<br />

25, 2010), there have been no new exports since the recent<br />

ban.However,illegal rosewood and ebony logging still continues<br />

inside Mananara Biosphere Reserve and the Makira Conservation<br />

Site according to reliable anonymous informants.<br />

The clearest information has come from Mananara where at<br />

least several hundred, recently cut, rosewood logs were observed.<br />

Myth #3: Illegal logging was never a big problem in Madagascar<br />

until the recent political crisis.<br />

Illegal logging in Madagascar of rosewood (Dalbergia spp.) and<br />

ebony (Diospyros spp.) did not begin with the culmination of<br />

the political crisis in March 2009.A major illegal logging crisis<br />

in World Heritage Sites (Masoala National Park and Marojejy<br />

National Park) took place during 2004-2005,a time of political<br />

stability. The earliest documented case of rosewood logging<br />

in Madagascar and foreign export dates to 1902.Foreign<br />

exports of Madagascar rosewood occurred at "low" levels<br />

(1000 to 5000 tonnes) between 1998 and 2007. In 2008, exports<br />

jumped to 13,000 tonnes,and jumped again in 2009 to<br />

more than 35,000 tonnes (Botokely,1902;Randriamalala and<br />

Liu,in press;Global Witness and Environmental Investigation<br />

Agency, 2009).<br />

Myth #4: There are 43 species of rosewood trees in Madagascar.<br />

Some recent reports had mistakenly made this statement. It<br />

is not entirely clear exactly how many rosewood species are<br />

found in Madagascar. More botanical research is needed.<br />

However, currently, there are believed to be 10 species of<br />

rosewood in Madagascar in the genus Dalbergia which contains<br />

48 total species. The rosewood species are presumed<br />

to be Dalbergia baronii [VU], D. bathiei [EN], D. davidii [EN],D.<br />

louvelii [EN], D. mollis [NT], D. monticola [VU], D. normandii<br />

[EN], D. purpurascens [VU], D. tsiandalana [EN], and D. viguieri<br />

[VU] (Barrett et al., 2010).<br />

Rosewood stockpile solutions?<br />

Approximately 10,280 tonnes of illegally logged rosewood<br />

remain stockpiled in numerous locations in northeastern<br />

Madagascar, such as the ports of Vohemar and Antalaha as<br />

well as private residences in those cities and Sambava,<br />

Ampanifena,Ambohitralalana,and others.Each <strong>15</strong>0 kg log has<br />

an approximate market value of US$1,300 usd.As unfinished<br />

logs, the value of the current stockpile is therefore approximately<br />

US$90 million.Value increases dramatically,of course,<br />

after being constructed, for example, into high-end Ming<br />

Dynasty style furniture in China.A single armoire composed<br />

of only a few logs can sell for US$20,000 or more.It’s a horrid<br />

contrast to the annual income in Madagascar (about<br />

US$400) or the daily wage provided to loggers (US$5) for<br />

the dangerous and physically debilitating work (Randriamalala<br />

and Liu, in press; Global Witness and Environmental<br />

Investigation Agency, 2009; anonymous local informants).<br />

If the export ban holds (numerous other bans did not),what<br />

should be done with these stockpiles? Several ideas have<br />

been suggested.<br />

1. The "Forest Counterpart Fund" (Wilme et al., 2009) aims<br />

to create a conservation and charitable works fund to assist<br />

local communities and forests damaged by the illegal logging.<br />

The logs are not sold on the open market as in the second<br />

proposal below.Rather,philanthropists,conservation organizations,<br />

and international aid agencies pay to "adopt" a log.<br />

Each log can be "adopted" for its market value (about<br />

US$1,300). The logs themselves are given to (carefully selected)<br />

local residents who are victims of the illegal logging.<br />

The logs would then be carved,engraved,and customized for<br />

public display as symbols. If sufficient donors can be found,<br />

this proposal offers a win-win solution for Madagascar’s forests<br />

as well as people.<br />

2. The Moratorium-Conservation-Amnesty-Reforestation<br />

(MCAR) program (Butler, 2009). This is essentially a one-off<br />

actual sale with conservation benefits. Logs would be auctioned<br />

via a transparent market system in which the price<br />

and the log code would be recorded, publicly available, and<br />

digitally traceable.Funds generated would mainly go towards


Page 4 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

conservation programs such as reforestation and forest<br />

monitoring. Criminal traders would receive amnesty from<br />

prosecution as well as a very small percentage of the funds.<br />

An export moratorium would be required.There is always a<br />

danger that one-off sales can encourage further logging; a<br />

topic which has been extensively debated with respect to<br />

confiscated elephant ivory stockpiles. An impressive recent<br />

review paper in Science (Wasser et al., 2010):<br />

www.sciencemag.org/cgi/content/short/327/5971/1331)<br />

argued that no one-off ivory sales should be approved even if<br />

the funds go towards conservation.<br />

3. Destroy the stockpile. This was recently reiterated by<br />

Global Witness (GW) and Environmental Investigation<br />

Agency (EIA). Andrea Johnson, Director of Forest Campaigns<br />

at EIA explained that "To end the cycle of illegal harvest<br />

and corruption, the government should take the step of<br />

destroying all stocks that are not contained in the latest official<br />

inventories…Traders, who are currently stockpiling illegal<br />

timber, hoping for another ‘exceptional’ export authorization,must<br />

receive a clear signal that it will be impossible to<br />

profit from the illegal trade in the future." Numerous examples<br />

can be found from around the world of simple and effective<br />

destruction of stockpiles of contraband such as small<br />

arms,drugs,and ivory.Destruction also eliminates the not insignificant<br />

expense of storing and guarding the items.Burning<br />

the rosewood stockpiles would create a lot of pollution, it<br />

has been argued, and might be dangerous given the high volume.<br />

Other ways of destroying the wood are possible however.<br />

The wood could be hacked into tiny unusable pieces.<br />

This is already done sometimes by park rangers in Madagascar.<br />

This would take a very long time, but would be a fitting<br />

punishment of hard labor for members of the rich rosewood<br />

mafia! Of course, destruction of the wood, whatever the<br />

method,would contribute no money for any conservation or<br />

community development funds.<br />

Any of these possibilities are better than what has happened<br />

in the past:seized wood was auctioned off to the highest bidder.Foreign<br />

export remains a possibility too,despite the ban.<br />

French shipping company CMA-CGM Delmas exported<br />

rosewood from Madagascar several times in 2009 and 2010.<br />

Long-term solutions?<br />

Thinking long-term, what can be done to prevent another illegal<br />

logging crisis in Madagascar?<br />

Some may argue that so little rosewood and ebony remains,<br />

logging on this scale could never happen again.However,this<br />

had been claimed before 2009 too. More surveys are clearly<br />

needed. One hopes that some of the more impenetrable regions<br />

of mountainous Marojejy National Park may still have<br />

rosewood. But because rosewood tends to be harvested at<br />

lower elevations, near rivers (where the largest individuals<br />

are found), it is less protected by the physical challenges of<br />

the massif than some other tree species. It is encouraging<br />

that some Dalbergia and Diospyros species can form stump<br />

sprouts which can grow into a new tree over many many<br />

years. Unfortunately, some entire rosewood stumps are removed<br />

either to hide evidence of logging or for wood for<br />

small, locally made rosewood vases. Rosewood trees are<br />

known to be some of the oldest trees in the eastern Malagasy<br />

humid forests. They can live to be more than 400 years old,<br />

according to local guides. Traders explain that they can be<br />

harvested after 50 years (Patel 2007, 2009).<br />

1. CITES<br />

The surest way to reduce the likelihood of another illegal<br />

logging crisis in Madagascar, is to list all species in the genera<br />

of Dalbergia and Diospyros on CITES Appendix 1. Currently<br />

none of Madagascar’s ebony or rosewood species are protected<br />

under any appendices within the Convention on International<br />

Trade in Endangered Species (CITES). Globally,<br />

only one species of rosewood,Brazilian rosewood (Dalbergia<br />

nigra), is listed under CITES Appendix 1. This is the most<br />

stringent category,and prohibits all commercial trade of that<br />

wood from the date of listing. This has generally been effective.Guitars<br />

in the United States made of Brazilian rosewood<br />

are known to have risen in price and are harder to find since<br />

Appendix 1 listing. Similarly, Appendix 1 listing of Alerce<br />

(Fitzroya cupressoides),a heavily logged South American conifer,<br />

has significantly reduced logging and trade (Barrett et al.,<br />

2010; Keong, 2006).<br />

A few other Brazilian and Central American rosewood species<br />

are listed under CITES Appendix 2 and 3. These lower<br />

appendices aim to regulate trade,not prohibit it.Just this year,<br />

another species of Brazilian rosewood (Aniba rosaeodora),exported<br />

extensively as fragrant oil, was listed under CITES<br />

Appendix 2. Two additional species of Central American<br />

rosewood (D. retusa and D. stevensonii) are listed under Appendix<br />

3. Appendix 2, unlike Appendix 3, does require that<br />

the CITES authorities in the export nation determine that<br />

the species were legally obtained and that their export will<br />

not be detrimental to species survival.There seem to be few<br />

cases where Appendix 3 listing was sufficient, except as a<br />

means to Appendix 2 or higher listing. The well examined<br />

case-studies of big-leaf mahogany (Swietenia macrophylla) and<br />

ramin (Gonystylus spp.) both began as Appendix 3 species<br />

(which only requires unilateral listing by a habitat country)<br />

and were later voted in as Appendix 2 species by the CITES<br />

parties (Keong, 2006).<br />

To what degree can CITES regulations be implemented and<br />

enforced? The need for more officially trained import inspectors<br />

has been suggested numerous times. The agency<br />

chosen as the CITES management authority should be free<br />

of corruption and have experience in forest management.<br />

Insufficient trained staff has also hindered the ability of export<br />

authorities to determine whether an Appendix 2 species<br />

was legally obtained and non-detrimental to species survival.Range<br />

countries often require assistance in this respect.<br />

An unusually good example comes from Indonesia where biological<br />

data for ramin has been used in non-detriment findings<br />

to examine sustainability. Missing "certificates of origin"<br />

have been a problem for some Appendix 3 species. While<br />

ramin and big-leaf mahogany were listed on Appendix 3, the<br />

required ‘certificates of origin’ were not consistently issued<br />

by exporting nations;while importing countries were not always<br />

diligent about confirming that shipments arrived with<br />

such certificates (Blundell, 2007; Keong, 2006).<br />

2. Independent forest monitoring (IFM)<br />

In addition to CITES,actual improvements in forest monitoring<br />

on the ground are needed. A new system called independent<br />

forest monitoring (IFM) may be needed in order<br />

stop illegal logging, monitor implementation of REDD (Reducing<br />

Emissions from Deforestation and Forest Destruction)<br />

programs, restore the confidence of international donors,<br />

and ultimately to save Madagascar’s precious forests as<br />

well as attain social justice for Madagascar’s impoverished<br />

population. IFM has been defined as "the use of an independent<br />

third party that,by agreement with state authorities,provides<br />

an assessment of legal compliance, and observation of<br />

and guidance on official forest law enforcement systems"<br />

p. 18 (Global Witness,2005). IFM is similar in principle to unbiased<br />

international election observers. Local and international<br />

expertise is utilized, and monitoring teams operate


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 5<br />

independently but with the consent of the host government.<br />

Independent forest monitors are strictly observers, law enforcement<br />

remains the responsibility of local officials and<br />

governments.<br />

Of course other nations have been faced with similar forest<br />

monitoring problems.IFM has already been used successfully<br />

in several African and Central American nations seeking to<br />

improve the effectiveness of their forest monitoring. Since it<br />

was first introduced in 1999, IFM has been established in<br />

Cameroon, Cambodia, and Honduras. Smaller scale feasibility<br />

and pilot studies have been conducted in Ghana, Peru,<br />

Mozambique, Republic of Congo, Tanzania, and Democratic<br />

Republic of Congo. In Cambodia and Cameroon, donor<br />

countries have been the impetus behind IFM.Though in Honduras,the<br />

incentive for IFM was domestic,and hosted by the<br />

Honduran Commission for Human Rights (CONADEH).<br />

Furones (2006) and Young (2007) review the results of IFM in<br />

these nations, and consider them to be "broadly positive".<br />

Specific examples of the impact of IFM in these nations include:documentation<br />

of hundreds of forest crimes,cancellation<br />

of logging concessions,moratoriums on logging and timber<br />

transport,and creation of new "forest crimes monitoring<br />

units" in the forestry administrations. In some cases,IFM has<br />

earned money for these governments by identifying violations<br />

which led to large fines against logging companies and<br />

individuals breaching the law and forest management regulations.<br />

3. Update IUCN Red List assessments<br />

The approximately 10 Madagascar rosewood species listed<br />

above have not had their official conservation status evaluated<br />

by the IUCN since 1998. At that time, all were threatened<br />

except for D. mollis.Five of the ten were already classified<br />

as ‘endangered’ then. Given the extreme logging since<br />

that time, it is likely that their Red List categories should be<br />

reassessed (IUCN, 2010).<br />

4. UNESCO World Heritage Sites "in danger"<br />

The majority of the illegally logged rosewood in Madagascar<br />

comes from two UNESCO World Heritage Sites: Masoala<br />

National Park and Marojejy National Park.Why have Masoala<br />

and Marojejy not been placed on the World Heritage Sites<br />

"In Danger" List? After all,2010 is the United Nations "International<br />

Year of Biodiversity". Nine national parks and seven<br />

other protected natural areas are currently on this danger<br />

list, mainly for extensive anthropogenic disturbance such as<br />

poaching, logging, and war. The extent of the logging damage<br />

in Masoala National Park, in particular, over the past 5 years,<br />

must rival that of some of the other national parks "in danger".<br />

Placing a site on the UNESCO "danger list" is not utter<br />

de-listing. It is a reversible process meant to draw attention<br />

to and attract possible resources which can alleviate the crisis.There<br />

are specific funds that can become available if a site<br />

is placed on the danger list. One can only speculate that the<br />

reasons for no change in status may well be political and<br />

practical. Perhaps it complicates matters that eight national<br />

parks (which include these two) comprise the single Atsinanana<br />

World Heritage Site Complex. Perhaps there are<br />

fears of triggering an even greater loss of tourism.Whatever<br />

the reasons may be, it is odd that UNESCO has not been<br />

more vocal or active in its support of these two national<br />

parks which are the biodiversity jewels of the Atsinanana<br />

World Heritage Site Complex (IUCN, 2007).<br />

5. DNA fingerprinting<br />

DNA fingerprinting has recently been used on confiscated<br />

ivory to determine which populations of African elephants<br />

were slaughtered. Similar genetic techniques would be of<br />

great assistance in determining which populations of Madagascar<br />

rosewood are being logged the most,and in identifying<br />

species. DNA testing has already been used to track timber,<br />

but not yet in Madagascar.One of the biggest methodological<br />

challenges is extracting DNA from the heartwood of dead<br />

tree trunks (e.g., rosewood stockpiles), which consist of<br />

dead cells with partly degraded DNA. In living trees, it is a<br />

routine process to obtain DNA from the cambium just beneath<br />

the bark or leaves or buds. Nevertheless, several new<br />

techniques have successfully extracted DNA from dry wood<br />

of ramin (Gonystylus spp.) and other woods including 1000<br />

year old beech (Fagus spp.) (Nielson and Kjaer, 2008).<br />

References and rosewood logging resources<br />

Barrett, M.A.; Brown, J.L.; Morikawa, M.K.; Labat, J-N.; Yoder,<br />

A.D. In press. CITES designation for endangered rosewood<br />

in Madagascar. Science.<br />

Blundell,A.G.2007.Implementing CITES regulations for timber.<br />

Ecological Applications 17: 323-330.<br />

Bohannon, J. 2010. Madagascar’s forests get a reprieve – But<br />

for how long? Science 328: 23-25.<br />

Bollen, A. 2009. Eighth continent quarterly. The Newsletter<br />

of the Madagascar Fauna Group.Autumn Issue.<br />

Bosser, J.; Rabevohitra, R. 1996. Taxa et noms nouveaux dans<br />

le genre Dalbergia (Papilionaceae) à Madagascar et aux<br />

Comores. Bulletin du Museum national d'Histoire Naturelle,<br />

4e sér., 18: 171-212.<br />

Bosser,J.;Rabevohitra,R.2005.espèces nouvelles dans le genre<br />

Dalbergia (Fabaceae, Papilionoideae) à Madagascar.<br />

Adansonia, Sér. 3, 27, 2: 209-216.<br />

Botokely (Marc Clique).1902.Chronique commerciale,industrielle<br />

et agricole. Revue de Madagascar 4: 356-365.<br />

Braun, D. 2009. Lemurs, rare forests, threatened by Madagascar<br />

strife. NatGeo News Watch.<br />

blogs.nationalgeographic.com/blogs/news/chiefeditor/<br />

2009/03/lemurs-threatened-by-madagascar-strife.html.<br />

Downloaded on 23 March 2009.<br />

Braun, D. 2010. Conservationists applaud renewed ban on<br />

Madagascar rosewood. NatGeo News Watch.<br />

blogs.nationalgeographic.com/blogs/news/chiefeditor/2010/<br />

03/madagascar-rosewood-ban-reaction.html. Downloaded on<br />

31 March 2010.<br />

Brown,K.A.;Gurevitch,J.2004.Long-term impacts of logging<br />

on forest diversity in Madagascar. Proceedings of the National<br />

Academy of Sciences 101: 6045-6049.<br />

Butler, R. A. 2010. How to end Madagascar’s logging crisis.<br />

news.mongabay.com/2010/0211-madagascar.html. Downloaded<br />

on 10 February 2010.<br />

Cochrane,M.A.;Schulze,M.D.1998.Forest fires in the Brazilian<br />

Amazon. Conservation Biology 12: 948-950.<br />

Cocks, T. 2005. Loggers cut madagascan rainforest with impunity.<br />

Reuters. July 4.<br />

Débois, R.2009. La fièvre de l’or rouge saigne la forêt malgache.<br />

Univers Maoré 13: 8-<strong>15</strong>.<br />

Du Puy, D. J.; Labat, J.-N.; Rabevohitra, R.;Villiers, J.-F.;Bosser,<br />

J.; Moat, J. 2002. The Leguminosae of Madagascar. Royal<br />

Botanic Gardens, Kew, U.K.<br />

Furones, L. 2006. Independent forest monitoring: Improving<br />

forest governance and tackling illegal logging and corruption.<br />

Trócaire Development Review 135-148.<br />

Gerety, R.M. 2010. Major international banks, shipping companies,<br />

and consumers play key role in Madagascar’s logging<br />

crisis.<br />

news.mongabay.com/2009/12<strong>15</strong>-rowan_madagascar.html.<br />

Downloaded on 16 December 2010.<br />

Gill, C. 2010. Log Jam. Guitar Aficionado. Spring Issue.<br />

Gillies, A.C.M. 1999. Genetic diversity in Mesoamerican populations<br />

of mahogany (Swietenia macrophylla), assessed<br />

using RAPDs. Heredity 83: 722-732.<br />

Global Witness and Environmental Investigation Agency.<br />

2009.Investigation into the illegal felling,transport and export<br />

of precious wood in SAVA Region Madagascar. Unpublished<br />

report to the Government of Madagascar.


Page 6 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

www.illegal-logging.info/uploads/madagascarreportrevi<br />

sedfinalen.pdf. Downloaded on 20 November 2010.<br />

Irwin, M. T. 2006. Ecological impacts of forest fragmentation<br />

on diademed sifakas (Propithecus diadema) at Tsinjoarivo,<br />

Eastern Madagascar:Implications for conservation in fragmented<br />

landscapes. Ph.D. thesis, Stony Brook University,<br />

New York, USA.<br />

IUCN. 2007. World heritage nomination. IUCN technical<br />

evaluation. Rainforests of the Atsinanana (Madagascar).<br />

IUCN Evaluation Report. ID No. 1257.<br />

IUCN. 2010. IUCN Red List of Threatened Species. Version<br />

3.1. www.iucnredlist.org. Downloaded on 25 May 2010.<br />

Keong,C.H.2006.The role of CITES in combating illegal logging:<br />

Current and Potential. Traffic Online Report Series,<br />

No. 13. www.illegal-logging.info/item_single. php? it_id=<br />

504&it=document. Downloaded on 20 November 2010.<br />

Kett, G. 2005. Checking the reserve. Monthly from Madagascar.<br />

March. Madagascar Fauna Group.<br />

Labat, J.N.; Moat, J. 2003. Leguminosae (Fabaceae). Pp. 346-<br />

373. In: S.M. Goodman; J.P. Benstead (eds.) The Natural<br />

History of Madagascar. University of Chicago Press, Chicago,<br />

USA.<br />

Michaels, S. 2009. Gibson guitars raided for alleged use of<br />

smuggled wood. www.guardian.co.uk/music/2009/nov/<br />

20/gibson-guitars-raided. Downloaded on 20 November<br />

2009.<br />

Nielsen, L.R.; KjFr, E.D. 2008. Tracing timber from forest to<br />

consumer with DNA markers. Danish Ministry of the<br />

Environment, Forest and Nature Agency.<br />

www.skovognatur.dk/udgivelser. Electronic Publication.<br />

Office of the United States Trade Representative. 2010. US-<br />

China trade facts. www.ustr.gov/countries-regions/china.<br />

Downloaded on 23 May 23 2010.<br />

Patel, E.R. 2007. Logging of rare rosewood and pallisandre<br />

(Dalbergia spp.) within Marojejy National Park, Madagascar.<br />

Madagascar Conservation and Development 2(1):<br />

11-16.<br />

www.erikpatel.com/Logging_of_Rosewood_Patel_2007.pdf.<br />

Electronic Publication.<br />

Patel, E.R. In press. A tragedy with villains: Severe resurgence<br />

of selective rosewood logging in Marojejy National Park<br />

leads to temporary park closure. Lemur News.<br />

Patel,E.R.;Rasarely,E.;Tegtmeter,R.;Furones,N.;Fritz-Vietta,<br />

N.; Malan, S.; Waeber, P. In Prep. Beyond Ecological Monitoring:<br />

A proposal for "Independent Forest Monitoring"<br />

in Madagascar. Madagascar Conservation and Development.<br />

Randriamalala,H.;Liu,Z.In press.Bois de rose de Madagascar:<br />

Entre democratie et protection. Madagascar Conservation<br />

and Development.<br />

Ratsimbazafy, J. 2006. Diet composition, foraging, and feeding<br />

behavior in relation to habitat disturbance: Implications<br />

for the adaptability of ruffed lemurs (Varecia v.editorium)<br />

in Manombo forest, Madagascar. Pp. 403-422. In L. Gould;<br />

M.L.Sauther,(eds.) Lemurs:ecology and adaptation.Springer,<br />

New York.<br />

Rubel, A.; Hatchwell, M.; Mackinnon, J.; Ketterer, P. 2003. Masoala–L’oeil<br />

de la Forêt. Zoo Zurich.<br />

Schuurman, D.; Lowry, P.L. 2009. The Madagascar rosewood<br />

massacre. Madagascar Conservation and Development<br />

4(2): 98-102. www.mwc-info.net. Electronic Publication.<br />

Schuurman,D.2009.Illegal logging of rosewood in the rainforests<br />

of northeast Madagascar. TRAFFIC Bulletin 22(2):<br />

49.<br />

Stasse, A. 2002. La Filière Bois de Rose. Région d’Antalaha –<br />

Nord-est de Madagascar. Thèse de mastère non publiée,<br />

Université de Montpellier, France.<br />

Stephenson, P.J. 1993. The small mammal fauna of Reserve<br />

Speciale d’Analamazaotra, Madagascar: The effects of<br />

human disturbance on endemic species diversity. Biodiversity<br />

and Conservation 2: 603-6<strong>15</strong>.<br />

Wasser, S.; Poole, J.; Lee, P.; Lindsay, K.; Dobson, A.; Hart, J.;<br />

Douglas-Hamilton, I.; Wittemyer, G.; Granli, P.; Morgan, B.;<br />

Gunn,J.;Alberts,S.;Beyers,R.;Chiyo,P.;Croze,H.;Estes,R.;<br />

Gobush,K.;Joram,P.;Kikoti,A.;Kingdon,J.;King,L.;Macdonald,<br />

D.; Moss, C.; Mutayoba, B.; Njumbi, S.; Omondi, P.;<br />

Nowak, K. 2010. Elephants, ivory, and trade. Science 327<br />

(5971): 1331-1332.<br />

Wilmé,L.;Schuurman,D.;Lowry II,P.P.In Press.A forest counterpart<br />

fund:Madagascar’s wounded forests can erase the<br />

debt owed to them while securing their future, with support<br />

from the citizens of Madagascar. Lemur News.<br />

Wilmé, L.;Schuurman,D.; Lowry II, P.P.; Raven, P.H. 2009. Precious<br />

trees pay off – but who pays? Poster prepared for<br />

the World Forestry Congress in Buenos Aires,Argentina.<br />

www.mwc-info.net/en/services/Journal_PDF%27s/<br />

Issue4-2/MCD_2009_vol4_iss2_rosewood_massacre_<br />

Supplementary_Material.pdf. Downloaded on 23 October<br />

2009.<br />

Young, D. 2007. Independent forest monitoring: Seven years<br />

on. International Forestry Review 9(1): 563-574.<br />

Rosewood logging photos<br />

Photographer Toby Smith:<br />

www.telegraph.co.uk/culture/photography/7625511/<br />

Madagascar-undercover-slideshow.html<br />

Photographer Chris Maluszynsk:<br />

www.photoshelter.com/c/moment/gallery/ Rosewood-loggingin-Madagasar-by-Chris-<br />

Maluszynski/ G0000JWMAJa78LJ0/<br />

Rosewood logging films<br />

Dan Rather Reports:Treasure Island.Episode 437.A detailed<br />

investigation of the impact of the recent political crisis in<br />

Madagascar on the unique biodiversity of this island continent.<br />

Filmed in high-definition, active rosewood logging<br />

camps are shown. The impact of such habitat disturbance on<br />

the silky sifaka and the World Heritage Sites of Marojejy NP<br />

and Masoala NP are discussed. The debates surrounding the<br />

Ambatovy nickel mine adjacent to Andasibe-Mantadia NP<br />

are also discussed. The mine may be endangering one of the<br />

rarest animals on earth,the greater bamboo lemur (Prolemur<br />

simus) which is being protected there by the NGO Mitsinjo.<br />

Aired on HD-NET cable television November 2009. Purchasable<br />

and downloadable on I-Tunes in the United States.<br />

DVDs can be purchased online:<br />

hdnet-store.stores.yahoo.net/danrare437.html<br />

Sample Clip 1:<br />

www.facebook.com/video/video.php?v= 600388589544<br />

Sample Clip 2: www.youtube.com/watch?v= dEi-yRlJ-mk<br />

Carte Blanche: Madagascar (Part 1 and Part 2). Two short<br />

films examining illegal rosewood logging in Madagascar and<br />

the impact on the critically endangered silky sifaka. They<br />

were produced by Neil Shaw and commissioned and funded<br />

by Carte Blanche which is one of the most respected television<br />

news programs in the Southern Hemisphere. Aired on<br />

South African Television in April,2010,and streams freely online<br />

here:<br />

Carte Blanche: Madagascar Part 1:<br />

beta.mnet.co.za/carteblanche/Article.aspx?Id= 3919&ShowId=1<br />

Carte Blanche: Madagascar Part 2:<br />

beta.mnet.co.za/mnetvideo/browseVideo.aspx?vid=25570<br />

506: Bois de Rose. A Documentary Film by Joseph Areddy.<br />

2003. RSI, Comano/Signe, Genve/GAP, Antananarivo.<br />

Rosewood logging videos<br />

Madagascar Rainforest Massacre (English):<br />

www.youtube.com/watch?v=FzWNPHBRrAc<br />

Madagascar Rainforest Massacre (French):<br />

www.youtube.com/watch?v=KtjmFWpGNKs&feature=related<br />

Madagascar Rainforest Massacre (Malagasy):<br />

www.youtube.com/watch?v=rHYYhhLHeQw&feature=related


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 7<br />

Global Witness – Environmental Investigation Agency - Illegal<br />

logging in Madagascar – Part 1<br />

www.youtube.com/watch?v=T1hPviSbRcU<br />

Global Witness – Environmental Investigation Agency - Illegal<br />

logging in Madagascar – Part 2<br />

www.youtube.com/watch?v=LBtsNBpWW0E<br />

Global Witness – Environmental Investigation Agency - Illegal<br />

logging in Madagascar – Part 3<br />

www.youtube.com/watch?v=payUUJed0dc<br />

Global Witness – Environmental Investigation Agency - Illegal<br />

logging in Madagascar – Part 4<br />

www.youtube.com/watch?v=lm6a6Hrat3o<br />

Rosewood logging radio programs<br />

BBC World Service – Africa. September 17, 2009.<br />

www.bbc.co.uk/worldservice/africa/2009/09/090917_<br />

madge_rosewood2.shtml<br />

Ongoing threats to lemurs and their habitat<br />

inside the Sahamalaza - Iles Radama<br />

National Park<br />

Melanie Seiler 1,2, Guy H. Randriatahina 3, Christoph<br />

Schwitzer 1*<br />

1Bristol Conservation and Science Foundation, Bristol Zoo<br />

Gardens, Clifton, Bristol BS8 3HA, UK<br />

2University of Bristol, School of Biological Sciences, Woodland<br />

Road, Bristol BS8 1UG, UK<br />

3Association Européenne pour l’Etude et la Conservation<br />

des Lémuriens (AEECL), Lot: IVH 169 N Ambohimanandray,<br />

Ambohimanarina, Antananarivo 101, Madagascar<br />

*Corresponding author: cschwitzer@bcsf.org.uk<br />

The Sahamalaza - Iles Radama National Park,officially inaugurated<br />

in July 2007 and managed by Madagascar National<br />

Parks (MNP), includes both marine and terrestrial ecosystems<br />

and is the first park that was created under the<br />

"Programme Environnemental III" of the Malagasy government<br />

and the World Bank. In addition to the few remaining<br />

forest fragments of the Southern Sambirano ecoregion, the<br />

park is home to extensive mangrove forests, which harbour<br />

their own highly endangered fauna, and also includes offshore<br />

coral reefs. In 2003, researchers from the Cologne<br />

Zoo, funded by AEECL, undertook an expedition to Sahamalaza<br />

to explore the opportunities for the establishment of<br />

a permanent field station in order to study and protect the<br />

Critically Endangered blue-eyed black lemur (Eulemur flavifrons)<br />

and its habitat.In 2004 and 2005,the field station in the<br />

Ankarafa Forest became reality (Schwitzer et al.,2006),and it<br />

has since been used by both European and Malagasy scientists<br />

as a basis for research on E. flavifrons and other lemur<br />

species, especially the Sahamalaza sportive lemur (Lepilemur<br />

sahamalazensis) and the northern giant mouse lemur (Mirza<br />

zaza),occurring on the Sahamalaza Peninsula (Schwitzer and<br />

Randriatahina, 2009).<br />

Sahamalaza - Iles Radama National Park lies within a transition<br />

zone between the Sambirano region in the north and<br />

the western dry deciduous forest region in the south, harbouring<br />

semi-humid forests with tree heights of up to 30m<br />

(Schwitzer et al.,2006).The forests include a mixture of plant<br />

species typical of both domains (Birkinshaw, 2004), and the<br />

remaining primary and secondary forest fragments vary in<br />

their degree of degradation. There are no larger connected<br />

areas of intact primary forest left on the Sahamalaza Penin-<br />

sula, and the remaining fragments all show some degree of<br />

anthropogenic disturbance and/or edge effects (Schwitzer et<br />

al., 2007). The forests and forest fragments are separated by<br />

grass savannah and shrubs. Sahamalaza is the only protected<br />

area that harbours the blue-eyed black lemur,the Sahamalaza<br />

sportive lemur and the northern giant mouse lemur. Other<br />

lemur species in the park include the aye-aye (Daubentonia<br />

madagascariensis), the western bamboo lemur (Hapalemur<br />

occidentalis),and an as yet unidentified species of dwarf lemur<br />

(Cheirogaleus spec.).<br />

The remaining forest of the Sahamalaza Peninsula and its<br />

unique fauna are in grave danger of disappearing.The habitat<br />

is already extremely degraded, nonetheless bush fires and<br />

tree-felling are activities that are routinely pursued and accepted<br />

within the local society (Ruperti et al., 2008). During<br />

the first field season of a study on the impact of habitat degradation<br />

and fragmentation on the ecology and behaviour of<br />

the Sahamalaza Peninsula sportive lemur (Lepilemur sahamalazensis),<br />

conducted by MS in 2009, local people from the<br />

villages surrounding the protected area were found logging<br />

trees in the already small forest fragments almost on a daily<br />

basis. Logging activities mainly occurred in forest fragments<br />

where no researchers had been present in previous years.<br />

During walks through different forest fragments, in addition<br />

to large numbers of logged trees, two places where trees<br />

were processed for further use were found. Trees were<br />

felled mainly in the early morning hours,on the one hand because<br />

of the high temperatures later in the day, on the other<br />

hand probably because of the assumption that the researchers<br />

started observing animals later in the day and therefore<br />

would not realise the illegal logging activities. Nonetheless,<br />

trees were sometimes also felled in the afternoons. Because<br />

locals immediately fled when becoming aware of researchers’<br />

presence, we believe that the presence of researchers<br />

and/or field guides, park authorities or park rangers is a crucial<br />

factor in stopping illegal logging in the remaining fragments.For<br />

the next field season (2010) we therefore plan to<br />

expand the observations of Lepilemur to other, not yet used<br />

forest fragments to help prevent their destruction. Of<br />

course this cannot be a long-term solution to this problem.<br />

The presence of park rangers and further environmental education<br />

of the local people will thus be extremely important<br />

to save the Sahamalaza forests from further degradation.<br />

About five times between August and October 2009, fires<br />

occurred near the Ankarafa field station, three times in the<br />

savannah and twice in the forest itself. After having extin-<br />

Fig. 1: Lepilemur sahamalazensis<br />

poached<br />

and roasted by locals in<br />

Sahamalaza - Iles Radama<br />

National Park“.


Page 8 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

guished these fires it became obvious that they had all<br />

started right beside the fire breaks that are frequently used<br />

as paths by people on their way between villages. The Ankarafa<br />

field guides, all of them locals from the surrounding villages,<br />

assumed that the fires were set by villagers to show<br />

their dissatisfaction with the recently established national<br />

park that prohibits the use of the forests for collecting building<br />

material for their dwellings. As we followed the smoke<br />

that was coming from another fire, we found an area inside<br />

one of the core zones of the national park that was inhabited<br />

by a young couple. They harvested a rice field and regularly<br />

burned undergrowth around it. Additionally, they kept cattle<br />

and goats and had built 2 houses at this site,one for the cattle<br />

and one for themselves. As we talked to them, they claimed<br />

that they were allowed to stay on this site and that MNP had<br />

sold this part of the forest to them.They affirmed that,if they<br />

set fire on this site, they would keep an eye on it and would<br />

prevent the fire from expanding into the forest. Unfortunately<br />

this was not the case,however,as we later observed a<br />

fire around this site without anyone near it. Overall, it<br />

seemed that there were various people living inside the national<br />

park on permits given to them by what they claimed to<br />

have been MNP agents;we were told that there was a map of<br />

the park showing all the "excluded" areas available for housing<br />

and agriculture, which could be seen in the village of<br />

Marovato. If that was indeed the case (we did not have the<br />

opportunity to verify the information),it would be a massive<br />

problem for protecting Sahamalaza’s unique wildlife and forests.<br />

If people claiming to be MNP staff illegally sold permits<br />

for activities inside the national park, the destruction of the<br />

small forest fragments will continue rapidly.<br />

Another big problem comes with cattle; every day zebu cattle<br />

were observed in all forest fragments and on the savannah<br />

in Ankarafa, as people from nearby villages let their cattle<br />

roam freely.The abundance of zebu themselves and their excrements<br />

indicated that they frequently used the forest fragments<br />

as grazing grounds, especially those with remaining<br />

primary forest parts. When zebu were grazing in the forest<br />

rather than on the savannah, their movements were accompanied<br />

by crashing and breaking sounds;they were undoubtedly<br />

hindering the growth of many saplings,if not eating them.<br />

This is an additional threat to the forest fragments, and furthermore,<br />

the abundance of the excrements of local zebu<br />

has been found to negatively correlate with the density of L.<br />

sahamalazensis (Ruperti, 2007). Additionally, the introduced<br />

bush pig is responsible for considerable habitat destruction<br />

due to digging up large areas, thus hindering the growth of<br />

saplings. Unfortunately, the bush pig is reproducing wildly as<br />

it is regarded as fady (taboo) by the local people and therefore<br />

not hunted.<br />

Not only the activities of local people seem to be a threat to<br />

the endangered wildlife on the Sahamalaza Peninsula.One of<br />

the Ankarafa field guides encountered a foreigner,probably a<br />

resident living in Madagascar (since he spoke Malagasy fluently),<br />

with a 4x4 car and two local guides about 1 km from<br />

the researchers’ camp. These people had set up a tent and<br />

told the Ankarafa field guide that they were visiting all villages<br />

on the Sahamalaza Peninsula to look for fish. As we checked<br />

their camp site the next day, the three men were gone, but<br />

signs of a fire,logged branches and feathers of a harrier hawk<br />

were found,indicating that they had caught and killed this endangered<br />

bird of prey. We wrote a report about this event<br />

and handed it over, together with feathers of the bird, to<br />

MNP in Maromandia. However, as long as there are no signs,<br />

borders or fences indicating the national park area and its<br />

restrictions, these problems will continue.<br />

The ongoing political crisis is a further big concern that hinders<br />

the effective protection not only of the biodiversity of<br />

the Sahamalaza Peninsula, but of Madagascar and its national<br />

parks system as a whole. Only 10 years ago, Madagascar was<br />

notorious for its environmental degradation and deforestation,<br />

but that began to change in 2003 when then President<br />

Marc Ravalomanana, working with international conservation<br />

organizations and local groups, set aside 10 % of the<br />

country’s surface area as national parks and started supporting<br />

ecotourism, which slowed deforestation and helped to<br />

safeguard biodiversity.After the political events in early 2009<br />

that saw the ousting of the President and the installation of a<br />

transitional government, the majority of donor funds, which<br />

provided half the government’s annual budget, have been<br />

withdrawn, leading to major funding gaps that have affected<br />

protected areas and their management. There currently is<br />

almost no money to employ park rangers or to implement<br />

other measures to protect the forests inside Madagascar’s<br />

national parks, and forest degradation is going on without<br />

noticeable resistance from the relevant authorities. Despite<br />

the political crisis that affects most of the social and environmental<br />

activities of numerous NGOs, AEECL is still carrying<br />

out its research activities and support to the villagers surrounding<br />

the Sahamalaza - Iles Radama National Park. Since<br />

the establishment of the protected area in 2007, AEECL has<br />

been conducting, besides its research programme, different<br />

projects that aim to reduce the excessive environmental exploitation<br />

inside and around the park.As the major activity of<br />

the local population surrounding the Sahamalaza Peninsula<br />

National Park is rice-growing,every year AEECL organizes a<br />

rice-growing training course and rice-growing competition,<br />

using modern techniques in order to increase yield per ha<br />

and to decrease the use of slash and burn agriculture.To stop<br />

the ongoing overexploitation of the environment, environmental<br />

education is another important part of AEECL´s<br />

work.As many villages in Sahamalaza are unable to pay teachers,<br />

AEECL subsidizes teachers’ salaries to ensure the primary<br />

education of the local children. Additionally, leaflets<br />

about the Sahamalaza biodiversity and its importance are<br />

distributed. They inform and educate villagers about the importance<br />

of lemurs and other species for their forest ecosystem.<br />

To minimise bush fires and to protect the forest against<br />

uncontrolled fires, AEECL organizes firebreak programs<br />

around the Ankarafa Forest, close to the research camp,<br />

where during three days, hundreds of local people remove<br />

the grasses on a 7m wide strip around the forest fragments.<br />

Furthermore, several reforestation campaigns have been<br />

conducted, where villagers, including many teachers and<br />

their pupils,have planted trees around their villages with the<br />

help of AEECL.<br />

Because of all the factors described here, the protection of<br />

Sahamalaza’s unique flora and fauna continues to be a major<br />

challenge that has to be faced by the local human population<br />

with the help of Madagascar National Parks and foreign partners.<br />

Two essential parts of AEECL’s efforts to help meeting<br />

this challenge are to stimulate further scientific study of<br />

endangered lemurs and other wildlife at its research station<br />

in the Ankarafa Forest, especially by Malagasy students, and<br />

to enable the local human population around the Sahamalaza<br />

- Iles Radama National Park to sustainably use their natural<br />

resources.<br />

Acknowledgements<br />

We would like to thank Madagascar National Parks (MNP),<br />

especially the director of Sahamalaza - Iles Radama National<br />

Park, M. ISAIA Raymond, for their continuing collaboration.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 9<br />

Thank you also to the DGEF and CAFF/CORE for granting<br />

us research permits for our work in Sahamalaza,and to Prof.<br />

RABARIVOLA Clément for his ongoing help. Tantely Ralantoharijaona<br />

and Bronwen Daniel,along with all Ankarafa field<br />

guides, contributed substantially to fighting forest fires and<br />

other environmental threats in Ankarafa in 2009. MS was<br />

funded by Bristol Conservation and Science Foundation,<br />

AEECL, Conservation International Primate Action Fund,<br />

Margot Marsh Biodiversity Foundation, Mohamed bin Zayed<br />

Species Conservation Fund,International Primatological Society<br />

and Christian-Vogel-Fonds.<br />

References<br />

Birkinshaw, C.R. 2004. Priority areas for plant conservation.<br />

Ravintsara 2(1): 14-<strong>15</strong>.<br />

Ruperti, F. 2007. Population density and habitat preferences<br />

of the Sahamalaza sportive lemur (Lepilemur sahamalazensis)<br />

at the Ankarafa research site, NW Madagascar.<br />

Unpublished MSc thesis, Oxford Brookes University, UK.<br />

82 p.<br />

Ruperti,F.;Smith,J.;Ratovonasy,L.;Thorn,J.2008.Sahamalaza<br />

Conservation Action Plan (SCAP).Unpublished report to<br />

the Association Européenne pour l’Etude et la Conservation<br />

des Lémuriens (AEECL). 17 p.<br />

Schwitzer, C.; Randriatahina, G.H. 2009. AEECL: Update on<br />

activities. Lemur News 14: 11-12.<br />

Schwitzer, N.; Randriatahina, G.H.; Kaumanns, W.; Hoffmeister,<br />

D.; Schwitzer, C. 2007. Habitat utilization of blue-eyed<br />

black lemurs,Eulemur macaco flavifrons (Gray,1867),in primary<br />

and altered forest fragments.Primate Conservation<br />

22: 79-87.<br />

Schwitzer, C.; Schwitzer, N.; Randriatahina, G.H.; Rabarivola,<br />

C.; Kaumanns, W. 2006. "Programme Sahamalaza": New<br />

perspectives for the in situ and ex situ study and conservation<br />

of the blue-eyed black lemur (Eulemur macaco flavifrons)<br />

in a fragmented habitat.Pp.135-149.In:C.Schwitzer;<br />

S.Brandt;O.Ramilijaona;M.Rakotomalala Razanahoera;D.<br />

Ackermand; T. Razakamanana; J. U. Ganzhorn (eds.). Proceedings<br />

of the German-Malagasy Research Cooperation<br />

in Life and Earth Sciences. Berlin: Concept Verlag.<br />

News and Announcements<br />

Madagascar conservationist wins international<br />

environmental prize<br />

Mr Rabary Desiré has been awarded the 2010 Seacology<br />

Prize (www.seacology.org/prize/index.htm) for his his tireless<br />

efforts to further forest conservation in northeastern Madagascar.Mr<br />

Desiré will receive the US$10,000 Prize on October<br />

7, 2010 at a ceremony in Berkeley, California.<br />

Rabary Desiré is recognized by many as a major conservation<br />

leader in northeastern Madagascar, and is a highlysought-after<br />

research and eco-tourism guide. With the money<br />

he makes from guiding,he buys forested land in order to<br />

protect it.Years of work have finally culminated in the establishment<br />

of his own small private nature reserve called<br />

Antanetiambo (antanetiambo.marojejy.com/Intro_e.htm),<br />

which means "on the high hill". It is perhaps the only reserve<br />

in northern Madagascar that has been entirely created from<br />

start to finish by a single local resident.<br />

According to Mr Desiré, "I am very happy to receive this<br />

award and I feel very lucky for myself and Madagascar. After<br />

many years of hard work and political instability,finally we are<br />

having some local conservation success. I plan to use these<br />

funds for such projects as reforestation, developing tourist<br />

Fig. 1: Rabary Desiré next to the sign for the Antanetiambo<br />

Nature Reserve he created.<br />

infrastructure and purchasing the land around Antanetiambo<br />

Nature Reserve to increase the size of the reserve and the<br />

amount of protected land in this region. This award will help<br />

preserve the precious biodiversity and high endemism of<br />

Madagascar,as well as fight the ongoing battle against massive<br />

deforestation and possible extinction of many beloved species...<br />

Thanks Seacology for giving me this prize. The whole<br />

region will never forget it."<br />

Read the full press release:<br />

www.seacology.org/news/display.cfm?id=4238<br />

Célébration du quinzième anniversaire<br />

du GERP (1994-2009)<br />

Jonah Ratsimbazafy*, Rose Marie Randrianarison,<br />

Muriel Nirina Maeder<br />

GERP, 34, Cité des Professeurs, Antananarivo 101,<br />

Madagascar<br />

*Corresponding author: gerp@wanadoo.mg<br />

Quinze ans se sont écoulés depuis la création, en 1994, de la<br />

Société de Primatologie malgache ou Groupe d’Etude et de<br />

Recherche sur les Primates de Madagascar (GERP). Elle fut<br />

fondée par dix Primatologues dont le Professeur Berthe<br />

Rakotosamimanana qui occupait à la fois le poste de Secrétaire<br />

Général du GERP et le Co-éditeur de la revue Lemur<br />

News jusqu’à sa disparition en 2005. De son vivant, elle<br />

désirait ardemment passer le flambeau au Docteur Jonah<br />

Ratsimbazafy pour le poste de Secrétaire Général du GERP<br />

qui, en 2006, a été mandaté à l’unanimité par les membres<br />

nationaux et internationaux du GERP au titre de Leader du<br />

GERP.<br />

L’Association compte aujourd’hui 169 membres et 20 d’entre<br />

eux sont de nationalité étrangère. La multidisciplinarité<br />

des membres du groupe (Primatologues, Anthropologues,<br />

Paléontologues, Ornithologues, Herpétologues, Spécialistes<br />

de Micromammifères et Mammifères, Parasitologistes, Botanistes,<br />

Géographes, Vétérinaires, Agro-forestiers, Biochimis-


Page 10 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

tes, Dessinateur, Financiers) apporte une importante potentialité<br />

dans l’accomplissement de la mission du GERP: transférer<br />

les compétences nécessaires à la préservation de la<br />

biodiversité pour les générations futures. Par ailleurs, les actions<br />

du GERP comprennent également la formation des<br />

pépinières de Primatologues, la mise en œuvre du plan de<br />

conservation des lémuriens, la contribution à l’amélioration<br />

des activités génératrices de revenu des communautés de<br />

base liées à la conservation,sans oublier l’éducation environnementale<br />

de la population cible.<br />

En 2007,l’attribution par le GERP du nom de Microcebus macarthurii<br />

à une nouvelle espèce découverte dans la forêt de<br />

Makira représentait un témoignage de reconnaissance au<br />

dévouement de la Fondation MacArthur. De plus, le GERP a<br />

depuis 2008 officiellement été mandaté par le MEFT/DGEF/<br />

DSAP comme Gestionnaire de la forêt de Maromizaha,pour<br />

que cette dernière devienne une Nouvelle Aire Protégée<br />

(NAP).Plus récemment encore,en février 2010,le prix "lifetime"<br />

décerné par l’IPS a été attribué à un membre scientifique<br />

du GERP en la personne du Docteur Alison Jolly.<br />

A l’occasion de son quinzième anniversaire, le GERP aura<br />

l’honneur d’organiser une conférence scientifique sur les<br />

lémuriens, à Antananarivo en novembre 2010.<br />

Conservation International’s Primate<br />

Action Fund:Projects funded March 2009<br />

to March 2010<br />

Anthony Rylands<br />

Conservation International, 2011 Crystal Drive, Suite 500,<br />

Arlington, VA 22202, USA, a.rylands@conservation.org<br />

Conservation International’s Primate Action Fund awards<br />

small grants (up to $5,000) to support projects and initiatives<br />

promoting the conservation of primates worldwide,focusing<br />

on Critically Endangered and Endangered species in their<br />

natural habitats (and most especially those included in the biennial<br />

listing of the World’s 25 Most Endangered Primates).<br />

Projects should contribute to at least one of the following<br />

themes: (1) enhancement of scientific understanding/knowledge<br />

of the target species/ecosystem; (2) improved protection<br />

of a key species, habitat, or a reserved area; (3) demonstration<br />

of economic benefits achieved through conservation<br />

of a species and its habitat,as compared to its loss;(4) increased<br />

public awareness or educational impact resulting<br />

from the project in question; (5) improved local capacity to<br />

carry out future conservation efforts through training or<br />

practical experience obtained through project participation;<br />

and (6) modification of inappropriate policies or legislation<br />

that previously led to species or habitat decline. Awards are<br />

given most frequently for population and distribution surveys,and<br />

ecological and behavioral studies pertinent to conservation<br />

initiatives for threatened species. Grants are also<br />

given that support genetic and taxonomic studies, publications,<br />

workshops for action plans and suchlike, and primate<br />

field courses. Some awards are given to help primate habitat-country<br />

primatologists attend the biennial congresses of<br />

the International Primatological Society. The fund does not<br />

support participation in academic courses.<br />

The Primate Action Fund comes from an annual award to<br />

Conservation International, Arlington, Virginia, USA, made<br />

by the Margot Marsh Biodiversity Foundation. It is managed<br />

jointly by Ms Ella Outlaw and Dr Anthony B.Rylands,both of<br />

CI’s Office of the President. Guidelines for application can be<br />

obtained by writing to Anthony Rylands (see Funding and<br />

Training section in this issue).<br />

Five grants were awarded to benefit lemur conservation in<br />

the March 2009 – March 2010 funding cycle. They were as<br />

follows: (1) Halting politically-induced deforestation in the<br />

short term to preserve the unique primate community of<br />

Tsinjoarivo, eastern central Madagascar–Mitchell T. Irwin,<br />

Fanomezantsoa, Jean-Luc Raharison and Marina Blanco; (2)<br />

Rapid survey and assessment of the northern sportive lemur,<br />

Lepilemur septentrionalis, in the Sahafary Region, Madagascar–Edward<br />

Louis Jr, Jean<br />

Ranaivoarisoa, John Zaonarivelo and Steig Johnson; (3) Support<br />

for the publication of the IUCN/SSC Primate Specialist<br />

Group newsletter and journal Lemur News, volume 14–Jörg<br />

U. Ganzhorn and Christoph Schwitzer; (4) Student training<br />

course “Field Methods in the Study of Primate Behavior and<br />

Ecology”,Kirindy forest,2010–Melanie Dammhahn,Peter M.<br />

Kappeler, Claudia Fichtel, Cornelia Kraus and Rodin Rasoloarison;<br />

and (5) Comparison of habitat requirements of the<br />

Data Deficient northern giant mouse lemur (Mirza zaza) in<br />

two differently degraded habitats, in Sahamalaza,northwestern<br />

Madagascar–Johanna Rode and Christoph Schwitzer.<br />

International Technical Meeting on Prolemur<br />

simus, 26-28 January 2010, Antananarivo,<br />

Madagascar<br />

The greater bamboo lemur Prolemur simus has long been considered<br />

to be one of the rarest primate species in the world.<br />

Up to 2007 only 60 individuals were known from the wild,<br />

and another 22 were in captivity (Wright et al.,2008;Primate<br />

Conservation 23: 5-17). Once widespread across Madagascar,<br />

more recent confirmed sightings were exclusively from<br />

south-eastern Madagascar, which led to the assumption that<br />

the species was extinct on the rest of the island. In 2008,<br />

Dolch et al. (Lemur News 13: 14-17) rediscovered P. simus in<br />

the Torotorofotsy wetlands, north of the Mangoro River.<br />

Since then, several extensive surveys have been conducted<br />

north and south of the Mangoro, and evidence of greater<br />

bamboo lemurs was found at several sites in the Ankeniheny-Zahamena<br />

Corridor, in the central region of the eastern<br />

rainforest (King and Chamberlan, 2010; Oryx 44: 167).<br />

In the context of developing a conservation action plan for<br />

the greater bamboo lemur, the Madagascar Fauna group organised,<br />

from 26-28 January 2010 at the motel d’Antananarivo,<br />

Anosy, an international technical meeting with the<br />

theme "Conservation of the critically endangered greater<br />

bamboo lemur Prolemur simus:What we know now,what we<br />

need to know and potential conservation strategies".Several<br />

members of the PSG contributed to this.<br />

The objectives of the meeting were 1) to share information<br />

about the current situation of the various groups/populations<br />

of Prolemur simus in the wild and in captivity; 2) to discuss<br />

the threats, the solutions and the conservation strategies<br />

for three groups - north of the Mangoro River (Torotorofotsy<br />

and the Ankeniheny-Zahamena corridor CAZ),<br />

south of the Mangoro River (south-east and the Fandriana-<br />

Vondrozo corridor COFFAV), and in captivity (Madagascar<br />

and Europe); and 3) to make a plan, short to long term, to<br />

move towards a conservation action plan for the species.<br />

With 28 participants,the meeting was well attended.Presentations<br />

were given by researchers studying P. simus in the wild<br />

and in captivity, representatives from the Ambatovy, Madagascar<br />

National Parks, the University of Antananarivo and


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 11<br />

conservation NGOs.While other potential P.simus sites still<br />

need to be explored, results from the most recent surveys<br />

suggest the total estimated size of the known population is<br />

between 221-346 individuals. Another 20 individuals are<br />

housed in one Malagasy (Parc Ivoloina Zoo) and several European<br />

zoos and and managed under the umbrella of an EEP.<br />

The following recommendations for the conservation of P.<br />

simus came out of the meeting:<br />

We need to achieve official/formal protection for all currently<br />

known P. simus habitat (using whatever status is appropriate<br />

to the site);<br />

Animals of the northern and southern populations (wild<br />

or captive) should not be mixed until the taxonomic situation<br />

is clarified;<br />

Faecal samples should be collected from all sites using a<br />

standard protocol (meeting participants agree to collaborate<br />

to achieve this);<br />

When animals are caught/immobilised the opportunity<br />

should be used to maximise the collection of samples;<br />

Bamboo plot data should be collected from all sites using<br />

a standard protocol (meeting participants agree to collaborate<br />

to achieve this);<br />

A health screening protocol should be applied whenever<br />

the opportunity arises;<br />

Sites in the Ankeniheny-Zahamena Corridor (CAZ) recently<br />

shown to harbour P. simus should be evaluated by<br />

2011 at the latest to assess population size;<br />

Maromiza and Lakato need to be evaluated for the presence<br />

of P. simus, and protected to ensure connectivity;<br />

We agree that assuring connectivity between Torotorofotsy<br />

and CAZ is a high priority,and that the area needs an<br />

integrated conservation plan involving all stakeholders –<br />

CI to drive the process under supervision of the Alaotra-<br />

Mangoro Forestry Commission;<br />

It is important to make P. simus a priority (conservation<br />

target) for the CAZ;<br />

Improved communication using a mailing list will be established,<br />

the "Prolemur Conservation Working Group";<br />

There are other sites that need to be surveyed for P.simus<br />

(a list of sites has already been identified);<br />

Maximising connectivity between P. simus sites is important;<br />

Local communities should be directly involved in P. simus<br />

conservation wherever possible;<br />

In case of a crisis scenario involving potential translocation,<br />

a technical strategy is needed consistent with IUCN<br />

guidelines;<br />

The EEP-Ivoloina exchange of P. simus is important to<br />

strengthen the global captive population;<br />

For the time being,it is not recommended that additional<br />

wild P. simus be added to the global captive programme,<br />

except in emergency;<br />

In the case of emergency, we recommend that animals go<br />

to PBZT if upgraded facilities have been installed; if not<br />

then they should go to Ivoloina;<br />

Based on the development of the global captive programme,<br />

integrated (metapopulation) management of P. simus<br />

should be considered;<br />

Another technical meeting should be held in January<br />

2011.<br />

The workshop was financially and technically supported by<br />

the Madagascar Fauna Group with additional contributions<br />

from Conservation International Madagascar.<br />

Lemur presentations at the 23rd Congress<br />

of the International Primatological<br />

Society, Kyoto, Japan<br />

Jonah Ratsimbazafy<br />

GERP, 34, Cité des Professeurs, Antananarivo 101, Madagascar,<br />

gerp@wanadoo.mg<br />

The 23rd Congress of the International Primatological Society<br />

(IPS) was held in Kyoto (Yoshida Main Campus),Japan on<br />

12th-18th September, 2010. This congress brought together<br />

more than 1,000 delegates from 56 countries. Twenty-eight<br />

talks and three posters were presented on lemur studies<br />

during that congress.<br />

I am also pleased to share with you the good news that the<br />

winner of the 2010 IPS Lifetime Award is Professor Alison<br />

Jolly who is an active member of GERP (Groupe d’Etude et<br />

de Recherche sur les Primates de Madagascar). The lemur<br />

lady,Prof.Jolly,has devoted her life to the conservation of the<br />

world’s primates. Education is one of the main activities that<br />

she never stops to discuss,as she found that the only chance<br />

to save the endangered lemurs of Madagascar is to provide<br />

the Malagasy children with tools enabling them to learn and<br />

love the creatures that exist in their backyards.<br />

I hope that even more lemur researchers will present the<br />

results of their work at the 24th IPS Congress in Mexico.<br />

Short Communications<br />

Preliminary conservation status assessment<br />

for the Data Deficient northern<br />

giant mouse lemur Mirza zaza<br />

Eva Johanna Rode 1,2, K. Anne-Isola Nekaris 2, Christoph<br />

Schwitzer 1*<br />

1Bristol Conservation and Science Foundation, c/o Bristol<br />

Zoo Gardens, Clifton, Bristol BS8 3HA, UK<br />

2Nocturnal Primate Research Group, School of Social Sciences<br />

and Law, Oxford Brookes University, OX3 0BP, UK<br />

*Corresponding author: cschwitzer@bcsf.org.uk<br />

Madagascar is one of the world’s most important biodiversity<br />

hotspots, underpinned by its large proportion of endemic<br />

species and high rates of deforestation.During the last<br />

decade, species diversity of Madagascar’s endemic lemurs<br />

has increased dramatically due to new discoveries and taxonomic<br />

revisions. This has resulted in the unusual situation of<br />

45 % of all Malagasy primate species being Red-Listed as Data<br />

Deficient (DD) by the IUCN. This is by far the highest such<br />

figure for any primate habitat country (by comparison, 13 %<br />

of all primates and <strong>15</strong> % of all mammals are Red-Listed as<br />

DD).The lack of species-specific knowledge makes it impossible<br />

to design effective conservation measures targeting<br />

these taxa. To help assign a conservation status to the DD<br />

northern giant mouse lemur Mirza zaza, described in 2005<br />

due to distinctive features in morphology, behaviour and<br />

genetics (Kappeler et al., 2005; Primate Report, 71, 3-26), we<br />

examined space requirements and group size of this small<br />

nocturnal lemur species during a three-month study (May-<br />

July 2010) and extrapolated our results to the taxon’s area of


Page 12 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

occupancy in order to estimate the size of its remaining<br />

population.<br />

Mirza zaza lives in dry forests of north-western Madagascar,<br />

one of the fastest declining habitats of the island, with a decrease<br />

in forest cover of 40 % from 1975 to 2000.The area of<br />

occurrence of the species is limited by the Maeverano River<br />

in the south and the Mahavavy River in the north.Combining<br />

forest cover data collected by the Madagascar Vegetation<br />

Mapping Project (www.vegmad.org) with data on group home<br />

range size and group size calculated from our study and additional<br />

literature, we calculated minimum and maximum estimates<br />

of total remaining population size. Since data for the<br />

Madagascar Vegetation Mapping Project were collected several<br />

years ago,we lowered the estimate of total available habitat<br />

according to the estimated annual rate of decline.Habitat<br />

decline may have accelerated since the onset of the political<br />

crisis in Madagascar in early 2009, which is not yet reflected<br />

in our estimates.Since a previous survey failed to detect Mirza<br />

zaza in several regions within the species’ area of occurrence,<br />

we applied different estimates of the percentage of<br />

suitable habitat actually inhabited by the species.Our calculations<br />

yielded the following estimates:<br />

Maximum estimate: The total area covered in dry forest<br />

within the area of occupancy of M. zaza is approximately<br />

1,650 km 2 . Assuming an occupancy of 80 %, group home<br />

ranges of 2 ha and group size of 4 individuals there would<br />

be max. 177,500 animals left in total.<br />

Minimum estimate: In order to reflect the long-term survival<br />

of the species in a very fragmented area, only fragments<br />

< 1km 2 and smaller fragments closer than 500 m to<br />

other, larger fragments (total area: 955 km 2 ) were considered.We<br />

chose 1 km 2 to allow a minimum viable population<br />

of 250 animals.If only 30 % of the habitat is inhabited,<br />

animals use group home ranges of 4 ha and live in groups<br />

of on average 2.3 animals, this leads to an estimate of<br />

16,500 individuals left.<br />

Mirza zaza should be assessed as Vulnerable (VU B2ab) since<br />

its area of occupancy in both estimates is lower than 2,000<br />

km 2. With several sites within the species’ distribution area<br />

found to be unoccupied, the remaining habitat being extremely<br />

fragmented with the smallest fragments unsuitable<br />

to support a viable population, and habitat vanishing quickly,<br />

M. zaza may become Endangered (EN B2ab) in the near<br />

future if its area of occupancy shrinks below 500 km 2.<br />

Our preliminary conservation status assessment used the<br />

best available data for Mirza zaza. More accurate estimates<br />

will be possible if more data become available, especially on<br />

percentage of occupancy. This method might be applied to<br />

other DD lemur species in order to gain initial assessments<br />

of their conservation status.<br />

An observation of the hairy-eared dwarf<br />

lemur, Allocebus trichotis, in the Lakato<br />

region, eastern Madagascar<br />

Erwan Lagadec 1, Steven M. Goodman 2*<br />

1Centre de Recherche et de Veille sur les maladies émergentes<br />

dans l’Océan Indien (CRVOI),GIP Cyclotron Réunion<br />

Océan Indien, 2 rue Maxime Rivière, 97492 Sainte Clotilde,<br />

Ile de la Réunion, France, and Centre National de la Recherche<br />

Scientifique, UMR5557 Ecologie Microbienne, Bât A.<br />

Forel, 43 bd du 11 novembre 1918, 69622 Villeurbanne<br />

CEDEX, France<br />

2Field Museum of Natural History, 1400 South Lake Shore<br />

Drive, Chicago, Illinois 60605, USA, and Association Vahatra,<br />

BP 3972, Antananarivo 101, Madagascar<br />

*Corresponding author: sgoodman@vahatra.mg<br />

Although a few decades ago the hairy-eared dwarf lemur<br />

(Allocebus trichotis) was considered "unquestionably the rarest<br />

of surviving lemurs" (Tattersall,1982,p.131),more recent<br />

field work has found this species to be widely distributed<br />

across portions of the eastern humid forests of Madagascar<br />

(e.g., Meier and Albignac, 1991; Rakotoarison, 1998; Schütz<br />

and Goodman, 1998; Goodman and Raselimanana, 2002).<br />

Since more than a decade, there have been numerous records<br />

of this species from the central portion of the eastern<br />

humid forests,and information is now available on aspects of<br />

its ecology and natural history (e.g.Rakotoarison et al.,1997;<br />

Garbutt,2000;Biebouw,2009;Ralison,2010).Here we add an<br />

additional record from the region of Lakato, an area from<br />

where this species had not been previously recorded.<br />

From 22-28 October 2010 we were part of a research group<br />

that conducted a biological inventory of a forest block in the<br />

Lakato area and in the southern portion of the Zahamena-<br />

Ankeniheny forest corridor. The specific study site was centered<br />

at the following locality,which served as the base camp<br />

for all inventory activities: Province de Toamasina, Alaotra-<br />

Mangoro Region, 14.5 km SW of Andasibe (Périnet) village,<br />

Ampasipotsy-Anivonimaro/Ambalafary Forest, 19°02’38"S,<br />

48°20’55"E, 995 m elevation.<br />

During a nocturnal survey on 28 October 2010, the first author<br />

observed and photographed an individual of A. trichotis.<br />

The animal appeared not to be accompanied by any conspecifics.<br />

The distinctive ear-tufts, characteristic of Allocebus,<br />

were clearly visible (Fig.1).The lemur was observed at 21h58<br />

and for about five minutes.The site was in partially disturbed<br />

lower montane forest, about 200 m away from the research<br />

camp and within a few meters of the dirt road connecting the<br />

RN 2 (connecting Antananarivo-Toamasina) and the village<br />

of Lakato. The animal was not particularly active and rested<br />

in the upper portion of a 4 m tall tree. As it was photographed,<br />

including the use of flash, the individual remained<br />

largely stationary, until it finally turned and moved off into<br />

another tree and into dense vegetation.<br />

During the course of nocturnal observations of forest animals<br />

within the study site,this was the only observation of A.<br />

trichotis. Each night numerous individuals of Microcebus cf.<br />

Fig. 1: Photo of Allocebus trichotis taken during the night of 28<br />

October 2010 in a forest block approximately halfway between<br />

the turn-off of RN 2 and the village of Lakato. The<br />

ear-tufts of this animal, diagnostic of this species, are readily<br />

visible in the photo.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 13<br />

lehilahytsara were observed in close proximity. Although A.<br />

trichotis is now known to have a broad distribution across a<br />

good portion of the eastern humid forests, from lowland to<br />

montane forests (up to about 1,000 m),it occurs in low densities<br />

(Mittermeier et al., 2006).This factor might account for<br />

its absence in other forested sites surveyed within the<br />

Zahamena-Ankeniheny forest corridor (e.g., Schmid et al.,<br />

1999; Randrianabinina and Rasoloharijaona, 2006). However,<br />

continued surveying efforts at these sites will probably result<br />

in the finding that it occurs across the forest corridor.<br />

Acknowledgements<br />

The survey of the Lakato region was financed by a grant from<br />

the <strong>Vol</strong>kswagen Foundation.We are grateful to the Département<br />

de Biologie Animale, Université d’Antananarivo and<br />

the Direction du Système des Aires Protégées, Direction<br />

Générale de l’Environnement et des Forêts for permits to<br />

conduct this research.<br />

References<br />

Biebouw,K.2009.Home range size and use in Allocebus trichotis<br />

in Analamazaotra Special Reserve, central eastern Madagascar.<br />

Int. J. Primatol. 30: 367-386.<br />

Garbutt,N.2000.Brief observations of hairy-eared dwarf lemur<br />

(Allocebus trichotis) in Analamazaotra Special Reserve,<br />

eastern Madagascar. Lemur News 6: 37.<br />

Goodman, S.M.; Raselimanana, A.P. 2002. The occurrence of<br />

Allocebus trichotis in the Parc National de Marojejy. Lemur<br />

News 7: 21-22.<br />

Meier, B.; Albignac, R. 1991. Rediscovery of Allocebus trichotis<br />

Günther 1875 (Primates) in northeast Madagascar. Folia<br />

Primatol. 56: 57-63.<br />

Mittermeier,R.A.;Konstant,W.R.;Hawkins,A.F.A.;Louis,E.E.;<br />

Langrand, O.; Ratsimbazafy, J.; Rasoloarison, R.M.; Ganzhorn,<br />

J.U.; Rajaobelina, S.; Tattersall, I.; Meyers, D.M. 2006.<br />

Lemurs of Madagascar. Second edition. Conservation International,<br />

Washington, D.C.<br />

Rakotoarison,N.1998.Recent discoveries of the hairy-eared<br />

dwarf lemur (Allocebus trichotis). Lemur News 3: 21.<br />

Rakotoarison, N.; Zimmermann, H.; Zimmermann, E. 1997.<br />

First discovery of the hairy-eared dwarf lemur (Allocebus<br />

trichotis) in a highland rain forest of Eastern Madagascar.<br />

Folia Primatol. 68: 86-94.<br />

Ralison,J.M.2010.The lemurs of the Ambatovy-Analamay region.<br />

Malagasy Nature 3: 178-191.<br />

Randrianambinina, B.; Rasoloharijaona, S. 2006. Inventaires<br />

des lémuriens nocturnes dans la forêt pluviale de Maromizaha<br />

(Est de Madagascar). Lemur News 11: 9-11.<br />

Schmid,J.;Fietz,J.;Rakotobe,Z.L.R.1999.Lémuriens du corridor<br />

Mantadia-Zahamena, Madagascar. In: J. Schmid, L.E.<br />

Alonso (eds.). Une évaluation biologique rapide du corridor<br />

Mantadia-Zahamena, Madagascar. Bulletin of Biological<br />

Assessment 32: 61-72.<br />

Schütz, H; Goodman, S.M. 1998. Photographic evidence of -<br />

Allocebus trichotis in the Reserve Speciale d’Anjanaharibe-<br />

Sud. Lemur News 3: 21-22.<br />

Tattersall,I.1982.The primates of Madagascar.Columbia University<br />

Press, New York.<br />

When big lemurs swallow up small ones:<br />

Coquerel’s dwarf lemur as a predator of<br />

grey mouse lemurs and endemic rodents<br />

Susanne Schliehe-Diecks 1, Matthias Markolf 2, Elise<br />

Huchard 2*<br />

1Courant Research Center "Evolution of Social Behavior",<br />

Georg-August-University of Göttingen,Kellnerweg 6,37077<br />

Göttingen, Germany<br />

2Abteilung Verhaltensökologie and Soziobiologie,<strong>Deutsches</strong><br />

<strong>Primatenzentrum</strong>,Kellnerweg 4,37077 Göttingen,Germany<br />

*Corresponding author: ehuchard@gmail.com<br />

Predation has probably played a major role in the evolutionary<br />

history of lemurs, and specifically affects small nocturnal<br />

lemurs, which are heavily predated upon by a wide range of<br />

vertebrates, including carnivores (e.g., viverrid or domestic<br />

carnivores), birds (e.g. raptors, owls) or reptiles (e.g. Boidae)<br />

(Goodman, 2003). In contrast, lemur predation by other lemur<br />

species appears exceptional and highly opportunistic,<br />

with one observed case of predation of an infant Lemur catta<br />

by Eulemur fulvus (Pitts, 1995). However, such events might<br />

occur more regularly in other lemur species. Two indirect<br />

lines of evidence suggest that Coquerel’s dwarf lemur (Mirza<br />

coquereli) predates on closely related smaller mouse lemurs<br />

(Microcebus sp.) (Kappeler and Rasoloarison,2003).The first<br />

report is based on events where the partially eaten carcass of<br />

a gray mouse lemur (M. murinus) was found together with a<br />

live M. coquereli in a trap (Goodman, 2003). The second observation<br />

consists of an experimental confrontation of M.<br />

murinus with M. coquereli, both being kept in separate cages<br />

that were temporarily placed next to each other. In most<br />

experiments, mouse lemurs started alarm-calling at the<br />

Coquerel’s dwarf lemur and moved around in their cage in an<br />

agitated fashion (Fichtel,2009).Here,we present the first direct<br />

evidence of predation by wild M. coquereli upon gray<br />

mouse lemurs and endemic rodents (western tuft-tailed rats,<br />

Elliurus myoxinus).<br />

Study animals, study site and methods<br />

Coquerel’s dwarf lemurs (300 g;mean home range size:4 ha)<br />

occur in the western lowland forests and gray mouse lemurs<br />

(60 g;mean home range size:1.5 ha) can be found in most remaining<br />

forests in southern and western Madagascar (Kappeler<br />

and Rasoloarison,2003;Rasoloarison et al.,2000).Both<br />

species share several features.Both are nocturnal and omnivorous<br />

solitary foragers. They mainly feed on primary resources<br />

(fruits,gum,flowers,young leaves),insect secretions,<br />

small invertebrates and occasionally vertebrates (chameleons<br />

and lizards). Their diet displays seasonal fluctuation, as<br />

well as interspecific variation (Goodman, 1993, 2003), and<br />

the Coquerel’s dwarf lemur is reported to be slightly more<br />

carnivorous than the gray mouse lemur (Petter et al., 1977).<br />

In captivity, both species have been observed eating young<br />

rodents (Petter et al., 1977) although this has never been reported<br />

in the wild. Both species occur sympatrically in central<br />

western Madagascar with western tuft-tailed rats,a nocturnal,<br />

frugi- and granivorous and partially arboreal rodent<br />

(average body mass: 66 g) (Carleton, 2003).<br />

All following observations were made in the Forêt de<br />

Kirindy,a 12,500 ha forestry concession of the C.N.F.E.R.E.F.<br />

(formerly C.F.P.F.) Morondava. This dry deciduous forest is<br />

situated 60 km northeast of Morondava (44°39´E, 20°03´S).<br />

The predation of the western tufted-tail rat was witnessed<br />

during a focal observation of a Coquerel’s dwarf lemur which<br />

was equipped with a radio collar (Biotrack TW3). The observed<br />

mouse lemurs were similarly equipped with radio<br />

collars (Holohil Systems Ltd., BD-2C, 1.8 g), permitting behavioural<br />

observations of focal animals.<br />

Results and discussion<br />

The first observation reports the predation of a western<br />

tuft-tailed rat by an adult male M.coquereli in November 2006<br />

(Fig.1).The Coquerel’s dwarf lemur was found sitting on the<br />

ground at 20h17, feeding on a tufted-tail rat, and changed its<br />

position only to climb-up the vegetation from 1-3 m height<br />

and to recover the carcass when it fell to the ground. It devoured<br />

the whole carcass, including (cracked) bones. After<br />

finishing eating,the M.coquereli groomed its face and hands.


Page 14 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Fig. 1: An adult Coquerel’s<br />

dwarf lemur (Mirza coquereli)<br />

in the Foret de Kirindy, Madagascar.<br />

The second observation<br />

reports an unsuccessful<br />

attack on an adult female<br />

gray mouse lemur (55 g,<br />

approx. age: 1 year and 9<br />

months) by a Coquerel’s<br />

dwarf lemur in October<br />

2009.At 21h24,the mouse<br />

lemur had been foraging<br />

high up in the vegetation<br />

(between 6 and <strong>15</strong> m) for<br />

at least 10 minutes, licking<br />

sugary insect secretions<br />

off leaves,when a M.coquereli,<br />

adult size, was spotted<br />

at the same height, about<br />

10m from the focal subject,<br />

slowly and silently<br />

moving towards the<br />

mouse lemur. Marking<br />

brief and frequent pauses<br />

in an apparently easy pro-<br />

gression into the canopy, its whole attitude strongly recalled<br />

the hunting cat, with a low head and a flexible body, apparently<br />

entirely focused on its prey.In less than 30 seconds,the<br />

Mirza was within 5 m of the mouse lemur,who kept feeding in<br />

the same location. While the Mirza approached within 2 m,<br />

the mouse lemur suddenly disappeared in an eclipse, quickly<br />

fleeing among the top and tiniest branches,and jumping from<br />

one slim branch to the next.The Coquerel’s dwarf lemur did<br />

not try to chase it.After 2 minutes out of sight,the mouse lemur<br />

was retrieved quietly feeding on tree exudates, 25 m<br />

away from its previous localization in its fleeing direction,and<br />

<strong>15</strong> m away from a frequently used sleeping site. Less than 10<br />

minutes later, the female was joined by a related female and<br />

both entered the tree hole together (21h37).<br />

Finally, an adult Coquerel’s dwarf lemur was observed feeding<br />

on a young male gray mouse lemur (body mass: 37 g;<br />

approx.age:2-3 months) in June 2010.The predation was recorded<br />

at 22h10,about two hours after behavioural data had<br />

been collected from the predated mouse lemur,which at the<br />

time showed no signs of injuries and displayed normal behaviour.The<br />

body of the gray mouse lemur was almost complete<br />

when the observer spotted the M. coquereli feeding on<br />

it,suggesting that the mouse lemur was killed shortly before.<br />

The Coquerel’s dwarf lemur was sitting with its prey in a tree<br />

of about 10m height, which stood 25 m away from the position<br />

where the grey mouse lemur was last spotted alive. It<br />

took about one hour to finish the entire carcass,interrupted<br />

by occasional vigilance scans of the surroundings.<br />

The frequency of such events is probably relatively low, and<br />

all reported observations happened during, or at the end of,<br />

the dry season in Kirindy. It is thus possible that predation<br />

pressure by M. coquereli increases at times of food scarcity,<br />

when alternative resources like fruits and invertebrates are<br />

rare or absent. However, it is also important to note that<br />

most observations took place during the dry season, when<br />

vegetation density is low in this dry, deciduous forest. This<br />

means that the timing of events reported here might simply<br />

reflect study methods. Nevertheless, this suit of anecdotal<br />

observations represents the first direct and unambiguous<br />

evidence for predation by the Coquerel’s dwarf lemur upon<br />

small nocturnal lemurs, as well as other mammals. Predation<br />

among other primate species is relatively rare. So far, only<br />

chimpanzees, orangutans, baboons, blue monkeys and capuchins<br />

have been observed preying upon other primates<br />

(Fichtel, in press). Our report provides evidence for the first<br />

case where a lemur species might commonly predate upon<br />

other lemurs.<br />

References<br />

Carleton,M.D.2003.Eliurus,Tufted-tailed rats.Pp.1373-1380.<br />

In:S.M.Goodman;J.Benstead (eds.). The Natural History<br />

of Madagascar.The University of Chicago Press,Chicago.<br />

Fichtel, C. 2009. Costs of alarm calling: lemur alarm calls<br />

attract fossas. Lemur News 14: 53-54.<br />

Fichtel,C.in press.Predation.In:J.Mitani:J.Call;P.M,Kappeler;<br />

R.Palombit;J.B.Silk;(eds.) The Evolution of Primate Societies.<br />

The University of Chicago Press, Chicago.<br />

Goodman,S.M.;O’Connor,S.;Langrand,O.1993.A review of<br />

predation on lemurs: implications for the evolution of<br />

social behavior in small, nocturnal primates. Pp. 51-66. In:<br />

P.M.Kappeler;J.U.Ganzhorn (eds.).Lemur social systems and<br />

their ecological basis. Plenum Press, New York.<br />

Goodman,S.M.2003.Predation on Lemurs.Pp 1221-1228.In:<br />

S. M. Goodman: J. Benstead (eds.). The Natural History of<br />

Madagascar. The University of Chicago Press, Chicago.<br />

Kappeler,P.M.;Rasoloarison,R.M.2003.Microcebus,mouse lemurs,<br />

tsidy. Pp 1310-13<strong>15</strong>. In: S. M. Goodman: J. Benstead<br />

(eds.).The Natural History of Madagascar.The University<br />

of Chicago Press, Chicago.<br />

Petter, J-J.; Albignac, R.; Rumpler, Y. 1977. Mammifères lémuriens<br />

(primates prosimiens). In: Faune de Madagascar,<br />

Paris.<br />

Pitts, A. 1995. Predation by Eulemur fulvus on an infant Lemur<br />

Catta at Berenty, Madagascar. Folia Primatol. 65: 169-71.<br />

Rasoloarison, R.M.; Goodman, S.; Ganzhorn, J.U. 2000. Taxonomic<br />

revision of mouse lemur (Microcebus) in the western<br />

portions of Madagascar.Int.J.Primatol.21:963-1019.<br />

Collective mobbing of a boa by a group of<br />

red-fronted lemurs (Eulemur fulvus rufus)<br />

Lennart Pyritz 1,2*, Tianasoa Andrianjanahary 1<br />

1Behavioral Ecology & Sociobiology Unit, German Primate<br />

Center, Kellnerweg 4, 37077 Göttingen, Germany<br />

2CRC "Evolution of Social Behavior", University of Göttingen,<br />

Germany<br />

*Corresponding author: LennartPyritz@gmx.net<br />

Key words: red-fronted lemurs, boa, predation, mobbing,<br />

anti-predator behaviour<br />

Introduction<br />

Collective anti-predator behaviour is one of the principal advantages<br />

of group-living (for mammals, e.g., Janzen, 1970; van<br />

Schaik, 1983). It can be broadly divided into two strategies<br />

and tactics employed before and after predator encounters<br />

(Caro,2005;Rahlfs and Fichtel, 2010;Fichtel, in press). While<br />

the former include predator-sensitive foraging and increased<br />

vigilance, mobbing occurs in several mammal species after<br />

detecting a predator (e.g., Tamura, 1989). Why animals<br />

engage in mobbing and who benefits from it in which way<br />

remains an unresolved question in animal behaviour (for<br />

reviews see Curio et al., 1978; Shields, 1984). Until today,<br />

published field observations of group-living lemurs mobbing<br />

a predator are rare (summarised in Scheumann et al., 2007).<br />

Regarding snakes, only three interactions have been described<br />

so far (Colquhoun,1993;Rakotondravony,1998;Burney,<br />

2002). Here, we report a prolonged mobbing display<br />

against a Madagascar ground boa (Acrantophis madagascariensis)<br />

by a group of red-fronted lemurs (Eulemur fulvus rufus)<br />

in Kirindy Forest. Observations like this may help to elucidate<br />

fundamental mechanisms of collective anti-predator behaviour<br />

by contributing to a pool of data on mobbing by particular<br />

pairs of prey and predators.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page <strong>15</strong><br />

Observations<br />

The event was observed during regular behavioural observations<br />

of red-fronted lemurs in Kirindy Forest,60 km north of<br />

Morondava. It was the only snake-lemur interaction observed<br />

during the entire study period from November 2007<br />

to April 2010, in which four lemur groups were followed<br />

daily by one or two observers,respectively (> 4,000 h of observation<br />

data).Red-fronted lemurs live in multi-male,multifemale<br />

groups of 5-12 individuals (Pereira and Kappeler,<br />

1997;Wimmer and Kappeler,2002).The study group (B) that<br />

encountered the boa included 9 individually marked animals<br />

at the time (2 adult females, 5 adult males, 1 juvenile male, 1<br />

male infant).<br />

On March 1,2010,at 7.19 h,sudden alarm calls of several redfronted<br />

lemurs were heard in the study area known as CS7.<br />

Six individuals (2 adult females,2 adult males,1 juvenile male,<br />

1 male infant) could be identified after approaching the group<br />

to within 10 m.Three of them (2 adult females,1 adult male)<br />

emitted "Woofs" and "Huvvs",vocalisations typically uttered<br />

during predator encounters (Fichtel and Kappeler, 2002).<br />

The 5 individuals surrounded an approximately 2 m long<br />

Madagascar ground boa (Fig. 1) that was lying motionless on<br />

the ground. The lemurs sat at a height of 1-2 m, each about<br />

3 m away from the snake, wagging their tails vigorously, ex-<br />

Fig. 1: Madagascar ground boa in Kirindy. (Photo: Lennart<br />

Pyritz)<br />

cept the infant that kept a distance of 5 m during the entire<br />

event and did not display any vocalisations or tail-wagging.<br />

During the next 4 min,one of the adult males approached the<br />

front end of the boa twice, getting as close as 1-2 m. After 5<br />

min, he left the scene. During this time, one of the adult females<br />

also approached the snake up to within 2 m.When the<br />

male left,the second female started to quickly circuit the boa<br />

for 4 min,maintaining a distance of 2-3 m.After 14 min of several<br />

approaches and continuous alarm calls by 3-5 individuals,<br />

the boa moved for the first time,heading slowly away.The remaining<br />

adult male approached the moving snake also within<br />

2 m; also at its front end. About 1 min later, the boa had<br />

moved <strong>15</strong> m away, and the lemurs left in the opposite direction,still<br />

uttering grunts continuously.Once the boa was out<br />

of sight, the mobbing stopped and the lemurs` behaviour returned<br />

to baseline levels.<br />

Discussion<br />

The mobbing reaction of the group was strong and prolonged<br />

and included most of the group members.This is similar<br />

to the behaviour of a black lemur (Eulemur macaco<br />

macaco) group encountering a Madagascar boa at Ambato<br />

Massif, where the group mobbed the snake for <strong>15</strong>-20 min,<br />

and some individuals approached it as close as 1 m before<br />

finally leaving the location (Colquhoun, 1993). It is also noteworthy<br />

that females and males mobbed and approached the<br />

snake in equal measure as observed in a number of other<br />

species (e.g., Tamura, 1989; Ferrari and Ferrari, 1990; Tello et<br />

al., 2002). The infant maintained a larger distance to the boa<br />

and did not engage in the mobbing displays, however. Similar<br />

infant behaviour has also been reported for other primates<br />

(e.g., Ferrari and Ferrari, 1990) and might be due to a higher<br />

susceptibility to an attack due to smaller body size or a lack<br />

of innate experience regarding predator encounters and<br />

mobbing strategies (Curio et al., 1978; Fichtel, in press).<br />

The strong mobbing reaction of the lemurs might be explained<br />

by the hunting strategy of the snake.Boas are ambush<br />

hunters that usually abandon an attack as soon as they have<br />

been detected (Montgomery and Rand, 1978; Slip and Shine,<br />

1988). Therefore, it seems beneficial for prey animals to signal<br />

the ambush hunter quickly and distinctly that it has been<br />

detected. As boas do not pursue their prey after an unsuccessful<br />

attack, it is also unsurprising that the lemurs’ behaviour<br />

returned to baseline levels of anxiety shortly after departing<br />

the site of the predator encounter. In contrast,<br />

groups of red-fronted lemurs showed increased vigilance behaviour<br />

for at least 30-60 min after encountering a fossa<br />

(Cryptoprocta ferox;pers.comm.Jean-Pierre Tolojanahary and<br />

pers.observation by LP),which is probably due to the higher<br />

agility and climbing abilities of the largest mammalian carnivore.Furthermore,fossas<br />

have been observed to hunt cooperatively<br />

and pursue prey up to 45 min (Lührs and Dammhahn,<br />

2009).<br />

There are no quantitative data on predation rates of lemurs<br />

by snakes in Kirindy, only opportunistic observations (e.g.,<br />

Schülke, 2001; Eberle and Kappeler, 2008) that are biased by<br />

several factors, however. The low observation rate of boalemur<br />

interactions could be due to the reptiles` nocturnal<br />

lifestyle (Raxworthy,2003),so that most of the attacks would<br />

occur at night when no or only few observers are working in<br />

the forest. Furthermore, boas at Kirindy are only active during<br />

the rainy season from January to April, when observations<br />

are often limited by dense foliage and frequent rainfalls.<br />

Five of the six individuals taking part in the mobbing were related<br />

(1 adult female and her 4 offspring from the last 4<br />

years), while it is currently unknown whether the second<br />

adult male sired one of the two youngest group members.<br />

However, due to the small number of detailed observations<br />

of predator encounters it remains impossible to identify the<br />

ultimate causes of collective mobbing (kin defence/parental<br />

care, self-/group defence or cultural transmission of enemy<br />

recognition; Curio et al., 1978) in this species for the time<br />

being.<br />

Acknowledgements<br />

LP was supported financially by the Deutsche Forschungsgemeinschaft<br />

(DFG; KA 1082/16-1, FuE). We thank field assistant<br />

Jean-Pierre Tolojanahary for sharing his long-term observation<br />

experiences with us. We are also grateful to Peter<br />

Kappeler, Claudia Fichtel and Moritz Rahlfs for constructive<br />

and helpful comments on earlier drafts of the manuscript.<br />

References<br />

Burney, D.A. 2002. Sifaka predation by a large boa. Folia Primatologica<br />

73: 144-145.<br />

Caro, T. 2005. Antipredator defenses in birds and mammals.<br />

The University of Chicago Press, Chicago, London.<br />

Colquhoun, I.C. 1993. The socioecology of Eulemur macaco:<br />

A preliminary report. Pp. 11-23. In: P.M. Kappeler; J.U.<br />

Ganzhorn (eds.). Lemur social systems and their ecological<br />

basis. Plenum Press, New York and London.


Page 16 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Curio, E.; Ernst, U.; Vieth, W. 1978. Cultural transmission of<br />

enemy recognition:one function of mobbing.Science 202:<br />

899-901.<br />

Eberle, M.; Kappeler, P.M. 2008. Mutualism, reciprocity, or kin<br />

selection? Cooperative rescue of a conspecific from a boa<br />

in a nocturnal solitary forager the gray mouse lemur.<br />

American Journal of Primatology 70: 410-414.<br />

Ferrari, S.F.; Ferrari, M.A.L. 1990. Predator avoidance behaviour<br />

in the buffy-headed marmoset, Callithrix flaviceps.<br />

Primates 31: 323-338.<br />

Fichtel, C. In press. Predation on primates. In: J.C. Mitani; J.<br />

Call;P.Kappeler;R.Palombit;J.Silk (eds.).The evolution of<br />

primate societies. University of Chicago Press, Chicago.<br />

Fichtel, C.; Kappeler, P.M. 2002. Anti-predator behaviour of<br />

group-living Malagasy primates: mixed evidence for a<br />

referential alarm call system. Behavioral Ecology and<br />

Sociobiology 51: 262-275.<br />

Janzen,D.1970.Altruism by coatis in the face of predation by<br />

boa constrictor. Journal of Mammalogy 51: 387-389.<br />

Lührs,M.L.;Dammhahn,M.2009.An unusual case of cooperative<br />

hunting in a solitary carnivore. Journal of Ethology<br />

DOI: 10.1007/s10164-009-0190-8.<br />

Montgomery, G.G.; Rand, A.S. 1978. Movements, body temperature<br />

and hunting strategy of a Boa constrictor. Copeia<br />

3: 532-533.<br />

Pereira, M.E.; Kappeler, P.M. 1997. Divergent system of agonistic<br />

behaviour in lemurid primates.Behavior 34:225-74.<br />

Rahlfs,M.;Fichtel,C.2010.Anti-predator behaviour in a nocturnal<br />

primate, the grey mouse lemur (Microcebus murinus).<br />

Ethology 116: 429-439.<br />

Rakotondravony, D.; Goodman, S.M.; Soarimalala, V. 1998.<br />

Predation on Hapalemur griseus griseus by Boa manditra<br />

(Boidae) in the Littoral Forest of Eastern Madagascar.<br />

Folia Primatologica 69: 405-408.<br />

Raxworthy, C.J. 2003. Boidae, Boas. Pp. 993–997. In: S.M.<br />

Goodman; J.P. Benstead (eds.). The Natural History of<br />

Madagascar. University of Chicago Press, Chicago.<br />

Scheumann, M.; Rabesandratana, A.; Zimmermann, E. 2007.<br />

Predation, communication, and cognition in lemurs. Pp.<br />

100-126. In: S. Gursky; K.A.I. Nekaris (eds.). Primate antipredator<br />

strategies. Springer, New York.<br />

Schülke, O. 2001. Social anti-predator behaviour in a nocturnal<br />

lemur. Folia Primatologica 72: 332-334.<br />

Shields,W.1984.Barn swallow mobbing:self-defence,collateral<br />

kin defence, group defence, or parental care? Animal<br />

Behaviour 32: 132-148.<br />

Slip, D.; Shine, R.1988. Feeding habits of the diamond python,<br />

Morelia s. spilota: ambush predation by a Boid snake. Journal<br />

of Herpetology 22: 323-330.<br />

Tamura, N. 1989. Snake-directed mobbing by the Formosan<br />

squirrel Callosciurus erythraeus thaiwanensis. Behavioral<br />

Ecology and Sociobiology 24: 175-180.<br />

Tello, N.S.; Huck, M.; Heymann, E.W. 2002. Boa constrictor attack<br />

and successful group defence in moustached tamarins,<br />

Saguinus mystax. Folia Primatologica 73: 146-148.<br />

Van Schaik, C. 1983. Why are diurnal primates living in<br />

groups? Behaviour 88: 120-143.<br />

Wimmer,B.;Kappeler,P.M.2002.The effects of sexual selection<br />

and life history on the genetic structure of redfronted<br />

lemur, Eulemur fulvus rufus, groups. Animal Behaviour 64:<br />

557-68.<br />

Response of two nocturnal lemurs (Microcebus<br />

murinus and Lepilemur leucopus)<br />

to a potential boiidae (Sanzinia madagascariensis)<br />

predator<br />

Krista Fish<br />

Department of Anthropology, The Colorado College, 14 E<br />

Cache La Poudre, Colorado Springs, CO 80903, USA,<br />

krista.fish@coloradocollege.edu<br />

Primates display an array of responses to predators, and<br />

differences in these responses were once thought to exist<br />

based on activity pattern. Solitary foraging, cryptic color-<br />

ation, and cryptic movements to remain hidden from predators<br />

were considered anti-predator adaptations among<br />

nocturnal primates while diurnal primates used large group<br />

size to enhance their ability to detect and defend against<br />

predators, give alarm calls to warn conspecifics of the presence<br />

of a predator,and flee from predators (Hill and Dunbar,<br />

1998;Isbell,1994;Stanford,2002).As research into nocturnal<br />

primate behavior expanded,results revealed that,like diurnal<br />

primates,nocturnal primates display a range of anti-predator<br />

behaviors upon encountering a predator (Fichtel, 2007).<br />

Nocturnal primates vary in the type of response (mobbing,<br />

alarm calling), height in the canopy, proximity to other<br />

individuals, and vigilance levels in the presence of different<br />

predators (Fichtel, 2007; Gursky, 2002, 2003, 2005, 2006;<br />

Schuemann et al.,2007;Schulke,2001).In particular,mobbing<br />

behaviors are well- documented in tarsiers (Tarsius sp.),<br />

mouse lemurs (Microcebus spp.), and fork-marked lemurs<br />

(Phaner furcifer) (Gursky, 2007; Eberle and Kappeler, 2008;<br />

Schulke, 2001). Mobbing includes close approach, touching,<br />

sniffing, and pouncing on the predator (Gursky, 2007). Interspecies<br />

mobbing of a predator occurs as well. Fork-marked<br />

lemurs and coquerel’s dwarf lemurs (Mirza coquereli) together<br />

mobbed a snake (Boa manditra) (Schulke, 2001).<br />

Several hypotheses have been put forth to explain the evolution<br />

of mobbing behavior (Eberle and Kappeler,2008):1) byproduct<br />

mutualism in which individuals defend others in the<br />

process of defending themselves, 2) reciprocity where animals<br />

obtain higher fitness by cooperating with others,and 3)<br />

kin selection whereby animals cooperate when they share<br />

common genes. A fourth hypothesis known as perception<br />

advertisement was developed as an explanation for the<br />

evolution of alarm calling and other mobbing behaviors in<br />

birds (Curio et al., 1978; Zuberbuhler et al., 1999) but has<br />

been extended to account for the presence of mobbing behaviors<br />

in primates (Gursky,2005).According to this hypothesis,<br />

alarm calling and mobbing are signals to the predator<br />

that the element of surprise has been lost. Snakes, leopards,<br />

and other animals that hunt by crypticity and rely on the element<br />

of surprise to capture prey are common recipients of<br />

alarm calling and mobbing.Research on both diurnal and nocturnal<br />

primates suggests that alarm calling and mobbing by<br />

these primates results in predators leaving an area (Zuberbuhler<br />

et al.,1999;Gursky,2006).Here I report the divergent<br />

responses of two species of nocturnal primates (Microcebus<br />

murinus and Lepilemur leucopus) to the same potential predator-<br />

a nocturnal boiidae snake (Sanzinia madagascariensis)<br />

and discuss implications for the above hypotheses based on<br />

these observations.<br />

Methods<br />

The observations reported here were made in the Ankoba<br />

gallery forest of Berenty Private Reserve in southern Madagascar.<br />

The encounters between the snake and primates<br />

were observed in the course of a six month study investigating<br />

the ecology of Microcebus murinus. During this study,<br />

trails within the reserve were walked to locate unhabituated<br />

mouse lemurs.When encountered,the time at which the encounter<br />

began, height, location, and activity of the mouse lemur<br />

were recorded continuously until the mouse lemur was<br />

out of sight for more than five minutes. The time, height, and<br />

activity of potential predators were also noted when they<br />

were encountered, but predators were not followed unless<br />

they were within proximity to a primate.<br />

Results<br />

While conducting walks to locate mouse lemurs in May 2009,<br />

a sportive lemur alarm call at 20:52 alerted me to the pres-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 17<br />

ence of a boiidae snake later identified as Sanzinia madagascariensis.<br />

I saw two white-footed sportive lemurs (Lepilemur<br />

leucopus),one located at 4m height and the other at 5m<br />

height in a tree over the trail.The sportive lemurs were barking<br />

and looking at the snake. The snake was moving at<br />

approximately 4 m high in a tree and was attempting to cross<br />

a gap and move into a tree nearer to the tree in which the<br />

sportive lemurs were located.The attempt was unsuccessful<br />

as the snake slipped and almost fell out of the thin, terminal<br />

branches. The snake then moved down to 3.5 m height and<br />

began crossing the canopy gap along thicker branches. The<br />

sportive lemurs continued to alarm bark at the snake until<br />

21:02 when the snake turned away from the gap in the<br />

canopy and began moving lower down in the tree and away<br />

from the sportive lemurs. The sportive lemur alarm calling<br />

ended by 21:04 when the snake had traveled down the tree<br />

trunk to 3m in height. The sportive lemur lowest in the tree<br />

continued to watch the snake while the other sportive lemur<br />

moved to 8m height in its tree and began feeding.<br />

At 21:<strong>15</strong>, I was preparing to leave the area when I noticed a<br />

mouse lemur at 0.5 m in the same tree as the snake. The<br />

snake was at 3 m height in the tree and moving down the<br />

main trunk of the tree. The mouse lemur looked at me as it<br />

walked up the main trunk of the tree in the direction of the<br />

snake. The snake faced the mouse lemur, but the mouse<br />

lemur did not appear to notice the snake as it alternated<br />

looking in my direction with looking around its immediate<br />

area while foraging for insects. The mouse lemur continued<br />

to move up the tree until it was within 0.25 m of the snake<br />

where it paused and looked intently at the spot where the<br />

snake was located and then jumped backwards away from<br />

the snake. The mouse lemur then began moving around the<br />

tree at the same height (3 m) as the snake,jumping to terminal<br />

branches,and running along main branches while pausing<br />

to look at the snake. The mouse lemur’s movements took it<br />

from 1m to only a few cms in distance from the snake. The<br />

mouse lemur continued this pattern of running and pausing<br />

to examine the snake for 7 mins. The mouse lemur then began<br />

foraging for insects in a neighboring tree at 3-4 m height<br />

and within 1-2 m of the snake. While foraging, the mouse<br />

lemur would pause to look in the direction of the snake<br />

which remained motionless.The mouse lemur foraged in this<br />

manner for 4 mins until a sportive lemur alarm called. Prior<br />

to the alarm call, the mouse lemur was foraging approximately<br />

1m from the snake and the snake began moving down<br />

the tree trunk.At the sound of the sportive lemur alarm call,<br />

the mouse lemur jumped to 2 m distance from the snake and<br />

paused in its foraging to watch the snake. The snake remained<br />

motionless.A minute later the sportive lemurs alarm<br />

called again. The snake began moving down the trunk of the<br />

tree again and the mouse lemur moved to forage insects in<br />

trees that were approximately 3-5 m from the snake and at<br />

5m height.After 5 mins of foraging at this increased distance<br />

from the snake, the mouse lemur moved back into the tree<br />

where it was initially observed and foraged within 1m of the<br />

snake for 2 mins. The mouse lemur then moved close to the<br />

snake coming within less than 1m of the boa and running and<br />

jumping around the snake while pausing to watch it while<br />

standing bipedally. After 3 mins of remaining motionless<br />

while the mouse lemur ran, jumped and watched the snake,<br />

the snake began moving back up into the dense crown of the<br />

tree. The mouse lemur continued running and jumping<br />

around the snake and watching it at a distance of 0,5-1 m<br />

away as the snake moved into the crown of the tree. 8 mins<br />

later,the mouse lemur began foraging insects at 3-4 m height<br />

in the canopy and within 0,5-1 m from the snake with occasional<br />

glances in the direction of the snake.The mouse lemur<br />

then moved further away from the snake and foraged insects<br />

at 5m in height and approximately 5 m distance from the<br />

snake.At 21:46 the mouse lemur was out of sight and did not<br />

return by 21:51 when I left and continued the mouse lemur<br />

walk.A return visit to the location at 10:05 for species identification<br />

of the species revealed the presence of no mouse lemurs<br />

or Lepilemur in the vicinity.<br />

Discussion<br />

Eberle and Kappeler (2008) describe the successful mobbing<br />

of a Sanzinia madagascariensis by two female and one male<br />

mouse lemur (Microcebus murinus). The mobbing caused the<br />

snake to release a captured male mouse lemur. Subsequent<br />

genetic analysis revealed that the mobbing females were related<br />

to the attempted victim (Eberle and Kappeler, 2008).<br />

Additional encounters between mouse lemurs and snakes<br />

without captured prey did not elicit mobbing behaviors from<br />

the mouse lemurs (Eberle and Kappeler, 2008). Instead, the<br />

mouse lemurs sat approximately 2 m from the snake and<br />

watched it. (Eberle and Kappeler, 2008). The mobbing of the<br />

snake by relatives of a captured mouse lemur and the lack of<br />

mobbing behaviors by solitary mouse lemurs in Eberle and<br />

Kappeler’s study support the kin selection hypothesis for the<br />

evolution of mobbing behaviors. However, the solitary<br />

mouse lemur observed in this study displayed mobbing-like<br />

behaviors in the absence of kin or other individuals. Additionally,<br />

under experimental conditions, solitary mouse lemurs<br />

monitored model snakes and even locomoted towards<br />

the model predators (Rahlfs and Fichtel,2010).The presence<br />

of mobbing-like behaviors in solitary animals lends support<br />

to the by-product mutualism hypothesis. Mouse lemurs may<br />

display mobbing-like behaviors as an individual strategy and<br />

then when larger numbers of mouse lemurs contact a predator,<br />

the appearance of a group-defense strategy may result<br />

from multiple individuals pursuing the same strategy.<br />

The observations here also lend support to the perception<br />

advertisement hypothesis.The mouse lemur may have benefited<br />

by displaying mobbing behaviors toward the snake to let<br />

the snake know that it was being monitored and would not<br />

surprise the lone mouse lemur as it foraged.However,a prediction<br />

of the perception-advertisement hypothesis is that<br />

cryptic predators should flee when faced with alarm calls and<br />

mobbing as they cannot surprise prey in their vicinity. The<br />

alarm calling by the sportive lemurs and the mobbing-like<br />

behaviors of the mouse lemur observed in this study did not<br />

cause the snake to flee. Instead, the snake remained in the<br />

area while both the sportive lemurs and mouse lemur left<br />

the area.Size of the mobbing and alarm-calling group may be<br />

important. Tarsiers were more likely to retreat first if their<br />

mobbing group consisted of four or fewer individuals (Gursky,2007).The<br />

small group sizes here may have not caused the<br />

predator to flee,but may have served as an adequate warning<br />

that it had lost the element of surprise and should not<br />

expend energy in an attack.<br />

Of particular interest in these observations was the opportunity<br />

to view the responses of two different nocturnal primate<br />

species to the same predator. Such observations are<br />

infrequent in the literature. Schulke (2001) observed Phaner<br />

and dwarf lemur (Mirza coquereli) together mobbed Boa<br />

manditra. In the case of the sportive and mouse lemurs,<br />

neither showed the same behavioral response to the Sanzinia<br />

madagascariensis. The pair of Lepilemurs maintained a<br />

larger distance between themselves and the snake than did<br />

the mouse lemur. The mouse lemur did not vocalize in the<br />

vicinity of the snake, however, the sportive lemurs vocalized<br />

during their encounter with the snake.Mouse lemurs seldom<br />

respond to predator models with alarm calls in experimental


Page 18 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

conditions (Rahlfs and Fichtel,2010).Nocturnal primates and<br />

other mammals may not rely on alarm calls as an anti-predator<br />

strategy (Rahlfs and Fichtel, 2010) because early detection<br />

of predators at night is more difficult and solitary foraging<br />

may limit the usefulness of this strategy. The sportive<br />

lemurs however did alarm call in the presence of the snake.<br />

Alarm calls in nocturnal primates may function as a deterrent<br />

to the predator or to recruit conspecifics in defense against<br />

the predator (Rahlfs and Fichtel,2010).The exact function of<br />

the sportive lemur alarm calls in this study cannot be determined,<br />

but they do reveal a need for future studies to examine<br />

potential variation in alarm call behaviors between nocturnal<br />

species.Given variation in body size,diet,and sociality<br />

in nocturnal primates, we might expect variation in antipredator<br />

behaviors such as alarm calling among nocturnal<br />

species.<br />

The possibility exists that the mouse lemur may have recognized<br />

the alarm calls of the sportive lemur because it increased<br />

its distance from the snake, ceased foraging, and<br />

monitored the snake following an alarm call. Recognition of<br />

the alarm calls of other species has been documented for<br />

birds, small mammals, and primates including diurnal lemurs<br />

(Fichtel,2004;Rainey et al.,2004;Shriner,1998).However,the<br />

suggestion that mouse lemurs recognize sportive lemur<br />

alarm calls needs to be further investigated with field experiments.<br />

The ability of nocturnal primate species to recognize<br />

the alarm calls of other sympatric species would be beneficial<br />

to animals that frequently forage away from conspecifics.<br />

The few encounters documented between nocturnal primates<br />

and their predators describe a range of anti-predator<br />

responses that vary depending on the type of predator,proximity<br />

of conspecifics,and available vegetative cover.Such flexibility<br />

is interesting because nocturnal primates- especially<br />

mouse lemurs- are often used as living models for the ancestral<br />

primate. The anti-predator behaviors of nocturnal primates<br />

such as mouse lemurs may reflect the primitive<br />

primate or even primitive mammal condition (Stanford,<br />

2002). The range of anti-predator behavior described for<br />

nocturnal primates in this and other studies implies that the<br />

flexibility in anti-predator behaviors observed in primates<br />

have a more ancient origin than originally suspected or that<br />

mouse lemurs and sportive lemurs have developed divergent<br />

anti-predator behaviors that may not have been present in<br />

early mammals and primates. Wider use of experiments to<br />

explore the differing conditions which elicit variable responses<br />

to predators within and between nocturnal species<br />

will be necessary to develop a more complete understanding<br />

of ancestral versus derived anti-predator behaviors. Additionally,<br />

comparative research exploring variation in antipredator<br />

behaviors in other nocturnal mammal species will<br />

be needed.<br />

Acknowledgements<br />

I would like to thank Dr.Alison Jolly for her facilitation of this<br />

research project and the de Heaulme family for their permission<br />

to work at Berenty and their support of the project.I am<br />

grateful also to the staff of MICET (Madagascar Institut pour<br />

la Conservations des Ecosystèmes Tropicaux) for their assistance<br />

in travel and obtaining research permits and visas.<br />

Funding for this project was provided by Sigma Xi, The University<br />

of Colorado Museum, the University of Colorado<br />

Graduate Student Grants, and the American Society of<br />

Primatologists.<br />

References<br />

Curio,E.;Ernst,U.;Vieth,W.1978.The adaptive significance of<br />

avian mobbing.II.Cultural transmission of enemy recogni-<br />

tion in blackbirds: effectiveness and some constraints. Z.<br />

Tierpsychol. 48: 184-202.<br />

Eberle, M.; Kappeler, P.M. 2008. Mutualism, reciprocity, or kin<br />

selection? Cooperative rescue of a conspecific from a boa<br />

in a nocturnal solitary forager the gray mouse lemur.Am.J.<br />

Primatol. 70: 410-414.<br />

Fichtel, C. 2004. Reciprocal recognition of sifaka (Propithecus<br />

verreauxi verreauxi) and redfronted lemur (Eulemur fulvus<br />

rufus) alarm calls. Anim. Cogn. 7: 45-52.<br />

Fichtel, C. 2007. Avoiding predators at night: antipredator<br />

strategies in red-tailed sportive lemurs (Lepilemur ruficaudatus).<br />

Am. J. Primatol. 69: 611-624.<br />

Gursky, S. 2002. The behavioral ecology of the spectral tarsier,<br />

Tarsius specturn. Evol. Anth. 11: 226-234.<br />

Gursky, S. 2003. Predation experiments on infant spectral<br />

tarsiers (Tarsius spectrum) Folia. Primatol. 74: 272-284.<br />

Gursky, S. 2005. Predator mobbing in Tarsius spectrum. Internat.<br />

J. Primatol. 26(1): 207-221.<br />

Gursky, S. 2006. Function of snake mobbing in spectral tarsiers.<br />

Am. J. Phys. Anth. 129:601-608.<br />

Gursky, S. 2007. The Spectral Tarsier. Upper Saddle River, NJ:<br />

Pearson/Prentice Hall.<br />

Hill, R.A.; Dunbar, R.I.M. 1998. An evaluation of the roles of<br />

predation rate and predation risk as selective pressures<br />

on primate grouping behavior.Behaviour 135(4):411-430.<br />

Isbell, L.A. 1994. Predation in primates: ecological patterns<br />

and evolutionary consequences. Evol. Anth. 3(2): 61-71.<br />

Rahlfs, M.; Fichtel, C. 2010. Anti-predator behavior in a nocturnal<br />

primate, the grey mouse lemur (Microcebus murinus).<br />

Ethology 116: 429-439.<br />

Rainey HJ,Zuberbuhler K,Slater PJB.2004.Hornbills can distinguish<br />

between primate alarm calls. Proc R Soc Lond B<br />

271: 755-759.<br />

Scheumann, M.; Rabesandratana, A.; Zimmermann, E. 2007.<br />

Predation, communication, and cognition in lemurs. Pp.<br />

100-126. In: S. Gursky; K.A.I Nekaris (eds.). Primate Anti-<br />

Predator Strategies. Springer.<br />

Schulke, O. 2001. Social anti-predator behaviour in a nocturnal<br />

lemur. Folia Primatol. 72: 332-334.<br />

Shriner,W.M.1998.Yellow-bellied marmot and golden-mantled<br />

ground squirrel responses to heterospecific alarm<br />

calls. Anim. Behav. 55: 529-536.<br />

Stanford, C.B. 2002. Avoiding predators: expectations and<br />

evidence in primate antipredator behavior. Int J Primatol<br />

23(4): 741-757.<br />

Zuberbuhler, K.; Jenny, D.; Bshary, R. 1999. The predator deterrence<br />

function of primate alarm calls. Ethology105:<br />

477-490.<br />

Effective predation defence in Cheirogaleus<br />

medius<br />

Kathrin H. Dausmann<br />

Animal Ecology & Conservation, Biocentre Grindel, University<br />

Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg,<br />

Germany, kathrin.dausmann@uni-hamburg.de<br />

Besides one’s own death, the predation of offspring is the<br />

most severe loss of fitness possible.In species that invest significantly<br />

in their offspring it is therefore natural that this "expensive"<br />

offspring should be guarded to avoid predation.<br />

Nonetheless, and particularly in small animals, it is uncertain<br />

whether an adult can effectively defend its offspring when it<br />

is attacked by a larger predator.<br />

The fat-tailed dwarf lemur (Cheirogaleus medius) is a small<br />

(130 g), strictly nocturnal primate that occurs in the dry,<br />

deciduous woodlands of western Madagascar, and lives in<br />

social monogamous small family groups consisting of a reproductive<br />

male-female pair and their offspring from one or<br />

more breeding seasons. Males and females maintain lifelong<br />

pair bonds and usually separate only when one partner dies<br />

(Fietz, 1999; Müller, 1999; Fietz and Dausmann, 2003). The


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 19<br />

diet of C.medius consists mainly of fruits and varying proportions<br />

of arthropods depending on the season (Fietz and<br />

Ganzhorn, 1999). C. medius is unique among primates because<br />

it spends seven months hibernating during the cooler<br />

dry-season of the southern winter (April to October),when<br />

food and water availability are low (Petter,1978;Hladik et al.,<br />

1980; Dausmann et al., 2004). When resting during the day<br />

and when hibernating,the dwarf lemurs occupy tree hollows<br />

either alone or with members of the family group (Dausmann<br />

et al., 2005). In the wild, female C. medius usually give<br />

birth to twins and in most cases reproduction only takes<br />

place every second year (Fietz and Dausmann, 2006). C.<br />

medius only reproduce after delayed emigration from their<br />

family and successful occupation of their own territory (thus<br />

in their third year at the earliest;Fietz et al.,2000).In addition,<br />

their life span is restricted by their size and is usually<br />

between 4 and 11 years for territory holders, and so opportunities<br />

to reproduce are limited (for most animals between<br />

one and three). Therefore, every young is a costly and valuable<br />

investment. Avoiding predation of their young should<br />

therefore be a critical part of parental care.<br />

Predators of C. medius include raptors (Madagascar harrier<br />

hawk Polyboroides radiatus, Madagascar buzzard Buteo brachypterus,<br />

Madagascar long-eared owl Asio madagascariensis),<br />

mammals (Fossa Cryptoprocta ferox, Narrow-striped mongooses<br />

Mungodictis decemlineata), and snakes (Madagascar<br />

Ground Boa Acrantophis madagascariensis, Madagascar Tree<br />

Boa Sanzinia madagascariensis, Malagasy Cat-eyed Snake Madagascarophis<br />

colubrinus) (Dausmann,submitted). The choice<br />

of an appropriately sized tree hollow in which to give birth<br />

can reduce attacks from many of these predators with the<br />

exception of snakes which are able to enter any hollow that<br />

can be used by C. medius.<br />

C. medius leave their tree hollows at sunset to forage alone<br />

but both sexes defend their shared territory. After the birth<br />

of their offspring, both parents take turns in guarding the<br />

young in the tree hollow throughout the night, while the<br />

other one forages.As the young get older, the proportion of<br />

time that parents spend guarding them gradually declines<br />

(Fietz and Dausmann, 2003). At the age of about two weeks,<br />

both parents leave the hollow and return only occasionally.<br />

During this time, the young are particularly vulnerable to<br />

predation,since they are unguarded.Later,the young accompany<br />

the parents during their nightly excursions.<br />

In this note, I want to describe evidence that adult C. medius<br />

can repel larger predators and therefore guarding or at least<br />

remaining within hearing range of the tree hollow is an effective<br />

measure against predation of their offspring. I report an<br />

observation in which a snake (Madagascarophis colubrinus)<br />

tried to attack two C. medius young within a tree hollow but<br />

was successfully repelled by the mother.<br />

Our observation occurred in the Kirindy C.F.P.F.forest,a dry<br />

deciduous forest near the west coast of Madagascar (60 km<br />

north east of Morondava) during a focal animal survey of a<br />

female C. medius on January 31st. For a more detailed description<br />

of the area see Ganzhorn and Sorg (1996).<br />

The female was a mother of two young aged two weeks.The<br />

male of the pair was also being observed.The female left the<br />

tree hollow after sunset at 18:57 hours and the male<br />

followed at 19:01 hours.The two young were left alone in the<br />

hollow within a dead tree (Malagasy name: Mapingo). The<br />

entrance of the hollow was 3 m above ground. The female<br />

started her regular patrol of the territory border, but suddenly<br />

abandoned the patrol at 19:29 hours when about 80 m<br />

from the hollow. She returned quickly to the hollow in<br />

almost a straight line.On approach to the hollow,it was clear<br />

that the two young who had been left alone within the<br />

hollow were making loud and constant distress calls. On a<br />

branch of the same tree at a height of about 1.5 m above<br />

ground was a large M. colubrinus (> 1 m length) eying the<br />

hollow. Even though this crepuscular or nocturnal snake is<br />

mainly terrestrial, scansorial behaviour is possible. The female<br />

approached the snake to within a few centimetres and<br />

actively attacked it, and the snake responded by striking<br />

towards the female.Both the adult female and the juvenile C.<br />

medius were loudly vocalizing constantly.After three min,the<br />

female seized the tail of the snake with both hands and bit it<br />

about 10 cm from the end. The snake tried to drop to the<br />

ground, but remained dangling in the female’s teeth. After<br />

10 s of wriggling and repeated attempts to strike the female<br />

the snake fell to the ground and moved away quickly. The<br />

female descended to about 1 m, observed the ground for a<br />

few minutes and then spent <strong>15</strong> min agitatedly observing the<br />

surroundings at a height of about 3 m and inspecting the tree<br />

hollow containing the young,who were still loudly vocalizing.<br />

For the next 3.5 hours the female was moving rapidly around<br />

within the territory, which is very unusual for a C. medius,<br />

frequently returning and checking the tree hollow with the<br />

young.She finally carried leaves into a new tree hollow about<br />

50 m away and separately carried both young to the new tree<br />

hollow. She did not return to sleep in the original tree hole<br />

for the next two months, even though it had been used<br />

frequently prior to this encounter.It seems puzzling that the<br />

male of the pair did not come to help during the attack.Since<br />

the male was followed simultaneously we know that at the<br />

time of the attack he was less than 20 m from the tree hollow,<br />

and clearly within hearing range of the distress calls. He<br />

returned about 30 min after the attack where he met the<br />

female and groomed her while she and the young continued<br />

making distress calls. Since reproduction in this species is a<br />

fairly rare event even including extra pair copulations, the<br />

possibility of siring offspring is restricted, and the male<br />

should have been highly motivated to defend his young in<br />

order to increase his fitness. Considering the high (obligate)<br />

paternal investment in guarding the young and the life-long<br />

pair bond, C.medius have a surprisingly high rate (ca 40 %) of<br />

extra pair young (Fietz et al.,2000;Schwensow et al.,2007).It<br />

is thought that the male cannot discriminate between intra<br />

pair and extra pair young and therefore cares for any offspring<br />

of his pair-partner,so as not to jeopardize the survival<br />

of his own young. Alternatively, paternal care of extra pair<br />

young could be an indicator for male quality or simply a tactic<br />

to maintain his bond with the female and so securing future<br />

mating possibilities in such a long-lasting relationship (Fietz<br />

and Dausmann, 2003). Genetic analyses showed that the<br />

male ("social father") of our observation was indeed only the<br />

genetic father of one offspring, but not the other (Schwensow<br />

et al., 2007). However, even if he was able to distinguish<br />

kin from non-kin, he should still have defended the tree hollow<br />

in order to protect his one own offspring.Interestingly,in<br />

the weeks before these observations, the male and the<br />

female had always spent the daily resting period together in<br />

the same tree hollow. However, the day after the predation<br />

attempt they slept apart, the male in the old, and the female<br />

together with the offspring in the new tree hollow. We<br />

cannot judge whether the male was unable to find the female<br />

in the new tree hollow, whether he chose to rest in the old<br />

hollow,or was prevented from entering the new tree hollow.<br />

Conclusion<br />

Clearly,the surveillance of offspring either directly within the<br />

tree hollow (additionally offering thermoregulatory advan-


Page 20 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

tages simultaneously; Fietz and Dausmann, 2003), or by staying<br />

within hearing range, does offer protection from attack<br />

by at least some predators even in this small species of primate.<br />

Acknowledgements<br />

This study was carried out under the "Accord de Collaboration"<br />

between Madagascar National Parks (MNP, formerly<br />

ANGAP), the University of Antananarivo and the University<br />

of Hamburg. We thank MNP, Chantal Andrianarivo, Jocelyn<br />

Rakotomala, Domoina Rakotomalala, the late Olga Ramilijaona<br />

and Daniel Rakotondravony for their collaboration and<br />

support. We acknowledge the authorization and support of<br />

this study by the Ministère de l’Environnement, des Eaux et<br />

Forêts et du Tourisme, MNP and the University of Antananarivo.C.Thurner<br />

was an invaluable observation companion.<br />

The study was financed by DFG (Ga 342/14) and DAAD.<br />

References<br />

Dausmann, K.H. submitted. Spoilt for choice – Choice of<br />

hibernacula and its influence on predation and energy expenditure<br />

during hibernation in Cheirogaleus medius. In: J.<br />

Masters; F. Génin (eds.). Leaping Ahead.<br />

Dausmann, K.H.; Glos, J.; Ganzhorn, J.U.; Heldmaier, G. 2004.<br />

Hibernation in a tropical primate. Nature 429: 825-826.<br />

Dausmann, K.H.; Glos, J.; Ganzhorn, J.U.; Heldmaier, G. 2005.<br />

Hibernation in the tropics:lessons from a primate.J Comp<br />

Physiol B 175: 147-<strong>15</strong>5.<br />

Fietz, J. 1999. Monogamy as a rule rather than exception in<br />

nocturnal lemurs: The case of the fat-tailed dwarf lemur,<br />

Cheirogaleus medius. Ethology 105: 259-272.<br />

Fietz,J.;Dausmann,K.H.2003.Costs and potential benefits of<br />

parental care in the nocturnal fat-tailed dwarf lemur (Cheirogaleus<br />

medius). Folia Primatol 74: 246-258.<br />

Fietz, J.;Dausmann,K.H.2006.Big is beautiful: fat storage and<br />

hibernation as a strategy to cope with marked seasonality<br />

in the fat-tailed dwarf lemus (Cheirogaleus medius). Pp.<br />

97-111. In: L. Gould; Sauther, M. L. (eds.). Lemurs: Ecology<br />

and Adaptation. Springer, Berlin Heidelberg New York.<br />

Fietz, J; Ganzhorn, J. U. 1999. Feeding ecology of the hibernating<br />

primate Cheirogaleus medius: how does it get so fat?<br />

Oecologia 121: <strong>15</strong>7-164.<br />

Fietz,J.;Zischler,H.;Schwiegk,C.;Tomiuk,J.;Dausmann,K.H.;<br />

Ganzhorn,J.U.2000.High rates of extra-pair young in the<br />

pair-living fat-tailed dwarf lemur, Cheirogaleus medius.Behav<br />

Ecol Sociobiol 49: 8-17.<br />

Ganzhorn,J.U.;Sorg,J.P.1996.Ecology and economy of a tropical<br />

dry forest in Madagascar. Primate Report 46-1, Göttingen.<br />

Hladik, C.M.; Charles-Dominique, P.; Petter, J. J. 1980. Feeding<br />

strategies of five nocturnal prosimians in the dry forest of<br />

the west coast of Madagascar.Pp.41-73.In:P.Charles-Dominique;H.M.Cooper;A.Hladik;C.M.Hladik;E.Pages;G.F.<br />

Pariente;A.Petter-Rousseaux;J.J.Petter;A.Schilling (eds.).<br />

Nocturnal Malagasy Primates:ecology,physiology and behaviour.<br />

Academic Press, New York.<br />

Müller, A.E. 1999. Social organization of the fat-tailed dwarf<br />

lemur (Cheirogaleus medius) in North-western Madagascar.<br />

Pp. 139-<strong>15</strong>7. In: B. Rakotosamimanana;H.Rasaminanana;<br />

J.U. Ganzhorn; S.M. Goodman (eds.). New Directions<br />

in Lemur Studies. Kluwer Academic/Plenum Publishers,<br />

New York.<br />

Petter, J.J. 1978. Ecological and physiological adaptations of<br />

five sympatric nocturnal lemurs to seasonal variations in<br />

food production. Pp. 211-223. In: D.J. Chivers; J. Herbert<br />

(eds.). Recent Advances in Primatology. Academic Press,<br />

New York.<br />

Schwensow, N.; Fietz, J.; Dausmann, K.H.; Sommer, S. 2007.<br />

Neutral versus adaptive variation in parasite resistance:<br />

importance of MHC-supertypes in a free-ranging primate.<br />

Heredity 99: 265-277.<br />

Lepilemur feeding observations from<br />

Northern Madagascar<br />

Andrew J. Lowin<br />

Society for Environmental Exploration / Frontier, 50-52<br />

Rivington Street, London EC2A 3QP, United Kingdom,<br />

research@frontier.ac.uk<br />

Lepilemur ankaranensis is the most northerly distributed<br />

member of the genus Lepilemur, with a range that extends<br />

south from Montagne d’Ambre National Park (Mittermeier<br />

et al.,2008).The behaviour and ecology of Lepilemur is poorly<br />

understood (Ratsirarson et al.,1987);this report summarises<br />

some preliminary observations of L. ankaranensis.<br />

Observations took place in a forest fragment (09°23.6E,<br />

46°07.3’S) 70km south of Antsiranana (Diego Suarez), near<br />

the town of Anivorano, west of the Route Nationale 6. The<br />

site is situated approximately 4 km south of the Mt.d’Ambre<br />

Park limit (Fig. 1). The area is heavily degraded, with only<br />

pockets of secondary dry deciduous forest remaining.<br />

Fig. 1: Study site in northern Madagascar.<br />

Casual feeding observations of L. ankaranensis took place<br />

from August 2009 to March 2010 (excluding the month of<br />

December). Observations were made in the first hour after<br />

sun set, with animals located using a flashlight. They were<br />

then followed,and any feeding bouts were recorded,with the<br />

plant species and food item noted. During this time, 32 % of<br />

all observations were of L. ankaranensis feeding on fruits,<br />

whereas all other observations were of leaf feeding. Five<br />

plant families were utilized for their fruits during the study:<br />

Moraceae, Verbenaceae, Rubiaceae, Pittosporaceae, and one<br />

that was not identified.<br />

As Lepilemur are thought to be predominantly folivorous<br />

(Ganzhorn et al., 2004; Thalmann and Ganzhorn, 2003), this<br />

proportion of fruit consumption seems to be high as compared<br />

to other Lepilemur species. For example, Thalmann<br />

(2001) found that during their study of L.edwardsi,only 0.3 %<br />

of 229 feeding bouts were feeding on fruits.<br />

Also during this study, L. ankaranensis was observed feeding<br />

on fruits with both Eulemur coronatus and Eulemur sanfordi in<br />

the same tree,also feeding on the same fruit,with no signs of<br />

aggression shown between any of the animals. A second<br />

study took place in June 2010, six dusk-till-dawn follows<br />

were carried out on consecutive nights, for a total of 64.3<br />

hours. Again, animals were located at dusk with a flashlight<br />

and followed until they returned to their sleeping sites in the


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 21<br />

morning.During this time,175 feeding observations were recorded,and<br />

no fruit was consumed.During this second study,<br />

a focal animal was observed to be chased out of a feeding<br />

tree by a female E.coronatus.The female E.coronatus then began<br />

eating the unripe fruits of the tree.It thus seems that during<br />

times of fruit abundance L. ankaranensis utilize fruits as a<br />

food resource along with several other lemur species occurring<br />

in the area. However, when food resources were not<br />

abundant in the dry season, only leaves were eaten and<br />

interspecific competition appears to be higher.<br />

On several occasions during this second study, leaf stems<br />

were snapped from trees and white tree exudates were consumed.<br />

Latex exudates are thought to be a toxic defence<br />

mechanism and therefore usually avoided by primates (Glander,1994),but<br />

latex feeding by Colobus spp.has also been observed<br />

(Mckey, 1978). Other lemur species, such as Phaner<br />

furcifer (Petter et al., 1975;Petter,1978;Thalmann,2006) and<br />

Mirza coquereli (Hladik,1979),are also known to feed on tree<br />

exudates. A review of the literature on exudate feeding in<br />

primates by Coimbra-Filho and Mittermeier (1977) suggested<br />

that tree exudates, in addition to simple sugars, protein,<br />

and minerals,may also provide a source of calcium.However,<br />

the latter authors also suggested that for most primates<br />

exudate feeding was rare and of little nutritional importance.<br />

This short report highlighted some behaviors of Lepilemur<br />

ankaranensis,a relatively poorly studied member of the Lepilemur<br />

genus. Further field work is required to examine in detail<br />

the previously discussed observations and to improve<br />

our knowledge of this species.<br />

References<br />

Coimbra-Filho, A.F.; Mittermeier, R.A. 1977. Tree-gouging,<br />

exudate-eating and the "short-tusked" condition in Callithrix<br />

and Cebuella. Pp. 105-1<strong>15</strong>. In: D.G. Kleiman (ed.). The<br />

Biology and Conservation of the Callitrichidae. Smithsonian<br />

Institution Press, Washington, D. C.<br />

Ganzhorn,J.U.;Pietsch,T.;Fietz,J.;Gross,S.;Schmid,J;Steiner,<br />

N. 2004. Selection of food and ranging behavior in a sexually<br />

monomorphic folivorous lemur: Lepilemur ruficaudatus.<br />

Journal of Zoology 263: 393-399.<br />

Glander, K.E. 1994. Nonhuman primate self-medication with<br />

wild plant foods.Pp.239-256.In:N.L.Etkin (ed.).Eating on<br />

the wild side: The Pharmacologic, Ecologic, and Social Implications<br />

of Using Nncultigens. University of Arizona<br />

Press, Tuscon.<br />

Hladik, C.M. 1979. Diet and ecology of prosimians. Pp. 307-<br />

357. In: A. Doyle; R.D. Martin (eds.). The Study of Prosimian<br />

Behavior. Academic Press, New York and London.<br />

Mckey,D.1978.Plant Chemical Defences and the Ranging Behaviour<br />

of Colobus Monkeys in African Rainforests. Ph.D.<br />

thesis, University of Michigan, Ann Arbor.<br />

Mittermeier,R.A.;Ganzhorn,J.U.;Konstant,W.R.;Glander,K.;<br />

Tattersall, I.;Groves,C.P.;Rylands,A.B.;Hapke,A.;Ratsimbazafy,<br />

J.; Mayor, M.I.; Louis, E.E.; Rumpler, Y.; Schwitzer, C.;<br />

Rasoloarison, R.M. 2008. Lemur diversity in Madagascar.<br />

International Journal of Primatology 29: 1607-1656.<br />

Petter, J.J. 1978. Ecological and physiological adaptations of<br />

five sympatric nocturnal lemurs to seasonal variations in<br />

food production. Pp. 211-223. In: D.J. Chivers; J. Herbert<br />

(eds.). Recent Advances in Primatology, <strong>Vol</strong>. 1: Behavior.<br />

Academic Press, New York and London.<br />

Petter,J.J.;Schilling,A.;Pariente,G.1975.Observations on the<br />

behavior and ecology of Phaner furcifer. Pp. 209-218. In: I.<br />

Tattersall; R.W. Sussman (eds.). Lemur Biology. Plenum<br />

Press, New York.<br />

Ratsirarson, J.; Anderson, J.; Warter, S.; Rumpler, Y. 1987. Notes<br />

on the Distribution of Lepilemur septentrionalis and Lepilemur<br />

mustelinus in Northern Madagascar. Primates 28:<br />

119-122.<br />

Thalmann, U. 2001. Food resource characteristics in two<br />

nocturnal lemurs with different social behavior: Avahi<br />

occidentalis and Lepilemur edwardsi.International Journal of<br />

Primatology 22: 287-324.<br />

Thalmann, U.; Ganzhorn, J.U. 2003. The Sportive Lemurs, genus<br />

Lepilemur.In:S.M.Goodman;J.Benstead (eds.).Natural<br />

History of Madagascar. The University of Chicago Press,<br />

Chicago.<br />

Thalmann, U. 2006. Lemurs - Ambassadors for Madagascar.<br />

Madagascar Conservation and Development 1: 4-8.<br />

Hypotheses on ecological interactions<br />

between the aye-aye (Daubentonia madagascariensis)<br />

and microhylid frogs of the<br />

genus Platypelis in Tsaratanana bamboo<br />

forest<br />

Andolalao Rakotoarison 1*, Solohery A. Rasamison 1,<br />

Emile Rajeriarison 2,David R.Vieites 3,Miguel Vences 4<br />

1Département de Biologie Animale, Université d’Antananarivo,<br />

BP 906, Antananarivo 101, Madagascar<br />

2Research assistant, Ranomafana National Park, BP 2, Fivondronana,<br />

Ifanadiana, Ranomafana 312, Madagascar<br />

3Museo Nacional de Ciencias Naturales-CSIC, C/José Gutiérrez<br />

Abascal 2, 28006 Madrid, Spain<br />

4Zoological Institute, Technische Universität Braunschweig,<br />

Spielmannstr. 8, 38106 Braunschweig, Germany<br />

*Corresponding author: andomailaka@gmail.com<br />

The aye-aye (Daubentonia madagascariensis) is the most distinctive<br />

of all lemurs.It is the only known living species of the<br />

Daubentoniidae (Simon and Meyer, 2001). The hands of the<br />

aye-aye are highly specialised,with long and slender third fingers<br />

that are used for precise grooming, mainly at face level,<br />

to get food into the mouth with rapid movements,and to tap<br />

on the bark of tree trunks to detect insect larvae or other<br />

arthropods (Goix,1993).When an aye-aye locates a cavity,it<br />

will anchor the upper incisors into the wood and then gnaw<br />

away at the wood with the lower incisors to make a pit<br />

(Erickson, 1995a, 1994). This unique manner of foraging for<br />

arthropods leaves traces of biting on the wood cover which<br />

are often used to ascertain the presence of the species even<br />

without an actual sighting (Duckworth,1993 and own observations<br />

of one of us, ER). During a recent herpetological inventory<br />

on the Tsaratanana massif in northern Madagascar,<br />

we noticed bamboo holes that were possibly caused or enlarged<br />

by foraging aye-aye,and we observed frogs living inside<br />

these cavities. Here we report these observations and posit<br />

a number of hypotheses on the possible ecological interactions<br />

among these species, with the goal of stimulating further<br />

studies.<br />

During a herpetological inventory in Tsaratanana (the highest<br />

mountain massif of Madagascar,which rises up to 2876 m<br />

above sea level) one of us (AR) carried out an ecological<br />

study on frogs of the genus Platypelis (Mycrohylidae: Cophylinae),<br />

from the 9th to the 22nd of June 2010. Specifically, we<br />

worked in a mountain forest bordering the temporary pond<br />

locally called Matsabory Maiky (S 14°09’04.09"- E 48°57’<br />

26.06" – 2,066 m elevation) - corresponding to campsite 2 on<br />

the trail from Mangindrano to the Maromokotro peak. The<br />

observed Platypelis occupy a specific microhabitat: the species<br />

live and breed inside the bamboo internodes which contain<br />

water and are accessible through small external holes.<br />

These frogs have endotrophic development: their non-feeding<br />

tadpoles develop inside the water retained in the tree<br />

holes and bamboo internodes. Based on a comparison with<br />

type material and DNA barcoding, we ascertained that the<br />

encountered Platypelis belong to two species described from


Page 22 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

the Tsaratanana massif: P. tsaratananaensis (most common)<br />

and the much larger P. alticola (more rare). Detailed data on<br />

the ecology and reproductive biology of these frogs will be<br />

published elsewhere. Approximately 754 bamboo trunks, at<br />

five different study sites, were inspected around the campsite.<br />

These sites each had four plots of 10 x 10 m areas. Out<br />

of the 754 trunks,we discovered in 162 of them,a total number<br />

of 204 internode segments; small rounded holes that<br />

were most probably made by insects like Dinoderus minutus<br />

(Delobel and Tran, 1993). According to these authors,<br />

Dinoderus minutus deposit eggs in bamboo internodes in<br />

which their larvae develop (Fig. 1d).<br />

At one of the sites (ca. 600 m east of the pond), we discovered<br />

some bamboo stems with remarkably different kinds of<br />

holes which allowed access to the hollow cavity of the<br />

internodes. Parts of the bamboo had been damaged in an irregular<br />

way. This appeared similar to what has already been<br />

described as typical damage caused by the gnawing activity of<br />

the aye-aye, whereby a freshly ripped-back piece is still attached<br />

and solid (Duckworth, 1993) (Fig. 1a-b).<br />

On 20 of the 281 bamboo trunks at this study site,we found<br />

similar damages,with a total of 71 holes which were more or<br />

less oval and measured 5.2-29.7 mm vertically and 1.5-<br />

8.2 mm horizontally. The diameter measurements of the<br />

non-damaged bamboo trunks were 5.3-54.2 mm, and those<br />

with holes were 5.3-48.9 mm.On several bamboo trunks we<br />

observed such holes in various internodes (1-6 m above the<br />

Fig.1:Traces of animals on the trunks of bamboo at the study<br />

site: (a) bamboo internode segment with an upper and a<br />

lower node attributed to the aye-aye; (b) segments of two<br />

bamboo trunks with a hole attributed to the aye-aye on the<br />

right and bite traces on the left; (c) traces attributed to<br />

aye-aye upper and lower incisors on a "virgin" bamboo trunk<br />

segment; (d) typical regular-shaped hole in a bamboo segment<br />

attributed to insects.<br />

Fig. 2: Animals observed within bamboo segments: (a) frogs:<br />

various specimens of Platypelis tsaratananaensis in one segment;<br />

(b) spider; (c) myriapod; (d) insect (cockroach).<br />

ground),and some internodes had an upper and a lower hole.<br />

Most importantly for the hypotheses drawn below, on some<br />

of the trunks without holes, we observed clear traces of<br />

gnawing that probably represent the upper and lower incisors<br />

of the aye-aye (Fig. 1b). According to our observations,<br />

80 % of all the holes found in the study site were caused by<br />

the activity of insects, and 20 % by the aye-aye.<br />

Bamboo internodes accessible by both kinds of holes were<br />

populated by Platypelis frogs as well as a variety of insects,spiders<br />

and centipedes (Fig. 2). At the study site where the bite<br />

traces ascribed to the aye-aye were discovered, the altogether<br />

282 holes (putatively made by insects) contained: 61<br />

Platypelis distributed in 24 different holes, 12 insects in 8 different<br />

holes, and 2 myriapods in 2 holes. In the 71 holes<br />

ascribed to the activity of the aye-aye, we observed 30<br />

Platypelis in 11 holes, 4 insects in 3 holes, and 0 centipedes.<br />

Based on these observations, we posit the following (partly<br />

alternative) hypotheses which require verification and further<br />

study:<br />

(1) We are confident that the observed marks at one of our<br />

study sites, similar to those noted by Duckworth (1993),are<br />

indeed caused by the activity of the aye-aye. Fresh bamboo<br />

stems are externally smooth and very strong, and it seems<br />

unlikely that any other mammal or even a bird could cause<br />

such damage. However, the possibility that these holes may<br />

be made by rats (such as Rattus rattus (which we collected at<br />

Matsobory Maiky), or Brachytarsomys) needs to be excluded<br />

by direct observations.<br />

(2) We assume that the aye-aye will typically search for bamboo<br />

internodes which already have small holes made by insects.This<br />

is because in such internodes there is a high likelihood<br />

of finding prey.In addition to insect larvae and other arthropods,<br />

tree-hole breeding frogs like Platypelis may also be<br />

consumed. In areas with high bamboo density, these frogs<br />

may constitute an import part of the aye-aye diet. If proven,<br />

this fact - that aye-ayes may eat frogs in addition to invertebrates<br />

- would be an interesting discovery in terms of<br />

Primatology.<br />

(3) Alternatively, the aye-aye may also gnaw holes into previously<br />

untouched bamboo segments. The bite traces we en-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 23<br />

countered in such "virgin" internodes support this hypothesis.Reasons<br />

for this might either be a search for drinking water,<br />

or the search and detection of insect larvae which develop<br />

inside these internodes and which have not yet made a<br />

hole to emerge.<br />

(4) As a fourth and highly speculative hypothesis, the aye-aye<br />

may gnaw holes into "virgin" bamboo segments (or increase<br />

the size of pre-existing holes) as part of a long-term feeding<br />

strategy in which such holes are produced to make the bamboo<br />

segment suitable for colonization by arthropods and<br />

frogs. This would enable the aye-aye to "harvest" its food<br />

during a subsequent visit to the site several days later. Obviously,<br />

such a foresighted feeding strategy in a basal primate<br />

would be of extreme interest,but we are aware that alternative<br />

and more probable explanations exist.<br />

Detailed testing of these hypotheses will require long-term<br />

observations in an area of dense growth of large bamboo,<br />

probably including the deployment of a large number of camera<br />

traps and possibly hair traps to obtain evidence of aye-aye<br />

activity. Carrying out such studies at the site in Matsabory<br />

Maiky is difficult. It should be noted that the Tsaratanana<br />

massif is difficult to access. However, alternative sites, e.g. at<br />

Marojejy (Duckworth, 1993) might contain a large population<br />

of Platypelis (albeit other species) as well, and could be<br />

surveyed more systematically.<br />

Acknowledgements<br />

A warm thanks to the Directorate of Waters and Forests<br />

and the Head of the Offices of Madagascar National Parks at<br />

Mangindrano and Ambanja for the research permits on<br />

Tsaratanana. We are also indebted to the many people who<br />

have logistically assisted in our expedition, especially to the<br />

local guides (Faly and Levaovao) from Mangindrano.<br />

References<br />

Delobel, A.; Tran, M. 1993. Les coléoptères des denrées alimentaires<br />

entreposées dans les regions chaudes. Faune<br />

tropical XXXII: 98-99.<br />

Duckworth,J.W.1992.Feeding damage left in bamboos,probably<br />

by aye-ayes (Daubentonia madagascariensis).International<br />

Journal of Primatology 14: 927-931.<br />

Erickson, C.J. 1994. Tap-scanning and extractive foraging in<br />

aye-ayes, Daubentonia madagascariensis. Folia Primatologica<br />

62: 125-135.<br />

Erickson, C.J. 1995a. Feeding sites for extractive foraging by<br />

the aye-aye,Daubentonia madagascariensis.American Journal<br />

of Primatology 35: 235-240.<br />

Goix,E.1993.L’utilisation de la main chez le aye-aye en captivité<br />

(Daubentonia madagascariensis) (Prosimiens, Daubentoniidés).<br />

Mammalia 57: 171-188.<br />

Milliken,G.W.;Ward,J.P.;Erickson,C.J.1991.Independent digit<br />

control in foraging by the aye-aye (Daubentonia madagascariensis).<br />

Folia Primatologica 56: 219-224.<br />

Simon,E.L.;Meyer,D.,2001.Folklore and beliefs about the aye<br />

aye (Daubentonia madagascarienis) Lemur News 6:11-16.<br />

Discovery of crowned sifaka (Propithecus<br />

coronatus) in Dabolava, Miandrivazo, Menabe<br />

Region<br />

Josia Razafindramanana 1*, Rija Rasamimanana 2<br />

1Groupe d’Etude et de Recherche sur les Primates de Madagascar<br />

(GERP), Lot 34 Cité des Professeurs Fort Duchesne,<br />

Ankatso, Antananarivo 101, Madagascar.<br />

2Pan African Mining Madagascar (PAMM), Lot 137 II AN<br />

Analamahitsy, Antananarivo 101, Madagascar.<br />

*Corresponding author: r_josia@hotmail.com<br />

Key words: Propithecus coronatus, Dabolava, distribution,<br />

lemurs, Indridae<br />

The crowned sifaka Propithecus coronatus was until recently<br />

regarded as one of four subspecies of P. verreauxi, family<br />

Indridae, which occur throughout western and southern<br />

Madagascar (Muller et al., 2000; Mittermeier et al., 1994; Tattersall,<br />

1986; Wilmé and Callmander, 2006). Recent taxonomic<br />

revisions (Mittermeier et al., 2008) have promoted all<br />

four subspecies to full species status (Mittermeier et al.,<br />

2006). However, there is considerable debate about the validity<br />

of P. coronatus, and especially its relationship with P.<br />

deckeni (Mittermeier et al.,2008),due to the physical similarities<br />

and close geographical distributions of these taxa,including<br />

apparent sympatry at some sites (e.g. Tattersall, 1986;<br />

Curtis et al.,1998;Muller et al.,2000;Groves,2001;Thalmann<br />

et al., 2002).<br />

P. coronatus was previously assigned to the IUCN conservation<br />

rating "Critically Endangered",but has since been moved<br />

into the "Endangered" category; nevertheless, the distribution<br />

range and the ecology of this species are not yet well<br />

understood (IUCN, 2008). Crowned sifakas are diurnal, and<br />

their habitat is characterised by dry deciduous forests and<br />

mangroves (Petter and Andriatsarafara, 1987). They live in<br />

groups of two to eight individuals, with home ranges from<br />

1.2–1.5 ha.They feed mainly on buds,green fruits and mature<br />

leaves (Muller,1997).It is known that they reproduce seasonally,<br />

with females giving birth every 2-3 years (Curtis et al.,<br />

1998; Mittermeier et al., 2006). Compared to other lemurs,<br />

their reproduction rate is very slow, making recovery of<br />

small populations even more problematic.<br />

The newly discovered crowned sifaka population is situated<br />

at Amboloando (UTM WGS 84,N 7822351 E 580189) in the<br />

Commune of Dabolava in central Madagascar,and is the most<br />

southerly record of the species.Amboloando lies about 4 km<br />

from Dabolava village, and 40 km to the southeast of Miandrivazo.Amboloando<br />

comprises 7 ha of dry semi-deciduous,<br />

secondary forest that exhibits the characteristics of riverine<br />

forests, consisting of deciduous as well as evergreen trees<br />

such as Acacia sp.,Nastus sp.and Macaranga sp.The altitude is<br />

about 600 m above sea level,and the area is characterized by<br />

a clearly defined wet and dry season.The sifaka population is<br />

composed of a single group,which constituted six adults and<br />

one juvenile when first discovered in June 2009 (Razafindramanana,<br />

2009). One of the adult males disappeared later in<br />

the year, presumed dead, leaving six individuals remaining.<br />

The animals appear to be classic P.coronatus (Fig.1),but some<br />

individuals show pelage colour variation, with dark fur on<br />

their back and arms (Fig.2).Behavioural studies of the group<br />

are underway,and a preliminary community-based conservation<br />

program has been established at the site, involving several<br />

organisations including GERP, The Aspinall Foundation,<br />

SAHA and Pan-African Mining Madagascar.Forests in Amboloando<br />

and the surrounding area are heavily degraded. Different<br />

factors threaten the survival of this species in Madagascar:in<br />

contrast to the other sites such as Anjamena (Muller,2000),hunting<br />

does not occur in Amboloando,partly due<br />

to the sifaka being regarded as holy by the local people.<br />

Therefore,other threats such as habitat destruction through<br />

slash-and-burn agriculture to make way for pasture for livestock,charcoal<br />

production,and mining exploitation affect the<br />

sifaka group.<br />

Surveys in the vicinity of Dabolava suggest that this is the<br />

only group of P.coronatus remaining in that area,despite local<br />

people claiming that other groups were present between 5<br />

and 10 years ago. Therefore, it appears that habitat destruc-


Page 24 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Fig.1:Crowned sifaka in the Amboloando<br />

Forest (top).<br />

Fig. 2: Crowned sifaka with dark colour<br />

on its arms (right).<br />

Fig. 3: Map showing the area of discovery and survey in Dabolava.<br />

tion for local livelihoods has resulted in the almost complete<br />

extirpation of crowned sifaka in the area, probably due to a<br />

combination of habitat loss and food scarcity.<br />

Some studies describe the range of P.coronatus as broadly restricted<br />

to the region between the rivers Betsiboka and<br />

Mahavavy (Muller et al., 2000; Wilmé and Callmander, 2006),<br />

with a population density of 173 individuals/km² at Anjamena<br />

(Muller, 2000). In an analysis of the distribution of lemurs in<br />

central western Madagascar, Thalman and Rakotoarison<br />

(1994) suggested that the faunal region bounded by the<br />

Betsiboka,the central highlands,the river Tsiribihina and the<br />

Mozambique Channel can be divided into four sub regions.<br />

These sub regions are separated by the three rivers: Mahavavy,<br />

Manambaho and Manambolo, but are interconnected<br />

with the Bongolava Massif.The discovery of a crowned sifaka<br />

population in Dabolava, which is located in the south of the<br />

central highlands sub region, confirms the hypothesis that<br />

the historical range of this species might spread along the<br />

central highlands of Madagascar. The record of a group of<br />

crowned sifaka in Andranotonga, slightly north of the Mahajilo<br />

River, was cited by Tattersall (1986). The present report<br />

appears to be the first location of P.coronatus to the south of<br />

this river.<br />

The Mahajilo is a tributary of the Tsiribihina<br />

River, which is considered to<br />

represent the north-western limit of P.<br />

verreauxi (Mittermeier et al., 2006). P.<br />

coronatus is therefore unlikely to be<br />

found much further south or southwest<br />

than Dabolava. Only 80 km<br />

south-west of Dabolava, a population<br />

of P. verreauxi is known from Ambatolahy<br />

(SAHA,2009),which lies within<br />

the Ambararata/Londa protected area<br />

complex (Fig. 3). Another tributary of<br />

the Mahajilo, the Mania River, lies between<br />

Ambatolahy and Dabolava and<br />

may therefore represent the distributional<br />

limit of P. coronatus and P. verreauxi<br />

in the south of Madagascar. A<br />

conservation programme and restoration<br />

of the remaining habitat with<br />

the local people are needed to save<br />

this population of P. coronatus.<br />

Acknowledgments<br />

I thank GERP – Groupe d’Etude et de<br />

Recherche sur les Primates de Madagascar,<br />

The Aspinall Foundation, Cotswold<br />

Wildlife Park, SECAS, Belfast<br />

Zoo, Besancon Museum and Parc<br />

Zoologique de Paris for funding this<br />

research. Many thanks to Dr Jonah<br />

Ratsimbazafy and Tony King for discussions<br />

about the project implementation.I<br />

am grateful for permission and<br />

assistance in the field from the Direction<br />

Régionale de l’Environnement et<br />

des Forêts and the Commune of<br />

Dabolava.I also thank Pan African Mining<br />

Madagascar for providing accommodation<br />

in their lovely camp site.<br />

References<br />

Curtis, D.J.; Velo, E.-O.; Raheliarisoa; Zaramody, A.; Muller, P.<br />

1998.Surveys on Propithecus verreauxi deckeni,a melanistic<br />

variant, and P.v. coronatus in Northwest Madagascar. Oryx<br />

32: <strong>15</strong>7-163. Groves, C.P. 2001. Primate taxonomy. Smithsonian<br />

Institution Press, Washington, D.C.<br />

Hawkins,A.F.A.;Durbin,J.C.;Reid,D.B.1998.The primates of<br />

the Baly Bay area,north-western Madagascar.Folia Primatologica<br />

69: 337-345.<br />

IUCN. 2008. 2008 IUCN Red list of threatned species.<br />

www.iucnredlist.org.<br />

Mittermeier, R.A.; Tattersall, I.; Konstant, W.R.; Meyers, D.M.;<br />

Mast,R.1994.Lemurs of Madagascar.1st ed.Conservation<br />

International, Washington, D.C.<br />

Mittermeier, R.A.; Konstant, W.R.; Hawkins, F.; Louis E.E.;<br />

Langrand, O.; Ratsimbazafy, J.; Rasoloarison, R.; Ganzhorn,<br />

J.U.; Rajaobelina, S.; Tattersall, I.; Meyers, D.M. 2006.<br />

Lemurs of Madagascar. 2nd ed. Conservation International,<br />

Washington, D.C.<br />

Mittermeier,R.A.;Ganzhorn,J.U.;Konstant,W.R.;Glander,K.;<br />

Tattersall, I.;Groves,C.P.;Rylands,A.B.;Hapke,A.;Ratsimbazafy,<br />

J.; Mayor, M.I.; Louis Jr., E.E.; Rumpler, Y.; Schwitzer,<br />

C.; Rasoloarison, R.M. 2008. Lemur diversity in Madagascar.<br />

International Journal of Primatology 29 (6): 1607-<br />

1656.<br />

Muller,P.1997.The behaviour and ecology of the crowned sifaka<br />

(Propithecus verreauxi coronatus) in north west Madagascar.<br />

Unpublished Ph.D. thesis, University of Zurich.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 25<br />

Muller,P.A.;Velo,E.-O.;Raheliarisoa;Zaramody A.;Curtis.D.J.<br />

2000. Surveys of five sympatric lemurs at Anjamena,<br />

northwest Madagascar. African Journal of Ecology 38:<br />

248-257.<br />

Petter, J.-J.; Andriatsarafara. F. 1987. Conservation Status and<br />

distribution of lemurs in the west and northwest of Madagascar.<br />

Primate Conservation 8: 169-171.<br />

Razafindramanana, J. 2009. Propithecus coronatus on the verge<br />

of extinction:Help to save them:GERP,Antananarivo,Madagascar,<br />

6.<br />

SAHA. 2009. Crèation de Nouvelle Aire Protegee pour le<br />

complexe Ambararata/Londa.<br />

Tattersall,A.I.1986.Notes on the distribution and taxonomic<br />

status of some species of Propithecus in Madagascar. Folia<br />

Primatologica 46: 51-63.<br />

Thalmann, U.; Rakotoarison, N. 1994. Distribution of lemurs<br />

in central western Madagascar, with a regional distribution<br />

hypothesis. Folia Primatologica 63: <strong>15</strong>6-161.<br />

Thalmann, U.; Kümmerli, R.; Zaramody, A. 2002. Why Propithecus<br />

verreauxi deckeni and P. v. coronatus are valid taxa –<br />

quantitative and qualitative arguments. Lemur News 7:<br />

11-16.<br />

Wilme, L.; Callmander M.W. 2006. Les populations reliques<br />

de primates: les Propithèques. Lemur News 11: 24-31.<br />

Inferences about the distant past in Madagascar<br />

Elwyn L. Simons<br />

Duke Lemur Center, Division of Fossil Primates, Dept. Evol.<br />

Anthropology, Duke University, 3705 Erwin Road, Durham,<br />

NC 27705, USA, esimons@duke.edu<br />

From Etienne de Flacourt (1658), the following is an English<br />

translation, from the original French, of an entry in his book<br />

"Histoire de la Grande Isle Madagascar:"<br />

"Tretretretre or Tratratratra. It is a large animal like a calf of<br />

two years old, with a round head and the face of a man: the<br />

fore feet are like those of a monkey (or ape),and the hind feet<br />

also.It has curly (or frizzy) hair,a short tail and ears like those<br />

of a man. It resembles the "Tanacht" described by Ambroise<br />

Paré. It can be seen near the pond of the Lipomami [tribe]<br />

and in that region is where it can be found. It is a highly<br />

solitary animal,the people of that country have a great fear of<br />

it and flee from it as it also does from them." From this context,it<br />

is not clear whether Flacourt actually had seen this animal.<br />

It is well known that in Madagascar village people tend to<br />

name lemurs after the sounds they make, following a sort of<br />

onomatopoeic pattern for animal names such as occurs in<br />

the case of the cuckoo bird in English. For instance, the<br />

ground predator alarm call of species of genus Propithecus is a<br />

loud "si-i-fak!" cry and so the name of this animal in the Malagasy<br />

language is "Sifaka".The mouse lemur makes a chittering<br />

alarm call and has the name "T’sit-sihy".The Avahi,a nocturnal<br />

lemur, has one call that sounds like the word "avahi!" In the<br />

case of Flacourt’s animal the name Tretretretre or Tratratratra<br />

is definitely onomatopoeic and sounds like an alarm<br />

bark–it is not unlike the bark alarm call of the southeastern<br />

Madagascan lemur Propithecus edwardsi,or that of another lemur<br />

related to it, Indri indri, or even the alarm bark of the<br />

chimpanzee.<br />

Hence, I have often considered this term, or name, to be a<br />

"fossil" sound and it seems likely that it would have been a<br />

replication, by members of the Lipomami tribe of the alarm<br />

call of this giant lemur when they told Flacourt about the animal.<br />

The location of the Lipomami region in southeastern<br />

Madagascar is known today (Tattersall,1982).Thus Flacourt’s<br />

name for the animal may be the only known "fossil" sound.<br />

There are frequent references by various scientists all agreeing<br />

that Flacourt must have been describing,in the above passage,<br />

one of the giant extinct lemurs; but which one? All lemurs<br />

have hands and feet like those of monkeys, but wavy<br />

hair is more restricted–mainly to members of the Indriid<br />

group or taxonomic family [this family includes only species<br />

of the extant genera Propithecus,Indri,and Avahi] and incidentally<br />

they all have rounded ears–like those of a man. One<br />

large giant extinct lemur of the south and southwest of the<br />

island is known as Palaeopropithecus ingens and taxonomists<br />

generally agree that genus Palaeopropithecus is related to the<br />

family Indriidae (Orlando et al., 2008), where curly or frizzy<br />

hair occurs. A number of scientists have speculated that<br />

Flacourt’s Tretretretre lemur belonged to the genus Megaladapis<br />

(Tattersall, 1982; Mittermeier et al., 1994), which also<br />

occurs as fossils from the southern part of the island, but<br />

species of this genus have a large snout and could never be<br />

described as having a round head. Moreover, the distal ends<br />

of the nasal bones in species of this genus are elongated and<br />

expanded and, in life, there must have been an expanded or<br />

bulbous nose or even a trunk. Hence, one could never say<br />

that the creature had "a face of a man." Differing from Megaladapis,Palaeopropithecus<br />

ingens does have a rounded humanlike<br />

head with forward directed eyes and a small face.In addition<br />

to all these other features,the living species Indri indri or<br />

babacoot,is the only lemur that has a short tail.In addition to<br />

this,the most complete skeleton of Palaeopropithecus,recovered<br />

by a Duke expedition in 1983, and the only associated<br />

skeleton of this animal ever found includes a sacrum that diminishes<br />

posteriorly and could only hold a very small and<br />

short tail.In opposition to all these conclusions,it can be said<br />

that Palaeopropithecus ingens could not possibly be construed<br />

to have been the size of a calf of two years in age–nor,in fact,<br />

would any of the extinct giant lemurs have been that large.<br />

Nevertheless, it is well known that exaggeration surrounds<br />

stories about such little known animals, and also Malagasy<br />

cattle tend to be small. For these reasons it would appear<br />

that the Tretretretre was a Palaeopropithecus species–a conclusion<br />

also implied by Godfrey and Jungers (2002). A year<br />

later these authors reconfirm the same position (Godfrey<br />

and Jungers, 2003).<br />

Between 1994 and the year 2003 teams from the Duke<br />

Lemur Center excavated fossils at two caves called Akomaka<br />

and Ankilitelo in southwestern Madagascar on the Mikoboka<br />

Plateau north of Tulear. This region is Madagascar’s most<br />

extensive and stratigraphically thickest calcareous plateau.<br />

Discoveries made at both of these caves show that the<br />

southwestern part of the island was inhabited comparatively<br />

recently by several giant lemurs including Palaeopropithecus<br />

ingens and Megaladapis edwardsi. More importantly, these<br />

species lived relatively recently (Godfrey and Jungers, 2002),<br />

as evidenced by radiocarbon dating based on specimens<br />

from Ankilitelo (Megaladapis at 630 ± 50 years B.P. and<br />

Palaeopropithecus, 510 ± 80 years B.P. The latter of these<br />

dates (calculated in 1996) ranged from 1406 to <strong>15</strong>66 years<br />

AD and falls into historic times. These are relatively recent<br />

ages,not so far from the date of Flacourt’s observation of the<br />

Tretretretre which could have been at any time after he was<br />

named Governor of Ft.Dauphin Madagascar in 1648;approximately<br />

350 years ago. A more recent date determined in<br />

2008 on a Cryptoprocta bone from Ankilitelo gives a similar<br />

age to that of the Palaeopropithecus, estimated as between<br />

1408 and 1488 (Simons,1997;Muldoon et al.,2009;Muldoon<br />

and Simons, 2007). This suggests that the small mammals<br />

accumulated more or less contemporaneously with the giant<br />

lemurs. [The cave name, Ankilitelo, means "at the three kili<br />

(tamarind) trees" but no such trees grow there now. Mala-


Page 26 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Fig. 1: Harpagophytum grandidieri burr or "hitchhiker" from<br />

southern Madagascar.These barbs are approximately 9.5 cm<br />

across.<br />

gasy caves can be named for a nearby settlement or village.At<br />

present there is no nearby hamlet with such a name but in<br />

the past there could have been. Kili trees often grow in<br />

villages there.]<br />

At this point another speculation can be introduced.Pastoral<br />

grass burning has reduced present day forests on the Mahafaly<br />

Plateau, north of Tulear, to the ridges of hills and many<br />

present day plant species occurring in them must be the<br />

same as those of 500-1000 years ago. The remaining forests<br />

near Ankilitelo represent both spiny thicket and succulent<br />

woodland regions and examples of the dry deciduous forest<br />

are nearby (Simons, 1997; Muldoon et al., 2009). In general,<br />

grass burning in that region, near the Ankilitelo cave, is arrested<br />

from spreading by outcrops of limestone on the<br />

slopes of hills. In addition, it would appear that surviving forests<br />

on hilltops of the Ankilitelo region remain as they were a<br />

few hundred years ago.The surface finds of small mammals in<br />

Ankilitelo (34 species) do reflect those of a few hundred<br />

years ago–when the giant lemurs existed and when the cave<br />

was serving as a natural trap–these environmental conditions<br />

were similar to those of the present.The fauna suggests<br />

that, perhaps, the region then was slightly more humid, and<br />

definitely the forests of the region have undergone fragmentation<br />

(Simons, 1997; Muldoon and Simons, 2007). Each such<br />

natural trap cave serves as a window in time because, as the<br />

solution cavities open mainly from below,the fauna that fall in<br />

will only begin to collect when there is a surface opening.<br />

More dates are being determined for fossils from Ankilitelo<br />

but the window concerned here did not open long enough<br />

ago that the 34 small mammal species are different from<br />

those now extant in the region or relatively nearby.The commonest<br />

giant lemur at Ankilitelo is the awkwardly constructed<br />

Palaeopropithecus that presumably could not support<br />

itself on all fours on the ground. Once having fallen to<br />

earth it would have been restricted to swimming, sloth-like<br />

motions and this perhaps explains why so many P. ingens fell<br />

into the pit. Also, Godfrey and Jungers (2003) report a Malagasy<br />

tradition (p. 258) that an "ogre with the body of an animal<br />

but the face of a human" could be made helpless on<br />

smooth rock surfaces. Such clumsiness of the sloth-like<br />

Palaeopropithecus would account both for its abundance in<br />

Ankilitelo and its presumed inabilities on the ground. Whatever<br />

the pelage of this animal was like,or indeed that of any of<br />

the giant lemurs, their fur could not have resisted picking up<br />

burrs and other hitchhikers from the southwestern forests<br />

as has been noted with modern lemurs (personal observa-<br />

tions of Michelle Sauther).A present day student of behavior,<br />

Sauther,has observed individual Lemur catta that had become<br />

entangled with the large seeds of what is often called Uncarina<br />

grandidieri–but more properly,because of an earlier date<br />

of description, this species should be assigned to genus Harpagophytum–meaning<br />

"snatcher plant". This plant of southwestern<br />

Madagascar has amazing "hitchhikers" about 2.5 to 3<br />

inches across each of which has 30/35 protruding spines<br />

approximately 1.5 inches long (see Fig.l).Each of these spines<br />

is, in turn, tipped by 4 recurving fishhook-like projections.<br />

This huge seed pod is something that it seems would only<br />

have evolved to be transported by a much larger animal than<br />

any now extant on the Island–presumably a giant lemur like<br />

species of such southern genera as Palaeopropithecus, Megaladapis,<br />

or Archaeolemur or even transportation by the elephant<br />

bird (see below).<br />

Modern botanists report that the pasty pollen of this plant is<br />

spread by pollen-eating beetles, who, after feeding on pollen<br />

from the anthers, get it all over themselves and when covered<br />

by pollen fly from flower to flower where pollen is<br />

transmitted from them to the stigma.This sort of pollination<br />

may be the principal fertilization process, but lemur transport<br />

of these seed burrs does occur today (personal observations<br />

of Michelle Sauther), and must have also done so in<br />

the past. Working at the Beza Mahfaly Special Reserve, in<br />

southwestern Madagascar,Sauther has seen Lemur catta individuals<br />

with Harphagophytum burrs stuck on the face, feet,<br />

and tail. However, she has not seen them attached to Propithecus<br />

verreauxi; a second larger, diurnal lemur species which<br />

occurs at Beza but is more arboreal than L. catta. These dry<br />

seed pods would naturally attach to the skin, not necessarily<br />

fur,of any passing animals and be carried while attached until<br />

its spines were broken enough for the seed to drop off.It was<br />

recently suggested that dispersal of these seed pods might<br />

have been carried out primarily by the extinct elephant birds<br />

of Madagascar (Midgley and Illing, 2009). The authors presenting<br />

this view argue that the mature fruit more often accumulate<br />

on the ground as "trample burrs" and so are more<br />

likely to stick to the feet of these extinct giant ratites than to<br />

fur of arboreal animals. I suspect, however, that the giant lemurs<br />

did not always stay high up in trees but were often on<br />

or near to the ground. The mature terminal hooks of the<br />

Harpagophytum (Uncarina) burr have evolved so as to attach<br />

to any extremity,not necessarily fur.Also it is of interest that<br />

these plants are often called the "Mouse-trap tree" or "Grapple<br />

tree". These species belong in the sesame family (Pedaliaceae)<br />

and typically constitute shrubs or small trees. It is<br />

told that Malagasy people sometimes collect and put together<br />

bunches of these seeds and place cheese or other attractants<br />

at the center of the bunch. They then use this device<br />

to trap rats and mice: Hence, the origin of the common<br />

name.<br />

References<br />

Etienne de Flacourt.1658.Histoire de la grande Isle Madagascar,<br />

2 vols. Chez G. de Lvyne, Paris.<br />

Godfrey, L. R.; Jungers, W. L. 2002. Quaternary fossil lemurs.<br />

Pp. 1-530. In W.C. Hartwig (ed.). The Primate Fossil<br />

Record:Cambridge Studies in Biological and Evolutionary<br />

Anthropology No.33.Cambridge Univ.Press,Cambridge,<br />

UK.<br />

Godfrey,L.R.;Jungers,W.L.2003.The Extinct Sloth Lemurs of<br />

Madagascar. Evol. Anth. 12: 252-263.<br />

Midgley, J. J; Illing, N. 2009. Were Malagasy Uncarina fruits dispersed<br />

by the extinct elephant bird? So. Af. J. Sci. 105<br />

(11/12): 467-499.<br />

Mittermeier, R.A.; Tattersall, I.; Konstant, W.R.; Meyers, D.M.;<br />

Mast, R.B. 1994. Lemurs of Madagascar. Conservation<br />

International, Washington, D.C., USA.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 27<br />

Muldoon, K.M.; de Blieux, D.D.; Simons, E.L.; Chatrath, P.S.<br />

2009.The subfossil occurrence and paleoecological significance<br />

of small mammals at Ankilitelo cave,southwestern<br />

Madagascar. Journ. Mammology 90 (5): 1111-1131.<br />

Muldoon,K.M.;Simons,E.L.2007.Ecogeographic Size Variation<br />

in Small-Bodied Subfossil Primates From Ankilitelo,<br />

Southwestern Madagascar.Am.J.Phys.Anth.134:<strong>15</strong>2-161.<br />

Orlando, L.; Calvignac, S.; Schnebelen, C.; Douady, C.J.; Godfrey,<br />

L.R.; Hänni, C. 2008. DNA from extinct giant lemurs<br />

links archaeolemurids to extant indriids.BMC Evolutionary<br />

Biology 8: 121.<br />

Simons,E.L.1997.Lemurs:Old and New.In S.M.Goodman;B.<br />

D.Patterson (eds.). Natural Change and Human Impact in<br />

Madagascar. Smithsonian Inst. Press, Washington, D.C.<br />

Tattersall, I. M. 1982. The Primates of Madagascar. Columbia<br />

Univ. Press.<br />

Husbandry guidelines for mouse lemurs<br />

at Paris Zoo<br />

Delphine Roullet<br />

Parc Zoologique de Paris, MNHN, 53 avenue de Saint Maurice,<br />

75012 Paris, France, roullet@mnhn.fr<br />

There are two species of mouse lemur in captivity in Europe:<br />

the grey mouse lemur, Microcebus murinus, and the Goodman’s<br />

mouse lemur, Microcebus lehilahytsara (Pes, 2009). The<br />

European captive population of grey mouse lemurs was<br />

established at the end of the 1960s and is now composed of<br />

165 individuals (778.77.10; Pes, 2009),distributed in 29 institutions.<br />

The population of this species is of unknown origin.<br />

According to recent morphological measurements (Pes,<br />

2009) and preliminary results of mtDNA studies (Roos,<br />

2008, in Pes, 2009), this population can be divided into two<br />

pure lineages:one composed of pure breed animals from the<br />

region of Vohimena (SW Madagascar),and the other of pure<br />

breed animals from the region of Mandena (SE Madagascar).<br />

A third lineage is composed of hybrids between the two pure<br />

lineages (Pes, 2009).<br />

The European captive population of Goodman’s mouse lemurs<br />

was established in 2005 and is currently composed of<br />

62 individuals (33.29; Pes, 2009) distributed in two institutions.<br />

The first animals were imported from the area of<br />

Andasibé, Madagascar. They were recognized as a new species<br />

when they arrived in Europe (Rübel, pers. comm.).<br />

The Parc Zoologique de Paris has a success story with the<br />

grey mouse lemurs. The most important group arrived in<br />

December 1990 and was composed of 79 individuals. The<br />

origin of the animals that arrived in the 1980s is unknown.<br />

According to the analysis of the European captive population<br />

(conducted by Tomas Pes for the ESB), the animals coming<br />

from Paris appear to be hybrids between the two pure lineages<br />

described above (Pes, pers. comm.).<br />

The first births occurred in 1991 only a few months after the<br />

arrival of the first animals.During the period of 1991 to 2004,<br />

when the last grey mouse lemurs eventually left the zoo after<br />

the closing of the nocturnal area, there had been a total of<br />

224 successful births (young surviving longer than two<br />

months), with an 86.5 % birth success rate. 1994 was the<br />

most prolific year with 56 successful births. The colony of<br />

grey mouse lemurs in Paris occasionally reached more than<br />

<strong>15</strong>0 individuals.<br />

Before 2001, we didn’t know much about the animals, especially<br />

the composition of the groups.Eleven females were the<br />

founders of the colony in Paris. Since the identity of the fathers<br />

was not recorded, the filiations were only built from<br />

the females. Potentially,28 males could have been the founders<br />

of the colony.<br />

Before 2002, most of the females lived alone in small cages<br />

and were introduced to males (of various group sizes) only<br />

during the few days of oestrus. The females were kept isolated<br />

again afterwards.The young were separated from their<br />

mothers just after their weaning to join a young animals<br />

group.<br />

In 2002 we decided to implement some changes in the management<br />

of the colony in order to improve the wellbeing of<br />

the animals: to increase the space available to them, to rearrange<br />

the enclosures according to the wild habitat of the animals,<br />

to carry out enclosure enrichment, and to re-constitute<br />

the groups to make them more similar to the ones observed<br />

in the wild. The following husbandry guidelines were<br />

established according to the new management of the colony<br />

set up in 2002.<br />

Only single sex groups could be seen by the public.The breeding<br />

groups were kept in a separated building. Moreover,<br />

from 2002 onwards,we limited the number of births (around<br />

10 per year) in order to be able to keep all the animals in<br />

good conditions (and no longer in small cages as had been<br />

done in the past).<br />

Facility standards<br />

1. Enclosure<br />

Size: The enclosure should have a minimum total floor size<br />

of 4 m² with a minimum height of 2 m for both male and female<br />

groups.For a mother with her young,the enclosure can<br />

be smaller during the first month.After this period,the young<br />

start to explore their environment and need more space.<br />

Temperature: 20°C (18-22° C). Not below 18° C. Below<br />

this temperature, the animals enter torpor. Torpor can also<br />

be provoked by intense stress such as prolonged capture of<br />

an animal.<br />

Inside Humidity: 50-70 %.<br />

Lighting and photoperiod:Similar to that found in Madagascar<br />

or Europe but the photoperiod must vary during the<br />

year for breeding.<br />

Furniture: Dense environment with thin branches and<br />

leaves. The animals need to have many places to hide from<br />

people and also from each other when they live in groups,especially<br />

when the animals are unrelated.<br />

Nest box (see Fig. 1):<br />

Size: 12x12x12 cm<br />

Entry diameter: 5 cm<br />

It’s very important to provide one nest box per animal,in<br />

different places, even if they sleep together. This allows<br />

them to be alone if they want to be.<br />

Fig.1:Grey mouse lemurs (Microcebus murinus) in nest box at<br />

Paris Zoo. (Photo: F.-G. Grandin, MNHN)


Page 28 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

2. Feeding and watering<br />

Two feeding spots are needed if there are more than two<br />

adults in the group.Additional feeding spots are required according<br />

to the size of the group.If there are not enough nest<br />

boxes or feeding spots,the animals can be very aggressive towards<br />

one another, sometimes causing serious wounds,<br />

mostly to the tail. One water bottle per enclosure is sufficient.<br />

Diet for 1 animal/day:<br />

Monday: 1 tea-spoon of gruel* +3folivorous pellets<br />

Tuesday: 1/8 of apple + 2 slices of carrot + 3 folivorous pellets<br />

Wednesday:1/8 of apple + 1/8 of pear + 3 folivorous pellets<br />

Thursday: 1 tea-spoon of gruel* +3folivorous pellets<br />

Friday:1/8 of apple + 2 slices of carrot + 3 folivorous pellets<br />

Saturday: 1 tea-spoon of gruel* +3folivorous pellets<br />

Sunday: 1 slice of banana + 1/8 of mango + 5 mealworms + 3<br />

folivorous pellets<br />

*Gruel composition: folivorous pellet powder + milk<br />

powder + baby cereals + yolks + cottage-cheese + juice of<br />

squeezed oranges + vitamins (every Monday).<br />

For overweight animals (weight >100 g):from Tuesday to Saturday<br />

we provide only 2 slices of carrot and 3 folivorous pellets.<br />

No change for Sunday and Monday.<br />

For underweight animals (weight


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 29<br />

females may be more interested in food during the breeding<br />

season than the males which,in turn,may be more interested<br />

in the females (Roullet, 1998).<br />

The enrichment made with a branch covered in fruit juice<br />

was the most used by the animals:This is a branch (diameter<br />

of around 5 cm, length of 30-40 cm) in which two trenches<br />

are dug along its length. The branch is fixed onto the mesh<br />

roof. We apply the fruit juice in the trenches with a brush<br />

(Roullet,1998).The animals spend their time licking the juice<br />

out of the branch as they would do with sap in wild (Martin,<br />

1973).<br />

Mixed-species exhibits<br />

Paris Zoo experienced 2 successful combinations:with ayesayes<br />

(Daubentonia madagascariensis) and greater tenrecs<br />

(Tenrec ecaudatus).We tried to put the mouse lemurs in with<br />

slow lorises (Nycticebus coucang), but without success:<br />

wounds were observed on the mouse lemurs’ tails, so they<br />

were removed from the exhibit.<br />

References<br />

Martin, R.D. 1973. A review of the behaviour and ecology of<br />

the lesser mouse lemur (Microcebus murinus). Pp. 1-68. In:<br />

R.P. Michael; J.H. Crook (eds.). Comparative ecology and<br />

behaviour of primates. Academic Press, London, UK.<br />

Pes, T. 2009. The European Studbook of Grey Mouse Lemur<br />

(Microcebus murinus). Zoo and Botanical Garden Plzen.<br />

Roullet, D. 1998. Effet d’un enrichissement physique sur les<br />

comportements agonistiques et exploratoires de plusieurs<br />

groupes de microcèbes murins (Microcebus murinus)<br />

en captivité. DESS d’Ethologie Appliquée et de Chronobiologie<br />

du Comportement. Université Paris XI.<br />

Articles<br />

Diurnal lemur density in the national<br />

park parcel Ivontaka Nord, UNESCO<br />

Biosphere Reserve of Mananara-Nord<br />

Marta Polasky Lyons<br />

School for International Training, Fort Dauphin, Madagascar;<br />

and Carleton College, Northfield, Minnesota, USA,<br />

marta.lyons@gmail.com<br />

Abstract<br />

Here I present a recent diurnal lemur density study performed<br />

in the Biosphere Reserve of Mananara Nord, conducted<br />

between the dates of November 9 and 22, 2008 in<br />

Ivontaka Nord; part of Mananara-Nord National Park. Densities<br />

were calculated using transect walks, and other information<br />

was gathered through interviews with local people<br />

and national park staff. The density of Eulemur fulvus albifrons<br />

appears to be over twice that recorded in other areas<br />

(Table 1), while the density of Varecia variegata variegata<br />

appears to be low,perhaps due to the latter’s preference for<br />

undisturbed habitat and past problems with overhunting. In<br />

addition, Eulemur rubriventer was found to inhabit the park,<br />

though its range was previously thought not to extend east<br />

into the biosphere. Having been, in the past, under strong<br />

pressures from local inhabitants,Ivontaka Nord represents a<br />

disturbed low altitude rainforest;however this report shows<br />

that the lemur populations within the parcel may be recovering.<br />

Introduction<br />

Background<br />

The Biosphere Reserve of Mananara-Nord was created in<br />

1989. It is one of 533 UNESCO (the United Nations Educational,<br />

Scientific, and Cultural Organization) Biospheres<br />

around the world.The Biosphere Reserve of Mananara Nord<br />

covers 144,000 ha,with 23,000 ha being devoted to a terrestrial<br />

park,and another 1,000 ha to a marine park.The terrestrial<br />

national park is split into three separate parcels. Going<br />

from north to south these parcels are: Ivontaka Nord,<br />

Ivontaka Sud, and Verezanantsoro. The parcel of Ivontaka<br />

Nord covers an area of only 827 ha.This is small compared to<br />

the other two parcels; Ivontaka Sud and Verezanantsoro,<br />

which are 1,300 ha and 20,685 ha respectively (Fig. 1). These<br />

parcels are connected by forest sections that are not protected<br />

by the national park system (ANGAP, 2005).<br />

Fig.1:National Park of Mananara-Nord.Three parcels in dark<br />

shade,going from north to south:Ivontaka Nord (where this<br />

survey was carried out), Ivontaka Sud, Verezanantsoro.<br />

Source: MNP.<br />

Threats<br />

It is estimated that approximately 1.9 to 2.2 % of the primary<br />

forest within the biosphere is cleared every year, usually for<br />

rice cultivation through tavy (slash and burn agriculture)<br />

(ANGAP, 2005). Besides just destroying necessary habitat,<br />

this deforestation further splits already extremely fragmented<br />

sections of primary forest.Another concern is illegal<br />

(and legal) selective extraction. The population within the<br />

biosphere relies on wood for constructing their houses and<br />

fuel for cooking.In the villages most cooking is done over an<br />

open flame using collected wood.The wood does not simply<br />

go to the villages on the periphery of a forest,but is also collected<br />

for sale in urban centers and areas farther away from<br />

the forest.


Page 30 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Another large concern in the biosphere has to do with<br />

poaching. Until recently, hunting was thought to not be of<br />

great concern in Madagascar, being far below the menace<br />

caused by deforestation (Goodman et al., 2003); however,<br />

that is quickly proving incorrect. Unlike in other areas of the<br />

country where eating lemurs is considered fady (taboo), the<br />

Betsimisaraka ethnic group that makes up the majority of inhabitants<br />

within the biosphere reserve is only known to have<br />

fady related to the eating of Indri indri,and even this taboo has<br />

been shown not to be universal (Mittermeier et al., 2006). In<br />

the area people have classically used laly (traditional lemur<br />

traps) and firearms in order to hunt lemurs for consumption<br />

(ANGAP, 2005). Lemurs within the reserve have been a traditional<br />

source of protein for villagers whose diets are based<br />

on the staple rice.<br />

Site<br />

The field camp was situated within the town of Ambodivoandrozana<br />

approximately 17 km south of Mananara Nord. The<br />

village is inaccessible by vehicle but rests less than 2 km from<br />

the national park parcel of Ivontaka Nord.Between the town<br />

and the national park lies another forest managed by the<br />

COBA (communaute de base) for conservation and local subsistence<br />

needs. This forest is split into three zones; Beantohiravina<br />

(21.7 ha), Betsingiala (11.52 ha), and Ambahinkarabo<br />

(41.06 ha). These zones are separated by areas of<br />

agricultural land and secondary forest. A Gestion Contractualisée<br />

des forêts (GCF) in 2005 transferred certain management<br />

and use rights to the local community. It is mostly<br />

low altitude primary growth rainforest, intermixed with<br />

zones of savoka (secondary growth). The parcel of Ivontaka<br />

Nord is made up of both primary forest and disturbed habitat.From<br />

past species inventories,it was believed that two diurnal<br />

lemur species (Eulemur albifrons and Varecia v.variegata)<br />

and multiple nocturnal species, including Microcebus rufus,<br />

Lepilemur mustelinus, Avahi laniger, and Daubentonia madagascariensis<br />

among others inhabited this national park.<br />

Methods<br />

A survey of diurnal lemur species was conducted in the low<br />

altitude (between 250 and 300 m above sea level) rainforest<br />

in the national park of Ivotaka Nord and adjoining community-managed<br />

forest (GCF).The survey was conducted from<br />

November 9-22,2008.Within the national park parcel,a preestablished<br />

2 km transect set up by ANGAP was followed,in<br />

addition to other transects along preexisting paths throughout<br />

the two forests. Additional permanent transects were<br />

not established because of time constraints and the desire to<br />

limit the impact on the habitat. Instead, distance was measured<br />

by walking at a constant pace along preexisting paths<br />

(approximately 900 m per hour). This pace was calculated<br />

using the 2 km transect, and variation in speed was used to<br />

create a range for densities. The total of 17 transects were<br />

walked, ranging from 600-2,500 m in length, with a total distance<br />

walked of approximately 30 km.<br />

For each transect the date, start and end time, weather, and<br />

location were recorded.When a lemur was spotted,the species<br />

was noted along with the group size,time of day,distance<br />

on transect, distance from path, habitat type, and the GPS<br />

coordinates. Density was then calculated by the number of<br />

individual lemurs/area. Area was based on the total length of<br />

transects walked multiplied by double the average perpendicular<br />

distance of lemur from the path (Whitesides et al.,<br />

1988; Norscia et al., 2006). Common methods for this type<br />

of primate study include using a 50 % criterion for falloff<br />

distance based on histograms (Whitesides et al., 1988; John-<br />

son and Overdorff,1999;Erhart and Overdorff,2008) or the<br />

program DISTANCE (Quemere et al., 2010). However, given<br />

time constraints it was not possible to collect an adequate<br />

amount of data to perform these tests.Based on earlier studies<br />

on similar species in similar habitats we used a falloff distance<br />

of 20 m (Irwin, 2001). In addition to transect walks,<br />

interviews were conducted with employees of the ANGAP<br />

office of Mananara Nord and local people of the town of Ambodivoandrozana.<br />

Within the village, the interviews were<br />

done with prominent members of the community including<br />

members of Slow Food (an agriculture movement within the<br />

biosphere) and the COBA.<br />

Results<br />

The observed population density for Eulemur albifrons was<br />

46.13 ± 2.32 individuals/km 2 within the park (Tab.1).The average<br />

group size observed was 7 individuals. Multiple groups<br />

were observed with females carrying babies on their back,<br />

and overall this species was found in a variety of different<br />

habitats, both dense and sparse primary forest, and even on<br />

the edge of secondary growth. Through a combination of<br />

data collected in the forest and interviews with local people,<br />

we found that though Eulemur albifrons frequents multiple<br />

habitats,even leaving the forest to eat crops,they mainly rest<br />

within the National Park.<br />

Two other diurnal lemur species were observed within the<br />

parcel, Varecia variegata variegata and Eulemur rubriventer. V. v.<br />

variegata was observed to have a density of 1.06 ± 0.02 individuals/km<br />

2 (Tab. 1). This species was only observed on one<br />

occasion and only one individual was seen. According to the<br />

local guide and vice president of the COBA,eight individuals<br />

of this species exist within the parcel, a group of five and a<br />

group of three (F. Frejes, personal communication). This implies<br />

a density of 0.97 individuals/km 2.From traces observed<br />

on the ground (eaten fruit) and calls heard,it seems clear that<br />

this lemur spends the majority of its time within the limits of<br />

the parcel as it prefers deep valleys with tall trees; a habitat<br />

not found in the more disrupted community managed forest.<br />

Tab.1:Density of diurnal lemurs within the parcel of Ivontaka<br />

Nord. Densities were calculated of the three species observed<br />

within the parcel, Eulemur albifrons, Eulemur rubriventer,and<br />

Varecia v.variegata.A 50 % falloff distance was used<br />

for perpendicular distances over 20 m (Whitesides et al.,<br />

1988; Irwin et al., 2000) Error bars represent the error in<br />

pace of transect walked and error in observation of animals<br />

from path.<br />

Species Number of<br />

individuals<br />

encountered<br />

Eulemur<br />

albifrons<br />

Eulemur<br />

rubriventer<br />

Varecia v.<br />

variegata<br />

Number of<br />

groups<br />

encountered<br />

Calculated density<br />

(individuals/km2)<br />

31 5 46.13 ± 2.32<br />

3 1 6.40 ± 0.38<br />

1 1 1.06 ± 0.02<br />

Eulemur rubriventer, being a species believed to live west of<br />

the biosphere in higher altitude rainforest, was thus not on<br />

the initial list of lemurs to be found in the area.From the one<br />

sighting of three individuals in a dense part of the primary<br />

forest, the calculated density is 6.40 ± 0.38 individuals/km 2<br />

for the parcel (Tab. 1). No sightings were made of this individual<br />

outside of the parcel,and as its eating habits closely mirror<br />

that of E.albifrons,it was not possible to tell the difference<br />

between traces found on the ground.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 31<br />

Discussion<br />

The parcel of Ivontaka Nord is considered to be an example<br />

of disturbed primary forest.Anthropogenic effects are much<br />

stronger in Ivontaka Nord than in other parcels,because it is<br />

the smallest of the three, and the closest to the town of<br />

Mananara. Before the creation of the national park, the area<br />

of Ivontaka Nord was frequently used as a place to grow<br />

crops through tavy,harvest wood for construction and cooking,and<br />

hunt lemurs.For these reasons,the lemur population<br />

of the parcel was at one time diminished to the point of localized<br />

extinction of the critically endangered Varecia v.variegata,<br />

in addition to the localized extinctions of Indri indri and Hapalemur<br />

griseus (J. Betsiahilika, personal communication). Yet,<br />

because it is connected through a corridor of community<br />

managed forest to the less disturbed parcel of Ivontaka Sud<br />

(Fig.1),in 2002,V.v.variegata migrated into the GCF corridor<br />

between Ivontaka Sud and Ivontaka Nord, and in 2005 these<br />

lemurs could again be found within the parcel. However, the<br />

species of Indri indri and Hapalemur griseus are not believed to<br />

currently inhabit the parcel, though they can be found in the<br />

other two parcels within the biosphere (J. Betsiahilika, personal<br />

communication).<br />

Within the parcel, there was convincing evidence to suggest<br />

that the lemurs might be recovering even more than previously<br />

known. During the two weeks of transects, Eulemur<br />

rubriventer was observed within the parcel, even though its<br />

recorded range ends west of the biosphere reserve. In addition,traces<br />

of the distinct eating habits (shredding the stems<br />

of tall plants whilst stripping off foliage) of Hapalemur griseus<br />

were found within the savoka. Additionally, there were reports<br />

of Indri indri spending time in the corridor between<br />

Ivontaka Sud and Ivontaka Nord (J. Betsiahilika, personal<br />

communication).<br />

Through field observations, E. albifrons was found to have a<br />

population twice that found in other areas such as Masoala<br />

(Mittermeier et al.,2006).They frequent both the parcel and<br />

community forest. During the season in which this study<br />

took place,when most of the fruit within the parcel is not yet<br />

ripe, many Eulemur albifrons were reported by local villagers<br />

to be exiting the parcel in search of other cultivated fruits<br />

like lychee and banana. V. v. variegata on the other hand<br />

appeared to not leave the protected parcel.It is possible that<br />

they adapt their feeding habits based on the season and thus<br />

do not eat cultivated fruits (Ratsimbazafy, 2002).<br />

The observed density of V. v. variegata was not congruent<br />

with the report of the local guide (F.Frejes,personal communication).<br />

This species, like Eulemur rubriventer, was observed<br />

on only one occasion. Because of time constraints, surveys<br />

had to be conducted over a two week period and with only<br />

the use of one field team. For more complete and definitive<br />

findings, a survey needs to be done over a longer period of<br />

time, possibly across different seasons. Also, it would be<br />

beneficial to conduct the same type of study after dark.<br />

Finally, it would be helpful to determine lemur densities in<br />

the other two parcels, and the community managed forests<br />

in-between.<br />

Conclusion<br />

It is currently of the utmost importance to make sure that<br />

the integrity of forested sections outside the realm of the<br />

parcel remains protected.These areas represent a buffer between<br />

the fragile low altitude rainforest and an ever expanding<br />

human population. The corridor formed by these community-managed<br />

forests, between the three national park<br />

parcels, is a priority area. It has already been shown to provide<br />

a bridge to facilitate migration between the three parcels,which<br />

is critical in a country where forest fragmentation<br />

is proving detrimental to the gene flow of lemurs (Louis et al.,<br />

2006).<br />

Through the work of the biosphere reserve,significant steps<br />

have already been taken to encourage conservation. Both<br />

government officials and villagers appear to be working together<br />

to promote a healthy ecosystem. Already with the<br />

promotion of crops such as vanilla,cloves,and coffee,as an alternative<br />

to other more environmentally negative livelihoods,<br />

villagers say they have seen an improvement both in<br />

their lives and the forest health (Desana and Berger,personal<br />

communication). However, people have needs; the agricultural<br />

inhabitants of these rural areas need both to grow their<br />

food and to have wood and other materials for performing<br />

everyday tasks. It is possible to improve both the lives of the<br />

people in the area and decrease their negative impact on<br />

their environment through simple strategies such as rice intensification<br />

and promoting more efficient cooking methods.<br />

Maybe then populations of Indri indri, Hapalemur griseus, and<br />

Propithecus diadema,all species that at one time inhabited the<br />

area, will return to the parcel of Ivontaka Nord.<br />

Acknowledgements<br />

This study was carried out under a Memorandum of Understanding<br />

between SIT and ANGAP Mananara for an internship<br />

for the author in November 2008.SIT thanks the Ministry<br />

of Higher Education and Scientific Research and the University<br />

of Antananarivo for the ongoing collaboration under<br />

which SIT Study abroad operates. This study could not have<br />

been possible without the help of Barry Ferguson and Jim<br />

Hansen of SIT in addition to the staff in the ANGAP office of<br />

Mananara, including Willy Mora, Jocelyn Bezara, Justin Besiahilika,<br />

and Jean Cristophe Josoa.<br />

References<br />

ANGAP. 2005. Plan de Gestion de la Conservation-Parc<br />

National Mananara Nord.<br />

COBA FMAA. 2005. Fifanekena Famindra-Pitantanana ny<br />

Atiala sy ny Harena Voajanahary azo Havaozina ao Ambodivoandrozana.<br />

Erhart, E.M.; Overdorff, D.J. 2008. Population demography<br />

and social structure changes in Eulemur fulvus rufus from<br />

1988 to 2003.American Journal of Physical Anthropology<br />

136: 183-193.<br />

Goodman, S.; Raselimanana, A. 2003. Hunting of wild animals<br />

by Sakalava of the Menabe region: a field report from<br />

Kirindy-Mite. Lemur News 8: 4-6.<br />

Irwin, M.T.; Samonds, K.E.; Raharison, J. 2001. A biological inventory<br />

of the lemur community of Réserve Spéciale de<br />

Kalambatritra, south-central Madagascar. Lemur News 6:<br />

24-28.<br />

Johnson, S.E.; Overdorff, D.J. 1999. Census of brown lemurs<br />

(Eulemur fulvus sspp.) in southeastern Madagascar:<br />

Methods-testing and conservation implications. American<br />

Journal of Primatology 47: 51-60.<br />

Louis, E.E. jr.; Coles, M.S.; Andriantompohavana, R.; Sommer,<br />

J.A.; Engberg, S.E.; Zaonarivelo, J.R.; Mayor, M.I.; Brenneman,<br />

R.A. 2006. Revision of the mouse lemurs (Microcebus)<br />

of Eastern Madagascar. International Journal of<br />

Primatology 27: 347-389.<br />

Mittermeier, R.; Tattersall, I.; Konstant, W.R.; Nash, S.D. 2006.<br />

Lemurs of Madagascar. Conservation International, Washington<br />

D.C.<br />

Norscia,I.;Rahanitriniaina,O.G.;Jolly,A.;Donati G.2006.Preliminary<br />

survey of lemur density in the semimontane rainforest<br />

of Anka,Fort-Dauphin region.Lemur News 11:14-<br />

16.<br />

Quemere, E.; Champeau, J.; Besolo, A.; Rasolondraibe, E.;<br />

Rabarivola,C.;Crouau-Roy,B.;Chikhi,L.2010.Spatial Variation<br />

in Density and Total Size Estimates in Fragmented<br />

Primate Populations: The Golden-Crowned Sifaka (Propithecus<br />

tattersalli). American Journal of Primatology 72:<br />

72-80.


Page 32 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Ratsimbazafy, J.H.; Ramarosandratana, H.V.; Zaonarivelo, R.J.<br />

2002. How do black-and-white ruffed lemurs still survive<br />

in highly disturbed habitat? Lemur News 7: 7-10.<br />

Sur le Commerce International des Especes de Faune et de<br />

Flore Sauvage. 2005. Loi N 2005-018.<br />

Whitesides, G.H.; Oates, J.F.; Green, S.M.; Kluberdanz, R.P.<br />

1988. Estimating primate densities from transects in a<br />

West African rain forest; a comparison of techniques.<br />

Journal of Animal Ecology 57: 345-367.<br />

Distribution of Prolemur simus north of<br />

the Mangoro-Nosivolo River – how far<br />

north do we really have to look?<br />

Rainer Dolch 1*, Erik R. Patel 2, Jonah H. Ratsimbazafy<br />

3,4, Christopher D. Golden 5, Tianasoa Ratolojanahary<br />

1, Jean Rafalimandimby 1, Jonathan L. Fiely 1<br />

1Association MITSINJO, Lot 104 A, Andasibe 514, Madagascar<br />

2Cornell University, 211 Uris Hall, Ithaca, NY 14850, USA<br />

3Durrell Wildlife Conservation Trust,BP 8511,Antananarivo<br />

101, Madagascar<br />

4GERP, 34 Cité des Professeurs, Fort Duchesne, Antananarivo<br />

101, Madagascar<br />

5University of California, Department of Environmental<br />

Science,Policy and Management,Mulford Hall #3114,Berkeley,<br />

CA 94720, USA<br />

*Corresponding author: rdolch@gmx.de<br />

Introduction<br />

While the Mangoro-Nosivolo river system is a recognized<br />

biogeographical divide for several lemur species (Goodman<br />

and Ganzhorn, 2004), this pattern does not hold for the<br />

Greater Bamboo Lemur (Prolemur simus). Findings from<br />

numerous subfossil sites indicate that the historical distribution<br />

of P. simus, now one of the rarest Malagasy primates<br />

(Wright et al.,2008,2009),once encompassed most of Madagascar<br />

(Godfrey and Vuillaume-Randriamanantena, 1986).<br />

During the last <strong>15</strong>0 years, documented sightings of the species<br />

became more and more scarce and by the middle of the<br />

last century it was already feared extinct (e.g. Napier and<br />

Napier, 1967).<br />

More recent discoveries came solely from southeastern<br />

Madagascar (Petter et al., 1977; Meier and Rumpler, 1987),<br />

which led to the unspoken assumption that P.simus had been<br />

extirpated from the rest of the island. Despite the fact that<br />

the last collected specimen of P. simus had come from<br />

Mananara in 1876 (Godfrey and Vuillaume-Randriamanantena,<br />

1986), not a single individual had been found north of<br />

the Mangoro river for more than 130 years, before Dolch et<br />

al.(2004,2008) rediscovered the species in Torotorofotsy,in<br />

the commune of Andasibe.<br />

In order to investigate further into the distribution and abundance<br />

of P. simus north of the Mangoro, several extensive<br />

surveys have recently been, and are currently being, conducted<br />

(King and Chamberlan, 2010). As preliminary results<br />

of these surveys are trickling in, accounts of P. simus from<br />

inhabitants of these regions also multiply rapidly and await<br />

verification.<br />

We do not aspire to anticipate survey results,but we believe<br />

that summarizing our current knowledge of P.simus north of<br />

the Mangoro is crucial for the planning of future surveys and<br />

conservation strategies.<br />

Methods<br />

We gathered and compiled information on P. simus north of<br />

the Mangoro deduced from our own research,from reports<br />

that villagers brought to our attention, and from anecdotal<br />

evidence in existing literature.The ten localities from where<br />

information was available included (from south to north) the<br />

Marolambo area, the Brickaville area, the western parts of<br />

the Ankeniheny-Zahamena Corridor (CAZ), Zahamena, the<br />

Soanierana-Ivongo area, Ambatovaky, Marotandrano, Mananara,<br />

Makira, and Marojejy (Fig. 1).<br />

Fig. 1: Localities from where information on P. simus was collected.<br />

Results<br />

Results of our compilation are summarized in Tab.1.Of all localities<br />

north of the Mangoro examined,two (Brickaville and<br />

western CAZ) have steadfast records of P.simus based on independently<br />

confirmed sightings. One locality (Soanierana-<br />

Ivongo) has a record based on a single observation, whereas<br />

for four others (Marolambo, Zahamena, Ambatovaky, Makira)<br />

evidence is only based on reports of villagers. The final<br />

three (Marotandrano, Mananara, Marojejy) do not have any<br />

records. Details are given below.<br />

Tab. 1: Potential localities for P. simus north of the Nosivolo-<br />

Mangoro.<br />

Region evidence based on<br />

Marolambo area reports by villagers<br />

Brickaville area sightings, confirmed<br />

Western CAZ sightings, confirmed<br />

Zahamena reports by villagers<br />

Soanierana-Ivongo area sightings, unconfirmed<br />

Ambatovaky reports by villagers<br />

Marotandrano (no evidence)<br />

Mananara (mo evidence)<br />

Makira reports by villagers<br />

Marojejy (no evidence)<br />

Marolambo area. A hotspot of endemic fish species richness,<br />

the Nosivolo and lower Mangoro rivers have recently<br />

received increased attention by researchers and conservationists<br />

alike.While working in this area,we received several<br />

accounts of villagers on P. simus from 2006-2009. Reports<br />

claiming the occurrence of P. simus come from 4 communes<br />

along the Nosivolo-Mangoro river, and focus (from west to<br />

east) on Ambohimilanja, Betampona, Marolambo and Ambinanidilana.<br />

In order to verify these accounts, a preliminary<br />

survey is currently being conducted within The Aspinall<br />

Foundation’s "Saving Prolemur simus" project (Ratsimbazafy,<br />

2010).


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 33<br />

Brickaville area. A similar survey has already been conducted<br />

for the Brickaville area. A total of 6 sites in isolated<br />

fragments in the communes (from west to east) of Fanasana,<br />

Anivorano and Fetraomby have been found containing P.<br />

simus. Details are given by Ravaloharimanitra et al. (2010).<br />

Western CAZ.In the course of the same survey,12 sites in<br />

the western parts of the Ankeniheny-Zahamena corridor<br />

have been found containing P. simus (Ravaloharimanitra et al.,<br />

2010). These findings follow earlier reports from villagers<br />

that had claimed its presence (e.g.Schmid and Alonso,2005).<br />

The communes where P. simus has been confirmed include<br />

(from south to north) Andasibe, Morarano-Gare, Fierenana,<br />

and Didy.<br />

Zahamena. Ganzhorn (2004) states that a report of the<br />

presence of P. simus in the PN Zahamena was brought to his<br />

attention in 1995, but that it "was questioned and eventually<br />

withdrawn".Information on a possible occurrence of P.simus<br />

in Zahamena, obviously derived from that report, is mentioned<br />

in Godfrey et al. (1997).<br />

Soanierana-Ivongo area. In their little noticed bulletin,<br />

the Association de Défense de la forêt d’Ambodiriana report<br />

that trainee Coralie Ebert, while studying the woolly<br />

lemurs (Avahi laniger) of this forest, claims to have observed<br />

an individual of Prolemur simus (ADEFA, 2009). An earlier<br />

lemur survey of the area (Beaucent and Fayolle, 2008) has<br />

not yielded evidence of P.simus.The forêt d’Ambodiriana lies<br />

just 30 km to the north of Soanierana-Ivongo,a region where,<br />

according to Mittermeier et al. (2006), halogodro and bokombolobe<br />

are still used as local names for P. simus.<br />

Ambatovaky.Ambatovaky is an area that has received only<br />

little attention due to its difficult accessibility. In the early<br />

1990s, a lemur survey was conducted by Evans et al. (1993-<br />

1994). They did not find tangible evidence for P. simus, but<br />

state that "local people indicated that there existed until recently<br />

a lemur which fed on giant bamboo along the Sandrangato<br />

and/or Marimbona rivers,known as alakoto or halokoto".<br />

Marotandrano.Lying to the northwest of Ambatovaky,Marotandrano<br />

has even received less attention than the former.<br />

A lemur survey by Ralison (2006) did not indicate presence<br />

of P. simus.<br />

Mananara. The last specimen of P. simus to be collected<br />

from north of the Nosivolo-Mangoro river came from an<br />

area close to Mananara (Godfrey and Vuillaume-Randriamanantena,1986).Although<br />

the exact collection locality can not<br />

be traced (due to unsuited transcription of its name by the<br />

collector J.P.Audebert),the assumption that P.simus may still<br />

occur in the forests around Mananara was still put forward<br />

by Nicoll and Langrand (1989). No evidence for P. simus in<br />

Mananara has been produced since.<br />

Makira. Being Madagascar’s largest continuous rainforest<br />

(317,000 ha), lemur surveys in Makira are not easy to conduct.<br />

Two years of intensive surveys by Rasolofoson et al.<br />

(2007) and Ratelolahy and Raivoarisoa (2007) have not uncovered<br />

any evidence of P.simus.Similarly,during seven years<br />

of relying on trusting relationships with hunters, Golden<br />

(2009) has not come across P. simus among the 23 mammal<br />

species hunted for consumption throughout southern,western,<br />

northern, and eastern Makira. However, villagers living<br />

adjacent to the newly discovered Antohaka Lava forest at the<br />

edge of northeastern Makira (20 km south of Andrakata on<br />

Marojejy’s southeastern border) have reported recent sightings<br />

of a large bamboo lemur with ear tufts known locally as<br />

bokombolobe.Unfortunately,several months of systematic lemur<br />

surveying of the Antohaka Lava forest between August<br />

and December 2009 did not confirm these reports, despite<br />

an exceptional primate diversity documented inthat area<br />

(Patel, 2009).<br />

Marojejy. A lemur survey by Sterling and McFadden (2000)<br />

found no evidence of P. simus. Alleged observations of bamboo<br />

lemurs other than Hapalemur griseus by tourists may be<br />

attributed to the possible presence of H. occidentalis, rather<br />

than P. simus (R. Mittermeier, pers. comm.). Moreover, during<br />

nine years of research on Propithecus candidus in Marojejy,no<br />

local reports or sightings of P.simus have been received (Patel,<br />

2009).<br />

Discussion<br />

Despite the scarcity of information, growing evidence supports<br />

that P. simus may still be widespread in Madagascar<br />

north of the Mangoro river. Since the species occupies large<br />

home ranges (Dolch et al., unpubl. data), appears to travel at<br />

night due to possible cathemerality (Santini-Palka, 1994), is<br />

cryptic, and often silent when unhabituated, it is conceivable<br />

that it has been overlooked in the past.However,because the<br />

P.simus vocal repertoire is distinct and extensive (Bergey and<br />

Patel,2008) and its feeding traces on giant bamboo (Cathariostachys<br />

madagascariensis) are unmistakable,attention to such<br />

indirect evidence of P. simus presence should be focused<br />

upon in all surveys.<br />

The report from Makira, if confirmed, is especially interesting,<br />

since the northernmost former record for the species<br />

(other than from subfossils) comes from Antongil Bay<br />

(Schwarz, 1931).<br />

Our experience shows that accounts of villagers are mostly<br />

reliable, and that people usually have a good sense of what<br />

animal species do or do not occur in their vicinity.Therefore,<br />

integrating local people is crucial for further studies into<br />

Prolemur distribution. Logically, collaboration with local people<br />

is one conservation recommendation given by the Prolemur<br />

Conservation Working Group (Madagascar Fauna<br />

Group, 2010).<br />

Based on information compiled,we tentatively conclude that<br />

P. simus is still more widespread than previously thought.<br />

Without sufficient data, given persisting threats to the habitats<br />

in which it occurs and our incomplete understanding of<br />

habitat requirements for the species,we do not dare say that<br />

a larger distribution area contributes in any way to relieving<br />

the species from extinction pressure. Unfortunately, P. simus<br />

still has to be considered one of the most threatened primates<br />

in the world.<br />

Acknowledgements<br />

We thank Tokiniaina Hobinjatovo for helping with literature<br />

research and Coralie Ebert for additional information. We<br />

thank all individuals that have shared their observations and<br />

made available the information presented here. We would<br />

also like to thank the Margot Marsh Biodiversity Fund, and<br />

the National Geographic Society Conservation Trust Award<br />

#C135-08.<br />

References<br />

ADEFA. 2009. Stages. Bulletin d’Information de l’Association<br />

de Défense de la forêt d’Ambodiriana 25: 1-2.<br />

Beaucent,S.;Fayolle,M.2008.Etude de la communauté de lémuriens<br />

de la forêt d’Ambodiriana,NE Madagascar.Lemur<br />

News 13: 28-32.<br />

Bergey,C.;Patel. E.R.2008.A preliminary vocal repertoire of<br />

the Greater Bamboo Lemur (Prolemur simus): classification<br />

and contexts. Nexus 1: 69-84.<br />

Dolch, R.; Fiely, J.L.; Ndriamiary, J.N.; Rafalimandimby, J.; Randriamampionona,R.;Engberg,S.E.;Louis,E.E.Jr.2008.Confirmation<br />

of the greater bamboo lemur, Prolemur simus,<br />

north of the Torotorofotsy wetlands,eastern Madagascar.<br />

Lemur News 13: 14-17.<br />

Dolch, R.; Hilgartner, R.D.; Ndriamiary, J.N.; Randriamahazo,<br />

H.2004.The grandmother of all bamboo lemurs:evidence


Page 34 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

for the occurrence of Hapalemur simus in fragmented<br />

rainforest surrounding the Torotorofotsy marshes, central<br />

eastern Madagascar. Lemur News 9: 24-26.<br />

Evans, M.I.; Thompson, P.M.; Wilson, A. 1993-1994. A survey<br />

of the lemurs of Ambatovaky special reserve,Madagascar.<br />

Primate Conservation 14/<strong>15</strong>: 13-21.<br />

Ganzhorn, J. U. 2004. Editorial. Lemur News 9: 1.<br />

Godfrey, L. R.; Vuillaume-Randriamanantena, M. 1986. Hapalemur<br />

simus: endangered lemur once widespread. Primate<br />

Conservation 7: 92-96.<br />

Godfrey,L.R.;Jungers,W.L.;Reed,K.E.;Simons,E.L.;Chatrath,<br />

P.S. 1997. Subfossil lemurs: Inferences about past and present<br />

primate communities.Pp.218-256.In:S.M.Goodman;<br />

B.Patterson (eds.). Natural Change and Human Impact in<br />

Madagascar. Smithsonian Institution Press, Washington<br />

D.C.<br />

Golden, C. D. 2009. Bushmeat hunting and use in the Makira<br />

Forest, north-eastern Madagascar: a conservation and<br />

livelihoods issue. Oryx 43: 386-392.<br />

Goodman,S.M.;Ganzhorn,J.U.2004.Biogeography of lemurs<br />

in the humid forests of Madagascar:the role of elevational<br />

distribution and rivers. J. Biogeography 31: 47-55.<br />

King, T., Chamberlan, C. 2010. Conserving the critically endangered<br />

Greater Bamboo Lemur. Oryx 44: 165-170.<br />

Madagascar Fauna Group.2010.Conservation of the critically<br />

endangered greater bamboo lemur Prolemur simus:<br />

What we know now,what we need to know and potential<br />

conservation strategies. International Technical Meeting<br />

Final Report, Antananarivo 26-28 January 2010. Madagascar<br />

Fauna Group.<br />

Meier, B.; Rumpler, Y. 1987. Preliminary survey of Hapalemur<br />

simus and of a new species of Hapalemur in eastern Betsileo,<br />

Madagascar. Primate Conservation 8: 40-43.<br />

Mittermeier, R.A.; Konstant, W.R.; Hawkins, F.; Louis, E. E.;<br />

Langrand, O.; Ratsimbazafy, J.; Rasoloarison, R.; Ganzhorn,<br />

J.U.; Rajaobelina, S.; Tattersall, I.; Meyers, D.M. 2006. Lemurs<br />

of Madagascar.Tropical Field Guide Series.Washington<br />

DC, Conservation International.<br />

Napier, J. R.; Napier, P. H. 1967. A Handbook of Living Primates.<br />

Academic Press, New York.<br />

Patel, E.R. 2009. Silky Sifaka, Propithecus candidus. Pp. 84. In:<br />

R.A.Mittermeier;J.Wallis;A.B.Rylands;J.U.Ganzhorn; J.F.<br />

Oates;E.A.Williamson;E.Palacios;E.W.Heymann;M.C.M.<br />

Kierulff;Y.Long;J.Supriatna;C.Roos;S.Walker;L.Cortés-<br />

Ortiz;C.Schwitzer (eds.).Primates in peril:the world’s 25<br />

most endangered primates, 2008-2010. IUCN/SSC<br />

Primate Specialist Group (PSG), International Primatological<br />

Society (IPS), and Conservation International (CI),<br />

Arlington, VA.<br />

Petter, J.J.; Albignac, R.; Rumpler, Y. 1977. Mammiferes Lémuriens<br />

(Primates Prosimiens). Faune de Madagascar 44.<br />

Paris: Office de la Recherche Scientifique et Technique<br />

d’Outre-Mer (ORSTOM)/Centre National de la Recherche<br />

Scientifique (CNRS).<br />

Ralison,J.M.2006.A lemur survey of the Réserve Spéciale de<br />

Marotandrano, Madagascar. Lemur News 11: 35-37.<br />

Rasolofoson, D.; Rakotondratsimba, G.; Rakotonirainy, O.;<br />

Rasolofoharivelo, T.; Rakotozafy, L.; Ratsimbazafy, J.; Ratelolahy,<br />

F.; Andriamaholy, V.; Sarovy, A. 2007. Le bloc forestier<br />

de Makira charnière de Lémuriens. Lemur News 12:<br />

49-53.<br />

Ratelolahy, F.J.; Raivoarisoa, F.M.J. 2007. Distribution et statut<br />

de population de Propithèque Soyeux (Propithecus candidus)<br />

dans la forêt de Makira, région d’Anjanaharibe, Nord<br />

Est de Madagascar.Report,Wildlife Conservation Society,<br />

Antananarivo.<br />

Ratsimbazafy,J.2010.Identification des sites prioritaires pour<br />

la conservation de Prolemur simus dans le Bassin versant<br />

de Nosivolo/Marolambo. Proposition de recherche, Projet<br />

Varibolomavo, The Aspinall Foundation.<br />

Ravaloharimanitra, M.; Ratolojanahary, T.; Rafalimandimby, J.;<br />

Rajaonson,A.; Rakotonirina, L.; Rasolofoharivelo, T.; Ndriamiary,<br />

J.N.; Andriambololona, J.; Nasoavina, C.; Fanomezantsoa,<br />

P.; Rakotoarisoa, J.C.; Youssouf, M.; Ratsimbazafy,<br />

J.; Dolch, R.; King, T. 2010. Gathering indigenous knowledge<br />

in Madagascar results in a major increase in the<br />

known range and number of sites for the critically endangered<br />

Greater Bamboo Lemur (Prolemur simus). Int. J. Primat.<br />

(in review).<br />

Santini-Palka, M.E. 1994. Feeding behaviour and activity patterns<br />

of two Malagasy bamboo lemurs, Hapalemur simus<br />

and Hapalemur griseus, in captivity. Folia Primatologica 63:<br />

44-49.<br />

Schmid, J.; Alonso, L.E. 2005. A rapid biological assessment of<br />

the Mantadia-Zahamena Corridor, Madagascar. RAP Bulletin<br />

of Biological Assessment No. 32. Washington DC,<br />

Conservation International.<br />

Schwarz, E. 1931. A revision of the genera and species of<br />

Madagascar Lemuridae. Proceedings of the Zoological<br />

Society of London 1931: 399-428.<br />

Sterling,E.;McFadden,K.2000.Rapid census of lemur populations<br />

in the Parc National de Marojejy, Madagascar. Fieldiana<br />

Zoology 97: 265-274.<br />

Wright,P.C.;Johnson,S.E.;Irwin,M.T.;Jacobs,R.;Schlichting,P.;<br />

Lehman, S.; Louis, E.E. Jr.; Arrigo-Nelson, S.J.; Raharison, J.<br />

L.; Rafalirarison, R.R.; Razafindratsita, V.; Ratsimbazafy, J.;<br />

Ratelolahy,F.J.;Dolch,R.;Tan,C.2008.The crisis of the critically<br />

endangered Greater Bamboo Lemur (Prolemur<br />

simus). Primate Conservation 23: 5-17.<br />

Wright, P.C.; Larney, E.; Louis, E.E. Jr., Dolch, R.; Rafaliarison,<br />

R.R. 2009. Greater bamboo lemur, Prolemur simus (Gray,<br />

1871). In: R.A. Mittermeier; J. Wallis; A.B. Rylands; J.U.<br />

Ganzhorn; J.F. Oates; E.A. Williamson; E. Palacios; E.W.<br />

Heymann; M.C.M. Kierulff; Y. Long; J. Supriatna; C. Roos; S.<br />

Walker; L. Cortés-Ortiz; C. Schwitzer (eds.). Primates in<br />

peril: the world’s 25 most endangered primates, 2008-<br />

2010. IUCN/SSC Primate Specialist Group (PSG), International<br />

Primatological Society (IPS), and Conservation<br />

International (CI), Arlington, VA.<br />

Enquête préliminaire de la distribution<br />

des lémuriens de bambou dans et autour<br />

du Corridor forestier Fandriana-Vondrozo,<br />

Madagascar<br />

Andry Rajaonson 1,2, Maherisoa Ratolojanahary 2,<br />

Jonah Ratsimbazafy 1, Anna Feistner 3, Tony King 2*<br />

1Groupe d’Etude sur les Primates de Madagascar (GERP),<br />

Lot 34 Cité des Professeurs, Fort Duchesne, Ankatso, Antananarivo<br />

101, Madagascar<br />

2The Aspinall Foundation, BP 7170 Andravoahangy, Antananarivo<br />

101, Madagascar<br />

3Centre ValBio, BP 33 Ranomafana, Ifanadiana 312, Madagascar<br />

(present address: anna@feistner.com)<br />

*Corresponding author: tonyk@aspinallfoundation.org<br />

Mots-clés: Prolemur simus, Hapalemur aureus, Varecia variegata<br />

editorum, bambou<br />

Introduction<br />

Le Grand Hapalémur (Prolemur simus) mangeur de bambou,<br />

est classé comme étant "gravement menacé CR" sur la liste<br />

rouge de l’Union Internationale pour la Conservation de la<br />

Nature (UICN,2009).Il est aussi l’une des quatre espèces de<br />

Madagascar faisant partie des 25 primates considérés<br />

comme les plus menacés au monde (Mittermeier et al.,2007,<br />

2009). Des individus capturés dans les années 1800 venaient<br />

d’une région plus étendue, ce qui laisse supposer que son<br />

habitat a diminué.Les sites de subfossiles avec des squelettes<br />

identiques à celui de P. simus sont nombreux, impliquant une<br />

distribution encore plus vaste à une époque très ancienne<br />

(Godfrey et Vuillaume-Randriamanantena, 1986; Godfrey et<br />

al., 2004).<br />

Actuellement, la distribution géographique de l’espèce semble<br />

très étroite.On pense que P.simus est seulement présent<br />

dans quelques fragments de forêt tropicale humide près de la<br />

côte Est de Madagascar (Mittermeier et al.,2006 ;Dolch et al.,<br />

2008;Wright et al.,2008).Wright et al.(2008) résume la crise


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 35<br />

actuelle de l’espèce: sur les 70 localités étudiées, la présence<br />

de P.simus est confirmée seulement sur 11 d’entre elles,à une<br />

altitude comprise entre 121 et 1600 m.<br />

La plupart des sites connus abritant P.simus se trouvent dans<br />

ou autour du Corridor Fandriana-Vondrozo, dans le Sud-Est<br />

du pays (Andriaholinirina et al.,2003;Meier et Rumpler,1987;<br />

Sterling et Ramaroson, 1996; Wright et al., 1987, 2008; Mittermeier<br />

et al., 2009). Deux autres espèces de lémuriens de<br />

bambou vivant dans le corridor, Hapalemur aureus et H.<br />

griseus, sont aussi menacées (Mittermeier et al., 2006; IUCN,<br />

2009).Notons que P. simus est le plus grand des lémuriens de<br />

bambou,avec un pelage gris brun (comme H. griseus).Il se distingue<br />

facilement des deux autres espèces par des touffes de<br />

poils blancs sur les oreilles. Sa face est aussi plus allongée, et<br />

on le trouve souvent au sol, alors que les autres espèces y<br />

sont rarement (Wright et al., 1987). Selon l’étude de Tan<br />

(1999) à Ranomafana, le régime alimentaire de P. simus est<br />

constitué à 95 % d’une seule espèce de bambou Cathariostachys<br />

sp. (ou volohosy dans le dialecte local malgache), 3 %<br />

d’autres espèces de bambous et de graminées,0,5 % de fruits<br />

et 1,5 % d’autres éléments (principalement de la terre et des<br />

champignons).<br />

La présente étude a été organisée dans le cadre du Projet<br />

Varibolomavo proposé par The Aspinall Foundation (TAF).<br />

Ce projet veut mettre en place des actions rapides, efficaces<br />

et collaboratives pour sauver Prolemur simus. Plus précisément,<br />

le deuxième objectif du projet est d’organiser une<br />

étude de la distribution et de l’abondance de P. simus (TAF,<br />

2008, 2009; King and Chamberlan, 2010). Par conséquent, le<br />

but de cette étude était de contribuer à réaliser ces objectifs,<br />

dans et autour du corridor Fandriana-Vondrozo, par a) la<br />

récolte des connaissances indigènes locales sur les distributions<br />

des lémuriens; et b) la recherche des signes de présence<br />

des lémuriens de bambou. Nous présentons ici un<br />

résumé des résultats de l’étude, exposés de façon plus<br />

détaillée par Ratolojanahary et al. (2009).<br />

Méthodes<br />

Entre les 27 novembre 2008 et 25 mai 2009, nous avons enquêté<br />

dans 14 zones situées dans et autour du Corridor<br />

Fandriana-Vondrozo (Tab. 1, Fig. 1). Pour chaque commune,<br />

des entretiens avec les autorités locales ont eu lieu.Des collaborations<br />

avec ces personnes ont permis d’organiser les<br />

réunions villageoises pour mener les enquêtes participatives,<br />

à l’aide de photos des espèces de lémuriens supposées<br />

coexister dans ce couloir forestier (Prolemur simus, Hapalemur<br />

aureus, H. griseus, Eulemur rufus, E. rubriventer, Propithecus<br />

edwardsi, Varecia variegata editorum, Microcebus rufus,<br />

Cheirogaleus major, Avahi laniger, Lepilemur microdon, Daubentonia<br />

madagascariensis). Les appellations locales des différentes<br />

espèces connues par les communautés villageoises<br />

ont été relevées lors de chaque enquête.De plus,nous avons<br />

utilisé la méthode de cartographie participative (Jones et al.,<br />

2005) durant la réunion dans les communes de Mahazoarivo,<br />

Iandraina, Sahamadio et Evato. Suite aux résultats des enquêtes<br />

villageoises, nous avons visité des forêts et sites<br />

intéressants dans la région, toujours accompagnés par un<br />

guide local et des agents de recherche du Centre ValBio de<br />

Ranomafana. Nous nous arrêtions tous les 25 mètres pour<br />

relever la localisation des bambous et des espèces de lémuriens,<br />

ainsi que les signes de présence de ces dernières.<br />

La présence des espèces de lémuriens était révélée soit par<br />

l’observation directe (animal vu), soit par l’observation indirecte<br />

(signes de nourrissage,excréments ou vocalisation).La<br />

recherche des signes de nourrissage des lémuriens de bambou<br />

était faite dans les zones de bambous, et les signes<br />

Tab. 1: Les zones visitées pendant l’enquête.<br />

Zone Sites visités Dates<br />

Zones situées dans le corridor forestier<br />

Ambendrana 1 27-28 nov 2008<br />

Amindrabe 1 29 nov - 1 déc 2008<br />

Ambodiara 1 11-13 déc 2008<br />

Antarehimamy 1 14-16 déc 2008<br />

Antaranjaha 4<br />

29 jan - 6 fév 2009 (dont Tsianivoho<br />

et Ambolomadinika)<br />

Manambolo 1 9-11 mai 2009<br />

Zones situées autour du corridor forestier<br />

Mananjary 4 14-16 jan 2009<br />

Sahalanona 9 17-23 jan 2009<br />

Manakara 1 25 jan 2009<br />

Mahazoarivo 2 18-19 mai 2009 (dont Ifasy)<br />

Iandraina 1 21 mai 2009<br />

Sahamadio 1 22-23 mai 2009<br />

Evato 0 24-25 mai 2009<br />

Mahafasa 0 25 mai 2009<br />

14 zones 27 sites 27 nov 2008 - 25 mai 2009<br />

Fig. 1: Les sites visités lors de l’enquête dans et autour du<br />

Corridor forestier Fandriana-Vondrozo.<br />

étaient examinés précautionneusement afin d’identifier l’espèce<br />

qui en était responsable.Prolemur simus préfère surtout<br />

les bambous de grand diamètre, et les parties de bambou<br />

privilégiées varient avec les saisons.Entre juillet et novembre,<br />

P. simus consomme principalement la moelle tendre de<br />

bambou géant (Tan,1999),après avoir ouvert la tige en deux<br />

et l’avoir déchirée en petits morceaux (Wright et al., 1987).<br />

Ainsi, l’échantillon à rechercher devrait être des tiges déchirées<br />

sans ou avec peu de moelle.Par contre,entre novembre<br />

et avril, il se concentre sur les jeunes pousses (Tan, 1999),<br />

donc les échantillons devraient être des bouts de jeunes<br />

pousses de bambou géant. Avec de l’expérience, il est égale-


Page 36 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

ment possible de distinguer les signes laissés sur les feuilles<br />

de bambou. P. simus se nourrit des jeunes feuilles matures et<br />

ne consomme pas la partie tranchante de la feuille. Par<br />

contre, Hapalemur aureus et H. griseus consomment uniquement<br />

la base de la feuille, H. aureus déchirant la gaine de<br />

chaume à l’aide de ses dents avant de manger les branches.<br />

Résultats et Interprétations<br />

Espèces de lémuriens recensées<br />

Les populations locales ont souvent des noms vernaculaires<br />

distincts pour les différentes espèces de lémuriens.En outre,<br />

nous avons remarqué qu’ils ne pouvaient pas toujours identifier<br />

les espèces sur les photos, alors qu’ils pouvaient les reconnaître<br />

dans la nature.Les informations récoltées lors des<br />

enquêtes villageoises doivent donc être utilisées avec précaution<br />

et sont toujours à vérifier sur le terrain. Durant les<br />

vérifications, nous n’avons trouvé qu’un seul site présentant<br />

des signes de nourrissage de Prolemur simus (Tab. 2). Par<br />

contre, nous avons effectué 39 observations (directes et<br />

indirectes) de Hapalemur griseus, dans 10 des 12 zones visitées<br />

(Tab. 2), et huit observations (indirectes) de H. aureus<br />

(Tab.3).Toutes ces observations ont été faites dans les zones<br />

situées au sein du corridor forestier, mais aucune dans ses<br />

alentours (Tab. 2). Cette espèce a laissé des signes de nour-<br />

Tab. 2: Espèces de lémuriens rencontrées dans chaque zone.<br />

Zone Hapalemur Hapalemur Prolemur Autres espèces<br />

griseus aureus simus<br />

Zones situées dans le corridor forestier<br />

Ambendrana vu & signes signe<br />

E rubriventer (vu)<br />

Microcebus sp. (nid)<br />

Amindrabe vu & signes signe<br />

signe P. edwardsi (vu et entendu)<br />

(environ 1 an) D. madagascariensis (signes)<br />

Ambodiara signes signes V. variegata (entendu)<br />

Antarehimamy signes signes V. variegata (entendu)<br />

Antaranjaha signes<br />

signes &<br />

entendus<br />

V. variegata (entendu)<br />

E. rufus (vu)<br />

Manambolo signes E. rufus (vu) E. rubriventer (vu)<br />

Zones situées autour du corridor forestier<br />

Sahalanona vus & signes M. rufus et A. laniger à vendre<br />

Mananjary vus & signes<br />

Microcebus sp. (nid)<br />

Cheirogaleus sp. (signes)<br />

Manakara E. rufus (vu) A. laniger (vu)<br />

Mahazoarivo vus<br />

Iandraina signes<br />

Sahamadio signes<br />

Tab. 3: Observations de Hapalemur aureus faites pendant l’étude.<br />

Zone Remarque Latitude Longitude Altitude (m)<br />

Ambendrana signe de nourrissage S 21º 22’ 22.7" E 047º 20’ 46.5" 1182<br />

Amindrabe signe de nourrissage S 21º 24’ 13.1" E 047º 22’ 47.7" 1070<br />

Ambodiara signe de nourrissage S 21º 53’ 27.0" E 047º 21’ 18.9" 825<br />

Antarehimamy signe de nourrissage S 21º 54’ 47.5" E 047º 20’ 38.4" 1074<br />

Antaranjaha signe de nourrissage S 21º 58’ 20.3" E 047º 20’ 16.7" 828<br />

Antaranjaha entendu des cris S 21º 58’ 25.3" E 047º 20’ 17.7" 783<br />

Antaranjaha signe de nourrissage S 21º 58’ 39.1" E 047º 19’ 43.8" 786<br />

Manambolo signes de nourrissage S 22º 04’ 06.2" E 046º 59’ 27.5" 1238<br />

Tab. 4: Observations de Varecia variegata faites pendant l’étude.<br />

Zone Remarque Latitude Longitude Altitude (m)<br />

Ambodiara entendu des cris S 21º 53’ 17.4" E 047º 21’ 42.3" 500<br />

Ambodiara entendu des cris S 21º 53’ 17.7" E 047º 21’ 34.5" 825<br />

Antarehimamy entendu des cris S 21º 55’ 00.4" E 047º 22’ 10.3" 489<br />

Antaranjaha entendu des cris S 21º 58’ 23.6" E 047º 20’ <strong>15</strong>.4" 828<br />

Antaranjaha entendu des cris S 21º 58’ 31.5" E 047º 20’ 13.6" 743<br />

rissage et émis des cris. La présence de huit autres espèces<br />

de lémuriens a également été constatée (Tab. 2). L’une d’entre<br />

elles, Varecia variegata editorum, est une sous-espèce<br />

gravement menacée selon l’UICN (2009), et les détails de<br />

toutes les observations de cette espèce sont présentés dans<br />

le Tab. 4.<br />

Résultats par zone située dans le corridor forestier de Fandriana-<br />

Vondrozo<br />

Ambendrana: Le village d’Ambendrana (S21°22’44.9" E 047°<br />

18’31.0",altitude 1121 m) est placé sous l’autorité de la commune<br />

rurale d’Androy et situé à une vingtaine de kilomètres<br />

au sud du Parc National de Ranomafana. Ce village est entouré<br />

de rizières localisées tout autour du corridor.La forêt<br />

d’Ambendrana a une superficie de 1.496 hectares et est<br />

gérée par la communauté de base depuis 2003. Au cours de<br />

l’enquête, les villageois n’ont reconnu que 3 espèces de<br />

lémuriens des 12 présentées sur les photos, notamment<br />

l’espèce Hapalemur griseus. D’après nos observations, la<br />

forêt d’Ambendrana est perturbée. Cependant, nous avons<br />

pu localiser quelques groupes de lémuriens, dont un groupe<br />

de H. griseus, et des signes de nourrissage.<br />

Amindrabe: La forêt d’Amindrabe a une superficie de 5.800<br />

hectares et est également gérée par la communauté de base<br />

depuis 2003.Cette forêt est située à 5,7 km du village d’Ambendrana.<br />

Le Fokontany Amindrabe (S21°<br />

23’14.8" E047°21’ 46.4", altitude 1096 m)<br />

fait également partie de la commune ru-<br />

rale d’Androy et comprend plusieurs villages.<br />

Durant l’enquête, les villageois ont<br />

reconnu 5 espèces de lémuriens, dont H.<br />

griseus. Pendant l’expédition dans le site<br />

d’Amindrabe, deux anciens signes de<br />

nourrissage (vieux d’environ un an d’après<br />

nos constatations) de P.simus ont été trouvés<br />

sur le tronc d’une espèce de bambou<br />

localement appelé <strong>Vol</strong>otsangana (S21º24’<br />

22.5", E047º23’07.2", altitude 1055 m).<br />

Nous avons également trouvé deux<br />

groupes de H. griseus, des Propithecus edwardsi<br />

et des signes d’alimentation de Daubentonia<br />

madagascariensis, attestant de la<br />

grande diversité de ce site en espèces de<br />

lémuriens.<br />

Ambodiara: Le Fokontany d’Ambodiara<br />

(S21°54’41.3", E047°23’29.2, altitude<br />

346 m) existe depuis 1910 et est composé<br />

de 8 villages. Le village d’Ambodiara est<br />

situé à 5,9 km, c’est-à-dire à environ 3<br />

heures de marche à l’ouest d’Ikongo. Au<br />

cours de l’enquête, les villageois ont reconnu<br />

9 espèces de lémuriens,dont Hapalemur<br />

aureus, H. griseus et également Prolemur<br />

simus. D’après nos observations, la<br />

forêt d’Ambodiara est perturbée. Nous<br />

n’avons pas trouvé P.simus sur ce site,mais<br />

nous avons constaté la présence de Cathariostachys<br />

sp. Par contre, Varecia variegata<br />

editorum abonde dans cette localité, et<br />

nous avons trouvé des signes de nourrissage<br />

de H. aureus et H. griseus.<br />

Antarehimamy: Situé dans le district<br />

d’Ikongo, le village d’Antarehimamy (S21°<br />

55’59.2",E047°22’17.6",altitude 410 m) se<br />

situe à 3,16 km au Nord-Est d’Ambodiara<br />

et à 9,01 km à l’ouest de la commune<br />

rurale d’Ikongo.Lors de l’enquête,les villa-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 37<br />

geois ont reconnu 7 espèces de lémuriens,mais aucun lémurien<br />

de bambou.Néanmoins,nous avons trouvé des signes de<br />

nourrissage de Hapalemur aureus et H. griseus. Nous avons<br />

également remarqué l’abondance de Varecia variegata editorum<br />

sur le site.<br />

Antaranjaha/Ambolomadinika/Tsianivoho:Située dans le district<br />

d’Ikongo, la commune d’Ambolomadinika gère 12<br />

Fokontany, dont Antaranjaha et Tsianivoho. Le Fokontany<br />

Antaranjaha (S21°59’42.3",E047°25’40.2") est situé à 3,7 km<br />

au Sud-Ouest d’Ambolomadinika. Dans ce site, les villageois<br />

n’ont pas reconnu de lémuriens de bambou. Cependant, des<br />

cris de Hapalemur aureus ont été entendus dans la forêt à<br />

<strong>15</strong>0 m environ de notre campement,c’est-à-dire à Ankazondrano.A<br />

Marofototra,situé à 30 minutes du Fokontany d’Antaranjaha,<br />

toutes les jeunes pousses de bambou Cathariostachys<br />

sp.étaient coupées.Ce sont des signes de nourrissage de<br />

H. griseus. De plus, un villageois a confirmé avoir trouvé un<br />

groupe de H. griseus comprenant 12 individus à cet endroit.<br />

Nous avons également entendu des cris de Varecia variegata<br />

editorum, vu un groupe de Eulemur rufus, et trouvé un piège à<br />

lémuriens dans la forêt. Dans la commune rurale d’Ambolomadinika,<br />

on remarque beaucoup de zones agricoles déboisées.<br />

Malheureusement, les lémuriens de bambou sont menacés<br />

à cause de la coupe massive de bambous dans ces<br />

zones et la chasse pratiquée par les habitants de la Commune.<br />

Manambolo:Située dans la région de Fianarantsoa,la forêt de<br />

Manambolo (S22°04’06.2",E046°59’27.5",1238 m) se trouve<br />

dans le Fokontany de Morafeno, commune rurale de Sendrisoa.<br />

La gestion de la forêt est assurée par le FI.TE.MA<br />

(FIkambanan’ny TEraky MAnambolo) et concerne cinq villages:<br />

Mandamako, Mahavita, Ambinda, Ankazobe, Ampidira.<br />

La survie de la population locale dépend largement de l’agriculture,<br />

l’élevage et la production du rhum traditionnel.<br />

Cependant, la culture sur brûlis est encore pratiquée sur la<br />

lisière forestière. Lors de l’enquête, les villageois ont reconnu<br />

4 espèces de lémuriens, dont Hapalemur griseus et H.<br />

aureus. La vérification en forêt nous a révélé des signes de<br />

nourrissage de H.aureus, et nous avons vu directement Eulemur<br />

rufus et E. rubriventer.<br />

Résultats par zone située autour du corridor forestier de Fandriana-Vondrozo<br />

Mananjary: Notre campement à Tsararivotra (S21°10’41.8",<br />

E048°13’19.6", altitude 39 m) était situé à 23 km au nordouest<br />

de la ville de Mananjary. Le site de Tsararivotra est<br />

inclus dans le Fokontany de <strong>Vol</strong>omborona Asakatara et fait<br />

partie de la commune de Morafeno Mananjary.Nous n’avons<br />

trouvé que Hapalemur griseus, Cheirogaleus major et Microcebus<br />

rufus dans cette zone.<br />

Sahalanona: La commune de Sahalanona fait partie du<br />

District d’Ikongo et inclut 9 Fokontany (Sahalanona, Mahaly,<br />

etc.). La population est composée d’agriculteurs, d’éleveurs<br />

et de pêcheurs. Le village de Sahalanona (S22°03’19.2"<br />

E047°37’ 12.2", altitude 129 m) existe depuis environ 300<br />

ans. Malgré l’abondante présence de bambous, dont le<br />

bambou géant Cathariostachys sp., nous n’avons trouvé que<br />

Hapalemur griseus dans cette zone. Cette espèce est menacée<br />

par la chasse que pratiquent les villageois. D’autres<br />

espèces de lémuriens sont également en danger car elles<br />

sont aussi chassées et vendues par les villageois, notamment<br />

Avahi laniger (chassé pour l’alimentation et l’usage domestique)<br />

et Microcebus rufus (dont le prix est de 5.000 Ariary<br />

par individu).<br />

Manakara: Le village d’Ambila se trouve à 17 km au nord de<br />

Manakara. Le Fokontany Ambila fait partie de la commune<br />

d’Ambila (S22°00’11.6", E047°58’19.9") de la région de Manakara.Notre<br />

observation a été effectuée directement dans<br />

la forêt de Tsiazombazaha située à 10 km du village d’Ambila.<br />

L’enquête n’a pas eu lieu dans ce site car il n’y avait plus de<br />

village (principalement notre cible) autour de la forêt. Cette<br />

forêt est gérée par la communauté de base du Fokontany<br />

d’Ambila.A cet endroit,nous n’avons pas trouvé de bambou,<br />

et avons trouvé seulement deux espèces de lémuriens, Avahi<br />

laniger et Eulemur rufus, après vérification dans la forêt.<br />

Mahazoarivo/Ifasy: Située dans la région de Farafangana, la<br />

commune de Mahazoarivo (S22°39’49.0", E047°18’42.4",<br />

222 m) fait partie du corridor forestier, et la population pratique<br />

l’agriculture et l’élevage. L’exploitation des ressources<br />

minières, surtout des pierres précieuses, représente une<br />

source de revenus importante pour la population. Lors de<br />

l’enquête, les villageois n’ont reconnu que deux espèces de<br />

lémuriens,Hapalemur griseus et Microcebus rufus.Nous avons<br />

visité deux forêts dans cette commune,à Mitimboto (Fokontany<br />

de Mahazoarivo) et Ifasy ou Mahafasy (Fokontany Mahatsara)<br />

où deux groupes de H. griseus ont été vus sur chaque<br />

site. A Ifasy (S22°39’13.0", E47°14’56.1"), des individus de H.<br />

griseus de très grande taille ont été localisés, similaires à<br />

Prolemur simus, mais l’absence des touffes de poils blancs sur<br />

les oreilles nous a permis de faire la distinction. Nous avons<br />

également remarqué que le nom local de H. griseus était<br />

différent à Mitimbato et Ifasy,respectivement Varibolo madinika<br />

et Varibolo vaventy.<br />

Iandraina: Le Fokontany d’Iandraina fait partie de la commune<br />

Rurale de Vohimasy. Il se situe à <strong>15</strong> km au nord-ouest<br />

de Farafangana. La forêt de Befoza et celle d’Ambolosy<br />

(S22°46’07.0", E047°41’07.0", 53 m) se trouvent dans ce<br />

fokontany. Les populations sont constituées principalement<br />

d’agriculteurs et d’éleveurs. La pratique des cultures vivrières<br />

constitue l’activité principale. Contrairement aux<br />

autres sites que nous avons visités dans le sud de la zone<br />

d’étude, nous avons trouvé une population de Cathariostachys<br />

sp. à Ambolosy.<br />

Sahamadio: Située dans la région de Farafangana, cette zone<br />

est plus ou moins enclavée (absence d’infrastructure routière)<br />

et même la circulation et le transport de produits<br />

locaux s’effectuent toujours par pirogue.La commune rurale<br />

de Sahamadio (S22°31’13.4", E047°35’02.8", altitude 27 m)<br />

dépend beaucoup de l’agriculture. L’existence de signes de<br />

nourrissage dans la forêt de Sahamadio nous a permis d’établir<br />

que Hapalemur griseus,localement appelé "varibolo" y est<br />

présent.L’enquête effectuée au niveau de la commune rurale<br />

d’Ambalatany a également confirmé la présence de lémuriens<br />

de bambou de grande taille dans la forêt d’Ambalakazaha.<br />

Evato:Dans la commune d’Evato (S 22°36’42",E 047°41’20"),<br />

dans la région de Farafangana, le développement des différentes<br />

infrastructures est remarquable,citons comme exemple<br />

les hôpitaux, écoles, marchés et routes en bon état. Un<br />

bloc de forêt primaire se trouve à Iaboloha dans cette<br />

commune. Notre enquête nous a donné des informations<br />

sur la présence de plusieurs espèces de lémuriens dans cette<br />

forêt. Ce site mérite donc d`être visité pour une prochaine<br />

vérification.<br />

Mahafasa: Dans cette zone située également dans la région<br />

de Farafangana, ce qui reste de forêt primaire est en général<br />

la forêt de bambou,un endroit où se trouvent des tombeaux.<br />

Etant donné la situation actuelle de sécurité, nous n’avons<br />

pas obtenu la permission de visiter cette forêt sacrée de<br />

bambou. Cette dernière recouvre une grande surface, environ<br />

3 km de longueur et jusqu’à 100 m de largeur,et pourrait<br />

être importante en tant qu’habitat de lémuriens.


Page 38 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Discussion<br />

La série d’expéditions menée le long du Corridor forestier<br />

Fandriana - Vondrozo nous a permis d’évaluer provisoirement<br />

la répartition des lémuriens de bambou. Concernant<br />

Prolemur simus,un seul signe de nourrissage a été identifié,et<br />

ce signe remontait à un an, confirmant les résultats des<br />

études précédentes qui indiquent que l’espèce a une distribution<br />

fragmentée dans la région (Wright et al., 2008). Pour<br />

Hapalemur aureus (espèce menacée EN), la découverte de<br />

l’évidence de sa présence sur six zones,toutes dans le corridor<br />

forestier, est encourageante car cela implique une large<br />

distribution dans celui-ci, bien que l’espèce ne semble pas<br />

exister en-dehors.Hapalemur griseus (espèce vulnérable VU)<br />

a été trouvé dans presque toutes les zones visitées, dans le<br />

corridor forestier mais également dans des zones éloignées<br />

de ce dernier.<br />

La menace principale pour les espèces de bambou dans la<br />

région du corridor Fandriana-Vondrozo est la destruction<br />

des habitats naturels et leur conversion en champs de culture.Cette<br />

technique est appelée "agriculture sur brûlis".Par<br />

conséquent, cette pression entraîne la raréfaction et même<br />

la disparition des espèces autochtones de bambous. Malgré<br />

la présence de bambous à l’intérieur du corridor, la persistance<br />

de la pratique du tavy,les coupes de bambous en permanence<br />

et surtout la chasse aux lémuriens mettent en péril<br />

la survie des espèces de lémuriens. En outre, la taille de la<br />

forêt du Corridor Fandriana-Vondrozo est petite par rapport<br />

aux autres corridors forestiers du pays. Sa largeur est<br />

très réduite surtout dans sa partie sud, et sur la photo<br />

aérienne, la voûte forestière apparaît très ouverte. Tous ces<br />

facteurs menacent la viabilité des populations de lémuriens<br />

vivant dans le corridor, et tout particulièrement les espèces<br />

présentant une distribution fragmentée telles que P. simus.<br />

Actuellement, beaucoup de lémuriens sont chassés et vendus<br />

par les villageois (exemple:Sahalanona,Antaranjaha).Les<br />

forêts de bambous sont fragmentées et isolées les unes des<br />

autres, ce qui laisse à penser que ces lémuriens de bambou<br />

sont réellement en danger. En outre, les utilisations des<br />

bambous dans la région sont nombreuses. La population locale<br />

utilise les différentes espèces de bambou suivant leur<br />

taille pour la construction des maisons, particulièrement<br />

pour les toitures, les murs, et des clôtures. Les bambous<br />

servent également à fabriquer du matériel pour les usages<br />

quotidiens, parmi lesquels les paniers à fruits, volailles, écrevisses<br />

et anguilles. Enfin, ils permettent de transporter des<br />

bagages. Aussi, les espèces de bambous de plus grand diamètre<br />

sont utilisées comme récipient pour transporter de<br />

l’eau. La conséquence négative de l’utilisation des bambous<br />

est minime par rapport à la destruction des habitats. Exemple:le<br />

Corridor d’Ampitsinjovabe (site d’Antarehimamy) est<br />

une bonne localité pour trouver H. griseus, H. aureus et V.<br />

variegata editorum, mais ces trois espèces sont menacées à<br />

cause de la chasse et des coupes sélectives de bois pratiquées<br />

par les habitants résidant autour du corridor.<br />

Pour la conservation de Prolemur simus,il faudrait accroître la<br />

taille des aires protégées en y incluant les forêts de bambous,<br />

et restaurer les fragments d’habitats isolés au sein d’un<br />

paysage agricole déboisé, afin d’équilibrer la valence écologique,<br />

c’est-à-dire la zone supportable pour l’espèce (en<br />

pratiquant une reforestation de bambou). Cependant, d’une<br />

façon générale, il y a un besoin immédiat de sensibilisation,<br />

pour conscientiser la population aux problèmes de coupe de<br />

bambous,de tavy et de chasse des lémuriens,afin d’assurer la<br />

survie d’espèces de lémuriens dans et autour du Corridor<br />

Fandriana-Vondrozo. Finalement, les sites d’Ambodiara, Mahazoarivo<br />

(Alafady, Ranomena), Ambalakazaha et Mahafasa<br />

sont recommandés pour une nouvelle vérification de la présence<br />

ou non des lémuriens de bambou. En effet, la population<br />

locale semble être convaincue d’avoir trouvé P. simus à<br />

ces endroits.<br />

Remerciements<br />

Nos vifs remerciements vont: au Ministère de l’Environnement,<br />

des forêts et du Tourisme, à la Direction Générale de<br />

l’Environnement et des forêts, et à la Direction du Système<br />

des Aires Protégées, Madagascar, pour leur accord et la<br />

délivrance de l’autorisation de recherche (permis n°279/08/<br />

MEFT/SG/DGEF/DSAP/SSE); à The Aspinall Foundation, GB,<br />

pour le financement de l’enquête dans le cadre du Projet<br />

"Sauver Prolemur simus";au Groupe d’Etude et de Recherche<br />

sur les Primates de Madagascar (G.E.R.P) et son personnel<br />

administratif; au Centre International de Formation pour la<br />

Valorisation de la Biodiversité (Centre ValBio) et son personnel<br />

administratif; à l’ICTE et Conservation International,<br />

Antananarivo,pour leurs conseils et entire collaboration;aux<br />

communes, Fokontany, et COBAS des zone visitées pour<br />

leurs amabilité et collaboration; et enfin, aux assistants de<br />

recherche du Centre ValBio à Ranomafana, Justin Rakotonjatovo,<br />

Dominique Razafindraibe, Jean-Guy Razafindraibe,<br />

Aime-Victor Tombotiana et Telo Albert, et au chauffeur de<br />

The Aspinall Foundation,Mohamad Mbaraka,pour leur assistance<br />

sur le terrain.<br />

Références<br />

Andriaholinirina, V.N.; Fausser J.L.; Rabarivola, J.C. 2003. Etude<br />

comparative de Hapalemur simus (Gray,1870) de deux<br />

sites de la province autonome de Fianarantsoa, Madagascar:forêt<br />

dégradée d’Ambolomavo et forêt secondaire de<br />

Parc National de Ranomafana. Lemur News 8: 9-13.<br />

Dolch, R.; Fiely, J.L.; Ndriamiary, J.N.; Rafalimandimby, J.; Randriamampionona,R.;Engberg,S.E.;Louis,E.E.Jr.2008.Confirmation<br />

of the greater bamboo lemur, Prolemur simus,<br />

north of the Torotorofotsy wetlands,eastern Madagascar.<br />

Lemur News 13: 14-17.<br />

Godfrey, L.; Vuillaume-Randriamanantena, M. 1986. Hapalemur<br />

simus: endangered lemur once widespread. Primate<br />

Conservation 7: 92-96.<br />

Godfrey, L.R.; Simons, E.L.; Jungers, W.L.; DeBlieux, D.D.;<br />

Chatrath,P.S.2004.New discovery of subfossil Hapalemur<br />

simus, the greater bamboo lemur, in western Madagascar.<br />

Lemur News 9: 9-11.<br />

Jones,J.P.G.;Andriahajaina,F.B.;Hockley,N.J.;Balmford,A.;Ravoahangimala,<br />

O.R. 2005. A multidisciplinary approach to<br />

assessing the sustainability of freshwater crayfish harvesting<br />

in Madagascar.Conservation Biology 19:1863-1871.<br />

King, T.; Chamberlan, C. 2010. Conserving the critically endangered<br />

greater bamboo lemur Prolemur simus.Oryx 44:<br />

167.<br />

Meier, B.; Rumpler, Y. 1987. Preliminary survey of Hapalemur<br />

simus and of a new species of Hapalemur in eastern Betsileo,<br />

Madagascar. Primate Conservation 8: 40-43.<br />

Mittermeier, R.A.; Konstant, W.R.; Hawkins, F.; Louis E.E.;<br />

Langrand, O.; Ratsimbazafy, J.; Rasoloarison, R.; Ganzhorn,<br />

J.U.; Rajaobelina, S.; Tattersall, I.; Meyers, D.M. 2006. Lemurs<br />

of Madagascar. 2nd ed. Conservation International,<br />

Washington, D.C.<br />

Mittermeier, R.A.; Ratsimbazafy, J.; Rylands, A.B.; Williamson,<br />

L.;Oates,J.F.;Mbora,D.;Ganzhorn,J.U.;Rodriguez-Luna,E.;<br />

Palacios, E.; Heymann, E.W.; Cecilia, M.; Kierfull, M.; Yongcheng,L.;Supriatna,J.;Roos,C.;Walker,S.;Aguiar,J.M.2007.<br />

Primates in Peril: The World’s 25 Most Endangered Primates<br />

2006-2008. Primate Conservation 22: 1-40.<br />

Mittermeier, R.A.; Wallis, J.; Rylands, A.B.; Ganzhorn, J.U.;<br />

Oates, J.F.; Williamson, E.A.; Palacios, E.; Heymann, E.W.;<br />

Kierulff,M.C.M.;Yongcheng,L.;Supriatna,J.;Roos,C.;Walker,<br />

S.; Cortés-Ortiz, L.; Schwitzer, C. 2009. Primates in<br />

Peril: The World’s 25 Most Endangered Primates 2008-<br />

2010. Primate Conservation 24: 1-57.<br />

Ratolojanahary,M.;Rajaonson,A.;Ratsimbazafy,J.;Feistner,A.;<br />

King, T. 2009. Identification des sites prioritaires pour la


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 39<br />

conservation de Prolemur simus par la récolte des connaissances<br />

indigènes locales sur les distributions respectives<br />

du bambou et des hapalémurs dans et autour du corridor<br />

Fandriana-Vondrozo: Rapport Final. GERP / The Aspinall<br />

Foundation / Centre ValBio, Madagascar. 25 pp.<br />

Sterling E.J.; Ramaroson, M.G. 1996. Rapid assessment of the<br />

primate fauna of the eastern slopes of the Réserve Naturelle<br />

Intégrale d’Andringitra, Madagascar. In: S.M. Goodman<br />

(ed.), A Floral and Faunal Inventory of the Eastern<br />

Slopes of the RPserve Naturelle Intégrale d’Andringitra,<br />

Madagascar, with Reference to Elevational Variation. Fieldiana<br />

Zoology 85: 293-305.<br />

TAF 2008. Projet Varibolomavo: Sauver Prolemur simus -Objectifs<br />

et actions proposées. The Aspinall Foundation,<br />

Port Lympne Wild Animal Park, Kent, GB. 4 pp.<br />

TAF 2009. Projet Varibolomavo: Sauver Prolemur simus -Premiers<br />

résultats et actions immédiates. The Aspinall Foundation,<br />

Antananarivo, Madagascar. 6 pp.<br />

Tan, C.L, 1999.Group Composition, Home Range Size, and<br />

Diet of Three Sympatric Bamboo lemur species (genus<br />

Hapalemur) in Ranomafana National Park, Madagascar.<br />

International Journal of Primatology 20(4): 547-566.<br />

UICN 2009. IUCN Red List of Threatened Species. Version<br />

2009.2. www.iucnredlist.org.<br />

Wright P.C.; Daniels P.S.; Meyers, D.M.; Overdorff, D.J.; Rabesoa,<br />

J.A. 1987. Census and study of Hapalemur and Propithecus<br />

in Southeastern Madagascar.Primate Conservation<br />

8: 84-88<br />

Wright,P.C.;Johnson,S.E.;Irwin,M.T.;Jacobs,R.;Schlichting,P.;<br />

Lehman, S.; Louis, E.E. Jr.; Arrigo-Nelson, S.J.; Raharison,<br />

J.-L.; Rafalirarison, R.R.; Razafindratsita, V.; Ratsimbazafy, J.;<br />

Ratelolahy, F.J; Dolch, R.; Tan, C. 2008. The Crisis of the<br />

Critically Endangered GreaterBamboo Lemur (Prolemur<br />

simus). Primate Conservation 23: 5-17.<br />

Effect of red ruffed lemur gut passage on<br />

the germination of native rainforest plant<br />

species<br />

Onja H. Razafindratsima 1,2*, Emilienne Razafimahatratra<br />

1<br />

1Department of Animal Biology, University of Antananarivo,<br />

Madagascar<br />

2Department of Ecology and Evolutionary Biology, Rice University<br />

– MS 170, 6100 Main St., Houston, TX 77005, USA<br />

(current affiliation)<br />

*Corresponding author: ohr1@rice.edu, onjhar@hotmail.com<br />

Key words: seed dispersal, germination success, Varecia<br />

rubra, primate, corridor restoration, Masoala<br />

Abstract<br />

Like much of Madagascar’s remaining rainforest,the forest of<br />

Masoala National Park is facing severe threats from deforestation<br />

and fragmentation. The remaining fragmented areas<br />

are connected by degraded corridors which are important<br />

for biological exchange. Frugivorous animals such as lemurs<br />

may have an important role in the restoration of such degraded<br />

areas through seed dispersal. Unfortunately,no studies<br />

have been carried out before concerning the role lemurs<br />

play in the restoration of the largest corridor in Masoala,<br />

Ambatoledama. This study explores the effect of seed passage<br />

inside the gut of the frugivorous red-ruffed lemur<br />

(Varecia rubra) on the germination of some native tropical<br />

plants with the aim to understand the capacity of V. rubra to<br />

help in the restoration of the Ambatoledama corridor. We<br />

planted seeds of nine plant species that we collected from V.<br />

rubra’s fresh feces in a nursery to compare with seeds that<br />

we extracted manually from corresponding fruits. The germination<br />

of seeds was monitored each month after planting<br />

them. Results showed that defecated seeds had overall a significantly<br />

higher germination rate than non-passed seeds.<br />

Thus, lemur ingestion of seeds has the capacity to improve<br />

seed germination of several species and some plants require<br />

the physiological treatment inside the gut to germinate. Results<br />

suggested that restoration projects in the area including<br />

the Ambatoledama corridor should take into account the<br />

important role Varecia rubra plays in the regeneration of the<br />

forest and corridor.Management actions that increase movement<br />

and protection of animals moving into and out of the<br />

corridor will be important for the long term success of the<br />

project.<br />

Introduction<br />

The rainforest of the Masoala Peninsula suffers greatly from<br />

loss and fragmentation caused by the human population<br />

living around the area.The forest is subdivided into different<br />

fragments, connected by corridors of degraded habitat<br />

which are Ambatoledama,Analambolo and Ilampy (Holloway,<br />

1997). Corridors are vital for enabling gene flow and dispersal<br />

of wildlife among habitat fragments (Mech and Hallett,<br />

2001). The largest of these is the Ambatoledama corridor,<br />

which connects two large parcels of the forest (Fig. 1). The<br />

restoration of this corridor is critical for safeguarding wildlife<br />

populations in the fragments and for preserving gene flow<br />

between fragments (Mech and Hallett, 2001; Haddad et al.,<br />

2003). To restore this degraded corridor, it is necessary to<br />

plant native trees or to encourage zoochory (biological dispersal<br />

of seeds through animal defecation) (Duncan and<br />

Chapman, 2002; Neilan et al., 2006). Since 1997, Madagascar<br />

National Parks (MNP) and the Wildlife Conservation Society<br />

(WCS) have established a restoration project in the Ambatoledama<br />

corridor by planting native fruiting trees (Holloway,1997)<br />

with the aim of attracting frugivorous vertebrates<br />

which will in turn carry seeds into the degraded parts of the<br />

forest and into forest clearings. Unfortunately, no studies<br />

have previously been carried out to shed light on the importance<br />

of frugivorous animals,especially lemurs,in the reforestation<br />

of the Ambatoledama corridor.Unlike the majority of<br />

tropical forests,the diversity of the frugivorous bird community<br />

in Madagascar is impoverished, and therefore primates<br />

are the principal dispersers of its tropical trees (Goodman,<br />

1997; Dew and Wright, 1998; Ganzhorn et al., 1999; Bleher<br />

and Böhning-Gaese,2001).Ten lemur species are indentified<br />

as living in the Masoala Forest (Mittermeier et al., 2006); one<br />

of which (Varecia rubra) is endemic to this region and has Endangered<br />

status (IUCN, 2008), and can be found in both the<br />

corridor habitat and adjacent forest fragments (Razakamaharavo<br />

et al., 2010). Previous studies demonstrated that<br />

Varecia variegata is an effective disperser in the southeastern<br />

rainforests (Dew and Wright,1998).However,we know very<br />

little about the potential role of V.rubra for regeneration and<br />

restoration of the corridor habitat in Ambatoledama.<br />

In this study, we explored the germination success of seeds<br />

defecated by Varecia rubra in order to understand their capacity<br />

for seed dispersal and potential impact on the restoration<br />

of the degraded rainforest corridor at Ambatoledama.<br />

Our objective was to shed light on the role of this species in<br />

forest regeneration. Understanding their influence on tree<br />

germination is particularly important given the threatened<br />

status of this species. This paper tested the hypothesis that<br />

gut passage of seeds by Varecia rubra facilitates seed germination.<br />

Our prediction was that lemur-gut-passed seeds have a<br />

higher germination rate than non-passed seeds because of<br />

the physiological treatment affecting the seed coat inside the<br />

gut.


Page 40 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Materials and methods<br />

Field site<br />

This study was carried out at the Ambatoledama corridor<br />

(S<strong>15</strong>°27’ E050°01’) on the north-eastern part of the Masoala<br />

Peninsula. Ambatoledama connects Masoala National Park<br />

with Makira National Forest to the West. Its forest has undergone<br />

significant deforestation but restoration projects<br />

have augmented Ambatoledama such that it now forms a 1<br />

km wide corridor of secondary forest (Hekkala et al., 2007;<br />

Razakamaharavo et al.,2010).It consists of a dense evergreen<br />

rainforest with an altitude ranging from 300 to 700 m. The<br />

forest is mostly characterized by the presence of tree species<br />

of the Pandanacea, Ebenaceae, Clusiaceae, Euphorbiaceae,<br />

Sapotaceae and Rubiaceae families (Martinez, unpublished).<br />

Study species<br />

Varecia rubra belongs to the family Lemuridae (Gray, 1821)<br />

and is one of two species recognized within the genus (Mittermeier<br />

et al., 2006). V. rubra is only found on the Masoala<br />

peninsula and it is classified by the World Conservation Union<br />

(IUCN) as Endangered (IUCN, 2008). V. rubra is a largesized<br />

diurnal species with a body length ranging from 43 to<br />

57 cm (Vasey, 2003) and has a typically frugivorous diet<br />

(Rigamonti, 1993; Vasey, 1997). They currently inhabit both<br />

the corridor habitat and the adjacent protected areas (Razakamaharavo<br />

et al., 2010) and are thus potentially important<br />

for regeneration of the corridor habitat.<br />

Field experiment<br />

Focal animals were followed for 3-5 days per week from<br />

dawn to dusk (from 0600 hours to 1800 hours) to collect<br />

fresh fecal samples (Dew and Wright,1998;Kaplin and Moermond,1998;Stevenson,2000;Poulsen<br />

et al.,2001;Link and Di<br />

Fiore, 2006). Each fecal sample was washed and filtered<br />

through a 1-mm sieve (Stevenson,2000).Seeds were extracted<br />

and then identified with the help of local research guides<br />

and an expert local botanist familiar with the Masoala flora.<br />

We planted gut-passed seeds and control seeds that were<br />

extracted manually from fruits in an outdoor nursery adjacent<br />

to the corridor at Ambatoledama. The nursery consisted<br />

of two "flower beds" of 11.2 m 2: one for defecated<br />

Fig. 1: Location of the Ambatoledama corridor.<br />

seeds and the other one for non-passed seeds. Following<br />

methods used by the conservation agents of MNP in Ambatoledama,<br />

a sunshade of 80 cm height, composed of Longoza<br />

leaves (Afromomum angustifolium) was placed above each<br />

flower bed to imitate the closed canopy of the forest. Also,<br />

the soil of the nursery was mixed with fertile soil from cultivated<br />

field. Seeds were placed in the soil mixture and<br />

covered by 1 mm-thick river sand to keep a constant temperature.<br />

An equal number of seeds were planted within each species<br />

per treatment. However, the numbers varied between species<br />

depending on how many seeds were collected from<br />

lemur feces. The germination of seeds was assessed each<br />

month after planting.<br />

Data analysis<br />

We performed a paired t-test to test for differences between<br />

the germination rate of lemur-gut-passed and nonpassed<br />

seeds, an ANOVA analysis to test if the two factors<br />

(seed species and treatment) had effects on the germination<br />

rate of the seeds and to determine whether there was interaction<br />

between these factors. We analyzed the germination<br />

of each species in order to assess the influence by lemur gut<br />

passage, with Pearson test using contingency tables, which<br />

was adjusted with Bonferroni correction for multiple comparisons<br />

(Sokal and Rohlf, 1995).<br />

Results<br />

In total, 268 fresh fecal samples from three individuals of<br />

red-ruffed lemur were collected during 58 days of observation.<br />

The fecal samples contained fleshy fruit parts, stalks,<br />

leaves, soil and fecal liquid. 95.52 % of these contained seeds,<br />

to some of which fleshy fruit parts were still attached. 906<br />

seeds of more than 1mm size were extracted. A majority of<br />

them were intact with minor scarification.They represented<br />

34 different plant species that belong to <strong>15</strong> Families.Based on<br />

our collected sample, the most common seed species found<br />

in lemur defecations were the nine species we chose to<br />

study here (Tab. 1). In the nursery, we planted a total of 390<br />

defecated seeds and compared them with 398 non-passed<br />

seeds.<br />

Lemur-gut-passed seeds had significantly higher germination<br />

rates overall than non-passed seeds (t=3.284,df=8,p=0.011).<br />

Passed seeds had a germination rate<br />

of 64.61 %, whereas non-passed<br />

seeds had a rate of 39.69 %.For each<br />

species, seeds that had been defecated<br />

had a higher germination rate<br />

than non-passed seeds, except for<br />

Tsilaitra (Tab. 1). This pattern was<br />

driven primarily by four species, including<br />

Antaivaratra,Matahobaratra,<br />

Tsilaitra, and Vongobe species.<br />

In a two factor analysis of variance<br />

for seed germination, there was a<br />

significant interaction between the<br />

species of seeds and their treatment<br />

(passed or non-passed) (F= 4.2004,<br />

p


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 41<br />

Tab. 1: List of species studied with their germination rate. Sample sizes are represented in<br />

brackets. The star on p-values corresponds to their significance (Pearson test) after a<br />

Bonferroni correction for multiple tests.<br />

# Malagasy Scientific Family Germination rate Pearson test<br />

name name<br />

gut-passed non-passed ChiP- seeds seeds squarevalue 1 Antaivaratra Potameia sp. Lauraceae 41.67 (n = 48) 17.86 (n = 56) 7.139 0.0075*<br />

2 Hazondronono Sideroxylon Sapotaceae 80.00 (n = 10) 60.00 (n = 10) 0.952 0.3291<br />

3 Karaka Pandanus Pandanaceae 40.00 (n = 20) <strong>15</strong>.00 (n = 20) 3.135 0.0766<br />

4 Matahobaratra Garcinia sp. Clusiaceae 58.06 (n = 31) 00.00 (n = 31) 25.364


Page 42 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Dokolahy, J. 2005. Etude de la régénération naturelle des<br />

savoka du pont forestier d’Ambatolaidama en vue d’une<br />

restauration forestiere.Unpubl.DEA thesis,ESSA University<br />

of Antananarivo, Madagascar.<br />

Duncan,R.S.;Chapman,C.A.2002.Limitations of animal seed<br />

dispersal for enhancing forest succession on degraded<br />

lands. Pp. 437-450. In: D.J. Levey; W.R. Silva; M. Galetti<br />

(eds.). Seed Dispersal and Frugivory: Ecology, Evolution<br />

and Conservation. CABI Publishing, Oxford, UK.<br />

Ganzhorn, J.U.; Fietz, J.; Rakotovao, E.; Schwab, D.; Zinner, D.<br />

1999. Lemurs and the regeneration of dry deciduous forest<br />

in Madagascar.Conservation Biology 13(4):794-804.<br />

Golden, C.D. 2009. Bushmeat hunting and use in the Makira<br />

Forest, north-eastern Madagascar: a conservation and livelihoods<br />

issue. Oryx 43: 386-392.<br />

Goodman,S.M.1997.Observations at a Ficus tree in Malagasy<br />

humid forest. Biotropica 29: 480-488.<br />

Gosper,C.R.;Stansbury,C.D.;Vivian-Smith,G.2005.Seed dispersal<br />

of fleshy-fruited invasive plants by birds: contributing<br />

factors and management options. Diversity and Distributions<br />

11: 549.<br />

Haddad, N.M.; Bowne, D.R.; Cunningham, A.; Danielson, B.J.;<br />

Levey,D.J.;Sargent,S.;Spira,T.2003.Corridor use by diverse<br />

taxa. Ecology 84: 609-6<strong>15</strong>.<br />

Hatchwell, M. 1999. Plan de gestion de complexe des Aires<br />

Protégées de Masoala. Unpubl. Wildlife Conservation<br />

Society report.<br />

Hekkala, E.R.; Rakotondratsima, M.; Vasey, N. 2007. Habitat<br />

and distribution of the ruffed lemur, Varecia, north of the<br />

Bay of Antongil in northeastern Madagascar. Primate<br />

Conservation 22: 89-95.<br />

Holloway, L. 1997. Catalysing natural regeneration of rainforest:<br />

Masoala corridors. Unpublished report presented<br />

to Wildlife Conservation Society, Madagascar.<br />

Howe, H.F. 1986. Seed dispersal by fruit-eating birds and<br />

mammals. Pp.123-189. In: D.R. Murray (ed.). Seed Dispersal.<br />

Academic Press, Sydney.<br />

Howe, H.F.; Smallwood, J. 1982. Ecology of seed dispersal.<br />

Annual Review of Ecology and Systematics 13: 201-228.<br />

Into,I.2009.Investigation into the illegal felling,transport and<br />

export of precious wood in the SAVA region of Madagascar.<br />

Global Witness and the Environmental Investigation<br />

Agency, Inc. Report.<br />

IUCN. 2008. Red List of Threatened Species.<br />

www.iucnredlist.org.<br />

Kaplin, B.A.;Lambert,J.E. 2002.Effectiveness of Seed Dispersal<br />

by Cercopithecus Monkeys: Implications for Seed Input<br />

into Degraded Areas.Pp.351-364.In:D.J.Levey;W.R.Silva;<br />

M. Galetti (eds.). Seed Dispersal and Frugivory: Ecology,<br />

Evolution and Conservation. CABI Publishing, Oxford,<br />

UK.<br />

Kaplin,B.A.;Moermond,T.C.1998.Variation in seed handling<br />

by two species of forest monkeys in Rwanda. American<br />

Journal of Primatology 45: 83-101.<br />

Link, A.; Di Fiore, A. 2006. Seed dispersal by spider monkeys<br />

and its importance in the maintenance of neotropical<br />

rain-forest diversity. Journal of Tropical Ecology 22: 235-<br />

246.<br />

McKey,D.1975.The ecology of coevolved seed dispersal systems.Pp.<strong>15</strong>9-191.In:L.E.Gilbert,P.H.Raven(eds.).Coevolution<br />

of Animals and Plants. University of Texas Press,<br />

Austin, TX, USA.<br />

Mech, S.G.; Hallett, J.G. 2001. Evaluating the effectiveness of<br />

corridors: a genetic approach. Conservation Biology <strong>15</strong>:<br />

467-474.<br />

Mittermeier, R.A.; Konstant, W.R.; Hawkins, F.; Louis, E.E.;<br />

Langrand, O.; Ratsimbazafy, J.; Rasoloarison, R.; Ganzhorn,<br />

J.U.;Rajaobelina,S.;Tattersall, I. 2006.Conservation International<br />

Tropical Field Guide Series: Lemurs of Madagascar.<br />

Conservation International, Washington, DC, USA.<br />

Neilan, W.; Catterall, C.P.; Kanowski, J.; McKenna, S. 2006. Do<br />

frugivorous birds assist rainforest succession in weed<br />

dominated old field regrowth of subtropical Australia?<br />

Biological Conservation 129: 393-407.<br />

Poulsen, J.R.; Clark, C.J.; Smith, T.B. 2001. Seed dispersal by a<br />

diurnal primate community in the Dja Reserve, Cameroon.<br />

Journal of Tropical Ecology 17: 787-808.<br />

Razakamaharavo, V.R.; McGuire, S.M.; Vasey, N.; Louis, E.E.;<br />

Brenneman, R.A. 2010. Genetic architecture of two red<br />

ruffed lemur (Varecia rubra) populations of Masoala National<br />

Park. Primates 51: 53-61.<br />

Rigamonti, M.M. 1993. Home range and diet in red ruffed<br />

lemurs (Varecia variegata rubra) on the Masoala Peninsula,<br />

Madagascar. Pp. 25-40. In: P.M. Kappeler; J.U. Ganzhorn<br />

(eds.). Lemur social systems and their ecological basis.<br />

Plenum Press, New York, USA.<br />

Schupp, E.W. 1993. Quantity, quality and the effectiveness of<br />

seed dispersal by animals. Plant Ecology 107: <strong>15</strong>-29.<br />

Schuurman, D.; Lowry, I.I. 2009. The Madagascar rosewood<br />

massacre. Madagascar Conservation & Development 4<br />

(2): 98-102.<br />

Sokal,R.R;Rohlf,F.J.1995.Biometry:the principles and practice<br />

of statistics in biological research. WH Freeman, New<br />

York, USA.<br />

Stevenson, P.R. 2000. Seed dispersal by woolly monkeys (Lagothrix<br />

lagothricha) at Tinigua National Park, Colombia:<br />

dispersal distance, germination rates, and dispersal quantity.<br />

American Journal of Primatology 50(4): 275-289.<br />

Vasey, N. 1997. Community ecology and behavior of Varecia<br />

variegata rubra and Lemur fulvus albifrons on the Masoala<br />

Peninsula, Madagascar. Unpubl. Ph.D. thesis, Washington<br />

University, St. Louis, USA.<br />

Vasey, N. 2003. Varecia, ruffed lemurs. Pp. 1332-1336. In: S.M.<br />

Goodman; J.P. Benstead (eds.). The Natural History of<br />

Madagascar. Chicago University Press, Chicago, USA.<br />

Wehncke, E.V.; Dalling, J.W. 2005. Post-dispersal seed removal<br />

and germination of selected tree species dispersed by<br />

Cebus capucinus on Barro Colorado Island, Panama. Biotropica<br />

37: 73-80.<br />

Feeding ecology of the crowned sifaka<br />

(Propithecus coronatus) in a coastal dry<br />

forest in northwest Madagascar (SFUM,<br />

Antrema)<br />

Claire Pichon 1*, Rivo Ramanamisata 2, Laurent Tarnaud<br />

1, Françoise Bayart 1, Annette Hladik 1, Claude<br />

Marcel Hladik 1, Bruno Simmen 1<br />

1UMR 7206, Eco-anthropologie et Ethnobiologie, Centre<br />

National de la Recherche Scientifique,and Museum National<br />

d’Histoire Naturelle, 4 avenue du Petit Château, 91800 Brunoy,<br />

France<br />

2Département de Biologie Animale,Faculté des Sciences,B.P.<br />

906, Université d’Antananarivo, Antananarivo (101), Madagascar<br />

*Corresponding author: cpichon@mnhn.fr<br />

Key words: diet, primate, activity budget, forest composition<br />

The crowned sifaka (Propithecus coronatus; Milne-Edwards,<br />

1871) inhabits dry forests, riparian forests and mangroves of<br />

northwest Madagascar. Originally believed to occur in a restricted<br />

area between the Mahavavy River in the southwest<br />

(where it overlaps with P.deckenii) and the Betsiboka River in<br />

the northeast (which separates it from P. coquereli), sightings<br />

west of the Mahavavy River and along the Bongolava Massif<br />

suggest that the distribution of this medium-sized species is<br />

wider (Tattersall, 1986; Thalmann et al., 2002). The distribution<br />

and the taxonomic status of crowned sifakas have long<br />

been debated, but the combination of morphological and<br />

biogeographic evidence supports considering it as a valid<br />

species (Thalmann et al., 2002; Mittermeier et al., 2006;<br />

Groves and Helgen, 2007; Mittermeier et al., 2008). Considered<br />

as Endangered (A2 c,d) by the IUCN (2010), populations<br />

of crowned sifakas were estimated not to exceed 1,000<br />

individuals in the wild.However,recently discovered populations<br />

in restricted fragmented forests extend the species’


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 43<br />

distribution range farther towards the Southwest. A "Biocultural<br />

Project" was therefore initiated at Antrema (a site<br />

located in the Mahajanga region) in 2000 to promote sustainable<br />

management (Gauthier et al., 2001).The project aims at<br />

preserving a coastal environment in which crowned sifakas<br />

occur in high densities while allowing villagers, mainly fishermen,<br />

to use natural products of the environment with parsimony<br />

and to benefit from technical and economical help.The<br />

project also aims at promoting local socio-cultural rules and<br />

a way of life that tends to respect the forest environment,including<br />

useful plants and several sympatric lemur species<br />

(Propithecus coronatus, Eulemur fulvus, Eulemur mongoz, Lepilemur<br />

sp., Microcebus murinus). The site contains three of the<br />

Northwest’s typical ecosystems (dry semi-deciduous forest,<br />

mangrove swamp, savanna), which suffer moderate anthropogenic<br />

pressure (Gauthier et al., 2001). Owing to local<br />

beliefs, especially the sacred (“masina”) nature of sifakas, the<br />

Sakalava community plays a central role in this conservation<br />

process (Harpet et al.,2000,2008).In this context,a few studies<br />

started investigating the behavior in relation to habitat<br />

and food supply of the lemur species of Antrema (Gauthier et<br />

al., 1999; Razafimahefa, 2001; Ramanikirahina, 2004). However,a<br />

detailed analysis of the feeding ecology and population<br />

densities of P. coronatus is still lacking. We present here preliminary<br />

data on the plant species composition of the whitesand<br />

coastal forest inhabited by a dense population of sifakas<br />

(among other prosimian species) and on the feeding ecology<br />

of sifaka groups censused since 2008.<br />

Methods<br />

Study site<br />

The Antrema station is a coastal area of 12,300 ha located on<br />

the left riverside of the Betsiboka estuary, northwestern<br />

Madagascar (<strong>15</strong>°42’-<strong>15</strong>°50’S, 46°-46°<strong>15</strong>’E; Gauthier et al.,<br />

2001). The region undergoes a distinct dry season of 7<br />

months from April to October.The mean annual rainfall (n =<br />

9 years) in the Mahajanga region is 1,410 mm (with a peak in<br />

January-February), with irregular rainfall during the dry season.With<br />

an annual mean of 27° C,temperature is highest in<br />

October and lowest between June and August (Airport of<br />

Mahajanga, 2000-2009).<br />

Although the Antrema area has been traditionally protected<br />

by the local Sakalava beliefs, forest areas where studies are<br />

conducted are fragmented. After two first surveys in November<br />

2007 and April-May 2008, we decided to establish<br />

the study site at Badrala (<strong>15</strong>°45.665’S, 46°12.300’E). With<br />

about 24 ha just behind the littoral dune,this non-sacred forest<br />

site offers suitable conditions to study the socioecology<br />

of sifakas and the dynamics of a dry forest in Madagascar.The<br />

forest there is partly split by a sandy open dune that sifaka<br />

groups can cross easily. Tree logging occurs at low intensity<br />

(with few selected species for defined use, e.g. for boats or<br />

coffins) and small trees are sporadically cut for fences and<br />

house building. We studied floristic composition by inventorying<br />

trees along four North/South-oriented line transects,<br />

10 m-wide each, that were roughly perpendicular to the sea<br />

front.Within this 0.73 ha,we tagged each tree > 10 cm diameter<br />

at breast height (DBH) with plastic labels, recorded<br />

their DBH, the number of stems and their vernacular name.<br />

Likewise, we counted woody lianas and herbaceous vines<br />

> 1 m high within eight 10 x 10 m (800 m 2) plots regularly<br />

spaced along the transects. Plant species were sampled and<br />

dried for later botanical identification.<br />

Sifaka population density<br />

In order to locate and identify groups of P. coronatus in<br />

Badrala, we initially mapped groups encountered during<br />

repeated transect walks. We drew individuals’ facial masks<br />

for each of the followed groups, noted their sex from visual<br />

inspection of the genitalia and other external characteristics<br />

(cysts, scars, damaged ears, fur colour), and took pictures.<br />

Knowledge gained progressively of groups and individuals<br />

allowed us to provide a preliminary estimate of population<br />

density for the Badrala site.<br />

Behavioral data collection<br />

We collected behavioral data during 4 periods (06 to 21 July<br />

2008; 11 November to 12 December 2008; 05 April to 06<br />

June 2009;17 October to 22 November 2009). Most groups<br />

were already accustomed to the sporadic presence of local<br />

people. Once we could observe animals at close distances,<br />

we followed each group successively over 2 to 5-day periods,<br />

from 06:30 to 18:30 hours.<br />

We used the instantaneous scan-sampling method (Altmann,<br />

1974) to study group activity budget.Every 5 minutes,we recorded<br />

the individuals’ activity using one of the following categories:resting<br />

(immobile,with eyes open or closed),moving<br />

(more than 0.5 m),foraging (searching for a food item),feeding<br />

(processing or chewing a food item), social activity (displaying<br />

agonistic and affiliation behaviors with other individuals)<br />

and other miscellaneous behaviors. We noted the plant<br />

part and species eaten by individuals.<br />

Besides recording activity budgets,we determined diet from<br />

mouthful counts converted into weight of ingested matter<br />

(Hladik, 1977) for 2 periods: April-June 2009 and October-<br />

November 2009.We estimated food intake in focal individuals<br />

that were followed continuously for 30 minutes each.<br />

Observations were alternated across males and females (excluding<br />

juveniles) within groups.<br />

Results<br />

Forest composition<br />

Plant families occurring at Badrala are presented separately<br />

for trees and lianas/vines in Fig.1.To date,91 tree and liana or<br />

vine species have been identified at least at the family level,<br />

and taxonomic identification of <strong>15</strong> more putative species is<br />

still in progress.The 5 richest families in terms of the number<br />

of species are Fabaceae, Sapindaceae, Ebenaceae, Euphorbiaceae<br />

and Apocynaceae.The most dominant tree species are<br />

Strychnos decussata, Vitex beraviensis, Mimusops occidentalis,<br />

Baudouinia fluggeiformis and Macphersonia gracilis that represent<br />

almost one third of total basal area and tagged trees.<br />

Combretum coccineum, Hypoestes sp., Landolphia perrieri and<br />

Reissantia sp.accounted for more than one third of the lianas<br />

and vines.<br />

Density of trees inventoried on the 4 transects (n=486) corresponds<br />

to 666 inds. ha 1 with a total basal area of 14.5 m²<br />

ha -1.We found a high density of woody lianas and herbaceous<br />

vines in the 800m² plots (n=373).<br />

Sifaka population density and group composition<br />

Groups at Badrala have 1-3 breeding adult males, 1-4 breeding<br />

adult females, and 1-4 immature offspring. We encountered<br />

between <strong>15</strong> and 20 groups at this site. Based on current<br />

recognition of individuals within these groups, a minimum<br />

estimate of 300 inds. km 2 was calculated. Mean size of<br />

focal groups was 4.3 ± 1.8 individuals (n=16).<br />

Diet and activity pattern<br />

Sifakas consumed at least 60 plant species from 32 families.<br />

Tab. 1 lists major food species eaten. During the dry season,<br />

14 plant species represented 75 % of the diet whereas only 7<br />

species were the main food resource in the wet season.


Page 44 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Tab. 1: Food species accounting for 50 and 75 % of the diet of Propithecus coronatus during the dry season and the wet season.<br />

Eaten plant species are listed in decreasing order and their abundance in transects and plots (see text) is indicated.<br />

Family Species Vernacular name Items Abundance (%)<br />

Dry season<br />

Lamiaceae Vitex beraviensis Mojiro yl 10,7<br />

Fabaceae Baudouinia fluggeiformis Manjakabentany yl ml 4.7<br />

Sapotaceae Mimusops occidentalis Natofotsy yl stems 3.9<br />

Anacardiaceae Operculicarya gummifera Atokonjo ml buds 3.5 <br />

Sapindaceae Majidea zanguebarica Tsipopoka yl ml fl 2.3<br />

Oleaceae Noronhia boinensis Tsilaitra beravina yl 1.9<br />

Moraceae Trilepisium occidentalis Kililo ml 1.2<br />

Sphaerosepalaceae Rhopalocarpus lucidus Hazondringitra yl fr 1.0<br />

Melastomataceae Warneckea sp. Voatrotrokoala yl 0.6 75 %<br />

Burseraceae Commiphora sp. Arofy fr buds 0.4<br />

Fabaceae Bussea perrieri Morango ml 0.2<br />

Olacaceae Olax dissitiflora Ambiotsy ml 0.2<br />

Moraceae Ficus pyrifolia Nonika fr<br />

Unidentified - RR80 ml<br />

Wet season<br />

Anacardiaceae Abrahamia deflexa Motsovavy yl fl 3,1<br />

Anacardiaceae Abrahamia sp. Manavodrevo buds yl fl 1.2<br />

Fabaceae Chadsia flammea Fanamohazo buds yl fl 0.8 50 %<br />

Sapotaceae Capurodendron gracilifolium Natoboay buds yl fr 0.2<br />

Apocynaceae Landolphia perrieri Vahipira yl 6.8 75 %<br />

Combretaceae Terminalia sp. Taly buds yl 3.1<br />

Anacardiaceae Operculicarya gummifera Atokonjo yl 3.5<br />

yl: young leaves; ml: mature leaves; fl: flowers; fr: fuits<br />

Fig.1:Abundance of plant families plotted in<br />

decreasing number of individuals among a)<br />

trees with DBH>10cm (based on transects;<br />

0.73 ha) and b) woody lianas and herbaceous<br />

vines >1 m height (based on plots;<br />

0.08 ha).Striped bars refer to the plant families<br />

with the highest number of species.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 45<br />

58%<br />

(a) Dry season (b) Wet season<br />

9%<br />

2%<br />

1%<br />

30%<br />

25%<br />

11%<br />

6%<br />

1%<br />

Sifakas were highly folivorous during both seasons, supplementing<br />

their diet with flowers, fruits, vegetative buds, and<br />

sometimes young stems (Fig. 2). They consumed more mature<br />

leaves and fruits in the dry season and more flowers in<br />

the wet season.<br />

The activity budget of the sifakas is presented in Fig. 3. Although<br />

‘resting’ predominated throughout the study,<br />

individuals rested more in the dry season than in the wet season.Inversely,they<br />

travelled less and engaged in feeding activities<br />

more often during the wet season.<br />

Discussion<br />

The sifaka density was found to be high in the dry forest of<br />

Antrema, with a minimum estimate far above the 173 inds.<br />

km 2 found in the riparian forest of Anjamena (Muller et al.,<br />

2000) or for other sifaka species in dry or wet forests<br />

(O’Connor, 1988; Ganzhorn, 1992). This high density might<br />

be related to some peculiar characteristics of the forest in<br />

terms of food quantity and/or food quality available to this<br />

prosimian species. However,tree basal area was not particularly<br />

high compared with other dry forests in Madagascar<br />

and Mayotte (Hladik, 1980; Simmen et al., 2005). It is not yet<br />

clear also whether high density is related to a putative low<br />

predation pressure.To our knowledge,no sightings or traces<br />

of viverrid carnivores have been reported; large raptors and<br />

boas would be the only predators that could affect the<br />

demography of the Antrema sifaka population (Garbutt,<br />

2007; Sinclair and Legrand, 2008).<br />

As regards their feeding behavior, crowned sifakas fed primarily<br />

on leaves from a few tree, liana and vine species, and<br />

supplemented their diet with a wide range of secondary<br />

items as commonly occurs in other Propithecus species<br />

(Meyers and Wright, 1993; Simmen et al., 2003; Lehman and<br />

Mayor, 2004; Irwin, 2008). Although this species remained<br />

57% Young leaves<br />

Mature leaves<br />

Flowers<br />

Fruits<br />

Other<br />

Fig.2:Food categories in the diet of Propithecus coronatus during the dry season<br />

(a) and the wet season (b).<br />

29,4%<br />

(a) Dry season<br />

0,8% 5,9%<br />

50,0%<br />

(b) Wet season<br />

3,9%<br />

35,8%<br />

5,3%<br />

46,6%<br />

Resting<br />

Locomotion<br />

Foraging<br />

Feeding<br />

6,8%<br />

7,1%<br />

3,6% 4,8%<br />

Social<br />

Other<br />

Fig. 3: Activity budget of Propithecus coronatus during the dry season (a) and the<br />

wet season (b).<br />

folivorous during our study,its diet changed<br />

with seasons. Young leaves were the preferred<br />

food type in the early wet season,<br />

while mature leaves were the dominant one<br />

in the beginning of the dry season. In addition,<br />

P. coronatus ate a higher proportion of<br />

liana and vine parts during the wet season.<br />

Crowned sifakas also followed the typical<br />

activity pattern of other sifaka species<br />

(Norscia et al.,2006;Patel,2006;Charrier et<br />

al., 2007), spending most of their time resting<br />

and devoting a substantial amount of<br />

time to feeding activities and locomotion.<br />

Activity budget nevertheless changed with<br />

seasons. It is generally suggested that the<br />

cool dry season represents a period of food<br />

scarcity for animals,which they compensate<br />

for by reducing their energy expenditure,<br />

travelling less and resting more. In a recent<br />

joint research project, the content of litter<br />

traps regularly distributed along the transects<br />

was collected and weighted every two<br />

weeks throughout one year. It was found<br />

that plant species could be grouped according<br />

to their temporal pattern of leaf loss<br />

(Ranaivoson et al., 2010; see also Razakanirina,<br />

2010). Several trees, lianas and vines<br />

lost their leaves more or less regularly<br />

throughout the dry season while others<br />

were characterized by delayed leaf loss or<br />

on the contrary by precocious leaf fall.One<br />

consequence is that leaves are available<br />

throughout the year, although as different sets of species<br />

varying in quantity,diversity,and presumably,nutritional quality.This<br />

at least could explain why sifakas are able to increase<br />

the diversity of consumed plants (and adopt a more opportunistic<br />

strategy) during the dry season, a period normally<br />

described by the scarcity of food resources.<br />

Future work on seasonal variations in the diet’s nutritional<br />

and chemical content will allow us to examine the role of<br />

qualitative aspects in food choices (Moss,1991;Dearing et al.,<br />

2000) and further examine potential differences between<br />

genders with regard to the importance of energy conservation<br />

for female sifakas (Wright, 1999; Charrier et al., 2007).<br />

Conclusion<br />

Better knowledge of the ecology and the villagers’ social perception<br />

of this flagship species may contribute to conservation<br />

of other diurnal lemurs, by incorporating the villagers’<br />

symbolic perception of their natural environment. Investigating<br />

the interactions between this species and plants of the<br />

coastal dry forest ecosystem will undoubtedly result in<br />

better conservation decisions for Antrema. From an evolutionary<br />

ecology standpoint, the studies we have planned for<br />

the next years at Antrema will also contribute to better<br />

identify the selective pressures that have been driving the<br />

evolution of prosimian typical life-history traits such as<br />

reproductive synchronization or dominance-based feeding<br />

priority of females over males in gregarious species (Wright,<br />

1999; Dewar and Richard, 2007).<br />

Acknowledgements<br />

We thank the Malagasy Institutions that authorized to collect<br />

and export the plant samples,the Ministère de l’Environnement,<br />

des Eaux et forêts et du Tourisme. We also thank<br />

Antrema’s project staff for assistance with the field work as


Page 46 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

well as Master degree students S.Razakanirina,T.Ranaivoson,<br />

V. Randriantoposon and L. Razafindramahatra for helping<br />

with data collection. Special thanks to the specialists of the<br />

Dept of Phanerogamy,J.N.Labat,P.Phillipson and Pete Lowry,<br />

for helping with plant identification. Finally, we thank C.A.<br />

Gauthier, E. Roger, D. Rakotondravony and H. Razafindraibe<br />

for logistic support and collaborative work, and E.G. Leigh<br />

for helpful comments on an earlier draft. This study was<br />

funded by the UMR 7206 - CNRS,and was conducted under<br />

the "Convention cadre de cooperation" between the Université<br />

d’Antananarivo and the Museum National d’Histoire<br />

Naturelle, Paris.<br />

References<br />

Altmann, J. 1974. Observational study of behavior. Sampling<br />

methods. Behavior 49: 227-267.<br />

Charrier,A.;Hladik,A.;Simmen,B.2007.Feeding strategy and<br />

social dominance in female sifakas (Propithecus v.verreauxi)<br />

living in a Didiereaceae forest in southern Madagascar.<br />

Rev. Ecol. (Terre Vie). 62: 257-263.<br />

Dearing,M.D.;Mangione,A.M.;Karasov,W.H.2000.Diet breadth<br />

of mammalian herbivores:nutrient versus detoxification<br />

constraints. Oecol. 123: 397-405.<br />

Dewar,R.E.;Richard,A.F.2007.Evolution in the hypervariable<br />

environment of Madagascar.Proc.Nat.Acad.Sci.USA 104:<br />

13723-13727.<br />

Ganzhorn, J.U. 1992. Leaf chemistry and the biomass of folivorous<br />

primates in tropical forests. Test of a hypothesis.<br />

Oecol. 91: 540-547.<br />

Garbutt,N.2007.Mammals of Madagascar:A Complete Guide.<br />

Yale University Press, New Haven.<br />

Gauthier,C.A.;Deniaud,J.L.;Leclerc-Cassan,M.;Rakotomalala,M.;Razafindramanana,S.;Renson,G.1999.Proc.2nd<br />

Int.<br />

Symp. Biogeography, diversity and endemism in Madagascar,<br />

Paris.<br />

Gauthier,C.A.;Huguet,S.;Rakotondravony,D.;Roger,E.2001.<br />

Diagnostic physico éco-biologique de la station forestière<br />

à usages multiples d’Antrema (péninsule de Katsepy).Parc<br />

Zoologique de Paris, Muséum national d’Histoire naturelle,<br />

Paris.<br />

Groves, C.P.; Helgen, K.M. 2007. Craniodental characters in<br />

the taxonomy of Propithecus.Int.J.Primatol.28:1363-1383.<br />

Harpet,C.;Jeannoda,V.;Hladik,C.M.2000.Sacred lemur sites<br />

in the Sakalava region of North-West Madagascar: updated<br />

data and implications for sustained development<br />

and conservation programs. Rev. Ecol. (Terre Vie) 55:<br />

291-295.<br />

Harpet,C.;Navarro,L.;Ramanankirahana,R.2008.Rôle et implications<br />

des croyances et des savoir-faire locaux dans les<br />

programmes de conservation: exemple d’un site à lémuriens<br />

sacrés au cœur de la Station Forestière à Usages<br />

Multiples d’Antrema (Pays Sakalava, Madagascar). Rev.<br />

Ecol. (Terre Vie) 63: 289-292.<br />

Hladik,A.1980.The dry forest of the West coast of Madagascar:<br />

climate, phenology, and food available for Prosimians.<br />

Pp.3-40.In:P.Charles-Dominique;H.M.Cooper;A.Hladik;<br />

C.M.Hladik;E.PagPs;G.F.Pariente;A.Petter-Rousseaux;J.J.<br />

Petter; A. Schilling (eds.). Nocturnal Malagasy Primates.<br />

Ecology, Physiology, and Behavior. Academic Press, New<br />

York.<br />

Hladik, C.M. 1977. Field methods for processing food samples.<br />

Pp. 595-601. In: T.H. Clutton-Brock (ed.). Primate<br />

Ecology: Studies of Feeding and Ranging Behavior in Lemurs,<br />

Monkeys, and Apes. Academic Press, London.<br />

Irwin, M.T. 2008. Feeding ecology of Propithecus diadema in<br />

forest fragments and continuous forest.Int.J.Primatol.29:<br />

95-1<strong>15</strong>.<br />

Lehman, S.M.; Mayor, M. 2004. Dietary patterns in Perrier’s<br />

sifakas (Propithecus diadema perrieri): A preliminary study.<br />

Am. J. Primatol. 62: 1<strong>15</strong>-122.<br />

Meyers,D.M.;Wright,P.C.1993.Resource tracking:food availability<br />

and Propithecus seasonal reproduction. Pp. 179-92.<br />

In: P.M. Kappeler; J.U. Ganzhorn (eds.). Lemur social systems<br />

and their ecological basis.Plenum Press,New York.<br />

Mittermeier,R.A;Ganzhorn,J.U.;Konstant,W.R.;Glander,K.;<br />

Tattersall, I.;Groves,C.P.;Rylands,A.B.;Hapke,A.;Ratsim-<br />

bazafy, J.; Mayor, M.I; Louis Jr., E.E.; Rumpler, Y.; Schwitzer,<br />

C.; Rasoloarison, R.M. 2008. Lemur diversity in Madagascar.<br />

Int. J. Primatol. 29: 1607-1656.<br />

Mittermeier,R.A;Ganzhorn,J.U.;Konstant,W.R.;Glander,K.;<br />

Tattersall, I.;Groves,C.P.;Rylands,A.B.;Hapke,A.;Ratsimbazafy,<br />

J.; Mayor, M.I; Louis Jr., E.E.; Rumpler, Y.; Schwitzer,<br />

C.; Rasoloarison, R.M. 2006. Lemurs of Madagascar. Conservation<br />

International, Washington.<br />

Moss,R.1991.Diet selection.An ecological perspective.Proc.<br />

Nutr. Soc. 50: 71-75.<br />

Muller,P.;Velo,A.;Raheliarisoa,E.O.;Zaramody,A.;Curtis,D.J.<br />

2000. Surveys of sympatric lemurs at Anjamena, North-<br />

West Madagascar. Afr. J. Ecol. 38: 248-257.<br />

Norscia,I.; Carrai, V.; Borgognini-Tarli, S.M.2006. Influence of<br />

dry season and food quality and quantity on behavior and<br />

feeding strategy of Propithecus verreauxi in Kirindy, Madagascar.<br />

Int. J. Primatol. 27: 1001-1022.<br />

O’Connor, S. 1988. Une revue des différences écologiques<br />

entre deux forêts galeries,une protégée et une dégradée,<br />

au centre sud de Madagascar.Pp.216-227.In:L.Rakotovao;<br />

V. Barre; J. Sayer (eds.). L’équilibre des écosystèmes forestiers<br />

à Madagascar. Actes d’un séminaire international.<br />

UICN, Gland.<br />

Patel, E.R. 2006. Activity budget, ranging, and group size in<br />

silky sifakas (Propithecus candidus). Lemur News 11: 4.<br />

Ramanikirahina,R.2004.Rythme d’activité et régime alimentaire<br />

de Propithecus verreauxi coronatus et d’Eulemur mongoz<br />

dans la Station Forestière d’Antrema. Mémoire de<br />

DEA, Univ. Antananarivo, Faculté des Sciences, Dept Biologie<br />

Animale.<br />

Ranaivoson, T.N.; Razakanirina, H.; Roger, E.; Rajeriarison, C.;<br />

Hladik, A. 2010. Structure de l’habitat de Propithecus coronatus<br />

et disponibilités alimentaires dans la station forestière<br />

a usage multiple d’Antrema: Application de la méthode<br />

des tris de litière et interprétations des adaptations<br />

des espèces arborescentes et lianescentes.AETFAT Congress<br />

April 25-30. Antananarivo, Madagascar.<br />

Razafimahefa,M.A.2001.Caractérisation des habitats de Propithecus<br />

verreauxi coronatus dans la station forestière à usages<br />

multiples d’Antrema (Katsepy): cartographie, typologie,<br />

étude ethnobotanique. Mémoire de DEA, Univ. Antananarivo,<br />

Faculté des Sciences, Dept Biologie et Ecologie<br />

Végétale.<br />

Razakanirina, H. 2010. Suivi phénologique global et statut de<br />

conservation de 4 espèces végétales (Strychnos decussata,<br />

Diospyros ferrea,Gardenia decaryi et Capurodendron gracilifolium)<br />

consommées par Propithecus verreauxi coronatus dans<br />

la forêt de Badrala (Antrema). Mémoire de DEA, Univ.<br />

Antananarivo,Faculté des Sciences,Dept Biologie et Ecologie<br />

Végétale.<br />

Simmen, B.; Hladik, A.;Ramasiarisoa,P. 2003. Food intake and<br />

dietary overlap in native Lemur catta and Propithecus verreauxi<br />

and introduced Eulemur fulvus at Berenty, southern<br />

Madagascar. Int. J. Primatol. 24: 948-967.<br />

Simmen, B.; Tarnaud, L.; Bayart, F.; Hladik, A.; Thiberge, A.L.;<br />

Jaspart, S.; Jeanson, M.; Marez, A. 2005. Richesse en métabolites<br />

secondaires des forêts de Mayotte et de Madagascar<br />

et incidence sur la consommation de feuillages chez<br />

deux espèces de lémurs (Eulemur spp.). Rev. Ecol. (Terre<br />

Vie) 60: 297-324.<br />

Sinclair, I.; Langrand, O. 2008. Birds of the Indian Ocean<br />

islands. Struik, Cape Town.<br />

Tattersall, I. 1986. Notes on the distribution and taxonomic<br />

status of some subspecies of Propithecus in Madagascar.<br />

Folia Primatol. 46: 51-63.<br />

Thalmann, U.; Kümmerli, R.; Zaramody, A. 2002. Why Propithecus<br />

verreauxi deckeni and P. v. coronatus are valid taxa.<br />

Quantitative and qualitative arguments. Lemur News 7:<br />

11-16.<br />

Wright, P.C. 1999. Lemur traits and Madagascar ecology:<br />

Coping with an island environment.Yrbk Phys.Anthropol.<br />

42: 31-72.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 47<br />

Effet de la dégradation de l’habitat sur la<br />

consommation alimentaire d’Eulemur<br />

rubriventer dans deux sites: Talatakely et<br />

Vatoharanana,du Parc National de Ranomafana<br />

Laingoniaina H.Rakotonirina 1,2*,Germain J.Spiral 1,2,<br />

Jonah H. Ratsimbazafy 1,2, Soanorolalao Ravelonjanahary<br />

1,Raharizelina Ralaiarison 1,2,Stacey Tecot 3,Alex<br />

Hall 4, Tricia Calhoon 4, Gisèle R. Randria 1,2<br />

1Département de Paléontologie et d’Anthropologie Biologique,<br />

Faculté des Sciences, B.P. 906, Université d’Antananarivo,<br />

Madagascar<br />

2Groupe d’Etudes et de Recherche sur les Primates de Madagascar<br />

(GERP)<br />

3Department of Anthropology, University of Stony Brook,<br />

USA<br />

4<strong>Vol</strong>untary field assistant<br />

*Contact de l’auteur principal: laingoniaina2000@yahoo.fr<br />

Mots clés:Eulemur rubriventer,dégradation,habitat,consommation<br />

alimentaire, Ranomafana, Madagascar<br />

Introduction<br />

La grande île est potentiellement riche en matière de biodiversité<br />

et est par conséquent renommée pour sa remarquable<br />

richesse écologique, biologique et génétique (Ganzhorn<br />

et al.,2001).Cette richesse qui est gravement menacée<br />

par la diminution et la destruction immuables des habitats<br />

naturels de nombreuses espèces fait de Madagascar un des<br />

huit "hotspots" les plus considérés de notre planète (Ganzhorn<br />

et al., 2001).<br />

A l’échelle mondiale, la menace la plus grave pour la population<br />

des primates est la destruction et la dégradation de leur<br />

habitat, notamment les forêts tropicales qui hébergent aujourd’hui<br />

environ 90 % des primates non humains du monde<br />

(Mittermeier et al., 2006, 2010). Les lémuriens malgaches ne<br />

font pas exception à cette constatation. La dégradation des<br />

forêts affecte la biologie générale des lémuriens car non<br />

seulement elles leur fournissent des abris et de la nourriture,<br />

mais aussi elles servent de supports à la locomotion et aux<br />

différentes activités de ces animaux (Razafimahazo, 2001).<br />

Selon Randriatahina en 2001, la fragmentation de l’habitat<br />

affecte en premier lieu la distribution et la dispersion de la<br />

nourriture.Certains facteurs influencent le rythme d’activité<br />

et le budget-temps des primates:il s’agit surtout des facteurs<br />

écologiques majeurs tels que la structure de l’habitat,le type<br />

d’alimentation (Zaonarivelo, 1999). Par ailleurs, Dunbar<br />

(1988) affirme que les primates pourraient augmenter leur<br />

déplacement journalier pour trouver de la nourriture ou<br />

inversement en vue d’économiser leur énergie.<br />

Notre présent travail est axé sur la corrélation entre l’habitat<br />

et l’alimentation des lémuriens.Les lémuriformes montrent<br />

un degré de variabilité en ce qui concerne la spécialisation<br />

aux régimes alimentaires.La plupart d’entre-eux (les<br />

Lémuridés,les Mégaladapidés,les Indridés) se spécialisent au<br />

régime végétarien. Cependant, la proportion de feuilles, de<br />

fleurs, et de fruits consommés varie suivant les espèces et<br />

sous-espèces,d’une région à une autre,et de saison en saison<br />

(Richard, 1978). Selon Zaonarivelo (1999), des facteurs écologiques<br />

influencent les comportements des lémuriens et la<br />

perturbation de leur habitat affecte leur organisation sociale<br />

et l’exploitation des ressources alimentaires.<br />

En tenant compte de toutes ces observations, nous avons<br />

effectué une étude concernant l’effet de la dégradation de<br />

l’habitat sur la consommation alimentaire d’Eulemur rubriventer<br />

dans deux sites: Talatakely et Vatoharanana du Parc National<br />

de Ranomafana, dans la province de Fianarantsoa.<br />

Il y a lieu de souligner qu’Eulemur rubriventer, une espèce<br />

hautement frugivore (Overdorff, 1993), dispose d’une haute<br />

importance écologique car elle participe activement à la dispersion<br />

des graines dans la région du Sud-Est de Madagascar,<br />

en particulier dans le Parc National de Ranomafana. A cet<br />

égard, bien que l’animal soit encore classé dans la catégorie<br />

vulnérable selon la liste rouge de l’UICN (Mittermeier et al.,<br />

1994,2006,2010),il a besoin d’ une action de conservation.<br />

C’est la raison pour laquelle le parc national de Ranomafana a<br />

été choisi comme notre station de recherche car par rapport<br />

aux autres régions de l’île, les lémurs à ventre roux y<br />

sont les plus répandus (Mittermeier et al.,2006);et leur habitat<br />

présente un degré variable de dégradation.<br />

Compte tenu de cette variation du degré de dégradation et<br />

de perturbation du milieu de vie d’Eulemur rubriventer dans le<br />

Parc National de Ranomafana, nous pouvons avancer une<br />

hypothèse selon laquelle la consommation alimentaire n’est<br />

pas statistiquement différente entre celle de Vatoharanana<br />

et celle de Talatakely.<br />

Ce projet a été réalisé dans le cadre de la collaboration interdépartementale<br />

entre l’Université d’Antananarivo, l’ICTE/<br />

MICET,le MNP et l’Université de Texas.Ainsi,le présent travail<br />

qui vise en la conservation des lémurs à ventre roux a<br />

comme objectifs d’inventorier les différentes espèces de<br />

plantes consommées par Eulemur rubriventer,de comparer le<br />

régime alimentaire adopté dans chaque site d’étude, de<br />

déterminer les caractéristiques des plantes consommées<br />

dans les deux sites d’études à dégradations différentes.<br />

Site d’études<br />

Le parc National de Ranomafana se trouve dans le Sud Est de<br />

Madagascar.Sa superficie est de 41.600 ha.Ce parc se localise<br />

au Nord-Est de Fianarantsoa, à 70 km à l’Ouest de l’Océan<br />

Indien et à 400 km d’Antananarivo.Il est situé entre 47°18’ à<br />

47°37’ Est de longitude et 21°2’ à 21°25’ Sud de latitude. La<br />

température moyenne annuelle est de l’ordre de 21°C selon<br />

Turk en 1995. Quant à la pluviosité, Overdorff a affirmé en<br />

1996 que la pluie y est saisonnière avec une précipitation<br />

moyenne de 2000 mm. Deux sites ont été choisis pour<br />

effectuer notre travail de recherche. Il s’agit de:<br />

Talatakely:milieu perturbé et plus dégradé.Il est situé à environ<br />

10 mn de marche de la poste de garde et de contrôle<br />

du Parc d’Ambodiamontana. Ce site de 1020 m d’altitude<br />

(Brady et al., 1996), est caractérisé par une visite fréquente<br />

de touristes. Notons également que, à cause des abattages<br />

intensifs des arbres par les bûcherons (Kremen, 1992), la<br />

forêt de Talatakely se trouve fortement dégradée.<br />

Vatoharanana: un milieu moins perturbé et moins dégradé.<br />

Cet endroit est à 1090 m d’altitude et se trouve à 2<br />

heures de marche de Talatakely. Ce champ de forêt était exploité<br />

par les bûcherons il y a 25 ans (Brady et al.,1996).Mais,<br />

la dégradation était moins intense que celle de Talatakely<br />

(Kremen, 1992). La visite des touristes dans cette station<br />

d’études est également moins fréquente. Vatoharanana est<br />

donc un site moins perturbé par rapport à Talatakely.<br />

Les deux stations de recherche sont représentées dans la<br />

figure 1.<br />

Espèces étudiées<br />

Afin de répondre à toutes nos questions, une espèce hautement<br />

frugivore, qui participe activement à la dispersion des<br />

graines (Overdorff,1993),a fait l’objet de notre étude.Il s’agit<br />

du Lémur à ventre roux ou Eulemur rubriventer. Généralement,cette<br />

espèce de taille moyenne vit en petit groupe de 2


Page 48 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Fig. 1: Localisation des deux sites d’études dans le Parc<br />

National de Ranomafana.<br />

à 5 individus. Elle consomme également des feuilles, des<br />

fleurs, de la terre, des mille-pattes. Selon Overdorff (1996),<br />

l’animal mange beaucoup plus de fruits et moins de feuilles.<br />

Eulemur rubriventer présente un dimorphisme sexuel au<br />

niveau de la morphologie. En effet, le ventre des femelles est<br />

clair;tandis que la poitrine et la partie inférieure du corps du<br />

mâle sont visiblement colorées en marron roux. Le mâle<br />

diffère également de la femelle par la présence de tâche<br />

blanche sur le coin interne des yeux (Dague et Petter,1988).<br />

En ce qui concerne notre étude, nous avons suivi cinq<br />

groupes de lémurs à ventre roux dont trois à Talatakely et<br />

deux à Vatoharanana.<br />

Suivi écologique<br />

Le suivi écologique proprement dit était précédé de la familiarisation<br />

de tous les groupes d’études. A ce propos, durant<br />

cinq mois d’études sur terrain,du mois de décembre 2003 au<br />

mois d’avril 2004, la fréquence d’observation était de cinq<br />

jours par semaine. L’observation s’étale de sept à douze<br />

heures dans la matinée et de treize à quinze heures dans<br />

l’après midi. Au total, l’équipe a suivi cinq groupes pour les<br />

sites de Talatakely et de Vatoharanana, pendant 588 heures<br />

45 minutes et 54 secondes.<br />

La méthode d’enregistrement continu de données a été<br />

adoptée.Elle nous donne des informations plus fiables et plus<br />

pratiques par rapport à une méthode d’enregistrement instantané<br />

(Martin et Bateson, 1986). En outre, nous avons<br />

collecté les données sur l’alimentation en suivant la méthode<br />

de "focal animal sampling" (Altmann, 1974). Durant ces observations,nous<br />

avons enregistré les informations suivantes:<br />

Site d’études: Talatakely ou Vatoharanana;<br />

Groupe d’étude;<br />

Focal animal;<br />

Date de l’observation;<br />

Heure d’observation (Début et fin);<br />

Temps dépensé (Début et fin) à la consommation alimentaire<br />

et aux autres activités;<br />

Nom de chaque espèce consommée (plantes ou autres);<br />

Parties consommées des plantes: fruit, feuille, fleur;<br />

Etat des parties comsommées (fruit immature ou mûr,<br />

jeune feuille, feuille mature, fleur ouverte ou fermée);<br />

Piste la plus proche.<br />

Analyses statistiques<br />

Test de similarité entre deux échantillons<br />

Ce test sert à vérifier la similarité entre le régime alimentaire<br />

adopté par les lémurs à ventre roux de Talatakely et celui de<br />

Vatoharanana.Il se base sur la valeur du coefficient de Jaccard<br />

(Brower et al.,1990).Ce coefficient est donné par la formule<br />

suivante:<br />

CC: Coefficient de Jaccard<br />

S1: Effectif d’espèces végétales, animales et autres dans le<br />

régime de l’espèce de Talatakely (ET);<br />

S2: Effectif d’espèces végétales, animales et autres dans le<br />

régime d’Eulemur rubriventer de Vatoharanana (EV);<br />

C:Effectif d’espèces végétales,animales et autres communes<br />

(ET et EV)<br />

Par souci de conformité, nous avons adopté les échelles<br />

suivantes:<br />

0-40 %: faible similarité entre les deux régimes;<br />

40-60 %: similarité moyenne entre les deux régimes;<br />

60-80 %: grande similarité entre les deux régimes;<br />

80-100 %: forte similarité entre les deux régimes.<br />

Test de Chi-deux:<br />

Cette méthode sert à comparer la durée moyenne journalière<br />

(en minute) consacrée à la consommation alimentaire<br />

des lémurs à ventre roux de Talatakely et de Vatoharanana.A<br />

cet effet, les variables utilisées sont les durées moyennes<br />

journalières dépensées à la consommation des fruits, des<br />

feuilles, des fleurs et autres (sol, eau, champignon, insectes,…);<br />

et ce dans des intervalles de temps bien déterminés;<br />

c’-est-à-dire, entre 7 et 8h, 8 et 9h, 9 et 10h, 10 et 11h, 11 et<br />

12h, 13 et 14h et finalement entre 14 et <strong>15</strong>h. Plus précisément,<br />

elle nous permet de vérifier si la différence entre la<br />

consommation de ces aliments est statistiquement significative<br />

ou non dans les deux milieux.<br />

Résultats<br />

Temps dédié à l’activité alimentaire<br />

Fig. 2 montre l’allure générale de la durée moyenne journalière<br />

en ce qui concerne la consommation alimentaire<br />

générale des lémurs à ventre roux du milieu plus dégradé de<br />

Talatakely et celle du site moins dégradé de Vatoharanana.<br />

Selon cette figure,la prise de nourriture débute entre 7 et 8h.<br />

Concernant le site de Talatakely,elle dessine un pic entre 9 et<br />

10h. Cette activité diminue jusqu’à 12h, puis remonte pour<br />

atteindre le maximum vers 14 à <strong>15</strong>h. Quant à l’Eulemur rubriventer<br />

de Vatoharanana,le pic de l’alimentation se situe entre<br />

8 et 9h. La courbe diminue jusqu’à 12h environ. Ensuite, une<br />

légère remontée de l’activité est constatée jusqu’à <strong>15</strong>h envi-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 49<br />

ron. L’hypothèse nulle est acceptée car l’analyse statistique<br />

( 2= 9,95 ;avec ddl=6,et p>0,05) indique une différence non<br />

significative concernant la prise de la nourriture entre<br />

chaque intervalle de temps.<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

7-8h 8-9h 9-10h 10-11h 11-12h 13-14h 14-<strong>15</strong>h<br />

Intervalle de temps<br />

Talatakely Vatoharanana<br />

Fig. 2: Temps consacré à la consommation alimentaire pour<br />

Eulemur rubriventer dans les deux sites d’étude: Talatakely et<br />

Vatoharanana.<br />

Durée en minute<br />

Similarité entre les régimes alimentaires d’Eulemur rubriventer du<br />

site dégradé de Talatakely et de celui de la station moins dégradée<br />

de Vatoharanana<br />

L’inventaire des espèces consommées par les lémurs à<br />

ventre roux dans les deux sites nous a permis de calculer le<br />

coefficient de Jaccard afin de tester s’il existe ou non une<br />

similarité de régimes dans les deux milieux. Nous avons<br />

recensé 52 espèces de plantes qui sont utilisées comme<br />

source de leur nourriture pour le site de Talatakely. En<br />

revanche, 60 espèces sont inventoriées dans le site de<br />

Vatoharanana.Il est à noter que 35 d’entre elles sont à la fois<br />

consommées à Talatakely et à Vatoharanana. La liste des<br />

espèces végétales utilisées par ces animaux comme source<br />

de leur nourriture (avec la durée de consommation correspondante)<br />

est résumée dans le tableau récapitulatif suivant.<br />

Tab. 1: Liste des espèces végétales consommées (61) par<br />

Eulemur rubriventer, avec la durée de consommation correspondante,<br />

dans les deux sites d’étude.<br />

Nom<br />

malagasy<br />

Ramy<br />

Kalafambakaka<br />

Durée (en mn)<br />

Genre Famille Fr Fe Fl Tala Vato<br />

Canarium<br />

madagascariensis<br />

Burseraceae + +<br />

Oncostemum sp. Myrsinaceae + + + 23,57 242,55<br />

Vakoana Pandanus sp. Pandanaceae + + + 21,40<br />

Nonoka Ficus sp. Moraceae + 24,02 269,75<br />

Vahimberana<br />

Strongylodon c<br />

raveniae<br />

Fabaceae + 2,03 189,72<br />

Voara Ficus sp. Moraceae + 70,08 39,45<br />

Voara rano Ficus botryoides Moraceae + + 23,13 36,<strong>15</strong><br />

Sandramy Protorhus sp.<br />

Anacardiaceae<br />

+ 17,08<br />

Voandavenona<br />

+ 12,70 87,63<br />

Famakilela Ficus sp. Moraceae + + 3,65 7,55<br />

Tavolo malady Cryptocarya<br />

acuminata<br />

Lauraceae + 98,32<br />

Vahitamboro Danais sp. Rubiaceae + + 19,10 12,97<br />

Mahanoro<br />

Streblus<br />

dimepate<br />

Moraceae + 62,58<br />

Tsirika Pandanus sp. Pandanaceae + 38,00 1,67<br />

Rotra Syzygium sp. Myrtaceae + 27,28<br />

Apana Ficus sp. Moraceae + 8,070 135,<strong>15</strong><br />

Sira Neodypsis sp. Arecaceae + 36,30 21,47<br />

Rotra mena Syzygium sp. Myrtaceae + 9,020 17,32<br />

Fandramanana Aphloia<br />

theaeformis<br />

Flacourtiaceae<br />

+ 127,82<br />

Velatra spécial Ruellia sp. Acanthaceae + 68,68 27,05<br />

Durée (en mn)<br />

Nom<br />

malagasy<br />

Genre Famille Fr Fe Fl Tala Vato<br />

Faritraty Memecylon sp.<br />

Melastomataceae<br />

+ 16,83 101,57<br />

Maranitratoraka<br />

Vernonia sp. Asteraceae + 68,40<br />

Vahivoraka<br />

Mendoncia<br />

avani<br />

Mendonciaceae<br />

+ + 169,48<br />

Fatsikahitra Alberta humblotii Rubiaceae + + 9,03 425,63<br />

Albizia Albizia chinensis Leguminosae + 29,67<br />

Rotra fotsy Syzygium sp. Myrtaceae + 30,97<br />

Tongoalahy Bakerella sp.<br />

Loranthaceae<br />

+ + 3,25 25,68<br />

Kalafana<br />

spécial<br />

Oncostemum<br />

botryoides<br />

Myrsinaceae + + + 7,67 130,45<br />

Hafipotsy Grewia sp. Tiliaceae + 35,92<br />

Fanalamangidy +<br />

Vavaporetaka Melanophylla<br />

crenata<br />

Melanophyllaceae<br />

+ 26,05 16,58<br />

Kaboka Voacanga sp. Apocynaceae + 86,73 66,30<br />

Sandramy fot-<br />

Protorhus sp.<br />

syAnacardiaceae<br />

+ 20,32<br />

Apaliala Treculia africana Moraceae + 14,85<br />

Ramandriona Dilobeia thouarsii Proteaceae + 7,<strong>15</strong> <strong>15</strong>,28<br />

Andriambo.<br />

lamena<br />

Menispermaceae<br />

+ 138,73<br />

Bararata Gaertnera sp. Rubiaceae + 26,75 11,62<br />

Nato jabo<br />

Mammea<br />

vatoensis<br />

Clusiaceae + 69,60<br />

Tavilona Vernonia sp. Asteraceae + 4,07<br />

Malanimanta<br />

Apodytes<br />

thouvenotii<br />

Icacinaceae + 3,52<br />

Voantsosoka + 45,08<br />

Lambinanala Nuxia sp. Loganiaceae + 17,88<br />

Rahiaka<br />

Chrysophyllum<br />

boivinianum<br />

Sapotaceae + 6,30 663,50<br />

Amontana Ficus lutea Moraceae + 22,42<br />

Goavy<br />

Psidium<br />

cattleianum<br />

Myrtaceae + 589,02<br />

Fanorafa<br />

Euphorbiaceae<br />

+ 173,10<br />

Kimba spécial Symphonia sp. Clusiaceae + 3,23<br />

Veso<br />

Terminalia tetranoCombretaraceae + 2,02<br />

Vahirano Cissus sp. Vitaceae + <strong>15</strong>,73 104,17<br />

Fohaninasity Psychotria sp. Rubiaceae + 260,93<br />

Rohindambo Smilax anceps Smilacaceae + 5,67<br />

Sary<br />

Potameia<br />

chartacea<br />

Lauraceae + 36,60<br />

Kalamasina<br />

Embelia madagascariensis<br />

Myrsinaceae + 10,43<br />

Ambora<br />

Tambourissa<br />

thouvenotii<br />

Monimiaceae + 10,85<br />

Harongana<br />

Harungana mada-<br />

Clusiaceae<br />

gascariensis<br />

+ 21,45<br />

Nato spécial Sideroxylon sp. Sapotaceae + 1,82<br />

Holatra Champignon +<br />

Amboralahy<br />

Decarydendron he-<br />

Monimiaceae<br />

lenae<br />

+ 10,33<br />

Sandramy<br />

Mena<br />

Protorhus sp.<br />

Anacardiaceae<br />

+ 1,50<br />

Inconnue 1,37 8,82<br />

Champignon 6,60<br />

Tala = site de Talatakely; Vato = site de Vatoharanana; Fr = fruits; Fe = feuilles ;<br />

Fl = fleurs.; *: consommé<br />

Le calcul du coefficient de Jaccard offre une valeur de 0,45;<br />

soit 45 %. Il en découle que le régime alimentaire d’Eulemur<br />

rubriventer des deux sites présente une similarité moyenne.<br />

Aussi, la différence entre le régime d’Eulemur rubriventer des<br />

deux milieux peut être révélée par la constatation de la<br />

durée consacrée à la consommation de chaque catégorie<br />

alimentaire telle que les fruits, les fleurs, les feuilles et bien<br />

d’autres (Cf. Tab. 2 et Fig. 2).<br />

En se basant sur ce tableau récapitulatif (Tab.2) et sur la Fig.2,<br />

nous constatons que dans le milieu dégradé de Talatakely, la<br />

consommation des fruits s’avère très importante par rapport<br />

à celle du milieu moins dégradé de Vatoharanana. De<br />

plus en comparant avec l’espèce du site de Talatakely,celle de


Page 50 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

la station de Vatoharanana comble beaucoup plus sa nourriture<br />

avec des fleurs, des feuilles, et d’autres types d’aliments.<br />

Tab. 2: Comparaison de la consommation journalière de<br />

chaque catégorie alimentaire d’Eulemur rubriventer dans les<br />

deux sites durant la période d’observation (en minute).<br />

Sites Fruit Fleur Feuille Autres<br />

Talatakely 80,80 0,52 4,54 0,12<br />

Vatoharanana 72,58 8,32 11,16 1,63<br />

Durée de la consommation<br />

(en minute)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Fruit Fleur Feuille Autres<br />

Catégorie alimentaire<br />

Talatakely Vatoharanana<br />

Fig.3:Allure de la consommation journalière de chaque catégorie<br />

alimentaire d’Eulemur rubriventer dans les deux sites<br />

durant la période d’observation.<br />

Discussion<br />

Eulemur rubriventer est un lémurien hautement frugivore.<br />

Mais la proportion des fruits qu’il consomme varie suivant le<br />

degré de perturbation,de dégradation,de l’altitude du milieu,<br />

ainsi que de la saison. Notons également que la consommation<br />

des différentes catégories alimentaires dépend de la<br />

disponibilité des ressources alimentaires (Rasolofonirina,<br />

2001). Lors de notre étude, nous constatons que dans le<br />

milieu dégradé de Talatakely, la consommation des fruits<br />

s’avère très importante que dans le milieu moins dégradé de<br />

Vatoharanana.De plus,en comparant avec l’espèce du site de<br />

Talatakely, celle de la station de Vatoharanana comble beaucoup<br />

plus sa nourriture avec des fleurs, des feuilles, et d’autres<br />

types d’aliments. Ceci est dû certainement à la saison<br />

cyclonique durant laquelle le vent est violent.Comme le site<br />

de Vatoharanana est beaucoup plus élevé par rapport à Talatakely,il<br />

s’avère logique qu’il est beaucoup plus affecté par ce<br />

vent violent.En effet,les fruits deviennent rares car beaucoup<br />

d’entre eux tombent par terre. Selon Zaonarivelo (1999),<br />

pendant la période de crise, Varecia variegata variegata augmente<br />

le taux de folivorie même si les feuilles sont des aliments<br />

de compensation.Cette stratégie adoptée par l’animal<br />

lors de la période de crise est également observée chez<br />

d’autres espèces de lémuriens de la forêt dense humide<br />

(Ganzhorn, 1988) entre-autres l’Eulemur rubriventer,leEulemur<br />

mongoz qui se nourrissent de fleurs en plus des fruits et<br />

des feuilles durant la période de floraison (Sussman, 1975).<br />

Par ailleurs,Garbutt (1999) argumente que les fruits constituent<br />

la majeure partie de l’alimentation d’Eulemur rubriventer.<br />

Mais quand ils ne sont pas disponibles,les feuilles et les fleurs<br />

sont aussi consommées (Rasolofonirina, 2001). Notons à la<br />

même occasion que les primates adoptent différentes stratégies<br />

pour affronter le manque de nourriture de base (le<br />

fruit pour notre cas) soit en augmentant le temps de la<br />

recherche de nourriture en se déplaçant beaucoup, soit en<br />

acceptant de consommer des aliments de basse qualité<br />

(Zaonarivelo, 1999).<br />

Par rapport au milieu dégradé,l’abondance des fruits dans le<br />

milieu moins dégradé est évidente.Mais en tenant compte de<br />

l’étude phénologique mensuelle des plantes recensées, ce<br />

n’est pas toujours le cas; car plusieurs facteurs pourraient<br />

agir sur ce milieu.Ainsi le climat,en particulier la pluviosité et<br />

le cyclone, influence la qualité et la quantité de la nourriture<br />

disponible (Dajoz, 1985). En effet, durant la période cyclonique,<br />

l’altitude de la station joue un rôle important sur les<br />

arbres à semences. Autrement dit, plus l’altitude d’un milieu<br />

est élevée,plus le vent agit directement sur les arbres et plus<br />

les fruits tombent. Par conséquent, les arbres portent moins<br />

de fruits. L’animal est obligé de se rabattre sur d’autres<br />

catégories alimentaires comme les feuilles, les fleurs, les<br />

champignons, les insectes pour pouvoir combler l’insuffisance<br />

de nourriture de base.Ce cas se rencontre dans le site<br />

de Vatoharanana qui est considéré comme milieu moins<br />

dégradé et qui est situé à une altitude plus élevée (1090 m)<br />

par rapport au site dégradé de Talatakely qui se trouve à une<br />

altitude de 1020 m (Brady et al, 1996). Concernant le site de<br />

Talatakely, la dispersion des fruits dans l’espace est insuffisante<br />

à cause de la dégradation de ce milieu.Ainsi,au lieu de<br />

combler sa nourriture par d’autres types d’aliments, il est<br />

contraint à se déplacer loin afin de consommer de la nourriture<br />

de haute qualité qui lui apporte beaucoup plus d’énergie<br />

comme le glucide, le lipide et les protéines (Zaonarivelo,<br />

1999).<br />

Finalement, en se basant sur les données phénologiques,<br />

nous avons constaté que la consommation de chaque catégorie<br />

alimentaire varie suivant leur disponibilité mensuelle<br />

dans chaque mileu. Au mois de décembre, par exemple,<br />

l’Eulemur rubriventer de Vatoharanana consomme beaucoup<br />

plus de fleurs que de fruits par rapport à celui de Talatakely<br />

car pendant ce mois, les fleurs y sont disponibles. Remarquons<br />

également que l’espèce de la station de Talatakely ne<br />

consomme que des fruits durant la fructification de l’espèce<br />

introduite de goyave (Psidium cattleianum). Ce type de fruit<br />

est très apprécié par l’animal.<br />

Le régime alimentaire d’Eulemur rubriventer est moyennement<br />

similaire dans les deux milieux étudiés.<br />

Cependant, quelques espèces de plantes consommées par<br />

l’animal sont propres à chaque site. L’espèce introduite de<br />

goyave Psidium cattleianum se rencontre uniquement à Talatakely.<br />

Notons que l’introduction de cette espèce marque la<br />

dégradation de cette station. Par contre, l’animal de Vatoharanana<br />

a l’opportunité de consommer, par exemple, l’espèce<br />

Mammae vatoensis qui est endémique à ce site. Cette<br />

similarité moyenne entre les deux régimes implique que la<br />

dégradation du site de Talatakely n’est pas encore poussée à<br />

l’extrême (Randriamahaleo,2005).En effet,il est classé parmi<br />

les sites moyennement dégradés. Selon Tam-Alkis (1997), le<br />

site de Talatakely est séparé de Vatoharanana par une barrière<br />

biogéographique (rivière Fompohonona). Il paraît que<br />

la dispersion des graines de part et d’autre de cette rivière<br />

est empêchée. Voilà pourquoi certaines espèces de plantes,<br />

utilisées comme source alimentaire, caractérisent uniquement<br />

l’un de ces sites. Par conséquent son régime varie<br />

suivant le site.<br />

Conclusion<br />

Cette étude nous a permis de fournir plus d’informations sur<br />

la relation entre la dégradation de l’habitat d’Eulemur rubriventer<br />

et sa consommation alimentaire.L’investigation révèle<br />

une similarité moyenne entre le régime alimentaire adopté<br />

par l’animal de Talatakely et celui de Vatoharanana. L’espèce<br />

semble être principalement frugivore quelque soit le site.<br />

Cependant, la proportion de consommation varie suivant le<br />

milieu. A Talatakely, par exemple, ce lémur à ventre roux se


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 51<br />

nourrit beaucoup plus de fruits par rapport à celui de Vatoharanana<br />

où il comble sa nourriture avec des fleurs, des<br />

feuilles, et bien d’autres catégories alimentaires. Ceci est dû<br />

sans doute au passage des deux cyclones (Elita et Gafilo)<br />

dans la région durant la période d’étude. En fait, Vatoharanana<br />

se trouve à une altitude très élevée par rapport à Talatakely.En<br />

effet,les vents violents agissent directement sur les<br />

arbres fruitiers, conduisant ainsi l’insuffisance des fruits.<br />

Aussi, la consommation de Psidium cattleianum (Myrtaceae),<br />

qui est une espèce introduite propre à Talatakely semble être<br />

très importante dans ce milieu. Par contre, Chrysophillum<br />

boivinianum s’avère être la plus appréciée par l’animal de<br />

Vatoharanana. Toutes ces constatations nous conduisent à<br />

dire que la consommation alimentaire d’Eulemur rubriventer<br />

paraît être conditionnée par la disponibilité de la nourriture<br />

dans chacun des sites visités et par l’état de l’habitat.<br />

Remerciements<br />

Nous tenons à remercier le Centre Valbio, le MICET représentés<br />

respectivement par le Professeur Patricia Wright et le<br />

Docteur Benjamin Andriamihaja pour leur soutien et leur<br />

collaboration durant la longue haleine de travail dans le Parc<br />

National de Ranomafana. Nos vifs remerciements s’adressent<br />

également à tous les guides de recherche pour leur<br />

assistance (Telo Albert, Victor, Koto, Nirina) et à tout ce qui<br />

contribue, de près ou de loin à la réalisation de ce projet.<br />

Références bibliographiques<br />

Altmann, J. 1974. Observational study of behavior: Sampling<br />

methods. Behavior 49: 227-267.<br />

Brady, L.H.; Jenkens, R.; Kauffmann, J.; Rabearivony, J.; Raveloson,<br />

G.; Rowcliffe, M. 1996. Madagascar Expedition 93.<br />

Final Report. Univ. East Anglia. Norwich, U.K.<br />

Brower,J.E.;Zar,J.H.;von Ende,C.N.1990.Field and laboratory<br />

methods for general ecology. Kevin Kane, ed. Wm C.<br />

Brown publishers, Dubuque.<br />

Dague, C.; Petter, J.J. 1988. Observations sur le Lemur rubriventer<br />

dans son milieu naturel.Pp.78-89.In:L.Rakotovao,V.<br />

Barre,et J.Sayer (eds.),l’Equilibre des Ecosystèmes Forestiers<br />

à Madagascar: Acte d’un séminaire international.<br />

IUCN, Gland, Switzerland and Cambridge U.K.<br />

Dajoz 1985. Précis de l’écologie. 5ème edition. Dunod University.<br />

Paris. Pp. 135.<br />

Dunbar,R.I.M.1988.Prosimiens.Primate adaptation and evolution.<br />

Academic Press. Harcourt Brace Jovanic. Pp. 67-<br />

110.<br />

Ganzhorn, J.U. 1988. Food partitioning among Malagasy Primates.<br />

Oecologia (Berlin) 75: 436-450.<br />

Ganzhorn, J.U.; Lowry II, P.P.; Schatz, G.E.; Sommer, S. 2001.<br />

The biodiversity of Madagascar: one of the world’s hottest<br />

hotspots on its way out. Oryx 35 (4): 346-348.<br />

Garbutt, N. 1999. Mammals of Madagascar. Yale University<br />

Press, New Haven.<br />

Kremen, C. 1992. Assessing the indicator properties of species<br />

assemblages for natural areas monitoring. Ecological<br />

Applications. 2(2): 203-217.<br />

Martin, P.; Bateson, P. 1986. Measuring behavior. Cambridge<br />

University Press. Cambridge.<br />

Mittermeier, R.A.; Louis, E.E.; Schwitzer, C.; Langrand, O.;<br />

Konstant, W.; Rylands, A.B.; Hawkins, F.; Rajaobelina, S.;<br />

Ratsimbazafy, J.H.; Rasoloarison, R.; Roos, C.; Kappeler,<br />

P.M.;MacKinnon,J.2010.Lemurs of Madagascar.Third edition.<br />

CI Field Guide Series. Washington, DC, USA.<br />

Mittermeier, R.A.; Konstant, W.R.; Hawkins, F.; Louis, E.E.;<br />

Langrand, O.; Ratsimbazafy, J.H.; Rasoloarison, R.; Ganzhorn,<br />

J.U.; Rajaobelina, S.; Tattersall, I.; Meyers, D.M. 2006.<br />

Lemurs of Madagascar. Second edition. CI Field Guide<br />

Series. Washington, DC, USA.<br />

Mittermeier, R.A.; Tattersall, I.; Konstant, W.R.; Meyer, D.;<br />

Mast,R.1994.Lemurs of Madagascar.Conservation International,<br />

Washington, D.C, USA.<br />

Overdorff, D.J. 1993. Ecological and reproductive correlates<br />

to range use in red-bellied lemurs (Eulemur rubriventer)<br />

and rufous lemurs (Eulemur fulvus rufus). Pp. 167-178. In:<br />

Kappeler, P.M.; Ganzhorn, J.U., Lemur Social Systems and<br />

their Ecological Basis. New York.<br />

Overdorff, D.J. 1996. Ecological correlates to activity and habitat<br />

use in two prosimian primates: Eulemur rubriventer<br />

and Eulemur fulvus rufus in Madagascar. American Journal<br />

of Primatology 40: 327-342.<br />

Randriamahaleo,S.I.2005.Effets de la dégradation de la forêt<br />

et impacts sur les activités sociales de Propithecus diadema<br />

edwardsi dans deux sites Talatakely et Valohoaka du Parc<br />

National de Ranomafana. Mémoire de DEA d’Anthropologie<br />

Biologique. DPAB, Faculté des Sciences, Université<br />

d’Antananarivo.<br />

Randriatahina,G.H.2001.Etude des intéractions sociales des<br />

femelles de Varecia variegata variegata, dans la forêt perturbée<br />

de Manombo, Farafangana, Madagascar. Mémoire<br />

de DEA d’Anthropologie Biologique. DPAB, Faculté des<br />

Sciences, Université d’Antananarivo.<br />

Rasolofonirina 2001. Contribution à l’étude comparative du<br />

comportement chez Eulemur rubriventer et Eulemur fulvus<br />

rufus femelles pendant la lactation dans la forêt dense<br />

humide de Ranomafana. Mémoire de DEA. Département<br />

de Paléontologie et d’Anthropologie Biologique, Faculté<br />

des Sciences, Université d’Antananarivo.<br />

Razafimahazo, J.C. 2001. Contribution à l’étude saisonnière<br />

dans l’utilisation verticale de l’habitat par deux lémuriens<br />

Hapalemur aureus et Hapalemur simus dans la forêt dense<br />

humide de Ranomafana Ifanadiana. Mémoire de DEA.<br />

Département de Paléontologie et d’Anthropologie Biologique,<br />

Faculté des Sciences, Université d’Antananarivo.<br />

Richard 1978.Behavioral variation:Case of a Malagasy lemur.<br />

Freeman, New York, USA.<br />

Sussman,R.W.1975.A preliminary study of the behavior and<br />

ecology of Lemur fulvus rufus. Pp. 237-258. In: I. Tattersall<br />

and R.W. Sussman (eds), Lemur Biology. Plenum Press,<br />

New York.<br />

Tam-Alkis, J. 1997. Factors affecting the distribution and<br />

abundance of a Chameleon assemblage in Ranomafana<br />

National Park, Madagascar. DICE, University of Kent and<br />

Canterbury.<br />

Turk, D. 1995. A guide of trees of Ranomafana National Park<br />

and Central eastern Madagascar. Pp. 330.<br />

Zaonarivelo, Z.R. 1999. Analyse des modalités d’adaptation<br />

de Varecia variegata variegata à un milieu perturbé. Cas de<br />

Manombo, Farafangana. Mémoire de DEA. Département<br />

de Paléontologie et d’Anthropologie Biologique, Faculté<br />

des Sciences, Université d’Antananarivo.<br />

Observations of terrestrial latrine behaviour<br />

by the southern gentle lemur Hapalemur<br />

meridionalis in the Mandena littoral<br />

forest, southeast Madagascar<br />

Timothy M. Eppley* and Giuseppe Donati<br />

Nocturnal Primate Research Group,Department of Anthropology<br />

and Geography, Oxford Brookes University, Gipsy<br />

Lane, OX3 0BP, Oxford, UK<br />

*Corresponding author: eppleyti@gmail.com<br />

Key words: southern gentle lemur, Hapalemur meridionalis,<br />

defecation, latrines, Mandena<br />

Latrine behaviour is defined as the non-random selection of<br />

a specific defecation site,and although it is rarely described in<br />

primates it is well known among other mammalian species as<br />

a form of olfactory communication (Irwin et al.,2004).Olfactory<br />

compounds, which convey chemical signals, are transmitted<br />

via scent-producing skin gland secretions, saliva, and/<br />

or waste products (Epple, 1986). Olfaction signals may be<br />

advantageous as they are not limited spatially and temporally,<br />

allowing individuals of a predominately visual communication


Page 52 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

to receive signals when distant from the source (Schilling,<br />

1979;Irwin et al.,2004).Olfactory signals may transmit information<br />

pertaining to environmental familiarisation (Schilling,<br />

1979), reproductive behaviour and condition (Epple, 1986),<br />

territorial demarcation (Mertl-Milhollen,1979),and inter- or<br />

intra-group spacing (Schilling, 1979; Epple, 1986).<br />

Previous literature has discussed latrines by varying in location<br />

(arboreal, terrestrial, or subterranean), and being further<br />

analysed by volume of faeces and spatial distribution<br />

(Schilling, 1980; Boonstra et al., 1996; Irwin et al., 2004; Pouvelle<br />

et al., 2009). This behaviour appears to be well studied<br />

within other mammals but for primates, especially strepsirhines,<br />

latrine use is only sparsely mentioned within much<br />

broader scope research (Irwin et al.,2004).In this report we<br />

present our observations of this peculiar behaviour exhibited<br />

by the southern gentle lemur, Hapalemur meridionalis,a<br />

threatened primate that occurs in southeast Madagascar.We<br />

will use our observations to review the hypotheses offered<br />

thus far to explain latrine use,i.e.advertisement of sexual cycle,predation<br />

avoidance,intra- group and inter-group spacing<br />

in the context of the fragmented littoral forest.<br />

Methods<br />

This research was conducted from May to July 2008, on the<br />

southern gentle lemur within the Mandena littoral forest<br />

(24°95’S 46°99’E), a coastal forest in southeast Madagascar.<br />

The littoral forest is among the most endangered ecosystems<br />

in Madagascar (Bollen and Donati, 2006) and Mandena<br />

is a protected conservation zone encompassing 230 hectares<br />

of fragmented and partially degraded littoral forest<br />

interspersed with marsh and swamp. Three groups of H.<br />

meridionalis (mean = 5.7 ind/group) were habituated and<br />

followed daily from dawn to dusk with 62 hours of observation<br />

recorded (Eppley and Donati, in press). These lemurs<br />

are of particular interest, as they do not subsist exclusively<br />

on bamboo like the majority of their congeners. Rather, the<br />

southern gentle lemur exhibits a dietary predilection for<br />

terrestrial (turf) grasses while displaying a unique grazing<br />

behaviour (Eppley and Donati, in press). Although the main<br />

research being conducted focused on the feeding ecology of<br />

these animals, opportunistic observations of latrine behaviour<br />

were collected ad libitum. In addition to habitat characteristics<br />

and GPS waypoints taken at the feeding and resting<br />

sites of three groups, latrine locations were also recorded.<br />

Spatial analyses were carried out with ArcMap version 9.3,<br />

with the outermost feeding and resting site waypoints for<br />

each group being used to create the minimum polygon for<br />

their respective ranging areas.<br />

Results<br />

On three separate occasions an entire group of foraging H.<br />

meridionalis were witnessed descending to the ground and<br />

defecating in succession either near or under a high-rooted<br />

tree of different species.Latrine bouts were recorded ad libitum<br />

on a single occasion for Group B (four individuals) and<br />

twice for Group C (seven individuals). Observations took<br />

place within the forest fragment, and were never witnessed<br />

in open canopy areas. The three occurrences of this terrestrial<br />

latrine behaviour were observed shortly after individuals<br />

had awoken from a midday resting bout (between 11:00<br />

and 14:00) at distances approx. 20 m from the resting site.<br />

The three locations where the latrine behaviour was exhibited<br />

are shown in Figure 1.Little overlap between the ranging<br />

areas of the three groups was observed with 0.92 ha (7.74 %)<br />

calculated to exist between groups A and B,0.18 ha (1.68 %)<br />

between groups A and C, and 0.06 ha (0.73 %) between<br />

groups B and C. After an individual had defecated, they<br />

ascended three to four meters and continued feeding.Subsequently,<br />

the group followed an order of sequential defecation,<br />

where by one conspecific would defecate and the next<br />

would rapidly follow.The individuals remaining at an elevated<br />

height always appeared vigilant, scanning the surrounding<br />

area and sometimes continuing to forage, while the conspecific<br />

was on the ground. Upon inspection of two of the<br />

defecation sites, accumulations of hardened faecal matter<br />

were identified. Dissimilarly, the third site consisted of only<br />

fresh faeces with no sign of old faecal matter.<br />

Fig. 1: Ranging areas of the three observed H. meridionalis<br />

groups within the northeast corner of the Mandena littoral<br />

forest. The three latrine sites were observed within the territorial<br />

boundary buffer zones of Groups A & C and B & C.<br />

Discussion<br />

Among primates,latrine behaviour has been recorded (Table<br />

1) in Alouatta seniculus (Gilbert, 1997; Feeley, 2005; Neves et<br />

al., 2009; Pouvelle et al., 2009), Ateles geoffroyi (Notman et al.,<br />

2009), as well as the strepsirhines: Cheirogaleus major, C.<br />

medius, Lepilemur leucopus (Charles-Dominique and Hladik,<br />

1971; Russell, 1977), L. microdon, L. ruficaudatus, Hapalemur<br />

aureus, H. griseus, Prolemur simus, and Lemur catta (Irwin et al.,<br />

2004). With the exception of Neotropical primates, however,minimal<br />

research has been conducted to understand its<br />

function within primates and latrine utilisation is often a matter<br />

of debate. In Ranomafana National Park, for example, H.<br />

griseus have been observed to occasionally use the same<br />

resting/sleeping sites and since they often defecate very soon<br />

after they wake up (Tan,pers.comm.),an accumulation of faecal<br />

material under these trees may appear inadvertently<br />

latrine-like (Notman et al., 2009; Pouvelle et al., 2009). Thus,<br />

latrine use by H.griseus may be anecdotal within this population.<br />

Irwin et al. (2004) presented four non-mutually exclusive<br />

hypotheses for the possible adaptive function of primate<br />

latrines:1) advertisement of sexual cycle,2) predation avoidance,<br />

3) intra-group spacing, 4) and inter-group spacing.<br />

The conveyance of scent-marks is well known to advertise<br />

sexual activity and receptivity (Asa, 2008). If this holds true<br />

for H. meridionalis, latrines should be used more frequently<br />

during the breeding seasons. It has been reported that H.<br />

griseus mate between June and July, experiencing a gestation<br />

length of approximately 137 days (Tan, 2006). Though our<br />

research potentially overlapped with the mating season, we<br />

made no observations of mating during the study period.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 53<br />

Thus, we had no possibilities to compare the mating season<br />

with pre- or post-mating periods, as the hypothesis testing<br />

would require. However, since two of the latrines at Mandena<br />

appeared to be utilized long-term, similar to the findings<br />

of Irwin et al.(2004),we conclude that the advertisement<br />

of sexual receptivity is unlikely the sole function of lemur<br />

latrines.<br />

Tab. 1: Observed primates that have exhibited terrestrial<br />

latrine behaviour. Adapted from Irwin et al. (2004).<br />

Species Localities References<br />

Hapalemur<br />

meridionalis<br />

Mandena Conservation<br />

Zone<br />

This study<br />

Hapalemur<br />

griseus<br />

Analamazaotra<br />

Special Reserve<br />

Irwin et al. (2004)<br />

Prolemur<br />

simus<br />

Ranomafana<br />

National Park<br />

P. Wright (in Irwin et al., 2004)<br />

Lemur catta Isalo National Park<br />

J. Jernvall and P. Wright<br />

(in Irwin et al., 2004)<br />

Lepilemur<br />

leucopus<br />

Beza Mahafaly<br />

Special Reserve<br />

L. Nash (in Irwin et al., 2004)<br />

Lepilemur Manombo Special J. Ratsimbazafy (in Irwin et al.,<br />

microdon Reserve<br />

2004)<br />

Lepilemur sp.<br />

(?microdon)<br />

Kalambatritra<br />

Special Reserve<br />

Irwin et al. (2004)<br />

Lepilemur<br />

ruficaudatus<br />

Kirindy Forest<br />

J.U. Ganzhorn (in Irwin et al.,<br />

2004)<br />

Ateles<br />

geoffroyi<br />

Runaway Creek Nature<br />

Preserve, Belize<br />

Notman et al. (2009)<br />

Alouatta<br />

seniculus<br />

Nouragues Reserve,<br />

French Guiana<br />

Pouvelle et al. (2009)<br />

Gentle lemurs have a particularly effective predator avoidance<br />

strategy including camouflage from cryptic pelage, rapid<br />

flight behaviour,and potential cathemeral activity pattern<br />

(Mutschler et al., 1999; Curtis et al., 2006; Tan, 2006). Several<br />

potential predators of Hapalemur exist in the littoral forest.<br />

There have been documented cases of fossa Cryptoprocta<br />

ferox preying on H. griseus (Goodman and Pidgeon, 1999;<br />

Sterling and McFadden,2000).The Madagascar tree boa Sanzinia<br />

madagascariensis (= Boa manditra) also prey on Hapalemur<br />

spp.(Goodman et al.,1993;Rakotandravany et al.,1998),<br />

and several aerial predators (Madagascar harrier hawk Polyboroides<br />

radiatus, Frances’s sparrowhawk Accipiter francesii,<br />

Henst’s goshawk Accipiter henstii,common barn owl Tyto alba,<br />

and the Madagascar long-eared owl Asio madagascariensis)<br />

represent a threat to medium-sized lemurs (Goodman et al.,<br />

1993; Wright, 1997; Karpanty and Goodman 1999). In fact,<br />

the concealment of Hapalemur faeces under large high-rooted<br />

trees may theoretically act as a safeguard against predation<br />

by impairing the ability of a predator to detect the prey<br />

population (Boonstra et al.,1996;Irwin et al.,2004).Although<br />

these observations are in accord with the anti-predator idea,<br />

single faecal deposits were also detected at indiscriminate<br />

locations. Thus, more data are necessary to test the hypothesis<br />

of latrine behaviour as an anti-predator strategy.<br />

Intra-group spacing has also been suggested to advertise<br />

proximal resource use and assist in inter-individual spacing<br />

(Kruuk,1992).In accord with Irwin et al.(2004),however,it is<br />

unlikely that Hapalemur latrine behaviour is used for intragroup<br />

spacing, as they live in cohesive family units.<br />

The territorial demarcation hypothesis suggests that scentmarks<br />

are placed around home range boundaries to act as a<br />

delineation of the territory, i.e. inter-group spacing (Mertl-<br />

Millhollen, 1979; Lewis, 2005). In fact, it is evident from our<br />

observations that H.meridionalis chose defecation sites in the<br />

narrow areas of overlap with neighbouring conspecifics<br />

groups (Fig. 1). If this adaptive function holds true, latrine<br />

behaviour might be even more common in areas of dense<br />

population (Irwin et al.,2004),such as the forest fragments of<br />

Mandena (Eppley and Donati, in press).<br />

Although the exhibition of preferred, non-random defecation<br />

sites is most likely multifactorial,latrines in Mandena appear<br />

to best fulfil the function of inter-group spacing. Therefore,<br />

latrines may be a low-energy behavioural response to<br />

the ecological challenge of defending resources with minimal<br />

rates of agonism (Irwin et al.,2004).In the future,more quantitative<br />

studies should focus on seasonal and spatial exhibition<br />

of latrine use to verify whether this behaviour is intrinsically<br />

linked to territorial delineation and resource defence in<br />

lemurs.<br />

Acknowledgements<br />

We would like to thank the Commission Tripartite of the<br />

Malagasy government, Ministère de l’Environnement, des<br />

Eaux et forêts of the Malagasy government,the University of<br />

Antananarivo, and CAFF/CORE for permission to conduct<br />

research, as well as the Malagasy Institute for the Conservation<br />

of Tropical Environments (MICET) for all of their logistical<br />

assistance. Financial support was provided partly by the<br />

Chester Zoo (NEZS) and QMM.We would also like to thank<br />

the QMM Environmental Team, most especially Manon Vincelette,<br />

Jean-Baptiste Ramanamanjato, Johny Rabenantoandry,<br />

Faly Randriatafika, and Christophe Rambolamanana for<br />

all of their advice and logistical help. We are grateful to Jörg<br />

Ganzhorn for all of his continuous support and scientific advice.Thank<br />

you to the entire staff of the Oxford Brookes Primate<br />

Conservation MSc program, especially Simon Bearder,<br />

Anna Nekaris, and Vincent Nijman. We greatly appreciate<br />

the GIS assistance of Maureen Mullen. My sincere gratitude<br />

goes to my field guide Robertin "Tintin" Ravelomanantsoa<br />

and research assistant Abi Coleman for their companionship<br />

and tireless help in the marecage.<br />

References<br />

Asa, C.S. 2008. Scent and the single male: ring-tailed lemurs<br />

produce honest signals.Molecular Ecology 17:3223-3224.<br />

Bollen,A.;Donati,G.2006.Conservation status of the littoral<br />

forest of south-eastern Madagascar: a review. Oryx 40:<br />

57-66.<br />

Boonstra,R.;Krebs,C.J.;Kenney,A.1996.Why lemmings have<br />

indoor plumbing in summer.Canadian Journal of Zoology<br />

74: 1947-1949.<br />

Charles-Dominique,P.;Hladik,C.M.1971.Le Lepilemur de sud<br />

de Madagascar: ecologie, alimentation, et vie sociale.<br />

Revue d’Écologie (La Terre et la Vie) 25: 3-66.<br />

Curtis, D.; Donati, G.; Rasmussen, M. 2006. Cathemerality.<br />

Folia Primatologica 77: 5-6.<br />

Epple, G. 1986. Communication by chemical signals. Pp.<br />

531-580. In: G. Mitchell; J. Erwin (eds.), Comparative<br />

Primate Biology, <strong>Vol</strong>ume 2A: Behavior, Conservation and<br />

Ecology. Alan R. Liss, New York.<br />

Feeley,K. 2005.The role of clumped defecation in the spatial<br />

distribution of soil nutrients and the availability of nutrients<br />

for plant uptake. Journal of Tropical Ecology 21:<br />

99-102.<br />

Gilbert, K.A. 1997. Red howling monkey use of specific defecation<br />

sites as a parasite avoidance strategy.Animal Behaviour<br />

54: 451-455.<br />

Goodman, S.M.; Pidgeon, M. 1999. Carnivora of the Réserve<br />

Naturelle Intégrale d’Andohahela, Madagascar. Fieldiana:<br />

Zoology 94: 256-68.<br />

Goodman,S.M.;O’Connor,S.;Langrand,O.1993.A review of<br />

predation on lemurs: implications for the evolution of<br />

social behavior in small, nocturnal primates. Pp. 51-66. In:<br />

P.M.Kappeler;J.U.Ganzhorn (eds.). Lemur Social Systems<br />

and their Ecological Basis. Plenum Press, New York.<br />

Irwin, M.T.; Samonds, K.E.; Raharison, J.-L.; Wright, P.C. 2004<br />

Lemur latrines: observations of latrine behavior in wild


Page 54 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

primates and possible ecological significance. Journal of<br />

Mammalogy 85: 420-427.<br />

Lewis, R.J. 2005. Sex differences in scent-marking in sifaka:<br />

mating conflict or male services? American Journal of Physical<br />

Anthropology 128: 389 98.<br />

Karpanty, S.M.; Goodman, S.M. 1999. Diet of the Madagascar<br />

harrier-hawk, Polyboroides radiatus, in southeastern Madagascar.<br />

Journal of Raptor Research 33: 313-316.<br />

Kruuk, H. 1992. Scent marking by otters (Lutra lutra): signalling<br />

the use of resources. Behavioral Ecology 3: 133-140.<br />

Mertl-Millhollen, A.S. 1979. Olfactory demarcation of territorial<br />

boundaries by a primate-Propithecus verreauxi. Folia<br />

Primatologica 32: 35 2.<br />

Mutschler, T. 1999. Folivory in a small-bodied lemur: the<br />

nutrition of the Alaotran gentle lemur (Hapalemur griseus<br />

alaotrensis).Pp.221-239.In: H.Rasaminanana;B.Rakotosamimanana;<br />

J.U. Ganzhorn; S.M. Goodman (eds.). New<br />

Directions in Lemur Studies. Kluwer Academic / Plenum<br />

Publishing, New York.<br />

Neves,N.D.S.;Feer,F.;Salmon,S.;Chateil,C.;Ponge,J.-F.2009.<br />

The impact of red howler monkey latrines on the distribution<br />

of main nutrients and on topsoil profiles in a tropical<br />

rain forest. Austral Ecology doi:<br />

10.1111/j.1442-9993.2009.02066.x<br />

Notman, H.; Hartwell, K.; Pavelka, M.S. 2009. Spider monkey<br />

"latrine sites" at Runaway Creek Nature Reserve, Belize.<br />

American Journal of Primatology 71(Suppl 1): 91.<br />

Pouvelle, S.; Jouard, S.; Feer, F.; Tully, T.; Ponge, J.-F. 2009. The<br />

latrine effect: impact of howler monkeys on the distribution<br />

of small seeds in a tropical rain-forest soil. Journal<br />

of Tropical Ecology 25: 239-248.<br />

Rakotondravony, D.; Goodman, S.M.; Soarimalala, V. 1998.<br />

Predation on Hapalemur griseus griseus by Boa manditra<br />

(Boidae) in the littoral forest of eastern Madagascar. Folia<br />

Primatologica 69: 405 08.<br />

Russell, R.J. 1977. The behavior, ecology, and environmental<br />

physiology of a nocturnal primate, Lepilemur mustelinus<br />

(Strepsirhini, Lemuriformes, Lepilemuridae). Unpubl. Ph.<br />

D. thesis, Duke University, Durham, North Carolina.<br />

Schilling, A. 1979. Olfactory communication in primates. Pp.<br />

461-542. In: G.A. Doyle; R.D. Martin (eds.). The Study of<br />

Prosimian Behavior. Academic Press, New York.<br />

Schilling, A. 1980. Seasonal variation in the fecal marking of<br />

Cheirogaleus medius in simulated climatic conditions. Pp.<br />

181-190. In: P. Charles-Dominique; H.M. Cooper; A.<br />

Hladik;C.M.Hladik;E.Pages;G.F.Pariente;A.Petter-Rousseaux;<br />

A. Schilling (eds.). Nocturnal Malagasy Primates:<br />

Ecology, Physiology, and Behavior. Academic Press, New<br />

York.<br />

Sterling,E.J.;McFadden,K.2000.Rapid census of lemur population<br />

in the Parc National de Marojejy, Madagascar. A<br />

floral and faunal inventory of the Parc National de Marojejy,<br />

Madagascar: with reference to elevation variation. Fieldiana:<br />

Zoology 97: 265-274.<br />

Tan, C.L. 2006. Behavior and ecology of gentle lemurs (genus<br />

Hapalemur). Pp. 369-381. In: L. Gould; M. Sauther (eds.).<br />

Lemurs: Ecology and Adaptation. Springer, New York.<br />

Wright, P.C.1997.Impact of predation risk on the behaviour<br />

of Propithecus diadema edwardsi in the rain forest of Madagascar.<br />

Behaviour 135: 483-512.<br />

Wright, P.C. 1999. Lemur traits and Madagascar ecology:<br />

coping with an island environment. Yearbook of Physical<br />

Anthropology 42: 31-72.<br />

Conservation des lémuriens via la protection<br />

de leurs habitats et le développement<br />

communautaire dans les corridors<br />

de Betaolana et Tsaratanana-Betaolana,<br />

région de SAVA<br />

Lala Razafy Fara 1*, Iarilanto Andriamarosolo 2<br />

1WWF Madagascar & Western Indian Ocean PO, BP 738<br />

Antananarivo 101, Madagascar<br />

2WWF Andapa, BP 28, Andapa 205, Madagascar<br />

*Corresponding author: frazafy@wwf.mg<br />

Contextes<br />

Ecologique:<br />

Madagascar est connu pour sa haute valeur en biodiversité.<br />

Sa flore et sa faune ont une valeur d’endémicité très élevée<br />

(au dessus de 80 %) due entre autres à son insularité. Madagascar<br />

est donc plus riche en espèces endémiques comparées<br />

à d’autres continents du monde.Le microclimat de l’île a<br />

permis que d’une région à une autre, la flore et la faune constituent<br />

une richesse spectaculaire à part.<br />

Pour la partie Nord de Madagascar, la flore luxuriante, avec<br />

des espèces endémiques du genre Dalbergia, est encore à<br />

découvrir.Le WWF a travaillé dans la région de SAVA pour la<br />

mise en place de deux Aires Protégées (AP),Parc National de<br />

Marojejy et Réserve Spéciale d’Anjanaharibe Sud, actuellement<br />

sous gestion du Madagascar National Parks. Pour le<br />

WWF,la conservation du flux génétique implique le maintien<br />

et la restauration de la connectivité écologique.Ce maintien<br />

peut être le plus important paramètre le long des pentes<br />

altitudinales car cette connectivité est actuellement très<br />

rare au sein de l’écorégion de l’Est.De plus,il peut constituer<br />

un refuge pour la biodiversité vu les changements du climat<br />

(Erdmann et al., 2005).<br />

Eu égard aux efforts déjà investis dans la protection des deux<br />

AP (Parc de Marojejy et de la Réserve Spéciale d’Anjanaharibe<br />

Sud), le WWF a continué ses efforts de conservations<br />

dans les deux corridors forestiers (Betaolana et Tsaratanana-Betaolana).<br />

Dans ces localités, les espèces endémiques<br />

sont aussi très remarquables comme le palmier Marojejya<br />

insignis et la fougère Asplenium marojyense. La forêt dense et<br />

humide de cette partie de l’île abrite une multitude de faune<br />

à découvrir et à protéger.<br />

La forêt occupe encore 35,60 % de la région de SAVA (données<br />

images satellites de 2000),ce taux est élevé par rapport<br />

à d’autres régions de Madagascar.La richesse en biodiversité<br />

de cette zone est démontrée par de nombreuses études,sur<br />

la flore et sur la faune, conduites dans cette zone.<br />

Pour ces deux corridors Betaolana et Tsaratanana-Betaolana,<br />

les inventaires effectués par Rajaonson et Rakotonirina<br />

(2007) pour le WWF ont montré l’existence de 10 espèces<br />

de lémuriens pour le corridor Betaolana, et de sept espèces<br />

pour le corridor Tsaratanana Betaolana, 84 espèces d’oiseaux<br />

pour l’ensemble des deux corridors. En comparaison<br />

avec les inventaires des lémuriens effectués par Goodman et<br />

al. (2003), la région d’Andapa, incluant les AP de Marojejy et<br />

d’Anjanaharibe-Sud et le corridor forestier de Betaolana,<br />

possèdent une richesse spécifique en communautés de lémuriens<br />

et tient une place importante en biodiversité à Madagascar.La<br />

synthèse des études déjà effectuées dans la zone a<br />

recensé 12 espèces de lémuriens dont: Microcebus rufus,<br />

Cheirogaleus major, Allocebus trichotis, Phaner furcifer, Avahi<br />

laniger, Lepilemur mustelinus, Daubentonia madagascariensis,<br />

Hapalemur griseus griseus, Eulemur rubriventer, Eulemur fulvus


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 55<br />

albifrons, Propithecus candidus, Indri indri. Parmi ces espèces<br />

citées, celles non rencontrées dans les deux corridors sont:<br />

Indri indri et Phaner furcifer (pour les deux corridors Betaolana<br />

et Tsaratanana-Betaolana) et Allocebus trichotis pour le<br />

corridor Tsaratanana Betaolana).<br />

Parmi les espèces de lémuriens, le Simpona (Propithecus candidus)<br />

est une des 25 espèces de primates les plus menacées<br />

dans le monde (Mittermeier et al., 2005), d’où l’intérêt de se<br />

focaliser sur sa conservation. Certains auteurs (Petter et al.,<br />

1979; Tattersall, 1982) pensent que l’habitat du Simpona<br />

pourrait éventuellement s’étendre vers le Sud jusqu’aux<br />

forêts de la péninsule de Masoala. Il est par contre prouvé<br />

que le versant Ouest de Anjanaharibe-Sud, actuellement<br />

sans statut de protection, héberge une population importante<br />

de Simpona. La population de Simpona de la région<br />

Andapa et donc mondiale est estimée à une valeur comprise<br />

entre 100-1000 individus (Mittermeier et al., 1994). Des<br />

inventaires effectués par le WWF vers la fin 2006 ont relevé<br />

que le Simpona se rencontre aussi vers le Nord du Corridor<br />

de Betaolana en allant vers le Nord Ouest du côté du massif<br />

de Tsaratanana.<br />

Social et économique:<br />

Les deux corridors forestiers, Betaolana et Tsaratanana<br />

Betaolana, couvrent approximativement une superficie respective<br />

de 16 500 ha et de 130 900 ha et sont très riches en<br />

forêt.En se référant aux délimitations sur la carte 1,les deux<br />

corridors renferment encore jusqu’à 90 % de forêts. Situées<br />

sur des sols ferralitiques, les forêts des deux corridors sont<br />

localisées entre les altitudes 850 et 1600 m pour Betaolana<br />

et 800 à 2280 m d’altitude pour Tsaratanana-Betaolana. Les<br />

deux corridors jouissent encore du climat humide de la<br />

région de SAVA.<br />

Les deux corridors appartiennent aux districts d’Andapa<br />

(pour le Corridor de Betaolana) et de Bealanana (pour le<br />

corridor de Tsaratanana-Betaolana). Les populations des<br />

communes locales vivant à la périphérie de ces corridors<br />

sont estimées, en 2009, à 72 521 pour le corridor Betaolana<br />

et à 41 333 pour le corridor Tsaratanana-Betaolana (à partir<br />

des données d’INSTAT 1993).<br />

Dans la région de SAVA, les forêts dans les deux corridors<br />

Betaolana et Tsaratanana Betaolana font partie des domaines<br />

forestiers de l’Etat. Ils n’ont de ce fait pas de statuts<br />

particuliers (Garreau et Manantsara, 2003). Toutefois, le<br />

WWF, connaissant l’importance de la flore et la faune dans<br />

cette zone, a mis en œuvre de 2005 à 2008 deux projets<br />

spécifiques pour la conservation des lémuriens et de leurs<br />

habitats dans la région de SAVA. Dans le cadre des projets<br />

mis en œuvre par le WWF qui se sont succédés dans la région<br />

de SAVA, celui-ci a travaillé avec les populations locales<br />

pour mettre ces deux corridors sous statuts de Nouvelles<br />

Aires Protégées. Pour le Corridor Betaolana, huit communautés<br />

de bases ayant reçu des contrats de transferts de gestion<br />

des lots de forêts ont déjà déposé leur manifestation<br />

d’intérêt dans ce sens en 2008.Les différentes étapes et procédures<br />

à respecter suivent actuellement normalement leur<br />

cours.<br />

Cet article, eu égard à tous les acquis dans le cadre des<br />

projets du WWF, est une capitalisation des expériences de<br />

WWF Madagascar pour les projets de conservation des<br />

lémuriens et de leurs habitats dans le Nord de Madagascar.<br />

L’un des deux projets est connu sous son appellation courte,<br />

projet Simpona. Son but est en effet de mettre en exergue<br />

cette espèce phare bien qu’elle ne soit pas la seule à être<br />

protégée dans le cadre des projets du WWF.<br />

Approche de conservation<br />

Les sites des deux projets<br />

La région de SAVA se trouve dans l’ex Province d’Antsiranana<br />

au Nord de Madagascar. Les deux projets du WWF<br />

dans cette localité ont été conduits dans deux corridors<br />

forestiers entre les Aires Protégées Tsaratanana (Réserve<br />

Naturelle Intégrale), Marojejy (Parc National) et Anjanaharibe<br />

Sud (Réserve Spéciale).La carte suivante montre la situation<br />

générale de ces localités.<br />

Les objectifs de conservation<br />

A partir de la connaissance des richesses de cette localité,<br />

des pressions et menaces sur les espèces cibles,la finalité des<br />

deux projets était de freiner l’utilisation irrationnelle de la<br />

forêt tout en construisant un environnement où les populations<br />

locales pourront vivre en harmonie avec la nature.<br />

Découlant de cette finalité,les objectifs des deux projets ont<br />

été de: 1) Mieux connaître le niveau de menace sur les<br />

lémuriens et sur leurs habitats; 2) Elaborer des scénario de<br />

zonages et de gestion; 3) Conscientiser et éduquer les<br />

communautés locales concernant les menaces et la protection<br />

des lémuriens; 4) Initier de nouveaux transferts de<br />

gestion des forêts auprès des communautés locales de base<br />

(sur la partie Ouest du Corridor de Betaolana); 5) Protéger<br />

et/ou restaurer les habitats des lémuriens; 6) Renforcer la<br />

protection des lémuriens par l’extension et la création de<br />

nouvelles aires protégées; 7) Vulgariser et promouvoir les<br />

produits de substitution des principaux produits forestiers;<br />

8) Procéder au suivi d’évaluation des méthodes et procédures<br />

de gestion internes des associations des forêts; 9)<br />

Restaurer les terrains défrichés de la périphérie du corridor.<br />

En bref,les deux projets essaient de renforcer les conditions<br />

requises pour la conservation à long terme de la biodiversité<br />

via la conservation des fonctions écologiques des deux corridors<br />

(Betaolana et Tsaratanana-Betaolana) de manière participative.<br />

Diagnostic participatif: Mieux connaitre pour mieux<br />

protéger<br />

Cartographie<br />

A partir des connaissances issues de la littérature, une cartographie<br />

simplifiée basée sur des cartes topographiques<br />

(échelles 1/100 000) et des interprétations des images satellites<br />

2000 a été élaborée. L’objectif est de partir des limites<br />

des forêts à partir de ces images pour délimiter des zones où<br />

les inventaires forestiers vont être réalisés.De même,de par<br />

cette technique,des zonages forestiers et des cartes d’occupation<br />

des sols sont élaborés.Le zonage forestier se base sur<br />

les états de dégradations des forêts. Les unités semblables<br />

ont été groupées dans une même catégorie définie pour un<br />

objectif spécifique (conservation, enrichissement / restauration,<br />

droit d’usage).<br />

Inventaire des lémuriens par des primatologues<br />

Pour mieux intégrer les populations locales dans l’importance<br />

de la conservation des lémuriens,elles ont été invitées<br />

à participer aux inventaires des lémuriens.Leur connaissance<br />

de base, combinée aux connaissances scientifiques de deux<br />

primatologues recrutés ont été pour renforcer les acquis<br />

dans le cadre de la littérature.Cette approche a aussi permis<br />

d’élaborer des documents de base pour le suivi des lémuriens<br />

et de choisir des espèces pour la restauration<br />

forestière.


Page 56 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Fig. 1: Carte de localisation générale des sites.<br />

Etudes des pressions et menaces sur les lémuriens et leurs<br />

habitats<br />

Les études sur les pressions et menaces ont été conduites<br />

selon des enquêtes informelles et formelles et selon des observations<br />

directes.Les enquêtes informelles servent à la fois<br />

à gagner la confiance des populations locales et à recueillir le<br />

maximum d’informations. Les enquêtes formelles sont utilisées<br />

par les consultants primatologues pour une meilleure<br />

représentativité des réponses. Les membres de l’équipe de<br />

WWF,à mesure de l’avancement de la conduite des activités<br />

dans le cadre des deux projets, ne cessent de faire des<br />

recoupements entre toutes les réponses obtenues.<br />

La participation des membres des communautés de base est<br />

indispensable dans les deux types d’enquêtes pour qu’ils se<br />

sentent responsables et pour confronter les réponses au fur<br />

et à mesure que des biais sont observés. Les méthodes<br />

classiques de recherches participatives utilisées sont du<br />

genre MARP: Méthode Accélérée de Recherche Participative<br />

et PALM: Participatory Learning Methods ou Méthode<br />

d’apprentissage Participatives. Les membres de l’équipe du<br />

WWF ont reçu auparavant des formations sur ces méthodes.<br />

Dans le cadre de leur travail, ces méthodes sont<br />

conduites lors des premières approches au sein d’une nouvelle<br />

communauté demandant à gérer une ressource naturelle<br />

dans leur terroir.<br />

Responsabilisation sous forme de transfert de<br />

gestion<br />

Inventaire forestier et zonage<br />

Dans chaque localité de travail avec une communauté, des<br />

inventaires forestiers ont été conduits.La finalité est de connaitre<br />

les potentialités des différents types de forêts en<br />

produits forestiers ligneux et non ligneux. Une uniformisation<br />

des méthodes de relevés a été réalisée. A partir des<br />

cartes de zonages élaborées, les inventaires ont été concentrés<br />

dans les zones de conservations et des droits<br />

d’usage.Des parcelles imbriquées sont définies.Elles ont des<br />

surfaces de 100 x 100 m pour des diamètres de 1,30 m (dhp)<br />

supérieur ou égal à 30 cm;deux parcelles de 25 x 25 m pour<br />

les arbres de dhp compris entre 10 cm à 30 cm; et deux<br />

parcelles de 5x5m.Lesdimensions de ces parcelles peuvent<br />

varier en fonction du relief (si le terrain est trop accidenté,la<br />

réduction des dimensions est préconisée) et leur nombre<br />

varié.Mais quelques soient les variantes,une moyenne de un<br />

hectare par type de forêt est requise pour les gros diamètres.<br />

Elaboration de plan d’aménagement<br />

En vue de l’obtention des contrats de transfert de gestion<br />

des forêts auprès du Ministère des forêts, chaque communauté<br />

devrait établir des plans d’aménagement des forêts.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 57<br />

Les plans d’aménagement suivent les directives proposées<br />

par la Direction Générale des forêts. Le WWF,pour l’élaboration<br />

de ces plans,a surtout veillé à ce que les prélèvements<br />

respectent le principe de la durabilité à savoir: ne prélever<br />

que le volume correspondant aux accroissements moyens<br />

annuels. Pour un meilleur équilibre entre les besoins des<br />

populations locales, des reboisements en espèces introduites<br />

sont aussi proposés dans ces plans d’aménagement,<br />

mais dans des parcelles en dehors des forêts naturelles.<br />

Appropriation sous forme de contrôle<br />

L’approche d’appropriation sous forme de contrôle a aussi<br />

été développée pour atteindre les objectifs des deux projets.<br />

Elle consiste à encourager les membres des communautés à<br />

l’établissement de parcelles d’observation en forêt en se<br />

basant sur les pistes existantes et sur les signes visibles de<br />

pressions (coupe, pièges). Des représentants dynamiques au<br />

sein de chaque communauté sont ainsi élus et font des visites<br />

(contrôles) régulières, parfois inattendues, en forêts. Ces<br />

visites sont organisées pour observer la biodiversité<br />

(floraison des plantes,augmentation du nombre des groupes<br />

de lémuriens observés, passage d’un oiseau ou autre type<br />

d’animal faisant la particularité de leur forêt etc.) et pour<br />

constater si des pressions sur les lémuriens et la forêt sont<br />

encore présentes. Ces membres notent leurs observations<br />

dans des cahiers réservés pour ces observations et tout<br />

autre évènement qu’ils jugent importants (rencontre avec<br />

d’autres personnes, etc.).<br />

Mesures d’accompagnement<br />

Le WWF défini les mesures d’accompagnement de toute<br />

activité développée pour contribuer à l’amélioration des<br />

conditions de vie des populations locales. Ces activités doivent<br />

à la fois réduire les pressions sur la biodiversité en générale<br />

et sur les cibles de conservation en particulier (forêt<br />

naturelle et lémurien) et compenser les efforts de conservations<br />

entrepris. L’approche consiste d’abord à analyser les<br />

résultats de toutes les études préalables aux transferts de<br />

gestion des forêts. A partir de ces analyses, les potentialités<br />

de chaque terroir (à partir des cartes d’occupation des sols<br />

et des rendements obtenus pour chaque spéculation engagée)<br />

dans lesquels vivent les communautés sont dégagées.<br />

Les mesures à développer cherchent ainsi à augmenter les<br />

sources de revenus des paysans et à améliorer leur alimentation<br />

pour une meilleure santé.<br />

Résultats et discussions<br />

Inventaires forestiers et zonages<br />

Au total, 14 inventaires forestiers (correspondants au nombre<br />

de transfert de gestion des forêts) ont été effectués dans<br />

la région de SAVA. La potentialité des forêts est variable. Le<br />

nombre des arbres de dhp > 30 varie de 200 à 400/ha. Au<br />

total, 200 espèces de plantes (ligneuses et non ligneuses)<br />

sont inventoriées. D’un site à l’autre, le nombre des espèces<br />

ligneuses inventoriées varie de 45 à 87.<br />

Les espèces les plus fréquemment rencontrées sont: Tambourissa<br />

religiosa,Weinmannia rutembergii,Zantoxyllon mananarense,<br />

Chrysophyllum boivinianum, Canarium madagascariensis,<br />

Symphonia fasciculata, Diospyros aff.ambilensis, Macaranga<br />

decaryana, Erythroxylum sphaeranthum, Brachylaena merana,<br />

Syzygium emirnense, Uapacca densiflora, Ocotea cymosa…<br />

En fonction de l’éloignement des forêts par rapport aux villages,<br />

leur état de dégradation diffère. Cette observation a<br />

permis de faire trois grande classifications: forêt naturelle<br />

plus ou moins intacte,classée à protéger ou à conserver (for-<br />

mant donc le noyau dur);forêt partiellement dégradée,localisée<br />

encore en plein cœur de la forêt,classée comme forêt à<br />

restaurer;forêt naturelle à faible potentialité, due à un degré<br />

d’écrémage localisée à la périphérie des lisières, classée<br />

comme zone de cantonnement de droit d’usage.<br />

Transfert de gestion des forêts<br />

Le WWF a pu mettre en place dans le cadre de ces deux projets<br />

14 transferts de gestion. Pour chaque communauté, la<br />

surface totale des forêts dans ces transferts varie de 300 à<br />

5000 ha (dépendant du taux de couverture forestière dans le<br />

territoire de chaque village d’appartenance de la communauté).<br />

Les zonages des forêts sont décrits précédemment.<br />

En principe, les contrats sont établis pour trois ans. Ensuite<br />

une évaluation devra se faire par le Service Forestier en partenariat<br />

avec les communes d’appartenance des communautés<br />

gestionnaires des forêts.Etablis à partir de 2007,certains<br />

contrats nécessitent ainsi une évaluation à partir de cette<br />

année ou au plus tard en début de l’année prochaine.<br />

Au total,les 14 transferts de gestion des forêts ont permis de<br />

sécuriser sous la gestion des COBA,27 000 ha de forêts.Ces<br />

forêts incluent tous les types de forêts à différents usages définis<br />

auparavant (conservation, restauration, droit d’usage).<br />

Les valeurs de la restauration pour le WWF sont présentées<br />

dans son document de la vision de la biodiversité (Erdmann<br />

et al., 2005) qui a défini 40 aires comme Aires Prioritaires de<br />

conservation de par leur valeur en biodiversité. Les études<br />

sur leur état de dégradation ont relevé aussi que 23 de ces aires<br />

auront probablement besoin d’importante restauration<br />

(< 20 % de forêt),si elles doivent entièrement concourir à la<br />

conservation de la biodiversité. Dans tous les sites de transferts<br />

de gestion des forêts, le WWF met ainsi l’accent sur<br />

l’importance de la restauration. Les communautés avec l’encadrement<br />

du WWF, des observations sur terrain et des<br />

inventaires effectués définissent ainsi des zones de restauration<br />

dont la superficie varie d’une communauté à une<br />

autre.Les espèces utilisées pour ces restaurations des forêts<br />

dégradées sont essentiellement des essences autochtones.<br />

Leur choix est justifié par leur emplacement (héliophile pour<br />

les zones très ouverts et/ou périphérie de la forêt; nomade<br />

pour les zones sous couvert des espèces héliophiles) ou par<br />

leur utilisation (construction, nourriture des lémuriens).<br />

Suivis et contrôles<br />

Le WWF, pour faciliter l’uniformisation des suivis et contrôle<br />

en matière des lémuriens, a élaboré un livret sur les<br />

lémuriens avec la photo des espèces et une description<br />

sommaire des espèces.L’idée de départ était d’exploiter ces<br />

livrets peu avant la fin des projets pour les analyser. Il a<br />

pourtant été constaté que les représentants des communautés<br />

n’ont pas utilisé les livrets,mais les a bien classés dans<br />

leur valise. Leur explication est que le livret (en couleur) est<br />

trop beau pour être amené et abimé en forêt à cause de<br />

l’humidité. Néanmoins, les suivis et contrôles ont été effectivement<br />

effectués par les communautés. De plus, les données<br />

ont été stockées soit dans des cahiers à part, soit dans<br />

leur tête.<br />

Dans le cadre des suivis et contrôles instaurés de manière<br />

participative,des suivis et contrôles à part doivent aussi être<br />

faits par les organismes techniques d’appuis des communautés.<br />

En effet, à travers les expériences de l’élaboration du<br />

livret, il a été constaté que les instructions et formations<br />

n’ont pas été suivies correctement.Les agents des deux projets,<br />

ne se sont donc rendus compte qu’un peu tardivement<br />

de la nécessité de faire aussi des suivis et contrôles rapprochés.


Page 58 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Table 1: Caractéristiques des localités d’observation des lémuriens.<br />

Localités Andrakengy Andasipiro Ambodivoara Ambodimandresy<br />

Période 20 Novembre - 6 Décembre - 19 Novembre - 5 Décembre -<br />

d’observation 3 Décembre 2006 17 Décembre 2006 3 Décembre 2006 17 Décembre 2006<br />

Coordonnées S 14° 18’ 53.4’’ S 14° 12’ 10.0’’ S 14° 32’ 05.0’’ S 14° 32’ 05.0’’<br />

géographiques E 049< 16’ 38.3’’ E 049< 22’ 34.8’’ E 049< 26’ 42.1’’ E 049< 30’ 21.1’’<br />

Les suivis et contrôles effectués par les paysans ont quand<br />

même permis de localiser des sites d’observations de l’espèce<br />

Propithecus candidus (Simpona).Patel, en échangeant les<br />

données avec l’équipe des projets du WWF a publié en 2009<br />

que l’espèce Propithecus candidus est aussi rencontrée dans le<br />

Corridor de Betaolana et de Tsaratanana-Betaolana. Quelques<br />

caractéristiques des localités où les inventaires ont été<br />

effectués et où cette espèce a été observée sont synthétisées<br />

dans le tableau 1.<br />

Les alternatives aux pressions et menaces<br />

Les pressions sont définies comme étant les activités causant<br />

des impacts négatifs aussi bien sur les forêts que sur les<br />

lémuriens. Ces activités peuvent être légales ou illégales. Par<br />

contre, les menaces sont des activités pouvant apparaître<br />

dans le futur et pouvant avoir des impacts négatifs sur les<br />

cibles (dans le cadre de ce projet les cibles sont les lémuriens<br />

et leur habitat).<br />

Les analyses,effectuées dans le cadre de ces deux projets ont<br />

montré que les pressions et les menaces sur les cibles sont<br />

principalement constituées de: la déforestation causée essentiellement<br />

par les cultures sur brûlis, la dégradation des<br />

forêts engendrée par les prélvements diverses (bois de construction<br />

ou autre matériels pour la construction tels que les<br />

lianes et les bambous, cueillette de miel), la chasse moderne<br />

et le piège traditionnel. La déforestation tue à la fois les<br />

lémuriens et détruit leur habitat. Il en est de même des<br />

pièges traditionnels mais à un degré moindre.<br />

Pour arrêter les pressions sur les forêts, les deux projets du<br />

WWF ont donc analysé les activités pouvant remplacer<br />

celles formant une pression et constituant une menace dans<br />

le futur.En bref les activités développées sont:l’amélioration<br />

de l’exploitation de l’espace par l’agroforesterie; la promotion<br />

des cultures maraichères,l’amélioration des cultures de<br />

riz sur les bas fonds étroits par les Systèmes de Riziculture<br />

Améliorés (SRA),la promotion des briques pour la construction<br />

des maisons et le reboisement des espèces à croissance<br />

rapide; l’apiculture, la pisciculture et l’amélioration de l’élevage<br />

des volailles.<br />

Elaboration d’une stratégie régionale pour la conservation des<br />

lémuriens<br />

Les principales cibles de conservations des deux projets sont<br />

la forêt humide et les lémuriens. A part les transferts de<br />

gestion,les deux projets ont aussi été conduits pour éduquer,<br />

informer et sensibiliser les populations locales (partant des<br />

élèves dans les écoles primaires aux écoles secondaires mais<br />

aussi l’ensemble des populations concernées dans les communes).<br />

Pour la sauvegarde des lémuriens, les engagements des parties<br />

prenantes sont recherchés à travers l’élaboration et la<br />

mise en œuvre d’une stratégie régionale pour la conservation<br />

des lémuriens. Dans cette stratégie, les activités de<br />

chaque partie sont définies de manière à minimiser les<br />

dépenses monétaires afin de les rendre réalisables.<br />

Pour une meilleure intégration ou engagement de chaque<br />

entité, une Association des Amis des lémuriens a été créée.<br />

Cette association est mise en réseau via un site web aux<br />

amoureux des lémuriens dans le monde. La vision a été<br />

développée pour le long terme. Toutefois,<br />

le WWF s’est rendu comte<br />

qu’avec l’isolement de chaque localité,<br />

les réponses instantanées et directes<br />

des membres aux intéressés via le site<br />

web sont très limités et précaires. En<br />

effet,pour se connecter,les élèves doivent<br />

aller à Andapa; et même si cer-<br />

tains élèves d’Andapa sont concernés, le reflexe avec cette<br />

haute technologie nécessite encore un encadrement rapproché<br />

pour être efficace.<br />

Pour mieux unir les efforts,une Union Régionale des Associations<br />

de gestion des forêts, appelée aussi "Gestion Unie du<br />

Corridor de Betaolana" a aussi été créé. Malgré les efforts<br />

investis pour créer cette Union, elle est restée au stade de<br />

constitution (dépôt de dossier) au moment où les phases des<br />

deux projets sont terminées. Toutefois, elle est engagée et<br />

sera reprise dans les autres projets du WWF dans cette<br />

localité. Il est donc souligné ici l’importance des encadrements<br />

par des organismes promoteurs dans le long terme ou<br />

du moins à moyen terme pour obtenir de meilleurs impacts<br />

dans les phases du projet.<br />

Les parties prenantes définies dans ce document<br />

sont composées par les partenaires techniques et les autres<br />

organismes et/ou associations travaillant dans les domaines<br />

de l’environnement, les communautés de base, les organes<br />

de décentralisation et de déconcentration de l’Etat (les<br />

régions, les communes, les districts et les Fokontany).<br />

Conclusions<br />

La capitalisation des deux projets du WWF dans le Nord a<br />

permis de comprendre les efforts encore à fournir dans le<br />

cadre de la conservation des lémuriens et de leur habitat.Les<br />

deux projets conduits dans la région de SAVA sont complémentaires,<br />

ceci a permis une uniformisation des approches<br />

techniques et scientifiques. Les deux projets ont enrichis les<br />

données sur la diversité de la zone en flore et en faune.Ils ont<br />

pu se réaliser de manière participative. En effet, ils ont été<br />

très bien accueillis par les populations locales du fait que ces<br />

projets étaient majoritairement axés sur les activités de<br />

développement pour atteindre leurs objectifs de conservation.<br />

En conclusion, les défis à lancer doivent se concentrer sur<br />

deux aspects.<br />

Aspect technique: des études plus poussées sur la flore et la<br />

faune sont à conduire. En effet, les découvertes à faire sont<br />

encore immenses vu l’étendue du massif forestier.<br />

Aspect développement: des activités sont engagées et n’en<br />

sont qu’au début de leur mise en œuvre. Il serait nécessaire<br />

dans le futur de faire des évaluations de ces projets en<br />

termes d’impact sur la conservation des habitats et des<br />

lémuriens ainsi que sur l’amélioration des conditions de vie<br />

de la population locale.<br />

Ces deux projets ne sont pas des projets de recherches.<br />

Toutefois, ils ont pu être enrichis par les interventions des<br />

scientifiques consultants d’une part et des équipes du WWF<br />

d’autre part.<br />

Remerciements<br />

Nos vifs remerciements s’adressent aux bailleurs qui ont<br />

financés les projets du WWF Madagascar dans la région de<br />

SAVA. Ils ont permis de conduire à la fois des études scientifiques<br />

et des activités de développement.Ces bailleurs sont:<br />

WWF Allemagne, WWF Suède et la Conservation Internationale.<br />

Bien qu’à faible volume en terme de fonds, nous<br />

tenons aussi à remercier le WWF Danemark pour des fonds<br />

spécifiquement alloués à l’élaboration des support de com-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 59<br />

munication (poster,teeshirt,banderoles etc.) pour une meilleure<br />

compréhension des aspects de la conservation auprès<br />

des paysans en particulier et des parties prenantes en<br />

général.<br />

Bibliographie<br />

Erdmann, T.K.; Rambeloarisoa, G.; Ratsifandrihamanana, N.;<br />

Ranaivomanantsoa,A.F.;Abraham,A.;Powell,G.;Allnutt,T.<br />

2005. Vision sur la Biodiversité de l’Ecorégion de la forêt<br />

Humide de Madagascar. Rapport interne pour le WWF-<br />

International et le WWF Madagascar and West Indian<br />

Ocean Programme Office.<br />

Patel,E.R.2009.Silky Sifaka,Propithecus candidus,1871.In:R.A.<br />

Mittermeier, J. Wallis, A.B. Rylands, J.U. Ganzhorn, J.F.<br />

Oates,E.A.Williamson,E.Palacios,E.W.Heymann,M.C.M.<br />

Kierulff, Y.Long,J. Supriatna,C.Roos,S.Walker,L.Cortés-<br />

Ortiz, C. Schwitzer (eds.). Primates in Peril: The World’s<br />

25 Most Endangered Primates 2008-2010. IUCN/ SSC<br />

Primate Specialist Group (PSG), International Primatological<br />

Society (IPS), and Conservation International (CI),<br />

Arlington, VA. 84pp.<br />

Garreau,J.M.;Manantsara,A.2003.The protected-area complex<br />

of the Parc National de Marojejy and the Reserve<br />

Speciale d’Anjanaharibe-Sud. Pp. 1451-1458. In: S.M.<br />

Goodman, J.P. Benstead (eds.). The Natural History of<br />

Madagascar. University of Chicago Press, Chicago, USA.<br />

Goodman,S.M.;Raherilalao,M.J.; Rakotomalala,D.;Raselimanana,A.;Schütz,H.;Soarimalala,V.2003.Les<br />

Lémuriens.Pp.<br />

279-286.In:S.M.Goodman,L.Wilmé (eds.).Nouveaux résultats<br />

d’inventaires biologiques faisant référence à l’altitude<br />

dans la région des massifs montagneux de Marojejy<br />

et d’Anjanaharibe-Sud. Recherches pour le Développement,<br />

série sciences biologiques no. 19. Centre d’Information<br />

et de Documentation Scientifique et Technique,<br />

Antananarivo, Madagascar.<br />

Mittermeier, R.A.; Tattersall, I.; Konstant, W.R.; Meyer, D.;<br />

Mast,R.1994.Lemurs of Madagascar.Conservation International,<br />

Washington, D.C., USA.<br />

Mittermeier, R.A.; Valladares-Padua, C.; Rylands, A.B.; Eudey,<br />

A.A.; Butynski, T.M.; Ganzhorn, J.U.; Kormos, R.; Aiguiar, J.<br />

M.; Walker, S. 2005. The World’s 25 Most Endangered<br />

Primates 2004-2005. Lemur News 10: 3-6.<br />

Petter,J.J.;Charles-Dominique,P.1979.Vocal communication<br />

in prosimians. Pp. 247-305. In: G.A. Doyle and R.D. Martin<br />

(eds.).The Study of Prosimian Behavior.Academic Press.<br />

Rajaoson,A.;Rakotonirina,L.H.2007.Rapport pour le WWF;<br />

Inventaire des lémuriens et des forêts dans le Corridor de<br />

Betaolana et le Corridor Tsaratanana-Marojejy. 89p.<br />

Tattersall, I. 1982. The Primates of Madagascar. Columbia<br />

University Press, New York, USA.<br />

Genetic diversity in ten Indri (Indri indri)<br />

populations compared to other lemur<br />

species<br />

John Zaonarivelo 1,Rick Brenneman 2*,Rambinintsoa<br />

Andriantompohavana 3, Edward E. Louis, Jr. 2,3<br />

1University of North Madagascar, Antsiranana, Madagascar<br />

2Center for Conservation and Research, Omaha’s Henry<br />

Doorly Zoo,3701 South 10th Street,Omaha,NE 68107,USA<br />

3Madagascar Biodiversity Partnership, Antananarivo, 101<br />

Madagascar.<br />

*Corresponding author: rabr@omahazoo.com<br />

Genetic diversity is considered by most to be the key to long<br />

term survival and the maintenance of the evolutionary trajectory<br />

of a species.Genetic variation at loci under selection<br />

gives the species as a whole the mechanisms with which to<br />

respond or adapt to environmental changes.Lemurs in general<br />

are poorly studied with respect to establishing baseline<br />

parameter estimates for genetic diversity.Only limited popu-<br />

lation genetics studies exist on the genera Propithecus, Avahi,<br />

Varecia, Eulemur, Microcebus, and Mirza (Tab. 1). To date, the<br />

genus Indri is depauperate of population genetic data that<br />

would help better understand the genetic diversity harbored<br />

in its populations.<br />

Tab.1:Lemur studies using multilocus microsatellite suites to<br />

estimate genetic diversity as observed (HO) and expected<br />

(HE) heterozygosity levels.<br />

Species PopuSam- Loci HO HE Reference<br />

lationsples Indri indri 2 20 20 0.654 0.766 Zaonarivelo<br />

et al., 2007b<br />

Propithecus<br />

deckeni<br />

2 20 14* 0.790 0.851 Lei et al., 2008a<br />

P. deckeni 1 10 18* 0.776 0.776 Lei et al., 2008b<br />

P. coquereli 1 25 20 0.635 0.771 Rakotoarisoa<br />

et al., 2006a<br />

P. candidus 2 18 17* 0.648 0.614 McGuire et al., 2009<br />

P. coronatus 1 10 18* 0.771 0.774 Lei et al., 2008b<br />

P. diadema 2 20 13* 0.818 0.814 Ramarokoto<br />

et al., 2008<br />

P. edwardsi 2 20 12* 0.681 0.618 Bailey et al., 2009<br />

P. verreauxi 3 30 13 0.670 0.712 Rakotoarisoa<br />

et al., 2006b<br />

P. tattersalli 2 20 16* 0.673 0.683 Razafindrakoto<br />

et al., 2008<br />

P. tattersalli **3 75 13<br />

Quéméré et al.,<br />

0.699 0.682<br />

2009<br />

P. tattersalli 9 224 13<br />

Quéméré et al.,<br />

0.690 0.660<br />

2010<br />

Avahi laniger 5 37 22 0.640 0.838 Andriantompohavana<br />

et al., 2004<br />

A. occidentalis<br />

1 7 22 0.514 0.586 Andriantompohavana<br />

et al., 2004<br />

Varecia<br />

rubra<br />

2 32 <strong>15</strong> 0.616 0.618 Razakamaharavo<br />

et al., 2010<br />

V. variegata<br />

variegata<br />

4 35 25 0.337 0.506 Louis et al., 2005<br />

Eulemur<br />

cinereiceps<br />

2 21 16* 0.598 0.641<br />

Tokiniaina et al.,<br />

2009<br />

E. collaris 4 40 10* 0.617 0.576 Ranaivoarisoa<br />

et al., 2010<br />

E. sanfordi 5 54 11* 0.562 0.567 Ramanamahefa<br />

et al., 2010a<br />

E. coronatus 6 80 11* 0.636 0.673 Ramanamahefa<br />

et al., 2010b<br />

E. rubriventer<br />

2 12 20 0.531 0.643 Andriantompohavana<br />

et al., 2007<br />

Lemur catta 1 24 7*<br />

Zaonarivelo et al.,<br />

0.837 0.838<br />

2006<br />

Microcebus<br />

ravelobensis<br />

8 205 7<br />

Olivieri et al.,<br />

0.6<strong>15</strong> 0.605<br />

2007<br />

M. ravelobensis<br />

12 187 8<br />

Radespiel et al.,<br />

0.708 0.734<br />

2008<br />

M. bongolensis<br />

3 45 8<br />

Olivieri et al.,<br />

0.557 0.565<br />

2008<br />

M. danfossi 7 78 8 0.628 0.662 Olivieri et al., 2008<br />

Mirza<br />

coquereli<br />

***1 69 7<br />

Markolf et al.,<br />

0.712 0.799<br />

2008<br />

* Heterozygosity averages calculated using loci with null allele<br />

frequency estimates less than 0.10.<br />

** Estimated over genetic clusters, not actual populations<br />

*** Samples taken from 1993-2006.<br />

The Indri (Indri indri, Gmelin, 1788), or Babakoto as it is<br />

known in most of eastern Madagascar,is the largest extant lemur<br />

(Powzyk and Thalmann, 2003). Indri are primarily midlevel<br />

forest folivores preferentially feeding on immature<br />

leaves and somewhat also on mature leaf matter, flowers,<br />

fruits,seeds and even bark when necessary (Britt et al.,2002).<br />

The Babakoto is currently threatened by the rapid reduction


Page 60 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

of forest cover and fragmentation of suitable habitat (Harper<br />

et al., 2007) which limits the species’ density and range<br />

(Glessner and Britt, 2005). Although protected, the Babakoto<br />

is also threatened by subsistence hunting pressure and<br />

bush meat trade (Golden, 2005). Designated as Endangered<br />

according to the IUCN Red List of Threatened Species<br />

(IUCN, 2008), I. indri is currently split into two subspecies,<br />

Indri indri indri (Gmelin, 1788) and Indri i. variegatus (Gray,<br />

1872). Here, we present population genetic parameter estimates<br />

from populations along the entire range of the species<br />

analyzed from nuclear microsatellite multilocus genotypes.<br />

Methods<br />

Samples were collected from 106 Indri from 10 sites across<br />

the geographical range of the species (Fig. 1). From north to<br />

south,the forests represented in the collection were Anjanaharibe-Sud<br />

Special Reserve, Marotandrano Special Reserve,<br />

Ambatovaky Special Reserve,Zahamena Special Reserve and<br />

National Park, Betampona Nature Reserve, Anjozorobe<br />

Regional Forest Reserve, Mantadia National Park, Analamazoatra<br />

Special Reserve (Andasibe),Maromizaha Classified<br />

Forest, and Anosibe an’ala Classified Forest. The elevations<br />

of the sampling sites ranged from lowland forests (Anosibe<br />

An’ala, 125 m asl) to highland forests (Anjozorobe, 1358 m<br />

asl).<br />

Fig. 1: Map of Madagascar indicating the study areas.<br />

Immobilization and collection<br />

All lemurs investigated in this study were free-ranging and<br />

were immobilized with a CO2 powered DAN-INJECT (Brrkop,<br />

Denmark) Model JM rifle propelling Pneu-Darts (Williamsport,<br />

PA) loaded with 10 mg/kg estimated body weight<br />

of Telazol ® (Fort Dodge).We recorded the location (within 6<br />

m accuracy) of all of the immobilized lemurs using a global<br />

positioning system (GPS) device. Each individual was transported<br />

back to the base camp where complete morphometric<br />

data were taken (Zaonarivelo et al., 2007a). Whole<br />

blood (1.0 cc per kilogram) from the femoral artery and<br />

2.0 mm skin biopsies from the ear pinnae were collected<br />

from each sedated lemur (Junge and Louis, 2002). A Home<br />

Again ® (Home Again Pet Recovery Service, East Syracuse,<br />

NY) microchip was placed subcutaneously between the scapulae<br />

of each lemur to positively identify individuals re-captured<br />

during any future immobilizations. Following data and<br />

sample collection, an injection of lactated Ringer’s solution<br />

was administered subcutaneously to support maintenance<br />

requirements and to dissipate the effect of the Telazol ®.Animals<br />

were monitored for three hours post recovery then<br />

released according to the capture GPS coordinates.<br />

Data generation<br />

Ear punches were dissected into quarters and DNA was<br />

extracted using standard PCI/Chloroform procedures (Sambrook<br />

et al., 1989). Approximately 50 ng of genomic DNA<br />

was used for each PCR reaction. Multilocus genotypes were<br />

generated from a suite of 20 Indri-specific microsatellite loci<br />

as described in Zaonarivelo et al. (2007b). The genotype file<br />

was checked for typographical errors,scoring errors,stutter<br />

bands and allele dropout with Micro-Checker (van Oosterhout<br />

et al., 2004) and Microsatellite Analyser (MSA; Dieringer<br />

and Schlötterer, 2002). We used CERVUS (version 2.0,<br />

Marshall et al.,1998;Slate et al.,2000) to identify loci with excessive<br />

null allele frequency estimates (nf > 0.10) and to estimate<br />

polymorphic information content of the loci.Moderate<br />

(0.05 < nf < 0.20) and high (0.20 < nf) null allele frequencies<br />

can have significant effects on population genetics parameter<br />

estimates (Chapuis and Estoup, 2007). The process of redesigning<br />

primer pairs is both costly and time consuming;<br />

therefore,we opted to delete problematic loci from the data<br />

set. We deleted eight loci with moderate null allele frequencies<br />

(nf > 0.1) to reduce the bias from misclassification of null<br />

heterozygotes as homozygotes (Callen et al., 1993; Hoffman<br />

and Amos, 2005) and to control the variance of parameter<br />

estimates (Chapuis and Estoup, 2007). The accepted loci<br />

were verified for independence of linkage disequilibrium<br />

(with Bonferroni-adjusted P-values) in FSTAT (Goudet,1995,<br />

2001).<br />

Hardy-Weinberg exact tests (Guo and Thompson, 1992)<br />

were performed by locus and population in Genepop (version<br />

4.0, Raymond and Rousset, 1995). Initially, we used the<br />

default settings for the MCMC estimation of HWE then<br />

increased the batch size from 100 to 250 to reduce the standard<br />

error of the P-value to below 0.01. Genetic diversity<br />

was measured as observed heterozygosity (HO) and expected<br />

heterozygosity (HE). In addition, the number of effective<br />

migrants was estimated globally and pair-wise using the private<br />

allele method. We used FSTAT to calculate the total<br />

number of alleles (k), mean number of alleles (MNA), and<br />

rarefacted allelic richness (AR; Leberg, 2002) by locus and<br />

population.Allelic richness estimates the allelic diversity in a<br />

data set based on the population with the fewest number of<br />

individuals contributing genotypes by locus. This is an unbiased<br />

comparison of allelic diversity since populations with<br />

more contributors provide a greater opportunity to capture<br />

more alleles from lower frequency occurrences. Wright’s Fstatistics<br />

were estimated in FSTAT for within population<br />

similarity (FIS) and between population differences (FST)<br />

according to Weir and Cockerham (1984).<br />

The effective population sizes were estimated with the linkage<br />

disequilibrium (LD) option in NeEstimator (Peel et al.,<br />

2004; Hill, 1981; Waples, 1991). We tested all populations<br />

having met the minimum statistical threshold required (n =<br />

20 genes or 10 individuals) for the presence of bottleneck<br />

events using Bottleneck (version 2.0, Cornuet and Luikart,


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 61<br />

1996; Luikart et al., 1998; Piry et al., 1999) under the Infinite<br />

Alleles Model (IAM; Kimura and Crow, 1964), the Stepwise<br />

Mutation Model (SMM;Ohta and Kimura,1973),and the Two<br />

Phase Model (TPM;di Rienzo et al.,1995).We varied the proportion<br />

of the single step contribution to the TPM to identify<br />

the P < 0.05 threshold of significance.The program identifies<br />

populations with an excess of heterozygosity relative to<br />

mutation-drift equilibrium which is indicative of a reduction<br />

in the effective population size (Maruyama and Fuerst,1985).<br />

An estimate of relationships among all individuals sampled at<br />

each forest was done in SPAGeDi (Hardy and Vekemans,<br />

2002),then compared to a simulation of known pedigreed individuals.<br />

The analysis was performed to calculate the relationship<br />

coefficients described in Queller and Goodnight<br />

(1989) in the absence of spatial data.<br />

Results<br />

Genetic diversity as mean number of alleles ranged from<br />

6.08-8.92 per population. Using the rarefacted allelic richness,<br />

the range lowered to 5.87-7.67. The expected heterozygosity<br />

ranged from 0.77-0.86 (P > 0.05;Fig.2) with an average<br />

of 0.81, while the observed heterozygosity ranged from<br />

0.65-0.84 (P < 0.05; Fig. 3) with an average of 0.74. The number<br />

of effective breeders in the sampled populations averaged<br />

between 12.6 and 39.6 per population (Tab. 2).<br />

Results from Bottleneck showed that none of the 10 populations<br />

deviated from a mutation-drift equilibrium under the<br />

SMM.Three populations,Anjanaharibe Sud,Ambatovaky and<br />

Anjozorobe did not show evidence of population bottleneck<br />

under the IAM either.The rest of the populations were significant<br />

for bottleneck events under the IAM and varying proportions<br />

of single step contributions under the TPM.<br />

The frequencies of the relationship coefficients estimated<br />

using SPAGeDi were overlaid upon a simulation generated<br />

from known pedigreed data so that each of the population’s<br />

relative distribution of relationships could be compared with<br />

parent offspring, full sibling, half sibling and unrelated relationship<br />

coefficient distributions (Fig. 4). The data indicated<br />

that the sampling was from individuals that were somewhat<br />

related more than the unrelated individuals in the reference<br />

simulation. Inbreeding can also be due to background relatedness<br />

where an increased allelic identity by descent is a result<br />

from bottleneck events in the population’s history.Relationship<br />

coefficient distributions sup-<br />

port the assumption that the individuals<br />

sampled were often from family<br />

groups. All of these sources may potentially<br />

be due to the effects of habitat<br />

fragmentation which is certainly<br />

the case in the Anosibe an’ala population<br />

where the habitat is so fragmented<br />

that although multiple family<br />

groups were encountered, they were<br />

found in isolated forest fragments.<br />

Discussion<br />

Of the 10 Indri populations sampled,<br />

six (Anjanaharibe Sud, Ambatovaky,<br />

Zahamena, Betampona, Mantadia, and<br />

Anosibe an’ala) deviated from HWE<br />

with an excess of homozygotes.Considering<br />

inbreeding as potential cause,<br />

five of the populations (Anjanaharibe<br />

Sud, Ambatovaky, Betampona, Mantadia,<br />

and Andasibe) had relatively<br />

high FIS and one (Anosibe an’ala) had<br />

Y<br />

.90<br />

.80<br />

.70<br />

.60<br />

55DD<br />

A B C D E F G H I J<br />

X<br />

Fig. 2: Ranges of expected heterozygosities with 95 % confidence<br />

intervals: A) Anjanaharibe Sud; B) Marotandrano; C)<br />

Ambatovaky; D) Zahamena; E) Betampona; F) Anjozorobe;<br />

G) Mantadia;H) Andasibe;I) Maromizaha; J) Anosibe an’ala.<br />

4DF4<br />

Y<br />

.90<br />

.85<br />

.80<br />

.75<br />

A B C D E F G H I J<br />

X<br />

Fig. 3: Ranges of observed heterozygosities with 95 % confidence<br />

intervals: A) Anjanaharibe Sud; B) Marotandrano; C)<br />

Ambatovaky; D) Zahamena; E) Betampona; F) Anjozorobe;<br />

G) Mantadia;H) Andasibe;I) Maromizaha; J) Anosibe an’ala.<br />

Tab. 2: Population genetic parameter estimates for 10 populations comprised of n<br />

samples each derived from 12 microsatellite loci for number of alleles (k), the mean<br />

number of alleles (MNA), allelic richness (AR), probability of satisfying Hardy-Weinberg<br />

Equilibrium (HWE), observed (HO) and expected (HE) heterozygosities, inbreeding<br />

estimate (FIS), the number of effective breeders (Neb) estimated with the<br />

linkage disequilibrium method and 95 % confidence interval,and results from the Bottleneck<br />

test under the infinite allele model (IAM) and the two phased model (TPM)<br />

with proportion of multistep mutations contributing to the P < 0.05 significance level.<br />

n k MNA AR HWE HO HE FIS Neb 95% CI IAM TPM<br />

ANJ 10 80 6.67 6.41 * 0.67 0.77 0.135 23.0 16.2-37.8 NS NS<br />

TAND 10 73 6.08 5.87 NS 0.75 0.77 0.024 21.9 <strong>15</strong>.1-36.9 ** 70<br />

VAK 11 76 6.33 5.92 NS 0.69 0.77 0.121 20.1 14.7-30.4 NS NS<br />

ZAH 14 107 8.92 7.65 NS 0.81 0.86 0.060 39.6 28.8-61.3 ** 10<br />

BET 10 79 6.58 6.37 ** 0.73 0.80 0.093 18.3 13.5-27.1 ** 20<br />

ANJZ 10 83 6.92 6.70 NS 0.84 0.79 -0.066 20.9 <strong>15</strong>.1-32.5 NS NS<br />

TAD 10 96 8.00 7.67 NS 0.75 0.85 0.120 20.1 <strong>15</strong>.3-28.3 ** 70<br />

DASI 11 81 6.75 6.40 NS 0.73 0.81 0.095 12.6 10.2-16.2 ** 5<br />

MIZA 10 89 7.42 7.17 NS 0.83 0.84 0.021 <strong>15</strong>.9 12.4-21.3 ** 5<br />

ANOSIBE 10 92 7.67 7.38 * 0.65 0.85 *0.236 28.8 19.9-49.3 ** NS<br />

* P < 0.05, ** P < 0.001; Anjanaharibe-Sud(ANJ), Marotandrano (TAND), Ambatovaky (VAK),<br />

Zahamena (ZAH), Betampona (BET), Anjozorobe (ANJZ), Mantadia (TAD), Andasibe (DASI).<br />

Maromizaha (MIZA), Anosibe an’ala (ANOSIBE).


Page 62 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Frequency<br />

Frequency<br />

Frequency<br />

Frequency<br />

Frequency<br />

Frequency<br />

Frequency<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

Anjanaharibe-Sud<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Morontandrano<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Ambatovaky<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Zahamena<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Betampona<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Anjozorobe<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Mantadia<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Frequency<br />

Frequency<br />

Frequency<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

Andasibe<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Maromizaha<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Anosibe an'ala<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Parent-Offspring Full Sibling Half Sibling<br />

Unrelated All Populations<br />

Fig. 4: Distributions of relationship coefficients estimated in<br />

each population overlaid on a simulation of 10,000 known<br />

genotypes and pedigreed relationships (Queller and Goodnight,<br />

1989).<br />

a significantly high FIS estimate. Considering relationship<br />

among the samples as one manner of capturing inbreeding,all<br />

populations show some degree of relationship above what<br />

would be expected if the sampled individuals were unrelated.<br />

This is not surprising since samples were collected as found<br />

and this could include individuals that are members of a family<br />

group which is supported by the relationship coefficient<br />

distributions in Fig. 2.<br />

All populations demonstrated some degree of recent reduction<br />

in the effective population sizes.The bottlenecks did not<br />

appear to have been a single global event as different populations<br />

showed differing degrees to which the bottlenecks<br />

were detected. Using Lawler’s (2008) 4*Neb*generations,<br />

the bottlenecks detected would have had an expected window<br />

of occurrence of up to 250 to 800 years ago, within the<br />

timeframe of human encroachment. Hence, we postulate<br />

that among other things, anthropogenic disturbances,<br />

whether habitat destruction or subsistence hunting, may<br />

have influenced the demographic reduction that we detected<br />

in the bottleneck test. These baseline values could be useful<br />

in long-term or future studies to determine genetic health<br />

trends over time under various forest or habitat conditions.<br />

Genetic diversity is considered to be the most important<br />

factor in determining the genetic health of a species or population.Among<br />

the lemurs,there is little information in the literature<br />

that addresses the genetic diversity estimations for<br />

multiple populations of a given species. Ranaivoarisoa et al.<br />

(2010) found the observed heterozygosity in three of four<br />

Eulemur collaris populations to be higher than the expected<br />

heterozygosity. In E. coronatus, Ramanamahefa et al. (2010a)


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 63<br />

found the expected heterozygosity to be higher in five out of<br />

six populations,one comparison was significantly higher (P <<br />

0.01).In E.sanfordi,Ramanamahefa et al.(2010b) found that in<br />

all populations sampled,the observed heterozygosities were<br />

higher than the expected heterozygosities. Lastly, Quéméré<br />

et al. (2009), found that their study estimated the expected<br />

heterozygosity level for several populations of P. tattersalli to<br />

be higher than the estimate found by Razafindrakoto et al.<br />

(2008) using a different marker suite in different populations.<br />

Other studies (included in Tab. 2) have estimated heterozygosity<br />

levels for one or two populations of various lemur<br />

species in recent years.While these estimates provide some<br />

general sense of genetic diversity, they are not standardized<br />

(e.g. not the same markers were used in each study) so the<br />

estimates are contingent on the polymorphic information<br />

content and amplification quality in each independent study.<br />

What we do see is a relative trend that the observed<br />

heterozygosities are in general lower, but usually not significantly,<br />

than the expected heterozygosities under the assumptions<br />

of HWE.<br />

In this study on I. indri, we found the differences among the<br />

HO estimates to differ but not significantly and the differences<br />

among the HE estimates to differ with low significance<br />

(P < 0.05). The average estimates for heterozygosity, thus<br />

genetic diversity, were in the upper range of those found in<br />

limited population studies on other lemur species. These<br />

estimate trends provide the basis for future and integrative<br />

studies where multiple species might be considered in sympatric<br />

zones to investigate the overall genetic health of the<br />

biodiversity and to better understand the effects that humans<br />

may be having on the evolutionary potential of lemurs.<br />

Acknowledgements<br />

We acknowledge the Ministry of Environment and Eaux &<br />

Forets, Madagascar National Parks, U.S. Fish & Wildlife Service,<br />

Professor Gisele and the Department of Paleontology<br />

and Anthropology, University of Antananarivo for their help.<br />

This project would not have been possible without the support<br />

of the staff, guides, and drivers of Henry Doorly Zoo<br />

and the Madagascar Biodiversity Partnership. We also wish<br />

to thank the Theodore F.and Claire M.Hubbard Family Foundation,<br />

Bill and Berniece Grewcock, the Ahmanson Foundation,<br />

the James Family Foundation and the Hawks Family<br />

Foundation for their support of this project.<br />

References<br />

Andriantompohavana, R.; Randrianamanana, J.C.; Sommer,<br />

J.A.;Brenneman,R.A.;Louis,E.E.Jr.2004.Characterization<br />

of twenty-two microsatellite loci developed from the<br />

genome of the Woolly Lemur (Avahi laniger). Mol. Ecol.<br />

Notes 4(3): 400-403.<br />

Andriantompohavana, R.; Morelli, T.L.; Behncke, S.M.; Engberg,S.E.;Brenneman,R.A.;Louis,E.E.Jr.2007.Characterization<br />

of twenty Eulemur-specific microsatellite loci characterized<br />

in two populations of the Red-Bellied Brown<br />

Lemur, Eulemur rubriventer. Mol. Ecol. Notes 7(6): 1162-<br />

1165.<br />

Bailey, C.A.; Lei, R.;Brenneman, R.A.; Louis, E.E. Jr. 2009. Characterization<br />

of 21 microsatellite loci in the Milne-Edwards<br />

sifaka (Propithecus edwardsi). Conserv. Genet. 10:<br />

1389-1392.<br />

Britt,A.;Randriamandratonirina,N.J.;Glasscock,K.D.;Iambana,<br />

B.R. 2002. Diet and feeding behaviour of Indri indri in a<br />

low-altitude rain forest. Folia Primatol. 73: 225-39.<br />

Callen, D.F.; Thompson, A.D.; Shen, Y.; Phillips, H.A.; Richards,<br />

R.I.; Mulley, J.C.; Sutherland, G.R. 1993. Incidence and<br />

origin of "null" alleles in the (AC)n microsatellite markers.<br />

Am. J. Hum. Genet. 52: 922-927.<br />

Chapuis, M.-P.; Estoup, A. 2007. Microsatellite null alleles and<br />

estimation of population differentiation. Mol. Biol. Evol.<br />

24(3): 621-631.<br />

Cornuet,J.M.;Luikart,G.1996.Description and power analysis<br />

of two tests for detecting recent population bottlenecks<br />

from allele frequency data. Genetics 144: 2001-<br />

2014.<br />

Di Rienzo,A.;Peterson,A.C.;Garza,J.C.;Valdes,A.M.;Slatkin,<br />

M.; Freimer, N.B. 1994. Mutational processes of simplesequence<br />

repeat loci in human populations. Proc. Nat.<br />

Acad. Sci. USA. 91: 3166-3170.<br />

Dieringer, D.; Schlötterer, C. 2002. Microsatellite analyser<br />

(MSA): a platform independent analysis tool for large<br />

microsatellite data sets. Mol. Ecol. Notes 1(3): 167-169.<br />

Glessner,K.D.G.;Britt,A.2005.Population density and home<br />

range size of Indri indri in a protected low altitude rain<br />

forest. Int. J. Primatol. 26(4): 855-872.<br />

Gmelin, J.F. 1788. Caroli a Linné systema naturae per regna<br />

tria naturae, secundum classes, ordines, genera, species,<br />

cum characteribus, differentiis, synonymis, locis. Tomus I.<br />

Editio decima tertia,aucta,reformata.42:1-500.Lipsiae,G.<br />

E. Beer.<br />

Golden, C. 2005. Eaten to Endangerment: Mammal hunting<br />

and the bushmeat trade in Madagascar’s Makira forest.<br />

M.S. Thesis: Accession 17105 Box 1, Harvard University<br />

Library, Cambridge, MA.<br />

Goudet, J. 1995. FSTAT, a computer program to test F-statistics.<br />

J. Hered. 86: 485-486.<br />

Goudet, J. 2001. FSTAT, a program to estimate and test gene<br />

diversities and fixation indices (version 2.9.3). Updated<br />

from Goudet (1995).<br />

Guo,S.W.;Thompson,E.A.1992.Performing the exact test of<br />

Hardy-Weinberg proportion for multiple alleles. Biometrics<br />

48: 361-372.<br />

Gray, J.E. 1872. On the varieties of Indris and Propithecus.<br />

Annals and Magazine of Natural History, London, British<br />

Museum Trustees.<br />

Hardy, O.J.; Vekemans, X. 2002. SPAGeDi: a versatile computer<br />

program to analyse spatial and genetic structure at the<br />

individual level. Mol. Ecol. Notes 2: 618-620.<br />

Harper, G.J.; Steininger, M.K.; Tucker C.J.; Juhn, D.; Hawkins, F.<br />

2007. Fifty years of deforestation and forest fragmentation<br />

in Madagascar. Environ. Conserv. 34(4): 1-9.<br />

Hill, W.G. 1981. Estimation of effective population size from<br />

data on linkage disequilibrium. Genet. Res. 38: 209-216.<br />

Hoffman, J.J.; Amos, W. 2005. Microsatellite genotyping<br />

errors: detection approaches, common sources, and consequences<br />

for paternal exclusion. Mol. Ecol. 14: 599-612.<br />

IUCN. 2008. IUCN Red List of threatened species.<br />

www.iucnredlist.org. Downloaded on 17 April 2009.<br />

Junge,R.E.;Louis,E.E.2002.Medical evaluation of free-ranging<br />

primates in Betampona Reserve, Madagascar. Lemur<br />

News 7:23-25.<br />

Kimura,M.;Crow J.F. 1964.The number of alleles that can be maintained<br />

in a finite population. Genetics 49: 725-738.<br />

Lawler, R. 2008. Testing for a historical bottleneck in wild<br />

Verreaux’s sifaka (Propithecus verreauxi verreauxi) using<br />

microsatellite data. Am. J. Primatol. 70: 990-994.<br />

Leberg, P.L. 2002. Estimating allelic richness: Effects of ample<br />

size and bottlenecks. Mol. Ecol. 11: 2445-2449.<br />

Lei, R.; McGuire, S.M.; Shore, G.D.; Louis, E.E. Jr.; Brenneman,<br />

R.A. 2008a. Characterization of twenty-one microsatellites<br />

developed from Propithecus deckeni deckeni.Mol.Ecol.<br />

Res. 8(4): 773-776.<br />

Lei, R.; McGuire, S.M.; Shore, G.D.; Louis, E.E. Jr.; Brenneman,<br />

R.A. 2008b. Characterization of twenty microsatellites<br />

developed from Propithecus deckeni coronatus with crossamplification<br />

in Propithecus deckeni deckeni. Conserv.<br />

Genet. 9(4): 999-1002.<br />

Louis, E.E. Jr.; Ratsimbazafy, J.H.; Razakamaharavo, V.R.; Pierson,<br />

D.J.; Barber, R.C.; Brenneman, R.A. 2005. Conservation<br />

genetics of black and white ruffed lemurs (Varecia variegata<br />

variegata) from southeastern Madagascar. Animal<br />

Conservation 8: 105-111.<br />

Luikart, G.; Allendorf, F.W.; Cornuet, J.-M.; Sherwin, W.B.<br />

1998. Distortion of allele frequency distributions provides<br />

a test for recent population bottlenecks. J. Hered. 89:<br />

238-247.<br />

Markolf, M.; Roos, C.; Kappeler, P. 2008. Genetic and demographic<br />

consequences of a rapid reduction in population<br />

size in a solitary lemur (Mirza coquereli). Open Conserv.<br />

Biol. J. 2: 21-29.


Page 64 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Marshall, T.C.; Slate, J.; Kruuk, L.E.B.; Pemberton, J.M. 1998.<br />

Statistical confidence for likelihood-based paternity inference<br />

in natural populations. Mol. Ecol. 7(5): 639-655.<br />

Maruyama, T.; Fuerst, P.A. 1985. Population bottlenecks and<br />

non equilibrium models in population genetics.II.Number<br />

of alleles in a small population that was formed by a recent<br />

bottleneck. Genetics 111: 675-689.<br />

McGuire, S.M.; Emodi, G.P.; Shore, G.D.; Brenneman, R.A.;<br />

Louis, E.E. Jr. 2009. Characterization of 21 microsatellite<br />

marker loci in the silky sifaka (Propithecus candidas). Conserv.<br />

Genet. 10(4): 985-988.<br />

Ohta,T.;Kimura,M.1973.Simulation studies on genetic electrophoretically<br />

genetic variability in a finite population.<br />

Genetics 76: 6<strong>15</strong>-624.<br />

Olivieri,G.;Zimmermann,E.;Randrianambinina,B.;Rasoloharijaona,<br />

S.; Rakotondravony, D.; Guschanski, K.; Radespiel,<br />

U. 2007. The ever-increasing diversity in mouse lemurs:<br />

three new species in north and northwestern Madagascar.<br />

Mol. Phylogenet. Evol. 43(1): 309-27.<br />

Olivieri, G.I.; Sousa, V.; Chikhi, L.; Radespiel, U. 2008. From<br />

genetic diversity and structure to conservation: genetic<br />

signature of recent population declines in three mouse<br />

lemur species (Microcebus spp.). Biol. Conserv. 141: 1257-<br />

1271.<br />

Peel,D.;Ovenden,J.R.;Peel,S.L.2004.NeEstimator:software<br />

for estimating effective population size, Version 1.3.<br />

Queensland Government, Department of Primary Industries<br />

and Fisheries.<br />

Piry, S.; Luikart, G.; Cornuet, J.M. 1999. BOTTLENECK: A<br />

computer program for detecting recent reductions in the<br />

effective population size using allele frequency data. J.<br />

Hered. 90: 502-503.<br />

Powzyk, J.; Thalmann, U. 2003. Indri indri, Indri. Pp. 1342-1345.<br />

In: S.M. Goodman; J.P. Benstead (eds.). The Natural History<br />

of Madagascar. University of Chicago Press.<br />

Queller, D.C.; Goodnight, K.F. 1989. Estimating relatedness<br />

using genetic markers. Evolution 43: 258-275.<br />

Quéméré,E.;Louis,E.E.Jr.;Ribéron,L.;Chikhi,L.;Crouau-Roy,<br />

B. 2009. Non-invasive conservation genetics of the critically<br />

endangered golden-crowned sifaka (Propithecus<br />

tattersalli): high diversity and significant genetic differentiation<br />

over a small range. Conserv. Genet. DOI:<br />

10.1007/s10592-009-9837-9.<br />

Quéméré, E.; Crouau-Roy, B.; Rabarivola, C.; Louis, E.E. Jr.;<br />

Chikhi, L. 2010. Landscape genetics of an endangered<br />

lemur (Propithecus tattersalli) within its entire fragmented<br />

range. Conserv. Genet.<br />

DOI:10.1007/s10592-009-9837-9.<br />

Radespiel, U.; Rakotondravony, R.; Chikhi, L. 2008. Natural<br />

and anthropogenic determinants of genetic structure in<br />

the largest remaining population of the endangered<br />

golden-brown mouse lemur,Microcebus ravelobensis.Am.J.<br />

Primatol. 70: 860-870.<br />

Rakotoarisoa, G.; Shore, G.D.; McGuire, S.M.; Engberg, S.E.;<br />

Louis, E.E. Jr.; Brenneman, R.A. 2006a. Characterization of<br />

20 microsatellite marker loci in the Coquerel’s Sifaka (Propithecus<br />

coquereli). Mol. Ecol. Notes. 6(4): 1119-1121.<br />

Rakotoarisoa, G.; Shore, G.D.; McGuire, S.M.; Engberg, S.E.;<br />

Louis, E.E. Jr.; Brenneman, R.A. 2006b. Characterization of<br />

13 microsatellite marker loci in the Verreaux’s Sifaka (Propithecus<br />

verreauxi). Mol. Ecol. Notes. 6(4): 1122-1125.<br />

Ramanamahefa, R.; McGuire, S.M.; Louis, E.E. Jr.; Brenneman,<br />

R.A. 2010a. Population genetic parameter estimates for<br />

five populations of Sanford’s lemur, Eulemur sanfordi<br />

(Archbold, 1932), from northern Madagascar. Lemur<br />

News 14: 26-31.<br />

Ramanamahefa, R.; McGuire, S.M.; Louis, E.E. Jr.; Brenneman,<br />

R.A. 2010b. Population genetic parameter estimates for<br />

six populations of crowned lemurs, Eulemur coronatus<br />

(Gray,1842),from northern Madagascar.Lemur News 14:<br />

21-26.<br />

Ramarokoto,R.;Lei,Runhua,R.;Vincent,J.;Day,S.;Shore,G.D.;<br />

Brenneman, R.A.; Louis, E.E. Jr. 2008. Characterization of<br />

twenty-one microsatellites developed from Propithecus<br />

diadema. Conserv. Genet. 9(5): 1377-1380.<br />

Ranaivoarisoa, J.-F.; McGuire, S.M.; Lei, R.; Ravelonjanahary,<br />

S.S.;Engberg,S.E.;Bailey,C.;Kimmel,L.;Razafimananjato,T.;<br />

Rakotonomenjanahary, R.; Brenneman, R.A.; Louis, E.E. Jr.<br />

2010. Population genetic study of the Brown Collared<br />

Lemur (Eulemur collaris) in Southeastern Madagascar.<br />

Online Conserv. Biol. J. 4: 1-8.<br />

Raymond,M.;Rousset,F.1995.GENEPOP (Version3.1):Population<br />

genetics software for exact tests and ecumenicism.<br />

J. Hered. 86: 248-249.<br />

Razafindrakoto A.; Quéméré, E.; Shore, G.D.; McGuire, S.M.;<br />

Louis, E.E. Jr.; Brenneman, R.A. 2008. Characterization of<br />

20 microsatellites marker loci in the golden-crowned<br />

sifaka (Propithecus tattersalli). Conserv. Genet. 9(4): 1027-<br />

1031.<br />

Razakamaharavo, V.; McGuire, S.M.; Louis, E.E. Jr.; Brenneman,<br />

R.A. 2010. Genetic architecture of regional red ruffed<br />

lemur (Varecia rubra) populations in Masoala National<br />

Park of Madagascar. Primates 51(1): 53-61.<br />

Sambrook,J.;Fritch,E.F.;Maniatus,T.1989.Molecular Cloning:<br />

a Laboratory Manual. 2nd edn. Cold Spring Harbor Press,<br />

New York.<br />

Slate, J.; Marshall, T.C.; Pemberton, J.M. 2000. A retrospective<br />

assessment of the accuracy of the paternity inference program<br />

CERVUS. Mol. Ecol. 9(6): 801-808.<br />

Tokiniaina, H.; Bailey, C.A.; Shore, G.D.; Delmore, K.E.;<br />

Johnson,S.E.;Louis,E.E.Jr.;Brenneman R.A.2009.Characterization<br />

of 18 microsatellite marker loci in the whitecollared<br />

lemur (Eulemur cinereiceps). Conserv. Genet. 10:<br />

1459- 1462.<br />

Van Oosterhaut,C.;Hutchinson,W.F.;Wills, D.P.M.;Shipley,P.<br />

2004. MICRO-CHECKER: software for identifying and<br />

correcting genotyping errors in microsatellite data. Mol.<br />

Ecol. Notes 4: 535-538.<br />

Waples,R.S.1991.Genetic methods for estimating the effective<br />

size of Cetacean populations.Pp.279-300.In:A.R.Hoelzel<br />

(ed.).Genetic Ecology of Whales and Dolphins, Special<br />

Issue 13.International Whaling Commission,London.<br />

Weir, B.; Cockerham, C.C. 1984. Estimating F-statistics for<br />

the analysis of population structure. Evolution 38(6):<br />

1358-1370.<br />

Zaonarivelo, J.R.; Andriantompohavana,R.;Engberg, S.E.; Kelley,<br />

S.G.; Randriamanana, J.-C.; Louis, E.E. Jr.; Brenneman,<br />

R.A. 2007a. Morphometric data for Indri (Indri indri) collected<br />

from 10 forest fragments in eastern Madagascar.<br />

Lemur News 12: 17-21.<br />

Zaonarivelo, J.R.; Sommer, J.A.; McGuire, S.M.; Engberg, S.E.;<br />

Brenneman,R.A.;Louis,E.E.Jr.2007b.Isolation and characterization<br />

of twenty microsatellite marker loci from the<br />

Indri (Indri indri) genome. Mol. Ecol. Notes 7: 25-28.<br />

Zaonarivelo, J.R.; Andriantompohavana, R.; Shore G.D.; Engberg,<br />

S.E.; McGuire, S.M.; Louis, E.E. Jr.; Brenneman, R.A.<br />

2006.Characterization of 21 microsatellite marker loci in<br />

the ring-tailed lemur (Lemur catta). Conserv. Genet. 8(5):<br />

1209-1212.<br />

Verreaux’s sifaka fur condition in the<br />

spiny forest of southern Androy<br />

Ivan Norscia 1*, Jean Lambotsimihampy 2, Elisabetta<br />

Palagi 1,3<br />

1Natural History Museum, UniversitB di Pisa, Via Roma, 79,<br />

56011, Calci (PI), Italy<br />

2Berenty Village, Antandroy, Madagascar<br />

3Unit of Cognitive Primatology and Primate Center,Institute<br />

of Cognitive Sciences and Technologies, The National Research<br />

Council (CNR), Rome, Italy<br />

*Corresponding author: norscia@hotmail.com<br />

Résumé<br />

Les conditions du pelage des animaux peuvent représenter<br />

un moyen fiable et un indicateur non invasif pour comprendre<br />

l’état de santé d’une population et distinguer des segments<br />

différents de la même population.En 2008 nous avons<br />

effectué un recensement de sifaka (Propithecus verreauxi)<br />

dans les forêts riveraines de la réserve de Berenty (foret<br />

galerie et de transition de Malaza et forêt secondaire aux


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 65<br />

espèces allochtones de Ankoba) et dans six portions de<br />

forêt épineuse qui sont inclues dans le domaine privé de<br />

Berenty. Nous avons relevé l’état du pelage des animaux<br />

selon trois conditions: fourrure intègre (niveau 1), fourrure<br />

faiblement endommagée (ponctuée par des petites zones,<br />

sans pelage, couvrant moins de 30 % du corps; niveau 2),<br />

fourrure fortement endommagée (pelage manquant sur une<br />

surface supérieure à 30 %;niveau 3).Nous avons aperçu seulement<br />

quatre sifaka au niveau de pelage 3 et, par conséquence,<br />

nous avons pu évaluer statistiquement les différences<br />

seulement entre les niveaux de pelage 1 et 2, en comparant<br />

forêt épineuse et les forêts riveraines, soi au niveau<br />

des groups d’animaux (n= 41) soi au niveau des zones recensée<br />

(n= 9). Même si avons détecté un nombre significativement<br />

plus haut de sifaka avec la fourrure faiblement<br />

endommagée dans le domaine épineuse,la nature et surtout<br />

l’entité du dommage indiquent que les conditions du pelage<br />

n’arrivent pas vraiment à différentier des segments distincts<br />

dans la population de sifaka de Berenty.<br />

Introduction<br />

An index of coat condition can be a non-invasive tool for<br />

tracking health and stress at the population level (Jolly,<br />

2009a). In fact, pelage growth can be directly influenced by<br />

the proximate stimulus of light (acting through neuro-endocrine<br />

pathways), by the nutritional status, and indirectly by<br />

temperature and behavior (Ling, 1970). Two main functions<br />

of fur are a) insulation, which allows conservation of body<br />

heat, thus reducing energy expenditure and food requirements;<br />

and b) shielding, which protects day-active mammals<br />

from excessive heat load from solar radiation (Scott et al.,<br />

2001; Kenagy and Pearson, 2000).<br />

Here, we considered coat condition of Propithecus verreauxi<br />

(Verreaux’s sifaka) as a possible indicator of the "health status"<br />

of animals in different habitats and investigated whether<br />

it could provide information on possible population stress in<br />

the poorly investigated spiny forest of south Madagascar.<br />

The dry spiny forest of southern Madagascar is a thorny environment,both<br />

metaphorically and literally speaking.Listed as<br />

one of the 200 most important ecological regions in the<br />

world,it harbors the highest level of plant endemism in Madagascar<br />

(Elmqvist et al., 2007). In spite of its importance, the<br />

spiny forest is underrepresented in terms of protection and<br />

conservation programs (Fenn, 2003; Ganzhorn et al., 2003;<br />

Seddon et al.,2000).To fill,at least in part,this gap,we investigated<br />

sifaka fur condition in different spiny forest parcels<br />

inside the Berenty Estate (Androy region,south Madagascar)<br />

and compared it with sifaka inhabiting the riverine forest<br />

areas inside the Berenty Reserve, a habitat much richer in<br />

staple food for lemurs.<br />

Methods<br />

Study site, survey technique, and fur condition evaluation<br />

In March-April 2008, a comprehensive sifaka survey was conducted<br />

in the Berenty Estate, covering 134 ha of spiny forest<br />

and 60 ha of non-spiny forest areas. The Berenty Estate is located<br />

in the semi-arid Androy Region (rainfall averages less<br />

than 500 mm per year). The spiny forest is usually 3 to 6 m in<br />

height with dwarf and xerophyte plants,and emerging trees of<br />

the Family Didieraceae that may reach more than 10 m in<br />

height,such as the keystone species Allouadia procera (Elmqvist<br />

et al., 2007). We performed the survey in all accessible spiny<br />

forest parcels (sacred areas, used as a cemetery, cannot be<br />

accessed by anyone except for local family clans) and in three<br />

riverine areas of the Berenty Reserve (on the Mandrare river),<br />

comprising a northern section (occupied by the 40 ha secondary<br />

forest of Ankoba dominated by the exotic legume species<br />

Pithecellobium dulce;S 24.99°;E 46.29°) and a southern section<br />

(Malaza: S 25.01°; E 46,31°) (Fig. 1 shows study locations). Inside<br />

Malaza we considered the 7 ha gallery forest (dominated<br />

by tamarinds;Tamarindus indica) and the front-transitional forest<br />

(13 ha) (Jolly et al.,2006).In all the areas considered in this<br />

study,logging and hunting are prohibited,and the fossa (Cryptoprocta<br />

ferox) isabsent.<br />

Fig.1:Study site location:Berenty reserve (solid outline;white<br />

area:scrub;diagonal lines:Ankoba and Malaza riverine forests)<br />

and spiny forest fragments (black areas): 1 = Spiny Malaza; 2 =<br />

Spiny Reserve 1;3 = Spiny Reserve 2;4 = West Rapily;5 = Fragment<br />

X; 6 = Anjapolo, about 13 km north-west of Berenty.<br />

Dashed outlines include degraded spiny and/or scrub areas.<br />

The rest of the territory (white) is covered by pasture and<br />

sisal fields. (Map based on Google Earth satellite view).<br />

We performed the survey via walking, at a speed of about 1<br />

km/h,along preexisting trails and through forest paths chosen<br />

ad hoc to have visibility of at least 50 m to the right and left (to<br />

avoid pseudoreplication we followed Norscia and Palagi,<br />

2008).<br />

During the census we evaluated the fur condition of each individual<br />

lemur.We scored coat condition on a 3-point scale:coat<br />

undamaged, with fur fully covering the body (level 1); ruffled<br />

coat,with fur punctuated by small areas of reduced/missing fur<br />

(on less than 30 % of the body, especially on elbows and/or<br />

knees;level 2);patchy coat,usually with black skin areas clearly<br />

visible due to reduced/missing fur (on more than 30 % of the<br />

body, especially on elbows/knees, external sides of forearms<br />

and thighs, fingers and toes; level 3) (Fig. 3).<br />

Statistics<br />

We performed the analyses at group or at forest site level.<br />

Owing to the small sample size (n


Page 66 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

in the spiny and two in the non-spiny forest areas). Thus, we<br />

considered only level 1 (undamaged coat) and 2 (moderately<br />

missing fur) for the analyses and found that the proportion of<br />

individuals with level-1 fur was significantly higher in the nonspiny<br />

than in the spiny areas both in the analysis per forest<br />

site (Exact Mann-Whitney U test, nnon-spiny=3, nspiny=6, Z=<br />

-2.35, p=0.024) (Fig. 2) and in the analysis per group (Mann-<br />

Whitney U test, nnon-spiny=31, nspiny=11, Z=-3.26, p=0.001).<br />

FUR FUR CONDITION<br />

CONDITION<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

SPINY FOREST RIVERINE<br />

AREAS FOREST AREAS<br />

Fig. 2: Difference in fur condition (proportion of individuals<br />

showing level-1 fur) between the spiny and riverine forest areas.<br />

The difference is significant (p


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 67<br />

Fenn, M.D. 2003. The spiny forest ecoregion. Pp. <strong>15</strong>25-<strong>15</strong>30.<br />

In: S.M. Goodman; J.P. Benstead (eds.). The Natural History<br />

of Madagascar. University of Chicago Press, Chicago.<br />

Ganzhorn, J.U.; Goodman, S.M.; Dehgan, A. 2003. Effects of<br />

forest fragmentation on small mammals and lemurs. Pp.<br />

1228-1234. In: S.M. Goodman; J.P. Benstead (eds.). The<br />

Natural History of Madagascar. University of Chicago<br />

Press, Chicago.<br />

Jolly, A. 2009a. Coat conditions of ringtailed lemurs, Lemur<br />

catta, at Berenty Reserve, Madagascar: I. Differences by<br />

age, sex, density and tourism, 1996-2006. Am. J. Primatol.<br />

71: 191-198.<br />

Jolly, A. 2009b. Coat conditions of ringtailed lemurs, Lemur<br />

catta, at Berenty Reserve, Madagascar: II. Coat and tail<br />

alopecia associated with Leucaena leucocephala. Am. J.<br />

Primatol. 71: 199-205.<br />

Jolly, A; Koyama, N; Rasamimanana, H; Crowley, H; Williams,<br />

G.2006.Berenty Reserve:a research site in southern Madagascar.Pp.32-42.In:A.Jolly,R.W.Sussman,N.Koyama,H.<br />

Rasamimanana (eds.). Ringtailed Lemur Biology: Lemur<br />

catta in Madagascar. Springer Verlag, New York.<br />

Kenagy, G.J.; Pearson, O.P. 2000. Life with fur and without:<br />

experimental field energetics and survival of naked meadow<br />

voles. Oecologia 122: 220-224.<br />

Ling, J.K. 1970. Pelage and molting in wild mammals with<br />

special reference to aquatic forms.Q.Rev.Biol.45:16-54.<br />

Mundry, R; Fischer, J. 1998. Use of statistical programs for<br />

nonparametric tests of small samples often leads to<br />

incorrect P values: examples from Animal Behaviour.<br />

Anim. Behav. 56: 256-259.<br />

Norscia, I.; Palagi, E. 2010. Fragment quality and distribution<br />

of the arboreal primate Propithecus verreauxi in the spiny<br />

forest of south Madagascar. J. Trop. Ecol. DOI:<br />

10.1017/S0266467410000519.<br />

Norscia,I.;Palagi E.2008.Berenty 2006:census of Propithecus<br />

verreauxi and possible evidence of population stress. Int. J.<br />

Primatol. 29: 1099-11<strong>15</strong>.<br />

Scott, D.W.; Miller, W.H.; Griffin, C.E. 2001. Structure and<br />

function of skin.Muller and Kirk’s Small Animal Dermatology,<br />

6th ed. W.B. Saunders, Philadelphia.<br />

Seddon, N.; Tobias, J; Yount, J; Ramanampamonjy, J.M.;<br />

Butchart,S;Randrianizahana H.2000.Conservation issues<br />

and priorities in the Mikea forest of south-western Madagascar.<br />

Oryx 34: 287-304.<br />

Siegel,S.;Castellan,N.J.Jr.1988.Nonparametric Statistics for<br />

the Behavioral Sciences, Second edition. MacGraw-Hill,<br />

New York.<br />

Rediscovery of Sibree’s dwarf lemur in<br />

the fragmented forests of Tsinjoarivo,<br />

central-eastern Madagascar<br />

Marina B. Blanco<br />

Department of Anthropology, University of Massachusetts,<br />

240 Hicks Way, Amherst, MA 01003, USA,<br />

mbblanco@anthro.umass.edu<br />

The recent genetic confirmation of a rare dwarf lemur<br />

species, C. sibreei, at Tsinjoarivo is bitter-sweet. The excitement<br />

of reporting the first known living population of this<br />

species is tainted by conservation concerns, as the forest<br />

fragment in which Sibree’s dwarf lemurs were captured is<br />

highly disturbed and targeted for illicit logging. This species,<br />

like many others inhabiting rapidly degrading forests, faces<br />

the serious threat of extinction.<br />

Taxonomic background of the genus, first field discovery,<br />

and subsequent recognition of C. sibreei<br />

During the 19th century,the small nocturnal lemurs of Madagascar<br />

were clumped in a chaotic array of species and genera.<br />

For most of the 20th century,however,dwarf lemurs (Cheirogaleus)<br />

were classified in only two species: the eastern C.<br />

major and the western C.medius (Schwarz,1931).Around the<br />

turn of the century, Groves (2000) conducted a taxonomic<br />

revision of the genus on the basis of morphological analysis<br />

of museum specimens and increased the species number to<br />

seven: C.medius,C.adipicaudatus,C.major,C.ravus,C.crossleyi,<br />

C. minusculus and C. sibreei. This last species, in fact, had been<br />

originally described by the Swiss naturalist Forsyth Major in<br />

1896 during one of his expeditions to Madagascar (Forsyth<br />

Major, 1896). He had named it Chirogale sibreei in honor of<br />

fellow naturalist James Sibree,who had spent more than fifty<br />

years in Madagascar and had written extensively about its<br />

people, fauna, flora and geology. Forsyth Major published<br />

measurements of an individual "obtained from the neighbourhood<br />

of Ankeramadinika," a locality vaguely described<br />

by its discoverer as "one day’s journey to the east of Antananarivo",but<br />

in fact a well-known village at the time,located in<br />

the central high plateau on the road that connected Antananarivo<br />

to Mahatsara on the east coast (Capitaine "X",<br />

1901). In his taxonomic revision, Groves (2000) included as<br />

Cheirogaleus sibreei not only the holotype from Ankeramadinika<br />

(currently housed at the Natural History Museum in<br />

London) but also three additional specimens (3 skins and 1<br />

skull), two of which came from Ampasindava, northwestern<br />

Madagascar, and one from an unclear provenance (Imerina,<br />

which refers to a region of the central highlands around<br />

Antananarivo).<br />

The taxonomic shrinkage of Cheirogaleus<br />

The increase in the number of species within the genus<br />

Cheirogaleus was not surprising because dwarf lemurs occupy<br />

a wide variety of habitats in Madagascar,and their close relatives,the<br />

mouse lemurs (Microcebus), had undergone a taxonomic<br />

explosion of their own with more than 10 species<br />

described during the past <strong>15</strong> years (Louis et al.,2008;Olivieri<br />

et al., 2007; Radespiel et al., 2008). However, Groves’ 2000<br />

revision of dwarf lemur taxonomy did not escape criticism,<br />

not least of which had to do with the criteria that he used to<br />

define species, the lack of reliable locality information from<br />

museum specimens, and the absence of on-the-ground surveys<br />

to assess geographic boundaries and variation among<br />

species (Blanco et al., 2009; Tattersall, 2007). A recent and<br />

more comprehensive revision of dwarf lemur taxonomy was<br />

carried out by Groeneveld and colleagues, who compiled<br />

genetic and morphometric data from field as well as museum<br />

specimens from a variety of localities across Madagascar,<br />

including some of the specimens studied by Groves (Groeneveld<br />

et al., 2009; 2011). This research showed overall consistency<br />

between morphological and genetic data in recognizing<br />

only three Cheirogaleus species: C. medius, C. major<br />

and C. crossleyi. Individuals that previously had been assigned<br />

to C. adipicaudatus fell within the C. medius clade, and those<br />

named as C.ravus grouped with C.major.Results were inconclusive<br />

for C.minusculus and C.sibreei because holotype specimens<br />

were not available for sampling and their genetic affiliation<br />

could not be determined. Genetic data from one of the<br />

C. sibreei museum specimens from Ampasindava linked this<br />

specimen to C. medius. Nevertheless, the C. sibreei holotype<br />

from Ankeramadinika was larger and did not group morphologically<br />

with other C. medius. This suggested that the individuals<br />

from Ampasindava may have been misclassified by<br />

Groves as C. sibreei (Groeneveld et al., 2010). The status of<br />

this species remained equivocal.<br />

Second field discovery of C. sibreei, at last<br />

The story of a dwarf lemur named "May" told by Mitchell<br />

Irwin (2002) turned out to be rather prophetic. Irwin’s<br />

research team rescued this dwarf lemur badly burned in a


Page 68 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

human-induced fire nearby Andasivodihazo,one of the forest<br />

fragments at Tsinjoarivo (Fig. 1). At the time, "May" was believed<br />

to be, as were all eastern rainforest dwarf lemurs, C.<br />

major. Unfortunately, this female could not fully recover and<br />

died soon after the salvage, but her skeletal remains were<br />

carefully preserved and stored at the University of Antananarivo<br />

by Irwin’s team. Seven years later this specimen came<br />

to play a key role in our morphological analysis of dwarf<br />

lemurs at Tsinjoarivo.<br />

Fig.1: Map showing Tsinjoarivo and other localities associated<br />

with Sibree’s dwarf lemurs; see text for details.<br />

In 2006, with the logistic help of Mitchell Irwin and Jean-Luc<br />

Raharison, I began a survey of nocturnal lemurs at Tsinjoarivo.<br />

My assistants and I successfully trapped dwarf lemurs<br />

at two study sites: in one of the forest fragments (Andasivodihazo,<br />

19º41’<strong>15</strong>"S, 47º46’25"E, 1660 m) and within continuous<br />

forest (Vatateza, 19º43’<strong>15</strong>"S, 47º51’25"E, 1396 m)<br />

(Blanco et al., 2009). Even to an inexperienced eye, fragment<br />

dwarf lemurs looked different from continuous forest individuals,<br />

in that they were overall smaller, with grayer fur,<br />

marked eye rings and significantly larger female genitalia (Fig.<br />

2). Our morphological and dental analyses determined that<br />

of all the species described by Groves,C.sibreei was the most<br />

similar to forest fragment dwarf lemurs (Blanco et al., 2009).<br />

(Hopefully, sampling of C.sibreei’s holotype will be allowed in<br />

the near future to definitely determine whether or not there<br />

is a genetic match between this specimen and fragment<br />

dwarf lemurs from Tsinjoarivo.) Recent genetic analyses<br />

have confirmed not only that dwarf lemurs from Andasivodihazo<br />

constitute a different clade (and therefore an independent<br />

phylogenetic lineage), but also that the fragment<br />

dwarf lemur species had branched off first and was ancestral<br />

to the other dwarf lemur species (Groeneveld et al., 2010).<br />

To date, no other living population of C. sibreei has been<br />

reported in the wild and more intensive surveys around the<br />

Tsinjoarivo area (including possibly remaining forests nearby<br />

Ankeramadinika, ~100 km from Tsinjoarivo) are warranted<br />

to assess geographic boundaries and population density.<br />

Fig.2: Sibree’s dwarf lemur captured at Andasivodihazo, one<br />

of the forest fragments at Tsinjoarivo.<br />

Conservation concerns<br />

The genetic confirmation of three clades corresponding to C.<br />

medius, C. major and C. crossleyi, each of which has broad<br />

geographic distributions, implied that dwarf lemurs might be<br />

less threatened than previously thought (Groeneveld et al.,<br />

2009). However, the situation for C. sibreei is radically different.<br />

Tsinjoarivo’s unique geographic setting, continuous<br />

with the central plateau on the west and the steep escarpment<br />

of rainforest in the east, may harbor a unique array of<br />

animal communities. To date, C. sibreei has been captured in<br />

sympatry with C. crossleyi at one forest fragment, Andasivodihazo,and<br />

at one intermediate location,Ankadivory.Both of<br />

these areas are subjected to illicit logging and heavy deforestation<br />

(Fig.3).Furthermore,these forest sites are located towards<br />

Tsinjoarivo’s western boundary which reaches some<br />

of the highest altitudes (up to ~1650 m) known in eastern<br />

Fig. 3: Example of logging near Ankadivory, one of the forest<br />

sites where Sibree’s dwarf lemurs were captured.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 69<br />

rainforests in Madagascar.So far,only C.crossleyi has been captured<br />

at Vatateza,a lower altitude site located within continuous<br />

and less disturbed forest.Virtually everything has to be<br />

learned about the "ancestral" C.sibreei,including how to prevent<br />

its extinction through habitat loss.Concerted efforts by<br />

organizations such as Sadabe (www.sadabe.org) are instrumental<br />

in raising awareness of endangered species and promoting<br />

research and educational programs in the Tsinjoarivo<br />

area.<br />

Acknowledgements<br />

I am particularly thankful to the research team in Madagascar:<br />

Malagasy students <strong>Vol</strong>olonirina Rahalinarivo and Mamihasimbola<br />

Rakotondratsima, and local assistants Noel Rakotoniaina,<br />

Edmond and Nirina Razanadrakoto. Additional<br />

thanks to Jean-Luc Raharison and Mitchell Irwin for providing<br />

logistical support and assistance in the field. I am also<br />

grateful to Laurie Godfrey, Stacy Gebo and Christoph<br />

Schwitzer for their comments. This research was supported<br />

by funds from the Rufford Foundation, MMBF/Conservation<br />

International Primate Action Fund and Primate Conservation<br />

Inc. I would like to thank the Ministère de l’Environnement<br />

et des forêts of the Malagasy government and the University<br />

of Antananarivo for permission to conduct this research.The<br />

project in Madagascar was facilitated by the Institute<br />

for the Conservation of Tropical Environments (ICTE,<br />

Patricia C. Wright) and the Madagascar Institute pour la<br />

Conservation des Ecosystèmes Tropicaux (MICET), especially<br />

Benjamin Andriamihaja.<br />

References<br />

"X." 1901. Voyage du Général Gallieni: cinq mois autour de<br />

Madagascar, progrès de l’agriculture, développement<br />

commercial, ressources industrielles, moyens de colonisation.<br />

Hachette, Paris.<br />

Blanco, M. B.; Godfrey, L.R.; Rakotondratsima, M.; Rahalinarivo,<br />

V.; Samonds, K. E.; Raharison, J-L.; Irwin, M. T. 2009.<br />

Discovery of sympatric dwarf lemur species in the high<br />

altitude forest of Tsinjoarivo, eastern Madagascar: implications<br />

for biogeography and conservation.Folia Primatol.<br />

80: 1-17.<br />

Forsyth Major, C. I. 1896. Diagnosis of new mammals from<br />

Madagascar. Ann. Mag. Nat. Hist. 6: 318-325.<br />

Groeneveld, L. F.; Weisrock, D. W.; Rasoloarison, R. M.; Yoder,<br />

A. D.; Kappeler, P. M. 2009. Species delimitation in lemurs:<br />

multiple genetic loci reveal low levels of species diversity<br />

in the genus Cheirogaleus. BMC Evol. Biol. 9: 30.<br />

Groeneveld, L. F.; Blanco, M. B.; Raharison. J-L.; Rahalinarivo, V.;<br />

Kappeler, P. M.; Godfrey, L. R.; Irwin, M. T. 2010. MtDNA and<br />

nDNA corroborate existence of sympatric dwarf lemur species<br />

at Tsinjoarivo,eastern Madagascar.Mol.Phylogenet.Evol.<br />

55: 833-845.<br />

Groeneveld, L. F.; Rasoloarison, R. M.; Kappeler, P. M. 2011<br />

Morphometrics confirm taxonomic deflation in dwarf<br />

lemurs (Primates: Cheirogaleidae) as suggested by genetics.<br />

Zool. J. Linn. Soc. 161: 229-244.<br />

Groves,C.P.2000.The genus Cheirogaleus:unrecognized biodiversity<br />

in dwarf lemurs. Int. J. Primatol. 21: 943-962.<br />

Irwin,M.T.2002.The story of May,a courageous dwarf lemur.<br />

IPPL News April: 12-14.<br />

Louis, E. E.; Engberg, S. E.; McGuire, S. M.; McCormick, M. J.;<br />

Randriamampionona, R.; Ranaivoarisoa, J. F.; Bailey, C. A.;<br />

Mittermeier, R. A.; Lei, R. 2008. Revision of the mouse<br />

lemurs,Microcebus (Primates,Lemuriformes),of northern<br />

and northwestern Madagascar with descriptions of two<br />

new species at Montagne d’Ambre National Park and<br />

Antafondro Classified Forest. Primate Conservation 23:<br />

19- 38.<br />

Mullens, J. 1875. Twelve Months in Madagascar. James Nisbet<br />

& Co., London.<br />

Olivieri,G.;Zimmermann,E.;Randrianambinina,B.;Rasoloharijaona,<br />

S.; Rakotondravony, D.; Guschanski, K.; Radespiel,<br />

U. 2007. The ever-increasing diversity in mouse lemurs:<br />

Three new species in north and northwestern Madagascar.<br />

Mol. Phylogenet. Evol. 43: 309-327.<br />

Radespiel, U.; Olivieri, G.; Rasolofoson, D. W.; Rakotondratsimba,<br />

G.; Rakotonirainy, O.; Rasoloharijaona, S.; Randrianambinina,<br />

B.; Ratsimbazafy, J. H.; Ratelolahy, F.; Randriamboavonjy,<br />

T.; Rasolofoharivelo, T.; Craul, M.; Rakotozafy, L.;<br />

Randrianarison,R.M.2008.Exceptional diversity of mouse<br />

lemurs (Microcebus spp.) in the Makira region with the<br />

description of one new species. Am. J. Primatol. 70: 1033-<br />

1046.<br />

Schwarz,E.1931.A revision of the genera and species of Madagascar<br />

Lemuridae.Proc.Zool.Soc.Lond.1931:399-426.<br />

Tattersall, I. 2007. Madagascar’s lemurs: Cryptic diversity or<br />

taxonomic inflation? Evol. Anthropol. 16: 12-23.<br />

Funding and Training<br />

AEECL Small Grants<br />

Since 2009,AEECL awards two small grants of up to € 1,000<br />

each year to graduate students, qualified conservationists<br />

and/or researchers to study lemurs in their natural habitat.<br />

Priority is given to proposals covering conservation-relevant<br />

research on those species red-listed as Vulnerable, Endangered,<br />

Critically Endangered or Data Deficient by the IUCN.<br />

We support original research<br />

that helps with establishing<br />

conservation action plans for<br />

the studied species. Grants<br />

are normally given to recent<br />

graduates from Malagasy universities to help building local<br />

capacity.<br />

We may also, in special circumstances, support studies on<br />

Malagasy species other than lemurs if the proposal provides<br />

satisfactory information as to how lemurs or the respective<br />

habitat/ecosystem as a whole will benefit from the research.<br />

All proposals will be assessed by the Board of Directors of<br />

AEECL and/or by external referees.The deadline for applications<br />

is February <strong>15</strong>th of each year. Successful applicants will<br />

be notified by June 1st.More information can be found on the<br />

AEECL website, www.aeecl.org.<br />

The Mohamed bin Zayed Species Conservation<br />

Fund<br />

Announced at the World Conservation Congress in Barcelona<br />

in 2008,The Mohamed bin Zayed Species Conservation<br />

Fund is a significant philanthropic endowment established to<br />

do the following:<br />

Provide targeted grants to individual species conservation<br />

initiatives;<br />

Recognize leaders in the field of species conservation;and Elevate<br />

the importance of species in the broader conservation<br />

debate.


Page 70 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

The fund’s reach is truly global,and its species interest is nondiscriminatory.<br />

It is open to applications for funding support<br />

from conservationists based in all parts of the world,and will<br />

potentially support projects focused on any and all kinds of<br />

plant and animal species, subject to the approval of an independent<br />

evaluation committee.<br />

Details on this important new source for species conservation<br />

initiatives and research can be found at<br />

www.mbzspeciesconservation.org<br />

CI Primate Action Fund<br />

The principal objective of Conservation International’s Primate<br />

Action Fund is to contribute to global biodiversity<br />

conservation by providing strategically targeted, catalytic<br />

support for the conservation of endangered nonhuman<br />

primates and their natural habitats.<br />

Projects submitted to the foundation should have one or<br />

more of the following characteristics:<br />

A focus on critically endangered and endangered nonhuman<br />

primates (and most especially those included in the<br />

biennial listing of the World’s 25 Most Endangered Primates)<br />

living in their natural habitats;<br />

Location in areas of high overall biodiversity and under great<br />

threat (e.g., "threatened hotspots", "megadiversity" countries)<br />

- to ensure maximum multiplier effect for each project;<br />

Direction and management by nationals from the tropical<br />

countries,to help increase local capacity for implementing<br />

biodiversity conservation;<br />

The ability to strengthen international networks of fieldbased<br />

primate specialists and enhance their capacity to be<br />

successful conservationists; and<br />

Projects that result in publication of information on endangered<br />

primate species in a format that is useful both to<br />

experts and the general public.<br />

Applications for support are considered throughout the year<br />

with no deadlines for submittal. Proposals should be sent by<br />

electronic mail to:<br />

Anthony B. Rylands, Primate Action Fund, Conservation International,<br />

2011 Crystal Drive, Suite 500, Arlington, VA<br />

22202, USA, a.rylands@conservation.org<br />

Recent Publications<br />

Lemurs of Madagascar, 3rd edition, by Russell A. Mittermeier,<br />

Edward E. Louis Jr., Matthew Richardson, Christoph<br />

Schwitzer,Olivier Langrand,Anthony B.Rylands,Frank Hawkins,<br />

Serge Rajaobelina, Jonah Ratsimbazafy, Rodin Rasoloarison,<br />

Christian Roos, Peter M. Kappeler and James Mackinnon.Illustrated<br />

by Stephen D.Nash.Conservation International,<br />

Tropical Field Guide Series, Arlington, VA, 2010. 762<br />

pp. ISBN: 978-1-934<strong>15</strong>1-23-5. US$55.00.<br />

In 2006,Madagascar was making significant progress towards<br />

conservation by expanding the protection of its natural treasures.At<br />

the same time,the second edition of Conservation<br />

International’s Tropical Field Guide Series, Lemurs of Madagascar,had<br />

just come off the press,a full twelve years after its<br />

much-celebrated predecessor. A lot has changed in four<br />

years. Political and economic instability has imperiled both<br />

the Malagasy people and their unique wildlife. Conservation<br />

has taken drastic steps backwards as the desperation of the<br />

masses and greed of a few elites and international profiteers<br />

has exacerbated the conflict between the domains of humans<br />

and wildlife. CI has answered the call to action by releasing<br />

a new third edition of its lemur field guide, dwarfing<br />

previous editions in both size and its depth of research and<br />

detail. With nearly 1,100 references to support it–up from<br />

approximately 500 references in the second edition–the<br />

third edition stands as more than just a complete compendium<br />

of our knowledge about lemurs, but the perfect guide<br />

for appreciating the history, diversity, uniqueness, and pure<br />

beauty of our strepsirrhine cousins.<br />

According to CI’s Jill Lucena,from early 2009,the 13 authors<br />

and dozens of contributors have worked tirelessly on the<br />

third edition,dedicating thousands of hours towards its production.<br />

Authors Matthew<br />

Richardson and Anthony B.<br />

Rylands, as well as illustrator<br />

Stephen D. Nash and<br />

graphic designer Paula K.<br />

Rylands,labored exclusively<br />

on the project for nine<br />

months. The end result is a<br />

field guide that will leave<br />

other academic fields envious!<br />

This new volume is 247<br />

pages longer than the previous<br />

edition, with 767 pages<br />

of carefully organized maps,<br />

photos, and colorful illustrations,<br />

in addition to all<br />

the details lemur enthusiasts<br />

and researchers have<br />

come to expect from this<br />

book.The content is so rich<br />

that the book’s dimensions<br />

have increased from 7.5" x<br />

4.5" x 1" to slightly more than 9.25" x 6.25" x 1.25" just to accommodate<br />

everything.And herein lies what may be the only<br />

problem with this new edition. Reviews of the previous two<br />

editions had lavished praise for not only the content and<br />

scope, but also the portability of the books. Although it will<br />

fit comfortably in a backpack, it will add more weight and<br />

consume more space than its predecessors. But given the<br />

content, that may be a small price to pay.<br />

The layout of the book has not changed much since the last<br />

edition. An enthralling chapter on Madagascar’s ancient geological<br />

history has been added, providing tantalizing details<br />

about the mysteries of Madagascar’s ancient past,while a few<br />

familiar chapters and appendices have been reordered. Each<br />

lemur family has now been assigned its own chapter.The section<br />

entitled "How to Use This Field Guide" still walks new<br />

readers through the layout of the book. The "Quick Visual<br />

Reference" and colored tabs facilitate speedy navigation and<br />

help to satiate an ecotourists’ spontaneous hunger for specific<br />

information. The "Lemur Life-list" returns in a more<br />

readable table format to help ecotourists record their first<br />

sightings of the numerous lemur species. Even the maps of<br />

the island have been revamped and are easier to read in this<br />

larger format.<br />

Introductory chapters discuss ancient geology,lemur origins,<br />

the extinct subfossil (giant) lemurs, the history of lemur re-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 71<br />

search, and lemur conservation. Each chapter contains significant<br />

updates from the second edition. The ancient geology<br />

of Madagascar is covered in meticulous detail, while the theories<br />

of lemur origins are explored in depth, leaving both<br />

reader and researcher alike desperate for more definitive<br />

answers.The chapter on the extinct subfossil lemurs is beautifully<br />

illustrated with new peer-reviewed artwork from<br />

award-winning illustrator Stephen D. Nash, and has new details<br />

about their biology and extinction.The history of lemur<br />

research and discovery expands greatly upon the work from<br />

the last half century–a topic greatly underrepresented in the<br />

previous edition. Additionally, the chapter is loaded with<br />

newly added artwork from the 1700s and 1800s. The lemur<br />

conservation chapter provides a critical update on the newest<br />

emerging threats faced by lemurs and their habitat,<br />

namely the logging of precious hardwoods and bushmeat<br />

hunting. Additional detail is also provided about other important<br />

threats that received little mention previously, such<br />

as invasive species, cattle-raising, and mining.<br />

The bulk of the book details the description, geographic<br />

range,natural history,conservation status,and best locations<br />

to observe each of the 101 species and subspecies of lemur.<br />

(This total is up from the 71 taxa detailed in the second edition,yet<br />

the authors note that upcoming research may reveal<br />

as many as 110 to 125 lemur taxa!) Each species section<br />

sports a portrait photo, detailed range map, and other photos<br />

to enrich the lavish textual content.Once again,the third<br />

edition sets itself apart from the previous editions with its<br />

encyclopedic coverage of details from the lemur research literature.Species,such<br />

as the silky sifaka (Propithecus candidus),<br />

are discussed in significantly greater detail,bringing everyone<br />

from bright-eyed ecotourists to veteran lemur researcher<br />

up to speed on the latest findings.<br />

The second edition of Lemurs of Madagascar sold out quickly,<br />

leaving shelves empty as early as February 2008. The third<br />

edition is poised to do the same. With a print run of 10,000<br />

copies,nearly two-thirds are already spoken for according to<br />

Jill Lucena.To help promote conservation education in Madagascar,<br />

CI is generously donating 3,000 copies to its partner<br />

in the field,NGO Fanamby.CI hopes that the remaining copies<br />

will spark the public’s interest in Madagascar’s ecological<br />

gems and spur a new wave of ecotourism to bolster conservation<br />

efforts.<br />

Once again, CI has provided an invaluable tool for a diverse<br />

audience, which includes ecotourists, Malagasy tour guides,<br />

students,lemur researchers,and lemur enthusiasts.Although<br />

larger and not quite as portable as its predecessors, the increased<br />

size of the third edition hosts a wealth of enhanced<br />

encyclopedic detail,new and stunning artwork by Stephen D.<br />

Nash, and additional color photos and illustrations. With a<br />

copy of this printing in hand, the only things missing are a<br />

backpack full of supplies and an airline ticket to Madagascar.<br />

So what are you waiting for?<br />

Alex Dunkel<br />

Theses Completed<br />

Blanco,M.B.2010.Reproductive biology of mouse and dwarf<br />

lemurs of eastern Madagascar,with an emphasis on brown<br />

mouse lemurs (Microcebus rufus) at Ranomafana National<br />

Park,a southeastern rainforest.PhD Dissertation.University<br />

of Massachusetts, Amherst.<br />

This dissertation investigates reproductive schedules of<br />

brown mouse lemurs at Ranomafana,using intensive trap-<br />

ping techniques. The reproductive condition of female<br />

mouse lemurs was recorded on the basis of vaginal morphology,vaginal<br />

smears,body mass gain profiles and nipple<br />

development. Testis size was measured in males throughout<br />

the reproductive season. The timing of the first seasonal<br />

estrus was determined in frequently captured females<br />

over multiple years and it showed individual periodicities<br />

close to 365 days,consistent with endogenous regulation<br />

and entrainment by photoperiod. The timing of<br />

estrus did not correlate with female age or body mass.<br />

Males showed testicular regression during the rainy season,<br />

although there was high inter-individual variation in<br />

testes size at any given point during the reproductive season.<br />

Furthermore, some individuals completed testicular<br />

regression earlier than others. Implications for polyestry<br />

are discussed.<br />

For comparative purposes,mouse lemurs were also trapped<br />

at two study sites in the Tsinjoarivo area: one in a forest<br />

fragment and the other within continuous forest.<br />

These forests are higher in altitude than the main study<br />

area at Ranomafana. Trapping success for mouse lemurs<br />

was lower at Tsinjoarivo than Ranomafana.Albeit preliminary,<br />

data from Tsinjoarivo suggest that females have lower<br />

reproductive success than do females at Ranomafana.<br />

Nevertheless, mouse lemurs in the Tsinjoarivo forest<br />

fragment did not appear to be in "poorer" condition than<br />

those in the continuous forest.It had been reported in the<br />

literature that western gray mouse lemurs captured in secondary<br />

forests have lower body masses and lower recapture<br />

rates than those captured in primary forest; in fact,<br />

the opposite was true of the mouse lemurs at Tsinjoarivo.<br />

I additionally collected data on a larger member of the<br />

family Cheirogaleidae, the dwarf lemurs (Cheirogaleus),<br />

which live in sympatry with Microcebus at Ranomafana and<br />

Tsinjoarivo. I analyzed the patterns of growth, development<br />

and reproduction in Cheirogaleus and Microcebus and<br />

compared dwarf and mouse lemurs to other similarlysized<br />

prosimians which do not undergo torpor or hibernation.These<br />

comparisons draw attention to the unusual<br />

reproductive and metabolic strategies employed by cheirogaleids<br />

to cope with Madagascar’s unpredictable environments,<br />

which ultimately define their very unique life<br />

histories.<br />

Key words: Cheirogaleus, Madagascar, Microcebus, Mouse<br />

lemurs, Rainforest, Ranomafana, Reproduction, Tsinjoarivo.<br />

Bonaventure, R.T.A.R. 2010. Ecologie et comportement de<br />

Propithecus verrreauxi dans les zones d’extension de la<br />

Réserve Spéciale de Bezà Mahafaly.Engineer in agronomy,<br />

option Eaux et forêts.Eaux et forêts,Ecole Supérieure des<br />

Sciences Agronomiques de l’Université d’Antananarivo<br />

(ESSA), Madagascar.<br />

The population of Propithecus verreauxi in the special<br />

reserve of Bezà Mahafaly is one of the conservation targets<br />

of the site which is the subject of a long-term follow.<br />

Natural destruction of their habitat and the pressure of<br />

hunting which is exerted on this species outside of the<br />

current reserve are the origin of the sifakas’ decline.With<br />

the park extension project under way, furthering the<br />

knowledge on behavior and ecology of Propithecus verreauxi<br />

in disturbed areas outside the current reserve is essential<br />

for decision-making regarding conservation measures<br />

for this species. Thus,a study of behavior and ecology<br />

of the sifakas was carried out in the extension area of the<br />

special reserve of Bezà Mahafaly in gallery and transition<br />

forest at the end of the dry period. The study was centered<br />

on 3 focal groups including one in the gallery forest<br />

and two in the transition forest. The method of focal animal<br />

sampling was chosen to study their behavior.A floristic<br />

inventory according to the Gentry method, which<br />

includes transects of 2 x 50 m, was carried out to study<br />

the habitat. On the whole, 120h of observations of sifaka<br />

behavior were carried out and 12 transects were walked.<br />

In disturbed areas, the sifakas still consumed preferred<br />

plants.This resulted in a high intake of 2 or 3 easily digestible<br />

plant species while at the same time a large variety of<br />

other species was consumed.Thus,the disturbance of the<br />

sites did not influence food intake of the sifakas.Moreover,


Page 72 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

it was the group of sifakas in the gallery forest which was<br />

the most affected by resource scarcity in the dry period,<br />

necessitating a priorisation of the sifaka groups in this forest<br />

formation in the extension of the reserve.In addition,<br />

the availability of nutritional resources influenced spacial<br />

dispersion of group members as well as group size. With<br />

the current park extension project different access restrictions<br />

will be implemented, having as an objective the<br />

conservation of the sifaka groups as well as other conservation<br />

targets outside of the current reserve,while introducing<br />

a range of alternative income-generating activities<br />

and sustainable resource management practices for the<br />

local communities.<br />

Key words: Lemur, Propithecus verreauxi,Ecology, Behavior,<br />

Conservation, Special reserve, BezB Mahafaly, Madagascar.<br />

Delmore,K.2009.Maintenance of stability in the Andringitra<br />

brown lemur hybrid zone.M.A.thesis,University of Calgary,<br />

Calgary, Alberta, Canada.<br />

Two models of hybrid zone stability have been proposed:<br />

1) the tension zone model, which predicts that intrinsic<br />

selection acts against hybrids but is counteracted by dispersal<br />

of parentals into the zone and 2) the bounded superiority<br />

model,which predicts that exogenous selection<br />

favours hybrids within transitional habitats and parentals<br />

outside the zone.I used morphological,genetic and ecological<br />

data to evaluate these models in a stable hybrid zone<br />

between Eulemur rufifrons and E.cinereiceps in southeastern<br />

Madagascar. This zone appears to conform to the<br />

bounded superiority model: it was relatively wide and<br />

composed mostly of hybrids that were equally as fit as<br />

parentals.Gene flow between parental and hybrid populations<br />

was also limited, clines in multiple characters were<br />

non-coincident and significant ecological correlates were<br />

identified. Results suggest that hybridization can serve as<br />

an important evolutionary force and need not always be<br />

considered a conservation risk for endangered taxa.<br />

Hobinjatovo, T. 2009. Etude morphométrique et génétique<br />

de conservation d’Eulemur cinereiceps (Milne-Edwards et<br />

Grandidier, 1890) dans les forêts de Mahabo, de Manombo<br />

et de Vevembe, Madagascar. Mémoire de DEA en Biologie,Ecologie<br />

et Conservation Animale,Département de<br />

Biologie Animale,Faculté des Sciences,Université d’Antananarivo.<br />

Cette étude a pour but, d’une part, de connaître et de<br />

comparer la morphométrie d'’Eulemur cinereiceps de la forêt<br />

de Mahabo,de Manombo et de Vevembe - Madagascar,<br />

ainsi donc de voir le degré du dimorphisme sexuel et<br />

d’autre part, d’établir des données de bases génétiques<br />

pour avoir de plus amples informations en vue de la conservation<br />

de cette espèce en danger critique.La descente<br />

sur le terrain et la collecte des données ont été effectuées<br />

pendant deux semaines du mois de mai 2006 et le travail<br />

au laboratoire pour l’étude génétique a été fait du mois de<br />

Février au mois de Mai 2007.Ce lémurien pése en moyenne<br />

2,04 kg avec une longueur moyenne de la couronne de<br />

la tête de 10,84 cm,celle du corps de 33,31 cm et est doté<br />

d’une queue de 50,44 cm. La comparaison de la morphométrie<br />

des individus des sites d’étude, par le test U de<br />

Mann-Whitney montre que le Lémurien à Collier Blanc<br />

de Vevembe est de plus grande taille que ceux des 2 autres<br />

sites.La différence de taille entre le mâle et la femelle<br />

n’est pas significative. Chez cette espèce, le dimorphisme<br />

sexuel est très marqué concernant la couleur du pelage et<br />

la dimension de la canine supérieure,considérable chez le<br />

mâle.Le testicule droit du mâle est plus long,large et volumineux<br />

que le gauche.14 marqueurs génétiques polymorphiques<br />

ont été sélectionnés pour effectuer le génotypage<br />

par l’utilisation de la technologie moléculaire et à l’aide<br />

de la réaction en chaîne polymérasique. Les programmes<br />

de Cervus, GenePop, Fstat, Structure et Bottleneck ont<br />

été utilisés pour déterminer la structure et la nature génétique<br />

de la population d’Eulemur cinereiceps. Ces analyses<br />

ont permis de déterminer que la valeur de la diversité<br />

des gènes des populations est pareille et modérée, oscillant<br />

autour de 57 % ;la divergence génétique est comprise<br />

entre 0,05 à 0,<strong>15</strong> et est qualifiée de modérée; la richesse<br />

allélique varie de 2,928 à 3,632;une migration entre la population<br />

de Mahabo et de Vevembe,d’une part et celle de<br />

Manombo et de Vevembe d’autre part,a été identifiée;un<br />

certain degré de consanguinité a été constaté à Mahabo.<br />

La population de Manombo subit un goulot démographique<br />

et aucune structure distincte ni sous - structure n’a<br />

été observée au sein des populations de ces 3 sites.Même<br />

si cette espèce est en danger critique, sa santé génétique<br />

est modérée.Elle pourrait être bonne si les solutions adéquates<br />

sur la conservation génétique étaient appliquées.<br />

Dans le cas contraire,elle deviendrait désastreuse.La prise<br />

immédiate de mesures de conservation efficientes est<br />

donc nécessaire afin de préserver les populations pures<br />

d’E. cinereiceps et de protéger ses habitats.<br />

Mots-clés: Eulemur cinericeps, Mahabo, Manombo, Vevembe,<br />

Madagascar, Morphométrie, Mensuration, Génétique,<br />

Population, Conservation.<br />

Ingraldi, C. 2010. Forest fragmentation and edge effects on<br />

eight sympatric lemur species in southeast Madagascar.<br />

M.A. thesis, University of Calgary, Calgary, Alberta, Canada.<br />

Extensive slash-and-burn agriculture in southeastern Madagascar<br />

has led to the fragmentation of forests in this region,<br />

creating a constricted available habitat area and increasing<br />

the proportion of forest edge. I investigated the<br />

response to forest fragmentation and edge effects in eight<br />

lemur species through comparisons of species density<br />

and diversity between fragments, as well as correlation<br />

analyses including population distribution patterns,ecological<br />

variables,and distance from forest edge.I also include<br />

a more detailed focus on the behavioural response of Eulemur<br />

cinereiceps. Results were highly varied, with no species<br />

showing strong aversion to forest edge but with higher<br />

overall densities in larger,more connected fragments.<br />

Eulemur cinereiceps spent significantly more time near the<br />

forest edge while resting, but edge did not affect feeding<br />

patterns or food availability. These results suggest that<br />

conservation management should focus on maintaining<br />

large, complex fragments and improving connectivity<br />

through forest corridors.<br />

Mihaminekena,T.H.2010. Etude de la relation entre la dégradation<br />

de l’habitat et les activités de Propithecus edwardsi<br />

du Parc National de Ranomafana Ifanadiana, Madagascar.<br />

Mémoire de DEA en Paléontologie et évolution biologique,<br />

Biologie Evolutive, Primatologie, Département de<br />

Paléontologie et d’Anthropologie biologique, Faculté des<br />

Sciences, Université d’Antananarivo.<br />

Une étude sur le comportement et l’habitat de Propithecus<br />

edwardsi a été réalisée dans le Parc National de Ranomafana.Elle<br />

a été réalisée dans trois sites ayant chacun un<br />

degré de perturbation inégal: Talatakely (fortement perturbé);<br />

Sakaroa (moyennement perturbé) et Valohoaka<br />

(non perturbé). Sa finalité est d’analyser le type de comportement<br />

biologique adopté par l’espèce en réponse à la<br />

dégradation de son habitat et de le comparer entre les<br />

trois sites. La méthode adoptée est celle décrite par Altmann<br />

en 1974 qui consiste à déterminer l’activité du focal<br />

animal toutes les dix minutes et celle de tous les groupes<br />

toutes les cinq minutes. Pour toutes les activités, sauf le<br />

déplacement, la différence est toujours significative pour<br />

les trois sites. Le repos est plus élevé dans le site intact<br />

(36.6%) par rapport à l’alimentation.Inversement le repos<br />

est moins fréquent (28.9 %) que l’alimentation (53.6 %)<br />

dans le site fortement perturbé. La fréquence des activités<br />

de l’espèce dans le site moyennement perturbé est<br />

toujours comprise entre les deux sites perturbés et non<br />

perturbés. Pour ses activités, l’espèce utilise certains niveaux<br />

de strates, spécialement ceux compris entre 10 et<br />

<strong>15</strong> et <strong>15</strong> et 20 m. Néanmoins, l’espèce habitant le site intact<br />

se place à un niveau plus haut que celle de la forêt perturbée.<br />

Les grands arbres sont plus abondants à Valohoaka<br />

qu’à Sakaroa et à Talatakely:respectivement la hauteur<br />

varie de 10.80, 9.53 et 9.47 m; celui du DHP est de 13.59<br />

cm;12.17 et 11.09 cm.Les épaisseurs de la couronne sont<br />

respectivement 4.42,4.28 et 3.91 m.Les parties de plantes


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 73<br />

consommées pour chaque site sont significativement très<br />

différentes. La corrélation entre la consommation de jeunes<br />

feuilles et les activités exercées est toujours positive et significative<br />

quel que soit le site. Les femelles choisissent un niveau<br />

plus haut des arbres que les mâles à Valohoaka et à Talatakely<br />

par contre à Sakaroa c’est l’inverse. La cohésion du<br />

groupe est plus observée dans le site intact par rapport à celui<br />

dégradé.Bref,la perturbation influe les activités générales<br />

et la structure de l’habitat de Propithecus edwardsi.<br />

Mots-clés:Propithecus edwardsi, Lémuriens, Degré de perturbation,<br />

Habitat, Activités, Parc National de Ranomafana,<br />

Madagascar.<br />

Polowinsky, S.Y. 2009. Nutrition of captive Sclater’s lemurs<br />

(Eulemur macaco flavifrons GRAY, 1867) and crowned<br />

lemurs (Eulemur coronatus GRAY,1842),with special emphasis<br />

on the problem of obesity. PhD dissertation, Biology<br />

and Geography, University of Duisburg-Essen, Germany.<br />

This study was concerned with the obesity problem of blueeyed<br />

black lemurs and crowned lemurs in captivity. Its aims<br />

were to optimize the species’ diet in captivity by combining<br />

data obtained from individuals kept at different European<br />

zoos as well as from wild blue-eyed black lemurs to gain a<br />

better understanding of the ecological and nutritional needs<br />

of Eulemur macaco flavifrons in order to prevent individuals<br />

from becoming obese and to assist planned conservation<br />

measures.<br />

The captive part of the study was conducted in two European<br />

zoos:Cologne Zoo (Germany) and Parc Zoologique<br />

et Botanique de Mulhouse, Sud-Alsace (France). A longterm<br />

study with one group of blue-eyed black lemurs<br />

(1.3) and one group of crowned lemurs (1.2) was carried<br />

out at Cologne Zoo.In addition,three groups of blue-eyed<br />

black lemurs (2.1; 1.1; 1.1) and three groups of crowed<br />

lemurs (2.2; 2.1; 3.2) were studied at Mulhouse Zoo. The<br />

body weight development of captive individuals was registered<br />

and compared to body weight data of wild individuals.<br />

The obesity rate in captivity was recorded. An obese<br />

animal was identified as one weighing more than two standard<br />

deviations over the mean wild weight. Moreover,<br />

nutrient and energy intake of Eulemur macaco flavifrons<br />

and Eulemur coronatus at Cologne Zoo and Mulhouse Zoo<br />

were registered. In addition, digestibility trials were conducted.<br />

Samples of feeds and faeces were analyzed using<br />

Weende analysis and detergent analysis. In Madagascar,<br />

four groups of Eulemur macaco flavifrons in two forest fragments,one<br />

mainly primary forest and the other predominantly<br />

secondary forest,were observed.Samples of plants<br />

utilized by free-ranging blue-eyed black lemurs were collected.They<br />

were botanically classified and analyzed using<br />

Weende analysis and detergent analysis.<br />

The mean body weights of Eulemur macaco flavifrons as well<br />

as Eulemur coronatus in captivity were significantly higher<br />

than the mean body weight of free-ranging individuals.100<br />

% of the Eulemur macaco flavifrons sample and 33.3 % of<br />

the Eulemur coronatus sample were obese.Significant body<br />

weight differences were found between the groups studied<br />

at Cologne Zoo and Mulhouse Zoo, which could be<br />

explained by different feeding regimes. Comparing the<br />

diet of free-ranging blue-eyed black lemurs to the zoo<br />

diets that were based mainly on fruits and vegetables at<br />

Cologne Zoo and Mulhouse Zoo, considerable differences<br />

were found with respect to NDF,ADF,ADL and crude<br />

protein content, whereas ash and crude lipid content varied<br />

only slightly.The NFC and energy content in the zoo<br />

diets were almost twice as high as those in the diet of wild<br />

blue-eyed black lemurs. The high NFC,crude protein and<br />

metabolizable energy content and low fibre content of<br />

the zoo diets as compared to the wild diet,combined with<br />

a relatively high apparent digestibility of ~80 % for Eulemur<br />

macaco flavifrons and ~84 % for Eulemur coronatus, respectively,<br />

and in combination with lemurs’ typically low basal<br />

metabolic rates, all clearly contribute to the obesity problem<br />

of captive Eulemur macaco flavifrons.<br />

The presented data of food consumed by Eulemur macaco<br />

flavifrons in captivity and in the wild reveals elementary<br />

differences concerning nutrient and energy composition.<br />

Although a bright variety of fruits and vegetables could<br />

protect animals in captivity from stereotypic behaviour, a<br />

systematic reassessment of the zoo diet is suggested:<br />

increasing fibre content and decreasing energy density by<br />

feeding vegetables,and whenever possible,fresh plant material<br />

in appropriate quantities instead of energy-rich<br />

fruits, gruel or commercial feeds. Although the utilization<br />

of the food fibre content by a generalist frugivore like Eulemur<br />

macaco flavifrons or Eulemur coronatus is limited, fibre<br />

content plays an important role in the maintenance of<br />

physiological health. A zoo diet corresponding to the natural<br />

requirements of lemurs guarantees an optimization<br />

of breeding programmes and presents a valuable and necessary<br />

contribution to the preservation of these highly<br />

endangered species.<br />

Key words: Eulemur macaco flavifrons, Eulemur coronatus,<br />

Nutrition, Digestibility, Obesity, Captivity, Energy intake.<br />

Rafaliarison R.R. 2010. Activité générale du Prolemur simus:<br />

transition saison sèche - saison de pluies et activité de la<br />

femelle avant et après mise bas dans le Parc National<br />

Ranomafana.Département de Paléontologie et d’Anthropologie<br />

Biologique, Université d’Antananarivo, Madagascar.<br />

Cette étude a été réalisée dans la parcelle 3 du parc national<br />

Ranomafana qui abrite le seul groupe du parc.Elle nous<br />

aidera à mieux comprendre les variations de l’activité générale<br />

du Prolemur simus pendant la transition de la saison<br />

sèche à la saison de pluie ainsi que la variation de l’activité<br />

de la femelle avant et après mise bas. Les résultats ont<br />

montré que le Prolemur simus a dépensé la moitié de leur<br />

temps à l’alimentation suivi du repos. Les variations de la<br />

fréquence de l’activité sont en relation avec la partie consommée<br />

(tige, moelle ou jeunes pousses), la disponibilité<br />

alimentaire,la température et la pluie ainsi que la disponibilité<br />

en eau.La strate la plus utilisée est comprise entre 0<br />

à 5 m. La présence d’un nouveau né a une influence sur<br />

l’activité et la proximité des individus du groupe. Pour la<br />

femelle, il y a une diminution de la fréquence de l’alimentation<br />

après la mise bas.Il y a aussi une augmentation très<br />

marquée de la fréquence du repos après la mise bas.Le juvénile<br />

s’éloigne de la femelle après mise bas tandis que le<br />

mâle reste toujours près de la femelle.<br />

Mots clés: Prolemur simus, Activités, Mise bas, Parc National<br />

Ranomafana, Madagascar.<br />

This study was carried out in Parcel 3 of Ranomafana National<br />

Park,where the only group of Prolemur simus within<br />

the park is present.It concerns the variation in the general<br />

activities of P.simus during the transition from the dry season<br />

to the rainy season as well as the activity of the female<br />

before and after giving birth.The results showed that P. simus<br />

spent half of their time feeding, followed by resting.<br />

The variation in frequency of activities was related to the<br />

consumed plant parts (trunk,culm pith or bamboo shoot),<br />

availability of food,temperature,rain and the availability of<br />

water. The most frequently used forest stratum was between<br />

0 and 5 m of height. The presence of the new-born<br />

had an influence on the activity and the spacing of the individuals<br />

in the group.For the female,there was a reduction<br />

of the frequency of feeding after giving birth. There was<br />

also a very marked increase in the frequency of resting after<br />

birth. The juvenile stayed away from the female after<br />

she had given birth,but the male always remained close to<br />

the female.<br />

Key words:Prolemur simus,Activity,New born,Ranomafana<br />

National Park, Madagascar.<br />

Raharivololona,B.M.2010.Intestinal parasite infection of the<br />

gray mouse lemur (Microcebus murinus, J.F. Miller, 1777) in<br />

the south-eastern littoral forest of Madagascar. PhD Dissertation,<br />

Hamburg University, Hamburg, Germany.<br />

Madagascar’s plants and animals belong to one of the most<br />

unique and threatened biotas of the world. Lemurs are<br />

the flagship species associated with the biological crisis of<br />

the island and notably vulnerable to habitat degradation.<br />

While most studies on the effect of habitat destruction<br />

on species survival have focused on population reduction<br />

and forest degradation, indirect effects, such as altered<br />

parasite loads have received little attention. Parasitologi-


Page 74 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

cal studies have concentrated on large primates, such as<br />

apes and monkeys.This is probably due to epidemiological<br />

interest in apes, which are genetically closer to humans<br />

and are known to be a reservoir of certain pests and<br />

diseases fatal to humans. Prosimians’ gastrointestinal parasites<br />

are less studied.<br />

The goal of this project was to assess and describe the<br />

gastrointestinal parasites of the lemur species Microcebus<br />

murinus (Family Cheirogaleidae), also known as the gray<br />

mouse lemur, from the littoral forest fragments of Mandena<br />

in extreme southeastern Madagascar. In addition, I<br />

wanted to evaluate the utility of determining gastrointestinal<br />

parasite loads based on fecal samples. From April<br />

2003 to October 2005, 427 fecal samples obtained<br />

from169 different individuals of M. murinus from five forest<br />

fragments were analyzed to assess the parasite species<br />

richness of this animal based on parasite egg morphology.Three<br />

individuals of M.murinus were also sacrified in<br />

order to look for adult worms for identification and confirmation<br />

of parasite species, and to localize their gastrointestinal<br />

parasites in the digestive tract. Screening all<br />

fecal samples by using the modified technique of the<br />

McMaster flotation, I noted that M. murinus harbored at<br />

least nine different intestinal parasites, which included 1)<br />

six Nemathelminthes:a member of the family Ascarididae,<br />

one species of the family Subuluridae represented by the<br />

genus Subulura,an unidentified Strongylida,a species of the<br />

genus Trichuris (Trichuridae), two species of the family<br />

Oxyuridae: the first belongs to the genus Lemuricola and<br />

the second is still unidentified;2) two Plathelminthes:two<br />

cestodes of the genus Hymenolepis (Hymenolepididae);3)<br />

one Protozoa: belonging to the order Coccidia.<br />

These gastrointesinal parasites of M.murinus from Mandena<br />

have not been previously described from this primate.<br />

The cestode infection deserves special attention,as these<br />

parasites have not been previously reprted from lemurs.<br />

Adult worms of Trichuris species were found in the caecum,<br />

as well as Lemuricola worms in the caecum and large<br />

intestine.Subulura worms were more abundant in the caecum<br />

than in the small and large intestine. A large number<br />

of Subulura larvae were observed in the caecum.As exemplified<br />

by the data on Subulura sp. worms in the digestive<br />

tract of M.murinus,the number of nematode parasite eggs<br />

and larvae found in the feces are correlated with the intensity<br />

of infection in the digestive tract.<br />

To assess effects of forest fragmentation and degradation,fecal<br />

samples from the first captureof 169 individuals of Microcebus<br />

murinus living in five littoral forest fragments were<br />

analyzed for gastrointestinal parasites. The fragments differed<br />

in size and forest quality. In good quality forest<br />

blocks, lemurs from a smaller fragment had higher prevalences<br />

and intensities of infection of gastrointestinal nematodes<br />

and protozoans than animals from a larger forest<br />

fragment. In larger forest blocks, excretion of eggs from<br />

Ascarididae and tapeworms was higher in a degraded forest<br />

fragment than in a better quality forest fragment.This<br />

situation was reversed in small forest fragments with fewer<br />

eggs of Subulura nematodes and protozoans shed by<br />

lemurs in the degraded fragment than by lemurs from the<br />

good quality fragment. The analyses are hampered by the<br />

fact that only one forest fragment was available per type<br />

of treatment. Keeping this limitation in mind, the results<br />

are consistent with other studies and indicate that forest<br />

degradation and fragmentation have marked effects on<br />

the level of parasitism of Madagascar’s lemurs.<br />

To assess seasonal effects on the excretion of gastrointetinal<br />

parasites I screened fecal samples from M. murinus<br />

caught during monthly trapping sessions for eggs and<br />

larvae of intestinal parasites. Parasite excretions changed<br />

seasonally when analyzed at the level of individual hosts.<br />

The number of parasite species and the abundance of parasite<br />

eggs and larvae in Microcebus feces were higher during<br />

the hot season than the cold season.Reduced parasite<br />

excretion during the cold season could be due to environmental<br />

factors or due to the ability of M. murinus to<br />

enter torpor and hibernation during the cold season<br />

which might lead to reduced metabolism of intestinal parasites<br />

and results in reduced shedding of parasite eggs.<br />

No such seasonal variation was found on the level of the<br />

lemur population when the analyses were based on samples<br />

of unknown origin.<br />

The study revealed noticeable effects of forest fragmentation<br />

on parasite loads as measured via the excretion of<br />

parasites. The disadvantageous consequences of increased<br />

parasite infections on the health of these animals is due<br />

to changes in habitat conditions and is a factor that needs<br />

to receive more attention when developing conservation<br />

plans.<br />

Key words: Microcebus murinus, Parasites, Habitat degradation,<br />

Fragmentation, Forest quality, Hymenolepis.<br />

Randrianarimanana, H.L. 2009. Etude comparative de l’alimentation<br />

et du comportement des deux espèces sympatriques<br />

d’Indriidés :Propitecus diadema et Indri indri dans<br />

le Réserve Naturelle Intégrale n°1 de Betampona (Tamatave).Mémoire<br />

de DEA en Paléontologie et évolution biologique,Biologie<br />

Evolutive,Primatologie,Département de<br />

Paléontologie et d’Anthropologie biologique, Faculté des<br />

Sciences, Université d’Antananarivo.<br />

Des études comportementales et nutritionnelles des<br />

deux espèces sympatriques d’Indriidés (Propithecus diadema<br />

et Indri indri) ont été réalisées pendant les mois de<br />

mars,avril,juin et juillet 2008 dans la Réserve Naturelle Intégrale<br />

numéro un de Betampona (Tamatave). Les données<br />

comportementales et nutritionnelles,la hauteur fréquentée<br />

et la nature des supports et des coordonnées<br />

géographiques ont été enregistrés toutes les 10 minutes.<br />

Des analyses statistiques ont été réalisées pour étudier<br />

comment ces deux plus grands lémuriens partagent leurs<br />

nourritures et habitats. Même si les deux espèces ont la<br />

même fréquence d’alimentation et sont toutes deux considérées<br />

folivores, Propithecus diadema consomme un peu<br />

plus de fruit qu’Indri indri (respectivement 33,6 et 9,4 %) et<br />

utilise beaucoup plus d’espèces végétales comme source<br />

de nourriture. Propithecus diadema fréquente des hauteurs<br />

beaucoup plus basses qu’Indri indri durant ses activités<br />

(8,3071et 10,208 m). De plus, cette dernière espèce<br />

utilise beaucoup de petits supports (respectivement 3,80<br />

et 5,38 cm) et peu inclinés (40,32° et 47,79°). Propithecus<br />

diadema se déplace beaucoup tandis qu’Indri indri se repose<br />

davantage.Malgré le chevauchement de leur territoire,<br />

ces deux espèces montrent une séparation de leur niche<br />

écologique.<br />

Mots-clés: Propithecus diadema, Indri indri, Alimentation,<br />

Comportement, Comparaison.<br />

Razafindratsima, O.H. 2009. Rôle écologique de Varecia rubra<br />

et d’Eulemur albifrons dans le Corridor Ambatolaidama du<br />

Parc National Masoala.Mémoire de DEA en Biologie,Ecologie<br />

et Conservation Animale, Département de Biologie<br />

Animale, Faculté des Sciences, Université d’Antananarivo.<br />

Une étude a été effectuée sur deux espèces de lémuriens<br />

sympatriques dans les forêts tropicales humides du corridor<br />

Ambatolaidama du Parc National Masoala - Varecia<br />

rubra (Geoffroy, 1812) et Eulemur albifrons (Geoffroy,<br />

1796). Le but est d’étudier les rôles écologiques de ces<br />

espèces dans la reforestation du corridor en tant que disséminatrices<br />

de graines. Ceci afin de mettre en évidence<br />

leur importance au niveau de ce site et par conséquent,<br />

d’élaborer une stratégie de conservation. Un groupe d’E.<br />

albifrons et trois groupes de V.rubra ont été suivis.Trois femelles<br />

de V.rubra,choisies comme animaux focaux,ont été<br />

munies de colliers à radio émetteur. Ces espèces ont fait<br />

l’objet de suivis quotidiens, de novembre 2006 à janvier<br />

2007, afin de collecter des informations sur leur régime<br />

alimentaire et leur défécation. Pour E. albifrons, aucune<br />

donnée sur son alimentation n’a été obtenue de part la<br />

difficulté de son suivi dû à l’absence de collier. Les fèces<br />

collectées sont analysées afin d’en extraire des graines qui<br />

ont été, ensuite, inventoriées, mesurées et identifiées. La<br />

viabilité de ces graines a été étudiée par un test d’immersion<br />

dans l’eau,puis par la mise en terre dans une pépinière<br />

des graines déféquées comparées avec celles extraites<br />

manuellement des fruits. Afin de comprendre le devenir<br />

de ces graines après leur dépôt, une étude de l’habitat où


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 75<br />

les fèces ont été déposées a été réalisée. Les résultats de<br />

cette étude ont démontré que V.rubra a une frugivore élevée<br />

(86.1 %). Aussi, ces deux espèces participent activement<br />

à la dissémination des graines de la majorité des<br />

espèces végétales du corridor, avec 16 graines par jour<br />

disséminées par V. rubra représentées par 34 espèces végétales<br />

appartenant à <strong>15</strong> familles, et 10 graines par jour<br />

pour E. albifrons réparties dans 8 familles avec 11 espèces.<br />

De plus, après leur passage au niveau du tube digestif de<br />

ces animaux,les graines sont viables (x2 = 107,283,ddl = 2,<br />

p = 0,0001) et ont une germination plus élevée que les<br />

graines témoin (x2 = 55,680, ddl = 1, p = 0,0001). Très peu<br />

d’entre elles ont subi des dommages (seulement de 3,8 %<br />

et 0,7 % respectivement pour les graines déféquées par V.<br />

rubra et E. albifons). L’étude de l’habitat démontre une<br />

réussite de germination malgré une forte pente.Ces deux<br />

espèces de lémuriens sont donc d’importantes disséminatrices<br />

de graines de la forêt humide du corridor Ambatolaidama.Elles<br />

jouent un rôle important dans le maintien<br />

de l’équilibre écologique et contribuent à la reforestation<br />

du corridor.<br />

Mots-clés: Varecia rubra, Eulemur albifrons, Primates, Régime<br />

alimentaire, Dispersion des graines, Parc National<br />

Masoala, Corridor, Ambatolaidama, Madagascar.<br />

Razakanirina H. 2010. Suivi phénologique global et statut de<br />

conservation de 4 espèces végétales (Strychnos decussata,<br />

Diospyros ferrea,Gardenia decaryi et Capurodendron gracilifolium)<br />

consommées par Propithecus verreauxi coronatus dans<br />

la forêt de Badrala (Antrema - Région Boeny). Mémoire<br />

de DEA en Biologie et Ecologie Végétale,option Ecologie<br />

végétale, Département de Biologie et Ecologie Végétale,<br />

Faculté des Sciences, Université d’Antananarivo.<br />

La Station Forestière à Usage Multiple d’Antrema constitue<br />

un des habitats de Propithecus verreauxi coronatus.Dans<br />

cette région, ces Lémuriens sont vénérés comme étant<br />

les représentants des ancêtres des "Sakalava". Cette culture<br />

leur offre donc un haut niveau de protection mais<br />

est- ce que la forêt peut leur fournir la nourriture dont ils<br />

ont besoin?<br />

Des études sur la phénologie et une évaluation du statut<br />

de conservation des quelques espèces consommées par<br />

ce lémurien ont été réalisées dans la forêt sèche sur dune<br />

de Badrala (partie Nord de la station),afin de faire ressortir<br />

les différents types phénologiques et la saisonnalité des<br />

différentes phénophases des arbres de cette forêt. Trois<br />

(3) plots de 2000 m2 ont été montés dans la forêt et dans<br />

chaque plot,tous les arbres à DHP > $10 cm sont numérotés<br />

et des paniers collecteurs de litières sont installés<br />

suivant un transect de 200 m. La phénologie des arbres a<br />

été suivie pendant une année grâce à des observations directes<br />

de chaque individu et à l’analyse des litières qui<br />

sont collectées tous les <strong>15</strong> jours. La période de floraison<br />

maximale des espèces se produit au début de la saison humide,<br />

avant l’apparition des feuilles et la défeuillaison est<br />

assez importante au milieu de la saison sèche. Strychnos<br />

decussata, Diospyros ferrea, Gardenia decaryi et Capurodendron<br />

gracilifolium sont classées en danger d’extinction<br />

(EN). Ainsi, des mesures de conservation sont à entreprendre<br />

afin de protéger ces espèces et les habitats de ce<br />

lémurien.<br />

Mots-clés: Suivi phénologique, Statut de conservation,<br />

Plantes consommées,Propithecus verreauxi coronatus,forêt<br />

sèche, Badrala, Station Forestière à Usage Multiple d’Antrema,<br />

Madagascar.<br />

Rued, A.C. 2009. Social structure and female foraging strategies<br />

in white-collared lemurs (Eulemur cinereiceps). M.A.<br />

thesis, University of Calgary, Calgary, Alberta, Canada.<br />

This thesis examines the nature of male-female affiliation<br />

in Eulemur cinereiceps, specifically whether it consists of<br />

special relationships or a central male social structure. A<br />

special relationship includes an unrelated male and female<br />

adult who preferentially associate and affiliate with each<br />

other over all other individuals within the group. I also<br />

examine the flexibility of female foraging strategies in<br />

response to changes in resource availability and energy<br />

requirements. I tested the resource defence hypothesis,<br />

which proposes that reproductive females form special<br />

relationships with males to improve foraging success and<br />

offset the energetic costs of reproduction.Data were collected<br />

on two small groups in Mahabo forest,on the southeastern<br />

coast of Madagascar.Analysis of social structure<br />

data suggested central male structure when resources<br />

were scarce and central female structure during the period<br />

of relative resource abundance.The resource defence<br />

hypothesis was not supported by foraging data.<br />

Solomon,S.K.2010.Living on the edge:a preliminary dry season<br />

study of crowned lemur (Eulemur coronatus, Gray<br />

1842) and Sanford’s lemur (E.sanfordi,Archbold 1932),responses<br />

to anthropogenic habitat changes in northern<br />

Madagascar. M.A., Anthropology (Environment & Sustainability),University<br />

of Western Ontario,London,Canada.<br />

Habitat fragmentation through anthropogenic disturbance<br />

is a significant threat to primates in all biogeographic<br />

areas. Recent research has shown that primates have<br />

non-patterned responses to this disturbance and that general<br />

models of changing primate behaviour are not effective<br />

conservation tools. Previous research on primates in<br />

fragments is concentrated in the Neotropics demonstrating<br />

a need to investigate species-specific responses in other<br />

areas of the world. This study examined two sympatric<br />

lemur species, the crowned lemur (Eulemur coronatus)<br />

and Sanford’s brown lemur (Eulemur sanfordi) and their responses<br />

to anthropogenic habitat fragmentation in northern<br />

Madagascar. Although habitat generalists, Sanford’s<br />

lemur was extirpated at the study site while crowned lemur<br />

density was low but viable; they were restricted to<br />

forest fragments on the periphery and top of limestone<br />

massifs. Conservation initiatives in these fragments are<br />

reliant on preserving fruit trees located in the remaining<br />

forest flatlands and the commitment of a community conservation<br />

group.<br />

Key words: Northern Madagascar, Crowned lemur, Sanford’s<br />

brown lemur,Forest fragmentation,Edge effects,Lemur<br />

density,Community conservation,Dry season,Deciduous<br />

forest.


Guidelines for authors<br />

Lemur News publishes manuscripts that deal largely or exclusively with lemurs and their habitats. The aims of Lemur News are: 1) to<br />

provide a forum for exchange of information about all aspects of lemur biology and conservation, and 2) to alert interested parties<br />

to particular threats to lemurs as they arise. Lemur News is distributed free of charge to all interested individuals and institutions. To<br />

the extent that donations are sufficient to meet production and distribution costs, the policy of free distribution will continue. Manuscripts<br />

should be sent to one of the editors electronically (see addresses for contributions on the inside front cover). Lemur News<br />

welcomes the results of original research, field surveys, advances in field and laboratory techniques, book reviews, and informal status<br />

reports from research, conservation, and management programs with lemurs in Madagascar and from around the world. In addition,<br />

notes on public awareness programs, the availability of new educational materials (include the name and address of distributor and<br />

cost, if applicable), and notification of newly published scientific papers, technical reports and academic theses are all appropriate<br />

contributions. Readers are also encouraged to alert Lemur News to pertinent campaigns and other activities which may need the<br />

support of the lemur research and conservation community. Finally, Lemur News serves as a conduit for debate and discussion and<br />

welcomes contributions on any aspect of the legal or scientific status of lemurs, or on conservation philosophy.<br />

Manuscripts should be in English or French, double spaced with generous margins, and should be submitted electronically in Word<br />

(*.doc or *.docx) or rich text format (*.rtf). They should generally be 1-8 pages long, including references and figures. Submissions to<br />

the “Articles” section should be divided into Introduction, Methods, Results and Discussion and should include a list of 4-6 key words.<br />

Short reports and other submissions do not need subheadings or key words. Ideally, English articles should include a French abstract<br />

and vice versa. Articles should include a map of the area discussed, including all major locations mentioned in the text. Macros,<br />

complex formatting (such as section breaks) and automatic numbering as provided by text processing software must be avoided. The<br />

corresponding author’s affiliation and full address must be provided, including e-mail and telephone number. For all other authors,<br />

affiliation and address should be provided. Use superscript numerals for identification. Tables should include concise captions and<br />

should be numbered using roman numerals. Please give all measurements in metric units. Please accent all foreign words<br />

carefully.<br />

Maps should always be made as concise as possible and should include an inset showing the location of the area discussed in relation<br />

to the whole of Madagascar.<br />

Photographs: Black-and-white photographs are ideal. Color photographs are acceptable if they can be printed in greyscale without<br />

losing any of the information that they are supposed to convey. Please send only sharply-focused, high quality photographs. Please<br />

name each file with the photographer credit and the number of the identifying caption (e.g. “Schwitzer_Fig.1”). We are always<br />

interested in receiving high quality photographs for our covers, especially those of little known and rarely photographed lemurs, even<br />

if they do not accompany an article.<br />

All figures should include concise captions. Captions should be listed on a separate sheet, or after the References section of the<br />

manuscript. Subtle differences in shading should be avoided as they will not show up in the final print. Maps, photographs and figures<br />

should be sent electronically in any one of the following formats: BMP, CDR, EMF, WMF, XLS. Please name all files with the name of<br />

the first author of the manuscript to which they belong. Do not send figures embedded in the text of the manuscript.<br />

References: In the text, references should be cited consecutively with the author's surname and year of publication in brackets (e.g.<br />

Schwitzer et al., 2010; Kaumanns and Schwitzer, 2001). The reference list should be arranged alphabetically by first author's surname.<br />

Examples are given below.<br />

Journal article<br />

Ranaivoarisoa, J.F.; Ramanamahefa, R.; Louis, Jr., E.E.; Brenneman, R.A. 2006. Range extension of Perrier’s sifaka, Propithecus perrieri, in<br />

the Andrafiamena Classified Forest. Lemur News 11: 17-21.<br />

Book chapter<br />

Ganzhorn, J.U. 1994. Les lémuriens. Pp. 70-72. In: S.M. Goodman; O. Langrand (eds.). Inventaire biologique; Forêt de Zombitse.<br />

Recherches pour le Développement, Série Sciences Biologiques, n° Spécial. Centre d’Information et de Documentation Scientifique<br />

et Technique, Antananarivo, Madagascar.<br />

Book<br />

Mittermeier, R.A.; Konstant, W.R.; Hawkins, A.F.; Louis, E.E.; Langrand, O.; Ratsimbazafy, H.J.; Rasoloarison, M.R.; Ganzhorn, J.U.;<br />

Rajaobelina, S.; Tattersall, I.; Meyers, D.M. 2006. Lemurs of Madagascar. Second edition. Conservation International, Washington, DC,<br />

USA.<br />

Thesis<br />

Freed, B.Z. 1996. Co-occurrence among crowned lemurs<br />

(Lemur coronatus) and Sanford’s lemur (Lemur fulvus sanfordi)<br />

of Madagascar. Ph.D. thesis, Washington University, St. Louis, USA.<br />

Website<br />

IUCN. 2008. IUCN Red List of Threatened Species.<br />

. Downloaded on 21 April 2009.<br />

Call for voluntary contributions<br />

As most readers of Lemur News are certainly aware,<br />

fundraising has become more difficult. We will continue<br />

to distribute Lemur News free of charge to all interested<br />

individuals and institutions. However, we would like to ask<br />

subscribers for voluntary contributions to cover production<br />

costs. Please contact one of the editors for information on<br />

how to make contributions.<br />

Drawing by Stephen D. Nash


Editorial.................................................................................1<br />

Feature: Madagascar’s Environmental Crisis<br />

Madagascar’s illegal logging crisis: An update<br />

and discussion of possible solutions<br />

Erik R. Patel...............................................................................2<br />

Ongoing threats to lemurs and their habitat<br />

inside the Sahamalaza - Iles Radama National<br />

Park<br />

Melanie Seiler, Guy H. Randriatahina,<br />

Christoph Schwitzer.................................................................7<br />

News and Announcements..........................................9<br />

Short Communications<br />

Preliminary conservation status assessment for<br />

the Data Deficient northern giant mouse lemur<br />

Mirza zaza<br />

Eva Johanna Rode, K. Anne-Isola Nekaris,<br />

Christoph Schwitzer...............................................................11<br />

An observation of the hairy-eared dwarf lemur,<br />

Allocebus trichotis, in the Lakato region, eastern<br />

Madagascar<br />

Erwan Lagadec, Steven M. Goodman..................................12<br />

When big lemurs swallow up small ones:<br />

Coquerel’s dwarf lemur as a predator of grey<br />

mouse lemurs and endemic rodents<br />

Susanne Schliehe-Diecks, Matthias Markolf,<br />

Elise Huchard.........................................................................13<br />

Collective mobbing of a boa by a group of<br />

red-fronted lemurs (Eulemur fulvus rufus)<br />

Lennart Pyritz, Tianasoa Andrianjanahary..........................14<br />

Response of two nocturnal lemurs (Microcebus<br />

murinus and Lepilemur leucopus) to a potential<br />

boiidae (Sanzinia madagascariensis) predator<br />

Krista Fish...............................................................................16<br />

Effective predation defence in Cheirogaleus<br />

medius<br />

Kathrin H. Dausmann...........................................................18<br />

Lepilemur feeding observations from Northern<br />

Madagascar<br />

Andrew J. Lowin......................................................................20<br />

Hypotheses on ecological interactions between<br />

the aye-aye (Daubentonia madagascariensis)<br />

and microhylid frogs of the genus Platypelis in<br />

Tsaratanana bamboo forest<br />

Andolalao Rakotoarison, Solohery A. Rasamison,<br />

Emile Rajeriarison, David R. Vieites, Miguel Vences............21<br />

Discovery of crowned sifaka (Propithecus<br />

coronatus) in Dabolava, Miandrivazo, Menabe<br />

Region<br />

Josia Razafindramanana and Rija Rasamimanana............23<br />

Inferences about the distant past in Madagascar<br />

Elwyn L. Simons......................................................................25<br />

Husbandry guidelines for mouse lemurs at Paris<br />

Zoo<br />

Delphine Roullet....................................................................27<br />

Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

ISSN 1608-1439<br />

Table of contents<br />

Articles<br />

Diurnal lemur density in the national park<br />

parcel Ivontaka Nord, UNESCO Biosphere<br />

Reserve of Mananara-Nord<br />

Marta Polasky Lyons..............................................................29<br />

Distribution of Prolemur simus north of the<br />

Mangoro-Nosivolo River - how far north do we<br />

really have to look?<br />

Rainer Dolch, Erik R. Patel, Jonah H. Ratsimbazafy,<br />

Christopher D. Golden, Tianasoa Ratolojanahary,<br />

Jean Rafalimandimby, Jonathan L. Fiely................................32<br />

Enquête préliminaire de la distribution des<br />

lémuriens de bambou dans et autour du<br />

Corridor forestier Fandriana-Vondrozo,<br />

Madagascar<br />

Andry Rajaonson, Maherisoa Ratolojanahary,<br />

Jonah Ratsimbazafy, Anna Feistner, Tony King....................34<br />

Effect of red ruffed lemur gut passage on the<br />

germination of native rainforest plant species<br />

Onja H. Razafindratsima, Emilienne Razafimahatratra.....39<br />

Feeding ecology of the crowned sifaka<br />

(Propithecus coronatus) in a coastal dry forest<br />

in northwest Madagascar (SFUM, Antrema)<br />

Claire Pichon, Rivo Ramanamisata, Laurent Tarnaud,<br />

Françoise Bayart, Annette Hladik, Claude Marcel<br />

Hladik, Bruno Simmen.......................................................... 42<br />

Effet de la dégradation de l'habitat sur la<br />

consommation alimentaire d'Eulemur<br />

rubriventer dans deux sites: Talatakely et<br />

Vatoharanana, du Parc National de Ranomafana<br />

Laingoniaina H. Rakotonirina, Germain J. Spiral,<br />

Jonah H. Ratsimbazafy, Soanorolalao Ravelonjanahary,<br />

Raharizelina Ralaiarison, Stacey Tecot, Alex Hall,<br />

Tricia Calhoon, Gisèle R. Randria..........................................47<br />

Observations of terrestrial latrine behaviour by<br />

the southern gentle lemur Hapalemur<br />

meridionalis in the Mandena littoral forest,<br />

southeast Madagascar<br />

Timothy M. Eppley, Giuseppe Donati....................................51<br />

Conservation des lémuriens via la protection de<br />

leurs habitats et le développement communautaire<br />

dans les corridors de Betaolana et Tsaratanana-<br />

Betaolana, région de SAVA<br />

Lala Razafy Fara, Iarilanto Andriamarosolo.........................54<br />

Genetic diversity in ten Indri (Indri indri)<br />

populations compared to other lemur species<br />

John Zaonarivelo, Rick Brenneman, Rambinintsoa<br />

Andriantompohavana, Edward E. Louis, Jr............................59<br />

Verreaux’s sifaka fur condition in the spiny forest<br />

of southern Androy<br />

Ivan Norscia, Jean Lambotsimihampy, Elisabetta Palagi.....64<br />

Rediscovery of Sibree’s dwarf lemur in the<br />

fragmented forests of Tsinjoarivo, central-eastern<br />

Madagascar<br />

Marina B. Blanco....................................................................67<br />

Funding and Training.....................................................69<br />

Recent Publications........................................................70<br />

Theses Completed..........................................................71

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!