09.05.2013 Views

PROCEEDINGS OF A SYMPO - IAEA Nuclear Data Services

PROCEEDINGS OF A SYMPO - IAEA Nuclear Data Services

PROCEEDINGS OF A SYMPO - IAEA Nuclear Data Services

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>PROCEEDINGS</strong> <strong>OF</strong> A <strong>SYMPO</strong><br />

■ i<br />

INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1 973


NUCLEAR DATA<br />

IN SCIENCE AND TECHNOLOGY<br />

VOL. I


The follow in g States are M em bers o f the International A to m ic Energy A g en cy :<br />

A F G H A N IS T A N G U A T E M A L A P A N A M A<br />

ALB A N IA H A IT I P A R A G U A Y<br />

ALGERIA H O LY SEE PERU<br />

A R G E N TIN A H U N G A R Y PHILIPPINES<br />

A U S TR A L IA ICELAND POLAND<br />

A U S T R IA IN D IA POR TU G AL<br />

BANGLADESH INDONESIA R O M A N IA<br />

BELGIUM IRAN SA U D I ARA BIA<br />

BOLIVIA IRAQ SENEGAL<br />

BRAZIL IRELAND SIERRA LEONE<br />

BULGARIA ISRAEL SINGAPORE<br />

BURMA IT A L Y S O U T H AFRIC A<br />

BYELORUSSIAN S O V IE T IV O R Y C O A S T SPAIN<br />

S O C IA L IS T REPUBLIC J A M A IC A SRI L A N K A<br />

C A M E R O O N JAPAN SU D A N<br />

C A N A D A JORDAN SWEDEN<br />

CHILE K E N Y A SW ITZE R LAN D<br />

C H IN A KHMER REPUBLIC SYR IA N ARAB REPUBLIC<br />

CO LOM B IA K O R E A , REPUBLIC <strong>OF</strong> TH A IL A N D<br />

C O S T A RICA K U W A IT TU N ISIA<br />

CU BA LEBANON TURK EY<br />

CYPRUS LIBERIA U G A N D A<br />

C Z E C H O S L O V A K S O C IA L IS T LIB YAN ARAB REPUBLIC UK R A IN IA N S O V IE T S O C IA L IS T<br />

REPUBLIC LIECH TEN STEIN REPUBLIC<br />

D EN M ARK LUXEM BOURG UNION <strong>OF</strong> S O V IE T S O C IA L IS T<br />

D O M IN IC A N REPUBLIC M A D A G A S C A R REPUBLICS<br />

ECU AD O R M A L A Y S IA UNITED K IN G D O M <strong>OF</strong> G REAT<br />

E G Y P T , ARAB REPUBLIC <strong>OF</strong> M A L I BRITAIN A N D NORTHERN<br />

EL S A L V A D O R M E X IC O IRELAND<br />

E TH IO PIA M O N A C O UN ITE D S T A T E S O F A M ERICA<br />

FIN LAND M O R O C C O U R U G U A Y<br />

FRANCE NETHERLANDS VENEZUELA<br />

G ABO N NEW ZE A LA N D V IE T -N A M<br />

G E R M A N Y , FEDERAL REPUBLIC <strong>OF</strong> NIGER Y U G O S L A V IA<br />

G H A N A NIGERIA ZA IR E , REPUBLIC <strong>OF</strong><br />

GREECE N O R W A Y Z A M B IA<br />

P A K IS T A N<br />

T h e A g e n cy * s S ta tu te w as a p p r o v e d o n 2 3 O c t o b e r 1 9 5 6 b y th e C o n fe r e n c e o n th e S ta tu te o f th e IA E A<br />

h e ld at U n ited N a tion s H ea d q u a rters, N ew Y o r k ; it e n te re d in to f o r c e on 29 July 1 9 5 7 . T h e H eadquarters o f<br />

th e A g e n c y a re situ ated in V ie n n a . Its p r in c ip a l o b je c t iv e is " t o a c c e le r a t e and e n la r g e th e c o n tr ib u tio n o f<br />

a t o m ic e n e r g y to p e a c e , h e a lth and prosp erity th rou gh ou t th e w o r ld " .<br />

Prin ted by th e IA E A in A u stria<br />

S e p te m b e r 1973


<strong>PROCEEDINGS</strong> SERIES<br />

NUCLEAR DATA<br />

IN SCIENCE AND TECHNOLOGY<br />

<strong>PROCEEDINGS</strong> <strong>OF</strong> THE <strong>SYMPO</strong>SIUM ON<br />

APPLICATIONS <strong>OF</strong> NUCLEAR DATA<br />

IN SCIENCE AND TECHNOLOGY<br />

HELD BY THE<br />

INTERNATIONAL ATOMIC ENERGY AGENCY<br />

IN PARIS, 12 - 16 MARCH 1973<br />

In two volumes<br />

VOL. I<br />

INTERNATIONAL ATOMIC ENERGY AGENCY<br />

VIENNA, 1973


N U C L E A R D A T A IN S C IE N C E A N D T E C H N O L O G Y<br />

IA E A , V IE N N A , 19 7 3<br />

S T I / P U B / 3 4 3


FOREWORD<br />

The <strong>IAEA</strong> Sym posium on "A pplication s o f N uclear <strong>Data</strong> in Science and<br />

T ech n ology" was convened by the International A tom ic E nergy A gency on<br />

12-16 M arch 1973 in P a ris at the invitation o f the F ren ch G overnm ent.<br />

The m eeting was held on the recom m endation of the International N uclear<br />

<strong>Data</strong> C om m ittee (INDC) and the International W orking Group on N uclear<br />

Structure and R eaction <strong>Data</strong> (IWGNSRD). The main purpose o f the Symposium<br />

was to illum inate the needs fo r nuclear data in the tech n ologica l and s cie n ­<br />

tific com m unity. O ver 200 delegates attended, represen tin g 30 countries<br />

and five international organ izations. A total o f 74 papers was presented,<br />

including the Keynote A ddress and the Sym posium Sum m ary.<br />

F o r many yea rs the m echanism s fo r satisfying the nuclear data needs<br />

related to neutron-induced reaction s have been fa irly w ell organized by those<br />

con cern ed with n eu tron -rea ctor tech n ology, which is a m ajor field o f ap p lication<br />

fo r this kind o f data. H ow ever, fo r sev era l y ea rs it has becom e increa<br />

sin g ly evident that there is a strong need fo r better, u p -to-d ate c o m ­<br />

pilations o f n uclear data fo r a large num ber o f other application s. The <strong>IAEA</strong><br />

was th erefore requested to convene a sym posium in o rd e r to review the<br />

status o f and needs fo r new nuclear data evaluation activ ities. During the<br />

p rep aration , it becam e evident that the sym posium should em phasize data<br />

needs in the variou s applications rather than existing data com pilation<br />

activ ities.<br />

The p rogra m com m ittee attempted to achieve a balance betw een rea ctor<br />

and n o n -re a cto r applications as w ell as a balance between the needs fo r<br />

variou s applications and the needs for com pilation w ork. As a resu lt, four<br />

o f the sixteen regular session s w ere devoted to applications related to<br />

nuclear energy, seven to other applications and five to top ics related to<br />

data com p ilation s. In con trast to the International C onferences on N uclear<br />

<strong>Data</strong> fo r R ea ctors (P a ris , 17 - 21 O ctober 1966, and H elsinki, 15-19 June<br />

1970), this Sym posium was not meant to be a forum fo r the presentation o f<br />

experim en tal data.<br />

The Sym posium dem onstrated that the com pilation o f structure and<br />

d ecay data would benefit from con sid erably in creased support. These data<br />

are b a sic to m ost other d ata-application -orien ted com pilations. The long<br />

delay in bringing com pilations o f this type up to date cau ses unacceptable<br />

h old-u ps in the p rocess o f bringing such data from p rod u cers to u sers.<br />

Under the heading 'Sym posium Sum m ary' , D r. W .B. L ew is, at the end o f<br />

the m eeting, d iscu ssed the m ost im portant con clu sion s to be drawn from<br />

the sym posium with regard to data needs and the status of com pilations.<br />

A further sum m ary o f the m eeting, by L. H järne, appears in A tom ic Energy<br />

R eview , 1973, V o l.11, N o.2, 395.<br />

The P roceed in g s are divided into two volu m es, the first o f which con ­<br />

tains, besid es the Keynote A d d ress, th irty-tw o papers in the field s o f<br />

Future T echn ology R equirem ents, R eactor T echnology, Safeguards, L ife<br />

S cien ces, R adioisotopes in C hem istry, F issio n -P ro d u ct N uclear <strong>Data</strong> and


A cce le ra to r and Space Shielding. The second volum e - with forty con tribu ­<br />

tions, in addition to the Sym posium Sum m ary - co v e rs the field s o f Fusion<br />

R esea rch , Evaluated Neutron <strong>Data</strong> F ile s, A ctivation A nalysis (G eneral and<br />

N eutrons), C om pilation and Evaluation - <strong>Data</strong> C entres, L arge-V olu m e<br />

C om pilations, V arious A pplications, A ctivation A nalysis: Charged P a rticles<br />

and Photons, and A pplication-O riented Computations and Evaluations.<br />

The A gency w ishes to thank the French authorities fo r their hospitality<br />

and active support of the Sym posium , and the authors and participants for<br />

their valuable contributions. S pecial thanks are due to the Chairmen o f the<br />

individual session s fo r their su ccessfu l efforts in guiding the d iscu ssion s.<br />

E D I T O R I A L N O T E<br />

The p a p ers and d iscu ssion s in corp ora ted in the p roceed in g s published<br />

by the International A tom ic E n ergy A g en cy a re edited by the A g en cy 's ed itorial<br />

sta ff to the exten t con sid ered n e c e s s a r y fo r the r e a d e r 's a ssista n ce.<br />

The view s exp r e s s e d and the gen era l s ty le adopted rem ain, h ow ever, the<br />

resp o n sib ility o f the named authors o r particip an ts.<br />

F o r the sake o f sp eed o f publication the p resen t P roceed in gs have been<br />

printed by com position typing and p h o to -o ffset lithography. Within the lim itations<br />

im p osed by this m ethod, e v e r y effo rt has been m ade to maintain a<br />

high ed itorial standard; in particular, the units and sym b ols em ployed a re<br />

to the fu llest p ra ctica b le exten t th ose standardized o r recom m ended by the<br />

com peten t international scien tific bodies.<br />

The a ffilia tion s o f authors a r e th ose given at the tim e o f nom ination.<br />

The u se in th ese P roceed in g s o f p a rticu la r designations o f cou n tries o r<br />

te r r ito r ie s d oes not im ply any judgem ent by the A g en cy as to the legal status<br />

o f such cou n tries o r te r r ito r ie s , o f th eir au th orities and institutions o r o f<br />

the delim itation o f th eir bou n d a ries.<br />

The m ention o f sp e c ific com panies o r o f th eir products o r brand-nam es<br />

d oes not im ply any en d orsem en t o r recom m endation on the part o f the<br />

International A tom ic E n ergy A g en cy.


CONTENTS <strong>OF</strong> VOL. I<br />

KEYNOTE ADDRESS - OPENING <strong>OF</strong> THE <strong>SYMPO</strong>SIUM<br />

C riteria o f ch oice for com pilations o f nuclear data .............................. . 3<br />

D.J. Horen and A.M. Weinberg<br />

FUTURE TECHNOLOGY REQUIREMENTS (Section I)<br />

F ission in g uranium plasm as (IA E A -S M -1 7 0 /5 3 ).......................................... 15<br />

K. Thom and R. T. Schneider<br />

D iscu ssion .............................................................................................................. 37<br />

N uclear data requirem ents for fu sion -fission (hybrid) re a cto rs<br />

(IA E A -S M -170/56) .............................................................................................. 39<br />

W.C. Wolkenhauer and B. R. Leonard, Jr.<br />

D iscu ssion .............................................................................................................. 50<br />

N uclear data requ irem en ts in the design o f the BIFOLD N uclear<br />

P ow er Source (IA E A -S M -170/39) ................................................................ 51<br />

W. F. Stubbins and R. A. Wolfe<br />

A study o f lon g -term heat generation in nuclear by-products<br />

from LWR and LM FBR system s (IA E A -S M -170/58) ......................... 71<br />

J. A. Angelo, Jr., R. G. Post, F. Haskin and<br />

C. Lewis<br />

D iscu ssion .............................................................................................................. 87<br />

Sections e ffica ce s de creation de dom m ages (IA E A -S M -170/65) . . . 89<br />

M. Lott, J.P. Genthon, F. Gervaise, P. Mas,<br />

J. C. Mougniot et Nguyen Van Doan<br />

D iscu ssion .............................................................................................................. 126<br />

REACTOR TECHNOLOGY (Section II)<br />

Точность ядерных данных и ее влияние на разработку быстрых<br />

реакторов. Подход к выработке требований<br />

на точность ядерных данных<br />

(IA E A -S M -170 / 91 ) .............................................................................................. 129<br />

J I .H . Усачев,В.Н. Манохин иЮ.Г. Бобков<br />

D iscu ssion .............................................................................................................. 142<br />

R ôles re sp e ctifs des évaluations et des exp érien ces in tégrales pour<br />

la physique des réacteu rs rapides (IA E A -S M -170/69) ....................... 143<br />

J.Y. Barré et J.P. Chaudat<br />

D iscu ssion .............................................................................................................. 154


C r o s s -s e ctio n uncertainty effects on the ratio o f the high-energy<br />

neutron flux to the pow er and resulting estim ation o f the<br />

irradiation lim it e r r o r s in a fast pow er rea ctor<br />

(IA E A -S M -1 7 0 /7) ................................................................................................ 155<br />

A. Boioli, G. P. Cecchini, M. Cosimi and<br />

M. Salvatores<br />

E l uso de parám etros neutrónicos de reson an cia y seccion es<br />

e fica ce s neutrónicas de captura radiativa para la evaluación<br />

de la in tegral de reson an cia de activación resu elta y no<br />

resu elta (IA E A -S M -170/2) ............................................................................ 163<br />

G .H . Ricabarra, R. Turjanski y M .D . Ricabarra<br />

A ssessm en t o f m ethods and data fo r predicting integral<br />

p rop erties fo r u ranium -fuelled th e rm a l-re a cto r physics<br />

experim ents (IA E A -S M -170/18) .................................................................. 175<br />

R. C h a w la<br />

U tilisation de résultats de m esu res intégrales pour<br />

p r é cis e r le s valeurs des constantes n u cléaires neutroniques<br />

(IA E A -S M -170/67) .............................................................................................. 189<br />

P. R e u s s<br />

D iscu ssion .............................................................................................................. 194<br />

SAFEGUARDS (Section III)<br />

The role o f nuclear data in nuclear m aterial safeguards<br />

(IA E A -S M -170/78) .............................................................................................. 197<br />

C. Weitkamp, A. v. Baeckmann, K. Bohnel,<br />

M. Küchle and L. Koch<br />

D iscu ssion .............................................................................................................. 215<br />

The role o f nuclear data in the practical application of<br />

n on-destru ctive nuclear assay m ethods (IA E A -SM -170/54) ............ 217<br />

M. M. Thorpe<br />

Influence of uncertainties in fission -p rod u ct nuclear data on<br />

the interpretation of gam m a-sp ectrom etric m easurem ents<br />

on burnt fuel elem ents (IA E A -S M -1 7 0 /1 2 )................................................ 233<br />

O. J. Eder and M. Lammer<br />

D iscu ssion .............................................................................................................. 267<br />

An analysis o f claim s and available radioactive data for<br />

safeguards (IA E A -S M -170/1) ....................................................................... 269<br />

D. Berényi<br />

D iscu ssion .............................................................................................................. 282<br />

U F E SCIENCES (Section IV)<br />

Le role des données n u cléaires dans l'u tilisation des<br />

indicateurs rad ioactifs en m édecine (1 A E A -S M -1 7 0 /9 7 )..................... 287<br />

C. Kellershohn et D. Comar<br />

D iscu ssion .............................................................................................................. 311<br />

N uclear data requirem ents in ra d iological protection and<br />

radiotherapy (IA E A -S M -170/59) .................................................................. 313<br />

J. A. Dennis<br />

D iscu ssion .............................................................................................................. 326


P rob lèm es p osés par la fabrication de plutonium -238 de qualité<br />

biom éd icale (IA E A -S M -170/64) ................................................................... 329<br />

R. Berger, C. Devillers, F. Gervaise et G. Le Coq<br />

D iscu ssion .............................................................................................................. 334<br />

N uclear data and neutron activation analysis o f b iologica l sam ples<br />

(IA E A -S M -170/3) ................................................................................................ 335<br />

N. M. S p y r о u<br />

L es constantes n u cléaires dans le s p h arm acopées; leu r utilité<br />

pour la norm alisation des substances pharm aceutiques<br />

(IA E A -S M -170/70) .............................................................................................. 351<br />

Y. Cohen<br />

D iscu ssion .............................................................................................................. 356<br />

A pplication of nuclear data in the preparation o f radion u clides<br />

for use in m edicine and biology (IA E A -S M -170/92) ............................ 359<br />

R. B. R . P e r s s о n<br />

D iscu ssion .............................................................................................................. 372<br />

RADIOISOTOPES IN CHEMISTRY (Section V)<br />

R adioisotope applications in ch em istry — a review<br />

(IA E A -S M -17 0 /9 6 ) .............................................................................................. 377<br />

L. G ó r s k i<br />

D iscu ssion .............................................................................................................. 381<br />

N uclear data requ ired fo r the interpretation o f hot-atom<br />

ch em istry (IA E A -S M -170/28) ....................................................................... 383<br />

A. H. W. Áten<br />

D iscu ssion .............................................................................................................. 389<br />

FISSION-PRODUCT NUCLEAR DATA (Section VI)<br />

F ission -p rodu ct chain yields from experim ents in therm al<br />

re a cto rs (IA E A -S M -1 7 0 /9 4 )............................................................................ 393<br />

E.A.C. Crouch<br />

D iscu ssion .............................................................................................................. 457<br />

Cum ulative yields of therm al neutron fission products: som e<br />

resu lts and recom m endations based on a recen t evaluation<br />

(IA E A -S M -170 /3 4 ) .............................................................................................. 459<br />

W .H . Walker<br />

D iscu ssion .............................................................................................................. 476<br />

Bibliothèque de données relatives aux produits de fission<br />

(IA E A -S M -170/63) .............................................................................................. 477<br />

C. Devillers, J. Blachot, M. Lott, B. Nimal,<br />

Nguyen Van Dat, J .P . Noel et R. De Tourreil<br />

D iscu ssion o f fission -p rod u ct yield evaluation m ethods and a<br />

new evaluation (IA E A -S M -170/13) .............................................................. 505<br />

M. Lammer and O. J. Eder<br />

D iscu ssion .............................................................................................................. 551<br />

Need o f nuclear le v e l sch em es fo r calculated c r o s s -s e c tio n s<br />

o f fission -p rod u ct nuclei (IA E A -S M -170/74) .......................................... 553<br />

H. Gruppelaar<br />

D iscu ssion .............................................................................................................. 558


Evaluation of the ranges of fission products (IA E A -S M -1 7 0 /1 6 )......... 559<br />

F. Rustichelli<br />

D iscu ssion .............................................................................................................. 573<br />

A CCELERATO R AND SPACE SHIELDING (Section VII)<br />

Use o f nuclear data in designing sp a ce -scie n ce experim ents<br />

(IA E A -S M -170/42) .............................................................................................. 577<br />

B .C . Clark, P. G. Kase, J.P. Martin and<br />

J. G. Morse<br />

D iscu ssion .............................................................................................................. 593<br />

N uclear data fo r shielding and activation estim ates for<br />

TRIUMF (IA E A -S M -170/35) .......................................................................... 595<br />

I. M. Thorson and W. J. Wiesehahn<br />

T ransport o f neutrons induced by 8 0 0 -MeV protons<br />

(IA E A -S M -17 0 /4 5) .............................................................................................. 607<br />

R. G. Fluharty , P.A. Seeger, D. R. Harris,<br />

J.J. Koelling and O. L. Deutsch<br />

D iscu ssion .............................................................................................................. 617<br />

Chairm en o f S ession s and S ecretariat o f the Sym posium ..................... 621


KEYNOTE ADDRESS<br />

OPENING <strong>OF</strong> THE <strong>SYMPO</strong>SIUM


CRITERIA <strong>OF</strong> CHOICE<br />

FOR COMPILATIONS <strong>OF</strong> NUCLEAR DATA*<br />

D .J . HOREN, A .M . WEINBERG<br />

Oak Ridge N ational Laboratory, Oak Ridge, T e n n .,<br />

U nited States o f A m erica<br />

About twelve years ago, when the scientific community began to realize<br />

that priorities in science w ere inevitable, one of us (AMW) proposed what<br />

are now called "criteria for scientific choice" [ 1 ]. These amounted to a<br />

set of principles — admittedly much easier to formulate in the abstract than<br />

to apply in specific cases — that could help one decide the relative m erit<br />

of, and therefore priority to be assigned to, different scientific activities.<br />

The criteria of choice w ere divided into two categories: internal and<br />

external. Internal criteria arose out of the logic and structure of a field:<br />

they w ere concerned with such questions as, "is the field ripe for exploitation<br />

— i.e . are there pressing scientific issues in which knowledgeable<br />

practitioners see ways of making progress? O r does the field itself attract<br />

v ery able people? " These internal criteria address themselves to the<br />

solvability of scientific problem s. (Peter Medawar describes science —<br />

in a clever paraphrase of D israeli — as the Art of the Soluble [ 2 ]. ) Internal<br />

criteria m easure a scientific activity by the extent to which it yields results<br />

that are worthwhile as judged by the standards of the field in which the<br />

results are obtained.<br />

External criteria m easure a scientific activity from the standpoint of<br />

the universe outside the activity. They address themselves to the usefulness<br />

(as contrasted to the solvability) of scientific research: its usefulness to<br />

other scien ces, to engineering and technology, to society at large. In a<br />

general sort of way, it was argued that where large sums of public money<br />

w ere required to support a scientific activity, external criteria must loom<br />

prominently in judging relative priorities.<br />

About the time of the publications on criteria for scientific choice,<br />

one of us (AMW) chaired a panel of the President's Science Advisory<br />

Com mittee (PSAC) concerned with scientific information. That report,<br />

entitled "Science, Government, and Information" [3 ], is probably fam iliar<br />

to many in this audience. Its main emphasis was on the specialized information<br />

centre. The report viewed such secondary handlers of scientific<br />

information as a key to restoring order to what seem ed like a chaotic<br />

expansion of scientific knowledge. In retrospect, it seem s that the panel<br />

was graced with good luck in stressing the role of the specialized information<br />

centre. Such centres have proliferated even beyond what we enthusiasts<br />

anticipated when writing the report. In nuclear structure and<br />

reactions alone, there are now at least 28 such centres throughout the<br />

world according to the studies of the International Working Group on <strong>Nuclear</strong><br />

Structure and Reaction <strong>Data</strong> (IWGNSRD) [4] .<br />

It therefore seem ed appropriate, in talking to an audience that includes<br />

both com pilers of nuclear data and users of nuclear data, to try to synthesize<br />

* P resen ted b y A . M . W e in b e r g .<br />

3


4 HOREN and WEINBERG<br />

these two separate threads from earlier works: Scientific Information, in<br />

this instance, <strong>Nuclear</strong> Information, and Criteria for Scientific Choice.<br />

F o r just as science itself, and certainly nuclear science, must adjust to<br />

limited resou rces, so scientific compilation, and in particular compilation<br />

of nuclear data, is sim ilarly constrained. Thus the problem of priorities —<br />

what to do first, where to allocate resou rces in science — also faces the<br />

community of com pilers. They too must decide what to com pile and what<br />

to leave for later. Can we establish a-p riori criteria of choice for scientific<br />

compilation? Can such criteria be regarded as m ore than a philosophic<br />

exercise?<br />

THE NECESSITY FOR CHOICE<br />

The com pilers of scientific data have in recent years lagged behind<br />

the producers of scientific data, and have had to establish p rio ritie s. In<br />

nuclear science, technical developments have greatly magnified this discrepancy<br />

between the m ass of data and the com p iler's capacity to handle it.<br />

The use of high-resolution solid-state detectors, as well as other<br />

im proved techniques, has multiplied the number of recorded bound states<br />

per nucleus five- to ten-fold during the past decade; and the widespread<br />

utilization of automatic processing has created a heavy glut of undigested<br />

nuclear data. There are now som e 3000-4000 nuclear-structure scientists<br />

who publish about 3500 papers annually. The data contained in each paper<br />

varies anywhere from a single number — e .g . the reporting of a half-life<br />

measurem ent, or spin, etc. — to thousands of numbers. F o r example,<br />

Mühlbauer has observed m ore than 2000 gam m a-ray transitions below<br />

1. 4 MeV following neutron capture in 152Eu [ 5] ! Ignoring the quantities —<br />

level energies and properties — that can be deduced from this particular<br />

data, but, considering only the energies, intensities, and uncertainties<br />

on each quantity, one has to deal with 4 X 2000 or 8000 numbers!<br />

The history of the <strong>Nuclear</strong> <strong>Data</strong> P roject from 1959-1972 illustrates<br />

how this increase in data has com plicated the life of the com piler of m a ss-<br />

chain data. P rior to 1963 the number of compilations per m an-year was<br />

3. 5-5, with each compilation having 100 times the quantity of data reported<br />

in an average research paper; today this number has fallen to about 1. 8<br />

compilations per m an-year. Since 1959 the number of research papers<br />

per m an-year (at least in the United States) has remained relatively constant<br />

at about one. The average quantity of-reported data, however, has increased<br />

by a factor of ten, and the ratio of data per compilation versus that per<br />

average research paper has remained about constant at 100/1. Thus the<br />

com piler has increased his ability to handle data by a factor of four to<br />

five — i. e. (1. 8/5) X 10 — but this has not been sufficient to cope with the<br />

ten-fold increased production of data.1 Thus one can make a serious<br />

argument for relatively m ore, rather than less, money going into secondary<br />

treatment of data.<br />

1 W e h a v e trie d to e s tim a te th e c o s t o f g a th e r in g and c o m p ilin g n u c le a r d a ta . T h e a v e r a g e research<br />

p a p e r rep orts a p p r o x im a te ly 30 m e a su re d n u m bers (in c lu d in g u n c e r ta in tie s ), w h ic h is e q u iv a le n t to a b ou t<br />

$ 15 00 p er n u m b e r; in th e U n ite d S tates an a v e r a g e re s e a r ch p a p e r co s ts a p p r o x im a te ly $ 45 0 0 0 . D ata p rod u cers<br />

a re g e n e r a tin g s o m e 110 0 00 n u m b ers a n n u a lly . A n a v e r a g e D a ta P r o je c t c o m p ila t io n c o n ta in s a p p r o x im a te ly<br />

3 00 0 n u m b ers a t a c o s t o f a p p r o x im a te ly $10 p er n u m b e r, o r o n e p e r c e n t o f th e p r o d u c tio n c o s t.<br />

In this c o n n e c t io n th e authors w o u ld li k e to p o in t to th e im p o r ta n c e o f e s ta b lis h in g a u n ifo rm and in te r n a tio n a l<br />

sy stem o f k e y w ord s and in d e x in g as a m ea n s o f a m p lify in g th e c o m p ile r s ' in c r e a s in g ly d iffic u lt jo b o f k e e p in g<br />

up w ith th e d a ta .


<strong>SYMPO</strong>SIUM KEYNOTE 5<br />

INTERNAL CRITERIA: NUCLEAR COMPILATION AS PART <strong>OF</strong><br />

NUCLEAR SCIENCE<br />

Scientific compilation is, of coarse, part of science. One could<br />

therefore argue that criteria of choice that are appropriate for science<br />

ought to be applicable to scientific compilation. M oreover, the motivations<br />

for scientific compilation in a way parallel the motivations for science itself.<br />

We say we do science, on the one hand, to find order in nature where none<br />

had hitherto been perceived (the Newtonian view) or, on the other hand,<br />

to enable man, through application of science, to control nature for m an's<br />

benefit (Baconian view). In a parallel sense, the scientific com piler is<br />

motivated, on the one hand, by his desire to find scientific regularities<br />

and new insights where none have been found before, or to help scientists<br />

in his own field find such regularities; and, on the other hand, his desire<br />

to make the results of his compilations useful to scientists in other fields,<br />

and to those who apply science to the useful arts. We would call the first<br />

motivation for scientific compilation internal, the second external.<br />

Within the field of nuclear science one can find both internally and<br />

externally motivated compilation groups. The approach as to what they<br />

com pile, as well as their methods, is usually reflected to som e degree<br />

by their histories. M ost of the internally motivated groups w ere established<br />

by active research ers, mainly as an aid to cope with the data or to detect<br />

system atic trends.<br />

M ost of the com pilers in this audience are fam iliar with instances in<br />

which compilations have proved of som e significance in the creation of<br />

new nuclear scien ce. To mention a few examples, we would cite the nuclear<br />

shell m odel which stem m ed mainly from a combination of com piled data and<br />

the injection of a new idea, strong spin-orbit coupling.2 The highly successful<br />

description of nuclear properties in the rare-earth and actinide regions in<br />

term s of a non-spherical model has been refined through an intermingling<br />

of experiments, compilations, and theoretical ideas. Compilations played<br />

an important role also in the evolving description of the vibrations of near-<br />

spherical nuclei, or the development of the optical-m odel description for<br />

nuclear reactions. Other examples in which compilations have played a<br />

significant part in the discovery of new nuclear science can of course,<br />

be given.<br />

The com piler, in pursuing his aims that are part of nuclear science —<br />

i.e . finding regularities, discrepancies, and lacunae — must be guided by<br />

som e internal criteria. He must decide what data are m ost likely to yield<br />

s uch nuggets, are m ost worth spending his time on. It would be our im pression<br />

that the com p iler's sensitivity to what is important, and therefore his<br />

ordering of priorities, is established in much the sam e way as are the<br />

sensitivities toward priorities of nuclear science itself. M oreover, since<br />

the com pilers, at least in those centres serving basic nuclear science,<br />

2 A lth o u g h a n u m b e r o f w ork ers, s o m e b e fo r e 1 9 3 0 , h a d su g g ested th e p o s s ib ility o f n u c le a r s h e ll<br />

stru ctu re b a s e d o n t h e o r e t ic a l and s k e tc h y e x p e r im e n t a l grounds [ s e e , e . g . ELSÄSSER, W . , J. Phys. R adiu m £<br />

(1 9 3 4 ) 6 2 5 ] , it r e m a in e d u n til e a r ly 1949 fo r M a r ia M A Y E R [ P hys. R e v . 7 5 (1 9 4 9 ) 1 9 6 9 ] and in d e p e n d e n tly<br />

th e te a m o f H A X E L , O . , JENSEN, J . H . D . , SUESS, H .E . [P h y s . R e v . 7 5 ( 1 9 4 9 ) 1 7 6 6 ] to p resen t a t o t a lly<br />

c o n v in c in g c a s e fo r th e e x is t e n c e o f m a g ic n u m b ers, as w e ll as a r a tio n a le fo r th e m in term s o f stron g s p in -o r b it<br />

c o u p lin g (s u g g e s te d to M a y e r b y F e r m i),


T A B L E I. A R E A S <strong>OF</strong> A P P L IC A T IO N O F N U C L E A R D A T A AND TECHNIQUES<br />

A p p lie d a rea U s a g e M a in d a ta re q u ire m e n ts<br />

E le c t r ic a l p o w e r<br />

B io lo g y and<br />

m e d ic in e<br />

A g ricu ltu re<br />

G e o lo g y<br />

A r c h e o lo g y<br />

F o re n sic<br />

In d u stria l<br />

P h y s ic a l s c ie n c e s<br />

F ission rea ctors<br />

D esign<br />

R a d io a c t iv e w a s te d isp osa l<br />

R e g u la tio n<br />

E n v iro n m e n ta l<br />

F u e l e le m e n t co n tr o l<br />

( i . e . safeguards)<br />

R a d io is o to p e b a tteries<br />

C o n tr o lle d th e rm a l fu sion<br />

D ia g n o s tic studies<br />

T h era p y<br />

R esearch<br />

F o o d p r e se rv a tio n<br />

G e n e tic studies<br />

P lant studies<br />

A c t iv a t io n a n alysis<br />

L eak d e t e c t io n ^<br />

G au ges (th ic k n e s s , d en sity)<br />

C o n tro ls<br />

F ire d e t e c t io n d e v ic e s<br />

F ilters<br />

M a te r ia ls tre a tm e n t<br />

S o lid - s t a te d e v ic e s<br />

M a te ria ls analysis<br />

R a d iography<br />

N u c le a r p h ysics<br />

A stroph ysics<br />

S o lid state<br />

C h em istry<br />

N eu tron d a ta , fissio n d a ta , d e c a y d a ta ,<br />

n u c le a r stru ctu re<br />

D e c a y data<br />

C h a r g e d - p a r t ic le r e a c tio n s , n eu tron r e a c tio n s<br />

D e c a y d ata (s o m e r e a c t io n data)<br />

D e c a y d a ta , n eu tron and c h a r g e d -p a r t ic le<br />

r e a c tio n s (p ro to n s , тг-m e s o n s , h e a v y ion s)<br />

D e c a y data<br />

D e c a y d a ta , n eu tron c a p tu r e , X - r a y flu o r e s c e n c e<br />

b y m e a n s o f c h a r g e d p a r tic le s o r 7 Ч<br />

V a riou s ty p e s n o te d a b o v e d e p e n d in g u p on<br />

a p p lic a t io n<br />

L e v e l o f k n o w le d g e o f n u c le a r<br />

p h y s ics r e q u ire d b y user<br />

H igh<br />

Low<br />

H igh<br />

M e d iu m to low<br />

M e d iu m to h igh<br />

Low<br />

Low to m e d iu m<br />

Low to m e d iu m<br />

Low to h igh<br />

d e p e n d in g o n s p e c i f ic a rea<br />

HOREN and WEINBERG


<strong>SYMPO</strong>SIUM KEYNOTE 7<br />

are them selves an integral part of the nuclear science community, there<br />

is little problem of what to com pile next: at least, it is not m ore difficult<br />

than the problem of what to m easure next. This is determined by the state<br />

of knowledge of the science and is largely a personal judgment.<br />

A second, and perhaps m ore important, question of priority is the<br />

depth and com plexity of a compilation. F o r som e purposes, only a broad,<br />

but not deep, compilation is necessary (the initial stages of the optical model,<br />

for example). However, where one is interested in a m icroscop ic test of<br />

a theoretical model, an in-depth compilation is required. Again, however,<br />

since these are so integral a part of nuclear science, it is hard for us to<br />

p rescribe criteria that are different from the intrinsic criteria of choice<br />

appropriate for nuclear science itself. After all, nuclear science, like<br />

all science, the A rt of the Soluble: one goes where one's instincts,<br />

sharpened by the scientific am bience in which one operates, lead. The<br />

main point is that as long as nuclear compilation is supported at a level<br />

sufficient for the com piler to be au courant with the data, and the com piler<br />

maintains his contacts with the nuclear community, significant new nuclear<br />

science w ill com e from nuclear compilations.<br />

EXTERNAL CRITERIA: NUCLEAR COMPILATION AS AN AID TO<br />

APPLICATION<br />

In Table I we sum m arize som e of the areas in which nuclear data or<br />

techniques are being applied. As one sees, these range from power<br />

generation to nuclear m edicine, from agriculture to forensic science, and,<br />

of course, include the basic physical sciences — nuclear physics, astrophysics,<br />

solid state, chem istry, etc. Most striking is the wide variation<br />

in sophistication both in the use of the data and in the user's knowledge of<br />

nuclear science. In view of this, one easily surm ises that the need for<br />

critical evaluation of the data will be somewhat dependent upon the specific<br />

application for which it is intended.<br />

Papers to be presented at this symposium suggest that these points<br />

will be aptly demonstrated in the respective sessions. Hence we confine<br />

ourselves to two specific examples of the use of nuclear data: as it applies<br />

to em ergency core-coolin g system s (ECCS) and its present and possible<br />

future role in biological applications.<br />

(1) ECCS: Perhaps an apt example of heavily applied use for com piled<br />

non-neutron nuclear data is the estimate o f the afterheat in a light-water<br />

reactor. This is one of the factors needed to asses the perform ance of the<br />

ECCS, and som e 22 000 pages of testimony pertaining to this topic have<br />

been am assed during the past year. Among the important technical<br />

questions involved is whether or not the fuel elements heat up too much<br />

during the first few seconds after blow-down. To obtain this information<br />

from in-situ m easurem ents would be extrem ely difficult. T herefore, to<br />

estimate the heat build-up, two calculational approaches have been considered<br />

— one based upon experimental m easurem ents of the gamm a and<br />

beta power associated with the therm al fission of 235U, the other on a detailed<br />

knowledge of the yields and decays of the fission products. The latter<br />

inform ation has been com piled since the beginning of the Manhattan P roject,<br />

particularly, through the active work of Katharine Way, who is generally<br />

recognized as one of the founders of m odern nuclear data compilation.


8 HOREN and WEINBERG<br />

Partly because of the work of T .R . England [6 ], questions were recently<br />

raised concerning the validity of accepted procedures for handling the fission<br />

product after-heat. This has led to a re-exam ination of the problem , and<br />

once again exemplifies a fundamental contribution that can be made to applied<br />

program s by the nuclear scientist in his role as com piler/evaluator.<br />

Given a choice, the reactor engineer or scientist would certainly prefer<br />

to have available all the evaluated nuclear data required to calculate the<br />

heat release after blow-down. An engineer is unlikely to have had sufficient<br />

training and experience to evaluate the experimental data, whereas a nuclear<br />

scientist would probably find it difficult were he too long rem oved from the<br />

experimental details. Furtherm ore, to perform the calculation by going<br />

back to the fission product yields and decays would be almost im possible<br />

if he w ere forced to start at the beginning and com pile and evaluate all the<br />

data himself.<br />

A look at data on direct m easurem ent of the gamma and beta powers<br />

illustrates the engineer's difficulty. In Fig. 1 we show the results of four<br />

independent measurem ents of the beta power. It takes little imagination<br />

to visualize the bewilderm ent which the nuclear engineer will experience<br />

when confronted with such data. Should he, or can he, examine the detailed<br />

m easurem ents to try to determine the sources of the apparent discrepancies?<br />

Should he treat the data as four equal and independent sets? Should he accept<br />

the uncertainties quoted by the authors? Here is a place where the experience<br />

of the compilation community could well be brought to bear on an important<br />

technical m atter.<br />

(2) Biological applications: The use of nuclear data and techniques for<br />

biological purposes continues to grow. At present 20 to 30 radioisotopes<br />

are in routine clinical use, mainly as diagnostic tools. Approximately<br />

120 others are being used in research studies. Recently, there has been<br />

a resurgence in the use of neutrons in cancer therapy. With the new high-<br />

energy proton accelerators coming on-line, as well as heavy-ion accelerators,<br />

F IG . 1 . C o m p a r is o n o f d iffe r e n t ia l b e ta e x p e r im e n ts . T h e in te g r a te d b é ta p o w e r fr o m fou r d iffe r e n tia l<br />

m ea su re m e n ts is p lo t t e d r e la t iv e to a w e ig h te d a v e r a g e (th is fig u r e w as k in d ly p r o v id e d by A . M . P erry o f O R N L).


<strong>SYMPO</strong>SIUM KEYNOTE 9<br />

new techniques in m edical radiology that exploit the interactions of such<br />

projectiles (and also 7r-mesons) with tissue w ill m ost likely be developed.<br />

This w ill entail detailed knowledge of many nuclear interactions as well as<br />

phenomena associated with atomic physics, such as charged-particle<br />

stopping pow ers.<br />

In this area alone one can find examples for which the quality of the<br />

data is relatively unimportant and others for which it is critical. The<br />

typical role of the com piler, as a supplier of evaluated data, probably<br />

will not suffice in all cases. The m edical user, in the application of<br />

7r-mesons, will need assistance that goes far beyond that historically<br />

provided by a com piler; undoubtedly, he will often have to communicate<br />

directly with the com piler/evaluator.<br />

In general, though, the needs of the applied scientist are for evaluated<br />

nuclear data and, in particular, data that have been evaluated with his<br />

needs in mind. To be sure, there now are many nuclear compilation centres,<br />

such as the Brookhaven National Neutron C ross Section Center, which<br />

com pile and evaluate data for special classes of users. Of the centres<br />

listed by IWGNSRD, about two-thirds are externally motivated and are part<br />

of the applied community; one-third are internally motivated — i .e . consider<br />

them selves part of nuclear science rather than of nuclear applications.<br />

Obviously, insofar as barriers exist between the internally and externally<br />

motivated data com pilers, these barriers ought to be rem oved. This has<br />

happened in the case of evaluated neutron cro ss-se ctio n data — through the<br />

operation of the Neutron C ross-S ection Advisory Com m ittees, both national<br />

and international. And the creation of the U .S. <strong>Nuclear</strong> <strong>Data</strong> Committee<br />

to cover broader nuclear data (including that for nuclear science itself)<br />

is an experiment well worth serious attention.<br />

THE PROBLEM IN PERSPECTIVE<br />

By the year 2000 we anticipate that in the United States alone there<br />

will be 500 operating reactors. The rest of the world will not be far behind.<br />

It w ill be a world in which the existence of radioactive nuclei will not be a<br />

scientific curiosity but an ever present factor in our daily lives. All kinds<br />

of people will have to know about radioactive nuclei; chem ical engineers,<br />

geologists, geochem ists, atmospheric scientists, oceanographers,<br />

paleographers, ecologists, anthropologists, veterinarians, agricultural<br />

scientists, soil scientists, econom ists, and political scientists. Each<br />

group w ill want information in a format that is easy to use, easy to transmit,<br />

and easy to rem em ber. It w ill be the task of the com pilers to be responsive<br />

to the needs o f many sectors of our society and to provide nuclear data in<br />

specific formats for each sector.<br />

We see therefore a strong and growing need for externally motivated<br />

nuclear compilations. It is unlikely that potential users w ill com e uninvited<br />

to the com pilers and ask for particularly useful kinds of compilations. The<br />

com piler must seek out potential users continuously and energetically.<br />

Several m echanism s might make this task a little less than im possible.<br />

(1) There are conferences such as this one where users and com pilers<br />

m eet to exchange views on m ajor problem s and to w ork out together useful<br />

courses of action.


1 0 HOREN and WEINBERG<br />

(2) It is possible to embed nuclear data centres in large multidisciplinary<br />

organizations. This is currently the case in the nuclear laboratories of<br />

many countries, and leads to reasonably good communication channels<br />

between com pilers and obvious potential users who are connected with the<br />

nuclear energy enterprise.<br />

(3) Com m ittees which we mentioned earlier, such as the US <strong>Nuclear</strong><br />

<strong>Data</strong> Com mittee, may be very useful in helping to establish priorities for<br />

compilation of nuclear data. Certainly the various Neutron C ross-Section<br />

A dvisory Com m ittees have been helpful both in the m easurem ent and evaluation<br />

of data for reactor design. However, the m ore general fields of<br />

nuclear science and application do not have the sam e unifying theme or,<br />

for that matter, the centralized m anagerial structure as does reactor design<br />

and engineering. This will make it harder for committees to sense accurately<br />

the needs of this larger community. M oreover, com m ittees are cum bersom e:<br />

w ill they im pose further delays on the transfer of information from experimenter<br />

to user — which after all is what we are trying to expedite?<br />

(4) Finally, the m ost important ingredient is the intelligence, the energy,<br />

and vision of the individual com piler or of com piler organizations. One<br />

important issue here is how one can make the centres that have a tradition<br />

of internal motivation, a commitment to basic nuclear science, m ore useful<br />

to the community of applied science. One obvious, and quite sim ple, answer<br />

is to urge that these com pilers of nuclear data becom e m ore fam iliar with<br />

the needs of users. After all, when a com piler establishes a priority<br />

according to the internal logic of nuclear science, it is necessary to fam iliarize<br />

him self with that logic — to decide what is needed to strengthen the edifice<br />

of nuclear scien ce. Is one being unrealistic to urge that nuclear com pilers<br />

themselves accept som e responsibility for the needs of the applied com ­<br />

munity that their data may serve so that, though their prim ary commitment<br />

remains to their science, and their prim ary criteria of choice remain<br />

internal, they use som e cues from the applied world in setting their p r io r ities?<br />

As a practical matter, this means that at least a few com pilers in<br />

each of the basic compilation groups would acquire knowledge of and sen sitivity<br />

to the applied scie n ce s.<br />

Establishing priorities in nuclear compilation is hardly any easier than<br />

is establishing priorities in nuclear science itselt. And indeed, rather than<br />

proposing specific priorities, we have alluded to mechanism s for establishing<br />

priorities — in particular, the steering or guiding committee, and the inform<br />

ed individual com piler, especially the one who works in a broad,<br />

interdisciplinary setting. The two mechanism s, of course, do not exclude<br />

each other. We would only hope that this present-day tendency to centralize<br />

decisions in science by setting up central com m ittees does not work to lessen<br />

the individual com p iler's own responsibility to becom e acquainted with, and<br />

sensitive to, the needs of the basic and applied communities his compilations<br />

serve.<br />

R E F E R E N C E S<br />

[ 1 ] " C r it e r ia fo r S c ie n t if ic C h o i c e ” , M in e r v a I . p p . 1 5 9 -1 7 1 (W in te r 1 9 6 3 ); "C r ite r ia fo r S c ie n t if ic<br />

C h o ic e II: T h e T w o C u ltu r e s ", M in e r v a III, p p . 3 - 1 4 (A u tu m n 1 9 6 4 ).<br />

[ 2 ] M E D A W A R , P .B ., T h e A rt o f th e S o lu b le , M e th u e n and C o m p a n y L t d ., L on d on (1 9 6 7 ).<br />

[ 3 ] A rep ort o f th e P resid en t's S c ie n c e A d visory C o m m itte e , U .S . G o v e r n m e n t P rin tin g O f f i c e , W a sh in gton<br />

(January 1 0 , 1 9 6 3 ).


<strong>SYMPO</strong>SIUM KEYNOTE 1 1<br />

[ 4 ] I n te r n a tio n a l W o rk in g G rou p o n N u c le a r S tru ctu re and R e a c tio n D a ta , M in u tes o f First M e e t in g ,<br />

I N D C (S E C )-2 9 /G (a n d m in u tes o f su b seq u en t m e e tin g s ), IA E A N u c le a r D ata S e c t io n , V ie n n a (O c t o b e r 1 9 7 2 ).<br />

[ 5 ] M Ü H LBAU ER, K . , Z . Phys. 2 3 0 (1 9 7 0 ) 1 8.<br />

[ 6 ] E N G L A N D , T . R ., "A n In v e s tig a tio n o f F ission P rod u ct B e h a v io r and D e c a y H e a tin g in N u c le a r R e a c to r s ",<br />

P h .D . T h e s is , U n iv e rsity o f W isco n s in (A u g u s t 1 9 6 9 ).


Section I<br />

FUTURE TECHNOLOGY REQUIREMENTS


C hairm an<br />

KOLSTAD (USA)


FISSIONING URANIUM PLASMAS<br />

K . THOM<br />

A EC/NASA Space N uclear System s O ffice,<br />

W ashington, D. C.<br />

and<br />

R .T . SCHNEIDER<br />

University o f Florida, G ain esville, F la .,<br />

United States o f A m erica<br />

Abstract<br />

F ISSIO N IN G U R A N IU M P L A SM A S.<br />

IA E A -S M -170 /5 3<br />

S e v e ra l c o n c e p t s fo r c a v it y r e a c to r s h a v e b e e n p ro p o s e d in w h ic h th e n u c le a r fu e l is in th e p la sm a<br />

s ta te . M o tiv e s for c o n d u c tin g r e s e a r ch re la te d to su ch h ig h -te m p e r a tu r e r e a cto r s a re th e p o s s ib le a p p lic a t io n<br />

o f th e se r e a c to r s fo r h i g h - s p e c if ic - im p u ls e p r o p u lsio n in s p a c e , m a g n e to h y d r o d y n a m ic e le c t r i c a l p ow er<br />

g e n e r a tio n a t h ig h e f f ic i e n c y , d ir e c t n u c le a r p u m p in g o f la sers, and as a s o u r ce for p r o ce s s h e a t.<br />

T h e c o n f in e m e n t o f th e fissio n in g u ra n iu m p la s m a w ith in th e c a v it y is sou ght by m e a n s o f flu id m e c h a n ic s .<br />

T h e e x t r a c t io n o f p ow er is a c c o m p lis h e d by r a d ia tiv e tra n sfer. T h e s e r e q u ire m e n ts im p o s e s p e c i f ic p r o b le m s<br />

u p o n c r it ic a lit y c a lc u la t io n s .<br />

A s ig n ific a n t d iff e r e n c e e x is ts b e tw e e n th e n eu tron te m p e r a tu r e (th e r m a l) and th e u ra n iu m p la sm a<br />

te m p e r a tu r e . For this re a so n , m o r e a c c u r a t e n eu tron s c a tte r in g and ca p tu r e c r o s s - s e c t io n d a ta in th e<br />

s e v e r a l- e V -r e g io n a re n e e d e d . T e m p o r a l flu c tu a tio n o f th e fu e l d en sity and v a r ia tio n o f th e s p a tia l fu e l<br />

d istr ib u tio n d u rin g o p e r a tio n and sta rt-u p r e q u ir e n ew c o d e s . R e a c tiv ity p ertu rb ation s d u e to p o s s ib le u raniu m<br />

in flu x v a r ia tio n s h a v e to b e c a r e fu lly an aly sed for p o w e r e x cu r s io n s and su bsequen t d istu rb a n ce s o f th e b a la n c e d<br />

sy stem o f flo w c o n f in e m e n t and r a d ia tiv e p o w e r tra n sm ission .<br />

In c o n n e c t io n w ith s o m e o f th e c o n c e p t s under c o n s id e r a tio n , re s e a r ch o n n u c le a r r a d ia tio n d a m a g e o f<br />

o p t i c a l transp arent m a te r ia l is n e e d e d .<br />

T h e US N a tio n a l A e r o n a u tic s and S p a c e A d m in istra tio n has c o n d u c te d an in te n s iv e r e s e a r ch p ro g ra m<br />

o n v a r io u s a sp e c ts o f fissio n in g p la sm a s , a n a ly tic a lly and in s im u la tio n , p a r tic u la r ly r e g a rd in g th e fe a s ib ilit y<br />

o f tw o m a jo r c o n c e p t s o f c a v it y r e a c to r s . S u ch w o rk is d e s c r ib e d . T h e n e e d s fo r fu rth er re s e a r ch , e s p e c ia lly<br />

in v ie w o f re q u ire d n u c le a r d a ta , is d iscu ssed .<br />

A s ig n ific a n t ste p forw a rd w ill b e th e r e a liz a t io n o f a p r o p o s e d h y b rid re s e a r ch f a c i lit y co n s is tin g o f a<br />

s o l id - f u e l d riv er s e c t io n e n c lo s in g th e fis s io n in g p la s m a . T h is f a c i lit y w o u ld a llo w b a s ic r e s e a r c h o n fissio n in g<br />

p la s m a s . T h e re q u ire m e n ts for c o d e s for d e s ig n o f su ch a t w o -c o m p o n e n t f u e l-r e a c t o r sy stem a re d iscu ssed .<br />

INTRODUCTION<br />

A fissioning plasma is a reacting fissionable fuel that by its own<br />

fission power is sufficiently energized to exist in a gaseous partially ionized<br />

state. Fissioning plasmas have so far only been produced 1n nuclear explosions.<br />

Steady-state fissioning plasmas are expected to be useful because<br />

of the high temperature at which they exist. However, theoretical investigations<br />

have shown that the realization of a pi asma-core reactor represents<br />

a major development effort. With the exception of space propulsion at a high<br />

specific Impulse and at a high level of thrust, no technological needs for<br />

the high-temperature capabilities of fissioning plasmas in the past were<br />

pressing enough to warrant the cost of such a development. However, for the<br />

purpose of space propulsion, the U.S. National Aeronautics and Space Administration<br />

has conducted research on fissioning plasmas [1, 2]. More<br />

recently, problems such as power shortages and thermal pollution have<br />

developed that make plasma-core reactors desirable for more applications than<br />

space propulsion. Advanced propulsion remains, however, a principal<br />

motivation for plasma-core reactor research.<br />

15


16 THOM and SCHNEIDER<br />

A frequently used term In rocket propulsion is "specific impulse". It<br />

is the ratio of thrust and mass flow rate and is proportional to the propellant<br />

exhaust velocity. At low specific impulse, such as in chemical<br />

propulsion, the propellant and fuel weights are much larger than the weight<br />

of structures. In this case the payload fraction depends exponentially on<br />

the ratio of the final speed of the rocket and the exhaust velocity; during<br />

low specific impulse propulsion, lunar-return missions and particularly<br />

planetary missions, diminishing payload fractions result.<br />

High exhaust velocities can be achieved in ion propulsion or by electromagnetic<br />

plasma acceleration. However, the jet power is the product of<br />

thrust and exhaust velocity and thus increases with the cube of the latter.<br />

At high specific impulse, power requirements can become so large that the<br />

dead weight of the power plant offsets gains in payload fraction, such that<br />

the ratio of the power plant weight and jet power becomes the dominant<br />

characteristic of propulsion. This ratio is called the specific mass. It<br />

is determined by dividing the kilograms of power plant mass by the kilowatts<br />

of jet power and is obviously an expression for power density. A fissioning<br />

plasma, burning nuclear fuel at very high temperatures and densities, is a<br />

very high power density energy source. In prospective plasma core rockets,<br />

shielding, neutron moderation and reflection impose a large dead weight.<br />

After analysis it turns out, however, that such minimum weight is not incompatible<br />

with more ambitious space missions, because the inherently low<br />

specific mass of fissioning plasma rockets will lead to significant gains<br />

in payload fraction and in reductions of trip times. Such advantages are<br />

compared with the capabilities of other propulsion methods for a manned<br />

round trip to Mars (fig. 1). For plasma core propulsion, the initial mass<br />

in earth orbit is an order of magnitude smaller than for chemical propulsion.<br />

It has been estimated that the resulting reduction of cost for such a mission<br />

could compensate for the cost of the development of plasma core reactors in<br />

one or two such flights, but that may remain questionable because advances<br />

in other propulsion modes may alter such present comparisons. In this<br />

treatise of fissioning plasmas a broader view of technological usefulness<br />

than space propulsion is taken as to lead to various detailed scientific and<br />

engineering problems, of which, nuclear data are a significant part.<br />

FISSIONING PLASMA REACTOR CONCEPTS<br />

Major concepts of plasma core reactors are the coaxial flow system, the<br />

nuclear light bulb engine, the nuclear pumped laser system, and the nuclear<br />

piston engine. These concepts, particularly the first two, have motivated<br />

a program of specific research aimed at demonstrating their feasibility. The<br />

magnitude of this research effort, extending over the past 15 years, is about<br />

200 professional manyears [3]. Accordingly, the present schemes of plasma<br />

core reactors should be regarded as mature in the sense of careful probing in<br />

theory and experiment, short mainly of fission tests at larger power.<br />

The coaxial flow scheme, originally conceived for advanced space propulsion,<br />

is based on fluid mechanics confinement of the fissioning plasma<br />

(fig. 2), and is analyzed in [4, 5, 6]. Enriched “ by -¡s introduced into the<br />

cavity in the form of a fast moving wire. The fissioning plasma is held in a<br />

central position by a rapid flow of hydrogen injected through porous cavity<br />

walls or through an array of slots. This propellant flow separates the hot<br />

plasma from the walls and also intercepts the powerful thermal radiation from<br />

the plasma. Thereby it is heated up for expansion through a nozzle. Some<br />

uranium plasma is entrained in the propellant flow and subsequently lost.<br />

The cavity is surrounded by a beryllium oxide moderator-reflector, and all 1s<br />

contained in a pressure vessel.


IA E A -S M -1 70/53<br />

MISSION TIM E, DAYS<br />

F I G . l , P r in c ip a l m o d e s o f p r o p u ls io n .<br />

F IG .2 . O p e n - c y c l e g a s - c o r e c o n c e p t .


18 TH OM and SCHNEIDER<br />

Three requirements determine the characteristics of the system: fuel<br />

mass and density to achieve criticallty, sufficiently high temperatures to<br />

achieve a high specific impulse, and a low rate of fuel loss through the<br />

exhaust nozzle, for economic operation. These requirements result in rather<br />

rigid boundaries for power and weight. A "best" configuration can, however,<br />

not be determined because of trade-offs among the variables. Typically, a<br />

coaxial flow plasma reactor for space propulsion operates at 6000 MW power,<br />

producing thrust at 4000 sec specific impulse. The cavity diameter is about<br />

4 meters, the pressure ranges from 400 to 600 atm., and the total weight of<br />

the system is of the order of 500000 kg figuring present radiator technology.<br />

The fissioning plasma temperature is up to 50000°K in the center of the<br />

fuel region, decreasing to less than 25000°K at the edge of the fuel. The<br />

critical mass is about 40 to 80 kg 235ц depending on poison.<br />

The nuclear light bulb engine concept consists of seven modules, such<br />

as shown in Fig. 3, contained 1n a pressure vessel together with a BeO and<br />

graphite moderator reflector [7]. In contrast to the coaxial flow system,<br />

the nuclear light bulb scheme provides for full containment of the fuel<br />

within a transparent Internally cooled wall configuration, thereby circumventing<br />

the problem of fuel losses through the exhaust. The fissioning<br />

plasma is kept away from the transparent walls by a tangentially injected<br />

swirl flow of buffer gas, which is recirculated. Some uranium plasma that<br />

is entrained in the buffer gas flow Is separated out during the recirculation<br />

process and Is fed back to the fuel region. Thermal radiation from<br />

the fissioning plasma penetrates the buffer gas flow and the transparent<br />

walls and is Intercepted by a flow of seeded hydrogen propellant. Typical<br />

data for the nuclear light bulb engine are power: 4600 MW; specific<br />

Impulse: 1870 sec; weight: 35000 kg; edge-of-the-fuel temperature: 5000°K;<br />

and pressure: 500 atm.<br />

Both of these fissioning plasma reactor concepts represent machines of<br />

enormous power and stresses. It is not apparent that these schemes can be<br />

scaled down significantly because of critlcality requirements combined with<br />

the need of high temperature operation. However, at significantly decreased<br />

temperature, the pressure decreases accordingly as does the power. In such<br />

a case, the plasma core reactor operates in a nonequllibrium mode, in which<br />

U R A N IU M P L A S M A<br />

INTERNALLY COOLED<br />

TRANSPAREN T WALL<br />

F I G .3 . N u cle a r lig h t -b u lb g a s - c o r e c o n c e p t .


IA E A -S M -1 70/5 3 19<br />

the plasma is optically thin. Extraction of power would most efficiently be<br />

effected by laser radiation [8]. In such a self-critical nuclear powered<br />

laser system, nuclear energy is directly converted into coherent light by<br />

elastic and inelastic collisions of fission fragments with the uranium atoms<br />

(and possibly other gas admixtures), Fig. 4. Population Inversion is<br />

expected to result from the vastly different energies of the fission fragments<br />

over most of the lengths of their stopping distances as compared to<br />

the energy level of the plasma. In order to maintain the fissionable fuel<br />

in a partially ionized gaseous state, one may have to resort to UFg.<br />

Another fissioning plasma reactor concept is the nuclear piston engine<br />

[9]. This engine resembles an Otto-motor as indicated in Fig. 5. During<br />

the intake stroke a mixture of enriched UFß and helium is drawn into a<br />

cylinder that is surrounded by a moderator-reflector. During the compression<br />

stroke the density of the gas is increased until criticality is<br />

reached. The chain reaction is initiated by an external neutron source.<br />

Because of the buildup of power, temperature and pressure are increased in<br />

the cylinder and can be extracted as shaft horsepower in the following power<br />

stroke. An exhaust stroke ejects the now again subcritical UFg and He<br />

mixture into a cooling and reprocessing loop.<br />

In Fig. 5 an auxiliary precompressi on piston is shown which follows<br />

the working piston at high compression to provide time for buildup of power<br />

and to assure that maximum power is released as the piston passes dead<br />

center. Preliminary calculations [10] show that a one cylinder engine<br />

requires a minimum volume of 0.23 m3 and a compression ratio of 1:10.<br />

Crankshaft speed of 100 to 500 rev/min and a critical mass of about 3 kq<br />

235u seem to be feasible. Power outputs of several megawatts per cylinder<br />

at an efficiency up to 60% seem to be realizable. The main problem to be<br />

solved seems to be the handling of the chemically aggressive UFg. A comprehensive<br />

knowledge of thermodynamic properties of ÜFg and UFg-He mixtures<br />

at high temperatures is required. This includes dissociation temperatures<br />

and interaction of fission fragments with UFg.<br />

FIG*4. N uclear pumped laser.


2 0 TH OM and SCHNEIDER<br />

POTENTIAL APPLICATIONS<br />

F I G .5 . N u c le a r p iston e n g in e .<br />

The aforementioned plasma core reactor concepts involve the fissioning<br />

plasma as a source of radiation. In contrast to the conditions in a solid<br />

nuclear fuel, fission fragments and photons in a plasma have relatively<br />

large mean free paths such that the fission energy is not thermal1 zed<br />

locally, i.e., in a close proximity of the locus of the fission event.<br />

Fission fragments traversing the plasma undergo up to 105 collisions with the<br />

plasma uranium atoms. As a result of deexcitation and recombination processes<br />

and in combination with bremsstrahlung, a broad spectrum of optical<br />

radiation is generated, which, depending on density and temperature, can<br />

escape from the plasma. A model of possible radiation is depicted in Fig. 6 .<br />

In the process of energy loss resulting from collisions, the fission fragment<br />

energy decays from an original level of 100 MeV to that of the average plasma<br />

temperature. A scheme of possible radiation levels is illustrated in the<br />

form of a tower with radiative power outlets at various energies. The fissioning<br />

plasma is seen as a source of photons at ranges of energy and intensity<br />

by orders of magnitude greater than those of any other terrestrial<br />

steady state energy source. Possible technological applications of fissioning<br />

plasmas more general than are apparent in the previous discussion of<br />

plasma core reactor concepts are envisioned by figuring direct uses of such<br />

photon fluxes. The complex of desirable relevant investigations may, in a<br />

provocative manner, be called "photonics" research.<br />

Radiation in the range of 0.1 to 10 eV is expected to be useful in<br />

photochemistry, because molecular bond energies range up to 4 eV In organic<br />

matter and up to more than 10 eV for very stable inorganic solids. Intense


IA E A -S M -1 70/53 2 1<br />

Energy range<br />

0.1-10 MeV <strong>Nuclear</strong><br />

transitions<br />

100-5000eV Inner shell<br />

transitions<br />

0.1 -1 eV Degraded<br />

energy<br />


2 2<br />

THOM and SCHNEIDER<br />

4 -ST flG E COM PRESSION<br />

WITH INTERCOOLING<br />

F IG .7 . B lo c k d e s ig n o f p la s m a - c o r e M H D p ow er p la n t.<br />

Because of its high specific impulse, however, the plasma core rocket is<br />

superior to other propulsion systems for manned missions to the nearby<br />

planets. For missions deep into space, beyond perhaps Jupiter or Saturn,<br />

the projected thermonuclear fusion rocket becomes superior because of its<br />

higher specific impulse. In lunar ferry and space tug service, the plasma<br />

core propulsion unit would be employed in a reusable fashion, to result in<br />

greatly improved economy of cargo transport between earth orbit and the<br />

lunar surface. It is presently not contemplated to use plasma core rockets<br />

for launch from the earth surface into orbit.<br />

The needs for crew shielding from radiation of fission products present<br />

in the reactor cavity and in the exhaust have been investigated [11].<br />

Shielding requirements, depending on fission fragment retention times, have<br />

been derived. Only qualitative consideration has been given so far to the<br />

effect of fission products deposition in near earth space. This problem<br />

warrants more investigation because in the state of Ionization such fission<br />

products will be trapped by the geomagnetic field and can be deflected back<br />

to the atmosphere.<br />

MHD power generation using a plasma core reactor is investigated in [12].<br />

Both the plasma core reactor exhaust and the MHD channel flow are at very<br />

high temperatures to yield a large overall efficiency. In addition, at such<br />

high temperatures the working gas stream is sufficiently ionized in equilibrium<br />

to circumvent nonequilibrium ionization problems that have impeded the<br />

development of MHO power generation from solid fuel nuclear reactor energy<br />

sources. A schematic of a projected plasma core reactor MHD terrestrial<br />

power plant is shown in Fig. 7. Computations show an efficiency of 70%, a<br />

reduction of thermal pollution per unit power by factor of 3 to 5 compared<br />

with that of contemporary power plants, and a high fuel economy. In<br />

addition, such a system appears to be essentially safe because no excess<br />

reactivity is in the plasma cavity. The fissile fuel is in continuous<br />

recirculation and allows for continuous removal of fission products.<br />

RESEARCH<br />

Confinement<br />

т5<br />

PRE- STEAM<br />

HEftTER P0WER-<br />

*2 '3 PLftNT<br />

The objective of plasma core reactor fluid mechanics confinement is to<br />

isolate the hot gaseous fuel from the cavity walls and, simultaneously, to<br />

intercept the thermal radiation from the fissioning plasma in a propellant<br />

flow for heating and subsequent expansion. In present plasma core reactor<br />

concepts, the nuclear fuel and propellant are injected into the cavity at<br />

different locations and are exhausted together from the reactor through a<br />

nozzle. For criticality it is necessary that the fuel volume be not less<br />

,T4


IA E A -S M -1 7 0/5 3 23<br />

than 20% of the cavity volume, and for economy it is required that the ratio<br />

of the fuel mass flow rate to the propellant mass flow rate, mp/mp, be as<br />

small as possible. For rocket application, an acceptable level of mp/mp<br />

depends on the cost to lift the weight into earth orbit. At present this is<br />

figured at mp/mp = 1:100 to 1:200. For other applications involving closed<br />

loop configurations, mp/mp does not appear to be a critical parameter.<br />

A series of experimental studies has been conducted [13] to demonstrate<br />

the feasibility of fluid mechanics confinement. Air/freon and air/air combinations<br />

were used to simulate propellant and fuel flows and were injected<br />

into a cavity at greatly different velocities. In earlier experiments, the<br />

gas injection was spatially sharply discontinuous at the cavity inlet region,<br />

resulting in turbulent boundary layer mixing. Supported by theoretical<br />

analysis a method was devised for producing a wide shear layer between the<br />

flows with a gradual transition from high to low velocity streaming. As a<br />

result, in cold flow simulation, a fuel-to cavity-volume ratio greater than<br />

0.2 was achieved, at mp/mp = 70. Hot flow simulation is conducted in<br />

relatively small volumes by radiofrequency induction heating, with the<br />

indication that the temperature gradient across the boundary layer tends to<br />

suppress the formation of eddies and, consequently, results in a better confinement.<br />

Increasing size, temperature and density, in order to approach<br />

plasma core reactor conditions, requires low frequencies and large power. A<br />

10 to 100 kHz tunable 4 megawatt hot flow research apparatus is under<br />

construction.<br />

Radiative Heat Transfer<br />

Most of the power generated by the fissioning plasma inside the cavity<br />

of a plasma core reactor is transmitted to the propellant, or working fluid,<br />

by optical radiation. Relevant research is consequently concerned with the<br />

spectral distribution of radiated power and with the absorption of such<br />

radiative power in the propellant. Simultaneously, one has to consider the.<br />

deposition of energy in structures from all the energy fluxes from the<br />

fissioning plasma. In the nuclear light bulb engine concept, the fissioning<br />

plasma 1s confined by a swirl flow buffer gas within transparent fused<br />

silica tubing. Because of this additional structural element, radiative heat<br />

transfer has been studied with particular care for the nuclear light bulb<br />

system.<br />

The total power of the conceptual full scale nuclear light bulb engine<br />

is computed to be 4600 MW. Eighty-nine per cent is in the fission fragments<br />

and is rapidly converted into optical radiation; the remainder is in neutrons,<br />

prompt gamma rays, delayed gamma rays, and beta particles, most of which are<br />

deposited in structures and must be carried away by coolants.<br />

The spectral distribution of the radiant heat fluxes from the fissioning<br />

plasma was calculated [14] using a one-dimensional neutron transport<br />

theory computer code. There is a steep temperature gradient across the<br />

boundary region between the fuel volume and the confining swirl flow. The<br />

optical radiation will therefore be that of a blackbody one optical depth<br />

into the steep temperature gradient, such that the emitted spectrum is that<br />

of a blackbody at much higher temperatures than those at the edge of the<br />

fuel. Measurements of the absorption coefficient of uranium plasma under<br />

similar conditions [15] confirm theoretical predictions. As a result, the<br />

radiated power has a large fraction of u.v. radiation at wavelengths less<br />

than 0.18 urn, which is the cutoff of the silica tubing. A remedy to this<br />

problem is to seed the neon swirl flow with silicon particles, which absorb


24 THOM and SCHNEIDER<br />

the short wavelength radiation. The associated power is, however, not all<br />

carried away with the buffer gas flow but can largely be reemitted in<br />

longer wavelength radiation.<br />

In experiment, isothermal two-component vortex flow simulation tests<br />

were conducted to demonstrate confinement by buffer gas flow within silica<br />

tubes. High intensity radiant flux simulation was carried out using a<br />

1.2 MW rf induction heater to heat a vortex stabilized argon plasma up to<br />

11000°K at 19 atm. The radiant flux was at 7.6 kw/cm2 , but that of a full<br />

scale engine would be 28 KW/cm2 . Further development of this simulation<br />

technique promises to approach plasma core conditions. In addition, the<br />

experimental results are quite encouraging for small scale in-core<br />

experiments.<br />

At ranges of pressure and thickness of interest, hydrogen and most of<br />

the other light gases are optically transparent at temperatures less than<br />

about 15000°K. Therefore, propellant seeding with micrometre sized particles<br />

has to be applied for absorption of the radiation from the fissioning plasma.<br />

Such a process appears to be more a matter of technique than physics, and<br />

approaches have been developed that, in experiment, have demonstrated, for<br />

example, the heating of a tungsten seeded argon flow up to 4500°K. Propellant<br />

exhaust temperatures of plasma core reactors for propulsion must be<br />

higher than that, however, so that seed particles will vaporize. The opacity<br />

of propellants with vaporized seed materials is under current investigation.<br />

Ballistic Piston Compressor<br />

A ballistic compressor is used to simulate conditions 1n the nuclear<br />

piston engine and to measure the thermodynamic properties of UFg under<br />

extreme conditions. The behavior of enriched compressed UFç under bombardment<br />

with fission fragments, neutrons and other nuclear radiation will be<br />

explored.<br />

Fig. 8 is a schematic diagram of the ballistic compressor. The apparatus<br />

is able to produce a temperature up to 10000°K at a pressure up to 5000 atm.<br />

The basic properties of temperature, volume, and pressure are measured and<br />

the equation of state for UFg is determined. The van der Waal s' coefficients,<br />

the ratio of specific heats for pure UFg and UFg-He mixtures, and the viscosity<br />

for UFg have been determined [16]. The results of these measurements<br />

show that by choosing optimum mixing ratios of UFg and He, values of specific<br />

heat ratios as high as 1.47 can be obtained.<br />

For research on the interaction of the compressed 235UFg with fission<br />

fragments, the high-pressure part of the ballistic compressors will be<br />

inserted in a reactor and exposed to a neutron flux.<br />

<strong>Nuclear</strong> Pumped Lasers<br />

Research on nuclear pumped lasers has been underway for several years.<br />

Two types of experimental configurations have been used. Tubes coated with<br />

uranium oxide and filled with laser gas mixtures were exposed to a neutron<br />

flux in a reactor. Fission fragments emanating from the coating caused<br />

nuclear laser pumping. Another configuration was an uncoated tube filled<br />

with laser gas mixtures plus a certain partial pressure of 3He. When<br />

exposed to a neutron flux the Зне (n,p)T reaction resulted in laser excitation.<br />

The results obtained can be grouped in nuclear augmentation and<br />

pure nuclear pumpinq. In the case of nuclear augmentation, the performance<br />

of an electrical discharge laser is improved by nuclear effects, in the pure<br />

nuclear pumping no electrical energy is used to maintain the laser action.


1A E A -S M -170/53 25<br />

F IG . 8 . B a llis tic p iston d e v i c e .<br />

Results in both categories are reviewed in [8]. Additional results on pure<br />

nuclear pumping are reported in [17], where an argon ion laser cavity<br />

without electrodes was employed.<br />

In-core testing of lasers is very meticulous because of the high<br />

radiation environment to which the optical components are exposed and the<br />

inaccessibility of the laser experiment in the reactor.<br />

Results of this research indicate the possibility of nuclear pumping<br />

of lasers. In a broader view they substantiate the concept of a fissioning<br />

plasma existing in possible nonequilibrium states.<br />

Cri ti cal i t.y<br />

Research on the criticality of low-power (500 W) gaseous core cavity<br />

reactors was conducted at,, the National Reactor Testing Station in Idaho, USA,<br />

using enriched gaseous 235UFg [18]. A relatively clean spherical geometry<br />

was used and thus could be analyzed by one-dimensional reactor physics codes.<br />

The deviations from perfect spherical geometry were experimentally evaluated<br />

as being worth less than 0.75 %дк. The fuel core region was 1.27 m in<br />

diameter in a cavity of 1.83 m in diameter and was reflected by 0.91 m of<br />

O7O. Correlation with theory was attempted using S4 transport theory with<br />

19 energy groups, seven of which were thermal. The absolute multiplication<br />

factor was calculated at 1.04, 3 %дк higher than the corrected experimental<br />

value. The worth of the addition of hydrogen for propellant flow simulation<br />

was underpredicted by approximately 50%.


26 THOM and SCHNEIDER<br />

Three critical experiments were conducted in an attempt to determine<br />

empirically the feasibility of the plasma-core reactor concept. One was<br />

without hydrogen propellant and with a 0.005-m A1 cavity wall. In the second,<br />

1.1 x 1021 hydrogen atoms/cm3 of simulated propellant (foamed polystyrene<br />

and polyethylene sheets) were added, the critical masses were 8.43 and 12.9<br />

kg, respectively, and the fuel worth was 2.96 %дк/кд, and 2.02 %дк/кд,<br />

respectively. In the third experiment a 0.008-m stainless steel liner was<br />

added on the cavity wall to evaluate the effect of 0.019 mean free path<br />

thermal absorber material. The critical mass increased to 29.2 kg, and the<br />

fuel worth decreased to 0.44 2>дк/кд.<br />

General conclusions from these and other criticality experiments, also<br />

involving cylindrical configurations, accompanied by theoretical analysis,<br />

are that a plasma-core reactor must be designed with an absolute minimum of<br />

nonessential reactivity penalties, that the effect of a hydrogen propellant<br />

flow between the fuel region and the reflector requires serious consideration,<br />

and that the ratio of fuel radius to cavity radius be not less than 0.5 in<br />

order to obtain criticality at a pressure of less than 1000 atm and at the<br />

projected plasma core reactor temperatures.<br />

Instabilities<br />

The nonlinear evolution of unstable sound waves in a fissioning uranium<br />

plasma has been calculated [19] using a multiple time-scale asymptotic<br />

expansion scheme. A spectrum of standing sound waves in a bounded region of<br />

the fissioning plasma was considered, with a constant background thermal<br />

neutron flux density. In the wave compressions, the fissioning power<br />

density, Pfiss» increases because of the increased uranium density, and in<br />

the rarefractions Pfiss decreases. This leads to a transfer of fission<br />

power to the wave. Competing with this effect is thermal electromagnetic<br />

radiation, which tends to transport the extra thermal energy out of the wave<br />

compressions. Such radiation diffusion disperses the energy accumulation in<br />

waves more rapidly for shorter wavelengths. This results in a critical<br />

wavelength below which waves are stable and above which they are unstable.<br />

The calculations show that nonlinear mode coupling causes an energy flow<br />

from the long-wavelength unstable modes to the short-wavelength modes, such<br />

that the system stabilizes at defined amplitudes. For plasma-core conditions<br />

as assumed in this analysis, this occurs at relative pressure fluctuations<br />

of the order of ôP/P = 10"5. In addition, neutronic feedback in the regimes<br />

of rarefraction contributes to stabilization. In a first-order approximation,<br />

the stability of fissioning plasmas seems to be indicated. However,<br />

the analysis needs to be expanded to include gross flow fluctuations and the<br />

effects of inhomogenous neutron flux and fuel distributions.<br />

Gaseous Core Reactor Dynamics Studies<br />

An analysis of the dynamics of the coaxial flow plasma-core reactor is<br />

presented 1n [20]. The theoretical model is described by a set of 22 first-<br />

order differential equations in 22 unknowns, involving neutron, heat, and<br />

mass balances of the system. The fuel region is assumed to remain spherical<br />

in shape during all deviations from steady state. Six reactivity feedback<br />

mechanisms are taken into account: fuel temperature, propellant temperature,<br />

fuel mass, propellant density, fuel cloud radius, and moderator temperature.<br />

According to this analysis, at 0 . H positive reactivity insertion the power<br />

of the reactor raises first, but rapid increases in propellant density and<br />

fuel temperature generate sufficient negative feedback to decrease the excess<br />

reactivity, which in turn reduces the power. About 200 msec after the<br />

initial perturbation, the propellant density feedback becomes positive and


I A E A - S M -1 7 0 /5 3 27<br />

causes a slow increase in power which continues later in time because of<br />

positive feedback from the expansion of the fuel ball. Neither the fuel mass<br />

nor the moderator temperature feedback are significant.<br />

The progression of power excursion is less than 10% within 1 sec indicating<br />

possibilities of easy control. The system response to larger reactivity<br />

insertions is qualitatively the same, but at a step insertion of $1<br />

reactivity, fluctuations become more rapid and larger in amplitude to cause<br />

more serious control problems. Whereas the system is relatively insensitive<br />

to the rate of fuel Inflow, it exhibits strong responses to variations of<br />

propellant flow. For example, losses of propellant flow result in an expansion<br />

of the fuel region, which is a positive feedback, and in a decrease<br />

of the negative reactivity of the propellant layer. Although the<br />

corresponding rates of power increase are larger than those of the previously<br />

discussed reactivity insertion, the time scale is likewise in<br />

seconds.<br />

Similar analysis using a digital computer simulation program has been<br />

conducted for the nuclear light bulb concept [21] and shows that such a<br />

system can be controlled by the fuel flow rate, regulated by valves that<br />

are activated in response to the amount of neutron flux increases and to<br />

the rate of such neutron flux increases.<br />

Fissioning Plasma Research Facility<br />

A significant advance in understanding fissioning plasmas is expected<br />

to result from investigations conducted in a special research facility.<br />

Such a Fissioning Plasma Research Facility is presently projected as a<br />

system involving a solid fuel driver reactor particularly designed to<br />

produce an unperturbed thermal neutron flux at 10>5 n/cm2 sec in a<br />

relatively large inside test volume and in interchangeable test section to<br />

investigate the various configurations of fissioning plasmas derived from<br />

the concepts and schemes presented earlier. A primary objective, however,<br />

would be to create a steady state fissioning plasma for basic research,<br />

under conditions best suited for comprehensive diagnostics.<br />

A possible fissioning plasma research facility is shown in Fig. 9. The<br />

reactor and test section are contained in a pressure vessel for operation<br />

at 200 to 300 atm. The top section plus the upper part of the Be reflector<br />

and the test section can easily be removed for interchanging experiments.<br />

At the bottom, not shown in the figure, are an effluent handling and a<br />

cleanup system. Almost all reactivity is contained in the solid fuel.<br />

Feedback from the fissioning plasma appears to be negligible and small<br />

enough to be overridden by conventional control methods. There appear<br />

several tradeoffs resulting from the best choices of fuel elements, coolants,<br />

and moderator-reflector materials as to the required power level of the<br />

reactor and the affiliated coolant flow capacities. A desirable feature<br />

would be the possibility of boosting the neutron flux in pulsed operation up<br />

to loi6 n/cm2 sec and higher.<br />

In the depicted scheme, the coaxial flow concept of fissioning plasma<br />

confinement is shown in which seeded hydrogen enters a spherical cavity<br />

tangentially through an array of slots, while enriched uranium fuel is fed<br />

through a central cadmium-shielded pipe system. In the cavity, the uranium<br />

undergoes fission, thereby creating a fissioning uranium plasma fireball.<br />

The edge of the fuel temperature has to be not less than that of uranium<br />

evaporation. A typical temperature profile for an in-core coaxial flow configuration<br />

operating at a pressure of 200 atm is shown in Fig. 10. In the<br />

central region, the fissioning plasma has a temperature of about 20000°K.


28 THOM and SCHNEIDER<br />

TO EFFLUENT<br />

CLEANUP<br />

F I G .9 . P o ssib le fissio n in g p la sm a re s e a r ch f a c i li t y .<br />

At the edge of the fuel, the temperature drops to about 5000°K, a temperature<br />

at which the uranium is expected not to condense (exact data for the<br />

uranium vapor pressure at the edge of the fuel are not yet at hand; however,<br />

recent measurements [22] allow for confident estimates and extrapolations).<br />

For a pressure of 300 atm and an unperturbed neutron flux of 10l5 n/cm2 sec,<br />

the fission power is 14 kW/g, and the edge of the fuel temperature is 7400°K.<br />

At the wall, the flow has absorbed all radiation such that the cavity wall<br />

remains essentially at room temperature. In this case the cavity would<br />

appear black for optical observation from the wall region, for diagnostics<br />

purposes, an undesirable effect.<br />

Calculations of the total power balance for such a system, with a<br />

plasma diameter of about 0.38 m, show that the fission power in the plasma<br />

is a few megawatts, while the driver reactor has to operate at 50 to 200<br />

megawatts, depending on reactor design. Appreciable alterations of the<br />

power balance should result from variations of the radiant heat flux. When,


IA E A -S M -1 70/53 29<br />

FUEL<br />

EDGE CAVITY<br />

F IG . 1 0 . T e m p e r a tu r e p r o file in test c a v it y .<br />

for example, in the cavity an argon flow is used instead of hydrogen flow,<br />

the possibility of increased seed loading results in such greatly enhanced<br />

reflection of radiation back to the plasma that plasma conditions are maintained<br />

even if fission power drops to 0.5 MVJ or the temperature may be<br />

increased if the power level is maintained. Simultaneously, the pressure<br />

may vary to about 50%. An unseeded flow may be used in conjunction with<br />

reflecting cavity walls, as to control the power loss from the plasma. It<br />

appears thus that a fissioning uranium plasma research facility can be built<br />

with some flexibility in respect to power, temperature, and pressure.<br />

Experimental investigations of the overall power balance, and some<br />

details of radiation transport and stability, can be carried out by measuring<br />

cavity outlet flow temperature, cavity wall temperature, cavity neutron<br />

flux, cavity pressure, and the variations thereof depending on perturbations<br />

of propellant and fuel flow rates and neutron flux density. It should be<br />

possible to deduce various reactivity feedback coefficients from such<br />

measurements to supplement analysis of self-critical systems. Diagnostics<br />

of the fissioning plasma, for example, the determination of the spectral<br />

power distribution of thermal radiation, the spatial temperature distribution<br />

in the fissioning plasma, and the possible nonequilibrium states of<br />

excitation and ionization does not appear to be impossible, but development<br />

of special technigues may be required.<br />

Beyond the purpose of obtaining basic information a fissioning plasma<br />

research facility should be used to test functional components of plasma-<br />

core reactor applications, such as propulsion in space, MHD power generation,<br />

and the nuclear pumping of lasers.


30 THOM and SCHNEIDER<br />

Small Light Bulb Engine<br />

The critical fuel density and the size of a cavity reactor depend on the<br />

flow of thermalized neutrons back into the cavity. In the plasma reactor concepts<br />

previously discussed, the high-temperature propellant flow in between<br />

the fissioning plasma and the moderator-reflector region represents a significant<br />

neutron flux barrier. A concept [23] has been forwarded to largely<br />

circumvent this problem by dividing the surface area surrounding the fissioning<br />

plasma such that only a part of it is propellant flow and the other is an<br />

optically reflecting material that is highly transparent for neutrons. Part<br />

of the thermal radiation from the fuel region is directly absorbed in an array<br />

of segmented propellant flow ducts embedded in the reflecting cavity walls.<br />

Another part of the radiation is focused indirectly by reflection from such<br />

walls to such ducts. In addition, use is made of the large transparency of<br />

cold beryllium for thermal neutrons having energies below 0.006 eV.<br />

A figure of merit for the performance of reflector-moderator materials in<br />

cavity reactors is the ratio of the square root of the age of fission neutrons<br />

and the thermal neutron mean free path. For example, if this ratio is Z.25,<br />

that is, for a graphite moderator at 300°K, the critical density for 235U in a<br />

spherical cavity of 1 m radius must be greater than 10Î9 atoms/cm3. In<br />

contrast, a beryllium moderator at 100°K yields 0.47 for this ratio with a<br />

resulting critical density of 2 to 4 x 10' 7 atoms/cm3.<br />

The combined effects of a super-cooled beryllium neutron moderator and<br />

drastically reduced propellant flow areas should result in appreciably<br />

reduced critical mass for the plasma-core reactor and a low operational<br />

power. The cold beryllium has to be surrounded by a D£0 reflector to prevent<br />

neutron leakage from the system. Analysis was conducted for a spherical<br />

geometry using one-dimensional multi group neutron transport theory calculations.<br />

Seventeen neutron energy groups were employed, including five<br />

thermal groups of which two were below 0.006 eV. Scattering cross sections<br />

were taken from literature or were computed by standard methods. The neutron<br />

transport calculations were performed on a computer with the ANISN code. The<br />

system involved an argon buffer gas flow for the confinement of the fissioning<br />

plasma within the cavity and away from the walls. Results show that moderator<br />

temperature is a strong negative reactivity feedback. For example,<br />

using 233U, critical mass is slightly higher than 1 kg at a beryllium<br />

temperature of 40°K. It increases to about 2.8 kg at room temperature. The<br />

use of 235U instead of 233U results in an increase of the critical mass of<br />

about 20%. The presence of hot hydrogen ,in the discrete propellant channels<br />

does not appear to have a large effect on critical mass for the system<br />

studied.<br />

Operating power depends largely on the reflectivity of the reflecting<br />

surfaces of the cavity, which in the calculations is assumed to be of the<br />

order of 0.9. Radiation damage may, however, degrade this quality. With<br />

the previously mentioned temperature requirements for the fissioning plasma,<br />

the power is calculated to be in the range of 40 to 400 MW. The pressure<br />

may vary from 250 to 500 atm, and the weight of the system, including a<br />

pressure shell, is in the range of 16000 to 22000 kg. Applications are seen<br />

for space propulsion at specific impulse values as large as 1550 sec and for<br />

MHD power conversion.<br />

NUCLEAR DATA REQUIREMENTS<br />

The special characteristics of plasma-core reactor schemes pose a number<br />

of problems for computing criticality conditions not hitherto encountered in


<strong>IAEA</strong>-SM * 1 70/53 31<br />

Temperature, °K<br />

F IG . 1 1 . U r a n iu m -p la s m a c o m p o s itio n at pressure o f 5 00 a tm ospheres [ 3 2 ] .<br />

reactor physics calculations. More precise knowledge of certain nuclear data<br />

that play a more important role in plasma-core reactor schemes is required.<br />

A predominant new aspect is the intimate relationship between plasma physics<br />

and reactor physics. For typical plasma-core reactor conditions at 40000°K<br />

and 500 atm, more than 70% of the particles that account for this pressure<br />

are electrons. About 15% are U IV, as can be seen from Fig.' 11. Composition<br />

calculations have thus to be included in criticality calculation and their


32 THOM and SCHNEIDER<br />

accuracy is as important as that of the nuclear calculations. Theoretical<br />

approximations have been performed [24] and the results incorporated in<br />

current plasma-core reactor analysis.<br />

<strong>Data</strong> required for improved composition calculations are electronic partition<br />

functions and the ionization energies for the uranium atom and its<br />

ions. The partition functions are not yet known to a desirable degree of<br />

precision. Ionization energies are theoretically predicted but not yet<br />

verified by experiment.<br />

For precisely predicting the radiant heat transfer, depending on the<br />

plasma composition, transition probabilities and atomic energy levels of the<br />

uranium atom and its ions have to be known as well as the optical absorption<br />

and emission coefficients of the uranium plasma. A weak reactivity feedback<br />

exists depending on these quantities, which in turn can alter the power and<br />

subsequently the plasma temperature that governs its composition.<br />

Some measurements of emission and absorption coefficients exist [15].<br />

Also transition probabilities for U I and U II are known [25]. However,<br />

the transition probabilities for U III and U IV are not known. U III and<br />

U IV will be major species in the reactor core.<br />

At a fuel temperature of the order of 40000°K (or about 4 eV), the<br />

neutrons see high target velocities; the result is reduced average fission<br />

cross sections. This fuel temperature effect does not appear to be<br />

critical (owing to the large mass of the uranium nucleus); however, it is<br />

not negligible. An increase of the critical mass by less than 5% is<br />

typical. Possible bulk motion of the fuel would result in similar effects.<br />

More important is the upscattering of thermal neutrons by the hot<br />

hydrogen propellant [26, 27] which in plasma-core reactor schemes is placed<br />

between the fuel and the moderator. The reflected and moderated neutrons<br />

have to pass through this high-temperature hydrogen region before they can<br />

reenter the fuel region. Upscatter of neutron energy results in a substantial<br />

penalty for the critical mass requirement. This effect can become<br />

so severe that for a given temperature a maximum operating pressure and<br />

hydrogen layer thickness exist beyond which criticality cannot be achieved.<br />

Because of the strong negative reactivity feedback of the propellant flow,<br />

a sudden interruption of this flow can result in a severe reactor power<br />

excursion.<br />

In the coaxial flow concept hydrogen migrates into the fuel region by<br />

diffusion and eventually will establish and maintain a certain hydrogen<br />

partial pressure in the fuel region. The temperature of the hydrogen 1n the<br />

fuel region will be equal to the fuel temperature. Fig. 12 shows the consequences<br />

for the 500-atm case assuming a mixing ratio of 1:1. At 40000°K,<br />

about 68% of the particles would be electrons, 15% would be protons, 10%<br />

would be U IV, 4% U III, and 4% U V. Because of the high temperature of the<br />

hydrogen ('4 eV) a substantial hardening of the neutron spectrum would occur,<br />

with a larger penalty for critical mass requirement than due to the hardening<br />

caused by the hydrogen in the working fluid. Competing with this effect is<br />

the moderation of fission neutrons by this hydrogen component.<br />

In order to compute all these effects properly, a better knowledge of<br />

the still unresolved resonances would be helpful. Also computation models<br />

for scattering kernels for hydrogen up to 40000°K are required. Doppler coefficients<br />

for similar temperatures are also required. New codes for criticality<br />

calculations involving the effects of fuel mixing ought to be<br />

developed.


IA E A -S M -170/5 3 33<br />

Temperature, °K<br />

F IG . 1 2 . C o m p o s itio n o f h y d r o g e n -u r a n iu m p la sm a at pressure o f 5 00 a tm o s p h e r e s. M ix in g r a tio = 1 :1 [ 3 2 ] .<br />

In contrast to conditions in solid-core reactors, the fuel in plasma<br />

core reactors has such a short residence time in the core that a portion of<br />

the delayed neutrons do not contribute to criticality. According to [28]<br />

there are more delayed neutrons in the low-energy region than previously<br />

assumed. These are competing effects whose relative contributions to<br />

criticality computations require more attention. Special analysis of the<br />

delayed neutron spectrum appears to be in order.


34 THOM and SCHNEIDER<br />

The radial diffusion coefficient for the plasma core, including modifications<br />

due to deviations from true spherical shape of the fuel region,<br />

needs to be developed for a good description of the flux distribution. Such<br />

deviations of the fuel geometry are caused by the proximity of the nozzle<br />

and by dynamic effects in the uranium plasma like eddies and pressure<br />

oscillations.<br />

Another major difference between plasma-core reactors and solid fuel<br />

reactors is that the interaction mean free path of neutrons is equal to or<br />

larger than the core diameter. This has an effect on the moderator design<br />

requirements for reactor control. The reactor has to be undermoderated to<br />

achieve a negative temperature coefficient.<br />

Gamma ray heating of the moderator and reflector is important in space<br />

propulsion and should be calculable to a better precision [29]. Heat loads<br />

in the range of 300 to 400 MW will have to be radiated to space. Calculated<br />

gamma ray heating may be low by 35% to 60%. Relying on calculations, the<br />

gamma ray heat shield of a 6000 MW reactor has heat loads of 100 W/g, which<br />

are present day technology maximum, but in actual operation the load might<br />

be 150 W/g, which would be intolerable.<br />

The nuclear data required to rectify this situation are neutron capture<br />

cross sections and gamma ray spectra emitted by low cross section elements<br />

like deuterium, oxygen, and beryllium. Available data are of substantial<br />

uncertainty; e.g., the thermal neutron absorption cross sections recommended<br />

in BNL-235 for D, Be and 0 list uncertainties of 20* for D, 10% for Be,and<br />

14% for 0.<br />

Radiation damage plays a most important role in the nuclear light bulb<br />

concept, in which the radiant (light) energy is transferred from the fissioning<br />

plasma to the propellant throuah fused-silica walls. Experimental<br />

studies [30] indicate that around 2150A the absorption coefficient of fused<br />

silica can increase substantially by nuclear radiation. Absorption coefficients<br />

induced by radiation as high as 14.5 cm"' for the 2100A band were<br />

reported. Other research [31] yields more optimistic results (5 cm-1). The<br />

consequences of a large absorption coefficient are heating of the transparent<br />

wall material of the nuclear light bulb engine and ultimate destruction of<br />

this solid interface between fuel region and working fluid. Moderate heating<br />

of the fused silica can, however, have a beneficial effect. At about 600°C<br />

to 800°C, thermal annealing of color centers takes place. In [30] an equilibrated<br />

condition is reported to exist in which the rate of radiation-induced<br />

absorption is balanced by annealing such that a steady state good transparency<br />

at 0.1 cm" 1 is maintained.<br />

Reliable information on neutron- and gamma-induced increases of the<br />

absorption coefficient of quartz and other transparent materials of potential<br />

use as barrier material (e.g., aluminum oxide, beryllium oxide, and<br />

titanium oxide) is essential.<br />

For calculations pertaining to problems germane to the plasma-core<br />

reactor, numerous codes established for conventional reactors have been used<br />

successfully (e.g., DTK, DDK, TDSN, GAM II, GATHER II, QADHD, ANISN, EXTERMI­<br />

NATOR- I I , PHR0G, and DOT II-W). However, there is a need for development of<br />

new codes capable of handling specific problems of the plasma-core reactor,<br />

that cannot be handled or can only be handled tortuously by existing codes.<br />

Codes that need to be developed include those for handling extreme temperature<br />

and density gradients of the working fluid, the temperature and<br />

density gradients of hot uranium and hot hydrogen in the fuel region, and


I A E A - S M -1 7 0 /5 3 35<br />

neutronic feedback resulting from rarefraction waves in the fuel region.<br />

Also necessary is a code dealing with the radial motion of the fuel within<br />

the cavity. These properties eventually should be described with three-<br />

dimensional codes.<br />

For the projected fissioning plasma research facility codes to deal<br />

with the coupling of both fuel components, the plasma-core and the solid<br />

drives region are required.<br />

CONCLUSION<br />

In the foregoing it has been shown that a need for improvement of<br />

nuclear data exists. There is also a need for reactor codes dealing with the<br />

specific problems of plasma-core reactors. The most striking feature of this<br />

new technology however is the intimate interrelationship between reactor<br />

physics and plasma physics, which calls for more precise knowledge of plasma<br />

data that have a strong effect on the nuclear behavior of the system. These<br />

plasma data have to be considered in this connection as nuclear data as well.<br />

The following nuclear data and computational codes appear at present<br />

significant for plasma-core reactor analysis and design:<br />

(1) Neutron fission cross sections at low energies (including<br />

resonances)<br />

(2) Kernels for neutron scattering in hot hydrogen (up to 40000°K)<br />

(3) Spectra of delayed neutrons<br />

(4) Neutron capture cross sections and gamma ray spectra of low<br />

cross-section elements<br />

(5) Radiation damage of optically transparent material<br />

(6 ) Codes for criticality calculations involving angular and radial<br />

distributions, two and three dimensions, coupled fuel systems, and mixed<br />

fuel (U + H)<br />

ACKNOWLEDGMENTS<br />

The authors had the privilege of discussions with most of the authors<br />

cited in this article. Particularly valuable advice was obtained from<br />

F. C. Schwenk, SNSO, AEC/NASA, R. G. Ragsdale, NASA Lewis Research Center,<br />

and M. J. Ohanian, The University of Florida.<br />

REFERENCES<br />

[1] THOM, K., SCHNEIDER, R.T., Symposium on Research on Uranium Plasmas<br />

and Their Technological Applications, NASA-SP 236 (1971) (U.S.<br />

Government Printing Office).<br />

[2] RAGSDALE, R.G., Second Symposium on Uranium Plasmas: Research and<br />

Applications, AIAA, New York (1971).<br />

[3] THOM, K., Review of fission enqine concepts, J. Spacecr. Rockets, 9,<br />

9 (1972).


36 THOM and SCHNEIDER<br />

[4] RAGSDALE, R., WILLIS, E.A., Gas-Core Rocket Reactors - A new Look,<br />

NASA TM X-67823 (1971).<br />

[5] CLEMENT, J.D., WILLIAMS, J.R., Gas core reactor technology, Reactor<br />

Technol. 12 3 (1970).<br />

[6] SCHWENK, F.C., FRANKLIN, C.E., "Comparison of closed and open cycle<br />

systems", Symposium on Research on Uranium Plasmas and Their Technological<br />

Applications, NASA SP-236 (1971) (U.S. Government Printing<br />

Office).<br />

[7] LATHAM, T.S., Summary of the Performance Characteristics of the <strong>Nuclear</strong><br />

Light Bulb Engine, AIAA 71-642 (1971).<br />

[8] THOM, K., SCHNEIDER, R.T., <strong>Nuclear</strong> pumped gas lasers, AIAA J. 10 4 (1972).<br />

[9] SCHNEIDER, R.T., OHANIAN, M.J., Patent disclosure to NASA, 1970.<br />

[10] KYLSTRA, C.D., COOPER, J.L., MILLER, B.E., "UF6 plasma engine", Second<br />

Symposium on Uranium Plasmas: Research and Applications, AIAA,<br />

New York (1971).<br />

[11] MASSER, C.C., Radiation hazard from backflow of fission fragments from<br />

the plume of a gas core nuclear rocket, Symposium on Research on<br />

Uranium Plasmas and Their Technological Applications, NASA SP-236<br />

(1971) (U.S. Government Printing Office).<br />

[12] WILLIAMS, R.J., KIRBY, K.D., Exploratory investigation of an electric<br />

power plant utilizing a gaseous core reactor with MHD conversion<br />

(American <strong>Nuclear</strong> Society Topical Meeting, Atlantic City, New Jersey,<br />

1972).<br />

[13] BENNETT, J.C., JOHNSON, B.V., Experimental Study of One- and Two-<br />

Component Low-Turbulence Confined Coaxial Flows, NASA CR-1851 (1971).<br />

(U.S. National Technical Information Service).<br />

[14] RODGERS, R.J., LATHAM, T.S., KRASCELLA, N.L., "Radiant heat transfer<br />

calculations for the uranium free containment region of the nuclear<br />

light bulb engine", Second Symposium on Uranium Plasmas: Research<br />

and Applications, AIAA, New York (1971).<br />

[15] SCHNEIDER, R.T., CAMPBELL, H.D., MACK, J.M., Part I, University of<br />

Florida Annual Report, NASA Grant NGL 10-005-089 (1972).<br />

[16] SCHNEIDER, R.T., STERRIT, D.L., LALOS, G.A., Part II, University of<br />

Florida Annual Report, NASA Grant NGL 10-005-089 (1972).<br />

[17] WALTERS, R.A., SCHNEIDER, R.T., Part III, University of Florida<br />

Annual Report, NASA Grant NGL 10-005-089 (1972).<br />

[18] L<strong>OF</strong>THOUSE, J.H., KUNZE, J.F., Spherical Gas Core Reactor Critical<br />

Experiment, NASA CR-72781 (1971). (U.S. National Technical<br />

Information Service).<br />

[19] TIDMAN, D.A., "Instabilities in uranium plasmas", Second Symposium on<br />

Uranium Plasmas: Research and Applications, AIAA, New York (1971).<br />

[20] TURNER, K.H., A Dynamic Model of Coaxial Flow Gaseous Core <strong>Nuclear</strong><br />

Rocket System, Ph. D. thesis, Georgia Institute of Technology (1971).


IA E A -S M -1 70/5 3 37<br />

[21] LATHAM, T.S., BAUER, H.E., RODGERS, R.J., "Investigation of nuclear<br />

light bulb startup and engine dynamics", Symposium on Research on<br />

Uranium Plasmas and Their Technological Applications, MASA SP-236<br />

(1971) (U.S. Government Printing Office).<br />

[22] RANDOL, A.G., Ill, SCHNEIDER, R.T., KYLSTRA, C.D., "Boiling point of<br />

uranium", Symposium on Research on Uranium Plasmas and Their<br />

Technological Applications, NASA SP-236 (1971) (U.S. Government<br />

Printing Office).<br />

[23] LATHAM, T.S., RODGERS, R.J., "Small nuclear light bulb engines with<br />

cold beryllium reflectors", AIAA/SAE Joint Propulsion Specialist<br />

Conference (New Orleans, Louisiana, 1972) 8 .<br />

[24] PARKS, D.E., LANE, G., STEWARD, J.C., PEYTON, S., Optical Constants<br />

of Uranium Plasma, NASA CR-72348 (1968). (U.S. National Technical<br />

Information Service).<br />

[25] CORLISS, C.H., BOZMAN, W.R., NBS Monograph 53 (1962). (U.S. Government<br />

Printing Office).<br />

[26] WHITMARSH, J.C., Neutronic Analysis of Open-Cycle High-Impulse Gas-<br />

Core Reactor Concept, NASA TMX-2534 (1972).<br />

[27] KUNZE, J.F., L<strong>OF</strong>THOUSE, J.H., SHAFFER, C.J., Hydrogen effect on a<br />

demonstration test for open-cycle gas core reactors, American <strong>Nuclear</strong><br />

Society Trans. j[5 (1972).<br />

[28] SLOAN, W.R., WOODRUFF, G.L., Delayed-neutron energy spectra, American<br />

<strong>Nuclear</strong> Society Trans. 15 (1972) 942.<br />

[29] L<strong>OF</strong>THOUSE, J.H., KUNZE, J.F., YOUNG, R.C., YOUNG, T.E., Gamma heating<br />

in gas core rocket reflector, American <strong>Nuclear</strong> Soceity Trans. lj[<br />

1 (1972) 7.<br />

[30] SMITH, A.B., Optical Absorption in Fused Silica at Elevated Temperatures<br />

During 1.5 MeV Electron Irradiation, NASA TN D-6840 (1972)<br />

(U.S. National Technical Information Service).<br />

[31] PALMA, G.E., Measurement of the UV and VUV Transmission of Optical<br />

Materials During High-Energy Electron Irradiation, United Aircraft<br />

Research Laboratories Report L-990929-3 (1972).<br />

[32] ATWATER, H.F., Fissioning Uranium Plasma for Rocket Propulsion,<br />

Ph. D. dissertation, University of Florida, Gainesville, Florida<br />

(1968).<br />

D I S C U S S I O N<br />

F. RUSTICHELLI: What is the situation as regards the energy loss<br />

of fission fragments at high tem perature? Do you need stopping power<br />

data relating to this condition and have you done any experiments on the<br />

subject?<br />

K. THOM: At high temperature the uranium target gas is partially<br />

ionized. Large Coulomb collision cro ss-se ctio n s should result in a different<br />

stopping power than in a neutral target gas. Important data are those on<br />

the number of inelastic collisions of the fission fragments with the gas<br />

atoms and ions versus the number of eleastic collisions, and the fractional


38 THOM and SCHNEIDER<br />

energy losses involved in such collisions. In addition, one would like to<br />

know the partition among states of ionization and excitation during the<br />

slowing down of the fission fragments. Ionization produces free electrons<br />

whose presence in the fissioning plasma can add appreciably to the total<br />

pressure of the system. The result could be an unacceptable increase in<br />

pressure and size of a plasma core reactor, i. e. from the point of view of<br />

achieving criticality. The effect of excitation from fission fragment interactions<br />

is related to electrom agnetic radiation at discrete energy levels<br />

from the plasma. Since the fission fragment energy is very much larger<br />

than the average energy of the plasma, the excitation from fission fragments<br />

collisions may result in a population inversion of excited states and could<br />

thus be exploited for the direct conversion of fission fragments energies<br />

into coherent light, that is into work! I think this is the m ost important<br />

characteristic of fissioning plasmas.<br />

We have conducted som e experiments in which light was, in fact,<br />

produced by the fission fragment interactions with gas targets. In one<br />

case, in which the target gas was argon, even lasing was achieved.<br />

Much m ore detailed data are needed, however. F o r example, in a<br />

high-Z target gas, such as a uranium plasma, fission fragment collision<br />

m ay lead to bound-bound electron transitions at energy levels ranging<br />

from a few eV up to many keV. Knowledge of the distribution of such<br />

transitions would have far-reach in g consequences.


NUCLEAR DATA REQUIREMENTS FOR<br />

FUSION-FISSION (HYBRID) REACTORS<br />

W .C . WOLKENHAUER, B.R. LEONARD, Jr.<br />

P acific Northwest Laboratories,<br />

Richland, Wash.,<br />

United States o f A m erica<br />

Abstract<br />

N U CLEAR D A T A REQUIREM ENTS FOR FUSIO N -F ISSIO N (H Y B R ID ) R E A C TORS.<br />

I A E A - S M -1 7 0 /5 6<br />

T h e h yh rid (f u s io n -fis s io n ) r e a c to r is a c la s s o f p o w e r -p r o d u c in g re a c to r s w h ic h has fu s io n and fissio n<br />

re a c to r s as its e x t r e m e m e m b e r s . T h e r e are tw o d is tin c tly d iffe r e n t h y brid sy stem s: H ybrid system s w h ic h<br />

o p t im iz e o n th e b r e e d in g o f fis s ile fu e l for fissio n r e a cto r s or tritiu m for D - T fu sion r e a c to r s , and h y brid<br />

system s w h ic h o p t im iz e o n p o w e r p r o d u c tio n and u t iliz a t io n o f e n e r g y re s o u rc e s. S tu dies h a v e b e e n m a d e o n<br />

th e h y brid s in c e 1953 w ith th e m o st r e c e n t w o rk b e in g ca rrie d ou t by th e authors at B a tte lle -N o r th w e s t.<br />

T h e ju s t ific a t io n fo r pu rsuing th e study o f h y brid system s is th e p o s s ib ility o f a c h ie v in g a p o w e r p la n t<br />

w h ic h c o u p le s th e short d o u b lin g t im e s a sso c ia te d w ith th e fu s io n r e a c t o r to th e h ig h p o w e r d e n sitie s<br />

a s s o c ia te d w ith th e fissio n r e a c to r w h ile at th e sa m e t im e b e in g a b le to e x tr a c t p ow er fr o m th e a v a ila b le<br />

u ra n iu m re s e rv e s fr o m an e s s e n tia lly s a fe (s u b c r itic a l) fis s io n la t t ic e .<br />

T h e d e s ig n and o p t im iz a t io n o f h y brid p la n ts p la c e s n ew restrain ts o n th e re q u ire d n u c le a r d a ta n e e d e d<br />

fo r th e a n aly sis. A ll o f th e usu al r e a c tio n s co n s id e re d in fis s io n r e a c to r d e s ig n m ust b e c o v e r e d by th e da ta<br />

bu t n ow th e r e q u ire m e n t is for g o o d d a ta fr o m th e rm a l to 14 M e V . In a d d itio n , n, 2 n and n, 3n re a c tio n s<br />

w h ic h are n ot n o r m a lly s ig n ific a n t in fissio n r e a c to r d e s ig n b e c o m e im p o r ta n t. F in a lly , o f c o u r s e , p la sm a<br />

p h y s ics d a ta and r e a c t io n c r o s s -s e c t io n s o f stru ctu ral m a te r ia ls fo r 14 M e V n eu tron s a re r e q u ir e d .<br />

M ost h y brid c o n c e p t s are based u p on th e n u c le a r r e a c tio n s o f w ith 1 4 - M e V n eu tron s. T h e r e are<br />

s e v e r a l n e u tr o n -p r o d u c in g r e a c t io n s w h ic h ta k e p l a c e . T h e y in c lu d e n ,2 n , n ,3 n , and fissio n r e a c tio n s .<br />

W h ile d a ta o n th e se r e a c tio n s a re cu rre n tly a v a ila b le in th e E valu a ted N u cle a r D ata F ile (E N D F /B -III)<br />

o f th e U S A E C , c r e d ib le o p t im iz a t io n o f h y brid c o n c e p t s to d e te r m in e th e p o t e n t ia l a d v a n ta g e s ca n n o t b e<br />

m a d e w ith o u t s ig n ific a n t r é é v a lu a tio n o f th e d a ta f i l e . H ybrid sy stem s c a n a ls o b e d e s ig n e d based<br />

o n th e th o riu m fu e l c y c l e . In th is r e g a rd , th e sa m e ty p e o f d a ta is re q u ire d h e r e but th e a v a ila b le d a ta<br />

a re in fe r io r to th o se o f ^ U .<br />

The fusion-fission or hybrid reactor is generally defined as a<br />

Controlled Thermonuclear Reactor (CTR) with a fissionable blanket surrounding<br />

it. The concept is based upon the neutron multiplication properties<br />

of heavy isotopes in a 14 MeV (deuterium-tritiurn plasma) neutron flux and<br />

the large energy release of neutron-induced fission relative to neutron<br />

capture events or neutron absorption in lithium.[l]<br />

While a number of different concepts have been proposed, there appear<br />

to be only two distinct classes of hybrid systems. One of these is a system<br />

which is optimized for the breeding of fissile fuel for fission reactors.<br />

The other concept is the hybrid which is optimized for power production<br />

directly. [2]<br />

Because the hybrid concept is not well understood, we will first review<br />

the historical development of the concept. We will then develop some of the<br />

principle characteristics of the system. After this, a specific hybrid<br />

design will be given. A review of the analytical techniques applied to<br />

this specific design will then allow for development of the nuclear data<br />

required for hybrid reactor design.<br />

39


40 WOLKENHAUER and LEONARD<br />

1. History of Development<br />

The first suggestion for a hybrid device was apparently made in the<br />

early 1950's .[3] A United States patent application describing a hybrid<br />

was filed in 1957.[4] A British patent application was filed by Lawson,<br />

et al., in 1958 on a similar idea.[5] The first applicable measurements<br />

in the open literature appear to have been made by Weale et al.,<br />

in 1961.[6] The most systematic study of a hybrid concept which is<br />

optimized for the breeding of fissile fuel for fission reactors was<br />

carried out by Lidsky [7]* Some of the most recent work on a hybrid<br />

concept optimized for power production has been carried out by Lee[8]<br />

and by the authors [1], There does not however, seem to have been a<br />

consistent development program on the hybrid concept even though it<br />

was first introduced some twenty years ago. Interest in the hybrid may<br />

grow, however, when the emphasis in fusion reactor development changes<br />

from technical feasibility to engineering and economic feasibility.<br />

2. The Characteristics of a Hybrid Reactor<br />

A hybrid, reactor can be defined as a CTR with a blanket which contains<br />

fissile or fertile material. Such a machine, independent of the<br />

market it is optimized for, has certain characteristics which identify<br />

its potential advantages or disadvantages as a source of power.<br />

First of all, consider the characteristics of the plasma of the<br />

fusion device employed in the hybrid machine. It is often mentioned<br />

that a possible advantage of the hybrid is that, as a result of its<br />

energy multiplication possibilities, it can be used with a sub-Lawson<br />

plasma which would allow for early exploitation of the fusion reaction.<br />

The plasma characteristics of a hybrid can be more accurately defined by<br />

pointing out that a hybrid must operate with a sub-Lawson plasma [9].<br />

This conclusion results from engineering considerations. A certain<br />

level of energy or neutron multiplication must take place in the blanket<br />

in order to breed fuel for the device. For a given blanket design, there<br />

is a limit on blanket power density and a limit on fissile fuel depletion<br />

rate which can be determined for that design. For known materials, these<br />

blanket limits result in plasma limits which are, in all cases surveyed,<br />

substantially sub-Lawson in nature. Therefore, the first characteristic<br />

of a hybrid machine is that it must operate with a sub-Lawson plasma.<br />

This result implies that exotic refractory metals for structure and fuel<br />

cladding are not required for hybrid reactors.<br />

Another characteristic of hybrid machines is the nature of the<br />

energy multiplication. For a hybrid design with a fissile blanket,.the<br />

rate of multiplication, or the number of fissions per fusion event, (N)<br />

can be estimated by the equation [10]:<br />

where к is the neutron balance of the fissile blanket as usually defined<br />

bf standard reactor physics terminology and v is the average<br />

number of neutrons per fission. From this equation, one can see that<br />

very large energy multiplication is possible with values of к „ < 1.<br />

Therefore, hybrid fertile/fissile blankets will be subcriticai. For<br />

a deuterium-tritium plasma, the energy multiplication (Q) of a given<br />

design can be estimated by the equation:


IA E A -S M -1 70/56 41<br />

2 0 0 + 1 7 x 1 x eff<br />

17<br />

V 1 -<br />

eff<br />

assuming an average fission energy release of 200 MeV, an average fusi,on<br />

energy release of 17 MeV, and also assuming that all of the fusion<br />

energy is available to the energy balance. Therefore, a second characteristic<br />

of the hybrid machine can be developed. Not only does the<br />

hybrid operate with a sub-Lawson plasma, but also it employs a sub-<br />

critical blanket assembly. The design goal, of course, is to develop<br />

a machine with the above characteristics which has a favorable output<br />

to input energy balance. For a wide range of interesting designs, this<br />

appears to be possible.<br />

A third general characteristic of hybrid machines relates to the<br />

breeding function of the blanket. If the blanket, in its role as a<br />

fissile breeder, utilizes depleted or natural uranium as a fertile<br />

material, the bred fissile material is found to be almost all Pu-239 [1].<br />

This is due to two phenomena. The hybrid reactor, if it utilizes the<br />

deuterium-tritium reaction, gives off 14 MeV neutrons as a primary source.<br />

The value of a(a = ac/


42 WOLKENHAUER and LEONARD<br />

\<br />

NEUTR VERTER<br />

S U B C R IT IC A l F IS S IO N LATTICE<br />

ENERGY CONVERTER<br />

G RAPH ITE, NATURAL U R A N IU M , H E L IU M<br />

(NATURAL U R A N IU M -C A R B ID f )<br />

NATURAL U R A N IU M<br />

H E L IU M GRAPHITE j<br />

® ® ® ® ®<br />

MODERATOR L IT H IU M<br />

REFLECTOR A B S O R B E R<br />

P L A S M A G RAPH ITE íl ít h íu m<br />

/<br />

R A D IU S 160 cm<br />

200<br />

® ® ® ® ®<br />

® ® ® ® ® ®<br />

® ® ® ® ®<br />

® ® ® ® © ®<br />

® ® ® ® ®<br />

F I G . l . H ybrid b la n k e t.<br />

In summary then, a hybrid reactor is a sub-Lawson plasma coupled to a<br />

subcritical fissile/fertile assembly which can produce a positive energy<br />

balance. Some of the potential advantages of the device are:<br />

о Has high energy densities associated with fission reactors.<br />

о Has short doubling times associated with fusion reactors.<br />

e Breeds relatively pure fissile material.<br />

о Allows for exploitation of uranium reserves in subcritical<br />

assemblies.<br />

• Eliminates major radioactive hazards associated with pure<br />

fusion and pure fission devices.<br />

® Development can progress to fruition based on known technology.<br />

The authors have been studying a specific hybrid design based upon<br />

the neutron convertor concept [1,2,9,10], One variation of this approach<br />

is shown in Figure 1.<br />

The fissile blanket is divided into a number of regions. These<br />

include the neutron convertor, the energy convertor, a reflector, and an<br />

outer absorber for tritium production. The design shown here is helium<br />

cooled and, at least for the energy convertor, is generally consistent<br />

with gas cooled fission lattice design.<br />

The neutron convertor concept is of general interest here as it<br />

serves several purposes [1]. It provides direct utilization of the U-238<br />

fission energy by 14 MeV neutron induced fission and multiplication of<br />

the 14 MeV neutron source through fission, n,2n, and n,3n reactions. The<br />

absorption in the convertor of these secondary neutrons and neutrons<br />

leaking back from the fission lattice result in further fast neutron<br />

fissions and neutron capture in U-238 to produce Pu-239. The lithium<br />

1


I A E A - S M -1 7 0 /5 6 43<br />

F IG .2 . S p h e r ic a l h y b r id .<br />

serves to breed tritium, inhibit Pu-239 fission and in addition, it<br />

decouples neutronically one side of the fission lattice from the other<br />

side of the cylinder.<br />

The design shown here is, in general, typical of the studies being<br />

carried out on this concept. The hybrid is usually studied somewhat<br />

independently of a specific plasma device. However, it is usually based<br />

on a deuterium-tritiurn plasma due to the high potential neutron multiplication<br />

of the energetic (14 MeV) neutrons. In addition, a specific<br />

blanket design will, as mentioned previously, dictate the desired plasma<br />

conditions.<br />

In contrast to this system, Figure 2 shows a spherical design developed<br />

by Lee [8]. In principle, this system operates much in the manner<br />

of that shown in Figure 1. This type of hybrid probably places more<br />

stringent requirements on nuclear data than the coupled convertor-thermal<br />

system. In order to analyze this system, one must have continuous data<br />

describing the slowing down of neutrons from 14 MeV to thermal energies<br />

throughout the system and for all isotopes of the system.<br />

The Analysis of a Hybrid<br />

In order to develop the minimum nuclear data requirements needed to<br />

analyze some of these previously described systems, a method of performing<br />

an analysis of hybrids will be described. A flow chart of the approach<br />

is shown in Figure 3. Other analytical techniques which have been used<br />

include Monte Carlo analysis and other computer codes which solve the<br />

neutron transport equation directly.<br />

The analysis of a hybrid begins with a microscopic data library for<br />

the required isotopes with data being available for the required reactions<br />

over an energy range from 14 MeV to thermal. The minimum data requirements


44 WOLKENHAUER and LEONARD<br />

• POWER DISTRI BUTION . TIME DEPENDENT NUCLIDE<br />

DENSITIES<br />

F I G .3 . A n a n a ly sis m o d e l fo r h y brid r e a cto r s.<br />

are summarized in Figures 7 and 8 . In Figure 2, to save computer space,<br />

the data are collapsed by means of the neutron transport code ANISN[12]<br />

to a 27 energy group set. The THERM0S[13] and HRG[14] codes are used to<br />

calculate thermal spatial and resonance absorption spatial effects. These<br />

effects are particularly strong with respect to U-238 and Pu-240. The ANISN<br />

code is used to calculate the static neutron flux distribution. The ALCHEMY[15]<br />

code is used to calculate the burnup rate of the various isotopes. Dashed<br />

lines are used to indicate the need for periodic spectral updating of the<br />

data as the analysis proceeds to higher neutron exposure. The computer<br />

codes used here are generally available and have been used in the analysis<br />

of similar devices [16].<br />

4. The Important Neutron Reactions<br />

The major neutronic reactions involved in the analysis of hybrid blankets<br />

are the neutron producing reactions and the fuel breeding reactions. These<br />

reactions are reviewed below along with some of the other relevant reactions.<br />

The results are then summarized to develop the minimum nuclear data needs<br />

for hybrid analysis.<br />

4.1 The Neutron Producing Reactions<br />

The neutron producing reactions for U-238 are shown in Figure 4 as<br />

a function of energy. They are the n,2n, n,3n and fission reactions and<br />

are shown here as a function of energy. The curves were obtained from<br />

version 3 of ENDF/B[17] which is the Evaluated <strong>Nuclear</strong> <strong>Data</strong> File of the


IA E A -S M -1 7 0 /5 6 45<br />

NEUTRON ENERGY (MeVt<br />

F IG .4 . N e u tr o n -p r o d u c in g r e a c tio n s o f 238U .<br />

NEUTRON FNERGY (MeV)<br />

F I G .5 . N eu tron s p r o d u c e d per n eu tron a b s orb ed fo r Z38U .<br />

USAEC. If these data are weighted by the specific reaction neutron production,<br />

a continuous curve of the number of neutrons produced per neutron<br />

absorbed can be developed. This composite curve is shown in Figure 5 [9].<br />

If this curve is compared to experimental points, as shown on Figure 5,<br />

one can see that the file may not be a best estimate at 14 MeV. While<br />

Figure 5 demonstrates the high neutron multiplication which can be obtained<br />

from 14 MeV neutrons impinging upon a fissile/fertile assembly,<br />

it also indicates some inadequacy in the available data for neutron<br />

producing reactions. This inadequacy may, however, be due to inadequacies<br />

in the library data file description as opposed to inadequacies in the data<br />

themselves. In any case, the nuclear data needs for hybrid reactor analysis<br />

not only include specific requirements for nuclear data for energies far<br />

above the fission spectrum, but also, there are requirements for data on<br />

nuclear reactors often not given emphasis in fission reactors, (i.e., n,2n,<br />

n,3n).


46 WOLKENHAUER and LEONARD<br />

4.2 The Fuel Breeding Reactions<br />

There are several neutron absorbing fuel breeding reactions associated<br />

with the hybrid reactor. Assuming a fusion device based upon the deuterium-<br />

tritium reaction, tritium must be bred at a breakeven rate by neutron absorption<br />

in lithium. The specific reactions are [18]:<br />

6Li, + ]n + 3H, + 4He„<br />

о 0 1 2<br />

7Li, + V - 3H, + 4Не„ + ]п<br />

о о i ¿ о<br />

The ®Li reaction is a thermal neutron reaction and is exothermic. The \ i ~<br />

reaction is an epithermal neutron reaction and is endothermie. In a 7<br />

typical hybrid blanket, about one-third of the tritium is bred by the Li,<br />

reaction and the rest by the thermal reaction.<br />

Plutonium may be bred in a hybrid blanket to supply fissile fuel<br />

either for energy production in the machine itself or in a separate reactor.<br />

The pertinent reactions are:<br />

238, + l„o . 239, : 239N p : 239pu<br />

If the fissile fuel is bred by means of neutron absorption in thorium such<br />

that 233u is bred as the fissile fuel, the reactions are [19]:<br />

232Th + 1 + 233Th I 233pa t 233u<br />

о<br />

The neutron absorption cross sections for the isotopes involved in these<br />

reactions must be known over the energy range from 14 MeV to thermal.<br />

4.3 Other Relevant Neutron Reactions<br />

In a hybrid blanket, energy is extracted by moderation of the energetic<br />

neutrons. Typical moderating materials include graphite and beryllium.<br />

Structural materials which may be used for the vacuum wall and the blanket<br />

structure would be alloys of stainless steel in contrast to the exotic<br />

metals such as niobium, and vanadium which have been proposed for "pure"<br />

fusion reactors. Therefore, inelastic and elastic scattering data are<br />

required for these materials, along with neutron absorption data, for the<br />

whole energy range from 14 MeV to thermal energies. Supplementary information<br />

on the neutron damage characteristics of these materials as a function<br />

of energy may also be required.<br />

5. Minimum <strong>Data</strong> Requirements<br />

The data requirements for hybrid analysis are dictated, in part,<br />

by the complexity of the transmutation chain for fertile materials in a


NOT AVAILABLE<br />

IN DEPLETED<br />

LATTICE<br />

I A E A - S M -1 7 0 /5 6 47<br />

241p<br />

n,r<br />

n,r<br />

n,y<br />

n.r<br />

n,2nti n.r<br />

242, Pu<br />

F I G .6 . T h e u ra n iu m tra n sm u ta tion c h a in in a h ybrid b la n k e t.<br />

14 MeV neutron flux. Figure 6 displays the uranium transmutation chair,<br />

in a high energy flux. One can see that such reactions as n,2n, which have<br />

a threshold in the range of 8 MeV, become important in the hybrid system.<br />

The nuclear data needs for the analysis of a hybrid lattice such as<br />

shown in Figure 1 and which uses the uranium burnup chain shown in Figure 6<br />

can be developed for the analysis model shown in Figure 3. Such a compilation<br />

of requirements is shown in Figure 7.<br />

The data needs are so extensive in part, because the uranium burnup<br />

and transmutation equations have been shown to be quite complex. In addition,<br />

one needs to analyze fusion fuel breeding, neutron moderation,<br />

neutron production, and possible damage effects. The sum of these requirements<br />

leads to the extensive compilation listed in this figure.<br />

Figure 7 itemizes the data requirements for the analytical model.<br />

However, there are additional specific data requirements over certain energy<br />

ranges which are of special concern. These requirements are shown in<br />

Figure 8.<br />

While plasma reaction data is not of great importance directly in<br />

hybrid design, there will eventually develop a need for accurately controlling<br />

the degree to which the plasma lacks being a breakeven plasma.<br />

For fusion reactors, the emphasis has been placed upon knowing the charged-<br />

particle reaction cross section in the range of 10-100 keV. Because hybrid<br />

reactors require a degraded plasma, accurate data must be obtained in the<br />

range of a few keV. Because the cross section is very small and changing<br />

rapidly in this energy region, accurate data in this range might be difficult<br />

to obtain [20]«


WOLKENHAUER and LEONARD<br />

F I G .7 . M in im u m d a ta r e q u ire m e n ts for h y brid d e s ig n .<br />

ISOTOPE REACTION ENERGY RANGE COMMENT<br />

239Pu FISSIO N 10-15MeV INTERACTION <strong>OF</strong> 14MeV AND DEGRADED<br />

NEUTRONS WITH 232U, 238U, AND 239Pu<br />

LEAD TO NEED FOR IMPROVED DATA<br />

238U AND 232Th V 8-15MeV<br />

n, 2n THERMAL-15MeV<br />

n, 3n THERMAL-15MeV<br />

INELASTIC SCATTER 8-14MeV<br />

RESONANCE CAPTURE THERMAL- IMeV IMPORTANT FARTHER OUT IN THE BLANKET<br />

Fe CAPTURE THERMAL- 2MeV STAINLESS STEEL IS LIKELY<br />

H YBRID STRUCTURAL MATERIAL.<br />

П, 2n THERMAL-14MeV<br />

П, 3n THERMAL-14MeV<br />

ELASTIC SCATTER THERMAL-14MeV<br />

INELASTIC SCATTER THERMAL-14MeV<br />

F IS S IO N NEUTRON SPECTRA 4-15MeV THIS IS NEEDED TO CALCULATE<br />

SPECTRA NEAR THE VACUUM WALL.<br />

F I G .8 . S p e c if ic d a ta w h ic h n eed im p r o v e d m e a su re m e n t.


Summary<br />

IA E A -S M -1 70/56 49<br />

At present, the nuclear data used in hybrid design are found, for the<br />

most part, in ENDF/B[17] and other similar data libraries. They are,<br />

however, all lacking in some of the required reactions either because it<br />

has not been evaluated or because it has not been measured. Immediate<br />

requirements are for improved measurements of the minimum indicated reactions<br />

as shown in Figure 8 for the indicated energy range. Beyond the basic<br />

measurements, the data must be evaluated by data evaluation experts, and<br />

just as importantly, it must be placed upon the available nuclear data files.<br />

References<br />

[1] LEONARD, B. R., Jr., and WOLKENHAUER, W. C., Fusion-fission hybrids:<br />

A subcritical thermal fission lattice for a DT fusion reactor,<br />

presented at a conference on Technology of Controlled Thermonuclear<br />

Fusion Experiments and the Engineering Aspects of Fusion Reactors,<br />

University of Texas, Austin, Texas, (November 1972).<br />

[2] LEONARD, B. R., Jr., and WOLKENHAUER, W. C., Fusion-Fission (Hybrid)<br />

Systems, USAEC Report, BNWL-B-162, Pacific Northwest Laboratories,<br />

(Feb. 1972).<br />

[3] POWELL, F., Proposal for a Driven Thermonuclear Reactor, USAEC<br />

Report, LWS-24920 (revised), (October 1953).<br />

[4] BARRETT, L. G., A Fusion-Fission Reactor, KAPL, Report M-LOB-14,<br />

(June 1957).<br />

[5] LAWSON, J. D., THONEMANN, P. C., POOLE, M. J., and TAIT, J. H.,<br />

Patent Specification 830, 255, United Kingdom Patent, complete<br />

specification filed January 15, 1958.<br />

[6] WEALE, J. W., G00DFELL0W, N., MCTAGGERT, M. H., and MOLLENDER, M. L.,<br />

Measurements of the reaction rate distribution produced by a source<br />

of 14 MeV neutrons at the centre of a uranium metal pile, J. Nucl.<br />

Energy, A/B, 14, (1961) 91.<br />

[7] LIDSKY, L. M, Fission-fusion symbiosis: General considerations<br />

and a specific example, <strong>Nuclear</strong> Fusion Reactors Conf. (September<br />

1969) UKAEA, Culham Laboratory, Abingdon, Berks.<br />

[8] LEE, J. D., Subcritical fast fission blanket, Thermonuclear Reactor<br />

Memorandum 20, LRL (Nov. 1970).<br />

[9] LEONARD, B. R., Jr., Fusion-fission hybrid systems; a presentation<br />

prepared for the staff of the USAEC, Div. of Controlled Thermonuclear<br />

Research, BNWL-B-216 (July 1972).<br />

[10] WOLKENHAUER, W. C., Editor, The Pacific Northwest Laboratory Annual<br />

Controlled Thermonuclear Reactor Technology Report - 1971,<br />

BNWL-1604, (July 1971).<br />

[ П ] Neutron Cross Sections, BNL-325, Second Edition, Supp. 2, (Feb. 1965)<br />

[12] ENGLE, W. W., Jr, A User's Manual for ANISN, a One-Dimensional<br />

Discrete Ordinates Transport Code with Anisotropic Scattering,<br />

K-1693, (March 1967)


50 WOLKENHAUER and LEONARD<br />

[13] SKEEN, D. R. and PAGE, L. J., THERMOS/BATTELLE: The Battelle<br />

Version of the THERMOS Code, BNWL-516, (September 1967).<br />

[14] CARTER, J. L., HRG-3: A Code for Calculating the Slowing Down<br />

Spectrum in the P-l or B-l Approximation, BNWL-1432 (June 1970).<br />

[15] DUANE, B. H., Time-Variant Isotopic Transmutation, GE-HL Program<br />

ALCHEMY, HW-80020, (December 1963)<br />

[16] ABDOR, M , and MAYNARD, C. W., Computational Techniques for Neutronics<br />

and Photonics Calculations for Fusion Reactor Blankets and Magnet<br />

Shields, FDM3, Nucl. Engng. Report, University of Wisconsin, Madison,<br />

Wisconsin, (June 1972)<br />

[17] HONECK, H. C., ENDF/B, Specifications for an Evaluated <strong>Nuclear</strong><br />

<strong>Data</strong> File for Reactor Applications, BNWL-50066, USAEC (1966).<br />

[18] STEINER, D., The nuclear performance of fusion reactor blankets,<br />

Nucl Applications & Tech. Vol 9, (July 1970).<br />

[19] GLASSTONE, S., and SESONSKE, A., <strong>Nuclear</strong> Reactor Engineering,<br />

D. Van Nostrand Company, Inc., (1967).<br />

[20] GLASSTONE, S., and LOVBERG, R. H., Controlled Thermonuclear Reactions,<br />

D. Van Nostrand Company, Inc., Princeton, N. J., (1960).<br />

D IS C U S S IO N<br />

A .M . WEINBERG: How far sub-Lawson is the plasma?<br />

W .C . WOLKENHAUER: F o r the device considered by the authors,<br />

the design called fo r an пт of 3. 5 X 1013 and an ion temperature of 10 keV.<br />

Thus the device operates one decade below the Lawson condition and, in<br />

addition, represents a level of technology which will be achieved shortly.<br />

J. J. SCHMIDT: Do you see any need for nuclear data which are not<br />

available from present-day compilations and evaluations such as ENDF/B<br />

but knowledge of which is critical and decisive for the success of your<br />

present design studies or those for the near future, considering that the<br />

hybrid reactor concept (e. g. the fusion reactor) will probably not be<br />

realized and find practical application before, say, the year 2000?<br />

W .C . WOLKENHAUER: F irst of all, the available data, as shown in<br />

Fig. 5 of our paper, are not adequate for hybrid design. In a typical<br />

E N D F/B file, one finds a m axim al point at 14 MeV and quite a few points<br />

below 2 M eV. The important range from 14 MeV to 2 MeV is often<br />

approximated by a theoretical model.<br />

Current predictions state that a competitive fusion reactor m ay be<br />

available by the year 2000. However, the technology for building the<br />

hybrid, if not yet in hand, should be available shortly. If fission power<br />

proves to be cheaper than fusion power, the hybrid will allow for exploitation<br />

of fissile reserves at com parable power densities in subcritical arrays<br />

while retaining the short doubling tim es of fusion reactors.


I A E A - S M -1 7 0 /3 9<br />

NUCLEAR DATA REQUIREMENTS IN THE DESIGN<br />

<strong>OF</strong> THE BIFOLD NUCLEAR POWER SOURCE<br />

W .F. STUBBINS, R. A. WOLFE<br />

University of C incinnati, Cincinnati, Ohio<br />

and<br />

Mound Laboratory, Monsanto Research Corporation,<br />

M iam isburg, Ohio,<br />

United States o f A m erica<br />

Abstract<br />

N U C L E A R D A T A R E Q U IR E M E N TS IN T H E D ES IG N O F T H E BIFO LD N U C L E A R PO W ER SO URCE.<br />

T h e BIFO LD N u c le a r Power Source joins SN A P is o to p ic h eat source and S N A P reactor tech n olog y to<br />

provid e r e lia b le u n interruptable base power w hich is augm ented du ring periods o f high-dem and power by<br />

operation in a c r it ic a l reactor m ode. Plu to n iu m -238 is an a lp h a -em ittin g heat source m a te ria l w h ich has<br />

been shown to be able to form a s m a ll c r it ic a l system. T h e design o f the reactor aspects w ith p ro d u ctio n -<br />

grade ^ P u (80°]o ‘»Pu, le ^ o ^ P u , and 4°fo other p lu to n iu m isotopes) req uires estim ates o f three unm easured<br />

b a sic nu cle a r properties: one, the fast-neutron spectrum fro m the fissio n o f ^ P u ; two, the average num ber<br />

o f neutrons per fission as a fu n c tio n o f neutron energy groups; and three, the delayed-neutron fra c tio n in<br />

^ P u fissio n . Estim ates based upon fissio n system atics g iv e u n con firm ed v alu es o f param eters w h ich d ire c tly<br />

a ffe c t the c r it ic a l size and co n tro l param eters. BIFO LD is a sm a ll, c o m p a c t power source using heat pipes<br />

w ith th e rm o e le c tric or other energ y -co n v e rtin g com ponents operating in an isoth erm a l state at its base<br />

power o f 11 kW t to 200 kW t or m ore to m eet dem and power needs. T h e sp lit core o f BIFOLD p erm its a ll<br />

o p e ra tio n a l tests to be co m p leted e c o n o m ic a lly w ith zero-p o w er reactor o peration w h ic h avoids in duced<br />

ra d io a c tiv ity in com ponents and the b u ild - u p o f fissio n -fra g m e n t in ven tory. V a ria tio n s in and ranges o f fin a l<br />

design param eters ow ing to u n certa in tie s in nu cle a r data, plans for the resolu tion o f u n certa in tie s and the<br />

e c o n o m ic im p a c t o f in adequate nu cle a r data sources are presented.<br />

I n tr o d u c tio n<br />

The p o s s i b i l i t y o f the j o i n t use o f i s o t o p i c h eat so u rce<br />

m a te r ia l as a r e a c t o r fu e l was r e c o g n iz e d becau se o f m easurements<br />

made to a c c e s s the c r i t i c a l i t y hazards o f p r o c e s s in g ,<br />

s t o r in g and u sin g P lu to n iu m -2 38, (1 , 2 ) . Thus, a new and<br />

v e r s a t i l e power s o u rce c o n ce p t a ro se d i r e c t l y in the p r o c e s s<br />

o f se e k in g new and r e l i a b l e n u c le a r d a ta .<br />

The co n c e p t i s c a l l e d BIFOLD s in c e i t p ro d u ce s power by<br />

two d i s t i n c t l y d i f f e r e n t means, r a d io a c t iv e decay and n u c le a r<br />

f i s s i o n , in th e same d e v ic e . BIFOLD is b e l ie v e d to be unique<br />

in the an n als o f en ergy sou ces becau se o f t h is fe a t u r e . I t is<br />

d e s c r ib e d e ls e w h e r e , (3 , 4, 5 ).<br />

In r e c e n t y e a rs le g io n s o f d iv e r s e a p p lic a t io n s have been<br />

p ro p o se d and are b ein g c o n s id e r e d f o r b o th i s o t o p i c and r e a c ­<br />

t o r Systems f o r N u clear A u x ilia r y Power (SNAP) in sp a c e , under<br />

the seas and on la n d . N early a l l the a p p lic a t io n s are c h a r a c ­<br />

t e r i z e d by s h o r t p e r io d s o f h igh power demands and exten ded<br />

p e r io d s o f q u ie s c e n t o p e r a t io n w ith a te n th or le s s o f the d e ­<br />

mand l e v e l . BIFOLD p r o v id e s an u n in te r r u p t a b le base power from<br />

r a d io a c t iv e decay ca p a b le o f m eetin g needs o f norm al o p e r a t io n<br />

51


52 STUBBINS and WOLFE<br />

and f u n c t io n s . The base power is augmented during high demand<br />

power p e r io d s by o p e r a t io n in a c r i t i c a l r e a c t o r mode as a<br />

f i s s i o n en ergy s o u r ce .<br />

In fa s h io n in g a p r a c t i c a l power so u rce from the c o n ce p t<br />

o f dual use o f i s o t o p i c heat so u rce m a t e r ia l, 23 8p iut on i umj<br />

o n ly proven te c h n o lo g y is used in as in n o v a tiv e manner as p o s ­<br />

s i b l e . BIFOLD is a com pact power so u rce w ith a number o f imp<br />

o r ta n t advantages and can match a w ide range o f m issio n r e ­<br />

q u irem en ts. The d e s ig n o f the p r o t o t y p ic BIFOLD power so u rce<br />

in v o lv e s therm al arrd n u c le a r c o n s id e r a t io n s which in t e r a c t<br />

s t r o n g ly to d eterm ine the p a ra m eters. For exam ple, the heat<br />

rem oval r a te e s t a b lis h e s the s i z e o f the h eat rem oval p e n e ­<br />

t r a t io n s w hich in tu rn govern th e c o re d e n s it y . The l a t t e r<br />

s e t s the c r i t i c a l s i z e and the power d e n s it y . The therm al<br />

c o n d u c t iv it y requ irem en ts o f the fu e l g overns the p o s s ib le fu e l<br />

form and c o n f ig u r a t io n s , and the s i z e and number o f h eat rem oval<br />

p e n e t r a t io n s . The i t e r a t i v e p r o c e s s fin d s the optimum d e s ig n<br />

f o r the power range to match the m is s io n . A s t r o n g ly govern in g<br />

param eter is the tem peratu re r e q u ir e d or d e s ir e d f o r the c o n v e r ­<br />

s io n system to p r o v id e e l e c t r i c a l en ergy from the therm al en erg y.<br />

G a s -c o n t r o lle d heat p ip e s (6) p r o v id e heat rem oval from the<br />

c o r e f o r b oth the q u ie s c e n t base power from r a d io a c t iv e decay<br />

and the augumented power from r e a c t o r o p e r a t io n . Heat p ip e s g iv e<br />

s e v e r a l im portan t advantages in the form and perform an ce o f<br />

BIFOLD. Heat p ip e s are most e f f e c t i v e in heat rem oval and r e ­<br />

q u ir e th e s m a lle s t h eat rem oval p e n e tr a t io n s which y i e l d the<br />

g r e a t e s t d e n s it y , and th u s, the s m a lle s t c o r e . They have two<br />

o th e r a d va n ta g es, one i s the absen ce o f the need f o r power to<br />

pump a h eat t r a n s f e r f l u i d . The pumping power in many SNAP<br />

d e v ic e s is the m ajor consumer o f the en ergy r e le a s e d . The<br />

secon d advantage is the p o s s i b i l i t y o f o p e r a tin g BIFOLD in an<br />

is o th e rm a l mode from the base power to i t s maximum demand power<br />

l e v e l .<br />

In a c c o rd w ith our c o n s e r v a t iv e p o s i t i o n o f u sin g proven<br />

te c h n o lo g y we ch ose t h e r m o e le c t r ic elem ents w ith m odest temp<br />

e r a tu r e s as the e l e c t r i c a l c o n v e r s io n d e v ic e s . A n alyses show<br />

th a t e l e c t r i c a l c o n v e r s io n system s such as Rankine and B rayton<br />

c y c le s are f u l l y a d a p ta b le to BIFOLD and th erm on ics are n o t e x ­<br />

c lu d e d . In the p r o to ty p e o f BIFOLD a d e s ig n c o n s t r a in t i s th at<br />

the f u e l Pu02 sh ou ld remain w e ll below i t s m e ltin g tem perature<br />

i f one or more h eat rem oval elem ents f a i l . This c o n s t r a in t was<br />

chosen to a v o id c o n s id e r a t io n s w hich m ight be used to c h a lle n g e<br />

the f e a s i b i l i t y o f BIFOLD. The p r o to ty p e o f BIFOLD is i l l u s ­<br />

t r a t e d by a wooden model in F igu re 1 and i t s c h a r a c t e r i s t i c s<br />

are ta b u la te d in T able I.<br />

N u clear D esign o f BIFOLD<br />

The n u c le a r f u e l o f BIFOLD is p r o d u c tio n grade P lu to n iu m -238<br />

w hich is 80% Pu, 16% 239Pu and 4% o th e r plu ton iu m is o t o p e s .<br />

The c o m p o s itio n i s g iv e n in T able I I . I t is im portan t to n ote<br />

th a t the p r o t o t y p ic d e s ig n i s a p p lic a b le to a f a s t r e a c t o r w ith<br />

le s s or no i s o t o p i c h eat s o u rce m a t e r ia l, 238pUj an


I A E A - S M -1 7 0 /3 9 53<br />

F I G . l . BIFOLD d e v ic e .<br />

d ered but th e f a s t r e a c t o r fe a t u r e s are unchanged. The u n in ­<br />

te r r u p t a b le base power can be s e t at any v a lu e le s s than the<br />

maximum f o r p r o d u c tio n grade 238pu ^y d il u t in g the i s o t o p i c<br />

m ixtu re o r , p r e f e r a b ly , by u sin g p r o d u c tio n grade 238pu some<br />

o f the fu e l elem ents and none in o th e r s .<br />

The n u c le a r d e s ig n in v o lv e s two a s p e c t s . One i s the change<br />

in the fu e l owing to the alpha decay o f ^38pu and the b u ild -u p<br />

o f 234uranium. This r e q u ir e s the c o n t in u a l rem oval o f heat and<br />

r e s u lt s in th e c o n t in u a l change in the c o m p o s itio n o f the f u e l .<br />

The h a l f l i f e o f ^ ° P u 87.8 * 0.02 y e a rs (7) and p rod u ces<br />

0.56 w atts p er gram o f h eat by alpha d eca y . I t has been w id e ly


5 4 STUBBINS and WOLFE<br />

T A B L E I. C H A R A C T E R IS T IC S O F TH E B IF O L D SOURCE<br />

G eneral P erform ance Param eters<br />

Power Range I s o t o p ic Mode<br />

F ast R e a cto r Mode<br />

A p p lic a t io n Environm ent Sp ace, T e r r e s t r i a l ,<br />

Under Sea<br />

- L ife tim e<br />

- C on v ersion System<br />

- Energy T ra n sfe r<br />

System<br />

- N u clear Fuel<br />

5 to 25 years<br />

T h e rm o e le ctric<br />

Heat p ip e s<br />

Plutonium<br />

(801 238Pu)<br />

BIFOLD P ro to ty p e (R e fe r e n c e ) D esign Param eters<br />

- Fuel Form<br />

- C r i t i c a l Mass<br />

- N u clear Fuel Element<br />

- Thermal C o n d u c tiv ity<br />

- M e ltin g Tem perature<br />

o f Fuel<br />

- M eltin g Tem perature<br />

o f Tantalum C ladding<br />

- Maximum Tem perature in<br />

Fuel Element at<br />

9.5 Kwt<br />

100 Kwt<br />

150 Kwt<br />

2 00 Kwt<br />

10 Kwt<br />

0.6 Kwe<br />

Up to 150 -<br />

2 00 Kwt<br />

9 to 12 Kwe<br />

PMC<br />

P lutonia-M olybdenum Cermet (PMC)<br />

27 .5 Kg (Pu02)<br />

33 .4 Kg (PMCJ<br />

19 each<br />

H exagonal<br />

3 .8 cm H o r iz o n ta l Width<br />

16 cm in le n g th<br />

0.0 94 w atts/cm °C<br />

2400°C<br />

3000°C<br />

680°C<br />

1100°C<br />

1300°C<br />

1530°C


T A B L E I. (cont.<br />

- Heat P ip e :<br />

D iam eter<br />

F lu id<br />

O p eratin g<br />

Tem perature<br />

- R e f l e c t o r :<br />

- S iz e :<br />

M a te r ia l<br />

T h ick n ess<br />

C o n tro l<br />

D iam eter in c lu d in g<br />

R e f l e c t o r<br />

H eight in c lu d in g<br />

R e f l e c t o r<br />

- A pproxim ate W eight<br />

T h e r m o e le c tr ic Elem ent:<br />

M a te ria l<br />

Type<br />

Tem perature<br />

Hot J u n ctio n<br />

Cold J u n ctio n<br />

IA E A -S M -1 70/3 9 55<br />

1 .2 7 Cm<br />

P otassium or sodium (K or Na)<br />

640°C<br />

238u or W<br />

9.1 Cm<br />

R o ta tin g Drum<br />

38 Cm<br />

36 Cm<br />

400 Kg<br />

Lead T e llu r id e (PbTe)<br />

T ubular D esign<br />

640°C<br />

300°C<br />

u sed as a h eat so u rce m a te r ia l becau se o f i t s r e l a t i v e l y h igh<br />

s p e c i f i c heat and i t s q u it e low r a d ia t io n o f gammas. A gram o f<br />

238pu p rod u ces a gamma d ose r a te o f 0.6 4 Rads p er hour a t 1<br />

m eter in a i r . The spontan eous f i s s i o n h a l f l i f e o f 238pu<br />

(4 .7 7 * 0 .1 4 ) x 10*0 y e a rs (8) and w ith alm ost th re e n eu tron s<br />

p er f i s s i o n y i e l d s 3 x 10^ n eu tron s p er secon d p er gram. Add<br />

i t i o n a l n eu tron s come from the a lp h a -n e u tro n r e a c t io n w ith<br />

Oxygen-18 when plu ton iu m i s in the form o f an o x id e , ( 9 ) .<br />

P r io r to o p e r a t io n in th e r e a c t o r mode BIFOLD has b oth gamma<br />

and n eu tron r a d ia t io n i n t e n s i t i e s le s s than 1 0 '° as a r e a c t o r<br />

p ro d u cin g the same base pow er. Between in te r m it te n t r e a c t o r<br />

o p e r a t io n a t demand power BIFOLD has s i g n i f i c a n t l y low er r a d ia ­<br />

t i o n than a r e a c t o r p r o v id in g the base pow er.<br />

The change in the f u e l c o m p o s itio n by the alpha decay o f<br />

238pu does n ot red u ce the e x ce s s r e a c t i v i t y as the h a lf l i f e o f<br />

238Pu. T h is i s so beca u se the d a u g h ter, 234ц has a r e a so n a b le<br />

f a s t f i s s i o n c r o s s s e c t i o n , (1 0 ). The change in t o t a l f i s s i l e<br />

atoms is shown in F igu re 2. The e f f e c t s o f f u e l burn-up at a<br />

co n s ta n t power l e v e l o f 100 kwt is in c lu d e d .


56 STÜBBINS and WOLFE<br />

T A B L E II. T Y P IC A L P u 0 2 F U E L CO M PO SITIO N USED IN H E A T SOURCES<br />

1. T y p ic a l C o m p o sitio n , Ри02<br />

a. Oxygen 1 1 .8 w t. %<br />

b. P lutonium 88 .2 w t. \<br />

C o n ce n tra tio n (Wt. %)<br />

0.00012<br />

80.2<br />

15 .9<br />

3.022<br />

0. 643<br />

0.132<br />

C o n ce n tra tio n (Wt. %)<br />

0. 0033<br />

0.130<br />

0 .1 40 in c r e a s e s at the<br />

r a te o f decay o f<br />

238Pu<br />

The t o t a l o f o th e r i s o t o p i c im p u r it ie s in c lu d in g 23lP a ,<br />

232Th, 233U, 235U, 236U, and 227Ac does n ot ex ceed 1 w t.% o f<br />

the f u e l .<br />

I s o to p e<br />

236pu<br />

238pu<br />

239pu<br />

240pu<br />

241pu<br />

242Pu<br />

c . A c t in id e Im p u ritie s<br />

24lAm<br />

2 37¡v¡p<br />

234u<br />

The secon d n u c le a r a s p e c t is th a t o f f a s t r e a c t o r d e s ig n .<br />

The c o n fir m a tio n th a t 238pu c o u ld form a f a s t c r i t i c a l system<br />

was o b ta in e d by r e p la c in g an egu a l amount o f 239pu щ grams<br />

o f 23^Pu in a s p h e r ic a l m etal 23^Pu c r i t i c a l r e a c t o r , ( 1 ) . The<br />

c r i t i c a l i t y w orth o f 238Pu i s n e a r ly the same as 23” Pu in the<br />

n eu tron spectrum c h a r a c t e r i s t i c o f the m etal 23^Pu r e a c t o r . With<br />

a t h ic k heavy m etal r e f l e c t o r the c r i t i c a l mass o f a sp here o f<br />

m etal 23°Pu i s e stim a te d to be as l i t t l e as 7.8 k ilo g r a m s , (11,<br />

12, 1 3 ), and i t may be even l e s s .<br />

The f i s s i o n c r o s s s e c t i o n f o r 238pu was o b ta in e d the P e r ­<br />

simmon n u c le a r t e s t (14) and in e a r l i e r measurements (15) from<br />

a few eV to 3 MeV. The therm al f i s s i o n c r o s s s e c t i o n is 18<br />

barns and the therm al ca p tu re c r o s s s e c t i o n is 489 barns (1 6 ).


IA E A -S M -1 7 0/3 9 57<br />

TIME <strong>OF</strong> REACTOR OPERATION (YEARS)<br />

F IG .2 . C h a n g e in fu e l c o m p o s itio n w ith in BIFOLD c o r e du rin g r e a c to r m o d e o p e r a tio n .<br />

The la r g e therm al c a p t u r e - t o - f i s s i o n r a t i o makes 238Pu s a fe<br />

from a c r i t i c a l i t y sta n d p o in t in a f u l l y m oderated n eu tron f lu x .<br />

S e v e ra l n eu tron m u lt ip lic a t io n exp erim en ts w ith heat so u rce<br />

elem ents su p p ort t h is c o n c lu s io n (1 7 , 1 8 ). The ca p tu re and<br />

s c a t t e r in g c r o s s s e c t i o n s f o r 238 pu have n ot been s y s t e m a t ic a lly<br />

r e p o r t e d . The b e s t data are the r e s u lt s o f c a lc u l a t i o n s based on<br />

the o p t i c a l model (1 9 ).<br />

The absen ce o f data f o r 238pu n e ce s s a r y to make<br />

some sim p le , but v e ry q u e s t io n a b le , assu m p tion s. One assumes<br />

th a t the unknown c r o s s s e c t io n s are in m agnitude and b e h a v io r<br />

s im ila r to th o se o f r e la t e d near n u c l e i . With the e x c e p tio n<br />

o f f i s s i o n c r o s s s e c t io n s the b e h a v io r o f e l a s t i c , i n e l a s t i c<br />

and ca p tu re c r o s s s e c t io n s is p r o b a b ly r e a so n a b ly p r e d ic t a b le<br />

f o r n eu tron s above a few hundred k i l o v o l t s and are g e n e r a lly<br />

s m a ll.<br />

The absen ce o f r e l i a b l e n u c le a r d a ta f o r the p r i n c i p l e<br />

is o t o p e in BIFOLD and equ al u n c e r t a in t ie s f o r o th e r is o t o p e s<br />

demand a p ra g m a tic d e s ig n te c h n iq u e . Thus, f o r the p r o to ty p e<br />

o f BIFOLD we use a th re e group r e a c t o r c a lc u l a t i o n and the<br />

h om og en ization o f the c o r e . The 3 -e n e rg y groups averaged in<br />

a "h a rd " n eu tron spectrum and the c r o s s s e c t io n s o f the p r i n ­<br />

c i p l e is o t o p e s taken from a LASL ta b u la t io n f o r 238Pu (20)<br />

and ANL-5800 (21) f o r the o th e r c o n s t it u e n t s o f the c o re are<br />

shown in T able I I I . The n eu tron spectrum a r is in g in the f a s t<br />

f i s s i o n o f p r o d u c tio n grade 238Pu, is n ot known» We assume<br />

th a t the spectrum o f n eu tron s from f i s s i o n o f 239pu id e n t i c a l<br />

to th a t f o r p r o d u c tio n grade 23°Pu. As i l l u s t r a t e d below<br />

d i f f e r e n t n eu tron s p e c t r a s e r io u s l y a f f e c t the c r i t i c a l mass.


(<br />

TABLE III. 3-GROUP CROSS-SECTIONAL SET FOR A FAST-NEU TRON SPECTRUM AND USED FOR THE<br />

CRITICALITY CALCULATIONS <strong>OF</strong> BIFOLD SOURCE<br />

ISOTOPE<br />

ENERGY<br />

GROUP*<br />

( i )<br />

V<br />

° f<br />

va_£ о с 0 t r 0 i-*-i + l a i-*-i+2 ° i - i<br />

238pu 1 3.58 2.47 8.84 0.062 4.38 0.145 0.097 1.61<br />

2 3. 01 2.0 9 6.2 9 0. 210 6.18 0. 280 0.122 3.4 5<br />

3 2. 93 0.98 2.87 0.272 10 .30 0. 051 0 9.0 0<br />

239Pu<br />

O '<br />

О<br />

1 3.1 0 1.9 5 6.0 5 0 .1 0 4 .6 0.45 0.45 ------------<br />

2 2.98 1.7 5 5.21 0.12 6.0 0.5 0 ------------ ------------<br />

3 2.91 1 .8 0 5.24 0.35 10 .0 ------------ ------------ ------------<br />

1 _ _ _ _ _ __ _________ 0.020 1.2 5 0.303 _________ 0. 927<br />

2 ------------ ------------ — ------------ 3.52 0. 578 ------------ 2.925<br />

3 ------------ ------------ — ------------ 3. 59 0.344 ------------ 3. 284<br />

Fe 1 _________ _________ _________ 0.005 ‘ 2.0 0 0.600 0.1 00 ------------<br />

2 ------------ ------------ — 0.0 06 2.13 0.220 ------------ ------------<br />

3 ------------ ------------ — 0. 006 3-24 ------------ ------------ ------------<br />

*The Energy Spectrum per group was th a t e s t a b lis h e d f o r the LASL c r o s s - s e c t i o n a l se t in ANL-<br />

5800.<br />

ENERGY NEUTRON<br />

RANGE SPECTUM<br />

i (Mev)____________ (x)<br />

1 » - 1 . 3 5 0.575<br />

2 1 .3 5 - 0 .4 0.326<br />

3 0.4 -0 0.099<br />

СП<br />

00<br />

STUBBINS and WOLFE


I A E A - S M -1 7 0 /3 9 59<br />

N e v e r t h e le s s , we ju d g e th a t th e re is n ot g re a t u n c e r t a in ty<br />

in the n eu tron spectrum so i t is n ot a m ajor so u rce o f unc<br />

e r t a in t y in our c r i t i c a l i t y c a l c u l a t i o n s but our e x p e r ie n c e<br />

c a u tio n s us a g a in s t d is c o u n tin g i t .<br />

As a ch eck o f our th r e e -g r o u p f a s t r e a c t o r c a l c u l a t i o n s the<br />

c r i t i c a l m asses f o r both a bare c o re and a r e f l e c t e d c o r e were<br />

determ in ed w ith adequate c r o s s s e c t i o n s data and were w ith in<br />

f i v e p er ce n t o f the e x p e r im e n ta lly measured c r i t i c a l masses<br />

o f J e z e b e l (21) and Popsy ( 2 1 ) . two sm all f a s t r e a c t o r s . Conf<br />

ig u r a t io n s a p p lic a b le to BIFOLD w ith d i f f e r e n t arrangem ents o f<br />

h eat rem oval p e n e tr a t io n s and r e f l e c t o r s were a n alyzed to<br />

e v a lu a te the c r i t i c a l m asses. A summary is p r e se n te d in Table<br />

IV.<br />

The c r i t i c a l mass is the g o v e rn in g fe a t u r e in s e l e c t in g<br />

p o s s i b l e c o n f ig u r a t io n s f o r a p r a c t i c a l power so u rce s in c e the<br />

f u e l c o s t s are so g re a t f o r the man-made m a t e r ia ls . The s e l e c ­<br />

t i o n o f p r o d u c tio n grade 238pu as an 0x id e in molybdenum as a<br />

cerm et does n ot g iv e the s m a lle s t c r i t i c a l mass but i t a llo w s<br />

the demand power maximum to be about tw enty tim es the base<br />

power l e v e l . The f a c t o r o f tw enty is b e l ie v e d to be s i g n i f i c a n t<br />

in th a t i t g iv e s h ig h e r power than any p ro p o se d i s o t o p i c heat<br />

s o u rce and m atches a la r g e number o f p o s t u la t e d power needs f o r<br />

sp ace and undersea a p p lic a t io n s . The use o f the cerm et PMC,<br />

P lutonia-M olybdenum Cermet, is d ic t a t e d by th e therm al c o n ­<br />

d u c t i v i t y n e cessa ry , to meet the c r it é r iu m th a t the f u e l m e ltin g<br />

tem peratu re would n o t be reach ed i f one or more o f the h eat r e ­<br />

moval elem ents f a i l . A sm a lle r c o r e can be a c h ie v e d w ith<br />

plu ton iu m o x id e but th e maximum power is lim it e d to 60 k ilo w a t ts<br />

th erm al. A c o r e to p r o v id e a maximum o f a h a lf o f a megawatt<br />

as th e demand power is about 40 p er cen t la r g e r than the p r o t o ­<br />

type o f BIFOLD s p e c i f i e d in T able I.<br />

The s e l e c t i o n o f the tem peratu re at w hich th e h eat energy<br />

o f BIFOLD i s u sed , in our ca se the hot s id e o f the t h e r m o e le c t ­<br />

r i c c o n v e r t e r at 650°K, e s t a b lis h e s the tem peratu re a t w hich<br />

th e th erm al en ergy i s a c c e p te d by th e gas - c o n t r o l l e d h eat p ip e s .<br />

Heat p ip e s have th e advantage th a t th e h eat en ergy is t r a n s ­<br />

fe r r e d w ith a v e ry sm all therm al g r a d ie n t , so th e tem peratu re<br />

in the c o r e is n e a r ly the same as the h ot s id e o f the therm oe<br />

l e c t r i c ele m e n ts. The o p e r a t io n at h ig h e r power can be had<br />

w ith the same tem peratu re lim it s by in c r e a s in g the d iam eter o f<br />

th e h eat p ip e s t o p r o v id e f o r more h eat rem oval. The c o r e p a ra ­<br />

m eters are a d ju s te d to a ccou n t f o r th e g r e a te r p e n e tr a t io n s and<br />

an in c r e a s e in th e s i z e and c r i t i c a l mass o c c u r s .<br />

The i t e r a t i v e r e a c t o r p h y s ic s c a l c u l a t i o n r e s u lt s in a<br />

c r i t i c a l c o n f ig u r a t io n w hich i s s p e c i f i e d by a term c a lle d the<br />

" b u c k lin g " . The b u c k lin g sim u lta n e o u sly c h a r a c t e r iz e s the comp<br />

o s i t i o n o f th e c o r e in term s o f n u c le a r param eters and i t s<br />

g e o m e tr ic a l s i z e . The c o n s e r v a t io n o f n eu tron s is enhanced by<br />

the use o f a heavy m etal ja c k e t c o m p le te ly su rrou n d in g th e c o r e .<br />

T h is ja c k e t , c a l l e d the r e f l e c t o r , re tu rn s a p o r t io n o f the<br />

n eu tron s le a k in g away from a c o r e back to i t by n eu tron s s c a t ­<br />

t e r in g . We have used a r e f l e c t o r th ic k n e s s to maxim ize th e r e ­<br />

tu rn o f n eu tron s and m inim ized the c o r e s i z e and th e f u e l i n ­<br />

v e n to r y . The r e f l e c t o r th ic k n e s s s p e c i f i e d in T ab le I i s th a t


TABLE IV. CRITICALITY REQUIREMENTS <strong>OF</strong> DIFFERENT FORMS <strong>OF</strong> THE BIFOLD NUCLEAR POWER SOURCE<br />

Core Fuel Form<br />

C o n fig u r a tio n<br />

S o lid Sphere<br />

S o l id Sphere<br />

239 Pu M etal<br />

238 PuO^<br />

R igh t C y lin d e r 238pug,<br />

C y lin d e r ic a l Iron<br />

B lock With 1 -in c h 238puÛ2<br />

D iam eter Fuel Pins<br />

C y lin d e r ic a l Iron<br />

B lock With % -in ch 238pug„<br />

D iam eter Fuel Pins<br />

C r i t i c a l<br />

B u cklin g<br />

0.160 c m " 2<br />

0.0918<br />

0.0918<br />

0.0134<br />

0.0266<br />

Bare C r i t i c a l C r i t i c a l Mass<br />

Mass o f PuO? With I n f i n i t e<br />

R e f l e c t o r<br />

15 .4 kg<br />

20.3<br />

23.2<br />

19 0.0<br />

93. 0<br />

5.45 kg<br />

9.15<br />

1 5 .3 (R a d ia l<br />

R e f l e c t o r Only)<br />

Core Dim ensions<br />

Radius H eight<br />

4.3 8 cm<br />

5.94<br />

5.4 1 3 .4 cm<br />

H exagonal Fuel<br />

Elements With<br />

R e f l e c t o r<br />

238PuO?<br />

'2<br />

0.0660 31.8 17 .5 7.1 3 12.96<br />

H exagonal Fuel Pu02<br />

Elements With (801 238pu ) 0.0650 32 .4 19 .4 7.28 13 .26<br />

R e f l e c t o r (20% 239pu)<br />

H exagonal Fuel Pu02 as PMC<br />

Elements With (82 .5 1 Pu02) 0.0590 45 .0 27.5 8 .8 4 15.92<br />

R e f l e c t o r (17.5% Mo )<br />

(80% 238pu )<br />

(20% 239pu )<br />

o><br />

о<br />

STUBBINS and WOLFE


I A E A - S M -1 7 0 /3 9 61<br />

o f an i n f i n i t e r e f l e c t o r , i . e . , one f o r w hich an a d d it io n a l<br />

th ic k n e s s would n ot s i g n i f i c a n t l y im prove the f r a c t i o n o f n eu ­<br />

tro n s re tu rn e d to the c o r e .<br />

T ra n sfo rm a tio n from base power to more power by th e a d d it io n<br />

o f f i s s i o n power is a cco m p lish e d by changing the r e f l e c t o r p r o ­<br />

p e r t i e s by the r o t a t i o n o r in s e r t io n o f the c o n t r o l elem ents<br />

shown in F ig u re 1. The system is s u b c r i t i c a l w ith th e h ig h e s t<br />

lo s s r a te o f n eu tron s and becomes c r i t i c a l when enough n eu tron s<br />

are co n s e rv e d to s u s ta in the n eu tron ch a in r e a c t io n . The c o n ­<br />

t r o l elem ents a c t l i k e s h u tte r s f o r n eu tron s and are one o f the<br />

ways o f e f f e c t i v e l y c o n t r o l l i n g a f a s t r e a c t o r w hich i s n ot<br />

r e a d il y p o is o n e d ,a s are therm al r e a c to r s , w ith m a te r ia ls , such as<br />

cadm ium ,which a b sorb slow n e u tro n s. Removal o f f u e l or the<br />

s e p a r a tio n o f the c o r e p a r ts are o th e r means o f c o n t r o l l i n g<br />

c r i t i c a l i t y .<br />

V a r ia t io n s in BIFOLD Owing to U n certa in N u clear <strong>Data</strong><br />

The la c k o f data and u n c e r t a in t ie s in data were e n cou n tered<br />

in th e d e s ig n o f the p r o t o t y p ic BIFOLD and r e q u ir e d e stim a te s<br />

o f some q u a n t it ie s and the judgem ent o f th e b e s t data to be<br />

u sed in o t h e r s . In th e ca se s where data u n c e r t a in t ie s e x i s t we<br />

found i t im p ortan t t o e v a lu a te th e r e s u lt in g u n c e r t a in t ie s in<br />

the param eters o f BIFOLD.<br />

Im portant u n c e r ta in param eters are the c r o s s s e c t io n s f o r<br />

f i s s i o n , ca p tu re and e l a s t i c and i n e l a s t i c s c a t t e r in g ; the number<br />

o f n eu tron s p er f i s s i o n as a fu n c t io n on n eu tron e n erg y; and the<br />

f r a c t i o n o f d e la y e d n eu tron s p er f i s s i o n . The f i s s i o n n eutron<br />

en ergy spectrum f o r the p r i n c i p l e is o t o p e in BIFOLD, 238d,,<br />

na*<br />

assumed to be i d e n t i c a l to th a t f o r 2Pu and in the absence<br />

o f any data the same r e l a t i o n was taken f o r the d e la y e d n eu tron<br />

f r a c t i o n .<br />

We now o u t lin e the u n c e r t a in t ie s w hich we r e c o g n iz e as<br />

a r is in g from the p r e s e n t s t a t e on n u c le a r d a ta . As an i n t r o ­<br />

d u c tio n we w ish to p o in t to the i n i t i a l measurements w hich gave<br />

r i s e to the BIFOLD c o n c e p t , , £ 1 , 2 ) . In p la n n in g f o r the p r o c e s s in g<br />

o f k ilo g ra m q u a n t it ie s o f Pu an assessm ent o f c r i t i c a l i t y<br />

c o n t r o l was made. The lo r e th a t e v en -ev en heavy n u c le i would n ot<br />

have therm al f i s s i o n c r o s s s e c t i o n s was w e ll e s t a b lis h e d and i t<br />

was e a r ly assumed th a t 238pu w ould be v e ry much lik e 23°U.<br />

However, c a l c u l a t i o n s based on 238jjra n i um c r o s s s e c t io n s were<br />

used to gu id e p la n n in g even f o r n on -th erm a l system s in absen ce<br />

o f d a ta . But tb g r e was o th e r in fo rm a tio n about the e x p e cte d<br />

p r o p e r t ie s o f Pu and a t t e n t io n was brou gh t to i t . The le s s<br />

d i r e c t data were the s y s te m a tic s o f f i s s i o n and p a r t i c u l a r l y the<br />

dependence o f th e n eu tron in d u ced f i s s i o n c r o s s s e c t i o n at 3 MeV<br />

w hich as a fu n c t io n o f the param eter Z ^ '^ /A in c r e a s e s n e a r ly<br />

l i n e a r l y (1 0 ). Thus the f a s t f i s s i o n c r o s s s e c t io n s<br />

is la r g e r at 3 .0 MeV than 23^Pu and much la r g e r than th a t o f 23°U.<br />

Z is the atom ic number and A is the mass number o f the heavy<br />

is o t o p e . Subsequent f i s s i o n c r o s s s e c t i o n measurements ( 1 ,1 4 ,1 5 )<br />

v e r i f i e d the g r e a te r c r o s s s e c t i o n o f 2 3 8 P u . i t is s t i l l<br />

n e ce s s a r y to use le s s d i r e c t pdata to p r o ce e d w ith n u c le a r d e ­<br />

sig n s o f a l l but 235U and Pu system s.


62 STUBBINS and WOLFE<br />

A. E f f e c t o f x )(E n )<br />

The s in g le n u c le a r param eter th a t most in flu e n c e s the<br />

e stim a te s o f the c r i t i c a l mass is the num ber_of n eu tron s r e ­<br />

le a s e d per f i s s i o n . This q u a n t it y , c a l l e d xD ( n u - b a r ) , depends<br />

upon the en ergy o f th e n eu tron ca u sin g f i s s i o n and has been o f<br />

im portan ce to us in a n a ly se s f o r c r i t i c a l i t y c o n t r o l o f p r o ­<br />

c e s s i n g , h a n d lin g , s t o r in g and_using 238pu _ j n t he absen ce<br />

o f r e l i a b l e data we e stim a te d z ? ( E n ) f o r therm al n eu tron s and<br />

as a fu n c t io n o f the n eu tron e n erg y. We b e l ie v e th a t (E) is<br />

la r g e r than the v a ju e s in common use and we were en cou raged by<br />

a measurement o f Î5 (th erm al) (22) w hich matched our p r e d i c t io n .<br />

о X R<br />

The q u a n t it y , XJ , f o r Pu has been r e p o r te d in two se p a ­<br />

r a te measurements f o r n eu tron s from sp ontaneous f i s s i o n (23,<br />

2 4 ). I t s dependence on n eu tron en ergy has n ot been r e p o r te d<br />

but two e stim a te s have been made and the average o f them is in<br />

common u se . They are<br />

= 2.8 8 + 0.097 En R e fe re n ce (19)<br />

z ) = 2.7 5 + 0.118 En R e fe re n ce (25)<br />

and t h e ir average i s z ) = 2.81 + 0.107 E . E is the n eutron<br />

en ergy in MeV. n<br />

In se e k in g the b e s t v a lu e s o f z^ C En ) we c o n s id e r e d r e p o r t s<br />

o f f i s s i o n s y s te m a tic s r e la t e d to n u c le a r tem perature and e x ­<br />

c i t a t i o n o f f i s s i o n fragm en ts in c lu d in g a number which r e la t e<br />

the n eu tron r e le a s e w ith the f i s s i o n fragm ent mass d i s t r i b u t i o n<br />

( 2 6 ,2 7 ,2 8 ) . Our c a lc u l a t i o n s f o r 238pu f rom the a n a ly s is o f<br />

Bondarenko, e t a l . (2 6) in d ic a t e d a h ig h e r v a lu e f o r therm al<br />

f i s s i o n and a s te e p e r s lo p e than seen in measurements o f o th e r<br />

is o t o p e s . We su g g e st<br />

Z> = 2.895 + 0 .1 29 Ед<br />

as a b e t t e r e stim a te f o r 238pu f a st n eu tron f i s s i o n (2 9 ).<br />

Our c a lc u la t e d TÙ (th erm al) = 2.8 95 is w ith in two p er cen t<br />

o f the r e p o r te d measurement (2 2 ). On the b a s is o f t h is a g r e e ­<br />

ment we have u sed our (ER) in our r e a c t o r a n a ly s is o f BIFOLD,<br />

and, in d e e d , we e x p e ct ex p e rim e n ta l c o n fir m a tio n when the<br />

measurements are made. F igu re 3 shows our c a l c u l a t i o n o f 238pu<br />

and the r e p o r t e d (En ) f o r 233U, 235ц an(j 239pu<<br />

The im portan ce o f x ) (En) in d eterm in in g the c r i t i c a l s iz e<br />

is i l l u s t r a t e d by T able V. T able V shows the c r i t i c a l mass<br />

f o r bare sp h eres o f p r o d u c tio n grade 238pu as an o x id e c a lc u la t e d<br />

u sin g -¿> (En ) o f th re e d i f f e r e n t d e p e n d e n ce s, A )_ou r c a l c u l a t i o n ,<br />

b) the £5 (En ) in g e n e r a l use f o r 238pUj and C) z> (E^) f o r 239pu><br />

(2 2 ). The r e l a t i o n betw een b u c k lin g , b 2, and the dim ension s<br />

f o r a bare c y l i n d r i c a l r e a c t o r is<br />

B2 = Æ ) 2 + (I--*.0-5.)2 H is the c y lin d e r<br />

H R h e ig h t and R i t s<br />

r a d i u s .


IA E A -S M -1 7 0 /3 9 63<br />

INCIDENT NEUTRON ENERGY (E„) in MeV<br />

F I G .3 . A v e r a g e n eu tron n u m b e r, v (E n ) . a s a fu n c tio n o f e n e r g y o f th e n e u tro n -in d u c in g fission fo r 238Pu.<br />

( T h e p o in ts sh ow n o n th e ^ P u c u r v e are based o n c a lc u la t io n s and n o t e x p e r im e n t a l.)<br />

A sm all d e c re a s e in b u c k lin g in c r e a s e s the dim ension s which add<br />

a s h e ll o f m a te r ia l in a manner to most e f f e c t i v e l y in c r e a s e<br />

th e c r i t i c a l mass.<br />

B_. E f f e c t o f N eutron Spectrum<br />

The en ergy spectrum o f prompt n eu tron s r e le a s e d in the<br />

f i s s i o n o f ¿ 38pu has n o t b een r e p o r t e d . U s u a lly the spectrum<br />

o f 239pu is u sed and p r o b a b ly is n o t f a r from the spectrum to<br />

be found f o r 23°Pu but in the ab sen ce o f d a ta the knowledge o f<br />

the e f f e c t o f spectrum is im p o rta n t. I n i t i a l l y c a lc u l a t i o n s<br />

were made o f the e f f e c t o f d i f f e r e n t s p e c t r a in s t u d ie s f o r the<br />

c r i t i c a l i t y c o n t r o l o f 238pu by Monte C a rlo c a l c u l a t i o n s (1 3 ).


64 STUBBINS and WOLFE<br />

T A B L E V . E F F E C T <strong>OF</strong> v (En) ON C R IT IC A L MASS<br />

A- t ) (E ) = 2. 895 + 0.1 29 En<br />

—*— n n<br />

B_. X> (En ) = 2.8 10 + 0.107 En<br />

— ^ n) = 2-880 + 0.110 En<br />

Neutron Energy Spectrum<br />

Group Range F r a c tio n<br />

(MeV)<br />

1 ° e - 1 .3 5 0.575<br />

2 1 .3 5 - 0 .4 0.326<br />

3 0 . 4 - 0 0.099<br />

Our Estim ate f o r 2^8pu<br />

In G eneral Use f o r<br />

238pu<br />

R é f. (2 1) f o r 239Pu<br />

Case A Case В Case<br />

v(E n )<br />

3.5 8 3. 03 3.10<br />

3. 01 2.91 2.98<br />

2. 93 2.83 2.91<br />

(B u ck lin g) = B2<br />

0.0488 c m '2 0.0424 0.441<br />

Bare C r i t i c a l Mass<br />

4 5 .0 Kg 6 1 .0 56.3<br />

In o r d e r to e v a lu a te the e f f e c t o f u n c e r t a in t ie s in 238Pu<br />

n eu tron s p e c t r a in the param eters o f BIFOLD we used th re e d i f ­<br />

fe r e n t s p e c t r a in the c a l c u l a t i o n o f the c r i t i c a l mass. The<br />

s p e c tr a are shown in T able VI and are seen to be the 2^9pu<br />

spectrum in use (21) and two m o d if ic a t io n s o f i t w hich s h i f t<br />

the spectrum t o low er e n e r g ie s . This s h i f t is seen in Table<br />

VI to in c r e a s e the c r i t i c a l mass and is e x p e cte d f o r a p r e ­<br />

d om in a te ly 238Pu c o r e s in c e the f i s s i o n c r o s s s e c t io n becomes<br />

sm a lle r as the n eu tron en ergy d e c r e a s e s and the ca p tu re c r o s s<br />

s e c t i o n in c r e a s e s . We do n ot b e l ie v e th a t the s p e c t r a we used<br />

in our e a r l i e r Monte C arlo c a lc u l a t i o n s and a ls o f o r t h is study<br />

c o rr e sp o n d s to 23°Pu but were chosen to p r o v id e an e v a lu a t io n o f<br />

the e f f e c t .<br />

In a r e c e n t ly com p leted measurement o f the n eu tron energy<br />

spectrum in 2^9pu p h o t o f i s s i o n near th r e s h o ld (30) we found<br />

th a t th e n eu tron en ergy spectrum co rre sp o n d s to th a t o f therm al<br />

n eu tron f i s s i o n o f 23” pu . We e x p e ct to make s im ila r m easurements<br />

o f 238pu and through them we w i l l g a in some in s ig h t in to<br />

i t s spectrum w hich can be a p p lie d to the s p e c i f i c a t i o n o f BIFOLD.


I A E A - S M -1 7 0 /3 9 65<br />

T A B L E VI. E F F E C T O F N E U T R O N E N E R G Y S P E C T R A O N T H E C R I T I C A L<br />

M A S S O F B I F O L D<br />

Neutron<br />

Energy<br />

Group<br />

Energy<br />

Range<br />

Fraction of Neutrons in Group (a)<br />

^ (b)<br />

2CA 2LB Ж<br />

OO - 1 . 3 5 MeV 0.575 0. 538 0.402<br />

L.35 - 0.4 0.326 0. 333 0.430<br />

3.4 - 0 0.099 0.129 0.168<br />

Buckling 0.0488 0.0471 0. 0462<br />

Critical Mass<br />

of PuO-,(c) 45.0 kg 50.0 51.8<br />

Per Cent<br />

Change 11.1 15.1<br />

(a) The neutron fractions and do not correspond to<br />

238pu w hich has not been reported. They were only cnosento<br />

evaluate spectral effects.<br />

239<br />

(b) This column corresponds to Pu neutron spectrum in use<br />

(21).<br />

(c) The critical mass is for a non-reflected minimum right<br />

circular cylindrical BIFOLD core.<br />

C_. Delayed Neutron Fraction<br />

Another unknown quantity which is fundamental for nuclear<br />

design is the fraction of neutrons released in fission which are<br />

delayed. The control of a critical reactor depends on the time<br />

interval for all the neutrons of one generation to be replaced.<br />

The small number of neutrons are delayed because they are released<br />

coincident with the beta decay of a neutron rich fission<br />

fragment. The neutrons follow the radioactive half life of the<br />

fragment. The delayed neutrons make the effective generation<br />

time several seconds rather than a few microseconds or less.<br />

The control of a fast reactor is governed by the generation time<br />

in a crucial way.<br />

The delayed neutron fraction is called beta by reactor<br />

physicists. For fast and thermal neutron fission of 239pu the<br />

delayed neutron fraction is ß = 0.0026 - 0.0002 (21) and the


6 6 STUBBINS and WOLFE<br />

average time of retardation is 1 4 .4 seconds [ 3 1 ) . We use the<br />

data for 239pu the absence of data for 238pu an(j 234ц an¿<br />

recognize it as a possibly serious assumption.<br />

Fabrication and Testing<br />

The BIFOLD source is a compact fast reactor as well as an<br />

isotopic heat source. For small compact power sources with the<br />

energy conversion devices coupled to the core by heat pipes<br />

the entire operational testing and system component verification<br />

for reactor operation can be done with auxilliary heating<br />

elements rather than reactor operation. For base power<br />

all tests are completed with isotopic heat. Analysis of the<br />

advantage of compact nuclear space power systems by Breitwieser<br />

(3 2 ) is applicable to BIFOLD.<br />

By splitting the core into halves the reactor aspects of<br />

BIFOLD can be completely investigated with a split-table critical<br />

facility. Thus, the induced radioactivity and fission<br />

fragment buildup from reactor operation is eliminated since all<br />

reactor tests can be at zero power. A second advantage of a<br />

split core is the redundancy in BIFOLD as a isotopic heat source<br />

for use. Splitting also provides for separation for storage,<br />

shipment and handling prior to assembly for mission purposes<br />

requiring demand power levels. The criticality control of<br />

fabrication and handling are minimized by parts which are so<br />

much smaller than the critical configuration. A third advantage<br />

is the possibility of using the disassembly of BIFOLD into<br />

its halves as an emergency reactor shut-down (scram) precedure.<br />

The advantages of BIFOLD with a split core and external<br />

electrical conversion devices which permits all nuclear and<br />

non-nuclear testing to be done without the complications of<br />

reactor power operation are most clearly realized when the cost<br />

of a power system development program is considered. The<br />

modular fabrication of fuel elements and heat pipes contributes<br />

to the economy. The importance of reliable nuclear data is<br />

clearly shown by the cost of design latitudes required to a c ­<br />

comodate the ranges of parameters of BIFOLD that arise in data<br />

uncertainties at this time.<br />

It is clear from Table V and Table VI that a significant<br />

misjudgement in critical size can result from the absence of<br />

reliable nuclear data. Were such to occur the redesign of the<br />

nuclear power system would yield different fuel element size<br />

and loading and general dimensional changes of the entire unit.<br />

The economic advantage that we believe BIFOLD has over other<br />

energy sources for applications with time varying power demands<br />

would be greatly diminished if refabrication would be required.<br />

Plans for the Resolution of <strong>Nuclear</strong> <strong>Data</strong> Uncertainties<br />

A. 0 ( E n )<br />

The measurement of "0(E) is planned by using time-of-<br />

flight neutrons to establish En and detecting the associated<br />

fission event and one or more fission neutrons in coincidence<br />

with the fission. A statistical analysis of the single, double


<strong>IAEA</strong>-SM-17 0/39 67<br />

and triple neutron coincidences can yield the average number of<br />

neutrons released per fission by the energetic neutron. A<br />

neutron fission measurement at the single high energy, for<br />

instance E = 2.4 MeV with neutrons from the 2H ( 2H,n) He reaction<br />

or En = 14.0 MeV from Зн(2н,п)4не, will provide a point<br />

to be associated with the thermal neutron measurement (22) to<br />

remove considerable uncertainty in x ) (En ) for the isotopes of<br />

interest.<br />

B. Neutron Energy Spectrum<br />

The measurement of the energy spectrum of neutrons released<br />

in fission can most readily be done by continuing the photofission<br />

measurements completed for 239pu (30) to 238pu an(j<br />

2 3 4 ^ and, indeed, this is planned. The assumption that the<br />

spectrum found corresponds to that for neutron induced fission<br />

of the isotope will introduce an uncertainty and the dependence<br />

of the spectrum on the energy of the fast neutrons inducing<br />

fission will not be resolved in photofission studies.<br />

C_. Delayed Neutrons<br />

The fraction of neutrons which are delayed and the effective<br />

half life can only be measured when a critical assembly<br />

of 238pu is formed. This will be an early quantity sought from<br />

the first reactor tests of BIFOLD. However, a study of the<br />

fission fragments of the principle isotope can allow an important<br />

estimate of beta by identifying the precursors of the<br />

delayed neutrons. The radio chemical study of 238pu fission<br />

fragments will be useful.<br />

D_. Cross Sections<br />

The measurements of capture, elastic and inelastic scattering<br />

cross sections are far more difficult than the measurement<br />

of the fission cross section which has such a distinctive<br />

signature. Careful experiments will have to seek reliable data.<br />

Conclusions and Summary<br />

BIFOLD is a compact fast reactor which matches time-de-<br />

pendent energy needs with the reliability of an isotopic heat<br />

source for base power needs. Considerable uncertainties in the<br />

cross sections and other nuclear data exist and strongly influence<br />

estimates of BIFOLD's size and cost. BIFOLD has been<br />

studied by combining nuclear data of the principal isotopes<br />

with the systematics of the physics of fission to yield, as far<br />

as possible, consistent data for design.<br />

A continuing program of nuclear data acquisition for 238Pu<br />

and 234u is required. The data acquisition must embrace m i c r o ­<br />

scopic measurements to give cross sections and macroscopic<br />

measurements with critical assemblies to yield delayed neutron<br />

fractions and similar reactor physics quantities. The pursuit<br />

of the BIFOLD concept must include data acquisition and, indeed,<br />

BIFOLD itself can contribute considerable data.


6 8 STUBBINS and WOLFE<br />

The economics of special purpose power systems for space<br />

and elsewhere are favored in BIFOLD because of its energy<br />

producing flexibility and the prospects of low development<br />

costs compared to other power systems.<br />

The very activity of providing new and improving the r e ­<br />

liability and range of present nuclear data will yield new concepts<br />

in nuclear and other technologies. The origin of the<br />

BIFOLD concept through nuclear data acquisition efforts is<br />

evidence for this expectation.<br />

References<br />

(1) W. F. Stubbins, D. M. Barton and F. D. Lonadier, Nucl.<br />

Sei. Enging, 25 (1966)377.<br />

(2) W. F. Stubbins, A BIFOLD <strong>Nuclear</strong> Power Source, USAEC Report.<br />

MLM 1357, June 15, 1967, Declassified March 1970.<br />

(3) R. A. Wolfe and W. F. Stubbins, A BIFOLD <strong>Nuclear</strong> Power<br />

Source, USAEC Report MLM 1982, November 17, 1972.<br />

(4) W. F. Stubbins and R. A. Wolfe, BIFOLD <strong>Nuclear</strong> Power Source,<br />

To be published.<br />

(5) W. F. Stubbins and R. A. Wolfe, The BIFOLD <strong>Nuclear</strong> Power<br />

Source, Invited Paper, Am. Nucl. Soc. 19th Annual Meeting,<br />

June 10-15, 1973, Chicago, Illinois.<br />

(6) G. Y. Eastman, The Heat pipe - A Progress Report, Fourth<br />

Intersociety Energy Conversion Engineering Conference,<br />

Washington, D. C. September, 1969.<br />

(7) W. W. Smith, D. R. Rogers and G. L. Silver, Plutonium-238<br />

Isotopic Fuel Form <strong>Data</strong> Sheets, USAEC Report MLM 1691 (1971)<br />

(8) J. D. Hastings and W. W. Strohm, Jour. Inorganic and Nucl.<br />

Chem., 34. (1972) 25.<br />

(9) W. M. Rutherford, G. N. Huffman and D. L. Coffey, Nucl.<br />

Applications, 3^ (1967)366.<br />

(10) R. L. Henkel, Fission by Fast Neutrons, Fast Neutron Physics<br />

Part I I . (J. B. Marion and J. L. Fowler, Eds.) Interscience<br />

Publishers, New York (1963)<br />

(11) W. F. Stubbins, An Interim Report and Evaluation of the<br />

Critical Mass of Plutonium-238 Fast Neutron Assemblies,<br />

July 21, 1964, Unpublished.<br />

(12) L. L. Carter, Physics Research Quaterly Report, July-Sept.<br />

1964, USAEC Report HW-84369 (1964).<br />

(13) R. A. Wolfe, The <strong>Nuclear</strong> Criticality Safety Aspects of<br />

Plutonium-238, Nucl. Appl. and Tech. Aug (1970) 9.<br />

(14) M. G. Silbert, Fission Cross Section of Plutonium-238<br />

from Persimmon, USAEC Report LASL-4108-MS (1969).


I A E A - S M -1 7 0 /3 9 69<br />

(15) W. F. Stubbins, C. D. Bowman, G. F. Auchampaugh and M. S.<br />

Coops, Phys. Rev. 154 (1967) 1111.<br />

(16) E. K. Hyde, The <strong>Nuclear</strong> Properties of Heavy Elements. III.<br />

Prentice-Hall, New Jersey (196'4).<br />

(17) R. A. Wolfe and W. F. Stubbins, Subcritical Neutron<br />

Multiplication Experiments with Four S N A P - 19B (IRHS) Heat<br />

Sources Containing Plutonium-238, USAEC Report MLM 1523<br />

(1969).<br />

(18) R. A. Wolfe and D. A. Edling, Subcritical Neutron Multiplication<br />

Experiments with SNAP-19C-2 and SNAP 19B Heat<br />

Sources Containing Plutonium-238, USAEC Report MLM-1416<br />

(1967).<br />

244 238<br />

(19) A. Prince, Neutron Cross Sections for Cm and Pu ,<br />

USAEC Report GEMP-411 (1966).<br />

(20) 16 Group 238Pu Cross Sections Compiled at LASL, Unpublished,<br />

Private Communication (1969).<br />

(21) Reactor Physics Constants, USAEC Report ANL-5800 (1963).<br />

(22) A. H. Jaffey and J. L. Lerner, Nucl. Phys., A145 (1970)1.<br />

(23) D. A. Hicks, J. Ise and R. V. Pyle, Phys. Rev. 101 (1956)<br />

1016.<br />

(24) W. W. T. Crane, G. H. Higgins and H. R. Bowman, Phys. Rev.<br />

101 (1956)1804.<br />

T70<br />

(25) Ç. L. Dunford, Evaluated Neutron Cross Section for Pu and<br />

244Cm, USAEC Report AI65190 (1965).<br />

(26) !• I- Bondarenko, D. B. Kuzminov, L. S. Kutsageva, L. I.<br />

Prokhorova and G. N. Smirenkin, United Nations Conf. on<br />

Peaceful Uses of Atomic Energy, Geneva, ( 1958)p . 353.<br />

(27) R. B. Leachman, Phys. Rev. 101 (1955) 1005.<br />

(28) J. Terrell, Phys. Rev. 1_08 (1957) 783.<br />

(29) R. A. Wolfe and W. F. Stubbins, An Estimate of "v(E_) for<br />

238pu. (To be published).<br />

(30) W. F. Stubbins, The Neutron Energy Spectrum in 23®Pu<br />

Photofission Near Threshold. Bulletin Am. Phys. Society,<br />

Washington D. C. Meeting, April 23-26, 1973, and to<br />

be published.<br />

(31) A. M. Weinberg and E. P. Wigner, The Physical Theory of<br />

Neutron Chain R e actors. Univ. of Chicago Press, Chicago,<br />

111. (1958).<br />

(32) R. Breitwieser, An Out-of-Core Thermonic-Convertor System<br />

for <strong>Nuclear</strong> Space Power, Third International Conference<br />

on Thermonic Electrical Power Generation, Julich, Germany,<br />

June 5-9, 1972, also NASA Tech. Memo. TMX-68049.(1972).


I A E A - S M -1 7 0 /5 8<br />

A STUDY <strong>OF</strong> LONG-TERM HEAT GENERATION<br />

IN NUCLEAR BY-PRODUCTS<br />

FROM LWR AND LMFBR SYSTEMS<br />

J. A. ANGELO, Jr., R.G. POST,<br />

F.E. HASKIN, C. LEWIS<br />

University of Arizona, Tucson, Arizona, United States of America<br />

Abstract<br />

A S T U D Y <strong>OF</strong> L O N G -T E R M H E A T G ENERATION IN NUCLEAR B Y -P R O D U C T S FROM LWR A N D LMFBR SY S T E M S .<br />

T h e r m a l ou tpu ts o f h i g h - le v e l r a d io a c t iv e b y -p r o d u c ts fr o m b o th a 1 0 0 0 -M W (e ) r e f e r e n c e LW R and a .<br />

1 0 0 0 -M W (e ) r e f e r e n c e LMFBR w e re c a lc u la t e d fo r c o o lin g tim e s ra n g in g fr o m o n e y e a r t o o n e thousand y e a r s.<br />

Both g r a p h ic a l and ta bu lar re p re se n ta tio n s o f th e d a ta are u s e fu l in a w id e v a r ie ty o f lo n g - r a n g e b y -p r o d u c t<br />

m a n a g e m e n t stu d ies.<br />

A r e la t iv e ly fa st and s im p le c o m p u te r c o d e , R A D E C , w as d e v e lo p e d at th e U n iv ersity t o p e r fo rm th e<br />

b u lk o f th e c o m p u ta tio n s . E x c e lle n t a g r e e m e n t was o b ta in e d w ith th e m o r e e x te n s iv e ORIGEN c o d e d e v e lo p e d<br />

at O a k R id g e N a tio n a l L a b ora tory .<br />

I n - c o r e e ffe c t s o f fissio n p r o d u c t tra n sm u ta tion and a c t in id e e le m e n t b u ild -u p w e re in c lu d e d in th e<br />

c o m p u ta tio n s and w e re fou n d t o b e s ig n ific a n t . T h e fo r m e r e f f e c t c a n a c c o u n t for as m u c h as 2 5 per c e n t o f<br />

th e b y -p r o d u c t a fterh ea t du rin g th e first d e c a d e o f c o o lin g p r im a r ily d u e to th e p r o d u c tio n o f ш C s in n eu tron<br />

absorp tio n by th e fa ir ly abu n d an t fissio n p r o d u c t 133C s. H ea t g e n e r a tio n ra tes for LWR and LMFBR b y -p r o d u c ts<br />

are c o m p a r a b le du rin g th e first cen tu ry o f c o o lin g but d iv e r g e ra p id ly th e re a fte r w ith th e a c t in id e e le m e n ts<br />

p r e d o m in a tin g a fter 1 20 y e a r s fo r th e LMFBR and a fter 2 2 5 y ea rs for th e LWR. D e t a ile d , t im e - d e p e n d e n t an aly ses<br />

o f th e m o r e th e r m a lly s ig n ific a n t fissio n p rodu cts and a c t in id e e le m e n t s w e re c a lc u la t e d and p lo tte d .<br />

One of the most significant problems facing the world's expanding<br />

nuclear power .industry is the safe and economic management of the<br />

high-level radioisotopes generated by nuclear power reactors and separated<br />

in the reprocessing of spent reactor fuels. These by-products contain<br />

radioisotopes which decay so slowly that they must be controlled for<br />

hundreds to thousands of years. One method that is currently being<br />

considered in the United States is permanent removal from the biosphere<br />

by storage in deep geologic formations. Geologic storage [ 1, 2] includes<br />

excavation of a deep cavity, filling with radioactive material, sealing and<br />

allowing melting of the material and the surroundings for a short distance.<br />

The extent of melting and the time required to reach the m a x i m u m radius<br />

requires detailed heat transfer analyses. Most other schemes for m a n a g e ­<br />

ment of radioactive by-products also require heat transfer calculations.<br />

These thermal analyses [ 3] require the development of detailed, time-<br />

dependent heat generation data for the radioisotopes formed in burning<br />

advanced reactor fuels. In addition to heat transfer studies concerned with<br />

permanent storage concepts, the contribution of a particular fission product<br />

or actinide nuclide to the total thermal power output of these high-level<br />

radioactive materials is frequently required in performing by-product<br />

management optimization studies. These studies, for example, m a y be<br />

concerned with reprocessing procedures, by-product thermal applications,<br />

or selective isotope recovery concepts.<br />

71


72 AN GELO e t a l.<br />

Since the developm ent of the first nuclear rea ctor, engineering design<br />

has requ ired evaluation and prediction of the heat generated by the ra d io ­<br />

active by-p rod u cts of fissio n as functions of tim e [ 4] . Since then, many<br />

calculations have been made to evaluate therm al pow er output as a function<br />

of coolin g tim e. A lm ost a ll of these past efforts, including sev era l subject<br />

to wide use [ 5 -7 ], made one or both of two m a jor approxim ations. The<br />

fir s t is to n eglect neutron capture by the fission product n uclides during<br />

irradiation . The secon d approxim ation om its the contribution of the tran s-<br />

plutonium actinides. The e r r o r s introduced w ere not readily apparent<br />

because the m ajority of e a rlie r decay heat studies w ere con cern ed with<br />

the first year or so of coolin g, follow in g discharge of the spent fuel from<br />

the re a cto r. It is only recen tly, with high burn-ups and lon g -term ra d ioactive<br />

b y-p rod u ct management, that isotop es from nuclear transm utation<br />

during irradiation and the actinide nuclides have becom e im portant to heat<br />

generation.<br />

A recen t study [ 8] has shown that by neglecting the p roce ss of nuclear<br />

transm utation fo r caesiu m [ 133Cs(n, y) 134Cs] the fission product heat<br />

generation rate from a typical advanced design LW R could be underestim ated<br />

by as much as 2 5% during the fir s t decade of decay. The 133Cs isotope is a<br />

fa irly abundant fission product in the therm al fission of 235U (approxim ately<br />

six atom s p er one hundred atom s fission ed) and has a fa irly large therm al<br />

capture cro s s -s e ctio n (approxim ately forty barn s). The transmuted<br />

population of 134Cs in discharged therm al rea ctor fuel is much higher than<br />

anticipated even by the m ore recen t of these studies [ 7 ].<br />

The contribution of the actinide nuclides to the overa ll heat generation<br />

rate of radioactive by-p rod u cts has a lso been neglected in the m ajority of<br />

previou s decay heat studies. R ecently, calculations show [ 8] that the<br />

actinide n uclides contained in spent fuel from typical LWR or LM FBR system s<br />

are significant heat gen erators after about the first decade or two of cooling.<br />

T hese actinide nuclides dominate the LM FBR spent fuel therm al pow er output<br />

after approxim ately one century of coolin g and the LWR after about two<br />

centuries of coolin g.<br />

T o p erm it com p arison with p reviou s studies [ 1, 9 ], this study ch ose<br />

the nuclear by-p rod u cts from two represen tative rea ctors: a lOOO-MW(e)<br />

referen ce LW R anda lOOO-MW(e) referen ce LM FB R . Design and perform an ce<br />

TA B LE I. LWR DESIGN AND PERFORM ANCE CHARACTERISTICS [10]<br />

F u e l fo r m : O x id e p e lle t s<br />

P ow er :<br />

T h e r m a l e f f i c i e n c y :<br />

C o r e :<br />

A v e r a g e s p e c i f ic p o w e r<br />

B urn-up<br />

C h a rg e (U )<br />

E n r ic h m e n tf^ U )<br />

R e fu e llin g in te r v a l<br />

R e fu e llin g fr a c tio n<br />

3 0 8 3 M W (t h e r m a l)<br />

3 5 .4 %<br />

3 4 . 8 M W /t<br />

3 3 0 0 0 M W d /t<br />

8 8 . 6 t<br />

3 .3 °Jo<br />

~ 3 6 5 fu ll p ow er days<br />

1 /3


I A E A - S M -1 7 0 /5 8 73<br />

T A B L E II. L M F B R D E S I G N A N D P E R F O R M A N C E C H A R A C T E R I S T I C S [10]<br />

F u e l fo r m :<br />

Pow er :<br />

T h e r m a l e f f i c i e n c y :<br />

C o r e :<br />

A v e r a g e s p e c i f ic p o w e r<br />

B urn-up<br />

C h a rg e (U + Pu)<br />

E n rich m en t ( a 9Pu)<br />

R e fu e llin g in te r v a l<br />

R e fu e llin g fr a c t io n<br />

A x ia l b la n k e t:<br />

A v e r a g e s p e c i f ic p o w e r<br />

B urn -u p<br />

C h a rg e (U )<br />

E n rich m en t ( ^ U )<br />

R e fu e llin g in te r v a l<br />

R e fu e llin g fr a c tio n<br />

R a d ia l b la n k e t:<br />

A v e r a g e s p e c i f ic p ow er<br />

B urn -u p<br />

C h a rg e (U )<br />

E n rich m en t ( ^ U )<br />

R e fu e llin g in te r v a l<br />

R e fu e llin g fr a c t io n<br />

O x id e p e lle ts<br />

2 5 0 0 M W (th e r m a l)<br />

40%<br />

175 M W /t<br />

8 0 0 0 0 M W /t<br />

1 2 . 6 t<br />

1 5 .6 %<br />

153 fu ll p o w e r days<br />

1 /3<br />

5 . 5 M W /t<br />

2 5 0 0 M W d /t<br />

7 .3 2 t<br />

0 .3 %<br />

153 fu ll p o w e r days<br />

1 /3<br />

10 M W /t<br />

8 1 0 0 M W d /t<br />

2 6 .7 t<br />

1 .9 6 %<br />

1 53 fu ll p ow er d ays<br />

- 3 /1 6<br />

TABLE III. TH E RM A LLY SIGNIFICANT FISSION PRODUCT<br />

NUCLIDES IN T Y P IC A L ADVANCED LW R AND LM FBR SPENT<br />

FUEL (1 T O 1000 YEARS COOLING)<br />

8 5 Kr 125 Sb 14 7Pm<br />

9 0 S r / 9°Y * 125mTe 1 5 1 Sm<br />

9 5 Zr 1 2 6 Sb 15 2и Eu<br />

95Nb 13 4Cs Eu<br />

99TC 13 7C s /137mBa* 1 5 5 17 Eu<br />

10 6R u /106Rh* 14 4C e /14 4P r*<br />

S h ort-lived daughter


74 A N GELO e t a l.<br />

TABLE IV. TH E RM A LLY SIGNIFICANT ACTINIDE NUCLIDES<br />

IN T Y P IC A L ADVANCED LWR AND LM FBR SPENT FUEL<br />

(1 T O 1000 years cooling)<br />

244Cm 242PU 237Np<br />

243c* 241Pu 238u<br />

242Cm<br />

243aW23V<br />

242m. /242. *<br />

Âm/ Am<br />

2 4 1 a Am<br />

* S h ort-lived daughter<br />

240 Pu<br />

2 36ц<br />

239- Pu 235U<br />

238 Pu 234U<br />

236_ Pu 232ü<br />

ch a ra cteristics fo r these re a cto rs are displayed in T ables I and II<br />

resp ectiv ely . Extensive tim e-dependent heat generation rate data have<br />

been com puted, using the ORIGEN and RADEC com puter codes fo r nuclear<br />

by-p rod u cts fro m these two re feren ce re a cto rs. The ORIGEN isotope<br />

generation and depletion code was developed at Oak Ridge National<br />

L aboratory. T h eir calculations of the isotop ic changes that took place<br />

in the LWR and LM FBR nuclear fu els fo r an exposure of 33 000 M W d/t<br />

w ere used [ 10] . The RADEC com puter code was developed at the U niversity<br />

o f A rizon a to calcu late extensive heat generation rate data as a function of<br />

coolin g tim e fo r all fission product and actinide nuclides with significant<br />

heat generation (see T ables III and IV). The coolin g ranges from one to<br />

one thousand y e a rs. Using data calculated by ORIGEN at ORNL and<br />

rep orted by them [ 9] as its initial conditions, RADEC com puted the tim e-<br />

varying populations o f all appropriate b y-p rod u ct nuclides, determ ined the<br />

heat generation rate associa ted with each particular isotope, com puted a<br />

total therm al pow er output, and finally com puted the fraction al decay<br />

heat contribution fo r each therm ally significant by-p rod u ct nuclide.<br />

Since the actual actinide nuclide population in re p ro ce ssin g by-p rod u cts<br />

is extrem ely sen sitive to re p ro ce ssin g efficien cies and techniques, the<br />

actinide nuclide heat generation was treated separately fro m the fission<br />

product heat generation. In these com putations it was assum ed that 0. 5%<br />

of the uranium and 0. 5% of the plutonium presen t in the discharged rea ctor<br />

fuel appeared in the sp en t-fu el re p ro ce ssin g b y -p rod u cts. The contribution<br />

of each th erm ally significant nuclide as the fraction of the total fission<br />

product therm al p ow er output or the total actinide therm al pow er output<br />

as a function of decay tim e can be used in optim ization studies involving<br />

rep ro ce ssin g p roced u res, b y -p rod u ct therm al applications, or perm anent<br />

storage con cep ts.


I A E A - S M -17 0 /5 8 75<br />

T A B L E V. T O T A L H E A T G E N E R A T I O N R A T E F O R N U C L E A R B Y - P R O D U C T S<br />

F R O M A 1 0 0 0 - MWfe) R E F E R E N C E L W R<br />

Cooling Time<br />

(Years)<br />

Heat Generation Rate<br />

(W/t) ( W / M W d )<br />

Fractional Contribution<br />

Fission Product Actinide<br />

1 1.026E+4 3.110E-1 96.92 3.08<br />

2 5.531E+3 1.676E-1 97.49 2.51<br />

3 3.491E+3 1.058E-1 97.16 2.84<br />

4 2.466E+3 7.472E-1 96.42 3.58<br />

5 1.914E+3 5.800E-2 95.62 4.38<br />

6 1.596E+3 4.835E-2 94.94 5.06<br />

7 1.398E+3 4.235E-2 94.42 5.58<br />

8 1.266E+3 3.835E-2 94.04 5.96<br />

9 1.172E+3 3.551E-2 93.78 6.22<br />

10 1.101E+3 3.337E-2 93.59 6.41<br />

11 1.046E+3 3.169E-2 93.47 6.52<br />

12 1.001E+3 3.032E-2 93.40 6.60<br />

13 9.620E+2 2.915E-2 93.35 6.65<br />

14 9.284E+2 2.813E-2 93.33 6.67<br />

15 8.985E+2 2.723E-2 93.33 6.67<br />

16 8.711E+2 2.640E-2 93.33 6.67<br />

17 8.460E+2 2.564E-2 93.35 6.65<br />

18 8.224E+2 2.492E-2 93.37 6.63<br />

19 8.001E+2 2.425E-2 93.40 6.60<br />

20 7.789E+2 2.360E-2 93.43 6.57


76 AN GELO e t a l.<br />

T A B L E VI. T O T A L H E A T G E N E R A T I O N R A T E F O R N U C L E A R B Y - P R O D U C T S<br />

F R O M A 1 0 0 0 - MWCe) R E F E R E N C E L W R<br />

Cooling Time Heat Generation Rate Fractional Contribution<br />

(Years) (W /t) (W /M W d) Fission Product Actinide<br />

5 1.914E+3 5 . 8000E-2 95.62 4.38<br />

10 1.101E+3 3.337E-2 93.59 6.41<br />

15 8.985E+2 2.723E-2 93.33 6.67<br />

20 7.789E+2 2.360E-2 93.43 6.57<br />

25 6.845E+2 2.074E-2 93.59 6.41<br />

.30 6.037E+2 1.829E-2 93.73 6.27<br />

35 5.332E+2 1.616E-2 93.84 6.16<br />

40 4.714E+2 1.429E-2 93.92 6.08<br />

45 4.172E+2 1.264E-2 93.96 6.04<br />

50 3.694E+2 1.120E-2 93.97 6.03<br />

55 3.274E+2 9.921E-3 93.93 6.07<br />

60 2.904E+2 8.799E-3 93.85 6.15<br />

65 2.577E+2 7.809E-3 93.72 6.28<br />

70 2.289E+2 6.937E-3 93.55 6.45<br />

75 2 . 035E+2 6.166E-3 93.33 6.67<br />

80 1.810E+2 5.486E-3 93.05 6.95<br />

85 1.612E+2 4.884E-3 92.72 7.28<br />

90 1.436E+2 4.352E-3 92.33 7.67<br />

95 1.281E+2 3.881E-3 91.87 8.13<br />

100 1.143E+2 3.465E-3 91.35 8.65


I A E A - S M -1 7 0 /5 8<br />

T A B L E VII. T O T A L H E A T G E N E R A T I O N R A T E F O R N U C L E A R<br />

B Y - P R O D U C T S F R O M A 1 0 0 0 -MWte) R E F E R E N C E L W R<br />

Cooling Time Heat Generation Rate Fractional Contribution<br />

(Years) (W/t) (W /MWd) Fission Product Actinide<br />

100 1.143E+2 3.465E-3 91.35 8.65<br />

110 9.140E+1 2.770E-3 90.09 9.91<br />

120 7.339E+1 2.224E-3 88.50 11.50<br />

130 5.922E+1 1.794E-3 86.56 13.44<br />

140 4.806E+1 1.456E-3 84.23 15.77<br />

150 3.926E+1 1.190E-3 81.48 18.52<br />

160 3.231E+1 9.790E-4 78.29 21.71<br />

170 2.681E+1 8.124E-4 74.67 25.33<br />

180 2.245E+1 6.803E-4 70.61 29.39<br />

190 1.899E+1 5.755E-4 66.17 33.83<br />

200 1.624E+1 4.921E-4 61.41 38.59<br />

210 1.404E+1 4.256E-4 56.41 43.59<br />

220 1.229E+1 3.724E-4 51.29 48.71<br />

230 1.088E+1 3.297E-4 46.16 53.84<br />

240 9.746E+0 2.953E-4 41.13 58.87<br />

250 8.828E+0 2.675E-4 36.31 63.69<br />

260 8.082E+0 2.449E-4 31.79 68.21<br />

270 7.473E+0 2.265E-4 27.63 72.37<br />

280 6.972E+0 2.113E-4 23.87 76.13<br />

290 6.556E+0 1.987E-4 20.53 79.47<br />

77


78 ANGELO e t a l.<br />

T A B L E VIII. T O T A L H E A T G E N E R A T I O N R A T E F O R N U C L E A R<br />

B Y P R O D U C T S F R O M A 1 000-MW(e) R E F E R E N C E L W R<br />

Cooling Time Heat Generation Rate Fractional Contribution<br />

(Years) (W /t) (W /M W d) Fission Product Actinide<br />

50 3•694E+2 1.120E-2 93.97 6.03<br />

100 1.143E+2 3.465E-3 91.35 8.65<br />

150 3.926E+1 1.190E-3 81.48 18.52<br />

О О<br />

1.624E+1 4.921E-4 61.41 38.59<br />

250 8.828E+0 2.675E-4 36.31 63.69<br />

300 6.210E+0 1.882E-4 17.59 82.41<br />

350 5.110E+0 1.549E-4 8.09 91.91<br />

400 4.522E+0 1.370E-4 4.05 95.95<br />

450 4.125E+0 1.250E-4 2.37 97.63<br />

500 3.815E+0 1.156E-4 1.61 98.39<br />

550 3.553E+0 1.077E-4 1.22 98.78<br />

600 3.324E+0 1.007E-4 1.01 98.99<br />

650 3.121E+0 9.457E-5 0.87 99.13<br />

700 2.938E+0 8.902E-5 0.80 99.20<br />

750 2.772E+0 8.398E-5 0.75 99.25<br />

800 2.620E+0 7.940E-5 0.73 99.27<br />

850 2.482E+0 7.521E-5 0.72 99.28<br />

900 2 . 355E+0 7.136E-5 0.73 99.27<br />

950 2.238E+0 6.782E-5 0.74 99.26<br />

1000 2.131E+0 6.457E-5 0.76 99.24


I A E A - S M -1 7 0 /5 8 79<br />

T A B L E IX. T O T A L H E A T G E N E R A T I O N R A T E F O R N U C L E A R<br />

B Y - P R O D U C T S F R O M A 1 0 0 0 - M W ( e ) R E F E R E N C E L M F B R<br />

Cooling Time Heat Generation Rate Fractional Contribution<br />

(Years) (W/t) ( W / M W d ) Fission Product Actinide<br />

1 1.432E+4 4.343E-1 95.19 4.81<br />

2 6.728E+3 2.040E-1 96.55 3.45<br />

3 3.709E+3 1.125E-1 96.38 3.62<br />

4 2.298E+3 6.968E-2 95.10 4.90<br />

5 1.613E+3 4 . 890E-2 93.38 6.62<br />

6 1.266E+3 3.840E-2 91.76 8.24<br />

7 1 . 082E+3 3.280E-2 90.50 9.50<br />

8 9.761E+2 2.960E-2 89.62 10.38<br />

9 9.104E+2 2.761E-2 89.01 10,99<br />

10 8.653E+2 2.624E-2 88.58 11.42<br />

11 8.314E+2 2.521E-2 88.27 11.73<br />

12 8.039E+2 2.438E-2 88.01 11.99<br />

13 7.803E+2 2.366E-2 87.79 12.21<br />

14 7.591E+2 2.302E-2 87.60 12.40<br />

15 7. 396E+2 2.243E-2 87.42 12.58<br />

16 7.214E+2 2.188E-2 87.24 12.76<br />

17 7.041E+2 2.135E-2 87.07 12.93<br />

18 6.877E+2 2.085E-2 86.91 13.09<br />

19 6.719E+2 2.037E-2 86.74 13.26<br />

20 6.567E+2 1.991E-2 86.57 13.48


80 AN GELO e t a l.<br />

T A B L E X. T O T A L H E A T G E N E R A T I O N R A T E F O R N U C L E A R<br />

B Y - P R O D U C T S F R O M A 1 0 0 0 - M W ( e ) R E F E R E N C E L M F B R<br />

Cooling Time Heat Generation Rate Fractional Contribution<br />

(Years) (W/t) ( W / M W d ) Fission Product Actinide<br />

5 1.613E+3 4.890E-2 93.38 6.62<br />

10 8.653E+2 2.624E-2 88.58 11.42<br />

15 7.396E+2 2.243E-2 87.42 12.58<br />

20 6.567E+2 1.991E-2 86.57 13.43<br />

25 5.875E+2 1.781E-2 85.70 14.30<br />

30 5.272E+2 1.599E-2 84.75 15.25<br />

35 4.741E+2 1.438E-2 83.70 16.30<br />

40 4.272E+2 1.300E-2 82.54 17.46<br />

45 3.857E+2 1.170E-2 81.27 18.73<br />

50 3.489E+2 1.058E-2 79.89 20.11<br />

55 3.162E+2 9.589E-3 78.39 21.61<br />

60 2.872E+2 8.710E-3 76.78 23.22<br />

65 2.615E+2 7.929E-3 75.06 24.94<br />

70 2.386E+2 7.235E-3 73.22 26.78<br />

75 2.182E+2 6.617E-3 71.27 28.73<br />

80 2 . 001E+2 6.067E-3 69.22 30.78<br />

85 1.839E+2 5.578E-3 67.07 32.93<br />

90 1.695E+2 5.141E-3 64.83 35.17<br />

95 1.567E+2 4.752E-3 62.51 37.49<br />

100 1.452E+2 4.404E-3 60.13 39.87


I A E A - S M -1 7 0 /5 8 81<br />

T A B L E XI. T O T A L H E A T G E N E R A T I O N R A T E F O R N U C L E A R<br />

B Y - P R O D U C T S F R O M A 1 0 0 0 - M W ( e ) R E F E R E N C E L M F B R<br />

Cooling Time Heat Generation Rate Fractional Contribution<br />

(Years) (W /t) (W /M W d) Fission Product Actinide<br />

100 1.452E+2 4.404E-3 60.13 39.87<br />

110 1.258E+2 3.814E-3 55.17 44.83<br />

120 1.103E+2 3.344E-3 50.13 49.87<br />

130 9.780E+1 2.966E-3 45.08 54.92<br />

140 8.774E+1 2.661E-3 40.15 59.85<br />

150 7.958E+1 2.413E-3 35.43 64.57<br />

160 7.292E+1 2.211E-3 31.01 68.99<br />

170 6.746E+1 2.046E-3 26.95 73.05<br />

180 6.295E+1 1.909E-3 23.28 76.72<br />

190 5.920E+1 1.795E-3 20.02 79.98<br />

200 5.604E+1 1.699E-3 17.15 82.85<br />

210 5.337E+1 1.618E-3 14.66 85.34<br />

220 5.108E+1 1.549E-3 12.52 87.48<br />

230 4.910E+1 1.489E-3 10.70 89.30<br />

240 4.738E+1 1.437E-3 9.1.5 90.85<br />

250 4.585E+1 1.390E-3 7.84 92.16<br />

260 4.449E+1 1.349E-3 6.73 93.27<br />

270 4.326E+1 1.312E-3 5.81 94.19<br />

280 4.214E+1 1.278E-3 5.03 94.97<br />

290 4.112E+1 1.247E-3 4.38 95.62


82 ANGELO e t a l.<br />

T A B L E XII. T O T A L H E A T G E N E R A T I O N R A T E F O R N U C L E A R<br />

B Y - P R O D U C T S F R O M A 1 0 0 0 -MW(e) R E F E R E N C E L M F B R<br />

Cooling Time<br />

(Years)<br />

Heat Generation Rate<br />

(W/t) (W /M W d )<br />

Fractional Contribution<br />

Fission Product Actinide<br />

50 3.489E+2 1.058E-2 79.89 20.11<br />

100 1.452E+2 4.404E-3 60.13 39.87<br />

150 7.958E+1 2.413E-3 35.43 64.57<br />

200 5.604E+1 1.699E-3 17.15 82.85<br />

250 4.585E+1 1.390E-3 7.84 92.16<br />

300 4.017E+1 1.218E-3 3.83 96.17<br />

350 3.620E+1 1.098E-3 2.12 97.88<br />

400 3.304E+1 1.002E-3 1.34 98.66<br />

450 3.034E+1 9.199E-4 0.92 99.08<br />

500 2.796E+1 8.480E-4 0.68 99.32<br />

550 2.585E+1 7.838E-4 0.52 99.48<br />

600 2.394E+1 7.260E-4 0.41 99.59<br />

650 2.221E+1 6.736E-4 0.34 99.66<br />

700 2.065E+1 6.261E-4 0.29 99.71<br />

750 1.922E+1 5.828E-4 . 0.26 99.74<br />

800 1.791E+1 5.432E-4 0.24 99.76<br />

850 1.672E+1 5.069E-4 0.23 99.77<br />

900 1.562E+1 4.737E-4 0.22 99.78<br />

950 1.461E+1 4.432E-4 0.22 99.78<br />

1000 1.369E+1 4.151E-4 0.23 99.77


10 г-<br />

T3 - i<br />

ï 10<br />

S<br />

_l -г<br />

< 10<br />

10<br />

Ï A E A - S M -1 7 0 /5 8<br />

-----LWR<br />

------LMFBR<br />

33000 MWd/t<br />

■\ 4<br />

t -1 I « » ni______I___I__■ n u i l<br />

I 10 100<br />

COOLING TIME (YEARS)<br />

F I G . l . T o t a l th erm a l pow er output for nu clear by-products from ty p ic a l LW R and L M F B R spent fu e l<br />

(1 to 100 years co o lin g ).<br />

COOLING TIME (YEARS)<br />

F I G .2. T o t a l th erm a l pow er output for nu cle a r by-p roducts from t y p ic a l LW R and LM FB R spent fu e l<br />

(100 to 1000 yeacs co o lin g ).


8 4 AN GELO e t a l.<br />

S<br />

о<br />

100<br />

80<br />

60<br />

> - 20<br />

* 0<br />

• • • FISSION PRODUCTS<br />

•-•-ACTINIDES<br />

33000 MWd/t<br />

100 200<br />

COOLING TIME (YEARS)<br />

F I G .3 . R e la tiv e c o n trib u tio n o f fissio n product and a c tin id e n u clid es to the to ta l th erm a l power output from<br />

t y p ic a l LW R spent fu e l.<br />

F I G .4 . R e la tiv e c o n trib u tio n o f fissio n product and a c tin id e n u clid es to the to ta l th erm a l power output from<br />

ty p ic a l LM FB R spent fu e l.<br />

T ables V through VIII contain the total heat generation rate data<br />

(fission product and actinide) for the re feren ce LW R. Sim ilarly, T ables IX<br />

through XII contain the LM FBR nuclear by-p rod u ct therm al pow er output<br />

fo r variou s coolin g tim es. Consistent with p reviou s studies [ 1, 9, 10]<br />

these heat generation rate data are based on one m etric tonne (t) of<br />

uranium ch arged to the LWR system and one m etric tonne of uranium plus<br />

plutonium orig in ally charged to the "h om ogen ized" LM FBR co re and<br />

blankets. H ow ever, in an effort to make these resu lts m ore v ersa tile and<br />

300


О)<br />

I -<br />

o<br />

I A E A - S M -1 7 0 /5 8 85<br />

Sr /<br />

106 R u / 1<br />

,3 4 Ce<br />

F IG .5 . R e la t iv e h e a t co n tr ib u tio n s o f s e le c t e d fissio n p r o d u c ts in t y p ic a l LWR spent fu e l fo r 1 to 20 y ears c o o l in g .<br />

<br />

Ш 100<br />

о -<br />

z<br />

1o<br />

80 - /<br />

<<br />

L.<br />

О 1 •’<br />

** 60 "I;<br />

POWER<br />

*<br />

О<br />

i<br />

; \<br />

£ 20 - i<br />

- 242 Cm<br />

---------238pu<br />

3 3 0 0 0 M Wd /t<br />

h-<br />

<<br />

-1 л<br />

\<br />

4 J ' ' 1 1 1<br />

£ D 5<br />

<<br />

COOLING<br />

10<br />

TIME<br />

15 20<br />

(YEARS)<br />

F IG . 6 . R e la t iv e h e a t co n tr ib u tio n s o f s e le c t e d a c t in id e n u c lid e s in t y p ic a l LWR sp en t fu e l fo r 1 to 20 y ears<br />

c o o l in g .


8 6 ANGELO e t a l.<br />

7 0<br />

со<br />

Iо<br />

э 60<br />

о<br />

о(Г<br />

а 50<br />

Z<br />

о<br />

со<br />

- 40<br />

U.<br />

Ü.<br />

О<br />

»? 3 0<br />

? 20<br />

О<br />

> 10<br />

\<br />

- \<br />

г л<br />

•\ • \<br />

I л<br />

\<br />

"f- - . ____I<br />

0 5 10 I 20<br />

COOLING TIME (YEARS)<br />

144<br />

*С , е / ,44Рг<br />

147 Pm<br />

3 3 0 0 0 MWd/t<br />

F I G .7 . R e la tiv e h e a t c o n tr ib u tio n s o f s e le c t e d fissio n p rod u cts in t y p ic a l LMFBR spent fu e l fo r 1 to 2 0 y ears<br />

c o o l in g .<br />

о <<br />

100 r -<br />

8 0<br />

60<br />

u j 40<br />

9<br />

О<br />

ui 2 0<br />

><br />

v<br />

Cm<br />

1 Am<br />

' Cm<br />

------- —° Pu<br />

3 3 0 0 0 MWd/t<br />

I -<br />

<<br />

^=i<br />

UI 0 5 10 15 20<br />

0= COOLING TIME (Y E A R S )<br />

F IG . 8 . R e la t iv e h e a t co n tr ib u tio n s o f s e le c t e d a c t in id e n u c lid e s in t y p ic a l LMFBR sp en t fu e l for 1 t o 2 0 y ears<br />

c o o l in g .<br />

potentially applicable to other burn-up scen a rios, a n orm alizin g unit,<br />

the w att-p er-m egaw attday (W /M W d) was a lso chosen as an ordinate in<br />

presenting the decay heat data. (See F igs 1 and 2). It is of interest to<br />

note that although the heat generation rates fo r the LWR and LM FBR<br />

by-p rod u cts appear to be com parable during the first century of coolin g,<br />

they diverge rapidly after about 100 years, with the actinide nuclides<br />

playing a dominant ro le in determ ining the LM FBR by-p rod u ct therm al<br />

pow er output.


I A E A - S M -1 7 0 /5 8 8 7<br />

The relative contribution of the fissio n product nuclides versu s<br />

the actinide nuclides to the total heat generation rate is displayed in F igs 3<br />

and 4 fo r LW R and LM FBR by-p rod u cts, resp ectively.<br />

E xtensive heat generation rate data and the a ssocia ted fraction al decay<br />

heat contributions fo r selected fissio n product and actinide nuclides of<br />

unusual th erm al sign ifican ce are presented in F igs 5 through 8.<br />

In sum m ary, d iscrep a n cies between the afterheat data presented in<br />

this study and those appearing in previous studies a rise from two<br />

approxim ations used by the previous studies: the n eglect of nuclear<br />

transm utation of fissio n product nuclides during irradiation and the heat<br />

contribution of the actinide nuclides. D ecay heat com putations presented<br />

h ere do not n eglect these contributions and provide m ore com plete lon gterm<br />

th erm al pow er output data, which can be utilized in a variety of<br />

n u clear b y-p rod u ct m anagement studies, p articu la rly those involving<br />

deep g eolog ic d isp osal of h ig h -level ra d ioisotop es.<br />

REFERENCES<br />

[ 1 ] C O H E N , J .J ., LEW IS, A . E . , BRAUN, R . L . , U se o f a D e e p N u cle a r C h im n e y for<br />

th e In -s itu I n c o r p o r a tio n o f N u c le a r -r e p r o c e s s in g W aste in M o lte n S ilic a t e R o c k , U C R L -5 1 0 4 4 ,<br />

L a w re n ce L iv e rm o r e L a b ., L iv e rm o r e , C a li f . (M a y , 1 9 7 1 ).<br />

[ 2 ] SHEFF, J . R . , B a tte lle N orth w est L a b s ., R ich la n d , W a s h ., P rivate c o m m u n ic a t io n ( N o v . , 1 9 7 2 ).<br />

[ 3 ] AN G E LO , J. A . , J r ., H ea t T ran sfer fr o m R a d io a c t iv e W astes in D e e p R o c k , D o c t o r a l D isserta tion<br />

(in p r e p a ra tio n ), T h e U n iv ersity o f A r iz o n a (1 9 7 3 ).<br />

[ 4 ] W A Y , K . , W IGNER, E . P . , T h e ra te o f d e c a y o f fissio n p r o d u c ts, Phys. R e v . 7 3 1 1 (J u n e, 1 9 4 8 ).<br />

[ 5 ] PERKINS, J .F . , K IN G , R . W . , E nergy r e le a s e fr o m th e d e c a y o f fis s io n p ro d u c ts, N u c l. S e i. E n g. 3<br />

(1 9 5 8 ) 7 2 6 .<br />

[ 6 ] STEH N , J .R ., C L A N C Y , E . P ., "F is s io n -p r o d u c t R a d io a c tiv ity and h e a t g e n e r a t io n " , 2nd In t. C o n f.<br />

p e a c e f u l U ses a t o m . E nergy (P r o c . C o n f. G e n e v a , 1 9 5 8 ), U N , N ew Y o r k ( P /1 0 7 1 U S A ).<br />

[ 7 ] VARTE RESSIAN, K . A . , BURRIS, L . , F is s io n -p r o d u c t S p e c tra fr o m Fast and T h e r m a l F ission o f 235U and<br />

B 9 Pu, A r g . N a tl. L a b ., A r g o n n e , 111., A N L -7 6 7 8 (1 9 7 0 ).<br />

[ 8 ] A N GELO , J ., I t . , P O S T . R . G . , H A S K IN , F .E ., LEW IS, C . , N u c le a r b y - p r o d u c t lo n g - t e r m h ea r<br />

g e n e r a tio n ra te s, T ra n s. A m e r . N u c l. S o c . 15 2 (1 9 7 2 ) 6 6 3 .<br />

[ 9 ] O R N L -4 4 5 1 , S itin g F u e l R e p rocessin g P lants and W aste M a n a g e m e n t F a c ilit ie s , ORNL, O a k R id g e ,<br />

T e n n . (1 9 7 0 and 1 9 7 1 ).<br />

[ 1 0 ] BELL, M . J . , R a d ia tio n P rop erties o f Spent P lu to n iu m F u els, O R N L -T M -3 6 4 1 , ORNL, O a k R id g e ,<br />

T e n n . (1 9 7 2 ).<br />

DISCUSSION<br />

W.B. LEWIS: You have separated the fission -p rod u ct and actinide<br />

heat contributions and the com pared them. They m ay, how ever, be<br />

ch em ica lly separated. Only the heat fro m strontium and caesium is highly<br />

im portant fo r the fir s t hundred yea rs. Is not coolin g of the actinides of<br />

rela tiv ely m in or con cern ?<br />

J. A . ANGELO: On the con trary, the heat generated by the actinides<br />

m ay actually be a m a jor con cern even during the first hundred years of<br />

decay. The scen ario fo r b y-p rod u ct re p ro ce ssin g em ployed in this paper<br />

assum ed that only 0. 5% of the uranium and 0. 5% of the plutonium present<br />

in the disch arged fuel ultim ately appeared in the re p ro ce ssin g by-p rod u cts.


8 8 AN GELO e t a l.<br />

H ow ever, different b y -p rod u ct m anagem ent sch em es — perhaps, say,<br />

intact burial of the disch arged fuel — w ill resu lt in different, p ossib ly<br />

higher, lev els of heavy m etals appearing in the w astes. T his, of cou rse,<br />

could result in m uch higher "h eavy-m etal" o r actinide heat generation<br />

r a te s .<br />

D. J. HOREN: Is it obvious why the e a rlie r w ork ers ignored the 133Cs<br />

problem ?<br />

J. A. ANGELO: It was not readily obvious to m e during m y review s<br />

of the literatu re. Perhaps it had been assum ed that nuclear transmutation<br />

of the fissio n product nuclides could be n eglected in the case of short<br />

irradiation tim es o r low exposure lev els without introducing seriou s e rro rs.<br />

P erhaps they w ere lim ited in their calculations by the lack of high-speed<br />

com putational fa cilitie s, which would have enabled the num erical solution<br />

of the large num ber of coupled d ifferen tial equations d escribin g the fission<br />

product inventories.<br />

J. Y. BARRE: W ould you r con clu sion s fo r fast-neutron rea ctors be<br />

changed if:<br />

(1) a burn-up of 100 000 M W d/t was used, which is a much m ore rea listic<br />

value than the 33 000 M W d/t which you used?<br />

(2) the isotop ic com position of the initial plutonium was different from the<br />

one selected , which was not m entioned?<br />

J. A. ANGELO: The answ er to both parts of your question is yes.<br />

The total heat generation rate fo r the LM FBR b y-p rod u cts would be changed<br />

by using a different burn-up value or a different isotop ic com position of<br />

plutonium appearing in the re p ro ce ssin g by-p rod u cts.<br />

In these com putations an average equivalent exposure of 33 000 M W d/t<br />

was used. H ow ever, this represen ted a p ost-irra d ia tion , hom ogeneous<br />

blending (to create an average equivalent burn-up of 33 000 M W d/t) of d is ­<br />

charged fuel from the co re and radial and axial blanket region s. The d is ­<br />

charged c o re m ateria l itse lf experien ced a burn-up of 80 000 M W d/t as<br />

indicated in T able II of our paper. F u rth erm ore, it was assum ed that only<br />

0. 5% of the plutonium and 0. 5% of the uranium presen t in the disch arged<br />

fuel ultim ately appeared in the sp en t-fu el-rep rocessin g by-p rod u cts.


SECTIONS EFFICACES<br />

DE CREATION DE DOMMAGES<br />

M . LO T T *, J .P . GENTHON**, F . GERVAISE**,<br />

P. M A Sf, J .C . M O U G N IO TÎÎ, NGUYEN VAN DOAN**<br />

Commissariat à l'energie atomique,<br />

France<br />

Abstract-Résumé<br />

C R O S S -S E C T IO N S FOR THE C R E A T IO N <strong>OF</strong> D A M A G E .<br />

I A E A - S M -1 7 0 /6 5<br />

D iffe r e n t ia l c r o s s -s e c tio n s r e p o re se n tin g th e ra te o f c r e a tio n o f d a m a g e are e sta b lis h e d ; w ith th ese<br />

it is p o s s ib le to c a lc u la t e th e s im p le s t q u a n titie s a sso c ia te d w ith ir ra d ia tio n - i . e . th e e n e rg y im p a r te d to<br />

th e m a te r ia l in th e fo r m o f e la s t ic c o llis io n s and th e n u m b er o f d is p la c e m e n ts p e r a t o m . T h e d ata n ecessa ry<br />

fo r c a lc u la t in g th ese d a m a g e fu n c tio n s a re: (a ) th e n eu tron c r o s s -s e c tio n s ( e l a s t ic and in e la s tic ) w ith th eir<br />

an gu la r d istrib u tion s; w ith th ese it is p o s s ib le to c a lc u la t e th e s p e ctru m o f th e (p rim a r y ) r e c o il atom s<br />

a s s o c ia te d w ith a n eu tron c o llis io n ; (b ) th e e n e rg y g iv e n up and th e n u m b e r o f a to m s d is p la c e d b y th e<br />

p r im a ry a t o m , w h ic h are c a lc u la t e d b y m ea n s o f L in d h ard t’ s u n iv e r sa l c u r v e , th e results o f w h ic h are c o m p a r e d<br />

w ith th o se o f a c o l l i s i o n - b y - c o l l i s i o n c a lc u la t io n o f th e d is p la c e m e n t c o n e . T h e A R TU S and SOURCE c o d e s<br />

a re u sed in c a lc u la t in g w ith th e se d a ta th e e n e rg y im p a r te d to th e la t t ic e and th e n u m b er o f d is p la c e m e n ts<br />

p e r a t o m . A R T U S X is lin k e d w ith th e U K N D F f i l e . Results are g iv e n for a ll u sual ca ses o f c o m m o n m e ta ls<br />

and s t e e l. T h e c r o s s -s e c tio n s n e ce s sa ry fo r c a lc u la t in g rates o f c r e a tio n o f gas (H and H e) in ir ra d ia te d m e ta ls<br />

a re r e v ie w e d .<br />

SECTIO N S EFFICACES DE C R E A T IO N DE D O M M A G E S .<br />

D es s e c tio n s e f f ic a c e s d iffe r e n t ie lle s d e taux d e cr é a tio n d e d o m m a g e s son t é t a b lie s q u i p e r m e tte n t<br />

d e c a lc u le r le s grandeu rs le s plus s im p le s a s s o c ié e s à l'ir r a d ia t io n , c 'e s t - à - d i r e : l'é n e r g i e c é d é e au m a té r ia u<br />

sous fo r m e d e c h o c s é la s tiq u e s e t le n o m b r e d e d é p la c e m e n ts p ar a t o m e . Les d on n é e s n é ce s sa ir e s au c a lc u l<br />

d e c e s fo n c tio n s d e d o m m a g e sont: a) le s s e c tio n s e f f ic a c e s n e u tro n iq u e s, é la s tiq u e , in é la s tiq u e a v e c leu r<br />

d istr ib u tio n a n g u la ir e q u i p e r m e tte n t d e c a lc u le r le sp e c tr e des a to m e s d e r e c u l (p r im a ir e ) a sso c ié s à un c h o c<br />

n e u tro n iq u e ; b) l ’ é n e r g ie c é d é e e t le n o m b r e d 'a t o m e s d é p la c é s p a r c e t a to m e p r im a ir e q u i son t c a lc u lé s<br />

au m o y e n d e la c o u r b e u n iv e r s e lle d e L in d h ardt d on t les résultats so n t c o m p a r é s à c e u x d 'u n c a lc u l c h o c par<br />

c h o c d e la g e r b e d e d é p la c e m e n t . Les c o d e s d e c a lc u l ARTU S e t SOURCE tra ite n t c e s d o n n é e s p ou r c a lc u le r<br />

l'é n e r g i e c é d é e au réseau e t le n o m b r e d e d é p la c e m e n ts p ar a t o m e . A R TU S X est c o u p lé sur la b ib lio th è q u e<br />

U K N D F . Les résu ltats son t d on n és dans q u e lq u e s ca s u suels d es m é ta u x cou ran ts e t d e l'a c i e r . Les se c tio n s<br />

e f f ic a c e s n é c e s sa ir e s au c a lc u l d es taux d e c r é a tio n d e g a z (H e t H e) dans les m é ta u x irra d iés sont passées<br />

e n r e v u e .<br />

INTRODUCTION<br />

Pour caractériser l'irradiation neutronique<br />

des matériaux de structure des réacteurs, on s ’est longtemps<br />

contenté de grandeurs intégrales telles que le flux<br />

supérieur à 1 MeV ou l'activation d Tun détecteur à seuil.<br />

Compte tenu de 1 Tensemble des progrès réalisés<br />

dans les techniques d'examen des matériaux irradiés,dans<br />

la connaissance des sections efficaces et des spectres neutroniques,<br />

dans l Tétude des mécanismes de transfert d'énergie aux<br />

* C e n tr e d ’ é tu d e s n u c lé a ir e s d e F o n te n a y -a u x -R o s e s .<br />

* * C e n tr e d 'é tu d e s n u c lé a ir e s d e S a c la y .<br />

ï C e n tr e d 'é tu d e s n u c lé a ir e s d e G r e n o b le .<br />

C e n tr e d ’ é tu d e s n u c lé a ir e s d e C a d a r a c h e .<br />

89


90 L O T T e t a l.<br />

matériaux, il est devenu possible de rapporter les dommages à<br />

des grandeurs liées au matériau lui-même, par exemple : l'énergie<br />

cédée au réseau ou le nombre de déplacements par atome.<br />

L'intérêt de l'utilisation de telles unités<br />

apparaît encore plus nettement quand il s'agit de comparer les<br />

irradiations neutroniques et les irradiations ioniques. Malheureusement,<br />

ces grandeurs ne sont pas directement mesurables,<br />

elles ne peuvent qu'être calculées et pour le faire, il faut<br />

mettre en oeuvre un nombre important de données dont la normalisation<br />

est nécessaire pour que la mesure de la même grandeur<br />

soit indépendante de l'expérimentateur. Pour ce qui concerne<br />

les sections efficaces, compte tenu de la généralisation de<br />

l'emploi d'un nombre très restreint d'évaluations : ENDF/B [1]<br />

et UKNDF L2] , la normalisation devient possible et il semble<br />

qu'il en soit de même pour le calcul du nombre de déplacements<br />

par atome primaire dans un métal pour lequel l'abaque de<br />

LINDHARD^3] , est maintenant généralement employé.<br />

Après avoir rappelé les formules et les<br />

conventions utilisées, nous donnons les sections efficaces de<br />

création de dommages d'éléments entrant dans la composition<br />

des matériaux de structure les plus courants et celles de<br />

l'acier inoxydable.<br />

FORMALISME GENERAL<br />

Lors de l'interaction d'un neutron et d'un<br />

atome, celui-ci peut acquérir suffisamment d'énergie pour être<br />

déplacé de son site et déplacer à son tour de leur site, tout<br />

au long de son parcours, un grand nombre d'autres atomes qui<br />

deviennent des interstitiels et laissent sur place des sites<br />

lacunaires. C'est au nombre de sites lacunaires ou de paires<br />

lacunes interstitiels par unité de volume ainsi créés lors<br />

d'une irradiation qu'il est convenu, de façon générale, de rapporter<br />

les dommages bien que dans certains cas particuliers,<br />

d'autres modèles peuvent être préférables suivant les propriétés<br />

des matériaux étudiés.<br />

La connaissance des sections efficaces<br />

différentielles neutroniques et de l'ensemble des grandeurs<br />

relatives aux réactions permet de calculer le spectre des<br />

premiers atomes choqués, les travaux de LINDHARD permettent<br />

de calculer l'énergie cédée au réseau et ceux de KINCHIN et<br />

PEASE t4] , SIGMUND [5] , TORRENS et ROBINSON [б] , de relier<br />

cette énergie cédée au réseau au nombre d'atomes déplacés.<br />

I. ENERGIE DES PREMIERS ATOMES CHOQUES<br />

L'énergie T(|i)du premier atome choqué<br />

dans le système du laboratoire, émis dans une direction faisant<br />

un angle 6 tM. ( ^ = СО3 0^,м) avec la direction du neutron<br />

incident dans le système du centre de masse dépend du type<br />

d'interaction. Elle est donnée par les expressions suivantes<br />

où E est l'énergie du neutron incident (laboratoire) et A la<br />

masse atomique du noyau cible.


1 .1. Choc élastique<br />

I A E A -S M - 1 7 0 /6 5 91<br />

T N Cu.)=<br />

Г (1 + А)г Г<br />

1.2. Choc inélastique - niveaux séparés (n,n'y)<br />

TN/Cu)= E jl _ Ail 0_ + aA _ M 0 f l<br />

1 r Ci + A f\ 2. A e: 4 a<br />

Dans cette expression Q ^ O correspond à<br />

l'énergie emportée par le y dont la quantité de mouvement est<br />

négligée, ce qui entraîne une erreur de quelques pour mille<br />

sur l'énergie du primaire.<br />

1.3. Choc inélastique (n,n'y) niveaux non résolus<br />

Pour les neutrons d'énergie élevée, les<br />

niveaux d ’énergie ne sont pas résolus et les bibliothèques de<br />

données nucléaires donnent généralement le spectre d'énergie<br />

des neutrons émergents dans le système du centre de masse et<br />

leur distribution angulaire, souvent isotrope. L'énergie du<br />

primaire dépend alors de |Л et de l'énergie Ecu. du neutron<br />

émis dans la direction opposée (C.M.) par l'expression :<br />

1.4. Choc (n,2n)<br />

t n4 ( Ц , 0 = A I ^<br />

й {(А+1)г A? ■ Г<br />

En supposant l'émission neutronique isotrope<br />

dans le système du centre de masse et les directions<br />

d'émission des deux neutrons non liées entre elles, l'énergie<br />

de recul moyenne de l'atome de recul est donnée par l'expression<br />

:<br />

Тгм = (а и )1 _ £ _ + Е Л -(Щ И ) + P[, / E 1 E A -Q (A ^ )\ V2I<br />

leАИ)2 А(АИ)(А-1) v(A+1)3 A (A-1)/ J<br />

où Q > 0 caractérise l'énergie de la réaction.<br />

1.5. Capture (ny)<br />

La réaction ny ne prend de l'importance<br />

qu'aux faibles énergies où la quantité de mouvement du neutron<br />

incident peut être négligée. Dans ces conditions, en faisant<br />

l'hypothèse simplificatrice de non-corrélation angulaire des


92 L O T T e t a l.<br />

y émis, l'énergie de l'atome de recul est donnée par l'expression<br />

de M.S. WECHSLER [7]<br />

Y 2(АИ)Сг<br />

N. étant le nombre de rayons y d'énergie E.^ émis par capture<br />

O<br />

et (A+1)C l'énergie à l'état fondamental du noyau formé.<br />

Les valeurs de T sont extraites du<br />

travail de R.E. COLTMAN [15] . 7<br />

II. ENERGIE CEDEE AU RESEAU ET NOMBRE D'ATOMES DEPLACES<br />

PAR UN PRIMAIRE<br />

Quand l'atome primaire est de même nature<br />

que le matériau cible et que celui-ci est constitué d'une<br />

seule espèce d'atomes, l'énergie cédée au réseau Ep au cours<br />

du ralentissement d'un primaire d ’énergie initiale T est<br />

donnée par l'abaque de LINDHARD mis sous forme analytique<br />

par ROBINSON[8],[9]<br />

E = T<br />

° l+KgCe}<br />

où K est donné par l'expression : K=0,1337 7 ? ^ A -^ ^ et<br />

g (£'), fonction de l'énergie réduite du primaire<br />

£ = 1.15.10“^ z~7/3ip (eV) est donnée par l'expression<br />

g (£)= £+ 0,4024 &3/4+ 3,4 &1/e<br />

Z et A sont respectivement le numéro atomique et la masse<br />

atomique communs à l'atome cible et au primaire.<br />

Conformément au modèle de KINCHIN et PEASE<br />

trois cas sont considérés dans le calcul du nombre de paires<br />

lacunes interstitiels créés lors du ralentissement du primaire<br />

- T < Ed N n = 0 E,, pris arbitrairement égal<br />

à 40 eV dans les c a l c u l s ,<br />

- Ed < T < E^ Njj = 1 est le seuil de déplacement<br />

- E ' < T N n = SEn La constante ß a été prise égal<br />

à 10 keV-l, 1'énergie Ep<br />

étant exprimée en keV.<br />

Cette formule correspond à la recommandation<br />

de l'A.I.E.A. faite au colloque de SEATTLE [13] et à<br />

celle faite par le Groupe de Dosimétrie de 1'EURATOM. Elle a<br />

été justifiée par les calculs de simulation de cascades de<br />

TORRENS et ROBINSON [63 et reprise dans le travail de synthèse<br />

de NORGETT, ROBINSON et TORRENS [ loi .


IAE A - S M - 1 7 0 /6 5 93<br />

L'énergie E' limite entre les deux dernières<br />

régions est prise telle qu'il n'y ait pas de discontinuité<br />

dans Np. Elle est solution de l'équation :<br />

p E8(Ei) = 1<br />

/Remarque/ Pour le graphite, 1 'A.I.E.A. [13] maintient pour<br />

l'instant la recommandation d'utiliser le modèle de THOMPSON<br />

et WRIGHT[17] pour le calcul des taux de déplacement.<br />

III. SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET DE TAUX<br />

DE DEPLACEMENT<br />

Par l'abaque de LINDHARD et les conventions<br />

exposées, on a donc fait correspondre à un primaire d'énergie<br />

T ( ), une énergie cédée au réseau ED ([A.) et un nombre de<br />

paires de FRENKEL Np (|x). Lors du bombardement d'un gramme de<br />

matériau pur contenant N atomes par un flux unité (cm-^s-l) de<br />

neutrons d'énergie E, la puissance cédée au réseau D (E) et le<br />

nombre de paires de FRENKEL créées par seconde DPG (E) sont<br />

donnés par l'expression suivante :<br />

N est le nombre d'atomes par gramme<br />

0" les sections efficaces totales des différents types<br />

d'interaction (élastique, inélastique...)<br />

p(li)les distributions angulaires d'un n e utron émergent dans<br />

la d irection -1JL dans le système du centre de masse<br />

Y = E (u.) correspond à ytE)sD(E)— - puissance cédée au<br />

S' réseau eV cm2/g.s<br />

= hL(u.) correspond à У(Е)= DPG(E) nombre de déplacement<br />

par gramme et par<br />

seconde.


94 L O T T e t a l.<br />

Cas d'un mélange de matériaux<br />

Pour obtenir les grandeurs correspondant<br />

à un mélange de corps de numéros atomiques voisins, on ajoute<br />

linéairement les grandeurs relatives à chacun des constituants<br />

x = ç e , x c<br />

où O. représente le nombre de gramme du constituant i par<br />

L gramme de mélange.<br />

XV. EXEMPLES D'APPLICATIONS<br />

Les codes ARTUS X [11] et SOURCE [12]<br />

bâtis sensiblement sur les mêmes principes ont été réalisés<br />

pour calculer les quantités précédentes. SOURCE est en cours<br />

de couplage avec la bibliothèque ENDF et ARTUS X est couplé<br />

sur la bibliothèque UKNDF.<br />

Les figures n° 1 à 9 sont les résultats<br />

de calculs ARTUS X pour Al, Si, Cr, Fe, Ni, Cu, Zr, Mo, W.<br />

Les courbes en tirets correspondent à la réaction élastique,<br />

les courbes en pointillés aux autres réactions.<br />

Dans les tableaux I à IX correspondants,<br />

les résultats sont donnés en 99 groupes du code de transport<br />

ANISN [14^ , la pondération dans les groupes de basse énergie<br />

étant faite selon un spectre en 1/E et dans les groupes de<br />

haute énergie selon un spectre de fission.<br />

La première colonne du tableau est la<br />

borne inférieure du groupe, la seconde colonne l'énergie<br />

totale cédée par les neutrons T ( T = _/T((i)d$, la troisième<br />

l'énergie cédée au réseau D(E) (eV.cm2.g-l) et la quatrième<br />

le nombre de déplacements atomiques DPG (E) (cm^.g-l).<br />

De plus, nous donnons dans le tableau X les mêmes grandeurs<br />

pour le groupe thermique correspondant à 0,0253eV.<br />

Un travail semblable a été réalisé par<br />

D.G. DORAN [16] à partir de la bibliothèque ENDF/B pour le<br />

tantale et l'acier inoxydable. La comparaison entre les<br />

deux estimations pour l'acier inoxydable est présentée<br />

figure 10. Le coefficient de proportionnalité 8 utilisé<br />

par DORAN étant de 15,15 keV~l pour comparer les résultats<br />

nous avons reporté le rapport DPG (présent travail)/<br />

DPG (DORAN) x 1,515. Il apparaît que les estimations sont<br />

en moyenne concordantes au-dessus de lO-^MeV.<br />

Pour les énergies inférieures, les différences<br />

observées tiennent à la différence entre les seuils<br />

de déplacement, 33 eV pour DORAN et 40 eV pour le présent<br />

travail et à la différence des énergies de recul T correspondant<br />

à une capture. ’<br />

L'écart entre les taux de déplacements<br />

obtenus en intégrant ces deux évaluations sur un spectre de<br />

neutrons de fission est, compte tenu du facteur de correction<br />

1,515, égal à 3,5%.


Section efficace de dommage<br />

Energie du Neutron (M e V )<br />

F I G . l . R ésultats d e c a lc u ls A R T U S X p ou r l ’ a lu m in iu m .<br />

I A E A - S M -1 7 0 /6 5<br />

СО<br />

СЛ


Section efficace de dommage<br />

Energie du Neutron ( MeV)<br />

F I G .2 . R ésultats d e c a lc u ls A R T U S X p o u r le s ilic iu m .


Section efficace de dommage<br />

Energie du Neutron ( MeV)<br />

F I G .3 . R esultats d e c a lc u ls A R T U S X p o u r le c h r o m e .


Section efficace de dommage<br />

Energie du Neutron (MeV)<br />

F IG .4 . Résultats d e calcu ls ARTUS X pour le fer.


Section efficace de dommage<br />

Energie du Neutron (MeV)<br />

F I G .5 . R ésultats d e c a lc u ls A R T U S X p ou r le n ic k e l.


Section efficace de dommage<br />

Г 1<br />

O)<br />

CM<br />

E o<br />

1 0 2<br />

101<br />

10‘1<br />

10'2<br />

10‘ 3<br />

10'7 10' 6 10"s 10-4 10'3 10'2 10‘1 10° 101 102<br />

Energie du Neutron ( MeV)<br />

F I G .6 . R ésultats d e c a lc u ls A R T U S X p ou r le c u iv r e .<br />

100 LOTT et al,


Section efficace de dommage<br />

Energie du Neutron (MeV)<br />

F IG .7 . R ésultats d e c a lc u ls A R TU S X p ou r l e z ir c o n iu m .<br />

I A E A - S M -1 7 0 /6 5


10'7 10-6 10'5 10-4 10'3 10'2 Ю*1 10° 101 ю 2<br />

Energie du Neutron (MeV)<br />

F IG . 8 . R ésultats d e c a lc u ls A R T U S X p o u r le m o ly b d è n e .


Section efficace de dommage<br />

Energie du Neutron (MeV)<br />

F I G .9 . R ésultats d e c a lc u ls A R T U S X p ou r le tu n g stè n e .


F IG . 1 0 . C o m p a r a is o n d es v a leu rs d es auteurs a v e c c e l le s d e D o ra n .<br />

104 LOTT et al.


CONCLUSION<br />

IAE A - S M - 17 0 /6 5 105<br />

Nous avons posé comme un principe que les<br />

dommages dus à l'irradiation neutronique doivent être rapportés<br />

à des grandeurs liées au matériau irradié. Le nombre de<br />

paires lacunes interstitiels créés pendant l'irradiation n'est<br />

certainement pas la seule grandeur intéressante : le spectre<br />

d'énergie des primaires,déterminant la taille des gerbes de<br />

déplacement, intervient certainement particulièrement à basse<br />

température où la vitesse de migration des défauts élémentaires<br />

est trop faible pour que la gerbe soit dispersée et que l'irradiation<br />

du matériau puisse être considérée comme uniforme.<br />

Néanmoins, le nombre de déplacements atomique est actuellement<br />

un bon point de départ au moyen duquel il serait très souhaitable<br />

de faire un travail de synthèse de l'ensemble des rés-<br />

sultats expérimentaux disponibles sur les différents aspects<br />

des dommages : variation dimensionnelle, fragilisation,<br />

fluage. L'harmonisation du langage qui semble se faire actuellement<br />

est un élément indispensable pour réaliser une<br />

telle synthèse et nous avons mis en évidence le fait très<br />

positif que les deux évaluations de sections efficaces UKNDF<br />

et ENDF/B conduisent, à un facteur de normalisation près,<br />

à des résultats très voisins pour les spectres de neutrons<br />

rapides.<br />

D'une nature toute différente, mais également<br />

liés à l'irradiation neutronique, les taux de production<br />

d'impuretés dus aux réactions nucléaires sont également<br />

très importants à considérer, particulièrement quand les<br />

impuretés sont gazeuses (n,p), (n a ), car alors elles favorisent<br />

le gonflement qui est un problème technologique grave<br />

pour les réacteurs à neutrons rapides. Dans ce domaine, il<br />

serait très souhaitable que l'A.I.E.A. fasse également une<br />

recommandation.


106 L O TT e t al.<br />

TABLEAU I<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS L'ALUMINIUM (N=2.23E22 AT/G)<br />

B. INF


I A E A - S M -1 7 0 /6 5 107<br />

TABLEAU I (SUITE)<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DAMS L'ALUMINIUM ( N = 2.23E22 AT/G)<br />

B.INF(MEV) T EV.CM2/G D EV. CM 2/G DPG CM2/G<br />

0.8652F--01 Г . 1362F 04 0.9504F 03 0.95C4E 01 1 ./E<br />

0 . 1111F 00 0.8574F 03 0.5875F 03 0.5875E 01 l . / E<br />

0 . 1 228F 00 0.3419F 03 0.23 26F 03 C.2326E 01 1 ./E<br />

0.1357F 00 0 . 1454F 04 0.9788F 03 0.9788F 01 L ./E<br />

0.1 500F 00 0.2679F C4 0.1790F 04 0.1790F 02 l ./ E<br />

0.1657F 00 0.1507F 04 0 . C987F 03 0.9987F 01 l ./ E<br />

0 .1 8 3 2F 00 0 . 1054F 04 0.6913F 03. 0 .6 9 1 3E 01 l ./ E<br />

0.2024F 00 0 . 177^F 04 0.1153F 04 0.1153F 02 l ./ E<br />

0.2 237F 00 0 . 1337F 04 0.8592F 03 0.8592F 01 l ./ E<br />

0 .2 477F 00 0.9362F 03 0.5941F 03 0.5941E 01 l ./ E<br />

0 . 2732e 00 0.1986F C4 0.1242F 04 0.1242E 02 FIS.<br />

0.3020F 00 0.1869F 04 0 . 1 152p 04 0.1152F 02 FIS.<br />

0.3337F 00 0.1722F 04 0.1045F 04 0.1045E 02 FIS.<br />

Ö.3688F 00 0.1753F 04 0 . 1050F 04 0.1C50F 02 FIS.<br />

0.4076F 00 0.2918F 04 0.1724F 04 0.1724F 02 - IS.<br />

0.4505F 00 0.2324F 04 0 . 1356F 04 0.1356E 02 F IS.<br />

0.4979F 00 0.2768F 04 0.1594E 04 0.1594E 02 FIS.<br />

0 .5502* 00 0.2513F 04 0.1425F 04 0.1425F 02 F IS .<br />

0.6081F 00 0.3065F 04 0 . 1705F 04 0.1705F 02 FIS.<br />

0.6721F 00 0.2820F 04 0.1540F 04 C.1540F 02 F IS.<br />

0.7427F<br />

0.8208F<br />

0.9072F<br />

00<br />

00<br />

00<br />

0.4334F<br />

C.3642F<br />

0.2903F<br />

04<br />

04<br />

04<br />

0.2323F<br />

0 . 1938F<br />

0 . 1509F<br />

04<br />

04<br />

04<br />

0.2323E<br />

0.193eE<br />

C.15C9F<br />

02<br />

02<br />

02<br />

r i s .<br />

FIS.<br />

FIS.<br />

0.1003F 01 0.3178F 04 0 . 1604F 04 0.1604F 02 F IS.<br />

0.1108F 01 0.5135F 04 0.2553F 04 0.2553E 02 F ÍS.<br />

0 . 1 225F 01 0.4514F 04 0.2197F 04 0.2197E 02 FIS.<br />

0.1353Г 01 0.4667F 04 0.2206F 04 0.2206E 02 FIS.<br />

0.14Q6F 01 0.4886E 04 0.2255F 04 0.2255F 02 FIS .<br />

0.1653F<br />

0.1827F<br />

01<br />

bl<br />

0.5426F<br />

0.5580F<br />

04<br />

04<br />

0.2433F<br />

0 .2 4 27F<br />

04<br />

04<br />

0.2433E<br />

0.2427E<br />

02<br />

02<br />

FIS.<br />

FIS.<br />

0.2019F<br />

0.2231F<br />

01<br />

01<br />

0.6745F<br />

0.5869F<br />

04<br />

04<br />

0.2854F<br />

0.2419F<br />

04<br />

04<br />

0.2854E<br />

0.2419F<br />

02<br />

02<br />

FIS.<br />

F IS.<br />

0.2466F<br />

0.2725F<br />

01<br />

01<br />

0.7873F<br />

0.8053F<br />

04<br />

04<br />

0.3096F<br />

0.3010F<br />

04<br />

04<br />

0.3096E<br />

0.3010F<br />

02<br />

02<br />

FIS.<br />

FIS.<br />

0.3012F<br />

0 .3 329F<br />

01<br />

01<br />

0.7645F<br />

0.8649F<br />

04<br />

04<br />

0.2808F<br />

0.3095F<br />

04<br />

04<br />

0.2808E<br />

0.3C95E<br />

02<br />

02<br />

FIS.<br />

FIS.<br />

0.3679F 01 0.8904F 04 0.3C72F 04 0.3C72E 02 FIS.<br />

0.4066F 01 0.9278F 04 0.3061F 04 0.3061E 02 = IS.<br />

0.4493F 01 0.9282E 04 0.2975F 04 0.2975E 02 F IS.<br />

0.4966E 01 0.9276F 04 0.2895F 04 0.2895E 02 FIS.<br />

0.5488F 01 0.9949F 04 0.2926E 04 0.2926E 02 F IS.<br />

0.606 5E<br />

0.6703F<br />

0.7408E<br />

01<br />

01<br />

01<br />

0.1078F<br />

0.1126F<br />

0.1102F<br />

05<br />

05<br />

05<br />

0.3034F<br />

0.2984E<br />

0.2780F<br />

04<br />

04<br />

04<br />

0.3034F<br />

0.2984F<br />

0.2780E<br />

02<br />

02<br />

02<br />

F IS .<br />

F IS.<br />

FIS.<br />

0.8187F 01 0.1156F 05 0.2777F C4 0.2777E 02 FIS.<br />

0.9048F 01 0.1187F 05 0.2769F 04 0.2769F 02 FIS.<br />

0.1000E<br />

0.1105F<br />

02<br />

02<br />

0 .1 293F<br />

0.1394E<br />

05<br />

05<br />

0.2862F<br />

0.2925F<br />

04<br />

04<br />

0.2662E<br />

0.2925E<br />

0 2 '<br />

02<br />

F IS.<br />

FIS.<br />

0.1221F<br />

0.1350F<br />

02<br />

02<br />

0.1549F<br />

0.1719F<br />

05<br />

05<br />

0.3076F<br />

0.3221F<br />

04<br />

r>4<br />

0.3076E<br />

0.3221E<br />

02<br />

02<br />

FIS.<br />

FIS.<br />

0.1492F 02


108 LO TT et a l.<br />

TABLEAU II<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE SILICIUM (N=2.14E22 AT/G)<br />

R. INF( MEV ) T EV.CM2/G D EV.CM 2/G DPG CM2/G<br />

0 .4140F-06 0.3830F 00 0.3085F 00 G. 3075E-02 l./E<br />

0.531 f>E- 06 0.3-’ 69F 00 0 . 2714F 00 0.27C1E-02 l./E<br />

0.6826F-06 0.2979E 00 0 . 2400F 00 0. 2384F-02 l./E<br />

0.8764E-06 0.2641 F 00 0.2128F 00 0.21C7E-02 l ./ E<br />

0.1125^-05 0.2405F 00 0 . 1940F 00: 0 .1 9 1 2E-02 l ./ E<br />

0 . 1 445F-05 0.2137F 00 0 . 17 24F 00 0 . 1689E-02 l ./ E<br />

o.1855 c- o5 0 .1 857F 00 0 .-1.500F 00 0. 1455E-02 l ./ E<br />

0.23»2F-05 0 . 1702F 00 0.1377F 00 0 .1 3 1 8F-02 l ./ E<br />

0.3058F-05 0.1517F "0 0.1230F 00 C . 115 4 E - 0 2 l./E<br />

0.3928F-05 0.1346f 00 0. 1C°4f 00 0.9976E-03 l./E<br />

0.5043F-05 0.1227F 00 0 . 1001F 00 С. 8770E-03 1 . /Е<br />

0 • 6476F-OS 0.1138F 00 '.9334F -01 0.7738E-03 l ./ E<br />

О.ЯИ 5e -OS 0 .1 077F 00 0.8896E -01 0.6845E-03 1 ./E<br />

0.1O68F-04 0.1062F oc 0 . P 840F -01 0.6205E-03 l./ E<br />

0.1^71- - 04 0 .1 063F 00 0.8922F -01 0. 5538F-03 l ./ E<br />

0 . 1760P-04 0.1072F 00 0 . 9105F -01 C.4758F-03 l ./ E<br />

0 .? 260F- 04 0 . 1 150F 00 0.9867F -01. 0.4285E-03 l ./ E<br />

0 . 2902F-04 0 . 1263F 00 0.1094F 00 0 . 3777F-03 l ./ E<br />

0.3727F-04 0.1.421F 00 0.1243F 00 C.3232E-03 l ./ E<br />

0.4785F-04 0 . 1664F 00 0.1464F 00 0 .2 8 5 1E-03 l ./ E<br />

0 . 6144F-04 0 . 1993F 00 0 . 1761F 00 0 . 2503E-03 1 ./£<br />

0.7889^-04 0.2433F 00 0.2154F 00 0 • 2200F-03 l ./ E<br />

0 .1 0 1 3F-03 0 .3 0 1 7F 00 0.2669F 00 0 . 1956E—03 l ./ E<br />

0 .1 4 01F-03 0.3776F 00 0.3336F 00 0.1721E-03 l ./ E<br />

0 .1 670E-O4 0.4762F 00 0.4197F 00 C .1510E-03 l ./ E<br />

0 .2 1 44F—03 0.6042F 00 0.53C7F 00 0 . 1333E-03 1 ./E<br />

0 .2 7 4 4 F -03 0.7719F 00 0.6752F 00 0 .1 1 82E-02 l ./ E<br />

0 • 3536F-03 0.9855F 00 о .«5 70Г 00 0.6073F-02 l ./ E<br />

0.4540F—03 0 .1 260F 01 0.1091F 01 0.1.139F--01 l ./ E<br />

0.5829F-03 0 . 1610F 01 0.1386F 01 0.1677F-01 1 ./E<br />

0 . 7485F-03 0.2069F 01 0.1772F 01 C.2187F-01 l ./ E<br />

0 .9 6 1 1F-03 0 .2 6 6 1 E 01 0.2264F 01 0 • 2674F-01 1 . /с<br />

0 . 1 234F-0? 0.3425F 01. 0.2897F ■’ 1 0.3286E-01 1 . /Е<br />

0 . 1 585F-02 0.4401F 01 0.3698F 01 C.4048E-01 l ./ E<br />

0 . 2035E-02 0.5652F 01 0.4717F 01 0 .5 105E-01 l ./ E<br />

0.2613F-0? 0.7282F 01 0.6034F 01 ^.6317F-01 l ./ E<br />

0.3355F-02 0.93836 Cl 0.771 4P 01. 0.792CE-01 l ./ E<br />

0.4307F-0? 0.1207F 02 0.9839F 01 0.1002E 00 l ./ E<br />

0.5531 F-02 0.1536F 02 0.1242E 02 0.1256E 00 l ./ E<br />

0 .7 1 02F-02 0.1860F 02 0 . 1491e 02 C.15C4F 00 l ./ E<br />

0 .9 1 1 QF-0? 0.2140F 02 0 . 1700F 02 C.1706F 00 l./t<br />

0.1171 F- 01 0.2505E 02 0.1971F 02 C.1981F 00 l ./ E<br />

0.1 503F-01 0.2979F 02 0.2321F 02 C.2331E 00 i . / E<br />

0.1930F-01 0.3586F 02 0.2764F 02 P.277CE СО l . / t<br />

0.2479E-01 0.4388F 02 0.3345F 05 0.3348F 00 l ./ E<br />

0 . 3 183E-01 0.5464F 02 0 . 4 114F 02 0 .4 П 4 Е 00 l ./ E<br />

0 .4 087F-01 0.7150F 02 0.5308F 02 0.53C8E 00 l ./ E<br />

0 . 5247F-01 0 .1 1 8 OE 03 0.3627Г 02 0.8627F 00 1 ./E<br />

0 . 6738F-01 0 . 1463F 03 0. I055F 03 0.1C55E 01 l ./ E


IA E A -SM -1 7 0 /6 5 109<br />

TABLEAU I I ( SUITE)<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE SILICIUM (N=2.14E22 AT/G)<br />

B.IMF(MEV) T EV .CM2/G D EV.CM2/G DPG CM2/G<br />

0.8652F-•01. 0 . 1 172F C3 0.8320F 02 0.8320E 00 l . / E<br />

0.1 I11F 00 0 . 9287F 02 0.6528F 02 C.6528F 00 l ./ E<br />

0 . 1 728F 00 0 . 76 91E 02 0.5362F 02 0.5362E 00 l ./ E<br />

0 . 1 457^ 00 0.2073F 03 0 . 1403F 03 0.14C3F 01 l ./ E<br />

0.1 500F 00 0 . 8 148F 03 0.5480F 03 C.5481E 01 l ./ E<br />

0 . 1 657F 00 0 . 1 519F 04 0.1021F 04 0.1021E 02 l ./ E<br />

0.1R32C 00 0.2151F 04 0.1442F 04 0.1442F 02 l ./ E<br />

0 .2 024Ç 00 0.2035F 04 0.1355F 04 0.1355E 02 l ./ E<br />

0 .2 73 7F 00 0.1675F 04 3.1105F 04 0 . 1 105E 02 l ./ E<br />

0.2472F 00 0 . 1413F 04 0.9203F 0.3 0.9203F 01 l./ E<br />

0.2732F 00 0.1 3356 04 0.P601F 03 0 .8 6 0 1 E 01 FIS.<br />

0.3020F 00 0 . 1300E 04 0.R272F 03 0.8272E 01 ? IS.<br />

0 .3 ^ 3 7F 00 0 . 1300F 04 0.8166F 03 0.8166F 01 FIS.<br />

0.3688F 00 0 . 1320F 04 0 . 8173F 03 0.8173F 01 FIS.<br />

0.4076E 00 0 . 1364F 04 0 . 8320F 03 0.8320F 01 FIS.<br />

0.4505F 00 0 . 1454F 04 0.8736F 03 0.8736E 01 FIS.<br />

0.4479F 00 0.2582F 04 0 . 1520Г 04 C.1520F 02 FIS.<br />

0.55021= 00 0.3339F 04 0 . 1946F 04 0.1946E 02 - IS.<br />

0.60R1F 00 0 .1 813F 04 0 . 1039F 04 0.1039F 02 FIS.<br />

0.6721F 00 0 . 1822F 04 0 . 1026F 04 0 . 1026F 02 FIS.<br />

0.7427F ">0 0.28°2F 04 0 . 1593F 04 0.1593 F 02 - IS.<br />

0.R20RF 00 0.3583F 04 0 . 1045F '■4 0.1945F 02 FIS.<br />

0.9072F 00 0.4073F 04 0.2163E 04 0.2163E 02 FIS.<br />

0 . 1003«: 01 0 .3 7 1 5F "14 0 . 1935F 04 0.1935E 02 FIS.<br />

0 . 1 108F 01 0 .2 7 1 2F 04 0 . 1380F 04 0 . 1380E 02 FIS.<br />

0.1225F 01 0.3405F 04 0.1692F 04 0.1692E 02 - IS.<br />

0 . 1 353F 01 0.394 2F 04 0.1,910F H 4 0.1910F 02 - IS.<br />

0.1496F 01 0.4725F 04 0.2228F 04 0.2228F 02 FIS.<br />

0 . 1 653F 01 0.5086F 04 0.2340F 04 0.2340E 02 FIS.<br />

0.1 P27F 01 0.6847F 04 0.3072F 04 0.307 2F 02 FIS.<br />

0.2019F 01 0.5176F 04 0 . 2291F 04 0 .2 291E 02 FIS.<br />

0.2231F 01 0.494 8F 04 0 . 2141F 04 0.2141F 02 - IS .<br />

0 . 2466F 01. 0.561 IF 04 0.7339F 04 0.2339E 02 r I S.<br />

0.2725F 0 1 0.5522E 04 0.2276F 04 0.2226F 02 FIS.<br />

0 .3 0 1 ?F 01 0.5535F 04 0 . 213PF 04 0 . 2 13 8 E 02 FIS.<br />

0.3329E 01 0.5290F 04 0 . 1963F 04 C. 1963 F 02 - I S .<br />

0.3679F 01 0.541 of n4 0. 191.8E 04 0. 1918E 02 F IS.<br />

0 .4066e 01 0.6801F 04 0.2307F 04 0.2307E 02 - IS.<br />

0.4493F 01 0 . 7633F 04 0.2523F 04 0.2 523 E 02 FIS.<br />

0.4966F 01 0.7832F 04 0.2543F 04 0.2543E 02 FIS .<br />

0.5488F 01, 0.8088F 04 0 . 2540Г 04 C.2549E 02 FIS.<br />

0 .6 0 6 5F 01 0.7905F 04 0.2380F 04 0.2380E 02 r IS.<br />

0.6703E 01. 0.7797F 04 0.2234F 04 0.2234E 02 FIS.<br />

0.740RF 01 0.8222F 04 0.2237F 04 0.2237E 02 FIS.<br />

0.Я187Е 01 0.8346F 04 0.2151F 04 0.2151E 02 FIS.<br />

0.9048F 01 0.8882F 04 0.2162F 04 0.2 1


110 LO TT et a l.<br />

TABLEAU I I I<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE CHROME (M=1.15E22 AT/G)<br />

B.INF(MEV) T EV.CM2/G D EV•CM 2/G DPG CM2/G<br />

0 .4 1 40F—06 0.3198F 01 0 .26 72F 01 C. 2671F-01 l ./ E<br />

0 .5 3 1 6F-06 0.2823F 01 0.2359F 01 0.2358E-01 l ./ E<br />

0.6826E-06 0.2488F 01 0.2078F 01 0 . 2077E-01 l ./ E<br />

0.8764F-06 0.2212F 01 0.1848F 01 0 . 1 847F-01 l ./ E<br />

0 . 1 125F-05 0.2016F 01 0.1684F 01 0 . 1682F-01 l ./ E<br />

0 . 1445F-05 0.1783F 01 0.1490F 01 0.1487F-01 l ./ E<br />

0 . 1 855F-05 0.1530F 01 0.1279F 01 0 . 1275F-01 l ./ E<br />

0.2^82F-05 0.1351F 01 0.1129F 01 C. 1 125E-01 1 . / 6<br />

0 . 3058F-05 0.1187F 01 0.9917F 00 0.9861E-02 l ./ E<br />

0.3928F-06 0 . 1048F 01 0 . 8759F 00 0.8687E-02 l ./ E<br />

0 .5 043F-05 0.9299F 00 0.7775F 00 0.7683F-02 l ./ E<br />

0 .6 4 7 6 F -05 0.8256F 00 0.6906F 00 0 .6787F-02 l ./ E<br />

0 .8 3 1 5F-05 0.7320F 00 0.6127F 00 0 . 5974E-02 l ./ E<br />

0 . 1O68F-04 0.6710F 00 0.5620F 00 0.5423F-02 l ./ E<br />

0 .137 l e - 04 0.6067E 00 0.5087F 00 G.4833E-02 l ./ E<br />

0 . 1760F-04 0.5316F 00 0.4464F 00 0.4138E-02 l ./ E<br />

0 .2 2 6 0 F -r>4 0.4861F 00 0.4C90E 00 C.3672F-02 l ./ E<br />

0.2902F-04 0.4462F 00 0.3765F 00 0.3228F-02 l ./ E<br />

0 . 3727F-04 0.4144F 00 0.351 IF 00 0.2820E-02 l ./ E<br />

0 • 4785F-04 0.3935F 00 0.3350F 00 C.2464E-02 l ./ E<br />

0 .6 1 44F-04 0.3893F 00 0.3337F 00 0 .2 194E-02 l ./ E<br />

0.7889F-04 0 . 3940F 00 0.3395F 00 0.1 9 3 1 E-02 l ./ E<br />

0 . 1013F-03 0.4178E 00 0.3623F 00 G .1740F-02 l ./ E<br />

0.1301F-03 0.4567F 00 0.3985F 00 0 . 1 565E-02 l ./ E<br />

0.1 670F-03 0.5074F 00 0.4457F 00 C .1347E-02 l ./ E<br />

0 .2 1 44F-03 0.5887F 00 Г|. 5190F oo C .1204E-02 l ./ E<br />

0.2754F-03 0.6997F 00 0.6 182F 00 0.1C76F-02 l ./ E<br />

0 . 3 536F-03 . 0.8438F 00 0.7467F 00 0. 1214E-02 l ./6<br />

0.4540F-03 0.1039F 01 0.9186F 00 0 . 3314E-02 l ./ E<br />

0.5 829F-03 0.1306F 01 0.1151F 01 0.86C7E—02 l ./ E<br />

0 ,7 4 8 5 F -03 0.1658F 01 0 . 1457F 01 C .1801F-01 l ./ E<br />

0 .9 6 1 1F-03 0.2116F 01 0 . 1851F 01 0 . 2526F-01 l ./ E<br />

0 . 1 234F-0? 0.2786F 01 0.2423F 01 0.3123F-01 l ./ E<br />

0 . 1 585F-02 0.3690Б 01. 0.3193F 01 0 .3 8 1 1E-01 l . / E<br />

0.2035F-02 0.5239E 01 0.4518F 01 0 .5 1 0 1 E-01 l ./ E<br />

0 .2 6 1 3F-02 0.9658F 01 0.8282F 01 0 . 8926E-01 l ./ E<br />

0 .3 3 5 5 F -02 0.2789F 02 0.2378F 02 0.2485E 00 l ./ E<br />

0.4307F-02 0.4313F 02 0.3656E 02 0.3766E 00 l ./ E<br />

0.5531F-02 0.4P88F 02 0.4118F 02 0.4193E 00 l ./ E<br />

0 .7 1 02F-0? 0.5501F 0? 0.4604F 02 0.4663E 00 l ./ E<br />

0.9X 19E—02 0.365 1F 02 0.3035F 02 0.3053E 00 l ./ E<br />

0 .1 1 71F-01 0.2649F 02 0.2186F 02 0.2198E 00 l./ E<br />

0 .1 503F-01 0.2205E 0? 0 . 18C5F 02 0.1808E 00 l ./ E<br />

0 .1 930F-01 0.2942F 02 0.2389F 02 0.2393E 00 l ./ E<br />

0 • 2479F— 01 0.4287F 02 0.3448F 02 0.3454F 00 l ./ E<br />

0.3183F-01 0.5235E 02 0.4176F 02 0.4180E 00 l ./ E<br />

0.4087F—01 0 .U 5 2 E 03 0.9089F 02 0.9093E 00 l ./ E<br />

0.5247E-01 0.1316E 03 0.1032E 03 0.1032E 01 l ./ E<br />

0 . 6738F-01 0.6517F 0? 0.5060F 02 0.5060E 00 l . / E


I A E A - S M -1 7 0 /6 5 111<br />

TABLEAU III(SUITE)<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE CHROME (N=1.15E22 AT/G)<br />

B.INF(MEV) T EV.CM2/G D EV.CM2/G DPG CM2/G<br />

0.8652F-•01 0.3382F C3 0.2594F 03 0.2594E 01 l ./ E<br />

0.1 U 1F 00 0 • 2 39 3 E 03 0.1875F 03 C.1825E 01 l . / E<br />

0.1728F 00 0.2139F 03 0.1622F 03 0.1622E 01 l ./ E<br />

0.1357F 00 0.5808F 03 0.4385F 03 C.4385E 01 l ./ E<br />

0 .1 500F 00 0.4456F 03 0 .3 3 5 1 E 03 0.3351E 01 l ./ E<br />

0.1657F 00 0.307*E 03 0.2304F 03 0.2304E 01 l ./ E<br />

0.1842F 00 0.271 IF 03 0.2020F 03 0.2020E 01 l ./ E<br />

0.7024F 00 0.2307F 03 0.1711F 03 0 .1 7 1 1E 01 l ./ E<br />

0.2737F 00 0 . ‘:*096F 03 0 .2284F 03 0.2284E 01 l ./ E<br />

0.2472F 00 0.7357F 03 0.1732F 03 0.1732E 01 l ./ E<br />

0 .? 7 3 ? f o 0 0.2007F 03 0 . 1463F 03 0 .1 4 6 3 E 01 FIS.<br />

0.3020F 00 0.3772F 03 0.2725F 03 0.2725E 01 FIS.<br />

0 . 3337F 00 0.3781F 03 0.2711F 03 0.2711E 01 : IS.<br />

0.3688F 00 0.4101F C3 0.2920E 03 0.2920E 01 FIS.<br />

0.4076F 00 0.4924F 03 0.3490E 03 0.34°0E 01 - IS.<br />

0.4505F 00 0.5684E 03 0.4008E 03 0.4C08E 01 FIS.<br />

0.4474F 00 0.5800F 03 0.4075F 03 0.4C75E 01 FIS.<br />

0.5502F 00 0.5047P 03 0.3511F 03 0.3511E 01 - IS.<br />

0.6081 F 00 0.7Ч91Е 03 0.5527F 03 0.5527E 01 FIS.<br />

0.6721F 00 0.6755F 03 0.4276F 03 0.4276E 01 FIS.<br />

0.7477F 00 0 . 1049F 04 0.7112F 03 0 . 7112E 01 FIS.<br />

0.8708F 00 0 .1 065F 04 0.7143E 03 C.7143E 01 FIS.<br />

0.9072P 00 0.9394F 03 0.6265E 03 0.6265E 01 FIS.<br />

0.1003F 01 0 . 1005F 04 0.6648F 03 0.6648E 01 FIS.<br />

0 . 1 108F 01 0 . 1030F 04 0.6738Ç 03 0.6738E 01 FIS.<br />

0.172 5F 01 0 .1 5 1 1Г 04 0.9719F 03 0.9719E 01 FIS.<br />

0.1353F 01 0.1347F 04 0.8603F 03 0.86C3E 01 = IS.<br />

0.1496F 01 0 . 1331F 04 0.8488F 03 0.8487E 01 FIS.<br />

0.1653E 01 0.1475E 04 0.9321F 03 0.9321E 01 FIS.<br />

0.1827F 01 0.7098F 04 0. 1310F 04 0.1310E 02 FIS.<br />

0.2019F 01 0.7379F 04 0.1472F 04 C.1472E 02 FIS.<br />

0.2231E 01 0.2286F 04 0 . 1401F 04 0 •1 4 0 1 E 02 FIS.<br />

0.7466E 01 0.2444F 04 0. 1481F 04 0 . 1481E 02 FIS.<br />

0.272 5F 01 0.2545F 04 0 . 1526F 04 0.1526E 02 FIS.<br />

0.3012F 01 0 .2 6 1 2E 04 0 . 1553F 04 0.1553E 02 FIS.<br />

0.3379F 01 0.7761F 04 0 . 1633F 04 0.16ЭЗЕ 02 FIS.<br />

0.3679F 01 0.2813F 04 0.1657E 04 0.1657E 02 FIS.<br />

0.4066F 01 0.7952F 04 0.1722F 04 0.1722E 02 F IS.<br />

0.4493E 01 0.3123F 04 0.1801E 04 0.1801E 02 FIS.<br />

0.4966F 01 0.3771F 04 0.1864E 04 0.1864E 02 FIS.<br />

0.5488F 01 0.3406F 04 0 . 1918F 04 0.1918E 02 FIS.<br />

0 .6 065E 01 0.3602É 04 0 . 1996E 04 C.1996E 02 FIS.<br />

0.6703F 01 0.3835F 04 0.2087E 04 0.2087E 02 FIS.<br />

0.7408E 01 0.4026F 04 0.2149F 04 0.2149E 02 FIS.<br />

0.8187F 01 0.4242E 04 0.2213E 04 C.2213E 02 FIS.<br />

0.9048E 01 0.4437F 04 0.2258E 04 0.2259E 02 F IS.<br />

O.lOOOE 02 0.4720E 04 0.2338F 04 0.2338E 02 F IS.<br />

0.1105E 07 0.5075F 04 0.2440E 04 0.2440E 02 FIS .<br />

0 . 1 221E 02 0.5497F 04 0.2564F 04 0.2564E 02 FIS.<br />

0.1350F 02 0.6175F 04 0.2779F 04 0.2779E 02 FIS.<br />

0.1492F 02


112 LO TT et a l.<br />

TABLEAU IV<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE FER (N=1.078E22 AT/G)<br />

B.IN F( MEV) T EV.CM2/G D EV.CM2/G DPG CM2/G<br />

0 .4 1 40F-06 0.2476F 01. 0.2C73F 01 0.2C71F-01 l ./ E<br />

0.5316F-06 0.21P5F 01 0.1830F 01 0 .1 827E-01 l./ E<br />

0.6826^-06 0 . 1926F 01. 0.1613F 01 0 .161<strong>OF</strong>-O1 l ./ E<br />

0.8764F-06 0 . 1704F 01 0 . 1427F 01. 0.1423E-01 l./ E<br />

0.1 1 2 5F —05 0 .1 521F 01 0 .1 274F 01 C.1269E-01 1 ./E<br />

0 • 1.445F- 05 0 . 1336F 01. 0 . 1 1 19P 01 0 .1 1 13F-01 l ./ E<br />

0 . 1 855F-05 0.1184F 01 0.9919Г 00 0.98396-02 1 ./E<br />

0 .2 3 8 ?F-OR 0.ir>5<strong>OF</strong> n 0.8802F 00 C.8699E-02 1 ./e<br />

0.3058Г-05 0.9264F 00 0.7766F 00 n .76338-02 l ./ E<br />

0.3P7OC-OC 0.8216P 00 0.6891F 00 0 .6 7 2 1F-02 1 ./E<br />

0.5043F-O5 0.7367F 00 0.6183P 00 0 . 5 965F-0 2 l ./ E<br />

0 • 6476F-05 0.65R4P 00 0.5532F 00 0.5252E-02 1 ./E<br />

0 .8 3 1 5r - 05 0 . 5937F 00 0.4995F 00 C .4Í35E-0? l ./ E<br />

0.1 068F-04 0 .5 4 3 ’ F 00 0.4580F 00 0 .4 1 1 7F—02 l ./ E<br />

0 . l 371F- 04 0.4968F 00 0.4200F 00 0 . 3606F-02 l ./ E<br />

0 .1 760F-04 0.4646F 00 0.3941F 00 0 .3 1 79E-02 l . / E<br />

0.2260Г-04 0.4452F 00 0.3793F 00 0 .2 8 ] 4E-02 l ./ E<br />

0.2902F-04 0.4361F 00 0.3736F 00 0 . 2478E-02 l ./ E<br />

0.37?7F-04 ° . 4422F 00 0.3810F 00 0.2195F-02 l ./ E<br />

0.47R5F-04 0 . 4607F 00 0.3995F 00 С . 1921 F—02 l ./ E<br />

0 . 6 144F-04 0.49R7F 00 0.4353F 00 0 . 1692E-02 l ./F<br />

0 . 7RR9F- 04 0.^59°F 00 0 •4 9 1 5F 00 0 . 150CF-02 l ./ E<br />

0 .1 0 1 3F-03 0.6468Г 00 0.5707F 00 0 .1 326E-02 l ./ E<br />

0 .1 4 0 1 F-03 0.7651F 00 0.6780F 00 0.1170^-02 l ./ E<br />

0.1670P -0’ 0.9199F no 0 . 8179F 00 С .1023E-02 l ./ E<br />

0 .2 1 44F-01 0 . 1 122P 01 0.9997Г 00 0.9C70E-03 1 ./E<br />

0 . 2754F-03 0 .1 375F 01 0 . 1227F 01 0.7952E-03 1 . /E<br />

0.3536F-03 0.1691F 01 0.1507F 01 0.7074E-C3 l ./ E<br />

0 «4 540F-03 0.2075F 01 0 . ie44F 01 C.9336E-03 l ./ E<br />

0.5R29F-03 0.2531F 01 0 . 2243F 01 0.135 2E-01 1. /Е<br />

0 .7 4R5F-03 0.3052F 01 0.2696F 01. 0 • 3 28 9F—01 l ./ E<br />

0.961 IF-03 0.7863F 01 0.6746F 01 0 . 8077F-01 1. /Е<br />

0. 1234F-02 C.4604F 01. 0.4031F 01 0.5556E-01 l ./ E<br />

0 .1 5 8 5 F -0? 0.547PF 01 0.4771F 01 0.5973E-01 l . / E<br />

0 . 2O35F-02 0.637RF 01 0.5527F 01 0 . 6343F—01 l ./ E<br />

0 .2 6 1 3F-0? 0.73R3F 01 0.6361F 01 0 . 69 57F-01 l ./ E<br />

0.3355F-02 0.9853F 01 0.8434F 01 C.8906F-01 l . / E<br />

0 .4307F-02 0 . 1032F 02 0.8784F 01 0.9076E—01 l ./ E<br />

0.5531P-0? 0.2 097F 02 0.1773F 02 0 .1 8 1 1E 00 l ./ E<br />

0 .7 1 02F-02 0.4741F 02 0.3984F 02 0.4038E 00 l ./ E<br />

0 .9 1 1 9F-02 0 . 1970F 02 0.1644E 02 0.1655E 00 l ./ E<br />

0 . 1 171E-01 0.155 8^ 02 0.1291F 02 0.1300E 00 l ./ E<br />

0. 1503F-01 0.1281P 02 0.1054F 02 0.1056F 00 l ./ E<br />

0 .1 930F-01 0.6050F 01 0.4943F 01 0.4947E-01 l ./ E<br />

0 .2 479F-01 0.331 <strong>OF</strong> 0’ 0.2678F 03 0.2684E 01 l ./ E<br />

0 .3 1 R3F-01 0 . 1117P 03 0.8962F 02 0.8973E 00 l ./ E<br />

0.40R7F-01 0.8847^ 02 0.7032E 02 0.7036E 00 l ./ E<br />

0 .5 247F-01. 0.9000F 02 0.7095F 02 C.7C96E 00 l ./ E<br />

0.673RF-0T 0.2153F 03 0 . 1678F 03 0.1678F 01 l ./ E


I A E A - S M -1 7 0 /6 5 И З<br />

TABLEAU IV ( SUITE)<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE FER (N=1 .07RE22 AT/G)<br />

B.INF(MEV) T EV.CM2/G D EV.CM2/G DPG CM?/G<br />

0.8652F--01 0 .1 400F 03 0. П 5


114 LO TT et a l.<br />

TABLEAU V<br />

SECTIONS EFFICACES DE TRANSFERT 0*ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE NICKEL (N=1.026E22 AT/G)<br />

B. INF(MEV) T EV.CM2/G D EV.Cf'2/G DPG CM2/G<br />

0.4140Г-06 0.6241F 01 0.5176F 01 0 . 5 173F-01 L ./E<br />

0 .5 3 1 6F- 06 0.5503F 01 0.4563F 01 0.4560F-01 l ./ E<br />

0.6«26F-06 0.485PF 01 0.4024F 01 0 .4 0 2 0 F -0 1 L./E<br />

0.8764F-O6 0.4294F 01 0. 3561F 01 0.3556Ë-01 l ./ E<br />

0 . П 2 5F-05 0.3 829F 01 0.3175F 01 0 .3 1 69E-01 l ./ E<br />

П .1445F-05 0.3356F 01 0.2783F 01 0.2775E-01 l ./E<br />

0 . 1 855p-05 0 . 2960F 01 0.2455F 01 0.2444E-01 L./E<br />

0.2382F-05 0.2613F 01 0.2168F 01 C.2 1 54E-01 l . / E<br />

0 . 3058F-05 0.2321F 01 0 . 1926F 0] 0 .1 9C8E-01 l ./ E<br />

".3928F-05 0.2050F 01 0. 1702e 01 0 . 1679F-01 L./E<br />

0.5043F-05 0.1 818F 01 0.1510F 01 0 . 1480E-01 l ./ E<br />

0 .6 4 7 6 F -05 0 . 1617F 01 0.1344F 01 0 . 13C5F-01 L./E<br />

0.Я315Р-0 5 0 . 1445E 01 0.1202F 01 C.1153E-01 l ./ E<br />

0 . 1 068F-04 0 .1 311F 01 0 . 1092F 01 C. 1 029E-01 l ./ E<br />

0 . 1 371F-04 0 . 1 177F 01 0.9821F 00 C.9011E-02 l ./ E<br />

0. 1.760F-04 П. 1.074F 01 0.8980F 00 C.7940E-02 l ./ E<br />

0.2 260F-04 0.9928E 00 0.8331F 00 0.6996E-02 l ./ E<br />

0.2902E-04 0.9380F oo 0.7903F 00 0 .6 1 90E-02 L./E<br />

0 .3 7 ?7 f _04 0 . 4034F 00 0.7652F 00 0 . 5454F-02 l ./ E<br />

0.478 5F- 04 0.8948F 00 0.7626F 00 0.4806E-02 l ./ E<br />

0 .6 1 44E-04 . 0.9155F "0 0.7856F 00 0.4239Г-02 l ./ E<br />

0 .7 889F-04 0.9692F 00 0.8376F 00 0 . 3738E-02 l ./ E<br />

0 .1 0 1 3F-03 0 .1 066F ni 0.927 7F oo 0 . 3334E-02 l ./E<br />

0.1301F-O3 0.1204F Cl 0.1054F 01 0 . 2929E-02 l ./ E<br />

0 . 1 670F-03 0.1400F 01 0.1232F 'Ч 0.2580E -02 l ./ E<br />

0 .2 1 44F-03 0 . 1666F 01 0 . 1473F 01 0.2273E-02 l ./ E<br />

0 .2 754F-03 0.2019F "1 0.1791E 01 0.2003E -02 l ./ E<br />

0 .3 536F-03 0.2472F 01 0.2195F 01 0 . 1766F-02 l ./ E<br />

0.4540F-03 0 .3 0 1 5F 01 0.2675F 01 0 . 1 558E-02 L./E<br />

0 .5 829F-03 0.3652F 01 0.3234F 01 0.1471E-01 l ./ E<br />

0 • 7485F-03 0.4456F 01 0.3935F 01 0.4483E-01 l ./ E<br />

0 .9 6 1 1F-03 0.5569F 01 0.4900F 01 0 .666 2Г-01 l ./ E<br />

0.1234F-02 0.7113E 01 0.6232F 01 0 . 8542F—01 l ./ E<br />

0. 1 585E-0? 0 . 9299F 01 0.8107F 01 0.1024E 00 1 ./E<br />

0 . 2035F-02 0 . 1243F 02 0. 1C78F 02 0.1256F 00 l . /t<br />

0.2613F-02 0.1757F 02 0.1516F 02 0.1664E Oc- l ./ E<br />

0.335 5F-02 0.3023F 02 0.2593F 02 О.2749E 00 l ./ E<br />

0.4307F-02 0.4437F 02 0.3783E 02 0.3924E 00 l ./ E<br />

0.5531E-02 0.3002F 02 0.2544F 02 0.2601E 00 i ./e<br />

0 .7 1 02E-02 0.2592E 02 0.2182F 02 0.2211 E СО l . /Е<br />

0.911 9F-02 0.5303F 02 0 .4430F 02 0.4458E 00 l ./ E<br />

0 . 1 171E-01 0.2087F 03 0 . 1733F 03 0.1745F 01 l ./ E<br />

0.1.503F-01 0.3482F 03 0.2873E 03 0.2882E 01 l ./ E<br />

0 . 1930F—01 0.1286F 03 0 . 1053F 03 0.1054F 01 l ./ E<br />

0 . 2479F-01 0.1573F 03 0 . 1276F 03 0.1280E 01 l ./ E<br />

0.3183E-01 0.8 85 8F 02 0.7132F 02 C.7142E 00 l./E<br />

0.4087F-01 0.7491F 02 0.5974F 02 0.5979E 00 l ./ E<br />

0 . 5 247F-01 0.1981E C3 0.1562F 03 0.1562E 01 1 . /Е<br />

0.6738^-01 0.2558F ГЗ 0.2005F 03 0 .2 Г05F 01 l./E


IA E A -S M -n o/6 5 115<br />

TABLEAU V (SUITE)<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE NICKEL (N=1.026E22 AT/G)<br />

B.INF(MEV) T EV.CM2/G D EV.CM2/G DPG CM2 /G<br />

0.8657F--01 0. 1980F C3 0. 1535F 03 0 . 1535E 01 l./ E<br />

0.1111F 0 0 0.1961F 03 0.1511F 03 0. 1 511E 01 l ./ E<br />

0 . 1778F 00 0.1465F 03 0.1174F "3 C.1124E 01 l ./ E<br />

0.1357F 00 0.387«F 03 0.2923F 03 0 .2923E 01 l ./ E<br />

0.1500F 00 0 . 4388F 03 0.3334F 03 0.3334E 01 l ./ E<br />

0.1657F 00 0.3247F 03 0.7459F 03 0.2459E 01 l ./ E<br />

0.1837F 00 0.3063F 03 0.2308F 03 0.2308E 01 1. /6<br />

0.2024F 00 0.4463F 03 0.3348F 03 0.3348E 01 l . / E<br />

0 .2 737F 00 0.4293F 03 0.3702F 03 C.3202E 01 l ./ E<br />

0 .2 4 7 ? f 00 0.3901F 03 0.2896F 03 0.2896F 01 l ./ E<br />

0.2732F 00 0.5100F 03 0 . 3766F 03 0.3767F 01 FIS.<br />

0.302 0F 00 0.4697F 03 0.3449F 03 0.3449E 01 FIS.<br />

0 ; 3337F 00 0 . 5 129F 03 0.3745F 03 0.3745F 01 r I S .<br />

0.3688F 00 0 . 3940F 03 0 . 2860F 03 C.2860E 01 FIS.<br />

0.4076F 00 0.5751F 03 0.4146F 03 0.4146F 01 FIS.<br />

0.4505F 00 0.5883F 03 0.4219F 03 0.4219 E 01 FIS.<br />

0.4979F 00 0.5773F 03 0.3764F 03 0.3764F 01 F IS.<br />

0.5502F 00 0.4780F 03 0.3381F 03 0.3381F 01 - IS .<br />

0 .6 0 8 )F 00 0.6803F 03 0.4787F 03 0.4782E 01 FIS.<br />

0.6721F 00 0.6479F 03 0.4578F 03 0.4 52 8E 01 FIS.<br />

0.7427F 00 0.7307E 03 0.5052F 03 0.5052E 01 - IS.<br />

0.8 208F 00 0 . 8378F 03 0.5740F 03 0.5749F 01 F IS.<br />

0.4072F 00 0.8212F 03 0.5611F 03 0.5611F 01 FIS.<br />

0 .1 003F 01 0.8712E 03 0.5 894F 03 0.5894E 01 FIS.<br />

0 .1 1 08r 01 0.1160F 04 0 . 7739F 03 0.7739E 01 FIS.<br />

0.122 5F 01 0 . 1386F 04 0.9178F 03 0.9178E 01 FIS.<br />

0.1353F 01 0 . 1 219F 04 0.8054F 03 0.8C54E 01 FIS.<br />

0.1496F 01 0. 1280F 04 0 . 8470F 03 C.8420E 01 FIS.<br />

0.1653F 01 0.1365F 04 0.8912F 03 0.8912E 01 FIS.<br />

0.1827F 01 0.1471F 04 0.Я528Е 03 0.9528E 01 - IS.<br />

0.2019F 01 0 . 1595E 04 0 . 1024F 04 0 . 1024E 02 FIS.<br />

0.2231F 01 0 . 1727F 04 0 . 1099F 04 0 . 1C99E 02 - IS .<br />

0.7466F 01 0.1816F 04 0 . 1148F 04 0.1148E 02 F IS.<br />

0.2725F 01 0.1837F 04 0 . 1153E 04 0.1153F 02 FIS.<br />

0 .3 0 1 2F 01 0 . 1832F 04 0 . 1 148F 04 0.1148E 02 FIS.<br />

0 .33?gp 01 0 . 1947F 04 0.1209F 04 C.12C9E 02 = IS.<br />

0.3679E 01 0.2050F 04 0.1267F 04 0.1267F 02 F IS.<br />

0.4066F 01 0.7134F 04 0.1311F 04 0 . 1311E 02 FIS.<br />

0.4493F 01 0.2119F 04 0 . 1305F 04 C.1305E 02 FIS.<br />

0.4966F 01 0.2144E 04 0 . 1318F 04 0.1318F 02 FIS.<br />

0 .5 4 8 8 e 01 0.7 29 9F 04 0 . 1396F 04 0.1396E 02 FIS.<br />

0.6065F 01 0.2423F 04 0 . 1453F 04 0.1453E 02 FIS.<br />

0.6703F 01 0.2526F 04 0.1494F 04 C.1494E 02 F IS.<br />

0.7408F 01 0.2621F 04 0. 1578F 04 0.1528F 02 FIS.<br />

0.8187F. 01 0.2764F 04 0 . 1586F 04 0.1586F 02 FIS.<br />

0.9048F 01 0.2973F 04 0 . 1650E 04 C.1650E 02 F IS .<br />

0.1000F 0? 0.3108F 04 0 . 1723F 04 0.1723E 02 F IS.<br />

0.1105F 02 0.3324F 04 0 . 1809F 04 0 .1 8 0 9 E 02 FIS.<br />

0.1271F 02 0.3627F 04 0 . 1935F 04 0.1935E 02 F IS.<br />

0.1350F 02 0.4034F 04 0.2108F 04 0.2108F 02 FIS.<br />

0.1492F 0?


116 LO TT et a l.<br />

TABLEAU VI<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE CUIVRE (N=0.9479E22 AT/G)<br />

B.IN F( MEV ) T E V . C M 2 / G D EV.CM2/G DPG CM 2/G<br />

0 .4 1 40F-06 0.3141E 01 0.2R13F 01 C .2812F- 01 l./E<br />

0.5316F-06 0 .2 7 8 2 e 01 0 .7 3 4 7 e 01 0.2341E- 01 l./E<br />

0.6P26F-06 0.2478F 01 0.2087F 01 0.2085F-■01 l./E<br />

0 .8 764F-06 0.2169E 01 0.1876F 01 0.1824F- 01 l./E<br />

0 . 1 175F-05 0 . 195RF 01 0.1649F 01 0 . 1646F- 01 1 . /Е<br />

0 . T 445F-05 0.1774F 01 0.1452E 01 0.1448F-•01 l ./ E<br />

0.1R55F- 05 0 . 1470F Cl 0.1238F 01 0.123 3F-•01 l ./ E<br />

0.2187F-05 0 . 1290F 01 0 . 10R6F 01 0 .lóele- 01 l ./ E<br />

0 • Ю58Р- 05 0 .1 1 ?1F 01 0.9461F 00 о . 9392E-■02 l ./ E<br />

0 . 3474F-05 0.9787F 00 0.8 7 4 1 e 00 C.8153E-•02 l ./ E<br />

0 . 5043F -05 0 . P 5 21F 00 0.7187F 00 0.7069E-■02 l . / t<br />

0 .6 4 7 6 F -05 0.741 1 F 00 0.6248F 00 0.6103F-•02 l ./ E<br />

0 . 8 * 1 5F-05 0.6445E 00 0 .5 4 3 8 e 00 C.5253F- 02 l ./ E<br />

0 .1 06RF-04 0.S7R4F 00 0.4884F 00 0.4647F-■02 L./E<br />

0.1171 F -04 0.5096F 00 0 .4309F 00 0.4006F-■02 1. /Е<br />

0 • 1760F-04 0.4 7 8 9 e 00 0.36 35E 00 0.3247F- 02 L./E<br />

0 .2 760F-0^ 0.3771F 00 0.3707F 00 0.271 I f-•02 L./E<br />

0 . 7907F- 04 0.3 334e 00 0.2845e 00 О.2212E-■02 L./E<br />

0.3777E-04 0.1045F 00 0.2613F 00 0.1804t-•02 1 ./E<br />

0.47R5F-04 0. ?RRQF 00 0.2495F 00 0.1459F-■02 l ./ E<br />

0.6144F-04 0.2R79F 00 0.2504e 00 0.1178F-■02 l ./ E<br />

0 .7 889F-04 0.101RF 00 0.2643F 00 0.9496F-■03 l ./ E<br />

0 . 10Ï3F-01 0.3147F 00 0 . 2949F 00 0.7905F-•03 l ./ E<br />

0.1 ‘ЗО! F- 01 0.1R79F 00 0.3410F 00 0.7113E-•03 l ./ E<br />

0.Ï67OE-01 0.4977F 00 0.4178e 00 0.1204E-•02 l ./ E<br />

0 .2 1 44F- 01 0.2314F 01 0 . 1990F 01 0 . 1 591F-•01 l ./ E<br />

0.2 754F-01 0.7004F 00 0.6204F 00 0 . 1 142F-■02 L./E<br />

0 .1 5 1 6 F -01 0 .8 4 8 1 E 00 0.7524F 00 СЛ 153F-•02 L./E<br />

0 .4 540F-01 0.7660F 02 0 .2252F 07 0.2040F 00 l ./ E<br />

0 . 5879F-01 0.4177F 01 0.1547F 01 0.2416E--01 L ./E<br />

0 .7 4 8 5 F -01 0.7197E 01 0 . 1920F 01 C.1890F- 01 l ./ E<br />

0 .9 6 1 1F-01 0.7710F 01 0.1936F 01 C.2487E-■01 l ./ E<br />

0 . 1 214F-07 0.2372F Cl 0 . 7C79E 01 0.2818E-■01 L./E<br />

0 . 1 5P5F-07 0.1223E 07 0.1067F 02 0.1324E 00 l./ E<br />

0.2035F-0? 0.2576F C2 0.2246F 02 0.2697E 00 l ./ E<br />

0.2613F-0? 0.9445F 01 0.8177F 01 0.9082F-•01 L./E<br />

0.3355F-0? 0.1251F 02 n .1 С 79E 07 0.1152E 00 l ./ E<br />

0 .4 3 0 7 F -0? 0.2946F 07 0 . 2523e 02 0 . 2630E 00 L./E<br />

0 ,5 511.F- 0? 0 .2 1 5 6 e 07 0 . 1838e 02 0.1Й85Е 00 l ./ E<br />

0 .7 1 07e- 07 0.4261F 02 0 .3 6 1 1F n2 0.3660E 00 l./E<br />

0.9119F-07 0.4993F 07 0.4205F 02 0.4250F 00 l./E<br />

0.1171F— 01 0.4226F 02 0.3534F 02 0.3560E 00 l./E<br />

0.1503F-01 0.5773E 07 0.4379E 02 0.4395F 00 l./E<br />

0.1930F-01 0.5764F 07 0.4753F 07 0.4757F со l./E<br />

0.2 479F— 01 0.7401F 07 0.6058F 07 0.6C71E 00 l./E<br />

0.3183F-01 0.8268F 02 0.6712F 02 0.6721E 00 1 ./E<br />

0.4 0 8 7 F -01 0.9700F 02 0.7811F 02 0.7818E 00 l./E<br />

0 .5747E -01 0.1565 E 03 0.1248F 03 0.1248E 01 l./E<br />

0,6738F- 01 0.1786F 03 0.1411F 03' 0.1411E 01 l./E


I A E A - S M -1 7 0 /6 5 117<br />

TABLEAU V I(S U IT E )<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DAMS LE CUIVRE (N=0.9479E22 AT/G)<br />

B.INF(MEV) T EV.CM2/G D EV. CM 2/G DPG CM2/G<br />

0.8652F-■01 0 . 1684F 03 0. I318E 03 0 . 131 8 E 01 l ./ E<br />

O . l l l l F 00 0.1592F 03 0.1238F 03 0.1238E 01 l ./E<br />

0.1228F 00 0.1807F 03 0 . 1399F 03 0.1399E 01 l ./ E<br />

0.1357F 00 0.2232E 03 0 . 1759F 03 0.1759E 01 l ./ E<br />

0 . 1 500F 00 0.2289F 03 0. 1758F 03 0.1758E 01 l ./E<br />

0.1657F 00 0.2331F 03 0.1783F 03 C.1783F 01 l ./ E<br />

0 . 1 83 2F 00 0.2574F 03 0 . 1960F 03 0.1960E 01 l ./ E<br />

0.2024F 00 0.2835F 03 0.21496 03 0.2149E 01 l ./ E<br />

0.2237F 00 0.4121F 03 o .2354F 03 0.2354F 01 l ./ E<br />

0.2472F 00 0.3437F 03 0.2581F 03 0.2581E 01 l ./ E<br />

0.2732F 00 0.3791 F 03 0.2835F 03 0.2835E 01 ? IS.<br />

0.3020F 00 0.4091E 03 0 . 3045F из 0 .3 04 5 E 01 F IS .<br />

0.3337F 00 0.4357F 03 0.3228F 03 0.3228E 01 PIS.<br />

0 . 3688F 00 0.4652F n3 0.3430F 03 0.3430E 01 F IS.<br />

0.4076F 00 0.4988F 03 0.3656F 03 0.3656F 01 FIS.<br />

0.4505F oo 0.5364E 03 0.3908F 03 0.3908E 0]. - IS .<br />

0.4979F 00 0.5721F 03 0.4142F 03 C.4142E 01 FIS.<br />

0.5502F 00 0.6049F 03 0.4352F 03 0.4352F 01 FIS.<br />

0.6081F 00 0.6359F 03 0.4548F 03 0.4548E 01 F IS.<br />

0.6721F 00 0.6783F 03 o,4823F 03 C.4823E 01 FIS.<br />

0 .7 4 ? ? f 00 0.7331F 03 0.5178F 03 0.5178F 01 FIS.<br />

0.8208F 00 0.7678F 03 0.5391F 03 0.5391F 01 - IS .<br />

0.9072F 00 0 . 3 146F 03 0.5680F 03 0.5680E 01 FIS.<br />

0.1003F 01 0.8554F 03 0.5929F 04 0 . 5929E 01 FIS. 0 . 1 108F 01 0.9141F 03 0.6293F 03 0.6293E 01 r r S.<br />

0 . 1 22 5F<br />

0 . 1 353F<br />

01<br />

01<br />

0.9860F<br />

0 . 1030F<br />

03<br />

04<br />

1 .6732F<br />

0.6983F<br />

03<br />

03<br />

0.6732E<br />

0.6983E<br />

01<br />

01<br />

FIS.<br />

? IS.<br />

0.1 4 e* 6F 01 0 . 1066F 04 0.7183F 03 0.7183F 01 FIS.<br />

0.1653F 0! 0 . 1090E 04 0.7308F 03 0.73C8E 01 FIS.<br />

0 .1 8 2 7F 01 0.1130F 04 0.7546F 0.3 0.7546E 01 FIS.<br />

0.2 019F<br />

0.2231F<br />

01<br />

01<br />

0 .1 2 1 3F<br />

QÍ1325F<br />

04<br />

04<br />

0.804 2F<br />

Q.8713F<br />

03<br />

03<br />

0 . 8 04 2 E<br />

C.87136<br />

01<br />

01<br />

FIS.<br />

FIS.<br />

0.2466F 01. 0.1406F 04 0.9190F 03 0.9190E 01 FIS. 0.2725F 01 0.1559F C4 0. 1C11F 04 0.1011E 02 FIS.<br />

0.3012F 01 0 . 1741F 04 0 .1 U 9 F 04 0.1 119E 02 FIS.<br />

0.3320F<br />

0.3679F<br />

01<br />

01<br />

0 .1 840F<br />

0.2029F<br />

04<br />

04<br />

0 . 1174F<br />

0 . 1282F<br />

04<br />

04<br />

0.1174F<br />

0.1282E<br />

02<br />

02<br />

FIS.<br />

FIS.<br />

0.4066F 01 0.2234F 04 0 . 1399F 04 C.1399F 02 F IS .<br />

0.4493F 01 0.2333F 04 0 . 1454F 04 0.1454E 02 FIS.<br />

0.4966F<br />

0.5488F<br />

01<br />

01<br />

0.2426F<br />

0.2 615F<br />

04<br />

r>4<br />

0 . 1503F<br />

0.1601F<br />

04<br />

04<br />

0.1503E<br />

0 .1 6 0 1 E<br />

02<br />

02<br />

FIS.<br />

FIS.<br />

0.606 5F 01 0.2788F 04 0 . 1685F 04 0.1685E 02 FIS.<br />

0.6703F<br />

0.7408F<br />

01<br />

01.<br />

0.2940F<br />

0.3113F<br />

04<br />

04<br />

0. 1753F<br />

0. 1830F<br />

Г4<br />

04<br />

C.1753E<br />

0.1830E<br />

02<br />

02<br />

FIS.<br />

FIS.<br />

0.8187F 01 0 . 3277Б 04 0 . 1898F 04 0 . 1898E 02 FIS.<br />

0.9048F 01 0.3 381E 04 0.1928F 04 0.1928E 02 F IS.<br />

0.1000F<br />

0 . 1 105F<br />

02<br />

02<br />

0.3561F<br />

0 .3 8 1 1F<br />

04<br />

04<br />

0 . 1998F<br />

0.2105F<br />

04<br />

04<br />

0.1998E<br />

0.2105E<br />

02<br />

02<br />

FIS.<br />

FIS.<br />

0.1221F<br />

0.1350F<br />

02<br />

02<br />

0.4104F<br />

0.4499F<br />

04<br />

04<br />

0.2225F<br />

0 . 2380F<br />

04<br />

04<br />

C.2225E<br />

0.2380E<br />

02<br />

02<br />

F IS.<br />

FIS.<br />

0.149 2F 02


118 LO TT et a l.<br />

TABLEAU VII<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE ZIRCONIUM (N=0.66E22 AT/G)<br />

В . INF( MEV) T EV.CM2/G D EV.CM2/G DPG CM2/G<br />

0.4140F-06 o. 5 pa6f -01 0.5С7ЛЕ -01 0.5036F-03 1 ./6<br />

0 .5 ^ 1 6E-06 0.51R4E -01 0.4499F -01 0 .4 4 5 1 E-03 L ./E<br />

0.6P76F-06 0.46S1F -01 0.4C37F -01 C.3975E-03 l ./ E<br />

0.8764F-06 0.4077F -01 0.3496F -01 0 .3 4 1 7F-0 3 l ./ E<br />

0 .1 1 ? 5F-05 0.3663E -01 0.3181F -01 C .3080F-03 l . / E<br />

0 . 1.445F-05 0 . 2 ?»6r -01 0.2854F -01 0 . 7724F-03 l ./ E<br />

0 . 1 85 5e- 05 0.?904F -01 0.2524F -01 0.7356E-03 l ./ E<br />

0.73R7F-05 0.2740F -ni 0.23R4F -01. 0.2 168 F—03 l./ E<br />

0.305PF-05 0.7557F -01 0.7222F -0 l C• 1 945F-0 3 l./ E<br />

0.39?RF-O5 0.?311F -01 0 .2 0 1 5F -01 C.1 66 0E-03 l ./E<br />

0.5043F-05 0.2171F -01 0 . 1897F -01 0 .1 440E-03 l./ E<br />

0 . 6476F-05 0.2153F -01 0 .1 RR4F -01 0 . 1298F-03 l . /Е<br />

0 .8 3 1 5F-05 0.2135F -Cl 0 . 1874F -01 0.1121Г-03 l ./ E<br />

0 . 106RF-0'. 0.7237F -01 0 . 1969F -01 C.1C07E-03 l./ E<br />

0 . 1 371F-04 0.2 4 7 3 e -01 0.2138F -01 C.8966E-04 l ./ E<br />

0 . 1760F-04 0.2677Г -01 0.236RF -01 C. 7747F-04 l ./ E<br />

0.2760F-04 0 .3 1 ORF -01 4.2755F -01 C.7109F-04 1 ./E<br />

0 .2 9 0 ?c -04 0 . 36P3F -01 0.3770F -01 C.6465F-04 l . /Е<br />

0 .3 7 ? 7F-04 0.4421F -01 0.3932F -01 C.5639E-04 L ./e<br />

0 . 47R5C- 04 0.5400F -01. 0 .APO^F -01 0.4 877E-04 l./ E<br />

0 .6 1 44F-04 0.6774F -01. 0.5992F -01 0.4520E-04 i ./e<br />

0 .7 RR9F-04 0.P476F -01. 0 .7 5 1 3F -01 C.4C81F-0A l ./ E<br />

0.1013Р-ПЗ 0 . lORAF 00 0.Ç664F -01 C.5632F-04 l ./ E<br />

0 . 1301F-03 0. 1 Я 21 F no 0 . 1613F 00 0.448 3F—03 l ./ E<br />

0 . 1 670F-03 0 .5 6 5 1 E on 0 • 4°46E 00 C.3456E-0? l ./ E<br />

0 . 2 144e- 03 0.3097F 00 0.2740F 00 0.8744 E-03 l ./E<br />

0 .2 754F-03 0.7P24F 01 0.2465F 01 0 .1 932Г-01 l ./ E<br />

0.3536F-03 0.3906F no 0 . 34RnF 00 C.2572F-03 1 . / E<br />

0.4540F-03 0.4584F 00 0.4093F 00 0.3307F-04 l ./ E<br />

0.5P29F-04 0.1111F 01 0.9828F 00 C.3255F-02 l ./ E<br />

0 .7 4R5F-03 0 . RI 09F со 0.7725F 00 0.6577F-03 l ./ E<br />

0 .9 6 1 1E-03 0.O354F 00 0.8357F 00 0.5694E-02 l ./ E<br />

0 . 1 734F-0? 0 . 1950F 01 n.1737F 01 0 . 2 186E-01 1 . /Е<br />

0 . 1 5R5F-0? 0 . 2043F Cl 0.1P10F 01 0.2387E-01 l ./ E<br />

0.2O35F-O? 0.2513F Cl 0.2274F 01 C. 2 933F-01 l . /Е<br />

0 .2 6 1 3F-0? 0 .6 9 1 RP 01 0.6113F 01 C.7606E-01 l ./ E<br />

0.3355F-0? 0.793RF ni 0.6976F 01 0.7870F-01 l ./ E<br />

0 .4 3 0 7 F -03 0 . P3P5F 01 0.7340F 01 С• 7975Г-01 l ./ E<br />

0.5531F-O? 0 . 8847F 01 0.7706F 01 0.8101E-01 l ./ E<br />

0.7102F-0? 0 . 1013F 02 0.8772F 01 C.9028E-01 l ./ E<br />

0 .9 1 19F-0? 0 .1 337F n? 0.1151F 07 C.1175F 00 l ./ E<br />

0.1 171F-01 0 . 177RF 02 0. 1.477F 0? 0.1500E 00 l ./ E<br />

0.1 503F-01 0.2730F 0? 0.1895F 02 C.1914E 00 1 ./E<br />

0.1 930F- 01. 0.2877F 02 0.2426F 02 C.2441E 00 l ./F<br />

0 . 7479F-01 0.3691F c? 0 .3 г 98F 0? C.3106E 00 l . /Е<br />

0 .3 1 R3F-01 0.4775F 02 0.3941E 0? 0 .3 9 5 1E 00 l ./E<br />

0.40R7F-01 0 .6 0 1 9F 02 0.4985F 0? 0.4F97E 00 l ./ E<br />

0 .5 247e- 01 0.7679F 02 0.6273F 07 0.62eiE 00 l ./ E<br />

0 • 6738F-01 0 . 4635F 02 0.7863F 0? 0 .7 86 8t 00 l ./ E


IA E A -S M -1 70/65 119<br />

TABLEAU V II ( SU I TP )<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE ZIRCONIUM (N=0.66E22 AT/G)<br />

B.INF(MEV) T EV.CM2/G D EV.CM 2/G DPG CM2/G<br />

0 .8657F-■01 0 .1 7 1 7F CI 0 .9 8 1 4F 02 0.9815F GO 1 • /Е<br />

0 .1 11 1F 00 0 .1 4 1 5F 03 0.1137F 03 0 . 1 137F 01 i . / e<br />

П . 1 ??8L 00 0.1547F 01 0 . 1219F r'3 0.1239F 01 l ./ E<br />

0.1357F 00 0 .1 694F 03 0.1352F 0.3 0.1352E 01 1 . /Е<br />

0 . 1 500F 00 0 . 1 856c ГЗ 0 . 1476P 01 0.1476E 01 l ./ E<br />

0 . 1657F<br />

0 .1 8 3 7 e<br />

00<br />

00<br />

0.7035F<br />

0.7737F<br />

01<br />

01<br />

0.1613F<br />

0 . 1765F<br />

03<br />

03<br />

0.1613F<br />

0 . 176 5F<br />

01<br />

01<br />

L./E<br />

L./E<br />

0.2074F 00 0.7447F 03 0 . 1928F 03 C .1978E 01 L./E<br />

0.7737^ 00 0.76Я2С 03 0.2105F 01 C . 21 0 5 E 01 L./E<br />

0.2477F<br />

0 .7 732 F<br />

00<br />

on<br />

0 . ?°42F<br />

0.3734F<br />

O4<br />

03<br />

0.2301F<br />

0 . 25?<strong>OF</strong><br />

01<br />

03<br />

C.2301F<br />

0.2520F<br />

01<br />

01<br />

l ./ E<br />

FIS.<br />

0.3070F 00 0.1447F 03 0 . 2676c 03 0.7676F 01 FIS.<br />

0.333 7c 00 0.3701F 0? 0.2861F 01 0.286 3F 01 FIS.<br />

0.3688P 00 0.4197F 01 0.3232F °3 0.3232E 01 FIS.<br />

0.4076F or 0.4874F ГЗ 0.3746F 03 0 . 374 6F 01 FIS.<br />

0.4505c 00 0.4978F 03 0 .3 8 1 5F 01 0 .3 8 1 5F 01 FIS.<br />

0.4979F 00 0 . 5710e 03 0.3980F 01 Г.398СЕ 01 FIS.<br />

П .5507F oo 0.5 504F 01 0.4191F 01 0.4191F 01 F IS.<br />

0 . 6 OS 1F oo 0.5401F 03 0.4095F 03 0.4095F 01 FIS.<br />

0.6771F 00 0.5909F 01 0.446 IF 03 0.4461 E 01 FIS .<br />

0.7427F 00 0.6200F 03 0.4661F 03 0.4661F 01 FIS.<br />

0.8708F 00 0.6443F 03 0.4823F из 0.4P23E 01 FIS.<br />

0.9077F 00 0.6448F 03 0.4806F 03 0.4806F 01. FIS.<br />

0 .1 003c 01 0.5785F ,_>3 0.4293F 03 0.4293F 01 FIS.<br />

0 . 1 108F 01 0.6147F 03 0.4539F 01 0.4539E 01 FIS.<br />

0.1725F 01. 0.6655F 03 0.4886F 03 0.4886E 01 F I S.<br />

0.1351F 01 0.6772F 03 0.4941F 03 0.4941F 01 FIS.<br />

0 . 1 496F 01 0.6903F 03 0.5005F 03 0.5CG5E 01 FIS.<br />

0 . 1 653F 01 0.7792F 03 0.5251F 03 0.5251F 01 -’ IS.<br />

0.1877F 01 0.7716F 03 0.5522F 03 0.5522F 01 FIS.<br />

0.7019F 01 0.7755F 03 0.5537F 03 0 .5 5 3 7 E 01 FIS.<br />

0.7731F 01 0.7986F 03 0 .5685F 03 0.5685F 01 - T S.<br />

0.7466F 01 0.8740F 03 0.5848F 03 0.5848E 01 F is .<br />

0 .7 72 5F 01 0.8573F 03 0.6079F 03 0.6029F 01 FIS.<br />

0.3017F<br />

0.3379F<br />

01<br />

01.<br />

0.9071F<br />

0.9857F<br />

03<br />

03<br />

0.6386F<br />

0.6901F<br />

03<br />

03<br />

0.6386E<br />

0.6901F<br />

01<br />

01<br />

z TS.<br />

FIS.<br />

0.3679F 01 0 .1 077F 04 0.7466F 03 C.7466E 01 FIS.<br />

0 . 4066P 01 0 .1 142F 04 0 .7 9 1 3F 03 0.7913F 01 F I S.<br />

0.4493F 01 0. 1.208F 04 0.P325F 0’ 0.8325F 01 - I S .<br />

0.4966F 01 0.1.771F 04 C.8707F 03 0.87C7E 01 - IS.<br />

0.5488F 01 0.1379F 04 0.9052F 03 0.9053F 01 FIS.<br />

0.6065F 01. 0 .1 401F 04 0.9512F 03 C.9512E 01 FIS.<br />

0.6703F 01. 0 .1 502F 04 0.1013Г 04 0 . 1013F 02 FIS.<br />

0.7408F 01 0.1678F 04 0.1124F 04 0.1124F 02 FIS.<br />

0.8187F 01 0 . 1864F 04 0 . 1239F 04 C.1239E 02 FIS.<br />

0.9048F 01 0.2036F 04 0.1343F 04 0.1343F 02 F IS.<br />

0 .1 000F 07 0.7716F 04 0 . 1447F 04 C.1447E 02 F IS.<br />

0 .1 1 05p 07 0.2523F 04 0 . 1628F 04 0.1628E 02 : IS.<br />

0 . 1771F 07 0.2922F 04 0.18 50F 04 C.1850F 02 FIS.<br />

0 .1 350F 07 0.1784F 04 0.2038F 04 0 . 2038E 02 FIS.<br />

0.149 ?F 0?


120 LO TT et a l.<br />

TABLEAU V III<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET<br />

DE DEPLACEMENT DANS LE MOLYBDENE (N = 0 .6277E27<br />

R.INF(MEV) T EV.CM2/G D EV.CM2/G DPG CM2/G<br />

TAUX<br />

AT/G)<br />

0.4140F-06 0.630nF 00 0.5 510F 00 0.5507E-02 l ./E<br />

0.531 6F-06 0.5393F 00 0 .4 7 1 6P 00 0.4713E-02 l ./ E<br />

0 .6 8 7 6 F -06 0 .4 8 3 6 c 00 0.4 730F 00 0.4 726E-0 2 i ./e<br />

O.8764F-06 0.4701 F 00 0.3674E 00 0 . 3669E-02 l . /Е<br />

0 . 1 125F-05 0.396PF 00 0 . 3471F 00 0 . 3464E-02 l ./ E<br />

0 . 1 445e-05 0.3787F 00 0 .2 3 1 2F 00 0.3304E-02 l ./E<br />

П.1 P55F-05 0 . ^cc*p 00 0.3109F 00 0.3098F-02 l . / E<br />

0 .7 3 8 ?e-n5 O .^SftF 00 0 . 2848F 00 0. 2 834E-02 L./E<br />

0.305PF-05 0.7 Я 7 ? F 00 0.751 7' 00 0.2495E-02 1 . /Е<br />

0. V-?Rc-r,r, 0.2380F on 0.2087F 00 0 , 2 059E-02 l . / t<br />

0.5O43r-05 0 .7 1 23e 00 0 . 1858E 00 0 . 1878F-02 l ./ E<br />

0 .6 4 7 6 F -05 0.715<strong>OF</strong> 00 0 . 1881e 00 0 . 1 P44E-07 I ./E<br />

O.P^15F-05 0.7869F 00 0.2510E 00 0.2462E-02 l ./ E<br />

0 .1 06PF-04 0.5890F 01 0 .5 1 51F 01 0 . 5 I45E -01 l ./ E<br />

0 . 1 T71F-04 0.741 ЯР 00 0.2116F 00 0 . 2038E-02 l ./ E<br />

0 .1 760F-04 0.2168F 00 0 . 1898F 00 C. 1 800E-02 l ./ E<br />

0.7760F-04 0.7946F 00 0 . 2579F 00 С, 2455E-02 l ./ E<br />

0.7907F-04 0.6767F 00 0.5971F 00 C.5763F-02 l ./ E<br />

0 . 3777F-04 0.P297F 02 0.7257E 07 0.7711E 00 l ./ E<br />

0.47P5F-04 0 .1 561F 01 0 . 1366F 01 0 .1 320E—01 l ./ E<br />

0 .6 1 44F-04 0.3973P 01 0.3476F 01 0.3433F-01 l . / c<br />

0 .7 PP9F-04 0.2154F 00 0.1893F " 0 C.1405E-02 L . /Е<br />

0.1013F-03 C.2457E Cl 0.2146E 01 0.2C78E-01 l ./ E<br />

0 .П 0 1 Р -0 3 0.1P71F 07 0 . 1637e 07 C.1605F 00 l ./ E<br />

0.1 670¡ -П-> 0 . 1876F 00 0.1662F 00 0 .5 9 7 5 F-03 l ./ E<br />

О .? 144F-03 0.7604F 00 0.2303F 00 С. 1010E-07 L ./E<br />

0.7754F-03 0 Л .3 5 P F Cl 0.1191F 01 0 .1 036F-01 l./ E<br />

0 .3536F-0* 0.7757F 01 0.6363r 01 0 . 5522E-01 l ./ E<br />

0.4 5 4 0 e-03 0.6760F 01. 0.5496F 01 0.4434E—01 l ./ E<br />

0.5P?<strong>OF</strong>-03 0 . 1847F 01 n . 162ЯЕ 01 0 . 9981E-02 1 ./6<br />

0.74P5e-03 0 . 1787e 01 0.1578F 01 C.8353E-02 l ./ E<br />

0.961 IF - 03 0.7157F Cl 0.1P97F 01 0 .1 514E-01 l ./ E<br />

0 . 1 734F-07 0.3195F 01. 0.7813F 01 0 . 2988F-01 1 . /Е<br />

0.15P5F-0’ 0.79BPF 01 0 ,7637F 01 С. 3036E-01 l ./ E<br />

0.703 5F- 07 0 . 3 107F ni 0.2737F 01 0.3196F-01 1 . n<br />

0 .7 6 1 3F-07 0.3445F 01 0 .3 03 7F "1 0.3422F-01 I . /Е<br />

0 .3 3 5 5 e-0? 0.3938F 01 0.3 4 6 0 e 01 C.3 782E-C1 l ./ E<br />

0.4307F-0? 0.4597F 01. 0.4075F 01 C.4295F-01 1 ./E<br />

0.5531F-07 0 . 5494F 01 0.4798F 01 0 .49°6E-01 l ./ E<br />

0 .7 1 0 7e-0? 0•6 Я 59F 01 0 .5967F 01 C.6145E-01 1 . /Е<br />

0.911OP-0? 0.P795F 01 0.7603F 01 C.7756E-01 1 ,/E<br />

0.117 IF -01 0 . I 14 7F 07 0.9817F 01 C.9946E-01 1 . / E<br />

0 . 1 503F-O1 0. 1501E 07 0.1287F 07 C.1291E 00 l ./ E<br />

0 . 1430F-01 0.1993F 07 0 . 16Q1F 02 C.1703F 00 l ./ E<br />

0 . ?47°F- 01. 0.2648F 0? 0.2231F 07 C.2238E 00 l . /Е<br />

0 .3 1 83E-01 0.3469F 07 0.79C4F 02 C.29C9E 00 l ./ E<br />

0.4ПЯ7Р-О1 0.4486F 07 0.3730F 02 0.3740E 00 l ./ E<br />

0.5 747F-01 0.579PF 07 0.4787F 07 0.4794F 00 L ./E<br />

0 . 6738F-01 0.7543F 07 0.6 1 8 7 e 07 0.6187E 00 l ./ E


I A E A - S M -1 7 0 /6 5 121<br />

TABLEAU V IIK SUITE )<br />

SECTIONS EFFICACES OE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE MOLYBDENE (N=0.6277E22 AT/G)<br />

B.INF(MEV) T EV.CM2/G D EV. CM 2/G DPG CM?/G<br />

0.8652F-■01 0.1016F 03 0 . 8260F 02 0 . 8 2 6 1E 00 i. ./E<br />

o . m i F 00 0.1241F 03 0 . 1004F 03 0 . 1004F 01 l ./ E<br />

0 - 1228F 00 0.1377F 03 0.1111F 03 0.1110E 01 l ./ E<br />

0. 1457P 00 0.1521F 03 0.12 23F 03 0.1223E 01 l . / E<br />

0.1500F 00 0.1673F 03 0. 1340F 03 0 .1 340F 01 l ./ E<br />

0.1657F 00 0 . 1826F 03 0. 1458F 03 0.1458F 01 l ./ E<br />

0 . 1 «42F 00 0 . 1973F 03 0 . 1569F 03 C.1569E 01 l ./ E<br />

0.2024F 00 0.2122F 04 0 . I682F 04 C.1682E 01 L./E<br />

0 • 2 23 7F 00 0.2274F 03 0.1797E 03 0.1797F 01 l . / E<br />

0.2472E 0n 0.2451F C3 0.1930F 03 C.1930E 01 l ./ E<br />

0.2732Г 00 0.2632F 04 0.2066E л3 0.2066E 01 FIS.<br />

0.3020F 00 0.2823F 03 0.2207F 03 0.2207E 01 FIS.<br />

0.3437F 00 0.3056F 03 0.2381F 04 C.2381E 01 - I S .<br />

0.3688F 00 0.3318F 03 0.2575F 03 C.2575E 01 FIS.<br />

0 . 4076F 00 0.3508F 03 0.2714F 03 0.2714E 01 : IS.<br />

0.4505F 00 0.3644F 0.3 0.281 1F 03 0 .2 8 1 1E 01 FIS.<br />

0.4979E 00 0.3824F 03 0.2940F 04 0 ,2 9 4 OE 01 F IS.<br />

0.5*5026 00 0.406 6F 03 0.3113F 03 0.3113E 01 FIS.<br />

0.6081F 00 0.4324F 04 0.4298E 03 0.3298E 01 - I S .<br />

0.6721F 00 0.4571F 03 0.3475F 03 C.3475E 01 FIS.<br />

0.74 27F 00 0.4744F 04 0.3594F 03 0.3594E 01 F IS .<br />

0.8208F 00 0.4862F 03 0.3674F 03 C.3674F 01 FIS.<br />

0.4072F 00 0.5047F 03 0.4801F 03 0.38C2E 01 - I S .<br />

0.1003F 01. 0.5419F 03 0.4063F 03 0.4C63E 01 F IS.<br />

0.1108F 01 0.5861F 03 0.4370F 03 0.4370E 01 FIS .<br />

0.1225F 01 0.6044F 03 0.4490F 03 0.4490E 01 FIS.<br />

0.1353F 01 0.6299F 03 0.4654F 03 0.4654E 01 F IS .<br />

0.1496F 01. 0.6157F 03 0.4546F 03 0.4546E 01 FIS.<br />

0.1653F 01 0.6726F 03 0.4933E 03 0.4933 E 01 FIS.<br />

0.1827F ni 0.7289F 03 0.5312F 03 C.5312F 01 r IS.<br />

0.2019F 01 0.7804F 03 0.5649F 03 0.5649F 01 FIS.<br />

0.2231F 01 0.8377F 03 0.6024F 03 0.6024E 01 F IS.<br />

0.2466F 01 0.9008F 03 0.6435F 03 0.6435E 01 FIS.<br />

0.2725F 01 0.9733F 03 0.6906F 04 0.69C6E 01 FIS.<br />

0.3012F 01 0 .1 026F 04 0.7237F 03 C.7237E 01 F IS.<br />

0.3329F 01 0.1082F 04 0.7589F 03 0.7589E 01 F IS.<br />

0.3679F 01 0.1154F 04 0.8045F 04 0.8045E 01 FIS.<br />

0.4066F 01 0.1233F 04 0.8541F 03 0.8541E 01 - IS.<br />

0.4493F 01 0.1309F 04 0.9012F 03 0.9012E 01 FIS.<br />

0.4966E 01 0.1377E C4 0.94 27F 03 0 , 9427E 01 FIS.<br />

0.54RBF 01 0.1445F 04 0.9846F 03 0.9846E 01 FIS.<br />

0.6065F 01 -0. 1.529F 04 0.1036F 04 0 . 1C36E 02 FIS.<br />

0.6703F 01 0.1605F 04 0 . 1081F 04 0.1C81E 02 FIS.<br />

0.7408F 01 0.1700F 04 0 . 1138E 04 0.1138E 02 FIS.<br />

0.8I87E 01 0.1798F 04 0.1197F 04 0.1197E 02 FIS.<br />

0.9048F 01 0.1971F 04 0 . 1301F 04 C.1301E 02 PIS.<br />

0.1000F 02 0.2207F 04 0 . 1440F 04 0.1440E 02 F IS .<br />

0.1105F 02 0.2424F 04 0 . 1559F 04 0.1559E 02 FIS.<br />

0.1221F 02 0.2677E 04 0.1693F 04 C.1693E 0? F IS .<br />

0.1350F 02 0.2967F 04 0 . 1844F 04 0.1844E 02 FIS.<br />

0.1492F 02


122 LO TT e t a l.<br />

TABLEAU IX<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE TUNGSTENE (N=0.327E22 AT/G)<br />

B. IM F (M E V ) T EV.CM2/G D EV.CM2/G DPG CH2/G<br />

0.4140F-06 0.9028F 00 0.8010F 00 0. 1485F-01 l ./E<br />

0 .5 4 1 6F-06 0.7696F 00 0.6828F 00 0.1266E-01 l . / E<br />

O.6826F-06 0.6 87 RP 00 0.6102E 00 0 .1 1 3 1E-01 l ./ E<br />

0.Я764Е-06 0.6026F 00 0 . 5347p 00 0.9909F-02 l ./ E<br />

0.1 1 ? 5F - 0 5 0.6384F 00 0.5664P 00 0 . 1050F-01 l ./ E<br />

0 . 1 445F-05 0.7135F 00 0.6330P 00 0 .1 1 73E-01 L./E<br />

0 . 1 P55F-05 0.P100E 00 0.7186F 00 0 . 1 332E-01 l ./ E<br />

0. 2 38 2F-05 0.96 0°F 00 0 . 8525F 00 0 . 1580E-01 l ./ E<br />

0 . 305PP- 05 0 . 1036F 02 0.9188E 01 0.1703E 00 l ./ E<br />

0 . 3928F-D5 0.4084F 02 0.3623F 02 0.6715E 00 L ./e<br />

0 . 5043F-05 0 .1 09RF 01 0.9742F 00 1804E-01 l ./ E<br />

0 . 6476F-05 0 . 1 195F 02 0 . 1060P 02 0.1966E 00 L ./E<br />

0. 841 SF-05 0 .144oF 01 0.1277F 01 0 . 2365E-01 l ./ E<br />

0.1 068F-04 0.4447' Cl 0.2961F 01 0.5486F-01 L./E<br />

0.1 371 F - 04 0.1257F 04 0.1115F 04 0.2 067F 01 1 ./Ë<br />

0 . 1760E-04 0 . 1243F 04 H.1094F 04 0.2027F 02 l . / E<br />

0 .? 260F-04 0.4850F 02 0.4 4 04F O7 0.7975E 00 l ./ E<br />

" .2902F-04 0.3013F 01 0.2674F 01 0.4947E-01 l ./ E<br />

0 .4 72 7F-04 ',0.3248F 02 0.2881F 02 C.534CE 00 l ./ E<br />

0.47R5F-04 0.R744F 01 0.7757Г 01 0.1436F 00 1 ./E<br />

0 .6 1 44F-04 0.2010F oi 0 . 1783F 01 0.3286E-01 l ./ E<br />

0 .7 8P9F-04 0.2135F 01 0 . 1894E 01 0 . 3485F-01 l ./ E<br />

0.1 01 4F —04 0l‘.2030F 02 0.1801F 02 C.3335E 00 L ./E<br />

0.1301F-04 0 ¿ 7 427F 01 0.6589F 01 0.1217E 00 l ./ E<br />

0 . 1 670F-04 0.',7 2 56F 02 0.6438F 02 0.1193E 01 l ./ E<br />

0 .2 1 44F-04 0 . 1823E 02 0.1617F 02 C.2991F OC l ./ E<br />

0 . 2754F-04 0.2954F 01 0 . 2621F 01 C.4768E-01 l ./ E<br />

0 .3 536F-04 0.2774E 01 0.2460F 01 0.4445E-01 l ./ E<br />

0 . 4540F-03 0.2581F 01 0 . 2290F 01 0.4096F—01 l ./ E<br />

0 .5829F-04 0.2505F 01 0.2222F 01 0.3928F-01 l ./ E<br />

0.7485F-03 0.2426F 01 0.2152F 01 0.3744E-01 l ./ E<br />

0 .9 6 1 1F-04 0.2363F 01 0.2096F 01 C.3596E-01 l ./ E<br />

0 . 1 234F-0? 0.2356F 01 0.2090F 01 0 .3 578F-01 l ./ E<br />

0 . 1 5R5F-02 0.2350F 01 0.2C85F 01 0.3559E-01 l ./ E<br />

0.2035F-02 0.2341F 01 0.2C77F Cl 0.3 5 3 5 E-01 l ./ E<br />

0 .2 6 1 3F-02 0.2334F 01 0.2071F 01 0 . 3498E—01 l ./ E<br />

0.3355F-0? 0.2354F 01 0.2089F 01 0.3393E-01 l ./ E<br />

0 .4 3 0 7 F -02 0 .2 4 1 8F 01 0.2145F 01 0.3271E—01 l ./ E<br />

0.5531F-02 0.2R02F 01 0.2486F 01 0.3377E-01 l . / E<br />

0.7102F-02 0.3397F 01 0.3014F 01 0.3613E-01 l ./ E<br />

0 .9 1 19F-02 0.4289F 01 0.3801F 01 0.4159E-01 l . / E<br />

0.11710-01 0.5455F 01 0.4816F 01 0 . 5 127E-01 l ./ E<br />

0 .1 503F-01 0.6951F 01 0.6118F 01 0.6393E-01 l . / E<br />

0 .1 930F—01 0.8874Г û i 0.7791F 01 0 •8 0 1 9F-01 l ./ E<br />

0.2479F-01 0.1105F 02 0.9654F 01 0.9848E-01 l./ E<br />

0 .3 1 83E-01 0.1347F 02 0.1169F 02 0.1188E 00 l ./ E<br />

0.4087F-01 0.1659F 02 0.1431E 02 0.1448E 00 l . / E<br />

0 .5 247F-01 0.2059F 02 0 . 1768F 02 0.1782E 00 l ./ E<br />

0.6738F-01 0.2573F 02 0.220ÖE 02 0.2211E 00 l ./ E


IAE A -SM -1 7 0 /6 5 123<br />

TABLEAU IX ( SUITE)<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX<br />

DE DEPLACEMENT DANS LE TUNGSTENE (N=0.327F22 AT/G)<br />

B.INF(MEV) T EV.CM2/G D EV.CM2/G DPG CM2/G<br />

0.8652F-■01 H.3203F 02 0.2728F 02 0.2736E OC l./E<br />

0.1 111F 00 0 . 3578F 02 0 .3 O'5 5F 02 0 . 3041F 00 l./E<br />

0.1228F 00 0.3792F 0? 0.3708F 02 0.3214E 00 l./E<br />

0 .1 3Ç7P 00 0.40 29F 02 0.3399F 02 0.3404F 00 l./E<br />

0.1 ЧОП1" 00 0.4790F 02 0.361 <strong>OF</strong> 02 C.3615E 00 l ./ E<br />

0.1657^<br />

0.1832F<br />

oo<br />

00<br />

0.4579F<br />

0 ./, floor<br />

02<br />

02<br />

0.3844F<br />

0.4102F<br />

02<br />

02<br />

0.3848F<br />

0.4105F<br />

00<br />

00<br />

l ./ E<br />

1 ./E<br />

0.2024F on 0.5 7 7 7 e 02 0.4406F 02 0.44C9E 00 l ./ E<br />

0.2237F 00 0.5710F 02 0.4755F 02 0.4757F 00 l ./ E<br />

0.2472F 00 0 .6 1 90P 0? 0.5141F 02 0.5142F 00 l ./ E<br />

0.7732F 00 0.6777F 02 0.5573F 02 0.5575F 00 FIS.<br />

0.3020F 00 0.721 4P 02 0.5961F 02 0.5^6?E 00 PIS.<br />

П .1П 7Г 00 0.7677F 0? 0.6326P 02 0.6327E 00 r I S .<br />

0.3 6 8 8 e 00 0.Я18ЯР 02 0.6729F 02 0.6731F 00 FIS. 0.4076F 00 0•87 5 4P 02 0.7175F 02 0.7177E 00 FIS. 0 . ASOSE 00 0.9379F 02 0.7668F 02 0 . 7670F oc = IS.<br />

0.4979F 00 0.1000P 03 0.8155F 07 0.8156E 00 - IS.<br />

0.5502F 00 0.1061F 04 0.8626F 02 0 • 8 é 2 8 E 00 FIS.<br />

0.6081F 00 0 . 1 178F 03 0.9147F 07 0.9149E 00 F IS .<br />

0 . 6771F 00 0 .1 202F n? 0 . 4723F 02 C.9724F 00 F IS.<br />

0 . 7477F 00 0 .1 284F 03 0 . 1036F 03 0 .1 0 3 6 E 01 - IS.<br />

0 . 8208F 00 0 . 1375F 03 0 . 1 106F 03 C.11C6E 01 FIS.<br />

0 . 9072F 00 0.1475F 03 0 . 1184F 03 C.1184E 01 FIS.<br />

0. 1 003F 01 0 . 1596F C3 0 . 1276F 03 0.1276F 01 FIS.<br />

0 . 1 10RF 01 0.1737F 03 0 . 1384F 03 0.1384F 01 F IS.<br />

0 . 1 72 5F 01 0 .1 894F 03 0.1503F •'’ 3 C.1503F 01 FIS.<br />

0.I353F 01 0.2066F 03 0 . 1634F 03 C.1635E 01 -IS .<br />

0 . 1 496F<br />

0 . 1 653F<br />

01<br />

01<br />

0.7244F<br />

0.2476F<br />

03<br />

03<br />

0 . 1769F<br />

0 . 1907E<br />

03<br />

03<br />

0.1769E<br />

0.1907F<br />

01<br />

01<br />

FIS. FIS.<br />

0 . 1 R77E 01 . 0.2627F 03 0.2060F 03 0.2060E 01 z IS.<br />

0.2019F 01 0.2808F 03 0 .2 1 °6F 03 0.2196E 01 FIS.<br />

0.2231F 01 0.2982P 03 0.2325F 03 0.2325F 01 F IS.<br />

0.2466F<br />

0.2725F<br />

01<br />

01<br />

0.3168F<br />

0.3363F<br />

03<br />

03<br />

0.2461F<br />

0.2604E<br />

03<br />

03<br />

0 . 2461E<br />

0.26C4E<br />

01<br />

01<br />

- IS .<br />

FIS.<br />

0.3012F 01 0.3579P C3 0.2761F 03 0 .2 7 6 1E 01 FIS.<br />

0.3329F 01 0.3790F 03 0.2913F 03 0.2914F 01 FIS.<br />

0.3679F 01 0.4873F 03 0 . 2971F 03 0.2971E 01 FIS.<br />

0.4066F 01 0.394 2F 03 0.3019F 03 0.3019F 01 FIS.<br />

0.4493F 01 0.4020F 03 0.3072F 03 0.3072F 01 FIS.<br />

0.4966F 01. 0.4220F 03 0.3215F 03 0 .3 2 1 5E 01 FIS.<br />

0.54RRF ni 0.4563P 03 0.3463F 03 C.3463E 01 = IS.<br />

0 . 6 06 S F 01 0.4919F 03 0.3719F 03 0.3719F 01 FIS.<br />

0.6703F 01 0.5370F 03 0.4040F 03 0.404DE 01 FIS.<br />

0.7408F 01 0.5974F 03 0.4467F 03 0.4467E 01 FIS.<br />

0.8187F 01 0.6583F 03 0.4896F 03 0.4896E 01 FIS.<br />

0.904ЯР 01 0.7488F 03 0.5525F 03 0.5525E 01 = IS.<br />

0.1 000“ 02 0.8 414F 03 0.6160F 03 0.6160E 01 FIS.<br />

0 . 1 105F<br />

0 . 1 721F<br />

0.1350F<br />

0.149 7F<br />

07<br />

07<br />

02<br />

07<br />

0.9 224F<br />

0.100?F<br />

0 . 1089F<br />

03<br />

04<br />

04<br />

0.6703E<br />

0 . 7226F<br />

0.7805F<br />

03<br />

03<br />

03<br />

C.6703E<br />

0.7226E<br />

0.7805E<br />

01<br />

01<br />

01<br />

FIS.<br />

FIS.<br />

FIS.


Elément<br />

TABLEAU X<br />

SECTIONS EFFICACES DE TRANSFERT D'ENERGIE ET TAUX DE DEPLACEMENT<br />


IAE A - S M - 1 7 0 /6 5 125<br />

REFERENCES<br />

[l] HONECK H.C., ENDF/B, Specifications for an evaluated<br />

nuclear data file for reactor applications, May (1966)<br />

BNL 500 66 (T-467).<br />

[2l PARKER, The Altermaston <strong>Nuclear</strong> <strong>Data</strong> Library,<br />

AWRE report NO 0.70/63.<br />

[3] LINDHARD J., NIELSEN V. , SCHARFF M., THOMSEN P.,<br />

Integral equation governing radiation effects,<br />

MAT. fys Medd Dan Vid Selsk 33 10 (1963).<br />

[4 ] KINCHIN G.H., PEASE R.S., The displacement of atoms<br />

in solids by radiation, Rep. Progr.Phys. 18 1 (1955).<br />

[5 ] SIGMUND P., A note of integral equation on the<br />

Kinchin Pease type, Rad. Eff. 1 (1969) 15 .<br />

[б ] TORRENS I.М., ROBINSON М.T C o m p u t e r Simulation of<br />

Atomic Displacement Cascades in metals, Proc. of the<br />

1971 Int. Conf. Held at ALBANY, 9.11 June 1971.<br />

[7 ! WECHSLER M.S., Radiation effects on metal and neutron<br />

dosimetry, STP n° 341, p. 86,American Society for<br />

Testing and Materials, Philadelphia, Pa (1963).<br />

[8] ROBINSON M.T., Phil. Mag. 17 (1968) 639.<br />

[9 ] ROBINSON M.T., In nuclear fusion reactor (BNES London)<br />

(1970) 264 .<br />

[lO] NORGETT M.J., ROBINSON M.T., TORRENS I., Une méthode<br />

de calcul du nombre de déplacements atomiques dans<br />

les matériaux irradiés, Rapport CEA R-4389.<br />

[11] GERVAISE F., Programme ARTUS X, Communication privée.<br />

[12] CANCE M., CHABRY P., GENTHON J.P., Programme SOURCE,<br />

note CEA N 1294 (1970).<br />

[13] Specialist's Meeting on Radiation Damage on Graphite<br />

and on Ferritic and Austenitic Steel, Battelle<br />

Seattle Research Center, Oct. Nov. 1972.<br />

[14] ENGLE W.W., A Users Manual for ANISN, AEC Research<br />

and Development Report К 1693.


126 L O T T e t al.<br />

[15] COLTMAN R.R. et al., Reactor Damage in Pure Metals,<br />

Journal of Applied Physics 33 12 (Dec.1962).<br />

[le] DORAN D.G., Neutron Displacement Cross Sections<br />

for Stainless Steel and Tantalum based on a<br />

LINDHARD model,<br />

<strong>Nuclear</strong> Science and Engeneering 49 (1972) 130-144 .<br />

[17] THOMPSON M.W., WRIGHT S.B., A new damage function<br />

for predicting the effect of reactor irradiation<br />

on graphite in different neutron spectra ,<br />

J. Nucl. Mat. 16 (1965) 146.<br />

DISCUSSION<br />

D. R. HARRIS: Can a cost analysis be ca rrie d out in ord er to estim ate<br />

the ben efits of nuclear data requ ired fo r radiation damage analysis as<br />

com pared with the costs of obtaining the data?<br />

M. LOTT: The p recision of the nuclear data appears to be sufficient<br />

at present fo r calculating the irradiation rates as defined in our paper.<br />

H ence, the cost of obtaining the data is negligible by com p arison with the<br />

benefit derived from them. M oreov er, further data m easurem ents are<br />

p robably not requ ired fo r fissio n rea ctors. In the case of fusion rea ctors,<br />

on the other hand, there is a definite lack of data.


Section II<br />

REACTOR TECHNOLOGY


Chairman<br />

W . В. LEWIS (Canada)


<strong>IAEA</strong>- SM-170/91<br />

ТОЧНОСТЬ ЯДЕРНЫХ ДАННЫХ И ЕЕ ВЛИЯНИЕ<br />

НА РАЗРАБОТКУ БЫСТРЫХ РЕАКТОРОВ.<br />

ПОДХОД К ВЫРАБОТКЕ ТРЕБОВАНИЙ НА<br />

ТОЧНОСТЬ ЯДЕРНЫХ ДАННЫХ<br />

Л. Н. УСАЧЕВ, В. Н. МАНОХИН, Ю. Г. БОБКОВ<br />

Физико-энергетический институт,<br />

Обнинск,<br />

Союз Советских Социалистических Республик<br />

Представлен Г.Б.Яньковым<br />

Abstract- Аннотация<br />

A C C U R A C Y <strong>OF</strong> NUCLEAR D A T A A N D ITS EFFECT ON FAST-REACTOR DESIGN. A N APPROACH TO<br />

SETTING UP NUCLEAR D A T A A C C U R A C Y REQUIREMENTS.<br />

The paper deals with the prediction of fast-reactor parameters, with the accuracy required in obtaining<br />

them from neutron calculations and with deliberations concerning error magnitudes. A method of determi­<br />

ning the errors of various quantities resulting in a given value of a reactor parameter is described. In addi­<br />

tion, the accuracy of nuclear data resulting in an error of ± 2 % in the conversion ratio is discussed: the use<br />

of integral experiments in relaxing the accuracy requirements for microscopic data is studied.<br />

Т О Ч Н О С Т Ь Я Д Е Р Н Ы Х Д А Н Н Ы Х И Е Е В Л И Я Н И Е Н А Р А З Р А Б О Т К У Б Ы С Т Р Ы Х Р Е А К Т О ­<br />

Р О В . П О Д Х О Д К В Ы Р А Б О Т К Е Т Р Е Б О В А Н И Й Н А Т О Ч Н О С Т Ь Я Д Е Р Н Ы Х Д А Н Н Ы Х .<br />

В данной работе обсуждаются предсказания параметров быстрых реакторов, точность<br />

их обеспечения нейтронными расчетами, а также из каких соображений следуют величины<br />

погреш ностей . Описывается метод определения совокупности погрешностей различных<br />

величин, обеспечивающей заданную величину погрешности реакторного параметра, идет речь<br />

о точности ядерных данных, обеспечивающих ± 2 % погрешности в коэффициенте воспроиз­<br />

водства, и исследуется использование интегральных экспериментов для смягчения т р е б о ­<br />

ваний на точность микроскопических ядерных данных.<br />

I. ВВЕДЕНИЕ<br />

Деятельность по ядерным данным для реакторов имеет уже более чем<br />

тридцатилетнюю историю. Ее начало, по-видимому, можно исчислять с<br />

1939-1940 года, когда стала ясна возможность получения цепной реакции<br />

деления . Знание вероятностей различных взаимодействий нейтронов с<br />

различными ядрами определяло тогда путь получения цепной реакции<br />

деления. На следующем этапе развития ядерной энергетики изучение<br />

ядерных данных определило способность реакторов на быстрых нейтронах<br />

к расширенному воспроизводству ядерного горючего. К настоящему<br />

времени это обстоятельство привело к общему признанию этого типа<br />

реакторов как наиболее перспективного. На настоящем этапе развития<br />

ядерной энергетики пускаются опытные промышленные быстрые реакторы,<br />

ведутся работы по проектированию энергетики, основанной на реакторах<br />

такого типа . На данном этапе требуется дальнейшее уточнение наших<br />

знаний ядерных данных, так как имеющиеся неопределенности требуют<br />

слишком дорогих запасов. С другой стороны, чрезмерное уточнение<br />

ядерных данных также требует чрезвычайно больших вложений в развитие<br />

экспериментальной техники. Оценку стоимости эксперимента или совокупности<br />

экспериментов в зависимости от требуемой точности обычно<br />

129


130 У С А Ч Е В и д р .<br />

делают по закону обратной пропорциональности квадрату ошибки, т.е.,<br />

если мы потребуем вдвое меньшую погрешность, то мы должны затратить<br />

в 4 раза больше средств для выполнения этого требования . Поэтому и<br />

возникает задача об обосновании требуемых точностей ядерных данных.<br />

Или, говоря более общими словами, возникает задача выбора оптимальной<br />

совокупности экспериментов, как микроскопических, так и интегральных,<br />

характеризуемых требуемой погрешностью для каждого типа опыта и<br />

обеспечивающих требуемую точность расчета реакторных параметров при<br />

минимальных общих затратах.<br />

Очевидно, что совершенно аналогичные задачи возникают при определении<br />

необходимых точностей в любых областях применения ядерных<br />

данных в науке и технологии, им и посвящен данный Симпозиум. Это же,<br />

впрочем, относится и к любым другим числовым данным для науки и<br />

технологии. Именно поэтому мы считаем полезным представить данный<br />

доклад на настоящем Симпозиуме, имея в виду наибольшую разработанность<br />

вопроса о потребностях в данных для реакторов. Подход к вопросу,<br />

основные понятия, методы расчета разрабатывались с 1961 года в ряде<br />

работ авторов из различных стран [1-19 ]. Ниже будет охарактеризован<br />

вклад некоторых из указанных работ в современное понимание проблемы.<br />

И. ЯДЕРНЫЕ ДАННЫЕ, НЕОБХОДИМЫЕ ДЛЯ РАЗРАБОТКИ БЫСТРЫХ<br />

РЕАКТОРОВ<br />

В этом разделе мы ответим на следующие вопросы: предсказания<br />

каких параметров быстрых реакторов и с какой точностью должны быть<br />

обеспечены нейтронными расчетами, из каких соображений следуют<br />

причины погрешностей.<br />

1) Расчет критической массы или эффективного коэффициента размножения<br />

.<br />

Погрешность расчета эффективного коэффициента размножения<br />

вследствие погрешности ядерных данных должна составлять 1 % . В докладе<br />

Р.С.Смита [5] обосновывается требование на точность расчета<br />

КЭфф в ± 1% , исходя из возможности без переделки конструкции реактора<br />

скомпенсировать соответствующую ошибку. С этой оценкой согласны<br />

авторы работы [10 ] на основе примерно тех же соображений. Что же<br />

касается дальнейшего уменьшения требуемой погрешности за счет<br />

погрешностей ядерных данных, то по мнению авторов работы [10 ], это не<br />

приведет к заметному уменьшению общей погрешности вследствие погрешностей<br />

изготовления тепловыделяющих элементов, которые ведут,<br />

примерно,к погрешности Кэфф.в ± 1 % .<br />

Требование на уменьшение этих технологических погрешностей привело<br />

бы к необходимости более дорогой технологии. Таким образом,<br />

допускается общая погрешность, за счет технологии и ядерных данных,<br />

равная J I2 + I2 = 1,4%.<br />

2) Теплофизические расчеты предельной мощности, снимаемой с<br />

реактора, т.е. мощности АЭС, требуют знания коэффициента неравномерности<br />

— отношения максимального тепловыделения к среднему.<br />

В докладе [11 ] показано, что существующая погрешность в ядерных<br />

данных приводит к неопределенности в 2,5% в указанной величине. В<br />

докладе [14] считается, что из экономических соображений следует<br />

потребовать знания этой величины с точностью в 1% .


<strong>IAEA</strong> SM-170/91 131<br />

3) Для безопасной эксплуатации реактора нужно обеспечить расчеты<br />

мощностного и температурного коэффициентов реактивности с точностью<br />

в ± 2 0 % [5,14 ].<br />

4) Объемы добычи урана и его обогащения, так же как и объемы<br />

переработки топлива,необходимые для обеспечения развивающейся<br />

энергетики, основанной на быстрых реакторах, определяются задаваемым<br />

темпом развития энергетики и временем удвоения реакторов с расширенным<br />

воспроизводством. Время удвоения определяется как время, за<br />

которое число реакторов удвоится за счет воспроизводимого горючего<br />

без подпитки всей системы реакторов другим горючим, кроме воспроизводимого<br />

в них самих.<br />

Время удвоения обратно пропорционально коэффициенту воспроизводства<br />

без единицы. В ряде работ [5,10 ] на погрешность коэффициента<br />

воспроизводства налагается требование в ± 2%, что, грубо говоря, соответствует<br />

погрешности в 1 0 % во времени удвоения. Дальнейшее уменьшение<br />

этой погрешности было бы желательно с точки зрения уменьшения<br />

неопределенности времени удвоения, однако его нельзя добиться, не меняя<br />

и не удорожая технологии изготовления топлива по причинам,<br />

объясненным в п . 1 .<br />

5) Для определения доступности для обслуживания насосов и другого<br />

технологического оборудования надо знать активность натрия после<br />

выдержки, которая определяется процессом (п, 2п), активацию компонент<br />

стали за счет процессов (n,p), (n,«), (n,2n), (п,пр) и др.(вместе со знанием<br />

массопереноса этих компонент жидким натрием).<br />

Знание активности облученной стали необходимо и при проектировании<br />

заводов по переработке тепловыделяющих элементов .<br />

Указанные активности надо знать, повидимому, с точностью 20%.<br />

Процессы (п,р) и (п,«) ведут к накоплению газов в оболочках твэлов<br />

и их надо знать примерно с той же точностью.<br />

6) Перевозка облученного топлива на переработку требует защиты,<br />

величина которой определяется нейтронной активностью, накопленной в<br />

топливе Ст-242 и Ст-244. Нейтронную активность надо знать, повидимому,<br />

с точностью порядка 20% .<br />

7) Технология изготовления топливных элементов из плутония,<br />

полученного из химической переработки, определяется количеством<br />

накопившихся активных изотопов плутония-236 и плутония-238. В настоящее<br />

время неопределенности в уровне нейтронной активности оцениваются<br />

[11] фактором 5. Повидимому концентрации указанных изотопов надо<br />

знать также с точностью порядка 20% .<br />

8) Расчеты тепловыделения в конструкциях активной зоны требуют<br />

знания спектров 7-лучей деления, неупругого рассеяния, захвата.<br />

Во всех этих пунктах говорится о требованиях, вытекающих из технологии,<br />

к точностям предсказания некоторых реакторных параметров, а<br />

не о точностях ядерных данных, от которых эти параметры зависят .<br />

Непосредственно из технологических требований вытекают требования<br />

на точность ядерных констант только в п . 5 , да и то в очень грубом<br />

приближении, так как,строго говоря, числа процессов зависят как от<br />

сечений самих интересующих нас процессов, так и от спектра нейтронов<br />

в реакторе, который определяется ядерными данными всех присутствующих<br />

в реакторе материалов. Поэтому погрешность предсказания определяется<br />

не только погрешностью в знании основного интересующего нас<br />

процесса (например, (п,р), (п,а) и т.д.), но и погрешностями других


132 У С А Ч Е В и д р .<br />

величин. Из этих соображений следует, что точность сечений указанных<br />

процессов должна быть лучше требуемых для активации 20% , так как<br />

какую-то неопределенность внесут погрешности ядерных данных всех<br />

реакторных материалов.<br />

Технологические требования пунктов 6 и 7 связываются с требованиями<br />

к величинам погрешностей ядерных данных - сечений ряда изотопов<br />

цепочки превращений через уравнения кинетики, описывающие накопления<br />

изотопов, существенных для технологии.<br />

Если сначала предполагать спектр нейтронов в реакторе заданным,<br />

то можно определить допускаемые погрешности в средних на этом спектре<br />

сечениях цепочки изотопов, пользуясь уравнениями кинетики. А затем,<br />

имея в виду отмеченный выше эффект неопределенности спектра в реакторе,<br />

зависящий от неопределенностей ядерных данных всех входящих в<br />

состав реактора веществ, можно поставить задачу о совокупности допустимых<br />

погрешностей всех величин, влияющих на величину среднего<br />

сечения. Эта задача совершенно аналогична той, которая будет обсуждаться<br />

ниже, применительно к п.п.1-4.<br />

III. МЕТОД ОПРЕДЕЛЕНИЯ СОВОКУПНОСТИ ПОГРЕШНОСТЕЙ РАЗ­<br />

ЛИЧНЫХ ВЕЛИЧИН, ОБЕСПЕЧИВАЮЩЕЙ ЗАДАННУЮ ВЕЛИЧИНУ<br />

ПОГРЕШНОСТИ РЕАКТОРНОГО ПАРАМЕТРА<br />

Для определения погрешностей в ядерных данных, обеспечивающих<br />

предсказания реакторных величин п.п. 1-4 с заданной точностью, в<br />

настоящее время мы имеем метод, учитывающий корреляционные свойства<br />

погрешностей в простой, но реалистической модели. Этот метод, по нашему<br />

мнению, сожет претендовать на количественное определение требуемых<br />

точностей .<br />

Относительная вариация реакторного параметра бС/С выражается<br />

линейно через относительные вариации (6a/a)a i j групповых величин<br />

типа а изотопа i в группе j с коэффициентами пропорциональности или<br />

чувствительности Sajj<br />

« C / C S a ij(6 a/a)aij<br />

ai j<br />

Коэффициенты Saij вычисляются с помощью обобщенной теории возмущений<br />

[ 3].<br />

Для определения погрешности в реакторном параметре надо сделать<br />

предположение о том, как складываются вклады от многих погрешностей,<br />

входящих в формулу (1) . Если принять во внимание, что эти вклады<br />

являются случайными величинами, нескоррелированными между собой, то,<br />

в соответствии с правилами математической статистики, дисперсия или<br />

иначе квадрат стандартного отклонения реакторного параметра<br />

С - D 2 ( D 2 = (бС/С)2 ) выражается через дисперсии групповых микроскопических<br />

величин d 2 jj (d2jj = (бст/ст)^ij ) следующим образом<br />

aij<br />

Такое предположение было использовано в работе Мурхэда [1], который<br />

вычислял коэффициенты чувствительности прямым расчетом в пятигрупповой<br />

модели. Гриблер, Хатчинс и Лимфорд [ 8] поставили вопрос о<br />

d )<br />

(2 )


<strong>IAEA</strong> SM -170/91 133<br />

важности учета корреляции в погрешностях. Они высказали мнение, что<br />

реально почти каждой ядерной константе можно сопоставить 2 - 3 корреляционных<br />

интервала на всей энергетической оси. Зарицкий и Троянов[9],<br />

в своей обстоятельной работе, посвященной этому же вопросу, также<br />

подчеркнули роль корреляций. А в работе Зарицкого, Николаева и Троя-<br />

нова [ 10] была реализована мысль о выработке требований на точности<br />

отношений величин к стандартам, таким как v 252Cf и сечение деления<br />

урана-235, а также на точность самих стандартов. В работе Усачева и<br />

Бобкова [12] предложено погрешность разбивать на компоненты, различающиеся<br />

своими корреляционными свойствами . Чаще всего это три<br />

компоненты: 1) статистическая-некоррелированная, 2) компонента ошибки,<br />

перенесенная со стандарта при его использовании. Эта компонента<br />

присутствует в погрешностях всех величин, измеренных с помощью этого<br />

стандарта, 3) предполагаемая ошибка в нормировке кривой, постоянная в<br />

пределах выбранного корреляционного интервала и проистекающая от<br />

возможной систематической ошибки. Представление óct/сг в виде трех<br />

компонент подставляется в уравнение (1) и члены с одинаковыми компонентами,<br />

описывающими коррелированную ошибку, объединяются таким<br />

образом, что новые коэффициенты чувствительности Z ß данной корреляционной<br />

компоненты погрешности оказываются суммами коэффициентов<br />

S aij по области скоррелированности. Подробно все соответствующие<br />

формулы для коэффициентов Z ß расписаны в работе [12]. Теперь<br />

6С/С = Е Z ¡ (б ст/а)6 , где компоненты погрешности (ócr/ст)® между собой<br />

считаются статистически независимыми и на этом основании производится<br />

переход к формуле (3), аналогичный переходу от формулы (1) к<br />

формуле (2)<br />

D 2 = E z g d 2 (3)<br />

ß 8 ß<br />

задавая левую часть — погрешность реакторного параметра - , надо определить<br />

совокупность погрешностей отдельных величин dg .<br />

Очевидно, что задача в такой постановке не однозначна — можно<br />

по-разному распределить вклады погрешностей разных величин в погрешность<br />

реакторного параметра . Однако достаточно наложить условие<br />

минимума затрат на совокупность экспериментов, делая одновременно<br />

предположения об относительных величинах затрат для измерения различных<br />

величин с достигнутыми к данному моменту точностями и экстраполируя<br />

стоимость эксперимента в зависимости от величины погрешности<br />

£ , например, по закону 1/Е , как задача становится однозначной и<br />

сразу решается. Подробнее об этом написано в докладе [12].<br />

Описанную методику мы проиллюстрируем на примере п.4, т.е. на<br />

примере требований к точности расчета коэффициента воспроизводства .<br />

IV. ТОЧНОСТЬ ЯДЕРНЫХ ДАННЫХ, ОБЕСПЕЧИВАЮЩИХ ± 2% ПОГ­<br />

РЕШНОСТИ В КОЭФФИЦИЕНТЕ ВОСПРОИЗВОДСТВА<br />

Рассмотрена модель реактора на быстрых нейтронах, состав и размеры<br />

которого соответствуют электрической мощности около 1000 МВт .<br />

В качестве топлива используется смесь окиси урана-238 с окисью<br />

плутония, содержащего высшие изотопы в некоторой "равновесной" концентрации,<br />

а также осколки деления.


134 ’ ’ У С А Ч Е В и д р .<br />

ТАБЛИЦА I. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ<br />

ИССЛЕДУЕМОГО РЕАКТОРА<br />

О бъем активной зоны, м 3 5<br />

Топливо P uC >2 + U C >2<br />

Средняя плотность топлива, г /с м 3 8<br />

О бъемное содержание, % топливо 40<br />

натрий 40<br />

сталь 20<br />

Обогащ ение топлива, % 11,3<br />

К оэффициент воспроизводства 1,41<br />

Равновесны е концентрации P u , %<br />

239Ри-61<br />

240Ри-30<br />

241Ри-6<br />

242Ри-3<br />

Содерж ание осколков — 4 % от количества (P u + U ) .<br />

Характеристики реактора приведены в приложениях в табл.1.<br />

Результаты расчета приведены в приложениях в таблицах II и III.<br />

Необходимо сделать некоторые пояснения к модели расчета и резуль<br />

татам .<br />

Принята некоторая упрощенная модель корреляций,-погрешностей,<br />

которая характеризуется следующими чертами .<br />

1) Числа вторичных нейтронов всех делящихся изотопов при всех<br />

энергиях первичных нейтронов измеряются относительно калифорниевого<br />

стандарта и поэтому погрешность этого стандарта входит наиболее<br />

весомо.<br />

Большие усилия во многих странах за последние десять лет и особен<br />

но начиная с 1966 года по абсолютному определению v калифорния-252,<br />

привели к результату v0 = 3,733 ± 0,0085, принятому Вторым совещанием<br />

экспертов МАГАТЭ по стандартам (Вена, ноябрь 1972 года). Соответственно<br />

этому мы приняли достигнутую погрешность в 0,3%.<br />

2) Считается,что для каждой величины вся область энергий разбита<br />

на три корреляционных интервала: 0-0,1 МэВ; 0,1-0,8 МэВ;<br />

0,8-10 МэВ, и погрешность каждой величины имеет компоненту постоянную<br />

на протяжении каждого из корреляционных интервалов. Оказывается,<br />

что именно эти компоненты погрешности следует принимать в расчет<br />

и именно на них следует выставлять требования, так как статистическая<br />

компонента погрешности дает значительно меньший вклад в общую погрешность<br />

. Квадрат вклада от статистических ошибок всех рассматри-


<strong>IAEA</strong> SM -170/ 91 135<br />

ваемых величин при наших предположениях об их величинах в пределах<br />

от 1-5% составляет всего 0,12 в общий квадрат погрешности,равный<br />

четырем.<br />

Таким образом, в табл.II приведены требования на скоррелированные<br />

по корреляционным интервалам компоненты погрешности, т.е. на<br />

ошибки в нормировке кривых сечений в пределах этих интервалов.<br />

Поэтому при сравнении с достигнутыми точностями данных надо исключать<br />

статистическую компоненту погрешности.<br />

3) Считается, что поток нейтронов при измерениях всех сечений<br />

измеряется единым методом в пределах каждого из корреляционных<br />

интервалов. Например, в интервалах выше 0,1 МэВ по сечению деления<br />

урана-235, а ниже по сечению бора и лития. Это предположение соответствует<br />

рекомендации измерять конкурирующие процессы в наибольшей<br />

степени относительно, что, как показывает расчет, уменьшает требования<br />

на точность измерения . Поэтому в таблице имеются достигнутые<br />

и требуемые точности в измерении потока, которые можно трактовать и<br />

как точности сечения деления урана-235, предполагая его использование<br />

для измерения потока нейтронов.<br />

Из результатов таблицы хотелось бы отметить большие требуемые<br />

уточнения в сечениях захвата урана-238, плутония-239, осколков деления,<br />

особенно в области ниже 100 кэВ, но также и до 8 0 0 кэВ, в неупругом<br />

рассеянии урана-238, особенно в области от 0,8 до 2,5 МэВ, v плутония-239<br />

Рассмотрение таблицы дает возможность определить величины,<br />

уточнение которых наиболее эффективно. Это те величины, существующие<br />

погрешности которых дают наибольшие вклады в дисперсию реакторного<br />

параметра, в данном случае КВ, а при достижении требуемых<br />

погрешностей их вклад меняется максимально, оставаясь тем не менее<br />

определяющим и в новом значении дисперсии реакторного параметра .<br />

Теперь следует обсудить место требований, полученных с точки<br />

зрения уточнения предсказания коэффициента воспроизводства среди<br />

требований, исходящих из других соображений.<br />

Во-первых, можно отметить сравнительно умеренный характер требований<br />

по сравнению с требованиями для уточнения предсказаний Кэфф.<br />

до погрешности в ± 1 % (см .напр.[12]).<br />

Однако далее при рассмотрении роли интегральных экспериментов<br />

мы приведем аргументы в пользу этих более умеренных требований.<br />

Во-вторых, надо отметить, что для установления полного списка<br />

потребностей для быстрых реакторов, надо привлечь и все другие<br />

соображения восьми пунктов раздела И, а также соображения по защите.<br />

С точки зрения методики использование указанных соображений проводится<br />

точно так же, как описано выше. Мы не будем здесь этого делать,<br />

так как такие списки можно найти в изданном МАГАТЭ мировом списке<br />

потребностей в ядерных данных R E N D A - 7 2 . Сравнение же требований<br />

таблиц II и III с R E N D A - 7 2 , особенно с английскими запросами Кэмпбела,<br />

показывает довольно хорошее их числовое согласие, хотя смысл этих<br />

чисел нельзя считать совпадающим, поскольку он не объяснен достаточно<br />

ясно в R E N D A - 7 2 .<br />

Дальнейшее изложение мы посвятим возможной роли интегральных<br />

экспериментов в ослаблении требований на точность микроскопических<br />

ядерных данных и общему описанию соответствующего математического<br />

аппарата, заимствованного из математической теории планирования<br />

эксперимента.


ТАБЛИЦА И. ДОСТИГНУТЫЕ И ТРЕБУЕМЫЕ ПОГРЕШНОСТИ ЯДЕРНЫХ ДАННЫХ И ИХ ВКЛАД<br />

В ДИСПЕРСИЮ КВ<br />

Изотоп Процесс<br />

239ри<br />

241Ри<br />

Интервал энергий, М эВ<br />

10,5 > E > 0,8 0,8 > E > 0,1 E < 0,1<br />

1 2 3 4 1 2 3 4 1 2 3 4<br />

а с 50 22 0,35 0,07 15 5 1,15 0,13 10 3,6 3,17 0,42<br />

СТр 6 6 0,00 0,00 4 4 0,00 0,00 5 3,8 0,04 0,02<br />

3 M 0,75 0,10 1 0,5 0,23 0,06 2 0,75 0,700 0,10<br />

°с 50 50 0,00 0,00 30 30 0,00 0,00 20 20 0,00 0,00<br />

°F 10 9 0,02 0,02 10 5 0,19 0,05 15 5 1,21 0,14<br />

«г<br />

4 4 0,01 0,01 3 2,5 0,03 0,02 2 1,6 0,04 0,02<br />

50 37 0,05 0,03 30 15 0,29 0,0 7 20 10 0,29 0,07<br />

240Ри 7 4 0,16 0,05 7 7 0,00 0,00 7 7 0,00 0,00<br />

V*<br />

3,0 2,0 0,0 6 0,03 3 3 0,00 0,00 3 3 0,00 0,00<br />

стс 20 10 0,19 0,05 10 3,3 1,42 0,14 15 2,7 13,5 0,43<br />

гзву aF 5 2 0,54 0,09<br />

UF 3 1,3 0,43 0,08<br />

Осколки<br />

деления<br />

242Ри<br />

23N a<br />

CTtr 20 20 0,00 0,00 20 20 0,00 0,00 20 20 0,00 0,00<br />

a F<br />

VF<br />

50 36 0,05 0,03 30 14 0,27 0,06 30 10 1,1 0,12<br />

50 50 0,00 0,00 30 30 0,00 0,00 20 20 0,00 0,00<br />

7,0 7,0 0,00 0,00<br />

4,0 4,0 0,00 0,00<br />

CTc 50 50 0,00 0,00 50 50 0,00 0,00 50 45 0,02 0,02<br />

fftot<br />

20 20 0,01 0,01 10 10 0,01 0,01 10 10 0,01 0,01<br />

136 УСАЧЕВ и др.


ТАБЛИЦА II . (продолжение)<br />

Сталь стс 50 22 0,39 0 ,0 7 30 16 0,19 0,05 30 13 0,40 0 ,08<br />

CTtot 20 20 0,00 0 ,00 20 20 0,01 0,01 20 20 0,00 0 ,00<br />

i60 °с 15 15 0,00 0 ,00<br />

°tot 10 9 0,02 0 ,01 10 6,0 0,07 0,0 3 10 10 0,00 0 ,00<br />

252c f<br />

0,3 0,3 0,50 0 ,50<br />

Поток 6 1,8 1,61 0;,15 3 2,4 0,03 0,02 4,0 2,3 0,13 0 ,04<br />

<strong>IAEA</strong> SM-170/91 137


ТАБЛИЦА III. ПОГРЕШНОСТИ В НЕУПРУГОМ РАССЕЯНИИ ИЗ ДАННОЙ ГРУППЫ ВО ВСЕ<br />

НИЖЕЛЕЖАЩИЕ И ИХ ВКЛАДЫ В ДИСПЕРСИЮ КВ<br />

И з о ­<br />

топ<br />

Интервал энергий, М э В<br />

10,5 - 6,5 - 4 ,0 - 2 ,5 - 1,4 - 0 ,8 - 0 ,4 - 0 ,2 - 0,1 -<br />

6,5 4 ,0 2 ,5 1.4 0,8 0,4 0,2 0,1 0 ,0 4<br />

1 30 20 20 15 10 7 7 7 7<br />

238 ri 2 11 14 20 4 ,5 3,0 7 7 3,4 7<br />

3 0,71 0 ,0 6 0,02 1,98 3 ,4 2 0,01 0,01 0 ,2 5 0 ,0 0<br />

4 0,1 0 0 ,0 3 0 ,02 0 ,1 7 0,2 2 0,01 0,01 0,0 5 0 ,0 0<br />

Оскол ­ 1 30 30 30 30 30 30 30 30 30<br />

ки 2 25 30 30 15 13 30 30 24 30<br />

деле­ 3 0 ,0 3 0 ,0 0 0,01 0 ,2 2 0 ,4 5 0 ,0 0 0 ,0 0 0,0 4 0 ,0 0<br />

ния 4 0,02 0 ,0 0 0 ,01 0 ,0 6 0 ,0 8 0 ,0 0 0 ,0 0 0 ,0 2 0 ,0 0<br />

239-,-.<br />

P u<br />

1 30 30 30 30 30 30 30 30 30<br />

2 30 30 30 23 17 30 30 26 30<br />

3 0,0 0 0 ,0 0 0 ,0 0 0,04 0,1 2 0 ,0 0 0 ,0 0 0 ,0 3 0 ,0 0<br />

4 0,00 0 ,0 0 0 ,0 0 0,02 0,0 4 0 ,0 0 0 ,0 0 0,0 2 0 ,0 0<br />

138 УСАЧЕВ и др.


П римечания к таблицам II и III.<br />

IA E A -S M -170/91 139<br />

1 — погрешности, имеющие место в настоящее время.<br />

2 — требуемая погрешность, обеспечивающая расчет КВ<br />

с точностью 2 % .<br />

3 - квадрат вклада погрешности, имеющей место в настоящее время,<br />

в дисперсию КВ, равную 37.<br />

4 — квадрат вклада погрешности, которую надо достичь,<br />

в дисперсию КВ, равную 4 .<br />

Сумма столбцов 3 в таблицах II и III равна 37, что соответствует<br />

точности расчета КВ 6% .<br />

Сумма столбцов 4 в таблицах II и III равна 4, что соответствует<br />

точности расчета КВ 2 % .<br />

V . ИСПОЛЬЗОВАНИЕ ИНТЕГРАЛЬНЫХ ЭКСПЕРИМЕНТОВ ДЛЯ СМЯГ­<br />

ЧЕНИЯ ТРЕБОВАНИЙ НА ТОЧНОСТЬ МИКРОСКОПИЧЕСКИХ ЯДЕРНЫХ<br />

ДАННЫХ<br />

Интегральные эксперименты использовались с самого начала работ<br />

по цепной реакции деления . По их результатам подгонялись ядерные<br />

данные. Но в начале это делалось на интуитивном уровне, без выработки<br />

соответствующего математического формализма .<br />

В работе Чечини [7], Барре, Равье [13], Пази [21],<br />

Роулэндса и др. [14], Хеммент и Пэндлбэри [22], Кэмпбела и Роулэнд-<br />

са [18], Бэллэнса [23], Драгта [24], Усачева и Бобкова [19] применен<br />

метод наименьших квадратов для подгонки ядерных данных, с целью<br />

наилучшим образом описать всю совокупность имеющихся интегральных<br />

экспериментов, не входя в противоречие и с микроскопическими измерениями<br />

.<br />

На основе такого подхода были существенно смягчены английские<br />

требования на точности ядерных данных, публикуемые в списке запросов<br />

R E N D A , начиная с 1966 года. Однако это делалось математически<br />

неформализованным способом.<br />

В развитие математического алгоритма, выработанного для определения<br />

потребностей в точностях совокупности только микроскопических<br />

экспериментов [12], кратко изложенного и использованного выше, был<br />

выработан и алгоритм для планирования совокупности микроскопических<br />

и интегральных экспериментов, позволяющих в частности решить задачу<br />

об определении смягчения требований на ядерные данные.<br />

В работе Усачева и Бобкова "Математическая теория эксперимента<br />

и обобщенная теория возмущений - эффективный подход к исследованию<br />

физики реакторов" [ 16] было предложено для решения комплекса задач<br />

подгонки ядерных данных и планирования наиболее информативных<br />

экспериментов использовать метод последовательного планирования<br />

эксперимента, изложенный, например, в книге под редакцией Налимо-<br />

ва В .В . [20] в статье Федорова В .В .<br />

В рамках метода последовательного планирования эксперимента<br />

было введено понятие информативности интегрального эксперимента<br />

относительно поставленной цели уточнения определенной реакторной<br />

характеристики проектируемого реактора [16]. Информативность


140 У С А Ч Е В и д р .<br />

определена как уменьшение дисперсии предсказания интересующей нас<br />

реакторной характеристики в результате проведения данного эксперимента.<br />

На этой основе развертывается исследование информативности<br />

уже проведенных интегральных экспериментов и планируемых вновь.<br />

Так в этой же работе исследованы эксперименты на сборках ZPR-III с<br />

точки зрения уточнения предсказания КЭфф реактора БН-600. Оказалось,<br />

что только 5 экспериментов из 20 уменьшают дисперсию предсказания,<br />

и особенно информативной оказалась сборка ZPR-III-29.<br />

В этой же работе предложен способ проведения подгонки констант<br />

в рамках той же идеологии, что в цитируемых выше работах, но не<br />

требующий обращений матриц. Все вычислительные операции сводятся<br />

лишь к умножению матрицы на вектор. Все дело в том, что в качестве<br />

первого шага выбирается совокупность только микроскопических<br />

экспериментов с диагонализованной, благодаря описанному выше способу<br />

учета корреляций, ковариационной матрицей.<br />

Вычисление ослабления требований на ядерные данные при использовании<br />

интегральных экспериментов производится следующим образом.<br />

Задаем набор дисперсий интересующего нас реакторного параметра от<br />

требуемого значения, например, четыре для коэффициента воспроизводства<br />

соответственно требованию точности — 2 % , до значения, имеющего<br />

место на данный момент, для КВ-37.<br />

Для выбранных значений дисперсий определяется совокупность<br />

требуемых точностей одних микроскопических величин, аналогично представленным<br />

в табл. II и III. Принимая за исходные полученные таким<br />

образом точности и подключая используемые интегральные эксперименты<br />

последовательно по одному, на основе алгоритма, описанного в работе<br />

[16], вычисляем дисперсию предсказания реакторной характеристики-<br />

цели. Вычисленные значения дисперсии откладываются на графике в<br />

зависимости от заданных дисперсий, соответствующих предсказаниям на<br />

основе только микроскопических ядерных данных. Интерполяцией определяется<br />

точка кривой, в которой дисперсия, вычисленная с учетом<br />

интегральных экспериментов, равна заданной дисперсии интересующего<br />

нас реакторного параметра, например, четырем в случае коэффициента<br />

воспроизводства. Другая координата этой точки определит сниженный<br />

уровень точности, требуемый от микроскопических величин.<br />

И для этого нового значения дисперсии интересующего нас реакторного<br />

параметра по описанному выше алгоритму, еще раз вычисляются<br />

все величины, входящие в таблицы II и III. Это и будут требования к<br />

микроскопическим величинам, ослабленные благодаря использованию<br />

интегральных измерений.<br />

Первые результаты, полученные на пути применения описанного<br />

алгоритма, привели к выводу о том, что существующие интегральные<br />

эксперименты на обогащенном уране могут полностью снять требования<br />

по уточнению ядерных величин для расчета КЭфф с точностью ± 1% больших<br />

урановых быстрых реакторов. Иными словами, при устанавливаемых<br />

в результате подгонки корреляций между константами для экстраполяции<br />

расчета в область очень больших реакторов достаточно и существующих<br />

точностей ядерных данных.<br />

Исследованные до сих пор интегральные эксперименты не могут<br />

полностью снять требований на ядерные данные, если нас интересует<br />

предсказание КВ. Это - эксперименты по отношениям чисел процессов<br />

в центре активной зоны аР8/стР9, стс8/стР9, стс9/стр9 и ctf5/ctf9 в сборке


<strong>IAEA</strong>-S M -170/91 141<br />

ZPR-III-48 и по КЭфф этой сборки. Все указанные эксперименты могут<br />

снизить требование к дисперсии в КВ всего с 4-х до 5, т.е. требования<br />

на микроскопические ядерные данные для обеспечения расчета КВ с<br />

дисперсией 4 можно будет получать по описанному выше алгоритму,<br />

исходя из дисперсии 5.<br />

Надо отметить, что выше употреблялись выражения "могут снять<br />

или ослабить требования", но не "снимают или ослабляют требования" по<br />

той причине, что к интегральным экспериментам надо относиться с очень<br />

большой осторожностью, поскольку для указанных целей необходимо<br />

полное соответствие эксперимента и его расчетной модели, не говоря<br />

уже об отсутствии систематической ошибки самого эксперимента.<br />

Чрезвычайно опасным является невыявленное несоответствие,<br />

которое может привести к сдвигу предсказываемых параметров, хотя<br />

такой сдвиг и можно обнаружить в процессе подгонки констант, благодаря<br />

критерию X 2 . Таким образом, наши утверждения о роли интегральных<br />

экспериментов следует понимать как возможности того или иного<br />

интегрального эксперимента; что же касается превращения этой возможности<br />

в действительность, то здесь требуется большая работа<br />

специалистов-реакторщиков по оценке каждого интегрального эксперимента<br />

[19], т.е. приведению его в соответствие с расчетной моделью<br />

и расчету коэффициентов чувствительности измеряемых величин к<br />

изменению ядерных данных.<br />

ЛИТЕРАТУРА<br />

[ 1] M O O R H E A D , Т . P . , in P h y s ic s of F a st and Intermediate R eacto rs, (P r o c . Sem inar,<br />

V ie n n a , 1961), 2, I A E A , V ie n n a (1962) 111.<br />

[2] G A N D I N I , A . , A N L - 6 6 0 8 (1962).<br />

[ 3] У С А Ч Е В , Л . H ., А т ом на я энергия (1963) 4 7 2 .<br />

У С А Ч Е В , Л . H . , З А Р И Ц К И Й , С . М . , Бюллетень Информационного Центра по Ядер-<br />

ны м Д анны м . В ы п .2 , М ., А т ом и з д а т , 1 965, стр .2 4 2 .<br />

[4] G R E E B L E R , P . , H U T C H I N S , В . A . , Conferen ce on Neutron C r o s s Section<br />

Technology, W ashington (1966).<br />

[5] S M I T H , R . D . , in N u c le a r <strong>Data</strong> for R eactors (P r o c . C onf. P a r is , 1966) 1, I A E A ,<br />

Vienna (1967) 27.<br />

[ 6] У С А Ч Е В , Л . H ., З А Р И Ц К И Й , С . M ., Ядерные Данны е для Реакторов, (Труды К о н ­<br />

ференции, Париж, 1966) М А Г А Т Э , Вена _1_ (1967) 3 2 1 .<br />

[ 7] G A N D I N I , A . et a l . , in F a st Reactor P h y s ic s and Related Safety P r o b le m s (P ro c .<br />

S y m p .K a r l s r u h e , 1967); C E C C H I N I , G . e t a l . , C o m p a r is o n between experimental<br />

and theoretical integral data, 1966 (A N L - 7 3 2 0 ), p. 107.<br />

[8] G R E E B L E R , P . , H U T C H I N S , B . A . , L I N F O R D , R . B . , N u c l .A p p l ., 4 5 (1968) 297.<br />

[9] З А Р И Ц К И Й , С . M ., Т Р О Я Н О В , M . Ф ., В с б . "Фи зи ка ядерных реакторов' . В ы п .2,<br />

М . , А т ом и з д а т , 1 9 7 0 , с т р. 168.<br />

[10] З А Р И Ц К И Й , С . М . , Н И К О Л А Е В , M . Н Т Р О Я Н О В , М . Ф Доклад на Совещании<br />

по Нейтронной Физике, К иев, 1971 .<br />

[11] G R E E B L E R , P . , H U T C H I N S , В . A . , C O W A N , C . L . , in N u c le a r <strong>Data</strong> fpr Reactors<br />

(P r o c .C o n f .H e l s in k i, 1970) 1, I A E A , Vienna (1970) 17.<br />

[12] U S A C H E V , L . N . , B O B K O V , Y . G . , Planning of an optim um set of experim ents and<br />

evaluations, I N D C (C C P )- 1 9 /V - V ienna, 1972 .<br />

[13] B A R R E , J . Y . , R A V I E R , J . , in F a st Reactor P hysic s and Related Safety P r o b le m s<br />

(P r o c . S y m p .K a r l s r u h e , 1967).<br />

[ 14] Выступление Роулэнде на англо-советском семинаре, 1 9 6 8 .<br />

[ 15] H Ä G G B L O M , A djustem ent of Neutron C r o s s<br />

Studswyk, Sw eden, 1971.<br />

Section <strong>Data</strong> by a L e a s t Squares Fit.<br />

[ 16] У С А Ч Е В , Л . H ., Б О Б К О В , Ю . Г ., Ядерные К онстанты , Вы п .1 0 , M ., А т ом и зд а т , 1 9 7 3 .<br />

[ 17] У С А Ч Е В , Л . Н ., Б О Б К О В , Ю .Г ., Предложение по R E N D A — всемирному списку<br />

запросов. Доклад на 4-ом заседании М К Я Д , В е н а , 1 9 7 2 .


142 У С А Ч Е В и д р .<br />

[18] C A M P B E L L , C . G . , R O W L A N D S , J . L . , Th e Relationship of M icroscopic and<br />

Integral D ata, in N u c le a r <strong>Data</strong> for R e acto rs, (P r o c .C o n f .H e l s in k i, 1970) 2, I A E A ,<br />

Vienna (1970) 391.<br />

[19] У С А Ч Е В , Л . Н . , Б О Б К О В , Ю . Г . , О совокупном использовании результатов интег­<br />

ральных измерений в проблеме ядерных данных для реакторов, I Совещание по<br />

Нейтронной Физике для Реак тор ов, К иев, 1 9 7 1 .<br />

[ 20] Новые Идеи Планирования Эксперимента . Под ред .В .В . Налимова, М ., Изд-во<br />

"Н а у к а ", 1970 .<br />

[ 21] P A 2 Y , U s e of Integral M e a s u r e m e n t s as Supplem entary <strong>Data</strong> in N eutro n Cross-<br />

Section Evaluations, (A N L - 7 3 2 0 ), 1966, 270.<br />

[22] H E M M E T , P . C . E . , P E N D L E B U R Y , E . D . , Optim ization of Neutron Cross-<br />

Section D ata. ( A N L -7320), 1966, p. 88.<br />

[23] B A L L A N C E , B . M . O . e t a l ., Optim ization of Neutron Cross-Section <strong>Data</strong>,<br />

P r o c .B N E S , L ondo n , 1969, p. 149.<br />

[24] D R A G T , J . B . , Statistical Consideration of Techniq ues for Adjustm ent 1970,<br />

(R C N - 1 2 2 ), p. 85.<br />

D I S C U S S I O N<br />

A . M. W EIN BERG: T he B r o m le y R e p o r t en titled "P h y s ic s in P e r s p e c tiv e "<br />

e stim a te s that u n certa in tie s in c r o s s - s e c t i o n s w ill ca u se a c o s t in cr e m e n t of<br />

0 .1 5 to 0. 25 US m ill/k W • h in fu e l-c y c le c o s ts o f b r e e d e r r e a c t o r s . T h is, if<br />

e x tra p o la te d to the y e a r 2000, w ould r e p r e s e n t a c o s t o f s e v e r a l thousand<br />

m illio n d o lla r s /y r . H ave you m ade any s im ila r e stim a te s o f how m uch w ould<br />

b e sa v e d in f a s t - r e a c t o r c o s ts by such im p ro v e m e n ts in b re e d in g ra tio as you<br />

su g gest, and how m uch the e x p e rim e n ts m igh t c o s t?<br />

G. Y AN K O V: T h e p a p e r w hich I have p rese n te d d oes not in clu d e any<br />

e c o n o m ic ca lcu la tio n s w h a tever.<br />

J. Y. B A R R E : In r e p ly to P r o f e s s o r W e in b e r g 's qu estion , I can sa y that<br />

in F r a n c e the e x p e rie n c e w ith fa s t-n e u tro n r e a c to r s has been that the c o s t<br />

o f r e a c t o r p h y s ic s stu d ies w as la r g e ly o ffs e t by the resu ltin g sa vin g s on<br />

this type of r e a c t o r . H ow ever, as m en tion ed in ou r p a p er (I A E A -S M -1 7 0 /69),<br />

th e se a re stu d ies b a sed on in te g ra l e x p e rim e n ts. T he data obtain ed in th ese<br />

in v e s tig a tio n s have an im p orta n t b e a rin g on the op tim iz a tio n o f the p r o je c t,<br />

on the sa fe ty a s p e c ts and on u n d erstan d in g o f p o w e r plant o p e ra tio n s .<br />

W . B . LEW IS: T h e B r o m le y R e p o r t to w hich P r o f e s s o r W ein b erg<br />

r e fe r r e d in clu d ed , o f c o u r s e , a p r o je c tio n o f lig h t-w a te r r e a c to r s fr o m the<br />

p r e s e n t tim e and, w ork in g fr o m th is, one can show what the c o s t sa vin g s<br />

w ould b e. T o do the sa m e thing fo r the f a s t -b r e e d e r r e a c to r , we w ould have<br />

to m ake a p r o je c tio n f o r the n u m ber and to ta l c a p a city o f th ese r e a c t o r s , and<br />

as yet I think th ere is h esita tion about m akin g any su ch p re d ic tio n fo r the<br />

y e a r 2000.


I A E A - S M -1 7 0 /6 9<br />

ROLES RESPECTIFS DES EVALUATIONS<br />

ET DES EXPERIENCES INTEGRALES POUR<br />

LA PHYSIQUE DES REACTEURS RAPIDES<br />

J. Y. BARRE, J.P. C H A U D A T<br />

CEA, Centre d'êtudes nucléaires de Cadarache,<br />

France<br />

Abstract-Résumé<br />

RESPECTIVE ROLES <strong>OF</strong> EVALUATIONS A N D INTEGRAL EXPERIMENTS IN THE PHYSICS <strong>OF</strong> FAST REACTORS.<br />

Applications of nuclear data to the prediction of fast-power reactor parameters are described. In the<br />

integral approach chosen at the Commissariat à l’énergie atomique, differential measurements play, through<br />

evaluations, a complementary role with respect to the critical experiments which serve as references. The<br />

significance of differential measurements in realizing version 3 of the Cadarache multigroup effective<br />

cross-section sets and the most important future needs of the fast-reactor physicists are described.<br />

ROLES RESPECTIFS DES EVALUATIONS ET DES EXPERIENCES INTEGRALES POUR LA PHYSIQUE DES<br />

REACTEURS RAPIDES.<br />

Les applications des constantes nucléaires dans les prédictions des paramètres des réacteurs rapides de<br />

puissance sont décrites. Dans l'approche intégrale choisie au Commissariat à l’énergie atomique, les<br />

mesures différentielles, par l'intermédiaire des évaluations, jouent un r&le complémentaire par rapport<br />

aux expériences critiques qui servent de référence. La part donnée aux mesures différentielles dans la mise<br />

au point de la version 3 du jeu de sections efficaces multigroupes de Cadarache et les principaux besoins<br />

futurs des physiciens de réacteurs rapides sont analysés.<br />

IN TR O D U C TIO N<br />

Sur ce p r o b lè m e a u s s i la rg e m e n t tra ité [1, 2] que c o n t r o v e r s é [3]<br />

il n' e st pas r é a lis te de p e n s e r a p p o rte r d es arg u m en ts nouveaux s u ffis a m ­<br />

m ent fo r ts p ou r c o n v a in c re a u jo u rd ' hui le s p a rtisa n s de 1' une ou 1' autre<br />

d e s a p p ro c h e s u tilis é e s p ou r la d é te rm in a tio n d e s c a r a c té r is t iq u e s d 'u n<br />

r é a c te u r à n eu tron s ra p id e s de p u iss a n ce . En sch ém a tisa n t à 1' e x trêm e<br />

le s u je t, deux so lu tio n s o p p o s é e s ex iste n t su r le plan m on d ia l:<br />

a) U tilisa tio n d e s étu des de m é th od es de c a lc u l et d es m e s u r e s<br />

d iffé r e n t ie lle s « t r i é e s » dans d e s év a lu a tio n s: L e s ré su lta ts d es e x p é ­<br />

r ie n c e s c r itiq u e s se rv e n t uniquem ent à te s te r la v a lid ité d e s p a ra m è tr e s<br />

c a lc u lé s . C' e st plutôt 1' orie n ta tio n su iv ie aux E ta ts-U n is d 1 A m é riq u e<br />

et en R épubliqu e fé d é r a le d 'A lle m a g n e , p a r e x e m p le .<br />

b) U tilisa tio n d e s étu des de m é th od es de c a lc u l et d e s ré su lta ts des<br />

e x p e r ie n c e s in té g ra le s p ou r a m é lio r e r le s p r é d ic tio n s : L e s don n ées de<br />

b a s e , is s u e s d e s m e s u r e s d iffé r e n t ie lle s , se rv e n t e ss e n tie lle m e n t de<br />

poin t de d ép a rt ou d 'in t e r m é d ia ir e s . C ette a p p ro ch e e st reten u e en<br />

p a r t ic u lie r en G ra n d e -B re ta g n e et en F r a n c e .<br />

L e s p o s itio n s r e s p e c t iv e s ne sont é v id em m en t pas a u s s i tra n ch é e s<br />

et se situ ent e n tre c e s deux e x tr ê m e s .<br />

143


144 BARRE e t C H A U D A T<br />

Q u els sont le s argu m en ts du C E A p ou r r e te n ir la se con d e a p p ro ch e ,<br />

c ' e s t - â - d i r e se b a s e r s u r le s e x p é r ie n c e s in té g r a le s , et dans cette<br />

so lu tio n , qu el r ô le in co m b e aux m e s u r e s d iffé r e n t ie lle s et aux é v a lu a tio n s?<br />

E n fin , au stade a ctu e l, q u els sont le s b e s o in s fu tu rs en m e s u r e s d iffé ­<br />

r e n t ie lle s d e s p r o je ts r a p id e s en F r a n c e ?<br />

L e m om en t e st bien c h o is i p ou r a b o r d e r c e s p r o b lè m e s , c a r la<br />

sy n th è se de qu atre ans de p r o g r a m m e s d 'e x p é r ie n c e s c ritiq u e s e ffe ctu é e s<br />

au C E A vien t de se c o n c r é t is e r dans la r é a lis a tio n , au début de cette<br />

an n ée, de la v e r s io n 3 du je u de s e c tio n s e ffic a c e s m u ltig rou p e s de<br />

C a d a ra ch e , u tilis é m aintenant p ou r le s d é fin itio n s d e s p r o je ts . C ette<br />

n o u v e lle v e r s io n re p ré s e n te un gain c o n s id é r a b le en p r é c is io n p a r ra p p o rt<br />

à la v e r s io n p r é cé d e n te [4] g r â c e aux ré su lta ts in tég ra u x obtenus su r<br />

M a su r ca , E rm in e et H a rm on ie.<br />

1. N E CESSITE DE L 'A P P R O C H E IN T E G R A L E<br />

1.1 . B uts de la p h ysiqu e d e s r é a c te u r s<br />

L ' o rie n ta tio n reten u e d é c o u le d ir e c te m e n t d e s buts p o u rs u iv is :<br />

o b te n ir , a v e c la p r é c is io n et dans le s d é la is r e q u is p ar le s p r o je t s , le s<br />

p a ra m è tr e s p rin cip a u x d es r é a c te u r s ra p id e s de p u issa n ce . La c o n n a is ­<br />

sa n ce de c e s quan tités, qui sont tou tes d e s v a le u rs in té g r a le s , est<br />

n é c e s s a ir e , au stade de 1' a v a n t-p r o je t p ou r la sû reté et 1' op tim isa tio n<br />

de la c e n tra le , au stade de 1' ex p lo ita tio n p ou r p r é v o ir et c o m p r e n d r e de<br />

m a n iè re sû re le co m p o rte m e n t du r é a c te u r . Il s ' agit p rin cip a le m e n t:<br />

- d e s e n r ic h is s e m e n ts c ritiq u e s<br />

- d e s d is trib u tio n s de p u issa n ce<br />

- d e s gain s de s u r ré g é n é r a tio n<br />

- d e s v a le u rs d e s b a r r e s de com m a n d e<br />

- d e s p r o b lè m e s lié s aux b lin d a g e s.<br />

1.2. C o n sé q u e n ces<br />

L e s buts étant d é fin is , il e st n é c e s s a ir e , p o u r c o m p r e n d r e le s<br />

r a is o n s d e s c h o ix fa its , de r é fu te r q u elq u es id é e s trop sou vent r e ç u e s<br />

et d 'in s is t e r su r le s p r o b lè m e s de p r é c is io n et de d é la i:<br />

- L a c o n n a is sa n ce d e s d on n ées de b a se n' e s t pas un but en s o i. Le<br />

fa it q u e, p a r e x e m p le , la se c tio n e ffic a c e de fis s io n du plu ton iu m -2 39<br />

s o it 1 ,5 ou 1 ,6 ba rn à 100 keV n' ap p orte r ie n aux in g én ieu rs de p r o je t.<br />

Ce qui im p o rte , c ' e st la co n n a is sa n ce de p a ra m è tr e s in té g ra u x , de taux<br />

de r é a c t io n s : c e son t c e s quantités qui son t m e s u r é e s dans le s e x p é r ie n c e s<br />

c r itiq u e s .<br />

- La c la s s e de p a r a m è tr e s in tég ra u x ou de r é a c te u r s à é tu d ie r est<br />

lim ité e à un d om ain e b ien d éfin i: dans le ca s du C E A , il s ' agit de r é a c te u rs<br />

à ox y d e m ixte de p lu ton iu m , r e fr o id is au so d iu m , à deux z o n e s, r é flé c h is ,<br />

dans la g am m e de p u issa n ce c o m p r is e e n tre 250 et 2000 M W (e). P o u r le s<br />

b lin d a g e s du c œ u r , le s m a té ria u x et le s c o m p o s itio n s v o lu m iq u e s p o s s ib le s<br />

son t en n o m b re r e s tr e in t: a c ie r in o x -s o d iu m ou fe r -g r a p h ite -s o d iu m .


I A E A - S M - 1 7 0 /69 145<br />

L a quantité d 'in fo r m a tio n s n é c e s s a ir e s p ou r co n n a ître le s p a r a ­<br />

m è tre s p rin cip a u x dans le dom ain e c o n s id é r é e st en r é a lité t r è s in fé r ieu<br />

re à c e lle contenue dans le s d on n ées d iffé r e n t ie lle s . L e s e x p e r ie n c e s<br />

in té g ra le s son t, e lle s , c e n tré e s su r le dom ain e et le s in fo rm a tio n s<br />

in té r e s s a n ts .<br />

- La p r é c is io n d e s d on n ées de b a se é v a lu é e s , is s u e s d e s m e s u r e s<br />

d iffé r e n t ie lle s , e st in su ffisa n te a ctu e lle m e n t p ou r s a tis fa ir e le s dem an des<br />

de p r é c is io n d e s p r o je t s : ce p oin t, recon n u u n anim em en t, ne n é c e s s ite<br />

p a s d 1 e x e m p le su p p lé m e n ta ire , m ê m e s i la c o n v e rg e n ce e n tre la b o r a to ir e s<br />

a été a m é lio r é e su r c e r ta in e s d on n é e s, c e s d e r n iè r e s an n ées [2, 5 -7 ].<br />

- Il e s t p o s s ib le d 'e n v is a g e r une a m é lio r a tio n d e s p r é c is io n s des<br />

m e s u r e s d iffé r e n t ie lle s dans le s an n ées fu tu re s , bien que p ou r p lu sie u rs<br />

d on n ées un c e rta in p la fon d s e m b le atteint dans 1' état a ctu e l d es tech n iq u es<br />

(e x e m p le : p a ra m è tr e s de r é so n a n ce du p lu to n iu m -2 3 9 ). M a is, p ou r ce<br />

qui c o n c e r n e le C E A , r e s p e c t e r le s d é la is d e s p r o je ts im p liq u a it pou r<br />

P h én ix et im p liq u e p ou r 1200 M W (e) de p a s s e r p a r le s e x p é r ie n c e s<br />

in té g r a le s .<br />

- En fa it, m ê m e dans 1' h ypoth èse utopique d 'u n e c o n n a is sa n ce p a rfa ite<br />

de tou tes le s d on n ées d iffé r e n t ie lle s , le te s t d e s a p p ro x im a tio n s de m é th o d e ,<br />

ren d u es o b lig a to ir e s p a r la c o m p le x ité d e s p r o b lè m e s p o s é s p a r le d e -<br />

cou p a ge é n e rg é tiq u e ou le s co n d itio n s g é o m é tr iq u e s , s e r a it im p é ra tif.<br />

L ' e x e m p le le plu s p a rla n t e s t p roba b le m e n t le c a lc u l d e s fu ites p r é fé r e n ­<br />

t ie lle s dans le s canaux de c irc u la tio n d 'h é liu m d 'u n r é a c te u r ra p id e à g a z.<br />

1.3. A p p lica tio n<br />

P o u r a ttein d re dans le s d é la is voulu s le s p r é c is io n s d em a n d ées p ar<br />

le s p r o je t s , le s e x p é r ie n c e s in té g ra le s son t in d is p e n s a b le s.<br />

C e s e x p é r ie n c e s son t co n çu e s au C E A p ou r m e s u r e r , su r d es m ilie u x<br />

s im p le s , d e s g ra n d e u rs c a r a c té r is t iq u e s d e s m ilie u x é tu d iés et d ir e c t e ­<br />

m en t r e lié e s aux p a ra m è tr e s p r o je t. L e s r é su lta ts se rv e n t à la q u a lific a ­<br />

tio n de 1' e n se m b le d e s m éth od es de c a lc u l et d es d on n ées de b a se ,<br />

cou ra m m e n t ap p elé « fo r m u la ir e » . L e seu l p r o b lè m e r é s id e dans la<br />

v a lid ité d e s tra n s p o s itio n s d e s ré su lta ts d e s e x p é r ie n c e s in té g ra le s au<br />

c a s r e e l du p r o je t. Si le s e x p é r ie n c e s son t c o r r e c t e m e n t c h o is ie s , cette<br />

tra n s p o s itio n c a lc u lé e e s t fa ib le et fa ite a v e c le m in im u m de r is q u e s<br />

d 'e r r e u r .<br />

L e p r o g r a m m e qui a s e r v i de b a se â la r é a lis a tio n de la v e r s io n 3<br />

du jeu de s e c tio n s e ffic a c e s m u ltig rou p e s de C a d a ra ch e a d é jà été p a r t ie lle ­<br />

m en t d é c r it [8, 9]. Il r e p o s e e sse n tie lle m e n t su r le s t r o is types de m e s u r e s<br />

in té g ra le s su iv a n tes:<br />

- la p la c ie n m a tiè r e ;<br />

- r a p p o r t p rod u ctio n to ta le su r a b so rp tio n totale dans d es e x p é r ie n c e s<br />

à fu ite s n u lle s;<br />

- r a p p o rt de taux de r é a c tio n m o y e n s:<br />

p a r ra p p o rt à la fis s io n 235U, fis s io n 238U, ca p tu re 238U, fis s io n 239P u,<br />

fis s io n 240P u , fis s io n 24IP u ,<br />

p a r ra p p o rt à la ca p tu re 238U, captu re 235U, ca p tu re 239P u , captu re<br />

240P u , ca p tu re 241P u.


146 BARRE e t C H A U D A T<br />

P o u r c e s p a r a m è tr e s , le s p r o g r è s d e s m éth od es de c a lc u l sont te ls<br />

que le r e c a la g e du fo r m u la ir e su r le s ré su lta ts d e s e x p é r ie n c e s in té g ra le s<br />

r e v ie n t uniquem ent à un aju stem en t d e s d on n ées de b a se . La m éthod e<br />

u tilis é e p ou r ce tte n o u v e lle v e r s io n e s t iden tiqu e dans son p r in cip e à<br />

c e lle u tilis é e p r é cé d e m m e n t [4].<br />

Il im p o rte de p r é c i s e r que c ' e st 1' e n se m b le a p p ro x im a tio n s de<br />

m eth od e - don n ees a ju s té e s qui seu l conduit aux p r é d ic tio n s c o r r e c t e s<br />

d e s p a ra m è tr e s in té g ra u x , dans la gam m e étu d ié e , m a is que chaque<br />

donnée in d iv id u elle n 1 e st pas n é c e s s a ir e m e n t la v a le u r v r a ie : le s<br />

te n d a n ces se dégagent cep en d ant. A la lim ite , c e la n' e st pas fon d a ­<br />

m en ta lem en t im p ortan t puisque le s qu an tités in té g ra le s p ou r le s q u e lle s<br />

le fo r m u la ir e e st q u a lifié son t p r é d ite s a v e c la p r é c is io n r e q u is e .<br />

Une solu tion iden tiqu e e st a ctu e lle m e n t m is e au poin t p ou r le s p a r a ­<br />

m è tre s lie s aux p r o te c tio n s , b a sé e su r d es e x p é r ie n c e s sy sté m a tiq u e s<br />

de p rop a g a tio n dans d es m ilie u x de co m p o s itio n v a r ia b le en sod iu m et fe r .<br />

2. RO LE DES E V A L U A T IO N S DANS C E T T E A P P R O C H E<br />

D ans cette a p p ro ch e in té g ra le , le s m e s u r e s d iffé r e n t ie lle s , p ar<br />

1' in te r m é d ia ir e o b lig a to ir e d es év a lu a tio n s, jou en t un r ô le co m p lé m e n ta ire<br />

à qu atre niveaux:<br />

- fo u rn ir le s don nées n u c lé a ir e s de d ép a rt le s plus p r o b a b le s ,<br />

- d é fin ir le s m a rg e s d 'in c e r tit u d e su r c e s v a le u rs , a d m is s ib le s p ou r la<br />

p h ysiqu e et la m é tro lo g ie n u c lé a ir e s ,<br />

- d é te rm in e r ce rta in e s d on n ées p ou r le s q u e lle s la p r é c is io n d es é v a lu a ­<br />

tio n s e st su ffisa n te ,<br />

- d e te r m in e r le s d on n ées p ou r le s q u e lle s le s e x p é r ie n c e s c ritiq u e s<br />

ap p orten t peu d 'in fo r m a tio n s .<br />

2 .1 . D onnées de d épart<br />

C ' e st c e rta in e m e n t le r ô le le plus im p ortan t jo u é p ar le s m e s u r e s<br />

d iffé r e n t ie lle s . Il e st cependant évid en t a ctu e lle m e n t que, p ou r la m a jo r ité<br />

d e s b e s o in s p r io r it a ir e s , le s d on n ées in itia le s sont d is p o n ib le s tant du<br />

poin t de vue s e c tio n s e ffic a c e s à dilu tion in fin ie que p a ra m è tr e s de<br />

ré s o n a n ce .<br />

P a r e x e m p le , au d ép a rt de la v e r s io n 3 C a d a ra ch e , le s évalu ation s<br />

r é c e n te s du 240Pu et du 241Pu (D FN 408 et 403) ont été u tilis é e s [10].<br />

La p r é c is io n su r c e s v a le u rs a b so lu e s e st tr è s v a r ia b le suivant le s<br />

d o n n é e s. M a is, au stade d e s v a le u rs de d é p a rt, une con n a is sa n ce p r é c is e<br />

d e s fo r m e s d e s s e c tio n s e ffic a c e s en fo n ctio n de 1' é n e rg ie ou du ra p p ort<br />

de deux d on n ées à une é n e rg ie p e r m e t de r é d u ire le n o m b re d 1 in con n u es<br />

dans 1' aju stem en t.<br />

2.2 . In certitu d es<br />

La d éfin ition d es in ce rtitu d e s a d m is s ib le s su r le s d on n ées d iffé r e n ­<br />

t ie lle s e st un d e s é lé m e n ts fondam entaux de la q u a lifica tio n du fo r m u la ir e ,<br />

s p é cia le m e n t p ou r ce rta in e s m éth od es d 'a ju s te m e n t [1]'. En e ffe t, le s<br />

a ju ste m e n ts d e s d on n ées de b a se su r le s ré su lta ts in tégra u x ne se font<br />

que dans la g a m m e p o s s ib le de v a ria tio n e s tim é e p a r 1' évalu ation à p a rtir


I A E A -S M - 1 7 0 /6 9 147<br />

de la d is p e r s io n d e s m e s u r e s d iffé r e n t ie lle s . Il e st im p ortan t p o u r le s<br />

p h y s ic ie n s de r é a c te u r s que le s in ce rtitu d e s so ie n t é v a lu é e s a v e c autant<br />

d 'a tte n tio n que le s v a le u rs a b so lu e s .<br />

L a m is e au poin t de la v e r s io n 3 C a d a ra ch e s ' e st b a sée su r le s in ­<br />

c e rtitu d e s é v a lu é e s à p a r tir d es m e s u r e s le s plu s r é c e n te s p ou r le s ré a c tio n s<br />

de p rod u ctio n et d 'a b s o r p tio n d e s is o to p e s 235U, 238U, 239P u , 240Pu et<br />

241 Pu [10 - 14].<br />

2.3 . D on n ées con n u es a v e c une p r é c is io n su ffisan te<br />

L e niveau de p r é c is io n su ffisa n t e st sp é cifiq u e du p r o b lè m e c o n s id é r é .<br />

L e s s e c tio n s e ffic a c e s de captu re son t su ffis a m m e n t b ien con n u es p ou r<br />

le s p r o b lè m e s de b lin d a g e , a lo r s que p ou r le s b e s o in s « c o e u r » la p r é c is io n<br />

d o it ê tr e e n c o r e a m é lio r é e . L ' in v e r s e est v r a i p ou r le s r é a c tio n s to ta le s .<br />

Un e x e m p le c a r a c té r is tiq u e de c e g e n re d 'a p p o r t d e s m e s u r e s d iffe<br />

r e n t ie lle s e s t le p a ra m è tr e v dont 1' étude a été a p p rofon d ie dans deux<br />

v o ie s :<br />

- v a le u r du standard 252Cf,<br />

- v a ria tio n de v en fo n ctio n de 1' é n e rg ie .<br />

Etant donné le s p r é c is io n s attein tes p a r la m é tro lo g ie n u c lé a ire su r<br />

le s r a p p o r ts de v d e s d iv e r s is o to p e s f is s ile s au standard et le s v a ria tio n s<br />

de v en fo n ctio n de 1' é n e rg ie p ou r un is o to p e , c ' e st e s s e n tie lle m e n t la<br />

v a le u r a b solu e du Standard qui d e v ra it ê tre étu d iée p ou r le s b e s o in s d es<br />

r é a c te u r s . En e ffe t, p ou r le coeur 1 de P h én ix p a r e x e m p le , la v a le u r<br />

m oyen n e de v su r le s p e c t r e du coeur est tr è s p r o ch e de la v a le u r<br />

th e rm iq u e p ou r le s p rin cip a u x is o to p e s fis s ile s :<br />

235U v/vfr : 1 ,0 1 8<br />

239 Pu : 1,0 24<br />

241 Pu : 1,0 13<br />

Une e r r e u r de 0 ,5 % su r la v a le u r a b solu e th erm iq u e a la m êm e<br />

in flu en ce qu1 une e r r e u r de 25% su r la v a ria tio n de v a v e c 1' é n e rg ie . L e s<br />

p en tes de v en fo n ctio n de 1' é n e rg ie sont con n u es d 'a p r è s la m é t r o lo g ie<br />

à m ieu x que ±15% p ou r c e s is o to p e s .<br />

2 .4 . D onn ées a u x q u elles le s r é su lta ts in tégra u x son t peu s e n s ib le s<br />

C et a p p ort d e s évalu a tion s e st v o is in du point p r é cé d e n t. L 1 ex e m p le<br />

c la s s iq u e c o n c e rn e le s s e c tio n s e ffic a c e s de r a le n tis se m e n t éla stiq u e et,<br />

m is à p a rt 238U et F e , le s s e c tio n s e ffic a c e s de r a le n tis se m e n t in é la stiq u e .<br />

Au niveau de la v e r s io n 3 du je u de C a d a ra ch e , ce type d 'a p p o r t s ' e st<br />

c o n c r é t is é p a r un v a ste e n se m b le de d on n ées é v a lu é e s p o u r le s q u e lle s<br />

un bon o r d r e de g ra n d e u r e s t n é c e s s a ir e , p a r e x e m p le le s ré a c tio n s<br />

con cern a n t 1' o x y g è n e , le so d iu m , le p lu ton iu m -2 4 2 , le s im p u reté s des<br />

a c ie r s , le b o r e - 11.<br />

En d e h o rs d e s p r o b lè m e s lié s au c œ u r , le s évalu ation s d es r é a c tio n s<br />

de d is p a r itio n d 1 is o to p e s xénon ou k rypton e m p lo y é s c o m m e tr a c e u r s p ou r<br />

le s d é te ctio n s de ru p tu re de gain e sont d ir e c te m e n t u tilis é e s .


1 4 8 BARRE e t C H A U D A T<br />

3. BESOINS FU TU RS EN DONNEES E V A L U E E S<br />

3 .1 . G é n é ra lité s<br />

C e s d em an d es fu tu res doiven t te n ir com p te du p r o g r è s d e s c o n n a is ­<br />

s a n c e s et de 1' é v olu tion d es b e s o in s de la filiè r e ra p id e au C E A .<br />

L e s p r o g r a m m e s e x é cu té s en ph ysiqu e d es r é a c te u r s ont donné le s<br />

r é s u lta ts attendus. L e d e g ré de p r é c is io n atteint dans le s p r é d ic tio n s à<br />

p a rtir d e s e x p é r ie n c e s c r itiq u e s m et en é v id e n ce de n o u v e lle s s o u r c e s<br />

p o s s ib le s d 'e r r e u r qui ne peuvent plu s ê tr e n é g lig é e s : e x e m p le , captu re<br />

d e s a c ie r s . D ' au tre p a rt, le s p r o g r è s r é a lis é s dans le s m e s u r e s d iffé<br />

r e n t ie lle s d e s d on n ées de b a se p rép o n d é ra n te s ren d en t m aintenant<br />

d iffic ile une a m é lio r a tio n s e n sib le de la p r é c is io n : c 1 e st p robable m e n t<br />

le c a s , p a r e x e m p le , p ou r le s p a ra m è tr e s de r é so n a n ce de 235U, 239P u,<br />

24^Pu 24^ Pu 238<br />

L e s b e s o in s de la f iliè r e ont é v olu é v e r s d es p u iss a n ce s su p é r ie u re s<br />

(1200 M W (e)) et d e s p e r fo r m a n c e s plu s p o u s s é e s qui dem andent de<br />

m e ille u r e s p r e c is io n s . La s tra té g ie , le s p e r s p e c tiv e s et le s solu tion s<br />

n o u v e lle s e n v is a g é e s p o u r le s c e n tra le s fu tu res su scite n t de nouveaux<br />

p r o b lè m e s . On p a s s e , p a r e x e m p le , d 'u n e fréq u e n ce de r e ch a rg e m e n t<br />

de 56 jo u r s p o u r P h én ix à 1 an p ou r le r é a c te u r de 1200 M W (e): la<br />

co n n a is sa n ce d e s d on n ées co n cern a n t 1' év o lu tio n , en p a r t ic u lie r le s<br />

p rod u its de fis s io n (P F ), d evien t im p orta n te.<br />

3 .2 . E v o lu tion de la p u issa n ce d es ce n tra le s<br />

C ette é v olu tion donne un p o id s n ettem ent plu s im p ortan t aux b a s s e s<br />

é n e r g ie s (in fé r ie u r e s à 25 keV ) et aux p r o b lè m e s d 'a u to p r o te c tio n . P a r<br />

e x e m p le , la p a rt de ca p tu re 238U en d e s s o u s de 25 keV p a s s e de 0 ,3 7<br />

p ou r un e n ric h is s e m e n t de 25% (P h énix) à 0 ,5 2 pou r un e n ric h is s e m e n t<br />

de 12% (1200 M W (e|).<br />

De m ê m e , le ra p p o rt F de la se c tio n e ffic a c e m oyen n e a u top rotégée<br />

de ca p tu re 238U à la m ê m e se c tio n e ffic a c e à dilu tion in fin ie d é c r o ît<br />

a v e c 1' e n r ic h is s e m e n t E :<br />

E = 25% F = 0 ,8 8<br />

18% 0 ,8 2<br />

12% 0 ,7 3<br />

3 .3 . C aptu re d e s m a té ria u x de stru ctu re<br />

C 1 e st la p rin cip a le in con n ue d e s lo is de p rod u ctio n et d 'a b s o r p tio n<br />

qu i s u b s is te a ctu e lle m e n t au n iveau de la v e r s io n 3 du fo r m u la ir e de<br />

C a d a ra ch e p ou r o b te n ir le s c a r a c té r is t iq u e s d 'u n c œ u r de d é m a r ra g e .<br />

P o u r le s p rin cip a u x is o to p e s c o n c e r n é s (fe r , c h r o m e , n ick e l), le d om ain e<br />

d 'é n e r g ie p rép on d éra n t e st situ é en tre 1 et 300 k eV q u el que so it<br />

l'e n r ic h is s e m e n t E ( f ig .l et 2):<br />

P o u rcen ta g e de captu re e n tre 1 et 300 keV F e N i<br />

E = 25% 62% 28%<br />

18% 64% 35%<br />

12% 65% 43%<br />

t


I A E A - S M -1 7 0 /6 9 149<br />

FIG. 1. Fer: pourcentage de capture en dessous de l’énergie E.<br />

FIG. 2. Nickel: pourcentage de capture en dessous de l’énergie E.


1 5 0 В ARRE e t C H A U D A T<br />

T A B L E A U I. M A T E R IA U X DE ST R U C T U R E : B IL A N EN RE A C T IV IT E<br />

Enrichissement 25% 18% 12%<br />

f 0,967 0, 963 0,957<br />

dk/k («ft) 1,7 2, 3 3 ,4<br />

Isotope Fe Cr Ni Fe Cr Ni Fe Cr Ni<br />

1/f- l 0, 017 0, 004 0, 007 0, 019 0, 005 0, 008 0, 024 0, 006 0, 008<br />

dk/k (%) 0, 8 0, 2 0 ,4 1, 2 0,3 0, 5 1,8 0,5 0,6<br />

L ' im p o rta n ce r e la tiv e de c e s ca p tu res « p a r a s it e s » p a r ra p p o rt aux<br />

a u tres a b so rp tio n s e st d é fin ie dans le tableau I p a r 1' in te r m é d ia ir e du<br />

p a ra m è tr e f d é fin i c o m m e le ra p p o rt d e s a b so rp tio n s « c o m b u s t ib le » aux<br />

a b so r p tio n s to ta le s . Ce p a ra m è tr e ne d é c r o ît que de 1,0% quand 1' en ­<br />

r ic h is s e m e n t v a r ie de 25 à 12%. En r é a c tiv ité (d k /k ), cette captu re<br />

« p a r a s it e » , p r o p o rtio n n e lle à 1 - f, v a r ie de 1 ,7 à 3,4 % p ou r le s ca s<br />

c h o is is .<br />

L a p r é c is io n g lo b a le sou h aitée su r la r é a c tiv ité étant ± 0 , 5%, p ou r<br />

tou tes le s s o u r c e s d 'e r r e u r n eu tron iq u e, il faut con n a ître la ca p tu re des<br />

a c ie r s à m ieu x de ± 10%.<br />

L a p a ra m è tr e ( 1 / f - 1), co rre sp o n d a n t au ra p p o rt de la ca p tu re d es<br />

s tru c tu r e s à 1' a b sorp tio n c o m b u s tib le , m et en é v id e n ce le r ô le p r é ­<br />

pon d éra n t du fe r , puis du n ick e l (tableau I), p o u r le s a c ie r in ox c la s s iq u e s<br />

dans la f iliè r e ra p id e (F e 72%, C r 18%, N i 10% en v o lu m e ).<br />

L e s b e s o in s con cern e n t non se u le m e n t le s s e c tio n s e ffic a c e s de<br />

ca p tu re à dilu tion in fin ie m a is ég a le m e n t le s p a ra m è tr e s de r é s o n a n ce ,<br />

p a r tic u liè r e m e n t d iffic ile s à d é te rm in e r p o u r le s s tru c tu re s . C e s p a r a ­<br />

m è t r e s son t u tilis é s p ou r c a lc u le r , dans un d écou p a ge m u ltig ro u p e , le<br />

ra p p o r t de la se c tio n e ffic a c e de captu re a u to p ro té g é e à c e lle à dilution<br />

in fin ie : dans le fo r m u la ir e de C a d a ra ch e a ctu e l p a r e x e m p le , c e s ra p p o rts<br />

n 1 ex iste n t que p ou r le f e r en tre 10 et 500 keV et v a rien t e n tre 1 et 0 ,6<br />

p ou r le s coeu rs u s u e ls .<br />

L a p r io r it é 1 d e s d em an d es e st a ctu e lle m e n t donnée aux se c tio n s<br />

e ffic a c e s de ca p tu re à dilu tion in fin ie et aux p a ra m è tr e s de r e son a n ce<br />

d e s é lé m e n ts f e r , n ick e l et c h r o m e . L e s te s ts in tégra u x com p o rte n t des<br />

r é s e a u x p o u r le s q u e ls 1' in flu en ce d e s s tru c tu re s v a r ie de 1 à 10% en<br />

r é a c tiv ité , m a is une tr a n s p o s itio n au n iveau du p r o je t ne peut se fa ir e a v ec<br />

g a ra n tie qu' a v e c d e s d on n ées de d ép a rt p lu s p r é c is e s .<br />

3 .4 . P r o d u its de fis s io n<br />

L a s e con d e in con n ue a ctu e lle du fo r m u la ir e v e r s io n 3 C a d arach e<br />

c o n c e r n e , p o u r le coeu r b r û lé , le s d on n ées d e s p roduits de fis s io n .<br />

Une évolu tio n c a r a c té r is tiq u e e st r e p r é s e n té e su r le tableau II p ou r<br />

deux v a le u r s d 'e n r ic h is s e m e n t s in itiau x, 15 et 18%. La v a ria tio n a b ­<br />

so lu e de r é a c tiv ité en tre le c œ u r « fin de v ie » et le c œ u r «d ébu t de v ie » ,<br />

p ou r un taux de co m b u stio n de 50 000 M W j/t, e st d é c o m p o s é e en tre le s


I A E A -S M - 1 7 0 /6 9<br />

T A B L E A U II. E V O L U T IO N D' UN R E A C T E U R DE 1200 M W (e)<br />

(50 000 MW j / t ) : con trib u tion d es d iffé r e n ts is o to p e s<br />

dk/k (°jo) Cœur 1 (E = 15 °jo) Cœur 2 (E = 18%)<br />

U-235 - 0, 3 - 0, 2<br />

U-238 - 1,6 - 2 ,7<br />

Pu-239 - 0,7 - 1, 2<br />

Pu-240 - 0 ,0 - 0,1<br />

Pu-241 + 0, 6 + 0 ,6<br />

Produits de fission - 3,7 | - 3 . ! 1<br />

Divers - 1 ,3 - 2 ,2<br />

Total - 7 ,0 - 8 ,9<br />

p rin cip a u x is o to p e s . L e s p r é d ic tio n s con cern a n t le s e ffe ts d e s is o to p e s<br />

238u et 239pu étant a ctu e lle m e n t su ffisa m m e n t p r é c i s e s , l 1 a m é lio r a tio n<br />

de la c o n n a is sa n ce d e s d on n ées d es p rod u its de fis s io n d evien t p r io r it a ir e .<br />

L ' in ce rtitu d e su r 1' e ffe t d 'u n p s e u d o -p r o d u it de fis s io n m oy en doit<br />

ê tr e in fé r ie u r e à ± 1 0 % . C ette lim ite m a x im a le v a r ie en fo n ctio n in v e r s e<br />

du taux de com b u stio n reten u (50 000 à 100 000 M W j/t) et de la fréqu e n ce<br />

de r e ch a r g e m e n t (six m o is à 1 an) et s e r a plu s b a s s e p ou r d es e n r ic h is s e ­<br />

m en ts plu s fa ib le s , d on c d e s p u iss a n ce s p lu s é le v é e s d e s c e n tra le s : la<br />

fig u r e 3 m o n tre p a r e x e m p le 1' au gm en tation du ra p p o rt â^pp / â c u-238<br />

de la ca p tu re m oyen n e d e s P F à la ca p tu re m oyen n e de 238u quand<br />

l 1 e n r ic h is s e m e n t dim in u e.<br />

L e d om ain e d 1 é n e rg ie p rép on d éra n t e st situ é en tre 1 et 100 keV<br />

(fig .4 ): qu el que so it 1' e n ric h is s e m e n t, 65% d e s ca p tu res d e s P F ont lieu<br />

dans cette g am m e d 'é n e r g ie .<br />

L a p r in cip a le d ifficu lté p ou r s a tis fa ir e c e s d em an d es à p a rtir de la<br />

m é t r o lo g ie et de la p h ysiqu e n u c lé a ir e s r é s id e dans le grand n o m b re<br />

d 'is o t o p e s s é p a r é s à é tu d ie r: il n1 y a pas de P F p répon d é ra n t p ou r la<br />

f iliè r e ra p id e . En plu s d e s s e c tio n s e f f ic a c e s , il faut ég a le m e n t con n a ître<br />

le s re n d e m e n ts de fis s io n indépen dan ts qui v a rie n t suivant 1' é n e rg ie de<br />

fis s io n et l 1 is o to p e f is s ile c o n s id é r é .<br />

L e s d on n ées de b a se é v a lu é e s p ou r le s d iffé r e n ts p rod u its de fis s io n<br />

s é p a r é s s e r v ir o n t p rin cip a le m e n t de point de d ép a rt p ou r la d é te rm in a tio n<br />

d e s d on n ées d 'u n p s e u d o -p r o d u it de fis s io n m o y e n , ayant un e ffe t en<br />

r é a c tiv ité équ ivalen t â c e lu i de 1' e n sem b le d e s P F , p o u r un c œ u r à<br />

l'é q u ilib r e . C es d on n ées seron t a ju s té e s su r d es e x p é r ie n c e s in té g ra le s<br />

qu i m e su ren t d ir e c te m e n t 1' e ffe t en r é a c tiv ité de ce p s e u d o -p r o d u it de<br />

fis s io n .<br />

E tant donné le s p u is s a n ce s et le s p e r fo r m a n c e s en taux de com b u stio n<br />

e n v is a g é e s p ou r le s c e n tra le s r a p id e s fu tu re s , la p r io r ité 2 d es d em an d es<br />

e s t a ctu e lle m e n t donnée aux év alu ation s d e s p ro d u its de fis s io n .<br />

151


1 5 2 BARRE e t C H A U D A T<br />

FIG. 3. Capture des produits de fission rapportée à la capture de 238U en fonction de l’enrichissement.<br />

FIG. 4. Produits de fission: pourcentage de capture en dessous de l’énergie E.


3 .5 . A u tr e s d em an d es<br />

I A E A -S M - 1 7 0 /6 9<br />

Il e x is te d 1 a u tres p r o b lè m e s p ou r le s q u e ls une a m é lio r a tio n de la<br />

c o n n a is sa n c e d e s d on n ées de d ép a rt, sans ê tr e fon d am en tale c o m m e<br />

p o u r le s deu x c a s p r é c é d e n ts , s e r a it a ctu e lle m e n t u tile . Sans ê tr e<br />

e x h a u stif, on peut c it e r p a r e x e m p le :<br />

- le r a le n tis s e m e n t in é la stiq u e de 1 'u ra n iu m -2 3 8<br />

- la p ro d u ctio n et 1' a b sorp tio n d e s is o to p e s 242P u , 241 A m , 238P u .<br />

CO NCLUSIO N<br />

Dans 1' a p p ro ch e c h o is ie au CE A p ou r s a tis fa ir e le s d em an d es d es<br />

p r o je t s de r é a c te u r s à n eu tron s r a p id e s , la b a se e x p é rim e n ta le de r é ­<br />

fé r e n c e e st con stitu é e p a r le s r é su lta ts d e s p r o g r a m m e s d 'e x p é r ie n c e s<br />

c r it iq u e s . L e s é v a lu a tio n s, is s u e s d e s m e s u r e s d iffé r e n t ie lle s , jou en t<br />

un r ô le c o m p lé m e n ta ir e p a r ra p p o rt aux m e s u r e s in té g ra le s .<br />

L e s r é su lta ts a c c u m u lé s dans le s travau x d e s qu atre d e r n iè r e s années<br />

en p h ysiq u e d e s r é a c te u r s et 1' évolu tion d e s b e s o in s d es c e n tra le s ra p id e s<br />

lié e aux p e r fo r m a n c e s n o u v e lle s r e c h e r c h é e s se tra d u isen t, au C E A ,<br />

d 'u n e p a rt p a r une ré d u ctio n du v olu m e de d em an d es fo n d a m en ta les de<br />

m e s u r e s d iffé r e n t ie lle s , d 'a u tr e p a rt p ar une é v olu tion dans la nature<br />

d e s d e m a n d e s, ,en fin p a r la n a issa n ce d 1 un e n se m b le de b e s o in s de<br />

se co n d e p r io r it é . L e s d em an d es a c tu e lle s d 'é v a lu a tio n s son t fo c a lis é e s<br />

su r deux p r o b lè m e s p r io r it a ir e s , dans 1' o r d r e : ca p tu re d e s m a té ria u x<br />

de stru c tu re F e , N i, C r et con sta n tes d e s p rod u its de fis s io n .<br />

L a v a lid ité de 1' a p p ro ch e reten u e, qui s ' e st c o n c r é t is é e r é ce m m e n t<br />

dans la v e r s io n 3 du je u de s e c tio n s e ffic a c e s m u ltig ro u p e s de C a d a ra ch e ,<br />

va p o u v o ir ê tr e te s té e , en v ra ie g ra n d e u r, su r le s m e s u r e s p r é v u e s au<br />

d é m a r ra g e de P h én ix, c e n tra le de 250 M W (e), dont la d iv e r g e n c e est<br />

attendue p ou r le m ilie u de cette année.<br />

R E F E R E N C E S<br />

[1] CAMPBELL, C. G . , ROW LANDS, I. L. , « T h e relationship of microscopic and integral data»,<br />

<strong>Nuclear</strong> <strong>Data</strong> for Reactors (Compt. Rend. Conf. Helsinki, 1970) 2, AIEA, Vienne (1970) 391.<br />

[2] BARRE, J. Y . , BOUCHARD, J ., « Rôle complémentaire des expériences intégrales par rapport aux<br />

mesures différentielles pour un projet de réacteur à neutrons rapides», Ibid., p. 465.<br />

[3] Table ronde, « The physics of fast reactor operation and design» (Compt. Rend. Conf. Londres, 1969)<br />

BNES (1969) 277.<br />

[4] BARRE, I. Y. et al., « Lessons drawn from integral experiments on a set of multigroup cross sections» ,<br />

Ibid., p. 165.<br />

[5] LITTLE, W . W . et a l., «Progress in meeting cross sections needs from a fast reactor designer's<br />

v ie w », Neutron Cross Sections and Technology (Compt. Rend. Conf. Knoxville, 1971) 1,<br />

CONF-710301 (1971) 32.<br />

[6] FROHNER, F .H . et al., « O n shielding calculations with computer files of neutron data»,<br />

4e Conf. Int. sur la protection des réacteurs, Paris, 1972, Compt. Rend, à paraître, mémoire D5.<br />

[7] DUNFORD, C. e tal., « A status report on nuclear data for shielding calculations», Ibid.,<br />

mémoire D6.<br />

[8] BOUCHARD, J. e t a l., « Experimental study of burn-up in fast breeder reactors», New Developments<br />

in Reactor Physics and Shielding II (ANS National Meeting, Kiamesha Lake) 2, CONF-720901 (1972) 888.<br />

[9] BARRE, J. Y. et al., «Reactor physics and fast power breeders: M A SU RCA core R-Z program»,<br />

Ibid., p. 822.<br />

153


154 BARRE e t C H A U D A T<br />

[10] L'HERITEAU, J. P . , R1BON, P . , Examen critique des sections efficaces neutroniques du Pu 240,<br />

Note CEA-N-1273 - EA N D C (E) 126 A L (mars 1970).<br />

[11] SZABO, I. et al., «M esure absolue de la section efficace de fission de l’uranium-235 et du<br />

plutonium-239 entre 0, 025 et 1 M e V » , <strong>Nuclear</strong> <strong>Data</strong> for Reactors (Compt. Rend. Conf. Helsinki,<br />

1970) 1, AIE A, Vienne (1970) 229;<br />

Ibid., « z35u fission cross section from 10 keV to 200 k e V » , Neutron Cross Sections and Technology<br />

(Compt. Rend. Conf. Knoxville, 1971), CONF-710301 (1971) 573.<br />

[12] BLONS, J. et al., « Mesure et analyse des sections efficaces de fission de l'uranium-235 et du<br />

plutonium-241», <strong>Nuclear</strong> <strong>Data</strong> for Reactors (Compt. Rend. Conf. Helsinki, 1970) 1_, AIEA, Vienne<br />

(1970) 469;<br />

Ibid., in Neutron Cross Sections and Technology (Compt. Rend. Conf. Knoxville, 1971),<br />

CONF-710301 (1971) 829, 836.<br />

[13] RIBON, P ., LECOQ, G ., Evaluation des données neutroniques de 239Pu, Note CEA-N-1484<br />

(novembre 1971).<br />

[14] SOWERBY, M . G . , KONSHIN, V. A . , Review of the measurements of alpha for 239Pu in the energy<br />

range 100 eV to 1 M eV, At. Energy Rev. 10 4 (1972) 453.<br />

D I S C U S S I O N<br />

W . B. LEW IS (C h airm an ): I sh ou ld lik e to sa y on m y own b e h a lf that<br />

I h ave n e v e r been a d is b e lie v e r in the n eu tron p h y s ic s of f a s t -b r e e d e r r e a c t o r s .<br />

T h e au th ors a r e to be con g ra tu la ted on the d ev elop m en ts w hich have been<br />

a ch ie v e d through the com b in a tion of in te g ra l and m ic r o s c o p ic data. The<br />

ad va n ce lo o k s v e r y im p r e s s iv e .<br />

F . R U ST IC H E L L I: A s r e g a rd s data on fis s io n p rod u cts , what is m o r e<br />

c r it ic a l, the y ie ld s o r the n eu tron ca p tu re c r o s s - s e c t io n s ?<br />

J . Y. B A R R E : O ur re q u ire m e n t in r e s p e c t of fis s io n p rod u cts is to<br />

obtain the fo llo w in g sta rtin g data fo r the m ain is o to p e s sep a ra te d : captu re<br />

c r o s s - s e c t i o n s , in e la s tic slo w in g -d o w n c r o s s - s e c t i o n s and y ie ld s (e s p e c ia lly<br />

o f 241P u) f o r fa s t r e a c t o r s . T h e s e data w ill be u se d f o r d efin in g the con stan ts<br />

o f a p seu d o fis s io n p rod u ct. T h e con stan ts w ill be ad ju sted on the b a s is of<br />

tw o types o f in te g ra l e x p e rim e n ts: fir s t , m e a su re m e n t o f the r e a c tiv ity<br />

sig n a l of the total fis s io n p rod u ct obtain ed by ir ra d ia tio n and, se con d ,<br />

ir ra d ia tio n o f c e rta in p rep on d era n t fis s io n -p r o d u c t is o to p e s w hich have been<br />

s e p a ra te d . In the la s t a n a ly s is, o n ly the con stan ts of this p seu d o fis s io n<br />

p r o d u c t a r e o f im p o rta n ce fo r the p r o je c t.


CROSS-SECTION UNCERTAINTY EFFECTS<br />

ON THE RATIO <strong>OF</strong> THE HIGH-ENERGY<br />

NEUTRON FLUX TO THE POWER<br />

AND RESULTING ESTIMATION<br />

<strong>OF</strong> THE IRRADIATION LIMIT ERRORS<br />

IN A FAST POWER REACTOR<br />

A. BOIOLI, G.P. CECCHINI<br />

Progettazioni Meccaniche <strong>Nuclear</strong>i, Genoa, Italy<br />

M . COSIMI, M . S A L V A T O R E S<br />

Comitato Nazionale per l'Energia <strong>Nuclear</strong>e, Rome, Italy<br />

Abstract<br />

I A E A - S M -1 7 0 /7<br />

CROSS-SECTION U N C E R TA IN TY EFFECTS O N THE RATIO <strong>OF</strong> THE HIGH-ENERGY NEUTRON FLUX T O THE<br />

POWER A N D RESULTING EST IM A TIO N <strong>OF</strong> THE IRRADIATION LIMIT ERRORS IN A FAST POWER REAQTOR.<br />

The results of some relevant cross-section uncertainty effects on the ratio н / P of the high-energy<br />

neutron flux to the specific power produced in different zones of a fast power reactor are presented. In<br />

particular, the uncertainty effects of 2S8u fission, capture and high-energy inelastic scattering cross-sections,<br />

prompt neutron spectrum, high-energy 239 Pu fission cross-sections, etc. are considered. The calculations<br />

are performed by two-dimensional generalized perturbation methods developed recently by the authors. The<br />

structural material swelling is essentially determined by the ratio considered, (p^/P, as a function of the total<br />

energy produced in the reactor. Therefore, the related irradiation limits can be investigated in terms of cross-<br />

section uncertainties. The results are discussed, allowing for the different correlations which can be used in<br />

tiie swelling calculations.<br />

1. IN TR O D U C TIO N<br />

S t a in le s s -s te e l sw e llin g w as f ir s t o b s e r v e d on fu e l-e le m e n t cla d d in g s<br />

by C a w torn e and F u lto n f 1 ], but now the e ffe c t s o f sw e llin g a re w e ll known<br />

a ls o on fu e l-e le m e n t su p p o rt and c o r e - s t r u c t u r a l c o m p o n e n ts. T h e r e fo r e ,<br />

c o r e life -t im e has up to now b e e n c o n s id e r e d to be lim ite d on ly by the s w e llin<br />

g p h en om en on , w h ich is due to in te r a c tio n s o f a tom s o f the stru c tu ra l m a ­<br />

te r ia ls w ith fa s t n e u tro n s. M any in v e s tig a to rs have c o n s tr u c te d c o r r e la t io n s<br />

o f v o lu m e in c r e a s e a g ain st s e v e r a l im p o rta n t p a r a m e te r s , w ith p a rticu la r<br />

r e fe r e n c e to h ig h -e n e rg y flu e n c e s (E > 0 .1 M eV ) [ 2 - 4 ] .<br />

E v e n i f the u n certa in tie s o f th e se c o r r e la t io n s a re ra th e r high, it is<br />

n e c e s s a r y to evalu ate and, p o s s ib ly , to m in im iz e the r a tio F = fa s t flu x /p o w e r ,<br />

in o r d e r to in c r e a s e the life o f fa s t r e a c t o r fu e l ele m e n ts tow a rd s the<br />

in tr in s ic b u rn -u p ca p a b ility o f h ig h -q u a lity e le m e n ts .<br />

F o r th is re a s o n , it se e m e d im p o rta n t to a s s e s s the u n certain ty e ffe c ts<br />

in trod u ce d in the F - r a t i o ca lcu la tio n .<br />

In p a r tic u la r , the c o n fid e n c e in the F -c a lc u la t io n ca n b e b a sed , to<br />

s o m e exten t, on d e ta ile d a n a ly ses o f the s e n sitiv ity to the adopted m u ltig rou p<br />

c r o s s - s e c t i o n s e t u n certa in tie s.<br />

M any s e n sitiv ity a n a ly ses a re a v a ila b le [ 5 - 7 ] , r e la te d to in te g ra l<br />

p a r a m e te r s , su ch as K eff, b re e d in g ra tio , i e ff, D o p p le r and so d iu m v o id<br />

r e a c tiv ity c o e ffic ie n t s , but n o p r e v io u s study on the F - r a t i o s e e m s to have<br />

b e e n p e r fo r m e d .<br />

155


156 B O IO U e t a l.<br />

T h is w o rk a im s at an alysin g the in flu en ce o f the m o r e im p orta n t c r o s s -<br />

s e c tio n u n certa in tie s on the F - r a t i o , in o r d e r to e sta b lis h w h eth er the c r o s s -<br />

s e c tio n s a r e known to su ch a p oin t as to su g g e st an e ffe c tiv e m in im iz a tio n<br />

o f the F .<br />

2. T W O -D IM E N SIO N A L G E N E R A L IZ E D P E R T U R B A T IO N M ETH ODS<br />

The g e n e r a liz e d U sa ch e v -G a n d in i (U -G ) [ 8, 9] p e rtu rb a tio n th e o ry w as<br />

u sed to c a lc u la te the a b ovem en tion ed s e n s itiv itie s .<br />

A s is w e ll known, w ith the U -G p e rtu rb a tio n th e o ry , it is p o s s ib le to<br />

evalu ate in te g ra l quantity v a r ia tio n s as lin e a r fu n ction s o f the sy s te m<br />

p a r a m e te r v a r ia tio n s ( c r o s s - s e c t i o n s , g e o m e t r ic a l p a r a m e te r s , e t c . ) .<br />

T h e p e rtu rb a tio n e x p r e s s io n s o f the lin e a r fu n ction c o e ffic ie n t s r e q u ire<br />

g e n e r a liz e d im p o rta n ce -fu n c tio n c a lcu la tio n s :<br />

Ф ■’ ■ I<br />

i= l,N<br />

■ I *.<br />

i= l, N<br />

w h e re ф{ and i//[ a r e solu tio n s o f the ite ra tiv e s y s te m s<br />

А* ф\ = GT<br />

AT ф\ = F*<br />

А ф1 = G<br />

A i//, = F ф<br />

1 M - l<br />

i = 2, . . . ,N<br />

A , AT r e a l and a d join t lea k a g e and a b so rp tio n m a tr ix<br />

F , F T r e a l and a d join t p r o d u c tio n m a tr ix<br />

G , G* fu n ctio n a l-d e p e n d e n t g e n e r a liz e d s o u r c e s [ 9, 1 0 ].<br />

A c c o r d in g to the g e n e r a liz e d p e rtu rb a tio n th e o ry [ 8, 9 ] , fu n ction s ф?<br />

and i//j s a tis fy the fo llo w in g con d itio n s:<br />

(1)<br />

(2 )<br />

lim ф? = 0 (5)<br />

lim ф. = 0 (6 )<br />

In th is w o rk , the m u ltig r o u p d iffu sio n a p p ro x im a tio n w as used fo r<br />

the s o lu tio n o f the ite r a tiv e s y s te m s d e s c r ib e d a b ove.<br />

(3)<br />

(4)


I A E A 'S M - 1 7 0 /7<br />

T h e c o d e u sed [1 1 ] p r o v id e d a ca p a b ility fo r tw o -d im e n s io n a l c a lc u ­<br />

la tio n s w ith the c o r r e c t io n f o r the fu ndam en tal m od e con ta m in a tion [ 1 0 ].<br />

T h e se n s itiv ity c a lc u la tio n s w e r e c a r r ie d out b y using the g e n e r a liz e d<br />

p e rtu rb a tio n fo r m u la s .<br />

G e n e r a lly , a ra tio o f r e a l flu x fu n ctio n a ls d efin ed in r e g io n s R x and Щ ,<br />

r e s p e c tiv e ly , ca n b e e x p r e s s e d as<br />

dE a, (r, E)


T A B L E I. CO M POSITIO NS (IN N U CLEI X c m '3 X 1 0 24) O F TH E R E F E R E N C E F A S T P O W E R R E A C T O R<br />

CORE<br />

Inferior axial blanket Low-enrichment region High^enrichment region Radial blanket Superior axial blanket<br />

№ 0.01422308 0.0132773 0.01327364 0 .0 2 14229 8 0.01311882<br />

NFe 0.01352275 0.01352275 0.01352275 0.01442028 0.01106951<br />

N Cr 0.003428303 0.003428303 0.003428303 0.003655845 0.002806354<br />

N Ni 0.002095074 0.002095074 0.002095074 0.002234128 0.001714994<br />

N Na<br />

0.009889507 0.009889507 0.009889507 0.005994968 0.01133355<br />

23S<br />

N u 0.007090205 0.00559675 0.0052477 0.01067935 0.006539732<br />

235<br />

N u 0.0000213346 0.00003213453 0.0000196782<br />

N 239P u 0.000698073 0.000930713<br />

n 240 + 2« Pu<br />

0.000291732 0.000388955<br />

2 4 1 -<br />

N Pu 0.000052095 0.0000694962<br />

158 BOIOLI et al,


1Л<br />

n»<br />

О О<br />

О 'í<br />

16.375<br />

REG.<br />

A<br />

136.5<br />

SUPERIOR AXIAL BLANKET<br />

I A E A - S M -1 7 0 /7 159<br />

96 36.5<br />

LOW- ENRICHMENT ZONE<br />

INFERIOR AXIAL BLANKET<br />

FIG. 1. Axial view of the reactor (all dimensions in cm).<br />

T h e p o s itio n o f the tw o r e g io n s w as c h o s e n to evalu ate the F - r a t io<br />

se n s itiv ity to c r o s s - s e c t i o n u n certa in tie s in r e g io n s o f the c o r e w h ere<br />

the fa s t flu x , o r the fa s t-flu x g ra d ie n t, has a m a xim u m v a lu e .<br />

In the f ir s t r e g io n , th e r e fo r e , the s t a in le s s -s t e e l grow th due to the<br />

sw e llin g has a m a xim u m v a lu e, w h ile in the s e c o n d r e g io n w e have the<br />

m a xim u m f o r the d iffe r e n tia l d e fo r m a tio n o f the o p p o s ite w a lls o f the fu e l-<br />

e le m e n t b o x .<br />

4. N E U TRON C R O SS-SE C T IO N S USED AND TH EIR U N C E R T A IN TIE S<br />

The m u ltig rou p n eu tron c r o s s - s e c t i o n s e t used in th is w o rk w as r e c e n tly<br />

d e r iv e d [1 2 ] b y an o p tim iz a tio n p r o c e d u r e b a se d on E N D F /B v e r s io n -1 data<br />

and b y the Z P R -6 a s s e m b ly - 7 b e n ch m a rk in te g ra l e x p e rim e n ts in su p p ort<br />

o f the L M F B R d e m o n stra tio n p r o g r a m .<br />

W e c o n s id e r e d the fo llo w in g c r o s s - s e c t i o n s as the m a in s o u r c e o f<br />

e r r o r in the c a lc u la tio n s o f the F - r a t io : 238ц- in in e la s tic , fis s io n and<br />

ca p tu re c r o s s - s e c t i o n , 239pu fis s io n and in e la s tic c r o s s - s e c t i o n s , 240Pu<br />

38.5<br />

R A D IA L<br />

B L A N K E T


160 BOIOLI e t al,<br />

T A B L E II. C R O S S-S E C T IO N U N C E R T A IN T Y LIM ITS<br />

Reaction Energy interval 6 o/ о (in percent)<br />

4 ’<br />

4'<br />

10 - 0 .1 M e V 10.0<br />

10 - 0 .1 M e V 10.0<br />

4* 100 - 1 .0 keV 20.0<br />

o49<br />

f<br />

49<br />

°in<br />

'<br />

Whole range 2 0 .0<br />

10 - 0 .1 M e V 10.0<br />

100 - 1.0 keV 15.0<br />

Whole range 30.0<br />

x49 Whole range 10.0<br />

«V “<br />

o40 m<br />

10 - 0 .1 M e V 20.0<br />

100 - 1 .0 keV 20.0<br />

Whole range 3 0.0<br />

fis s io n and in e la s tic c r o s s - s e c t i o n s . T h e a ssu m e d e n e rg y -d e p e n d e n t unc<br />

e rta in ty lim its f o r the c r o s s - s e c t i o n a r e show n in T a b le II. T h e se lim its<br />

a r e d e r iv e d by r e c e n t w o rk s o f ev alu ation [ 1 3 -1 8 ], m a in ly p r e se n te d at<br />

the H e lsin k i (1970) and K n o x v ille (1971) C o n fe re n c e s on n u cle a r data fo r<br />

r e a c t o r s .<br />

A 239P u p r o m p t -fis s io n -s p e c t r u m u n certain ty w as in trod u ce d in the<br />

a n a ly s is, c o r r e s p o n d in g to an u n certain ty o f a few p e r c e n ts in the M a x w ellia n<br />

te m p e ra tu re [ 19] .<br />

5. R E SU L T S<br />

T h e se n s itiv ity c o e ffic ie n t s re la tiv e to the F - r a t io a re show n in T a b le III.<br />

E v id en tly , a ll v a lu e s a re v e r y lo w : on ly the tota l e ffe c t o f the u ncertain ty<br />

o f the 239P u fis s io n c r o s s - s e c t i o n slig h tly e x c e e d s 10% in the c e n tra l zon e,<br />

and th is is e s s e n tia lly due to the d ir e c t e ffe c t.<br />

6. CONCLUSIONS<br />

It fo llo w s fr o m the p r e v io u s r e s u lts that, taking into a ccou n t the v a r io u s<br />

c o r r e la t io n s w h ich can be used in the sw e llin g ca lcu la tio n , the m axim u m<br />

s e n s itiv ity v a lu e s r e la tiv e to the sw e llin g m ay b e c o n s id e r e d to be tw ice<br />

the v a lu e s o f th o se r e la tiv e to the F - r a t i o [ 3] .


I A E A -S M - 1 7 0 /7 161<br />

T A B L E III. SE N SIT IV IT Y V A L U E S R E L A T IV E TO THE F -R A T IO<br />

(IN P E R C E N T )<br />

Varied<br />

parameter Energy range Direct<br />

o 28<br />

f<br />

28<br />

°C<br />

o28 m<br />

°f<br />

49<br />

o49<br />

in<br />

of‘ °<br />

40<br />

°in<br />

Central zone<br />

Spectral Total Direct<br />

Peripheral zone<br />

Spectral Total<br />

Whole range -1.23 -2.18 -3.41 -0.95 - 0.0 -0.95<br />

10 - I M e V<br />

100 - 1 keV<br />

Whole range<br />

—<br />

-2.11<br />

+ 1.02<br />

-1.09<br />

-2.11<br />

+ 1.02<br />

-1.09<br />

...<br />

+ 0.13<br />

+ 3.60<br />

+ 3.73<br />

+ 0.13<br />

+ 3.60<br />

+ 3* 73<br />

Whole range ... -3.92 -3.92 ... -1.78 -1.78<br />

10 - 1 M e V<br />

100 - 1 keV<br />

Whole range<br />

-3.23<br />

-5.05<br />

- 8.28<br />

-2.12<br />

-0.74<br />

-2.86<br />

-5.35<br />

-5.79<br />

-11.14<br />

-3.42<br />

-5.08<br />

- 8.50<br />

+ 0.12<br />

+ 1.39<br />

+ 1.51<br />

-3.30<br />

-3,69<br />

-6.99<br />

Whole range — -1.23 -1.23 — -1.21 -1,21<br />

10 - 1 M e V<br />

100 - 1 keV<br />

Whole range<br />

-0.98<br />

-0.12<br />

-1.10<br />

-2.12<br />

-2.16<br />

-4.28<br />

-3.10<br />

-2,28<br />

-5.38<br />

-1.06<br />

-0.13<br />

-1.19<br />

- 0.0<br />

+ 0.03<br />

+ 0,03<br />

-1.06<br />

- 0.10<br />

-1.16<br />

Whole range — -2.26 -2.26 — -0.07 -0,07<br />

x 49 Whole range — -2.13 -2.13 — -0.01 -0.01<br />

T h is m ea n s that the e r r o r s in trod u ce d by the n e u tro n ics a re n e g lig ib le<br />

in c o m p a r is o n w ith th o se due to the u n certain ty in the c h o ic e o f the b e s t<br />

c o r r e la t io n to b e u sed.<br />

A n oth er c o n c lu s io n r e f e r s to the m in im iz a tio n o f the F - r a t i o : the v e r y<br />

lo w se n s itiv ity to the c r o s s - s e c t i o n u n certa in tie s s e e m s to in d ica te that<br />

m in im iz a tio n is im m e d ia te ly p o s s ib le .<br />

A C K N O W L E D G E M E N T<br />

T h e au th ors w ould lik e to thank M r . V . V io tti f o r h is h elp fu l d is c u s s io n s<br />

on the sw e llin g ca lc u la tio n p r o b le m s .<br />

R E F E R E N C E S<br />

[ 1] C A W T O R N E , C ., FU LT O N , E .J ., Voids in irradiated stainless steel, Nature 216 (1967) 575.<br />

[2] FINCH, L .M ., PETERSON, R .E ., Impact of stainless steel swelling on fast reactor core design,<br />

Trans. Amer. Nucl. Soc. 12 (1969) 316.<br />

[3] JA CK SON, R .J., SUTHERLAND, W . H . , M E TC ALF, I , L ., Swelling and creep effects upon fast reactor<br />

core structural design, Trans. Amer. Nucl. Soc. 13 1 (1970) 112.


162 BOIOLI e t a l.<br />

[4] RUSSO, S ., VIOTT1, V ., "LARA — 1 — Analisi del fenomeno del bowing térmico e per swelling<br />

differenziale nell'ipotesi di non-interazione tra le subassemblies", PM N Report SRV (72) 140 c.<br />

[5] G ANDINI, A ., SALVATORES, M , , "Sensitivity study of fast reactors using generalized perturbation<br />

techniques", Fast Reactors (Proc. Symp. Vienna, 1968) 1 , <strong>IAEA</strong>, Vienna (1968) 241.<br />

[6] BITELLI, G . , CECCHINI, G .P ., G ANDINI, A ., SALVATORES, M . , "Analysis and correlation of<br />

integral experiments in fast reactors with nuclear parameters”. Physics of Fast Reactor Operation<br />

and Design BNES (Proc, Int. Conf. London, 1969) 157.<br />

[7] GREEBLER, P ., H U TC H IN S, B .A ., CÍOWAN, C .L . , "Implications of nuclear data uncertainties to<br />

reactor design", <strong>Nuclear</strong> <strong>Data</strong> for Reactors (Proc. 2nd Int. Conf. Helsinki, 1970) 1, <strong>IAEA</strong>, Vienna<br />

(1970) 17.<br />

[8] - G ANDINI, A ., Perturbation methods in nuclear reactors from the importance conservation principle,<br />

Nucl. Sei. Eng. 35 (1969) 141.<br />

[9] GANDINI, A ., A generalized perturbation method for bi-linear functionals of the real and adjoint<br />

neutron fluxes, J. Nucl. Energy 21 (1967) 755.<br />

[10] CECCHINI, G .P ., SALVATORES, M . , Advances in the generalized perturbation theory, Nucl. Sei.<br />

Eng. 40 (1971) 304.<br />

[11] BOIOLI, A ., CECCHINI, G .P ., M E D A , N .. The GEN-P2 code (to be published).<br />

[ 12] SALVATORES, M . , Adjustment of multigroup neutron cross sections by a correlation method, Nucl. Sei.<br />

Eng. (to be published).<br />

[ 13] PITTERLE, T . A . , "Evaluation of 238U neutron cross-sections for the ENDF/B file", in <strong>Nuclear</strong> <strong>Data</strong><br />

for Reactors (Proc. 2nd Int. Conf., Helsinki, 1970) 2, <strong>IAEA</strong>, Vienna (1970) 687.<br />

[14] PITTERLE, T . A . , PAIK, N . C . , DURSTON, C ., "Evaluation of modifications to ENDF/B version-II<br />

data”, Neutron Cross-Sections and Technology (Proc. Conf. Knoxville, 1971) _1, Knoxville,<br />

Tennessee (1971) 461.<br />

[ 15] H U M M E L, H . H . , "Sensitivity studies of the effect of uncertainty in the 238U (n, y) and in the 239 Pu (n, f)<br />

and (n, y) cross-sections", Neutron Cross-Sections and Technology (Proc. Conf. Knoxville, 1971)<br />

1, Knoxville, Tennessee (1971) 65.<br />

[16] OKRENT, D . , LOWENSTEIN, W . B . , ROSSIN, A . D . , SM ITH, A .B ., Z O L O TA R , B. A . , KALLFELZ, J . M . ,<br />

Nucl. Appl, Techno1. 9 (1970) 454.<br />

[17] D A V E Y , W . G . , "Status of important heavy-element nuclear data above the resonance region",<br />

<strong>Nuclear</strong> <strong>Data</strong> for Reactors (Proc. 2nd. Int. Conf, Helsinki, 1970) 2, <strong>IAEA</strong>, Vienna (1970) 119.<br />

[18] SU KHOR UCHKIN , S .I ., ibid., 1 (1970) 309.<br />

[19] CAMPBELL, C . G . , R O W LANDS, J .L ., The energy spectrum of prompt fission neutrons, EACRP-A-143,<br />

14th Meeting of the European-American Committee, Stockholm (1971).


EL USO DE PARAMETROS NEUTRONICOS<br />

DE RESONANCIA Y SECCIONES EFICACES<br />

NEUTRONICAS DE CAPTURA #RADI ATI VA<br />

PARA LA EVALUACION DE LA INTEGRAL<br />

DE RESONANCIA DE ACTIVACION<br />

RESUELTA Y NO RESUELTA<br />

G.H. RICABARRA, R. TURJANSKI, M . D . RICABARRA<br />

Comisión Nacional de Energía Atómica,<br />

Buenos Aires, Argentina<br />

Abstract-Resumen<br />

I A E A - S M -1 7 0 /2<br />

TH E USE <strong>OF</strong> NEUTRON RESONANCE PARAMETERS A N D NEUTRON RADIATIVE CAPTURE CROSS-SECTIONS<br />

IN EVALUATING RESOLVED A N D UNRESOLVED A C T IV A T IO N RESONANCE INTEGRALS.<br />

The paper reviews the work carried out in the author's laboratory since 1968 on the calculation, evaluation<br />

and measurement of activation resonance integrals. The calculation methods used are described, and an<br />

analysis is made of the error introduced in the evaluation of the resolved resonance integral as a result of the<br />

current uncertainty in neutron resonance parameters. The calculation of the unresolved resonance integral is<br />

described, and the neutron radiative capture cross-section data in the region between 1 keV and 10 M e V<br />

available for its calculation are considered. The author also describes the use of experimental resonance<br />

integral values in evaluating neutron parameters in cases where the neutron parameters obtained by differential<br />

time-of-flight measurements show discrepancies. Finally, an account is given of the difficulties that arise<br />

in reactor physics and/or activation analysis when inexact or inadequate integral data are used.<br />

EL USO DE PARAMETROS NEUTRONICOS DE RESONANCIA Y SECCIONES EFICACES NEUTRONICAS DE<br />

CAPTU RA RADIATIVA PARA LA EVALUACION DE LA INTEGRAL DE RESONANCIA DE A C T IV A C IO N<br />

RESUELTA Y N O RESUELTA.<br />

En la memoria se pasa revista al trabajo sobre el cálculo de evaluación y medición de integrales de<br />

resonancia de activación que los autores realizaron en el laboratorio de la CNEA desde el año 1968. Se describen<br />

los métodos de cálculo usados y se analiza el error que la actual incertidumbre de los parámetros neutrónicos<br />

de resonancia introducen en la evaluación de la integral de resonancia resuelta. Se examina el cálculo de la<br />

integral de resonancia no resuelta, y la disponibilidad de las secciones eficaces neutrónicas de captura radiativa<br />

en la zona entre 1 keV y 10 M e V para su cálculo. Se describe igualmente el uso de los valores experimentales<br />

de la integral de resonancia para la evaluación de los parámetros neutrónicos en casos donde los parámetros<br />

neutrónicos obtenidos por la medición diferencial de tiempo de vuelo son discrepantes. Finalmente se señalan<br />

los inconvenientes para la física de reactores y/o análisis por activación de datos integrales evaluados de manera<br />

inexacta o inadecuada.<br />

IN TR O D U C CIO N<br />

L a m e d ició n de la in te g ra l de r e s o n a n c ia e s u til p a ra v e r ific a r lo s<br />

p a rá m e tr o s de r e s o n a n cia de n eu tron es ob te n id o s en e x p e r ie n c ia s de<br />

tie m p o de v u e lo y en e s e se n tid o puede c o n s id e r a r s e c o m o una té c n ica<br />

e x p e rim e n ta l de e v a lu a ció n . Sin e m b a rg o s i lo s d atos in te g ra le s no se<br />

obtien en en un e s p e c t r o bien d e fin id o la c o m p a r a c ió n e n tre lo s datos e x p e r im<br />

e n ta le s y ca lc u la d o s puede r e s u lta r in c ie r ta .<br />

L a m a y o r p a rte de la s in te g ra le s de r e s o n a n cia de a c tiv a ció n , de<br />

ca p tu ra y de a b s o r c ió n s e han m e d id o en e l e s p e c t r o de un r e a c to r t é r m ic o<br />

y s e ha su p u esto que e l e s p e c t r o es « c u a s i» l / E . L a e v id e n cia e x p e rim e n ta l<br />

163


164 RICABARRA e t a l.<br />

de e sta h ip ó te s is s e b a sa en e l a c u e rd o obten id o en tre lo s datos e x p e r im<br />

e n ta les y r e co m e n d a d o s de la in te g ra l de r e s o n a n cia de is ó to p o s cu yas<br />

p r in c ip a le s r e s o n a n cia s están en la zon a de b a ja e n e rg ía (< 100 eV . ). Sin<br />

e m b a rg o e l e s p e c t r o de un r e a c t o r t é r m ic o p o r e n cim a de lo s 10 keV<br />

puede d e s v ia r s e de la fo r m a l/E. En r e a c t o r e s c o m p a cto s de agua liv ia n a y<br />

u ra n io e n riq u e c id o s e a p ro x im a a l e s p e c t r o de fis ió n a la e n e rg ía de 1 M eV<br />

y en r e a c t o r e s m o d e ra d o s con agua p esa d a o g ra fito p o d e m o s ten er a alta<br />

e n e rg ía un e s p e c t r o m á s b lan d o que el e s p e c t r o l / E .<br />

Una h ip ó te s is g e n era lm en te a cep tada es que la a b s o r c ió n de n eu tron es<br />

a alta s e n e rg ía s es d e s p r e c ia b le en un r e a c to r té r m ic o y p o r e sto no es<br />

n e c e s a r io te n e r en cuen ta que el e s p e c t r o en la re g ió n de e n e rg ía de lo s<br />

M eV no e s l / E .<br />

C o m o s e v e r á en la s e c c ió n sigu ien te esta h ip ó te s is puede no s e r<br />

v á lid a p a ra un buen n ú m e ro de is ó to p o s y en algu nos c a s o s puede c o n d u cir<br />

a s e r io s p r o b le m a s en la in te r p r e ta c ió n de la s e x p e r ie n c ia s de m e d ició n<br />

de la in te g ra l de r e s o n a n cia .<br />

E sta s c o n s id e r a c io n e s m u estra n que p a ra h a c e r una c o m p a ra ció n<br />

c o r r e c t a de lo s d a to s.e x p e rim e n ta le s y ca lcu la d o s de la in te g ra l de<br />

r e s o n a n cia e s im p orta n te e v a lu a r y c a lc u la r no sola m e n te la a b s o r c ió n<br />

de n eu tron es de la p a rte re su e lta , sin o tam bién de la p a rte no re su e lta .<br />

C A L C U L O DE L A IN T E G R A L E P IT E R M IC A Y D E L A IN T E G R A L<br />

DE RESO N AN CIA<br />

In te g ra l e p ité r m ic a e in te g ra l de r e so n a n cia resu e lta<br />

Si se co n o ce n lo s p a rá m e tr o s de re s o n a n cia en e l in te rv a lo de e n e rg ía<br />

de in te r é s e s p o s ib le , usando la e cu a ció n de B r e it-W ig n e r y e l e s p e c t r o<br />

n e u tró n ico, c a lc u la r la in te g ra l de ca p tu ra o a b s o r c ió n e p ité r m ic a re su e lta ,<br />

que puede s e r d efin id a co m o :<br />

El<br />

I e(R) = f стА(Е) фер1(Е) d E /E (1)<br />

eg<br />

donde фер!(E) e stá n o rm a liz a d o a la e n e rg ía de la re s o n a n cia d el «sta n d a r d »<br />

Au (4, 5 eV ), epi(E) = E ф(E ) /4 , 5 ф(4, 5), s i s e supone que e l e s p e c t r o es<br />

l / E , $epi(E) = 1 y te n d rem o s la in te g ra l de re s o n a n cia en la zon a re su e lta :<br />

el<br />

I (R) = J o a(E) d E /E (2)<br />

eg<br />

Eg es la e n e rg ía de e m p a lm e del flu jo té r m ic o y e p ité r m ic o ; en la<br />

e x p e r ie n c ia la e n e rg ía de c o r te , E l, d ep en d erá d e l filt r o e le g id o , p e r o<br />

una ap rop ia d a c o r r e c c ió n p e r m ite una c o m p a ra ció n con s iste n te e n tre e l<br />

c á lc u lo y la e x p e r ie n c ia . E l e s la e n e rg ía de re s o n a n cia m á xim a<br />

c o n o c id a d el is ó to p o de in te r é s , ста es la s e c c ió n e fic a z de a b s o r c ió n ,<br />

ca p tu ra o a ctiv a ció n .


IAE A - S M - 1 7 0 /2 165<br />

En un r e a c t o r té r m ic o en g e n e ra l s e supone que e l e s p e c t r o es<br />

a p ro x im a d a m e n te l / E a b a ja s e n e rg ía s , p e r o p a ra altas e n e rg ía s se<br />

d e s v ía de la fo r m a l / E y s e a p ro x im a a l e s p e c t r o de fis ió n en la re g ió n de<br />

lo s M eV.<br />

L a in te g ra l r e s u e lta de a b s o r c ió n e p ité r m ic a o de re s o n a n cia in clu y e<br />

la co n trib u c ió n de: a) re s o n a n cia s de e n e rg ía p o s itiv a s y b) n iv e le s<br />

n e g a tiv o s que con trib u y en a la s ca p tu ra s 1 /v .<br />

E s u su al s u b s tr a e r la co n trib u ció n 1 /v de la in te g ra l e p ité r m ic a o de<br />

la in te g ra l de r e s o n a n c ia y ten em os:<br />

У -<br />

El<br />

lé(R) = J (°a,(E) - g Сто ■J E o /E )


166 RICABARRA e t a l.<br />

T A B L A I. C O M P A R A C IO N D E D ATO S IN T E G R A L E S CA LCU LA D O S Y<br />

E X P E R IM E N T A L E S DE ISOTOPOS CON E S P A C IA M IE N T O DE NIVELES<br />

D E L O RDEN DE LOS keV<br />

Elemento<br />

Г a<br />

(barn)<br />

I ¿ b<br />

(barn)<br />

Observaciones<br />

5 1 y 0,15 0 ,48 [23] 0 Cálculo parámetros ref. [27].<br />

Fe 0,2 6 [24]<br />

0,32 [ 4]<br />

1 ,1 [25] d Medidas de oscilación, los au­<br />

tores suponen espectro l/E.<br />

Ni 0,1 6 [ 4] 1 [25] d Medidas de oscilación, los au­<br />

“ Zn 0 ,5 9 [26] 0 ,9 6 [26]<br />

7íGe 0 ,2 2 [ 3] 0,67 [ 3]<br />

e0Se 0 ,5 6 [ 7] 1.62 [ 7]<br />

130Te 0,17 [ 6] 0,48 [ 7]<br />

a Cálculo Breit-Wigner.<br />

k Intégral epitérmica experimental.<br />

tores suponen espectro l/E.<br />

° Corregido por desviación espectral a 4 keV (espectro de un acelerador). Por lo tanto el autor supone<br />

I¿ = Г [ 2 3 ] .<br />

d Medido en el centro de un reactor tipo piscina de uranio enriquecido al 20%, 0 £pi/©th - 0 ,1 [25]. Los<br />

autores suponen I¿ = I ' .<br />

T A B L A II. P A R A M E T R O S DE RESO N AN CIA N EUTRO N ICA<br />

DE LAS DOS RESO NAN CIAS MAS IM P O R T A N T E S D E L 148Nd<br />

e r<br />

(eV)<br />

Г7<br />

(m eV)<br />

r n<br />

(m eV)<br />

Г<br />

(m eV)<br />

Referencias<br />

100± 15 1610±240 1710 [19]<br />

155 70± 8 2000 2070 [20]<br />

40 a 2460±200 2500±200 [21]<br />

250±283 a 1850±200 2100±200 [22]<br />

96 ± 14 2600±200 2696 [19]<br />

285 58± 6 1980±100 2083 [20]<br />

3700±370 [21]<br />

50± 224 a 3130±100 3180±200 [22]<br />

a Obtenido sólo por transmisión, el ancho radiativo tiene un error muy grande debido a que es obtenido por<br />

diferencia de magnitudes del mismo orden.


I A E A - S M -1 7 0 /2 1 6 7<br />

E STIM A C IO N DE L A P A R T E NO R E S U E L T A DE L A IN T E G R A L E P IT E R M IC A<br />

Y D E L A IN T E G R A L DE RESO N AN CIA<br />

L a in te g ra l e p ité r m ic a no resu e lta puede d e fin ir s e :<br />

em a x<br />

i;(N R ) = J (aA (E) - g oo\fE0/E ) 0epi(E) d E /E (5)<br />

El<br />

donde E max = 10 M eV p a ra n u e s tros c á lc u lo s y s i e l e s p e c t r o e s l / E<br />

te n e m o s la in te g ra l de re s o n a n cia no re su e lta :<br />

em a x<br />

I1 (NR) = J (cta (E) - g ct0nTEo/E ) d E /E (6)<br />

el<br />

E sta p a rte d el c á lc u lo tien e en cuenta la co n trib u ció n a la in te g ra l<br />

e p it é r m ic a o de re s o n a n cia de la s a b s o r c io n e s n e u tró n ica s en la re g ió n no<br />

r e s u e lta de alta e n e rg ía .<br />

En la m a y o r p a rte de lo s tr a b a jo s a n te r io r e s cuando lo s p a rá m e tr o s de<br />

r e s o n a n cia a b a ja e n e rg ía se co n o c ía n con exactitu d , s e ha su p u esto<br />

d e s p r e c ia b le la con trib u ció n de la p a rte n o re s u e lta en c o m p a ra ció n con<br />

la s a b s o r c io n e s en la zon a r e su e lta [4 ] o se ha c a lc u la d o u san do la a p r o x im<br />

a ció n s [ 5, 6] . En algu nos e stu d io s de la s ca p tu ra s n e u tró n ica s en la<br />

re g ió n no re s u e lta en un e s p e c t r o de un r e a c t o r rá p id o s e ha u sad o la<br />

a p ro x im a ció n js.y £ [ 8 ].<br />

Sin e m b a r g o s i la in te g ra l e p ité r m ic a no r e su e lta se e stim a d e sd e unos<br />

p o c o s keV (Е МдХ~ keV) la a p ro x im a ció n j3 o ^ m á s £ puede su b e s tim a r<br />

se r ia m e n te la s ca p tu ra s n e u tró n ica s a alta e n e rg ía en e l e s p e c t r o de un<br />

r e a c t o r .<br />

En la tabla III se m u e stra la in te g ra l e p ité r m ic a no re s u e lta estim a d a<br />

p a ra e l 74G e, 100 M o y v a r io s is ó to p o s d el z ir c o n io y d e l n e o d im io , u san do<br />

la s e c c ió n e fic a z de ca p tu ra obten id a p o r aju ste s e m ie m p ír ic o d el m o d e lo<br />

e s ta d ís tic o [ 10]. Se puede v e r que la a p ro x im a ció n £ puede su b e s tim a r<br />

s e r ia m e n te la in te g ra l e p ité r m ic a o de re s o n a n cia no r e s u e lta s .<br />

L a s a p ro x im a cio n e s j3 o ¿ m á s £ no s ó lo su b estim a n la s ca p tu ra s a<br />

a lta s e n e rg ía s sin o que a l d e s c r ib ir in co r r e cta m e n te la fo r m a de la<br />

d is tr ib u c ió n de a b s o r c io n e s en fu n ción de la e n e rg ía pueden e n m a s ca ra r e l<br />

e fe c to d el a p a rta m ien to de l / E d el e s p e c t r o a altas e n e rg ía s .<br />

P a r a algu nos is ó to p o s e s to a fe c ta no s ó lo e l c á lc u lo de la in te g ra l<br />

e p ité r m ic a que p e rm ite una c o m p a r a c ió n sig n ific a tiv a con lo s d atos e x p e r im<br />

e n ta le s, sin o tam bién e l c á lc u lo d e l fa c to r de c o r r e c c ió n e s p e c t r a l<br />

n e c e s a r io p a ra o b te n e r la in te g ra l de re s o n a n cia a p a rtir de lo s datos<br />

e x p e rim e n ta le s.<br />

En la tabla IV m o s tr a m o s e je m p lo s de is ó to p o s en que la co n trib u ció n<br />

de la a b s o r c ió n n e u tró n ica a e n e rg ía s d el o rd e n 'd e lo s M eV es sig n ific a tiv a<br />

p a ra e l e s p e c t r o de n u e s tro r e a c t o r [ 7, 12]. En r e a c t o r e s de agua p esa d a '<br />

y / o g ra fito c o m o m o d e ra d o r e sta fr a c c ió n puede s e r sig n ifica tiv a m e n te<br />

m e n o r.<br />

P o r lo tanto a fin de e s tim a r c o r r e c ta m e n te (d en tro de un 50%) las<br />

ca p tu ra s o a b s o r c io n e s n e u tró n ica s en la p a rte no re s u e lta d e b e m o s u sa r<br />

s e c c io n e s e fic a c e s de ca p tu ra o a b s o r c ió n e x p e rim e n ta le s o en su d e fe c to<br />

s e c c io n e s e fic a c e s ca lcu la d a s con un m o d e lo e s ta d ís tic o s e m ie m p ír ic o .<br />

E sta s s e c c io n e s e fic a c e s deben s e r in teg ra d a s n u m é rica m e n te en e l e s p e c t r o


T A B L A III. C A L C U L O DE L A IN T E G R A L DE R E SO N AN CIA Y D E L A IN T E G R A L E P IT E R M IC A<br />

NO R E SU E L T A S DE VARIOS ISOTO PO S .<br />

isótopo<br />

e l<br />

Г (NR) I¿(NR) a<br />

sr Aproximación s Modelo estadístico<br />

semiempírico<br />

Modelo estadístico<br />

semiempírico<br />

(keV) (x l O 3) (barn) (barn) (barn)<br />

14 Ge 60 0, 0471 0,0032 0,058 0,161<br />

90Zr 70 0, 0160 0,0009 0, 041 0,151<br />

91 Zr 10 0,3672 0,1502 0,296 0,537<br />

52 Zr 50 0, 0396 0,0032 0, 070 0,203<br />

54 Zr 40 0,0326 0,0033 0, 065 0,161<br />

96Zr 60 0, 0291 0,0020 0,054 0,148<br />

100 Mo 2 0,0865 0,1769 0,650 0,942<br />

I46Nd 7 0, 181 0,106 0,640 1,16<br />

148Nd 9 0,231 0,105 0,560 1,03<br />

150Nd 4 0,672 0,687 1,21 1,9 1<br />

a Espectro de nuestro reactor (2 0 % uranio enriquecido y agua liviana) [ 7 ,1 2 ] , calculado con 54 grupos.<br />

1 6 8 RICABARRA et al.


I A E A - S M -1 7 0 /2 169<br />

T A B L A IV. CO N TRIB U C IO N DE L A A B SO R C IO N N E U TRO N IC A A A L T A<br />

E N E R G IA 3 A L A IN T E G R A L E P IT E R M IC A<br />

Elemento<br />

Д а<br />

Ni 0 ,859 b<br />

(barn) (barn)<br />

(0,798+0,061)<br />

(A /I¿ ) x 100<br />

1 86<br />

64 Zn 0,350 0,96 36<br />

74Ge 0, 108 0,681 16<br />

94 Zi 0, 123 0,417 30<br />

80Se 0, 088 1,62 5<br />

iooMo 0,222 4 ,2 0 5<br />

146Nd 0,47 2 ,5 8 18<br />

L48Nd 0 ,48 11,7 4<br />

a Д = ^200keV ® ° 0 VE0/E > ®epi(E) dE/ E ( В Д ° rápido de nuestro reactor (2 0 % uranio enriquecido<br />

y agua liviana) [ 7 ,1 2 ], calculado con 54 grupoS).<br />

b Captura (n, p) = 0, 798 b, más captura (n, y) = 0,061 b.<br />

d el r e a c to r c a lc u la d o a m u ltig ru p o s. E l e s p e c t r o ca lcu la d o puede v e r ific a r s e<br />

en algu nas r e g io n e s de e n e rg ía im p o rta n te s m ed ian te d e te c to r e s de u m b ra l<br />

y de re s o n a n cia .<br />

A p a r e c e e l p r o b le m a de cuánta ex actitu d p o d e m o s a sig n a r a la s s e c c io n e s<br />

e fic a c e s ca lcu la d a s con e l m o d e lo e s ta d ís tic o s e m ie m p ír ic o .<br />

C o m o ha o b s e r v a d o B en zi [ 9] la s s e c c io n e s e fic a c e s de captu ra<br />

ca lcu la d a s co n e l m o d e lo e s t a d ís tic o son p o c o s e n s ib le s a la s fu n cio n e s de<br />

fu e rz a n e u tró n ica su p u esta p e r o son fu e rte m e n te d ep en d ien tes de la<br />

«fu n c ió n de fu e rz a ra d ia tiv a ».<br />

P o r o tr o la d o es de d e s ta c a r que p a ra m u ch os is ó to p o s la s e c c ió n<br />

e fic a z de ca p tu ra o a c tiv a ció n a alta s e n e rg ía s se c o n o c e sola m e n te en<br />

algu n os puntos (p or e je m p lo a 25 k eV y a 1 M eV ) y a v e c e s se p resen ta n<br />

d is c r e p a n c ia s n o ta b le s e n tre lo s r e su lta d o s de d istin to s la b o r a to r io s y p or<br />

lo tanto lo s c á lc u lo s s e m ie m p ír ic o s a ju sta d os c o n e s t o s datos pueden te n e r<br />

la m ism a in ce r tid u m b r e .<br />

P o r e s ta s r a z o n e s e s n e c e s a r io ev a lu a r la s s e c c io n e s e fic a c e s e x p e r im<br />

e n ta le s d is p o n ib le s en la r e g ió n de e n e rg ía m a y o r de 10 k eV e igualm en te<br />

e l an ch o ra d ia tiv o y e l e sp a c ia m ie n to p r o m e d io a b a ja s e n e rg ía s obten id os<br />

p o r m e d icio n e s de tie m p o de v u e lo .<br />

Si la s s e c c io n e s e fic a c e s y e l v a lo r de la fu n ción de fu e rz a ra d ia tiv a<br />

con cu e rd a n ra z o n a b le m e n te b ie n con lo s v a lo r e s obten id os o su p u estos p o r<br />

e l c á lc u lo co n e l m o d e lo e s ta d ís tic o , s e p od rán u tiliz a r en fo r m a con fia b le<br />

p a ra la e s tim a c ió n de la in te g ra l e p ité r m ic a y de re s o n a n cia no re su e lta .<br />

E je m p lo s de e ste tip o de estu d io pueden e n co n tr a r s e en n u e s tr o s tr a b a jo s<br />

a n te r io r e s [ 3 , 11].<br />

F in a lm e n te , la s c o n s id e r a c io n e s a n te r io r e s s e r e su m e n en la fig u r a 1,<br />

donde se m u e stra e sq u e m á tica m e n te e l tr a b a jo de e v a lu a ció n y c á lc u lo<br />

n e c e s a r io p a ra que la c o m p a r a c ió n con lo s datos e x p e rim e n ta le s tenga<br />

se n tid o .


170 RICABARRA e t a l.<br />

CALCULO A M U IT IG RU PO S<br />

D EL ESPECTRO NEUTRONICO<br />

M ED ID A DEL IN DICE E S -<br />

PECTRAL DE NEUTRONES<br />

GRADIENTE D EL INDICE E S ­<br />

PECTRAL Y FLUJO TERMICO<br />

F IG .l. Diagrama de cálculo de la intégral epitérmica.<br />

SELECCION DEL LUGAR<br />

DE IR R A DIA CIO N<br />

PREPARACION DE SOLUCIONES PREPARACION Y A N A LISIS POR<br />

INCLUIDO EL « S T A N D A R D » ACTIVACION DE LAS MUESTRAS<br />

IcontrolI<br />

COMPUTADORA DE 16 К<br />

DE M EM ORIA<br />

Z Z ....<br />

REDUCCION DATOS<br />

«ON L IN E » INTEGRALES<br />

E<br />

(I p /б0), le<br />

CONVERTIDOR ANALOGICO<br />

DIGITAL DE 100 Me<br />

IRRADIACION DE MUESTRAS<br />

« B A R E » Y BAJO CADMIO<br />

O EN D O S ESPECTRO S<br />

MEDICION Y REDUCCION<br />

DE OATOS<br />

DETECTOR G e -L i<br />

DE 30 cm3<br />

P REAM PLIFIC ADOR Y<br />

AM PLIFICADOR<br />

F IG .2. Esquema del sistema experimental usado para determinar la integral epitérmica.


I A E A - S M -1 7 0 /2 1 7 1<br />

A d e m á s , en la fig u r a 2 se m u e stra e l s iste m a e x p e rim e n ta l se g u id o p o r<br />

n o s o tr o s en la d e te rm in a ció n de la in te g ra l de re s o n a n cia e in te g ra l e p ité<br />

r m ic a y e l p r o ce d im ie n to de evalu a ció n y c á lc u lo a p lica d o p a ra o b ten er<br />

la in te g ra l de r e s o n a n cia e x p e rim e n ta l. L o s d e ta lle s e x p e rim e n ta le s se<br />

han d e s c r ip to en tr a b a jo s a n te r io r e s [ 7, 2 ] .<br />

P a r a c o m p a r a r lo s r e s u lta d o s e x p e rim e n ta le s obten id os en d istin tos<br />

r e a c t o r e s e s p o r lo tanto im p orta n te d is p o n e r de una adecu ada d e s c r ip c ió n<br />

d el e s p e c t r o n e u tró n ico y d el ín d ice e s p e c t r a l de n e u tro n e s. Sin e m b a rg o ,<br />

e x ce p to p a ra u nos p o c o s is ó to p o s , e s to s datos n o son d e s c r ip to s en la<br />

m a y o r ía de lo s e x p e rim e n to s .<br />

USO D E LOS D ATO S IN T E G R A L E S E P IT E R M IC O S EN L A E V A L U A C IO N<br />

DE LOS P A R A M E T R O S DE RESO N AN CIA<br />

En e sta p a rte n os lim ita r e m o s a d a r algu n os e je m p lo s tom a d o s en su<br />

m a y o r ía de n u e s tr o s tr a b a jo s en e ste te m a , que d em u estra n c ó m o lo s<br />

d atos de e x p e r ie n c ia s in te g ra le s pueden s e r ú tile s en la e v a lu a ción .<br />

1) Is ó to p o s d e l z ir c o n io<br />

E l 94Z r y e l 96 Z r s o n de in te r é s en f ís ic a de r e a c t o r e s . A m b o s is ó to p o s<br />

tienen p r im e r a p r io r id a d en R en da 1972; d e sd e e l punto de v is ta de la f ís ic a<br />

n u c le a r son ta m b ién in te resa n te s p o r e s ta r en la r e g ió n de m a sa de m á xim a<br />

fu n ción fu e r z a £ y m ín im a fu n ción fu e r z a s^. L a in te g ra l de r e so n a n cia<br />

m ed id a p o r n o s o tr o s m o s tr ó que la s ca p tu ra s £ son c a s i e l 100% d el<br />

to ta l [ 12] . En p a rticu la r la r e s o n a n c ia de 302 e V e s una r e s o n a n c ia £<br />

100 v e c e s m á s in ten sa de lo s e s p e ra d o s p o r la s is te m á tic a n u c le a r [ 13].<br />

E ste r e su lta d o no se h abía p r e v is to ni te ó r ic a m e n te ni de la s m ed id a s<br />

d ife r e n c ia le s y a r r o ja una s o m b r a de duda en la a s ig n a ció n £ o £ de<br />

re s o n a n cia s de is ó to p o s p a r d e l z ir c o n io , b a sa d a s sola m e n te en la c o m p a r a ­<br />

c ió n de lo s an ch os n e u tró n ic o s con lo s p r e v is to s p o r la s is te m á tic a n u c le a r [14].<br />

2) E je m p lo de is ó to p o s con e sp a c ia m ie n to s de re s o n a n cia d el o rd e n de lo s keV<br />

L a s m e d id a s de la in te g ra l de r e s o n a n c ia de a c tiv a c ió n m u estra n<br />

c o n s iste n te m e n te que e x iste una s e r ia d is c r e p a n c ia en tre lo s v a lo r e s<br />

e x p e rim e n ta le s y lo s c a lc u la d o s co n la fo r m u la c ió n de B r e it-W ig n e r . L a<br />

m is m a d is c r e p a n c ia s e o b s e r v a en la in te g ra l de r e s o n a n cia e p ité r m ic a<br />

de a b s o r c ió n d eterm in a d a con té c n ica s de o s c ila c ió n en e l e s p e c t r o de un<br />

r e a c t o r (tabla II).<br />

D e b id o a que p a ra e l 74Ge se d isp on e de p a rá m e tr o s de r e so n a n cia<br />

n e u tró n ica ob te n id o s p o r té c n ic a s de tie m p o de v u e lo de tr a n sm isió n y<br />

ca p tu ra en m u e stra s e n riq u e cid a s [15] y ta m b ién de m e d id a s de a c tiv a ció n<br />

de b a ja r e s o lu c ió n en tre 10 k eV y 2 M eV [ 16, 17], h e m o s p od id o c a lc u la r<br />

d a tos in te g ra le s de ca p tu ra en la r e g ió n de e n e rg ía m a y o r que 10 k eV p o r<br />

d ife r e n te s p r o c e d im ie n to s y c o m p a r a r lo s [ 3 ].<br />

N o s o tr o s lle g a m o s a d o s re su lta d o s: 1) Una e s tim a ció n c o r r e c t a de la<br />

in te g ra l e p ité r m ic a n o r e s u e lta d ebe te n e r en cu en ta que la d is tr ib u c ió n de<br />

s e c c io n e s e fic a c e s a alta e n e rg ía no puede s e r r e p re s e n ta d a p o r la a p r o x im<br />

a ció n en p a rticu la r, s i e l e sp a cia m ie n to p r o m e d io de la s re s o n a n cia s<br />

e s d el ord e n de lo s k eV . 2) E l c á lc u lo de la in te g ra l e p ité r m ic a y de la


172 RICABARRA e t a l.<br />

in te g ra l de r e s o n a n cia en la zon a en tre 10 keV y 60 k eV a p a r tir de<br />

s e c c io n e s e fic a c e s de a c tiv a ció n con b a ja r e s o lu c ió n (ДЕ = 10 keV ) da<br />

re s u lta d o s que con cu e rd a n con la in te g ra l e p ité rm ic a de a c tiv a ció n y d is crep a n<br />

co n lo s obten id os con lo s p a rá m e tr o s de r e s o n a n cia n e u tró n ica que a p a ren te ­<br />

m ente su b estim a n en e sta zon a la s ca p tu ra s n e u tró n ica s.<br />

3) E je m p lo de lo s is ó to p o s d el n e o d im io<br />

L o s p a rá m e tr o s de r e s o n a n c ia d el 146Nd, 148 Nd y 150Nd son de in te rés<br />

en la f ís ic a d el qu em ado [ 18] y han sid o in v e stig a d o s p o r cu a tro e x p e r ie n c ia s<br />

de tie m p o de v u e lo [ 19-22].<br />

A p e s a r de e ste e s fu e r z o hay tod avía una c o n s id e r a b le in ce rtid u m b re en<br />

lo s v a lo r e s del ancho ra d ia tiv o d e l 148Nd y d el 150Nd p resen tá n d o se<br />

d ife r e n c ia s d el d ob le o m á s en tre lo s r e su lta d o s p a ra la s re s o n a n cia s m ás<br />

im p o rta n te s de e s to s is ó to p o s .<br />

N o s o tr o s r e a liz a m o s una m ed id a de la in te g ra l e p ité r m ic a y de r e so n a n cia<br />

d el 146Nd, 148 Nd y 150Nd con un e s p e c t r ó m e t r o gam m a de alta r e s o lu c ió n , lo<br />

que es e s p e cia lm e n te im p ortan te p a ra e s to s is ó to p o s d eb id o al c o m p le jo<br />

e s p e c t r o gam m a obten id o p o r a c tiv a ció n con n eu tron es en una m u e stra de<br />

n e o d im io . A d e m á s s e r e a liz ó un c á lc u lo y evalu a ció n d etalla d os de a c u e rd o<br />

a lo s p r o c e d im ie n to s d e s c r ip to s en la fig u ra 1 [11].<br />

H e m o s lle g a d o a la co n c lu s ió n de que e l v a lo r de la in te g ra l de<br />

r e s o n a n cia d el 148Nd es ap roxim a d a m en te la m itad d e l reco m e n d a d o<br />

a n te rio rm e n te y en c o n s e c u e n c ia e l an cho ra d ia tiv o es tam bién la m itad<br />

d el v a lo r p re v ia m e n te a cep ta d o.<br />

P o r o tr o la d o s e obtuvo un buen a c u e rd o en tre lo s v a lo r e s e x p e r im<br />

e n ta le s y ca lc u la d o s d e l 146Nd y d e l 150Nd. Cabe se ñ a la r que la m agnitud<br />

r^Ty/rde la s p r in c ip a le s reson a n cia s d el 14eNd y 150Nd p resen ta un buen<br />

a c u e r d o en tre d istin ta s d e te rm in a cio n e s de tie m p o de v u e lo .<br />

ALG U N AS O BSE RVA CIO N ES SO BRE L A U T IL IZA C IO N DE LAS IN T E G R A L E S<br />

E P IT E R M IC A S Y DE RE SO N AN CIA EN E L ANALISIS P O R A C T IV A C IO N<br />

E x is te a ctu alm en te una ex ten sa in fo rm a c ió n s o b r e p a rá m e tr o s de<br />

r e s o n a n c ia n e u tró n ica p a ra c a lc u la r la in te g ra l e p ité r m ic a de m u ch os<br />

is ó to p o s (CIN DA 72). Un p r o ce d im ie n to p a ra h a c e r lo está d e s c r ip to en<br />

la fig u ra 1.<br />

Una pregu n ta que ca b e h a c e r s e es s i la gran can tid a d .d e in fo rm a c ió n<br />

d isp o n ib le e s u tiliza d a en a n á lisis p o r a c tiv a ció n y s i e sta in fo rm a c ió n<br />

e stá p rese n ta d a de m a n e ra s ig n ific a tiv a y u tiliz a b le p a ra fin e s p r á c tic o s .<br />

Si e sta in fo rm a c ió n e s tu v ie r a d isp o n ib le p e r m it ir ía r e a liz a r un a n á lisis<br />

sem icu a n tita tiv o u san do m u e stra s c u b ie rta s con d ife ren te s filt r o s n e u tró n icos.<br />

E s to su m a d o a una adecu ada d e s c r ip c ió n d el e s p e c t r o de n eu tron es en la<br />

fa c ilid a d de ir r a d ia c ió n e v ita r ía la in n e c e s a r ia d e te rm in a ció n de s e c c io n e s<br />

e fic a c e s e fe c tiv a s p a ra ca d a ca m p o n e u tró n ico p a rticu la r.<br />

L a c o m b in a ció n de e s t o s p r o ce d im ie n to s co n un a n á lisis d e l e s p e c t r o<br />

gam m a c o n un e s p e c t r ó m e t r o de alta r e s o lu c ió n trabajan d o « o n lin e » con<br />

una com p u ta d o ra d a ría la p o s ib lid a d d el a n á lis is sim u ltá n eo de m u ch os<br />

is ó to p o s en té r m in o s se m icu a n tita tiv o s.<br />

L a p o s ib ilid a d de u sa r d ife r e n te s filt r o s c o m o Rh o r В con e n e rg ía de<br />

c o r t e e le v a d a e s ta m b ién m u y a tra ctiv a p a ra e l a n á lisis p o r a ctiv a ció n .


I A E A - S M -1 7 0 /2 173<br />

P a r ticu la rm e n te e l u so de filt r o s g ru e s o s de b o r o e n riq u e c id o<br />

(500 m g /c m 2) d a ría la p o s ib ilid a d de m e d ir en la r e g ió n de alta e n e rg ía<br />

d el e s p e c t r o de un r e a c to r , donde la s d ife r e n te s a c tiv a c io n e s s e r ía n<br />

a p ro x im a d a m e n te p r o p o r c io n a le s a la fu n ción fu e r z a ra d ia tiv a , m in im iza n d o<br />

e l e fe c to de a ctiv id a d e s de con ta m in a ció n con r e s o n a n c ia s in ten sa s de b a ja<br />

e n e rg ía , que p roducen una fu e rte a ctiv id a d que d ificu lta la d e te rm in a ció n<br />

de is ó to p o s con r e s o n a n c ia s de ca p tu ra d é b ile s.<br />

L o s p a rá m e tr o s de re s o n a n cia s evalu ados y s e c c io n e s e fic a c e s de<br />

ca p tu ra a alta e n e rg ía p o d ría n u s a r s e p a ra c a lc u la r la in te g ra l e p ité rm ic a<br />

y e s t o s d atos p od ría n s e r d e s c r ip to s en ta bla s de f á c il u s o p a ra a n á lisis<br />

p o r a ctiv a ció n .<br />

L a s ta bla s de que s e d isp on e p a ra a n á lisis p o r a c tiv a c ió n son<br />

in co m p le ta s y no s ie m p r e b a sa d a s en una ad ecu ada evalu a ció n ; ad em ás,<br />

en g e n e r a l con sta n lo s datos e x p e rim e n ta le s de la in te g ra l de r e so n a n cia<br />

y n o u san la in fo r m a c ió n que puede o b te n e r se de lo s p a rá m e tr o s de<br />

r e s o n a n c ia n e u tró n ica . Aunque e x iste n algu nas ta bla s que sigu en la s lín e a s<br />

s u g e rid a s [6], no se extien d en a tod os lo s is ó to p o s de in te r é s en e l a n á lisis<br />

p o r a ctiv a ció n .<br />

CONCLUSIONES<br />

D e b e m o s s e ñ a la r fin a lm en te que un c á lc u lo y e v a lu a ció n de la s<br />

a b s o r c io n e s y ca p tu ra s n e u tró n ica s en fu n ción de la e n e rg ía debe s e r h ech a<br />

en la zon a r e s u e lta y no re su e lta , s i s e d e s e a c o m p a r a r lo s datos ca lcu la d o s<br />

co n lo s datos e x p e rim e n ta le s de la in te g ra l e p ité r m ic a obten ida en e l<br />

e s p e c t r o de un r e a c t o r .<br />

L o s p a rá m e tr o s de r e s o n a n cia deben s e r e v a lu a d os p a ra c a lc u la r<br />

la p a rte re s u e lta de la in te g ra l de re s o n a n cia y la in te g ra l de re s o n a n cia en<br />

la re g ió n de alta e n e rg ía d el e s p e c t r o d el r e a c t o r d ebe s e r estim a d a usando<br />

la s s e c c io n e s e fic a c e s de ca p tu ra e x p e rim e n ta le s o ca lcu la d a s con e l m o d e lo<br />

e s t a d ís tic o s e m ie m p ír ic o .<br />

Una c o m p a ra ció n de d atos c a lc u la d o s con lo s e x p e rim e n to s puede<br />

r e s o lv e r d is c r e p a n c ia s en lo s p a rá m e tr o s n e u tró n icos ob te n id o s en la s<br />

m e d ic io n e s de tie m p o de v u e lo c o m o lo m u estra n algu n os re su lta d o s<br />

p re se n ta d o s en e ste tr a b a jo .<br />

D e sd e e l punto de v is ta d e l a n á lisis p o r a c tiv a ció n la p o s ib ilid a d de u sa r<br />

filt r o s de alta e n e rg ía p o d r ía exten d er la a p lica b ilid a d d e l a n á lisis p o r a c t iv<br />

a ció n .<br />

Sin e m b a r g o p a ra que e l a n á lisis p o r a c tiv a ció n pueda h a c e r s e en fo r m a<br />

sem icu a n tita tiv a , s e n e c e s ita r ía m e jo r a r e l c o n o c im ie n to de la s s e c c io n e s<br />

e fic a c e s de ca p tu ra ra d ia tiv a p a ra la m a y o r ía de lo s is ó to p o s .<br />

R E F E R E N C IA S<br />

[1] HARVEY, J . A . , Reactor Physics in the Resonance and Thermal Region (GOODJOHN, A. J .,<br />

POM RANING, G . G . . EdS) II, M IT Press, England (1966) 103.<br />

[2] RICABARRA, G . H ., TURJANSKI, R ., RICABARRA, M . D ., <strong>Nuclear</strong> <strong>Data</strong> for Reactors (Actas Conf.<br />

Helsinki, 1970) Ц, OIEA, Viena(1970) 589.<br />

[3] RICABARRA, M . D . , TURJANSKI, R ., RICABARRA, G . H . , Can. J. Phys. 50 (1972) 1978.<br />

[4] S C H M ID T, J .J ., Neutron Cross Sections for Fast Reactors Materials. Parti: Evaluation, KFK-120,<br />

Karlsruhe ( 1966).


174 R IC AB ARRA e t a l.<br />

[5] PERSIANI, P .J ., Reactors Physics Constants, P. 163, ANL-5800, Argonne (1963).<br />

[6] WALKER, W . H . , Fission Product <strong>Data</strong> for Thermal Reactors. Parti: Cross Sections, AECL-3037,<br />

Chalk River (1969).<br />

[7] RICABARRA, M . D . , TURJANSKI, R . , RICABARRA, G . H . , CanJ. Phys. 46 (1968) 2473.<br />

[8] C O N N O L L Y , T . J ., KRUIJF, F ., An Analysis of Twenty-Four Isotopes for Use in Multiple Foil Measurements<br />

of Neutron Spectra below 10 keV, KFK-718, Karlsruhe (1968).<br />

[9] BENZI, V ., <strong>Nuclear</strong> <strong>Data</strong> for Reactors (Actas Conf. Helsinki, 1970) П, OIEA, Viena(1970) 379.<br />

[10] BENZI, V ., REFFO, G ., Newsletter Bulletin 10, C CDN- N W /10, Neutron <strong>Data</strong> Compilation Centre,<br />

France (1969).<br />

[11] RICABARRA, M . D . , TURJANSKI, R ., RICABARRA, G . H . , Measurement and Evaluation of Activation<br />

Resonance Integral of 146Nd, 148Nd and 150Nd (presentado al Can. J. Phys.).<br />

[12] RICABARRA, M . D . , TURJANSKI, R ., RICABARRA, G . H . , Can. J. Phys. 48 (1970) 2362.<br />

[13] RICABARRA, M . D . , TURJANSKI, R ., RICABARRA, G . H . , Nucl. Sei. Eng. 48 (1972) 370.<br />

[14] BARTOLOM E. J .R ., HOCKENBURY, R .W ., MOYER. W .R ., T A T A R C Z U K , J .R ., BLOCK, R . C . ,<br />

Nucl. Sei. Eng. 37 (1969) 137.<br />

[15] M A LETZKI, K h .t PIKELNER, L .B ., SA LA M A TIN , I . M . , SHARAPOV, E .I ., Energie atomique 24<br />

(trad, franc, rev. rusa Atomnaya Energiya) (1968) 80.<br />

[16] D O V B E N K O , A. G . , KOLESOV. V . E . , KOROLEVA, V .P ., TOLST IK O V , B .A ., Energie atomique 27<br />

(1969) 41.<br />

[17] TOLST IK O V , В. A ., KOROLEVA, V .P ., KOLESOV, V .E ., D O V BEN KO, A. G ., Energie atomique 23<br />

(1967) 114.<br />

[18] Reactor Burn-up Physics (Actas Grupo expertos, Viena, 1971)»OIEA, Viena(l973).<br />

[19] K A R Z H A V IN A , E .N ., NGU EN NGUEN FON G , POPOV, A .B ., TA SK A E V , A .I ., USSR State Commitee on<br />

Utilization of Atomic Energy, <strong>Nuclear</strong> <strong>Data</strong> Information Centre, INDC-260 E (1969).<br />

[20] M IG N EC O , E ., THEOBALD, J .M ., PERLMAN, I.J , J. Nucl. Energy 23 (1969) 369.<br />

[21] ALVES, R .N ., DE BARROS, S ., CHE VILLON, P .L ., JULIEN, J ., MORGENSTERN, J.. SAMOUR, C .,<br />

Nucl. Phys. A134 (1969) 118.<br />

[22] TELLIER, H ., Propriétés des niveaux induits par les neutrons de résonance dans les Isotopes stables du<br />

néodyme, CEA-N-1459, Saclay (1971).<br />

[23] RYVES, T . B . , J. Nucl. Energy 24 (1970) 35.<br />

[24] STORY, J .S ., <strong>Nuclear</strong> <strong>Data</strong> for Reactors (Actas Conf. Helsinki, 1970) 11, OIEA, Viena (1970) 721.<br />

[25] CARRE, J . C . , VIDAL, R . , <strong>Nuclear</strong> <strong>Data</strong> for Reactors (Actas Conf. Paris, 1966) 1, OIEA, Viena (1967) 479.<br />

[26] RICABARRA, M . D . , TURJANSKI, R . , RICABARRA, G . H . , Can. J. Phys. 47 (1969) 19.<br />

[27] M O X O N , M . C . , <strong>Nuclear</strong> <strong>Data</strong> for Reactors (Actas Conf. Helsinki, 1970) П, OIEA, Viena, (1970) 815.


I A E A - S M -1 7 0 /1 8<br />

ASSESSMENT <strong>OF</strong> METHODS AND DATA<br />

FOR PREDICTING INTEGRAL PROPERTIES<br />

FOR URANIUM-FUELLED THERMAL-<br />

REACTOR PHYSICS EXPERIMENTS"<br />

R. C H A W L A<br />

Indian Institute of Technology,<br />

Kanpur, India<br />

Abstract<br />

ASSESSMENT <strong>OF</strong> M E T H O D S A N D D A T A FOR PREDICTING INTEGRAL PROPERTIES FOR URANIUM-FUELLED<br />

THERMAL-REACTOR PHYSICS EXPERIMENTS.<br />

The performance of "best" available theoretical methods and differential nuclear data for predicting<br />

integral thermal-reactor properties, such as reactivity and reaction rate ratios, is assessed in the light of<br />

evidence from a broad range of clean, benchmark experiments. It is shown in the present study that for<br />

improving the consistency of calculated integral parameters for D 20 , H 20 and graphite moderated systems,<br />

significant modifications to certain currently used nuclear data are desirable. Along with changes in moderator<br />

scattering cross-sections, 238 U resonance data and the 23SU fission energy spectrum, some modification of 235U<br />

thermal data has been made which lies within the experimental uncertainties of differential measurements.<br />

The "new " data options have been used in various analyses with the W IM S lattice code, and results are<br />

presented for the benchmark studies and also for some lattices with more complicated geometries. It is<br />

shown that the preferred data generally give more consistent results, for both reactivities and reaction rates<br />

over a wide range of conditions, than any previously considered data combinations.<br />

1. INTRODUCTION<br />

In recent years, a high degree of sophistication in representing<br />

the {iiysics of thermal reactors has been achieved through the development<br />

of detailed computer codes, such as WIMS in the United Kingdom [1]<br />

and HAMMEB in the United States [2] » Application of these detailed methods<br />

and associated nuclear data has been expected to provide a consistent picture<br />

for the calculation of integral parameters, such as reactivity and<br />

reaction rate ratios, for a wide range of theimal reactor lattices, i.e.<br />

for various moderators and fuel enrichments.<br />

Several separate assessments have previously been reported for<br />

the performance of WIMS - based methods in analysing simple-geometry lattices<br />

moderated by graphite [3] , light water [4] and heavy water [5, 6] .<br />

These studies have demonstrated how for experiments where errors due to<br />

theoretical approximations are small, it becomes possible to make quantitative<br />

inferences on the adequacy of fundamental nuclear data. Thus, for<br />

example, earlier analyses hasre prompted corrections to epithemal data for<br />

both 23 % [7] and 235u [в] .<br />

In a recent study, Kemshell [9] showed that in spite of the improved<br />

differential data embodied in WIMS there have remained certain<br />

outstanding inconsistencies in calculations for clean experimental assemblies.<br />

For example :<br />

(i) reactivity predictions for DgO lattices are 1-1.5$ lew<br />

while those for light water end graphite moderated aesem-<br />

_______ ' bliee appear to be correct to within ~ 0.55?<br />

* Work carried out while author was Research Fellow at Atomic Energy Establishment,<br />

Winfrith, Dorchester, Dorset, United Kingdom<br />

175


176 C H A W L A<br />

(ii) fast fission ratios are signific&ntly ( ~ 10$ )<br />

underpredioted for most lattices.<br />

The present study, following these earlier findings, describes<br />

an investigation of WIMS methods and data, carried out in the light of<br />

evidence from a variety of uranium - fuelled reactor physics experiments.<br />

By choosing lattices with simple geometry end accurately documented experimental<br />

information, errors of representation in the theoretical methods<br />

have been minimised in an effort to focus attention on the effects of existing<br />

uncertainties in differential nuclear data. Further, in order to<br />

arrive at a consistent set of recommendations, a sufficiently broad range<br />

of experiments, in both composition and type, have been considered. These<br />

include exponential and critical single-rod assemblies with the three<br />

principal moderators, homogeneous experiments with 93$ 235jj fuel, and<br />

British end Canadian heavy-water cluster lattices.<br />

2. METHODS AND DATA<br />

2.1 Résumé of WIMS Methods<br />

Description and earlier validations of the physics methods embodied<br />

in the WIMS code have been given by Askew et al [1] and Payers et<br />

al [4] . A brief résumé is presented here.<br />

The basic WIMS library is in 69 energy groups, 14 of these<br />

spanning the h igh energy region from 10 MeV to 9.118 keV, 13 in the resonance<br />

region above 4 eV, and 42 themal groups. In most cases, the group<br />

constants are foimed from the UKAEA <strong>Nuclear</strong> <strong>Data</strong> File [10] using suitable<br />

weighting spectra in the G A U X Y code [11] . An exception to this rule is<br />

the thennal energy transfer matrices which are produced by PIXSE [12]<br />

from a variety of thennal scattering laws including the Nelkin model for<br />

H 2O, the Effective Width model for DjO end an improved Egelstaff model<br />

for graphite.<br />

Treatment of the resonance region in WIKS is based cn the use<br />

of equivalence theorems to relate a group resonance integral for the<br />

heterogeneous cell to group resonance integrals for various homogeneous<br />

mixtures of moderator and resonance absorber. The library of resonance<br />

integrals has been compiled via the SDR Code [13] which solves the slowing<br />

down equations using some 120,000 energy points. The various procedures<br />

embodied in tiie WBCS resonance treatment have been shown to yield<br />

results which compare very favourably with more detailed methods of calculation<br />

such as the MOCTJP Monte Carlo Code [14"J , and it has been concluded<br />

that the probable error for^ßü captures, for example, is better<br />

than 1$ at all pitches [4] .<br />

Although solution of the transport equation is possible in the<br />

full 69 - group structure, such calculations tend to be unnecessarily<br />

elaborate. A special procedure is therefore embodied in WIMS for group<br />

condensation. This is based on the use of the "Spectrox" method [15]<br />

for producing in the full 69 groups, a condensation flux spectrum for each<br />

of the principal regions of the lattice cell, coupled together through<br />

collision probability expressions. Following the generation of condensed<br />

group cross-sections, a more accurate solution is obtained using either<br />

differential (discrete ordinate, DSN) or integral (collision probability)<br />

transport theory methods.<br />

Calculations for leakage in WIMS are performed on the homogenised<br />

cell in the same group structure as used for the main transport


I A E A -S M -1 7 0 /1 8 177<br />

routine. Allowance for asymmetric diffusion is made using methods due<br />

to Benoist [16] . übe leakage flux solution is obtained by either<br />

diffusion theory or the method, the latter employing explicit P-j<br />

scattering data for the principal moderating nuclei, viz. hydrogen<br />

denterium, oxygen and carbon.<br />

Details of the editing and operating instructions for the<br />

VflMS code have been given by Roth et al 1.171 •<br />

2.2 Bata Used<br />

There has been considerable uncertainty in tile last few years<br />

about the accuracy of epithemal 41 capture data. The original WBtS<br />

resonance integral tabulations for were based on differential measurements.<br />

Initial comparison of predicted and experimental reaction<br />

rate ratios for light water and graphite lattices, however, indicated<br />

that these resonance tabulations were too high and a uniform reduction<br />

of the microscopic cross-eecticn by 0.2 b a m jn the resonance region<br />

was proposed by Askew L7] • More recently, fresh assessments have been<br />

carried out by Kemsihell [6, 9] for a wider range of lattices with more<br />

accurately documented reaction rate measurements, and it has been concluded<br />

that the Askew correction is more than is required for optimum<br />

agreement with experiment. An intermediate value of 0.1 barn has been<br />

recommended aß a suitable uniform adjustment of the o r i g i n a l<br />

nance cross-section. This is in line with tiie results of a recent<br />

American study recommending modifications to ENDF/B resonance data<br />

[18].<br />

Some uncertainty has also existed on the epiiiieimal data for<br />

2350. The resonance integrals originally contained in the WIMS libraiy<br />

for 235U were based on the measurements of Brookes which suggest a value<br />

of 0.67 forOC25, the infinite dilution ratio of capture to fission above<br />

0.5 eV L4] . As a result of more recent studies [8, 19] , however, opinion<br />

has hardened on a much lower ¿5 value of 0.50, and the presently<br />

recommended 235u resonance data in WIMS meets this criterion.<br />

The 235a fission spectrum is another item of data on vtfiich<br />

considerable doubt has been cast recently. The usual representation in<br />

the WIMS library is based on the measurements of Bonner and may be approximated<br />

by a Maxwellian spectrum with an averse temperature of 1.30 MeV.<br />

Several different types of integral measurements, however, indicate that<br />

the mean energy of the fission spectrum should be 5-1C$ higher than<br />

indicated by the differential measurements. Thus, for example, integral<br />

reaction rate measurements by Grundl [20] suggest a Maxwellian temperature<br />

as high as 1.5 MeV. <strong>Data</strong> adjustment studies for fast reactor<br />

benchmark experiments have suggested that a 10$ increase in the 235jj<br />

fission temperature is plausible \2Í) . The use of a fission temperature<br />

of 1.43 MeV in the WIMS libraiy has been recently advocated for HTR<br />

(High Temperature Reactor) studies, as it leads to considerable improvement<br />

in tte calculated age of fission neutrons in graphite (Section 3.3).<br />

In the light of the áx>ve evidence, this hardened fission spectrum<br />

has been used for the present study.<br />

The other important recent changes in WIMS data have been those<br />

in moderator cross-sections. For deuterium, for example, there have been<br />

two alternative UKAEA data files in the past, viz DPH 218 with a cross-<br />

section in the slowing down region (


178 C H A W LA<br />

Similarly, for hydrogen, a recommended value of 20.3 b a m s has been used<br />

for C p instead of the earlier 20.0 bams. For carbon, the presently used<br />

WIMS library has revised high energy cross-sections and a 0"p value of 4.74<br />

bams,<br />

3. EXPERIMENTS C ŒSIDEHED<br />

3.1 Natural U/D20 single-rod lattices<br />

As mentioned in Section 1, an important discrepancy in Ше analysis<br />

of experimental reactor lattices has been the underprediction of<br />

reactivity for D_0 systems [6, 22] . As the first stage of the present<br />

investigation , WIMS methods and data were applied to two sets of single,<br />

natural-uranium rod/DgO lattices, viz.<br />

(i) a series of exponential experiments carried out in tile subcritical<br />

assembly MINOS at Wttrenlingen [23] • The lattices<br />

were regular arrays of 10 mm diameter natural uranium<br />

metal rods, with square pitches of between 80 and 160 mm.<br />

and (ii) critical lattice studies performed in ttie Process Development<br />

Pile of the Savannah River Laboratory [24] . These<br />

were hexagonal lattices with higher moderator-to-fuel<br />

volume ratios (v /V.).<br />

Q Г<br />

WB!S calculations were initially carriedcut with a view to<br />

assessing the effects of simple changes in data and numerical treatment.<br />

Most of the calculations were performed in 18 transport groups with 15-20<br />

spatial points. Effects of further reducing the numerical approximations —<br />

e.g. using 36 energy groups, doubling the spatial mesh points or using<br />

n = 8 instead of n = 4 for the DSN routine - were all found to give^UI^<br />

in reactivity.<br />

Despite the systematic differeacts between the TOrenlimgen<br />

and Savannah River experimsnts, the conclusions from the WIMS analyses<br />

were similar, viz.<br />

(i) underprediction o f ke -f was -» 1.0% even itóien using the<br />

best numerical approximations and latest recommended<br />

moderator data.<br />

238<br />

(ii) tile Kemshell modification to TJ resonance data (Section<br />

2,2) caisiderably reduced earlier reported trends<br />

with lattice pitch.<br />

and (iii) use of the hardened 2^ U fission spectrum (l.43 MeV<br />

temperature) increased fast fissions by 7 - 8$.<br />

3.2 HgO and graphite moderated single-rod lattices<br />

The reactivity underprediction for DgO lattices cannot be<br />

considered in isolation as any recommended changes in basic nuclear data<br />

should be generally applicable, i.e. to H?0 and graphite moderated systems<br />

aß well. In order to assess the effects of the latest WIMS library data<br />

on predictions for light water lattices, the critical single-rod assemblies<br />

VlOCH [_4] , were reanalysed. Calculations were carried out in 25<br />

transport groups, more detailed high energy treatment being Important for<br />

these lattices from the standpoint ef slowing shown in HgO. The main conclusion<br />

drawn from these analyses was that while predictions for R1


I A E A - S M -1 7 0 /1 8 179<br />

TABLE I. "BEST-VAXUE" WIMS REACTIVITY ESTIMATES POE SINGIB-ROD LATTICES<br />

Lattice I Fuel/Moderator í < w<br />

i<br />

!<br />

к во I I keff<br />

ÏÏÜr 8 Hat. U/D20 19.4 1.143 0.991<br />

WÍir 12 Nat. U/DgO 44.e 1.221 0.987<br />

i&r 16 Nat. U/DgO 80.5 1.211 0.985<br />

SEL 1-7-1 Nat. D/DgO 53.1 1.229 0.989<br />

SRL 1-8-1 Nat. U/DgO 71.1 1.230 0.990<br />

SEL 1-9-II Nat. U/DgO 95.2 1.222 0.993<br />

SRL 1-12-î1 Nat. 0/D20 161.5 1.182 0.991<br />

R1/100 H 3$ en. U/H20 1.00 1.260 1.000<br />

E2/100 H 3$ en. U/H20 3.16 1.328 0.993<br />

S3/100 H Ъ1° en. D/HgO 0.78 1.212 1.000<br />

BICEP 76 Nat. U/С 76.7 1.059 0.994<br />

BICEP EMR 24/5 1.2# en. U/С 26.8 1.172 0.997<br />

E n e rg y -------►<br />

F IG .l. Thermal neutron spectra comparison for some single-rod lattices.


180 C H A W L A<br />

TAB IE II . ENERGY DISTRIBUTION <strong>OF</strong> CELL ABSORPTIONS FOR SOME SINGLE-ROD<br />

LATTICES<br />

Lattice<br />

t Absorptions (normalised to total of 1000 )<br />

10 MeV-<br />

5.5KeV Í5.5KeV- 4.0 - Í0.625- Í0.100- Î0.050- Î0.030- Î0.015<br />

Í4.0 eV 0.625eVl0.100eVÏ0.050eV{0.030eV50.015eV|o.OeV<br />

Ops. 1-15 [ 16-27 28-45 i 46-56 i 57-60 : 61-63 i 64-66 467-69<br />

Wiir 8 52 126 18 103 206 187 181 127<br />

Wiir 16 32 33 5 73 235 229 228 165<br />

SRL 1-7-1 42 44 7 81 337 225 216 148<br />

SRL 1-12-F 38 20 3 69 243 235 230 162<br />

R2/100H 45 124 21 112 201 184 179 134<br />

R3/100H 120 323 46 154 127 93 81 56<br />

BICEP 76 54 81 16 110 238 202 180 119<br />

BICEP 24/5 93 197 39 170 203 136 103 59<br />

TABLE III . AGE PREDICTIONS (CM2 ) FOR THE PRINCIPAL MODERATORS<br />

I<br />

Moderator î<br />

H 2°<br />

V<br />

Present<br />

WIMS Value<br />

1 Value with<br />

Ï Earlier <strong>Data</strong><br />

i<br />

К Experiment<br />

27.3 26 .6 27. 8 ± 0.2 125]<br />

26. 6 + 0.3<br />

[26]<br />

112 110 (DIN 218) 112+2 [27]<br />

Graphite 311 298 311 + 2 Ш<br />

TABLE I V . "BEST-VAHJE" WIMS RESULTS FOR OAK R U G E и/й20 SPHERES<br />

T- . i Sphere<br />

* ÏRadius (nrm ) Г * 5* « , i<br />

к 00<br />

i ï<br />

keff<br />

1 346.0 1378 1.206 0.987<br />

2 346 .0 1177 1.202 0.987<br />

3 346.0 1023 1.195 0.985<br />

4 346.0 972 1.196 0.986<br />

10 610.1 1835 1.065 0.988


I A E A - S M -1 7 0 /1 8 181<br />

and НЗ/10Ш were satisfactory, that for R2/100H was low by-jO.1?#. As discussed<br />

later, this can be attributed to the fact that tiie neutron energy<br />

spectrum for R2/10CH is radically different from the spectra for the other<br />

lattices.<br />

Calculations for some of the BICEP single-rod assemblies [3]<br />

were repeated using the latest recommended WIMS libraiy data to see the<br />

effects on graphite moderated systems with simple geometry. It was found<br />

that к values were generally underpredicted,though not as much as for<br />

the lattices. Further, the degree of underprediction varied with<br />

neutron spectrum for the lattice.<br />

Table I summarises "best-value" WIMS reactivity estimates for<br />

the various types of single-rod lattices considered. It is seen that к<br />

is underpredicted in all cases except for the two low (Vm/V.,) H^Q lattices<br />

R and R,/10CH. Fig. 1 compares thermal, cell-averaged neutron energy<br />

spectra of some of 1fae lattices for whicfa к is underestimated with toat<br />

of R,/ 10СЙ. The differences indicate that thermal events are much less<br />

important in ttie latter case. A better comparison may be made by considering<br />

the energy distribution of neutron absorptions in the various lattice<br />

cells. This has been done in Table II, the normalisation being to a total<br />

cell absorption of 1000 neutrons. Considering Wiir 8, B2/100 H and BICEP<br />

76, it is seen that although the moderator is different in each case, the<br />

distribution of absorption events is quite similar over the entire neutron<br />

energy range. One then gets a very consistent picture viiile noting that<br />

WIMS ke££ predictions for these single-red lattices are 0.991, 0.993 and<br />

0.994, respectively. These results indicate that the underprediction of<br />

reactivity is a moderator - independent deficiency. The most significant<br />

feature appears to be the energy distribution of neutron events, the<br />

discrepancies in к being greater for the more themalised lattieee.<br />

There are no significant trends with resonance capture or with leakage<br />

(i.e. кQQ ).<br />

3.3 Neutron Age Measurements<br />

Experimental determination of the age of fission neutrons te<br />

the 1.45 eV indium resonance is valuable evidence fer testing methods fend<br />

data effecting the calculation of leakage. The present study has involved<br />

the use of a considerably hardened fission spectrum, and there have also<br />

been significant modifications to moderator cross-sections. It is important<br />

to assess the effects of -tiiese changes on calculated values of the<br />

neutron age in graphite, H_0 and DgO. Table III summarises WIMS results<br />

for the three moderators, obtained using the 1.43 MeV fission spectrum<br />

and the latest data files for hydrogen, deuterium and oxygen. Comparisons<br />

are made with earlier calculated values and also wi1h tile more recent<br />

experimental values [1, 25, 26, 27} . It is seen feat the present predictions<br />

for DgO and graphite agree very well with experiment but that for<br />

H O, the large spread in the experimental values prevents any definite conclusion<br />

being drawn.<br />

3.4 Oak Ridge 255U/&20 Spheres<br />

Hie series of critical homogeneous U/H„0 sphere experiments carried<br />

out at OENL [28] is a particularly useful set for the present study,<br />

in that the geometry is simp le, leakage effects are relatively small, the<br />

fuel is highly enriched (~93$ U) so that data effects are negligible,<br />

and finally, the neutron spectra are well theimalised so that<br />

any shortcomings in thermal data would be highlighted. Detailed experimental<br />

consideration of these OEÍÍL criticáis has been given by Stsub et


182 C H A W L A<br />

TABLE V. ENERGY DISTRIBUTION <strong>OF</strong> FISSION YIEED FOR SOME <strong>OF</strong> THE EXPERIMENTS<br />

Г ! 7 I ORNL 5 Ш г î SRI I B2/100H { R3/10CH<br />

Bxperm ent jExpt. ■, 12 f w<br />

I 1.206 j 1.221 I 1.229 I 1,328 I 1.212<br />

keff________ f 0.987 f 0.987 ï 0.989 ï 0.993 î 1.000<br />

(noim. to 10005<br />

0.625 - 0.35 eV 5 5 4 15 37<br />

0.35 - 0.22 eV 8 9 7 23 52<br />

0.22 - 0.10 eV 54 67 68 84 114<br />

0.10 - 0.05 eV 207 233 239 223 173<br />

0.05 - 0.03 eV 221 230 233 205 127<br />

0.03 - 0.015 eV 248 229 227 198 110<br />

0.015 - 0.0 eV 236 165 155 143 77<br />

Net Thermal<br />

Í / r\ СОЕ лИЛ<br />

a<br />

979 938 933 891 690<br />

a 975, 972, 970 and 983 for Expts. 2, 3» 4 and 10, respectively.<br />

al [29^ . Recently three of the experiments (Hos. 1, 4 and 10) were analysed<br />

by Slaggie [30] using ENDF/B data, Versions I and II, and к . values<br />

were found to be consistently underpredicted, by ~ 0.7$ with Version I and<br />

~1.2$ with Version II.<br />

235<br />

In applying W M S to the analysis of the five ORNI U/H^O<br />

spheres, several checks were first carried out on the adequacy of tfie<br />

methods. Final "best-value" reactivity estimates obtained using the recommended<br />

data options are summarised in Table IV. The к values are<br />

seen to agree well with the ENDF/B-II results reported byalaggie, there<br />

being a consistent underprediction by ~ 1.4$ for the four small spheres<br />

and by ~1.2$ for the large one.<br />

From 1iie values, it is seen that leakage is ~22$ for Experiments<br />

1-4 and cnly -8$ for Experiment 10. This difference provides a<br />

useful check on the adequacy of tile leakage calculations for these H„0<br />

moderated experiments. In any event, it is clear that the underpredictinn<br />

of by 1.2$ for the large sphere cannot be explained by any discrepancy<br />

that may exist between theory and experiment for the age in H„0<br />

(Section 3.3).<br />

The use of ^ B as poison in three of the ОШЪ experiments<br />

enables a practical check on the adequacy of moderator absorption cross-<br />

sections, absorptions in hydrogen varying between 28$ for Experiment 4<br />

and 48$ for Experiment 10. The consistent underprediction of k ^ ^ for<br />

the spheres thus points at shortcomings in fuel cross-sections.


I A E A - S M -1 7 0 /1 8 183<br />

WIMS results for the experiments considered in Sections 3.1<br />

and 3.2 have shown that the only type of single-rod lattice for which<br />

eigenvalues are low by more than 1$, is 1iie DgO moderated assembly,<br />

characterised by a well-themalised neutron spectrum. Table V compares<br />

the energy distribution of fission yield, ?E(, for OBNL Experiment 1<br />

with those for some of the single-rod lattices and shows that neutron<br />

spectra for the OHNIi spheres are even more thermalised than for the DgO<br />

lattices. The present results for the spheres thus strengthen the<br />

argument presented earlier,viz. that the underprediction of reactivity<br />

by WIMS is a moderator-independent deficiency which seems to be linked<br />

to shortcomings in theimal data.<br />

235<br />

4. MODIFICATION <strong>OF</strong> ÏÏ THEHMAb DATA AKP ITS EFFECTS<br />

4.1 Discussion of Differential <strong>Data</strong> and Modifications Considered<br />

The justification end the effects on WIMS predictions of certain<br />

simple cbanges in 235ц theimal data are discussed in this section.<br />

These have been considered in the light of a recent synopsis, by<br />

Westcott [31] i of tiie various differential measurements at thennal<br />

energies of Г , , Г and W for the fissile nuclides. Although an assessment<br />

of üie relative merits of the different sets of experimental peints<br />

has not presently been made, it is realised that a le est-squares fit is<br />

not necessarily the "best" curve especially «hen there is relatively<br />

large scatter among -tile data points, as is indeed seen to be the case<br />

from Figs. 2 and 3. föie experimental points for C. are seen to have the<br />

least spread. This follows from the fact that absolute values are better<br />

defined for flj., than for either ** or 0^, as systematic еггогв are smaller<br />

in measurements of the foimer. In comparing different data sets, renormalisation<br />

can therefore be justified more easily for


Ё -(1 0 0 -2 0 0 Е )<br />

16.0<br />

14.0<br />

,< 12.0<br />

x ORL 160]<br />

♦ MTR 160)<br />

» HANI55)<br />

i HAN (58)<br />

• MISC<br />

+ * + T + ♦ *<br />

10.0<br />

0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12<br />

E (eV)<br />

17.0<br />

16:0<br />

_ 150<br />

ш<br />

g 14.0<br />

1Л<br />

со<br />

T 13.0<br />

SÜ<br />

о . j j<br />

° * х„ 0<br />

0x »*4 Хх<br />

i T v а ,<br />

< +<br />

FIG. 3. од and of for 235U between 0 .0 and 0.1 2 eV.<br />

IT 12.0<br />

11.0<br />

10.0<br />

9.0<br />

* LRL(66)<br />

♦ MOU68)<br />

A HANÍ57)<br />

▼ COL (58)<br />

в MISC.<br />

------ ENDF/B-H<br />

------ WIMS (DFN ¿8)<br />

------WIMS WITH<br />

NEW d ( 8)<br />

0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12<br />

E(eV)<br />

184 C H A W LA


<strong>IAEA</strong>-SM-170/18 185<br />

For the discrepancies that have been shown to exist In WIMS<br />

reactivity predictions, modifications are sought to the theimal eta for<br />

Zii)U, and the simplest change would be to vary « with absorptions remaining<br />

the same. As mentioned above, the measurements of e\ are more<br />

reliable than those of and « . Hence, considering that tne present<br />

WIMS data is a fairly good fit to the experimental cr points, it is appropriate<br />

to assume constancy of 235fj absorptions in WIKS and to modify


186 C H A W L A<br />

5. FURTHER VALIDATIONS<br />

The satisfactoiy prediction of reactivity for simple, benchmark<br />

experiments is the most important basic criterion in testing a reactor<br />

physics code and its associated nuclear data libraqr. However, it<br />

is in the analysis of systems with more complicated geometries aid under<br />

power reactor conditions that a design code finds ultimate application.<br />

It was therefore decided to examine the validity of the presently recommended<br />

data modifications in the light of experimental evidence from<br />

Ц) lattices with more complex geometries, e.g. clusters, and (ii) actual<br />

power reactor studies.<br />

In view of the fact that earlier reported discrepancies have been<br />

largest for heavy water systems, particular attention was given to British<br />

and Canadian DgO - moderated experiments [5, 6] . It was found that, with<br />

the presently recommended data modifications, a significant overall improvement<br />

is obtained in reactivity predictions for cluster lattices. Fur-<br />

ttiemore, agreement between theory and experimsnt was found to be considerably<br />

better for reaction rate ratios. Relative conversion ratio (e.C.R)<br />

predictions were within 2$ of experimental values for a wide range of<br />

lattices, and fast fission ratios were underpredicted only by ~(3 ± 2)%<br />

compared with earlier errors of over 10$.<br />

As an application to reactors under power conditions, an assessment<br />

was made of certain information f готп the Steam Generating Heavy Water<br />

Reactor (SGHWR) Prototype at Winfrith [32] . It was found that reactivity<br />

changes with bumup are predicted quite satisfactorily using the modified<br />

data in WIMS. However, evidence on the isotopic composition of irradiated<br />

fuel was inconclusive. Overall, the presently recommended data,being a<br />

more consistent interpretation of available differential and integral information,<br />

was thought to be quite acceptable as an interim iapprovement for<br />

reactor design computations.<br />

6. SUMMARY AND С0НС1ЛSIGNS<br />

The main aim of this study has been to present a comprehensive<br />

comparison between -theoretical predictions and integral evidence from<br />

the m a l reactor physics experiments, in order that a consistent set of<br />

recommendations can be made to resolve a range of earlier reported discrepancies.<br />

For the most part, the Winfrith-developed code WIMS, has been<br />

used. However, reference has been made in places to American methods and<br />

data, thereby providing a check on theoretical treatment.<br />

Following Kemshell's recent survey of relative conversion ratio<br />

measurements [9] , the recommended modifications to 238p data have been incorporated<br />

into the WIMS libraiy, together with the latest changes in<br />

moderator scattering cross-sections. Present calculations have confirmed<br />

that 238[j capture rates are now predicted satisfactorily for various types<br />

of reactor lattices. Further, a 2^5u fission energy spectrum with a temperature<br />

of 1.43 MeV has been used Jn the present analyses, which implies<br />

~ 10% hardening of -tiie earlier used Bonner spectium. This modification<br />

has significantly improved the prediction of fast fission ratios. The<br />

calculation of age in graphite m d DgO has also been improved, but the evidence<br />

for HgO remains somewhat inconclusive.<br />

Using the ebove m odifications in nuclear data, analysis of a<br />

range of single-rod uranium lattices with each of the three principal<br />

moderators - DgO, HgO and graphite - indicated a trend to undeipredict<br />

reactivity which was found to be related to the energy distribution of<br />

thermal neutron events in tie fuel, rather than to the type of moderator<br />

used.By analysing a series of well thermalised, homogeneous critical sphere


I A E A - S M -1 7 0 /1 8 187<br />

experiments with highly enriched fuel (~93$ г35п), any possible residual<br />

errors due to uncertainties in 238ц data were completely eliminated and<br />

attention strongly focused on_thermal 235u cross-sections. An energy -<br />

dependent variation of the U thermal ot , based on keeping the more<br />

reliably Known absorption cross-section unchanged, has been considered<br />

within the spread of differential measurements, and it has been shown that<br />

this produces considerable improvement in the consistency of reactivity<br />

results for 1he different types of benchmark experiments analysed, the<br />

various predicted mean values lying in tiie range 0.996 - 1.003.<br />

Finally, a limited survey of cluster lattice experiments and<br />

power reactor studies has been used to provide some direct evidence of the<br />

improvement obtained in reactor design calculations with adoption of the<br />

presently recommended data modifications.<br />

ACKNOWLEDGEMENTS<br />

This study was carried out under a Research Fellowship with the<br />

United Kingdom Atomic Eneigy Authority. The author would like to express<br />

his gratitude to several people at the Atomic Energy Establishment,<br />

Winfrith, in particular to Dr. F.J. Fayers and Dr. D. Hicks, of the<br />

S.&.H.W.R. Development Division, for their guidance, advice and encouragement.<br />

HEEEHENCES<br />

1. ASKEW, J.R., FAYERS, F.J., KEMSHELL, P.B., J. Bilt. Nucl. Eneigy<br />

Soc. 5 (1966) 564.<br />

2. SÖICH, J.E., HOHECK, H.C., Rep. DP - 1064 (1967).<br />

3. BARCLAY, F.R., Rep. AEEW - R4 73 (1966)<br />

4. FAYERS, F.J.. KEMSHELL, P.B., TERRY, M.J., J . Brit. Nucl. Energy<br />

Soc. 6 (1967) 161<br />

5. BRIGGS, A.J., JOHNSTONE, I., KEMSHELL, P.B., NEWARCE, D.A., J.Brit.<br />

Nucl. Energy Soc. 7 (1968) 61<br />

6. KEMSHELL, P.E., Rep. AEEW - R549 (l96 9)<br />

7. ASKEW, J.R., Rep. AEEW - M602 (l965)<br />

8. FOX, W.N., KING, D.C., PITCHER, H.H.W., SANDERS, J.E., J. Brit. Nucl.<br />

Energy Soc. 9 (1970) 15.<br />

9. KEMSHELL, P.B., Rep. AEEW - R 786 (1972)<br />

10. STORY, J.S., et. al., Proe. Int. Conf. Peaceful Uses Atom.Energy,<br />

Geneva (l 964 ) 168.<br />

11. BELL, V.J., et. al., Rep. AEEW - R37 9 (1964)<br />

12. MACDOUGÁLL, J.D., Rep. AEEW - M318 (1963)<br />

13. BRISSENDEN, R.J., DÜRST0N, C., Rep. ANL - 7050 (1965) 51.


1 8 8 CHAWLA<br />

14. BANNISTER, G.W., BASHER, J.C., PULL, I.C., Rep. AEEW - R 243 (1968)<br />

15. LESLIE, B.C., J. Nucl. Energy J7 ( 196-3) 293<br />

16. BENOIST, P., AERE Trans. 842 (1959)<br />

17. ROTH, M .J ., MACDOUGALL, J.D., KEMSHELL, P.B., Rep. AEEW-R538 (1967)<br />

18. HARDING, R.S., GAVIN, P.H., HE ELENS, R.L., ANS Trans. 1969 Winter<br />

Meeting 12 2 744.<br />

19. FEINER, P., ESCH, L.J., Reactor Physics jn the Resonenœ and Thermal<br />

Regions, Vol. II, M.I.T. Prese (1S66) 299.<br />

20. GEUNDL, J.A., Nucl. Sei. Engng» 31 (1968) 191.<br />

21. CAMPBELL, C.G.. ROWLANDS, J.L., Proc. <strong>IAEA</strong> Conf. Nucl. data Reactors,<br />

Helsinki (l 970 ) <strong>IAEA</strong> - CN - 26/116.<br />

22. HCTHENSTEIN, Vi., Rep. RNL - ЯР - 1001 (1969)<br />

23. LUTZ, H.R., et al., Proc. <strong>IAEA</strong> Conf. Exponential and Crit<br />

Expts. Vol. II (1964) 85<br />

24. HURLEY, T.J. Jnr., FIKE, H.R., O'NEILL,G.F., Nucl. Sei.,<br />

Engg. 12 (1962) 341.<br />

25. DO EBNER, ll.C., et al., Nucl. Sei. Engng. 9 (l96l) 221<br />

26. PASCHALL, IUC., Nucl. Sei. Engng. 20 (1964) 436<br />

27. GRAVES, W.E., Nucl. Sei. Engng. 12 (1962) 439<br />

2S. G’VIN, P.., MAGNUSON, D.W., Nucl. Sei. Engng. 12 (1962) 364<br />

29. STAUB, A., et. al., Nucl. Sei. Engng. 34 (1968) 263<br />

30. SLAGGIE, E.L., Rep. Gulf - ET - 10337 (l97l)<br />

31. ’.VSSTCOTT, C.H., lie p. AECL - 3255 (1969)<br />

32. FAYEHS, F.J., J . Brit. Nucl. Energy Soc. 11 (1972) 29


<strong>IAEA</strong> -S M -1 7 0 /6 7<br />

UTILISATION DE RESULTATS DE MESURES<br />

INTEGRALES POUR PRECISER LES VALEURS<br />

DES CONSTANTES NUCLEAIRES NEUTRONIQUES<br />

P. REUSS<br />

CEA, Centre d'études nucléaires<br />

de Saclay,<br />

France<br />

Abstract-Résumé<br />

U S E O F R ESU LTS O F IN T E G R A L M E A S U R E M E N T S IN D E T E R M IN IN G M O R E PR EC IS E LY T H E V A LU E S O F<br />

N E U T R O N N U C L E A R C O N S T A N T S .<br />

In teg ra l neutron m easurem ents m ay — sin ce w e now h ave very p recise codes - p ro v id e sig n ific a n t<br />

in fo rm a tio n on n u cle a r constants. T h e ir analysis perform ed in th is sp irit is the lo g ic a l o u tco m e o f im portant<br />

e x p e rim e n ta l research done on reactors. It does not a llo w testing a ll data o f the c a lc u la t io n , but o n ly those<br />

q u a n tities w h ic h are already o f a g lo b a l nature. T h e analysis d e a lt w ith in the present paper, concern in g<br />

m easurem ents o f the L a p la c ia n re la tin g to a l l th e rm a l-n e u tro n -re a cto r types, has, above a ll, co n firm e d the<br />

new n o rm a liz a tio n o f the 235U fission cross-section and g iv en rise to a decrease o f the Z38U e ffe c tiv e resonance<br />

in te g ra l.<br />

U T IL IS A T IO N DE R E S U L T A T S D E M ESURES IN T E G R A LES P O U R PRECISER LES V A LE U R S DES C O N S T A N T E S<br />

N U C LE A IR E S N E U T R O N IQ U E S .<br />

Les mesures neutroniques in tégrales peuvent conduire, m ain tenan t q u 'o n dispose de codes très précis,<br />

à des renseignem ents s ig n ific a tifs sur les constantes n u clé a ires. Leu r analyse, fa ite dans ce t esprit, est<br />

l ’ aboutissem ent lo g iq u e de l'im p o r ta n t tr a v a il e x p é rim e n ta l fa it sur les p ile s . E lle ne p erm et pas de tester<br />

toutes les données du c a lc u l m ais des grandeurs i caractère synthétique. C e lle dont le m é m o ire rend com pte,<br />

entreprise sur des mesures de la p la c ie n rela tiv es à l ’ ensem ble des filiè re s à neutrons th erm iques, a co n d u it,<br />

p rin c ip a le m e n t, à c o n firm e r la n o u v e lle n o rm a lisatio n de la section de fission de l ' u ra n iu m -235 et à proposer<br />

une d im in u tio n de l ’ in té g ra le e ffe c tiv e de résonance de l'u ra n iu m -2 3 8 .<br />

1. INTERET DES MESURES INTEGRALES<br />

1. 1. M esu res intégrales<br />

L es quantités intégrales qu'on m esu re dans un m a ssif ou une e x ­<br />

p érien ce critiqu e sont souvent obtenues avec une très grande p récision .<br />

Cette seule rem arque in cite à pen ser que ce s m esu res pourraient être<br />

utilem ent con sid érées par ceux qui se préoccupent du problèm e des<br />

constantes n u cléaires.<br />

L es résultats qu'on obtient ne sont pas des constantes n ucléaires : ils<br />

en dépendent d irectem en t m ais de façon com plexe. On peut dire qu'on<br />

m esu re des fonctionnelles des section s effica ces.<br />

Inversem ent, ce qui in téresse en p rem ier lieu le physicien des réa cteu rs<br />

n 'est pas tant les section s e ffica ce s des différen ts noyaux que les valeu rs<br />

de quelques p aram ètres très globaux, tel un facteur de m ultiplication. On<br />

sera it logiquem ent amené à m esu rer les quantités in tégrales auxquelles<br />

on s'in té re s s e , m ais, à cause d 'im p éra tifs expérim entaux, ce ne sont,<br />

généralem ent, pas exactem ent le s m êm es : par exem ple on s 'in té re sse au<br />

facteur de con version m ais on m esu re un indice captures 238U /fissio n s 235U<br />

relatif. L es définitions en sont cependant toujours voisin es.<br />

189


190 REUSS<br />

1.2 . Interm édiaire du calcu l<br />

Que ce soit pour p a sser des grandeurs m esu rées aux grandeurs intéressa<br />

n tes, ou pour tester les constantes de base à partir des m esu res<br />

in tégrales, il y aura un in term édiaire indispensable : le calcu l de la<br />

fonctionnelle reliant le s section s e ffica ce s à la grandeur con sid érée. Il est<br />

donc cla ir que, si ce calcu l n 'est pas extrêm em ent p ré cis et fiable, la p ré ­<br />

cision expérim entale qu'on a au niveau de la m esure devient totalem ent<br />

illu so ire , surtout quand on passe au niveau du test des données de base.<br />

1.3. Situation ancienne des codes de calcul<br />

Jusque dans un passé récen t le schém a trop sim p liste des calcu ls<br />

rendait très critiquable l'u tilisation des m esu res intégrales pour le test<br />

des section s e ffica ce s, à tel point qu'on a souvent adopté une dém arche de<br />

pensée différente.<br />

La m ise au point du code COREGRAF [ 1] (calcul des réseaux de la<br />

filiè re uranium n atu rel-graphite-gaz) peut serv ir d 'exem p le. On a, a p riori,<br />

la issé indéterm inés quelques p aram ètres (en l'o c c u r r e n c e les constantes A<br />

et B de l 'e x p ression classiqu e de l'in tégra le effective de 238 U : I eff = A<br />

+ B n/S/M ). En interprétant systém atiquem ent un grand nom bre d 'exp érien ces<br />

(m esures de laplacien) on a déterm iné ces param ètres. On voit que<br />

l'aju stem en t fait a eu en réa lité deux ob jectifs: non seulem ent p a llier une<br />

m éconnaissance des section s e ffica ce s dans le dom aine des réson an ces,<br />

m ais en core c o r r ig e r les approxim ations faites par a illeu rs dans le schém a<br />

de calcu l. Ce deuxièm e ob jectif était bien présent com m e le m ontre le fait<br />

qu 'il a fallu ajuster deux intégrales effectiv es : l'u n e pour les calcu ls<br />

critiq u es, l'a u tre pour les ca lcu ls d'évolution. On a rem éd ié de la sorte,<br />

entre autres, à l'hypothèse trop sim p liste consistant à n égliger la rép a rtition<br />

non uniform e au sein du barreau des captures de 238u donc de la fo r ­<br />

m ation de 239 Pu.<br />

1.4. Situation présente des codes de calcu ls<br />

Depuis quelques années des outils beaucoup plus perfection nés ont été<br />

m is au point. On peut prendre com m e exem ple le code APO LLO [2]<br />

résolvan t dans un grand nom bre de groupes (186 ou 99) l'équation de<br />

Boltzm ann en géom étrie à une dim ension par la m éthode des probabilités<br />

de p rem ier ch oc. On peut penser que maintenant le passage des section s<br />

e ffica ce s m icroscop iq u es aux quantités intégrales auxquelles on s'in té re sse<br />

est beaucoup m oins hasardeux, au m oins dans les cas sim ples (par exem ple,<br />

réseau régu lier de cellu les contenant un barreau cylindrique de<br />

com bustible).<br />

Une autre rem arque très im portante doit être faite : non seulem ent<br />

l'o u til de calcu l s 'e s t perfection né, m ais il s 'e s t aussi gén éralisé. A insi,<br />

alors que COREGRAF ne pouvait être u tilisé que pour les ca lcu ls de r é a c ­<br />

teu rs de la filiè re UNGG (parce que l'aju stem ent n'était valable que pour<br />

cette gamme étroite de situations), APO LLO peut serv ir au calcu l des<br />

réseau x des réa cteu rs de n 'im p orte quelle filiè re .


1. 5. Nouvel intérêt des m esures intégrales<br />

IA EA -SM - 170/67 191<br />

L 'u tilisation des m esu res intégrales pour tester le s section s e ffica ce s<br />

devient maintenant intéressante. D'une part les im p récision s dues au calcu l<br />

n é ce ssa ire pour faire la transposition sem blent maintenant suffisam m ent<br />

faibles pour ne pas ren dre illu soire cette dém arche (au sens indiqué et non<br />

au sens «ajustem ent du code de ca lcu l»). D 'autre part le fait qu'un m êm e<br />

code devient u tilisable pour in terp réter une bien plus large gam m e de<br />

situations va ren dre ce test beaucoup intéressant : par exem ple il est bien<br />

évident que c 'e s t le m êm e uranium qu'on m et dans tous les réa cteu rs. Si<br />

on u tilise des quantités in tégrales (qui dépendent de ses section s) m esu rées<br />

dans des situations très d ifféren tes, on aura une inform ation beaucoup<br />

plus p ré cise.<br />

1. 6. D ifficulté de m ise en œ uvre<br />

L es section s e ffica ce s sont des fonctions, donc sont rep résen tées par<br />

une infinité de valeu rs num ériques. Même si on se lim ite à un schém a<br />

m ultigroupe, com m e dans APO LLO , ce sont des m illie rs de valeurs<br />

num ériques qu'on u tilise dans le s calcu ls.<br />

D 'autre part, m êm e en considérant toutes les m esu res intégrales<br />

faites dans le m onde, il est bien cla ir que le nom bre de renseignem ents de<br />

ce type est bien m oindre.<br />

Il n 'est, par conséquent, pas question de tester toutes le s sections<br />

e ffica ce s par les m esu res in tégrales. C ela signifie q u 'il y a un préalable<br />

à ce genre d'études : il faut synthétiser l'in form ation que représentent les<br />

m illie rs de section s e ffica ce s en un petit nom bre de grandeurs les c a r a c ­<br />

térisant de façon globale.<br />

On a là une étape in term édiaire nécessitant un choix délicat à faire :<br />

ces grandeurs doivent d'une part rep résen ter de façon co r r e c te les sections<br />

e ffica ce s qu'on veut tester, d'autre part jou er un rô le non n égligeable dans<br />

le calcu l des quantités intégrales qu'on exam ine et de ce lle s auxquelles<br />

s 'in té re s s e le physicien des réa cteu rs. P our prendre des exem ples<br />

extrêm es : la valeur m oyenne de la section effica ce de 235U dans le domaine<br />

des réson an ces ca ra cté rise m ieux cette fonction que le m axim um dans le<br />

m êm e domaine ; la section à 2200 m /s de 241 Am joue un rôle m oins im p ortant<br />

que celle de 235 U.<br />

2. E XE M PLE DE MISE EN OEUVRE<br />

2. 1. P rin cip es de l'étu de qui a été faite<br />

On a ch erch é à appliquer les id ées évoquées plus haut à l'étu de critiqu e<br />

du codé A PO LLO . Dans une p rem ière étape on s 'e s t lim ité aux réseaux<br />

à com bustible en uranium fra is, appartenant aux différentes filiè re s à<br />

neutrons therm iques. En effet, dans un réacteu r à neutrons rapides la<br />

situation neutronique est vraim ent trop différente et ce serait d'autres<br />

grandeurs synthétiques qu'on pourrait tester (et non les m êm es dans un<br />

rôle différent).


192 REUSS<br />

On est parti des données de la bibliothèque UKAEA [3]. On a ca ra ctérisé<br />

l'en sem b le des section s qu 'elle contient par douze grandeurs seu lement.<br />

En examinant les d ivergen ces entre calcu l et ex p érien ce sur un<br />

certain nom bre de m esu res in tégrales soigneusem ent ch oisies on a cherché<br />

à dégager des tendances à m od ifier l'une ou l'a u tre de ces grandeurs. Ces<br />

tendances pourront ensuite être u tilisées dans deux optiques : soit le choix,<br />

pour chaque noyau, de la bibliothèque la m ieux en a ccord avec ces tendances<br />

obtenues; soit l'aju stem ent de la bibliothèque dont on est parti.<br />

2 .2 . Méthode u tilisée pour la rech erch e de tendances<br />

D ésignons par Un l'une des grandeurs synthétiques retenues et Q ¡<br />

l'u n e des quantités in tégrales exam inées. Au p rem ier ord re, pour une<br />

petite m odification des Un, on peut é c r ir e<br />

Si on peut trou ver un jeu de m odification s 6Un tel que les é ca rts entre expérien<br />

ce et ca lcu l c o r r ig é par ( 1) soient sensiblem ent réduits, on aura<br />

dégagé le s tendances à ces m odification s.<br />

Pratiquem ent on a procéd é de la façon suivante :<br />

— On a évalué les coefficien ts d'influence o?in par des form ules<br />

sim p les, ce qui a p erm is d 'é v ite r de p a sser un grand nom bre de fois le<br />

code APO LLO .<br />

— Considérant le s variations m axim ales des Un qu'on peut adm ettre<br />

com pte tenu des im p récision s sur les m esu res des section s, on a élim iné<br />

de l'étu de le s Un conduisant à des m odification s trop petites des Q ¡ (une<br />

tendance dégagée su r une telle grandeur n'aurait pas été sign ificative).<br />

— P our les Un restants on a ch erch é les m odification s am éliorant de<br />

façon cla ire la coh éren ce entre ca lcu l et ex p érien ce sans conduire à des<br />

variations proh ibitives des Un. P our ce la on a ajusté le s 6Un de (1) par<br />

m oindres c a rré s en m inim isant l'é c a r t quadratique m oyen entre m esu re et<br />

calcu l des Q ¡, tout en donnant un certain poids aux m esu res des sections<br />

e ffica ce s (ce qui sign ifie qu'on suppose plus probable que |êUn | soit petit<br />

que grand).<br />

2. 3. M esu res u tilisées<br />

n<br />

Deux types de m esu res ont été u tilisées :<br />

— des m esu res de l'â g e pour les tro is principaux m odérateu rs (graphite,<br />

eau ord in aire, eau lou rde),<br />

— des m esu res de laplacien et de taux de réaction dans des réseaux<br />

appartenant à toutes les filiè res à neutrons therm iques :<br />

RHT (m esu res fran çaises)<br />

UNGG (m esures fran çaises)<br />

D2 O (m esures fra n ça ises)<br />

H2 O (m esures am éricain es).<br />

(1)


IA E A -SM -17 0 / 67 193<br />

P ar ailleu rs on a u tilisé la valeur de la section de fission de 235U tenant<br />

com pte de la n ouvelle évaluation de la p ériod e de 234U et les valeu rs r e c o m ­<br />

m andées dans [4] pour les section s de diffusion des m odérateu rs dans le<br />

domaine des réson an ces des noyaux lourds.<br />

2 .4 . Grandeurs synthétiques con serv ées dans l'étude et tendances obtenues<br />

A près élim ination des grandeurs peu effica ce s on a con servé pour la<br />

rech erch e de tendances le s Un suivants :<br />

Ofg — section m oyenne de fission de 238U<br />

Ieffg — intégrale effectiv e de réson an ce de 238U<br />

cTf5 — section m oyenne de fission de 235U<br />

r — âge dans le m odérateur<br />

D — coefficien t de diffusion therm ique m oyen du m odérateur.<br />

L 'étude a conduit à p rop oser les m odification s suivantes (de la b ib lio ­<br />

thèque UKAEA) :<br />

— prendre pour т le s valeu rs m esu rées qui sont un peu su p érieu res aux<br />

valeu rs qu'on obtient en utilisant la bibliothèque ;<br />

— ne pas m od ifier en plus des fuites (r et D), ou alors très légèrem ent si<br />

on veut re cen trer au m ieux les résultats ;<br />

— pren dre la valeur de cr f 5 n orm a lisée avec la nouvelle évaluation de la<br />

périod e de 234U. Il est intéressant de noter que la rech erch e de<br />

tendances qui a été faite a con firm é cette nouvelle valeur.<br />

— dim inuer I eff8 de 0, 8 barn.<br />

Ce dern ier point est sans doute le plus im portant. On sait que cette<br />

con clu sion est cla ssiqu e: e lle avait déjà été notée lo r s de l'aju stem ent de<br />

COREGRAF; elle a égalem ent été obtenue par d'autres auteurs.<br />

CONCLUSION<br />

Une fois adm is qu'on peut fa ire confiance au code de calcu l on ne peut<br />

guère douter de l'in té rê t de prendre en com pte les m esu res in tégrales pour<br />

p r é c is e r le s constantes neutroniques. P ar contre la m ise en œ uvre peut<br />

être revue : on peut critiq u er le choix des grandeurs synthétiques retenues,<br />

le choix des m esu res intégrales u tilisées et la m éthode de rech erch e des<br />

tendances. L 'a p plication a été faite dans un cadre restrein t. On pourrait<br />

l'éten d re, en p a rticu lier, à l'étu d e du plutonium.<br />

Il nous sem ble que ce n 'est que par une étude critique rem ontant<br />

jusqu'au test des données de base qu'on peut pleinem ent ju stifier et v a lo r ise<br />

r le tra vail expérim ental de longue haleine qui a été accom p li et est<br />

p ou rsuivi sur le s m aquettes ou les p iles. Un sim ple constat des divergen ces<br />

entre ca lcu l et ex p érien ce est p eu t-être un renseignem ent suffisant pour<br />

l'exploitan t des réa cteu rs, m ais certainem ent pas pour le physicien qui a<br />

b esoin de sa v o ir le s expliquer.


194 REUSS<br />

[1] C O G N E , F . , H O F F M A N N , A . , REUSS, P . , C O R E G R A F 2, code de c a lc u ls de réseaux et d 'é v o lu t io n des<br />

réseaux â graph ite, C E A - N -1 3 4 4 (1970).<br />

[2] H O F F M A N N , A . , JEANPIERRE, F . , K A V E N O K Y , A . , L I V O LA N T , M . , L O R A IN , H . , A P O L L O , code<br />

m u ltig ro u p e de résolu tion de 1' équation du transport pour les neutrons therm iques et rapides,<br />

C E A - N -1610 (1972).<br />

REFERENCES<br />

[3] N O R T O N , S . , T h e U K A E A N u cle a r <strong>Data</strong> L ib ra ry , A E E W -M 8 2 4 (1968).<br />

[4] K E M S H E LL , P . B . , Som e Integ ral Properties o f N u c le a r D ata D educed from W IM S A n alyses o f W e ll<br />

T h e rm a lise d U ra n iu m La ttice s, AE EW -R 786 (1972).<br />

D IS C U S S IO N<br />

J. BOUCHARD: My question is addressed to M r. R euss and a lso to<br />

M r. B arré: what, from your point of view , are the m ost im portant integral<br />

m easurem ents?<br />

P . REUSS: A s fa r as therm al neutron reactors are con cern ed, the<br />

m ost im portant m easurem ents are the follow ing: buckling (or k eff ); the ratio<br />

238U fis s io n s /235U fission s; con version fa ctor, i . e . 238U captu res/ 235U<br />

fission s; also, analyses on irradiated fu els.<br />

J. Y. BARRE: In the case of fast neutron re a cto rs, among the m ost<br />

im portant integral experim ents, i . e . m easurem ents of neutron balance<br />

param eters which can be ca rried out v e ry ea sily (one might say "a sym p totica<br />

lly "), m ention shoüld be made of the follow ing: m aterial buckling; ratio of<br />

production to total absorption, o r the "K«, para m eter"; ratio of average<br />

reaction rates, either of fissio n o r capture, esp ecia lly the average ratio<br />

238U ca p tu re s /239Pu fission s, which is at p resen t m easured with a p recision<br />

of ± 2 by our techniques and enables us to have v e ry good confidence in the<br />

calculated breeding gain.<br />

G. CASINI: I should like to com m ent on integral experim ents, in p articular,<br />

those relating to burnt lattices. A s has been pointed out in the<br />

preced in g d iscu ssion , there are a num ber of ben ch-m ark experim ents with<br />

which the relia b ility of nuclear data can be checked — esp ecia lly in the case<br />

of unirradiated la ttices. An effort has been made in the United States to<br />

sele ct 12 ben ch -m ark experim ents fo r fast b reed ers and a sim ila r program<br />

fo r therm al lattices is being undertaken by the E uropean -A m erican R eactor<br />

P h ysics C om m ittee. H ow ever, I fe e l that it would be d esirable to devise<br />

a num ber of ben ch -m ark experim ents fo r the case of irradiated lattices,<br />

coverin g in particular isotop ic concentrations and, if p ossible, reactivity<br />

values as w ell. I think an international effort along these lines would be<br />

w elcom e.


Section III<br />

SAFEGUARDS


Chairman<br />

. EDER (Austria)


THE ROLE <strong>OF</strong> NUCLEAR DATA<br />

IN NUCLEAR MATERIAL SAFEGUARDS<br />

C. WEITKAMP, A. v. BAECKMANN, K. BÖHNEL, M. KÜCHLE<br />

Gesellschaft für Kernforschung, Karlsruhe<br />

L. KOCH<br />

European Institute for Transuranium Elements,<br />

Karlsruhe, Federal Republic o f Germany<br />

Abstract<br />

T H E R O LE O F N U C L E A R D A T A IN N U C L E A R M A T E R I A L S A FEG U A R D S .<br />

For the tim e ly d e te ction o f a d iversion o f fissio n a b le m a te ria l from the n u cle a r fu e l c y c le the<br />

safeguards system uses m a te ria l b alances based on m easurem ents o f m a te ria l flo w and in ven tory.<br />

In add itio n to c la s s ic a l a n a ly tic a l tech n iq u es, various n u cle a r m ethods have been developed for this<br />

IA E A -S M -1 70/78<br />

purpose. T h e g e n e ra l procedure for m ost o f these m ethods consists in the d e te rm in a tio n o f the mass o f<br />

the fis s ile sp ecim en re la tiv e to a known standard. T h e w ay in w h ic h n u cle a r data are req u ired for the<br />

d e v e lo p m e n t or e ffic ie n t use o f the m ethods can be d iv id e d in to four categories. (A) T h e very fe a s ib ility<br />

o f the m eth od or its d e ve lo p m e n t depend upon data in s u ffic ie n tly known. (B) D ata are d ire c tly needed<br />

for th e conversion o f m easured values in to m a te ria l mass; no standard specim ens are used. (C) T h e<br />

use o f a s u ffic ie n tly la rg e set o f standards is im p o ssib le or im p ra c tic a l; th erefore n u cle a r data are needed<br />

for c a lib ra tio n or in te rp o la tio n . (D) T h e use o f standards provid es fu ll c a lib ra tio n p o ssib ilitie s , or<br />

e x istin g data are adequate.<br />

For purposes o f illu s tra tio n a few m ethods are discussed. A n extrem e e x a m p le for category A is<br />

g a m m a resonance flu o re sce n ce w here the a ccu ra cy req uired for the le v e l and tra n sitio n energies is far<br />

b eyond presen t-d ay ca p a b ilitie s . C a lo rim e try and o-sp ectrom etry are d ire c tly based upon h a lf- liv e s and<br />

energies some o f w h ic h are in a d e q u a te ly know n (case B). T y p ic a l m ethods for w h ic h the num ber o f<br />

standards c a n b e g re a tly red u ced b y c a lc u la t io n are neutron c o in c id e n c e d e te rm in a tio n o f plu to n iu m , a ll<br />

techn iqu es that use th erm a l neutron in te rro g a tio n and d iffe re n t kinds o f a c tiv a tio n analysis; som e o f the<br />

req u ire d n u cle a r data need im p rov em ent (case C). Passive y-assay and fast-neutron in terro g atio n<br />

b e lo n g to categ o ry D. Spent fu e l is g e n e ra lly not am enab le to d ire ct m easurem ent o f fissile m a te ria l<br />

content. H ere isotope co rre la tio n s as now determ in ed e m p ir ic a lly for a num ber o f th e rm a l reactors and<br />

w it h in th e b u rn -u p range p resen tly o b ta in a b le le n d them selves to th e in d ire c t d e te rm in a tio n o f burn-up<br />

param eters in c lu d in g fis s ile m a te ria l content. T h is co rre la tio n te ch n iq u e has proved rem a rk a b ly universal.<br />

A n extended general a p p lic a tio n requires qu a n tita tiv e th e o re tic a l e x p la n a tio n w h ic h is o n ly possible i f the<br />

in te g ra l neutron re a c tio n cross-sections o f heavy isotopes and se le cte d fission products are im prov ed.<br />

1. I N T R O D U C T I O N<br />

I n o r d e r t o d e t e c t a n d p r e v e n t t h e d i v e r s i o n o f f i s s i o n a b l e<br />

m a t e r i a l f r o m t h e n u c l e a r f u e l c y c l e , a w o r l d w i d e s y s t e m h a s<br />

b e e n d e v e l o p e d t h a t i s g e n e r a l l y r e f e r r e d t o a s n u c l e a r m a t e r i ­<br />

a l s a f e g u a r d s . T h i s s y s t e m i s b a s e d t o a l a r g e e x t e n t o n t h e<br />

c l o s u r e o f m a t e r i a l b a l a n c e s . I n o r d e r t o s e t u p t h e b a l a n c e<br />

a c c u r a t e m e a s u r e m e n t s o f i n v e n t o r y a n d a l l i n p u t a n d o u t p u t o f<br />

t h e p a r t i c u l a r m a t e r i a l b a l a n c e a r e a a r e n e c e s s a r y . T h e s e<br />

m e a s u r e m e n t s c a n n o t a l w a y s b e p e r f o r m e d , o r a r e i m p r a c t i c a l t o<br />

p e r f o r m , b y c l a s s i c a l ( i . e . , n o n - n u c l e a r ) m e a n s . S o m e t h o d s<br />

f o r t h e d e t e r m i n a t i o n o f r e a c t o r f u e l h a v e b e e n d e v e l o p e d t h a t<br />

m a k e u s e o f i t s n u c l e a r p r o p e r t i e s . I t i s t h e p u r p o s e o f t h i s<br />

p a p e r t o s h o w i n w h i c h w a y t h e a s s a y o f n u c l e a r f u e l d e p e n d s<br />

u p o n t h e a v a i l a b i l i t y a n d a c c u r a c y o f n u c l e a r d a t a .<br />

197


TABLE I. CATEGORIES O F METHODS GROUPED ACCORDING TO THEIR<br />

DEPENDENCE UPON NUCLEAR DATA<br />

Category Dependence upon <strong>Data</strong> Examples<br />

A The feasibility of the method or its development<br />

depend upon data insufficiently known.<br />

В<br />

С<br />

D<br />

<strong>Data</strong> are directly needed for the conversion of measured<br />

values into physical quantities (isotopic ratio,<br />

material m a s s ) ; no standard specimens are used.<br />

Measurements are made relative to standard samples,<br />

but the proper application of corrections requires<br />

nuclear data.<br />

The use of standards provides full calibration possibilities,<br />

or existing data are adequate.<br />

Y -Ray Resonance Flurescence<br />

Neutron Capture y Spectroscopy<br />

a Spectrometry<br />

Calorimetry<br />

Thermal Neutron Interrogation<br />

Activation Analysis<br />

Neutron Coincidence Techniques<br />

Passive y Assay<br />

Fast Neutron Interrogation


IA E A -S M -1 70/7 8 199<br />

I n s t e a d o f p r e s e n t i n g a l i s t a r r a n g e d s i m i l a r l y t o t h e<br />

w e l l - k n o w n I N D C n u c l e a r d a t a r e q u e s t c o m p i l a t i o n / 1_ 7 w e d i s ­<br />

c u s s a f e w i n d i v i d u a l m e t h o d s w i t h r e s p e c t t o t h e i r d e p e n d e n c e<br />

u p o n n u c l e a r d a t a , t r y i n g t o g r o u p t h e m i n t o f o u r c a t e g o r i e s<br />

a s s h o w n i n T a b l e I.<br />

2. G A M M A - R A Y R E S O N A N C E F L U O R E S C E N C E<br />

A n e x a m p l e f o r a m e t h o d t h a t i s o n l y n o w b e i n g i n v e s t i g a t e d<br />

f o r i t s u s e i n t h e a s s a y o f n u c l e a r m a t e r i a l i s y - r a y r e s o n a n c e<br />

f l u o r e s c e n c e . I n t h i s m e t h o d t h e s a m p l e i s i r r a d i a t e d w i t h у<br />

r a y s , a n d t h e r e s o n a n c e - s c a t t e r e d p h o t o n s a r e m e a s u r e d w i t h a<br />

w e l l - s h i e l d e d d e t e c t o r . T h e m e t h o d u t i l i z e s t h e f a c t t h a t t h e<br />

e l a s t i c s c a t t e r i n g c r o s s s e c t i o n w h i c h , a t a y - r a y e n e r g y a r o u n d<br />

1 M e V , i s 1 b a r n f o r i s o t o p e s o f u r a n i u m a n d p l u t o n i u m , i n ­<br />

c r e a s e s b y o r d e r s o f m a g n i t u d e i f t h e e n e r g y o f t h e y - r a y is<br />

v e r y c l o s e t o t h e e n e r g y o f a l e v e l o f t h e n u c l i d e o f i n t e r e s t ,<br />

e . g . 2 3 5 U. E m i s s i o n b y a n i d e n t i c a l s y s t e m d o e s u s u a l l y n o t , a s<br />

i t d o e s i n o p t i c a l s p e c t r o s c o p y , f u l f i l l t h e e n e r g y r e q u i r e m e n t<br />

b e c a u s e t h e e n e r g y l o s s o f t h e y - r a y d u e t o r e c o i l o f t h e r e s i ­<br />

d u a l n u c l e u s e x c e e d s t h e w i d t h o f t h e y l i n e b y a f a c t o r o f t e n .<br />

E v e n i f i n t e n s e s o u r c e s o f r a d i a t i o n t h a t d e e x c i t e a p p r o p r i a t e<br />

l e v e l s i n 2 3 5 U w e r e a v a i l a b l e ( w h i c h is n o t t h e c a s e ) , o t h e r<br />

s o u r c e s o f у r a d i a t i o n w o u l d t h e r e f o r e h a v e t o b e u s e d .<br />

_ T h e c r o s s s e c t i o n f o r y r e s o n a n c e f l u o r e s c e n c e c a n b e s h o w n<br />

/ 2 _ 7 t o b e g i v e n b y<br />

a = 1 . 4 g y 2 ( E 2 т 6) 1 e x p { — (АЕ/6 ) 2 } b a r n (1)<br />

w h e r e E i s t h e e n e r g y o f t h e y r a y o r o f t h e l e v e l i n M e V , т<br />

i t s l i f e t i m e i n p i c o s e c o n d s , g = ( 2 J i + l ) / ( 2 J o + l ) t h e s t a t i s t i ­<br />

c a l f a c t o r w h i c h a c c o u n t s f o r t h e a n g u l a r m o m e n t a J о a n d Ji o f<br />

t h e g r o u n d a n d e x c i t e d s t a t e s , a n d у = Г о/Г t h e b r a n c h i n g r a t i o<br />

f o r d e e x c i t a t i o n o f t h e e x c i t e d s t a t e i n t o t h e g r o u n d s t a t e .<br />

ДЕ= | E _ - E e +R| i s t h e e n e r g y m i s m a t c h , i . e . t h e d i f f e r e n c e b e t ­<br />

w e e n t n e l e v e l e n e r g y E a a n d t h e y - r a y e n e r g y £ e m i n u s r e c o i l R<br />

(in e V ) , a n d 6 ( a l s o i n eV) i s a w i d t h p a r a m e t e r w h i c h , i f l i n e<br />

s h a p e s a r e a p p r o x i m a t e d b y G a u s s i a n s , is g i v e n b y 6 2 = Дд+Де,<br />

Да a n d Де b e i n g t h e l e v e l w i d t h o f t h e a b s o r b e r a n d l i n e w i d t h<br />

o f t h e e m i t t e r , r e s p e c t i v e l y .<br />

I n o r d e r t o p r e d i c t t h e f e a s i b i l i t y o f a n e x p e r i m e n t d e s i g n e d<br />

t o p r o d u c e a s i z e a b l e e n h a n c e m e n t o f t h e e l a s t i c s c a t t e r i n g c r o s s<br />

s e c t i o n , a n a t t e m p t h a s r e c e n t l y b e e n u n d e r t a k e n J_ 3 _ / t o c o m ­<br />

p a r e e n e r g i e s o f k n o w n s t a t e s o f 2 3 5U w i t h t a b l e s o f y - r a y e n e r ­<br />

g i e s f r o m r a d i o a c t i v e s o u r c e s a n d t o c o m p u t e t h e r e s o n a n c e c o n ­<br />

t r i b u t i o n t o t h e c r o s s s e c t i o n v i a e q . (1). T h i s w o r k c o u l d o n l y<br />

y i e l d c a n d i d a t e s ( p a i r s o f m a t c h i n g у s o u r c e s a n d 2 3 5U n u c l e a r<br />

s t a t e s ) f o r a n e x p e r i m e n t ; e x a c t c r o s s s e c t i o n s c o u l d n o t b e o b ­<br />

t a i n e d d u e t o l a c k o f s u f f i c i e n t a n d s u f f i c i e n t l y a c c u r a t e n u ­<br />

c l e a r d a t a f o r v a r i o u s q u a n t i t i e s , i n p a r t i c u l a r<br />

(1) E n e r g y : s t a t e - o f - t h e - a r t m e a s u r e m e n t s o f y - r a y a n d l e v e l<br />

e n e r g i e s a r o u n d 1 M e V a r e a c c u r a t e t o a b o u t 25 e V , w i t h<br />

t h e m a i n c o n t r i b u t i o n o f 2 2 e V f r o m t h e r e f e r e n c e e n e r g i e s<br />

a n d o n l y 13 e V f r o m a l l e x p e r i m e n t a l e r r o r s ¡_ 4 _ / . A s y - r a y<br />

w i d t h s i n e x c e s s o f 1 0 e V c a n b e o b t a i n e d b y u s e o f s p e c i a l<br />

t e c h n i q u e s l i k e C o u l o m b f r a g m e n t a t i o n ¡_ 5 _ / , t h e p r e s e n t


TABLE И. ENERGY Е AND PARTIAL PRODUCTION CROSS - SECTION a FOR THE<br />

MOST INTENSE y-LIN ES FOLLOWING THERMAL NEUTRON CAPTURE<br />

Isotope E, keV a, barn Reference Element E, keV ст, barn Reference<br />

235u 6395.5 ± 0.3 0.32 ± 0.05 Г n 7 Cr 8881 0.22<br />

238<br />

/~15_Z<br />

4059.4 ± 2.0 0.30 ± 0.04<br />

239<br />

L 12 / Fe 7646, 7632 0.55 + 0.55 / 15 /<br />

5123.2 ± 0.4 2.05 ± 0.40 / 10, 13 / Ni 8996 1.20 / 15 /<br />

241PU<br />

Pu 5476.9 ± 0.5 7.60 ± 1.90 / 14 / Cu 7917 1.52 / 15 /<br />

со<br />

о


IA E A -S M -1 70/78 201<br />

s t a t e o f d e v e l o p m e n t o f e n e r g y m e a s u r e m e n t s is n o t i n a d e ­<br />

q u a t e . H o w e v e r , f e w a u t h o r s g o t h r o u g h t h e t e d i o u s p r o c e d u r e<br />

o f a n a l y z i n g t h e i r m e a s u r e d d a t a t o t h a t d e g r e e o f a c c u r a c y ,<br />

o r if t h e y d o , f a i l t o p u b l i s h i m p o r t a n t d e t a i l s o f t h e i r<br />

w o r k a s , e . g . , t h e s e t o f r e f e r e n c e e n e r g i e s u s e d . S o a c o n ­<br />

s i s t e n t c o m p a r i s o n o f d a t a f r o m d i f f e r e n t a u t h o r s i s s e l d o m<br />

p o s s i b l e .<br />

I n t h e c a s e o f 2 3 5 U, e n e r g i e s o f l e v e l s a r o u n d 1 M e V a r e<br />

a c c u r a t e t o 1 0 0 - 3 0 0 e V i f m e a s u r e d b y y - r a y s p e c t r o s c o p y<br />

( f o l l o w i n g t h e r e a c t i o n 2 3 * U ( n , y ) 2 3 5U) o r a b o u t 2 k e V f r o m<br />

c h a r g e d - p a r t i c l e s p e c t r o s c o p y . F o r t h e m o s t p r o m i s i n g l e v e l ,<br />

h o w e v e r , a n e n e r g y o f ( 1 1 1 6 . 2 ± 0 . 2 ) k e V h a s b e e n q u o t e d<br />

( c o m p u t e d f r o m c a s c a d e d e e x c i t a t i o n ) w h e r e a s t h e g r o u n d s t a t e<br />

t r a n s i t i o n e n e r g y i s g i v e n a s ( 1 1 1 5 . 6 ± 0 . 3 ) k e V J_ 6 _ / . A<br />

s o u r c e o f 2 4 5 d - 6 S Z n w i t h i t s s t r o n g ( 1 1 1 5 . 5 1 8 ± 0 . 0 2 5 )<br />

k e V y - r a y m a y p r o v i d e s o m e c h a n c e f o r r e s o n a n c e e x c i t a t i o n<br />

o n l y i f t h e l a t t e r o f t h e t w o l e v e l e n e r g i e s i s c o r r e c t .<br />

(2) O t h e r p r o p e r t i e s o f e x c i t e d s t a t e s : f o r t h e c o m p u t a t i o n o f<br />

t h e c r o s s s e c t i o n f r o m e q . (1) t h e s p i n , d e e x c i t a t i o n b r a n ­<br />

c h i n g r a t i o a n d h a l f l i f e o f t h e l e v e l o f i n t e r e s t a r e a l s o<br />

r e q u i r e d . O n e o f t h e v i r t u e s o f t h e 1 1 1 6 k e V s t a t e o f 2 3 5 U<br />

i s t h a t i t s v a l u e s f o r J a n d Го/ Г a r e k n o w n ; t h e h a l f - l i f e ,<br />

a l t h o u g h n o t m e a s u r e d , c a n b e c o m p u t e d t h e o r e t i c a l l y w i t h i n<br />

a f a c t o r o f 1 0 o r s o f r o m t h e s p i n , p a r i t y , a n d К q u a n t u m<br />

n u m b e r w h i c h a r e a l l k n o w n .<br />

T h e n u m b e r o f c a n d i d a t e s f o r a s s a y b y у r e s o n a n c e f l u o r e s ­<br />

c e n c e c o u l d b e g r e a t l y i n c r e a s e d i f m o r e d e t a i l s w e r e k n o w n<br />

a b o u t t h e l e v e l s c h e m e o f 2 3 5 U. O n l y t h e n w o u l d t h e s t a r t o f a n<br />

e x p e r i m e n t a l p r o g r a m b e j u s t i f i e d i n w h i c h t h e f e a s i b i l i t y o f<br />

t h e m e t h o d i s p r o v e d . S o у r a y r e s o n a n c e f l u o r e s c e n c e w h i c h c o u l d<br />

o f f e r c o n s i d e r a b l e a d v a n t a g e s o v e r e x i s t i n g m e t h o d s o f 2 3 5 u a s s a y<br />

i s a n e x a m p l e h o w l a c k o f d a t a c a n a f f e c t a m e t h o d i n i t s v e r y<br />

f i r s t s t a g e o f d e v e l o p m e n t .<br />

3. N E U T R O N C A P T U R E G A M M A - R A Y S P E C T R O S C O P Y<br />

A n o t h e r m e t h o d f o r w h i c h d a t a d e p e n d e n c e h a s a l s o b e e n c r i t i ­<br />

c a l a t a n e a r l y s t a g e i s y - r a y s p e c t r o s c o p y f o l l o w i n g n e u t r o n<br />

c a p t u r e . T h e r e a s o n f o r t h i s h a s b e e n t h e f a c t t h a t , a f t e r a<br />

f e a s i b i l i t y s t u d y o f t h e m e t h o d h a d s h o w n i t s p o t e n t i a l a p p l i ­<br />

c a b i l i t y t o t h e a s s a y o f i n d i v i d u a l i s o t o p e s i n n u c l e a r f u e l<br />

/ 7 _ 7 , у r a y s f r o m c a p t u r e h a d t o b e i d e n t i f i e d a s s u c h , a n d<br />

p a r t i a l c a p t u r e y - r a y p r o d u c t i o n c r o s s s e c t i o n s h a d t o b e<br />

m e a s u r e d . T h e f i r s t p r o b l e m w a s s o l v e d u s i n g d i f f e r e n t a p p r o a c h e s<br />

/ 8 - 1 0 _ 7 , a n d i t t u r n e d o u t t h a t , i n a g r e e m e n t w i t h e x p e c t a ­<br />

t i o n s , o n l y f e w l o w - e n e r g y y r a y s c a n b e d e f i n i t e l y a s s i g n e d t o<br />

c a p t u r e , b u t i n t h e h i g h - e n e r g y p a r t o f t h e s p e c t r a (E > 4 M e V )<br />

m o s t o f t h e l i n e s o b s e r v e d a r e i n d e e d p r i m a r y c a p t u r e у r a y s .<br />

I n t e n s i t y m e a s u r e m e n t s , h o w e v e r , h a d t h e s o m e w h a t d i s a p p o i n t i n g<br />

r e s u l t t h a t p a r t i a l p r o d u c t i o n c r o s s s e c t i o n s f o r t h e s t r o n g e s t<br />

p r i m a r y у r a y s a r e a f a c t o r o f 10 t o 3 0 s m a l l e r t h a n e x p e c t e d .<br />

T h e m o s t i n t e n s e c a p t u r e у r a y o f s o m e i s o t o p e s o f u r a n i u m a n d<br />

p l u t o n i u m a n d t h e c o r r e s p o n d i n g p r o d u c t i o n c r o s s s e c t i o n f o r<br />

t h e r m a l n e u t r o n s a r e l i s t e d i n T a b l e II. F o r c o m p a r i s o n t h e s a m e<br />

d a t a a r e a l s o g i v e n f o r a n u m b e r o f m e t a l s t h a t o c c u r i n a l l o y s<br />

f o r s t r u c t u r a l a n d c l a d d i n g m a t e r i a l s . A s T a b l e I I s h o w s , y - r a y


202 WEITKAMP et al.<br />

e n e r g i e s f r o m c a p t u r e i n f u e l a r e u s u a l l y l o w e r a n d p r o d u c t i o n<br />

c r o s s s e c t i o n s o n l y o f t h e s a m e o r d e r o f m a g n i t u d e a s f o r o t h e r<br />

m a t e r i a l s . T h e r e f o r e v e r y g o o d s t a t i s t i c s i s r e q u i r e d w h i c h c a n<br />

o n l y b e o b t a i n e d b y u s i n g a r e a c t o r n e u t r o n b e a m ; d u e t o t h i s<br />

f a c t t h e m e t h o d h a s n o t m a t u r e d i n t o a w i d e l y - u s e d p r o c e d u r e f o r<br />

i n - p l a n t a p p l i c a t i o n . I f p h o t o n p r o d u c t i o n c r o s s s e c t i o n s h a d<br />

b e e n a t h a n d i n a n e a r l y s t a g e a m u c h m o r e d e t a i l e d p r e d i c t i o n<br />

o f t h e p o t e n t i a l a n d l i m i t a t i o n s o f t h e m e t h o d w o u l d h a v e b e e n<br />

p o s s i b l e .<br />

4. A L P H A S P E C T R O M E T R Y<br />

T h e m e a s u r e m e n t o f 2 3 8 P u w h i c h i s o f g r e a t i m p o r t a n c e f o r<br />

t h e a s s a y o f r e a c t o r p l u t o n i u m b y c a l o r i m e t r y (cf. c h a p t e r 5) o r<br />

c o i n c i d e n c e c o u n t i n g i s u s u a l l y d o n e b y a s p e c t r o m e t r y o r m a s s<br />

s p e c t r o m e t r y . B e c a u s e m a s s - 2 3 8 c o n t a m i n a t i o n s f r o m u r a n i u m a r e<br />

h a r d t o a v o i d , a s p e c t r o m e t r y i s t h e p r e f e r r e d m e t h o d , p a r t i c u ­<br />

l a r l y f o r c o n c e n t r a t i o n s < 0 . 3 %, a n d i n s o m e l a b o r a t o r i e s i n c l u ­<br />

d i n g o u r o w n t h e c r o s s c h e c k o f m a s s s p e c t r o m e t r i c 2 3 8 P u<br />

m e a s u r e m e n t s b y a s p e c t r o m e t r y is c u r r e n t p r a c t i c e .<br />

F o r t h e c o m p u t a t i o n o f t h e a t o m i c r a t i o Рв/Рэ o f 2 3 e P u a n d<br />

2 3 9 P u f r o m t h e m e a s u r e d r a t i o a o f 2 3 8 P u a c t i v i t y a n d t h e s u m<br />

o f t h e a c t i v i t i e s o f 2 3 9P u a n d 21,0P u f r o m t h e r e l a t i o n<br />

V p , ■ “ т ,/г 1 TV , <br />

t h e p r e c i s e k n o w l e d g e o f t h e h a l f l i v e s T 1 /2 o f 2 3 8 P u , 2 3 9 P u a n d<br />

2 "°Pu i s r e q u i r e d , a n d g e o m e t r i c a l f a c t o r s f o r t h e d e t e c t i o n o f<br />

a p a r t i c l e s f r o m 2 3 e P u a n d 2 3 9 ' 21,0p u m u s t b e e q u a l . W h e r e a s a<br />

s p e c t r a o f t h e t h r e e i s o t o p e s s e e m t o b e k n o w n w i t h a d e q u a t e<br />

a c c u r a c y a n d t h e v a l u e s o f t h e h a l f l i v e s o f 2 3 9 P u a n d P u h a v e<br />

n o t c h a n g e d m u c h i n r e c e n t y e a r s , n e w m e a s u r e m e n t s o f T i y 2 (2 3 8 Pu)<br />

c h a n g e d i t s v a l u e f r o m 8 6 . 4 y e a r s / ! 6 _ 7 t o 8 7 . 8 y e a r s j_ 1 7 _ 7 ,<br />

i . e . b y 1 . 6 %. T h i s a c c o u n t s p e r f e c t l y f o r t h e s y s t e m a t i c d e v i ­<br />

a t i o n o f t h e r e s u l t s o f a s p e c t r o m e t r i c 2 3 8 P u d e t e r m i n a t i o n s<br />

w h i c h w e r e s y s t e m a t i c a l l y l o w a s l o n g a s t h e o l d e r h a l f l i f e<br />

w a s u s e d . T h e r e f o r e a n i n d e p e n d e n t r e i n v e s t i g a t i o n o f a l l t h r e e<br />

h a l f l i v e s a p p e a r s v a l u a b l e .<br />

5. C A L O R I M E T R Y<br />

H a l f l i v e s o f p l u t o n i u m i s o t o p e s a r e s u f f i c i e n t l y s h o r t so<br />

t h i s m a t e r i a l c a n b e d e t e r m i n e d n o n d e s t r u c t i v e l y b y m e a s u r e m e n t<br />

o f t h e d e c a y h e a t<br />

H = (I s i p i ) M = i M (2)<br />

H is r e l a t e d t o t h e p l u t o n i u m m a s s M b y a p r o p o r t i o n a l i t y f a c t o r<br />

i g i v e n b y t h e s u m o f t h e p r o d u c t s o f t h e s p e c i f i c p o w e r c o n s t a n t s<br />

§i a n d p e r c e n t a g e s p ^ o f t h e i s o t o p e s i n v o l v e d . U n l i k e m o s t o t h e r<br />

m e t h o d s , c a l o r i m e t r y r e l i e s h e a v i l y o n p r e c i s e n u c l e a r d a t a<br />

b e c a u s e t h e d e t e r m i n a t i o n i s u s u a l l y d o n e b y a b s o l u t e m e a s u r e ­<br />

m e n t o f e l e c t r i c q u a n t i t i e s w i t h o u t r e f e r e n c e t o a s e t o f s t a n ­<br />

d a r d s a m p l e s . T h e u s e o f s t a n d a r d s w o u l d b e i m p r a c t i c a l b e c a u s e<br />

t o o m a n y p a r a m e t e r s w o u l d h a v e t o b e v a r i e d . J u s t a s a


IA E A -S M -1 70/78 203<br />

s p e c t r o m e t r y c a n b e c o n s i d e r e d a n a b s o l u t e m e t h o d f o r t h e d e t e r ­<br />

m i n a t i o n o f i s o t o p e ra tio s, c a l o r i m e t r y i s o f t e n r e f e r r e d t o a s<br />

a n a b s o l u t e m e t h o d f o r t h e m e a s u r e m e n t o f p l u t o n i u m quantities.<br />

T h e c o n v e r s i o n o f h e a t o u t p u t i n t o p l u t o n i u m m a s s v i a e q . (2)<br />

i s c o m p l i c a t e d b y t h e f a c t t h a t t h e i s o t o p i c c o m p o s i t i o n is<br />

u s u a l l y n o t m e a s u r e d a t t h e s a m e t i m e . T h e a c t u a l p e r c e n t a g e s<br />

p ^ t o b e u s e d i n e q . (2) a r e t h e r e f o r e f u n c t i o n s o f t h e m e a s u r e d<br />

v a l u e s o f p ¿ , o f t h e h a l f l i v e s a n d o f t h e t i m e t b e t w e e n i s o t o p i c<br />

a n a l y s i s a n d c a l o r i m e t r i c m e a s u r e m e n t .<br />

T h i s m e a n s t h a t t h e e r r o r o f t h e p l u t o n i u m m a s s M d e p e n d s<br />

d ir e c tly u p o n t h e a c c u r a c y o f t h e m e a s u r e d p o w e r H, o f t h e c o n ­<br />

s t a n t s s, o f t h e m e a s u r e d p e r c e n t a g e s p, o f t h e t i m e l a g t<br />

a n d o f t h e h a l f l i v e s T 1/2 (2 3 8 Pu) a n d T i / 2 (2Ц' P u ) . I n a d d i t i o n<br />

e r r o r s o f t h e h a l f l i v e s e n t e r i n t o t h e a c c u r a c y o f s o m e o f t h e<br />

m e a s u r e d v a l u e s o f p a s d i s c u s s e d i n t h e p r e c e d i n g s e c t i o n a n d<br />

i n t o s o m e o f t h e s a s w i l l b e s h o w n b e l o w a n d t h u s in d irectly i n ­<br />

f l u e n c e t h e a c c u r a c y o f t h e r e s u l t .<br />

A d e t a i l e d e r r o r a n a l y s i s h a s b e e n m a d e j_ I 8 _ / w h i c h s h o w s<br />

t h a t t h e i m p o r t a n c e o f t h e d i f f e r e n t p a r a m e t e r s d e p e n d s i n a<br />

c o m p l i c a t e d w a y u p o n t h e c o m p o s i t i o n o f t h e m a t e r i a l . I n s t e a d<br />

o f g i v i n g t h e l e n g t h y f o r m u l a e r e s u l t s w i l l b e d i s c u s s e d t h a t<br />

h a v e b e e n o b t a i n e d f o r t h r e e t y p i c a l c a s e s ( T a b l e I I I ) . O f t h e<br />

v a r i a b l e s t h a t d e t e r m i n e t h e p r o p o r t i o n a l i t y f a c t o r e a l l b u t<br />

f i v e c o n t r i b u t e n e g l i g i b l y ( < 0 . 0 5 %) t o t h e t o t a l e r r o r o f t h e<br />

p l u t o n i u m m a s s M. I n T a b l e I V t h e a s s u m e d r e l a t i v e u n c e r t a i n ­<br />

t i e s S o f t h o s e f i v e q u a n t i t i e s a n d t h e i r c o n t r i b u t i o n s a t o<br />

t h e t o t a l r e l a t i v e e r r o r 6 M a r e s h o w n ; f o r c o m p a r i s o n t h e s t a t e -<br />

o f - t h e - a r t p r e c i s i o n o f t h e h e a t m e a s u r e m e n t H i s a l s o i n c l u d e d .<br />

T h e l a r g e s t f r a c t i o n o f t h e t o t a l e r r o r i s c l e a r l y d u e t o t h e<br />

e r r o r o f t h e p e r c e n t a g e o f 2 3 e P u f o r w h i c h s o m e i m p r o v e m e n t c a n<br />

b e e x p e c t e d f r o m b e t t e r h a l f - l i f e v a l u e s ( s e e s e c t i o n 4 ) . F o r<br />

m a t e r i a l w i t h l o w c o n t e n t o f 2 3 e P u t h e s p e c i f i c p o w e r c o n s t a n t s<br />

o f 2 3 9P u a n d 2l,0P u p l a y a c e r t a i n p a r t ; t h e d e t e r m i n a t i o n o f p l u ­<br />

t o n i u m w i t h h i g h c o n t e n t s i n 2l,1P u s u f f e r s t o s o m e e x t e n t f r o m<br />

t h e p o o r k n o w l e d g e o f t h e s p e c i f i c p o w e r o f 21,1P u . A s u r v e y o f<br />

t h e l a t e s t v a l u e s o f s a s d e t e r m i n e d d i r e c t l y (by c a l o r i m e t r y )<br />

o r i n d i r e c t l y ( f r o m e n e r g y a n d h a l f - l i f e m e a s u r e m e n t s ) i s g i v e n<br />

i n T a b l e V . W h e r e c o m p u t e d a n d m e a s u r e d v a l u e s e x i s t , t h e t w o<br />

v a l u e s h a v e b e e n c o m p a r e d w i t h e a c h o t h e r a n d w i t h t h e e r r o r s o f<br />

t h e i n d i v i d u a l d e t e r m i n a t i o n . F o r 2 3 9 P u t h e a g r e e m e n t i s q u i t e<br />

g o o d . F o r 21,0P u t h e d i f f e r e n c e i s l a r g e r t h a n t h e s u m o f t h e<br />

e r r o r s ; t h e r e f o r e t h e l a r g e r o f t h e t w o e r r o r s ( 0 . 7 6 %) s e e m s t o<br />

b e m o r e r e a l i s t i c a n d h a s b e e n a d o p t e d f o r t h e c a l c u l a t i o n o f t h e<br />

m a s s e r r o r i n T a b l e IV. F o r 21,1A m t h e t w o e r r o r s j u s t o v e r l a p ,<br />

a n d t h e s m a l l e r o f t h e t w o h a s b e e n u s e d .<br />

T h e q u e s t i o n o f i n d e p e n d e n c e o f t h e e r r o r s o f t h e q u a n t i t i e s<br />

l i s t e d i n T a b l e I V a n d o f t h e i r i n f l u e n c e o r m u t u a l c a n c e l l a t i o n<br />

f o r t h e a c c u r a c y o f t h e v a l u e o f e, i . e . o f t h e c a l o r i m e t r i c<br />

p l u t o n i u m d e t e r m i n a t i o n , i s n o t a t r i v i a l p r o b l e m b e c a u s e o f t h e<br />

f o l l o w i n g r e a s o n s :<br />

(1) F e w h a l f - l i f e m e a s u r e m e n t s a r e a b s o l u t e , o r if t h e y a r e ,<br />

i m p u r e s a m p l e s a r e u s e d . T h e r e f o r e c o r r e c t i o n s f o r t h e i m ­<br />

p u r i t y h a l f l i v e s h a v e t o b e a p p l i e d w h i c h h a v e m o s t l y<br />

b e e n d e t e r m i n e d b y t h e s a m e p r o c e d u r e a s t h e o n e m e n t i o n e d .<br />

T h i s f e e d b a c k e f f e c t h a s s e l d o m b e e n p r o p e r l y t a k e n i n t o<br />

a c c o u n t .


T A B L E III. COM POSITIO N O F T H R E E B A T C H E S O F P L U T O N IU M<br />

Isotope<br />

238.<br />

Pu<br />

239:<br />

24o; i<br />

Pu<br />

Pu<br />

241<br />

Pu<br />

242<br />

Pu<br />

ALKEM 1968 Yankee V+VI,1 Yankee V+VI,16<br />

0.041 % 0.289 % 1.228 %<br />

90.517 % 85.050 % 69.309 %<br />

8.265 % 10.294 % 16.337 %<br />

1.113 % 4.011 % 10.853 %<br />

0.064 % 0.356 % 2.274 %<br />

TABLE IV. ADOPTED RELATIVE ERRORS 6 AND ERROR CONTRIBUTION<br />

a <strong>OF</strong> THE MOST IM PORTANT PARAM ETERS TO THE T O T A L ERROR<br />

<strong>OF</strong> THE CALORIMETRIC DETERMINATION <strong>OF</strong> THREE BATCHES <strong>OF</strong><br />

R EACTOR-G RADE PLUTONIUM 180 D A F T E R ISOTOPIC COMPOSITION<br />

MEASUREMENT<br />

Batch<br />

Quantity<br />

ALKEM 1968<br />

S a<br />

Yankee V+VI,1<br />

6 a<br />

Yankee V+VI,16<br />

6 a<br />

Heat Output 0.25 % 0.25 % 0.25 % 0.25 % 0.25 % 0.25 %<br />

Percentage of 23®Pu 2.00 % 0.18 % 1.00 % 0.39 % 0.75 % 0.52 %<br />

■t ii 2l+0pu 0.30 % 0.07 % 0.26 % 0.05 % 0.18 % 0.02 %<br />

Specific Power of 23^Pu 0.20 % 0.13 % 0.20 % 0.08 % 0.20 % 0.03 %<br />

и n u 24 0pu 0.76 % 0.17 % 0.76 % 0.13 % 0.76 % 0.09 %<br />

и и и 2^1 pu 5.00 % 0.08 % 5.00 % 0.17 % 5.00 % 0.19 %<br />

Total Error of Pu Mass 0.40 % 0.52 % 0.62 %<br />

204 W EITKAM P et al,


TABLE V . DECAY ENERGY Q, H A L F-LIF E T i AND CALCU LATED SPECIFIC<br />

POWER s AS W E LL AS CALORIMETRIC VALUE <strong>OF</strong> s FOR FIVE ISOTOPES<br />

<strong>OF</strong> PLUTONIUM AND 241A m . ERRORS <strong>OF</strong> THE s ALSO GIVEN IN PERCENT AND<br />

COMPARED WITH THE DIFFERENCE BETW EEN THE CALCU LATED (FROM<br />

Q AND T i ) AND MEASURED (CALORIM ETRIC) VALUE<br />

Isotope Decay Energy3<br />

Q, keV<br />

238<br />

239*“<br />

240^U<br />

2 4 llU<br />

2 4 2 f<br />

24l!U<br />

Am<br />

5593.40 ± 0.20d<br />

5243.6 ± 0.8?<br />

5255.5 + 0.73<br />

not applicable<br />

4982.5 ± 1.2f<br />

5638.05 ± 0.12<br />

Half Lifeb<br />

T l/2' years<br />

87.80 ± 0.028<br />

24401 ± 40?<br />

6620 ± 50 .<br />

15.10 ± 0.14<br />

386900 ± 1600n<br />

436.6 ± 3.0°<br />

Specific Powe r s, mW/g<br />

from Q and T^ 2 by Calorimetry<br />

567.17 ± 0.13<br />

1.9052 ± 0.0032<br />

7.0088 ± 0.0530<br />

0 . 11277± 0.00050<br />

113.53 ± 0.80<br />

1.9142 ± o.olccf<br />

7.1046 ± 0.0150<br />

3.62 ± 0 . 18m<br />

114.50 ± 0.17P<br />

Difference<br />

0.52%<br />

1.37%<br />

0.85%<br />

Percent<br />

Errors of s<br />

0.023 -<br />

0.17 0.47<br />

0.76 0.21<br />

5.00<br />

0.44<br />

0.70 0.15<br />

Decay energies not updated or corrected for consistent standards.<br />

b Half lives as determined by calorimetric and decay energy measurement not considered.<br />

c Values computed from the relation s = 2119.338 (Q/MeV) / { (A/amu) J[T years) } where A is the<br />

mass number_ on the 12C scale as given, e.g., in Ref. ¡_ 19_/.<br />

From Ref. / 20 /.<br />

e From Ref. / 17 /.<br />

From Ref. / 21 /. _<br />

9 From Ref. j_ 22, 23_/.<br />

h , . _ _<br />

From a réévaluation of the data published in Ref. 2 4 using (original values in parentheses)<br />

T i / 2 ( Pu) =_87.80 (87.60) y, T i /2 (21,1Pu) = 15.10 (14.03) y, si = 3.62 (4.24) mW/g and of<br />

the data of_ /_ 50_/ by use of si = 567.17 (567.00) mW/g, so = 7.105 (7.097) mW/g. Results are<br />

(for / 24 / ) s g = 1.9054 ± 0.0040 mW/g, so = 7.1046 ± 0.0150 mW/g and (for two samples measured<br />

in /_ 50_/) S9 = 1 .9235 ± 0.0039 mW/g, S9 = 1.9136 ± 0.0039 mW/g. For so the value so determined<br />

has been adopted, for S9 the average of the three values has been taken. Clearly, the prob-<br />

. able sg error is_ larger than the uncertainties quoted.<br />

' From Ref. / 25 /■<br />

¿ From Ref. /_22_/.<br />

From Ref. / 2 6 / . Note that the new value_was_added in proof and does not appear in the abstract<br />

of / 26 / nor in the older paper J_ 21_ / .<br />

From Ref. /_28_/.<br />

n From Ref. / 5 1 / .<br />

° From Ref. / 29 /.<br />

P From Ref. / 30_/.


206 WEITKAMP et al.<br />

(2) T h e i n f l u e n c e o f e r r o r s o f n u c l e a r c o n s t a n t s u p o n t h e<br />

a m o u n t o f p l u t o n i u m t o b e m e a s u r e d d i f f e r s w i t h t h e a p p l i ­<br />

c a t i o n o f d i f f e r e n t m e a s u r e m e n t a n d e v a l u a t i o n t e c h n i q u e s .<br />

A n e x a m p l e is t h e m e a s u r e m e n t o f t h e 2 3 e P u p e r c e n t a g e , p 8 .<br />

I f p e i s d e t e r m i n e d b y a s p e c t r o m e t r y , t h e e r r o r o f<br />

T i / 2 (2 3 8 Pu) e n t e r s i n b o t h pe a n d se a n d w i l l p a r t i a l l y<br />

c a n c e l , p r o v i d e d t h e a s p e c t r o m ê t r i s t a n d c a l o r i m e t r i s t<br />

u s e t h e s a m e h a l f - l i f e v a l u e . If, o n t h e o t h e r h a n d , pa<br />

i s l a r g e s o t h a t m a s s s p e c t r o m e t r y i s a p p l i e d f o r i t s d e ­<br />

t e r m i n a t i o n , T 1/2 (2 3 8 Pu) e n t e r s o n l y i n sg p r o d u c i n g a<br />

q u a l i t a t i v e l y d i f f e r e n t e f f e c t .<br />

T h e r e f o r e m o r e p r e c i s e m e a s u r e m e n t s o f i n d i v i d u a l n u c l e a r d a t a<br />

i n v o l v e d i n t h e c o n v e r s i o n o f h e a t i n t o p l u t o n i u m m a s s m u s t b e<br />

a c c o m p a n i e d b y a c o m p r e h e n s i v e e v a l u a t i o n o r r é é v a l u a t i o n o f<br />

p u b l i s h e d m e a s u r e m e n t s w i t h t h e a i m o f o b t a i n i n g a con sisten t set<br />

o f data , a n d a s y s t e m s a n a l y t i c a l s t u d y o f t h e m e t h o d w i t h a l l<br />

i t s a n c i l l a r y m e a s u r e m e n t s t h a t c o u l d g o a s f a r a s t o p r e s e n t<br />

a r e c i p e f o r t h e procedure to follow i n t h e a s s a y o f r e a c t o r p l u ­<br />

t o n i u m b y c a l o r i m e t r y .<br />

6. A S S A Y T E C H N I Q U E S U S I N G N E U T R O N I N T E R R O G A T I O N<br />

A w i d e l y u s e d n o n d e s t r u c t i v e t e c h n i q u e f o r t h e a s s a y o f<br />

n u c l e a r m a t e r i a l c o n s i s t s o f i r r a d i a t i n g t h e s a m p l e w i t h n e u t r o n s<br />

a n d c o u n t i n g o f t h e e m i t t e d f i s s i o n n e u t r o n s . T h e i r i n t e n s i t y<br />

i s a m e a s u r e o f t h e a m o u n t o f f i s s i l e m a t e r i a l p r e s e n t . D i s ­<br />

c r i m i n a t i o n b e t w e e n s o u r c e n e u t r o n s a n d f i s s i o n n e u t r o n s i s d o n e<br />

e i t h e r b y u s i n g a p u l s e d s o u r c e a n d d e t e c t i n g d e l a y e d f i s s i o n<br />

n e u t r o n s , b y u s i n g a s t a t i o n a r y s o u r c e o f r e l a t i v e l y l o w e n e r g y<br />

n e u t r o n s t o g e t h e r w i t h a t h r e s h o l d d e t e c t o r , o r b y u t i l i z i n g<br />

t h e m u l t i p l i c i t y o f f i s s i o n n e u t r o n e m i s s i o n .<br />

I n a n y c a s e r e a c t i o n s a n d m a t e r i a l s a r e u s e d w h i c h a l s o<br />

o c c u r i n a n u c l e a r r e a c t o r a n d f o r w h i c h a l l r e l e v a n t n u c l e a r<br />

d a t a a r e a v a i l a b l e . T h e y a r e u s e d f o r i n s t r u m e n t d e s i g n c a l c u ­<br />

l a t i o n s , o p t i m i z a t i o n s t u d i e s , a n d f o r t h e d e t e r m i n a t i o n o f<br />

c o r r e c t i o n s s u c h a s n e u t r o n m u l t i p l i c a t i o n i n t h e s a m p l e . B e c a u s e<br />

c a l c u l a t i o n s d o n o t g i v e t h e r e q u i r e d a c c u r a c y t h e c a l i b r a t i o n<br />

o f t h e i n s t r u m e n t i s u s u a l l y d o n e w i t h a s e t o f s t a n d a r d s a m p l e s .<br />

G o o d c a l i b r a t i o n i s r e l a t i v e l y e a s y t o o b t a i n f o r c l e a n<br />

m a t e r i a l l i k e f r e s h f u e l r o d s , b u t i s d i f f i c u l t f o r s c r a p a n d<br />

w a s t e w h e r e t h e d e t e c t o r r e s p o n s e d e p e n d s g r e a t l y u p o n t h e m a ­<br />

t r i x m a t e r i a l a n d t h e l o c a t i o n o f t h e f i s s i l e m a t e r i a l i n t h e<br />

s a m p l é . E x t e n s i v e s t u d i e s o f t h i s e f f e c t w e r e m a d e , a n d<br />

m e t h o d s f o r i t s r e d u c t i o n p r o p o s e d / 3 1 _ 7 . N e v e r t h e l e s s u n c e r ­<br />

t a i n t i e s i n s a m p l e c o m p o s i t i o n , e . g . t h e p r e s e n c e o f h y d r o g e n ,<br />

a r e s t i l l a m a j o r s o u r c e o f e r r o r . T h i s e f f e c t is p r o b a b l y<br />

m u c h l a r g e r t h a n t h e i n f l u e n c e o f n u c l e a r d a t a u n c e r t a i n t i e s<br />

i n s u p p l e m e n t a r y c a l c u l a t i o n s .<br />

A n a r e a i n w h i c h n u c l e a r d a t a a r e o f i m m e d i a t e i m p o r t a n c e<br />

i s t h e d e t e r m i n a t i o n o f f i s s i o n a b l e m a t e r i a l i n s a m p l e s c o n ­<br />

t a i n i n g m i x t u r e s o f d i f f e r e n t f i s s i l e a n d f e r t i l e s p e c i e s .<br />

T h e p r e p a r a t i o n o f s t a n d a r d s o f a l a r g e n u m b e r o f c o m p o s i t i o n s<br />

i s n o t e c o n o m i c . T h e r e f o r e c a l c u l a t e d v a l u e s a r e n e e d e d f o r i n ­<br />

t e r p o l a t i o n . E r r o r s m a y r e s u l t f r o m i n t e r a c t i o n e f f e c t s ; i t w a s ,


IA E A -S M -170/78 207<br />

e . g . , o b s e r v e d t h a t p r e d i c t i o n s o f r e s o n a n c e s e l f s h i e l d i n g o f<br />

2 3 5ц _ 2 3 9 p u m i x t u r e s i n t h e s l o w i n g - d o w n s p e c t r o m e t e r w e r e in<br />

e r r o r b y 15 %. E r r o r s c a n a l s o r e s u l t f r o m f a s t f i s s i o n a n d i n ­<br />

e l a s t i c s c a t t e r i n g i n 2 3 8 U. A s t u d y o f t h e i n f l u e n c e o f n u c l e a r<br />

d a t a u p o n t h e s e e f f e c t s h a s s o f a r n o t b e e n m a d e .<br />

7. A C T I V A T I O N A N A L Y S I S<br />

A n e x a m p l e f o r a c t i v a t i o n a n a l y s i s i s t h e d e t e r m i n a t i o n o f<br />

c o n c e n t r a t i o n s o f 2 3 5U a n d 2 3 9 P u i n w a s t e s o l u t i o n s o f r e p r o c e s ­<br />

s i n g p l a n t s a s p r e s e n t l y u n d e r i n v e s t i g a t i o n /13, 14, 3 2 _ / . T h e<br />

m e t h o d i s b a s e d o n t h e s e p a r a t i o n o f t h e f i s s i o n p r o d u i s 8 8 K r<br />

a n d 1 3 8 X e a n d y s p e c t r o m e t r y o f t h e d a u g h t e r n u c l i d e s R b a n d<br />

1 3 8 C s . B e c a u s e o f t h e l a r g e d i f f e r e n c e s i n y i e l d f o r t h e i s o ­<br />

b a r s 88 a n d 1 3 8 i n f i s s i o n o f 2 3 5 U a n d 2 3 9 P u t h e m e t h o d i s s u i ­<br />

t e d f o r t h e d e t e r m i n a t i o n o f t h e a b s o l u t e q u a n t i t y a n d o f t h e<br />

r a t i o o f t h e t w o f i s s i o n a b l e n u c l i d e s . F o r t h e r e d u c t i o n o f m e a ­<br />

s u r e d d a t a t h e f o l l o w i n g n u c l e a r c o n s t a n t s a r e r e l e v a n t :<br />

- h a l f l i v e s o f 8 8 K r , e e R b , 1 3 8 X e , 1 3 8 C s ;<br />

e m i s s i o n p r o b a b i l i t i e s f o r t h e 1 4 2 6 a n d 1 8 3 7 k e V<br />

y r a y s o f 1 3 6 C s a n d 8 8 Rb, r e s p e c t i v e l y ;<br />

f i s s i o n c r o s s s e c t i o n s o f 2 3 5 U a n d 23 Pu;<br />

- c u m u l a t i v e y i e l d s o f 8 8 K r a n d 1 3 8 X e .<br />

I f t h e s y s t e m i s c a r e f u l l y c a l i b r a t e d w i t h s t a n d a r d s o l u t i o n s<br />

t h e k n o w l e d g e o f t h e n u c l e a r d a t a l i s t e d i s o f l i t t l e i m p o r t a n c e<br />

a s l o n g a s a l l e x p e r i m e n t a l c o n d i t i o n s r e m a i n u n c h a n g e d . T h e<br />

e x p e r i e n c e s h o w s , h o w e v e r , t h a t t h i s r e q u i r e m e n t i s i m p o s s i b l e<br />

t o f u l f i l l , a n d c o r r e c t i o n s h a v e t o b e a p p l i e d t h a t d e p e n d m o s t<br />

c r i t i c a l l y u p o n t h e h a l f l i v e s a n d t o a l e s s e r e x t e n t u p o n t h e<br />

o t h e r d a t a l i s t e d . W h e r e a s c r o s s s e c t i o n s a n d y i n t e n s i t i e s a r e<br />

a c c u r a t e l y k n o w n , n o s a t i s f a c t o r y v a l u e s f o r c u m u l a t i v e y i e l d s<br />

o f 8 8 K r a n d 1 3 8 X e h a v e s o f a r b e e n p u b l i s h e d .<br />

8. C O I N C I D E N C E T E C H N I Q U E S<br />

A c h a r a c t e r i s t i c o f n u c l e a r f i s s i o n i s t h e f a c t t h a t i n m o s t<br />

o f t h e i n d i v i d u a l e v e n t s a n u m b e r o f n e u t r o n s a n d p h o t o n s a r e<br />

e m i t t e d s i m u l t a n e o u s l y . T o u s e t h i s e f f e c t f o r a s s a y , p u r p o s e s<br />

s e v e r a l c o i n c i d e n c e t e c h n i q u e s h a v e b e e n d e v e l o p e d £ ~ Í3 -J 9 _ J<br />

t h a t e s s e n t i a l l y a l l o w t o d e t e r m i n e t h e n u m b e r o f p a i r s ,<br />

t r i p l e s , o r h i g h e r m u l t i p l e s o f c o r r e l a t e d p a r t i c l e s a n d t h e r e ­<br />

f r o m t h e n u m b e r o f f i s s i o n s i n t h e s a m p l e t o b e a s s a y e d .<br />

T h e m e a s u r e m e n t o f p a i r c o i n c i d e n c e s h a s p r o v e n p a r t i c u l a r l y<br />

u s e f u l i n t h e d e t e r m i n a t i o n o f i s o t o p e s t h a t u n d e r g o s p o n t a n e o u s<br />

f i s s i o n , e . g . i n t h e n o n d e s t r u c t i v e a s s a y o f p l u t o n i u m .<br />

T h e n e t c o u n t r a t e С o f t w o - f o l d c o i n c i d e n c e s i s r e l a t e d t o<br />

t h e m a s s e s пк o f t h e f i s s i o n i n g i s o t o p e s i b y t h e r e l a t i o n<br />

С = I m ±x ( L / A ±) x ( I n 2 / T i /2 , ±) x { V p ( V p - D / 2 x I = m J у±к± I (3)<br />

w h e r e L i s A v o g a d r o ' s n u m b e r , A t h e m a s s n u m b e r , a n d I is c h a r a c ­<br />

t e r i s t i c o f t h e i n s t r u m e n t u s e d a n d t h e m e t h o d a p p l i e d . N u c l e a r<br />

d a t a o f i n t e r e s t a r e t h e p a r t i a l h a l f l i f e f o r s p o n t a n e o u s f i s -<br />

s i o n T i / 2 a n d t h e a v e r a g e n u m b e r o f p r o m p t n e u t r o n p a i r s<br />

V p (V p - 1 ) /2 w h i c h m a y b e d e t e r m i n e d f r o m t h e f i r s t a n d s e c o n d<br />

m o m e n t o f t h e p r o b a b i l i t y d i s t r i b u t i o n p ( V p ) t h a t V p n e u t r o n s a r e


208 WEITKAMP et al.<br />

e m i t t e d i n a f i s s i o n e v e n t . E q . (3) c a n _ b e ^ h o w n t o h o l d f o r i n ­<br />

s t r u m e n t s w i t h s m a l l d e a d t i m e l o s s e s / 4 0 _ / . S o m e t i m e s , h o w e v e r ,<br />

c o r r e c t i o n t e r m s m u s t b e a d d e d w h i c h c o n t a i n h i g h e r m o m e n t s o f<br />

P ( V p ) . W h e t h e r t h e a c c u r a c y o f t h e s e d a t a i s s u f f i c i e n t f o r<br />

p r a c t i c a l p u r p o s e s h a s n e v e r b e e n i n v e s t i g a t e d .<br />

I n t h e f o l l o w i n g t h e d e p e n d e n c e o f t h e m e t h o d o n t h e n u c l e a r<br />

c o n s t a n t s a s d e f i n e d i n eq. (3) is d i s c u s s e d u n d e r t h e a s s u m p ­<br />

t i o n t h a t I i n e q . (3) i s d e t e r m i n e d b y c a l i b r a t i o n w i t h o n e o r<br />

m o r e s t a n d a r d s . = m i / m d e n o t e s t h e a b u n d a n c e o f i s o t o p e i<br />

r e l a t i v e t o t h e s u m o f a l l spontaneously fission in g i s o t o p e s , -i.e.<br />

t = 1, a n d m = £ m ^ i s t h e t o t a l m a s s o f spontaneously fission in g<br />

m a t e r i a l . I t i s s h o w n t h a t t h e d a t a d e p e n d e n c e d i f f e r s w i d e l y<br />

a s d i f f e r e n t p r o c e d u r e s a r e f o l l o w e d .<br />

(1) T h e s i m p l e s t c a s e i s t h e o n e i n w h i c h s a m p l e s a n d s t a n d a r d s<br />

h a v e t h e s a m e c o m p o s i t i o n , a n d t h e c o i n c i d e n c e r a t e С is<br />

p r o p o r t i o n a l t o m, i . e . I i s i n d e p e n d e n t o f b o t h m a s s a n d<br />

c o m p o s i t i o n o f t h e s a m p l e . T h i s m a y , e . g . , b e t h e c a s e<br />

f o r f u e l r o d s f a b r i c a t e d f r o m o n e b a t c h o f m a t e r i a l . E v i ­<br />

d e n t l y n o n u c l e a r d a t a a r e n e e d e d a t a l l .<br />

(2) I n g e n e r a l , h o w e v e r , t h e c o m p o s i t i o n o f t h e s t a n d a r d s d i f f e r s<br />

f r o m t h a t o f t h e u n k n o w n s a m p l e s , a n d t h e v a l u e o f I m u s t b e<br />

a s s u m e d t o b e a f u n c t i o n o f b o t h q u a n t i t y a n d c o m p o s i t i o n<br />

o f t h e s p o n t a n e o u s l y f i s s i o n i n g f r a c t i o n . A s o l u t i o n o f<br />

t h e p r o b l e m (at l e a s t t h e o r e t i c a l l y ) i s a s u f f i c i e n t l y l a r g e<br />

s e t o f s t a n d a r d s t h a t a l l o w s t o d e t e r m i n e t h e t e r m s yikj_I<br />

o r c o m b i n a t i o n s t h e r e o f w h i c h e n t e r i n t o e q . (3). N o n u ­<br />

c l e a r d a t a a r e r e q u i r e d ; i f a v a i l a b l e , h o w e v e r , t h e y p r o v i d e<br />

a v a l u a b l e c o n s i s t e n c y c h e c k o f t h e e x p e r i m e n t a l r e s u l t s .<br />

(3) I n a l l p r a c t i c a l c a s e s f e w s t a n d a r d s a r e a v a i l a b l e , a n d n u ­<br />

c l e a r d a t a a r e n e e d e d f o r i n t e r p o l a t i o n a n d e x t r a p o l a t i o n .<br />

G e n e r a l l y s p e a k i n g t h e d a t a m u s t b e t h e m o r e a c c u r a t e t h e<br />

s m a l l e r t h e n u m b e r o f s t a n d a r d s a n d t h e m o r e t h e i r m a s s a n d<br />

c o m p o s i t i o n d i f f e r f r o m t h o s e o f t h e s a m p l e s .<br />

A s s o m a n y p a r a m e t e r s c a n v a r y , l e t u s c o n s i d e r t h e e x a m p l e<br />

o f o n e " g o o d s t a n d a r d " , i . e . m a k e t h e r e s t r i c t i o n t h a t i t is<br />

s o s i m i l a r t o t h e u n k n o w n s a m p l e i n b o t h c o m p o s i t i o n a n d<br />

m a s s t h a t I d o e s n o t d i f f e r . T h e n t h e m a s s m o f t h e s p o n ­<br />

t a n e o u s l y f i s s i o n i n g p l u t o n i u m i n t h e u n k n o w n s a m p l e is<br />

r e l a t e d t o t h e m a s s m s i n t h e s t a n d a r d a n d t h e c o r r e s p o n d i n g<br />

c o u n t r a t e s С a n d C g v i a t h e r e l a t i o n<br />

m = m g C / C s {1 + у( k e - k o ) / ( u e k s + U o k o ) }<br />

a n d i t s r e l a t i v e e r r o r i s g i v e n b y<br />

T ■ a - A w , , I2 » “ ><br />

w h e r e у = ys ( s t a n d a r d ) - U e ( s a m p l e ) i s a m e a s u r e o f t h e d i f ­<br />

f e r e n c e i n c o m p o s i t i o n o f t h e s a m p l e a n d t h e s t a n d a r d . T h e<br />

y. r e f e r t o t h e u n k n o w n s a m p l e . U n c e r t a i n t i e s i n t h e k ^ h a v e<br />

o b v i o u s l y n o e f f e c t w h e n y = o , i . e . s t a n d a r d a n d s a m p l e h a v e<br />

t h e s a m e c o m p o s i t i o n . U s i n g n u c l e a r d a t a a s l i s t e d i n<br />

T a b l e V I , a s s u m i n g a c o m p o s i t i o n o f 1 % 2 3 8 P u , 7 5 % 2 3 9P u


IA E A -S M -1 70/7 8 209<br />

TA B L E VI. RELEVANT DATA FOR ASSAY <strong>OF</strong> PLUTONIUM BY<br />

COINCIDENCE COUNTING <strong>OF</strong> NEUTRONS FRO M SPONTANEOUS<br />

FISSION<br />

Isotope V (V -1) /<br />

V<br />

P P P<br />

P T l/2' y ears<br />

238 Pu 0.8 (after /~41 7) 2.21 ± 0.07/"~42 7 5.0 ± 0 . 6 х 10 1 0 /~4 з7<br />

240 Pu 0.807 ± 0.008/- 44_7 2.150 ± 0.008/- 42 7 1.32 ± 0.05x10* V"4^ 7<br />

242 Pu 0.8 (after /~41 _/) 2.141 ± 0.009/_ 42_? 7.00 ± 0.10xl01C^ _52_7<br />

a n d 2 4 % 21f °Pu, a n d t a k i n g y = 0 . 5 U e ( i . e . a s t a n d a r d w i t h<br />

t w i c e a s m u c h 2 3 8 P u ) , e q . (4) t r a n s f o r m s i n t o<br />

— = { ( 0 . 0 3 5 ^ ) 2 + ( 0 . 0 5 7 ^ - ) 2 + ( 0 . 0 5 7<br />

1П У K'8 * 0<br />

T h i s m e a n s t h a t a n e r r o r o f 1 % i n t h e d e t e r m i n a t i o n o f t h e<br />

23 8 P u p e r c e n t a g e ( w h i c h i s r e a l i s t i c ) c o n t r i b u t e s n e g l i ­<br />

g i b l y ( 0 . 0 4 %) t o t h e t o t a l e r r o r A m / m , w h e r e a s 1 0 % e r r o r<br />

i n e a c h o f t h e Дк/к ( w h i c h i s a n a r b i t r a r y b u t n o t t o o f a r ­<br />

f e t c h e d a s s u m p t i o n ) w o u l d r e s u l t i n a m a s s e r r o r A m / m o f<br />

0.8 %.<br />

(4) I n s o m e c a s e s i t c a n e v e n b e a d v a n t a g e o u s t o u s e w e l l - c a l i ­<br />

b r a t e d s t a n d a r d s o u r c e s o f a d i f f e r e n t i s o t o p e , e . g . 2 5 2 C f .<br />

T h e n t h e c o n s t a n t s k ^ e n t e r d i r e c t l y i n t o t h e c a l c u l a t i o n s .<br />

T h e i r a c c u r a c y i s f a r f r o m s u f f i c i e n t f o r t h i s p u r p o s e .<br />

I t m a y b e c o n c l u d e d t h a t t h e n u c l e a r d a t a n e e d e d f o r s o m e<br />

v a r i a n t s o f c o i n c i d e n c e t e c h n i q u e s a r e n o t s u f f i c i e n t l y a c c u r a t e .<br />

I t s h o u l d b e k e p t i n m i n d , h o w e v e r , t h a t p r o p e r p r e p a r a t i o n o f<br />

s t a n d a r d s u s u a l l y s o l v e s t h e p r o b l e m t o a n a c c u r a c y w h e r e ô t h e r<br />

e f f e c t s i n c l u d i n g p l a i n s t a t i s t i c s l i m i t t h e t o t a l a c c u r a c y t h a t<br />

c a n b e a c h i e v e d .<br />

9. P A S S I V E G A M M A A S S A Y<br />

F o r t h e p a s s i v e a s s a y o f u r a n i u m b y g a m m a s p e c t r o s c o p y n o<br />

i n c r e a s e i n a c c u r a c y c a n b e e x p e c t e d f r o m i m p r o v e d n u c l e a r d a t a<br />

b e c a u s e s e l f - a b s o r p t i o n o f t h e 1 8 5 k e V y r a y o f 2 3 5U i s t h e<br />

l i m i t i n g f a c t o r a n d t h e u s e o f s t a n d a r d s a m p l e s i s m a n d a t o r y .<br />

W h e r e c o r r e c t i o n s h a v e t o b e a p p l i e d , t h e n e c e s s a r y d a t a<br />

( m a i n l y y - r a y i n t e r a c t i o n c r o s s s e c t i o n s ) a r e u s u a l l y a c c u r a t e<br />

t o 3 % o r b e t t e r 46_J . T h e s a m e a p p l i e s t o t h e p a s s i v e<br />

Y m e a s u r e m e n t o f p l u t o n i u m . T h e s i t u a t i o n i s s o m e w h a t d i f f e r e n t<br />

i f p l u t o n i u m i s o t o p e r a t i o s a r e t o b e d e t e r m i n e d . B e c a u s e<br />

d i f f e r e n t i s o t o p e s e m i t y r a y s w i t h v e r y s i m i l a r e n e r g i e s , s o m e<br />

i s o t o p e r a t i o s c a n b e d e t e r m i n e d q u i c k l y a n d n o n d e s t r u c t i v e l y ,<br />

a l t h o u g h n o t q u i t e a s p r e c i s e l y a s b y m a s s o r a s p e c t r o m e t r y .<br />

I n o r d e r t o d o s o r e l a t i v e y i n t e n s i t i e s a r e n e e d e d . M e a s u r e ­<br />

m e n t s f r o m d i f f e r e n t a u t h o r s d o , h o w e v e r , n o t a g r e e v e r y w e l l .


TABLE VII. COMPARISON <strong>OF</strong> INTENSITIES <strong>OF</strong> PROMINENT y RAYS FROM VARIOUS<br />

PLUTONIUM ISOTOPES AND 241Am AS MEASURED B Y TWO AUTHORS<br />

Isotope Energy3<br />

keV<br />

Absolute<br />

L 47_/<br />

Intensity*3<br />

L ieJ<br />

% Error<br />

/ 48_/c<br />

Isotope<br />

r, a<br />

Energy<br />

keV<br />

Absolute<br />

L M j<br />

Intensity13<br />

L 48_/<br />

%Error<br />

/ 48_/ 0<br />

238Pu 43.5 3.80-4 3.92-4 1<br />

240<br />

Pu 160.3 1.04-5 4.20-6 1<br />

99.8 6.00-5 7.40-5 1 (cont'd) 642.5 4.10-7 1.45-7 3<br />

152.6 1.23-5 1.01-5 1 688.0 8.10-8 3.70-8 4<br />

766.4<br />

786.0<br />

2.80-7<br />

7.20-8<br />

2.40-7<br />

3.53-8<br />

1<br />

1<br />

241<br />

Pu 77.0<br />

103.5<br />

1.00-6<br />

1.01-6<br />

2.41-7<br />

1.04-6<br />

3<br />

1<br />

239PU 51.6 1.35-4 2.08-4 1 148.6 2.07-6 , 1.90-6 1<br />

129.3 5.60-5 6.20-5 1 160.0 7.45-8 6.45-8 2<br />

203.6<br />

375.0<br />

413.7<br />

4.80-6<br />

1.50-5<br />

1.50-5<br />

5.60-6<br />

1.58-5<br />

1.51-5<br />

1<br />

1<br />

241a Am 59.5<br />

125.3<br />

208.0<br />

3.53-1<br />

2.65-5<br />

7.06-6<br />

3.59-1<br />

3.95-5<br />

7.60-6<br />

1<br />

3<br />

2<br />

240PU 45.3 4.50-4 4.50-4 1 335.4 4.83-6 4.70-6 2<br />

104.2 1.00-4 7.00-5 1 722.0 1.90-6 1.85-6 1<br />

aEnergies taken from Ref. 47_/; as absolute values are relatively unimportant for the pur-<br />

pose, no comparison of energies was attempted.<br />

Intensities in photons per_disintegration. The notation 3.80-4 means 3.80x10<br />

CFor the figures of Ref. /_ 47_/ intensity errors are not quoted explicitly. An upper limit of<br />

10 % is estimated even for weak lines at low energies where self-absorption is maximum.


IA E A -S M -1 70/7 8 211<br />

T a b l e V I I s h o w s a s e x a m p l e s i n t e n s i t i e s o f t h e m o s t p r o m i n e n t -<br />

Y l i n e s w h i c h o c c a s i o n a l l y d i f f e r b y a f a c t o r o f 2 a l t h o u g h t h e<br />

e r r o r s q u o t e d f o r e a c h o f t h e m e a s u r e m e n t s a r e b e l o w 1 0 %.<br />

A n i m p r o v e m e n t o f t h e s e d a t a i s d e s i r a b l e .<br />

10. I S O T O P E C O R R E L A T I O N S<br />

I s o t o p e a n a l y s i s o f s p e n t f u e l i s a k e y p o i n t i n t h e f u e l<br />

c y c l e b e c a u s e t h e b u r n u p a n d t h e c o n t e n t o f f i s s i l e m a t e r i a l<br />

c a n b e d e t e r m i n e d m o r e p r e c i s e l y b y e x p e r i m e n t a l t h a n b y c o m ­<br />

p u t a t i o n a l m e t h o d s . H o w e v e r , h i g h e x p e n d i t u r e s n e c e s s a r y f o r<br />

i s o t o p e d i l u t i o n a n a l y s i s a s p r e s e n t l y i n u s e s t i m u l a t e d<br />

t h e s e a r c h f o r l e s s e x p e n s i v e m e t h o d s w h i c h m a y n o t r e p l a c e ,<br />

b u t c a n b e u s e d f o r v e r i f i c a t i o n o f t h e r e s u l t s o f i s o t o p e<br />

d i l u t i o n a n a l y s i s . I s o t o p e c o r r e l a t i o n s f r e q u e n t l y o b s e r v e d i n<br />

p o s t - i r r a d i a t i o n e x a m i n a t i o n s o f r e a c t o r f u e l o f f e r s u c h a<br />

p o s s i b i l i t y .<br />

I s o t o p e c o r r e l a t i o n s w e r e f o u n d b e t w e e n ra tio s o f i s o ­<br />

t o p e s a n d t h e concentration o f i s o t o p e s i n t h e f u e l . T h e p r e s e n t<br />

k n o w l e d g e i s o b t a i n e d f r o m e x p e r i m e n t a l r e s u l t s o f a n a l y s é s<br />

d u r i n g f u e l r e £ r o c e s s i n g o r f r o m p o s t - i r r a d i a t i o n a n a l y s é s o f<br />

f u e l p e l l e t s ¡_ 1 4 , 4 9 _ 7 . T h e a d v a n t a g e s o f i s o t o p e c o r r e l a t i o n s<br />

a r e t h e s i m p l i c i t y a n d h i g h a c c u r a c y o f i s o t o p e r a t i o m e a s u r e m e n t s<br />

a s c o m p a r e d t o t h e c u m b e r s o m e a n d l e s s p r e c i s e d e t e r m i n a t i o n o f<br />

i s o t o p i c c o n c e n t r a t i o n s . I s o t o p e c o r r e l a t i o n s c a n b e g r o u p e d i n ­<br />

t o t h o s e d e p e n d i n g u p o n h e a v y i s o t o p e r a t i o s a n d t h o s e d e p e n ­<br />

d i n g o n t h e r a t i o s o f f i s s i o n p r o d u c t s .<br />

H e a v y i s o t o p e s a r e m e a s u r e d r o u t i n e l y i n r e p r o c e s s i n g<br />

i n p u t a n a l y s i s o r p o s t - i r r a d i a t i o n e x a m i n a t i o n s . T h e r e f o r e n o<br />

a d d i t i o n a l a n a l y t i c a l e f f o r t i s r e q u i r e d f o r t h i s m e t h o d .<br />

A f e w e x a m p l e s a r e g i v e n . T h e 2 3 5U d e p l e t i o n D 5 d e f i n e d a s t h e<br />

c h a n g e o f * 3 5U c o n c e n t r a t i o n r e l a t i v e t o i t s i n i t i a l v a l u e c a n<br />

b e c o r r e l a t e d t o t h e 21,0P u / 2 3 9P u r a t i o (Fig. 1 a ) . T h i s c o r r e ­<br />

l a t i o n s e e m s t o b e i n d e p e n d e n t o f t h e i n d i v i d u a l r e a c t o r a n d is<br />

n o t s e n s i t i v e t o t h e i n i t i a l 2 3 5 U e n r i c h m e n t . O t h e r c o r r e l a t i o n s ,<br />

h o w e v e r , d o d e p e n d u p o n t h e i n i t i a l e n r i c h m e n t . A n e x a m p l e i s<br />

s h o w n i n F i g . 1 b.<br />

T h e s e t w o e x a m p l e s i l l u s t r a t e t h e b e n e f i t o f c o r r e l a t i o n<br />

m e t h o d s a s w e l l a s t h e i r l i m i t s w h i c h æ s u l t f r o m t h e s e n s i ­<br />

t i v i t y t o t h e i n i t i a l f u e l c o m p o s i t i o n . T h i s p r o b l e m w i l l b e<br />

e n h a n c e d i n t h e c a s e o f p l u t o n i u m r e c y c l i n g . F i s s i o n p r o d u c t s<br />

o f f e r a b e t t e r c h o i c e i n t h i s r e s p e c t . E . g . t h e c o r r e l a t i o n<br />

b e t w e e n b u r n u p a n d 1 3 2 X e / 1 3 1 X e r a t i o i s i n d e p e n d e n t o f i n i t i a l<br />

e n r i c h m e n t a n d o f t h e i n d i v i d u a l r e a c t o r (Fig. 1 c ) . T h i s is<br />

a l s o t h e c a s e f o r t h e c o r r e l a t i o n o f t h e 21*°Pu c o n c e n t r a t i o n w i t h<br />

t h e 1 ц sN d / 1 14 eN d r a t i o (Fig. 1 d) . T h e r o l e o f n u c l e a r d a t a i n t h i s<br />

f i e l d i s a s f o l l o w s .<br />

I n o r d e r t o u n d e r s t a n d t h e r e a c t o r p h y s i c s b e h i n d t h e s e c o r ­<br />

r e l a t i o n s b u r n u p c a l c u l a t i o n s a r e r e q u i r e d . P r e d i c t i o n s w i t h<br />

e x i s t i n g c o d e s h a v e s o f a r n o t g i v e n g o o d a g r e e m e n t w i t h e x ­<br />

p e r i m e n t . I t i s n o t c l e a r , h o w e v e r , t o w h a t e x t e n t u n c e r t a i n t i e s<br />

o f n u c l e a r d a t a c o n t r i b u t e t o t h i s d i s c r e p a n c y . T h e r e f o r e t h e<br />

a d e q u a c y o f d e t a i l s o f t h e c o m p u t a t i o n s , s u c h a s t h e e n e r g y


2 12 W E IT K A M P e t al.<br />

2-00E-01 2-80E-01 3-60E-01 ¿-¿OE-01<br />

2t0Pu/ 239Pu -------- -<br />

2-80E-00<br />

2-60E-00<br />

2Ч0Е-00<br />

2-2ÛE-00<br />

2-OOE-OO<br />

2-80E-00 \<br />

V<br />

v □<br />

1-60E-00<br />

■<br />

Ы0Е-00<br />

■<br />

1-20E-00<br />

\\\\<br />

\ V \ \ \ \<br />

\ V\ \<br />

1-00E-00<br />

>; % \<br />

У \ \<br />

1-00E-01 x \ \ (b)<br />

2-20E-03<br />

2-00E-03<br />

1-80E-03<br />

1-60E-03<br />

i к о е -оз<br />

1-20E-03<br />

1-00E-03<br />

8-Ü0E-04<br />

6-00E-0A<br />

4-00E-03 Ц-20Е-02 \ 2-00E*02| 2-80E-02) 3-60E-02<br />

8-00E-03 1-6ÛE'02 2-40E-02 3-20E-02<br />

4-00E-CW. (d)<br />

8-00E-01 8-40E-01 8-80E-01 9-20E-01 9-60E-01<br />

8-20E-01 8-60E-01 9-OOE-Ol 9Ч0Е-01<br />

U6Nd/ usNd ------ ►<br />

FIG. 1. C o rre la tio n betw een (a) 235U de p letio n D 5 and 240P u / 239Pu ratio; (b) b u in -u p F j (fissions per<br />

100 h e a v y n u c le i in it ia lly present) and 235U / 238U ratio; (c) F-j.and i32X e / 131X e ratio; (d) 240Pu content<br />

and I46N d / 145N d ratio. D iffe re n t sym bols refer to d iffe re n t lig h t-w a te r reactors w ith six d iffe re n t in it ia l<br />

e nrichm ents.<br />

g r o u p s t r u c t u r e , s h o u l d b e c h e c k e d m o r e c a r e f u l l y , a n d t h e d e ­<br />

p e n d e n c e o f t h e r e s u l t s u p o n n u c l e a r d a t a s h o u l d b e i n v e s t i g a t e d .<br />

O n l y t h e n c a n t h e r e q u i r e m e n t f o r i m p r o v e d o r a d d i t i o n a l n u c l e a r<br />

d a t a b e a s s e s s e d .<br />

11. C O N C L U S I O N<br />

A l t h o u g h m o s t m e t h o d s o f n u c l e a r m a t e r i a l a s s a y f o r s a f e ­<br />

g u a r d s a r e b a s e d u p o n s o m e f o r m o f n u c l e a r d a t a , t h e r e a r e f e w<br />

e x a m p l e s w h e r e a b e t t e r o r m o r e p r e c i s e v a l u e o f a g i v e n q u a n ­<br />

t i t y w o u l d r e s u l t i n a n i m m e d i a t e a n d d r a s t i c i m p r o v e m e n t o f<br />

t h e p e r f o r m a n c e o f a m e a s u r e m e n t t e c h n i q u e f o r t h e f o l l o w i n g<br />

r e a s o n s :


<strong>IAEA</strong>-SM “ 17 0 /7 8 213<br />

(1) E v e n t h e m o s t a c c u r a t e n u c l e a r d a t a w i l l n o t m e e t t h e<br />

a c c u r a c y o f c l a s s i c a l ( i . e . , c h e m i c a l ) a n a l y t i c a l<br />

m e t h o d s s o c a l i b r a t i o n i s a n d w i l l p r i m a r i l y b e d o n e b y<br />

u s e o f £tandarás.<br />

(2) N u c l e a r S a f e g u a r d s b e i n g a r e l a t i v e l y y o u n g f i e l d f e w<br />

m e t h o d s h a v e b e c o m e r o u t i n e , a n d s e c o n d - o r d e r e f f e c t s t h a t<br />

c a n b e d e a l t w i t h b y i m p r o v e d n u c l e a r d a t a c o m p e t e w i t h m u c h<br />

l a r g e r uncertain ties from other e ffe c t s a s , f o r e x a m p l e , i n s u f ­<br />

f i c i e n t k n o w l e d g e o f m a t r i x m a t e r i a l i n t h e s a m p l e .<br />

(3) U n l i k e n u c l e a r d a t a f o r r e a c t o r s , n u c l e a r d a t a f o r s a f e ­<br />

g u a r d s a r e n o t d i r e c t l y a m e n a b l e t o c o s t - b e n e f i t c a l c u ­<br />

l a t i o n s b e c a u s e t h e v i r t u e o f a d e c r e a s e i n t h e a m o u n t o f<br />

m a t e r i a l u n a c c o u n t e d f o r , o r M U F , i s hard to quantify.<br />

(4) M o s t o f t h e r e s e a r c h w o r k d o n e s o f a r h a s b e e n c o n c e n t r a t e d<br />

o n t h e d e v e l o p m e n t o f instruments, n o t o f s y s te m s t h a t s p e ­<br />

c i f y t h e u s a g e o f t h o s e i n s t r u m e n t s f o r p a r t i c u l a r a p p l i c a ­<br />

t i o n s a n d h e l p d e t e r m i n e p r o b l e m a r e a s i n w h i c h n u c l e a r<br />

d a t a a r e m o s t u r g e n t l y n e e d e d .<br />

T h e r e f o r e s t u d i e s o f t h i s k i n d a r e a p r e r e q u i s i t e f o r t h e<br />

e f f i c i e n t i m p r o v e m e n t o f e x i s t i n g n u c l e a r d a t a f o r s a f e g u a r d s ,<br />

a n d m o r e t h o r o u g h i n v e s t i g a t i o n s o f t h e q u a n t i t a t i v e r o l e o f<br />

n u c l e a r d a t a i n e v e r y i n d i v i d u a l m e t h o d d e s e r v e a l l p o s s i b l e s u p p o r t .<br />

R E F E R E N C E S<br />

¿~ 1 _ J B Y E R , T . A . , I N D C ( N D S ) - 4 4 / G ( 1 9 7 2 ) .<br />

£ ~ 2 j M E T Z G E R , F . R . , i n O . R . F r i s c h e d . , P r o g r e s s i n N u c l e a r<br />

P h y s i c s 7 (1959) 54.<br />

/ ~ 3 _ 7 W E I T K A M P , C . , K F K 1 7 4 5 ( 1 9 7 3 ) .<br />

¿ - 4 _ 7 H E L M E R , R . G . , G R E E N W O O D , R . C . , G E H R K E , R . J . , N u c l .<br />

I n s t r . a n d M e t h . 9 6 (1971) 173.<br />

/ “5 _ 7 M E T Z G E R , F . R . , P h y s . R e v . L e t t e r s 18 (1967) 4 3 4 .<br />

/ - 6 _ 7 R I C K E Y , F . A . , J U R N E Y , E . T . , B R I T T , H . C . , P h y s . R e v . С 5<br />

(1972) 2 0 7 2 .<br />

/ ~ 7 _ 7 M I C H A E L I S , W . , A t o m k e r n e n e r g i e 14 (1969) 3 4 7 .<br />

¿ b _ 7 C H R I E N , R . E . , e t a l . , B N L 1 5 6 9 8 ( 1 9 7 0 ) .<br />

/ “9 _ 7 K A N E , W . R . , P h y s . R e v . L e t t e r s 2 5 (1970) 953.<br />

l_ 1 0 _ 7 M A T U S S E K , P . , e t a l . , Safeguards Techniques , V o l . II, I A E A ,<br />

V i e n n a 1 9 7 0 , p. 113.<br />

1 1 _ 7 M A T U S S E K , P . , e t a l . , Contributions to the Conference on<br />

<strong>Nuclear</strong> Structure Study with Neutrons, B u d a p e s t , J u l y 31 -<br />

A u g u s t 5, 1 9 7 2 , p. 84.<br />

j_ 12 J G R O S H E V , L . V . , e t a l . , N u c l e a r D a t a A 5 (1969) 2 4 3 .


214 WEITKAMP et al.<br />

L i3_7<br />

Z _ 1 4 _ 7<br />

¿ " « _ 7<br />

L i6 _ 7<br />

Z ~ 17_7<br />

/ " 18_7<br />

Z~ 1 9 _ 7<br />

L 2 o_7<br />

Z " 2 i _ 7<br />

Z " 2 2 _ 7<br />

Z " 2 3 _ 7<br />

Z“24_7<br />

L 25_7<br />

Z" 2 6 _ 7<br />

Z~ 2 7 _ 7<br />

Z ~ 2 8 _ 7<br />

Z~2 9_7<br />

L 30_7<br />

Z“31_7<br />

Z ~32_7<br />

Z ~ 3 3 _ 7<br />

Z“34_7<br />

Z “35_7<br />

B O R K , G . , e d . , K F K 1 4 2 9 ( 1 9 7 1 ) .<br />

B O R K , G . , e d . , K F K 1 6 1 8 ( 1 9 7 2 ) .<br />

B A R T H O L O M E W , G . A . , e t a l . , N u c l e a r D a t a A 3 (1969) 3 6 7 .<br />

H O F F M A N N , D . C . , e t a l . , J. I n o r g . N u c l . C h e m . 5 (1957)<br />

6 .<br />

S M I T H , W . H . , R O G E R S , D . R . , S I L V E R , G . L . , M o u n d L a b o r a ­<br />

t o r i e s R e p o r t M L M - 1 6 9 1 ( 1 9 6 9 ) .<br />

W E I T K A M P , C . , e t a l .,K F K 1 2 9 9 ( 1 9 7 1 ) .<br />

W A P S T R A , A . H . , G O V E , N . B . , N u c l e a r D a t a A 9 (1971)<br />

2 6 5 .<br />

G R E N N B E R G , B . , R Y T Z , A . , M e t r o l o g í a 7 (1971) 65.<br />

B A R A N O V , S . A . , e t a l . , Y a d e r n . F i z . 7 (1968) 7 2 7 ;<br />

S o v j e t J o u r n a l o f N u c l e a r P h y s i c s 7 (1968) 4 4 2 .<br />

D O K U C H A E V , Y a . P . , A t o m n a j a E n e r g i j a 6 (1959) 74;<br />

J. N u c l e a r E n e r g y 11 A (1960) 195.<br />

M A R K I N , T . L . , J. I n o r g . N u c l . C h e m . 9 (1959) 3 2 0 .<br />

O E T T I N G , F . L . , Thermodynamics o f <strong>Nuclear</strong> Materials , I A E A ,<br />

V i e n n a 1 9 7 0 , p. 55.<br />

L E A N G , C . F . , C o m p t e s R e n d u s A c a d . S e i . 2 5 5 ( 1 9 6 2 ) 3 1 5 5 .<br />

C A B E L L , M . J . , Chemical <strong>Nuclear</strong> <strong>Data</strong>, Measurements and Application<br />

s, P r o c e e d i n g s o f t h e I n t e r n a t i o n a l C o n f e r e n c e ,<br />

20-22 S e p t e m b e r 1 9 7 1 , C a n t e r b u r y .<br />

C A B E L L , M . J . , W I L K I N S , M . , J. I n o r g . N u c l . C h e m . 33<br />

(1971) 9 0 3 .<br />

O E T T I N G , F . L . , P h y s . R e v . 1 6 8 (1968) 1 3 9 8 .<br />

S T O N E , R . E . , H U L E T , E . K . , J. I n o r g . N u c l . C h e m . 3 0<br />

(1968) 2 0 0 3 .<br />

O E T T I N G , F . L . , G U N N , S . R . , J. I n o r g . N u c l . C h e m . 29<br />

(1967) 2 6 5 9 .<br />

A U G U S T S O N , R . H . , e t a l . , Safeguards Techniques, V o l . II,<br />

I A E A , V i e n n a 1 9 7 0 , p. 53.<br />

H A W A , A . H . , T h e s i s , K a r l s r u h e , i n p r e p a r a t i o n .<br />

J A C Q U E S S O N , J . , J. P h y s . 24, S u p p l . t o N o . 6 (1963)<br />

1 1 2 A.<br />

K E E P I N , G . R . , e d . , L A - 3 9 7 4 - M S (1968) 14.<br />

O M O H U N D R O , R . J . , N R L - M e m o r a n d u m R e p o r t 2 0 0 5 ( 1 9 6 9 ) .


IA E A -S M -1 70/78<br />

l_ 36 / G O Z A N I , T . , C O S T E L L O , D . G ., T r a n s a c t i o n s o f t h e A m e r i e a n<br />

— N u c l e a r S o c i e t y 13 (1970) 7 4 6 .<br />

¿ ~ 3 7 _ 7 F O L E Y , J . E . , T H O R P E , M . M . , L A - 4 7 0 5 - M S (1971) 9.<br />

¡_ 3 8 _ 7 B I R K H O F F , G . , e t a l . , Safeguards Techniques, V o l . I I ,<br />

I A E A , V i e n n a , 1 9 7 0 , p. 4 7 7 .<br />

/“3 9 _ 7 S T R A I N , C . V . , N R L - M e m o r a n d u m R e p o r t 2 1 2 7 ( 1 9 7 0 ) .<br />

/ ~ 4 0 _ 7 B Ö H N E L , K . , T r a n s a c t i o n s o f t h e A m e r i c a n N u c l e a r<br />

S o c i e t y 1 5 (1972) 6 7 1 .<br />

j_ 41J K E E P I N , G . R Physics o f <strong>Nuclear</strong> K in etics, A d d i s o n -<br />

— W e s l e y , R e a d i n g , 1 9 6 5 , p. 60.<br />

/ “4 2 _ 7 M A Ñ E R O , F . , K O N S H I N , V . A . , I N D C ( N D S ) - 3 4 / G ( 1 9 7 2 ) .<br />

¿~ 4 3 _ 7 E L L I S , Y . A . , N u c l e a r D a t a В 4 (1970) 6 3 5 .<br />

/ ~ 4 4 _ 7 D I V E N , B.C., e t a l . , P h y s . R e v . 1 0 1 (1956) 1 0 1 2 .<br />

/ ~ 4 5 _ 7 S C H M O R A K , M . R . , N u c l e a r D a t a B 4 (1970) 6 6 1 .<br />

¿ ~ 4 6 _ 7 S T O R M , E . , I S R A E L , H . I . , N u c l e a r D a t a A 7 (1970) 5 6 5 .<br />

/ “4 7 _ 7 C L I N E , J . E . , e t a l ., A N C R - 1 0 6 9 ( 1 9 7 2 ) .<br />

/ “4 8 _ 7 G U N N I N K , R . , M O R R O W , R . J . , U C R L - 5 1 0 8 7 ( 1 9 7 1 ) .<br />

£ ~ 4 9 _ 7 K O C H , L. , e t al. , A nalytical Methods in the <strong>Nuclear</strong> Fuel<br />

~ Cycle, I A E A , V i e n n a 1 9 7 2 , p. 523.<br />

!_ 5 0 _ / O E T T I N G , F . L . , Plutonium 1970 and oth er A ctin id es, P r o c e e -<br />

— d i n g s o f t h e 4 t h I n t e r n a t i o n a l C o n f e r e n c e , S a n t a F e ,<br />

N e w M e x i c o , O c t o b e r 5 - 9 , 1 9 7 0 , P a r t I, p. 154;<br />

N u c l e a r M e t a l l u r g y 17 (1970) 154.<br />

/ ~ 5 1 _ 7 B E M I S , C . E . , J r . , H A L P E R I N , J . , E B Y , R., 0 R N L - 4 3 0 6<br />

(1968) 31; J. I n o r g . N u c l . C h e m . 31 (1969) 599.<br />

52J E L L I S , Y . A . , N u c l e a r D a t a В 4 (1970) 6 8 6 .<br />

D I S C U S S I O N<br />

B. GRINBERG: In the ora l presentation you showed two tables, the<br />

first drawing attention to the d ifferen ces in the values which have been<br />

determ ined for the h a lf-liv e s of am ericiu m -241 and plutonium and the<br />

second giving the recom m ended values ("b est valu es") for these h a lf-liv e s.<br />

I would like to ask the follow in g questions in this connection:<br />

— By what method was the list of recom m ended values drawn up?<br />

— D o you think that a thorough evaluation o f these h a lf-liv es should<br />

be undertaken, coverin g in particular the m atter of a ccu ra cie s?<br />

— Do you fe e l that in som e ca ses new, high-quality determ inations<br />

would be d esira ble?<br />

215


216 W E IT K A M P e t a l.<br />

C. W EITKAM P: The p roced u res used in com pilin g the tables of r e ­<br />

com m ended values varied accord in g to the m ethod used fo r obtaining the<br />

data, the num ber and nature of co rre ctio n s introduced, and the details<br />

given in the original papers. In the m ost ca ses the h a lf-liv es and the<br />

sp e cific decay heats w ere rep laced by the m ost recen t values; for 239Pu<br />

and 240Pu a sim ultaneous analysis was ca rried out, but sin ce in the case<br />

of 240Pu the e r r o r s w ere greater than those given in two e a rlie r publications,<br />

the m ean of the latter was selected .<br />

As regard s im provem ent of the situation as a whole, I would,in fact,<br />

recom m en d that som e new experim ental determ inations be undertaken and<br />

that a thorough analysis of the e r r o r s be made beforehand, s o that all the<br />

p roblem s can be taken into account when the experim ents are designed.


IA E A -SM -П О /5 4<br />

THE ROLE <strong>OF</strong> NUCLEAR DATA IN<br />

THE PRACTICAL APPLICATION <strong>OF</strong><br />

NON-DESTRUCTIVE NUCLEAR ASSAY METHODS*<br />

M .M . THORPE<br />

University o f California,<br />

Los Alamos Scientific Laboratory,<br />

Los Alam os, N. Mex. ,<br />

United States o f America<br />

Abstract<br />

T H E R O LE O F N U C L E A R D A T A IN T H E P R A C T I C A L A P P L IC A T IO N O F N O N - D E S T R U C T IV E N U C L E A R<br />

A S S A Y M E T H O D S .<br />

Uses o f n u cle a r data in the d e ve lo p m e n t o f p r a c t ic a l n u cle a r assay techn iqu es f a ll n a tu ra lly in to<br />

three categories. First, there are param eters w h ic h ca n enter d ire c tly in to the c a lib ra tio n o f equip m ent,<br />

such as d e ca y rates, g a m m a in te n sitie s and atten uation co e ffic ie n ts , neutron y ield s, etc. T h e second<br />

categ o ry in v o lv e s the use o f n u cle a r data in the p re d ic tiv e sense as in p u t to neutron and g a m m a -ra y<br />

transport codes w h ic h p rovid e c a lc u la t io n a l support and g u id an ce to the safeguards research and d evelopm ent<br />

program . T h is support is necessary for the d e ta ile d understanding o f techniques under in v estig a tio n as<br />

w e ll as for design o p tim iz a tio n o f systems a lre a d y proven to be w orthy o f d evelopm ent to the prototype<br />

stage. T h e th ird categ o ry u t iliz e s n u cle a r data as a reservoir o f b a sic in fo rm a tio n to a id in the search<br />

for new m ethods and signatures.<br />

T o illu s tra te these three categories o f use o f n u cle a r data, the d e v e lo p m e n t o f several systems<br />

from in it ia l research through prototyp e constru ction, c a lib ra tio n and fin a l fie ld testing is o u tlin ed .<br />

T y p ic a l o f the systems described are: d e la y ed and prom pt neutron m ethods a p p lie d to scrap and s m a ll<br />

sa m p le assay; the a p p lic a tio n o f ra d io a c tiv e sources to the m easurem ent o f the fis s ile co n te n t o f reactor<br />

fu e l pins; c o in c id e n c e co u n tin g o f fission events, e ith e r spontaneous or induced; gam m a m ethods a p p lie d<br />

to m easurem ent o f e n rich m en t, m in or isotope co m p o sitio n , and fis s ile content o f feed, product, scrap<br />

and w aste. A n e x p e rim e n ta l program to e v a lu a te the use o f jj-m eson captu re X -ra y s is described as an<br />

e x a m p le o f the ro le o f ba sic data in e x p lo rin g p ro m isin g e le m e n ta l and is o to p ic signatures.<br />

Future ch a lle n g e s for no n -d e stru ctive assay are: to m eet the assay req uirem en ts o f new c h e m ic a l<br />

and p h y s ic a l form s o f nu cle a r fuels, to red uce the costs w h ile m a in ta in in g or in cre a sin g the a ccu ra cy<br />

and p re cisio n o f the m ethods, and to establish the ra p id ly advancin g no n -d e stru ctive assay m ethods as an<br />

in depen dent a lte rn a tiv e to tra d itio n a l c h e m ic a l analysis. T y p ic a l ca teg o rie s and a ccu ra cies o f nu cle a r<br />

data needed to m eet these m ajor ch a lle n g e s are described.<br />

INTRODUCTION<br />

Practical nuclear nondestructive assay methods for fissionable material<br />

gaining acceptance today are based mainly on two fundamental signatures.<br />

First, the naturally occurring radioactivity characteristic of the nuclides<br />

of interest and second, the ability of these same nuclides to be fissioned<br />

either by neutrons or gamma rays. With some important exceptions, the basic<br />

nuclear data relating to these properties has been available for a number of<br />

years. Why then are nuclear data important? The answer lies in the diversity<br />

of purpose of the assay methods. The hundred-thousand-dollar machine<br />

designed to provide precise assay of several million dollars worth of fuel<br />

pins is hardly comparable to the device used for the occasional measurement<br />

of a dozen or so waste barrels. Because of this diversity of purpose an<br />

array of instrumentation is being developed, each m aking use of the basic<br />

signatures in a different way to satisfy a different set of conditions.<br />

* W ork perform ed under the auspices o f the U . S. A t o m ic Energy C om m ission<br />

217


218 THORPE<br />

Uses of nuclear data in the development of practical nuclear assay<br />

techniques fall naturally into three categories. First, there are parameters<br />

which can enter directly into the calibration of equipment, such as<br />

decay rates, gamma intensities and attenuation coefficients, neutron yields,<br />

etc. The second category involves the use of nuclear data in the predictive<br />

sense as input to neutron and gamma-ray transport codes which provide calcu-<br />

lational support and guidance to the safeguards research and development<br />

program. This support is necessary for the detailed understanding of techniques<br />

under investigation as well as for design optimization of systems already<br />

proven to be worthy of development to the prototype stage. The third<br />

category utilizes nuclear data as a reservoir of basic information to aid in<br />

the search for new methods and signatures.<br />

FUEL PIN ASSAY<br />

A number of fuel pin assay systems either complete or under development<br />

serve as an illustration of some of these uses of nuclear data. These systems<br />

are for the measurement of:<br />

1. Uranium-235 content of LWR fuel.<br />

2. Uranium-235 content of LWR fuel and the detection of out of<br />

specification fuel pellets.<br />

3. Plutonium content and isotopic composition of fast breeder<br />

reactor (FBR) fuel.<br />

4. Plutonium recycle LWR fuel.<br />

5. Fissile content of irradiated fuel.<br />

6. Uranium-235 content of LWR fuel which also contains burnable<br />

poison.<br />

Three properties of the system for measuring LWR pins are most<br />

important :<br />

1. High throughput rate to take care of a modern plant capacity of<br />

several hundred pins per shift.<br />

2. Sensitivity to all of the fissile material within the pins.<br />

3. Reliability.<br />

These three criteria lead to the choice of thermal neutron interrogation;<br />

the thermal flux supplied by a moderated 252Cf source, and the detection of<br />

prompt fission neutrons from the thermal fission of 23 5U furnishing the primary<br />

signature and differentiation from 238U, the major constituent of LWR<br />

f u e l .<br />

The moderator for the neutron source must provide sufficient thermal<br />

flux at the fuel channel while providing maximum discrimination between 2 3 5U<br />

and 23 8U as well as minimizing the source strength and biological shielding<br />

required. The configuration of source, moderator materials and detectors<br />

was optimized by modeling the system on the computer using only enough actual<br />

experimentation to assure confidence in the computer calculations [1]. The<br />

method of optimizing a design by computer calculations illustrates one of the<br />

more important uses of nuclear data as input to computer codes which provide<br />

the calculational tool necessary to design practical nondestructive assay<br />

ins trumentat i o n .


<strong>IAEA</strong>-SM-170/54<br />

The assay of a fuel pin requires a mathematical calibration function<br />

which describes as accurately as possible the response for various enrichments<br />

and yet is simple enough to permit on-line data reduction. Analysis [2]<br />

indicates that the response of a fuel rod having an enrichment less than 4%<br />

23 5U is adequately described by a function of the form<br />

R = A(1 - e“BU)<br />

R is the measured response, U is the 23 5U content of the fuel rod, and A<br />

and В are parameters determined from measurements of standard fuel pins.<br />

In addition to the 235U content, the response of an actual fuel pin<br />

depends on a number of factors: cladding thickness and composition, fuel<br />

section length, density, diameter, impurity content, etc. It is important<br />

to investigate the sensitivity of the assay system to changes in these various<br />

parameters. Here again, the computer and nuclear data are used to obtain<br />

the information. These calculations and other considerations provide<br />

the basis for a systematic error analysis [3]. The precision of a single<br />

fuel rod assay is dominated by propagated counting statistics amounting to<br />

~1.1 to 1.5% (1er) over the mass range of 30 to 120 g of 2 3 5U per rod. After<br />

100 fuel rod assays, the statistical uncertainty in the total mass decreases<br />

to less than 0.15%. At this point the error becomes dominated by factors<br />

other than counting statistics (e.g., the error in the calibration curve).<br />

In-plant experience has proven the practicality of measuring the entire<br />

2 3 5U throughput of a modern p l a n t . The system can be operated by plant personnel<br />

with little technical training at a rate of 400- to 600-rod assays<br />

per eight-hour shift. This rate includes the time taken for pin identification,<br />

handling, and the assay of several standard rods to provide a calibration<br />

check. A m ore detailed description of the construction and operation<br />

of the units may be obtained from a paper by R. A. Forster, et al. [4].<br />

A series of Monte Carlo calculations and measurements [5] led to the<br />

following modifications of the thermal neutron 252Cf fuel rod system to include<br />

measurements of pellet-to-pellet variations: 1) lengthening the m o d ­<br />

erator assembly in the direction of fuel rod travel, which results in a<br />

longer region of high thermal flux; 2) positioning the fuel rod channel<br />

closer to the 252Cf source to take advantage of the higher intensity flux<br />

near the source while still preserving a high fissile/fertile fission ratio<br />

(-IO1*) to ensure- accurate measurement of fissile content in the presence of<br />

much larger amounts of fertile material; 3) replacing the D 2O in the m oderator<br />

assembly w ith deuterated water-extended-polyester resin and carbon to<br />

decrease cost while simplifying the fabrication and shipping; 4) changing<br />

the fuel channel position requires that the ‘He detectors be shortened and<br />

displaced to one end of the carbon moderator to give a sufficiently large<br />

signal/2S2Cf background ratio in the цНе detectors; and 5) the addition of<br />

a small (2 by 2 by 3/4 in.) Nal detector near the exit port of each fuel-rod<br />

channel to give pellet-to-pellet fissile content by counting fission-induced<br />

gamma rays. Figure 1 is a schematic diagram of the Pin and Pellet Assay<br />

System (PAPAS). Figure 2 illustrates the system capability for the detection<br />

of off-specification pellets.<br />

A complete assay and quality control station for FBR fuel rods has been<br />

delivered to Westinghouse-Hanford Engineering Development Laboratory (HEDL).<br />

These rods contain m ixed oxide fuel with a 2 P u / 238U ratio of ~l/4, and a<br />

total 239Pu mass of ~30 g. The instrumentation has been calibrated and is<br />

now in routine operation. The station consists of two units. One unit [6]<br />

contains a 252Cf (619 yg) source tailored to provide fast neutron irradiation<br />

of the pins. The delayed gamma rays from fission (Ey > 1.2 MeV) are detected<br />

as a measure of the total fissile content. The gamma rays from 21,1Am, 239Pu<br />

219


220 THORPE<br />

FIG. 1, T h e rm a l-n e u tro n 252C f fu e l- ro d assay system w it h m o d ific a tio n s for p e lle t - t o - p e lle t scan. T h e<br />

4H e neutron detectors in the carbon core co u n t the prom pt fission neutrons fo r to ta l fissile d e te rm in a tio n ,<br />

and the N a l detectors near the fu e l-ro d e x it ch a n n e l count the d elayed ga m m a rays for p e lle t - t o - p e lle t<br />

dete rm in a tio n .<br />

FIG. 2. A ty p ic a l d e la y ed g a m m a -ra y scan o f a 6 6 -in . -lo n g 3. 3°Jo PW R fu e l rod w ith p e llets o f low er<br />

e nrichm ents interspersed as shown above. T h e lo w e r curve is a sm oothed version o f the raw data in the<br />

upper curve (the error bars represent 2о u n certainties). Each poin t represents the to ta l counts a ccu m u la te d<br />

in 0 .4 s for a rod feed rate o f 8 ft/m in .


IA E A -S M -1 7 0 /5 4 221<br />

FIG. 3. Photograph o f m oderator and sh ield assem bly for a fast neutron 252C f assay system . T h e 25zC f<br />

source is p o sitio n e d in the ce n tre o f the tungsten and th e sam p le is p la c e d in the n ic k e l re fle c to r for the<br />

neutron irra d ia tion .<br />

are counted and used to provide pellet-to-pellet Information. The second<br />

unit measures the 2l*0Pu content by coincidence counting the neutrons emitted<br />

from the spontaneous fission of 2 °Pu [7].<br />

Because of the high fissile loading of FBR fuel pins, thermal neutron<br />

irradiation w ould have yielded an unacceptably nonlinear response curve.<br />

Calculations led to the choice of the cylindrical moderator assembly shown<br />

in Fig. 3. The assembly has a core of tungsten (2.5 cm radius) surrounded<br />

by a 7.5-cm-thick shell of beryllium followed by 5 cm of lead and nickel.<br />

The nickel reflector increased the fission rate ~70% over the lead reflector<br />

alone. This moderator design resulted in a 239P u / 238U fission ratio<br />

of ~400/l for irradiation neutrons above the cadmium cut-off energy (~0.4<br />

eV).


222 THORPE<br />

5x5 No I DETECTOR<br />

I-----------------------------------------------------------58.00-<br />

FIG. 4. S c h e m a tic d ia g ra m o f the z a C f fast-n eutron assay system for FBR-type fu e l rods. T h e d elayed<br />

g a m m a rays in d u ce d by the fast-neutron irra d ia tio n are subsequently counted w ith the tw o N a l detectors that<br />

also m easure the passive ga m m a rays to determ in e p e lle t - t o - p e lle t u n ifo rm ity .<br />

FIG. 5. Fast neutron 252C f assay system for F F T F fu e l rods. System in clu d es 619 pg 252C f source and<br />

s h ie ld , tw o 5 b y 5 -in . N a l detectors to count the d e la y e d ga m m a rays, autom ated fu e l-ro d h a n d lin g , and<br />

data red u ctio n system.


IA E A -S M -17 0 /5 4 223<br />

FIG. 6. F F T F fu e l p in w it h various co m b in a tio n s o f p lu to n iu m e n rich m en ts for p e lle t - t o - p e lle t scanning.<br />

T o p cu rve corresponds to 60 K e V e nergy w in dow and b ottom curve corresponds to 100 to 500 k e V w in dow .<br />

FIG. 7. Passive n e u tro n -c o in c id e n c e counter fo r m easuring 240Pu content in FB R -type fu e l pins. T h e<br />

system in clu d e s 3H e th erm a l-n e u tro n de te cto r, autom ated fu e l p in lo a d e r and translator, and e le ctro n ics<br />

a nd data co n tro l rack.


224 THORPE<br />

FIG. 8. Photoneutron assay system using e ith er 124Sb or 8sY in the b e ry lliu m core surrounded b y n ic k e l and<br />

tita n iu m neutron reflecto rs and le a d g a m m a -ra y s h ie ld in g<br />

Figure 4 is a schematic diagram of the unit showing the Nal detectors<br />

each having a different degree of collimation, moderator, and shield assembly.<br />

Americium-241 doped, Nal seeds embedded in each crystal provide a<br />

source of constant amplitude pulses (roughly equivalent to a 3 M e V gamma ray)<br />

which are used in conjunction with an electronic stabilizing unit to reduce<br />

the effects of long-term photomultiplier and electronic drifts. Figure 5 is<br />

a photograph of the entire unit showing the moderator-shield assembly, the<br />

pin handling equipment, the programmable calculator and associated electronics.<br />

The automated translator picks up the rod to be assayed and moves it<br />

through the Nal crystals and the 252Cf assembly at a rate of 2.5 in./sec in<br />

order to take a background count of the unirradiated rod. The direction of<br />

travel is then reversed and the rod is withdrawn at 0.36 in./sec during


LAEA-SM-17 0/5 4 225<br />

w hich time the delayed fission gannna-ray data are acquired and the pellet-<br />

to-pellet scans are made. The rod is then unloaded in the tray directly<br />

b elow the loading magazine and the cycle is repeated for the next rod. The<br />

translator speeds are set to give a 5-min cycle per rod.<br />

Error analysis and measurements indicates that the standard deviation<br />

of the measured fissile content of a rod is -0.2 g. Figure 6 illustrates<br />

the sensitivity to pellet-to-pellet changes as observed with a test pin containing<br />

various pellet and enrichment combinations. It can b e seen that<br />

small changes in enrichment (1.7% to 3.12! relative) can be detected. The<br />

2l,0Pu assay system, shown in Fig. 7, contains 32 3H e tubes (1 in. diam by<br />

20 in. long, 4 atm gas pressure). The detector efficiency is ~36% and the<br />

neutron lifetime was measured to b e 28 ysec. Assay precision is a little<br />

greater than It (la) for a counting time of 100 sec.<br />

Assay units using Sb-Be or ®eY-Be as fast, subthreshold neutron sources<br />

are under investigation. A relatively hard nonthermal interrogation flux<br />

offers the potential advantage of insensitivity to the presence of fission<br />

product or burnable poisons as well as providing good penetrability and linearity<br />

of response. Figure 8 is a photograph of an experimental photoneutron<br />

system [8]. There is a central cadmium lined assay channel in beryllium with<br />

adjacent holes for the gamma sources followed by rings of titanium and nickel<br />

Three inches of lead shield the '‘H e detectors from the source gamma rays.<br />

The ''He detectors are embedded in a thick (2 cm) nickel ring w hich serves as<br />

a fast neutron reflector. The nickel reflector added about 40Z to the signal<br />

rate. The energy of the neutrons from the photoneutron sources is such that<br />

the l>H e detectors can be biased to eliminate m ost of the neutron signal from<br />

the source. This in turn permits the addition of sufficient lead to shield<br />

the detectors from the intense gamma radiation of either the source or the<br />

sample. The photoneutron unit just described is being used to acquire data<br />

on optimum detector gas pressure, signal rates and signal-to-background ratios,<br />

response linearity, etc. The unit is also being used to determine its<br />

suitability for other applications such as small-sample assay [9].<br />

L W R fuel containing recycled plutonium will become important in the<br />

near future. The special assay problems associated with this type of fuel<br />

are being studied.<br />

NEUTRON METHODS APPLIED TO SCRAP AND SMALL SAMPLE ASSAY<br />

One of the most significant problems associated with the assay of scrap<br />

and waste is the lack of control over the extraneous material that might be<br />

present within the sample. Assay by means of fast neutron irradiation and<br />

detection of delayed or prompt fission neutrons has been found to be relatively<br />

insensitive to all matrix materials except hydrogen and other low Z<br />

elements which are good neutron m o d e r a t o r s . Fission chambers (or other detectors<br />

sensitive to low energy neutrons) closely coupled to the sample provide<br />

a means of detecting or correcting for the effects of neutron moderation.<br />

Gamma-ray assay methods are m ost suitable for light, hydrogenous<br />

matrix materials. Together, the two techniques, gamma-ray and neutron assay<br />

methods, provide broad capability for m a n y of the assay problems associated<br />

with scrap and waste.<br />

The development of the technique of neutron interrogation with delayed<br />

neutron detection is an example of the key role that nuclear data can play.<br />

When this method was first being considered it was necessary to undertake an<br />

experimental program to measure the delayed neutron yield from fission as a


226 THORPE<br />

FIG. 9. V ie w o f s m a ll-s a m p le assay station w ith B4 С sh ie ld rem oved.<br />

function o f incident neutron energy. I n it ia l emphasis was placed on measurements<br />

at 14 MeV [10] since 14 MeV neutron generators are a re la tiv e ly inexpensive,<br />

copious source o f neutrons. This program was follow ed by another<br />

set o f measurements using a Van de Graaff as a variable energy neutron<br />

source [11].<br />

These experiments were designed to confirm and extend the available delayed<br />

neutron y ield data. The resu lts show that the delayed neutron yield<br />

is not sig n ifica n tly dependent on the energy o f neutrons causing fis s io n fo r


<strong>IAEA</strong>-SM-170/54 227<br />

energies b elow 5 MeV. Above 5 M e V there is a drop in yield corresponding to<br />

the onset of second chance fission. The data obtained so far are in general<br />

sufficient to satisfy most immediate practical needs. Nonetheless there is<br />

interest in the delayed neutron yield in the energy region 6 to 14 M e V and in<br />

data for the higher plutonium isotopes. These basic data are used for computer<br />

calculations to explore and define possible technique refinements.<br />

An example of the application of subthreshold neutron interrogation and<br />

delayed neutron detection is the fissile assay of small samples [12] taken<br />

from various portions of a plant inventory for process control or inventory<br />

verification. Several thousand such samples are chemically analyzed yearly.<br />

To be generally useful, a small sample assay technique must be able to furnish<br />

few percent or less accuracy for a wide variety of chemical forms and<br />

concentrations of fissile material. Figure 9 is a photograph of a small<br />

sample assay apparatus w hich utilizes a Van de Graaff accelerator as a pulsed<br />

source of few hundred kilovolt neutrons. The delayed neutrons are detected<br />

between accelerator pulses by a large, flat efficiency detector. Closely<br />

coupled fission chambers monitor the fission rate in the samples. A background<br />

equivalent of 15 m g 235B has been achieved.<br />

Assay precision depends on sample fission rate and detector efficiency.<br />

It is advantageous to closely couple the detector and to provide neutron reflectors<br />

to increase the flux at the sample. The presence of extraneous<br />

materials in the vicinity of the sample degrades the incident neutron energy<br />

and causes undesirable sample self-absorption and matrix effects. An acceptable<br />

compromise, found experimentally, is to use iron reflectors adjacent to<br />

the target and sample in conjunction with a 3/4-in.-thick boron carbide<br />

sleeve surrounding the sample to eliminate the majority of neutrons below<br />

100 eV. Favorable experience gained to date from several hundred assays has<br />

provided the incentive to undertake the following major improvements in the<br />

system: automatic sample handling, automated data processing, and a more<br />

efficient detector-reflector geometry. Ongoing research effort involves<br />

finding methods of increasing precision, reducing the number of standards<br />

required, and defining and eliminating sources of bias.<br />

GAMMA METHODS<br />

Gamma-ray spectroscopy, particularly with lithium drifted germanium<br />

(GeLi) detectors, is a general purpose method with a wide range of applications.<br />

In this instance, nuclear data is not so important in the design of<br />

the hardware, but is essential for its application. Usually only a few lines<br />

from the complex decay spectra of the nuclides of interest are used for assay.<br />

Nonetheless extensive knowledge of gamma spectra is required to provide the<br />

assurance that the lines used are specific and that the presence of unusual<br />

or unsuspected activity will not yield an erroneous assay. Attenuation corrections<br />

for the matrix m aterials involved are the major sources of uncertainty<br />

in the assay. Attenuation corrections are usually obtained through:<br />

preparation of standards which are representative of the material being<br />

measured; measurement of the transmission of a source [13]; comparison of<br />

the relative intensities of two or more characteristic gamma rays [14].<br />

In addition to quantitative assay gamma-ray detection has been applied<br />

to the measurement of enrichment, concentration, and isotopic composition.<br />

Relatively simple instrumentation, particularly w h e n used by knowledgeable<br />

personnel, can be quite effective. Figure 10 shows one of the devices which<br />

was used to estimate the holdup in a shutdown diffusion plant cascade. The<br />

instruments were also used in the operating cascade to monitor UFg retention<br />

in NaF traps, measure enrichment and to detect plating or holdup in the m a i n<br />

gas pipes [15].


228 THORPE<br />

FIG. 10. C o o le d , p o rta b le N a l g a m m a spectrom eter for assay o f 235U in sid e an o p eratin g gaseous-d iffiisio n<br />

p la n t.<br />

COINCIDENCE COUNTING <strong>OF</strong> FISSION EVENTS<br />

Coincidence detection o f the many neutrons and gamma rays from fis s io n<br />

provides a convenient method fo r separating the occurrence o f fis s io n from<br />

the source producing the fis s io n or from extraneous radiation which might be<br />

present [ e .g ., neutrons from (a,n) rea ction s]. Neutron coincidence counting<br />

o f 21f0Pu spontaneous fis s io n provides a simple method o f plutonium assay when<br />

the isoto p ic composition is known. The spontaneous fis s io n rate o f 238U can<br />

also be used fo r assay purposes. Both rates are low and high e ffic ie n c y 4ir<br />

neutron counters are required fo r rapid quantitative assay.<br />

Organic scintillation detectors permit the detection of time correlated<br />

events, neutrons or gamma rays, using coincidence gate widths of only a few<br />

tens of nanoseconds. Since the ratio of accidental coincidence rate to true


<strong>IAEA</strong>-SM-17 0/54 229<br />

coincidence rate is directly proportional to the coincidence gate width, the<br />

short gate width allows the detection of fission in the presence of relatively<br />

large backgrounds of uncorrelated neutrons and gamma rays. Conversely, an<br />

uncorrelated or random source can be introduced to cause fission in the sample.<br />

The detected fission rate then is a measure of the fissionable content.<br />

Neutron source energies can be changed to increase sensitivity, and to provide<br />

both fissile and fertile assay. Figure 11 is a photograph of a system<br />

called the "Random Driver" which uses an Am-Li neutron source to cause fission<br />

in the sample. This system proved an effective instrument for the<br />

assay of uranium [16,17].<br />

BASIC SIGNATURES<br />

Although natural radioactivity and fission have furnished the basic<br />

signatures w hich have proven to be the most utilitarian, there are other<br />

characteristics w hich can be used to identify particular elements or isotopes.<br />

A few examples are: neutron capture gamma rays; delayed-neutron<br />

and gamma-ray spectra, gamma-ray and x-ray fluorescence; selective neutron<br />

and gamma-ray absorption. The gathering of information, particularly basic<br />

data, pertaining to any physical phenomenon which might be applicable to<br />

materials analysis should be encouraged. This reservoir of basic information<br />

can then be used as a basis to continually review the techniques for<br />

possible application to the changing and differing needs for quantitative<br />

FIG. 11. T h e random so u rce-in te rro g a tio n system used to de te rm in e the Z35U co n te n t in co n ta in ers o f<br />

up to 5 - g a l c a p a c ity .


230 THORPE<br />

assay. These needs range from the detection of trace quantities in effluents<br />

to detailed analysis of spent reactor cores. New facilities and improvements<br />

in detector characteristics, for example, may render completely<br />

practical a technique previously thought not worthy of further development.<br />

An example of the Information gathering process is a program that is<br />

designed to investigate the application of p-meson capture x-rays to elemental<br />

and isotopic analysis. The objective of this program is to obtain high<br />

quality spectra for each fissionable isotope and to obtain information on<br />

h ow the chemical form of the material might affect possible assay applications.<br />

Using the facilities at the Space Radiation Effects Laboratory (NASA)<br />

data have been taken on m etal targets of 208Pb, 232Th, 235U, 23eU, and 239Pu.<br />

Some data were also obtained for depleted uranium compounds, mainly oxides.<br />

The experiments are expected to continue early next year when m ore intense<br />

beams become available at the Los Alamos Meson Physics Facility.<br />

CONCLUSIONS<br />

The number of systems for assay that exist, complete with operations<br />

manual, error analysis, and operational history of reliability and effectiveness,<br />

is testimony to the growing maturity of nondestructive assay. A m ore<br />

difficult phase is beginning w h i c h emphasizes accuracy without undue increase<br />

in cost and complexity, the development of standard procedures, and<br />

the establishment of nondestructive assay m ethods as independent alternatives<br />

to traditional chemical analysis.<br />

Calorimetry is an example of a technique for which refined nuclear data<br />

would have a direct effect on meeting the challenges listed above. The radioactive<br />

decay data and methods of determining isotopic composition are not sufficiently<br />

accurate to establish the relationship of heat output and quantity<br />

of material to an accuracy comparable to the precision available [18].<br />

The value of readily available data which form the basis for design<br />

calculations and the foundations from which to explore n e w concepts can<br />

hardly be overemphasized. Routine calibration of equipment is accomplished<br />

by means of standards. Improvements of the data and calculational techniques<br />

will permit more precise evaluation of system performance w hich will reduce<br />

the number of these costly standards required.<br />

REFERENCES<br />

[1] FORSTER, R. A. and MENLOVE, H. 0., LA-4605-MS (1970) 8.<br />

[2] FORSTER, R. A., LA-4994-PR (1972) 9.<br />

[3] FORSTER, R. A., SMITH, D. B., MENLOVE, H. 0., Error Analysis of a<br />

252Cf Fuel Sod Assay System (LA report to be published in 1973).<br />

[4] FORSTER, R. A., SMITH, D. B., and MENLOVE, H. 0., "252Cf fuel rod<br />

assay system: in-plant performance," Froc. Thirteenth Annual Meeting<br />

of the Institute of <strong>Nuclear</strong> Materials Management, Boston, Massachusetts<br />

(1972).<br />

[5] FORSTER, R. A. and MENLOVE, H. 0., LA-4883-PR (1971) 6.<br />

[6] MENLOVE, H. 0., FORSTER, R. A., PARKER, J. L., and SMITH, D. B.,<br />

2S2Cf Assay System for FBR Fuel Pins: Description and Operating<br />

Procedures Manual, LA-5071-M (1972).<br />

[7] MENLOVE, H. 0., FORSTER, R. A., and SMITH, D. B., LA-5091-PR (1972) 7.


<strong>IAEA</strong>-SM-17 0/54 231<br />

[8] MENLOVE, H. 0. and FORSTER, R. A., LA-4994-PR (1972) 6.<br />

[9] MENLOVE, H. 0. and MATTHEWS, D., LA-5091-PR (1972) 16.<br />

[10] MASTERS, C. F., THORPE, M. M., SMITH, D. B., The measurement of<br />

absolute delayed neutron yields from 3.1 and 14.9 M e V fission, Nucl.<br />

Sei. Engng 36 (1969) 202.<br />

[11] KRICK, M. S. and EVANS, A. E., The measurement of total delayed neutron<br />

yields as a function of the energy of the neutron inducing fission,<br />

Nucl. Sei. Engng 47 (1972) 311.<br />

[12] EVANS, A. E., THORPE, M. M., and MALANIFY, J. J., Fissile assay of<br />

small samples by subthreshold neutron interrogation, Trans. Am. Nucl.<br />

Soc. 15 2 (1972) 673.<br />

[13] PARKER, J. L., REILLY, T. D., WALTON, R. B., SMITH, D. B., and EAST,<br />

L. V., LA-4705-MS (1971) 12.<br />

[14] CLINE, J. E., A Relatively Simple and Precise Technique for the Assay<br />

of Plutonium Waste, ANCR-1055 (1972).<br />

[15] LA-4994-PR (1972) 15.<br />

[16] FOLEY, J. E., Random Source Interrogation System (Random Driver) at<br />

the Oak Ridge Y-12 Plant - Preliminary Results, LA-5078-MS (1972).<br />

[17] FOLEY, J. E., LA-5091-PR (1972) 14.<br />

[18] O'HARA, F. A., NUTTER, J. D., RODENBURG, W. W., DINSMORE, M. L.,<br />

Calorimetry for Safeguards Purposes, MLM-1798 (1972).


I A E A - S M -1 7 0 /1 2<br />

INFLUENCE <strong>OF</strong> UNCERTAINTIES<br />

IN FISSION-PRODUCT NUCLEAR DATA<br />

ON THE INTERPRETATION <strong>OF</strong><br />

GAMMA-SPECTROMETRIC MEASUREMENTS<br />

ON BURNT FUEL ELEMENTS<br />

O .J. EDER, M.LAMMER*<br />

Österreichische Studiengesellschaft<br />

für Atomenergie, Seibersdorf,<br />

Austria<br />

Abstract<br />

IN F L U E N C E O F U N C E R T A IN T IE S IN FIS S IO N -P R O D U C T N U C L E A R D A T A ON T H E IN T E R P R E T A T IO N O F<br />

G A M M A - S P E C T R O M E T R I C M E A S U R E M E N T S O N B U R N T FU E L E L E M E N T S .<br />

T h e c o m b in a tio n o f co m p u ter c a lc u la tio n s and gam m a sp e ctro m e tric m easurem ents offers new<br />

p o ssib ilitie s for in vestig a tion s on burnt fu e l elem en ts. T h e a ccu ra cy o f such a m ethod is m a in ly lim ite d by<br />

the a ccu ra cy o f n u cle a r data used and u n certa in tie s in the e v a lu a tio n o f measured ga m m a spectra arising<br />

from e x p e rim e n ta l co n d ition s.<br />

A m ethod is described that com b in es "fo rw ard " c a lc u la tio n s and measured a c tiv ity ratios o f fission<br />

products and e xam p les o f a p p lic a tio n are g iv e n .<br />

T h e a v a ila b ilit y o f c o m p ila tio n s o f nu cle a r data re le v a n t for burnt fu e l e le m e n t a nalysis is surveyed<br />

and im provem ents are proposed. A set o f fu e l isotope and fission product nu cle a r data is presented w h ich<br />

resulted fro m our ow n c o m p ila tio n efforts.<br />

F in a lly , u n certa in tie s are review e d th at arise from detector c a lib ra tio n , e x p e rim e n ta l co n d ition s, nu clear<br />

data o f fissio n products and s im p lific a tio n s in c a lc u la tio n s . T h e in flu e n c e o f u n certa in tie s in nu cle a r data on<br />

results o f c a lc u la tio n s and m easurem ents is dem onstrated by som e exam ples.<br />

1. INTRODUCTION<br />

The combination of gammaspectrometric measurements and. theoretical<br />

calculations provides a powerful tool to gain information about burnup<br />

and the history of fuel elements. The possibilities and limitations of<br />

this combined method from both the experimental and theoretical point of<br />

view have been investigated for about ten ye a r b y now [1-7].<br />

Experimentally the development of high resolution semi-conductor<br />

detectors, the Compton coincidence spectrometer [2,3] and the summing<br />

Compton coincidence spectrometer [5] provided the basis to measure gamma-<br />

spectrometrically the activities of a number of isotopes in burnt fuel<br />

elements with sufficient accuracy (e.g. ^ 7 c s , 95zr, 95}Jb 103r u<br />

106Ru + 10§Rh) 131!f Ü 2 Te + Í 3 ^ / l 4 6 Ba + l|óLa> ll4Ce + Í44Pr) 2 3 3 p a (<br />

239Np etc.) Model calculations using the well-known build-up and decay<br />

formulae and simplified assumptions of the neutron flux distribution together<br />

with an iteration matching procedure are the basis for non-destructive<br />

fuel element investigations.<br />

* Present address: N u c le a r D a ta S ection, IA E A , V ien n a<br />

233


234 EDER and LAM M ER<br />

In a "forward." calcu lation fis s io n product a c tiv itie s are calculated from<br />

known irradiation con ditions, whereas in a "backward" calcu lation irradiation<br />

history and/or fu el composition are derived from measured a c tiv itie s . The<br />

parameters which enter such inventory calcu lation s are<br />

- reactor operation conditions (space, energy and time distribu tion o f the<br />

neutron flu x , integrated neutron flu x, fu el element cy clin g , coolin g<br />

time)<br />

- fu el element ( i n i t ia l composition, resonance se lf-sh ie ld in g e t c .)<br />

- nuclear data (fis s io n y ie ld s , h a lf liv e s , neutron capture and fis s io n<br />

cross sections, gamma ray energies and absolute in te n sitie s)<br />

- experimental conditions (d etector e ffic ie n c y , geometry, gamma ray attenuation,<br />

quality and processing o f gamma spectra e t c .) .<br />

The information that can be obtained from gamma spectrometric measurements<br />

are (fo r a detailed discussion see [ 7 ] ) :<br />

- Burn-up: from 137Cs, 134Cs (ra tio 137Cs/134Cs), 144Ce - 144Pr, 106Ru -<br />

J-UbRh and 95zr - 95кь.<br />

- Cooling time: from ra tio s 14°Ba/95Zr, I4°Ba/141Ce, 141Ce/95Zr, 95Z r/95Nb '<br />

and other combinations.<br />

- Integrated neutron flu x : from ra tio '*'34Cs/1^ c s><br />

106 106„, x / 144,, 144„ \ / / 106„ 106_ ^<br />

- Plutonium fis s io n s : from Ru - Rh, ra tio ( Ce- P r )/( Ru- Rh).<br />

233 2З2<br />

- Breeding rates at shutdown: from Pa ( Th as breeding m aterial) and<br />

“^ N p ( 23ÖU as breeding m aterial).<br />

M odifications and further combinations o f fis s io n products are presently<br />

investigated and some w ill be discussed in the next chapter, preceded by<br />

a b r ie f description o f the computer programs used fo r our calcu lation s. After<br />

a b r ie f review o f the a v a ila b ility o f nuclear data and presentation o f our<br />

own data set we show the influence o f nuclear data uncertainties on resu lts<br />

from calcu lation s and measurements.<br />

2. SOME DETAILS OP THE PRESENT INVESTIGATIONS<br />

2 .1. P rin ciple Considerations<br />

C haracteristic dependencies o f fis s io n product concentrations on<br />

irradiation conditions and f i s s il e material have been observed by several<br />

in vestigators (e .g . [6 ,8 ,9 ]). The use o f a ctiv ity ra tios as an interpretation<br />

method was, as we b elieve, fo r the fir s t time proposed in [7 ]<br />

together with some examples. The ra tio s shown in [7 ] as w ell as other<br />

combinations o f fis s io n products are presently investigated in more d e ta il.<br />

Only interpretations in terms o f a ctiv ity ra tios (instead o f absolute a ctiv it<br />

ie s ) allow to establish general rules which are independent o f the amount<br />

o f f i s s ile m aterial. Also the use o f such ra tios has many advantages regarding<br />

accuracy and correction s that have to be applied (fo r a detailed<br />

d iscu ssion,see chapter 5)*


<strong>IAEA</strong>-SM-170/12 235<br />

The selection o f fis s io n products used fo r interpretation is guided<br />

by several considerations:<br />

- <strong>Nuclear</strong> data and neutron flu x models used in calcu lation s as w ell as the<br />

a ctiv ity measurements themselves are associated with some uncertainties.<br />

- Depending on th eir h a lf liv e s and the irra d iation time most o f the fis s io n<br />

products w ill only y ie ld information about the la ter part o f the irradiation<br />

h istory.<br />

- Therefore a ctiv ity ra tio s have to depend sig n ifica n tly on irradiation<br />

parameters o f fuel elements in order to enable the derivation o f these<br />

parameters from the r a tio .<br />

- From a p ra ctica l point o f view the fis s io n products used fo r interpretation<br />

have to be suitable fo r gamma spectrom etric measurements.<br />

Bearing these fa cts in mind fis s io n products were selected considering<br />

th eir nuclear data, modes o f production in fis s io n and the possible information<br />

they can y ie ld . According to th is selection a ctiv ity ra tios o f fis s io n<br />

produots were calculated fo r a wide range o f irradiation conditions and<br />

d iffere n t f i s s ile isotopes with the aid o f computer programs and checked<br />

against experimental resu lts.<br />

2.2. Description o f computer programs<br />

We used two computer programs with d ifferen t features for our forward<br />

ca lcu la tion s presented in [7 ]. The resu lts obtained were generally in good<br />

agreement.<br />

2 .2 .1 . The computer program IRBEL<br />

This program calcu lates day by day inventories by approximating the<br />

d iffe r e n tia l equation<br />

dNx ( t ) = [a 2N2 ( t ) - ax ^ ( t ) ] dt<br />

by the d ifferen ce equation<br />

AN1 < V - i>2N2 ( V l > - aA ( V l ^ A t i<br />

Here the symbols used mean:<br />

. number o f atoms o f isotope 1<br />

. number o f atoms o f precursor 2 o f any kind<br />

. constant giving the rate o f decrease in (decay constant,<br />

neutron cross section )<br />

. constant giving the rate o f production o f N-^ from precursor<br />

Ng (decay, neutron capture, fis s io n ).<br />

. i-th time interval from start o f irradiation ( = 1 day)<br />

■tj<br />

a2 Ng stands fo r a ll modes o f production o f fis s io n product N^.<br />

This approximation is s u ffic ie n tly accurate fo r fis s io n products with<br />

h a lf liv e s o f several days. Some m odifications ex ist to take account o f<br />

important shorter lived fis s io n products (e .g . -^ X e ). In one version the


236 EDER and LAM M ER<br />

decay during each day is calculated exponentially. Other versions use<br />

numerical approximation methods or shorter time intervals within one day<br />

fo r such short lived fis s io n products.<br />

The program has the option either to enter the neutron flu x as input<br />

parameter, or the to ta l core power together with the core fra ction o f the<br />

investigated fu el element. In the la tte r case the neutron flux is calculated<br />

from the energy release per fis s io n o f the f i s s ile material present in the<br />

fu el element. The neutron flux is represented by<br />

- a maxwellian component, sp ecified Ъу the neutron temperature T,<br />

- an epithermal component, varying with l/E<br />

“ a fis s io n spectrum conqponent,<br />

both o f the la tte r sp ecified by th eir ra tios to the maxwellian flu x . Date<br />

and time o f start and end o f each power period complete the description<br />

o f the irra d ia tion h istory.<br />

This numerical method is esp ecially well suited fo r calcu lation s o f<br />

inventories a fter varying irradia tion conditions as th is causes no increase<br />

in computer time and the equations involved are rather simple. The program<br />

IRREL is presently su ccessfu lly used fo r routine calcu lation s o f isotope<br />

inventories in fu el elements from known irradiation conditions and described<br />

in more d eta il in [1 0 ].<br />

2 .2 .2 The computer program CHAIN<br />

This computer program solves a n alytically the d iffe re n tia l equations<br />

that describe the complicated decay and activation processes. D iffic u ltie s<br />

due to the lim ited number o f d ig its available have been su ccessfu lly overcome<br />

by expansion o f a complete set o f exponential functions in one power<br />

series. An algorithm could be found which is esp ecia lly suitable for<br />

machine coding. A convergence test o f the exponents decides whether the<br />

power series or an ordinary exponentiation is to be used.<br />

During the stage o f testin g the program it proved most convenient to<br />

store separately each individual decay and activation chain leading to a<br />

certain fis s io n product. Similar chains are used fo r heavy elements from<br />

232xh to 241pu. Proceeding chain by chain, the contributions to the<br />

inventory o f the isotope at the end o f each chain are calculated for a<br />

given input time in terval.<br />

Here only the neutron flu x can enter the calcu lation s together with<br />

a time interval o f constant flu x . The input format o f the neutron flu x is<br />

optional:<br />

a) As in IRREL the absolute value o f the thermal flu x can be given together<br />

with the ra tio s o f epithermal and fa st component. This is more suitable<br />

i f the information comes from core calcu la tion s.<br />

b ) The absolute value o f the tota l flu x can be given including maxwellian<br />

and epithermal component. The to ta l flu x is sp ecified by neutron temperature<br />

and an epithermal index. The fa st flu x is given as ra tio to the<br />

to ta l flu x . This version is more suitable i f the flu x value is obtained<br />

from flu x monitors and threshold detectors. [1 1 ].<br />

In each case the type o f flux representation and epithermal fa ctor<br />

has to be sp e cifie d . A ll modes o f input neutron flu x are transferred into<br />

Westcott formalism [11] fo r the calcu la tion o f reaction rates. D ifferent


<strong>IAEA</strong>-SM-17 0 / 12 237<br />

m u ltiplication factors are derived according to whether p ile neutron cross<br />

section s, maxwellian average cross sections together with reduced resonance<br />

integrals or 2200 m/s cross sections together with g and s factors are used.<br />

Various options make th is computer program very fle x ib le :<br />

- continuation with the calculated inventory, new start or termination,<br />

- selection o f d ifferen t irra d ia tion parameters or fis s io n products to<br />

be calculated,<br />

- continuation with coolin g time,<br />

- intermediate or fin a l printout o f inventory,<br />

- storage o f inventory on d isc, which can be reca lled repeatedly for<br />

further calcu lation s.<br />

In th is manner a real irradiation h istory o f varying neutron flux<br />

subdivided by coolin g periods can be simulated, as the program always<br />

returns to th is point. A m odification is in preparation that allows us<br />

to calcu late and p lot gamma spectra o f irradiated fu el elements to fa c ilit a ­<br />

te id e n tifica tio n o f gamma lin es in measured spectra. This m odification<br />

makes use o f the advantage that calculated inventory and fis s io n product<br />

gamma ray catalogue are both stored on d isc. These features and the ana^-<br />

ly t ic a l solu tion o f d iffe re n tia l equations make the program CHAIN esp ecially<br />

suitable fo r th eoretica l studies o f d ifferen t fission products under various<br />

con ditions. On the other hand i t is rather time consuming and less suitable<br />

i f used for simulation o f a complex irradiation h istory. Therefore i t is<br />

mainly used for th eoretical forward calcu lation s and fo r small test samples<br />

to check the quality o f the prediction s.<br />

2.3. Examples o f application<br />

2 .3 .1 . Irradiation o f samples<br />

In order to check the predictions several samples o f d ifferen t fuel<br />

compositions were irradiated in d ifferen t core p osition s for varying time<br />

in tervals with and without flu x m onitors.. When the resu lts o f these<br />

measurements are compared with calcu lation s the agreement is naturally<br />

better than in routine examinations o f fu el elements. A more precise<br />

value for the neutron flu x can be obtained and the measurement i t s e l f can<br />

be performed with great care and high s ta t is tic a l accuracy as i t involves<br />

only small samples and is not s t r ic tly lim ited in time. An agreement o f<br />

better than lfo to 5$ was obtained, depending in the fis s io n products investigated.<br />

The coolin g time could be derived su ccessfu lly in one case where<br />

acciden tally the time o f discharge o f the sample from reactor was unknown.<br />

Due to the operation cycle o f the reactor i t had to be a Saturday and<br />

the exact date could be fixed after a h a lf year coolin g time by comparison<br />

o f measured and calculated a ctiv ity r a tio s.<br />

2 .3 .2 . Adjustment o f irradia tion parameters from known operation<br />

history<br />

Generally irradiation conditions or at least to ta l core power and<br />

time intervals as w ell as fu el composition are known. However, the<br />

neutron flu x and contribution o f epithermal neutrons within an individual<br />

fu el element w ill generally deviate from that obtained from physical<br />

core ca lcu lation s and op erator's data, esp ecially at higher burn-up le v e ls.<br />

In th is case the comparison o f measured and calculated a ctiv ity ra tios can be<br />

applied su ccessfu lly to adjust these parameters in ал itera tiv e procedure.


238 EDER and LAM M ER<br />

The ra tio o f fin a l flu x to reactor power can he derived from a set o f<br />

fis s io n products with shorter h a lf liv e s . I f the change o f th is ra tio with<br />

time due to burnup and fuel cyclin g has a noticeable e ffe c t on the resu lt,<br />

i t can be estimated by including a set o f fis s io n products which "remember"<br />

e a rlie r parts o f or. the complete irradiation h istory , a ll o f them being not<br />

sen sitive on the neutron spectrum. Epithermal index and neutron temperature<br />

can be adjusted using the *34cs/ 137os a ctiv ity ra tio . All these independent<br />

inform ations have tob e considered simultaneously. Starting with fir s t<br />

estim ates, the irradia tion parameters can be improved in an itera tive<br />

procedure.<br />

The matching o f a ll calculated a c tiv itie s with the measured ones is ,<br />

however, rather cumbersome i f not done automatically by computer. I f less<br />

p recision is required and a constant neutron flu x to core power ra tio can<br />

be assumed throughout the whole irradia tion history within the p recision<br />

lim its, neutron flu x , epithermal contribution and neutron temperature<br />

can be obtained merely by matching the ^'34cs and 137qs a c tiv itie s . In th is<br />

case measured and calcu lated absolute a c tiv itie s have to be compared as<br />

they in combination with the in it ia l content o f f i s s ile material supply<br />

additional information.<br />

2 .3 .3 . Determination o f burn-up<br />

137<br />

Burn-up is determined by gamma spectrom etric measurements o f Cs,<br />

144ce - 144pr, 106Ru _ 10°Rh 95Zr - 95цъ a c tiv itie s su ccessfu lly on<br />

a routine basis. Limits o f application o f these fis s io n products were<br />

already discussed in [7 ] and other work. The usefulness o f ^37cs as<br />

burn-up monitor is , however, doubted because o f it s tendency to migrate.<br />

The magnitude o f th is e ffe c t depends on the type o f fu e l, i t s temperature<br />

and the temperature gradient within the fu el. In many p ra ctica l cases<br />

errors in burn-up determination duetto 137cs migration are not serious.<br />

I f we assume that the reactor operation history and fuel composition<br />

are known the integrated neutron flu x is equivalent to the burn-up<br />

(to ta l number o f fis s io n s ). In th is case the ■'•34cs/ -1'Cs a ctiv ity ra tio offe rs<br />

1 3 7<br />

a p o s s ib ility superior to an absolute measurement o f Cs. Apart from<br />

the advantages o f ra tios regarding correction s and u ncertain ties, i t can<br />

be expected that 134cs is affected by migration in the same manner as<br />

•1-37cs. Consequently losses and red istrib u tion o f Cs (lo c a l concentrations)<br />

should have no serious e ffe c t on th is ra tio . Also errors due to absorption<br />

corrections assuming a homogeneous radial distribu tion o f Cs in the fuel<br />

should cancel.<br />

Not only the axial burn-up p r o file o f a fu el element can be measured<br />

with higher accuracy from the 134cs/137cs a ctiv ity r a tio . Using the<br />

matching procedure described in 2 .3.2 the neutron flu x and the con tribution<br />

o f epithermal neutrons inside a fu el element and it s variation can<br />

be determined which is not possible by any d irect measurement. Radial<br />

d istribu tion s can only be determined with confidence for fu el types that<br />

hinder migration in th is d irection .<br />

A research co-ordinating meeting on development o f gamma spectrometry in -<br />

strumentationand techniques for safeguards [12] recommended the experimental<br />

exp loitation o f the 134cs / ^'Cs ra tio for burn-up determination.<br />

Investigations in th is d irection are in progress. Results o f a lim ited<br />

number o f comparisons showed that burn-up determined by th is ra tio agreed<br />

with destructive U - Pu analysis within about Vfo [1 3 ]. In measurements


<strong>IAEA</strong>-SM-170/12 239<br />

o f the axial burn-up p ro file the ■'■^'Cs/^^Cs ra tio showed a good correla<br />

tion (fa c to r : 0.993 [ 14] ) and proved to be superior to other ra tios<br />

or measurements o f absolute a c tiv itie s [13)14].<br />

2 .3 .4 . Establishment o f fis s io n product inventories,<br />

In some application fie ld s fe .g .fu d element testin g and development,<br />

fis s io n product release measurements etc. ) one might be interested in<br />

fis s io n product concentrations that cannot be measured d ire ctly . Here<br />

the method described in section 2 .3.2 can be used together with gamma-<br />

spectrom etric measurements o f fis s io n product a c tiv itie s to adjust the parameters<br />

used in ca lcu la tion s. In th is manner concentrations o f fis s io n products<br />

at reactor shut down can be calculated^which cannot be measured because o f th eir<br />

low a c tiv itie s , short h a lf liv e s or the absence o f suitable gamma lin es.<br />

This procedure is already in use on a routine basis [Ю ].<br />

2.3.5* Application in safeguards<br />

The main objectiv es o f safeguards measurements on irradiated fuel<br />

elements are the id e n tifica tio n o f fu el elements and the v e rifica tio n o f<br />

operators data. In practice th is means a check, i f the measured content<br />

o f f i s s i l e m aterial, esp ecia lly Plutonium, and fis s io n products<br />

corresponds to the information about in it ia l fu el composition, irradiation<br />

h istory and burn-up given by the plant operator [1 2 ]. Here we have the case<br />

o f known irra diation h istory and fu el composition,and a forward calcu lation<br />

can be compared with gamma spectrom etric measurements fo r v e r ific a tio n .<br />

Experiments to check such a v e r ific a tio n technique have been performed<br />

by <strong>IAEA</strong> together with Euratom [14] using a ctiv ity ra tio s . Among these<br />

some ideas presented in [7 ] were adopted. Correlations between burn-up,<br />

coolin g time and P u -fission s on the one hand and a ctiv ity ra tios on the<br />

other hand were found to be sa tisfa ctory . D etails and resu lts can be<br />

found in [1 4 ].<br />

Significant in con sistencies exceeding experimental error and uncerta<br />

in tie s due to nuclear data and sim p lification s in the calcu lation<br />

(together about 5 - 20^) can easily be detected by th is method. In such<br />

a case the fu el element can be further investigated by destructive analy<br />

s is . However, the dependence o f a ctiv ity ra tio s on certain parameters,<br />

as lis te d in the introduction ( 1 .) and discussed in d eta il in [7 ] , allow us<br />

to derive some lim ited information about the history and composition o f<br />

the fu el element with low accuracy. This procedure could be as follow s<br />

startin g with fir s t rough estimates from curves (e .g . from [7 ] or section<br />

2 .4 .) :<br />

Step 1: The coolin g time can be derived roughly from d ifferen t<br />

fis s io n product ra tio s. I f shorter liv ed fis s io n products can be measured<br />

(e .g . -*-3 I , ^Ojja, 141ce) these should be used as fir s t estimates, as<br />

they are more lik e ly to be in saturation than fis s io n products with longer<br />

h a lf liv e s . Shutdown a c tiv itie s can then be calculated fo r a ll measured<br />

fis s io n products.<br />

Step 2: The a ctiv ity ra tio y ield s a fir s t estimate o f<br />

the integral neutron flu x, assuming fissio n s only and a typical<br />

value fo r the epithermal neutron flu x . With th is parameter fix ed, the<br />

irradiation time can be derived from the °5Zr/W 7cs a ctiv ity ra tio as<br />

shown in figure 4 (see also 2 .4 .).


240 EDER and LAM M ER<br />

Step 3: The number o f Pu fissio n s can be derived from the Ce/ Ru<br />

r a tio . The origin a l dependence shown in [7 ] can be modified by p lottin g<br />

the 144ge/106Ru ra tio against the integral neutron flux.U sing the in it ia l<br />

235u/ 3 и ra tio (enrichment) as third parameter several curves axe obtained.<br />

With the assumption that a ll Pu fissio n s resu lt from ^38u breeding<br />

the in it ia l enrichment o f U can be estimated.<br />

Step 4 and further steps: An inventory calcu la tion can be performed with the<br />

fir s t estimates and compared with the measured a c tiv itie s . Discrepancies have<br />

to be expected as the curves used fo r fir s t estimates are more or less<br />

independent. A ll parameters can be adjusted, startin g again with Step 1.<br />

Additional a ctiv ity ra tio s can be included to check the in it ia l assumptions<br />

o f "th ird " parameters in curves such as epithermal flu x or in it ia l fuel<br />

composition. So fo r example the ■'■54guyi37(;s a ctiv ity ra tio (P ig. 6,<br />

see also 2 .4 .3 .) cannot be used as a fir s t estimate, as i t depends strongly<br />

on the f i s s il e isotope and the epithermal flu x contribution. But in the<br />

adjustment procedure i t can be used to check the assumptions o f Pu production.<br />

The value and accuracy o f such ал itera tiv e procedure has to be<br />

investigated experimentally.<br />

2.4. Some new resu lts from studies o f a ctiv ity ra tios<br />

2 .4 .1 . The ■'■‘^C s/ ' ^ C b a ctiv ity ra tio<br />

The '*'^Cs/'*'^Cs ra tio varies lin e a rily with integrated neutron flu x<br />

over more than 2 decades. Our fir s t calcu lation s [7 ] showed a strong<br />

dependence o f th is ra tio on the epithermal neutron flu x contribution and was<br />

therefore further investigated. Figure 1 shows the variation o f th is ra tio<br />

with irra d iation time and tota l neutron flux (thermal + epithermal) for<br />

235U fissio n s.<br />

The ■'■^Cs/^^Cs a ctiv ity ra tio is almost the same for *^U and *^Pu<br />

fissio n s and changes by about 25$ when going to 233u fissio n s (F ig .2).<br />

It can also be seen from figure 2 that the variation with neutron<br />

temperature is not serious, whereas the strong dependence on the neutron<br />

spectrum introduces a large uncertainty.<br />

2 .4 .2 . The ^^Zr/^^Cs a ctiv ity r a tio .<br />

Due to the comparatively short h a lf l i f e o f ^ Z r (64d)the ^ Z r/^ ^ C s<br />

a ctiv ity ra tio at reactor shut down should vary sig n ifica n tly with<br />

irradiation time. This is shown in figure 3 for d ifferen t values o f the<br />

tota l neutron flux (235u on ly). The dispersion o f the curves esp ecially<br />

for low values o f the ra tio (F ig .3 ) is due to the high ^35ц depletion<br />

which is also indicated in figure 3. In th is case 95Zr is no more formed<br />

in fis s io n in sign ifica n t amounts and decays p ra ctica lly . The depletion<br />

is equivalent to integrated neutron flu x values which can be obtained<br />

from 13 4 cs/137Gs.<br />

2.4 -3 . The ■'■^Eu/^^Cs a ctiv ity ra tio<br />

Due to the low fis s io n y ie ld o f 1^Eu, '''"^Eu can only be found in<br />

gamma spectra from highly irradiated fu el elements and after rather<br />

long coolin g times. Calculated ra tio s are shown in figure 4 and compared<br />

to the 134cs/-1-37cs a ctiv ity ra tio (on d ifferen t s ca le ). The differen ce<br />

in the •'■54eu/A37Cs ra tio fo r 235u and 239pu fissio n s is n oticeable. This


<strong>IAEA</strong>-SM-17 0 / 12 241<br />

Ю12 Ю’3 10й<br />

$tol * Tirr (n/fcrrf»s)xyearsl<br />

FIG . 1. 134C s / 137Cs a c tiv ity ra tio at shutdown versus in tegrated neutron flu x for d iffe re n t v alu es o f neutron flu x<br />

and irra d ia tio n tim e .<br />

ra tio has another in terestin g feature: the contributions o f lower mass<br />

chains to the 154&1 a ctiv ity increase rapidly with integrated neutron<br />

flu x as shown in the table below:<br />

Integrated neutron flu x<br />

[n/om s x years]<br />

contr ibutions<br />

153 152<br />

from masse !S<br />

151<br />

149 147<br />

1013 92$ 4.4$ 3.5$ - -<br />

5 x 1013 57$ 17$ 23$ 2.6$ -<br />

1014 31$ 23$ 34$ lOfo 1.4$<br />

2 x 1014 10$ 20$ 32$ 32$ 5-5$<br />

4 x 1014 0.7$ 7$ 12$ 41$' 39$<br />

5 x 1014 0.2$ 3$ 5-5$ 36$ 53$


242 EDER and LAM M ER<br />

FIG . 2<br />

100 10K<br />

Фшх T,rr ln/(cnŸ*s)xyearsl<br />

D e p en d e n ce o f 134C s / 137C s a c tiv ity ra tio at shutdown versus in tegrated neutron flu x on d iffe re n t param eters.<br />

iradiation time Iyears/<br />

F I G .3 . D e p en d e n ce o f 95Z r / I37C s a c tiv ity ra tio at shutdow n on irra d ia tio n tim e .


<strong>IAEA</strong>-SM-170/12 243<br />

integral neutron flux<br />

ln/cm!s * yearsI<br />

F I G .4 . D ep en d ence o f 154E u /137 C s a c tiv ity ra tio at shutdown on in tegrated neutron flu x .<br />

This e ffe c t has several consequences:<br />

- The slope o f the '^ 4Eu/'*'37Cs ra tio is steeper than that o f the ^34Cs/^37Cs<br />

ra tio at lower integrated fluxes.<br />

- The curve calculated for 239pu fissio n s approaches that for ^35u fissio n s<br />

at higher integral fluxes as the d ifferen ce in fis s io n y ie ld s is not<br />

so pronounced at lower mass numbers.<br />

- The dependence on the fra ction o f epithermal neutrons is lik e ly to vary<br />

with in tegral neutron flu x. This has not yet been investigated.<br />

3. COMPILATIONS WHICH INCLUDE NUCLEAR DATA NEEDED IN THIS WORK<br />

<strong>Nuclear</strong> data used as input to forward calcu lation s are: h a lf liv e s ,<br />

neutron cross section s, branching ra tio s and fis s io n y ie ld s.<br />

<strong>Data</strong> needed for the evaluation o f measured gamma spectra are: gamma<br />

ray energies and absolute in ten sities o f ca lib ra tion standards (d etector<br />

e ffic ie n c y ) and fis s io n products, h a lf liv e s and gamma ray attenuation<br />

c o e ffic ie n ts .<br />

3.1. F ission y ield s<br />

Existing evaluations and evaluation methods are discussed in another<br />

paper at th is Symposium [15]«<br />

3.2. Decay data and gamma ray properties<br />

The table o f isotopes edited by Lederer et al [16] is the last comprehensive<br />

con çila tion o f decay data and gamma ray properties that includes<br />

a ll the fis s io n products o f in terest in our work. However, no


244 EDER and LAM M ER<br />

gamma ray measurements with semiconductor detectors are included in th is<br />

compilation fo r most o f the fis s io n products, as such m easurem ents w ere<br />

not available at that time. Due to the rapid development and increasing<br />

application o f high resolu tion semi-conductor detectors these data were<br />

o f l i t t l e value to users and superseded by more accurate measurements<br />

already shortly a fter the publication o f the la st ed ition o f the book.<br />

Decay and level scheme evaluations by the <strong>Nuclear</strong> <strong>Data</strong> group are<br />

published on a regular basis. However, they s t i l l have a large backlog<br />

and th eir la st compilations o f many important fis s io n products (mass<br />

numbers 97, 99. ЮЗ, 106, 131, 133, 134, 137, 140) date from 1959 to 1961.<br />

The situation is not so bad for h a lf liv e s and branching ra tio s as there<br />

are not so many measurements performed and the "Recent References" o f<br />

the <strong>Nuclear</strong> <strong>Data</strong> Group helps to find the pu blications.<br />

More recently a number o f evaluations and compilations were published<br />

[1 7 - 19]. E specially the detailed tables o f Martin and B lich ert-T oft [17]<br />

were very valuable for our work, although they do not contain a ll o f the<br />

important fis s io n products. However, no up-to-date compilations were available<br />

between 1967 and 1970, except for tables o f gamma ray energies for<br />

detector ca lib ra tion , and therefore com pilation a c tiv itie s started at the<br />

reactor center Seibersdorf fo r internal use.<br />

3 . 3. Neutron cross sections<br />

As with h a lf lives,measurements o f thermal neutron cross sections and<br />

resonance in tegrals are not very frequent. The comprehensive and w ell known<br />

compilation BNL-325 [29,30] contains a ll pre 1966 measurements. References<br />

fo r la ter measurements can be found in CINDA [3 1 ]. Also a number o f other<br />

compilations ex ist due to a world-wide in terest in neutron data.<br />

The main problems concerning neutron cross sections are the lack o f measurements<br />

fo r a number o f nuclides and p a rtia lly unresolved discrepancies between some<br />

measured values. Another strik in g fact is the lack o f information about<br />

world-wide compilation a c tiv itie s such as the litera tu re index CINDA [31] or<br />

retrieveable computer f i l e s o f experimental and evaluated data and the serv<br />

ices offered by data centers.<br />

3.4. Suggested improvements in compilation e ffo r ts<br />

Although a literatu re index to experimental data may be o f great value,<br />

a user would preferably not just adopt the resu lt o f a most recent measurement.<br />

Due to the lack o f decay data com pilations, esp ecially o f gamma ray<br />

energies and in te n sitie s, several unpublished com pilations have been prepared<br />

at our and other laboratories fo r internal use. A number o f these compilations<br />

have only recently been published or prepared for publication. In order to<br />

save world-wide p a ra llel e ffo r ts we would strongly support any means to<br />

make information about compilation a ctiv ity and existin g compilations<br />

commonly available. This could be achieved by issuing p eriod ica lly a comp<br />

ila tio n b u lletin or by the in clusion o f references to compilations and<br />

evaluations in indexes to existin g lite ra tu re, even i f unpublished. It<br />

would then be the resp on sib ility o f the compilers to supply th is information<br />

to indexers.<br />

In many application fie ld s only a lim ited number o f nuclear data<br />

types is needed. For example most applications need only gamma ray energies<br />

and absolute in ten sities rather than complete level schemes. During our<br />

own com pilation work i t proved convenient to maintain computer f i l e s o f<br />

experimental data for gamma ray energies and in te n sitie s, h a lf liv e s and<br />

branching ra tio s , which could be updated p eriod ica lly . A certain selection o f


IA E A -S M -1 7 0 /1 2 245<br />

data has to be made but th is selection causes not much additional e ffo r t.<br />

Some care is required on the part o f the compiler in calcu latin g absolute<br />

gamma ray in ten sities from supplementary information, but th is may not be<br />

necessary fo r every update.<br />

The situ ation is somewhat d ifferen t for neutron cross sections and fis s io n<br />

y ie ld s as these data require carefu l evaluation. However, these evaluated data<br />

could also be maintained in a computer f i l e . We would therefore recommend<br />

the in vestigation o f the generation o f such computer lib ra rie s o f important<br />

nuclear data which would be readily available to a ll users.<br />

4. RECOMMENDED NUCLEAR DATA<br />

Tabulations o f fis s io n prodout nuclear data are s t i l l rather rare<br />

and we have received some requests fo r our data. Therefore we present a<br />

recen tly updated set o f fis s io n product and fuel isotope nuclear data.<br />

D etails w ill be published elsewhere.<br />

4 .1 . <strong>Nuclear</strong> data o f fu el isotopes<br />

Table I contains the preliminary resu lts o f a new evaluation o f<br />

2200 m/s constants [ 32] which is a revision o f the e a rlie r publication<br />

[3 3 ]. Only minor changes o f these values are expected for the fin a l<br />

version , except, perhaps, ^ 9 p u and 241pu> д carefu l réévaluation o f the<br />

h a lf liv e s o f these two isotopes is in progress. The S values were ca lculated<br />

by us from W estcott's data [34] ( Sg values) according to :<br />

Snew = Sold + n/ 4 T /7 J -T 0' I ( R I /


246 EDER and LAM M ER<br />

T A B L E I. P R E L I M I N A R Y 2 2 0 0 m / s C O N S T A N T S<br />

Quantitya<br />


LAEA-SM-170/12<br />

T A B L E II. N U C L E A R D A T A O F H E A V Y ISO TO PES<br />

neutron cross sections (barn)a<br />

capture fi ssion<br />

Isotope maxw RI fiss maxw RI fiss half life<br />

232Th 7.313b 82 0.262 0.072<br />

233Pa 39 860 0.39 27 d<br />

234ц<br />

99 600 0.14 1.3<br />

236u 5-4 415 0.14 О.69<br />

237„ 370° 0.07 2 0.68 6.75d<br />

238u 2.73 269 О.О85 0.310<br />

234 169 870 0.17 O.OI9 6 1.28<br />

238n p 43 10 0.12 2200 510 1.3 50.8 h<br />

239n p 60° 2.35 d<br />

238Pu 588 I64d 0.03 16.3 16.7 2.3<br />

240Pu 288 8220 0.06 1.5<br />

a maxw = maxwellian average (g x ® 0 ) cross section,<br />

RI = reduced resonance integral (l/v part subtracted)<br />

fiss = fission spectrum (235u) avercige cross section.<br />

b s; = 7.3449 ъ, g o = 0.99562 [21].<br />

с pile neutron cross section<br />

d includes l/v part of cross section<br />

Half lives for many fission products were taken from the evaluation<br />

of Martin and Blichert-Toft [17]. "Recent References" issued by the<br />

<strong>Nuclear</strong> <strong>Data</strong> group in Oak Ridge were scanned regularily for new measurements.<br />

A computer fit was made whenever data more recent than those included<br />

in [17] were found and use was made of the tables of experimental<br />

data in [ 17]. In some cases, where one value was considered superior to<br />

others,this was adopted. Up to now for most of the fission products contained<br />

in [ 17] more recent data were available.<br />

The most extensive compilation of fission product thermal cross<br />

sections and resonance integrals is that of Walker [36]. Therefore his<br />

values for experimentally determined cross sections were adopted by us<br />

and only updated for some new measurements. Stable nuclides, for which<br />

no new measurements were found, are not included in our tables and<br />

Walker's data [36] are recommended.<br />

For nuclides where no experimental results are available the<br />

Australian fission product point cross section library [22,23] is used<br />

which is based on more sophisticated calculations than Walker's estimates.<br />

247


248 EDER and LAMMER<br />

TA B L E III. FISSION PRODUCT NUCLEAR D A TAa<br />

f i s s i o n<br />

p r o d u c t<br />

h a l f - l i f e c r o s s - s e c t i o n s ( b a r n )<br />

2 2 0 0 m / s m a x w e l l i a n r e s i n t . p i l e<br />

7 7 A s 3 8 . 8 3 + O . O 5 h 1 2 . 5 Ъ 2 0 °<br />

8 l B r<br />

8 2 B r 3 5 - 3 4 + 0 . 0 2 h 1 8 Ъ<br />

2 . 7 + 0 . 2<br />

5 5 + 5<br />

S 3 K r 2 0 0 + 1 0 1 5 0 + 3 0<br />

8 4 K r 0 . 1 8<br />

8 5 K r 1 0 . 7 3 + 0 . 0 6 a 8<br />

8 6 R b 1 8 . 6 5 + 0 . 0 2 d<br />

4 0 С<br />

0 . 4 9 b 0 . 5 °<br />

8 9 S r 5 О . 5 2 + О . О 5 d 0 . 4 £<br />

9 ° S r 2 8 . 6 + 0 . 4 a 0 . 8<br />

9 1 S r 9 . 4 8 + 0 . 0 2 h 0 . 1 4 Ъ 0 . 1 5 °<br />

9 1 y<br />

5 8 . 5 1 + 0 . 1 2 d 1 . 0 ъ 1 . 4<br />

9 4 Z r 0 . 0 6 + 0 . 0 1 0 . 3 7 + 0 . 0 4<br />

9 5 z r 6 3 . 9 8 + О . 1 2 d 0 . 4 8 Ъ 1 С<br />

9 5 m w b 3 . 6 1 + 0 . 0 4 d<br />

9 5 N b 3 5 . О 4 5 + О . O l O d 1 . 4 3 ъ 4<br />

9 6 Z r О . О О 6 + О . О О ] 5 . 0 + 0 . 5<br />

9 7 Z r 1 6 . 8 + 0 . 2 h 0 . 2 0 Ъ 0 . 4 °<br />

9 8 M o<br />

9 9 M o 6 6 . 7 + О . 5 h 1 . 7 ъ<br />

0 . 1 3 + 0 . 0 1<br />

1 0 3 R u З 9 . З 5 + О . 1 О d 7 . 6 Ъ 1 0 е<br />

^ E h 3 5 . 5 + 0 . 2 h 1 7 0 0 0 + 2 0 0 0 1 7 0 0 0 + 3 0 0 0<br />

1 0 6 D<br />

R u 3 6 8 . 3 + 2 . 0 d O . I 5 + O . O 5 2 . 0 + 0 . 6<br />

1 0 9 p d I 3 . 4 6 + O . O 2 h<br />

Note: for footnotes a > c< d, e< ^ see below last portion of this table.<br />

2 е<br />

5


T A B L E III (con t. )<br />

fission<br />

product<br />

half life<br />

<strong>IAEA</strong>-SM-170/12 249<br />

cross-sections (harn)<br />

2 200 m/s maxwell iar¡ res int. pile<br />

IO9 Ag 93+5 1500+200<br />

110m, Ag 252.2+0.3d 82<br />

U4 7.45 +0.01 d 3+2 105+20<br />

112P01 20.12+0.06 h 1<br />

1 1 2 л Ag<br />

3.16+0.02h<br />

115"‘c d 44.6+ 0.2 d 3 1 ъ 5 0 d<br />

n 5Cd 53.38+О.О4 h 5 . 4 b 2 0 d<br />

b"<br />

121mSn 50 + 10 a<br />

12.4 Ъ<br />

1 21Sn 27.O5+O.IO h J<br />

121Sb 6.2+0.1 200+10<br />

122Sb 64.34+0.06 h 21 Ъ<br />

123Sn I29.3+ O .5 d о.оз ъ<br />

123Sb 4.2+0.2 120+10<br />

124Sb 60.20+0.02 d 6.5<br />

12^Sn 9.64+О.ОЗ d 0.55 Ъ<br />

125sb 2.75+О.О4 a 1.56<br />

12^mTe 58+1 d llb 20 d<br />

126Sn 0.3 Э. 12<br />

126Sb I2.4+O.I d 5.8Ъ<br />

127 Sb 9I.2+O .3 h 0.9Ъ<br />

127I\ a 109 + 2 d 9-4 20 d


250 EDER and LAM M ER<br />

T A B L E III (con t. )<br />

fission<br />

product<br />

half life cross-sections (barn)<br />

1 2 9 ^ е 33.6+ 0.2 d 1.1<br />

131"Ve' 30 h 0.1<br />

2200 m/s maxwellian res int. pile<br />

131I 8.05*0.02 de 0.94Ъ » 8<br />

131mXe 11.98+0.05 d 50<br />

132Te 78+ 1 h 0.0024^<br />

132I 2.285+O.OIO h<br />

X33i<br />

20.9+0.I h 0.0035Ъ<br />

133mXe 54+2 h f<br />

133Xe 5 .29+0.Old I9O+9O<br />

133Cs 29.5+2.О 450+20<br />

134c s 2.05+0.02 a 133* 140+12<br />

135, 6.585+О.ОО2 h 0. 02Ъ<br />

135 X e 9. I 72+O.OO5 h 2.65xl06 3.1xl06<br />

136C S 13.00j0.02 d 1.9Ъ<br />

137Cs 30.0+0.2 a 0.11<br />

1 4 °Ba 12.79+0.Old 1.57+0.03 13+2<br />

140La 4О.27+О.О5 h 2»7 +0.3 69+4<br />

141Ce 32.55+0.02 d 29+З<br />

142Pr 19.I+O.I h 20+3<br />

143Ce 33 + 1 h 6


T A B L E III (cont. )<br />

f i s s i o n<br />

p r o d u c t<br />

1 4 3 p r<br />

h a l f l i f e<br />

I 3 . 5 8 + O . O 3 d<br />

IA E A -S M -1 7 0 /1 2 251<br />

c r o s s - s e c t i o n s ( b a r n )<br />

2 2 0 0 m / s m a x w e l l i a n r e s , i n t . p i l e<br />

» "1<br />

1 0 0 + 1 0 1 5 О + З О<br />

1 4 4 C e 2 8 4 . 5 + О . 4 d 1 . 0 + 0 . 1 2 . 2 + 0 . 3<br />

1 4 7 N d 1 1 . 0 0 + 0 . 0 3 d 5 0 b iood<br />

1 4 7 P m 2 . 6 2 3 + O . O O I a 1 8 2 + 2 0 2 4 О О + З О О<br />

1 4 7 S m 6 1 ± 7 6 4 6 ± 6 0<br />

1 4 4 m 4 О . 9 + О . 2 d 2 5 0 0 0 + 2 0 0 0<br />

1 4 8 P m 5 . 3 7 + O . O I ' d 3 0 0 0 + 2 0 0 0<br />

148Sm 3 . 5 ± 1 . ' 2 2 7 ± 1 4<br />

1 4 9 P m 5 3 . 0 8 + 0 . 0 5 h 1 4 O O + 3 O O<br />

1 4 9 S m<br />

4 2 1 0 0 + 4 0 0<br />

^ P m 2 8 . 4 + 0 . 1 h 4 0 0<br />

^ S m 9 3 + 5 a I 5 O O O + I 8 O O ( 3 1 0 0 )<br />

^ a n 4 6 . 9 + 0 . 2 h 3 3 5 Ъ<br />

4 5 0 + 2 0<br />

5 0 0 d<br />

8 . 5 + 0 . 2 a 1 5 O O<br />

4 . 9 + О . l a 4 0 4 0 + 1 2 5<br />

^ E u 1 5 . l 6 + 0 . 0 2 d 4 8 0 Ъ 5 0 0 d<br />

^ B u I 5 . I 5 + O . O 8 h 1 9 0 Ъ 2 0 0 d<br />

a F o r b r a n c h i n g r a t i o s a n d c r o s s s e c t i o n r a t i o s t o m e t a s t a b l e s t a t e s<br />

s e e t a b l e V I .<br />

b I n t e r p o l a t e d f r o m A u s t r a l i a n f i s s i o n p r o d u c t p o i n t c r o s s s e c t i o n l i b r a r y<br />

[ 2 2 , 2 3 ] . E s t i m a t e d e r r o r 1 0 0 % [ 2 2 ] .<br />

с R o u g h e s t i m a t e f r o m 2 2 0 0 m / s c r o s s s e c t i o n b y c o m p a r i s o n w i t h n u c l e i<br />

o f s i m i l a r c h a r g e a n d m a s s n u m b e r c o m b i n a t i o n s<br />

d O r d e r o f m a g n i t u d e e s t i m a t e d f r o m p o i n t c r o s s s e c t i o n l i b r a r y d a t a [ 2 2 , 2 3 ]<br />

e M o r e r e c e n t m e a s u r e m e n t s q u o t e d i n [ 2 4 - 2 6 ] a r e n o t i n c l u d e d , a s<br />

t h e y a r e e i t h e r d i s c r e p a n t [ 2 4 , 2 6 ] o r n o t y e t p u b l i s h e d [ 2 5 ]<br />

f C r o s s s e c t i o n n o t m e a s u r e d n o r c a l c u l a t e d . M e a s u r e m e n t s o f R e y n o l d s<br />

a n d E m e r y [ 2 7 ] ( o n d e c a y s c h e m e s ) s u g g e s t , t h a t t h i s c r o s s s e c t i o n<br />

m i g h t b e o f t h e o r d e r o f 1 0 ^ b .


252 EDER and LAMMER<br />

О . О 2 5 З e V c r o s s s e c t i o n s w e r e o b t a i n e d f r o m t h e s e d a t a b y i n t e r p o l a t i o n a n d<br />

p i l e n e u t r o n c r o s s s e c t i o n s e s t i m a t e d a s i n d i c a t e d i n T a b l e I I I . I n<br />

c a s e s w h e r e t h e c r o s s s e c t i o n i s i n s i g n i f i c a n t g e n e r a l l y o n l y t h e 2 2 0 0 m / s<br />

v a l u e i s l i s t e d .<br />

E s t i m a t e d e r r o r o f t h e c a l c u l a t e d v a l u e s i s + 1 0 0 $ [ 2 2 ] . T h e e s t i m a t e d<br />

c o n t r i b u t i o n t o t h e p i l e n e u t r o n c r o s s s e c t i o n s h o u l d h a v e e v e n g r e a t e r<br />

u n c e r t a i n t y a n d i n d i c a t e o n l y t h e o r d e r o f m a g n i t u d e . G e n e r a l l y n o e r r o r s<br />

a r e a s s i g n e d t o m e a s u r e d p i l e n e u t r o n c r o s s s e c t i o n s a s t h e v a l u e d e p e n d s<br />

o n t h e n e u t r o n s p e c t r u m . O t h e r e r r o r s s h o w n a r e f r o m s i n g l e m e a s u r e m e n t s<br />

o r a s s i g n e d a c c o r d i n g t o t h e d i s p e r s i o n o f s e l e c t e d v a l u e s .<br />

T a b l e I V s h o w s s o m e i s o m e r i c r a t i o s f o r m o r e i m p o r t a n t f i s s i o n<br />

p r o d u c t s w i t h m e t a s t a b l e s t a t e s .<br />

4. 3. T a b le o f gamma r a v s<br />

T h e c o m p l e t e t a b l e o f f i s s i o n p r o d u c t g a m m a r a y e n e r g i e s a n d a b s o l u t e<br />

i n t e n s i t i e s c a n n o t b e i n c l u d e d i n t h i s p a p e r . A l s o , t h e l a s t u p d a t e w a s m a d e<br />

i n 1 9 7 1 .<br />

E n e r g i e s a n d r e l a t i v e i n t e n s i t i e s a r e f i t t e d b y c o m p u t e r . T h e c o n ­<br />

v e r s i o n o f r e l a t i v e t o a b s o l u t e i n t e n s i t i e s i s d o n e b y h a n d a n d g i v e n a s<br />

i n p u t . E x a m p l e s f o r t w o f i s s i o n p r o d u c t s a r e s h o w n i n T a b l e V . T h e f i t t e d<br />

e n e r g i e s a n d a b s o l u t e i n t e n s i t i e s a r e p u n c h e d o n c a r d s a s w e l l a s t h e<br />

r e f e r e n c e n u m b e r s .<br />

T h e s e c a r d s a r e i n p u t t o a n o t h e r c o m p u t e r p r o g r a m . T h i s p r o g r a m p r i n t s<br />

o u t a t a b l e o f g a m m a r a y s s o r t e d b y f i s s i o n p r o d u c t s , a t a b l e o f g a m m a<br />

r a y s s o r t e d b y d e s c e n d i n g e n e r g y a n d s u b d i v i d e d i n t o t h r e e h a l f l i f e g r o u p s ,<br />

a n d a l i s t o f r e f e r e n c e s . E x a m p l e s a r e g i v e n i n T a b l e V I . T h e h a l f l i f e<br />

v a l u e s s h o w n a r e s u p e r s e d e d n o w b y t h o s e i n T a b l e I I I . A l l t h e s e t a b l e s a r e<br />

s t o r e d o n d i s c a n d c a n b e r e c a l l e d f o r p r i n t o u t b y a n o t h e r p r o g r a m . T h e<br />

" O r d e r e d t a b l e o f e n e r g i e s " s e r v e s t o f a c i l i t a t e t h e i d e n t i f i c a t i o n o f<br />

g a m m a r a y s i n c o m p l e x s p e c t r a f r o m b u r n t f u e l e l e m e n t s .<br />

5 . UNCERTAINTIES IN GAMMA SPECTROMETRIC MEASUREMENTS AND FORWARD CALCULATIONS<br />

T h e a c t i v i t y o f a f i s s i o n p r o d u c t a t t h e t i m e o f m e a s u r e m e n t , A , i s<br />

c a l c u l a t e d f r o m a m e a s u r e d g a m m a s p e c t r u m f r o m t h e f o r m u l a :<br />

. vj __________________ 1 + D C __________________ / . \<br />

P = P h o t o p e a k a r e a<br />

I y ~ . E F ( E ) . T . G A ( E ) ' '<br />

D C = D e a d t i m e c o r r e c t i o n<br />

I^>*= G a m m a r a y i n t e n s i t y<br />

E F ( e ) = p h o t o p e a k e f f i c i e n c y f o r g a m m a l i n e w i t h e n e r g y E i n<br />

p o s i t i o n o f m e a s u r e m e n t ( o r s c a n n i n g e f f i c i e n c y )<br />

T = M e a s u r i n g t i m e ( s e c )<br />

G A ( e ) = E n e r g y d e p e n d e n t g a m m a r a y a b s o r p t i o n f a c t o r .


T A B L E IV. B R A N C H I N G R A T I O S<br />

f i s s i o n<br />

p r o d u c t<br />

h a l f<br />

l i f e a<br />

$/J-<br />

d e c a y a<br />

IA E A -S M -1 7 0/1 2 253<br />

b r a n c h i n g<br />

( $ ) 0<br />

p r e c u r s o i c r o s s s e c t i o n ( b ) ^<br />

m a x w r e s . i n t .<br />

8 2 B r 3 5 h 1 0 0 2 . 7 + 0 . 2 e 5 5 + 5 0<br />

_85fiKr<br />

OO<br />

i f<br />

4 - 4 h 7 8 . 8 + 0 . 9 f 1 0 0 f 8 5 B r 0 . 0 9 j p . 0 1 7<br />

1 0 . 7 a 1 0 0 of 8 5 B r 0 . 0 3 ® 2 e<br />

9 5 m N b 3 . 6 d 0 1 . 8 + 0 . 5 9 5 Z r<br />

9 9 щ Т с 6 h 0 8 6 . 3 + 1 . 0 9 9 M o<br />

1 1 0 m .<br />

A g 2 5 2 d 9 8 . 6 + 0 . 1 3 4 . 6 7 + 0 . 0 7 7 0 + 2<br />

1 2 ^ е 5 8 d 0 2 2 . 3 1 2 5 s b<br />

1 2 7 m T e 1 0 9 d 2 . 4 + 0 . 2 1 7 . 4 1 2 7 S b<br />

1 2 9 " * e 3 3 . 6 d 3 6 + 7 1 6 . 6 1 2 9 S b 0 . 0 1 6 + 0 . 0 0 1 О . О 7 7 + О . О О 5<br />

1 3 1 m X e 1 2 d 0 1 . 3 5 + 0 . 1 1<br />

1 3 3 m X e 5 4 h 0 2 . 8 + 0 . 1<br />

148V 4 1 d 9 3 . 2 + 0 . 7 8 6 + 1 0 1 1 3 0 + 1 0 0<br />

1 4 8 g P m 5 - 4 d 1 0 0 6 . 8 + 0 . 7 1 4 8 n V m 9 6 + 2 1 2 7 O + I O O<br />

Р о г e x a c t v a l u e s e e t a b l e I I I . T h i s f i g u r e i s o n l y g i v e n t o d i s t i n g u i s h<br />

b e t w e e n i s o m e r i c s t a t e s .<br />

U n l e s s o t h e r w i s e n o t e d j l O O $ m i n u s t h e v a l u e g i v e n i s i s o m e r i c t r a n s i t i o n<br />

t o g r o u n d s t a t e .<br />

1 3 1 !<br />

! 3 3 i<br />

0 . 0 4<br />

P e r c e n t a g e o f ß - d e c a y s o f r a d i o a c t i v e p r e c u r s o r ( c o l u m n 5 ) t o t h e<br />

f i s s i o n p r o d u c t l i s t e d i n c o l u m n 1 .<br />

C r o s s s e c t i o n o f i s o t o p e w i t h m a s s n u m b e r A - l f o r p r o d u c t i o n o f f i s s i o n<br />

p r o d u c t w i t h m a s s n u m b e r A ( c o l u m n l ) .<br />

S h o r t l i v e d i s o m e r i c s t a t e n e g l e c t e d . P r o d u c t i o n c r o s s s e c t i o n l i s t e d<br />

i n c l u d e s f r a c t i o n f r o m i s o m e r i c t r a n s i t i o n .<br />

I f a 1 0 0 $ d e c a y o f ° 5 ß r t o б Э г о к г i s a s s u m e d , t h i s v a l u e i s s l i g h t l y h i g h e r<br />

c o m p a r e d t o t h e f r a c t i o n o f 8 5 g K r o b s e r v e d i n f i s s i o n y i e l d m e a s u r e m e n t s<br />

( 2 1 . 6 $ - 2 2 $ [ 2 8 ] ) . T h i s m i g h t b e d u e t o d i r e c t f o r m a t i o n o f ° 5 l C r i s o m e r s<br />

i n f i s s i o n , b u t i s u n l i k e l y f o r 2 3 5 u f i s s i o n . T h e p o s s i b i l i t y o f a<br />

f r a c t i o n o f ® 5 в г d e c a y i n g d i r e c t l y t o 8 5 é f t r s h o u l d b e i n v e s t i g a t e d .<br />

T h e r a t i o s o f f i s s i o n y i e l d s [ 1 5 , 2 8 ] a r e r e c o m m e n d e d f o r u s e i n<br />

c a l c u l a t i o n s .<br />

0 . 2


254 EDER and LAMMER<br />

T A B L E V . E X A M P L E S O F E V A L U A T E D G A M M A -R A Y E N E R G IE S AND<br />

IN T E N S IT IE S<br />

58 CE 141<br />

32.38 (+/- 0.02) DAYS HALFL IfE<br />

100 PERC. REL = 100. (+/- 0. ) PERC. ABS.<br />

ENERGY (KEV) INTENSITY (PERC.) REF<br />

145.49 +/- 0.03 3<br />

145.43 +/- 0.02 125<br />

145.443 +/- 0.006 125<br />

145.44 +/- 0.05 148<br />

145.41 +/- 0.03 149<br />

145.450 +/- 0.005 150<br />

145.4498 +/- 0.0049 156<br />

145.441 +/- 0.003 193<br />

49. +/- 1. 73<br />

ADOPTED VALUE<br />

1 145.444 +/- 0.002 REL 49. +/- 1.<br />

A8S 49. */- 1.<br />

SEE REF. 73<br />

ABSOLUTE VALUE FOR 100 PERC. REL. INTENSITY<br />

LIST <strong>OF</strong> REFERENCES<br />

3 NUCL.PHYS.. A 1 0 7 I 1968)177<br />

73 NUCL.DATA, A 8 / 1 - 2 U 9 7 0 )<br />

82 J.NUCL.SC I.TECHN.,3/51 1966)200<br />

125 NUCL. DATA, A4-3-301 (1968)<br />

148 NUCL.PHYS., A90(1967)650<br />

149 NUCL.PHYS., A 9 K 1967)453<br />

150 NUCL.PHYS., A 1 2 9 (1969)1<br />

156 COO-1112-167 (1967)50<br />

193 NUCL.1NSTR.METH., 77(1970)141


T A B L E V (cont. )<br />

IA E A -S M -1 7 0 /12 255<br />

63 fcU 155<br />

1770. (+/- 36 . ) DAYS h a l f l i f e<br />

100 P£RC. REL = 32.58 (+/- 1.03 ) PERC . ABS.<br />

NR ENERGY (KEV) INTENSITY (PERC.) REF<br />

1<br />

2<br />

3<br />

4<br />

18.776 +/- 0.035 0.162 +/- 0.038 212<br />

ADOPTED VALUE<br />

18.776 +/- 0.C35 REL<br />

ABS<br />

* 26.53<br />

26.513 +/- 0.021<br />

ADOPTED VALUE<br />

26.513 +/- 0.021 REL<br />

ABS<br />

31.55 +/-<br />

31.43 +/-<br />

0.10<br />

0.05<br />

ADOPTED VALUE<br />

31.45 +/- 0.05 REL<br />

ABS<br />

« 45.29<br />

45.299 +/-<br />

45.2972 +/-<br />

45.299 +/-<br />

0.002<br />

0.0013<br />

0.013<br />

ADOPTED VALUE<br />

45.2977 +/- 0.0011 REL<br />

ABS<br />

0.162<br />

0.053<br />

1.<br />

1.03<br />

1.03<br />

0.34<br />

# 0.03<br />

0.023<br />

0.023<br />

0.0075<br />

« 2.8<br />

3.6<br />

4.18<br />

4.1<br />

1.35<br />

+/- 0.038<br />

+/- 0.012<br />

+ /- 1.<br />

+/- 0.04<br />

+/- 0.04<br />

+/- 0.02<br />

+/- 0.02<br />

+/- 0.005<br />

+/- 0.005<br />

+/- 0.0016<br />

+/- 0.7<br />

+/- 0.7<br />

+/- 0.17<br />

+/- 0.2<br />

+/- 0.07<br />

79<br />

212<br />

99<br />

212<br />

79<br />

99<br />

192<br />

212<br />

* 38. 0.20 +/- 0.03 79<br />

57.970 +/- 0.026 0.22 +/- 0.05 99<br />

57.9805 + /- 0.0020 192<br />

57.983 +/- 0.030 0.217 +/- 0.011 212<br />

ADOPTED VALUE<br />

57.980 +/- 0.002 REL 0.215 +/- 0.010<br />

ABS 0.070 +/- 0.004<br />

* NOT USED FOR AVERAGE


256 EDER and LAMMER<br />

T A B L E V (cont.<br />

NP<br />

10<br />

ENERGY (KEV) INTENSITY (PERC.) REF<br />

О<br />

•<br />

* 60. 3.8 + /- 0.2 79<br />

60.006 + /- 0.004 * 4.3 + / - 0.3 99<br />

60.0100 + / - 0.0018 192<br />

60.019 + / - 0.015 3.60 + /- 212<br />

ADUPTED VALUE<br />

60.0094 + /- 0.0016 REL 3.61 + /- 0.04<br />

ABS 1.18 + /- 0.04<br />

» 86.05 0.50 + /- 0.05 79<br />

86.062 + / - 0.023 0.49 + / - 0.05 99<br />

86.0621 + / - 0.0051 192<br />

ADOPTED VALUE<br />

86.062 + / - 0.005 REL 0.50 + / - 0.04<br />

ABS 0.16 + / - 0.01<br />

86.541 + / - 0.003 100. 99<br />

86.5452 + / - 0.0033 192<br />

86.539 + / - 0.015 100. 212<br />

ADOPTED VALUE<br />

86.5428 + / - 0.0022 REL 1 0 0 .<br />

ABS 32.58 + / - 1.03<br />

* 105.3 65. 7 + / - 6.5 76<br />

* 105.32 67.9 + / - 3.4 79<br />

105.302 + / - 0.004 68.3 + / - 2.7 99<br />

105.308 + / - 0.003 192<br />

105.315 + / - 0.015 66.8 + / - 1.3 212<br />

ADOPTED VALUE<br />

105.306 + / - 0.002 REL 67.1 + / - 1.1<br />

ABS 21.9 + / - 0.8<br />

146.2 + / - 0.2 0.16 + / - 0.05 76<br />

146.061 + / - 0.015 0.19 + / - 0.02 99<br />

0.167 + / - 0.060 254<br />

146.05 + / - 0.09 0. 169 + / - 0.008 212<br />

ADOPTED VALUE<br />

146.06 + / - 0.01 REL 0.172 + / - 0.007<br />

ABS 0.056 + / - 0.003<br />

* NOT USED FOR AVERAGE<br />

С


T A B L E V (con t. )<br />

ABSOLUTE VALUE FOR 100 PERC. REL. INTENSITY<br />

GROUND STATE BETA TRANSITION <strong>OF</strong> 13 PRC. ASS. WAS TAKEN FROM<br />

B.N. SUBBA RAO, NUOVO CIM., 16(1960)283<br />

AS THE BETA INTENSITIES GIVEN THERE AGREE BEST WITH THOSE CALCULATED<br />

IN REF 212 FROM REL. GAMMA INTENSITIES ANO CONVERSION COEFFICIENTS.<br />

THEREFORE THE GROUND-STATE TRANSITIONS <strong>OF</strong> 60,86.5,105 AND 146 KEV HAVE TO<br />

TOTAL 87 PERC. THE CONV. COEFF. USED WERE THOSE GIVEN IN REF. 212,WHICH<br />

WERE CALCULATED FROM THE REL. К AND L C E - INTENSIT IE S <strong>OF</strong> REF. 254 NORMALIZED<br />

TO THE THEORET. VALUE <strong>OF</strong> ALPHA-K FOR THE 105 KEV TRANSITION (PURE El).<br />

THE REL. M AND N C E - I NTENSIT IE S WERE TAKEN FROM NUCL. DATA SHEETS.<br />

LIST <strong>OF</strong> REFERENCES<br />

76 NUCL.PHYS., 'A 96(1967)190<br />

79 NUCL.PHYS-., A 108(1968)145<br />

99 IS-T-290 AND NUCL.PHYS., A 153(1970)109<br />

192 NUCL . INSTR.METH., 87(1970)7<br />

2 12 NUCL.PHYS., A132I 1969) 177<br />

254 J .PHYS. (PARIS ) , 28( 1967)861


258 EDER and LAMMER<br />

T A B L E V I. E X A M P L E S F R O M G A M M A LIN E T A B L E<br />

55 CS 134<br />

LIT.REF.<br />

8 9<br />

55 CS 136<br />

LIT.REF.<br />

39 40<br />

55 CS 137<br />

KEV<br />

749


T A B L E VI (con t. )<br />

IA E A -S M -1 7 0 /1 2 259<br />

HALFLIFE BETWEEN 10 ANO 100 DAYS<br />

ORDERED TABLE <strong>OF</strong> ENERGIES<br />

KEV DAYS PERCENT<br />

818.3000 55 CS 136 12.900 100.0000<br />

817.2000 52 TE 129 G M 33.000 0.1470<br />

816.5900 51 SB 124 60.200 0.0700<br />

815.7680 56 BA 140 D 12.800 23.3000<br />

811.7000 63 EU 156 15.110 9.8000<br />

802.1700 52 TE 129 G M 33.000 0.2120<br />

794.9000 52 TE 129 G M 33.000 0.0023<br />

790.7600 51 SB 124 60.200 0.7400<br />

768.9000 52 TE 129 G M 33.000 0.0090<br />

765.8300 40 ZR 95 D 65.500 99.8000<br />

765.8300 41 NB 95 35.108 99.8000<br />

756.7800 40 IR 95 65.500 54.5000<br />

751.7700 56 BA 140 D 12.800 4.3800<br />

741.1000 52 TE 129 G M 33.000 0.0810<br />

735.7000 51 SB 124 60.200 0.1300<br />

729.6200 52 TE 129 G M 33.000 1.1800<br />

725.6500 61 PM 148 M 41.800 31.0000<br />

724.2300 40 ZR 95 65.500 44.2000<br />

723.4000 63 EU 156 15. 110 5.4000<br />

722.7800 51 SB 124 60.200 11.1000<br />

716.8000 52 TE 129 G M 33.000 0.0016<br />

713.8200 51 SB 124 60.200 2.5000<br />

709.9000 63 EU 156 15.110 1.0000<br />

709.3400 51 SB 124 60.200 1.3700<br />

705.6000 52 TE 129 G M 33.000 0.0080<br />

701.8000 52 TE 129 G M 33.000 0.0300<br />

695.9800 52 TE 129 G M 33.000 4.9600<br />

695.0000 51 se 126 12.500 100.0000<br />

685.8000 60 ND 147 11.020 0.5600<br />

679.4000 60 ND 147 11.020 0.0000<br />

672.0300 52 TE 129 G M 33.000 0.0390<br />

665.0000 51 SB 126 12.500 100.0000<br />

646.2500 63 EU 156 15.110 6.9000<br />

645.8400 51 SB 124 60.200 7.3000<br />

632.2600 51 SB 124 60.200 0.1300<br />

629.9000 61 PM 148 M 41.800 87.5000<br />

624.4000 52 TE 129 G M 33.000 0.0930<br />

618.2000 56 BA 140 D 12.800 0.0400<br />

611.5300 44 RU 103 39.600<br />

611.2600 61 PM 148 M 41.800 6.0000<br />

610.3700 , 44 RU 103 39.600 5.5000<br />

602.7100 51 SB 124 60.200 98.2000<br />

599.5000 61 PM 148 M 41.800 8.5000<br />

599.5000 63 EU 156 15.110 2.8700<br />

594.7000 60 ND 147 11.020 0.1680<br />

589.3000 60 ND 147 11.020 0.0290<br />

559.7000 52 TE 129 G M 33.000 0.0080<br />

557.1000 44 RU 103 39.600 0.7900<br />

556.6500 52 TE 129 G M 33.000 0.1780<br />

551.5000 52 TE 129 G M 33.000 0.0120


260 EDER and LAMMER<br />

I n a f o r w a r d , c a l c u l a t i o n t h e a c t i v i t y A . ( T m ) o f a f i s s i o n p r o d u c t i<br />

( n e g l e c t i n g a l l s h o r t l i v e d p r e c u r s o r s ) a t t i m e o f m e a s u r e m e n t T m i s g i v e n<br />

b y t h e f o l l o w i n g f o r m u l a :<br />

T ir r<br />

j к t=0 к<br />

X ^ = 0 . 6 9 3 / T V . . . . d e c a y c o n s t a n t<br />

T i ...................... h a l f l i f e o f f i s s i o n p r o d u c t i<br />

. 0k(t).exp[ -(>-i-^orfk .k). (Tm-t)] dt<br />

N j ( t ) . . . . n u m b e r o f a t o m s o f f i s s i l e i s o t o p e j a t t i m e t .<br />

f<br />

a .................. f i s s i o n c r o s s s e c t i o n o f f i s s i l e i s o t o p e j i n n e u t r o n g r o u p к<br />

с<br />

............... n e u t r o n f l u x i n g r o u p к<br />

. . . . c a p t u r e c r o s s s e c t i o n o f f i s s i o n p r o d u c t i i n n e u t r o n g r o u p к<br />

у. ... c u m u l a t i v e f i s s i o n y i e l d o f f i s s i o n p r o d u c t i f o r f i s s i l e i s o t o p e<br />

1 *' j i n n e u t r o n g r o u p k .<br />

( l ) a n d ( 2 ) i l l u s t r a t e h o w d i f f e r e n t s o u r c e s o f e r r o r e n t e r t h e e q u a t i o n<br />

u s e d f o r c a l c u l a t i o n . T h e r e q u i r e m e n t f o r n u c l e a r d a t a u n c e r t a i n t i e s i s<br />

t h a t t h e y s h o u l d n o t e x c e e d u n a v o i d a b l e e r r o r s a r i s i n g f r o m m e a s u r e m e n t<br />

c o n d i t i o n s o n t h e o n e h a n d a n d s i m p l i f i e d n e u t r o n f l u x r e p r e s e n t a t i o n i n<br />

c a l c u l a t i o n s o n t h e o t h e r h a n d . I n t h e f o l l o w i n g s o u r c e s o f e r r o r s a r e<br />

d i s c u s s e d a n d t h e a d v a n t a g e o f r a t i o m e a s u r e m e n t s i s s h o w n .<br />

5 . 1 . S o u r c e s o f e r r o r i n m e a s u r e m e n t s<br />

S o u r c e s o f e r r o r s i n g a m m a s p e o t r o m e t r i c m e a s u r e m e n t s a r e d i s c u s s e d b e l o w a n d<br />

s u m m a r i z e d i n T a b l e V I I .<br />

5 . 1 . 1 . D e t e c t o r c a l i b r a t i o n<br />

E n e r g y c a l i b r a t i o n o f t h e d e t e c t o r s e r v e s o n l y f o r i d e n t i f i c a t i o n<br />

o f f i s s i o n p r o d u c t g a m m a l i n e s . T h e g a m m a r a y e n e r g i e s o f c a l i b r a t i o n<br />

s t a n d a r d s a n d m a i n f i s s i o n p r o d u c t s a r e s u f f i c i e n t l y w e l l k n o w n f o r t h i s<br />

p u r p o s e a n d t h e i r u n c e r t a i n t i e s h a v e a n e g l i g i b l e e f f e c t o n t h e e n e r g y<br />

d e p e n d e n c e o f d e t e c t o r e f f i c i e n c y .<br />

T h e p h o t o p e a k e f f i c i e n c y o f a d e t e c t o r ( c o u n t s i n t h e p h o t o p e a k p e r<br />

у - q u a n t e m i t t e d f r o m t h e s o u r c e ) i s c a l i b r a t e d w i t h t h e a i d o f g a m m a<br />

e m i t t i n g s t a n d a r d s . P r i m a r y s t a n d a r d s w i t h w e l l k n o w n d e c a y s c h e m e s a n d<br />

k n o w n d é s i n t é g r a t i o n r a t e s a r e u s e d t o d e t e r m i n e t h e a b s o l u t e d e t e c t o r<br />

e f f i c i e n c y f o r d i f f e r e n t e n e r g i e s . A b s o l u t e g a m m a r a y i n t e n s i t i e s a r e<br />

k n o w n t o b e t t e r t h a n 1 $ f o r t h e m a j o r i t y o f p r i m a r y s t a n d a r d s .<br />

T h e s p e c i f i e d a b s o l u t e d i s i n t e g r a t i o n r a t e s o f s t a n d a r d s o u r c e s a r e<br />

g e n e r a l l y d e t e r m i n e d i n d e p e n d e n t o f a k n o w l e d g e o f d e c a y s c h e m e s . T h e<br />

a c c u r a c y o f a v a i l a b l e s t a n d a r d s r a n g e s f r o m b e t t e r t h a n V¡> ( v e r y t h i n s o u r c e s )<br />

u p t o s e v e r a l p e r c e n t .<br />

T h e e n e r g y d e p e n d e n c e o f t h e d e t e c t o r e f f i c i e n c y c a n b e d e t e r m i n e d w i t h<br />

t h e a i d o f s e c o n d a r y s t a n d a r d s e m i t t i n g a n u m b e r o f s t r o n g g a m m a r a y s w i t h<br />

a c c u r a t e l y k n o w n r e l a t i v e i n t e n s i t i e s ( b e t t e r t h a n 1% f o r a n u m b e r o f


IA E A -S M -1 70/12 261<br />

T A B L E VH. E R R O R S O F M E A SU R E M E N T S O F FISSIO N<br />

PR O D U C T A C T IV IT IE S<br />

A b s o l u t e e f f i c i e n c y c a l i b r a t i o n<br />

( s t a n d a r d s o u r c e )<br />

M i n i m u m ' A v e r a g e<br />


262 EDER and LAMMER<br />

5 . 1 . 3 . D e a d t i m e c o r r e c t i o n<br />

S e r i o u s e r r o r s c a n b e i n t r o d u c e d i n s c a n n i n g m e a s u r e m e n t s o f f u e l r o d s ,<br />

i f t h e a c t i v i t y v a r i e s s t r o n g l y a l o n g t h e r o d a n d d e a d t i m e c o r r e c t i o n s<br />

a r e l a r g e a t p o i n t s o f h i g h a c t i v i t y . A s a l s o a r e a s o f l o w a c t i v i t y a r e<br />

m e a s u r e d t h e m e a s u r e d t o t a l a c t i v i t y o f t h e f u e l r o d w i l l b e t o o l o w .<br />

E r r o r s i n d e a d t i m e c o r r e c t i o n s a r e e s t i m a t e d t o b e l e s s t h a n 1 % t o 5 $<br />

[ 1 2 , 3 7 ] , d e p e n d i n g o n t h e m a g n i t u d e a n d v a r i a t i o n o f d e a d t i m e .<br />

5 . 1 . 4 . G a m m a r a y a b s o r p t i o n<br />

T h e a b s o r p t i o n o f g a m m a r a y s i s e n e r g y d e p e n d e n t . T a b u l a t e d g a m m a r a y<br />

a b s o r p t i o n c o e f f i c i e n t s a r e d e r i v e d m a i n l y t h e o r e t i c a l l y a n d h a v e a n u n ­<br />

c e r t a i n t y o f a b o u t 1 C $ > [ 3 8 , 3 9 ] . A d d i t i o n a l e r r o r s a r i s e f r o m i n h o m o g e n i t y<br />

o f a b s o r b i n g m a t e r i a l i n f u e l e l e m e n t s . T h e m a g n i t u d e o f t h e e r r o r d e p e n d s<br />

o n s i z e a n d t y p e o f t h e f u e l e l e m e n t a s w e l l a s o n t h e w a y t h e c o r r e c t i o n<br />

i s c a l c u l a t e d ( c o m p u t e r o r b y h a n d ) a n d i s a b o u t 2 - 2 C $ [ 1 2 ] . I t s h o u l d<br />

b e p o s s i b l e t o r e d u c e t h i s e r r o r b y d e t e r m i n i n g t h e a b s o r p t i o n e x p e r i m e n t a l l y<br />

w i t h u n i r r a d i a t e d f u e l e l e m e n t s a s a b s o r b e r s .<br />

5 . 1 . 5 * D e t e r m i n a t i o n o f p e a k a r e a .<br />

T h e a c c u r a c y o f t h e d e t e r m i n a t i o n o f p e a k a r e a s d e p e n d s m a i n l y o n t h e<br />

n u m b e r o f c o u n t s a c c u m u l a t e d ( w h i c h i n t u r n d e p e n d s e n t i r e l y o n t h e t i m e<br />

a v a i l a b l e f o r a m e a s u r e m e n t ) , t h e b a c k g r o u n d c o r r e c t i o n s a n d t h e i n t e r ­<br />

f e r e n c e o f o t h e r p e a k s .<br />

T h e b a c k g r o u n d i s i n c r e a s e d b y s c a t t e r i n g o f p h o t o n s i n c o l l i m a t o r a n d<br />

s u r r o u n d i n g . I t c a n b e g r e a t l y r e d u c e d b y a p p l i c a t i o n o f c o m p t o n s u p r e s s e d<br />

s p e c t r o m e t e r s o r C o m p t o n c o i n c i d e n c e s p e c t r o m e t e r s . B e s t r e s u l t s a r e o b t a i n e d<br />

b y p e a k s h a p e a n d b a c k g r o u n d f i t w i t h c o m p u t e r s , w h i c h i s i n d i s p e n s a b l e<br />

f o r r e s o l u t i o n o f c o m p o s i t e p e a k s .<br />

5 . I . 6 . A d v a n t a g e s o f a c t i v i t y r a t i o s<br />

T h e a d v a n t a g e s o f t h e u s e o f a c t i v i t y r a t i o s f o r i n t e r p r e t a t i o n b e c o m e<br />

o b v i o u s f r o m t h e s o u r c e s o f e r r o r d i s c u s s e d a b o v e . F i r s t O f a l l a c t i v i t y<br />

r a t i o s d e p e n d o n l y o n t h e a c c u r a c y o f t h e r e l a t i v e e f f i c i e n c y o f t h e<br />

d e t e c t o r . T h e c o m b i n e d e f f e c t o f g a m m a r a y a b s o r p t i o n a n d e d g e e f f e c t o f<br />

c o l l i m a t o r s n e e d s o n l y t o b e a c c o u n t e d f o r a s c h a n g e o f t h e r e l a t i v e<br />

e f f i c i e n c y a n d c a n b e d e t e r m i n e d b y i n t e r c o m p a r i s o n o f a c t i v i t i e s c a l c u l a t e d<br />

f r o m g a m m a r a y s o f t h e s a m e f i s s i o n p r o d u c t , w h i c h a r e d i f f e r e n t i n<br />

e n e r g y ( m u l t i l i n e e v a l u a t i o n ) . U n c e r t a i n t i e s c a n b e f u r t h e r r e d u c e d b y<br />

c o m p a r i s o n o f g a m m a l i n e s w i t h s i m i l a r e n e r g i e s . F u r t h e r a l l e r r o r s c a n c e l ,<br />

t h a t a r e c o m m o n t o b o t h f i s s i o n p r o d u c t s s u c h a s f i n i t e s o u r c e a r e a o r<br />

d e a d t i m e c o r r e c t i o n .<br />

5 . 2 . U n c e r t a i n t i e s i n n u c l e a r d a t a<br />

I n t h e f o l l o w i n g w e c o n s i d e r t h e i n f l u e n c e o f e a c h t y p e o f n u c l e a r d a t a<br />

s e p a r a t e l y a n d a s s u m e t h a t t h e o t h e r n u c l e a r d a t a i n v o l v e d i n t h e s a m e e q u a t i o n<br />

c o n t r i b u t e n o e r r o r . F u r t h e r w e a s s u m e o p t i m a l e x p e r i m e n t a l c o n d i t i o n s .<br />

5 . 2 . I . G a m m a r a y i n t e n s i t i e s<br />

I t c a n b e s e e n f r o m e q u a t i o n ( l ) t h a t a n y a r r o r i n t h e g a m m a r a y i n t e n s i t y<br />

h a s a l i n e a r e f f e c t o n t h e r e s u l t . M i n i m u m e r r o r s i n t h e o t h e r f a c t o r s o f<br />

e q u a t i o n ( . l ) c o n t r i b u t i n g t o t h e d e t e r m i n a t i o n o f a b s o l u t e a c t i v i t i e s a r e :<br />

(see also Table VII)


a ) L e s s t h a n 1 $ f o r s m a l l s a m p l e s<br />

IA E A -S M -1 7 0 /1 2<br />

b ) I n r o u t i n e m e a s u r e m e n t s o f f u e l e l e m e n t s :<br />

- 1 ч Т С : l e s s t h a n 1 $<br />

- E F ( e ) : 1 $ i f c l o s e t o g a m m a e n e r g y o f c a l i b r a t i o n s t a n d a r d w i t h<br />

a c c u r a c y й 1 $ . O t h e r w i s e 2 - 3 $ .<br />

- G A ( e ) : lf o f o r m u l t i l i n e e v a l u a t i o n , 2 $ f o r c a l c u l a t i o n [ 1 2 ] .<br />

c ) A c t i v i t y r a t i o s :<br />

- E F ( e ) : l e s s t h a n 1 $ t o 2 $ f o r t h e c a s e s l i s t e d i n b )<br />

- C A C E ) m a y c a n c e l , o t h e r f a c t o r s c a n c e l .<br />

T h e r e f o r e t h e g a m m a r a y i n t e n s i t i e s s h o u l d h e k n o w n t o V fo b e t t e r . T h i s<br />

i s f u l f i l l e d o n l y f o r t h e m o s t i n t e n s e g a m m a r a y s o f ' ^ Z r , 95Nb, ^ l l , 134cs,<br />

1 3 ? C s a n d p a r t i a l l y l ^ O b a . T h e e r r o r o f l y - d i s a p p e a r s , i f s t a n d a r d s o u r c e s<br />

o f t h e f i s s i o n p r o d u c t s m e a s u r e d i n g a m m a s p e c t r a o f f u e l e l e m e n t s a r e u s e d<br />

f o r c a l i b r a t i o n .<br />

E q u a t i o n ( 2 ) i s l i n e a r i n t h e f i s s i o n y i e l d s . T h e r e f o r e t h e r e l a t i v e<br />

e r r o r o f t h e f i s s i o n y i e l d , w e i g h t e d b y N . ( t ) 6 ”^ ^ ( t ) , a p p e a r s i n t h e<br />

s a m e a m o u n t a s e r r o r o f t h e r e s u l t , w h i c h ( T ra) i n a f o r w a r d c a l c u ­<br />

l a t i o n a n d N j ( 0 ) , ¡6 ( t ) o r b u r n u p ( / N ( t ) 6 * " 0 ( t ) ) i n a b a c k w a r d c a l c u l a t i o n .<br />

E x c e p t f o r A . ( T m ) , N . ( t ) a n d ( t ) a l l f a c t o r s i n e q u a t i o n ( 2 ) a r e<br />

n u c l e a r d a t a . T h e a c c u r a c y r e q u i r e d f o r t h e f i s s i o n y i e l d s d e p e n d s o n<br />

t h e k n o w l e d g e o f i r r a d i a t i o n h i s t o r y , n e u t r o n f l u x a n d f u e l c o m p o s i t i o n ,<br />

w h e t h e r a c t i v i t y r a t i o s a r e c o n s i d e r e d a n d w h a t t h e a i m o f t h e i n t e r ­<br />

p r e t a t i o n i s .<br />

I f w e c o n s i d e r a c t i v i t y r a t i o s a n d a s s u m e t h a t f a s t f i s s i o n s a r e<br />

n e g l i g i b l e a n d t h e f i s s i o n y i e l d ’ r a t i o i s t h e s a m e f o r t h e r m a l a n d e p i ­<br />

t h e r m a l n e u t r o n s , t h e u n c e r t a i n t y o f t h e c a l c u l a t e d a c t i v i t y r a t i o<br />

d e p e n d s o n l y o n t h e a c c u r a c y o f t h e f i s s i o n y i e l d s ( k n o w n i r r a d i a t i o n<br />

a n d f u e l p a r a m e t e r s ) .<br />

I f o n e w a n t s t o d e d u c e i n f o r m a t i o n f r o m m e a s u r e m e n t s , t h e m i n i m u m<br />

e r r o r o f a n a c t i v i t y r a t i o i s l e s s t h a n Vfo t o 2 $ , o f a b s o l u t e a c t i v i t i e s<br />

( r o u t i n e m e a s u r e m e n t s ) 1 - 3 $ .<br />

- I f t h e i n f o r m a t i o n i s d e d u c e d f r o m k n o w n i r r a d i a t i o n h i s t o r y a n d f u e l<br />

c o m p o s i t i o n , t h e u n c e r t a i n t i e s o f f i s s i o n y i e l d s s h o u l d n o t e x c e e d t h e<br />

e r r o r o f m e a s u r e m e n t s .<br />

- I f t h e i n f o r m a t i o n h a s t o b e d e d u c e d f r o m u n k n o w n i r r a d i a t i o n h i s t o r y ,<br />

t h e u n c e r t a i n t i e s i n v o l v e d e x c e e d e x p e r i m e n t a l e r r o r s .<br />

U n c e r t a i n t i e s o f a v a i l a b l e f i s s i o n y i e l d d a t a a r e n o t c l e a r a n d s h o u l d<br />

b e s u b j e c t o f a c a r e f u l a s s e s s m e n t . T h e r e a r e d i s c r e p a n c i e s a m o n g e x p e r i m e n t a l<br />

a n d a m o n g e v a l u a t e d d a t a a n d t h e p h i l o s o p h y i n a s s i g n i n g e r r o r s i s n o t u n i q u e .<br />

5 . 2 . 3 . N e u t r o n c r o s s s e c t i o n s a n d h a l f l i v e s<br />

F o r t h e f i s s i o n c r o s s s e c t i o n s t h a t a p p e a r i n e q u a t i o n ( 2 ) , t h e s a m e<br />

a r g u m e n t s a r e v a l i d a s f o r f i s s i o n y i e l d s , e x c e p t t h a t t h e i r v a l u e s<br />

c a n c e l i n r a t i o m e a s u r e m e n t s .<br />

A b s o r p t i o n crosB s e c t i o n s a n d h a l f l i v e s a p p e a r i n e x p o n e n t i a l<br />

f u n c t i o n s . T h e i n f l u e n c e o f t h e i r u n c e r t a i n t i e s o n r e s u l t s i s t h e r e f o r e<br />

a f u n c t i o n o f t i m e a n d w i l l b e i l l u s t r a t e d b y s o m e e x a m p l e s .<br />

263


264 EDER and LAMMER<br />

5.3. Examples of calculated errors<br />

5 .З.1 . Errors due to incorrect half life.<br />

For some of the most important fission products errors in forward<br />

and backward calculation arising from errors in half lives were calculated<br />

for typical irradiation conditions and cooling time. The errors were calculated<br />

relative to the half lives shown in Table III.<br />

Errors in forward calculation are given in Table Villa. They are<br />

total errors including irradiation time. Table VUIb lists the errors<br />

of decay corrections from the cooling time shown to reactor shutdown.<br />

The errors listed under zero cooling time arise only from correction<br />

for decay during irradiation and were calculated only for fission products,<br />

that serve as burnup monitor. The error of the calculated burnup is then<br />

the combined error from cooling time and irradiation time.<br />

All errors listed in Table Villa and b are relative to our recommended<br />

half lives or relative to activities calculated from these values. The<br />

half life values shown in these tables are either previously adopted<br />

values (95zr, 1 ° 3 r u , W e e ) or discrepant values included in the average<br />

(l°ÓRu, 137 Cs) or from a recent experiment (1311), Por 134cs the uncertainty<br />

of our recommended half life (Table III) was used. These half<br />

lives were selected to illustrate what errors can arise from their use or<br />

if some of these values were correct and not those shown in Table III.<br />

For Cel44 measured half lives are consistent and errors calculated in<br />

the same manner are well below 1%. The errors listed for 95Nb are only<br />

due to the 95Zr half life.<br />

Errors in shutdown activities do not change in magnitude from those<br />

listed in Table Villa, if the irradiation time is 1 year and approaches<br />

zero for longer irradiation time (equilibrium). Errors in correction for<br />

Hooay during cooling time can be estimated from a more general relationship.<br />

The ratio of the error in the result to the error in the half life varies<br />

linearily with the ratio of cooling time to half life for small ratios.<br />

This relationship holds approximately also for larger values of these<br />

ratios. The line goes through zero and the error of the result is equal<br />

to the error of the half life if the cooling time is about 1 .5 half lives.<br />

The percent uncertainties of our recommended half lives are:<br />

0*2 (95zr), O.25 (103Ru), 0.55 (106Ru), O.25 (131l), 1 (134Cs),<br />

O.67 (!37cs)i 0.O6 (14lce) and 0.14 (l44Ce). A comparison with Tables VIII<br />

a and b shows that they introduce no serious uncertainties at reasonable<br />

cooling times. However, some of these half lives have to be confirmed by<br />

further measurements ($5zr, 1®3rUj 141ce ) or might change after new<br />

measurements (^ “Ru, 131l).<br />

5.3 .2 . Errors due to incorrect neutron capture cross section.<br />

For most of the fission products measured gamma spectrometrically neutron<br />

capture is negligible under normal irradiation conditions. The only exceptions<br />

are 134cs and 5^Eu which yield information about the neutron flux. For<br />

illustration we calculated the uncertainty of the 134qs/137Cs activity<br />

ratio at shutdown arising from the ifo uncertainty of the thermal neutron<br />

cross section of 133cs. The results for a neutron flux of 5 x 10^3 n/cm^s<br />

are:<br />

Error of ratio l.d fo after 1 year irradiation, l . j f o after 2 year irradiation.


IA E A -S M -1 7 0 /1 2<br />

T A B L E V illa . E R R O R S IN "F O R W A R D " C A L C U L A T IO N<br />

F i s s i o n<br />

p r o d u c t<br />

9 5 Z r<br />

H a l f L i f e e r r o r s i n r e s u l t (f>) a f t e r c o o l i n g t i m e o f<br />

v a l u e e r r o r s 0 1 0 d 3 0 d t a 1 a 2 a<br />

6 5 - 5 d 2 . 4 0 . 8 1 . 1 1 . 6 5 . 6 I O . 5 2 1<br />

9 5 M b f r o m 9 5 Z r 0 . 8 0 . 8 1<br />

265<br />

3 . 5 7 . 7 1 8<br />

1 0 3 R u 3 9 - 6 d 0 . 6 4 0 . 1 2 0 . 2 3 0 . 5 2 . 2 5 . 6<br />

106RU 3 7 1 d 0 . 7 - 0 . 1 6 - 0 . 1 5 - O . 1 3 + 0 . 0 7 + 0 . 3 + 0 . 8<br />

! 3 ! i<br />

7 . 9 7 d l . l 0 . 0 4 1 2 . 9<br />

1 3 4 C s 1 0 . 8 0 . 8 0 . 8 0 . 6 0 . 4 0 . 1<br />

1 3 7 C s 2 9 . 2 a 2 . 7 2 . 7 2 . 6 2 . 5<br />

1 4 1 C e 3 2 . 3 8 d 0 . 5<br />

0 . 0 8 0 . 2 0 . 4 2<br />

T A B L E V UIb. ER R O R S IN "B A C K W A R D " C A L C U L A T IO N<br />

Fission Half Life errors in result (fo) after cooling time of<br />

value error$ 0 lOd 3 0 d £a la 2a<br />

95Zr 6 5 - 5 d 2 . 4 3 . 1 О . 2 5 0 . 7 5 4 . 5 8 . 8 1 7<br />

95Nb from 95Zr 0 . 0 1 0 . 1 6 2 . 6 6 . 4 I 4 . 5<br />

103Ru 3 9 . 6 d 0 . 6 4 0 . 1 1 0 . 3 3 2 4<br />

106 Ru 3 7 1 d 0 . 7 0 . 5 0 . 0 1 0 . 0 4 0 . 2 3 О . 4 6 0 . 9<br />

1 3 ! i<br />

7 - 9 7 d 1 . 1 1 2 . 9<br />

1 3 4 Gs . 1 0 . 0 1 0 . 0 7 0 . 1 7 0 . 3 5 0 . 7<br />

137Cs 2 9 . 2 a 2 . 7 0 . 0 8 0 0 0 . 0 3 0 . 0 6 0 . 1 3<br />

141Ce 3 2 . 3 8 d 0 . 5 0 . 1 1 0 . 3 4 2.1 4 . 2<br />

^tot “ 5 x 10 3 nycm2 irradiation time = 2 years<br />

The error of this ratio increases with decreasing integrated neutron<br />

flux and approaches 7f> for (almost) zero irradiation time. The uncertainty<br />

of the resonance integral should have the same effect on the ratio hut<br />

the magnitude depends in addition on the neutron spectrum.<br />

Generally uncertainties in neutron cross-sections are rather large.<br />

Results of calculations depend on the neutron spectrum and thus on the flux<br />

model used. Here a comparison of calculations using point cross section data<br />

with integral measurements of fission product absorption in different neutron<br />

spectra should help to clarify what flux representations are to be used in<br />

calculations. Work in this drection is in progress at Petten, Studsvik and<br />

Idaho.


266 EDER and LAMMER<br />

REFERENCES<br />

r d .<br />

[ 1 ] H I G A T S B E R G E R , H . H . , H I C K , H . , W E I N Z I E R L , P . , 3 I n t . C o n f . p e a c e f u l<br />

U s e s A t o m i c E n e r g y ( P r o c . C o n f . G e n e v a , I 9 6 4 ) U N , N e w Y o r k ( 1 9 6 4 ) ,<br />

p a p e r P / 3 9 9 .<br />

[ 2 ] HICK, H., RUMPOLD, K., WEINZIERL, P., Nucl. Instr. Meth. 2 4 ( 1 9 6 З )<br />

3 2 7 .<br />

[ 3 ] H I G A T S B E R G E R , M . J . , H I C K , H . , R U M P O L D , K . , W E I N Z I E R L , P . , B U R T S C H E R , A . ,<br />

I n t . % - m p o s . n u c l e a r M a t e r i a l s M a n a g e m e n t ( P r o c . ¡ ^ y m p o s . V i e n n a , 1 9 6 5 )<br />

I A E A , V i e n n a ( 1 9 6 6 ) 8 1 7 .<br />

B U B A , L . , H I C K , H . , R U M P O L D , K . , A t o m k e r n e n e r g i e I I ( 1 9 6 6 ) I 6 7 .<br />

P E P E L N I K , R . , H I C K , H . , N u c l . I n s t r . M e t h . 6 8 ( 1 9 6 9 ) 2 4 0<br />

H I G A T S B E R G E R , M . J . , B R U N E D E R , H . , A c t a P h y s . A u s t r i a c a 2 8 ( 1 9 6 8 ) 9 4 ><br />

H I C K , H . , L A M M E R , M . , I n t . C o n f . P r o g r e s s i n S a f e g u a r d s T e c h n i q u e s<br />

( P r o c . E ÿ m p o s . K a r l s r u h e , 1 9 7 0 ) _ 1 , I A E A , V i e n n a ( 1 9 7 0 ) 5 3 3 *<br />

a l s o O E S G A E R e p o r t S G A E - P H - 9 8 ( 1 9 7 0 ) .<br />

[ 8 ] F O R S Y T H , R . S . , B L A C K A D D E R , W . H . , I n t . C o n f . P r o g r e s s i n S a f e g u a r d s<br />

T e c h n i q u e s ( P r o c . S ÿ m p o s . K a r l s r u h e , 1 9 7 0 ) I A E A , V i e n n a ( 1 9 7 0 ) 5 2 1 .<br />

[ 9 ] S C H A E C H T ' E R , L . , H A C M A N , D . , P O P A , P . , R e v . R o u m . P h y s . 1 7 ( 1 9 7 2 ) 7 2 9 .<br />

[ 1 0 ] H I C K , H . , L A M M E R , M . , N A B I E L E K , H . , Y O R K , J . , T h e E s t a b l i s h m e n t o f<br />

c o m p l e t e F i s s i o n P r o d u c t I n v e n t o r i e s f o r I r r a d i a t e d F u e l E l e m e n t s ,<br />

D r a g a n P r o j e c t r e p o r t D P - 7 5 4 ( 1 9 7 1 )<br />

[ 1 1 ] Я Е Э Г С 0 Т Т , C . H . , W A L K E R , W . H . , A L E X A N D E R , Т . К . , I n t . C o n f . p e a c e f u l<br />

U s e s a t o m . E n e r g y ( P r o c . C o n f . G e n e v a , 1 9 5 8 ) 1 6 , U N , N e w Y o r k ( 1 9 5 8 )<br />

7 0 .<br />

[ 1 2 ] R e p o r t o f t h e R e s e a r c h c o - o r d i n a t i o n M e e t i n g o n D e v e l o p m e n t o f G a m m a<br />

S p e c t r o m e t r y I n s t r u m e n t a t i o n a n d T e c h n i q u e s f o r S a f e g u a r d s , I A E A ,<br />

V i e n n a ( 1 9 7 1 ) .<br />

[ 1 3 ] D R A G N E V , T . , I A E A , D i v . S a f e g u a r d s I n s p e c t i o n , p r i v a t e c o m m u n i c a t i o n<br />

( J a n u a r y 1 9 7 3 ) .<br />

[ 1 4 ] D R A G N E V , T . , B E E T S , C . , " I d e n t i f i c a t i o n o f I r r a d i a t e d F u e l E l e m e n t s " ,<br />

C h . 3 , J o i n t I n t e g r a l S a f e g u a r d s E x p e r i m e n t ( J E X 7 0 ) a t t h e E u r o c h e m i c<br />

R e p r o c e s s i n g P l a n t , M o l B e l g i u m ( K R A E M E R , R . , B E Y R E I C H , W . , E d s . ) ,<br />

p u b l i s h e d a s E U R A T O M r e p o r t E U R - 4 5 7 6 e ( 1 9 7 1 } ( = K F K - 1 1 0 0 ( 1 9 7 1 ) ) -<br />

[ 1 5 ] L A M M E R , M . , E D E R , O . J . , t h i s S y m p o s i u m , p a p e r S M - 7 0 / 1 3 .<br />

[ 1 6 ] L E D E R E R . C . M . , H O L L A N D E R , J . M . , P E R L M A N , I . , T a b l e o f I s o t o p e s ( 6<br />

e d i t i o n ) , W i l e y , N e w Y o r k ( 1 9 6 7 ) .<br />

[ 1 7 ] M A R T I N , M . J . , B I I C H E R T - T O F T , P . H . , R a d i o a c t i v e A t o m s , A u g e r - E l e c t r o n ,<br />

a n d x - R a y D a t a , N u c l . D a t a T a b l e s A 8 , ( l 9 7 ¿ ) 1 .<br />

[ 1 8 ] L A R G E , N . R . , B U L L O C K , R . J . , T a b l e o f R a d i o a c t i v e N u c l i d e s A r r a n g e d i n<br />

A s c e n d i n g O r d e r o f H a l f - L i f e , N u c l . D a t a T a b l e s A J. ( 1 9 7 0 ) 4 7 7 .<br />

[ 1 9 ] W A K A T , M . A . , C a t a l o g u e o f X - R a y s E m i t t e d b y R a d i o n u c l i d e s , N u c l .<br />

D a t a T a b l e s A 8 ( 1 9 7 1 ) 4 4 5 «<br />

S T E E N , N . M . , U S A E C r e p . W A P D - T M - 1 0 5 2 ( 1 9 7 2 ) .<br />

S T E E N , N . M . , U S A E C r e p . W A P D - T M - 9 7 1 ( 1 9 7 0 ) .<br />

C O O K , J . L . , A u s t r a l i a n A E C r e p . A A E C / t M - 5 4 9 ( 1 9 7 0 ) . ( D e s c r i p t i o n o f<br />

c a l c u l a t i o n o n l y , p o i n t c r o s s s e c t i o n d a t a a v a i l a b l e o n m a g n e t i c t a p e ) .<br />

[ 2 3 ] R O S E , E . K . , A u s t r a l i a n A E C r e p . А А Е С / Т М - 5 8 7 ( 1 9 7 ) . ( D e s c r i p t i o n o f<br />

c o m p u t e r p r o g r a m s a n d l i b r a r y f o r m a t ) .<br />

[ 2 4 ] Z O L L E R , W . H . , Н О Р К Е , P . K . , F A S C H I N G , J . L . , M A C I A S , E . S . , W A L T E R S , W . B . ,<br />

P h y s . R e v . С 3 ( 1 9 7 1 ) 1 6 9 9 -<br />

[ 2 5 ] G L E A S O N , G . I . , R E Y N O L D S , S . A . . u n p u b l i s h e d , q u o t e d i n [ 2 4 ] a n d i n<br />

U S A E C r e p . O R N L - T M - 2 8 7 8 ( 1 9 7 0 ) 5 .<br />

[ 2 6 ] C H A C K E T T . G . A . , C H A C K E T T , K . F . , W E L B O R N , J . B . , I n t . J . A p p l . R a d . I s o t .<br />

22 ( 1 9 7 I ) 7 1 5 .<br />

R E Y N O L D S , S . A . , E M E R Y , J . F . , U S A E C r e p o r t O R N L - 4 4 6 6 ( 1 9 7 0 ) 7 5 -<br />

L I S M A N , F . L . , A B E R N A T H E Y , R . M . , F O S T E R , R . E . , J r . , M A E C K , W . J . ,<br />

J . i n o r g . n u c l . C h e m . 3 3 ( l 9 7 l ) 6 4 3 .


IA E A -S M -1 7 0/1 2 267<br />

[ 2 9 З H U G H E S , D . J . , S C H W A R T Z , R . B . , U S A E C r e p o r t B N L — 2 3 5 s e c o n d e d i t i o n<br />

( 1 9 5 8 ) » S u p p l e m e n t 1 ( i 9 6 0 ) .<br />

[ 3 0 ] S T E H N , J . R . , G O L D B E R G , M . D . , W I E N E R - C H A S M A N , R . , M U G H A B G H A B , S . P . ,<br />

M A G U R N O , B . A . , M A Y , V . M . , U S A E C r e p o r t B N L - 3 2 5 s e c o n d e d i t i o n ,<br />

s u p p l e m e n t 2 ( 1 9 6 5 ) .<br />

[ 3 1 ] C I H D A 7 2 , m a i n v o l u m e + s u p p l e m e n t , I n d e x t o t h e l i t e r a t u r e o n<br />

M i c r o s c o p i c N e u t r o n D a t a , I A E A , V i e n n a ( 1 9 7 2 ) .<br />

[ 3 2 ] L E M M E L , H . D . , A X T O N , E . J . , D E R U Y T T E R , A . J . , L E O N A R D , B . R . , J r .<br />

S T O R Y , J . S . , D U N F O R D , C . H . , T h i r d E v a l u a t i o n o f t h e 2 2 0 0 m / s N e u t r o n<br />

C o n s t a n t s f o r f o u r f i s s i l e N u c l i d e s .<br />

L E M U E L , H . D . , I A E A , p r i v a t e c o m m u n i c a t i o n s D e c e m b e r 1 9 7 2 a n d F e b r u a r y 1 9 7 3 .<br />

[ 3 3 ] H A N N A , G . C . , W E S T C O T T , C . H . , L E M M E L , H . D . , L E O N A R D , B . R . , J r .<br />

S T O R Y , J . S . , A T T R E E , P . M . , A t o m . E n e r g y R e v i e w 7 ( 1 9 6 9 ) 3 .<br />

[ 3 4 ] B E S T C O T T , C . H . , A . E . o f C a n a d a r e p o r t A E C L - 1 1 0 1 ( i 9 6 0 ) .<br />

[ 3 5 ] F A B R Y , A . , D E C O S T E R , M . , M I N S A R T , G . , S H E P E R S , J . C . , V A N D E P L A S , P . ,<br />

I n t . C o n f . N u c l e a r D a t a f o r R e a c t o r s ( P r o c . S ÿ n ç i o s . H e l s i n k i , 1 9 7 0 )<br />

2 , I A E A , V i e n n a ( 1 9 7 0 ) 5 3 5 -<br />

' 3 6 ] W A L K E R , W . H . , A . E . o f C a n a d a r e p o r t A E C L - 3 0 3 7 t P a r t I ( 1 9 6 9 ) .<br />

" 3 7 ] H I C K , H . , p r i v a t e c o m m u n i c a t i o n .<br />

3 8 " D A V I S S O N , C . M . , " G a m m a - R a y A t t e n u a t i o n c o e f f i c i e n t s " , A p p . 1 ,<br />

A l p h a - , B e t a - a n d G a m m a - r a y S p e c t r o s c o p y ( S I E G B A H N , K . , E d ) , _ 1 ,<br />

N o r t h - H o l l a n d , A m s t e r d a m ( 1 9 6 5 ) 8 2 7 .<br />

[ 3 9 ] STORM, E . , I S R A E L , H . I . , N u c l e a r D a t a T a b l e s A 7 ( 1 9 7 0 ) 5 6 5 .<br />

DISCUSSION<br />

D. J . H O REN : Of th e ra d io is o to p e s th a t you c o n s id e r in y o u r w ork,<br />

how m an y h ave a b so lu te n o rm a liz a tio n s known to < 1%?<br />

M . L A M M E R : T h e ab so lu te in te n s itie s of th e s tro n g e s t g a m m a r a y s<br />

of 95Z r , 95Nb, 106R u -106R h , 134 C s , 137C s and 140B a - 140L a a r e known to<br />

b e tte r than 1%, but not th o se of 141C e and 144C e - 144P r .<br />

B . G R IN B E R G : I think you a r e rig h t in em p h a siz in g th at the a c c u r a c i e s<br />

c la im e d by th e a u th o rs of p ublished m a te r ia l should be su b je cte d to s e rio u s<br />

c r i t i c a l e x a m in a tio n , s in c e th e e r r o s a r e g e n e ra lly c o n sid e ra b ly g r e a te r<br />

th an s ta te d .<br />

M . L A M M E R : W hat I said w as th a t the e r r o r s a s quoted by the a u th o rs<br />

a r e v e r y often m u ch s m a lle r than th ey r e a lly a r e , s o the m a t t e r , indeed,<br />

n eed s in v e stig a tio n .<br />

D. J . H O REN : A s P r o f e s s o r G rin b e rg h a s pointed out, the e x p e rim e n ­<br />

t a l i s t s a r e s o m e tim e s o v e rly o p tim is tic , and th is o p tim ism m a y exten d to<br />

th e ir h a lf-life m e a s u re m e n ts . H ow ev er, the c r i t i c a l ev alu atio n of h a lf-<br />

liv e s is often v e r y d ifficu lt b e ca u se a u th o rs u su a lly do not give su fficie n t<br />

in fo rm a tio n in th e ir p a p e rs to p e rm it su ch an ev alu atio n to be m ad e.<br />

D. B E R É N Y I: W hat is the o rig in of the h a lf-life d ata in T a b le II, and<br />

w hat d a ta w e re in clu d ed ?<br />

M . L A M M E R : W e u sed a ll a v a ila b le r e f e r e n c e s in clu ded in N u cle a r<br />

D a ta , P a r t В " R e c e n t R e f e r e n c e s " , p ublished up to the autum n of 1 9 7 2 .<br />

C. B E E T S : I would m e r e ly lik e to e m p h a siz e th e v alu e of the m eth od<br />

p re s e n te d fro m th e point of view of s a fe g u a rd s . Its p o s s ib ilitie s a r e b eing<br />

a n a ly se d at p re s e n t in an e x p e rim e n t on ir r a d ia te d p ow er r e a c t o r fuel fo r<br />

the p u rp o se of exten d in g the c o r r e la tio n tech n iq u e to a m o re im p o rta n t p a rt<br />

of the fuel c y c le , n a m e ly , fro m th e end of irra d ia tio n (s to ra g e pool fo r<br />

irra d ia te d a s s e m b lie s at the r e a c t o r s ite ) to the d is s o lv e r of the r e p r o ­<br />

c e s s in g p lant. T h is e x p e rim e n t, w hich is known a s M O L IV, is b eing


268 EDER and LAMMER<br />

c a r r i e d out by the E u ro p e a n A ss o c ia tio n fo r S a fe g u a rd s in co lla b o ra tio n<br />

w ith the A gen cy , the B a te lle M e m o ria l In stitu te and the U nited S ta te s A rm s<br />

C o n tro l and D isa rm a m e n t A gen cy (ACD A).<br />

C . W E IT K A M P : In co m p ilin g T a b le II of y o u r p a p e r, did you m e r e ly<br />

adopt fig u re s fro m the l i t e r a t u r e , o r did you m ak e a c r i t i c a l evalu atio n of<br />

y o u r own? In th e l a t t e r c a s e , how f a r did you go in th e evalu atio n o r r e -<br />

e v a lu atio n of p ublished h a lf-liv e s ?<br />

M . L A M M E R : F o r a ll p r e - 1 9 7 0 m e a s u re m e n ts , we re lie d on the<br />

s e le c tio n of M a rtin and B l ic h e r t-T o f t, a s in d icated in the full te x t of the<br />

p a p e r. We su b je cte d a ll sub seq u ent p u b licatio n s to a c r i t i c a l exam in a tio n<br />

and m ad e c e r ta in s e le c tio n s . We took w eigh ted a v e r a g e s w h ere a p p ro p ria te<br />

and a ssig n e d h ig h e r u n c e rta in tie s in c a s e s of d is c re p a n c ie s .


AN ANALYSIS <strong>OF</strong> CLAIMS AND AVAILABLE<br />

RADIOACTIVE DATA FOR SAFEGUARDS<br />

D. BERENYI<br />

Institute of <strong>Nuclear</strong> Research<br />

of the Hungarian Academy of Sciences,<br />

Debrecen, Hungary<br />

Abstract<br />

AN A N A L Y S IS <strong>OF</strong> C L A IM S A N D AVAILABLE R A D IO A C T IV E D A T A FOR SAFEG UARD S.<br />

IA E A -S M -170 /1<br />

O n th e o c c a s io n o f th e First M e e tin g o f th e In te rn a tio n a l W ork in g G rou p o n N u c le a r S tru ctu re and<br />

R e a c tio n D ata at th e IA E A , a n u m b er o f requests and p r io r ity lists w e r e p resen ted fr o m th e d iffe r e n t a p p lic a t io n<br />

fie ld s o f n u c le a r d a ta . O f th e s e , o n e o f th e r e la t iv e ly m o st d e t a ile d and c o n c r e t e on e s w as th e list o f n o n -<br />

n eu tron n u c le a r d a ta n e e d s for sa feg u a rd s d e v e lo p m e n t pu rp oses, w h ic h w as .p u b lish ed du rin g th e y e a r in a<br />

m o r e c o n c is e and m o d ifie d fo r m , as an IA E A R ep ort.<br />

O n th e basis o f th e a b o v e lists, a c o m p a r is o n o f th e re q u e ste d and a v a ila b le d a ta has b e e n c a r r ie d o u t.<br />

T h e m o st stro n gly ex p ressed c la im s a re fo r th e h a lf - li v e s o f 95 Z r , 106 Ru, 134 C s, 137 C s, 140 Ba and 144 C e as w e ll<br />

as th e g a m m a y ie l d p e r b e ta d e c a y f o r 5 5Z r , 106Ru, 134C s, l 3 1C s, 140L a a n d 144C e w ith an a c c u r a c y o f o n e p er<br />

c e n t , in g e n e r a l.<br />

T h e resu lts o f th e a n a ly sis a re g iv e n in ta b le s . C o n c lu s io n s a re draw n and s o m e su g g estion s are g iv e n for<br />

fu rth er e x p e r im e n t a l tasks, fo r th e use o f th e f a c i li t ie s o f th e O a k R id g e N u c le a r D ata C en ter (R e c e n t R e fe r e n c e s ,<br />

N u c le a r D a ta S h eets, ta b le s o f s e le c t e d r a d io a c t iv e is o to p e s , c o m p u t e r iz e d f i l e o f re fe re n c e s ) and for th e req u est<br />

lists.<br />

1. Introduction<br />

As is well known, an International Working Group on<br />

<strong>Nuclear</strong> Structure and Reaction <strong>Data</strong> was convened by the <strong>IAEA</strong><br />

in March, 1972, with the aim of promoting the compilation,<br />

evaluation and dissemination of nuclear structure and reaction<br />

data. During the first session of this group, a number of<br />

requests and priority lists were presented from the different<br />

fields of application of nuclear data. The relatively most<br />

detailed and concrete among these was the list of non-neutron<br />

nuclear data needs for safeguards [1]. In June, 1972, an even<br />

more clearly arranged but shorter list of the above claims<br />

was published [2], and this latter one is, first of all, the<br />

basis of the present analysis.<br />

The main goal is here to test the utility of the <strong>Nuclear</strong><br />

<strong>Data</strong> Group /Oak Ridge, Tennessee/ data accumulation systems<br />

/data sheets, data tables, recent references, data file of<br />

references/ for safeguards purposes and to compare the accuracy<br />

269


270 BERENYI<br />

claims for radioactive data with the accuracy of the recent ex­<br />

perimental data. At the same time we compile the recent radio­<br />

active data necessary for safeguards.<br />

2. Results of the analysis<br />

The results of the present analysis are summarized in<br />

Tables I and II for the half-lives and gamma yields, respectively,<br />

of the radioactive nuclides in question. When compiling the<br />

tables, the Recent References issues of <strong>Nuclear</strong> <strong>Data</strong> Sheets<br />

published in the last two years [3-10], the <strong>Nuclear</strong> <strong>Data</strong> Sheets<br />

/for S5Zr/ [11], the computerized data file of the Oak Ridge<br />

<strong>Nuclear</strong> <strong>Data</strong> Center /for 134Cs/ tl2] and the <strong>Nuclear</strong> <strong>Data</strong> Tables<br />

for 105 radioactive atoms published by the Oak Ridge <strong>Nuclear</strong><br />

<strong>Data</strong> Group [13] were used. In the last tabulation, the "best"<br />

values for half-lives, intensities etc. for each of the atomic<br />

and nuclear radiations emitted by the chosen 105 radioactive<br />

atoms are given in tabular form. The "best” values mentioned<br />

above are partly adopted, partly averaged data.<br />

In the present tables, besides the data and references,<br />

the priority, assignment from ref. [2] and the relative experi­<br />

mental and claimed accuracy are also indicated. Where more<br />

than one datum is available for the requested quantity, the<br />

most accurate experimental value is underlined.<br />

3. Discussion and conclusions<br />

As can be seen from the tables, the claimed radioactive<br />

decay data are available in the recent literature with the<br />

necessary accuracy in the case of the half-lives. As regards the<br />

gamma yields, the situation is definitely worse. Especially for<br />

134Cs and 1ччСе, more accurate measurements are needed. The<br />

data, however, are nearly satisfactory in the case of 95Zr,<br />

106Ru(106Rh) and 140La /as to the most intensive gamma rays<br />

here/. The experimental gamma yield value perfectly meets<br />

the claims for 137Cs.<br />

On the basis of the present analysis, we can state the<br />

good utility of the facilities of the Oak Ridge <strong>Nuclear</strong> <strong>Data</strong><br />

Group. The data obtained by this way are, in general, more<br />

recent and accurate or reliable /in the cases in which I was


IA E A -S M -1 7 0 /1 271<br />

able to check them/ than those suggested in the recent safe­<br />

guards publication [2]. E. g. the gamma yield for the 661.64<br />

keV gamma ray of 137Cs is 84.2 /without any error/ in one of<br />

the suggested literature [33] and 85.7±0.9 in the other [3^3-<br />

Our corresponding value is 84.6+0.4 /see Table II/. The same<br />

quantity is 41.7 in [33], 43.7±1.0 in [3*0 and our datum is<br />

43.5±0.5 /in Table II/. In the case of 13i*Cs there is no<br />

reference to the 98.4±1 value in [3^3 and, in this way( the<br />

reliability of the accuracy of this datum is doubtful.<br />

Summing up the experiences in connection with the<br />

nuclear data accumulation system of the Oak Ridge <strong>Nuclear</strong><br />

<strong>Data</strong> Group, from the point of view of the safeguards claims,<br />

one can say the following: The most complete and recent<br />

information in connection with the decay data of an actual<br />

nuclide can be obtained if the computerized file of references<br />

of the Group is used /in the present analysis e. g. for<br />

13“Cs/. In these files all the post-1959 literature is<br />

included. These practically do not contain more information<br />

than the Recent References issues of the <strong>Nuclear</strong> <strong>Data</strong> Sheets<br />

periodical except that the files are more concise and easy<br />

to survey. It means that the Recent References issues are<br />

usable in every respect beside the Oak Ridge file. If there<br />

exists a similar evaluated compilation of data as [13] or a<br />

recent <strong>Nuclear</strong> <strong>Data</strong> Sheets for the actual А-chain, then the<br />

use of the Recent References or the files is necessary only<br />

for the period after the completion of the compilation in<br />

question, i. e. the actual Sheets or specified tabulations.<br />

This is a reason why the following sources of in­<br />

formation were used during the present analysis in detail.<br />

For 106R u ( 1 06Rh) , 1 37Cs , 1 40Ba, 1I*0La and 1 ““Ce the Martin<br />

and Blichert-Toft [13] table and the Recent References issues<br />

from 1970-72 [3-10] were used, for 13


T A B L E I. H A L F -L IF E O F R A D IO A C T IV E N U CLID ES F O R SA FEGUARDS<br />

Radioactive<br />

nuclide,<br />

Priority<br />

assignment<br />

131*Cs<br />

I.<br />

1 37Cs<br />

I.<br />

9 5 Z r<br />

IX.<br />

i°eRu(i°eRh)<br />

a D a ta w ith th e s m a lle s t error a re u n d e rlin e d .<br />

Recent experimental data®<br />

Half-life Reference Experimental<br />

accuracy, %<br />

2.058 ± 0.012 y 1972 [14] 0.6 1<br />

30.0 ± 0.5 y<br />

30.64 ± 0.43 y<br />

29.901 ± 0.045 y<br />

65.5 + 0.5 d<br />

63.98 ± 0.06 d<br />

1970.[13]<br />

1970 [15]<br />

1970 [16]<br />

1970 [13]<br />

1971 [17]<br />

1.7<br />

1.4<br />

0.15<br />

0. 8<br />

0.09<br />

369 ± 2 d (Ru) 1970 [13] 0.5 1<br />

30.4 ± 0.5 s (Rh) 1970 [13] 1.6 1<br />

Claimed<br />

accuracy, %<br />

1<br />

1


T A B L E I . CONTIN U ATIO N<br />

Radioactive<br />

nuclide,<br />

Priority<br />

assignment<br />

Recent experimental data*<br />

Half-life Reference Experimental<br />

accuracy, %<br />

1 “°Ba 12.8 ±0.1 d 1970 [13] 0. 78 1<br />

II.<br />

14 “Ce<br />

II.<br />

a D a ta w ith th e s m a lle s t error are u n d e rlin e d .<br />

12.789 ± 0.006 1971 [18] 0.05<br />

287.5 ± 3.5 d 1967 [19] 1.2 1<br />

284 ± 1 d 1970 [13] 0. 35<br />

Claimed<br />

accuracy, %


T A B L E II. Y IELD O F G A M M A Q U A N T A P E R B E T A D E C A Y E V E N T F O R SA F E G U A R D S a<br />

Radioactive<br />

nuclide,<br />

Priority<br />

assignment<br />

Energy of the<br />

gamma rays (keV)b<br />

R e с e n t e x p é r i m é n t a 1 d a t a° Claimed<br />

Gamma ray<br />

intensity (qu/100 d)<br />

Reference Experimental<br />

accuracy, %<br />

1 34Cs 475,355 ± 0.038 1.51 ± 0.16 1967 [20] 10.6 1<br />

I.<br />

1.4 ± 0.2 1968 [21]. 14. 3<br />

1.57 ± 0.08 1970 [22] 5.1<br />

563.325 ± 0.041 8.96 ± 0.84 1967 [20] 9.4<br />

8.7 ±1.0 1968 [21] 11.5<br />

8.86 ± 0.45 1970 [22] 5.1<br />

569.371 ± 0.047 15.81 ± 1.1 1967 [20] 7.0<br />

15.0 ±1.6 1968 [21] 10.7<br />

16.0 ±1.0 1970 [22] 6.3<br />

604.744 ± 0.027 98.04 1967 [20]<br />

98.0 1968 [21]<br />

98.1 ± 6.0 1970 [22] ff.l<br />

795.806 ± 0.050 87.79 ± 6.6 1967 [20] 7.5<br />

a O n ly g a m m a ra ys w ith an in ten sity h igh er than 1 p e r c e n t a re in c lu d e d .<br />

88.4 ± 9.1 1968 pi] 10.3<br />

86.0 ± 4.3 19 70 [22] 5.0<br />

k T h e e n e r g y v a lu e s a re , in g e n e r a l, ta k e n fr o m M a rtin and B lic h e r t -T o ft [ 1 3 ] , e x c e p t fo r ^ C s and ^ Z r w h e re th e d a ta o f R a e sid e e t a l. [ 2 0 ] and B rahm avar and<br />

H a m ilto n [ 2 4 ] are u sed , r e s p e c t iv e ly .<br />

c D ata w ith th e s m a lle s t error are u n d e rlin e d .


T A B L E Ha. CO N TIN U ATIO N<br />

Radioactive<br />

nuclide,<br />

Priority<br />

assignment<br />

Energy of the<br />

gamma rays (keV)b<br />

R e с e n t e x p e r i m e n t a 1 d a t aa<br />

Gamma ray<br />

intensity (qu/100 d)<br />

Reference Experimental<br />

accuracy, %<br />

801.86 ± 0.28 8.94 ± 0.8 1967 [20] 8.9<br />

9.2 ± 1.0 1968 [21] 10.9<br />

8.7 ± 0.44 1970 [22] 5.1<br />

1038.61 ± 0.49 1.02 ± 0.08 1967 [20] , 7 -8<br />

1.1 ±0.6 1968 [21] 54.5<br />

0.99 ± 0.06 1970 [22] 6.1<br />

1167.99 ± 0.39 1.96 ± 0.22 1967 [20] 11.2<br />

1.8 ±0.2 1968 [21] 11.1<br />

1.86 ± 0.10 1970 [22] 5.4<br />

1365.08 + 0.32 3.25 ± 0.32 1967 [20] 9.8<br />

3.3 ± 0.3 1968 [21] 9.1<br />

3.23 ± 0.17 1970 [22] 5.3<br />

Claimed<br />

accuracy,%<br />

13,7Cs 661.64 ± 0.8 85.1 ± 0.4 1969 [23] 0.5 1<br />

I. 84.6 ± 0.4 1970 [13] 0.5<br />

a D a ta w ith th e s m a lle s t error a re u n d e rlin e d .<br />

b T h e e n e r g y v a lu e s a re , in g e n e r a l, ta k en fr o m M artin and B lic h e r t -T o ft [ 1 3 ] , e x c e p t for m C s and æZ r w h e re th e d a ta o f R a e sid e e t a l. [ 2 0 ] and B rah m avar and<br />

H a m ilto n [ 2 4 ] a re u sed , r e s p e c t iv e ly .<br />

I A E A - S M -170/1 275


T A B L E lib . CONTIN U ATIO N<br />

Radioactive<br />

nucli'de<br />

Priority<br />

assignment<br />

Energy of the<br />

gamma rays (keV)b<br />

R e с e n t e x p e r i m e n t a 1 d a t a*<br />

Gamma ray<br />

intensity (qu/100 d)<br />

Reference Experimental<br />

95Zr 724.23 ± 0.04 44.2 ± 0.7 0 1969 [24] 1.6 1<br />

II. 43.5 ± 0.5 19 70 [13] 1.1<br />

756,74 ± 0.04 54.6 ± 0.5 0 1969 [24] 0.9<br />

54.3 ±0.5 1970 [13] 0.9<br />

1 ° 6 R u ( l ° 6 R h ) 511.8 ± 0.2 20.6 ± 0.6 1969 [25] 2.9 3<br />

II. 20.6 ±0.9 1970 [13] 4.3<br />

a D a ta w ith ch e s m a lle s t error a re u n d e rlin e d .<br />

622.1 ± 0.2 9.89 ± 0. 48 d 1968 [26] 4.9<br />

9.80 ± 0 . 5 3 d 1969 [27] 5.4<br />

9.83 ± 0.30 1969 [25] 3.1<br />

9.94 ± 0.11 1970 [13] 1 . 1<br />

1050.1 ±0.2 1.48 ± 0.11d 1968 [26] 7,1<br />

1.45 ± 0.09d 1969 [27] 6.0<br />

1.51 ± 0.08 1969 [25] 5.0<br />

1.48 ± 0.04 1970 [13] 2.7<br />

Claimed<br />

accuracy, %<br />

b T h e e n e r g y v a lu e s a re , in g e n e r a l, ta k e n fr o m M a rtin and B lic h e r t -T o ft [ 1 3 ] , e x c e p t for w C s and ^ Z r w h e re th e d a ta o f R a e s id e e t a l. [ 2 0 ] and B rahm avar and<br />

H a m ilto n [ 2 4 ] are used , r e s p e c t iv e ly .<br />

c C o m p u te d fr o m th e p u blish ed v a lu e a c c e p t in g ( 5 4 . 6 ± 0 .5 ) p er c e n t [ 2 4 ] for th e r e la t iv e in te n s ity o f th e b e t a g r o u p to th e 7 5 6 .7 4 le v e l ,<br />

d C o m p u te d fr o m th e p u b lish e d v a lu e a c c e p t in g ( 2 0 . 6 ¿ 0 ,9 ) q u an ta p er d e c a y in te n sity [ 1 3 ] for th e 5 1 1 .8 k e V g a m m a ra y s.<br />

276 BERÉNYI


J. -tt.-D.LjIl/ Н С . V^V-/1N A UN U A i i\»/XN<br />

Radioactive<br />

nuclide,<br />

Priority<br />

assignment<br />

Energy of the<br />

gamma rays (keV)b<br />

R e c e n t e x p e r i m e n t a 1 d a t aa<br />

Gamma ray<br />

intensity (qu/100 d)<br />

Reference Experimental<br />

1 40La 328.77 ± 0.02 21 ± 2 1970 [13] 9.5 1<br />

II.<br />

a D a ta w ith th e s m a lle s t error a re u n d e rlin e d .<br />

18.5 ± 0.07 0 1970 [28] 0.4<br />

19.0 ± 1.2 c 1971 [29] 6.0<br />

432.55 ± 0.03 3.3 ± 0.2 1970 [13] 6.1<br />

2.7 ± 0.16 ° 1970 [28] 5.3<br />

2.9 ± 0.20 0 1971 [29] 7.0<br />

487.03 ± 0.02 45 ± 2 1970 [13] 4.4<br />

43.0 ± 0.22 c 1970 [28] 0.5<br />

46.8 ± 2.9 c 1971 [29] 6.1<br />

751.79 ± 0.06 4.4 ±0.1 1970 [13] 2^3<br />

4.2 ± 0.20 0 1970 [28] 4.6<br />

4.1 ± 0.29 c 1971 [29] 7.1<br />

815.83 ± 0.06 23.1 ±0.4 1970 [13] '1.7_<br />

. 22.5 ± 0.67 c 1970 [28] 3.0<br />

21.4 ± 1.3 c 1971 [29] 6.3<br />

Claimed<br />

accuracy, %<br />

b T h e e n e rg y v a lu e s a re , in g e n e r a l, ta k e n fr o m M a rtin and B U c h e r t-T o ft [ 1 3 ] , e x c e p t f a “ c s and ® Z r w h e re th e d a ta o f R a e sid e e t a l. [ 2 0 ] and B rahm avar and<br />

H a m ilto n [ 2 4 ] a re w e d , r e s p e c t iv e ly .<br />

c C o m p u te d fr o m th e p u b lish e d v a lu e a c c e p t in g ( 9 5 .6 ± 0 .3 ) q u an ta p er d e c a y in te n sity [ 1 3 ] fo r th e 1 5 9 6 .6 k e V g a m m a ra y s.<br />

I A E A - S M -170/1 277


T A B L E lid . CO N TIN U ATIO N<br />

Radioactive<br />

nuclide<br />

Priority<br />

assignment<br />

Energy of the<br />

gamma rays (keV)b<br />

a D a ta w ith th e s m a lle s t error a re u n d e rlin e d .<br />

R e c e n t e x P e r i m e h t a l d a t aa<br />

Gamma ray<br />

intensity (qu/100 d)<br />

Reference Experimental<br />

867.84 ± 0.10 5.5 + 0.3 1970 [13] 5.5<br />

5.4 + 0.3 ° 1970 [28] 5.4<br />

5.4 ± 0.38° 1971 [29] 7.1<br />

919.6 ± 0.2 2.5 + 0.2 1970 [13] 8.0<br />

2.5 + 0.15d 19 70 [28] 6.1<br />

2.9 + 0. 26 d 1971 [29] 9.1<br />

925.2 ± 0.8 6.9 + 0.3 1970 [13] 4.3<br />

6.8 + 0. 29 d 1970 [28] 4.2<br />

7.5 + 0.55d 1971 [29] 7.4<br />

1596.6 ± 0.2 95.6 + 0.3 1970 [13] 0.3<br />

1970<br />

1971<br />

[28]<br />

[29]<br />

2522.0 + 0.4 3.3 + 0.2 19 70 [13] 6.0<br />

3.4 + 0.17d 19 70 [28] 5.0<br />

3.6 + 0. 21d 1971 [29] 5.8<br />

Claimed<br />

accuracy, %<br />

b T h e e n e r g y v a lu e s a re , in g e n e r a l, t a t e n fr o m M a rtin a n d B lic h e r t -T o ft [ 1 3 ] , e x c e p t fo r m C s and ^ r w h e re th e d a ta o f R a e s id e et a l. [ 2 0 ] and B rah m avar and<br />

H a m ilto n [ 2 4 ] are u sed , r e s p e c t iv e ly .<br />

c C o m p u te d fr o m th e p u b lish ed v a lu e a c c e p t in g ( 9 5 .6 ± 0 .3 ) q u an ta per d e c a y in te n sity [ 1 3 ] fo r th e 1 5 9 6 .6 k e V g a m m a ra y s.<br />

^ C o m p u te d fr o m th e p u b lish e d v a lu e a c c e p t in g ( 2 0 .6 ± 0 . 9 ) qu an ta per d e c a y in te n sity [ 1 3 ] for th e 5 1 1 .8 k e V g a m m a ra y s.<br />

278 ' BERÉNYI


T A B L E lie. CO N TIN U ATIO N<br />

Radioactive<br />

nuclide<br />

Priority<br />

assignment<br />

Energy of the<br />

gamma rays (keV)b<br />

R e c e n t e x p e r i m e n t a 1 d a t a a<br />

Gamma<br />

intensity<br />

ray<br />

(qu/100 d)<br />

Reference Experimental<br />

i‘*‘*Ce 80.12 ± 0.3 2.38 ± 0.24 c 1969 [30] 10.2<br />

II. 1.54 ± 0.15 1970 [13] 9.7<br />

a D a ta w ith th e s m a lle s t error a re u n d e rlin e d .<br />

1.60 ± 0.11 c 19 70 [31] 6.9<br />

1.73 ± 0 . 11 c 1970 [32] 6.4<br />

133.53 ± 0.3 10.8 ± 0.5 1970 [13] 4.6<br />

Claimed<br />

accuracy, %<br />

b T h e e n e rg y v a lu e s a re g e n e r a lly ta k e n fr o m M a rtin and B lic h e r t -T o ft [ 1 3 ] , e x c e p t fo r c a s e o f “ C s and ® Z r w h e re th e d a ta o f R a e sid e e t a l. [ 2 0 ] a n d B rahm avar and<br />

H a m ilto n [ 2 4 ] are u sed , r e s p e c t iv e ly .<br />

c C o m p u te d fr o m th e p u b lish e d v a lu e a c c e p t in g ( 1 0 . 8 ± 0 .5 ) qu an ta p er d e c a y in te n sity [ 1 3 ] for th e 1 3 3 .5 3 k e V g a m m a ra y s.<br />

I A E A - S M -170/1 279


280 BERÉNYI<br />

future: it would be very useful, in view of the various applica­<br />

tions, if the file of references in Oak Ridge would be the file<br />

of nuclear data.<br />

Finally, I should like to summarize our experiences in<br />

connection with the request lists for safeguards purposes [1-2].<br />

First of all( the real claims are much more numerous than they<br />

could be analysed now here, but these requests are not concrete<br />

enough, e. g. there is no figure about the requested accuracy<br />

• •<br />

/ cf. [1]/. Even in the case of the second, more precise request<br />

list [2] there are some insufficiencies. Thus, there is no<br />

hint for the intensity limit up to which the gamma quanta per<br />

decay data are necessary. /It is obvious, that the gamma rays<br />

of low intensity are of no interest for safeguards./ In the<br />

present analysis this limit was arbitrarily chosen as 1 % /i. e.<br />

1 quantum per 100 decays/.<br />

Furthermore, in the request list [2] only 9sZr, 106Ru,<br />

etc. are indicated, although it is very probable that the gamma<br />

rays from the corresponding daughter nuclides / 95Nb, 106Rh etc./<br />

are also important. E. g. in the case of 106Ru we were obliged<br />

to include the decay of 1°6Rh in the analysis because the 106Ru<br />

itself is only a beta decaying nuclide without any monoenergetic<br />

gamma rays. Some of the nuclides in question have an isomer<br />

state too /e. g. 106mRh/, the decay characteristics of which<br />

might be important in safeguards tasks, but such claims are<br />

not indicated in the lists.<br />

As a final conclusion, it can be stated that further<br />

thorough and detailed request lists are badly needed.<br />

The author is obliged to Professor D. J. Horen, Director,<br />

<strong>Nuclear</strong> <strong>Data</strong> Project, Oak Ridge, Tennessee, for sending the<br />

necessary list from the computerized file of references and<br />

the <strong>Nuclear</strong> <strong>Data</strong> Sheets for A=95 mass chain before the official<br />

publication.<br />

REFERENCES<br />

[1] BYER, T. A . , „Draft Working Paper for IWGNSRD on Non-Neutron<br />

<strong>Nuclear</strong> <strong>Data</strong> Needs for Safeguards Development Purposes."<br />

1st Meeting of IWGNSRD, Working Paper No. 20, March, 1972<br />

[2] BYER, T. A., INDC(NDS)-44/G, <strong>IAEA</strong>, Vienna, June 1972<br />

[3] <strong>Nuclear</strong> <strong>Data</strong> Sheets, 4B 1-2 (1970)


<strong>Nuclear</strong> <strong>Data</strong> Sheets, 4B 5 (1970)<br />

<strong>Nuclear</strong> <strong>Data</strong> Sheets, 5B 1 (1971)<br />

<strong>Nuclear</strong> <strong>Data</strong> Sheets, 5B 4 (19 71)<br />

<strong>Nuclear</strong> <strong>Data</strong> Sheets, 6B 2 .(1971)<br />

<strong>Nuclear</strong> <strong>Data</strong> Sheets, 6B 5 (1971)<br />

<strong>Nuclear</strong> <strong>Data</strong> Sheets, 7B 3 (1972)<br />

<strong>Nuclear</strong> <strong>Data</strong> Sheets, 7B 6 (1972)<br />

MEDSKER, L. R. and HOREN, D. J . , <strong>Nuclear</strong> <strong>Data</strong> Sheets B8 (1972)<br />

29<br />

Computerized data files for 13^Cs, Oak Ridge <strong>Nuclear</strong> <strong>Data</strong><br />

Group, Oak Ridge, Tennessee, USA.<br />

MARTIN, M. J. and BLICHERT-T<strong>OF</strong>T, P. H., <strong>Nuclear</strong> <strong>Data</strong><br />

Tables 8A (1970) 1<br />

LAGOUTINE, F., LEGRAND, J., PERROT, C., BRETHON, J. P ._ and<br />

MOREL, J. , Int. J. Appl. Rad. Isotope, 23 (1972) 219<br />

HARBOTTLE, G., Radiochim. Acta 13 (1970) 132<br />

WALZ, K. F. und WEISS, H. M., Zeits. Naturf. 25a (1970) 921<br />

DEBERTIN, K., Zeits. Naturf. 26a (1971) 596<br />

BABA, S., BABA, H., NATSUME, H., J. Inorg. Nucl. Chem. 33<br />

(1971) 589<br />

WALKER, D. A. and EASTERDAY, H. T., Nucl. Instr. Meth. £8<br />

(1967) 277<br />

RAESIDE, D.E., REIDY, J. J. and WIDENBECK, M. L., Nucl. Phys.<br />

A98 (1967) 54<br />

ABDUL-MALEK, A. and NAUMANN, R.A., Nucl. Phys. A106<br />

(1968) 225<br />

H<strong>OF</strong>MANN, H., WALTER, H.K., WEITSCH, A., Z. Physik, 230<br />

(1970) 37<br />

HANSEN, H.H., LÖWENTHAL, G., SPERNOL, A., EIJK,van der W.,<br />

and VANINBROUKX, Zeits. Phys. 218 (1969) 25<br />

BRAHMAVAR, S.M. and HAMILTON, J. H., Phys. Rev. 187 (1969)<br />

1487<br />

ODRU, P., Radiochim. Acta 12 (1969) 64<br />

HATTULA, J. and LIUKKONEN, E., Ann. Acad. Sei. Fennicae,<br />

Ser. A. VI. No. 274 (1968)<br />

STRUTZ, Kl.-D. and FLAMMERSFELD, A. Zeits. Phys. 221<br />

(1969) 231<br />

IA E A -S M -1 7 0 /1 281<br />

KALINNIKOV, V. G., RAVN, K. L., HANSEN, H. G., LEBEDEV,<br />

N. A., Izv. AN SSSR, Ser. Fiz. ¿4 (1970) 916


282 BERÉNYI<br />

[29] ARDISON, G. et MARSD, C., Rev. Roum. Phys. 16 (1971) 1043<br />

[30] MANGAL, P. C. and TREHAN, P.N., Journ. Phys. Soc. Japan,<br />

22 (1969) 1<br />

[31] ANTTILA, A. and PIIPARINEN, M. Zeits. Phys. 237 (1970) 126<br />

[32] POTNIS, V. R., A G I N , G.P., MANDEVILLE, C.E., J. Phys. Soc.<br />

Jap. 29 (1970) 539<br />

[33] HILLER, S., Kerntechnik 12 (1970) 485<br />

[34] MILLER, 0. A., DEMIDOV, A. M., OVCSINIKOV, F. Ja., GOLUBEV,<br />

L. I. and SUNCSUGASHEV, M. A., Atomnaya Energiya 27 (1969)<br />

281<br />

DISCUSSION<br />

C. W E IT K A M P : In con n ection w ith y o u r s ta te m e n t th at h a lf-liv e s a re<br />

u su a lly w ell enough known fo r sa fe g u a rd s p u rp o se s , I should lik e to give<br />

an e x a m p le of a c a s e in w hich th e y a r e n o t. T h e a c c u r a c i e s of s p e c ific<br />

p ow er v a lu e s of 239P u , 240 P u and 241P u fo r c o lo r im e tr ic plutonium a s s a y<br />

a r e at p re s e n t in ad eq u ate, and b e tte r h a lf-liv e s fo r th e f i r s t tw o would<br />

g r e a tly im p ro v e th e situ a tio n . Im p ro v e m e n ts can , of c o u r s e , a ls o co m e<br />

fro m o th e r m e a s u re m e n ts , su ch a s d ir e c t (i. e. c a lo r im e tr ic ) d e te rm in a tio n .<br />

D. J . H O REN : F i r s t , I would lik e to thank M r. B e ré n y i fo r m ak in g<br />

su ch good u se of ou r output. I would a ls o m en tion th at th e se ty p es of<br />

sp e c ia liz e d r e f e r e n c e lis t s a r e a v a ila b le to anyone on re q u e s t. The id ea<br />

of p ub lish in g cu m u la tiv e r e f e r e n c e l i s t s in ste a d of R e c e n t R e fe r e n c e s h as<br />

b een u n d er c o n sid e ra tio n fo r th e p a st y e a r and a h alf but we fe e l th at it is<br />

m o re e c o n o m ic a l to resp o n d to individual re q u e s ts .<br />

Y ou s ta r te d to g e t down to so m e of the d e ta ils of the handling of th e se<br />

d a ta . I think th is would le a d to a v e r y len gth y d iscu s s io n if we w e re to<br />

p u rsu e it. H ow ev er, I would like to m ak e a couple of co m m e n ts on the<br />

su b je ct. W e a g r e e th at it would be helpful fo r u s to ta b u la te ab solu te<br />

g a m m a in te n s itie s and we hope w ith som e of th e co m p u te r p ro g ra m m in g<br />

th at we a r e now doing, to s e t up a s y s te m by w hich we w ill be ab le to c a l ­<br />

cu la te the w hole d e ca y s ch e m e and then p ro d u ce tab u latio n s of ab solu te<br />

g a m m a in te n s ity , to ta l tra n s itio n s in te n sity o r c o n v e rs io n e le c tr o n s . T h e se<br />

p ro g ra m s h ave not y e t b een co m p le te d , but w e a r e w orkin g in th at d ire c tio n .<br />

K . W A Y : Did you m e a n to su g g e st a d a ta file of e x p e rim e n ta l d ata<br />

o r re co m m e n d e d d a ta ?<br />

D. B E R É N Y I: I think the m a in ta s k of a d a ta c e n tr e is to c o lle c t d ata<br />

and th a t is why a file of e x p e rim e n ta l n u c le a r d a ta is the m o s t im p o rta n t<br />

re q u ire m e n t. T h e evalu atio n of th e d a ta a c c o rd in g to d iffe re n t p oin ts of<br />

view s is , of c o u r s e , a ls o v e r y im p o rta n t and n e c e s s a r y but it is p o ssib le<br />

only if w e have a s co m p le te a c o lle ctio n (d ata file) of the o rig in a l<br />

e x p e rim e n ta l d ata a s p o ssib le .<br />

D. J . H O REN : I would lik e to follow up M iss W a y 's q u estion . I think,<br />

when it is a m a tte r of a ra w d ata file , i. e. d a ta put in to a co m p u te r file<br />

d ire c tly fro m e x p e rim e n ta l p a p e r s , th a t u ntil the e x p e rim e n ta lis ts adopt<br />

so m e of th e id e a s ad v o cate d by M iss W ay fo r m an y y e a r s now , th e r e a l<br />

valu e of su ch a file is som ew h at q u estion ab le.


IA E A -S M -1 7 0 /1 283<br />

С. B E E T S : T h e im p o rta n c e of the v a rio u s s a fe g u a rd s re q u ire m e n ts<br />

h as b een sp e cifie d in g r e a t e r d e ta il, a s fa r a s g a m m a m e a s u re m e n ts of<br />

irra d ia te d fuel a r e co n ce rn e d , in a p a p e r p re s e n te d at th e 1972 ANS m e e tin g<br />

in W ashin gton by C. B e e ts , T . D ra g n e v e t al.


Section IV<br />

LIFE SCIENCES


Chairman<br />

A.H.W. ATEN (ССЕ)


LE ROLE DES DONNEES NUCLEAIRES<br />

DANS L'UTILISATION DES INDICATEURS<br />

RADIOACTIFS EN MEDECINE<br />

C. KELLERSHOHN, D. COMAR<br />

CEA, Département de biologie,<br />

Service hospitalier Frédéric Joliot,<br />

Orsay, France<br />

Abstract-Résumé<br />

TH E ROLE <strong>OF</strong> N U CLEAR D A T A IN TH E USE <strong>OF</strong> R A D IO A C T IV E TRACERS IN M E DICIN E.<br />

T h e n u c le a r d a ta , k n o w le d g e o f w h ic h is fu n d a m e n ta l fo r th e use o f r a d io e le m e n ts in m e d ic a l<br />

d ia g n o s tic s , a re r e v ie w e d . A fte r an in tr o d u c to ry part o n th e p r o d u c tio n o f r a d io e le m e n ts p r o b le m s<br />

IA E A -S M -П 0 /9 7<br />

c o n c e r n in g fu n c tio n a l e x p lo r a tio n , as, e . g . , k in e t ic stu d ies and d o s im e try , a re c o n s id e r e d . T h e last<br />

part o f th e p a p e r d e a ls w ith th e a n aly sis o f th e e le m e n ta r y c o m p o s itio n o f b io l o g i c a l m a te r ia ls using<br />

r a d io a c t iv a t io n a n aly sis in v itr o e t in v iv o , th e la tte r a lso c o n c e r n in g d o s im e t r ic p r o b le m s c o n n e c t e d<br />

w ith th e n a tu re o f th e p a r tic le s used fo r ir ra d ia tio n .<br />

LE ROLE DES DONNEES NUCLEAIRES D A N S L ’ U T IL IS A T IO N DES IN D IC A TEU R S R A D IO A C T IF S EN M EDECINE.<br />

Les auteurs passent e n re v u e le s d o n n é e s n u c lé a ir e s d o n t la c o n n a is s a n c e est fo n d a m e n ta le pou r<br />

l'u t ilis a t io n des r a d io é lé m e n ts dans le d ia g n o s tic m é d ic a l. A p rès un e x p o s é sur la p r o d u c tio n des r a d io ­<br />

é lé m e n ts ils é tu d ie n t le s p r o b lè m e s r e la tifs â l'e x p lo r a t io n fo n c t io n n e lle , te ls q u e .le s étu d e s c in é tiq u e s<br />

e t la d o s im é tr ie . La d e r n iè r e p a rtie du m é m o ir e tr a ite d e l'a n a ly s e d e la c o m p o s itio n é lé m e n t a ir e d es<br />

m a té r ia u x b io lo g iq u e s p ar a n a ly se par r a d io a c t iv a t io n in v itr o e t in v iv o , c e t t e d e r n iè r e fa isan t é g a le m e n t<br />

a p p e l à d es p r o b lè m e s d o s im é triq u e s lié s à la n a tu re d es p a rticu le s u tilis é e s p ou r l'ir r a d ia t io n .<br />

Les données nucléaires dont la connaissance est fondamentale<br />

pour l'utilisation des radioéléments en diagnostic médical<br />

s'appliquent à trois domaines principaux :<br />

- la production des radioéléments,<br />

- l'exploration fonctionnelle comportant les études cinétiques,<br />

l'imagerie, et leurs conséquences dosimétriques,<br />

- l'analyse de la composition élémentaire des matériaux biologiques<br />

par analyse par radioactivation in vitro et in vivo, cette<br />

dernière faisant également appel à des problèmes dosimétriques<br />

liés à la nature des particules utilisées pour l'irradiation.<br />

1. PRODUCTION DES RADIOELEMENTS<br />

Quoique le nombre des radioéléments connus à l'heure actuelle<br />

soit voisin de 1300, bien peu sont utilisés en médecine<br />

diagnostique soit en raison de la difficulté de leur production<br />

soit que leurs caractéristiques nucléaires ne sont pas souvent<br />

convenables.<br />

L'irradiation par les neutrons dans les réacteurs nucléaires<br />

est la méthode de choix de production d'un certain nombre<br />

d'entre eux. A côté du rendement de fission qu'il est utile de<br />

287


288 KELLERSHOHN et COMAR<br />

connaître pour déterminer la proportion des radioéléments produits<br />

au cours de la fission de 1 'uranium-235, les deux paramètres<br />

nucléaires qui gouvernent les réactions avec les neutrons<br />

sont la section efficace et la période.<br />

A partir des neutrons thermiques les réactions par capture<br />

radiative sont les plus fréquentes conduisant à l'isotope radioactif<br />

d'une unité de masse supérieure. La quantité de radioactivité<br />

produite sera, à flux de neutrons constant et pour un temps<br />

d'irradiation long par rapport à la période, directement proportionnel<br />

à la section efficace d'activation. Sa connaissance est<br />

donc fondamentale si l'on veut prévoir la radioactivité spécifique<br />

du produit fabriqué. Il est important que la masse d'entraîneur<br />

associée aux radioéléments soit aussi faible que possible,<br />

sinon nulle. En effet les études cinétiques fondées sur l'emploi<br />

des indicateurs supposent au préalable que la masse de produit<br />

injectée soit négligeable par rapport à celle contenue dans le<br />

système.<br />

La toxicité de l'espèce chimique utilisée est également un<br />

facteur limitant de l'emploi des indicateurs nucléaires en diagnostic<br />

médical et ici aussi la connaissance de la section efficace<br />

permettra de décider de la possibilité d'utilisation du radioélément<br />

chez l'homme. Les éléments lourds en sont un bon exemple<br />

: le produit par réaction (n,y) à partir du !96нд malgré<br />

sa grande section efficace d'activation suppose pour avoir<br />

une radioactivité spécifique suffisante, l'enrichissement de l'isotope<br />

stable et l'irradiation dans un flux de neutrons important.<br />

Un autre élément lourd, le thallium, dont l'intérêt pour<br />

l'exploration fonctionnelle du rein a récemment été mis en évidence,<br />

ne possède qu'un seul radioisotope (204T1) produit par<br />

capture radiative. La faible section efficace d'activation, associée<br />

à la période de 204t i (38 ans) et du schéma de désintégration<br />

défavorable pour la détection "in vivo" rendent ce radioélément<br />

inutilisable chez l'homme.<br />

La connaissance des données nucléaires relatives aux paramètres<br />

d'activation en fonction de l'énergie des neutrons sont également<br />

très utiles pour déterminer les conditions les meilleures<br />

de production. Ainsi le cuivre-67 de période 2,44 j et émetteur<br />

d'une raie gamma à 184 keV est produit par réaction n,p sur le<br />

zinc enrichi. Il constituera donc un radioélément sans entraîneur<br />

d'intérêt beaucoup plus grand en médecine que n'est le ®^Cu<br />

T = 12,8 h et émetteur de positrons produit avec entraîneur lors<br />

de l'irradiation du cuivre naturel par les neutrons thermiques.<br />

Dans la plupart des cas oû le radioélément a une période<br />

suffisamment longue pour être transporté du lieu de sa production<br />

à celui de son utilisation, le médecin connaissant la radioactivité<br />

indiquée par le fabricant doit à partir de la période du<br />

radioélément calculer la radioactivité réelle qu'il sera amené à<br />

injecter au patient. Il pourra également comparer la radioactivité<br />

de la source à celle d'un standard commercial.<br />

Le cas particulier des générateurs de radioéléments plus<br />

communément appelés "vaches à radioéléments" suppose la<br />

connaissance simultanée de la part du médecin de la période et<br />

du schéma de désintégration. Le générateur de radioélément le<br />

plus généralement utilisé à l'heure actuelle est la "vache à<br />

technétium" dont le fonctionnement se déduit facilement du schéma<br />

de désintégrations du 99Mo et 99ттс présenté sur la figure 1. De<br />

la radioactivité connue en 99m 0 à un instant donné, l'application<br />

des équations de la filiation radioactive permet à chaque instant


IA E A -S M -1 70/97 289<br />

FIG. 1. S c h e m a d e d é s in té g r a tio n du m o ly b d e n e - 9 9 (6 7 h ) et du t e c h n é t iu m -9 9 m ( 6 h ).<br />

de déterminer la radioactivité en produit fils 99ттс à condition<br />

de connaître avec précision les périodes physiques des deux radioéléments<br />

.<br />

Une alternative consiste bien entendu à mesurer la radioactivité<br />

du 99mijic séparé du З^Мо à l'aide d'un détecteur spectro-<br />

mêtre gamma convenablement étalonné et de déduire du taux de<br />

comptage le taux de désintégrations, donnée pour laquelle le<br />

pourcentage d'émission par désintégration de la raie gamma mesurée<br />

est le paramètre nécessaire.<br />

Depuis quelques années l'apparition sur le marché de cyclotrons<br />

compacts à usage médical ouvre des perspectives nouvelles<br />

quant à la disponibilité des radioéléments (1). Une dizaine de<br />

cyclotrons de ce type sont installés à l'heure actuelle dans<br />

différents instituts médicaux ; une de leurs principales caractéristiques<br />

est de pouvoir produire des isotopes radioactifs de période<br />

très brève inaccessibles par d'autres méthodes. Les trois<br />

principaux sont I'ISq^t = 2,05 min), le ^ c f T = 20,4 min) et l'-^N<br />

(ï = 10 min^ Utilisés directement sous forme gazeuse (C>2 , CO2 , СО,<br />

N 2 ) ces radioéléments sont particulièrement intéressants pour<br />

l'étude de la ventilation pulmonaire. Combinés à des molécules<br />

plus complexes ils permettent d'étudier les composantes rapides<br />

de certains métabolismes (médicaments ou produits naturels). Ces<br />

études doivent dans certains cas se poursuivre pendant un temps<br />

correspondant à plusieurs périodes de désintégration du radioélément.<br />

La précision avec laquelle cette période sera connue conditionnera<br />

la précision des données biologiques mesurées.


290 KELLERSHOHN et COMAR<br />

Courbes d'activation du 11C<br />

et des éléments interférants<br />

1 1 ,<br />

Rendement obtenu en С<br />

1— A partir des deutons de nMev<br />

B20 3 + Не i5oml/min _____¿ 2 ,5 mCi^tA.h<br />

2 _ A partir des protons de 12 Mev<br />

B2 C^ + Не i5om l/m in ----------» 3omCj/^U.A.h<br />

N2 (1 bar] i5 omJ/min ----------» eomCj^u. A h<br />

FIG . 2. P ro d u ctio n d e n C à partir d es r é a c t io n s 10 B (d ,n )n C , ‘ 'B f p . n f 'c e t l4N ( p , a ) u C .<br />

En h a u t: c o u r b e s d 'a c t iv a t io n du “ C e t d es é lé m e n ts in te rfé ra n ts pou r le s trois ré a ctio n s c o n s id é r é e s<br />

sous fo r m e d e la r a d io a c t iv ité e x p r im é e e n fo n c t io n d e l'é n e r g ie .<br />

En bas: r e n d e m e n t d e s tro is r é a c tio n s e n m illic u r ie s p ar m ic r o a m p á r e -h e u r e .<br />

En ce qui concerne la production de ces radioéléments un des<br />

paramètres fondamentaux qu'il est nécessaire de connaître et qui<br />

malheureusement fait encore défaut dans bien des cas est la variation<br />

de la section efficace en fonction de l'énergie des particules.<br />

Celle-ci permettra de prévoir l'énergie optimale pour<br />

obtenir le meilleur rendement tout en évitant certaines réactions<br />

parasites conduisant à la fabrication d'un autre radioélément.<br />

La figure 2 illustre les problèmes posés par la fabrication<br />

du Н С ainsi que quelques résultats préliminaires obtenus dans<br />

notre service.<br />

Les courbes d'activation du 1J-C à partir des réactions<br />

(d,n) IIç, IIß (p, n) 4 c et 14N (p, ) H c sont empruntées à<br />

Engelmann (2). Pratiquement la méthode la plus intéressante consiste<br />

à irradier par des protons d'énergie voisine de 12 MeV de


C IB L E<br />

Hg<br />

PARTICU LES<br />

iA E A -S M -1 7 0 /9 7 291<br />

198" ’ T l T = 1 , 8 7 h C E = 4 5 %<br />

198<br />

199<br />

200<br />

201<br />

T l T = 5 , 3 h C E = 1 0 0 %<br />

T l T = 7 , 4 h C E = 1 0 0 %<br />

T l T “ 1 , 0 4 j C E = 1 0 0 %<br />

T l T = 3 , 0 8 j<br />

C E = 1 0 0 %<br />

202<br />

T l T - _ 1 2 j<br />

C E = 1 0 0 %<br />

RENDEMENT heure<br />

,9 8 T I 199 T l 200 T l 501 T l S 0 S T I<br />

H g O d ( l 5 M e v ) 3 6 5 4 1 0 i 2 3 3 8 4 2 1<br />

H g O p ( 5 0 M e v ) 5 4 5 0 2 6 0 0 7 3 0 1 2 3 7 , 6<br />

H g O p ( 1 6 M e v )<br />

-<br />

2 5 0 6 0 4 5 -<br />

H g p ( 1 6 M e v ) 6 6 0 9 0 0 2 3 0 1 8 0 7<br />

F IG .3 . R a d io is o to p e s du th a lliu m p rod u its par c y c lo t r o n .<br />

En h a u t: R a d io is o to p e s p rodu its a v e c le u r p é r io d e e t le u r m o d e d e d é s in té g ra tio n .<br />

En bas: R e n d e m e n t d e p r o d u c tio n e n fo n c t io n d e la n a tu re des p a r tic u le s , d e le u r é n e r g ie e t d e la n ature<br />

d e la c i b l e .<br />

l'azote gazeux contenant 2 à 3 % d'oxygène, ce dernier ayant pour<br />

effet de réagir directement avec les atomes de 1]-C pour donner du<br />

H C C ^ . Les courbes présentées en haut et à droite de la figure<br />

mettent bien en évidence que l'oxygène présent dans le gaz cible<br />

conduira à la formation d'azote-13 contaminant le ^ C . La conséquence<br />

logique d'une telle observation aboutira soit à modifier<br />

le mode de préparation, soit à effectuer une séparation chimique<br />

des deux gaz radioactifs.<br />

Dans la plupart des cas la fonction d'excitation étant inconnue,<br />

seule l'expérience permettra de déterminer le rendement<br />

de fabrication d'un radioélément et la contamination par les radioisotopes<br />

voisins, s'ils existent. La figure 3 illustre un tel<br />

cas. Il concerne la fabrication des thallium 198m à 202 par bombardement<br />

du mercure par les protons ou les deutons. La partie<br />

supérieure indique les radioisotopes produits ainsi que leur période<br />

et le mode fondamental de désintégration. Le tableau inférieur<br />

illustre les rendements de fabrication en fonction de la<br />

nature chimique de la cible de la particule incidente et de son<br />

énergie. Il apparaît que le bombardement par les protons conduit<br />

à un mélange de radioisotopes plus riche en radioéléments de<br />

courte période.


292 KELLERSHOHN et COMAR<br />

FIG . 4 . S c h é m a d u p r in c ip e d e S te w a r t-H a m ilto n .<br />

S: S y s te m e b io lo g iq u e é tu d ié<br />

qo: R a d io a c t iv it é in je c t é e<br />

a (t): R a d io a c t iv it é s p é c ifiq u e à l'in s ta n t t d e la su b sta n ce é tu d ié e a la s o r tie d e S<br />

R: D iè t e ou flu x d 'e n t r é e d e la su b sta n ce é tu d ié e dans S<br />

t: T e m p s m o y e n d e transit d e la su b sta n ce é tu d ié e â travers S<br />

O s : M asse o u p o o l d e la su b sta n ce é tu d ié e dans le s y stè m e .<br />

2. DONNEES NUCLEAIRES DANS LE CADRE DES ETUDES CINETIQUES ET<br />

DE L'EXPLORATION FONCTIONNELLE<br />

2.1. Procédures<br />

Que ce soit pour l'exploration fonctionnelle d'un organe,<br />

l'étude d'une fonction physiologique et de ses anomalies ou plus<br />

généralement l'étude du métabolisme d'un élément ou d'une substance<br />

à différents niveaux d'une structure vivante en état sta-<br />

tionnaire vis-à-vis de cet élément ou de cette substance, l'utilisation<br />

des indicateurs nucléaires se ramène à trois types de<br />

procédures :<br />

2.1.1. Le principe de Stewart-Hamilton<br />

La figure 4 schématise ce principe dans le cas oû l'excrétion<br />

de l'indicateur se fait par une seule voie. C'est par exemple<br />

le cas de toutes les substances qui sont excrétées par la<br />

seule voie urinaire. Le flux de substances à travers l'organisme<br />

S


IA E A -S M -1 7 0/9 7 293<br />

ou système S considéré, la diète quotidienne R ;est égale au quotient<br />

de la radioactivité injectée qg par la surface limitée par<br />

la courbe représentant la variation de la radioactivité spécifique<br />

de l'excréta en fonction du temps a(t)<br />

R = q°<br />

Г а (t)dt<br />

L'application la plus connue de cette procédure est la mesure<br />

du débit cardiaque F au moyen de l'expression<br />

f-4 - 'o ><br />

q°<br />

c(t)dt<br />

oü qg est la radioactivité injectée en amont du coeur et c(t) la<br />

concentration radioactive à l'instant t d'échantillons sanguins<br />

prélevés en aval du coeur.<br />

L'injection de la radioactivité étant effectuée en "equivalent<br />

supply", c'est-à-dire que dans le cas où la substance étudiée<br />

pénètre dans l'organisme par plusieurs portes d'entrée, la<br />

radioactivité de l'indicateur est injectée simultanément dans<br />

chaque porte d'entrée dans les mêmes proportions que les flux de<br />

substance-mère, le temps moyen de transit t de la substance considérée<br />

à travers le système S est donné par l'expression<br />

_ jj2 ta (t) dt<br />

t =<br />

0 a(t)dt<br />

Я<br />

valable si la durée de l'injection est brève par rapport à t.<br />

La masse totale ou pool Qs de la substance considérée dans<br />

le système est alors donnée par la relation<br />

Qs = R.t.<br />

2.1.2. Le principe d'occupation<br />

Il constitue au fond une généralisation du principe de Stewart-Hamilton.<br />

Si qg représente la radioactivité totale injectée,<br />

qgi(t) la radioactivité, à l'instant t après le début de l'injection,<br />

dans une portion arbitraire S' du système S et Qgi la masse<br />

totale ou pool de la substance considérée dans S', le flux constant<br />

R de cette dernière dans S (Figure 5) est donnée par l'ex-<br />

Elle a été établie pour la première fois par Bergner (3) qui<br />

désignait le ternes<br />

■qs .(t)<br />

(*)s i = J — - dt sous le vocable de temps moyen<br />

de séjour de la 0----g 0-------substance considérée dans la


294 KELLERSHOHN et COMAR<br />

FIG . 5. S c h é m a du p r in c ip e d 'o c c u p a t io n .<br />

S: S y ste m e b io lo g iq u e é tu d ié<br />

S ', S " : P ortion s arb itra ires d e S<br />

q j: R a d io a c t iv it é i n je c t é e dans S<br />

q s '( ') . q s ''( t ) : R a d io a c t iv it é á l'in s ta n t t dans S 'e t S "<br />

R: D iè t e ou flu x d 'e n t r é e d e la su b sta n ce é tu d ié e dans S<br />

S<br />

( -> S '. (■)$••: O c c u p a tio n d e S ' e t S " par la su b sta n ce é tu d ié e .<br />

Q g ', Qs " : C a p a c it é d e S ' e t S " pou r la su b sta n ce é tu d ié e .<br />

région arbitraire S'. Elle a été reprise et largement développée<br />

dans ses applications pratiques par Orr et Gillespie (4) sous le<br />

nom de principe d'occupation. Ces auteurs appellent le temps C-) s '<br />

occupation de S' par la substance étudiée et le pool Qs i capacité<br />

de S' pour cette substance. Ils énoncent alors le principe : le<br />

quotient de la capacité d'une région arbitraire d'un organisme S<br />

en état stationnaire par l'occupation de cette dernière, est égal<br />

au flux ou diète de la substance considérée pour cet organisme.<br />

(•)s' est mesuré par l'étude de la cinétique de la radioactivité<br />

dans S'. Si d'autre part Qg< peut être déterminé par une<br />

quelconque technique analytique, on en déduit la diète quotidienne<br />

moyenne R du sujet S. La région arbitraire S' est souvent<br />

constituée par un certain volume, un litre par exemple, de plasma.<br />

S'il est possible expérimentalement de mesurer la radioactivité<br />

au niveau d'un organe s", on détermine son occupation (-)" et<br />

par suite son pool Qg" pour la substance étudiée puisque :<br />

Si on prend pour région S' le système S lui-même, l'occupation<br />

se confond avec le temps de transit moyen t.


<strong>IAEA</strong> -SM -1 7 0 /9 7 295<br />

Le principe d'occupation est une méthode très puissante pour<br />

l'étude des métabolismes dans un organisme en état stationnaire.<br />

Il a été notamment utilisé dans le cas du métabolisme de l'iode<br />

(5), du brome (6), du rubidium (7), du calcium (8), du sélénium<br />

(9) .<br />

2.1.3. L'analyse compartimentale<br />

Elle constitue un mode de représentation bien connu du métabolisme<br />

d'un élément ou d'une molécule dans un organisme en état<br />

stationnaire. Sur la base de données anatomiques, physiologiques<br />

et biochimiques, ce dernier est divisé en "compartiments" représentant<br />

l'ensemble des atomes ou molécules étudiés se trouvant dans<br />

un même volume spatial, un même organe, ou un même état chimique.<br />

Les paramètres d'un tel système compartimentai sont constitués<br />

par les pools des compartiments, ainsi que les taux d'échange et<br />

de transfert entre eux. Après injection d'une radioactivité q 0<br />

d'un indicateur dans l'un de ces compartiments, en général celui<br />

W .<br />

5 10 15 20 25 J<br />

Compartiment iodure<br />

X x Valeurs expérim entales<br />

■— Modèle<br />

5 10 15 20 25 J<br />

* X<br />

Compartiment T4 plasmatique<br />

Compartiments thyroid iens M odè le final<br />

FIG. 6. A n a ly s e c o m p a r t im e n t a le du m é t a b o lis m e d e l 'i o d e c h e z le rat n o rm a l.<br />

D iè t e : 6, 8 8 f i g /j . P o o l io d u re : 3 , 1 p g . P o o l th y r o ïd ie n fo r m é d e 2 c o m p a r tim e n ts d e p o o ls 3 , 5 et<br />

9 , 8 p g , P o o l d ’ io d e o r g a n iq u e fo r m é d e 2 c o m p a r tim e n ts d e p o o ls 1 ,4 5 e r 1 ,4 2 jig . Les ta u x d e transfert<br />

e n tre c o m p a r tim e n ts sont e x p r im é s e n j i g /j.


296 KELLERSHOHN et COMAR<br />

a u q u e l a p p a r t i e n t l e p la s m a , l a r a d i o a c t i v i t é q ¿ (t) ou l a r a d i o ­<br />

a c t i v i t é s p é c i f i q u e a^(t) du ièm e c o m p a r tim e n t s o n t d e s f o n c ­<br />

t i o n s du tem p s o b é i s s a n t à un s y s tè m e d e n é q u a t i o n s d i f f é r e n ­<br />

t i e l l e s l i n é a i r e s du p r e m ie r o r d r e d o n t l e s c o e f f i c i e n t s c o n s ­<br />

t a n t s s 'e x p r i m e n t en f o n c t i o n d e s p a r a m è t r e s du s y s t è m e . I l e s t<br />

p o s s i b l e d a n s c e r t a i n e s c o n d i t i o n s d e d é t e r m i n e r c e s p a r a m è t r e s<br />

en r é s o l v a n t l e s y s tè m e d e f a ç o n q ue l'une ou p l u s i e u r s d e s<br />

f o n c t i o n s q i ( t ) ou a ¿ ( t ) c o r r e s p o n d e n t à l e u r v a l e u r e x p é r im e n ­<br />

tale. C e c i e s t a u j o u r d 'h u i e f f e c t u é s u r o r d i n a t e u r au m oyen de<br />

p ro g ram m es c o n v e n a b l e s .<br />

La figure 6 représente les courbes expérimentales de radioactivité<br />

dans les compartiments thyroïdiens, piodure plasmatique<br />

et thyroxine plasmatique chez le rat normal recevant une diète<br />

quotidienne de 5 ^g d'iode, après injection plasmatique d'iode-<br />

125 sous forme d'iodure, ainsi que le schéma compartimentai qui<br />

s'adapte le mieux à ces courbes. De tels schémas compartimentaux<br />

sont très utiles pour mettre en valeur le caractère normal ou pathologique<br />

d'un métabolisme. Ils permettent notamment de classer<br />

différents états pathologiques suivant ceux des paramètres du<br />

système (pool et taux de transfert) qui présentent des valeurs<br />

anormales. Une telle méthode d'analyse est employée pour de nombreux<br />

éléments tels que l'iode, le calcium, le fer, etc... etc...<br />

Finalement les trois procédures qui viennent d'être passées<br />

en revue et qui représentent l'essence actuelle des applications<br />

biologiques et médicales de la méthode des indicateurs se ramènent<br />

à des mesures de radioactivité en valeur relative à la radioactivité<br />

injectée ‘Здц et à leurs variations en fonction du<br />

temps. Ces dernières bien entendu doivent être corrigées de<br />

la perte de radioactivité par le mécanisme de désintégration, de<br />

façon à ce que les variations observées correspondent aux seuls<br />

processus métaboliques. La seule donnée proprement nucléaire nécessaire<br />

est en toute rigueur la constante radioactive, ou la<br />

demi-vie de l'indicateur utilisé. Encore est-il que, eu égard au<br />

caractère aléatoire des processus métaboliques, une très grande<br />

précision n'est pas nécessaire sur cette donnée. Ajoutons d'ailleurs<br />

que dans la plupart des cas cette correction est effectuée<br />

automatiquement par comparaison des activités des échantillons à<br />

une partie aliquote de la dose injectée et qu'alors cette unique<br />

donnée nucléaire n'est même plus nécessaire. Font exception les<br />

cas d'emploi d'éléments à vie très courte comme l'oxygène-15 (T =<br />

2,5 min) et le baryum-137m (T = 2,5 min) pour lesquels la mesure<br />

alternée sur un échantillon et un standard est difficilement réalisable.<br />

Une connaissance détaillée du spectre de rayonnement du radioélément<br />

utilisé n'est pas nécessaire si les mesures sur les<br />

échantillons et le standard sont effectuées dans les mêmes conditions<br />

de géométrie et de détection. Les données d'un schéma de<br />

désintégration simplifié donnant les énergies maxima des spectres<br />

béta et leur pourcentage ainsi que la répartition des principales<br />

raies gamma ou X et leur pourcentage par 100 désintégrations sont<br />

suffisantes. Ces dernières données sur les rayonnements électromagnétiques<br />

sont particulièrement importantes pour la détëction<br />

externe et les techniques d'imagerie (scintigraphie, caméra) qui<br />

jouent un rôle majeur dans les applications cliniques.<br />

2.2. Dosimétrie<br />

Si l'on met à part certaines techniques d'avant-garde, qui<br />

appartiennent essentiellement à des perspectives d'avenir et que


IA E A -S M -1 70/97<br />

nous examinerons plus loin, nous voyons que les résultats que<br />

l'on peut obtenir dans le domaine du diagnostic médical au moyen<br />

des indicateurs nucléaires ne nécessitent que peu de données nucléaires<br />

précises. Il n'en va pas du tout de même de l'appréciation<br />

des doses de radiation délivrées à l'organisme au cours de<br />

leur utilisation, appréciation de première importance dans le cas<br />

des applications sur l'homme.<br />

Le formalisme actuellement employé en dosimétrie (10) repose<br />

sur l'emploi d'un "modèle isotropique uniforme" pour lequel la<br />

source de rayonnement et la cible sur laquelle elle agit sont<br />

plongées dans un matériau absorbant homogène de dimensions suffisamment<br />

grandes pour négliger les effets de bord et tel que<br />

la radioactivité est distribuée uniformément dans la source. La<br />

dose absorbée moyenne D (v


R a y o n n e m e n t<br />

Stable<br />

KELLERSHOHN et COMAR<br />

197.<br />

79<br />

% par<br />

désintégration<br />

Energie de<br />

tran sition<br />

(MeV)<br />

Hg 65 h<br />

Autres<br />

para mètres<br />

Capture électronique-1 2 0,15 Première interdite<br />

Capture é(ectronique-2 98 0,34 Prem ière interdite<br />

Gamma-1 99,8 0,0773 M, 4 10 % e 2<br />

Gam m a- 2 1,8 0,1915<br />

a K=o,o a L=3,27<br />

M,* 30% e 2<br />

a K = o,8o<br />

K / (L+ M ) = üfi<br />

Gam m a-3 0,14 0,2680 M,#a K =0,375 (T)<br />

¿ L=0,0643 (T)<br />

D'après - L.T. OILLMAN, MIRD Pamphlet N•- i , J. Nucl.Med I0t supplement- 2<br />

FIG. 7. S ch é m a d e d é s in té g ra tio n du m e r c u r e -1 9 7 .<br />

T A B L E A U la . N O M BR E P A R D ESIN T EG R A T IO N E T E N E R G IE D ES<br />

PH OTONS GAMMA E T E L E C T R O N S D E CONVERSIO N D E 197Hg<br />

Rayonnement { i )<br />

Nombre moyen<br />

par<br />

désintégration<br />

(ni)<br />

E nergie<br />

moyenne<br />

(ëi)<br />

Capture électronique -1 — — *<br />

Capture électronique-2 — — *<br />

fд-гасП<br />

V p C i- h J<br />

Ai<br />

Gamma - 1 0,186 0,0773 0,0306<br />

Electron con. int. L,gamma-1 0,609 0,0640 0,0830<br />

Electron con. int. M,gamma-1 0,203 0,0746 0,0323<br />

Gamma - 2 0,0090 0,1915 0,0037<br />

Electron con.int. K,gam m a-2 0,0072 0,1108 0,0017<br />

Electron con.int. L ,gamma-2 0,0014 0,1792 0,0005<br />

Electron con.int. M,gamma-2 0,0005 0,1888 0,0002<br />

Gamma - 3 0,0010 0,268 0,0006<br />

Electron con. int. K, gamma-3 0,0004 0,1873 0,0002


IA E A -S M -1 70/97 299<br />

T A B L E A U Ib. N O M BR E P A R D ESIN T EG R A T IO N E T E N E R G IE D ES<br />

PH O TO N S X D E 197Hg<br />

Rayonnement ( i )<br />

l9,Hg (RAYONS X)<br />

Nombre moyen<br />

par<br />

désintégration<br />

N<br />

Energie<br />

moyenne<br />

( Ë i)<br />

fg-rad A<br />

V y C i-h J<br />

Rayons X K 2 -1 0,363 0,0688 0,0532<br />

Rayons X K 2 -2 0,199 0,0670 0,0284<br />

Rayons X Kß-1 0.126 0,0780 0,0209<br />

Rayons X K fl - 2 0,0338 0,0807 _ 0,0058<br />

Rayons X L| CL .0,252 0,0097 0,0052<br />

Rayons X li 13 0,236 0,0115 0,0058<br />

Rayons X Li T 0,0317 0,0134 0,0009<br />

T A B L E A U le . N O M BRE P A R D ESIN T EG R A T IO N E T E N E R G IE D ES<br />

E L E C T R O N S A U G E R D E 197Hg<br />

Rayonnement (i)<br />

,97Hg (ELECTRONS Auger)<br />

Nombre moyen<br />

par<br />

désintégration<br />

("0<br />

Energie<br />

moyenne<br />

(Ëi).<br />

Ai<br />

/'g-rad \<br />

\|JCi-h )<br />

Ai<br />

Electron Auger KLL 0.0191 0,0540 0,0022<br />

Electron Auger КЦХ 0,0108 0,0646 0,0015<br />

Electron Auger KXY 0,0018 0,0752 0,0003<br />

Electron Auger L,MM 0,903 0,0079 0,0152<br />

Electron Auger MXY 2,72 0,0027 0,0156<br />

Quoi qu'il en soit la fraction absorbée et la fraction absorbée<br />

spécifique ne sont pas des données nucléaires. Ce sont<br />

essentiellement les valeurs de nj_ et Ei pour chaque composante<br />

qui représentent les données nucléaires nécessaires au calcul des<br />

doses de radiation. Leur détermination exige une connaissance extrêmement<br />

précise du schéma de désintégration du radioélément utilisé<br />

sous peine d'erreurs d ’appréciation sur les valeurs des doses<br />

absorbées qui peuvent être importantes.<br />

A titre d'exemple la figure 7 représente le schéma de désintégration<br />

du mercure-197, radioélément assez utilisé en médecine<br />

nucléaire notamment pour l'exploration du rein et le diagnostic


300 KELLERSHOHN et COMAR<br />

des tumeurs. Ce schéma est emprunté à une monographie de Dillman<br />

(19) sur l'usage des schémas de désintégration et des paramètres<br />

nucléaires pour l'estimation des doses de radiation. Cet auteur<br />

a établi un programme d'ordinateur permettant d'obtenir à partir<br />

des données d'entrée les différentes valeurs de n¿ et E¿ pour les<br />

radionuclides d'intérêt médical. Les données des schémas de désintégration<br />

telles que celles présentées sur la moitié inférieure<br />

de la figure 7 pour le mercure comprennent le nombre, le pourcentage<br />

par désintégration, l'énergie et la nature des différentes<br />

transitions (i- , p + et par capture électronique, le nombre, le<br />

pourcentage par désintégration, l'énergie, la nature multipolaire<br />

magnétique ou électrique, les coefficients de conversion K, L,<br />

M . .. des différentes transitions gamma.<br />

Les Tableaux la Ib et le représentent dans le cas du mercure-<br />

197 les données de sortie, c'est-à-dire les valeurs de n^ et Ej_<br />

respectivement, pour les photons У et les électrons de conversion,<br />

les photons X et les électrons Auger. On voit que 21 composantes<br />

sont à considérer, 9 pour les X et les électrons de conversion,<br />

7 pour les photons X et 5 pour les électrons Auger. La désintégration<br />

se faisant par capture électronique, il n'y a pas de particules<br />

K en jeu.<br />

Si nous considérons la seule dose délivrée au rein par les<br />

particules non pénétrantes, c'est-à-dire en l'occurrence les électrons<br />

de conversion et les électrons Auger, nous avons pour ces<br />

deux types de particules :<br />

I 45! Д 1 = j^soit respectivement 0,1179 et 0,0348<br />

puisque 1ф1 = 1.<br />

On voit que les électrons Auger représentent alors<br />

0 ï l 7 9 'fY 3'o \ ^ 4 8 so:i-t 23 % âe la âose âue aux radiations non pénétrantes,<br />

fraction dont la plus grosse partie est due aux électrons<br />

Auger LMM et MXY de très faible énergie par suite de leur nombre<br />

par désintégration élevé. Une appréciation précise de ces derniers<br />

exige une connaissance très détaillée des données nucléaires caractérisant<br />

le schéma de désintégration. Il faut dire qu'elle est<br />

surtout importante dans le cas des radionuclides décroissant par<br />

T A B L E A U II. C A R A C T E R IS T IQ U E S D ES G R O U PES D 'E L E C T R O N S<br />

PR O D U IT S AU CO U RS D E LA D ESIN T EG R A T IO N D E 125I<br />

(D 'a p r è s F e i g e e t a l. [20])<br />

R a yonnem e n t E n e rg ie Ab o n da n ce Porco u rs T E L = E /R TEL.In<br />

(K«V) A ( •/• ) R(pm) K . V / r m K*V/Pm<br />

C o n v e r s io n in t e r n e M 1<br />

C o n v e r s io n i n t e r n e L + A u g e r j<br />

E l e c t r o n A u g e r K .L X î<br />

E le c t r o n A u g e r K .L L J<br />

C o n v e r& io n in te rn e K 1<br />

E le c tr o n A u g e r LM .M j<br />

3 2 / 1 9 ,6 2 0 ,9 1,55 0,93<br />

23.6 19,5 12,1 1 .9 6 1,12<br />

3 .2 22 0 0 . « 7 ,2 « , в<br />

o,e 360 0 ,0 5 6 K . 2 11.«


IA E A -S M -1 70/9 7 301<br />

capture électronique. Pour les émetteurs p - ou P+ , le nombre de<br />

particules |b par désintégration est en général plus élevé que celui<br />

des électrons Auger et surtout leur énergie est incomparablement<br />

plus grande. Aussi la fraction de la dose due aux électrons<br />

Auger est-elle beaucoup plus faible pour ces nuclides.<br />

Un autre exemple de l ’importance de l'appréciation précise<br />

des électrons Auger de faible énergie est fourni par l'iode-125,<br />

radionuclide décroissant par capture électronique, très utilisé<br />

en biologie et en médecine.<br />

Le Tableau II dû à Feige et al. (20) donne les caractéristiques<br />

des groupes d'électrons produits au cours de la décroissance<br />

de 125j . énergie, abondance, parcours et transfert linéaire d'énergie.<br />

Les électrons Auger LMM et MXY de très faible énergie ont<br />

une très grande abondance et présentent un transfert d'énergie<br />

linéique élevé pour un parcours très faible. On conçoit que ceci<br />

peut entraîner un dépôt d'énergie sur des structures subcellulaires<br />

comme l'interface colloïde-cellule de la vésicule thyroïdienne<br />

très supérieur à celui que la dose moyenne de radiation délivrée<br />

au tissu thyroïdien laisserait prévoir. D'autre part, il est<br />

possible que les ions à charges multiples consécutifs aux cascades<br />

d'électrons Auger aient quelque importance biologique (21).<br />

L'ensemble des considérations développées dans ce paragraphe<br />

montre que si des données nucléaires précises ne sont pas nécessaires<br />

pour étudier une fonction physiologique ou un métabolisme,<br />

une connaissance détaillée des caractéristiques nucléaires est<br />

indispensable pour apprécier les doses de radiation délivrées par<br />

les radionuclides utilisés chez l'homme à cette fin.<br />

3. DONNEES NUCLEAIRES DANS LE CADRE’DE LA MESURE DE LA COMPOSI­<br />

TION ELEMENTAIRE DES MATERIAUX BIOLOGIQUES<br />

L'analyse des milieux biologiques a considérablement profité<br />

des propriétés particulières des radioéléments, en particulier<br />

grâce au concept de dilution isotopique. Celui-ci, d ' ailleurs connu<br />

avant la découverte des radioéléments, n'a pu trouver sa généralisation<br />

qu'à partir du moment oû n'importe quelle espèce chimique<br />

a pu être reconnue et mesurée après marquage par un indicateur<br />

nucléaire. Qu'il s'agisse de la dilution isotopique simple, double,<br />

de l'analyse par substoiechiométrie, par compétition, ou ra-<br />

dioimmunologique, le concept utilisé obéit à la formule générale<br />

M = masse de la molécule ou de l'élément à mesurer,<br />

A = radioactivité totale de la molécule ou de l'élément dans l'échantillon,<br />

a g = radioactivité spécifique de l'espèce chimique dans l'échantillon<br />

après dilution homogène de l'indicateur.<br />

La radioactivité spécifique, lorsqu'elle est définie comme<br />

étant le rapport du nombre de noyaux radioactifs au nombre total<br />

de noyaux présents suppose pour être mesurée la connaissance du<br />

schéma de désintégration de l'indicateur nucléaire. En fait, le<br />

chimiste n'a pas besoin de cette donnée car toutes les mesures<br />

qu'il pratique sont comparatives. A la rigueur il peut lui être<br />

utile de connaître le mode de désintégration (bé’ta et gamma) du<br />

radioélément concerné surtout si travaillant à la limite de sensibilité<br />

de son détecteur il cherche à obtenir le meilleur rapport<br />

signal/bruit de fond.


302 KELLERSHOHN et COMAR<br />

Il en est de même pour les méthodes de radioactivation appliquées<br />

à l'analyse des milieux biologiques "in vitro". Dans son<br />

principe cette méthode permet, à partir de la mesure de la radioactivité<br />

induite à la suite d'une réaction nucléaire, de déterminer<br />

la masse de l'élément présent dans l'échantillon soumis à<br />

l'irradiation. La loi gouvernant la production de cette radioactivité<br />

s'exprime par la relation suivante :<br />

A.des/s<br />

M = ----------------------------------------------r r ? -------------------- Z ï —<br />

ф . 6" • f (1-e 1) (e b2)<br />

dans laquelle<br />

M = masse à mesurer<br />

A = masse atomique de l'élément<br />

des/s = taux de désintégration du radioélément produit au moment<br />

de la mesure<br />

ф = flux de particules induisant la radioactivation<br />

6“ = section efficace de la réaction nucléaire<br />

f'= abondance isotopique de l'élément stable ayant subi la réaction<br />

mcléaire<br />

A = constante radioactive du radioélément produit<br />

t^ et t 2 = durée de l'irradiation et temps séparant la fin de<br />

celle-ci de la mesure de la radioactivité.<br />

Dans la plupart des cas cette formule approchée n'est pas<br />

utilisée pour convertir le taux de désintégration en masse de<br />

l'élément dans l'échantillon car les données nucléaires qu'elle<br />

contient, et en particulier la section efficace, ne sont pas connues<br />

avec suffisamment de précision.<br />

Le chimiste préfère éliminer tous ces paramètres en irradiant<br />

simultanément l'échantillon et un étalon contenant une<br />

quantité connue de l'élément à doser.<br />

La connaissance précise des données nucléaires de section<br />

efficace, de période et de schéma de désintégration permettrait<br />

de s'affranchir de cet étalon et présenterait un gros avantage en<br />

particulier au cours des analyses multiélémentaires lorsque l'on<br />

ne connaît pas au préalable la composition de l'échantillon. Ces<br />

remarques valables pour 1'activation par les neutrons thermiques<br />

s'appliquent bien évidemment aux irradiations par les neutrons<br />

épithermiques pour lesquels les sections efficaces de résonance<br />

permettent des activations sélectives ainsi qu'aux neutrons rapides<br />

.<br />

Un deuxième aspect de l'analyse par radioactivation neutronique<br />

qui s'apparente plus au domaine de la recherche qu'à celui<br />

de la routine concerne les analyses "in vivo". Celles-ci pratiquées<br />

depuis 5 ou 6 ans par quelques laboratoires spécialisés<br />

(22) utilisent l'irradiation par des neutrons de réacteurs lents<br />

ou épithermiques ou produits à partir d'accélérateurs. Le Tableau<br />

III indique les principaux éléments constituant les organismes<br />

vivants susceptibles d'être dosés par activation "in vivo", leur<br />

abondance respective, les éléments résultant des réactions, les<br />

réactions nucléaires qui leur ont donné naissance et les caractéristiques<br />

nucléaires utilisées pour leur mesure. Il apparaît que<br />

celles-ci peuvent être soit le résultat de la connaissance du<br />

schéma de désintégration du radioélément produit (gammas de désintégration)<br />

, soit le résultat de la connaissance de la réaction<br />

nucléaire (gammas de capture).


lA E A -S M -1 7 0 /9 7 303<br />

T A B L E A U III. C A R A C T E R IS T IQ U E S D 'IN T E R E T PO U R LA<br />

RA D IO A CTIV A TIO N "IN VIVO" D ES E L E M E N T S S U S C E P T IB L E S D 'E T R E<br />

D O SES P A R C E T T E M ETH O D E<br />

Elément % Radioélément Réaction Raie t<br />

stable du poids du corps produit neutronique â mesurer<br />

H 10 2H n, У capture<br />

N 3 13N n, 2n désintégration<br />

Ca 1,5 49Ca n, У<br />

.désintégration<br />

capture<br />

P 1<br />

( 28A1<br />

( 32P<br />

n, *<br />

n, x<br />

désintégration<br />

capture<br />

Na 0,15 24Na n, désintégration<br />

Cl 0,15<br />

( 38C1<br />

I T7<br />

( s<br />

n, гг<br />

n,p<br />

(désintégration<br />

(<br />

(capture<br />

Mg 0,05<br />

(26Mg<br />

Г 4 Na<br />

n, *<br />

n,p<br />

désintégration<br />

désintégration<br />

I 0,03 thyroïde<br />

I28r n,lT désintégration<br />

FIG . 8 . S p e c tre s d es g a m m a s d e ca p tu r e d 'u n t ib ia h u m a in ir ra d ié p ar d es neutron s th e rm iq u e s , m on tra n t<br />

d es ra ies c a r a c té r is tiq u e s du p h o sp h o re , d u s o d iu m , du c h lo r e e t du c a lc iu m .


304 KELLERSHOHN et COMAR<br />

Il apparaît dans ce Tableau deux éléments, l'hydrogène et l<br />

phosphore, qui après activation par les neutrons thermiques, conduisent<br />

à des éléments soit stable (2H) soit radioactif (32P)<br />

n'émettant aucun gamma de désintégration, seuls les gammas de<br />

capture permettront de les mesurer.<br />

Le spectre présenté sur la figure 8, obtenu au cours de<br />

l'irradiation "in vivo" par des neutrons thermiques^du tibia<br />

d'un sujet normal, montre les différents K de capture caractéristiques<br />

du phosphore,du sodium, du chlore et du calcium. L'identification<br />

de ces raies, si elle peut être faite par comparaison<br />

avec des étalons de composition connue, suppose cependant une<br />

connaissance préalable des données nucléaires de la réaction de<br />

capture. Les raies non identifiées sur le spectre correspondent<br />

aux pics d'échappement par production de paires de la raie de<br />

capture à 2,2 MeV de l'hydrogène.<br />

En raison de leur faible pouvoir de pénétration dans les<br />

tissus biologiques, les neutrons thermiques ne peuvent assurer<br />

l'irradiation homogène de la totalité d'un organisme humain.<br />

C'est la raison pour laquelle l'application de ce type d'activation<br />

est réduite aux irradiations localisées, desquelles on peut<br />

déduire cependant des paramètres biologiques intéressants tels<br />

les rapports en masse des éléments activés (23) . Il est un exemple<br />

cependant oû la masse totale d'un élément contenu dans un organe<br />

a pu être dosé par irradiation par les neutrons thermiques.<br />

Il s'agit de l'iode intrathyroïdien pour la mesure duquel la méthode<br />

de l'étalon interne a été employée (24). Une quantité connue<br />

d'iode-129 (T = 1,7.10^ ans) ayant été fixée dans la thyroïde<br />

et étant supposée avoir la même répartition anatomique que l'iode<br />

stable natif a été utilisée comme moniteur de flux. Des calculs<br />

F IG . 9. S p e c tre g a m m a e f f e c t u é a v e c un d é te c te u r G e (L i) o b te n u 6 , 5 m in u tes après u n e ir ra d ia tio n d e<br />

3 m in u te s aux n eu tron s th e rm iq u e s d e 129I (o r ig in e du c o m p t a g e : 6 , 5 m in ) . Les ra ies i 0. 587 e t 1 ,1 2 M e V<br />

sont ca r a c té r is tiq u e s d e l'é t a t is o m é r iq u e 130m i.


IA E A -S M -17 0 /9 7 305<br />

FIG. 10. S c h é m a d e d é s in té g ra tio n p ro p o s é p ou r l 'io d e - 1 3 0 m .<br />

préliminaires utilisant les caractéristiques de la réaction 129i<br />

(n, y) 130j et le flux de neutrons disponible avaient permis de<br />

déterminer la quantité d'iode-129 nécessaire à administrer pour<br />

obtenir une radioactivité de l'iode-130 mesurable dans les conditions<br />

expérimentales imposées. L'activation "in vivo" ayant été<br />

pratiquée, le spectre X enregistré quelques minutes après la fin<br />

de l'irradiation a montré une raie ¡f d'amplitude et de période<br />

très différentes de ce qui était attendu. Les analyses détaillées<br />

de ce spectre et d'autres tels que celui présenté sur la figure 9<br />

ont permis de mettre en évidence un nouveau radioélément, l’Omj<br />

de période 9,2 min isomère de 130j non encore décrit dans la littérature<br />

(25, 26). Le schéma de désintégration de ce nouveau radioélément<br />

(figure 10) montre que 85 % des désintégrations conduisent<br />

par transition isomérique au niveau fondamental de l'iode-<br />

130, et que 13,5 % se font par émission ß“ aboutissant à un niveau<br />

excité du 130Xe à 536 keV. C'est en fait cette raie qui a<br />

été mise en évidence sur les spectres enregistrés "in vivo".<br />

Un deuxième aspect de l'analyse par radioactivation "in vivo"<br />

concerne l'irradiation totale d'un individu en vue d'y doser<br />

la masse de calcium, de sodium, de phosphore, d'azote et de chlore<br />

qu'il contient. L'homogénéité de l'irradiation est obtenue en<br />

utilisant un flux de neutrons rapides émis par une cible de


306 KELLERSHOHN et COMAR<br />

FIG. 11, S p e c tr e g a m m a d 'u n rat après r a d io a c t iv a t io n in v iv o au m o y e n d e neutron s d e 14 M e V<br />

p a r t ie lle m e n t ra le n tis. U p e r m e t d e d é te r m in e r le c o n te n u d e l'a n im a l e n a z o t e (r a ie d ’ a n n ih ila tio n à<br />

0, 5 11 k e V d e 13N ), p h osp h ore (r a ie g a m m a à 1, 78 M e V d e 28A 1), c h lo r e (r a ie g a m m a à 2 ,1 6 M e V d e<br />

38C l ) , so d iu m (r a ie s g a m m a à 1, 3 6 et 2, 78 M e V d e 24N a) e t c a lc iu m (r a ie s g a m m a a 3 ,1 0 M e V ). Pour<br />

ch a c u n e d e s ra ies son t in d iq u é e s le s ré a c tio n s d 'in t e r fé r e n c e . Par e x e m p le le æC l p ré se n te à 1, 60 M e V<br />

u n e ra ie in d is c e r n a b le p ar s p e c tr o m é tr ie d e s c in t illa t io n d e la r a ie á 1, 78 M e V d e A l.<br />

béryllium ou de tritium bombardée par des deutons. Selon l'énergie<br />

des neutrons incidents, il est nécessaire de les ralentir<br />

partiellement par des matériaux hydrogénés avant lfeur pénétration<br />

dans le milieu biologique. Les radioéléments produits au cours<br />

d'une telle irradiation sont plus abondants que ceux obtenus dans<br />

le cas de l'irradiation par des neutrons thermiques, du fait du<br />

spectre neutronique complexe comme en témoigne le spectre K présenté<br />

sur la figure 11. Ce spectre a été obtenu après irradiation<br />

"in vivo" d'un rat par des neutrons de 14 MeV partiellement ralentis.<br />

Sous la réaction nucléaire principale conduisant au radioélément<br />

responsable des pics d'absorption totale présentés,<br />

ont été indiquées les différentes réactions d'interférence dont<br />

la connaissance a été nécessaire pour corriger le spectre (27).<br />

Les résultats obtenus à l'heure actuelle par la méthode<br />

d'activation "in vivo" sont suffisamment intéressants du point de<br />

vue médical pour que l'appréciation de la dose absorbée au cours<br />

d'un tel examen soit appréciée avec une grande précision. Nombreux<br />

d'ailleurs sont les auteurs qui l'ont calculée théoriquement<br />

et dans certains cas mesurée expérimentalement aussi bien<br />

lors de l'irradiation par des neutrons rapides (22) que par des<br />

neutrons thermiques (28) . Ces calculs généralement extrêmement<br />

complexes pour la résolution desquels les calculateurs sont nécessaires<br />

supposent la connaissance des sections efficaces de<br />

diffusion des neutrons dans la matrice biologique.<br />

Dans le cas du bombardement par les neutrons thermiques les<br />

deux sources principales responsables de la dose absorbée sont<br />

d'une part les Y de capture provenant de la réaction n, if sur<br />

l'hydrogène et les protons de recul issus de la réaction n, p


c o m p o s itio n du co r p s h u m a in . F lu x d e m u on s: 5 * 1 0 3/s * 10 c m 2 . D u ré e d 'e n r e g is tr e m e n t: 1 h.<br />

D iffé r e n te s tra n sition s m u o n iq u e s d e О , C e t N sont b ie n v is ib le s . D es ra ies m u o n iq u e s a p p a rten a n t au<br />

p h osp h ore et au c a lc iu m sont p r o b a b le m e n t présen tes.


308 KELLERSHOHN et COMAR<br />

sur l'azote-14 (29). Il a été montré que pour un tissu biologique<br />

de composition moyenne en azote, oxygène, carbone et hydrogène,<br />

la contribution des У de capture à la dose totale est de 20 %.<br />

Dans le cas des irradiations par neutrons rapides le processus<br />

principal de transfert d'énergie des neutrons au tissu biologique<br />

se fait par les protons de recul dont l'énergie est fonction de<br />

celle des neutrons incidents.<br />

Une méthode d'analyse élémentaire "in vivo" potentiellement<br />

très intéressante a été proposée récemment par L. Rosen et ses<br />

collaborateurs du Laboratoire Scientifique de Los Alamos (30,<br />

31, 32), ainsi que par Daniel au C.E.R.N. (33). Il s'agit de<br />

l'observation des rayons X muoniques produits au cours de l'irradiation<br />

d'un organisme par un faisceau de muons négatifs. Ces<br />

particules ayant une masse 207 fois plus grande que celle de<br />

l'électron, forment, quand elles sont stoppées dans la matière,<br />

des atomes muoniques d'une durée de vie de moins d'une nanoseconde<br />

et qui disparaissent en produisant des rayons X muoniques<br />

d'énergies discrètes 200 fois plus élevées que celles de leurs<br />

homologues ordinaires. Par exemple pour le carbone la raie XK<br />

muonique est à 75 keV. On conçoit qu'à ces énergies les rayons<br />

X muoniques de tous les éléments puissent faire aisément l'objet<br />

d'une détection externe dans un organisme. D'autre part le rendement<br />

de production est très élevé, c'est-à-dire que 90 % des<br />

muons stoppés dans les tissus doivent donner un photon XK .<br />

La figure 12 montre le spectre de rayons X muoniques que<br />

nous avons obtenu au cours d'une expérience préliminaire à l'Accélérateur<br />

Linéaire de Saclay sur un fantôme cubique de 10 cm de<br />

côté ayant la composition du corps humain pour les principaux<br />

éléments. L'intensité du faisceau de muons était de 5.10^ p ”/s<br />

sur une surface de 10 cm^ normale au faisceau. Il était produit<br />

par un faisceau d'électrons de 300 MeV de 27 mA de courant de<br />

crête à une fréquence d'impulsion de 2 OOO hertz et un cycle utile<br />

de 1 %. Tous les muons sont stoppés dans le fantôme. La détection<br />

était effectuée au moyen d'un détecteur Ge(Li) de 30 cm3 de<br />

volume utile et la durée d'enregistrement de une heure. Les raies<br />

du carbone de l'oxygène de l'azote et ce qui est plus intéressant<br />

une raie du phosphore et peut-être du calcium sont visibles. Si<br />

on dispose un jour de flux de p- 100 à 1000 fois plus élevé, la<br />

méthode peut devenir applicable pour l'analyse élémentaire "in<br />

vivo", mais nécessitera des données nucléaires plus précises sur<br />

la production des muons négatifs et de leur interaction avec la<br />

matière.<br />

Terminons en disant que nous avons éliminé systématiquement<br />

de cet exposé certains phénomènes nucléaires tels que la R M N ,<br />

l'effet Mössbauer(34,35)et la corrélation angulaire (36) qui peuvent<br />

présenter de l'intérêt dans certains domaines biologiques et<br />

médicaux étroits.<br />

R E F E R E N C E S<br />

(1) GLASS, H.I., New applications of radiopharmaceuticals labelled<br />

with cyclotron-produced radionuclides. Symp. on medical<br />

radioisotope scintigraphy, <strong>IAEA</strong> Monte-Carlo Oct.1972, sous<br />

presse.<br />

(2) ENGELMANN, Ch., Contribution à l'étude de la détermination de<br />

Be, B, L, N, O et F par activation au moyen de p, d, 3He et<br />

. I. Courbes d'activation et sensibilité de détection, J. of<br />

Radioanal. Chem. 7 (1971) 89.


IA E A -S M -17 0 /9 7 309<br />

(3) BÈRGNER, P.E.E., Tracer dynamics and the determination of<br />

pool-sizes and turnover factors in metabolic systems, J.<br />

Theoret. Biol. j5 ( 1964) 137 .<br />

( 4) ORR, J.S., GILLESPIE, F.C., Occupancy principle for radioactive<br />

tracers in steady-state biological systems, Science 162<br />

(196:8) 138.<br />

( 5) RIVIERE, R., COMAR, D., KELLERSHOHN, C., ORR, J.S., GILLES­<br />

PIE, F.C., LENIHAN, J.M.A., Estimation of thyroid iodine content<br />

by the occupancy principle, Lancet (1969, 22 Feb.) 389.<br />

( 6) GILLESPIE, F.C., SHIMMINS, J., LENIHAN, J.M.A., Total body<br />

bromine : estimation by occupancy principle and neutron activation<br />

analysis, Radiochem. Radioanal. Letters A_ (1970) 43.<br />

( 7) COMAR, C., L O C H , C., RIVIERE, R., KELLERSHOHN, C., Utilisation<br />

de l'analyse par radioactivation et du comptage sur<br />

corps entier pour l'étude du métabolisme du rubidium chez<br />

l'homme normal, p. 245, Radioaktive Isotope in Klinik und<br />

Forschung (FELLINGER, K., H<strong>OF</strong>ER, R., Eds), Urban & Schwarzenberg,<br />

Münich-Berlin-Vienne (1970).<br />

( 8) SHIMMINS, J., SMITH, D.A., AITKEN, M., LINSLEY, G.P., ORR,<br />

J.S., GILLESPIE, F.C., The measurement of calcium absorption<br />

using an oral and intravenous tracer, Calc. Tiss. Res. £<br />

(1971) 301.<br />

( 9) MAZIERE, B., MAZIERE, M., COMAR, D., Quelques aspects du métabolisme<br />

du sélénium chez le rat, <strong>Nuclear</strong> Activation Techniques<br />

in the Life Sciences <strong>IAEA</strong>, Vienna (1972) 359.<br />

(10) LOEVINGER, R., BERMAN, M., A schema for absorbed-dose calculations<br />

for biologically-distributed radionuclides, MIRD<br />

Pamphlet n° 1, J. Nucl. Med. 9^ Suppl.1 (1968) 9.<br />

(11) ELLETT, W.H., CALLAHAN, A.B., BROWNELL, G.L., Gamma-ray dosimetry<br />

of internal emitters Monte Carlo calculations of absorbed<br />

dose from point sources, Brit. J. Radiol. 31_ (1964)45.<br />

(12) LOEVINGER, R., BERMAN, M., A formalism for calculation of<br />

absorbed dose from radionuclides, Phys. Med. Biol. 1^3 (1968)<br />

205.<br />

(13) ELLETT, W.H., CALLAHAN, A.B., BROWNELL, G.L., Gamma-ray dosimetry<br />

of internal emitters : Monte Carlo calculations of<br />

absorbed dose from uniform sources, Brit. J. Radiol. ^8<br />

(1965) 541.<br />

(14) REDDY, A.R., ELLETT, W.H., BROWNELL, G.L., Gamma-ray dosimetry<br />

of internal emitters : Absorbed fractions for low energy<br />

gamma rays, Brit. J. Radiol. 4£ (1967) 512.<br />

(15) ELLETT, W.H., BROWNELL, G.L., REDDY, A.R., An assessment of<br />

Monte Carlo calculations to determine gamma ray dose from<br />

internal emitters, Phys. Med. Biol. (1968) 219.<br />

(16) ELLETT, W.H., HUMES, R.M., Abosrbed fractions for small volumes<br />

containing photon emitting radioactivity, MIRD Pamphlet<br />

n° 8, J. Nucl. Med. 2J2 Suppl.5 (1971) 25.<br />

(17) SNYDER, W.S., FORD, M.R., WARNER, G.G., FISHER, H.L., Estimates<br />

of absorbed fractions for monoenergetic photon sources<br />

uniformly distributed in various organs of a heterogeneous<br />

phantom, MIRD Pamphlet n° 5, J. Nucl. Med. П) Suppl.3 (1969)5.<br />

(18) BERGER, M.J., Energy deposition in water by photons from<br />

point isotropic sources, MIRD Pamphlet n° 2, J. Nucl. Med. £<br />

Suppl.1 (1968) 15.<br />

(19) DILLMAN, L.T., Radionuclides decay schemes and nuclear parameters<br />

for use in radiation-dose estimation, Part 1 Pamphlet<br />

n° 4, J. Nucl. Med. 1_0 Suppl.2 (1969) 5 et Part 2 Pamphlet<br />

n° 6, J. Nucl. Med. 1_1 Suppl.4 (197Q) 5.


310 KELLERSHOHN et COMAR<br />

(20) FEIGE, Y., GAVRON, A., LUBIN, E., LEWITUS, Z., BEN-PORATH,<br />

M., GROSS, J., LOEWINGER, E., Local energy deposition in<br />

thyroid cells due to the incorporation of 125i 7 Biophysical<br />

Aspects of Radiation Quality <strong>IAEA</strong>, Vienna (1971) 383.<br />

(21) FEINENDEGEN, L.E., ERTL, H.H., BOND, V.P., Biological toxici<br />

ty associated with the Auger effect, Biophysical Aspects of<br />

Radiation Quality <strong>IAEA</strong>, Vienna (1971) 419.<br />

(22) Panel on "in vivo" activation analysis, I.A.E.A. Vienna<br />

(april 1972) sous presse.<br />

(23) COMAR, D., RIVIERE, R., RAYNAUD, C., KELLERSHOHN, C., Recherches<br />

préliminaires sur la composition et le métabolisme<br />

de l'os étudiés par radioactivation neutronique "in vivo"<br />

chez l'homme, p. 186, Radioaktive Isotope in Klinik und<br />

Forschung (FELLINGER, K., H<strong>OF</strong>ER, R., Eds), Urban & Schwarzenberg,<br />

Münich-Berlin-Vienne (1968) vol.8.<br />

(24) LENIHAN, J.M.A., COMAR, D., RIVIERE, R., KELLERSHOHN, C.,<br />

Estimation of thyroid iodine "in vivo” by activation analysis,<br />

Nature 214 (1967) 1221.<br />

(25) KELLERSHOHN, C., COMAR, D., RIVIERE, R., L'Isomère 130ml.<br />

Mise en évidence et étude du rayonnement émis, C.R. Acad.<br />

Sc. Paris t.264 (26.6.1967) 1836.<br />

(26) KELLERSHOHN, C., COMAR, D., RIVIERE, R., L'isomère 130mI.<br />

Recherche d'un schéma de désintégration, C.R. Acad. Sc; Paris<br />

t.265 (3.7. 1967) 88.<br />

(27) CHASTELAND, M . , COMAR, D., Dosage par radioactivation neutro<br />

nique "in vivo" de quelques éléments contenus dans l'organis<br />

me du rat, Int.J. Appl. Radiat.Isotopes 23^ (1972) 209.<br />

(28) FAIRCHILD, R.G., GOODMAN, L., Development and dosimetry of<br />

an epithermal neutron beam for possible use in neutron capture<br />

therapy, J. Phys. Med. Biol. ¿1 (1966) 15.<br />

(29) SKLAVENITIS, H., DEVILLERS, C., COMAR, D., KELLERSHOHN, C.,<br />

Etude dosimétrique d'un faisceau collimé de neutrons thermiques<br />

destiné à l'analyse par radioactivation "in vivo", Int.<br />

J. Applied Radiat. Isotopes 20_ (1969) 585.<br />

(30) ROSEN, L., "Status of Los Alamos meson physics facility",<br />

Proc. of the IVth Int. Conf. on High Energy Physics and <strong>Nuclear</strong><br />

Structure, Dubna (1972) 589.<br />

(31) LUNDY, A.S., Possible diagnostic uses of muons, Proc. of the<br />

Biomedical sessions of the IVth LAMPF Users Meeting (compiled<br />

by GROCE, D.E., HARPER, K.H.) Los Alamos Scientif. Lab.<br />

of the Univ. of California, Los Alamos, New-Mexico (1970) 41<br />

(32) LUNDY, A.S., HUTTON, R.L., Can negative muons provide unique<br />

or better diagnostic information ?, Summary of a talk given<br />

at the 13th Annual Meeting of the Am. Ass. of Physicists in<br />

Medicine, Houston, Texas, (July 7-9 1971). Private communication<br />

.<br />

(33) DANIEL, H . , The muon as a tool for scanning the interior of<br />

the human body, <strong>Nuclear</strong> Medizin В (1969) 311.<br />

(34) MOSHKOVSKII, Y.S., Applications of the Mössbauer effect in<br />

biology, Chap. 10, p.524 Chemical Applications of Mössbauer<br />

spectroscopy (GOLDANSKII, V.l., HERBER, R.H., Eds) Academic<br />

Press, New-York-London (.19 68) .<br />

(35) MALING, J.E., WEISSBLUTH, M., The application of Mössbauer<br />

spectroscopy to the study of iron in heme protein, Chap. 10<br />

p. 327 Solid State Biophysics (WYARD, F.J.,Ed.) Me Graw Hill<br />

Book Comp., New-York (1969).<br />

(36) GOODWIN, D.A., MEARES, C.F., SONG, C.H., The study of l:L1In-<br />

labeled compounds in mice, using perturbed angular correlations<br />

of gamma radiations, Radiology, 105 (1972) 699.


IA E A -S M -1 7 0/9 7 311<br />

D I S C U S S I O N<br />

G . A . K O L S T A D : T h i s i s a q u e s t i o n t h a t b e a r s o n t h e s t a t u s o f b i o m e d i c a l<br />

t h e o r y . A s y o u k n o w , w e h a v e t h u s f a r d i s c o v e r e d o n l y a b o u t 1 6 0 0 o f t h e<br />

6 0 0 0 r a d i o i s o t o p e s p r e d i c t e d t o e x i s t b e t w e e n t h e p r o t o n a n d n e u t r o n d r i p -<br />

l i n e s t h a t b o u n d t h e v a l l e y o f s t a b i l i t y . C a n y o u s p e c i f y , o n t h e b a s i s o f<br />

t h e o r e t i c a l l y o p t i m u m m o d e l s ( e . g . f o r t h e l i v e r , k i d n e y , b o n e , b r a i n ,<br />

t h y r o i d , e t c . ) t h e c h a r a c t e r o f t h e r a d i a t i o n y o u n e e d f o r t h e d i f f e r e n t<br />

b i o m e d i c a l a p p l i c a t i o n s a n d t h u s s e n d o f f t h e n u c l e a r p h y s i c i s t s t o s e e k t h e<br />

p a r t i c u l a r i s o t o p e s y o u n e e d f o r t h e s e v a r i o u s a p p l i c a t i o n s ?<br />

C . K E L L E R S H O H N : S p e c i a l i s t s i n n u c l e a r m e d i c i n e a r e f u l l y a w a r e<br />

o f t h e p r o b l e m w h i c h y o u r a i s e . T h u s f a r , t h e i r c r i t e r i a f o r d e c i d i n g w h a t<br />

c o n s t i t u t e s t h e f a v o u r a b l e c h a r a c t e r i s t i c s o f a r a d i o e l e m e n t h a v e b e e n b a s e d<br />

o n t h e p o s s i b i l i t y o f r e d u c i n g t h e r a d i a t i o n d o s e t o t h e o r g a n i s m s o r o f<br />

i n c r e a s i n g t h e a c t i v i t i e s i n j e c t e d , f o r e q u i v a l e n t d o s e s , i n o r d e r t o i m p r o v e<br />

t h e a c c u r a c y o f m e a s u r e m e n t s , o r e l s e o n t h e e m i s s i o n o f g a m m a p h o t o n s<br />

o f e n e r g y e s p e c i a l l y f a v o u r a b l e f o r e x t e r n a l d e t e c t i o n , d u e a l l o w a n c e b e i n g<br />

m a d e f o r t i s s u e a b s o r p t i o n a n d f o r t h e p r o p e r t i e s o f t h e d e t e c t o r s u s e d .<br />

T h i s i s t h e r e a s o n w h y a n e l e m e n t l i k e 9 9 m T c , w h i c h w a s d e v e l o p e d b y<br />

P a u l H a r p e r , a n d w h i c h e m i t s a n i n t e n s e g a m m a l i n e a t 1 4 0 k e V a n d v e r y<br />

l i t t l e e n e r g y i n t h e f o r m o f c h a r g e d p a r t i c l e s , i s s o w i d e l y u s e d i n n u c l e a r<br />

m e d i c i n e e v e n t h o u g h i t i s n o t a n a t u r a l c o n s t i t u e n t o f t h e b o d y . D i s r e g a r d i n g<br />

t h e m a t t e r o f m e t a b o l i c s p e c i f i c i t y , i t d o e s n o t a p p e a r t h a t t h e n a t u r e o f t h e<br />

o r g a n u n d e r s t u d y h a s p l a y e d a n i m p o r t a n t r o l e i n t h e i r c o n c e r n s . F o r<br />

e x a m p l e , i t s e e m e d t o u s , i n t h e c a s e o f t h e t h y r o i d g l a n d , w h i c h i s a n<br />

o r g a n o f s m a l l v o l u m e c l o s e t o t h e c u t a n e o u s p l a n e s , t h a t i t m i g h t b e a d v a n ­<br />

t a g e o u s t o u s e a n e l e c t r o m a g n e t i c r a d i a t i o n o f l o w e n e r g y f o r o b t a i n i n g<br />

i m a g e s , s i n c e u s e c a n t h e n b e m a d e o f c o l l i m a t o r s w i t h v e r y f i n e s e p t a ,<br />

w h i c h e n a b l e o n e t o g e t e x c e l l e n t r e s o l u t i o n . I n t h i s w a y , w e g e t p i c t u r e s<br />

o f t h e t h y r o i d i n o u r l a b o r a t o r y w i t h X k p h o t o n s o f 1 2 5 T e e m i t t e d b y 1 2 5 I b y<br />

m e a n s o f a s p a r k c h a m b e r p e r m i t t i n g a r e s o l u t i o n o f 1 m m .<br />

W h a t e v e r t h e c a s e m a y b e , I a g r e e w i t h y o u i n f e e l i n g t h a t i n t h e c a s e<br />

o f r a d i o i s o t o p e s w h i c h a r e s t i l l u n k n o w n , w e h a v e t o s e l e c t s e v e r a l o f t h o s e<br />

w h i c h a r e l i k e l y t o p r e s e n t m o r e f a v o u r a b l e c h a r a c t e r i s t i c s w i t h r e s p e c t<br />

t o t h e s e p r o b l e m s t h a n t h e n u c l i d e s k n o w n a t p r e s e n t .<br />

R . N I C K S : I n t h e p a p e r y o u u s e t h e M o n t e - C a r l o m e t h o d a n d t h e m e t h o d<br />

o f m o m e n t s c a l c u l a t i o n s t o d e a l w i t h t h e p r o b l e m o f t r a n s p o r t o f r a d i a t i o n<br />

( p h o t o n s , e l e c t r o n s ) i n t h e o r g a n u n d e r s t u d y . T h e l a t t e r t e c h n i q u e , h o w e v e r ,<br />

i s a p p l i e d o n l y i n a n i n f i n i t e h o m o g e n e o u s m e d i u m a n d t h e r e f o r e i s n o t d i ­<br />

r e c t l y a p p l i c a b l e t o o r g a n s o f f i n i t e d i m e n s i o n s . H o w d o y o u m a k e a l l o w a n c e<br />

f o r f i n i t e d i m e n s i o n s ?<br />

C . K E L L E R S H O H N : T h e u s e o f t h e M o n t e - C a r l o m e t h o d s i n c o n n e c t i o n<br />

w i t h t h i s p r o b l e m h a s b e e n t h e s u b j e c t o f a n u m b e r o f s t u d i e s b y t h e B r o w n e l l<br />

g r o u p f o r o v e r t e n y e a r s , w h i l e t h e m o m e n t s m e t h o d ( S p e n c e r a n d F a n o )<br />

h a s b e e n d e v e l o p e d a l o n g t h e s e l i n e s m a i n l y b y B e r g e r . T h e t w o m e t h o d s<br />

a r e c o m p l e m e n t a r y t o s o m e e x t e n t , s i n c e t h e y c a n b e u s e d f o r k e e p i n g a<br />

r e l a t i v e c h e c k o n o n e a n o t h e r .<br />

O f c o u r s e , I a g r e e w i t h y o u t h a t t h e m o m e n t s m e t h o d i s a p p l i c a b l e<br />

o n l y t o i n f i n i t e m e d i a . I t i s f o r t h i s r e a s o n t h a t t h e p r e s e n t t r e n d i n p h o t o n<br />

d o s i m e t r y i n m a n i s t o u s e t h e r e s u l t s o b t a i n e d b y t h e M o n t e - C a r l o m e t h o d ,<br />

w h i c h a f f o r d a m e a n s o f t a k i n g b o u n d a r y e f f e c t s i n t o a c c o u n t .


<strong>IAEA</strong>-SM-170/59<br />

NUCLEAR DATA REQUIREMENTS IN RADIOLOGICAL<br />

PROTECTION AND RADIOTHERAPY<br />

J. A. DENNIS,<br />

Head of Physics Department,<br />

National Radiological Protection Board,<br />

Harwell, Berks,<br />

United Kingdom<br />

Abstract<br />

NUCLEAR D A T A REQUIREMENTS IN RADIOLOGICAL PROTECTION A N D RADIOTHERAPY.<br />

The estimates of somatic and genetic risks arising from exposure to low levels of ionizing radiation are<br />

derived by linear extrapolation from the effects which have been observed when humans and animals were<br />

exposed to large acute doses of radiation for therapeutic or other reasons; this undoubtedly results in an over­<br />

estimate of the risks, but no adequate theoretical basis exists for any other form of extrapolation. The<br />

dependence of the risk on the quality and type of the radiation is based by convention on the linear energy<br />

transfer (i.e . specific energy loss) of the ionizing particles in water. This convention is undoubtedly incorrect.<br />

While it must be considered that the present levels of allowable exposure to radiation give adequate protection<br />

to the individual and society, the existing uncertainties generate some unease. Although the main obstacle<br />

to the resolution of these uncertainties in the absence of a detailed understanding of the biological processes<br />

involved, an additional obstacle is the lack of adequate physical data and theories to fully describe the<br />

interaction of radiation with matter. This inadequacy effects the accuracy of radiation dosimetry and also<br />

makes it difficult to develop theoretical explanations to account for the dependence of biological effects on<br />

radiation quality.<br />

Similar difficulties exist in the field of radiation therapy, where there is a growing awareness of the<br />

advantages of using fast neutrons and accelerated heavy ions for the treatment of tumours. The absence of an<br />

adequate theoretical explanation for the dependence of effect on radiation quality makes it difficult to fully<br />

evaluate the advantages of using alternative types of radiation other than experimentally.<br />

Some of the current attempts at developing theoretical explanations of the dependence of biological<br />

effects on radiation dose and quality are described briefly in order to delineate those areas where additional<br />

physical data are required.<br />

1. INTRODUCTION<br />

The need for nuclear data arises in several different<br />

ways in Radiological Protection and Medicine* The most<br />

obvious which comes to mind is that for cross-section and<br />

build-up data for the calculation of the shielding of<br />

radiation sources, but this is no different from the<br />

present needs of the <strong>Nuclear</strong> Industry. Less obvious is the<br />

need for data on methods of producing different isotopes,<br />

and their half-lives and decay schemes* This data is<br />

required in the growing field of <strong>Nuclear</strong> Medicine for the<br />

use of isotopes in diagnostic techniques for various<br />

diseases and metabolic misfunctions of the human body; it<br />

is also required for radiological protection specification<br />

in the chemical plants of the <strong>Nuclear</strong> Fuel industry. Not<br />

only is the data required to be available, it also needs to<br />

be presented in a manner that is useful to the practical<br />

user who may not understand and care even less about<br />

theories of nuclear and atomic structure*<br />

313


314 DENNIS<br />

However, these aspects are not further discussed in<br />

this paper which is concerned with the nuclear data<br />

required to further our understanding of the dependence of<br />

the biological effects produced by radiation upon the<br />

quality of the radiation. One reason for concentrating on<br />

this requirement is that it throws up a demand not merely<br />

for an extension of the data on cross-sections to a much<br />

wider range of energies, but also for an extension of the<br />

way in which this data is provided.<br />

2. BIOLOGICAL EFFECTS <strong>OF</strong> RADIATION<br />

An obvious point to start an investigation of the<br />

fundamentals of the biological effects of radiation is<br />

by the irradiation of artificially cultured mammalian<br />

cells Г 1_7. The aim of such investigations being to<br />

uncover any general physical and biological effects which<br />

are relevant to radiation-therapy for cancer or to the<br />

prediction of the risks of somatic and genetic effects from<br />

low levels of radiation.<br />

D O SE (r a d s )<br />

F IG .l . Survival of Chinese hamster cells (HI) after exposure to fast neutrons and X-rays after SCHNEIDER, D .<br />

WHITM ORE, G . F . , Radiat. Res. 18 (1963) 286 illustrating the RBE concept.


<strong>IAEA</strong>-SM-170/59 315<br />

The typical results of such experiments are shown in<br />

Figure 1. Surviving cells are defined in this type of<br />

experiment as those which are capable of producing at<br />

least 50 daughter cells by further division. If instead<br />

of plotting the logarithm of the number of surviving cells<br />

against absorbed energy, the number of cells killed by the<br />

radiation had been plotted on a linear scale the result<br />

would have been that shown in Figure 2. It is this latter<br />

type of plot which encourages the belief that the risk<br />

estimates for occupation exposure to low doses of radiation<br />

derived /~2J from the exposure of human beings to large<br />

doses of gamma radiation for therapeutic reasons by linear<br />

extrapolation are over estimates. The therapist using<br />

radiation to cure a malignant disease has always to<br />

balance, of course, the risk of inducing further<br />

malignancies by his treatment against the possibility of a<br />

cure.<br />

Two further points must be made about dose-effect<br />

curves.<br />

Firstly, as shown in Figure 3» the efficiency for<br />

producing an effect increases as the specific energy loss<br />

or linear energy transfer, LET, of the radiation increases.<br />

D O S E ( ra d s)<br />

FIG. 2. Killing of Chinese hamster cells (HI) after exposure to fast neutrons and X-rays, illustrating the effect<br />

of linear extrapolation to low doses from the high results.


316 DENNIS<br />

D O S E ( K r a d s )<br />

FIG .3. Effect of using radiations with different specific energy loss (LET) to irradiate cultured human kidney<br />

cells after ВARENDSEN, G . W . , WALTER, H . M . D . , FOWLER, J .F ., BEWLEY, D . K . , Radiat. Res. 18 (1963) 106.<br />

Moreover, relative to the effect produced by X-radiation<br />

the efficiency of high LET is greater at low levels of<br />

effect and small doses of radiation, Figure k. The<br />

relative biological effectiveness, RBE, of a radiation is<br />

defined as the ratio of the dose of from X-radiation to the<br />

dose from the specified radiation to produce the same level<br />

of effect, Figure 1.<br />

Secondly, the protection against damage afforded by<br />

depriving the biological material of oxygen decreases as<br />

the specific energy loss of the radiation increases,<br />

Figure 5* Since it is thought that many tumours are<br />

starved of oxygen due to a poor blood supply, this<br />

observation is one basis for proposals to use neutrons for


1Л<br />

UJ<br />

2<br />

( J<br />

ÜJ -<br />

ü. 5<br />

U.<br />

< 4<br />

U<br />

О о<br />

d 3<br />

со<br />

u j p<br />

><br />

н<br />

<<br />

о<br />

0*1<br />

<strong>IAEA</strong>-SM-170/59 317<br />

I lililí -1— I—I II 1111 “I— I I I I I I I-1---1— Г Т<br />

I - > I 1 1 I I 1J_______ I 1 1 I 1 I I I 1_______ l_ ,J. .1 .L-LL_uJ___________I I I I I I I<br />

I 10 IO O<br />

IO O O<br />

L E T IN T IS S U E I K eV /jim )<br />

FIG .4. Effect of estimating the RBE at different levels of effect, showing the increase in RBE for low levels of<br />

effect after BARENDSEN, G . W . , WALTER, FOWLER, J .F ., BEWLEY, D . K . , Radiat. Res. 18<br />

(1963) 106.<br />

D O S E ( K r a d )<br />

FIG. 5. Effect of oxygen deprivation in protecting cells against the effects of radiation, illustrating the decrease<br />

in protection as the specific energy loss of the radiation increases.


318 DENNIS<br />

F IG .6. An illustration of the better depth dose characteristics of accelerated heavy ions and negative it-mesons<br />

for the treatment of deep tumours after Ref. [ 4 ] .<br />

radiation therapy, the other is that tumours may exhibit<br />

higher RBE values than normal tissues / 3J and therefore<br />

be more susceptable to treatment with neutrons than with<br />

X-radiation.<br />

One of the difficulties of treating deep lying<br />

tumours with X-rays, electron beams or neutrons is that<br />

the overlying healthy tissue receives greater doses than<br />

the tumour, and this can only be overcome to some extent<br />

by using multi-directional beams and higher energies. For<br />

this reason accelerated heavy ions beams have been used<br />

and negative pi-mesons are proposed for use in radiotherapy,<br />

since the depth dose charactaristics are more<br />

favourable /"”^_7, Figure 6.<br />

Now the dependence of biological effect on the<br />

specific energy loss demonstrated in Figure W has<br />

encouraged the belief that the RBE of radiation depends<br />

directly on the specific energy loss. This belief is now<br />

embodied in the Quality Factor which is used in<br />

radiological protection, Figure 7« The quantity used to<br />

estimate the hazards from radiation is the dose-equivalent<br />

of which the unit is the rem.


<strong>IAEA</strong>-SM-170/59 3<br />

Ol l.o ю юо юоо<br />

L IN E A R E N E R G Y T R A N S FER lK eV у of tissue o r water)<br />

F IG .7. A comparison of the conventional quality factor with an experimentally determined RBE.<br />

Dose-equivalent in rem = Absorbed dose in rads x<br />

Quality Factor<br />

The ICRP recommendations for maximum permissible<br />

levels of dose-equivalent to guard against both somatic<br />

and genetic risks are given in Table I.<br />

The Quality Factor is most commonly involved in<br />

estimating the hazards from neutron and high energy<br />

accelerator radiations.<br />

Neutrons do not produce a single defined value for<br />

the specific energy loss in tissue, instead they produce<br />

distributions such as that shown in Figure 8. This<br />

distribution must be calculated from a detailed knowledge<br />

of the reactions produced by neutrons in the common<br />

elements of the body i.e. hydrogen, carbon, nitrogen,<br />

oxygen and calcium. At high neutron energies (>5MeV) not<br />

only are the details of the non-elastic and in-elastic<br />

reactions often uncertain but so are the cross-sections.<br />

Also involved in these calculations is the specific energy<br />

loss in biological tissue of the secondary particles<br />

produced and this is an additional source of uncertainty.<br />

If the calculated specific energy loss distributions<br />

from neutrons are combined with the apparent dependence of<br />

RBE upon specific energy loss determined experimentally,<br />

then it should be possible to predict the RBE of neutron<br />

radiation. Attempts to make this prediction have been<br />

unsuccessful •


TABLE I. SUMMARY <strong>OF</strong> I. C. R . P. RECOMMENDATIONS FOR MAXIMUM PERMISSIBLE<br />

LEVELS <strong>OF</strong> DOSE EQUIVALENT (I. C. R. P. PUBLICATION 9, PERGAM ON PRESS,<br />

OXFORD (1966)<br />

Organ<br />

Maximum Permissible Yearly<br />

Dose-Equivalent for adults<br />

exposed in the course of<br />

their work.<br />

Rem<br />

Maximum Permissible Yearly<br />

Dose-Equivalent for<br />

members of the public.<br />

Gonads 5 0.5<br />

Skin, bone and<br />

thyroid 30 3<br />

Hands, forearms, feet<br />

and ankles 75 7-5<br />

Other single organs 15 1.5<br />

Notes :<br />

1. One half the yearly permissible dose-equivalent may be accumulated in any<br />

period of a quarter of a year; with the limitation that the total<br />

accumulated dose at any age over 18 should not exceed 5(N - 1 8 ) rem, where<br />

N is the age in years.<br />

2. Women of reproductive age exposed in the course of their work should not<br />

accumulate dose-equivalent at a rate exceeding 1.3 rems in a quarter of a<br />

year.<br />

3. To guard against long term genetic consequences the total average dose to<br />

members of a population should not exceed 5 rems in a period of 30 years.<br />

Rem


<strong>IAEA</strong>-SM-170/59 321<br />

LETœ MeV-cm2 g I<br />

F IG .8. Specific energy loss spectrum in fast-neutron-irradiated tissue after BEWLEY, D. K . , in Biophysical<br />

Aspects of Radiation Quality (Proc. Panel Vienna, 1967), <strong>IAEA</strong>, Vienna (1968) 65.<br />

The specific energy loss for a heavy ion, Figure 9, is<br />

not a single-valued function of the ion energy, moreover<br />

the energy loss processes may be quite different for the<br />

same specific energy loss value obtained at different<br />

energies. Intuitively it seems inherently unlikely that<br />

the different modes of energy loss should produce equal<br />

biological effects. When different ions are considered it<br />

seems even less likely that specific energy loss is an<br />

adequate parameter, since ions of the same energy loss may<br />

produce quite different distributions of delta-ray<br />

energies and energy deposition about their tracks.<br />

3. DOSE-EFFECT RELATIONSHIPS<br />

Perhaps the most obvious way of explaining the<br />

observed relationships between the dose to the tissue and<br />

the observed effect is in terms of hits on targets, in a<br />

conceptual framework that originated in the 1920's. The<br />

most widely used idea from this framework is that of m<br />

sensitive targets in the cell each of which must be hit in


322 DENNIS<br />

F IG .9. Specific energy loss of alpha particles in water. (DENNIS, J . A . , private compilation.)<br />

order to kill the cell, and the dose Do required to produce<br />

an average of one hit on each target. This gives rise to<br />

the following formula relating the N survivors of an<br />

original population No to the dose J).<br />

Apart from the study of cell killing, the other major<br />

study is that of chromosome aberrations. These are gross<br />

visible distortions in the genetic material, of the cell.<br />

The relationship between the number of aberrations, A,<br />

observed in the population No, and the dose can very often<br />

be represented by a combination of single and two target<br />

models i.e.<br />

2.<br />

A_<br />

— = ^1 - exp( - D /jD 1 - exp - D/2D 0j) (2)<br />

N0<br />

which for very low doses can be usefully expanded as<br />

Nn<br />

D<br />

It must be said at this point that the problem is ill-<br />

conditioned in the sense that a large number of different<br />

expressions can be made to fit the experimental results<br />

(1)<br />

(3)


<strong>IAEA</strong>-SM-170/59 323<br />

equally well /_ 6_7. In fact some biologists reject the<br />

whole hit and target concept in favour of explanations<br />

based on metabolic factors /"”7_7. It is certainly true<br />

that the dose-effect curves are changed by metabolic<br />

factors such as temperature, absence or presence of oxygen<br />

and the position of the cell within its cycle of growth and<br />

division at the time of irradiation. Also the ability of<br />

some cell systems to repair the damage caused by radiation<br />

has been demonstrated 1_J7. On the other hand it seems<br />

unlikely that purely metabolic factors can account for the<br />

dependence on radiation quality.<br />

k. MICRODOSIMETRY AND TRACK STRUCTURE<br />

The work of Lea Г 8_7 in the late 1930's and early<br />

19^0 's is seminal in attempts to provide a physical<br />

explanation for biological effectiveness, and in many ways<br />

his work anticipated the two current and contending<br />

theories. These theories are known as microdosimetry and<br />

track structure.<br />

4.1 Microdosimetrv<br />

------------------------------ ^<br />

The basis of microdosimetry is the calculation or<br />

more often the measurement 9_/ of the energy event size<br />

distribution, f1(€) d£, in spherical volumes with<br />

effective dimensions of about 10“^ gram cm-^ Several<br />

considerations /"”10_J7 lead to the conclusion that there<br />

exist one or more loci or targets of dimensions about 0.6<br />

nanometers which must be activated in order to cause a<br />

chromosome aberration or kill a cell, and these locii must<br />

exist within a site of dimensions about 1.0 micrometer<br />

(i.e. 10“^ gram cm-2 in tissue).<br />

о<br />

It is assumed /”10_7 in microdosimetry that the<br />

probability of activating a locus is proportion to the<br />

size of the energy deposited in the site i.e.<br />

p = це (4)<br />

where ц is a constant of proportionality.<br />

These assumptions lead to the following expression for<br />

chromosome aberrations!<br />

Ao =J¿^- D - j j r e n - 2/u2 | + . . . etc. (5)<br />

¿P is the dose average event size.<br />

This theory has yet to be vigorously tested by<br />

exploration with a range of different radiations and<br />

biological systems.<br />

A difficulty in testing the theory is that of<br />

calculating the energy even size distribution, f^f) d£,<br />

as this requires a detailed knowledge of neutron cross-<br />

sections and reaction kinetics, as well as details of the<br />

energy loss in tissue by the secondary particles produced.


324 DENNIS<br />

Similar details are required for X-rays and electrons, and<br />

a point of investigation here is the influence of К and L<br />

shell effects and molecular b i n d i n i o n the energy loss<br />

processes of low energy electrons /”11_7.<br />

One might anticipate at this stage that the<br />

coefficient will not be independent of the mode of<br />

energy loss that produces the energy deposition £. This<br />

will open a new field of investigation requiring data on<br />

charge exchange processes, inner shell ionization 12_7<br />

and quasi-elastic nuclear scattering / ”13J *<br />

k .2 Track Structure<br />

Because of the ultimate influence of metabolic factors<br />

in governing the repair and recovery of cell populations<br />

that have suffered a large radiation insult it seems<br />

unlikely that the theory of microdosimetry can usefully be<br />

employed at this time in the field of radiotherapy. It is<br />

in this field that the track structure theory being<br />

developed by Prof. Katz 14_"7 may prove applicable.<br />

Briefly Katz takes the multi-target dose-effect<br />

survived curves, equation 1 above, obtained with X-radiation<br />

to represent the response function of the cells to<br />

electrons. From this response function he derives the<br />

dose-effect curves for heavy ions by regarding them as<br />

generating non-uniform distributions of electrons within<br />

tissue.<br />

After some manipulation a theoretical expression is<br />

obtained for the expected dose-effect relationship which<br />

has the plausible form for tissue irradiated by a fluence<br />


5. DISCUSSION AND CONCLUSION<br />

<strong>IAEA</strong>-SM-170/59<br />

The importance of the theoretical explanations for the<br />

dependence of biological effect on radiation quality should<br />

not be over emphasized. One must assume that any<br />

responsible radiotherapist proposing to use something other<br />

than the conventional radiations will first have satisfied<br />

himself by means of a series of biological experiments<br />

that his treatment will be beneficial to his patient. On<br />

the other hand a 10% uncertainty in the level effect<br />

produced, or in the dosimetry, may make a significant<br />

difference to the cure rate in radiotherapy 7~15_'7.<br />

There is no evidence either from studies with plants,<br />

insects and animals or from the long term follow-up of the<br />

victims /”16J of the atomic bombing of Japan that the<br />

Quality Factors are seriously in error. Never-the-less any<br />

uncertainties in our understanding of the connection<br />

between radiation quantity and quality and the biological<br />

effects produced can be used to create public unease by<br />

those who are so minded /~17_7.<br />

The full understanding of the biological effects of<br />

radiation has been likened to digging a tunnel under a high<br />

mountain, not by starting at the ends and working towards<br />

the centre, but by sinking a series of vertical shafts and<br />

working outwards from the bottom of each. At one end are<br />

the biologists and medical practioners studying the somatic<br />

and genetic effects of irradiating animals and human<br />

beings, at the other end are the physicists studying the<br />

primary features of the interaction of radiation with<br />

matter. In between come the biologists studying the effects<br />

on cultured mammalian cells, bacteria and viruses; the<br />

radio-chemists studying radiation damage to and energy<br />

transfer within large micro molecules and enzymes ; and the<br />

physicists concerned with energy deposit in processes<br />

within tissue. It is the latter group that are now<br />

extending their requirements for nuclear data; I hope that<br />

resulting from this symposium will be data that is of<br />

some assistance to them in the next stage of investigation.<br />

REFERENCES<br />

j T l l ELKIND, M.M., WHITMORE, G.F., The Radiobiology of<br />

Cultured Mammalian Cells. Gordon and Breach,<br />

New York (1 9 6 7).<br />

/”2_7 ICRP Publication 14, Radiosensitivity and Spatial<br />

Distribution of Dose, Pergamon Press, Oxford (19 6 9).<br />

/"3_7 BROERSE, J.J., BARENDSEN, G.W. , FRERIKS, G.,<br />

VAN PUTTEN, L.M., Europ. Journ. Cancer ¿ (1971) 171.<br />

£ " k j BEWLEY, D.K., Nature 2 37 (1972) 17.<br />

Г ъ 7 BEWLEY, D.K., Radiat. Res. 34 (1968) 446<br />

Г 6_7 ZIMMER, K.G. , Studies on Quantitative Radiation<br />

Biology. Oliver and Boyd, Edinburgh (1 9 6 1).


326 DENNIS<br />

C l J LAURIE, J., ORR, J.S., FOSTER, C.J., Brit. Journ.<br />

Radiol. 4¿ (1972) 36 2.<br />

/"8_7 LEA, D.E., Act ions of Radiation on Living Cells.<br />

Cambridge University Press (1946).<br />

Л 9 _ 7 ROSSI, H.H., Radiation Dosimetry. Vol. I (Ed. Attix,<br />

F.H., Roesch, W.C.) Academic Press, New York<br />

(19 6 8) 43.<br />

/”10 7 KELLERER, A.M., ROSSI, H.H., Radiation Research<br />

42. (1 9 7 1 ) 15.<br />

/~11_7 ARAKAWA, E.T., BIRKH<strong>OF</strong>F, R.D. , et. al. Oak & Ridge<br />

National Lab. Report ORNL - 4811 (1 9 7 2 ).<br />

/”12_7 METZ, W.M. , Sc ience 177 (I9 7 2 ) 1 5 6 .<br />

/_13_7 WATT, D.E., Phys. Med. Biol. ¿2. (1972) 409.<br />

/~14_7 KATZ, R., SHARMA, S.C., HOMAGOONFAR, M., Chapter 6.<br />

Progress in Radiation Dosimetry Ed. Attix F.H. -<br />

to be published.<br />

/”15_7 BARENDSEN, G. W ., BROERSE, J.J., First Sumposium on<br />

Neutron Dosimetry in Biology and Medicine. Commission<br />

of the European Communities. Luxemburg .1 (1972).<br />

/”l6_7 ICRP Publication l8. The RBE for High-LET Radiations<br />

with respect to Mutagenesis. Pergamon Press, Oxford<br />

(1 9 7 2 ).<br />

r i 7 j G<strong>OF</strong>MAN, J.W. , TAMPLIN, A.R., Poisoned Power. Rodale<br />

Press. Emmaus (I9 7I).<br />

D I S C U S S I O N<br />

L . HJÄRNE: W e have som etim es been given the im p ression that, o f<br />

all nuclear data, the neutron data are in fa irly good shape. T h erefore it<br />

is perhaps su rp risin g to many o f us that the attempts to p red ict RBE have<br />

not been v e ry su ccessfu l. R egarding the ela stic and in elastic data for<br />

neutrons above 5 M eV, the rea ctor p h y sicists, too, would agree that there<br />

is still a lot to be d esired . H ow ever, the fact that the situation is not good<br />

enough fo r dose calculations is disturbing. I would th erefore like to ask<br />

fo r you r opinion on w here the g reatest difficu lties lie . Is it a m atter o f<br />

the c r o s s -s e c tio n s and the angualr o r energy (secondary) distributions or<br />

does it have to do with the calculational m ethods?<br />

J .A . DENNIS: P articu la r d ifficu lties a rise in the n on -ela stic rea ction s,<br />

m ore s p e cifica lly the (n, a) reaction s with carbon and oxygen. Oxygen is a<br />

m a jor constituent o f b iolog ica l tissu e. A bove a neutron energy o f 5 MeV<br />

virtually all we have is the total c r o s s -s e c tio n fo r the (n ,a) reaction s with<br />

this elem ent. W e know that there are, at least, five o r six alpha groups<br />

from this reaction , and without details o f the c r o s s -s e c tio n s fo r each alpha<br />

group the d ose estim ates can be as much as 20% in e r r o r . When calculations


<strong>IAEA</strong>-SM-170/59 327<br />

o f lin e a r e n e rg y t r a n s f e r d istr ib u tio n s a r e to b e m a d e , we r e q u ir e even<br />

g r e a t e r d e ta il, sin c e the e x a c t a lp h a sp e c tr u m p ro v id e d in e a c h a lp h a gro u p<br />

m u st be known.<br />

It i s m y im p r e s s io n th at c o m p ila tio n s o f c r o s s - s e c t i o n s h ave in the<br />

p a s t b een co n cern e d only w ith the fa te o f the n eu tron in r e a c t o r a p p lic a tio n s.<br />

In b io lo g y and m e d ic in e w e a r e c o n cern e d w ith the se c o n d a r y p a r t ic le s a s<br />

a r e s u lt o f the n eu tron r e a c t io n s .


<strong>IAEA</strong> -SM-170/64<br />

PROBLEMES POSES PAR LA FABRICATION DE<br />

PLUTONIUM-238 DE QUALITE BIOMEDICALE<br />

R. BERGER*, C. DEVILLERS*, F. GERVAISE*, G. LE C O Q **<br />

Commissariat à l'énergie atomique,<br />

France<br />

Abstract-Résumé<br />

PROBLEMS <strong>OF</strong> FABRICATING 238Pu <strong>OF</strong> BIOMEDICAL Q U A L IT Y .<br />

The biomedical quality of z38Pu presupposes the lowest possible 236Pu concentration, this being<br />

determined by irradiation methods. The results of the chemical analysis of !37Np samples irradiated in<br />

reactors have been compared with the results of calculation. A good knowledge of the cross-sections o y ,n et<br />

° n , 2n °f z37Np is necessary for calculating the 236Pu concentration and for optimizing the irradiation<br />

conditions. Evaluations having shown that it was difficult to estimate these data correctly in the present<br />

state of knowledge, oy , n was measured. By slightly adjusting the calculated results for the experimental<br />

results it may be possible to produce 238Pu of satisfactory quality.<br />

PROBLEMES POSES PAR LA FABRICATION DE PLUTONIUM-238 DE QUALITE BIOMEDICALE.<br />

La qualité biomédicale du 238Pu exige la plus faible teneur possible en 236Pu, celle-ci étant déterminée<br />

par les méthodes d'irradiation. L'analyse chimique d'échantillons de 237Np irradiés dans des réacteurs a<br />

pu être comparée avec les résultats de calcul. Une bonne connaissance des sections efficaces Oy n et<br />

°n 2n du 237Np est nécessaire pour le calcul de la teneur en 236Pu et l'optimisation des conditions d'irradiation.<br />

Les évaluations ayant montré qu' il était difficile d’ estimer correctement ces données avec les connaissances<br />

actuelles, une mesure de O y ,n a été effectuée. Un léger ajustement des résultats de calcul sur les résultats<br />

expérimentaux permet d'envisager la production d e 23!Pu de qualité satisfaisante.<br />

INTRODUCTION<br />

Le plutonium -238 est u tilisé com m e sou rce therm ique du con vertisseu r<br />

th erm o -électriq u e du stim ulateur cardiaque [1 ]. Cette application n écessite<br />

certain es p rop riétés de pureté du 238Pu. En effet, certa in es tra ces contenues<br />

dans le s descendants du 238Pu contribuent au ssi â l'a ctiv ité radiologiqu e soit<br />

en 7 pour le 236Pu, soit en neutrons par réaction (a, n) sur le s élém ents<br />

lé g e rs tels que F , O, A l, Ca. La fabrication du 238Pu par irradiation en<br />

p ile de 237Np peut produ ire du 236pu par réa ction (7, n) et réaction (n, 2n)<br />

sur le 237Np. La connaissance des sections e ffica ce s de ce s deux réaction s<br />

est n é c e s s a ir e au ca lcu l de la teneur en 236Pu fabriqué com pte tenu des<br />

conditions d 'irradiation .<br />

1. DOSE INDUITE PAR LES NEUTRONS E T LES RAYONNEMENTS<br />

GAMMA<br />

Nous rappelleron s ic i le s données n é ce ssa ire s au ca lcu l de la dose<br />

d'une sou rce de 155 m g de 238Pu dont la teneur isotopique est de 90%.<br />

L 'a ctiv ité due aux neutrons et aux gam m as provenant des isotop es su périeu rs<br />

au 238Pu est n égligeable.<br />

* Centre d ’ études nucléaires de Fontenay-aux-Roses.<br />

* * Centre d'études nucléaires de Saclay.<br />

329


330 BERGER et a l.<br />

1. 1. N eu tron s<br />

P our chaque fissio n spontanée le 238Pu ém et en m oyenne v = 2, 29 neutrons<br />

la p ériod e de fissio n étant d'environ 5, 0 • 1010 ans, la sou rce con sid érée<br />

ém et Sn = 355 n /s , le sp ectre énergétique étant de la form e<br />

N(E) = C • E 0> 5 exp ( - Е / 1, 23), E exprim é en MeV. Ce sont des neutrons<br />

ra p id es, donc ils ne sont pratiquem ent pas a rrê té s par le s m atériaux<br />

constituant le stim ulateur; la seule m anière de réd u ire la dose due aux<br />

neutrons est d 'éloig n er au m axim um la sou rce de la paroi.<br />

La dose m axim ale m oyennée sur un élém ent de surface due à ce s<br />

neutrons est égale à 0, 9 m rem /h [ 2 ]. Le nom bre de neutrons ém is par<br />

réaction (a, n) sur le s élém ents lé g e rs dépend de la concentration de ces<br />

élém ents dans le 238Pu (voir p aragr. 3).<br />

1. 2. Rayonnement gamma<br />

L es gam m as provenant du 238Pu sont ém is au cou rs de la désintégration<br />

a de p ériod e T = 87, 5 ans. Ces gam m as sont principalem ent de faible<br />

én ergie. P our une désintégration a il y a m oins de 2 • 10"5 gamma d 'én ergie<br />

supérieure â 150 keV. P our le 236Pu, l'a ctiv ité gamma est principalem ent<br />

due aux gam m as provenant de la désintégration ß~ des noyaux de fin de<br />

chaîne. Cette activité est donc variable dans le tem ps et présente un<br />

m axim um â 18 ans. C es gam m as ém is sont plus énergétiques; par rapport<br />

à une désintégration ß, 60% des y ont une én ergie supérieure à 200 keV,<br />

dont 14% ont une én ergie de 583 keV et 17% une énergie de 2, 6 M eV [ 2 ].<br />

P our la sou rce de 238Pu contenant 0, 5 ppm de 236Pu, l'a ctiv ité gamma est<br />

la suivante (en désintégrations par secon de):<br />

T (ans) 0 1 2 5 10 20<br />

P u-238 8, 9 ■ 1010 8, 8 ■ 1010 8, 8 • 1010 8, 5 ■ 1010 00<br />

Pu-236 0 4, 2 • 103 1, 3 • 104 5, 0 • 104<br />

t>o<br />

I-»<br />

o<br />

o<br />

со<br />

00<br />

o<br />

тН<br />

7, 6 • 1010<br />

1, 0 • 105<br />

Quelques m illim ètres de platine ou de titane suffisent à ram en er la<br />

dose biologique des gam m as provenant du 238Pu au m êm e ord re de grandeur<br />

que la dose biologique due aux neutrons. Dans le s m êm es conditions une<br />

concentration d 'en viron 0, 5 ppm de 236Pu corresp on d à une dose moyenne<br />

sur 10 ans du m êm e o rd re de grandeur que la dose m oyenne y due a u 238Pu.<br />

Une réduction de 0, 5 ppm â 0, 3 ppm de la teneur en 236Pu ne rédu irait la<br />

dose totale que de 17%. Une teneur en 236Pu de 0, 5 ppm sem ble donc une<br />

pureté raisonnable du point de vue des dom m ages biologiqu es.<br />

2. PRODUCTION DE 238Pu DE QUALITE BIOMEDICALE<br />

P a r irradiation en pile de 237Np on souhaite obtenir du plutonium dont<br />

la com p osition isotopique est la suivante: § 90% de 238Pu, environ 9% de<br />

239Pu et 0 ,5 ppm de 236Pu. L es irradiation s faites, sans conditions particu -


<strong>IAEA</strong>-SM-170/64 331<br />

liè r e s , dans des réa cteu rs à eau lourde fournissent un 238Pu contenant plus<br />

de 0, 7 ppm de 236Pu. On a donc ch erch é à sim u ler par ca lcu l la production<br />

de 236Pu.<br />

La production de 238Pu et de 239Pu est donnée par des cod es éprouvés<br />

d 'évolu tion de cœ u r de pile [ 3 ], m ais la production de 236Pu par d écroissa n ce<br />

ß - d e 236Np obtenu par réa ction (n, 2n) et (7 , n) ne peut être p rise en com pte<br />

dans ce s cod es.<br />

D es cod es de transport de neutrons rapides et de gam m as ont dû être<br />

u tilisés spécialem en t pour cette étude.<br />

2. 1. Etude de la réaction (n, 2n)<br />

Supposons une géom étrie cylindrique, la quantité de 236Pu produite<br />

par cen tim ètre de hauteur est donc:<br />

R » T<br />

f f 0 (E) (t )* (E ,r ,t )d r d E d t (1)<br />

0 0 0<br />

où T = tem ps d'irradiation<br />

a (E) = section effica ce (n, 2n) du 237Np<br />

Npu-236et Nnp-237 (t) = nom bre de noyaux par cm 3 de 236Pu et de 237Np<br />

respectivem en t.<br />

ф (E, r ,t ) = flux de neutrons, il dépend de la géom étrie du cœ u r de<br />

p ile et il est fourni par un code de transport de neutrons.<br />

2. 2. Etude de la réaction (7 , n)<br />

Le ca lcu l de la propagation gam m a susceptible de p rovoqu er une<br />

réa ction (7 , n) est presque rigou reu x ca r il peut être fait, sans grande<br />

e rre u r, en négligeant le s photons ayant subi une diffusion.<br />

La form ule (1) peut s'appliqu er pour le ca lcu l de la quantité de 236Np<br />

produite par réaction (7 , n) en prenant le flux de gam m as et la section<br />

e ffica ce Ст(п^ . Il faut tenir com pte de toutes le s sou rces de gam m as: soit<br />

de fission , soit provenant des m atériaux de stru ctu re, tels que bouchon,<br />

cuve et com p osé de l'a llia g e de l'ép rou vette. Un ca lcu l a été effectué sur<br />

une éprouvette NpOz A l irra d iée dans le réacteu r E L3: le tie rs du 236Np<br />

fabriqué était dû aux gam m as de capture dans l'alum inium du com posé [4 ].<br />

2. 3. A justem ent des section s e ffica ce s<br />

L 'an alyse des irradiation s faites en pile de cib les de 237Np avec ou<br />

sans m a trice d'alum inium nous a p erm is de ch oisir la section effica ce<br />

E N D F-3 pour CT(nj 2n) (voir paragr. 3) et ainsi de ca lcu ler les contributions<br />

rela tives des d ifféren ts m ilieu x environnants. C eci a p erm is de fixer à<br />

environ 0, 014 b la section effica ce ^ du 237Np à 7, 72 M eV, én ergie de<br />

la raie prin cip ale des gam m as provenant de la capture d'un neutron par<br />

l'alum inium . Le but de l'étu de étant d 'é lim in e r les sou rces p rin cipales<br />

de form ation de236Pu, il est donc n é ce ssa ire d 'a v o ir plus de renseignem ents<br />

sur la section effica ce cr^


332 BERGER et al.<br />

3. MESURE ET EVALUATION DES CONSTANTES NUCLEAIRES<br />

3. 1. Données n u cléaires n é ce ssa ire s au calcu l de la form ation de 236Pu à<br />

partir de l'irra d ia tion en pile de 237Np<br />

a) Section effica ce de réaction (n, 2n) sur le 237Np. Une étude co m ­<br />

parative des évaluations de la section effica ce Ст(п 2n) contenues dans les<br />

deux bibliothèques KEDAK et E N D F /B III a p erm is de recom m ander la<br />

section effica ce contenue dans les bibliothèques E N D F /B III [ 5 ], résultat<br />

con firm é par le s irradiation s en pile.<br />

b) Section effica ce de réaction (7 , n) su r le 237Np. Une p rem ière<br />

évaluation de la section effica ce 0(r_^effectuée en septem bre 1971 n 'a pas<br />

p erm is de répon dre d'une m an ière satisfaisante aux besoin s. Aucune m esure<br />

expérim entale n'avait été faite et les valeu rs p rop osées avaient été ca lcu lées<br />

à partir de m od èles a ssez g r o s s ie r s ; ces valeurs avaient donc des b a rres<br />

d 'e rre u rs im portantes.<br />

Le groupe d'expérim en tateu rs sp écia listes des m esu res photonucléaires<br />

a effectué la m esu re de la section effica ce Ст(у_n)auprès de l'a ccé lé ra te u r<br />

lin éaire de 60 MeV de Saclay. L es m esu res n'ont pu être faites qu'à des<br />

én ergies de photons 7 quasi m onochrom atiques su périeu res à 9 M eV, c e ci<br />

étant dû essen tiellem en t à la radioactivité de l'éch an tillon de 237Np u tilisé [6] .<br />

A partir des m esu res, il a été p ossib le de d é crire la section effica ce totale<br />

d 'absorption photonique à toute énergie<br />

V =CTy ,n + 0 y .f +CTr . 2 n + ----<br />

Le rapport o-y.n/^y.f = Ç /T f a été étudié pour des én ergies de 7 proch es du<br />

seu il d 'ém ission de neutrons. P ar réaction (7 , n) ou (n, 2n) il y a form ation<br />

de deux états du 236Np, l'un de p ériod e T > 5000 ans et de spin élevé<br />

(probablem ent 6‘ ), l'a u tre de p ériod e T = 22 h et de spin 1"; seul c e lu i-c i<br />

con tribu era à la form ation du 236Pu par ém ission ß~. Le rapport de<br />

form ation de l'éta t 1" du 236Np varie avec les én ergies des 7 incidents et<br />

est égal à environ 0, 7 - 0, 6 [7] . L es valeurs de cr^ njen fonction de l'én erg ie<br />

des 7 sont les suivantes:<br />

E (MeV) 6, 62 6, 7<br />

OO<br />

«0<br />

7 7, 5 7, 72 8 oo<br />

СЛ<br />

9 10<br />

ct (mb)<br />

y.n<br />

0 3 4 6 14 18 24 40 60 116<br />

CTy>n (mb)* 0 3 3 4 8, 5 11 14 24 36 70<br />

* Section efficace de formation de l 'état 1”.<br />

3. 2. Données n u cléaires n é ce ssa ire s au calcu l de la dose<br />

Outre l'évalu ation du nom bre m oyen v de neutrons ém is par fission<br />

spontanée et le sp ectre énergétique de ce s neutrons, nous avons étudié<br />

les neutrons et le s rayons 7 ém is par un échantillon de 238Pu contenant<br />

des tra ce s de fluor [ 8] . Le fluor peut ém ettre des neutrons et des rayons 7<br />

par réa ction a sur ce noyau: (a, a ' 7 ), (a, p 7 ) et (a, П7 ).


<strong>IAEA</strong>-SM- П О /64 333<br />

Le rendem ent neutronique, en cible ép aisse de flu or, a été déterm iné<br />

égal à 10 neutrons par m illion de a pour des én ergies de o de 5, 3 MeV<br />

provenant du 210P o [9] .<br />

P our le 238pu (E a = 5, 5 MeV) nous avons p ris: Rq = 14 ± 1 n /1 0 6.<br />

P our un m élange com p osé de n élém ents, le rendem ent neutronique Rn est<br />

défini par:<br />

où Rok est le rendem ent en cib le épaisse du kièm e élém ent, N^ est le<br />

n om bre re la tif d 'atom es et son pouvoir d 'a rrê t atom ique re la tif à l'a ir .<br />

P our une sou rce de 238p u contenant des tra ces de flu or, nous avons avec<br />

SPu = 4, 6 et SF = 1, 14<br />

Si nous avons une concentration de fluor de un ppm en m a sse, la sou rce de<br />

155 m g de 238Pu ém ettra 4, 3 n /s . L 'én erg ie m oyenne de ce s neutrons est<br />

de l'o r d r e de 1, 5 M eV, voisin e de l'é n e rg ie moyenne des neutrons de fission .<br />

CONCLUSION<br />

Cette étude a p erm is de sélection n er les conditions d 'irra d ia tion dans un<br />

réa cteu r afin d 'obten ir un plutonium -238 de qualité isotopiqu e biom éd icale:<br />

— u tilisation d'un réa cteu r qui p ossèd e un flux bien th erm alisé: réacteu r<br />

à eau lourde ou éventuellem ent à graphite, c e c i afin de dim inuer les<br />

réa ction s (n, 2n);<br />

— optim isation de la place de l'éch an tillon de 237Np dans le réa cteu r, a ssez<br />

loin des élém ents com bu stibles et surtout a ssez loin de la cuve du<br />

réa cteu r afin de dim inuer les réaction s (7 , n);<br />

— définition de la géom étrie et de la com p osition des cib les; un com posé<br />

Np 0 2C sem ble p référa b le à un com p osé N p 0 2Al.<br />

En outre, il est im portant de con sid érer le problèm e des tra ce s des<br />

élém ents lé g e rs dans le plutonium -238 et particulièrem en t les tra ce s de<br />

flu or dans l'évalu ation de la dose neutronique.<br />

[ 1] ALAIS, M . , BERGER, R ., BOUCHER, R ., LAURENS, P ., Générateur isotopique au plutonium-238<br />

pour stimulateur implantable electro -systolique (G .I. P. S .I .E .), Bull. Inf. Soi. Tech. (Paris) № 142<br />

(nov. 1969) 31-38.<br />

n<br />

R = 13 • 10+4 -| * - (n /s )/C i<br />

‘Pu<br />

R E F E R E N C E S<br />

[2] DEVILLERS, С . , Н ОТ, M . , « D o s e biologique autour d'un stimulateur cardiaque», Compt. Rend.<br />

2e Symp. Int. sur l'énergie d'origine radioisotopique (Madrid, 1972), O C D E (21 janv. 1973) 859-73.<br />

[3] BERGER, R . , DUCASSE, G . , K O EHLY, G . , PARADIS, G . , « L e programme de production du 238Pu<br />

et du 244C m au Commissariat â l'énergie atomique», Ibid., p . 31-47.


334 BERGER et a l.<br />

[4] GERVAISE, F ., DE SCHEEMA ECKER, J., Production de 238Pu de qualité médicale, Interprétation<br />

des expériences EL3 1972, CEA, Rapport interne D PR M A /SERM A/R n" 89 (sept. 1972).<br />

[5] RIBON, P ., Sections efficaces de la réaction 237Np (n;2n) !3sNp, C E A , Rapport interne DPhN/M F<br />

n° 533/72 (déc. 1972).<br />

[6] VEYSSIERE, A . et al., Nucl. Phys. A 199 (1973) 45.<br />

[7] LE C O Q , G . , VEYSSIERE, A . , Mesure des sections efficaces photonuclêaires pour le 237Np et évaluation<br />

de la section efficace de formation de l'état 1- du 23-6Np, CEA, Rapport interne D PhN/M F n° 532/72<br />

(déc. 1972).<br />

[ 8] KREBS, J., Neutrons et rayons gamma émis par un échantillon de 238Pu contenant des traces de fluor,<br />

CEA, Rapport interne D PhN/M F n° 880/71 (oct.1971).<br />

[9] SEGRE, E ., W IEGAND, C . , Los Alamos Scientific Laboratory Report MDDC- 185 (1944).<br />

D I S C U S S I O N<br />

A .H .W . ATEN (Chairm an): How long w ill the production o f 230Pu<br />

fro m 237Np be im portant and when w ill the production from 242 Cm take over?<br />

G. LE COQ: I shall ask M r. B erg er, one o f the co-a u th ors o f our<br />

paper, to rep ly to this question.<br />

R . BERGER: The production o f 238Pu by disintegration o f 242Cm ,<br />

which is its e lf form ed by neutron irradiation o f 241A m , is still only in the<br />

experim ental stage. S everal y ea rs w ill be requ ired b efore it reach es the<br />

sem i-in d u stria l stage and it is not obvious that it w ill be able to m eet all<br />

future 238Pu requ irem en ts. M o reov er,it is lik ely that the 238Pu so obtained<br />

w ill be con sid erably m ore expensive than that provided by neutron irradiation<br />

o f 237Np.


NUCLEAR DATA AND<br />

NEUTRON ACTIVATION ANALYSIS<br />

<strong>OF</strong> BIOLOGICAL SAMPLES<br />

N.M. SPYROU<br />

Radiation Unit, Department of Physics,<br />

University of Surrey,<br />

United Kingdom<br />

Abstract<br />

NUCLEAR D A T A A N D NEUTRON A C T IV A T IO N ANALYSIS <strong>OF</strong> BIOLOGICAL SAMPLES.<br />

<strong>IAEA</strong>-SM-170/3<br />

The application of activation analysis in the life sciences, environmental studies and industry has<br />

increased to such an extent that the technique has been introduced to undergraduates at this University<br />

in the form of short-term inter-disciplinary projects. Further it is predicted that the growth area of<br />

routine application will be in the bio-medical field and therefore activation analysis is included in<br />

certain postgraduate courses, e.g. Clinical Biochemistry, Radiation Studies and Medical Physics. However,<br />

this has highlighted several problems which arise mainly from the short period of time available for<br />

training in the technique and the multidisciplinary background of the students.<br />

It is suggested that part of the solution lies in a more suitable presentation of nuclear data which will<br />

enable the untrained analyst to reach a quick decision as to the procedure he is to follow for the determination<br />

of the required elements in a sample.<br />

An illustration is given in which nuclear data are used with particular reference to the analysis of<br />

biological material. Comments are included on the specific areas where uncertainties exist or greater<br />

accuracy is required in nuclear data.<br />

This paper therefore attempts, by looking to the future, where, for example, in a hospital department<br />

routine analyses are undertaken, to provide an approach which will facilitate use of the technique by those<br />

who are not radiation scientists.<br />

Introduction :<br />

The application o f activation analysis in the l i f e scien ces,<br />

environmental studies and industry, has increased to such an extent over<br />

the past few years that an attempt is being made at th is University to<br />

introduce the technique to students in several d is cip lin e s , at both<br />

undergraduate and postgraduate le v e ls. The short period available for<br />

training and the m ultidisciplinary background o f the students has highlighted<br />

several problems. The a c c e s s ib ility and presentation o f nuclear<br />

data is one.<br />

Although the remarks below are general, emphasis is la id on the<br />

application o f activation analysis to b io lo g ic a l samples. It is our b e lie f<br />

that th is is going to be the main growth area in the fie ld anl,in p a rticu lar,<br />

stimulated by concern with the problems o f environmental health, the<br />

measurement o f trace elements w ill be predominant.<br />

The m ajority o f the work with b io lo g ic a l media in neutron activation<br />

analysis has been concerned, from early days [ l , 2 ] , with evaluation o f the<br />

role o f trace elements in b io lo g ic a l metabolism and th eir relationship with<br />

deficien cy diseases and to x ic ity e ffe c ts . Schwarz has recen tly indicated<br />

[ 3] the elements which are lik e ly to come under consideration fo r essen tiality<br />

and thus require determination in b io lo g ic a l m atrices, table I . From<br />

a bibliogra p h ical survey compiled by J. De Donder [Ч-] , using published<br />

335


336 SPYROU<br />

TABLE I. TRACE ELEM ENTS UNDER CONSIDERATION FOR<br />

ESSENTIALITY IN THE MAMMALIAN ORGANISM AND THE NUMBER <strong>OF</strong><br />

REFERENCES IN NEUTRON ACTIVATION ANALYSIS ASSOCIATED WITH<br />

THEIR DETERMINATION (TO 1968)a<br />

Bulk<br />

elements<br />

Essential<br />

trace<br />

elements<br />

(1972)<br />

H<br />

4/16<br />

S<br />

37/146<br />

F<br />

21/121<br />

Cu<br />

168/647<br />

С<br />

10/102<br />

Cl<br />

103/313<br />

Si<br />

15/185<br />

Zn<br />

127/357<br />

N<br />

22/102<br />

К<br />

61/173<br />

V<br />

58/190<br />

Se<br />

59/187<br />

0<br />

64/84<br />

Ca<br />

58/148<br />

Cr<br />

57/257<br />

Mo<br />

49/207<br />

Na<br />

134/381<br />

Mn<br />

144/452<br />

Sn<br />

12/85<br />

Mg<br />

37/121<br />

Fe<br />

78/325<br />

I<br />

64/145<br />

P<br />

91/256<br />

Co<br />

96/416<br />

Under Li Be В Al Ti Ge As<br />

sp ecial 1/55 0/87 6/111 45/128 20/99 2/27 113/433<br />

Br Rb Sr Ag Cd Sb Cs<br />

95/205 47/116 64/140 38/256 36/161 63/335 32/109<br />

Ba W Au Hg Pb Ni<br />

47/139 29/189 84/344 69/146 3/34 27/217<br />

« e ffe c ts demonstrated 1972<br />

figures indicate the numbers o f references the element has been<br />

determined in a b io lo g ic a l matrix to that in a ll other matrices.<br />

sources up to 1968, the number o f references associated with these elements<br />

in b io lo g ic a l and other matrices have been counted and included in the same<br />

table. Table li a shows a more recent survey (1969-1971), presented by<br />

Bowen [5 ], o f papers on activation analysis in Biology and table lib gives<br />

a breakdown o f these in to the number o f elements studied per paper.<br />

In the period 1969 to 1972, as we have reported elsewhere [6] , 27<br />

p r o je c ts , varying in length from a term 's work to over three years, have<br />

been carried out by our students ; these can be divided into subjects as<br />

shown in table I I I . A sim ilar pattern emerges, in a wider context, when<br />

irradiation c e r t ific a t e s , issued at the University o f London Reactor Centre<br />

over the past six years, are examined (see table IVa). The upsurge in the<br />

use o f irradiation f a c i lit ie s at the Reactor Centre fo r activation analysis<br />

(as opposed to say radiation damage stu d ies), has created a demand which,<br />

despite plans fo r another fast irradiation tube, may be d if fic u lt to meet<br />

i f a substantial proportion o f the time available fo r in -core irradiations<br />

continues to be allocated to "long irra d ia tion s". This surprisingly to me<br />

is the trend as seen in table IVb. The need fo r neutron irradiation<br />

fa c i lit ie s w ill not diminish. Therefore, we have decided to concentrate<br />

our e ffo r ts in measuring quantitatively sh ort-lived isotopes o f the elements<br />

o f in te re st, wherever p ossib le. This suggests the closer examination o f<br />

both rapid radiochemical and instrumental techniques o f analysis. We have<br />

gravitated p referen tia lly towards the la tte r and one facet we are in the<br />

process o f investigating [7] further is the technique o f c y c lic activation<br />

[8 ,9 ].


<strong>IAEA</strong>-SM-170/3<br />

T A B L E lia . A C T IV A T IO N A N A L Y SIS IN B IO L O G Y , 196 9-1971<br />

Subject No. o f papers<br />

Animal tissu es • 47<br />

Plant tissu es 18<br />

Toxicology 9<br />

C lin ica l Medicine 9<br />

In vivo analysis 3<br />

Biochemistry 4<br />

Reviews 3<br />

Content o f 71 papers<br />

TABLE lib . NUMBER <strong>OF</strong> ELEMENTS STUDIED PER PAPER<br />

No. o f elements 0 1 2 3 4-24 to ta l<br />

No. o f papers 3 44 10 2 12 71<br />

TABLE III. NUMBER <strong>OF</strong> PROJECTS IN NEUTRON ACTIVATION A T<br />

THE UNIVERSITY <strong>OF</strong> SURREY (1969-1972)<br />

Subject No. o f p rojects<br />

Basic neutron physics 2<br />

Instrumentation 3<br />

Dosimetry 3<br />

Industrial m aterial analysis 3<br />

Geology survey 2<br />

Environmental p ollu tion (a ir + water) 2<br />

Trace elements in food 3<br />

Toxicology 1<br />

Mammalian (tis s u e , blood , excreta) 8<br />

Total 27<br />

337


338 SPYROU<br />

TABLE IVa. NUMBER <strong>OF</strong> IRRADIATION CERTIFICATES ISSUED<br />

BETW EEN 1967-1972“ AT THE UNIVERSITY <strong>OF</strong> LONDON REACTOR<br />

CENTRE<br />

Year_______________ 1967 1968 1969 1970 1971 1972 to ta l<br />

No. o f Irradiation 8 11 9 34 70 71 203<br />

C ertifica tes<br />

No. in B iologica l 3 2 1 11 24 29 70<br />

Work<br />

% in B iolog ical Work 37 18 11 32 34 41 34.5<br />

a Year ending January 1973<br />

TABLE IV b. DISTRIBUTION <strong>OF</strong> IRRADIATIONS REQUIRING LONG AND<br />

SHORT PERIODS 1971 and 1972<br />

Long irradiation s >_ 1 day or 8 hours ; short irradiation s


<strong>IAEA</strong>-SM-170/3 339<br />

At th is stage most students have colla ted th eir own reference manual<br />

from the above and other sou rces, fo r ease o f a c c e s s ib ility to the relevant<br />

nuclear data. Such a document would then, p ossib ly, include (assuming<br />

gamma-ray spectrometry):<br />

(a) Tabular (or graphical) distribu tion o f radioisotopes with increasing<br />

h a lf - lif e ( t l ) ,<br />

(b) Tabular (or graphical) d istribu tion o f radioisotopes with increasing<br />

gamma-ray energy (E y), and usually<br />

(c ) A nomogram (or nomograph) [1 6 ,1 7 ], fo r the calcu lation o f saturation<br />

a c tiv itie s o f each isotop e, achieved a fter thermal neutron<br />

irradiation .<br />

(Note: graphical distribu tion s o f (a ) and (b) have on occasion been very<br />

e ffe c tiv e in indicating quickly whether "bunching" and "in terferen ce" from<br />

other radionuclides occurs in the areas o f in t e r e lt .)<br />

However, i t is fe l t th at, with some m odification in parameters, (a ),<br />

(b) and (c ) can be combined into one table (or fig u re) which would cut out<br />

a lo t o f cross-referencin g when fin er d e ta il is not required. The fir s t<br />

steps towards th is have been taken by A liev et a l [18] where the d istribu ­<br />

tion o f radionuclides is p lotted on a x E^. frame o f reference (this<br />

combines (a) and (b )).<br />

To introduce the third parameter we shaid go to the equation<br />

representing the observed disintegration rate o f a radion u clide, after<br />

neutron irra d ia tion ,<br />

D = ефгп,<br />

N f r, -Ati-, r -Xtw -X(tw + tc)-.<br />

о U - e j [e_____ - e____________ J_<br />

A 0 Xtc<br />

where:<br />

e is<br />

Ф is<br />

" - 1 )<br />

m is<br />

No is<br />

f is<br />

A is<br />

atom)<br />

a is<br />

X is the decay constant o f the nuclide ( s '1 )<br />

t i is the irradia tion time (s)<br />

tw is<br />

COI<br />

tc is<br />

N f<br />

and £ = —— a(cm2 g- -*-) is the macroscopic cross-section o f the target<br />

nuclide (or equivalent to the saturation a ctiv ity per unit mass,<br />

per unit flu x fo r a 100% e ffic ie n t d etector).<br />

The parameter £ is not usually tabulated, the reasons are obvious when one<br />

considers the variation o f reaction cross-section with neutron energy and<br />

therefore the necessary correction to be made fo r the particular neutron<br />

spectrum used in the irra d ia tion . A liev et a l. do compute a macroscopic<br />

cross-section fo r thermal neutrons (2200 ms~l) fis s io n neutrons and 14 MeV<br />

neutrons.


T A B L E V a. IS O T O P IC SE N SITIVITIE S FOR E L E M E N T S IN M A M M A L IA N B L O O D<br />

\ M e V<br />

Ti X<br />

2 \<br />

0.1s - lm<br />

0.02 - 0.04 0.04 - 0.06 0.06 - 0.08 0.08 - 0.1 0.1 - 0.2<br />

190 1 .6 K -9 ) 77mSe 6 .8 8 (-3 )<br />

1 - 10m 82mBr 3 .12(-5 ) 79mSe 5.33C-5) 27Mg 5.0 7 (-7 ) 71Zn 4 .52(-8)<br />

10m - lh 60TnCo 4 .0 8 (-3 ) 113mSn 8 .77(-8)<br />

101Mo 3.02C-5) 81mSe 2 .4 3 (-5 )<br />

lllm Cd 1 .9 9 (-5 ) 123mSn ?<br />

1 - 10h 80твг 4 .15(-3 ) 8°иВг 1.3 8( — 5) 71mZn 4 .22(-8 )<br />

199mHß 2 .8 7 (-6 ) 125mSn 4 .0 9 (-5 )<br />

10h - Id 42K 2 .87(-5 ) 197mHg 2 .15(-4 )<br />

1 - lOd<br />

"M o 1 .52(-5 ) 197Hg 2 .3 И -3 ) **7Ca 2 .53(-7 ) 99Mo 5 .3 2 (-5 )<br />

197Hg 2 .5 6 (-4 )<br />

10 - lOOd 59Fe 1 .2 0 (-6 ) 117mSn 3 .77(-6 )<br />

? indicates data incomplete or only rela tiv e in ten sity known, * isotope produced by reaction other than (n ,y)<br />

S en sitivity is followed by the power o f ten in parenthesis<br />

When more than one gamma-ray for the same isotope fa lls in the same box, the most intense is always quoted.


T A B L E V b . IS O T O P IC SEN SITIVITIES F O R E L E M E N T S IN M A M M A L IA N B L O O D<br />

v \<br />

MeV<br />

0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8 - 1.0<br />

0 .ls-lm 20711^ * 38mCl 2 .0 8 (-5 )<br />

10m-lh<br />

l-10h<br />

71Zn 6 .53(-8 ) 88Se ?<br />

125mSn 4 .0 9 (-5 ) 205Hr ?<br />

81 Se 1 .0 9 (-5 ) lllm Cd 6 .2 4 (-5 )<br />

83Se 2 .90(-6 ) 199mHg 8 .1 2 (-7 )<br />

71mZn 4 .4 0 (-7 ) 117mCd 2.1 9(-6)<br />

93raMo 3 .46(-6)<br />

71Zn 6 .53(-7 )<br />

86n>Rb 3.0 5(-4)<br />

81 Se 6 .0 4 (-6 ) 128I 4 .1 2 (-3 )<br />

101Mo 1.81( — 5) 128I 4 .12(-4)<br />

101Mo 2.54C-5)<br />

10h-ld 69mZn 1 .2 8 (-4 ) 197mHg 3.59(-5) 6kCu 1 .17(-2 )<br />

10-100d<br />

99Mo 7 .6 0 (-6 ) 125Sn 3.62(- 11)<br />

115Cd 2 .78(-6 ) 197Hg 1 .92(-5 )<br />

U5Cd 9 .2 8 (-6 ) 203Pb*<br />

51Cr 7 .2 5 (-5 ) 59Fe 1 .41(-7)<br />

82n>Br 1. 56 ( -5 )<br />

83mse ?<br />

80Br 2 .6 9 (-3 )<br />

81 Se ?<br />

101Mo 1 .33(-5 )<br />

128I 5 .8 9 (-5 )<br />

107Cd 3.6 6(-5) 71mZn 3,0 4 (-7 )<br />

**7Са 2 .0 0 (-8 ) 115Cd 4 .6 4 (-5 )<br />

82Br 7.36C-4) 115Cd 1 .2 K -4 )<br />

99Mo 9 .12(-5 ) 198Au 2 .8 7 ( - l)<br />

125Sn 4.82C-11) 203Pb*<br />

107Cd 5 .23(-8)<br />

82Br 9 .2 5 (-4 )<br />

^98Au 3 .0 2(-3)<br />

20 3Pb*<br />

27Mg 5 .6 4 (-5 )<br />

71Zn 1 .5 K -7 )<br />

■ 80Br 1.15(-5 )<br />

81 Se 4 .0 3 (-6 )<br />

88Rb 3.06(-5 )<br />

101Mo 1 .8 K -5 )<br />

56Mn 1 .44(-1 )<br />

71mZn 3 .7 5 (-8 )<br />

lt7Ca 2.00 ( - 8 )<br />

82Br 2 .7 9 (-4 )<br />

125Sn 1 .81(-10)<br />

2Q3Hg 2 .7 6 (-4 ) 1J5mcd 1 .92(-7 ) U5raCd 1.18C-6)


T A B L E V c . IS O T O P IC SENSITIVITIES F O R E L E M E N T S IN M A M M A L IA N B L O O D<br />

'\MeV<br />

Ti \<br />

2 X<br />

1.0 - 1.2 1.2 -. 1.4 1.4 - 1.8 1.8 - 2.5 >2.5<br />

0 .ls-lm 207mPb* 190 9 .5 K -1 0 ) 20F 3 .1 7 (-4 ) 16N 3 .7 7 (-ll)<br />

l-10m<br />

27Mg 2 .4 8 (-5 ) 66Cu 5.00С-Ц).<br />

52V 5 .7 8 (-2 ) 8 3mSe 9 37S 3 .4 6 (-7 )<br />

71Zn 6.53С — 8) 83mSe ?<br />

82mBr 9 .3 6 (-8 )<br />

“♦^a 2. 72(-5 )<br />

10m-lh<br />

l-10h<br />

101Mo 3 .0 2 (-5 )<br />

101Mo 1.33(—5)<br />

50mCo 4 .8 5 (-4 )<br />

80Br 1 .92(-5 )<br />

88Rb 3 .23(-6 )<br />

38C1 1 .0 7 (-3 )<br />

101Mo 1.3 3( — 5 )<br />

71mZn 1 .87(-8) 31Si 4 .6 4 (-8 ) 117mCd 7 .3 K -7 )<br />

10h-ld 24Na 3 .4 K -3 )<br />

ld-10d<br />

82Br 3.2 3(-4) 125Sn 1 .6 9 (-9 )<br />

198Au 6 .04(-8)<br />

6l*Cu 1 .5 4 (-4 )<br />

1*7Ca 2.57C-7)<br />

82Br 2 .90(-4)<br />

10-100d 59Fe 2.39C-5) 86Rb 1 .7 9 (-4 ) 59Fe 1.88C-5)<br />

93mMo 5 .97(-6 )<br />

38C1 7 .1 5 (-4 )<br />

88Rb 4 .95(-5 )<br />

101Mo 1 .8 K -5 )<br />

56Mn 2 .19(-2 )<br />

117mCd 1 .83(-6 )<br />

49Са 3.06(-6)<br />

88Rb 2.47C-6)<br />

88Rb 5.42C-5)<br />

88Rb 7 .54(-7 )<br />

56Mn 1 .4 6 (-3 )<br />

**2K 2 .8 7 (-3 ) “ 2K 7.98C-6) 21*Na 3 .4 K -3 )<br />

82Br 1 .90(-4)<br />

125Sn 1 .69(-11)<br />

125Sn 7 .2 3 (- ll)<br />

82Br ?<br />

125Sn 6 .03(-12)<br />

342 SPYROU


<strong>IAEA</strong>-SM-ИО/З 343<br />

TABLE VI. ELEM ENTS PRESENT IN MAMMALIAN WHOLE BLOOD [19]<br />

INCLUDING NON-ESSENTIAL ELEMENTS WITH TOXIC E F F E C T S ,<br />

SOMETIMES FOUND IN BIOLOGICAL MEDIA<br />

Bulk 0 С H N Cl S Na<br />

.-1<br />

mgl 775000 94200 98000 33000 2900 2040 1990<br />

Bulk К P Ca Mg<br />

-1<br />

mgl 1690 370 62 41<br />

Trace Fe Zn Si Cu Other Br Rb<br />

>mgl 1 475 6.5 4.0 1.07 >mgl 4.6 2.7<br />

Trace I Mn Mo Со Cr V F<br />

-1<br />


T A B L E V II. D A T A F O R T H E R M A L N E U TR O N A C T IV A T IO N A N ALYSIS: AN E X A M P L E<br />

Isotope f% a(barns) £(cm2g 1 ) Daughter T t<br />

2<br />

58Fe<br />

26<br />

59Co<br />

27<br />

E (keV)<br />

Y<br />

0.33 1.2 4 .2 7 (-5 ) 59Fe 45d 143<br />

; 100 19<br />

18<br />

1 .9 4 (-1 )<br />

6 0mCo<br />

99%J-<br />

60Co<br />

Note: Only (n ,y) reactions have been considered<br />

10.47m<br />

5.258a<br />

Eg is the internal conversion electron energy<br />

192.5<br />

335<br />

1098.6<br />

1291.5<br />

58.5<br />

1332.4<br />

1173.1<br />

1332.4<br />

=1 %<br />

Y<br />

0.8<br />

2.8<br />

0.3<br />

56<br />

44<br />

2.1<br />

0.25<br />

100<br />

100<br />

S Y<br />

3.42(-7)<br />

1. 20 ( - 6. )<br />

1 .4 K -7 )<br />

2. 39 (--5 )<br />

1 .88(-5 )<br />

4 .0 8 (-3 )<br />

4.85C-4)<br />

Ee (keV)<br />

I and Ie are the approximate absolute in te n sitie s o f gamma-rays and conversion electrons<br />

S e n sitiv ities fo r gamma-spectrometry, S , are not calculated fo r "long liv ed " isotop es.<br />

51<br />

58<br />

~T 9-<br />

- V<br />

86<br />

19


<strong>IAEA</strong>-SM-ПО/З 345<br />

The follow ing points have been taken into account in drawing up the<br />

data sheets fo r the radionuclides formed by neutron capture.<br />

( i ) The tables are fo r (n,y) produced radionuclides and the thermal<br />

neutron cross-section s quoted are fo r neutrons with a v elocity o f<br />

2200 ms- 1 , unless otherwise indicated.<br />

( i i ) The main gamma-ray energies o f the radionuclide as w ell as those o f<br />

less intense gamma-rays are lis te d and the c r ite r ia fo r inclusion o f<br />

a particular gamma-ray energy is it s iso to p ic s e n s itiv ity , S, and<br />

it s p osition in the Ey x tJ frame o f reference. (Under certain<br />

conditions the signal to background ra tio may be more favourable<br />

fo r the less intense gamma-ray.)<br />

( i i i ) Although we expect the data to be used with Ge(Li) and Nal d etectors,<br />

the recent emergence o f low-energy photon detectors has allowed us<br />

to include certain energies which may be more suitably measured by<br />

the la tte r thus extending the range o f instrumental a n aly sis,<br />

despite sp ecia l requirements in the preparation o f samples to overcome<br />

self-a b sorp tion . (Perhaps one should sta rt constructing tables<br />

for low energy gamma-rays and X-rays arisin g from neutron<br />

a c tiv a tio n .)<br />

(iv ) Due to reasons set out in the in trodu ction, very lon g-liv ed isotopes<br />

are excluded unless the product o f iso to p ic s e n s itiv ity , corrected<br />

fo r saturation, and concentration in the b io lo g ic a l matrix is<br />

s ig n ific a n t.<br />

(v) Gamma-rays o f radioactive species with unknown in ten sities or only<br />

rela tiv e in ten sities are i f considered important clea rly id e n tifie d ,<br />

otherwise they are excluded.<br />

The follow ing references were used fo r the compilation in addition to<br />

[11] , [12] , [14] and [18]:<br />

(a) Neutron A ctivation Analysis by D. De. Soete et a l. [20]<br />

(b) ( i ) Table o f p rin cip al gamma-rays from radioactive species.<br />

( i i ) Table o f radioactive species arranged according to h a lf - lif e .<br />

Both lis te d by Tannila and Kantele [2 l] , [22].<br />

The format o f the information required fo r neutron activation analysis is<br />

illu stra te d in table VII. Here only iron and cobalt are used as examples.<br />

Tables V a,b and с indicate on a Ey x rl matrix th.e radioactive species<br />

formed and th eir is o to p ic s e n s it iv it ie s . Finally in table VIII we have<br />

lis te d those radioactive isotopes which emit internal conversion electrons.<br />

The reason fo r th is is tw ofold: (1) th is provides an alternative spectro-<br />

metric method o f measuring radioactive species and (2) since some gamma-ray<br />

in ten sities are in d ire ctly determined from the measurement o f the internal<br />

conversion e le ctro n s, th is may highlight an area fo r improvement in the<br />

search fo r greater accuracy in the data. We have measured with a modest<br />

s ilic o n , lithium d rifte d , semiconductor detector o f 50 mm2 sen sitive area<br />

and thickness 3 mm, low le v e l a c tiv itie s o f 137Cs on f i l t e r paper down to<br />

about 8pCi fo r a 30 hour run [23] , which compares very favourably with more<br />

complex Ge(Li) -Nal coincidence systems.<br />

Discussion :<br />

Although the introduction o f isoto p ic s e n s it iv it y , S, w ill fa c ilit a te<br />

the reading o f nuclear data in activation a n alysis, the lo g ica l extrapolation<br />

is to replace th is fa cto r by a detection lim it fo r each gamma-ray


346 SPYROU<br />

TABLE VIII. ISOTOPES EMITTING INTERNAL CONVERSION<br />

ELECTRONS. (ELEMENTS IN TABLE VI ONLY CONSIDERED WITH<br />

tj < lOOd)<br />

Isotope Tl 3<br />

Ee(keV) Ie% Isotope Tn 2<br />

Ee(keV) Ie%<br />

51 Cr 27. 8d 315 4<br />

69raZn 13. 7h 429 5 123mSn 40. 3m 130 ?<br />

77mSe 17.7s 148 40<br />

160 10 198Au 2 .696d 329 3<br />

79raSe 3. 5m 83 63 398 1<br />

95 22 197mHg 23.8h 51 21<br />

8imSe 57m 90 72 82'<br />

102 20 120<br />

8 0mBr 4 .42h 24 58 197Hg 64. lh 64 ?<br />

36 ? 74 ?<br />

47 ? 19 9mHg 43m 75 21<br />

®2mßr 6.1m 33 80 144'<br />

44 35 285<br />

93mMo 6 .95h 244 29 354<br />

261 10 2°3Hg 46.6d 194 13<br />

1 0 °тм о 14.6m 170 9 264 5<br />

11lmcd 48.6m 123 50 ' 275<br />

146 24 гозрь* 52'. lh 193 14<br />

? eith er in su fficie n t data or only rela tiv e in ten sities known<br />

* isotope produced by reaction other than (n,-y)<br />

52<br />

36<br />

264 3<br />

energy o f the radionuclides in question. There are various interpretations<br />

o f the term detection lim it [24] but none should be considered unless the<br />

background matrix due to gamma-rays from other radioactive species present<br />

(and other gamma-rays from the same radionuclide) are taken into account.<br />

The main background matrix when measuring trace elements in b io lo g ica l<br />

samples (blood , urine, tissu e e t c .) arises from the radiations o f sodium and<br />

chlorine (to a lesser extent from phosphorus). These bulk elements have<br />

concentrations in b io lo g ic a l samples which are w ell known. "Background<br />

spectra" (eith er generated by computer or recorded in a p ra ctica l situ ation )


<strong>IAEA</strong>-SM- ПО/З 347<br />

TABLE IX . DETECTION CHARACTERISTICS <strong>OF</strong> A 100 cm 3 G e(Li) AND<br />

A 7. 5 cm BY 7. 5 Nal (TI) INSIDE A 15 cm STEEL SHIELD<br />

Characteristic Energy<br />

Resolution<br />

(keV)<br />

Absolute<br />

Efficiency<br />

Background<br />

500-2500 keV<br />

Minimum<br />

Detectable<br />

Activity<br />

Ge(Li) 662 keV 2.2 0.014 108 counts 9.5 cpm<br />

1333 keV 2.8 0.0071 24 counts 14.5 cpm<br />

Nal(Tl) 662 keV 49 0.118 9920 counts 10.5 cpm<br />

1333 keV 99 0.063 3600 counts 12.1 cpm<br />

tc = 600 minutes and precision 0.2<br />

can then be constructed, for the specific irradiation and counting<br />

conditions, and used for the determination of detection limits. A useful<br />

definition for the latter is the one suggested by Walford and Gilboy [25]<br />

called the minimum acceptable activity which is that source activity which<br />

just allows the desired precision to be achieved in a given counting time.<br />

The quantity is obviously both background dependent and energy dependent.<br />

This can be seen in table IX where a 100 cm^ Ge(Li) and a 7.5 cm dia by<br />

7.5 cm Nal(Tl) are compared, albeit for a low level counting experiment<br />

inside a 15 cm steel shield with long counting times, 600 min, and 0.2<br />

precision. (Precision is defined as the ratio of the standard deviation<br />

of the net peak counts of interest to the net peak counts.) This result<br />

applies only to isolated peaks on a smooth background continu and any<br />

increase in spectral complexity or variation of background matrix with<br />

time would alter significantly the value of minimum acceptable activity.<br />

Conclusions :<br />

In conclusion therefore the following points are made :<br />

(i) University students are being trained in techniques of activation<br />

analysis because application of these has become common in biomedical<br />

and environmental fields. There is a need therefore for a manual<br />

which incorporates the salient features of present publications in a<br />

more accessible form. This publication must be directed at the user<br />

who is not interested in nuclear data per se.<br />

(ii) Economic necessity demands the determination of elements, wherever<br />

possible, by the measurement of short-lived isotopes. Long<br />

irradiations and handling will still be necessary and important in<br />

specific areas of research but for routine analyses one must be<br />

realistic and set practical detection limits and turn-around times<br />

for each sample.<br />

(iii) The sensitivity factor has been calculated here for a small number of<br />

isotopes undergoing (n,*y) reactions. Sensitivities for other neutron<br />

reactions and other neutron energies should be computed wherever<br />

these are significant.


348 SPYROU<br />

(iv) Detection limits for less intense radiations may be lower than for<br />

those for the main radiation energy. Thus it is important to have<br />

accurate data for absolute intensity of both gamma-rays and internal<br />

conversion electrons.<br />

(v) A likely development in the future with the advent of mini-reactors,<br />

greater quantities of 252Cf and larger numbers of accelerating<br />

machines used in hospitals is the provision of routine analytical<br />

services by regional hospital centres. Here with a section<br />

specifically treating the activation analysis of biological samples a<br />

manual of the type mentioned above will come into its own.<br />

Finally it is to examine, amongst other things, such topics that a<br />

<strong>Nuclear</strong> Activation Group is being formed in the U.K., constituted of<br />

members from universities, medical schools and other institutions of<br />

higher education.<br />

Acknowledgements : ^<br />

I would like to thank my colleague, Dr. W.B. Gilboy, for his willingness<br />

to be drawn into lengthy discourses and his critique of the work; Mr.<br />

G. Burholt, Reactor Manager, for supplying the reactor users' raw data of<br />

the University of London Reactor Centre ; and all the students, too numerous<br />

to mention, who one way or another influenced the content of this paper.<br />

References :<br />

[1] SMALES, A.A., Neutron activation analysis, Symposium on Trace<br />

analysis, New York Academy of Medicine, ed. J.H. Yoe and J.H. Koch,<br />

John Wiley and Sons, Inc. (1955).<br />

[2] MEINKE, W.W., Trace element sensitivity: comparison of activation<br />

analysis with other methods, ibid.<br />

[3] SCHWARZ, K., The role of trace elements in health and disease<br />

processes in man and animals, <strong>IAEA</strong> Symposium on <strong>Nuclear</strong> Activation<br />

techniques in the Life Sciences, Bled, Yugoslavia (April, 1972).<br />

[4] DE DONDER, J., Bibliographical Survey of Neutron Activation Analysis,<br />

Chapter 12, Neutron Activation Analysis - D. De Soete, R. Gijbels and<br />

J. Hoste, Wiley-Interscience (1972).<br />

[5] BOWEN, H.J.M., The biochemistry of trace elements, <strong>IAEA</strong> Symposium on<br />

<strong>Nuclear</strong> Activation techniques in the Life Sciences, Bled, Yugoslavia,<br />

(April, 1972).<br />

[6] GILBOY, W.B. and SPYROU, N.M., Applications of Neutron Activation<br />

Analysis, Reactor Technology and Training Conference, University of<br />

Aston, Birmingham (April, 1972).<br />

[7] OZEK, F., Cyclic activation and its applications, M.Sc. thesis,<br />

University of Surrey (January, 1973).<br />

[8] CALDWELL, R.L. , MILLS, W.R. , ALLEN, L.S., BELL, P.R. and HEATH, R.L.,<br />

Science, 152, 457 (1966).<br />

[9] CALDWELL, R.L., MILLS, W.R. and GIVENS, W.W., <strong>Nuclear</strong> Instruments<br />

and Methods, jtö, 95 (1969).


<strong>IAEA</strong>-SM-170/3 349<br />

[10] SEELMANN-EGGEBERT, W., PFENNIG, G. and MÜNZEL, H., Chart of the<br />

Nuclides, Der Bundesminster für Wissenschaftafliche Forsehung, Bonn,<br />

2nd edition (1968).<br />

[11] LEDERER, C.M. , HOLLANDER, J.M. and PERLMAN, I., Table of Isotopes,<br />

Sixth edition, John Wiley and Sons, Inc. (1968).<br />

[12] KOCH, R.C., Activation Analysis Handbook, Academic Press (1960).<br />

[13] HEATH, R.L., Scintillation Spectrometry, gamma-ray spectrum<br />

catalogue, Vols. I and II, 2nd edition, USAEPCRep,ID0-16880-l, (1964).<br />

[14] STEHN, J.R. et al., Neutron Cross Sections, USAEAC Rep. BNL-325,<br />

2nd edition (1965).<br />

[15] CROUTHAMEL, C.E. , Applied gamma-ray spectrometry, Pergammon Press,<br />

Oxford, 1960; 2nd edition by F. Adams and R. Dams, 1970.<br />

[16] FREILING, E.C. , Nomogram for radioactivity induced in irradiation<br />

Nucleonics, Nucleonics, _18, 12 (1966).<br />

[17] ROUTTI, J.T. , Graphical technique for estimating activity levels<br />

produced in thermal and fission neutron irradiations, Analytical<br />

Chemistry, 40, 3, p.593, (March, 1968).<br />

[18] ALIEV, A.I., et al. Handbook of <strong>Nuclear</strong> <strong>Data</strong> for Neutron Activation<br />

Analysis, Israel Program for Scientific Translations, Jerusalem (1970).<br />

[19] BOWEN, H.J.M., Trace elements in biochemistry, Academic Press (1966).<br />

[20] DE S0ETE, D., et al., Neutron Activation Analysis, Vol. 34 on<br />

Chemical Analysis, ed. P.J. Elving and L.M. Kolthoff, Wiley--<br />

Interscience C1972).<br />

[21] TAMILA, 0., and KANTELE, J. , Table of Principal Gamma-rays from<br />

Radioactive species, University of Jyväskylä, Research Report<br />

3/1969 (August, 1969).<br />

[22] TAMILA, 0., and KANTELE, J. , Table of Radioactive Species,<br />

Increasing half-life, University of Jyväskylä, Research Report,<br />

2/1969 (February, 1969).<br />

[23] LAMBERT, R.A. and GILB0Y, W.B., private communication.<br />

[24] CURRIE, L.A., Limits for qualitative detection and quantitative<br />

determination, Analytical Chemistry, 40, 3, (.March, 1968).<br />

[25] WALFORD, G., and GILB0Y, W.B., Fundamentals of sensitivity limits<br />

in low level counting, International Conference on the Natural<br />

Radiation Environment II, Houston, Texas (August, 1972).


LES CONSTANTES NUCLEAIRES<br />

DANS LES PHARMACOPEES<br />

Leur utilité pour la normalisation<br />

des substances pharmaceutiques<br />

Y. COHEN<br />

CEA, Centre d’études nucléaires<br />

de Saclay, France<br />

Abstract-Résumé<br />

<strong>IAEA</strong>-SM-170/70<br />

NUCLEAR C O N S T A N T S IN PHARMACOPOEIAS; THEIR USEFULNESS IN T H E S TA N D A R D IZ A TIO N <strong>OF</strong><br />

PHARM ACEUTICAL SUBSTANCES.<br />

The radioelements administered to man are considered by national and international authorities<br />

(Council of Europe, World Health Organization) to be medicinal preparations. As such, they appear in<br />

national, regional and international pharmacopoeias under the heading "radiopharmaceutical substances".<br />

The preparation of monographs by groups comprising physicists, doctors and pharmacists has shown that it<br />

is often necessary to refer to precise nuclear constants, for pharmacopoeias are acquiring regulatory and<br />

legislative force, whereby they may be quoted in courts of law. Mention is made in such monographs of<br />

national radioactivity metrology laboratories which provide standards to which reference is made in the<br />

standardization of "radiopharmaceutical substances" as regards the radionuclide purity, concentration of the<br />

principal radionuclide and radioactive concentration. These monographs indicate the radioactive half-life,<br />

the nature of the radioactive emissions and the most characteristic radiations (with their energies). They<br />

also indicate what parasitic radionuclides accompany the principal radionuclide and establish upper limits<br />

for the concentration of such parasites. Such information requires the establishment of tables of generally<br />

accepted nuclear constants, which will be possible only if metrology laboratories collaborate. Such<br />

laboratories could furnish the authors of monographs with physical data for inclusion in the pharmacopoeias<br />

when periodic revisions are made. A standardization of nuclear constants and co-ordination of the work of<br />

different laboratories would be useful in the case of all radionuclides.<br />

LES C ON STA N T ES NUCLEAIRES D A N S LES PHARMACOPEES; LEUR UTILITE POUR LA NOR M ALISATION<br />

DES SUBSTANCES PHARMACEUTIQUES.<br />

Les radioéléments administrés à l'homme sont considérés par les autorités nationales et les instances<br />

internationales (Conseil de l’Europe, Organisation mondiale de la santé) comme des médicaments. A ce<br />

titre, ils sont inscrits aux pharmacopées nationales, régionales ou internationales sous la rubrique de<br />

«substances radiopharmaceutiques». L'élaboration des monographies par des groupes réunissant des<br />

physiciens, médecins, pharmaciens, a montré la nécessité de se référer à des constantes nucléaires précises<br />

car les textes des pharmacopées acquièrent un caractère réglementaire et législatif, susceptible d'une<br />

utilisation devant les tribunaux. Il est fait mention, dans les monographies, de laboratoires nationaux de<br />

métrologie de la radioactivité qui fourniraient les étalons auxquels se référeraient les praticiens lors de la<br />

normalisation des «substances radiopharmaceutiques» quant à la pureté Tadionucléidique, la te n e u T en<br />

radionucléide principal, la concentration radioactive. Les monographies indiquent la période radioactive,<br />

la nature des émissions et les rayonnements les plus caractéristiques ainsi que leur énergie. Elles signalent<br />

les radionucléides parasites qui accompagnent le radionucléide principal et établissent une limite > leur<br />

présence. Ces précisions ne se conçoivent pas sans l’établissement de tableaux de constantes nucléaires<br />

généralement acceptées et dont la mise â jour demande un travail de concertation entre les laboratoires<br />

de métrologie. Ces derniers fourniraient aux rédacteurs des monographies les données physiques qui seraient<br />

alors introduites dans les pharmacopées lors des révisions périodiques. Pour tous les radionucléides une<br />

homogénéisation des constantes nucléaires et une coordination entre les divers laboratoires paraissent utiles.<br />

351


352 COHEN<br />

L es radioélém en ts destinés à l'u sage m éd ica l sont con sid érés com m e<br />

des m édicam ents et à ce titre doivent présen ter des c ritè re s de qualité<br />

définis par le s pharm acopées. C e lle s -c i constituent des recu eils de<br />

m onographies dans lesqu elles sont indiquées les p rop riétés p h y sicochim<br />

iques et les m éthodes de vérifica tion de ce s p rop riétés.<br />

La pharm acopée internationale publiée par l'O rgan isation m ondiale<br />

de la santé, la ph arm acopée européenne rédigée par des groupes de travail<br />

du C on seil de l'E u rop e, les pharm acopées nationales: am éricain e,<br />

britannique, fra n ça ise, e tc......... décriven t p lu sieu rs substances ra d iopharm<br />

aceutiques. On désigne par substance radiopharm aceutique les<br />

m olécu les m in érales ou organiques qui contiennent un ou plu sieu rs atom es<br />

radioa ctifs. A in si, a lo rs que l ' iodure de sodium 131I est un exem ple de<br />

m olécu le m in érale relativem ent sim ple, la séru m -album in e humaine<br />

m arquée à l'io d e rad ioa ctif est une m olécu le organique de grande com plexité.<br />

L 'io d e radioactif devra p résen ter dans le s deux ca s des constantes n ucléaires<br />

identiques, ne pas être souillé par un autre radioisotop e ou m êm e par un<br />

radionucléide de nature chim ique différente.<br />

Nous avons réuni dans le tableau I les substances radiopharm aceutiques<br />

le s plus u tilisées et qui de ce fait ont été in scrites à plu sieu rs ph arm acopées.<br />

T e l est le ca s du chrom ate de sodium 51C r, de la cyanocobalam ine au<br />

cobalt-57 ou 58, du citrate de fe r 59F e , de la sérum -album ine m arquée à<br />

l'io d e -125 ou à l'io d e -1 3 1 , de l'iodohippurate 131I de sodium , du ro se bengale<br />

m arqué à l'io d e -1 3 1 , des solutions d 'io d u r e 125I o u 131I, de la ch lorm érod in e<br />

m arquée au m e rcu re -1 9 7 , du phosphate 32P de sodium et de l 'o r colloïd al<br />

198A u.<br />

L orsqu e l'o n relève dans les m onographies les constantes n ucléaires<br />

citées on en trouve en général deux: la période radioactive et l'én erg ie<br />

du photon gamma le plus ca ra ctéristiq u e. L es ch iffres cités dans les<br />

pharm acopées que nous avons exam inées (tableau II) sont en bonne con cordance<br />

pour le ch rom e-5 1 , le cob a lt-5 7 , le cobalt-58 et l'o r -1 9 8 . On constate une<br />

lé g è re d ifféren ce pour la p ériod e radioactive de l'iod e-1 3 1 qui est de 8, 0 j<br />

ou de 8, 08 j suivant les m on ograph ies, pour le photon gamma le plus<br />

ca ra ctéristiq u e de l'io d e -1 2 5 qui est de 0,028 MeV dans la pharm acopée<br />

européenne et la pharm acopée internationale et de 0, 0355 M eV pour la<br />

ph arm acopée am éricain e U. S. P. XVIII. On observ e égalem ent une légère<br />

d ifféren ce dans l'é n e rg ie m axim ale du rayonnem ent bêta du ph osp h ore-32<br />

qui est de 1, 70 M eV dans la pharm acopée fran çaise et de 1, 71 M eV dans<br />

la pharm acopée am éricain e ainsi qu'une d ifféren ce dans la période ra d io ­<br />

active: 14,2 j pour les pharm acopées britannique et internationale et<br />

14, 3 j pour le s autres.<br />

Il est heureux que le s d iv ers rédacteu rs de pharm acopées se soient<br />

a ccord é s sur le choix des données fou rn ies par la littérature scientifique,<br />

m ais leu rs d ifficu ltés pour réd ig er les nouvelles m onographies sont grandes.<br />

En effet, on trouve dans la littérature au m oins une dizaine de sou rces<br />

différen tes de constantes n u cléa ires qui ne sont pas toujours d 'a cco rd non<br />

seulem ent sur l'én erg ie des rayonnem ents ém is m ais égalem ent sur leur<br />

pourcentage, ce qui explique d 'a illeu rs que les m onographies soient si<br />

d iscrè te s à ce sujet.<br />

La déterm ination d'un sp ectre à p a rtir de la seule donnée de la<br />

m onographie est insuffisante pour iden tifier le radionucléide et a fo rtio ri,<br />

pour re ch erch er le s im puretés radionucléidiques qui peuvent se trou ver<br />

m élangées au radionucléide prin cip al, soit par suite de l'irra d ia tion


T A B L E A U I. R A D IO E L E M E N T S IN SCRITS DANS L E S P H A R M A C O P E E S<br />

Chrome-51<br />

Pharmacopée<br />

britannique<br />

(1968)<br />

Pharmacopée<br />

internationale<br />

(1967 et 1971)<br />

Pharmacopée<br />

européenne<br />

(à paraître)<br />

Pharmacopée<br />

française<br />

(chromate) + + + +<br />

Cobalt-57<br />

(cyanocobalamine) + +<br />

Cobalt-58<br />

(cyanocobalamine) + + +<br />

Fer-59<br />

(citrate) +<br />

Iode-125 (iodure) + + +<br />

sérum-albumine + + +<br />

Iode-131 (iodure) + + + + +<br />

iodohippurate + + + +<br />

sérum-albumine + + + +<br />

rose bengale + +<br />

Mercure-197<br />

chlormérodine +<br />

Or-198 (colloïde) + + + + +<br />

Phosphore-32 (phosphate) + + + +<br />

(1965)<br />

U .S .P .<br />

XVIII<br />

(1970)<br />

<strong>IAEA</strong>-SM-170/70 353


354 COHEN<br />

TABLEAU II. CONSTANTES NUCLEAIRES CITEES DANS LES<br />

MONOGRAPHIES DES PHARMACOPEES<br />

Chrome-51<br />

britannique européenne<br />

Pharmacopées<br />

internationale française U .S .P . XVIII<br />

Période (i) 27, 8 27,8 27,8 - 27, 8<br />

Energie (MeV) y : 0,32 0,32 0,32 - 0,320<br />

Cobalt-57<br />

Période (j) 270 270 270 - 270<br />

Energie (MeV) y ; 0, 122 0, 122 0,122 - 0. 122<br />

Cobalt-58<br />

Période (j) 71 71 71 - -<br />

Energie (MeV) y : 0,51 0,51 0, 51 - -<br />

Iode-125<br />

0,81 0, 81 0, 81 - -<br />

Période (j) 60 60 - 60<br />

Energie (MeV) y : 0, 028 0, 028 - 0, 0355<br />

Iode-131<br />

Période (j) 8, 0 8 ,0 8,08 8 ,0 8,08<br />

Energie (MeV) y : 0, 36 0,36 0,36 0,364 0, 364<br />

Phosphore-32<br />

Or-198<br />

Période (j) 14,2 14,3 14.2 14,3 14,3<br />

Energie (MeV) - e : l t 70 1,710<br />

Période (j) 2 ,7 2,7 2 ,7 2 ,7 2,7 0<br />

Energie (MeV) y : 0,41 0,41 0,41 0,41 0,412<br />

neutronique de la cib le par réaction nucléaire supplém entaire com m e dans<br />

le ca s de l-'or-198 a ssocié à l'o r -1 9 9 , soit p ar insuffisance d 'e n rich is s e ­<br />

m ent de la cible com m e dans le cas du fe r -5 9 a sso cié au fe r-5 5 .<br />

L es données rela tiv es à certain s radion u cléides tel le sélénium -75<br />

m ettent le s réd acteu rs de m onographies dans l'e m b a rra s. A titre d'exem ple<br />

nous avons réuni dans le tableau III le s constantes n u cléaires du m ercu re-1 9 7<br />

et du sélén ium -75, re le v é e s dans «R a d ion u clid es in P harm acology» [1] et<br />

dans «N u cle a r <strong>Data</strong>» [2]. On rem arque une grande d ifféren ce: l'une des<br />

sou rces bibliographiques ne donne pas l'abondance en électron s de con version<br />

interne; l'é n e rg y y et l'abondance en rayonnem ent gamma ne concordent<br />

pas pour le sélén ium -75.


T A B L E A U III. CO N STAN TE S N U C LEAIR E S DU M E R C U R E -1 9 7 E T DU S E L E N IU M -75<br />

Mercure<br />

Période Mode de décroissance<br />

Abondance<br />

Cfr)<br />

Energie y<br />

(MeV)<br />

Abondance y<br />

Référence [ 1] 65 h C . E. 100 0, 077 19,3<br />

(*)<br />

0, 069 74,5<br />

Abondance en électrons<br />

de conversion interne<br />

Référence [ 2] 64 h C . E. 100 0, 077 19,3 80, 7<br />

0, 069 74,5<br />

Sélénium-75 0, 19 0,5 1, 2<br />

Référence [ 1] 120 j C . E. 100 0, 096 3<br />

0,12 15<br />

0 ,1 4 54<br />

0,20 1.5<br />

0,27 56<br />

0,28 23<br />

0,31 1 ,4<br />

0,40 12, 5<br />

Référence [ 2] 120 j C . E. 100 0, 024 0, 03 5 ,6<br />

0, 066 1, 0 0 ,3<br />

o 0, 097 3, 1 2,7<br />

0,121 16,4 0 ,7<br />

0,136 5 5 ,5 1,6<br />

0,197 1,3 0,03<br />

0, 265 5 8 ,6 0 ,4<br />

0. 280 25, 2 0 ,2<br />

0, 304 1.3 0, 1<br />

0,401 12,9<br />

<strong>IAEA</strong>-SM-170/70 355


356 COHEN<br />

On peut pen ser que les travaux de com pilation ont été dans le s deux<br />

ca s m enés très sérieu sem ent et cependant ce s d ivergen ces sont e m b a rra ssantes,<br />

ca r les m onographies nationales ont, le plus souvent, une valeur<br />

juridique contraignante et les données qui y sont in scrites ne devraient pas<br />

p rê te r à discu ssion.<br />

L es pharm acopées font ré féren ce aux la boratoires nationaux de<br />

m étrologie de la radioactivité qui doivent fou rn ir des étalons pour lesqu els<br />

sont p r é c is é e s la pureté radionucléidique et la concentration radioactive.<br />

C es étalons servent à établir la con form ité aux norm es de pharm acopée<br />

des productions co m m e rcia le s de radioélém en ts.<br />

Il serait utile que les m éthodes de m esu re soient m inutieusem ent<br />

d écrites pour quelques radioélém en ts d élicats à d oser et que les lim ites<br />

d 'e r r e u r soient u n iform isées grâce à un com p rom is entre la p récisio n<br />

scientifique et l'u tilisa tion pratique. A ce titre un p rem ier effort pourrait<br />

con sister dans la rédaction d'un ouvrage réunissant les schém as de<br />

d é cro issa n ce , le s sp ectres gamma et les constantes n ucléaires des ra d io ­<br />

élém ents in scrits dans les pharm acopées et ceux dont l'u tilisation m édicale<br />

est m oins fréquente. L 'a ction qui a été en trep rise pour l'a sp e ct chim ique<br />

de la production des radioélém en ts et a conduit à la publication par l'A IE A<br />

de «R a d ioisotop e production and quality con tro l» [3] devrait être étendu<br />

aux constantes n u cléaires. L es ca ra ctéristiq u es ainsi d écrites autoriseraient<br />

un ca lcu l plus p ré cis des d oses d 'irra d ia tion reçu es par les tissu s<br />

biologiqu es lo r s de l'adm inistration des substances radiopharm aceutiques<br />

en vue d'une thérapeutique ou d'un diagnostic.<br />

REFERENCES<br />

[ 1] GLENN, H. J. , LAMB, J. F . , Radionuclides in Pharmacology, Section 78 of the International Encyclopedia<br />

of Pharmacology and Therapeutics (Cohen, Y . , Ed.), Pergamon Press (1971) 949,<br />

[2] <strong>Nuclear</strong> <strong>Data</strong> 131, 5 (1966); <strong>Nuclear</strong> <strong>Data</strong> В 1, 6 (1966).<br />

[3] <strong>IAEA</strong>, Radioisotope Production and Quality Control, TRS No. 128, <strong>IAEA</strong>, Vienna (1971).<br />

DISCUSSION<br />

D.J. HOREN: I would like to make a com m ent and then ask a question<br />

o f D r. Cohen. T his m ight be the appropriate se ssio n in which to point out<br />

that many isotop es used in m edicin e are contained in the com pilation entitled<br />

"R adioactive atom s, A uger ele ctro n s, alpha, beta, gam m a and X -r a y data"<br />

by M.J. M artin and P.H. B lich e rt-T o ft (N uclear <strong>Data</strong>, P art A , J 1 (1970)).<br />

In addition, we have som e other isotopes evaluated in the sam e m anner,<br />

which are not contained in that publication. I can say that we would w elcom e<br />

any inquiries from m ed ica l people on other isotop es which are not so covered ,<br />

as w ell as com m ent on the quality and usefulness o f the tabulations in<br />

question.<br />

My question to D r. Cohen is as follow s: Is there a p roblem in the use<br />

o f these ra d ioisotop es as far as ensuring hom ogeneity o f the actual injected<br />

dosage o f the isotope is con cern ed, i.e. once you have it in the solution?<br />

Y . COHEN: The a ccu ra cy o f the volum e withdrawn from the via l is,<br />

I would say, ±10.


<strong>IAEA</strong>-SM-170/70 357<br />

D.J. HOREN: But does the radioactivity rem ain hom ogeneously<br />

distributed throughout the volu m e? D oes it ever plate on to the w alls o f<br />

the container?<br />

Y . COHEN: With c a r r ie r -fr e e radionuclides you do have a quantity<br />

o f the radion u clides which stick to the w alls o f the con tain er. H ow ever,<br />

a radiopharm aceu tical is fo r the m ost part a com pound to which a c a r r ie r<br />

has been added, so you do not have to cope with this question. A ccord in gly,<br />

the solution is hom ogeneous throughout its volu m e. The p roblem s are,<br />

first, that from one country to another the cu rie does not always r e fe r to<br />

the sam e quantity o f radioactivity. Second, there are a num ber o f ra d io-<br />

nuclidic im purities that can accom pany radioph arm aceu ticals. Third,<br />

the literatu re gives differen t values fo r variou s data. So I think it would<br />

be n ecessa ry fo r the A gen cy to issue a com pilation o f the m ost w idely<br />

accepted data in this field , fo r the use not o f p h y sicists but o f m ed ical<br />

p eop le.<br />

D.J. HOREN: I would agree with this. Such a com pilation would<br />

be a v e ry useful thing.<br />

M . LEDERER: W here data have im portant leg a l im p lication s, or<br />

w here th eir a ccu ra cy is extrem ely im portant, it m ight be useful to devote<br />

a con feren ce (or part o f a con feren ce) to establishing "au th oritative" best<br />

valu es. E xam ples o f ca se s fo r which this has been done are the h a lf-life<br />

o f 14C and the isotop ic abundances o f the elem ents.<br />

Y . COHEN: An exam ple o f the legal im plication s o f scien tific accu ra cy<br />

is the situation which a rise s when som eone applies to the United States F ood<br />

and D rug A dm in istration fo r authorization to use a new radiopharm aceu tical.<br />

The FDA req u ires a ra d iotoxicolog ica l assay, which m eans that he has to<br />

calcu late the d ose d eliv ered to the body. A s P r o fe s s o r K ellersh oh n m entioned<br />

in the presentation o f his paper (IA E A -S M -170/97), this calcu lation is related<br />

exactly to the percen tage and energy o f the g a m m a -rays and electron s being<br />

adm inistered. H ow ever, when the applicant m akes his calcu lation on the<br />

b a sis o f d ifferen t tables, he ends up with differen t resu lts and different<br />

a n sw e rs.<br />

The a ccu ra cy o f data on radiopharm aceu ticals depends on the ra d ionuclide<br />

involved. One p er cent a ccu ra cy, which is quite easy to attain,<br />

is gen erally su fficien t when you have an im purity. But it might happen<br />

that one p er m ille is requ ired (i.e. 0.1% ). This would be the ca se, for<br />

exam ple, with technetium from m olybdenum made from fissio n products.<br />

H ere the need fo r a ccu ra cy is m uch g reater than with technetium made<br />

from irra d iated m olybdenum and not from fissio n prod u cts. The question<br />

is v e ry intricate and there are no sim ple answ ers.


I A£ A-SM-170/92<br />

APPLICATION <strong>OF</strong> NUCLEAR DATA<br />

IN THE PREPARATION <strong>OF</strong> RADIONUCLIDES<br />

FOR USE IN MEDICINE AND BIOLOGY<br />

R. B. R. PERSSON<br />

Radiation Physics Department,<br />

Lasarettet, Lund,<br />

Sweden<br />

Abstract<br />

APPLICATION <strong>OF</strong> NUCLEAR D A T A IN THE PREPARATION <strong>OF</strong> RADIONUCLIDES FOR USE IN MEDICINE<br />

A N D BIOLOGY.<br />

At he <strong>IAEA</strong> Consultants' Meeting held December 11, 1972, at Studsvik, Sweden, nine experts in various<br />

fields of experience gathered in order to exchange information on the application of nuclear data in the<br />

preparation of radionuclides for use in medicine and biology. For reactor-produced radionuclides, it was<br />

concluded that the averaged thermal neutron cross-sections for the production of all useful ràdionuclides are<br />

required with an accuracy within a few per cent. Accurate decay-scheme data are also needed. Furthermore,<br />

cross-section data for the resonance region 5 eV - 1 M e V are not well known for many materials and better<br />

information is required. For radionuclide generators, the main problem is to evaluate the best production-<br />

techniques for the parent radionuclide and to obtain a daughter nuclide with high radionuclidè purity. The<br />

data needs to meet these requirements were discussed. Similar data needs for the production of radionuclides<br />

by accelerators were discussed. Furthermore, it was suggested to use the number of transformations per<br />

particle (R) or its inverse as a standard to express the production yield of radionuclides by charged-particle<br />

reactions. Radionuclide production with fast neutrons and photons was also discussed as well as some general<br />

problems concerning production-parameters, toxicology etc.<br />

1. INTRODUCTION<br />

In preparation fo r the <strong>IAEA</strong> Sym posium on A pplications o f N uclear <strong>Data</strong><br />

in S cien ce and T echnology to be held in P a ris 12 - 16 M arch, 1973, a p re ­<br />

paratory m eeting was held on the 11th of D ecem ber, 1972, at Studsvik,<br />

Sweden.<br />

The o b je ct o f this m eeting was to enable the exchange o f inform ation<br />

on the applications of nuclear data in the preparation of radionuclides fo r<br />

use in m edicin e and biology.<br />

Nine experts in variou s field s of experien ce participated in the m eeting1.<br />

The follow ing su bjects w ere d iscu ssed :<br />

R ea ctor-p rod u ced radion u clides,<br />

G en era tor-p rod u ced radion u clides,<br />

1 Participants:<br />

R. Bergman, Gustaf Werners Institute, Uppsala, Sweden<br />

R. Bodh, AB Atomenergi, Studsvik, Sweden<br />

Y . Cohen, Dept of Radioelements, Saclay, France<br />

H . Condé, Research Institute of National Defence, Stockholm, Sweden (INDC representative)<br />

B. Jung, Radiation Physics Department, Akademiska SjukhuSet, Uppsala, Sweden<br />

B. Persson, Radiation Physics Department, Lasarettet, Lund, Sweden (Scientific Secretary of the meeting)<br />

P. Schmeling, AB Atomenergi, Studsvik, Sweden<br />

K . Svoboda, <strong>Nuclear</strong> Research Institute, Rez, Prague, Czechoslovak Socialist Republic<br />

T . Wiedling, Institute of Neutron Physics, Studsvik, Sweden<br />

359


360 PERSSON<br />

A cce le ra to r-p ro d u ce d radion u clides,<br />

R a dion u clid e-p rod u ction with fast neutrons,<br />

U se o f m ed ical betatrons fo r photon-activation,<br />

Other data im portant fo r the preparation and use o f radionuclides in<br />

m edicin e and biology,<br />

Sum m ary, con clu sion and re q u e sts.<br />

2. R EA CTO R -PRO D U CE D RADIONUCLIDES<br />

The m ost com m only used re a cto r-p ro d u ce d radion u clides fo r m ed ical<br />

and b io lo g ica l re se a rch are 14C, 3H, 32P , 125I, 35S, 131I, 51C r, 59F e, 203Hg,<br />

45Ca and, fo r clin ica l applications, 131I, 125I, 14C, 51C r, 198Au, 133X e, 32P,<br />

3H, 99T cm(99M o), 59F e, 75Se, 58C o, 85Sr, 197Hg, 113Inm, 47Ca.<br />

The follow in g param eters m ust be con sid ered when producing ra d ionuclides<br />

in a rea ctor:<br />

2.1. T arget<br />

It is im portant to know the isotop ic abundance of the different nuclides<br />

in the target. It can som etim es be advantageous to irradia te enriched m aterial.<br />

F o r exam ple n orm al iron has abundances o f 5. 8% 54F e, 91. 7% 56F e,<br />

2.2% 57F e and 0. 3% 58F e. If the F e -ta rg e t is enriched to 98% 54F e , alm ost<br />

pure 55F e can be produced. On the other hand if the target is enriched to<br />

85% 58F e, the 55F e-con tam ination of the 59F e produ ced is only about 5% [1 ] .<br />

2.2. P roduction c r o s s -s e c tio n s and rea ctor-n eu tron sp ectra<br />

The m ost im portant o f the neutron reactions com m only used fo r activation<br />

involve the capture o f a therm al neutron with the coin ciden t em ission<br />

of a gam m a ray. The c r o s s -s e c tio n s at therm al energy o f the (n, 7 ) reactions<br />

are fa irly w ell-know n. The rea ctor-n eu tron spectrum also contains epith<br />

erm al and fast neutrons which often induce nuclear reaction s giving secon d ­<br />

ary p a rticle s other than photons, e.g. 32S (n ,p )32P , 14N(n, p)14C , 40С а(п,й )31А г,<br />

6L i(n ,o )3H fo r which the c r o s s -s e c tio n s are not w ell known.<br />

Thus, fo r radion u clide-p rodu ction in a re a cto r, we need neutron-<br />

reaction c r o s s -s e c tio n s as a function of energy fo r the naturally occu rrin g<br />

isotop es and elem ents, and, in som e ca ses, also fo r radion u clides. A verage<br />

c r o s s -s e c tio n s and yield s fo r rea ctor-n eu tron sp ectra would be helpful as<br />

w ell as inform ation on reson an ce integrals and yields with and without<br />

cadm ium c o v e r s . Inform ation on flu x-d en sity d ep ression co rre ctio n s is<br />

also needed [ 2] . H ow ever, the accu ra cy in the calcu lation o f the production<br />

rate is lim ited by uncertainties in the shape o f the rea ctor neutron spectrum<br />

and in the c r o s s -s e c tio n s fo r epitherm al and fast neutrons.<br />

2.3. Side products<br />

T h ere are v ery often reson an ces in the neutron-capture c r o s s -s e c tio n<br />

and inform ation on reson a n ce-stru ctu re is extrem ely im portant from the<br />

standpoint of radionuclide production. F o r exam ple, the 197Au(n, 7 ) 198Au-<br />

reaction has a reson an ce at 5 eV and one can prevent the contam ination<br />

fro m the secon d ary therm al neutron-induced reaction 198Au(n, 7 ) 199Au by<br />

wrapping the target with a cadm ium fo il which absorbs therm al neutrons [ 1 ] .


IAE A-SM-170/92 361<br />

The p roblem s o f secon dary neutron-capture are v ery im portant in the<br />

production of radion u clides. F o r exam ple, in the production o f 125I(60d)<br />

through 124X e(n, 7 )125X e -> 125I, the c r o s s -s e c tio n fo r the reaction<br />

125I(n, 7)126I(14d) is fa irly high 900 b and 126I is an undesirable contam ination<br />

which should be m inim ized. It was rep orted that the production o f 1261<br />

som etim es is unexpectably high which m ay indicate a higher c r o s s -s e c tio n<br />

fo r epitherm al neutrons. Secondary capture reaction s seriou sly lim it the<br />

quality o f many radionuclide products.<br />

3. GENERATOR-PRODU CED RADIONUCLIDES<br />

A ra d ion u clid e-g en era tor is understood to be a system which p eriod ica lly<br />

m akes available a p a rticu lar radionuclide from a parent radionuclide o f<br />

lon g er h a lf-life . About 10-15 such radionuclide gen erators have been<br />

designed and con stru cted fo r use in m edicin e and biology [ 3-6].<br />

The m ost im portant nuclear data fo r production and use o f these<br />

radionuclide gen era tors are:<br />

H a lf-liv es of parent and daughter radion u clides;<br />

D ecay sch em es o f parent and daughter radion u clides;<br />

P roduction c r o s s -s e c tio n fo r parent and in terferin g radion u clides.<br />

N uclear data defining the usefulness of the daughter radionuclide in<br />

question fo r m ed ica l scintigraphy and nuclear m edicin e in gen eral are:<br />

The photon spectru m o f the daughter radionuclide, including both<br />

7 -e n e rg y and em ission ra tes, m ust be suitable fo r good detection with<br />

fixed a n d /o r m ob ile system s. The h a lf-life o f the parent m ust be long<br />

enough in com p a rison with the h a lf-life o f the daughter to p erm it a notably<br />

lon ger use o f the daughter nuclide.<br />

The electron spectrum o f the daughter nuclide m ust be known and it<br />

m ust enable d elivery o f a low absorbed dose to the patient p er unit of<br />

activity.<br />

The follow in g gen erator system s are m ost used at presen t in m ed ical<br />

scintigraphy (daughter parent):<br />

9 9 T c m ( 99M o ) < 1 1 3 I n m ( 113S n )< 8 7 g r m (8 7 Y ) j 68G a ( 68G e ) j 81K r m (81R b ) ,<br />

137B am( 131C s), 132I ( 132T e), 188R e (188W ).<br />

A s an exam ple, 99T c m has the follow ing v e ry favourable nuclear<br />

ch a ra cte ristics fo r u se'in m ed ical scinitgraphy:<br />

The h a lf-life of 6 h is suitable fo r m ost scin tigraphic exam inations<br />

and allow s a daily elution of the gen erator. The gam m a-ray en ergies are<br />

alm ost exclu sively 0.14 M eV (0.1405 (94%) and 0.1426 (6%) which make<br />

99T c m v ery usable) both fo r scanning d evices and gam m a ca m era s. The<br />

decay o f 99T c m through internal transition does not cau se the em ission of<br />

any corp u scu la r radiation except con v ersion and A uger electron s and the<br />

internal con v ersion co efficien t is low : e K = 0. 10. The radiation -absorbed<br />

d ose p er activity unit is th erefore low .<br />

Other exam ples can also be given to point out differen t aspects of the<br />

use o f gen era tor-p rod u ced radion u clides. F o r departm ents o f nuclear


362 PERSSON<br />

m edicin e fa r rem oved from production and distribution cen tres, the half-<br />

life o f 67 h fo r the parent " M o is an im portant disadvantage.<br />

113Inm(Sn) gen erators are m uch m ore suited fo r use in distant areas<br />

becau se the parent 113Sn has a h a lf-life o f 115 days. The n uclear data for<br />

113Inm are not so favourable fo r scintigraphy as fo r 99T c m because o f the<br />

sh orter h a lf-life 99. 8 min and the higher gam m a-energy 0.393 M eV . The<br />

gam m a energy is , how ever, v e ry clo s e to that o f 131I — 0. 364 M eV — so that<br />

the sam e collim a tor and detection equipment can be used fo r both<br />

radion u clides.<br />

The other radioisotop e gen erators are still at developm ent stage and<br />

not w idely used in clin ica l p ra ctice . T heir use is, how ever, in creasin g.<br />

F o r the near future the follow ing gen erator system s w ere suggested:<br />

72A s(72Se), 82R b(82S r), ^ g Y Cd), 191Irm(191O s).<br />

The developm ent and use o f radionuclide gen erators can be based on<br />

standard nuclear tables such as the Table of Isotopes [ 7 ]. The production<br />

para m eters o f m ost of the parent radionuclides are, how ever, not w ell<br />

known. D etailed c r o s s -s e c tio n data and excitation functions fo r different<br />

alternative nuclear reactions fo r production of the parent radionuclides<br />

and eventual contaminants are th erefore greatly needed.<br />

4. CYCLOTRON-PRODU CED RADIONUCLIDES FOR BIOLOGICAL AND<br />

MEDICAL USE<br />

During the past few y ea rs a num ber of cy clotron s have been installed<br />

m ore o r le ss exclu sively fo r b iolog ica l and m ed ica l p u rp oses. S everal<br />

m ed ical, b io lo g ica l and biop h ysical institutions are engaged in p rojects<br />

in which cy clotron s are used fo r radion u clide-produ ction , activation<br />

analysis and ra d iob iologica l re sea rch . The num ber of cyclotron s fo r this<br />

purpose w ill be about 30 by 1975 (Table I) [ 8, 9 ].<br />

The ch a ra cte ristics o f cu rren tly available m ed ical cyclotron s are shown<br />

in T able II [ 9 ]. As can be seen in this table m ost of these cyclotron s a ccelera<br />

te proton s, deuterons and helium ions up to en ergies of 15 - 30 MeV<br />

and se v e ra l have capabilities over 50 M eV . Future con stru ctions w ill<br />

probably also a ccelera te 7L i, 12C, 160 and other heavy ions to useful en ergies<br />

and flu x-d en sities [2].<br />

A sum m ary of cy clotron -p rod u ced radionuclides in cu rren t use are given<br />

in T able III.<br />

T o this lis t can be added a num ber o f radion u clides, which are parents<br />

o f potential ra d ion u clid e-g en e ra to rs.<br />

The use o f heavy ions like 12C and 160 w ill open a quite new and<br />

interesting field fo r both radion u clide-produ ction and activation -an alysis.<br />

A particu la r radionuclide m ay be produced by sev era l differen t reactions<br />

involving p, d, 3He, a, etc. A s an exam ple, 18F can be produced by any<br />

of the follow ing rea ction s:<br />

1. 19F (p ,p n )18F<br />

19F (p, 2n)18Ne ß+ -*■ 18F<br />

2. lsO (p ,n )18F<br />

3. 22N e(p ,on )18F


4. 20N e(p ,tf)18F<br />

5. 160 (a , 2n)18Ne ß+ - 18F<br />

160(


T A B L E I. C Y C L O T R O N S USED IN ISO T O P E P R O D U C T IO N F O R M E D IC A L PU R POSES<br />

U S A<br />

Location Type of machine Manufacturer<br />

1. Washington University Fixed energy 7 .5 M e V D Allis Chalmers 1965<br />

Medical School, St. Louis, M o.<br />

2. Massachusetts General Variable energy D Allis Chalmers 1967<br />

Hospital, Boston, Mass.<br />

3. Sloan-Kettering Institute Fixed energy Cyclotron Corp. 1967<br />

for Cancer Research, New York, N .Y . CS-15<br />

4. Argonne Cancer Hospital, Fixed energy Cyclotron Corp. 1969<br />

Chicago, 111. CS-15<br />

5. New England <strong>Nuclear</strong> Corp., Fixed energy Cyclotron Corp. 1969<br />

Billerica, Mass. CS-22<br />

6. M t. Sinai Hospital, Fixed energy Cyclotron Corp. 1970<br />

M iam i Beach, Florida CS-22<br />

7. University of California Fixed energy Cyclotron Corp. 1971<br />

at Los Angeles, Los Angeles, Calif. CS-22<br />

8. Mediphysics, Fixed energy Cyclotron Corp. 1971<br />

Emeryville, Calif. CS-22<br />

9. University of Southern Califomia-County Fixed energy Cyclotron Corp. 1971<br />

of Los Angeles, Los Angeles, California CS-22<br />

10. Brookhaven National Laboratory, Variable energy Research machine<br />

Upton, N .Y . 60"<br />

11. Donner Laboratory, UCRL, Variable energy Research machine<br />

Berkeley, California 88”<br />

12. N A S A Lewis Research Center, Variable energy Research machine<br />

Cleveland, Ohio 88"<br />

364 PERSSON


T A B L E I. (continu ed)<br />

13. Oak Ridge National Laboratory,<br />

EUROPE<br />

Oak Ridge, Tenn.<br />

14. Hammersmith Hospital,<br />

15.<br />

16.<br />

17.<br />

18.<br />

19<br />

London, Great Britain<br />

Location Type of machine Manufacturer<br />

German Cancer Research Center,<br />

Heidelberg, Fed. Rep. of Germany<br />

<strong>Nuclear</strong> Research Center,<br />

Jülich, Fed. Rep. of Germany<br />

CEA, Department of Biology,<br />

Orsay, France<br />

IK O , Amsterdam and University of Groningen,<br />

Groningen, Netherlands<br />

Medizinische Hochschule Hannover,<br />

Fed. Rep. of Germany<br />

20. Univeristy of Liège, Belgium<br />

21. <strong>Nuclear</strong> Research Institute<br />

Prague, Czechoslovakia<br />

Variable energy<br />

8 6 "<br />

Fixed energy<br />

Fixed energy<br />

Variable energy<br />

MC-20<br />

Production machine<br />

A . E .G . 1972<br />

A . E .G . 1972<br />

(1955)<br />

Thompson-CSF 1971<br />

(Philips)<br />

Scanditronix 1973<br />

Thompson-CSF 1974<br />

CO<br />

UI


TABLE I. (continued)<br />

ASIA<br />

Location Type of machine Manufacturer<br />

22. IPCR, Saitama, Japan Variable energy<br />

23. University of Tokyo, Japan<br />

24. Institute of Radiological Science<br />

Chiba, Japan<br />

S O U TH AMERICA<br />

25. Instituto de Engenharia <strong>Nuclear</strong><br />

Rio de Janeiro, Brazil<br />

63"<br />

IPCR-NAIG and TOSHIBA<br />

CS-30 Cyclotron Corporation<br />

Thompson-CSF 1974<br />

CV-28 Cyclotron Corporation<br />

366 PERSSON


T A B L E II. SP E C IF IC A T IO N S O F C U R R E N T L Y A V A IL A B L E M E D IC A L C Y C L O T R O N S [9 ]<br />

CS-22* Cs-30* CV-28* Actitron** Th-CSF (70)** MC-20***<br />

Beam Energy P 22 26 2 - 24 6 - 19 8 - 70 2 .5 - 20<br />

(MeV) d 12 15 2 - 14 3 - 11 11 - 35 1 .5 - 1 0<br />

3 He 31 39 5 - 36 3 - 2 8 18 - 93 3 .0 - 2 7<br />

a 24 30 6 - 2 8 6 - 2 2 22 - 70 2 .5 - 20<br />

External P 50 60 70 70 20 100<br />

Beam d 50 100 100 70 40 100<br />

Current 3 He 50 70 70 50 - 50<br />

( M ) a 50 50 50 50 - 50<br />

Internal P 100 500 500 - - -<br />

Beam d 100 500 500 - - -<br />

Current 3 He 100 150 150 - - -<br />

(ЦА) a 100 100 100 - - -<br />

* The Cyclotron Corporation ** Thompson-CSF *** Scanditronix .<br />

<strong>IAEA</strong>-SM-170/92 367


368 PERSSON<br />

TABLE III. CYCLOTRON-PRODU CED RADIONUCLIDES IN CURRENT<br />

USE [9]. The m ost im portant nuclides in this re sp e ct are underlined.<br />

Radionuclide Half-life<br />

Principal radiation<br />

(keV)<br />

Chemical form of the<br />

radiopharmaceutical<br />

11 с 2 0 ,4 min 511 C O , C 0 2 , Haemoglobin<br />

13 N 10,0 min 511 n 2 , n h J"<br />

150 2 .1 min 511 O g , Со, C O 2 , H2O<br />

i ï<br />

110 min 511 Complex, Amino Acids<br />

43K 2 2 .4 h 373, 619 KC1<br />

a Fe 8 ,2 h 165, 511 Ferric citrate<br />

CTGa 78 h 93, 184, 296 Gallium citrate<br />

11 Br 57 h 242, 522 NaBr<br />

81 Rb 4 .7 h 450, 511 RbCl<br />

81Krm 13 s 190 Kr<br />

84 Rb 33 d 511, 880 RbCl<br />

e,Srm 2 .8 h 388 Strontium citrate<br />

111 In 67.2 h 173, 247 InCl3, Transferrin, Globulin<br />

123 j<br />

13.3 h 159 Nal, Hippuran, Albumin<br />

129 Cs 3 2 .4 h 375 CsCl<br />

131 Cs 9 .7 d 29 CsCl<br />

157 Dy 8 ,1 h 326 HEDTA-complex<br />

201<br />

7 3 .5 h 170, 140 T1C1<br />

203Pb 52.1 h 280, 400 Pb-citrate<br />

5. RADIONUCLIDE-PRODUCTION WITH FAST NEUTRONS<br />

C yclotron s can be used as neutron-generators through the reaction<br />

7B e(p, n )7L i.<br />

Another and le ss expensive method fo r fast-n eutron production utilizes<br />

the 3H(d, n)4He reaction .<br />

Deuterons are a ccelera ted by an electrosta tic a cce le ra to r o f 150 - 400 kV<br />

and focu sed on a cooled tritium target w here the 3H(d, n )-rea ctio n takes p la ce.<br />

The neutrons are alm ost m on oen ergetic with an energy in the range of<br />

14 - 15 M eV, depending on the deuteron energy and the neutron d irection .<br />

The neutron-production rates obtained in these m achines are about<br />

IO10 - 1012 neutrons p er secon d . T hese m achines are m ostly used for<br />

therapy and ra d io -b io lo g ica l experim en ts, and fo r activation -an alysis of<br />

m acroelem en ts in b iolog ica l tissu es. They are not v e ry useful fo r ra d ionuclide<br />

production o f high sp e cific activity.


<strong>IAEA</strong>-SM-170/92 369<br />

Neutrons produced by high-energy proton a cce le ra to rs could be used<br />

fo r production of labelled b iop olym ers.<br />

Neutrons with en ergies higher than 20 M eV can be used fo r production<br />

of 11C , 13N, 150 , 30P and 53F e (with T i of 20, 10, 2, 2 .5 and 8 .5 m inutes,<br />

Z<br />

resp ectiv ely ).<br />

T h ere is a need fo r calculations of an optim um production rate in which<br />

the ra d ioly sis of the irradiated substances would also be con sid ered .<br />

6 . USE <strong>OF</strong> M EDICAL BETATRONS FOR PHOTON-ACTIVATION<br />

B etatrons are available at many hospitals fo r radiotherapy. T hese<br />

a cce le ra to rs produ ce electron beam s of typical 40 M eV energy with a<br />

cu rren t o f about 1 ßA. The electron s strike a platinum target and produce<br />

"brem sstrah lu n g" photons distributed in energy up to the m axim um electron<br />

energy.<br />

The flu e n ce -rate of photons with en ergies grea ter than 10 M eV is in<br />

the ord e r o f 1 0 14 photons m ' 2 s "1 at a point about 0. 2 - 0. 3 m from the<br />

target in the forw ard beam d irection .<br />

In the energy region 10 - 35 M eV, the dominant feature o f ph oto-n u clear<br />

absorption is e le c tr ic dipole absorption ob served as the giant resonance<br />

in the absorption c r o s s -s e c tio n sp ectru m . The reson an ce has its m axim um<br />

value at about 22 M eV fo r light nuclei and at about 13 M eV fo r heavy nuclei.<br />

The width of the reson an ce is about 4 MeV fo r sp h erica l nuclei and about<br />

8 M eV fo r stron gly deform ed ones [ 12].<br />

The p rod u ction -yield is given by the ex p ression<br />

Y (t¡) = kj n j l - exp (- Xtj)j J a(E)


370 PERSSON<br />

T here is a great lack o f dependable and system atically presented in form<br />

ation about the ra d ioly sis o f the target m aterial daring irradiation with both<br />

neutrons and charged p a rticle s. Gas production can take p lace and other<br />

unwanted ch em ica l sp ecies can be form ed which influence the radioch em ical<br />

treatm ent which is to follow [ 14-16].<br />

The requ est fo r both the volu m ic radioactivity C i/litr e and the con cen tration<br />

of the ch em ical elem ent in question in g /lit r e o r a to m /litre o r m o l/litr e<br />

(M) was stre sse d . The sp e cific activity is then ea sily obtained by taking<br />

the quotient o f volu m ic radioactivity and ch em ica l concentration.<br />

It was also prop osed by SVOBODA [ 17] that it m ight be even m ore<br />

useful to introduce a term defining "the degree of deviation fro m c a r r ie r -<br />

fre e state": this is Dcp, the negative logarithm o f the s p e cific activity,<br />

w here<br />

D<br />

CF<br />

10<br />

log<br />

w here NA = num ber of radioactive atom s,<br />

Ns = num ber of stable atom s o f the sam e elem ent,<br />

NT = total num ber of atoms of the sam e elem ent.<br />

F o r total c a r r ie r -fr e e solution:<br />

Na<br />

Ns = 0 and, thus, DCF = 0<br />

It was stre sse d that further inform ation is needed about the tox icology<br />

of many of the elem ents used as radioactive tra ce rs in m edicin e and biology.<br />

8. CONCLUSIONS<br />

8.1. R ea ctor production<br />

The demand made on nuclear data fo r rea ctor-p rod u ced radionuclides<br />

are the follow ing:<br />

A veraged therm al-neutron c r o s s -s e c tio n s relevant fo r the production<br />

o f useful radionuclides (See section 2) are requ ired with an accu ra cy within<br />

a few p er cen t. A ccurate d eca y -sch em e data are also needed.<br />

The neutron c r o s s -s e c tio n in the reson a n ce-reg ion 5 eV - 1 M eV is<br />

not w ell known fo r many m aterials and better inform ation is required.<br />

Inform ation is needed on reson an ce integrals and yield s with and without<br />

cadm ium c o v e r s . Inform ation on n eutron-fluence d ep ression correction s<br />

is also needed [ 2 ]. H ow ever, the a ccu racy in the calcu lation of the production<br />

rate is lim ited by uncertainties in the shape o f the rea ctor neutron spectrum ,<br />

the irradiation geom etry and position .<br />

8.2. G en erator production<br />

The m ain p rob lem is to evaluate the optim um production téchniques<br />

fo r p resen t and potentially useful parent nuclei.<br />

The contam ination of the daughter nuclide with undesirable radionuclides<br />

is a p roblem which also m ust be con sid ered seriou sly .


8.3. A c c e le r a t o r p ro d u ctio n<br />

<strong>IAEA</strong>-SM-170/92 371<br />

F o r the calcu lation o f R fo r ch a rg ed -p a rticle a cce le ra to rs used fo r<br />

production of radion u clides there is a need to know c r o s s -s e c tio n s as a<br />

function of energy, 0 (E), fo r all nuclear reaction s leading to useful ra d io ­<br />

nuclides (See Table III) and fo r all com m only accelera ted p a rticle s, e.g.<br />

1H, 2H, 3H, 3He, 4He and, p ossibly, also 7L i, 12C and 160 .<br />

The m ass-stop p in g pow er S /p and the range of ch arged p a rticles in<br />

variou s m aterials are also needed, but are already w ell known and quite<br />

rea d ily available [18].<br />

It was concluded that there is an urgent need fo r experim en tal d eterm inations<br />

and tabulations of R . The m easurem ent o f R m ight at p resen t be<br />

an e a sie r task than detailed studies o f o(E) and th eoretical calcu lation s.<br />

8. 4. R adionuclide production with fast neutrons<br />

Neutrons gf en ergies above 20 MeV can be used fo r production of 1:LC,<br />

13N , I 5 0 j 30p a n d 53F e _<br />

T h ere is a need fo r calculations of an optim um production rate in which<br />

the ra d ioly sis o f the irradiated substances would also be con sid ered .<br />

8. 5. R adionuclide production with betatrons<br />

It was concluded that p ositron em itters such as 11С , 13N, 30 P and 31S<br />

in activities o f the o rd e r of 10 - 100 /uCi p er g and 150 1 - 40 m C i p er g<br />

could be produ ced in b iologica l m aterials with betatrons. The production<br />

y ield s are known with su fficien t a ccu ra cy. It was suggested that the p o s ­<br />

sibility o f producing labelled biop olym ers with sh ort-liv ed ra d ioisotop es<br />

should be con sid ered .<br />

8.6. G en eral rem arks<br />

It would be v ery useful fo r the p rod u cers and u sers to have an annually<br />

rev ised manual fo r production data, nuclear data and gam m a sp ectra fo r<br />

a ll radion u clides which are in cu rren t use in m edicin e and biology. <strong>IAEA</strong><br />

m ight be the organization which would best be able to m eet this need.<br />

ACKNOWLEDGEMENT<br />

Many thanks are due to AB A tom en ergi in Studsvik, who acted as host<br />

fo r the m eeting.<br />

REFERENCES<br />

[1] BAKER, P .S ., "Radioactive Pharmaceutical", Ch. 8, Reactor-produced Radionuclides (ANDREWS, G . A . ,<br />

KNISELEY, R. M . , W AGNER, H . N . , Jr., Eds), US Atomic Energy Commission CONF-651111, Oak Ridge<br />

(1966).<br />

[2] TILBURY, R. S . , private communication, Sloan-Kettering Institute, N .Y . (1972).<br />

[3] RICHARDS, P ., "Radioactive Pharmaceuticals", Ch. 10, Nuclide Generators, (ANDREWS, G. A . ,<br />

KNISELEY, R .M ., W A G NER , H . N . , Jr., Eds), US Atomic Energy Commission CONF-651111. Oak Ridge<br />

(1966).


372 PERSSON<br />

[4] BERNHARD, H ., LIESER, K . H . , Isotopengeneratoren” ein Überblick über den Stand der Entwicklung,<br />

Euro-Spectra 9 Nr 1 (1970) 20.<br />

[5] HENRY, R ., Isotope generators, J. Nucl. Biol. M ed. 15 (1971) 105.<br />

[ 6] T O U Y A , J .J ., New applications of radiopharmaceuticals labelled with generator-produced radionuclides,<br />

in Medical Radioisotope Scintigraphy 1972 2 (Proc. Symp. Monte Carlo, 1972) in press.<br />

[7] LEDERER, C . M . , HOLLANDER, J .M ., PERLMAN, I ., Table of Isotopes (6th Edn), John W iley ( 19 68).<br />

[8] LAMBRECHT, R . M . , W O LF, A .P ., "Accelerator-Produced Nuclides and Radiopharmaceutical Production",<br />

presented at an <strong>IAEA</strong> panel meeting, Amsterdam (1971).<br />

[9] GLASS, H .I ., New applications of radiopharmaceuticals labelled with cyclotron-produced radionuclides,<br />

in Medical Radioisotope Scintigraphy 1972 £(Proc. Symp. Monte Carlo, 1972) in press.<br />

[10] SV O BODA, K ., "The Uses of Cyclotrons in Chemistry and Biology” , Buttwerworths London (1970) 383.<br />

[11] SV O BODA, K ., SILVESTER, D .J ., Quantities and units used in the production of radionuclides by charged<br />

particle bombardment, Int. J. Appl. Radiât. Isot. 2£(1971) 269.<br />

[12] BÜLOW, B ., F O R K M A N , B ., Photonuclear cross-sections, <strong>Nuclear</strong> Physics Report, Lund 7208, University<br />

of Lund, Sweden.<br />

[13] BRUNE, D ., M A T T S S O N , S ., L1DEN, K ., Application of a betatron in photonuclear activation analysis.<br />

Anal. Chim. Acta 44(1969) 9.<br />

[ 14] LINARCRE, J. K . , A list of materials which may be accepted for irradiation in BEPO by the shift manager,<br />

without reference to the reactor manager AERE-M 1535 (1965).<br />

[ 15] TRUSWELL, A . E . , Irradiation of small samples in the reactor D IDO and PLUTO, AERE-M1563 (1965).<br />

[16] Sicherheitsbetrachtungen für einfache Bestrahlungen in FR 2. Internbericht RB 3/65, Kernforschungs­<br />

zentrum Karlsruhe, Germany (1965).<br />

[ 17] SVOBODA, K . , On terms defining the specific activity of accelerator-produced radioisotopic preparations,<br />

Report Ú .J .V . 2712-Ch Rez, Czechoslovakia (1971).<br />

[18] BARKAS, W . H . , BERGER, M .J ., Tables of Energy Losses and Ranges of Heavy Charged Particles,<br />

Report N A S A SP-3013, National Aeronautic and Space Administration, Washington D .C . (1964).<br />

DISCUSSION<br />

M. LEDERER: This is not the first tim e that the need fo r m ore "data"<br />

on production has been m entioned. P erhaps a gen eral re feren ce on the<br />

su bject would be d esira b le. Such a re feren ce would be a com bination of<br />

useful m easu red data (e.g. neutron c r o s s -s e c tio n s ), system atics fo r other<br />

quantities which can be calculated (e.g. c r o s s -s e c tio n s fo r ch arg ed -p a rticle<br />

rea ction s), and "co o k -b o o k "-ty p e knowledge, often essen tial fo r dealing<br />

with the many p roblem s that a rise from the p resen ce o f im p u rities.<br />

R.B.R. PERSSON: The m eeting concluded that there is a great need<br />

fo r a gen eral re fe re n ce w ork o r "co o k book " o f the type you m ention. This<br />

would, how ever, not only cov er production data (such as c r o s s -s e c tio n s ,<br />

target m a teria ls, im purities etc.) and decay sch em es o f the radion u clides,<br />

but also include tables o f 7 -r a y en ergies and em ission rates as w ell as<br />

figures o f 7 -s p e ctra re co rd e d by a standardized technique.<br />

G.A. KOLSTAD: T his question pertains to you r last recom m endation.<br />

The range o f p a rticle a cce le ra to rs you have d iscu ssed is rather lim ited.<br />

Have you con sid ered the use o f h eavy-ion bom bardm ents (i. e. M > 4) o r<br />

h igh er-en ergy bom bardm ents (i.e. 200-800 M eV) fo r the production of<br />

p ro to n -rich nuclides with differen t nuclear p rop erties? F or exam ple 123I<br />

can be produced at the 200 M eV B rookhaven Linac fo r Isotope P roduction<br />

(BLIP) o r at the 800 MeV Clinton P . A nderson M eson P h y sics F acility at<br />

L os A lam os (LA M PF) at rather low co s t. It is not always n ecessa ry for<br />

the a cce le ra to rs to be located at the hospitals — only near enough for<br />

shipment o f the p rod u cts.


<strong>IAEA</strong>-SM-170/92 373<br />

R.В.R. PERSSON: Our d iscu ssion s con cern in g the s o -c a lle d m ed ica l<br />

cy clotron s w ere m ainly lim ited to sm a ll m achines operated by a sm a ll<br />

organ ization. W e did not devote m uch attention to la rge m achines like<br />

those at B rookhaven and the L aw ren ce R adiation L aboratory in B erk eley,<br />

which we con sid ered to be som ething v ery sp ecia l. O f cou rse, there are<br />

extensive uses fo r such m achines in producing radionuclides o f in terest.<br />

G . A . KOLSTAD: I should point out that both the B LIP and the L A M P F<br />

have fa cilities associa ted with them fo r the production o f radioisotop es<br />

and ch em ica l fabrication o f the d esired p rod u cts.


Section V<br />

RADIOISOTOPES IN CHEMISTRY


Chairman<br />

K.H. LIESER (Federal Republic of Germany)<br />

%


<strong>IAEA</strong>-SM -170/96<br />

RADIOISOTOPE APPLICATIONS IN CHEMISTRY -<br />

A REVIEW<br />

L. GORSKI<br />

<strong>IAEA</strong>, Laboratory Seibersdorf,<br />

Vienna, Austria<br />

Abstract<br />

R A D IO ISO TO PE A P P L IC A T IO N S IN C H E M IS T R Y - A REVIEW.<br />

V a riou s m e th o d s o f a p p lic a t io n o f ra d io is o to p e s in c h e m is try — th e m o s t im p o r ta n t use o f th e la tte r<br />

b e in g th at as tra cers — a re c h a r a c t e r iz e d ; th e n e c e s s ity o f k n o w le d g e o f n u c le a r d a ta fo r th e in d iv id u a l<br />

a p p lic a tio n s is b r ie f ly d iscu ssed .<br />

The discovery of radioactivity, 77 years ago, by Becquerel in P aris,<br />

was due to an effect which should now rather be classified as a new branch<br />

of radiochem istry, i. e. radiation chem istry. The chem ical aspects of<br />

radioactivity w ere, however, later covered up by the physical face of this<br />

phenomenon. It is only with the discovery of induced radioactivity, that the<br />

use of radioisotopes for chem ical investigation could be applied in a wider<br />

fram ework. The next great discovery in nuclear physics — fission of<br />

uranium -235 — was also proved experim entally for the first time with the<br />

help of some radiochem ical techniques.<br />

It is not possible to describe all chem ical applications of radioisotopes<br />

in this short contribution. Some applications of great importance are<br />

discussed in papers on activation analysis and hot atom chem istry, in<br />

these Proceedings.<br />

The m ost important use of radioisotopes in chem istry is their application<br />

as tracers. The use of radiotracers can be of interest in cases in<br />

which we wish to investigate the transfer or movement of atom s, m olecules,<br />

chem ical compounds, substances or any other m a sse s. M ost of the physicochem<br />

ical phenomena are connected with such transfers of matter from one<br />

phase to another or from one place to another. Such p ro cesses as evaporation,<br />

dissolution, partition between two different phases, adsorption on<br />

the surface, chem ical reactions, analytical separations, etc. are exam ples<br />

of physico-chem ical occurrences related to m ass transfer on a m olecular<br />

or on a la rg e -sca le level. If the m olecules or m a sses in the movement<br />

can be labelled in som e way — which perm its them to be distinguished from<br />

other sim ilar m olecules or m a sses not taking part in the p rocess investigated<br />

— the study of this particular p rocess is easy to perform . If the<br />

labelling is recognized easily and quickly, then also the kinetics of the considered<br />

p rocess can be observed. There are many ways of tagging m olecules<br />

or substances: colouring, mixing with some easily recognizable substances<br />

(e. g. fluorescent compounds) or introducing slightly different atom s into<br />

the m olecules. Two ways of m olecular tagging are now in use: labelling<br />

with non-natural composition of stable isotopes and labelling with radioactive<br />

isotopes. These two labelling modes operate on a m olecular level,<br />

but can also be used on la r g e -m a ss level. Other labelling system s (e. g.<br />

colouring substances) can only be applied to la rg e -sca le experim ents with<br />

larger m a sse s involved.<br />

377


378 GÓRSKI<br />

Unfortunately, the labelling with non-natural composition of stable<br />

isotopes can only be recognized with the use of m a ss spectrom eters or<br />

some sim pler devices derived from the same principle. In any case,<br />

the recognition of the labelled substances must be made by collecting<br />

the sam ples from the investigated substance and analysing them in the<br />

detecting device.<br />

Labelling with radioisotopes enables one to observe the transfer<br />

without sampling or introducing any m easuring device directly in the<br />

reaction medium. This is made possible, of course, by using the<br />

penetrating rays emitted by m ost of the radioisotopes. In addition, the<br />

speed and facility of such m easurem ents makes labelling with radioisotopes<br />

very advantageous. There is not much the investigator must really know<br />

of the nuclear properties of the radioisotopes used. In m ost cases, he<br />

will only be interested in the exact knowledge of the decay schem e, which<br />

is n ecessary in planning the measuring method, and of the activity to be<br />

used in each experiment.<br />

Sometimes a method of "p ost-radioactive labelling" can be used. It<br />

consists of labelling with a non-radioactive elem ent, which is then detected<br />

and m easured by subsequent neutron activation of collected sam ples. This<br />

method, rather sim ple in execution, has all the inconveniences mentioned<br />

above in connection with labelling with non-natural composition of stable<br />

isotopes. But it has also som e benefits: low cost, the concentration of the<br />

labelling substance can be very low (a factor very important in the study<br />

of refining p ro cesses in the m etallurgy of very pure m etals and alloys),<br />

no health hazards, etc.<br />

The labelling also gives some other possibilities: One of them is the<br />

investigation of the precursor-product relationship, and of reaction pathways.<br />

This can be also regarded as a special case of a transfer process.<br />

The suspected atom s, groups or m olecules of a precursor are labelled<br />

with radioactive isotopes and then this radioisotope is sought in the supposed<br />

product. This application is of great importance in biochem istry, since the<br />

identification of complex m etabolism pathways in the living organism is<br />

not easy.<br />

The m ost interesting results can be obtained from the use of tracers<br />

in the study of p rocess kinetics. Diffusion, exchange between two (or m ore)<br />

pools, and the turnover rate are some of the best known exam ples of such<br />

tracer applications.<br />

The use of tracers enables also the measurem ent of some physicochem<br />

ical constants such as solubility of low -soluble substances, vapour<br />

p ressure of low -volatile substances, partition coefficient between two<br />

phases, surface measurem ent of powders or porous m atter, stability<br />

constants of complex compounds, etc. In all these ca ses, we make use<br />

of the fact that radioisotopic atom s can be detected and m easured even in<br />

a very low concentration. Other tracers do not perm it such dilution factors<br />

as with radioisotopic tracers. Some radioisotopes can be obtained alm ost<br />

c a rrie r-fre e — e. g. the radioisotopes of elem ents represented in the<br />

fission products; in such case s, effectively weightless amounts of radiotracer<br />

can be detected easily. It is easy to calculate that a ca rrie r-fre e<br />

radioisotope with a h alf-life of two weeks has an activity of about 3 X 105 Ci<br />

per gram ,i. e. if we can m easure an activity of 1 dps, which is quite easy,<br />

we can detect 10"16 g of the pure radiotracer.


<strong>IAEA</strong>-SM- 1 7 0 /96 379<br />

There are also some analytical applications of radioisotopic tracers.<br />

Each analytical procedure requires two principal steps: separation and<br />

isolation of the analysed component from the sample and the measurem ent<br />

of the amount of the isolated component. In the past, the analytical chem ists<br />

only used separation procedures of 10 0% efficiency, which means that the<br />

analysed component was isolated completely in a pure form for subsequent<br />

measurem ent of the m ass.<br />

But such methods are, in general, tim e-consum ing and som etim es<br />

difficult to apply. Now, many analytical separation procedures have an<br />

efficiency lower than 100%. The determination of the actual efficiency<br />

can be carried out by adding a sm all quantity of labelled compound to the<br />

analysed substance. Then the labelled compound, which should be identical<br />

with the analysed component, is isolated. A fter measuring the ratio of<br />

activities before and after the separation or between two separated substances,<br />

it is possible to calculate the recovery of the analysed compound in the<br />

separation procedure and to take it into account for the en d-resu lt. This<br />

method also enables discovery of those steps in the separation procedure<br />

where lo sse s occur.<br />

A sim ilar method using radioactive tracers is the method of isotope<br />

dilution. The aim of this method is the determination of m a sse s or of<br />

volumes not accessible to direct m easurem ent. The analytical use of<br />

this procedure is frequently demonstrated in the case of analysis of a<br />

mixture of amino acids. The quantitative isolation of a particular amino<br />

acid from such a mixture is very difficult, but it is possible to isolate<br />

only a part of the total content in a very pure form . If it is possible to<br />

know what part of the total content has been isolated and weighed, then<br />

the original amount of this amino acid will be known. The determination<br />

of the ratio of the weight of the isolated part to the total content can be<br />

perform ed by isotope dilution. It is only n ecessary to have this particular<br />

amino acid in labelled form . Then we add a known amount of tracer compound<br />

to the sample before starting the separation procedure. This radioactive<br />

reagent labels the total amount of the amino acid to be analysed. The labelled<br />

m olecules are isolated with the same recovery as the non-labelled ones. We<br />

can easily measure the ratio of the specific activity of the added amino acid<br />

at the beginning to the specific activity of that isolated after the separation.<br />

This figure is exactly the ratio of the total weight of the amino acid to the<br />

weight of the added labelled reagent.<br />

In geochem istry, the radioactive decay law is used for the determination<br />

of the age of rocks (geochronology). In this case, we make use of natural<br />

contamination of many m inerals with some radioactive tracers: uranium,<br />

thorium, potassium , tritium and others. From the well-known law of<br />

radioactive decay, we can derive the formula<br />

Xtt = l n ( l + Nn /N j)<br />

where N u /N j is the actual atomic ratio of the daughter and parent isotopes,<br />

e .g . 206Pb and 238U. This can be m easured by m ass spéctrom etry o r, in<br />

som e cases, by activation analysis. The successful application of this method<br />

requires the absence of the daughter isotope at the time of formation of the<br />

m ineral and no subsequent chem ical change in the composition of the m ineral.<br />

With such pairs of isotopes as 207 P b /235U; 206P b /238U; 208P b /232Th;<br />

40A r / 40K; 87S r / 87Rb it is possible to determine the age of rocks up to


380 GÓRSKI<br />

several billions of years. For shorter periods 14С is used (in the range<br />

of several thousand of years) and tritium (in the range of several tens of<br />

years). 14C dating is frequently used in archeology and tritium dating<br />

is applicable in age determination of underground waters in hydrology.<br />

P recise knowledge of the h alf-life of the applied radioisotope is a fundamental<br />

requirement in the application of this method.<br />

14C and tritium tracers are exam ples of many other radioisotopes<br />

produced by the interaction of particles from cosm ic rays with stable atom s.<br />

Some of them are short-lived (e. g. 37A r, 35 days), some are long-lived<br />

(e. g. 39A r: 270 years). The amount of these radioisotopes and the ratio<br />

of their respective activities can give information on the age of m eteorites<br />

and the intensity of cosm ic radiation in the interplanetary space.<br />

The exam ples given above and some other facts demonstrate that<br />

there are many naturally occurring radioisotopes among the so-called<br />

"stab le elem ents" (atomic number s 82), e .g . rubidium, which is regarded<br />

as a stable elem ent, consists to 28% of 87Rb, which has a h alf-life of the<br />

order of 1010 years, about ten tim es longer than 238U. 115In is another<br />

noticeable example. Its abundancy in the natural element is 96%, and the<br />

h alf-life is of the order of 1014 years. About 30 natural isotopes with<br />

Z á 82 are suspected or have been proved to be radioactive, m ostly with<br />

very long h alf-lives. Some other elem ents, as, e. g. krypton, are now<br />

"n atu rally" occurring radioactive isotopes as the result of continuous<br />

environmental pollution with fission products of uranium, one of which is 85Kr.<br />

Radioactive isotopes are also used for studying the structure of m olecules<br />

or crystal lattices. One method consists of observing the rate of<br />

isotopic exchange between the radioactive and non-radioactive isotopes<br />

in the m olecule. The kinetics of isotopic exchange depends on the strength<br />

of the chem ical bond between this particular atom and the rest of the m olecule.<br />

A lso the position of the atom in the molecule has a certain influence.<br />

The central atom in complex compounds is well protected from isotopic<br />

exchange by the peripheral groups. When there is m ore than one atom of<br />

the same element in a m olecule, there can be equivalence independent of<br />

the position of the atoms in the m olecule, but som etim es such equivalence<br />

does not exist. In this last case, the rate of isotopic exchange will depend<br />

on the position of the radioactive tracer in the structure of the m olecule.<br />

If the positions in the structure investigated are equivalent, then the rates<br />

of isotopic exchange will be equal and not dependent on the position of the<br />

radioisotopic tracer.<br />

Another use of radioisotopes for structural studies is the Mossbauer<br />

effect. This effect is frequently applied for the investigation of bonds and<br />

fields in the crystal lattice.<br />

From our short description of current applications of radioisotopes<br />

in chemistry we see that in most of the non-sophisticated applications only<br />

data on half-lives and disintegration schemes are needed,knowledge of which<br />

is necessary for successful use of radioisotopes in chemical research.<br />

Only for some analytical applications of radioactivity, especially activation<br />

analysis, which directly exploit some nuclear reactions, knowledge of c r o s s -<br />

sections and exact information on the spectra of the emitted radiations<br />

are n ecessary.


<strong>IAEA</strong>-SM -170/96 381<br />

DISCUSSION<br />

J. A . CZU BEK: Although I am not involved personally in problem s<br />

of chem istry, I would like to make two comments on nuclear data r e ­<br />

quirements in geochem istry which are of importance to those of us working<br />

in nuclear geophysics. We need a good knowledge of two constants which<br />

are also of interest for geochem istry. The first is the radioactive decay<br />

constant for 40K (for gamma em ission). The existing data range from<br />

2. 8 to 3. 6 g am m a/s per gram of natural potassium , which is of course<br />

quite unsatisfactory for us. The second is the fission decay constant for<br />

uranium, which is needed in geochem istry for age determination by trace<br />

detection in m icas. The use for this purpose of the uranium glasses produced in<br />

Czechoslovakia duringthe 19th century is not quite satisfactory, owingtothe short<br />

time elapsing from this period. The purpose of m y comment is to encourage<br />

the m easurem ent of these values, which are really needed by users.<br />

L. HJÄRNE: When mentioning, for exam ple, in d iu m -115, Dr. Górski<br />

touched upon a matter which is of some importance to many of us. I am<br />

referring here to the natural abundances of isotopes. We often rely on one<br />

of the nuclide charts for information of this kind, but, when we need better<br />

accuracies, we have some difficulties finding good data.<br />

I have been informed that in the next edition of the GE nuclide chart the<br />

revision of this kind of data will include a substantial reduction of the number<br />

of significant figures quoted. The reason is twofold:<br />

(1) The natural variation of the abundances is greater than previously<br />

assum ed; and<br />

(2) The accuracies of m easurem ents are not as good as previously<br />

believed.<br />

Can anyone comment on whether this matter should be considered<br />

within the scope of nuclear data and on how unsatisfactory the situation<br />

really is?<br />

M. LEDERER: The situation really is serious and the problem has<br />

been considered by the International Com m ission on Atom ic W eights. It<br />

appears that m ost abundance m easurem ents are accurate to no better<br />

than >*» 1% relative, with the exception of a few calibrated m easurem ents,<br />

which may be accurate to * 0. 1 % relative. I believe the ICÁW plans to<br />

review the abundances about every two years because of their importance<br />

to atomic weights. The m ost recent values are (apparently) those quoted<br />

on the latest GE chart. I have found no recent compilation on natural<br />

variations in the abundances. The ICAW notes certain elem ents for which<br />

natural variations lim it the accuracy of atomic weight determinations.<br />

D. BERÉNYI: The role of nuclear data on radioisotopes in X -r a y<br />

fluorescence analysis was not mentioned in the review. This method is<br />

very important in widely different fields where the rapid analysis of<br />

sam ples is a requirem ent. What is your opinion on this subject?<br />

L . GÓRSKI: The paper was devoted to applications in chem istry,<br />

to the exclusion of all analytical methods, which w ill be discussed in the<br />

various special session s of this symposium. I agree that the knowledge<br />

of the cro ss-se ctio n s for production of X -r a y s in different isotopic sources<br />

of X -r a y s is very important for this application, but this is to some extent<br />

an extra-nuclear phenomenon.


NUCLEAR DATA REQUIRED<br />

FOR THE INTERPRETATION<br />

<strong>OF</strong> HOT-ATOM CHEMISTRY<br />

A.H .W . ATEN<br />

Euratom, Central Bureau for <strong>Nuclear</strong> Measurements,<br />

Geel, Belgium<br />

Abstract<br />

N U CLEAR D A T A REQUIRED FOR THE IN TERPRETATIO N <strong>OF</strong> H O T -A T O M C H E M IS T R Y .<br />

<strong>IAEA</strong>-SM -170/28<br />

In h o t - a t o m c h e m is tr y r a d io a c t iv e a to m s a re r e le a s e d b y tw o p r o ce ss e s fr o m th e b on d s jo in in g th e m to<br />

th e m o le c u le , in w h ic h th ey w e r e o r ig in a lly c o n t a in e d . E ither e m is s io n o f a p a r t ic le or a p h o to n g iv e s a<br />

r e c o il t o th e r a d io a c t iv e a to m or a p o s it iv e c h a r g e is g iv e n to th e a to m in q u e stio n d u rin g th e r a d io a c t iv e<br />

tr a n sfo rm a tio n and th is c h a r g e , i f s u ffic ie n t ly h ig h , r e le a s e s th e a t o m . T o understand w h at h a p p en s in h o t -<br />

a to m c h e m is tr y k n o w le d g e o f th ese tw o p h e n o m e n a is e s s e n tia l. In th e c a s e o f n eu tron c a p tu r e , th e g a m m a<br />

p r o ce ss e s d e t e r m in e th e v a lu e o f th e r e c o il e n e r g y . T h e s itu a tio n is e v e n m o r e d iffic u lt in th o se c a s e s w h ere<br />

b on d s a re b ro k e n b y a p o s it iv e c h a r g e . T h is m a y e ith e r b e ca u se d b y th e a b s e n c e o f e le c t r o n p a irs re s p o n s ib le<br />

for th e c h e m i c a l b on d от by e le c t r o s t a t ic r e p u ls io n b e tw e e n d iffe r e n t parts o f th e ch a rg e d m o le c u le . In this<br />

c a s e , th e e s s e n tia l in fo r m a tio n is th e v a lu e o f th e p o s it iv e c h a r g e (o r rath er th e fr a c t io n o f c a s e s in w h ic h e a c h<br />

c h a r g e o c c u r s ). P o s itiv e c h a r g e s n o r m a lly a rise fr o m e le c t r o n ca p tu r e or fr o m c o n v e r s io n o f g a m m a ra y s. In<br />

th e la tte r c a s e , it is a lso e s s e n tia l to k n ow th e d e la y b e tw e e n th e r a d io a c t iv ity p r o ce s s and th e p r o d u c tio n<br />

o f th e c o n v e r te d g a m m a rays.<br />

INTRODUCTION<br />

The field of hot-atom chem istry covers the chem ical reactions of those<br />

atoms in which the nucleus has just been form ed by a nuclear reaction or<br />

by a radioactive p ro cess.<br />

A s such cases norm ally involve only a relatively sm all number of<br />

atom s, the usual technique is to study only those p rocesses which produce<br />

radioactive nuclides and allow accurate m easurem ents to be perform ed<br />

on very sm all amounts of m aterial.<br />

To understand the results of such reactions, information is required<br />

on the kinetic energy and the electrical charge of the atom and on the time<br />

scale of the separate p rocesses involved.<br />

F or the various nuclear p rocesses used in hot-atom studies the<br />

essential data are of a widely different nature, and we shall therefore<br />

consider separately the following possibilities:<br />

1. <strong>Nuclear</strong> reactions induced by charged particles or by high-energy<br />

neutrons or photons. <strong>Nuclear</strong> fission also com es into this category,<br />

as does a-d ecay.<br />

2. Neutron capture.<br />

3. Electron capture.<br />

4. Isom eric transitions.<br />

5. ß”-decay.<br />

6 . ß+-decay.<br />

It will be seen that the situations are rather different depending on the<br />

way in which the nucleus has been form ed.<br />

383


384 ATEN<br />

1. NUCLEAR REACTIONS INDUCED B Y CHARGED PARTICLES OR BY<br />

H IGH-ENERGY NEUTRONS OR PHOTONS. NUCLEAR FISSION,<br />

» -D E C A Y .<br />

If a nucleus is produced by the action of a charged particle or a high-<br />

energy neutron or photon or by alpha-decay, it receives a recoil energy<br />

of the order of 104 to 105 eV . In the case of nuclear fission, the kinetic<br />

energy of the fission fragments is even higher, of the order of 108 eV.<br />

Such energies greatly exceed norm al ionization energies or chemical<br />

bond energies and therefore the radioactive nucleus will not be able to<br />

form a chem ical compound until it has lost by far the larger part of its<br />

energy.<br />

Under these circum stances, energy lo sse s are caused mainly by<br />

ionization in the surrounding medium, and the radioactive particle itself<br />

will also lose a number of its electrons. Below about 103 eV various<br />

scattering p ro cesses are important in relieving the particle of its energy.<br />

A large amount of radiation damage has now been done and the particle<br />

leaves behind it a track of radicals, and, if it is form ed in a solid matrix,<br />

also of displacem ents. It will finally come to rest at a large distance,<br />

which even in condensed phase amounts to hundreds of angstrôm s, away<br />

from the spot where it has been form ed.<br />

A s the particle slows down its positive charge will diminish and it is<br />

usually assum ed that by the time its energy has been reduced to about 102 eV<br />

it will have becom e electrically neutral. At this stage, it is able to react<br />

with m olecules of the m atrix or with radicals from its own track or from<br />

general radiation damage in the medium.<br />

Under these circum stances, the final products form ed will not be<br />

much influenced by the original condition or the original energy of the<br />

radioactive atom after its birth and no special information on the nuclear<br />

p rocess is needed for the explanation of the products of these hot-atom<br />

reactions.<br />

It may, however, happen that delayed 7 -r a y s are emitted at a moment<br />

when the energy of the particle has already been reduced to a thermal value.<br />

If under these conditions, i. e. after a delay of, at least, the order of<br />

1 0 '13 to 1 СГ12 seconds, a 7 -r a y is emitted, this will norm ally be a 7 -r a y of<br />

fairly low energy which will be converted to an appreciable degree. Under<br />

these circum stances, the atom will again be released from the molecule in<br />

which it is contained and will be capable of participating in one or more<br />

new chem ical reactions. The results of such p rocesses will be discussed<br />

in section 4.<br />

At the moment when the particles come to rest — which occurs very<br />

roughly a few 1 0 ' 13 s after the nuclear process — a fraction of them has<br />

already entered into the chem ical combination in which they will finally<br />

be found. In m ost cases, however, another part is still present as single<br />

atom s, in free radicals, or in som e other unstable form . A s such they may<br />

p ersist for a much longer time before they reach a stable condition. In<br />

liquid and gaseous system s, this final stabilization process presumably<br />

involves diffusion over very appreciable distances.<br />

2. NEUTRON CAPTURE<br />

If a nucleus is activated by neutron capture, the energy gain of about<br />

6 MeV (the binding energy of the neutron in the product nucleus) must be


<strong>IAEA</strong>-SM -170/28 385<br />

dissipated by the emission of 7-rays. If the entire energy is emitted as a<br />

single 7 - ray the recoil energy (ER) of the nucleus is given by the equation<br />

_ 536 2<br />

R ” M E?<br />

if Ej, is expressed in MeV and ER in eV. It should, however, be realized<br />

that not all of this energy is available for breaking the chemical bond or<br />

bonds by which the radioactive is held in its mother molecule.<br />

In simple molecules, the fraction of the recoil energy available for<br />

bond breaking is, at most, equal to (M-m)/M, where M designates the mass<br />

of the molecule and m that of the radioactive atom [ 1] .<br />

If more than one 7-ray is emitted, the situation is much more complicated<br />

as the total recoil energy imparted to the nucleus is determined by the<br />

angle under which the 7-rays are emitted, at least, if the two gamma-rays<br />

are produced not more than 10"15 to 10'14 seconds apart.<br />

In the case of a thermal neutron capture reaction the recoil energy of<br />

the nucleus does not exceed normal chemical bond energies by a large<br />

factor. In a condensed phase, the particle will not move more than a few<br />

angströms from its original site and will not have to undergo more than a<br />

few collisions before it can form a stable chemical bond. In principle, it<br />

might even happen that, because of compensation of recoil processes, the<br />

particle gets such a small energy that it cannot leave the molecule or ion<br />

in which it was originally contained. This phenomenon, "primary retention",<br />

is, however, very rarely observed, if at all.<br />

The situation is again complicated if delayed 7-rays are emitted<br />

by the product nucleus because in this case, as was already mentioned<br />

in section 1, after the radioactive particle has first formed a<br />

chemical combination, it will be released once more and will have to form<br />

a second molecule or ion in order to stabilize itself (see section 4 ).<br />

3 . ELECTRON CAPTURE<br />

In the case of electron capture, the product nucleus, first of all, suffers<br />

a recoil due to the emission of a neutrino. In principle, one might expect<br />

that a neutral atom would be formed. If electron capture is followed by<br />

one or more 7 - ray emissions, the latter processes give recoil energies to<br />

the nucleus comparable to that due to the neutrino emission, and the two<br />

(or more) recoil energies should be summed in the appropriate way.<br />

However, the hole in the К -shell (or, in the case of L-capture, in the<br />

L-shell, etc. ) will be filled up by an electron from one of the outer shells<br />

with emission of X-rays. Such a process is accompanied by the liberation<br />

of electrons (Auger effect) and this means that the product atom is left with<br />

a high positive charge (see Fig. 1). Moreover, this charge is by no means<br />

equal for all atoms produced but there is a certain probability distribution<br />

for atoms with various ionic charges [ 2 ]. If the atom in which electron<br />

capture takes place is part of a molecule, the electrical charge produced on<br />

the ion of the product nucleus will immediately spread over the entire<br />

molecule and the electrostatic repulsion created in this way is sufficiently<br />

strong to break it up. Also the deficiency in electrons of the molecule<br />

weakens the chemical bonds and may even in itself be sufficient to separate<br />

two atoms if both bonding electrons of a pair are absent at a certain moment.


386 ATEN<br />

F IG . 1 A . A v e r a g e p o s it iv e c h a r g e le f t o n a n a to m in w h ic h a h o le has b e e n g e n e ra te d in th e K - or L -s h e ll.<br />

The fact that the radioactive atom is left with a positive charge after<br />

the breaking-up of the m olecule may also influence its ultimate chem ical fate.<br />

But here, too, we have the possibility that after electron capture and<br />

after the product nucleus has reached a stable chem ical state, delayed<br />

7 -ra y s will be emitted, the conversion of which will again release the<br />

radioactive atom and force it to undergo a second hot-atom p rocess, as<br />

will be explained in section 4.<br />

4. ISOMERIC TRANSITIONS<br />

In the case of a low -energy т-ra y emitted by a nucleus such a 7 -r a y is<br />

converted to an appreciable degree. This means that the energy is taken<br />

over by one of the electrons of the atom (normally a К -electron) and that the<br />

hole form ed in the shell of this electron is filled up by an electron from a<br />

higher shell in the atom.<br />

Owing to this p rocess, a number of electrons finally leave the atom and,<br />

as in a case of K - capture, the final ion is left with a very appreciable<br />

charge (Fig. 2). (These charges will be roughly, but not exactly, equal to<br />

those produced by K -capture. ) Thus, if the atom is part of a molecule it<br />

will be liberated by electrostatic repulsion or by the absence of the electrons<br />

constituting the chem ical bond and, carrying — or having carried originally —<br />

a positive charge, it will react again with som e constituent of the medium.<br />

In som e cases, compounds of atoms with an excited nucleus can be used as<br />

such in hot-atom experim ents, owing to the long h alf-life of som e metastable<br />

nuclei, and then the results of delayed 7 -em ission can be studied by themse<br />

lv e s. Important exam ples are the two products of neutron capture in<br />

the stable bromine isotopes. The radioactive isotopes produced — 80Br and


100<br />

10<br />

<strong>IAEA</strong>-SM -17 0/28 387<br />

1 5 10 15<br />

CHARGE<br />

F IG . I B . R e la t iv e fr e q u e n c y o f fo r m a tio n o f io n s c a rr y in g d iffe r e n t p o s it iv e c h a r g e s for th e tra n sition<br />

iaXem _ iaXe_<br />

82Br — both have an isom er, the first one with a h alf-life of 4 hours, the<br />

second of 6 minutes. Of the isom er 80B rm many compounds have been<br />

prepared and the hot-atom reactions following its highly .converted gam m a-<br />

em ission have been studied.<br />

Quite frequently, however, the delayed 7 -em ission follows other nuclear<br />

p rocesses like beta-em ission and the hot-atom reactions induced by the<br />

conversion process must be studied in the medium in which also the<br />

prim ary hot-atom reactions have taken place.<br />

5. ß~ -D E C A Y<br />

In the case of ß '-d e ca y , we have, first of all, to deal with the recoil<br />

p ro cess. In this case, it is m ore complicated than in that of electron<br />

capture because we now have two different reco ils. One is due to the<br />

em ission of the electron, and the other to that of the neutrino. A s the two<br />

energies have quite comparable values, one has to know the angular<br />

distribution to compute the effective recoil energy available.<br />

There is, however, a second effect which is not quite negligible.<br />

When a nucleus em its an electron, one would, in principle, expect to obtain<br />

a product ion which should be short of exactly one electron. However, in<br />

this case again secondary p rocesses take place and in some product atoms<br />

electrical charges larger than one are observed (electron shake-off).<br />

Little is known about these phenomena but som e estim ates are given in<br />

Table I.<br />

Evidently, any delayed converted 7 -r a y will cause a second hot-atom<br />

p rocess and, in this way, will ultimately decide the fate of the radioactive<br />

product. But in the case of ß-d eca y even 7 -r a y s emitted within 10"13 s or<br />

le ss are important if they occur since the recoil energy due to them is not<br />

much lower than that due to the ß-p article and the neutrino.


388 ATEN<br />

T A B L E I. R ELATIVE FREQUENCES <strong>OF</strong> IONIC CHARGES PRODUCED BY<br />

/3-D E C A Y (GAS PHASE) [ 3]<br />

6. J3+-D E C A Y<br />

V ery little is known about the chem ical effects of positron decay. The<br />

prim ary product should be a negative ion, but it is m ost unlikely that such<br />

an ion is sufficiently stable to last until the final reaction of the radioactive<br />

atom takes place. However, positron em ission is rarely used in hot-atom<br />

studies and this process will not be discussed in the present report.<br />

CONCLUDING REMARKS<br />

On the basis of the preceding discussion it is easy to recognize which<br />

item s in the field of nuclear data are of interest to students of hot-atom<br />

chem istry. It will, of course, be realized that part of the data do not really<br />

refer to the nucleus in question, but rather to the atom as a whole.<br />

In all cases it is of the highest importance to know whether there are<br />

any gam m a-rays delayed by m ore than 1 0 '13 s what their intensity per<br />

decay is, their conversion coefficient and the average ionic charge of the<br />

product atom, or — even better — the frequency distribution of the various<br />

ionic charges. (This problem is complicated by the fact that the charge


IAE A -S M -17 0/28 389<br />

m ay not be independent of the composition of the m atrix. ) If the converted<br />

gamma ray is followed by one or more other gamma rays, details<br />

concerning the latter should also be known, as they determine the kinetic<br />

energy of the radio-atom at the stage where its final fate is decided.<br />

F o r all reactions producing low -energy (< 50 eV) recoils (all categories<br />

except that under section 1), one should know the number of 7 -photons<br />

emitted per decay (if any), their energies, and either their angular<br />

correlation or their delays, depending on whether the delay exceeds about<br />

10'15 s or not.<br />

In the case of electron capture, we also need more accurate information<br />

on the positive charges carried by the product atom, together with the m ass<br />

difference between the parent and the daughter atom, whence we can derive<br />

the recoil energy given to the atom by the escape of the neutrino.<br />

F o r ß ' - decay, one should have the same information as for electrón-<br />

capture, but, in addition, the shape of the beta-spectrum should be known.<br />

It will be evident that, at present, we are very far away from having<br />

the entire information asked for in the preceding paragraphs, and it is<br />

quite possible that we shall never be able to obtain all of it. Some of the<br />

m ore important aspects are, however, well within our reach. Concerning<br />

the de-excitation schem es of product nuclei of nuclear reactions and daughter<br />

nuclei of radioactive transitions, a good deal is already known and there do<br />

not seem to be any fundamental obstacles which could keep us from extending<br />

this knowledge to all nuclides which are of sufficient interest to hot-atom<br />

chem ists to warrant the effort.<br />

REFERENCES<br />

[ 1 ] S T Ö C K L IN , G . , C h e m ie h eisser A t o m e , V e r la g C h e m ie , W e in h e im /B e r g s tr . (1 9 6 9 ) 1 8.<br />

[ 2 ] C A R LSO N , T . A . , H U N T , W . E . , KRAUSE, M . O . , Phys. R e v . 1 5 1 (1 9 6 6 ) 4 1 ; CARLSO N , T . A . ,<br />

W H IT E , R . M . , C h e m ic a l E ffe cts o f N u cle a r T ra n sfo r m a tio n s, (P r o c . S y m p . V ie n n a , 1 96 4) 1, IA E A , 4<br />

V ie n n a (1 9 6 5 ) 2 3 .<br />

[ 3 ] C A R LSO N , T . A . , Phys. R e v . 131 (1 9 6 3 ) 6 7 6 ; SNELL, A . H . , P L E A SA N TO N , F . , Phys. R ev . 107<br />

(1 9 5 7 ) 7 4 0 ; 111 (1 9 5 8 ) 1 3 3 8 .<br />

DISCUSSION<br />

K. H. LIESER (Chairman): I would like to stress the point that nuclear<br />

data give only an explanation of the very first step in hot-atom reactions.<br />

H ot-atom chem istry involves recoil effects, excitation of the hot atoms<br />

and secondary reactions as well as radiation effects. While the prim ary<br />

reco il effects depend on nuclear properties, the other effects, such as<br />

excitation, formation of radicals and secondary reactions, depend essen ­<br />

tially on the properties of the atom s and of the surroundings. Thus, in<br />

hot-atom chem istry the situation is very complex.<br />

A . H. W . A T E N : I would say that the second chapter is chem istry<br />

and the fact that the properties of the electrons already enter into what<br />

one calls the nuclear data is really a sign of the indiscrete behaviour on<br />

the part of the nuclear p hysicists, who have taken into the field of their<br />

activity part of the properties of the electrons of the atom s instead of<br />

restricting them selves to the nuclei.


Section VI<br />

FISSION-PRODUCT NUCLEAR DATA


Chairman<br />

G. В. YANKOV (USSR)


<strong>IAEA</strong>-SM -17 0/94<br />

FISSION-PRODUCT CHAIN YIELDS<br />

FROM EXPERIMENTS IN THERMAL REACTORS*<br />

E.A.C. CROUCH<br />

Chemistry Division,<br />

UKAEA Research Group,<br />

AERE, Harwell, Berks,<br />

United Kingdom<br />

Abstract<br />

FISSIO N -PR O D U C T C H A IN YIELDS FROM EXPERIM ENTS IN T H E R M A L REA C TOR S.<br />

P u blish ed v a lu e s o f th e y ie ld s o f fissio n p r o d u c ts fr o m th e th e r m a l n eu tron in d u c e d fis s io n o f 227T h ,<br />

229 T h , 233U , 235 U , 239Pu, 241Pu, 242m A m , 245C m , 249C f , and fr o m th e " p ile " - n e u t r o n - in d u c e d fis s io n o f 227A c ,<br />

231 p 3i г э г 232 u i 237 H p and !41A m h a v e b e e n assessed and r e c o m m e n d e d v a lu e s fo r th e ch a in y ie ld s lis te d .<br />

1. Introduction<br />

Fission Product yields were last collected and assessed by a member<br />

of AERE in 1965 (Ref. 1). Since that time other collections, assessments,<br />

reviews and predictions have been made (Refs. 2, 3, 4, 5), but because of<br />

the continuous flow of new experimental results it becomes necessary to<br />

make the next assessment at approximately yearly intervals. Because the<br />

number of experimental results is getting too large to be conveniently<br />

handled in a card index file, and the simple arithmetic of adjustment and<br />

correction is increasing with each new assessment, a less onerous method<br />

of assessing the experimental results must be found. To this end there<br />

has been established at AERE a computer file library of fission product<br />

yields (Ref. 6 ), and an interrogation program (Ref. 7), to extract information<br />

from the library.<br />

235<br />

There are still lacunae in the experimental results even for U<br />

thermal neutron fission (e.g. the yields at mass numbers 107, 108, 110,<br />

113 and 116 among others, are undetermined experimentally), and there is a<br />

need both for academic and technological reasons, to have a sound means of<br />

estimating missing yields. It is intended that a mathmatical model of the<br />

fission process will be fitted to the available experimental results (e.g.<br />

Ref. 8 sets out some preliminary ideas), so that missing values in general<br />

shall be estimated with some confidence. Such a process is suited to fast<br />

and frequent computer processing and the methods of Refs. 6 , 7 and 8 can<br />

be made automatic.<br />

However, it seems prudent (and it may very well turn out to be necessary),<br />

to make preliminary assessment of the available results by the<br />

usual subjective methods so that starting estimates of the parameters of<br />

the fitted model shall be reasonable, and this paper is meant to provide<br />

part of such a necessary basis. Further papers dealing with fast fission<br />

and spontaneous fission will appear later as the work is completed.<br />

Independent yields will also be dealt with separately. In order that<br />

these assessments shall be the more easily applied to the objective methods<br />

* T h e co n te n ts o f th is p a p e r h a v e b e e n e x a m in e d and r e c o m m e n d e d b y th e U K C h e m ic a l N u cle a r<br />

D a ta C o m m itt e e .<br />

393


394 CROUCH<br />

it was thought proper to make some estimates of the errors to be associated<br />

with each recommended chain yield. It is believed to be the first time<br />

that this has been done and the method used is described in detail. In<br />

such a compilation as this there are bound to be errors, and readers are<br />

asked to let the author know of any that they detect.<br />

2. Basis of the Assessment<br />

i) It would seem proper to define certain terms used by those engaged<br />

in the determination or use of Fission Product yields. There are<br />

three kinds of Fission Product yields as defined below and they are<br />

usually expressed as a number of fission product atoms formed per one<br />

hundred fissions i.e. in the form of a percentage.<br />

a) Independent Yield<br />

An independent yield is the probability of formation of a<br />

given nuclide in fission, after prompt neutron emission but<br />

before any radioactive decay of itself or it's precursors occurs.<br />

Sometimes independent yields are expressed as 'fractional independent<br />

yields' i.e. as a fraction of the chain yield.<br />

b) Cumulative Yields<br />

A cumulative yield is the probability of formation in fission<br />

of a nuclide after prompt and delayed neutron emission and before<br />

it decays, but including the independent yields of its precursors.<br />

A 'fractional' cumulative yield is a cumulative yield expressed<br />

as a fraction of the chain yield. Effectively a cumulative yield<br />

is the sum of all the independent yields in a decay chain up to<br />

and including the atomic number of the nuclide concerned.<br />

c) Chain Yield<br />

A Chain Yield is the probability of formation in fission of a<br />

given stable nuclide after prompt and delayed neutron emission<br />

and after the decay of all its precursors. It is effectively the<br />

sum of all the independent yields contributing to a given mass<br />

decay chain. Usually it is the cumulative yield of the last<br />

(stable) member of a decay chain of given mass number.<br />

ii) Treatment of published results; yield adjustments<br />

The published data for this assessment were stored in a computer<br />

file library (Ref. 6 ), and for each fissile isotope an interrogation<br />

program (Ref. 7), caused all cumulative and chain yields to be<br />

printed out. It was assumed that the printed list contained no<br />

duplicate values because during compilation of the library experimental<br />

results but not assessed values from compilations were included.<br />

All entries were checked to ensure that values previously reported<br />

by the same author(s) were omitted if the new entry were a recalculation<br />

of the previous work and not a new determination. Corresponding<br />

to the print-out, punched cards were produced for the thermal fission<br />

products of the nuclides 233U, ^ U, ^^Pu and 241-Pu, and the adjustments<br />

to be described below were applied to the reported results by<br />

means of computer routines which will be used in future computerised<br />

assessments using objective methods (see Ref. 8 for preliminary description).<br />

The results on the fission products of other fissile


<strong>IAEA</strong>-SM -170/94 395<br />

isotopes, and those produced in fission induced by other neutron<br />

energies, were adjusted by hand calculations on the figures contained<br />

in the printed output of the interrogation routine.<br />

As previously explained (Refs. 5, 7), there are three ways of<br />

classifying fission product yields depending on what corrections or<br />

adjustments have to be made to them before they can be combined with<br />

other similar results to give an average value. 'One-nuclide' yields<br />

are those yields relative to the yield of say ■'•^Ba or ^%o. Then if<br />

the reference yield is known the others can be adjusted relative to<br />

it.<br />

'Other' yields (i.e. other than 'one-nuclide' or 'R-value'), are<br />

yields which have been determined absolutely or effectively absolutely,<br />

and which do not require or are not amenable to adjustment. This<br />

kind of yield is determined by simultaneously measuring the absolute<br />

number of fissions and the number of atoms of the resulting fission<br />

products. Sometimes the fissile isotope and the fission products are<br />

measured in the same piece of fissile material, sometimes the fissions<br />

are measured in a small quantity of the fissile material which is<br />

irradiated in close propinquity to the fissile material in which the<br />

fission products are measured.<br />

In some cases yields are effectively absolute because after measuring<br />

the relative yields of a sufficient number of fission products,<br />

a smooth curve against mass-number is drawn and all the yields are<br />

multiples by a common factor which forces the area under the curve to<br />

sum to 200%. Usually no adjustment can be applied to the resultant<br />

yields.<br />

'R-value' yields are calculated as follows:<br />

x<br />

У, = У,<br />

л х л R -<br />

A 1 2<br />

* XA R<br />

LA2 A1 ^<br />

Where у is a yield and A an activity,<br />

X is the nuclide of interest, gg<br />

R is the reference nuclide, usually Mo,<br />

1 refers to the nuclear reaction of interest,<br />

2 refers to the standard reaction, Thermal neutron fission<br />

usually of 235ц, less frequently, of ^^Pu.<br />

The term in brackets in the above equation is called 'R-value' and is<br />

made up of measured radioactivities derived from the reaction of<br />

interest and from a simultaneous standard reaction irradiation. The<br />

other components of the right hand side must be absolutely determined<br />

or assumed.<br />

2 2 5 The assessment process started with the thermal fission yields of<br />

U. First all 'other' type yields were assembled i.e. those which<br />

required no adjustments. Mean values for such reference nuclides as<br />

14 0Ba, 99Mo and 97zr were calculated and used to adjust the 'one-<br />

nuclide' type yields. If 'other' type yields were not available to<br />

establish a good absolute value for a reference nuclide of a 'one-<br />

nuclide' result then the adjustment was made by reference to the<br />

recommended value given in Ref. 2, which failingjRef. 3. Finally<br />

all the results for a given mass number were used to find a mean and


396 CROUCH<br />

its uncertainty; the chain yield recommended being composed of results<br />

determined as chain yields and cumulative yields eligible (see later),<br />

for inclusion as chain yields.<br />

239<br />

Attention was then turned to the Pu fission yields. First all<br />

'other' type results were assembled and absolute values for reference<br />

yields were obtained. The 'one-nuclide* yields were then adjusted<br />

in the same way as those of U. 'R-value* yields were adjusted<br />

using the 235u yields already established, along with the ^39pu reference<br />

yield derived from 'other* and 'one-nuclide1 yields. Finally<br />

the mean value and its uncertainty were found using all the results<br />

available. For a given mass-number the recommended chain yield<br />

contains those cumulative yields eligible for inclusion as chain<br />

yields.<br />

239<br />

The assessment process described above for Pu, was applied to<br />

all the other fissile isotope fission yields. However, for some<br />

fissile nuclides not many experimental results are available so their<br />

values for reference nuclide yields cannot be established. In such<br />

cases authors commonly assume a reference nuclide yield and when this<br />

is so the assumed yield is indicated in the tables of results (below).<br />

iii) Treatment of Published results: Error estimates<br />

The uncertainties to be associated with a given measurement are<br />

reported by the authors in a variety of ways, and frequently not at<br />

all. Usually a mean value is given together with limits expressed<br />

as yield X + x, where x may be a standard deviation corresponding to<br />

the precision of the measurement only, not to the absolute accuracy<br />

of the measurement.<br />

In this work two methods of expressing the experimental uncertainty<br />

or 'error* (the word being used in no pejorative sense), were<br />

used. In the first method the error (considered as a standard error),<br />

used in this paper (as opposed to the figure reported by the author),<br />

has been adjusted if necessary to what seemed to be a reasonable<br />

estimate of the absolute accuracy. Thus a yield given in an original<br />

paper as being subject to an error of + 0 .1% of the mean value, has<br />

been attributed a much larger error even if the yield were determined<br />

by mass-spectrometry. For this purpose no reported yield has been<br />

attributed a standard error of less than + 3% of the mean value unless<br />

very good reason was shown in the paper. Likewise a yield reported<br />

without an estimate of its accuracy was attributed a standard error<br />

of + 157c if the yield was determined radiochemically and + 10% if by<br />

mass-spectrometry. There were occasions when better accuracy was<br />

attributed because there seemed good cause. Of course in those cases<br />

where reasonable errors were attributed to their results by the<br />

authors themselves, they were used unchanged.<br />

The weighted mean of all the reported yields (after adjustment),<br />

for a given mass number in a given fission reaction was then calculated<br />

using the reciprocal of the square of the attributed standard<br />

error as weight for each result, together with the standard error of<br />

the weighted mean as follows:<br />

Weighted mean yield = where is the nth<br />

yield and is its attributed standard error.


Standard error of the weighted mean yield =<br />

IA E A -SM -nO /94 397<br />

The weighted sum of squares of the deviations of each included<br />

yield from the weighted mean (which should be distributed asX was<br />

then calculated,<br />

where Y is the weighted mean<br />

w ...<br />

yield.<br />

If in fact it was significantly different from % then either the<br />

fission yields were inconsistent or the attributed errors were unreal-<br />

istically small.<br />

The second method of expressing the experimental uncertainty was<br />

simply to use the reported yields for a given mass number after adjustment,<br />

to calculate a simple mean and standard deviation directly.<br />

These two figures should agree with the weighted values found as<br />

described above. If they agreed then the attributed errors were<br />

realistic and the yields consistent, but if they differed then either<br />

the yields were inconsistent or the attributed errors were smaller<br />

than the errors indicated by the variations about the simple mean.<br />

It was also possible to find the attributed error larger than that<br />

calculated from the simple mean in cases whose only two or three<br />

reported results fortuitously agreed closely, although it was known<br />

that the experimental method was subject to larger error.<br />

Finally the weighted mean yield was taken as the required assessed<br />

yield and the uncertainty (expressed as a standard error), was taken<br />

as the greater of the standard error of the weighted mean yield (see<br />

above), or the simple standard error calculated as<br />

S№- Y)2<br />

(n-l)<br />

3. The assessed yields<br />

where Y is the simple mean yield.<br />

The assessed ______ fission j _____ yields ____»iven^in are<br />

Tables I-XV. The yields for<br />

227дс> 231pa> ^ 237jjp an(j ¿41дт are those obtained by "Pile"<br />

irradiations; they are not properly "thermal" yields and those who use<br />

them are urged to refer back to the orginal papers if considerations of<br />

the neutron energy/distribution are at issue. Nevertheless they are<br />

listed here with the "thermal" yield as they will probably be used in<br />

conjunction. It must be noted in passing that the "thermal" yields here<br />

tabulated are not often obtained under conditions which eliminate the<br />

effects of fast neutrons present in the reactor. Reliance is placed upon<br />

the fact that thermal neutron fission reaction rates are in general far<br />

greater than the fission reaction rates due to fast neutrons.<br />

1 A l l ta b le s a te to b e fo u n d at th e en d o f th is p a p e r .


398 CROUCH<br />

It should also be mentioned that the Tables show yields which were<br />

determined as chain-yields, and also cumulative yields which can be taken<br />

as chain-yields since the independent yields of nuclides of the same mass<br />

number, but greater atomic number, are negligible. An indication of the<br />

admissibility of cumulative yields for this purpose may be gleaned from<br />

Ref. 9 which tabultes independent yields. In general no cumulative yields<br />

have been used unless they account for 99.007» of the chain yield as calculated<br />

in Ref. 9.<br />

4. References<br />

LÜ CROALL, I.F., "Yields from neutron induced fission", AERE-R 5086,<br />

(November 1965).<br />

_ 235<br />

[2j MEEK, M.E., RIDER, B.F., "Summary of fission product yields for U ,<br />

U , Pu239 and pu24-l at thermal, fis sion spectrum and 14 MeV neutron<br />

energies", APED-5398-A (Revised October 1968).<br />

[3] FLYNN, K.F., GLENDENIN, L.E., "Yields of fission products for several<br />

fissionable nuclides at various incident neutron energies", ANL-7749,<br />

(December 1970).<br />

[4| SIDEBOTHAM, E.W., "F ission product yield data extrapolated for some<br />

actinides", TRG Report 2134(R), (1972).<br />

[5] VON GUNTEN, H.R., "Distribution of mass in spontaneous and neutron<br />

induced fission", Actinide Reviews, 1(1969), p 275.<br />

[6] CROUCH, E.A.C., "A library of neutron induced fission product yields<br />

maintained and interrogated by computer methods. Part 1. Establishment<br />

of the library", AERE-R 6642 (December 1970).<br />

[7] CROUCH, E.A.C., "A library of neutron induced fission product yields<br />

maintained and interrogated by computer methods. Part 2. Interrogation<br />

of the library", AERE-E 7207.<br />

[8 ] CROUCH, E.A.C., "The Assessment of Fission Yields", Chemical <strong>Nuclear</strong><br />

<strong>Data</strong> - measurements and applications. Proceeding of the International<br />

Conference, Canterbury (September 1971).<br />

[9] CROUCH, E.A.C., "Calculated Independent yields in thermal neutrons<br />

fission of 233u, 235u, 239pUj 24lpu ancj fission of ^^Th, ^38]j and<br />

2 4 0Pu, AERE-R 6056 (March 1969).<br />

[10] HOLDEN, N.E., WALKER, F.W., "Chart of the nuclides", General Electric<br />

Company, Knolls Atomic Power Laboratory, Tenth Edition, (December<br />

1968).<br />

5. Explanation of the Tables<br />

Mass Number (Col. 1)<br />

This entry gives the mass-number of the fission product decay chain.<br />

Element (Col. 2)<br />

The symbol of the element used to estimate the chain yield. Several<br />

entries in this column does not imply that all were used in the calcula-


<strong>IAEA</strong>-SM-17 0/94 399<br />

tion of the chain yield. Chain yields determined as "chain yields" are<br />

entered as such. A figure in brackets alongside an element symbol<br />

indicates that the nuclide is isomeric and the isomeric yield is given,<br />

the number is the order of the isomer in the 'Chart of the Nuclides'.<br />

Literature Reference (Col. 3)<br />

The number given in Column 3 gives the literature reference as set<br />

out in Table XVI.<br />

Corrected value and error (Col. 4)<br />

Column 4 gives the adjusted yield as a percentage followed by the<br />

error as a standard deviation expressed as a percentage of the yield.<br />

Thus the first entry for Br in Table 1 is to be read "7.00 + 0.77o". The<br />

author's estimates of error are stated when they are given, otherwise an<br />

arbitrary default value is inserted (see para. 2 (iii) above).<br />

Means: Weighted and simple (Col. 5)<br />

The two figures entered on one line in column 5 are the mean as a<br />

percentage yield, the error as a percentage of the mean yield. The types<br />

of mean are differentiated by (w) for weighted and (s) for simple. Each<br />

mean is based on the values given in Column 4 as segregated by the horizontal<br />

lines. In some cases, usually when only two results are given in<br />

Column 4, the weighted mean only or the simple mean only appears in<br />

Column 5. This is because in the former case the weights are not equal<br />

and there would be no point in calculating a simple mean, or in the latter<br />

case there would be no point in calculating a weighted mean when the<br />

weights are equal or nearly so.<br />

Note however, that the actual weights used in deriving the content of<br />

Column 5 from those of Column 4 are not necessarily those given in<br />

Column 4 which are the author's estimates or the default values (see paragraph<br />

2 (iii) above).<br />

Recommended Chain Yields (Col. 6 )<br />

Column 6 lists the recommended chain yield on the same line as the<br />

mass-number of the first column. The figures given in brackets are the<br />

indicators of yields still undetermined experimentally and they are interpolated<br />

values found by curve drawing through the neighbouring points. No<br />

attempt has been made to interpolate values when insufficient results are<br />

available to draw a smooth curve, or in regions where fine structure is<br />

likely to exist.


400 CROUCH<br />

Table I<br />

I<br />

Ac Pile Neutron induced fission<br />

1 2 3________4 5______ 6<br />

83 Br 229 7.00 10 7.00 10<br />

89 Sr 229 7.89 10 7.89 10<br />

91 Sr 229 5.82 10 5.82 10<br />

97 Zr 229 0.31 10 0.31 10<br />

99 Mo 229 0 . 1 1 10 0 . 1 1 10<br />

105 Ru 229 0 .8 8 10 0 .8 8 10<br />

109 Pd 229 0.24 10 0.24 10<br />

1 1 1 Ag 229 0.16 10 0.16 10<br />

1 1 2 Ag 229 0.14 10 0.14 10<br />

1 2 1 Sn(2) 229 0.092 10 - -<br />

132 Te 229 4.59 10 4.59 10<br />

140 Ba 229 8.23 10 8.23 10<br />

143 Ce 229 6.17 10 6.17 10<br />

227 Th Thermal<br />

Table II<br />

Neutron induced fission<br />

1 2 3_______ 4 5 6<br />

77 As 2 1 1 1.4 15 1.4 15<br />

83 Br 2 1 1 1 . 1 32 1 . 1 32<br />

89 Sr 2 1 1 8 .0 6 8 .0 6<br />

90 Sr 2 1 1 8.72 10 8.72 10<br />

91 Sr 2 1 1 6 . 2 1 16 6 . 2 1 16<br />

95 Zr 2 1 1 3.4 9 3.4 9<br />

97 Zr 2 1 1 2.41 24 2.41 24<br />

99 Mo 2 1 1 1.44 10 1.44 10<br />

103 Ru 2 1 1 0.58 16 0.58 16<br />

105 Ru 2 1 1 0.28 14 0.28 14<br />

106 Ru 2 1 1 0.19 32 0.19 32<br />

109 Pd 2 1 1 0.33 4 0.33 4<br />

1 1 1 Ag 2 1 1 0.051 20 0.051 20<br />

1 1 2 Pd 2 1 1 0.029 2 1 0.029 2 1<br />

113 Ag 2 1 1 0.034 2 1 0.034 2 1<br />

115 Chain 2 1 1 0.177 15 0.177 15<br />

1 2 1 Sn(2) 2 1 1 0 . 1 1 36 - -<br />

125 Sn(2) 2 1 1 0.43 23 - -<br />

127 Sb 2 1 1 0 .6 8 24 0.63 29 0.63 29<br />

Te(2) 2 1 1 0.53 47<br />

129 Te 2 1 1 1.36 2 1 1.36 2 1<br />

131 I 2 1 1 2.61 18 2.61 18<br />

132 Te 2 1 1 3.30 18 3.30 18<br />

133 I 2 1 1 4.80 2 1 4.80 2 1<br />

137 Cs 2 1 1 6.93 18 6.93 18<br />

140 Ba 2 1 1 7.71 15 7.71 15<br />

141 Ce 2 1 1 7.62 7 7.62 7<br />

143 Ce 2 1 1 6.97 7 6.97 7<br />

144 Ce 2 1 1 5.95 7 5.95 7<br />

147 Nd 2 1 1 0.18 28 0.18 28


1 2<br />

229„, Th<br />

<strong>IAEA</strong>-SM -17 0/94 401<br />

Table III<br />

Thermal neutrons induced fission<br />

3 . 4 5 6<br />

77 As 304 .106 15 .106 15<br />

Ge(l) 648 . 0 1 1 15<br />

78 Ge 649 0.052 15 0.052 15<br />

83 Br 304 8 . 1 1 15 (W) 6.48 7 6.48 9<br />

649 6.40 4 (S) 6 .8 8 9<br />

226 6.14 0.5<br />

84 Br 649 1 0 .8 8 4 (S) 1 0 .8 8 2 1 0 .8 8 10<br />

Chain 226 1 0 .8 8 4<br />

85 Chain 226 10.79 1 10.79 10<br />

87 Chain 226 8.75 1 8.75 10<br />

88 Rb 649 7.66 6 (S) 8.65 7.5 8.65 7.5<br />

Chain 226 9.64 .5<br />

89 Sr 304 7.3 15 (W) 8.46 9 8.46 12<br />

649 9.3 3 (S) 8.30 12<br />

90 Sr 226 2.7 20 (W) 7.72 9 7.72 9<br />

304 6.79 14<br />

649 8.44 4<br />

91 Sr 304 5.78 17 (W) 6.81 9 6.81 9<br />

Y 649 7.40 5<br />

92 Y 649 6.40 9 6.40 10<br />

93 Y 649 4.40 6 4.40 10<br />

95 Zr 304 2.64 15 (W) 2.64 10 2.64 10<br />

649 2.60 15<br />

97 Zr 649 0.61 15 0.61 15<br />

99 Mo 304 0.162 15 (W) 0.153 9 0.153 9<br />

649 0.15 4<br />

103 Ru 304 0.044 15 (S) 0.025 76 0.025 76<br />

649 0.006 10<br />

105 Ru 304 0.025 15 (S) 0 .0 1 2 52 0 .0 1 2 52<br />

649 0.008 3<br />

106 Ru 304 0.0203 15 (s) 0.016 27 0.016 27<br />

649 0.0117 8<br />

109 Pd 304 0.0132 15 (S) 0.0102 30 0.0102 30<br />

649 0.0071 10


402 CROUCH<br />

Table III (cont)<br />

Th thennal neutrons induced fission<br />

1 2 3 4 5 6<br />

1 1 1 Ag 304 0.0203 15 (S) 0.0207 7 0.0207 7<br />

649 0 .0 2 1 4<br />

1 1 2 Pd 304 .0182 15 (S) 0.0196 7 0.0196 7<br />

649 .0 2 1 3<br />

113 Ag 304 .0167 15 (S) 0.0153 6 0.0153 1 1<br />

649 .0144 12<br />

115 Cd 304 .0213 15 (S) 0.0199 1 1 0.0199 1 1<br />

649 .0184 6<br />

117 Cd 649 .0163 12 (w) 0.0165 6 0.0165 6<br />

In 649 .0166 7<br />

118 Cd 649 .0174 5 0.0174 10<br />

1 2 1 Sn(2) 649 .074 2<br />

125 Sn(2) 304 .040 15 0.042 1 1<br />

Sn(l) 649 .0 0 2 2 14<br />

127 Sb 304 .04 15 0.042 1 1<br />

649 .0084 4<br />

Te 304 .0405 15<br />

129 Te 304 .125 15 (w) 0.124 1 1 0.124 1 1<br />

Sb 649 .1 2 2 7<br />

131 Chain 227 .64 5 (W) .595 5 .595 20<br />

I 304 .882 15 (s) .651 20<br />

649 .43 1 1<br />

132 Te 227 1.218 5 (W) 1.124 5 1 . 1 2 1 1<br />

304 1.125 15 (S) 1.113 1 1<br />

649 0.87 6<br />

133 Chain 227 3.02 5 (W) 3.04 5 3.04 5<br />

I 649 4.00 24<br />

134 Chain 227 6.03 5 (w) 5.90 5 5.90 5<br />

I 649 5.30 13<br />

135 I 649 4.96 5 (w) 5.46 4 5.46 1 1<br />

Chain 227 6 . 1 0 5 (S) 5.53 1 1<br />

136 Chain 227 6.03 5 6.03 10


<strong>IAEA</strong>-SM -17 0/94 403<br />

Table III (cont)<br />

i<br />

Th thermal neutrons Induced fission<br />

J_____ 2_____ 2________ä______________ 5______________ 6<br />

137 Cs 304 5.98 15 (W) 6.94 5 6.94 9<br />

649 6 . 1 0 12 (S) 6.53 9<br />

Chain 227 7.60 5<br />

138 Cs 649 8 .0 0 3 8 .0 0 5<br />

139 Ba 649 8.96 1 8.96 5<br />

140 Ba 304 7.30 15 (W) 9.74 5 9.74 17<br />

649 8.30 15 (S) 9.28 17<br />

Chain 227 12.25 50<br />

141 La 649 8.35 0.5 (W) 8.03 6 8.03 6<br />

Ce 304 7.91 15<br />

649 7.83 5<br />

142 La 649 8.50 9 (W) 5.66 5 5.66 23<br />

Chain 227 5.38 5 (S) 6.94 23<br />

143 Ce 649 8.87 3 (W) 5.48 5 5.48 27<br />

Chain 227 5.14 5 (s) 7.03 27<br />

144 Ce 304 8.72 15 (w) 6.15 5 6.15 16<br />

649 9.57 3 (S) 7.96 16<br />

Chain 227 5.60 5<br />

145 Pr 649 5.40 15 (w) 3.30 5 3.30 27<br />

Chain 227 3.13 5 (S) 4.26 27<br />

146 Chain 227 2.14 5 2.17 10<br />

147 Pr 649 1.83 15 1.83 15<br />

148 Chain 227 1.07 5 1.07 10<br />

149 Pm 649 0.71 15 0.71 15<br />

150 Chain 227 0.18 5 0.18 10<br />

151 Pm 649 0.046 15 0.046 15


404 CROUCH<br />

Table IV<br />

Pa Pile neutron induced fission<br />

1 2 3 4 5 6<br />

83<br />

85<br />

Br<br />

Kr( 1 )<br />

661<br />

587<br />

89 Sr 230<br />

661<br />

91 Sr<br />

Y<br />

661<br />

230<br />

587<br />

2.27<br />

4.46<br />

6.62<br />

7.26<br />

7.34<br />

6.80<br />

6.40<br />

0 . 2<br />

3<br />

2.27 15<br />

10<br />

0 .2<br />

15<br />

10<br />

0 .5<br />

(S) 6.99 4 6.99 1 1<br />

(S) 6.85 4 6.85 9<br />

95 Nb 587 6.40 0 .5 6.40 15<br />

97 Zr<br />

Nb<br />

230<br />

661<br />

587<br />

99 Mo 230<br />

661<br />

587<br />

103 Ru 230<br />

661<br />

587<br />

105 Ru 230<br />

661<br />

106 Ru 230<br />

661<br />

109 Pd 230<br />

661<br />

1 1 1 Ag 230<br />

661<br />

1 1 2 Pd 230<br />

661<br />

113 Ag 230<br />

661<br />

115 Cd(2)<br />

Cd<br />

230<br />

661<br />

4.11<br />

4.50<br />

4.36<br />

3.40<br />

2.59<br />

2.51<br />

0.30<br />

0.33<br />

0.41<br />

0.14<br />

0.154<br />

0 . 1 0 1<br />

0.108<br />

0.076<br />

0.083<br />

0.081<br />

0.099<br />

0.047<br />

0.061<br />

0.060<br />

0.077<br />

0.072<br />

0.080<br />

10<br />

15<br />

2<br />

10<br />

15<br />

1<br />

(S) 4.32 3 4.32 9<br />

(S) 2.50 2.5 2.50 9<br />

10<br />

15<br />

1 .,3<br />

(S) 0.346 10 0.346 10<br />

10<br />

15<br />

10<br />

15<br />

10<br />

15<br />

10<br />

15<br />

10<br />

15<br />

10<br />

15<br />

10<br />

15<br />

(S) 0.147 3 0.147 1 1<br />

(S) .105 3.5 0.105 1 1<br />

(S)<br />

(W)<br />

0.080<br />

0.08<br />

1 1<br />

4.5<br />

0.080 11<br />

(S) 0.90 10 0.90 10<br />

(S) 0.054 13 0.054 13<br />

(S) 0.067 12.5 0.069 13<br />

0.080 15<br />

121 Sn(2) 230 0.068 10 (S) 0.074 6 0.072 11<br />

661 0.076 15


127 Sb 230<br />

661<br />

129 Te(2) 230<br />

661<br />

<strong>IAEA</strong>-SM -ПО/94 405<br />

Table IV (cont)<br />

Pa Pile neutron induced fission<br />

1.90<br />

0.080<br />

1 . 6 6<br />

1.18<br />

10<br />

15<br />

10<br />

15<br />

0.08 15<br />

(S) 1.42 17 1.42 17<br />

131 I 587 2.63 1.3 2.63 15<br />

132 Te 230<br />

587<br />

661<br />

133<br />

135<br />

Xe<br />

Xe<br />

140 Ba<br />

La<br />

587<br />

587<br />

230<br />

661<br />

587<br />

2.83<br />

3.46<br />

3.42<br />

5.21<br />

6.69<br />

6.25<br />

6.96<br />

7.18<br />

10<br />

1<br />

15<br />

1<br />

34<br />

10<br />

15<br />

1<br />

(S) 3.24 9 3.24 9<br />

5.21<br />

6.69<br />

15<br />

34<br />

(S) 6.80 5 6.80 8<br />

141 Ce 587 6 .8 8 1 6 .8 8 15<br />

143 Ce 230<br />

587<br />

661<br />

5.58<br />

5.12<br />

6 . 1 2<br />

10<br />

1<br />

15<br />

(S) 5.61 6 5.61 8<br />

144 Ce 587 4.79 3 4.79 15<br />

147 Nd . 587<br />

661<br />

1.89<br />

2.45<br />

2<br />

15<br />

149 Pm 587 0.95 3<br />

153 Sm 661 0.079 15<br />

(S) 2.17 13 2.17 13<br />

0.95 15<br />

0.079 15


406 CROUCH<br />

Table V<br />

I<br />

'Th Pile neutron induced fission<br />

1 2 3__________4___________________5________________ 6<br />

72<br />

73<br />

Zn<br />

Ga<br />

348<br />

326<br />

.000136<br />

.00035<br />

15<br />

50<br />

.000136<br />

.00035<br />

77 Ge( 2) 326 .009 22 .071 24<br />

As 228 .0106 0.5 (W) . 0 1 1 14<br />

326 .0172 35 (S) .014 24<br />

83 Br 228 1.98 7 (W) 1.98 7 1.98 9<br />

326 1.97 24 (S) 2.13 9<br />

348 2.51 15<br />

89 Sr 15 7.20 6 (W) 6.96 5 6.96 5<br />

326 6.70 10 (S) 6.73 4<br />

348 6.30 15<br />

90 Sr 15 7.55 6 (w) 7.24 3 7.24 4<br />

288 7.46 4 (S) 7.09 4<br />

326 7.24 20<br />

336 7.01 1<br />

348 6.18 15<br />

91 Sr 228 6.81 8 (w) 5.18 5 5.18 1 1<br />

326 7.34 1 1 (S) 6.14 1 1<br />

348 5.97 15<br />

Y 15 4.44 6<br />

93 Y 367 7.86 15 7.86 15<br />

95 Zr 228 5.30 6 5.30 6<br />

97 Zr 228 4.15 14 (W) 4.65 9 4.65 9<br />

326 5.03 15 (S) 4.77 7<br />

348 5.13 15<br />

99 Mo 2.78*<br />

103 Ru 228 0.149 5 (w) 0.149 4 0.15 6<br />

326 0.158 33 (S) 0.160 6<br />

348 0.188 15<br />

336 0.147 6<br />

105 Rh 228 0.031 5 (w) 0.072 14 0.072 14<br />

326 0.072 29<br />

348 0.073 15<br />

106 Ru 228 .0405 5 (w) .0425 5 .043 10<br />

326 .0435 10 (S) .0498 10<br />

336 .0612 15<br />

348 .054 15<br />

* Taken as reference point in all papers.<br />

15<br />

50


<strong>IAEA</strong>-SM -17 0/94 407<br />

Table V (cont)<br />

232<br />

Th Pile neutron Induced fission<br />

1 2 3 4 5 6<br />

109 Pd 228 0.05 8 (W) 0.050 7 0.050 7<br />

326 0.051 20 (S) 0.051 4<br />

348 0.0492 15<br />

1 1 1 Ag 228 0.059 9 (W) 0.054 6 0.054 14<br />

326 0.047 20 (S) 0.058 14<br />

336 0 .0 8 1 15<br />

348 0.046 15<br />

1 1 2 Pd 228 0.055 9 (W) 0.057 7 0.057 14<br />

326 0.049 15 (S) 0.063 14<br />

348 0.061 15<br />

336 0.089 15<br />

113 Ag 228 0.045 7 0.045 7<br />

115 Cd( 1) 228 .00052 15 (w) 0.05 13 0.050 13<br />

Cd(2) 228 .0465 15<br />

348 0.055 15<br />

326<br />

(cfiain)<br />

0.0575 20<br />

117 In 228 0.048 1 1 0.048 1 1<br />

1 2 1 Sn 228 0.046 5 0.046 15<br />

123 Sn 228 0.0267 4 0.027 15<br />

125 Sn 228 0.037 8 0.037 15<br />

127 Sb 228 0.172 5 0.17 15<br />

131 I 228 1.57 4 (W) 1.27 5 1.27 22<br />

326 1.18 50 (s) 1.39 22<br />

336 2.14 15<br />

348 0 .6 8 15<br />

132 Te 326 2.24 29 (w) 1.76 14 1.76 15<br />

348 1 .6 8 15<br />

137 Cs 228 4.5 1 (w) 4.76 5 4.76 9<br />

326 6.44 15 (S) 5.90 9<br />

348 6.07 15<br />

336 6.59 15<br />

139 Ba 228 7.60 0.5 7.60 10


408 CROUCH<br />

Table V (cont)<br />

'Th Pile neutron induced fission<br />

1 2 3 4 5 6<br />

140 Ba 228 8.38 3 (W) 7.59 4 7.59 7<br />

326 6.14 32 (S ) 7.27 7<br />

348 5.76 15<br />

336 7.73 15<br />

15 6.94 8<br />

La 367 8.67 15<br />

141 Ce 15 6.59 5 (W) 7.60 3 7.60 6<br />

228 7.38 5 (S ) 7.24 6<br />

326 8.69 33<br />

336 7.26 15<br />

348 6.28 15<br />

143 Ce 367 7.12 15 (W) 6.81 4 6.81 4<br />

Pr 15 6.59 5 (S ) 6.91 3<br />

288 7.03 3<br />

144 Pr 228 6.98 0. 5 (W) 7.10 4 7.10 4<br />

Ce 15 7.15 5 (S ) 7.28 4<br />

326 6.93 14<br />

336 7.98 15<br />

348 6.49 15<br />

367 8 .14 15<br />

147 Nd 15 2.71 8 (W) 2.96 5 2.96 6<br />

228 3.08 5 (s) 3.01 6<br />

367 3.25 15<br />

149 Nd 367 1.57 15 (s) 1.22 30 1.22 30<br />

Pm 228 0.861 15<br />

151 Pm 367 0.46 15 0.46 15<br />

153 Sm 367 0.22 15 0.22 15<br />

156 Eu 228 0.0029 11 .0029 15


232u P ile<br />

<strong>IAEA</strong>-SM -170/94 409<br />

Table<br />

Neutron<br />

VI<br />

induced f is s io n<br />

1 2<br />

3 4 5<br />

6<br />

85 K r( 1) 605 2.43 2 _<br />

91 Y 605 7.43 2 7.43 15<br />

95 Z r 605 6.30 1 (W) 6.32 1 6.32 11<br />

Nb 605 6.36 2 (S ) 6.33 1<br />

97 Z r 605 4.98 1 (W) 4.99 1 4.99 11<br />

Nb 605 5.07 2<br />

99 Mo 605 4.22 2 (W) 4 .10 1 4.10 11<br />

Tc 605 4.08 1<br />

103 Ru 605 1.09 1 1.09 15<br />

131 I 605 4.13 1 4.13 15<br />

132 Te 605 4.77 1 (W) 4.80 1 4.80 11<br />

I 605 4 .84 1<br />

133 I 605 5.76 4 (W) 5.64 1 5.64 11<br />

Xe 605 5.63 0.5<br />

135 Xe 605 6.40 11 6.40 15<br />

137 Cs 605 8 .14 1 8 .14 15<br />

140 Ba 605 7.26 1 (W) 7.17 1 7.17 11<br />

La 605 7.04 1<br />

141 Ce 605 6.61 1 6.61 15<br />

143 Ce 605 4.68 1 4.68 15<br />

144 Ce 605 4.32 4 4.32 15<br />

147 Nd 605 1.15 2 1.15 15


410 CROUCH<br />

77 Ge<br />

As<br />

347<br />

347<br />

Table VII<br />

Thermal neutron induced fission<br />

0.00879<br />

0.0198<br />

15<br />

15<br />

78 (0 .0 4 )<br />

79 (0 .0 8 )<br />

80 (0 .1 7 )<br />

0.02 15<br />

81 S e ( l) 85 0.0141 14 0.33 12<br />

Se(2) 85 0.325 12<br />

82 (0 .6 1 )<br />

83 Se(2) 85 0.404 8 1.09 4<br />

Br 347 0.769 15 (W) 1.09 4<br />

Kr 74 1.18 4 (S ) 1.03 4<br />

209 1.16 1<br />

Chain 250 1.028 1<br />

84 K r 74 1.97 4 (W) 1.81 3 1.81 4<br />

209 1.93 5 (S ) 1.88 4<br />

Chain 250 1.73 1<br />

85 K r (2 ) 209 0.574 4 2.32 7<br />

590 0.512 2<br />

K r ( l ) 609 2.33 3<br />

Rb 74 2 ,54 4 (w) 2 32 3<br />

Chain 250 2.22 0.5 (S ) 2.38 7<br />

86 K r 74 3.30 4 (w) 3.06 3 3.06 4<br />

209 3.25 1 (S ) 3.15 4<br />

Chain 250 2.90 1<br />

87 Rb 74 4.61 4 (w) 4.18 3 4.18 7<br />

Chain 250 4.06 1 (S ) 4 .34 7<br />

88 Sr 17 5.30 6 (w) 5.47 2 5.47 2<br />

18 5 .30 6 (S ) 5.42 2<br />

74 5.54 4<br />

210 3.78 15<br />

220 5.38 3<br />

Chain 250 5.57 1<br />

89 Sr 32 6.91 2 (W) 6.12 3 6.12 5<br />

74 6.15 4 (S ) 6.06 5<br />

210 5.00 15<br />

309 5.56 3<br />

347 6.15 15<br />

Y 220 6.61 4


<strong>IAEA</strong>-SM -17 0/94 411<br />

Tab le V I I (c o n t )<br />

U Therm al neutron induced f is s io n<br />

1 2 3 4 5 6<br />

90 Sr 17 5.80 7 (W) 6.33 3 6.33 4<br />

18 5.80 7 (S ) 6.22 4<br />

28 4.56 2<br />

28 4.46 3<br />

74 6.75 4<br />

309 6.19 0 .5<br />

Zr 220 5.80 4<br />

Chain 250 6.96 1<br />

91 Sr 32 6.59 2 (w ) 6.56 2 6.56 2<br />

309 • 4.82 6 (S ) 6.56 1.5<br />

609 6.36 3<br />

Y 76 6.90 10<br />

309 3.55 2<br />

347 4.50 15<br />

Zr 74 6,45 4<br />

210 6.31 15<br />

220 6.74 3<br />

Chain 250 6.60 1<br />

92 Zr 74 6.72 4 (W) 6.66 3 6.66 3<br />

210 6.37 15 (S ) 6.58 2<br />

220 6.53 4<br />

Chain 250 6.69 1<br />

93 Zr 74 7.01 4 (W) 7.06 3 7.06 3<br />

210 6.88 15 (S ) 6.99 1<br />

Chain 250 7.09 1<br />

94 Zr 74 6.68 4 (W) 6.80 3 6.80 3<br />

210 6.92 15 ( s ) 6.80 1<br />

220 6.69 4<br />

Chain 250 6.91 1<br />

95 Zr 74 6.23 4 (W) 6.27 3 6.27 5<br />

309 5.01 12 (S ) 6.02 5<br />

347 6.26 15<br />

609 6.17 2<br />

Nb 309 5.16 12<br />

Mo 210 6.92 15<br />

Chain 250 6 .40 1<br />

96 Zr 94 5.67 4 (w) 5.78 3 5.78 3<br />

210 6.78 15 (S ) 6.00 2<br />

220 5.69 5<br />

Chain 250 5.84 1


412 CROUCH<br />

Table VII (cont)<br />

233 U Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

97 Zr 609 5.73 2 (W) 5.57 3 5.57 5<br />

Nb 609 5.75 2 (S) 5.87 5<br />

Mo 74 5.51 4<br />

310 6.69 15<br />

Chain 250 5.82 1<br />

98 Mo 74 5.22 4 (W) 5.24 3 5.24 7<br />

2 1 0 6.27 15 (S) 5.57 7<br />

Chain 250 5.22 1<br />

99 Mo 76 4.80 10 (W) 5.08 3 5.08 3<br />

197 4.96 3 (S) 4.98 2<br />

347 5.16 15<br />

609 4.80 15<br />

Chain 250 5.16 1<br />

10 0 Mo 74 4.49 4 (W) 4.50 3 4.50 16<br />

2 1 0 6.96 15 (S) 5.30 16<br />

Chain 250 4.46 1<br />

10 1 Ru 74 2.87 4 (s) 3.10 3 3.10 3<br />

Chain 250 3.27 1<br />

102 Ru 74 2 . 1 0 4 (W) 2.31 3 2.31 3<br />

Chain 250 2.48 1<br />

103 Ru 43 1.71 6 (w) 1.61 4 1.61 15<br />

309 2 .0 2 4 (s) 1.35 15<br />

347 0.933 15<br />

609 1.52 2<br />

104 Ru 74 0.94 4 (W) 1 .0 0 3 1.00 3<br />

Chain 250 1.04 1<br />

105 (0.52)<br />

106 Ru 43 0.19 6 (w) 0.262 3 0.262 3<br />

309 0.26 12<br />

347 0.263 15<br />

Chain 250 0.262 1<br />

107 (0.105)<br />

108 (0.087)<br />

109 Pd 347 0.052 15<br />

110<br />

0.052 15<br />

(0.032)


<strong>IAEA</strong>-SM -170/94 413<br />

Table VII (cont)<br />

U Thermal neutron Induced fission<br />

1 2 3 4 5 6<br />

1 1 1 Pd 25 0 .0 2 1 10 (W) 0.0203 7 0 .0 2 7<br />

Ag 309 0.0187 1<br />

347 0.0242 15<br />

1 1 2 Pd 309 0.0125 3 (W) .013 9 0.013 9<br />

347 0.0154 15<br />

113 (0.014)<br />

114 (0.015)<br />

115 Cd(l) 347 0 . 0 0 1 1 15 .019 15<br />

Cd(2) 347 0.0176 15<br />

( 1 1 0 (0.0154)<br />

117 Sn 246 0.0146 7 0.015 7<br />

118 Sn 246 0.0151 7 0.015 7<br />

119 Sn 246 0.0153 7 0.015 7<br />

120 Sn 246 0.017 7 0.017 7<br />

1 2 1 Sn(2) 347 0.0198 15 0 .0 2 15<br />

12 2 Sn 246 0.0189 6 0.019 6<br />

123 (0.024)<br />

124 Sn 246 0.0313 5 0.031 5<br />

125 Sn( 2) 347 0.0593 15 0.116 1 1<br />

Chain 250 0.116 1 1<br />

126 (0.262)<br />

127 Sb 309 0.59 14 0.59 15<br />

347 0 . 1 0 1 15<br />

Te 347 0.0736 15<br />

128 (1.04)<br />

129 (1.61)<br />

130 (2.40)<br />

131 I 309 2.84 7 3.51 2<br />

347 2.96 15<br />

Xe 74 3.52 4 (W) 3.51 2<br />

209 3.45 1 (S) 3.51 1<br />

Chain 250 3.51 1<br />

609 3.57 2


414 CROUCH<br />

Table VII (cont)<br />

U Thermal neutron Induced fission<br />

1 2 3 4 5 6<br />

132 Te 309 4.32 6 (W) 4.41 6 4.81 6<br />

347 5.38 15<br />

Xe 74 4.82 4 (W) 4.81 3<br />

Chain 250 4.88 1 (S) 4.41 6<br />

609 4.70 6<br />

133 I 309 3.37 9 (W) 5.85 2 5.88 2<br />

Xe 609 5.94 6 (S) 5.77 2<br />

Cs 16 5.20 6<br />

16 5.50 2<br />

72 5.60 3<br />

74 5.77 4<br />

209 5.74 15<br />

Chain 250 6.06 1<br />

381 5.85 15<br />

381 6 . 1 1 15<br />

381 5.85 15<br />

609 5.86 2<br />

134 Xe 74 6.18 4 (W) 6.14 3 6.14 3<br />

209 6.08 1 (S) 6.13 1<br />

Chain 250 6.13 1<br />

135 I 273 4.59 1 5.81 3<br />

Xe 72 6 .0 0 3 (W) 5.81 3<br />

74 6 .0 2 4<br />

609 5.40 1<br />

136 I 347 1.87 15 6.89 5<br />

Xe 74 6.89 4<br />

137 Cs 16 5.80 5 (W) 6 . 1 2 2 6.12 3<br />

16 5.16 3 (S) 6.25 3<br />

19 6.16 2<br />

43 8.32 6<br />

74 6.58 4<br />

209 6.58 2<br />

220 6.41 2<br />

309 5.39 2<br />

383 6.13 2<br />

Chain 250 6.93 3<br />

381 6.63 15<br />

381 6.58 15<br />

381 6.60 15


<strong>IAEA</strong>-SM-17 0/94 415<br />

Table VII (cont)<br />

233<br />

U Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

138 Chain 250 5.97 1 (W) 5.96 3 5.96 3<br />

381 5.74 15<br />

139 Ba 32 6.59 2 (S) 6 . 2 0 3 6 . 2 0 3<br />

609 6.13 2<br />

La 19 5.91 4<br />

220 6.15 4<br />

140 Ba 32 6.59 2 (W) 6.32 2 6.32 3<br />

276 6.59 1 (S) 6.16 3<br />

309 5.21 5<br />

609 6.07 2<br />

347 6.59 15<br />

La 609 6 .0 2 1<br />

Ce 16 5.45 9<br />

16 6.16 4<br />

74 6.72 4<br />

220 6.41 4<br />

290 5.60 3<br />

Chain 250 6.53 1<br />

141 La 32 7.24 2 (W) 6.16 3 6.16 6<br />

Ce 76 7.11 10 (S) 6.28 6<br />

309 5.30 2<br />

609 6.69 2<br />

Pr 19 5.57 3<br />

220 5.79 3<br />

142 Ce 16 5.50 9 (W) 6.61 2 6.61 4<br />

16 6.06 4 (S) 6.29 4<br />

74 7.00 4<br />

220 6.30 4<br />

290 5.60 3<br />

Chain 250 6.71 1<br />

381 6.83 15<br />

143 Ce 309 6.99 5 (w) 5.83 2 5.83 3<br />

609 5.67 2 (s) 5.81 3<br />

Pr 76 5.71 10<br />

Nd 16 5.00 6<br />

16 5.19 3<br />

72 6.45 3<br />

74 6 . 2 2 4<br />

220 5.40 3<br />

259 5.86 15<br />

290 5.15 6<br />

Chain 250 5.85 1<br />

381 5.98 15<br />

381 5.90 15<br />

381 5.90 15


416 CROUCH<br />

Table VII (cont)<br />

U Thermal neutron induced fission<br />

1 . 2 3 4 5 6<br />

144 Ce 76 4.48 10 (W) 4.52 2 4.52 4<br />

309 3.69 5 (S) 4.26 4<br />

347 3.75 15<br />

609 4.54 1<br />

Nd 16 3.80 10<br />

16 3.84 4<br />

74 4.87 4<br />

259 4.56 15<br />

290 3.37 9<br />

Chain 250 4.67 1<br />

381 4.62 15<br />

381 4.72 15<br />

381 4.51 15<br />

145 Nd 16 2.82 9 (W) 3.29 2 3.39 3<br />

16 2 .8 8 3 (S) 3.26 3<br />

74 3.66 4<br />

259 3.44 15<br />

290 3.00 7<br />

Chain 250 3.37 1<br />

381 3.40 15<br />

381 3.39 15<br />

381 3.39 15<br />

146 Nd 16 2 .2 0 7 (W) 2.46 2 2.46 3<br />

16 2.24 3 (s) 2.46 3<br />

74 2.74 4<br />

259 2.58 15<br />

290 2.34 6<br />

Chain 250 2.53 1<br />

381 2.52 15<br />

381 2.52 15<br />

381 2.51 15<br />

147 Nd 76 1.73 10 (W) 1.82 3 1.82 6<br />

609 1.75 2 (s) 1.84 6<br />

Pm 19 1.53 4<br />

72 2 . 1 0 3<br />

Sm 261 2.16 15<br />

Chain 250 1.78 2


<strong>IAEA</strong>-SM-17 0/94 417<br />

Table VII (cont)<br />

U Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

148 Nd 16 1.03 10 (W) 1.24 2 1.24 4<br />

16 1.07 4 (S) 1.23 4<br />

74 1.40 4<br />

259 1.31 15<br />

290 1.15 4<br />

Chain 250 1.30 1<br />

381 1.30 15<br />

381 1.27 15<br />

381 1.27 15<br />

149 Pm 76 0.74 10 (W) 0.773 3 0.773 3<br />

Sm 16 0 .6 6 20 (S) 0.748 3<br />

16 0.70 4<br />

72 0.30 3<br />

74 0.79 4<br />

261 0.77 15<br />

Chain 250 0.773 1<br />

150 Nd 16 0.51 16 (W) 0.503 2 0.503 2<br />

16 0.49 4 (S) 0.507 2<br />

74 0.57 4<br />

259 0.521 15<br />

290 0.51 8<br />

Chain 250 0.50 1<br />

381 .484 15<br />

381 .491 15<br />

381 .491 15<br />

151 Pm 76 0.36 10 (w) 0.338 3 0.338 3<br />

Sm 16 0.54 6 (s) 0.335 3<br />

19 0.33 9<br />

72 0.30 3<br />

74 0.33 4<br />

261 0.325 15<br />

Chain 250 0.365 3<br />

152 Sm 19 0 . 2 1 10 (w) 0.198 3 0.198 4<br />

74 0 .2 2 2 4 (s) 0.208 4<br />

261 0.214 15<br />

Chain 250 0.186 2<br />

153 Sm 76 0.099 10 (w) 0.0988 8 0.099 . 13<br />

347 0.0857 15 (s) 0.105 13<br />

Eu 19 0.13 15


418 CROUCH<br />

Table VII (cont)<br />

U Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

154 Sm 74 0.048 4 (W) 0.046 3 0.046 3<br />

261 0.047 15 (s) 0.0469 2<br />

Chain 250 0.0458 1<br />

155 (0.0231)<br />

156 Eu 76 0.0114 10 0.0114 10<br />

157 Eu 76 0.00674 10 0.0067 10<br />

158 (.00235)<br />

159 Gd '76 .000908 10 .00091 10<br />

160 .00031<br />

161 Tb 76 .000115 10 .0 0 0 12 10


<strong>IAEA</strong>-SM -170/94 419<br />

Table VIII<br />

235<br />

U Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

72 Zn 345 .041539 15 _ •0415 15<br />

73 Ga 345 ,031026 15 - .0 , 1 0 15<br />

74 Ga 262 •033408 15 - .0334 15<br />

77 Ge 307 .0,2361 15 _ .0081 1 1<br />

345 .0,3799 15 -<br />

ÀS 307 .0,6882 15 (s) .0081 1 1<br />

345 .029348 15<br />

78 Ge 307 .01847 15 _ .0 2 0 1 1<br />

Ge 345 .02053 15 -<br />

As 307 .02053 15 *(s) .0 2 0 1 1<br />

As 345 .02053 15<br />

79 As 158 .05506 10 (S) .055 10 .055 10<br />

80 (0 .1 1 )<br />

81 Se(l) 83 •027586 12 0 . 2 1 10<br />

Se(2) 83 .2094 10<br />

Se(l) 345 ,028218 15 -<br />

Se(2) 345 .1364 15 -<br />

82 (0.333)<br />

83 Se 83 .2174 10 (W) 0 .2 2 9 0.515 4<br />

345 .2165 15<br />

Se(m) 83 .3392 6 0.34 6<br />

Br 345 0.49 15 0.49 15<br />

Kr 29 0.5529 2 (W) 0.515 1 . 2<br />

344 0.5088 15 (S) 0.553 4<br />

Chain 251 0.4967 1 .,5<br />

84 Br 83 0.9283 6 0.931 4 0.959 7<br />

308 0.9349 7<br />

Br(ra) 308 0.1929 16 -<br />

Kr 29 1 . 0 1 1 2 (W) 0.9592 2<br />

344 1.130 15 (S) 1.024 7<br />

Chain 251 0.9297 2<br />

85 Kr 29 0.2977 2 (W) 0.286 1 1.30 3<br />

243 0.2727 3 (S) 0.296 5<br />

344 0.3292 15<br />

592 0.2843 1 .2<br />

Chain 251 1.297 1 1.297 1


420 CROUCH<br />

Table VIII (cont)<br />

U Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

86 Kr 29 2.053 2 (W) 1.894 1 1.89 7<br />

344 2.17 15 (S) 2 . 0 1 7<br />

Chain 251 1.807 2<br />

87 Sr 569 1.167 2 1 2.64 5<br />

Br 306 . 3.217 5<br />

Chain 251 2.537 0.4 (S) 2.64 5<br />

Chain 404 2.75 15<br />

88 Sr 2 1 0 3.617 15 3.69 5<br />

Chain 251 3.607 0 .6 (W) 3.69 0 .6<br />

Chain 405 3.962 15<br />

*<br />

(S) 3.78 5<br />

89 Sr 34 4.752 5 (W) 4.774 1.4 4.77 1.4<br />

289 4.777 1.5<br />

210 4.779 15<br />

345 4.724 15<br />

90 Sr 4 5.607 4 (W) 5.888 1 5.89 1 1<br />

288 4.001 3 (S) 5.17 1 1<br />

Chain 251 5.897 0.7<br />

91 Sr 34 5.726 5 5.68 4 5.90 2<br />

289 5.097 2<br />

313 5.792 1 1<br />

345 5.136 15<br />

Y 75 6.208 10 (W) 5.887 0.5<br />

288 5.325 4 (S) 5.904 2 . 2<br />

345 6.060 15<br />

Zr 2 10 6.032 15<br />

Chain 251 '5.897 0.5<br />

92 Sr 345 5.136 15 (W) 5.95 0.5 5.95 1<br />

Zr 2 10 6.093 15 (S) 6 .0 2 1<br />

Chain 251 5.947 0.5<br />

93 Y 240 6.107 10 (W) 6.34 0 .6 6.34 3<br />

366 6.941 10 (S) 6.49 3<br />

Zr 2 10 6.578 15<br />

Chain 251 6.337 0 .6<br />

94 Y 345 5.136 15 6.41 2<br />

Zr 2 10 6.618 15 (w) 6.41 0 .6<br />

Chain 251 6.407 0 .6 (s) 6.51 1 . 6


<strong>IAEA</strong>-SM -170/94 421<br />

Table VIII (cont)<br />

2 3 5<br />

U Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

95 Zr 345 6.164 15 (W) 6.45 0.5 6.45 2<br />

Mo 2 1 0 6.618 15 (S) 6.41 2<br />

Chain 251 6.447 0.5<br />

96 Zr 2 1 0 6.447 15 (W) 6.23 0 .6 6.23 2<br />

Chain 251 6.227 0 .6 (S) 6.35 2<br />

97 Zr 39 6 .2 0 8 3.5 (W) 5.87 0.5 5.87 2 .:<br />

40 6.084 2.7 (s) 6.07 2.5<br />

289 5.50 3.5<br />

313 4.775 1 . 1<br />

345 6.368 15<br />

Mo 2 10 6.396 15<br />

Chain 251 5.857 0.5<br />

98 Hb(m) 393 0.064 19 5.77 2<br />

Mo 2 10 5.992 15 (w) 5.77 0.5<br />

Chain 251 5.767 0.5 (s) 5.88 2<br />

99 Mo 198 6.25 3 (w) 6.14 0.85 6.14 0 .Í<br />

216 6.157 1.3 (S) 6.15 0 .8 0<br />

289 5.977 3.5<br />

316 6.137 2 . 6<br />

331 6.031 3.4<br />

345 6.368 15<br />

Chain 251 6.137 1 . 6<br />

100 Mo 2 10 6.648 15 (w) 6.24 0.5 6.24 3<br />

Chain 251 6.237 0.5 (S) 6.44 3.2<br />

1 0 1 Mo 331 5.519 4 (w) 5.05 0 .8 5.05 5<br />

Chain 251 5.027 0 .8 (s) 5.27 5<br />

102 Mo 331 4.19 1 (s) 4.19 1 4.19 1<br />

Chain 251 4.187 5<br />

103 Ru 41 2.963 6 (w) 3.03 3 3.03 6<br />

223 2.912 6 (S) 3.21 6<br />

331 1.429 15<br />

345 3.779 15<br />

363 3.149 4<br />

104 Mo 315 2.032 15<br />

Chain 251 1.817 0.6<br />

1.82 3


422 CROUCH<br />

Table VIII (cont)<br />

U Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

105 Ru 331 0.8485 36 (W) 0.96 4 0.96 4<br />

345 0.9245 15<br />

363 0.9654 4<br />

106 Ru 222 0.3828 8 (W) 0.39 1 0.39 12<br />

345 0.5341 15 (S) 0.44 12<br />

Chain 251 0.3887 1<br />

107 (0.166)<br />

108 (0.070)<br />

109 Pd 39 .02938 2 (W) 0.03 1.3 0.03 3<br />

40 .02998 2 (S) 0.029 3<br />

178 .02573 15<br />

345 0.2875<br />

11 0 (0.0195)<br />

1 1 1 Pd 24 0.01822 10 (W) 0.017 1 0.017 1.6<br />

Ag 39 0.01689 1 (S) 0.0177 1 . 6<br />

40 0.01746 2<br />

178 0.01781 15<br />

345 0.01847 15<br />

1 1 2 Pd 39 .008497 1 (W) .008527 0.5 0.008537 1<br />

40 .008597 1 (S) .008405 0.7<br />

178 .008319 15<br />

345 .008526 15<br />

363 0.01217 5<br />

113 (.0 0 8 6)<br />

114 (.0090)<br />

115 Cd 39 .008733 3 (W) .0,877 1.5 0.00952 14<br />

40 .008629 2 (s) .01123 14<br />

178 .0 18 8 0 15<br />

335 .009797 10<br />

345 .01128 15<br />

363 0.1015 6<br />

Cd(m) 335 . 0007097 10 (W) •03736 9<br />

345 . 0008218 15<br />

116 (.0097)


<strong>IAEA</strong>-SM -17 0/94 4 2 3<br />

Table VIII (cont)<br />

2 3 5<br />

U Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

117 Cd 345 0.01026 15 (w) 0 . 0 1 2 0 . 0 1 2<br />

Chain 361 0.009997 2<br />

118 Chain 361 0.00999 2 0 . 0 1 2<br />

119 Chain 361 0.011 2 0 . 0 1 1 2<br />

120 Chain 361 0.011 2 0 . 0 1 1 2<br />

1 2 1 Cd 337 .006397 8 .0111 4<br />

In(l) 337 .003197 15<br />

Sn(2) 175 .01225 2 (W) . 0 1 1 1 2<br />

345 .01436 15 (S) .01228 4<br />

363 .01217 8<br />

337 .01097 9<br />

Chain 391 .01197 8<br />

361 .01197 2<br />

12 2 Chain 361 .01297 2 .0130 2<br />

123 Sn( 1) 176 .01971 9 .0140 2<br />

Sn(2) 175 .001910 1.6<br />

345 .001231 15<br />

Chain 361 .01397 2<br />

124 Chain 361 .01697 2 .0170 2<br />

125 Sn( 1) 176 .0135 10 .0296 9<br />

Sn(2) 175 .01165 1 (W) .01156 1<br />

345 .01231 15 (s) .01204 2<br />

363 .01217 8<br />

Sb 27 .02258 5 (W) .02965 1<br />

175 .02926 2 (s) .02814 9<br />

345 .02361 15<br />

Chain 251 .02907 1<br />

361 .03597 2<br />

126 Sb(2) 27 .000890 6 0 . 1 0 2<br />

Chain 361 .09997 2<br />

127 Sn(2) 175 .0674 1.5 (w) .0675 1.5 0.25 2<br />

176 .0869 15 (s) .0771 13<br />

Sb 175 .1035 1 (w) .104 1<br />

178 .0921 15 (S) .108 10<br />

224 .1395 6<br />

345 .0966 15<br />

417 .394 10<br />

Te(l) 345 .00339 15<br />

Chain 361 .25 2


424 CROUCH<br />

Table VIII (cont)<br />

235<br />

U Thermal Neutron induced fission<br />

1 2 3 4 5 6<br />

128 Sn(2) 175 .316 1.5 (S) 0.368 14 0.50 2<br />

176 .420 15<br />

Chain 361 0.50 2<br />

129 Sn(2) 31 .173 6 1 . 0 2<br />

Sb 31 .396 8 (S) .767 2 1<br />

175 .626 5 (w) .565 4<br />

224 1 . 1 2 15<br />

417 .926 7<br />

Te(l) 345 .195 15<br />

Chain 361 1.00 2<br />

130 Sb 283 2.58 1 2 2 .0 0 2<br />

Chain 361 2 .0 0 2<br />

131 Xe 29 2.91 2 (w) 2.85 1 2.85 1<br />

344 2.91 15 (s) 2 .8 8 1 . 1<br />

251 2.79 1.5<br />

361 2.93 2 .,0<br />

132 Xe 29 4.35 2 (W) 4.26 1 4.26 1<br />

344 4.33 15 (s) 4.31 1<br />

406 4.35 15<br />

Chain 251 4.16 1.,4<br />

361 4.38 2 .0<br />

133 Xe 233 6.62 33 (w) 6.72 0.5 6.72 0.<br />

255 6.63 0.,16(S) 6.64 0.5<br />

345 6.46 15<br />

Cs 70 6.59 3<br />

Chain 251 6.73 0 .,6<br />

361 6.62 2<br />

379 6.75 15<br />

379 6.75 15<br />

134 Xe 29 8 .0 0 2 (w) 7.76 1 7.76 1<br />

344 7.70 15 (s) 7.85 1.3<br />

406 7.96 15<br />

Chain 251 7.51 1.,5<br />

361 8.06 2<br />

135 Xe 70 6.41 3 (w) 6.39 3<br />

345 6.06 16 (S) 6.23 3<br />

Cs 279 6.51 10 (w) 6.45 2 6.45 2<br />

Chain 361 6.45 2 (s) 6.47 0.3<br />

Chain 403 6.46 10


1 2<br />

<strong>IAEA</strong>-SM -П О/94 425<br />

Table VIII (cont)<br />

235 U Thermal neutron induced fission<br />

3 4 5<br />

136 Xe 29 6.41 2 (W) 6.54 1.4 6.54 2<br />

344 6.38 15 (S) 6.39 0 .6<br />

406 6.28 10<br />

Chain 361 6.47 2<br />

137 Cs 47 6.24 3 (W) 6.27 0.5 6.27 1<br />

279 6.24 10 (S) 6 . 2 1 0.4<br />

Chain 251 6.28 0 .5<br />

Chain 361 6.17 2<br />

379 6.19 10<br />

403 '6.13 10<br />

138 Cs 45 7.24 4 (W) 6.80 0.4 6.80 2<br />

Chain 251 6 .8 0 0 .4 (S) 6.91 2.5<br />

361 6 .6 8 2<br />

139 Ba 34 6.59 5 (W) 6 .44 1 . 6 6.44 2<br />

289 6.40 3. 5 (S) 6.47 0.7<br />

345 6.47 15<br />

La 215 8.34 10<br />

Chain 361 6.42 2<br />

140 Ba 154 6.36 4 (W) 6.32 0.4 6.32 0<br />

177 6.40 10 (S) 6.36 0.5<br />

216 6.55 1 .,5<br />

289 6.30 2<br />

345 6.34 15<br />

386 6.32 4<br />

La 366 6.62 10<br />

Ce 20 6.30 5<br />

151 6 . 2 0 10<br />

215 6.41 5<br />

Chain 251 6.31 0 .,5<br />

361 6.25 2<br />

141 La 34 6.32 5 (W) 5.70 0.5 5.70 3<br />

Ce 345 5.86 15 (S) 5.60 3<br />

Pr 20 5.60 5<br />

215 5.69 5<br />

Chain 251 5.50 6<br />

361 5.73 2<br />

142 Ce 2C 5.80 4 (W) 5.87 0.5 5.87 1<br />

151 5.91 1 (S) 5.85 0.5<br />

Chain 251 5.88 0 .5<br />

361 5.80 2<br />

6


426 CROUCH<br />

1 2<br />

Table VIII (cont)<br />

235u Thermal neutron induced fission<br />

3 4 5<br />

143 Ce 313 5.89 4 (W) 5.89 1.5 5.89 2<br />

345 5.55 15 (S) 5.86 2<br />

366 5.91 10<br />

Pr 75 5.98 10<br />

Nd 20 5.80 4<br />

70 5.80 3<br />

151 5.91 1<br />

215 5.90 4<br />

251 5.90 0.51<br />

258 5.91 15<br />

343 5.91 15<br />

Chain 361 5.71 2<br />

379 5.96 15 -<br />

379 6.04 15<br />

379 5.98 15<br />

144 Nd 20 5.60 5 (W) 5.42 0.5 5.42 2<br />

151 5.32 2 (S) 5.38 1 . 2<br />

215 5.69 5<br />

251 5.42 0.4<br />

258 5.49 8<br />

343 5.08 15<br />

Chain 361 5.30 2<br />

379 5.30 15<br />

379 5.31 15<br />

379 5.33 15<br />

145 Nd 20 4.00 3 (W) 3.87 0.5 3.87 1<br />

151 3.90 1 (S) 3.92 0 .6<br />

215 4.07 3<br />

251 3.86 0.52<br />

258 3.93 0 . 2<br />

343 3.96 15<br />

Chain 361 3.80 15<br />

379 3.94 15<br />

379 3.91 15<br />

379 3.89 15<br />

146 Nd 20 3.20 15 (W) 2.95 0.5 2.95 2<br />

151 2.95 1 (S) 3.01 1.5<br />

215 3.25 15<br />

251 2.95 0.34<br />

258 2.98 0.4<br />

343 3.07 15<br />

Chain 361 2.89 2<br />

6


<strong>IAEA</strong>-SM -17 0/94 427<br />

Table VIII (cont)<br />

235<br />

Ü Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

147 Pm 20 2.90 14 (W) 2.17 1 . 2 2.17 4<br />

70 2.38 3 (S) 2.44 4<br />

Nd 75 2.24 10<br />

345 2.67 15<br />

366 2.52 10<br />

Sm 151 2.24 1<br />

260 2.18 2<br />

Chain 215 2.95 14<br />

251 2 . 1 2 1.9<br />

361 2.16 2<br />

148 Nd 20 1.70 6 (W) 1 .6 8 8 0 .6 1.69 1<br />

151 1.67 1 (S) 1.67 1<br />

215 1.73 6<br />

258 1 . 6 6 2<br />

343 1.79 15<br />

Sm 215 1.52 20<br />

Chain 361 1.61 2<br />

379 1.67 15<br />

379 1.67 15<br />

379 1.67 15<br />

251 1.69 0 .6<br />

149 Pm 75 1.06 10 (W) 1 . 0 1 1 1 . 0 1 6<br />

215 1.52 20 (S) 1.19 6<br />

345 1.33 15<br />

Sm 20 1.5 2<br />

70 1.13 3<br />

151 1 . 1 0 1<br />

260 1.04 15<br />

Chain 361 1 . 0 2 2<br />

251 1 . 0 0 1<br />

150 Nd 20 0.70 14 (W) 0 .6 6 5 0.637 1<br />

258 0.65 1 (S) 0.69 3<br />

343 0.72 15<br />

Sm 151 0.65 2 (W) 0.637 1<br />

Chain 215 0.712 14 (S) 0.650 2<br />

361 0.628 2<br />

379 0.650 15<br />

379 0.633 15<br />

379 0.640 15<br />

251 0.638 0.63


428 CROUCH<br />

T a b l e V I I I ( c o n t )<br />

Ü Thermal neutron Induced fission<br />

1 2 3 4 5 6<br />

151 Sm 20 0.45 3 (W) .410 2 0.410 2<br />

151 0.414 1 (S) .420 2<br />

260 0.414 15<br />

342 0.435 15<br />

Chain 361 0.399 2<br />

251 0.408 3<br />

152 Sm 151 0.266 1 (W) 0.234 2 0.234 5<br />

260 0.261 15 (S) 0.254 5<br />

342 0.272 15<br />

Chain 361 0.260 2<br />

251 0 .2 1 2<br />

153 Sm 75 0.161 10 (W) 0.149 4 0.150 3<br />

282 0.129 15 (S) 0.150 6<br />

345 0.154 15<br />

366 0.150 10<br />

Eu 151 0.163 3 (W) 0.150 2<br />

178 0.158 15<br />

Chain 361 0.148 2<br />

154 Sm 151 0.0738 1 (W) 0.0652 2 0.0652 8<br />

260 0.0707 15 (S) 0.0736 8<br />

342 0.0887 15<br />

Chain 361 0.0724 2<br />

251 0.0561 1 . 6<br />

155 Sm 345 .0318 15 .0294 5<br />

Eu 151 .0321 3 (W) 0.0294 2<br />

Chain 361 .0291 2 (S) 0.0306 5<br />

156 Sm 345 0.0123 15 0.015 2<br />

Eu 75 0.0139 10 (W) .0129 5<br />

170 0.0125 8 (S) .0131 3<br />

178 0.0138 15<br />

282 0.0119 15<br />

345 0.0133 15<br />

Chain 361 0.0150 2<br />

157 Eu 75 .00620 10 (W) .00677 2 .00677 6<br />

170 .00600 2 (S) .00670 6<br />

345 .00760 15<br />

Chain 361 .00700 2


IA E A -SM -nO /94<br />

Table VIII (cont)<br />

235 U Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

158 Eu 170 .00310 20 (W) .0 0 2 0 0 2 .00200 15<br />

345 .00205 15 (S) .00238 15<br />

Chain 361 .0 0 2 0 0 2<br />

159 Eu 170 .0 0 1 1 0 30 .00101 3<br />

Gd 75 .00104 10 (W) .0 0 1 0 1 2<br />

183 .00113 1 1 (S) .00105 3<br />

282 .00104 15<br />

Chain 361 .0 0 10 0 2<br />

160 -<br />

161 Tb 75 .О4 8ЗЗ 10 (W) .О4 8ОЗ 7 .О4 8ОЗ 7<br />

183 .04824 10 (S) .04793 5<br />

282 .04720 15<br />

162<br />

163<br />

-<br />

164<br />

-<br />

165<br />

-<br />

166 Dy 265 .07632 50 .07632 50<br />

429


1<br />

83<br />

89<br />

91<br />

97<br />

99<br />

103<br />

105<br />

106<br />

109<br />

111<br />

112<br />

113<br />

115<br />

121<br />

125<br />

127<br />

CROUCH<br />

Table IX<br />

237 Np Pile neutrons induced fission<br />

2 3_________4______________5 6<br />

Br 662 0.265 15 (S) .317 17 0.317 17<br />

231 0.368 15<br />

Sr 662 2.04 15 (S) 2.27 11 2.27 11<br />

231 2.49 15<br />

Sr 662 4.04 15' (W) 4.0 11 4.0 11<br />

231 3.95 15 (S) 4.0 2<br />

Zr 662 6.95 15 6.95 15<br />

Mo 662 6.98 15 (W) 6.85 11 6.85 11<br />

231 6.71 15<br />

Ru 662 4.0 15 (W) 4.34 11 4.34 11<br />

231 4.68 15 (S) 4.34 8<br />

Ru 662 2.75 15 (W) 2.83 11 2.83 11<br />

Rh 231 2.90 15 (S) 2.83 3<br />

Ru 662 1.56 15 (W) 1.68 11 1.68 11<br />

231 1.79 15<br />

Pd(2) 662 0.30 15 (W) 0.34 11 0.34 11<br />

231 0.38 15 (S) 0.34 12<br />

Ag 662 0.085 15 (W) .092 11 0.092 11<br />

231 0.099 15 (S) .092 8<br />

Pd 662 0.072 15 (W) 0.059 11 0.059 22<br />

231 0.046 15 (S) 0.059 22<br />

Ag(2) 662 0.045 15 (W) 0.044 11 0.044 11<br />

231 0.042 15<br />

Cd 662 0.041 15 (W) 0.046 11 0.046 11<br />

231 0.051 15<br />

Su(2) 661 0.047 15 (W) 0.049 11 0.049 11<br />

231 0.051 15<br />

Su(2) 662 0.126 15 (W) 0.111 11 0.11 15<br />

231 0.094 15 (S) 0.11 15<br />

Sb 662 0.916 15 (S) 0.94 11 0.94 11<br />

231 0.97 15


237M Np<br />

<strong>IAEA</strong>-SM -170/94 431<br />

Table IX (cont)<br />

Pile neutrons induced fission<br />

1 2 3 4 5 6<br />

129 Te 662<br />

231<br />

132 Te 662<br />

231<br />

140 Ba 662<br />

231<br />

141 Ce 662<br />

231<br />

144 Ce 662<br />

231<br />

2.60<br />

2.72<br />

6.33<br />

4.33<br />

5.30<br />

5.35<br />

4.97<br />

3.46<br />

4.31<br />

2.31<br />

15<br />

15<br />

15<br />

15<br />

15<br />

15<br />

15<br />

15<br />

15<br />

15<br />

147 Nd 662 2.35 15<br />

156 Eu 662 0.09 15<br />

(W) 2 .6 6 1 1 2 .6 6 1 1<br />

(S) 5.33 19 5.33 19<br />

(S) 5.33 1 1 5.33 1 1<br />

(S) 4.22 18 4.22 18<br />

(S) 3.31 30 3.31 30<br />

2.35 15<br />

0.09 15


432 CROUCH<br />

Table X<br />

239 Pu Thennal neutron induced fission<br />

1 2 3 4 5 6<br />

72 Zn 346 .000113 15 .0 0 0 1 1 15<br />

73 (.00026)<br />

74 (.00059)<br />

75 (.0013)<br />

76 (.003)<br />

77 As 159 .0071 5 .0071 10<br />

78 As 159 .0256 5 .026 10<br />

79 (.036)<br />

80<br />

(.08)<br />

81 Se( 1) 87 0.0045 32 0.182 10<br />

87 0.182 8<br />

82 (0.24)<br />

83 Se(l) 87 0.149 15 0.295 3<br />

Se(2) 87 0.169 15<br />

Br 87 0.309 15 (W) .295 3<br />

159 0.291 8 (S) .294 2<br />

Kr 181 0.277 4<br />

196 0.290 4<br />

Chain 252 0.301 2<br />

84 Br(2) 87 0.415 10 0.478 4<br />

Kr 181 0.449 4 (W) .478 2<br />

Chain 252 0.487 2 (S) .468 4<br />

85 Kr( 1) 610 0.640 3 0.559 6<br />

Kr(2) 244 0.099 5 (w) .1 2 0 2<br />

592 0.128 2 (S) .114 13<br />

Rb 281 .512 4 (w) .559 2<br />

Chain 252 0.574 2 (s) .543 6<br />

86 Chain 252 0.77 2 0.77 10<br />

87 Rb 181 0.872 4 (w) 0.968 2 0.968 7<br />

Chain 252 1 .0 0 2 (s) 0.936 7<br />

88 Sr 2 1 1.39 3 (w) 1.36 2 1.36 7<br />

181 1.37 4 (S) 1.28 7<br />

237 1 .0 2 15<br />

Chain 252 1.35 2<br />

89 Sr 33 1 . 6 6 2 (w) 1.67 3 1.67 3<br />

181 1.63 4 (s) 1.72 3<br />

263 1.74 3<br />

346 1.85 15


<strong>IAEA</strong>-SM -170/94 433<br />

Table X (cont)<br />

Pu Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

90 Sr 2 1 2.31 2 (W) 2.09 2 2.09 5<br />

181 2.07 4 (s) 2.05 5<br />

237 1.72 15<br />

263 2.05 2<br />

Chain 252 2.09 2<br />

91 Sr 33 2.37 , 2 (W) 2.47 2 2.47 4<br />

346 2.36 15 (s) 2.43 4<br />

610 2.03 3<br />

Y 263 2.41 5<br />

601 2.42 1<br />

346 2 .8 8 15<br />

Zr 181 2.48 4<br />

Chain 252 2.52 2<br />

92 Zr 181 2.98 4 (w) 3.01 2 3.01 2<br />

Chain 252 3.02 2<br />

93 Zr 181 3.77 4 (w) 3.91 2 3.91 2<br />

Chain 282 3.95 2 (s) 3.86 2<br />

94 Zr 181 4.26 4 (w) 4.45 2 4.45 2<br />

Chain 252 4.50 2<br />

95 Zr 263 5.06 7 (w) 4.90 3 4.90 5<br />

346 5.76 15 (s) 5.11 5<br />

610 4.74 3<br />

Chain 252 4.86 2<br />

96 Zr 181 4.91 4 (w) 5.08 2 5.08 2<br />

Chain 252 5.12 2 (S) 5.02 ' 2<br />

97 Zr 346 5.45 15 (w) 5.54 3 5.54 3<br />

Mo 181 5.37 4 (S) 5.51 3<br />

Chain 252 5.64 3<br />

98 Nb(2) 396 0 .2 0 15 5.59 10<br />

Mo 181 5.59 4<br />

99 Mo 199 6 .0 2 3 (w) 6 .2 0 2 6.20 3<br />

263 5.61 6 (s) 6.30 3<br />

346 6.27 15<br />

688 6.17 3<br />

682 6.79 2<br />

682 6 .6 6 1<br />

Chain 252 6.59 3


434 CROUCH<br />

Table X (cont)<br />

239 Pu Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

10 0 Mo 181 6.74 4 6.74 10<br />

10 1 Ru 181 5.60 4 (W) 5.95 3 6.05 8<br />

Chain 252 6.50 4 (S) 6.05 8<br />

102 Ru 181 5.68 4 (W) 6 .0 0 3 6 .0 0 7<br />

Chain 252 6.65 4 (S) 6.09 7<br />

103 Ru 181 5.38 4 (W) 5.51 4 5.51 7<br />

346 5.63 15 (S) 5.89 7<br />

610 6.65 7<br />

104 Ru 181 5.62 4 (W) 5.99 3 5.99 9<br />

Chain 252 6.61 4 (S) 6 . 1 2 9<br />

105 Rh(2) 263 5.47 1 5.47 10<br />

346 3.80 15<br />

106 Ru 181 4.33 4 (W) 4.34 3 4.34 4<br />

263 4.04 5 (S) 4.43 4<br />

346 4.83 15<br />

Chain 252 4.55 4<br />

107 (2.70)<br />

108 (1.70)<br />

109 Pd 204 1.94 2 1 .0 8 5<br />

263 1.13 5 (S) 1.08 5<br />

346 1.03 15<br />

1 1 0 (0.53)<br />

1 1 1 Ag 204 0.265 2 (w) .267 5 0.267 5<br />

263 0.280 14 (S) .274 2<br />

. 346 0.277 15<br />

1 1 2 Pd 204 0.094 2 (w) 0.094 4 0.094 4<br />

263 0.093 3 (S) 0.097 4<br />

346 0.103 15<br />

113 Ag 159 0.065 15<br />

114<br />

0.065 15<br />

(0.052)


<strong>IAEA</strong>-SM -170/94 435<br />

Table X (cont)<br />

Pu Thermal neutron induced fission<br />

i_____ 2 . 3_________ 4________________ 5______________ L<br />

115 Cd( 1) 263 0.003 20 (W) .0371 4 0.0371 1 1<br />

346 0.00308 15 (s) .0408 1 1<br />

Cd(2) 204 .034 2<br />

263 0.033 6<br />

346 0.0462 15<br />

116 (0.038)<br />

117 (0.039)<br />

118 (0.039)<br />

119 (0.040)<br />

120 (0.042)<br />

1 2 1 Sn(2) 346 0.0421 15 0.0421 15<br />

122 (0.049)<br />

123 (0.058)<br />

124 (0.078)<br />

125 Sn(2) 346 0.0699 15 0.116 12<br />

Chain 252 0.116 12<br />

126 (0.24)<br />

127 Sb 263 0.55 6 (W) .513 5 .513 20<br />

346 0.38 15 (s) .415 20<br />

128 (0.83)<br />

129 (0.38)<br />

130 (2.30)<br />

131 I 263 3.80 4 (w) 3.69 2 3.69 2<br />

346 3.70 15 (s) 3.74 2<br />

610 3.96 3<br />

Xe 182 3.60 1<br />

196 3.78 2<br />

Chain 180 3.71 3<br />

252 3.60 3<br />

132 Te 263 5.51 5 (W) 5.35 5 5.11 3<br />

346 5.04 15 (S) 5.17 4<br />

610 4.97 2<br />

Xe 182 5.02 1 (w) 5.11 3<br />

Chain 180 5.26 3 (s) 5.12 2<br />

252 5.09 1


436 CROUCH<br />

T a b le X ( c o n t )<br />

Pu T h e r m a l n e u t r o n I n d u c e d f i s s i o n<br />

1 2 3 4 5 6<br />

133 I 263 5.53 1 (W) 6.76 4 6.76 5<br />

346 5.14 15 (S) 6.37 5<br />

610 6.70 2<br />

Xe(2) 610 6.93 2<br />

Cs 2 1 5.26 3<br />

71 6.92 3<br />

Chain 180 6.90 4<br />

252 7.18 2<br />

380 6.80 15<br />

134 Xe 182 7.13 1 (W) 7.24 3 7.24 3<br />

Chain 180 7.46 3 (S) 7.26 2<br />

252 7.20 2<br />

135 I 274 6.89 2 (w) 6.71 5 7.08 4<br />

346 5.65 15 (S) 6.27 10<br />

Xe 69 7.11 44 (W) 7.08 3<br />

71 7.27 3 (S) 6.77 4<br />

610 6.67 3<br />

Cs 2 1 6.95 3<br />

236 6.95 10<br />

398 5.22 15<br />

Chain 180 7.25 3<br />

136 I 346 1.95 15 6.33 10<br />

Xe 182 6.37 1 (w) 6.33 4<br />

398 4.77 15 (S) 5.92 10<br />

Chain 180 6.62 3<br />

137 Cs 2 1 6.50 3 (W) 6.48 3 6.48 6<br />

263 5.40 7 (S) 6.14 6<br />

398 4.94 15<br />

Chain 180 6.48 3<br />

252 6.74 2<br />

380 6.72 15<br />

138 Ba 2 1 6.26 3 (w) 5.71 3 5.71 5<br />

Chain 180 6.31 3 (S) 5.99 5<br />

252 5.40 2<br />

139 Ba 33 5.89 2 (w) 5.77 5 5.77 5<br />

346 5.55 15 (s) 5.64 3<br />

610 5.47 2


IA EA - S M - 1 7 0 /9 4 437<br />

Table X (cont)<br />

I<br />

Pu Thermal neutron induced fission<br />

I 2 3 4 5 6<br />

140 Ba 13 5.31 3 (W) 5.57 2 5.57 5<br />

33 5.51 2 (S) 5.60 5<br />

263 5 47 6<br />

277 4.55 2<br />

346 5.51 15<br />

610 5.29 3<br />

Ce 21 5.52 3<br />

398 7.36 15<br />

Chain 180 5.88 3<br />

252 5.61 2<br />

141 La 33 5.56 2 (w) 5.78 3 5.78 4<br />

603 4.62 3 (S) 5.37 4<br />

Ce 263 6.11 5<br />

346 5.04 15<br />

601 5.00 2<br />

610 5.27 2<br />

Pr 21 6.02 3<br />

142 La 610 5.24 4 (w) 5.05 3 5.05 6<br />

Ce 21 6.66 3 (s) 5.58 6<br />

398 6.62 15<br />

Chain 180 4.97 3<br />

252 5.04 2<br />

380 4.93 15<br />

143 Ce 263 4.28 5 (W) 4.42 2 4.42 5<br />

346 5.24 15 (S) 4.70 5<br />

603 3.94 3<br />

610 4.00 8<br />

Pr 601 4.17 2<br />

Nd 21 6.10 3<br />

71 4.49 3<br />

398 5.98 15<br />

Chain 180 4.56 3<br />

252 4.48 2<br />

380 4.51 15<br />

144 Ce 263 4.09 5 (W) 3.85 3 3.85 6<br />

341 3.11 15 (S) 4.05 6<br />

346 3.80 15<br />

610 3.61 2<br />

Nd 21 5.50 3<br />

398 5.00 15<br />

Chain 180 3.84 3<br />

252 3.78 2<br />

380 3.77 15


438 C R O U C H<br />

T a b le X ( c o n t )<br />

Pu T h e r m a l n e u t r o n in d u c e d f i s s i o n<br />

1 2 3 4 5 6<br />

145 Pr 603 3.48 2 (W) 3.14 3 3.14 6<br />

Nd 21 4.2 3 (S) 3.49 6<br />

398 4.07 15<br />

Chain 180 3.12 3<br />

252 3.03 2<br />

380 3.04 15<br />

146 Nd 21 3.53 3 (W) 2.52 3 2.52 8<br />

398 3.36 15 (S) 2.89 8<br />

Chain 180 2.57 3<br />

252 2.49 2<br />

380 2.49 15<br />

147 Nd 263 1.46 6 (W) 2.07 2 2.07 6<br />

341 1.84 15 (S) 2.12 6<br />

601 2.10 2<br />

610 1.92 4<br />

Sm 235 1.97 3<br />

398 2.81 15<br />

Pm 21 2.58 2<br />

71 2.07 3<br />

601 2.11 4<br />

Chain 180 2.00 3<br />

252 2.15 2<br />

148 Nd 21 2.30 2 (W) 1.71 3 1.71 5<br />

398 2.27 15 (S) 1.93 5<br />

Chain 180 1.71. 3<br />

252 1.70 1<br />

380 1.67 15<br />

149 Nd 603 1.13 4 (w) 1.24 2 1.24 7<br />

Pm 341 1.11 15 (S) 1.36 7<br />

603 1.28 2<br />

Sm 21 1.67 1<br />

71 1.32 3<br />

398 1.81 15<br />

Chain 180 1.30 3<br />

252 1.24 3<br />

150 Nd 21 1.35 2 (W) 0.97 3 0.97 3<br />

398 1.31 15 (s) 0.98 2<br />

Chain 180 1.02 3<br />

252 0.965 2<br />

380 0.96 15


<strong>IAEA</strong>-SM -170/94 4 3 9<br />

Table X (cont)<br />

239<br />

Pu Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

151 Pm 603 0.724 3 (W) .791 2 .791 6<br />

Sm 21 1.01 2 (S) .867 6<br />

71 0.79 3<br />

235 0.821 2<br />

398 1.10 15<br />

Chain 180 0.802 3<br />

252 0.821 6<br />

152 Sm 21 0.75 2 (W) .575 3 .575 10<br />

235 0.538 3 (S) .673 10<br />

Chain 180<br />

252<br />

153 Sm 341<br />

346<br />

603<br />

398 0.88 15<br />

0.616<br />

0.581<br />

0.368<br />

0.401<br />

0.167<br />

3<br />

5<br />

15<br />

15<br />

4<br />

(W) 0.385 10 0.385 10<br />

154 Sm 21 0.36 3 (W) 0.255 3 0.26 12<br />

235 0.208 2 (S) .306 1<br />

Chain 180<br />

252<br />

398 0.40 15<br />

0.293<br />

0.27<br />

3<br />

2<br />

155 Sm 346 0.216 15 0.216 15<br />

156 Sm 603 0.094 3 (W) 0.086 3 .086 12<br />

Eu 263 .062 7 (S) .101 12<br />

341 .102 15<br />

346 .124 15<br />

601 .122 2<br />

157 Eu 603 .075 3 .075 15<br />

158 (0.04)<br />

159 Gd 341<br />

603<br />

.02<br />

.0213<br />

15<br />

1<br />

(W) .021 10 .021 10<br />

160 (0.01)<br />

161 Tb 341 .00406 15 (W) .00466 9 .0047 12<br />

603 .00507 2 ( s ) .00457 12<br />

162<br />

163<br />

164<br />

165<br />

166 D y 341 .000068 15<br />

(.0022)<br />

(.00106)<br />

(.00042)<br />

(.00017)<br />

.000068 V.


440 C R O U C H<br />

Table XI<br />

Pu Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

77 As 104 .000445 7 .00045 15<br />

78 As 104 .00858 6 .0086 15<br />

79 (.018)<br />

80 (.034)<br />

81 (.063)<br />

82 (.105)<br />

83 Br 104 0.204 5 (W) .201 3 .201 3<br />

Chain 253 0.20 3 (S) .202 1<br />

84 Br(2) 104 .343 4 (W) .353 3 .353 5<br />

Chain 253 .353 3 (S) .348 5<br />

85 Kr(2) 593 .086 4 .387 10<br />

Chain 253 .387 3<br />

86 Chain 253 .601 3 .601 10<br />

87 Chain 253 0.741 3 .741 10<br />

88 Chain 253 .954 3 .954 10<br />

89 (1.19)<br />

90 Chain 253 1.53 3 1.53 10<br />

91 Y 602 1.66 2 (W) 1.76 3 1.76 5<br />

Chain 253 1.82 3 (S) 1.74 5<br />

92 Chain 253 2.23 3 2.23 10<br />

93 Chain 253 2.90 3 2.90 10<br />

94 Chain 253 3.33 3 3.33 10<br />

95 Zr 104 4.19 4 (W) 3.99 3 4.00 4<br />

Chain 253 3.92 3 (S) 4.06<br />

96 Chain 253 4.33 3 4.33 10<br />

97 Zr 104 4.72 5 (W) 4.75 3 4.75 3<br />

Chain 253 4.76 3 (S) 4.74 1<br />

98 (5.5)<br />

99 Mo 104 6.04 4 (W) 6.14 3 6.14 3<br />

688 6.15 3 (S) 6.12 1<br />

Chain 253 6.17 3


1<br />

100<br />

101<br />

102<br />

103<br />

104<br />

105<br />

106<br />

107<br />

108<br />

109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

125<br />

126<br />

127<br />

128<br />

129<br />

130<br />

131<br />

132<br />

133<br />

134<br />

I A E A - S M -1 7 0 /9 4 441<br />

Table XI (cont)<br />

241 Pu Thermal neutron induced fission<br />

Chain 253 5.94<br />

Chain 253 6.32<br />

Chain 253 6.80 5<br />

Chain 253 6.08 4<br />

A g<br />

A g<br />

104 0.485<br />

104 0.147<br />

Chain 253 0.0416 12<br />

Chain 212 3.00 15<br />

253 3.15 3<br />

Chain 212 4.47 15<br />

253 4.64 3<br />

(W) 3.14 3<br />

(S) 3.08 3<br />

(W) 4.59<br />

(S) 4.55<br />

Chain 212 6.56 15 (W) 6.64 3<br />

253 6.71 3 (S) 6.59 1<br />

382 6.52 15<br />

Chain 212 7.80<br />

253 8.06<br />

15<br />

3<br />

(W) 7.99<br />

(S) 7.93<br />

(6 .0 )<br />

5.94<br />

6.32<br />

(6 .60)<br />

6.80<br />

(6.60)<br />

6.08<br />

(5.15)<br />

(4.15)<br />

(2.9)<br />

(1.4)<br />

0.49<br />

(0.32)<br />

0.147<br />

(0.065)<br />

(0.037)<br />

(0.033)<br />

(0.031)<br />

(0.030)<br />

(0.029)<br />

(0.029<br />

(0.030)<br />

(0.031)<br />

(0.032)<br />

(0.036)<br />

0.042<br />

(0 .1 )<br />

(0 .21)<br />

(0.41)<br />

(0.82)<br />

(1.65)<br />

3.14<br />

4.59<br />

6.64<br />

7.99<br />

10<br />

10<br />

10<br />

10<br />

15<br />

15<br />

15


442 CROUCH<br />

T a b l e X I ( c o n t )<br />

Pu Thermal neutron Induced fission<br />

1 2 3 4 5 6<br />

135 I 275 6.93 3 7.08 5<br />

Chain 212 7.08 • 15<br />

136 Chain 212 7.04 15 7.04 5<br />

137 Cs 104 6.62 15 (W) 6.52 3 6.52 3<br />

Chain 212 6.62 15 (S) 6.49 2<br />

253 6.60 3<br />

382 6.14 15<br />

138 Cs 104 6.82 4 (W) 6.54 3 6.54 3<br />

Chain 212 6.82 15 (S) 6.67 3<br />

253 6.37 3<br />

139 (6.30)<br />

140 Ba 278 6.28 7 (W) 5.83 3 5.83 3<br />

688 5.64 2 (S) 5.89 3<br />

Chain 212 5.78 15<br />

253 5.86 3<br />

141 La 604 4.49 2 (w) 4.78 2 4.78 3<br />

Ce 104 5.14 4 (s) 4.81 3<br />

602 4.74 2<br />

688 4.81 3<br />

Chain 212 4.8 4 15<br />

142 Chain 212 4.70 15 (W) 4.77 3 4.77 3<br />

253 4.80 3 (S) 4.75 2<br />

143 Ce 104 4.68 5 ( w) 4.40 2 4.40 3<br />

604 3.89 2 (S) 4.36 3<br />

Pr 602 4.29 1<br />

Chain 212 4.43 15<br />

253 4.48 3<br />

382 4.38 15<br />

144 Ce 688 4.08 4 (W) 4.09 2 4.09 2<br />

Chain 212 4.07 15 (S) 4.09 1<br />

253 4.13 3<br />

382 4.08 15


I A E A - S M -1 7 0 /9 4 443<br />

Table XI (cont)<br />

241<br />

Pu Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

145 Pr 604 3.01 3 (W) 3.14 2 3.14 2<br />

Chain 212 3.16 15 (S) 3.12 2<br />

253 3.19 3<br />

282 3.11 15<br />

146 Chain 212 2.71 15 (W) 2.65 2 2.65 2<br />

253 2.68 3 (s) 2.66 2<br />

382 2.60 15<br />

147 Nd 602 2.34 2 (W) 2.26 3 2.26 3<br />

Pm 602 2.33 4 (S) 2.30 2<br />

Chain 212 2.32 15<br />

253 2.22 3<br />

148 Chain 212 1.91 15 (W) 1.87 2 1.87 2<br />

253 1.89 3 (S) 1.88 2<br />

382 1.84 15<br />

149 Nd 604 1.47 3 (W) 1.47 3 1.47 3<br />

Pm 604 1.51 4 (S) 1.49 2<br />

Chain 212 1.55 15<br />

253 1.43 3<br />

150 Chain 212 1.23 15 (W) 1.14 2 1.16 4<br />

253 1.16 3 (S) 1.16 4<br />

382 1.10 15<br />

151 Pm 604 0.846 5 (S) 0.903 6 0.903 6<br />

Chain 212 0.959 15<br />

152 Chain 212 0.757 15 (S) 0.741 4 0.741 4<br />

253 0.725 5<br />

153 Chain 212 0.559 15 (W) 0.5 4 4 0.54 4<br />

604 0.519 3<br />

154 Chain 212 0.408 15 (W) 0.379 3 0.379 5<br />

253 0.37 3 (S) 0.389 5<br />

155 Eu 602 0.231 9 0.231 9<br />

156 Sm 604 0.158 3<br />

Eu 602 0.17 2<br />

0.17 5


4 4 4 CRO U CH<br />

T a b l e X I ( c o n t )<br />

Pu T h e r m a l n e u t r o n i n d u c e d f i s s i o n<br />

157 Eu 604 0.13 3 0.13 5<br />

158 (0.086)<br />

159 Bd 604 0.0462 2 0.0462 5<br />

160 (0.024)<br />

161 Tb 604 0.00814 2 0.00814 5<br />

Table XII<br />

241л Am Pile neutron induced fission<br />

1 2 3 4 5 6<br />

89 Sr 80 0.81 6 (W) 0.89 6 0.89 20<br />

301 1.20 8 (S) 1.00 20<br />

91 Y 80 1.16 3 (W) 1.47 5 1.47 14<br />

Sr 301 1.90 3 (S) 1.51 14<br />

Sr 637 1.48 2<br />

92 Sr 301 2.30 5 (W) 2.20 4 2.20 5<br />

637 2.09 2 (S) 2.70 5<br />

93 Y 301 3.00 7 3.00 7<br />

95 Zr 80 3.90 13 (W) 3.13 4 3.13 12<br />

301 2.70 4 (S) 3.55 12<br />

637 4.04 5<br />

97 Zr 80 3.55 13 (w) 4.47 7 4.47 19<br />

637 5.16 8 (S) 4.36 19<br />

99 Mo 80 6.85 6 (w) 6.64 4 6.64 4<br />

301 6.30 3 (S) 6.68 3<br />

637 6.90 4<br />

103 Ru 301 7.70 3 (w) 7.68 4 7.68 4<br />

637 7.65 3<br />

111 Ag 80 0.89 6 (W) 0.275 4 0.28 38<br />

301 0.22 15 (S) 0.76 38<br />

637 1.19 3<br />

113 Ag 80 0.18 6 (S) 0.36 47 0.36 47<br />

638 0.49 2<br />

115 Cd( 2) 80 0.046 7 (W) 0.050 6 0.05 24<br />

638 0.075 11 (s) 0.061 24<br />

121 Sn(2) 80 0.045 13<br />

127 Sb 638 0.66 5 0.66 10<br />

129 Sb 638 1.32 4 1.32 10<br />

131 I 80 3.71 5 (S) 2.89 17 2.89 17<br />

301 2.1 5<br />

638 2.87 4


1 2<br />

I A E A - S M -1 7 0 /9 4 445<br />

Table XII (cont)<br />

241 Am Pile neutron induced fission<br />

3 4 5<br />

132 Te 80 4.48 7 (W) 3 .70 4 3.70 10<br />

638 3.37 1 (S) 3.92 10<br />

I 301 3.9 8<br />

133 I 301 4.0 0 5 (W) 4.67 4 4.67 15<br />

638 5.34 4 (S) 4.67 15<br />

135 I 301 4.5 0 6 (W) 4.63 4 4.63 4<br />

I 638 4.36 5 (S) 4.68 4<br />

Xe 638 4.87 4<br />

137 Cs 80 9.20 20 (W) 6.22 13 6.22 25<br />

301 5.60 15 (S) 7.40 25<br />

138 Cs 301 6.40 6 (w) 7.25 5 7.25 14<br />

638 8.48 6 (S) 7.44 14<br />

139 Cs 80 6.22 5 (w) 7.45 4 7.45 17<br />

638 8.68 3 (S) 7.45 17<br />

140 Ba 80 6.0 6 (w) 5.53 4 5.53 5<br />

301 5.2 2 (S) 5.61 5<br />

638 5.63 2<br />

141 Ce 80 5.04 13 (W) 4.63 4 4.67 4<br />

301 4 .70 2 (s) 4.75 4<br />

638 4.51 5<br />

143 Ce 301 3.40 3 (w) 2.83 4 2.83 10<br />

638 2.49 4 (S) 3.07 10<br />

Pr 80 3.32 14<br />

144 Ce 80 3.15 13 (W) 3.19 6 3.19 6<br />

301 3.20 6<br />

147 Nd 80 2.06 16 (W) 1.42 10 1.42 23<br />

638 1.30 11 (s) 1.68 23<br />

153 Sm 80 0.76 16 0.76 16<br />

6


1<br />

83<br />

84<br />

89<br />

90<br />

91<br />

92<br />

93<br />

95<br />

97<br />

99<br />

103<br />

109<br />

111<br />

112<br />

115<br />

121<br />

125<br />

131<br />

132<br />

133<br />

134<br />

135<br />

137<br />

139<br />

140<br />

141<br />

143<br />

144<br />

147<br />

149<br />

151<br />

153<br />

156<br />

157<br />

CROUCH<br />

Table X III<br />

Am Fission induced by thermal neutrons<br />

2 3 4 5 6<br />

Br 575 0.234 8 0.23 10<br />

Br(2) 575 0.364 8 0.36 10<br />

Sr 575 1.18 7 1.18 10<br />

Sr 575 1.41 7 1.41 10<br />

Y(2) 575 1.73 7 1.73 10<br />

Sr 975 2.05 8 2.05 10<br />

Y 575 2.56 8 2.56 10<br />

Zr 575 3.23 6 3.23 10<br />

Zr 575 4.21 7 4.21 10<br />

Mo 575 5.36 7 5.36 10<br />

Ru 575 6.95 7 6.95 10<br />

Pd 575 3.29 9 3.29 15<br />

Ag(2) 575 1.32 7 1.32 10<br />

Ag 575 0.-42 8 0.42 10<br />

Cd(1) 575 0.0047 8 0.071 10<br />

Cd(2) 575 0.066 8<br />

Chain 575 0.071 8<br />

Sn(2) 575 0.017 8 0.017 10<br />

Sn(2) 575 0.0843 10 0.11 15<br />

Sb 575 0.111 12<br />

I 575 3.12 6 3.12 10<br />

Te 575 4.78 6 4.78 10<br />

I 575 5.82 7 5.82 10<br />

I 575 5.95 7 5.95 10<br />

I 575 6.49 8 6.49 10<br />

Cs 575 5.84 12 5.84 15<br />

Ba 575 5.55 7 5.55 10<br />

Ba 575 5.40 7 5.40 10<br />

Ce 575 4.94 8 4.94 10<br />

Ce 575 4.23 7 4.23 10<br />

Ce 575 3.55 8 3.55 10<br />

Nd 575 2.32 8 2.32 10<br />

Pm 575 1.61 8 1.61 10<br />

Pm 575 1.13 8 1.13 10<br />

Sm 575 0.73 8 0.73 10<br />

Eu 575 0.313 7 0.31 10<br />

Eu 575 0.164 9 0.16 10<br />

Tb 575 0.0181 8 0.018 10


I A E A - S M -1 7 0 /9 4 447<br />

Table XXV<br />

Cm Thermal neutron induced fission<br />

1 2 3 4 5 6<br />

77 As 628 0.0048 24 .0048 24<br />

83 Br 628 0.0229 22 .023 22<br />

89 Sr 628 0.836 12 0.8 4 12<br />

90 Sr 628 1.086 14 1.09 14<br />

91 Y 628 1.21 24 1.21 24<br />

95 Zr 628 2.47 13 2.47 13<br />

97 Zr 628 3.05 11 3.05 11<br />

99 Mo 628 4.18 10 4.18 10<br />

103 Ru 628 6.25 14 6.25 14<br />

105 Ru 628 6.10 21 6.10 21<br />

106 Ru 628 5.83 24 5.83 24<br />

109 Pd 628 5.16 12 5.16 12<br />

111 Ag 628 3.21 19 3.21 19<br />

112 Pd 628 1.35 25 1.35 25<br />

113 Ag 628 1.72 25 1.72 25<br />

115 Chain 628 0 .4 0 17 0.40 17<br />

121 Sn(2) 628 0.036 26 0.036 26<br />

123 Sn 628 0.057 22 0.057 22<br />

125 Sn(2) 628 0.053 25 0.091 21<br />

Sb 628 0.091 21<br />

127 Sb 628 1.083 16 1.08 16<br />

129 Sb 628 1.76 21 1.76 21<br />

Te(l) 628 0.81 14<br />

131 I 628 2.89 13 2.89 13<br />

132 Te 628 3.95 18 3.95 18<br />

133 I 628 5.79 12 5.79 12<br />

137 Cs 628 7.96 8 7.96 8<br />

140 Ba 628 5.61 12 5.61 12<br />

141 Ce 628 4.58 13 4.58 13<br />

143 Ce 628 3.77 16 3.77 16<br />

144 Ce 628 2.90 21 2.90 21<br />

147 Nd 628 2.57 19 2.57 19<br />

149 Pm 628 1.95 20 1.95 20<br />

151 Pm 628 1.23 26 1.23 26<br />

153 Sm 628 1.12 25 1.12 25<br />

156 Eu 628 0.27 24 0.27 24


1<br />

89<br />

95<br />

97<br />

99<br />

103<br />

106<br />

109<br />

111<br />

112<br />

113<br />

115<br />

121<br />

125<br />

127<br />

129<br />

131<br />

132<br />

133<br />

137<br />

140<br />

141<br />

143<br />

144<br />

147<br />

2<br />

249 Cf Thermal<br />

C R O U C H<br />

Table XV<br />

neutron induced fission<br />

3 4 5 6<br />

Sr 208 1.17 25 1.17<br />

Zr 208 1.72 15 1.72<br />

Zr 208 2.35 20 2.35<br />

Mo 208 3.42 7 3.42<br />

Ru 208 5.27 12 5.27<br />

Ru 208 5.09 21 5.09<br />

Pd 208 4.92 25 4.92<br />

Ag 208 5.16 11 5.16<br />

Pd 208 3.48 16 3.48<br />

Ag 208 2.92 11 2.92<br />

Chain 208 2.46 20 2.46<br />

Sn(2) 208 0.34 27 0.34<br />

Sn(2) 208 0.2 4 25 0.24<br />

Sb 208 1.23 24 1.23<br />

Te 208 2.19 15 2.19<br />

I 208 3.01 15 3.01<br />

Te 208 3.95 7 3.95<br />

Te 208 5.09 10 5.09<br />

Cs ' 208 6.90 15 6.90<br />

Ba 208 4.54 27 4.54<br />

Ce 208 6.34 6 6.34<br />

Ce 208 4.90 6 4.90<br />

Ce 208 4.62 6 4.62<br />

Nd 208 2.62 15 2.62<br />

25<br />

15<br />

20<br />

10<br />

12<br />

21<br />

25<br />

11<br />

16<br />

11<br />

20<br />

27<br />

25<br />

24<br />

15<br />

15<br />

10<br />

10<br />

15<br />

27<br />

10<br />

10<br />

10<br />

15


I A E A - S M -1 7 0 / 94 449<br />

Table XVI<br />

Reference List of Fission Yield Literature<br />

[1 - 8] PETRZHAK, K.A., et al., AEC TR 4696.<br />

[4 - 12] BAYHURST, B.P., TID 5787.<br />

[13] CROUTHAMEL, C.E., KAFALAS, P., STUPEGIAS, D., ANL 5789.<br />

[14] WEISS, H.V., REICHERT, W.L., Ad 627027; TR 943.<br />

[15] CROOK, J.M., VOIGHT, A.F., IS 558.<br />

[16] IVANOV, R.N., GORSCHKOV, V.K., ANIKINA, KUKAVADZE, G.M.,<br />

ERSCHLER, B.V., J Nucl. Energy, 9 (1959) 46.<br />

[ 17] ANIKINA, M.P., IVANOV, R.N., KUKAVADZE, G.M., ERSCHLER, B.V. ,<br />

J Nucl. Energy, 9 (1959) 167.<br />

[ 18 - 21] ANIKINA, M.P., et al, P2040 Vol. 15 second Geneva Conf.<br />

[ 22 - 26] AUMANN, D.C., FLYNN, K.F., GINDLER, J.E., GLENDENIN, L.E.,<br />

Jinc., 31 (1969) 1935.<br />

'27] ARAS, N.K., GORDON, G.E., Jinc., 28 (1966) 763.<br />

\ 28] ANIKINA, M.P., ERSCHLER, B.V., J. Nucl. Energy, 6 (1957) 169.<br />

: 29] BLADES, A.T., FLEMING, W.H., THODE, H.G.'1, Can. J. Chem., 34<br />

(1956) 233.<br />

[30] BUNNEY, L.R., SCADDEN, E.M., Jinc., 27 (1965) 1183.<br />

[31] BIRGUL, 0., LYLE, S.J., Radiochim. Acta., 8 (1967) 9.<br />

[ 32 - 33] BARTHOLOMEW, R.M., MARTIN, J.S., BAERG, A.P., Can. J. Chem.,<br />

37 (1959) 660.<br />

[34] BAERG, A.P., BARTHOLOMEW, R.M., Can. J. Chem 35 (1957) 980.<br />

[ 35 - 38] BUNNEY, L.R., SCADDEN, -E.M., ABRI AM, J.O., BALLOU, N.E.,<br />

A/Conf15/P643, second Geneva Conference Vol. 15 449.<br />

[ 39 - 40] BAYHURST, B.P., et al, Phys. Rev. 107 1957 325.<br />

[41 - 44] BALCARCZYK, L., KERATSCHEV, P., LANZEL, E., Nucleonik, 7<br />

1965 169.<br />

[ 45] BARTHOLOMEW, R.M., BAERG, A.P., Can. J. Chem., 34 1956 201.<br />

[46] BARTHOLOMEW, R.M., BROWN, F., HAWKINGS, R.C. , MERRITT, W.F.,<br />

YAFFE, L., Can. J. Chem.., 31 (1953) 120.<br />

47] BROWN, F., Jinc., 1 (1955) 248.<br />

48] BROWN, F., YAFFE, L., Can. J. Chem., 31 (1953) 242.<br />

49] BROOM, K.M., Phys. Rev., 126 (1962), 627.<br />

50 - 51] BROOM, K., Phys. Rev., 133 (1964) 874.<br />

52 - 61] BURGUS, W.H., IDO-16797, TID-4500.<br />

62 - 65 BONYUSHKIN, E.K., et al., Sov. J. At. Energy, 10 (1961) 10.<br />

66 - бУ В АК, M.A., et al., Sov. J. Atom. Energy, 6 (1959) 429.<br />

68] BUNNEY, L.R., SCADDEN, E.M., Jinc., 27 (1965) 1183.<br />

69] BAYLY, J.G., DURET, M.F., POULSEN, N.B., TOMLINSON, R.H.,<br />

Can. J. Phys., 39 (1961) 1391.<br />

[ 70 - 72] BIDINOSTI, D.R., FICKEL, H.R., TOMLINSON, R.H., A/CONT. 15/P201<br />

Second Geneva Conf. Vol. 15 459.<br />

[ 73] BORDEN, K.D., KURODA, P.K., Jinc., 31 (1969) 2623.<br />

[ 74] BIDINOSTI, D.R., IRISH, D.E., TOMLINSON, R.H., Can. J. Chem.,<br />

39 (1961) 628.<br />

E 75 - 76] BUNNEY, L.R,, SCADDEN, E.M., Jinc., 27 (1965) 273.<br />

[77] BIRGUL, 0., LYLE, S.J., Radiochim. Acta., 11 (1969) 108.<br />

[78] GREENDALE, A.E., DELUCCHI, A.A., AD 686041.


450 C R O U C H<br />

T a b l e XVI ( c o n t )<br />

R e f e r e n c e L i s t o f F i s s i o n Y i e l d L i t e r a t u r e<br />

[79] CUNINGHAME, J.G., Jinc., 6 (1958) 181.<br />

[ 80] CUNINGHAME, J.G., Jinc., 4 (1957) 1.<br />

[81] CUNINGHAME, J.G., Jinc., 5 (1957) 1.<br />

[82] CUNINGHAME, J.G., Jinc., 5 (1957) 1.<br />

[83 - 86] CROALL, I.F., WILLIS, H.H., Jinc., 24 (1962) 221.<br />

[87] CROALL, I.F., WILLIS, H.H., Jinc., 25 (1963) 1213.<br />

[88 - 94] CUNINGHAME, J.G., KITT, G.P., RAE, E.R., Nucl. Phy., 27<br />

(1961) 154.<br />

[ 95 - 103] CUNINGHAME, J.G., FRITZE, K., LYNN, J.E., WEBSTER, C.B.,<br />

Nucl. Phy., 84 (1966) 49.<br />

104] CROALL, I.F., WILLIS, H.H., AERE/R/6154.<br />

Í05 - HO] PRIVATE COMMUNICATION.<br />

Ill - 146] COWAN, G.A., BAYHURST, B.P., PRESTWOOD, R.J., PNE-114F<br />

147 - 153] YUNG YEE CHU, UCRL-8926.<br />

Î54 - 157] СIUFFOLOTTI, L., Energia <strong>Nuclear</strong>e, 15 (1968) 272.<br />

Î58 CUNINGHAME, J.G., Phil. Mag., 44 (1953) 900.<br />

j 59 - 161] CROALL, I.F., WILLIS, H.H., AERE-R4723.<br />

162] DELUCCHI, A.A., GREENDALE, A.E., STROM, P.O., Phys. Rev.,<br />

173 (1968) 1159.<br />

[163] DENSCHLAG, H.O., Jinc., 31 (1969) 1873.<br />

[164 - 167] BONYUSHKIN, E.K., AEC TR 4682.<br />

[168 - 171] DANIELS, W.R., H<strong>OF</strong>FMAN, D.C., Phys. Rev., 145 (1966) 145.<br />

[172] BIRGUL, 0., LYLE, S.J., SELLARS, J., Radiochimica Acta,<br />

12 (1969) 66.<br />

[173 - 174] DAVIES, W., Radiochimica Acta, 12 (1969) 173<br />

[175] ERDAL, B.R., WILLIAMS, J.C., WAHL, A.C., Jinc., 31 (1969)<br />

2993.<br />

[176] ERDAL, B.R., WAHL, A.C., DROPESKY, B.J., Jinc., 31 (1969)<br />

3005.<br />

[177 - 179] ENGELKEMEIR, D., FREEDMAN, M.S., STEINBERG, E.P., SEILER,<br />

J.A., WINSBERG, L., ANL-4927.<br />

180] FICKEL, H.R., TOMLINSON, R.H., Can. J. Phys., 37 (1959) 926.<br />

Д81] FICKEL, H.R., TOMLINSON, R.H., Can. J. Phys., 37 (1959) 916.<br />

I82I FLEMING, W.H., THODE, H.G., Can J. Chem., 34 (1956) 193.<br />

183] FREILING, E.C., BUNNEY, L.R., BALLOU, N.E., Phy. Rev., 96<br />

(1954) 102.<br />

[184] FORD, G.P., AECD-3597, LADC-1200.<br />

[185 - 195] FALER, K.T., TROMP, R.L., Phys. Rev., 131 (1963) 1746.<br />

[196] FRITZE, K., MCMULLEN, C.C., THODE, H.G., A/CONF.15/P187,<br />

Second Geneva Conference.<br />

[197]- 207] FORD, G.P., GILMORE, J.S., LA-1997.<br />

[208] FLYNN, K.F., VON GUNTEN, H.R., Helv. Chim. Acta., 52 (1969)<br />

2216.<br />

[ 209] FLEMING, W., TOMLINSON, R.H., THODE, H.G., Can. J. Phys.,<br />

32 (1954) 522.<br />

[ 210] FARRAR, H., FICKEL, H.R., TOMLINSON, R.H., Can. J. Phys.,<br />

40 (1962) 1017


I A E A - S M -1 7 0 /9 4 451<br />

Table XVI (cont)<br />

Reference List of Fission Yield Literature<br />

[211] FLYNN, K.F., VON GUNTEN, H.R., SM-122/1 Symposium on the<br />

Physics and Chemistry of fission.<br />

[212] FARRAR, H., CLARKE, W.B., THODE, H.G., TOMLINSON, R.H.,<br />

Can. J. Phys., 42 (1964) 2063.<br />

[213 - 214] GRUMMITT, W.E., MILTON, G.W., Jinc., 5 (1957) 93.<br />

[215] GORSHKOV, V.K., IVANOV, R.N., KORAVADZE, G.M., REFORMATSKY, I.A.<br />

Atomniya Energiya, 3 (1957) 11.<br />

[2161 VON GUNTEN, H.R., HERMANN, H., Radiochim. Acta, 8 (1967) 112.<br />

[217 - 219] GRUMMITT, W.E., MILTON, G.M., Jinc., 20 (1961) 6.<br />

[22(3 GORSHKOV, V.K., ANIKINA, M.P., Atomniya Energiya, 7 (1959) 144.<br />

[22^ GLENDENIN, L.E., STEINBERG, E.P., Jinc., 1 (1955) 45.<br />

[222 - 223] HARDWICK, W.H., Phys. Rev., 92 (1953) 1072.<br />

[224] HAGEBO, E., Jinc., 25 (1963) 615.<br />

[225] HASTINGS, J.D., TROUTNER, D.E., Radiochim. Acta., 11 (1969) 51.<br />

[226 - 227] HARVEY, J.W., CLARKE, W.B., THODE, H.G., TOMLINSON, R.H.,<br />

Can. J. Phys., 44 (1966) 1011.<br />

[228] IYER, R.H., MATTHEWS, C.K., RAVINDRAN, N., RENGAN, K.,<br />

SINGH, D.V., RAMANIAH, M.V., etc., Jinc., 25 (1963) 465.<br />

[229 - 231] IYER, R.S., JAIN, H.C., NAMBOUDIRI, M.N., RAJAGOPALAN, M.,'<br />

RAKISHORE, etc., Physics and Chem. of fission, Salzburg 1965.<br />

[232] JADHAV, A.V., RAMANIAH, M.V., RAO, C.L., SHAHANI, C.J.,<br />

Nukleonik, 9 (1967) 43.<br />

[233] KATC<strong>OF</strong>F, S., RUBINSON, W., Phys. Rev., 91 (1953) 1458.<br />

[234] KELLER, R.N., STEINBERG, E.P., GLENDENDIN, L.E., Phys. Rev.,<br />

94 (1954) 969.<br />

[235 - 236] KRIZHANSKII, L.M., MALYI, Y., MURIN, A.N., PREOBRAZHENSKII,<br />

В.K., J. Nucl. Energy, 6 (1957) 260.<br />

[237] KRIZHANSKII, L.M., MURIN, A.N., Sov. J. At. Energy 4 (1958) 95.<br />

[238 - 239] KAFALAS, P., CROUTHAMEL, C.E., Jinc., 4 (1957) 239.<br />

[240] KNIGHT, J.D., H<strong>OF</strong>FMAN, D.C., DROPESKY, B.J., FRASCO, D.L.,<br />

Jinc., 10 (1959) 183.<br />

[241] KENNETT, T.J., THODE, H. G., Can. J. Phys., 35 (1957) 969.<br />

[242] KJELBERG, A., PAPPAS, A.C., Jinc., 11 (1959) 173.<br />

[243 - 244] KATC<strong>OF</strong>F, S., RUBINSON, W., Jinc., 27 (1965) 1447<br />

[245] LAIDLER, J.B., BROWN, F., AWRE-49/61.<br />

[246 - 2471 DE LAETER, J.R., THODE, H.G., Can. J. Phys., 47 (1969) 1409.<br />

[248 - 253] LISMAN, F.L., MAECK, W.J., et al, IN-1277.<br />

[254] DEL MARMOL, P., Jinc., 30 (1968) 02873.<br />

[255] MACNAMARA, J., COLLINS, C.B., THODE, H.G., Phys. Rev., 78<br />

(1950) 129.<br />

[256 - 257] MENON, M.P., KURODA, P.K., Jinc., 26 (1964) 401.<br />

[258 - 261] MELAIKA, E.A., PARKER, M.J., PETRUSKA, J.A., TOMLINSON, R.H.,<br />

Can. J. Chem., 33 (1955) 830.<br />

[262] MARINSKY, J.A., EICHLER, E., Jinc., 12 (I960) 223.<br />

[263] MARSDEN, D.A., YAFFE, L., Can. J. Chem. 43 (1965) 249.<br />

[264] TIN MO, RAO, M.N., Jinc., 30 (1968) 345.<br />

[265'J MUNTZE, R., GROSSE-RUYKEN, H., WAGNER, G., Kernenergie,-<br />

12 (1969) 380.


452 c r o u c h<br />

Table XVI (cont)<br />

Reference List of Fission Yield Literature<br />

£66] NERVIK, W.E., Phys. Rev., 119 (1960) 1685.<br />

[267 [267 - 2681 NIECE, L.H., Diss. Abstr., 27 (1966) 1249.<br />

[269 - 273 272) OKAZAKI, A., WALKER, W.H., BIGHAM, C.B., Can. J. Phys.,<br />

44 (1966) 237.<br />

[273 - 278) 278] OKAZAKI, A., WALKER, W.H., Can. J. Phys., 43 (1965) 1036.<br />

I? 79] PETRUSKA, J.A., MELAIKA, E.A., TOMLINSON, R.H., Can. J. Phys.,<br />

33 (1955) 640.<br />

[280 - 28 28Í) Í) PETRUSKA, J.A., THODE, H.G., TOMLINSON, R.H., Can. J. Phys.,<br />

33 (1955) 693.<br />

[282] PETROW, H.G., ROCCO, G., Phys. Rev., 96 (1954) 1614.<br />

[283] PAPPAS, A.C., WILES, D.R., Jinc., 2 (1956) 69.<br />

(284 - 286] 286] PROTOPOPOV, A.N., TOLMACHEV, G.M., et al J. Nucl. Energy, A,<br />

10 (1959) 80.<br />

[287] PILLARY, K.K.S., MEYER, R.J., LARSEN, R.P., J. Radioanalyt.<br />

Chem., 3 (1969) 233.<br />

(288] REED, G.W., Phys. Rev., 98 (1955) 1327.<br />

(289] REED, G.W., TÜRKEVICH, A., Phys. Rev., 92 (1953) 1473.<br />

[290] KUKAVADZE, G.M., ANIKINA, M.P., GOLDIN, L.L., ERSCHLER, B.V.,<br />

AEC-TR-2435.<br />

[291] RUNNALS, N.G., TROUTNER, FERGUSON, R.L., Phys. Rev., 179 (1969)<br />

1288.<br />

[592 - 294] REGIER, R.B., BURGUS, W.H., TROMP, R.L., Phys. Rev., 113, (1959)<br />

1589.<br />

(295 - 30Ó] REGIER, R.B., BURGUS, W.H., TROMP, R.L., SORENSEN, B.H., Phys.<br />

Rev., 119 (1960) 2017.<br />

[301] RICKARD, R.R., GOEKING, C.F., WYATT, E.I., Nucl. Sc. Eng.,<br />

23 (1965) 115.<br />

[302] RAO, M.N., KURODA, P.K., Phys. Rev., 147 (1966) 884.<br />

[303] RAO, M.N., Radiochim. Acta., 8 (1967) 12.<br />

É04] RAVINDRAN, N., FLYNN, K.F., GLENDENIN, L.E., Jinc. 28 (1966)<br />

921.<br />

[305] SANTRY, D.C., YAFFE, L., Can. J. Chem., 38 (1960) 464.<br />

D06] STEHNEY, A.F., SUGARMAN, N., Phys. Rev., 89 (1953) 194.<br />

[307] SUGARMAN, N., Phys. Rev., 89 (1953) 570.<br />

D08] SATTIZAHN, J.E., KNIGHT, J.D., KAHN, M., Jinc., 12 (1960 206.<br />

(309] SANTRY, D.C., YAFFE, L., Can. J. Chem., 38 (1960) 421.<br />

Pio] SRINIVASAN, ALEXANDER, E.C., MANUEL, O.K., TROUTNER, D.E.,<br />

Phys. Rev., 179 (1969) 1166.<br />

Dll] STROM, P.O., LOVE, D.L., GREENDALE, A.E., DELUCCHI, A.A., SAM, D.<br />

SAM, D., BALLOU, N.E., Phys. Rev., 144 (1966) 984.<br />

[312] STROM, P.O., GRANT, G.R., PAPPAS, A.C., Can. J. Chem., 43<br />

(1965) 2493.<br />

[313] OHYOSHI, E., OHYOHSI, A., SHINAGANA, M., Radiochem. Radioanal.<br />

Ltrs., 3 (1970) 1<br />

[314] STELLA, R., MORETTO, L.G., MAXIA, V., DI CASA, M., CRESPI, V.,<br />

ROLLIER, M.A., Jinc., 31 (1969) 3779.<br />

P15] TERCHO, G.P., MARINSKY, J.A., Jinc., (1964) 1129.<br />

¡316 (316 - 325)<br />

325) TERRELL, J., SCOTT, W.E., GILMORE, S., MINKKINEN, C.O., Phys.<br />

Rev., 92 (1953) 1091.


<strong>IAEA</strong>-SM -170/94 453<br />

Table XVI (cont)<br />

Reference List of Fission Yie d Literature<br />

Г326] TURKEVITCH, A., NIDAY, J.B., Phys. Rev., 84 (1951) 52.<br />

[327] TONG, S.L., FRITZE, K., Radiochim. Acta., 12 (1969) 179.<br />

[328] TROUTNER, D.E., FERGUSON, R.L., OKELLEY, G.D., Phys. Rev.,<br />

130 (1963) 1466.<br />

[329 - 330] WETHERILL, G.W., Phys. Rev., 92 (1953) 907.<br />

[331 - 334] WILES, D.R., CORYELL, C.D., Phys. Rev., 96 (1954) 696.<br />

[335] WAHL, A.C., BONNER, N.A., Phys. Rev., 85 (1952) 570.<br />

[336 - .337] WEISS, H.V., BALLOU, N.E., Salzburg Symposium 1965.<br />

[338] YOSHIDA, H., PAISS, Y., AMIEL, S., IA-1128.<br />

[339 - 340j ROCHE, M.F., TID-24500.<br />

[341] ' BUNNEY, L.R., SCADDEN,- E.M., ABRIAM, J.O., BALLOU, N.E. ,<br />

Second Geneva Conf., Vol. 15 P444.<br />

[342 - 35


454 CROUCH<br />

T a b l e X V I ( c o n t )<br />

R e f e r e n c e L i s t o f F i s s i o n Y i e l d L i t e r a t u r e<br />

t39


I A E A - S M -1 7 0 /9 4 455<br />

Table XVI (cont)<br />

Reference List of Fission Yield Literature<br />

[577 - 580] WOLFSBERG, K., Phys. Rev., 137 (1965) 8929.<br />

[581 - 584] HARBOUR, R.M., TROUTNER, D.E., Jinc., 33 (1971) 1.<br />

[585 - 586] KRATZ, J.V., HERMANN, G., Jinc., 32 (1970) 3713.<br />

[587 KEMMER, J., KIM, J.I., BORN, H.J., Radiochim. Acta., 13<br />

(1970) 181.<br />

[5880 WOLFSBERG, K., Jinc., 33 (1971) 587.<br />

[589] FORMAN, "L., BALESTRINI, S.J., WOLFSBERG, K., JETER, .R.,<br />

LA-DC 11500.<br />

[590 - 593] LISMAN, F.L., ABERNATHEY, R.M., FOSTER, R.E., MAECK, W.J.,<br />

Jinc. 33 (1971) 643.<br />

[594 - 595] SWINDLE, D.L., WRIGHT, R.J., WARD, T.E. , KURODA, P.K. ,<br />

Jinc. 33 (1971) 651.<br />

[596] SWINDLE, D.L., WRIGHT, R.J., KURODA, P.K., Jinc. 33 1971)<br />

876.<br />

[597] KURODA, P.K. , MENON, M.P., Nucl. Sc. Eng., 10 70.<br />

[598] PARKER, P.L., KURODA, P.K., Jinc., 5 (1958) 153.<br />

[599] ASHIZAWA, F.T., KURODA, P.K., Jinc., 5 (1957) 12.<br />

[600] HEYDEGGER, H.R., KURODA, P.K., Jinc., 12 (1959) 12.<br />

[601 - 602] SKOVORODKIN, N.V., et al., Sov. Radiochem., 12 (1970) 458.<br />

[603 - 604] SKOVORODKIN, N.V., et al., Sov. Radiochem., 12 (1970) 453.<br />

[605] KEMMER, J., KIM, J.I., BORN, H.J., Radiochim. Acta., 15<br />

(1971) 113.<br />

[606 - 607j HARBOUR, R.M., EICHOR, M., TROUTNER, D.E., Radiochim. Acta.,<br />

15 (1971) 146.<br />

[608] DIERCKX, R., MARACCI, G., RUSTIGHELLI, F., J. Nucl. En., 25<br />

(1971) 85.<br />

[609] GORDON, G.E., HARVEY, J.W., NAKAHARA, H., Nucleonics, 24<br />

(1966) 62.<br />

[610] DANGE, S.P., JAIN, H.C., et al., <strong>IAEA</strong> Symp. Phys. and Chem.<br />

of fission, (1969) 741.<br />

[611] FAHLAND, J., LANGE, G., HERMANN, G., Jinc., 32 (1970) 3149.<br />

[612' - 615] HAWKINGS, EDWARDS, W.J., OLMSTEAD, W.J., Can. J. Phys., 49<br />

(1971) 785.<br />

[616] EICHOR, M., TROUTNER, D.E., Jinc., 33 (1971) 1543.<br />

[617 - 618] GANAPATHY, R., ITOCHI, H., Jinc., 28 (1966) 3071.<br />

[619] WUNDERLICH, F., Radiochim. Acta., 7 (1967) 105.<br />

[620] MENKE, H., HERMANN, G., Radiochim. Acta., 6 (1966) 76.<br />

[621] STEINBERG, E.P., GLENDENIN, L.E., Phys. Rev. 95 (1954) 431.<br />

[622] TURKEVICH, A., NIDAY, J.B., TOMPKINS, A., Phys. Rev., 89<br />

(1953) 552.<br />

[623] COLEMAN, R.F., HAWKER, B.R., PERKIN, J.L., Jinc., 14 (1960) 8.<br />

[624] ISHIMORI, T., UENO, K., KIMURA, K., et al., Radiochim. Acta.,<br />

7 (1967) 95.<br />

[625 - 262] STEVENSON, P.C., HICKS, H.G., ARMSTRONG, J.C., GUNN, S.R.,<br />

Phys. Rev., 117 (1960) 186.<br />

[627] ARMANI, R.J., GOLD, R., LARSEN, R.P., ROBERTS, J.H., Trans.<br />

Amer. Nucl. Soc., 13 (1970) 90.


456 C R O U C H<br />

T a b l e X V I ( c o n t ).<br />

R e f e r e n c e L i s t o f F i s s i o n Y i e l d L i t e r a t u r e<br />

[628] VONGUNTEN, H.R., FLYNN, K.F., GLENDENIN, L.E., Phys. Rev.,<br />

161 (1967) 1192.<br />

[629 - 630] LYLE, S.J., MARTIN, G.R., RAHMAN, M.M., Radiochim. Acta.,<br />

9 (1968) 90.<br />

[631 - 632] CUNINGHAME, J.G., GOODALL, J.A.B., WILLIS, H.H., PRIVATE<br />

COMMUNICATION.<br />

[633 - 635] CUNINGHAME, J.G., GOODALL, J.A.B., WILLIS, H.H., AERE-R-6862.<br />

[636 MCLAUGHLIN, T.P., Univ. Arizona Thesis, 1971 71-14509.<br />

[637 - 639] NAKAHARA, H., FUJIWARA, I., 0КАМ0Т0Т, H., IMANISHI, N.,<br />

ISHIBASHI, M., NISHI, T., Jinc., 33 (1971) 3239.<br />

[640] TROUTNER, D.E., RUNNALLS, N.G., Jinc., 33 (1971) 2271.<br />

[641] DEL MARMOL, P., PERRICOS, D.C., Jinc., 32 (1970) 705.<br />

[642] SWINDLE, D.L., MOORE, D.T., BACK, J.N., KURODA, P.K., Jinc.,<br />

33 (1971) 3643.<br />

[643]- 644] DENSCHLAG, H.O., QAIM, S.M., Jinc., 33 (1971) 3649.<br />

[645] VLASOV, V.A., et al. AEC-TR-6665.<br />

[646] FORD, G.P., STANELY, C.W., AECD-3551.<br />

[647] NETHAWAY, D.R., LEVY, H.B., Phys. Rev., 139 (1965) 81505.<br />

[648] PETRZHAK, K.A., TEPLYKH, V.F., PAN'YAN, M.G., Sov. J. Nucl.<br />

Phy. 11 (1970) 654.<br />

T649J BORISOVA, N.I., et al., Sov. J. Nucl. Phy., 8 (1969) 404.<br />

[650 - 65Î] SARANTITES, D.G., GORDON, G.E., CORYELL, C.D., Phy. Rev.,<br />

138 (1965) B353.<br />

[652 - 653] BAECKMANN, A.V., FEUERSTEIN, H., Radiochim. Acta., 5 (1966)<br />

234.<br />

[654 - 655] BROWN, M.G., LYLE, S.J., MARTIN, G.R., Radiochim. Acta.,<br />

( 1966) 16.<br />

[656 - 657| RAO, A.S., RAO, M.N., KURODA, P.K., Jinc., 31 (1969) 591.<br />

[658 - 659] MO, T., KURODA, P.K., Jinc., 27 (1965) 503.<br />

[660] ARINO, H., KURODA, P.K., Jinc., 30 (1968) 677,<br />

[661 - 662] NAMBOODIRI, M.N., et al., Jinc., 30 (1968) 2305.<br />

[663] TOMLINSON, L., HURDUS, M.H., Jinc., 33 (1971) 3609.<br />

[664 - 670] ROBIN, M., BOUCHARD, J., DARROUZET, M., Int. Cong. Chem. Nucl.<br />

<strong>Data</strong>, Canterbury, 1971.<br />

[671] HERRMANN, G., STRASSMANN, F., Zeit. Naturforsch., 11A (1956)<br />

946.<br />

¡672] GANAPATHY, R., KURODA, P.K., Earth and Plan. Sc. Letters, 3,<br />

(1967) 89.<br />

fe73 - 675] KENNETT, T.J., THODE, H.G., Phys. Rev., 103 (1956) 323.<br />

[676] MALY, J., KNOBLOCH, V., IMBRISOVA, D., PRASIL, Z., URBANEC, Z.,<br />

Coll. Czech.<br />

[677 - 680] KRAPPEL, W., SEUFERT, H., STEGEMANN, D., Nucl. Tech., 12<br />

(1971) 226.<br />

Ê81 - 682] RAMANIAH, M.V., JAIN, H.C., MATHEW, K.A., AVADHANY, G.V.N.,<br />

Madras Conf., 1970.<br />

[683 - 684] ROCHE, M.F., TROUTNER, D.E., Radiochim. Acta., 16 (1971) 66.<br />

[685] BIRGUL, 0., LYLE, S.J., WELLUM, R., Radiochim. Acta., 16<br />

(1971) 104.<br />

[686] TROUTNER, D.E., HARBOUR, R.M., Jinc., 34 (1972) 801.<br />

[687 - 688] SOROKINA, A.V., et al., Atom. Energ., 31 (1971) 99.


<strong>IAEA</strong>-SM -170/94 457<br />

D I S C U S S I O N<br />

M . L E D E R E R : A r e these data available on magnetic tapes?<br />

E . A . C . C R O U C H : A t present, only the input literature results are<br />

so available. W e do hope to have them on magnetic tape but it m a y not<br />

be for som e time yet. F o r this year, at least, w e are publishing the<br />

final results in the form of reports.<br />

F . F R Ö H N E R : In connection with M r . L e d e r e r 's question, I might<br />

mention that D r . Crouch w as kind enough to turn over his library to the<br />

C C D N recently. W e are now in the process of incorporating the data into<br />

our experimental data file and hope that we shall soon be able to answer<br />

requests from users in our service area or, for that matter, from other<br />

service areas via their respective neutron data compilation centres.<br />

J . B L A C H O T : W h y do you som etim es have three significant figures<br />

and som etim es two?<br />

E . A . C. C R O U C H : Sim ply because I have not trim m e d the figures to<br />

match the stated standard deviations; it is m y om ission entirely, and one<br />

m ust read the figures in conjunction with their stated standard deviations.<br />

W . B . L E W I S : I saw no mention in your paper of neutron capture by<br />

fission products. Did you a ssum e a value for this and then subtract or<br />

add it?<br />

E . A . C. C R O U C H : No corrections w ere m ad e for neutron capture;<br />

it w as assum ed the author would have done this.<br />

M . L A M M E R : Do you estimate m issin g yield values from a m athe­<br />

matical m odel for the case of 235U , 239P u etc. therm al fission as well,<br />

or only for types of fission w here yields are not well known? W hat is the<br />

confidence level of such estimates?<br />

E . A . C . C R O U C H : W e have not tested m athematical m odels to date,<br />

as the basic evaluations are m o re important to the U K A E A , although the<br />

references in the paper give som e prelim inary ideas. W e have, however,<br />

done sufficient w ork to see that m odel fitting is possible; I would prefer<br />

not to say m o re at present,<br />

M . L A M M E R : M e a sured relative yields norm alized in such a m anner<br />

that the sum of yields totals 2 0 0 % are based on interpolated values and<br />

radiochem ical m easurem ents from the earlier literature. A t the time<br />

of evaluation these data w ere known far better. Such m easurem ents m ust<br />

in any case be considered as relative yields. W h y is an adjustment not<br />

possible, as indicated in section 2 (ii) of your paper?<br />

E . A . C. C R O U C H : I would not say that adjustment is not possible.<br />

H o w e v e r, the very act of drawing a smooth curve through the exponential<br />

points implies the setting up of a m odel, the validity of which m a y be<br />

doubtful. So I prefer to leave such results as the author left them: he<br />

obviously hoped to m ak e an estimate of absolute yields.<br />

M iss K . W A Y : U nder what circum stances were data omitted? In<br />

other w ords, w ere data very different from the m e a n included in arriving<br />

at that average?<br />

E . A . C . C R O U C H : The x2 test w as used with the weighted m e a n to<br />

establish if any results w ere obviously wrongly weighted. The weights<br />

w ere then adjusted so that no result w as omitted although its weight might<br />

be so low as to render its effect negligible. The exception to this is the<br />

case w here an error can definitely be detected in the paper; but as far as


458 C R O U C H<br />

m y m e m o r y goes only one paper w as ignored in the thermal yields. I ought<br />

to add that I do not include project progress reports in the evaluations;<br />

the results m ust have been m ad e public somewhere.'<br />

C . D E V I L L E R S : C an you say whether the deviations which you observe<br />

in the yields as between your compilation and that of M e e k and R ider are<br />

com parable with the uncertainties reported by the latter authors?<br />

E . A . C. C R O U C H : Most of the r eco m m ended yields agreed with<br />

W a lk e r 's and M e e k and R id e r's figures, within the figures taken as standard<br />

deviations for those works. I a m not certain what exactly M e e k and Rider<br />

m eant by their error indicator letters.<br />

W . H . W A L K E R : I should like to m ake a brief com m ent in this connec­<br />

tion: the results of M e e k and Rider in N E D O - 1 2 1 5 4 ('7 2 ) have been replaced<br />

by a n e w version currently available only as computer output. Som e yields<br />

have been changed substantially, and m ost of the values quoted by D r . Crouch<br />

have been changed.


CUMULATIVE YIELDS <strong>OF</strong><br />

THERMAL NEUTRON FISSION PRODUCTS<br />

Some Results and Recommendations<br />

Based on a Recent Evaluation<br />

W .H. WALKER<br />

Chalk River <strong>Nuclear</strong> Laboratories,<br />

Chalk River, Ontario, Canada<br />

Abstract<br />

I A E A - S M -1 7 0 /3 4<br />

C U M U L A T IV E YIELDS <strong>OF</strong> TH ERM AL NEUTRON FISSION P R O D U C T S : SOM E RESULTS A N D R ECOM M EN ­<br />

D A T IO N S BASED O N A RECENT E V A L U A T IO N .<br />

A c a r e fu l a n a ly sis o f c u m u la tiv e y ie ld s in th e th e rm a l n eu tron fissio n o f 233U , 235U , 233Pu and 241 Pu<br />

h as r e c e n t ly b e e n c o m p le t e d . T h e m e th o d s used and s o m e o f th e p r o b le m s e n co u n te re d are d iscu ssed .<br />

Errors are assign ed to a ll y ie ld s and th e e ffe c t s o f th e c o r re s p o n d in g u n c e r ta in tie s in n e u tro n a b s o rp tio n and<br />

r e a c t iv it y a re e s tim a te d . A p r o g ra m o f m e a su re m e n ts w h ic h c o u ld r e d u c e th e m a jo r u n c e rta in tie s req u ires<br />

m a s s -s p e c tr o m e t r ic m e a su re m e n ts o f r a d io a c t iv e and s ta b le isobars fo r a g iv e n fis s ile s p e c ie s plus y -r a y<br />

m e a su re m e n ts fo r a ll fo u r fis s ile s p e c ie s o f r e la t iv e y ie ld s fo r a la r g e n u m b e r o f r a d io a c t iv e n u c lid e s th at<br />

a re is o b a r ic w ith n u c lid e s fo r w h ic h th e y ie ld s h a v e b e e n m e a su re d m a s s -s p e c tr o m e t r ic a lly . T h e se m e a s u re ­<br />

m e n ts a re d iscu ssed and r e c o m m e n d a tio n s m a d e fo r p re se n ta tio n o f d a ta in a w a y th at w ill m in i m iz e u n c e r ­<br />

ta in tie s in fu tu re e v a lu a tio n s .<br />

T h o u g h m u c h e f f o r t h a s g o n e i n t o t h e m e a s u r e m e n t a n d<br />

e v a l u a t i o n o f f i s s i o n p r o d u c t c r o s s s e c t i o n s , t h e r e h a s b e e n<br />

l i t t l e s u p p o r t b y r e a c t o r s c i e n t i s t s o f w o r k o n f i s s i o n p r o d u c t<br />

y i e l d s . T h i s i s s u r p r i s i n g s i n c e t h e r a t e a t w h i c h n e u t r o n s a r e<br />

a b s o r b e d b y a p a r t i c u l a r f i s s i o n p r o d u c t i s p r o p o r t i o n a l t o t h e<br />

p r o d u c t o f i t s y i e l d , y, a n d i t s c r o s s s e c t i o n , a , i f a i s s m a l l ,<br />

o r t o y o n l y i f ct is v e r y l a r g e . I n t h e m o s t r e c e n t w o r k o n<br />

y i e l d s t h e i n t e r e s t h a s b e e n p r i m a r i l y i n t h e i r u s e a s b u r n u p<br />

m o n i t o r s r a t h e r t h a n i n o b t a i n i n g a n i m p r o v e d k n o w l e d g e o f<br />

f i s s i o n p r o d u c t a b s o r p t i o n .<br />

A r e c e n t e v a l u a t i o n o f t h e r m a l f i s s i o n y i e l d s a t C h a l k<br />

R i v e r [ 1 ] p r o v i d e s a n e x c e l l e n t b a s i s f o r d e t e r m i n i n g u n c e r t a i n ­<br />

t i e s i n f i s s i o n p r o d u c t a b s o r p t i o n s i n c e i t i n c l u d e s a n e s t i m a t e<br />

o f t h e e r r o r i n t h e c u m u l a t i v e y i e l d s a t e a c h m a s s .<br />

T H E E V A L U A T I O N O F F I S S I O N P R O D U C T Y I E L D S<br />

T h e n e w C h a l k R i v e r e v a l u a t i o n o f f i s s i o n p r o d u c t y i e l d s i s<br />

a n i m p r o v e d v e r s i o n o f t h e o n e f o r 236u t h e r m a l f i s s i o n p r e s e n t e d<br />

a t t h e H e l s i n k i c o n f e r e n c e [ 2 ] , e x t e n d e d t o i n c l u d e d a t a f o r 2 3 3 U ,<br />

s a 9 P u a n d 3 4 1 P u . T h i s e v a l u a t i o n i s b a s e d m a i n l y o n m a s s s p e c t r o ­<br />

m e t r i c m e a s u r e m e n t s w h i c h c o v e r f r o m 6 6 % (3 4 1 Pu) t o 9 2 % (S 3 U)<br />

o f t h e t o t a l y i e l d . R a d i o m e t r i c d a t a c o v e r i n g t h e s a m e m a s s e s a r e<br />

u s e d o n l y t o c h e c k f i n a l n o r m a l i z a t i o n s . T h e y a r e a l s o u s e d t o<br />

459


460 W ALKER<br />

o b t a i n y i e l d s a t m a s s e s w h e r e n o m a s s s p e c t r o m e t r i c d a t a a r e<br />

a v a i l a b l e , m a i n l y t h e y i e l d s i n t h e w i n g s o f t h e l i g h t a n d h e a v y<br />

m a s s p e a k s a n d i n t h e v a l l e y b e t w e e n .<br />

T h e e v a l u a t i o n m e t h o d is, t h e r e f o r e , q u i t e d i f f e r e n t f r o m<br />

t h e u s u a l o n e i n w h i c h a n e r r o r i s a s s i g n e d t o e v e r y m e a s u r e d<br />

y i e l d a n d t h e r e c o m m e n d e d y i e l d a t e a c h m a s s i s t h e n o b t a i n e d<br />

b y a l e a s t s q u a r e s a n a l y s i s . T h i s is t h e m e t h o d u s e d b y M e e k<br />

a n d R i d e r i n a s e r i e s o f r e p o r t s o n f i s s i o n p r o d u c t y i e l d s t h e<br />

l a s t o f w h i c h w a s p u b l i s h e d i n 1 9 7 2 [ 3 ] . T h e m a i n d i s a d v a n t a g e<br />

o f t h i s l a t t e r a p p r o a c h is t h a t i t is d i f f i c u l t t o p r o p e r l y t a k e<br />

a c c o u n t o f t h e h i g h a c c u r a c y w i t h w h i c h t h e m a s s s p e c t r o m e t r i s t<br />

c a n m e a s u r e b o t h r e l a t i v e a b u n d a n c e s o f t h e i s o t o p e s o f o n e<br />

e l e m e n t a n d t h e r e l a t i v e a m o u n t s o f d i f f e r e n t e l e m e n t s . T h e<br />

s e c o n d o f t h e s e d e t e r m i n a t i o n s i s l e s s a c c u r a t e t h a n t h e f o r m e r ,<br />

b u t e v e n t h e n i s u s u a l l y c o m p a r a b l e i n a c c u r a c y t o t h e b e s t<br />

r a d i o m e t r i c m e a s u r e m e n t s .<br />

A l t h o u g h i t i s g i v e n i n d e t a i l i n [1] I w i l l o u t l i n e t h e<br />

e v a l u a t i o n m e t h o d h e r e f o r t h r e e r e a s o n s - f i r s t , t o d e m o n s t r a t e<br />

t h e a d v a n t a g e s r e f e r r e d t o a b o v e m o r e c l e a r l y , s e c o n d , t o p r o v i d e<br />

b a c k g r o u n d m a t e r i a l f o r a d i s c u s s i o n o f p o s s i b l e f u t u r e m e a s u r e ­<br />

m e n t s , a n d t h i r d , b e c a u s e t h e v e r s i o n i n [l] i s q u i t e d e t a i l e d<br />

a n d i s p r i m a r i l y o f i n t e r e s t t o a s m a l l g r o u p o f s p e c i a l i s t s .<br />

T h e m e t h o d p r o c e e d s i n t h r e e e a s i l y s e p a r a t e d s t e p s - t h e<br />

d e t e r m i n a t i o n o f i s o t o p i c a b u n d a n c e s , t h e d e t e r m i n a t i o n o f r e ­<br />

l a t i v e e l e m e n t y i e l d s , a n d f i n a l n o r m a l i z a t i o n .<br />

I s o t o p i c A b u n d a n c e s<br />

T a b l e I i s t a k e n f r o m [1] a n d s h o w s t h e m e a s u r e d i s o t o p i c<br />

a b u n d a n c e s o f t h e N d f i s s i o n p r o d u c t s , w h e r e i s o t o p i c a b u n d a n c e<br />

is d e f i n e d a s t h e n u m b e r o f a t o m s o f o n e i s o t o p e d i v i d e d b y t h e<br />

n u m b e r o f a t o m s o f t h e e l e m e n t , e x c l u d i n g r e l a t i v e l y s h o r t - l i v e d<br />

i s o t o p e s s u c h a s 1 1 - d a y 1 4 7 N d . T h e v a l u e s o f L i s m a n e t a l . [ 4 ]<br />

a r e a v e r a g e s o f r e s u l t s f r o m s e v e r a l s a m p l e s o f e a c h f i s s i l e<br />

m a t e r i a l a n d t h e a s s i g n e d e r r o r i s t h e s t a n d a r d d e v i a t i o n f r o m<br />

t h e a v e r a g e . T h e e r r o r s a s s i g n e d t o t h e f i n a l a v e r a g e s a r e a l s o<br />

s t a n d a r d d e v i a t i o n s .<br />

T h e f i r s t p o i n t t o n o t e a b o u t t h e d a t a i s t h e g e n e r a l l y<br />

s m a l l s c a t t e r b e t w e e n m e a s u r e m e n t s , w i t h s t a n d a r d d e v i a t i o n s o f t e n<br />

l e s s t h a n 1 % . T h e g r e a t e s t u n c e r t a i n t y , u p t o ^4% f r o m t h e m e a n<br />

f o r 3 a 3 u f i s s i o n , o c c u r s f o r 1 S 0 N d , w h i c h h a s a s m a l l i s o t o p i c<br />

a b u n d a n c e a n d is, t h e r e f o r e , m o r e d i f f i c u l t t o m e a s u r e a c c u r a t e l y .<br />

T h e f a c t t h a t t h e s t a n d a r d d e v i a t i o n o f t h e m e a n u s u a l l y e x c e e d s<br />

t h a t o f a s i n g l e s e t o f m e a s u r e m e n t s ( L i s m a n e t a l . [ 4 ] ) i n d i c a t e s<br />

t h a t t h e r e a r e p r o b a b l y s m a l l s y s t e m a t i c e r r o r s i n t h e d i f f e r e n t<br />

m e a s u r e m e n t s .<br />

T h o s e r e s u l t s o f S t e i n b e r g a n d G l e n d e n i n [5] t h a t w e r e n o t<br />

u s e d r e q u i r e s o m e c o m m e n t . F o r 1 4 3 N d t h e d i f f e r e n c e f r o m t h e


<strong>IAEA</strong>-SM -170/34 461<br />

TABLE I. R E LATIV E YIELDS <strong>OF</strong> NEODYMIUM ISOTOPES<br />

335u<br />

Stein berg, G le n d e n in (1955)<br />

M e laika et a l . (1955)<br />

333y<br />

143Nd 1 44Nd 145Nd 14SNd 147Nd* 14SNd 1 6 °Nd<br />

.2 8 2 0 х<br />

.2861<br />

.2723*<br />

.2 6 7 2 1<br />

.1 8 4 9 х<br />

.1903<br />

.1 4 7 4 х<br />

.1 4 4 5<br />

.0 8 1 4<br />

.0 8 0 4<br />

.0 3 2 5<br />

.0 3 1 5<br />

F a rrar, Tomlinson (1958) .2 8 6 6 .2661 .1906 .1447 .1093 .0805 .0315<br />

Chu (1959) .2897 .2607 .1912 . 1448 .0817 .0319<br />

Rider et a l . (1965) .2927 .2593 .1911 .1441 .0 8 1 6 .0313<br />

Lisman et al. (1970) .2 8 8 4<br />

± 0.4 %<br />

Average .2885<br />

± 0.9%<br />

.2 6 4 0<br />

± 0.9%<br />

.2 6 3 5<br />

± 0.9%<br />

.1893<br />

± 0.6 %<br />

.1 9 0 5<br />

± 0.4%<br />

.1443<br />

± 0.3%<br />

.1 4 4 5<br />

± 0.2%<br />

.0827<br />

± 0.5 %<br />

.1093 .0814<br />

± 1.1 %<br />

.0312<br />

± 0.5 %<br />

.0316<br />

± 0.8 %<br />

M elaika et a l . (1955) .3201 .2 5061 .1879 .1412 .0717 .0285<br />

Ivanov et al- (1959) .3 2 2 4 s .2 5 6 6 3 .1821 .1412 .0663" .0324*<br />

B id in o s t i et al- (1961) .3197 .2503 .1881 .1 4 0 8 .0 7 2 0 .0291<br />

Rider et al- (1 9 6 6 ) .3253 .2533 .1862 .1381 .07 02 .0268<br />

Lisman et al- (1970) .3198<br />

± 0.2 %<br />

2 3 9 Pu<br />

Average .3 2 1 5<br />

± 0.7 %<br />

.2 5 7 4<br />

± 0.4 %<br />

.2536<br />

± 1.3%<br />

.1 8 5 0<br />

± 0.3%<br />

.1859<br />

± 1.4%<br />

.1389<br />

± 0.3 %<br />

.1 4 0 0<br />

± 1.0%<br />

.0717<br />

± 0.6%<br />

.0 7 1 4<br />

± 1.2%<br />

.0272<br />

± 2.4%<br />

.0279<br />

± 3.8%<br />

W ile s et al. (1956) .2 7 1 4 . 2 2 9 1 1 .1 8 4 9 .1523 .1029 .0594<br />

K r iz h a n s k ii et a l . (1957) .2743 .2 3 0 5 .1827 .1 5 2 8 .0993 .0603<br />

F i c k e l , Tomlinson (1959) .2703 .2 3 0 7 a .1852 .1522 .1 0 1 4 .0603<br />

Rider et a l . (1966) .2 7 4 4 .2 2 9 4 .1 8 5 0 .1512 .1 0 1 4 .0586<br />

Lisman et al. (1970) .2725<br />

± 0.3%<br />

241 Pu<br />

Average .2726<br />

± 0.7 %<br />

.2286<br />

± 0.9%<br />

.2297<br />

± 0.4 %<br />

.1847<br />

± 0.2%<br />

.1845<br />

± 0.5%<br />

.1 5 1 8<br />

± 0.2 %<br />

.1521<br />

± 0.4%<br />

.1 0 3 4<br />

± 0.7 %<br />

.1017<br />

±1. 6%<br />

.0 5 9 0<br />

± 0.4%<br />

.0 5 9 5<br />

± 1.3%<br />

Farrar et al. (1964) .2537 .2328 .1807 .1551 .1094 . 06834<br />

Rider et a l . (1967) .2 5 6 0 .2385 .1817 .1 5 2 0 .1 0 7 5 .0643<br />

Lisman et al. (1970) .2 5 5 6<br />

± 0.2 %<br />

Average .2551<br />

± 0 .5 %<br />

.2356<br />

± 0 .1 %<br />

.2356<br />

± 1.2 %<br />

.1 8 1 9<br />

± 0.1 %<br />

.1814<br />

± 0 .4 %<br />

.1 5 2 8<br />

± 0.2 %<br />

.1532<br />

± 0 .9 %<br />

* Y i e l d s f o r t h i s i s o t o p e n o t i n c l u d e d i n n o r m a l i z a t i o n<br />

.1077<br />

± 0.2 %<br />

.1082<br />

± 1 .0 %<br />

* N o t u s e d i n t a k i n g a v e r a g e . R e m a i n i n g y i e l d s n o r m a l i z e d a s s u m i n g a v e r a g e<br />

v a l u e a t t h i s m a s s<br />

1 Corrected for change in T i ( 144Ce) from 282 to 2 8 4 .4 d - 23SU , + 0 .4 %<br />

(see t e x t ); 233U , + 0 .5 % ; 3 3 9 Pu, + 1 .0 % .<br />

2 Corrected for change in a ( 143Nd) from 280 b to 325 b . See te x t .<br />

3 corrected for change in T i ( 144Ce) from 278 d to 2 8 4 .4 d - 339 Pu, + 1 .5 % .<br />

4 R esults for two samples w ire quoted w ith r e la t iv e 1B0Nd y ie ld s<br />

d i f f e r i n g by 4 .4 % , Only the value w ith the smaller standard deviation<br />

is used h e r e .<br />

.0 6 6 4<br />

± 1.0 %<br />

.0 6 6 3<br />

± 3 .0 %


462 W ALKER<br />

a v e r a g e i s o n l y t w i c e t h e s t a n d a r d d e v i a t i o n a n d w o u l d n o r m a l l y<br />

b e i n c l u d e d . W h i l e n o d e t a i l s a r e a v a i l a b l e c o n c e r n i n g t h e<br />

i r r a d i a t i o n , I b e l i e v e i t w a s s i m i l a r i n i n t e g r a t e d f l u x t o t h o s e<br />

o f L i s m a n e t al. [4] w h e r e 1 4 3 N d v a l u e s w e r e i n c r e a s e d 2 % o r m o r e<br />

t o t a k e a c c o u n t o f l o s s b y n e u t r o n c a p t u r e . T h e 1 4 4 N d i s o t o p i c<br />

a b u n d a n c e i s d e c r e a s e d a c o r r e s p o n d i n g a m o u n t . S i n c e n o m e n t i o n<br />

o f s u c h a c o r r e c t i o n is m a d e b y S t e i n b e r g a n d G l e n d e n i n t h i s is<br />

p r o b a b l y t h e s o u r c e o f t h e d i s c r e p a n c y a n d f o r t h i s r e a s o n t h e i r<br />

m a s s 1 4 3 a n d 1 4 4 r e s u l t s a r e o m i t t e d . F o r m a s s e s 1 4 5 a n d 1 4 6<br />

t h e d i f f e r e n c e s a r e s i m i l a r i n m a g n i t u d e , b u t c a n n o t b e e x p l a i n e d<br />

b y n e u t r o n c a p t u r e s i n c e t h e 1 4 E N d c r o s s s e c t i o n is o n l y a b o u t 1 / 6<br />

o f t h e 1 4 a N d c r o s s s e c t i o n . T h e s e r e s u l t s a r e o m i t t e d s i m p l y<br />

b e c a u s e t h e y d i f f e r f r o m t h e m e a n o f t h e o t h e r v a l u e s b y m o r e t h a n<br />

t e n t i m e s t h e s t a n d a r d d e v i a t i o n s o f t h e m e a n .<br />

P r o c e e d i n g i n t h i s m a n n e r w i t h e a c h e l e m e n t m e a s u r e d m a s s<br />

s p e c t r o m e t r i c a l l y g i v e s t h e s h a p e o f s e g m e n t s o f t h e y i e l d c u r v e ,<br />

e a c h s e g m e n t c o r r e s p o n d i n g t o a n e l e m e n t , a s s h o w n i n F i g u r e 1 ( a )<br />

f o r t h e h e a v y m a s s e s i n 2 3 5 u t h e r m a l f i s s i o n .<br />

R e l a t i v e E l e m e n t Y i e l d s<br />

I s o t o p e d i l u t i o n is t h e m o s t c o m m o n m e t h o d u s e d t o d e t e r ­<br />

m i n e r e l a t i v e a b u n d a n c e s o f t h e d i f f e r e n t e l e m e n t s m a s s s p e c t r o ­<br />

m e t r i c a l l y . A m e a s u r e d n u m b e r o f a t o m s o f t h e s a m e e l e m e n t a r e<br />

a d d e d t o t h e f i s s i o n p r o d u c t s a m p l e a n d t h e i s o t o p i c a b u n d a n c e s<br />

o f t h e m i x e d s a m p l e a r e d e t e r m i n e d . T h e a d d e d m a t e r i a l is<br />

p r e f e r a b l y a s i n g l e i s o t o p e n o t p r o d u c e d i n f i s s i o n , b u t t h e<br />

n a t u r a l l y o c c u r r i n g e l e m e n t h a s a l s o b e e n u s e d . T h e r a t i o o f<br />

f i s s i o n p r o d u c t a t o m s t o a d d e d a t o m s i s c a l c u l a t e d f r o m t h e<br />

i s o t o p i c a b u n d a n c e s a n d f r o m t h i s d a t a t h e n u m b e r o f f i s s i o n<br />

p r o d u c t a t o m s f o r e a c h e l e m e n t c a n b e d e t e r m i n e d r e l a t i v e t o a<br />

p a r t i c u l a r e l e m e n t .<br />

T h e s e c o n d m e t h o d c a n r e a d i l y b e u n d e r s t o o d f r o m<br />

F i g u r e 1 ( a ) . I t is n o t n e c e s s a r y t o w a i t u n t i l a l l t h e r a d i o ­<br />

a c t i v e i s o t o p e s h a v e d e c a y e d b e f o r e t h e m a s s a n a l y s i s i s m a d e ,<br />

a n d t h e o p e n c i r c l e s s h o w w h e r e t h e s e h a v e b e e n m e a s u r e d . T h e<br />

f i n a l v a l u e s f o r r a d i o a c t i v e i s o t o p e s h a v e , o f c o u r s e , b e e n<br />

c o r r e c t e d f o r r a d i o a c t i v e d e c a y . T o u s e t h e s e c o n d m e t h o d ,<br />

i s o b a r i c l i n k i n g , o n e s i m p l y e q u a t e s t h e i s o t o p i c a b u n d a n c e s o f<br />

t h e t w o i s o b a r s t o o b t a i n t h e r e l a t i v e n u m b e r s o f a t o m s o f t h e<br />

t w o e l e m e n t s i n v o l v e d .<br />

T a b l e II, t a k e n f r o m [l], s h o w s r e l a t i v e e l e m e n t y i e l d s f o r<br />

a 3 S U f i s s i o n . T h e v a l u e s l i s t e d a r e i n a t o m s p e r a t o m o f Z r f o r<br />

t h e l i g h t m a s s e s o r N d f o r t h e h e a v y m a s s e s . T h o s e o b t a i n e d b y<br />

i s o b a r i c c o u p l i n g a r e i n d i c a t e d b y t h e s u p e r s c r i p t i. N o t e t h a t<br />

t h e s t a n d a r d d e v i a t i o n s a r e m o r e v a r i a b l e t h a n t h o s e i n T a b l e I,<br />

w i t h a m a x i m u m o f 6 . 3 % f o r Sm. ,


I A E A - S M -1 7 0 /3 4 463<br />

MASS<br />

F IG . 1 . H e a v y -m a s s d a ta fo r th e th e rm a l n eu tron fis s io n o f 235U :<br />

a ) R e la tiv e a b u n d a n ce s o f X e , C s , B a, C e , N d , S m and Eu is o t o p e s ; b ) P e rce n t y ie ld s .<br />

F i g u r e 1 ( b ) s h o w s h o w t h e i n d i v i d u a l e l e m e n t r e s u l t s o f<br />

F i g u r e 1 ( a ) a r e f i t t e d t o g e t h e r i n t h i s w a y t o g i v e t h e s h a p e<br />

o f t h e b u l k o f t h e h e a v y m a s s p e a k i n 2 3 5 u f i s s i o n . H e r e t h e<br />

y i e l d s h a v e b e e n n o r m a l i z e d s o t h a t t h e N d e l e m e n t y i e l d i s 2 0 . 4 0 %<br />

a s d e t e r m i n e d b y m a s s s p e c t r o m e t r i c m e a s u r e m e n t s o f t h e n u m b e r o f<br />

f i s s i o n s . T h i s v a l u e m a y b e e x p e c t e d t o h a v e a 2 - 3 % u n c e r t a i n t y .<br />

N o t e t h a t t h e r a d i o a c t i v e i s o b a r y i e l d s a g r e e w i t h t h e s t a b l e<br />

i s o b a r y i e l d s w i t h i n t h e i r e r r o r s , e v e n t h o u g h t h e y m a d e o n l y a<br />

m i n o r c o n t r i b u t i o n t o d e t e r m i n i n g r e l a t i v e y i e l d s .


464 W ALKER<br />

TABLE II. RELATIV E ELEM ENT YIELDS IN 235U THERMAL<br />

NEUTRON FISSION<br />

Element Kr Rb Sr Y Zr Mo Ru<br />

Iso to p ic masses<br />

included in<br />

element y ie ld<br />

8 3 ,8 4<br />

86<br />

8 5 ,8 7 8 8 ,9 0 8 9 ,9 1 9 1 ,9 2 ,<br />

9 3 ,9 4 ,<br />

96<br />

E l e m e n t Y i e l d s R e l a t i v e t o Z r<br />

9 7 ,9 8 ,<br />

100<br />

1 0 1 ,1 0 2<br />

1 0 4 ,1 0 6<br />

Lisman et al.<br />

(1970) .1 1 2 4 .1 2 5 2 .3 0 8 4 1 .0 0 0 . 5796 .3707<br />

Farrar et al.<br />

(1962) .2992 .3422 1 .0 0 0<br />

± 0.7%<br />

S tein b erg,<br />

Glendenin<br />

(1955) .3031 1 .0 0 0 . 5852 .3 6 3 3 1<br />

Petruska et al.<br />

(1955) .1 2 3 8 ® (.3 0 3 6 )<br />

Average .1 1 2 4 .1 2 4 5 .3 0 3 6 .3422 1 .0 0 0 .5 8 2 4 .3682<br />

± 0.6 % ± 1.5 % ± 0.5% ± 0.7 %<br />

Element Xe Cs Ba Ce Nd Sm<br />

Iso to p ic masses 1 3 1 ,1 3 2 1 3 3 ,1 3 7 138 1 4 0 ,1 4 2 143-146 1 4 7 ,1 4 9<br />

included in 134 14.4 1 4 8 ,1 5 0 1 5 1 ,1 5 2<br />

element y ie ld 154<br />

Element Y ie ld s R elative to Nd<br />

Lisman et al.<br />

(1970) .7 0 6 8 .6 3 5 9 .3323 .8 6 0 1 .0 0 0 . 18383<br />

R ider et al.<br />

(1 9 6 5 ,1 9 6 7 ) .6 2 8 4 .3 1 9 4 1 .0 0 0<br />

F a r r a r , Tomlin<br />

s o n , (1962) .7 6 5 0 1 ' 4 .6 3 4 6 1,B .3 3 1 9 .8 6 2 1 1 1 .0 0 0 .1 9 7 9 1<br />

Chu (1959) .8546 1 .0 0 0 .2009<br />

Petruska et a l .<br />

(1955)<br />

S tein b e r g , Glen -<br />

d enin (1955)<br />

Average .7 0 6 8 .6 3 3 0 .3279<br />

± 0.6 % + 2 .3 %<br />

.5 6 6 2 х . 2627* .8178®'* 1 .0 0 0<br />

.8592<br />

■ ± 0.5%<br />

From average r e la tiv e .8 6 4 2 1<br />

y ie ld s (Tables 8 ,9 ) ± 1.6 %<br />

1 .0 0 0 .2147<br />

1 .0 0 0 .1993<br />

± 6.3%<br />

1 U s in g is o b a r ic links<br />

x Not used in taking average<br />

1 Based on absolute y ie l d of loeRu determined by ß-counting.<br />

A ssigned h a l f w eight in tak in g average<br />

2 Based on an isotope d ilu t io n measurement g iv in g Rb atoms/<br />

Sr atoms = 2 .4 5 1 and assuming a Sr y ie ld of 0 .3 0 3 6<br />

3 W ith 1 4 7 Sm reduced 2 .5 % {Table 10)<br />

4 Not used because i t is based on an unpublished value of the<br />

133Xe y ie ld for which no data on decay corrections is<br />

av a ilable<br />

6 From Cs y ie ld s of Petruska et al (1955b ) using mass 137<br />

isobars<br />

s Based on mass 140 and 142 only , u sin g average re la t iv e<br />

abundances of Table 8


F i n a l N o r m a l i z a t i o n<br />

<strong>IAEA</strong>-SM -170/34 465<br />

F i n a l l y , a s s h o w n i n F i g u r e 1 ( b ) , t h e r a d i o m e t r i c y i e l d s<br />

a r e i n t r o d u c e d . T h e i r p r o p e r r o l e c a n n o w b e m u c h m o r e c l e a r l y<br />

u n d e r s t o o d - n a m e l y t o d e f i n e t h e y i e l d s i n t h e v a l l e y b e t w e e n<br />

t h e l i g h t a n d h e a v y m a s s p e a k s , a n d i n t h e i r w i n g s , a n d t o<br />

c o n t r i b u t e t o t h e f i n a l n o r m a l i z a t i o n o f t h e m a s s s p e c t r o m e t r i c<br />

y i e l d s .<br />

I n t h e c a s e o f t h e 3 3 5 u h e a v y m a s s e s i n F i g u r e 1(b) t h e<br />

m a s s s p e c t r o m e t r i c y i e l d s a s i n i t i a l l y n o r m a l i z e d s u m t o 9 5 . 6 % ,<br />

w h i l e t h e r a d i o m e t r i c a n d i n t e r p o l a t e d y i e l d s a d d t o 3 . 3 % . T h e<br />

s u m is t h u s s h o r t o f t h e r e q u i s i t e 1 0 0 % b y 1 . 1 % a n d t h i s c o u l d b e<br />

m a d e u p b y i n c r e a s i n g a l l r a d i o m e t r i c y i e l d s b y 1 / 3 o f t h e i r<br />

v a l u e ; h o w e v e r , e v e n i f o n e w i s h e d t o a r g u e t h a t s u c h a c h a n g e<br />

i s w i t h i n t h e i r e r r o r r a n g e , t h i s d a t a i s t a k e n f r o m s o m a n y<br />

d i f f e r e n t s o u r c e s t h a t o n e c e r t a i n l y c o u l d n o t c l a i m t h a t t h e y<br />

w o u l d h a v e a c o m m o n s y s t e m a t i c e r r o r o f t h i s m a g n i t u d e . S i n c e<br />

t h e r e q u i r e d c h a n g e t o t h e s e t o f m a s s s p e c t r o m e t r i c y i e l d s is<br />

l e s s t h a n t h e e r r o r a s s u m e d f o r t h e o r i g i n a l n o r m a l i z a t i o n , it<br />

i s m u c h m o r e r e a s o n a b l e t o i n c r e a s e t h e m a s s s p e c t r o m e t r i c d a t a<br />

o n l y , a n d t h i s is t h e c o u r s e f o l l o w e d .<br />

I n t h e p r e s e n t c a s e t h e m o r e a c c u r a t e r a d i o m e t r i c m e a s u r e ­<br />

m e n t s , t h o s e a t m a s s e s 1 3 7 , 1 3 9 a n d 1 4 0 , s u p p o r t t h e ~ 1 % i n c r e a s e<br />

i n t h e m a s s s p e c t r o m e t r i c y i e l d s .<br />

I n [1] t h e y i e l d s a r e r e q u i r e d t o s a t i s f y a s e c o n d<br />

c o n d i t i o n , i n a d d i t i o n t o 2 y. = 1 . 0 0 0 , i n o r d è r t o s a t i s f y a n<br />

a d d i t i o n a l r e q u i r e m e n t , n a m e l y t h a t t h e m e a n n u m b e r o f n u c l e o n s<br />

o f t h e f i n a l d i s t r i b u t i o n s h o u l d e q u a l t h e n u m b e r o f f i s s i o n i n g<br />

n u c l e o n s l e s s t h e a v e r a g e n u m b e r o f n e u t r o n s p e r f i s s i o n ,<br />

i . e . Z y . A. = A , + 1 -v<br />

i i x f<br />

T o s a t i s f y t h i s r e s t r i c t i o n a f e w a d j u s t m e n t s w e r e r e q u i r e d ,<br />

e i t h e r i n i n d i v i d u a l r a d i o m e t r i c v a l u e s , o r b y u s i n g d i f f e r e n t<br />

n o r m a l i z a t i o n f a c t o r s f o r m a s s s p e c t r o m e t r i c y i e l d s a b o v e a n d<br />

b e l o w t h e p e a k , i . e . s l i g h t l y s k e w i n g t h e o r i g i n a l m a s s s p e c t r o ­<br />

m e t r i c s h a p e o f e i t h e r t h e l i g h t o r h e a v y m a s s p e a k . T h e c h a n g e s<br />

w e r e w i t h i n t h e r a n g e a l l o w e d b y t h e a s s i g n e d e r r o r s .<br />

A S S I G N M E N T O F E R R O R S A N D T H E I R E F F E C T O N F I S S I O N P R O D U C T A B S O R P T I O N<br />

B e c a u s e o f t h e s e p a r a t i o n i n t o t h r e e d i s t i n c t s t e p s u s e d i n<br />

t h i s a n a l y s i s t h e e s t i m a t i o n o f y i e l d e r r o r s i s r e l a t i v e l y<br />

s t r a i g h t f o r w a r d , c o n s i s t i n g o f t h a t d u e t o t h e i r i s o t o p i c a b u n ­<br />

d a n c e , t h e r e l a t i v e e l e m e n t y i e l d , a n d f i n a l n o r m a l i z a t i o n . T h e<br />

e r r o r s f o r i n d i v i d u a l y i e l d s a r e c o r r e l a t e d b y b o t h t h e i r d e p e n ­<br />

d e n c e o n r e l a t i v e e l e m e n t s y i e l d s a n d t h e n o r m a l i z a t i o n r e q u i r e ­<br />

m e n t t h a t 2 y. = 1 . 0 0 0 . T h u s a c h a n g e w i t h i n t h e r a n g e a l l o w e d<br />

b y t h e e r r o r s f o r o n e y i e l d , s a y a n i n c r e a s e f o r o n e n u c l i d e i n


Fission<br />

Product<br />

А Л<br />

a ± Да<br />

- barns -<br />

TABLE III. FISSION-PRODUCT ABSORPTION IN THERM AL REACTOR FUELS<br />

33Bu 333v<br />

к;<br />

1+<br />

Ду (%)<br />

b a r n s /fis s io n (total no. of absorptions in nuclide ? (total<br />

fis s io n s x irradiatio n)3<br />

339pu 341Pu 336Ub<br />

азбуЬ<br />

э<br />

339 Pu Nat<br />

he азбцЬ<br />

a3 9pub a41Pub Nat U + P U ^ Th+333b<br />

13БХе (345+14) 104 6 .6 0 + .1 6 6 .2 1 + .1 5 7 .6 9 + .2 4 7 .0 6 + .2 4 82 .4 + 2 . 0 1 3 .0 6 40. 5 2 2 .7 + .4 7 .7 1 17.7 2 1 6 .3 2 1 6 .6 6 + .5 0 1 2 .8 4 + .3 2<br />

143Nd 329+10 5 .9 5 + . 08 5 .8 5 * .1 0 4 .5 3 + .0 6 4 .5 2 + .0 6 7 .7 2 + .2 2 7 .5 4 5.97 6 .4 7 + .1 9 6 .8 9 5.47 5 .4 5 5 .9 8 + .1 7 6 . 2 6+ .19<br />

149Sm (6 9 + 2 )103 1 .0 % + .0 7 .7 6 5 + .0 2 1 1 .2 9 + .0 5 1 .4 4 + .0 4 1 7 .2 + 1 .1 3 .5 2 9 .0 0 5 .4 9 + .2 5 2 .3 4 4. 38 4 .8 1 4 .3 3 + .1 8 2. 54+. 07<br />

103Rh 221+10 3 .0 5 + .2 0 1 . 8 + . 3 5 .9 4 + .2 9 6 .6 5 + .7 0 1 .9 2 + .1 4 2 .6 9 4 .9 2 3 .7 4 + .2 5 2 .6 0 5 .0 3 5 .6 4 4 .6 3 + .3 4 1 .6 3 + .2 8<br />

1 5lSm (1 3 + 1 )103 .4 1 9 + .0 2 7 .3 1 4 + .0 0 8 .8 2 0 + .0 2 9 .882+.. 024 6 .9 2 ^ .4 4 1 .6 8 5 .7 0 3 .0 7 + .1 4 1.2 7 3.0 1 3 .2 6 2 .7 5 + .1 1 1 .2 6 + .0 3<br />

l47Pm 311+35 2 .2 6 + .0 4 1 .7 0 + .0 5 2 .1 6 + .0 7 2 .2 0 + .0 6 2 .8 3 + .2 8 2 .3 0 2 .4 7 2 .1 7 + .2 2 1 .9 5 2 .0 4 2 .0 8 2 .0 9 + .2 1 1.63+'. 16<br />

131Xe 153+15 2 .8 0 + .0 7 3 .5 3 + .0 8 3 .7 3 + .0 9 3 .1 2 + .0 7 1 .6 1 + .1 5 1 .8 6 2 .4 2 2 .1 3 + .2 0 1 .7 9 2 .4 0 2 .0 1 2 .4 0 + .2 8 2 .5 3 + .2 5<br />

133Cs 58.4 + 3 . 6 .7 8 + .1 6 5.99;+. 21 6 .9 2 + .1 7 6. 72+ .18 1 .8 2 + .1 0 1.8 7 1 .9 0 1 .8 8 + .1 1 1 .8 5 1 .8 9 1 .8 3 2 .1 6 + .1 3 2 .0 4 + .1 3<br />

16aSm 399¿15 .267+ .0 1 7 .2 1 3 + .0 0 6 .6 2 4 + .0 2 2 .6 9 7 + .0 1 9 1 .1 2 + .0 8 1 .1 6 2 .3 8 1. 65+. 08 1.1 1 2 .2 2 2 .4 3 2 .0 1 + .1 0 0 .9 6 + .0 4<br />

10BRh (1 8 + 2 )103 .9 5 + .2 0 .5 3 + .1 0 5 .4 7 + .1 6 6 .7 5 + .7 0 1 .3 0 + .2 8 0 .2 0 3 .1 6 1 .1 6 + .0 8 0 .1 2 1 .3 8 1 .7 0 1 .0 6 + .0 9 0 .1 2 + .0 3<br />

14eNd 61+6 3 .9 3 + .0 6 3 .3 8 + .0 6 3.06+.04 3 .2 2 + .0 4 1 .1 9 + . 12 1 .1 5 0 .9 1 1 .0 5 + .1 1 1 .1 3 0 .8 9 0 .9 4 1 .1 0 + .1 2 1 .1 0 + .1 1<br />

9»TC 35+4 6 . 14+. 09 5. 01+.. 10 6 .1 & + .3 6 6 .2 0 + .1 2 1 .0 3 + .1 2 1 .0 4 1 .0 3 1 .0 5 + .1 3 1 .0 3 1 .0 3 1 .0 4 1 .1 9 + .1 2 1 .0 1 + .1 2<br />

lS3Eu 546+2 5 .1 6 7 + .0 1 1 .1 0 5 + .0 0 5 . 3 8 + .01 .522+.022 0.48+.04 0.67 1.30 1 .0 0 + .0 6 0.73 1.47 1.79 1.43+.08 0.62+.04<br />

l48> pm (24+ )103 (from capture in 147 Pm) 0.94+.10 0.85 0.88 0.79+.08 0.73 0.75 0.77 0.77+.08 0.60+.06<br />

15BEu 4200+200 .0321+.002 .023+.005 .17+.02 .231+.022 0.40+.03 0.35 1.28 0.78+. 09 0.44 1.15 1.49 1.16+.13 0.41+.09<br />

160Sm 115+5 (from capture in 149 5m) 0.5%b.05 0.65 0.74 0.72+.05 0.66 0.75 0.83 0.83+.04 0.51¿ .02<br />

lS4Eu 1500+150 .074+.005 .046+.001 .2 8 6 + .011 .378+.010 0. 09+. 01 0.37 0. 55 0.57+.06 0.48 0 .8 9 1.10 0.97+.09 0.42+.04<br />

lo9Ag 185+13 .030+.006 .047+.005 1.3+0.2 2.5+. 5 0.03 0.03 1.16 0.47+.07 0.02 1.09 2.10 0.82+.13 0.04<br />

9'Mo 20.9+1.5 6.53+.10 6.19+.10 4 .98+ .0 8 3.98+. 09 0.15+.01 0.53 0.30 0.46+.03 0. 58 0.40 0,32 0.53+.04 0.61+.04<br />

a3Kr 210+10 .535+.013 1.00+.02 .295+.007 .202+.. 005 0.54+.03 0.48 0.28 0. 38+. 02 0.45 0.26 0.18 0.33+.01 0.82+.05<br />

>149 27.54+1.79 8.88 22.35 14.04+.65 7.54 14.88 16.90 14.39+.60 6.8 9 + .1 9<br />

Total F issio n product 134.4 44.8 92.0 6 1 .8 26.7 5 8 .6 61.2 57.3 41.6<br />

a integrated fissio n s and absorptions taken from LATREP (Nat U, Nat U+Pu, Th+a33U), pure f is s ile atom values are approximations (0.5 x barns<br />

per fissio n at m id-irradiation) using FISSPROD. A ll fluxfes 3 x 1013n/cmas<br />

b pure a36U fuel irradiated to 0.6 n/kb; Nat U (with a36U, a39Pu components) to 2.6 n A b j Nat U + Pu (with 335U, 339Pu, 341Pu components)<br />

to 3.6 п Д Ь ; Th+a33U to 4.0 п Д Ь . in the enriched fuels the Nat U contains 3.5 g f i s s i l e P u A s and the Th 14 g a 3 3 u A g .<br />

с The fraction of fissio n s contributed are as follow s - Nat U: a3BU,44.4%; a3®Pu,46.2%? a3eU .5.8^6? 341Pu.3.5% - Nat U -f Pu? a3Bu 28 !%•<br />

839PU,54.2%; 341P u , ll. a3eU,5.9%<br />

466 W ALKER


I A E A - S M -1 7 0 /3 4<br />

t h e h e a v y m a s s g r o u p , w i l l r e q u i r e a c o m p a r a b l e i n c r e a s e i n t h e<br />

y i e l d s o f o t h e r i s o t o p e s o f t h e s a m e e l e m e n t ( a s s u m i n g t h e<br />

i s o t o p i c a b u n d a n c e e r r o r is small) a n d a c o r r e s p o n d i n g d e c r e a s e<br />

i n s o m e o r a l l o f t h e o t h e r e l e m e n t s i n t h e h e a v y m a s s r a n g e t o<br />

k e e p Z y ^ = 1 . 0 0 0 .<br />

T h e u s e o f y i e l d e r r o r s t o o b t a i n u n c e r t a i n t i e s i n f i s s i o n<br />

p r o d u c t a b s o r p t i o n is o f c o n s i d e r a b l e i n t e r e s t s i n c e i t i n d i c a t e s<br />

w h e r e f u t u r e e f f o r t s c a n m o s t f r u i t f u l l y b e c o n c e n t r a t e d .<br />

T h e b a s i c d a t a a n d e s t i m a t e d u n c e r t a i n t i e s ( o n e s t a n d a r d<br />

d e v i a t i o n ) a r e s u m m a r i z e d i n T a b l e III. T h e f i r s t c o l u m n l i s t s<br />

t h e 2 0 m o s t i m p o r t a n t f i s s i o n p r o d u c t s i n t h e i r o r d e r o f i m p o r ­<br />

t a n c e a s d e t e r m i n e d b y t h e i r a v e r a g e a b s o r p t i o n i n n a t u r a l u r a n i u m<br />

i r r a d i a t e d i n a C A N D U r e a c t o r o f t h e P i c k e r i n g d e s i g n . O t h e r<br />

d e f i n i t i o n s o f t h e r m a l f i s s i o n p r o d u c t i m p o r t a n c e w o u l d r e q u i r e<br />

o n l y m i n o r c h a n g e s i n t h e o r d e r o f t h e l i s t a n d t h e n u c l i d e s<br />

i n c l u d e d .<br />

T h e s e c o n d c o l u m n l i s t s e f f e c t i v e c r o s s s e c t i o n s i n t h e<br />

s a m e r e a c t o r u s i n g t h e n o t a t i o n o f W e s t c o t t e t al. [6]<br />

л /<br />

cr = ct0 ( g + r s )<br />

w h e r e a 0 i s t h e 2 2 0 0 m / s c r o s s s e c t i o n , g a 0 i s t h e e f f e c t i v e<br />

c r o s s s e c t i o n i n a M a x w e l l i a n f l u x , r is t h e e p i t h e r m a l i n d e x<br />

( p r o p o r t i o n a l t o t h e f r a c t i o n o f n e u t r o n d e n s i t y i n t h e e p i ­<br />

t h e r m a l r a n g e ) a n d s Πl ' / c 0 , w h e r e I ' is t h e r e s o n a n c e i n t e g r a l<br />

l e s s t h e l / v c o n t r i b u t i o n f r o m g a 0 . T h e v a l u e s o f a a n d t h e i r<br />

a s s i g n e d u n c e r t a i n t i e s a r e b a s e d o n t h e e v a l u a t i o n o f a 0 a n d i'<br />

[7] a s s o c i a t e d w i t h t h e y i e l d e v a l u a t i o n d i s c u s s e d h e r e , a n d<br />

r = . 0 5 7 .<br />

T h e n e x t f o u r c o l u m n s l i s t t h e r e c o m m e n d e d y i e l d s o f [1]<br />

w i t h t h e i r o v e r a l l e r r o r , t a k e n a s t h e s q u a r e r o o t o f t h e s u m o f<br />

t h e s q u a r e s o f t h e 3 c o m p o n e n t s a l r e a d y d e s c r i b e d .<br />

T h e r e m a i n i n g c o l u m n s l i s t t h e c o n t r i b u t i o n s o f t h e s e<br />

f i s s i o n p r o d u c t s i n a v a r i e t y o f p o s s i b l e t h e r m a l r e a c t o r f u e l s -<br />

2 3 5 U a l o n e , n a t u r a l U , n a t u r a l U w i t h P u , a n d T h w i t h 3 3 3 u - a s<br />

w e l l a s i n t h e m a i n f i s s i l e c o m p o n e n t s o f t h e t w o n a t u r a l U f u e l s .<br />

T h e m i x e d f u e l c a l c u l a t i o n s u s e a n e w v e r s i o n [ 8 ] o f L A T R E P [9]<br />

a n d t h e q u o t e d v a l u e s a r e a b s o r p t i o n i n b a r n s / f i s s i o n u s i n g t h e<br />

t o t a l n u m b e r o f a b s o r p t i o n s i n t h e n u c l i d e d i v i d e d b y t h e p r o d u c t<br />

o f t h e i r r a d i a t i o n a n d t o t a l f i s s i o n s . T h e c o m p o n e n t c o n t r i ­<br />

b u t i o n s ( c o l u m n s 8, 9, 1 1 , 1 2 a n d 13) a r e a p p r o x i m a t i o n s b a s e d<br />

o n F I S S P R O D [ 1 0 ] c a l c u l a t i o n s u s i n g a v a l u e e q u a l t o h a l f t h e<br />

c a l c u l a t e d b a r n s p e r f i s s i o n a t m i d - i r r a d i a t i o n .<br />

T h e f i s s i o n p r o d u c t s m a y b e s e p a r a t e d f o r c o n v e n i e n c e i n t o<br />

t h r e e c a t e g o r i e s d e p e n d i n g o n t h e m a g n i t u d e o f (X+ct0)T, w h e r e \<br />

i s t h e d e c a y c o n s t a n t , 0 i s t h e f l u x a n d T i s t h e i r r a d i a t i o n<br />

467


468 W ALKER<br />

p e r i o d . T h e t h r e e g r o u p s a r e r a p i d l y s a t u r a t i n g , p a r t i a l l y<br />

s a t u r a t i n g o r n o n - s a t u r a t i n g d e p e n d i n g o n w h e t h e r (\+§ 0)T i s m u c h<br />

g r e a t e r t h a n , o f t h e s a m e o r d e r as, o r m u c h s m a l l e r t h a n u n i t y .<br />

T h e d e p e n d e n c e o f t h e a b s o r p t i o n o f a p a r t i c u l a r f i s s i o n<br />

p r o d u c t o n i t s c r o s s s e c t i o n , a n d c o n s e q u e n t l y t h e d e g r e e t o<br />

w h i c h i t i s s e n s i t i v e t o A a d e p e n d s o n t h e d e g r e e o f s a t u r a t i o n .<br />

T h e u n c e r t a i n t y ^ i n Ù m a y b e i g n o r e d f o r r a p i d l y s a t u r a t i n g f i s s i o n<br />

p r o d u c t s w i t h а ф » \ , r e q u i r e s a p a r t i a l w e i g h t i n g f o r p a r t i a l l y<br />

s a t u r a t i n g f i s s i o n p r o d u c t s o r r a p i d l y s a t u r a t i n g f i s s i o n<br />

p r o d u c t s w i t h §0~\, a n d f u l l w e i g h t f o r n o n - s a t u r a t i n g f i s s i o n<br />

p r o d u c t s , o r i f 0 ф « \ .<br />

E f f e c t o f Y i e l d C o r r e l a t i o n s<br />

B e c a u s e o f t h e c o r r e l a t i o n s b e t w e e n y i e l d s i t is i m p o s s i b l e<br />

t o c a l c u l a t e t h e u n c e r t a i n t y i n t h e t o t a l f i s s i o n p r o d u c t a b s o r p ­<br />

t i o n . T o i l l u s t r a t e t h e w i d e r a n g e o f e f f e c t s t o b e e x p e c t e d<br />

b e c a u s e o f t h e s e c o r r e l a t i o n s c o n s i d e r t w o c a s e s a s s o c i a t e d w i t h<br />

1 3 S X e a n d 1 4 9 S m .<br />

I n t h e 1 3 5 X e c a s e , t h e y i e l d s a r e b a s e d o n s i n g l e m e a s u r e ­<br />

m e n t s o f t h e r e l a t i v e a b u n d a n c e o f t h e d a u g h t e r , 1 3 B C s , f o r e a c h<br />

o f t h e f i s s i l e n u c l i d e s e x c e p t S 3 S P u , w h e r e t h r e e m e a s u r e m e n t s<br />

a r e a v a i l a b l e . B e c a u s e n a t u r a l l y o c c u r r i n g C s i s e n t i r e l y 1 3 3 C s ,<br />

w h i c h i s a l s o a h i g h y i e l d f i s s i o n p r o d u c t , i s o t o p e d i l u t i o n<br />

m e a s u r e m e n t s o f t h e r e l a t i v e y i e l d o f C s a r e d i f f i c u l t a n d t h e s e<br />

h a v e a n u n c e r t a i n t y e x c e e d i n g 2 % f o r b o t h f i s s i l e P u i s o t o p e s .<br />

I n t h e c a s e o f n a t u r a l U i t i s a r e a s o n a b l y g o o d a p p r o x i ­<br />

m a t i o n t o a s s u m e t h a t t h e u n c e r t a i n t y i s 2-|% a n d e n t i r e l y d u e t o<br />

t h e u n c e r t a i n t y i n t h e r e l a t i v e C s y i e l d . I t t h u s a p p l i e s t o a l l<br />

y i e l d s b a s e d o n C s ( m a s s e s 1 3 3 , 1 3 5 a n d 1 3 7 ) w h i c h t o t a l ~ 2 0 %<br />

a n d h a v e a n a b s o r p t i o n i n n a t u r a l U o f 2 4 . 7 b / f i s s i o n . T h u s , if<br />

t h e C s y i e l d s w e r e i n c r e a s e d t h e f u l l 2 ^ % t h e a b s o r p t i o n w o u l d<br />

i n c r e a s e b y 0 . 6 2 b / f i s s i o n . O n t h e o t h e r h a n d t h e r e m a i n i n g 8 0 %<br />

o f t h e h i g h m a s s y i e l d w o u l d h a v e t o b e r e d u c e d b y 0 . 6 % t o k e e p<br />

2 y. = 1 0 0 % . S i n c e t h e s e c o n t r i b u t e a b o u t 2 8 b / f i s s i o n t o t h e<br />

t o t a l a b s o r p t i o n , t h e n e t i n c r e a s e i n a b s o r p t i o n i s o n l y 0 . 4 5<br />

b / f i s s i o n , o r l e s s t h a n 3 / 4 w h a t i t w o u l d b e w i t h o u t t h e r e q u i r e ­<br />

m e n t t h a t 2 y ^ = 1 0 0 % .<br />

T h e s e c o n d e x a m p l e c o n c e r n s 1 4 9 S m , o r r a t h e r , a b s o r p t i o n<br />

i n a l l t h e m a s s e s f r o m 1 4 9 u p , s i n c e t h e s e a r e t i g h t l y l i n k e d<br />

t o g e t h e r b y c a p t u r e t r a n s m u t a t i o n s . I n t h e c a s e o f ЭЗБи f i s s i o n ,<br />

t h e S m a n d E u i s o t o p i c a b u n d a n c e s w e r e m e a s u r e d r e l a t i v e t o e a c h<br />

o t h e r s o i n t h i s c a s e t h e r e is a d d i t i o n a l r e a s o n f o r t r e a t i n g<br />

t h i s g r o u p a s a s i n g l e u n i t . F u r t h e r , t h e r e a p p e a r s t o b e a g r e a t<br />

d e a l o f s y s t e m a t i c u n c e r t a i n t y b e t w e e n t h e d i f f e r e n t i s o t o p e<br />

d i l u t i o n m e a s u r e m e n t s , s o t h a t t h e r e l a t i v e S m - E u y i e l d s a r e<br />

a s s i g n e d a n e r r o r o f 6 % i n 2 3 5 u f u e l . S i n c e t h i s g r o u p c o n t r i ­<br />

b u t e s 2 7 . 5 b / f i s s i o n ( 2 n d t o l a s t l i n e i n T a b l e III) t h e i n c r e a s e


I A E A - S M -1 7 0 /3 4 469<br />

i n a b s o r p t i o n i s 1 . 6 5 b / f i s s i o n . O n t h e o t h e r h a n d , t h e t o t a l<br />

y i e l d f o r t h i s g r o u p i s o n l y 2 . 7 % s o t h e c o m p e n s a t i n g d e c r e a s e<br />

i n t h e r e m a i n i n g h e a v y m a s s e s w i l l b e s m a l l . A s s u m i n g t h e o t h e r<br />

y i e l d s a r e d e c r e a s e d u n i f o r m l y t h e e f f e c t is a p p r o x i m a t e l y<br />

0 . 0 6 x 0 . 0 2 7 x 1 0 0 o r 0 . 1 5 b / f i s s i o n , s o t h a t t h e n e t i n c r e a s e<br />

i s 1 . 5 b / f i s s i o n .<br />

I t is a p p a r e n t t h a t t h e c o r r e l a t i o n s b e t w e e n y i e l d s w i l l<br />

h a v e d i f f e r e n t e f f e c t s o n d i f f e r e n t f u e l s , d e p e n d i n g o n t h e<br />

m a g n i t u d e s o f t h e y i e l d s a n d t h e i r c o r r e s p o n d i n g a b s o r p t i o n .<br />

I n t h e c a s e o f i s o t o p e s o f e l e m e n t s w i t h l a r g e y i e l d s a n d l o w<br />

a b s o r p t i o n , f o r e x a m p l e Z r o r c e , a y i e l d i n c r e a s e m a y e v e n<br />

r e s u l t i n a d e c r e a s e i n a b s o r p t i o n .<br />

E f f e c t o f Y i e l d U n c e r t a i n t i e s i n R e a c t o r D y n a m i c C a l c u l a t i o n s<br />

Y i e l d u n c e r t a i n t i e s a l s o a f f e c t c a l c u l a t i o n s o f 1 3 5 X e<br />

o s c i l l a t i o n s i n l a r g e t h e r m a l r e a c t o r s , a n d t h e 1 3 5 X e , 1 0 S R h ,<br />

1 4 9 S m a n d 1 5 1 S m t r a n s i e n t b e h a v i o u r f o l l o w i n g r e a c t o r s h u t d o w n .<br />

I n t h e s e c a s e s t h e u n c e r t a i n t y i n c r o s s s e c t i o n s c a r r y t h e i r<br />

f u l l w e i g h t . T h e c o s t o f t h e s e u n c e r t a i n t i e s w i l l d e p e n d n o t<br />

o n l y o n t h e t y p e o f r e a c t o r b u t a l s o o n t h e m e t h o d o f c o n t r o l<br />

u s e d ( e . g . i n s e r t i o n o f b o o s t e r s , r e m o v a l o f a b s o r b e r s ) .<br />

I t s h o u l d b e n o t e d , h o w e v e r , t h a t t h e c o s t o f o v e r r i d i n g<br />

t h e 1 3 5 X e a n d 1 0 B R h t r a n s i e n t a f t e r s h u t d o w n w i l l p r o b a b l y b e<br />

l e s s i n r e a c t o r s f u e l l e d w i t h 3 3 3 U , n o t o n l y b e c a u s e t h e c u m u ­<br />

l a t i v e y i e l d s o f b o t h n u c l i d e s a r e s m a l l e r , b u t b e c a u s e t h e<br />

d i r e c t y i e l d o f 1 3 6 X e i s m u c h l a r g e r i n t h i s f u e l t h a n in<br />

n a t u r a l U - 2 2 % d i r e c t t o X e , o n l y -%-78% c u m u l a t i v e t o I [ 1 1 , 12]<br />

T o c o n c l u d e t h i s s e c t i o n o n t h e e f f e c t s o f y i e l d u n c e r t a i n<br />

t i e s , I w o u l d l i k e t o n o t e t h a t a n e s t i m a t e o f u n c e r t a i n t i e s in<br />

f i s s i o n p r o d u c t a b s o r p t i o n w a s m a d e p r e v i o u s l y [ 1 3 ] a l t h o u g h<br />

t h e s c o p e w a s r e s t r i c t e d t o S 3 3 u, 3 3 5 U, a 3 s P u a n d n a t u r a l U.<br />

I n c o m p a r i s o n w i t h t h a t a n a l y s i s , i t w o u l d a p p e a r t h a t w e a r e a<br />

l i t t l e l e s s s u r e o f t h e m a g n i t u d e o f f i s s i o n p r o d u c t a b s o r p t i o n ,<br />

m a i n l y b e c a u s e o f t h e i n c r e a s e ( b y a f a c t o r o f t w o ) i n t h e<br />

u n c e r t a i n t y i n S m y i e l d s i n 3 3 5 U f i s s i o n . T h i s , i n t u r n , c a n<br />

b e a t t r i b u t e d t o t h e i n c l u s i o n o f t h e 1 9 7 0 r e s u l t s o f L i s m a n e t<br />

al. [ 4 ] .<br />

F U T U R E R E Q U I R E M E N T S<br />

T a b l e III i s a u s e f u l i n d i c a t o r o f w h e r e t h e m a j o r e f f o r t<br />

i n i m p r o v i n g f i s s i o n p r o d u c t y i e l d s is r e q u i r e d , a l t h o u g h i t<br />

d o e s n o t c o v e r a l l t h e s h o r t c o m i n g s i n y i e l d m e a s u r e m e n t s .<br />

T a b l e I V l i s t s t h e s i x f i s s i o n p r o d u c t s h a v i n g t h e g r e a t e s t<br />

u n c e r t a i n t y i n a b s o r p t i o n i n n a t u r a l U f u e l , w i t h t h e i r u n c e r ­<br />

t a i n t i e s i n n a t u r a l U , n a t u r a l U p l u s P u a n d T h p l u s 2 3 3 U. F o r


470 W ALKER<br />

T A B L E IV. M A J O R S O U R C E S O F U N C E R T A I N T Y IN A B S O R P T I O N<br />

IN R E A C T O R F U E L S<br />

N u c l i d e A b s o r p t i o n U n c e r t a i n t y ( b a r n s / f i s s i o n ) i n<br />

N a t u r a l U N a t u r a l U + P u T h + 2 3 3 U<br />

> 1 4 9 0 . 6 5 0 . 6 0 0 . 1 9<br />

(1 4 9 S m ) ( 0.25) ( 0 . 1 8 ) ( 0.07)<br />

1 3 5 X e 0 . 4 4 0 . 5 0 0 . 3 2<br />

1 0 3 R h 0 . 2 5 0 . 3 4 0 . 2 8<br />

1 4 7 P m * 0 . 2 2 0 . 2 1 0 . 1 6<br />

1 3 1 X e * 0 . 2 0 0 . 2 8 0 . 2 5<br />

1 4 3 N d * 0 . 1 9 0 . 1 7 0 . 1 9<br />

* M o s t o f t h e u n c e r t a i n t y i s c o n t r i b u t e d b y t h e c r o s s s e c t i o n<br />

s e v e r a l o f t h e s e n u c l i d e s t h e m a j o r c o n t r i b u t o r t o t h e u n c e r ­<br />

t a i n t y i s t h e c r o s s s e c t i o n a n d t h e s e a r e i d e n t i f i e d w i t h a n<br />

a s t e r i s k .<br />

T h e u n c e r t a i n t i e s i n t h e > 1 4 9 m a s s g r o u p a n d 1 3 5 X e a r e<br />

d u e p r i m a r i l y t o u n c e r t a i n t y i n t h e y i e l d s o f S m a n d C s ,<br />

r e s p e c t i v e l y , r e l a t i v e t o N d . F o r 1 0 3 R h t h e y i e l d is b a s e d o n<br />

l i m i t e d r a d i o m e t r i c d a t a .<br />

T h e s e a r e t h e t h r e e m a j o r s o u r c e s o f u n c e r t a i n t y . O f<br />

s o m e w h a t l e s s i m p o r t a n c e a r e t h e u n c e r t a i n t i e s ( ~ 1 0 % ) i n t h e<br />

1 4 7 P m a n d 1 3 1 X e c r o s s s e c t i o n s . I n t h e c a s e o f 1 4 3 N d , t h e l a s t<br />

e n t r y , t h e c r o s s s e c t i o n is a l r e a d y k n o w n t o +_ 3%, s o t h a t a<br />

m a j o r e f f o r t w o u l d b e r e q u i r e d t o r e d u c e t h i s u n c e r t a i n t y<br />

s i g n i f i c a n t l y . . ■<br />

I n a d d i t i o n t o t h e u n c e r t a i n t i e s i n t h e C s a n d S m y i e l d s<br />

t h e r e a r e l a r g e d i f f e r e n c e s i n m a s s s p e c t r o m e t r i c m e a s u r e m e n t s<br />

o f t h e 1 3 8 B a y i e l d s f o r b o t h 2 3 9 P u (15%) a n d 2 4 1 P u ( 7 . 5 % ) [ 1 ] .<br />

N o r c a n t h e 2 4 1 P u y i e l d s b e c o n s i d e r e d s a t i s f a c t o r y f o r m a n y o t h e r<br />

m a s s e s . T h e r e i s o n l y o n e s e t o f m a s s s p e c t r o m e t r i c m e a s u r e m e n t s<br />

f o r t h e l i g h t m a s s e s [ 4 ] . T h e s e d o n o t i n c l u d e M o , w h i c h c o v e r s<br />

t h e l i g h t m a s s p e a k , a n d t h e R u y i e l d s w e r e d e t e r m i n e d r a d i o -<br />

m e t r i c a l l y r e l a t i v e t o 1 3 7 C s . A l s o t h e r e a r e o n l y t h r e e r a d i o -<br />

m e t r i c m e a s u r e m e n t s c o v e r i n g t h e m a s s r a n g e f r o m 1 0 7 t o 1 3 0 s o<br />

t h a t t h e r e is c o n s i d e r a b l e u n c e r t a i n t y i n t h e f i n a l n o r m a l i z a t i o n<br />

o f m a s s s p e c t r o m e t r i c d a t a .<br />

W h a t i s r e q u i r e d t o m i n i m i z e t h e r e m a i n i n g u n c e r t a i n t i e s is<br />

a t w o - p r o n g e d a s s a u l t u s i n g m a s s s p e c t r o m e t r i c m e t h o d s t o i m p r o v e<br />

S 3 6 U y i e l d s a n d r a d i o m e t r i c m e a s u r e m e n t s o f y i e l d s o f 2 3 3 U, 2 3 9 P u<br />

a n d 2 4 1 P u r e l a t i v e t o t h o s e o f 23Би.


M a s s S p e c t r o m e t e r M e a s u r e m e n t s<br />

I A E A - S M -1 7 0 /3 4<br />

S i n c e t h e m a i n s o u r c e o f u n c e r t a i n t y i n m a s s s p e c t r o m e t r i c<br />

d e t e r m i n a t i o n s o f C s , B a a n d S m y i e l d s a p p e a r s t o b e s y s t e m a t i c<br />

d i f f e r e n c e s i n t h e i s o t o p e d i l u t i o n m e t h o d , a m o r e p r o m i s i n g<br />

a p p r o a c h i s t o u s e i s o b a r i c c o u p l i n g . S i n c e t h i s i s a m e t h o d<br />

u s e d p r e v i o u s l y b y F a r r a r a n d T o m l i n s o n [ 1 4 ] f o r a 3 5 u y i e l d s ,<br />

I a m , t h e r e f o r e , s u g g e s t i n g a n i n d e p e n d e n t c h e c k o f t h e i r r e s u l t s .<br />

I f g o o d a g r e e m e n t is o b t a i n e d I f e e l t h e s e r e s u l t s s h o u l d b e u s e d<br />

i n p r e f e r e n c e t o t h o s e o b t a i n e d b y i s o t o p e d i l u t i o n .<br />

T h e l i n k s t o b e u s e d a r e s h o w n i n F i g u r e 1 ( a ) , n a m e l y 1 3 7 C s -<br />

1 3 7 B a , 1 4 0 B a - 1 4 0 C e , a n d 1 4 7 N d - 1 4 7 S m . B e c a u s e o f t h e l o n g h a l f -<br />

l i f e o f 1 3 7 C s ( 3 0 y) a n o l d s a m p l e o f i r r a d i a t e d 3 3 5 U w o u l d b e<br />

b e s t f o r m e a s u r i n g t h e 1 3 7 B a r e l a t i v e a b u n d a n c e .<br />

T h e s h o r t - i r r a d i a t i o n B a m e a s u r e m e n t t o o b t a i n t h e 1 4 0 B a<br />

r e l a t i v e a b u n d a n c e s h o u l d a l s o b e u s e d t o c h e c k w h e t h e r n a t u r a l<br />

B a is p r e s e n t s i n c e t h i s is a p o s s i b l e e x p l a n a t i o n o f s o m e o f<br />

t h e d i s c r e p a n c i e s o b s e r v e d .<br />

T h e u n c e r t a i n t y i n t h e m a s s 1 0 3 y i e l d f r o m 23Би f i s s i o n i s<br />

d u e t o a l a c k o f a n y m a s s s p e c t r o m e t r i c d a t a , a n d i t s h o u l d b e<br />

q u i t e s t r a i g h t f o r w a r d t o d e t e r m i n e t h e r e l a t i v e a b u n d a n c e o f<br />

4 0 - d 1 0 3 R u a s h a s a l r e a d y b e e n d o n e f o r t h e r m a l f i s s i o n o f s 3 9 P u<br />

[ 1 5 ] .<br />

S i n c e t h e r e h a s b e e n o n l y o n e i s o t o p e d i l u t i o n m e a s u r e m e n t<br />

g i v i n g t h e y i e l d o f R u r e l a t i v e t o Z r i n a 3 5 u f i s s i o n [ 4 ] , i t is<br />

u n f o r t u n a t e t h a t t h e r e is n o c o n v e n i e n t i s o b a r i c l i n k b e t w e e n M o<br />

a n d Zr. T h i s i s b e c a u s e t h e t w o l o n g e s t - l i v e d f i s s i o n p r o d u c t<br />

i s o t o p e s o f M o a r e 6 6 - h 9 9 M o a n d 1 4 . 6 - m 1 0 1 M o . T h e l a t t e r is t o o<br />

s h o r t - l i v e d a n d t h e f o r m e r d e c a y s t o 1 0 6 - y 9 S T c w h i c h i n t e r c e p t s<br />

t h e l i n k t o R u .<br />

R a d i o m e t r i c M e a s u r e m e n t s<br />

A s s u m i n g t h a t t h e a b o v e r e c o m m e n d a t i o n s a r e a c t e d o n a n d a r e ■<br />

s u c c e s s f u l i n r e d u c i n g u n c e r t a i n t i e s i n 2 3 S u y i e l d s , t h e s e c o n d<br />

p r o n g o f t h e a t t a c k i s t h e r a d i o m e t r i c m e a s u r e m e n t o f y i e l d s o f<br />

a w i d e r a n g e o f r a d i o a c t i v e n u c l i d e s f o r o t h e r f i s s i l e n u c l i d e s<br />

r e l a t i v e t o t h o s e i n 3 3 E u t h e r m a l f i s s i o n .<br />

T h e m e a s u r e m e n t o f r e l a t i v e y i e l d s r a d i o m e t r i c a l l y is b y n o<br />

m e a n s n e w . H o w e v e r , i n c o m p a r i n g t h e r e s u l t s o f r e l a t i v e r a d i o -<br />

m e t r i c y i e l d m e a s u r e m e n t w i t h m a s s s p e c t r o m e t r i c y i e l d s w h e r e<br />

t h a t is p o s s i b l e , t h e r e a r e e n o u g h d i s a g r e e m e n t s t o c o n v i n c e m e<br />

t h a t a s i g n i f i c a n t f r a c t i o n i s f r e q u e n t l y l o s t , f r o m o n e s a m p l e<br />

o r t h e o t h e r , i n e x t r a c t i n g a p a r t i c u l a r e l e m e n t f r o m d i f f e r e n t<br />

f i s s i l e s a m p l e s .<br />

A t y p i c a l p h y s i c i s t ' s a p p r o a c h t o t h i s d i f f i c u l t p r o b l e m i s<br />

s i m p l y t o l e a v e t h e f i s s i l e s a m p l e s e a l e d a n d u s e a G e ( L i )<br />

471


472 W ALKER<br />

d e t e c t o r t o s o r t o u t t h e y - r a y s . F o r t h o s e w h o b e l i e v e t h a t<br />

t h i s a p p r o a c h is i n c a p a b l e o f s u f f i c i e n t a c c u r a c y I n o t e t h a t<br />

i t w a s u s e d s u c c e s s f u l l y a s l o n g a g o a s 1 9 6 5 t o d e t e r m i n e t h e<br />

d i r e c t y i e l d s o f 1 3 5 X e i n t h e r m a l f i s s i o n o f 2 3 3 U , 3 3 S U , 2 3 9 P u<br />

a n d 3 4 1 P u [ 1 2 ] .<br />

F i g u r e 2 i s a c o m p o s i t e o f f i g u r e s f r o m t h a t p a p e r a n d<br />

s h o w s t h e s e p a r a t i o n a n d a c c u r a c y a c h i e v a b l e w i t h a r e s o l u t i o n<br />

o f o n l y 3 . 4 k e V ( F W H M ) a t 2 5 0 k e V . W i t h t h e r e s o l u t i o n s n o w<br />

a v a i l a b l e , a n d i m p r o v e d e l e c t r o n i c s , r a t i o s o f 1 - 2 p e r c e n t<br />

a c c u r a c y s h o u l d b e p o s s i b l e , e s p e c i a l l y u s i n g h i g h e r e n e r g y<br />

Y ~ r a y s a n d s o m e w h a t l o n g e r l i f e t i m e s .<br />

T h e p u r p o s e o f t h e s e m e a s u r e m e n t s w o u l d b e t o c h e c k t h e<br />

m a s s s p e c t r o m e t r i c a l l y d e t e r m i n e d r e l a t i v e e l e m e n t y i e l d s a t<br />

m a n y p o i n t s i n b o t h l i g h t a n d h e a v y m a s s p e a k s w i t h t h e m a i n<br />

e m p h a s i s o n r e s o l v i n g t h e d i s c r e p a n c i e s d i s c u s s e d .<br />

T a b l e V l i s t s s o m e o f t h e n u c l i d e s w i t h h a l f - l i v e s ( g e n e r ­<br />

a l l y > 1 d a y ) a n d Y _ r a y y i e l d s s u i t a b l e f o r t h e s e m e a s u r e m e n t s .<br />

I n t h e l i g h t m a s s r a n g e t h e u s u a l r e f e r e n c e n u c l i d e h a s b e e n 9 9 M o<br />

b u t 9 1 S r i s p r e f e r a b l e f o r t h e s e m e a s u r e m e n t s b e c a u s e i t i s a n<br />

i s o b a r o f 9 1 Z r , a n d Z r h a s b e e n m e a s u r e d m a s s s p e c t r o m e t r i c a l l y<br />

f o r a l l f o u r f i s s i l e n u c l i d e s a n d h a s b e e n u s e d a s t h e n o r m a l ­<br />

i z i n g e l e m e n t in [ 1 ] .<br />

I n t h e h e a v y m a s s r a n g e 1 4 0 B a is t h e u s u a l r e f e r e n c e<br />

s t a n d a r d a n d h a s c o n s i d e r a b l e m e r i t s i n c e i t c a n b e t i e d t o t h e<br />

C e y i e l d s t h r o u g h 1 4 0 C e . H o w e v e r , t h e C e y i e l d s a r e l e s s a c c u r a t e<br />

t h a n t h e N d y i e l d s , a n d 1 4 3 C e w o u l d b e a b e t t e r c h o i c e .<br />

O u t s i d e t h e m a s s s p e c t r o m e t e r m a s s r a n g e (83 t o 1 0 6 a n d 1 3 1<br />

t o 154) m o s t o f t h e y i e l d s a r e s m a l l a n d c h e m i c a l s e p a r a t i o n w i l l<br />

b e n e c e s s a r y b e c a u s e i n a s e a l e d c o n t a i n e r t h e i r y - r a y s w o u l d<br />

a l m o s t c e r t a i n l y b e s u b m e r g e d i n b a c k g r o u n d r a d i a t i o n .<br />

R e p o r t i n g o f R e s u l t s<br />

T o c o n c l u d e , I w o u l d l i k e t o m a k e a p l e a f o r f u l l d o c u m e n ­<br />

t a t i o n o f i r r a d i a t i o n c o n d i t i o n s , e l a p s e d t i m e s , c o r r e c t i o n<br />

f a c t o r s a n d a s s u m e d c o n s t a n t s in p r e s e n t i n g y i e l d d a t a i n o r d e r<br />

t o m a k e l i f e e a s i e r f o r f u t u r e e v a l u a t o r s , a n d , i n c i d e n t a l l y , t o<br />

e n s u r e t h a t t h e r e s u l t s w i l l n o t b e d i s c a r d e d .<br />

M a n y o f t h e e a r l y m e a s u r e m e n t s h a v e n o t b e e n u s e d b e c a u s e<br />

o f l a c k o f i n f o r m a t i o n o n c o r r e c t i o n s . A s t a t e m e n t t h a t t h e y i e l d<br />

h a s b e e n c o r r e c t e d " f o r d e c a y o f 2 8 2 - d a y 1 4 4 C e " is n o t m u c h u s e<br />

m a n y y e a r s l a t e r w h e n t h e h a l f - l i f e h a s c h a n g e d t o 2 8 4 . 4 d a y s .


RELATIVE COUNTING RATE-LINEAR SCALE<br />

I A E A - S M -1 7 0 /3 4 473<br />

GAMMA RAY ENERGY - keV<br />

F IG . 2 . F ission p r o d u c t y -r a y s fr o m ir ra d ia te d 233U a t 5 , 10 and 20 h ou rs a fte r th e en d o f th e ir r a d ia tio n .<br />

In set: G aussian fit to 135X e y - r a y .


474 W ALKER<br />

T A B L E V . N U C L I D E S F O R R A D I O M E T R I C M E A S U R E M E N T W I T H<br />

G e (Li) D E T E C T O R S<br />

N u c l i d e H a l f - l i f e M a i n Y - r a y s w i t h e n e r g i e s i n k e V<br />

a n d y i e l d s i n y ' s p e r 1 0 0 d e c a y s ( i n b r a c k e t s ) *<br />

9 x S r 9 . 6 7 h 5 5 1 ( 7 2 ) , 6 4 5 ( 1 4 ) , 7 4 8 ( 2 9 ) , 1 0 2 5 ( 3 0 ) , 1 4 1 3 ( 7 )<br />

9 3 y<br />

1 0 . 2 h 2 6 7 ( 5 )<br />

9 5 Zr 6 5 . 5 d 7 2 4 ( 4 4 ) , 7 5 7 ( 5 4 )<br />

9 6 N b 3 5 . 1 d 7 6 5 ( 1 0 0 )<br />

9 9 M O 2 . 7 8 d 7 5 0 ( 1 4 ) ; 1 4 9 ( 9 0 )<br />

1 0 3 R u 3 9 . 8 d 4 9 7 ( 8 9 ) , 6 1 0 ( 5 )<br />

1 06 R u 1 . 0 1 y n i l ; 5 1 2 ( 2 1 ) , 6 2 2 ( 1 0 )<br />

1 3 1 I 8 . 0 7 d 3 6 4 ( 8 2 )<br />

1 3 2 T e 3 . 2 5 d 5 0 ( 1 3 . 9 ) , 2 2 8 ( 8 5 ) ; 5 2 3 ( 1 7 ) , 6 3 0 ( 1 4 ) , 6 6 8 ( 1 0 1 )<br />

7 7 3 ( 7 8 ) , 9 5 5 ( 1 9 )<br />

1 3 a j<br />

2 1 h 5 3 0 ( 8 9 )<br />

1 3 3 m x e 2 . 2 6 d 2 3 3 ( 1 4 )<br />

1 3 3 X e 5 . 2 7 d 8 1 ( 3 7 )<br />

13 7 C s 3 0 . 2 y 6 6 2 ( 8 5 )<br />

1 4 0 B a 1 2 . 8 d 5 3 7 ( 2 4 ) ; 3 2 8 ( 2 4 ) , 8 1 6 ( 2 6 ) , 1 5 9 7 ( 1 1 0 ) , 2 5 2 2 ( 4 )<br />

141 C e 3 2 . 5 d 1 4 5 ( 4 9 )<br />

1 4 3 C e 1 . 3 8 d 5 7 ( 1 2 ) , 2 9 3 ( 4 0 ) , 6 6 8 ( 6 ) , 7 2 5 ( 7 )<br />

1 4 4 C e 2 8 4 . 4 d 1 3 4 ( 1 1 ) ; 6 9 6 ( 1 . 5 ) , 2 1 8 6 ( 0 . 7 )<br />

1 4 7 N d 1 1 . 0 6 d 9 1 ( 3 0 ) , 5 3 1 ( 1 3 )<br />

149 P m 2 . 2 1 d 2 8 6 ( 3 )<br />

1 6 1 P m 1 . 1 8 d 3 4 0 ( 2 3 )<br />

1 5 3 S m 1 . 9 5 d 6 9 ( 6 ) , 1 0 3 ( 3 2 )<br />

S e m i c o l o n s s e p a r a t e t h e d i r e c t Y - r a y s f r o m t h o s e o f s h o r t - l i v e d<br />

d a u g h t e r s t h a t a r e i n e q u i l i b r i u m w i t h t h e p a r e n t .<br />

* V a l u e s i n o r i g i n a l t a b l e w e r e c o r r e c t e d a f t e r t h e m e e t i n g .<br />

T h e d a t a s h o w n i s t a k e n f r o m M . J. M a r t i n a n d P. B. B l i c h e r t - T o f t<br />

( R a d i o a c t i v e a t o m s , A u g e r - e l e c t r o n , a- , ß-, y - , a n d x - r a y d a t a ,<br />

N u c l e a r D a t a T a b l e s J3 ( 1 9 7 0 ) 1 ) s u p p l e m e n t e d b y C . M . L e d e r e r ,<br />

J . M . H o l l a n d e r a n d I. P e r l m a n ( " T a b l e s o f I s o t o p e s " , 6 t h ed. ( 1 9 6 7 )<br />

W y l i e a n d S o n s ) .


I A E A - S M -1 7 0 /3 4 475<br />

O n t h e o t h e r h a n d s o m e e a r l y m a s s s p e c t r o m e t e r m e a s u r e ­<br />

m e n t s o f S m r e l a t i v e a b u n d a n c e s i g n o r e d t h e h o l d - u p i n 1 1 - d<br />

1 4 7 N d a n d u s e d a n o u t - o f - d a t e h a l f - l i f e f o r 2 . 6 2 - y 1 4 7 Pm.<br />

H o w e v e r , b e c a u s e t h e i r r a d i a t i o n a n d c o o l i n g p e r i o d s w e r e<br />

s p e c i f i e d , c o r r e c t i o n s o f 2 . 4 % t o 8 % w e r e m a d e w h i c h b r o u g h t t h e<br />

a p p a r e n t l y d i s c r e p a n t r e s u l t s i n t o e x c e l l e n t a g r e e m e n t .<br />

R E F E R E N C E S '*<br />

[1] W a l k e r , W . H . , F i s s i o n p r o d u c t d a t a f o r t h e r m a l r e a c t o r s ,<br />

A E C L - 3 0 3 7 , P a r t I I - Y i e l d s , ( 1 9 7 3 ) .<br />

[2] W a l k e r , W . H . , T h e e v a l u a t i o n o f f i s s i o n p r o d u c t y i e l d s ,<br />

p r o c e e d i n g s o f t h e s e c o n d I A E A c o n f e r e n c e o n N u c l e a r<br />

D a t a f o r R e a c t o r s , ¿ ( 1 9 7 0 ) .<br />

[3] M e e k , M . E . , a n d R i d e r , B. F . , C o m p i l a t i o n o f f i s s i o n<br />

p r o d u c t y i e l d s , V a l l e c i t o s N u c l e a r C e n t e r - 1 9 7 2<br />

N E D O - 1 2 1 5 4 ( 1 9 7 2 ) .<br />

[ 4 ] L i s m a n , F. L . , A b e r n a t h y , R . M . , M a e c k , W . J . , R e i n , J. E . ,<br />

F i s s i o n y i e l d s o f o v e r 4 0 s t a b l e a n d l o n g - l i v e d f i s s i o n<br />

p r o d u c t s f o r t h e r m a l n e u t r o n f i s s i o n e d 3 3 3 U , S 3 E U,<br />

a 3 9 P u a n d 3 4 1 P u , a n d f a s t r e a c t o r f i s s i o n e d 3 3 5 u a n d<br />

3 3 9 P u , N u c l . S e i . E n g n g 42^ ( 1 9 7 0 ) 1 9 1 .<br />

[5] S t e i n b e r g , E. P . , G l e n d e n i n , L . E . , S u r v e y o f r a d i o c h e m i c a l<br />

s t u d i e s o f t h e f i s s i o n p r o d u c t s , P r o c e e d i n g s o f t h e<br />

F i r s t G e n e v a C o n f e r e n c e o n P e a c e f u l U s e s o f A t o m i c<br />

E n e r g y 1_ ( 1 9 5 5 ) 3.<br />

[6] W e s t c o t t , C. H . , W a l k e r , W . H . , A l e x a n d e r , T . K . ,<br />

E f f e c t i v e c r o s s s e c t i o n s a n d c a d m i u m r a t i o s f o r t h e<br />

n e u t r o n s p e c t r a o f t h e r m a l r e a c t o r s , P r o c e e d i n g s o f<br />

t h e S e c o n d G e n e v a C o n f e r e n c e o n P e a c e f u l U s e s o f<br />

A t o m i c E n e r g y 1 6 , 7 0 ( 1 9 5 8 ) .<br />

[7] W a l k e r , W . H . , F i s s i o n p r o d u c t d a t a f o r t h e r m a l r e a c t o r s ,<br />

A E C L - 3 0 3 7 P a r t I - C r o s s S e c t i o n s ( 1 9 7 2 r e v i s i o n ) .<br />

[ 8] M i l g r a m , M . , T h e r e v i s i o n i n c l u d e s t h e p r o d u c t i o n a n d<br />

r e m o v a l o f 4 5 f i s s i o n p r o d u c t s a n d a d d i t i o n a l h e a v y<br />

e l e m e n t s f r o m T h t o C f .<br />

[ 9] P h i l l i p s , G. J . , G r i f f i t h s , J . , L A T R E P u s e r s m a n u a l ,<br />

A E C L - 3 8 5 7 , ( 1 9 7 1 ) .<br />

[ 1 0 ] L a n e , F . , F I S S P R O D , a g ~ 2 0 c o m p u t e r p r o g r a m , A E C L - 3 0 3 8<br />

( 1 9 6 9 ) .<br />

A E C L -X X X X : R eport p u b lis h e d b y A t o m i c E n ergy o f C a n a d a L im ite d .


476 W ALKER<br />

[1 1 ] H a w k i n g s , R. C . , E d w a r d s , W . J . , O l m s t e a d , W . J . ,<br />

I n d e p e n d e n t y i e l d s o f m a s s 1 3 5 x e n o n s i n t h e t h e r m a l<br />

n e u t r o n f i s s i o n o f 2 3 3 U , 2 3 5 U , 2 3 9 P u a n d a 4 1 P u , C a n . J.<br />

P h y s . 4 9 ( 1 9 7 1 ) 7 8 5 .<br />

[ 1 2 ] O k a z a k i , A . , W a l k e r , W . H . , B i g h a m , C. B . , T h e r a t i o o f<br />

t h e d i r e c t t o t h e c u m u l a t i v e y i e l d o f 13БХе i n t h e<br />

t h e r m a l n e u t r o n f i s s i o n o f 2 3 3 U , 2 3 B U , 2 3 9 P u a n d 2 4 1 P u ,<br />

C a n . J. P h y s . 4 4 ( 1 9 6 6 ) 2 3 7 .<br />

[ 1 3 ] W a l k e r , W . H . , F i s s i o n p r o d u c t a b s o r p t i o n i n t h e r m a l<br />

r e a c t o r s , P r o c e e d i n g s o f t h e F i r s t I A E A C o n f e r e n c e o n<br />

N u c l e a r D a t a f o r R e a c t o r s JL ( 1 9 6 6 ) 521.<br />

[ 1 4 ] F a r r a r , H . , T o m l i n s o n , R. H . , C u m u l a t i v e y i e l d s o f h e a v y<br />

f r a g m e n t s i n 23Би t h e r m a l n e u t r o n f i s s i o n , N u c l . P h y s .<br />

3 4 ( 1 9 6 2 ) 3 6 7 .<br />

[ 1 5 ] F i c k e l , H . R . , T o m l i n s o n , R. H . , T h e c u m u l a t i v e f i s s i o n<br />

y i e l d s o f l i g h t m a s s f r a g m e n t s i n t h e t h e r m a l n e u t r o n<br />

f i s s i o n o f 3 3 9 P u , C a n . J. P h y s . _37 ( 1 9 5 9 ) 9 1 6 .<br />

D IS C U S S IO N<br />

W . F . S T U B B I N S : W h ich fissioning isotopes have been adequately<br />

analysed, i. e. to the extent that the fragment spectra are known well<br />

enough to permit their use in calculations?<br />

W . H . W A L K E R : O f the four fissile nuclides covered in m y evaluation,<br />

the yields are generally well m ea su re d over the m ain part of the light and<br />

heavy m a s s peaks, i. e. by m a s s spectrometry. This is not the case for<br />

the light m a s s peak in 241P u fission and in the valley between the light and<br />

heavy peak there are only three radiometric yields. The result is that<br />

about 4 0 % of the yield of the light m a s s peak is interpolated. The effect<br />

on calculations of fission product absorption is not very great (in thermal<br />

reactors) because m ost absorption is by the heavy m e a ss fission products.<br />

J. B L A C H O T : I a m in agreem ent with the view expressed in your<br />

paper that G e / L i g a m m a spectrometry can in certain cases supplement<br />

m a s s spectrometric m easu rem ents. This method has two m ain advantages:<br />

(1) the possibility of normalization of results between heavy and light<br />

m a s s e s ; (2) the sensitivity of the m ethod, which requires a lower fission<br />

rate and therefore eliminates correction due to captures.


BIBLIOTHEQUE DE DONNEES<br />

RELATIVES AUX PRODUITS DE FISSION<br />

C. DEVILLERS* J. BLACHOT**, M. LOTT*<br />

B. NI MAL* N’ GUYEN VAN DAT* J.P. NOEL*<br />

Commissariat à l'én ergie atomique<br />

R. DE TOURREIL<br />

Institut de physique théorique, Orsay,<br />

France<br />

Abstract-Résumé<br />

FILE <strong>OF</strong> D A T A RELATED T O FISSION PR O D U C T S.<br />

I A E A - S M -1 7 0 /6 3<br />

T h e authors d e s c r ib e th e d a ta n e ce s sa ry for c a lc u la t in g th e c o n c e n tr a tio n s and th e ß and y a c t iv it ie s o f<br />

fissio n p r o d u c ts. T h e f i l e , w h ic h is based o n th e E N D F /B fo r m a t, resu lts fr o m c o m p ila t io n and e v a lu a tio n<br />

o f th e a v a ila b le d a ta . It c o n ta in s : th e fis s io n y ie ld s for th e m ost c o m m o n fissio n s; is o b a r c h a in s c h e m e s ; th e<br />

tra n sition p r o b a b ility ta b le s and th e g a m m a sp e ctra . T h e m a in w o rk o f c o m p ila t io n and e v a lu a tio n r e la te s to<br />

th e d e c a y s c h e m e s , fo r w h ic h th e d a ta , g ro u p e d for 6 22 is o to p e s ( 71Z n t o I70Y b) a re as fo llo w s : th e p e r io d ;<br />

Q g (0 tra n sitio n e n e rg y ) and t h e in te r n a l tra n sitio n e n e r g y in th e c a s e o f is o m e r is m ; th e ß tra n sitio n p r o b a b ilit ie s and th eir<br />

e n e r g y ; th e r e la t iv e or a b s o lu te g a m m a ray in te n sitie s and th e ir e n e r g y ; th e r e fe r e n c e s . T h e authors p resen t resid u a l<br />

p o w e r m e a su re m e n ts w h ic h p r o v id e o v e r a ll c o n fir m a t io n o f th e a s s e m b le d b o d y o f d a ta .<br />

BIBLIOTHEQUE DE DONNEES R E LATIV E S A U X PR O D U ITS DE FISSIO N .<br />

O n d é c r it u n e c o m p ila t io n d e l'e n s e m b le d e s d o n n é e s n é ce s s a ir e s au c a lc u l d e s c o n c e n tra tio n s e t d e<br />

l 'a c t i v i t é ß e t y d e s p rod u its d e fis s io n . C e t t e b ib lio t h è q u e , b â t ie sur le fo r m a t E N D F /B , r é s u lte d 'u n e c o m p i ­<br />

la t io n e t d ’ u n e é v a lu a tio n d e s d o n n é e s d is p o n ib le s . E lle c o n t ie n t : le s re n d e m e n ts d e fis s io n pou r le s fission s<br />

le s p lu s c o u r a n te s ; le s s c h é m a s d e s c h a în e s is o b a re s ; le s ta b le s d e p r o b a b ilité s d e ’ tra n sitio n e t le s s p e ctre s<br />

g a m m a . Le p r in c ip a l tra v a il d e c o m p ila t io n e t d 'é v a l u a t i o n p o r te sur le s s c h é m a s d e d é s in té g r a tio n pou r<br />

le s q u e ls le s d o n n é e s r e g r o u p é e s sur 622 is o to p e s ( 71Z n à 170 Y b) sont le s su iv a n te s: la p é r io d e ; l e Q ß (é n e r g ie<br />

d e d é s in té g r a tio n ß ) , l ’ é n e r g ie d e tra n sition in te r n e d an s l e c a s d 'is o m é r ie ; le s p r o b a b ilité s d e tra n sition<br />

b ê ta e t leu r é n e r g ie ; le s in te n sité s r e la t iv e s o u a b s o lu e s d e s r a ie s g a m m a e t leu r é n e r g ie ; le s r é fé r e n c e s .<br />

O n p ré se n te d e s m esu res d e p u issan c e r é s id u e lle q u i v a lid e n t g lo b a le m e n t l'e n s e m b le d e s d o n n é e s re te n u e s .<br />

1 - INTRODUCTION -<br />

Ce papier présente le format et le contenu de la bibliothèque<br />

de données sur les produits de fission qui a été développée pour permettre<br />

de calculer de façon théorique la concentration, l'activité et l'énergie<br />

dégagée par les produits de fission dans un combustible.<br />

2 - APPLICATIONS DES CONSTANTES NUCLEAIRES SUR LES PRODUITS DE FISSION -<br />

Des calculs de puissance résiduelle d'éléments combustibles<br />

de compositions diverses soumis à des régimes de fonctionnement variés<br />

* C e n tr e d 'é t u d e s n u c lé a ir e s d e F o n te n a y -a u x -R o s e s .<br />

* * C e n tr e d ’ é tu d e s n u c lé a ir e s d e G r e n o b le .<br />

477


478 DEVILLERS e t a l.<br />

sont sn effet nécessaires pour déterminer le mode de refroidissement de<br />

ce combustible dans une gamme de temps de décroissance de l'ordre de la<br />

seconde à plusieurs années :<br />

- problèmes de sûreté en cas de dépressurisation ou de défaut<br />

de refroidissement dans un coeur,<br />

- problème du déchargement et du stockage du combustible,<br />

- problème du transport et du retraitement.<br />

Pour déterminer de façon précise la distribution des sources<br />

de chaleur dans le combustible et son environnement, il faut connaître<br />

également, comment se répartit, en fonction du temps de-décroissance,<br />

l’énergie émise, entre rayonnement b@ta et rayonnement gamma, ainsi que<br />

le spectre des gamma émis.<br />

Le spectre gamma permet e n ’outre de calculer la protection<br />

des containers de transport.<br />

Il est très important également, pour des problèmes de<br />

protection radiologique, de savoir calculer, dans un réacteur en fonc­<br />

tionnement, l ’évolution de la concentration des produits de fission :<br />

- pour prévoir les conséquences radiologiques d ’un accident<br />

entraînant la libération des produits de fission,<br />

- pour évaluer la contamination du circuit de refroidissement<br />

par les produits de fission qui traversent les gaines défectueuses.<br />

Le développement de la production d'énergie nucléaire<br />

entraîne dans un autre domaine des études de prévision des quantités de<br />

produits de fission produites dans les différents types de réacteur en<br />

vue du conditionnement des déchets des usines de retraitement.<br />

L'ensemble de ces questions joue un rôle important dans la<br />

sûreté, l'exploitation et l'économie des réacteurs.<br />

Notons enfin le domaine d ’application très vaste de l'analyse<br />

des produits de fission, en particulier par spectrométrie gamma (Ge/Li),<br />

pour l'étude des combustibles irradiés.


Pour répondre à cette gamme très large de problèmes, il<br />

était nécessaire d ’une part de constituer une bibliothèque de données<br />

aussi complète que possible et d'autre part de développer des codes<br />

permettant de calculer la concentration et l'activité des produits de<br />

fission ainsi que l ’énergie émise sous forme de bita et de gamma par<br />

ces produits de fission (1, 2, 3).<br />

Les premières éditions de la bibliothèque (4, 5, B) ont été<br />

constituées en rassemblant les données mesurées ou évaluées, souvent<br />

éparses, publiées dans la littérature.<br />

La quantité croissante de résultats nouveaux publiés, du<br />

fait de l ’amélioration des techniques de mesure, nous a conduit à mettre<br />

au point une procédure de stockage et de mise à jour des données sur<br />

bande magnétique.<br />

I A E A - S M -1 7 0 /6 3 4 7 9<br />

Le format choisi pour enregistrer ces données est celui de<br />

la bibliothèque ENDF (73, il est décrit dans le paragraphe 3.<br />

TYPES DE DONNEES -<br />

de données :<br />

La bibliothèque comprend essentiellement trois catégories<br />

- rendements indépendants de fission<br />

- périodes, modes de filiation [désintégration, capture),<br />

énergies de désintégration, rapports de branchement<br />

désintégration.<br />

- données sur les spectres des rayonnements émis par<br />

Le contenu actuel de la bibliothèque comprend 622 produits<br />

de fission de masses comprises entre 71 et 170.<br />

noyaux fissiles :<br />

Les rendements de fission sont introduits pour trois<br />

235<br />

U : fission thermique<br />

fission rapide (E w 1 MeV)


480 DEVILLERS e t a l.<br />

. 2 3 8<br />

U'<br />

: f i s s i o n r a p i d e (E л / 1 M e V )<br />

239<br />

Pu : fission thermique<br />

fission rapide CE pj 1 MeV)<br />

3.1. Rendements indépendants de fission<br />

Plusieurs compilations de rendements ds fission ont déjà été<br />

publiées t10, 11) et nous avons choisi celle de MEEK et RIDER (8)<br />

qui nous a semblé la plus complète et la plus récente. Cette<br />

évaluation présente de plus la bibliographie de toutes les mesures<br />

effectuées depuis 1940, classées chronologiquement et indexées par<br />

noyau. Ces informations permettraient, si besoin était, de réévaluer<br />

certains rendements, par exemple en se basant sur l ’étude de WALKER<br />

(9) .<br />

Dans la présente version de la bibliothèque, les rendements<br />

indépendants sont calculés par la formule :<br />

avec :<br />

Y (A) : valeur recommandée du rendement de fission de la<br />

chaîne A<br />

Z-0,5<br />

Zp (A) : valeur la plus probable de la charge des produits<br />

de fission de la chaîne A<br />

(Г(А) : paramètre de la distribution gaussiénne.<br />

Pour chaque chaîne de masse A, les rendements indépendants<br />

sont déterminés pour des charges variant de zm^n£A) à Z^ax CA),<br />

avec la condition de normalisation suivante :<br />

Y (Z mini<br />

A) = Y (A) Y (Z, A)<br />

En cas d'isomérie, les rendements indépendants calculés sont en<br />

général divisés également entre les isomères.


<strong>IAEA</strong>-SM -17 0/63 481<br />

Lb format ENDF permet d 'introduir^ plusieurs jeux de<br />

rendements indépendants suivant l'énergie des neutrons produisant<br />

la fission.<br />

Les rendements indépendants de fission ont été calculés ;<br />

235<br />

pour la fission thermique ( E nj 0) et rapide ( E m 1 MeV) pour U<br />

239 238<br />

et Pu , pour la fission rapide [ E ru1 MeV) dans le cas de U<br />

Le mode d ’interpolation proposé pour des fissions se produisant entre<br />

0 et 1 MeV est le mode linéaire, en l'absence d'autre information.<br />

3.2. Périodes et modes de filiation -<br />

Contrairement aux rendements de fission, la littérature<br />

relative aux données radioactives est très abondante. La Table<br />

des Isotopes de LEDERER et al (12) est un document très complet<br />

mais il ne tient compte que des travaux publiés avant 1967 ;<br />

or le développement des détecteurs à germanium-lithium a permis<br />

depuis cette date des progrès très importants dans la connaissance<br />

des schémas de décroissance.<br />

Les <strong>Nuclear</strong> <strong>Data</strong> Sheets (13) ont depuis 1966 publié huit volumes<br />

de données révisées. Ces publications comportent de plus des listes<br />

de références récentes indexées par masse qui permettent d'effectuer<br />

soi-même la révision des données (6). Les valeurs des énergies de<br />

désintégration qui n'ont pas été mesurées ont été tirées de<br />

l'évaluation de WAPSTRA et al.(15).<br />

Le choix des données reportées dans la bibliothèque est<br />

coordonné par le laboratoire de Chimie Nucléaire du Centre de<br />

Grenoble sur la base de la nouveauté, de la qualité des techniques<br />

expérimentales et à l'aide de mesures expérimentales de contrôle<br />

(14) .<br />

La bibliothèque contient les références de toutes les valeurs<br />

numériques sélectionnées.<br />

Un effort important reste à faire pour améliorer la connais­<br />

sance des produits de fission de période inférieure à une heure et<br />

des intensités absolues des raies gamma.


482 DEVILLERS e t a l.<br />

Les modes de désintégration pris en compte dans la<br />

bibliothèque sont indiqués dans le tableau I,<br />

T A B L E A U I. F I L I A T I O N S P A R D E S I N T E G R A T I O N<br />

: Noyau Noyau Energie de Rayonnement<br />

’ père fils désintégration émis<br />

: A, Z A,Z + 1 q b f ’ ß ~, У<br />

A.Z - 1 QBF+ ß+, У<br />

A, Z + 1т q b m ’ ß~, У<br />

A,Z - 1m QBM+ ß+ , У<br />

A-1, Z + 1 o b f “ ß~, y , neutron<br />

A-4, Z - 2 EALPHA a , y<br />

: a , zm A, Z EIT У<br />

A, Z + 1 QBF* ß ~, У<br />

A.Z - 1 QBF + ß+, y<br />

A.Z + 1т q b m ” ß~, y<br />

; A.Z - "T QBM+ ß~, y<br />

Le format ENFB permet également d ’introduire les filiations<br />

par capture neutronique comme l ’indique le tableau II.<br />

T A B L E A U II. F I L I A T I O N S P A R C A P T U R E<br />

N E U T R O N I Q U E<br />

: Noyau<br />

I père<br />

Noyau<br />

fils<br />

Energie :<br />

de réaction j<br />

! A' z A + 1, Z Q F ;<br />

A ♦ 1, Zm q m ;<br />

; A, Zm A + 1, Z Q F ;<br />

A + 1, Zm q n ;


I A E A - S M -17 0 /6 3 483<br />

Les rapports de branchement pour les captures neutroniques<br />

conduisant à plusieurs isomères ont été tirés du BNL 325 (16).<br />

Aucune évaluation relative aux sections efficaces<br />

différentielles de capture n ’a été reportée dans la bibliothèque :<br />

leur place est prévue dans le format ENDF/B, à l ’exclusion de<br />

toute donnée intégrale.<br />

Les données intégrales, en l'absence de données<br />

différentielles suffisamment complètes ou détaillées sont intro­<br />

duites au niveau des programmes d ’utilisation de la bibliothèque.<br />

3.3. Spectres des rayonnements bêta etogamma émis par désintégration -<br />

Au format ENDF/B nous avons ajouté la possibilité<br />

d'introduire, pour les produits de fission instables, d ’une part<br />

des tables de probabilité de transition bêta et d'autre part des<br />

tables de spectre gamma [multiplicités).<br />

Compte tenu du niveau inégal de connaissance de ces<br />

données suivant les nuclides considérés, on trouvera dans la<br />

bibliothèque quatre situations possibles schématisées comme<br />

suit :<br />

: Probabilités de<br />

] transition bêta<br />

Spectre gamma<br />

: non non<br />

: non oui<br />

: oui non<br />

: oui oui<br />

L'énergie totale de désintégration est cependant supposée<br />

connue pour tous les nuclides instables.<br />

Lorsque plusieurs modes de désintégration sont en<br />

compétition, par exemple, émission j$’ et , les tables introdui­<br />

tes sont la résultante des probabilités ou spectres des divers modes.


DEVILLERS e t a l.<br />

Une table de probabilités de transitions bêta se présente<br />

sous la forme d'une suite de couples de valeurs : énergie de transi­<br />

tion - probabilité, correspondant à chaque transition. Les probabilités<br />

sont normalisées à 100 en l'absence de transition interne, à<br />

100-XEIT dans le cas d'une transition interne de probabilité XEIT.<br />

L ’énergie d'une transition est aussi l'énergie maximale du spectre<br />

bêta émis lors de cette transition.<br />

Une table de spectre gamma est constituée d'une suite de<br />

couples de valeurs : énergie de raie-intensité, correspondant à<br />

l'ensemble des raies dénombrées. Les intensités peuvent être données<br />

en valeurs relatives, avec la valeur 100 pour la raie la plus intense,<br />

ou bien en valeurs absolues, normalisées à 100 désintégrations.<br />

FORMAT DE LA BIBLIOTHEQUE - ,<br />

Le format choisi est celui de la bibliothèque ENDF (73 auquel<br />

quelques additions ont été faites pour introduire les tables de proba­<br />

bilités de transition l(l et les spectres ^ .<br />

La structure générale d ’une bande ENDF est schématisée à la<br />

figure 1. Dans la bibliothèque des produits de fission, chaque matériau<br />

ne comporte qu'une seule file (MF = 1 ) .<br />

Un matériau est identifié par son numéro NAT et parallèlement<br />

par l'indice ZAP = 1000 Z + A auquel il faut adjoindre un indice de niveau<br />

d'excitation. Des isomères sont considérés comme des noyaux indépendants.<br />

comprenant :<br />

Chaque matériau comporte une section d'information [MT = 451)<br />

- des indices annonçant les sections introduites dans la suite<br />

et permettant aussi de différencier les matériaux fissiles des produits<br />

de fission,<br />

des données,<br />

chaque section.<br />

- des cartes commentaires comportant notamment les références<br />

- un dictionnaire indiquant le nombre de cartes contenues dans


Bande<br />

Idenlificat<br />

(TPID)<br />

Premier<br />

Matériau<br />

Matériau<br />

MAT<br />

Dernier<br />

Matériau<br />

Fin de<br />

Bande<br />

( TEND)<br />

Matériau<br />

MAT<br />

File<br />

1<br />

File<br />

2<br />

File<br />

MF<br />

Dernière<br />

File<br />

Fin de<br />

Matériau<br />

С MEND)<br />

I A E A - S M -1 7 0 /6 3 485<br />

File<br />

MF<br />

Section<br />

1<br />

Section<br />

2<br />

Section<br />

M T<br />

Dernière<br />

Section<br />

Fin de<br />

File<br />

(FEND)<br />

F I G . l . S tru ctu re g é n é r a le d ’ u n e b a n d e ENDF.<br />

Section<br />

MT<br />

Enregistrement<br />

Enregistrement<br />

2<br />

Enregistrement<br />

MK<br />

Dernier<br />

Enregistrement<br />

Fin de<br />

Section<br />

(SEND)<br />

Les matériaux fissiles comportent, en plus de la section MT=451<br />

- une section MT = 452 donnant le nombre de neutrons par fission<br />

6 CE) (section obligatoire),<br />

- une section MT = 454 donnant les rendements indépendants de<br />

fission (section facultative dans le format officiel ENDF).<br />

La section MT = 454 peut contenir un ou plusieurs jeux de<br />

rendements, fonction ou non de l'énergie.<br />

Chaque noyau produit par fission est caractérisé par :<br />

- ZAFP : indice égal à 1000 Z + A<br />

- un indice d ’état :0 ¡fondamental ; 1 : 1er état excité....<br />

- le rendement indépendant de fission à l ’énergie considérée.<br />

La somme des rendements est égale à 2.


suivantes :<br />

DEVILLERS e t a l.<br />

Les produits de fission peuvent comporter les sections<br />

-Section MT = 453 : elle contient les données relatives aux<br />

divers modes de filiation par désintégration ou réaction neutronique<br />

[ou autre), en particulier, pour un noyau cible d'état donné [0 :<br />

fondamental ; 1 : 1er état excité j etc....) :<br />

-le nombre de noyaux fils produits (2 états d ’excitation du<br />

même noyau sont considérés comme deux noyaux fils indépendants)<br />

-pour chaque noyau fils produit :<br />

- l ’énergie de la réaction ou de la désintégration<br />

conduisant à ce noyau<br />

- l'état du noyau produit [0,1....)<br />

- la typa de réaction :<br />

Ü.O. pour une désintégration spontanée quelle qu'elle soit<br />

MT pour une réaction neutronique<br />

(MT = 102 pour une capture radiative)<br />

- le ZAP = 1000.Z + A du noyau produit<br />

- la constante de désintégration, partielle pour le mode<br />

de désintégration considéré conduisant à l'état particu­<br />

lier du noyau fils considéré [0. dans le cas d ’une<br />

réaction provoquée)<br />

- les rapports de branchement pour la réaction considérée.<br />

Les rapports de branchement sont normés à 1 pour chaque<br />

type de réaction.<br />

- Les deux sections suivantes (MT = 456, MT = 459) ne figurent<br />

pas dans le format officiel ENDF et ont été créées pour les besoins<br />

particuliers de notre bibliothèque de produits de fission.<br />

- Section MT = 456 : elle contient la table das probabilités<br />

des transitions bêta résultant de l ’ensemble des modes de désintégration<br />

du matériau.


<strong>IAEA</strong>-SM -170/63 487<br />

- Section MT = 459 : elle contient le spectre des raies gamma<br />

résultant de l ’ensemble des modes de désintégration du matériau.<br />

Un indice permet de spécifier si le spectre est fourni en valeur relative<br />

ou absolue. Dans le premier cas, il est normalisé à la valeur 100 pour la<br />

raie la plus intense. Dans le second cas, les intensités correspondent à<br />

100 désintégrations du matériau.<br />

L ’arrangement détaillé des données de chaque section est<br />

reporté dans l'annexe 1.<br />

Les éléments nouveaux par rapport au format officiel ENDF sont<br />

repérés par un astérisque.<br />

APPLICATION DE LA BIBLIOTHEQUE AUX CALCULS DE PUISSANCE RESIDUELLE -<br />

Le diagramme représenté à la figure 2 montre la procédure de<br />

gestion et d ’exploitation de la bibliothèque des produits de fission<br />

pour les calculs d'évolution et d ’activité des produits de fission et<br />

les calculs de puissance résiduelle.<br />

5.1. Retraitement de la bibliothèque ENDF<br />

La bibliothèque ENDF est retraitée par un programme qui aboutit<br />

à une bibliothèque élaborée après avoir effectué les opérations<br />

suivantes :<br />

- établissement des chaînes de filiation à partir des données<br />

de la section 453 (types de réaction, constantes de désintégration,<br />

rapports de branchement) et de sections efficaces effectives de capture<br />

fournies par l'utilisateur<br />

- calcul par le modèle de FERMI (17) des énergies moyennes des<br />

bêta et des neutrinos émis pour chaque transition bêta,lorsque la<br />

table des probabilités de transition est fournie. Calcul de l'énergie<br />

totale émise sous forme de bêta (EBM) et de neutrino (ENUM) pour une<br />

désintégration du noyau incluant tous les modes de désintégration<br />

possibles.


488 DEVILLERS e t a l.<br />

G ESTION P E L A BIBLIOTHEQUE<br />

Evolution P. F.<br />

Activité P. F.<br />

Spectre y par P. F.<br />

Puis. Res. p<br />

Puis . Res. y<br />

Spectre Global ¡f<br />

F I G .2 . G e s tio n et a p p lic a t io n d e la b ib lio t h è q u e .<br />

Calcul de l ’énergie totale gamma émise (EGI4) par l ’expression :<br />

EGI4 = EREL - EBM - ENUI4<br />

où EREL est l'énergie totale libérée par une désintégration du noyau<br />

incluant tous les modes de désintégration possibles.<br />

Lorsque la table des probabilités de transition n'est pas connue,<br />

les quantités EBM et ENUM sont introduites par l'utilisateur.


I A E A - S M -1 7 0 /6 3 489<br />

Dans le cas d ’une transition interne, l'énergie apparaît<br />

uniquement sous forme de gamma.<br />

Lorsque le spectre des gamma est connu, en valeur relative ou en<br />

valeur absolue, le programme renormalise les intensités des raies de<br />

manière que l'énergie totale gamma soit égale à EGM.<br />

Les approximations faites portent sur les points suivants :<br />

- le modèle de FERMI utilisé dans le calcul de l ’énergie moyenne<br />

des b§ta ne tient pas bien compte des transitions interdites. Un<br />

calcul pour l'ytrium-91 montre que le modèle de FERMI sousestime<br />

l ’énergie moyenne des bêta de 4 %.<br />

- dans son état actuel la bibliothèque ne distingue pas la<br />

désintégration ^bet la capture électronique.<br />

L'énergie totale correspondant à une désintégration où il y a<br />

compétition ^ C.E. est égale à la différence des masses entre<br />

noyau père et noyau fils. Dans le cas d'une désintégration ^ il y<br />

aurait lieu d ’ajouter l'énergie apparaissant lors de l ’annihilation<br />

du positon [1,02 MeV), le calcul de l'énergie totale émise est donc<br />

minorant.<br />

Dans le cas d ’une capture électronique au contraire, l ’énergie<br />

est emportée presque totalement par le neutrino, le calcul de<br />

l ’énergie totale bêta est donc majorant.<br />

Cette approximation ne doit pas introduire d'erreur appréciable<br />

dans les calculs de puissance résiduelle étant donné les rendements<br />

faibles des produits de fission émetteurs'(i^ou C.E.<br />

Au contraire, il est important d ’améliorer le calcul de l ’énergie<br />

moyenne bêta des émetteurs<br />

L'amélioration des connaissances des énergies et probabilités de<br />

transition tb~ et des énergies et intensités des spectres gamma,<br />

notamment pour les corps de période courte [T < 1000 sec.) est<br />

évidemment souhaitable.


T A B L E A U III. E N E R G I E L I B E R E E A P R E S U N E F I S S I O N T H E R M I Q U E D E L 'U R A N I U M - 2 3 5<br />

T e m p s d e<br />

d é c r o is s a n c e<br />

( s e c )<br />

1) Présent<br />

c a lc u l<br />

E n e r g ie b ê t a ( M e V / s ) E n e r g ie g a m m a ( M e V / s )<br />

2) B A T T A T<br />

e t a l. [ 2 0 ]<br />

R apport<br />

( 1 / 2 )<br />

1) P résent<br />

c a lc u l<br />

2) B A T T A T<br />

e t a l. [ 2 0 ]<br />

1 0 1 7 ,2 9 * 1 0 “ 2 2 ,1 8 • W 2 3 ,3 4 5 ,5 2 * 1 0 “ 2 7 ,3 6 * 1 0 - 3 7 , 5<br />

1 0 2 7 ,1 7 • 1 0 ' 3 5 ,1 3 • 1 0 " 3 1 ,4 0 6 , 1 1 1 0 " 3 4 ,9 3 * 1 0 “ 3 1 ,2 4<br />

1 0 3 4 , 4 4 • 1 0 - “ 4 ,2 0 O<br />

1<br />

R apport<br />

( 1 / 2 )<br />

1 ,0 6 4 , 7 0 * 10 * 4 4 ,4 7 • 1 0 ’ 4 1 ,0 5<br />

1 0 4 2 ,4 4 • 1 0 ' 5 2 , 6 8 • 1 0 - 5 0 ,9 1 3 ,3 4 1 0 -5 3 ,1 6 • 1 0 ' 5 1 , 06<br />

1 0 5 1 , 2 2 * 1 0 ' 6 1 ,1 9 • 1 0 - 6 1 ,0 3 1 ,3 8 • IO " 6 1 ,3 9 * 1 0 " 6 0 ,9 9<br />

1 0 6 5 ,4 3 * 1 0 ' 8 5 ,4 7 • 1 0 - 8 0 ,9 9 1 ,0 3 • 1 0 " 7 1 . 1 1 * 1 0 " 7 0 , 93<br />

1 0 7 4 ,5 6 * 1 0 ' s 4 ,6 0 • 1 0 ‘ 9 0 ,9 9 5 ,0 9 1 0 * 9 5 ,0 1 • 10-9 1,02<br />

108 1 0 -Ю 1,91 * 1 ,9 4 • io-10 0,98 3 ,4 0 * 10-n 3,36 • 10’11 1,01<br />

109 2,65 * 10"11 2 ,6 5 • 1 0 " “ 1,00 1 ,3 5 * î o - “ 1 ,3 0 * 10“11. 1,04<br />

490 DEVILLERS et al.


<strong>IAEA</strong>-SM -17 0/63 491<br />

5.2. Calcul de la puissance résiduelle pour une fission thermique de<br />

1 ’uranium-235<br />

Le programme PEPIN (11 résout les équations différentielles<br />

gouvernant l ’évolution des produits de fission soit avec une source<br />

continue correspondant à une irradiation constante de 1 watt de<br />

durée quelconque d'un échantillon constitué d'un seul nuclide<br />

fissile, soit dans le cas d'une source instantanée de produits de<br />

fission créée par une fission d'un nuolide fissile donné.<br />

Il fournit dans les deux cas pour divers temps de décroissance<br />

l'évolution des produits de fission, de leur activité et de l'énergie<br />

libérée sous forme de bêta et de gamma par l ’ensemble des produits<br />

de fission.<br />

Les résultats d ’un calcul de puissance résiduelle pour une<br />

fission thermique de 1 ’uranium-235 sont présentés ici.<br />

□e nombreux calculs similaires ont été publiés dans la littérature<br />

(16-21) qui se distinguent par la rigueur du traitement numérique ou<br />

le caractère plus ou moins complet [nombre de produits de fission)<br />

ou plus ou moins récent des données.<br />

Dans le tableau III nous présentons la comparaison entre notre<br />

calcul et le calcul de BATTAT et al. [20) pour des temps de décrois-<br />

g<br />

sanee variant de 10 à 10 secondes.<br />

On notera pour les temps inférieurs à 1000 secondes l'augmentation<br />

résultant de l ’introduction dans notre calcul de produits de fission<br />

de période courte alors que BATTAT et al. ne considèrent que des nuclides<br />

de période supérieure à 10 secondes. Au-delà de 1000 secondes, l'accord<br />

est satisfaisant, à mieux de 5 % près.<br />

Les calculs PEPIN ont été comparés à une mesure calorimétrique<br />

effectuée à Fontenay-aux-Roses (22) sur un échantillon d ’uranium-235<br />

irradié en neutrons thermiques pendant 100, 1000, 5000, 105 et<br />

6.105 secondes.<br />

Une courbe de décroissance de la puissance résiduelle a été<br />

ajustée sur l ’ensemble des mesures,corrigées des fuites d ’énergie ï .


492 DEVILLERS e t a l.<br />

F I G .3 . D é c r o is s a n c e d e l 'é n e r g i e lib é r é e par le s p rod u its d e fissio n th e r m iq u e d e r u r a n iu m - 2 3 5 ( 1 fission<br />

in s ta n ta n é e ).<br />

La comparaison entre le calcul et la mesure est reportée à<br />

la figure 3. De 100 à 600 secondes, le calcul est supérieur de<br />

g<br />

18 à 0 % à la mesure, de 600 à 7.10 secondes il est inférieur de<br />

0 à 7 %. Le dépouillement d ’autres mesures correspondant à des<br />

temps d ’irradiation de 10 et 50 secondes respectivement permettront<br />

de recouper les points expérimentaux vers 100 secondes.


I A E A - S M -1 7 0 /6 3<br />

La précision annoncée de la mesure est + 5 %. Le nombre de<br />

fissions intégrées par l ’échantillon est mesuré par comptage de<br />

Ba-La 140 et recoupement par comptage de Cs 137.<br />

L'écart entre le calcul et la mesure au-delà de 1000 secondes<br />

est donc significatif et quasi systématique. Il ne peut être imputé<br />

au traitement numérique des équations étant donné le bon accord de<br />

4<br />

notre calcul avec celui de BATTAT et al. au-delà de 10 secondes ;<br />

il est à affecter soit aux données nucléaires et à leur traitement,<br />

soit à la mesure.<br />

Calcul de la puissance résiduelle du combustible d ’un réacteur à<br />

neutrons rapides<br />

□ans le cas d'un combustible complexe constitué d'un mélange<br />

de nuclides fissiles en évolution et soumis à une irradiation<br />

irrégulière, le programme PICFEE (2-3) permet de calculer l ’évolution<br />

des produits de fission, de leur activité, de leur spectre gamma et de<br />

la puissance résiduelle après l'arrêt du réacteur.<br />

Le programme calcule l'évolution du combustible au cours de<br />

l'irradiation à partir de sections efficaces effectives, variables<br />

en fonction du temps, qui sont fournies par l ’utilisateur. Il<br />

intègre ensuite les courbes correspondant à une fission élémentaire ,<br />

fournies par le code PEPIN respectivement pour U235, U238 et Pu239,<br />

après avoir effectué les interpolations nécessaires pour tenir compte<br />

de l ’énergie moyenne des neutrons provoquant les fissions.<br />

Des comparaisons ont été faites entre des calculs de puissance<br />

résiduelle effectués par le code PICFEE et des mesures calorimétriques<br />

réalisées sur des aiguilles combustibles irradiées dans RAPSÜDIE à des<br />

taux moyens de combustion d ’environ 9600, 37000, 47000 et 52000 MWJ<br />

par tonne de métal. Les nombres de fissions intégrées par les aiguilles<br />

ont été déterminés par mesure du néodyme formé, la précision est de<br />

+ 5 %.<br />

Les mesures calorimétriques ont eu lieu après des temps de<br />

décroissance longs, de 1 à 4 ans.<br />

Des comparaisons pour des temps de refroidissement plus courts<br />

(20 à 80 jours) ont été effectuées par COSTA et al. (23).<br />

493


494 DEVILLERS e t a l.<br />

T A B L E A U IV . P U I S S A N C E R E S I D U E L L E D 'U N C O M B U S T I B L E D E<br />

R E A C T E U R A N E U T R O N S R A P I D E S<br />

A ig u ille 1 2 3 4<br />

T a u x d e co m b u s tio n (% ) 0 ,9 7 2 3 ,9 7 4 ,8 2 5 5 ,8 1<br />

T e m p s d ’ ir r a d ia tio n * ( jours) 257 537 670 553<br />

T e m p s d e d é c r o is s a n c e * (jo u r s ) 1 5 2 0 1 2 5 0 1 1 2 5 2 3 4<br />

P u issan ce ß + y c a lc u lé e (w a tt) 0 ,0 4 0 2 7 0 ,2 0 4 4 0 ,2 6 7 1 1,2111<br />

P u issan ce a c a lc u lé e (w a tt) 0 ,0 5 6 4 0 ,0 5 7 4 0 ,0 5 7 4 0 ,0 5 1 0<br />

A c t iv it é d e s g a in e s m e s u r é e (w a tt) - 0 , 0 0 0 6 - 0 , 0 0 3 5 - 0 , 0 0 5 0<br />

M esu re g lo b a le (w a tt) 0 ,1 0 6 6 0 ,2 8 0 0 0 ,3 3 5 6 1 ,3 1 4<br />

M e s u r e * * c o r r ig é e (w a tt) 0 ,0 5 0 7 1 0 ,2 2 3 5 0 ,2 7 8 4 1 ,3 0 2<br />

C a lc u l m esu re 0 ,7 9 5 0 ,9 1 5 0 ,9 6 0 0 , 930<br />

* L e te m p s d 'ir r a d ia t io n co m p r e n d e t l e te m p s d e d é c r o is s a n c e n e co m p r e n d pas un te m p s d e s to c k a g e<br />

d 'e n v ir o n 90 jou rs a 2 , 1 "la d e la p u iss a n c e m a x im a le .<br />

* * La m e su re est c o r r ig é e d e l ’ a c t iv it é a , d e Г a c t iv it é d e s g a in e s e t d e s fu ite s hors d u c a lo r im è t r e .<br />

Les résultats de la présente comparaison sont reportés dans le<br />

tableau IV.<br />

Compte tenu de la précision C+ 2 %) de la mesure calorimétrique<br />

elle-même, de l'incertitude sur le taux de fission t+ 5 %) et des<br />

corrections importantes effectuées sur les mesures pour soustraire<br />

l ’énergie résultant de l ’activité o


I A E A - S M -1 7 0 /6 3 495<br />

Le programme PICFEE calcule l ’évolution des produits de fission,<br />

de leur activité et de l'énergie qu'ils émettent après des irradiations<br />

complexes d'échantillons comportant des mélanges de nuclides fissiles<br />

évoluant j il a déjà fait l'objet d'applicationstrès variées allant de<br />

la prévision de la composition chimique d'un combustible irradié au<br />

calcul des sources de rayonnement déterminant les conditions de<br />

manutention des combustibles irradiés.<br />

L'ensemble des données et des programmes .a été éprouvé sur certains<br />

problèmes dont quelques-uns ont été présentés ici. C'est la précision<br />

souhaitée par les utilisateursdans les diverses applications et la<br />

comparaison avec l'expérience qui déterminera l'effort à poursuivre dans<br />

la mesure ou l'évaluation des données nucléaires. En ce qui concerne las<br />

questions de puissance résiduelle examinées ici, les prévisions théoriques<br />

sont correctes à mieux de 10 % près pour des temps de décroissance supérieurs<br />

à 200 secondes, et par conséquent on peut estimer que les données nucléaires<br />

qui interviennent : rendements, schéma de désintégration, spectres des<br />

rayonnements sont suffisamment bien connus. Le perfectionnement du calcul<br />

des énergies moyennes des bêta sera néanmoins poursuivi en tenant compte<br />

des spectres des transitions permises.<br />

Pour des temps inférieurs, l'amélioration de la connaissance des<br />

rendements, schéma da désintégration et spectres de rayonnements des<br />

produits de fission de période inférieure à 1000 secondes est encore nécessaire.<br />

Il faut noter que les sections efficaces d'interaction des<br />

neutrons (n, (n, n ’), tn, p) avec les produits de fission n'ont<br />

été considérées en détail ni dans la bibliothèque ni dans les appli­<br />

cations mentionnées ici. Leur influence est en effet négligeable pour<br />

la majorité des problèmes de puissance résiduelle et d'activité. Le<br />

programme PEPIN utilise cependant das sections efficaces de capture<br />

effectives fournies par l'utilisateur.<br />

L'introduction dans la bibliothèque des valeurs évaluées<br />

disponibles des sections efficaces différentielles de capture des<br />

produits de fission permettra de déterminer les sections efficaces<br />

effectives dans différents spectres de réacteurs et d'indiquer par<br />

des études de sensibilité pour quels isotopes des mesures ou des<br />

évaluations sont nécessaires.


4 9 6 DEVILLERS e t a l.<br />

F i l e 1<br />

ANNEXE 1<br />

NT = 451 (Indices et informations générales)<br />

A N N EXE 1 (1).<br />

: Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Type :<br />

d'enregistrement<br />

: ZA AWR LRP LFI b NXC HEAD :<br />

: b b LDD LFP NWD NBG % LIST :<br />

: Г n°1 :<br />

: Cartes commentaire J n°2 :<br />

; (. n° NWD ;<br />

I b b MF1 MT1 NC1 b C0NT ;<br />

; b b MF2 MT2 NC2 b c0NT ;<br />

b b MF NXC<br />

MT NXC<br />

n c n x c<br />

b c0NT ;<br />

: b b b b b b SEND :<br />

ZA : 1000.Z + A<br />

AWR : masse atomique : rapport de la masse nucléaire du matériau<br />

à celle du neutron (masse du neutron : 1.008665 dans le système<br />

C12)<br />

LRP : = 0 rien<br />

= 1 des paramètres de résonance sont fournis dans la file 2<br />

LFI : = 0 matériau non fissile<br />

= 1 matériau fissile<br />

NXC : nombre de cartes constituant le dictionnaire : une carte par<br />

s e c t i o n c o m p o r t a n t :


LDD : = 0 rien<br />

LFP : = 0 rien<br />

NWO : nombre de cartes commentaire<br />

NBG*<br />

HF : n° de file<br />

MT : n° de section<br />

NC : nombre de cartes de la section<br />

I A E A - S M -1 7 0 /6 3 4 9 7<br />

= 1 des données de filiation sont fournies dans la section<br />

MT = 453<br />

= 1 des rendements de produits de fission sont donnés dans la<br />

: = 0 rien<br />

section MT = 454<br />

= 1 tables de probabilité de transition bêta dans la section<br />

MT = 456<br />

= 2 spectres gamma dans la section MT = 459<br />

= 3 à la fois 1 et 2


4 9 8 DEVILLERS e t a l.<br />

F i l e 1<br />

MT = 4 5 2 [ n o m b r e t o t a l d e n e u t r o n s p a r f i s s i o n )<br />

A N N E X E 1 ( 2 )<br />

LNU = 1 représentation polynominale : C E ) = Cn E<br />

: Zone 1 Zone 2 : Zone 3 : Zone 4 Zone 5 Zone 6<br />

n = 1<br />

Type<br />

d 'enregistremeni<br />

: ZA AWR : b : LNU=1 b b HEAD<br />

' b cr<br />

cr<br />

cr<br />

: C1 C2 : ------ : -----<br />

NC b LIST<br />

: b b : b : b b b SEND<br />

LNU : = 1 représentation polynominale<br />

CNC<br />

NC : nombre de termes du développement polynominal<br />

Cn : coefficients du polynome<br />

LNU = 2 valeurs tabulées de u [E)<br />

: ZA AWR b LNU=2 b b HEAD :<br />

i b<br />

: NBT (1)<br />

b<br />

INT (1)<br />

b<br />

NBT (2)<br />

b<br />

INT (2)<br />

: E1 1) CE1) E2 ô(E2)<br />

NR<br />

NBT (NR<br />

NP<br />

INT (NR)<br />

e n p ^ (e n p ]<br />

t a b i ;<br />

I b b b b b b SEND j<br />

LNU : = 2 tabulation<br />

NR : nombre de domaines d'interpolation<br />

NP : nombre total de points d ’énergie de la tabulation<br />

NBT(I), INT (I) : mode d ’interpolation pour ^ (E)<br />

V(E^) : nombre total moyen de neutrons (prompts + retardés) par fission<br />

Ei : énergie (eV)


F i l e 1<br />

MT = 453 [d o n n é e s de f i l i a t i o n )<br />

<strong>IAEA</strong>-SM -170/63 499<br />

’• Zon e 1 Zon e 2 Zone 3 Zone 4 Zone 5 Zone 6<br />

ANNEXE 1 (3)<br />

T y p e • :<br />

d 'e n r e g i s t r e m e n t<br />

: ZA AWR b b NS b HEAD :<br />

: ZA<br />

; ES (1 )<br />

I E R E L 1<br />

; r t v p 1<br />

=ER ELNPR<br />

; r t y p n p r<br />

AWR<br />

ES (2 )<br />

Q 1<br />

ZAP„ 1<br />

°NPR<br />

z a p n p r<br />

L I S b NE NPR<br />

L F S i<br />

D ci<br />

LFS<br />

NPR<br />

d c n p r<br />

b<br />

BR (1 )<br />

b<br />

b r n p r m<br />

NE + 3 ,<br />

S<br />

ES (N E )<br />

b<br />

BR (N E )<br />

NE + 3 b<br />

BrNPr (NE)<br />

L I S T 1 :<br />

L I S T 2<br />

L I S T 2 :<br />

: b b b b b b SEND ;<br />

Ж<br />

NS : nom bre d ’ é t a t s e x c i t é s du noyau c i b l e : (N S = 1 ) dan s n o t r e b i b l i o t h è q u e<br />

L I S : é t a t du noya u c i b l e , 0 : fo n d a m e n ta l j 1 : 1 e r é t a t e x c i t é ;<br />

2 : 2ème é t a t e x c i t é<br />

NE : nom bre d ’ é n e r g ie s p o u r l e s q u e l l e s s o n t i n t r o d u i t s le s r a p p o r t s de<br />

b ra n c h e m e n t (N E = 2 )*<br />

NPR : nom bre t o t a l de n o ya u x p r o d u i t s (d e s is o m è r e s s o n t com pté s comme des<br />

n o ya u x in d é p e n d a n t s )<br />

ES ( 1 ) , ES ( 2 ) : é n e r g ie s p o u r l e s q u e l l e s s o n t i n t r o d u i t s l e s r a p p o r t s de<br />

7<br />

b ra n c h e m e n t ; p o u r l e s d é s i n t é g r a t i o n s : (E S ( 1 ) = 0 ; ES ( 2 ) = 2 .1 0 e V )<br />

EREL : é n e r g i e t o t a l e l i b é r é e p a r l e mode de d é s i n t é g r a t i o n c o n s id é r é (gamma +<br />

p a r t i c u l e s ) (e V )<br />

Q : Q de l a r é a c t i o n c o n s id é r é e (e V )<br />

LFS : é t a t du noyau p r o d u i t : 0 , f o n d a m e n t a l, 1 . . . .<br />

RTYP : t y p e de r é a c t i o n : 0 . : d é s i n t é g r a t i o n<br />

MT : r é a c t i o n ( p . e x : MT = 1 0 2 . p o u r c a p t u r e r a d i a t i v e )<br />

ZAP : 1 0 0 0 .Z + A du noya u p r o d u i t<br />

-1<br />

DC : c o n s t a n t e de d é s i n t é g r a t i o n p a r t i e l l e (s e c ) p o u r l a f i l i a t i o n c o n s id é r é e<br />

BR ( 1 ) , BR ( 2 ) . . . . : r a p p o r t s de b ra n c h e m e n t p o u r l e s d é s i n t é g r a t i o n s : (B R ( 1 ) = B R ( 2 ) )*


500 DEVILLERS et al.<br />

F i l e 1<br />

MT = 454 (re n d e m e n ts de f i s s i o n in d é p e n d a n t s )<br />

: Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6<br />

: ZA AWR ! m+<br />

: E1<br />

: Z AFP 1<br />

! Erj<br />

: ZAFP<br />

: 1<br />

b<br />

F P S . 1<br />

b<br />

F P S , 1<br />

LE<br />

YLD 1<br />

YLD 1<br />

ANNEXE 1 (4)<br />

T y p e<br />

b b b HEAD<br />

b N1 NFP<br />

z a f p n f p f p s n f p y l d n f p<br />

d ' e n r e g is t r e m e n t<br />

L I S T<br />

b N1 NFP L I S T<br />

z a f p n f p f p s n f p<br />

YLD NFP<br />

: b b b b b b SEND<br />

N1 : = 3 X NFP<br />

NFP : nom bre de p r o d u i t s de f i s s i o n p o u r le s q u e ls le s re n d e m e n ts s o n t donnés<br />

E i : é n e r g i e d es n e u tr o n s p ro v o q u a n t l a f i s s i o n (e V )<br />

LE : = 0 : un s e u l j e u de re n d e m e n ts e s t donné<br />

^ 0 : (L E + 1 ) j e u x de re n d e m e n ts s o n t don né s p o u r LE + 1 v a l e u r s<br />

d 'é n e r g i e<br />

1^ : mode d ' i n t e r p o l a t i o n u t i l i s é e n t r e le s é n e r g i e s E ^ .^ e t E^<br />

(1 ^ = 2 l i n é a i r e ) *<br />

Z A F P , Y L D , FPS : p o u r ch aq ue p r o d u i t de f i s s i o n<br />

- 1 0 0 0 .Z+A<br />

- re n d e m e n t in d é p e n d a n t<br />

- é t a t du noya u p r o d u i t : 0 fo n d a m e n ta l<br />

1 1 e r é t a t e x c i t é<br />

2 2ème é t a t e x c i t é


F i l e 1<br />

HT = 456 * ( p r o b a b i l i t é s de t r a n s i t i o n b ê t a )<br />

<strong>IAEA</strong>-SM-170/63 501<br />

: Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6<br />

ANNEXE 1 (5)<br />

T y p e ;<br />

d ' e n r e g i s t r e m e n t<br />

: ZA AWR b b b b HEAD :<br />

I b b b<br />

: e t ( i ) P B ( 1 )<br />

b<br />

b<br />

b<br />

NR = 1<br />

b<br />

E T (N P )<br />

NP<br />

b<br />

PB (N P )<br />

t a b i ;<br />

I b b b b b b SEND j<br />

NR : nom bre de d o m a in e s d ' i n t e r p o l a t i o n<br />

NP : nom bre de t r a n s i t i o n s b ê ta ( V e t !¡y* ou c a p t u r e é l e c t r o n i q u e )<br />

NBT ( 1 ) , IN T ( 1 ) : mode d ’ i n t e r p o l a t i o n (s a n s o b j e t )<br />

E T ( i ) , PB ( i ) : é n e r g i e (e V ) e t p r o b a b i l i t é de t r a n s i t i o n<br />

MT = 459 * ( s p e c t r e s gamma)<br />

: ZA AWR LR b b b HEAD :<br />

: b b b b NR = 1 NG TA B 1 :<br />

: EG ( 1 ) X G (1 )<br />

b b b<br />

EG (N G )<br />

b<br />

X G (N G )<br />

; b b b b b b s e n d ;<br />

NG : nom bre de r a i e s<br />

LR : = 0 s p e c t r e en v a l e u r s r e l a t i v e s<br />

= 1 s p e c t r e en v a l e u r s a b s o lu e s<br />

E G ( i ) , X G ( i ) : é n e r g i e (e V ) e t i n t e n s i t é du s p e c t r e V t o t a l c o r r e s p o n d a n t<br />

à l'e n s e m b le des modes de d é s i n t é g r a t i o n du m a t é r i a u .<br />

REFERENCES<br />

(1 ) R . de T O U R R E IL , Program m e de c a l c u l de l ’ a c t i v i t é des p r o d u i t s de<br />

f i s s i o n . N o te C E A .N .8 2 4 (O c t o b r e 196 7)


502 DEVILLERS et al.<br />

(2)<br />

(3 )<br />

(4 )<br />

(5)<br />

(6)<br />

(7 )<br />

t8)<br />

(9 )<br />

(10)<br />

(11)<br />

(12)<br />

(1 3 )<br />

(1 4 )<br />

B . BARRE, P IC F E E : program m e d ’ i n t é g r a t i o n de c o u rb e s de f i s s i o n s<br />

é lé m e n t a ir e s t e n a n t com pte de l ' é v o l u t i o n des n u c li d e s f i s s i l e s ,<br />

N o te C E A .N .1 2 0 3 (O c t o b r e 1 9 6 9 )<br />

C . D E V IL L E R S , N ’ GUYEN VAN D A T , P IC F E E 2 : program m e de c a l c u l de la<br />

c o n c e n t r a t i o n e t de l ' a c t i v i t é des p r o d u i t s de f i s s i o n e t de la p u is s a n c e<br />

r é s i d u e l l e dans un c o m b u s t ib le i r r a d i é , r a p p o r t SERMA № 118/S<br />

( J a n v i e r 1 9 7 3 )<br />

B . BARRE, R . de T O U R R E IL : B ib l i o t h è q u e des a c t i v i t é s ^ e t 'S des p r o d u i t s<br />

de f i s s i o n . N o te C E A .N .1 2 6 9 ( A v r i l 1 9 7 0 )<br />

B . BARRE, R . de T O U R R E IL : B i b l i o t h è q u e de d on né es n u c l é a i r e s r e l a t i v e s<br />

aux p r o d u i t s de f i s s i o n (2ème v e r s i o n ) . N o te C E A .N .1 4 2 3 (M a rs 1 9 7 1 )<br />

J . B LAC H O T, R . de TO U R R E IL : b i b l i o t h è q u e des don né es n u c l é a i r e s r e l a t i v e s<br />

aux p r o d u i t s de f i s s i o n (3ème é d i t i o n ) . N o te C E A .N .1 5 2 6 (M ars 197 2)<br />

Г1.К. DRAKE, D a ta F o rm a ts and P r o c e d u r e s f o r th e ENDF N e u tr o n C ro s s<br />

S e c t io n L i b r a r y , BNL 5 02 7 4 , ENDF 102 v o l 1_ (1 9 7 0 )<br />

M .E . MEEK, B . F . R ID E R , C o m p i la t io n o f F i s s i o n P r o d u c t Y i e l d s<br />

N E D O -1 2154 (1 9 7 2 )<br />

W . H. W ALK ER , «The evaluation of fission product yields», <strong>Nuclear</strong> <strong>Data</strong><br />

for Reactors (Compt. Rend. C on f., Helsinki, 1970) A IEA, Vienne (1970)<br />

685.<br />

C . M E IX N ER , J Ü 1 -8 1 1 , 8 1 2 , 813 (1 9 7 1 )<br />

A . T O B IA S , RD/B/M 2356 (1 9 7 2 )<br />

C .M . LEDER ER , J . M . HOLLANDER, I . PERLMAN, T a b le o f Is o t o p e s (6ème é d i t i o n )<br />

J o h n W IL E Y , so ns (1 9 6 7 )<br />

N u c le a r D a ta S h e e t s , A c a d e m ic P re s s In c .V o lu m e B 1 -B 8<br />

J . B LA C H O T, L . C . CARRAZ, 0* MARBACH, R a ie s gamma é m ises p a r q u e lq u e s<br />

K r y p t o n e t xen on de f i s s i o n , r a p p o r t C E A -R . 4437 (1 9 7 3 )<br />

(1 5 ) A .H . W APSTRA, N . B . GOVE, N u c l e a r D a ta T a b l e s , v o l . A 9 , 267 (1 9 7 1 )


(1 6 ) BNL 325<br />

(1 7 ) В . BARRE, R . de T O U R R E IL , E n e r g ie m oyenne ém ise p a r le s n u c li d e s ^3“<br />

i n s t a b l e s - N o te C E A .N . 1265 (1 9 7 0 )<br />

(1 8 ) J . F . P E R K IN S , R .W . K IN G , N u c l . S o i . E n gn g 3 , 726 (1 9 5 8 )<br />

(1 9 ) J . F . P E R K IN S , R R - T R - 6 3 - 1 1 (1 9 6 3 )<br />

(2 0 ) M .E . B A T T A T , D . J . D U D Z IA K , H .R . H IC K S , L A -3 9 5 4 (1 9 6 8 )<br />

(2 1 ) J . S C Q B IE , R .O . S C O T T , J l o f N u c l . E n e r g y 2 5 , 339 (1 9 7 1 )<br />

(2 2 ) A p a r a î t r e<br />

<strong>IAEA</strong>-SM -170/63 503<br />

(2 3 ) L . C O S TA , J . R A S T O IN , R . de T O U R R E IL , J l o f N u c l . E n e r g y 2 6 , 431 (1 9 7 2 )


DISCUSSION <strong>OF</strong> FISSION-PRODUCT YIELD<br />

EVALUATION METHODS<br />

AND A NEW EVALUATION<br />

M. LAMMER*, O.J. EDER<br />

Österreichische Studiengesellschaft für Atomenergie,<br />

Seibersdorf, Austria<br />

Abstract<br />

DISCUSSION <strong>OF</strong> FISSION-PRODUCT YIELD EVALUATION METHODS AND A NEW EVALUATION.<br />

Reliable data on fission product yields are necessary for interpretation of gammaspectrometiic<br />

<strong>IAEA</strong>-SM -170/13<br />

measurements on burnt fuel elements. Discrepancies among sets of fission yields recommended by different<br />

evaluators led to a detailed study of published experimental data. A new evaluation was performed. After<br />

a comprehensive description of the present state of experimental methods for obtaining fission product yields<br />

the previously adopted evaluation procedures are critically reviewed. An evaluation procedure is proposed<br />

which takes into account sources of experimental errors and accuracies of methods used. Examples of recently<br />

evaluated fission product yields for thermal fission of Z33U, 2 35u and^Pu and for fast fission of ^ T h are<br />

presented. <strong>Data</strong> for °*u fast fission and z41Pu thermal fission are in preparation.<br />

1. DîTROroCTION<br />

Рог a number of years research work on fuel Ъит-ир analysis has Ъееп<br />

done at the Research-Centre Seibersdorf [1-3]. With the use of high<br />

resolution semiconductor detectors the identification of many more fission<br />

products via gamma-spectrometry of irradiated fuel elements has been<br />

possible, than by application of Nal detectors. The aim of a fuel burn-up<br />

analysis is either to calculate fission product inventories and fuel<br />

burn-up (forward calculation) or to derive an appropriate fuel history<br />

from measured fission product gamma-spectra (backward calculation).<br />

A survey of recent work in this direction will be presented in a<br />

separate paper at this conference [4]. Here it should only be noted that<br />

we are interested in fission products that can be identified by gamma<br />

spectrometry. Especially important for this work (see [4]) are fission<br />

yields for 95Zr, 9 9 m o , 134cs, ■l5^Ru> 10^Ru> ^ C s (capture product<br />

134cs), 137cs, ^4®Ba, 141ce, l44Ce an(j. 147щ. jn addition several yields<br />

for fission products in the mass range from 149 "to 153t which contribute<br />

to the activity of ^54e u (activation product) through a series of neutron<br />

capture processes, are of importance in this context.<br />

Checking the reliability of published fission product yields, that<br />

serve as input to our calculations, we found several discrepancies in recommended<br />

values of evaluations and recent experimental results^^]. In<br />

trying to find out the reasons for these discrepancies, we were naturally led<br />

to the consideration of:<br />

- how are recommended values for fission product yields reached<br />

- what are the experimental methods and the respective correction<br />

procedures.<br />

* Present address: <strong>Nuclear</strong> <strong>Data</strong> Section, <strong>IAEA</strong>, Vienna, Austria.<br />

505


506 LAMMER and EDER<br />

2. SURVEY OP FISSION YIELD EVALUATIONS UP TO I969<br />

2 .1 . Information included in the evaluations<br />

I f the user of fissio n product yield evaluations does not want to just<br />

adopt one set o f recommended yield s at random, he wants to be given the<br />

following information:<br />

- what is the general evaluation procedure<br />

- which experiments (together with references) have been preferred for<br />

calculating recommended yields<br />

- any.information that allows a check on the r e lia b ility of yield values<br />

used, preferably a l i s t of the individual experimental data together<br />

with references<br />

- an indication of any changes of original experimental values and the<br />

nuclear data used by the evaluator to apply corrections<br />

- uncertainties of recommended yields<br />

Guided by these considerations evaluations^available up to I969 are<br />

surveyed. Fission product yield data for an¿ 239pu have been<br />

compiled in the works quoted, except where noted.<br />

Steinberg and Glendenin [7 ] reviewed only very early measurements and<br />

w ill not be considered here in more d etail.<br />

K atcoff' s [8 ] evaluation includes experimental data up to I960,<br />

among these the fir s t extensive series of mass spectrometric measurements,<br />

carried out at McMaster University, Canada [9 - 17]* A short introduction<br />

to the tables reviews the experimental methods. Mass-spectrometric data are<br />

preferred for recommended yield s.<br />

The tables contain recommended values. A l i s t of references is given<br />

for each f is s ile nuclide. Adopted h a lf -life values are also given. No<br />

information on original experimental data and methods or correction procedures<br />

is given. Uncertainties have not been assigned.<br />

233<br />

Ferguson and 0 'Kelly [l8 ] evaluated U yield s only. Their report<br />

contains a detailed description of the data treatment and the evaluation<br />

procedure. They averaged readjusted mass spectrometric yield s and fin ally<br />

normalized each mass peak to 100 $ with the aid of radiometric and interpolated<br />

data.<br />

This report contains separate tables for a ll original experimental<br />

data compared and adjusted values together with the recommended yield s.<br />

The data sets are given with the respective references. Uncertainties are<br />

assigned as standard deviations only in those cases, where more than one<br />

experimental value was used for the fin al yield .<br />

Croall [ 19] gives a more extensive discussion of experimental methods<br />

and correction procedures. He preferres mass-spectrometric data and experiments,<br />

where more than one yield has been measured. Corrections for<br />

new h a lf -life values were applied, where possible.<br />

The tables contain references together with each recommended yield<br />

and a l i s t of adopted h a lf-liv e s is also given. However, no information<br />

on preferred individual experimental data is included. Some highly discrepant<br />

values are given without comment for different isotopes belonging<br />

to the same mass chain in cases, where a ll o f them represent essentially<br />

total chain y ie ld s. For each yield the 95$ confidence lim it is estimated.<br />

Rider et a l. [20] made a few renormalizations o f relative y ield s,<br />

which they describe in d e ta il. Their tables show original experimental<br />

data (and in some cases calculated y ield s) with references together with<br />

recommended values. For each yield the 9 ^ confidence lim it is estimated.


<strong>IAEA</strong>-SM-170/13 507<br />

In their evaluation the authors included their own measurements [5 ]<br />

as well as those of Lisman et a l. as published up to March 1967 (see [ 6 ] ) .<br />

These contain mass-spectrometric yield s of the isotopes of Kr, Ru, Xe, Ce,<br />

Nd and Sm, the yield of 99tc determined spectrophotrometrically and of<br />

137Cs determined by gamma spectrometry, for ^ЗЗц 2з5и fissio n . However,<br />

the Kr yield s of 235u have been revised later by Lisman et a l .[ 2 l ] .<br />

The evaluation of Meek and Rider [22] was not available to us until<br />

recently. This work is based on [2 0 ], but contains yields of the isotopes<br />

o f Rb, Sr, Zr and Cs and of 138;ga f or 235u measured mass-spectrometrically<br />

by Lisman et a l. [ 6 ]. It also includes the ^39pu y ield s, as published in<br />

IN-1189, which were, however, completely revised in IN-1277 (see [6 ])-<br />

233u yield s are not evaluated in 'th is work. Meek and Rider have, with one<br />

exception, simply averaged published experimental yields from thermal<br />

fissio n . The tables include original experimental data with references,<br />

together with the recommended values, but also cumulative yield s for<br />

the respective decay chains for a given mass number. No uncertainties are<br />

assigned.<br />

Allen and Drake [23] give a more recent survey o f U fission y ield s,<br />

which was not published at the time of the preparation o f the present paper.<br />

2 . 2 . Survey of discrepancies<br />

Table I shows a survey o f discrepancies among fissio n yield data from<br />

literature for the isotopes liste d in the introduction. Some other important<br />

long lived fission products are also included. This table should<br />

re fle ct the situation at the time, when this evaluation was started. Therefore<br />

evaluations are also compared to the measurements of Lisman et a l.<br />

[ 6 , 2 1 ] . Discrepancies are given in percent of the lowest value in<br />

column 3 and in percent of yield s of Lisman et a l. in column 4.<br />

The evaluations compared are:<br />

235u: References<br />

233u: References<br />

239pu: References<br />

19, 20, 22]<br />

1 8, 1 9, 2 0, 23]<br />

8, 19, 20, 22]<br />

Other yields for Pu-241 thermal fission and U, U, U, Th<br />

and ^39pu fast fission are not considered here, as published experimental<br />

results were rather scarce in the past and the most recent measurements<br />

[2 1 , 24, 25, 26] axe not included in the evaluations mentioned.<br />

235<br />

The overall agreement of compared yields is best for U, which is ,<br />

to a lesser extent also reflected in the values o f table I.<br />

3. EXPERIMENTAL METHODS FOR MEASURING FISSION YIELDS AND THEIR SOURCES <strong>OF</strong><br />

ERROR:<br />

In th is chapter the mass spectrometric, the radiochemical and the<br />

ratio measurement technique are reviewed together with the sources of<br />

error and a discussion of the p o ssib ility for the evaluator to check and<br />

correct published experimental data. Based on these considerations, the<br />

previous evaluations w ill be discussed in 5* and new evaluation procedures<br />

are proposed in 6.


508 LAMMER and EDER<br />

TABLE I. SURVEY <strong>OF</strong> DISCREPANCIES<br />

F issile Mass no. Discrepancies (percent of fissio n yield )<br />

isotope fission<br />

product<br />

between evaluations<br />

(maximum)<br />

2350 9 ° Sr < 4 $ [19] - Г20]<br />

233и<br />

> 5 $ [19] - [2 2 ]a)<br />

between evaluations<br />

and Lisman et a l.[6 ]<br />

no<br />

ro<br />

0<br />

1_______ 1<br />

1<br />

H-*<br />

40<br />

1_________ 1<br />

95 < 4$ Г8] - [ 19] < 1$ [ 1 9 , 20, 22] - 3$ [ 8]<br />

99 about 1$ about 1$<br />

106Ru > 2$[ 8, 19] - [ 20, 22] а^Ъ ^ 0$ [ 20, 22] - 2$ [8 , 19]<br />

1 ?5sb « 0 ( a ll) w40$ (a ll)<br />

131<br />

«0 ( a ll)<br />

6$ I > Xe[ 19]<br />

4$ ( a ll)<br />

133 within 1 . 5$ (a ll) within 2$ (a ll)<br />

137Cs < 1$ ( a ll) within 25*0 ( a ll)<br />

140 within 2$ ( a ll) within 2$ ( a ll)<br />

141Ce<br />

141<br />

5$ [ 20] - [ 22]<br />

^>10$ difference La>Pr[l9]<br />

144 >5$ [8 ,1 9 ] -[2 0 ]а)Ъ)<br />

147<br />

8$ [ 8] - [ 22] a)<br />

~ W f o Md - Pm [19]<br />

5.5$ [2 0 ]- 1C$[22]<br />

С$ [2 2 ]-4 $ [8 ,1 9 ]<br />

3. 5[ 22] 8$ [ 19] , 11$ [ 8]<br />

149 11$ [ 19] - [ 22]<br />

4$[22],9^ [20 ],15$ [19]<br />

152 « 2С$ [ 8] - [ 22] 1 C$ [22],15$[20],2C $[19]<br />

86 11$ [ l 9 ] -[2 0 ] b) 2$ [ 20] - 13$ [19]<br />

9°Sr 3$ [18] - [23] 8$ [23] - 11$ [18]<br />

95 3$ [ 18] - [ 23] 3$ [18] - 6$ [23]<br />

99 7$ [ 2 0 ]-[23] 0$ [20] - 7$ [23]<br />

106Ru 13$ [2 0 ]-[1 8 ,2 3 ]Ъ) 5$[ 20], IC / f l 19] , 18$[ 18,23]<br />

1?5sb 100$ [2 0] - [18,23] 16$ [18,23]Г5С^[19],8С$<br />

[20]<br />

131 4$ [23] - [19]<br />

>1$ [19] -2$ [23] - [20] 4$ [19] ->5$ [20]<br />

140 > 3 $ [ 23] - [ 18]<br />

> 7 $ Ba - Ce [19]<br />

яО [23] -


T A B L E I (continu ed)<br />

<strong>IAEA</strong>-SM-170/13 509<br />

F is s ile Mass no. Discrepancies (percent o f fis s io n y ie ld )<br />

isotope fis s io n between evaluations between evaluations<br />

product (maximum) and Lisman et a l. [ 6]<br />

141<br />

[2 3 ,l8 ]-[2 0 ]<br />

144 2 .% [l8 ]-[2 0 ,2 3 ] > l$ [2 0 ,2 3 ]-3 .5 $ [l8 ]<br />

147 < 4 1 [2 0 ]-[1 8 ]Ъ) > 4$[20] - > 8$ [ 18]<br />

149 й 9 ^ [2 3 ]-[1 9 ]Ъ) W0 [20] - > 5 $ [23]<br />

152 30$ [23] - [1 8 ]Ъ) 8$[20],О.С$[23],18$[18]<br />

239„<br />

^Pu 9°sr * 7 # [l9 ]-[2 0 ,2 2 ] 2$ [ 19] - 5$ [ 20, 22]<br />

95 2.5/» [l9 ]-[2 0 ,2 2 ] 6io [20,22]<br />

99 6$ [ 20] - [ 8, 19] < 4 io [8 ,1 9 ]-9 .5 $ [20]<br />

137Cs 14i [19] - [8 ]


510 LAMMER and EDER<br />

3 .1 . Mase-spectrometric measurements<br />

3 .1 .1 . Description of techniques<br />

Up to now mass spectrometric measurements of fission yields have<br />

been carried out for all stable and reasonably long lived fission products.<br />

Most commonly the isotopes of Kr, Sr, Zr, Mo, Ru, Xe, Cs, Ba, Ce, Nd and<br />

Sm have been studied, in some cases also isotopes of Y, Cd, Sn and Eu.<br />

The range of isotopes studied mass-speotrometrically can be extended by the<br />

use of on-line mass-spectrometers [27].<br />

There are essentially two procedures used. Either the element to be<br />

investigated is chemically separated from the other fission products and<br />

the fissile element prior to mass-spectrometric analysis. Or, after separation<br />

from heavy elements like U or Pu, the sample containing all fission<br />

products is mounted on the filament of the mass spectrometer, making use of<br />

the different ionisation energies of the elements and thereby investigating<br />

the elements in succession. In the latter method complete separation of<br />

the elements is not always achieved (especially in the rare earth region) and<br />

careful corrections have to be applied for interference effects of either<br />

compound ions (e.g. LaO) and metal ions (e.g. 154sm). or isobaric isotopes<br />

(e.g. 144Ce - *44щ ).<br />

The mass spectrometric measurements give precise relative yields for<br />

the isotopes of one element. As long as the half life of an isotope is at<br />

least of the order of the time needed for irradiation, handling and<br />

measuring, it can be investigated mass-spectrometrically in the conventional<br />

way. This makes possible the use of isobaric fission products to link different<br />

elements. Examples, where errors due to decay corrections can be kept<br />

small under suitable conditions, are 9 5 2r - $ 5 m o , Í33xe - ^ЗЗсз, 140ga _<br />

140ce, 144ce - and 147jjd _ 147sm> For the above mentioned isobars this<br />

way of extending relative yields to neighbouring elements is generally<br />

superior to other techniques.<br />

A suitable method to obtain the number of atoms of a particular fission<br />

product formed in an irradiated sample is the isotope dilution technique.<br />

In this technique, a known amount of a standardised solution is mixed<br />

thoroughly with a known amount of solution of either fission products or the<br />

chemically separated element under investigation. The standard solution<br />

contains a predetermined number of atoms of either a highly enriched<br />

"spike isotope" - preferably not formed in fission, or of the natural<br />

element. This mixture is measured again with the mass-spectrometer and<br />

the number of fission product atoms can be calculated by comparison with<br />

the pure fission product spectrograms.<br />

Before leaving this technique one should mention the integral mass<br />

spectrographic method, as applied by Anikina et al. [28-30]. After determining<br />

the relative ionization coefficients of the elements under study<br />

for the spectrometer used, the ion currents are integrated for a given<br />

mass position of the investigated sample. Chemical separation of elements<br />

contained in the samples were not performed in these experiments. Prom the<br />

known ionization coefficients the relative concentrations can be determined.<br />

Absolute concentrations can be obtained by a determination of the number of<br />

atoms for one mass number, e.g. by isotope dilution.<br />

3 .1 .2 . Sources of error, corrections and accuracy<br />

Rather high integrated neutron fluxes are required for accumulation<br />

of an amount of fission products sufficient to perform mass spectrometric<br />

measurements with reasonable accuracy. Therefore corrections have to be<br />

applied for neutron capture in fission products. If unstable isotopes are


<strong>IAEA</strong>-SM-170/13 511<br />

also measured, then in -p ile and o u t-o f-p ile decay corrections have to be<br />

applied,as the usual neutron fluxes require longer irradiation times and<br />

the radioactivity o f the sample has to be su fficien tly low for handling.<br />

Fission products like ^35xe and some Sm isotopes have such high and rather<br />

uncertain capture cross-sections, which in addition depend strongly on the<br />

neutron spectrum that corrections can hardly be applied reliably under normal<br />

irradiation conditions. Therefore samples for measurements o f the<br />

fissio n yield s of these isotopes and their capture products have to be<br />

irradiated in very low fluxes.<br />

In many cases cross-section and h a lf -life data are known more<br />

accurately at the time of evaluation than when the experiment was performed.<br />

The correction of original yield data by the evaluator requires<br />

the knowledge of irradiation conditions and cooling time involved in the<br />

measurements, as well as either of the nuclear data used for corrections<br />

by the experimenter or of the uncorrected data.<br />

Contamination of the fissio n product sample by naturally occuring<br />

isotopes in the same mass range can arise from the sample i t s e lf , the<br />

reagents, containers and apparatus used for post-irradiation treatment,<br />

or even from the filament o f the mass-spectrometer, if surface<br />

ionization is used. Corrections can be applied to mass-spectrograms taking<br />

into account the abundance o f an isotope not formed in fissio n . I f th is<br />

is not possible, unirradiated samples have to be carefully analysed. In<br />

many cases the amount of contamination cannot be determined exactly and<br />

can distort the abundances of fissio n product isotopes. For the Sm isotopes<br />

it is also essential to know, whether the contamination was present<br />

in the sample prior to irradiation, or not. In addition low yield 152Sm<br />

and ^ 54 Sin are very sensitive to corrections, as they have highest abundance<br />

in the natural element.<br />

When the isotope dilution technique is applied, one has to consider<br />

mainly four sources of error:<br />

- a fractionation o f fissio n products (only partial recovery),<br />

- an incomplete mixing of the fissio n product solution with the standardized<br />

solution,<br />

- accuracy of the calibration of the standardized sample<br />

- losses due to mass transport or reactions in the solution<br />

Fractionation of fissio n products can be detected by measuring the activity<br />

of the residual solution. Also losses o f fissio n products due to diffusion<br />

or migration can occur, but th is can be avoided by properly encapsuled sample<br />

The accuracy of the determination of isotopic compositions depends on<br />

the amount of the investigated element, i t s ionization energy, the<br />

abundance of a particular isotope and the dynamical parameters o f the<br />

mass-spectrometer used. Standard deviations quoted for fissio n products range<br />

typ ically between 0.1 and 2 percent.<br />

Highly enriched spike solutions were used for isotope dilution by<br />

Lisman et a l. [ 6 , 2 1 ] . The preparation of the spike is described in detail<br />

in [21] and a standard deviation o f less than O .j/ o is quoted for its<br />

standardization, leading to values around 0 .5 percent for the determination<br />

of the number o f fissio n product atoms.<br />

The method of using the natural element for isotope dilution is less<br />

sensitive to changes in the isotopic composition o f the sample. Therefore<br />

an overall accuracy of 0 .3 to 3 percent can be assigned to the measurement<br />

o f the number o f fissio n product atoms present in a sample. However, in<br />

practice the deviations among measurements are sometimes larger, probably


512 LAMMER and EDER<br />

due to systematic errors of the above mentioned kind. Therefore outstanding<br />

data can be rejected, i f su fficien t measurements are available to allow<br />

a check.<br />

3 .2 . Radiochemical measurements<br />

3 .2 .1 . Description of techniques<br />

The advantages of the radiochemical techniques are twofold:<br />

- Sufficient radioactive nuclei are produced in rather short irradiation<br />

times. This makes fissio n yield determinations possible without the<br />

problem o f interference caused by neutron capture processes.<br />

- Natural element impurities do not contribute to the error of the<br />

measurements, as only radioactive fissio n products are measured and<br />

capture products arising from impurities can be neglected.<br />

The fissio n products to be investigated are separated by suitable chemical<br />

procedures. This is done either directly after the dissolution of the irradiated<br />

sample, or the resulting solution is diluted to known volume and aliquots<br />

axe drawn from this solution for further separation. So far the method is also<br />

applied for the mass-spectrometric isotope dilution technique. However,<br />

radiochemical measurements require rather very pure samples, which is<br />

achieved by a series of separation procedures, and the chemical yield is<br />

usually determined by weighing an inactive carrier. A known amount of<br />

solution is then investigated for fissio n products by counting techniques.<br />

3 .2 .2 . Sources of error, corrections and accuracy.<br />

Errors arising from chemical separations can be due to :<br />

- undetected losses of fissio n products<br />

- the determination of the chemical yield<br />

- incomplete separation from other fissio n products.<br />

Other errors may arise from activity measurements, which require a<br />

number o f corrections.<br />

In earlier measurements mostly Geiger-Mlller counters were used for<br />

the determination of the ß -a c tiv ity . Large corrections have to be<br />

applied for:<br />

- efficien cy, deadtime and geometry of the detector assembly<br />

- absorption in the sample, air and detector window<br />

- s c a t t e r i n g o f p ~ r a y s .<br />

The 4 7Г counter assemblies, more commonly used la te r, require less<br />

corrections than the Geiger-MUller counters. Corrections for self-absorption<br />

in the sample and absorption in the supporting film are s t i l l d iffic u lt to<br />

calculate d irectly. However, the high efficiency o f 4 Xcounters makes possible<br />

the use of very thin samples and film s. Thus corrections can be kept<br />

reasonably small and be determined empirically.<br />

Other counters require corrections similar to those mentioned. Uncertainties<br />

in the determination of the counter efficiency can be reduced<br />

by careful calibration against standardized detectors using standard sources,<br />

as has been done in most recent experiments (e .g . [31])*<br />

Usually gross ( I -decay curves are measured at several time intervals.<br />

In the most straight-forward cases a suitable time interval can be chosen<br />

for the measurements, where the activity of the investigated fission<br />

product is clearly dominating and errors introduced by interfering<br />

activity can be kept n egligible. Far more complicated are those cases<br />

where several fissio n products together with their daughter products


<strong>IAEA</strong>-SM-170/13 513<br />

contribute to the tota l a ctiv ity . Gross decay curves have to be resolved<br />

into components and fin a l resu lts depend strongly on the values used for<br />

the h a lf liv e s . One erroneous value a ffe c ts the other resu lts as w ell.<br />

Decay data o f precursors have to be taken into account, esp ecia lly for<br />

calcu lation s o f the a ctiv ity present at the end o f the irradiation and<br />

a fter chemical separations.<br />

Prom the evalu ator's point o f view i t is almost impossible to correct<br />

old data fo r better known h a lf l i f e values or decay schemes. This would<br />

only be p ossib le, i f a ll the data points were available in addition to<br />

the experimental d e ta ils , but even then attempts to do th is fo r two<br />

experiments [32, 33] fa ile d to improve the resu lts. Corrections can be<br />

applied fo r a rather long lived fis s io n product, where the origin a l decay<br />

correction s introduce only small errors and the h a lf l i f e used is available.<br />

It is d if fic u lt to malee a general statement about the accuracy o f radiochemical<br />

measurements. This depends too strongly on any undetected<br />

fa ilu res during separation procedures and the detector equipment used<br />

fo r measurements. Considerable discrepances can also arise from various<br />

errors in the h a lf-lif e values and decay schemes used, including precursors<br />

and daughters.<br />

As such errors may be d ifferen t fo r fis s io n products investigated<br />

within the same experiment, i t is then a question o f how many y ie ld data<br />

o f one isotope are available fo r intercomparison to decide, which resu lts<br />

are to be rejected .<br />

In more recent experiments the e fficie n cy ca lib ra tion o f the counters<br />

is accurate to about 2 percent [3 1 ]. Including correction s and chemical<br />

y ie ld determination, excluding undetected losses, the overall accuracy<br />

should be within 3 - 5 i n very early experiments up to around lOfo and<br />

more.<br />

In some experiments also gamma spectrometry is applied for the<br />

determination o f disintegration rates. However, absolute in ten sities o f<br />

gamma rays are accurately known only for a few fis s io n products, and were<br />

even more uncertain in the past; Further, complex spectra cannot be resolved<br />

by K al-detectors, which are most commonly used. E fficien cy calibration<br />

introduces additional uncertainties.<br />

The sources o f error can be reduced by measuring the gamma spectra<br />

re la tiv e to a standard with known disintegration rate. Another suitable<br />

method is the determination o f the detector e fficie n cy for the investigated<br />

fis s io n products by 4 JT— ß -V -co in cid e n ce counting o f pure samples o f the<br />

isotopes.<br />

Corrections can be applied by the evaluator without d iffic u lt y only for<br />

errors in gamma-ray in ten sities used.<br />

3.3. Ratio measurements<br />

3 .3 .1 . Description o f method<br />

235<br />

I f a set o f fis s io n y ie ld s , e.g . those for U, is assumed to be well<br />

known, an R-value can be measured, which is defined as<br />

Y. 1<br />

X .<br />

V st<br />

. . fis s io n y ie ld o f isotope i<br />

99<br />

. . fis s io n y ie ld o f a standard isotope (usually Mo)<br />

. . .the fission a b le isotope under study


514 LAMMER and EDER<br />

These ratios can be measured precisely, i f irradiation times are either<br />

short compared to the h a lf-liv e s of the investigated fission products or<br />

equal and measurement conditions are identical. In this case an absolute<br />

calibration of the equipment is not required and also the determination of<br />

absolute disintegration rates is not necessary, which avoids errors due to uncertainties<br />

in decay schemes.<br />

3.3>2. Sources of error, corrections and accuracy<br />

I f the measurement conditions are identical and decay corrections of the<br />

same magnitude, errors depend only on the reproducibility of the chemical<br />

procedures, on the counting s ta tis tic s and on the accuracy of the reference<br />

y ie ld s. Results from this type of measurement can easily be adjusted by the<br />

evaluator to a new set of reference y ie ld s, i f the R-values obtained in the<br />

experiment are liste d or i f the reference yield s used are quoted.<br />

However, generally fractional independent yield s of fission products,<br />

defined as the ratio of independent to cumulative or total chain y ield ,<br />

vary with fissionable isotope and neutron energy. I f the independent yield of<br />

an investigated fissio n product is significant in at least one type of fissio n ,<br />

corrections have to be applied, i f the h alf l i f e o f the precursor is comparable<br />

to the irradiation time or the cooling time until chemical separation.<br />

The accuracy o f th is method can be better than 1$, but varies, depending<br />

on the fissio n product studied. In beta^ray measurements errors due<br />

to h a lf -life values used cancel, i f the gross decay curves have not too<br />

many components. In gamma ray measurements peak areas can be determined<br />

with rather high accuracy. But as fissio n products are not chemically sepa^-<br />

rated, gamma spectra are complex and errors can be introduced by differences<br />

in background subtraction or interferences of other peaks. Due to these<br />

d iffic u ltie s in the processing of the raw data, or any of the above mentioned<br />

errors, discrepancies are sometimes larger for single values.<br />

3 .4 . Determination of the number of fission s<br />

For the determination of absolute fissio n y ield s, the number of<br />

fissio n s, that have occurred in a sample, can be measured by essentially<br />

three methods.<br />

3 .4 .1 . Isotope dilution mass spectrometry<br />

The technique i t s e lf has already been described and i t s application<br />

for the determination of the number o f fission s shall be explained for<br />

the example o f 2 3 5 u .<br />

The isotopic composition and the number o f atoms of Uranium are<br />

measured before and after irradiation. I f the sample is highly enriched in<br />

2 3 5 u , the to ta l loss o f U is almost entirely due to fission s of 23 5 u .<br />

Corrections for other losses of total U can bé kept small enough to con*-<br />

tribute a negligible error. This method has been'applied by Lisman et a l.<br />

[ 6 ,2 1 ] , Rider et a l. [5 ] and Meyer et a l. [34] and requires a su fficien tly<br />

large number of fissio n s.<br />

3. 4 . 2. Flux monitors<br />

After measuring the neutron flux with a suitable monitor the number<br />

o f fissio n s is calculated for a known amount of fis s ile material using<br />

published fissio n cross sections. The monitors mainly used in thermal fissio n<br />

yield measurements are 59Co and sometimes Boron, where the change in the<br />

IOb/H-B ratio is measured mass-spectrometrically.


LAEA-SM-170/13 515<br />

The accuracy of th is method depends on the s e lf shielding corrections for<br />

monitor and sample,the values of the cross sections used and, in case a 59co<br />

monitor is used, on the h alf l i f e value used for ^ C o . Reliable s e lf shielding<br />

corrections cannot be applied, i f the sample is very thick, i .e . these<br />

corrections should not exceed 10 - 15%.<br />

2200 m/sc cross-section values have been used in many experiments.<br />

A recalculation o f the number of fissio n s, based on recent adopted cross-<br />

section values, would require information about the neutron spectrum, which<br />

i s , however, rarely available. The flux monitors usually have a l / v cross<br />

section but the 2200 m/sc values can be used only i f resonance absorption can<br />

be neglected, which i s , however, not the case in a reactor neutron spectrum.<br />

E.g. for r / T /T o » 0 .0 2 about 1 b arn would have to be added to th e 2200 m/s<br />

cross section of 59co, which is about yfo o f this value. U and Pu fissio n cross<br />

sections depend in addition strongly on the neutron temperature.<br />

3.4 .3 * Fission Counters<br />

In this method fissio n rates are-determined directly by counting the<br />

emitted fissio n fragments, which, of course, requires very thin samples.<br />

These are irradiated together with "th ick ” samples, which serves for<br />

fissio n yield measurements, but has s t i l l to be thin enough to avoid large<br />

self-sh ield in g corrections.<br />

Errors in th is method can further arise from corrections to the fission<br />

ra te .fo r sample thickness and in the determination of the counter efficien cy,<br />

which varies with sample position in the counter.<br />

3 .5 . Absolute fissio n yields<br />

In many publications resu lts are given as absolute fissio n yield s in<br />

percent per fissio n . The evaluator has, however, to distinguish between those<br />

experiments, where absolute yields have actually been measured, and those,<br />

where relatively measured yields have been normalized by the authors in<br />

order to obtain absolute y ield s.<br />

A measurement of absolute fissio n yield s requires that the number of<br />

fissio n s, that occurred in the sample, have to be determined as well as<br />

the absolute number of atoms, or any equivalent quantity, of a ll investigated<br />

fissio n products from this sample. In th is case the evaluator can only apply<br />

corrections for errors that have been introduced during the original processing<br />

of the raw data.<br />

In many radiochemical measurements yields are determined relatively to a<br />

suitable standard, mostly 99mo or Ba. The absolute fissio n yield o f the<br />

standard is either measured separately or the value is taken from literature.<br />

Sometimes absolute yields are obtained by normalizing relatively<br />

measured yield s with the aid o f interpolated and literature values in the<br />

mass ranges not covered by the experiment in such a way that the sum of<br />

yield s is either 100 fo for each mass peak or 200 $ for both mass peaks. In<br />

experiments using radiochemical techniques th is method has only been applied<br />

i f no absolute y ield of a suitable standard was available [ 2 6 ,3 5 * 3 6 ] . As<br />

many high yield masses have to be interpolated in such a work, the quoted<br />

absolute yield s are not very accurate and cannot be compared to other results<br />

without readjustment. Mass spectrometric measurements cover in general most<br />

o f the high yield range o f at ; least one mass peak. In th is case the r e liability<br />

of absolute yields depends m ainly on the number and accuracy of literature<br />

values in the range of yields hot:m easured in the experiment.<br />

A ll these resu lts from relaiive' measurements depend on earlier data and<br />

should therefore be renormalized'by ;the evaluator, using his own adopted values.


516 LAMMER and EDER<br />

4. MAIN PUBLICATIONS OP EXPERIMENTALLY DETERMINED FISSION YIELDS<br />

When comparing published experimental fis s io n y ie ld s one finds<br />

that discrepancies are often larger than one would expect from the<br />

accuracies quoted or from those we have assigned in the previous chapter.<br />

These discrepancies cannot always be explained, but are mostly due to<br />

systematic deviations, normalization procedures and, in the case o f<br />

radiochemical measurements, resolu tion o f gross decay curves. Knowledge<br />

o f these discrepancies and o f the experim entalist's measurement and<br />

data analysis techniques is essen tial for a discussion o f existin g<br />

evaluations and evaluation procedures. Therefore those publications o f<br />

fis s io n y ie ld data, which receive heaviest weight in evaluations shall<br />

be b r ie fly surveyed.<br />

235<br />

4.1._____ U thermal fis s io n y ield s<br />

235<br />

Thermal fis s io n y ield s o f U have been determined mass spectrometrica<br />

lly by Farrar et a l. [3 7 ,3 8 ], who used the isob aric technique, and by<br />

Rider et al [5 ]i Lisman et al [6 ,2 1 ], Petruska et al [1 0 ,1 1 ], Steinberg<br />

and Glendenin [7 ] and Chu [39] who applied the isotope d ilu tion technique.<br />

Gorshkov et al [29] applied the integral mass spectrographic method.<br />

Rider et al Г51 and Lisman et al [6 ,2 1 ] determined the number o f<br />

fis s io n s by isotope d ilu tion mass spectrometry for one and four samples<br />

resp ectiv ely . A dditionally Lisman et al calculated a ll y ie ld s rela tiv e<br />

to 148щ, normalized the averaged values to lOOfo fo r the heavy mass peak<br />

and com pared the resulting yields to absolute yields determ ined fro m the<br />

num ber of fissio n s in ord er to check the relia b ility of the norm alization<br />

technique.<br />

Petruska et a l. [10,11] measured the neutron flu x with a Boron monitor.<br />

In addition to th eir own measurements they used the rela tiv e Kr and<br />

Xe y ie ld s o f Wanless and Thode [9 ] and normalized them to with the aid<br />

o f a known branching ra tio for ®^Kr and to 1^3(;s with the aid o f an unpublished<br />

13i-Xe: 133xe y ie ld ra tio resp ectively. Ce y ield s were linked<br />

to those o f Nd through the common y ie ld at mass 144, requiring, however,<br />

a rather large decay correction for 144q6><br />

Farrar et al [3 7 138] normalized rela tiv e y ield s in the heavy mass peak<br />

to 100^> using the same Xe and Cs y ie ld s as Petruska et al [10,11] and<br />

interpolated values in the mass ranges not covered by th eir experiment.<br />

For the lig h t mass peak they used rela tiv e y ie ld s o f Kr and Rb and their<br />

normalization to Sr o f Petruska et al [11] and obtained absolute y ield s<br />

rela tiv e to th eir predetermined y ield s in the heavy mass peak with the<br />

aid o f an isotope d ilu tion ra tio also from [1 1 ]. Zr and Mo isotopes were<br />

linked to these y ie ld s by the isobaric technique. This technique depends<br />

on the accuracy o f decay correction s.<br />

Steinberg and Glendenin [7 ] used radiochemical, previous mass<br />

spectrom etric and interpolated y ie ld s together with th eir own measurements<br />

and normalized the whole y ie ld curve to 200$. Their rela tiv e Ru y ield s<br />

were normalized to a radiochemical value o f the 106Ru y ie ld and the overa<br />

ll accuracy o f absolute y ie ld s is rather low.<br />

Chu [39] measured only rela tiv e fis s io n y ield s in the rare earth<br />

region.<br />

Gorshkov et al [29] (see also [2 8 ]) do not in dicate, how they obtained<br />

absolute y ie ld s , which are given with low accuracy only.


<strong>IAEA</strong>-SM-170/13 517<br />

The samples used for fissio n yield measurements at McMaster University<br />

[9-11* 371 38] and by Chu [39] were irradiated in low integrated neutron fluxes<br />

and required only minor corrections for neutron capture. Yields obtained<br />

in these experiments agree well with those of Rider et al [5 ] and Lisman<br />

et al [6 ,2 1 ] , who irradiated their samples in rather high integrated neutron<br />

fluxes, but used adequate nuclear data for corrections.<br />

Heavy mass yield s of Steinberg and Glendenin [7 ] obtained from high flux<br />

irradiations disagree seveialy with other mass spectrometric data, probably<br />

due to inadequate corrections and contamination. No d etails on irradiation<br />

and on cooling time are published. The same is true for the measurements<br />

of Gorshkov et al [2 9 ]. Although many of their absolute yield s agree<br />

approximately with other published data, discrepancies become evident only<br />

when relative yield s are compared. Sources of error due to the method<br />

i t s e lf are not indicated.<br />

4 .2 . 233U thermal fissio n yields<br />

235<br />

Lisman et al [6 ,2 1 ] and Rider et al [ 5 ] : same as for U.<br />

Bidinosti et al [40] made mass spectrometric measurements o f stable<br />

and long lived fissio n products, but used different normalization techniques.<br />

Only fin al resu lts are shown in the tables and no d etails on corrections and<br />

nuclear data used are included in their publication. The isotope dilution<br />

technique was applied for the isotopes of Sr, Cs, Nd and Sm and for -*-38ва><br />

The isobaric technique has been used to link Ce to Nd through the common<br />

mass 144 and Zr to Mo through the common mass 95» but the h alf liv es used<br />

for decay correction are not published. Making use of the Xe yield s of<br />

Fleming et al [14] and Sm yield s of Melaika et al [13] the heavy mass peak<br />

was normalized to \O O fo. However, for tb io samples the number of fission s<br />

were calculated from a neutron flux measurement and yield s obtained in<br />

th is way were said to be 2 and 4 percent lower than those obtained from the<br />

normalisation technique and shown in the table. In the light mass peak Sr<br />

yields were calculated from the number of fissio n s. Kr yield s were taken<br />

from [ 14] and normalized to the -^^Cs y ield , and Rb yield s were obtained with<br />

the aid of the 85кг branching ra tio , which is not quoted.<br />

Relative Ru yields were linked to the Zr-Mo yield s by a radiochemically<br />

determined ratio and these relative yield s together with interpolated and<br />

extrapolated values were normalized to total 100$ minus the predetermined<br />

Sr,Rb and Kr yield s and extrapolated values below mass 83. Absolute yields<br />

and even isotope dilution data disagree with other mass spectrometric<br />

measurements.<br />

Steinberg et a l. quoted in [ 7 ] , have applied the method o f isotope<br />

dilution mass spectrometry for the isotopes of Zr, Mo and Ru and normalized<br />

their relative yield s to radiochemically determined values.<br />

Anikina et al [3 0 ,4 1 ] (summarized in [2 8 ]) have applied the isotope<br />

dilution and mass spectrographic method. Details on the analysis of Sr<br />

isotopes by the former Diethod are given in [4 1] and o f Cs isotopes and the<br />

rare earth fissio n products by both methods in [3 0 ]. Information on the<br />

irradiation of the sample can be found in [4 2 ]. The original relative<br />

yield s obtained by the method of isotope dilution agree after correction<br />

with those of [ 5] and [ 6 ] , whereas the values obtained by the integral<br />

method disagree. The same sample was analysed later by Gorshkov and<br />

Anikina. [43] for the isotopes of Zr and Sr as well as for °^Y and J^Ba<br />

by the integral mass spectrographic method. Relative and absolute yields<br />

calculated from the 233u depletion [ 42] disagree completely with other<br />

mass spectrometric measurements. The good agreement achieved by the


518 LAMMER and EDER<br />

isotope d ilu tion method on the same sample in dicates, that natural element<br />

contamination cannot account for the discrepancies. It seems that the<br />

integral mass spectrographic method is not suitable for accurate fissio n<br />

y ie ld measurement.<br />

239<br />

4 .3 . Pu thermal fis s io n y ield s<br />

Rider et al [5 C] obtained absolute y ie ld s from the change in the<br />

isotop ic composition o f Pu in one sample, using a known capture to fis s io n<br />

r a tio . As for 233u and 235u rela tiv e y ie ld s obtained from the other two samples<br />

were normalized to agree in the sum o f y ield s with one sample, fo r which<br />

the number o f fissio n s have been determined.<br />

Lisman et al [ 6 j ] used the method o f isotope d ilu tion mass spectrometry.<br />

However, they found th eir y ield s too low compared to the measurements<br />

o f Pickel and Tomlinson Г15] and therefore revised th eir y ield s<br />

la ter Гбш, 21], using the normalization technique as described in 4*1«<br />

F ickel and Tomlinson [15] used the method o f isotope d ilu tion mass<br />

spectrometry. Yields in the heavy mass peak were obtained from two samples,<br />

irradiated in the same p osition . For one sample they measured the neutron<br />

flu x and the neutron temperature with the aid o f Co and Sm monitors. The<br />

number o f fissio n s were determined using g and s factors in the Westcott<br />

formalism. Yields obtained in th is manner for both samples agree well for<br />

the isotopes o f Nd and Ce. The y ie ld s o f Sm and Cs isotopes, and hence<br />

also those o f Xe, which were taken from Fleming et al [16] and normalized<br />

to 133cs, are about 5% lower fo r the Pu Al a lloy sample. However, their<br />

fin a l values were reached by a normalization o f each set o f y ie ld s to<br />

100$ and averaging them.<br />

Yields in the lig h t mass peak were obtained by isotope d ilu tion<br />

re la tiv e to the predetermined Cs y ie ld , but generally from samples d iffe r ­<br />

ent to those used fo r measurements o f the isotop ic compositions o f fissio n<br />

products. Only Zr y ield s were normalized to Mo y ield s at the common mass 95*<br />

The fin a l set o f y ie ld s contains also the Kr y ield s measured by Fritze et al«<br />

[17] and normalized to ®5Rb with the aid o f the ®5jCr branching ra tio .<br />

F ritze et al. [ 17] measured the absolute y ie ld o f '*'3'*'Xe by the isotope<br />

dilu tion technique together with a determination o f neutron flu x and temperature.<br />

Further, they measured rela tiv e Kr y ield s and the ra tio o f fissio n<br />

product Xe to Kr. Use was made o f the rela tiv e y ield s o f Fleming et al [16]<br />

to obtain absolute Xe and Kr y ie ld s.<br />

Krizhansky et al ['44»45] applied the method o f isotope d ilu tion mass<br />

spectrometry (resu lts o f isotope d ilu tion measurements are given in [2 8 ].<br />

Although there are several discrepancies among the other mass spectrometric<br />

measurements already mentioned, the resu lts o f Krizhansky et al disagree<br />

much more seriou sly. Even re la tiv e abundances o f fis s io n product elements<br />

cannot be compared to other measurements.<br />

F inally the radiochem ically determined y ield s o f Marsden and Y affef 46]<br />

should also be mentioned, as heavy weight was given to th eir data in the<br />

la ter evaluations [1 9 ,2 0 ,2 2 ]. Marsden and Yaffe measured the neutron flu x<br />

with a Co monitor and calculated the number o f fissio n s from the 2200 m/sec<br />

value o f 742 barn fo r the fis s io n cross-section o f 239pu, This has been<br />

common pra ctice in many gxperiments, but can introduce considerable error<br />

in the determination o f Pu fis s io n y ield s due to it s strong 0.3 eV<br />

resonance. The smallest p ossible value for a reactor neutron spectrum cross<br />

section (pure maxwellian at 20° C) is about 780 b and inclreases with increasing<br />

neutron temperature and contribution o f epithermal neutrons [4 7 ].


LAEA-SM-170/13 519<br />

An example o f the influence o f the 239pu cross section value is given in<br />

section 7 . 3. Surprisingly the absolute fis s io n y ield s o f Marsden and Yaffe<br />

agree fa ir ly well with mass spectrom etric measurements at several mass numbers.<br />

However, i f absolute y ield s obtained from a flu x measurement are included in<br />

an evaluation, the cross section data used have to be checked.<br />

5. DISCUSSION OP EVALUATIONS AND EVALUATION METHODS.<br />

In chapter 2 the information included in the previous evaluations have<br />

been summarized from a u ser's point o f view. Now the evaluation procedures<br />

themselves and the treatment o f experimental data shall be discussed in the<br />

lig h t o f the review o f experimental methods and the individual experiments<br />

described in the previous chapter.<br />

5.1. Treatment o f data in previous evaluations<br />

After a survey o f existin g fis s io n y ie ld measurements and knowledge o f<br />

the methods used i t is p ossible to better understand and analize previously<br />

used evaluation procedures.<br />

K atcoff [ 8] evaluated y ie ld s fo r individual fis s io n product isotopes<br />

within the same mass chain. He preferred mass spectrometric measurements<br />

where available and averaged resu lts o f equally re lia b le measurements or<br />

selected values he considered superior to others which avoids the averaging<br />

o f discrepant data. Original data were renormalized by checking the sum o f<br />

y ie ld s against 100$ and corrected for neutron capture. When selectin g ^35u<br />

fis s io n y ie ld measurements, the data o f Anikina et al [28] were not used<br />

and the other mass spectrometric data [7 , 10, 11, 39 ] averaged. For 233U<br />

and Pu the evaluation o f recommended y ie ld s is not cle a r, as these do<br />

not correspond to individual experimental sets o f y ie ld s , even after renormalization.<br />

Radiochemically determined y ield s were used fo r readioactive precursors<br />

o f fis s io n products measured mass spectrom etrically. Therefore d iscrepant<br />

y ield s are given for isotopes belonging to the same mass chain, which<br />

are not consistent with charge d istribu tion theory derived from measurements<br />

o f independent y ield s [ 48, 49] .<br />

Ferguson and 0 'K elley [ l 8] used mass spectrometric data onlyi for the<br />

mass ranges covered by these measurements. They have lowered a ll those<br />

y ield s reported by B idinosti et al [4 0 ],th a t had been obtained by the<br />

isotope d ilu tion technique, by. 3$, according to the average d ifferen ce<br />

between the normalization procedure and the flu x measurement (see 4. 2. ) .<br />

The y ield s o f Zr, Mo and Ru isotopes remained unchanged. Relative y ield s<br />

reported by Gorshkov and Anikina [43] and Steinberg and Glendenin [7 ] for<br />

the lig h t mass peak and by Anikina et al [28] for the heavy mass peak were<br />

readjusted to agree in the sum o f y ield s with those o f B idin osti et al<br />

[4 0 ]. Only the data o f [28,43] obtained by the integral mass spectrographic<br />

method were used and no correction s were applied to origin al data. Ferguson<br />

and O'Kelly used the normalization procedure, described in 3 . 5*1 to ca lculate<br />

absolute y ie ld s fo r each mass peak separately.<br />

Although the yields reported in [28] and [43] were measured at d ifferen t<br />

times, the same sample was used and hence the resu lts are based on the<br />

same number o f fis s io n s . After the readjustment made by Ferguson and O'Kelley<br />

the ra tio o f y ie ld s in the lig h t mass peak to those in the heavy mass peak<br />

is completely d ifferen t from the ra tio o f orig in a lly determined y ie ld s.<br />

Large discrepancies between some reported experimental y ie ld ra tio s o f<br />

d ifferen t elements were smoothed by the method o f matching the sums o f


520 LAMMER and EDER<br />

y ie ld s . Although in con sistencies remained even a fter readjustment the<br />

y ie ld s were averaged by Ferguson and O'Kelley. However, at the time o f<br />

th eir work no other mass spectrometric measurements were available to allow<br />

a check.<br />

Croall [ 19] evaluated individual fission products belonging to some mass<br />

chain. Original data were corrected for decay and neutron capture. Relative<br />

measurements and R-values were readjusted to his adopted standard y ield s. The<br />

treatment of mass spectrometric data is not evident from the report. When<br />

comparing recommended yields with the original data of the references given,<br />

it appears that some readjustments were made, especially for discrepant<br />

absolute values. In some cases, where only one reference was used to obtain<br />

a recommended y ie ld , this does not correspond to the original value. The<br />

measurements of Farrar and Tomlinson [38] and others published in laboratory<br />

reports [5>6,34] are not included in C roall's evaluation. The selection of<br />

preferred yield s is also not evident, as sometimes obviously not a ll results<br />

from references have been used which axe liste d along with the recommended<br />

value. Radiochemical measurements were averaged together with mass spectrometrically<br />

determined y ield s. For the values reported by Marsden<br />

and Yaffe [46] were considered even superior over a ll other measurements<br />

and generally adopted as recommended y ield s. I f sets o f preferred experimental<br />

yield s disagreed in a certain value, they were averaged. Yields adopted<br />

for different isobars within the same mass chain are sometimes highly<br />

discrepant and not consistent with charge distribution theory [48,49]*<br />

Rider et al [20] proceeded on a mass by mass basis comparing a ll<br />

isotope y ie ld s within a mass chain that essen tially represent tota l<br />

chain y ie ld s . Generally no readjustments o f o rig in a lly reported absolute<br />

y ie ld s were made. Exceptions are pure re la tiv e y ield s that were normalized<br />

to adopted y ie ld s and the data o f Anikina et al [2 8 ]. The data reported for<br />

235u were normalized to the adopted value of their relative standard and<br />

those reported for ^39pu were renormalized to other measurements for mass<br />

142 and above. This is , however, not valid« and rather arbitrary, as the<br />

original normalization is established by a measurement of 142q6 relative to<br />

140ce [45] Md therefore genuine, although in complete disagreement with<br />

other measurements.<br />

233u fissio n yield s of [7 ,2 8 ,4 0 ,4 3 ] were used as adjusted by<br />

Ferguson and O'Kelley [l8 ] and yields recommended by Katcoff [8 ] were<br />

also included in the averaging procedure. Thus, for example, the relative<br />

Xe yields of Wanless and Thode [ 9] are included 3 times: as adjusted by<br />

Katcoff [ 8 ] , Petruska et al [10] and Farrar and Tomlinson [3 8 ]. Radiochemical<br />

measurements before i 960 were not used, later ones were averaged<br />

together with mass spectrometric data, but a few outstanding values were excluded<br />

from the mean.<br />

Meek and Rider [22] evaluated not only chain y ield s but y ield s fo r a ll<br />

fis s io n products by combining experimental resu lts with charge d istribu tion<br />

theory and decay schemes. They used essen tia lly the same experimental<br />

data and renormalizations as Rider et al [2 0 ], except that they included<br />

some more recent measurements, and therefore the discussion shall not be<br />

repeated. But as they separated y ield s o f isobars within the same mass<br />

chain sometimes lower y ie ld s o f radioactive precursors o f fis s io n products<br />

were allowed fo r , which are not consistent with charge distribu tion<br />

theory. When d ifferen ces were too large, y ie ld s o f isobars were averaged.<br />

In no case was the cumulative y ie ld o f a daughter allowed to be smaller<br />

than the cumulative y ie ld o f it s parent. As Rider et al [20] they used<br />

y ie ld s estimated by Weaver et al [95] f ° r masses not covered by measurements.<br />

These estimates are, however, based on the e a rlie r evaluation o f K atcoff<br />

and do not agree with in terpolation s between more recent measurements.


<strong>IAEA</strong>-SM-170/13 521<br />

In the discussion of their evaluation, Meek and Rider state that<br />

the unweighted averaging of data is not satisfactory and should only be<br />

considered as preliminary. They propose for a later evaluation estimates<br />

of uncertainties of individual experiments to obtain weighted averages.<br />

They also suggest the use of improved Gaussian charge distributions and<br />

calculations of unmeasured y ield s. We were only recently informed that in<br />

the meantime Meek and Rider have published a new evaluation [4 9 ]. Unfortunately<br />

th is is not yet available to us and can therefore not be<br />

discussed for comparison.<br />

5 .2 . Discussion of evaluation procedures<br />

Discrepancies among evaluations do not only arise from the inclusion<br />

of different experimental data. They are also due to the procedure of<br />

evaluating absolute yield s on a mass by mass basis. Differences in renormalizations<br />

of experimental data lead to different absolute yields<br />

that are compared. Depending further on the number of radiochemical<br />

measurements included, individual yield s that show best agreement w ill<br />

also be different in the evaluations. I t w ill be shown which consequences<br />

th is procedure has and how the resulting drawbacks can be avoided.<br />

Mass spectrometrically determined relative yield s o f the isotopes of<br />

one element agree, with some exceptions, also actually within 1 % . Discrepancies<br />

due to decay or neutron capture can usually be corrected. Errors<br />

due to contamination of naturally occurring stable isotopes can often be<br />

detected by intercomparison of these relative yield s.<br />

For the linking of relative element yield s by isotope dilution, isobaric<br />

technique or integral mass spectrographic method,the actual agreement<br />

among measurements is not as good. In the case of the isobaric technique<br />

ratios can be adjusted with the aid of better known h alf liv e s. Relative<br />

yield s obtained by the fir s t two methods agree generally s t i l l within a few<br />

percent. The consistency of data sets can again be checked by intercom-<br />

parison and discrepant values can be excluded.<br />

Poorest agreement show absolute y ield s. Exceptions are the data for<br />

[1 0 ,1 1 ,3 7 ,3 8 ,5 ,2 1 ], which is also reflected in the relatively good<br />

agreement among evaluations, and for * Ри[5с1,6Л,21,118] . The values<br />

of absolute yields depend on the way, thqywere obtained. It has been<br />

shown in chapter 4 that these are widely different and not always straight<br />

forward. I f the normalization technique is used, absolute yields depend<br />

also on errors introduced with the linking of relative element y ield s.<br />

Part of the mass yield curve w ill be lower, the other part higher than<br />

that determined in other experiments.<br />

Discrepancies in absolute yield s constitute a source o f error in<br />

evaluations. Measurements, which show good agreement in relative y ield s,<br />

may disagree, i f only absolute yield s are compared. On the other hand<br />

measurements, which disagree in a comparison of relative yield s may<br />

coincide with different sets of other data at different mass numbers,<br />

including radiochemical measurements. These coincidences may not only<br />

influence renormalizations, but can lead to preferred values, which are<br />

not consistent with relative mass spectrometric y ield s.<br />

The accuracy of more recent radiochemically determined yields depends<br />

mainly on the accuracy o f h alf l i f e values used, the determination of<br />

the number of fissio n s and the decay curve resolution. I f this is satisfactory,<br />

absolute yield s can be o f an accuracy comparable to some single<br />

absolute mass spectrometric y ie ld s. But as they are measured only for<br />

certain mass numbers and not for stable isotopes, their inclusion in averages<br />

may distort relative yield s well established by mass spectrometric measurements.


522 LAMMER and EDER<br />

In our work [4*51] the interpretation of gamma spectrometric<br />

measurements on burnt fuel elements is based on activity ratios of fission<br />

products listed in the introduction (l.). This method avoids large<br />

corrections that have to be applied in a determination of absolute<br />

activities. Therefore the accuracy of relative yields is most important<br />

for our work. For this reason and in order to avoid errors introduced if<br />

only absolute yields are compared, we concluded that the best suitable<br />

evaluation method would be to start with arbitrarily normalized relative<br />

mass spectrometric measurements and establish the shape of the yield curve<br />

in the peak regions in this way. These relative yields can then be normalized<br />

with the aid of absolute yields.Radiochemical yields should only be used<br />

for the final normalization and as a check of relative and absolute yields<br />

obtained in this manner. An evaluation based on these considerations was<br />

started in 1969 and the procedure used is outlined in the next chapter.<br />

Independent from our work Walker made an evaluation based on similar<br />

conclusions. The first set of evaluated yields for ^35u Was presented in<br />

197O [54]. This paper includes a detailed description of the treatment of<br />

experimental data and results of individual steps in his evaluation procedure.<br />

He normalized experimental mass spectrometric yields of different<br />

authors to agree in the sum of Zr yields for the light mass peak and in the<br />

sum of Nd yields for the heavy mass Peak. This selection is reasonable, as<br />

these elements cover the greatest parts of the respective mass peaks. By<br />

a selection of consistent relative yields he obtained the shape of the main<br />

portions of the mass peaks and normalized them as a group so that the sum<br />

aver each mass peak is 100$.<br />

Walkers evaluation would have been adequate for our work, had the results<br />

been available earlier. However, we learnt about the paper presented at<br />

the Helsinki Conference [54] only almost a year later. The evaluations<br />

of yields from other fissile isotopes were not published before last<br />

year [55^] and are still not yet available to us. These results could<br />

therefore not be compared to our evaluation, but will probably be presented<br />

at this conference [56]. Thus, our present calculation was carried out as a byproduct<br />

of our investigations of irradiated fuel elements.<br />

6. PROPOSAL <strong>OF</strong> EVALUATION PROCEDURES<br />

6.1. The present evaluation procedure<br />

The principle has already been outlined in the previous chapter.<br />

Some details shall be given as information to the recommended yields<br />

shown in tables IV to VII. The following evaluation procedure was<br />

adopted:<br />

step 1: Mass spectrometric measurements were collected first and corrected,<br />

where possible, for differences in cross section and half life<br />

values between those used in the original work and those shown in table II.<br />

The cross section data shown in this table are based on Walker's comprehensive<br />

compilation [55a] and only updated for later measurements. For<br />

fission products,where no measurements are available, the capture cross<br />

sections calculated by Cook [58] are used. The half life Values are based<br />

on the compilation of Martin and Blichert-Toft [52]» but several more<br />

recent measurements were incorporated in a new evaluation carried out by<br />

one of us. The complete set of fission product half lives above 1 day will<br />

be published later as SGAE report. Table II includes values based on publications<br />

issued after the fission yield evaluation was started. Readjustments<br />

were made later, if necessary. The corrections to the published yield


<strong>IAEA</strong>-SM-170/13 523<br />

data have been calculated with the aid of the computer programme CHAIN,<br />

briefly described in [4], by simulating the special irradiation conditions<br />

as given by the authors of the yield data.<br />

Step 2: Corrected sets of relative mass spectrometric yields were<br />

compared and checked for consistencies. Lata which suffered from incomplete<br />

or out of date corrections, and where no readjustment was possible, were<br />

rejected as well as those measurements that obviously disagreed severely<br />

with others.<br />

Step 3* Relative yields of the isotopes of individual elements were<br />

averaged first. If sufficient measurements were available for comparison<br />

only consistent ratios were selected.<br />

Step 4s <strong>Data</strong> for linking relative element yields were compared next.<br />

As stated in 5*2 the agreement is not so good for these data. Therefore<br />

also ratio measurements (see section 3-3) were used for fissile<br />

isotopes other than 235u, mainly to serve as a check. In some cases they<br />

were also included in the average, if their accuracy is comparable to that<br />

of isotope dilution data. Here the selection of preferred yields was not<br />

so easy, due to poorer overall agreement. Individual examples will be<br />

given in chapter 7-<br />

Step 5* Relative element yields were linked according to the data<br />

obtained from step 4. This was adopted as especially in the experiments<br />

carried out at Mo Master University [9-17» 37,38,40] the samples used for<br />

isotope dilution measurements were not the same as those used for measurements<br />

of the isotopic distributions of fission products, or were even obtained<br />

in different experiments. Also the higher precision of xelative<br />

measurements can be maintained.<br />

During the actual evaluation this step had to be modified slightly.<br />

The procedure outlined above led to some disagreement between isotope<br />

dilution data and isobaric yields. Therefore neighbouring elements had to<br />

be adjusted together. But final yield ratios were always checked against<br />

those obtained in step 3»<br />

Step 6: The original idea was to normalize the groups of relative<br />

yields to most accurate absolute yields and was applied to the first preliminary<br />

results used for the calculations. We learnt from Walker's evaluation<br />

[54] that sum of yields not measured mass spectrometrically was 11.015$<br />

(of which 6.16$ is the well known 99Mo yield,)for the light mass peak and<br />

only 3.635$ the heavy mass peak. Therefore this method of normalization<br />

seems to be well justified and was adopted in our first complete evaluation<br />

of 233u and 235u fission yields.<br />

The final normalization was checked in several ways:<br />

- The separate normalization of each mass peak was checked by<br />

comparing isotope dilution data of several isotopes firom the light and<br />

heavy mass peak with the adopted values. This showed systematic deviations<br />

of the order of 1 - 2$.<br />

- The adopted absolute y ie ld s were compared to most r e lia b le absolute<br />

measurements based on determ inations o f the number o f f is s io n s . The agreement<br />

w ith radiochem ical y ie ld s was w ith in the lim it o f th e ir e r ro r s . A comp<br />

a rison w ith mass sp ectrom etric data showed good agreement fo r the heavy<br />

mass peak o f 235u, but again d e v ia tio n s o f the order o f 1-2$ fo r the lig h t<br />

mass peak and fo r both mass peaks o f 233u.


524 LAMMER and EDER<br />

TABLE II. RECOMMENDED FISSION PRODUCT NUCLEAR DATA<br />

fissio n<br />

product h a lf-life<br />

Cross-sections (barn)<br />

typeu thermal“ R es.In t.c<br />

83Kr maxw 200 150<br />

8^Kr 10.73+0.06 a p ile 8<br />

89 Sr 50. 52+0.05 d pile 0.42<br />

9°Sr 2 8 .6 + 0 .4 a p ile 0.8<br />

91* 58. 5I+O.1 2 d p ile 1.4<br />

6З.98+О.1 2 d p ile 1<br />

35.O45+O.OIO d p ile 4<br />

99M0 66.7 +0 .5 h p ile 2<br />

103Ru З9 .З5+О.1О d p ile 10<br />

105Rh 3 5.5 +0.2 h maxw 17000 I7 OOO<br />

106Ru 368.3 +2 .0 d maxw 0.15 2<br />

125sb 2.75+0.04 a p ile 1 .6<br />

131mTe 30 +2 h p ile 0.1<br />

! 3 ! i<br />

8.О5+О.О2 d d maxw 0.94 8<br />

131mXe П . 98+О.О5 d p ile 50<br />

131Xe maxw 100 83О<br />

!3 3 i<br />

20.9 +0.1 h e pile 0.005<br />

133mXe 54 ±2 h pile 50 f<br />

133Xe 5 . 29+O.OI d pile 190<br />

133Cs maxw 29.5 450<br />

135T 6. 585+О.ОО2 h p ile 0.05


T A B L E II (con tin u ed)<br />

fissio n<br />

product<br />

h a lf -life<br />

<strong>IAEA</strong>-SM -170/13<br />

Cross sections (barn)<br />

type Ъ thermal**<br />

135Xe 9 . 172+ O.OO5 h 2200 2. 65x l06 g<br />

13?Cs ЗО.О + 0.2 a p ile 0 .1 1<br />

141Ce 32.55 + 0.02 d p ile 29<br />

143Pr 13.58 + 0.03 d maxw 100 150<br />

143Nd maxw З25 60<br />

Res. Int.<br />

144Ce 284.5 + 0 .4 d maxw 1 2 .2<br />

14 5Nd maxw 45 250<br />

14?Nd 11.00 + 0 .0 3 d p ile 100<br />

14?Pm 2. 623+ 0.001 a maxw 182 h 2400 h<br />

147 Sm maxw 61 646<br />

148% 40. 9 + 0.2 d 1 pile 25000<br />

148Pm 5 .З7 + 0 .0 1 d p ile 3000<br />

149pm 53*08 + 0.05 h p ile 1400 S<br />

14^Sm 2200 42100 g<br />

^ S m maxw 100 240<br />

2200 15000 g<br />

1 52Sm maxw 206 3000<br />

4*9 + 0 .1 a p ile 4040<br />

a Only fissio n products relevant for correction<br />

Ъ 2200 = 2000 m/s cross-sections<br />

maxw = maxwellian average cross-sections at 20.4 С<br />

p ile = reactor spectrum cross-section<br />

с Reduced in fin ite dilute resonance integral (above l /v )<br />

d Branching to 131mXe . U K<br />

e Branching to ^33mXe : 2 .8 fo<br />

f Results o f Reynolds and Emery [53] suggest that this cross section<br />

might be in the order o f lo4 barn.<br />

g Used with g and s factors in Westcott convention<br />

h Production ratios 47*24$ to '*‘4®mPm, 4 )2 .1 (ifо to ^4®gPm<br />

, 148g<br />

i ¥¡o internal transition to Pm<br />

525<br />

с


526 LAMMER and EDER<br />

Radiochemical yield s in the range o f masses 121 to 130 important for<br />

the fin al normalization show very large discrepancies, as can be seen for<br />

i n -the i as-t column of table IV. Measurements in this mass range are very<br />

scarce for other fi s s ile isotopes and the sum of yields in th is mass range<br />

much higher. This introduces considerable uncertainties in the fin al<br />

normalizations. To avoid discrepancies as given above and reduce the overall<br />

uncertainty, the fissio n yield s were reevaluated for both mass peaks together<br />

and fin a lly normalized by a combination o f the two procedures, which w ill<br />

be discussed individually in chapter 7.<br />

As a further check the to ta l number of neutrons (prompt + delayed),<br />

can be calculated from the adapted set of yield s according to :<br />

DT = Mp - L - H<br />

where ^ _ magg numker Qf fis s ile isotope + 1<br />

L = average mass of light fragment<br />

H = average mass of heavy fragment<br />

L + H can be calculated from:<br />

L = I ^ ( mass x .Yield) \ -g _ / 5L(mass x y ield ) j<br />

V 5. yield /l i g h t \ Slyield / heavy<br />

The calculated value of can be compared to recommended values<br />

[4 7 ]. This is , however, not a very meaningful check. On the one hand the<br />

value o f U j derived in this manner is rather sensitive to changes of<br />

individual y ield s. On the other hand errors may cancel. This can be seen from<br />

table I I I , where й ^ calculated from fissio n yield s is compared to [4 7 ].<br />

For 235u was also calculated for the fissio n yields recommended by Meek<br />

and Rider [22] and by Walker [5 4 ]. Differences in L among the evaluations are<br />

compensated by differences in H . The only conclusion that can be drawn from<br />

such a comparisoji is that at least part of the normalization is in error, i f<br />

the calculated и disagrees severly with the recommended value.<br />

TABLE III. COMPARISON <strong>OF</strong> vT VALUES<br />

fis s ile<br />

isotope Source L H<br />

235u<br />

233„<br />

Walker [54]<br />

Meek,Rider [22]<br />

this work<br />

94.855<br />

94.925<br />

94.849<br />

138.650<br />

138.591<br />

138.660<br />

‘" r<br />

2.495<br />

2.483<br />

2.492<br />

recommended<br />

value[47a]a<br />

2.4229+.0066<br />

th is work 93.377 138.159 2.464 2 .4866+. 0069<br />

2»P u th is work 98.814 138.116 З.070 2.8799+. OO9O<br />

a In the 1973 evaluation the new values w ill be<br />

about 0.5$ lower [47b]


<strong>IAEA</strong>-SM-170/13 527<br />

Apart from the fin a l normalization the present evaluation d iffe r s from<br />

that o f Walker [5 4 ] only in two resp ects. Due to the separation o f steps 3<br />

and 4 re la tiv e y ie ld s o f fis s io n products, which were only measured in one<br />

235<br />

experiment, are maintained as published. Examples fo r U are the y ie ld s<br />

o f °Y, 139ва and ^4^-Ce measured only by Farrar et a l. [37|38] and o f •1-35cs<br />

measured only by Petruska et a l. [1 0 ], but the differen ces are only slig h t,<br />

i f the two sets o f y ie ld s are compared in table IV.<br />

The second d ifferen ce is that resu lts o f individual measurements<br />

have been used in our evaluation rather than y ie ld s averaged by the authors.<br />

This has the advantage that more sets o f data are available for comparison<br />

and the internal consistency o f d iffere n t experiments can be<br />

checked. Discrepant values, which may strongly influence the average y ie ld s<br />

o f one experiment, can be excluded. Also a larger number o f determinations<br />

within one experiment can be accounted fo r . This is important, as no weighted<br />

averages are taken in th is evaluation.<br />

This d ifferen ce in procedures is re fle cte d by a comparison o f Xe y ield s<br />

fo r 235u in table IV. These are based on the measurements o f Lisman et al<br />

[ 6 ] . For the determination o f the number o f fis s io n product atoms, and thus<br />

for rela tiv e y ie ld s, they quote about equal accuracies for a ll samples.<br />

The main d ifferen ce in uncertainties among the samples arise from the determination<br />

o f the number o f fissio n s and is accounted for in the weighted<br />

average. The same trend can be observed i f the Xe y ie ld s o f Lisman et a l.<br />

[6 ,2 1 ] determined from the number o f fissio n s (column 6: "F iss") are<br />

compared to those obtained by the normalization technique (column 7 • "Norm")<br />

in table IV.<br />

6.2. Proposal o f an improved evaluation procedure<br />

The drawback o f a "hand" evaluation is that no weighted averages can be<br />

taken. During the evaluation o f “ ■'Pu thermal fis s io n y ie ld s we made the<br />

experience that discrepancies arise which can only be solved rather delib<br />

e ra te ly . Therefore we propose a computerized evaluation o f fissio n<br />

y ie ld s that can simultaneously take account o f a ll correla tion s. However,<br />

in advance to such a com puter-fitting procedure the experimental data<br />

serving as input have to be analyzed ca refu lly and errors have to be<br />

assigned in dividually. Also a p re-selection o f experimental resu lts has<br />

to be done. Such a computer programme could then include the follow ing<br />

features:<br />

- Relative abundanoies o f isotopes should be averaged f i r s t ,<br />

according to step 3 in the previous section. Overall errors should<br />

be calculated.<br />

- Then the y ie ld curve could be adjusted simultaneously using isotope<br />

d ilu tion data, isobaric y ie ld s and measured absolute y ie ld s.<br />

Changes o f the rela tiv e y ie ld s , which were averaged f i r s t , should<br />

only be allowed for within the calculated errors.<br />

- I f there is disagreement among rela tiv e isotop ic y ie ld s, these can<br />

be included in the simultaneous fit t in g procedure to determine, which<br />

value is in error. However, provision has to be made within the<br />

whole procedure that values, where the discrepancies exceed th eir<br />

errors, are not just averaged.<br />

- Boundary conditions are: the to ta l y ie ld curve must ¿urn up to<br />

exactly 200f>, The s p lit between the two mass peaks, M, should be<br />

according to : M


528 LAMMER and EDER<br />

My = mass o f f i s s ile isotope _<br />

\j = average number o f neutrons emitted in symmetric fis s io n near M<br />

Д У 3 = uncertainty in U<br />

These boundary conditions could serve to adjust interpolated and very<br />

uncertain y ie ld s . In addition, charge distribu tion s could be incorporated<br />

into the f i t to allow a check o f experimental isobaric and independent y ie ld s.<br />

7. RESULTS <strong>OF</strong> THE PRESENT EVALUATION<br />

This paper is mainly devoted to a discussion o f evaluation procedures<br />

and a ju s tific a tio n o f the present evaluation method. For the sake o f<br />

completeness our resu lts are also included, but space does not permit<br />

detailed description s o f the treatment and selection o f data. These w ill be<br />

published la ter as SGAE reports. Here only the general information shall be<br />

given together with some special features.<br />

Our recommended y ie ld s fo r 23^U, 233U and 239Pu thermal fis s io n and<br />

fo r 232^h fast fis s io n are compared to other evaluations in tables IV to VII<br />

resp ectiv ely. The data o f Lisman et al are included fo r the reasons given<br />

in chapter 2. Radiochemical measurements are also shown fo r illu stra tio n .<br />

In some cases they are in good agreement, also with our recommended y ie ld s,<br />

others are highly discrepant. Thermal fis s io n y ield s for ^41pu and fa st y ield s<br />

fo r 2ЗЬц аре s t i i i in preparation and only preliminary resu lts available.<br />

Fast fis s io n y ie ld s fo r ^35u and *^9pu were not evaluated, as the complete<br />

set o f y ie ld s measured by Lisman et a l. [21] is presently adequate and<br />

further measurements in other laboratories are in progress.<br />

For the calcu lation o f y ie ld s other than to ta l chain y ie ld s either<br />

measurements o f independent y ie ld s were used as compiled for example by<br />

Wahl et al [48] or those calculated by Crouch [4 9 ]. The cumulative y ie ld o f<br />

135i was derived from the resu lts cf Hawkings et al [5 9 ].<br />

235<br />

7 .1. Thermal fis s io n y ield s o f U<br />

Mass spectrom etric measurements used are those o f Lisman et al [2 1 ,5 7 ],<br />

Rider et al [5 ], Chu [39]* "the origin a l experiments from McMaster University<br />

[9-1 3, 37, 38] and y ield s o f the light mass peak reported by Steinberg and<br />

Glendenin [7 ]- Other measurements were not used for reasons already given<br />

in 4 .1 . The agreement between the selected experiments lis te d above is far<br />

better than that observed for mass spectrometric measurements o f 233u and<br />

239pu y ie ld s.<br />

Yields o f the ligh t and heavy mass peak were normalized a rb itra rily to<br />

the sum o f y ie ld s o f ^45Nd and This starting point was chosen because<br />

Nd isotopes were measured in most experiments and th is sum is not affected<br />

by in su fficie n t correction s fo r decay or neutron capture. Ce and Ba yield s<br />

werelinked to Nd y ield s as a group, because the isotope d ilu tion ra tios for<br />

Ce and Ba were not consistent with the isobaric y ie ld measurements o f Farrar<br />

et al [3 8 ]. For the same reason Sr (Y ), Zr and Mo y ield s were normalized<br />

together. Sm y ie ld s o f Lisman et al [21] were not used, as they disagree with<br />

low flu x measurements.<br />

Relative y ie ld s o f both the lig h t and the heavy mass peak were<br />

normalized together in such a manner that the sum o f y ie ld s in the lig h t


<strong>IAEA</strong>-SM-170/13 529<br />

mass peak only was 100%. The agreement with measured absolute y ield s was<br />

so good ,and the sum o f y ie ld s in the heavy mass peak was in ciden tally<br />

100.0011, that no renormalization was considered necessary.<br />

233<br />

7 .2 . Thermal fis s io n y ie ld s o f U<br />

In th is case the measurements used to establish the y ie ld curve were:<br />

Mass spectrom etric: Lisman et al [2 1 ], Rider et al [5 ], Fleming et al [1 4 ],<br />

B idinosti et al [4 0 ], Anikina et al [28,30,41]<br />

Steinberg and Glendenin [7 ] and Melaika et al [1 3 ].<br />

Ratio measurements: Gordon et al [94] and Bunney and Scadden [9 2 ], a fter<br />

correction for ¿35u reference y ie ld s .<br />

F irst a ll mass spectrom etric data were normalized to t lE sum o f Nd<br />

isotopes, R-values at mass numbers 143 and 144, and the consistency checked.<br />

The y ie ld s o f Anikina et al [28,30,41] could be corrected according to the<br />

233u depletion data given in [42] together with an approximate irradiation<br />

time and according to the decay correction s applied in the origin a l work<br />

and the h a lf liv e s used, as given in [3 0 ,4 1 ]. Only the isotope d ilu tion<br />

values o f B idin osti et al [40] were used fo r th is check.<br />

The ra tio s o f y ie ld s in the lig h t mass peak and o f Cs isotopes to those<br />

o f Nd are in reasonable agreement for the data o f Lisman [2 1 ], Rider [5 ]i<br />

Gordon [94] and the isotope d ilu tion values o f Anikina [30,41]- The rela tiv e<br />

Sr and Cs y ie ld s o f B idin osti et al are about 1C$ lower than the averages o f<br />

other data. As no d eta ils are given in th eir p u blication , th eir isotope<br />

d ilu tion values were excluded and only re la tiv e element y ie ld s used in cases,<br />

where no remarkable correction s were required. Yields obtained by the integral<br />

spectrographic method [30,43] were not used, as even re la tiv e y ie ld s d isagreed<br />

severely with other measurements, and sources o f error o f th is method<br />

are not s u ffic ie n tly known.<br />

As the remaining sets o f data are reasonably con sisten t, they were adjusted<br />

to agree in sums o f y ie ld s o f both mass peaks and the general procedure<br />

was follow ed as described in section 6.1.<br />

Special attention had to be paid to Sm y ie ld s . No mass spectrometric<br />

measurements were made on samples irradiated in low integrated neutron<br />

flu x . 147Sm y ie ld s obtained in these experiments require large correction s<br />

fo r neutron capture and decay and were therefore considered no more<br />

r e lia b le than the 147щ y ie ld s obtained from ra tio measurements. The<br />

outstanding high value o f Melaika et al [13] was not used. Calculated<br />

charge d istrib u tion s [49] indicate that independent y ie ld s o f 148pm<br />

and 50pm + 150gm could be 0.3$ o f ^4 jjd and °ffo o f 15®Nd resp ectively.<br />

Corrections fo r natural Sm contamination based on th is value fo r 148gm<br />

would lead to a "contamination correction " for 154gra Qf about 10 - 15% o f<br />

it s y ie ld . Sim ilarly, the amount o f 150gra preSent in mass spectrometric<br />

measurements is generally added to the 149gm y ie ld , but the calculated<br />

independent y ie ld s [49] o f 150pm and ! 50gm together would be about 6$<br />

o f the 149sm y ie ld . As these independent y ie ld s have not yet been confirmed<br />

experimentally, no correction s were applied and the mass 149 y ie ld<br />

shown in table V has to be considered as the sum o f mass 149 cumulative<br />

y ie ld and 15°Pm + 15tfem independent yield.<br />

151<br />

Generally correction s fo r neutron capture in Sm are not very relia<br />

b le fo r high neutron flu x irradia tion s, as it e cross section depends<br />

strongly on the neutron spectrum. As the 235u y ie ld s measured by Bunney


530 LAMMER and EDER<br />

T A B LE IV. 235 U FISSION YIELDS (THERMAL)<br />

Mass<br />

No.<br />

this<br />

work<br />

V/alker<br />

[44]<br />

Meek<br />

Rider<br />

[22]<br />

Croal]<br />

' [19]<br />

72 I6xl0_5 1.6xlO~5 1.6xl0-5<br />

73 0.0001 0.0001 0.00011<br />

74 0.00035 0.006° О.ООО35 0.00035<br />

75 0.001c 0.0012d<br />

76 0.003° 0. 0025a<br />

77 0.008 0.008 О.ОО83 О.ОО8З<br />

78 0.02 0.02 0.02 0.020<br />

79 О.О56 О.О56 О.О56 О.О56<br />

80 0.11° 0.11° 0.094d<br />

Lisman et al<br />

[21,57]<br />

а Ъ<br />

Fiss Norm<br />

radiochemical<br />

measurements<br />

81 0.22 0.22 0.18 0.22 .22+.02 [62]<br />

82 0.35 0.35 0. 24d<br />

83 О.5З2 О.5З О.52 0.55 0.526 0.529 . 56+. 04 [62]<br />

84 1.000 1.00 О.97 1.00 1.00 1.01 .93+.05 [62]<br />

85Kr<br />

85<br />

86<br />

87Br<br />

8?Rb<br />

0.288<br />

1.328<br />

I .97<br />

2.56<br />

0.273<br />

1.33<br />

I .96<br />

2.55.<br />

O.27I<br />

1.30 1.ЗО<br />

I .89<br />

2.53<br />

2.ОЗ<br />

3.2<br />

2.54<br />

0.2880<br />

1.32 1.33<br />

I .94<br />

2.54<br />

1.95<br />

2.57<br />

88 3.62 3.62 З.58 З.55 3.61 3.61<br />

. 273+. 004 [63]<br />

89 4.84 4.78 4.76 4.75 4 . 78+.O7 [64]<br />

90 5.91 5.88 5.83 5-55 5. 9О 5.93 4.02+.11 [65]®<br />

5. 61+.22 [6 6 ]f<br />

91 5 . 9З 5.91 5 . 9О 5.8 5.9О 5.92 5. 62+. 11[ 67] , 6 . 16[ 68]<br />

92 5.98 6.02 5.98 6.03 5-95 5.98<br />

93 6.39 6.44 6.39 6.51 6.34 6.37<br />

94 6.45 6.47 6.44 6. 5О 6.41 6.45<br />

95 6.54 6.52 6.41 6.50 6.45 6.51 6.0+.3[69]<br />

96 6.29 6.33 6.29 6.40 6.23 6.26<br />

97 6.00 6.05 6.21 5-9 5.86 5.92 5 .4 2 [64],6 .2 [69]<br />

98 5.81 5.78 5.86 5-9 5-77 5.83<br />

99 6.11 6.16 6.16 6.14 6. 14S11 6.24 6. 16+.08 [ 70]Ц<br />

6.03+.08 [5 9 ]g


T A B L E IV (continu ed)<br />

Mass<br />

No.<br />

100<br />

101<br />

102<br />

103<br />

104<br />

105<br />

106<br />

107<br />

108<br />

109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

125<br />

126<br />

t h i s<br />

work<br />

6.32<br />

5.05<br />

4.19<br />

2.95<br />

1.83<br />

0.90<br />

0.387<br />

0. 17°<br />

0. 057e<br />

0.024<br />

0. 017°<br />

0.014<br />

0.010<br />

0.004<br />

0.012<br />

0.011<br />

0.011<br />

0.011<br />

0.011<br />

0.012<br />

0.013<br />

0.014<br />

0.015<br />

0.0164<br />

0.024<br />

0.028<br />

0.063<br />

W a lk e r<br />

[44]<br />

6.33<br />

5.07<br />

4.19<br />

2.85<br />

1.83<br />

О.83<br />

0.39<br />

O.19<br />

0. 07°<br />

0.03<br />

0.022°<br />

0.018<br />

0.016°<br />

0.014°<br />

0.012°<br />

0.011<br />

0.011°<br />

0.011°<br />

0.011°<br />

0.011°<br />

0.012°<br />

0.014<br />

0. 015°<br />

0.018<br />

0.022°<br />

0.029<br />

0.06<br />

Meek<br />

R i d e r<br />

[22]<br />

6.44<br />

5 .О2<br />

4.17<br />

3.0<br />

1.81<br />

O.9O<br />

0.39<br />

O.I9<br />

0. 07d<br />

0.03<br />

0 . 0 l 8 d<br />

O.OI9<br />

0.010<br />

0.016<br />

0.014<br />

0.0104<br />

0.018<br />

0.011<br />

0.014<br />

0.014<br />

0.014<br />

0.014<br />

0.015<br />

0.016<br />

0.018<br />

0.021<br />

0.032<br />

<strong>IAEA</strong>-SM-170/13 531<br />

C r o a l l<br />

[19]<br />

6.50<br />

5.2<br />

4 .1<br />

2.85<br />

0.83<br />

0.38<br />

0.19<br />

0.03<br />

0.018<br />

0.0104<br />

0.015<br />

0.021<br />

L is m a n e t a l<br />

[21,57]<br />

F i s s a Norm<br />

6.24<br />

5.ОЗ<br />

4 .I 9<br />

1.82<br />

O.O29I<br />

6.30<br />

5 .О8<br />

4.21<br />

1.83<br />

0.389<br />

r a d i o c h e m i c a l<br />

m e asu rem e nts<br />

2 .9 2 [7 l]h, 2.97[72]h<br />

1 .4 [7 3 ],3 .7 [7 4 ]<br />

. 85+. 20 [ 7 3]<br />

.39¿.03 [71]<br />

.024+. 003 [75]<br />

.014+. 002 [75]<br />

.012+.001 [75]<br />

.0104[76], .0 ll8 [7 4 ]<br />

.010 [ 74]<br />

.0145+.0010[31]1<br />

,013+.002[77]i<br />

,0164+.0012 [ 31]<br />

.0277 '21' hj .021 [79]<br />

.0254 ж h<br />

U .036 ‘78'<br />

.0297 Ж Л<br />

.018 J 4 .


532 LAMMER and EDER<br />

T A B L E IV (continued)<br />

Mass<br />

No.<br />

th is<br />

work<br />

126 Sn 0.060<br />

Walker<br />

[44]<br />

Meek<br />

Rider<br />

[22]<br />

Croall<br />

[19]<br />

Lisméin et al<br />

[21,57]<br />

F issa Norm6<br />

radiochemical<br />

measurements<br />

127 0.11 0.13 0.137 0.10 Sn .143+. 028"80"<br />

. 128+.015 !31°<br />

sb . 105+. 004 '31n<br />

.144+.020 ‘ 8 l'<br />

128 0.36 0.39 О.46 .36 [3 1 ]1<br />

12*sb<br />

129 j.<br />

0.63<br />

0.64<br />

0.90 1.0<br />

1.0<br />

1.12<br />

0.9<br />

.39+.03 [82]<br />

. 63+.О3 [31]<br />

I . 12+.28 [ 81]<br />

.9 + .2 [83]<br />

130 2.00 2.0 2.1 2.0 2.O+.5 [84]<br />

131 2.82 2.79 2.91 2.92 2.79 2.86 3.02[85],3.30[86]<br />

132 4.20 4.16 4.26 4.37 4 . I 6 4.27 4 .49[85],4.21[86]<br />

133 6.73 6.75 6.69 6. 6О 6.73 6.76 6.62[85], 7.48[86]<br />

6. 62[ 87] , 6.75 [67]<br />

134 7.67 7-57 7.8 0 8.03 7 .5 1 7.73 8.00 [ 85]<br />

135 6.55 6.51 6.43 6.41 6.37 [ 85]<br />

136 6.18 6.10 6.46 6.44<br />

137 6.26 6.24 6.20 6.20 6.28 6.32 6.13[67],6.22[88]<br />

6.23 + .07 [6]J<br />

138 6.82 6.80 6.71 7.22 6.80 6.83<br />

139Ba 6.55 6 .56 6.48 6.55 Ba 6. 55+.10 [ 70]<br />

139La 6.55 6.48 8.2 6 . 57+.02 [67]<br />

140 6.37 6.34 6.34 6.40 6.31 6.35 6 .36[88], 6.35[89]<br />

6.36L90], 6.36Î91J<br />

141Ce 5.85 6.10 6.0 5.50 5. 5З<br />

141Pr 5-85 5-84 6.10 5-65<br />

142 5.91 5.92 5.90 5-9 5.88 5.90<br />

143 5-92 5. 9З 5.91 5-9 5.90 5.92 5.67[89], 5.93 [92]<br />

144 5-44 5.41 5.40 5.62 5.42 5.45<br />

145 З.91 З.92 3.88 3.95 3.86 3.89<br />

146 2.96 2.97 2.95 3.05 2.95 2.97


T A B L E IV (continued)<br />

Mass<br />

No.<br />

147Nd<br />

147 sm<br />

th is<br />

work<br />

2.22<br />

2.22<br />

Walker<br />

[44]<br />

2.23<br />

2.23<br />

Meek<br />

Rider<br />

[ 22]<br />

2.19<br />

2.19<br />

<strong>IAEA</strong>-SM-170/13 533<br />

Croal1<br />

[19]<br />

Lisman et al<br />

[21,57]<br />

a ,r b<br />

Fxss biorm<br />

2.24<br />

2. 3О 2.12 2.14<br />

148 1.67 1.67 1.67 1.71 I .69 1.70<br />

radiochemical<br />

measurement s<br />

2.23 [92]<br />

149 I .05 1.06 1.04 1.1 1.00 1.01 I .05 [92]<br />

15c 0.644 О.65 0.65 0.67 О..638 0.640<br />

151 0.407 0.42 0.43 0.43 0.408 0.409<br />

152 0.262 0.26 0.24 0.265 0.212 0.213<br />

153 0.163 0.164 O.158 0.15 .160 [ 92]<br />

154 О.О72 0.073 0.064 О.О77 О.О56З О.О564<br />

155 О.О32 0.032 0.031 О.ОЗЗ .031 [74]<br />

156 0.014 0.013 0.0134 0.014 .0138 Г92]<br />

.0125+^0010 [93]<br />

157 0.0062 0.006 0.0066 0.0061 Eu .00618 [ 92]<br />

.0060 + .0007 [ 83]<br />

158 O.OO3I О.ОО25 0.0037 0.002 .0031 +.0006 [ 93]<br />

159 O.OOIO5 0.001 0.00105 0.001 Gd .00101 [92]<br />

160 0. 00035е 0.001° О.ОООЗЗ<br />

161 9xl0-5 8.2xlO~5 8.7xlO-5 8.8 x 10-5 [ 92]<br />

a Y i e l d s c a l c u l a t e d fro m num b er o f f i s s i o n s<br />

b Y i e l d s o b t a i n e d b y n o r m a l i z a t i o n t e c h n iq u e ( s e e t e x t )<br />

с I n t e r p o l a t e d v a l u e s<br />

d C a l c u l a t e d y i e l d s<br />

e Corrected for h a lf l i f e ( 28.5 a instead o f 19.9 a.) : 5*78<br />

Adjusted for reference y ie ld s : 5*85 + 0.16<br />

f I f a h a lf l i f e o f 28.5 a instead o f 28 a is used th is y ie ld<br />

becomes 5 -7 2 .<br />

g 99тс y ie ld determined spectrophotom etrically<br />

h Used for recommended y ie ld<br />

i Total chain y ie ld<br />

j Corrected fo r "У-гау in ten sity, as given in [52 ]


534 LAMMER and EDER<br />

TABLE V. 233U FISSION YIELDS (THERMAL)<br />

Mass<br />

No.<br />

This<br />

vjork<br />

Rider<br />

et al<br />

[ 20]<br />

72 0. 0001° 9 . 9xlO-5<br />

73 0.00033° 0.00033°<br />

74 0. 0009° 0. 0009°<br />

75 0.0023° 0. 0023°<br />

Croall<br />

[19]<br />

76 0. 0068° 0. 0068° •<br />

Ferguson.<br />

O'Kelly<br />

[ 18]<br />

» d<br />

0.03<br />

Lisman et al<br />

[6 ,21,5 7] b<br />

Fiss Norm<br />

radiochemical<br />

measurements<br />

77 0.02 O.OI9 0.02 0.02 .0 l9 [9 6 ]g , .0 2 i[9 6 ]h<br />

78 0.04e 0. 10f 0. 1e<br />

79 0.09® 0. 19f 0.19 e<br />

80 0. 18е 0. 28f 0. 28e<br />

81 0.33 0. 46f 0.34 0.46e .33+0.04 [62]<br />

82 0. 60е 0. 69f 0.69e<br />

83 1.023 I .05 1.14 I .14 1.03 1.02<br />

84<br />

85Kr<br />

1.69 1.76 1.91. I .91 1.73 I .71 .77+.08 [97] (Br)<br />

0.507 O.512<br />

85 2.19 2.42 2.45 2.46 2.22 2.21<br />

86 2.86 2.96 3.32 3.20 2.90 2.88<br />

87 4.01 4-47 4.50 4.47 4.06 4.04<br />

88 5-54 5.37 5-36 5-36 5-57 5.56<br />

89 6.41 6.10 5.90 6.28 5.56[98],5.60[99]<br />

6 . 6 6 [ i o o ] , 6 . 5 [ 9 6 ]<br />

90 6.88 6.30 6.2 6.18 6.96 6.96 6.19[98], 6 .53[99]<br />

91Sr 6.50 5.6 6.27[97],4.82[98]<br />

9!y 6.52 6.0 6.37[100] (Sr)<br />

91Zr 6.52 6.60 6.45 6.57 6.60 6.64 3-55[98] (Y)<br />

92 6.65 6.63 6.60 6.63 6.69 6.69 6.76+.50[97](Sr)<br />

93 7.04 7.02 6. 9О 7.02 7.09 7 .О8 6.35+.50[97](Y)<br />

94 6.81 6.70 6. 7 О 6 .70 6.91 6.92<br />

95Zr 6.21 6 .13 6.10 6.22 5.01[98],6.15[99]<br />

9"*Mo 6.21 6 .13 6.15 6.22 6.40 6. 3О 5 . 16[ 9 8 ] (m > )<br />

96 5.73 5.64 5.64 5-64 5-84 5 . 8О


T A B L E V (continued)<br />

Mass<br />

Ko.<br />

This<br />

work<br />

Rider<br />

et al<br />

[ 20]<br />

Croall<br />

[19]<br />

<strong>IAEA</strong>-SM-170/13 535<br />

Ferguson<br />

O'Kelly<br />

[ 18]<br />

Lisman et al<br />

[ 6 , 2 1, 57]<br />

F issa Norm®<br />

97 5-39 5-59 5-46 5-48 5.52 5 . 4З<br />

98 5.14 5.25 5.20 5.25 5.22 5 . I 6<br />

radiochemical<br />

measurements<br />

99 4.89 5.12 4.96 4.96 5. I 6 5 .О6 4 .9 6 [1 0 l],5 .7 7 [9 7 ]<br />

100 4.38 4.49 4.45 4-49 4-46 4 . 4I<br />

101 3.19 3.10 2.90 2.84 3.27 3.24<br />

102 2 .4 2 2.38 2.22 2.16 2.48 2.44<br />

103 1.60 1.63 1.60 1.6 1 .6 [96]g ,1.78[99]<br />

2. 02[ 98]<br />

104<br />

105<br />

1.02<br />

0.548<br />

1.00<br />

0. 50f<br />

0.95<br />

O.I5<br />

О.92<br />

0 .5e<br />

I .04 1.01<br />

.146+. 037 [98]<br />

106 0.255 0.25 О.24 0.22 0.262 0.260 • 259[ 98] , . 28[ 96] g<br />

•23[99]<br />

107 0. 12e 0. 12f 0. 12e<br />

108 0. 065e 0. 07f 0.07e<br />

109<br />

110<br />

0.04 e<br />

о . о з<br />

O.O4O<br />

0.03f<br />

0.047 0.04<br />

О.ОЗ®<br />

•04[96]g<br />

i l l 0.021 0.023 0.021 0.03 .025[96]g ,.020[98]<br />

. 0187+.0002 [ 97]<br />

112 0.015 0.016 0.014 0.02 . 0i 25[ 97] , . 0l 6[ 96] g<br />

113 0. 015f 0. 02f 0. 02e<br />

114 0. 020e 0. 02f 0. 02e<br />

115 0.021 0.02 O.OI7 0.02 . 020[ 96] g , . 02l [ 96] h<br />

116 0. 0216 0.01f 0. 01e<br />

117 О.О22' 0.01f 0. 01e<br />

118<br />

119<br />

0. 022*<br />

k<br />

О.О23<br />

0. 02f<br />

0. 02f<br />

0. 02e<br />

0. 02e<br />

120 O.O2515 0. 02f 0. 02e<br />

121 0.027 e 0.018 0. 02e<br />

122 о . о з о к 0 .03f 0.03e<br />

123 0. 0386 0.04f 0.04e<br />

124 0.0501* 0. 05f 0. 05e<br />

121gSn .O l8[96]g


536 LAMMER and EDER<br />

T A B L E V (continued)<br />

Mass This Rider Croall Ferguson, Lisman et a]<br />

No. work et a l.<br />

£ 20]<br />

[19] O'Kelly<br />

[ 18]<br />

[6 ,21,57] ,<br />

Fiss Norm<br />

radiochemical<br />

measurements<br />

125 0. 1101 0.05 0.060 0. 1e 0.116 125sSn .050[96]g<br />

126 0. 18e 0.26f 0.26e<br />

127 0. 50e 0. 6l f 0.59 0. 61e .59 +.08 [ 98]<br />

128 1. 00e i . 05f 1. 05e<br />

f<br />

129 1. 56e 1 .7 0 1.7e<br />

f<br />

130 2.40e 2.33 2.33e<br />

131 З.54 3.46 3.55 3.41 З.51 З.50<br />

T "50<br />

2.84[98], 3 .14[99]<br />

3 Te 4 .57j 4.32 4.32[98],4.18[99]<br />

132 4.84 4.74 4.80 4.68 4.88 4.86<br />

133I 6.00^ 3.4 3.37[98],6.63[99]<br />

133Cs 6.03 5.96 5.90 5.88 6.06 6.05<br />

134<br />

TTC<br />

135T<br />

6. I 5<br />

•<br />

6.09 6.0 5-99 6.13 6.10 6.23[99] ( I )<br />

4.89J 4 .78 4.84+.07[10?]<br />

135 6.27 5-2 6.0 5-84 I : 4. 64[99j,5 -2i [ 103]<br />

136 6.82 6.68 6.70 6.68<br />

137 6.85 6.58 6.65 6.64 6. 9З 6.94 5.39[98],6.13[104]<br />

138 6.00 6.3 6.4 7 .1 0 5-97 6.00<br />

139 6.34 6.64 5.9 6.61 6.34 [100]<br />

140Ba 6.35j 6.59 6.25 6 .3 7 [l0 2 ],6.01 [99]<br />

140La 6.45 6.70<br />

140.,<br />

6.45 6.59 6 .71 6 .71 6. 5З 6.48<br />

141 6. 56 6.77 6.40 6.24 5.30[98],6.23[99]<br />

7.00[100]<br />

142 6. 61 6.72 6.79 6.79 6 .71 6 .61<br />

143 5.88 5.86 5.9 5.91 5.85 5.82 6.99 [98]<br />

144Ce 4.60^ 4.62 4.60 4.51 4.67 4.66 3.69[98],4.63[99]<br />

144Kd 4.64 4.62 4.60 4.67 4.66<br />

145 3.39 3.38 3.46 3.38 3.37 3.36<br />

146 2.53 2.54 2.60 2.58 2.53 2.52<br />

147 1.80 1.86 I .92 1.93 1.78 1.74


T A B L E V (continued)<br />

Mass<br />

No.<br />

This<br />

work<br />

Rider<br />

et al<br />

[ 20]<br />

Croall<br />

[19]<br />

<strong>IAEA</strong>-SM-170/13 537<br />

Ferguson<br />

0 'K elly<br />

[ 18]<br />

Lisman et al<br />

[6,21,57]<br />

Fissa Normb<br />

148 1.30 I .29 1.33 1.28 1.30 1 .ЗО<br />

149 0.76 0.77 0.80 0.77 0.773 0.744<br />

150 O.5OI O.51 О.56 0.55 O.5OO 0.497<br />

151 О.32 0.36 0.33 9.З 5 0.365 О.364<br />

152 0.22 0.20 0.215 0.22 0.186 O.185<br />

153 O.IO7 0.12 0.13 0. I 5<br />

154 0.0449 0.03 0.048 0.047 О.О458 0.0445<br />

radiochemical<br />

measurements<br />

155 0.026 О.ОЗ О.ОЗ<br />

156 0. 012^ 0.0116 0.0121 0.01 Eu .0117 [ 92]<br />

157 О.ОО72 О.ОО635 0.00635 4<br />

158 0.0024® 0.0024<br />

159Gd O.OOO9I 0.000905 0.00091 < 0.01<br />

160<br />

l 6l„,_<br />

Tb<br />

0.00035®<br />

0.000118<br />

0.0003<br />

0.00017 0.00017 ■<br />

a F i s s i o n y i e l d c a l c u l a t e d fro m num b er o f f i s s i o n s<br />

b F i s s i o n y i e l d o b t a in e d b y n o r m a l i z a t i o n t e c h n iq u e (s e e t e x t )<br />

с C a l c u l a t e d y i e l d s o f W ea ver e t a l [95]<br />

d E x t r a p o l a t e d y i e l d s<br />

e I n t e r p o l a t e d y i e l d s<br />

f Assumed y ield s taken from reference [ l 8]<br />

g <strong>Data</strong> from [9 6 ], as revised by Steinberg [7 ]<br />

h <strong>Data</strong> from [9 6 ], as revised by K atcoff [ 8]<br />

i Reference [ 6] , corrected fo r У -г а у intensity as given in [52]<br />

j ^3^Te, '*'33I , ^^Ba, '*'^0e and "'"'^Eu are assumed to be 94. 5$i<br />

99-5$. 78?»i 98. 5/W 99-2% and 96. 5% o f "the tota l chain y ie ld resp ectively<br />

к Relative mass spectrom etric y ie ld s o f reference [61] normalized to y ield s<br />

o f masses 115 and 125.


538 LAMMER and EDER<br />

T A B L E VI. 239Pu THERM AL FISSION YIELDS<br />

Mass<br />

Wo.<br />

th is<br />

work<br />

Meek<br />

Rider<br />

[ 22]<br />

Croall<br />

[19]<br />

Katс o ff<br />

[ 8]<br />

Lisman<br />

et a la<br />

[21,57]<br />

radiochemical<br />

measurements<br />

72 0.00011 0.00011 0.00012 0.00012 L.1x10_4[74]<br />

73 0 . 00025Ъ 0 . 00025е<br />

74 0 . 000б2Ъ 0 . 00062°<br />

75 0.0016Ъ 0.0014С<br />

76 0.0035Ъ 0 . 0031е<br />

77 0.0075 0.0072 0.0073 •0075[107]<br />

78 0.028 0.026 О.О25 ,028[107]<br />

79 0 . 06Ъ 0.025°<br />

80 о . и ъ 0 . 048е<br />

81 0.186 0 .178 0.182 . 186+0 . 025[ 108]<br />

82 0.24Ъ 0.16е<br />

83 0.298 0.29 О.29 О.29 0.301 B r.312[107],.31l[l08]<br />

84 0.482 0.47 О.47 0.47 0.487 Br .419[108]<br />

85кг 0.129 0.12 O .I27 0.130 .099±.004[63]<br />

9 1 ?<br />

91Zr<br />

85 0.566 О.56 О.54 О.5З9 0.574<br />

86 0.764 0.75 0.75 О.76 0 .770<br />

87 0.980 0.91 O.9I 2 О.92 1.00<br />

88 1.385 1.41 I .42 I .42 1 .3 5<br />

89 1.74 1.73 1.71 I . 7I 1.74+Л5[4б],1 .8 [7 4 ],1 .65[100]<br />

90 2.13 2.2 2.О5 2.25 2.09 2. 05+ .04[ 46]<br />

2.53<br />

2.53<br />

2.53<br />

2.42<br />

2.60<br />

2.60<br />

2.6<br />

2. 4I<br />

2.6<br />

2.43<br />

2.9<br />

2.61 2.52<br />

92 3.05 3.06 3.12 З.14 3.02<br />

93 З.92 3.89 З.94 З.97 3.95<br />

2.3[74],2.37[100l<br />

2.41+.11[46],2.8[74]<br />

Y 2.40[1П ]


T A B L E VI (continued)<br />

Mass<br />

No.<br />

th is<br />

work<br />

Meek<br />

Rider<br />

[22]<br />

Croall<br />

[19]<br />

<strong>IAEA</strong>-SM -170/13 539<br />

K atcoff<br />

[8 ]<br />

Lisman<br />

et a l .a<br />

[21,57]<br />

94 4.48 4.42 4-45 4.48 4 . 5О<br />

95 Zr<br />

9 5 m o 5.07<br />

5.07<br />

5-2<br />

5.2<br />

5.06<br />

5.0<br />

5 .8<br />

5.03<br />

96 5.12 5.06 5-13 5 .17 5.12<br />

97~<br />

5 . 61^<br />

97<br />

' Mo 5-70<br />

5.3<br />

5.61<br />

5-25<br />

5.61<br />

5-5<br />

5.65<br />

98 5-93 5-84 5-84 5.89<br />

radiochemical<br />

measurements<br />

4.86 5.06+.33[46],5.6[74]<br />

5.64 5-3[74]<br />

99 6.33 5-9 5.86 6.10 6.59 5.61± .ЗЗГ46],6.1[74]<br />

5.66+.07»,6.79+.15 [l0 9 ]<br />

S.02+ .18[ 101] , 6. 1[ 110]<br />

6.17+.19L112J<br />

100 7 .1 6 7.05 7.0 5 7.1 0<br />

101 6.01 5.86 5.86 5.91 6.50<br />

102 6.09 5*94 5.94 5.99 6.65<br />

103 5.86 5*6 5-79 5.67 5.79+.37[46],5.5[74]<br />

104 6.03 5.88 5.88 5.93 6.61<br />

105 5-47 5.47 5-47 3.9 5.47±.06[46],3.7[74]<br />

106 4.64 4.4 4.04 4 .57 4-55 4.04+.22[46],4.7[74]<br />

4.52+p.23[6m]k<br />

107 з . з ъ 3.4°<br />

108 2.0b 2.6°<br />

109 1.13 1.2 1.13 1.40 L.13+.06[46],1.0[74]<br />

L .6[110],2.0[10l]<br />

110 0.57Ъ 0.75°<br />

111 0.27 0.25 0.28 0.23 . 28+ .04Г46] , ,27[74]<br />

. 26[ 101] , . 212[ 110]<br />

112 0.11 0.10 0.093 0.12 ,093+.003[46],.10[74]<br />

. 15[ 101] , . 11[ 110]<br />

Ц ? 0.065 0.072 0.065 .065[107]


540 LAMMER and EDER<br />

T A B L E VI (continued)<br />

Mass<br />

Ho.<br />

th is<br />

work<br />

Meek<br />

Rider<br />

[ 22]<br />

114 0 . 041Ъ 0 . 0550<br />

Croall<br />

[19]<br />

Katcoff<br />

[ 8]<br />

Lisman<br />

et a l . a<br />

[21,57]<br />

radiochemical<br />

measurements<br />

115 0.036 0.039 О.ОЗ6 0.041 .03 6+ .002[46] , .048[74]<br />

•035Ü101]<br />

116 0.035Ъ 0.037°<br />

117 0.035n 0.037°<br />

118 0.035n 0.035°<br />

119 о .о з б п 0 . 036е<br />

120 0 . 0 38n 0.037°<br />

121 0 . 041b 0.044 О.О43<br />

122 0.045n 0.047°<br />

123 0.055Ъ<br />

124 0.075П<br />

0 . 056°<br />

0 . 070f<br />

125 0.110e 0.069 0.071 0.116<br />

126 0.23b<br />

,0<br />

0 .1 6<br />

1 PI Sn .04l[74]<br />

127 0.55 0.46 О.55 0.39 •55+.03[46], .37[74]<br />

128 1 .0 Ъ 0 . 85е<br />

129 1 . 65Ъ 1.7°<br />

130 2 .6 Ъ<br />

с<br />

2.7<br />

131 3.73 3.69 3.8 З.78 З.60 3 . 80+ .14[ 46] , 3 . 6[ 74]<br />

132 5.25 5-2 5.25 5.26 5.09 5 .51±.27[46],4.9[74]<br />

!33x<br />

133<br />

6 .9 1 j<br />

6.94<br />

5-3<br />

6 .6<br />

5 . 5З<br />

6.90<br />

5-2<br />

6.91 7 .18<br />

134 7.43 7.31 7.47 7-47 7 .2 0<br />

5.53±.06[46],5.0[74]<br />

I 6 . 9 7 ,Xe 7.2 3 [ 105]


T A B L E VI (continu ed)<br />

Mass<br />

No.<br />

135j<br />

135<br />

136<br />

th is<br />

work<br />

6. 32^<br />

7.48<br />

6.83<br />

Meek<br />

Rider<br />

[22]<br />

5-7<br />

7.21<br />

6.66<br />

Croall<br />

[19]<br />

5-97<br />

7 .1 7<br />

6.65<br />

<strong>IAEA</strong>-SM-170/13 541<br />

K atcoff<br />

[8 ]<br />

5-7<br />

7 .1 7<br />

6.63<br />

Lisman<br />

et a la<br />

[21,57]<br />

Jl3.92<br />

radiochemical<br />

measurements<br />

6.041[102],6 .3 6 1[103]<br />

Xe 7.43 [IO 5]<br />

137 6.62 6.56 5.8 6.63 6.74 5.40+ .39[46],5.8[74]<br />

138 5-46 5 . 9I 6.28 6.31 5-40<br />

139<br />

140<br />

Ba<br />

140Ce<br />

л niLa<br />

Ce<br />

5.82<br />

5-49°<br />

5 . 5З<br />

5-24<br />

5.24<br />

5.67<br />

5 . 51<br />

5 . 51<br />

5.75<br />

5-75<br />

5.78<br />

5-47<br />

5.56<br />

5-47<br />

6.11<br />

5-87<br />

5-4<br />

5.6 5.61<br />

5-7<br />

5 .1<br />

142 4.97 4.87 4-97 5.01 5.04<br />

1/ч Се<br />

4.48<br />

Nd. 4.48 4.52<br />

144rP<br />

4 d<br />

3.75j<br />

З.76 З.79<br />

4.28<br />

4.57<br />

4.09<br />

З.84<br />

5 .З<br />

4-57 4.48<br />

З.79<br />

З.9З З.78<br />

5.4[74],5-87[100]<br />

5.47+.32[46],5.36[74]<br />

Ba 5.27[102]<br />

5.56[100],4.58[111]<br />

6.11+ .31Í46],4.99[1H ]<br />

5. l 8+ .13[ 112j<br />

4 .2 8 + .2 l[4 6 ],3 .9 0 [lll]<br />

Pr 4 .16 [111]<br />

4.09+.20[461,4.9[74]<br />

3e 3 . 85+ .09[ l l 2]<br />

145 З.04 2.99 3.12 З .1З 3.03 Pr 3 -4 5 [H I]<br />

146 2.49 2.45 2.57 2.60 2.49<br />

Sm<br />

2.09<br />

2.09 1 .8 7<br />

I .46<br />

2.07<br />

2.2<br />

2.07 2 .15<br />

148 1.68 1.68 I .70 1.73 1 .7 0<br />

I . 46+.08 [ 46]<br />

149 I .24 I .30 I .31 1 .З2 1.24 [id 1.1 1 ,Pm 1.27 [111]<br />

1§0 О.97 О.96 1.01 1.01 0.965<br />

151 О.76 О.76 0 .78 0.80 0.811 •72[111]<br />

152 О.58 О.57 0.59 0.62 0.581<br />

153 0.44 О.36 0 .37 0.37 • 39[7 4],-36[111],.4 4[Ю 6]


542 LAMMER and EDER<br />

T A B L E VI (continued)<br />

Mass<br />

N o .<br />

■ t h i s<br />

w o rk<br />

Meek<br />

R i d e r<br />

[ 2 2 ]<br />

C r o a l l<br />

[19]<br />

K a t c o f f<br />

[ 8 ]<br />

Lism a n<br />

e t a l a<br />

[ 6 , 2 1 ]<br />

154 О .27З O .25 O .29 O .29 0.27<br />

r a d i o c h e m i c a l<br />

m e asu rem e nts<br />

I 55 0.17 0.24° O .23 .166[111]<br />

I 56 0.12 O .O 9 0.07 0.11 .12[74],.062+.004[46]<br />

• 121[111], Л2[10б]<br />

157 0 . 080^ 0 . 076° Eu .074 [ H l ]<br />

158 0.045Ъ 0 . 042°<br />

159 0.022 0.021 0.021 0.021 •02l [ l l l ] , . 022[ 106]<br />

160<br />

b<br />

0.011 0 . 0098°<br />

161 O .O O 5I 0.0039 0.0039 0.0039 Tb .0050[111],.0050[106]<br />

162 0 . 0025Ъ 0.0024C<br />

166 0.000076 0.000068 O .O O O O68<br />

a Yields obtained by the normalization technique (see 4-1)<br />

b Interpolated value<br />

с Calculated y ie ld , taken from Weaver et al [95]<br />

d Original value corrected fo r h a lf l i f e (see 3 .2 .2 , 28.5 years instead<br />

o f 2 7. 4. years.)<br />

e Yield o f Lisman et al [6 m] corrected fo r y - -ray in ten sity, as<br />

given by Martin and B lich ert-T oft [5 2 ]. -jp/i<br />

f Cumulative y ie ld fo r stable Sn. The independent y ie ld fo r Sb<br />

is given as O.O88 according to Marsden and Yaffe [46]<br />

g Absolute measurement (fo r corrections see 7*3)<br />

h Relative 99jj0 y ie ld from fis s io n , (fo r correction see 7«3)<br />

i Relative ^35l y ie ld normalized to 6.32 fo r ^5y thermal fis s io n ,<br />

j Cumulative y ield s o f r , ^33I , ^I, 44ce and ' Eu were<br />

taken to be 98. 5t 99*6, 84. 5 » 99*2» 99»75 an¿ 93 percent o f tota l<br />

chain y ie ld .<br />

к Gamma spectrometric measurement by comparison with a Ru standard<br />

source.<br />

n rela tiv e mass spectrometric Sn y ield s (fu el rod) taken from reference<br />

[6 1 ], as rela tiv e y ield s do not change very much fo r d ifferen t types<br />

o f fis s io n .


<strong>IAEA</strong>-SM-170/13 543<br />

and Scadden [9 2 ] are in excellent agreement with our recommended values,<br />

the follow in g procedure was adopted: the sum o f 151sm and 152gm y ield s<br />

were averaged for mass spectrom etric measurements. The 151pm y ie ld o f<br />

Bunney and Scadden [9 2 ], corrected fo r l^Sm independent y ie ld [4 9 ]t<br />

was subtracted from th is sum to calcu late the y ie ld o f 152sm> Altogether<br />

the Sm y ield s shown in table V are not considered to be very re lia b le<br />

and have to be checked by measurements on samples irradiated in low<br />

neutron fluxes.<br />

Relative y ield s o f both mass peaks were normalized to the ligh t mass<br />

peak only, as the sum o f interpolated and radiochemical y ie ld s was<br />

only 3*766%. The corresponding sum in the heavy mass peak was 6.75% with<br />

the main contribution (5*55%) from interpolated y ie ld s at masses 128 to<br />

130. Yields obtained by th is normalization were 1 - 2 % lower than absolute<br />

y ield s o f [5 ] and [2 1 ]. The sum o f absolute y ield s o f Lisman et al [21]<br />

is 98.18% including the mass 89 value from our normalization. This could<br />

not possibly be brought in agreement with the sum o f radiochem ically determined<br />

y ie ld s , and therefore the normalization was le f t unchanged.<br />

Relative y ie ld s in the heavy mass peak were normalized to absolute Cs<br />

and Nd y ie ld s o f [ 5] and [21] and the interpolated values for masses 128<br />

to 130 were readjusted to make the sum o f heavy mass y ie ld s 100 % . This<br />

can be ju s tifie d , as the ra tio o f y ie ld s in the lig h t mass peak to those<br />

o f Nd and Cs obtained by Lisman et al [21] were 1-3% higher than those<br />

o f other measurements [30, 41, 94].<br />

239<br />

7 .3 . Thermal fis s io n y ield s o f Pu<br />

239<br />

Experimental data used fo r the evaluation o f Pu thermal fis s io n<br />

y ie ld s are:<br />

Mass spectrom etric measurements: Lisman et al [2 1 ], Rider et al [5 ],<br />

Pickel and Tomlinson [I 5 ]i F ritze et al [1 7 ],<br />

Fleming and Thode [16] and. Krizhanski et al [4 5 ].<br />

Ratio measurements: Dange et a l. [105].<br />

As the combined USSR measurements [28,44*45] disagreed with others,<br />

only some relative yields of [45] were used, as no corrections could be<br />

applied.<br />

Evaluation o f these y ield s was rather d if fic u lt because o f several<br />

discrepancies that could not be resolved. D etails cannot be given here<br />

and only the most important selection s w ill be outlined.<br />

Ru y ie ld s have only been measured fo r one sample by Fickel and<br />

Tomlinson [ 15] i and disagree severely with those reported by Lisman et al<br />

[21] and Dange et al [105]. However, i t was stated by Lisman et al [21]<br />

that Ru could not be completely recovered from sample d issolu tion .<br />

In addition th eir re la tiv e Ru y ie ld s (which were normalized by a ra tio<br />

measurement o f 106ru) are not consistent and y ie ld s in the lig h t mass<br />

peak sum up to 103% when normalized to the heavy mass peak. Therefore<br />

only the Ru y ie ld s o f Fiokel and Tomlinson [15] were selected. The mass<br />

99 y ie ld is an average o f the readjusted R-values o f Dange [105] and<br />

Lisman [6m], which are in reasonable agreement. They were adopted rather<br />

than c o n flic tin g radiochemical measurements also for reasons given below.<br />

Most d if fic u lt was the evaluation o f Cs and Xe y ie ld s and needs some<br />

explanation. I f the analyses o f individual samples in [5,15*16,21,105]<br />

are compared, the values obtained fo r the 1^3cs y ie ld are grouped around<br />

about 7.1% and 6.6% with no obvious systematic trends observed for<br />

measurements carried out at one laboratory. As a compromise a ll available<br />

ra tio s for th is y ie ld have been averaged. The ra tio 133xe : 54xe


544 LAMMER and EDER<br />

T A B L E VII. 232 Th FAST FISSION YIELDS<br />

Mass<br />

No.<br />

This<br />

work<br />

Harvey<br />

et al<br />

[25]<br />

Croall<br />

[ 18]<br />

Mass<br />

No.<br />

This<br />

work<br />

77 0.010 0.014 0.015 104 0. 08a<br />

Harvey<br />

et al<br />

[25]<br />

78 0.035a 105 0.05 0.05<br />

79 0.08a 106 0.041 0.058<br />

80 0. 2a > 2. 98a 107 0.04a<br />

81 0 .4a 108 0.04a<br />

82 1. 0a I09 O.O41 ^ 0. 56a 0.052<br />

83 1.87 2.06 2.0 110 0.045a<br />

84<br />

«5кг<br />

3.44<br />

0.82<br />

3.78 3.6 111 0.045 0.07<br />

85 4.0 4.01 3.9 112 0.062 0.07<br />

86 5.66 6.21 6.0 113 0.06 0.045<br />

87 5-99 6.57 114 0. 06a<br />

88 6.32 6.92 115 O.O57 i O.O65<br />

89 6.72 7.14a 6.7 116 0.05a V<br />

90 7.40 7.4 0 7 .2 117 O.O49 0.053<br />

91 7.26 7.45 6.8 118 0. 05a<br />

92 7.49 i 6.6 119 0. 05a<br />

93 7.21 i 19.31a 120 0.05<br />

94 6.23a í 121 O.O55<br />

95 5.ЗО 5 . 4З 5-4 122 0.04a<br />

96 4 .8 a 4.97a 123 O.O3I - 3 . 0 4 a 0.029<br />

97 3.96 4.52 5.2 124 0.03a<br />

98 3.4 3.69 a 125 0.033 0.025<br />

99 2.76 2.86 2.80 126 0.05a<br />

100 1.9a 127 O.O9 0.110<br />

101 1.14a k 3.97a 128 0. 18a<br />

102 0 .5 a 129 0.36a<br />

юз 0.146 0.146 0.16 1ЗО 0.8a<br />

V<br />

Croall<br />

[19]


T A B L E VII (continued)<br />

Mass<br />

No.<br />

This<br />

work<br />

Harvey<br />

et al<br />

[25]<br />

Croall<br />

[18]<br />

<strong>IAEA</strong>-SM-170/13 545<br />

Mass<br />

No.<br />

This<br />

work<br />

Harvey<br />

et al<br />

[25]<br />

131 I .52 I .56 1.7 144 7.66 7.20 7.9<br />

132 2. 7 О 2.76 2.9 145 5.78 5.52<br />

133 3.74 3.75 3.3 146 4-95 4.73<br />

134 5.06 5.18 5*4 147 2.97 3.14 3.8<br />

135 4.65 4 .66 5.6 148 2.18 2.08<br />

136 5.ЗО 5.44 5-7 149 1.44 0.88 0.9<br />

137 4.61 4-60 6.5 I 50 I .09 I .04<br />

4<br />

138 6.02a 5.79a 151 0.41<br />

139 7.38 06.99 6.8 152a O.32<br />

140 8.31 8.61 7-4 153 0.21<br />

141 7.28 7-74 7 .З 154<br />

_ _ , 9-<br />

0.06<br />

142 7.22a 7.27 a 155 0. 01a 4<br />

► 1.24a<br />

Croall<br />

[19]<br />

143 7.12 6.79 7.3 156 0.0026 0.003 0.003<br />

a Interpolated values<br />

y ie ld s was measured by Fleming et al [16] for two samples with good<br />

agreement, however, in severe c o n flic t with the Xe to Cs ra tio o f Lisman<br />

et al [ 2 l ] which is based on separate determinations o f these elements<br />

with rather large uncertainties for Xe. Therefore the ra tio o f Fleming<br />

was adopted fo r the normalization o f Xe to 133Cs and allowance was made<br />

for th eir margin o f error towards the ra tio o f Lisman et a l. This group<br />

o f y ie ld s is , however, very u nsatisfactory and should be reinvestigated.<br />

The arguments and procedure for Sm y ie ld s are sim ilar to that for<br />

233u, but the calcu lated independent y ie ld s o f 148pm and 150pm are only<br />

0.1$ and 4 o f the respective Nd y ie ld s.<br />

As no d irect and relia b le absolute fis s io n y ie ld measurements are<br />

available, absolute y ie ld s were obtained by the normalization technique.<br />

F inally, to support our argument not to rely on absolute fis s io n<br />

y ie ld measurements and to illu s tra te the uncertainty associated with such<br />

measurements, an example is given. Jain and Ramaniah [109] made two series<br />

o f measurements o f the 239pu fis s io n y ie ld o f 99m0< One is based on the<br />

determination o f the neutron flu x , the other one rela tiv e to the 235u<br />

fis s io n y ie ld o f 9 9 m o . They used the 2200 m/sec fis s io n cross sections<br />

and obtained the resu lts included in table VI, as well as 6.06% fo r the<br />

235U fis s io n y ie ld o f 9 9 m o . We recalcu lated th eir resu lts using g and s<br />

fa ctors from a recent survey [47Ъ] according to<br />

S' = 6 0 (g + rs)<br />

/


546 LAMMER and EDER<br />

With г Т Т/То1 ~ 0.0022 calculated from the reported Cadmium ratio for<br />

Co of 200, we obtained the following resu lts:<br />

neutron<br />

temperature — > 20°C 40°C 6o°c 80°C 100°C 120°C<br />

d235<br />

6.13 6.17 6.20 6.22 6.24 6.25<br />

P u^^relative 6.32 6.22 6.O9 5-98 5-84 5 . 7 I<br />

2 39<br />

Pu absolute 6.29 6.22 6.12 6.03 5.92 5. 8I<br />

In spite of this example the data of Marsden and Yaffe were adopted<br />

for mass numbers not covered by the experiments liste d above. They agree<br />

with our adopted yield s at several mass numbers and therefore a renormalization<br />

was not considered necessary.<br />

232<br />

7 .4 . Fast fissio n yield s of Th<br />

No complete set of mass spectrometric measurements is reported for<br />

fast fissio n y ield s of Therefore we had to rely mainly on ratio<br />

measurements. The references used are:<br />

Mass spectrometric measurements: Kennett and Thode [113]» Harvey et al [2 5 ];<br />

Renormalized ratio measurements: Iyer et al [3 6 ], Harvey et al [2 5 ], Turkevich<br />

and Niday [35]»<br />

Radiochemical measurements: Bresesti et al [ 89] , Crook and Voight [33]*<br />

Broom [ 11 5 ] , Ifyttenbach and von Cunten [1 14].<br />

We started with the most extensive set o f yield s o f Iyer et al [ 36],<br />

normalized the mass spectrometrically determined Kr, Xe and Cs yield s at<br />

mass numbers 132 and 137 and radiochemical yield s at 140ga> Normalization<br />

points were selected for other data sets, which do not include those mentioned<br />

above. Mass spectrometric ratios were not changed and the gaaima spectrometric<br />

measurements o f Bresesti et al Г89] were considered superior to<br />

others, especially for the yield s o f ^ Ce and ■l44Cet which depend on decay<br />

curve resolution in measurements o f ß -spectra. Fission yield ratios<br />

may change, when going from a fast reactor neutron spectrum to 3 Me V fission . But<br />

it is assumed, that a ratio o f neighbouring mass yield s w ill not change<br />

apreciably and. therefore the 92gr y ield reported by Broom was calculated<br />

relative to the adopted ^ S r y ie ld . Other yields reported for 3 MeV<br />

fissio n o f 232iph, including those of Lyle et al [116,1 17], were not used.<br />

A ll relative yield s were fin a lly normalized to a total of 100% for<br />

the sum o f yield s in the heavy mass peak, as many mass numbers in the light<br />

mass peak are not covered by experiments. In the evaluation o f Harvey<br />

et al [2 5 ], shown for comparison in table VII, each mass peak was normalized<br />

to 100%.<br />

7 .5 . Uncertainties o f recommended yields<br />

It is d iffic u lt to assign uncertainties to values obtained by<br />

a normalization of relative y ield s. An attempt to derive accuracies<br />

o f 235U fissio n yield s from the data used w ill be discussed in detail


<strong>IAEA</strong>-SM-170/13 547<br />

in a forthcoming publication. Judging from the overall agreement with<br />

experimentally determined absolute yield s and the consistency of the<br />

data used to obtain relative y ie ld s, we assign the following uncertaint<br />

ie s :<br />

23\ l: 0.7/6 - 1/i, except Kr, Xe and Sm (about 2$)<br />

233U: 1 . 5 $ - 2 fo , except Sm (3%)<br />

239 rtf<br />

Pu: 2 - 39», due to the unresolved inconsistencies<br />

232<br />

No comparison is possible for Th and therefore the accuracy of<br />

these yield s is believed to be not better than '¡¡fo .<br />

Ei<br />

REFERENCES<br />

1] EUBA, L ., HICK, H., RUMPOLD, K., Atomkernenergie 11 (1966) I 67.<br />

2] HIGATSBERGER, M.J., HICK, H., RUMPOLD, K., WEINZIERL, P ., BURTSCHER, A.,<br />

Int. Sympos. nuclear Materials Management (Proc. ^ympos. Vienna,1965)<br />

<strong>IAEA</strong>, Vienna ( 1966) 817.<br />

3] PEPELNIK, R ., HICK, H., Nucl. In str. Meth. 68 ( 1969) 240.<br />

4 EDER, O .J ., LAMMER, M., th is symposium, paper SM-170/12.<br />

5] RIDER, В.F ., RUIZ, C.P ., PETERSON, J .P .,J r ., SMITH, F .R ., Accurate<br />

<strong>Nuclear</strong> Fuel Burnup Analyses, quarterly prog, rep ., USAEC documents<br />

a) GEAP-5O6O ( 1965) 235U thermal fis s io n y ield s<br />

b) GEAP-527O ( 1966) 233u thermal fis s io n y ield s<br />

c ) GEAP-54O3 ( 1966) 239pu thermal fis s io n y ie ld s<br />

d) GEAP-5505 ( 1967) 241Pu thermal and 238ц f ast fis s io n y ield s<br />

[6 ] LISMAN, F .L ., MAECKjW. J . , REIN,J.E. , FOSTER, R .E ., J r ., ABERNATHEY., R.M.,<br />

DELMORE,J.E., J r ., EMEL, W.A., KUSSY, M.E., MCATEE, R .E ., WORKMAN, G.D.,<br />

Burnup Determination o f <strong>Nuclear</strong> Fuels, quarterly p ro g .re p ., USAEC<br />

documents<br />

a) IDO-I466O ( 1965), 04^ thermal fis s io n y ie ld s, capsule 6-4-1<br />

b ) IDO-14663 ( 1965), thermal fis s io n y ie ld s, capsule 6-4-2<br />

c ) IDO-I4667 (1965)!, U thermal fis s io n y ie ld s, capsule 6-4-3»<br />

235u thermal fis s io n y ie ld s , capsule 6-6-2<br />

d) IDO-14676(l966), 235u thermal fis s io n y ie ld s, capsules 6-4-1 and<br />

6-6-2.<br />

e) IDO-I468I ( 1967), thermal fis s io n y ie ld s, capsules 6-2-4 and<br />

6-5-1.<br />

f ) IN-1064 ( 1967), 233U and 23^u thermal fis s io n y ie ld s , a ll capsules.<br />

g) IN-1113 ( 1967), 233U and 235U thermal f i ssion y ie ld s, a ll capsules.<br />

h) IN-1157 (R ev.) ( 1967), 23 U and 3^U thermal fis s io n y ie ld s , a ll<br />

capsules.<br />

i ) IN -II78 ( 1967) , U thermal fissio n y ie ld s, capsule 6 -5 -3<br />

j ) IN -H 89 ( 1968) , 239pu thermal fissio n yields<br />

k) IN-1207 ( 1968) , 235U fast fissio n yields<br />

l ) IN-1215 ( 1968) , 241pu thermal fissio n yields<br />

Final Report<br />

m) IN-1277 ( 1969)» Pu fast fissio n y ie ld s, revised Pu thermal<br />

fissio n y ie ld s, ratio measurements, summary of a ll fissio n y ield s.<br />

[7 ] STEINBERG, E .P ., GLENDËNIN, L .E ., Int. Conf. peaceful Uses atom.<br />

Energy (Proc.Conf. Geneva, 1955) l i UN, New York (1956)3.<br />

[ 8] KATC<strong>OF</strong>F,S., Nucleonics 18 11 ( i 960) 201.<br />

[ 9] WAMLESS, R .K ., THODE), H.G., CanJ.Phys. (1955) 541.<br />

[1 0] PETRUSKA, J .A ., MELAIKA, E .A ., TOMLINSON, R.H., Can.J.Phys. 33(1955)640.<br />

[11] PETRUSKA, J .A ., THODE, H.G., TOMLINSON, R.H., Can. J. Phys. 3¿ (1955)


548 LAMMER and EDER<br />

[1 2] BLADES, A .T ., FLEMING, W.H., THODE, H.G., Can. J. Chem. 3¿ (1956)233.<br />

[1 3] MELAIKA, E .A ., PARKER. M .J., PETRUSKA, J .A ., TOMLINSON, R.H.,<br />

Can.J. Chem. 33 (1955) 830.<br />

'1 4 ] FLEMING, W., TOMLINSON, R.H., THODE, H .G., Can.J. Phys. 32 (1954) 522.<br />

=15] FICKEL, H.R., TOMLINSON, R.H., Can. J.Phys. (1959) 916 and 926.<br />

=16] FLEMING, W., THODE, H.G., Can.J. Chem. 34 (1956)193.<br />

" 17 ] FRITZE, K ., McMULLEN, C.C., THODE, H.G., Int. Conf. peaceful Uses<br />

atom. Energy (Proc. Conf. Geneva, 1958) UN, New York (1958) 436.<br />

'18] FERGUSON, R .L ., O'KELLY, G.D., USAEC Rep. ORNL-3305 (1962).<br />

°19] CROALL, I . F ., UKAEA Rep. AERE-R-5086 ( 1967).<br />

=20] RIDER, B .F ., RUIZ, C .P ., PETERSON, J .P ., J r ., SMITH, F .R ., USAEC<br />

Rep. GEAP-5356 ( 1967).<br />

[21] LISMAN, F .L ., ABERNATHEY, R.M., MAECK, W .J., REIN, J .E ., Nucl. Sei.<br />

Engng. 42 ( 197O) 191<br />

"22] MEEK, M.E., RIDER, B.F., USAEC Rep. APED-5398-A (Rev.) (1968).<br />

*23] ALLEN, M.S., DRAKE, M.K., quoted in USAEC Rep. GA-8854 ( 1969), 59.<br />

“24] DAVIES, W., Radiochimica Acta 12 4 (1969) 173.<br />

= 25] HARVEY, J.W. , CLARKE, W.B., GORMAN, D .J ., TOMLINSON, R.H., Can. J.Phys.<br />

46 ( 1968) 29II<br />

[26] TOMLINSON, R.H., MATHEWS, C., ( 1965) unpublished.<br />

[ 27] BORG, S ., BERGSTROM, I . , HOLM, G .B ., RYDBERG, B ., DE GEER, L .E .,<br />

RUDSTAM, G ., GRAPENGIESSER, B ., LUND, E ., WESTGAARD, L ., Nucl. Instr.<br />

Meth. ¿ I ( 197I) IO9 .<br />

[28] ANIKINA, M.P., ARON, P.M., GORSHKOV, V .K ., IVANOV, R.N ., KRIZHANSKY,<br />

L.M, KUKAVADSE, G.M., MURIN, A.N ., REFORMATSKY, I .A ., ERSHLER, B .V .,<br />

Int. Conf. peaceful Uses atom. Energy (Proc. Conf. Geneva, 1958) 1¿,<br />

UN, New York (1958) 446.<br />

[29] GORSHKOV, V .K ., IVANOV, R. N., KUKAVADSE, G.M., REFORMATSKY, I .A .,<br />

J. Nucl. Energy 8 (1958) 69.<br />

[ 30] IVANOV, R.N ., GORSHKOV, V .K ., ANIKINA.. M.P., KUKAVADSE, G.M.,<br />

ERSHLER, B.W., J. Nucl. Energy £ (1959) 56.<br />

[ 31] ERDAL, B .R ., WILLIAMS, J.C., WAHL, A.C., J. inorg. nucl. chem. ¿1 ( 1969)<br />

2993.<br />

'32] SANTRY, D.C., YAFFE, L., Can. J. Chem. 3§ (i960) 421.<br />

=33] CROOK, J.M ., VOIGT, A .F ., USAEC Rep. IS-558 (1963)<br />

^34] LARSEN, R .P ., MEYER, R .J ., USAEC Rep. ANL-7225 ( 1966) 232,<br />

(d e ta ils in ANL-69OO ( 1964) 339)><br />

[35] TURKEVICH, A ., NIDAY, J .B ., Phys. Rev. 84 (l9 5 l) 52.<br />

[36] IYER, R.H., MATHEWS, C.K., RAVINDRAN, N., RENGAN, K ., SINGH, D .V .,<br />

RAMANIAH, M.V., SHARMA, H.D., J. inorg. nucl. chem. 2¿ ( 196З) 465*<br />

' 37] FARRAR, H., FICKEL, H .R., TOMLINSON, R.H ., Can. J. Phys. 4 O (l962)72.<br />

=38] FARRAR, H ., TOMLINSON, R.H., NUcl. Phys. ¿4 (1962) 367.<br />

= 39] CHU, Y.Y., U. of Calif. Rep. UCRI^-8926 (1959).<br />

=40] BIDINOSTI, D .R ., IRISH, D .E., TOMLINSON, R.H., Can. J. Chem. (1 961)628.<br />

*41] ANIKINA, M.P., IVANOV, R. N., KUKAVADZE, G.M., ERSHLER, B.W., J.Nucl.<br />

Energy 2 ( 1959) 167.<br />

[42] KUKAVADZE, G.M., GOL'DIN, L .L ., ANIKINA, M.P., ERSHLER, B.W.,<br />

Int. Conf. peaceful Uses atom. Energy (Proc. Conf. Geneva, 1955) 4,<br />

UN, New York (1956)230.<br />

[43] GORSHKOV, V .K ., ANIKINA, M.P., Sovj. J. Atom. Energy X (i960) 649*<br />

"44" KRIZHANSKY, L.M., MURIN, A.N., Soviet J. Atomic Energy 4 (1958) 95*<br />

4 5 ] KRIZHANSKY, L.M., MALY. YA., MURIN, A.N., PREOBRAZHENSKY, B .K .,<br />

J.Nucl. Energy 6 (1957 ) 260.<br />

[46] MARSDEN, D.E., YAFFE, L ., Can.J. Chem. 43 (1965) 249.<br />

[47] a) HANNA, G .C., WESTCOTT, C.H., LEMMEL, H.D., LEONARD, B .R ., J r .,<br />

STORY, J .S ., ATTREE, P.M., Atomic Energy Rev. ]_ 4 (1969) 3<br />

b) LEMMEL, H.D., <strong>IAEA</strong>, private communication (December 1972), preliminary<br />

results of the 1973 revision of 2200 m/sec constants.


<strong>IAEA</strong>-SM-170/13 549<br />

[48] WAHL, A. C ., NORRIS, E .A ., ROUSE, R. A ., WILLIAMS, J .C ., Int. Conf.<br />

Phys. Chem. of Fission (Proc. EJympos. Vienna, I969), <strong>IAEA</strong>, Vienna<br />

( 1969) 83О.<br />

'49] CROUCH, E .A .C ., UKAEA Report AEHE-R-6056 ( 1969)<br />

"50‘ MEEK, M.E., REDER, B .F ., USAEC Report NED0-12154 (1972)<br />

51 HICK, H ., LAMMER, M., Int. Conf. Progress in Safeguards Techniques<br />

(Proc. ÿ n ços. Karlsruhe, 1970) <strong>IAEA</strong>, Vienna (l970) 533» and report<br />

SGÆ-PH-98 ( 197O).<br />

'52] MARTIN, M .J., BLICHERT-T<strong>OF</strong>T, P.H., <strong>Nuclear</strong> <strong>Data</strong> A 8 (1970) 1.<br />

■53] REYNOLDS, S .A ., EMERY, J .F ., USAEC report ORNL-4466 (1970) 7 5 .<br />

'54] WALKER, W.H., Int. Conf. <strong>Nuclear</strong> <strong>Data</strong> for Reactors (Proc. SJympos.<br />

Helsinki, I97O) <strong>IAEA</strong>, Vienna (1970) 685.<br />

[55] WALKER, W.H., A.E. Canada reports<br />

a AECL-3O37, Part I ( 1969)<br />

Ъ AECL-3037, Part II (1973)<br />

[5 6] WALKER, W.H., th is symposium, paper SM-170/34.<br />

[5 7] LISMAN, F .L ., ABERNATHEY, R.H.. FOSTER, R .E ., J r ., MAECK, W .J.,<br />

J. inorg. nucl. chem. 33 (1971) 643<br />

[58] COOK, J .L ., Australian A.E.C. Report AAEC/TI^549 ( X970 ), UKAEA<br />

library o f fissio n product cross sections.<br />

[59] HAWKINGS, R .C ., EDWARDS, W .J., OLMSTEAD, W .J., Can. J.Phys. 4g. (1971) 785.<br />

"60] LUM-HEE, G ., TOMLINSON, R.H., A.E. of Canada report AECL-3776 (1970) 96.<br />

=6 l] DE LAETER, J .R ., THODE, M.G., Can.J. Phys. 41 (1969) 1409.<br />

=62] CROALL, I . F ., WILLIS, H.H., J. inorg. nucl. chem. 24 (1962) 221.<br />

’ 631 KATC<strong>OF</strong>F, S ., RUBINSON, W., J.inorg. nucl. chem. 2£T l9 6 5 ) 1447.<br />

“64] REED, G.W., TURKEVICH, A ., Phys. Rev. ¿2 (1953) 1473.<br />

"65] REED, G.W., Phys. Rev. ¿8 (1955) 1327.<br />

"66J BAYHURST, B .P ., USAEC report TID-5787 (1957).<br />

'67] BAERG, A .P ., BARTHOLOMEW, R.M., Can.J. Chem. 3£ (1957) 980.<br />

[68] BUNNEY, L .R ., SCADDEN, E.M ., J. inorg. nucl. chem. 2¿ ( 1965) 273,<br />

23^u yields renormalized to 6 .1 1 $ for 99m0 ,<br />

233u yields readjusted to adopted 235ц yields and normalized at adopted<br />

144ce yield for 233u.<br />

' 69] CORYELL, C .D ., SAKAKURA, A .Y ., ROSS, A.M., Phys. Rev. 7£ (l950) 755<br />

■70J VON GUNTEN, H.R., HERMANN, H., Radiochim. Acta 8 (1967) 112<br />

[71] HARDWICK, W.H., Phys. Rev. £2 (1953) 1072, readjusted to adopted l^ C s<br />

and 140;ва y ield s.<br />

[72] BALCARCZYK, L ., KERATSCHEV, P ., LANZEL, E ., Nukleonik ]_ 4 ( 1965) 169,<br />

readjusted to adopted 140ва reference y ield .<br />

[73] WILES, D .R ., CORYELL, C.D ., Phys. Rev. 96 (1954) 696.<br />

[7 4] CORYELL,C.D ., SUGARMAN,N., Eds., "Radiochemical Studies: the fissio n<br />

products", Appendix B, National <strong>Nuclear</strong> Energy Series, Div.IV,<br />

McGraw-Hill, New York. ( l9 5 l) .<br />

[75] FORD, G .P ., LEACHMAN, R .B ., (1965), quoted Ъу Wahl et al [ 48] .<br />

'7 6 ] WAHL, A .C ., BRONNER, N .A., PHys. Rev. 85 (1952) 570.<br />

[77] WEISS, H .V ., Phys. Rev. 132 (1965) В 304-<br />

'7 8 ] GLENDENIN, L .E ., FLYNN, K .F ., (1966), quoted Ъу Erdal et al [3 1 ].<br />

[79] ARAS, N .K ., GORDON,G.E., J. inorg. nuol. ohem. 28 ( 1966) 763.<br />

"80" PAPPAS, A .C ., STROM, P.O ., WESTGAARD, L ., J. inorg. nucl. chem. 30<br />

( 1968) 89O.<br />

’ 81] HAGENB0, E ., J. inorg. nucl. chem. 28 ( 1966) 763.<br />

"82] BIRGUEL, 0 . , LYLE, S .J ., Radiochim. Acta 8 ( 1967) 9<br />

[83] PURKAYASTHA, B .C ., MARTIN, G .R ., Can. J. Chem. 3¿ (1956) 293.<br />

' 84" PAPPAS, A .C ., WILES, D .R ., J. inorg. nuol. chem. 2 (1956) 69.<br />

’ 85’ PAPPAS, A; C ., Massachusetts Inst, of Technol., technical report<br />

no. 63 (l9 5 3 )j values as quoted by Steinberg and Glendenin [7 ].<br />

[86] STROM, P .O ., LOVE, D .L., GREENDALE,A.E., DELUCCHI, A .A ., SAM , D .,<br />

BALLOU, N .E ., Phys. Rev. 144 ( 1966) 984.


550 LAMMER and EDER<br />

'87] KATC<strong>OF</strong>F S ., RUBINSON,W., Phys. Rev. £1 (1953) 1458.<br />

88 BROM, P ., J. inorg. nucl. chem. ¿ (1955) 248<br />

‘ 89J BHESESTI, M., BUREI, G ., FERRARI, P ., MORETTO, L ., J. inorg. nucl.<br />

chem. 22 ( 1967 ) 1189, readjusted to adopted value of 140jja reference<br />

y ield .<br />

■90] CIUFFOLOTTI, L ., Energ. <strong>Nuclear</strong>e 1¿ (1968) 272.<br />

"9 IJ SANTRY, D.C., YAFFE, L ., Can.J. Chem. 38 ( i 960) 464.<br />

92 see reference [ 68] .<br />

■93] DANIELS, W.R., H<strong>OF</strong>FMAN, D.C., Phys. Rev. (1966) 911.<br />

‘ 94] GORTON,G.E ., HARVEY, J.W ., NAKAHARA, H., Nucleonics 24 12 ( 1966) 62,<br />

[ 95]<br />

readjusted to adopted 235u reference yields and normalized to adopted<br />

143ce and 144ce yield s.<br />

WEAVER, L .E ., STROM, P .O .. KILLEEN, P .H., US Naval Radiol. Defense Lab<br />

report USNRDL-TR-633(1963).<br />

[96] STEINBERG, E .P ., SEILER, J .A ., GOLDSTEIN, A ., DUDLEY, A ., USAEC<br />

report MDDC-I632 ( 1948), yields as revised by Steinberg (1954) and<br />

quoted in reference [ 7 ] .<br />

[97] CHUL LEE,AMIEL, S., YELLIN, E., ISRAEL AEC report IA-1168 ( 1967),<br />

readjusted to adopted value o f 4 ga reference yield .<br />

[9 8] SANTRY,D .C., YAFFE,L ., Can. J. Chem. ¿8 ( i 960) 421.<br />

[99] GANAPATHY, R ., TIN MO, MEASON, J .L ., J. inorg. nucl.chem. 2£ ( 1967)<br />

257, readjusted to adopted value of 99jjo reference yield .<br />

[100] BARTHOLOMEW, R.M., MARTIN, J .S ., BAERG, A .P ., Can.J. Chem.^J<br />

660, readjusted to adopted value of 14°Ba ref erence y ield .<br />

(1959)<br />

[101] FORD, G .P., GILMORE, J .S ., USAEC report LA-1997 (1956).<br />

[102] OKAZAKI, A ., WALKER, W.H., Can. J. Phys. 43 (1965) IO36, values<br />

renormalized to adopted reference yield s of l3 5 i and 140ва.<br />

[103] NISLE, R.G. STEPAN, I .E .. Nucl. Sei. Engng. 31 (1968) 2 4 1, values<br />

renormalized to adopted 235U reference yield of 135l.<br />

ONDREJCIN, R .S ., J. inorg. nucl. chem. 28 ( 1966) I763.<br />

DANGE, S .P ., JAIN, M.C., MANOHAR, S .B ., SATYAPRAKASH, K ., RAMANIAH,<br />

M.V., RAMASWAMI, A ., RENGAN, K ., In t. Conf. Physics Chem. o f Fission<br />

(Proc. Sjympos. Vienna, 1969), <strong>IAEA</strong>, Vienna ( 1969) 741, readjusted to<br />

adopted 235u reference yields and normalized to adopted 144ce y ield .<br />

[106] BUNNEY, L .R ., SCADDEN, E.M., ABRIAM, J .O ., BALLOU, N .E., Int. Conf.<br />

peaceful Uses atom. Energy (Proc. Conf. Geneva, 1958) UN, New<br />

[107 ]<br />

York (1958)444, readjusted to adopted 235u reference yields and<br />

normalized to adopted 144ce y ield .<br />

CROALL, I . F ., WILLIS, H.H., Int. Conf. Phys. Chem. o f Fission<br />

(Pros. Eÿmpos. Salzburg, 1965) ¿1 <strong>IAEA</strong>, Vienna (1965) 355> readjusted<br />

±0 adopted 235u reference yield s and normalized to<br />

adopted 9'Mo y ield s.<br />

[108] CROALL,I.F ., WILLIS, H.H., J. inorg.nucl.chem. 2 ¿ ( 1965) 1213,<br />

readjusted to adopted yield s o f 99Mo and 140ва.<br />

[109] JAIN,H.C., RAMANIAH, M.V., Government of India AEC report<br />

в ARC-584 ( 19 7 1).<br />

[110] KIRBY, L .J ., USAEC report HW-77609 ( 1963) 3 .1 .<br />

[111] SKOVORODKIN, N.V ., SOROKINA, A .V ., BUGORKOV, S .S ., KRIVOKHATSKII,<br />

A.S. , PETRZHAK, K .A ., Radiokhimiya 12 (1970) 487, 492.<br />

[112] SOROKINA, A.V ., SKOVORODKIN, N .V., BUGORKOV, S .S ., KRIVOKHATSKII,<br />

[113]<br />

A.S., PETRZHAK, H.A., Atomnaya Energiya 31 (1971) 99*<br />

KENNETT, T.J., THODE, H.G., Can. J. Phys. 35(1957) 969*<br />

[114] WYTTENBACH.A., VON GUNTEN, H .R., Int. Conf. Phys.Chem. of Fission<br />

(Proc. sympos. Salzburg, Í965) Í , <strong>IAEA</strong>, Vienna ( 1965) 414.<br />

'115] BROOM, K.M., Phys. Rev. 133 (1964) В 874<br />

=116] LYLE, S .J ., MARTIN, G .R., RAHMAN, М., Radiochim. Acta ¿ (1968) 90.<br />

= 117] LYLE, S.H., SELLARS, J. , Radiochim. Acta 12 ( 1969) 43.<br />

‘ 118] FAHRAR, H ., CLARKE, W.B., THODE, H.G., TOMLINSON, R.H ., Can.J. Phys.<br />

42 ( 1964) 2063.


<strong>IAEA</strong>-SM-170/13 551<br />

D I S C U S S I O N<br />

M iss K. W AY: Do you have any apprehensions about om itting values<br />

far from the average?<br />

M. LAM M ER: F or the m a jority o f om itted values, there w ere good<br />

reason s for leaving them out, for exam ple, when the nuclear data w ere out<br />

of date and the m easured values could not be co rre cte d . In som e ca ses<br />

we trusted the resu lts o f certain experim ents m ore than oth ers if we had<br />

the opportunity to check their reliability . On the other hand, let us take<br />

the ca se where three values agree and a fourth value does not: if this single<br />

value is in e r r o r it d istorts the average but if it is the only c o r r e c t one,<br />

the average w ill d iffer con sid erably from this value. N everth eless, any<br />

re je cte d data should be re fe rred to in an evaluation together with the reason s<br />

fo r not including them.


NEED <strong>OF</strong> NUCLEAR LEVEL SCHEMES<br />

FOR CALCULATED CROSS-SECTIONS<br />

<strong>OF</strong> FISSION-PRODUCT NUCLEI<br />

H. GRUPPELAAR<br />

Reactor Centrum Nederland,<br />

Petten,<br />

The Netherlands<br />

Abstract<br />

<strong>IAEA</strong>-SM-170/74<br />

NEED <strong>OF</strong> NUCLEAR LEVEL SCHEMES FOR CALCULATED CROSS-SECTIONS <strong>OF</strong> FISSION-PRODUCT NUCLEI.<br />

For many fission product nuclei, no measurements of fast neutron cross-sections are available; for<br />

other fission-product nuclei, only a few measured points are known. Therefore, calculated cross-sections<br />

are needed to provide a set of data with adjustable parameters. Adjustments to cross-section data can be<br />

applied by using experimental data o f differential measurements from accelerators or by using results of<br />

integral experiments like the reactivity worths measured in the Dutch STEK reactor. In the energy range<br />

between 0.1 MeV and 3 MeV, which is important for fast-breeder reactors, a good knowledge o f excitation<br />

energies, spins and parities o f levels in the target nucleus is necessary for the calculation of both the neutron<br />

inelastic-scattering cross-section and the neutron absorption cross-section. In the present paper, the need of<br />

level-schem e information and the desirability of a compilation and/or evaluation o f these data for practical<br />

calculations of fission product neutron cross-sections will be discussed.<br />

1. INTRODUCTION<br />

In fast breeder reactor calculations cross sections of about 150 fission<br />

product nuclei in the mass range 81 < A < 164 are important. The required<br />

accuracy for the capture cross section at energies from about 100 eV to 10<br />

MeV is generally stated to be ±10% [l,2] . Since for the majority of these<br />

nuclei no cross section measurements have been performed in the entire<br />

energy range of interest, one often has to rely on evaluations primarily<br />

based on calculations with phenomenological nuclear models. In some cases<br />

cross section measurements will hardly be possible, since for many isotopes<br />

not enough target material is available, or because targets are highly<br />

radioactive. To overcome these difficulties, effective cross section measurements<br />

in different well-defined fast reactor spectra might be of great<br />

help. Experiments of this kind are being performed at Petten in the STEK<br />

facility [8], where the reactivity of a large number of individual isotopes,<br />

listed in table I, is measured in five different neutron spectra. To evaluate<br />

the results of these integral measurements, the application of a statistical<br />

adjustment technique on calculated effective cross sections is foreseen<br />

[8] . The cross sections depend on a limited number of parameters<br />

which influence the cross section in a wide energy range and a large number<br />

of parameters which show a more local effect, such as resonance parameters,<br />

and excitation energies, spins and parities of the target nucleus.<br />

Uncertainties in these parameters need to be known before adjustment calculations<br />

can be applied. In the present note some remarks will be made<br />

about the influence of uncertainties in the level scheme of the target<br />

nucleus, particularly on the capture cross section of fission product isotopes<br />

as a result of competitive inelastic neutron scattering.<br />

553


554 GRUPPELAAR<br />

2. PRESENT SITUATION<br />

TABLE I. ISOTOPES MEASURED A T S T E K a)<br />

9°Zr 98Mo 107pd 132Xe l^Nd i^Sm<br />

91Zr l°°Mo 108pd 1 34e 1ЦЗШ 15°Sm<br />

92Zr 99Tc UOpd 136Xe i^Nd 151s»<br />

« Z r lOlRu l°9 Ag * 3 3Cs l^Nd 152Sm<br />

9-Zr l ° 2Ru X11Cd “ Ses l « Nd IS-Sm<br />

96Zr ' ““Ru 128Te !3 7 Cs llt8Nd 151Eu<br />

92Mo l°3 Rh 13 0Te 139La !5°Nd 1 5 3Eu<br />

91*Mo 104pd 127J- l “ 0Ce 147Рт 156Gd<br />

9^Mo 105pd 129j 11,2Ce l-7Sm 157Gd<br />

9 7Mo 106Pd 131Xe im Pr l-SSm 15 9Tb<br />

Underlined isotopes are fissio n products with<br />

a reactivity effect of more than i% of the<br />

total fissio n product mixture in a typical<br />

fast reactor.<br />

Only for about one third of the isotopes listed in table I , one or more<br />

measured cross section points at energies above 0.1 MeV are available.<br />

In the energy range from 1 keV up to 10 MeV evaluations of capture<br />

cross sections of many fissio n products, based on the sta tistic a l model,<br />

have been published by Benzi et a l. [3,4] and Cook et a l. [5 ], who used the<br />

same cross sections in the high-energy range. Calculations of fast neutron<br />

capture cross sections for inclusion in the ENDF/B-III nuclear data library<br />

have been reported by Schenter and Schmittroth [б ]. A ll authors estimate<br />

a maximum error of about ±50% in the calculated cross sections.<br />

Information on level schemes is currently being published in the<br />

<strong>Nuclear</strong> <strong>Data</strong> Sheets. Unfortunately, for about 50 of the 60 nuclei listed<br />

in table I the most recent evaluation is more than fiv e years old. For<br />

nuclei in the mass range 91 £ A


<strong>IAEA</strong>-SM-170/74 555<br />

For a number of nuclei ( 95Mo, 103Rh, 107Pd, 109Ag, 133Cs), with recently<br />

evaluated level schemes, cross section calcu lation s have been performed.<br />

The resu lts o f these calcu lation s were compared with ea rlier evaluations of<br />

Benzi et a l. [3 ,4 ]. In general deviations from 10% to 30% in the energy<br />

range from 0.1 to 3 MeV were found both in and a^n i . Since fo r most of<br />

the nuclei investigated the present level schemes s t i l l do contain many<br />

am biguities, uncertainties of the same order of magnitude might be expected<br />

even in the most up to date ca lcu lation s.<br />

As an example, consider the important unstable fis s io n product nucleus<br />

l ° 7Pd for which a recent level scheme evaluation is available |j f] . In<br />

table II is shown that for most excited states two J* values are p ossib le;<br />

the most probable one is given as the " f ir s t " p o s s ib ility . The d ifferen ce<br />

between the level scheme used in the 1970 cross section calcu lation [A] and<br />

the present one (both drawn in fig . 1) is the inclusion o f fiv e additional<br />

le v e ls . As a resu lt cnY decreases and cnn> increases an amount of at most<br />

30%, which can be seen from fig . 1. At neutron energies above 1.5 MeV the<br />

Weisskopf-Ewing model, which is also adopted in the FISPR0 code, was used.<br />

In between 0.9 MeV and about 1.5 MeV a smooth curve is drawn in order to<br />

match the Hauser-Feshbach and continuum calcu lation s.<br />

In the above mentioned example the change in cross section was mainly<br />

caused by an increased number of levels and did not depend very much on the<br />

values of J \ which was found from a ca lcu lation in which the second spin<br />

p o s s ib ility , lis te d in table I I , was prefered. Apparently this is due to<br />

the high value o f the spin o f the ground state (J71 = 5/2+) , which weakens<br />

the influence o f the angular momentum and parity selection rules.<br />

I f the spin of the ground state is low and the level density not too<br />

high (e .g . for even-even n u cle i), the spins and p a rities of individual<br />

excited states may be very important. This can be demonstrated clea rly for<br />

*^3Rh, where the level scheme is well known [j2 j up to 0.65 MeV: =<br />

1/2 , 7/2 , 9/2 , 3/2 , 5/2 , 5/2+ , 7/2 for Ex = 0, 0.040, 0.093, 0.295,<br />

0.358, 0.537, 0.650 MeV, resp ectiv ely . If the spin o f the excited state<br />

were 3/2 instead of 7 /2, the capture cross section would decrease d rastica<br />

lly with a maximum change o f 40% in the region between 0.05 and 1 MeV,<br />

due to angular momentum selection ru les. Less pronounced e ffe cts can be<br />

shown for a change in parity of some particular le v e ls.<br />

For a number o f nuclei (e .g . 93Zr, *29I , 151Sm) the level scheme is<br />

rather unknown, so that Hauser-Feshbach calcu lation s cannot be performed<br />

in the energy region above 100 keV.<br />

4. CONCLUSIONS AND FINAL REMARKS<br />

E ffects in a and anni due to missing levels in the target nucleus or<br />

due to unknown values can be large, with a maximum* of about 30-50% at<br />

energies between 0.1 and 3 MeV, which is larger than required in [j ,2] .<br />

In general the spin and parity of the fir s t excited state is well known,<br />

so that for many even-even nuclei uncertainties in the cross section do<br />

not occur below 0.5 MeV.<br />

It can be concluded that level scheme information on fis s io n product<br />

nuclei for excitation energies up to 3 MeV is important for accurate cross<br />

section evaluations. This might give additional stimulus to nuclear spec-<br />

troscop ists and level scheme evaluators. A convenient type of evaluation<br />

is that of <strong>Nuclear</strong> <strong>Data</strong> Sheets. It would be very useful i f in case of<br />

ambiguities the most probable value were clea rly indicated (e .g . lik e in<br />

table I I ) .<br />

E ffects in the in ela stic scattering to individual levels can be much larger.


556 GRUPPELAAR<br />

FIG. 1. Calculated capture andinelastic-scattering cross-section for 10,Pd for two different level schemes,<br />

labelled with "1970" and "1972" (see Table II). Continuum calculations have been performed for excitation<br />

energies above 0 .9 MeV.<br />

Some final com m ents w ill be made on the effects o f level-sch em e uncertain<br />

ties on fast re a cto r param eters. F or a fast b reed er rea ctor the<br />

m ost im portant part o f the neutron spectrum with resp ect to capture is<br />

below 0. 2 MeV. In the w orst case (50% change in an), fo r En = 0. 2 to 1. 4 M eV),<br />

the change in the absorption reaction rate fo r an average fission product in a<br />

ty p ical fast b reed er rea ctor is not m ore than 4% (in the ca se o f 107Pd, F ig. 1,<br />

the le v e l schem e uncertainty p roduces a 1% reactivity uncertainty). The<br />

influence o f le v e l-sch e m e uncertainties to the breeding ratio was not investigated.<br />

F rom a paper subm itted to this sym posium [13] it appears<br />

that the contribution o f fission products to the breeding ratio cannot be<br />

n eglected in this energy range. E r r o r s o f le ss than 15% [13] are requ ired<br />

in стПу and CTnn- in the energy range where le v e l-sch e m e uncertainties might<br />

influence the c r o s s -s e c tio n s . This has been calculated fo r a m ixture of<br />

all fission -p rod u ct nuclei. F o r individual fission -p rod u ct nuclei it seem s<br />

that the com m only assum ed goal [1 ,2 ] of 10% in accu racy in the capture<br />

c r o s s -s e c tio n is som ewhat overestim ated for present rea ctor calculations<br />

above 0. 2 MeV.


<strong>IAEA</strong>-SM-170/74<br />

T A B L E II. L E V E L SCHEM E O F 107Pd<br />

1970 a) 1972 b:><br />

Ex (MeV) J* Ex (MeV) Лж<br />

0.0 5/2+ 0.0 (5 /2 )+<br />

0. 115 l/2 + 0.3157 l/2 +<br />

0.210 1 1/2- 0.214 (1 1 /2 )"<br />

0.3028 (5/2 ,3 /2 )+<br />

0.307 7/2+ 0.3122 (7 /2 ,9 /2 )+<br />

0.3482°)<br />

0.366 (7/2 ,9 /2 )+<br />

0.390 3/2+ 0.3819 (3/2 ,5 /2 )+<br />

0.3924c )<br />

0.412 l/2 +<br />

0.470 3 /2+ 0.4712 (3 /2 ,5 /2 )+<br />

0.570 5/2+ 0.5677 (5 /2 ,3 /2 )+ ’<br />

0.670<br />

+<br />

CM<br />

•—.<br />

Г-<br />

0.6701 (5 /2 ,3 /2 )+<br />

0.685 (7 /2 ") d)<br />

0.700 l/2 + 0.698 l/2 +<br />

0.770 3/2+ 0.759 (3 /2 ,5 /2 )+<br />

0.781 (1 /2 ,3 /2 )"<br />

0 .806c ^<br />

0.890 l/2 + 0.889 l/2 +<br />

Level scheme used in the 1970 cross section calculation [4 ].<br />

^ Level scheme from [l l] . If more than two values are<br />

possible, the first possibility in general is more likely.<br />

С ) . .<br />

Not used m the cross section calculation shown in fig. 1.<br />

^ Not adopted in [l l] .<br />

In the last reactor core which is foreseen in the SIEK project, the<br />

reactivity w ill be more sensitive to the MeV range. However, the change<br />

in reactivity for 107Pd in the above mentioned example s t i l l is not more<br />

than 2.5%. In this reactor core, but also in some of the other STEK cores,<br />

inelastic scattering contributes significantly to the reactivity worth.<br />

Thus uncertainties in the level scheme w ill effect the calculated reactivity<br />

worth as a result of uncertainties both in (?nY and 0nni. Therefore a good<br />

knowledge of the level scheme of a number of fissio n product isotopes is<br />

important for the evaluation of results from STEK.<br />

557


558 GRUPPELAAR<br />

R E F E R E N C E S<br />

[1] GREEBLER, P ., HUTCHINS, B .A ., COWAN, C.L. , Second Int. Conf. on<br />

<strong>Nuclear</strong> <strong>Data</strong> for Reactors (Proc. Conf. Helsinki, 1970), Vol. 2,<br />

<strong>IAEA</strong>, Vienna (1970) 17.<br />

[2] Renda 72, <strong>IAEA</strong>, Vienna (1972), Rep. INDC(SEC)-27/L.<br />

[3] BENZI, V ., D'ORAZI, R ., REFFO, G ., VACCARI, M., Fast Neutron Radiative<br />

Capture Cross Sections of Stable Nuclei with 29 1 A £ 79,<br />

Rep. CNEN-RT/FI(72)6 (1972).<br />

[4] BENZI, V ., PANINI, G.C., REFFO, G ., VACCARI, M., Discrete and<br />

Continuum Inelastic Scattering Cross Sections for Neutrons up to 10<br />

MeV (1970), data available via CCDN Neutron <strong>Data</strong> Compilation Centre.<br />

[5] COOK, J.L., Fission Product Cross Sections, Rep. AAEC/TM-549 (1970),<br />

and ROSE, E.K., The AAEC Fission Product Cross Section Libraries<br />

FISPROD.POINTXSL and FISPROD.GROUPXSL, Rep. AAEC/TM-587 (1971).<br />

[6] SCHENTER, R.E. , SCHMITTROTH, F. A., Cross Section Evaluations of 27<br />

Fission Product Isotopes for ENDF/B-III, Rep. HEDL-TME-71-143 (1971).<br />

[7j BASS, W.T., HOREN, D.J., EWBANK, W.B., Current <strong>Nuclear</strong> Level Schemes:<br />

A = 91 to 117, Rep. ORNL-4627 (1970), and<br />

HOREN, D.J., Current <strong>Nuclear</strong> Level Schemes: A = 118 to 139, Rep.<br />

0RNL-4730 (1971).<br />

[в] BUSTRAAN, M. et al., STEK, The Fast-Thermal Coupled F acility of RCN<br />

at Petten, Rep. RCN-122 (1970).<br />

[9] BENZI,.V., PANINI, G.C., REFFO, G ., FISPR0 I I : A Fortran IV Code for<br />

Fast Neutron Radiative Capture Calculations, Rep. CNEN-RT/FI(69) 44 (1969).<br />

[10] BENZI, V ., FABBRI, F ., ZUFFI, L ., SASSI - A Fortran Programme for t.he<br />

Calculation of Neutron Scattering from a Spherical Optical Potential,<br />

Rep. CNEN-RT/FI(71) 6 (1971).<br />

[11] BERTRAND, F.E., HOREN, D.J., Nucl. <strong>Data</strong> B7 (1972) 1.<br />

[12] AVIGNONE, F.T., FREY, G.D. , Phys. Rev. C4 (1971) 912.<br />

[13 USACHEV, L. N. , MANOKHIN, V. N ., these P roceed in gs.<br />

D IS C U S S IO N<br />

M. LEDERER: You have ra ised an im portant point con cern in g m easured<br />

versu s "estim ated b est" data. F or many le v e ls, an excellent guess of the<br />

spin can be m ade, although there are no data (som e such guesses would<br />

undoubtedly be better than "m easu red " values). This im p lies an en tirely<br />

different type o f com pilation. H ow ever, one would not want to supply such<br />

gu esses to a nuclear th eorist, who might con sid er them as confirm ation<br />

of his pred iction s.<br />

H. G RU PPELAAR: In m y paper I was not asking fo r such a com pilation.<br />

H ow ever, it would be v ery useful if, in the case o f two p ossib le spin values,<br />

the m ost probable one w ere clea rly indicated in the N uclear <strong>Data</strong> Sheets.<br />

Your suggestion o f a different type o f com pilation might be worthwhile for<br />

the purpose o f c r o s s -s e c tio n calcu lation s. H ow ever, it should not be included<br />

in the N uclear <strong>Data</strong> Sheets, lest it give ris e to confusion.<br />

C. W EITKAM P: It is obvious that the 107Pd in elastic scatterin g c r o s s -<br />

section goes up as you sw itch from the 1970 to the 1972 level sch em e. Is<br />

it also obvious that the capture c r o s s -s e c tio n goes down?<br />

H. G RU PPELAAR: If the num ber o f known lev els in crea ses, the capture<br />

c r o s s -s e c tio n w ill go down, sin ce the total width of the compound state,<br />

which appears in the denom inator o f the ex p ression fo r the capture c r o s s -<br />

section in cre a se s. The total c r o s s -s e c tio n is not v ery sensitive to level<br />

schem e uncertainties.


EVALUATION <strong>OF</strong> THE RANGES<br />

<strong>OF</strong> FISSION PRODUCTS<br />

F. RUSTICHELLI*<br />

Physics Division, Joint Research Centre,<br />

Euratom, Ispra, Italy<br />

and<br />

Dipartimento di Fisica, Facoltá di Ingegneria<br />

d ell’ Università,<br />

Ancona, Italy<br />

Abstract<br />

EVALUATION <strong>OF</strong> THE RANGES <strong>OF</strong> FISSION PRODUCTS.<br />

<strong>IAEA</strong> -SM-170/16<br />

In a very recent work, on the basis o f the Lindhard, Scharff and Schitftt theory and using available<br />

experimental data for average ranges in a few stopping elements, a com plete set o f ranges in all the natural<br />

elements for the median light, m edian-heavy, and overall median 235 U fission fragments was derived. A<br />

similar approach was used in. the present paper to derive the corresponding quantities for the thermal-neutron-<br />

induced 239 Pu fission. By using the Lindhard, Scharff and Schi^tt theory and the few data existing for 239 pu<br />

fission fragment ranges in air and A l, a com plete set o f average ranges o f 239Pu fission fragments in all the<br />

existing natural elements was obtained. This set includes, for each stopping element, ranges for the m edian-<br />

light, median-heavy, and overall median fission fragments. The method o f fission product evaluation used<br />

is quite general and is being extended to the other fissile nuclei o f interest.<br />

INTRODUCTION<br />

M ost of the investigations on the energy lo s s of fission fragm ents<br />

in m atter w ere con cern ed with individual fissio n fragm ents interacting with a<br />

few stopping elem ents. In this way, it was p ossib le to obtain detailed<br />

inform ation on the slow ing-dow n m echanism of fission fragm ents in r e la ­<br />

tion to the differen t physical param eters. H ow ever, v ery little inform ation<br />

exists on general quantities as the average fission product ranges which,<br />

in addition to present ph ysical in terest, are of p articu lar im portance in<br />

nuclear technology.<br />

T o partially ov e rcom e this lack o f inform ation on general quantities<br />

related to the energy lo ss of fission fragm ents, we have derived in a very<br />

recen t w ork [ 1] range values in all the natural elem ents fo r the m edian-<br />

light, m edian-heavy and overa ll m edian 235u fissio n fragm ents. The<br />

derivation was based on the observation that the Lindhard, Scharff, Schi^tt<br />

(LSS) th eory [2] is able to appropriately p red ict the relative stopping pow ers<br />

of different elem ents fo r the three types of 235U median fission fragm ents.<br />

F urtherm ore, the few available experim ental data on m edian fis s io n -<br />

fragm ent en ergy lo ss was u tilized in ord er to give an absolute ch aracter<br />

to the evaluated ranges. A sim ila r approach was used here to evaluate the<br />

ranges of the m edian fragm ents produced in the th erm al-n eutron-in duced<br />

fission of 239Pu. The task was com plicated in this case by the fact that, to<br />

our knowledge, no data exist on m edian fragm ents, but only on individual<br />

fragm ents originating in the 239Pu fission .<br />

Present address: Institut Laue-Langevin, B.P. 156, 38042 Grenoble Cedex, France.<br />

559


560 RUSTICHELLI<br />

H ow ever, by using the existin g experim ental data together with LSS-<br />

theory, it was, a lso in the case of 239Pu, p ossib le to d erive the ranges in all<br />

the natural elem ents for the m edian-light, m edian-heavy and overa ll median<br />

fission fragm ents, by means o f a m ethod to be d escrib ed in the next section.<br />

EVALUATION METHOD<br />

The proced u re used to evaluate 239Pu m edian fission fragm ent ranges<br />

is very sim ila r to that used in R ef. [1] to evaluate the 235u m edian fission<br />

fragm ent ranges. This evaluation m ethod is based on the fact that, in<br />

R ef. [3 ], it appeared evident that L SS-theory is able to p red ict in a sa tisfa<br />

ctory way the relative stopping pow ers of differen t elem ents for the<br />

235 U overa ll m edian fission fragm ent. The validity of L SS-theory in c o r ­<br />

re ctly predictin g relative stopping pow ers was con firm ed by a clo se<br />

com parison [1] with experim ental data on m edian-light and m edian-heavy<br />

235U fission fragm ents.<br />

The unified ex p ression obtained by LSS for the electron ic atom ic<br />

stopping pow er is [2]<br />

_ X â J L = g 8тг2 a --------Z lZ 2 ------------ — (1<br />

N dx 0 (Z 2/3+ Z 2/3)3/2 vq '<br />

w here a0 and v0 are radius and v elocity of the first B ohr orbit of hydrogen,<br />

resp ectiv ely , v is the velocity of the p ro je ctile , N is the atom ic density of<br />

the stopping m aterial, e is the electron charge, Z r and Z 2 are the atom ic<br />

num bers of the p ro je ctile and the stopping atom , resp ectiv ely , and Ç is a<br />

constant " o f the ord er o f Zj^6 " [2]. The cu rves for the relative stopping<br />

pow ers d eferrin g to A l fo r the m edian-light and m edian-heavy 235U fission<br />

fragm ents w ere obtained [1, 3] from the ex p ression derived from Eq. (1):<br />

S Al ( Z 2 ) = ( z 2/ 3 +Zz f )3/2 ( z f + z ^ 3 ) 3/2 (2)<br />

with Z x assum ing the value of the 235U ligh t-fragm en t atom ic num ber<br />

(Z j = 37. 4) and of the 235U h eavy-fragm en t atom ic num ber (Z h = 54. 6),<br />

resp ectiv ely . The curve fo r the relative stopping pow ers re fe rrin g to Al<br />

for the overa ll m edian 236U fission fragm ent was obtained by using the<br />

exp ression [ 1, 3]<br />

0 i 0<br />

7^,7. 7,2/(Z 2/3 + Z2/3)3/2l [ ^ (v0/v)cIe] + zJ/6[Z hZ 2/ ( Z 2/3 + Z 2/3)3/2]<br />

fi<br />

[ J (v0/v)dE]_1<br />

S., (Z2) =<br />

6[Z 1ZM/(Z2/3+Z2'13)3/2][ j


te<br />

?<br />

0<br />

г<br />

1V)<br />

У<br />

s<br />

о<br />

3.2<br />

2.8<br />

2 .4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4 ° f<br />

U235M EDIAN FRAGM ENT<br />

o,<br />

I A E A - S M -1 7 0 /1 6 561<br />

— С<br />

— LINDHARD, SCHARFF, SCHI0TT.<br />

О FULMER.<br />

□ ALEXANDER, GADZIK<br />

• SEGRÊ, WIEGAND.<br />

В AIELLO, MARACCI, RUSTICHELLI.<br />

fllllllMI 1 II ill Ml lllllllll III ill 1II lllllllll lllllllll i ii ilini liiilini iiiiliin mi Ii in<br />

10 20 30 40 SO 60 70 80 90<br />

ATOMIC NUMBER Z2 --------------О<br />

F IG . 1 . A t o m i c sto p p in g p ow ers r e la t iv e t o A l fo r th e o v e r a ll m e d ia n *35U fissio n fr a g m e n t as a fu n c tio n<br />

o f th e a t o m ic n u m b er Z 2 o f th e sto p p in g e le m e n t [ 1 ] .<br />

and m edian-heavy 235U fissio n fragm ents. The range in a given<br />

stopping elem ent for the overa ll median fission fragm ent was obtained by<br />

the equation rep orted in Appendix С of Ref. [3]:<br />

1<br />

<br />

_i_<br />

2 VR{ + Rh<br />

w here is the m edian-ligh t fragm ent range and Rh is the m edian-heavy<br />

fragm ent range.<br />

The com p arison betw een experim ental data and L S S -th eoretical values<br />

of relative atom ic stopping pow er for the m edian-ligh t and m edian-heavy<br />

235U fissio n fragm en ts was rep orted in R ef. [1] and was quite sa tisfa ctory,<br />

too. On this b a sis, the assum ption was made [ 1] that L SS-theory is able<br />

to c o r r e c tly p red ict the relative stopping pow ers of the different elem ents<br />

for the m ed ia n -lig h t, m edian-heavy and overa ll median 235U fission fra g ­<br />

m ents. On the other hand, no experim ental data exist, to our knowledge,<br />

fo r the 239Pu m edian fragm ents, which would have allow ed us to check the<br />

validity of this assum ption fo r the 239Pu ca se, as it was made in F ig. 1 for<br />

the 235U ca se. D espite this lack o f d irect verifica tion , the presen t work<br />

is based on the assum ption that L SS-theory is able to co r r e c tly p red ict the<br />

relative stopping pow ers of the differen t natural elem ents for the three<br />

types of 239Pu m edian fissio n fragm ents. This assum ption is ju stified if<br />

one con sid ers that param eters like en ergies, atom ic num bers, m a sses of<br />

fissio n fragm ents do not change v ery much betw een the th erm al-n eu tron -<br />

induced fission s of 235U and 239Pu.<br />

e<br />

100<br />

(4)


562 RUSTICHELLI<br />

The en ergies of the two m edian fragm ents of the 239Pu fission w ere<br />

taken from R ef. [7] where the data of M ilton and F ra ser [8] are rep orted :<br />

the energy of the m edian-light fragm ent is E £ = (101. 5 i 1. 0) MeV and that<br />

of the m edian-heavy fragm ent is Eh = (72. 9 i 0 .7 ) M eV. In R efs [7, 8]<br />

the m a sses of the two m edian fragm ents b efore neutron em ission are r e ­<br />

ported, too: they are = 100. 23 _± 0. 15 for the light fragm ent and<br />

= 139. 77 jt 0. 15 for the heavy fragm ent. By assum ing a value of 2. 9 for<br />

the num ber v of neutrons em itted per 239p u therm al fission [9] and by<br />

using the equation1 [7]<br />

A , E h<br />

К h I<br />

(5)<br />

w here A t and Ah are the m ass num bers after neutron em ission of the light<br />

and the h eavy-m edian fragm ents, resp ectiv ely , the values A £ = 99. 1 and<br />

A h = 138 w ere obtained. The atom ic num ber Z h of the m edian-heavy<br />

fragm ent was obtained from the equation [12]<br />

z h = UCDzh = D (A h) (6)<br />

w here UCDZ n is the atom ic num ber obtained accord in g to the unchanged<br />

charge density (UCD) distribution and D (A h) is the charge deviation that,<br />

a ccord in g to N ören berg [1 2 ], is roughly equal to 0. 7 units for the 239 Pu<br />

fission fragm ent with A = 140.<br />

The value for UCDZ h was obtained from the equation<br />

Z Pu<br />

h A Pu<br />

w here Zpy and APu are the atom ic num ber (Z ^ = 94) and the m ass num ber<br />

(A Pu = 240), resp ectively , of the compound P u-nucleus. F rom E qs (6)<br />

and (7), a value Z h = 54 was obtained: the value of the atom ic num ber for<br />

the m edian fragm ent was then Z j =40.<br />

F igure 2 shows the relative atom ic stopping pow ers for the m edian-<br />

light, m edian-heavy and overall median 239Pu fission fragm ents, with Al<br />

being the re fe re n ce elem ent. The cu rves for the m edian-light and the<br />

m edian-heavy fragm ents w ere obtained from Eq. (2), with Z j assum ing the<br />

value of the light fragm ent (Z { = 40) and of the heavy fragm ent (Z h = 54),<br />

resp ectiv ely . The curve fo r the overa ll m edian fragm ent was obtained<br />

from Eq. (3). The n um erical data corresp on d in g to the three cu rves are<br />

rep orted in T able II.<br />

Once the rela tive atom ic stopping pow ers of the three median fragm ents<br />

are known it is sufficient to know only the absolute range value in one<br />

elem ent for each kind o f m edian fragm ent, in ord er to be able to derive<br />

the absolute ranges in all the other elem ents. In the evaluation of 235U<br />

fission fragm ent ranges [ 1] sev era l absolute range values for the different<br />

m edian fragm ents w ere available. By using all the existing experim ental<br />

data, an effective range in A l was obtained fo r each 235U m edian fragm ent:<br />

i T h e s e tw o ra tios a re n ot p r e c is e ly th e s a m e b u t, fo r th e p resen t p u rp ose, c a n b e c o n s id e r e d id e n t ic a l.<br />

F or d e t a ile d in fo r m a tio n s e e Refs [ 1 0 , 1 1 ] .<br />

(7)


<strong>IAEA</strong> - S M - 1 7 0 / 16 563<br />

ATOMIC NUMBER Z2<br />

FIG.2. Atom ic stopping powers relative to Al for the median-light, median-heavy and overall median<br />

239Pu fission fragments as a function o f the atom ic number Z 2 o f the stopping element.<br />

Ru = 3. 676 m g /c m 2 for the light fragm ent, R h = 3. 021 m g /c m 2 for the heavy<br />

fragm ent and = 3. 359 m g /c m fo r the overa ll m edian fragm ent. These<br />

range values are slightly different from the m easu red ranges in A l, but<br />

they are m ore appropriate in view o f the evaluation o f the ranges in all<br />

natural elem ents, becau se they are the resu lt of a sort of best fit, taking<br />

into account all the available experim ental data.<br />

B elow , the problem of obtaining the corresp on d in g 239Pu values for<br />

the three m edian fragm en ts' effectiv e ranges in A l w ill be solved. Since<br />

no data exist, to our knowledge, on the ranges of 239Pu m edian fragm ents,<br />

the proced u re used for 235U cannot be repeated exactly. H ow ever, experim<br />

ental data exist fo r individual 239Pu fission fragm ent ranges in air [13]<br />

and in A l [14], The assum ption w ill be made that the range of the light<br />

239pu m edian fissio n fragm ent (Ац = 100. 23) w ill be the sam e as that of<br />

the individual 239 Pu fragm ent having the m ass num ber A= 100, and that<br />

the range of the heavy 239Pu m edian heavy fragm ent (A h = 139. 77) w ill be<br />

the sam e as that of the individual 239Pu fragm ent having the atom ic<br />

num ber A - 140.<br />

This assum ption w ill now be ju stified. At first, it can be observed that<br />

the en ergies of the two 239Pu individual fragm ents under con sideration are<br />

equal, within a few p ercen t, to the en ergies of the corresp on d in g 239Pu<br />

m edian fragm ent [7]. F u rth erm ore, we shall check the validity of this<br />

assum ption by com paring the m easured ranges fo r individual 235U fission<br />

fragm ents having the sam e m ass num bers as the m edian 235U fragm ents<br />

(A g = 95), (Ah = 140) with the evaluated ranges [1] for the m edian-light and<br />

the m edian-heavy 235U fission fragm ents, resp ectively.


T A B L E I. A B SO L U T E RANGES F O R 239Pu AND 235U FISSION F R A G M E N T S IN A IR AN D A l.<br />

Stopp¡ng<br />

element<br />

Pu239 fission fragment<br />

Abso1u+e Absolu+e<br />

range range<br />

(cm) (mg/cm2)<br />

A = 100<br />

Average<br />

range value<br />

(mg/cm2)<br />

Pu239 fission fragment A » 140<br />

Absolute Absolute Average<br />

range range range value<br />

(cm) (mg/cm*) (mg/cmJ)<br />

Air 2.783 3.354 3.354 2.206 2.658 2.658 Katcoff, Miskel, Stanley 113|<br />

Al 4.046 4.046 3.210 3.210 Dange et a 1. 114|<br />

Stoppi ng<br />

e1ement<br />

Ai r<br />

Al<br />

2 3 5<br />

U median light fragment U 2 3 5 median heavy fragment<br />

Absolu+e<br />

range<br />

(mg/cm2)<br />

3.55 1<br />

3.02 j<br />

4.11<br />

Average<br />

range value<br />

(mg/cm2)<br />

3.285<br />

4.00 J 4.055<br />

R (Pu 239)<br />

£ = 1.021<br />

- R^fU 235> .<br />

Air<br />

( ^ R Â(Pu235 )<br />

’ R (Pu 2 39)'<br />

- " > - 1.010<br />

Л<br />

R„(U 23S)<br />

l Al<br />

= 0.998<br />

)<br />

R (U 235)<br />

*<br />

Abso1ute<br />

range<br />

(mg/cm2)<br />

2.59 ~)<br />

2.29 ]<br />

3.45<br />

Average<br />

range value<br />

(mg/cm2)<br />

2.440<br />

3.03 J 3.240<br />

2 39<br />

Rh(Pu )<br />

R. (U235)<br />

k n J<br />

R. (Pu2 39 )<br />

r><br />

R. (U2 35)<br />

L h<br />

A i r<br />

A l<br />

1.089<br />

= 0.991<br />

■ Fu 1 mer | 5 |<br />

<<br />

Author<br />

Author<br />

Alexander, Gozdik |6|<br />

Fulmer 15 j<br />

Alexander, Gozdik |б|<br />

2 39<br />

Rh (P u )<br />

564 RU STICH ELLI


TABLE II. ABSOLUTE RANGES IN THE NATURAL ELEM ENTS AND THE RELATIV E STOPPING POWERS<br />

FOR THE M EDIAN-LIGHT, M EDIAN-HEAVY AND O V E RALL MEDIAN 239Pu FISSION FRAGMENTS<br />

Element Symbol<br />

Atomi c<br />

Number<br />

(z2 )<br />

Median Light Fragment Overa 11 Med i an Fragment Median Heavy Fragment<br />

Re 1 at i ve<br />

Atomi с<br />

Stopp i ng<br />

Power<br />

Re 1 a ti ve<br />

Mass<br />

Stopp i ng<br />

Power<br />

Abso1ute<br />

Range „<br />

(mg/cm )<br />

Re 1 at i ve<br />

Atom i с<br />

Stopp i ng<br />

Power<br />

Re lat i ve Abso1ute<br />

Mass Range 2<br />

Stopping (mg/cm )<br />

Power<br />

Relative<br />

Atomi с<br />

Stopp i ng<br />

Power<br />

Re 1 at i ve<br />

Mass<br />

Stopp i ng<br />

Hydrogen H 1 0 .1 2 2 3 .2 5 4 1.141 0 .1 1 7 3 .1 3 9 1 .0 8 4 0 .11 4 3 .0 3 9 1.034<br />

Hel¡um He 2 0 .2 2 7 1.531 2 .4 2 5 0 .2 2 0 1.486 2 .2 9 0 0 .2 1 5 1 .4 4 6 2 .1 7 2<br />

Lithium Li 3 0 .3 2 3 1.255 2 .9 6 0 0 .3 1 5 1.223 2 .78 3 0 .3 0 7 1. 195 2 .6 2 8<br />

Вегу 11i um Be 4 0 .41 0 1.229 3 .0 2 2 0 .4 0 2 1.202 2 .8 3 0 0. 394 1.17 9 2 .66 4<br />

Boron В 5 0 .4 9 2 1.228 3 .02 5 0 .4 8 3 1.2C5 2 .8 2 3 0 .4 7 5 1 .1 8 6 2 .6 5 0<br />

Carbon С 6 0 .56 8 1.276 2 .910 0 .5 5 9 1.257 2 .7 0 8 0. 552 1.24 0 2 .5 3 4<br />

Nitrogen N 7 0 .6 4 0 1.232 3 .0 1 3 0 .6 3 2 1.217 2 .7 9 6 0 .6 2 5 1 .20 3 2 .61 1<br />

Oxygen 0 8 0 .7 0 7 1.193 3 .1 1 2 0 .7 0 0 1. 181 2 .8 8 1 0. 694 1.171 2 .5 8 4<br />

Flouri ne F 9 0 .7 7 2 1.096 3 .38 8 0 .7 6 6 1 .087 3 .1 3 0 0. 760 1 .0 8 0 2 .9 0 9<br />

Neon Ne 10 0 .8 3 3 1.113 3 .33 5 0 .8 2 8 1. 1C7 3 .07 4 0 .8 2 4 1.101 2 .85 3<br />

Sod¡um Na 11 0 .8 9 1 1 .046 3.551 0 .8 8 8 1.042 3 .2 6 6 0 .8 8 5 1 .0 3 9 3 .0 2 5<br />

Magnes i um Mg 12 0 .9 4 7 1.051 3 .5 3 4 0 .9 4 5 1 .049 3 .2 4 5 0 .94 4 1 .0 4 7 3 .001<br />

A 1umi num Al 13 1.000 1 .000 3 .7 1 3 1.000 1 .00 0 3 .4 0 3 1. 000 1 .000 3 .1 4 2<br />

S i 1 i con Si 14 1.051 1.010 3 .6 7 7 1.053 1.012 3 .3 6 4 1 .0 5 4 1 .01 3 3 .1 0 2<br />

Power<br />

Absolute<br />

Range 2<br />

(mg/cm )<br />

IA E A -S M -1 7 0 /1 6 565


T A B L E II (continu ed)<br />

Phosphorus P 15<br />

Su 1 fur S 16<br />

Chlori ne Cl 17<br />

Argon Ar 18<br />

Potass¡um K 19<br />

Ca1 с ¡um Ca 20<br />

Scandi um Sc 21<br />

T ¡+an¡um Ti 22<br />

Vanadi um V 23<br />

Chromi um Cr 24<br />

Manganese Mn 25<br />

1 ron Fe 26<br />

Coba 11 Со 27<br />

N ï eke 1 Ni 28<br />

Copper Cu 29<br />

Zinc Zn<br />

30<br />

Ga 1 1 i um Ga 31<br />

German i um Ge 32<br />

Arsenic As 33<br />

Seleni um Se 34<br />

1. 100 0 .9 5 9 3 .8 7 4<br />

l . 148 0 .9 6 6 3 .8 4 4<br />

1.193 0 .9 0 8 4 .0 8 8<br />

1.237 0 .8 3 6 4 .4 4 2<br />

1.280 0 .8 8 3 4 .2 0 4<br />

1.321 0 .8 8 9 4. 174<br />

1.361 0 .8 1 7 4 .5 4 5<br />

1.400 0 .7 8 9 4 .7 0 9<br />

1.437 0 .7 6 1 4 .8 7 7<br />

1.474 0 .7 6 5 4 .8 5 5<br />

1.509 0 .7 4 1 5 .01 0<br />

1.544 0 .746 4 .9 7 9<br />

1.577 0 .7 2 2 5 .1 4 3<br />

1.610 0 .7 4 0 5 .0 2 0<br />

1.641 0 .6 9 7 5 .3 2 8<br />

1.672 0 .6 9 0 5 .3 8 0<br />

1.702 0 .6 5 9 5 .6 3 6<br />

1.732 0 .6 4 4 5 .7 6 8<br />

1.760 0 .6 3 4 5 .8 5 6<br />

1.789 0 .61 1 6 .0 7 5<br />

1. 104 0 .9 6 2<br />

1 .15 3 0 .9 7 0<br />

1.201 0 .9 1 4<br />

1.247 0 .8 4 2<br />

1.292 0 .8 9 1<br />

1 .3 3 5 0. 899<br />

1 .37 7 0. 826<br />

1.418 0. 799<br />

1 .4 5 7 0 .7 7 2<br />

1 .496 C. 776<br />

1 .533 0 .7 5 3<br />

1 .570 0 .7 5 8<br />

1 .605 0 .7 3 5<br />

1 .64 0 0 .7 5 4<br />

1.674 0 .71 1<br />

1.707 0. 705<br />

1 .7 3 9 0 .6 7 3<br />

1.771 0 .6 5 8<br />

1.802 0 .6 4 9<br />

1.832 0 .6 2 6<br />

3 .5 3 9 1 .1 0 7<br />

3 .5 0 7 1. 158<br />

3 .7 2 3 1 .2 0 7<br />

4.041 1 .255<br />

3 .8 1 8 1.302<br />

3 .7 8 7 1.34 7<br />

4 .1 1 8 1 .39 0<br />

4 .2 6 2 1.433<br />

4 .4 0 9 1 .47 5<br />

4 .3 8 4 < 1 .5 1 5<br />

4 .5 1 9 1 .5 5 4<br />

4 .4 8 7 1 .5 9 3<br />

4 .6 3 0 1 .6 3 0<br />

4 .5 1 4 1 .6 6 7<br />

4 .7 8 7 1 .70 3<br />

4 .8 2 9 1.738<br />

5 .0 5 5 1 .77 2<br />

5 .1 6 9 1 .8 0 5<br />

5 .2 4 4 1 .83 8<br />

5.43 6 1 .8 7 0<br />

0 .9 6 4 3 .2 5 8<br />

0 .9 7 5 3 .2 2 4<br />

0 .9 1 9 3.419<br />

0. 848 3 .7 0 6<br />

0 .8 9 8 3.493<br />

0 .9 0 7 3 .4 6 6<br />

0 .8 3 5 3 .76 5<br />

0 .8 0 7 3 .89 2<br />

0.781 4 .0 2 3<br />

0 .7 8 6 3 .9 9 7<br />

0 .7 6 3 4 .1 1 6<br />

0 .7 7 0 4 .0 8 3<br />

0 .7 4 6 4 .2 1 0<br />

0 .7 6 6 4 .1 0 2<br />

0 .7 2 3 4 .3 4 6<br />

0 .717 4 .3 8 1<br />

0 .6 8 6 4 .5 8 2<br />

0.671 4 .6 8 3<br />

0 .66 2<br />

4 .7 4 7<br />

0 .6 3 9 4 .91 7<br />

566 RUSTIC H ELLI


T A B L E II (continu ed)<br />

Bromi ne Br 35 1.816<br />

Krypton Kr 36 1.843<br />

Rubidium Rb 37 1.869<br />

Stronti urn Sr 38 1.895<br />

Yttriurn Y 39 1.920<br />

Zi rcon i urn Zr 40 1.944<br />

N i ob i urn Nb 41 1.968<br />

Molybdenum Mo 42 1 .992<br />

Technetium Tc 43<br />

2 .0 1 5<br />

Ruthenium Ru 44 2.038<br />

Rhod i urn Rh 45 2 .0 6 0<br />

Pa 11 ad i urn Pd 46 2 .0 8 2<br />

Si 1 ver *9 47 2 .1 0 3<br />

Cadm i urn Cd 48 2 .1 2 4<br />

1ndi urn 1 n 49 2. 144<br />

Tin Sn 50 2.165<br />

Anti mony Sb 51 2. 185<br />

Te 11uri urn Te 52 2 .20 4<br />

lodi ne 1 53 2 .2 2 3<br />

Xenon Xe 54 2 .2 4 2<br />

0 .6 1 3 6 .0 5 6 1.862 0 .6 2 9<br />

0 .5 9 3 6 .2 5 8 1 .891 0 .6C 9<br />

0 .5 9 0 6 .2 9 3 1 .9 1 9 0. 6C6<br />

0 .5 8 3 6 .36 4 1 .94 7 0 .5 9 9<br />

0 .5 8 3 6 .3 7 3 1 .97 4 0 .5 9 9<br />

0 .5 7 5 6 .4 5 7 2 .00 0 0 .5 9 2<br />

0 .5 7 2 6 .4 9 6 2 .0 2 7 0 .5 8 9<br />

0 .5 6 0 6 .6 2 8 2 .05 2<br />

2 .0 7 7<br />

0 .5 7 7<br />

0 .5 4 4 6 .8 2 6 2. 102 0 .56 1<br />

0 .5 4 0 6 .8 7 5 2 .1 2 6 0 .5 5 7<br />

0 .5 2 8 7 .0 3 4 2 .1 5 0 0 .5 4 5<br />

0 .5 2 6 7 .0 5 9 2 .1 7 3 0 .5 4 4<br />

0 .5 1 0 7 .2 8 3 2 .1 9 6 0 .5 2 7<br />

0 .5 0 4 7.368 2 .2 1 9 0 .5 2 1<br />

0 .4 9 2 7 .5 4 5 2.241 0 .5 C 9<br />

0 .4 8 4 7 .66 9 2 .2 6 3 0 .5 0 1<br />

0 .4 6 6 7 .9 6 7 2 .2 8 4 0 .4 8 3<br />

0 .4 7 3 7 .85 5 2 .3 0 5 0 .4 9 0<br />

0 .4 6 1 8 .05 9 2 .3 2 6 0 .4 7 8<br />

5 .4 1 4 1.901 0 .64 2 4 .8 9 4<br />

5 .5 9 0 1.932 0 .6 2 2 5 .051<br />

5 .6 1 8 1.962 0 .6 1 9 5 .0 7 2<br />

5 .6 7 7 1.992 0 .6 1 3 5 .1 2 3<br />

5.681 2 .02 1 0 .6 1 3 5 .1 2 3<br />

5.751 2 .0 4 9 0 .6 0 6 5 .18 4<br />

5 .7 8 2 2 .0 7 7 0 .6 0 3 5.209<br />

5 .8 9 6 2 .1 0 5<br />

2 .131<br />

0 .5 9 2 5.30 9<br />

6 .0 6 5 2 .1 5 8 0 .5 7 6 5 .4 5 4<br />

6 .1 0 4 2. 184 0 .5 7 3 5 .4 8 7<br />

6 .2 4 2 2 .2 0 9 0 .5 6 0 5.60 8<br />

6 .2 6 0 2 .2 3 4 0 .5 5 9 5 .6 2 2<br />

6 .4 5 5 2 .2 5 9 0 .5 4 2 5 .7 9 4<br />

6 .5 2 7 2 .2 8 3 0 .5 3 7 5 .8 5 6<br />

6 .6 8 0 2 .3 0 7 0 .5 2 4 5 .991<br />

6 .7 8 6 2 .3 3 1 0 .5 1 7 6 .0 8 3<br />

7 .0 4 6 2 .3 5 4 0 .4 9 8 6 .3 1 3<br />

6 .9 4 3 2 .3 7 7 0 .5 0 5 6 .2 1 8<br />

7 .1 2 0 2 .3 9 9 0 .4 9 3 6 .3 7 4<br />

<strong>IAEA</strong> - S M - 1 7 0 /1 6 5 6 7


T A B L E II (continu ed)<br />

Ces i urn Ce 55 2.261 0 .4 5 9 8 .09 0<br />

Bari urn Ba 5o 2 .2 7 9 0 .4 4 8 8 .2 9 3<br />

Lanthanum La 57 2.297 0 .4 4 6 8 .3 2 3<br />

Ceri urn Ce 58 2 .3 1 4 0 .4 4 6 8 .33 1<br />

Praseodymi urn Pr 59 2 .3 3 2 0 .4 4 7 8 .3 1 6<br />

Neodyn i urn Nd 60 2 .349 0 .4 3 9 8 .45 1<br />

Prometb i urn Pm 61 2 .3 6 6<br />

Samari urn Sm 62 2 .382 0 .4 2 8 8 .68 5<br />

Europium Eu 63 2 .399 0 .4 2 6 8 .7 1 9<br />

Gadol¡ni um Gd 64 2 .415 0 .4 1 4 8 .9 6 2<br />

Terbium Tb<br />

65 2 .43 0 0 .4 1 3 8 .9 9 9<br />

Dysp ros i. um Dy 66 2 .44 6 0 .4 0 6 9 .1 4 2<br />

Holmium Ho<br />

67 2.461 0 .4 0 3 9 .2 2 1<br />

Erb i um Er 68 2 .4 7 6 0 .3 9 9 9 .2 9 4<br />

Thu 1 i um Tm 69 2.491 0 .3 9 8 9 .3 3 1<br />

Y+terbi um Yb 70 2 .50 6 0 .39 1 9 . 50 2<br />

Luteti um Lu 71 2.521 0 .3 8 9 9 .5 5 3<br />

Hafn i um Hf 72 2 .5 3 5 0 .3 8 3 9 .6 9 0<br />

Tanta 1i um Ta 73 2.54 9 0 .3 8 0 9 .7 6 9<br />

T ungsten W 74 2 .5 6 3 0 .3 7 6 9 .8 7 2<br />

2 .3 4 6 0 .4 7 6 7 .1 4 4<br />

2 .3 6 6 0 .4 6 5 7 .3 2 0<br />

2 .3 8 6 0 .4 6 4 7 .342<br />

2 .4 0 6 0 .46 3 7 .3 4 6<br />

2 .4 2 5 0 .4 6 4 7 .32 9<br />

2 .4 4 4 0.45 7 7 .4 4 4<br />

2 .4 6 2<br />

2 .43 1 0 .4 4 5 7 .64 4<br />

2 .4 9 9 0 .4 4 4 7 .6 7 0<br />

2 .5 1 7 0 .4 3 2 7.881<br />

2 .5 3 4 0. 430 7 .9 0 9<br />

2 .55 1 0.42 4 8 .03 3<br />

2 .5 6 9 0 .42 0 8 .0 9 9<br />

2 .5 8 5 0 .4 1 7 8 .1 5 9<br />

2 .6 0 2 0 .4 1 6 8 .1 8 9<br />

2 .6 1 8 0 .4 0 8 8 .3 3 5<br />

2 .6 3 5 0 .4 0 6 8 .3 7 6<br />

2 .6 5 0 0.4C1 8 .4 9 3<br />

2 .6 6 6 0.39 8 8 .5 6 0<br />

2 .6 8 2 0 .3 9 4 8 .6 4 6<br />

2.421 0.491 6 .3 9 3<br />

2 .4 4 3 0 .4 8 0 6 .5 4 7<br />

2 .4 6 4 0 .4 7 9 6 .5 6 5<br />

2 .4 8 5 0 .4 7 9 6 .5 6 6<br />

2. 506 0 .4 8 0 6 .54 8<br />

2 .5 2 6 0 .4 7 3 6 .6 4 9<br />

2. 547<br />

2 .5 6 6 0.461 6 .3 2 2<br />

2 .5 8 6 0 .4 5 9 6 .8 4 3<br />

2 .6 0 5 0 .4 4 7 7.029<br />

2 .6 2 4 0 .4 4 6 7 .0 5 2<br />

2 .6 4 3 0 .4 3 9 7.15 9<br />

2 .66 2 0 .4 3 5 7.216<br />

2 .6 8 0 0 .4 3 2 7.267<br />

2 .6 9 8 0.431 7 .29 1<br />

2 .7 1 6 0 .4 2 3 7 .4 1 9<br />

2 .7 3 4 0 .4 2 2 7 .4 5 4<br />

2. 751 0 .4 1 6 7 .55 5<br />

2 .7 6 8 0 .4 1 3 7 .6 1 2<br />

2 .7 8 5 0 .4 0 9 7.687<br />

568 RU STICH ELLI


T A B L E II (continued)<br />

Rheni um Re 75 2 .57 7 0 .3 7 3 9 .9 4 5<br />

Osmi urn Os 76 2.590 0 .3 6 7 10.105<br />

1 г i d Î urn Ir 77 2 .6 0 4 0 .3 6 5 10.159<br />

Platinum Pt 78 2 .61 7 0 .3 6 2 10.260<br />

Gold Au 79 2 .6 3 0 0 .3 6 0 10.307<br />

Mercury Hg 80 2 .6 4 3 0 .3 5 5 10.446<br />

Tha11¡um Tl 81 2 .65 5 0 .3 5 1 10.592<br />

Lead Pb 82 2.668 0 .3 4 7 10.688<br />

Bi smuth Bi 8 3 2 .6 8 0 0 .3 4 6 10.730<br />

Pol on i;um Po 84 2 .6 9 2<br />

AstatГпе At 85 2 .7 0 4<br />

Radon Rn 86 2. 716<br />

Franci urn Fr 87 2 ,7 2 8<br />

Rad 1 urn Ra 88 2. 740<br />

Acti n ¡ um Ac 89 2.751<br />

Thori um Th 90 2 .7 6 3 0 .32 1 11.558<br />

Protacti ni um Pa 91 2 .7 74<br />

Uran i um U 92 2 .7 8 5 0 .3 1 6 11.762<br />

Neptun¡um Np 93<br />

2. 796<br />

Plutonium Pu 94 2. 807<br />

2 .6 9 7 0.391 8 .7 0 7<br />

2 .7 1 2 0 .3 8 5 8 .8 4 5<br />

2 .7 2 7 0. 383 8 .8 8 9<br />

2 .7 4 2 0 .3 7 9 8 .97 4<br />

2 .7 5 7 0 .37 8 9 .01 2<br />

2 .7 7 1 0 .3 7 3 9 .1 3 0<br />

2. 785 Û .368 9 .2 5 5<br />

2 .7 9 9 0. 365 9 .3 3 5<br />

2 .8 1 3 0 .3 6 3 9 .3 6 9<br />

2 .8 2 7<br />

2.8 40<br />

2 .8 5 4<br />

2.867<br />

2 .8 8 0<br />

2 .8 9 3<br />

2 .9 0 6 0 .3 3 8 10.071<br />

2 .9 1 9<br />

2 .9 3 1 0. 332 10.242<br />

2 .9 4 4<br />

2 .9 5 6<br />

2 .8 0 2 0 .4 0 6 7 .7 3 9<br />

2 .8 1 8 0 .4 0 0 7 .85 9<br />

2 .8 3 5 0 .3 9 8 7 .89 5<br />

2 .8 5 1 0 .3 9 4 7 .96 9<br />

2 .8 6 7 0 .3 9 3 8.001<br />

2 .8 8 3 0 .3 8 8 8 .1 0 3<br />

2 .8 9 3 0 .38 3 8 .21 2<br />

2 .9 1 4 0 .3 7 9 8.28 1<br />

2 .9 2 9 0 .3 7 8 8.309<br />

2. 944<br />

2 .9 5 9<br />

2 .9 7 3<br />

2 .9 8 8<br />

3.C 02<br />

3 .C 1 7<br />

3 .03 1 0 .3 5 2 8 .91 5<br />

3. 045<br />

3 .0 5 8 0 .3 4 7 9 .06 3<br />

3 .C 7 2<br />

3.C 85<br />

IA E A -S M -1 7 0 /1 6 569


TABLE II (continued)<br />

Americî um Am 95 2.818 2.968 3. 099<br />

Curi um Cm 96 2.828 2.980 3.112<br />

Berke1i urn Bk 97 2. 839 2.992 3. 125<br />

Cal i form urn Cf 98 2. 84 9 3.004 3. 138<br />

Einstei nlurn Es 99 2. 859 3.015 3.151<br />

Fermi urn Fm 100 2. 869 3.027 3. 164<br />

570 R U STIC H E LU


I A E A - S M -1 7 0 /1 6 571<br />

F IG . 3 . In te g r a l ranges o f fissio n p r o d u c ts o f 235U m e a su re d b y N id a y in u ra n iu m m e t a l [ 7 , 1 5 ] .<br />

The ranges of 235U fission products in uranium w ere m easured by<br />

Niday [15] and reported in Fig. 3. It can be seen that the dependence of the<br />

range on the m ass num ber A j , and, as a consequence, on the atom ic<br />

num ber Z j of the p ro je ctile atom is quite regu lar and free from oscilla tion s<br />

which w ere found in som e other ca ses [16]. The range in uranium o f the<br />

235U fragm ent with a m ass num ber A= 95 appears to be, accord in g to F ig. 3,<br />

equal to 11.4 m g /cm 2 and the range of th e235U fragm ent with a m ass<br />

num ber A = 140 appears to be equal to 8. 8 m g /c m 2 . T hese values are in<br />

good agreem ent with the values obtained in R ef. [ 1] fo r the range in uranium<br />

of the 235U m edian-ligh t fragm ent (R { = 11. 893) and for the range of the<br />

235U m edian-heavy fragm ent (Rh = 8. 686).<br />

T able I rep orts the values of the ranges in air m easured by K atcoff,<br />

M iskel and Stanley [13] fo r the 239Pu fission fragm ents of m ass num ber<br />

A = 100 and A= 140 and the ranges in A l of the sam e fragm ents m easured<br />

by Dange et al. [14]. In addition, the range values in air and A l obtained<br />

experim en tally for the m edian-ligh t and the m edian-heavy 235U fission fra g ­<br />

m ents, d iscu ssed in R ef. [1] are rep orted . The data of R ef. [13] w ere<br />

obtained by using a radioch em ica l technique: the values rep orted in Fig. 3<br />

are deduced from the figures and not from the tables in ord er to be coherent<br />

with the 235и data re fe rrin g to the m axim um range. An a ir density value of<br />

pair = 1. 205 was used to convert the range data from cm to m g /c m 2 . The<br />

range values o f 239Pu fission fragm ents in A l w ere obtained by using a high-<br />

resolu tion gam m a -sp ectrom eter.


572 RUSTICH ELLI<br />

The ra tio in air and A l between Pu and U light-fragm en t ranges and<br />

betw een Pu and U heavy-fragm ent ranges are reported in Table I, too.<br />

The average values for the ratio range P u /ra n g e U is 1. 010 for the light<br />

fission fragm ent and 1. 040 for the heavy fission fragm ent. The effective<br />

ranges in A l fo r the light and heavy 239Pu median fragm ents w ere obtained<br />

by m ultiplying the effectiv e ranges in A l of the light and heavy 235U m edian<br />

fragm ents by these two experim ental ratios. The effective range in A l of<br />

the 239Pu m edian-ligh t fragm ent was found to be R£ = 3. 713 and of the 239Pu<br />

m edian-heavy fragm ent Rh = 3. 142. The 239Pu overa ll m edian-heavy fra g ­<br />

ment was obtained from R j and Rh by using Eq. 4; the value obtained is<br />

< R > = 3. 403.<br />

The absolute ranges for the three 239Pu m edian fission fragm ents r e ­<br />

ported in Table II w ere obtained by dividing the effective range in Al of each<br />

o f the m edian fragm ents by the th eoretical relative m ass-stop p in g pow ers<br />

r e fe r r e d to A l. The relative m ass stopping pow ers w ere obtained by<br />

m ultiplying the rela tive atom ic stopping pow ers by the atom ic weight<br />

ratios [1].<br />

RESULTS AND DISCUSSION<br />

T able II rep orts the values of the relative atom ic and m a ss-stop p in g<br />

p ow ers, re fe rre d to A l, as calculated by L SS-theory for the m edian-light,<br />

m edian-heavy and overa ll m edian 239Pu fission fragm ents. Finally, the<br />

evaluated absolute ranges for the three types of 239Pu m edian fragm ents<br />

10 20 30 iO SO SO 70 BO 90 100<br />

ATOMIC NUMBER Z 2 ■<br />

F IG .4 . A b s o lu te ra n g es in t h e n a tu ra l e le m e n ts o f th e m e d ia n -lig h t , m e d ia n -h e a v y and o v e r a ll m e d ia n<br />

239 pu fissio n fr a g m e n ts, as a fu n c t io n o f th e a t o m ic n u m b er Z 2 o f th e sto p p in g e le m e n t .


I A E A - S M -1 7 0 /1 6 573<br />

are rep orted . A d iscu ssion of the p h ysical m eaning of the range o f the<br />

overa ll m edian fission fragm ent was presented in Ref. [1]. In p ra ctica l<br />

applications, it would be p refera b le to take the corresp on d in g values for<br />

the m edian-light fission fragm ent instead of the overa ll m edian fis s io n -<br />

fragm ent ranges. The absolute ranges fo r the three types of 239Pu median<br />

fission fragm ents are rep orted in Pig. 4, as a function of the atom ic num ber<br />

Z 2 of the stopping elem ent. The resu lts obtained a re not too differen t from<br />

the corresp on d in g 236U values and, because of uncertainties in the approxim<br />

ations used, they should be con sid ered in an absolute sca le and not in<br />

re fe re n ce to the 235U data.<br />

This w ork rep resen ts only a first attempt to produce general in form a ­<br />

tion on 239Pu fissio n fragm ent ranges. The evaluation m ethod is largely<br />

based on the 235u experim ental data: the p re cisio n would in crea se if new<br />

experim ental data for 239Pu w ere available. This p roced u re o f estim ating<br />

absolute ranges fo r m edian fissio n fragm ents is quite general and is now<br />

being applied to other fis s ile nuclei of interest.<br />

[ 1 ] RU STICH ELLI, F ., Z . P h y s ., u n d er press.<br />

R E F E R E N C E S<br />

[ 2 ] L IN D H A R D , J . , SCH A R FF, M . , S C H I 0 T T , H . E . , K g l. D a n . V id e n s k . S e ls k . M a t .- F y s . M e d d . 33<br />

14 (1 9 6 3 ).<br />

[ 3 ] AIE LLO, V . , M A R A C C I, G . , RU STICH ELLI, F ., P hys. R e v . 4 8 (1 9 7 1 ) 3 8 1 2 .<br />

[ 4 ] SEGRE, E ., W IE G A N D , C . , P hys. R ev . 7 0 U 1 9 4 6 ) 8 0 8 .<br />

[ 5 ] FULMER, C . B . , P h ys. R e v . Ш 8 (1 9 5 7 ) 1 1 1 3 .<br />

[6 ] A L E X A N D E R , J . M . , G A Z D I K , M . F . , Phys. R ev . 120 (1 9 6 0 ) 8 7 4 .<br />

[ 7 ] H Y D E , E . K . , " T h e N u c le a r P rop erties o f th e H e a v y E le m e n ts ", 3 , C h a p te r 6 , K in e t ic E n ergy o f th e<br />

F ission F ra gm en ts, P r e n t ic e -H a ll, N ew Jersey < 1 9 6 4 ).<br />

[ 8 ] M IL T O N , J . C . D . , FRASER, J . S . , C a n . J. P hys. 4 0 (1 9 6 2 ) 1 6 2 6 ; 4 1 (1 9 6 3 ) 8 1 7 .<br />

[9 ] R e a cto r P h ysics C on stan ts, A N L -5 8 0 0 (S e c o n d E d ition ) (1 9 6 3 ).<br />

[1 0 ] TERREL, J ., P hys. R e v . 113 (1 9 5 9 ) 5 2 7 .<br />

[ 1 1 ] B R U N TO N , D . C . , H A N N A , G . C . , C a n . J. R es. 28A (1 9 5 0 ) 1 90.<br />

[ 1 2 ] NÖRENBERG, W . , P hys. R ev . 5 (1 9 7 2 ) С 2 0 2 0 .<br />

[1 3 ] K A T C O F F , J . , M ISK EL, J . A . , S T A N L E Y , C . W . , P h ys. R e v . 7 4 (1 9 4 8 ) 6 3 1 .<br />

[1 4 ] D A N G E , S . P . , JA IN , H . C . , M A N O H A R , S . B . , S A T Y A P R A K A S H , K . , R A M A N IA H , M . V . ,<br />

R A M A S W A M I, A . , REN G AN , K . , in P h ysics a n d C h e m is try o f F ission (P r o c . S y m p . V ie n n a ), IA E A ,<br />

V ie n n a (1 9 6 9 ) 7 4 1 ,<br />

[1 5 ] N ID A Y , J ., P hys. R e v . 121 (1 9 6 1 ) 1 4 7 1 .<br />

[1 6 ] E L -H O S H Y , A . H . , GIBBONS, J .F . , Phys. R e v . 173 (1 9 6 8 ) 4 5 4 .<br />

D I S C U S S I O N<br />

N. M. SPYROU: Do you intend extending your m ethod to ca lifo rn iu m -252?<br />

If so you could then ch eck your range calcu lation s fo r selected elem ents<br />

against resu lts obtained experim en tally, e. g. b y using su rface b a rrie r<br />

d etectors, which are becom in g in creasin gly available. T his would be im ­<br />

portant from the m ed ical point of view.<br />

F. RUSTICHELLI: I am now applying the m ethod to 233 U. But, I<br />

agree with you that it would be in terestin g to con sid er also 252 Cf. I shall<br />

certain ly be doing that in the near future.


Section VII<br />

ACCELERATOR AND SPACE SHIELDING


Chairman<br />

W.W. HAVENS (USA)


I A E A - S M -17 0 /4 2<br />

USE <strong>OF</strong> NUCLEAR DATA IN<br />

DESIGNING SPACE-SCIENCE EXPERIMENTS<br />

B.C. CLARK, P.G. KASE, J.P. MARTIN, J.G. MORSE<br />

Martin Marietta Aerospace,<br />

Denver, C olo.,<br />

United States of America<br />

Abstract<br />

USE <strong>OF</strong> N U CLEAR D A T A IN DESIGN ING S P A C E -S C IE N C E EXPERIM ENTS.<br />

S c ie n t if ic e x p e r im e n ts fo r e x p lo r a t io n o f th e p la n e ts and in te r p la n e ta ry s p a c e m ust b e d e s ig n e d to<br />

o p e r a te in a n u m b er o f s e v e r e e n v ir o n m e n ts , in c lu d in g th e riatural r a d ia tio n in s p a c e ( c o s m ic ra y s, solar<br />

fla r e s , r a d ia tio n b e lts , e t c . ). M a n -m a d e r a d ia tio n e n v ir o n m e n ts m a y b e a lso p re se n t, su ch as g a m m a and<br />

n eu tron e m is sio n s fr o m r a d io is o to p e t h e r m o e le c t r ic g en era tors (R T G 's ) used as s p a c e c r a ft p o w e r su p p lie s,<br />

a n d /o r e m is s io n s fr o m r a d ia tio n so u rces w h ic h are a pa rt o f th e s c ie n c e in stru m e n ta tio n c o m p le m e n t .<br />

E x a m p le s o f th e la tte r in c lu d e a lp h a , b e ta , X - r a y and r a d io is o t o p e so u r ce s, m in ia tu re X - r a y tu b e s, and<br />

n eu tron g e n e ra to rs o f th e D - T a c c e le r a t o r t y p e . E a ch e x p e r im e n t m ust s u r v iv e th e r a d ia tio n d a m a g e as w e ll<br />

as in te r fe r e n c e s d u rin g o p e r a tio n in su ch e n v ir o n m e n ts . T h e u se o f n u c le a r d a ta in d e s ig n in g se v e r a l in stru ­<br />

m en ts for e x p lo r a tio n o f M ars and V enus is d iscu ssed , w ith e x a m p le s draw n fr o m th e X - r a y flu o r e s c e n c e<br />

g e o c h e m i c a l a n aly ser sch e d u le d fo r la u n c h to M ars in 1 9 7 5 , p lu s an X - r a y d iffr a c t o m e t e r , a g a m m a -r a y<br />

s p e c t r o m e t e r , and a n eu tron a c t iv a t io n a n aly ser under stu d y fo r p o s s ib le u se o n fu tu re m ission s. C on strain ts<br />

u p o n o v e r a ll s p a c e c r a ft d e s ig n d u e to th e n u c le a r e n v ir o n m e n ts a re a lso d iscu sse d . T h e ty p e s o f n u c le a r<br />

d a ta e m p lo y e d in c lu d e r a d io is o t o p e e m is s io n c h a r a c te r is tic s , s h ie ld in g o f so u r ce s , s h ie ld in g o f c o s m ic<br />

rays and tra p p ed p a r t ic le s , n eu tron s c a tte r in g and a c t iv a t io n c r o s s -s e c t io n s , and g a m m a -r a y transport<br />

p a ra m e te rs . H igh co s ts in fu lly s im u la tin g such e n v ir o n m e n ts fo r s p a c e c r a ft - s iz e d e q u ip m e n t h a v e d ic ta te d<br />

h e a v y r e lia n c e u p on a n alysis rath er than e x p e r im e n ta l test in v e r ify in g s p a c e c r a ft c o m p a t ib ilit y . T h is<br />

g r e a tly in c r e a s e s th e e c o n o m i c v a lu e o f th e a p p lic a b le n u c le a r d a ta .<br />

This paper describes science experiments which will be (or could be)<br />

carried on spacecraft designed to explore surfaces and/or atmospheres of<br />

planets, such as Mars, Venus and Jupiter. It is limited to those experiments<br />

in which beta, gamma and X-radiations are measured in order to ascertain<br />

requisite physical, chemical and biological properties, and it is<br />

concerned with the effect of radiation background on the measurements<br />

themselves.<br />

RADIATION ENVIRONMENTS<br />

The radiation environments of science experiments for the exploration<br />

of the planets and interplanetary space include both natural and man-made<br />

radiation sources.<br />

The properties of radiation environments of the planets are influenced<br />

very strongly by the properties of their magnetic fields and their atmospheres.<br />

Planets having strong magnetic fields are likely to have belts of<br />

trapped proton and electron radiation, such as the well-known Van Allen<br />

belts of Earth. Since their discovery in 1958, the Van Allen belts have<br />

been extensively mapped and very detailed models of their properties are<br />

readily available [l, 2, 3, 4].<br />

Planetary exploration so far has shown that the Moon, Venus and Mars<br />

have very weak magnetic fields and therefore no significant radiation belts.<br />

Except for atmospheric interactions, the radiation environments near these<br />

planets are essentially identical to the interplanetary environments.<br />

577


578 C LARK e t a l.<br />

W a r w i c k И a n d B e c k h a v e i n f e r r e d f r o m a n a l y s i s o f i t s s y n c h r o ­<br />

t r o n r a d i o n o i s e t h a t J u p i t e r h a s a s t r o n g m a g n e t i c f i e l d , a n d p r o b a b l y h a s<br />

e x t e n s i v e r a d i a t i o n b e l t s . U n t i l t h e P i o n e e r s p a c e c r a f t e n c o u n t e r s J u p i t e r<br />

i n D e c e m b e r 1 9 7 3 , p l a n n e r s o f m i s s i o n s t o J u p i t e r a r e a n t i c i p a t i n g t h a t i t s<br />

r a d i a t i o n b e l t s c o n t a i n t h e f l u x e s i n d i c a t e d b y F i g u r e 1 , w h i c h s h o w s t h e<br />

u n c e r t a i n t i e s o f c u r r e n t f o r e c a s t s o f t h e t r a p p e d p r o t o n a n d e l e c t r o n<br />

f l u x e s T h e p e a k f l u x e s i n t h i s m o d e l o c c u r i n t h e p l a n e o f t h e<br />

J u p i t e r m a g n e t i c e q u a t o r w h e r e i t i n t e r s e c t s t h e c l o u d l a y e r s v i s i b l e i n<br />

t h e a t m o s p h e r e . B e c a u s e t h e e l e c t r o n c o m p o n e n t o f t h i s b e l t i s d e r i v e d<br />

f r o m m e a s u r e m e n t s o f J u p i t e r ' s s y n c h r o t r o n r a d i a t i o n n o i s e , t h e r e i s m o r e<br />

c o n f i d e n c e i n t h i s p o r t i o n o f t h e m o d e l . N o m i n a l l y , t h e p e a k e l e c t r o n f l u x<br />

i s 2 . 0 x 1 0 ? e l e c t r o n s / c m ^ s e c ; t h e u p p e r l i m i t o f t h e e l e c t r o n f l u x i s<br />

6 . 0 x 1 0 ^ e l e c t r o n s / c m ^ s e c . T h e s e v a l u e s a r e c o m p a r a b l e t o t h e f l u x e s a t<br />

E a r t h , b u t a r e d i s t r i b u t e d t h r o u g h a c o n s i d e r a b l y l a r g e r v o l u m e s u r r o u n d i n g<br />

J u p i t e r . T h e p r o t o n c o m p o n e n t o f J u p i t e r ' s r a d i a t i o n b e l t i s i n f e r r e d f r o m<br />

t h e e l e c t r o n c o m p o n e n t , h e n c e t h e r e i s l e s s c o n f i d e n c e i n t h i s p o r t i o n o f<br />

t h e m o d e l . T h e p e a k p r o t o n f l u x e s a r e 3 . 3 x 1 0 ® p r o t o n s / c m ^ s e c , n o m i n a l<br />

Distance from Jupiter, Radii<br />

F IG . 1 . D is tr ib u tio n o f p roton s and e le c tr o n s in th e p la n e o f th e Jupiter m a g n e t ic e q u a to r .


I A E A - S M -17 0 /4 2 579<br />

a n d 6 . 0 x 1 ( ) H p r o t o n / c m ^ s e c , u p p e r l i m i t . A g a i n , t h e p e a k n o m i n a l p r o t o n<br />

f l u x i s c o m p a r a b l e t o t h a t a t E a r t h , b u t t h e u p p e r l i m i t f l u x i s n e a r l y<br />

2 0 0 0 t i m e s g r e a t e r . S p a c e c r a f t s h i e l d i n g i s i n e f f e c t i v e a t t h e p e a k f l u x<br />

d u e t o t h e e x t r e m e h a r d n e s s o f t h e e n e r g y s p e c t r u m 0 ] H o w e v e r , t h e e n e r ­<br />

g y s p e c t r a a r e c o n s i d e r a b l y s o f t e r a t r e m o t e d i s t a n c e s s o t h a t s h i e l d i n g m a y<br />

b e u s e d t o r e d u c e t h e f l u x w h e n t h e c l o s e n e s s o f a p p r o a c h i s l i m i t e d . T h e<br />

r a n g e o f c l o s e s t a p p r o a c h t o J u p i t e r t h a t m a y b e e x p e c t e d d u r i n g t h e M a r i n e r /<br />

J u p i t e r - S a t u r n m i s s i o n t o b e l a u n c h e d i n 1 9 7 7 i s a l s o s h o w n o n F i g u r e 1 .<br />

T h i s r a n g e , f r o m 4 . 3 t o 7 . 3 J u p i t e r r a d i i , i s b a s e d o n t w o c o n s i d e r a t i o n s —<br />

l i m i t a t i o n o f p e r m a n e n t d a m a g e t o e l e c t r o n i c d e v i c e s w i t h i n t h e s p a c e c r a f t<br />

d u e t o t h e c o n s i d e r a b l e f l u e n c e s a c c u m u l a t e d d u r i n g f l i g h t p a s t J u p i t e r ,<br />

a n d t r a j e c t o r y c o n s t r a i n t s i m p o s e d b y t h e o b j e c t i v e o f f l y i n g p a s t S a t u r n<br />

l a t e r i n t h e m i s s i o n . T h e s e t r a j e c t o r y c o n s t r a i n t s a l s o f o r c e t h e s p a c e ­<br />

c r a f t t o r e m a i n c l o s e t o J u p i t e r ' s e q u a t o r i a l p l a n e . T h e f l u e n c e s e n c o u n ­<br />

t e r e d d u r i n g e q u a t o r i a l f l y - b y ' s o f J u p i t e r a r e s h o w n i n F i g u r e 2 . W h e n t h e<br />

r a d i u s o f c l o s e s t a p p r o a c h i s 4 . 3 J u p i t e r r a d i i , t h e n o m i n a l a n d u p p e r l i m i t<br />

e l e c t r o n f l u e n c e s a r e r e s p e c t i v e l y 1 . 0 x IO-*-0 a n d 4 . 2 x 1 0 ^ e l e c t r o n s / c m ^ ;<br />

t h e p r o t o n f l u e n c e s a r e r e s p e c t i v e l y 1 . 3 x 1 0 ^ a n d 3 . 4 x 1 0 ^ 2 p r o t o n s / c m ^ .<br />

1 2 3 4 5 6 7 8 9 1 0 20<br />

Closest Approach to Jupiter, Radii<br />

F IG . 2 . F lu e n c e s o f p roton s and e le c tr o n s e n c o u n te r e d d u rin g e q u a to r ia l flig h ts past Jupiter.


580 CLARK et a l.<br />

K a s e M h a s s h o w n t h a t t h e s e v a l u e s w o u l d b e r e d u c e d a s m u c h a s 5 0 % i f p o ­<br />

l a r f l y - b y ' s w e r e p o s s i b l e . T h e r e i s l i t t l e d i f f e r e n c e b e t w e e n t h e s e f l u ­<br />

e n c e s a n d t h o s e a c c u m u l a t e d d u r i n g d e p a r t u r e f r o m E a r t h w h e n t h e r a d i u s o f<br />

c l o s e s t a p p r o a c h t o J u p i t e r i s r e s t r i c t e d . T h e r a d i a t i o n e n v i r o n m e n t s o f<br />

p r o b e s t h a t e n t e r J u p i t e r ' s a t m o s p h e r e w o u l d b e a p p r o x i m a t e l y 1 0 0 t i m e s m o r e<br />

s e v e r e .<br />

H a f f n e r h a s i n d i c a t e d t h e p o s s i b i l i t y t h a t S a t u r n h a s r a d i a t i o n<br />

b e l t s . T h e s e b e l t s a r e e x p e c t e d t o h a v e 1 / 1 0 0 t h e i n t e n s i t y o f J u p i t e r ' s<br />

r a d i a t i o n b e l t s . T h e r e i s c u r r e n t l y n o e v i d e n c e e i t h e r f o r o r a g a i n s t o t h e r<br />

p l a n e t s o r a n y m o o n s o f t h e p l a n e t s h a v i n g r a d i a t i o n b e l t s .<br />

T h e r a d i a t i o n e n v i r o n m e n t i n i n t e r p l a n e t a r y s p a c e h a s t h r e e p r i n c i p a l<br />

e l e m e n t s — i n t e r g a l a c t i c c o s m i c r a d i a t i o n , t h e s o l a r w i n d , a n d s o l a r f l a r e s .<br />

T h e f i r s t t w o o f t h e s e e l e m e n t s a r e e s s e n t i a l l y c o n t i n u o u s , w h i l e s o l a r<br />

f l a r e s a r e p e r i o d i c , o r w a v e - l i k e . T h e p r o p e r t i e s o f a l l o f t h e s e s o u r c e s<br />

a r e s t r o n g l y i n f l u e n c e d b y t h e 1 1 - y e a r c y c l e o f s o l a r a c t i v i t y .<br />

G a l a c t i c c o s m i c r a d i a t i o n c o n s i s t s o f c h a r g e d p a r t i c l e s h a v i n g t h e<br />

f o l l o w i n g a b u n d a n c e s [ 7 , 9 j :<br />

R e l a t i v e A b u n d a n c e<br />

C h a r g e d P a r t i c l e i n t h e U n i v e r s e<br />

H y d r o g e n ( P r o t o n ) 1 0 0 , 0 0 0<br />

H e l i u m ( A l p h a ) ' 7 , 5 0 0<br />

L i t h i u m , B e r y l l i u m , B o r o n 3 x 1 0 " 3<br />

C a r b o n 1 0<br />

N i t r o g e n 1 5<br />

O x y g e n 5 0<br />

1 0 < Z < 3 0 3 0<br />

3 0 < Z 8 x 1 0 - 4<br />

E l e c t r o n 6 , 6 0 0<br />

T h e c o s m i c r a d i a t i o n a t s o l a r m i n i m u m i s a p p r o x i m a t e l y d o u b l e t h a t a t s o l a r<br />

m a x i m u m . T h e n e x t s o l a r m a x i m u m w i l l o c c u r e a r l y i n t h e 1 9 8 0 ' s . D i v i n e<br />

i n d i c a t e s t h a t t h e f l u x e s a t s o l a r m i n i m u m a r e 9 . 5 p r o t o n s / c m s e c a n d<br />

0 . 6 e l e c t r o n s / c m ^ s e c , a n d t h e i r m i n i m u m e n e r g y i s 1 0 0 M e V . B e c a u s e t h e s e<br />

p a r t i c l e s a r e e x t r e m e l y e n e r g e t i c , t y p i c a l s p a c e c r a f t s h i e l d i n g h a s v e r y<br />

l i t t l e e f f e c t . T h e f l u e n c e s o f p r o t o n s a n d e l e c t r o n s e n c o u n t e r e d i n t h e<br />

c o s m i c r a d i a t i o n e n v i r o n m e n t a r e p r o p o r t i o n a l t o t h e m i s s i o n d u r a t i o n .<br />

M i s s i o n s t o t h e i n n e r p l a n e t s , r e q u i r i n g o n t h e o r d e r o f a y e a r , w o u l d e n ­<br />

c o u n t e r 3 . 0 x 1 0 ® p r o t o n s / c m ^ a n d 2 . 0 x 1 0 ^ e l e c t r o n s / c m ^ . M i s s i o n s t o t h e<br />

o u t e r p l a n e t s e n t a i l 5 t o 1 0 y e a r s ; t h e p r e c e d i n g f l u x e s w o u l d b e m u l t i p l i e d<br />

a c c o r d i n g l y .<br />

T h e s o l a r w i n d i s a n e l e c t r i c a l l y n e u t r a l p l a s m a o f p r o t o n s , e l e c t r o n s ,<br />

a n d o t h e r p a r t i c l e s e m i t t e d b y t h e S u n . I t i s b e l i e v e d t h a t t h e s o l a r w i n d<br />

e m i s s i o n i s i s o t r o p i c a n d , t h e r e f o r e , t h e p a r t i c l e f l u x i s i n v e r s e l y p r o ­<br />

p o r t i o n a l t o t h e s q u a r e o f t h e d i s t a n c e f r o m t h e S u n . M e a s u r e m e n t s a t 1 a . u .<br />

h a v e s h o w n t h a t t h e s o l a r w i n d v e l o c i t y i s 3 0 0 t o 8 0 0 k m / s e c ; t h e f l u x i s<br />

1 . 5 x 1 0 ^ t o 2 . 4 x 1 0 ® p r o t o n s a n d e l e c t r o n s / c m ^ s e c ; a n d t h e p r o t o n e n e r g y<br />

i s 0 . 5 t o 3 k e V . H a f f n e r [ в ] h a s s h o w n t h a t t h e v e l o c i t y o f t h e s o l a r w i n d<br />

i n c r e a s e s w i t h d i s t a n c e f r o m t h e S u n a n d t h a t t h e e f f e c t i v e t e m p e r a t u r e , o r<br />

e n e r g y d e c r e a s e s . B e c a u s e o f t h e i n v e r s e s q u a r e e f f e c t , t h e s o l a r w i n d f l u x<br />

w i l l v a r y c o n s i d e r a b l y b e t w e e n i n n e r a n d o u t e r p l a n e t s m i s s i o n s a n d t h e f l u ­<br />

e n c e s w i l l d e p e n d o n t h e t r a j e c t o r y h i s t o r i e s . A t V e n u s , 0 . 7 2 a . u . , t h e<br />

f l u x i s a p p r o x i m a t e l y t w i c e t h a t a t E a r t h . A t S a t u r n , 5 . 2 a . u . , t h e f l u x


I A E A - S M -17 0 /4 2 581<br />

is only 1/27 that at Earth. Diederich [10] has integrated the flux during<br />

year-long Viking fligh ts to Mars to obtain solar wind fluence of 3.5 x 10-*-^<br />

protons/cm2 ><br />

Solar flares consist of protons, alpha particles and electrons emitted<br />

by the Sun during solar storms. The energies of these particles may range<br />

from 1 MeV to several thousand MeV and the duration of the event as it<br />

passes a given location in space may be from hours to weeks. McDonald [ l l ]<br />

discusses the morphology of solar flare events and indicates that a single<br />

event could result in a fluence at Earth of 4 .0 x 10^ protons/cm^ having<br />

energies greater than 30 MeV, with a maximum flux during the event of<br />

2 .0 x 10^ protons/cm^ sec- jhe fluxes of electrons and alpha particles are<br />

in general equal to or considerably less than that of protons.<br />

Various authors, including Modisette [1 2 ], have predicted the nature of<br />

the solar flare environment in future solar cycles. However, the model due<br />

to Diederich [10] has been adopted for this paper, which integrates the<br />

total fluence of a ll solar events during a year into one event measured at<br />

Earth. It is believed that the spatial distribution of solar flare p articles<br />

relative to the Sun is inversely proportional to the square of distance,<br />

as in the case of the solar wind. This effect is shown in Figure 3 , assuming<br />

that a ll of the year's events occur essen tially instantaneously in<br />

O.l l 10 20<br />

Distance from the Sun, AU<br />

F I G .3 . P roton flu e n c e fr o m solar fla r e s d u rin g in te r p la n e ta ry cr u is e .


582 C LARK et a l.<br />

the time frame of interplanetary flig h t. The fluence of solar protons with<br />

energies exceeding 1 MeV at Earth is 6 x 10 protons/cm^. Spacecraft<br />

shielding very e ffectively reduces this fluence, as shown by the figure.<br />

A 33 gm/cm2 aluminum shield results in a fluence of only 10° protons/cm2<br />

penetrating to the interior of the spacecraft.<br />

The atmosphere of a planet has profound effects on the radiation environment<br />

above and within the atmosphere and at its surface. When the<br />

planet has no atmosphere, as in the case of the Moon, the radiation levels<br />

at the surface are approximately \ those in space because of the shielding<br />

e ffe ct of the planet's mass. The atmosphere of Venus is so dense that probably<br />

no radiation from space could reach its surface. However, at some<br />

a ltitu d e, the cascading effect of radiation from space interacting with the<br />

atmosphere results in a peak of secondary p a rticles, as is observed in the<br />

Earth's upper atmosphere. On Mars, this increase in particle flux is e s t imated<br />

at 1.5 to 2.0 times the nominal value [31] The effectiveness of the<br />

Martian atmosphere and bulk planet in tota lly absorbing lower energy partic<br />

le s is as follows [1 3 ]:<br />

Radiation Source<br />

Solar Flare<br />

Energy > 10 MeV<br />

Energy > 100 MeV<br />

Cosmic Radiation<br />

Fraction of Space Value at Earth<br />

Penetrating to the Surface of Mars<br />

(6 m illibar pressure)________________<br />

2 .0 x 10-3<br />

5 .0 x 10*2<br />

> 0 .4<br />

The preceding data are consistent with the previous observation that<br />

solar flare spectra are softer then cosmic ray spectra and, therefore, are<br />

readily shielded by even a tenuous atmosphere.<br />

Especially in the case of outer-planet missions, space science instruments<br />

may have to cope with man-made radiation sources on board the spacec<br />

ra ft. For instance, as the spacecraft moves away from the Sun, the amount<br />

of solar energy available to generate power in a solar c e ll system or to<br />

provide heat for thermal control diminishes. As in the case of the solar<br />

wind and solar fla res, solar energy is inversely proportional to the square<br />

of the distance from the Sun. Solar c e lls are marginally effective at Mars,<br />

where the solar energy available is less than h alf that at Earth, excluding<br />

the effect of Martian dust; at Jupiter, the solar energy available is 1/27<br />

that at Earth. Consequently, radioisotope thermoelectric generators (RTG)<br />

are to be used to power most outer-planet spacecraft, and radioisotope heating<br />

units (RHU) w ill provide heat in many instances. Pioneer, the Viking<br />

Lander and Mariner/Jupiter-Saturn a ll employ RTG's.<br />

The radioisotope fuel to be used in the RTG's and RHU's of outer-planet<br />

vehicles is plutonium oxide, 238pu 0 2. This fuel is especially desirable<br />

because it has an 86.8 year h a l f -li f e , provides 0.5 thermal watts of energy<br />

per gram, and produces low radiation emissions in comparison to other sources.<br />

The spontaneous emissions of this fuel are alpha p articles, neutrons,<br />

and gamma rays. Though 997. of this radiation is alpha p articles, these<br />

particles are of too low energy to penetrate the fuel container.<br />

Though this fuel spontaneously emits about 2100 neutrons/gram second,<br />

several factors a ffect the total neutron emission rate. As discussed by<br />

Weddell [1 4 ] these factors include reaction with the oxygen component of<br />

the fu e l, interactions with impurities in the fu e l, such as boron, sodium,


I A E A - S M -17 0 /4 2 583<br />

m a g n e s i u m , a n d a l u m i n u m , a n d m u l t i p l i c a t i o n d u e t o t h e i n t r i n s i c s i z e a n d<br />

p o w e r o f t h e d e v i c e . W e d d e l l s t a t e s t h a t t h e n e u t r o n e m i s s i o n r a t e c a n v a r y<br />

f r o m 2 0 , 0 0 0 t o 3 1 4 , 0 0 0 n e u t r o n s / g r a m s e c d u e t o t h e s e f a c t o r s , w i t h t h e e x ­<br />

p e c t e d m a x i m u m a b o u t 4 0 , 0 0 0 i n t h e c a s e o f t h e M a r i n e r / J u p i t e r - S a t u r n s p a c e ­<br />

c r a f t . T h e n e u t r o n s p e c t r u m i n c l u d e s e n e r g i e s u p t o 7 M e V .<br />

P l u t o n i u m o x i d e f u e l a l s o e m i t s g a m m a r a d i a t i o n . T h e n a t u r a l d e c a y o f<br />

p l u t o n i u m ( 2 3 8 p u ) a u g m e n t e d b y g a m m a r a d i a t i o n p r o d u c e d b y i m p u r i t i e s ,<br />

s u c h a s 2 3 6 p U j w h i c h a r e a s s o c i a t e d w i t h t h e m a n u f a c t u r e o f t h e f u e l . I f<br />

1 p a r t p e r m i l l i o n o f 2 3 6 p u p r e s e n t , W e d d e l l i n d i c a t e s t h i s i m p u r i t y w i l l<br />

m u l t i p l y t h e t o t a l g a m m a p r o d u c t i o n r a t e b y a m a x i m u m f a c t o r o f 7 a t 1 8 y e a r s<br />

a f t e r i n i t i a l p u r i f i c a t i o n ; t h e n t h e r a t e w i l l d e c l i n e . N o o n [ i 5 ] s h o w s<br />

t h a t a g e d f u e l w i l l p r o d u c e a b o u t 2 , 0 0 0 p h o t o n s / c m ^ s e c i n t h e e n e r g y r a n g e<br />

1 0 0 t o 2 0 0 k e V a t a l o c a t i o n a b o u t 1 m e t e r f r o m t h e a x i s o f t h e R T G c a n i s t e r .<br />

T h e e n t i r e g a m m a r a d i a t i o n s p e c t r u m i n c l u d e s e n e r g i e s u p t o 7 M e V . W h e n t h e<br />

e m i s s i o n i s l e n g t h y , a s i n t h e c a s e o f M a r i n e r / J u p i t e r - S a t u r n , i t i s d e ­<br />

s i r a b l e t o a s s u m e t h a t t h e f u e l a g e i s 1 8 y e a r s s o t h a t t h e g a m m a r a d i a t i o n<br />

e n v i r o n m e n t i s n o t u n d e r e s t i m a t e d .<br />

T h e n e u t r o n f l u e n c e s t h a t s h o u l d b e a n t i c i p a t e d a t t h e s c i e n c e i n s t r u ­<br />

m e n t s o f t h e V i k i n g / M a r s L a n d e r a n d t h e M a r i n e r / J u p i t e r - S a t u r n o u t e r p l a n e t s<br />

s p a c e c r a f t a r e s h o w n i n F i g u r e 4 . T h i s f i g u r e i s b a s e d o n f l u x e s c a l c u l a t e d<br />

b y D i e d e r i c h [ l O ] a n d W e r t z £ l 6 ] f o r t h e r e s p e c t i v e v e h i c l e s . I n t h e c a s e<br />

o f t h e V i k i n g L a n d e r , t h e t w o 6 7 5 w a t t ( t h e r m a l ) R T G ' s u s e d t o p o w e r t h e<br />

v e h i c l e a r e e m b e d d e d i n t h e s p a c e c r a f t a n d a l l o t h e r s y s t e m s , i n c l u d i n g t h e<br />

s c i e n c e e x p e r i m e n t s , a r e i n c l o s e p r o x i m i t y . T h i s i s n e c e s s a r y b e c a u s e a l l<br />

v e h i c l e s y s t e m s m u s t b e w i t h i n t h e h e a t s h i e l d d u r i n g e n t r y a n d d e s c e n t<br />

t h r o u g h M a r s ' a t m o s p h e r e . T h e f l u x e s a t t h e s c i e n c e e x p e r i m e n t s c a l c u l a t e d<br />

b y D i e d e r i c h d o n o t i n c l u d e a t t e n u a t i o n b y t h e s p a c e c r a f t s t r u c t u r e o r<br />

e q u i p m e n t . T h e n e u t r o n f l u x i s 1 . 3 0 x 1 0 ^ n e u t r o n s / c m ^ s e c ; t h e g a m m a f l u x<br />

i s 1 . 6 5 x 1 0 4 p h o t o n s / c m ^ s e c . T h e m i s s i o n o f t h e M a r i n e r / J u p i t e r - S a t u r n<br />

o u t e r - p l a n e t s s p a c e c r a f t d o e s n o t i n c l u d e e n t r y o f t h e i r a t m o s p h e r e s , s o<br />

t h e c o n f i g u r a t i o n n e e d n o t b e c o m p a c t . T h e r e f o r e , t h e t h r e e 2 , 2 0 0 w a t t<br />

( t h e r m a l ) R T G ' s t h a t p o w e r t h i s v e h i c l e a r e m o u n t e d o n a b o o m , d e p l o y e d d i a ­<br />

m e t r i c a l l y o p p o s i t e t o t h e s c i e n c e i n s t r u m e n t a t i o n . A s a r e s u l t , t h o u g h<br />

c o n s i d e r a b l y m o r e r a d i o i s o t o p e f u e l i s t o b e c a r r i e d o n t h e M a r i n e r / J u p i t e r -<br />

S a t u r n s p a c e c r a f t t h a n o n V i k i n g , t h e f l u x e s a t t h e s c i e n c e e x p e r i m e n t s a r e<br />

s u b s t a n t i a l l y l e s s . I n c l u d i n g a t t e n u a t i o n b y t h e s p a c e c r a f t , W e r t z c a l c u ­<br />

l a t e s t h e f l u x e s t o b e 3 . 1 n e u t r o n s / c m ^ s e c a n d 3 4 p h o t o n s / c m ^ s e c . T h e<br />

f l u e n c e s s h o w n i n F i g u r e 4 a r e p l o t t e d a s f u n c t i o n s o f t h e t i m e o f f l i g h t<br />

s o t h a t t h e e f f e c t s o f s e v e r a l m i s s i o n d u r a t i o n t i m e s c o u l d b e i n d i c a t e d .<br />

H o w e v e r , t h e e x p o s u r e o f t h e s c i e n c e e x p e r i m e n t s a n d a s s o c i a t e d e l e c t r o n i c s<br />

t o t h e R T G a n d R H U r a d i a t i o n s o u r c e s a c t u a l l y c o m m e n c e s e a r l i e r d u e t o t h e<br />

n e c e s s i t y f o r i n t e g r a t i o n a n d c h e c k o u t o f t h e s p a c e c r a f t s y s t e m s p r i o r t o<br />

l a u n c h . I n t h e c a s e o f V i k i n g , t h e p r e l a u n c h e x p o s u r e i s 1 2 0 d a y s , w h e r e a s<br />

t h e M a r i n e r / J u p i t e r - S a t u r n e x p o s u r e w i l l b e o n l y 3 0 d a y s . T h e s e d i f f e r e n c e s<br />

a r e d u e n o t o n l y t o d i f f e r e n c e s i n t h e v e h i c l e s b u t a l s o t o t h e n e e d t o<br />

l i m i t t h e e x p o s u r e o f p e r s o n n e l a t t h e l a u n c h c o m p l e x t o t h e l a r g e r R T G ' s<br />

o f t h e l a t t e r s p a c e c r a f t . F i g u r e 4 i n d i c a t e s t h a t t h e t o t a l n e u t r o n f l u e n c e<br />

d u r i n g t h e V i k i n g m i s s i o n w i l l b e a b o u t 5 x l O ^ n e u t r o n s / c m ^ . T h e e x p o s u r e<br />

o f t h e s c i e n c e e x p e r i m e n t s o f t h e M a r i n e r / J u p i t e r - S a t u r n s p a c e c r a f t w i l l b e<br />

1 . 7 x 1 0 8 neutrons/cm2 a t J u p i t e r e n c o u n t e r a n d 3 . 5 x 1 0 ® n e u t r o n s / c m ^ a t<br />

S a t u r n e n c o u n t e r . I n a l l c a s e s t h e f l u e n c e s o f g a m m a r a d i a t i o n a r e a p p r o x i ­<br />

m a t e l y 1 0 t i m e s t h e n e u t r o n f l u e n c e s .<br />

E X P E R I M E N T S I N D E S I G N A N D D E V E L O P M E N T<br />

T h e V i k i n g m i s s i o n t o b e l a u n c h e d i n 1 9 7 5 , i s t h e U n i t e d S t a t e s ' n e x t<br />

m i s s i o n t o t h e p l a n e t M a r s . C o n s i s t i n g o f a n i n t e g r a t e d o r b i t e r a n d l a n d e r ,


5 8 4 C LARK e t a l.<br />

0.1 1.0 10.0<br />

Flight Duration, Years<br />

F IG .4 . N eu tron flu e n c e at s c ie n c e in stru m e n ta tio n o f in te r p la n e ta r y s p a c e c r a ft p o w e r e d b y ra d io is o to p e<br />

t h e r m o e le c t r ic g en e ra to rs.<br />

the Viking spacecraft will first go into Mars orbit and reconnoiter the<br />

potential landing sites before the lander is separated and allowed to enter<br />

the atmosphere and soft land on the Martian surface. Once landed, the radiation<br />

environment is a combination of the following: galactic and solar<br />

cosmic rays, cosmic ray interaction products (the relatively sparse Martian<br />

atmosphere produces a nearly maximum flux density of build-up secondaries),<br />

emission from the onboard RTG power supply, induced radioactivity in the<br />

lander body, and natural radioactivity in the Martian soil. In addition,<br />

planetary quarantine criteria for Mars have levied the requirement that the<br />

entire lander be heat sterilized just prior to launch, and this has in turn<br />

necessitated the use of quantities of thoriated magnesium alloy in the lander<br />

construction. It should be pointed out that although the RTG's and<br />

MgTh alloy can cause interference problems in several experiments, it is<br />

unrealistic to assume they can be replaced. The thoriated alloy is the<br />

most cost-effective means of achieving low-weight instrument housings.<br />

For all present and proposed Viking lander experiments studied so far,<br />

the RTG emissions are more serious than any other ionizing radiation environment<br />

by at least an order of magnitude. Clearly, any experiment for<br />

the Viking spacecraft system must include the RTG radiation field as a required<br />

design criterion (along with, for example, weight and power constraints,<br />

thermal range, etc.).<br />

Three experiments on the Viking-75 lander employ detectors of ionizing<br />

radiation. The first of these is an X-ray fluorescence spectrometer (XRFS)


IA E A -S M - П 0 /4 2 585<br />

to assay Martian soil for the concentrations of major, minor, and certain<br />

trace elements [l7, 18j. In operation, this instrument provides two collimated<br />

X-ray beams to bombard the soil surface. The resulting fluorescent<br />

X-ray emissions are measured with energy-dispersive analysis by four "tuned-<br />

response" proportional counter detectors. The two beams are the 5.9 and<br />

22.2 keV X-ray emissions of the radioisotopes 55pe an(j 109cd. Together,<br />

the four counters are sensitive over the energy range 1.0 to 25.0 keV.<br />

Since its inception, this spectrometer was designed with close regard for<br />

the interference problem. Although it is well-known that the major component<br />

of the counting-rate in proportional counters exposed to gamma fields<br />

is due to secondary electrons from the walls rather than direct gamma interactions<br />

in the gas, the theoretical response functions for this effect are<br />

apparently not yet developed. It is thus impractical to calculate proportional<br />

counter response to an RTG field to the accuracy desired. One consequence<br />

immediately applicable to design, however, is that the gamma ray<br />

counting rate should scale as the internal surface area of the detector.<br />

On the other hand, the counting rate of the fluorescent X-rays scales as the<br />

aperture of the thin entrance window. A large window with minimum wall area<br />

is therefore preferred, and a pancake detector indicated. Criteria of resolution,<br />

peak tailing, ruggedness and reliability rule out the pancake detector,<br />

and a conventional side-window cylindrical counter was selected instead.<br />

The counter design was then optimized for the minimum diameter and<br />

length (i.e., minimum internal wall area) consistent with requirements for<br />

adequate gas path for fluorescent X-ray absorption and uniform electric<br />

field geometry over the distance of the entrance window to give acceptable<br />

resolution. The signal-to-background ratio was then adjusted by sizing the<br />

radioisotope sources. In Figure 5 is presented a typical fluorescent spectrum<br />

overlaid by the spectrum measured in the field of a Pioneer RTG (S/N<br />

42), as corrected for Viking RTG fuel-loading levels. This figure is for<br />

the counter which is most interfered with. Of the 12 elements analyzed for<br />

by the XRFS, only three (mg, Al, and Si) are measurably affected by the RTG<br />

interference at all. Statistical analysis of these data, based upon a nominal<br />

operating period on*kars, has shown sensitivity and accuracy to be<br />

limited chiefly by the finite resolution of the counters and strength of<br />

the sources, rather than the RTG interference background, even for these<br />

three elements.<br />

Besides interference calculations, the XRFS experiment requires the<br />

best obtainable values of certain fundamental data: X-ray fluorescent<br />

yields, X-ray mass absorption coefficients, and X-ray mass scattering coefficients.<br />

These are used in a calculation from first principles of the<br />

element concentrations which would give rise to the observed spectra. In<br />

practice, we have found it necessary to employ empirical correction factors<br />

to the results. Better input data should allow reduction of these factors<br />

and a capability to accurately analyze a wider variety of sample compositions.<br />

Accordingly, we are presently updating our data base by replacing<br />

the fluorescent yield values of Fink [19] with the more recent compilations<br />

of Bambynek [20J and the X-ray mass interaction coefficients of Pletachy<br />

and Terrall [21j with those of Viegle [22j. These data are yet susceptible<br />

to improvement in accuracy, which would be quite welcomed for this application.<br />

The second and third Viking-75 experiments which are susceptible to<br />

RTG interference are the carbon assimilation and labeled metabolite schemes<br />

for detecting Martian life forms. Each employs ^ C labeled compounds and<br />

assays for in the gas phase. By this tracer technique, reactions char<br />

racteristic of metabolic processes can be detected. Sensitivity of these<br />

experiments in detecting life is directly related to the ability to reliably<br />

detect small levels of ^ C in the presence of the high RTG background.


586 C L A R K e t a l.<br />

F IG . 5. X -r a y flu o r e s c e n c e s p e ctra d u e to R T G -e m is s io n s and s ig n a l fr o m b a s a lt s a m p le<br />

(U S G e o lo g ic a l S u rvey Standard B C R -1 ).<br />

Realizing this, the U.S. NASA initiated studies of this problem early in<br />

the development phase of the biology instrument. In one study, a number of<br />

different detector types were evaluated for inherent efficiency for and<br />

energetic gamma rays £23] . The second study resulted in the development<br />

and test of a detection system consisting of a spherical cavity proportional<br />

counter for internal counting of the labeled gas at very high efficiency.<br />

The walls of this counter were made of scintillator with a thin<br />

evaporated aluminum coating to provide a cathode ground return and good<br />

light collection. With optimum settings of the energy windows for the<br />

counter and scintillator outputs, the anti-coincidence output of the counter<br />

correctly registers most of the beta rays while rejecting most of<br />

the gamma interactions f.24]. With this device, activities of 16 disintegrations<br />

per minute (dpm) could be detected in a one hour count with<br />

RTG background. This approach was not pursued, however, because of the<br />

significant weight penalty and a decision by the biology investigators that<br />

a minimum detection limit of 150 dpm would be satisfactory. On this basis,<br />

a theoretical, then experimental study was made which resulted in a detection<br />

system composed of two solid-state detectors, monitoring a pillboxshaped<br />

gas cavity. <strong>Nuclear</strong> data used in the study included the beta<br />

ray energy spectrum, electron energy-loss rate and backscattering from the


I A E A - S M -17 0 /4 2 587<br />

dead layer and sensitive volume of the silicon detectors, and gamma ray<br />

absorption coefficients for silicon. The resulting system detects 150 dpm<br />

with 1300 counts/minute of background when a counting period of 24 hours is<br />

used. This long integration time has required the development of extremely<br />

stable and well temperature compensated amplifying and discrimination circuitry.<br />

EXPERIMENTS FOR FUTURE MISSIONS<br />

X-ray Piffractometry - Two instruments which have been proposed for<br />

future Viking missions to Mars are an X-ray diffractometer and a gamma ray<br />

spectrometer. The purpose of the diffractometer is to measure lattice<br />

spacings of crystallites in the surface material to identify the minéralogie<br />

species present. It consists of a miniature X-ray tube and goniometer/<br />

detector or position-sensitive detector. All detectors proposed to date<br />

are of the proportional counter type so that the considerations mentioned<br />

in connection with design of the XRFS apply here also. If the RTG's were<br />

absent, the X-ray tube would probably not be required and a radioisotope<br />

source such as 55pe could be used as a simpler, more stable, and more reliable<br />

substitute. Further work on X-ray diffraction is in progress. The<br />

nuclear data of concern are the X-ray coherent scattering cross-sections.<br />

Gamma Ray Spectrometry - A gamma ray spectrometer is needed to measure<br />

the concentrations of the three naturally-occurring radioactive elements in<br />

the soil, viz., 232'[j1) an(j 238ц# jf Martian crust can be shown to<br />

contain high levels of these elements (>0.1% for К and > few ppm for<br />

Th and U), as is the case for both the Earth and the Moon, then one can immediately<br />

deduce that Mars has undergone a planetary-scale geochemical<br />

differentiation with significant depletion of the internal K, U, and Th content.<br />

Otherwise, the radioactive heating would render the planet entirely<br />

molten. Our problem here in implementing this experiment is once again the<br />

RTG interference, but much more severely so than in the preceding examples.<br />

In Figure 6 are plotted typical gamma spectra recorded in Nal scintillator<br />

for two slightly different SNAP units (the fuel-holding units used for the<br />

RTG's) along with a typical spectrum of natural emissions from Earth crustal<br />

rock [25, 26, 27]. The SNAP gamma intensity even at distances of 2 and 2.7<br />

F IG . 6 . G a m m a sp e ctra o f R TG and Earth s o il e m is sio n s as r e c o r d e d b y N a l ( T l) s c in tilla to r in 4 m in u tes<br />

c o u n t t im e . S o lid c u r v e : S N A P -27 at 2 .7 m e tre s [ 2 5 ] ; d ashed c u r v e : S N A P -1 9 at 2 . 0 m etres [ 2 6 ] ;<br />

. d o tte d c u r v e : n a tu ra l e m is s io n w ith d e t e c t o r 1 .0 m e tre a b o v e th e ground [ 2 7 ] .


588 C L A R K e t a l.<br />

meters is two orders-of-magnitude or more greater than the terrestrial soil<br />

intensity. Since Martian soil could be only one-tenth as radioactive as<br />

terrestrial, it is desirable to reduce the RTG interference by at least a<br />

factor of 1000 from that shown in Figure 6. Shielding is out of the question<br />

from the weight standpoint - an adequate lead shield would weigh almost<br />

as much as the entire lander. Increasing the separation distance between<br />

spectrometer and RTG's appears to be the only practical way of reducing the<br />

interference to reasonable levels. To achieve the factor of 1000 would require<br />

removing the spectrometer to a distance of at least 60 to 80 meters<br />

from the lander.<br />

One other way of possibly reducing the interference would be to employ<br />

a very, high resolution gamma detector in lieu of the rather poor resolution<br />

scintillator and to use energy discrimination to distinguish between RTG<br />

gammas and soil gammas. Energy resolution provides only partial relief from<br />

interference, however, because although over half the RTG gammas are from<br />

238pUj an(j therefore do not coincide with soil gammas, there is a very significant<br />

fraction due to the decay of 236pu (this isotope is present only<br />

at the one part per million level in the SNAP fuel - its removal would be<br />

extremely costly). The decay of 236pu as follows:<br />

2.85 yr. 72 yr. (1.91 yr. total) „„„ 3 min.<br />

236Гц * r 232u y , 228^ r , t __ ¿ 208T1______► 208pb<br />

(stable)<br />

The most important gamma emissions are those of 208^^ > viz. 2.615 MeV (1007.),<br />

0.80 MeV (127o) , 0.58 MeV (867»), and 0.51 MeV (237„). Consider now the decay<br />

chain of the natural thorium isotope 232>jh:<br />

1.4x10*0 yr. 6.7 yr. 6.1 hr.<br />

Th--------- Ra----------- 228Ac ----- ----- * 228Th — --- - etc.<br />

The key point here is that the thorium decay series intersects the 23^Pu<br />

decay series at 228Th, with both proceeding identically thereafter. This is<br />

the reason we see the same peak of 2.615 MeV for all three spectra in<br />

Figure 6. Consequently, the RTG spectrum interferes not only from a flux<br />

standpoint, but also from the energy standpoint for the Th determination.<br />

In summary, getting the spectrometer away from the lander seems to be<br />

the only reasonable solution. Because of the distances required, a boom is<br />

out of the question. A small mini-rover, of the tethered type, could adequately<br />

perform this task. In addition, such a rover could possibly<br />

travel over a hill or behind a boulder to attenuate the RTG signal even<br />

further (a single boulder 0.8 meters ir. diameter would attenuate by a factor<br />

of 1000).<br />

X-RAY FLUORESCENCE <strong>OF</strong> VENUS CLOUDS<br />

The basic scheme used for geochemical analysis of rocks collected by a<br />

Mars lander can be applied to the determination of atmospheric constituents<br />

by a descent probe through the dense Venus atmosphere. Thus, using unstable<br />

nuclei which decay by capture of K, L, and M shell electrons, X-rays can be<br />

generated to stimulate fluorescent X-radiation from atmospheric atoms. The<br />

experiment therefore would use two such X-ray sources (55pe and 109cd) and<br />

two proportional counters mounted external to the descent probe of the Pioneer<br />

Venus multiprobe mission (scheduled for launch in early 1977). The<br />

atmosphere is analyzed directly during the descent without the need of any<br />

sample collection devices. Fluorescent X-rays from all elements above


I A E A - S M -1 7 0 /4 2 589<br />

phosphorus in the periodic table fall within the energy range of the counters.<br />

The host atmosphere, mostly CO? causes very little attenuation of<br />

the X-rays, especially the 22.2 keV x-rays. However, sensitivity of<br />

the experiment is greatest for heavy elements such as Hg, Br, I, Sb, and As<br />

which are thought to be cloud forming elements of the Venus atmosphere. The<br />

measurement is independent of the chemical and physical state of the fluorescing<br />

elements and thereby provides a complement to a mass spectrometer<br />

experiment which measures concentrations of gaseous components only.<br />

NEUTRON DETECTION<br />

The detection of fast neutrons in planetary atmospheres can be used as<br />

an effective tool in evaluating effects of cosmic radiation in the atmosphere<br />

and planetary surface. On Earth, such studies have been used to identify<br />

a mechanism for populating the inner part of the trapped radiation belt<br />

with protons and also to understand the production of ^ C in the atmosphere.<br />

Fast neutron detectors operating in the presence of other types of radiation<br />

must be designed to discriminate against these in favor of the more elusive<br />

neutrons. The method used h isto rically in many studies involved surrounding<br />

a pair of gas fille d proportional counters with a proton rich neutron moderator<br />

such as water or paraffin. The neutrons thus thermalized produced<br />

N-а reactions in a BF3 gas, highly enriched in Юв, in one of the proportional<br />

counters. The very high thermal neutron capture cross section<br />

thus enabled s ta tis tic a l discrimination of counts produced by other radiation<br />

by subtracting the counts from the other proportional counter fille d<br />

with BF3 gas depleted in ^ В .<br />

A more recent scheme for discriminating directly rather than s t a t is t ic ­<br />

a lly against other radiation uses a proton-rich scin tilla tio n p lastic or<br />

liquid. The neutrons are detected by observation of the ionization<br />

scin tilla tio n of recoil protons resulting from e la stic n-p collision s in the<br />

detector. The detector is made to ta lly unresponsive to protons and electrons<br />

entering the s cin tilla to r by surrounding it with a shell of an inorganic<br />

scin tilla to r such as Csl or Nal. The ionization light pulse produced<br />

by the charged particle in this shell is much longer than that seen in the<br />

organic s cin tilla to r and can readily be separated electronically to reject<br />

such pulses as resulting from charged particles rather than neutrons entering<br />

the detector. An additional scheme is added to discriminate against<br />

X-rays which, like neutrons, can pass by the charged particle rejection<br />

shell and produce characteristic electron interactions in the organic scint<br />

illa t o r . This involves using a special type of s cin tilla to r which results<br />

in a different ionization pulse shape by protons as opposed to electrons.<br />

Thus, recoil protons (produced by neutrons) can be separated electronically<br />

from Compton, photoelectric, or pair production electrons and positrons<br />

(produced by 7-rays) . The electronically rejected pulses in this type of<br />

detector can also be used to detect the protons, electrons, and 7-rays which<br />

enter the counter.<br />

NEUTRON ACTIVATION ANALYSIS<br />

Elemental analysis using the technique of neutron activation is a very<br />

sensitive method for characterizing the chemical composition of planetary<br />

surfaces [28]. Although the technique was proposed by a number of investigators<br />

in the pre-Apollo or unmanned phase of the U.S.' lunar program, it<br />

is as yet untried in space for compositional analysis. Developments in the<br />

past few years, however, in the areas of detector technology, data reduction<br />

and analysis, and particularly the availability of Californium-252 which<br />

offers extremely high neutron yields through spontaneous fission, have rekindled<br />

interest in using neutron activation for planetary surface analysis.


5 9 0' C LARK et a l.<br />

This section of the paper will treat briefly the concern of background<br />

radiation interferences, and their minimization, in order to obtain statistically<br />

valid data.<br />

Following absorption of neutrons, atomic nuclei generally emit gamma<br />

rays whose energy distribution provides "spectral signatures" which are<br />

characteristic of the elemental species and thus enable quantitative identification<br />

of the chemical elements. This radiation falls into two categories,<br />

namely: neutron capture gamma rays and delayed or activation gamma<br />

rays. In the former case, the gamma radiation is emitted in the range of<br />

10~14 to 10"® seconds. If the nucleus becomes radioactive, it will emit<br />

delayed gamma rays as it undergoes radioisotopic decay.<br />

A promising approach to the minimization of interfering background radiation<br />

was developed to aid in minerals exploration of the ocean floor [29j.<br />

In this environment the natural background is severe owing to the decay<br />

chains of the uranium and thorium present, and potassium (40r ). Prompt capture<br />

gamma rays have energies up to 10 MeV, whereas delayed gammas are<br />

emitted up to about 1.5 MeV. Measurement of the former limits the extent<br />

of background interference, enables simultaneous irradiation of the surface<br />

and measurement of the gamma response, and because of the higher energies<br />

emitted, the technique allows placement of the detector within the protective<br />

enclosure of the spacecraft. The authors proposed a mathematical<br />

relationship to describe the usefulness of this approach, which is S =<br />

10/A, where: S is defined as an index of elemental sensitivity, I is the<br />

number of gamma rays of a given energy emitted per 100 neutrons absorbed,<br />

0 is the microscopic cross section in barns. This concept required extension<br />

to and test of those elemental species anticipated in planetary surfaces<br />

.<br />

A basic problem here is the resolution of the complicated spectra obtained<br />

in capture gamma ray measurements. A solution of this problem has<br />

been described using both ruggedized Nal (TЦ ) detectors and the development<br />

of sophisticated computer-based procedures for the analysis of the<br />

complex pulse-height spectrum [30j.<br />

The evidence indicates that background radiation, arising from the<br />

surface itself and the environment characteristic of the planet, can be<br />

minimized thus enabling the return of statistically valid data and provide<br />

elemental analysis of the planetary surface.<br />

NUCLEAR DATA REQUIRED<br />

It is evident from the foregoing that applications of nuclear techniques<br />

in space science are many. Likewise, the operating environments<br />

often give rise to significant radiation interferences. Successful design<br />

of a space experiment requires careful study, both from an experimental<br />

and theoretical standpoint, of the response of the experiment to its intended<br />

signal versus the background interference. The general body of<br />

nuclear data has been and will continue to be of considerable importance<br />

to experiment design. In Table I, we list some of the types of nuclear<br />

data that apply to the examples discussed. In many cases, improvement in<br />

the fundamental data and/or radiation transport calculations would allow<br />

more optimal experiment design.


I A E A - S M -17 0 /4 2 591<br />

T A B L E I. T Y P E S O F N U C L E A R D A T A USED IN A B O V E E X A M P L E S *<br />

Gamma<br />

(20 keV to 10 MeV)<br />

Beta Rays<br />

(0 to 150 keV)<br />

X-rays<br />

(1 to 20 keV)<br />

Neutrons<br />

(thermal to 14 MeV)<br />

Photoelectric and pair production absorption<br />

coefficients<br />

Coherent and incoherent scattering coefficients<br />

Scattering direction distributions<br />

Scattering and energy loss in thick absorbers<br />

Fluorescent yields<br />

Photoelectric absorption coefficients<br />

Coherent and incoherent scattering coefficients<br />

Fluorescent X-ray emission energies<br />

Inelastic and elastic scattering cross-<br />

sections<br />

Activation cross-sections<br />

Radioisotope Decay Emissions of X-ray emitters and contaminants<br />

(lO^cd^ 65zn , etc.) and gamma ray emitters<br />

(neutron activation products)<br />

Protons, Charged Nuclei<br />

(1 MeV to 10 GeV)<br />

Energy loss rates<br />

Spallation and activation cross-sections<br />

*Because these examples cover only a limited number of cases in which<br />

nuclear instrumentation is used in space experiments, the breadth of<br />

types of nuclear data required is greater than shown here.<br />

R E F E R E N C E S<br />

fl] VETTE, J. I. et al, Models of the Trapped Radiation Environment,<br />

Vols. I through VII, NASA SP-3024, National Aeronautics and Space<br />

Administration, Washington, D. C. (1966 through 1971).<br />

[2] SINGLEY, G. W., VETTE, J. I., The AE-4 Model of the Outer Radiation<br />

Zone Electron Environment, NSSDC 72-06, National Space Science <strong>Data</strong><br />

Center, Greenbelt, Maryland (August 1972).<br />

[3] TEAGUE, M. J., VETTE, J. I., The Inner Zone Electron Model AE-5,<br />

NSSDC 72-10, National Space Science <strong>Data</strong> Center, Greenbelt, Maryland,<br />

(November 1972).<br />

[4J KASE, P. G., "The radiation environments of outer-planet missions,"<br />

IEEE Transactions on <strong>Nuclear</strong> Science, Vol. NS-19, 6.(Dec. 1972)<br />

141-146.<br />

f53 WARWICK, J. W., Particles and Fields Near Jupiter, NASA CR-1685, Jet<br />

Propulsion Laboratory, Pasadena, California (October 1970).


592 C L A R K e t a l.<br />

[6] Proceedings of the Jupiter Radiation Belt Workshop, (BECK, A. J., Ed.)<br />

TM 33-543, Jet Propulsion Laboratory, Pasadena, California (1 July<br />

1972).<br />

[7] DIVINE, N., The Planet Jupiter (1970), NASA SP-8069, Jet Propulsion<br />

Laboratory, Pasadena, California (December 1971).<br />

[в] HAFFNER, J. W., "Magnetospheres of Jupiter and Saturn," AIAA Journal,<br />

Vol. 9, No. 12 (December 1971) 2422-2427.<br />

[9] Satellite Environment Handbook, (JOHNSON, F. S., Ed.) Stanford Univ.<br />

Press, Stanford, California (1961).<br />

£lo] DIEDERICH, D. R., Viking Radiation Environment, TN-3770040 (Rev. A),<br />

Martin Marietta Aerospace, Denver, Colorado (24 April 1972).<br />

[11] Solar Proton Manual, (McDONALD, F. B., Ed.), NASA TRR-169, Goddard<br />

Space Flight Center, Greenbelt, Maryland (December 1963).<br />

[12] MODISETTE, J. L., VINSON, Т. M., HARDY, A. C., Model Solar Proton<br />

Environments for Manned Spacecraft Design, NASA TN D-2746, Manned<br />

Spacecraft Center, Houston, Texas (April 1965).<br />

[13] Mars Engineering Model, M75-125-2, NASA Langley Research Center,<br />

Hampton, Virginia (14 April 1972).<br />

[14] The Effects of Radiation on the Outer Planets Grand Tour, (WEDDELL,<br />

J. B., Ed.), SD71-770, North American Rockwell Corp., Downey,<br />

California (November 1971).<br />

[15] NOON, E. L., ANNO, G. H., DORE, M. A., "<strong>Nuclear</strong> radiation sources on<br />

board outer-planet spacecraft," NS-18, IEEE Transactions on <strong>Nuclear</strong><br />

Science (October 1971).<br />

[16] Mariner/jupiter-Saturn 1977 Spacecraft Description, (WERTZ, C., Ed.),<br />

Jet Propulsion Laboratory, Pasadena, California (12 July 1972).<br />

[17] CLARK, В. C., X-ray Surface Sample Analyzer for Planetary Exploration,"<br />

NASA High CR-127526 (1972), Accession No. N-72-27846.<br />

[18] The design and execution of the Viking Inorganic Chemistry Experiment<br />

is the responsibility of a team of scientists consisting of<br />

Professor A. K. Baird of Pomona College, Dr. B. C. Clark of Martin<br />

Marietta Aerospace, Professor K. Keil of the University of New<br />

Mexico, Dr. H. J. Rose, Jr., of the United States Geological Survey,<br />

and Dr. P. Toulmin, III, of the United States Geological Survey<br />

(Team Leader).<br />

[19] FINK, R. W., JOPSON, R. C., MARK, H., SWIFT, C. D., "Atomic fluorescence<br />

yields," Rev. Mod. Phys. 38 (1966) 513.<br />

[20] BAMBYNEK, W., CRASEMANN, B., FINK, R. W., FREUND, H. U., MARK, H.,<br />

SWIFT, C. D., PRICE, R. E., RAO, P. V., "X-ray fluorescence yields,<br />

Auger, and Coster-Kronig transition probabilities," Rev. Mod. Phys.<br />

44 (1972) 716.<br />

[21] PLECHATY, E. F., TERRELL, J. R., Integrated System for Production of<br />

Neutronics and Photonics Calculational Constants - Vol. 6 Photon<br />

Cross Sections 1 keV to 100 MeV, UCRL-50400 (1968).


I A E A - S M -17 0 /4 2 593<br />

[22] VEIGLE, W. J., BRIGGS, E., BATES, L., HENRY, E. M., BRACEWELL, B.,<br />

X-ray Cross Section Compilation from 0.1 keV to 1 MeV, DNA 2433F<br />

(formerly BASA 2433) (1972) available from Director, Defense <strong>Nuclear</strong><br />

Agency, Washington, D. C. 20305.<br />

[ 23] WAINIO, K., ROGERS, W. L., An Analysis of Carbon-14 Radiation Detection<br />

Systems, Final Report to Contract NAS 2-5546, NASA/Ames Research<br />

Center (1969).<br />

[24] CLARK., В. C., "Carbon-14 detection in a high background radiation,"<br />

Nucl. Instr. Math. 89 (1970) 225.<br />

[25] KAMINSKAS, R. A., RYAN, G. W., SMITH, C. A., RTG/Science Instrument<br />

Radiation Interactions for Deep Space Probes, TRW Rept. on Contract<br />

NAS 2-5222 with NASA/Ames Research Center (1969).<br />

[26] BLOCK, S., SCHMIDT, C. T., KATHREN, R. L., Radiation Dosimetry and<br />

Spectral Distribution of the SNAP-19 Source, UCRL-50539 (1968).<br />

[27] MINATO, S., KAWANO, M., "On the constitution of terrestrial gamma<br />

radiation," J. Geophys. Res. 7_5 (1970) 5825.<br />

[28] KRUGER, P., Principles of Activation Analysis, Wiley - Interscience,<br />

New York, N. Y., (1971) .<br />

[29] SENTFLE, F. E., DUFFEY, D., WIGGINS, P. F., "Mineral exploration of<br />

the ocean floor by in-situ neutron absorption using a Californium-<br />

252 source," Marine Technology Society Journal 3_, 5 (Sept.-Oct. 1969)<br />

9.<br />

[30] TR0MBKA, J. I., SENTFLE, F. E., SCHMADEBECK, R., "Neutron radiative<br />

capture methods for surface elemental analysis," <strong>Nuclear</strong> Instruments<br />

and Methods 87 (1970) 37-43.<br />

[31] Mars Scientific Model, Vol. 1, Jet Propulsion Laboratory Document<br />

No. 606-1 (1968).<br />

D I S C U S S I O N<br />

F. RUSTICHELLI: I have heard recen tly that it would be useful from<br />

the point o f view o f space scie n ce , p articu la rly in X -r a y investigations,<br />

to have sp h erica lly curved m on och rom ator cry sta ls in o rd e r to get a focu sin g<br />

effect. Could you com m ent on this point? I might m ention that we are<br />

developing this kind o f cry sta l at the Institute Max von L aue-P au l Langevin<br />

in G renoble in connection with neutron p h ysics experim en ts. We get the<br />

curvature by ch em ica l treatm ent of one of the fa ce s of silicon crysta ls.<br />

A fter the treatm ent the cry sta ls rem ain naturally curved, without any need<br />

fo r a m ech an ical o r th erm al device. This last-m en tioned ch a ra cteristic<br />

should be an advantage in space resea rch .<br />

В. C. CLARK: This developm ent is o f in terest, esp ecia lly if it resu lts<br />

in a greater throughput efficien cy fo r m onochrom atization o f X -r a y s . I would<br />

be in terested in learning m ore about this developm ent.<br />

R. NICKS: In your paper you m ention the p resen ce o f neutrons in the<br />

atm osph ere. W here do these neutrons com e from , what is their intensity<br />

and what is their en ergy? Can you tell us som ething about the detection<br />

system ?


594 C L A R K e t a l.<br />

В. C. CLARK: The origin o f these neutrons is nuclear reactions<br />

betw een incom ing charged p a rticles (co sm ic ra ys and solar flare p a rticle s)<br />

and the n uclei o f the constituents of the ea rth 's upper atm osphere. The<br />

en ergy spectrum o f this s o -c a lle d "neutron albedo" flux co v e rs a broad<br />

range, extending up to the en ergy of the incom ing p a rticle. Several d etection<br />

system s have been devised, including the BF3 - counter in a m oderator<br />

d escrib ed in the text. It is found that su cce ssfu l m easurem ent o f the<br />

neutron albedo req u ires the ability to identify and exclude the in terferen ce<br />

o f p rim a ry cosm ic ra y counts. T his is accom p lish ed by surrounding the<br />

p rim a ry d etector with a second d etector (e. g. a scin tillator shell) in sen sitive<br />

to neutrons and operated in a n ti-coin cid en ce with the p rim a ry d etector.


I A E A - S M -17 0 /3 5<br />

NUCLEAR DATA FOR SHIELDING<br />

AND ACTIVATION ESTIMATES FOR TRIUMF<br />

I.M . THORSON, W.J. WIESEHAHN<br />

TRIUMF Group, Simon Fraser University,<br />

Burnaby, B .C ., Canada<br />

Abstract<br />

NU CLEAR D A T A FO R SHIELDING A N D A C T IV A T IO N E S T IM A T E S FOR TRIU M F.<br />

T h e m o r e im p o r ta n t r a d ia tio n transp ort and re s id u a l a c t iv it y p r o d u c tio n e s tim a te s re q u ire d fo r th e h ig h -<br />

in te n s ity (1 0 0 jiA ) m e d iu m -e n e r g y (5 0 0 M e V ), H " is o ch r o n o u s c y c lo t r o n , e x te r n a l b e a m lin e s and ta rg ets o f<br />

TRIU M F a re e n u m e ra te d and d iscu sse d . T h e gross fe a tu re s o f th e ra d ia tio n f i e ld d istr ib u tio n d u rin g o p e r a tio n<br />

o f th e f a c i lit y are p r im a r ily d e p e n d e n t o n th e h a d r o n ic c a s c a d e in th e fa c i lit y c o m p o n e n ts and sh ie ld s. L a c k in g<br />

a d e q u a te e x p e r im e n t a l d a ta fo r th e s e c o n d a r y p a r t ic le s p e ctra and a n gu la r d istr ib u tio n s, a lm o st e x c lu s iv e<br />

r e lia n c e has b e e n p la c e d o n th e resu lts fr o m in tr a -n u c le a r c a s c a d e c a lc u la t io n s . T h e re s id u a l a c t iv a t io n and<br />

r a d ia tio n f ie ld p r o b le m s , w h ic h are m o r e c o m p a r a b le , in in te n s ity , t o th o se fo u n d at fissio n r e a cto r s than<br />

p r e v io u s g e n e ra tio n s o f a c c e le r a t o r f a c i lit ie s , a re c o m p lic a t e d b y th e w id e v a r ie ty o f p r o d u c t s p e c ie s fr o m<br />

h ig h - e n e r g y h a d ro n r e a c t io n s . T h e a v a ila b le e x p e r im e n t a l d a ta a re at b est in c o m p le t e and o ft e n fr a g m e n ta ry .<br />

E x te n siv e r e lia n c e fo r n u c le a r da ta r e q u ire m e n ts has b e e n p la c e d o n c o m p ila t io n s b a s ed o n R u d stam 's e m p ir ic a l<br />

fo r m u la ; m o r e r e c e n t ly a c t iv it y p r o d u c tio n e s tim a te s based o n S ilb e r b e r g and T s a o 's e x te n d e d e m p ir ic a l<br />

fo r m u la h a v e b e e n u sed .<br />

N u cle a r <strong>Data</strong> f o r S h ie ld in g and A c t i v a t i o n E stim a te s f o r TRIUMF<br />

1 . INTRODUCTION AND GENERAL DESCRIPTION OP TRIUMF<br />

1 .1 D e s c r ip t io n o f th e T R I -U n iv e r s ity Meson F a c i l i t y<br />

1 .1 . 1 TRIUMF A c c e le r a t o r :<br />

TRIUMF [ 1 ] c o n s i s t s o f a s i x - s e c t o r , is o c h r o n o u s c y c l o t r o n<br />

an d , i n i t i a l l y , tw o e x t e r n a l beam l i n e s a s shown in F ig . 1.<br />

H io n s a r e i n j e c t e d a t 300 keV in t o th e c y c l o t r o n and a c c e l ­<br />

e r a te d t o any e n erg y betw een 150 MeV and 500 MeV, w here th ey<br />

a r e s t r ip p e d t o p r o t o n s , f o r s im p le , c le a n , s im u lta n e o u s ext<br />

r a c t i o n in t o e i t h e r e x t e r n a l beam l i n e . The t o t a l , d e s ig n<br />

s p e c i f i c a t i o n beam i n t e n s i t y i s 100 (jA a t 500 MeV lim it e d by<br />

a c c e p t a b l e r e s id u a l r a d ia t io n f i e l d s p ro d u ce d by beam s p i l l in<br />

th e a c c e l e r a t o r . I f th e f i n a l beam en erg y i s red u ce d by ~ 10$<br />

th e beam c u r r e n t c a p a b i l i t y o f th e a c c e l e r a t o r s h o u ld in c r e a s e<br />

by a f a c t o r ~ 3 , f o r th e same s p i l l .<br />

1 .1 . 2 E x p e rim e n ta l Beam L in e s :<br />

The e x p e r im e n ta l a r e a s o f th e f a c i l i t y a r e d iv id e d in t o a<br />

Meson A rea and a P r o to n Area a s shown in F ig . 1. In th e<br />

f i r s t , th e h ig h e s t i n t e n s i t y p r o t o n beams p ro d u ce m esons by<br />

n u c le a r r e a c t i o n s in t a r g e t s in p rim ary beam l i n e BL1. For<br />

i n i t i a l o p e r a t io n s tw o se co n d a ry beam l i n e s w i l l c o l l e c t p io n s<br />

p ro d u ce d in t a r g e t T2; o n e , a t 30° t o th e p r o t o n beam d i r e c ­<br />

t i o n , and in th e v e r t i c a l p la n e , w i l l t r a n s p o r t tt~ m esons in t o<br />

th e B io -M e d ic a l e x p e r im e n ta l a re a and th e o t h e r a t 135° t o th e<br />

595


596 TH O R SO N and W IESEH AHN<br />

in c id e n t p r o t o n beam, and in th e h o r i z o n t a l p la n e , w i l l c o l l e c t<br />

r e l a t i v e l y low en erg y p io n s o f e it h e r p o l a r i t y and t r a n s p o r t<br />

them th rou g h th e s h ie l d i n g t o th e m eson e x p e r im e n ta l a r e a .<br />

S h o r t ly a f t e r s t a r t - u p o f th e f a c i l i t y , e x p e c te d in e a r ly 1974,<br />

a se co n d m eson p r o d u c t io n t a r g e t , T I, w i l l be i n s t a l l e d t o<br />

p r o v id e e n e r g e t ic p io n s a t n ea r 0° t o th e in c id e n t p r o t o n d i ­<br />

r e c t i o n in t o a se co n d a ry beam l i n e t o th e m eson e x p e r im e n ta l<br />

a r e a . A t h i r d seco n d a ry beam from t a r g e t T2 and a se co n d from<br />

T I , n o t shown on F ig . 1 , a r e a l s o p la n n ed f o r th e n ea r fu t u r e .<br />

The P r o to n A rea w i l l be u sed f o r n u c le o n -n u c le o n and<br />

n u c le o n -n u c le u s e x p e rim e n ts . P rim ary beam l i n e BLIV i s<br />

s w itch e d a t th e e n tr a n c e t o th e a re a t o e i t h e r B LIV (a) o r<br />

B L IV (b ). P ro to n s o f v a r ia b l e en erg y in B LIV (a) w i l l be u sed<br />

t o p ro d u ce p o la r i z e d o r u n p o la r iz e d , m o n o -e n e r g e tic n e u tro n s<br />

in a l i q u i d d eu teriu m t a r g e t a n d /o r t o bombard t h in t a r g e t s<br />

f o r r e a c t i o n p r o d u c t s t u d ie s in an e v a cu a te d s c a t t e r i n g<br />

cham ber. An e x p e r im e n ta l a c t i v i t y p r o d u c t io n f a c i l i t y w ith<br />

th in t a r g e t s and gas t r a n s p o r t o f th e s p e c ie s r e c o i l i n g in t o<br />

th e gas w i l l be i n s t a l l e d im m e d ia te ly ahead o f th e beam dump<br />

in BLIVa. The maximum p r o t o n beam c u r r e n t co n te m p la te d f o r<br />

B L IV (a) i s 10 pA and th e a v e ra g e i s e x p e c te d t o be s u b s t a n t ia lly<br />

lo w e r .<br />

B LIV (b) w i l l have a p r o t o n beam c u r r e n t l i m i t o f 100 nA.<br />

I t w i l l fe e d p r o to n s t o o n e , o r p o s s i b l y two g e n e r a l p u rp ose<br />

t a r g e t p o s i t i o n s f o r ( p , n u c le u s ) r e a c t i o n s t u d ie s and t o th e<br />

t a r g e t f o r a h ig h r e s o l u t i o n p r o t o n s p e c tr o m e te r d e s ig n e d t o<br />

u t i l i z e th e in h e r e n t ly n arrow p r o t o n en erg y sp rea d u lt i m a t e l y<br />

e x p e c te d from th e c y c l o t r o n .<br />

1 . 1 . 5 P roto n Beam Dumps:<br />

The r e s id u a l p r o t o n beams in th e P ro to n A rea w i l l be<br />

dumped in t o low a c t i v a t i o n a b s o r b e r s , such a s g r a p h it e , su rrou<br />

n ded by i r o n - c o n c r e t e s h ie l d s t o a c h ie v e a d eq u a te d o s e -<br />

r a t e s in in h a b it e d a r e a s a t minumum c o s t . The beam i n t e n s i t y<br />

a t BLI w i l l , a t f u l l p ow er, be h ig h enough t o make a u s e f u l<br />

n e u tr o n s o u r c e f o r a th erm a l n e u tr o n f a c i l i t y . The r e s id u a l<br />

p r o t o n s w i l l be s to p p e d in a Pb o r P b /B i t a r g e t p r o d u c in g app<br />

r o x im a t e ly 8 n e u tron s p e r in c i d e n t 500 MeV p r o t o n . A t_100<br />

(jA beam c u r r e n t th e n e u tro n s o u r c e s t r e n g t h o f 5 x 1 o 15 s 1 w i l l<br />

p ro d u ce th e rm a l n e u tr o n f l u x e s in th e ra n ge 0 . 5 - l - 0 x l 0 13 cm 2<br />

s 1 in a sm a ll H20/t>20 m o d e ra to r a sse m b ly .<br />

T h ree tu b e s t o n e u tro n i r r a d i a t i o n s i t e s w i l l be in c lu d e d<br />

in th e v e r t i c a l colum n u sed f o r a c c e s s t o th e t a r g e t -m o d e r a t o r<br />

a s s e m b ly . Two h o r iz o n t a l tu b e s th rou g h th e ir o n c o r e s h i e l d ­<br />

in g , o f f - s e t a b ove th e p r o t o n beam p la n e , w i l l a llo w rem oval<br />

o f n e u tr o n beams f o r e x p e r im e n ta l p u r p o s e s . A s e p a r a te p r o t o n<br />

i r r a d i a t i o n f a c i l i t y f o r g r o s s a c t i v i t y p r o d u c t io n w i l l be in ­<br />

s t a l l e d im m ed ia tely ahead o f th e th erm a l n e u tr o n f a c i l i t y<br />

t a r g e t .<br />

1 .2 R a d ia t io n S o u r c e s , S h ie ld in g and A c t i v i t y P r o d u c t io n in<br />

TRIUMF<br />

1 .2 . 1 A c c e le r a t o r :<br />

Two beam l o s s m echanism s a r e e x p e c te d t o dom inate in th e<br />

a c c e l e r a t o r : c o l l i s i o n s w ith r e s id u a l gas atom s in th e c y c l o -


I A E A - S M -1 7 0 /3 5 597<br />

t r o n vacuum cham ber and d i s s o c i a t i o n o f th e H io n s . Both<br />

w i l l g e n e r a lly p ro d u ce n e u t r a l H atom s w h ich w i l l th e n be l o s t<br />

t a n g e n t a lly in t o th e s id e w a lls o f th e s t a i n l e s s - s t e e l vacuum<br />

ta n k . P resum ing no s i g n i f i c a n t p r e s s u r e g r a d ie n t s in th e<br />

vacuum ta n k , th e r e s id u a l gas s t r i p p i n g w i l l be u n ifo r m arou nd<br />

th e c ir c u m fe r e n c e and a t th e d e s ig n , n it r o g e n - e q u iv a l e n t ,<br />

r e s id u a l p r e s s u r e o f 7 x l0 ~ e t o r r th e f r a c t i o n a l pow er l o s s<br />

from th e a c c e l e r a t i n g beam i s e s tim a te d t o be 3 .9 $ . The d i s ­<br />

s o c i a t i o n s p i l l i n t e n s i t y f o l l o w s th e a z im u th a l v a r i a t i o n o f<br />

th e m a g n etic f i e l d v a r y in g from 0 t o 2 .5 tim e s th e a v e r a g e a t<br />

th e vacuum ta n k w a l l. F or norm al o p e r a t io n s w ith beam e x t r a c ­<br />

t i o n a t 500 MeV, th e f r a c t i o n a l pow er l o s s t o vxB s t r i p p i n g i s<br />

e x p e c te d t o be 7 -6 fo, and e s s e n t i a l l y d is a p p e a r s f o r o p e r a t io n s<br />

a t 400 MeV o r l e s s .<br />

Over m ost o f th e p e r ip h e r y o f th e c y c l o t r o n th e v o id b etw<br />

een th e vacuum ta n k s id e w a ll and th e m ain magnet r e tu r n<br />

y o k e w i l l c o n t a in low a c t i v a t i o n s h i e l d i n g , t h i c k enough t o<br />

s to p th e s p i l l e d p rim a ry p r o t o n s . At th e gaps and t h in s e c ­<br />

t i o n s in th e m ain magnet r e t u r n y o k e s , h e a v y -c o n c r e t e b lo c k<br />

s h ie l d i n g arou n d th e p e r ip h e r y o f th e c y c l o t r o n w i l l red u ce<br />

th e r e s id u a l r a d i a t i o n l e v e l s in th e c y c l o t r o n v a u lt t o a llo w<br />

g e n e r a l a c c e s s w it h in h ou rs a f t e r shutdow n o f th e f a c i l i t y .<br />

The 5 m t h i c k c o n c r e t e s h ie l d i n g w a l ls b etw een th e c y c l o t r o n<br />

v a u lt and th e e x p e r im e n ta l a r e a s a r e in te n d e d t o red u ce th e<br />

o p e r a t in g d ose r a t e s in t h e s e a r e a s below t h a t f o r c o n tin u o u s<br />

o c c u p a t io n , i . e . 2 .5 mrem h- 1 .<br />

As o u t lin e d a b o v e , th e maximum beam i n t e n s i t y c a p a b i l i t y<br />

o f TRIUMF i s e x p e c te d t o be s e t by th e r e s id u a l r a d i a t i o n<br />

f i e l d c o n s t r a i n t s on m ain ten an ce and s e r v i c i n g o p e r a t io n s in<br />

and a rou n d th e c y c l o t r o n . The p r e d i c t e d r e s id u a l r a d ia t io n<br />

f i e l d s a t th e m id -p la n e o f th e s e r v i c e sp a ce when th e vacuum<br />

ta n k l i d and to p h a lv e s o f ^ h e c y c l o t r o n magnet s e c t o r s a re<br />

r a is e d 1 .2 m, v a r ie s from ~ 1 rem h-1 a t th e c e n t e r o f th e<br />

c y c l o t r o n t o ~ 5 r e m h 1 a t a p o in t o p p o s it e th e ta n k p e r i ­<br />

p h e ry . T h is e s tim a te assum es one day d eca y f o l l o w i n g a lo n g<br />

o p e r a t in g p e r io d a t 10 kW c o n tin u o u s s p i l l . I t i s e x p e c te d<br />

t h a t a t l e a s t s e m i-re m o te s e r v i c i n g o p e r a t io n s w i l l be r e q u ir e d<br />

b e f o r e r e s id u a l f i e l d s rea ch t h e s e l e v e l s .<br />

1 . 2 . 2 P r o to n Beam L in e s and T a r g e ts :<br />

A l l s h ie l d i n g in b oth th e P r o to n and Meson .experim e n ta l<br />

a r e a s a s shown in F ig . 1 w i l l be i n th e form o f d em ou n table<br />

b l o c k s . T h is a p p roach was a d o p te d p r im a r ily b e ca u se o f u n c e r ­<br />

t a i n t i e s in e x p e r im e n ta l s p a ce re q u ire m e n ts o v e r th e l i f e t i m e<br />

o f th e f a c i l i t y . I t h as th e a d d i t i o n a l a d v a n ta g e , h ow ev er, o f<br />

s u b s t a n t i a l l y r e d u c in g th e p r e c i s i o n re q u ire m e n ts on o p e r a t in g<br />

d o s e - r a t e e s tim a t e s a t th e d e s ig n s t a g e . The s h ie l d i n g shown<br />

f o r BLI i s b a se d on an assum ed, u n ifo rm s p i l l r a t e o f 1 nA<br />

m- 1 . T h is i s n o t th e l e v e l o r d i s t r i b u t i o n e x p e c te d , bu t i s<br />

th e t h r e s h o ld l e v e l a t w h ich r e s id u a l a c t i v a t i o n r a d ia t io n<br />

f i e l d s b e g in t o c o n s t r a in a c c e s s t o th e beam l i n e a f t e r sh u tdown.<br />

T h is s h ie l d i n g a l s o p r o v id e s a d e q u a te p r o t e c t i o n a g a in s t<br />

s e r io u s o v e r e x p o s u r e o f p e r s o n n e l in th e m eson e x p e r im e n ta l<br />

a re a in th e im p rob a b le c ir c u m s ta n c e s th a t th e e n t i r e 100 )jA<br />

beam i s l o s t a t a p o in t in th e tu n n e l and g o e s u n d e t e c te d f o r<br />

an e x te n d e d p e r io d o f tim e .


598 TH O R SO N and W IESEH AHN<br />

BLIVa Dump<br />

PROTON<br />

AREA<br />

O C LD TR O N<br />

33m AND<br />

VAULT<br />

FIG. 1. Plan view of TRIUMF at primary beam line elevation.<br />

S u b s t a n t ia l p r o t o n beam s p i l l i s , o f c o u r s e , u n a v o id a b le<br />

a t th e m eson and n e u tro n p r o d u c t io n t a r g e t s in th e prim a ry<br />

beam l i n e s . T a rg e t TI and BLI w i l l be up t o 4 g cm~s t h i c k<br />

o f low Z m a t e r ia l such a s H20 , С o r Be; i t w i l l rem ove up t o<br />

7$ o f in c i d e n t p r o to n s by e l a s t i c and n o n - e l a s t i c n u c le a r c o l ­<br />

l i s i o n s . T2 t a r g e t s w i l l be lim it e d t o 20 g cm-2 o f low o r<br />

medium Z m a t e r ia l (B e , Cu, e t c . ) and rem ove up t o 25$ o f th e<br />

in c i d e n t p r o t o n s by n u c le a r r e a c t i o n s . The Coulomb s c a t t e r i n g<br />

w i l l a l s o be s i g n i f i c a n t from medium Z t a r g e t s a t T2, and in<br />

th e u lt im a t e f a c i l i t y th e r e s id u a l p r o t o n beam w i l l be c o l ­<br />

lim a te d im m e d ia te ly a f t e r T2 f o r tr a n s m is s io n t o th e p r o t o n<br />

beam dump - th erm a l n e u tr o n f a c i l i t y . Up t o 25$ o f p r o to n s<br />

w i l l be rem oved by th e c o l l i m a t o r .<br />

Of th e t a r g e t s in th e p r o t o n a re a o n ly th e l i q u i d deute<br />

riu m t a r g e t , maximum t h ic k n e s s 1 .7 g cm 2 , w i l l rem ove subs<br />

t a n t i a l p r o t o n beam f r a c t i o n s , up t o The o t h e r t a r ­<br />

g e t s in B L IV (a) and B LIV (b) w i l l rem ove l e s s th a n 0 .1 $ o f th e<br />

in c i d e n t p r o t o n s .<br />

The g e n e r a l a p p roa ch a d o p te d a t TRIUMF t o accom m odate<br />

r e s id u a l a c t i v i t y p rob lem s r e s u l t i n g from h ig h s p i l l t a r g e t s<br />

i s t o im bed th e t a r g e t a s s e m b lie s in la r g e m o n o lit h ic s h i e l d ­<br />

in g b l o c k , m aking a l l vacuum and c o o l i n g c o n n e c t io n s a t th e


I A E A - S M - n O /3 5 599<br />

o u t s id e o f th e b lo c k . The maximum b lo c k s i z e t h a t can be<br />

h a n d led by th e a v a i l a b l e l i f t i n g c r a n e , 100 t o n s , a f f o r d s a<br />

r e d u c t io n o f ~ 1 0 -3 in th e h ig h e n e rg y n u c le o n c u r r e n t , i n t e ­<br />

g r a te d o v e r th e o u t s id e s u r f a c e , a s com pared t o a s im p le t a r ­<br />

g e t c o n t a in e r . The r e s id u a l r a d i a t i o n f i e l d a t d eca y tim e s<br />

s h o r t com pared t o th e o p e r a t in g p e r io d a r e th u s re d u ce d from<br />

th e o r d e r 10 R h-1 t o th e o r d e r 10 mR h_ 1 f o r d is t a n c e s o f 1 0 '<br />

from a t h i c k t a r g e t d i s s i p a t i n g 5 kW o f beam pow er. The<br />

a c t u a l t a r g e t a s s e m b lie s w i l l be re m ovable th rou g h a v e r t i c a l<br />

a c c e s s tu b e in th e s h i e l d »b lo ck t o a s h ie l d i n g f l a s k f o r t r a n s ­<br />

f e r t o h o t - c e l l f a c i l i t i e s .<br />

1 . 2 . 3 P r o to n Beam Dumps:<br />

The m ost in t e n s e s o u r c e s o f r a d i a t i o n b o th d u rin g o p e r a t io n<br />

and a f t e r shutdow n a r e , o f c o u r s e , th e beam dumps, and in p a r ­<br />

t i c u l a r th e dump a t th e end o f B LI, w h ich w i l l a l s o have th e<br />

f u n c t io n o f a th erm a l n e u tro n f a c i l i t y , a s d is c u s s e d a b o v e .<br />

F or 50 kW o f p r o t o n beam pow er on th e s to p p in g P b -B i t a r g e t ,<br />

a p p r o x im a te ly 10$ em erges from th e t a r g e t a s h ig h -e n e r g y ,<br />

" c a s c a d e " n e u tro n s w h ich , h a v in g th e lo n g e s t r e la x a t io n<br />

le n g t h s , c o n t r o l th e o p e r a t in g s h ie l d r e q u ir e m e n ts . T h is 5<br />

kW o f c a s c a d e n e u tr o n pow er must be re d u ce d by g eom etry and<br />

e n e rg y a b s o r p t io n t o a r a d ia t io n i n t e n s i t y o f th e o r d e r 10-11<br />

W cm- 2 f o r u n r e s t r i c t e d p e r s o n n e l a c c e s s . F or d is t a n c e s o f<br />

10 m b etw een th e s o u r c e and f i e l d p o in t s o f i n t e r e s t , th e g e o ­<br />

m etry f a c t o r i s 10-7 cm- 2 ; th u s th e a t t e n u a t io n f a c t o r f o r<br />

c a s c a d e n e u tr o n e n erg y must be o f th e o r d e r 10 7 in d i r e c t i o n s<br />

o f a v e ra g e i n t e n s i t y .<br />

The r e s id u a l a c t i v i t y a ccu m u la ted i n th e P b -B i t a r g e t a f ­<br />

t e r a lo n g o p e r a t in g p e r io d a t 50 kW beam pow er i s ~ 4 0 k C i,<br />

o f s p e c ie s w ith l i f e t i m e s lo n g e r th a n a few m in u te s. The<br />

r e s id u a l r a d ia t io n f i e l d a t a d is t a n c e o f 1 0' f rom _such a<br />

t a r g e t a few h ou rs a f t e r sh u t-d ow n w i l l be ~ 1 0 0 R h г .<br />

2 . OPERATING RADIATION INTENSITY ESTIMATES.<br />

2 .1 H a d ron ic C ascade C a lc u la t io n s<br />

2 . 1 . 1 C o l l i s i o n P r o b a b i l i t y C a lc u la t io n s :<br />

The e s s e n t i a l p rob lem in m aking r e l i a b l e r a d i a t i o n t r a n s ­<br />

p o r t e s tim a te s f o r h ig h e n e r g y , " c a s c a d e " h a d ron s i s an a d eq<br />

u a te tre a tm e n t o f th e e f f e c t s o f th e h ig h ly p eak ed a n g u la r<br />

d i s t r i b u t i o n s o f se co n d a ry n u c le o n s from n o n - e l a s t i c n u c le a r<br />

r e a c t i o n s . At th e lo w -to -m e d iu m e n e r g ie s e n co u n te r e d a t<br />

TRIUMF o n ly n e u tro n s n eed be c o n s id e r e d in d e t a i l . The o n ly<br />

s i g n i f i c a n t en erg y l o s s m echanism s f o r n e u tro n s in t h i s en erg y<br />

r e g io n a r e n o n - e l a s t i c n u c le a r r e a c t i o n s : e l a s t i c n u c le a r<br />

r e a c t i o n s o c c u r w ith a p p r o x im a te ly th e same p r o b a b i l i t y but<br />

th e f r a c t i o n a l momentum t r a n s f e r i s so sm a ll o v e r m ost o f th e<br />

en erg y ra n ge o f i n t e r e s t t h a t th e y ca n , e x c e p t f o r c o l l i s i o n s<br />

w ith th e l i g h t e s t e le m e n ts , be ig n o r e d . That th e n e u tro n s<br />

w i l l dom inate a s th e v e h i c l e s f o r t r a n s p o r t o f r a d i a t i o n e n e rgy<br />

th rou g h m a tte r i s o b v io u s from a co m p a rison o f th e c o l l i ­<br />

s io n mean f r e e p a th s o f v a r io u s form s o f r a d ia t io n . At e n e rg<br />

ie s a b o v e a b ou t 100 MeV th e mean f r e e p a th betw een n on -_<br />

e l a s t i c n e u tr o n c o l l i s i o n s v a r ie s sm ooth ly from ~ 7 5 g cm-2 in


600 TH O R SO N and W IESEH AHN<br />

FIG . 2 . C a lc u la t e d c o l li s i o n d e n s ity in ir o n o f c a s c a d e n eu tron s w ith e n e r g y g re a te r th an 1 00 M e V .<br />

M o n t e - C a r lo resu lts a re fo r slab s n o r m a l t o , and 0 - 3 0 ° s p h e r ic a l c o n e s e c tio n s c e n tr e d o n , th e d ir e c tio n<br />

o f p roton s in c id e n t at th e c e n t r e o f a 2 m c u b e . C o llis io n p r o b a b ility resu lts a re fo r p ro to n s in c id e n t n o r m a lly<br />

o n a 1 0 0 0 g * c m " 2 p la n e slab.<br />

ca r b o n t o ~ 2 0 0 g cm-2 in le a d . By com p a rison , th e mean f r e e<br />

p a th f o r y - r a d i a t i o n i s in th e ra n ge 10 - 25 g cm- 2 . The<br />

c r o s s - s e c t i o n f o r lo w e r en ergy n e u tron s a r e g e n e r a lly h ig h e r ,<br />

a lth o u g h t h e r e a r e a few i s o l a t e d e x c e p t io n s , on e o f w h ich ,<br />

th e sh arp d ip i n e l a s t i c s c a t t e r i n g c r o s s s e c t i o n in ir o n in<br />

th e r e g io n o f 26 keV , ca n be o f p r a c t i c a l s i g n i f i c a n c e .<br />

To e s tim a te th e r e l a x a t i o n le n g t h f o r deep p e n e t r a t io n o f<br />

n e u tro n s in v a r io u s m a t e r ia ls f o r th e e n erg y below 500 MeV,<br />

a s e r i e s o f n u m e rica l c o l l i s i o n p r o b a b i l i t y c a l c u l a t i o n s w ere<br />

done [ 2 ] . The c a l c u l a t i o n s w ere m o d e lle d on an i n f i n i t e p la n e<br />

s la b w ith n u c le o n s in c i d e n t on on e f a c e in d i s c r e t e a n g u la r<br />

i n t e r v a l s and en erg y g r o u p s . The c o l l i s i o n p r o b a b i l i t i e s f o r<br />

s u c c e s s iv e g e n e r a t io n s o f n u c le o n s f o r each e n erg y g ro u p ,<br />

a n g u la r segm en t, and s la b s u b - i n t e r v a l , w ere com puted by<br />

in t e g r a t in g o v e r a l l r e le v a n t n u c le o n r e a c t i o n s in th e p r e ­<br />

v io u s g e n e r a t io n . To o b t a in th e r e s u l t s f o r th e t o t a l i n t e r -<br />

n u c le a r c a s c a d e , a sum m ation i s c a r r i e d o u t f o r a l l s i g n i f i ­<br />

c a n t ly c o n t r ib u t i n g g e n e r a t io n s . The e s s e n t i a l n u c le a r


I A E A - S M -17 0 /3 5 601<br />

r e a c t i o n d a ta req u irem e n ts a r e th e t o t a l n o n - e l a s t i c c r o s s -<br />

s e c t i o n v a lu e s , w h ich w ere ta k e n from e x p e r im e n ta l m easurem<br />

ents [3 ] , and th e se con d a ry p a r t i c l e d i s t r i b u t i o n s , w h ich<br />

w ere d e r iv e d from th e p a r a m e tr ic f i t s [4 ] t o B e r t i n i 's i n t r a ­<br />

n u c le a r c a s c a d e r e s u l t s [ 5 ] .<br />

The b ottom c u r v e o f F ig . 2 shows th e r e s u l t s o f one such<br />

c a l c u l a t i o n f o r 500 MeV p r o t o n s in c i d e n t on a 1000 g cm- 2 s la b<br />

o f c o p p e r a t n ea r n orm al in c i d e n c e . The n o n - e l a s t i c c o l l i s i o n<br />

d e n s it y f o r c a s c a d e n e u tro n s w ith e n e r g ie s g r e a t e r th a n 100<br />

MeV, i s p l o t t e d a s a f u n c t io n o f depth in th e s la b . The e f ­<br />

f e c t i v e , b roa d beam, fo rw a rd r e l a x a t i o n le n g th a t medium t o<br />

la r g e d e p th s in th e co p p e r s la b i s 1 5 1 g cm 2 o r 1 . 0 6 tim e s th e<br />

n o n - e l a s t i c mean f r e e f o r h ig h en ergy n u c le o n s . F or o th e r<br />

m a t e r ia ls t h i s r a t i o was e s tim a te d t o v a ry from 1 .2 1 f o r<br />

c a r b o n t o 0 .9 6 f o r Pb.<br />

The m odel u sed f o r t h e s e c a l c u l a t i o n s makes th e e s tim a te s<br />

a u s e f u l g u id e f o r s i t u a t i o n s w here b roa d beams a r e in c i d e n t<br />

on p la n e o r n e a r ly p la n e s h ie l d i n g w a l ls . Such a m odel d oes<br />

n o t have e x t e n s iv e a p p l i c a t i o n and i t s u s e can be j u s t i f i e d<br />

o n ly in th e s i m p l i f i c a t i o n i t a f f o r d s in s o lv i n g th e t r a n s ­<br />

p o r t e q u a tio n . F or th e more u s u a l s h ie l d i n g s i t u a t i o n n ea r<br />

p o in t r a d i a t i o n s o u r c e s , th e r e l a x a t i o n le n g th s d ed u ced from<br />

t h i s m odel ca n o n ly be u sed w ith s u b s t a n t ia l c o n t in g e n c y f a c ­<br />

t o r s t o a llo w f o r c o u p lin g e f f e c t s b etw een th e g e o m e t r ic a l d i ­<br />

v e r g e n c e and s e co n d a ry p a r t i c l e d i s t r i b u t i o n s from th e n u c le a r<br />

r e a c t i o n s . More e la b o r a t e c a l c u l a t i o n s have b een u n d erta k en<br />

r e c e n t l y t o e s tim a te th e r e l a x a t i o n n ea r p o in t o r l i n e s o u r c e s<br />

w ith more r e a l i s t i c m o d e ls , a s d e s c r ib e d in th e n e x t s e c t i o n .<br />

2 . 1 . 2 Monte C a rlo C a lc u la t io n s<br />

In p r i n c i p l e th e Monte C a rlo m ethod i s p o t e n t i a l l y e x a c t<br />

in s o lv i n g v a r io u s p rob lem s in r a d i a t i o n t r a n s p o r t , and th e<br />

u s u a l a p p l i c a t i o n s a r e in s tu d y in g c o m p lic a t e d system s th a t<br />

ca n n ot be s o lv e d by l e s s g e n e r a l m eth od s. T h ere a r e s e v e r e<br />

l i m i t a t i o n s on i t s a p p l i c a t i o n t o p ro b le m s in v o lv i n g low<br />

p r o b a b i l i t y b e ca u s e o f s t a t i s t i c a l a c c u r a c y p ro b le m s . Deep<br />

s h ie l d p e n e t r a t i o n o f r a d ia t io n arou n d h ig h i n t e n s i t y f a c i l i ­<br />

t i e s i s a p a r t i c u l a r a c u te exam p le. W h ile s p e c i a l w e ig h tin g<br />

t e c h n iq u e s ca n be u sed th e y a r e t e d io u s and r e q u ir e c a r e f u l<br />

t e s t i n g f o r m ost a p p l i c a t i o n s .<br />

The Monte C a rlo c o d e NMT [ 6 ] w h ich was d e v e lo p e d a t Oak<br />

R id g e f o r n u cle o n -m e so n t r a n s p o r t s t u d ie s , h as b een u sed t o<br />

e s tim a te th e c a s c a d e p a r t i c l e f l u x e s arou n d a few h ig h in t e n ­<br />

s i t y p o in t s in TRIUMF. The co d e u s e s Monte C a rlo te c h n iq u e s<br />

f o r g e n e r a t in g th e i n t r a - a s w e l l a s th e in t e r - n u c l e a r c a s ca d e<br />

s im u la tio n , th u s r e d u c in g th e in p u t d a ta req u ire m e n ts t o a<br />

minumum. The NMT c o d e g e n e r a te s a s e r i e s o f p a r t i c l e h i s t o r i e s<br />

and s t o r e s t h e s e , u s u a lly on m a g n etic t a p e , f o r su b seq u en t anal<br />

y s i s by s e p a r a te c o d e s . S e v e r a l such a n a ly s is c o d e s have been<br />

w r i t t e n a t TRIUMF t o c o m p ile c o l l i s i o n d e n s i t i e s and f l u x e s<br />

(C0LLD ), p a r t i c l e c u r r e n t s (ANNE), r e c o i l e n erg y d i s t r i b u t i o n s<br />

(RECOIL), r e s id u a l p r o d u c t d i s t r i b u t i o n s (PROD) and d e t e c t o r<br />

s p e c t r a l r e s p o n s e (DECT).<br />

The two u p p er c u r v e s o f F ig . 2 show th e ca sca d e n e u tron<br />

c o l l i s i o n d e n s i t i e s in a 2 m cu b e o f i r o n when 500 MeV p r o ­<br />

to n s a r e in c id e n t a t th e c e n t e r . The to p c u rv e shows th e c o l -


602 TH O R SO N and W IESEH AHN<br />

l i s i o n d e n s it y s o r t e d in t o s la b s p e r p e n d ic u la r t o th e in c id e n t<br />

d i r e c t i o n , a s a f u n c t io n o f s la b d ep th from th e p o in t o f i n c i ­<br />

d e n ce . I t i s th u s e s s e n t i a l l y e q u iv a le n t t o th e c o l l i s i o n<br />

p r o b a b i l i t y c a l c u l a t i o n d e s c r ib e d a b o v e , and th e s lo p e o f th e<br />

c u r v e g iv e s a r e l a x a t i o n le n g th o f 154 g cm’ 2 in g ood a g r e e ­<br />

m ent. The o t h e r c u r v e i s th e c o l l i s i o n d e n s it y f o r ca s c a d e<br />

n e u tro n s a b ove ~ io o M e V in th e fo rw a rd 0 - 30° c o n e , from th e<br />

same NMT r e s u l t s . _The s lo p e o f th e cu rv e g iv e s a r e l a x a t i o n<br />

le n g th o f 16 8 g cm 2 f o r t h i s " p o i n t " s o u r c e g eom etry .<br />

3 . RESIDUAL ACTIVATION ESTIMATES<br />

3 -1 E x p e rim e n ta l <strong>Data</strong><br />

The d ata req u irem e n ts f o r m aking r e l i a b l e r e s id u a l a c t i v a ­<br />

t i o n e s tim a te s f o r medium and h ig h en erg y p r o t o n a c c e l e r a t o r s<br />

a r e much g r e a t e r th a n f o r e it h e r f i s s i o n r e a c t o r s o r lo w e r<br />

en ergy a c c e l e r a t o r s . In p r i n c i p l e , th e re q u ire m e n ts f o r medium<br />

and h ig h e n erg y e l e c t r o n a c c e l e r a t o r s a r e a s b roa d as th o s e<br />

f o r p r o t o n m a ch in es, but f o r th e same pow er d i s s i p a t i o n n e u tro n<br />

p r o d u c t io n and r e s id u a l a c t i v a t i o n by e l e c t r o n s i s a f a c t o r<br />

10 2 t o 10-3 l e s s th a n f o r p r o t o n s . F or h ig h en erg y h adron<br />

r e a c t i o n s a w id e v a r i e t y o f p r o d u c t s , a s fou n d i n f i s s i o n r e a c ­<br />

t i o n s , i s com bined w ith th e u n iv e r s a l t a r g e t p o s s i b i l i t i e s , as<br />

in n e u tr o n c a p tu r e r e a c t i o n s . The s i t u a t i o n i s s u b s t a n t ia l ly<br />

r e l i e v e d , h ow ever, by th e much sm ooth er v a r i a t i o n in p r o d u c t io n<br />

c r o s s - s e c t i o n a s a fu n c t io n o f r e s id u a l s p e c i e s , t a r g e t n u c le u s<br />

and h a d ron e n e r g y , a s com pared t o th e n e u tr o n c a p tu r e c a s e .<br />

T h is h as le d t o th e v e r y v a lu a b le d evelop m en t o f e m p ir ic a l<br />

fo rm u la e Í7, 8 ] f o r r e p r o d u c in g e x p e r im e n ta lly known c r o s s -<br />

s e c t i o n s and e s t im a t in g unknown o n e s , as d is c u s s e d in th e f o l ­<br />

lo w in g s e c t i o n s .<br />

The e x p e r im e n ta l d ata a v a i l a b l e t o 1964 has b een c o m p ile d<br />

by B ru n in x in CERN r e p o r t s [9 1 T h is c o m p ila t io n , and an<br />

in t e r n a l C halk R iv e r c o m p ila t io n [1(3 made in c o n n e c t io n w ith<br />

th e ING p r o j e c t , have b een u sed e x t e n s iv e l y f o r e s t im a t in g<br />

r e s id u a l a c t i v i t y p r o d u c t io n a t TRIUMF, e s p e c i a l l y f o r low -<br />

to-m ediu m mass t a r g e t s w here th e e x p e r im e n ta l d ata a r e r e l a ­<br />

t i v e l y much more c o m p le te . F or n e u tro n s i n th e en erg y r e g io n<br />

b elow ~ 2 5 MeV th e sta n d a rd d ata c o m p ila t io n s o u r c e f o r e s t i ­<br />

m ates a t TRIUMF h a s , o f c o u r s e , b een BNL-325 [H ].<br />

3 -2 E m p ir ic a l A c t i v i t y P r o d u c t io n E stim a te s<br />

E m p ir ic a l fo rm u la e d e f i n i n g th e d i s t r i b u t i o n o f r e s id u a l<br />

s p e c ie s f o l l o w i n g h ig h en erg y n u c le o n -n u c le a r c o l l i s i o n s<br />

have b een u sed e x t e n s iv e l y in m aking r e s id u a l a c t i v i t y e s t i ­<br />

m ates a t TRIUMF. The o r i g i n a l fo r m u la t io n , due t o Rudstam<br />

[ 7 ] , has a l s o b een u sed by B a r b ie r and C ooper [1 2 ] in t h e i r<br />

v e r y u s e f u l t a b u la t io n o f s o u r c e s tr e n g t h s and r a d i a t i o n f i e l d s<br />

f o r a w id e v a r i e t y o f t a r g e t e le m e n ts , in c id e n t n u c le o n e n e rg<br />

i e s and d eca y p e r io d s . To p r o v id e e s tim a te s o f r e s id u a l<br />

a c t i v i t y f o r in d iv i d u a l is o t o p e s and th e s p e c i f i c c o n d it i o n s<br />

a t TRIUMF, a c o d e , ACTA, and a d eca y d ata bank, s im il a r t o<br />

bu t more e x t e n s iv e th a n th a t u sed o r i g i n a l l y by B a r b ie r and<br />

C o o p e r, w ere c o m p ile d . The co d e u sed a s u b r o u t in e , RUDSTAM,


I A E A - S M -17 0 /3 5 603<br />

F IG .3 . C a lc u la t e d r e s id u a l r a d ia tio n f i e ld d e c a y cu r v e s fo r v a r io u s e le m e n ts u sin g th e e m p ir ic a l fo r m u la e<br />

o f S ilb e r b e ig and T s a o (S IL T ) and R udstam (a s e s tim a te d b y B a rb ier).<br />

f o r th e a c t i v i t y p r o d u c t io n e s tim a te s w h ich was b a sed on a<br />

3 / s pow er e x p o n e n t ia l r a t h e r th a n G a u ssia n shape f o r th e r e s i ­<br />

d u a l ch a rg e d i s t r i b u t i o n .<br />

A more r e c e n t e m p ir ic a l d e s c r i p t i o n o f r e s id u a l s p e c ie s<br />

d i s t r i b u t i o n s , s im ila r t o Rudstam , b u t e x te n d e d in ra n ge o f<br />

t a r g e t s and r e s id u a l s p e c ie s has b een p u t fo rw a rd by S il b e r b e r g<br />

and T sao [ 8 ] . By th e u s e o f m u lt ip le s e t s o f p a ra m eters f o r<br />

d i f f e r e n t ra n g e s o f n u c le o n e n e r g y , t a r g e t and r e s id u a l i s o ­<br />

t o p e , f a i r l y g ood agreem en t w ith th e a v a i l a b l e e x p e rim e n ta l<br />

d ata h as b een a c h ie v e d f o r a lm o st a l l t a r g e t n u c l e i and r e a c ­<br />

t i o n p r o d u c t s . In p a r t i c u l a r th e y in c lu d e " p e r i p h e r a l " r e a c ­<br />

t i o n s su ch a s ( p , 2p) and ( p , p n ) , h ig h e x c i t a t i o n f i s s i o n ,<br />

w h ich i s im p o rta n t f o r h ig h mass t a r g e t s , and "b r e a k -u p " o f<br />

low mass t a r g e t s a s w e l l a s th e u s u a l s p a l l a t i o n and e v a p o ra ­<br />

t i o n p r o c e s s e s .<br />

A s u b r o u t in e , SILT, has b een w r i t t e n w h ich u s e s S ilb e r b e r g<br />

and T s a o 's form u la and p a ra m eters t o e s tim a te th e p r o d u c t io n<br />

c r o s s - s e c t i o n s in th e r e s id u a l a c t i v a t i o n c o d e . F ig . 3 shows<br />

th e r e s u l t s f o r 600 MeV p r o to n s on alum inum , ir o n and n ic k e l<br />

from t h i s co d e and s u b r o u t in e . The d o t t e d c u rv e a t F ig . 3 i s<br />

B a r b i e r 's r e s u l t f o r i r o n u s in g R u d sta m 's fo r m u la e ; B a r b i e r 's<br />

r e s u l t f o r n i c k e l i s n e a r ly i d e n t i c a l t o h is i r o n c u r v e . The<br />

new er r e s u l t s i n d i c a t e t h a t n i c k e l i s s u b s t a n t i a l l y w orse<br />

th a n i r o n f o r r e s id u a l a c t i v a t i o n , and t h a t a f t e r lo n g o p e r a ­<br />

t i n g and d eca y p e r io d s aluminum i s a l s o w orse th a n i r o n , in<br />

agreem en t w ith an o b s e r v a t io n by W a lla ce [13 ]. F ig . 4 shows<br />

th e SILT r e s u l t s f o r s t a i n l e s s s t e e l , c o n c r e t e and lim e s t o n e ,<br />

a l l m a teria ls o f p r a c t i c a l im p o rta n ce a t TRIUMF.


604 TH O R SO N and WIESEHAHN<br />

C ooling P e rio d , days<br />

F IG .4 . C a lc u la t e d re s id u a l r a d ia tio n f i e ld d e c a y cu r v e s fo r v a r io u s c o n s tr u c tio n m a te r ia ls as e s tim a te d b y th e<br />

e m p ir ic a l fo r m u la e o f S ilb e r b e r g and T s a o (S IL T ) and R udstam (B a rb ie r).<br />

4 . SUMMARY <strong>OF</strong> FUTURE DATA REQUIREMENTS<br />

4 .1 R a d ia t io n T ra n s p o rt E stim a te s<br />

The m ost im p o rta n t u n c e r t a i n t i e s in r a d i a t i o n t r a n s p o r t<br />

arou n d m edium -en ergy p r o t o n a c c e l e r a t o r f a c i l i t i e s l i k e TRIUMF<br />

a r e in th e a n g u la r d e p e n d e n c ie s , r e l a t i v e t o th e. in c id e n t<br />

momentum, o f th e deep p e n e t r a t io n r e l a x a t i o n le n g th s f o r th e<br />

h ig h en erg y n e u t r o n s , th e dom inant en erg y c a r r y in g com pon en t.<br />

The g e n e r a l s o lu t i o n s t o t h e s e p ro b le m s r e q u ir e b oth r e l i a b l e<br />

n u c le a r r e a c t i o n d a ta and e la b o r a t e co m p u ta tio n a l te c h n iq u e s<br />

a n d /o r f a c i l i t i e s . Any s i g n i f i c a n t m ism a tch in g o f t h e s e two<br />

com pon en ts c a n n o t, o f c o u r s e , be e x p e c te d t o y i e l d optimum<br />

r e s u l t s . The Monte C a r lo r e s u l t s f o r b oth i n t r a - and i n t e r -<br />

n u c le a r c a s c a d e s , a s em p loyed , f o r exam p le, in th e NMT c o d e ,<br />

p r o v id e th e m ost u s e f u l and r e l i a b l e e s tim a te s f o r s i t u a t i o n s<br />

in v o lv i n g a t t e n u a t io n f a c t o r s up t o 10 3 .<br />

When TRIUMF and o t h e r f a c i l i t i e s in th e same in t e n s i t y<br />

ran ge becom e o p e r a t i o n a l th e m ost r e l i a b l e m ethods o f m aking<br />

deep p e n e t r a t io n r a d i a t i o n t r a n s p o r t e s tim a te s w i l l l i k e l y be<br />

by i n t e r p o l a t i o n and e x t r a p o la t io n o f th e d i r e c t l y m easured<br />

i n t e n s i t i e s . In th e s h o r t term them , th e i n c e n t i v e f o r th e<br />

a c q u i s i t i o n o f th e e x t e n s iv e seco n d a ry p a r t i c l e d i s t r i b u t i o n<br />

d a ta s p e c i f i c a l l y f o r deep p e n e t r a t io n s h ie l d i n g c a l c u l a t i o n s<br />

i s u n l i k e l y t o in c r e a s e . In th e lo n g e r term th e n u c le a r d ata<br />

re q u ire m e n ts f o r s h ie l d i n g p r o t e c t i o n w i l l be d ep en d en t on<br />

th e in t r o d u c t i o n o f m ach in es o f s i g n i f i c a n t l y h ig h e r i n t e n s i t y<br />

th a n t h o s e now com ing in t o s e r v i c e . A s u b s t a n t ia l bod y o f<br />

n u c le a r r e a c t i o n d a ta w i l l be g e n e r a te d by f a c i l i t i e s l i k e<br />

TRIUMF from fu n d am en tal e x p e rim e n ta l p rogra m s. At th e o u t s e t ,<br />

a t l e a s t , th e e f f o r t i s l i k e l y t o be c o n c e n t r a t e d on s im p le


I A E A - S M - n O /3 5 605<br />

s y s te m s , i . e . , l i g h t n u c l e i , and w i l l p r o b a b ly n o t w a r r a n t, o r<br />

r e q u ir e , much e x p l i c i t e f f o r t f o r co m p re h en siv e c o m p ila t io n ,<br />

a t l e a s t f o r s e co n d a ry p a r t i c l e d i s t r i b u t i o n d a ta .<br />

An im p o rta n t o p e r a t i o n a l p rob lem fou n d arou n d medium and<br />

h ig h en erg y a c c e l e r a t o r s i s th e v a r i a t i o n in r a d ia t io n le a k a g e<br />

a d m ix tu re and s p e c t r a . T h is p rob lem i s im p o rta n t b e ca u se o f<br />

in a d e q u a c ie s in th e a v a i l a b l e p e r s o n n e l d o s im e try te c h n iq u e s<br />

w h ich a r e u s u a lly a l l e v i a t e d by m aking co m p re h e n siv e d ose<br />

a n d /o r d o s e - e q u iv a le n t m easurem ents a t " r e p r e s e n t a t i v e p o in t s "<br />

in th e f a c i l i t y and r e l a t i n g t h e s e t o p a r t i c u l a r com pon en ts<br />

t h a t a r e m easured on p e r s o n n e l d o s im e te r s . W h ile th e le a k a g e<br />

s p e c t r a and a d m ix tu re ca n , in p r i n c i p l e , be d eterm in ed e n t i r e l y<br />

by e x p e rim e n t, r e c o u r s e i s u s u a lly i n d i c a t e d , a t l e a s t a s a<br />

su p p lem en t, t o r a d i a t i o n t r a n s p o r t c a l c u l a t i o n s . I n c r e a s in g<br />

a t t e n t i o n w i l l be r e q u ir e d f o r such e s tim a te s a t TRIUMF.<br />

The d ata req u irem e n ts f o r t h e s e e s t im a t e s , w h ile th e same in<br />

p r i n c i p l e a s t h o s e f o r th e deep p e n e t r a t io n c a l c u l a t i o n s , a re<br />

c o n c e n t r a t e d more a t th e lo w e r , f i s s i o n r e a c t o r e n erg y ra n g e ,<br />

w here th e d a ta a r e f a i r l y c o m p le te , th a n a t th e h ig h e r e n e r g ie s<br />

w here r e c o u r s e must be made t o th e i n t r a - n u c l e a r c a s c a d e r e ­<br />

s u l t s .<br />

4 .2 R e s id u a l A c t i v i t y E s tim a te s<br />

As d is c u s s e d a b ove in s e c t i o n 3 - 3 j th e r e s id u a l a c t i v i t y<br />

p r o d u c t io n by h ig h en erg y r e a c t i o n s h as been e s tim a te d a t<br />

TRIUMF from e x p e r im e n ta l and e m p ir ic a l d eterm in ed c r o s s - s e c t i o n<br />

v a lu e s . No s t r o n g i n c e n t i v e i s f o r s e e n a t t h i s tim e t o embark<br />

on c r o s s - s e c t i o n m easurem ents e x p l i c i t l y f o r r e s id u a l a c t i v a ­<br />

t i o n e s t im a t e s . F a ir l y e x t e n s iv e , fu n d am en ta l p h y s ic s p r o ­<br />

grams a t TRIUMF and o th e r h ig h i n t e n s i t y f a c i l i t i e s a r e exp<br />

e c t e d t o y i e l d s u b s t a n t i a l l y more d a ta in t h i s a re a o v e r th e<br />

n e x t few y e a r s . T hese d a ta s h o u ld be a sse m b le d a s soon as<br />

p o s s i b l e a f t e r p u b l i c a t i o n in t o f r e e l y a v a i l a b l e c o m p ila t io n s ,<br />

p r e f e r a b l e in c o n ju n c t io n w ith c o n t in u in g r e fin e m e n t s o f th e<br />

e m p ir ic a l p r o d u c t io n c r o s s - s e c t i o n fo r m u la t io n s .<br />

R E F E R E N C E S<br />

[ 1 ] TRIUMF P r o p o s a l and C ost E s tim a te , E. W. V ogt and J. J.<br />

B u r g e r jo n , E d i t o r s , N ov. 1966.<br />

TRIUMF A nnual R e p o r t s , E d ite d by J. J. B u r g e r jo n ( 1 9 6 8 ) ,<br />

N. B r e a r le y ( 1 9 6 9 j 1970, 1 9 7 1 ), E. W. V ogt and A. S tr a th d e e<br />

( 1 9 7 2 ) .<br />

[ 2 ] I . M. T h o rs o n , S h ie ld in g and A c t i v a t i o n in a 500 MeV<br />

C y c lo t r o n F a c i l i t y , TRIUMF R e p o rt T R I-6 8 -4 ( 1 9 6 8 ) .<br />

[ 3 ] R. G. P. V oss and R. W ils o n , P r o c . R oy. S o c. (L on don) A2 36<br />

41 ( 1 9 5 6 ) .<br />

M. H. M acG regor, e t a l . , P hys. R ev. I l l 1 1 5 5 (1 9 5 8 ).<br />

T. C o o r, e t a l . , P hys. R ev. 98 1 3 6 9 П -9 5 5 )■<br />

F. Chen, e t a l . , P hys. R ev. 99 857 (1 9 5 5 ) .<br />

W. P. B a l l , N u cle a r S c a t t e r in g o f 300 MeV N e u tro n s, R ep ort<br />

UCRL-I9 38 ( 1 9 5 2 ) .


606 TH O R SO N and W IESEH AHN<br />

[ 4 ] R. G. A i s m i l l e r , M. L e im d o rfe r and J. B a r is h , A n a l y t ic a l<br />

R e p r e s e n t a t io n o f N o n - e l a s t i c C r o s s -S e c t io n s and P a r t i c l e<br />

E m issio n S p e c tr a from N u c le o n -N u c leus C o l l i s i o n s in th e<br />

Energy Range 25 t o 400 MeV, R ep ort 0RNL-4046 ( A p r i l I 9 6 7 ) .<br />

[ 5 ] H. W. B e r t i n i , P hys. R ev. 131 1801 ( 1 9 6 3 ) and P hys. R e v .,<br />

AB2 ( 1 9 6 5 ) .<br />

[ 6 ] W. A. Colem an and T. W. A rm stron g, The N u cleon -M eson T ra n sp<br />

o r t Code NMTC, R e p o rt 0RNL-4606 (1 9 7 0 ).<br />

[ 7 ] G. Rudstam.j P h i l. Mag. k6_ 344 (1 9 5 5 ) and<br />

G. Rudstam , Z. N a tu r fo r s c h 21a 7 (1 9 6 6 ).<br />

[ 8 ] R. S i l b e r b e rg and C. H. T sa o , P a r t i a l C r o s s -S e c t io n s in<br />

High E nergy N u clea r R e a c t io n s f o r T a r g e ts w ith Z s 2 8 ,<br />

( P r e - p r i n t , t o be p u b lis h e d , 1972) and P a r t ia l C r o s s -<br />

S e c t io n s in H igh E nergy N u cle a r R e a c tio n s f o r T a r g e ts<br />

H e a v ie r th a n N ic k e l, ( P r e - p r i n t , t o be p u b lis h e d , 1 9 7 2 ).<br />

[ 9 ] E. B ru n in x , High E nergy N u cle a r R e a c t io n C r o s s - S e c t io n s ,<br />

R e p o rts CERNÖ1-1 ( 1 9 6 1 ) , CERN 6 2 -9 ( 1 9 6 2 ) and CERN 6 4 -1 7<br />

(1 9 6 4 ).<br />

[1 0 ] T. A. E astw ood and D. C. S a n tr y , P r iv a t e C om m unication<br />

( 1 9 6 3 ) .<br />

[1 1 ] N eu tron C r o s s - S e c t io n s , 2nd E d i t io n , BNL-325 (1 9 5 6 ) and<br />

S u pplem en ts.<br />

[1 2 ] M. B a r b ie r and A. C o o p e r, E stim a te s o f In d u ced R a d i o a c t iv i t y<br />

in A c c e l e r a t o r s , R e p o rt CERN-65-34 ( 1 9 6 5 )*<br />

[ 1 3 ] R. W a lla c e , N u cl. I n s t , and M eth. 1 8 , 19 405 ( 1 9 6 2 ) .


TRANSPORT <strong>OF</strong> NEUTRONS<br />

INDUCED BY 8 0 0 -MeV PROTONS*<br />

R.G. FLUHARTY, P.A . SEEGER, D.R. HARRIS,<br />

J.J. KOELLING, O.L. DEUTSCH?<br />

University o f California,<br />

Los Alamos Scientific Laboratory,<br />

Los Alamos, N. M e x .,<br />

United States o f America<br />

Abstract<br />

T R A N SPO R T <strong>OF</strong> NEUTRONS IN D U C E D BY 8 0 0 - M e V P R O TO N S.<br />

I A E A - S M -17 0 /4 5<br />

N eu tron transport c a lc u la t io n s are p re se n te d fo r a p u lse d n eu tron and p ro to n re s e a r ch (W e a p o n s N eu tron<br />

R e s e a rch , W N R ) f a c i lit y . Pulses o f 8 0 0 -M e V p roton s are o b ta in e d fr o m th e Los A la m o s M e s o n P h ysics F a c ilit y<br />

(L A M P F ) o f 5 to 10 ps d u ra tion or 1 t o 2°}o o f th e f u l l LAM PF b e a m , y ie ld in g a m a x im u m a v e r a g e n eu tron<br />

s o u r c e stren gth o f 1 - 2 x 1 0 15 n e u tro n s /s . T h e c a lc u la t e d s h ie ld re q u ire d to r e d u c e th is s o u r c e t o ~ 1 m r a d /h<br />

co n s is ts o f 2 .6 m o f s te e l p lu s 0 .4 m o f m a g n e tite c o n c r e t e and b o ro n glass fr it. T h e v e r t ic a l p r o to n b e a m<br />

and ta rg e t re q u ire s p e c ia l c o n s id e r a tio n o f th e u n d ergrou n d s h ie ld in g t o r e d u c e flo o r d o s a g e .<br />

N eu tron s o u r c e , e n e r g y d e p o s itio n , and a c t iv a t io n c a lc u la t io n s are based o n tw o c o n tin u o u s -e n e r g y<br />

M o n t e - C a r lo c o d e s , N M T C and M C N , a d a p te d t o C D C 6 6 0 0 and C D C 7 6 0 0 co m p u te r s . T h e N M T C c o d e c o n ­<br />

ta in s t h e d e t a ile d M o n t e - C a r lo in tr a n u c ie a r -c a s c a d e c a lc u la t io n s o f B ertin i. T o m a in ta in a d e q u a te s ta tis tic a l<br />

a c c u r a c y fo r d e e p p e n e tr a tio n , a series o f p r o b le m s is run in w h ic h le a k a g e n eu tron s fr o m th e p r e v io u s<br />

p r o b le m are w e ig h te d and sp lit as a s o u r cé fo r th e n ew p r o b le m c o n ta in in g a d d ed m a te r ia l. T h e lo w - e n e r g y<br />

M C N c a lc u la t io n s , w h ic h use standard c r o s s -s e c t io n sets fo r e n e r g ie s b e lo w 20 M e V , are in c lu d e d in th e last<br />

1 .2 m o f th ick n e s s.<br />

T o p r o v id e m o r e e f f ic i e n t c a lc u la t io n a l m e th o d s , a p a r a lle l e ffo r t has b e e n u n d erta k en t o g e n e r a te<br />

m u ltig r o u p c r o s s - s e c t io n sets u sin g th e in tr a n u c ie a r -c a s c a d e m o d e l. A n a d v a n ta g e o f th is m e th o d is th at<br />

e x p e r im e n t a l v a lu e s c a n a lso b e in c o r p o r a t e d . A lib r a r y has b e e n so co n s tru c te d fo r ir o n and n in e o th e r<br />

e le m e n t s , in a fo r m a t fo r c o m b in a t io n w ith ENDF lib ra rie s , fo r te n e n e r g y g rou p s fr o m 20 t o 8 00 M e V .<br />

C o m p a r is o n tests h a v e b e e n m a d e o n a s p h e r ic a l p r o b le m w ith a 1 - m v o id fo llo w e d b y 2 m o f ir o n . T h e<br />

m u ltig r o u p M o n t e - C a r lo p r o g r a m A N D Y -M G C R , w ith s o u r ce w e ig h tin g and s u r fa ce s p littin g , agrees w ith th e<br />

SN transp ort c o d e D T F -I V ; h o w e v e r , th e D T F resu lts are o n ly Q0°joof th e resu lts o f th e N M T C m e th o d<br />

d e s c r ib e d a b o v e . S in c e th e d iff e r e n c e is a r e la x a t io n - le n g t h e f f e c t , it p r o b a b ly r e f le c ts th e in a d e q u a c y<br />

o f th e P3 c r o s s - s e c t io n e x p a n sio n te s te d t o d a t e . In a d d itio n t o te stin g w ith h ig h e r -o r d e r c r o s s -s e c t io n sets,<br />

p la n s in c lu d e e x p e r im e n t a l tests o f t h ic k ir o n sh ie ld s.<br />

1. INTRODUCTION<br />

The Weapons Neutron Research (WNR) facility is being designed for neutron<br />

spectroscopy by means of neutron time of flight. The pulsed neutron source<br />

is to be produced by impinging pulses of 800-MeV protons from the Los Alamos<br />

Meson Physics Facility (LAMPF) on various thick targets. Pulses are to be obtained<br />

by separately switching the proton injector beam of LAMPF to produce<br />

pulses from 5-nsec to 5- or 10-ysec long while a pulsed switching magnet is<br />

activated. After the short pulse operation, the switching magnet is to be<br />

turned off and the normal 490-ysec pulse from the source is provided for the<br />

many other uses for the accelerator.Ш Thus, 1 to 2% of the LAMPF output (8<br />

to 16 kW of target power) will be provided. A summary of the pulsed characteristics<br />

of LAMPF and WNR is given in Table I.<br />

o f A m e r ic a .<br />

* W ork p e r fo r m e d under th e a u s p ice s o f th e U n ite d States A t o m ic E n ergy C o m m is s io n .<br />

t P resent address: M a ssach u setts In stitu te o f T e c h n o lo g y , C a m b r id g e , M ass. 0 2 1 3 9 , U n ite d States<br />

607


)U Ö F LU H A R TY e t a l.<br />

TABLE I. LAM PF AND WNR CHARACTERISTICS<br />

LAMPF WNR<br />

Voltage (MeV) 800 800<br />

Average Current (mA) 1 0.01-0.02<br />

Macropulse Width (usee) 500 0.008 to 5-10<br />

Pulses per sec 120 120-240<br />

Peak Macropulse Current (mA) 17 17<br />

Micropulse Width (nsec) 0.08 0.3<br />

W E A PO N S NEUTRON RESEARCH F A C ILIT Y<br />

FIG . 1. S c h e m a t ic sh ow in g h ow a short in je c t o r p u lse o f p roton s is d e f le c t e d south b y a p u lse d sw itc h in g<br />

m a g n e t in to th e W N R transport s y ste m , th rou g h 9 0 °, and o n to th e ta rg ets t o p r o d u c e n eu tron s. N eu tron b e a m s<br />

a re re p re se n te d u sin g t im e o f flig h t fo r th e e n e r g y -d e p e n d e n t resp on se o f a d e t e c t o r . T h e m a jo r p o r tio n o f<br />

th e LAM PF b e a m is u t iliz e d e ls e w h e r e b y tu rn in g th e sw itc h in g m a g n e t o f f .<br />

The LAMPF machine is a linear accelerator consisting of three types of<br />

accelerators. The 750-keV beam from a Cockcroft-Walton injector is accelerated<br />

to ~100 MeV in a 200-MHz Alvarez section, and then to 800 MeV in the 805<br />

MHz side-coupled cavity system. At the end Of the accelerator, the pulsed proton<br />

beam is transported to the WNR experimental area. First, the beam is deflected<br />

90°, translated downward, and transported underground 150 to 200 m to<br />

the WNR experimental areas. This transport process is shown schematically in<br />

Fig. 1.<br />

An isometric view of the WNR experimental area is given in Fig. 2, showing<br />

two principal target areas. In the first target, the beam is deflected<br />

90° to point into the ground. Before it enters the ground, it impinges upon


MAIN BEAM UNE<br />

<strong>IAEA</strong>-SM-17 0 /4 5 609<br />

F IG . 2 . A v is u a l re p re se n ta tio n o f th e W N R ta rg e t a re a . T h e h ig h - p o w e r ta rg et is lo c a t e d in a v e r t ic a l<br />

b e a m , a llo w in g a b s o rp tio n o f th e forw a rd h ig h - e n e r g y n eu tron s in th e e a rth . T h is h ig h - p o w e r ta rg e t has 11<br />

n e u tro n b e a m ports and re q u ire s a m a s s iv e s h ie ld . T h e lo w - p o w e r ta rg e t a re a p r o v id e s fo r lo w n eu tron return<br />

fr o m th e w a lls .<br />

2*zo<br />

a JOU target of 4-cm diam. by 20-cm long to produce ~20 neutrons per proton.<br />

This target will absorb 8 to 16 kW from protons and 3 to 6 kW from fission<br />

(the rest of the proton energy is removed by fast neutrons). It is surrounded by<br />

a cylindrical void ~2-m diam. and 2-m high, and then by an iron-concrete shield<br />

~3.7-m thick. There are to be 11 horizontal neutron beams penetrating to the<br />

experimental areas outside. One 200 m evacuated flight path (beam path) will<br />

have an illumination of 1.82-m diam. at the end. Other flight paths (5, 35,<br />

50, 100 m) will have smaller apertures.<br />

The second target area is shown in the foreground of Fig. 2; it is a<br />

large room where the central target position is at least 6 m from any wall,<br />

floor, or ceiling to reduce the back-scattered neutrons. This target area<br />

can be utilized for a horizontal target with il% of the intensity of the first<br />

target or for a neutron scattering chamber utilizing a neutron beam from the<br />

first target. This second target area has great versatility for spectrum<br />

measurements, spectrum tailoring, and scattering measurements.<br />

2. NEUTRON AND PROTON TRANSPORT<br />

2.1 NMTC-MCN<br />

A continuous energy Monte Carlo calculational system, NMTC-MCN, ^<br />

has been developed for use at the Los Alamos Scientific Laboratory for neutron,<br />

proton, and meson transport from 0 to 3.5 GeV, by P. A. Seeger. The system<br />

can be used on the CDC-6600 or CDC-7600 computers, and has options for MCN


610 F LU H A R TY et a l.<br />

geometry and time-dependence. Outputs are on tapes which contain complete in ­<br />

dividual p a rticle records as requested fo r reaction events or surface crossings.<br />

Analysis programs fo r sorting and counting o f the taped events provide<br />

tabular and graphic displays o f the integrated information.<br />

One code used, NMTC, is that developed at Oak Ridge National Laboratory<br />

fo r medium energy p a rticle transport between about 15 MeV to 3.5 GeV. The<br />

nuclear portion by B ertini M assumes known input tota l reaction cross sections<br />

(e la s tic scattering is neglected) and calculates the reaction products by Monte<br />

Carlo assuming a cascade inside the nucleus pictured as a Fermi gas. This<br />

intranuclear cascade is terminated when the cascading p a rticles have either<br />

escaped from the nucleus or have not enough energy to escape. Account is then<br />

taken o f the residual nuclear energy by p a rticle evaporation (mostly neutron).<br />

Escaping p a rticles that have energies above an arbitrary cu to ff are transported<br />

by Monte Carlo u n til another nuclear reaction occurs, a problem boundary is<br />

crossed, or (in the case o f charged p a rticle s) they reach the cu to ff energy.<br />

As NMTC was adapted to the CDC-6600 by H. I. Isra el, l^] very d eta iled , in dividual<br />

p article-even ts (outside the nucleus) are recorded on a magnetic tape f i l e .<br />

This very general tape also may include ion ization losses, pion and muon production,<br />

etc.<br />

Neutron transport for energies below the NMTC cu to ff energy is continued<br />

with the continuous Los Alamos Monte Carlo code MCN, using the tape output o f<br />

NMTC as the source. A cross-section library is maintained fo r th is code, and<br />

the geometry routine is very general. The MCN geometry is now available as an<br />

option to the NMTC portion o f the code, permitting a sin gle geometrical descrip<br />

tion o f the problem. A more concise optional tape format has been developed,<br />

su itable fo r both NMTC and MCN. Only the energy, p o sitio n , v e lo c ity ,<br />

time, s ta t is t ic a l weight, and p a rticle type fo r each p a rticle are buffered and<br />

recorded, avoiding m ultiple tape re e ls. The high-energy output p a rticles<br />

(p, n, if* ', and it- ) from NMTC and the low-energy neutrons from' MCN may be<br />

w ritten on a sin gle tape.<br />

2.2 Multigroup Cross Sections<br />

In a p ara llel e ff o r t , the B ertini intranuclear cascade has been used<br />

to generate 41-energy group-average cross-section sets fo r ten elements<br />

(H, C, 0, S i, A l, Fe, Ca, Mo, W, and Pb) in the ENDF/B format. This multigroup<br />

set provides access to faster running multigroup Monte Carlo and d iscrete<br />

ordinate transport programs. Currently, these cross sections are being used<br />

with the programs ANDY-MGCRÍ^] and DTF-IV.1^1 The average cross-section approach<br />

allows ready adjustment to experimental cross-section evaluations.<br />

Currently, the cross sections are available with Pq, Pj , P2, and Pj Legendre<br />

c o e ffic ie n ts fo r 20 to 800 MeV.<br />

3. SOURCES<br />

Neutron source optim ization and source spectral adjustment are important<br />

objectives fo r the f a c i lit y , so source studies are continuing. The NMTC-MCN<br />

system has been used to generate both primary and secondary sources, and output<br />

tapes can be used as sources fo r subsequent problems fo r both the NMTC-MCN<br />

and the multigroup systems. Examples where sources are used further involve<br />

shielding and moderator optim ization fo r tim e -o f-flig h t sources. In a previous<br />

stu d y ,И emphasis was placed on the generation o f variable spectra<br />

sources and high neutron y ie ld per proton.


I A E A - S M -17 0 /4 5 611<br />

F I G .3 . T h e a n gu la r d istr ib u tio n at 1 m o f n eu tron s e m it t e d fr o m a 4 - c m - d i a m . b y 1 5 - c m - l o n g ta rg e t o f<br />

2S8U is show n fo r 4 e n e r g y g rou p s. N o te th e stron g forw a rd d istr ib u tio n fo r n eu tron s h a v in g e n e r g ie s a b o v e<br />

1 00 M e V .<br />

F IG . 4 . T h e n eu tron s p e ctra o f 9 0 “ (a v e r a g e d o v e r ± 1 0 e) fo r ta rg ets o f 23BU w ith d im e n s io n s o f 3 - c m d ia m .<br />

b y 1 5 - c m lo n g and 6 - c m d ia m . b y 1 5 - c m lo n g are sh ow n . T h e a d d e d th ic k n e s s c o n v e r ts th e n eu tron s t o a<br />

90e<br />

s o fte r s p e c tr u m w ith m o r e n eu tron s. A b o v e 2 0 M e V , th e tw o cu r v e s a re n o t s t a t is tic a lly d iffe r e n t and h a v e<br />

b e e n a v e r a g e d to g e th e r .


612 FLU H A R TY e t a l.<br />

A characteristic of the spallation source is the markedly forward component<br />

of the high-energy neutrons (>100 MeV). The anisotropy of this component<br />

is illustrated in Fig. 3, which shows the neutron current at 1 m produced by<br />

800-MeV protons impinging along the axis of a 4-cm-diam. by 15-cm-long 238jj<br />

target. Below 20 MeV, the neutrons are emitted in a nearly isotropic pattern.<br />

Because the forward high-energy neutrons are poorly attenuated, the applied<br />

beams requiring lower neutron energies are taken off at angles of 90° or<br />

greater to the proton beam direction. For the first (high-power) target, the<br />

multiple beam ports are at 90° to the vertical proton beam.<br />

Below 20 MeV, the calculated spectra can be characterized as evaporation<br />

spectra. Assuming a spectral shape used for fission spectra, the NMTC evaporation<br />

spectra from 2^°u contain ~75% neutrons at 3-MeV temperature and 25%<br />

at 1-MeV temperature. Plots of the spectra at 90° from different 23^U targets<br />

are shown in Fig. 4. The targets are both 15-cm long and have diameters<br />

of 3 cm and 6 cm. It is seen that the additional radial thickness serves as<br />

a spectral converter wherein neutron inelastic scattering in the 238jj produces<br />

a new spectrum characteristic of a lower neutron temperature. Some portion of<br />

this conversion is also present in the smaller diameter target.<br />

To a first rough approximation, the thick sources studied have one high-<br />

energy neutron per proton (between 20 and 800 MeV), and for neutron energies<br />

below 20 MeV, the number of neutrons is one-tenth the atomic number (A/10).<br />

Increased yields result from fission and (n,2n)(n,xn) processes as the neutrons<br />

are transported out of the target. I J Experimental measurements, by Mady et<br />

al. [9] with 750-MeV protons yield ~30% more fast neutrons at 30 and 150° than<br />

predicted by NMTC. Because of their importance to accelerator shielding, these<br />

results need verification. Here the predictions of the code are utilized, but<br />

safety factors are included to allow for the experimental uncertainty.<br />

4. SHIELDING<br />

Monte Carlo calculations for deep penetration or large attenuations of<br />

radiation require weighting techniques—even with the fastest computers.<br />

Here, the principal method used is that of surface splitting, although exponential<br />

weighting should be better in theory. Secondarily, source weighting,<br />

Russian roulette, and variable energy cutoff as a function of position are resorted<br />

to. The success of this approach is based on the physical property<br />

that the penetration is propagated by the high-energy neutrons (above 100 MeV)<br />

where the lowest cross sections are encountered. The exception to this generalization<br />

involves the "windows"--particularly in Fe, where essentially zero<br />

cross sections are observed because of interference between s-wave resonances<br />

and potential scattering in spin-zero targets. To avoid this exception, a<br />

cardinal rule of neutron shielding is followed; namely, always construct<br />

shields of mixtures of elements. Thus, sufficient cross section is provided<br />

in the windows to avoid a "trapped" component, allowing neutrons to "stream"<br />

through the shield.<br />

A major design study has been made on the shield for Target 1, which<br />

produces ~10l5 neutrons/sec. A vertical cut of this shield is shown in Fig.<br />

5; the target is located in a 6-ft by 6-ft cylindrical void surrounded by<br />

~9 ft of steel plus 3 ft of heavy concrete. The external 1 ft of concrete<br />

will also contain boron glass to limit neutron-capture gamma rays to the relatively<br />

soft 476-keV boron component.<br />

Calculations for the design of the Target 1 shield to reduce neutron<br />

dosages below 1 mrem/h were performed using the NMTC-MCN system. The procedure<br />

followed for these calculations was as follows:


(a) A cy lin d rica l geometry was used.<br />

I A E A - S M -П О /4 5 613<br />

(b) A series o f problems were calculated in which successive<br />

layers were added to the previous calcu lation s using NMTC<br />

only (Ejj>20 MeV).<br />

(c) The leakage neutrons from the previous problem were used<br />

as a source fo r the next problem with added thickness.<br />

(d) The p a rticle s from each source tape, representing the output<br />

o f the previous problem, were run three times to provide<br />

sp littin g given by the expected attenuation fa ctor.<br />

(e) Low-energy output tapes from NMTC for the last four th icknesses<br />

o f shield were used as a source for MCN runs to c a lculate<br />

the leakage o f low-energy neutrons.<br />

(f) Neutron dosages are based on integrated or to ta l neutrons<br />

or currents leaking from surfaces. This is considered to<br />

be a conservative estimate, compared with the more r e a lis ­<br />

t i c fluxes (integral o f p a rticle s/co s in e o f angle with<br />

respect to the surface normal).<br />

Plots o f the dosage as a function o f v e rtica l distance are presented in<br />

Fig. 6, fo r various ra d ii corresponding to the t i c marks on the neutron beam<br />

axis in Fig. 5. The sig n ifica n t feature to be noted in Fig. 6 is the large<br />

leakage near and under the flo o r or in the forward d irection to the beam.<br />

Special care and tedious study were required to reduce the dosage at flo o r<br />

F IG . 5. A v e r t ic a l c r o s s - s e c t io n o f th e h ig h -p o w e r ta rg e t s h ie ld in g , as stu d ied fo r s h ie ld d e s ig n . It has<br />

b e e n d e te r m in e d th a t a su p erior s h ie ld resu lts fr o m s o lid ir o n o r le a d sh ie ld in g b e lo w th e c e n tr e c a v it y<br />

in ste a d o f th e h o l e in to th e grou n d . T i c m arks o n th e n eu tron b e a m a x is rep resen t r a d ia l p o s itio n s fo r w h ic h<br />

d o s a g e is p lo t t e d in F ig . 6 .


6 1 4 F LU H A R TY e t a l.<br />

F IG . 6 . R a d ia tio n d o s a g e as a fu n c tio n o f v e r t ic a l d is ta n c e fr o m th e n eu tron b e a m p o r t le v e l , at d iffe r e n t<br />

r a d ii fr o m th e c e n t r e o f th e p r o to n b e a m . T h e p o s it iv e v e r t ic a l d ir e c t io n is in th e p r o to n b e a m d ir e c t io n<br />

(d o w n w a rd ). N o t e th e h ig h d o s a g e le v e ls in th e grou n d w h ic h c a u s e h ig h d o s a g e s at th e flo o r l e v e l o f th e<br />

e x p e r im e n t a l r o o m . T h is fig u r e is s c a le d t o F ig . 5.


I A E A - S M -17 0 /4 5<br />

F IG . 7 . T h e le a k a g e n e u t r o n s /c m 2 (m e a su r e d fr o m th e p r o to n d ir e c t io n ) o n th e o u ts id e o f a 2 - m - t h i c k<br />

s p h e r ic a l ir o n s h e ll, as a fu n c tio n o f a n gu la r p o s itio n . T h e in n er radiu s o f th e s h e ll is 1 m ; th e so u r ce<br />

neu tron s e n te r in g t h e s h e ll a re show n in F ig . 3 . N o te th a t th e d o s a g e p a ttern fo r a ll n eu tron e n e r g ie s is<br />

e q u iv a le n t t o t h e a n gu la r d istrib u tio n o f th e n eu tron s p e ctru m c o m p o n e n t a b o v e 1 00 M e V .<br />

DISTANCE (cm)<br />

F IG . 8 . A c o m p a r is o n o f t h e a v e r a g e d o s a g e o v e r th e s u r fa ce o f th e s p h e r ic a l ir o n s h e l l p r o b le m o f<br />

F i g .7 , fo r th r e e d iffe r e n t c a lc u la t io n a l m e th o d s . N M T C -M C N is a co n tin u o u s e n e r g y M o n t e - C a r lo sy ste m ,<br />

A N D Y -M G C R is a m u ltig ro u p M o n t e - C a r lp s y s te m , and D T F -I V is a d is c r e te o rd in a te m e th o d . T h e a g r e e ­<br />

m e n t is e x c e l le n t , but F i g . 7 in d ic a t e s th at p o s it io n in fo r m a tio n is a lso n e e d e d to c o m p a r e th e m e th o d s .<br />

615


616 FLU H A R TY et a l.<br />

levels where neutrons leak through the ground and up through the flo o r ; underground<br />

shielding was found necessary to reduce these levels. More recent<br />

studies reveal that a solid shield at the bottom o f the void is preferable to<br />

the voided hole in to the ground shown in Fig. 5.<br />

To emphasis the importance o f the angular d istribu tion o f the source,<br />

resu lts from a calcu lation with a spherical iron sh ell are shown in Fig. 7.<br />

The same neutron source as shown in Fig. 3 was used, surrounded by a 1-m-radius<br />

void and then 2-m o f iron. The resu lts presented are the surface neutron leakage<br />

as a function o f angular p ositio n , with respect to the proton beam d irection<br />

. It is observed, from comparison with Fig. 3, that the surface dose in<br />

a ll energy bins essen tia lly follow s the angular distribu tion o f the 100 to 800-<br />

MeV component o f the source.<br />

The same spherical iron problem has been also calculated by ANDY-MGCR and<br />

DTF-IV using average multigroup cross section s. A comparison o f the dosage<br />

fo r high-energy neutrons averaged over the spherical surfaces as a function o f<br />

radius is shown in Fig. 8. The agreement is considered sa tisfa ctory for such<br />

ca lcu la tion s, since the relaxation length by NMTC is only 1.3% higher than by<br />

using the average cross section s. Higher order polynomial expansion o f the<br />

cross sections is being tested as a possible explanation. Some 15 to 20% o f<br />

the d ifferen ce may be explained by those protons which continue through the<br />

target in to the iron sh ield. These are not considered in the multigroup trea tments<br />

and are included in NMTC. Note that the same physical quantities fo r the<br />

dosage are present only at the outside surface fo r th is problem. The NMTC approach<br />

tru ly calcu lates surface leakage as a function o f sphere s iz e , but the<br />

other calcu lation methods include m ultiply re fle cte d neutrons across internal<br />

surfaces because only one calcu lation has been performed.<br />

5. DISCUSSION<br />

Despite early intentions to obtain general resu lts which allow sim plified<br />

methods to follow , the major e ffo r t has been on s p e c ific design problems. To<br />

accomplish th is , considerable computer resources have been required which are<br />

not generally available. It is not our intention to imply that the techniques<br />

used here should n ecessarily be follow ed, because simpler techniques are clea rly<br />

desirable.<br />

The spherical iron problem can serve as a comparison standard; simple<br />

cy lin d rica l problems, using earth and concrete, are being carried out. The<br />

discrete-ordin ate methods (DTF-IV) and NMTC-MCN approach agree reasonably w ell,<br />

but the multigroup ANDY-MGCR-Monte Carlo approach is not completely understood.<br />

Although the spherical iron agreement is good, thick cylinders o f earth curren<br />

tly present problems. Further testin g o f the multigroup cross-section sets<br />

are needed, and clean experimental comparisons are v it a lly needed. To carry<br />

out the spherical iron problem with NMTC-MCN, two to three hours o f CDC-7600<br />

time was required, and a fa ctor o f fiv e more using the CDC-6600. In comparison<br />

the multigroup ANDY-MGCR required ~5 min. (5 problems), and DTF ~30 sec (is o ­<br />

trop ic) .<br />

The resu lts to date demonstrate the promise that point kernel and removal<br />

cross-section methods can be evolved. The major problem w ill be to account<br />

properly fo r source anisotropy in the high-energy region. The value o f the com<br />

putational system being developed for WNR has already been demonstrated in the<br />

understanding o f the physics o f the problems and in the design o f the fa c ilit y .


I A E A - S M -17 0 /4 5<br />

REFERENCES<br />

[1] NAGLE, D. E., KNAPP, E. A., in Yale University Conference on Linear<br />

Accelerators, 1963 (Yale Univ. Press, New Haven, 1964), p. 171; in<br />

Proceedings of the Fifth International Conference on^High Energy<br />

Accelerators, Frascati, Italy, 1965 (Comitíto Nazionále Energía Nucleáre,<br />

Rome, 1966), p. 403; IEEE Trans. Nucl. Sei. 12 623 (1965).<br />

[2] COLEMAN, W. A., ARMSTRONG, T. W., "The Nucleon-Meson Transport Code,<br />

NMTC," ORNL-4606 (1970).<br />

[3] CASHWELL, E. D., NEERGARD, J. R., TAYLOR, W. M., TURNER, G. D., "MCN: A<br />

Neutron Monte Carlo Code," Los Alamos Scientific Laboratory report<br />

LA-4751 (1972).<br />

[4] BERTINI, H. W., Phys. Rev. 131 1801 (1963) and erratum Phys. Rev. 138<br />

AB2 (1963).<br />

[5] ISRAEL, H. I., COCHRAN, D. F., "DTF Shielding Calculations at 800-MeV<br />

LAMPF," Second International Conference on Accelerator Dosimetry and<br />

Experience, Stanford Linear Accelerator Center, Stanford, California<br />

(1969).<br />

[6] HARRIS, D. R., "ANDYMG3, the Basic Program of a Series of Monte Carlo<br />

Programs for Time-Dependent Transport of Particles and Photons," Los<br />

Alamos Scientific Laboratory report LA-4539 (1970); HARRIS, D. R.,<br />

FLUHARTY, R. G., KOELLING, J. J., WHITTEMORE, N. L., "Medium- and<br />

Low-Energy Cross Section Library," Trans. Am. Nucl. Soc. 15 962 (1972).<br />

[7] LATHROP, K. D., "DTF-IV, A FORTRAN IV Program for Solving the Multi-<br />

Group Transport Equation with Anisotropic Scattering," Los Alamos<br />

Scientific Laboratory report LA-3373 (1965).<br />

[8] FULLWOOD, R. R., CRAMER, J. D., HAARMAN, R. A., FORREST, R. P., Jr.,<br />

SCHRANDT, R. G., "Neutron Production by Medium-Energy Protons on<br />

Heavy Metal Targets," Los Alamos Scientific Laboratory report LA-4789<br />

(1972).<br />

[9] MADEY, R., WATERMAN, F. M., submitted for publication, Kent State<br />

University, Kent, Ohio; see also Ref. [8], above.<br />

D I S C U S S IO N<br />

I. M. THORSON: In F ig. 8 showing calculated relaxation o f neutron<br />

flux in the sp h erica l sh ields, what angle is the resu lt fo r , o r is it integrated<br />

over a ll outgoing d irection s?<br />

R .G . FLU HARTY: It is integrated fo r all d irection s.<br />

W . B. LEWIS: What is the d ifferen ce between R ussian Roulette and<br />

Monte C arlo?<br />

R. G. FLU HARTY: I would p refer that an expert answer your questions<br />

about R ussian R oulette, but m y v ersion is as follow s: to avoid spending tim e<br />

on neutrons travellin g back through the su rface (inw ards), the p a rticles are<br />

random ly "k ille d " but they are accounted fo r by weighting m ethods.<br />

617


618 F LU H A R TY e t a l.<br />

W. B. LEWIS: In sections 4 and 5 of the paper there is referen ce to<br />

windows in iron shielding fo r certain neutron en erg ies. What would you<br />

use instead o f iron or in addition to it?<br />

R. G. FLUHARTY: B ecause o f cost con sid eration s, iron is still the<br />

p re fe rre d shield m aterial in spite o f the windows. Hydrogen with 1. 5 atom %,<br />

is con sid ered adequate to elim inate window effects. M ore p re cis e ly , the<br />

optim um m ixture is 1. 5 atom % hydrogen.<br />

R. NICKS: Y our d iscu ssion is lim ited to neutron attenuation. What<br />

about photon production and propagation. Neutron capture and in elastic<br />

scatterin g w ill probably rep resen t im portant gamma sou rces. Did you<br />

reso lv e the p roblem o f photon propagation?<br />

R . G. FLUHARTY: No, we did not calculate the gam m as. H ow ever,<br />

this question has not been com p letely ignored because the gamma p rod u ction<br />

w ill follow the penetrating h igh -en ergy neutrons and because the gamma<br />

attenuation is m uch m ore rapid than fo r these neutrons. M oreover, the<br />

outer 15-18 inches of the shield con sists o f m agnetite aggregate con crete<br />

with a boron frit o r glass. The hydrogen m oderation and capture in boron<br />

la rg ely elim inates the iron capture gam m as. The 476-kW boron gammas<br />

can be ea sily shielded. Gamma production and transport options are a v a ilable<br />

fo r the m ultigroup m ethods we are using.<br />

R . NICKS: In calculating the neutron transport in the shield, you make<br />

use of D TF IV. I do not think that a code o f this kind is adapted to handling<br />

the strong flux an isotrop ies. What was the o rd er o f the Sn-approxim ation?<br />

R . G. FLUHARTY: I do not wish to state the ord e r o f the Sn approxim ation<br />

becau se I have forgotten the value.<br />

H. RIEF: What is the cost estim ate for the spallation target and the<br />

proton deflection fa cility ? How long w ill it take to construct this facility?<br />

R. G. FLUHARTY: The beam channel cost is estim ated to be<br />

US $ 1 m illion and the budget fo r the whole WNR fa cility is $4. 4 m illion .<br />

C om pletion is expected in two years.<br />

G. A . KOLSTAD: A ll three speakers in this session have d escribed<br />

v e ry in terestin g applications — in space scien ce, a ccelera tor shielding,<br />

beam tran sport and beam tailorin g. A ll have indicated that their ca lcu la ­<br />

tions requ ired nuclear data which are insufficient for their needs. Yet<br />

none o f them listed the nuclear data needed, giving the bom barding energy,<br />

p a rticle and resolu tion requ ired.<br />

Would it be p ossib le fo r any o f them to sp ecify the requ ired inform ation<br />

in the form of request lists so that m ea su rers o f nuclear data can be<br />

stim ulated to make the m easurem ents which might m eet their needs or<br />

future needs o f a sim ilar nature? Such tabulations could be included in the<br />

p roceed in gs o f this con feren ce.<br />

R . G. FLU HARTY: The B ertini approach is not expected to provide<br />

good answ ers fo r Be, C, N and O, so these have first p rio ritie s for angular<br />

dependent in elastic scatterin g c r o s s -s e c tio n m easurem ents, i .e . (p; n '(E ), 0),<br />

(n; n '(E ), 0), (n; p(E ), 0) [including xn ', xp' produ cts as w ell] for en ergies<br />

from 20 MeV up to 3 GeV. This should co v e r the applied a cce le ra to r field<br />

and space applications. Angular effects fo r isotop es spaced through the<br />

chart o f A values are needed to con firm B ertini calculations. It would be<br />

u seful to test the assum ption that A l and Si have the sam e c r o s s -s e c tio n s .<br />

<strong>Data</strong> are needed on high en ergy fission c r o s s -s e c tio n s (heat production<br />

as w ell as neutron), and the delayed neutron fraction s are a vital question<br />

fo r p ossib le booster expansion o f the sou rce capability. T his latter question


I A E A - S M -17 0 /4 5 619<br />

is o f sufficient in terest to have made us decide to m easu re the delayed<br />

neutrons o u rselv es.<br />

Deep penetration m easurem ents are needed because the c r o s s -s e c tio n<br />

a ccu ra cy requ ired can be obtained only in this m anner.<br />

W .W . HAVENS, J r. (Chairm an): I am afraid that we shall have to get<br />

these fa cilitie s operating and do som e experim ents with them b efore there<br />

w ill be adequate data in this en ergy range to get the inform ation which is<br />

n e ce ssa ry fo r checking the calcu lation s.


CHAIRMEN <strong>OF</strong> SESSIONS<br />

Section I G, A. KOLSTAD USA<br />

S ection II W .B . LEWIS Canada<br />

Section III O. J. EDER A ustria<br />

Section IV A. H. W. ATEN CCE<br />

Section V K. H. LIESER F ederal R epublic o f Germ any<br />

Section VI G. B. YANKOV USSR<br />

Section VII W. W. HAVENS USA<br />

Section VIII Yu. F. CHERNILIN <strong>IAEA</strong><br />

Section IX R .L . JOLY France<br />

Section X B. GRINBERG F rance<br />

Section XI P. A LB ERT F rance<br />

Section XII G. A. BARTHOLOMEW Canada<br />

Section XIII A. H. W APSTRA Netherlands<br />

Section XIV A. T .G . FERGUSON UK<br />

Section XV H. P. M ÜNZEL F ed eral R epublic of Germ any<br />

Section XVI D .J . HOREN USA<br />

S cien tific<br />

S ecreta ries:<br />

A dm inistrative<br />

S ecretary:<br />

J .J . SCHMIDT<br />

L. HJÄRNE<br />

R. NAJAR<br />

E ditor: J .W . W EIL<br />

SECRETARIAT<br />

R ecord s O fficer: L .S . LIEBERMANN<br />

D ivision of R esea rch and<br />

L a boratories, <strong>IAEA</strong><br />

D ivision of S cien tific and<br />

T ech n ical Inform ation,<br />

<strong>IAEA</strong><br />

D ivision o f P ublication s, <strong>IAEA</strong><br />

D ivision of Languages, <strong>IAEA</strong><br />

621


H O W T O O RD ER <strong>IAEA</strong> PUBLICATIONS<br />

E xclusive s a le s a g e n ts fo r <strong>IAEA</strong> p u b lica tio n s, t o w h o m all o rd e rs<br />

UNITED KINGDOM<br />

UNITED STATES <strong>OF</strong> AM ERICA<br />

■<br />

an d in qu iries s h o u ld b e a d d r e s s e d , h a v e b e e n a p p o in te d<br />

in th e fo llo w in g cou n tries:<br />

Her Majesty's Stationery Office, P.O. Box 569, London SE1 9NH<br />

UNIPUB, Inc., P.O. Box 433, New York, N.Y. 10016<br />

In th e fo llo w in g co u n trie s <strong>IAEA</strong> p u b lica tio n s m a y b e p u r c h a s e d fr o m th e<br />

A R G EN TIN A<br />

A U S TR A LIA<br />

BELGIUM<br />

CANADA<br />

C.S.S.R.<br />

FRANCE<br />

H U N G A R Y<br />

INDIA<br />

ISRAEL<br />

IT A LY<br />

JAPAN<br />

N ETHER LAN D S<br />

PAKISTAN<br />

POLAND<br />

RO M ANIA<br />

SOUTH A FR IC A<br />

SPAIN<br />

SWEDEN<br />

U.S.S.R.<br />

YU G O S LA V IA<br />

sa le s a g e n ts o r b o o k s e lle rs listed o r th ro u g h y o u r<br />

m a jo r local b ook sellers. P a y m e n t c a n b e m a d e in loca l<br />

cu rre n cy o r w ith U N E SC O c o u p o n s .<br />

Comisión Nacional de Energía Atómica, Avenida del Libertador 8250,<br />

Buenos Aires<br />

Hunter Publications, 58 A Gipps Street, Collingwood, Victoria 3066<br />

Office International de Librairie, 30, avenue Marnix, Brussels 5<br />

Information Canada, 171 Slater Street, Ottawa, Ont. K1 A OS 9<br />

S.N.T.L., Spálená 51, Prague 1<br />

Alfa, Publishers, Hurbanovo námestie 6, Bratislava<br />

Office International de Documentation et Librairie, 48, rue Gay-Lussac,<br />

F-75 Paris 5e<br />

Kultura, Hungarian Trading Company for Books and Newspapers,<br />

P.O. Box 149, Budapest 62<br />

Oxford Book and Stationery Comp., 17, Park Street, Calcutta 16<br />

Heiliger and Co., 3, Nathan Strauss Str., Jerusalem<br />

Librería Scientifica, Dott.de Biasio Lucio "aeiou".<br />

Via Meravigli 16, 1-20123 Milan<br />

Maruzen Company, Ltd., P.O. Box 5050. 100-31 Tokyo International<br />

Marinus Nijhoff N.V., Lange Voorhout 9-11, P.O. Box 269, The Hague<br />

Mirza Book Agency, 65, The Mall, P.O. Box 729, Lahore-3<br />

Ars Polona, Céntrala Handlu Zagranicznego, Krakowskie Przedmiescie 7,<br />

Warsaw<br />

Cartimex, 3-5 13 Decembrie Street, P.O. Box 134-135, Bucarest<br />

Van Schaik's Bookstore, P.O. Box 724, Pretoria<br />

Universitas Books (Pty) Ltd., P.O. Box 1557, Pretoria<br />

Nautrónica, S.A., Pérez Ayuso 16, Madrid-2<br />

C.E. Fritzes Kungl. Hovbokhandel, Fredsgatan 2, Stockholm 16<br />

Mezhdunarodnaya Kniga, Smolenskaya-Sennaya 32-34, Moscow G-200<br />

Jugoslovenska Knjiga, Terazije 27, Belgrade<br />

O rd e rs fr o m co u n trie s w h e r e s a le s a g e n ts h a v e n o t y e t b e e n a p p o in te d a n d<br />

re q u e s ts fo r in fo rm a tio n s h o u ld b e a d d r e s s e d d irectly to :<br />

if j Q -Л P ublish in g S e ctio n ,<br />

É ln tern a t'o n a l A t o m ic E n erg y A g e n c y ,<br />

' K ärntner R ing 11, P .O .B ox 5 9 0 , A-1011 V ie n n a , A u stria


IN TE R N A T IO N A L<br />

A T O M IC EN ER G Y A G E N C Y<br />

V IE N N A , 1973<br />

PRICE: US $26.00<br />

Austrian Schillings 486,-<br />

(£10.00; F.Fr.110,-; DM 64,-)<br />

S U B JE C T G R O U P : III<br />

Physics/All

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!