19.06.2013 Views

Download the publication - Tropenbos International

Download the publication - Tropenbos International

Download the publication - Tropenbos International

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 1<br />

GENERAL INTRODUCTION<br />

Gildas Peguy Tchouto Mbatchou


1.1. BACKGROUND<br />

General introduction<br />

During <strong>the</strong> last few decades, deforestation in tropical rain forest areas has<br />

accelerated at an alarming rate. Extensive areas of forest are being cleared every<br />

year and <strong>the</strong>re is no reason to believe that this disastrous process will stop or even<br />

reduce in <strong>the</strong> near future. It has been estimated that more than 11 million hectares of<br />

forest have been cleared in <strong>the</strong> world between 1986-1990 of which 5 millions have<br />

become fallow (FAO, 1993). Fur<strong>the</strong>rmore, some 15-20% of species is likely to<br />

become extinct even before <strong>the</strong>y are known to science (Davis et al., 1994). With <strong>the</strong><br />

growing awareness of <strong>the</strong> problem, tropical rain forest biodiversity is of great<br />

concern and its conservation has become an issue of increasing priority, though little<br />

has been done to counter <strong>the</strong> rapid disappearance of <strong>the</strong>se rich ecosystems. The rain<br />

forest in Cameroon covers about 175,000 km²representing about 37% of <strong>the</strong><br />

national territory (Gartlan, 1992). Uncontrolled logging and land conversion for<br />

agriculture are leading to forest degradation and deforestation. Estimates put <strong>the</strong><br />

remaining areas of forest at about 160,000 km² with a fur<strong>the</strong>r 60,000 km² currently<br />

under concession to timber companies (Sunderland et al., 1997)<br />

The Campo-Ma’an rain forest in south-western Cameroon covers about 7700 km²<br />

and is situated in <strong>the</strong> middle of <strong>the</strong> Biafran rain forest belt that extends from<br />

Sou<strong>the</strong>ast Nigeria to Gabon and <strong>the</strong> Mayombe area in Congo. The site is unique,<br />

combining many vegetation types with species of high conservation priorities such<br />

as endemic, rare, new and threatened plant species. It contains about 114 endemic<br />

species, 29 of which are only known from <strong>the</strong> area, 29 only occur in <strong>the</strong><br />

southwestern part of Cameroon, and 56 are near endemics that also occur in o<strong>the</strong>r<br />

parts of Cameroon (Chapter 5). The site is also known for its rich fauna with 4<br />

endemic fish species and 2 endemic bat species (Vivien, 1991; Djama, 2001; de<br />

Kam et al., 2002). In addition, <strong>the</strong>re are about 300 bird species of which 24 are rare<br />

or endangered (Languy & Demey, 2000). Thirteen threatened mammal species were<br />

listed in IUCN (2002), and up to half of <strong>the</strong> total mammal species found in<br />

Cameroon and two-thirds of those found in dense forest are recorded in <strong>the</strong> area<br />

(Vivien, 1991; Mat<strong>the</strong>ws & Mat<strong>the</strong>ws, 2000). The explanation for this high<br />

incidence of endemism and richness might stem partly from <strong>the</strong> fact that <strong>the</strong> site is<br />

part of a series of postulated rain forest refuge areas in Central and West Africa<br />

(Hamilton, 1982; Maley, 1987 & 1989; and Sosef, 1994).<br />

The conservation value of <strong>the</strong> Campo-Ma’an forest is high at local, national,<br />

regional and global levels. The area is recognised to be an important site within <strong>the</strong><br />

Guineo-Congolian Regional Centre of Endemism (White, 1979 & 1983). However,<br />

despite its great biological importance, <strong>the</strong> Campo-Ma’an rain forest has suffered<br />

and continues to suffer from intense human pressure that has led to <strong>the</strong> degradation<br />

of most of <strong>the</strong> forest along <strong>the</strong> coast and <strong>the</strong> lowland forest around settlements. The<br />

main conservation effort so far has been <strong>the</strong> creation of <strong>the</strong> Campo Faunal Reserve<br />

in 1932 to protect its rich fauna, and <strong>the</strong> Ma’an Production Reserve in 1980 to<br />

protect populations of <strong>the</strong> economically important timber species Aucoumea<br />

klaineana (Okoumé). These two reserves are currently merged into a single<br />

Technical Operational Unit (TOU) that was created in August 1999. Later on, <strong>the</strong><br />

Campo-Ma’an National Park was created within this TOU in January 2000. So far,<br />

3


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

<strong>the</strong> National Park exists only on paper since in reality it has not yet been gazetted,<br />

and it has no boundary and management plan. Official control is weak and as a<br />

result, <strong>the</strong>re is an increasing pressure on <strong>the</strong> forest ecosystem. However, since <strong>the</strong><br />

creation of <strong>the</strong> TOU, <strong>the</strong> Campo-Ma’an Biodiversity Conservation and Management<br />

Project is working with <strong>the</strong> local communities and o<strong>the</strong>r stakeholders in order to<br />

prepare a strategic plan of <strong>the</strong> TOU and a management plan for <strong>the</strong> National Park.<br />

Although in <strong>the</strong> past some botanical research and collecting activities have been<br />

mainly carried out in <strong>the</strong> Edea-Kribi and Campo-Kribi-Akom II-Bipindi-Lolodorf<br />

areas, limited work has been done to describe and map <strong>the</strong> vegetation and flora of<br />

<strong>the</strong> Campo-Ma’an forest. There was still a large knowledge gap since very little was<br />

known about <strong>the</strong> biodiversity of <strong>the</strong> area. Therefore, taxonomic and ecological<br />

research has to be carried out to identify conservation priorities and hotspots for<br />

biodiversity conservation.<br />

Research objectives<br />

The main objective of this research was to assess <strong>the</strong> botanical diversity both in<br />

terms of vegetation and flora of <strong>the</strong> Campo-Ma’an rain forest in order to identify,<br />

locate and map biodiversity hotspots. More specifically, <strong>the</strong> aims of this study were:<br />

4<br />

• to assess <strong>the</strong> botanical diversity of <strong>the</strong> Campo-Ma’an rain forest, describe <strong>the</strong><br />

vegetation and identify plant species with a high conservation priority such as<br />

endemic, rare, threatened and species new to science;<br />

• to produce a plant species checklist of <strong>the</strong> Campo-Ma’an area with a red data<br />

list highlighting <strong>the</strong> conservation status of species with a high conservation<br />

priority;<br />

• to map <strong>the</strong> distribution of <strong>the</strong>se high conservation priority species and locate<br />

hotspots for biodiversity conservation;<br />

• to provide baseline biological information, essential for <strong>the</strong> elaboration of <strong>the</strong><br />

Campo-Ma’an strategic and management plans;<br />

• to provide recommendations for <strong>the</strong> conservation and sustainable<br />

management of its natural resources and threatened species.<br />

1.2. STUDY AREA<br />

Location, policy and administrative framework<br />

Cameroon has ratified or is a signatory of a number of international treaties affecting<br />

environmental issues amongst which <strong>the</strong> most important are <strong>the</strong> Convention on<br />

Biological Diversity and <strong>the</strong> Convention on <strong>International</strong> Trade in Endangered<br />

Species of Wild Fauna and Flora. In response to <strong>the</strong> increasing international concern<br />

for <strong>the</strong> protection of <strong>the</strong> global biological resources, <strong>the</strong> government of Cameroon<br />

began a series of reforms in 1990 aimed at ensuring <strong>the</strong> sustainable management of<br />

its natural resources. A Ministry of Environment and Forestry (MINEF) was created<br />

in 1992, a National Environmental Management Plan (NEMP) and a National<br />

Forestry Action Program (NFAP) were launched in 1995. Fur<strong>the</strong>rmore, a new<br />

forestry law based on a new policy, which explicitly recognises <strong>the</strong> unique richness<br />

and importance of <strong>the</strong> nation’s biodiversity, and assigns a high priority to <strong>the</strong><br />

protection of this heritage, was produced in 1994 (République du Cameroun, 1994,<br />

1995 a & b and 1996). It is within this framework that a joint initiative of <strong>the</strong> Global


General introduction<br />

Environment Facility (GEF)-World Bank Biodiversity and Management Project and<br />

<strong>the</strong> government of Cameroon led to <strong>the</strong> creation of several conservation projects in<br />

Cameroon, and to <strong>the</strong> Campo-Ma’an Biodiversity Conservation and Management<br />

Project in 1996. Its objective is to ensure <strong>the</strong> conservation of biodiversity in <strong>the</strong><br />

TOU and <strong>the</strong> sustainable management of its natural resources.<br />

The Campo-Ma’an area is located between latitudes 2°10’-2°52’ N and longitudes<br />

9°50’-10°54’ E. It is bounded to <strong>the</strong> west by <strong>the</strong> Atlantic Ocean and to <strong>the</strong> south by<br />

<strong>the</strong> border with Equatorial Guinea (Figure 1.1). As shown in Table1.1 and Figure<br />

1.1, <strong>the</strong> main components of <strong>the</strong> TOU are a National Park, five forest management<br />

units (FMU) and two agro-industrial plantations.<br />

Table 1.1 Present land use planning of <strong>the</strong> Campo-Ma’an Technical Operational Unit (TOU)<br />

Land use Area (ha) % of TOU<br />

Campo-Ma’an National Park 261443 34.0<br />

Logging concessions (FMU 09021-25) 241809 31.4<br />

FMU 09021 (Wijma) 42410 5.5<br />

FMU 09022 (not yet attributed) 14514 1.9<br />

FMU 09023 (Bubinga/HFC) 11777 1.5<br />

FMU 09024 (HFC) 76806 10.0<br />

FMU 09025 (HFC) 96302 12.5<br />

Agro-forestry zone 196155 25.5<br />

Agro-industrial plantations 57750 7.5<br />

HEVECAM (Rubber plantation) 41339 5.4<br />

SOCAPALM (Oil palm plantation) 16411 2.1<br />

Proposed protected area 11968 1.6<br />

Coastal zone 320 -<br />

Total 769445 100<br />

Adapted from de Kam et al. (2002). HEVECAM (Hévéa du Cameroun) and SOCAPALM (Société<br />

Camerounaise des Palmeraies).<br />

The Campo-Ma’an National Park covers about 261,443 ha. It is a permanent state<br />

forest that represents 34% of <strong>the</strong> TOU and is solely used for forest conservation and<br />

wildlife protection. The following activities are <strong>the</strong>refore forbidden: logging,<br />

hunting and fishing, mineral exploitation, pastoral industrial, agricultural and o<strong>the</strong>r<br />

forestry activities. The logging concessions that are also called “Forestry<br />

management unit” (FMU) represent about 31.4% of <strong>the</strong> area. Agro-forestry zones<br />

are part of <strong>the</strong> non-permanent forest estate that can be used for purposes o<strong>the</strong>r than<br />

forestry. Added to agro-industrial plantations <strong>the</strong>y represent 33% of <strong>the</strong> TOU and<br />

are mainly allocated for human activities such as agro-industry, agriculture, agroforestry,<br />

community forest, communal forest, or private forest. The coastal zone is a<br />

narrow strip along <strong>the</strong> Atlantic Ocean from <strong>the</strong> Lobe waterfalls to <strong>the</strong> Ntem estuary<br />

in <strong>the</strong> Dipikar islands. It measures about 65 km long and extends about 2-3 km<br />

inland. The coastline is one of <strong>the</strong> most important marine turtle breeding habitats in<br />

Central Africa where four species of marine turtles come to feed or nest every year.<br />

5


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Figure 1.1 Present land use planning map of <strong>the</strong> Campo-Ma’an Technical Operational Unit (Annex 4).<br />

Physical environment<br />

Geology and soils<br />

The Campo-Ma’an area is situated on <strong>the</strong> Precambrian shield, which is <strong>the</strong> most<br />

important and extensive geological formation in Cameroon. This Precambrian<br />

basement complex consists mainly of metamorphic rocks and old volcanic intrusions<br />

(Franqueville, 1973). Metamorphic rocks such as gneisses, migmatites, schists and<br />

quartzites dominate <strong>the</strong> geology in <strong>the</strong> area. Soils that are developed on <strong>the</strong>se<br />

metamorphic rocks are acid and poor in nutrients. Sedimentary rocks of <strong>the</strong><br />

Cretaceous can also be found in <strong>the</strong> Campo basin. The topography ranges from<br />

undulating to rolling in <strong>the</strong> lowland area, to steeply dissect in <strong>the</strong> more mountainous<br />

areas. In <strong>the</strong> Campo area, altitudes are mostly low, ranging from 0 m at sea level to<br />

about 500 m. In <strong>the</strong> eastern part, which is quite mountainous, <strong>the</strong> altitude varies<br />

between 400-1100 m and <strong>the</strong> rolling and steep terrain brings about a more variable<br />

landscape.<br />

Following <strong>the</strong> FAO classification system, soils in <strong>the</strong> Campo-Ma’an area are<br />

generally classified as Ferrasols and Acrisols (Franqueville, 1973; Muller, 1979; van<br />

Gemerden & Hazeu, 1999). They are strongly wea<strong>the</strong>red, deep to very deep and<br />

clayey in texture (except at <strong>the</strong> seashores and in river valleys where <strong>the</strong>y are mainly<br />

sandy), acid and low in nutrients with pH (H2O) values generally around 4.<br />

Although Ferric soils are <strong>the</strong> most widespread, poorly drained as Dystric Fluviosols<br />

or Gleyic Cambisols soils are commonly found in <strong>the</strong> river valleys and adjacent<br />

swampy areas throughout <strong>the</strong> Campo-Ma’an area. The dominant soils in <strong>the</strong> coastal<br />

6


General introduction<br />

plain are Plinthic Ferrasols, with patches of Haplic Acrisols and Acri-Xanthic<br />

Ferrasols. In <strong>the</strong> eastern part of <strong>the</strong> Campo-Ma’an area, soils are developed on<br />

ectinites including gneiss, micashist and quartzite. In <strong>the</strong> mountainous area, soils are<br />

developed on migmatites and granites and are mostly classified as Acri-Xanthic<br />

Ferrasols and Xanthic Ferrasols.<br />

Climate and hydrology<br />

The Campo-Ma’an area has a typical equatorial climate with two distinct dry<br />

seasons (November-March and July-mid-August) and two wet seasons (April-June<br />

and mid-August-October). The average annual rainfall generally decreases with an<br />

increasing distance from <strong>the</strong> coast, ranging from 2950 mm/year in Kribi and 2800<br />

mm in Campo to 1670 mm in Nyabissan in <strong>the</strong> Ma’an area. The Ma’an forest has<br />

significantly less rainfall than o<strong>the</strong>r areas. This is probably due to a rain shadow<br />

effect caused by <strong>the</strong> Nkolebengue Hills (up to 1000 m) which forms a substantial<br />

upland block between Ma’an and <strong>the</strong> ocean. The average annual temperature is<br />

about 25°C and <strong>the</strong>re is little variation between years. The hydrography of <strong>the</strong> area<br />

shows a dense pattern with many rivers, small river basins, fast-flowing creeks and<br />

rivers in rocky beds containing many rapids and small waterfalls. The main rivers<br />

draining <strong>the</strong> TOU are <strong>the</strong> Ntem, Lobe, Bongola, Biwome, Ndjo’o, Mvila and<br />

Nye’ete. Swamps are commonly found in <strong>the</strong> valley of <strong>the</strong>se rivers.<br />

Socio-economic settings<br />

Population, ethnicity and settlements<br />

A recent census carried out by ERE Développement in April 2001 has shown that<br />

about 61,000 people live in 167 towns, villages and agro-industrial or logging<br />

camps. Generally, <strong>the</strong> area has a low population density of about 10 inhabitants per<br />

km² and is sparsely populated with most people living around Kribi, along <strong>the</strong> coast,<br />

and in HEVECAM, SOCAPALM and HFC camps (ERE Développement, 2002; de<br />

Kam et al., 2002). There are seven main ethnic groups in <strong>the</strong> area which are <strong>the</strong><br />

Batanga, Mabea (or Mabi), Mvae, Yassa, Ntumu, Bulu and <strong>the</strong> Bagyeli (or Bakola)<br />

Pygmies. In addition to <strong>the</strong>se ethnic groups, <strong>the</strong>re are residents from o<strong>the</strong>r parts of<br />

Cameroon and Equatorial Guinea who depend on <strong>the</strong> work provided by <strong>the</strong> timber<br />

companies and agro-industrial plantations. The Bakola pygmies are mainly forest<br />

dwelling hunters and ga<strong>the</strong>rers, although <strong>the</strong>y seem to be in <strong>the</strong> process of<br />

sedentarisation (Annaud & Carriere, 2000). They are in small number and depend<br />

mostly on <strong>the</strong> forest for <strong>the</strong>ir livelihood. Their life style is seriously threatened by<br />

<strong>the</strong> ongoing logging activities. The Batanga, Mabea, and Yassa are mostly found in<br />

small fishing villages along <strong>the</strong> coast between Kribi and Campo. They rely mostly<br />

on <strong>the</strong> sea for <strong>the</strong>ir livelihood and have fishing as <strong>the</strong>ir main occupation. The Mvae,<br />

Ntumu and Bulu are mainly farmers, hunters and forest ga<strong>the</strong>rers.<br />

Logging and agro-industrial enterprises<br />

There are two main logging enterprises in <strong>the</strong> Campo-Ma’an area which are “la<br />

Forestière de Campo” (HFC) and Wijma (GWZ). HFC is operational since 1966 and<br />

operates a sawmill and port facilities at Ipono near Campo. O<strong>the</strong>r companies such as<br />

Wijma and CFK also have sawmill facilities. Log production is about 39,250<br />

m³/year and more than 135,000 m³ of sawn woods are produced per year. Timber<br />

harvesting in <strong>the</strong> area provides about 115 millions FCFA/year ($ 201,754) to <strong>the</strong><br />

7


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

local communities concerned and direct employment of about 1000 jobs that<br />

represent wages of about 1 billion FCFA/year ($ 1,8 millions) (ERE<br />

Développement, 2002; de Kam et al., 2002). HEVECAM and SOCAPALM are <strong>the</strong><br />

two main agro-industrial companies located in <strong>the</strong> area. They are <strong>the</strong> major<br />

employers in <strong>the</strong> area, developed many infrastructures, and provided many services<br />

in <strong>the</strong>ir area of activities. They employ about 5625 workers who earn wages totalling<br />

about 5,5 billions FCFA/year ($ 9,7 millions).<br />

Stakeholders<br />

In <strong>the</strong> Campo-Ma’an area, stakeholder groups range from direct users to people who<br />

will be indirectly affected by any management decision. Although <strong>the</strong> Campo-<br />

Ma’an project will need <strong>the</strong> full support and participation of <strong>the</strong> local population to<br />

achieve its goal, it is of vital importance to involve o<strong>the</strong>r potential stakeholders such<br />

as <strong>the</strong> local administrative authorities, logging and agro-industrial companies, local<br />

common initiative groups, NGO’s and o<strong>the</strong>r institutions which are operating in <strong>the</strong><br />

area.<br />

Economic activities and <strong>the</strong>ir influence on biodiversity conservation<br />

Despite <strong>the</strong> low population density, <strong>the</strong>re are few employment opportunities. The<br />

local people are very poor and so far rely solely on <strong>the</strong> forest resources to meet <strong>the</strong>ir<br />

basic needs. As a result, local pressure on <strong>the</strong> Campo-Ma’an rain forest is increasing<br />

and <strong>the</strong>re are several activities that are carried out in <strong>the</strong> area with varying ecological<br />

impacts on <strong>the</strong> forest ecosystem. These activities include agriculture, logging,<br />

poaching and hunting.<br />

Agriculture<br />

Clearance of natural vegetation to provide land for industrial and subsistence<br />

agriculture is <strong>the</strong> biggest threat to <strong>the</strong> Campo-Ma’an forest. Large-scale agroindustrial<br />

plantations have destroyed about 7.5% of <strong>the</strong> forest cover. Small private<br />

owners are also involved in <strong>the</strong> clearing of a considerable portion of <strong>the</strong> coastal and<br />

lowland forests for <strong>the</strong> establishment of small plantations of oil palm, rubber or cash<br />

crops such as cocoa. The local population practises shifting or “slash and burn”<br />

agriculture in <strong>the</strong> area. It is a major cause of deforestation and forest degradation<br />

around settlements since it involves land conversion from forest to permanent<br />

agriculture land, reducing <strong>the</strong> soil fertility and <strong>the</strong> natural vegetation cover.<br />

Logging<br />

Timber exploitation is <strong>the</strong> main economic activity in <strong>the</strong> area and is dominated by<br />

HFC and Wijma. Logging concessions represent about 31.4% of <strong>the</strong> area. The<br />

southwestern part of <strong>the</strong> National Park and <strong>the</strong> coastal zone has been selectively<br />

logged at least twice during <strong>the</strong> past 30 years. Less than one tree/ha is felled and<br />

logging is limited to about 60 tree species (Jonkers & van Leersum, 2000). Although<br />

logging damage is moderate and has limited effect on <strong>the</strong> forest biodiversity<br />

(Jonkers & van Leersum, 2000; van Gemerden et al., 2003) any degree of damage<br />

represents a capital loss in terms of trees and deterioration of <strong>the</strong> biotic and physical<br />

environment. Logging creates skid trails that allow easy access for poachers, and<br />

encourage settlers to establish forest camps, villages and farms. Fur<strong>the</strong>rmore, felling<br />

damage includes breakage of saplings and residual stems and hinders <strong>the</strong> growth of<br />

seedlings by discarded crowns of felled trees (Parren, 2003).<br />

8


General introduction<br />

Hunting and fishing<br />

Hunting is a major activity in <strong>the</strong> area. Several villages and local people are known<br />

to rely heavily on hunting as an important source of income and for subsistence. It is<br />

for <strong>the</strong> moment a lucrative way through which <strong>the</strong> local communities derive direct<br />

economic benefit from <strong>the</strong> forest. The use of cable snare trapping is <strong>the</strong> most<br />

common form of hunting in <strong>the</strong> area, and guns are mainly used during <strong>the</strong> night to<br />

kill large mammals. These animals are sold in urban areas where bush meat is in<br />

great demand. The use of indiscriminate and wasteful methods such as cable snares<br />

on long trap lines, as well as poaching, have severely depleted <strong>the</strong> primate and forest<br />

elephant populations in <strong>the</strong> area (Mat<strong>the</strong>ws & Mat<strong>the</strong>ws, 2000; Ngandjui et al.,<br />

2001). Fishing is <strong>the</strong> major economic activity in coastal villages. It is <strong>the</strong> main<br />

protein source and almost all local populations rely heavily on it for subsistence and<br />

as source of income. Fishing is also practised in some villages inland along <strong>the</strong><br />

Ntem, Bongola, Lobe, Biwome and o<strong>the</strong>r rivers.<br />

Non Timber Forest Products (NTFPs)<br />

The Campo-Ma’an area has about 250 NTFPs (Tchouto et al., 2002 unpublished).<br />

These forest products form an integral part of <strong>the</strong> rural economy, and contribute to<br />

all aspects of rural life, providing food, fuel, building material, medicine, craft<br />

material, o<strong>the</strong>r household items, ornamental and horticultural plants. The collection<br />

of NTFPs is mostly done in <strong>the</strong> area for local consumption, but few local people rely<br />

on it as a source of income. So far <strong>the</strong> collection of NTFPs has little or no effect on<br />

<strong>the</strong> Campo-Ma’an forest and its ecosystem (Tchouto et al., 2002 unpublished).<br />

Tourism and ecotourism<br />

There is much potential for <strong>the</strong> development of tourism and in particular ecotourism<br />

in <strong>the</strong> Campo-Ma’an area. The site’s advantages for ecotourism include <strong>the</strong> presence<br />

of a National Park, a coastline of 65 km with attractive beaches, many waterfalls<br />

(Lobe and Memve’ele), diverse ethnic groups with different cultural heritage and <strong>the</strong><br />

presence of archaeological sites. So far, tourist activity is poorly developed and<br />

ecotourism is almost absent. Tourist industry is only focused on some beaches<br />

around Kribi. For <strong>the</strong> moment, <strong>the</strong> local community derives very little or no benefit<br />

from such type of tourism.<br />

1.3. HISTORY OF BOTANICAL RESEARCH IN THE CAMPO-MA’AN<br />

AREA<br />

The Campo-Ma’an area has been visited by many botanists over more than one<br />

century. The first collectors were Germans such as Braun (1887), Dinklage (1889-<br />

93), Zenker (1896-1922) and Staudt (1895-96). Their botanical explorations were<br />

largely confined around Kribi, Bipindi and Lolodorf areas because of easy<br />

accessibility. Later on, French, Dutch and o<strong>the</strong>r German botanists also collected<br />

around Kribi, along <strong>the</strong> coast from Kribi to Campo in <strong>the</strong> former Campo Faunal<br />

Reserve area, and in southwestern Cameroon. They included Schlechter (1900),<br />

Schultze-Rhonhof (1911), Mildbraed (1911 & 1914), Ledermann (1912), Fleury<br />

(1917), Letouzey (1962-68), W.J. de Wilde (1963-64), Raynal (1963 & 1965),<br />

Leeuwenberg (1965), Bos (1968-70) and J.J.F.E de Wilde (1964-76). Among <strong>the</strong>se<br />

first botanists, Letouzey was <strong>the</strong> only one who visited <strong>the</strong> Ma’an area. These<br />

collections were used for <strong>the</strong> production of 37 volumes of <strong>the</strong> Flore du Cameroun.<br />

9


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Recently o<strong>the</strong>r botanists such as Beentje (1980), Hall (1991), Thomas (1992),<br />

Wieringa (1994), van der Burgt (1997), Parren (1997), van Gemerden (1997-99),<br />

van Andel (2000-2001), and botanists from <strong>the</strong> National Herbarium in Yaounde also<br />

collected in <strong>the</strong> area.<br />

A first attempt to classify <strong>the</strong> vegetation types of Cameroon was made by Letouzey<br />

(1968 & 1985). He adopted <strong>the</strong> phytogeographic approach to interpret and map <strong>the</strong><br />

vegetation of Cameroon at a scale of 1:500,000 with definitions and descriptions of<br />

<strong>the</strong> different vegetation types using black and white aerial photos taken during <strong>the</strong><br />

1960’s. It should be noted that he did not cover <strong>the</strong> country evenly during his field<br />

trips in various parts of Cameroon and apparently <strong>the</strong> Campo-Ma’an area was not<br />

fully investigated. However, he described and mapped several vegetation types and<br />

sub-types in <strong>the</strong> Campo-Ma’an area by using indicator species such as Calpocalyx<br />

heitzii and Sacoglottis gabonensis. The main vegetation type was defined as Atlantic<br />

Biafran forest rich in Caesalpinioideae with 5 sub-types dependent on <strong>the</strong><br />

occurrence of Caesalpinioideae, Calpocalyx heitzii (Leguminosae-Mimosoideae),<br />

Sacoglottis gabonensis (Humiriaceae) and o<strong>the</strong>r coastal indicators. Kaji (1985)<br />

studied <strong>the</strong> floristic composition and <strong>the</strong> structure of <strong>the</strong> Atlantic Biafran forest rich<br />

in Caesalpinioideae with Calpocalyx heitzii and Sacoglottis gabonensis near<br />

Nkoelon and Mvini. In 1991, a three-month canopy raft expedition was organized in<br />

<strong>the</strong> former Campo Faunal Reserve by <strong>the</strong> “OPERATION CANOPEE” with <strong>the</strong> aim<br />

of carrying out scientific research in <strong>the</strong> canopy of a tropical rain forest. A canopy<br />

raft made of a hot air balloon was used to get access to <strong>the</strong> canopy in order to study<br />

<strong>the</strong> flora and its pollination ecology. Many scientists from different disciplines took<br />

part in this expedition. Each team was given a ra<strong>the</strong>r short time in <strong>the</strong> balloon,<br />

limiting data collection for <strong>the</strong>ir research. In addition to this botanical work, some<br />

information on timber species came from exploitation inventories carried out by<br />

ONADEF (1991) in <strong>the</strong> former Ma’an Reserve.<br />

Thomas & Thomas (1993) executed a two-month biodiversity survey of <strong>the</strong> Campo-<br />

Ma’an area that included botanical, wildlife and socio-economic studies. The main<br />

aim of this rapid multidisciplinary assessment was to provide <strong>the</strong> GEF-World Bank<br />

Biodiversity and Management Project with a state of knowledge report on <strong>the</strong><br />

Campo-Ma’an biodiversity and to provide recommendations for its conservation and<br />

sustainable management. Although during this study an effort was made to supply a<br />

description of <strong>the</strong> various vegetation types encountered, <strong>the</strong> report was largely based<br />

on existing literature, since two months of field work was not enough to carry out a<br />

sound biodiversity assessment in such a large area. Recently, Sunderland et al.<br />

(1997) established 3 plots of 1 ha each in <strong>the</strong> former Campo Faunal Reserve to study<br />

its vegetation. The report of this survey provided information on <strong>the</strong> vegetation<br />

types recorded in <strong>the</strong> plots, as well as <strong>the</strong>ir species composition, dominance and<br />

frequency. van Gemerden & Hazeu (1999) did a landscape ecological survey of <strong>the</strong><br />

Bipindi-Akom II-Lolodorf region located north of <strong>the</strong> Campo-Ma’an area. The main<br />

objective of this study was to provide a scientific framework for <strong>the</strong> sustainable land<br />

use planning of <strong>the</strong> area.<br />

Although many botanists have visited <strong>the</strong> Campo-Ma’an area, <strong>the</strong>ir main aim was to<br />

collect herbarium specimens essential for taxonomic studies and <strong>the</strong> production of<br />

<strong>the</strong> flora of Cameroon. Most o<strong>the</strong>r botanical research was sporadic and localized to<br />

10


General introduction<br />

areas of easy accessibility. Fur<strong>the</strong>rmore <strong>the</strong> output was often ra<strong>the</strong>r descriptive and<br />

aiming at <strong>the</strong> provision of rapid baseline information necessary for a sustainable<br />

management of <strong>the</strong> Campo Faunal Reserve. Therefore, <strong>the</strong> present study is <strong>the</strong> first<br />

systematic attempt to assess <strong>the</strong> botanical diversity of <strong>the</strong> Campo-Ma’an area in<br />

order to identify, locate and map hotspots for biodiversity conservation.<br />

1.4. BOTANICAL AND ECOLOGICAL ASSESSMENT METHODS<br />

In a large, heterogeneous and structurally complex forest ecosystem such as <strong>the</strong><br />

Campo-Ma’an tropical rain forest, conservation cannot proceed without a thorough<br />

understanding of <strong>the</strong> components of <strong>the</strong> ecosystems that are to be preserved. We<br />

need to know what are <strong>the</strong> species of high conservation priorities and where are <strong>the</strong>y<br />

located, so that we can target conservation resources to <strong>the</strong>se locations. Therefore,<br />

an inventory or biological stocktaking is requisite for all conservation initiatives.<br />

However, <strong>the</strong> selection of <strong>the</strong> most appropriate methods for <strong>the</strong> rapid assessment of<br />

forest ecosystems is always a difficult matter, and a series of questions need to be<br />

addressed to decide on <strong>the</strong> best approach to be taken. Some of <strong>the</strong>se questions are:<br />

• What are <strong>the</strong> specific objectives, priorities and concerns?<br />

• What information is available, essential and useful?<br />

• How can <strong>the</strong> information needed be provided?<br />

• How can it be recorded, analysed, reported and used?<br />

• What limitations and problems can be perceived?<br />

Fur<strong>the</strong>rmore, <strong>the</strong> traditional approaches of forest inventory are not sufficient for<br />

biodiversity assessment, because <strong>the</strong>y are mainly limited to tree species (especially<br />

timber-sized trees), which are assumed to reflect <strong>the</strong> forest floristic composition and<br />

physical structure. More often, taxonomic attention is weak for o<strong>the</strong>r growth forms<br />

such as shrubs, small trees, herbs and epiphytes, and despite a widely accepted<br />

recommendation that herbarium specimens should be routinely collected, this is<br />

done very rarely, if at all. Therefore, to be effective, a botanical assessment method<br />

that provides both quantitative and qualitative information was used during our<br />

study.<br />

Sampling criteria and field methods<br />

After a literature review of existing botanical work done in <strong>the</strong> area, a study of aerial<br />

photographs, satellite images, topographic and vegetation maps, a preliminary<br />

reconnaissance trip was carried out in <strong>the</strong> study area to identify representative and<br />

homogeneous vegetation types for sampling. These representative vegetation types<br />

were selected subjectively on <strong>the</strong> basis of physical and human factors such as<br />

climate (especially rainfall), altitude, slope, soils, <strong>the</strong> proximity to <strong>the</strong> sea and degree<br />

of forest use. Two types of samples were used during <strong>the</strong> assessment, <strong>the</strong> measured<br />

samples and <strong>the</strong> qualitative samples. The measured samples provided quantitative<br />

information on stand structure and composition of <strong>the</strong> forest, while qualitative<br />

information on species richness, life form and guild was provided by <strong>the</strong> qualitative<br />

samples.<br />

11


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Measured samples<br />

Since data collection was to provide a general indication as to which areas might be<br />

considered for priority action, sampling effort was spread throughout <strong>the</strong> research<br />

site by using small samples of 0.1 ha. They were located at irregular intervals along<br />

a line transect (more often 5 or 2 km long) or from a random starting point<br />

(riverbank, hunting and logging paths). The distance between two plots was<br />

generally more than 500 m (usually between 500 m and 1000 m). In mountainous<br />

areas, plots were located at an altitudinal interval of 200 m along <strong>the</strong> slope, on both<br />

sides of <strong>the</strong> ridge. In each 0.1 ha (20 x 50 m) plot, all vascular plants with DBH ≥ 1<br />

cm (diameter at breast height, about 1.3 m above ground) were measured, recorded<br />

and identified. In <strong>the</strong> National Park, all vascular plants with DBH ≥ 5 cm were<br />

marked with a numbered aluminum tag. For unknown species, a voucher specimen<br />

was collected and a data sheet was filled out describing its vegetative characters.<br />

The geographic co-ordinates of each plot, sample or specimen were recorded using<br />

<strong>the</strong> Global Positioning System (GPS). The GPS was a Garmin 12XL model with<br />

estimated precision of ±10 m. These co-ordinates were used for mapping main<br />

vegetation types, species distribution, and biodiversity hotspots. Each plot was<br />

given a unique code number and a conspicuous red plastic pipe marked with <strong>the</strong><br />

plot/sample number was buried at each corner of <strong>the</strong> plot to facilitate its<br />

identification at subsequent monitoring visits. Fur<strong>the</strong>rmore, subplots of 5 m x 5 m<br />

each were established in some 0.1 ha plots in which all vascular plants were<br />

recorded. In <strong>the</strong>se subplots, <strong>the</strong> emphasis was on <strong>the</strong> herbaceous plants and o<strong>the</strong>r<br />

small vascular plants that were not taken into consideration during <strong>the</strong> enumeration<br />

of <strong>the</strong> 0.1 ha plot. Overall 147 plots of 0.1 ha each and 136 subplots were<br />

established in <strong>the</strong> Campo-Ma’an area (Figure 1.2 & Annex 1).<br />

Qualitative samples<br />

Qualitative samples aim to record all vascular plant species that occur in different<br />

forest types or microhabitats. They were located subjectively in <strong>the</strong> field by <strong>the</strong><br />

principal botanist on <strong>the</strong> basis of differences in structure and composition of <strong>the</strong><br />

vegetation, physical and human factors. Usually samples derived from <strong>the</strong> 0.1 ha<br />

plot and additional information on <strong>the</strong> shrub and herbaceous layers were collected.<br />

In each of <strong>the</strong>se samples, a provisional plant species checklist was made in <strong>the</strong> field<br />

with information on <strong>the</strong>ir growth form, guild and frequency. Once <strong>the</strong> location was<br />

selected, we moved around and collected all vascular plants. These plants were<br />

recorded and identified by <strong>the</strong> botanist and <strong>the</strong> tree spotter. For unknown species, a<br />

single ecological specimen was collected for fur<strong>the</strong>r checking and identification in<br />

<strong>the</strong> herbarium. Most of <strong>the</strong>se ecological specimens were sterile materials made up<br />

essentially of leaves. A sample was considered completely surveyed when only few<br />

new records were added to <strong>the</strong> list, or when more than 40 canopy trees above 30 cm<br />

DBH were recorded (Hawthorne, 1995 & 1996). The principal botanist made sure<br />

<strong>the</strong> assessment was done only within <strong>the</strong> identified homogeneous<br />

vegetation/microhabitat type. In each plot/sample, general information on locality,<br />

geographic co-ordinates, topographic features, vegetation types, soil types, land use,<br />

forest condition, canopy cover percentage and height, etc. were recorded.<br />

Specimen collection and identification<br />

The study also involved <strong>the</strong> collection of all fertile plant material within sample/plot,<br />

particular habitats and vegetation types, and along footpaths and logging roads. At<br />

12


General introduction<br />

least 3 duplicates were taken for each fertile specimen. Taking into consideration <strong>the</strong><br />

fact that <strong>the</strong> quality of <strong>the</strong> specimens and <strong>the</strong> label data determine <strong>the</strong> amount of<br />

information available for future reference, each specimen was as representative as<br />

possible with a good field description, and was tagged with a unique collection<br />

number. Each ecological specimen was also given a unique collection number that<br />

was made of <strong>the</strong> sample/plot code ending with an X and followed by <strong>the</strong> collection<br />

number. For example, KRIBI1X1 would mean ecological specimen number 1<br />

collected in Kribi in plot 1. The X was used to differentiate <strong>the</strong> ecological specimens<br />

from <strong>the</strong> normal herbarium specimens which were numbered by <strong>the</strong> collector<br />

name/initials followed by <strong>the</strong> collection number (e.g. Tchouto 2766).<br />

Figure 1.2. Botanical and ecological survey plots and samples<br />

The credibility of a plant species checklist depends largely on <strong>the</strong> level of reliability<br />

of <strong>the</strong> identification of <strong>the</strong> species that it is made of. Therefore, a poor identification<br />

of specimens can easily mislead and upset <strong>the</strong> outcome of a biodiversity assessment.<br />

In order to avoid/reduce mistakes in identification, <strong>the</strong> determination of specimens<br />

was done at 3 levels. In <strong>the</strong> field by <strong>the</strong> principal botanist and tree spotter, in<br />

herbaria in Cameroon (Kribi, Limbe and Yaounde) and in Wageningen by senior<br />

botanists and family specialists. During <strong>the</strong> identification, specimens were allocated<br />

codes to reflect <strong>the</strong> confidence with which <strong>the</strong>y were identified. The identification<br />

codes (ID) provide <strong>the</strong> means to filter out dubious determinations from sample/plot<br />

records prior to analysis. ID were applied at individual plant level and were written<br />

on <strong>the</strong> paper by <strong>the</strong> identifier (e.g. ID = 1 for full name with confidence, 2 for genus<br />

13


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

all right but cf. species, 3 cf. genus and species, etc.). A duplicate of each specimen<br />

was mounted and preserved in <strong>the</strong> Kribi Herbarium. O<strong>the</strong>rs duplicates were sent to<br />

<strong>the</strong> National Herbarium in Yaounde, Cameroon (YA) and <strong>the</strong> Nationaal Herbarium<br />

Nederland, Wageningen University Branch (WAG) for fur<strong>the</strong>r identification and<br />

preservation.<br />

Soil sampling<br />

In order to assess <strong>the</strong> influence of soil characteristics on <strong>the</strong> vegetation, random soil<br />

samples were collected in <strong>the</strong> center of some plots located in representative<br />

vegetation types. Soils were described according to <strong>the</strong> FAO (1990) guidelines in<br />

selected representative soil profile pits of about 1 m depth. Soil horizons were<br />

described by auguring in <strong>the</strong> soil pit. Samples from <strong>the</strong> soil horizons were taken for<br />

72 representative soil profiles (Annex 2). In each representative plot, soil samples<br />

were taken at four different depths (0-10 cm, 10-20 cm, 20-30 cm and 30-50 cm) in<br />

addition to <strong>the</strong> horizon samples. Each of <strong>the</strong>se samples was made of a mixture of<br />

three samples collected at <strong>the</strong> same depth in <strong>the</strong> upper half, center and bottom half of<br />

<strong>the</strong> plot. Taking into consideration <strong>the</strong> financial constraints, only <strong>the</strong> soil pH and<br />

electric conductivity (EC) were measured for all <strong>the</strong> samples in <strong>the</strong> soil laboratory of<br />

<strong>the</strong> Tropical Nature Conservation and Vertebrate Ecology Group, Wageningen<br />

University.<br />

Data analysis<br />

All survey data were entered into TREMA (Tree Management) software for data<br />

management (Hawthorne, 1999). TREMA contains both species level and plots<br />

data, and can integrate <strong>the</strong> two directly in an analysis. Herbarium specimens data<br />

were entered into <strong>the</strong> BRAHMS (Botanical Research and Herbarium Management<br />

System) database (Filer, 1996). This database that is currently used at Kew,<br />

Wageningen, Yaounde and Limbe herbaria for <strong>the</strong> management of <strong>the</strong>ir botanical<br />

data, has a module known as RDE (Rapid Data Entry) which allows easy and rapid<br />

entry of label information. Once entered and stored in RDE, data can be imported<br />

directly into BRAHMS (or transferred into different packages) for <strong>the</strong> preparation of<br />

several taxonomic outputs such as labels, determination slips, distribution maps,<br />

simple and annotated checklists.<br />

Detrended Correspondence Analysis (DCA or DECORANA) and its relative<br />

Canonical Correspondence Analysis (CANOCO or CCA) was used to detect<br />

patterns in <strong>the</strong> vegetation data (Hill, 1979a & 1979b; Jongman et al., 1987; ter<br />

Braak, 1986a & 1987b; Kent & Coker, 1992). The distribution of species and<br />

samples in <strong>the</strong> ordination space given by DCA was used to identify species and site<br />

clusters, and to corroborate groupings derived from <strong>the</strong> two-way indicator species<br />

analysis (TWINSPAN). Phytosociological parameters such as basal area, relative<br />

density, relative dominance, relative frequency, important value index and Shannon<br />

diversity index (H’) were used to describe <strong>the</strong> forest structure and composition, and<br />

to measure <strong>the</strong> species richness and diversity of <strong>the</strong> various vegetation types. They<br />

were calculated following Whittaker (1975), Kent & Coker (1992) and Magurran<br />

(1988).<br />

14


Basal area = (1/2d)²π where d = DBH<br />

Relative density = Number of individuals of <strong>the</strong> species x 100<br />

Total number of individuals<br />

Relative dominance = Total basal area of <strong>the</strong> species x 100<br />

Total basal area of all species<br />

Relative frequency = Frequency of a species x 100<br />

Frequency of all species<br />

General introduction<br />

Importance value index (IVI) = Relative density + Relative dominance +<br />

Relative frequency<br />

Shannon diversity index (H') = - Σp i lnp i<br />

Where Pi = ni /N, ni = number of individuals of species, N = total number<br />

of individuals, and ln = log basen 1.5. OUTLINE OF THE BOOK<br />

The main objective of this <strong>the</strong>sis research is to provide baseline botanical<br />

information essential for <strong>the</strong> preparation of a strategic management plan for <strong>the</strong><br />

Campo-Ma’an Technical Operational Unit and particularly for <strong>the</strong> conservation and<br />

management of <strong>the</strong> National Park. In order to make significant contributions to this<br />

management and conservation process, a study of <strong>the</strong> vegetation and <strong>the</strong> flora of <strong>the</strong><br />

Campo-Ma’an rain forest is made. Chapter 1 presents a succinct state of knowledge<br />

of <strong>the</strong> Campo-Ma’an biodiversity. In Chapter 2, we identify, classify, describe and<br />

map <strong>the</strong> various vegetation types and analyse <strong>the</strong>ir structure and composition. Later<br />

on, we discuss <strong>the</strong> effect of environmental factors such as rainfall, altitude, soils,<br />

proximity to <strong>the</strong> sea and human disturbance that influence or delimit <strong>the</strong> found<br />

vegetation types.<br />

Chapter 3 deals with <strong>the</strong> diversity of <strong>the</strong> flora in <strong>the</strong> Campo-Ma’an rain forest. We<br />

search for correlation between tree species diversity and <strong>the</strong> diversity of o<strong>the</strong>r<br />

growth forms such as shrubs, herbs and lianas, in order to understand whe<strong>the</strong>r, in <strong>the</strong><br />

contest of <strong>the</strong> African tropical rain forest, tree species diversity tells it all. The<br />

Campo-Ma’an area falls within a series of postulated rain forest refugium in Central<br />

Africa. In Chapter 4, we study patterns in <strong>the</strong> distribution of sensitive bio-indicator<br />

forest species such as strict endemics and o<strong>the</strong>r well-known slow dispersal species to<br />

find out whe<strong>the</strong>r if <strong>the</strong> entire Campo-Ma’an area was part of a refugium or not.<br />

Special attention is given to <strong>the</strong>se taxa because of <strong>the</strong>ir biology (life strategy) and/or<br />

distribution (endemism) <strong>the</strong>y may act as indicators for refuge areas.<br />

In Chapter 5, <strong>the</strong> forest inventory data and taxonomic collections are used to<br />

examine <strong>the</strong> distribution and convergence patterns of strict and narrow endemic<br />

15


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

species. We use conservation indices such as Genetic Heat Index (GHI) and Pioneer<br />

Index (PI) to analyse trends in endemic and rare species in <strong>the</strong> various forest types.<br />

GIS tools and geostatistical analyses were used to identify and map potential<br />

biodiversity hotspots. Finally, Chapter 6 discusses <strong>the</strong> implications of <strong>the</strong> output of<br />

this research for <strong>the</strong> conservation of <strong>the</strong> Campo-Ma’an rain forest.<br />

Recommendations are given for its conservation and effective management.<br />

16


Photo: Pressing of herbarium specimens by <strong>the</strong> collection team in a field camp<br />

in Chantier A, Mvini in <strong>the</strong> National Park (Tchouto, M.G.P.)


Chapter 2<br />

CENTRAL AFRICAN TROPICAL RAIN FOREST STRUCTURE<br />

AND COMPOSITION: UNTANGLING THE EFFECTS OF<br />

RAINFALL, ALTITUDE, SOIL, SEA<br />

AND HUMAN DISTURBANCE<br />

Gildas Peguy Tchouto Mbatchou (1)<br />

With W.F. de Boer (2) , de Wilde J.J.F.E. (3) , and van der Maesen L.J.G. (3)<br />

(1) Limbe Botanic Garden, BP 437, Limbe, Cameroon; e-mail: peguy2000@yahoo.com<br />

(2) Tropical Nature Conservation and Vertebrate Ecology Group, Wageningen University, Bornsesteeg 69,<br />

6708 PD, Wageningen, <strong>the</strong> Ne<strong>the</strong>rlands; e-mail: fred.deboer@wur.nl<br />

(3) Biosystematics Group, Wageningen University, Generaal Foulkesweg 37, 6703 BL, Wageningen, <strong>the</strong><br />

Ne<strong>the</strong>rlands; e-mail: jos.vandermaesen@wur.nl


2.1. INTRODUCTION<br />

Central African tropical rain forest structure and composition<br />

The Campo-Ma’an area is recognised as an important site within <strong>the</strong> Guineo-<br />

Congolian Centre of Endemism (White, 1983; Gartlan 1989; Davis et al., 1994).<br />

Most of <strong>the</strong> area is covered by lowland evergreen tropical rain forests that extend<br />

from Sou<strong>the</strong>ast Nigeria to Gabon and <strong>the</strong> Mayombe area in Congo. Campo-Ma’an is<br />

situated at <strong>the</strong> middle of this belt and <strong>the</strong> main vegetation type is part of <strong>the</strong> domain<br />

of <strong>the</strong> dense humid evergreen forest that belongs to <strong>the</strong> Atlantic Biafran district and<br />

<strong>the</strong> Atlantic littoral district (Letouzey, 1968 & 1985). The Campo area is dominated<br />

by lowland evergreen forests rich in Caesalpinioideae, with Calpocalyx heitzii and<br />

Sacoglottis gabonensis, a vegetation type that is only known from this area. The<br />

drier Ma’an area in <strong>the</strong> rain shadow, to <strong>the</strong> east of Campo, is dominated by a mixed<br />

evergreen and semi-deciduous forest. The Campo-Ma’an area also supports a great<br />

diversity of habitats from coastal vegetation on sandy shorelines at sea level to <strong>the</strong><br />

submontane forest at about 1100 m.<br />

Man affects <strong>the</strong> forest ecosystem with his economic activities, through logging,<br />

agro-industrial and shifting agriculture, and hunting. Clearance of <strong>the</strong> natural forest<br />

to provide land for agro-industrial companies is <strong>the</strong> biggest and most destructive<br />

threat to <strong>the</strong> lowland forests. More than 7.5% of <strong>the</strong> area has been cleared to<br />

establish large plantations of oil palm and rubber. Ano<strong>the</strong>r use of <strong>the</strong> forest that<br />

leads to impoverishment is logging. Logging concessions represent about 31.4% of<br />

<strong>the</strong> area and a considerable portion of forest has already been logged at least twice<br />

during <strong>the</strong> past 30 years. Although <strong>the</strong> Campo-Ma’an area has been disturbed by<br />

logging and agriculture, <strong>the</strong> area is still mostly forested. In order to save <strong>the</strong>se<br />

remaining forests, a sound botanical assessment should be carried out to provide <strong>the</strong><br />

baseline data essential for <strong>the</strong> description and mapping of <strong>the</strong> existing forest types.<br />

The first attempt to classify <strong>the</strong> vegetation types of Cameroon was made by<br />

Letouzey (1968 & 1985) who adopted <strong>the</strong> phytogeographic approach to map <strong>the</strong><br />

vegetation of Cameroon at a scale of 1:500,000. These maps were based on aerial<br />

photos taken during <strong>the</strong> 1960’s with ground checking and descriptive observations<br />

done during field trips in various parts of Cameroon. However, he did not cover <strong>the</strong><br />

country evenly and <strong>the</strong> Campo-Ma’an area was apparently poorly investigated,<br />

although some major forest types were identified and described.<br />

The importance of environmental variables, past and present human disturbance as<br />

well as Pleistocene history in determining plant species richness along ecological<br />

gradients in <strong>the</strong> tropical rain forest has been studied by several authors. It is largely<br />

argued that <strong>the</strong> number of tree species in <strong>the</strong> tropical rain forest tends to increase<br />

with rainfall, seasonality (Gentry, 1988; van Rompaey, 1993; Clinebell et al., 1995;<br />

Condit et al., 1996; Swaine, 1996; Givnish, 1999) and soil fertility (Hart et al., 1989;<br />

Duivenvoorden & Lips, 1995; Swaine, 1996), and decreases with altitude (Hedberg,<br />

1951; Lebrun, 1960; Gentry, 1988; Tchouto, 1995; Lieberman et al., 1996; Givnish,<br />

1999). Some of <strong>the</strong>se authors argued that rainfall and altitude are likely to lead to<br />

stronger distributional patterns than those of soil nutrients. In <strong>the</strong> present study, we<br />

will classify, describe and map <strong>the</strong> various vegetation types in <strong>the</strong> Campo-Ma’an<br />

area and analyse its forest structure and composition. In order to study <strong>the</strong> effect of<br />

rainfall, altitude, soils, proximity to <strong>the</strong> sea and human disturbance that influence or<br />

delimit <strong>the</strong>se vegetation types, we will test <strong>the</strong> following predictions:<br />

21


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

22<br />

• Increasing distance from <strong>the</strong> sea is linked with decreasing annual rainfall<br />

gradually changing <strong>the</strong> forest from a coastal type at sea level to a mixed<br />

evergreen and semi-deciduous forest in <strong>the</strong> interior;<br />

• A change in forest structure and species composition with increasing<br />

altitude: <strong>the</strong> species composition will change progressively with increasing<br />

altitude coupled to a decrease in species richness;<br />

• Well-drained nutrient-rich soils support high number of species while<br />

poorly drained soils with low nutrient concentrations are associated with<br />

species-poor forests;<br />

• Human disturbance in <strong>the</strong> forest increases <strong>the</strong> frequency of secondary forest<br />

species and lowers species diversity.<br />

2.2. METHODS<br />

Botanical and ecological assessments<br />

A preliminary reconnaissance field trip was carried out in 2000 to identify<br />

representative homogeneous vegetation types for sampling. These representative<br />

vegetation types were selected on <strong>the</strong> basis of physical and human factors such as<br />

climate (especially rainfall), altitude, slope, soils, <strong>the</strong> distance from <strong>the</strong> sea and<br />

degree of forest use. Sampling effort was spread throughout <strong>the</strong> study area by using<br />

small plots of 0.1 ha at irregular intervals along a line transect from a random<br />

starting point. In mountainous areas, plots were located at an altitudinal interval of<br />

200 m along <strong>the</strong> slope, on both side of <strong>the</strong> slope. A total of 147 plots covering 14.7<br />

ha were established, and in each 0.1 ha plot, all trees, shrubs, herbs and lianas with<br />

DBH ≥ 1 cm were measured, recorded and identified. For unknown species, a<br />

voucher specimen was collected. Fur<strong>the</strong>rmore, 136 subplots of 5 m x 5 m each were<br />

established in some plots (Annex 1) with more emphasis on <strong>the</strong> herbaceous and<br />

ground layer vascular plants for vegetation description. Herbarium specimens were<br />

also collected within plot, vegetation types, and specific habitats. In order to assess<br />

<strong>the</strong> influence of soil characteristics on <strong>the</strong> vegetation, random soil samples were<br />

collected in <strong>the</strong> center of 72 plots located in representative vegetation types as<br />

described in Chapter 1(Annex 2).<br />

Data analysis<br />

All information recorded was entered into TREMA (Tree Management) software for<br />

data management. TREMA contains both species level and plots data, and can<br />

integrate <strong>the</strong> two directly in analysis. Detrended Correspondence Analysis (DCA or<br />

DECORANA) and its relative Canonical Correspondence Analysis (CANOCO or<br />

CCA) was used to detect patterns in <strong>the</strong> vegetation data (Hill, 1979a & 1979b;<br />

Jongman et al., 1987; ter Braak, 1986a & 1987b; Kent & Coker, 1992). The<br />

distribution of species and samples in <strong>the</strong> ordination space given by DCA was used<br />

to identify species and site clusters, and to corroborate groupings derived from <strong>the</strong><br />

two-way indicator species analysis (TWINSPAN). CCA ordination methods help to<br />

examine relationships between species distribution and <strong>the</strong> distribution of associated<br />

environmental factors. For both methods, species were first arranged in a raw data<br />

matrix. Within <strong>the</strong> data matrix, species were scored for ei<strong>the</strong>r presence/absence.<br />

Environmental factors such as altitude, rainfall (mean annual rainfall in mm year -1<br />

recorded between 1937-1977), proximity to <strong>the</strong> sea (distance from <strong>the</strong> sea in km)


Central African tropical rain forest structure and composition<br />

and soil characteristics such as soil types, composition, pH (H20), electricity<br />

conductivity in mS.cm -1 , and texture at 0-10 cm depth were used to explain patterns<br />

in <strong>the</strong> vegetation data set. Fur<strong>the</strong>rmore, all species with doubtful identification were<br />

removed from <strong>the</strong> analyses and only species that occurred in more than one plot<br />

were included in <strong>the</strong> ordination analysis.<br />

The GIS software ARCVIEW version 3.2 was used to produce <strong>the</strong> vegetation maps.<br />

The phytosociological parameters (basal area, relative density, relative dominance,<br />

relative frequency and important value index) as well as <strong>the</strong> diameter class<br />

distribution were used to describe <strong>the</strong> forest structure and composition. In addition,<br />

<strong>the</strong> physical forest structure such as <strong>the</strong> height and cover of <strong>the</strong> various strata<br />

(emergent, canopy, midstorey, understorey and ground layer) recorded in each plot<br />

were used for vegetation description. Standard physiognomic indices were<br />

calculated following Whittaker (1975), Kent & Coker (1992) and Magurran (1988).<br />

The SPSS package version 10.0 for Windows was used for statistical analyses and<br />

<strong>the</strong> Pearson’s correlation test was used to correlate <strong>the</strong> species richness with <strong>the</strong><br />

various environmental variables.<br />

2. 3. RESULTS<br />

Multivariate analyses<br />

TWINSPAN analysis<br />

A cluster analysis of 147 plots with TWINSPAN led to 12 convincing divisions. As<br />

shown in Figure 2.1, <strong>the</strong> data set was initially divided into two groups. All plots<br />

located in <strong>the</strong> mangrove forest, characterised by a distinct floristic composition,<br />

edaphic conditions and physiognomy were placed on one side. The remaining plots<br />

were divided into 11 groups on <strong>the</strong> basis of <strong>the</strong> abundance of Caesalpinioideae,<br />

Calpocalyx heitzii or Sacoglottis gabonensis. Plots from small patches of Aucoumea<br />

klaineana (Okoumé) communities were put ei<strong>the</strong>r with <strong>the</strong> lowland evergreen forest<br />

rich in Caesalpinioideae (Okoumé 1) or with <strong>the</strong> mixed evergreen and semideciduous<br />

forest (Okoumé 2) group depending on <strong>the</strong>ir geographical location.<br />

Eleven main forest types were distinguished and can be summarised as follows<br />

(Table 2.1, Figures 2.1 & 2.2).<br />

1. Lowland evergreen forest rich in Caesalpinioideae (Caesalp)<br />

It occurs mainly on hills and gentle slopes where <strong>the</strong> vegetation is still intact and<br />

consists of evergreen trees forming a fairly continuous canopy with emergent trees<br />

poking through it. This forest type is characterised by its dominance of<br />

Caesalpinioideae (more than 70 tree species) with many species that occur<br />

gregariously. Many emergent and canopy trees have large buttresses (up to 5-6 m<br />

tall) and large diameters (up to 2-3 m above <strong>the</strong> buttress). Trees are more or less<br />

arranged in three strata. Large emergent and upper canopy tree species (about 35-50<br />

m tall) such as Anthonotha fragrans, Aphanocalyx margininervatus, Brachystegia<br />

cynometroides, Desbordesia glaucescens, Erythrophleum ivorensis, Lovoa<br />

trichilioides and Pterocarpus soyauxii occur as scattered individuals in <strong>the</strong> upper<br />

storey. The intermediate storey, about 20-35 m high, is dominated by trees species<br />

such as Calpocalyx dinklagei, Dialium pachyphyllum, Dichostemma glaucescens,<br />

23


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Submontane Okoumé 1 Caesalp Caesalpcasa Cosaca Cosas Cosaga Caesalpsa Mixevergreen Mixsemideci Okoumé 2 Mangrove<br />

Figure 2.1 TWINSPAN dendrogram of 958 species of vascular plants with DBH ≥ 1 cm recorded in 147<br />

plots of 0.1 ha each in <strong>the</strong> Campo-Ma’an rain forest. TWINSPAN groups: Submontane:<br />

Submontane forest on hill tops; Okoumé 1&2: Okoumé forest; Caesalp: Lowland evergreen<br />

forest rich in Caesalpinioideae; Caesalpcasa: Lowland evergreen forest rich in<br />

Caesalpinioideae with Calpocalyx heitzii and Sacoglottis gabonensis; Cosaca: Coastal forest<br />

with Sacoglottis gabonensis and Calpocalyx heitzii; Cosas: Coastal forest on sandy shorelines;<br />

Cosaga: Coastal forest with Sacoglottis gabonensis; Caesalpsa: Lowland evergreen forest rich<br />

in Caesalpinioideae and Sacoglottis gabonensis; Mixevergreen: Mixed evergreen and semideciduous<br />

forest with elements of evergreen forest predominant; Mixsemideci: Mixed<br />

evergreen and semi-deciduous forest with semi-deciduous elements predominant; Mangrove:<br />

Mangrove forest.<br />

Diogoa zenkeri, Greenwayodendron suaveolens, Santiria trimera, Strombosia<br />

grandifolia, S. pustulata and Tetraberlinia bifoliolata. The understorey is about 10<br />

m high, discontinuous, and consists of immature trees of <strong>the</strong> upper strata and o<strong>the</strong>r<br />

small trees and shrubs. They include species such as Diospyros preussii, Jollydora<br />

duparquetiana, Lasian<strong>the</strong>ra africana, Massularia acuminata, Podococcus barteri,<br />

Asystasia macrophylla, and Cola, Crotonogyne, Diospyros, Drypetes, Psychotria,<br />

Rinorea and Scaphopetalum species. Beneath <strong>the</strong> tree and shrub layers is <strong>the</strong> ground<br />

layer that is dominated by seedlings of <strong>the</strong> above layers and many herbaceous<br />

species such as Costus englerianus, Marantochloa monophylla, Microcalamus<br />

barbinoides, Palisota barteri, Puella schumanniana and Stylochaeton zenkeri.<br />

Common large woody liana species are Agelaea pentagyna, Neuropeltis incompta<br />

and many species of <strong>the</strong> genera Combretum, Dichapetalum, Millettia, Salacia and<br />

Strychnos.<br />

24


Central African tropical rain forest structure and composition<br />

2. Lowland evergreen forest rich in Caesalpinioideae, with Calpocalyx heitzii and<br />

Sacoglottis gabonensis (Caesalpcasa).<br />

This forest type is unique in Cameroon and only occurs in <strong>the</strong> Campo area between<br />

50-200 m above sea level (Letouzey, 1985; Kaji, 1990; Thomas & Thomas, 1993;<br />

Sunderland et al., 1997). Although it is similar in structure and composition to <strong>the</strong><br />

lowland evergreen forest rich in Caesalpinioideae, it is characterised by its<br />

abundance in Caesalpinioideae, Calpocalyx heitzii and Sacoglottis gabonensis.<br />

These species often occur in association with Alstonia boonei, Calpocalyx dinklagei,<br />

Desbordesia glaucescens, Greenwayodendron suaveolens, Irvingia gabonensis,<br />

Meiocarpidium lepidotum, Piptadeniastrum africanum, Ochthocosmus calothyrsus,<br />

and Terminalia superba.<br />

Table 2.1 Vegetation types derived from multivariate analyses with map code, altitudinal range, annual<br />

rainfall and degree of disturbance.<br />

Map code Vegetation types Altitudinal Rainfall Degree of<br />

range (m) (mm/year) disturbance*<br />

Caesalp Lowland evergreen forest rich in<br />

Caesalpinioideae<br />

100-700 1750-2000 a, b, c & d<br />

Caesalpcasa Lowland evergreen forest rich in<br />

Caesalpinioideae with Calpocalyx heitzii and<br />

Sacoglottis gabonensis<br />

50-200 2200-2800 b, c & d<br />

Caesalpsa Lowland evergreen forest rich in<br />

Caesalpinioideae with Sacoglottis gabonensis<br />

and o<strong>the</strong>r coastal indicators<br />

50-350 2600-2950 b, c & d<br />

Cosaga Coastal forest rich in Sacoglottis gabonensis 0-100 2800-2950 b, c & d<br />

Cosaca Coastal forest rich in Sacoglottis gabonensis<br />

and Calpocalyx heitzii<br />

0-100 2700-2800 b, c & d<br />

Mixevergreen Mixed evergreen and semi-deciduous forest,<br />

with elements of evergreen forest predominant<br />

100-700 1750-2000 a, b, c & d<br />

Mixsemideci Mixed evergreen and semi-deciduous forest,<br />

with semi-deciduous elements predominant<br />

100-700 1670-1750 b, c & d<br />

Submontane Submontane forest on hilltops 800-1100 1800-2000 a<br />

Swamp Seasonally flooded and swamp forests 0-500 1670-2950 a & b<br />

Mangrove Mangrove rich in Rhizophora racemosa and<br />

Pandanus species<br />

0-30 2800-2950 a & b<br />

Cosas Coastal vegetation on sandy shorelines 0-20 2800-2950 d & e<br />

Hevecam Industrial rubber plantation 0-100 2600 e<br />

Socapalm Industrial oil palm plantation 0-100 2950 e<br />

* Where, a: virtually undisturbed except for hunting and <strong>the</strong> collection of non timber forest products; b:<br />

small patches (50%) of forest degradation; and e: no natural vegetation left. Cosas forms a narrow strip along <strong>the</strong><br />

coast that cannot be depicted on <strong>the</strong> vegetation map because of its scale.<br />

25


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Figure 2.2 Vegetation map of <strong>the</strong> Campo-Ma’an area (Annex 5)<br />

3. Lowland evergreen forest rich in Caesalpinioideae, with Sacoglottis gabonensis<br />

and o<strong>the</strong>r coastal indicators (Caesalpsa).<br />

Generally, <strong>the</strong>se are found along <strong>the</strong> coast and around Massif des Mamelles, Mont<br />

d’Eléphant, Nyete and Lobe between 50-350 m above sea level. The forest is<br />

characterised by its richness in Caesalpinioideae and <strong>the</strong> presence of many coastal<br />

indicators amongst which Sacoglottis gabonensis is <strong>the</strong> most frequent. They are<br />

often associated with o<strong>the</strong>r tree species such as Anthonotha fragrans, Brachystegia<br />

cynometroides, Coelocaryon preussii, Coula edulis, Dichostemma glaucescens,<br />

Leonardoxa africana, Lophira alata, Ochthocosmus calothyrsus, Odyendeya<br />

gabonensis, Scyphocephalium mannii, Strombosia pustulata and Tetraberlinia<br />

bifoliolata. The understorey is dominated by shrub and herb species such as Allexis<br />

cauliflora, Asystasia macrophylla, Crotonogyne manniana, Diospyros obliquifolia,<br />

Jollydora duparquetiana, Lasian<strong>the</strong>ra africana, Massularia acuminata, Palisota<br />

ambigua, Rinoria albidiflora and Scaphopetalum blackii.<br />

4. Coastal forest rich in Sacoglottis gabonensis (Cosaga)<br />

These forests are predominantly found along <strong>the</strong> coast between Kribi and Campo at<br />

altitudes between 10-100 m above sea level. This forest type is similar to <strong>the</strong><br />

lowland evergreen forest rich in Caesalpinioideae with Sacoglottis gabonensis, but it<br />

26


Central African tropical rain forest structure and composition<br />

contains many more coastal indicator species and less Caesalpinioideae than <strong>the</strong><br />

former. It is characterised by <strong>the</strong> frequent occurrence of Sacoglottis gabonensis that<br />

occurs in association with o<strong>the</strong>r tree species such as Coula edulis, Cynometra<br />

hankei, Lophira alata, Ochthocosmus calothyrsus and Pycnanthus angolensis. This<br />

forest type is heavily affected by human activities such as agriculture, logging, road<br />

construction, and urbanisation. It is ra<strong>the</strong>r difficult to find traces of undisturbed<br />

forest of this type despite its primary appearance in some areas.<br />

5. Coastal forest rich in Calpocalyx heitzii and Sacoglottis gabonensis (Cosaca).<br />

This vegetation type occurs in <strong>the</strong> Campo area between 0-100 m above sea level and<br />

represents a transitional zone where <strong>the</strong> evergreen forest rich in Caesalpinioideae,<br />

Calpocalyx heitzii and Sacoglottis gabonensis mixes with <strong>the</strong> coastal forest. As a<br />

result, it contains many more coastal indicator species and much less<br />

Caesalpinioideae than <strong>the</strong> latter. In addition to Calpocalyx heitzii and Sacoglottis<br />

gabonensis, <strong>the</strong> forest is dominated by tree species such as Alstonia boonei,<br />

Calpocalyx dinklagei, Coelocaryon preussii, Desbordesia glaucescens,<br />

Distemonanthus benthamianus, Greenwayodendron suaveolens, Lophira alata,<br />

Ochthocosmus calothyrsus, Pterocarpus soyauxii, Staudtia kamerunensis var.<br />

kamerunensis and Terminalia superba.<br />

6. Coastal vegetation on sandy shorelines (Cosas).<br />

It occurs along <strong>the</strong> coastline between Kribi and Campo, supporting a species-poor<br />

belt of low-canopy woody vegetation, often with herbaceous and shrubby maritime<br />

plant species. The foreshore is dominated by <strong>the</strong> typical Atlantic shore species<br />

Ipomea pes-caprae spp. brasiliensis that occurs on a low sandy coastline. Additional<br />

species are Andira inermis ssp. inermis, Remirea maritima, Dioda serrulata,<br />

Canavalia rosea, Ipomea cairica, Flagellaria guineense, Cassytha filiformis and<br />

Stylosan<strong>the</strong>s erecta. The seaward side bordering this formation is rich in maritime<br />

tree species such as Terminalia catappa, Syzygium guineense var. littorale, Phoenix<br />

reclinata, Chrysobalanus icaco spp. icaco, Manilkara obovata, Calophyllum<br />

inophyllum, Carapa procera, and Cocos nucifera. Hibiscus tiliaceus, a species<br />

characteristic of tropical shores also occurs here in association with o<strong>the</strong>r coastal<br />

species such as Dodonaea viscosa, Craibia atlantica, Lonchocarpus serieus,<br />

Dalbergia ecastaphyllum, Mucuna flagellipes and Tetracera alinifolia.<br />

7. Mixed evergreen and semi-deciduous forest, with elements of evergreen lowland<br />

forest predominant (Mixevergreen).<br />

This vegetation type occurs mostly in <strong>the</strong> western part of Ma’an, and in <strong>the</strong> eastern<br />

part of <strong>the</strong> Campo-Ma’an National Park at altitudes between 100-700 m. Here <strong>the</strong><br />

forest has a fairly closed canopy though, patches of open areas are occasionally<br />

found where <strong>the</strong> forest is poorly developed. It contains many more elements of <strong>the</strong><br />

lowland evergreen forest rich in Caesalpinioideae and <strong>the</strong> canopy is dominated by<br />

tree species such as Anthonotha fragrans, Calpocalyx dinklaigei, Canarium<br />

schweinfurthii, Erythrophleum ivorense, Plagiostyles africana, Petersianthus<br />

macrocarpus, Pycnanthus angolensis, Santiria trimera, Strombosiopsis tetrandra,<br />

Tabernaemontana crassa, Stachyothyrsus staudtii and Uapaca guineensis. The<br />

understorey is dominated by shrub species such as Alchornea floribunda, A. hirtella,<br />

Asystasia macrophylla, Haumania danckelmaniana, Heisteria parviflora,<br />

27


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Microdesmis puberula, Palisota ambigua, Podococcus barteri, Scaphopetalum<br />

blackii and S. thonneri.<br />

8. Mixed evergreen and semi-deciduous forests, with semi-deciduous elements<br />

predominant (Mixsemideci).<br />

This forest type which occurs in <strong>the</strong> south and eastern parts of Ma’an is similar to<br />

<strong>the</strong> forest type described above, but it contains many more semi-deciduous elements<br />

than <strong>the</strong> former. The forest is characterised by a discontinuous canopy with<br />

considerable patches of open forests covered by Haumania danckelmaniana and<br />

rattan species such as Calamus deerratus, Laccosperma opacum, L. robustior, L.<br />

secundiflorum, and Oncocalamus mannii. The forest canopy is irregular with<br />

scattered tree species such as Alstonia boonei, Celtis milbraedii, C. tessmannii,<br />

Coula edulis, Dacryodes buettneri, D. macrophylla, Dichostemma glaucescens,<br />

Distemonanthus benthamianus, Erythrophleum ivorense, Lophira alata,<br />

Pentaclethra macrophylla, Petersianthus macrocarpus, Pterocarpus soyauxii,<br />

Pterygota macrocarpa, P. mildbraedii, Pycnanthus angolensis, Stachyothyrsus<br />

staudtii, Tabernaemontana crassa and Triplochiton scleroxylon.<br />

9. Submontane forest on hilltops (Submontane).<br />

It occurs mainly between 800-1100 m on Nkolmedjabambon and Ongongo hills<br />

south of Akom II, on <strong>the</strong> Nkolebengue Hills west of Ebianemeyong, and on o<strong>the</strong>r<br />

hills nor<strong>the</strong>ast of Biwome. The lowland forest rich in Caesalpinioideae gradually<br />

gives way to <strong>the</strong> submontane forest, which occurs on steep slopes with distinctive<br />

ridge top and slope communities. It is characterised by a low canopy (25-30 m high)<br />

with scattered large trees (up to 35 m tall). Common tree species include Afrostyrax<br />

lepidophyllus, Anisophyllea polyneura, Aphanocalyx hedinii, A. microphyllus,<br />

Dacryodes macrophylla, D. klaineana, Endodesmia calophylloides, Fillaeopsis<br />

discophora, Garcinia gnetoides, G. mannii, Klaineanthus gaboniae, Leonardoxa<br />

africana, Newtonia duparquetiana, Plagiosiphon emarginatus, Protomegabaria<br />

stapfiana, Santiria trimera, Scorodophloeus zenkeri, Syzygium staudtii,<br />

Tetraberlinia bifoliolata and Uapaca guineensis. Between 900 and 1100 m, trees<br />

are densely covered by bryophytes (mosses) and vascular epiphytes including ferns<br />

and orchids.<br />

10. Seasonally flooded and swamp forests (Swamp).<br />

They are found throughout <strong>the</strong> Campo-Ma’an area along rivers, in river basins and<br />

creeks in areas which are permanently or seasonally inundated. Many species have<br />

breathing or aerial roots that give a conspicuous physiognomy to this vegetation<br />

when combined with <strong>the</strong> unusual architecture of o<strong>the</strong>r species such as Lasiomorpha<br />

senegalensis, a giant spiny aroid, Ficus vogeliana with long sinuous spreading<br />

buttresses bearing flagelliform infructescences and <strong>the</strong> sprawling, highly thorny<br />

Pandanus. O<strong>the</strong>rs common species include Berlinia bracteosa, Cola hypochrysea,<br />

Gilbertiodendron dewevrei, Hallea stipulosa, Homalium longistylum, Lasiodiscus<br />

mannii, L. marmoratus, Pachypodanthium barteri, Plagiosiphon multijugus,<br />

Spondianthus preussii, Sclerosperma mannii and Uapaca guineensis. Some swamps<br />

are dominated by Raphia species. Riparian forest communities are mostly found on<br />

seasonally exposed rocks along riverbanks that are seasonally submerged. Their<br />

species composition includes normal forest species and species adapted to a<br />

seasonally high water table. Common tree species found include Aphanocalyx<br />

28


Central African tropical rain forest structure and composition<br />

hedinii, Anthonotha macrophylla, Diospyros gracilescens, Ficus vogeliana,<br />

Gilbertiodendron demonstrans, G. dewevrei, Millettia griffoniana, Neolemornniera<br />

batesii, Spondianthus preussii, Synsepalum brevipes, Syzygium guineense var.<br />

littorale, Uapaca guineensis, U. heudelotii, U. staudtii, and Vitex doniana. Narrowleaved<br />

rheophytic shrubs such as Alsodeiopsis zenkeri, Ixora fastigata, Garcinia sp.,<br />

Ouratea dusenii, and Rinorea sp. nov. are commonly found along <strong>the</strong> Ntem and<br />

Bongola rivers.<br />

11. Mangroves<br />

There are many small creeks, sometime with small estuaries and wetlands in <strong>the</strong><br />

Campo-Ma’an area. Occasionally, <strong>the</strong>se habitats ei<strong>the</strong>r support a few clumps of tall<br />

mangroves dominated by tall Rhizophora racemosa and Pandanus candelabrum<br />

species or a population of short mangroves dominated by small Rhizophora<br />

racemosa and Pandanus satabiei. These mangrove trees (20-30 m tall) bear<br />

spectacular aerial roots forming a dense matrix on which one can cross <strong>the</strong><br />

mangrove one or two metres above <strong>the</strong> mud during dry seasons. More often short<br />

mangroves are fringed by seasonally flooded forests which are dominated by Crudia<br />

klainei, Guibourtia demeusei, Hallea stipulosa, Hibiscus tiliaceus, Lonchocarpus<br />

sericeus, Phoenix reclinata, Syzygium guineense var. littorale, Raphia and Uapaca<br />

species.<br />

12. Aucoumea klaineana forest (Okoumé 1&2)<br />

Although Okoumé communities do not form a vegetation type per se in <strong>the</strong> Campo-<br />

Ma’an area, it is worth mentioning its occurrence in Cameroon since Aucoumea<br />

klaineana is reaching its nor<strong>the</strong>rn limit of distribution in <strong>the</strong> area. It only occurs in<br />

small patches around Ebianemeyong on exposed steep hills or to <strong>the</strong> south of Ma’an<br />

close to <strong>the</strong> border with Equatorial Guinea around Nsengou and Ngo’ambang. In<br />

Ebianemeyong, <strong>the</strong> forest is opened and dominated by Aucoumea klaineana<br />

sometimes forming a distinctive near mono-dominant stands on exposed steep hills.<br />

In <strong>the</strong> Ma’an area, small clumps of Okoumé occur in open areas dominated by<br />

species of Haumania danckelmaniana and many rattans species. Despite <strong>the</strong><br />

apparent virgin nature of this forest type, it has a strong secondary character in terms<br />

of species composition.<br />

In addition to <strong>the</strong>se vegetation types, degraded coastal forest, lowland evergreen rain<br />

forest or mixed evergreen and semi-deciduous forests are mostly found along roads<br />

and logging paths, near settlements and industrial sites. Secondary forests are often<br />

dominated by pioneer trees species such as Albizia adianthifolia, Alchornea<br />

cordifolia, Anthocleista schweinfurthii, Bridelia micrantha, Cleistopholis patens,<br />

Dichaetan<strong>the</strong>ra africana, Harungana madagascariensis, Musanga cecropioides,<br />

Rauvolfia caffra, R. vomitoria, Trema orientalis, and Macaranga species.<br />

29


-2.0<br />

Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Figure 2.3 CCA ordination graph based on 958 vascular plant species with DBH ≥ 1 cm recorded in 147<br />

plots showing <strong>the</strong> influence of environmental variables such as rainfall, altitude, distance from<br />

<strong>the</strong> sea, main soil type, drainage and human disturbance on <strong>the</strong> various vegetation types.<br />

Environmental factors with long arrows are more closely correlated in <strong>the</strong> ordination than<br />

those with short arrows and <strong>the</strong>refore are more important in influencing <strong>the</strong> vegetation<br />

groupings<br />

In some areas where degradation is very severe, only few trees are left standing in a<br />

secondary vegetation consisting of pioneer woody and herbaceous species such as<br />

Chromolaena odorata, Lycopodiella cernua, Nephrolepis bisserata, Selaginella<br />

myosurus and S. kraussiana. Marantaceae and Zingiberaceae forests are mainly<br />

found along abandoned logging paths. They form thickets of about 2-3 m high and<br />

are generally dominated by Marantaceae species such as Haumania<br />

danckelmaniana, Marantochloa leucantha, Megaphrynium macrostachyum,<br />

Sarcophrynium prionogonium and many species of Aframomum, Renealmia and<br />

Costus of <strong>the</strong> Zingiberaceae and Costaceae families respectively. This vegetation<br />

type also supports scattered small and medium sized pioneer tree species such as<br />

30<br />

60<br />

9<br />

59<br />

53<br />

55<br />

54 56<br />

61<br />

126<br />

58 62<br />

10<br />

57<br />

132<br />

131<br />

35<br />

128<br />

136<br />

56<br />

19<br />

34 7<br />

16<br />

18<br />

13<br />

15<br />

12<br />

14 1<br />

11<br />

2<br />

8<br />

20<br />

23 32 48<br />

41 24<br />

22<br />

25 42 33<br />

2643<br />

36<br />

46<br />

44<br />

21<br />

45 34<br />

3839<br />

40<br />

30<br />

37 27<br />

28 29 31<br />

4947 50<br />

65<br />

6766 52<br />

63<br />

51<br />

68<br />

69<br />

7172 64<br />

112<br />

80<br />

78<br />

7 84 76<br />

4 8375<br />

77 79 81<br />

82<br />

92<br />

87<br />

113<br />

119<br />

120<br />

121<br />

114<br />

122<br />

125<br />

127<br />

142 143 144<br />

137 123<br />

135<br />

124 141<br />

140<br />

139<br />

138<br />

129<br />

145<br />

Okoumé<br />

-Swamp<br />

Mixsemideci 147<br />

146<br />

63<br />

Caesalpcasa<br />

17 Soil type<br />

Drainage<br />

Disturbance<br />

-Cosaca<br />

Mixevergreen<br />

-1.0 Altitude<br />

0.0 1.0<br />

-Submontane<br />

Caesalpsa<br />

-0.5<br />

89<br />

1<br />

-1.5<br />

88<br />

CCA Axis<br />

2<br />

Rainfall<br />

9<br />

3<br />

130<br />

Caesalp<br />

98<br />

Distance from <strong>the</strong> sea<br />

102 85 86<br />

106<br />

103<br />

96<br />

104 91<br />

95 105 101<br />

97<br />

107<br />

115<br />

134<br />

109<br />

118 116<br />

117<br />

108<br />

111<br />

99<br />

100<br />

133<br />

Mangrove<br />

94<br />

110 9<br />

0<br />

CCA Axis 1<br />

-Cosaga<br />

-Cosas


Central African tropical rain forest structure and composition<br />

Alchornea cordifolia, Anthocleista schweinfurthii, Bridelia micrantha, Harungana<br />

madagascariensis, Musanga cecropioides, Trema occidentalis and Macaranga<br />

species. This forest association appears to be <strong>the</strong> main habitat for forest elephant,<br />

buffalo, gorilla, chimpanzee and many o<strong>the</strong>r large primates because of its good<br />

cover and high food production.<br />

DCA and CCA analyses<br />

The species-environment biplot from <strong>the</strong> CCA analysis is presented in Figure 2.3.<br />

As shown in Table 2.2, <strong>the</strong> first two axes of <strong>the</strong> DCA and CCA analyses of <strong>the</strong> data<br />

set have eigenvalues above 0.5, which denotes a good separation of <strong>the</strong> species<br />

along <strong>the</strong>se axes despite a low amount of species variance explained. TWINSPAN<br />

and correspondence analyses have produced a similar classification since most of<br />

<strong>the</strong> plots that were found toge<strong>the</strong>r in <strong>the</strong> various TWINSPAN groups were also put<br />

toge<strong>the</strong>r in <strong>the</strong> CCA classification groups.<br />

Table 2.2 Summary table of DCA and CCA of 147 plots recorded in <strong>the</strong> Campo-Ma'an area.<br />

Axis 1 Axis 2 Axis 3 Total inertia<br />

DCA 20.83<br />

Eigenvalues 0.92 0.74 0.66<br />

Lengths of gradient 9.38 4.35 4.71<br />

Cumulative percentage variance of species data 17.26 4.75 4.73<br />

CCA 20.83<br />

Eigenvalues 0.68 0.61 0.54<br />

Species-environment correlation (Pearson correlation) 0.97 0.95 0.95<br />

Cumulative percentage variance of species data 3.4 6.2 8.8<br />

Table 2.3. CCA canonical coefficients of 10 important environmental variables recorded in 147 plots<br />

distributed over <strong>the</strong> Campo-Ma’an area.<br />

Environmental factors Axis 1 Axis 2 Axis 3<br />

Mean annual rainfall (mm.y-¹) 0.13 -0.60 -0.21<br />

Altitude (m above sea level) -0.76 0.38 -0.12<br />

Distance from <strong>the</strong> sea (km) -0.01 -0.62 -0.14<br />

Disturbance 0.34 0.10 0.09<br />

Soil characteristics<br />

Main soil type 0.07 0.02 -0.36<br />

Parent material -0.03 -0.10 -0.09<br />

Drainage 0.07 -0.03 -0.61<br />

Top soil texture (0-10 cm) -0.06 -0.02 -0.04<br />

PH (H20) of <strong>the</strong> top soil (0-10 cm) -0.04 -0.09 -0.11<br />

Electricity conductivity of top soil (0-10 cm) 0.03 -0.01 0.10<br />

Environmental factors such as rainfall, proximity to <strong>the</strong> sea and altitude are more<br />

closely correlated with <strong>the</strong> vegetation ordination than soil characteristics. Almost all<br />

<strong>the</strong> coastal plots (Cosaca, Cosaga and Cosas), mangrove, swamps and lowland<br />

evergreen forest rich in Caesalpinioideae (Caesalp, Caesalpcasa and Caesalpsa) are<br />

negatively correlated with altitude and positively with increasing rainfall. Plots that<br />

were located in <strong>the</strong> rain shadow in <strong>the</strong> Ma’an area (Mixevergreen and Mixsemideci)<br />

are characterised by a lower rainfall. The effect of altitude is also well illustrated by<br />

31


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

all high altitude plots grouped toge<strong>the</strong>r (submontane). The relative importance of<br />

environmental variables is shown in Table 2.3. Altitude (-0.76) and disturbance<br />

(0.34) are highly correlated with <strong>the</strong> first axis, distance from <strong>the</strong> sea (-0.62) and<br />

mean annual rainfall (-0.60) with <strong>the</strong> second axis, and drainage (-0.61) and soil type<br />

(-0.36) with <strong>the</strong> third axis.<br />

Soils<br />

Following <strong>the</strong> FAO classification system, soils in <strong>the</strong> Campo-Ma’an area were<br />

generally classified as Ferrasols and Acrisols (Franqueville, 1973; Muller, 1979; van<br />

Gemerden & Hazeu, 1999). They are strongly wea<strong>the</strong>red, acid and low in nutrients<br />

with pH (H2O) values generally around 4 (Annex 2). The soils are deep to very deep<br />

and clayey in texture, except at <strong>the</strong> seashores and river valleys where <strong>the</strong>y are often<br />

sandy. Based on drainage characteristics and texture, four major soil types can be<br />

distinguished in <strong>the</strong> area. Poorly drained soils that are commonly found in <strong>the</strong> river<br />

valleys and adjacent swamp areas throughout <strong>the</strong> Campo-Ma’an area. They were<br />

classified as Dystric Fluviosols or Gleyic Cambisols. The texture is often sandy to<br />

gravely with clay interlayer. Moderately well to well drained soils are frequent in<br />

o<strong>the</strong>r parts of <strong>the</strong> research area. The dominant soils in <strong>the</strong> coastal plain are Plinthic<br />

Ferrasols, with patches of Haplic Acrisols and Acri-Xanthic Ferrasols. They are<br />

sandy clay loam soils developed on granites and gneiss with high pyrocene content.<br />

In <strong>the</strong> eastern part of <strong>the</strong> Campo-Ma’an area, soils are developed on ectinites<br />

including gneiss, micaschist and quartzite. Xanthic Ferrasols are predominant<br />

though Ferralic Cambisols and Ferric Acrisols are also found around <strong>the</strong> Massif des<br />

Mamelles. In <strong>the</strong> mountainous area, soils are developed on migmatites and granites<br />

and are mostly classified as Acri-Xanthic Ferrasols and Xanthic Ferrasols. They are<br />

deep clay soils with a sandy clay loam to sandy clay topsoil.<br />

Forest structure and floristic composition<br />

Diameter class distribution and basal area<br />

In total 78086 trees, shrubs, climbers and o<strong>the</strong>r vascular plants with DBH ≥ 1cm in<br />

147 plots (14.7 ha) were recorded in <strong>the</strong> various vegetation types (Table 2.4). They<br />

belonged to 1116 species, 421 genera and 98 families. Of all <strong>the</strong> records 75% were<br />

identified at species level, 23% at generic level and 2% at family level. The diameter<br />

distribution pattern of stems was similar among <strong>the</strong> various vegetation types and all<br />

plots were characterized by a high density of stem 1-30 cm DBH and a paucity of<br />

trees above 50 cm DBH, with a tendency of smaller canopy trees in <strong>the</strong> submontane<br />

forest, mangrove and swamps. As shown in Table 2.4, <strong>the</strong> mean number of stems/ha<br />

for all vascular plants ≥ 1cm DBH varies from 4380 in <strong>the</strong> lowland evergreen forest<br />

rich in Caesalpinioideae to 8630 in <strong>the</strong> mangrove. The mean basal area/ha varies<br />

from 49.86 in <strong>the</strong> coastal forest on sandy shorelines to 88.73 in lowland evergreen<br />

forest rich in Caesalpinioideae with Calpocalyx heitzii and Sacoglottis gabonensis.<br />

In general, <strong>the</strong> area is characterized by a high mean basal area/ha because of <strong>the</strong> high<br />

frequency of canopy trees with large buttresses.<br />

32


No of species<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Central African tropical rain forest structure and composition<br />

y = -3.4179x + 135.05<br />

F1,145 = 95.946, R 2 = 0.5105, P < 0.0001<br />

0 5 10 15 20 25 30<br />

Degree of disturbance<br />

Figure 2.4 Correlation between <strong>the</strong> degree of human disturbance (% of degraded forest) and <strong>the</strong> number<br />

of species recorded in 147 plots of 0.1 ha each.<br />

Floristic composition and species richness<br />

As shown in Table 2.4, <strong>the</strong> number of species for all vascular plants ≥ 1cm recorded<br />

varies from 4 in <strong>the</strong> mangrove to 557 in <strong>the</strong> lowland evergreen forest rich in<br />

Caesalpinioideae. The mangrove, swamps and coastal forest on sandy shorelines<br />

were species poor and less diverse than <strong>the</strong> o<strong>the</strong>r forest types. Overall, <strong>the</strong><br />

Rubiaceae family has <strong>the</strong> highest number of species (159 species of vascular plants<br />

with DBH ≥ 1cm), followed by Euphorbiaceae (80 species), Leguminosae-<br />

Caesalpinioideae (72 species), Annonaceae (61 species), Sterculiaceae (50 species),<br />

Sapindaceae (37 species), Apocynaceae (34 species), Ochnaceae (28 species),<br />

Sapotaceae (26 species), Ebenaceae, Guttiferae and Meliaceae (25 species each),<br />

Dichapetalaceae and Leguminosae-Papilionoideae (22 species each).<br />

Generally, <strong>the</strong> Campo-Ma’an area is characterized by a rich and diverse flora. The<br />

Shannon diversity index was relatively high and varied from 0.12 in <strong>the</strong> mangrove to<br />

5.33 in <strong>the</strong> submontane forest. Results from <strong>the</strong> enumeration of all vascular plant<br />

species showed and confirmed that <strong>the</strong> lowland evergreen forest rich in<br />

Caesalpinioideae is characterized by its abundance in Caesalpinioideae (72 species).<br />

33


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Figure 2.5 Correlation between altitude and <strong>the</strong> number of species recorded in 147 plots of 0.1 ha each.<br />

The important value index (IVI) of <strong>the</strong> Caesalpiniaceae was high in most of <strong>the</strong><br />

vegetation types encountered and varied from 38.09 in lowland evergreen forest rich<br />

in Caesalpinioideae to 14.01 in <strong>the</strong> lowland evergreen forest rich in Caesalpinioideae<br />

with Sacoglottis gabonensis. In terms of species richness, <strong>the</strong>re was a strong<br />

significant negative correlation between <strong>the</strong> number of species recorded in <strong>the</strong><br />

various plots and <strong>the</strong> level of human disturbance (Figure 2.4) and a relatively weak<br />

correlation with rainfall (F1, 145 = 10.094, R² = 0.099, P = 0.002), altitude (Figure<br />

2.5), and distance from <strong>the</strong> sea (F1, 145 = 10.797, R² = 0.105, P = 0.001), or pH (F1, 145<br />

= 7.200, R² = 0.073, P = 0.009).<br />

34<br />

No of species<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

y = 0.0387x + 98.45<br />

F1,145 = 21.318, R 2 = 0.188, P < 0.0001<br />

0<br />

0 200 400 600<br />

Altitude (m)<br />

800 1000 1200


Central African tropical rain forest structure and composition<br />

Table 2.4 Summary of <strong>the</strong> number of species, number of stem/ha, mean basal area/ha, canopy height and<br />

Shannon diversity index (H’) of <strong>the</strong> various vegetation types for all plants with DBH ≥ 1 cm<br />

recorded in <strong>the</strong> Campo-Ma'an area. Minimum and maximum values are given between<br />

brackets.<br />

Vegetation types No of<br />

plots<br />

No of<br />

species<br />

Average No<br />

of stems/ha<br />

Caesalp (2.3 ha) 23 557 4380<br />

(75-128) (2500-5750)<br />

Caesalpcasa (2.5 ha) 25 555 5326<br />

(93-139) (3120-7020)<br />

Caesalpsa (1.4 ha) 14 474 5935<br />

(86-138) (4350-7120)<br />

Cosaga (0.9 ha) 9 303 5810<br />

(81-140) (4940-8010)<br />

Cosaca (0.9 ha) 9 326 5864<br />

(78-108) (4740-7570)<br />

Cosas (0.4 ha) 4 100 4710<br />

(27-55) (3630-5700)<br />

Mixevergreen (2.1 ha) 21 523 4983<br />

(63-135) (3890-6980)<br />

Mixsemideci (1.6 ha) 16 481 5460<br />

(86-147) (4390-6340)<br />

Submontane (1.4 ha) 14 499 6094<br />

(79-148) (3680-8449)<br />

Swamps (0.5 ha) 5 246 4276<br />

(18-108) (2070-5960)<br />

Mangrove (0.2 ha) 2 4 8630<br />

(3-4) (8150-9100)<br />

Okoumé forests (0.5 ha) 5 234 4802<br />

(18-107) (3720-5800)<br />

Total for <strong>the</strong> Campo-Ma'an 147 1116 5312<br />

area (14.7 ha)<br />

(3-148) (2070-9100)<br />

2.4. DISCUSSION<br />

Mean basal<br />

area/ha<br />

75.89<br />

(37.95-121.90)<br />

88.73<br />

(41.00-146.75)<br />

85.73<br />

(58.94-161.98)<br />

86.1<br />

(35.82-113.67)<br />

87.69<br />

(32.40-140.31)<br />

49.86<br />

(34.88-65.08)<br />

78.22<br />

(45.36-135.03)<br />

69.73<br />

(68.88-131.25)<br />

57.66<br />

(40.74-67.90)<br />

62.77<br />

(41.15-100.01)<br />

75.16<br />

(66.03-84.30)<br />

64.28<br />

(42.47-91.95)<br />

76.71<br />

(34.88-161.98)<br />

Height of<br />

upper<br />

canopy<br />

50<br />

(40-55)<br />

50<br />

(40-55)<br />

45<br />

(40-50)<br />

45<br />

(40-50)<br />

45<br />

(40-50)<br />

30<br />

(25-35)<br />

45<br />

(40-50)<br />

45<br />

(40-50)<br />

30<br />

(25-35)<br />

30<br />

(25-35)<br />

30<br />

(20-35)<br />

40<br />

(30-45)<br />

50<br />

(20-55)<br />

Shannon<br />

diversity<br />

index (H’)<br />

5.12<br />

General vegetation patterns<br />

There is a good correspondence between <strong>the</strong> TWINSPAN, DCA and CCA<br />

classifications and <strong>the</strong> comparable outputs from <strong>the</strong>se analyses efficiently illustrate<br />

<strong>the</strong> influence of <strong>the</strong> main environmental factors on <strong>the</strong> various vegetation types. This<br />

probably indicates that all relevant environmental variables were included in <strong>the</strong><br />

analyses and that <strong>the</strong> sampling design, based on small plots of 0.1 ha in which all<br />

vascular plants with DBH ≥ 1 cm are recorded, may be successfully applied in<br />

detecting species environment relationships in a tropical rain forest (Hall & Swaine,<br />

1976; Gartlan et al., 1986; Duivenvoorden & Lips, 1995; Newbery et al., 1996).<br />

However, <strong>the</strong> data presented some difficulties to TWINSPAN and CCA analyses<br />

because some species were commonly found throughout <strong>the</strong> area thus resulting in<br />

<strong>the</strong> presence of a few outlying plots.<br />

The vegetation in <strong>the</strong> Campo-Ma’an area falls within <strong>the</strong> Lower Guinea subdivision<br />

of <strong>the</strong> Guineo-Congolian rain forest region and is part of <strong>the</strong> Biafran forest type that<br />

extends from Sou<strong>the</strong>ast Nigeria to Gabon and <strong>the</strong> Mayombe area in Congo (White,<br />

5.01<br />

5.09<br />

4.58<br />

4.38<br />

3.54<br />

4.70<br />

4.59<br />

5.33<br />

4.35<br />

0.12<br />

4.10<br />

5.54<br />

35


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

1983; Letouzey, 1968 & 1985). The Campo-Ma’an forest is situated in <strong>the</strong> middle of<br />

this belt and shares with o<strong>the</strong>r sites <strong>the</strong> overall characteristic of <strong>the</strong> Atlantic Biafran<br />

forest mainly with evergreen but also some semi-deciduous elements. Although this<br />

vegetation type is widespread, <strong>the</strong>re is a considerable variation in dominant species<br />

and species composition between localities. This study demonstrated that <strong>the</strong> area<br />

has a diverse and rich forest with more than 10 vegetation types and sub-types that<br />

include <strong>the</strong> coastal vegetation, lowland evergreen forest rich in Caesalpinioideae,<br />

mixed evergreen and semi-deciduous forest, mangroves, seasonally flooded and<br />

swamp forests, riparian vegetation and secondary forests (Figure 2.2). The Campo<br />

area was dominated by <strong>the</strong> lowland evergreen forest rich in Caesalpinioideae and <strong>the</strong><br />

Ma’an area by <strong>the</strong> mixed evergreen and semi-deciduous forest.<br />

In terms of relative density, <strong>the</strong> Caesalpinioideae was <strong>the</strong> dominant sub-family<br />

throughout <strong>the</strong> area. Its species were co-dominant and <strong>the</strong>ir abundance varied within<br />

<strong>the</strong> various vegetation types. Some of <strong>the</strong>m were gregarious with a high regeneration<br />

capacity and many juvenile trees. Many species were emergent or big canopy trees<br />

with large buttresses that partly account for <strong>the</strong> high basal area recorded in <strong>the</strong> area.<br />

More than 65% of <strong>the</strong> forest types recorded have at least 250 species with a Shannon<br />

diversity index > 4. Moreover, 56% of all <strong>the</strong> plots recorded have more than 100<br />

species/0.1 ha for all vascular plants above 1 cm DBH. The submontane forest has<br />

<strong>the</strong> highest frequency of species-rich plots (93% of all plots recorded has more than<br />

100 species/0.1 ha). O<strong>the</strong>r rich vegetation types include <strong>the</strong> lowland evergreen forest<br />

rich in Caesalpinioideae with Calpocalyx heitzii and Sacoglottis gabonensis (81%),<br />

<strong>the</strong> lowland evergreen forest rich in Caesalpinioideae with Sacoglottis gabonensis<br />

(78%), <strong>the</strong> lowland evergreen forest rich in Caesalpinioideae (76%) and <strong>the</strong> mixed<br />

evergreen and semi-deciduous forest (67%). The mangroves, swamps and <strong>the</strong><br />

coastal vegetations on sandy shorelines were species-poor.<br />

The impact of environmental and human factors<br />

Rainfall and proximity to <strong>the</strong> sea<br />

There was a strong positive correlation between <strong>the</strong> various vegetation types, rainfall<br />

and proximity to <strong>the</strong> sea. These three factors were highly correlated with <strong>the</strong> first<br />

two axes of <strong>the</strong> CCA ordination graph. The average annual rainfall generally<br />

decreases with increasing distance from <strong>the</strong> sea, ranging from 2950 mm/year in<br />

Kribi to 2000 mm around Akom II and 1670 mm in <strong>the</strong> Ma’an area (Olivry, 1986).<br />

The Ma’an area has significant less rainfall than o<strong>the</strong>r areas. This is probably due to<br />

a rain shadow effect caused by <strong>the</strong> range of hills that start from Ebianemeyong to<br />

Akom II and which forms a substantial upland block between Ma’an and <strong>the</strong> ocean.<br />

As a result <strong>the</strong> vegetation changes from <strong>the</strong> mangrove or coastal forest with many<br />

coastal indicator species, through <strong>the</strong> lowland evergreen forest rich in<br />

Caesalpinioideae to <strong>the</strong> mixed evergreen and semi-deciduous forest in <strong>the</strong> drier<br />

Ma’an area. The number of species recorded was relatively influenced by <strong>the</strong><br />

proximity of <strong>the</strong> sea and rainfall, thus resulting in a gradual variation in dominant<br />

species and an increase in species richness with increasing distance from <strong>the</strong> sea and<br />

decreasing annual rainfall. The submontane forests and <strong>the</strong> Caesalpinioideae forests<br />

of <strong>the</strong> interior were more diverse and species rich than <strong>the</strong> coastal forests (Table<br />

2.4).<br />

36


Central African tropical rain forest structure and composition<br />

Altitude<br />

Altitude also had a positive influence on <strong>the</strong> general vegetation patterns and species<br />

composition in <strong>the</strong> area (Figure 2.5). It is worth mentioning that <strong>the</strong> effect of altitude<br />

on <strong>the</strong> vegetation is less pronounced in <strong>the</strong> Campo-Ma’an area than in o<strong>the</strong>rs<br />

mountainous areas in Cameroon. This is partly due to <strong>the</strong> fact that Campo-Ma’an is<br />

not a mountain and <strong>the</strong> hills found here are low (up to 1100 m above sea level) and<br />

do not show a clear altitudinal gradient in <strong>the</strong> vegetation from sea level to <strong>the</strong> top.<br />

On <strong>the</strong>se hills <strong>the</strong> forest composition was almost <strong>the</strong> same on both sides of <strong>the</strong> slope.<br />

Generally, on high mountains, <strong>the</strong> number of species tends to decrease with<br />

increasing altitude. But in <strong>the</strong> Campo-Ma’an area, <strong>the</strong>re was ra<strong>the</strong>r a relative<br />

increase of species richness with increasing altitude. High altitude forest appeared to<br />

be relatively more species-rich than <strong>the</strong> lowland and coastal forests. In <strong>the</strong><br />

submontane forest, more than 93% of <strong>the</strong> plots had at least 100 species/0.1 ha.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> structure and composition of <strong>the</strong> forest, as well as <strong>the</strong> physiognomy<br />

of <strong>the</strong> species change progressively as one moves from <strong>the</strong> lowland to <strong>the</strong><br />

submontane forest. In <strong>the</strong> lowland forest, trees were taller (up to 50 m) and a<br />

considerable number of emergent and canopy trees have large buttresses. Many<br />

small trees and shrubs bear <strong>the</strong>ir flowers and fruits directly on <strong>the</strong> trunk or large<br />

branches. The submontane forest was lower (25-35 m) than <strong>the</strong> lowland forest and<br />

between 900-1100 m many trees were covered with bryophytes and vascular<br />

epiphytes. Fur<strong>the</strong>rmore, special physiognomic features characteristic of <strong>the</strong> lowland<br />

forest such as large woody lianas, buttressing and cauliflory were less common.<br />

Soils<br />

The relationships between soil characteristics and <strong>the</strong> vegetation types was less clear<br />

than o<strong>the</strong>r environmental variables such as rainfall, proximity to <strong>the</strong> sea and altitude,<br />

though soil type showed highest correlation with <strong>the</strong> third axis of <strong>the</strong> CCA result.<br />

Mangroves and swampy forests on hydric soils with poor drainage conditions have<br />

low nutrient concentrations and are species-poor. This must stem partly from <strong>the</strong><br />

fact that, in exception to mangrove and swamps that are characterised by a<br />

distinctive edaphic condition, soils in <strong>the</strong> research area are well drained, strongly<br />

wea<strong>the</strong>red, and acid with pH (H2O) values generally around 4. However, soil type<br />

and drainage were correlated with plots recorded in mangrove and swamps forests<br />

(Figure 2.3). Gartlan et al. (1986) and Newbery et al. (1996) undertook similar<br />

analyses in Korup National Park and <strong>the</strong> Douala-Edea Forest Reserve in Cameroon<br />

and found that <strong>the</strong> main environmental factors affecting vegetation were rainfall,<br />

altitude, slope, drainage, and potassium and phosphorus concentrations in <strong>the</strong> soil.<br />

They argued that rainfall and seasonality are likely to lead to stronger distributional<br />

gradients than soil nutrients in equatorial Africa rain forests. Although we did not<br />

carry out soil nutrient analyses, we found that in addition to rainfall, proximity to sea<br />

and altitude, human disturbance, drainage and soil type are <strong>the</strong> most important<br />

characteristics influencing <strong>the</strong> vegetation types in <strong>the</strong> Campo-Ma’an area. However,<br />

it is noteworthy to mention that many of <strong>the</strong> present-day distributions of plant<br />

species in <strong>the</strong> tropical Africa region are also dependent on <strong>the</strong> Pleistocene history<br />

and <strong>the</strong> continuing influence of Quaternary glacial and inter-glacial periods<br />

(Hamilton, 1982; White, 1983; Maley 1987, 1989, 1993, 1996 & 2001; Sosef, 1994<br />

& 1996).<br />

37


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Human disturbance<br />

The vegetation patterns as well as <strong>the</strong> forest composition and species richness were<br />

strongly influenced by <strong>the</strong> degree of human disturbance. Disturbance was positively<br />

correlated with <strong>the</strong> first axis of <strong>the</strong> CCA ordination graph and <strong>the</strong> number of species<br />

recorded in <strong>the</strong> various plots (Table 2.3 and Figure 2.4). Coastal forests appeared to<br />

be more disturbed with many secondary species, less species-rich and less diverse<br />

than o<strong>the</strong>r forest types recorded. This is mainly due to <strong>the</strong> fact that <strong>the</strong> replacement<br />

of <strong>the</strong> Campo-Ma’an rain forests into o<strong>the</strong>r land use types began centuries ago, and<br />

<strong>the</strong> coastal area is more degraded. So far, large tracts of <strong>the</strong> primary lowland forests<br />

have been affected by agriculture, shifting cultivation, urbanisation and more<br />

recently by logging. Clearance of natural vegetation to provide land for settlements<br />

and subsistence agriculture (28% of <strong>the</strong> total area) and commercial agriculture<br />

(7.5%) is <strong>the</strong> biggest threat to <strong>the</strong> lowland forests and its unique vegetation. Timber<br />

exploitation is <strong>the</strong> main economic activity in <strong>the</strong> area and logging concessions cover<br />

31.4% of <strong>the</strong> area. It is ra<strong>the</strong>r difficult to find undisturbed forest of this type, despite<br />

its primary appearance in some areas (Table 2.1 and Figure 2.2). Particularly, <strong>the</strong><br />

coastal forest and <strong>the</strong> lowland evergreen forest rich in Caesalpinioideae suffered<br />

from logging and agricultural activities. Pockets of undisturbed primary forest<br />

mainly remain on hills and gentle slopes because of difficult access.<br />

Long before <strong>the</strong>se recent human activities on <strong>the</strong> Campo-Ma’an rain forests, man<br />

has had a marked influence on <strong>the</strong> coastal vegetation (Reynaud & Maley, 1994;<br />

Oslisly, 2001; Maley & Brenac, 1998; Maley 1999, 2001 & 2002). Recent<br />

archeological exploration in <strong>the</strong> area has identified village sites located along <strong>the</strong><br />

coast (Bwambé, Bwendjo, Campo, Ebodje, Lobé and Lolabé) and within <strong>the</strong> forest<br />

(Biyan, Efoulan II, Nemeyong, Nkoelon, Nkolebengue and Nkolmekok) dated<br />

3.000-2.500 years BP (Kuete, 1990; Ossa Mvondo, 1994 & 1998; Oslisly et al.,<br />

2001). This has brought several authors to argue that <strong>the</strong> coastal forests and <strong>the</strong><br />

mixed evergreen and semi-deciduous forests in <strong>the</strong> Ma’an area may have undergone<br />

a great change in <strong>the</strong> past that is probably caused by man. A strong indication of past<br />

human disturbance is <strong>the</strong> frequent occurrence of Alstonia boonei, Ceiba pentandra,<br />

Lophira alata, Pycnanthus angolensis and Terminalia superba which are<br />

characteristic of mature secondary vegetation. Letouzey (1968 & 1985) classified<br />

most of <strong>the</strong> coastal forest as “Forêts atlantiques littorales à Lophira alata et<br />

Sacoglottis gabonensis” because of <strong>the</strong> abundance of Lophira alata. Today it is very<br />

difficult to find a mature stem of Lophira alata in <strong>the</strong>se forests since <strong>the</strong>y have been<br />

selectively logged at least twice during <strong>the</strong> past 30 years. Logging also accounts for<br />

<strong>the</strong> low density of mature timber tree species recorded in <strong>the</strong> coastal and lowland<br />

forest rich in Caesalpinioideae. However, despite this human influence on <strong>the</strong><br />

Campo-Ma’an rain forest, <strong>the</strong>re is still a considerable portion of rich and diverse<br />

forest in <strong>the</strong> Campo-Ma’an National Park and its surroundings. Fur<strong>the</strong>rmore, recent<br />

studies carried out by van Gemerden et al. (2003) in <strong>the</strong> Bipindi-Akom II-Lolodorf<br />

forests adjacent to <strong>the</strong> Campo-Ma’an area has shown that vegetation recovery in<br />

gaps caused by selective logging is relatively quick (5-14 years after logging) in<br />

Central African rain forest.<br />

38


2.5. CONCLUSION<br />

Central African tropical rain forest structure and composition<br />

There was a good correspondence between <strong>the</strong> TWINSPAN, DCA and CCA<br />

classifications and <strong>the</strong> analyses illustrated <strong>the</strong> influence of <strong>the</strong> main environmental<br />

factors on <strong>the</strong> various vegetation types. The present study demonstrated that <strong>the</strong><br />

vegetation of <strong>the</strong> Campo-Ma’an area is determined by rainfall, <strong>the</strong> proximity to <strong>the</strong><br />

sea, altitude, soils and human disturbance. There was a strong impact of rainfall,<br />

proximity to <strong>the</strong> sea and human disturbance on <strong>the</strong> various vegetation types. As a<br />

result <strong>the</strong> vegetation changes from <strong>the</strong> coastal forest on sandy shorelines, through<br />

<strong>the</strong> lowland evergreen forest rich in Caesalpinioideae to <strong>the</strong> mixed evergreen and<br />

semi-deciduous forest in <strong>the</strong> drier Ma’an area. There is also a gradual variation in<br />

dominant species and an increase in species richness from <strong>the</strong> coast to <strong>the</strong> interior.<br />

Altitude and slope factors seem to have less influence on <strong>the</strong> general patterns of <strong>the</strong><br />

vegetation distribution and species composition in <strong>the</strong> Campo-Ma’an area than<br />

rainfall and proximity to <strong>the</strong> sea. The overall relationship between soil<br />

characteristics and <strong>the</strong> various vegetation types was less clear than o<strong>the</strong>r<br />

environmental variables. However, drainage and soil type were <strong>the</strong> most important<br />

soil characteristics. Soil texture, pH and electricity conductivity values had less<br />

impact on <strong>the</strong> forest composition. The strong relationship between human<br />

disturbance and <strong>the</strong> vegetation patterns has implications on <strong>the</strong> floristic composition<br />

and species richness of various forest types. Coastal forests appeared to be more<br />

disturbed with many secondary species, less species-rich and less diverse than o<strong>the</strong>r<br />

forest types recorded.<br />

Photo: Large buttress of Desbordesia glaucescens (Engl.) Tiegh. (Irvingiaceae) (Tchouto, M.G.P.)<br />

39


Chapter 3<br />

DIVERSITY PATTERNS IN THE FLORA OF THE<br />

CAMPO-MA’AN RAIN FOREST, CAMEROON:<br />

DO TREE SPECIES TELL IT ALL?<br />

Gildas Peguy Tchouto Mbatchou (1)<br />

With W.F. de Boer (2) , de Wilde J.J.F.E. (3) , and van der Maesen L.J.G. (3)<br />

(1) Limbe Botanic Garden, BP 437, Limbe, Cameroon; e-mail: peguy2000@yahoo.com<br />

(2) Tropical Nature Conservation and Vertebrate Ecology Group, Wageningen University, Bornsesteeg 69,<br />

6708 PD, Wageningen, <strong>the</strong> Ne<strong>the</strong>rlands; e-mail: fred.deboer@wur.nl<br />

(3) Biosystematics Group, Wageningen University, Generaal Foulkesweg 37, 6703 BL, Wageningen, <strong>the</strong><br />

Ne<strong>the</strong>rlands; e-mail: jos.vandermaesen@wur.nl


Diversity patterns in <strong>the</strong> flora of <strong>the</strong> Campo-Ma’an rain forest, Cameroon: do tree species tell it all?<br />

3.1. INTRODUCTION<br />

In a large, heterogeneous and structurally complex forest ecosystem such as <strong>the</strong><br />

Campo-Ma’an tropical rain forest, selection of <strong>the</strong> most appropriate methods for <strong>the</strong><br />

assessment of plant biodiversity is a difficult matter. So far, many botanical<br />

biodiversity studies in tropical rain forest are often limited to tree species (mainly<br />

medium and large trees, or for some cases trees with DBH ≥ 10 cm) which are<br />

assumed to reflect <strong>the</strong> forest floristic composition and physical structure (Letouzey,<br />

1968; Reitsma, 1988; Hart et al., 1989; Mosango, 1990; Koubouana, 1993; Wolter,<br />

1993; Lejoly, 1995a & 1995b; Newbery & Gartlan 1996; White, 1996; Sonké, 1998,<br />

Sonké & Lejoly 1998; van Valkenburg 1998). Moreover, for most of <strong>the</strong>se studies<br />

tree species accounted for more than 50% of <strong>the</strong> overall species composition. This<br />

traditional approach of forest inventory might not be sufficient for biodiversity<br />

assessment because o<strong>the</strong>r taxa such as shrubs, small trees, woody lianas, herbaceous<br />

climbers, herbs and epiphytic flora are not or under-represented. Fur<strong>the</strong>rmore, it has<br />

been shown in Central and West Africa that many plant species of high conservation<br />

value such as endemic and rare species are shrub and herbaceous species (Letouzey,<br />

1968 & 1985; Robbrecht, 1996; Sosef, 1996; Achoundong, 2000; Cable & Cheek,<br />

1998). Therefore, assessments based solely on trees might be inadequate for<br />

conservation purposes.<br />

In Chapter 2, we classified, described and mapped <strong>the</strong> various vegetation types<br />

recorded in <strong>the</strong> Campo-Ma’an area and analysed <strong>the</strong> forest structure and<br />

composition. In this Chapter we will study <strong>the</strong> diversity and distribution of <strong>the</strong> flora<br />

in <strong>the</strong> Campo-Ma’an rain forest, and find out whe<strong>the</strong>r <strong>the</strong>re is a correlation between<br />

tree species diversity and diversity of o<strong>the</strong>r growth forms such as shrubs, herbs and<br />

lianas. This will help us to understand if, in <strong>the</strong> contest of African tropical rain<br />

forest, tree species diversity tells it all. Are forests that are rich in tree species also<br />

rich in o<strong>the</strong>r life forms?<br />

3.2. METHODS<br />

Field sampling<br />

Representative and homogeneous vegetation types were selected on <strong>the</strong> basis of<br />

physical and human factors such as altitude, slopes, rainfall, soils and land use<br />

(Chapter 2). Sampling was carried out in small plots of 0.1 ha at irregular intervals<br />

along a line transect from a random starting point. In mountainous areas, plots were<br />

located at an altitudinal interval of 200 m along <strong>the</strong> slope and on both sides of <strong>the</strong><br />

ridge. In total 147 plots covering 14.7 ha were established and in each 0.1 ha plot,<br />

all trees, shrubs, herbs and lianas with DBH ≥ 1 cm were measured, recorded and<br />

identified as far as possible. For unknown species, a voucher specimen was<br />

collected. Herbaceous species and seedlings of trees, shrubs and climbers were<br />

sampled in subplots of 5 m x 5 m each that were established in <strong>the</strong> 0.1 ha plots.<br />

These subplots were not used for <strong>the</strong> analyses, <strong>the</strong> output was only used to illustrate<br />

<strong>the</strong> contribution of <strong>the</strong> ground layer and herbaceous species when all vascular plant<br />

species are included in <strong>the</strong> floristic assessment of <strong>the</strong> forest.<br />

43


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Data analysis<br />

The analysis focussed on family and species level floristic richness and diversity of<br />

<strong>the</strong> various life forms and forest strata within 145 plots recorded in <strong>the</strong> area.<br />

Although 11 vegetation types were identified for <strong>the</strong> Campo-Ma’an area (Chapter<br />

2), <strong>the</strong> analysis was done on 6 main vegetation types by grouping some of <strong>the</strong> forest<br />

types for a better illustration of <strong>the</strong> diversity patterns. All coastal forest types were<br />

grouped as coastal forest, all Caesalpinioideae forests as forest rich in<br />

Caesalpinioideae, <strong>the</strong> Calpocalyx and Sacoglottis forests as forest rich in Calpocalyx<br />

heitzii and Sacoglottis gabonensis, and <strong>the</strong> mixed forests as mixed evergreen and<br />

semi-deciduous forest. The 2 plots recorded in mangroves were excluded from <strong>the</strong><br />

analysis because mangroves form a mono-dominant community with only 4 species.<br />

In this study tree layer comprised all vascular plant species with DBH ≥ 10 cm,<br />

shrub layer (1.5 cm ≤ DBH < 10 cm) and herbaceous layer (1 cm ≤ DBH < 1.5 cm).<br />

Diversity was measured by recording <strong>the</strong> number of species (species richness) and<br />

<strong>the</strong>ir relative abundance in <strong>the</strong> different plots and vegetation types. This study<br />

focused on <strong>the</strong> α diversity (species richness), which is defined as <strong>the</strong> number of<br />

species within a chosen area, given equal weight on each species, and <strong>the</strong> β<br />

diversity, which is <strong>the</strong> difference in species diversity between areas or communities<br />

(Kent & Coker, 1992; Bisby, 1995). β diversity was quantified with <strong>the</strong> Shannon<br />

diversity index (H’) using all individuals above 1 cm DBH and all species per plot.<br />

Phytosociological parameters (relative density and relative frequency) and Shannon<br />

diversity index were calculated following Whittaker (1975), Kent & Coker (1992)<br />

and Magurran (1988). The SPSS package version 10.0 for Windows was used for<br />

statistical analyses. The Pearson’s correlation test was used to correlate <strong>the</strong> species<br />

richness and diversity between <strong>the</strong> various growth forms and forest layers. We<br />

compared <strong>the</strong> diversity and species richness within forest layers and within growth<br />

forms using a General Linear Model (GLM) followed by a Tukey Multiple<br />

Comparison test (P < 0.05).<br />

3.3. RESULTS<br />

General patterns of species richness and diversity within forest types<br />

A total of 76360 trees, shrubs, climbers and o<strong>the</strong>r vascular plants with DBH ≥ 1 cm<br />

was recorded in 145 plots of 0.1 ha each in <strong>the</strong> various vegetation types. They<br />

belonged to 1112 species, 420 genera and 97 families. In addition, 759 species of<br />

vascular plants (herbs, hemi-epiphytes, shrubs and seedlings of tree species)<br />

belonging to 101 families and 327 genera were recorded in <strong>the</strong> subplots of 5 m x 5<br />

m each located within <strong>the</strong> 0.1 ha plots. Overall, 1471 species of vascular plants,<br />

including ferns and fern allies belonging to 542 genera and 126 families were<br />

recorded. More than 73% of all specimens collected were identified at species level,<br />

23% at generic level, 3% at family level and 1% unidentified. As shown in Table<br />

3.1, <strong>the</strong> number of stems/ha for all vascular plants ≥ 1 cm DBH varied from 5798 in<br />

swamps to 6912 in <strong>the</strong> submontane forest. The number of species/ha for all vascular<br />

plants ≥ 1 cm recorded varied from 293 in swamps to 468 in <strong>the</strong> lowland evergreen<br />

forest rich in Caesalpinioideae. The Shannon diversity (H’) varied from 4.73 in<br />

coastal forests to 5.16 in forests rich in Caesalpinioideae. More than 57% of <strong>the</strong><br />

plots have above 100 species/0.1 ha and a Shannon diversity (H’) > 4 with <strong>the</strong> most<br />

44


Diversity patterns in <strong>the</strong> flora of <strong>the</strong> Campo-Ma’an rain forest, Cameroon: do tree species tell it all?<br />

Table 3.1 Summary of <strong>the</strong> number of species, number of families, number of stems/ha and Shannon<br />

diversity (H’) recorded in each vegetation types for all vascular plants with DBH ≥ 1 cm.<br />

Vegetation types<br />

No of<br />

species<br />

No of<br />

families<br />

No of<br />

stems/ha<br />

Shannon<br />

diversity<br />

index (H’)<br />

Coastal forest (mangroves excluded) 381 69 6208 4.73<br />

Swamps 293 58 5798 4.58<br />

Forest rich in Caesalpinioideae 468 68 6033 5.16<br />

Forest rich in Calpocalyx heitzii and Sacoglottis<br />

416 65 5990 4.93<br />

gabonensis<br />

Mixed evergreen and semi-deciduous forest 441 66 5867 4.77<br />

Submontane 412 64 6912 5.14<br />

diverse and species-rich plots located in <strong>the</strong> submontane forests, forests rich in<br />

Caesalpinioideae, and forests rich in Calpocalyx heitzii and Sacoglottis gabonensis.<br />

Species richness and diversity within forest strata<br />

The number of stems/ha and <strong>the</strong> number of vascular plant species recorded were<br />

generally higher in <strong>the</strong> shrub layer (all vascular plant with diameter between 1.5 cm<br />

≤ DBH


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Table 3.2 Summary of <strong>the</strong> number of species, number of families, number of stem/ha and Shannon<br />

diversity (H’) recorded in <strong>the</strong> tree, shrub and herbaceous layers for each vegetation types for<br />

all vascular plants with DBH ≥ 1 cm. Note that species may overlap within forest strata.<br />

Forest types<br />

Floristic composition<br />

46<br />

Coastal<br />

forest<br />

Swamps<br />

Forest rich in<br />

Caesalpinioideae<br />

Forest rich in<br />

Calpocalyx<br />

and<br />

Sacoglottis<br />

Mixed<br />

evergreen<br />

and semideciduous<br />

forest<br />

Submontane<br />

forest<br />

Tree layer: DBH ≥ 10 cm<br />

No of stems/ha 489 741 586 603 562 785<br />

No of species 147 100 181 143 181 183<br />

No of families 43 37 48 45 48 44<br />

Shannon diversity index (H’) 4.62 3.82 4.83 4.26 4.70 4.75<br />

Shrub layer: 1.5 cm ≤ DBH


Diversity patterns in <strong>the</strong> flora of <strong>the</strong> Campo-Ma’an rain forest, Cameroon: do tree species tell it all?<br />

Diversity of <strong>the</strong> shrub layer<br />

Figure 3.1 Correlation between <strong>the</strong> Shannon diversity (H’) of all vascular plant species recorded in <strong>the</strong><br />

tree layer and that of <strong>the</strong> shrub/small tree layer within 145 plots of 0.1 ha each.<br />

Diversity of <strong>the</strong> herbaceous layer<br />

5.00<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

y = 0.6381x + 1.6467<br />

F1,143 = 76.7158, R 2 = 0.3492, P < 0.001<br />

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

Diversity of <strong>the</strong> tree layer<br />

y = 0.554x + 1.0592<br />

F1,143 = 22.5753, R 2 = 0.1363, P < 0.001<br />

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00<br />

Diversity of <strong>the</strong> tree layer<br />

Figure 3.2 Correlation between <strong>the</strong> Shannon diversity (H’) of all vascular plant species recorded in <strong>the</strong><br />

tree layer and that of <strong>the</strong> herbaceous layer within 145 plots of 0.1 ha each.<br />

47


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Figure 3.3 Correlation between <strong>the</strong> Shannon diversity (H’) of large and medium sized tree species and<br />

that of <strong>the</strong> shrub/small tree species within 145 plots of 0.1 ha each.<br />

Figure 3.4 Correlation between <strong>the</strong> Shannon diversity (H’) of large and medium sized tree species and<br />

that of <strong>the</strong> climbers within 145 plots of 0.1 ha each.<br />

48<br />

Diversity of shrubs/small trees<br />

Diversity of climbers<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

y = 0.5252x + 0.7367<br />

F1,143 = 41.0843, R 2 = 0.2232, P < 0.001<br />

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50<br />

Diversity of large and medium sized trees<br />

y = 0.4341x + 0.574<br />

F1,143 = 40.0365, R 2 = 0.2187, P < 0.001<br />

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50<br />

Diversity of large and medium sized trees


Diversity patterns in <strong>the</strong> flora of <strong>the</strong> Campo-Ma’an rain forest, Cameroon: do tree species tell it all?<br />

Table 3.3 Contribution to <strong>the</strong> total species richness from <strong>the</strong> various forest strata in 6 main vegetation<br />

types. Note that some species may overlap within forest strata.<br />

Forest strata<br />

Forest types<br />

Total<br />

No of<br />

species<br />

Tree layer<br />

DBH ≥ 10 cm<br />

Shrub layer<br />

1.5 cm ≤ DBH


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Table 3.5 Summary of <strong>the</strong> number of species of <strong>the</strong> various growth forms recorded in 136 vegetative<br />

subplots of 5 m x 5 m each covering 0.34 ha.<br />

Forest types<br />

Floristic composition<br />

50<br />

Coastal<br />

Forest<br />

Swamps<br />

Forest rich in<br />

Caesalpinioideae<br />

Forest rich in<br />

Calpocalyx and<br />

Sacoglottis<br />

Mixed evergreen Submontane<br />

and semi-deciduous<br />

forest<br />

forest<br />

Trees<br />

27 6 35 38<br />

37 26<br />

Shrubs/small trees 87 14 148 102 134 74<br />

Herbs 88 14 142 98 105 77<br />

Lianas 30 3 36 33 32 11<br />

Total No of species 232 37 368 271 308 188<br />

Total No of families 67 27 76 63 68 47<br />

Table 3.6 Pearson correlation coefficients between <strong>the</strong> Shannon diversity (H’) of <strong>the</strong> various growth<br />

forms recorded for all vascular plants with DBH ≥ 1 cm in 145 plots of 0.1 ha each.<br />

Life forms Large trees Shrubs/small<br />

trees<br />

Herbs Lianas<br />

Large trees 1<br />

Shrubs/small trees 0.47** 1<br />

Herbs 0.46** 0.29** 1<br />

Lianas 0.003 0.20* 0.19* 1<br />

Pearson correlation is significant for * P < 0.05 and ** P < 0.01<br />

<strong>the</strong> number of herbaceous species (Table 3.5), moving from 25 species (in 145 plots<br />

of 0.1 ha each) to 257 species (in 136 subplots of 25 m² each covering 0.34<br />

ha).Trees and shrubs were <strong>the</strong> most diverse growth forms followed by lianas and<br />

herbaceous species respectively (Table 3.4). The Shannon diversity (H’) of trees<br />

varied from 3.96 (swamps) to 4.67 (submontane forest), for shrubs from 3.32<br />

(coastal forests) to 4.66 (submontane forest) and for herbaceous species from 0.53<br />

(coastal forests) to 1.03 (forest rich in Calpocalyx and Sacoglottis).<br />

There was a significant positive correlation between <strong>the</strong> number of large and<br />

medium sized tree species and that of shrubs/small trees (F1, 143 = 112.033, R² =<br />

0.439, P < 0.001) and woody climbers (F1, 143 = 26. 986, R² = 0.159, P < 0.001).<br />

There was also a significant positive correlation between <strong>the</strong> diversity of large and<br />

medium sized trees and that of <strong>the</strong> shrubs/small trees and woody climbers (Figures<br />

3.3 & 3.4). The correlations between <strong>the</strong> diversity/species richness of large and<br />

medium sized trees and that of <strong>the</strong> herbaceous species were not significant (F1, 143 =<br />

0.001, R² = 0.00002, P = 0.975 for Shannon diversity and F1, 143 = 0.0387, R² =<br />

0.0003, P = 0.844 for species richness). The Shannon diversity (H’) was<br />

significantly different among <strong>the</strong> various growth forms (F3, 34.6 = 151.290, P < 0.001)<br />

when correcting for differences in vegetation types (GLM: F10, 30 = 2.727, P < 0.01<br />

for vegetation type included as a random factor). A Tukey multiple comparison test<br />

showed that all growth forms were significantly different from each o<strong>the</strong>r (P < 0.05)<br />

with trees having <strong>the</strong> highest mean value (H’ = 3.37) and <strong>the</strong> lowest (H’ = 0.24) for<br />

<strong>the</strong> herbaceous species.


Diversity patterns in <strong>the</strong> flora of <strong>the</strong> Campo-Ma’an rain forest, Cameroon: do tree species tell it all?<br />

The species richness was also significantly different between growth forms (GLM:<br />

F3, 33.2 = 221.889, P < 0.001 for layer and F10, 30 = 2.973, P < 0.01 for vegetation type<br />

included as a random factor), with similar relative difference. Overall, <strong>the</strong>re was a<br />

decrease in diversity and <strong>the</strong> total number of species recorded/plots with decreasing<br />

sampling resolution (Figures 3.5 & 3.6). About 30% of <strong>the</strong> total number of species<br />

recorded was lost when <strong>the</strong> sampling design only took into account all vascular<br />

plants with DBH ≥ 5 cm and more than 50% were lost when only vascular plants<br />

with DBH ≥ 10 cm are collected. Moreover, <strong>the</strong>re was a very strong significant<br />

positive correlation between <strong>the</strong> number of stems/ha and <strong>the</strong> total number of species<br />

recorded (R 2 = 0.956, P < 0.0001), and a considerable drop in diversity when <strong>the</strong><br />

sampling was limited to all vascular plants with DBH ≥ 10 cm. In terms of sampling<br />

effort, less than 30% of <strong>the</strong> total number of stems/ha were recorded when <strong>the</strong><br />

sampling design only took into consideration all vascular plants with DBH ≥ 5 cm.<br />

Fur<strong>the</strong>rmore, only 15% of <strong>the</strong> total number of stems/ha were recorded for all<br />

vascular plants with DBH ≥ 10 cm.<br />

Species richness within families<br />

Overall, shrubs/small trees show <strong>the</strong> highest number of families (75) followed by<br />

medium trees (61), herbs and hemi-epiphytes (58), large trees (54) and woody<br />

climbers (37). Rubiaceae was by far <strong>the</strong> most species rich family (204 species)<br />

followed by Euphorbiaceae (88), Leguminoseae-Caesalpinioideae (85), Annonaceae<br />

(63), Sterculiaceae (50), Apocynaceae (47) and Sapindaceae (40). Leguminoseae<br />

(especially <strong>the</strong> sub-family Caesalpinioideae) was <strong>the</strong> dominant family for <strong>the</strong> large<br />

trees species (DBH ≥ 30 cm) in terms of relative density and frequency in <strong>the</strong><br />

Campo-Ma’an area (Table 3.7). Dominant large tree species included Brachystegia<br />

cynometroides, Calpocalyx heitzii, Desbordesia glaucescens, Erythrophleum<br />

ivorensis, Lophira alata, Lovoa trichilioides, Piptadeniastrum africanum,<br />

Pterocarpus soyauxii, Pycnanthus angolensis, Sacoglottis gabonensis and<br />

Terminalia superba. Common shrubs and small tree species included Jollydora<br />

duparquetiana, Lasian<strong>the</strong>ra africana, Massularia acuminata, Podococcus barteri<br />

and many species of <strong>the</strong> genera Campylospermum, Cola, Crotonogyne, Diospyros,<br />

Drypetes, Microdesmis, Psychotria, Rinorea and Scaphopetalum. Common large<br />

woody climber species were from <strong>the</strong> genera Agelaea, Dichapetalum, Combretum,<br />

Laccosperma, Landolfia, Millettia, Salacia and Strychnos. The most important herb<br />

species were Costus englerianus, Haumania danckelmaniana, Leptaspis zeylanica,<br />

Marantochloa monophylla, Microcalamus barbinodis, Puella ciliata, P.<br />

schumanniana, and many species of <strong>the</strong> genera Asystasia, Begonia, Cercestis,<br />

Culcasia, Dorstenia, Geophila, Hymenocoleus, Mapania, and Palisota.<br />

51


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Figure 3.5 Change in Shannon diversity (H’) and <strong>the</strong> number of stems/ha for 145 plots of 0.1 ha each taking into account a different minimum cut-off level size. For example,<br />

DBH = 1 cm means when all vascular plants with diameter ≥ 1 cm are recorded.<br />

52<br />

No of stems/ha<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

DBH = 1<br />

DBH = 2<br />

DBH = 3<br />

DBH = 4<br />

DBH = 5<br />

DBH = 6<br />

DBH = 7<br />

DBH = 8<br />

DBH = 9<br />

DBH = 10<br />

DBH = 11<br />

DBH = 12<br />

DBH = 13<br />

Stems/ha<br />

Shannon diversity index (H')<br />

DBH = 14<br />

DBH = 15<br />

DBH = 16<br />

DBH = 17<br />

Minimum DBH in sample<br />

DBH = 18<br />

DBH = 19<br />

DBH = 20<br />

DBH = 30<br />

DBH = 40<br />

DBH = 50<br />

DBH = 60<br />

DBH = 70<br />

DBH = 80<br />

DBH = 90<br />

DBH = 100<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Shannon diversity index (H')


No of species<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

DBH = 1<br />

DBH = 2<br />

DBH = 3<br />

DBH = 4<br />

DBH = 5<br />

DBH = 6<br />

DBH = 7<br />

DBH = 8<br />

DBH = 9<br />

DBH = 10<br />

DBH = 11<br />

DBH = 12<br />

Diversity patterns in <strong>the</strong> flora of <strong>the</strong> Campo-Ma’an rain forest, Cameroon: do tree species tell it all?<br />

DBH = 13<br />

Species richness<br />

Shannon diversity index (H')<br />

DBH = 14<br />

DBH = 15<br />

Figure 3.6 Change in species richness and Shannon diversity (H’) for 145 plots of 0.1 ha each taking into account a different minimum cut-off level size. For example, DBH = 1<br />

cm means when all vascular plants with diameter ≥ 1 cm are recorded.<br />

DBH = 16<br />

DBH = 17<br />

Minimum DBH in sample<br />

DBH = 18<br />

DBH = 19<br />

DBH = 20<br />

DBH = 30<br />

DBH = 40<br />

DBH = 50<br />

DBH = 60<br />

DBH = 70<br />

DBH = 80<br />

DBH = 90<br />

DBH = 100<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Shannon diversity index (H')<br />

53


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Table 3.7 Five most important families/sub-families recorded for <strong>the</strong> various growth forms in 145 forest<br />

plots (0.1 ha each) and <strong>the</strong> vegetative subplots. Note that species may overlap between size<br />

classes.<br />

54<br />

Family/sub-family<br />

Relative<br />

density<br />

Relative<br />

frequency<br />

Canopy tree: DBH ≥ 30 cm (286 species & 54 families)<br />

Leguminosae-Caesalpinioideae 15.00 9.03<br />

Olacaceae 9.72 8.49<br />

Burseraceae 8.23 6.00<br />

Euphorbiaceae 7.94 6.93<br />

Myristicaceae 6.44 5.22<br />

Medium sized trees: 10 cm ≤ DBH < 30 cm (316 species & 61 families)<br />

Olacaceae 14.47 3.23<br />

Leguminosae-Caesalpinioideae 13.25 2.96<br />

Euphorbiaceae 11.19 3.01<br />

Annonaceae 8.48 2.45<br />

Burseraceae 5.70 1.94<br />

Shrub/small trees: 1.5 cm ≤ DBH


Diversity patterns in <strong>the</strong> flora of <strong>the</strong> Campo-Ma’an rain forest, Cameroon: do tree species tell it all?<br />

<strong>the</strong>se sites <strong>the</strong> overall characteristic of lowland evergreen rain forest with some<br />

semi-deciduous species.<br />

In general, <strong>the</strong> difference in species richness and diversity within forest strata or life<br />

forms followed <strong>the</strong> same trend within <strong>the</strong> various vegetation types, with <strong>the</strong> shrub<br />

layer being <strong>the</strong> most diverse and species rich layer, followed by <strong>the</strong> herbaceous and<br />

tree layers respectively. As for <strong>the</strong> growth forms, tree species appeared to be more<br />

diverse and species rich than <strong>the</strong> shrub/small trees, climbers and herbaceous species<br />

in almost all <strong>the</strong> vegetation types. However, it is worth mentioning that this trend<br />

was more stable in undisturbed forest types than in <strong>the</strong> coastal forests where <strong>the</strong>re<br />

was a pronounced impact of human disturbance. With <strong>the</strong> exception of swamps and<br />

mangroves, <strong>the</strong> coastal forest types were floristically poorer with a lower diversity<br />

index (H’) than o<strong>the</strong>r forest types recorded. The degree of human disturbance seems<br />

to have an impact on <strong>the</strong> general patterns of species richness and diversity within <strong>the</strong><br />

various forest types. The number of herbaceous species and climbers tend to<br />

increase with increasing degree of disturbance. Many plots recorded in <strong>the</strong> coastal<br />

forest and in past logging areas were characterized by a high number of pioneer<br />

species and an increase in number of herbaceous and climber species. Fur<strong>the</strong>rmore,<br />

forest types with open canopy, such as <strong>the</strong> mixed evergreen and semi-deciduous<br />

forest, were also characterized by a high proportion of herbaceous and climber<br />

species. In return <strong>the</strong> number of herbaceous and climber species was very low in<br />

swamps because of <strong>the</strong>ir edaphic conditions.<br />

Species richness and diversity within forest strata<br />

The number of stems/ha, species diversity and number of vascular plant species/ha<br />

recorded were generally higher in <strong>the</strong> shrub layer than in <strong>the</strong> herbaceous and tree<br />

layers. This must stem partly from <strong>the</strong> fact that <strong>the</strong> shrub layer is made up of many<br />

life forms such as shrubs, small trees, immature large trees and woody climbers,<br />

small herbaceous and woody climbers, tall herbs and hemi-epiphytes, which are not<br />

found in <strong>the</strong> upper tree layer. In terms of species richness, <strong>the</strong> shrub layer generally<br />

contributes for more than 80% of <strong>the</strong> total number of species recorded in each forest<br />

type, followed by <strong>the</strong> herbaceous layer (40%) and tree layer (35%). It is worth<br />

mentioning that <strong>the</strong>re was some floristic overlap between <strong>the</strong> different forest layers,<br />

since more than 50% of <strong>the</strong> species occurs in more than one stratum. Many large<br />

tree and woody liana species were found in all <strong>the</strong> strata depending of <strong>the</strong>ir stage of<br />

development (seedlings, juveniles and immature or mature individuals). Generally,<br />

<strong>the</strong> shrub layer has <strong>the</strong> highest diversity followed by <strong>the</strong> tree and herbaceous layers<br />

respectively. There was a positive correlation between <strong>the</strong> diversity of <strong>the</strong> tree layer<br />

and that of <strong>the</strong> shrub layer. This is partly attributed to <strong>the</strong> fact that a high proportion<br />

of <strong>the</strong> immature large tree and liana species of <strong>the</strong> upper tree layer was also recorded<br />

in <strong>the</strong> shrub layer.<br />

Species richness and diversity by life forms<br />

The species richness of large, medium and small trees and shrubs were higher<br />

compared to that of <strong>the</strong> climbers and herbs. The number of tree species was higher<br />

in <strong>the</strong> various vegetation types than that of <strong>the</strong> shrubs, lianas, and herbs. The<br />

apparently low species densities and richness of <strong>the</strong> herbs in <strong>the</strong> 0.1 ha plots is partly<br />

due to <strong>the</strong> fact that many herbaceous species were below 1 cm DBH and could not<br />

be sampled within <strong>the</strong> 0.1 ha plots. As a result, herbaceous species contributed less<br />

55


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

than 1% of <strong>the</strong> total vascular plant species count. Their diversity was also very low<br />

in <strong>the</strong> 0.1 ha plots with a Shannon diversity (H’) ranging from 0.53 (swamps) to 1.03<br />

(forest rich in Calpocalyx heitzii and Sacoglottis gabonensis). In order to assess <strong>the</strong><br />

real contribution of <strong>the</strong> herbaceous species, small subplots of 5 m x 5 m were<br />

located within <strong>the</strong> 0.1 ha plots. The output was only used to show <strong>the</strong> contribution of<br />

<strong>the</strong> ground layer and herbaceous species when all vascular plant species are included<br />

in <strong>the</strong> assessment. As a result <strong>the</strong>re was a considerable increase in <strong>the</strong> average<br />

number of herbaceous species (Table 3.5) moving from 25 species (in 145 plots of<br />

0.1 ha each) to 257 species (in 136 subplots of 25 m² each covering a total area of<br />

0.34 ha). In terms of diversity, <strong>the</strong> large and medium sized trees were more diverse<br />

(average H’ = 4.35) than <strong>the</strong> shrubs/small trees (4.12), climbers (3.34) and <strong>the</strong> herbs<br />

(0.78). Although <strong>the</strong>re was a significant positive correlation between <strong>the</strong> species<br />

richness and diversity of trees and that of <strong>the</strong> shrubs/small trees and woody climbers,<br />

<strong>the</strong> correlations between <strong>the</strong> species richness and diversity of trees and that of <strong>the</strong><br />

herbaceous species were not significant. Fur<strong>the</strong>rmore, <strong>the</strong>re was a significant<br />

positive correlation between <strong>the</strong> diversity of shrubs/small trees and that of<br />

herbaceous species. This is partly due to <strong>the</strong> fact that most of <strong>the</strong> shrubs, small trees<br />

and herbaceous plants are understorey species that live under <strong>the</strong> same physiological<br />

and biological conditions. They are ei<strong>the</strong>r shade bearers or non-pioneer light<br />

demanding species that require little sun light for survival. More than 40% of <strong>the</strong><br />

herbaceous layer species contribution came from shade hemi-epiphytes that are<br />

often restricted to <strong>the</strong> lower trunk of shrubs and small trees. Hemi-epiphytes species<br />

of <strong>the</strong> genera Culcasia and Cercestis (Araceae) and several fern genera such as<br />

Lomariopsis, Hymenophyllum and Trichomanes were very common (Table 3.7).<br />

Does tree diversity tell it all?<br />

Many botanical studies in tropical rain forest emphases <strong>the</strong> structural aspect of <strong>the</strong><br />

forest, assuming that <strong>the</strong> diversity of large and medium sized trees (DBH ≥ 10 cm)<br />

reflect <strong>the</strong> overall diversity of <strong>the</strong> forest. When comparing <strong>the</strong> tree diversity and<br />

floristic composition in 6 different forest types in <strong>the</strong> Campo-Ma’an area, we<br />

noticed that tree species accounted for 46% of <strong>the</strong> total vascular plant species with<br />

DBH ≥ 1 cm, shrubs/small trees 39%, climbers 13% and herbs less than 1%. Only<br />

22% of <strong>the</strong> diversity of shrubs and lianas could be explained by <strong>the</strong> diversity of large<br />

and medium sized trees, and less than 1% of herb diversity was explained by <strong>the</strong> tree<br />

diversity (Figures 3.3 & 3.4). A higher percentage of tree, shrub and climber species<br />

occurred in <strong>the</strong> shrub layer than in <strong>the</strong> tree and herbaceous layers. Moreover, only<br />

63% of <strong>the</strong> tree species were recorded in <strong>the</strong> tree layer against 82% in <strong>the</strong> shrub<br />

layer. Less than 10% of <strong>the</strong> total number of shrub/small tree species was found in<br />

<strong>the</strong> tree layer compared to 90% in <strong>the</strong> shrub layer. Fur<strong>the</strong>rmore, shrubs contributed<br />

for 38% of <strong>the</strong> 114 strict and narrow endemic plant species recorded in <strong>the</strong> area,<br />

herbs 29%, trees only 20% and climbers 11% (Chapter 5). It is worth mentioning<br />

that, although <strong>the</strong>re was a significant positive correlation between <strong>the</strong> diversity of<br />

trees and that of shrubs and woody climbers, <strong>the</strong> correlation between tree and herb<br />

diversity was not significant.<br />

This study also demonstrated that <strong>the</strong> shrub layer was by far <strong>the</strong> most species rich in<br />

<strong>the</strong> different plots and vegetation types. It was significantly more diverse and<br />

species-rich than <strong>the</strong> tree and herbaceous layers. More than 82% of tree species,<br />

90% of shrubs, 78% of lianas and 70% of herbaceous were recorded in this layer.<br />

56


Diversity patterns in <strong>the</strong> flora of <strong>the</strong> Campo-Ma’an rain forest, Cameroon: do tree species tell it all?<br />

The high number of species found in this layer can be attributed to <strong>the</strong> fact that, in<br />

addition to immature large trees and woody climbers, <strong>the</strong> shrub layer comprises<br />

shrubs, small trees, tall herbs, small climbers and hemi-epiphytes which are not<br />

found in <strong>the</strong> upper tree layer. This leads to <strong>the</strong> conclusion that tree diversity does not<br />

always reflect <strong>the</strong> overall diversity of <strong>the</strong> forest. In addition, more than 75% of plant<br />

species of high conservation values such as endemic species are shrub and<br />

herbaceous species (Chapter 5). Similar studies carried out by Duivenvoorden &<br />

Lips (1995) in Colombia, ter Steege (2000) and van Andel (2001) in Guyana have<br />

also shown that tree diversity is not a good indicator for <strong>the</strong> diversity of shrubs and<br />

herbs.<br />

In our study, large and medium sized tree species richness seems to have a strong<br />

positive correlation with that of lianas, indicating that tree species richness may be a<br />

relatively good indicator for <strong>the</strong> liana species richness. This is partly explained by<br />

<strong>the</strong> fact that woody climbers are dependent on <strong>the</strong> presence of trees for <strong>the</strong>ir support.<br />

Although tree diversity may not be a good predictor for <strong>the</strong> diversity of shrubs and<br />

herbaceous species, <strong>the</strong> floristic composition of trees and <strong>the</strong>ir physiognomy are<br />

important factors influencing <strong>the</strong> species composition and diversity of o<strong>the</strong>r life<br />

forms. However, <strong>the</strong>re was a significant positive correlation between <strong>the</strong> total<br />

number of tree species recorded within <strong>the</strong> different vegetation types and that of <strong>the</strong><br />

o<strong>the</strong>r life forms, suggesting that an increase in <strong>the</strong> number of tree species is linked to<br />

an increase in shrub and herbaceous species. Fur<strong>the</strong>rmore, <strong>the</strong>re was a decrease in<br />

<strong>the</strong> total number of species and <strong>the</strong> number of stems/ha recorded/plots with<br />

decreasing sampling resolution (Figures 3.5 & 3.6). There was also a very strong<br />

significant positive correlation between <strong>the</strong> number of stems/ha and <strong>the</strong> total number<br />

of species recorded. Although, less than 15% of <strong>the</strong> total number of stems/ha were<br />

recorded when <strong>the</strong> sampling design only took into account all vascular plants with<br />

DBH ≥ 10 cm, more than 50% of <strong>the</strong> total number of species recorded were left<br />

over. It is worth mentioning that, <strong>the</strong> decrease in <strong>the</strong> sampling resolution led to <strong>the</strong><br />

reduction of <strong>the</strong> sampling effort and a significant drop of <strong>the</strong> total number of species<br />

recorded. This suggests that sampling design, based on small plots of 0.1 ha, in<br />

which all vascular plants with DBH ≥ 1 cm are recorded, is a more appropriate<br />

sampling method for biodiversity conservation purposes, than assessments based<br />

solely on large and medium sized trees. Although, it requires additional effort, time<br />

and financial involvement, it provides more information on o<strong>the</strong>r growth forms such<br />

as shrubs, climbers and herbs that are under-represented when <strong>the</strong> sampling design<br />

only takes into consideration large and medium sized trees (DBH ≥ 10 cm).<br />

3.5. CONCLUSION<br />

There is a general perception among scientists that, in <strong>the</strong> tropical rain forest, <strong>the</strong><br />

diversity of large and medium sized tree (DBH ≥ 10 cm) can be used to predict <strong>the</strong><br />

diversity of o<strong>the</strong>r life forms, since, in most of <strong>the</strong>se studies tree species account for<br />

more than 50% of <strong>the</strong> overall species composition. This study has demonstrated that<br />

<strong>the</strong> diversity of trees does not always reflect <strong>the</strong> overall diversity of forest in <strong>the</strong><br />

Campo-Ma’an area and, <strong>the</strong>refore, it may not be a good indicator for <strong>the</strong> diversity of<br />

shrubs and herbaceous species. However it is a relatively good indicator for <strong>the</strong><br />

diversity of lianas. In terms of floristic composition, <strong>the</strong> number of tree species can<br />

57


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

be used to some extent to predict <strong>the</strong> number of species of o<strong>the</strong>r growth forms.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> shrub layer (1.5 cm ≤ DBH < 10 cm) was by far <strong>the</strong> most species<br />

rich in <strong>the</strong> different vegetation types sampled and appeared to be more diverse and<br />

species-rich than <strong>the</strong> tree and herbaceous layers. This suggests that sampling design,<br />

based on small plots of 0.1 ha, in which all vascular plants with DBH ≥ 1 cm are<br />

recorded, is a more appropriate sampling method for biodiversity conservation<br />

purposes than assessments based solely on large and medium sized trees (DBH ≥ 10<br />

cm).<br />

58


Photo: Natural population of Aucoumea klaineana Pierre (Okoumé) on exposed<br />

hill slopes around Ebianemeyong in <strong>the</strong> National Park (Tchouto, M.G.P.)


Chapter 4<br />

BIO-INDICATOR SPECIES AND CENTRAL AFRICAN RAIN<br />

FOREST REFUGES: A CASE STUDY FROM THE RAIN<br />

FOREST IN CAMEROON<br />

Gildas Peguy Tchouto Mbatchou (1)<br />

With W.F. de Boer (2) , de Wilde J.J.F.E. (3) , van der Maesen L.J.G. (3) ,<br />

and A. M. Cleef (4)<br />

(1) Limbe Botanic Garden, BP 437, Limbe, Cameroon; e-mail: peguy2000@yahoo.com<br />

(2) Tropical Nature Conservation and Vertebrate Ecology Group, Wageningen University, Bornsesteeg 69,<br />

6708 PD, Wageningen, <strong>the</strong> Ne<strong>the</strong>rlands; e-mail: fred.deboer@wur.nl<br />

(3) Biosystematics Group, Wageningen University, Generaal Foulkesweg 37, 6703 BL, Wageningen, <strong>the</strong><br />

Ne<strong>the</strong>rlands; e-mail: jos.vandermaesen@wur.nl<br />

(4) Institute for Biodiversity and Ecosystem Dynamics (IBED) Research Group, Palynology and<br />

Paleo/Actuo-ecology, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, <strong>the</strong> Ne<strong>the</strong>rlands;<br />

e-mail: cleef@science.uva.nl


4.1. INTRODUCTION<br />

Bio-indicator species and Central African rain forest refuges<br />

Although <strong>the</strong>re is much debate about <strong>the</strong> Pleistocene forest refuge <strong>the</strong>ory in South<br />

America (van der Hammen & Hooghiemstra, 2000 ; Colinvaux et al., 2001; Haffer<br />

& Prance, 2001), some authors dealing with <strong>the</strong> African situation generally agree<br />

that during <strong>the</strong> glacial periods limited and isolated patches of tropical rain forest<br />

(tropical rain forest refuges) persisted and survived <strong>the</strong> unfavourable climatic<br />

conditions. In Central Africa, a number of <strong>the</strong>se so-called Pleistocene forest refuges<br />

are found in Gabon and Cameroon, amongst which <strong>the</strong> Campo-Ma’an area<br />

(Aubreville, 1962; White, 1979 & 1983, Hamilton, 1982; Maley, 1987; Sosef,<br />

1994). However, <strong>the</strong>re is some debate and disagreement about <strong>the</strong> exact location of<br />

<strong>the</strong>se refuges within <strong>the</strong>se areas (Robbrecht, 1996; Sosef, 1996; Leal, 2001). This is<br />

probably because tropical rain forest refuges are often studied on a large scale, and<br />

hence results, for example to <strong>the</strong> postulation of a single large refuge in <strong>the</strong> Southwestern<br />

Cameroon/Gabon area (Maley, 1987 & 1989). Understanding <strong>the</strong> presentday<br />

location of tropical rain forest refuges requires <strong>the</strong> use of direct evidences or<br />

“Paleo-evidence” such as palynological, paleobotany and related proxies records or<br />

indirect evidence such as <strong>the</strong> distribution patterns of endemic and slow dispersal<br />

species. More often, endemism and patterns in <strong>the</strong> distribution of slow dispersal taxa<br />

have been used by many authors to identify <strong>the</strong> location and extent of regional forest<br />

refuges (Rietkerk et al., 1996; Robbrecht, 1996; Sosef, 1996; Achoundong, 2000).<br />

These studies interpreted localities with a high degree of endemicity and plant<br />

diversity to coincide with former forest refuge areas. Although, paleo-evidence<br />

seems <strong>the</strong> best indicators for <strong>the</strong> study and location of tropical rain forest refuges,<br />

direct and indirect evidences complement each o<strong>the</strong>r.<br />

Bio-indicator species are usually defined as species whose status and ecology<br />

provide information on <strong>the</strong> overall condition of <strong>the</strong> ecosystem and relative<br />

abundance reflect <strong>the</strong> quality and changes in environmental conditions, both biotic<br />

and abiotic (Heywood & Watson, 1995). Therefore, refuge indicators should be<br />

ecologically discriminating with limited dispersal and colonisation abilities. Sosef<br />

(1994) argued that it should be extremely difficult for such species to survive<br />

outside a rain forest refuge and that <strong>the</strong>ir present day distributions will likely<br />

coincide with <strong>the</strong> late Pleistocene refuges. The distribution patterns of strict and<br />

narrow endemic species, toge<strong>the</strong>r with well known slow dispersal taxa, and species<br />

that reach <strong>the</strong>ir nor<strong>the</strong>rn limit of distribution in <strong>the</strong> Campo-Ma’an area were used to<br />

study or confirm <strong>the</strong> position of a postulated Pleistocene rain forest refuge in southwestern<br />

Cameroon. Special attention was given to taxa with slow dispersal abilities<br />

such as those within Begonia sect. Loasibegonia and sect. Scutobegonia, Rinorea<br />

spp., Caesalpinioideae and Rubiaceae. This study aims to examine <strong>the</strong> geographical<br />

position of late Pleistocene forest refuges by analysing <strong>the</strong> distribution of selected<br />

bio-indicator species. The distribution patterns of selected species are used to find<br />

out if <strong>the</strong>y are concordant with <strong>the</strong> postulated rain forest refuge area or not, and <strong>the</strong>n<br />

we interpret and discuss it both in terms of its historical causes and contemporary<br />

conditions. Fur<strong>the</strong>rmore, we will also study <strong>the</strong> ecology of Aucoumea klaineana<br />

(Okoumé) at its nor<strong>the</strong>rn limit of distribution in order to find out if its distribution<br />

under <strong>the</strong> present climatic conditions in Cameroon is expanding or contracting.<br />

63


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Pleistocene vegetation changes in Central Africa<br />

Maley (1993) has identified four main climatic phases of <strong>the</strong> late Quaternary in<br />

Central Africa. The Maluekian (c. 70,000 to 40,000 BP) which corresponds to a<br />

relatively dry period marked by extensive forest retreat. The Njilian, lasting from<br />

40,000 to 30,000 BP that was relatively wet and marked by a definite extension of<br />

forest. The Leopoldian (c. 30,000 to 12,000 BP) that culminated around 18,000 BP<br />

was relatively dry and marked by a new extension of open savanna environments.<br />

The Kibangian (c. 12,000 BP to <strong>the</strong> present) was relative wet until c. 3500 BP<br />

(Kibangian A) and marked by a new phase of forest extension. Later, came ano<strong>the</strong>r<br />

drier period from 3500 BP to present (Kibangian B) corresponding to <strong>the</strong> begining<br />

of ano<strong>the</strong>r extension of savanna in some parts of Central Africa. According to <strong>the</strong><br />

refugium <strong>the</strong>ory, Central African rain forest underwent a series of climatic<br />

fluctuations in <strong>the</strong> late Pleistocene during which a considerable portion of <strong>the</strong><br />

tropical lowland rain forest was repeatedly reduced to relatively small isolated<br />

patches, called forest refuges, due to unfavourable climatic conditions (Hamilton,<br />

1982; White, 1993; Maley, 1989, 1990 & 1996). During <strong>the</strong> dry-out phases, some<br />

forest species were captured in <strong>the</strong>se refuges, and some surviving species were not<br />

or hardly capable of migrating out of <strong>the</strong>se again, due to <strong>the</strong>ir extreme low dispersal<br />

abilities (White, 1993).<br />

Geological and palynogical research conducted on lake sediments from several sites,<br />

has shown that c. 2500 BP <strong>the</strong> Central African forest experienced a “catastrophic<br />

destruction” that led to a major extension of <strong>the</strong> savanna (Maley & Brenac, 1998;<br />

Maley, 2002). Detailed pollen records from lake Barombi Mbo in western<br />

Cameroon, lake Ossa in south Cameroon, lake Kitinia in western Congo, lakes<br />

Mboandong and Njupi in south Congo reveal <strong>the</strong> presence of pseudo-periods of<br />

about 2000 to 2500 BP for several tree taxa typical of mature undisturbed forest<br />

(Maley & Elenga, 1993; Elenga et al., 1994 & 1996; Reynaud-Ferrera et al., 1996).<br />

During this phase, <strong>the</strong> rainfall suddenly became more seasonal, reducing <strong>the</strong><br />

moisture available for <strong>the</strong> vegetation, and <strong>the</strong>refore leading to a mass disappearance<br />

of mature forest tree species in several parts of Central Africa (Reynaud & Maley,<br />

1994; Maley & Brenac, 1998; Maley, 1987 & 2001). Reynaud & Maley (1994)<br />

argued that punctual climatic perturbations may have taken place in <strong>the</strong> 13 th century<br />

followed by a phase with favourable climatic conditions from <strong>the</strong> 18 th century<br />

onward that may have favoured <strong>the</strong> natural reforestation process that is being<br />

observed today. This is well illustrated in Cameroon and Gabon where <strong>the</strong><br />

transgression of forest into <strong>the</strong> savanna at forest edges (coastal and inland savanna)<br />

is reported in some areas (Letouzey, 1968; White et al., 2000).<br />

Several climatological studies have shown that <strong>the</strong> sou<strong>the</strong>rn part of Cameroon has<br />

suffered from a series of climatic crises marked by a severe decrease in rainfall that<br />

repeatedly occurs every 10 to 15 years, such as in 1973 and 1983 (Reynaud &<br />

Maley, 1994). In this region, <strong>the</strong> contrast of excess or deficit of rainfall is<br />

particularly pronounced in <strong>the</strong> Atlantic littoral zone, as described by Letouzey (1968<br />

& 1985), where <strong>the</strong> coastal forest with Lophira alata and Sacoglottis gabonensis is<br />

found. More so than fur<strong>the</strong>r inland where <strong>the</strong> lowland evergreen rain forests rich in<br />

Caesalpinioideae is located. These past climatic changes must have seriously<br />

influenced <strong>the</strong> vegetation pattern found in <strong>the</strong> area, since lowland Caesalpinioideae<br />

forests normally develop where <strong>the</strong> dry seasons do not exceed about 2 months, while<br />

64


Bio-indicator species and Central African rain forest refuges<br />

semi-deciduous forests prevail when <strong>the</strong> dry season varies between 2 to 3 months<br />

(Reynaud & Maley, 1994). Therefore, closed evergreen rain forests are mainly<br />

found in areas with high precipitation (above 2000 mm/year). Between 1500-2000<br />

mm, <strong>the</strong> number of deciduous and semi-deciduous elements increase and below<br />

1500 mm <strong>the</strong>re is ra<strong>the</strong>r a dry deciduous forest. As a result, in <strong>the</strong> Campo-Ma’an<br />

area, <strong>the</strong> vegetation varies from <strong>the</strong> lowland evergreen rain forest rich in<br />

Caesalpinioideae in <strong>the</strong> wetter Campo area to a mixed evergreen and semi-deciduous<br />

forest in <strong>the</strong> drier Ma’an area (Chapter 2). The past climatic oscillations presumably<br />

have also resulted in <strong>the</strong> fluctuation of <strong>the</strong> sea level along <strong>the</strong> Campo-Ma’an<br />

coastline. Oslisly (2001) argued that between 35,000 to 40,000 BP <strong>the</strong> present<br />

coastline was at – 40 m below sea level and <strong>the</strong> sea was warmer than at present.<br />

From 30,000 BP onward, a new arid period began with a fur<strong>the</strong>r regression of <strong>the</strong><br />

coastline that reached its lowest level at – 120 m below <strong>the</strong> present sea level. During<br />

this period Bioko Island (Equatorial Guinea) was still attached to <strong>the</strong> continent. It is<br />

only between c. 10,000 to 11,000 BP that <strong>the</strong> sea level started to rise to reach its<br />

present level towards 5000 BP.<br />

There is an ongoing debate on refuges and speciation. A small minority of authors<br />

more or less refute <strong>the</strong> idea that speciation is linked to fragmentation and isolation of<br />

forest biomes, while o<strong>the</strong>r authors suggest that <strong>the</strong>se isolations are at <strong>the</strong> origin of a<br />

great number of taxa (Maley, 2001). Although many authors have discussed <strong>the</strong>se<br />

issues, it is difficult to come to any conclusions given <strong>the</strong> problems of dating <strong>the</strong><br />

appearance of different taxa. However, several authors pointed out that speciation in<br />

ecologically isolated environments (niches) and speciation in geographically isolated<br />

environments (vicariance), particularly under <strong>the</strong> effect of arid periods, are not<br />

incompatible, and seem to ra<strong>the</strong>r complement each o<strong>the</strong>r (Maley, 2001). For <strong>the</strong><br />

reasons mentioned above and due to <strong>the</strong> lack of information related to <strong>the</strong> dating of<br />

endemic species, we did not classify <strong>the</strong> endemic species recorded during our study<br />

into neo- or paleoendemic categories.<br />

4.2. METHODS<br />

Criteria for taxa selection<br />

The distribution patterns of species that are strictly endemic to <strong>the</strong> Campo-Ma’an<br />

area and those of narrow endemic species that also occur in south-western<br />

Cameroon (area that extends from Campo-Ma’an to Bipindi and Lolodorf) were<br />

used to verify <strong>the</strong> geographic position of late Pleistocene forest refuges. O<strong>the</strong>r bioindicator<br />

species comprise taxa with limited ecological and biological features. They<br />

are slow dispersing lowland rain forest species with restricted seed dispersal<br />

abilities, ecologically selective and intolerant to changing environmental conditions.<br />

Fur<strong>the</strong>rmore, species that occur in o<strong>the</strong>r proposed rain forest refuges and that reach<br />

<strong>the</strong>ir nor<strong>the</strong>rn limit of distribution in <strong>the</strong> Campo-Ma’an area were also taken into<br />

consideration, as well as <strong>the</strong> availability of floras, monographs or taxonomic<br />

expertise giving sound identification and providing good distribution data. The<br />

various maps obtained were mainly based on <strong>the</strong> distribution of botanical specimens<br />

collected in <strong>the</strong> Campo-Ma’an area during <strong>the</strong> present study, and by previous<br />

scientists. In order to cover most of <strong>the</strong> area, we used a random stratified sampling<br />

method during which representative vegetation types were selected on <strong>the</strong> basis of<br />

human and physical factors such as rainfall, altitude, slopes, soils, <strong>the</strong> proximity to<br />

65


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

<strong>the</strong> sea and land use. Fur<strong>the</strong>rmore, additional collections also came from specimens<br />

collected during <strong>the</strong> study in specific habitats such as river/stream banks and<br />

exposed rocks, and from specimens previously collected in <strong>the</strong> area by o<strong>the</strong>r<br />

scientists.<br />

Endemic species<br />

Strict and narrow endemic species are suitable to serve as bio-indicators because<br />

<strong>the</strong>y generally have lower overall reproductive capacity and poorer dispersal<br />

abilities than widespread species. They are often susceptible to environmental<br />

changes and disturbance. Therefore, patterns of congruence of narrow endemism are<br />

important for <strong>the</strong> identification of forest refuges since areas with unusually high<br />

number of endemics are likely to coincide with areas where forests persisted during<br />

glacial periods (Williams, 1993).<br />

Begonia<br />

In <strong>the</strong> revision of <strong>the</strong> Begonia sect. Loasibegonia and sect. Scutobegonia, Sosef<br />

(1994) used <strong>the</strong>se Begonia species to study <strong>the</strong> location of Pleistocene refuges in<br />

West and Central Africa. In our study we will only focus on those Begonia species<br />

that are endemic to <strong>the</strong> Lower-Guinea region as defined by White (1979). Begonias<br />

from <strong>the</strong>se groups are understorey rhizomatous terrestrial herbs, which are often<br />

found on <strong>the</strong> soil or on wet rocks in mature and old secondary forests. They have<br />

indehiscent fruits that remain some months on <strong>the</strong> mo<strong>the</strong>r plant and bend towards<br />

<strong>the</strong> substrate before disintegration (Sosef, 1994). While rotting away, <strong>the</strong>y release<br />

<strong>the</strong>ir seeds slowly at <strong>the</strong> base of <strong>the</strong> parent plant. Sosef (1994) argued that in<br />

addition to <strong>the</strong> fact that many of <strong>the</strong>se species have a self-incompatibility system of<br />

reproduction, dispersal over a long distance will probably not occur since <strong>the</strong> seeds<br />

are so slowly dispersed. However, some seeds might also be transported by animals<br />

(with mud on <strong>the</strong> legs of passing animals) or by water because a number of species<br />

also occur near small streams (de Lange & Bouman, 1992; Sosef, 1994).<br />

Caesalpinioideae<br />

Several studies on <strong>the</strong> distribution patterns of Caesalpinioideae do suggest that <strong>the</strong>y<br />

are suitable bio-indicators for locating late Pleistocene tropical rain forest refuges in<br />

Central Africa (Rietkerk et al., 1996; Wieringa, 1999; Leal, 2001). Caesalps belong<br />

to <strong>the</strong> dominant canopy tree species in <strong>the</strong> Atlantic Biafran forest (Letouzey 1968 &<br />

1985). They are often found in undisturbed mature and in old secondary rain forests<br />

and contained many species that occur gregariously. The explanation for <strong>the</strong><br />

gregarious nature of <strong>the</strong>se species might stem partly from <strong>the</strong> fact that <strong>the</strong>y have<br />

ballistic seed dispersal abilities that limits dispersal distance, ectomychorrhizal<br />

relationships, and large cotyledons with copious nutrients that enable <strong>the</strong>ir seedlings<br />

to realise initial growth under dark conditions (van der Burgt, 1994; Newbery &<br />

Gartlan, 1996; Wieringa, 1999; Leal, 2001). Most Caesalps show seeds that disperse<br />

through <strong>the</strong> explosion of <strong>the</strong> pods. Their pods explode and <strong>the</strong> seeds are ejected to a<br />

maximum of 60 m from <strong>the</strong> mo<strong>the</strong>r tree (van der Burgt, 1994).<br />

Rinorea<br />

Achoundong (1996 & 2000) carried out studies on <strong>the</strong> distribution of Rinorea<br />

species in Cameroon. He found that Rinorea species are sensible bio-indicators for<br />

forest typification. Rinorea species are understorey shrubs or small trees that are<br />

66


Bio-indicator species and Central African rain forest refuges<br />

usually found in <strong>the</strong> lowland rain forest and sometimes in high altitude forest. They<br />

are characterised by slow seed dispersal ability. The capsule of most species<br />

dehisces with 3 valves. Each valve contains 1-4 seeds that are released in <strong>the</strong><br />

vicinity of <strong>the</strong> parent plant, a reason why <strong>the</strong>y are often locally frequent. Hekking<br />

(1988) argued that ants might also disperse part of <strong>the</strong> seeds because <strong>the</strong>re is a<br />

caruncle at <strong>the</strong> base of <strong>the</strong> seed that may attract ants. He went fur<strong>the</strong>r to mention<br />

that nearly all species are restricted to <strong>the</strong>ir natural habitats, thus implying that <strong>the</strong>ir<br />

history of distribution and speciation is strictly connected with that of <strong>the</strong> tropical<br />

rain forest in which <strong>the</strong>y occur.<br />

Rubiaceae<br />

All species used in our study are small trees, shrubs and herbs that are confined to<br />

<strong>the</strong> understorey of <strong>the</strong> lowland evergreen rain forest. Robbrecht (1996) argued that<br />

although most Rubiaceae species have fleshy fruits (drupes or berry-like) that allow<br />

for long distance dispersal by birds, <strong>the</strong>y possess some advanced morphological<br />

syndromes by which cross-pollination becomes obligatory. As a consequence, <strong>the</strong>ir<br />

breeding system probably renders isolated cases of long distance dispersal of single<br />

diaspores ineffective because a self-incompatibility system is present in <strong>the</strong> majority<br />

of <strong>the</strong> species (Robbrecht, 1988 & 1996). Therefore, one may expect that relict<br />

populations of such forest Rubiaceae will need a long time to gradually recolonize<br />

<strong>the</strong> expanding spread of forest when favourable climatic conditions return after a<br />

period of forest reduction during a glacial period (Robbrecht, 1996).<br />

Data analysis<br />

After a taxonomic search in existing floras, monographs and herbaria, taxa were<br />

selected using <strong>the</strong> criteria discussed above. A list of selected taxa was given to<br />

specialists for fur<strong>the</strong>r checking and <strong>the</strong> resulting distribution maps of species of each<br />

group mentioned above were analysed in a search for species showing discrete<br />

patterns. Then we compared <strong>the</strong> distribution patterns of each group in order to<br />

identify areas of frequent occurrence of <strong>the</strong>se bio-indicator species. The overall<br />

distribution patterns found were used to identify <strong>the</strong> position of late Pleistocene rain<br />

forest refuges in south-western Cameroon.<br />

4.3. RESULTS<br />

Distribution patterns of bio-indicator species<br />

In total 178 bio-indicator species (Table 4.1) were selected on <strong>the</strong> basis of <strong>the</strong>ir<br />

biology (life strategy) and/or distribution (endemic). The list includes 58 strict and<br />

narrow endemics, 59 species of Rubiaceae, 32 species of Caesalpinioideae, 13<br />

species of Begonia, 13 species of Rinorea and 24 species that reach <strong>the</strong>ir nor<strong>the</strong>rn<br />

limit of distribution in <strong>the</strong> Campo-Ma’an area. As shown in Table 4.2, 77% of <strong>the</strong><br />

total numbers of selected bio-indicator species were recorded in <strong>the</strong> National Park,<br />

66% in <strong>the</strong> Kribi-Campo-Mvini area and 46% in <strong>the</strong> Nyabissan-Ma’an-Mekok area.<br />

67


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Table 4.2 Contribution of selected bio-indicator species in <strong>the</strong> Campo-Ma’an area<br />

Strict and<br />

Nor<strong>the</strong>rn Total No of<br />

narrow Begonia Caesalps Rinorea Rubiaceae limit of bio-indicator %<br />

Area<br />

endemic<br />

distribution species<br />

Campo-Ma’an National Park 39 10 26 11 51 16 153 77<br />

Kribi-Campo-Mvini area 33 7 25 10 46 11 132 66<br />

Nyabissan-Ma’an-Mekok area 9 4 18 9 29 23 92 46<br />

Campo-Ma’an area 58 13 32 13 59 24 199*<br />

*Note that <strong>the</strong> total number of bio-indicator species in this table (199) is higher than <strong>the</strong> total number of<br />

species listed in Table 4.1 (178) because some species occur in more than one group. The Kribi-Campo-<br />

Mvini area is located in <strong>the</strong> western part of <strong>the</strong> Campo-Ma’an area while <strong>the</strong> Nyabissan-Ma’an-Mekok<br />

area is situated in <strong>the</strong> south-eastern part.<br />

Several maps were produced to display <strong>the</strong> distribution patterns of bio-indicator<br />

species within <strong>the</strong>ir respective groups (Figures 4.2 to 4.8). Overall, <strong>the</strong>re was a high<br />

concentration of bio-indicator species in <strong>the</strong> Park and <strong>the</strong> Kribi-Campo-Mvini area<br />

and a relatively low concentration of <strong>the</strong>se species in <strong>the</strong> Nyabissan-Ma’an-Mekok<br />

area (Table 4.2 & Figure 4.7). A similar pattern was observed for <strong>the</strong> distribution of<br />

strict and narrow endemic species (Figure 4.2). The lowland evergreen forest rich in<br />

Caesalpinioideae and <strong>the</strong> submontane forest located in <strong>the</strong> National Park and in <strong>the</strong><br />

western part of <strong>the</strong> Campo-Ma’an area were rich in bio-indicators species, while <strong>the</strong><br />

mixed evergreen and semi-deciduous forest was characterised by a low<br />

concentration of <strong>the</strong>se species (Figures 4.1 & 4.8). The distribution of Begonia<br />

showed that some species were often found in mountainous areas between<br />

Ebianemeyong and Akom II, or along slopes near hilltops in <strong>the</strong> lowland forest, and<br />

o<strong>the</strong>rs were located along small streams in <strong>the</strong> lowland forest. Surprisingly, many of<br />

<strong>the</strong>se Begonias were not recorded in <strong>the</strong> mixed evergreen and semi-deciduous forest<br />

in <strong>the</strong> Ma’an area. As for <strong>the</strong> Caesalps, <strong>the</strong>ir distribution showed a high<br />

concentration of species in <strong>the</strong> park and in <strong>the</strong> Kribi-Campo-Mvini area (Figure 4.4).<br />

There was also a decrease in <strong>the</strong> number of Caesalps in <strong>the</strong> coastal forest rich in<br />

Sacoglottis gabonensis (Campo area) and in <strong>the</strong> mixed evergreen and semideciduous<br />

forest with a predominance of semi-deciduous elements (Ma’an area). In<br />

Rinorea, many indicator species were mostly confined to <strong>the</strong> lowland forest,<br />

particularly in <strong>the</strong> evergreen forest rich in Caesalpinioideae (Figure 4.5). There was<br />

a decrease in <strong>the</strong> number of <strong>the</strong>se species with increasing altitude and some of <strong>the</strong>m<br />

were most frequent in <strong>the</strong> coastal forest. There was a relatively even distribution of<br />

bio-indicator species from <strong>the</strong> Rubiaceae family within <strong>the</strong> Campo-Ma’an area<br />

although <strong>the</strong> Ma’an area showed a relatively low concentration of <strong>the</strong>se species<br />

(Figure 4.6). As for species that reach <strong>the</strong> nor<strong>the</strong>rn limit of <strong>the</strong>ir distribution in <strong>the</strong><br />

Campo-Ma’an area, <strong>the</strong>re was a decrease in numbers from <strong>the</strong> border with<br />

Equatorial Guinea to <strong>the</strong> Kribi–Akom II area fur<strong>the</strong>r north (Figure 4.7). Some<br />

species such as Aucoumea klaineana, Dacryodes buettneri, Deinbollia pycnophylla<br />

and Testulea gabonensis were limited to <strong>the</strong> sou<strong>the</strong>rn part of Campo-Ma’an in <strong>the</strong><br />

Ma’an area, to <strong>the</strong> Dipikar island and around Ebianemeyong and Mvini.<br />

68


Bio-indicator species and Central African rain forest refuges<br />

Diameter class distribution of Aucoumea klaineana (Okoumé)<br />

As shown in Table 4.3 and Figure 4.9, <strong>the</strong>re was a significant difference between <strong>the</strong><br />

number of Okoumé stems/ha recorded in <strong>the</strong> Ma’an (270 stems/ha) and<br />

Ebianemeyong forests (1855 stems/ha). The diameter distribution pattern of<br />

Okoumé stems was similar in <strong>the</strong> two communities, with each community showing a<br />

reversed-J curve with a typical reduction of Okoumé stem frequency with increasing<br />

size classes (Figure 4.9). However, this curve was very sharp in <strong>the</strong> Okoumé<br />

community found on exposed hill slopes around Ebianemeyong because many stems<br />

were recorded below 10 cm DBH (more than 35%), few stems in <strong>the</strong> large and<br />

medium sized classes, and no stems above 80 cm DBH. In <strong>the</strong> Ma’an community,<br />

<strong>the</strong>re was also a gradual reduction of stems within <strong>the</strong> various DBH classes, but<br />

about 30 large Okoumé trees were recorded with a diameter above 100 cm (in 0.2<br />

ha).<br />

Table 4.3 Summary of <strong>the</strong> number of species, number of stems/ha, mean basal area/ha, and <strong>the</strong> number<br />

of Okoumé stems/ha recorded in 2 plots of 0.1 ha each in <strong>the</strong> Ma’an forest close to <strong>the</strong> border<br />

with Equatorial Guinea and on exposed hill slopes around Ebianemeyong in <strong>the</strong> Campo-Ma’an<br />

National Park (Figure 4.10).<br />

Location of <strong>the</strong><br />

Okoumé forest<br />

No of<br />

species<br />

No of<br />

stems/ha<br />

Mean<br />

basal<br />

area/ha<br />

Okoumé<br />

DBH<br />

range<br />

(cm)<br />

No of<br />

Okoumé<br />

stems/ha<br />

Contribution of Okoumé<br />

from <strong>the</strong> total number of<br />

individuals recorded in 0.2<br />

ha.<br />

Ebianemeyong 62 3925 41.3 1-80 1855 43.7%<br />

(371 out of 785 recorded)<br />

Ma’an 154 5615 73.6 1-175 270 4.8%<br />

(54 out of 1123 recorded)<br />

Note that in <strong>the</strong> Ma’an area, <strong>the</strong> Okoumé community was found in <strong>the</strong> mixed evergreen and semideciduous<br />

forest at altitudes between 400 to 500 m, while in <strong>the</strong> Ebianemeyong area, <strong>the</strong>y were mostly<br />

found in <strong>the</strong> Caesalpinioideae forest on exposed hill slopes between 600 to 700 m.<br />

69


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Figure 4.1Vegetation map of <strong>the</strong> Campo-Ma’an area. Where Caesalp: Lowland evergreen forest rich in<br />

Caesalpinioideae; Caesalpcasa: Lowland evergreen forest rich in Caesalpinioideae with<br />

Calpocalyx heitzii and Sacoglottis gabonensis; Caesalpsa: Lowland evergreen forest rich in<br />

Caesalpinioideae and Sacoglottis gabonensis; Cosaga: Coastal forest with Sacoglottis<br />

gabonensis; Cosaca: Coastal forest with Sacoglottis gabonensis and Calpocalyx heitzii;<br />

Mixevergreen: Mixed evergreen and semi-deciduous forest with elements of evergreen forest<br />

predominant; Mixsemideci: Mixed evergreen and semi-deciduous forest with semi-deciduous<br />

elements predominant; Submontane: Submontane forest on hill tops; Okoumé: small patches<br />

of Okoumé populations; Hevecam & Socapalm: agro-industrial plantations (Annex 5).<br />

70


Bio-indicator species and Central African rain forest refuges<br />

Figure 4.2 Distribution of 58 strict and narrow endemic plant species that only occur in <strong>the</strong> Campo-<br />

Ma’an area, and south-western Cameroon. Note that <strong>the</strong> size of <strong>the</strong> circle is proportional to<br />

<strong>the</strong> number of different species that occur in a given locality (a big circle means many<br />

different species in a given locality).<br />

Figure 4.3 Distribution of 13 species of <strong>the</strong> Begonia sect. Loasibegonia and sect. Scutobegonia that are strictly<br />

endemic to <strong>the</strong> Campo-Ma’an and south-western Cameroon, or that reach <strong>the</strong>ir nor<strong>the</strong>rn limit of<br />

distribution in Campo-Ma’an. The size of <strong>the</strong> circle is proportional to <strong>the</strong> number of different<br />

species that occur in a locality.<br />

71


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Figure 4.4 Distribution of 32 species of Caesalpinioideae that are ei<strong>the</strong>r strictly endemic to <strong>the</strong> Campo-<br />

Ma’an and south-western Cameroon, endemic to Cameroon and Lower Guinea region, or that<br />

reach <strong>the</strong>ir nor<strong>the</strong>rn limit of distribution in Campo-Ma’an. Note that <strong>the</strong> size of <strong>the</strong> circle is<br />

proportional to <strong>the</strong> number of different species that occur in a given locality.<br />

72<br />

Figure 4.5 Distribution of 13 species of Rinorea that are ei<strong>the</strong>r strictly endemic to <strong>the</strong> Campo-Ma’an and<br />

south-western Cameroon, endemic to Cameroon or <strong>the</strong> Lower Guinea region. The size of <strong>the</strong><br />

circle is proportional to <strong>the</strong> number of different species that occur in a given locality.


Bio-indicator species and Central African rain forest refuges<br />

Figure 4.6 Distribution of 59 species of Rubiaceae which are ei<strong>the</strong>r strictly endemic to <strong>the</strong> Campo-Ma’an<br />

and south-western Cameroon, endemic to Cameroon or <strong>the</strong> Lower Guinea region. Note that <strong>the</strong><br />

size of <strong>the</strong> circle is proportional to <strong>the</strong> number of different species that occur in a given locality.<br />

Figure 4.7 Distribution of 24 species that reach <strong>the</strong>ir nor<strong>the</strong>rn limit of distribution in <strong>the</strong> Campo-Ma’an area.<br />

Note that <strong>the</strong> size of <strong>the</strong> circle is proportional to <strong>the</strong> number of different species that occur in a<br />

given locality.<br />

73


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Figure 4.8 Distribution patterns of 178 selected bio-indicator taxa in <strong>the</strong> Campo-Ma’an area. Note that some species<br />

may overlap within localities. Where: □ (grey) = Strict and narrow endemics; ○ (grey) = Begonia;▼=<br />

Caesalpinioideae; ∆ (grey) = Rinorea and + = Rubiaceae species.<br />

Figure 4.9 Diameter class distribution of <strong>the</strong> number of Okoumé stems/ha recorded in 2 plots of 0.1 ha<br />

each in <strong>the</strong> Ma’an forest and on exposed hill slopes around Ebianemeyong in <strong>the</strong> Campo-<br />

Ma’an National Park.<br />

74<br />

No of stems/ha<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Ebianemeyong forest<br />

M a'an forest<br />

1-


Bio-indicator species and Central African rain forest refuges<br />

Figure 4.10 Distribution of Aucoumea klaineana (Okoumé) in <strong>the</strong> Campo-Ma’an area. Where EBI1 and<br />

OKOUM1 represent <strong>the</strong>ir locations on exposed hill slopes around Ebinanemeyong in <strong>the</strong><br />

National Park and NSE1 to 3, in Nsengou near <strong>the</strong> border with Equatorial Guinea<br />

4.4. DISCUSSION<br />

Evidence for a late Pleistocene refuge in <strong>the</strong> Campo-Ma’an rain forest<br />

The Campo-Ma’an rain forest is characterized by a rich and diverse flora with more<br />

than 2297 species of vascular plants, ferns and fern allies belonging to 851 genera<br />

and 155 families. It has about 114 strict and narrow endemic species, 29 of which<br />

are only known from <strong>the</strong> area, 29 only occur in southwestern Cameroon, and 56 are<br />

near endemics that also occur in o<strong>the</strong>r parts of Cameroon (Chapter, 5). The<br />

distribution of 178 bio-indicator taxa selected on <strong>the</strong> basis of <strong>the</strong>ir biology,<br />

endemism and growth forms, more or less fitted <strong>the</strong> glacial forest refuges as<br />

proposed or discussed by several authors (Hamilton, 1982; Maley, 1987, 1989,<br />

1991, 1993 & 1996; Rietkerk et al., 1996; Robbrecht, 1996; Sosef, 1994 & 1996;<br />

and Achoundong, 2000). Overall, <strong>the</strong>re was a high concentration of bio-indicator<br />

species in <strong>the</strong> lowland evergreen forest rich in Caesalpinioideae and <strong>the</strong> submontane<br />

forests in <strong>the</strong> National Park and Kribi-Campo-Mvini area, and a relatively low<br />

concentration of <strong>the</strong>se species in <strong>the</strong> Ma’an area (Figure 4.8). Similar patterns were<br />

observed for <strong>the</strong> distribution of strict and narrow endemic species, Begonia,<br />

Caesalpinioideae and Rubiaceae (Figures 4.2 to 4.7). Achoundong (1996 & 2000)<br />

mentioned that in terms of distribution, two groups of Rinorea species could be<br />

distinguished in Cameroon. A group that is limited to <strong>the</strong> coastal plain and ano<strong>the</strong>r<br />

75


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

group which is mainly found inland. In <strong>the</strong> Campo-Ma’an area, <strong>the</strong> distribution of<br />

Rinorea species showed that Rinorea microglossa and Rinorea sp. nov1. were<br />

restricted to <strong>the</strong> coastal area between Kribi and Campo, while o<strong>the</strong>r species were<br />

mostly found in <strong>the</strong> lowland evergreen forest rich in Caesalpinioideae.<br />

The Atlantic Biafran forest rich in Caesalpinoideae is often considered to represent<br />

<strong>the</strong> real climax forest vegetation while <strong>the</strong> Atlantic littoral forest type is regarded as<br />

<strong>the</strong> result of its degradation (Letouzey, 1983). In <strong>the</strong> Campo-Ma’an area, <strong>the</strong><br />

distributions of Caesalps show a high concentration of bio-indicator species in <strong>the</strong><br />

lowland evergreen forest rich in Caesalpinioideae, and in <strong>the</strong> submontane forest.<br />

There is a decrease in <strong>the</strong> number of species in <strong>the</strong> coastal forest rich in Sacoglottis<br />

gabonensis, and particularly in <strong>the</strong> mixed evergreen and semi-deciduous forest<br />

where semi-deciduous and secondary forest species became increasingly important.<br />

Fur<strong>the</strong>rmore, <strong>the</strong>re was a high concentration of bio-indicator species in <strong>the</strong> park and<br />

in <strong>the</strong> Kribi-Campo-Mvini area on <strong>the</strong> higher slopes of <strong>the</strong> lowland forests and along<br />

riverbanks. This pattern supports <strong>the</strong> view of many authors who argued that during<br />

glacial times, patches of forests were restricted to higher altitude lowland forests,<br />

especially along <strong>the</strong> upper slopes of hills near <strong>the</strong> top (F.J. Breteler pers. comm.) or<br />

along riverbanks where <strong>the</strong>re was enough humidity necessary for <strong>the</strong>ir survival.<br />

Therefore, we can hypo<strong>the</strong>size that past glacial forest expansion started in <strong>the</strong><br />

Campo-Ma’an area from isolated patches of mid and higher elevation evergreen rain<br />

forest rich in Caesalpinioideae, located within <strong>the</strong> mountainous range that extents<br />

from Ebianemeyong to <strong>the</strong> Akom II. Moreover, <strong>the</strong> Campo-Ma’an area has a dense<br />

hydrographical pattern with many rivers and streams that may have played an<br />

important role during <strong>the</strong> dry-out periods, as <strong>the</strong>y supplied humid conditions that<br />

may have allowed <strong>the</strong> survival of some forest types. This is illustrated today with <strong>the</strong><br />

occurrence of indicator species such as Aphanocalyx ledermannii, Begonia<br />

anisosepala, B. zenkeriana and Gilbertiodendron demonstrans, which are often<br />

found in marshy places and along stream and river banks in <strong>the</strong> coastal forest and on<br />

Dipikar Island. At <strong>the</strong> same time it may be hypo<strong>the</strong>sized that <strong>the</strong> persistence of<br />

Caesalpinioideae forests in this so-called western part of <strong>the</strong> south Cameroon forest<br />

refuge prevented Aucoumea klaineana to extend its distribution fur<strong>the</strong>r northwards.<br />

As discussed in Chapters 2 & 6, <strong>the</strong> lowland evergreen forest rich in<br />

Caesalpinioideae with Calpocalyx heitzii and Sacoglottis gabonensis is only known<br />

from <strong>the</strong> Campo area. This forest type, as well as <strong>the</strong> coastal forest and <strong>the</strong> mixed<br />

evergreen and semi-deciduous forest are characterised by a high number of fully<br />

grown and developed secondary forest species. Letouzey (1983) mentioned that<br />

Alstonia boonei, Calpocalyx heitzii, Lophira alata, Pycnanthus angolensis,<br />

Sacoglottis gabonensis and Terminalia superba are light demanding species with an<br />

invasive habit that frequently colonise forest gaps. He fur<strong>the</strong>r argued that forest<br />

types rich in such species, will have difficulties to expand into <strong>the</strong> Caesalpinioideae<br />

forest, because <strong>the</strong>ir regeneration will be hampered since <strong>the</strong>ir seedlings and<br />

saplings will not survive in <strong>the</strong> understorey of such forest communities. The present<br />

mosaic pattern of some forest types, characterised by a mixture of evergreen, semideciduous<br />

and secondary forest species, is probably <strong>the</strong> consequence of long-term<br />

disturbances, which may have affected <strong>the</strong>se areas since <strong>the</strong> glacial times,<br />

particularly <strong>the</strong> major disturbance which culminated about 2500 BP (Maley, 2002).<br />

However, it should be noted that recent and past human activities have also<br />

76


Bio-indicator species and Central African rain forest refuges<br />

contributed to modify <strong>the</strong> balance of present-day ecological factors influencing <strong>the</strong><br />

succession processes of <strong>the</strong>se forests. We may <strong>the</strong>refore predict that if <strong>the</strong> current<br />

human perturbation is maintained <strong>the</strong> lowland rain forest rich in Calpocalyx heitzii<br />

and Sacoglottis gabonensis will fur<strong>the</strong>r expand into <strong>the</strong> evergreen forest rich in<br />

Caesalpinioideae. But if <strong>the</strong> ongoing human pressure is controlled, we will ra<strong>the</strong>r<br />

expect a progressive expansion of <strong>the</strong> Caesalpinioideae forest towards <strong>the</strong> coast. In<br />

<strong>the</strong> drier Ma’an area, we will also expect to have more patches of evergreen<br />

Caesalpinioideae forest within <strong>the</strong> mixed evergreen and semi-deciduous forest.<br />

However, it should be mentioned that we expect a ra<strong>the</strong>r slow expansion of<br />

evergreen rain forest because it may not be able to cope with <strong>the</strong> relatively low<br />

precipitation recorded in <strong>the</strong> Ma’an area (below 1700 mm/year). Taking into<br />

consideration <strong>the</strong> fact that <strong>the</strong> Ma’an area is located within a transitional climatic<br />

zone with a relatively low annual rainfall, its vegetation represents a transition<br />

between <strong>the</strong> dry deciduous forest and <strong>the</strong> wet evergreen lowland forest rich in<br />

Caesalpinioideae.<br />

The Campo-Ma’an rain forest, with its high concentration of endemic species and<br />

rich forest species diversity, is probably part of a late Pleistocene refuge as<br />

postulated in south-western Cameroon by several authors (Aubreville, 1962; White,<br />

1979 & 1983, Maley, 1987, 1989 & 1990; Sosef, 1994). We assume that this refuge<br />

may probably extend fur<strong>the</strong>r north-east along <strong>the</strong> mountainous range that goes up to<br />

<strong>the</strong> Bipindi area, because many narrow endemic species were also known to occur in<br />

<strong>the</strong> Akom II-Bipindi-Lolodorf areas. Overall, <strong>the</strong> distribution maps of <strong>the</strong> various<br />

bio-indicator species showed a low concentration of <strong>the</strong>se species in <strong>the</strong> mixed<br />

evergreen and semi-deciduous forest located in <strong>the</strong> drier Nyabissan-Ma’an-Mekok<br />

area. A similar pattern was also observed from <strong>the</strong> distribution of strict and narrow<br />

endemic species. As shown in Table 4.2, only 15% of <strong>the</strong> total number of strict and<br />

narrow endemics and 46% of <strong>the</strong> selected bio-indicator species were recorded in this<br />

area. Fur<strong>the</strong>rmore, <strong>the</strong> drier Ma’an area is characterised by a semi-deciduous forest<br />

type with discontinuous canopy and <strong>the</strong> presence of many fully grown secondary<br />

forest species. This may suggest that <strong>the</strong> Ma’an area might have suffered from past<br />

human disturbance or that it may have been colonised by an open vegetation type<br />

during <strong>the</strong> dry-out periods. Therefore, it is probably undergoing a phase of forest<br />

recolonisation under <strong>the</strong> present climatic conditions. Taking into consideration <strong>the</strong><br />

fact that <strong>the</strong> Ma’an vegetation shows a strong secondary character in terms of its<br />

species composition with many semi-deciduous elements, we can hypo<strong>the</strong>sise that it<br />

was not part of <strong>the</strong> postulated forest refuge in south-western Cameroon under<br />

substantial drier atmospheric conditions than today.<br />

It should be noted that <strong>the</strong>se patterns in species richness are also <strong>the</strong> result of past<br />

and present biotic and abiotic structuring processes as has been clearly shown in<br />

Chapter 2. Taking into consideration <strong>the</strong> fact that paleo-evidence provides more<br />

information leading to <strong>the</strong> identification of <strong>the</strong> location and extent of Pleistocene<br />

rain forest refuges, <strong>the</strong> distribution patterns of bio-indicator species are often used to<br />

check <strong>the</strong> position of <strong>the</strong>se forest refuges. Therefore, in <strong>the</strong> absence of paleoevidence,<br />

it is almost impossible to unravel <strong>the</strong> role of <strong>the</strong> postulated rain forest<br />

refuges in <strong>the</strong> framework of o<strong>the</strong>r environmental processes that operated in <strong>the</strong> past<br />

without creating circular arguments. Fur<strong>the</strong>rmore, it is worth mentioning that past<br />

and present climatic changes, biological interaction, ecosystem dynamics, and<br />

77


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

regional and evolutionary processes must in varying degree be taken into<br />

consideration to explain <strong>the</strong> high level of endemism and diversity recorded in <strong>the</strong><br />

area. Moreover, it is suggested that fur<strong>the</strong>r research to date <strong>the</strong> origin of endemic<br />

and slow dispersal species using recent modern molecular and phylogenetic<br />

(cladistic) techniques should be encouraged for a better understanding of <strong>the</strong><br />

evolutionary processes of tropical rain forest taxa.<br />

Ecological aspects of Aucoumea klaineana (Okoumé) at its nor<strong>the</strong>rn limit of<br />

distribution<br />

Okoumé is <strong>the</strong> most important timber species exploited in Gabon and accounts for<br />

over 90% of all timber export (White & Abernethy, 1997). In Gabon, it is a large<br />

canopy tree with winged seeds that by strong wind can be dispersed as far as several<br />

hundreds of metres from <strong>the</strong> parent tree. It tends to grow gregariously in stands with<br />

several individuals quite close toge<strong>the</strong>r. Their roots are often joined, which allow <strong>the</strong><br />

exchange of nutrients between individuals. In <strong>the</strong> Campo-Ma’an area, <strong>the</strong>se roots<br />

sometimes form a visible striking network on exposed rocks on hill slopes. Although<br />

its centre of frequency is found in Gabon, it reaches <strong>the</strong> nor<strong>the</strong>rn limit of its<br />

distribution in <strong>the</strong> Campo-Ma’an area and its sou<strong>the</strong>rn limit in western Congo.<br />

Okoumé is a light demanding species with very little or no regeneration capacity<br />

within <strong>the</strong> ecological environment presented by <strong>the</strong> lowland evergreen forest. Its<br />

frequent occurrence in Gabon is probably <strong>the</strong> result of savanna colonisation and<br />

forest disturbance in <strong>the</strong> past (White et al., 2000; Maley, 2002).<br />

Our study has demonstrated that <strong>the</strong>re are two different types of Okoumé<br />

communities in <strong>the</strong> Campo-Ma’an area. A more mature community is found at <strong>the</strong><br />

border with Equatorial Guinea, and a younger community exists on exposed rocks<br />

on hill slopes around Ebianemeyong and <strong>the</strong> Kom River in <strong>the</strong> National Park (Figure<br />

4.10). As shown in Table 4.3, <strong>the</strong>re was a significant difference between <strong>the</strong> number<br />

of Okoumé stems/ha recorded in <strong>the</strong> Ma’an (54 individuals in 0.2 ha) and<br />

Ebianemeyong forests (371 individuals in 0.2 ha). The Ebianemeyong community<br />

was characterised by an almost pure mono-dominant stand with many small and<br />

medium sized stems, and no stems above 80 cm DBH. The forest floor was open,<br />

completely covered by grasses, creeping Selaginella, terrestrial ferns, orchids and<br />

Begonia species. In <strong>the</strong> Ma’an community, <strong>the</strong>re was a gradual reduction of stems<br />

within <strong>the</strong> various DBH classes with more than 30 large Okoumé trees recorded<br />

with a diameter above 100 cm (in 0.2 ha). It is worth mentioning that <strong>the</strong>re are some<br />

30-40-year-old Okoumé plantations near Kribi between Bidou and Akok in <strong>the</strong><br />

Kienke Forest Reserve.<br />

Is <strong>the</strong> distribution of Okoumé under <strong>the</strong> present climatic conditions in Cameroon<br />

expanding or contracting? Pollen obtained from lake Ossa near Edea in south<br />

Cameroon showed that between 7500 and 3000 BP (mid Holocene) <strong>the</strong> distribution<br />

of Okoumé extended fur<strong>the</strong>r north towards <strong>the</strong> Sanaga River, reaching lake Ossa at<br />

about 170 km north of <strong>the</strong> present limit of distribution (Reynaud-Farrera et al.,<br />

1996; Maley, 2002). It is hypo<strong>the</strong>sised that <strong>the</strong> current distribution range of Okoumé<br />

is <strong>the</strong> result of <strong>the</strong> contraction of a wider spread population that existed during mid<br />

Holocene. During <strong>the</strong> severe arid period that occurred around 2500 BP, <strong>the</strong>re was a<br />

considerable reduction of <strong>the</strong> forest that may have resulted in <strong>the</strong> reduction of <strong>the</strong><br />

geographical range of Okoumé or in its fragmentation into small remnant patches<br />

78


Bio-indicator species and Central African rain forest refuges<br />

(Reynaud-Farrera et al., 1996; Muloko-Ntoutoume et al., 1998; Maley, 2002). In <strong>the</strong><br />

same period, <strong>the</strong> rainfall suddenly became more seasonal, thus resulting into an<br />

abrupt expansion of savanna and open vegetation types that may have favoured <strong>the</strong><br />

development of pioneer species. Therefore, when wetter conditions favourable to a<br />

new expansion of <strong>the</strong> forest returned, logically we expect Okoumé, which is a light<br />

demanding species with an excellent dispersal ability, to gain ground in <strong>the</strong><br />

expansion process in preference to <strong>the</strong> lowland evergreen rain forest species.<br />

However, Okoumé has not been successful to expand fur<strong>the</strong>r north towards lake<br />

Ossa because <strong>the</strong> lowland evergreen rain forest species formed a "barrier" against its<br />

expansion.<br />

The climatic fluctuations that occurred in <strong>the</strong> Central Africa region may have<br />

contributed to slow down <strong>the</strong> expansion of Okoumé, as well as that of many species<br />

that reach <strong>the</strong>ir nor<strong>the</strong>rn limit of distribution in <strong>the</strong> Campo-Ma’an area, to progress<br />

fur<strong>the</strong>r north beyond <strong>the</strong> Sanaga River. In Gabon, <strong>the</strong>re is an equatorial climate with<br />

a pronounced dry season that occurs from June/July to August or September. During<br />

this period, <strong>the</strong> sky is often clouded causing a limited evaporation and a low<br />

temperature (Reitsma, 1988). There is a climatic transition around 3°N and <strong>the</strong><br />

Campo-Ma’an area falls within a transitional zone where <strong>the</strong> typical equatorial<br />

climate shifts from a maritime type with 4 seasons, to a “pseudo-tropical type”, with<br />

only two seasons in <strong>the</strong> nor<strong>the</strong>rn coastal region around Douala (Gartlan, 1992;<br />

Maley & Elenga 1993). Therefore, in order to explain <strong>the</strong> suggested past occurrence<br />

of Okoumé around lake Ossa, some authors argue that an equatorial climate must<br />

have reigned over south Cameroon during mid Holocene (Maley, 2002). However,<br />

in <strong>the</strong> Campo-Ma’an area, we have noticed that Okoumé is struggling to expand<br />

fur<strong>the</strong>r north of its present range of distribution under <strong>the</strong> present climatic<br />

conditions. But this expansion is called to a halt because <strong>the</strong> species is unable to<br />

establish under <strong>the</strong> closed canopy of <strong>the</strong> Caesalpinioideae forest as it needs open<br />

habitats to regenerate. In our opinion, <strong>the</strong> unfavourable natural regeneration<br />

conditions are probably <strong>the</strong> main reason for <strong>the</strong> limited occurrence of Okoumé in<br />

Cameroon. So far, in Campo-Ma’an area, Okoumé is only found ei<strong>the</strong>r in mixed<br />

evergreen and semi-deciduous forest with discontinuous canopy or in atypical<br />

habitats as on exposed hill slopes.<br />

4.5. CONCLUSION<br />

This study added some evidence in support to <strong>the</strong> view that <strong>the</strong> Campo-Ma’an area<br />

forms part of a series of postulated tropical rain forest refuges in Central Africa. The<br />

distributions of 178 bio-indicator taxa selected on <strong>the</strong> basis of <strong>the</strong>ir life strategy,<br />

endemism and/or growth forms show a pattern that roughly coincides with a glacial<br />

forest refuge in south-western Cameroon as proposed by several authors. Overall,<br />

<strong>the</strong>re was a high concentration of narrow endemic and bio-indicator species in <strong>the</strong><br />

National Park and in <strong>the</strong> Kribi-Campo-Mvini areas, and a relatively low<br />

concentration of <strong>the</strong>se species in <strong>the</strong> Ma’an area. These bio-indicator species were<br />

mostly found in <strong>the</strong> lowland evergreen forest rich in Caesalpinioideae, on high<br />

altitude lowland rain forests (especially along <strong>the</strong> upper slopes of hills near <strong>the</strong> top)<br />

or along riverbanks. However, it should be noted that <strong>the</strong>se patterns in species<br />

richness are also <strong>the</strong> result of past and present climatic changes, abiotic factors,<br />

biological interaction, ecosystem dynamics, and regional and evolutionary<br />

79


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

processes. Fur<strong>the</strong>rmore, human activities may also have contributed to modify <strong>the</strong><br />

balance of present-day ecological conditions, resulting in shifts in <strong>the</strong> strength of<br />

contemporary ecological and evolutionary forces.<br />

80


Bio-indicator species and Central African rain forest refuges<br />

Table 4.1 List of 178 bio-indicator taxa consisting of 61 strict and narrow endemics, 59 species of<br />

Rubiaceae, 32 species of Caesalpinioideae, 13 species of Begonia, 13 species of Rinorea and<br />

24 species that reach <strong>the</strong>ir nor<strong>the</strong>rn limit of distribution in <strong>the</strong> Campo-Ma’an area. Note that<br />

some species may overlap within identified groups.<br />

No Family Species Guild Habit Chorology<br />

1 Annonaceae Monanthotaxis elegans (Engl. & Diels) Verdc. sb Sh Sw-Cam<br />

2 Annonaceae Monodora zenkeri Engl. & Diels sb Sh Sw-Cam<br />

3 Apocynaceae Petchia africana Leeuwenb. sb Sh Sw-Cam<br />

4 Apocynaceae Tabernaemontana hallei (Boiteau) Leeuwenb.* sb Sh Lg<br />

5 Araceae Culcasia bosii Ntepe-Nyame sb He Sw-Cam<br />

6 Balsaminaceae Impatiens gongolana N.Hallé* sb Hb Lg<br />

7 Balsaminaceae Impatiens hians Hook.f. var. bipindensis (Gilg) Grey-Wilson* sb Hb Lg<br />

8 Begoniaceae Begonia anisosepala Hook.f. * sb Hb Lg<br />

9 Begoniaceae Begonia cilio-bracteata Warb. sb Hb Lg<br />

10 Begoniaceae Begonia clypeifolia Hook.f.* sb Hb Lg<br />

11 Begoniaceae Begonia elaeagnifolia Hook. f.* ep Ep Lg<br />

12 Begoniaceae Begonia heterochroma Sosef * sb Hb Lg<br />

13 Begoniaceae Begonia letouzeyi Sosef sb Hb Lg<br />

14 Begoniaceae Begonia mbangaensis Sosef sb Hb Sw-Cam<br />

15 Begoniaceae Begonia microsperma Warb. sb Hb Cam<br />

16 Begoniaceae Begonia montis-elephantis J.J.de Wilde sb Hb Campo-Ma’an<br />

17 Begoniaceae Begonia potamophila Gilg sb Hb Lg<br />

18 Begoniaceae Begonia sciaphila Gilg ex Engl. sb Hb Lg<br />

19 Begoniaceae Begonia staudtii Gilg sb Hb Lg<br />

20 Begoniaceae Begonia susaniae Sosef sb Hb Lg<br />

21 Begoniaceae Begonia zenkeriana Smith & Wassh. sb Hb Sw-Cam<br />

22 Burseraceae Aucoumea klaineana Pierre* pi Tr Lg<br />

23 Burseraceae Dacryodes buettneri (Engl.) Lam* np Tr Lg<br />

24 Celastraceae Pristimera luteoviridis (Exell) N.Hallé var. kribiana N.Hallé np Swcl Campo-Ma’an<br />

25 Chrysobalanaceae Dactyladenia cinera (Engl. ex de Wild) Prance & F.White sb Tr Sw-Cam<br />

26 Cyperaceae Hypolytrum sp. nov. ined. sb Hb Campo-Ma’an<br />

27 Dichapetalaceae Dichapetalum altescandens Engl. * np Lwcl Lg<br />

28 Dichapetalaceae Dichapetalum librevillense Pellegr. * np Lwcl Lg<br />

29 Dichapetalaceae Dichapetalum oliganthum Breteler np Lwcl Sw-Cam<br />

30 Dichapetalaceae Tapura tchoutoi Breteler sb Sh Campo-Ma’an<br />

31 Dryopteridaceae Lastreopsis davalliaeformis (Tardieu) Tardieu* sb He Lg<br />

32 Ebenaceae Diospyros alboflavescens (Gürke) F.White sb Tr Sw-Cam<br />

33 Ebenaceae Diospyros soyauxii Gürke & K. Schum.* sb Tr Lg<br />

34 Euphorbiaceae Afrotrewia kamerunica Pax & Hoffm. sb Sh Campo-Ma’an<br />

35 Gramineae Guaduella mildbraedii Pilg. sb Hb Campo-Ma’an<br />

36 Gramineae Hyparrhenia wombaliensis (Vanderyst ex Robyns) Clayton * pi Hb Lg<br />

37 Icacinaceae Rhaphiostylis subsessilifolia Engl. sb Swcl Campo-Ma’an<br />

38 Ixonanthaceae Ochthocosmus calothyrsus (Mildbr.) Hutch. & Dalziel* np Tr Lg<br />

39 Lauraceae Beilschmiedia cuspida (Krause) Robyns & Wilczek sb Tr Campo-Ma’an<br />

40 Lauraceae Beilschmiedia dinklagei (Engl.) Robyns & Wilczek sb Tr Campo-Ma’an<br />

41 Lauraceae Beilschmiedia klainei Robyns & Wilczek sb Tr Sw-Cam<br />

42 Lauraceae Beilschmiedia papyracea (Stapf) Robyns & R.Wilczek sb Tr Sw-Cam<br />

43 Lauraceae Beilschmiedia wilczekii Fouilloy sb Tr Sw-Cam<br />

44 Leguminosae-Caes.** Amphimas ferrugineus Pierre ex Pellegr.* np Tr Lg<br />

81


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Habit Chorology<br />

82<br />

45 Leguminosae-Caes.** Anthonotha isopetala (Harms) J.Léonard sb Tr Lg<br />

46 Leguminosae-Caes.** Anthonotha leptorrhachis (Harms) J.Léonard sb Tr Cam<br />

47 Leguminosae-Caes.** Aphanocalyx hedinii (A.Chev.) Wieringa np Tr Cam<br />

48 Leguminosae-Caes.** Aphanocalyx ledermannii (Harms) Wieringa* sw Tr Lg<br />

49 Leguminosae-Caes.** Berlinia auriculata Benth. ri Tr Lg<br />

50 Leguminosae-Caes.** Berlinia craibiana Baker f. ri Tr Lg<br />

51 Leguminosae-Caes.** Bikinia le-testui (Pellegr.) Wieringa ssp. le-testui np Tr Lg<br />

52 Leguminosae-Caes.** Brachystegia cynometroides Harms np Tr Lg<br />

53 Leguminosae-Caes.** Brachystegia mildbraedii Harms np Tr Lg<br />

54 Leguminosae-Caes.** Copaifera religiosa J.Léonard* np Tr Lg<br />

55 Leguminosae-Caes.** Daniellia klainei A.Chev.* ri Tr Lg<br />

56 Leguminosae-Caes.** Detarium macrocarpum Harms sb Tr Lg<br />

57 Leguminosae-Caes.** Dialium zenkeri Harms sb Tr Sw-Cam<br />

58 Leguminosae-Caes.** Didelotia africana Baill. sb Tr Lg<br />

59 Leguminosae-Caes.** Didelotia unifoliolata J.Léonard sb Tr Lg<br />

60 Leguminosae-Caes.** Gilbertiodendron brachystegioides (Harms) J.Léonard np Tr Lg<br />

61 Leguminosae-Caes.** Gilbertiodendron demonstrans (Baill.) J.Léonard np Tr Lg<br />

62 Leguminosae-Caes.** Gilbertiodendron klainei (Pierre ex Pelligr.) J.Léonard np Tr Lg<br />

63 Leguminosae-Caes.** Gilbertiodendron ogoouense (Pellegr.) J.Léonard np Tr Lg<br />

64 Leguminosae-Caes.** Gilbertiodendron pachyanthum (Harms) J.Léonard np Tr Sw-Cam<br />

65 Leguminosae-Caes.** Griffonia tessmannii (De Wild.) Campère np Lwcl Lg<br />

66 Leguminosae-Caes.** Guibourtia tessmannii (Harms) J.Léonard np Tr Lg<br />

67 Leguminosae-Caes.** Leonardoxa africana (Baill.) Aubrév. sb Tr Lg<br />

68 Leguminosae-Caes.** Loesenera talbotii Baker f. sb Tr Lg<br />

69 Leguminosae-Caes.** Oddoniodendron micranthum (Harms) Baker f. np Tr Lg<br />

70 Leguminosae-Caes.** Paraberlinia bifoliolata Pellegr. np Tr Lg<br />

71 Leguminosae-Caes.** Plagiosiphon longitubus (Harms) J.Léonard sb Tr Sw-Cam<br />

72 Leguminosae-Caes.** Plagiosiphon multijugus (Harms) J.Léonard sb Tr Cam<br />

73 Leguminosae-Caes.** Prioria joveri (Normand ex Aubrev.) Breteler np Tr Lg<br />

74 Leguminosae-Caes.** Tetraberlinia moreliana Aubrév. * sb Tr Lg<br />

75 Leguminosae-Caes.** Zenkerella citrina Taub. sb Tr Lg<br />

76 Loganiaceae Mostuea neurocarpa Gilg* sb Sh Lg<br />

77 Loganiaceae Strychnos canthioides Leeuwenb. np Lwcl Campo-Ma’an<br />

78 Melastomataceae Amphiblemma letouzeyi Jacq.-Fél. sb Hb Sw-Cam<br />

79 Melastomataceae Calvoa calliantha Jacq.-Fél. sb Hb Sw-Cam<br />

80 Melastomataceae Calvoa stenophylla Jacques-Félix sb Hb Campo-Ma’an<br />

81 Melastomataceae Guyonia tenella Naud.* sb Hb Lg<br />

82 Menispermaceae Albertisia glabra (Diels & Troupin) Forman sb Swcl Sw-Cam<br />

83 Moraceae Dorstenia dorstenioides (Engl.) Hijman & C.C.Berg sb Hb Campo-Ma’an<br />

84 Moraceae Dorstenia involuta M.Hijman sb Hb Campo-Ma’an<br />

85 Ochnaceae Testulea gabonensis Pellegr.* np Tr Lg<br />

86 Orchidaceae Bulbophyllum alinae Szlachetko ep Ep Campo-Ma’an<br />

87 Orchidaceae Podandriella batesii (la Croix) Szlachetko & Olszewski sb Hb Campo-Ma’an<br />

88 Orchidaceae Polystachya letouzeyana Szlachetko & Olszewski ep Ep Campo-Ma’an<br />

89 Orchidaceae Vanilla africana Lindley subsp. cucullata (Kraenzlin & K. Shum.)<br />

Szlachetko & Olszewski<br />

np Hcl Sw-Cam<br />

90 Podostemaceae Ledermanniella annithomae C. Cusset rh Hb Campo-Ma’an<br />

91 Podostemaceae Ledermanniella batangensis (Engl.) C. Cusset rh Hb Campo-Ma’an<br />

92 Podostemaceae Ledermanniella bosii C.Cusset rh Hb Campo-Ma’an


Bio-indicator species and Central African rain forest refuges<br />

No Family Species Guild Habit Chorology<br />

93 Podostemaceae Ledermanniella kamerunensis (Engl.) C. Cusset rh Hb Campo-Ma’an<br />

94 Rubiaceae Bertiera bicarpellata (K.Schum.) N.Hallé sb Sh Lg<br />

95 Rubiaceae Bertiera laxa Benth. sb Sh Lg<br />

96 Rubiaceae Bertiera laxissima K.Schum. sb Sh Lg<br />

97 Rubiaceae Bertiera retrofracta K.Schum. sb Sh Lg<br />

98 Rubiaceae Bertiera subsessilis Hiern sb Sh Lg<br />

99 Rubiaceae Chassalia ischnophylla (K.Schum.) Hepper sb Sh Lg<br />

100 Rubiaceae Chassalia zenkeri K.Schum. & K.Krause sb Sh Lg<br />

101 Rubiaceae Chazaliella insidens (Hiern) Petit & Verdc. subsp. insidens sb Sh Lg<br />

102 Rubiaceae Chazaliella sciadephora (Hiern) Petit & Verdc. var. condensata Verdc. sb Sh Cam<br />

103 Rubiaceae Ecpoma apocynaceum K.Schum. pi Sh Sw-Cam<br />

104 Rubiaceae Ecpoma gigantostipulum (K.Schum.) N.Hallé pi Sh Lg<br />

105 Rubiaceae Hymenocoleus glaber Robbrecht sb Hb Cam<br />

106 Rubiaceae Hymenocoleus nervopilosus Robbrecht orientalis Robbrecht sb Hb Lg<br />

107 Rubiaceae Ixora aneimenodesma K.Schum. aneimenodesma sb Sh Cam<br />

108 Rubiaceae Ixora euosmia K.Schum. ri Sh Lg<br />

109 Rubiaceae Ixora hippoperifera Bremek. sb Sh Lg<br />

110 Rubiaceae Ixora macilenta De Block pi Sh Lg<br />

111 Rubiaceae Ixora nematopoda K.Schum. sb Sh Lg<br />

112 Rubiaceae Ixora synactica De Block sb Sh Sw-Cam<br />

113 Rubiaceae Oxyanthus laxiflorus K.Schum. ex Hutch. & Dalziel sb Sh Lg<br />

114 Rubiaceae Oxyanthus oliganthus K.Schum. sb Sh Cam<br />

115 Rubiaceae Pavetta camerounensis S.Manning subsp. camerounensis sb Sh Cam<br />

116 Rubiaceae Pavetta gabonica Bremek. sb Sh Lg<br />

117 Rubiaceae Pavetta gracilipes Hiern sb Sh Lg<br />

118 Rubiaceae Pavetta kribiensis S.Manning sb Sh Sw-Cam<br />

119 Rubiaceae Pavetta mpomii S.Manning sb Sh Sw-Cam<br />

120 Rubiaceae Pavetta staudtii Hutch. & Dalziel sb Sh Cam<br />

121 Rubiaceae Pseudosabicea medusula (K.Schum.) N.Hallé np Hb Cam<br />

122 Rubiaceae Pseudosabicea proselyta N.Hallé pi Hb Lg<br />

123 Rubiaceae Pseudosabicea segregata (Hiern) N.Hallé pi Hb Lg<br />

124 Rubiaceae Psychotria aemulans K. Schum. sb Sh Campo-Ma’an<br />

125 Rubiaceae Psychotria avakubiensis De Wild. sb Sh Lg<br />

126 Rubiaceae Psychotria batangana K. Schum. sb Sh Campo-Ma’an<br />

127 Rubiaceae Psychotria bifaria Hiern var. bifaria sb Sh Lg<br />

128 Rubiaceae Psychotria calceata Petit sb Sh Lg<br />

129 Rubiaceae Psychotria camerunensis Petit sb Sh Cam<br />

130 Rubiaceae Psychotria camptopus Verdc. sb Sh Lg<br />

131 Rubiaceae Psychotria dimorphophylla K. Schum. ri Sh Campo-Ma’an<br />

132 Rubiaceae Psychotria ebensis K.Schum. sb Sh Lg<br />

133 Rubiaceae Psychotria globosa Hiern var. ciliata (Hiern) Petit sb Hb Lg<br />

134 Rubiaceae Psychotria humilis Hiern var. humilis pi Hb Lg<br />

135 Rubiaceae Psychotria ingentifolia Petit sb Sh Lg<br />

136 Rubiaceae Psychotria lanceifolia K.Schum. sb Sh Sw-Cam<br />

137 Rubiaceae Psychotria latistipula Benth. sb Sh Lg<br />

138 Rubiaceae Psychotria letouzeyi Petit sb Sh Lg<br />

139 Rubiaceae Psychotria oligocarpa K.Schum. sb Sh Sw-Cam<br />

140 Rubiaceae Psychotria sadebeckiana K.Schum. var. elongata Petit sb Sh Cam<br />

83


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Habit Chorology<br />

141 Rubiaceae Psychotria sadebeckiana K.Schum. var. sadebeckiana sb Sh Cam<br />

142 Rubiaceae Serican<strong>the</strong> auriculata (Keay) Robbrecht sb Sh Lg<br />

143 Rubiaceae Serican<strong>the</strong> jacfelicis (N.Hallé) Robbrecht sb Sh Lg<br />

144 Rubiaceae Tricalysia amplexicaulis Robbrecht sb Sh Cam<br />

145 Rubiaceae Tricalysia lasiodelphys (K.Schum. & K.Krause) A.Chev. subsp.<br />

lasiodelphys<br />

sb Sh Lg<br />

146 Rubiaceae Tricalysia obstetrix N.Hallé sb Sh Lg<br />

147 Rubiaceae Tricalysia pedunculosa (N.Hallé) Robbrecht var. pedunculosa sb Sh Lg<br />

148 Rubiaceae Tricalysia soyauxii K.Schum. sb Sh Lg<br />

149 Rubiaceae Tricalysia sylvae Robbrecht sb Sh Lg<br />

150 Rubiaceae Tricalysia talbotii (Wernham) Keay sb Sh Cam<br />

151 Rubiaceae Tricalysia vadensis Robbrecht sb Sh Lg<br />

152 Rubiaceae Vangueriella laxiflora (K.Schum.) Verdc. sb Swcl Cam<br />

153 Sapindaceae Deinbollia macroura Gilg ex Radlkofer sb Sh Campo-Ma’an<br />

154 Sapindaceae Deinbollia mezilii D.W.Thomas & D.J.Harris sb Sh Campo-Ma’an<br />

155 Sapindaceae Deinbollia pycnophylla Gilg ex Radlk.* sb Sh Lg<br />

156 Scytopetalaceae Rhaptopetalum sessilifolium Engl sb Sh Sw-Cam<br />

157 Sterculiaceae Cola fibrillosa Engl. & Krause sb Tr Sw-Cam<br />

158 Sterculiaceae Cola subglaucescens Engl. sb Tr Sw-Cam<br />

159 Sterculiaceae Cola sulcata Engl. sb Tr Sw-Cam<br />

160 Sterculiaceae Scaphopetalum acuminatum Engl. & K. Krause sb Sh Campo-Ma’an<br />

161 Sterculiaceae Scaphopetalum brunneo-purpureum Engl. & K. Krause sb Sh Campo-Ma’an<br />

162 Sterculiaceae Scaphopetalum paxii H. Winkler sb Sh Sw-Cam<br />

163 Sterculiaceae Scaphopetalum zenkeri K.Schum. sb Sh Sw-Cam<br />

164 Violaceae Rinorea albidiflora Engl. sb Sh Lg<br />

165 Violaceae Rinorea campoensis M. Brandt ex Engl. sb Sh Campo-Ma’an<br />

166 Violaceae Rinorea dentata P.Beauv. sb Sh Lg<br />

167 Violaceae Rinorea exappendiculata Engl. ex Brandt sb Sh Lg<br />

168 Violaceae Rinorea gabunensis Engl. sb Sh Lg<br />

169 Violaceae Rinorea kamerunensis Engl. sb Sh Lg<br />

170 Violaceae Rinorea ledermannii Engl. sb Sh Lg<br />

171 Violaceae Rinorea longisepala Engl. sb Sh Lg<br />

172 Violaceae Rinorea microglossa Engl. sb Sh Sw-Cam<br />

173 Violaceae Rinorea sp. nov1. ined. sb Sh Cam<br />

174 Violaceae Rinorea sp. nov2. ined. sb Sh Cam<br />

175 Violaceae Rinorea verrucosa Chipp sb Sh Lg<br />

176 Violaceae Rinorea woermaniana (Buttn.) Engl. sb Sh Lg<br />

177 Zingiberaceae Aulotandra kamerunensis Loes. sb Hb Sw-Cam<br />

178 Zingiberaceae Renealmia densispica Koechlin sb Hb Sw-Cam<br />

* for species that reach <strong>the</strong>ir nor<strong>the</strong>rn of distribution in <strong>the</strong> Campo-Ma’an area<br />

** Leguminosae-Caes. = Leguminosae-Caesalpinioideae<br />

Guild: ep = epiphyte, np = non pioneer light demanding, pi = pioneer, rh = rheophyte, ri = riverine, sb =<br />

shade-bearer and sw = swamp.<br />

Habit: Ep = epiphyte, Hb = herb, Hcl = herbaceous climber, He = hemi-epiphyte, Lwcl = large woody<br />

climber, Swcl = small woody climber, Sh = shrub, and Tr = tree.<br />

Chorology: Campo-Ma’an = species that are strictly endemic to Campo-Ma’an, Sw-Cam = endemic to<br />

southwestern part of Cameroon (Kribi-Akom II-Bipindi-Lolodorf areas), Cam = endemic to Cameroon,<br />

Lg = Lower Guinea endemic plant species.<br />

84


Photo: Botanical inventory in a mangrove forest in Mabiogo, Campo area (Tchouto, M.G.P.)


Chapter 5<br />

BIODIVERSITY HOTSPOTS AND CONSERVATION<br />

PRIORITIES IN CENTRAL AFRICAN RAIN FORESTS<br />

Gildas Peguy Tchouto Mbatchou (1)<br />

With M. Yemefack (2) , W.F. de Boer (3) , de Wilde J.J.F.E. (4) , van der Maesen<br />

L.J.G. (4) , and Cleef A.M. (5)<br />

(1) Limbe Botanic Garden, BP 437, Limbe, Cameroon; e-mail: peguy2000@yahoo.com<br />

(2) <strong>International</strong> Institute for Geo-Information Science and Earth Observation (ITC), PO Box 6, 7500 AA<br />

Enschede, <strong>the</strong> Ne<strong>the</strong>rlands; e-mail: yemefack@itc.nl<br />

(3) Tropical Nature Conservation and Vertebrate Ecology Group, Wageningen University, Bornsesteeg 69,<br />

6708 PD, Wageningen, <strong>the</strong> Ne<strong>the</strong>rlands; e-mail: fred.deboer@wur.nl<br />

(4) Biosystematics Group, Wageningen University, Generaal Foulkesweg 37, 6703 BL, Wageningen, <strong>the</strong><br />

Ne<strong>the</strong>rlands; e-mail: jos.vandermaesen@wur.nl<br />

(5) Institute for Biodiversity and Ecosystem Dynamics (IBED) Research Group, Palynology and<br />

Paleo/Actuo-ecology, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, <strong>the</strong> Ne<strong>the</strong>rlands;<br />

e-mail: cleef@science.uva.nl


5.1. INTRODUCTION<br />

Biodiversity hotspots and conservation priorities in Central African rain forests<br />

Until recently, patterns of species richness and endemism were based on an intuitive<br />

interpretation of distribution maps with very limited numerical analyses (White, 1979<br />

& 1983). Such maps based solely on taxonomic collections tend to concentrate on<br />

collecting efforts more than biodiversity hotspots, since often <strong>the</strong> highest diversity is<br />

found in well-collected areas (ter Steege, 2000; Linder, 2001). During <strong>the</strong> last<br />

decades, <strong>the</strong>re has been an overwhelming concern about <strong>the</strong> loss of tropical forest<br />

biological diversity, and an emphasis on <strong>the</strong> identification of biodiversity hotspots in<br />

an attempt to optimise conservation strategies (Beentje, 1996). Fur<strong>the</strong>rmore, <strong>the</strong><br />

concept of sites of high diversity, or hotspots, has attracted <strong>the</strong> attention of<br />

conservationists as a tool for conservation priority settings (Davis et al., 1994;<br />

Heywood & Watson, 1995; Stork et al., 1997). With <strong>the</strong> development of GIS tools,<br />

geostatistics, phytosociological and multivariate analysis software packages, more<br />

rigorous numerical analyses of distributional and inventory data can be used for<br />

assessing conservation priorities.<br />

Central African rain forests are among <strong>the</strong> top conservation priority areas in <strong>the</strong> world<br />

(Davis et al., 1994; Heywood & Watson, 1995; Myers et al., 2000). Taking into<br />

consideration <strong>the</strong> rich and diverse flora of <strong>the</strong> Campo-Ma’an rain forest, as well as its<br />

high level of endemism, it has been identified as one of <strong>the</strong> key conservation sites in<br />

Cameroon (Gartlan, 1989). The Campo-Ma’an area is a Technical Operational Unit<br />

(TOU) that comprises a National Park, five forest management units, two agroindustrial<br />

plantations, and a multi-uses zone (Chapter 1). Despite <strong>the</strong> low population<br />

density, <strong>the</strong>re are many stakeholders and different types of land use. Activities such as<br />

logging and industrial and shifting agriculture exsert varying ecological impact on <strong>the</strong><br />

forest ecosystem. This has led to deforestation, habitat fragmentation and alteration of<br />

<strong>the</strong> coastal forests. With <strong>the</strong> increasing destruction of natural ecosystems, it is<br />

important to identify biodiversity hotspots and conservation priorities in order to<br />

enable an effective management. To achieve this, we need to study <strong>the</strong> species<br />

composition and species distribution, so that we can target conservation resources and<br />

efforts to rich and diverse areas with a high number of endemic species. Endemism is<br />

commonly regarded as an important criterion for assessing <strong>the</strong> conservation value of a<br />

given area. In this Chapter, forest inventory data and taxonomic collections will be<br />

used to examine <strong>the</strong> distribution and convergence patterns of strict and narrow<br />

endemic species. We will use new quantitative conservation indices such as GHI<br />

(Genetic Heat Index) and Pioneer Index (PI) to analyse trends in endemic and rare<br />

species in <strong>the</strong> various forest types. Finally, geostatistic analysis and techniques will<br />

help to evaluate and identify potential areas of high conservation priority.<br />

5.2. METHODS<br />

Botanical assessment<br />

Sampling was carried out in small plots of 0.1 ha in representative and homogeneous<br />

vegetation types (Chapter 1). In total 147 plots covering 14.7 ha were established and<br />

in each 0.1 ha plot, all trees, shrubs, herbs and lianas with DBH ≥ 1 cm were<br />

measured, recorded and identified. Fur<strong>the</strong>rmore, in each representative vegetation<br />

type, a provisional plant species checklist was made in <strong>the</strong> field with information on<br />

<strong>the</strong>ir growth form, guild and frequency. For unknown species, a voucher specimen<br />

89


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

was collected. The study also involved <strong>the</strong> collection of fertile specimens encountered<br />

in plots, vegetation types and specific habitats such as exposed rocks and riverbanks.<br />

Criteria for taxa inclusion<br />

A plant species checklist was generated from <strong>the</strong> inventory data, from <strong>the</strong> plant<br />

collections made during <strong>the</strong> study, and from specimens previously collected in <strong>the</strong><br />

area by o<strong>the</strong>r scientists, stored in <strong>the</strong> Cameroon and Wageningen herbaria.<br />

Fur<strong>the</strong>rmore, a taxonomic search of potential taxa of high conservation priority such<br />

as endemic, rare, new and threatened species was carried using existing floras and<br />

monographs (Keay & Hepper, 1954-1972; Aubréville & Leroy, 1961-1992;<br />

Aubréville & Leroy, 1963-2000; Lebrun & Stork, 2003; Satabié & Leroy, 1980-1985;<br />

Satabié & Morat, 1986-2001), <strong>the</strong> IUCN (2002) red list categories, and <strong>the</strong> WCMC<br />

(1998) world list of threatened trees. On <strong>the</strong> basis of this information, a list of 141<br />

species of high conservation values was produced with information on <strong>the</strong>ir habit,<br />

guild, star category (Table 5.1) and chorology. In this list, priority was given to taxa<br />

that are strictly endemic to <strong>the</strong> Campo-Ma’an area. Followed by species that are<br />

endemic to southwestern Cameroon (also occurring in Bipindi and Lolodorf areas) or<br />

Cameroon and Lower Guinea endemics (especially if <strong>the</strong>y reach <strong>the</strong>ir nor<strong>the</strong>rn or<br />

sou<strong>the</strong>rn limit of distribution in Campo-Ma’an).<br />

Taking into consideration <strong>the</strong> fact that strict and narrow endemic species are highly<br />

vulnerable to human disturbance and o<strong>the</strong>r forms of environmental changes, <strong>the</strong>y are<br />

often indicators of rich biodiversity, and <strong>the</strong>ir distribution is frequently used for <strong>the</strong><br />

identification of biodiversity hotspots (Myers, 1988; Williams, 1993; Heywood &<br />

Watson, 1995). Based on <strong>the</strong>ir spatial distribution, endemic plant species may include<br />

broad endemics which have a large range of distribution such as Lower Guinea (Lg),<br />

Upper Guinea (Ug), Guinea (Gu = Lg + Ug) and Guineo-Congolian (Gc) endemics as<br />

defined by White (1979). Narrow endemics are restricted to a political area (e.g.<br />

endemic to Cameroon) or site (e.g. endemic to Campo-Ma’an area). Fur<strong>the</strong>rmore,<br />

species that reach <strong>the</strong>ir nor<strong>the</strong>rn or sou<strong>the</strong>rn limit of distribution in <strong>the</strong> Campo-Ma’an<br />

area were also included in <strong>the</strong> list.<br />

Star rating of species and measurement of forest conservation value<br />

A star rating system, based on <strong>the</strong> work of Hawthorne and Abu-Juam (1995) and<br />

Hawthorne (1996) in Ghana, Cable & Cheek (1998) and Tchouto et al. (1998) in<br />

Cameroon, was used to define <strong>the</strong> conservation status of each species recorded (Table<br />

5.1). The factors considered when categorising species into star categories are <strong>the</strong>ir<br />

distribution, ecology, local abundance, taxonomy, life history, interaction with<br />

ecosystem parameters and economic importance (Hawthorne, 1996). Therefore,<br />

species that are endemic, rare, threatened, or likely to represent a scarce genetic<br />

resource, are more valuable than o<strong>the</strong>rs are. Hence, forests richer in such species<br />

receive a higher score than o<strong>the</strong>rs.<br />

The Genetic Heat Index (GHI) concept was developed by Hawthorne (1995 & 1996)<br />

to express <strong>the</strong> conservation value of a given forest, and <strong>the</strong> Pioneer Index (PI) concept<br />

to express <strong>the</strong> level of disturbance in a given forest. GHI is an attempt to provide a<br />

scale, on which to measure <strong>the</strong> genetic ‘temperature’ or value of <strong>the</strong> forest. A<br />

plot/forest with an average GHI > 150 will be considered warm or hot. In general, for<br />

species with completed monographs, black stars occupy about 1-3 filled degree<br />

90


Biodiversity hotspots and conservation priorities in Central African rain forests<br />

squares on a standard distribution map, gold stars 4-14, blue stars 15-30, and green<br />

star more than 30 degree squares.<br />

Hawthorne (1996) defined <strong>the</strong> guild as a flexible concept used to circumscribe a group<br />

of plant species with a similar ecology and way of life. All <strong>the</strong> species were grouped<br />

into guild classes as defined in Table 5.2 and a PI score was calculated as an<br />

expression of <strong>the</strong> relative contribution contribution of pioneers. Five classes of human<br />

disturbance were used to evaluate <strong>the</strong> forest quality and condition as defined in Table<br />

5.3. These classes were mainly based on <strong>the</strong> field observation of <strong>the</strong> level of human<br />

disturbance and <strong>the</strong> state of forest degradation.<br />

The GHI and PI values of each sample were calculated using <strong>the</strong> TREMA database as<br />

follows:<br />

GHI = (BK x BK weight) + (GD x GD weight) + (BU x BU weight) + (RD x RD weight) x 100<br />

BK + GD + BU + GN + RD<br />

Where: GHI = Genetic Heat Index; BK = number of black star species; GD = number of gold<br />

star species; BU = number of blue star species; GN = number of green star species; and RD =<br />

number of red, scarlet and pink star species.<br />

Pioneer Index (PI) = (Pioneer x PI weight) + (NP x NP weight) x 100<br />

Total number of species<br />

Where: PI = number of pioneer species and NP = number of non-pioneer light demanding<br />

species.<br />

Geostatistical analysis<br />

Conservation indices such GHI and PI are likely to vary throughout a region.<br />

Geostatistics (Isaaks & Srivastava, 1989; Webster & Oliver, 2001) were applied to<br />

quantify <strong>the</strong> spatial distribution of GHI within <strong>the</strong> Campo-Ma’an forest. Geographic<br />

analyses were done using ILWIS software (ILWIS, 2001) and GSTAT package<br />

(Pebesma & Wesseling, 1998) of R software (R Development Core Team, 2002). The<br />

semivariance was calculated for GHI data on a minimum lag distance of 1250 m and<br />

each lag distance class contained at least 105 pairs of points. The semivariogram<br />

parameters (nugget, sill and range) were computed using <strong>the</strong> GSTAT fit variogram<br />

function. During <strong>the</strong> study of GHI spatial variability, <strong>the</strong> main objective was to obtain<br />

a map from point observations. Since this also required <strong>the</strong> estimation of a value at unvisited<br />

locations, <strong>the</strong> technique commonly used is known as kriging (Isaaks &<br />

Srivastava, 1989). The semivariogram function was <strong>the</strong>n used to extrapolate <strong>the</strong> GHI<br />

values in <strong>the</strong> Campo-Ma’an forest at 100 m x 100 m grid, using Ordinary Kriging.<br />

The output map was reclassified into five classes of conservation value (Hawthorne,<br />

1996).<br />

91


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Table 5.1 Star categories and GHI weight classes as defined for Cameroon. Adapted from Hawthorne and<br />

Abu-Juam (1995), Hawthorne (1996) and Tchouto et al. (1998).<br />

Star category Weight<br />

for GHI<br />

Comment<br />

Black (BK) 27 Species which are only found in <strong>the</strong> Campo-Ma’an area (strictly endemic)<br />

or near endemics (species which also occur in some localities around<br />

Campo-Ma’an such as Bipindi, Edea-Kribi, Lolodorf or sou<strong>the</strong>rn part of<br />

Cameroon). Urgent attention to conservation of population is needed.<br />

Gold (GD) 9 Cameroon endemics, rare and threatened Lower Guinea endemics.<br />

Cameroon has definitely responsibility for preserving <strong>the</strong>se species.<br />

Blue (BU) 3 Lower Guinea and Guineo-Congolian endemics which are widespread<br />

internationally but rare in Cameroon, or vice versa.<br />

Scarlet (SC) 1 Common but under serious pressure from heavy exploitation. Exploitation<br />

needs to be curtailed if usage is to be sustainable. Protection of all scales<br />

vital.<br />

Red (RD) 1 Common but under pressure from exploitation<br />

Pink (PK) 1 Common and moderately exploited<br />

Green (GN) - Widespread Guineo-Congolian, pantropical and tropical African species<br />

that are not under pressure. No particular conservation concern.<br />

Table 5.2 Guild and weight classes. Adapted from Hawthorne and Abu-Juam (1995), Hawthorne (1996)<br />

and Cable & Cheek (1998)<br />

Guild Weight<br />

for PI<br />

Comment<br />

Pioneer (PI) 2 Regenerating only in forest gaps and <strong>the</strong>refore indicating disturbed<br />

forest (e.g. Ceiba , Musanga, Harungana, Macaranga)<br />

Non-Pioneer light 1 Although some juveniles are also found in <strong>the</strong> understorey of<br />

demanding (NP)<br />

undisturbed forest, <strong>the</strong>y require gaps to develop to full maturity.<br />

Generally, non-pioneer light demanding are abundant in matured<br />

disturbed forest (e.g. Albizia, Entandrophragma, Piptadeniastrum,<br />

Pycnanthus)<br />

Shade-bearers (SB) - Understorey herbs, shrubs and trees which grow, flower and fruit in<br />

undisturbed forest (e.g. Cola, Diospyros, Psychotria, Rinorea)<br />

Table 5.3 Forest condition classes showing <strong>the</strong> degree of human disturbance on <strong>the</strong> natural forest cover.<br />

Forest condition Classes Comment<br />

Excellent Virtually undisturbed Virtually Undisturbed forest, with good canopy and few<br />

signs of human disturbance except for hunting and NTFPs<br />

collection.<br />

Good Less than 25% disturbed Small patches of recent disturbance (50%) of recent degradation. Patchy<br />

with heavily disrupted canopy.<br />

Very poor Farm land No significant forest left (


5.3. RESULTS<br />

Biodiversity hotspots and conservation priorities in Central African rain forests<br />

Species richness and endemism<br />

A plant species checklist (Annex 3) made of 2297 species of vascular plants, ferns and<br />

fern allies was generated from inventory data and from 2348 herbarium specimens and<br />

4789 ecological specimens collected in <strong>the</strong> various plots. They belonged to 851 genera<br />

and 155 families. More than 67% of <strong>the</strong> specimens were identified at species level,<br />

28% at generic level, 4% at family level and 1% remained unidentified. The 20 most<br />

important families and genera are shown in Tables 5.4 and 5.5. In terms of growth<br />

form, tree species contributed for 26% to <strong>the</strong> total number of 2297 species recorded,<br />

followed by herbs (24%), shrubs (23%) and climbers (17%) respectively. About 72%<br />

of <strong>the</strong> total number of species recorded was also found in <strong>the</strong> Campo-Ma’an National<br />

Park.<br />

In addition to a list of 92 threatened species (Table 5.7) recorded in IUCN (2002) and<br />

WCMC (1998), a list with 141 plant species of high conservation priorities was<br />

produced, with information on <strong>the</strong>ir growth forms, guild, chorology and star<br />

categories (Table 5.6). Only species that are endemic to Cameroon and species that<br />

reach <strong>the</strong>ir nor<strong>the</strong>rn or sou<strong>the</strong>rn limit of distribution are included in this list. The<br />

Campo-Ma’an area has about 114 endemic species, 29 of which are only known from<br />

<strong>the</strong> area, 29 only occur in <strong>the</strong> southwestern part of Cameroon, and 56 near endemics<br />

that also occur in o<strong>the</strong>r parts of Cameroon (Table 5.6 & Figure 5.1).<br />

Table 5.4 Most important families recorded in <strong>the</strong> Campo-Ma’an area.<br />

No Family No of species Predominant growth forms<br />

1 Rubiaceae 279 Trees, shrubs, herbs and climbers<br />

2 Euphorbiaceae 117 Trees, shrubs, herbs and climbers<br />

3 Leguminosae-Caesalpinioideae 96 Trees and shrubs<br />

4 Apocynaceae 80 Trees, shrubs, herbs and climbers<br />

5 Annonaceae 69 Trees, shrubs and climbers<br />

6 Acanthaceae 68 Herbs<br />

7 Leguminosae-Papilionoideae 65 Trees, herbs and climbers<br />

8 Sterculiaceae 62 Shrubs and trees<br />

9 Gramineae 54 Herbs<br />

10 Orchidaceae 54 Terrestrial and epiphytic herbs<br />

11 Melastomataceae 46 Shrubs and herbs<br />

12 Moraceae 40 Trees, shrubs and herbs<br />

13 Celastraceae 39 Climbers<br />

14 Cyperaceae 39 Herbs<br />

15 Dichapetalaceae 39 Climbers<br />

16 Sapindaceae 36 Trees and shrubs<br />

17 Araceae 34 Herbs and hemi-epiphytes<br />

18 Loganiaceae 33 Shrubs and climbers<br />

19 Sapotaceae 30 Trees and shrubs<br />

20 Begoniaceae 29 Terrestrial and epiphytic herbs<br />

O<strong>the</strong>rs (135 families) 988 Trees, shrubs, climbers and herbs<br />

93


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Table 5.5 Most important genera recorded in <strong>the</strong> Campo-Ma’an area.<br />

94<br />

No Genus No of species Predominant growth forms<br />

1 Dichapetalum (Dichapetalaceae) 37 Climbers<br />

2 Psychotria (Rubiaceae) 35 Shrubs<br />

3 Cola (Sterculiaceae) 32 Trees and shrubs<br />

4 Begonia (Begoniaceae) 29 Terrestrial and epiphytic herbs<br />

5 Diospyros (Ebenaceae) 27 Trees and shrubs<br />

6 Salacia (Celastraceae) 27 Climbers<br />

7 Strychnos (Loganiaceae) 24 Climbers<br />

8 Rinorea (Violaceae) 23 Trees and shrubs<br />

9 Drypetes (Euphorbiaceae) 21 Trees and shrubs<br />

10 Combretum (Combretaceae) 18 Climbers<br />

11 Dorstenia (Moraceae) 18 Herbs<br />

12 Campylospermum (Ochnaceae) 17 Shrubs<br />

13 Bulbophyllum (Orchidaceae) 16 Terrestrial and epiphytic herbs<br />

14 Ficus (Moraceae) 16 Trees and stranglers<br />

15 Garcinia (Guttiferae) 16 Trees and shrubs<br />

16 Asplenium (Aspleniaceae) 15 Epiphytic herbs<br />

17 Culcasia (Araceae) 15 Herbs and hemi-epiphytes<br />

18 Landolphia (Apocynaceae) 15 Climbers<br />

19 Tricalysia (Rubiaceae) 15 Trees and shrubs<br />

20 Bertiera (Rubiaceae) 14 Shrubs<br />

O<strong>the</strong>rs (831 genera) 1867 Trees, shrubs, climbers and herbs<br />

Shrubs contributed for 38% of <strong>the</strong> 114 endemic species (Table 5.6), herbs (29%), trees<br />

(20%) and climbers (11%). Moreover, 540 species (23% of <strong>the</strong> total number of<br />

species) recorded are endemic to <strong>the</strong> Lower Guinea Centre of Endemism, 1123<br />

species (49%) are Guineo-Congolian endemics and 105 species (5%) are Guinea<br />

endemics as described by White (1979). Overall, <strong>the</strong>re was a high concentration of<br />

strict and narrow endemic species in <strong>the</strong> lowland evergreen forest rich in<br />

Caesalpinioideae, coastal and submontane forests located in <strong>the</strong> western and nor<strong>the</strong>rn<br />

parts of Ma’an and a relatively low concentration of <strong>the</strong>se species in Ma’an area<br />

(Figure 5.1). Although more than 70% of <strong>the</strong> total endemic species recorded were also<br />

found in <strong>the</strong> National Park, 17 of <strong>the</strong> 29 strict endemic species were not recorded in<br />

<strong>the</strong> park (Table 5.6). The distribution patterns of <strong>the</strong>se 17 taxa showed a high<br />

concentration of species around Campo, Lobe, Massif des Mamelles, Mont d’Eléphant<br />

and Zingui and a very poor representation in <strong>the</strong> Ma’an area (Figure 5.2).


Biodiversity hotspots and conservation priorities in Central African rain forests<br />

Figure 5.1 Distribution of 114 strict and narrow endemic plant species recorded in <strong>the</strong> Campo-<br />

Ma’an area (grey circle). Black circle represents <strong>the</strong> distribution of threatened strict<br />

endemics that are not found in <strong>the</strong> National Park. The size of <strong>the</strong> circle represents <strong>the</strong><br />

relative density of endemics at a given point.<br />

Genetic Heat Index and measurement of forest conservation value<br />

More than 57% of <strong>the</strong> plots have a high Genetic Heat Index (GHI) score with <strong>the</strong><br />

highest score recorded in <strong>the</strong> submontane forest (GHI = 294.4) and <strong>the</strong> lowest score in<br />

mangrove (GHI = 3.1). As shown in Figure 5.3, <strong>the</strong> submontane forest had <strong>the</strong> highest<br />

average GHI score of 214.7, followed by <strong>the</strong> lowland evergreen forest rich in<br />

Caesalpinioideae with Calpocalyx heitzii and Sacoglottis gabonensis (GHI = 194.1).<br />

The mangrove and <strong>the</strong> coastal forest on sandy shorelines had <strong>the</strong> lowest average GHI<br />

score (GHI = 3 and 120.2 respectively). The average pioneer index (PI) was very high<br />

in <strong>the</strong> mangrove forest (PI = 125), coastal forest on sandy shorelines (PI = 66.9) and in<br />

<strong>the</strong> forest rich in Aucoumea klaineana (PI = 60). Generally, <strong>the</strong>re was a significant<br />

decrease in average GHI with increasing average PI (Figure 5.3). As shown in Figure<br />

5.4, <strong>the</strong>re was a very strong significant negative correlation between <strong>the</strong> average GHI<br />

scores and <strong>the</strong> PI scores recorded in <strong>the</strong> various vegetation types (F1-10 = 111.71, R² =<br />

0.918, P < 0.0001). However, <strong>the</strong> correlation was ra<strong>the</strong>r weak with a low explanatory<br />

factor when <strong>the</strong> analysis was carried out using all plots as individual data points (F1-145<br />

= 94.00, R² = 0.393, P < 0.0001). Most of <strong>the</strong> forest types within <strong>the</strong> National Park<br />

were virtually undisturbed or less than 25% disturbed (Figure 5.5). The coastal forest<br />

between Campo and Kribi, as well as <strong>the</strong> forests around Massif des Mamelles, Mont<br />

d’Elephant, agro-industrial plantations, logging concessions and settlements were<br />

much more affected by human activities (Figure 5.5). These forests were often more<br />

than 25% disturbed and were characterised by a high PI scores (Figures 5.3 & 5.5).<br />

95


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Figure 5.2 Distribution of 17 strict endemic plant species that are not found in <strong>the</strong> National Park. The size of<br />

<strong>the</strong> circle represents <strong>the</strong> relative density of endemics at a given point.<br />

Figure 5.3 The average Genetic Heat Index (GHI = bars) and average Pioneer Index (PI = line) for <strong>the</strong> various vegetation<br />

types. Submontane: Submontane forest; Caesalpcasa: Lowland evergreen forest rich in Caesalpinioideae,<br />

Calpocalyx heitzii and Sacoglottis gabonensis; Caesalpsa: Lowland evergreen forest rich in Caesalpinioideae<br />

and Sacoglottis gabonensis; Caesalp: Lowland evergreen forest rich in Caesalpinioideae; Cosaga: Coastal<br />

forest with Sacoglottis gabonensis; Mixsemideci: Mixed evergreen and semi-deciduous forest with semideciduous<br />

elements predominant; Mixevergreen: Mixed evergreen and semi-deciduous forest with elements of<br />

evergreen forest predominant; Okoumé: forest rich in Aucoumea klaineana; Cosaca: Coastal forest with<br />

Sacoglottis gabonensis and Calpocalyx heitzii; and Cosas: Coastal forest on sandy shorelines.<br />

96<br />

Average GHI<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Submontane<br />

Caesalpcasa<br />

Caesalpsa<br />

Caesalp<br />

Sw amp<br />

Cosaga<br />

Mixsemideci<br />

Mixevergreen<br />

Vegetation types<br />

Okoume<br />

Cosaca<br />

Cosas<br />

Mangrove<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Average PI


Average PI<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Biodiversity hotspots and conservation priorities in Central African rain forests<br />

y = -0.4979x + 120.19<br />

F1,10 = 111.71, R 2 = 0.918, P < 0.0001<br />

0<br />

0 50 100 150 200 250<br />

Average GHI<br />

Figure 5.4 Correlation between <strong>the</strong> average GHI scores and <strong>the</strong> average PI scores for <strong>the</strong><br />

various vegetation types.<br />

Geostatistical results<br />

The analysis of <strong>the</strong> spatial structure of <strong>the</strong> dataset did not show any preferential spatial<br />

trend. Therefore, an omni-directional analysis of <strong>the</strong> semivariance (best described by a<br />

spherical model) was applied. Figure 5.6 shows <strong>the</strong> semivariogram and its<br />

characteristics. The GHI variable showed a strong spatial dependence within a range<br />

of 10500 m. The nugget (645) was low compared to <strong>the</strong> total variance or sill (3700).<br />

This suggests that more than 82% (100*(Sill-Nugget)/Sill) of <strong>the</strong> semivariance of GHI<br />

could be modelled by <strong>the</strong> variogram over a range of 10 km. The output map of <strong>the</strong><br />

ordinary kriging (Figure 5.7) was reclassified into five GHI classes, partitioning <strong>the</strong><br />

conservation value of <strong>the</strong> Campo-Ma’an forest. This partition showed that 1% of <strong>the</strong><br />

area was characterised by a very high conservation value, 45% by a high conservation<br />

value, 30% by an average conservation value, 15 % by a low conservation value and<br />

9% by a very low conservation value. A considerable portion of <strong>the</strong> National Park and<br />

<strong>the</strong> forests around Massif des Mamelles and Mont d’Eléphant was characterised by a<br />

high conservation value, with highest values found in Dipikar Island, Massif des<br />

Mamelles, Mont d’Elephant and in <strong>the</strong> submontane forest on hilltops. The forests in<br />

<strong>the</strong> Ma’an area, around Campo and agro-industrial plantations, near villages and along<br />

<strong>the</strong> roads had a low conservation value. Similar patterns were observed for <strong>the</strong><br />

distribution of strict and narrow endemic species (Figure 5.1).<br />

97


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Figure 5.5 Impact of human disturbance on <strong>the</strong> Campo-Ma’an rain forest.<br />

98<br />

Semivariance value<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Spherical Model<br />

Distance x Semivariance<br />

0 5 10 15 20 25 30<br />

Distance (km)<br />

Figure 5.6 Spherical variogram model for GHI in <strong>the</strong> Campo-Ma’an rain forest (estimated from 147 points<br />

of 0.1 ha each).


Biodiversity hotspots and conservation priorities in Central African rain forests<br />

Figure 5.7 Ordinary kriging map showing <strong>the</strong> distribution of GHI scores and conservation hotspots within<br />

<strong>the</strong> Campo-Ma’an rain forest. The following GHI values are defined for <strong>the</strong> various conservation<br />

classes (Hawthorne, 1996): Very high conservation value for GHI > 200; High conservation<br />

value (150 ≤ GHI < 200); Moderate conservation value (100 ≤ GHI < 150); Low conservation<br />

value (50 ≤ GHI < 100) and very low conservation value (GHI < 50).<br />

5.4. DISCUSSION<br />

Species richness and endemism<br />

The Campo-Ma’an area is characterised by a rich and diverse flora with more than<br />

2297 species of vascular plants, ferns and fern allies (Annex 3). The site has about 114<br />

endemic plant species, 29 of which are restricted to <strong>the</strong> area, 29 also occur in <strong>the</strong><br />

southwestern part of Cameroon (Kribi-Akom II-Bipindi and Lolodorf areas) and 56<br />

o<strong>the</strong>rs that also occur in o<strong>the</strong>r parts of Cameroon. Fur<strong>the</strong>rmore, 540 species recorded<br />

are Lower Guinea endemics, 1123 species are Guineo-Congolian endemics and 105<br />

species are Guinea endemics. Most diverse genera were understorey small trees,<br />

shrubs and herbs. The number of endemic plant species is relatively high considering<br />

<strong>the</strong> size of <strong>the</strong> area, and more than 75% of <strong>the</strong> current forest cover was characterised<br />

ei<strong>the</strong>r by very high, high or average GHI values (Figure 5.7). Fur<strong>the</strong>rmore, <strong>the</strong><br />

distribution patterns of strict and narrow endemic species showed a high concentation<br />

of <strong>the</strong>se species in <strong>the</strong> submontane forest between Ebianemeyong and Akom II, in<br />

Dipikar Island, and in <strong>the</strong> forests around Massif des Mamelles, Lobe, Mont<br />

d’Eléphant and Zingui. Surprisingly, <strong>the</strong> mixed evergreen and semi-deciduous forest<br />

in <strong>the</strong> Ma’an area showed a relatively low concentration of <strong>the</strong>se species (Figure 5.1).<br />

One of <strong>the</strong> explanations for <strong>the</strong> high occurrence of endemics might stem partly from<br />

<strong>the</strong> fact that <strong>the</strong> area falls within a series of postulated rain forest refugia in Central<br />

99


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Africa (Hamilton, 1982; White, 1983; Maley, 1987, 1989 & 1990; Sosef, 1994 &<br />

1996). In such refugia, <strong>the</strong> unique combination of climatic and geological histories,<br />

contemporary ecological factors, and inherent biological properties of taxa and <strong>the</strong>ir<br />

combinations, may have contributed to survival and/or speciation (Barbault &<br />

Sastrapradja, 1995; Hawksworth & Kalin-Arroyo, 1995). Fur<strong>the</strong>rmore, <strong>the</strong> Campo-<br />

Ma’an area forms part of <strong>the</strong> Guineo-Congolian Regional Centre of Endemism<br />

(White, 1983). All families endemic to this biogeographic region are found in <strong>the</strong> area<br />

(White, 1983). They include Hoplestigmataceae, Huaceae, Lepidobotryaceae,<br />

Medusandraceae, Pandaceae, Pentadiplandraceae and Scytopetalaceae. Moreover,<br />

82% of endemic genera cited by White (1983) also occur in <strong>the</strong> area. They are<br />

Afrobrunnichia, Amphimas, Anthonotha, Aneulophus, Antrocaryon, Aphanocalyx,<br />

Aubrevillea, Aucoumea, Anopyxis, Baillonella, Brenania, Buchholzia, Calpocalyx,<br />

Coelocaryon, Coula, Crotonogyne, Cylicodiscus, Desbordesia, Didelotia,<br />

Discoglypremna, Distemonanthus, Duboscia, Endodesmia, Erismadelphus, Grossera,<br />

Heckeldora, Hylodendron, Hymenostegia, Hypodaphnis, Gilbertiodendron,<br />

Gossweilerodendron, Loesenera, Monopetalanthus (now synonym of Bikinia),<br />

Ophiobotrys, Pachyelasma, Poga, Tessmannia, Tetraberlinia, Turraeanthus and<br />

Tieghemella.<br />

Forest richness and biodiversity hotspots<br />

The study has demonstrated that <strong>the</strong> submontane forest, <strong>the</strong> lowland evergreen forest<br />

rich in Caesalpinioideae with Calpocalyx heitzii and Sacoglottis gabonensis, and <strong>the</strong><br />

lowland evergreen forest rich in Caesalpinioideae are richer in species of high<br />

conservation priorities compared to <strong>the</strong> o<strong>the</strong>r forest types. This is confirmed by <strong>the</strong><br />

high average GHI scores recorded in <strong>the</strong>se forest types (Figure 5.3). More than 57% of<br />

<strong>the</strong> plots recorded have a high average GHI score (GHI > 150). However, <strong>the</strong> coastal<br />

forest on sandy shorelines and forest rich in Aucoumea klaineana had lower GHI<br />

scores than o<strong>the</strong>rs. There was a strong significant negative correlation between <strong>the</strong><br />

average GHI scores and <strong>the</strong> average PI scores recorded in <strong>the</strong> various vegetation<br />

types. Most of <strong>the</strong> National Park and <strong>the</strong> coastal forests around Massif des Mamelles<br />

and Mont d’Eléphant was characterised by a high conservation value with small<br />

patches of forest with very high conservation value located in <strong>the</strong> submontane forest<br />

on hilltops, in Dipikar Island, on Massif des Mamelles, and Mont d’Elephant. More<br />

often, <strong>the</strong>se forests were virtually undisturbed or less than 25% disturbed (Figure 5.5).<br />

This implies that <strong>the</strong> Massif des Mamelles and <strong>the</strong> Mont d’Elephant areas represent<br />

o<strong>the</strong>r biodiversity hotspots, located outside of <strong>the</strong> Park (Figure 5.7). In <strong>the</strong> contrary,<br />

<strong>the</strong> forests around Campo, agro-industrial plantations, logging concessions, near<br />

villages and along <strong>the</strong> roads had a low conservation value with low GHI scores, high<br />

PI scores and high levels of disturbance. This confirmed that disturbed forests are rich<br />

in pioneer species but poor in plant species with high conservation priority. It is worth<br />

reiterating that a considerable portion of <strong>the</strong> Campo-Ma’an area has been selectively<br />

logged at least twice during <strong>the</strong> past 30 years. Although logging damages were<br />

moderate and had low effect on <strong>the</strong> total forest biodiversity, it has created forest gaps<br />

that allowed <strong>the</strong> development of many pioneer species. This might have contributed to<br />

<strong>the</strong> high average PI scores registered in <strong>the</strong> coastal forest types.<br />

Threatened species<br />

During <strong>the</strong> selection of species of high conservation priority, taxa were chosen on a<br />

global ra<strong>the</strong>r than a Cameroonian or a Campo-Ma’an perspective of conservation<br />

100


Biodiversity hotspots and conservation priorities in Central African rain forests<br />

importance, since we feel that <strong>the</strong> plants of Campo-Ma’an are of global importance. In<br />

total, 141 species of high conservation priority and 92 threatened species listed in <strong>the</strong><br />

IUCN (2002) and WCMC (1998) were identified for <strong>the</strong> Campo-Ma’an area (Tables<br />

5.6 & 5.7). Of <strong>the</strong> 29 strict endemic species that are only known from <strong>the</strong> Campo-<br />

Ma’an area, 17 were not recorded in <strong>the</strong> National Park illustrating <strong>the</strong> need for<br />

conservation activities outside <strong>the</strong> park. Their distribution patterns showed a high<br />

concentration of species around Campo, Lobe, Massif des Mamelles, Mont d’Eléphant<br />

and Zingui and a very poor representation in <strong>the</strong> Ma’an area (Figure 5.2). Although<br />

<strong>the</strong>se 17 strict endemics are not immediately threatened with extinction, <strong>the</strong> most<br />

threatened are probably those occurring in <strong>the</strong> coastal zone and in areas located at <strong>the</strong><br />

vicinity of large agro-industrial plantations, since <strong>the</strong>se areas are heavily exploited. As<br />

shown in Figure 5.5, <strong>the</strong>ir habitats are fragmented and degraded because <strong>the</strong>se areas<br />

are surrounded by farms and heavily disturbed forests.<br />

Taking into consideration <strong>the</strong> fact that extinct species are taxa that are no longer<br />

known to exist in <strong>the</strong> world after repeated search in <strong>the</strong>ir type localities (WCMC,<br />

1998; IUCN, 2002), we can not yet talk about extinction because no attempt has been<br />

made to search for <strong>the</strong>se species. Fur<strong>the</strong>rmore, only 67% of <strong>the</strong> total amount of<br />

specimens collected were identified at species level. However, with <strong>the</strong> ongoing speed<br />

of forest degradation noticed in <strong>the</strong> coastal area, 8 of <strong>the</strong>se strict endemics<br />

(Beilschmiedia dinklagei, Deinbollia macroura, Ledermanniella batangensis,<br />

Psychotria aemulans, P. batangana, P. dimorphophylla, P. oligocarpa, and Strychnos<br />

canthioides) that are only known from <strong>the</strong> coastal zone can be categorised as<br />

endangered species. While <strong>the</strong> 9 o<strong>the</strong>rs that are located inland around Efoulan, Fenda,<br />

Massif des Mamelles, Mont d’Eléphant and Zingui can be categorised as vulnerable.<br />

They are Afrotrewia kamerunica, Bulbophyllum alinae, Begonia montis-elephantis,<br />

Calvoa stenophylla, Dorstenia dorstenioides, Guaduella mildbraedii, Hypolytrum sp.<br />

nov., Scaphopetalum acuminatum and S. brunneo-purpureum. Some of <strong>the</strong>m so far<br />

are only known from type specimens or from a few collections made in <strong>the</strong> type<br />

locality before <strong>the</strong> 60s. O<strong>the</strong>rs such as Afrotrewia kamerunica, Begonia montiselephantis<br />

and Hypolytrum sp. nov. have a restricted range with a small and restricted<br />

population. Fur<strong>the</strong>rmore, habitat fragmentation may convert a previously more<br />

continuous population structure to a metapopulation structure, with local populations<br />

becoming so small that <strong>the</strong>y may have a substantial risk of extinction (Hawksworth &<br />

Kalin-Arroyo, 1995).<br />

Implications for biodiversity conservation<br />

The Campo-Ma’an National Park<br />

The National Park is <strong>the</strong> core conservation area of <strong>the</strong> Campo-Ma’an Technical<br />

Operational Unit. It is surrounded by areas under several land uses that have varying<br />

ecological impact on <strong>the</strong> park and <strong>the</strong> surrounding forests. The park is of high<br />

conservation priority with about 72% of <strong>the</strong> 2297 species of vascular plants, ferns and<br />

fern allies recorded so far in <strong>the</strong> Campo-Ma’an area. More than 70% of <strong>the</strong> total<br />

endemic species recorded were also found in <strong>the</strong> National Park, and most of <strong>the</strong> forest<br />

types with high GHI scores, low PI scores and high conservation priority species were<br />

also found in <strong>the</strong> park (Figures 5.3 & 5.7). The most important one is <strong>the</strong> endemic<br />

lowland evergreen forest rich in Caesalpinioideae with Calpocalyx heitzii and<br />

Sacoglottis gabonensis, a vegetation type that only occurs in <strong>the</strong> Campo area<br />

101


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

(Letouzey, 1985; Gartlan, 1989; Thomas & Thomas, 1993). O<strong>the</strong>r forest types such as<br />

<strong>the</strong> submontane forest on hilltops, <strong>the</strong> lowland evergreen forest rich in<br />

Caesalpinioideae and <strong>the</strong> mixed evergreen and semi-deciduous forests are also well<br />

represented. So far <strong>the</strong> National Park is <strong>the</strong> only area with a legal conservation status.<br />

It is a permanent state forest that is protected by law and solely used for forest and<br />

wildlife conservation. However, its boundaries have not been marked, <strong>the</strong><br />

management plan has not yet been produced and protection is weak. Therefore, it is of<br />

urgent need to demarcate <strong>the</strong> boundary of <strong>the</strong> park, reinforce its protection, complete<br />

and implement its management plan as soon as possible.<br />

Massif des Mamelles and Mont d’Eléphant<br />

This study has demonstrated that o<strong>the</strong>r hotspots for biodiversity conservation, such as<br />

Mont d’Eléphant and Massif des Mamelles, are located outside <strong>the</strong> National Park<br />

(Figure 5.7). These areas are non-permanent forest estates that can be allocated for<br />

human activities such as logging, agro-industry, agriculture, agro-forestry, community<br />

forest, communal forest or private forest. Moreover, hunting, fishing, mineral<br />

exploitation or any o<strong>the</strong>r form of economic activities is allowed if done in accordance<br />

to <strong>the</strong> 1994 forest law. Unfortunately, <strong>the</strong>se areas do not have any conservation status<br />

and a number of ongoing human activities have negative impacts on <strong>the</strong> forest<br />

ecosystem (Chapter 1). In addition to <strong>the</strong> construction of <strong>the</strong> Tchad-Cameroon oil<br />

pipeline terminal at Grand Batanga and <strong>the</strong> rock exploitation on Mont d’Eléphant,<br />

<strong>the</strong>re exists a plan to exploit <strong>the</strong> iron ore deposits of <strong>the</strong> Massif des Mamelles. All<br />

<strong>the</strong>se activities, if realized, would affect <strong>the</strong> vegetation and thus impact <strong>the</strong><br />

biodiversity. As shown in Figure 5.5, <strong>the</strong>se fragmented forest patches with high<br />

conservation priorities are more exposed to forest degradation and habitat loss since<br />

<strong>the</strong>y are surrounded by disturbed and degraded forests. Fur<strong>the</strong>rmore, <strong>the</strong>y are <strong>the</strong> type<br />

localities for some rare endemic species such as Afrotrewia kamerunica, Begonia<br />

montis-elephantis and Bulbophyllum alinae that are so far only known from <strong>the</strong> type<br />

specimens or from few collections made in <strong>the</strong>se areas. Pressure on <strong>the</strong>se fragmented<br />

hotspots will increase in <strong>the</strong> future with <strong>the</strong> growing human population density, <strong>the</strong><br />

few local employment opportunities and <strong>the</strong> poverty of <strong>the</strong> local people, for whom <strong>the</strong><br />

forest is a major resource. In order to ensure <strong>the</strong> protection of <strong>the</strong>se areas, it is<br />

suggested that local community be encouraged to create community forests with<br />

several management zones. Each community forest should have <strong>the</strong> identified<br />

biodiversity hotspot as <strong>the</strong> core conservation area, surrounded by a buffer zone<br />

stimulating <strong>the</strong> sustainable management of non-timber forest products and hunting<br />

practices.<br />

The coastal zone, Ntem basin, Lobe and Memve’ele waterfalls<br />

The coastal zone is a narrow strip (65 km long) along <strong>the</strong> Atlantic Ocean from <strong>the</strong><br />

Lobe waterfalls to <strong>the</strong> Ntem estuary in <strong>the</strong> Dipikar Island that extends about 2-3 km<br />

inland. It has suffered and continues to suffer from intense human pressure that has<br />

led to <strong>the</strong> destruction of most of its natural vegetation (Figure 5.5). However, it worth<br />

mentioning that some rare endemic species such as Deinbollia macroura, Psychotria<br />

batangana, P. dimorphophylla, P. oligocarpa, and Strychnos canthioides are so far<br />

only known from this zone. Fur<strong>the</strong>rmore, <strong>the</strong>re is an impressive network of rivers and<br />

streams in <strong>the</strong> Campo-Ma’an area that presents a number of very specialized riparian<br />

habitats. Our study confirmed that <strong>the</strong> Lobe, Bongola, Memve’ele waterfalls and<br />

Ntem basin (Boucle du Ntem) support a rich riparian flora with many endemic and<br />

102


Biodiversity hotspots and conservation priorities in Central African rain forests<br />

rare rheophyte species (Cusset, 1987; Thomas & Thomas, 1993). Most of <strong>the</strong><br />

endemic rheophytes are of <strong>the</strong> genus Ledermanniella in <strong>the</strong> Podostemaceae family.<br />

These rheophytes which are found on exposed rocks in streambeds, are seasonally<br />

submerged by fast-flowing water, and normally reproduce in drier periods when <strong>the</strong><br />

water level recedes. The Ntem basin is also reported to constitute an important refuge<br />

for wildlife and fish fauna because of <strong>the</strong> presence of many rare species of freshwater<br />

fishes (Vivien, 1991; Mat<strong>the</strong>ws & Mat<strong>the</strong>ws, 2000; Djama, 2001). Therefore, it is<br />

suggested a separate management strategy be developed in order to protect <strong>the</strong>se<br />

coastal and riparian habitats.<br />

5.5. CONCLUSION<br />

The Campo-Ma’an area is characterised by a rich and diverse flora with more than<br />

2297 species of vascular plants, ferns and fern allies belonging to 851 genera and 155<br />

families. The site has about 114 endemic plant species, 29 of that are restricted to <strong>the</strong><br />

area, 29 also occur in <strong>the</strong> southwestern part of Cameroon and 56 o<strong>the</strong>rs that also occur<br />

in o<strong>the</strong>r parts of Cameroon. Fur<strong>the</strong>rmore, 540 species recorded are Lower Guinea<br />

endemics, 1123 species are Guineo-Congolian endemics and 105 species are Guinea<br />

endemics. All endemic families of <strong>the</strong> Guineo-Congolian Regional Centre of<br />

Endemism and 82% of endemic genera cited by White (1983) are also found in <strong>the</strong><br />

Campo-Ma’an area. The study has demonstrated that <strong>the</strong> submontane forest, <strong>the</strong><br />

lowland evergreen forest rich in Caesalpinioideae with Calpocalyx heitzii and<br />

Sacoglottis gabonensis, and <strong>the</strong> lowland evergreen forest rich in Caesalpinioideae<br />

showed a high conservation value with high GHI scores, high concentration of<br />

endemic species, low PI scores and low level of disturbance. Most of <strong>the</strong> forest types<br />

with plant species of high concentration of strict and narrow endemic species appeared<br />

to occur in <strong>the</strong> Campo-Ma’an National Park. The most important one is <strong>the</strong> endemic<br />

lowland evergreen forest rich in Caesalpinioideae with Calpocalyx heitzii and<br />

Sacoglottis gabonensis a vegetation type that only occurs in <strong>the</strong> Campo area.<br />

Moreover, <strong>the</strong> study also demonstrated that <strong>the</strong>re are o<strong>the</strong>r biodiversity hotspots in <strong>the</strong><br />

coastal zone and areas such as Mont d’Eléphant and Massif des Mamelles that are<br />

located outside <strong>the</strong> National Park. These areas support 17 strict endemic species that<br />

are not found in <strong>the</strong> park. Unfortunately, <strong>the</strong>se strict endemics are <strong>the</strong> most threatened<br />

since <strong>the</strong>ir habitats are fragmented and degraded as a result of past and present land<br />

conversion to subsistence and industrial plantations. Fur<strong>the</strong>rmore, <strong>the</strong>se hotspots are<br />

<strong>the</strong> type localities for some rare endemic species that are so far only known from type<br />

specimens or from few collections made in <strong>the</strong>se areas. Contrary to <strong>the</strong> National Park,<br />

<strong>the</strong>se hotspots do not yet have any conservation status per se. However, although <strong>the</strong><br />

park is a permanent state forest which is protected by law and should be solely used<br />

for forest and wildlife conservation, its boundaries have not been marked, <strong>the</strong><br />

management plan has not yet been produced and protection is weak. It is, <strong>the</strong>refore of<br />

urgent need to demarcate its boundary, reinforce its protection, and complete and<br />

implement its management plan as soon as possible. Fur<strong>the</strong>rmore, taking into<br />

consideration <strong>the</strong> fact that pressure on <strong>the</strong>se fragmented hotspots would increase in <strong>the</strong><br />

future with <strong>the</strong> growing human population density, it is suggested that a separate<br />

management strategy be developed to ensure <strong>the</strong> protection of <strong>the</strong>se biodiversity<br />

hotspots and <strong>the</strong>ir endemic species.<br />

103


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Table 5.6 List of 141 plant species that are ei<strong>the</strong>r strictly endemic to <strong>the</strong> Campo-Ma’an area (only found in Campo-Ma’an) or near endemic (also occur in <strong>the</strong> western parts of south<br />

Cameroon or o<strong>the</strong>r parts of Cameroon). Those species that reach <strong>the</strong>ir nor<strong>the</strong>rn or sou<strong>the</strong>rn limit of distribution in <strong>the</strong> Campo-Ma’an area are also included in <strong>the</strong> list.<br />

No<br />

104<br />

Family Species Guild Star Habit Chorology Notes<br />

1 Acanthaceae Stenandrium thomense (Milne-Redh.) Vollesen sb GD Hb Cam Akom II, Dipikar Island, Western and South Cameroon<br />

2 Annonaceae Monanthotaxis elegans (Engl. and Diels) Verdc. sb GD Sh Sw-Cam Akom II, Dipikar Island, Massif des Mamelles, Bipindi and Lolodorf<br />

3 Annonaceae Monodora zenkeri Engl. and Diels* sb GD Sh Cam Massif des Mamelles, Bipindi and Lolodorf<br />

4 Apocynaceae Callichilia monopodialis (K.Schum.) Stapf* sb GD Sh Cam Ma’an, South, Centre and East Cameroon<br />

5 Apocynaceae Landolphia flavidiflora (K.Schum.) Persoon* np GD Lwcl Cam Efoulan, Bipindi, Makak and Mt. Cameroon<br />

6 Apocynaceae Petchia africana Leeuwenb.* sb BK Sh Sw-Cam Campo, Bipindi and Lolodorf<br />

7 Apocynaceae Tabernaemontana hallei (Boiteau) Leeuwenb. sb GD Sh Lg Nor<strong>the</strong>rn limit of distribution , from Gabon to Akom II, Onoyong and Ma’an<br />

8 Araceae Culcasia bosii Ntepe-Nyame sb BK He Sw-Cam Massif des Mamelles, Dipikar Island, Ma’an and Bipindi<br />

9 Araceae Culcasia panduriformis Engl. and Krause sb GD Hb Cam Bifa, Zingui, Akom II, Dipikar Island, Bipindi, Mt Cameroon and Eseka<br />

10 Aristolochiaceae Pararistolochia preussii (Engl.) Hutch. And Dalziel np GD Swcl Cam Dipikar Island, Ebolowa and Mt. Cameroon<br />

11 Balsaminaceae Impatiens hians Hook.f. var. bipindensis (Gilg) Grey-Wilson sb bu Hb Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Bipindi, Zingui<br />

12 Balsaminaceae Impatiens gongolana N.Hallé sb bu Hb Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Ebianemeyong<br />

13 Begoniaceae Begonia anisosepala Hook.f. sb bu Hb Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Bipindi, Zingui and Grand Batanga<br />

14 Begoniaceae Begonia clypeifolia Hook.f. sb bu Hb Lg Nor<strong>the</strong>rn limit of distribution, from Congo, Gabon to Mvini and Efoulan<br />

15 Begoniaceae Begonia elaeagnifolia Hook. f. ep bu Ep Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Mvini, Efoulan and around Kom River<br />

16 Begoniaceae Begonia heterochroma Sosef sb bu Hb Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Lolabe and around Kribi<br />

17 Begoniaceae Begonia mbangaensis Sosef sb BK Hb Sw-Cam Akom II, Efoulan, Bipindi and Lolodorf<br />

18 Begoniaceae Begonia microsperma Warb. sb GD Hb Cam Ebianemeyong, Ma’an, South-west and South Cameroon<br />

19 Begoniaceae Begonia montis-elephantis J.J.de Wilde* sb BK Hb Campo-Ma’an Rare species, only known from a small population on Mt d'Eléphant<br />

20 Begoniaceae Begonia zenkeriana Smith and Wassh. sb BK Hb Sw-Cam Campo, Massif des Mamelles, Dipikar Island, Bipindi and Lolodorf<br />

21 Burseraceae Aucoumea klaineana Pierre pi bu Tr Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Ma’an and Ebianemeyong<br />

22 Burseraceae Dacryodes buettneri (Engl.) Lam. np bu Tr Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Ma’an and Ebianemeyong<br />

23 Capparaceae Ritchiea simplicifolia Oliv. Caloneura (Gilg) Kers sb BK Sh Cam Lobe, Campo, Kienke, Dipikar Island, Bipindi, Lolodorf and Ebolowa


No<br />

Family Species Guild Star Habit Chorology Notes<br />

Biodiversity hotspots and conservation priorities in Central African rain forests<br />

24 Celastraceae Pristimera luteoviridis (Exell) N.Hallé var. kribiana N.Hallé np BK Swcl Campo-Ma’an Rare species, only known from few collections on Mt d'Eléphant and Dipikar Island<br />

25 Chrysobalanaceae Dactyladenia cinera (Engl. Ex de Wild) Prance and F.White** sb BK Tr Sw-Cam Rare species, only known from type specimens (Bipindi) and a record from Grand<br />

Batanga<br />

26 Chrysobalanaceae Dactyladenia icondere (Baill.) Prance and F.White sb bu Sh Lg Nor<strong>the</strong>rn limit of distribution, from Congo, Gabon to Grand Batanga , Campo and<br />

Dipikar Island<br />

27 Combretaceae Combretum cinnabarinum Engl. and Diels np bu Lwcl Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Bipindi and Dipikar Island<br />

28 Cyperaceae Hypolytrum sp. nov. ined.* sb BK Hb Campo-Ma’an New species only known from Mont d'Eléphant<br />

29 Dichapetalaceae Dichapetalum altescandens Engl. * np bu Lwcl Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Efoulan and Zingui<br />

30 Dichapetalaceae Dichapetalum cymulosum (Oliv.) Engl.* np GD Lwcl Cam Grand Batanga, Campo, Bipindi , Lolodorf and Douala<br />

31 Dichapetalaceae Dichapetalum librevillense Pellegr.* np bu Lwcl Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Mt d’Eléphant and Campo<br />

32 Dichapetalaceae Dichapetalum oliganthum Breteler * np BK Lwcl Sw-Cam Grand Batanga, Campo, Mt d’Eléphant, Kribi, Longi and Lolodorf.<br />

33 Dichapetalaceae Tapura tchoutoi Breteler sb BK Sh Campo-Ma’an Rare species, only known from few collections around Bifa and Dipikar Island<br />

34 Dryopteridaceae Lastreopsis davalliaeformis (Tardieu) Tardieu* sb bu He Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Bipindi and Zingui<br />

35 Ebenaceae Diospyros alboflavescens (Gürke) F.White sb BK Tr Sw-Cam Rare species, only known from few collections from Bifa, Zingui and Bipindi<br />

36 Ebenaceae Diospyros soyauxii Gürke and K. Schum. Sb Bu Tr Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Campo and Zingui<br />

37 Euphorbiaceae Afrotrewia kamerunica Pax and Hoffm.* sb BK Sh Campo-Ma’an Rare species, only known from Massif des Mamelles<br />

38 Gnetaceae Gnetum buchholzianum Engl. np GD Hcl Cam Dipikar Island, Onoyong, Ma’an, Littoral, South-west and South provinces of<br />

Cameroon<br />

39 Gramineae Guaduella mildbraedii Pilg.* sb BK Hb Campo-Ma’an Rare species, only known from few collections in <strong>the</strong> Campo area<br />

40 Gramineae Hyparrhenia wombaliensis (Vanderyst ex Robyns) Clayton* pi bu Hb Lg Nor<strong>the</strong>rn limit of distribution, from Congo to Campo<br />

41 Guttiferae Garcinia conrauana Engl. sb GD Tr Cam Akom II, South-west and South Cameroon<br />

42 Guttiferae Garcinia densivenia Engl. ri GD Tr Cam Dipikar Island, Ebianemeyong, Mvini, Littoral and South Cameroon<br />

43 Icacinaceae Alsodeiopsis zenkeri Engl. rh GD Sh Cam Frequent along <strong>the</strong> Bongola and Ntem rivers, and o<strong>the</strong>r rivers in Littoral, East and<br />

South Cameroon<br />

44 Icacinaceae Iodes kamerunensis Engl. sb GD Swcl Cam Akom II, Dipikar Island, Bipindi, Bertoua and Nanga Eboko<br />

45 Icacinaceae Rhaphiostylis ovalifolia Engl. ex Sleumer* sb GD Swcl Cam Coastal forest around Kribi, Grand Batanga, Lolabe, Elabi Massif des Mamelles,<br />

Littoral and South Cameroon<br />

46 Icacinaceae Rhaphiostylis subsessilifolia Engl. sb BK Swcl Campo-Ma’an Rare species, only known from Grand Batanga, Ebianemeyong and Mt d’Eléphant<br />

47 Ixonanthaceae Ochthocosmus calothyrsus (Mildbr.) Hutch. and Dalziel np bu Tr Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Cameroon (frequent in <strong>the</strong> Campo-<br />

Ma’an area)<br />

48 Lauraceae Beilschmiedia cuspida (Krause) Robyns and Wilczek sb BK Tr Campo-Ma’an Rare species, only known from Fenda and Akom II<br />

105


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No<br />

106<br />

Family Species Guild Star Habit Chorology Notes<br />

49 Lauraceae Beilschmiedia dinklagei (Engl.) Robyns and Wilczek* sb BK Tr Campo-Ma’an Rare species, only known from few records around Grand Batanga<br />

50 Lauraceae Beilschmiedia klainei Robyns and Wilczek sb BK Tr Sw-Cam Rare species, only known from few records from Akom II, Ebianemeyong and Bipindi<br />

51 Lauraceae Beilschmiedia papyracea (Stapf) Robyns and R.Wilczek sb BK Tr Sw-Cam Rare species, only known from Ebianemeyong, Akom II, Fenda and Bipindi<br />

52 Lauraceae Beilschmiedia welczekii Fouilloy sb BK Tr Sw-Cam Akom II, Mvini, Nkoelon, Dipikar Island, Ebianemeyong, Ma’an, Bipindi and<br />

Lolodorf<br />

53 Leguminosae-Caesalpinioideae Amphimas ferrugineus Pierre ex Pellegr. np bu Tr Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Dipikar Island, Ma’an, Onoyong and<br />

Akom II<br />

54 Leguminosae-Caesalpinioideae Anthonotha leptorrhachis (Harms) J.Léonard sb GD Tr Cam Bifa, Campo, Dipikar Island, Lobe, Massif des Mamelles, Mt d’Eléphant, Bipindi,<br />

Lolodorf and Mt Cameroon<br />

55 Leguminosae-Caesalpinioideae Aphanocalyx hedinii (A.Chev.) Wieringa np GD Tr Cam Akom II, Ebianemeyong, Kom, Ma’an, Bipindi and Eseka<br />

56 Leguminosae-Caesalpinioideae Aphanocalyx ledermannii (Harms) Wieringa sw bu Tr Lg Nor<strong>the</strong>rn limit of distribution, occurs along rivers from Gabon, Equatorial Guinea to<br />

<strong>the</strong> Dipikar Island<br />

57 Leguminosae-Caesalpinioideae Copaifera religiosa J.Léonard np bu Tr Lg Nor<strong>the</strong>rn limit of distribution, from Congo to Akom II and Efoulan<br />

58 Leguminosae-Caesalpinioideae Daniellia klainei A.Chev. ri bu Tr Lg Nor<strong>the</strong>rn limit of distribution, from Congo to Akom II, Eoulan and Ma’an<br />

59 Leguminosae-Caesalpinioideae Dialium zenkeri Harms sb BK Tr Sw-Cam Campo, Dipikar Island, Onoyong, Bipindi and Lolodorf<br />

60 Leguminosae-Caesalpinioideae Gilbertiodendron pachyanthum (Harms) J.Léonard np BK Tr Sw-Cam Ebianemeyong, Kom, Massif des Mamelles, Bipindi and Lolodorf<br />

61 Leguminosae-Caesalpinioideae Plagiosiphon longitubus (Harms) J.Léonard sb BK Tr Sw-Cam Akom II, Efoulan, Ma’an, Bipindi, and Lolodorf<br />

62 Leguminosae-Caesalpinioideae Plagiosiphon multijugus (Harms) J.Léonard sb GD Tr Cam Akom II, Dipikar Island, Ma’an, Bipindi and Kribi-Edea areas<br />

63 Leguminosae-Caesalpinioideae Tetraberlinia moreliana Aubrév. * sb bu Tr Lg Nor<strong>the</strong>rn limit of distribution, from Gabon, Bidou and Mt. d’Eléphant<br />

64 Liliaceae Chlorophytum petrophyllum K.Krause sb GD Hb Cam Bifa, Dipikar Island, Mvini, Littoral and South Cameroon<br />

65 Loganiaceae Mostuea neurocarpa Gilg sb bu Sh Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Bifa, Campo and Dipikar Island<br />

66 Loganiaceae Strychnos canthioides Leeuwenb. * np BK Lwcl Campo-Ma’an Rare species, only known from few collections around Grand Batanga and Lolabe<br />

67 Loganiaceae Strychnos elaeocarpa Gilg ex Leeuwenb. ri GD Tr Cam Akom II, Dipikar Island, Ebianemeyong, Onoyong, Bipindi, Lolodorf, Kribi-Edea and<br />

South-west Cameroon<br />

68 Loganiaceae Strychnos mimfiensis Gilg ex Leeuwenb. np GD Lwcl Cam Dipikar Island, Mvini, Ma’an, Bipindi, Masok, Douala-Edea-Kribi areas.<br />

69 Loranthaceae Tapinanthus preussii (Engl.) Tiegh. pa GD Pa Cam Grand Batanga, Bongola, Bipindi, Eseka, Barombi and along <strong>the</strong> Lokoundje and<br />

Nyong rivers.<br />

70 Marantaceae Hypselodelphys zenkeriana (K.Schum.) Milne-Redh. pi GD Hb Cam Ma’an, Onoyong and South Cameroon<br />

71 Melastomataceae Amphiblemma letouzeyi Jacq.-Fél.* sb BK Hb Sw-Cam Rare species, only known from few collections recorded on hills around Akom II,<br />

Efoulan and Bipindi<br />

72 Melastomataceae Calvoa calliantha Jacq.-Fél. sb BK Hb Sw-Cam Rare species, only known from Ebianemeyong, Akom II and Bipindi<br />

73 Melastomataceae Calvoa stenophylla Jacques-Félix* sb BK Hb Campo-Ma’an Rare species, only known from type specimens collected in Zingui


No<br />

Family Species Guild Star Habit Chorology Notes<br />

Biodiversity hotspots and conservation priorities in Central African rain forests<br />

74 Melastomataceae Guyonia tenella Naud. sb bu Hb Lg Nor<strong>the</strong>rn limit of distribution, from Equatorial Guinea to Lobe and Bongola<br />

75 Melastomataceae Memecylon arcuato-marginatum Gilg ex Engl. var. arcuatomarginatum<br />

sb BK Sh Cam Akom II, Dipikar Island, Kom, Mt. d’Eléphant, Kienke, Longi and Kribi-Edea<br />

76 Menispermaceae Albertisia glabra (Diels and Troupin) Forman sb BK Swcl Sw-Cam Rare species, only known from Dipikar Island and Bipindi<br />

77 Menispermaceae Penianthus camerounensis A.Dekker sb GD Sh Cam Afan, Akom II, Dipikar Island, Ebianemeyong, Mekok, Littoral, South and South-west<br />

Cameroon<br />

78 Moraceae Dorstenia dorstenioides (Engl.) Hijman and C.C.Berg* sb BK Hb Campo-Ma’an Rare species, only known from few collection around Kienke and Fenda<br />

79 Moraceae Dorstenia involuta M.Hijman sb BK Hb Campo-Ma’an Rare species, only known from Dipikar Island and Ma’an<br />

80 Myrsinaceae Ardisia dolichocalyx Taton sb GD Hb Cam Bifa, Campo, Dipikar Island, Onoyong, Littoral, South and South-west Cameroon<br />

81 Myrtaceae Eugenia kameruniana Engl.* sb BK Sh Cam Rare species, only known from Ebianemeyong, Ma’an, Nyabissan<br />

82 Ochnaceae Campylospermum letouzeyi Farron sb GD Sh Cam Dipikar Island and South Cameroon<br />

83 Ochnaceae Campylospermum zenkeri (Engl. ex Tiegh.) Farron sb GD Sh Cam Campo, Massif des Mamelles, Kribi-Edea and South Cameroon<br />

84 Ochnaceae Testulea gabonensis Pellegr. np bu Tr Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Dipikar Island, Ma’an and Onoyong<br />

85 Olacaceae Octoknema dinklagei Engl. sb GD Tr Cam Akok, Grand Batanga, Lolabe, South and South-west Cameroon<br />

86 Orchidaceae Bulbophyllum alinae Szlachetko * ep BK Ep Campo-Ma’an Rare species, only known from few collections on Mt d'Eléphant<br />

87 Orchidaceae Corymborkis minima P.J.Cribb* sb GD Hb Cam Rare species, only known from few collections around Campo, Lolabe and Korup<br />

National Park<br />

88 Orchidaceae Podandriella batesii (la Croix) Szlachetko and Olszewski* sb BK Hb Campo-Ma’an Rare species, only known from Akom II, Efoulan and Ebianemeyong<br />

89 Orchidaceae Polystachya letouzeyana Szlachetko and Olszewski* ep BK Ep Campo-Ma’an Rare species, only known from Efoulan<br />

90 Orchidaceae Vanilla africana Lindley subsp. cucullata (Kraenzlin and K. Shum.)<br />

Szlachetko and Olszewski *<br />

np BK Hcl Sw-Cam Campo, Massif des Mamelles, Mt d’Eléphant and Bipindi<br />

91 Podostemaceae Ledermanniella annithomae C. Cusset* rh BK Hb Campo-Ma’an Rare species, only known from Memve'ele water falls<br />

92 Podostemaceae Ledermanniella batangensis (Engl.) C. Cusset* rh BK Hb Campo-Ma’an Rare species, only known from Lobe water falls<br />

93 Podostemaceae Ledermanniella bosii C.Cusset rh BK Hb Campo-Ma’an Rare species, only known from <strong>the</strong> Ntem Basin, Bongola, Lobe and Memve'ele<br />

waterfalls<br />

94 Podostemaceae Ledermanniella boumiensis C. Cusset rh bu Hb Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to <strong>the</strong> Bongola and Memve’ele water falls<br />

95 Podostemaceae Ledermanniella kamerunensis (Engl.) C. Cusset rh BK Hb Campo-Ma’an Rare species, only known from <strong>the</strong> Bongola water falls in Dipikar Island<br />

96 Podostemaceae Ledermanniella linearifolia Engl. rh GD Hb Cam Lobe and Bongola falls in <strong>the</strong> Campo-Ma’an area, and in <strong>the</strong> Nkam river in Yabassi<br />

97 Podostemaceae Ledermanniella variabilis (G.Taylor) C.Cusset rh GD Hb Cam Bongola and Lobe water falls, and in Mamfe river in South-west Cameroon<br />

98 Rhizophoraceae Cassipourea kamerunensis (Engl.) Alston sb GD Sh Cam Akom II, Littoral and South Cameroon<br />

107


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No<br />

108<br />

Family Species Guild Star Habit Chorology Notes<br />

99 Rhizophoraceae Cassipourea zenkeri (Engl.) Alston sb GD Sh Cam Akom II, Bifa, Ebianemeyong, Eboundja, Lobe, Ma’an, Bipindi, Lolodorf and South<br />

Cameroon<br />

100 Rubiaceae Chazaliella sciadephora (Hiern) Petit and Verdc. var. condensata<br />

Verdc.<br />

sb GD Sh Cam Mvini, Onoyong, Ma’an, Littoral and South Cameroon<br />

101 Rubiaceae Ecpoma apocynaceum K.Schum. pi BK Sh Sw-Cam Rare species, only known from Bifa , Zingui and Bipindi<br />

102 Rubiaceae Hymenocoleus glaber Robbr. sb GD Hb Cam Akom II, Dipikar Island, Massif des Mamelles, Mvini, Littoral, South and South-west<br />

Cameroon<br />

103 Rubiaceae Ixora aneimenodesma K.Schum. subsp. aneimenodesma sb GD Sh Cam Akom II, Dipikar Island, Bipindi and Lolodorf<br />

104 Rubiaceae Ixora synactica De Block* sb BK Sh Sw-Cam Rare species, only known from Efoulan, Zingui and Bipindi<br />

105 Rubiaceae Oxyanthus oliganthus K.Schum. sb GD Sh Cam Akom II, Ma’an and South Cameroon<br />

106 Rubiaceae Pavetta camerounensis S.Manning subsp. camerounensis sb GD Sh Cam Akom II, Bifa, Campo, Dipikar Island, Massif des Mamelles, Mt d’Eléphant, Littoral<br />

and South Cameroon<br />

107 Rubiaceae Pavetta kribiensis J.Manning sb BK Sh Sw-Cam Rare species, only known from Mvini, Bipindi and Lolodorf<br />

108 Rubiaceae Pavetta mpomii S.Manning sb BK Sh Sw-Cam Mt d'Eléphant, Mvini, Nkoelon, Ebianemeyong, Bipindi and Lolodorf<br />

109 Rubiaceae Pavetta staudtii Hutch. and Dalziel sb GD Sh Cam Dipikar Island, Mvini, Nkoelon and South Cameroon<br />

110 Rubiaceae Pseudosabicea medusula (K.Schum.) N.Hallé np GD Hb Cam Ebianemeyong, Nyabissan, Ma’an, Centre and South Cameroon<br />

111 Rubiaceae Psychotria aemulans K. Schum.** sb BK Sh Campo-Ma’an Rare species, only known from few collections around Grand Batanga<br />

112 Rubiaceae Psychotria batangana K. Schum.* sb BK Sh Campo-Ma’an Rare species, only known from few collections around Grand Batanga<br />

113 Rubiaceae Psychotria camerunensis Petit sb GD Sh Cam Akom II, Bifa, Ma’an, Bipindi, Lolodorf , Centre and South Cameroon<br />

114 Rubiaceae Psychotria dimorphophylla K. Schum.* ri BK Sh Campo-Ma’an Rare species, only known from few collections from Grand Batanga and Lobe<br />

115 Rubiaceae Psychotria lanceifolia K.Schum. sb BK Sh Sw-Cam Rare species, only known from Akom II, Onoyong, Bipindi and Lolodorf<br />

116 Rubiaceae Psychotria oligocarpa K.Schum.* sb BK Sh Campo-Ma’an Rare species, only known from few collections around Grand Batanga<br />

117 Rubiaceae Psychotria sadebeckiana K.Schum. var. elongata Petit sb GD Sh Cam Akok, Bifa, Campo, Dipikar Island, Kom, Mvini and South Cameroon<br />

118 Rubiaceae Psychotria sadebeckiana K.Schum. var. sadebeckiana sb GD Sh Cam Akom II, Dipikar Island, Massif des Mamelles, Mvini, and South Cameroon<br />

119 Rubiaceae Tricalysia amplexicaulis Robbr. sb GD Sh Cam Dipikar Island, Massif des Mamelles, Centre and South Cameroon<br />

120 Rubiaceae Tricalysia talbotii (Wernham) Keay sb GD Sh Cam Ebianemeyong, Mvini, Centre and South Cameroon<br />

121 Rubiaceae Vangueriella laxiflora (K.Schum.) Verdc. sb GD Swcl Cam Mvini, Nkoelon, Centre and South Cameroon<br />

122 Sapindaceae Deinbollia macroura Gilg ex Radlkofer* sb BK Sh Campo-Ma’an Rare species, only known from few collections around Campo<br />

123 Sapindaceae Deinbollia mezilii D.W.Thomas and D.J.Harris sb BK Sh Campo-Ma’an Rare species, only known from Bifa, Massif des Mamelles and Dipikar Island


No<br />

Family Species Guild Star Habit Chorology Notes<br />

Biodiversity hotspots and conservation priorities in Central African rain forests<br />

124 Sapindaceae Deinbollia pycnophylla Gilg ex Radlk. sb bu Sh Lg Nor<strong>the</strong>rn limit of distribution, from Gabon to Dipikar Island<br />

125 Scytopetalaceae Pierrina zenkeri Engl. sb GD Sh Cam Bifa, Campo, Ebianemeyong, Ma’an, Nyabissan, Littoral and South Cameroon<br />

126 Scytopetalaceae Rhaptopetalum sessilifolium Engl* sb BK Sh Sw-Cam Rare species, only known from few collections around Efoulan and Bipindi<br />

127 Sterculiaceae Cola fibrillosa Engl. and Krause sb BK Tr Sw-Cam Rare species, only known from few collections around Dipikar Island and Bipindi<br />

128 Sterculiaceae Cola letouzeyana Nkongm. sb GD Sh Cam Akom II, Dipikar Island, Ebianemeyong, Onoyong, Centre and South Cameroon<br />

129 Sterculiaceae Cola praeacuta Brenan and Keay sb GD Sh Cam Bifa, Dipikar Island, Massif des Mamelles, South and South-west Cameroon<br />

130 Sterculiaceae Scaphopetalum acuminatum Engl. and K. Krause* sb BK Sh Campo-Ma’an Rare species, only known from few collections from Efoulan and Fenda<br />

131 Sterculiaceae Scaphopetalum brunneo-purpureum Engl. and K. Krause** sb BK Sh Campo-Ma’an Rare species, only known from few collections from Fenda and Zingui<br />

132 Sterculiaceae Scaphopetalum zenkeri K.Schum. sb BK Sh Sw-Cam Akom II, Dipikar Island, Ebianemeyong, Bipindi and Lolodorf<br />

133 Thymelaeaceae Dicranolepis glandulosa H.H.W.Pearson sb GD Sh Cam Akom II, Dipikar Island, Grand Batanga, Campo, Littoral, South, and South-west<br />

Cameroon<br />

134 Urticaceae Urera gravenreuthi Engl. pi GD Hcl Cam Dipikar Island, Ma’an, Littoral, South and South-west Cameroon<br />

135 Violaceae Allexis zygomorpha Achoundong and Onana* sb BK Sh Cam Coastal forest between Edea and Campo, Bidou, Akok, Longi, Bipindi and Lolodorf<br />

136 Violaceae Rinorea campoensis M. Brandt ex Engl. sb BK Sh Campo-Ma’an Rare species, only known from Campo, Dipikar Island, Lobe and Massif des<br />

Mamelles<br />

137 Violaceae Rinorea microglossa Engl. * sb BK Sh Sw-Cam Efoulan, Bipindi, Lolodorf, Centre and South Cameroon<br />

138 Violaceae Rinorea sp. nov. 1 ined.* sb GD Sh Cam Coastal forest between Kribi and Campo, Dipikar Island, and Douala-Edea-Kribi<br />

regions<br />

139 Violaceae Rinorea sp. nov. 2 ined.* sb GD Sh Cam Kienke, Massif des Mamelles, Dipikar Island, Kribi, Kribi-Edea, Douala-Yaounde,<br />

and Eseka regions<br />

140 Zingiberaceae Aulotandra kamerunensis Loes. sb BK Hb Sw-Cam Rare species, only known from few collections from Ebianemeyong, Nyabissan and<br />

Bipindi<br />

141 Zingiberaceae Renealmia densispica Koechlin sb BK Hb Sw-Cam Rare species, only known from few collections from Dipikar Island, Ebianemeyong<br />

and Ambam<br />

* Species strictly endemic to <strong>the</strong> Campo-Ma’an area that were not recorded in <strong>the</strong> National Park<br />

** Species for which <strong>the</strong> status or range needs more investigation<br />

Guild: ep = epiphyte, np = non pioneer light demanding, pi = pioneer, rh = rheophyte, ri = riverine, sb = shade-bearer and sw = swamp.<br />

Star: as defined in Table 5.1<br />

Habit: Ep = epiphyte, Hb = herb, Hcl = herbaceous climber, He = hemi-epiphyte, Lwcl = large woody climber, Swcl = small woody climber, Pa = parasite, Sh = shrub, and Tr = tree.<br />

Chorology: Campo-Ma’an = strict endemic to Campo-Ma’an, Sw-Cam = endemic to southwestern part of Cameroon, Cam = endemic to Cameroon, Lg = Lower Guinea endemic<br />

(especially those species that reach ei<strong>the</strong>r <strong>the</strong>ir nor<strong>the</strong>rn or sou<strong>the</strong>rn limit of distribution in <strong>the</strong> Campo-Ma’an area).<br />

109


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Table 5.7 IUCN (1994) threat categories for 92 plant species recorded in <strong>the</strong> Campo-Ma’an area that are<br />

listed in The IUCN (2002) Red List of Threatened Species and The World List of Threatened<br />

Trees (WCMC, 1998).<br />

No Family Species Guild Habit Chorology IUCN/WCMC<br />

1 Acanthaceae Afrofittonia silvestris Lindau sb Hb Lg VU A1c+2c<br />

2 Acanthaceae Sclerochiton preussii (Lindau) C.B.Clarke sb Hb Lg EN B1+2e<br />

3 Anacardiaceae Antrocaryon micraster A. Chev. & Guillaum. pi Tr Lg VU A1cd<br />

4 Anacardiaceae Trichoscypha bijuga Engl. sb Tr Lg CR A1c+2abc<br />

5 Anacardiaceae Trichoscypha mannii Hook. f. sb Tr Lg VU A1c, B1+2c<br />

6 Annonaceae Boutiquea platypetala Le Thomas sb Sh Lg EN A1c+2c<br />

7 Annonaceae Pachypodanthium barteri (Benth.) Hutch. & Dalziel sw Tr Lg VU A1c<br />

8 Annonaceae Uvariastrum zenkeri Engl. & Diels sb Sh Lg VU A1c, B1+2c<br />

9 Annonaceae Uvariodendron connivens (Benth.) R.E.Fr. sb Tr Lg LR/nt<br />

10 Asclepiadaceae Tylophora cameroonica N.E.Br. pi Swcl Lg LR/nt<br />

11 Boraginaceae Cordia platythyrsa Baker pi Tr Gc VU A1d<br />

12 Burseraceae Aucoumea klaineana Pierre pi Tr Lg VU A1cd<br />

13 Burseraceae Dacryodes igaganga Aubrev. & Pellegr. np Tr Lg VU A1cd+2cd<br />

14 Celastraceae Salacia lehmbachii Loes. var. pes-ranulae N.Hallé np Swcl Lg VU B1+2c<br />

15 Chrysobalanaceae Dactyladenia cinera (Engl. ex de Wild) Prance &<br />

F.White<br />

sb Tr Sw-Cam CR B1+2c<br />

16 Combretaceae Terminalia ivorensis A.Chev. np Tr Gu VU A1cd<br />

17 Connaraceae Hemandradenia mannii Stapf sb Tr Lg LR/nt<br />

18 Ebenaceae Diospyros barteri Hiern sb Tr Gu VU A1c<br />

19 Ebenaceae Diospyros crassiflora Hiern sb Tr Gc EN A1d<br />

20 Euphorbiaceae Amanoa strobilacea Müll.Arg. sb Sh Gu VU A1c, B1+2c<br />

21 Euphorbiaceae Crotonogyne manniana Müll.Arg. sb Sh Lg LR/nt<br />

22 Euphorbiaceae Drypetes preussii (Pax) Hutch. sb Tr Lg VU B1+2c<br />

23 Euphorbiaceae Drypetes tessmanniana (Pax) Pax & K.Hoffm. sb Sh Lg CR A1c+2c<br />

24 Euphorbiaceae Neoboutonia mannii Benth. pi Tr Gu LR/nt<br />

25 Euphorbiaceae Pseudagrostistachys africana (Müll.Arg.) Pax &<br />

K.Hoffm.<br />

sb Tr Lg VU A1c, B1+2c<br />

26 Guttiferae Garcinia brevipedicellata (Baker f.) Hutch. & Dalziel sb Tr Lg VU A1c, B1+2c<br />

27 Guttiferae Garcinia kola Heckel sb Tr Gc VU A1cd<br />

28 Guttiferae Garcinia staudtii Engl. sb Tr Lg VU A1c, B1+2c<br />

29 Hoplestigmataceae Hoplestigma pierreanum Gilg np Tr Lg CR A1c+2c<br />

30 Huaceae Afrostyrax kamerunensis Perkins & Gilg sb Tr Lg VU A1c, B1+2c<br />

31 Huaceae Afrostyrax lepidophyllus Mildbr. sb Tr Lg VU A1c, B1+2c<br />

32 Irvingiaceae Irvingia excelsa Mildbr. np Tr Gc LR/nt<br />

33 Irvingiaceae Irvingia gabonensis (Aubry-Lecomte ex O'Rorke)<br />

Baill.<br />

np Tr Gc LR/nt<br />

34 Leguminosae-Caesalpinioideae Afzelia bipindensis Harms np Tr Gc VU A1cd<br />

35 Leguminosae-Caesalpinioideae Afzelia pachyloba Harms np Tr Gc VU A1d<br />

36 Leguminosae-Caesalpinioideae Anthonotha leptorrhachis (Harms) J.Léonard sb Tr Cam CR A1c+2c<br />

37 Leguminosae-Caesalpinioideae Aphanocalyx hedinii (A.Chev.) Wieringa np Tr Cam CR B1+2abcd,<br />

C1+2ab<br />

38 Leguminosae-Caesalpinioideae Daniellia klainei A.Chev. ri Tr Lg LR/nt<br />

39 Leguminosae-Caesalpinioideae Daniellia oblonga Oliv. np Tr Lg VU A1c<br />

40 Leguminosae-Caesalpinioideae Dialium bipindense Harms np Tr Lg LR/nt<br />

41 Leguminosae-Caesalpinioideae Dialium tessmannii Harms sb Tr Lg LR/nt<br />

42 Leguminosae-Caesalpinioideae Didelotia unifoliolata J.Léonard sb Tr Lg LR/nt<br />

43 Leguminosae-Caesalpinioideae Gilbertiodendron pachyanthum (Harms) J.Léonard np Tr Sw-Cam VU D2<br />

44 Leguminosae-Caesalpinioideae Guibourtia ehie (A. Chev.) J. Léonard np Tr Gc VU A1c<br />

45 Leguminosae-Caesalpinioideae Loesenera talbotii Baker f. sb Tr Lg VU A1c, B1+2c<br />

46 Leguminosae-Caesalpinioideae Pellegriniodendron diphyllum (Harms) J.Léonard sb Tr Gu LR/nt<br />

47 Leguminosae-Caesalpinioideae Plagiosiphon longitubus (Harms) J.Léonard sb Tr Sw-Cam CR A1+2c<br />

48 Leguminosae-Caesalpinioideae Swartzia fistuloides Harms sb Tr Gc EN A1cd<br />

49 Leguminosae-Mimosoideae Calpocalyx heitzii Pellegr. np Tr Lg VU A1c, B1+2c<br />

50 Leguminosae-Mimosoideae Calpocalyx le-testui Pellegr. sb Tr Gc VU D2<br />

51 Leguminosae-Mimosoideae Calpocalyx ngouniensis Pellegr. sb Tr Gc VU A1c<br />

52 Leguminosae-Papilionoideae Craibia atlantica Dunn sb Tr Gc VU A1c<br />

53 Leguminosae-Papilionoideae Millettia laurentii De Wild. np Tr Gc EN A1cd<br />

54 Leguminosae-Papilionoideae Millettia macrophylla Benth. pi Tr Lg VU A1c, B1+2c<br />

55 Leguminosae-Papilionoideae Ormocarpum klainei Tisser. sb Sh Lg CR A1c<br />

56 Liliaceae Chlorophytum petrophyllum K.Krause sb Hb Cam CR A1c+2c<br />

57 Melastomataceae Memecylon candidum Gilg sb Sh Lg VU B1+2c<br />

58 Melastomataceae Memecylon dasyanthum Gilg ex Lederman & Engl. sb Tr Lg VU B1+2c<br />

59 Melastomataceae Warneckea wildeana Jacq.-Fél. sb Sh Lg VU D2<br />

110


Biodiversity hotspots and conservation priorities in Central African rain forests<br />

No Family Species Guild Habit Chorology IUCN/WCMC<br />

60 Meliaceae Entandrophragma angolense (Welw.) C.DC. np Tr Tra VU A1cd<br />

61 Meliaceae Entandrophragma candollei Harms np Tr Gc VU A1cd<br />

62 Meliaceae Entandrophragma cylindricum (Sprague) Sprague np Tr Gc VU A1cd<br />

63 Meliaceae Entandrophragma utile (Dawe & Sprague) Sprague np Tr Gc VU A1cd<br />

64 Meliaceae Guarea cedrata (A.Chev.) Pellegr. np Tr Gc VU A1c<br />

65 Meliaceae Guarea thompsonii Sprague & Hutch. np Tr Gc VU A1c<br />

66 Meliaceae Khaya antho<strong>the</strong>ca (Welw.) C.DC. np Tr Gc VU A1cd<br />

67 Meliaceae Khaya ivorensis A.Chev. np Tr Gc VU A1cd<br />

68 Meliaceae Lovoa trichilioides Harms np Tr Gc VU A1cd<br />

69 Meliaceae Turraeanthus africanus (Welw. ex C.DC.) Pellegr. sb Tr Gc VU A1cd<br />

70 Moraceae Milicia excelsa (Welw.) C.C.Berg pi Tr Tra LR/nt<br />

71 Myrtaceae Eugenia kameruniana Engl. sb Sh Cam CR A1c<br />

72 Ochnaceae Lophira alata Banks ex Gaertn.f. pi Tr Gc VU A1cd<br />

73 Ochnaceae Testulea gabonensis Pellegr. np Tr Lg EN A1cd<br />

74 Rhizophoraceae Anopyxis klaineana (Pierre) Engl. np Tr Gc VU A1cd<br />

75 Rubiaceae Hallea stipulosa (DC.) Leroy sw Tr Gc VU A1cd<br />

76 Rubiaceae Nauclea diderrichii (De Wild. & T.Durand) Merrill pi Tr Gc VU A1cd<br />

77 Rutaceae Vepris heterophylla Letouzey sb Sh Gc EN A1c, B1+2c<br />

78 Sapotaceae Autranella congolensis (De Wild.) A.Chev. np Tr Gc CR A1cd<br />

79 Sapotaceae Baillonella toxisperma Pierre np Tr Lg VU A1cd<br />

80 Sapotaceae Gluema ivorensis Aubrév. & Pellegr. np Tr Gc VU B1+2c<br />

81 Sapotaceae Tieghemella africana Pierre np Tr Lg EN A1cd<br />

82 Simaroubaceae Nothospondias staudtii Engl. np Tr Gc VU B1+2c<br />

83 Sterculiaceae Cola hypochrysea K.Schum. sw Tr Lg VU A1c<br />

84 Sterculiaceae Cola philipi-jonesii Brenan & Keay sb Sh Lg EN B1+2c<br />

85 Sterculiaceae Cola praeacuta Brenan & Keay sb Sh Cam CR A1c+2c<br />

86 Sterculiaceae Cola semecarpophylla K.Schum. sb Sh Lg LR/cd<br />

87 Sterculiaceae Mansonia altissima (A.Chev.) A.Chev. var.<br />

kamerunica Jacq.-Fél.<br />

np Tr Gu EN A1cd<br />

88 Sterculiaceae Pterygota bequaertii De Wild. np Tr Gc VU A1cd<br />

89 Sterculiaceae Pterygota macrocarpa K.Schum. np Tr Gc VU A1cd<br />

90 Sterculiaceae Sterculia oblonga Mast. pi Tr Gc VU A1cd<br />

91 Violaceae Allexis cauliflora (Oliv.) Pierre sb Sh Lg VU A1c, B1+2c<br />

92 Violaceae Allexis obanensis (Baker f.) Melchior sb Sh Lg VU B1+2c<br />

NB: Guild, habit and chorology categories as defined in Table 5.6<br />

Photo: Understorey palm species (Podococcus barteri G. Mann & Wendl.) frequently<br />

found throughout <strong>the</strong> Campo-Ma’an rain forest (Tchouto, M.G.P.)<br />

111


Chapter 6<br />

GENERAL CONCLUSIONS AND IMPLICATIONS<br />

FOR BIODIVERSITY CONSERVATION<br />

Gildas Peguy Tchouto Mbatchou


6.1. INTRODUCTION<br />

General conclusions and implications for biodiversity conservation<br />

The Campo-Ma’an rain forest is recognised to be an important site within <strong>the</strong><br />

Guineo-Congolian Regional Centre of Endemism (White, 1979 & 1983). Its<br />

conservation value is high at local, national, regional and global levels (Gartlan,<br />

1989 & 1992; Foahom & Jonkers, 1992; Thomas & Thomas, 1993; Davis et al.,<br />

1994; de Kam et al., 2002). However, despite its great biological importance, <strong>the</strong><br />

Campo-Ma’an forest has suffered and continues to suffer from intense human<br />

pressure that has led to <strong>the</strong> degradation of most of <strong>the</strong> forest along <strong>the</strong> coast and <strong>the</strong><br />

lowland forest around settlements. It is largely in order to ensure <strong>the</strong> conservation of<br />

biodiversity and <strong>the</strong> sustainable management of its natural resources that a Technical<br />

Operational Unit (TOU) was created in <strong>the</strong> Campo-Ma’an area. The main<br />

components of <strong>the</strong> TOU are a National Park, five forestry management units, two<br />

agro-industrial plantations and several agro-forestry zones (Chapter 1). So far, <strong>the</strong><br />

National Park exists only on paper since in reality it has not yet been gazetted, and it<br />

has no boundary and management plan. Taking into consideration <strong>the</strong> fact that <strong>the</strong>re<br />

was limited baseline biological information, essential for <strong>the</strong> elaboration of <strong>the</strong><br />

Campo-Ma’an strategic and management plans, it was of vital importance to carry<br />

out sound taxonomic and ecological research in order to identify conservation<br />

priorities and hotspots for biodiversity conservation.<br />

During this study, a vegetation map of <strong>the</strong> Campo-Ma’an area was produced and <strong>the</strong><br />

various vegetation types were described with information on <strong>the</strong>ir structure and<br />

composition (Chapter 2). A plant species checklist (Annex 3) made of 2297 species<br />

of vascular plants, ferns and fern allies was generated from inventory data and from<br />

2348 herbarium specimens and 4789 ecological specimens. They belonged to 851<br />

genera and 155 families. Fur<strong>the</strong>rmore, a list of 92 threatened species recorded in<br />

IUCN (2002) and WCMC (1998), and a list of 141 plant species of high<br />

conservation priorities were produced, with information on <strong>the</strong>ir growth forms,<br />

guild, chorology and conservation status (Chapter 5). The distribution maps of<br />

species of high conservation priority such as endemic, rare, threatened, and bioindicator<br />

taxa, were produced and used to identify and locate potential hotspots for<br />

biodiversity conservation, and to confirm <strong>the</strong> existence of a postulated Pleistocene<br />

rain forest refuge in <strong>the</strong> Campo-Ma’an area (Chapters 4 & 5).<br />

6.2. GENERAL CONCLUSION<br />

The most important phytogeographic studies of Africa are those of White (1979 &<br />

1983) who divided Africa into floristic units (phytochoria) based on chorological<br />

criteria such as shape, surface and geographic position of species distributions and<br />

on <strong>the</strong> occurrence of endemics. This led him to distinguished Regional Centres of<br />

Endemism defined as phytochoria that show a total of more than 1000 endemic<br />

species and to which more than half of <strong>the</strong> total number of its species is confined.<br />

The sou<strong>the</strong>rn part of Cameroon falls under <strong>the</strong> Guineo-Congolian Regional Centre<br />

of Endemism that is reported to be species-rich with high levels of endemism<br />

(White, 1983; Davis et al., 1994). The Guineo-Congolian region comprises three<br />

sub-divisions, Upper Guinea, Lower Guinea and Congolia. The Lower Guinea subregion<br />

comprises <strong>the</strong> Atlantic Biafran forest zone that extends from Sou<strong>the</strong>ast<br />

Nigeria to Gabon and <strong>the</strong> Mayombe area in Congo (Letouzey, 1985). The Campo-<br />

115


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Ma’an rain forest lies in <strong>the</strong> middle of this forest belt which stresses its importance<br />

in terms of conservation priorities. In Cameroon, this Biafran forest zone covers<br />

about 70,000 km² with three main protected areas that include <strong>the</strong> Campo-Ma’an<br />

National Park, Korup National Park and <strong>the</strong> Douala-Edea Faunal Reserve. This<br />

study, as well as o<strong>the</strong>r research (Aubréville, 1968; Letouzey, 1968 & 1985; Reitsma,<br />

1988; Tchouto, 1995; Newbery & Gartlan, 1996; White, 1996; Cable & Cheek,<br />

1998), carried out in this forest zone have shown that in terms of relative abundance,<br />

<strong>the</strong> Caesalpinioideae represent <strong>the</strong> most important taxon of tree species in <strong>the</strong> Lower<br />

Guinea sub-region, sometimes forming distinctive near mono-dominant stands.<br />

However, in <strong>the</strong> Campo-Ma’an area, several species are co-dominant and many of<br />

<strong>the</strong>m are gregarious. Many canopy and emergent trees of <strong>the</strong> family Leguminosae as<br />

well as o<strong>the</strong>r tree species such as Desbordesia glaucescens and Terminalia superba<br />

have large buttresses and diameters that contributed to <strong>the</strong> high basal area and forest<br />

biomass recorded in <strong>the</strong> area (Table 6.1).<br />

The vegetation in <strong>the</strong> Campo-Ma’an area is determined by climate especially<br />

rainfall, altitude, soils, proximity to <strong>the</strong> sea and human disturbance (Chapter 1). The<br />

structure and composition of <strong>the</strong> forest, as well as its physiognomy changes<br />

progressively as one moves from sea level to 1100 m on hilltops. The vegetation<br />

evolves from <strong>the</strong> mangrove or coastal forest on sandy shorelines through <strong>the</strong><br />

endemic lowland evergreen forest rich in Caesalpinioideae with Calpocalyx heitzii<br />

and Sacoglottis gabonensis, to <strong>the</strong> submontane forest on hilltops and <strong>the</strong> mixed<br />

evergreen and semi-deciduous forest in <strong>the</strong> drier Ma’an area. O<strong>the</strong>r vegetation<br />

types/sub-types include swamps, seasonally flooded forests, riverine and secondary<br />

forests. The forest in <strong>the</strong> Ma’an area is described as transitional between <strong>the</strong> coastal<br />

evergreen forest and <strong>the</strong> semi-deciduous forest of <strong>the</strong> interior. It has a distinct<br />

Gabonese affinity with small patches of Aucoumea klaineana (Okoumé) populations<br />

that reach <strong>the</strong>ir nor<strong>the</strong>rn limit of distribution around Ebianemeyong on exposed<br />

steep hills and Nsengou near to <strong>the</strong> border with Equatorial Guinea. The strong<br />

relation between human disturbance and <strong>the</strong> vegetation has implications for <strong>the</strong><br />

floristic composition and species richness of <strong>the</strong> various forest types. Coastal forests<br />

appeared to be more disturbed, including many secondary species, being less<br />

species-rich and less diverse than o<strong>the</strong>r forest types.<br />

116


General conclusions and implications for biodiversity conservation<br />

Table 6.1 Number of species, number of stems/ha, mean basal area/ha and Shannon diversity index (H’)<br />

for all vascular plant species with DBH ≥ 10 cm recorded in some forest areas within <strong>the</strong><br />

Guineo-Congolian region.<br />

No of Stems/ha Mean Shannon Notes Authors<br />

species<br />

basal diversity<br />

Inventory site<br />

Cameroon<br />

area/ha index (H’)<br />

Campo-Ma’an (14.7 ha)* 1116 5312 76.71 5.54 Present study<br />

Campo-Ma’an (14.7 ha) 532 545 72.9 5.26 2297 species of<br />

vascular plants<br />

recorded<br />

including 30<br />

strictly endemic<br />

taxa.<br />

Present study<br />

Dja Wildlife Reserve (26.14 ha) 372 512 32.6 5.46 Sonke (1998)<br />

Korup National Park 410 471 27.8 - Newbery & Gartlan (1996)<br />

Korup National Park (50 ha) 307 492 26.7 1.73 Thomas et al., 2003<br />

Korup National Park (50 ha)* 494 6581 32.2 1.93 1100 species Thomas et al., 2003<br />

Mount Cameroon (7.25 ha) 161 444 33.9 3.99 2433 species Tchouto (1995); Cable &<br />

Gabon<br />

including 49<br />

strictly endemic<br />

taxa.<br />

Cheek (1998)<br />

Doussala (1 ha) 109 425 35.7 - Reitsma (1988)<br />

Lope (12.5 ha) 312 389 34.5 - White (1996)<br />

Minkébé (3 ha) 202 385 - - van Valkenburg et al., 1998<br />

Oveng (1 ha) 131 497 36.4 - Reitsma (1988)<br />

Central African Republic<br />

Ngotto forest (2.5 ha) 147 549 34.4 5.3 Lejoly (1995b)<br />

Congo<br />

Odzala National Park 120 347 21.1 - Lejoly (1995a)<br />

Democratic Republic of Congo<br />

Cuvette Centrale 206 346 32.3 - Wolter (1993)<br />

* for all vascular plant species with DBH ≥ 1 cm<br />

Generally, patterns of species richness and endemism are used for <strong>the</strong> identification<br />

of biodiversity hotspots. During our study, inventory data and taxonomic collections<br />

were used to assess <strong>the</strong> distribution patterns of strict and narrow endemic species.<br />

Conservation indices such as Genetic Heat Index (GHI) and Pioneer Index (PI) were<br />

used to analyse <strong>the</strong> trends in endemic and rare species recorded and geostatistic<br />

techniques helped to evaluate and identify potential areas of high conservation<br />

priority. The results showed that <strong>the</strong> Campo-Ma’an area is characterised by a rich<br />

and diverse flora with more than 2297 species of vascular plants, ferns and fern<br />

allies belonging to 851 genera and 155 families. The area has about 114 endemic<br />

plant species, 29 of that are restricted to <strong>the</strong> area, 29 also occur in south-western<br />

Cameroon and 56 o<strong>the</strong>rs that also occur in o<strong>the</strong>r parts of Cameroon. Fur<strong>the</strong>rmore,<br />

540 species recorded are Lower Guinean endemics, 105 species are Guinean<br />

endemics and 1123 species are Guineo-Congolian endemics. An explanation for this<br />

high incidence of endemism, richness and structured pattern of <strong>the</strong> vegetation might<br />

stem partly from <strong>the</strong> fact that <strong>the</strong> area falls within a series of postulated rain forest<br />

refuges in Central Africa (Hamilton, 1982; White, 1983; Maley, 1987 &1989; Sosef,<br />

1994 & 1996). In such forest refuges, <strong>the</strong> unique combination of climatic and<br />

geological histories, contemporary ecological variables and inherent biological<br />

properties of taxa, may have contributed to speciation (Hawksworth & Kalin-<br />

Arroyo, 1995). The distribution patterns of high conservation priority species<br />

showed a high concentration of <strong>the</strong>se species in <strong>the</strong> National Park between Dipikar<br />

Island and Ebianemeyong-Akom II area, and on Massif des Mamelles and Mont<br />

d”Eléphant. Most of <strong>the</strong> submontane forest and <strong>the</strong> lowland evergreen forest rich in<br />

117


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Caesalpinioideae were characterised by high GHI scores, low PI scores and low<br />

level of disturbance. O<strong>the</strong>r areas of high concentration of strict and narrow endemic<br />

species were located outside <strong>the</strong> park in <strong>the</strong> coastal zone and in areas such as Mont<br />

d’Eléphant and Massif des Mamelles. Unfortunately, <strong>the</strong>se areas that support 17<br />

strict endemic species that are not found in <strong>the</strong> park were much more affected by<br />

human activities. Most forests located at <strong>the</strong>ir closed vicinity were characterised by<br />

high PI scores with more than 25% of <strong>the</strong> forest cover affected by recent human<br />

disturbance. Overall, <strong>the</strong> Ma’an forest and <strong>the</strong> coastal forest on sandy shorelines<br />

showed a low concentration of endemic species.<br />

Despite <strong>the</strong> rich biological and scientific importance of <strong>the</strong> area, <strong>the</strong> Campo-Ma’an<br />

rain forest is seriously affected by human activities such as urbanisation, agriculture<br />

and timber exploitation. Cameroon has a population of about 15 millions with a high<br />

growth rate of 3.2% (Gartlan, 1992). Fur<strong>the</strong>rmore, she is experiencing an economic<br />

crisis that has significantly reduced <strong>the</strong> national budget and employment<br />

opportunities, and increased <strong>the</strong> poverty level of <strong>the</strong> people. So far, most<br />

Cameroonians rely heavily on agriculture and forest resources for subsistence.<br />

Therefore, with <strong>the</strong> growing human population rate, local pressure on <strong>the</strong>se fragile<br />

ecosystems will increase in <strong>the</strong> future. Deforestation for agricultural purposes is <strong>the</strong><br />

biggest threat to <strong>the</strong> tropical rain forest since shifting agriculture and permanent<br />

plantations increase by about 75,000 to 95,000 ha per year in Cameroon (Gartlan,<br />

1992). In <strong>the</strong> Campo-Ma’an area, agro-industrial plantation and land clearance for<br />

subsistence agriculture have destroyed more than 15% of <strong>the</strong> natural forest cover.<br />

Long before <strong>the</strong>se recent human activities in <strong>the</strong> Campo-Ma’an rain forests, man has<br />

had a marked influence on <strong>the</strong> coastal vegetation. This has brought several authors<br />

to argue that <strong>the</strong> coastal forests and <strong>the</strong> mixed evergreen and semi-deciduous forests<br />

in <strong>the</strong> Ma’an area may have undergone a great change in <strong>the</strong> past that is probably<br />

caused by man (Reynaud & Maley, 1994; Oslisly et al., 2001; Maley & Brenac,<br />

1998; Maley, 2001 & 2002). A strong indication of past human disturbance is <strong>the</strong><br />

frequent occurrence of Alstonia boonei, Ceiba pentandra, Lophira alata,<br />

Pycnanthus angolensis and Terminalia superba, which are characteristic of mature<br />

secondary forests in some of <strong>the</strong> forest types recorded.<br />

In a large and heterogeneous forest ecosystem such as <strong>the</strong> Campo-Ma’an rain forest,<br />

<strong>the</strong> selection of <strong>the</strong> most appropriate methods for <strong>the</strong> assessment of <strong>the</strong> forest is<br />

always a difficult matter since many questions need to be addressed in order to<br />

decide on <strong>the</strong> best approach to be taken. To be effective, a botanical assessment<br />

method that provided both quantitative and qualitative information was used during<br />

our study. The quantitative data came from <strong>the</strong> enumeration of all vascular plants<br />

with DBH ≥ 1 cm in small plots of 0.1 ha each that were established throughout <strong>the</strong><br />

research area. The qualitative information was generated from herbarium specimen<br />

data collected in <strong>the</strong> various vegetation types and habitats encountered, and from<br />

several provisional plant species checklists made in <strong>the</strong> field in each of <strong>the</strong>se<br />

vegetation types. This sampling approach led to <strong>the</strong> collection of information on all<br />

growth forms including trees, shrubs, climbers and herbaceous vascular plants that<br />

enable us to study <strong>the</strong> correlation between tree species diversity and <strong>the</strong> diversity of<br />

o<strong>the</strong>r growth forms. The results showed that only 22% of <strong>the</strong> diversity of shrubs and<br />

lianas could be explained by <strong>the</strong> diversity of large and medium sized trees, and less<br />

118


General conclusions and implications for biodiversity conservation<br />

than 1% of herb diversity was explained by <strong>the</strong> tree diversity. The shrub layer was<br />

by far <strong>the</strong> most species rich in <strong>the</strong> different plots and vegetation types, and was<br />

significantly more diverse and species-rich than <strong>the</strong> tree and herbaceous layers.<br />

Moreover, shrubs contributed for 38% of <strong>the</strong> 114 strict and narrow endemic plant<br />

species recorded in <strong>the</strong> area, herbs (29%), trees (20%) and climbers (11%). These<br />

results indicated that in <strong>the</strong> context of African tropical rain forest, tree species<br />

diversity does not tell it all and <strong>the</strong>refore, it may not be a good indicator for <strong>the</strong><br />

diversity of shrubs and herbaceous species. Fur<strong>the</strong>rmore, this suggests that<br />

biodiversity survey based solely on large and medium sized tree species (DBH ≥ 10<br />

cm) is not an adequate method for <strong>the</strong> assessment of plant diversity because o<strong>the</strong>r<br />

growth form such as shrubs, climbers and herbs are under-represented. Inventory<br />

design based on small plots of 0.1 ha, in which all vascular plants with DBH ≥ 1 cm<br />

are recorded, is <strong>the</strong>refore, a more appropriate sampling method for biodiversity<br />

conservation purposes than assessments based solely on large and medium sized tree<br />

species.<br />

6.3. IMPLICATIONS FOR BIODIVERSITY CONSERVATION<br />

The Campo-Ma’an National Park<br />

The study has demonstrated that <strong>the</strong> park is of great scientific and conservation<br />

importance containing about 72% of <strong>the</strong> 2297 species of vascular plants, ferns and<br />

fern allies recorded in <strong>the</strong> Campo-Ma’an area and more than 70% of <strong>the</strong> total<br />

endemic species. The site’s conservation opportunities include a rich diversity of<br />

flora, fauna and habitats amongst which <strong>the</strong> most characteristic is <strong>the</strong> endemic<br />

lowland evergreen forest rich in Caesalpinioideae with Calpocalyx heitzii and<br />

Sacoglottis gabonensis that only occurs in <strong>the</strong> Campo area. So far <strong>the</strong> Park is <strong>the</strong><br />

only land use type in <strong>the</strong> area with a legal conservation status. It is fully protected by<br />

law, and logging, hunting, fishing, mineral exploitation, pastoral industrial,<br />

agricultural and forestry activities are forbidden. However, its boundaries have not<br />

been marked in <strong>the</strong> field, <strong>the</strong> management plan has not yet been produced,<br />

protection is weak and <strong>the</strong> participation of stakeholders in <strong>the</strong> management process<br />

is not operational. Taking into consideration <strong>the</strong> fact that <strong>the</strong> park is surrounded by<br />

several land-uses, its management needs to be streng<strong>the</strong>ned and coherent with that<br />

of o<strong>the</strong>r land-use types found in <strong>the</strong> area. Fur<strong>the</strong>rmore, it is of urgent need to<br />

demarcate <strong>the</strong> boundary of <strong>the</strong> park, reinforce its protection, complete and<br />

implement its management plan as soon as possible. Although <strong>the</strong> park is virtually<br />

free from human disturbance, present human influence is by no means negligible<br />

since illegal hunting is frequent. To allow effective control of poaching, several<br />

logging tracks and footpaths at <strong>the</strong> vicinity of <strong>the</strong> park need <strong>the</strong>refore to be closed,<br />

additional control posts should be established and more forest guards appointed.<br />

With its tremendous living genetic resources and its conservation status, <strong>the</strong> park is<br />

an ideal place for scientific research. Fur<strong>the</strong>r research is needed on <strong>the</strong> Dipikar<br />

Island and in areas east of Mvini’s river and Nkoelon to study <strong>the</strong> forest dynamics in<br />

disturbed lowland forest. This study will help to access <strong>the</strong> rate of forest recovery<br />

after logging in terms of plant species richness, forest structure and composition.<br />

Such research is needed because a better knowledge of <strong>the</strong> effect of human<br />

disturbance on <strong>the</strong> forest ecosystem is important for <strong>the</strong> development of sustainable<br />

119


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

forest management systems. Fur<strong>the</strong>rmore, it has been shown that mammals are<br />

primary consumers of forest fruits and seeds in tropical rain forest (Mbelli, 2002).<br />

They contribute to seed dispersal and thus to forest regeneration. It is <strong>the</strong>refore<br />

suggested that future research work be focused on plant-animal relations with<br />

emphasis on <strong>the</strong> natural regeneration of timber species and important NTFPs. This<br />

will lead to a better understanding of <strong>the</strong> dispersal, germination, growth and<br />

mortality rates of plant species as well as <strong>the</strong>ir interactions with vertebrate fruit<br />

eaters such as elephants, apes, birds, ruminants, bats and rodents.<br />

Massif des Mamelles and Mont d’Eléphant<br />

The study has also demonstrated that <strong>the</strong>re are biodiversity hotspots such as <strong>the</strong><br />

Massif des Mamelles and Mont d’Eléphant that are not located in <strong>the</strong> National Park.<br />

Unfortunately, <strong>the</strong>se areas of high conservation priority do not yet have any<br />

conservation status and are mostly found along <strong>the</strong> coast and near settlements where<br />

local human pressure is intense. As shown in Chapter 5, <strong>the</strong>re are 17 plant species<br />

strictly endemic to <strong>the</strong> Campo-Ma’an area, which are not found in <strong>the</strong> park. These<br />

endemic species are <strong>the</strong> most threatened since <strong>the</strong>ir habitats are fragmented and<br />

degraded as a result of past and present land conversion to subsistence and industrial<br />

plantations. The rate of forest degradation is likely to accelerate in <strong>the</strong> near future, if<br />

<strong>the</strong> present trends in land-use and patterns of exploitation persist. Conservation<br />

needs are exceptionally urgent in such areas since <strong>the</strong>y are of great scientific interest<br />

and under severe threat. There is an urgent need for <strong>the</strong> development of a separate<br />

management strategy in order to ensure <strong>the</strong> protection of <strong>the</strong>se biodiversity hotspots<br />

and <strong>the</strong>ir endemic species. In Cameroon forest legislation, <strong>the</strong>re are o<strong>the</strong>r forms of<br />

land-use such as community and communal forests that are compatible with <strong>the</strong><br />

conservation of biodiversity. Therefore, it is suggested that local communities be<br />

encouraged to create community forests since its management does not only focus<br />

on nature conservation but also takes into consideration <strong>the</strong>ir interests. Each<br />

community forest could have <strong>the</strong> identified biodiversity hotspot as <strong>the</strong> core<br />

conservation area, surrounded by a buffer zone in which <strong>the</strong> sustainable<br />

management of non-timber forest products and hunting are developed. In <strong>the</strong> wake<br />

of today’s forest loss, a careful sustainable land-use strategy in <strong>the</strong> buffer zones<br />

surrounding <strong>the</strong> National Park and o<strong>the</strong>r identified core biodiversity hotspots is<br />

necessary for <strong>the</strong>ir long-term survival and <strong>the</strong> protection of species of high<br />

conservation priority.<br />

Forest management units<br />

As shown in Chapter 1, logging concessions that are also called “Forestry<br />

management unit” (FMU) are <strong>the</strong> most important land-use type after <strong>the</strong> National<br />

Park. They represent about 31.4% of <strong>the</strong> Campo-Ma’an Technical Operational Unit.<br />

Some of <strong>the</strong>m (09021, 09022 and 09025, Figure 1.1 in Chapter 1) have been<br />

selectively logged at least once during <strong>the</strong> past 30 years. Although logging damages<br />

are moderate and have less effect on <strong>the</strong> forest biodiversity, fur<strong>the</strong>r logging activities<br />

should be avoided in areas that have been exploited already twice. Despite <strong>the</strong> effect<br />

of logging on <strong>the</strong>se forests, <strong>the</strong>re are still considerable patches of undisturbed forests<br />

that are characterised by a rich and diverse flora. It has become increasingly clear<br />

that National Parks cannot be protected without <strong>the</strong> establishment of a buffer zone.<br />

Therefore, FMU’s can serve as <strong>the</strong> park’s buffer zone since <strong>the</strong>y are located in its<br />

close vicinity. The management plan of <strong>the</strong> logging concessions should be<br />

120


General conclusions and implications for biodiversity conservation<br />

compatible with conservation initiatives and include a separate management strategy<br />

aimed at enhancing <strong>the</strong> sustainable management of natural resources. Taking into<br />

consideration <strong>the</strong> fact that <strong>the</strong> success of <strong>the</strong>ir conservation will largely depend on<br />

<strong>the</strong> ability to reconcile <strong>the</strong> objectives of conservation and toge<strong>the</strong>r with <strong>the</strong> needs of<br />

<strong>the</strong> loggers and <strong>the</strong> local communities, <strong>the</strong> management strategy should be<br />

developed with <strong>the</strong> full participation of <strong>the</strong> local people.<br />

The Ma’an area has been recently allocated for timber exploitation (FMU 09024). It<br />

supports small populations of Okoumé at <strong>the</strong> border with Equatorial Guinea with<br />

only few stems of exploitable size. This important commercial timber species is of<br />

scientific interest since it reaches <strong>the</strong> nor<strong>the</strong>rn limit of its distribution in <strong>the</strong> Campo-<br />

Ma’an area. Therefore, it is strongly recommended that Okoumé should not be<br />

exploited and that conservation measures be taken during logging to ensure <strong>the</strong><br />

protection of this species. Fur<strong>the</strong>rmore, special logging techniques should be applied<br />

in order to minimise logging damage such as breakage of Okoumé trees, saplings<br />

and residual stems, and to protect eventual seedlings from discarded crowns of<br />

felled trees.<br />

Although selective logging techniques are used in <strong>the</strong> FMU, a number of<br />

irregularities were reported in <strong>the</strong> area, as far as <strong>the</strong> proper application of <strong>the</strong><br />

techniques and <strong>the</strong> implementation of <strong>the</strong> forestry law that regulates logging<br />

activities in Cameroon are concerned. It is suggested that selective logging at low<br />

intensity, using techniques that minimizes impacts, be applied in all FMU.<br />

Fur<strong>the</strong>rmore, research should be carried out to assess <strong>the</strong> current logging techniques<br />

and <strong>the</strong> level of implementation of <strong>the</strong> forestry law. The results of this research<br />

should include recommendations for a sustainable timber harvesting, <strong>the</strong> use of<br />

adequate selective logging techniques, and control mechanisms to minimise<br />

bottlenecks that hinder <strong>the</strong> proper implementation of <strong>the</strong> forestry law. It was also<br />

noticed that <strong>the</strong> amount of waste products derived from logging and timber<br />

transformation activities was high. The waste products include abandoned logs and<br />

remains from sawmills. Although <strong>the</strong>y were reported not to be economically<br />

profitable by <strong>the</strong> loggers, <strong>the</strong>se abandoned logs are of great economic importance for<br />

<strong>the</strong> rural and urban economy. Therefore, fur<strong>the</strong>r studies should be carried out to<br />

assess <strong>the</strong> demand, markets and trade of <strong>the</strong>se products, and to identify an effective<br />

mechanism that will help to minimise this waste.<br />

The Campo-Ma’an area has ca 249 NTFPs and 112 timber species of which only 60<br />

species are being exploited (Tchouto et al., 2002 unpublished). Although <strong>the</strong> TOU<br />

has many NTFP species with high economic value, few local people rely on it as<br />

source of income. Fur<strong>the</strong>rmore, many important forest products such as fruits,<br />

spices, vegetables and rattans that are popularly traded in Cameroon and <strong>the</strong> subregion<br />

for <strong>the</strong>ir high commercial values, are poorly exploited in <strong>the</strong> area. This is<br />

partly due to <strong>the</strong> fact that many local people derive <strong>the</strong>ir income from agriculture,<br />

hunting and fishing, and that <strong>the</strong> commercialisation channels of <strong>the</strong>se products are<br />

poorly known by <strong>the</strong> local communities. In order to reduce <strong>the</strong> current pressure on<br />

<strong>the</strong> Campo-Ma’an rain forest, alternate income generating activities should be<br />

identified for <strong>the</strong> local communities. The trade of NTFPs is one of such activities if<br />

an adequate strategy for its sustainable management, exploitation and<br />

commercialisation is developed. Therefore, a participatory ethnobotanical study<br />

121


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

should be carried out with <strong>the</strong> local communities in <strong>the</strong>ir villages and in logging<br />

concessions in order:<br />

122<br />

To prepare a checklist of all timber and NTFP species used by <strong>the</strong> local<br />

people;<br />

To carry out a market survey to assess <strong>the</strong> demand and trade of <strong>the</strong>se<br />

products;<br />

To study <strong>the</strong>ir biomass, densities, dynamics and <strong>the</strong> impact of <strong>the</strong>ir<br />

exploitation on <strong>the</strong> forest ecosystem.<br />

Ecological monitoring<br />

Tropical rain forests are fragile because of <strong>the</strong>ir complex dynamic ecosystems, <strong>the</strong>ir<br />

high number of species and <strong>the</strong>ir rich interacting structure. Although <strong>the</strong>y are well<br />

adapted to persist in <strong>the</strong> environment in which <strong>the</strong>y have evolved, <strong>the</strong>y are much less<br />

resistant to human disturbances. Therefore, in <strong>the</strong> Campo-Ma’an area, it is of vital<br />

importance to monitor human activities and related changes in flora and fauna. This<br />

will enable <strong>the</strong> park management to act appropriately whenever undesired changes<br />

in <strong>the</strong> conservation status of its rich biodiversity occur. Remote sensing images and<br />

impact studies on human activities are required to monitor land cover changes, and<br />

<strong>the</strong> changes in vegetation, flora and fauna within and around <strong>the</strong> park.<br />

This study has demonstrated that <strong>the</strong> Campo-Ma’an area harbours about 141 plant<br />

species of high conservation priority and 92 threatened species listed in <strong>the</strong> red data<br />

list of IUCN (2002) and WCMC (1998). Of <strong>the</strong> 29 strict endemic species that only<br />

occur in <strong>the</strong> Campo-Ma’an area, 17 are <strong>the</strong> most threatened since <strong>the</strong>y are located<br />

outside <strong>the</strong> National Park and in areas such as <strong>the</strong> coastal zone, and at <strong>the</strong> vicinity of<br />

settlements and large agro-industrial plantations where human pressures are severe.<br />

Fur<strong>the</strong>rmore, <strong>the</strong>ir habitats are fragmented and degraded as a result of past and<br />

present land conversion to subsistence agriculture and industrial plantations.<br />

Research is urgently needed on <strong>the</strong> population biology and ecology of <strong>the</strong>se<br />

threatened species. In order to avoid <strong>the</strong> extinction of <strong>the</strong>se species, botanical<br />

monitoring should be carried out to assess <strong>the</strong>ir status. Measures to secure <strong>the</strong>ir<br />

conservation should include <strong>the</strong> strict protection of <strong>the</strong>se fragmented type localities.<br />

Ecological sustainable agriculture<br />

Shifting agriculture is identified as among <strong>the</strong> most destructive uses of <strong>the</strong> forest<br />

since it involves large amount of land conversion from natural forest to farms and<br />

fallow. In order to prevent fur<strong>the</strong>r encroachment into <strong>the</strong> remaining lowland and<br />

coastal forests, farmers need to intensify <strong>the</strong>ir agricultural production systems.<br />

Fur<strong>the</strong>rmore, crop production needs to be increased in <strong>the</strong> existing agricultural lands<br />

to feed a growing population. Farmers should be encouraged to form common<br />

initiative groups in which <strong>the</strong>y can receive adequate training on nursing, planting,<br />

maintenance, harvesting, storage and marketing techniques from <strong>the</strong> local staff of<br />

<strong>the</strong> Ministry of Agriculture.<br />

Conservation and environmental education<br />

Biodiversity conservation is a concept that is not yet well understood by <strong>the</strong> local<br />

communities. As a result <strong>the</strong>re is a permanent conflict between conservation<br />

initiatives and <strong>the</strong> needs of <strong>the</strong> local communities and o<strong>the</strong>r stakeholders such as


General conclusions and implications for biodiversity conservation<br />

logging and agro-industrial enterprises. A stakeholder analysis carried out in <strong>the</strong> area<br />

(ERE Développement, 2002) showed that <strong>the</strong>re is an overwhelming concern among<br />

stakeholders about <strong>the</strong> restrictions imposed with <strong>the</strong> creation of <strong>the</strong> National Park.<br />

The creation of <strong>the</strong> park has led to <strong>the</strong> reduction of <strong>the</strong> availability of bush meat<br />

within <strong>the</strong> TOU and <strong>the</strong> reduction of forestland for future agricultural expansion.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> contribution of <strong>the</strong> park to <strong>the</strong> local economy is not yet evident.<br />

Despite <strong>the</strong> efforts made by <strong>the</strong> Campo-Ma’an Project to sensitize <strong>the</strong> local<br />

communities, a large majority is still very skeptical about <strong>the</strong> contribution of<br />

biodiversity conservation to <strong>the</strong>ir livelihoods. Therefore, environmental education<br />

programs should be reinforced in <strong>the</strong> area. This will help to create awareness among<br />

local people, to explain <strong>the</strong> purpose of conservation and <strong>the</strong> reasons for creating <strong>the</strong><br />

National Park, and to educate <strong>the</strong>m on <strong>the</strong> far-reaching implications of forest<br />

degradation. Local people need to learn about <strong>the</strong> importance of community forests<br />

and how to apply, create and manage a community forest. They also need to be<br />

informed on <strong>the</strong> existing laws on forestry, wildlife and fisheries. By doing so, <strong>the</strong><br />

Campo-Ma’an Project will create a conducive working atmosphere that may help to<br />

secure <strong>the</strong>ir active and full participation in any conservation initiatives.<br />

Environmental education should be carried out at all levels, with different target<br />

groups within <strong>the</strong> local communities (traditional leaders, elite, hunters, farmers,<br />

women, children, teachers, etc.), timber exploiters, agro-industrials, local<br />

administrative authorities and any o<strong>the</strong>r stakeholders involved in <strong>the</strong> conservation of<br />

biodiversity in <strong>the</strong> TOU. Simple and appropriate education tools should be used to<br />

offer <strong>the</strong> local communities something that is important, clear, easy to recall and<br />

above all, something that give <strong>the</strong>m food for thought. Dissemination of information<br />

to stakeholders is necessary for <strong>the</strong>ir involvement in <strong>the</strong> decision-making process.<br />

Key findings of all studies carried out in <strong>the</strong> area should be published and made<br />

available to <strong>the</strong> local communities. Simple leaflets with <strong>the</strong> list of plant and wildlife<br />

species of high conservation values should be produced with <strong>the</strong>ir local names,<br />

conservation status and pictures, and distributed to all <strong>the</strong> stakeholders. Regular<br />

broadcasts on television through attractive programmes are vital for <strong>the</strong> presentation<br />

and dissemination of information ga<strong>the</strong>red.<br />

Photo: Natural forest gap rich in fern species (Tchouto, M.G.P.)<br />

123


REFERENCES


References<br />

Achoundong, G. (1996) Les Rinorea comme indicateurs des grands types forestiers<br />

du Cameroun. In van der Maesen, L.J.G., van der Burgt, X.M. & van Medenbach<br />

de Rooy, J.M. (eds). The Biodiversity of African Plants: 536-544. Kluwer<br />

Academic Publishers. The Ne<strong>the</strong>rlands.<br />

Achoundong, G. (2000) Les Rinorea et l’étude des refuges forestiers en Afrique. In<br />

Servant, M. & Servant-Vildary, S. (eds). Dynamique à long terme des écosystèmes<br />

forestiers intertropicaux: 19-29.<br />

Andel, T. van (2001) Floristic composition and diversity of mixed primary and<br />

secondary forests in northwest Guyana. Biodiversity and Conservation 10: 1645-<br />

1682. Kluwer Academic Publishers. The Ne<strong>the</strong>rlands.<br />

Annaud, M. & Carriere, S. (2000) Les communautés des arrondissements de Campo<br />

et de Ma’an. Etat des connaissances. Synthése réalisée pour le Projet Campo-<br />

Ma’an, Paris.<br />

Aubréville, A. (1962) Savanisation tropicale et glaciations Quaternaires. Adansonia<br />

2: 16-84.<br />

Aubréville, A. (1968) Les Caesalpinioidées de la flore Camerouno-Congolaise.<br />

Adansonia 8: 147-175.<br />

Aubréville, A. (1970) Flore du Cameroun. In Aubréville, A. & Leroy, J.-F. (eds).<br />

Vol. 9. Muséum National d’Histoire Naturelle, Paris.<br />

Aubréville, A. & Leroy, J.-F. (eds) (1961-1992) Flore du Gabon. Muséum National<br />

d’Histoire Naturelle, Paris.<br />

Aubréville, A. & Leroy, J.-F. (eds) (1963-1978) Flore du Cameroun. Vol.1-20.<br />

Muséum National d’Histoire Naturelle, Paris.<br />

Barbault, R. & Sastrapradja, S. (1995) Generation, maintenance and loss of<br />

biodiversity. In Heywood, V.H. & Watson, R.T. (eds). Global Biodiversity<br />

Assessment, 192-294. UNEP, Cambridge University Press.<br />

Beentje, H.J. (1996) Centres of plant diversity in Africa. In van der Maesen, L.J.G.,<br />

van der Burgt, X.M. & van Medenbach de Rooy, J.M. (eds). The Biodiversity of<br />

African Plants: 101-109. Kluwer Academic Publishers. The Ne<strong>the</strong>rlands.<br />

Bisby, F.A. (1995) Characterization of biodiversity. In Heywood V.H. & Watson<br />

R.T. (eds). Global Biodiversity Assessment: 192-294. UNEP, Cambridge<br />

University Press.<br />

Braak, C.J.F ter (1986a) Canonical correspondence analysis: a new eigenvector<br />

technique for multivariate direct gradient analysis. Ecology 67: 1167-1179<br />

Braak r, C.J.F te (1987b) The analysis of vegetation-environment relationships by<br />

canonical correspondence analysis. Vegetatio 69: 69-77.<br />

Burgt, X.M. van der (1994) Explosive pods and seed dispersal of Tetraberlinia<br />

moreliana (Leguminosae-Caesalpinioideae) in <strong>the</strong> rain forests of Rabi, Gabon.<br />

Wageningen Agricultural University, Wageningen, <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Cable, S. & Cheek, M. (1998) The plants of Mount Cameroon. A conservation<br />

checklist. Royal Botanic Gardens, Kew. UK<br />

Clinebell, H.R.R., Philips, O.L., Gentry, A.H., Stark, N. & Zuuring, H. (1995)<br />

Predictions of neotropical tree and liana species richness from soil and climatic<br />

data. Biodiversity and Conservation 4: 56-90.<br />

Colinvaux, P.A., Irion, G., Räsänen, M.E., Bush, M.B. & Nunes de Mello, J.A.S.<br />

(2001) A paradigm to be discarded: geological and paleoecological data falsify <strong>the</strong><br />

Haffer & Prance refuge hypo<strong>the</strong>sis of Amazon speciation. Amazonia 16: 609-646.<br />

127


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Colyn, M., Gautier-Hion & Verheyen, W. (1991) A re-appraisal of<br />

palaeoenvironmental history in Central Africa: evidence for a major fluvial refuge<br />

in <strong>the</strong> Zaire Basin. Journal of Biogeography 18: 403-407.<br />

Condit, R., Hubbell, S.P., Sukumar R., Manokaran N., Foster, R.B., & Ashton, P.S.<br />

(1996) Species-area and species-individual relationships for tropical trees:<br />

comparison of three 50-ha plots. Journal of Ecology 84: 549-562.<br />

Cusset, C. (1987). Flore du Cameroun. In Satabié, B. & Morat, Ph. (eds). Vol. 30.<br />

Podostemaceae. Muséum National d’Histoire Naturelle, Paris.<br />

Davis, S. D., Heywood, V. H. & Hamilton, A. C. (1994) Centres of Plant Diversity.<br />

A guide and strategy for <strong>the</strong>ir conservation. Vol. 1.<br />

De Lange, A. & Bouman, F. (1992) Seed micromorphology of <strong>the</strong> genus Begonia in<br />

Africa: taxonomic and ecological implications. In de Wilde, J.J.F.E. (ed.). Studies<br />

in Begoniaceae III. Wageningen Agricultural University Papers. 91.4<br />

Djama, T. (2001) Inventaire quantitatif des poissons dans l’UTO Campo-Ma’an.<br />

Projet Campo-Ma’an, Kribi, Cameroon.<br />

Duivenvoorden, J. F. & Lips, J. M. (1995) A land ecological study of soils,<br />

vegetation and plant diversity in Colombia Amazonia. <strong>Tropenbos</strong> Series 12. The<br />

<strong>Tropenbos</strong> Foundation, Wageningen.<br />

Elenga, H., Schwartz, D. & Vincens, A. (1994) Pollen evidence of late Quaternary<br />

vegetation and inferred climate change in Congo. Palaeogeography,<br />

Palaeoclimatology and Palaeoecology 109: 345-456.<br />

Elenga, H., Schwartz, D., Vincens, A., Bertaux, J., de Namur, C., Martin L.,<br />

Wirrmann, D. & Servant, M. (1996) Diagramme Pollinique Holocène du lac Kitina<br />

(Congo): mise en évidence de changements paléobotaniques et paléoclimatiques<br />

dans les massifs forestiers du Mayombe. Compte Rendu de l’Académie des<br />

Sciences 323: 403-410.<br />

ERE Développement (2002) Etude socio-économique dans l’UTO de Campo-<br />

Ma’an. Raport final phase 2: résultats d’enquètes auprès des ménages. SNV/Projet<br />

Campo-Ma’an.<br />

FAO (1990) Guidelines for soil description. 3 rd edition (revised). Soil Resources,<br />

Management and Conservation Service Land and Water Development. Rome.<br />

FAO (1993) Forest resources assessment 1990. Tropical countries FAO Forestry<br />

Paper 112, Rome.<br />

Filer, D. (1996) BRAHMS: Botanical Research and Herbarium Management<br />

System, Exercises to accompany version 3.3. Department of Plant Sciences,<br />

University of Oxford.<br />

Foahom, B. & Jonkers, W. B. J. (1992) A Programme for <strong>Tropenbos</strong> Research in<br />

Cameroon. Final report, <strong>Tropenbos</strong>-Cameroon Programme (Phase I). The<br />

<strong>Tropenbos</strong> Foundation, Wageningen.<br />

Franqueville, A. (1973) Atlas regional Sud-Ouest 1. République du Cameroun,<br />

ORSTOM, Yaoundé, Cameroun.<br />

Gartlan, J. S. (1989) La conservation des ecosystemes forestiers du Cameroun.<br />

IUCN.<br />

Gartlan, J. S. (1992) Analyses of critical natural resources and environmental issues<br />

in terms of economic development: biodiversity and wildlife. Unpublished report<br />

to USAID.<br />

Gartlan, J.S., Newbery, D.McC., Thomas, D.W. & Waterman, P.G. (1986). The<br />

influence of topography and soil phosphorus of <strong>the</strong> vegetation of Korup Forest<br />

Reserve, Cameroon. Vegetatio 65: 131-148.<br />

128


References<br />

Gemerden, B. S. van & Hazeu, G. W. (1999) Landscape ecological survey<br />

(1:100,000) of <strong>the</strong> Bipindi-Akom II-Lolodorf region, Southwest Cameroon.<br />

<strong>Tropenbos</strong>-Cameroon Document 1.<br />

Gemerden van, B. S., Shu, G. N. & Han Olff (2003) Recovery of conservation<br />

values in Central African rain forest after logging and shifting cultivation.<br />

Biodiversity and conservation 12: 1553-1570. Kluwer Academic Publishers, <strong>the</strong><br />

Ne<strong>the</strong>rlands.<br />

Gentry, A.H. (1988) Changes in plant community diversity and floristic composition<br />

on environmental and geographical gradients. Annals of Missouri Botanical<br />

Garden 75: 1-34.<br />

Gentry, A.H. (1992) Tropical forest biodiversity: distributional patterns and <strong>the</strong>ir<br />

conservational significance. Oikos 63: 19-28.<br />

Gerold, K. & Barthlott, W. (2001) Measuring and mapping endemism and species<br />

richness: a new methodological approach and its application on <strong>the</strong> flora of Africa.<br />

Biodiversity and conservation 10: 1513-1529. Kluwer Academic Publishers. The<br />

Ne<strong>the</strong>rlands.<br />

Givnish, T.J. (1999) On <strong>the</strong> causes of gradients in tropical tree diversity. Journal of<br />

Ecology 87: 193-210.<br />

Haffer, J. & Prance, G.T. (2001) Climatic forcing of evolution in Amazonia during<br />

<strong>the</strong> Cenozoic: on <strong>the</strong> refuge <strong>the</strong>ory of biotic differentiation. Amazonia 16: 579-607.<br />

Hall, J.B. & Swaine, M.D. (1976) Classification and ecology of closed-canopy<br />

forest in Ghana. Journal of Ecology 64: 913-951.<br />

Hamilton, A. C. (1976) The significance of patterns of distribution. Palaeaecology<br />

of Africa 9: 63-69.<br />

Hamilton, A. C. (1982) Environmental history of Africa: A study of <strong>the</strong> Quaternary.<br />

Academic Press, London.<br />

Hammen, T. van der & Hooghiemstra, H. (2000) Neogene and Quaternary history<br />

of vegetation, climate, and plant diversity in Amazonia. Quaternary Sciences<br />

Reviews 19: 725-742.<br />

Hart, T.B., Hart, J.A. & Murphy, P.G. (1989) Monodominant and species-rich<br />

forests of <strong>the</strong> humid tropics: causes for <strong>the</strong>ir co-occurrence. The American<br />

Naturalist 133: 613-633.<br />

Hawksworth, D.L. & Kalin-Arroyo, M.T. (1995) Magnitude and distribution of<br />

biodiversity. In Heywood, V.H. & Watson, R.T. (eds). Global Biodiversity<br />

Assessment: 108-191. UNEP, Cambridge University Press.<br />

Hawthorne, W. D. & Abu-Juam, M. (1995) Forest protection in Ghana with<br />

particular reference to vegetation and plant species. The IUCN Forest<br />

Conservation Programme.<br />

Hawthorne, W. D. (1996) Holes and <strong>the</strong> sums of parts in Ghanian forest:<br />

regeneration, scale and sustainable use. Procceedings of <strong>the</strong> Royal Society of<br />

Edinburgh 104B: 75-176.<br />

Hawthorne, W. D. (1999) TREMA version 1.6. Department of Plant Sciences,<br />

University of Oxford.<br />

Hedberg, O. (1951) Vegetation belts of <strong>the</strong> East African mountains. Svensk. Bot.<br />

Tidskr. 45: 140-202.<br />

Hekking, W.H.A. (1988) Viloaceae, Part I. Rinorea and Rinoreocarpus. Flora of<br />

Neotropica, Monograph 46. The New York Garden. New York.<br />

Heywood, V. H. & Waston, R. T. (1995) Global biodiversity assessment. UNEP.<br />

Cambridge University Press, UK.<br />

129


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Hill, M. D. (1979a) TWINSPAN - a FORTRAN program for arranging multivariate<br />

data in an ordered two-way table by classification of <strong>the</strong> individuals and attributes.<br />

Ecology and Systematics. Cornell University, Ithaca, NY, USA.<br />

Hill, M. D. (1979b) DECORANA - a FORTRAN program for detrended<br />

correspondance analysis and reciprocal averaging. Ecology and Systematics.<br />

Cornell University, Ithaca, NY, USA.<br />

ILWIS (2001) ILWIS 3.0 academic: User's guide. ITC, Enschede, <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Isaaks, E.H. & Srivastava, R.M. (1989) An introduction to applied geostatistics.<br />

Oxford University Press. New York.<br />

IUCN (1994) IUCN Red List Categories. IUCN, Gland, Switzerland.<br />

IUCN (2002) 2002 IUCN Red list of Threatened Species. IUCN Conservation<br />

Monitoring Centre, Cambridge, UK.<br />

Jonkers, W. B. J. & van Leersum, G. J. R. (2000) Logging in South Cameroon:<br />

current methods and opportunities for improvement. <strong>International</strong> Forestry Review<br />

2: 11-16.<br />

Jongman, R.H.G., ter Braak, C.J.F. & van Tongeren, O.F.R (eds) (1987) Data<br />

analysis in community and landscape ecology. Pudoc, Wageningen.<br />

Kaji, M. (1985) Study on <strong>the</strong> floristic composition and <strong>the</strong> structure of tropical rain<br />

forest in south western Cameroon. In Koshimizu K. (ed). Search for useful plants<br />

in tropical rain forest in Cameroon, and chemical studies on biologically active<br />

substances of <strong>the</strong> plant 1: 12-42. Kyoto University, Japan.<br />

Kam M. de, Fines, J.-P. & Akogo, G. (eds) (2002) Schéma Directeur pour le<br />

developpement de l’Unité Technique Opérationnelle de Campo-Ma’an, Cameroun.<br />

Campo-Ma’an Series 1.<br />

Keay, R.W.J. & Hepper, F.N., (eds) (1954-1972) Flora of West Tropical Africa. 2 nd<br />

ed., 3 vols. Crown Agents, London.<br />

Kent, M. & Coker, P. (1992) Vegetation description and analysis. Belhaven Press,<br />

London.<br />

Koubouana, F. (1993) Les forêts de la vallée du Niari, Congo : Etudes floristiques et<br />

structurales. Thèse de doctorat, Université de Paris 6.<br />

Kuete, M. (1990) Géomorphologie du plateau sud-Camerounais à l’ouest du 13°E.<br />

Thèse de Doctorat d’Etat, Université de Yaoundé 1.<br />

Languy, M. & Demey, R. (2000) Inventaires ornithologiques de la région de<br />

Campo-Ma’an en mars 1999 et février 2000. Rapport et synthèse de l’avifaune du<br />

Parc National de Campo-Ma’an et de l’UnitéTechnique Opérationnelle.<br />

MINEF/COC/Birdlife <strong>International</strong>, Yaoundé, Cameroun.<br />

Leal, M.E. (2001) Microrefugia, small scale ice forest remnants. In Robbrecht, E.,<br />

Degreef, J. & Friis, I. (eds). Plant systematics and phytogeography for <strong>the</strong><br />

understanding of African biodiversity 1073-1077.<br />

Lebrun, J.P. (1960) Sur les horizons et étages de vegetation de divers volcans du<br />

massif des Virunga (Kivu-Congo). Bull. Jard. Bot. Bruxelles 30: 255-277.<br />

Lebrun, J.P. & Stork, A.L. (2003) Tropical African flowering plants ecology and<br />

distribution. Vol. 1 Annonaceae and Balanitaceae. Conservatoire et Jardin<br />

Botanique de la Ville de Genéve.<br />

Lejoly, J. (1995a) Biodiversité végétale dans le Parc National d’Odzala, Congo.<br />

Rapport technique. Groupement Agreco-CTFT.<br />

Lejoly, J. (1995b) Utilisation de la méthode de transects en vue de l’étude de la<br />

biodiversité dans la zone de conservation de la forêt de Ngotto, République<br />

Centrafricaine. Rapport technique. Projet ECOFAC, Agreco-CTFT.<br />

130


References<br />

Letouzey, R. (1968) Etude phytogeographique du Cameroun. Le Chevalier, Paris.<br />

Letouzey, R. (1983) Quelques exemples camerounais de liaison possible entre<br />

phénomènes géologiques et végétation. Bothalia 14: 739-744.<br />

Letouzey, R. (1985) Notice de la carte phytogéographique du Cameroun, vol. 1-5.<br />

Institut de la Carte <strong>International</strong>e de la Végétation, Toulouse.<br />

Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G.S. (1996) Tropical forest<br />

structure and composition on a large-scale altitudinal gradient in Costa Rica.<br />

Journal of Ecology 84: 137-152.<br />

Linder, H.P. (2001) Plant diversity and endemism in sub-Saharan tropical Africa.<br />

Journal of Biogeography 28: 169-182.<br />

Magurran, A.E. (1988) Ecological diversity and its measurement. Croom Helm,<br />

London<br />

Maley, J. (1987) Fragmentation de la forêt dense humide Africaine et extention des<br />

biotopes montagnards du Quaternaire recent. Paleoecology of Africa 18: 307-309.<br />

Maley, J. (1989) Late Quaternary climatic changes in <strong>the</strong> African rainforest: <strong>the</strong><br />

question of forest refuges and <strong>the</strong> major role of sea surface temperature variations.<br />

In Lewen, M. & Sar<strong>the</strong>in, M. (eds). Paleoclimatology and Paleometeorogy:<br />

Modern and Past Patterns of Global Atmospheric Transport: 585-616. Kluwer,<br />

London.<br />

Maley, J. (1990) Histoire récente de la forêt dense humide africaine : essai sur le<br />

dynamisme de quelques formations forestières. In Lanfranchi, R. & Schwartz, D.<br />

(eds.). Paysage quaternaire de l’afrique centrale Atlantique, 367-382.<br />

Maley, J. (1993) The climatic and vegetational history of <strong>the</strong> equatorial regions of<br />

Africa during <strong>the</strong> upper Quaternary. In Shaw, T., Sinclair, P., Andah, B. &<br />

Okpoko, A. (eds.). The Archeology of Africa: food, metals and towns, 43-52.<br />

Maley, J. (1996) Le cadre paléoenvironnemental des refuges forestiers africains :<br />

quelques données et hypothèses. In van der Maesen, L.J.G., van der Burgt, X.M. &<br />

van Medenbach de Rooy, J.M. (eds). The Biodiversity of African Plants: 519-535.<br />

Kluwer Academic Publishers. The Ne<strong>the</strong>rlands.<br />

Maley, J. (1996a) The African rain forest – main characteristics of changes in<br />

vegetation and climate from Upper Cretaceous to <strong>the</strong> Quaternary. Proceedings of<br />

<strong>the</strong> Royal Society of Edinburgh 104B: 31-73.<br />

Maley, J. (1996b) Fluctuations majeures de la forêt dense humide africaine au cours<br />

des vingt derniers millénaires. In Hladik, C.M., Hladik, A., Pagezy, H., Linares,<br />

O.F., Koppert, G.J.A. & Froment, A. (eds). L’alimentation en forêt tropicale,<br />

interactions bioculturelles et perspectives de développement: 55-76.<br />

Maley, J. (1999) L’expansion du palmier à huile (Elaeis guineensis) en afrique<br />

Centrale au cours des trois derniers millénaires: nouvelles données et<br />

interprétations. In Bahuchet, S. (ed). L’homme et la Forêt Tropicale: 237-254.<br />

Maley, J. (2001). The impact of arid phases on <strong>the</strong> African rain forest through<br />

geological history. In Weber, W., White, L., Vedder, A., & Naughton-Treves, L.<br />

(eds). In African rain forest ecology and conservation. An interdisciplinary<br />

perspective: 68-87.<br />

Maley, J. (2002) A catastrophic destruction of African forests about 2,500 years ago<br />

still exerts a major influence on present vegetation formations. IDS Bulletin 33:<br />

13-30.<br />

Maley, J. & Brenac, P. (1998) Vegetation dynamics, palaeoenvironments and<br />

climatic changes in <strong>the</strong> forests of western Cameroon during <strong>the</strong> last 28,000 years<br />

B.P. Review of Palaeobotany and Palynology 99: 157-187.<br />

131


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Maley, J. & Elenga, H. (1993) The role of clouds in <strong>the</strong> evolution of tropical African<br />

mountain paleoenvironments. Veille Climatique Satellitaire 46: 51-63.<br />

Mat<strong>the</strong>ws, A. & Mat<strong>the</strong>ws, A. (2000) Primate population and inventory of large and<br />

medium sized mammals in <strong>the</strong> Campo-Ma’an Project area in Southwest<br />

Cameroon, including management recommendations. Projet Campo-Ma’an, Kribi,<br />

Cameroun.<br />

Mbelli, H. (2002) Plant-animal relations: effect of disturbance on <strong>the</strong> regeneration of<br />

commercial tree species. <strong>Tropenbos</strong> Cameroon Document, 11. The Ne<strong>the</strong>rlands<br />

Mosango, M. (1990) Contribution à l’étude botanique et biogéochimique de<br />

l’écosystème des forêts en région équatoriale (Ile Kongolo, Zaire). Thèse de<br />

doctorat, Université Libre de Bruxelles.<br />

Muller, J.P. (1979) Carte des sols du Cameroun. Atlas de la République Unie du<br />

Cameroun.<br />

Muloko-Ntoutoume, N., Abernethy, K., White, L., Petit, R. & Maley, J. (1998)<br />

Utilisation des marqueurs moléculaires dans la reconstruction de l’histoire de la<br />

forêt tropicale humide gabonaise: le modèle Aucoumea klaineana. Actes Séminaire<br />

FORAFRI, Libreville, Gabon.<br />

Myers, N. (1988) Threatened biotas ‘hotspots’ in tropical forests. The<br />

Environmentalist 8: 187-208.<br />

Myers, N., Mittermeir, R.A., Mittermeir, C.G., da Fonseca, G.A.B & Kent, J.<br />

(2000). Biodiversity hotspots for conservation priorities. Nature 403: 853-858.<br />

Newbery, D. McC. & Gartlan, J. S. (1996) A structural analysis of rainforest at<br />

Korup and Douala-Edea, Cameroon. Proceedings of <strong>the</strong> Royal Society of Edinburg<br />

104B: 177-224.<br />

Ngandjui, G., Anye, G., Chuenu, L.M., Eno, N.M. & Okie, E.S. (2001) Abondance<br />

rélative et distribution spatiale des éléphants, buffles, pongides, cercopi<strong>the</strong>cides et<br />

de la pression de chasse dans l’UTO Campo-Ma’an. <strong>Tropenbos</strong><br />

<strong>International</strong>/Projet Campo-Ma’an.<br />

Olivry, J.C. (1986) Fleuves et rivières du Cameroun. Collection Monographies<br />

Hydrologiques d’ORSTOM 9. MESRES-ORSTOM, Paris.<br />

ONADEF (1991) Rapport d’inventaire d’aménagement de la Réserve de Ma’an.<br />

Ministère de l’Agriculture, Office National de Développement des Forêts.<br />

Cameroun.<br />

Oslisly, R. (2001) Archéologie et paléoenvironnement dans l’UTO de Campo-<br />

Ma’an. Etat de connaissance. Yaoundé, Cameroun.<br />

Oslisly, R., Ateba, L., Betougeda, R., Kinoyck, P., Mbida, C., Nlend, P. & Vincens,<br />

A. (2001) Premiers resultants de la recherché archéologiques sur le littoral du<br />

Cameroun entre Kribi et Campo. Article (sous presse) In Actes du XIV Congrès de<br />

l’UISPP à Liège du 2-8 Septembre 2001.<br />

Ossah Mvondo, J.P. (1994) Histoire des peuplements et de la transformation des<br />

paysages: état des recherches archéologiques dans la province du Sud (Cameroun).<br />

Nyame Akuma 41: 11-15.<br />

Ossah Mvondo, J.P. (1998) Histoire des peuplements et de la transformation des<br />

paysages. In Delneuf, M., Essomba, J.M. & Froment, A. (eds), Paléoanthropologie<br />

en Afrique Centrale. Un bilan de l’archéologie du Cameroun: 225-<br />

232.<br />

Parren, M.P.E (2003) Lianas and logging in West Africa. <strong>Tropenbos</strong>-Cameroon<br />

Series 6. PhD Thesis, Wageningen, <strong>the</strong> Ne<strong>the</strong>rlands.<br />

132


References<br />

Pebesma, E.J. & Wesseling, C.G. (1998) GSTAT: a program for geostatistical<br />

modelling, prediction and simulation. Computers & Geosciences 24: 17-31.<br />

R Development Core Team (2002) The R Environment for Statistical Computing<br />

and Graphics: Reference Index. The R Foundation for Statistical Computing,<br />

Vienna. Version 1.6.2.<br />

Reitsma, J.M. (1988) Forest vegetation in Gabon. <strong>Tropenbos</strong> Technical Series 1.<br />

République du Cameroun (1994) Loi No 94/01 du 20 janvier 1994 portant régime<br />

des forêts, de la faune et de la pêche. Yaoundé, Cameroun.<br />

République du Cameroun (1995a) Décret No 95/531/PM du 23 août 1995 fixant<br />

modalités d’application du régime des forêts. Yaoundé, Cameroun.<br />

République du Cameroun (1995b) Décret No 95/678/PM du 18 décembre 1995<br />

instituant un cadre indicatif d’utilisation des terres en zone forestière méridionale.<br />

Yaoundé, Cameroun.<br />

République du Cameroun (1996) Loi No 96/12 du 5 août 1996 portant loi cadre<br />

relative à la gestion de l’environnement. Yaoundé, Cameroun.<br />

Reynaud, I. & Maley, J. (1994) Végétation et climat dans les forêts du Sud-Ouest<br />

Cameroun depuis 4770 ans BP: analyse pollinique des sédiments du Lac Ossa. C.<br />

R. Acad. Sci. Paris, Science de la vie 317: 575-580.<br />

Reynaud–Ferrera, I.J., Maley, J. & Wirrmann, D. (1996) Histoire récente d’une<br />

formation forestière du Sud-Ouest-Cameroun à partir de l’analyse pollinique. C. R.<br />

Acad. Sci. Paris, Science de la vie 322: 749-755.<br />

Rietkerk M., Ketner, P. & de Wilde, J.J.F.E. (1996) Caesalpinioideae and <strong>the</strong> study<br />

of forest refuges in Central Africa. In van der Maesen, L.J.G., van der Burgt, X.M.<br />

& van Medenbach de Rooy, J.M. (eds). The Biodiversity of African Plants: 619-<br />

623. Kluwer Academic Publishers. The Ne<strong>the</strong>rlands.<br />

Robbrecht, E. (1988) Tropical woody Rubiaceae. Characteristic features and<br />

progressions. Contribution to a new subfamilial classification. Opera Bot. Belg. 1:<br />

271 pp.<br />

Robbrecht, E. (1996) Geography of African Rubiaceae with reference to glacial rain<br />

forest refuges. In van der Maesen, L.J.G., van der Burgt, X.M. & van Medenbach<br />

de Rooy, J.M. (eds). The Biodiversity of African Plants: 564-581. Kluwer<br />

Academic Publishers. The Ne<strong>the</strong>rlands.<br />

Rompaey, R.S.A.R. van (1993) Forest gradients in West Africa. A spatial gradient<br />

analysis. PhD Thesis, Wageningen Agricultural University, Wageningen, The<br />

Ne<strong>the</strong>rlands.<br />

Satabié, B. & Leroy, J-F. (1980-1985) Flore du Cameroun. Vol. 21-28. Muséum<br />

National d’Histoire Naturelle, Paris.<br />

Satabié, B. & Morat, Ph. (1986-2001) Flore du Cameroun. Vol. 29-37. Muséum<br />

National d’Histoire Naturelle, Paris.<br />

Sonké, B. (1998) Etudes floristiques et structurales des forêts de la Reserve de<br />

Faune de Dja, Cameroun. Thèse de doctorat, Université Libre de Bruxelles.<br />

Sonké, B. & Lejoly, J. (1998) Biodiversity study in <strong>the</strong> Dja Fauna Reserve<br />

(Cameroon): using <strong>the</strong> transect method. In Huxley, C.R., Lock, J.M. & Cutler,<br />

D.F. (eds). Chrology, Taxonomy and Ecology of <strong>the</strong> Floras of Africa and<br />

Madagascar: 171-179. Royal Botanical Gardens, Kew.<br />

Sosef, M. S. M. (1994) Refuge Begonias. Taxonomy, phylogeny and historical<br />

biogeography of Begonia sect. Loasibegonia and sect. Scutobegonia in relation to<br />

glacial rain forest refuges in Africa. PhD Thesis, Wageningen Agricultural<br />

University.<br />

133


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Sosef, M. S. M. (1996) Begonias and African rain forest refuges : general aspects<br />

and recent progress. In van der Maesen, L.J.G., van der Burgt, X.M. & van<br />

Medenbach de Rooy, J.M. (eds). The Biodiversity of African Plants: 602-611.<br />

Kluwer Academic Publishers. The Ne<strong>the</strong>rlands.<br />

Steege, H. ter (2000) Plant diversity in Guyana, with recommendations for a<br />

National Protected area strategy. <strong>Tropenbos</strong> Series 18.<br />

Stork, N.E., Boyle, T.J.B., Dale, V., Eeley, H., Finegan, B., Lawes, M., Manokaran,<br />

N., Prabhu, R. & Soberon, J. (1997) Criteria and indicators for assessing <strong>the</strong><br />

sustainability of forest management: conservation of biodiversity. CIFOR Working<br />

Paper No 17.<br />

Sunderland, T. C. H., Ros ,C. J., Comiskey J. A. & Njiamnshi, A. (1997) The<br />

vegetation of <strong>the</strong> Campo Faunal Reserve and Ejagham Reserve, Cameroon.<br />

<strong>International</strong> Cooperative Biodiversity Group (ICBG). Associate Program I.<br />

Swaine, M.D. (1996) Rainfall and soil fertility as factors limiting forest species<br />

distributions in Ghana. Journal of Ecology 84: 419-428.<br />

Tchouto, M.G.P. (1995) The vegetation of <strong>the</strong> proposed Etinde rain forest Reserve,<br />

Mount Cameroon and its conservation. MSc. Thesis, University of Edinburgh.<br />

Tchouto M.G.P., Pouakouyou, D., & Acworth, J. (1998) Rapid Botanical Survey<br />

methodology. Mount Cameroon Project, Limbe Botanic Garden and Herbarium.<br />

Tchouto, M.G.P. (2002) Flora, vegetation and conservation of <strong>the</strong> Campo-Ma’an<br />

area, Cameroon. Internal report. <strong>Tropenbos</strong> <strong>International</strong>/Projet Campo-Ma’an<br />

Thomas, D. W. & Thomas, J. C. (1993) Botanical and ecological survey of <strong>the</strong><br />

Campo-Ma’an area. A report to <strong>the</strong> World Bank. Washington, USA.<br />

Thomas, D.W., Kenfack, D, Chuyong, G.B., Sainge, M.N., Losos, E.C., Condit, R.<br />

& Songwe, NC. (2003) Tree species of Southwestern Cameroon. Tree distribution<br />

maps, diameter table and species documentation of <strong>the</strong> 50 ha Korup forest<br />

dynamaics plot. Center for Tropical Forest Science of <strong>the</strong> Smithsonian Institute<br />

and Bioresource Development and Conservation Programme Cameroon,<br />

Washington, D.C.<br />

Valkenburg J.L.C.H. van, Ketner, P. & Wilks, C.M. (1998) A floristic inventory and<br />

preliminary vegetation classification of <strong>the</strong> mixed semi-evergreen rain forest in <strong>the</strong><br />

Minkébé region, North East Gabon. Adansonia 20: 139-162.<br />

Vane-Wright, R.I., Humpries, C.J. & Williams, P.H. (1991) What to predict ? –<br />

Systematics and <strong>the</strong> agony of choice. Biological Conservation 55 : 235-254.<br />

Vivien, J. (1991) Faune du Cameroun. Guide des mammifères et poissons. GICAM,<br />

Cameroun.<br />

WCMC (1998) The world list of threatened trees. World Conservation Press.<br />

Webster, R. & Oliver, M.A. (2001). Geostatistics for environmental scientists.<br />

Wiley & Sons, Chichester.<br />

White, F. (1979) The Guineo-Congolian region and its relationships to o<strong>the</strong>r<br />

phytochoria. Bull. Jard. Nat. Belg./Bull. Nat. Plantentuin Belg. 49: 11-55.<br />

White, F. (1983) The vegetation of Africa. UNESCO, Paris<br />

White, F. (1993) Refuge <strong>the</strong>ory, ice-age aridity and <strong>the</strong> <strong>the</strong>ory of tropical biotas: an<br />

essay in plant geography. Fragm. Flor. Geobot. Suppl. 2: 385-409.<br />

White, L.J.T. (1996) Determinants of vegetation composition in <strong>the</strong> Lopé Reserve.<br />

Report to AGRECO/CTFT. Gabon.<br />

White, L.J.T. & Abernethy, K. (1997) A guide for <strong>the</strong> vegetation of <strong>the</strong> Lopé<br />

Reserve, Gabon.<br />

134


References<br />

White, L.J.T. & Oates, J.F. (1999) New data on <strong>the</strong> history of <strong>the</strong> plateau forest of<br />

Okomu, Sou<strong>the</strong>rn Nigeria: an insight into how human disturbance has shaped <strong>the</strong><br />

African rain forest. Global Ecology and Biogeography 8: 355-361.<br />

White, L.J.T., Oslisly R., Abernethy K. & Maley J. (2000) L’Okoumé (Aucoumea<br />

klaineana): expansion et decline d’un arbre pionnier en Afrique Centrale<br />

Atlantique au cours de l’Holocène. Servant, M. & Servant-Vildary, S. (eds).<br />

Dynamique à long terme des écosystèmes forestiers intertropicaux: 399-411.<br />

Whittaker, R. J. (1975) Communities and Ecosystems. 2 nd ed. Macmillan, London.<br />

Wieringa, J.J. (1999) Monopetalanthus exit. A systematic study of Aphanocalyx,<br />

Bikinia, Icuria, Michelsonia and Tetraberlinia (Leguminosae-Caesalpinioideae).<br />

PhD <strong>the</strong>sis, Wageningen Agricultural University, Wageningen. The Ne<strong>the</strong>rlands.<br />

Williams, P.H. (1993) Measuring more of biodiversity for chosing conservation<br />

areas, using taxonomic relatedness. In Moon, T.-Y. (ed.), <strong>International</strong> Symposium<br />

on Biodiversity and Conservation : 199-227. Korean Entomological Institute,<br />

Seoul.<br />

Wolter, F. (1993) Etude des possibilités techniques, économiques et financières d’un<br />

aménagement des forêts tropicales denses humides de la cuvette centrale du Zaïre,<br />

basée sur ses capacités naturelles. Thèse de doctorat. Université de Louvain.<br />

Photo: Mangrove vegetation along <strong>the</strong> Ntem River (Tchouto, M.G.P.)<br />

135


ANNEXES


Annexes<br />

Annex 1. Summary table showing <strong>the</strong> number of species/plot, number of stems/ha, mean basal area/ha, Shannon diversity index (H’), Genetic Heat Index (GHI)<br />

scores, Pioneer Index (PI) scores in 147 plots of 0.1 ha each with information on <strong>the</strong>ir location, altitude, slope, rainfall, vegetation type and geographic coordinates.<br />

No 0.1 ha plot 5 x 5m Qualitative Locality Altitude (m) Slope Rainfall Vegetation No of H' GHI PI Latitude (N) Longitude (E)<br />

code sub-plot Sample code<br />

(mm/year) code* species<br />

d°.minsec d°.minsec<br />

1 T21 T21 Bibabimvoto 40 Slope 2800 Caesalpcasa 139 4.09 155.9 33.3 2.13508 9.56015<br />

2 T11 T11 Mabiogo 10 Flat 2800 Cosaca 106 3.81 165.8 42.6 2.16327 9.52233<br />

3 MELE1 MELE1 MELEX1 Medjivini 400 Slope 1670 Mixevergreen 98 3.85 138.2 41.3 2.17562 10.20512<br />

4 MELE2 MELE2 MELEX2 Medjivini 400 Flat 1670 Mixevergreen 109 3.96 127.1 43.6 2.18341 10.21016<br />

5 MELE3 MELE3 MELEX3 Medjivini 360 Flat 1670 Mixevergreen 99 3.71 153.7 45.7 2.18084 10.20487<br />

6 MELE4 MELE4 MELEX4 Aloum 360 Slope 1670 Mixevergreen 94 3.84 122.5 42 2.21197 10.24154<br />

7 MELE5 MELE5 MELEX5 Engon 400 Slope 1670 Mixevergreen 90 3.60 113.6 43 2.21361 10.23575<br />

8 EFOU1 EFOU1 EFOUX1 Efoulan 600 Slope 2000 Caesalp 108 4.32 257.1 36.5 2.44562 10.32279<br />

9 EFOU2 EFOU2 EFOUX2 Efoulan 1000 Hill top 2000 Submontane 79 2.98 294.4 24.7 2.44435 10.31484<br />

10 EFOU3 EFOU3 EFOUX3 Efoulan 800 Slope 2000 Submontane 118 4.16 205.6 27.1 2.44576 10.32035<br />

11 EFOU4 EFOU4 EFOUX4 Efoulan 400 Slope 2000 Caesalp 109 4.11 151.7 25.5 2.46056 10.32093<br />

12 T31 T31 T3X1 Bibabimvoto 60 Flat 2800 Caesalpcasa 100 3.94 179.2 26.3 2.12485 10.00516<br />

13 T32 T32 T3X2 Bibabimvoto 40 Flat 2800 Caesalpcasa 95 4.06 180 28.6 2.13473 10.00539<br />

14 T33 T33 T3X3 Bibabimvoto 40 Flat 2800 Caesalpcasa 104 4.03 192 26 2.14323 10.00586<br />

15 T34 T34 T3X4 Bibabimvoto 40 Flat 2800 Caesalpcasa 105 4.11 233.3 26.3 2.15009 10.01259<br />

16 T35 T35 T3X5 Bibabimvoto 40 Flat 2800 Caesalpcasa 95 3.89 209.2 30.1 2.14457 10.00582<br />

17 EBI1 EBI1, EBI2 EBIX1 Ebianemeyong 660 Slope 1750 Okoume 52 2.91 97.3 53.3 2.26077 10.20562<br />

18 EBI2 EBI3 EBIX2 Ebianemeyong 740 Slope 1750 Submontane 114 4.15 266.7 25 2.26090 10.20533<br />

19 EBI3 EBI4 EBIX3 Ebianemeyong 500 Slope 1750 Caesalp 86 3.85 192.2 27.5 2.26012 10.21112<br />

20 EBI4 EBI5 EBIX4 Ebianemeyong 460 Slope 1750 Caesalp 88 3.60 175.4 43.2 2.25412 10.21251<br />

21 T51 T51 T5X1 Mvini 200 Flat 2800 Caesalpcasa 95 4.03 188.6 19.8 2.15112 10.11125<br />

22 T52 T52 T5X2 Mvini 180 Flat 2800 Caesalp 95 4.11 158.6 23.9 2.14243 10.11081<br />

23 T53 T53 T5X3 Mvini 180 Flat 2800 Caesalp 75 3.65 116.3 22.4 2.14448 10.10545<br />

24 T54 T5X4 Mvini 200 Flat 2800 Caesalp 80 3.91 96.6 34.7 2.14555 10.11045<br />

25 T55 T55 T5X5 Mvini 200 Slope 2800 Caesalp 93 3.51 117.4 24.1 2.15211 10.11117<br />

26 T56 Mvini 260 Flat 2800 Caesalp 91 3.84 175.4 24.4 2.15573 10.11313<br />

27 T22 T22 T2X2 Bibabimvoto, 1000m along T2 40 Slope 2800 Caesalpcasa 115 4.10 171.4 25 2.13367 9.56282<br />

28 T23 T23 T2X3 Bibabimvoto, 1500m along T2 40 Flat 2800 Caesalpcasa 120 4.23 153.5 19.5 2.13328 9.56400<br />

29 T24 T24 T2X4 Bibabimvoto, 2000m along T2 40 Slope 2800 Caesalpcasa 94 3.60 124.3 27.4 2.12548 9.57111<br />

30 T25 T25 T2X5 Bibabimvoto, 4000m along T2 60 Flat 2800 Caesalpcasa 93 3.78 141.4 23.6 2.15513 9.57337<br />

31 T26 T26 T2X6 Bibabimvoto, 2500m along T2 40 Flat 2800 Caesalpcasa 97 3.78 145.8 30.4 2.13052 9.57050<br />

32 T41 T41 T4X1 Bibabimvoto, 2500m along T4 40 Flat 2800 Caesalpcasa 106 3.76 186.2 34.3 2.14281 10.05454<br />

33 T42 T42 T4X2 Bibabimvoto, 1100m along T4 40 Flat 2800 Caesalpcasa 134 4.28 211.2 22.4 2.14512 10.15481<br />

34 T43 T43 T4X3 Bibabimvoto, 3000m along base line from T4 80 Slope 2800 Caesalpcasa 102 3.47 220.6 23.9 2.15096 10.04413<br />

139


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No 0.1 ha plot 5 x 5m Qualitative Locality Altitude (m) Slope Rainfall Vegetation No of H' GHI PI Latitude (N) Longitude (E)<br />

code sub-plot Sample code<br />

(mm/year) code* species<br />

d°.minsec d°.minsec<br />

35 T44 T45 T4X5 Bibabimvoto, along <strong>the</strong> Bongola river 10 Flat 2800 Swamp 26 2.12 183.3 55.6 2.15374 10.05588<br />

36 T4FP1 T44 T4X4 Bibabimvoto, 500m along base line from T4 60 Slope 2800 Caesalpcasa 121 4.17 207.7 24.8 2.15129 10.05450<br />

37 T81 T82 T8X2 Bibabimvoto, 2500m along T8 100 Slope 2800 Caesalpcasa 118 4.03 172.8 24.5 2.16156 10.03346<br />

38 T82 Bibabimvoto, 1500m along T8 80 Slope 2800 Caesalpcasa 121 4.03 202.2 20.9 2.15472 10.03194<br />

39 T83 T83 T8X3 Bibabimvoto, 1500m along base line from T8 60 Flat 2800 Caesalpcasa 107 4.07 209.3 17.8 2.15022 10.02144<br />

40 T8FP1 T81 T8X1 Bibabimvoto, 100m along T8 80 Slope 2800 Caesalpcasa 103 3.79 164.6 26.5 2.15043 10.02562<br />

41 T61 T61 T6X1 Mvini, 100m along T6 240 Slope 2800 Caesalp 95 3.89 186.4 38.6 2.16133 10.10585<br />

42 T62 T6X3 Mvini, 2100m along T6 120 Flat 2800 Caesalp 103 3.66 125.7 41.7 2.16246 10.11598<br />

43 T63 T64 T6X4 Mvini 220 Slope 2800 Caesalp 92 3.72 185.9 29.5 2.16486 10.12034<br />

44 T64 T65 T6X5 Mvini 140 Flat 2800 Caesalp 89 3.70 176.7 31 2.16411 10.11418<br />

45 T6FP1 T62 T6X2 Mvini, 1000m along T6 200 Slope 2800 Caesalp 114 3.96 162.7 30 2.16174 10.11266<br />

46 T6FP2 T63 Mvini, 1600m along T6 160 Slope 2800 Caesalp 96 3.91 167.5 29.7 2.16174 10.11445<br />

47 T12 T12 T1X2 Mabiogo, Dipikar Island, 500m along T1 20 Flat 2800 Cosaca 102 3.56 121.6 38.3 2.15124 9.52531<br />

48 T13 T13 T1X3 Mabiogo, Dipikar Island, 800m along T1 10 Flat 2800 Swamp 84 3.71 120 49.4 2.15208 9.52504<br />

49 T14 T14 T1X4 Mabiogo, Dipikar Island, 1300m along T1 40 Flat 2800 Cosaca 107 3.93 91.5 38.2 2.15418 9.52381<br />

50 T15 T15 T1X5 Mabiogo, Dipikar Island, 2600m along T1 10 Flat 2800 Cosaca 89 3.77 78.5 54.9 2.16212 9.52167<br />

51 T16 T1X6 Mabiogo, Dipikar Island, 3900m along T1 20 Flat 2800 Cosaca 95 3.59 113.6 38 2.17042 9.51547<br />

52 T1FP1 T1FP1 T1FP1X Mabiogo, Dipikar Island, 3500m along T1 10 Flat 2800 Cosaca 108 3.76 97.6 36.6 2.16499 9.52039<br />

53 EGON1 EGON1 EGONX1 Efoulan, Egongo Hills 1000 Slope 2000 Submontane 135 4.12 166.3 25 2.44458 10.32528<br />

54 EGON2 EGON2 EGONX2 Efoulan, Egongo Hills 900 Slope 2000 Submontane 122 3.94 211.8 23.4 2.4406 10.3134<br />

55 EGON3 EGON3 EGONX3 Efoulan, Egongo Hills 820 Flat 2000 Submontane 139 4.50 176.1 31.3 2.4404 10.31306<br />

56 EGON4 EGON4 EGONX4 Efoulan, Egongo Hills 900 Slope 2000 Submontane 146 4.18 161.5 24.6 2.4411 10.32111<br />

57 EGON5 EGON5 EGONX5 Efoulan, Egongo Hills 760 Slope 2000 Submontane 133 4.43 159.8 27 2.44046 10.32167<br />

58 EGON6 EGON6 EGONX6 Efoulan, Egongo Hills 740 Flat 2000 Submontane 148 4.30 180 30.5 2.43483 10.32328<br />

59 EGON7 EGON7 EGONX7 Efoulan, Egongo Hills 940 Slope 2000 Submontane 135 4.11 153.5 16.7 2.44172 10.32483<br />

60 EGON8 EGON8 EGONX8 Efoulan, Egongo Hills 900 Flat 2000 Submontane 128 4.10 226.7 23.7 2.43254 10.32099<br />

61 EGON9 EGON9 EGONX9 Efoulan, Egongo Hills 780 Slope 2000 Submontane 134 4.20 218.8 21.6 2.43059 10.32402<br />

62 EGON10 EGON10 EGONX10 Efoulan, Egongo Hills 700 Slope 2000 Submontane 147 4.51 205.3 21.1 2.44193 10.3224<br />

63 NSE1 NSE1 NSEX1 Nsengou 440 Flat 1670 Okoume 96 3.53 104.3 60.9 2.10515 10.34489<br />

64 NSE2 NSE2 NSEX2 Nsengou 420 Flat 1670 Okoume 105 4.00 114.8 62.6 2.12368 10.33223<br />

65 NSE3 NSE3 NSEX3 Nsengou 460 Flat 1670 Okoume 107 3.59 125.9 46.5 2.12405 10.35297<br />

66 NSE4 NSE4 NSEX4 Nsengou 420 Slope 1670 Mixsemideci 98 3.09 101.4 45.7 2.12152 10.33261<br />

67 NSE5 NSE5 NSEX5 Nsengou 440 Flat 1670 Mixsemideci 86 3.12 93.4 50 2.1157 10.33421<br />

68 NSE6 NSE6 NSEX6 Nsengou 400 Slope 1670 Mixsemideci 131 3.77 133.3 46.3 2.10559 10.35069<br />

69 NSE7 NSE7 NSEX7 Nsengou 400 Slope 1670 Mixsemideci 91 3.34 164.5 55.8 2.10476 10.37229<br />

70 NSE8 NSE8 NSEX8 Nsengou 480 Slope 1670 Mixsemideci 103 3.81 93.8 54.5 2.13193 10.35386<br />

71 NSE9 Nsengou 500 Slope 1670 Mixsemideci 106 3.64 124.7 54.7 2.14378 10.35071<br />

72 NSE10 NSE9 NSEX9 Aloum 480 Slope 1670 Mixsemideci 107 3.62 76 46 2.16144 10.33312<br />

140


Annexes<br />

No 0.1 ha plot 5 x 5m Qualitative Locality Altitude (m) Slope Rainfall Vegetation No of H' GHI PI Latitude (N) Longitude (E)<br />

code sub-plot Sample code<br />

(mm/year) code* species<br />

d°.minsec d°.minsec<br />

73 NSE11 NSEX10 Boucles du Ntem 460 Flat 1670 Swamp 107 3.71 117.4 45.3 2.18183 10.35079<br />

74 ONO1 ONO1 ONOX1 Onoyong 500 Slope 1750 Mixevergreen 98 3.62 117.4 45.7 2.31392 10.41489<br />

75 ONO2 ONO2 ONOX2 Onoyong 480 Flat 1750 Mixevergreen 96 3.79 189 31.8 2.32085 10.41393<br />

76 ONO3 ONO3 ONOX3 Onoyong 480 Flat 1750 Mixevergreen 95 3.59 193.2 39.5 2.32393 10.40466<br />

77 ONO4 ONO4 ONOX4 Onoyong 480 Slope 1750 Mixevergreen 92 3.58 203.2 33.3 2.35589 10.40309<br />

78 ONO5 ONO5 ONOX5 Onoyong 500 Flat 1750 Mixevergreen 106 3.57 91.1 40.6 2.37138 10.38069<br />

79 ONO6 ONO6 ONOX6 Onoyong 480 Flat 1750 Mixevergreen 102 3.87 156.3 37.9 2.36203 10.38288<br />

80 ONO7 ONO7 ONOX7 -Onoyong 460 Flat 1750 Mixevergreen 82 3.20 155.2 37.3 2.35416 10.38432<br />

81 ONO8 ONO8 ONOX8 Onoyong 480 Flat 1750 Mixevergreen 118 4.16 112.5 35.8 2.35086 10.39347<br />

82 ONO9 ONO9 ONOX9 Bijap 460 Slope 1750 Mixevergreen 126 3.85 113.8 38.8 2.30537 10.40138<br />

83 ONO10 ONO10 ONOX10 Bijap 500 Slope 1750 Mixevergreen 85 3.36 96.6 47.4 2.30227 10.39310<br />

84 ONO11 ONO11 ONOX11 Bidem 480 Flat 1750 Mixevergreen 135 4.02 134.4 38.6 2.35184 10.41313<br />

85 MM1 MM1 MMX1 Massif des Mamelles, 1400m along IRTIS1 40 Slope 2800 Caesalpcasa 118 3.51 203.6 28.4 2.26386 9.54513<br />

86 MM2 MM2 MMX2 Massif des Mamelles, 800m along IR2T2 40 Slope 2800 Caesalpcasa 104 3.89 215.4 23.7 2.31119 9.54484<br />

87 MM3 MM3 MMX3 Bibabimvoto, 500m along IR4T4 20 Flat 2800 Caesalpcasa 121 4.16 175.3 26.4 2.18279 9.5739<br />

88 MM4 MM4 MMX4 Massif des Mamelles 280 Slope 2800 Caesalpsa 117 4.16 148.2 20.6 2.33571 9.56582<br />

89 MM5 MM5 MMX5 Massif des Mamelles 220 Slope 2800 Caesalpsa 113 4.02 185.2 22.8 2.35171 9.5729<br />

90 MM6 MM6 MMX6 Rocher du Loup 0 Slope 2800 Cos 45 3.09 164.5 40.5 2.37411 9.50287<br />

91 MM7 MMX10 Rocher du Loup 10 Slope 2800 Cos 55 2.94 150 47.8 2.37392 9.50273<br />

92 MM8 MM7 MMX7 Mvini, 500m along IRS9T9 100 Slope 2800 Caesalpcasa 114 4.06 195.3 26 2.24541 10.06173<br />

93 MM9 MM8 MMX8 Nkoelon 80 Flat 2800 Caesalpcasa 123 4.02 163.3 24.8 2.26411 10.01308<br />

94 BIFA1 BIFA1 BIFAX1 Bifa 80 Slope 2950 Caesalpsa 129 4.17 173.9 33.9 2.41375 10.16233<br />

95 BIFA2 BIFA2 BIFAX2 Bifa 120 Flat 2950 Caesalpsa 119 3.48 210.7 26.4 2.3927 10.17001<br />

96 BIFAFP3 BIFA3 BIFAX3 Bifa 60 Flat 2950 Caesalpsa 86 3.35 142.6 32.5 2.40281 10.16548<br />

97 BIFA4 BIFA4 BIFAX4 Bifa 100 Slope 2950 Caesalpsa 126 4.08 172.4 41 2.41328 10.15133<br />

98 ELE1 ELE1 ELEX1 Bidou, Mont d'Elephant 180 Slope 2950 Caesalpsa 138 4.26 175.5 31.8 2.47522 10.01120<br />

99 ELEP2 ELE2 ELEX2 Bidou, Mont d'Elephant 100 Slope 2950 Caesalpsa 97 3.59 165.2 24.7 2.48064 10.01250<br />

100 ELE3 ELE3 ELEX3 Bidou, Mont d'Elephant 60 Flat 2950 Caesalpsa 137 4.25 160.8 29 2.47366 10.00570<br />

101 AKOK1 AKOK1 AKOKX1 Ebodje, around Akok 20 Flat 2800 Cosaga 102 3.61 152.1 24.2 2.39443 9.54372<br />

102 AKOK2 AKOK2 AKOKX2 Ebodje, around Akok 40 Flat 2800 Cosaga 140 4.41 116.7 34.9 2.34243 9.54135<br />

103 AKOK3 AKOK3 AKOKX3 Ebodje, around Akok 5 Flat 2800 Cosaga 94 3.60 156.5 29.3 2.43554 9.53301<br />

104 AKOK4 AKOK4 AKOKX4 Ebodje, around Boussibliga 10 Slope 2800 Cosaga 96 3.56 158.6 22.6 2.43564 9.53021<br />

105 AKOK5 AKOK5 AKOKX5 Ebodje, around Lolabe 2 5 Slope 2800 Cosaga 109 3.64 122.4 36.3 2.40464 9.51395<br />

106 KOMFP1 KOM1 KOMX1 Nkoelone, around Kom river 100 Flat 2800 Caesalpsa 100 3.82 189 38 2.27586 10.08475<br />

107 KOM2 KOM2 KOMX2 Nkoelone, around Kom river 80 Slope 2800 Caesalpsa 96 3.61 154.2 29.2 2.29089 10.09062<br />

108 EBOU1 EBOU1 EBOUX1 Eboundja 10 Flat 2800 Cosaga 81 3.57 171.4 35.3 2.48199 9.54507<br />

109 EBOU2 EBOU2 EBOUX2 Eboundja 20 Slope 2800 Cosaga 85 3.73 139.3 28.8 2.45116 9.53065<br />

110 EBOU3 EBOU3 EBOUX3 Ypeyendje 0 Flat 2800 Cos 41 2.96 44.4 87.9 2.36083 9.50106<br />

141


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No 0.1 ha plot 5 x 5m Qualitative Locality Altitude (m) Slope Rainfall Vegetation No of H' GHI PI Latitude (N) Longitude (E)<br />

code sub-plot Sample code<br />

(mm/year) code* species<br />

d°.minsec d°.minsec<br />

111 CAMPO1 CAMPO1 CAMPOX1 Bouandjo 45 Slope 2800 Cosaga 103 3.96 213.7 24.7 2.30031 9.50582<br />

112 EBIA1 EBIA1 EBIAX1 Ebianemeyong, path to Memve'ele water falls 380 Flat 1750 Mixevergreen 116 3.74 136.4 46.7 2.24246 10.21487<br />

113 EBIA2 EBIA2 EBIAX2 Ebianemeyong, near Memve'ele water falls 360 Slope 1750 Mixevergreen 91 3.54 132.8 40.2 2.24012 10.21483<br />

114 EBIA3 Oveng, path to Chantier A 350 Slope 2800 Caesalp 93 3.81 125.4 34.1 2.21395 10.16383<br />

115 CAMPO2 CAMPO2 CAMPOX2 Itonde Nigerian, Campo area 40 Slope 2800 Cosaca 92 3.74 131 33.3 2.27175 9.49940<br />

116 CAMPO4 CAMPO4 CAMPOX4 Mintom Centre, Campo area 65 Flat 2800 Cosaca 78 3.31 113.1 38.9 2.23097 9.51566<br />

117 CAMPO3 CAMPO3 CAMPOX3 Melaba, Campo area 40 Slope 2800 Cosaga 89 3.68 124.3 34.5 2.29479 9.50480<br />

118 CAMPO5 CAMPO5 CAMPOX5 Nazaret, Campo area 60 Flat 2800 Cosaca 89 3.34 95.5 50.6 2.18571 9.53457<br />

119 NGOAM2 NGOAM2 NGOAMX2 Ngoambang in <strong>the</strong> Ma'an area 330 Slope 1670 Mixevergreen 90 2.97 102.7 41.4 2.16480 10.20542<br />

120 NGOAM1 NGOAM1 NGOAMX1 Ngoambang in <strong>the</strong> Ma'an area 430 Slope 1670 Mixevergreen 63 2.89 103.8 61.7 2.15095 10.20550<br />

121 NGOMA7 NGOMA7 NGOMAX7 Ebianemeyong 500 Flat 1750 Caesalp 110 3.86 148.4 36.4 2.26467 10.19531<br />

122 NGOMA1 NGOMA1 NGOMAX1 Ebianemeyong 480 Slope 1750 Caesalp 115 3.97 116.7 33.6 2.27370 10.17469<br />

123 NGOMA2 NGOMA2 NGOMAX2 Ebianemeyong 600 Flat 1750 Caesalp 88 3.89 127.9 27.2 2.28280 10.18335<br />

124 NGOMA3 NGOMA3 NGOMAX3 Ebianemeyong 640 Summit 1750 Caesalp 81 3.59 163.6 16.9 2.28125 10.18359<br />

125 NGOMA4 NGOMA4 NGOMAX4 Ebianemeyong 380 Slope 1750 Caesalp 112 3.51 140.4 39 2.27240 10.16098<br />

126 NGOMA5 NGOMA5 NGOMAX5 Ebianemeyong, around Nkolmekok 900 Slope 1750 Submontane 106 3.95 238.6 23.2 2.24460 10.18428<br />

127 NGOMA6 NGOMA6 NGOMAX6 Ebianemeyong 480 Slope 1750 Caesalp 102 3.76 137.3 32.3 2.28449 10.17422<br />

128 BONGO1 BONGO1 BONGOX1 Bibabimvoto, along <strong>the</strong> Bongola river 20 Flat 2800 Swamp 17 1.65 187.5 7.7 2.16581 9.57024<br />

129 MAMA1 MAMA1 MAMAX1 Massif des Mamelles 60 Slope 2800 Caesalpsa 126 4.21 190.3 29.1 2.36062 9.56297<br />

130 MAMA2 MAMA2 MAMAX2 Massif des Mamelles 230 Flat 2800 Caesalpsa 107 3.76 198.8 27 2.35327 9.57500<br />

131 MABI1 MABI1 MABIX1 Mabiogo, Dipikar Island 0 Flat 2800 Mangrove 4 1.04 3.4 200 2.17356 9.51022<br />

132 MABI2 MABI2 MABIX2 Mabiogo, Dipikar Island 0 Flat 2800 Mangrove 3 0.87 2.9 150 2.17498 9.50193<br />

133 LOLA1 LOLA1 LOLAX1 Lolabe 3 0 Flat 2800 Cos 27 1.51 81.8 91.3 2.40214 9.50471<br />

134 LOBE1 LOBE1 LOBEX1 Lobe toward V12, Hevecam area 60 Flat 2800 Caesalpsa 125 4.10 189.1 26.5 2.32189 10.0328<br />

135 MIRA1 MIRA1 MIRAX1 Chantier A near <strong>the</strong> Mirador 300 Flat 2800 Caesalp 128 4.18 114.4 33.3 2.22055 10.15237<br />

136 CORI1 CORI1 CORIX1 Mvini, Park corridor 140 Flat 2800 Swamp 96 3.94 177.5 41.4 2.20059 10.12176<br />

137 OKOUM1 OKOUM1 OKOUMX1 Ebianemeyong, slopes on hills around Kom river 620 Slope 1750 Okoume 18 1.44 166.7 76.9 2.28066 10.19065<br />

138 BIBOU1 BIBOU1 BIBOUX1 Biboulman, Akom II area 600 Flat 2000 Mixevergreen 91 3.54 104.2 32.6 2.42583 10.38511<br />

139 BIN1 BIN1 BINX1 Bindem 540 Slope 2000 Mixsemideci 109 3.33 123.8 39.2 2.41072 10.47111<br />

140 AFA1 AFA1 AFAx1 Afan 560 Flat 1670 Mixsemideci 132 4.17 153 54.4 2.36313 10.50285<br />

141 MEKO1 MEKO1 MEKOX1 Mekok 580 Slope 1670 Mixsemideci 133 3.56 188.2 35.4 2.30557 10.52352<br />

142 TYA1 TYA1 TYAX1 Tya'assono, Ma'an area 500 Flat 1670 Mixsemideci 131 3.74 136.1 38.7 2.25529 10.45101<br />

143 MA1 MA1 MA1 Ma'an 500 Slope 1670 Mixsemideci 147 4.33 137.5 33.8 2.26342 10.37155<br />

144 MA2 MA2 MAX2 Ma'an 500 Flat 1670 Mixsemideci 112 3.52 110 41.9 2.18283 10.41296<br />

145 NSEB1 NSEB1 NSEBX1 Nsebito, Ma'an area 460 Slope 1670 Mixsemideci 110 3.50 205.3 23.5 2.28033 10.29569<br />

146 NKON1 NKON1 NKONX1 Nkongmeyous, Ma'an area 500 Flat 1670 Mixsemideci 110 4.04 130.4 45.3 2.22508 10.33385<br />

147 NYA1 NYA1 NYAX1 Nyabissan near Ma'an 420 Slope 1670 Mixsemideci 110 3.71 182.8 27.9 2.25469 10.23187<br />

142


Annexes<br />

* Vegetation types as described in chapter 2 with <strong>the</strong> following codes: Caesalp: Lowland evergreen forest rich in Caesalpinioideae; Caesalpsa: Lowland evergreen forest rich in<br />

Caesalpinioideae and Sacoglottis gabonensis; Cosaca: Coastal forest with Sacoglottis gabonensis and Calpocalyx heitzii; Cosaga: Coastal forest with Sacoglottis gabonensis;<br />

Cosas: Coastal forest on sandy shorelines; Mangrove: Mangrove forest; Mixevergreen: Mixed evergreen and semi-deciduous forest with elements of evergreen forest<br />

predominant; Mixsemideci: Mixed evergreen and semi-deciduous forest with semi-deciduous elements predominant; Okoumé: Okoumé forest; and Submontane: Submontane<br />

forest on hill tops.<br />

143


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Annex 2. Soil characteristics including soil type, drainage, parent material, surface stone, topsoil texture (0-10 cm), pH (water) and electricity conductivity (EC,<br />

mS.cm -1 ) taken at 0-10 cm, 10-20 cm, 30-20 cm and > 50 cm depths respectively in 72 representative samples.<br />

No Plot Soil type Drainage Parent material Surface stone Topsoil texture pH10 EC10 pH20 EC20 pH30 EC30 pH50 EC50<br />

1 T21 Plinthic Ferrasols Well drained Gneiss Gravels & stones Sandy loam 3.92 237.6 4.10 38.6 4.12 29.8 4.40 24.9<br />

2 EFOU1 Acri-Xanthic Ferrasols & Xanthic Ferrasols Well drained Migmatite, granite Gravel, stones & boulders Sandy clay loam 4.41 84.7 4.41 68.2 4.77 36.3 4.67 30.8<br />

3 EFOU2 Acri-Xanthic Ferrasols & Xanthic Ferrasols Well drained Migmatite, granite Stones & boulders Sandy loam 4.38 102.3 4.49 90.2 4.82 52.8 4.75 40.7<br />

4 EFOU3 Acri-Xanthic Ferrasols & Xanthic Ferrasols Well drained Migmatite, granite No stones or gravels Sandy clay loam 3.89 190.3 4.22 110.0 4.33 60.5 4.50 41.8<br />

5 EFOU4 Acri-Xanthic Ferrasols & Xanthic Ferrasols Well drained Migmatite, granite No stones or gravels Sandy clay loam 4.24 58.3 4.47 53.9 4.70 37.4 4.57 37.4<br />

6 T32 Plinthic Ferrasols Well drained Migmatite, quartzite Gravels Sandy loam 4.00 106.7 3.94 34.2 4.16 23.1 4.41 19.9<br />

7 T34 Plinthic Ferrasols Well drained Migmatite, quartzite Gravel & stones Coarse sandy 4.16 88.0 3.96 41.9 3.95 33.1 4.34 21.5<br />

8 T35 Plinthic Ferrasols Well drained Migmatite Stones Loam coarse sandy 3.97 61.6 3.82 32.0 3.46 29.8 4.10 20.2<br />

9 T51 Plinthic Ferrasols Well drained Migmatite Stones Sandy clay loam 4.52 63.8 4.55 34.1 4.65 29.7 4.68 20.9<br />

10 T53 Xanthic Ferrasols Well drained Migmatite Gravels Clay loam 4.88 122.1 4.22 58.3 4.32 47.3 4.52 33.0<br />

11 T55 Xanthic Ferrasols Moderately well drained Migmatite Gravels Sandy clay loam 4.14 97.9 4.45 41.8 4.65 25.3 4.54 34.1<br />

12 T22 Plinthic Ferrasols Well drained Gneiss Gravels Sandy clay loam 4.00 144.1 3.92 61.6 3.97 40.7 4.01 33.0<br />

13 T25 Plinthic Ferrasols Well drained Gneiss Gravels Sandy clay loam 4.56 188.1 3.62 51.8 4.20 41.3 4.31 30.7<br />

14 T41 Plinthic Ferrasols Well drained Migmatite Stones Loam coarse sandy 3.49 78.1 3.49 61.6 3.55 44.1 4.01 32.6<br />

15 T43 Plinthic Ferrasols Well drained Migmatite Boulders Sandy clay loam 3.99 52.8 4.04 58.2 4.05 41.8 4.00 31.9<br />

16 T4FP1 Plinthic Ferrasols Well drained Quartzite Stones Coarse sandy loam 4.03 62.7 4.16 62.7 3.48 45.1 4.04 35.2<br />

17 T81 Plinthic Ferrasols Well drained Quartzite Stones Loam medium sand 3.45 86.9 4.14 42.9 4.09 29.8 4.10 19.6<br />

18 T82 Plinthic Ferrasols Well drained Migmatite, quartzite Stones Sandy clay loam 5.17 106.7 4.88 55.0 4.98 23.1 4.89 20.0<br />

19 T8FP1 Plinthic Ferrasols Well drained Migmatite Gravel & stones Loam medium sand 4.38 97.9 4.13 71.5 4.88 26.5 4.42 23.1<br />

20 T61 Xanthic Ferrasols Well drained Migmatite Boulders Sandy clay loam 5.09 113.3 4.80 51.7 4.87 30.8 4.94 25.3<br />

21 T62 Xanthic Ferrasols Well drained Migmatite Stones Clay loam 4.36 85.8 4.50 40.5 4.51 33.0 4.74 25.3<br />

22 T63 Xanthic Ferrasols Moderately well drained Migmatite Gravel, stones & boulders Clay loam 4.91 77.0 4.92 31.9 4.85 25.3 4.98 24.2<br />

23 T64 Xanthic Ferrasols Well drained Migmatite Stones Clay loam 4.10 105.6 4.38 55.0 4.53 37.4 4.72 23.1<br />

24 T6FP1 Xanthic Ferrasols Well drained Migmatite Stones Sandy clay loam 4.52 82.5 4.64 37.4 4.83 34.1 4.76 26.4<br />

25 T6FP2 Xanthic Ferrasols Well drained Migmatite Gravels Loamy sand 4.46 70.4 4.54 49.5 4.76 31.9 4.82 24.2<br />

26 T1FP1 Plinthic Ferrasols Well drained Gneiss No stones or gravels Loamy sand 3.80 169.4 3.88 59.4 3.99 34.3 4.12 24.2<br />

27 EGON1 Acri-Xanthic Ferrasols & Xanthic Ferrasols Well drained Migmatite, gneiss Stones Loam medium sand 3.88 240.9 4.20 137.5 4.28 97.9 4.59 39.6<br />

28 EGON3 Acri-Xanthic Ferrasols & Xanthic Ferrasols Well drained Migmatite, gneiss Gravel & boulders Loamy sand 4.09 192.5 4.31 81.4 4.53 53.9 4.64 50.6<br />

29 EGON5 Acri-Xanthic Ferrasols & Xanthic Ferrasols Well drained Migmatite, granite No stones or gravels Sandy clay loam 3.87 145.2 4.00 102.3 4.06 91.3 4.32 69.3<br />

30 EGON6 Acri-Xanthic Ferrasols & Xanthic Ferrasols Well drained Migmatite, granite No stones or gravels Loam medium sand 4.00 181.5 4.28 132.0 4.41 63.8 4.62 44.0<br />

31 EGON7 Acri-Xanthic Ferrasols & Xanthic Ferrasols Well drained Migmatite, granite Gravel & stones Loam coarse sandy 4.11 184.8 4.20 139.7 4.34 83.6 5.06 37.4<br />

32 EGON8 Acri-Xanthic Ferrasols & Xanthic Ferrasols Well drained Migmatite, granite No stones or gravels Loamy sand 3.71 222.2 3.94 172.7 4.33 84.7 4.33 68.2<br />

33 EGON9 Acri-Xanthic Ferrasols & Xanthic Ferrasols Well drained Migmatite, granite No stones or gravels Sandy clay loam 3.67 213.4 3.98 143.3 4.26 56.1 4.37 46.2<br />

34 EGON10 Acri-Xanthic Ferrasols & Xanthic Ferrasols Well drained Migmatite, granite No stones or gravels Coarse sand 4.22 97.9 4.46 58.3 4.56 41.8 4.88 34.1<br />

35 NSE1 Xanthic Ferrasols Well drained Migmatite No stones or gravels Loam medium sand 3.45 83.6 3.58 59.4 3.54 40.7 3.67 31.8<br />

144


Annexes<br />

No Plot Soil type Drainage Parent material Surface stone Topsoil texture pH10 EC10 pH20 EC20 pH30 EC30 pH50 EC50<br />

36 NSE2 Xanthic Ferrasols Well drained Migmatite No stones or gravels Sandy clay loam 3.48 124.3 3.57 84.7 3.71 48.4 3.83 36.7<br />

37 NSE3 Xanthic Ferrasols Well drained Migmatite No stones or gravels Sandy clay loam 3.61 211.2 3.57 67.1 3.50 48.4 3.91 34.8<br />

38 NSE7 Xanthic Ferrasols Well drained Migmatite Few gravel & stones Loam medium sand 3.54 145.2 3.51 55.0 3.60 37.4 3.81 29.3<br />

39 NSE8 Xanthic Ferrasols Well drained Migmatite No stones or gravels Sandy clay loam 3.75 107.8 3.69 55.0 3.60 36.3 4.01 28.2<br />

40 NSE11 Dystric Fluviosols (hydric soil) Poorly drained Migmatite No stones or gravels Clay loam 3.78 171.1 3.69 51.8 3.73 35.7 4.21 26.4<br />

41 ONO1 Xanthic Ferrasols Well drained Migmatite No stones or gravels Sandy clay loam 3.55 130.9 3.60 74.8 3.47 60.5 3.79 48.6<br />

42 ONO3 Xanthic Ferrasols Well drained Migmatite No stones or gravels Sandy clay loam 3.46 181.5 3.46 69.3 3.55 35.2 3.62 23.9<br />

43 ONO5 Xanthic Ferrasols Moderately well drained Migmatite No stones or gravels Sandy clay loam 3.77 150.7 3.79 49.6 3.68 39.6 4.02 35.2<br />

44 ONO7 Xanthic Ferrasols Well drained Migmatite No stones or gravels Sandy clay loam 3.80 103.4 3.61 48.4 3.70 36.4 4.30 25.8<br />

45 ONO9 Xanthic Ferrasols Well drained Migmatite Boulders Sandy clay loam 3.53 100.3 3.66 85.8 3.62 61.6 3.63 50.6<br />

46 ONO11 Xanthic Ferrasols Well drained Migmatite No stones or gravels Loamy sand 3.58 171.6 3.59 59.4 3.65 31.6 4.01 20.9<br />

47 MM3 Plinthic Ferrasols Moderately well drained Gneiss Clay loam 3.96 180.4 4.00 107.8 4.45 38.5 4.59 25.3<br />

48 MM4 Ferralic Cambisols & Ferric Acrisols Well drained Pynoxenite with quartzite Gravels Sandy clay loam 3.69 207.9 4.03 111.1 4.25 68.2 4.33 41.8<br />

49 MM5 Ferralic Cambisols & Ferric Acrisols well drained Pynoxenite with quartzite Clay loam 3.69 202.4 3.76 123.2 4.13 71.5 4.21 58.3<br />

50 MM6 Sandy Dystric Fluviosols Moderately well drained Gneiss Boulders Clay loam 4.27 121.0 4.59 86.9 4.72 80.3 4.62 48.4<br />

51 MM8 Plinthic Ferrasols Well drained Gneiss Gravel, stones & boulders Sandy clay loam 4.34 139.7 4.46 50.6 4.44 42.9 4.46 44.0<br />

52 MM9 Plinthic Ferrasols Well drained Migmatite, quartzite Gravel, stones & boulders Loam coarse sandy 3.66 171.6 3.71 140.8 3.93 79.2 4.29 57.2<br />

53 BIFA1 Plinthic Ferrasols Well drained Migmatite Stones Sandy clay loam 4.89 74.8 4.73 41.8 4.62 68.2 5.08 19.8<br />

54 BIFA2 Plinthic Ferrasols Well drained Migmatite Gravels Sandy clay loam 3.93 110.0 4.52 53.9 4.67 27.5 4.90 19.6<br />

55 BIFAFP3 Plinthic Ferrasols Well drained Migmatite Gravels Sandy clay loam 3.96 171.6 4.40 74.8 4.45 39.6 4.62 28.6<br />

56 BIFA4 Plinthic Ferrasols Well drained Migmatite Stones Sandy loam 4.48 102.3 4.67 49.5 4.69 38.5 4.76 27.5<br />

57 ELE1 Plinthic Ferrasols Well drained Migmatite Boulders Clay loam 4.07 135.3 4.44 66.0 4.47 47.3 4.50 35.2<br />

58 ELEP2 Plinthic Ferrasols Well drained Migmatite Gravels Sandy loam 3.82 143.0 4.05 81.4 4.42 47.3 4.42 38.5<br />

59 ELE3 Plinthic Ferrasols Well drained Migmatite Gravels Sandy clay loam 3.89 114.4 4.35 42.9 4.49 31.9 4.69 18.7<br />

60 AKOK1 Plinthic Ferrasols Well drained Migmatite Gravels Loamy sand 3.93 81.4 4.43 33.0 4.67 24.2 4.81 17.6<br />

61 AKOK2 Plinthic Ferrasols Well drained Migmatite Gravels Sandy clay loam 5.32 47.3 4.82 26.4 4.78 23.1 5.00 17.6<br />

62 AKOK4 Plinthic Ferrasols Well drained Migmatite Gravels Loamy sand 3.90 66.0 4.21 46.2 4.52 25.3 4.66 19.8<br />

63 AKOK5 Plinthic Ferrasols Moderately well drained Migmatite Gravels Loamy sand 3.70 95.7 3.98 58.3 4.10 51.7 4.24 38.5<br />

64 EBOU1 Plinthic Ferrasols Imperfectly drained Migmatite Gravels Sandy loam 4.16 91.3 4.73 30.8 4.87 28.6 4.69 28.6<br />

65 EBOU2 Plinthic Ferrasols Well drained Migmatite Gravels Sandy loam 4.29 79.2 4.20 39.6 4.44 29.7 4.56 24.2<br />

66 EBOU3 Sandy Dystric Fluviosols Moderately well drained Granite Gravels Coarse 3.85 80.3 5.61 30.8 6.06 16.5 6.25 13.2<br />

67 CAMPO1 Plinthic Ferrasols Well drained Migmatite Gravels Sandy coarse 4.12 84.7 4.60 40.7 4.79 25.3 4.97 19.8<br />

68 EBIA3 Xanthic Ferrasols Well drained Migmatite Gravels Sandy clay loam 4.22 64.9 4.36 40.7 4.66 39.6 4.61 24.2<br />

69 CAMPO2 Plinthic Ferrasols Imperfectly drained Migmatite Gravels Sandy clay loam 4.19 89.1 4.62 102.3 4.75 26.4 4.70 19.8<br />

70 CAMPO4 Plinthic Ferrasols Well drained Migmatite Gravels Sandy clay loam 4.12 165.0 4.66 33.0 4.50 41.8 5.03 16.5<br />

71 CAMPO3 Plinthic Ferrasols Well drained Migmatite Gravels Clay loam 3.60 138.6 4.38 36.3 4.45 35.2 4.45 33.0<br />

72 CAMPO5 Plinthic Ferrasols Well drained Migmatite Gravels Sandy clay loam 4.16 91.3 4.49 45.1 4.75 35.2 4.85 23.1<br />

Where pH10 and EC10 mean pH and electricity conductivity at 0-10 cm, <strong>the</strong>n pH20 and EC20 for pH and electricity conductivity at 10-20 cm, and so on.<br />

145


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Annex 3. Plant species checklist of <strong>the</strong> Campo-Ma’an area with information on <strong>the</strong>ir guild, star<br />

category, habit, chorology, IUCN and WCMC threat categories.<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1 Acanthaceae Acanthus montanus (Nees) T.Anderson pi gn Hb Gc Re<br />

2 Acanthaceae Adhatoda buchholzii (Lindau) S.Moore pi bu Hb Lg Co<br />

3 Acanthaceae Adhatoda maculata (T.Anderson) C.B.Clarke pi gn Hcl Gc Hl<br />

4 Acanthaceae Adhatoda tristis Nees pi gn Hb Gc Hl<br />

5 Acanthaceae Afrofittonia silvestris Lindau sb bu Hb Lg Co VU A1c+2c<br />

6 Acanthaceae Asco<strong>the</strong>ca paucinervia (T.Anderson ex C.B.Clarke) pi bu Hb Lg Hl<br />

146<br />

Heine<br />

7 Acanthaceae Asystasia decipiens Heine pi bu Hb Lg Hl<br />

8 Acanthaceae Asystasia gangetica Lindau pi gn Hb Gc Co<br />

9 Acanthaceae Asystasia macrophylla (T.Anderson) Lindau sb bu Hb Lg Co<br />

10 Acanthaceae Asystasia vogeliana Benth. pi gn Hb Gc Co<br />

11 Acanthaceae Brachystephanus jaundensis Lindau pi bu Hb Lg Hl<br />

12 Acanthaceae Brillantaisia debilis Burkill pi gn Hb Gc Co<br />

13 Acanthaceae Brillantaisia lamium (Nees) Benth. pi gn Hb Gc Hl<br />

14 Acanthaceae Brillantaisia owariensis P. Beauv. pi gn Hb Gc Co<br />

15 Acanthaceae Brillantaisia soyauxii Lindau pi bu Hb Lg Hl<br />

16 Acanthaceae Brillantaisia vogeliana (Nees) Benth. pi gn Hb Gc Co<br />

17 Acanthaceae Chlamydocardia buettneri Lindau sb gn Hb Gu Co<br />

18 Acanthaceae Dicliptera elliotii C.B.Clarke pi gn Hb Tra Hl<br />

19 Acanthaceae Dicliptera laxispica Lindau pi gn Hb Gc Hl<br />

20 Acanthaceae Dicliptera obanensis S.Moore pi gn Hb Gc Hl<br />

21 Acanthaceae Dischistocalyx grandifolius C.B.Clarke ep bu Hb Lg Hl<br />

22 Acanthaceae Dischistocalyx hirsutus C.B.Clarke ep gn Hb Lg Co<br />

23 Acanthaceae Dischistocalyx strobilinus C.B.Clarke ep bu Hb Lg Co<br />

24 Acanthaceae Elytraria marginata Vahl pi gn Hb Gc Co<br />

25 Acanthaceae Eremomastax polysperma (Benth.) Dandy pi gn Hb Tra Re<br />

26 Acanthaceae Eremomastax speciosa (Hochst.) Cufod. pi gn Hb Tra Re<br />

27 Acanthaceae Filetia africana Lindau pi gn Hb Gc Hl<br />

28 Acanthaceae Hypoestes aristata (Vahl) Soland. ex Roem. & Schult. pi gn Hb Gc Hl<br />

29 Acanthaceae Hypoestes triflora (Forssk.) Roem. & Schult. pi gn Hb Tra Hl<br />

30 Acanthaceae Justicia biokoensis V.A.W. Graham pi bu Hb Lg Co<br />

31 Acanthaceae Justicia extensa T.Anderson pi gn Hb Gc Co<br />

32 Acanthaceae Justicia insularis T.Anderson pi gn Hb Tra Co<br />

33 Acanthaceae Justicia laxa T.Anderson pi gn Hb Gc Co<br />

34 Acanthaceae Justicia tenella (Nees) T.Anderson pi gn Hb Tra Hl<br />

35 Acanthaceae Justicia tristis T.Anderson pi gn Hb Gc Co<br />

36 Acanthaceae Lankesteria brevior C.B.Clarke pi gn Hb Gc Co<br />

37 Acanthaceae Lankesteria elegans (P.Beauv.) T.Anderson sb gn Hb Gc Co<br />

38 Acanthaceae Mendoncia gilgiana (Lindau) Benoist np bu Hb Lg Co<br />

39 Acanthaceae Mendoncia iodioides (s.Moore) Heine np gn Swcl Gc Hl<br />

40 Acanthaceae Mendoncia lindaviana (Gilg) Benoist np bu Swcl Lg Co<br />

41 Acanthaceae Mendoncia phytocrenoides (Gilg) Benoist np gn Swcl Gc Co<br />

42 Acanthaceae Nelsonia canescens (Lam.) Spreng. pi gn Hb Tra Co<br />

43 Acanthaceae Nelsonia smithii Oersted sb gn Hb Tra Hl<br />

44 Acanthaceae Phaulopsis angolana S.Moore pi gn Hb Gc Co<br />

45 Acanthaceae Phaulopsis ciliata (Willd.) Hepper pi gn Hb Gc Co<br />

46 Acanthaceae Phaulopsis silvestris (Lindau) Lindau pi gn Hb Gc Hl<br />

47 Acanthaceae Physacanthus batanganus (G.Braun & K.Schum.) Lindau sb gn Hb Gc Co<br />

48 Acanthaceae Physacanthus nematosiphon (Lindau) Rendle & Britten sb gn Hb Gc Co<br />

49 Acanthaceae Pseuderan<strong>the</strong>mum ludovicianum (Büttner) Lindau pi gn Hb Tra Co<br />

50 Acanthaceae Pseuderan<strong>the</strong>mum tunicatum (Afzel.) Milne-Redh. pi gn Hb Tra Co<br />

51 Acanthaceae Rhinacanthus virens (Nees) Milne-Redh. var.<br />

obtusifolius Heine<br />

sb gn Hb Gc Co<br />

52 Acanthaceae Rhinacanthus virens (Nees) Milne-Redh. var. virens sb gn Hb Tra Co<br />

53 Acanthaceae Ruellia primuloides (T.Anderson ex Benth.) Heine sw gn Hb Gc Co<br />

54 Acanthaceae Rungia buettneri Lindau sb gn Hb Gc Co<br />

55 Acanthaceae Rungia congoensis C.B.Clarke pi gn Hb Gc Co<br />

56 Acanthaceae Schaueria populifolia C.B.Clarke sb bu Hb Lg Co<br />

57 Acanthaceae Sclerochiton preussii (Lindau) C.B.Clarke sb bu Hb Lg Co EN B1+2e<br />

58 Acanthaceae Staurogyne bicolor (Mildbr.) Champl. sb bu Hb Lg Co<br />

59 Acanthaceae Staurogyne kamerunensis (Engl.) Benoist sb gn Hb Gc Co<br />

60 Acanthaceae Stenandrium guineense (Nees) Vollesen sb gn Hb Gc Co


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

61 Acanthaceae Stenandrium talbotii (S.Moore) Vollesen sb gn Hb Lg Co<br />

62 Acanthaceae Stenandrium thomense (Milne-Redh.) Vollesen sb GD Hb Cam Co<br />

63 Acanthaceae Thomandersia congolana De Wild. & T.Durand sb gn Sh Gc Co<br />

64 Acanthaceae Thomandersia hensii De Wild. & T.Durand sb gn Sh Gc Co<br />

65 Acanthaceae Thomandersia laurifolia (Benth.) Baill. sb bu Sh Lg Co<br />

66 Acanthaceae Thunbergia vogeliana Benth. pi gn Hcl Gc Co<br />

67 Acanthaceae Whitfieldia elongata (P.Beauv.) De Wild. & T.Durand pi gn Hcl Gc Hl<br />

68 Acanthaceae Whitfieldia preussii (Lindau) C.B.Clarke pi gn Hcl Tra Hl<br />

69 Adiantaceae Adiantum poiretii Wikstr. var. poiretii ep gn Ep Tra Hl<br />

70 Adiantaceae Adiantum vogelii Mett. ex Keyserl. ep gn Ep Gc Hl<br />

71 Adiantaceae Afropteris repens (C.Chr.) Alston sb gn Hb Gc Co<br />

72 Adiantaceae Cheilan<strong>the</strong>s farinosa (Forssk.) Kaulf. pi gn Hb Pa Co<br />

73 Adiantaceae Pellaea doniana J.Sm. ex Hook. sb gn Ep Gc Co<br />

74 Adiantaceae Pityrogramma calomelanos (L.) Link var. calomelanos pi gn Hb Tra Co<br />

75 Adiantaceae Pteris pteridioides (Hook.) Ballard sb gn Hb Gc Co<br />

76 Alismataceae Limnophyton fluitans Graebn. rh bu Hb Lg Co<br />

77 Amaranthaceae Achyran<strong>the</strong>s aspera L. var. aspera pi gn Hb Pa Hl<br />

78 Amaranthaceae Achyran<strong>the</strong>s aspera L. var. pubescens (Moq.)<br />

pi gn Hb Pa Hl<br />

C.C.Towns.<br />

79 Amaranthaceae Achyran<strong>the</strong>s aspera L. var. sicula L. pi gn Hb Pa Hl<br />

80 Amaranthaceae Achyran<strong>the</strong>s bidentata Blume pi gn Hb Pa Co<br />

81 Amaranthaceae Aerva lanata (L.) Juss. ex Schult. pi gn Hb Pa Re<br />

82 Amaranthaceae Alternan<strong>the</strong>ra littoralis P.Beauv. var. maritima (Mart.) pi gn Hb Pa Hl<br />

Pedersen<br />

83 Amaranthaceae Alternan<strong>the</strong>ra maritima (Mart.) St.-Hil. pi gn Hb Pa Hl<br />

84 Amaranthaceae Alternan<strong>the</strong>ra sessilis (L.) R.Br. pi gn Hb Pa Hl<br />

85 Amaranthaceae Amaranthus hybridus L. subsp. cruentus (L.) Thell. pi gn Hb Pa Hl<br />

86 Amaranthaceae Amaranthus spinosus L. pi gn Hb Pa Re<br />

87 Amaranthaceae Celosia globosa Schinz pi gn Hb Pa Co<br />

88 Amaranthaceae Celosia isertii C.C.Towns. pi gn Hb Gc Hl<br />

89 Amaranthaceae Celosia laxa Schum. & Thonn. pi gn Hb Gc Hl<br />

90 Amaranthaceae Celosia leptostachya Benth. pi gn Hb Gc Co<br />

91 Amaranthaceae Cyathula achyranthoides (Kunth.) Moq. pi gn Hb Pa Hl<br />

92 Amaranthaceae Cyathula prostrata (L.) Blume var. pedicellata<br />

pi gn Hb Gc Re<br />

(C.B.Clarke) Cavaco<br />

93 Amaranthaceae Cyathula prostrata (L.) Blume var. prostrata pi gn Hb Gc Re<br />

94 Amaryllidaceae Crinum jagus (Thomps.) Dandy rh gn Hb Gc Hl<br />

95 Amaryllidaceae Crinum natans Baker rh gn Hb Gc Co<br />

96 Amaryllidaceae Crinum purpurascens Herb. rh gn Hb Gc Co<br />

97 Amaryllidaceae Scadoxus cinnabarinus (Decne.) Friis & Nordal sb gn Hb Gc Co<br />

98 Amaryllidaceae Scadoxus pseudocaulus (Bjornst. & Friis) Friis & Nordal sb bu Hb Lg Hl<br />

99 Anacardiaceae Anacardium occidentale L. pi gn Tr In Re<br />

100 Anacardiaceae Antrocaryon klaineanum Pierre pi bu Tr Lg Re<br />

101 Anacardiaceae Antrocaryon micraster A. Chev. & Guillaum. pi bu Tr Lg Re VU A1cd<br />

102 Anacardiaceae Lannea nigritana (Scott-Elliot) Keay var. pubescens<br />

Keay<br />

pi gn Tr Gc Co<br />

103 Anacardiaceae Lannea welwitschii (Hiern) Engl. pi gn Tr Gc Co<br />

104 Anacardiaceae Mangifera indica L. pi gn Tr In Re<br />

105 Anacardiaceae Pseudospondias microcarpa (A.Rich.) Engl. var.<br />

microcarpa<br />

sw gn Tr Tra Co<br />

106 Anacardiaceae Sorindeia africana (Engl.) v. d. Veken sb gn Tr/Sh Gc Co<br />

107 Anacardiaceae Sorindeia grandifolia Engl. sb gn Tr/Sh Gc Re<br />

108 Anacardiaceae Sorindeia juglandifolia (A. Rich.) Planch. ex Oliv. sb gn Tr/Sh Gc Co<br />

109 Anacardiaceae Sorindeia winkleri Engl. sb gn Tr/Sh Gc Co<br />

110 Anacardiaceae Spondias mombin L. pi gn Tr Tra Re<br />

111 Anacardiaceae Trichoscypha acuminata Engl. sb gn Tr Gc Co<br />

112 Anacardiaceae Trichoscypha arborea (A.Chev.) A.Chev. sb bu Tr Lg Co<br />

113 Anacardiaceae Trichoscypha bijuga Engl. sb bu Tr/Sh Lg Co CR A1c+2abc<br />

114 Anacardiaceae Trichoscypha hallei Breteler sp. nov. sb bu Tr/Sh Lg Co<br />

115 Anacardiaceae Trichoscypha laxiflora Engl. sb bu Sh Lg Co<br />

116 Anacardiaceae Trichoscypha lucens Oliv. sb gn Sh Gc Co<br />

117 Anacardiaceae Trichoscypha mannii Hook. f. sb bu Tr/Sh Lg Co VU A1c, B1+2c<br />

118 Anacardiaceae Trichoscypha oddonii De Wild. sb gn Tr/Sh Gc Co<br />

119 Anacardiaceae Trichoscypha oliveri Engl. sb bu Tr/Sh Lg Co<br />

120 Anacardiaceae Trichoscypha patens (Oliv.) Engl. sb bu Tr/Sh Lg Co<br />

121 Anacardiaceae Trichoscypha reygaertii De Wild. sb bu Tr/Sh Lg Co<br />

122 Anacardiaceae Trichoscypha rubicunda Lecomte sb bu Tr/Sh Lg Co<br />

147


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

123 Ancistrocladaceae Ancistrocladus guineensis Oliv. np bu Swcl Lg Co<br />

124 Anisophylleaceae Anisophyllea polyneura Floret sb gn Tr Gc Co<br />

125 Anisophylleaceae Anisophyllea purpurascens Hutch. & Dalziel sb bu Tr Lg Co<br />

126 Anisophylleaceae Poga oleosa Pierre sb bu Tr Lg Re<br />

127 Annonaceae Annickia chlorantha (Oliv.) Setten & P.J.Maas sb pk Tr Gc Co<br />

128 Annonaceae Annona muricata L. pi gn Tr Gc Re<br />

129 Annonaceae Anonidium mannii (Oliv.) Engl. & Diels sb bu Tr Lg Co<br />

130 Annonaceae Artabotrys insignis Engl. & Diels np gn Lwcl Gc Hl<br />

131 Annonaceae Artabotrys macrophyllus Hook.f. np gn Lwcl Gc Hl<br />

132 Annonaceae Artabotrys rufus De Wild. np gn Lwcl Gc Co<br />

133 Annonaceae Artabotrys stenopetalus Engl. & Diels np gn Lwcl Gc Hl<br />

134 Annonaceae Artabotrys thomsonii Oliv. np gn Lwcl Gc Hl<br />

135 Annonaceae Boutiquea platypetala Le Thomas sb GD Sh Lg Co EN A1c+2c<br />

136 Annonaceae Cleistopholis glauca Pierre ex Engl. & Diels pi gn Tr Gc R<br />

137 Annonaceae Cleistopholis patens (Benth.) Engl. & Diels pi gn Tr Gc Re<br />

138 Annonaceae Friesodielsia enghiana (Diels) Verdc. sb gn Lwcl Gc Co<br />

139 Annonaceae Friesodielsia gracilipes (Benth.) Steenis np bu Lwcl Lg Co<br />

140 Annonaceae Friesodielsia gracilis (Hook.f.) Steenis sb bu Lwcl Lg Co<br />

141 Annonaceae Greenwayodendron suaveolens (Engl. & Diels) Verdc. sb gn Tr Gc Co<br />

142 Annonaceae Hexalobus crispiflorus A.Rich. sb gn Tr Gc Co<br />

143 Annonaceae Hexalobus salicifolius Engl. sb gn Tr Gc Hl<br />

144 Annonaceae Isolona campanulata Engl. & Diels sb gn Tr Gu Co<br />

145 Annonaceae Isolona congolana (De Wild. & T.Durand) Engl. & Diels sb gn Tr Gc Hl<br />

146 Annonaceae Isolona hexaloba (Pierre) Engl. & Diels sb gn Tr Gc Co<br />

147 Annonaceae Isolona zenkeri Engl. sb bu Sh Lg Co<br />

148 Annonaceae Meiocarpidium lepidotum (Oliv.) Engl. & Diels sb bu Tr Lg Co<br />

149 Annonaceae Mischogyne elliotianum (Engl. & Diels) R.E.Fr. sb gn Sh Gc Hl<br />

150 Annonaceae Monanthotaxis barteri (Baill.) Verdc. sb gn Sh Gc Hl<br />

151 Annonaceae Monanthotaxis cauliflora (Chipp) Verdc. sb gn Swcl Gc Co<br />

152 Annonaceae Monanthotaxis congoensis Baill. sb gn Swcl Gc Co<br />

153 Annonaceae Monanthotaxis diclina (Sprague) Verdc. sb gn Swcl Gc Co<br />

154 Annonaceae Monanthotaxis elegans (Engl. & Diels) Verdc. sb GD Sh Sw-Cam Co<br />

155 Annonaceae Monanthotaxis letouzeyi (Le Thomas) Verdc. np gn Lwcl Gc Co<br />

156 Annonaceae Monanthotaxis pellegrinii Verdc. np gn Swcl Gc Hl<br />

157 Annonaceae Monodora brevipes Benth. sb gn Tr Gc Re<br />

158 Annonaceae Monodora crispata Engl. & Diels pi gn Tr Gu Hl<br />

159 Annonaceae Monodora myristica (Gaertn.) Dunal pi gn Tr Gu Re<br />

160 Annonaceae Monodora tenuifolia Benth. pi gn Tr Gc Re<br />

161 Annonaceae Monodora zenkeri Engl. & Diels sb GD Sh Sw-Cam Hl<br />

162 Annonaceae Neostenan<strong>the</strong>ra myristicifolia (Oliv.) Exell. sw gn Sh Gc Co<br />

163 Annonaceae Pachypodanthium barteri (Benth.) Hutch. & Dalziel sw GD Tr Lg Co VU A1c<br />

164 Annonaceae Pachypodanthium staudtii Engl. & Diels np gn Tr Gc Co<br />

165 Annonaceae Piptostigma calophyllum Mildbr. & Diels sb bu Tr Lg Hl<br />

166 Annonaceae Piptostigma fasciculatum (De Wild.) Boutique sb gn Tr Gc Co<br />

167 Annonaceae Piptostigma glabrescens Oliv. sb bu Tr Lg Hl<br />

168 Annonaceae Piptostigma multinervium Engl. & Diels sb bu Tr Lg Co<br />

169 Annonaceae Piptostigma pilosum Oliv. sb bu Tr Lg Co<br />

170 Annonaceae Polyceratocarpus parviflorus (Baker f.) Ghesq. sb gn Tr Gc Co<br />

171 Annonaceae Uvaria angolensis Welw. ex Oliv. np gn Swcl Gc Hl<br />

172 Annonaceae Uvaria anonoides Bak. f. np gn Swcl Gc Hl<br />

173 Annonaceae Uvaria baumannii Engl. & Diels np gn Swcl Gc Hl<br />

174 Annonaceae Uvaria bipindensis Engl. np GD Lwcl Lg Hl<br />

175 Annonaceae Uvaria obanensis Baker f. np bu Swcl Lg Hl<br />

176 Annonaceae Uvaria scabrida Oliv. np bu Swcl Lg Co<br />

177 Annonaceae Uvariastrum insculptum (Engl. & Diels) Sprague sb gn Tr Gc Hl<br />

178 Annonaceae Uvariastrum pierreanum Engl. sb bu Sh Lg Co<br />

179 Annonaceae Uvariastrum zenkeri Engl. & Diels sb bu Sh Lg Co VU A1c, B1+2c<br />

180 Annonaceae Uvariodendron calophyllum R.E.Fr. sb bu Tr Lg Hl<br />

181 Annonaceae Uvariodendron connivens (Benth.) R.E.Fr. sb bu Tr Lg Co LR/nt<br />

182 Annonaceae Uvariodendron giganteum (Engl.) R.E.Fr. sb bu Tr Lg Co<br />

183 Annonaceae Uvariodendron molundense (Engl. & Diels) R.E.Fr. sb bu Tr Lg Hl<br />

184 Annonaceae Uvariopsis bakeriana (Hutch. & Diels) Robyns & Ghesq. sb bu Sh Lg Hl<br />

185 Annonaceae Uvariopsis congolana (De Wild.) R.E.Fr. sb bu Sh Lg Co<br />

186 Annonaceae Uvariopsis dioica (Diels) Robyns & Ghesq. sb bu Sh Lg Co<br />

187 Annonaceae Uvariopsis zenkeri Engl. sb bu Sh Lg Co<br />

148


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

188 Annonaceae Xylopia acutiflora (Dunal) A.Rich. np gn Tr Gc Co<br />

189 Annonaceae Xylopia aethiopica (Dunal) A.Rich. ri gn Tr Gc Co<br />

190 Annonaceae Xylopia hypolampra Mildbr. np gn Tr Gc Re<br />

191 Annonaceae Xylopia parviflora (A.Rich.) Benth. sb gn Tr Gc Re<br />

192 Annonaceae Xylopia quintasii Engl. & Diels sb gn Tr Gu Re<br />

193 Annonaceae Xylopia rubescens Oliv. ri gn Tr Gc Re<br />

194 Annonaceae Xylopia staudtii Engl. & Diels sb gn Tr Gc Re<br />

195 Annonaceae Xylopia villosa Chipp sb gn Tr Gc Co<br />

196 Apocynaceae Alafia barteri Oliv. np gn Lwcl Gc Co<br />

197 Apocynaceae Alafia lucida Stapf np gn Lwcl Gc Hl<br />

198 Apocynaceae Alafia multiflora (Stapf) Stapf np gn Lwcl Gc Hl<br />

199 Apocynaceae Alstonia boonei De Wild. pi gn Tr Tra Re<br />

200 Apocynaceae Ancylobotrys robusta Pierre np gn Lwcl Gc Co<br />

201 Apocynaceae Baissea axillaris (Benth.) Hua np bu Swcl Lg Co<br />

202 Apocynaceae Baissea baillonii Hua np gn Swcl Gc Co<br />

203 Apocynaceae Baissea gracillima (K.Schum.) Hua np gn Swcl Gc Co<br />

204 Apocynaceae Baissea leonensis Benth. np bu Swcl Lg Co<br />

205 Apocynaceae Baissea multiflora A.DC. np gn Swcl Gc Hl<br />

206 Apocynaceae Baissea odorata K.Schum. np gn Swcl Gc Hl<br />

207 Apocynaceae Baissea subrufa Stapf np gn Swcl Gc Co<br />

208 Apocynaceae Callichilia bequaertii De Wild. sb gn Sh Gc Co<br />

209 Apocynaceae Callichilia inaequalis Stapf np bu Swcl Lg Co<br />

210 Apocynaceae Callichilia monopodialis (K.Schum.) Stapf sb GD Sh Cam Co<br />

211 Apocynaceae Catharanthus roseus (L.) G.Don pi gn Sh In Re<br />

212 Apocynaceae Clitandra cymulosa Benth. pi gn Swcl Gc Hl<br />

213 Apocynaceae Cyclocotyla congolensis Stapf ri gn Lwcl Gc Hl<br />

214 Apocynaceae Cylindropsis parvifolia Pierre np bu Lwcl Lg Hl<br />

215 Apocynaceae Dictyophleba leonensis (Stapf) Pichon np gn Lwcl Gc Co<br />

216 Apocynaceae Dictyophleba ochracea (K.Schum. ex Hallier f.) Pichon np gn Lwcl Gc Co<br />

217 Apocynaceae Dictyophleba setosa de Hoogh np gn Lwcl Gc Co<br />

218 Apocynaceae Dictyophleba stipulosa (S.Moore ex Wermham) Pichon np gn Lwcl Gc Co<br />

219 Apocynaceae Funtumia elastica (Preuss) Stapf np pk Tr Tra Co<br />

220 Apocynaceae Hunteria ballayi Hua sb bu Sh Lg Hl<br />

221 Apocynaceae Hunteria camerunensis K.Schum. ex Hallier f. sb bu Sh Lg Co<br />

222 Apocynaceae Hunteria umbellata (K.Schum.) Hallier f. sb gn Tr Gc Co<br />

223 Apocynaceae Landolphia bruneelii (De Wild.) Pichon ri bu Lwcl Lg Co<br />

224 Apocynaceae Landolphia congolensis (Stapf) Pichon np gn Lwcl Gc Co<br />

225 Apocynaceae Landolphia dulcis (Sabine) Pichon pi gn Lwcl Gu Co<br />

226 Apocynaceae Landolphia flavidiflora (K.Schum.) Persoon np GD Lwcl Cam Hl<br />

227 Apocynaceae Landolphia foretiana (Pierre ex Jumelle) Pichon np gn Lwcl Gc Co<br />

228 Apocynaceae Landolphia glabra (Pierre ex Jumelle) Pichon np gn Lwcl Gc Hl<br />

229 Apocynaceae Landolphia incerta (K.Schum.) Persoon np gn Lwcl Gc Co<br />

230 Apocynaceae Landolphia jumellei (Pierre ex Jumelle) Pichon np bu Lwcl Lg Hl<br />

231 Apocynaceae Landolphia landolphioides (Hallier f.) A.Chev. np gn Lwcl Gc Co<br />

232 Apocynaceae Landolphia leptantha (K.Schum.) Persoon np bu Lwcl Lg Co<br />

233 Apocynaceae Landolphia ligustrifolia (Stapf) Pichon np gn Lwcl Gc Co<br />

234 Apocynaceae Landolphia maxima (K.Schum. ex Hallier f.) Pichon np bu Lwcl Lg Hl<br />

235 Apocynaceae Landolphia owariensis P.Beauv. np gn Lwcl Tra Co<br />

236 Apocynaceae Landolphia robustior (K.Schum.) Persoon np gn Lwcl Gc Co<br />

237 Apocynaceae Landolphia stenogyna Pichon np gn Lwcl Gc Hl<br />

238 Apocynaceae Malouetia barbata van der Ploeg sb gn Sh Gc Co<br />

239 Apocynaceae Motandra guineensis (Thonn.) A.DC. np gn Lwcl Tra Hl<br />

240 Apocynaceae Motandra poecilophylla Wernham np bu Swcl Lg Hl<br />

241 Apocynaceae Oncinotis glabrata (Baill.) Stapf ex Hiern np gn Swcl Tra Hl<br />

242 Apocynaceae Orthopichonia barteri (Stapf) H.Huber np gn Lwcl Gc Hl<br />

243 Apocynaceae Orthopichonia cirrhosa (Radlk.) H.Huber np bu Lwcl Lg Hl<br />

244 Apocynaceae Orthopichonia indeniensis (A.Chev.) H.Huber np gn Lwcl Gu Hl<br />

245 Apocynaceae Orthopichonia seretii (De Wild.) Vonk np gn Lwcl Gc Co<br />

246 Apocynaceae Orthopichonia visciflua (K.Schum. ex Hallier f.) Vonk np bu Lwcl Lg Co<br />

247 Apocynaceae Petchia africana Leeuwenb. sb BK Sh Sw-Cam Hl<br />

248 Apocynaceae Picralima nitida (Stapf) T.Durand & H.Durand pi gn Tr Gc Co<br />

249 Apocynaceae Pleiocarpa bicarpellata Stapf sb gn Sh Gc Co<br />

250 Apocynaceae Pleiocarpa mutica Benth. sb gn Sh Gu Co<br />

251 Apocynaceae Pleiocarpa rostrata Benth. sb bu Sh Lg Co<br />

252 Apocynaceae Pleioceras zenkeri Stapf pi bu Sh Lg Hl<br />

149


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

253 Apocynaceae Rauvolfia caffra Sond. pi gn Tr Tra Co<br />

254 Apocynaceae Rauvolfia mannii Stapf sb gn Sh Gc Co<br />

255 Apocynaceae Rauvolfia vomitoria Afzel. pi gn Sh Tra Co<br />

256 Apocynaceae Strophanthus bullenianus Mast. np gn Lwcl Gc Hl<br />

257 Apocynaceae Strophanthus congensis Franch. np gn Lwcl Gc Hl<br />

258 Apocynaceae Strophanthus gratus (Wall. & Hook.) Baill. np pk Lwcl Gc Hl<br />

259 Apocynaceae Strophanthus hispidus DC. np pk Swcl Tra Hl<br />

260 Apocynaceae Strophanthus preussii Engl. & Pax np gn Swcl Gc Hl<br />

261 Apocynaceae Strophanthus sarmentosus DC. var. sarmentosus np gn Swcl Gc Hl<br />

262 Apocynaceae Strophanthus thollonii Franch. ri gn Lwcl Tra Co<br />

263 Apocynaceae Tabernaemontana brachyantha Stapf np gn Tr Gc Hl<br />

264 Apocynaceae Tabernaemontana contorta Stapf np bu Tr Lg Re<br />

265 Apocynaceae Tabernaemontana crassa Benth. sb gn Tr Gc Co<br />

266 Apocynaceae Tabernaemontana eglandulosa Stapf np gn Lwcl Gc Co<br />

267 Apocynaceae Tabernaemontana glandulosa (Stapf) Pichon sb gn Lwcl Gc Co<br />

268 Apocynaceae Tabernaemontana hallei (Boiteau) Leeuwenb. sb GD Sh Lg Co<br />

269 Apocynaceae Tabernaemontana inconspicua Stapf sb gn Tr Gc Co<br />

270 Apocynaceae Tabernaemontana penduliflora K. Schum. np gn Tr Gc Co<br />

271 Apocynaceae Tabernaemontana psorocarpa (Pierre ex Stapf) Pichon sb GD Tr Lg Co<br />

272 Apocynaceae Tabernan<strong>the</strong> iboga Baill. sb pk Sh Tra Co<br />

273 Apocynaceae Voacanga africana Stapf pi gn Sh Tra Co<br />

274 Apocynaceae Voacanga bracteata Stapf sb gn Sh Gc Co<br />

275 Apocynaceae Voacanga psilocalyx Pierre ex Stapf sb bu Sh Lg Co<br />

276 Araceae Anchomanes difformis (Blume) Engl. ri/sw gn Hb Tra Co<br />

277 Araceae Anubias barteri Schott caladiifolia Engl. ri/sw bu Hb Lg Co<br />

278 Araceae Anubias barteri Schott var. barteri ri/sw bu Hb Lg Co<br />

279 Araceae Anubias barteri Schott var. glabra N.E.Br. ri/sw gn Hb Gc Co<br />

280 Araceae Anubias gilletii De Wild. & T.Durand ri/sw gn Hb Gc Co<br />

281 Araceae Anubias hastifolia Engl. ri/sw gn Hb Gc Co<br />

282 Araceae Cercestis camerunensis (Ntepe-Nyame) Bogner sb bu Hcl Lg Co<br />

283 Araceae Cercestis dinklagei Engl. sb gn He Gc Co<br />

284 Araceae Cercestis ivorensis A.Chev. sb gn He Gu Co<br />

285 Araceae Cercestis kamerunianus (Engl.) N.E.Br. sb bu He Lg Co<br />

286 Araceae Cercestis mirabilis (N.E.Br.) Bogner sb gn Hcl Gc Co<br />

287 Araceae Colocasia esculenta (L.) Schott pi gn Hb In Re<br />

288 Araceae Culcasia annetii Ntepe-Nyame sb gn He Gc Co<br />

289 Araceae Culcasia barombensis N.E.Br. sb gn He Gc Co<br />

290 Araceae Culcasia bosii Ntepe-Nyame sb BK He Sw-Cam Co<br />

291 Araceae Culcasia dinklagei Engl. sb bu Hb Lg Co<br />

292 Araceae Culcasia ekongoloi Ntepe-Nyame sb gn He Gc Co<br />

293 Araceae Culcasia lanceolata Engl. sb bu He Lg Co<br />

294 Araceae Culcasia loukandensis Pell. sb gn He Gc Co<br />

295 Araceae Culcasia mannii (Hook.f.) Engl. sb bu Hb Lg Co<br />

296 Araceae Culcasia obliquifolia Engl. sb bu He Lg Co<br />

297 Araceae Culcasia panduriformis Engl. & Krause sb GD Hb Cam Co<br />

298 Araceae Culcasia parviflora N.E.Br. sb gn He Gc Co<br />

299 Araceae Culcasia sapinii De Wild. sb gn He Gc Co<br />

300 Araceae Culcasia simiarum Ntepe-Nyame sb gn He Gc Co<br />

301 Araceae Culcasia striolata Engl. sb bu Hb Lg Co<br />

302 Araceae Culcasia tenuifolia Engl. sb gn He Gc Co<br />

303 Araceae Lasiomorpha senegalensis Schott sw gn Hb Gc Re<br />

304 Araceae Nephthytis gravenreuthii (Engl.) Engl. sb bu Hb Lg Hl<br />

305 Araceae Nephthytis poissonii (Engl.) N.E.Br. var. constricta<br />

(N.E.Br.) Ntepe-Nyame<br />

sb bu Hb Lg Hl<br />

306 Araceae Nephthytis poissonii (Engl.) N.E.Br. var. poissonii sb gn Hb Gc Co<br />

307 Araceae Pistia stratiotes L. rh gn Hb Pa Re<br />

308 Araceae Rhaphidophora africana N.E.Br. sb gn Hcl Gc Co<br />

309 Araceae Stylochaeton zenkeri Engl. sb gn Hb Gc Co<br />

310 Araliaceae Schefflera barteri (Seem.) Harms ep gn Str Gc Co<br />

311 Aristolochiaceae Pararistolochia macrocarpa (Duch.) Poncy np gn Swcl Gc Co<br />

312 Aristolochiaceae Pararistolochia preussii (Engl.) Hutch. & Dalziel np GD Swcl Cam Hl<br />

313 Aristolochiaceae Pararistolochia promissa (Mast.) Keay np gn Swcl Gc Hl<br />

314 Aristolochiaceae Pararistolochia triactina (Hook.f.) Hutch. & Dalziel np gn Swcl Gc Hl<br />

315 Aristolochiaceae Pararistolochia zenkeri (Engl.) Hutch. & Dalziel np gn Swcl Gc Hl<br />

316 Asclepiadaceae Anisopus efulensis (N.E.Br.) Goyder pi gn Swcl Gc Hl<br />

317 Asclepiadaceae Anisopus mannii N.E.Br. pi gn Swcl Gc Hl<br />

150


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

318 Asclepiadaceae Cryptolepis sanguinolenta (Lindl.) Schltr. pi gn Swcl Gc Hl<br />

319 Asclepiadaceae Cynanchum adalinae (K.Schum.) K.Schum. subsp.<br />

adalinae<br />

pi gn Swcl Gc Co<br />

320 Asclepiadaceae Epistemma rupestre H.Huber sb gn Swcl Gc Co<br />

321 Asclepiadaceae Toxocarpus brevipes (Benth.) N.E.Br. pi gn Swcl Gc Co<br />

322 Asclepiadaceae Toxocarpus racemosa (Benth.) N.E.Br. pi gn Swcl Gc Hl<br />

323 Asclepiadaceae Tylophora cameroonica N.E.Br. pi bu Swcl Lg Co LR/nt<br />

324 Asclepiadaceae Tylophora oculata N.E.Br. pi gn Swcl Gc Hl<br />

325 Asclepiadaceae Tylophora sylvatica Decne. pi gn Swcl Gc Hl<br />

326 Aspleniaceae Asplenium africanum Desv. ep gn Ep Gc Co<br />

327 Aspleniaceae Asplenium barteri Hook. ep gn Ep Gc Co<br />

328 Aspleniaceae Asplenium brausei Hieron. ep GD Ep Lg Hl<br />

329 Aspleniaceae Asplenium currori Hook. ep gn Ep Gc Co<br />

330 Aspleniaceae Asplenium dregeanum Kunze ep gn Ep Tra Co<br />

331 Aspleniaceae Asplenium emarginatum P.Beauv. ep gn Ep Gc Co<br />

332 Aspleniaceae Asplenium gemmascens Alston ep gn Ep Gc Co<br />

333 Aspleniaceae Asplenium gemmiferum Schrad. sb gn Hb Gc Hl<br />

334 Aspleniaceae Asplenium geppii Carruth. ep bu Ep Lg Hl<br />

335 Aspleniaceae Asplenium laurentii Bommer ex Christ ep gn Ep Gc Co<br />

336 Aspleniaceae Asplenium macrophlebium Baker ep gn Ep Tra Hl<br />

337 Aspleniaceae Asplenium sandersonii Hook. ep gn Ep Gc Hl<br />

338 Aspleniaceae Asplenium unilaterale Lam. sb gn Hb Pal Co<br />

339 Aspleniaceae Asplenium variabile Hook. var. paucijugum (Ballard)<br />

Alston<br />

ep gn Ep Tra Co<br />

340 Aspleniaceae Asplenium variabile Hook. var. variabile ep gn Ep Gc Co<br />

341 Avicenniaceae Avicennia germinans (L.) L. sw gn Tr Gc Co<br />

342 Balanophoraceae Thonningia sanguinea Vahl sa gn Pa Tra Co<br />

343 Balsaminaceae Impatiens columbaria J.J.Bos sb gn Hb Gc Co<br />

344 Balsaminaceae Impatiens filicornu Hook.f. sb bu Hb Lg Co<br />

345 Balsaminaceae Impatiens gongolana N.Hallé sb bu Hb Lg Co<br />

346 Balsaminaceae Impatiens hians Hook.f. var. bipindensis (Gilg) Grey-<br />

Wilson<br />

sb bu Hb Lg Co<br />

347 Balsaminaceae Impatiens hians Hook.f. var. hians sb gn Hb Gc Co<br />

348 Balsaminaceae Impatiens mackeyana Hook. f. subsp. mackeyana sb gn Hb Gc Co<br />

349 Balsaminaceae Impatiens mackeyana Hook.f. subsp. zenkeri (Warb.)<br />

Grey-Wilson<br />

sb bu Hb Lg Co<br />

350 Balsaminaceae Impatiens macroptera Hook.f. sb bu Hb Lg Co<br />

351 Balsaminaceae Impatiens mannii Hook.f. sb gn Hb Gc Co<br />

352 Balsaminaceae Impatiens niamniamensis Gilg sb gn Hb Gc Co<br />

353 Balsaminaceae Impatiens palpebrata Hook.f. sb bu Hb Lg Co<br />

354 Begoniaceae Begonia ampla Hook.f. ep gn Ep Gc Co<br />

355 Begoniaceae Begonia anisosepala Hook.f. sb bu Hb Lg Hl<br />

356 Begoniaceae Begonia bonus-henricus J.J.de Wilde ep bu Ep Lg Hl<br />

357 Begoniaceae Begonia capillipes Gilg ep bu Ep Lg Co<br />

358 Begoniaceae Begonia cilio-bracteata Warb. sb bu Hb Lg Co<br />

359 Begoniaceae Begonia clypeifolia Hook.f. sb bu Hb Lg Co<br />

360 Begoniaceae Begonia elaeagnifolia Hook. f. ep bu Ep Lg Co<br />

361 Begoniaceae Begonia elatostemmoides Hook.f. sb gn Hb Gc Co<br />

362 Begoniaceae Begonia eminii Warb. sb gn Hb Tra Co<br />

363 Begoniaceae Begonia fusialata Warb. sb gn Hb Gc Co<br />

364 Begoniaceae Begonia heterochroma Sosef sb bu Hb Lg Co<br />

365 Begoniaceae Begonia hirsutula Hook.f. sb gn Hb Gc Co<br />

366 Begoniaceae Begonia letouzeyi Sosef sb bu Hb Lg Co<br />

367 Begoniaceae Begonia longipetiolata Gilg ep gn Ep Gc Co<br />

368 Begoniaceae Begonia macrocarpa Warb. sb gn Hb Gc Co<br />

369 Begoniaceae Begonia mannii Hook. ep gn Hb Gu Co<br />

370 Begoniaceae Begonia mbangaensis Sosef sb BK Hb Sw-Cam Co<br />

371 Begoniaceae Begonia microsperma Warb. sb GD Hb Cam Co<br />

372 Begoniaceae Begonia montis-elephantis J.J.de Wilde sb BK Hb Campo-<br />

Ma'an<br />

Co<br />

373 Begoniaceae Begonia poculifera Hook.f. var. teusziana (J.Braun &<br />

K.Schum.) J.J. de Wilde<br />

ep bu Ep Lg Hl<br />

374 Begoniaceae Begonia potamophila Gilg sb bu Hb Lg Co<br />

375 Begoniaceae Begonia quadrialata Warb. subsp. quadrialata sb gn Hb Gc Co<br />

376 Begoniaceae Begonia sciaphila Gilg ex Engl. sb bu Hb Lg Co<br />

377 Begoniaceae Begonia scutifolia Hook.f. ep bu Hb Lg Hl<br />

378 Begoniaceae Begonia sessilifolia Hook.f. sb GD Hb Lg Co<br />

151


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

379 Begoniaceae Begonia staudtii Gilg sb bu Hb Lg Co<br />

380 Begoniaceae Begonia subscutata De Wild. ep gn Ep Gc Co<br />

381 Begoniaceae Begonia susaniae Sosef sb bu Hb Lg Hl<br />

382 Begoniaceae Begonia zenkeriana Smith & Wassh. sb BK Hb Sw-Cam Co<br />

383 Bignoniaceae Markhamia lutea (Benth.) K.Schum. pi gn Tr Gc Re<br />

384 Bignoniaceae Markhamia tomemtosa (Benth.) K.Schum. pi gn Tr Gc Hl<br />

385 Bignoniaceae Newbouldia laevis (P.Beauv.) Seeman ex Bureau pi gn Tr Gc Co<br />

386 Bignoniaceae Spathodea campanulata P.Beauv. pi gn Tr Gc Co<br />

387 Bombacaceae Bombax brevicuspe Sprague pi gn Tr Gc Re<br />

388 Bombacaceae Bombax buonopozense P.Beauv. pi gn Tr Tra Re<br />

389 Bombacaceae Ceiba pentandra (L.) Gaertn. pi gn Tr Pa Re<br />

390 Boraginaceae Cordia aurantiaca Baker pi bu Tr Lg Co<br />

391 Boraginaceae Cordia platythyrsa Baker pi pk Tr Gc Co VU A1d<br />

392 Burmanniaceae Burmannia congesta (Wright) Jonker sa bu Sa Lg Hl<br />

393 Burmanniaceae Gymnosiphon longistylus (Benth.) Hutch. sa bu Sa Lg Co<br />

394 Burseraceae Aucoumea klaineana Pierre pi bu Tr Lg Co VU A1cd<br />

395 Burseraceae Canarium schweinfurthii Engl. np rd Tr Tra Co<br />

396 Burseraceae Dacryodes buettneri (Engl.) Lam np bu Tr Lg Co<br />

397 Burseraceae Dacryodes edulis (G.Don) H.J.Lam pi pk Tr Gc Co<br />

398 Burseraceae Dacryodes igaganga Aubrev. & Pellegr. np bu Tr Lg Re VU A1cd+2cd<br />

399 Burseraceae Dacryodes klaineana (Pierre) H.J.Lam sb gn Tr Gc Co<br />

400 Burseraceae Dacryodes ledermannii (Engl.) H.J.Lam sb bu Tr Lg Hl<br />

401 Burseraceae Dacryodes macrophylla (Oliv.) H.J.Lam sb bu Tr Lg Re<br />

402 Burseraceae Santiria trimera (Oliv.) Aubrév. np gn Tr Gc Re<br />

403 Cactaceae Rhipsalis baccifera (J.Miller) Stearn ep gn Ep Tra Co<br />

404 Capparaceae Buchholzia coriacea Engl. sb gn Tr Gc Co<br />

405 Capparaceae Cleome rutidosperma DC. pi gn Hb Gc Co<br />

406 Capparaceae Cleome spinosa Jacq. pi gn Hb In Hl<br />

407 Capparaceae Ritchiea capparoides (And.) Britten sb gn Sh Gc Co<br />

408 Capparaceae Ritchiea erecta Hook.f. sb bu Sh Lg Co<br />

409 Capparaceae Ritchiea simplicifolia Oliv. caloneura (Gilg) Kers sb BK Sh Cam Co<br />

410 Caryophyllaceae Drymaria cordata (L.) Willd. pi gn Hb Pa Co<br />

411 Cecropiaceae Musanga cecropioides R.Br. ex Tedlie pi gn Tr Gc Re<br />

412 Cecropiaceae Myrianthus arboreus P.Beauv. pi gn Tr Tra Co<br />

413 Cecropiaceae Myrianthus preussii Engl. subsp. preussii pi bu Tr Lg Co<br />

414 Cecropiaceae Myrianthus serratus (Trécul) Benth. & Hook. sb gn Sh Gu Co<br />

415 Celastraceae Apodostigma pallens (Planch. ex Oliv.) R.Wilczek np gn Swcl Gc Hl<br />

416 Celastraceae Campylostemon angolense Welw. ex Oliv. np gn Swcl Gc Hl<br />

417 Celastraceae Cuervea macrophylla (Vahl) R.Wilczek ex N.Hallé np gn Swcl Gc Hl<br />

418 Celastraceae Loeseneriella apocynoides (Welw. ex Oliv.) N.Hallé ex pi gn Swcl Gc Hl<br />

152<br />

J.<br />

419 Celastraceae Loeseneriella clematoides (Loes.) R.Wilczek ex N.Hallé pi gn Swcl Gc Hl<br />

420 Celastraceae Loeseneriella iotricha (Loes.) N.Hallé var. iotricha pi gn Swcl Gc Hl<br />

421 Celastraceae Loeseneriella rowlandii (Loes.) N.Hallé np gn Swcl Gc Co<br />

422 Celastraceae Pristimera luteoviridis (Exell) N.Hallé var. kribiana np BK Swcl Campo- Hl<br />

N.Hallé<br />

Ma'an<br />

423 Celastraceae Pristimera preussii (Loes.) N.Hallé np bu Swcl Lg Co<br />

424 Celastraceae Salacia alata De Wild. var. alata np bu Swcl Lg Co<br />

425 Celastraceae Salacia alata De Wild. var. superba N.Hallé np bu Swcl Lg Co<br />

426 Celastraceae Salacia cornifolia Hook.f. np gn Swcl Gc Co<br />

427 Celastraceae Salacia debilis (G.Don) Walp. np gn Swcl Gc Co<br />

428 Celastraceae Salacia dimidia N.Hallé sb bu Sh Lg Co<br />

429 Celastraceae Salacia dusenii Loes. np gn Swcl Gc Co<br />

430 Celastraceae Salacia erecta (G.Don) Walp. var. erecta np gn Swcl Tra Co<br />

431 Celastraceae Salacia gabunensis Loes. np bu Swcl Lg Co<br />

432 Celastraceae Salacia lehmbachii Loes. var. lehmbachii np gn Swcl Gc Co<br />

433 Celastraceae Salacia lehmbachii Loes. var. pes-ranulae N.Hallé np bu Swcl Lg Co VU B1+2c<br />

434 Celastraceae Salacia letouzeyana N.Hallé np bu Swcl Lg Co<br />

435 Celastraceae Salacia loloensis Loes. marmorata Loes. np gn Swcl Gc Co<br />

436 Celastraceae Salacia loloensis Loes. var. loloensis np gn Swcl Gc Co<br />

437 Celastraceae Salacia loloensis Loes. var. sibangana N.Hallé np GD Swcl Lg Co<br />

438 Celastraceae Salacia longipes (Oliv.) N.Hallé var. camerunensis<br />

(Loes.) N.Hallé<br />

np gn Swcl Gc Co<br />

439 Celastraceae Salacia longipes (Oliv.) N.Hallé var. longipes np gn Swcl Gc Co<br />

440 Celastraceae Salacia lucida Oliv. np GD Swcl Lg Co<br />

441 Celastraceae Salacia mannii Oliv. np gn Swcl Gc Co


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

442 Celastraceae Salacia nitida (Benth.) N.E.Br. np gn Swcl Gc Co<br />

443 Celastraceae Salacia pallescens Oliv. np gn Swcl Gc Co<br />

444 Celastraceae Salacia preussii Loes. var. preussii np bu Swcl Lg Co<br />

445 Celastraceae Salacia regeliana J.Braun & K.Schum. np gn Swcl Gc Co<br />

446 Celastraceae Salacia staudtiana Loes. var. leonensis Loes. np gn Swcl Gc Co<br />

447 Celastraceae Salacia staudtiana Loes. var. staudtiana np bu Swcl Lg Co<br />

448 Celastraceae Salacia whytei Loes. var. wermoeseniana (Wilczek) np gn Swcl Gc Hl<br />

Hallé<br />

449 Celastraceae Salacia whytei Loes. var. whytei np gn Swcl Gc Hl<br />

450 Celastraceae Salacia zenkeri Loes. np gn Swcl Gc Hl<br />

451 Celastraceae Salacighia letestuana (Pellegr.) Blakelock np gn Swcl Gc Hl<br />

452 Celastraceae Thyrsosalacia nematobrachion Loes. np bu Swcl Lg Hl<br />

453 Celastraceae Tristemonanthus mildbraedianus Loes. np gn Swcl Gc Hl<br />

454 Chrysobalanaceae Afrolicania elaeosperma Mildbr. ri gn Sh Gu Hl<br />

455 Chrysobalanaceae Chrysobalanus icaco L. subsp. icaco ri gn Tr Pa Co<br />

456 Chrysobalanaceae Dactyladenia barteri (Hook.f. ex Oliv.) Prance & F.White sb gn Tr Gc Co<br />

457 Chrysobalanaceae Dactyladenia campestris (Engl.) Prance & F.White pi gn Tr Gc Co<br />

458 Chrysobalanaceae Dactyladenia cinera (Engl. ex de Wild) Prance &<br />

F.White<br />

sb BK Tr Sw-Cam Hl CR B1+2c<br />

459 Chrysobalanaceae Dactyladenia floribunda Welw. ri gn Tr Gc Hl<br />

460 Chrysobalanaceae Dactyladenia icondere (Baill.) Prance & F.White sb bu Sh Lg Co<br />

461 Chrysobalanaceae Dactyladenia pallescens (Baill.) Prance & F.White sb gn Tr Gc Co<br />

462 Chrysobalanaceae Magnistipula glaberrima Engl. sb bu Tr Lg Co<br />

463 Chrysobalanaceae Magnistipula tessmannii (Engl.) Prance sb gn Tr Gc Hl<br />

464 Chrysobalanaceae Magnistipula zenkeri Engl. ri gn Tr Gu Hl<br />

465 Chrysobalanaceae Maran<strong>the</strong>s chrysophylla (Oliv.) Prance sb gn Tr Gc Co<br />

466 Chrysobalanaceae Maran<strong>the</strong>s gabunensis (Engl.) Prance sb gn Tr Gc Hl<br />

467 Chrysobalanaceae Maran<strong>the</strong>s glabra (Oliv.) Prance sb gn Tr Gc Co<br />

468 Chrysobalanaceae Parinari excelsa Sabine np gn Tr Gc Re<br />

469 Chrysobalanaceae Parinari hypochrysea Mildbr. ex Letouzey & F.White np bu Tr Lg Re<br />

470 Colchicaceae Gloriosa superba L. pi gn Hb Pal Co<br />

471 Combretaceae Combretum auriculatum Engl. & Diels ri gn Lwcl Gc Co<br />

472 Combretaceae Combretum bipindense Engl. & Diels np gn Lwcl Gc Co<br />

473 Combretaceae Combretum bracteatum (Laws.) Engl. & Diels pi gn Lwcl Gc Co<br />

474 Combretaceae Combretum cinnabarinum Engl. & Diels np bu Lwcl Lg Hl<br />

475 Combretaceae Combretum comosum G. Don pi gn Lwcl Gc Hl<br />

476 Combretaceae Combretum conchipetalum Engl. & Diels ri gn Lwcl Gc Hl<br />

477 Combretaceae Combretum confertum (Benth.) Laws. pi gn Lwcl Gc Hl<br />

478 Combretaceae Combretum cuspidatum Planch. ex Benth. ri gn Lwcl Gc Hl<br />

479 Combretaceae Combretum demeusi De Wild. ri gn Lwcl Gc Hl<br />

480 Combretaceae Combretum lacianiatum Engl. ex Engl. & Diels pi gn Lwcl Gc Hl<br />

481 Combretaceae Combretum mannii Laws. ex Engl. & Diels pi gn Lwcl Gc Co<br />

482 Combretaceae Combretum mucronatum Thonn. ex Schum. pi gn Lwcl Gc Hl<br />

483 Combretaceae Combretum oyemense Exell np gn Lwcl Gu Hl<br />

484 Combretaceae Combretum paniculatum Vent. pi gn Lwcl Tra Co<br />

485 Combretaceae Combretum platypterum (Welw.) Hutch. & Dalziel pi gn Lwcl Gc Co<br />

486 Combretaceae Combretum racemosum P.Beauv. pi gn Lwcl Gc Co<br />

487 Combretaceae Combretum sordidum Exell pi gn Lwcl Gc Hl<br />

488 Combretaceae Combretum zenkeri Engl. & Diels pi gn Lwcl Gu Hl<br />

489 Combretaceae Conocarpus erectus L. ri gn Swcl Tra Co<br />

490 Combretaceae Laguncularia racemosa (L.) Gaertn.f. sw gn Swcl Tra Hl<br />

491 Combretaceae Pteleopsis hylodendron Mildbr. pi gn Tr Gc Co<br />

492 Combretaceae Strephonema mannii Hook.f. sb bu Tr Lg Co<br />

493 Combretaceae Strephonema sericeum Hook. f. sb bu Tr Lg Co<br />

494 Combretaceae Terminalia catappa L. pi gn Tr In Re<br />

495 Combretaceae Terminalia ivorensis A.Chev. np sc Tr Gu Re VU A1cd<br />

496 Combretaceae Terminalia superba Engl. & Diels pi pk Tr Gc Re<br />

497 Commelinaceae Amischotolype tenuis (C.B.Clarke) R.S.Rao sb gn Hb Gc Co<br />

498 Commelinaceae Aneilema beniniense (P.Beauv.) Kunth pi gn Hb Tra Co<br />

499 Commelinaceae Aneilema umbrosum (Vahl) Kunth subsp. ovatooblongum<br />

(P.Beauv.) J.K.Morton<br />

sb gn Hb Gc Co<br />

500 Commelinaceae Aneilema umbrosum (Vahl) Kunth subsp. umbrosum sb gn Hb Gc Co<br />

501 Commelinaceae Buforrestia mannii C.B.Clarke sb bu Hb Lg Co<br />

502 Commelinaceae Commelina africana L. var. africana pi gn Hb Gc Co<br />

503 Commelinaceae Commelina benghalensis L. pi gn Hb Gc Co<br />

504 Commelinaceae Commelina cameroonensis J.K.Morton pi bu Hb Lg Co<br />

153


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

505 Commelinaceae Commelina capitata Benth. pi gn Hb Gc Co<br />

506 Commelinaceae Commelina diffusa Burm.f. pi gn Hb Pa Co<br />

507 Commelinaceae Commelina longicapsa C.B.Clarke sb gn Hb Gc Co<br />

508 Commelinaceae Floscopa africana (P.Beauv.) C.B.Clarke subsp. africana sw gn Hb Gc Co<br />

509 Commelinaceae Floscopa mannii C.B.Clarke sw bu Hb Lg Co<br />

510 Commelinaceae Palisota ambigua (P.Beauv.) C.B.Clarke np gn Sh Gc Co<br />

511 Commelinaceae Palisota barteri Hook. sb gn Hb Gc Co<br />

512 Commelinaceae Palisota bracteosa C.B.Clarke sb gn Hb Gc Co<br />

513 Commelinaceae Palisota hirsuta (Thunb.) K.Schum. pi gn Sh Gc Co<br />

514 Commelinaceae Palisota lagopus Mildbr. sb GD Hb Lg Co<br />

515 Commelinaceae Palisota mannii C.B.Clarke sb gn Hb Gc Co<br />

516 Commelinaceae Palisota satabiei Brenan sb GD Hb Lg Co<br />

517 Commelinaceae Palisota thollonii Hua sb gn Hb Gc Co<br />

518 Commelinaceae Pollia condensata C.B.Clarke pi gn Hb Tra Co<br />

519 Commelinaceae Polyspatha paniculata Benth. sb gn Hb Gc Co<br />

520 Commelinaceae Stanfieldiella imperforata (C.B.Clarke) Brenan pi gn Hb Tra Co<br />

521 Commelinaceae Stanfieldiella oligantha (Mildbr.) Brenan pi gn Hb Gc Co<br />

522 Compositae Adenostemma perrottetii DC. pi gn Hb Gc Hl<br />

523 Compositae Ageratum conyzoides L. pi gn Hb Gc Re<br />

524 Compositae Aspilia africana (Pers.) C.D.Adams subsp. africana pi gn Hb Gc Re<br />

525 Compositae Conyza sumatrensis (Retz.) E.Walker pi gn Hb Gc Hl<br />

526 Compositae Crassocephalum crepidioides (Benth.) S.Moore pi gn Hb Pal Hl<br />

527 Compositae Elephantopus mollis Kunth pi gn Hb In Co<br />

528 Compositae Eleu<strong>the</strong>ran<strong>the</strong>ra ruderalis (Sw.) Sch.Bip. pi gn Hb Pa Hl<br />

529 Compositae Emilia coccinea (Sims) G.Don pi gn Hb Tra Co<br />

530 Compositae Eupatorium odoratum L. pi gn Hb Pa Re<br />

531 Compositae Melan<strong>the</strong>ra scandens (Schumach. & Thonn.) Roberty pi gn Hb Tra Co<br />

532 Compositae Microglossa pyrifolia (Lam.) Kuntze pi gn Hb Pal Hl<br />

533 Compositae Mikania cordata (Burm.f.) B.L.Robinson var. cordata pi gn Hb Pal Co<br />

534 Compositae Mikaniopsis paniculata Milne-Redh. pi gn Hb Gc Hl<br />

535 Compositae Spilan<strong>the</strong>s filicualis (Schum. & Thonn.) C.D.Adams pi gn Hb Gc Re<br />

536 Compositae Struchium sparganophora (L.) Kuntze pi gn Hb Pa Hl<br />

537 Compositae Vernonia conferta Benth. pi gn Sh Gc Re<br />

538 Compositae Vernonia hymenolepis A.Rich. pi gn Hb Tra Hl<br />

539 Compositae Vernonia stellulifera (Benth.) C.Jeffrey pi gn Hb Gc Co<br />

540 Connaraceae Agelaea paradoxa Gilg np gn Lwcl Gc Re<br />

541 Connaraceae Agelaea pentagyna (Lam.) Baill. np gn Lwcl Tra Re<br />

542 Connaraceae Agelaea poggeana Gilg np gn Lwcl Gc Co<br />

543 Connaraceae Cnestis corniculata Lam. np gn Swcl Tra Co<br />

544 Connaraceae Cnestis ferruginea Vahl ex DC. pi gn Swcl Gc Co<br />

545 Connaraceae Connarus africanus Lam. pi gn Lwcl Gc Hl<br />

546 Connaraceae Connarus congolanus Schellenb. np gn Lwcl Gc Co<br />

547 Connaraceae Connarus griffonianus Baill. np gn Lwcl Gc Co<br />

548 Connaraceae Connarus staudtii Gilg np gn Lwcl Gc Co<br />

549 Connaraceae Hemandradenia mannii Stapf sb bu Tr Lg Co LR/nt<br />

550 Connaraceae Jollydora duparquetiana (Baill.) Pierre sb gn Sh Gc Co<br />

551 Connaraceae Manotes expansa Sol. ex Planch. pi gn Lwcl Gc Hl<br />

552 Connaraceae Manotes griffoniana Baill. pi gn Lwcl Gc Hl<br />

553 Connaraceae Rourea coccinea (Thonn. ex Schum.) Benth. subsp.<br />

coccinea<br />

pi gn Lwcl Gc Co<br />

554 Connaraceae Rourea minor (Gaertn.) Alston pi gn Lwcl Pal Co<br />

555 Connaraceae Rourea myriantha Baill. pi gn Lwcl Gc Hl<br />

556 Connaraceae Rourea obliquifoliolata Gilg pi gn Lwcl Gc Co<br />

557 Connaraceae Rourea solanderi Baker pi gn Lwcl Gc Hl<br />

558 Connaraceae Rourea thomsonii (Baker) Jongkind pi gn Lwcl Tra Co<br />

559 Convolvulaceae Calycobolus africanus (G.Don) Heine pi gn Lwcl Gc Co<br />

560 Convolvulaceae Ipomoea cairica (L.) Sweet pi gn Hb Pa Co<br />

561 Convolvulaceae Ipomoea involucrata P.Beauv. pi gn Hb Tra Co<br />

562 Convolvulaceae Ipomoea mauritiana Jacq. pi gn Hb Pa Co<br />

563 Convolvulaceae Ipomoea pes-caprae (L.) Sweet subsp. Brasiliensis<br />

Choisy<br />

pi gn Hb Pa Co<br />

564 Convolvulaceae Ipomoea stolonifera (Cyrill.) J.F.Gmel. pi gn Hb Tra Hl<br />

565 Convolvulaceae Neuropeltis acuminata (P.Beauv.) Benth. np gn Lwcl Gc Co<br />

566 Convolvulaceae Neuropeltis incompta Good np gn Lwcl Gc Co<br />

567 Convolvulaceae Neuropeltis pseudovelutina Lejoly & Lisowski np gn Lwcl Gc Co<br />

568 Convolvulaceae Neuropeltis velutina Hallier f. np gn Lwcl Gc Co<br />

154


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

569 Costaceae Costus afer Ker Gawl. pi bu Hb Lg Co<br />

570 Costaceae Costus dewevrei De Wild. & T.Durand pi gn Hb Gc Hl<br />

571 Costaceae Costus dinklagei K.Schum. sb gn Hb Gc Co<br />

572 Costaceae Costus dubius (Afzel.) K.Schum. pi gn Hb Tra Co<br />

573 Costaceae Costus englerianus K.Schum. sb gn Hb Gc Co<br />

574 Costaceae Costus lateriflorus Baker pi gn Hb Gc Co<br />

575 Costaceae Costus letestui Pellegr. sb bu Hb Lg Co<br />

576 Costaceae Costus ligularis Baker sb bu Hb Lg Co<br />

577 Costaceae Costus lucanusianus J.Braun & K.Schum. pi gn Hb Gc Co<br />

578 Costaceae Costus phaeotrichus Loes. pi gn Hb Gc Co<br />

579 Costaceae Costus smithiana (Baker) Planch. pi gn Hb Gc Hl<br />

580 Costaceae Costus tappenbeckianus J.Braun & K.Schum. sb bu Hb Lg Co<br />

581 Crassulaceae Kalanchoe pinnata (Lam.) Pers. pi gn Hb Pa Re<br />

582 Cucurbitaceae Bambekea racemosa Cogn. pi gn Hcl Gc Co<br />

583 Cucurbitaceae Coccinia barteri (Hook.f.) Keay pi gn Hcl Tra Co<br />

584 Cucurbitaceae Cogniauxia podolaena Baill. pi gn Hcl Gc Co<br />

585 Cucurbitaceae Cucumeropsis mannii Naud. ri gn Hcl Tra Re<br />

586 Cucurbitaceae Lagenaria breviflora Benth. pi gn Hcl Tra Hl<br />

587 Cucurbitaceae Momordica cabraei (Cogn.) C.Jeffrey pi gn Hcl Tra Co<br />

588 Cucurbitaceae Momordica charantia L. pi gn Hcl Pa Co<br />

589 Cucurbitaceae Momordica cissoides Planch. ex Benth. pi gn Hcl Tra Co<br />

590 Cucurbitaceae Momordica foetida Schum. & Thonn. pi gn Hcl Tra Co<br />

591 Cucurbitaceae Momordica multiflora Hook.f. pi gn Hcl Tra Co<br />

592 Cucurbitaceae Raphidiocystis jeffreyana R. & A. Fern pi gn Hcl Gc Co<br />

593 Cucurbitaceae Ruthalicia longipes (Hook.f.) C.Jeffrey pi gn Hcl Gu Co<br />

594 Cucurbitaceae Zehneria capillacea (Shumach) C. Jeffrey pi gn Hcl Gc Hl<br />

595 Cucurbitaceae Zehneria keayana R. & A.Fern. pi gn Hcl Gc Hl<br />

596 Cyanastraceae Cyanastrum cordifolium Oliv. sb bu Hb Lg Co<br />

597 Cya<strong>the</strong>aceae Alsophila camerooniana (Hook.) R.M.Tryon sb gn Sh Gc Re<br />

598 Cyperaceae Afrotrilepis pilosa (Boeck.) J.Raynal pi gn Hb Gc Hl<br />

599 Cyperaceae Bulbostylis hensii (C.B.Clarke) Haines pi gn Hb Tra Hl<br />

600 Cyperaceae Cyperus cuspidatus Kunth pi gn Hb Gc Hl<br />

601 Cyperaceae Cyperus cyperoides (L.) Kuntze pi gn Hb Gc Co<br />

602 Cyperaceae Cyperus distans L.f. pi gn Hb Gc Co<br />

603 Cyperaceae Cyperus fertilis Boeck. pi gn Hb Gc Co<br />

604 Cyperaceae Cyperus laxus Lam. subsp. buchholzii (Boeck.) Lye pi gn Hb Tra Co<br />

605 Cyperaceae Cyperus ligularis L. pi gn Hb Tra Hl<br />

606 Cyperaceae Cyperus tenuiculmis Boeck. pi gn Hb Tra Hl<br />

607 Cyperaceae Cyperus tenuis Sw. pi gn Hb Tra Co<br />

608 Cyperaceae Eleocharis geniculata (L.) Roem. & Schult. pi gn Hb Tra Hl<br />

609 Cyperaceae Fimbristylis bisumbellata (Forssk.) Bubani pi gn Hb Pa Hl<br />

610 Cyperaceae Fimbristylis cymosa R.Br. pi gn Hb Pa Hl<br />

611 Cyperaceae Fimbristylis dichotoma (L.) Vahl pi gn Hb Pa Hl<br />

612 Cyperaceae Fimbristylis ferruginea (L.) Vahl pi gn Hb Pa Hl<br />

613 Cyperaceae Fimbristylis hispidula (Vahl) Kunth pi gn Hb Pa Hl<br />

614 Cyperaceae Fimbristylis squarrosa Vahl pi gn Hb Pa Hl<br />

615 Cyperaceae Fuirena umbellata Rottb. pi gn Hb Pa Hl<br />

616 Cyperaceae Hypolytrum heteromorphum Nelmes sb gn Hb Gc Co<br />

617 Cyperaceae Hypolytrum lancifolium C.B.Clarke sb gn Hb Gc Co<br />

618 Cyperaceae Hypolytrum purpuracens Cherm. sb gn Hb Gc Co<br />

619 Cyperaceae Hypolytrum sp. nov. ined. sb BK Hb Campo-<br />

Ma'an<br />

Co<br />

620 Cyperaceae Kyllinga nemoralis (Forst.) Dandy ex Hutch. pi gn Hb Tra Co<br />

621 Cyperaceae Kyllinga peruviana Lam. pi gn Hb Tra Hl<br />

622 Cyperaceae Kyllinga tenuifolia Steud. pi gn Hb Tra Hl<br />

623 Cyperaceae Mapania africana Boeck. sb bu Hb Lg Co<br />

624 Cyperaceae Mapania amplivaginata K.Schum. sb gn Hb Gc Co<br />

625 Cyperaceae Mapania macrantha (Boeck) H.Pfeiffer sb bu Hb Lg Co<br />

626 Cyperaceae Mapania mannii C.B.Clarke subsp. mannii sb gn Hb Gc Co<br />

627 Cyperaceae Mapania pubisquama Cherm. sb gn Hb Gc Co<br />

628 Cyperaceae Mapania raynaliana D.A.Simpson sb bu Hb Lg Co<br />

629 Cyperaceae Mapania soyauxii (Boeck) K.Schum. sb gn Hb Gc Co<br />

630 Cyperaceae Pycreus cataractarum C.B.Clarke pi gn Hb Pa Hl<br />

631 Cyperaceae Pycreus smithianus (Ridley) C.B.Clarke pi gn Hb Pa Hl<br />

632 Cyperaceae Remirea maritima Aubl. pi gn Hb Pa Hl<br />

633 Cyperaceae Scleria boivinii Steud. pi gn Hb Gc Co<br />

155


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

634 Cyperaceae Scleria catophylla C.B.Clarke pi gn Hb Gc Hl<br />

635 Cyperaceae Scleria naumanniana Boeck. pi gn Hb Gc Hl<br />

636 Cyperaceae Scleria racemosa Poir. pi gn Hb Gc Co<br />

637 Davalliaceae Davallia chaerophylloides (Poir.) Steud. ep gn Hb Tra Hl<br />

638 Dennstaedtiaceae Lonchitis currorii (Hook.) Mett. ex Kuhn ep gn Hb Tra Co<br />

639 Dennstaedtiaceae Microlepia speluncae (l.) T.Moore ep gn Hb Pa Co<br />

640 Dichapetalaceae Dichapetalum affine (Planch. ex Benth.) Breteler np bu Lwcl Lg Co<br />

641 Dichapetalaceae Dichapetalum altescandens Engl. np bu Lwcl Lg Hl<br />

642 Dichapetalaceae Dichapetalum angolense Chodat np gn Lwcl Gc Co<br />

643 Dichapetalaceae Dichapetalum arachnoideum Breteler np bu Lwcl Lg Hl<br />

644 Dichapetalaceae Dichapetalum bangii (Didr.) Engl. np gn Lwcl Gc Hl<br />

645 Dichapetalaceae Dichapetalum barbatum Breteler np bu Lwcl Lg Hl<br />

646 Dichapetalaceae Dichapetalum choristilum Engl. np gn Lwcl Gc Co<br />

647 Dichapetalaceae Dichapetalum crassifolium Chodat var. crassifolium np gn Lwcl Gc Co<br />

648 Dichapetalaceae Dichapetalum crassifolium Chodat var. integrum (Pierre) np<br />

Breteler<br />

bu Lwcl Lg Co<br />

649 Dichapetalaceae Dichapetalum cymulosum (Oliv.) Engl. np GD Lwcl Cam Co<br />

650 Dichapetalaceae Dichapetalum dewevrei De Wild. & T.Durand var.<br />

dewevrei<br />

np bu Lwcl Lg Hl<br />

651 Dichapetalaceae Dichapetalum gabonense Engl. np bu Lwcl Lg Co<br />

652 Dichapetalaceae Dichapetalum glomeratum Engl. np gn Lwcl Gc Co<br />

653 Dichapetalaceae Dichapetalum heudelotii (Planch. ex Oliv.) Baill. var.<br />

hispidum (Oliv.) Breteler<br />

np gn Lwcl Gc Co<br />

654 Dichapetalaceae Dichapetalum heudelotii (Planch. ex Oliv.) Baill. var.<br />

heudelotii<br />

np gn Lwcl Gc Co<br />

655 Dichapetalaceae Dichapetalum heudelotii (Planch. ex Oliv.) Baill. var.<br />

longitubulosum (Engl.) Breteler<br />

np bu Lwcl Lg Co<br />

656 Dichapetalaceae Dichapetalum heudelotii (Planch. ex Oliv.) Baill. var.<br />

ndongense (Engl.) Breteler<br />

np gn Lwcl Gc Hl<br />

657 Dichapetalaceae Dichapetalum insigne Engl. sb gn Lwcl Gc Co<br />

658 Dichapetalaceae Dichapetalum integripetalum Engl. np bu Lwcl Lg Co<br />

659 Dichapetalaceae Dichapetalum librevillense Pellegr. np bu Lwcl Lg Hl<br />

660 Dichapetalaceae Dichapetalum madagascariense Poir. var.<br />

madagascariense<br />

np gn Lwcl Tra Co<br />

661 Dichapetalaceae Dichapetalum melanocladum Breteler np bu Lwcl Lg Co<br />

662 Dichapetalaceae Dichapetalum minutiflorum Engl. & Ruhl. np bu Lwcl Lg Co<br />

663 Dichapetalaceae Dichapetalum mombuttense Engl. np gn Lwcl Gc Co<br />

664 Dichapetalaceae Dichapetalum mundense Engl. np gn Lwcl Gc Co<br />

665 Dichapetalaceae Dichapetalum oblongum (Hook. f. ex Benth.) Engl. np gn Lwcl Gu Co<br />

666 Dichapetalaceae Dichapetalum oliganthum Breteler np BK Lwcl Sw-Cam Co<br />

667 Dichapetalaceae Dichapetalum pallidum (Oliv.) Engl. np gn Lwcl Gc Co<br />

668 Dichapetalaceae Dichapetalum parvifolium Engl. np gn Lwcl Gc Co<br />

669 Dichapetalaceae Dichapetalum pulchrum Breteler np bu Lwcl Lg Co<br />

670 Dichapetalaceae Dichapetalum reticulatum Engl. np bu Lwcl Lg Co<br />

671 Dichapetalaceae Dichapetalum rudatisii Engl. np gn Lwcl Gc Co<br />

672 Dichapetalaceae Dichapetalum staudtii Engl. np gn Lwcl Gc Co<br />

673 Dichapetalaceae Dichapetalum tomentosum Engl. np gn Lwcl Gc Co<br />

674 Dichapetalaceae Dichapetalum unguiculatum Engl. np gn Lwcl Gc Hl<br />

675 Dichapetalaceae Dichapetalum witianum Breteler np bu Lwcl Lg Hl<br />

676 Dichapetalaceae Dichapetalum zenkeri Engl. np gn Lwcl Gc Hl<br />

677 Dichapetalaceae Tapura africana Oliv. sb bu Tr Lg Co<br />

678 Dichapetalaceae Tapura tchoutoi Breteler sb BK Sh Campo-<br />

Ma'an<br />

Co<br />

679 Dilleniaceae Tetracera alnifolia Willd. var. podotricha (Gilg) Staner pi gn Lwcl Gc Co<br />

680 Dilleniaceae Tetracera alnifolia Willd.var. alnifolia pi gn Lwcl Gc Co<br />

681 Dilleniaceae Tetracera eriantha (Oliv.) Hutch. pi gn Lwcl Gc Hl<br />

682 Dioscoreaceae Dioscorea alata L. pi gn Swcl Gc Co<br />

683 Dioscoreaceae Dioscorea bulbifera L. pi gn Swcl Gc Co<br />

684 Dioscoreaceae Dioscorea liebrechtsiana De Wild. np gn Swcl Gc Hl<br />

685 Dioscoreaceae Dioscorea mangenotiana J.Miege pi pk Swcl Gc Hl<br />

686 Dioscoreaceae Dioscorea minutiflora Engl. np gn Swcl Gc Co<br />

687 Dioscoreaceae Dioscorea smilacifolia De Wild. np gn Swcl Gc Co<br />

688 Dracaenaceae Dracaena arborea (Willd.) Link. pi gn Tr Tra Co<br />

689 Dracaenaceae Dracaena aubreyana Brongn. ex C.J.Morren sb gn Sh Gc Co<br />

690 Dracaenaceae Dracaena bicolor Hook. sb bu Sh Lg Co<br />

691 Dracaenaceae Dracaena braunii Engl. sb gn Sh Gc Co<br />

692 Dracaenaceae Dracaena camerooniana Baker sb gn Sh Tra Co<br />

693 Dracaenaceae Dracaena cerasifera Hua sb gn Sh Gu Co<br />

156


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

694 Dracaenaceae Dracaena laxissima Engl. sb gn Sh Gc Co<br />

695 Dracaenaceae Dracaena phrynioides Hook. sb gn Sh Gc Co<br />

696 Dracaenaceae Dracaena poggei Engl. sb gn Sh Gc Co<br />

697 Dracaenaceae Dracaena surculosa Lindley sb gn Sh Gc Co<br />

698 Dracaenaceae Dracaena thalioides Mankoy ex C.Morr. sb bu Sh Lg Co<br />

699 Dracaenaceae Dracaena viridiflora Engl. & K.Krause sb bu Sh Lg Co<br />

700 Dryopteridaceae Dryopteris inaequalis agg. (Schltdl.) Kuntze ep gn Hb Tra Hl<br />

701 Dryopteridaceae Lastreopsis currori (Mett. ex Kuhn) Tindale sb gn Hb Gc Co<br />

702 Dryopteridaceae Lastreopsis davalliaeformis (Tardieu) Tardieu sb bu He Lg Hl<br />

703 Dryopteridaceae Lastreopsis efulensis (Baker) Tardieu sb gn Hb Gc Hl<br />

704 Dryopteridaceae Lastreopsis nigritiana (Baker) Tindale sb gn Hb Gc Co<br />

705 Dryopteridaceae Tectaria angelicifolia (Schum.) Copel. ep gn Hb Gc Co<br />

706 Dryopteridaceae Tectaria barteri (J.Sm.) C.Chr. sb bu Hb Lg Co<br />

707 Dryopteridaceae Tectaria camerooniana (Hook.) Alston sb gn Hb Gc Co<br />

708 Dryopteridaceae Tectaria fernandensis (Baker) C.Chr. sb bu Hb Lg Co<br />

709 Dryopteridaceae Tectaria varians (Moore) C.Chr. sb bu Hb Lg Hl<br />

710 Dryopteridaceae Triplophyllum buchholzii (Kuhn) Holttum sb gn Hb Gc Co<br />

711 Dryopteridaceae Triplophyllum gabonense Holttum sb gn Hb Gc Co<br />

712 Dryopteridaceae Triplophyllum jenseniae (C.Chr.) Holttum sb gn Hb Gc Co<br />

713 Dryopteridaceae Triplophyllum pilosissimum (T.Moore) Holttum sb gn Hb Gc Co<br />

714 Dryopteridaceae Triplophyllum protensum (Sw.) Holttum sb gn Hb Gc Co<br />

715 Dryopteridaceae Triplophyllum securidiforme (Hook.) Holttum var.<br />

securidiforme<br />

sb gn Hb Gc Co<br />

716 Dryopteridaceae Triplophyllum varians (T.Moore) Holttum ep gn Hb Gc Co<br />

717 Ebenaceae Diospyros alboflavescens (Gürke) F.White sb BK Tr Sw-Cam Hl<br />

718 Ebenaceae Diospyros barteri Hiern sb bu Tr Gu Co VU A1c<br />

719 Ebenaceae Diospyros bipindensis Gürke sb gn Tr Gc Co<br />

720 Ebenaceae Diospyros boala De Wild. sb gn Tr Gc Co<br />

721 Ebenaceae Diospyros canaliculata De Wild. sb gn Tr Gc Co<br />

722 Ebenaceae Diospyros cinnabarina (Gürke) F.White sb bu Tr Lg Co<br />

723 Ebenaceae Diospyros conocarpa Gürke & K.Schum. sb gn Sh Gc Co<br />

724 Ebenaceae Diospyros crassiflora Hiern sb sc Tr Gc Re EN A1d<br />

725 Ebenaceae Diospyros dendo Welw. ex Hiern sb gn Tr Gc Co<br />

726 Ebenaceae Diospyros fragrans Gürke sb bu Tr Lg Co<br />

727 Ebenaceae Diospyros gabunensis Gürke sb gn Tr Gc Co<br />

728 Ebenaceae Diospyros gracilescens Gürke sb bu Tr Lg Co<br />

729 Ebenaceae Diospyros hoyleana F.White subsp. hoyleana sb gn Tr Gc Co<br />

730 Ebenaceae Diospyros iturensis (Gürke) Letouzey & F.White sb gn Tr Gc Co<br />

731 Ebenaceae Diospyros kamerunensis Gürke sb gn Tr Gu Co<br />

732 Ebenaceae Diospyros longiflora Letouzey & F.White sb bu Tr Lg Co<br />

733 Ebenaceae Diospyros mannii Hiern sb gn Tr Gc Co<br />

734 Ebenaceae Diospyros melocarpa F.White sb gn Sh Gc Co<br />

735 Ebenaceae Diospyros obliquifolia (Hiern ex Gürke) F.White sb gn Sh Gc Co<br />

736 Ebenaceae Diospyros physocalycina Gürke sb bu Tr Lg Co<br />

737 Ebenaceae Diospyros piscatoria Gürke sb gn Tr Gc Co<br />

738 Ebenaceae Diospyros polystemon Gürke sb gn Tr Gc Co<br />

739 Ebenaceae Diospyros preussii Gürke sw gn Sh Gc Co<br />

740 Ebenaceae Diospyros sanza-minika A.Chev. sb bu Tr Lg Co<br />

741 Ebenaceae Diospyros soyauxii Gürke & K. Schum. sb bu Tr Lg Co<br />

742 Ebenaceae Diospyros suaveolens Gürke sb bu Tr Lg Co<br />

743 Ebenaceae Diospyros zenkeri (Gürke) F.White sb gn Tr Gc Co<br />

744 Erythroxylaceae Aneulophus africanus Benth. sb gn Tr Gc Hl<br />

745 Erythroxylaceae Erythroxylum emarginatum Thonn. np gn Tr Tra Hl<br />

746 Erythroxylaceae Erythroxylum mannii Oliv. pi gn Tr Gc Co<br />

747 Euphorbiaceae Acalypha brachystachya Hornem. pi gn Hb Pal Hl<br />

748 Euphorbiaceae Afrotrewia kamerunica Pax & Hoffm. sb BK Sh Campo-<br />

Ma'an<br />

Co<br />

749 Euphorbiaceae Alchornea cordifolia (Schum. & Thonn.) Müll.Arg. pi gn Sh Tra Co<br />

750 Euphorbiaceae Alchornea floribunda Müll.Arg. sb gn Sh Gc Co<br />

751 Euphorbiaceae Alchornea hirtella Benth. pi gn Sh Tra Co<br />

752 Euphorbiaceae Alchornea laxiflora (Benth.) Pax & K.Hoffm. sb gn Sh Tra Co<br />

753 Euphorbiaceae Amanoa strobilacea Müll.Arg. sb bu Sh Gu Co VU A1c, B1+2c<br />

754 Euphorbiaceae Antidesma laciniatum Müll.Arg. var. laciniatum sb gn Tr Gc Co<br />

755 Euphorbiaceae Antidesma laciniatum Müll.Arg. var. membranaceum<br />

Müll.Arg.<br />

sb gn Tr Gc Co<br />

756 Euphorbiaceae Antidesma membranaceum Müll.Arg. pi gn Sh Tra Co<br />

157


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

757 Euphorbiaceae Antidesma venosum Tul. sb gn Tr Tra Co<br />

758 Euphorbiaceae Antidesma vogelianum Müll.Arg. sb gn Tr Tra Co<br />

759 Euphorbiaceae Argomuellera macrophylla Pax sb gn Sh Tra Co<br />

760 Euphorbiaceae Bridelia grandis Pierre ex Hutch. pi gn Tr Gu Re<br />

761 Euphorbiaceae Bridelia micrantha (Hochst.) Baill. pi gn Tr Gc Co<br />

762 Euphorbiaceae Cleistanthus bipindensis Pax sw bu Sh Lg Co<br />

763 Euphorbiaceae Cleistanthus zenkeri Jabl. sw bu Tr Lg Co<br />

764 Euphorbiaceae Croton gratissimus Burch. pi gn Sh Tra Co<br />

765 Euphorbiaceae Crotonogyne impedita Prain sb bu Sh Lg Co<br />

766 Euphorbiaceae Crotonogyne manniana Müll.Arg. sb bu Sh Lg Co LR/nt<br />

767 Euphorbiaceae Crotonogyne poggei Pax sb gn Sh Gc Co<br />

768 Euphorbiaceae Crotonogyne preussii Pax sb bu Sh Lg Co<br />

769 Euphorbiaceae Crotonogyne strigosa Prain sb bu Sh Lg Co<br />

770 Euphorbiaceae Crotonogyne zenkeri Pax sb gn Sh Gc Co<br />

771 Euphorbiaceae Cyathogyne viridis Müll.Arg. pi gn Hb Gc Co<br />

772 Euphorbiaceae Cyrtogonone argentea (Pax) Prain sb bu Tr Lg Re<br />

773 Euphorbiaceae Cyttaranthus congolensis J.Léonard sb gn Sh Gc Co<br />

774 Euphorbiaceae Dalechampia ipomoeifolia Benth. pi gn Hcl Tra Co<br />

775 Euphorbiaceae Dichostemma glaucescens Pierre sb gn Tr Gc Co<br />

776 Euphorbiaceae Discoclaoxylon hexandrum (Müll.Arg.) Pax & K.Hoffm. sb gn Tr Gc Co<br />

777 Euphorbiaceae Discoglypremna caloneura (Pax) Prain pi gn Tr Gc Re<br />

778 Euphorbiaceae Drypetes aframensis Hutch. sb gn Tr Gu Co<br />

779 Euphorbiaceae Drypetes afzelii (Pax) Hutch. sb gn Tr Gu Co<br />

780 Euphorbiaceae Drypetes aylmeri Hutch. & Dalziel sb gn Sh Gc Co<br />

781 Euphorbiaceae Drypetes capillipes (Pax) Pax & K.Hoffm. sb gn Sh Gc Co<br />

782 Euphorbiaceae Drypetes chevalieri Beille sb gn Sh Gc Co<br />

783 Euphorbiaceae Drypetes floribunda (Müll.Arg.) Hutch. sb gn Tr Gc Co<br />

784 Euphorbiaceae Drypetes gabunensis (Pierre) Hutch. sb bu Tr Lg Co<br />

785 Euphorbiaceae Drypetes gilgiana (Pax) Pax & K.Hoffm. sb gn Tr Gu Hl<br />

786 Euphorbiaceae Drypetes gossweileri S.Moore sb gn Tr Gc Co<br />

787 Euphorbiaceae Drypetes inaequalis Hutch. sb gn Sh Gu Co<br />

788 Euphorbiaceae Drypetes klainei Pierre ex Pax sb gn Tr Gc Co<br />

789 Euphorbiaceae Drypetes leonensis Pax sb gn Tr Gc Co<br />

790 Euphorbiaceae Drypetes magnistipula (Pax) Hutch. sb bu Sh Lg Co<br />

791 Euphorbiaceae Drypetes molunduana Pax & K.Hoffm. sb bu Sh Lg Co<br />

792 Euphorbiaceae Drypetes obanensis S.Moore sb bu Sh Lg Hl<br />

793 Euphorbiaceae Drypetes paxii Hutch. sb bu Tr Lg Co<br />

794 Euphorbiaceae Drypetes preussii (Pax) Hutch. sb bu Tr Lg Co VU B1+2c<br />

795 Euphorbiaceae Drypetes principum (Müll.Arg.) Hutch. sb bu Tr Lg Co<br />

796 Euphorbiaceae Drypetes similis Hutch. sb bu Tr Lg Co<br />

797 Euphorbiaceae Drypetes staudtii (Pax) Hutch. sb bu Tr Lg Co<br />

798 Euphorbiaceae Drypetes tessmanniana (Pax) Pax & K.Hoffm. sb bu Sh Lg Hl CR A1c+2c<br />

799 Euphorbiaceae Duvigneaudia inopinata (Prain) J.Léonard sb gn Sh Gc Co<br />

800 Euphorbiaceae Erythrococca africana (Baill.) Prain sb gn Sh Gc Co<br />

801 Euphorbiaceae Erythrococca anomala (Juss. ex Poir.) Prain sb bu Sh Lg Co<br />

802 Euphorbiaceae Erythrococca hispida (Pax) Prain sb bu Sh Lg Co<br />

803 Euphorbiaceae Erythrococca membranacea (Müll.Arg.) Prain sb bu Sh Lg Co<br />

804 Euphorbiaceae Euphorbia glaucophylla Poir. pi gn Hb Pa Hl<br />

805 Euphorbiaceae Euphorbia heterophylla L. pi gn Hb Pa Hl<br />

806 Euphorbiaceae Euphorbia hirta L. pi gn Hb Pa Co<br />

807 Euphorbiaceae Euphorbia polycnemoides Hochst. ex Boiss pi gn Hb Pa Co<br />

808 Euphorbiaceae Euphorbia prostrata Ait. pi gn Hb Pa Co<br />

809 Euphorbiaceae Euphorbia thymifolia L. pi gn Hb Pa Hl<br />

810 Euphorbiaceae Excoecaria guineensis (Benth.) Müll.Arg. pi gn Sh Tra Co<br />

811 Euphorbiaceae Grossera paniculata Pax sb bu Tr Lg Co<br />

812 Euphorbiaceae Hamilcoa zenkeri (Pax) Prain sb bu Sh Lg Co<br />

813 Euphorbiaceae Hevea brasiliensis (A.Juss.) Müll.Arg. pi gn Tr In Re<br />

814 Euphorbiaceae Jatropha curcas L. pi gn Sh Pa Hl<br />

815 Euphorbiaceae Keayodendron bridelioides Leandri sb gn Tr Gu Re<br />

816 Euphorbiaceae Klaineanthus gaboniae Pierre ex Prain sb gn Tr Gc Re<br />

817 Euphorbiaceae Macaranga barteri Müll.Arg. pi gn Tr Gu Co<br />

818 Euphorbiaceae Macaranga monandra Müll.Arg. pi gn Tr Tra Re<br />

819 Euphorbiaceae Macaranga occidentalis (Müll.Arg.) Müll.Arg. pi bu Tr Lg Re<br />

820 Euphorbiaceae Macaranga schweinfurthii Pax pi gn Tr Gc Hl<br />

821 Euphorbiaceae Maesobotrya barteri (Baill.) Hutch. var. barteri sb gn Sh Gu Hl<br />

158


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

822 Euphorbiaceae Maesobotrya bipindensis (Pax) Hutch. sb gn Sh Gc Co<br />

823 Euphorbiaceae Maesobotrya dusenii (Pax) Hutch. sb bu Sh Lg Co<br />

824 Euphorbiaceae Maesobotrya floribunda Benth. sb gn Sh Gc Co<br />

825 Euphorbiaceae Maesobotrya pauciflora Pax sb gn Sh Gc Co<br />

826 Euphorbiaceae Maesobotrya staudtii (Pax) Hutch. sb gn Tr Gc Co<br />

827 Euphorbiaceae Mallotus oppositifolius (Geiseler) Müll.Arg. pi gn Sh Tra Re<br />

828 Euphorbiaceae Manniophyton fulvum Müll.Arg. np gn Lwcl Gc Co<br />

829 Euphorbiaceae Maprounea membranacea Pax & K.Hoffm. sb gn Tr Gc Co<br />

830 Euphorbiaceae Mareya micrantha (Benth.) Müll.Arg. sb gn Tr Gc Co<br />

831 Euphorbiaceae Mareyopsis longifolia (Pax) Pax & K.Hoffm. sb gn Tr Gc Co<br />

832 Euphorbiaceae Margaritaria discoidea (Baill.) Webster pi gn Tr Pa Co<br />

833 Euphorbiaceae Necepsia afzelii Prain sb gn Sh Gu Co<br />

834 Euphorbiaceae Neoboutonia glabrescens Prain pi gn Tr Gu Hl<br />

835 Euphorbiaceae Neoboutonia mannii Benth. pi bu Tr Gu Co LR/nt<br />

836 Euphorbiaceae Phyllanthus amarus Schumach. & Thonn. pi gn Swcl Pa Hl<br />

837 Euphorbiaceae Phyllanthus mannianus Müll.Arg. pi bu Swcl Lg Co<br />

838 Euphorbiaceae Phyllanthus muellerianus (Kuntze) Exell pi gn Swcl Tra Co<br />

839 Euphorbiaceae Phyllanthus niruroides Müll.Arg. pi gn Swcl Gc Co<br />

840 Euphorbiaceae Plagiostyles africana (Müll.Arg.) Prain sb gn Tr Gu Co<br />

841 Euphorbiaceae Protomegabaria stapfiana (Beille) Hutch. sb gn Tr Gu Co<br />

842 Euphorbiaceae Pseudagrostistachys africana (Müll.Arg.) Pax &<br />

K.Hoffm.<br />

sb bu Tr Lg Co VU A1c, B1+2c<br />

843 Euphorbiaceae Pycnocoma macrophylla Benth. sb gn Sh Gc Co<br />

844 Euphorbiaceae Ricinodendron heudelotii (Baill.) Heckel pi pk Tr Tra Re<br />

845 Euphorbiaceae Ricinus communis L. pi gn Sh In Re<br />

846 Euphorbiaceae Sapium ellipticum (Krauss) Pax pi gn Tr Gc Re<br />

847 Euphorbiaceae Sibangea similis (Hutch.) Radcl.-Sm. sb bu Tr Lg Re<br />

848 Euphorbiaceae Spondianthus preussii Engl. var. preussii sw gn Tr Gu Re<br />

849 Euphorbiaceae Tetracarpidium conophorum (Müll.Arg.) Hutch. & pi pk Swcl Gc Co<br />

Dalziel<br />

850 Euphorbiaceae Tetrorchidium didymostemon (Baill.) Pax & K.Hoffm. pi gn Tr Gc Co<br />

851 Euphorbiaceae Thecacoris annobonae Pax & K.Hoffm. sb bu Sh Lg Co<br />

852 Euphorbiaceae Thecacoris batesii Hutch. sb bu Sh Lg Co<br />

853 Euphorbiaceae Thecacoris leptobotrya (Müll.Arg.) Brenan sb gn Sh Gc Co<br />

854 Euphorbiaceae Thecacoris stenopetala (Müll.Arg.) Müll.Arg. sb gn Sh Gu Co<br />

855 Euphorbiaceae Tragia benthami Baker pi gn Hcl Pa Co<br />

856 Euphorbiaceae Tragia preussii Pax pi gn Hcl Gc Hl<br />

857 Euphorbiaceae Tragia tenuifolia Benth. pi gn Hcl Gc Co<br />

858 Euphorbiaceae Uapaca acuminata (Hutch.) Pax & K.Hoffm. np bu Tr Lg Co<br />

859 Euphorbiaceae Uapaca guineensis Müll.Arg. np gn Tr Gc Co<br />

860 Euphorbiaceae Uapaca heudelotii Baill. sw bu Tr Lg Co<br />

861 Euphorbiaceae Uapaca paludosa Aubrév. & Léandri sw gn Tr Gc Re<br />

862 Euphorbiaceae Uapaca staudtii Pax np bu Tr Lg Co<br />

863 Euphorbiaceae Uapaca vanhouttei De Wild. np bu Tr Lg Co<br />

864 Flacourtiaceae Casearia barteri Mast. sw gn Tr Gc Co<br />

865 Flacourtiaceae Casearia stipitata Mast. sw gn Tr Gc Co<br />

866 Flacourtiaceae Dasylepis blackii (Oliv.) Chipp sb gn Tr Gc Co<br />

867 Flacourtiaceae Dovyalis zenkeri Gilg pi gn Sh Gc Co<br />

868 Flacourtiaceae Homalium africanum (Hook.f.) Benth. sw gn Tr Gc Co<br />

869 Flacourtiaceae Homalium dewevrei De Wild. & Th. Durand sw bu Tr Lg Hl<br />

870 Flacourtiaceae Homalium hypolosium Mildbr. sb bu Tr Lg Hl<br />

871 Flacourtiaceae Homalium letestui Pellegr. np gn Tr Gu Co<br />

872 Flacourtiaceae Homalium longistylum Mast. np gn Tr Tra Co<br />

873 Flacourtiaceae Homalium stipulaceum Welw. ex Mast. sb gn Tr Gc Co<br />

874 Flacourtiaceae Oncoba dentata Oliv. pi gn Tr Gc Co<br />

875 Flacourtiaceae Oncoba echinata Oliv. sb gn Tr Gc Hl<br />

876 Flacourtiaceae Oncoba flagelliflora (Mildbr.) Hul sb bu Tr Lg Co<br />

877 Flacourtiaceae Oncoba glauca (P.Beauv.) Planch. np gn Tr Gc Co<br />

878 Flacourtiaceae Oncoba mannii Oliv. sb gn Tr Gc Co<br />

879 Flacourtiaceae Oncoba welwitschii Oliv. sb gn Tr Gc Hl<br />

880 Flacourtiaceae Ophiobotrys zenkeri Gilg np gn Tr Gc Hl<br />

881 Flacourtiaceae Phyllobotryon spathulatum Müll.Arg. sb bu Sh Lg Co<br />

882 Flacourtiaceae Poggea alata Gürke sb gn Sh Gc Co<br />

883 Flacourtiaceae Scottellia coriacea A.Chev. ex Hutch. & Dalziel sb gn Tr Gc Co<br />

884 Flacourtiaceae Scottellia klaineana Pierre sb gn Tr Gc Co<br />

885 Flacourtiaceae Trichostephanus acuminatus Gilg sb bu Sh Lg Hl<br />

159


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

886 Flagellariaceae Flagellaria guineensis Schumach. pi gn Hb Gc Co<br />

887 Gesneriaceae Acanthonema diandrum (Engl.) B.L. Burtt ep bu Hb Lg Co<br />

888 Gesneriaceae Acanthonema strigosum Hook.f. ep bu Hb Lg Co<br />

889 Gesneriaceae Epi<strong>the</strong>ma tenue C.B.Clarke ep gn Hb Gc Co<br />

890 Gleicheniaceae Dicranopteris linearis (Burm.f.) Underw. var. linearis pi gn Hb Pa Co<br />

891 Gnetaceae Gnetum africanum Welw. np bu Hcl Lg Co<br />

892 Gnetaceae Gnetum buchholzianum Engl. np GD Hcl Cam Co<br />

893 Gramineae Acroceras zizanioides (Kunth) Dandy pi gn Hb Pa Hl<br />

894 Gramineae Andropogon auriculatus Stapf pi gn Hb Pa Hl<br />

895 Gramineae Andropogon gayanus Kunth var. polycladus (Hack.) pi gn Hb Pa Hl<br />

160<br />

W.D.Clayton<br />

896 Gramineae Antephora cristata (Doell) Hack. pi gn Hb Tra Hl<br />

897 Gramineae Axonopus compressus (Sw.) P.Beauv. pi gn Hb In Hl<br />

898 Gramineae Bambusa vulgaris H.Wendl. pi gn Hb In Re<br />

899 Gramineae Cento<strong>the</strong>ca lappacea (L.) Desv. pi gn Hb Pal Co<br />

900 Gramineae Chloris pilosa Schumach. pi gn Hb Tra Hl<br />

901 Gramineae Coix lacryma-jobi L. pi gn Hb Pa Hl<br />

902 Gramineae Cyrtococcum chaetophoron (Roem. & Schult.) Dandy pi gn Hb Gc Hl<br />

903 Gramineae Digitaria fuscescens (Presl) Henr. pi gn Hb Pa Hl<br />

904 Gramineae Digitaria horizontalis Willd. pi gn Hb Tra Hl<br />

905 Gramineae Digitaria longiflora (Retzuis) Person pi gn Hb Tra Hl<br />

906 Gramineae Eleusine indica (L.) Gaertn. pi gn Hb Pa Hl<br />

907 Gramineae Eragrostis atrovirens (Desf.) Trin. ex Steud. pi gn Hb Pa Hl<br />

908 Gramineae Eragrostis ciliaris (L.) R.Br. pi gn Hb Pa Hl<br />

909 Gramineae Guaduella densiflora Pilg. sb bu Hb Lg Co<br />

910 Gramineae Guaduella humilis W.D.Clayton sb bu Hb Lg Co<br />

911 Gramineae Guaduella macrostachys (K.Schum.) Pilger sb gn Hb Gc Co<br />

912 Gramineae Guaduella marantifolia Franch. sb GD Hb Lg Co<br />

913 Gramineae Guaduella mildbraedii Pilg. sb BK Hb Campo-<br />

Ma'an<br />

Hl<br />

914 Gramineae Guaduella oblonga Hutch. ex W.D.Clayton sb gn Hb Gc Co<br />

915 Gramineae Hyparrhenia wombaliensis (Vanderyst ex Robyns)<br />

Clayton<br />

pi bu Hb Lg Hl<br />

916 Gramineae Ichnanthus pallens (Swartz.) Benth. pi gn Hb Pa Hl<br />

917 Gramineae Ichnanthus vicinus (Baill.) Merr. pi gn Hb Pa Hl<br />

918 Gramineae Imperata cylindrica (L.) Raeuschel pi gn Hb Tra Hl<br />

919 Gramineae Isachne buettneri Hack. pi gn Hb Gc Hl<br />

920 Gramineae Leptaspis zeylanica Nees sb gn Hb Tra Co<br />

921 Gramineae Megastachya mucronata (Poir.) P.Beauv. pi gn Hb Tra Hl<br />

922 Gramineae Microcalamus barbinodis Franch. pi gn Hb Gc Co<br />

923 Gramineae Olyra latifolia L. pi gn Hb Tra Co<br />

924 Gramineae Oplismenus hirtellus (L.) P.Beauv. pi gn Hb Pa Co<br />

925 Gramineae Oryza sativa L. pi gn Hb Pa Hl<br />

926 Gramineae Panicum brevifolium L. pi gn Hb Pal Hl<br />

927 Gramineae Panicum maximum Jacq. pi gn Hb Pal Hl<br />

928 Gramineae Panicum mueense Vanderyst pi gn Hb Pal Hl<br />

929 Gramineae Panicum repens L. pi gn Hb Pa Hl<br />

930 Gramineae Paspalum auriculatum sensu Clayton pi gn Hb Tra Hl<br />

931 Gramineae Paspalum conjugatum Berg pi gn Hb Pa Hl<br />

932 Gramineae Paspalum lamprocaryon K.Schum. pi gn Hb Tra Hl<br />

933 Gramineae Paspalum orbiculare G.Forst. pi gn Hb Pa Hl<br />

934 Gramineae Paspalum paniculatum L. pi gn Hb Pa Hl<br />

935 Gramineae Paspalum scrobiculatum L. ssp. bispicatum Hack. pi gn Hb Pal Hl<br />

936 Gramineae Paspalum vaginatum Sw. pi gn Hb Pa Hl<br />

937 Gramineae Pennisetum polystachion (L.) Schult. subsp. polystachion pi gn Hb Pa Hl<br />

938 Gramineae Pennisetum purpureum Schumach. pi gn Hb Tra Hl<br />

939 Gramineae Perotis indica (L.) Kuntze pi gn Hb In Hl<br />

940 Gramineae Puelia ciliata Franch. sb gn Hb Gc Co<br />

941 Gramineae Puelia schumanniana Pilg. sb GD Hb Lg Co<br />

942 Gramineae Setaria barbata (Lam.) Kunth pi gn Hb In Co<br />

943 Gramineae Setaria megaphylla (Steud.) T.Durand & Schinz pi gn Hb Tra Co<br />

944 Gramineae Sorghum arundinaceum (Desv.) Stapf pi gn Hb Tra Co<br />

945 Gramineae Sporobolus pyramidalis P.Beauv. var. pyramidalis pi GD Hb Tra Co<br />

946 Gramineae Stenotaphrum secundatum (Walt.) Kuntze pi gn Hb Pa Hl<br />

947 Guttiferae Allanblackia floribunda Oliv. sb gn Tr Gc Co<br />

948 Guttiferae Calophyllum inophyllum L. pi gn Tr Pa Co


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

949 Guttiferae Endodesmia calophylloides Benth. sb gn Tr Gc Co<br />

950 Guttiferae Garcinia afzelii Engl. sb rd Tr Lg Hl<br />

951 Guttiferae Garcinia brevipedicellata (Baker f.) Hutch. & Dalziel sb GD Tr Lg Co VU A1c, B1+2c<br />

952 Guttiferae Garcinia chromocarpa Engl. sb gn Tr Gc Co<br />

953 Guttiferae Garcinia conrauana Engl. sb GD Tr Cam Co<br />

954 Guttiferae Garcinia densivenia Engl. ri GD Tr Cam Co<br />

955 Guttiferae Garcinia epunctata Stapf sb gn Tr Gc Co<br />

956 Guttiferae Garcinia gnetoides Hutch. & Dalziel sb gn Tr Gu Co<br />

957 Guttiferae Garcinia kola Heckel sb sc Tr Gc Co VU A1cd<br />

958 Guttiferae Garcinia lucida Vesque sb bu Tr Lg Co<br />

959 Guttiferae Garcinia mannii Oliv. sb sc Tr Lg Co<br />

960 Guttiferae Garcinia ovalifolia Oliv. sb gn Tr Gc Co<br />

961 Guttiferae Garcinia preussii Engl. sb bu Sh Lg Co<br />

962 Guttiferae Garcinia punctata Oliv. sb gn Tr Gc Co<br />

963 Guttiferae Garcinia smeathmannii (Planch. & Triana) Oliv. sb gn Tr Tra Co<br />

964 Guttiferae Garcinia staudtii Engl. sb bu Tr Lg Co VU A1c, B1+2c<br />

965 Guttiferae Garcinia zenkeri Engl. sb bu Tr Lg Co<br />

966 Guttiferae Harungana madagascariensis Lam. ex Poir. pi gn Sh Tra Co<br />

967 Guttiferae Mammea africana Sabine sb pk Tr Gc Re<br />

968 Guttiferae Pentadesma butyracea Sabine sb gn Tr Gu Co<br />

969 Guttiferae Psorospermum membranaceum C. H. Wright sb bu Sh Lg Hl<br />

970 Guttiferae Psorospermum staudtii Engl. sb gn Sh Gc Co<br />

971 Guttiferae Psorospermum tenuifolium Hook.f. sb gn Sh Tra Co<br />

972 Guttiferae Symphonia globulifera L.f. sw pk Tr Pa Co<br />

973 Guttiferae Vismia guineensis (L.) Choisy pi gn Sh Gc Co<br />

974 Guttiferae Vismia rubescens Oliv. pi gn Sh Gc Co<br />

975 Hernandiaceae Illigera pentaphylla Welw. np gn Swcl Gc Co<br />

976 Hernandiaceae Illigera vespertilo (Benth.) Baker f. np bu Swcl Lg Co<br />

977 Hoplestigmataceae Hoplestigma pierreanum Gilg np bu Tr Lg Co CR A1c+2c<br />

978 Huaceae Afrostyrax kamerunensis Perkins & Gilg sb bu Tr Lg Co VU A1c, B1+2c<br />

979 Huaceae Afrostyrax lepidophyllus Mildbr. sb bu Tr Lg Co VU A1c, B1+2c<br />

980 Huaceae Afrostyrax macranthus Mildbr. sb bu Tr Lg Hl<br />

981 Humiriaceae Sacoglottis gabonensis (Baill.) Urr. np gn Tr Gc Re<br />

982 Hymenophyllaceae Hymenophyllum triangulare Baker ep gn He Gc Co<br />

983 Hymenophyllaceae Trichomanes africanum Christ ep gn He Gc Co<br />

984 Hymenophyllaceae Trichomanes crispiforme Alston ep gn He Gc Co<br />

985 Hymenophyllaceae Trichomanes cupressoides Desv. ep bu He Lg Co<br />

986 Hymenophyllaceae Trichomanes erosum Willd. var. erosum ep gn He Tra Co<br />

987 Hypoxidaceae Hypoxis angustifolia Lam. rh gn Hb Gc Co<br />

988 Icacinaceae Alsodeiopsis mannii Oliv. sb bu Sh Lg Co<br />

989 Icacinaceae Alsodeiopsis rubra Engl. sb bu Sh Lg Co<br />

990 Icacinaceae Alsodeiopsis staudtii Engl. sb gn Sh Gu Co<br />

991 Icacinaceae Alsodeiopsis weissenborniana J.Braun & K.Schum. sb bu Sh Lg Co<br />

992 Icacinaceae Alsodeiopsis zenkeri Engl. rh GD Sh Cam Co<br />

993 Icacinaceae Chlamydocarya thomsoniana Baill. sb gn Swcl Gc Hl<br />

994 Icacinaceae Desmostachys brevipes (Engl.) Sleumer sb bu Sh Lg Co<br />

995 Icacinaceae Desmostachys tenuifolius Oliv. var. tenuifolius sb bu Sh Lg Co<br />

996 Icacinaceae Icacina mannii Oliv. var. mannii ri gn Sh Gc Co<br />

997 Icacinaceae Iodes africana Welw. ex Oliv. np gn Swcl Gc Co<br />

998 Icacinaceae Iodes kamerunensis Engl. sb GD Swcl Cam Co<br />

999 Icacinaceae Lasian<strong>the</strong>ra africana P.Beauv. sb gn Sh Gc Co<br />

1000 Icacinaceae Lavigeria macrocarpa (Oliv.) Pierre np gn Lwcl Gc Co<br />

1001 Icacinaceae Leptaulus daphnoides Benth. sb gn Tr Gc Re<br />

1002 Icacinaceae Leptaulus grandifolius Engl. sb bu Tr Lg Co<br />

1003 Icacinaceae Leptaulus holstii (Engl.) Engl. sb gn Sh Gc Co<br />

1004 Icacinaceae Leptaulus zenkeri Engl. sb gn Sh Gc Co<br />

1005 Icacinaceae Pyrenacantha acuminata Engl. sb gn Swcl Gc Co<br />

1006 Icacinaceae Pyrenacantha glabrescens (Engl.) Engl. sb gn Swcl Gu Hl<br />

1007 Icacinaceae Pyrenacantha lebrunii Boutique sb gn Swcl Gc Hl<br />

1008 Icacinaceae Pyrenacantha staudtii (Engl.) Engl. pi gn Swcl Gc Hl<br />

1009 Icacinaceae Pyrenacantha sylvestris S. Moore pi gn Swcl Gc Co<br />

1010 Icacinaceae Pyrenacantha vogeliana Baill. ri gn Swcl Gc Co<br />

1011 Icacinaceae Rhaphiostylis beninensis (Hook.f. ex Planch.) Planch. ri gn Swcl Tra Co<br />

1012 Icacinaceae Rhaphiostylis ovalifolia Engl. ex Sleumer sb GD Swcl Cam Hl<br />

1013 Icacinaceae Rhaphiostylis preussii Engl. sb gn Swcl Gc Co<br />

161


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1014 Icacinaceae Rhaphiostylis subsessilifolia Engl. sb BK Swcl Campo-<br />

Ma'an<br />

Co<br />

1015 Icacinaceae Stachyanthus zenkeri Engl. sb gn Swcl Gc Hl<br />

1016 Iridaceae Gladiolus unguiculatus Baker rh gn Hb Gc Co<br />

1017 Irvingiaceae Desbordesia glaucescens (Engl.) Tiegh. np bu Tr Lg Re<br />

1018 Irvingiaceae Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill. np pk Tr Gc Co LR/nt<br />

1019 Irvingiaceae Irvingia grandifolia (Engl.) Engl. np pk Tr Gc Co<br />

1020 Irvingiaceae Klainedoxa gabonensis Pierre ex Engl. np gn Tr Gc Re<br />

1021 Irvingiaceae Klainedoxa trillessii Pierre ex Tiegh. np gn Tr Gc Hl<br />

1022 Ixonanthaceae Ochthocosmus africanus Hook.f. np gn Tr Gc Hl<br />

1023 Ixonanthaceae Ochthocosmus calothyrsus (Mildbr.) Hutch. & Dalziel np bu Tr Lg Co<br />

1024 Ixonanthaceae Ochthocosmus sessiliflorus (Oliv.) Baill. ri gn Tr Gu Hl<br />

1025 Labiatae Achyrospermum oblongifolium Baker pi gn Hb Gc Co<br />

1026 Labiatae Hoslundia opposita Vahl pi gn Hb Tra Hl<br />

1027 Labiatae Hyptis lanceolata Poir. pi gn Hb Pa Hl<br />

1028 Labiatae Platostoma africanum P.Beauv. pi gn Hb Pa Hl<br />

1029 Labiatae Plectranthus decurrens (Gürke) J.K.Morton pi bu Hb Lg Co<br />

1030 Labiatae Solenostemon mannii (Hook.f.) Baker pi gn Hb Gc Hl<br />

1031 Labiatae Solenostemon monostachyus (P.Beauv.) Briq. subsp.<br />

monostachyus<br />

pi gn Hb Tra Co<br />

1032 Lauraceae Beilschmiedia anacardioides (Engl. & K.Krause) Robyns sb<br />

& R.<br />

bu Tr Lg Co<br />

1033 Lauraceae Beilschmiedia cinnamomea (Stapf) Robyns & Wilczek sb GD Tr Lg Co<br />

1034 Lauraceae Beilschmiedia cuspida (Krause) Robyns & Wilczek sb BK Tr Campo-<br />

Ma'an<br />

Hl<br />

1035 Lauraceae Beilschmiedia dinklagei (Engl.) Robyns & Wilczek sb BK Tr Campo-<br />

Ma'an<br />

Hl<br />

1036 Lauraceae Beilschmiedia gaboonensis (Meisn.) Benth. & Hook.f. sb bu Tr Lg Co<br />

1037 Lauraceae Beilschmiedia klainei Robyns & Wilczek sb BK Tr Sw-Cam Co<br />

1038 Lauraceae Beilschmiedia myrciifolia (S.Moore) Robyns &<br />

R.Wilczek<br />

sb gn Tr Gc Co<br />

1039 Lauraceae Beilschmiedia obscura (Stapf) Engl. ex A.Chev. sb gn Tr Gc Re<br />

1040 Lauraceae Beilschmiedia papyracea (Stapf) Robyns & R.Wilczek sb BK Tr Sw-Cam Hl<br />

1041 Lauraceae Beilschmiedia staudtii Engl. sb bu Tr Lg Hl<br />

1042 Lauraceae Beilschmiedia wilczekii Fouilloy sb BK Tr Sw-Cam Co<br />

1043 Lauraceae Beilschmiedia zenkeri Engl. sb bu Tr Lg Co<br />

1044 Lauraceae Cassytha filiformis L. ep gn Ep Gc Co<br />

1045 Lauraceae Hypodaphnis zenkeri (Engl.) Stapf sb bu Tr Lg Co<br />

1046 Lauraceae Persea americana Miller pi gn Tr In Re<br />

1047 Lecythidaceae Napoleonaea imperialis P.Beauv. sb bu Sh Lg Co<br />

1048 Lecythidaceae Napoleonaea talbotii Baker f. sb bu Sh Lg Co<br />

1049 Lecythidaceae Napoleonaea vogelii Hook. & Planch. sb gn Sh Gc Co<br />

1050 Lecythidaceae Petersianthus macrocarpus (P.Beauv.) Liben np gn Tr Gc Re<br />

1051 Leeaceae Leea guineensis G.Don pi gn Sh Tra Co<br />

1052 Leguminosae-Caes.* Afzelia bella Harms var. bella np pk Tr Gc Co<br />

1053 Leguminosae-Caes.* Afzelia bipindensis Harms np sc Tr Gc Re VU A1cd<br />

1054 Leguminosae-Caes.* Afzelia pachyloba Harms np pk Tr Gc Co VU A1d<br />

1055 Leguminosae-Caes.* Anthonotha ferruginea (Harms) J.Léonard np bu Tr Lg Co<br />

1056 Leguminosae-Caes.* Anthonotha fragrans (Baker f.) Exell & Hillc. np gn Tr Gc Co<br />

1057 Leguminosae-Caes. * Anthonotha isopetala (Harms) J.Léonard sb bu Tr Lg Co<br />

1058 Leguminosae-Caes. * Anthonotha lamprophylla (Harms) J.Léonard sb gn Tr Gc Co<br />

1059 Leguminosae-Caes. * Anthonotha leptorrhachis (Harms) J.Léonard sb GD Tr Cam Co CR A1c+2c<br />

1060 Leguminosae-Caes. * Anthonotha macrophylla P.Beauv. sb gn Tr Gc Co<br />

1061 Leguminosae-Caes. * Aphanocalyx cynometroides Oliv. np gn Tr Gc Co<br />

1062 Leguminosae-Caes. * Aphanocalyx hedinii (A.Chev.) Wieringa np GD Tr Cam Co CR B1+2abcd,<br />

C1+2ab<br />

1063 Leguminosae-Caes. * Aphanocalyx ledermannii (Harms) Wieringa sw bu Tr Lg Co<br />

1064 Leguminosae-Caes. * Aphanocalyx margininervatus (J.Léonard) Wieringa np gn Tr Gu Co<br />

1065 Leguminosae-Caes. * Aphanocalyx microphyllus (Harms) Wieringa subsp.<br />

microphyllus<br />

np gn Tr Gc Co<br />

1066 Leguminosae-Caes. * Baikiaea insignis Benth. sb gn Tr Gc Co<br />

1067 Leguminosae-Caes. * Baikiaea robynsii Ghesq. sb gn Tr Gc Co<br />

1068 Leguminosae-Caes. * Berlinia auriculata Benth. ri bu Tr Lg Co<br />

1069 Leguminosae-Caes. * Berlinia bracteosa Benth. ri gn Tr Gc Co<br />

1070 Leguminosae-Caes. * Berlinia confusa Hoyle ri gn Tr Gu Co<br />

1071 Leguminosae-Caes. * Berlinia congolensis (Baker f.) Keay ri gn Tr Gc Co<br />

1072 Leguminosae-Caes. * Berlinia craibiana Baker f. ri bu Tr Lg Hl<br />

1073 Leguminosae-Caes. * Bikinia le-testui (Pellegr.) Wieringa ssp. le-testui np bu Tr Lg Co<br />

162


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1074 Leguminosae-Caes. * Brachystegia cynometroides Harms np bu Tr Lg Re<br />

1075 Leguminosae-Caes. * Brachystegia laurentii (De Wild.) Louis ex Hoyle np gn Tr Gc Re<br />

1076 Leguminosae-Caes. * Brachystegia mildbraedii Harms np bu Tr Lg Re<br />

1077 Leguminosae-Caes. * Chamaecrista kirkii (Oliv.) Standley pi gn Sh Tra Co<br />

1078 Leguminosae-Caes. * Copaifera mildbraedii Harms np gn Tr Gc Re<br />

1079 Leguminosae-Caes. * Copaifera religiosa J.Léonard np bu Tr Lg Re<br />

1080 Leguminosae-Caes. * Crudia gabonensis Pierre ex Harms ri gn Tr Gc Re<br />

1081 Leguminosae-Caes. * Crudia klainei Pierre ex De Wild. sw gn Tr Gc Co<br />

1082 Leguminosae-Caes. * Cynometra hankei Harms sw gn Tr Gc Re<br />

1083 Leguminosae-Caes. * Cynometra mannii Oliv. sw gn Tr Gc Co<br />

1084 Leguminosae-Caes. * Daniellia klainei A.Chev. ri bu Tr Lg Re LR/nt<br />

1085 Leguminosae-Caes. * Daniellia oblonga Oliv. np GD Tr Lg Re VU A1c<br />

1086 Leguminosae-Caes. * Daniellia ogea (Harms) Rolfe ex Holl. pi pk Tr Gu Re<br />

1087 Leguminosae-Caes. * Delonix regia (Boj. ex Hook.) Raf. pi gn Tr In Re<br />

1088 Leguminosae-Caes. * Detarium macrocarpum Harms sb bu Tr Lg Re<br />

1089 Leguminosae-Caes. * Dialium bipindense Harms np bu Tr Lg Re LR/nt<br />

1090 Leguminosae-Caes. * Dialium dinklagei Harms ri gn Tr Gc Re<br />

1091 Leguminosae-Caes. * Dialium guineense Willd. np BK Tr Sw-Cam Re<br />

1092 Leguminosae-Caes. * Dialium pachyphyllum Harms sb pk Tr Gc Co<br />

1093 Leguminosae-Caes. * Dialium tessmannii Harms sb bu Tr Lg Hl LR/nt<br />

1094 Leguminosae-Caes. * Dialium zenkeri Harms sb BK Tr Sw-Cam Co<br />

1095 Leguminosae-Caes. * Didelotia africana Baill. sb bu Tr Lg Co<br />

1096 Leguminosae-Caes. * Didelotia brevipaniculata J.Léonard sb bu Tr Lg Hl<br />

1097 Leguminosae-Caes. * Didelotia letouzeyi Pellegr. sb gn Tr Gc Co<br />

1098 Leguminosae-Caes. * Didelotia unifoliolata J.Léonard sb bu Tr Lg Co LR/nt<br />

1099 Leguminosae-Caes. * Distemonanthus benthamianus Baill. pi pk Tr Gu Re<br />

1100 Leguminosae-Caes. * Duparquetia orchidacea Baill. pi gn Swcl Gc Co<br />

1101 Leguminosae-Caes. * Erythrophleum ivorense A.Chev. np rd Tr Gu Co<br />

1102 Leguminosae-Caes. * Erythrophleum suaveolens (Guill. & Perr.) Brenan np gn Tr Tra Re<br />

1103 Leguminosae-Caes. * Gilbertiodendron brachystegioides (Harms) J.Léonard np bu Tr Lg Hl<br />

1104 Leguminosae-Caes. * Gilbertiodendron demonstrans (Baill.) J.Léonard np bu Tr Lg Co<br />

1105 Leguminosae-Caes. * Gilbertiodendron dewevrei (De Wild.) J.Léonard sw pk Tr Gc Co<br />

1106 Leguminosae-Caes. * Gilbertiodendron grandiflorum (De Wild.) J.Léonard np gn Tr Gc Hl<br />

1107 Leguminosae-Caes. * Gilbertiodendron klainei (Pierre ex Pelligr.) J.Léonard np bu Tr Lg Hl<br />

1108 Leguminosae-Caes. * Gilbertiodendron mayombense (Pellegr.) J.Léonard sw gn Tr Gc Hl<br />

1109 Leguminosae-Caes. * Gilbertiodendron ogoouense (Pellegr.) J.Léonard np bu Tr Lg Hl<br />

1110 Leguminosae-Caes. * Gilbertiodendron pachyanthum (Harms) J.Léonard np BK Tr Sw-Cam Hl VU D2<br />

1111 Leguminosae-Caes. * Gilletiodendron pierreanum (Harms) J.Léonard np gn Tr Lg Co<br />

1112 Leguminosae-Caes. * Griffonia physocarpa Baill. sw gn Lwcl Gc Co<br />

1113 Leguminosae-Caes. * Griffonia simplicifolia (Vahl ex DC.) Baill. np gn Lwcl Gu Hl<br />

1114 Leguminosae-Caes. * Griffonia tessmannii (De Wild.) Campère np bu Lwcl Lg Hl<br />

1115 Leguminosae-Caes. * Guibourtia demeusei (Harms) J.Léonard sw gn Tr Gc Co<br />

1116 Leguminosae-Caes. * Guibourtia ehie (A. Chev.) J. Léonard np pk Tr Gc Co VU A1c<br />

1117 Leguminosae-Caes. * Guibourtia pellegriniana J.Léonard np gn Tr Gc Hl<br />

1118 Leguminosae-Caes. * Guibourtia tessmannii (Harms) J.Léonard np pk Tr Lg Co<br />

1119 Leguminosae-Caes. * Hylodendron gabunense Taub. pi pk Tr Gc Re<br />

1120 Leguminosae-Caes. * Hymenostegia afzelii (Oliv.) Harms sb gn Tr Gu Re<br />

1121 Leguminosae-Caes. * Julbernardia letouzeyi Villiers sb gn Tr Gc Hl<br />

1122 Leguminosae-Caes. * Julbernardia pellegriniana Troupin sb gn Tr Gc Hl<br />

1123 Leguminosae-Caes. * Julbernardia seretii (De Wild.) Troupin np gn Tr Gc Co<br />

1124 Leguminosae-Caes. * Leonardendron gabunense (J.Léonard) Aubrév. np gn Tr Gc Co<br />

1125 Leguminosae-Caes. * Leonardoxa africana (Baill.) Aubrév. sb bu Tr Lg Co<br />

1126 Leguminosae-Caes. * Loesenera talbotii Baker f. sb bu Tr Lg Co VU A1c, B1+2c<br />

1127 Leguminosae-Caes. * Oddoniodendron micranthum (Harms) Baker f. np bu Tr Lg Co<br />

1128 Leguminosae-Caes. * Pachyelasma tessmannii (Harms) Harms np pk Tr Gc Re<br />

1129 Leguminosae-Caes. * Paraberlinia bifoliolata Pellegr. np bu Tr Lg Co<br />

1130 Leguminosae-Caes. * Pellegriniodendron diphyllum (Harms) J.Léonard sb bu Tr Gu Re LR/nt<br />

1131 Leguminosae-Caes. * Plagiosiphon emarginatus (Hutch. & Dalziel) J.Léonard ri gn Tr Gu Co<br />

1132 Leguminosae-Caes. * Plagiosiphon longitubus (Harms) J.Léonard sb BK Tr Sw-Cam Co CR A1+2c<br />

1133 Leguminosae-Caes. * Plagiosiphon multijugus (Harms) J.Léonard sb GD Tr Cam Co<br />

1134 Leguminosae-Caes. * Prioria balsamifera (Vermoesen) Breteler np rd Tr Gc Hl<br />

1135 Leguminosae-Caes. * Prioria joveri (Normand ex Aubrev.) Breteler np bu Tr Lg Co<br />

1136 Leguminosae-Caes. * Scorodophloeus zenkeri Harms sb pk Tr Gc Co<br />

1137 Leguminosae-Caes. * Senna alata (L.) Roxb. pi gn Sh Tra Co<br />

1138 Leguminosae-Caes. * Senna occidentalis (L.) Link pi gn Sh Tra Co<br />

163


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1139 Leguminosae-Caes. * Stachyothyrsus staudtii Harms np gn Tr Gc Co<br />

1140 Leguminosae-Caes. * Swartzia fistuloides Harms sb bu Tr Gc Re EN A1cd<br />

1141 Leguminosae-Caes. * Tessmannia africana Harms sb gn Tr Gc Re<br />

1142 Leguminosae-Caes. * Tetraberlinia bifoliolata (Harms) Hauman np gn Tr Gc Co<br />

1143 Leguminosae-Caes. * Tetraberlinia moreliana Aubrév. sb bu Tr Lg Hl<br />

1144 Leguminosae-Caes. * Toubaouate brevipaniculata (Léonard) Aubreville & sb gn Tr Gu Co<br />

164<br />

Pellegr.<br />

1145 Leguminosae-Caes. * Zenkerella capparidacea (Taub.) J.Léonard sb gn Tr Gc Hl<br />

1146 Leguminosae-Caes. * Zenkerella citrina Taub. sb bu Tr Lg Co<br />

1147 Leguminosae-Mim. ** Acacia pennata sensu Keay pi gn Lwcl Tra Re<br />

1148 Leguminosae-Mim. ** Acacia pentagona (Schum.) Hook.f. pi gn Lwcl Tra Co<br />

1149 Leguminosae-Mim. ** Albizia adianthifolia (Schum.) W.F.Wight pi gn Tr Gc Co<br />

1150 Leguminosae-Mim. ** Albizia glaberrima (Schum. & Thonn.) Benth. pi gn Tr Gc Co<br />

1151 Leguminosae-Mim. ** Albizia zygia (DC.) J.F.Macbr. pi pk Tr Tra Re<br />

1152 Leguminosae-Mim. ** Aubrevillea kerstingii (Harms) Pellegr. np gn Tr Gc Co<br />

1153 Leguminosae-Mim. ** Calliandra portoricensis (Jacq.) Benth. pi gn Tr In Hl<br />

1154 Leguminosae-Mim. ** Calpocalyx dinklagei Harms sb bu Tr Lg Co<br />

1155 Leguminosae-Mim. ** Calpocalyx heitzii Pellegr. np bu Tr Lg Co VU A1c, B1+2c<br />

1156 Leguminosae-Mim. ** Calpocalyx le-testui Pellegr. sb bu Tr Gc Co VU D2<br />

1157 Leguminosae-Mim. ** Calpocalyx ngouniensis Pellegr. sb bu Tr Gc Hl VU A1c<br />

1158 Leguminosae-Mim. ** Cylicodiscus gabunensis Harms np gn Tr Gc Re<br />

1159 Leguminosae-Mim. ** Entada gigas (L.) Fawcett & Rendle sb gn Lwcl Gc Co<br />

1160 Leguminosae-Mim. ** Entada scelerata A.Chev. sb gn Lwcl Gc Hl<br />

1161 Leguminosae-Mim. ** Fillaeopsis discophora Harms sb gn Tr Gc Co<br />

1162 Leguminosae-Mim. ** Inga edulis Martius pi gn Tr Gc Re<br />

1163 Leguminosae-Mim. ** Mimosa pudica L. pi gn Swcl Tra Co<br />

1164 Leguminosae-Mim. ** Newtonia duparquetiana (Baill.) Keay sb gn Tr Gc Co<br />

1165 Leguminosae-Mim. ** Newtonia grandifolia (Baill.) Villiers np bu Tr Lg Co<br />

1166 Leguminosae-Mim. ** Newtonia griffoniana (Baill.) Baker f. np gn Tr Gc Co<br />

1167 Leguminosae-Mim. ** Parkia bicolor A.Chev. np gn Tr Gc Co<br />

1168 Leguminosae-Mim. ** Parkia filicoidea Oliv. np gn Tr Gc Co<br />

1169 Leguminosae-Mim. ** Pentaclethra macrophylla Benth. np pk Tr Gc Re<br />

1170 Leguminosae-Mim. ** Piptadeniastrum africanum (Hook.f.) Brenan np rd Tr Gc Re<br />

1171 Leguminosae-Mim. ** Tetrapleura tetraptera (Schum. & Thonn.) Taub. pi pk Tr Tra Re<br />

1172 Leguminosae-Pap. *** Abrus precatorius L. pi gn Hcl Pa Re<br />

1173 Leguminosae-Pap. *** Amphimas ferrugineus Pierre ex Pellegr. np bu Tr Lg Re<br />

1174 Leguminosae-Pap. *** Amphimas pterocarpoides Harms np gn Tr Gc Co<br />

1175 Leguminosae-Pap. *** Andira inermis subsp. inermis (Wright) Dc pi gn Hb Tra Re<br />

1176 Leguminosae-Pap. *** Angylocalyx oligophyllus (Baker) Baker f. sb gn Sh Gc Co<br />

1177 Leguminosae-Pap. *** Angylocalyx talbotii Baker f. sb GD Sh Lg Co<br />

1178 Leguminosae-Pap. *** Angylocalyx zenkeri Harms sb gn Sh Gc Co<br />

1179 Leguminosae-Pap. *** Baphia capparidifolia Baker subsp. capparidifolia sb gn Tr Gc Hl<br />

1180 Leguminosae-Pap. *** Baphia capparidifolia Baker subsp. polygalacea<br />

Brummitt<br />

sb gn Tr Gc Hl<br />

1181 Leguminosae-Pap. *** Baphia laurifolia Baill. sb gn Tr Gc Co<br />

1182 Leguminosae-Pap. *** Baphia leptobotrys Harms sb bu Tr Lg Co<br />

1183 Leguminosae-Pap. *** Baphia leptostemma Baill. var. gracilipes (Harms)<br />

Soladoye<br />

sb bu Tr Lg Hl<br />

1184 Leguminosae-Pap. *** Baphia nitida Lodd. sb gn Tr Gu Re<br />

1185 Leguminosae-Pap. *** Baphiopsis parviflora Benth. ex Baker sb gn Tr Tra Hl<br />

1186 Leguminosae-Pap. *** Calopogonium muconoides Desv. pi gn Hb In Co<br />

1187 Leguminosae-Pap. *** Camoensia brevicalyx Benth. pi gn Hb Pa Hl<br />

1188 Leguminosae-Pap. *** Canavalia ensiformis (L.) DC. pi gn Hb Pa Hl<br />

1189 Leguminosae-Pap. *** Canavalia rosea (Sw.) DC. pi gn Hb Pa Hl<br />

1190 Leguminosae-Pap. *** Clitoria rubiginosa Juss. ex Pers. pi gn Hb In Hl<br />

1191 Leguminosae-Pap. *** Craibia atlantica Dunn sb bu Tr Gc Re VU A1c<br />

1192 Leguminosae-Pap. *** Crotalaria pallida Aiton pi gn Hb Pa Co<br />

1193 Leguminosae-Pap. *** Crotalaria retusa L. pi gn Hb Pa Hl<br />

1194 Leguminosae-Pap. *** Dalbergia afzeliana G.Don np gn Swcl Gc Co<br />

1195 Leguminosae-Pap. *** Dalbergia ecastaphyllum (L.) Taub. pi gn Swcl Gu Co<br />

1196 Leguminosae-Pap. *** Dalbergia hostilis Benth. pi gn Swcl Gc Hl<br />

1197 Leguminosae-Pap. *** Dalbergia pachycarpa (De Wild. & T.Durand) De Wild. pi gn Swcl Gc Co<br />

1198 Leguminosae-Pap. *** Dalbergia saxatilis Hook.f. pi gn Swcl Gc Co<br />

1199 Leguminosae-Pap. *** Dalhousiea africana M. Moore pi gn Swcl Gc Co<br />

1200 Leguminosae-Pap. *** Desmodium adscendens (Sw.) DC. var. adscendens pi gn Hb Tra Re<br />

1201 Leguminosae-Pap. *** Desmodium ramosissimum G.Don pi gn Hb Tra Co


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1202 Leguminosae-Pap. *** Eriosema laurentii De Wild. pi gn Hb Tra Co<br />

1203 Leguminosae-Pap. *** Eriosema parviflorum E.Mey. subsp. parviflorum pi gn Hb Tra Hl<br />

1204 Leguminosae-Pap. *** Erythrina excelsa Baker pi gn Tr Gc Re<br />

1205 Leguminosae-Pap. *** Erythrina mildbraedii Harms np gn Tr Gc Re<br />

1206 Leguminosae-Pap. *** Indigofera hirsuta L. pi gn Tr In Hl<br />

1207 Leguminosae-Pap. *** Leptoderris aurantiaca Dunn np bu Swcl Lg Hl<br />

1208 Leguminosae-Pap. *** Leptoderris congolensis (De Wild.) Dunn np gn Swcl Gc Hl<br />

1209 Leguminosae-Pap. *** Leptoderris fasciculata (Benth.) Dunn np gn Swcl Gc Hl<br />

1210 Leguminosae-Pap. *** Leucomphalos capparideus Benth. ex Planch. np bu Swcl Lg Co<br />

1211 Leguminosae-Pap. *** Lonchocarpus griffonianus (Baill.) Dunn ri gn Tr Gc Hl<br />

1212 Leguminosae-Pap. *** Lonchocarpus sericeus (Poir.) Kunth ri gn Tr Pa Hl<br />

1213 Leguminosae-Pap. *** Machaerium lunatum (L.f.) Ducke sb gn Sh Pa Hl<br />

1214 Leguminosae-Pap. *** Millettia barteri (Benth.) Dunn sw gn Lwcl Gc Co<br />

1215 Leguminosae-Pap. *** Millettia bipindensis Harms np gn Lwcl Gc Hl<br />

1216 Leguminosae-Pap. *** Millettia dinklagei Harms np gn Tr Gu Hl<br />

1217 Leguminosae-Pap. *** Millettia griffoniana Baill. sb gn Tr Gc Co<br />

1218 Leguminosae-Pap. *** Millettia laurentii De Wild. np pk Tr Gc Co EN A1cd<br />

1219 Leguminosae-Pap. *** Millettia macrophylla Benth. pi bu Tr Lg Co VU A1c, B1+2c<br />

1220 Leguminosae-Pap. *** Millettia mannii Baker sb bu Tr Lg Co<br />

1221 Leguminosae-Pap. *** Millettia sanagana Harms sb gn Tr Gu Hl<br />

1222 Leguminosae-Pap. *** Mucuna flagellipes Hook.f. ri gn Swcl Gc Co<br />

1223 Leguminosae-Pap. *** Ormocarpum klainei Tisser. sb GD Sh Lg Hl CR A1c<br />

1224 Leguminosae-Pap. *** Ormocarpum megalophyllum Harms pi gn Sh Gu Co<br />

1225 Leguminosae-Pap. *** Ormocarpum sennoides (Willd.) DC. subsp. hispidum<br />

(Willd.) Brenan & J.Léonard<br />

pi gn Sh Tra Co<br />

1226 Leguminosae-Pap. *** Ormocarpum verrucosum P.Beauv. sb gn Sh Gc Co<br />

1227 Leguminosae-Pap. *** Ostryocarpus riparius Hook.f. sw gn Swcl Gu Co<br />

1228 Leguminosae-Pap. *** Pterocarpus mildbraedii Harms np pk Tr Gu Co<br />

1229 Leguminosae-Pap. *** Pterocarpus soyauxii Taub. np rd Tr Gc Re<br />

1230 Leguminosae-Pap. *** Rhynchosia mannii Baker pi gn Hb Gc Co<br />

1231 Leguminosae-Pap. *** Rhynchosia preussii (Harms) Taub. ex Harms pi gn Hb Gc Hl<br />

1232 Leguminosae-Pap. *** Stylosan<strong>the</strong>s erecta P. Beauv. pi gn Hb Tra Re<br />

1233 Leguminosae-Pap. *** Trifolium baccarinii Chiov. pi gn Hb Tra Hl<br />

1234 Leguminosae-Pap. *** Vigna gracilis (Guill. & Perr.) Hook.f. pi gn Hcl Gc Hl<br />

1235 Leguminosae-Pap. *** Vigna marina (Burm.) Merr. pi gn Hcl Pa Hl<br />

1236 Lentibulariaceae Utricularia andongensis Welw. ex Hiern ep gn Hb Gc Hl<br />

1237 Lentibulariaceae Utricularia mannii Oliv. ep bu Ep Lg Hl<br />

1238 Lepidobotryaceae Lepidobotrys staudtii Engl. np gn Tr Gc Re<br />

1239 Liliaceae Asparagus drepanophyllus Welw. pi gn Swcl Gc Co<br />

1240 Liliaceae Asparagus schweinfurthii Baker pi gn Swcl Gc Co<br />

1241 Liliaceae Chlorophytum alismifolium Baker sb bu Hb Lg Co<br />

1242 Liliaceae Chlorophytum macrophyllum (A.Rich.) Aschers. sb gn Hb Gc Co<br />

1243 Liliaceae Chlorophytum orchidastrum Lindl. sb gn Hb Gc Co<br />

1244 Liliaceae Chlorophytum petiolatum Baker sb gn Hb Gc Co<br />

1245 Liliaceae Chlorophytum petrophyllum K.Krause sb GD Hb Cam Co CR A1c+2c<br />

1246 Liliaceae Chlorophytum sparsiflorum Baker sb gn Hb Gc Co<br />

1247 Linaceae Hugonia macrophylla Oliv. np bu Swcl Lg Co<br />

1248 Linaceae Hugonia micans Engl. np bu Swcl Lg Co<br />

1249 Linaceae Hugonia obtusifolia C.H.Wright np gn Swcl Gc Co<br />

1250 Linaceae Hugonia planchonii Hook.f. np gn Swcl Gc Co<br />

1251 Linaceae Hugonia platysepala Welw. ex Oliv. np gn Swcl Gc Co<br />

1252 Loganiaceae Anthocleista liebrechtsiana De Wild. sw gn Tr Gc Co<br />

1253 Loganiaceae Anthocleista obanensis Wernham pi gn Lwcl Gc Hl<br />

1254 Loganiaceae Anthocleista schweinfurthii Gilg pi gn Tr Tra Co<br />

1255 Loganiaceae Anthocleista vogelii Planch. sb gn Tr Tra Re<br />

1256 Loganiaceae Mostuea batesii Baker sb gn Sh Gc Co<br />

1257 Loganiaceae Mostuea brunonis Didr. var. brunonis sb gn Sh Tra Co<br />

1258 Loganiaceae Mostuea hirsuta (T.Anderson ex Benth.) Baill. pi gn Sh Tra Co<br />

1259 Loganiaceae Mostuea neurocarpa Gilg sb bu Sh Lg Co<br />

1260 Loganiaceae Mostuea thomsonii (Oliv.) Benth. sb gn Sh Gc Co<br />

1261 Loganiaceae Strychnos aculeata Soler. pi gn Lwcl Tra Co<br />

1262 Loganiaceae Strychnos angolensis Gilg ri gn Lwcl Tra Hl<br />

1263 Loganiaceae Strychnos asterantha Leeuwenb. pi gn Lwcl Gu Re<br />

1264 Loganiaceae Strychnos boonei De Wild. np gn Lwcl Gc Co<br />

1265 Loganiaceae Strychnos camptoneura Gilg & Busse np gn Lwcl Gc Hl<br />

1266 Loganiaceae Strychnos canthioides Leeuwenb. np BK Lwcl Campo-<br />

'<br />

Hl<br />

165


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1267 Loganiaceae Strychnos chrysophylla Gilg ri bu Lwcl<br />

Ma'an<br />

Lg Co<br />

1268 Loganiaceae Strychnos dale De Wild. np gn Lwcl Gc Co<br />

1269 Loganiaceae Strychnos densiflora Baill. ri gn Lwcl Gc Co<br />

1270 Loganiaceae Strychnos dolichothyrsa Gilg ex Onochie & Hepper np gn Lwcl Gc Co<br />

1271 Loganiaceae Strychnos elaeocarpa Gilg ex Leeuwenb. ri GD Tr Cam Co<br />

1272 Loganiaceae Strychnos gnetifolia Gilg ex Onochie & Hepper np bu Tr Lg Co<br />

1273 Loganiaceae Strychnos icaja Baill. np gn Lwcl Gc Co<br />

1274 Loganiaceae Strychnos johnsonii Hutch. & M.B.Moss np gn Lwcl Gc Hl<br />

1275 Loganiaceae Strychnos longicaudata Gilg np gn Lwcl Gc Co<br />

1276 Loganiaceae Strychnos malacoclados C.H.Wright np gn Lwcl Gc Co<br />

1277 Loganiaceae Strychnos memecyloides S.Moore np gn Lwcl Gc Co<br />

1278 Loganiaceae Strychnos mimfiensis Gilg ex Leeuwenb. np GD Lwcl Cam Co<br />

1279 Loganiaceae Strychnos ngouniensis Pellegr. ri gn Lwcl Gc Hl<br />

1280 Loganiaceae Strychnos phaeotricha Gilg np gn Lwcl Gc Co<br />

1281 Loganiaceae Strychnos samba Duvign. np gn Lwcl Gc Hl<br />

1282 Loganiaceae Strychnos staudtii Gilg sb bu Tr Lg Co<br />

1283 Loganiaceae Strychnos tricalysioides Hutch. & M.B.Moss np gn Lwcl Gc Co<br />

1284 Loganiaceae Strychnos zenkeri Gilg ex Baker np bu Tr Lg Hl<br />

1285 Lomariopsidaceae Bolbitis acrostichoides (Afzel. ex Sw.) Ching sb gn Hb Tra Co<br />

1286 Lomariopsidaceae Bolbitis auriculata (Lam.) Alston sb gn Hb Tra Co<br />

1287 Lomariopsidaceae Bolbitis fluviatilis (Hook.) Ching sw gn Hb Gc Co<br />

1288 Lomariopsidaceae Bolbitis gaboonensis (Hook.) Alston sb gn Hb Gc Co<br />

1289 Lomariopsidaceae Bolbitis heudelotii (Bory ex Fée) Alston sw gn Hb Gc Co<br />

1290 Lomariopsidaceae Lomariopsis guineensis (underw.) Alston sb gn He Gc Co<br />

1291 Lomariopsidaceae Lomariopsis hederacea Alston sb gn He Gc Co<br />

1292 Loranthaceae Agelanthus brunneus (Engl.) Balle & N.Hallé pa gn Pa Gc Co<br />

1293 Loranthaceae Globimetula braunii (Engl.) Tiegh. pa gn Pa Gc Co<br />

1294 Loranthaceae Helixan<strong>the</strong>ra mannii (Oliv.) Danser pa gn Pa Gc Hl<br />

1295 Loranthaceae Phragman<strong>the</strong>ra batangae (Engl.) Balle pa gn Pa Gc Hl<br />

1296 Loranthaceae Phragman<strong>the</strong>ra capitata (Spreng.) Balle pa gn Pa Gc Hl<br />

1297 Loranthaceae Phragman<strong>the</strong>ra longiflora (Balle) Polhill & Wiens pa bu Pa Lg Hl<br />

1298 Loranthaceae Phragman<strong>the</strong>ra polycrypta (F.Didr.) Balle pa gn Pa Gc Hl<br />

1299 Loranthaceae Phragman<strong>the</strong>ra talbotiora (Sprague) Balle pa bu Pa Lg Hl<br />

1300 Loranthaceae Tapinanthus preussii (Engl.) Tiegh. pa GD Pa Cam Hl<br />

1301 Lycopodiaceae Lycopodiella cernua (L.) Pic.Serm. ep gn Hb Pa Co<br />

1302 Lycopodiaceae Lycopodium warneckei (Herter) Alston ep gn Hb Pa Hl<br />

1303 Malpighiaceae Acridocarpus camerunensis Niedenzii np bu Swcl Lg Co<br />

1304 Malpighiaceae Acridocarpus longifolius (G.Don) Hook.f. np gn Swcl Gc Co<br />

1305 Malpighiaceae Acridocarpus macrocalyx Engl. np gn Swcl Gc Co<br />

1306 Malpighiaceae Acridocarpus smeathmannii (DC) Guil. & Perr. ri gn Swcl Gc Hl<br />

1307 Malpighiaceae Flabellaria paniculata Cav. pi gn Lwcl Tra Co<br />

1308 Malpighiaceae Heteropterys leona (Cav.) Exell np gn Swcl Gc Co<br />

1309 Malvaceae Hibiscus rostellatus Guill. & Perr. pi gn Hb Tra Hl<br />

1310 Malvaceae Hibiscus surattensis L. pi gn Hb Pal Co<br />

1311 Malvaceae Hibiscus tiliaceus L. sw gn Hb Pa Co<br />

1312 Malvaceae Sida acuta Burm.f. pi gn Hb Tra Re<br />

1313 Malvaceae Sida corymbosa R.E.Fr. pi gn Hb Tra Re<br />

1314 Malvaceae Sida rhombifolia L. pi gn Hb Pa Re<br />

1315 Malvaceae Urena lobata L. pi gn Hb Pa Co<br />

1316 Marantaceae Afrocala<strong>the</strong>a rhizantha (K.Schum.) K.Schum. sb bu Hb Lg Co<br />

1317 Marantaceae Ataenidia conferta (Benth.) Milne-Redh. sb gn Hb Gc Co<br />

1318 Marantaceae Halopegia azurea (K.Schum.) K.Schum. sw gn Hb Gc Co<br />

1319 Marantaceae Haumania danckelmaniana (J.Braun & K.Schum.) Milne- np<br />

Redh.<br />

gn Hb Gc Co<br />

1320 Marantaceae Hypselodelphys hirsuta (Loes.) J.Koech. pi bu Hb Lg Hl<br />

1321 Marantaceae Hypselodelphys poggeana (K.Schum.) Milne-Redh. pi gn Hb Gc Co<br />

1322 Marantaceae Hypselodelphys scandens Louis & Mullend. pi gn Hb Gc Co<br />

1323 Marantaceae Hypselodelphys violacea (Ridl.) Milne-Redh. pi gn Hb Gc Co<br />

1324 Marantaceae Hypselodelphys zenkeriana (K.Schum.) Milne-Redh. pi GD Hb Cam Co<br />

1325 Marantaceae Marantochloa congensis (K.Schum.) J.Léonard &<br />

Mullenders var. congensis<br />

pi gn Hb Gc Co<br />

1326 Marantaceae Marantochloa filipes (Benth.) Hutch. pi gn Hb Gc Co<br />

1327 Marantaceae Marantochloa leucantha (K.Schum.) Milne-Redh. pi gn Hb Tra Co<br />

1328 Marantaceae Marantochloa mannii (Benth.) Milne-Redh. pi gn Hb Tra Co<br />

1329 Marantaceae Marantochloa monophylla (K.Schum.) D'Orey sb gn Hb Gc Co<br />

166


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1330 Marantaceae Marantochloa purpurea (Ridl.) Milne-Redh. sb gn Hb Tra Co<br />

1331 Marantaceae Marantochloa ramosissima (Benth.) Hutch. sb bu Hb Lg Co<br />

1332 Marantaceae Megaphrynium macrostachyum (Benth.) Milne-Redh. pi gn Hb Gc Co<br />

1333 Marantaceae Megaphrynium tricogynum Koechlin pi bu Hb Lg Hl<br />

1334 Marantaceae Sarcophrynium brachystachys (Benth.) K.Schum. sb gn Hb Gc Co<br />

1335 Marantaceae Sarcophrynium prionogonium (K.Schum.) K.Schum. var. pi<br />

prionogonium<br />

gn Hb Gc Co<br />

1336 Marantaceae Sarcophrynium prionogonium (K.Schum.) K.Schum. var. sb<br />

puberulifolium Schnell<br />

gn Hb Gc Co<br />

1337 Marantaceae Sarcophrynium schweinfurthianum (Kuntze) Milne-<br />

Redh.<br />

pi gn Hb Gc Co<br />

1338 Marantaceae Sarcophrynium villosum (Benth.) K.Schum. sb gn Hb Gc Co<br />

1339 Marantaceae Thalia geniculata L. pi gn Hb Gc Hl<br />

1340 Marantaceae Thaumatococcus daniellii (Benn.) Benth. pi pk Hb Gc Co<br />

1341 Marantaceae Trachyphrynium braunianum (K.Schum.) Baker pi gn Hb Gc Co<br />

1342 Marattiaceae Marattia fraxinea J.Sm. var. fraxinea ri gn Hb Pal Co<br />

1343 Medusandraceae Soyauxia gabonensis Oliv. sb bu Tr Lg Co<br />

1344 Medusandraceae Soyauxia talbotii Baker f. sb gn Tr Gc Co<br />

1345 Melastomataceae Amphiblemma letouzeyi Jacq.-Fél. sb BK Hb Cam Hl<br />

1346 Melastomataceae Amphiblemma molle Hook.f. sb bu Hb Lg Co<br />

1347 Melastomataceae Calvoa calliantha Jacq.-Fél. sb BK Hb Cam Co<br />

1348 Melastomataceae Calvoa hirsuta Hook.f. sb gn Hb Gc Hl<br />

1349 Melastomataceae Calvoa monticola A.Chev. ex Hutch. & Dalziel pi gn Hb Gu Co<br />

1350 Melastomataceae Calvoa pulcherrima Gilg ex Engl. pi bu Hb Lg Hl<br />

1351 Melastomataceae Calvoa stenophylla Jacques-Félix sb BK Hb Campo-<br />

Ma'an<br />

Hl<br />

1352 Melastomataceae Dicellandra barteri Hook.f. var. erecta (Mildbr.) Jacq.-<br />

Fél.<br />

sb gn Hb Gc Co<br />

1353 Melastomataceae Dichaetan<strong>the</strong>ra africana (Hook.f.) Jacq.-Fél. pi gn Sh Gu Co<br />

1354 Melastomataceae Dinophora spenneroides Benth. pi gn Sh Gc Co<br />

1355 Melastomataceae Dissotis decumbens (P.Beauv.) Triana pi gn Hb Tra Hl<br />

1356 Melastomataceae Dissotis multiflora (Sm.) Triana pi gn Hb Tra Hl<br />

1357 Melastomataceae Guyonia tenella Naud. sb bu Hb Lg Co<br />

1358 Melastomataceae Melastomastrum segregatum (Benth.) A. & R. Fern ri gn Sh Tra Hl<br />

1359 Melastomataceae Memecylon aequidianum Jacq.-Fél. sb bu Sh Lg Hl<br />

1360 Melastomataceae Memecylon afzelii G.Don sb gn Tr Gu Co<br />

1361 Melastomataceae Memecylon arcuato-marginatum Gilg ex Engl. var.<br />

arcuato-marginatum<br />

sb BK Sh Cam Co<br />

1362 Melastomataceae Memecylon calophyllum Gilg sb bu Tr Lg Hl<br />

1363 Melastomataceae Memecylon candidum Gilg sb bu Sh Lg Co VU B1+2c<br />

1364 Melastomataceae Memecylon dasyanthum Gilg ex Lederman & Engl. sb bu Tr Lg Hl VU B1+2c<br />

1365 Melastomataceae Memecylon englerianum Cogn. sb bu Sh Lg Co<br />

1366 Melastomataceae Memecylon macrodendron Gilg ex Engl. sb bu Tr Lg Co<br />

1367 Melastomataceae Memecylon nodosum (Engl.) Gilg ex Engl. ri bu Sh Lg Co<br />

1368 Melastomataceae Memecylon occultum Jacq.-Fél. sb bu Tr Gu Hl<br />

1369 Melastomataceae Memecylon virescens Hook.f. sb bu Sh Lg Co<br />

1370 Melastomataceae Memecylon viride Hook.f. ri gn Sh Gu Co<br />

1371 Melastomataceae Memecylon zenkeri Gilg sb bu Sh Lg Co<br />

1372 Melastomataceae Myrian<strong>the</strong>mum mirabile Gilg pi gn Hcl Gc Hl<br />

1373 Melastomataceae Ochthocharis dicellandroides (Gilg) C. Hansen &<br />

Wickens<br />

ri gn Hb Tra Hl<br />

1374 Melastomataceae Preussiella kamerunensis Gilg ep gn Ep Gu Hl<br />

1375 Melastomataceae Spathandra blakeiodes (G.Don) Jacq.-Fél. pi bu Sh Lg Hl<br />

1376 Melastomataceae Tristemma camerunense Jacq.-Fél. pi bu Hb Lg Hl<br />

1377 Melastomataceae Tristemma demeusei De Wild. pi gn Hb Gc Hl<br />

1378 Melastomataceae Tristemma hirtum P. Beauv. pi gn Hb Gu Hl<br />

1379 Melastomataceae Tristemma leiocalyx Cogn. sw gn Hb Gc Hl<br />

1380 Melastomataceae Tristemma littorale Benth. subsp. biafranum Jacq.-Fél. pi gn Hb Gu Co<br />

1381 Melastomataceae Tristemma littorale Benth. subsp. littorale Jacq.-Fél. pi gn Hb Gu Co<br />

1382 Melastomataceae Tristemma mauritianum J.F.Gmel. pi gn Hb Tra Co<br />

1383 Melastomataceae Tristemma oreophilum Gilg pi gn Hb Gc Hl<br />

1384 Melastomataceae Tristemma rosaceum (Gilg) Jacq.-Fél. pi gn Hb Gc Hl<br />

1385 Melastomataceae Warneckea bebaiensis (Gilg ex Engl.) Jacq.-Fél. sb bu Sh Lg Co<br />

1386 Melastomataceae Warneckea cinnamomoides (G.Don) Jacq.-Fél. sb gn Sh Gu Co<br />

1387 Melastomataceae Warneckea fascicularis (Planch. ex Benth.) Jacq.-Fél.<br />

var. mangrovensis Jacq.-Fél.<br />

ri gn Sh Gu Hl<br />

1388 Melastomataceae Warneckea membranifolia (Hook.f) Jacq.-Fél. sb gn Sh Gu Co<br />

1389 Melastomataceae Warneckea pulcherrima (Gilg) Jacq.-Fél. sb gn Sh Gc Co<br />

167


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1390 Melastomataceae Warneckea wildeana Jacq.-Fél. sb bu Sh Lg Hl VU D2<br />

1391 Meliaceae Carapa procera DC. sb gn Tr Gc Co<br />

1392 Meliaceae Entandrophragma angolense (Welw.) C.DC. np sc Tr Tra Re VU A1cd<br />

1393 Meliaceae Entandrophragma candollei Harms np sc Tr Gc Co VU A1cd<br />

1394 Meliaceae Entandrophragma cylindricum (Sprague) Sprague np sc Tr Gc Re VU A1cd<br />

1395 Meliaceae Entandrophragma utile (Dawe & Sprague) Sprague np sc Tr Gc Re VU A1cd<br />

1396 Meliaceae Guarea cedrata (A.Chev.) Pellegr. np pk Tr Gc Re VU A1c<br />

1397 Meliaceae Guarea glomerulata Harms sb gn Tr Gc Co<br />

1398 Meliaceae Guarea thompsonii Sprague & Hutch. np pk Tr Gc Hl VU A1c<br />

1399 Meliaceae Heckeldora staudtii (Harms) Staner sb gn Sh Gc Co<br />

1400 Meliaceae Heckeldora zenkeri (Harms) Staner sb bu Sh Lg Co<br />

1401 Meliaceae Khaya antho<strong>the</strong>ca (Welw.) C.DC. np sc Tr Gc Co VU A1cd<br />

1402 Meliaceae Khaya grandifolia C.DC. np sc Tr Tra Re<br />

1403 Meliaceae Khaya ivorensis A.Chev. np sc Tr Gc Re VU A1cd<br />

1404 Meliaceae Lovoa trichilioides Harms np rd Tr Gc Re VU A1cd<br />

1405 Meliaceae Trichilia dregeana Harv. & Sond. np gn Tr Tra Co<br />

1406 Meliaceae Trichilia gilgiana Harms np gn Tr Gc Co<br />

1407 Meliaceae Trichilia monadelpha (Thonn.) J.J.de Wilde np gn Tr Gc Co<br />

1408 Meliaceae Trichilia prieureana A.Juss. subsp. vermoesenii J.J.de<br />

Wilde<br />

np gn Tr Gc Co<br />

1409 Meliaceae Trichilia rubescens Oliv. np gn Tr Gc Co<br />

1410 Meliaceae Trichilia welwitschii C.DC. np gn Tr Gc Co<br />

1411 Meliaceae Turraea cabrae De Wild. & Th.Durand pi gn Sh Gc Hl<br />

1412 Meliaceae Turraea vogelii Hook.f. ex Benth. pi gn Swcl Gc Hl<br />

1413 Meliaceae Turraeanthus africanus (Welw. ex C.DC.) Pellegr. sb pk Tr Gc Re VU A1cd<br />

1414 Meliaceae Turraeanthus longipes Baill. sb bu Sh Lg Co<br />

1415 Melianthaceae Bersama abyssinica Fresen. pi gn Tr Tra Co<br />

1416 Menispermaceae Albertisia capituliflora (Diels) Forman sb bu Swcl Lg Co<br />

1417 Menispermaceae Albertisia cordifolia (Mangenot & Miege) Forman sb gn Swcl Gc Hl<br />

1418 Menispermaceae Albertisia glabra (Diels & Troupin) Forman sb BK Swcl Sw-Cam Hl<br />

1419 Menispermaceae Cissampelos owariensis P.Beauv. ex DC. pi gn Hcl Tra Co<br />

1420 Menispermaceae Dioscoreophyllum cumminsii (Stapf) Diels pi pk Hcl Gc Hl<br />

1421 Menispermaceae Jateorhiza macrantha (Hook.f.) Exell & Mendonça pi gn Hcl Gc Co<br />

1422 Menispermaceae Kolobopetalum auriculatum Engl. sb gn Hcl Gc Co<br />

1423 Menispermaceae Penianthus camerounensis A.Dekker sb GD Sh Cam Co<br />

1424 Menispermaceae Penianthus longifolius Miers sb gn Sh Gc Co<br />

1425 Menispermaceae Penianthus zenkeri (Engl.) Diels sb gn Sh Gc Co<br />

1426 Menispermaceae Rhigiocarya racemifera Miers np gn Swcl Gc Co<br />

1427 Menispermaceae Stephania abyssinica (Dill. & Rich.) Walp. pi gn Hcl Gc Hl<br />

1428 Menispermaceae Stephania dinklagei (Engl.) Diels pi gn Hcl Gc Hl<br />

1429 Menispermaceae Synclisia scabrida Miers sb gn Swcl Gc Co<br />

1430 Menispermaceae Syntriandrium preussii Engl. sb gn Swcl Gc Hl<br />

1431 Menispermaceae Syrrhonema fasciculatum Miers pi gn Lwcl Gc Hl<br />

1432 Menispermaceae Tiliacora odorata Engl. np bu Swcl Lg Hl<br />

1433 Menispermaceae Triclisia dictyophylla Diels pi gn Lwcl Gc Co<br />

1434 Monimiaceae Glossocalyx brevipes Benth. sb bu Tr Lg Co<br />

1435 Monimiaceae Glossocalyx longicuspis Benth. sb bu Tr Lg Co<br />

1436 Moraceae Dorstenia africana (Baill.) C.C.Berg sb bu Sh Lg Co<br />

1437 Moraceae Dorstenia barteri Bureau var. multiradiata (Engl.) Hijman sb<br />

& C.C.Berg<br />

bu Hb Lg Co<br />

1438 Moraceae Dorstenia dinklaglei Engl. var. dinklaigei sw gn Hb Gc Hl<br />

1439 Moraceae Dorstenia dorstenioides (Engl.) Hijman & C.C.Berg sb BK Hb Campo-<br />

Ma'an<br />

Hl<br />

1440 Moraceae Dorstenia elliptica Bureau sb gn Hb Gc Co<br />

1441 Moraceae Dorstenia involuta M.Hijman sb BK Hb Campo-<br />

Ma'an<br />

Co<br />

1442 Moraceae Dorstenia kameruniana Engl. sb gn Sh Tra Co<br />

1443 Moraceae Dorstenia lujae De Wild. var. lujae sb gn Hb Gc Hl<br />

1444 Moraceae Dorstenia mannii var. humilis (Hijman & C.C.Berg)<br />

Hijman<br />

sb bu Hb Lg Co<br />

1445 Moraceae Dorstenia mannii Hook.f. var. mannii sb bu Hb Lg Co<br />

1446 Moraceae Dorstenia mannii Hook.f. var. mungensis (Engl.) Hijman sb bu Hb Lg Co<br />

1447 Moraceae Dorstenia picta Bureau sb gn Hb Gc Co<br />

1448 Moraceae Dorstenia poinsettifolia Engl. var. angusta Hijman &<br />

C.C.Berg<br />

sb bu Hb Lg Co<br />

1449 Moraceae Dorstenia poinsettifolia Engl. var. poinsettifolia sb bu Hb Lg Co<br />

1450 Moraceae Dorstenia poinsettiifolia Engl. var. longicauda (Engl.)<br />

Hijman<br />

sb bu Hb Lg Co<br />

168


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1451 Moraceae Dorstenia preusii Engl. sb gn Hb Gc Co<br />

1452 Moraceae Dorstenia psilurus Welw. sb gn Hb Gc Co<br />

1453 Moraceae Dorstenia yambuyaensis De Wild. sb bu Hb Lg Co<br />

1454 Moraceae Ficus ardisioides Warb. subsp. camptoneura (Mildbr.) str gn Str Gc Co<br />

C.C.Berg<br />

1455 Moraceae Ficus asperifolia Miq. pi gn Tr Gc Co<br />

1456 Moraceae Ficus barteri Sprague pi gn Tr Gc Hl<br />

1457 Moraceae Ficus craterostoma Mildbr. & Burret str gn Str Gc Co<br />

1458 Moraceae Ficus cyathistipula Warb. subsp. cyathistipula str gn Str Pa Co<br />

1459 Moraceae Ficus exasperata Vahl pi gn Tr Tra Co<br />

1460 Moraceae Ficus leonensis Hutch. str gn Tr Gu Hl<br />

1461 Moraceae Ficus lutea Vahl pi gn Tr Tra Hl<br />

1462 Moraceae Ficus lyrata Warb. str gn Str Gc Hl<br />

1463 Moraceae Ficus mucuso Welw. ex Ficalho pi gn Tr Gc Co<br />

1464 Moraceae Ficus natalensis Hochst. str gn Str Tra Co<br />

1465 Moraceae Ficus ovata Vahl str gn Str Tra Hl<br />

1466 Moraceae Ficus pringsheimiana Braun ex K. Schum. ep gn Tr Gc Hl<br />

1467 Moraceae Ficus subsagittatifolia Mildbr. ex C.C. Berg ep bu Tr Lg Hl<br />

1468 Moraceae Ficus sur Forssk. pi gn Tr Pa Co<br />

1469 Moraceae Ficus vogeliana (Miq.) Miq. sw gn Tr Gc Co<br />

1470 Moraceae Milicia excelsa (Welw.) C.C.Berg pi sc Tr Tra Re LR/nt<br />

1471 Moraceae Scyphosyce manniana Baill. sb gn Hb Gc Co<br />

1472 Moraceae Treculia acuminata Baill. sb bu Sh Lg Co<br />

1473 Moraceae Treculia africana Decne. np gn Tr Tra Re<br />

1474 Moraceae Treculia obovoidea N.E.Br. sb gn Tr Gc Co<br />

1475 Moraceae Trilepisium madagascariense DC. pi gn Tr Tra Co<br />

1476 Myristicaceae Coelocaryon preussii Warb. np pk Tr Gc Re<br />

1477 Myristicaceae Pycnanthus angolensis (Welw.) Warb. np pk Tr Gc Re<br />

1478 Myristicaceae Scyphocephalium mannii (Benth.) Warb. np bu Tr Lg Re<br />

1479 Myristicaceae Staudtia kamerunensis Warb. var. gabonensis (Warb.)<br />

Fouilloy<br />

np pk Tr Gc Re<br />

1480 Myristicaceae Staudtia kamerunensis Warb. var. kamerunensis (Warb.)<br />

Fouilloy<br />

np pk Tr Gc Re<br />

1481 Myrsinaceae Ardisia batangaensis Taton sb gn Hb Gc Co<br />

1482 Myrsinaceae Ardisia buesgenii (Gilg & Schellenb.) Taton sb bu Hb Lg Co<br />

1483 Myrsinaceae Ardisia dewitiana Taton sb gn Hb Gc Co<br />

1484 Myrsinaceae Ardisia dolichocalyx Taton sb GD Hb Cam Co<br />

1485 Myrsinaceae Ardisia ebolowensis Taton sb bu Hb Lg Co<br />

1486 Myrsinaceae Ardisia leucantha Gilg & Schellenb sb gn Hb Gc Co<br />

1487 Myrsinaceae Ardisia staudtii Gilg sb gn Hb Gc Co<br />

1488 Myrsinaceae Ardisia zenkeri Gilg sb bu Hb Lg Co<br />

1489 Myrtaceae Eugenia kameruniana Engl. sb BK Sh Cam Co CR A1c<br />

1490 Myrtaceae Eugenia klaineana (Pierre) Engl. sb bu Sh Lg Co<br />

1491 Myrtaceae Eugenia talbotii Keay sb gn Sh Gc Co<br />

1492 Myrtaceae Eugenia whytei Sprague sb gn Sh Gc Co<br />

1493 Myrtaceae Eugenia zenkeri Engl. sb bu Sh Lg Co<br />

1494 Myrtaceae Psidium guineense Swartz pi gn Sh Pa Re<br />

1495 Myrtaceae Syzygium guineense (Willd.) DC. var. littorale Keay sw gn Tr Pa Co<br />

1496 Myrtaceae Syzygium staudtii (Engl.) Mildbr. np gn Tr Gu Re<br />

1497 Nyctaginaceae Boerhavia erecta L. pi gn Hb Tra Co<br />

1498 Nymphaeaceae Nymphaea heudelotii Planch. rh gn Hb Pa Hl<br />

1499 Nymphaeaceae Nymphaea lotus L. rh gn Hb Pa Hl<br />

1500 Ochnaceae Campylospermum calanthum (Gilg) Farron sb bu Sh Lg Co<br />

1501 Ochnaceae Campylospermum densiflora (De Wild. & Th. Durand)<br />

Farron<br />

sb gn Sh Gc Co<br />

1502 Ochnaceae Campylospermum duparquetiana (Baill.) Gilg sb gn Sh Gu Co<br />

1503 Ochnaceae Campylospermum dybowskii Tiegh. sb gn Sh Gc Co<br />

1504 Ochnaceae Campylospermum elongatum (Oliv.) Tiegh. sb bu Sh Lg Co<br />

1505 Ochnaceae Campylospermum excavatum sb bu Sh Lg Co<br />

1506 Ochnaceae Campylospermum flavum (Schum. & Thonn.) Farron sb gn Sh Gc Co<br />

1507 Ochnaceae Campylospermum glaberrimum (P.Beauv.) Farron sb gn Sh Gu Co<br />

1508 Ochnaceae Campylospermum glaucum (Tiegh.) Farron sb bu Sh Lg Co<br />

1509 Ochnaceae Campylospermum laxiflorum (De Wild. & T.Durand)<br />

Tiegh.<br />

sb gn Sh Gc Co<br />

1510 Ochnaceae Campylospermum letouzeyi Farron sb GD Sh Cam Co<br />

1511 Ochnaceae Campylospermum mannii (Oliv.) Tiegh. sb bu Sh Lg Co<br />

1512 Ochnaceae Campylospermum oliveri (Tiegh.) Farron sb gn Sh Gu Co<br />

169


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1513 Ochnaceae Campylospermum reticulatum (P.Beauv.) Farron var.<br />

reticulatum<br />

sb gn Sh Gc Co<br />

1514 Ochnaceae Campylospermum subcordatum (Stapf) Farron sb gn Sh Gu Co<br />

1515 Ochnaceae Campylospermum sulcatum (Tiegh.) Farron sb gn Sh Gu Co<br />

1516 Ochnaceae Campylospermum zenkeri (Engl. ex Tiegh.) Farron sb GD Sh Cam Hl<br />

1517 Ochnaceae Lophira alata Banks ex Gaertn.f. pi sc Tr Gc Re VU A1cd<br />

1518 Ochnaceae Ochna multiflora DC. sb gn Sh Gc Hl<br />

1519 Ochnaceae Rhabdophyllum affine (Hook.f.) Tiegh. sb gn Tr Gc Co<br />

1520 Ochnaceae Rhabdophyllum arnoldianum De Wild. & T. Durand sb gn Tr Gc Co<br />

1521 Ochnaceae Testulea gabonensis Pellegr. np bu Tr Lg Co EN A1cd<br />

1522 Olacaceae Aptandra zenkeri Engl. sb gn Tr Gc Co<br />

1523 Olacaceae Coula edulis Baill. sb gn Tr Gc Re<br />

1524 Olacaceae Diogoa zenkeri (Engl.) Exell & Mendonça sb gn Tr Gc Re<br />

1525 Olacaceae Engomegoma gordonii Breteler np bu Tr Lg Re<br />

1526 Olacaceae Heisteria parvifolia Sm. sb gn Sh Gc Co<br />

1527 Olacaceae Heisteria trillesiana Pierre sb bu Sh Lg Co<br />

1528 Olacaceae Heisteria zimmereri Engl. ri gn Sh Gc Co<br />

1529 Olacaceae Octoknema affinis Pierre sb bu Tr Lg Co<br />

1530 Olacaceae Octoknema dinklagei Engl. sb GD Tr Cam Co<br />

1531 Olacaceae Octoknema genovefae Villiers sb bu Sh Lg Co<br />

1532 Olacaceae Octoknema winkleri Engl. sb gn Sh Gc Co<br />

1533 Olacaceae Olax gambecola Baill. sb gn Sh Gc Co<br />

1534 Olacaceae Olax latifolia Engl. sb gn Sh Gc Co<br />

1535 Olacaceae Olax mannii Oliv. ri gn Sh Gc Co<br />

1536 Olacaceae Olax staudtii Engl. sb bu Sh Lg Co<br />

1537 Olacaceae Olax triplinerva Oliv. ri bu Sh Lg Hl<br />

1538 Olacaceae Ongokea gore (Hua) Pierre np gn Tr Gc Co<br />

1539 Olacaceae Ptychopetalum petiolatum Oliv. sb bu Tr Lg Co<br />

1540 Olacaceae Strombosia grandifolia Hook.f. ex Benth. sb gn Tr Gc Co<br />

1541 Olacaceae Strombosia pustulata Oliv. sb gn Tr Gc Co<br />

1542 Olacaceae Strombosia scheffleri Engl. sb gn Tr Gu Co<br />

1543 Olacaceae Strombosia zenkeri Engl. sb bu Tr Lg Co<br />

1544 Olacaceae Strombosiopsis tetrandra Engl. sb gn Tr Gc Re<br />

1545 Olacaceae Ximenia americana L. sb gn Sh Tra Re<br />

1546 Oleaceae Chionanthus mannii (Soler.) Stearn sb bu Sh Lg Hl<br />

1547 Oleaceae Jasminum preussii Engl. & Knobl. pi gn Hcl Gc Co<br />

1548 Oleandraceae Arthropteris monocarpa (Cordem.) C.Chr. ep gn He Tra Co<br />

1549 Oleandraceae Arthropteris palisoti (Desv.) Alston ep gn He Tra Co<br />

1550 Oleandraceae Nephrolepis biserrata (Sw.) Schott ep gn Hb Pa Co<br />

1551 Onagraceae Ludwigia abyssinica A. Rich. sw gn Hb Pa Hl<br />

1552 Onagraceae Ludwigia africana (Brenan) Hara sw gn Hb Pa Hl<br />

1553 Onagraceae Ludwigia erecta (L.) Hara sw gn Hb Tra Co<br />

1554 Onagraceae Ludwigia stenorraphe (Brenan) Hara sw gn Hb Tra Hl<br />

1555 Ophioglossaceae Ophioglossum reticulatum L. ep gn Ep Gc Hl<br />

1556 Opiliaceae Rhopalopilia pallens Pierre sb gn Sh Gc Co<br />

1557 Opiliaceae Urobotrya congolana (Baill.) Hiepko subsp. congolana sb gn Sh Gc Co<br />

1558 Orchidaceae Aerangis biloba (Lindl.) Schltr. ep gn Ep Gc Co<br />

1559 Orchidaceae Ancistrorhynchus capitatus (Lindl.) Summerh. ep bu Ep Lg Hl<br />

1560 Orchidaceae Ancistrorhynchus cephalotes (Rchb.f.) Summerh. ep bu Ep Lg Hl<br />

1561 Orchidaceae Angraecum birrimense Rolfe ep gn Ep Gc Co<br />

1562 Orchidaceae Angraecum distichum Lindl. ep gn Ep Gc Co<br />

1563 Orchidaceae Auxopus kamerunensis Schltr. ep gn Ep Gc Hl<br />

1564 Orchidaceae Bulbophyllum alinae Szlachetko ep BK Ep Campo-<br />

Ma'an<br />

Hl<br />

1565 Orchidaceae Bulbophyllum bufo (Lindl.) Rchb.f. ep gn Ep Gc Hl<br />

1566 Orchidaceae Bulbophyllum buntingii Rendle ep gn Ep Gc Hl<br />

1567 Orchidaceae Bulbophyllum calyptratum Kraenzl. ep gn Ep Gc Hl<br />

1568 Orchidaceae Bulbophyllum cochleatum Lindl. ep gn Ep Gc Hl<br />

1569 Orchidaceae Bulbophyllum colubrinum (Rchb.f.) Rchb.f. ep gn Ep Gc Co<br />

1570 Orchidaceae Bulbophyllum distans Lindl. ep gn Ep Gc Hl<br />

1571 Orchidaceae Bulbophyllum falcatum (Lindl.) Rchb.f. ep gn Ep Gc Co<br />

1572 Orchidaceae Bulbophyllum falcipetalum Lindl. ep gn Ep Gc Hl<br />

1573 Orchidaceae Bulbophyllum fuscum Lindl. ep gn Ep Gc Co<br />

1574 Orchidaceae Bulbophyllum imbricatum Lindl. ep gn Ep Gc Hl<br />

1575 Orchidaceae Bulbophyllum maximum (Lindl.) Rchb.f. ep gn Ep Tra Hl<br />

1576 Orchidaceae Bulbophyllum oreonastes Rchb.f. ep gn Ep Tra Hl<br />

170


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1577 Orchidaceae Bulbophyllum phaeopogon Schltr. ep gn Ep Gc Co<br />

1578 Orchidaceae Bulbophyllum sandersonii (Hook.f.) Rchb.f. subsp.<br />

sandersonii<br />

ep gn Ep Tra Co<br />

1579 Orchidaceae Bulbophyllum tentaculigerum Rchb.f. ep gn Ep Gc Hl<br />

1580 Orchidaceae Calyptrochilum emarginatum (Sw.) Schltr. ep gn Ep Gc Co<br />

1581 Orchidaceae Chamaeangis odoratissima (Rchb.f.) Schltr. ep gn Ep Tra Hl<br />

1582 Orchidaceae Corymborkis corymbosa Thouars pi gn Hb Tra Co<br />

1583 Orchidaceae Corymborkis minima P.J.Cribb sb GD Hb Cam Hl<br />

1584 Orchidaceae Cyrtorchis chailluana (Hook.f.) Schltr. ep gn Ep Gc Co<br />

1585 Orchidaceae Diaphanan<strong>the</strong> pellucida (Lindl.) Schltr. ep gn Ep Gc Co<br />

1586 Orchidaceae Eulophia alta (L.) Fawcett & Rendle pi gn Hb Tra Co<br />

1587 Orchidaceae Eulophia horsfallii (Batem.) Summerh. pi gn Hb Tra Hl<br />

1588 Orchidaceae Genyorchis pumila (Sw. ex Pers.) Schltr. ep gn Ep Gc Co<br />

1589 Orchidaceae Hetaeria mannii (Rchb.f.) T.Durand & Schinz pi gn Hb Gc Hl<br />

1590 Orchidaceae Liparis epiphytica Schltr. pi bu Hb Lg Hl<br />

1591 Orchidaceae Manniella gustavi Rchb.f. pi gn Hb Gc Co<br />

1592 Orchidaceae Podandriella batesii (la Croix) Szlachetko & Olszewski sb BK Hb Campo-<br />

Ma'an<br />

Hl<br />

1593 Orchidaceae Polystachya affinis Lindl. ep gn Ep Gc Hl<br />

1594 Orchidaceae Polystachya calluniflora Kraenzl. ep gn Ep Gc Hl<br />

1595 Orchidaceae Polystachya caloglossa Rchb.f. ep gn Ep Gc Co<br />

1596 Orchidaceae Polystachya fractiflexa Summerh. ep gn Ep Gc Hl<br />

1597 Orchidaceae Polystachya galeata (Sw.) Rchb.f. ep gn Ep Gc Hl<br />

1598 Orchidaceae Polystachya laxiflora Lindl. ep gn Ep Gc Hl<br />

1599 Orchidaceae Polystachya letouzeyana Szlachetko and Olszewski* ep BK Ep Campo-<br />

Ma'an<br />

Hl<br />

1600 Orchidaceae Polystachya polychaete Kraenzl. ep gn Ep Gc Hl<br />

1601 Orchidaceae Polystachya ramulosa Lindl. ep gn Ep Gc Hl<br />

1602 Orchidaceae Polystachya rhodoptera Rchb.f. ep gn Ep Gc Hl<br />

1603 Orchidaceae Rangaeris muscicola (Rchb.f.) Summerh. ep gn Ep Gc Co<br />

1604 Orchidaceae Solenangis scandens (Schltr.) Schltr. ep gn Ep Gc Hl<br />

1605 Orchidaceae Vanilla africana Lindl. subsp.africana np gn Hcl Gc Co<br />

1606 Orchidaceae Vanilla africana Lindley subsp. cucullata (Kraenzlin &<br />

K. Shum.) Szlachetko & Olszewski<br />

np BK Hcl Sw-Cam Hl<br />

1607 Orchidaceae Vanilla crenulata Rolfe np gn Hcl Gc Hl<br />

1608 Orchidaceae Vanilla grandifolia Kraenzl. np gn Hcl Gc Hl<br />

1609 Orchidaceae Zeuxine elongata Rolfe pi gn Hb Gc Co<br />

1610 Orchidaceae Zeuxine occidentalis (Summerh.) Geerinck sb gn Hb Gc Co<br />

1611 Orchidaceae Zeuxine stammleri Schltr. sb gn Hb Gc Co<br />

1612 Oxalidaceae Biophytum talbotii (Baker f.) Hutch. & Dalziel pi gn Hb Gc Co<br />

1613 Oxalidaceae Biophytum umbelatum Welw. pi gn Hb Pa Hl<br />

1614 Oxalidaceae Biophytum zenkeri Guillaumin rh gn Hb Gc Co<br />

1615 Oxalidaceae Oxalis corniculata L. pi gn Hb Pa Co<br />

1616 Oxalidaceae Oxalis corymbosa DC. pi gn Hb Pa Co<br />

1617 Palmae Calamus deërratus G.Mann & H.Wendl. np pk Swcl Gc Co<br />

1618 Palmae Cocos nucifera L. pi gn Pal Pa Re<br />

1619 Palmae Elaeis guineensis Jacq. pi pk Pal In Re<br />

1620 Palmae Eremospatha hookeri (G.Mann & H.Wendl.) H.Wendl. np pk Swcl Gc Co<br />

1621 Palmae Eremospatha laurentii De Wild. np pk Swcl Gc Co<br />

1622 Palmae Eremospatha macrocarpa (G.Mann & H.Wendl.)<br />

H.Wendl.<br />

np pk Swcl Gc Co<br />

1623 Palmae Eremospatha wenlandiana Dammer ex Becc. np pk Swcl Lg Co<br />

1624 Palmae Laccosperma opacum (G.Mann & H.Wendl.) Drude np pk Swcl Gc Co<br />

1625 Palmae Laccosperma secundiflorum (P.Beauv.) Kuntze np rd Swcl Gc Co<br />

1626 Palmae Nypa fruticans Wurmb. sw gn Pa Pal Re<br />

1627 Palmae Oncocalamus mannii (H.Wendl.) H.Wendl. np pk Swcl Gc Co<br />

1628 Palmae Phoenix reclinata L. pi gn Pal Pa Co<br />

1629 Palmae Podococcus barteri G. Mann & Wendl. sb bu Pal Lg Co<br />

1630 Palmae Raphia hookeri G.Mann & H.Wendl. sw pk Pal Gc Co<br />

1631 Palmae Raphia regalis Becc. sw pk Pal Gc Co<br />

1632 Palmae Raphia vinifera P.Beauv. sw pk Pal Gc Re<br />

1633 Palmae Sclerosperma mannii Wendl. sw gn Pal Gc Co<br />

1634 Pandacea Centroplacus glaucinus Pierre np gn Tr Gu Co<br />

1635 Pandaceae Microdesmis camerunensis J.Léonard sb bu Sh Lg Co<br />

1636 Pandaceae Microdesmis haumaniana J.Léonard sb gn Sh Gc Co<br />

1637 Pandaceae Microdesmis puberula Hook.f. ex Planch. sb gn Sh Gc Co<br />

1638 Pandaceae Microdesmis zenkeri Pax sb bu Sh Lg Co<br />

171


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1639 Pandaceae Panda oleosa Pierre sb gn Tr Gc Co<br />

1640 Pandanaceae Pandanus candelabrum P.Beauv. sw gn Tr Gc Co<br />

1641 Pandanaceae Pandanus satabiei Huynh sw bu Tr Lg Co<br />

1642 Passifloraceae Adenia cissampeloides (Planch. ex Benth.) Harms pi gn Swcl Tra Co<br />

1643 Passifloraceae Adenia gracilis Harms pi gn Swcl Gc Co<br />

1644 Passifloraceae Adenia letouzeyi W.J.de Wilde pi gn Swcl Gc Co<br />

1645 Passifloraceae Adenia lobata (Jacq.) Engl. pi gn Swcl Gc Co<br />

1646 Passifloraceae Adenia mannii (Mast.) Engl. pi gn Swcl Gc Co<br />

1647 Passifloraceae Adenia poggei (Engl.) Engl. pi gn Swcl Gc Hl<br />

1648 Passifloraceae Adenia staudtii Harms pi gn Hcl Gc Hl<br />

1649 Passifloraceae Barteria fistulosa Mast. pi gn Tr Gc Co<br />

1650 Passifloraceae Barteria nigritana Mast. pi bu Tr Lg Co<br />

1651 Passifloraceae Efulensia clematoides C.H.Wright pi gn Swcl Gc Co<br />

1652 Passifloraceae Paropsia grewioides Welw. ex Mast. sb bu Sh Lg Hl<br />

1653 Passifloraceae Passiflora foetida L. pi gn Hcl Pa Co<br />

1654 Passifloraceae Smeathmannia pubescens Soland. ex R.Br. sb gn Tr Gc Hl<br />

1655 Pedaliaceae Sesamum indicum L. pi gn Hb Pa Hl<br />

1656 Pedaliaceae Sesamum radiatum Schum. & Thonn. pi gn Hb Pa Co<br />

1657 Pentadiplandraceae Pentadiplandra brazzeana Baill. pi gn Lwcl Pa Co<br />

1658 Phytolaccaceae Hilleria latifolia (Lam.) H.Walt. pi gn Hb In Hl<br />

1659 Phytolaccaceae Phytolacca dodecandra L'Hér. pi gn Hcl Tra Hl<br />

1660 Piperaceae Peperomia molleri C.DC. ep gn Ep Tra Co<br />

1661 Piperaceae Peperomia pellucida (L.) H.B. & K. ep gn Ep Tra Co<br />

1662 Piperaceae Piper guineense Schum. & Thonn. sb gn Hcl Tra Co<br />

1663 Piperaceae Piper nigrum L. pi gn Hb Gc Hl<br />

1664 Piperaceae Piper umbellatum L. pi gn Hb Pa Co<br />

1665 Podostemaceae Dicraeanthus africanus Engl. rh bu Hb Lg Co<br />

1666 Podostemaceae Ledermanniella annithomae C. Cusset rh BK Hb Campo-<br />

Ma'an<br />

Hl<br />

1667 Podostemaceae Ledermanniella batangensis (Engl.) C. Cusset rh BK Hb Campo-<br />

Ma'an<br />

Hl<br />

1668 Podostemaceae Ledermanniella bifurcata (Engl.) C. Cusset rh bu Hb Lg Hl<br />

1669 Podostemaceae Ledermanniella bosii C.Cusset rh BK Hb Campo-<br />

Ma'an<br />

Co<br />

1670 Podostemaceae Ledermanniella boumiensis C. Cusset rh GD Hb Lg Co<br />

1671 Podostemaceae Ledermanniella cristat (Engl.) C. Cusset rh bu Hb Lg Co<br />

1672 Podostemaceae Ledermanniella fusilla (Warm.) C.Cusset rh bu Hb Lg Co<br />

1673 Podostemaceae Ledermanniella kamerunensis (Engl.) C. Cusset rh BK Hb Campo-<br />

Ma'an<br />

Hl<br />

1674 Podostemaceae Ledermanniella ledermannii (Engl.) C.Cusset rh gn Hb Gc Co<br />

1675 Podostemaceae Ledermanniella linearifolia Engl. rh GD Hb Cam Co<br />

1676 Podostemaceae Ledermanniella pusilla (Warm.) C.Cusset rh bu Hb Lg Co<br />

1677 Podostemaceae Ledermanniella variabilis (G.Taylor) C.Cusset rh GD Hb Cam Hl<br />

1678 Podostemaceae Tristicha trifaria (Bory) Spreng. rh gn Hb Pa Co<br />

1679 Polygalaceae Atroxima afzeliana (Oliv.) Stapf sb gn Swcl Gc Hl<br />

1680 Polygalaceae Atroxima liberica Stapf sb gn Swcl Gc Co<br />

1681 Polygalaceae Carpolobia alba G.Don sb gn Sh Gc Co<br />

1682 Polygalaceae Carpolobia gossweileri (Exell) Petit sb bu Tr Lg Co<br />

1683 Polygalaceae Carpolobia lutea G.Don sb gn Sh Gu Co<br />

1684 Polygalaceae Securidaca welwitschii Oliv. pi gn Swcl Gc Hl<br />

1685 Polygonaceae Afrobrunnichia erecta (Asch.) Hutch. & Dalziel pi gn Swcl Gc Co<br />

1686 Polygonaceae Polygonum salicifolium Brouss. ex Willd. pi gn Hb Pa Co<br />

1687 Polypodiaceae Drynaria laurentii (Christ ex De Wild. & Th.Durand)<br />

Hieron<br />

ep gn Ep Tra Co<br />

1688 Polypodiaceae Drynaria volkensii Hieron. ep gn Ep Tra Hl<br />

1689 Polypodiaceae Microgramma lycopodioides (L.) Copel. ep gn Ep Pal Hl<br />

1690 Polypodiaceae Phymatosorus scolopendria (Burm.f) Pic.Serm. ep gn Ep Pal Co<br />

1691 Polypodiaceae Platycerium stemaria (P.Beauv.) Desv. ep gn Ep Gc Co<br />

1692 Portulacaceae Portulaca oleracea L. pi gn Hb Pa Hl<br />

1693 Portulacaceae Talinum triangulare (Jacq.) Willd. pi gn Hb Tra Hl<br />

1694 Pteridaceae Acrostichum aureum L. sw gn Hb Pa Co<br />

1695 Pteridaceae Pteris atrovirens Willd. sb gn Hb Gc Co<br />

1696 Pteridaceae Pteris burtoni Baker sb gn Hb Gc Co<br />

1697 Pteridaceae Pteris linearis Poir. sb gn Hb Tra Co<br />

1698 Pteridaceae Pteris mildbraedii Hieron. sb gn Hb Tra Co<br />

1699 Pteridaceae Pteris togoensis Hieron. sb gn Hb Gc Co<br />

1700 Ranunculaceae Ranunculus multifidus Forssk. pi gn Hb Tra Hl<br />

172


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1701 Rhamnaceae Gouania longipetala Hemsl. pi gn Swcl Gc Co<br />

1702 Rhamnaceae Lasiodiscus fasciculiflorus Engl. sw gn Tr Gc Co<br />

1703 Rhamnaceae Lasiodiscus mannii Hook.f. sw gn Tr Gc Co<br />

1704 Rhamnaceae Lasiodiscus marmoratus C.H.Wright sw gn Tr Gc Co<br />

1705 Rhamnaceae Maesopsis eminii Engl. pi gn Tr Tra Co<br />

1706 Rhamnaceae Ventilago africana Exell np gn Swcl Gc Hl<br />

1707 Rhizophoraceae Anopyxis klaineana (Pierre) Engl. np rd Tr Gc Co VU A1cd<br />

1708 Rhizophoraceae Cassipourea barteri (Hook.f.) N.E.Br. ri gn Sh Gu Co<br />

1709 Rhizophoraceae Cassipourea congoensis R.Br. ex DC. sb gn Sh Gc Co<br />

1710 Rhizophoraceae Cassipourea dinklagei (Engl.) Alst. sb bu Sh Lg Hl<br />

1711 Rhizophoraceae Cassipourea kamerunensis (Engl.) Alston sb GD Sh Cam Co<br />

1712 Rhizophoraceae Cassipourea sericea (Engl.) Alst. sb bu Sh Lg Co<br />

1713 Rhizophoraceae Cassipourea zenkeri (Engl.) Alston sb GD Sh Cam Co<br />

1714 Rhizophoraceae Rhizophora mangle L. sw gn Tr Pa Co<br />

1715 Rhizophoraceae Rhizophora racemosa G.F.W.Mey. sw gn Tr Pa Co<br />

1716 Rubiaceae Aidia genipiflora (DC.) Dandy sb gn Tr Gc Co<br />

1717 Rubiaceae Aidia micrantha (K.Schum.) White sb gn Tr Gc Co<br />

1718 Rubiaceae Aoran<strong>the</strong> cladantha (K.Schum.) Somers sw gn Tr Gc Co<br />

1719 Rubiaceae Argocoffeopsis scandens (K.Schum.) Lebrun sb gn Swcl Gc Co<br />

1720 Rubiaceae Argocoffeopsis subcordata (Hiern) Lebrun sb gn Swcl Gc Hl<br />

1721 Rubiaceae Atractogyne bracteata (Wernham) Hutch. & Dalziel pi gn Swcl Gu Co<br />

1722 Rubiaceae Atractogyne gabonii Pierre pi gn Swcl Gc Hl<br />

1723 Rubiaceae Aulacocalyx caudata (Hiern) Keay sb bu Tr Lg Co<br />

1724 Rubiaceae Aulacocalyx jasminiflora Hook.f. sb gn Tr Gc Co<br />

1725 Rubiaceae Aulacocalyx talbotii (Wernham) Keay sb bu Tr Lg Co<br />

1726 Rubiaceae Belonophora coriacea Hoyle sb gn Sh Gc Co<br />

1727 Rubiaceae Belonophora talbotii (Wernham) Keay sb bu Sh Lg Co<br />

1728 Rubiaceae Belonophora wernhamii Hutch. & Dalziel sb bu Sh Lg Co<br />

1729 Rubiaceae Bertiera aethiopica Hiern pi gn Sh Gc Co<br />

1730 Rubiaceae Bertiera batesii Wernham sb gn Sh Gc Co<br />

1731 Rubiaceae Bertiera bicarpellata (K.Schum.) N.Hallé sb bu Sh Lg Co<br />

1732 Rubiaceae Bertiera bracteolata Hiern pi gn Hcl Gu Co<br />

1733 Rubiaceae Bertiera breviflora Hiern sb gn Sh Gc Co<br />

1734 Rubiaceae Bertiera elabensis K.Krause ri bu Sh Lg Hl<br />

1735 Rubiaceae Bertiera globiceps K.Schum. sb gn Sh Gc Co<br />

1736 Rubiaceae Bertiera iturensis K.Krause sb gn Sh Gc Co<br />

1737 Rubiaceae Bertiera laxa Benth. sb bu Sh Lg Co<br />

1738 Rubiaceae Bertiera laxissima K.Schum. sb GD Sh Lg Co<br />

1739 Rubiaceae Bertiera racemosa (G.Don) K.Schum. var. elephantina<br />

N.Hallé<br />

sb gn Sh Gc Co<br />

1740 Rubiaceae Bertiera racemosa (G.Don) K.Schum. var. racemosa<br />

(G.Don) K.Schum.<br />

sb gn Sh Gc Co<br />

1741 Rubiaceae Bertiera retrofracta K.Schum. sb bu Sh Lg Co<br />

1742 Rubiaceae Bertiera subsessilis Hiern sb bu Sh Lg Co<br />

1743 Rubiaceae Borreria latifolia (Aubl.) K.Schum. pi gn Hb Gc Hl<br />

1744 Rubiaceae Brenania brieyi (De Wild.) Petit sb gn Tr Gc Re<br />

1745 Rubiaceae Canthium ripae np gn Swcl Gc Co<br />

1746 Rubiaceae Chassalia afzelii (Hiern) K.Schum. sb gn Sh Gc Co<br />

1747 Rubiaceae Chassalia cristata (Hiern) Bremek. sb gn Sh Gc Hl<br />

1748 Rubiaceae Chassalia ischnophylla (K.Schum.) Hepper sb bu Sh Lg Co<br />

1749 Rubiaceae Chassalia kolly (Schumach.) Hepper sb gn Sh Gu Co<br />

1750 Rubiaceae Chassalia macrodiscus K.Schum. pi gn Swcl Gc Hl<br />

1751 Rubiaceae Chassalia simplex K.Krause sb gn Sh Gc Co<br />

1752 Rubiaceae Chassalia zenkeri K.Schum. & K.Krause sb bu Sh Lg Co<br />

1753 Rubiaceae Chazaliella coffeosperma (K.Schum.) Verdc. sb gn Sh Gc Co<br />

1754 Rubiaceae Chazaliella domatiicola (De Wild.) Petit & Verdc. sb gn Sh Gc Co<br />

1755 Rubiaceae Chazaliella insidens (Hiern) Petit & Verdc. subsp.<br />

insidens<br />

sb bu Sh Lg Co<br />

1756 Rubiaceae Chazaliella oddonii (De Wild.) Petit & Verdc. sb gn Sh Gc Co<br />

1757 Rubiaceae Chazaliella sciadephora (Hiern) Petit & Verdc. var.<br />

condensata Verdc.<br />

sb GD Sh Cam Co<br />

1758 Rubiaceae Chazaliella sciadephora (Hiern) Petit & Verdc. var.<br />

sciadephora<br />

sb gn Sh Gc Co<br />

1759 Rubiaceae Coffea brevipes Hiern sb gn Sh Gc Co<br />

1760 Rubiaceae Coffea congensis Froehn. sb gn Sh Gc Hl<br />

1761 Rubiaceae Coffea heterocalyx Stoffelen sb gn Sh Gc Hl<br />

1762 Rubiaceae Coffea liberica Bull. ex Hiern pi pk Sh Tra Re<br />

173


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1763 Rubiaceae Coffea mayombensis A.Chev. sb gn Sh Gc Co<br />

1764 Rubiaceae Corynan<strong>the</strong> pachyceras K.Schum. sb gn Tr Gc Re<br />

1765 Rubiaceae Craterispermum aristatum Wernham sb bu Sh Lg Co<br />

1766 Rubiaceae Craterispermum caudatum Hutch. sb gn Sh Gc Co<br />

1767 Rubiaceae Craterispermum cerinanthum Hiern sb gn Sh Gc Co<br />

1768 Rubiaceae Craterispermum laurinium (Poir.) Benth. sb gn Sh Gc Co<br />

1769 Rubiaceae Craterispermum ledermannii K.Krause sb gn Sh Gc Co<br />

1770 Rubiaceae Craterispermum scandens Engl. & Gilg sb gn Sh Gc Hl<br />

1771 Rubiaceae Cremaspora thomsonii Hiern np bu Swcl Lg Hl<br />

1772 Rubiaceae Cremaspora triflora (Thonn.) K.Schum. np gn Swcl Tra Co<br />

1773 Rubiaceae Cuviera acutiflora DC. pi gn Tr Gu Co<br />

1774 Rubiaceae Cuviera macroura K.Schum. pi gn Tr Gc Hl<br />

1775 Rubiaceae Cuviera talbotii (Wernham) Verdc. pi bu Tr Lg Co<br />

1776 Rubiaceae Cuviera truncata Benth. pi gn Tr Gc Hl<br />

1777 Rubiaceae Cuviera uncinula N.Hallé sb gn Tr Gc Co<br />

1778 Rubiaceae Didymosalpinx abbeokutae Hiern sb gn Swcl Gc Co<br />

1779 Rubiaceae Diodia sarmentosa Sw. pi gn Hb Pa Co<br />

1780 Rubiaceae Diodia scandens sensu Hepper pi gn Hb Tra Co<br />

1781 Rubiaceae Diodia serrulata (P.Beauv.) G.Taylor pi gn Hb Tra Hl<br />

1782 Rubiaceae Ecpoma apocynaceum K.Schum. pi BK Sh Sw-Cam Co<br />

1783 Rubiaceae Ecpoma gigantostipulum (K.Schum.) N.Hallé pi bu Sh Lg Co<br />

1784 Rubiaceae Euclinia longiflora Salisb. sb gn Sh Gc Co<br />

1785 Rubiaceae Gaertnera bieleri (De Wild.) Petit sb gn Sh Gc Hl<br />

1786 Rubiaceae Gaertnera dinklagei K.Schum. sb gn Sh Gc Hl<br />

1787 Rubiaceae Gaertnera fissistipula (K. Schum. & K. Krause) Petit sb bu Sh Lg Co<br />

1788 Rubiaceae Gaertnera trachystyla (Hiern) Petit sb gn Sh Gc Co<br />

1789 Rubiaceae Geophila afzelii Hiern pi gn Hb Gc Co<br />

1790 Rubiaceae Geophila lancistipula Hiern pi gn Hb Gc Hl<br />

1791 Rubiaceae Geophila obvallata (Schumach.) Didr. pi gn Hb Gc Co<br />

1792 Rubiaceae Geophila repens (L.) I.M.Johnston pi gn Hb Gc Co<br />

1793 Rubiaceae Geophila speciosa K. Schum. pi gn Hb Gc Co<br />

1794 Rubiaceae Hallea ciliata (Aubr. et Pell.) J.F. Leroy sw rd Tr Gc Hl<br />

1795 Rubiaceae Hallea stipulosa (DC.) Leroy sw rd Tr Gc Co VU A1cd<br />

1796 Rubiaceae Heinsia crinita (Afzel.) G.Taylor pi gn Sh Gc Co<br />

1797 Rubiaceae Hymenocoleus glaber Robbrecht sb GD Hb Cam Co<br />

1798 Rubiaceae Hymenocoleus hirsutus (Benth.) Robbrecht sb gn Hb Gc Co<br />

1799 Rubiaceae Hymenocoleus libericus (A.Chev. ex Hutch. & Dalziel)<br />

Robbrecht<br />

sb gn Hb Gc Co<br />

1800 Rubiaceae Hymenocoleus nervopilosus Robbrecht var. orientalis<br />

Robbrecht<br />

sb bu Hb Lg Co<br />

1801 Rubiaceae Hymenocoleus neurodictyon (K.Schum.) Robbr. var.<br />

neurodictyon<br />

sb gn Hb Gc Co<br />

1802 Rubiaceae Hymenocoleus rotundifolius (A.Chev. ex Hepper)<br />

Robbrecht<br />

sb gn Hb Gc Co<br />

1803 Rubiaceae Hymenocoleus scaphus (K.Schum.) Robbrecht sb gn Hb Gc Co<br />

1804 Rubiaceae Hymenocoleus subipecacuanha (K.Schum.) Robbrecht sb gn Hb Gc Co<br />

1805 Rubiaceae Hymenodictyon floribundum (Steud. & Hochst.)<br />

B.L.Rob.<br />

sb gn Sh Tra Co<br />

1806 Rubiaceae Ixora aneimenodesma K.Schum. subsp. aneimenodesma sb GD Sh Cam Co<br />

1807 Rubiaceae Ixora breviflora Hiern sb gn Sh Gc Co<br />

1808 Rubiaceae Ixora euosmia K.Schum. ri bu Sh Lg Co<br />

1809 Rubiaceae Ixora guineensis Benth. sb gn Sh Gu Co<br />

1810 Rubiaceae Ixora hippoperifera Bremek. sb bu Sh Lg Co<br />

1811 Rubiaceae Ixora macilenta De Block pi bu Sh Lg Co<br />

1812 Rubiaceae Ixora minutiflora Hiern subsp. chasalliensis De Block sb bu Sh Lg Hl<br />

1813 Rubiaceae Ixora minutiflora Hiern subsp. Minutiflora sb bu Sh Lg Hl<br />

1814 Rubiaceae Ixora nematopoda K.Schum. sb bu Sh Lg Co<br />

1815 Rubiaceae Ixora synactica De Block sb BK Sh Sw-Cam Hl<br />

1816 Rubiaceae Ixora talbotii Wernham sb gn Sh Gc Hl<br />

1817 Rubiaceae Keetia acuminata (De Wild.) Bridson pi gn Sh Gc Co<br />

1818 Rubiaceae Keetia hispida (Benth.) Bridson pi gn Swcl Gc Co<br />

1819 Rubiaceae Keetia mannii (Hiern) Bridson pi gn Swcl Gc Co<br />

1820 Rubiaceae Lasianthus batangensis K.Schum. sb gn Sh Gc Co<br />

1821 Rubiaceae Lasianthus repens Hepper sb gn Hb Gc Co<br />

1822 Rubiaceae Leptactina arnoldiana De Wild. np gn Sh Gc Co<br />

1823 Rubiaceae Leptactina involucrata Hook.f. sb gn Sh Gc Hl<br />

1824 Rubiaceae Leptactina latifolia K.Schum. sb bu Sh Lg Hl<br />

174


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1825 Rubiaceae Leptactina mannii Hook.f. ri gn Sh Gc Co<br />

1826 Rubiaceae Massularia acuminata (G.Don) Bullock ex Hoyle sb gn Sh Gc Co<br />

1827 Rubiaceae Morelia senegalensis A.Rich. ex DC. ri gn Swcl Gc Co<br />

1828 Rubiaceae Morinda confusa Hutch. np gn Tr Gc Hl<br />

1829 Rubiaceae Morinda longiflora G.Don np gn Tr Gc Hl<br />

1830 Rubiaceae Morinda lucida Benth. pi gn Tr Gc Hl<br />

1831 Rubiaceae Morinda morindoides (Baker) Milne-Redh. np gn Swcl Gc Co<br />

1832 Rubiaceae Mussaenda arcuata Lam. ex Poir. pi gn Swcl Tra Co<br />

1833 Rubiaceae Mussaenda chippii Wernham pi gn Swcl Gc Co<br />

1834 Rubiaceae Mussaenda elegans Schum. & Thonn. pi gn Swcl Gc Co<br />

1835 Rubiaceae Mussaenda isertiana DC. pi bu Swcl Lg Hl<br />

1836 Rubiaceae Mussaenda polita Hiern pi bu Swcl Lg Co<br />

1837 Rubiaceae Mussaenda tenuiflora Benth. pi gn Swcl Gc Co<br />

1838 Rubiaceae Nauclea diderrichii (De Wild. & T.Durand) Merrill pi sc Tr Gc Re VU A1cd<br />

1839 Rubiaceae Nauclea pobeguinii (Pobeguin ex Pellegr.) Petit sw gn Tr Gc Re<br />

1840 Rubiaceae Nauclea vanderguchtii (De Wild.) Petit pi gn Tr Gc Hl<br />

1841 Rubiaceae Nichallea soyauxii (Hiern) Bridson np gn Sh Gc Hl<br />

1842 Rubiaceae Oldenlandia affinis (Roem. & Schult.) DC. pi gn Hb Gc Hl<br />

1843 Rubiaceae Oldenlandia corymbosa L. pi gn Hb Pa Hl<br />

1844 Rubiaceae Oldenlandia lancifolia (Schumach.) DC. sw gn Hb Pa Co<br />

1845 Rubiaceae Otomeria guineensis Benth. pi gn Hb Gc Co<br />

1846 Rubiaceae Otomeria micrantha K.Schum. pi gn Hb Gc Co<br />

1847 Rubiaceae Otomeria volubilis (K.Schum.) Verdc. pi gn Hcl Gc Co<br />

1848 Rubiaceae Oxyanthus brevicaulis K.Krause sb gn Sh Gc Co<br />

1849 Rubiaceae Oxyanthus formosus Hook.f. ex Planch. sb gn Sh Gc Co<br />

1850 Rubiaceae Oxyanthus gracilis Hiern sb gn Sh Gc Co<br />

1851 Rubiaceae Oxyanthus laxiflorus K.Schum. ex Hutch. & Dalziel sb bu Sh Lg Co<br />

1852 Rubiaceae Oxyanthus oliganthus K.Schum. sb GD Sh Cam Co<br />

1853 Rubiaceae Oxyanthus setosus Keay sb gn Sh Gu Co<br />

1854 Rubiaceae Oxyanthus speciosus DC. subsp. speciosus sb gn Sh Gc Co<br />

1855 Rubiaceae Oxyanthus subpunctatus (Hiern) Keay sw gn Sh Gc Hl<br />

1856 Rubiaceae Oxyanthus unilocularis Hiern ri gn Sh Gc Co<br />

1857 Rubiaceae Parapentas setigera (Hiern) Verdc. ri gn Hb Gc Co<br />

1858 Rubiaceae Pauridiantha canthiiflora Hook.f. sb bu Sh Lg Co<br />

1859 Rubiaceae Pauridiantha dewevrei (De Wild. & Th.Durand) Bremek. sb gn Sh Gc Co<br />

1860 Rubiaceae Pauridiantha divaricata (K.Schum.) Bremek. sb bu Sh Lg Co<br />

1861 Rubiaceae Pauridiantha floribunda (K.Schum. & K.Krause) sb bu Sh Lg Co<br />

Bremek.<br />

1862 Rubiaceae Pauridiantha hirtella (Benth.) Bremek. pi gn Sh Gu Hl<br />

1863 Rubiaceae Pauridiantha multiflora K.Schum. sb gn Sh Gc Hl<br />

1864 Rubiaceae Pauridiantha venusta N.Hallé sb bu Sh Lg Co<br />

1865 Rubiaceae Pausinystalia johimbe (K. Schum.) Pierre ex Beille sb pk Tr Lg Co<br />

1866 Rubiaceae Pausinystalia macroceras (K.Schum.) Pierre ex Beille sb gn Tr Gc Co<br />

1867 Rubiaceae Pavetta bidentata Hiern var. bidentata sb bu Sh Lg Co<br />

1868 Rubiaceae Pavetta camerounensis S.Manning subsp. camerounensis sb GD Sh Cam Co<br />

1869 Rubiaceae Pavetta gabonica Bremek. sb bu Sh Lg Co<br />

1870 Rubiaceae Pavetta gracilipes Hiern sb bu Sh Lg Hl<br />

1871 Rubiaceae Pavetta kribiensis S.Manning sb BK Sh Sw-Cam Co<br />

1872 Rubiaceae Pavetta macrostemon K.Schum. sb gn Sh Gc Hl<br />

1873 Rubiaceae Pavetta mpomii S.Manning sb BK Sh Sw-Cam Co<br />

1874 Rubiaceae Pavetta puberula Hiern sb gn Sh Gc Co<br />

1875 Rubiaceae Pavetta rigida Hiern sb gn Sh Gc Co<br />

1876 Rubiaceae Pavetta staudtii Hutch. & Dalziel sb GD Sh Cam Co<br />

1877 Rubiaceae Pavetta tetramera (Hiern) Bremek. sb gn Sh Gc Co<br />

1878 Rubiaceae Pavetta urophylla Bremek. sb gn Sh Gc Co<br />

1879 Rubiaceae Pentodon pentandrus (Schum. & Thonn.) Vatke pi gn Hb Tra Co<br />

1880 Rubiaceae Petitiocodon parviflorum (Keay) Robbrecht sb bu Sh Lg Co<br />

1881 Rubiaceae Pleiocoryne fernandense (Hiern) S.Rauschert np gn Swcl Gc Co<br />

1882 Rubiaceae Poecilocalyx schumannii Bremek. sb bu Sh Lg Co<br />

1883 Rubiaceae Poecilocalyx setiflorus (R.Good) Bremek. ri gn Sh Gc Co<br />

1884 Rubiaceae Poecilocalyx stipulosa (Hutch. & Dalziel) N.Hallé sb gn Sh Gc Co<br />

1885 Rubiaceae Polysphaeria macrophylla K.Schum. sb gn Sh Gc Co<br />

1886 Rubiaceae Pseudosabicea floribunda (K.Schum.) N.Hallé pi gn Hb Gc Co<br />

1887 Rubiaceae Pseudosabicea medusula (K.Schum.) N.Hallé np GD Hb Cam Co<br />

1888 Rubiaceae Pseudosabicea proselyta N.Hallé pi bu Hb Lg Co<br />

1889 Rubiaceae Pseudosabicea segregata (Hiern) N.Hallé pi bu Hb Lg Co<br />

175


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1890 Rubiaceae Psilanthus mannii Hook.f. sb gn Sh Gc Co<br />

1891 Rubiaceae Psychotria aemulans K. Schum. sb BK Sh Campo-<br />

Ma'an<br />

Hl<br />

1892 Rubiaceae Psychotria avakubiensis De Wild. sb bu Sh Lg Co<br />

1893 Rubiaceae Psychotria batangana K. Schum. sb BK Sh Campo-<br />

Ma'an<br />

Hl<br />

1894 Rubiaceae Psychotria bifaria Hiern var. bifaria sb bu Sh Lg Co<br />

1895 Rubiaceae Psychotria calceata Petit sb bu Sh Lg Co<br />

1896 Rubiaceae Psychotria calva Hiern sb gn Sh Gc Co<br />

1897 Rubiaceae Psychotria camerunensis Petit sb GD Sh Cam Co<br />

1898 Rubiaceae Psychotria camptopus Verdc. sb bu Sh Lg Co<br />

1899 Rubiaceae Psychotria densinervia (K.Krause) Verdc. sb gn Sh Gc Hl<br />

1900 Rubiaceae Psychotria dimorphophylla K. Schum. ri BK Sh Campo-<br />

Ma'an<br />

Hl<br />

1901 Rubiaceae Psychotria djumaensis De Wild. sb gn Sh Gc Co<br />

1902 Rubiaceae Psychotria ebensis K.Schum. sb bu Sh Lg Co<br />

1903 Rubiaceae Psychotria fimbriatifolia R.D.Good sb gn Sh Gc Co<br />

1904 Rubiaceae Psychotria gabonica Hiern sb gn Sh Gc Co<br />

1905 Rubiaceae Psychotria globiceps K.Schum. sb gn Sh Gu Co<br />

1906 Rubiaceae Psychotria globosa Hiern var. ciliata (Hiern) Petit sb bu Hb Lg Co<br />

1907 Rubiaceae Psychotria globosa Hiern var. globosa sb gn Hb Gc Co<br />

1908 Rubiaceae Psychotria guineensis Petit sb gn Sh Gu Co<br />

1909 Rubiaceae Psychotria humilis Hiern var. humilis pi bu Hb Lg Co<br />

1910 Rubiaceae Psychotria ingentifolia Petit sb bu Sh Lg Co<br />

1911 Rubiaceae Psychotria lanceifolia K.Schum. sb BK Sh Sw-Cam Co<br />

1912 Rubiaceae Psychotria latistipula Benth. sb bu Sh Lg Co<br />

1913 Rubiaceae Psychotria leptophylla Hiern sb gn Sh Gc Co<br />

1914 Rubiaceae Psychotria letouzeyi Petit sb bu Sh Lg Co<br />

1915 Rubiaceae Psychotria mannii (Hook.f.) Hiern sb gn Sh Gc Co<br />

1916 Rubiaceae Psychotria oligocarpa K.Schum. sb BK Sh Campo-<br />

Ma'an<br />

Co<br />

1917 Rubiaceae Psychotria peduncularis (Salisb.) Steyerm. var.<br />

suaveolens (Hiern) Verdc.<br />

sb gn Sh Gc Co<br />

1918 Rubiaceae Psychotria peduncularis (Salisb.) Steyerm. var.<br />

peduncularis<br />

sb gn Sh Gc Co<br />

1919 Rubiaceae Psychotria psychotrioides (DC.) Roberty sb gn Sh Gc Hl<br />

1920 Rubiaceae Psychotria sadebeckiana K.Schum. var. elongata Petit sb GD Sh Cam Co<br />

1921 Rubiaceae Psychotria sadebeckiana K.Schum. var. sadebeckiana sb GD Sh Cam Co<br />

1922 Rubiaceae Psychotria subobliqua Hiern sb gn Sh Gc Co<br />

1923 Rubiaceae Psychotria subpunctata Hiern sb bu Sh Lg Co<br />

1924 Rubiaceae Psychotria venosa (Hiern) Petit sb gn Tr Gc Co<br />

1925 Rubiaceae Psychotria vogeliana Benth. sb gn Sh Gc Co<br />

1926 Rubiaceae Psydrax acutiflora (Hiern) Bridson pi gn Tr Gc Co<br />

1927 Rubiaceae Psydrax arnoldiana (De Wild. & T.Durand) Bridson pi gn Tr Gc Hl<br />

1928 Rubiaceae Psydrax dunlapii (Hutch. & Dalziel) Bridson pi bu Tr Lg Co<br />

1929 Rubiaceae Psydrax palma (K.Schum.) Bridson pi bu Tr Lg Co<br />

1930 Rubiaceae Psydrax subcordata (DC.) Bridson pi gn Tr Gc Co<br />

1931 Rubiaceae Rothmannia hispida (K.Schum.) Fagerlind sb gn Sh Gc Co<br />

1932 Rubiaceae Rothmannia longiflora Salisb. pi gn Sh Tra Co<br />

1933 Rubiaceae Rothmannia lujae (De Wild.) Keay sb gn Sh Gc Co<br />

1934 Rubiaceae Rothmannia macrocarpa (Hiern) Keay sb gn Sh Gc Co<br />

1935 Rubiaceae Rothmannia mayumbensis (Good) Keay sb gn Sh Gc Co<br />

1936 Rubiaceae Rothmannia octomera (Hook.f.) Fagerlind np gn Sh Gc Hl<br />

1937 Rubiaceae Rothmannia talbotii (Wernham) Keay sb gn Sh Gc Co<br />

1938 Rubiaceae Rothmannia urcelliformis (Hiern) Bullock ex Robyns sb gn Sh Tra Co<br />

1939 Rubiaceae Rothmannia whitfieldii (Lindl.) Dandy sb gn Sh Tra Co<br />

1940 Rubiaceae Rutidea decorticata Hiern sb gn Swcl Gc Hl<br />

1941 Rubiaceae Rutidea glabra Hiern sb gn Swcl Gc Co<br />

1942 Rubiaceae Rutidea hispida Hiern pi bu Swcl Lg Co<br />

1943 Rubiaceae Rutidea membranacea Hiern sb gn Swcl Gc Hl<br />

1944 Rubiaceae Rutidea nigerica Bridson pi gn Swcl Gc Hl<br />

1945 Rubiaceae Rutidea olenotricha Hiern pi gn Swcl Gc Hl<br />

1946 Rubiaceae Rutidea smithii Hiern subsp. smithii pi gn Swcl Gc Hl<br />

1947 Rubiaceae Rytigynia membranacea (Hiern) Robyns pi gn Swcl Gc Hl<br />

1948 Rubiaceae Rytigynia rubra Robyns pi gn Swcl Gc Co<br />

1949 Rubiaceae Sabicea calycina Benth. pi gn Hcl Gc Co<br />

1950 Rubiaceae Sabicea capitellata Benth. pi bu Hcl Lg Co<br />

176


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

1951 Rubiaceae Sabicea dinklagei K.Schum. pi gn Hcl Gc Hl<br />

1952 Rubiaceae Sabicea gabonica (Hiern) Hepper pi gn Hcl Gc Co<br />

1953 Rubiaceae Sabicea pilosa Hiern pi bu Hcl Lg Co<br />

1954 Rubiaceae Sabicea speciosa K.Schum. pi gn Hcl Gu Co<br />

1955 Rubiaceae Sacosperma paniculatum (Benth.) G.Taylor ri gn Swcl Tra Co<br />

1956 Rubiaceae Schumanniophyton magnificum (K.Schum.) Harms sb gn Sh Gc Co<br />

1957 Rubiaceae Serican<strong>the</strong> auriculata (Keay) Robbrecht sb bu Sh Lg Co<br />

1958 Rubiaceae Serican<strong>the</strong> jacfelicis (N.Hallé) Robbrecht sb bu Sh Lg Co<br />

1959 Rubiaceae Sherbournia ailarama N.Hallé sb gn Swcl Gc Re<br />

1960 Rubiaceae Sherbournia zenkeri Hua np bu Swcl Lg Co<br />

1961 Rubiaceae Stipularia africana P.Beauv. pi gn Sh Gc Co<br />

1962 Rubiaceae Tarenna asteriscus (K.Schum.) Bremek. sb gn Swcl Gc Co<br />

1963 Rubiaceae Tarenna bipindensis (K.Schum.) Bremek. sb gn Swcl Gu Hl<br />

1964 Rubiaceae Tarenna conferta (Benth.) Hiern sb gn Sh Gc Hl<br />

1965 Rubiaceae Tarenna eketensis Werham sb gn Sh Gc Co<br />

1966 Rubiaceae Tarenna grandiflora Hiern sb bu Tr Lg Co<br />

1967 Rubiaceae Tarenna lasiorachis (K.Schum. & K.Krause) Bremek. sb bu Sh Lg Co<br />

1968 Rubiaceae Tarenna thomasii Hutch. & Dalziel sb gn Sh Gc Co<br />

1969 Rubiaceae Tarenna vignei Hutch. & Dalziel var. subglabra Keay sb gn Sh Gc Co<br />

1970 Rubiaceae Tricalysia amplexicaulis Robbrecht sb GD Sh Cam Co<br />

1971 Rubiaceae Tricalysia biafrana Hiern sb gn Tr Gc Hl<br />

1972 Rubiaceae Tricalysia coriacea (Benth.) Hiern subsp. Coriacea sb gn Sh Tra Co<br />

1973 Rubiaceae Tricalysia gossweileri S.Moore sb gn Sh Gc Co<br />

1974 Rubiaceae Tricalysia lasiodelphys (K.Schum. & K.Krause) A.Chev. sb<br />

subsp. lasiodelphys<br />

bu Sh Lg Co<br />

1975 Rubiaceae Tricalysia macrophylla K.Schum. np gn Tr Gu Co<br />

1976 Rubiaceae Tricalysia obstetrix N.Hallé sb bu Sh Lg Co<br />

1977 Rubiaceae Tricalysia oligoneura K.Schum. sb gn Sh Gc Co<br />

1978 Rubiaceae Tricalysia pallens Hiern sb gn Sh Tra Hl<br />

1979 Rubiaceae Tricalysia pedunculosa (N.Hallé) Robbrecht var. sb bu Sh Lg Co<br />

pedunculosa<br />

1980 Rubiaceae Tricalysia reflexa Hutch. var. reflexa sb gn Sh Gu Hl<br />

1981 Rubiaceae Tricalysia soyauxii K.Schum. sb bu Sh Lg Co<br />

1982 Rubiaceae Tricalysia sylvae Robbr. sb bu Sh Lg Co<br />

1983 Rubiaceae Tricalysia talbotii (Wernham) Keay sb GD Sh Cam Co<br />

1984 Rubiaceae Tricalysia vadensis Robbr. sb bu Sh Lg Co<br />

1985 Rubiaceae Trichostachys aurea Hiern sb gn Sh Gc Co<br />

1986 Rubiaceae Uncaria africana G.Don subsp. africana np gn Lwcl Gc Co<br />

1987 Rubiaceae Uncaria donisii Petit np gn Lwcl Gc Co<br />

1988 Rubiaceae Vangueriella campylacantha (Mildbr.) Verdc. sb gn Sh Gc Co<br />

1989 Rubiaceae Vangueriella chlorantha (K.Schum.) Verdc. sb gn Sh Gc Co<br />

1990 Rubiaceae Vangueriella laxiflora (K.Schum.) Verdc. sb GD Swcl Cam Hl<br />

1991 Rubiaceae Vangueriopsis religiosa (K.Schum.) Verdc. sb gn Sh Gc Co<br />

1992 Rubiaceae Virectaria major (K.Schum.) Verdc. var. major pi gn Hb Gc Co<br />

1993 Rubiaceae Virectaria multiflora (Sm.) Brenan pi gn Hb Gc Co<br />

1994 Rubiaceae Virectaria procumbens (Sm.) Bremek pi gn Hb Gc Co<br />

1995 Rutaceae Citropsis gabunensis (Engl.) Swingle & Kellerman sb gn Sh Gc Co<br />

1996 Rutaceae Oricia lecomteana Pierre sb bu Tr Lg Co<br />

1997 Rutaceae Vepris glaberrima (Engl.) J.B.Hall sb gn Sh Gc Hl<br />

1998 Rutaceae Vepris heterophylla Letouzey sb bu Sh Gc Hl EN A1c, B1+2c<br />

1999 Rutaceae Vepris soyauxii (Engl.) W.Mziray sb gn Sh Gc Hl<br />

2000 Rutaceae Zanthoxylum dinklagei (Engl.) P.G.Waterman pi bu Lwcl Lg Co<br />

2001 Rutaceae Zanthoxylum gilletii (De Wild.) P.G.Waterman pi gn Tr Gc Re<br />

2002 Rutaceae Zanthoxylum heitzii (Aubrév. & Pellegr.) P.G.Waterman pi gn Tr Gc Re<br />

2003 Rutaceae Zanthoxylum lemairei (De Wild.) P.G.Waterman pi gn Tr Gc Re<br />

2004 Sapindaceae Allophylus africanus P.Beauv. pi gn Tr Tra Co<br />

2005 Sapindaceae Allophylus grandifolius (Baker) Radlk. sb bu Tr Lg Co<br />

2006 Sapindaceae Allophylus welwitschii Gilg sb gn Sh Gc Co<br />

2007 Sapindaceae Aporrhiza urophylla Gilg sb gn Tr Gu Hl<br />

2008 Sapindaceae Blighia welwitschii (Hiern) Radlk. np gn Tr Gc Co<br />

2009 Sapindaceae Cardiospermum halicacabum L. pi gn Hcl Pa Hl<br />

2010 Sapindaceae Chytranthus angustifolius Exell sb gn Sh Gu Co<br />

2011 Sapindaceae Chytranthus edulis Pierre sb bu Sh Lg Co<br />

2012 Sapindaceae Chytranthus gilletii De Wild. sb gn Sh Gc Co<br />

2013 Sapindaceae Chytranthus klaineanus Radlk. sb bu Sh Lg Co<br />

2014 Sapindaceae Chytranthus macrobotrys (Gilg) Exell & Mendonça ri gn Sh Gc Co<br />

177


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

2015 Sapindaceae Chytranthus macrophyllus Gilg. sb bu Sh Lg Co<br />

2016 Sapindaceae Chytranthus mortehani (De Wild.) De Vold. ex Hauman sb gn Sh Gc Co<br />

2017 Sapindaceae Chytranthus setosus Radlk. sb gn Sh Gc Co<br />

2018 Sapindaceae Chytranthus talbotii (Baker f.) Keay sb gn Sh Gc Co<br />

2019 Sapindaceae Deinbollia cauliflora Hauman sb gn Sh Gu Co<br />

2020 Sapindaceae Deinbollia cuneifolia Bak. sb bu Sh Lg Hl<br />

2021 Sapindaceae Deinbollia dasybotrys Gilg ex Radlk. sb bu Sh Lg Hl<br />

2022 Sapindaceae Deinbollia macroura Gilg ex Radlk. sb BK Sh Campo-<br />

Ma'an<br />

Hl<br />

2023 Sapindaceae Deinbollia maxima Gilg sb bu Sh Lg Co<br />

2024 Sapindaceae Deinbollia mezilii D.W.Thomas & D.J.Harris sb BK Sh Campo-<br />

Ma'an<br />

Co<br />

2025 Sapindaceae Deinbollia pycnophylla Gilg ex Radlk. sb bu Sh Lg Co<br />

2026 Sapindaceae Dodonaea viscosa (L.) Jacq. pi gn Sh In Co<br />

2027 Sapindaceae Eriocoelum macrocarpum Gilg sb gn Sh Gu Co<br />

2028 Sapindaceae Eriocoelum petiolare Radlk. sb bu Sh Lg Co<br />

2029 Sapindaceae Eriocoelum racemosum Baker sb gn Tr Gc Co<br />

2030 Sapindaceae Laccodiscus ferrugineus (Baker) Radlk. sb bu Tr Lg Co<br />

2031 Sapindaceae Laccodiscus klaineanus Pierre ex Engl. sb bu Sh Lg Co<br />

2032 Sapindaceae Laccodiscus pseudostipularis Radlk. sb gn Sh Gc Co<br />

2033 Sapindaceae Lecaniodiscus cupanioides Planch. ex Benth. sb gn Tr Gc Co<br />

2034 Sapindaceae Lychnodiscus grandifolius Radlk. sb bu Tr Lg Co<br />

2035 Sapindaceae Pancovia laurentii (de Wild.) Gilg ex De Wild. sb gn Tr Gc Co<br />

2036 Sapindaceae Paullinia pinnata L. pi gn Swcl Tra Co<br />

2037 Sapindaceae Placodiscus angustifolius Radlk. sb gn Tr Gc Co<br />

2038 Sapindaceae Placodiscus glandulosus Radlk. sb bu Tr Lg Co<br />

2039 Sapindaceae Placodiscus opacus Radlk. sb bu Sh Lg Co<br />

2040 Sapotaceae Aningeria robusta (A.Chev.) Aubrév. & Pellegr. np sc Tr Gc Re<br />

2041 Sapotaceae Autranella congolensis (De Wild.) A.Chev. np bu Tr Gc Re CR A1cd<br />

2042 Sapotaceae Baillonella toxisperma Pierre np bu Tr Lg Re VU A1cd<br />

2043 Sapotaceae Chrysophyllum africanum sensu Baker sb rd Tr Tra Co<br />

2044 Sapotaceae Chrysophyllum beguei Aubrév. & Pellegr. np pk Tr Gc Co<br />

2045 Sapotaceae Chrysophyllum perpulchrum Mildbr. ex Hutch. &<br />

Dalziel<br />

sb gn Tr Gc Hl<br />

2046 Sapotaceae Chrysophyllum pruniforme Pierre ex Engl. sb gn Tr Gc Co<br />

2047 Sapotaceae Chrysophyllum ubangiense (De Wild.) D.J.Harris sb gn Tr Gc Hl<br />

2048 Sapotaceae Chrysophyllum welwitschii Engl. pi gn Tr Gc Hl<br />

2049 Sapotaceae Delpydora gracilis A.Chev. sb bu Sh Lg Co<br />

2050 Sapotaceae Delpydora macrophylla Pierre sb bu Sh Lg Co<br />

2051 Sapotaceae Englerophytum hallei Aubrév. & Pellegr. sb bu Tr Lg Co<br />

2052 Sapotaceae Englerophytum letestui Aubrév. & Pellegr. sb bu Tr Lg Hl<br />

2053 Sapotaceae Englerophytum stelechanthum Krause sb gn Tr Gc Co<br />

2054 Sapotaceae Gluema ivorensis Aubrév. & Pellegr. np bu Tr Gc Co VU B1+2c<br />

2055 Sapotaceae Lasersisia seretii (De Wild.) Liben rh gn Tr Gc Co<br />

2056 Sapotaceae Malacantha alnifolia (Baker) Pierre pi gn Tr Gc Co<br />

2057 Sapotaceae Manilkara obovata (Sabine & G.Don) J.H.Hemsley pi gn Tr Tra Co<br />

2058 Sapotaceae Neolemonniera batesii (Engl.) Heine rh GD Tr Lg Co<br />

2059 Sapotaceae Omphalocarpum elatum Miers np gn Tr Gc Hl<br />

2060 Sapotaceae Omphalocarpum procerum P.Beauv. np gn Tr Gc Re<br />

2061 Sapotaceae Pachystela brevipes (Baker) Baill. ex Engl. rh gn Tr Gc Co<br />

2062 Sapotaceae Synsepalum brevipes (Baker) T.D.Penn. sb gn Tr Tra Co<br />

2063 Sapotaceae Synsepalum dulcificum (Schum. & Thonn.) Daniell sb gn Tr Gc Co<br />

2064 Sapotaceae Synsepalum longecuneatum De Wild. sb bu Sh Lg Co<br />

2065 Sapotaceae Synsepalum msolo (Engl.) T.D.Penn. sb gn Tr Tra Co<br />

2066 Sapotaceae Synsepalum subcordatum De Wild. sb gn Sh Gc Co<br />

2067 Sapotaceae Synsepalum zenkeri Aubrev. & Pelligr. sb bu Sh Lg Co<br />

2068 Sapotaceae Tieghemella africana Pierre np pk Tr Lg Re EN A1cd<br />

2069 Sapotaceae Tridesmostemon omphalocarpoides Engl. np gn Tr Gc Re<br />

2070 Schizaeaceae Lygodium microphyllum (Cav.) R.Br. pi gn Ep Tra Hl<br />

2071 Schizaeaceae Lygodium smithianum C.Presl. ex Kuhn pi gn Ep Tra Hl<br />

2072 Scrophulariaceae Alectra sessiliflora (Vahl) Kuntze var. monticola (Engl.)<br />

Melch.<br />

pi gn Hb Tra Co<br />

2073 Scrophulariaceae Artanema longifolium (L.) Vatke sw gn Hb Gc Co<br />

2074 Scrophulariaceae Lindernia crustacea (L.) F.Muell. pi gn Hb Tra Hl<br />

2075 Scrophulariaceae Lindernia diffusa (L.) Wettst. pi gn Hb Tra Hl<br />

2076 Scrophulariaceae Lindernia nummulariifolia (D.Don) Wettst. pi gn Hb Tra Hl<br />

2077 Scrophulariaceae Scoparia dulcis L. pi gn Hb Pa Co<br />

178


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

2078 Scrophulariaceae Torenia dinklagei Engl. pi gn Hb Tra Co<br />

2079 Scrophulariaceae Torenia thouarsii (Cham. & Schltdl.) Kuntze pi gn Hb Tra Hl<br />

2080 Scytopetalaceae Brazzeia congoensis Baill. sw gn Sh Gc Hl<br />

2081 Scytopetalaceae Brazzeia soyauxii (Oliv.) Tiegh. var. soyauxii sb bu Sh Lg Hl<br />

2082 Scytopetalaceae Oubanguia africana Baill. ri gn Tr Gc Co<br />

2083 Scytopetalaceae Oubanguia alata Baker f. ri bu Tr Lg Co<br />

2084 Scytopetalaceae Oubanguia laurifolia (Pierre) Tiegh. sb bu Tr Lg Co<br />

2085 Scytopetalaceae Pierrina zenkeri Engl. sb GD Sh Cam Co<br />

2086 Scytopetalaceae Rhaptopetalum coriaceum Oliv. sb bu Sh Lg Co<br />

2087 Scytopetalaceae Rhaptopetalum depressum Letouzey sb bu Sh Lg Hl<br />

2088 Scytopetalaceae Rhaptopetalum sessilifolium Engl sb BK Sh Sw-Cam Hl<br />

2089 Scytopetalaceae Scytopetalum klaineanum Pierre ex Engl. sb gn Tr Gc Co<br />

2090 Selaginellaceae Selaginella blepharophylla Alston pi gn Hb Gc Co<br />

2091 Selaginellaceae Selaginella ca<strong>the</strong>drifolia Spring sb bu Hb Lg Co<br />

2092 Selaginellaceae Selaginella kalbreyeri Baker sb gn Hb Gc Co<br />

2093 Selaginellaceae Selaginella kraussiana (Kunze) A.Braun pi gn Hb Tra Co<br />

2094 Selaginellaceae Selaginella molliceps Spring pi gn Hb Gc Co<br />

2095 Selaginellaceae Selaginella myosurus (Sw.) Alston pi gn Hcl Gc Co<br />

2096 Selaginellaceae Selaginella squarrosa Baker pi gn Hb Gc Co<br />

2097 Selaginellaceae Selaginella vogelii Spring sb gn Hb Tra Co<br />

2098 Simaroubaceae Brucea guineensis G. Don. pi gn Tr Gc Re<br />

2099 Simaroubaceae Hannoa klaineana Pierre & Engl. pi gn Tr Gc Co<br />

2100 Simaroubaceae Nothospondias staudtii Engl. np bu Tr Gc Co VU B1+2c<br />

2101 Simaroubaceae Odyendyea gabonensis (Pierre) Engl. np bu Tr Lg Co<br />

2102 Simaroubaceae Quassia africana (Baill.) Baill. sb gn Sh Gc Co<br />

2103 Smilacaceae Smilax anceps Willd. pi gn Swcl Gc Co<br />

2104 Solanaceae Physalis angulata L. pi gn Hb Tra Hl<br />

2105 Solanaceae Schwenckia americana L. pi gn Hb Tra Co<br />

2106 Solanaceae Solanum nigrum L. pi gn Hb Tra Re<br />

2107 Solanaceae Solanum terminale Forssk. pi gn Hb Tra Re<br />

2108 Solanaceae Solanum torvum Sw. pi gn Sh Pa Co<br />

2109 Sterculiaceae Byttneria guineensis Keay & Milne-Redh. ri gn Sh Tra Hl<br />

2110 Sterculiaceae Cola acuminata (P.Beauv.) Schott & Endl. pi pk Tr Gc Re<br />

2111 Sterculiaceae Cola altissima Engl. sb gn Tr Gc Hl<br />

2112 Sterculiaceae Cola argentea Mast. sb bu Sh Lg Co<br />

2113 Sterculiaceae Cola attiensis Aubrév. & Pellegr. var. bodardii (Pellegr.) sb bu Sh Lg Co<br />

N.Hallé<br />

2114 Sterculiaceae Cola brevipes K.Schum. sb bu Sh Lg Co<br />

2115 Sterculiaceae Cola caricaefolia (G. Don) K. Schum. sb gn Sh Gc Co<br />

2116 Sterculiaceae Cola cauliflora Mast. sb bu Sh Lg Co<br />

2117 Sterculiaceae Cola chlamydantha K.Schum. sb gn Tr Gc Co<br />

2118 Sterculiaceae Cola cordifolia (Cav.) R.Br. np gn Tr Gc Co<br />

2119 Sterculiaceae Cola digitata Mast. sb gn Sh Gc Co<br />

2120 Sterculiaceae Cola fibrillosa Engl. & Krause sb BK Tr Sw-Cam Co<br />

2121 Sterculiaceae Cola ficifolia Mast. sb bu Sh Lg Co<br />

2122 Sterculiaceae Cola flaviflora Engl. & K.Krause sw bu Sh Lg Co<br />

2123 Sterculiaceae Cola flavo-velutina K.Schum. sb bu Sh Lg Co<br />

2124 Sterculiaceae Cola gabonensis Mast. sb bu Sh Lg Co<br />

2125 Sterculiaceae Cola heterophylla (P.Beauv.) Schott & Endl. sb gn Sh Gu Hl<br />

2126 Sterculiaceae Cola hispida Brenan & Keay sb gn Sh Gu Co<br />

2127 Sterculiaceae Cola hypochrysea K.Schum. sw bu Tr Lg Co VU A1c<br />

2128 Sterculiaceae Cola lateritia K.Schum. var. lateritia sb gn Tr Gc Co<br />

2129 Sterculiaceae Cola lepidota K.Schum. sb bu Tr Lg Co<br />

2130 Sterculiaceae Cola letouzeyana Nkongmeneck sb GD Sh Cam Co<br />

2131 Sterculiaceae Cola marsupium K.Schum. sb gn Sh Gc Co<br />

2132 Sterculiaceae Cola nitida (Vent.) Schott & Endl. pi pk Tr In Re<br />

2133 Sterculiaceae Cola pachycarpa K.Schum. sb bu Tr Lg Co<br />

2134 Sterculiaceae Cola philipi-jonesii Brenan & Keay sb bu Sh Lg Co EN B1+2c<br />

2135 Sterculiaceae Cola praeacuta Brenan & Keay sb GD Sh Cam Co CR A1c+2c<br />

2136 Sterculiaceae Cola ricinifolia Engl. & K.Krause sw bu Sh Lg Co<br />

2137 Sterculiaceae Cola rostrata K.Schum. sb bu Tr Lg Co<br />

2138 Sterculiaceae Cola semecarpophylla K.Schum. sb bu Sh Lg Hl LR/cd<br />

2139 Sterculiaceae Cola subglaucescens Engl. sb BK Tr Sw-Cam Hl<br />

2140 Sterculiaceae Cola sulcata Engl. sb BK Tr Sw-Cam Hl<br />

2141 Sterculiaceae Cola verticillata (Thonn.) Stapf ex A.Chev. sb pk Tr Gc Co<br />

2142 Sterculiaceae Leptonychia batangensis (C.H.Wright) Burret sb bu Sh Lg Co<br />

179


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

2143 Sterculiaceae Leptonychia echinocarpa K.Schum. sb bu Sh Lg Co<br />

2144 Sterculiaceae Leptonychia lasiogyne K.Schum. sb gn Sh Gc Co<br />

2145 Sterculiaceae Leptonychia macrantha K.Schum. sb gn Sh Gc Co<br />

2146 Sterculiaceae Leptonychia manezeuae Nkongmeneck sb bu Sh Lg Co<br />

2147 Sterculiaceae Leptonychia multiflora K.Schum. sb gn Sh Gc Co<br />

2148 Sterculiaceae Leptonychia pallida K.Schum. sb bu Sh Lg Co<br />

2149 Sterculiaceae Mansonia altissima (A.Chev.) A.Chev. var. kamerunica<br />

Jacq.-Fél.<br />

np pk Tr Gu Re EN A1cd<br />

2150 Sterculiaceae Melochia bracteosa F. Hoffm. pi gn Hb Tra Hl<br />

2151 Sterculiaceae Melochia corchorifolia L. pi gn Hb Tra Hl<br />

2152 Sterculiaceae Octolobus angustatus Hutch. sb gn Tr Gc Hl<br />

2153 Sterculiaceae Octolobus heteromerus K. Schum. sb gn Tr Gc Co<br />

2154 Sterculiaceae Octolobus spectabilis Welw. sb gn Tr Gc Co<br />

2155 Sterculiaceae Octolobus zenkeri Engl. sb bu Tr Lg Co<br />

2156 Sterculiaceae Pterygota bequaertii De Wild. np rd Tr Gc Re VU A1cd<br />

2157 Sterculiaceae Pterygota macrocarpa K.Schum. np rd Tr Gc Re VU A1cd<br />

2158 Sterculiaceae Scaphopetalum acuminatum Engl. & K. Krause sb BK Sh Campo-<br />

Ma'an<br />

Hl<br />

2159 Sterculiaceae Scaphopetalum blackii Mast. sb gn Sh Gc Co<br />

2160 Sterculiaceae Scaphopetalum brunneo-purpureum Engl. & K. Krause sb BK Sh Campo- Hl<br />

2161 Sterculiaceae Scaphopetalum longipedunculatum Mast. sb bu Sh Lg Hl<br />

2162 Sterculiaceae Scaphopetalum macranthum K.Schum. sb bu Sh Lg Co<br />

2163 Sterculiaceae Scaphopetalum ngounyense Pellegr. sb bu Sh Lg Co<br />

2164 Sterculiaceae Scaphopetalum paxii H. Winkler sb BK Sh Sw-Cam Hl<br />

2165 Sterculiaceae Scaphopetalum thonneri Willd. sb gn Sh Gc Co<br />

2166 Sterculiaceae Scaphopetalum zenkeri K.Schum. sb BK Sh Sw-Cam Co<br />

2167 Sterculiaceae Sterculia oblonga Mast. pi bu Tr Gc Re VU A1cd<br />

2168 Sterculiaceae Sterculia tragacantha Lindl. pi gn Tr Tra Re<br />

2169 Sterculiaceae Theobroma cacao L. pi gn Sh In Re<br />

2170 Sterculiaceae Triplochiton scleroxylon K.Schum. np sc Tr Gc Re<br />

2171 Thelypteridaceae Cyclosorus afer (Christ) Ching pi gn Hb Tra Co<br />

2172 Thymelaeaceae Craterosiphon scandens Engl. & Gilg np gn Swcl Gc Hl<br />

2173 Thymelaeaceae Dicranolepis buchholzii Engl. & Gilg sb gn Sh Gc Co<br />

2174 Thymelaeaceae Dicranolepis disticha Planch. sb gn Sh Gc Co<br />

2175 Thymelaeaceae Dicranolepis glandulosa H.H.W.Pearson sb GD Sh Cam Co<br />

2176 Thymelaeaceae Dicranolepis vestita Engl. sb bu Sh Lg Co<br />

2177 Thymelaeaceae Octolepis casearia Oliv. sb bu Sh Lg Co<br />

2178 Thymelaeaceae Octolepis decalepis Gilg sb gn Sh Gc Co<br />

2179 Thymelaeaceae Peddiea africana Harv. sb gn Sh Gc Co<br />

2180 Tiliaceae Ancistrocarpus densispinosus Oliv. pi bu Sh Lg Co<br />

2181 Tiliaceae Christiana africana DC. sb gn Tr Pa Hl<br />

2182 Tiliaceae Clappertonia ficifolia (Willd.) Decne. pi gn Hb Tra Co<br />

2183 Tiliaceae Clappertonia polyandra (K.Schum.) Bech. pi gn Hb Gc Co<br />

2184 Tiliaceae Corchorus aestuans L. sw gn Hb Tra Hl<br />

2185 Tiliaceae Corchorus olitorus L. sw gn Hb Pa Hl<br />

2186 Tiliaceae Desplatsia chrysochlamys (Mildbr. & Burret) Mildbr. &<br />

Burret<br />

sb gn Sh Gc Hl<br />

2187 Tiliaceae Desplatsia dewevrei (De Wild. & T.Durand) Burret sw gn Sh Gc Co<br />

2188 Tiliaceae Desplatsia subericarpa Bocq. sb gn Sh Gc Co<br />

2189 Tiliaceae Duboscia macrocarpa Bocq. sb gn Tr Gc Re<br />

2190 Tiliaceae Glyphaea brevis (Spreng.) Monach. sb gn Sh Tra Co<br />

2191 Tiliaceae Microcos coriacea (Mast.) Burret sb gn Tr Gc Co<br />

2192 Tiliaceae Triumfetta cordifolia A.Rich. pi gn Hb Tra Co<br />

2193 Tiliaceae Triumfetta rhomboidea Jacq. pi gn Hb Pa Hl<br />

2194 Triuridaceae Sciaphila ledermannii Engl. Sa bu Hb Lg Co<br />

2195 Ulmaceae Celtis mildbraedii Engl. np gn Tr Gc Re<br />

2196 Ulmaceae Celtis tessmannii Rendle np gn Tr Gc Co<br />

2197 Ulmaceae Celtis zenkeri Engl. np gn Tr Gc Re<br />

2198 Ulmaceae Trema orientalis (L.) Blume pi gn Sh Pal Re<br />

2199 Umbelliferae Centella asiatica (L.) Urb. pi gn Hb Pa Re<br />

2200 Umbelliferae Cryptotaenia africana (Hook.f.) Drude pi gn Hb Tra Hl<br />

2201 Umbelliferae Eryngium foetidum L. pi gn Hb In Re<br />

2202 Umbelliferae Hydrocotyle bonariensis Lam. pi gn Hb Tra Hl<br />

2203 Urticaceae Boehmeria platyphylla D.Don pi gn Hb Pa Co<br />

2204 Urticaceae Elatostema paivaeanum Wedd. sb GD Hb Tra Hl<br />

2205 Urticaceae Laportea aestuans (L.) Chew pi gn Hb Tra Hl<br />

180<br />

Ma'an


Annexes<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

2206 Urticaceae Laportea ovalifolia (Schumach.) Chew pi gn Hb Tra Co<br />

2207 Urticaceae Pilea sublucens Wedd. pi gn Hb Gc Hl<br />

2208 Urticaceae Pouzolzia denudata De Wild. & T.Durand pi gn Hb Gc Hl<br />

2209 Urticaceae Pouzolzia guineensis Benth. pi gn Hb Gc Hl<br />

2210 Urticaceae Procris crenata C.B.Robinson pi gn Hb Gc Co<br />

2211 Urticaceae Urera cameroonensis Wedd. sb gn Hcl Gc Co<br />

2212 Urticaceae Urera cordifolia Engl. pi gn Hcl Gc Co<br />

2213 Urticaceae Urera gravenreuthi Engl. pi GD Hcl Cam Co<br />

2214 Urticaceae Urera repens (Wedd.) Rendle pi gn Hb Gc Co<br />

2215 Urticaceae Urera thonneri De Wild. & T.Durand pi gn Hcl Gc Hl<br />

2216 Urticaceae Urera trinervis (Hochst.) Friis & Immelmann pi gn Hcl Tra Co<br />

2217 Verbenaceae Clerodendrum bipindense Gürke pi bu Lwcl Lg Co<br />

2218 Verbenaceae Clerodendrum buettneri Gürke pi bu Swcl Lg Co<br />

2219 Verbenaceae Clerodendrum capitatum (Willd.) Schum. pi gn Swcl Tra Hl<br />

2220 Verbenaceae Clerodendrum dusenii Gürke pi gn Swcl Gc Hl<br />

2221 Verbenaceae Clerodendrum melanocrater Gürke pi gn Swcl Gc Co<br />

2222 Verbenaceae Clerodendrum silvanum Henriq. var. buchholzii (Gürke) pi gn Swcl Tra Co<br />

Verdc.<br />

2223 Verbenaceae Clerodendrum umbellatum Poir. pi gn Swcl Gc Hl<br />

2224 Verbenaceae Clerodendrum violaceum Gürke pi gn Swcl Gc Hl<br />

2225 Verbenaceae Lantana camara L. pi gn Sh In Co<br />

2226 Verbenaceae Vitex doniana Sweet rh gn Tr Gc Co<br />

2227 Verbenaceae Vitex grandifolia Gürke sb gn Tr Gc Re<br />

2228 Verbenaceae Vitex lehmbachii Gürke sb gn Sh Gc Co<br />

2229 Verbenaceae Vitex oxycuspis Baker sb gn Sh Gc Co<br />

2230 Verbenaceae Vitex rivularis Gürke np gn Tr Gc Re<br />

2231 Verbenaceae Vitex thyrsiflora Baker sb gn Sh Gc Co<br />

2232 Verbenaceae Vitex zenkeri Gürke sb gn Sh Gc Hl<br />

2233 Violaceae Allexis batangae (Engl.) Melchior sb bu Sh Lg Co<br />

2234 Violaceae Allexis cauliflora (Oliv.) Pierre sb bu Sh Lg Co VU A1c, B1+2c<br />

2235 Violaceae Allexis obanensis (Baker f.) Melchior sb bu Sh Lg Co VU B1+2c<br />

2236 Violaceae Allexis zygomorpha Achoundong & Onana sb BK Sh Cam Re<br />

2237 Violaceae Rinorea albidiflora Engl. sb bu Sh Lg Co<br />

2238 Violaceae Rinorea angustifolia (Thou.) Baill. sb gn Tr Gc Hl<br />

2239 Violaceae Rinorea breviracemosa Chipp sb gn Sh Gu Co<br />

2240 Violaceae Rinorea campoensis M. Brandt ex Engl. sb BK Sh Campo-<br />

Ma'an<br />

Co<br />

2241 Violaceae Rinorea caudata (Oliv.) Kuntze sb gn Sh Gc Co<br />

2242 Violaceae Rinorea dentata P.Beauv. sb bu Sh Lg Co<br />

2243 Violaceae Rinorea exappendiculata Engl. ex Brandt sb bu Sh Lg Co<br />

2244 Violaceae Rinorea gabunensis Engl. sb bu Sh Lg Co<br />

2245 Violaceae Rinorea ilicifolia (Welw. ex Oliv.) Kuntze sb gn Tr Gc Co<br />

2246 Violaceae Rinorea kamerunensis Engl. sb bu Sh Lg Co<br />

2247 Violaceae Rinorea ledermannii Engl. sb bu Sh Lg Co<br />

2248 Violaceae Rinorea longicuspis Engl. sb gn Sh Gc Co<br />

2249 Violaceae Rinorea longisepala Engl. sb bu Sh Lg Co<br />

2250 Violaceae Rinorea microglossa Engl. sb BK Sh Sw-Cam Hl<br />

2251 Violaceae Rinorea oblongifolia (C.H.Wright) Marqua sb gn Tr Gc Co<br />

2252 Violaceae Rinorea sp. nov. 1 ined. sb GD Sh Cam Co<br />

2253 Violaceae Rinorea sp. nov. 2 ined. sb GD Sh Cam Co<br />

2254 Violaceae Rinorea subintegrifolia (P.Beauv.) Kuntze sb gn Sh Gc Co<br />

2255 Violaceae Rinorea subsessilis Brandt sb gn Sh Gc Co<br />

2256 Violaceae Rinorea umbricola Chipp sb BK Sh Gc Co<br />

2257 Violaceae Rinorea verrucosa Chipp sb bu Sh Lg Co<br />

2258 Violaceae Rinorea welwitschii (Oliv.) Kuntze sb gn Sh Tra Co<br />

2259 Violaceae Rinorea woermaniana (Buttn.) Engl. sb bu Sh Lg Co<br />

2260 Viscaceae Viscum congolense De Wild. ep gn Ep Gc Hl<br />

2261 Vitaceae Ampelocissus bombycina (Baker) Planch. pi gn Swcl Tra Hl<br />

2262 Vitaceae Ampelocissus gracilipes Stapf pi gn Swcl Pa Hl<br />

2263 Vitaceae Cayratia debilis (Baker) Suesseng. pi gn Hcl Gc Co<br />

2264 Vitaceae Cayratia gracilis (Guill. & Perr.) Suesseng. pi gn Hcl Gc Co<br />

2265 Vitaceae Cayratia ibuensis (Hook f.) Suesseng. pi gn Hcl Gc Co<br />

2266 Vitaceae Cissus amoena Gilg & Brandt pi bu Swcl Lg Hl<br />

2267 Vitaceae Cissus aralioides (Welw. ex Baker) Planch. pi gn Swcl Gc Co<br />

2268 Vitaceae Cissus barbeyana De Wild. & T.Durand pi gn Swcl Gc Co<br />

2269 Vitaceae Cissus barteri (Baker) Planch. pi gn Swcl Gc Co<br />

181


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

No Family Species Guild Star Habit Chorology Col. IUCN/WCMC<br />

2270 Vitaceae Cissus dinklagei Gilg & Brandt pi gn Lwcl Gc Co<br />

2271 Vitaceae Cissus leonardii Dewit pi gn Swcl Gc Co<br />

2272 Vitaceae Cissus oreophila Gilg & Brandt pi gn Swcl Gc Co<br />

2273 Vitaceae Cissus planchoniana Gilg pi gn Swcl Gc Co<br />

2274 Vitaceae Cissus producta Afzel. np gn Hcl Tra Co<br />

2275 Vitaceae Cissus ruginosicarpa Desc. pi gn Hcl Gc Co<br />

2276 Vitaceae Cissus smithiana (Baker) Planch. pi gn Hcl Gc Hl<br />

2277 Vittariaceae Vittaria guineensis Desv. var. guineensis ep gn Ep Gc Co<br />

2278 Vittariaceae Vittaria owariensis Fée ep gn Ep Gc Hl<br />

2279 Vochysiaceae Erismadelphus exsul Mildbr. var. platyphyllus Keay & np bu Tr Lg Re<br />

182<br />

Stafleu<br />

2280 Woodsiaceae Athyrium ammifolium (Mett.) C.Chr. sb bu Hb Lg Hl<br />

2281 Woodsiaceae Athyrium schimperi Moug. ex Fée sb gn Hb Tra Hl<br />

2282 Woodsiaceae Diplazium sammatii (Kuhn) C.Chr. ep gn Hb Gc Co<br />

2283 Woodsiaceae Diplazium welwitschii (Hook.) Diels sb gn Hb Gc Co<br />

2284 Zingiberaceae Aframomum citratum (Pereira) K.Schum. pi gn Hb Gc Re<br />

2285 Zingiberaceae Aframomum daniellii (Hook.f.) K.Schum. pi gn Hb Gc Hl<br />

2286 Zingiberaceae Aframomum flavum Lock pi bu Hb Lg Co<br />

2287 Zingiberaceae Aframomum hanburyi sensu Koechlin pi pk Hb Gc Hl<br />

2288 Zingiberaceae Aframomum limbatum (Oliv. & Hanb.) K.Schum. pi bu Hb Lg Co<br />

2289 Zingiberaceae Aframomum pilosum (Oliv. & Hanb.) K.Schum. pi bu Hb Lg Co<br />

2290 Zingiberaceae Aframomum sceptrum (Oliv. & Hanb.) K.Schum. pi gn Hb Gc Hl<br />

2291 Zingiberaceae Aframomum subsericeum (Oliv. & Hanb.) K.Schum. pi gn Hb Gc Co<br />

subsp. subsericeum<br />

2292 Zingiberaceae Aulotandra kamerunensis Loes. sb BK Hb Sw-Cam Co<br />

2293 Zingiberaceae Renealmia africana (K.Schum.) Benth. sb gn Hb Gc Co<br />

2294 Zingiberaceae Renealmia cincinnata (K.Schum.) Baker sb bu Hb Lg Co<br />

2295 Zingiberaceae Renealmia congoensis Gagnep. sb bu Hb Lg Co<br />

2296 Zingiberaceae Renealmia densispica Koechlin sb BK Hb Sw-Cam Co<br />

2297 Zingiberaceae Renealmia stenostachys K.Schum. sb gn Hb Gc Co<br />

Where:<br />

* Leguminosae-Caes. = Leguminosae-Caesalpinioideae<br />

** Leguminosae-Mim. = Leguminosae-Mimosoideae<br />

*** Leguminosae-Pap. = Leguminosae-Papilionoideae<br />

Guild: ep = epiphyte, np = non pioneer light demanding, pi = pioneer, rh = rheophyte, ri = riverine, sb =<br />

shade-bearer, str = strangler and sw = swamp.<br />

Star categories: BK = black star; GD = gold; bu = blue, sc = scarlet, rd = red, pk = pink and gn = green<br />

stars as defined in Table 5.1, Chapter 5.<br />

Habit: Ep = epiphyte, Hb = herb, Hcl = herbaceous climber, He = hemi-epiphyte, Lwcl = large woody<br />

climber, Pa = parasite, Pal = palm; Sa = saprophyte, Sh = shrub, Str = strangler; Swcl = small woody<br />

climber and Tr = tree.<br />

Chorology: Campo-Ma’an = strict endemic to Campo-Ma’an, Sw-Cam = endemic to southwestern part<br />

of Cameroon, Cam = endemic to Cameroon, Lg = Lower Guinea endemic, Gc = Guineo-Congolian<br />

endemic, Gu = Guinea endemic, Pa = Pantropical, Pal = Palaetropical, Tra = tropical Africa endemic, and<br />

In = introduced.<br />

Col. = collection status: Co = specimens were collected during our study, Re = species without<br />

specimens recorded during <strong>the</strong> study, Hl = species recorded in Yaounde and Wageningen herbaria or in<br />

existing flora and monographs.<br />

IUCN/WCMC conservation status: categories of threat as defined in IUCN (1994 & 2002) and WCMC<br />

(1998).


Annex 4. Present land use planning map of <strong>the</strong> Campo-Ma’an Technical Operational Unit (TOU)<br />

Annexes<br />

183


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

184<br />

Annex 5. Vegetation map of <strong>the</strong> Campo-Ma’an area (vegetation codes as defined in Table 2.1, Chapter 2)<br />

NB: 10°60’0”= 10°00’0” and 11°60’0”= 11°00’0”


SUMMARY<br />

Gildas Peguy Tchouto Mbatchou


SUMMARY<br />

Summary<br />

The fragile ecosystems that habour tropical rain forest biodiversity are of great<br />

concern and <strong>the</strong>ir conservation has become an issue of increasing priority because of<br />

<strong>the</strong> ongoing effect of human activities. In response to <strong>the</strong> growing international<br />

concern for <strong>the</strong> protection of global biological resources, <strong>the</strong> Ministry of<br />

Environment and Forestry, Cameroon created a Technical Operational Unit in <strong>the</strong><br />

Campo-Ma’an area, to improve <strong>the</strong> conservation of biodiversity in <strong>the</strong> area and <strong>the</strong><br />

sustainable management of natural resources. In such a large and complex forest<br />

ecosystem, sound taxonomic and ecological research is of paramount importance in<br />

order to identify conservation priorities and hotspots for biodiversity conservation.<br />

Therefore, <strong>the</strong> main objective of this study is <strong>the</strong> assessment of <strong>the</strong> botanical<br />

diversity of <strong>the</strong> Campo-Ma’an rain forest, both in terms of vegetation and flora with<br />

aim to identify, locate and map biodiversity hotspots.<br />

After a study of <strong>the</strong> existing botanical literature, a reconnaissance trip was carried<br />

out in <strong>the</strong> Campo-Ma’an area during which representative and homogeneous<br />

vegetation types for sampling were selected on <strong>the</strong> basis of physical and human<br />

factors, such as climate (especially rainfall), altitude, soil and forest use. To be<br />

effective two types of samples were used during <strong>the</strong> assessment, <strong>the</strong> measured plots<br />

and <strong>the</strong> qualitative samples. Plots provided quantitative information on stand<br />

structure and composition of <strong>the</strong> forest, while additional qualitative information on<br />

species richness, life form and guild was provided by <strong>the</strong> qualitative samples. A total<br />

of 147 plots (0.1 ha each) and 136 subplots (5 x 5 m each) were established.<br />

Fur<strong>the</strong>rmore, over 2348 herbarium specimens and 4789 ecological specimens were<br />

collected in <strong>the</strong> plots, or in <strong>the</strong> various vegetation types/habitats. They belonged to<br />

2297 species, 851 genera and 155 families of vascular plants, ferns and fern allies.<br />

One set of each collection number was mounted and preserved in <strong>the</strong> Kribi<br />

Herbarium. Duplicates were sent to <strong>the</strong> National Herbarium in Yaounde, Cameroon<br />

(YA) and <strong>the</strong> Nationaal Herbarium Nederland, Wageningen University Branch<br />

(WAG) for fur<strong>the</strong>r identification and preservation.<br />

Chapter 1 presented <strong>the</strong> objectives of this research, <strong>the</strong> study area and gave a<br />

succinct stage of knowledge of <strong>the</strong> Campo-Ma’an biodiversity. In Chapter 2, we<br />

classified, described and mapped <strong>the</strong> various vegetation types, and analysed <strong>the</strong>ir<br />

forest structure and composition. The results indicated that <strong>the</strong> Campo-Ma’an area<br />

supports a diverse range of forest communities with more than 11 vegetation types<br />

and sub-types that include <strong>the</strong> coastal forest, lowland evergreen forest, submontane<br />

forest, mixed evergreen and semi-deciduous forest, mangroves, seasonally flooded<br />

and swamp forests, riverine vegetation and secondary forests. The most<br />

characteristic vegetation type is <strong>the</strong> lowland evergreen forest rich in<br />

Caesalpinioideae with Calpocalyx heitzii and Sacoglottis gabonensis, which is so far<br />

only known from <strong>the</strong> Campo area. Taking into consideration <strong>the</strong> importance of<br />

environmental variables and human disturbance in determining plant species<br />

richness in tropical rain forests, we used <strong>the</strong> information ga<strong>the</strong>red in 147 plots to<br />

study <strong>the</strong>ir effects on <strong>the</strong>se vegetation types. The results showed that <strong>the</strong> vegetation<br />

in <strong>the</strong> Campo-Ma’an area is determined by rainfall, <strong>the</strong> proximity to <strong>the</strong> sea, altitude,<br />

soil and human disturbance. Consequently, <strong>the</strong> vegetation changes from <strong>the</strong> wetter<br />

coastal forest on sandy shorelines, through <strong>the</strong> lowland evergreen forest rich in<br />

189


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

Caesalpinioideae, <strong>the</strong> submontane forest on hilltops, to <strong>the</strong> mixed evergreen and<br />

semi-deciduous forest in <strong>the</strong> drier Ma’an area. This results in an increase in species<br />

richness from <strong>the</strong> coast to <strong>the</strong> hilltops and a gradual variation in dominant species,<br />

from coastal indicator species along <strong>the</strong> coast to a forest rich in Caesalpinioideae<br />

and a mixed forest rich in semi-deciduous elements.<br />

In Chapter 3, we studied <strong>the</strong> diversity patterns in <strong>the</strong> flora of <strong>the</strong> Campo-Ma’an rain<br />

forest. We tested out whe<strong>the</strong>r <strong>the</strong>re is a correlation between tree species diversity<br />

and diversity of o<strong>the</strong>r growth forms such as shrubs, herbs, and lianas in order to<br />

understand if in <strong>the</strong> context of African tropical rain forest, tree species diversity<br />

mirrors <strong>the</strong> diversity of o<strong>the</strong>r life forms or strata. Are forests that are rich in tree<br />

species also rich in o<strong>the</strong>r life forms? To answer <strong>the</strong>se questions, we analysed <strong>the</strong><br />

family and species level floristic richness and diversity of <strong>the</strong> various growth forms<br />

and forest strata within 145 plots recorded in <strong>the</strong> various vegetation types. A<br />

comparison of <strong>the</strong> diversity and species richness within forest layers and within<br />

growth forms was done using General Linear Models followed by multiple<br />

comparison tests. The results showed that tree species accounted for 46% of <strong>the</strong> total<br />

number of vascular plant species with DBH ≥ 1 cm, shrubs/small trees 39%,<br />

climbers 13% and herbs less than 1%. Only 22% of <strong>the</strong> diversity of shrubs and<br />

lianas could be explained by <strong>the</strong> diversity of large and medium sized trees, and less<br />

than 1% of herb diversity was explained by <strong>the</strong> tree diversity. The shrub layer was<br />

by far <strong>the</strong> most species rich in <strong>the</strong> different plots and vegetation types. It was<br />

significantly more diverse and species-rich than <strong>the</strong> tree and herbaceous layers.<br />

More than 82% of tree species, 90% of shrubs, 78% of lianas and 70% of<br />

herbaceous species were recorded in <strong>the</strong> shrub layer. Moreover, shrubs contributed<br />

for 38% of <strong>the</strong> 114 strict and narrow endemic plant species recorded in <strong>the</strong> area,<br />

herbs 29%, trees only 20% and climbers 11%. These results indicated that <strong>the</strong><br />

diversity of trees does not always reflect <strong>the</strong> overall diversity of <strong>the</strong> forest in <strong>the</strong><br />

Campo-Ma’an area, and <strong>the</strong>refore it may not be a good indicator for <strong>the</strong> diversity of<br />

shrubs and herbaceous species. Fur<strong>the</strong>rmore, this suggests that biodiversity surveys<br />

based solely on large and medium sized tree species (DBH ≥ 10 cm) is not an<br />

adequate method for <strong>the</strong> assessment of plant diversity because o<strong>the</strong>r growth form<br />

such as shrubs, climbers and herbs are under-represented. Therefore, inventory<br />

design based on small plots of 0.1 ha, in which all vascular plants with DBH ≥ 1 cm<br />

are recorded, is a more appropriate sampling method for biodiversity assessments<br />

than surveys based solely on large and medium sized tree species.<br />

Indicator species are usually defined as species whose status and ecology provide<br />

information on <strong>the</strong> overall condition of <strong>the</strong> ecosystem, and that reflects <strong>the</strong> quality<br />

and changes in environmental conditions. In <strong>the</strong> tropics, some of <strong>the</strong>se indicator<br />

species are used to trace <strong>the</strong> location and extend of tropical rain forest refuges<br />

because of <strong>the</strong>ir limited dispersal and colonisation abilities. In Chapter 4, we studied<br />

<strong>the</strong> distribution patterns of 178 sensitive bio-indicator forest species such as strict<br />

and narrow endemics, as well as o<strong>the</strong>r well-known slow dispersal species, to find<br />

out whe<strong>the</strong>r <strong>the</strong> entire Campo-Ma’an rain forest was part of a late Pleistocene rain<br />

forest refuge or not. The distributions patterns obtained corroborate <strong>the</strong> view of<br />

many authors who argue that during glacial times, forests were restricted to <strong>the</strong><br />

upper slopes of hills near <strong>the</strong> top, high altitude lowland forests, or along riverbanks,<br />

where <strong>the</strong>re was enough humidity for <strong>the</strong>ir survival. Our findings, <strong>the</strong>refore, do<br />

190


Summary<br />

suggest that <strong>the</strong> Campo-Ma’an area falls within a series of postulated rain forest<br />

refuges in Central Africa as proposed by previous authors.<br />

The concept of sites of high diversity, or hotspots, has attracted <strong>the</strong> attention of<br />

conservationists as a tool for conservation priority setting. Generally, patterns of<br />

species richness and endemism are used for <strong>the</strong> identification of biodiversity<br />

hotspots. In Chapter 5, forest inventory data and taxonomic collections were used to<br />

examine <strong>the</strong> distribution and convergence patterns of strict and narrow endemic<br />

species. We analysed <strong>the</strong> trends in endemic and rare species recorded, using new<br />

quantitative conservation indices such as Genetic Heat Index (GHI) and Pioneer<br />

Index (PI), toge<strong>the</strong>r with geostatistic techniques that help to evaluate and identify<br />

potential areas of high conservation priority. The results showed that <strong>the</strong> Campo-<br />

Ma’an area is characterised by a rich and diverse flora with 114 endemic plant<br />

species, of which 29 are restricted to <strong>the</strong> area, 29 also occur in southwestern<br />

Cameroon, and 56 o<strong>the</strong>rs that are also found in o<strong>the</strong>r parts of Cameroon.<br />

Fur<strong>the</strong>rmore, 540 species recorded are Lower Guinea endemics, 1123 species are<br />

Guineo-Congolian endemics and 105 species are Guinea endemics. Although most<br />

of <strong>the</strong> forest types rich in strict and narrow endemic species occur in <strong>the</strong> National<br />

Park, <strong>the</strong>re are o<strong>the</strong>r biodiversity hotspots in <strong>the</strong> coastal zone and in areas such as<br />

Mont d’Eléphant and Massif des Mamelles that are located outside <strong>the</strong> National<br />

Park. Unfortunately, <strong>the</strong>se areas, supporting 17 strict endemic species that are not<br />

found in <strong>the</strong> park, are under serious threat and do not have any conservation status<br />

for <strong>the</strong> moment. Taking into consideration that with <strong>the</strong> growing human population<br />

density, pressure on <strong>the</strong>se hotspots will increase in <strong>the</strong> near future, it is suggested<br />

that priority be given to <strong>the</strong> conservation of <strong>the</strong>se areas and that a separate<br />

management strategy be developed to ensure <strong>the</strong>ir protection.<br />

In Chapter 6, we discussed <strong>the</strong> implications of <strong>the</strong> outputs of this research on <strong>the</strong><br />

conservation of <strong>the</strong> Campo-Ma’an rain forest, and provided recommendations for its<br />

conservation and effective management. Although <strong>the</strong> Campo-Ma’an has a rich and<br />

diverse flora, <strong>the</strong>re are several human activities that are ongoing in <strong>the</strong> area with<br />

varying ecological impacts on its forest ecosystem. In order to ensure its<br />

conservation, <strong>the</strong>re is an urgent need to properly demarcate <strong>the</strong> boundary of <strong>the</strong><br />

National Park, reinforce its protection, and complete and implement its management<br />

plan. Fur<strong>the</strong>rmore, local communities should be encouraged to create community<br />

forests around o<strong>the</strong>r identified biodiversity hotspots located outside <strong>the</strong> National<br />

Park. Each community forest could have <strong>the</strong> identified biodiversity hotspot as <strong>the</strong><br />

core conservation area, surrounded by a buffer zone. Moreover, remote sensing<br />

images and impact studies on human activities are required to monitor land cover<br />

changes, and <strong>the</strong> changes in vegetation and flora. This will enable <strong>the</strong> park<br />

management to act appropriately whenever undesired changes on <strong>the</strong> forest<br />

ecosystem occur.<br />

191


RESUME<br />

Gildas Peguy Tchouto Mbatchou


RESUME<br />

Résumé<br />

La biodiversité des forêts tropicales denses humides est d’une importance<br />

particulière et sa conservation constitue de plus en plus une priorité à cause de la<br />

pression humaine continuelle et grandissante que subissent ces forêts. C’est dans le<br />

soucis de préserver sa biodiversité et d’assurer la gestion rationnelle de ses<br />

ressources naturelles que le gouvernement Camerounais a créé l’Unité Technique<br />

Opérationnelle (UTO) de Campo-Ma’an comme un site prioritaire pour la<br />

conservation de la biodiversité au Cameroun. La gestion d’un tel grand complexe<br />

forestier suppose une bonne connaissance du milieu. A ce sujet, des études<br />

botaniques et écologiques ont été réalisées dans le site afin d’identifier les zones<br />

prioritaires pour la conservation de la biodiversité. C’est pour cette raison que<br />

l’objectif principal de cette étude était d’analyser la diversité floristique de Campo-<br />

Ma’an afin d’identifier les plantes prioritaires et produire des cartes de répartition<br />

montrant les zones prioritaires pour la conservation de la biodiversité dans la région.<br />

Après une revue bibliographique, une visite préliminaire a été faite dans la région<br />

pour identifier des végétations homogènes et représentatives pour la réalisation des<br />

inventaires. La sélection de leur emplacement a été opérée sur la base des facteurs<br />

physiques et humains tels que: le climat (surtout la pluviométrie), l’altitude, le sol et<br />

le degré de perturbation liée à l’activité humaine. Pendant la récolte des données,<br />

nous avons utilisé une approche qui nous permettait d’avoir des informations<br />

quantitatives sur la composition et la structure de la forêt, et des informations<br />

qualitatives sur les types biologiques des espèces et la physionomie des forêts<br />

inventoriées. Au total 147 parcelles (de 0.1 ha chacune) et 136 sous parcelles (5 m x<br />

5 m chacune) ont été établies. De plus, 2348 échantillons d’herbiers et 4789<br />

spécimens écologiques ont été récoltés dans les parcelles/sous parcelles et dans les<br />

différents types de végétation inventoriés. Soit au total 2297 espèces de plantes<br />

regroupant 851genres et 155 familles. Des doubles de tous les spécimens récoltés<br />

ont été montés et préservés à l’ herbier de Kribi, d’autres seront envoyés à l’herbier<br />

National de Yaoundé (Cameroun) et l’ herbier de Wageningen, aux Pays Bas pour<br />

identification et préservation.<br />

Le chapitre 1 présente les objectifs de cette étude, le site et les méthodes<br />

d’inventaires utilisées pour la récolte et l’analyse des données, ainsi qu’un aperçu<br />

sur l’état des connaissances actuelles de la biodiversité dans la région de Campo-<br />

Ma’an. Dans le chapitre 2 nous avons identifié, décrit et cartographié les différents<br />

types de végétation inventoriés. Il ressort de cette analyse que la région de Campo-<br />

Ma’an regorge plusieurs écosystèmes composés de plus d’une dizaine de différents<br />

types de végétation parmi lesquels les plus caractéristiques sont les forêts de basses<br />

altitudes riche en Caesalpinioideae, avec Calpocalyx heitzii et Sacoglottis<br />

gabonensis, qui sont endémiques à la région de Campo. On y retrouve également<br />

les forêts côtières, les mangroves, les forêts de basses altitudes riches en<br />

Caesalpinioideae, les forêts sub-montagnardes, les forêts mixtes toujours vertes<br />

atlantiques et semi caducifoliées, les forêts marécageuses et périodiquement<br />

inondées, et les forêts secondaires. Les données de base provenant de 147 parcelles<br />

de 0.1 ha chacune nous ont permis d’étudier l’influence des facteurs physiques et<br />

humains sur la végétation de Campo-Ma’an. Les résultats obtenus montrent que<br />

cette végétation est fortement influencée par la pluviométrie, la proximité de la mer,<br />

195


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

l’altitude, les sols et l’activité humaine. C’est ainsi que l’on passe progressivement<br />

d’une formation végétale sur cordons littoraux sablonneux au niveau de la mer, à des<br />

forêts de basses altitudes riches en Caesalpinioideae, des forêts sub-montagnardes de<br />

hautes altitudes, aux forêts mixtes toujours vertes atlantiques et semi caducifoliées<br />

dans la région de Ma’an. On dénote également une augmentation d’espèces de la<br />

côte jusqu’aux sommets des collines, et une variation progressive des espèces<br />

dominantes de la côte vers l’intérieure.<br />

Dans le chapitre 3 un accent particulier est mis sur la diversité floristique de Campo-<br />

Ma’an avec pour intention de vérifier s’il existe une corrélation entre la diversité des<br />

arbres et celle des autres types biologiques tels que les arbustes, les plantes<br />

herbacées et les lianes. Ceci dans le but de savoir si dans le contexte des forêts<br />

tropicales africaines, la diversité des arbres permet de prédire celle des autres types<br />

biologiques. En d’autres termes, est-ce que les forêts riches en espèces d’arbres sont<br />

également riches en d’autres types biologiques? Afin de répondre à cette question,<br />

nous avons fait une étude comparative de la diversité et la richesse floristique de<br />

tous les types biologiques recensés dans 145 parcelles de 0.1 ha chacune réparties<br />

dans 6 grands groupes de végétation. Il ressort de cette analyse que les arbres<br />

représentent 46% de toutes les espèces de plantes recensées avec un DBH ≥ 1 cm<br />

(diamètre à hauteur de poitrine), les arbustes 39%, les lianes 13% et les herbacées<br />

moins de 1%. Seulement 22% de la diversité des arbustes et des lianes peuvent être<br />

déduites à partir de celle des arbres et moins de 1% de celle des herbacées. La strate<br />

arbustive constitue de loin la plus riche et la plus diversifiée au niveau des parcelles<br />

comme au sein des différents types de végétation. Plus de 82% des espèces d’arbres,<br />

90% des arbustes, 78% lianes et 70% des espèces herbacées furent collectées dans la<br />

strate arbustive. De plus, les arbustes représentent 38% des 114 plantes strictement<br />

endémiques à la région de Campo-Ma’an et au sud du Cameroun, les herbacées<br />

29%, les arbres 20% et les lianes 11%. Ces résultats démontrent que la diversité des<br />

arbres ne reflète pas le plus souvent celle des autres types biologiques dans la région<br />

de Campo-Ma’an, et pour ce fait, elle ne serait pas un bon indicateur pour la<br />

diversité des arbustes, des lianes et des herbacées. Par conséquence, les inventaires<br />

botaniques basés uniquement sur les grands arbres (DBH ≥ 10 cm) ne sont pas<br />

appropriés pour les études de la biodiversité floristique parce que les autres types<br />

biologiques tels que les arbustes, les plantes herbacées et les lianes sont sous<br />

représentés. Ce qui nous amène à dire que les inventaires floristiques réalisés dans<br />

de petites parcelles de 0.1 ha chacune, dans lesquelles toutes les plantes ayant un<br />

DBH ≥ 1 cm sont recensées sont plus appropriés pour les études de biodiversité que<br />

les méthodes d’échantillonnage qui ne prennent en compte que les arbres.<br />

Les bio-indicateurs sont très sensibles aux changements des conditions<br />

environnementales. Ils sont le plus souvent définis comme étant des espèces dont le<br />

statut et l’écologie permettent d’avoir les informations relatives au dynamisme des<br />

écosystèmes. Dans les tropiques, certains de ces bio-indicateurs sont parfois utilisés<br />

pour la localisation des refuges forestiers à cause de leur faible pouvoir de<br />

dispersion. Dans le chapitre 4 nous avons étudié la distribution de 178 bioindicateurs<br />

sensibles des types forestiers tels que les plantes endémiques et d’autres<br />

espèces à faible capacité de dispersion, afin de vérifier si la région de Campo-Ma’an<br />

fait partie de la zone de refuge reconnue dans le sud du Cameroun. La répartition<br />

géographique de ces espèces nous a permis de confirmer le point de vue de<br />

196


Résumé<br />

nombreux auteurs qui argumentent que pendant les périodes de glaciation, quelques<br />

petits blocks de forêts étaient restreints sur les flancs supérieurs des collines au<br />

niveau des forêts d’altitude et le long des cours d’eaux parce que ces endroits leurs<br />

offraient des conditions d’humidité favorables à leur survie.<br />

Le concept du site à grande richesse biologique ou "hotspot" a attiré l’attention des<br />

aménagistes qui le considèrent comme des sites prioritaires pour la conservation de<br />

la biodiversité. Pour ce fait, la richesse floristique et le taux d’endémisme sont<br />

fréquemment utilisés comme des critères primordiaux lors de la sélection des sites<br />

prioritaires pour la conservation. Dans le chapitre 5 les données de base provenant<br />

des inventaires et de la collecte des échantillons botaniques ont été utilisées pour<br />

examiner la répartition et la convergence des espèces endémique à la région de<br />

Campo-Ma’an. Une analyse statistique a été faite en utilisant de nouvelles indices de<br />

conservation telles que le ‘‘Genetic Heat Index (GHI)’’ et le ‘‘Pioneer Index<br />

(PI)’’et des techniques géostatistiques. Ce qui nous a permis d’évaluer et d’identifier<br />

les zones ayant une grande richesse biologique. Les résultats obtenus montrent que<br />

la région de Campo-Ma’an a une flore riche et diversifiée avec 114 espèces de<br />

plantes endémiques, parmi lesquelles 29 ne sont connues que de Campo-Ma’an, 29<br />

autres sont également connues dans la région du sud Cameroun et 56 dans d’autres<br />

régions du Cameroun. On y trouve aussi 540 espèces de plantes endémiques à la<br />

région de Lower Guinea, 1123 espèces endémiques à celle de Guineo-Congolian et<br />

105 espèces à la région de Guinea. Malgré le fait que plusieurs types de végétation<br />

recensées et qu’une grande majorité des espèces endémiques se trouvent dans le<br />

Parc National de Campo-Ma’an, 17 de ces espèces endémiques et certaines<br />

formations végétales sont situées hors du parc. Malheureusement, ces espèces<br />

endémiques se trouvent dans la zone côtière et dans les régions du Mont d’Eléphant<br />

et du Massif des Mamelles qui subissent pour l’instant de très fortes pressions de la<br />

part des populations locales. Une attention particulière doit être ainsi accordée à ces<br />

zones prioritaires (ou hotspots) situées hors du parc parce qu’elles n’ont pas encore<br />

un statut propre de conservation. De plus, il est nécessaire qu’un plan<br />

d’aménagement soit élaboré pour la conservation de la biodiversité et la gestion<br />

durable des ressources naturelles dans ces zones.<br />

Le chapitre 6 traite des stratégies les plus adaptées et propose des perspectives pour<br />

une meilleure conservation de la biodiversité dans la région de Campo-Ma’an.<br />

Nonobstant le fait que cette région dispose d’une richesse biologique unique, elle<br />

subit une pression humaine grandissante et intense qui contribue malheureusement à<br />

sa déforestation. En ce qui concerne le Parc National de Campo-Ma’an, la stratégie<br />

d’intervention doit être principalement axée sur la délimitation de ses limites sur le<br />

terrain, l’élaboration et la mise en oeuvre du plan d’aménagement, et le<br />

renforcement des structures existantes pour un contrôle efficace. Pour d’autres zones<br />

prioritaires situées hors du parc, il est important que des forêts communautaires<br />

soient créées autour de celles-ci par les populations locales avec la participation et<br />

l’assistance technique et financière du MINEF et des organisations internationales<br />

œuvrant pour la conservation de la biodiversité. De plus, un suivi écologique et un<br />

système d’information géographique doivent être développés afin de fournir des<br />

données de bases qui vont permettre de mesurer la stabilité de l’écosystème et<br />

d’enregistrer les changements liés à l’activité humaine. Cela va permettre aux<br />

gestionnaires du parc et de l’UTO de prendre des décisions appropriées lorsque des<br />

197


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

développements négatifs sont signalés sur la flore, la faune et les écosystèmes<br />

forestiers.<br />

198


SAMENVATTING<br />

Gildas Peguy Tchouto Mbatchou


SAMENVATTING<br />

Samenvatting<br />

De kwetsbare ecosystemen die de biodiversiteit van het tropisch regenbos herbergen<br />

staan tegenwoordig midden in de belangstelling. Ten gevolge van voortdurende<br />

menselijke beïnvloeding is de instandhouding ervan een onderwerp van toenemende<br />

prioriteit geworden. Als antwoord op de groeiende internationale roep om<br />

bescherming van dit mondiale biologische erfgoed heeft het Kameroenese<br />

Ministerie van Milieu en Bosbouw het Campo-Ma’an gebied daarom onder een<br />

zogenaamde Technisch Operationele Eenheid gebracht. Dit om een juridisch kader<br />

te scheppen voor de verbetering van de instandhouding van de biodiversiteit van het<br />

gebied en van het duurzame gebruik van de natuurlijke rijkdommen die er worden<br />

gevonden. In zo’n groot en ingewikkeld bosecosysteem is verantwoord<br />

wetenschappelijk taxonomisch en ecologisch onderzoek van het grootste belang om<br />

antwoord te kunnen geven op de vraag wat met voorrang beschermd moet worden,<br />

en vooral ook waar zich dat bevindt. Het voornaamste doel van deze studie is<br />

daarom het vaststellen van de botanische diversiteit die in het Campo-Ma’an<br />

regenbos voorkomt. Enerzijds gaat het hierbij om de vraag of, en zo ja welke<br />

verschillende vegetatietypen er te vinden zijn in dit ecosysteem, en waar deze zich<br />

bevinden. Anderzijds om de vraag welke plantensoorten deel uitmaken van de<br />

gevonden vegetatie eenheden, en wat de status van die soorten is. Met de verworven<br />

kennis is het mogelijk om te bepalen welke gebieden botanisch (zowel<br />

vegetatiekundig als floristisch) het belangrijkst zijn. Het lokaliseren van zulke<br />

botanische “hotspots” is essentieel voor het bepalen van de prioriteit waarmee<br />

gebieden voor bescherming in aanmerking komen.<br />

Na een studie van de over Campo-Ma’an bestaande botanische en andere relevante<br />

literatuur is een verkenning van het Campo-Ma’an gebied uitgevoerd. Hierbij zijn<br />

representatieve homogene vegetaties die geschikt leken voor bemonstering<br />

geselecteerd op basis van fysische factoren en menselijke beïnvloeding zoals klimaat<br />

(vooral neerslag), hoogte, bodem en bodemgebruik. Om effectief te zijn werden<br />

twee manieren van bemonsteren toegepast, namelijk ten eerste via ingemeten<br />

proefvlakken en aanvullend het volgens een bepaald protocol verzamelen van<br />

zogenaamde kwalitatieve monsters. De proefvlakken verschaften de kwantitatieve<br />

gegevens over de structuur en numerieke gegevens over de floristische<br />

samenstelling van de vegetatie. Nog meer kwalitatieve informatie over<br />

soortenrijkdom, levensvormen en groepen van soorten met een overeenkomstige<br />

functie in het ecosysteem (“guilds”) is verkregen uit de kwalitatieve monsters. In<br />

totaal zijn 147 proefvlakken van ieder 0,1 ha uitgezet met daarin bovendien nog 136<br />

subplots van steeds 5 x 5 m. In de proefvlakken en/of in de verschillende<br />

vegetatietypen en habitats zijn meer dan 2350 herbarium nummers verzameld en<br />

daarnaast nog ca. 4800 zogenaamde “ecologische monsters”, voornamelijk bestaand<br />

uit vegetatief materiaal. De verzameling bleek na determinatie 2297 soorten te<br />

bevatten, behorend tot 851 genera verdeeld over 155 families van vaat- en<br />

sporenplanten. Een exemplaar van ieder nummer is opgeplakt en bewaard in het<br />

herbarium in Kribi. Duplicaten zijn verstuurd naar het Nationaal Herbarium in<br />

Yaoundé, Kameroen (YA) en naar het Nationaal Herbarium Nederland, Wageningen<br />

University Branch (WAG) voor verdere identificatie en conservering.<br />

201


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

In hoofdstuk 1 worden de doelstellingen van het onderzoek gepresenteerd, wordt het<br />

onderzoeksgebied beschreven, en wordt een beknopt overzicht gegeven van wat<br />

bekend is over de biodiversiteit van het Campo-Ma’an gebied. In hoofdstuk 2<br />

worden de vegetatietypen die zijn onderscheiden beschreven, gerangschikt en in<br />

kaart gebracht, en vindt een analyse plaats van hun structuur en samenstelling. Het<br />

blijkt dat de vegetatie van het Campo-Ma’an gebied zeer gevarieerd is en dat een<br />

reeks van tenminste 11 verschillende vegetatietypen en subtypen kan worden<br />

onderscheiden, waaronder het kustbos, het altijd groene laaglandbos, het<br />

submontane bos, het gemengd altijd groene en gedeeltelijk loofverliezende bos, het<br />

mangrove bos, de periodiek overstroomde bossen en de moerasbossen, het bos op<br />

rivieroevers en de secondaire bossen. Het meest karakteristiek is het altijd groene<br />

laaglandbos rijk aan Caesalpinioideae met Calpocalyx heitzii en Sacoglottis<br />

gabonensis als kenmerkende soorten, dat tot dusver alleen bekend is uit de Campo<br />

regio. Wetend hoe belangrijk de milieuvariabelen en de verstorende invloed van de<br />

mens zijn voor de soortenrijkdom in tropische regenbossen, is de informatie die is<br />

verzameld in de 147 proefvlakken geanalyseerd en is gezocht naar verbanden tussen<br />

de afzonderlijke variabelen en de gevonden vegetatietypen. Het blijkt dat de<br />

vegetatie in het Campo-Ma’an gebied wordt beïnvloed door de neerslag, de<br />

nabijheid van de zee, de hoogte, de bodem en door menselijke invloeden. Als gevolg<br />

daarvan verandert de vegetatie gaande van het vochtiger bos langs de zandige kust<br />

via het altijd groene laaglandbos rijk aan Caesalpinioideae en het submontane bos op<br />

de heuvels in het gemengd altijd groene en gedeeltelijk loofverliezende bos zoals<br />

gevonden in het drogere Ma’an gebied. Dit resulteert in een toename in<br />

soortenrijkdom gaande van de kust naar de toppen van de landinwaarts gelegen<br />

keten van lagere bergtoppen. In dezelfde richting vindt een geleidelijke verandering<br />

plaats in de dominerende soorten, namelijk van soorten die kenmerkend zijn voor de<br />

kust via soorten die het bostype rijk aan Caesalpinioideae karakteriseren naar het<br />

gemengde bos waarin gedeeltelijk loofverliezende soorten op de voorgrond treden.<br />

In hoofdstuk 3 zijn patronen in de diversiteit van de flora van het Campo-Ma’an<br />

regenwoud bestudeerd. Er is getest of er een correlatie bestaat tussen de diversiteit<br />

in de soorten bomen en de diversiteit van andere levensvormen zoals struiken, lianen<br />

en kruiden. De vraag is gesteld of in de context van het tropisch Afrikaanse<br />

regenwoud de diversiteit van de boomsoorten een afspiegeling is van de diversiteit<br />

van de andere levensvormen of vegetatielagen. Zijn bossen die rijk zijn aan<br />

boomsoorten ook rijk aan andere levensvormen? Om die vragen te beantwoorden<br />

wordt op familie- en soortsniveau de floristische rijkdom en diversiteit van de<br />

verschillende levensvormen en vegetatielagen geanalyseerd in 145 over de<br />

verschillende vegetatietypen verspreide proefvlakken. Bij de vergelijking van de<br />

diversiteit en soortenrijkdom binnen de vegetatielagen en binnen de groeivormen is<br />

gebruikt gemaakt van General Linear Models gevolgd door multiple comparison<br />

testen. De resultaten laten zien dat boomsoorten 46% van alle vaatplanten met een<br />

DBH ≥ 1 cm vertegenwoordigen, struiken en kleinere bomen 39%, lianen 13% en<br />

kruiden minder dan 1%. Slechts 22% van de diversiteit van struiken en lianen kan<br />

worden verklaard door de diversiteit van grote en middelgrote bomen, en minder<br />

dan 1% van de diversiteit van kruiden vertoont samenhang met de diversiteit van de<br />

bomen. In de verschillende proefvlakken en vegetatietypen blijkt de struiklaag veruit<br />

het rijkst aan soorten. Deze laag blijkt significant meer divers en soortenrijker dan<br />

de boom- en de kruidlaag. Meer dan 82% van de boomsoorten, 90% van de<br />

202


Samenvatting<br />

struikvormige soorten, 78% van de lianen en 70% van de kruidensoorten zijn<br />

vastgesteld in de struiklaag. Bovendien dragen struiken voor 38% bij aan de 114<br />

strikt en nauw endemische soorten die in het gebied zijn vastgesteld, kruiden 29%,<br />

bomen slechts 20% en lianen 11%. Deze resultaten tonen aan dat de diversiteit van<br />

de bomen niet altijd een afspiegeling is van de totale diversiteit van het bos in het<br />

Campo-Ma’an gebied, en daarom is de diversiteit van de bomen vermoedelijk geen<br />

goede indicator voor de diversiteit van de soorten struiken en kruiden. Bovendien<br />

doet dit vermoeden dat biodiversiteitonderzoek, dat alleen is gebaseerd op grote en<br />

middelgrote boomsoorten (DBH ≥ 10 cm) geen geschikte methode is voor het<br />

vaststellen van botanische diversiteit. Andere groeivormen zoals struiken, lianen en<br />

kruiden blijven op die manier ondervertegenwoordigd. De conclusie is dat een<br />

inventarisatie methode, gebaseerd op kleine proefvlakken van 0,1 ha, waarin alle<br />

vaatplanten met een DBH ≥ 1 cm worden geregistreerd, voor het vaststellen van<br />

biodiversiteit meer geschikt is dan bepalingen die slechts zijn gebaseerd op grote en<br />

middelgrote bomen.<br />

Indicatorsoorten worden gewoonlijk gedefinieerd als soorten, waarvan de status en<br />

de ecologie informatie verschaffen over de toestand van het ecosysteem, en die de<br />

kwaliteit van - en veranderingen in - de milieuomstandigheden weergeven. In de<br />

tropen wordt een aantal van deze soorten gebruikt voor het opsporen van de plaats<br />

en de uitgestrek<strong>the</strong>id van regenbos refugia uit hoofde van hun beperkte<br />

verspreidings- en kolonisatiemogelijkheden. In hoofdstuk 4 zijn de<br />

verspreidingspatronen van 178 gevoelige bio-indicatorsoorten bestudeerd, zoals<br />

strikte en nauwe endemen, alsook van andere soorten waarvan bekend is dat het<br />

langzame verspreiders zijn. Het doel hiervan was vast te stellen of het hele Campo-<br />

Ma’an regenbos deel uitmaakte van een verondersteld laat Pleistoceen regenbos<br />

refugium of niet. De gevonden distributie patronen ondersteunen de zienswijze van<br />

veel auteurs die stellen dat tijdens de ijstijden bossen beperkt waren tot de bovenste<br />

hellingen en toppen van heuvels en tot grotere hoogten in het algemeen, en daarnaast<br />

voorkwamen langs rivieren waar voldoende vocht aanwezig was voor hun<br />

overleving. Onze bevindingen doen daarom veronderstellen dat het Campo-Ma’an<br />

gebied deel uitmaakt van een reeks van gepostuleerde Centraal Afrikaanse regenbos<br />

refugia zoals voorgesteld door eerdere auteurs.<br />

Het concept van “hotspots”, gebieden met een grote diversiteit aan soorten<br />

waaronder ongewoon veel endemen, heeft de aandacht van natuurbeschermers<br />

getrokken om het te hanteren als instrument bij het stellen van prioriteiten voor<br />

behoud en bescherming. In het algemeen worden patronen van soortenrijkdom en<br />

endemisme gebruikt voor het vaststellen van deze “hotspots”. In hoofdstuk 5 zijn<br />

bosinventarisatiegegevens en taxonomische collecties gebruikt bij het zoeken naar<br />

patronen die tot stand komen door het samenvallen van de verspreidingen van strikte<br />

en nauwe endemen. De trends die bij de vastgestelde endemische en zeldzame<br />

soorten hierbij naar voren komen zijn geanalyseerd met gebruikmaking van nieuwe<br />

kwantitatieve technieken voor milieubehoud zoals de Genetic Heat Index (GHI) en<br />

de Pioneer Index (PI) en met geostatistische technieken die behulpzaam kunnen zijn<br />

bij het vaststellen van gebieden die in aanleg een hoge prioriteit voor bescherming<br />

genieten. De resultaten laten zien dat het Campo-Ma’an gebied wordt<br />

gekarakteriseerd door een rijke en diverse flora die 114 endemische plantensoorten<br />

telt. Hiervan zijn 29 soorten strikt beperkt tot het gebied zelf, 29 andere soorten zijn<br />

203


Plant diversity in a Central African rain forest: Implications for biodiversity conservation in Cameroon<br />

beperkt tot het zuidwesten van Kameroen, en nog eens 56 komen ook voor in andere<br />

delen van Kameroen. Bovendien zijn 540 van de in het gebied vastgestelde soorten<br />

Lower Guinea endemen (verspreiding beperkt tot het laagland regenbos van<br />

zuidoost Nigeria tot het Mayombe gebied in Kongo), 1123 soorten zijn Guineo-<br />

Congolian endemen en 105 soorten zijn Guinea endemen. Hoewel de meeste van de<br />

bostypen die rijk zijn aan strikte en nauwe endemische soorten voorkomen in het<br />

Nationale Park, zijn er andere biodiversiteits “hotspots” die buiten het Nationale<br />

Park liggen, met name in de kuststreek en in gebieden zoals de Mont d’Eléphant en<br />

het Massif des Mamelles. Ongelukkigerwijze staan deze gebieden, die 17 strikt<br />

endemische soorten herbergen die niet in het Park worden gevonden, ernstig onder<br />

druk en hebben ze op dit moment geen enkele status van bescherming. Overwegend<br />

dat met de groeiende bevolking de druk op deze “hotspots” in de nabije toekomst zal<br />

toenemen wordt voorgesteld om prioriteit te geven aan de bescherming van deze<br />

gebieden, en om een afzonderlijke beheersstrategie te ontwerpen voor deze<br />

bescherming.<br />

In hoofdstuk 6 worden de implicaties van de uitkomsten van dit onderzoek voor het<br />

behoud en de bescherming van het Campo-Ma’an regenbos besproken en worden<br />

aanbevelingen gedaan voor het behoud en doeltreffend beheer ervan. Hoewel het<br />

Campo-Ma’an bos een rijke en diverse flora bezit voltrekken zich in het gebied een<br />

aantal menselijke activiteiten die elk voor zich een verschillende ecologische impact<br />

op het ecosysteem van het bos tot gevolg hebben. Om behoud te verzekeren is het<br />

dringend noodzakelijk om de grens van het Nationale Park af te bakenen, om de<br />

bescherming te versterken en om het beheersplan af te maken en uit te voeren.<br />

Bovendien moeten lokale bevolkingsgroepen worden aangemoedigd om<br />

gemeenschapsbossen in te stellen rondom de vastgestelde “hotspots” die buiten het<br />

Nationale Park liggen. Zo’n gemeenschapsbos zou de vastgestelde biodiversiteit<br />

“hotspot” als beschermd kernareaal kunnen hebben, dat wordt omgeven door een<br />

bufferzone. Ook blijven remote sensing beelden en impact studies van menselijke<br />

activiteiten noodzakelijk om veranderingen in landgebruik en in vegetatie en flora te<br />

blijven volgen. Dit zal de parkleiding in staat stellen doeltreffend op te treden als<br />

zich ongewenste veranderingen in het bosecosysteem voordoen.<br />

204

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!