10.10.2013 Views

Acremonium phylogenetic overview and revision of ... - CBS - KNAW

Acremonium phylogenetic overview and revision of ... - CBS - KNAW

Acremonium phylogenetic overview and revision of ... - CBS - KNAW

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

available online at www.studiesinmycology.org StudieS in Mycology 68: 139–162. 2011.<br />

doi:10.3114/sim.2011.68.06<br />

<strong>Acremonium</strong> <strong>phylogenetic</strong> <strong>overview</strong> <strong>and</strong> <strong>revision</strong> <strong>of</strong> Gliomastix, Sarocladium, <strong>and</strong><br />

Trichothecium<br />

R.C. Summerbell1, 2* , C. Gueidan3, 4 , H-J. Schroers3, 5 , G.S. de Hoog3 , M. Starink3 , Y. Arocha Rosete1 , J. Guarro6 1, 2<br />

<strong>and</strong> J.A. Scott<br />

1 Sporometrics, Inc. 219 Dufferin Street, Suite 20C, Toronto, Ont., Canada M6K 1Y9; 2 Dalla Lana School <strong>of</strong> Public Health, University <strong>of</strong> Toronto, 223 College St., Toronto ON<br />

Canada M5T 1R4; 3 <strong>CBS</strong>-<strong>KNAW</strong>, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherl<strong>and</strong>s; 4 Department <strong>of</strong> Botany, The Natural History Museum, Cromwell<br />

Road, SW7 5BD London, United Kingdom; 5 Agricultural Institute <strong>of</strong> Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia, Mycology Unit, Medical School; 6 IISPV, Universitat<br />

Rovira i Virgili, Reus, Spain<br />

*Correspondence: Richard Summerbell, rsummerbell@sporometrics.com<br />

Abstract: Over 200 new sequences are generated for members <strong>of</strong> the genus <strong>Acremonium</strong> <strong>and</strong> related taxa including ribosomal small subunit sequences (SSU) for <strong>phylogenetic</strong><br />

analysis <strong>and</strong> large subunit (LSU) sequences for phylogeny <strong>and</strong> DNA-based identification. Phylogenetic analysis reveals that within the Hypocreales, there are two major<br />

clusters containing multiple <strong>Acremonium</strong> species. One clade contains <strong>Acremonium</strong> sclerotigenum, the genus Emericellopsis, <strong>and</strong> the genus Geosmithia as prominent elements.<br />

The second clade contains the genera Gliomastix sensu stricto <strong>and</strong> Bionectria. In addition, there are numerous smaller clades plus two multi-species clades, one containing<br />

<strong>Acremonium</strong> strictum <strong>and</strong> the type species <strong>of</strong> the genus Sarocladium, <strong>and</strong>, as seen in the combined SSU/LSU analysis, one associated subclade containing <strong>Acremonium</strong><br />

breve <strong>and</strong> related species plus <strong>Acremonium</strong> curvulum <strong>and</strong> related species. This sequence information allows the <strong>revision</strong> <strong>of</strong> three genera. Gliomastix is revived for five species,<br />

G. murorum, G. polychroma, G. tumulicola, G. roseogrisea, <strong>and</strong> G. masseei. Sarocladium is extended to include all members <strong>of</strong> the <strong>phylogenetic</strong>ally distinct A. strictum<br />

clade including the medically important A. kiliense <strong>and</strong> the protective maize endophyte A. zeae. Also included in Sarocladium are members <strong>of</strong> the <strong>phylogenetic</strong>ally delimited<br />

<strong>Acremonium</strong> bacillisporum clade, closely linked to the A. strictum clade. The genus Trichothecium is revised following the principles <strong>of</strong> unitary nomenclature based on the<br />

oldest valid anamorph or teleomorph name, <strong>and</strong> new combinations are made in Trichothecium for the tightly interrelated <strong>Acremonium</strong> crotocinigenum, Spicellum roseum,<br />

<strong>and</strong> teleomorph Leucosphaerina indica. Outside the Hypocreales, numerous <strong>Acremonium</strong>-like species fall into the Plectosphaerellaceae, <strong>and</strong> A. atrogriseum falls into the<br />

Cephalothecaceae.<br />

Key words: <strong>Acremonium</strong>, Cephalothecaceae, Gliomastix, holomorph concept, Leucosphaerina, nomenclature, Sarcopodium, Sarocladium, Trichothecium.<br />

Taxonomic novelties: Trichothecium sympodiale Summerbell, Seifert, & Schroers, nom. nov.; Gliomastix roseogrisea (S.B. Saksena) Summerbell, comb. nov., Gliomastix<br />

tumulicola (Kiyuna, An, Kigawa & Sugiy.) Summerbell, comb. nov., Sarocladium bacillisporum (Onions & Barron) Summerbell, comb. nov., Sarocladium bactrocephalum (W.<br />

Gams) Summerbell, comb. nov., Sarocladium glaucum (W. Gams) Summerbell, comb. nov., Sarocladium kiliense (Grütz) Summerbell, comb. nov., Sarocladium ochraceum<br />

(Onions & Barron) Summerbell, comb. nov., Sarocladium strictum (W. Gams) Summerbell, comb. nov., Sarocladium zeae (W. Gams & D.R. Sumner) Summerbell, comb. nov.,<br />

Trichothecium crotocinigenum (Schol-Schwarz) Summerbell, Seifert, & Schroers, comb. nov., Trichothecium indicum (Arx, Mukerji & N. Singh) Summerbell, Seifert, & Schroers,<br />

comb. nov., Trichothecium ovalisporum (Seifert & Rehner) Seifert & Rehner, comb. nov.<br />

INTRODUCTION<br />

The genus <strong>Acremonium</strong> includes some <strong>of</strong> the most simply structured<br />

<strong>of</strong> all filamentous anamorphic fungi. The characteristic morphology<br />

consists <strong>of</strong> septate hyphae giving rise to thin, tapered, mostly lateral<br />

phialides produced singly or in small groups. Conidia tend to be<br />

unicellular, produced in mucoid heads or unconnected chains. They<br />

can be hyaline or melanised, but the hyphae are usually hyaline. A<br />

preliminary study <strong>of</strong> the <strong>phylogenetic</strong> diversity <strong>of</strong> <strong>Acremonium</strong> by<br />

Glenn et al. (1996), based on partial nuclear ribosomal small subunit<br />

(SSU) sequences, showed that recognised members belonged to at<br />

least three groups in distinct orders <strong>of</strong> fungi. Most species including<br />

the type, A. alternatum, belong to the order Hypocreales. A smaller<br />

group <strong>of</strong> species, <strong>Acremonium</strong> section Chaetomioidea, belongs to the<br />

Sordariales. This section, typified by the <strong>Acremonium</strong> alabamense<br />

anamorph <strong>of</strong> Thielavia terrestris, was conceived as including the<br />

<strong>Acremonium</strong>-like anamorphs <strong>of</strong> Chaetomium <strong>and</strong> Thielavia species<br />

(Morgan-Jones & Gams 1982). A recent study has placed several<br />

<strong>of</strong> these heret<strong>of</strong>ore unnamed <strong>Acremonium</strong>-like anamorphs into the<br />

new genus Taifanglania (Liang et al. 2009), based on the type, T.<br />

hechuanensis. Another <strong>Acremonium</strong> species included by Glenn et<br />

al. (1996), A. furcatum, belongs to an order <strong>of</strong> uncertain identity.<br />

Copyright 2011 <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherl<strong>and</strong>s.<br />

Subsequent publications have shown that A. furcatum is related to<br />

the well-known phytopathogen Verticillium dahliae <strong>and</strong> belongs to the<br />

recently established family Plectosphaerellaceae (Zare et al. 2007,<br />

Schoch et al. 2009), which groups together with the Glomerellaceae<br />

in a clade that forms a poorly defined, unnamed, ordinal-level sistertaxon<br />

to the Microascales. Several other <strong>Acremonium</strong> species such<br />

as the phytopathogen A. cucurbitacearum also have been shown<br />

to belong to the Plectosphaerellaceae (Zare et al. 2007). The<br />

simple structure <strong>of</strong> <strong>Acremonium</strong> has either convergently evolved<br />

in diverse fungal orders within the class Sordariomycetes or is<br />

symplesiomorphic at a very deep level.<br />

The diversity <strong>of</strong> fungi throughout the Ascomycota that produce<br />

<strong>Acremonium</strong>-like anamorphs is high, including genera such as<br />

Gabarnaudia (Microascales), Lecythophora (Coniochaetales), <strong>and</strong><br />

Pseudogliomastix (Sordariales incertae sedis). The present study<br />

does not review the vast range <strong>of</strong> fungi producing simple phialidic<br />

conidiophores, but instead, focuses specifically on: 1) anamorphs<br />

that have been formally placed into the genus <strong>Acremonium</strong>, <strong>and</strong><br />

2) species <strong>and</strong> genera <strong>phylogenetic</strong>ally related to the named<br />

<strong>Acremonium</strong> species.<br />

The number <strong>of</strong> previously <strong>phylogenetic</strong>ally unstudied fungi is large.<br />

Currently, there are approximately 95 named <strong>Acremonium</strong> species with<br />

You are free to share - to copy, distribute <strong>and</strong> transmit the work, under the following conditions:<br />

Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use <strong>of</strong> the work).<br />

Non-commercial: You may not use this work for commercial purposes.<br />

No derivative works: You may not alter, transform, or build upon this work.<br />

For any reuse or distribution, you must make clear to others the license terms <strong>of</strong> this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any <strong>of</strong> the above conditions can be waived if you get<br />

permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.<br />

139


SuMMerbell et al.<br />

traceable material (cultures or specimens in good condition), excluding<br />

endophyte species that were transferred to Neotyphodium by Glenn et<br />

al. (1996). In addition, there are an undetermined number <strong>of</strong> nectriaceous<br />

teleomorphs with unnamed <strong>Acremonium</strong>-like anamorphs plus about<br />

15 named <strong>and</strong> unnamed Emericellopsis species with <strong>Acremonium</strong><br />

anamorphs (Zuccaro et al. 2004). The preliminary phylogeny done by<br />

Glenn et al. (1996) includes only seven species that would currently be<br />

considered <strong>Acremonium</strong>, inclusive <strong>of</strong> the <strong>Acremonium</strong> berkeleyanum,<br />

anamorph <strong>of</strong> Cosmospora berkeleyana, formerly considered the<br />

anamorph <strong>of</strong> Cosmospora vilior, plus two Emericellopsis species. Clearly,<br />

further work is needed on the phylogeny <strong>of</strong> <strong>Acremonium</strong>.<br />

Because <strong>of</strong> the high biodiversity within <strong>Acremonium</strong>, relatively<br />

evolutionarily labile, rapidly evolving genes like the ribosomal internal<br />

transcribed spacer (ITS) are not alignable across the genus (de Hoog<br />

et al. 2000) or even within some <strong>of</strong> the individual orders that the<br />

genus spans. Because many <strong>Acremonium</strong> species are derived from<br />

relatively closely related families in the Sordariomycetes, relatively<br />

slowly evolving genes that are alignable such as the ribosomal large<br />

subunit (LSU) may yield considerable ambiguity about relationships.<br />

To address this problem, we performed an analysis <strong>of</strong> LSU <strong>and</strong> whole<br />

SSU sequences for a larger number <strong>of</strong> <strong>Acremonium</strong> isolates than has<br />

been examined previously. Based on these results, we chose six <strong>of</strong><br />

the most <strong>phylogenetic</strong>ally distinctive species <strong>and</strong> included them in the<br />

Ascomycetous Tree <strong>of</strong> Life project (Schoch et al. 2009). The elegant<br />

<strong>phylogenetic</strong> analysis in that project was based on two nuclear<br />

ribosomal genes, one mitochondrial ribosomal gene, <strong>and</strong> portions<br />

<strong>of</strong> three protein-coding genes. These results permitted us to gain a<br />

clearer picture <strong>of</strong> relationships among the <strong>Acremonium</strong> groups that<br />

were imperfectly resolved in LSU <strong>and</strong> SSU analysis.<br />

In the present study we present the results <strong>of</strong> the LSU <strong>and</strong><br />

small subunit (SSU) <strong>phylogenetic</strong> analyses for the majority <strong>of</strong><br />

<strong>Acremonium</strong> species available in pure culture including described<br />

<strong>and</strong> undescribed species. This gives not only a <strong>phylogenetic</strong><br />

<strong>overview</strong> <strong>of</strong> the genus, but also provides identification-enabling<br />

sequences for <strong>Acremonium</strong> species that have not been sequenced<br />

previously. Taken with the Tree <strong>of</strong> Life studies, these results shed<br />

new light on the biodiversity <strong>of</strong> these morphologically simple fungi<br />

that have long been pr<strong>of</strong>oundly problematical in terms <strong>of</strong> accurate<br />

classification <strong>and</strong> reliable species identification.<br />

MATeRIAls AND MeThODs<br />

Two separate sets <strong>of</strong> data matrices were assembled (Table 1).<br />

The first is a two-gene analysis that aims at investigating the<br />

<strong>phylogenetic</strong> position <strong>of</strong> <strong>Acremonium</strong> within the Sordariomycetes.<br />

The second is a one-gene analysis focusing on the <strong>Acremonium</strong><br />

strains belonging to the order Hypocreales. The first set includes<br />

the large <strong>and</strong> small subunits <strong>of</strong> the nuclear ribosomal RNA gene<br />

(nucLSU <strong>and</strong> nucSSU, respectively) <strong>and</strong> 166 taxa, including 56<br />

strains <strong>of</strong> <strong>Acremonium</strong>, 105 reference taxa <strong>of</strong> Sordariomycetes,<br />

<strong>and</strong> five species <strong>of</strong> Leotiomycetes as an outgroup (Botryotinia<br />

fuckeliana, Chalara aurea, Leotia lubrica, Microglossum rufum, <strong>and</strong><br />

Pseudeurotium zonatum). The second set includes only the nucLSU<br />

for 331 taxa including 170 strains <strong>of</strong> <strong>Acremonium</strong>, 158 sequences<br />

<strong>of</strong> Hypocreales, <strong>and</strong> three outgroup species (Ceratocystis fimbriata,<br />

Glomerella cingulata, <strong>and</strong> Ophiostoma piluliferum).<br />

DNA isolation <strong>and</strong> sequencing<br />

DNA was extracted with a FastDNA kit (Qbiogene, Heidelberg,<br />

Germany) from mycelium grown for 5–14 d in liquid Complete<br />

140<br />

Medium (Raper & Raper 1972). The LSU region <strong>of</strong> ribosomal<br />

DNA (rDNA) was amplified with primers V9G (de Hoog & Gerrits<br />

van den Ende 1998) <strong>and</strong> LR5 (Vilgalys & Hester 1990). The SSU<br />

region was amplified with primers NS1 <strong>and</strong> NS24 <strong>and</strong> sequenced<br />

using primers NS1–NS4, NS6, NS24 (White et al. 1990; Gargas et<br />

al. 1992). The components for the PCR were used as described<br />

by Schroers (2000). The PCR program was 60 s at 94 °C (initial<br />

denaturation); 35 cycles <strong>of</strong> 35 s at 94 °C (denaturation), 50 s at<br />

55 °C (annealing), <strong>and</strong> 120 s at 72 °C (elongation); <strong>and</strong> 6 min at<br />

72 °C (final elongation) followed by chilling to 4 °C. The PCR<br />

products were purified with a GFX purification kit (Amersham<br />

Pharmacia Biotech Inc., Roosendaal, The Netherl<strong>and</strong>s) <strong>and</strong><br />

visualised on an electrophoresis gel after ethidium bromide<br />

staining. The rDNA was sequenced with a BigDye terminator<br />

cycle sequencing kit (Applied Biosystems, Foster City, Calif.) <strong>and</strong><br />

analysed on an ABI Prism 3700 instrument (Applied Biosystems)<br />

by using the st<strong>and</strong>ard conditions recommended by the vendor.<br />

The primers used in the sequence reaction were NL1 <strong>and</strong> NL4<br />

(O’Donnell 1993), <strong>and</strong> LR5.<br />

Alignments <strong>and</strong> <strong>phylogenetic</strong> analyses<br />

Sequences were assembled <strong>and</strong> edited using SeqMan II s<strong>of</strong>tware<br />

(DNAStar, Inc., Madison, Wis.). Manual alignments were performed<br />

using MacClade v. 4.08 (Maddison & Maddison 2003). Ambiguous<br />

regions (sensu Lutzoni et al. 2000) <strong>and</strong> introns were delimited<br />

manually <strong>and</strong> excluded from the alignments. Congruence was<br />

tested using a 70 % reciprocal bootstrap criterion (Mason-Gamer<br />

& Kellogg 1996, Reeb et al. 2004). Final <strong>phylogenetic</strong> analyses<br />

<strong>of</strong> the two-gene <strong>and</strong> one-gene datasets were performed using<br />

Stamatakis’s “r<strong>and</strong>omised axelerated (sic) maximum likelihood<br />

for high performance computing” (RAxML VI-HPC, Stamatakis et<br />

al. 2005, 2008) on the Cipres Web Portal (http://www.phylo.org/<br />

sub_sections/portal/). For the two-gene analysis, the maximum<br />

likelihood search followed a "GTRMIX" model <strong>of</strong> molecular<br />

evolution applied to two partitions, nucLSU <strong>and</strong> nucSSU. The<br />

same model was applied to the one-gene analysis without partition.<br />

Support values were obtained in RAxML with bootstrap analyses<br />

<strong>of</strong> 500 pseudoreplicates. The trees are labeled with the updated<br />

scientific names.<br />

ResUlTs<br />

DNA sequence alignments<br />

A total <strong>of</strong> 228 new sequences were generated for <strong>Acremonium</strong>, 192<br />

nucLSU <strong>and</strong> 36 nucSSU (Table 1). For the two-gene dataset, one<br />

nucLSU <strong>and</strong> 41 nucSSU sequences were missing. After exclusion<br />

<strong>of</strong> ambiguous regions <strong>and</strong> introns, the two-gene dataset included 2<br />

955 characters (1 250 nucLSU <strong>and</strong> 1 705 nucSSU). Among these,<br />

1 739 were constant while 900 were parsimony-informative. After<br />

exclusion <strong>of</strong> ambiguous regions <strong>and</strong> introns, the one-gene dataset<br />

included 848 characters. Among these, 481 were constant while<br />

260 were parsimony-informative.<br />

Phylogenetic inference<br />

As shown in Fig. 1, the species <strong>of</strong> <strong>Acremonium</strong> mostly fall into<br />

three groups, namely the Hypocreales, the Plectosphaerellaceae,<br />

<strong>and</strong> the Sordariales. The bulk <strong>of</strong> species fall into the Hypocreales.


www.studiesinmycology.org<br />

Acremoniella lutzi T<br />

Petriella setifera<br />

Doratomyces stemonitis Microascales (1)<br />

93 Microascus longirostris<br />

Microascus trigonosporus<br />

Aniptodera chesapeakensis<br />

99<br />

Halosphaeria appendiculata<br />

80<br />

96<br />

99<br />

Lignincola laevis<br />

Nimbospora effusa<br />

Nohea umiumi Halosphaeriales<br />

95<br />

Corollospora maritima<br />

Varicosporina ramulosa<br />

Ceriosporopsis halima<br />

Graphium penicillioides Microascales (2)<br />

Ambrosiella xylebori<br />

Ceratocystis fimbriata<br />

Microascales (3)<br />

92<br />

89<br />

<strong>Acremonium</strong> alcalophilum <strong>CBS</strong> 114.92 T<br />

<strong>Acremonium</strong> restrictum <strong>CBS</strong> 178.40 T<br />

<strong>Acremonium</strong> antarcticum <strong>CBS</strong> 987.87<br />

<strong>Acremonium</strong> stromaticum <strong>CBS</strong> 863.73 T<br />

75<br />

<strong>Acremonium</strong> furcatum <strong>CBS</strong> 122.42 T<br />

Verticillium alboatrum (<strong>Acremonium</strong> apii T) <strong>CBS</strong> 130.51<br />

Verticillium dahliae<br />

<strong>Acremonium</strong> nepalense <strong>CBS</strong> 971.72 T<br />

Plectosphaerella cucumerina<br />

96<br />

70<br />

<strong>Acremonium</strong> cucurbitacearum <strong>CBS</strong> 683.88<br />

<strong>Acremonium</strong> brunnescens <strong>CBS</strong> 559.73 T<br />

Glomerella cingulata<br />

“<strong>Acremonium</strong> alternatum” <strong>CBS</strong> 406.66<br />

92 Sarocladium bacillisporum <strong>CBS</strong> 425.67 T<br />

“<strong>Acremonium</strong> implicatum” <strong>CBS</strong> 243.59<br />

bacillisporum<br />

-clade<br />

96 99 Sarocladium bactrocephalum <strong>CBS</strong> 749.69 T<br />

Sarocladium strictum <strong>CBS</strong> 346.70 T<br />

Sarocladium kiliense <strong>CBS</strong> 146.62<br />

95<br />

Sarocladium kiliense <strong>CBS</strong> 122.29 T<br />

strictum<br />

-clade<br />

99 Sarocladium zeae <strong>CBS</strong> 801.69 T<br />

<strong>Acremonium</strong> breve <strong>CBS</strong> 150.62 T<br />

<strong>Acremonium</strong> radiatum <strong>CBS</strong> 142.62 T breve/curvulum<br />

96<br />

<strong>Acremonium</strong> gamsii <strong>CBS</strong> 726.71 T<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 430.66 T<br />

-clade<br />

98<br />

“<strong>Acremonium</strong> blochii” <strong>CBS</strong> 424.93<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 310.59 T<br />

persicinum<br />

-clade<br />

99<br />

“<strong>Acremonium</strong> hyalinulum” <strong>CBS</strong> 271.36<br />

Roumegueriella rufula<br />

75<br />

Hydropisphaera erubescens 1<br />

99<br />

85 <strong>Acremonium</strong> spinosum <strong>CBS</strong> 136.33 T<br />

<strong>Acremonium</strong> rutilum <strong>CBS</strong> 396.66 T<br />

Bionectria ochroleuca 2<br />

99 “<strong>Acremonium</strong> blochii” <strong>CBS</strong> 427.93<br />

97 <strong>Acremonium</strong> pinkertoniae <strong>CBS</strong> 157.70 T<br />

74 <strong>Acremonium</strong> chrysogenum <strong>CBS</strong> 144.62 T chrysogenum<br />

<strong>Acremonium</strong> flavum <strong>CBS</strong> 596.70 T<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 124.42 T<br />

Geosmithia lavendula<br />

99 Geosmithia putterillii<br />

“<strong>Acremonium</strong> egyptiacum” <strong>CBS</strong> 303.64<br />

-clade<br />

acremonium phylogeny<br />

Fig. 1.A–C. The <strong>phylogenetic</strong> position <strong>of</strong> <strong>Acremonium</strong> <strong>and</strong> related fungi within the Sordariomycetes, as seen in combined analysis <strong>of</strong> the large <strong>and</strong> small subunits <strong>of</strong> the nuclear<br />

ribosomal RNA gene (LSU + SSU) analysed by maximum likelihood via RAxML VI-HPC following a GTRMIX model applied to two partitions. 100 % bootstrap values are<br />

indicated by a black dot on the relevant internode.<br />

Gliomastix/Bionectria clade<br />

Sarocladium clade<br />

sclerotigenum/Geosmithia clade<br />

Hypocreales<br />

Plectosphaerellaceae<br />

Glomerellales<br />

A<br />

141


SuMMerbell et al.<br />

Fig. 1. (Continued).<br />

142<br />

71<br />

96<br />

Simplicillium lanosoniveum <strong>CBS</strong> 321.72<br />

Cordyceps cardinalis<br />

<strong>Acremonium</strong> camptosporum <strong>CBS</strong> 756.69 T<br />

Paecilomyces lilacinus 2<br />

Elaphocordyceps capitata<br />

Elaphocordyceps ophioglossoides<br />

Balansia henningsiana<br />

Epichloe typhina<br />

Claviceps purpurea<br />

<strong>Acremonium</strong> guillematii <strong>CBS</strong> 766.69 T<br />

<strong>Acremonium</strong> minutisporum <strong>CBS</strong> 147.62 T<br />

<strong>Acremonium</strong> vitellinum <strong>CBS</strong> 792.69 T<br />

<strong>Acremonium</strong> exiguum <strong>CBS</strong> 587.73 T<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 416.68<br />

<strong>Acremonium</strong> psammosporum <strong>CBS</strong> 590.63<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 137.35 T<br />

Nectria cinnabarina<br />

Clavicipitaceae<br />

<strong>Acremonium</strong> roseolum <strong>CBS</strong> 289.62<br />

Stachybotrys chartarum<br />

Stachybotrys subsimplex<br />

Myrothecium roridum 1<br />

Peethambara spirostriata<br />

Pseudonectria rousseliana<br />

<strong>Acremonium</strong> nigrosclerotium <strong>CBS</strong> 154.72 T<br />

96 Hypocrea americana<br />

Hypocrea lutea<br />

Sphaerostilbella berkeleyana<br />

Hypocreaceae<br />

Niesslia exilis<br />

Nectria haematococca<br />

Chaetosphaerella phaeostroma<br />

96<br />

Melanospora tiffanii<br />

Melanospora zamiae<br />

Lindra thalassiae<br />

Lulworthia gr<strong>and</strong>ispora<br />

“<strong>Acremonium</strong> alabamense” <strong>CBS</strong> 456.75<br />

Cercophora terricola<br />

Apiosordaria verruculosa<br />

97 Cercophora striata<br />

Podospora decipiens<br />

Bombardia bombarda<br />

Lasiosphaeria ovina<br />

71<br />

Cercophora newfieldiana<br />

Gelasinospora tetrasperma<br />

99<br />

Neurospora crassa<br />

Immersiella immersa<br />

Lasiosphaeria hispida<br />

Podospora fibrinocaudata<br />

Strattonia carbonaria<br />

84<br />

98<br />

Camarops amorpha<br />

Camarops microspora<br />

Camarops tubulina<br />

Boliniales<br />

94 Camarops ustulinoides<br />

89 97<br />

Chaetosphaeria ovoidea<br />

Menispora tortuosa<br />

Melanochaeta hemipsila<br />

74 Lasiosphaeriella nitida<br />

Linocarpon appendiculatum<br />

T<br />

Cordycipitaceae<br />

Ophiocordycipitaceae<br />

T<br />

Stachybotrys/<br />

Peethambara<br />

-clade<br />

Lulworthiales<br />

Sordariales<br />

Chaetosphaeriales<br />

Hypocreales<br />

B


Fig. 1. (Continued).<br />

www.studiesinmycology.org<br />

99 “<strong>Acremonium</strong> cf. alternatum” <strong>CBS</strong> 109043<br />

<strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 544.79<br />

75<br />

<strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 981.70<br />

80 <strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 774.97<br />

<strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 507.82<br />

<strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 733.70<br />

86 <strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 252.68<br />

<strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 604.67 T<br />

88<br />

92 <strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 306.85<br />

Cephalotheca sulfurea<br />

<strong>Acremonium</strong> thermophilum <strong>CBS</strong> 734.71 T<br />

Albertiniella polyporicola<br />

Coniochaeta ostrea<br />

99<br />

98 Coniochaeta savoryi Coniochaetales<br />

70 Coniochaeta discoidea<br />

Annulatascus triseptatus<br />

89<br />

91 Fragosphaeria purpurea<br />

97<br />

Ophiostoma piliferum 1<br />

Ophiostoma stenoceras<br />

Papulosa amerospora<br />

Apiognomonia errabunda<br />

92 Plagiostoma euphorbiae<br />

Cryptodiaporthe aesculi<br />

99 Gnomonia gnomon<br />

Cryptosporella hypodermia<br />

95 Melanconis alni<br />

Melanconis stilbostoma<br />

81<br />

89 99<br />

Melanconis marginalis<br />

97<br />

Chromendothia citrina<br />

Endothia gyrosa<br />

89 Chrysoporthe cubensis<br />

Diaporthe eres<br />

Diaporthe phaseolorum<br />

84<br />

Mazzantia napelli<br />

88 Leucostoma niveum<br />

Valsella salicis<br />

Valsa ambiens<br />

Cryphonectria parasitica<br />

Anthostomella torosa<br />

Apiospora montagnei<br />

Diatrype disciformis<br />

82<br />

Eutypa lata<br />

Graphostroma platystoma<br />

Xylariales<br />

77<br />

Xylaria acuta<br />

90 Xylaria hypoxylon<br />

Seynesia erumpens<br />

Leotia lubrica<br />

Microglossum rufum<br />

Pseudeurotium zonatum<br />

Chalara aurea<br />

<strong>Acremonium</strong> butyri (?) <strong>CBS</strong> 301.38 T<br />

<strong>Acremonium</strong> lichenicola <strong>CBS</strong> 425.66 T<br />

Botryotinia fuckeliana<br />

0.01 substitutions/site<br />

Cephalothecaceae<br />

Ophiostomatales<br />

Diaporthales<br />

Leotiomycetes (outgroup)<br />

acremonium phylogeny<br />

C<br />

143


SuMMerbell et al.<br />

Table 1. List <strong>of</strong> <strong>Acremonium</strong> species included in this study as well as other novel or independently redone sequences <strong>of</strong> related fungi<br />

used for comparison. Sequences from GenBank <strong>of</strong> other comparison taxa are listed in Supplemental Table 1a - see online Supplementary<br />

Information. Collection <strong>and</strong> GenBank numbers are indicated <strong>and</strong> type strains (T) are mentioned. Sequences generated in this study are<br />

shown in bold. Dashes indicate missing data in the two-gene analysis. Isolates that cannot be assigned a <strong>phylogenetic</strong>ally confirmed name<br />

are listed under the name under which they are currently held in the <strong>CBS</strong> collection.<br />

Currently assigned species name Collection numbers nuclsU nucssU Notes<br />

Acremoniella lutzi T <strong>CBS</strong> 103.48 hQ231971 – Ex-type <strong>of</strong> Acremoniella lutzi<br />

<strong>Acremonium</strong> acutatum T <strong>CBS</strong> 682.71 hQ231965<br />

<strong>Acremonium</strong> alabamense <strong>CBS</strong> 456.75 hQ231972 –<br />

<strong>Acremonium</strong> alcalophilum T <strong>CBS</strong> 114.92 hQ231973 – Ex-type <strong>of</strong> <strong>Acremonium</strong> alcalophilum<br />

<strong>Acremonium</strong> alternatum T <strong>CBS</strong> 407.66 hQ231988<br />

“<strong>Acremonium</strong> alternatum” <strong>CBS</strong> 381.70A hQ231986<br />

<strong>CBS</strong> 406.66 hQ231987 hQ232178<br />

<strong>CBS</strong> 831.97 hQ231989<br />

<strong>CBS</strong> 114602 hQ231990<br />

“<strong>Acremonium</strong> cf. alternatum” <strong>CBS</strong> 109043 hQ231974 –<br />

<strong>Acremonium</strong> antarcticum <strong>CBS</strong> 987.87 hQ231975 –<br />

<strong>Acremonium</strong> atrogriseum T <strong>CBS</strong> 604.67 hQ231981 – Ex-type <strong>of</strong> Phaeoscopulariopsis atrogrisea<br />

<strong>CBS</strong> 252.68 hQ231977 –<br />

<strong>CBS</strong> 306.85 hQ231978 –<br />

<strong>CBS</strong> 507.82 hQ231979 –<br />

<strong>CBS</strong> 544.79 hQ231980 –<br />

<strong>CBS</strong> 733.70 hQ231982 –<br />

<strong>CBS</strong> 774.97 hQ231983 –<br />

<strong>CBS</strong> 981.70 hQ231984 –<br />

<strong>Acremonium</strong> biseptum T <strong>CBS</strong> 750.69 hQ231998 Ex-type <strong>of</strong> <strong>Acremonium</strong> biseptum<br />

“<strong>Acremonium</strong> blochii” <strong>CBS</strong> 324.33 hQ231999<br />

<strong>CBS</strong> 424.93 hQ232000 hQ232181<br />

<strong>CBS</strong> 427.93 hQ232001 hQ232182<br />

<strong>CBS</strong> 993.69 hQ232002<br />

<strong>Acremonium</strong> borodinense T <strong>CBS</strong> 101148 hQ232003 Ex-type <strong>of</strong> <strong>Acremonium</strong> borodinense<br />

<strong>Acremonium</strong> brachypeniumT <strong>CBS</strong> 866.73 hQ232004<br />

<strong>Acremonium</strong> breve T <strong>CBS</strong> 150.62 hQ232005 hQ232183 Ex-type <strong>of</strong> Cephalosporium roseum var. breve<br />

<strong>Acremonium</strong> brunnescens T <strong>CBS</strong> 559.73 hQ231966 hQ232184 Ex-type <strong>of</strong> <strong>Acremonium</strong> brunnescens<br />

<strong>Acremonium</strong> butyri T <strong>CBS</strong> 301.38 hQ231967 – Ex-type <strong>of</strong> Tilachlidium butyri; synonym <strong>of</strong> Cadophora malorum<br />

<strong>Acremonium</strong> camptosporum T <strong>CBS</strong> 756.69 hQ232008 hQ232186 Ex-type <strong>of</strong> <strong>Acremonium</strong> camptosporum<br />

<strong>CBS</strong> 677.74 hQ232007<br />

<strong>CBS</strong> 757.69 hQ232009<br />

<strong>CBS</strong> 835.91 hQ232010<br />

<strong>CBS</strong> 890.85 hQ232011<br />

<strong>Acremonium</strong> cavaraeanum <strong>CBS</strong> 758.69 hQ232012<br />

<strong>Acremonium</strong> cerealis <strong>CBS</strong> 207.65 hQ232013 Ex-type <strong>of</strong> Gliomastix guttuliformis<br />

<strong>CBS</strong> 215.69 hQ232014<br />

<strong>Acremonium</strong> chrysogenum T <strong>CBS</strong> 144.62 hQ232017 hQ232187 Ex-type <strong>of</strong> Cephalosporium chrysogenum<br />

<strong>Acremonium</strong> cucurbitacearum <strong>CBS</strong> 683.88 hQ231968 – Previously identified as <strong>Acremonium</strong> strictum<br />

<strong>Acremonium</strong> curvulum T <strong>CBS</strong> 430.66 hQ232026 hQ232188 Ex-type <strong>of</strong> <strong>Acremonium</strong> curvulum<br />

<strong>CBS</strong> 104.78 hQ232019<br />

<strong>CBS</strong> 214.70 hQ232020<br />

<strong>CBS</strong> 229.75 hQ232021<br />

<strong>CBS</strong> 333.92 hQ232022<br />

<strong>CBS</strong> 384.70A hQ232023<br />

<strong>CBS</strong> 384.70C hQ232024<br />

<strong>CBS</strong> 523.72 hQ232028<br />

<strong>CBS</strong> 761.69 hQ232029<br />

<strong>CBS</strong> 898.85 hQ232030<br />

<strong>CBS</strong> 110514 hQ232032<br />

“<strong>Acremonium</strong> aff. curvulum” <strong>CBS</strong> 100551 hQ232031<br />

<strong>CBS</strong> 113275 hQ232033<br />

<strong>Acremonium</strong> egyptiacum <strong>CBS</strong> 303.64 hQ232034 hQ232189<br />

<strong>Acremonium</strong> exiguum T <strong>CBS</strong> 587.73 hQ232035 hQ232190 Ex-type <strong>of</strong> <strong>Acremonium</strong> exiguum<br />

<strong>Acremonium</strong> exuviarum T UAMH 9995 hQ232036<br />

<strong>Acremonium</strong> flavum T <strong>CBS</strong> 596.70 hQ232037 hQ232191 Ex-type <strong>of</strong> <strong>Acremonium</strong> flavum<br />

<strong>Acremonium</strong> fuci UAMH 6508 hQ232038<br />

<strong>Acremonium</strong> furcatum T <strong>CBS</strong> 122.42 AY378154 hQ232192 Ex-type <strong>of</strong> <strong>Acremonium</strong> furcatum<br />

144


Table 1. (Continued).<br />

www.studiesinmycology.org<br />

acremonium phylogeny<br />

Currently assigned species name Collection numbers nuclsU nucssU Notes<br />

<strong>Acremonium</strong> fusidioides T <strong>CBS</strong> 840.68 hQ232039 Ex-type <strong>of</strong> Paecilomyces fusidioides<br />

<strong>Acremonium</strong> gamsii T <strong>CBS</strong> 726.71 hQ232040 hQ232193 Ex-type <strong>of</strong> <strong>Acremonium</strong> gamsii<br />

<strong>Acremonium</strong> guillematii T <strong>CBS</strong> 766.69 hQ232042 hQ232194 Ex-type <strong>of</strong> <strong>Acremonium</strong> guillematii<br />

<strong>Acremonium</strong> hansfordii <strong>CBS</strong> 390.73 hQ232043<br />

<strong>Acremonium</strong> hennebertii T <strong>CBS</strong> 768.69 hQ232044 Ex-type <strong>of</strong> <strong>Acremonium</strong> hennebertii<br />

<strong>Acremonium</strong> hyalinulum <strong>CBS</strong> 271.36 hQ232045 hQ232195<br />

“<strong>Acremonium</strong> implicatum” <strong>CBS</strong> 243.59 hQ232046 hQ232196 Authentic strain <strong>of</strong> Fusarium terricola<br />

<strong>CBS</strong> 397.70B hQ232047<br />

<strong>Acremonium</strong> incrustatumT <strong>CBS</strong> 159.70 hQ232049<br />

<strong>Acremonium</strong> inflatum T <strong>CBS</strong> 212.69 hQ232050 Ex-type <strong>of</strong> Gliomastix inflata<br />

<strong>CBS</strong> 439.70 hQ232051<br />

<strong>CBS</strong> 403.70 hQ231991 In <strong>CBS</strong> as <strong>Acremonium</strong> atrogriseum<br />

<strong>Acremonium</strong> lichenicola T <strong>CBS</strong> 425.66 hQ231969 – Ex-type <strong>of</strong> <strong>Acremonium</strong> lichenicola<br />

<strong>Acremonium</strong> longisporum <strong>CBS</strong> 113.69 hQ232057<br />

“<strong>Acremonium</strong> luzulae” <strong>CBS</strong> 495.67 hQ232058<br />

<strong>CBS</strong> 579.73 hQ232059<br />

<strong>Acremonium</strong> minutisporum T <strong>CBS</strong> 147.62 hQ232061 hQ232199 Ex-type <strong>of</strong> Cephalosporium minutisporum<br />

det 267B hQ232062<br />

<strong>Acremonium</strong> nepalense T <strong>CBS</strong> 971.72 hQ231970 – Ex-type <strong>of</strong> <strong>Acremonium</strong> nepalense<br />

<strong>Acremonium</strong> nigrosclerotium T <strong>CBS</strong> 154.72 hQ232069 hQ232200 Ex-type <strong>of</strong> <strong>Acremonium</strong> nigrosclerotium<br />

<strong>Acremonium</strong> persicinum T <strong>CBS</strong> 310.59 hQ232077 hQ232201 Ex-type <strong>of</strong> Paecilomyces persicinus<br />

<strong>CBS</strong> 169.65 hQ232072<br />

<strong>CBS</strong> 295.70A hQ232075<br />

<strong>CBS</strong> 295.70M hQ232076<br />

<strong>CBS</strong> 330.80 hQ232078<br />

<strong>CBS</strong> 378.70A hQ232079<br />

<strong>CBS</strong> 378.70D hQ232081<br />

<strong>CBS</strong> 378.70 E hQ232082<br />

<strong>CBS</strong> 439.66 hQ232083<br />

<strong>CBS</strong> 469.67 hQ232084<br />

<strong>CBS</strong> 101694 hQ232085<br />

<strong>CBS</strong> 102349 hQ232086<br />

“<strong>Acremonium</strong> persicinum” <strong>CBS</strong> 378.70C hQ232080<br />

<strong>CBS</strong> 110646 hQ232088<br />

“<strong>Acremonium</strong> aff. persicinum” <strong>CBS</strong> 203.73 hQ232073<br />

<strong>CBS</strong> 263.89 hQ232074<br />

“<strong>Acremonium</strong> cf. persicinum” <strong>CBS</strong> 102877 hQ232087<br />

<strong>Acremonium</strong> pinkertoniae T <strong>CBS</strong> 157.70 hQ232089 hQ232202 Ex-type <strong>of</strong> <strong>Acremonium</strong> pinkertoniae<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 189.70 hQ232094<br />

<strong>CBS</strong> 379.70F hQ232096<br />

<strong>CBS</strong> 416.68 hQ232097 hQ232203<br />

<strong>CBS</strong> 433.88 hQ232098<br />

<strong>CBS</strong> 781.69 hQ232099<br />

<strong>Acremonium</strong> psammosporum T <strong>CBS</strong> 590.63 hQ232100 hQ232204 Ex-type <strong>of</strong> <strong>Acremonium</strong> psammosporum<br />

<strong>Acremonium</strong> pseudozeylanicum T <strong>CBS</strong> 560.73 hQ232101 Ex-type <strong>of</strong> <strong>Acremonium</strong> pseudozeylanicum<br />

<strong>Acremonium</strong> pteridii T <strong>CBS</strong> 782.69 hQ232102 Ex-type <strong>of</strong> <strong>Acremonium</strong> pteridii<br />

<strong>CBS</strong> 784.69 hQ232103<br />

<strong>Acremonium</strong> radiatum T <strong>CBS</strong> 142.62 hQ232104 hQ232205 Ex-type <strong>of</strong> Cephalosporium acremonium var. radiatum<br />

<strong>Acremonium</strong> recifei T <strong>CBS</strong> 137.35 hQ232106 hQ232206 Ex-type <strong>of</strong> Cephalosporium recifei<br />

<strong>CBS</strong> 135.71 hQ232105<br />

<strong>CBS</strong> 220.84 hQ232107<br />

<strong>CBS</strong> 362.76 hQ232108<br />

<strong>CBS</strong> 402.89 hQ232109<br />

<strong>CBS</strong> 411.91 hQ232110<br />

<strong>CBS</strong> 442.66 hQ232111<br />

<strong>CBS</strong> 541.89 hQ232114<br />

<strong>CBS</strong> 555.73 hQ232115<br />

<strong>CBS</strong> 596.74 hQ232116<br />

<strong>CBS</strong> 976.70 hQ232117<br />

<strong>CBS</strong> 400.85 hQ232025 In <strong>CBS</strong> as <strong>Acremonium</strong> curvulum<br />

<strong>CBS</strong> 505.94 hQ232027 In <strong>CBS</strong> as <strong>Acremonium</strong> cf. curvulum<br />

“<strong>Acremonium</strong> recifei” <strong>CBS</strong> 485.77 hQ232113<br />

<strong>CBS</strong> 482.78 hQ232112<br />

145


SuMMerbell et al.<br />

Table 1. (Continued).<br />

Currently assigned species name Collection numbers nuclsU nucssU Notes<br />

<strong>CBS</strong> 110348 hQ232118<br />

<strong>Acremonium</strong> restrictum T <strong>CBS</strong> 178.40 hQ232119 – Ex-type <strong>of</strong> Verticillium dahliae f. restrictum<br />

<strong>Acremonium</strong> rhabdosporum T <strong>CBS</strong> 438.66 hQ232120 Ex-type <strong>of</strong> <strong>Acremonium</strong> rhabdosporum<br />

<strong>Acremonium</strong> roseolum T <strong>CBS</strong> 289.62 hQ232123 hQ232207 Ex-type <strong>of</strong> Paecilomyces roseolus<br />

<strong>Acremonium</strong> rutilum T <strong>CBS</strong> 396.66 hQ232124 hQ232208 Ex-type <strong>of</strong> <strong>Acremonium</strong> rutilum<br />

<strong>Acremonium</strong> salmoneum T <strong>CBS</strong> 721.71 hQ232125 Ex-type <strong>of</strong> <strong>Acremonium</strong> salmoneum<br />

<strong>Acremonium</strong> sclerotigenum T <strong>CBS</strong> 124.42 hQ232126 hQ232209 Ex-type <strong>of</strong> Cephalosporium sclerotigenum<br />

<strong>CBS</strong> 270.86 hQ232127<br />

<strong>CBS</strong> 281.80 hQ232128<br />

<strong>CBS</strong> 384.65 hQ232129<br />

<strong>CBS</strong> 786.69 hQ232130<br />

<strong>CBS</strong> 100816 hQ232131<br />

OMH F1648.97 hQ232132<br />

OMH F2365.97 hQ232133<br />

OMH F2969.97 hQ232134<br />

OMH F3691.97 hQ232135<br />

<strong>CBS</strong> 287.70O hQ232140 In <strong>CBS</strong> as <strong>Acremonium</strong> strictum<br />

<strong>CBS</strong> 379.70D hQ232095 In <strong>CBS</strong> as <strong>Acremonium</strong> potronii<br />

<strong>CBS</strong> 223.70 hQ231985 In <strong>CBS</strong> as <strong>Acremonium</strong> alternatum<br />

<strong>Acremonium</strong> sordidulum T <strong>CBS</strong> 385.73 hQ232136 Ex-type <strong>of</strong> <strong>Acremonium</strong> sordidulum<br />

<strong>Acremonium</strong> sp. <strong>CBS</strong> 314.72 hQ232156<br />

<strong>Acremonium</strong> spinosum T <strong>CBS</strong> 136.33 hQ232137 hQ232210 Ex-type <strong>of</strong> Cephalosporium spinosum<br />

“<strong>Acremonium</strong> strictum” <strong>CBS</strong> 106.23 hQ232138<br />

<strong>CBS</strong> 147.49 hQ232139<br />

<strong>Acremonium</strong> stromaticum T <strong>CBS</strong> 863.73 hQ232143 – Ex-type <strong>of</strong> <strong>Acremonium</strong> stromaticum<br />

<strong>Acremonium</strong> tectonae T <strong>CBS</strong> 725.87 hQ232144 Ex-type <strong>of</strong> <strong>Acremonium</strong> tectonae<br />

<strong>Acremonium</strong> thermophilum T <strong>CBS</strong> 734.71 hQ232145 – Ex-type <strong>of</strong> <strong>Acremonium</strong> thermophilum<br />

<strong>Acremonium</strong> tsugae T <strong>CBS</strong> 788.69 hQ232146 Ex-type <strong>of</strong> <strong>Acremonium</strong> tsugae<br />

<strong>Acremonium</strong> tubakii T <strong>CBS</strong> 790.69 hQ232148 Ex-type <strong>of</strong> <strong>Acremonium</strong> tubakii<br />

“<strong>Acremonium</strong> tubakii” <strong>CBS</strong> 824.69 hQ232149<br />

<strong>Acremonium</strong> verruculosum T <strong>CBS</strong> 989.69 hQ232150 Ex-type <strong>of</strong> <strong>Acremonium</strong> verruculosum<br />

<strong>Acremonium</strong> vitellinum T <strong>CBS</strong> 792.69 hQ232151 hQ232212 Ex-type <strong>of</strong> <strong>Acremonium</strong> vitellinum<br />

<strong>Acremonium</strong> zeylanicum <strong>CBS</strong> 746.73 hQ232154<br />

<strong>Acremonium</strong> zonatum <strong>CBS</strong> 565.67 hQ232155<br />

“Cephalosporium acremonium var. cereum” T <strong>CBS</strong> 140.62 hQ232147 Ex-type <strong>of</strong> Cephalosporium acremonium var. cereum. In <strong>CBS</strong> as<br />

<strong>Acremonium</strong> tubakii<br />

“Cephalosporium acremonium var. <strong>CBS</strong> 141.62 hQ232053 Ex-type <strong>of</strong> Cephalosporium acremonium var. funiculosum. In <strong>CBS</strong><br />

funiculosum” T<br />

as <strong>Acremonium</strong> kiliense<br />

“Cephalosporium ballagii” T <strong>CBS</strong> 134.33 hQ232016 Ex-type <strong>of</strong> Cephalosporium ballagii. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

charticola<br />

“Cephalosporium malorum” T <strong>CBS</strong> 117.25 hQ232015 Ex-type <strong>of</strong> Cephalosporium malorum. In <strong>CBS</strong> as <strong>Acremonium</strong> charticola<br />

“Cephalosporium purpurascens” T <strong>CBS</strong> 149.62 hQ232071 Ex-type <strong>of</strong> Cephalosporium purpurascens. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

persicinum<br />

Cosmospora kh<strong>and</strong>alensis T <strong>CBS</strong> 356.65 hQ231996 Ex-type <strong>of</strong> Cephalosporium kh<strong>and</strong>alense. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

berkeleyanum<br />

Cosmospora lavitskiaeT <strong>CBS</strong> 530.68 hQ231997 Ex-type <strong>of</strong> Gliomastix lavitskiae. In <strong>CBS</strong> as <strong>Acremonium</strong> berkeleyanum<br />

Gliomastix masseei <strong>CBS</strong> 794.69 hQ232060 In <strong>CBS</strong> as <strong>Acremonium</strong> masseei<br />

Gliomastix murorum <strong>CBS</strong> 154.25 hQ232063 Ex-type <strong>of</strong> Graphium malorum. In <strong>CBS</strong> as <strong>Acremonium</strong> murorum<br />

var. felina<br />

<strong>CBS</strong> 195.70 hQ232064 In <strong>CBS</strong> as <strong>Acremonium</strong> murorum var. felina<br />

<strong>CBS</strong> 119.67 hQ232066 In <strong>CBS</strong> as <strong>Acremonium</strong> murorum var. murorum<br />

<strong>CBS</strong> 157.72 hQ232067 In <strong>CBS</strong> as <strong>Acremonium</strong> murorum var. murorum<br />

<strong>CBS</strong> 378.36 hQ232068 Ex-type <strong>of</strong> Torula cephalosporioides. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

murorum var. murorum<br />

Gliomastix polychroma T <strong>CBS</strong> 181.27 hQ232091 Ex-type <strong>of</strong> Oospora polychroma. In <strong>CBS</strong> as <strong>Acremonium</strong> polychromum<br />

<strong>CBS</strong> 151.26 hQ232090 Ex-type <strong>of</strong> Periconia tenuissima var. nigra. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

polychromum<br />

<strong>CBS</strong> 617.94 hQ232093 In <strong>CBS</strong> as <strong>Acremonium</strong> polychromum<br />

Gliomastix roseogrisea T <strong>CBS</strong> 134.56 hQ232121 Ex-type <strong>of</strong> Cephalosporium roseogriseum. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

roseogriseum<br />

<strong>CBS</strong> 279.79 hQ232122 In <strong>CBS</strong> as <strong>Acremonium</strong> roseogriseum<br />

<strong>CBS</strong> 213.69 hQ232092 In <strong>CBS</strong> as <strong>Acremonium</strong> polychromum<br />

CCFC 226570 AY283559 Identified as <strong>Acremonium</strong> murorum var. felina<br />

<strong>CBS</strong> 211.69 hQ232065 In <strong>CBS</strong> as <strong>Acremonium</strong> murorum var. felina<br />

Lanatonectria flavolanata <strong>CBS</strong> 230.31 hQ232157<br />

146


www.studiesinmycology.org<br />

acremonium phylogeny<br />

Table 1. (Continued).<br />

Currently assigned species name Collection numbers nuclsU nucssU Notes<br />

Lanatonectria flocculenta <strong>CBS</strong> 113461 hQ232158<br />

Leucosphaerina arxii T <strong>CBS</strong> 737.84 hQ232159 Ex-type <strong>of</strong> Leucosphaerina arxii<br />

Nalanthamala diospyri T <strong>CBS</strong> 560.89 hQ232160 Ex-type <strong>of</strong> Cephalosporium diospyri = <strong>Acremonium</strong> diospyri<br />

Nectria rishbethii T <strong>CBS</strong> 496.67 hQ232162 Ex-type <strong>of</strong> Nectria rishbethii<br />

Neocosmospora endophytica AR 2674 U17411 Anamorph is <strong>Acremonium</strong> fungicola<br />

Paecilomyces lilacinus <strong>CBS</strong> 101068 hQ232163 hQ232214 Atypical monophialidic isolate, <strong>Acremonium</strong>+E402-like<br />

Pochonia bulbillosa <strong>CBS</strong> 102853 hQ232164 Atypical isolate<br />

Sarcopodium circinatum <strong>CBS</strong> 376.81 hQ232167<br />

<strong>CBS</strong> 587.92 hQ232168<br />

<strong>CBS</strong> 114068 hQ232169<br />

Sarcopodium circinosetiferum <strong>CBS</strong> 100251 hQ232170<br />

<strong>CBS</strong> 100252 hQ232171<br />

<strong>CBS</strong> 100998 hQ232172<br />

<strong>CBS</strong> 101116 hQ232173<br />

Sarcopodium vanillae <strong>CBS</strong> 100582 hQ232174<br />

Sarocladium attenuatum T <strong>CBS</strong> 399.73 hQ232165 Ex-type <strong>of</strong> Sarocladium attenuatum<br />

Sarocladium bacillisporum T <strong>CBS</strong> 425.67 hQ231992 hQ232179 Ex-type <strong>of</strong> <strong>Acremonium</strong> bacillisporum<br />

Sarocladium bactrocephalum T <strong>CBS</strong> 749.69 hQ231994 hQ232180 Ex-type <strong>of</strong> <strong>Acremonium</strong> bactrocephalum<br />

NRRL 20583 hQ231995<br />

Sarocladium glaucum T <strong>CBS</strong> 796.69 hQ232041 Ex-type <strong>of</strong> <strong>Acremonium</strong> glaucum<br />

Sarocladium kiliense T <strong>CBS</strong> 122.29 hQ232052 hQ232198 Ex-type <strong>of</strong> <strong>Acremonium</strong> kiliense<br />

<strong>CBS</strong> 146.62 hQ232048 hQ232197 Ex-type <strong>of</strong> Cephalosporium incoloratum. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

incoloratum<br />

<strong>CBS</strong> 155.61 hQ232054 Ex-type <strong>of</strong> Cephalosporium incarnatum. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

kiliense<br />

<strong>CBS</strong> 156.61 hQ232055 Ex-type <strong>of</strong> Cephalosporium incarnatum var. macrospora. In <strong>CBS</strong> as<br />

<strong>Acremonium</strong> kiliense<br />

<strong>CBS</strong> 157.61 hQ232056 Ex-type <strong>of</strong> Cephalosporium infestans.In <strong>CBS</strong> as <strong>Acremonium</strong> kiliense<br />

Sarocladium ochraceum T <strong>CBS</strong> 428.67 hQ232070 Ex-type <strong>of</strong> Paecilomyces ochraceus. In <strong>CBS</strong> as <strong>Acremonium</strong> ochraceum<br />

Sarocladium oryzae <strong>CBS</strong> 180.74 hQ232166<br />

Sarocladium strictum T <strong>CBS</strong> 346.70 hQ232141 hQ232211 Ex-type <strong>of</strong> <strong>Acremonium</strong> strictum<br />

“Sarocladium cf. strictum” JY03-006 hQ232142<br />

Sarocladium zeae T <strong>CBS</strong> 801.69 hQ232152 hQ232213 Ex-type <strong>of</strong> <strong>Acremonium</strong> zeae<br />

KAS 965 hQ232153<br />

Simplicillium lanosoniveum <strong>CBS</strong> 321.72 hQ232006 hQ232185 Ex-type <strong>of</strong> <strong>Acremonium</strong> byssoides<br />

Simplicillium obclavatum T <strong>CBS</strong> 311.74 hQ232175 Ex-type <strong>of</strong> <strong>Acremonium</strong> obclavatum<br />

Trichothecium crotocinigenum T <strong>CBS</strong> 129.64 hQ232018 Ex-type <strong>of</strong> <strong>Acremonium</strong> crotocinigenum<br />

“Trichothecium<br />

indicaT<br />

indicum”/ Leucosphaerina <strong>CBS</strong> 123.78 AF096194 Ex-type <strong>of</strong> ‘Leucosphaera’ indica<br />

Trichothecium roseum DAOM 208997 U69891<br />

Trichothecium sympodiale ATCC 36477 U69889 In <strong>CBS</strong> as Spicellum roseum<br />

Verticillium alboatrum <strong>CBS</strong> 130.51 hQ231976 – Ex-type <strong>of</strong> Cephalosporium apii, in <strong>CBS</strong> as <strong>Acremonium</strong> apii<br />

Verticillium insectorum <strong>CBS</strong> 101239 hQ248107<br />

Verticillium leptobactrum <strong>CBS</strong> 109351 hQ231993 In <strong>CBS</strong> as <strong>Acremonium</strong> cf. bacillisporum<br />

Nine <strong>of</strong> the named <strong>Acremonium</strong> species in this analysis belong to<br />

the Plectosphaerellaceae. The Sordariales are represented in Fig.<br />

1 only by <strong>Acremonium</strong> alabamense, the only named <strong>Acremonium</strong><br />

species in <strong>Acremonium</strong> section Chaetomioidea. Outside these<br />

groups <strong>Acremonium</strong> atrogriseum, represented by numerous<br />

conspecific isolates, belongs to the family Cephalothecaceae (Fig.<br />

1C), along with Albertiniella polyporicola <strong>and</strong> Cephalotheca sulfurea;<br />

this family is sister to the Coniochaetales. Another <strong>Acremonium</strong><br />

species, A. thermophilum, falls into the Cephalothecaceae clade<br />

grouping with Albertiniella polyporicola. An isolate provisionally<br />

identified as <strong>Acremonium</strong> alternatum, <strong>CBS</strong> 109043 is a member<br />

<strong>of</strong> the Cephalothecaceae. The complex status <strong>of</strong> A. alternatum is<br />

discussed below.<br />

The <strong>Acremonium</strong> species in the Hypocreales form an array <strong>of</strong><br />

poorly to well distinguished clades, most <strong>of</strong> which do not correspond<br />

to previously recognised genera or suprageneric taxa. Included within<br />

the Hypocreales in the Sarocladium clade labeled the "strictum-clade"<br />

is the well known soil fungus long known as <strong>Acremonium</strong> strictum (Fig.<br />

1A). The soil fungus <strong>and</strong> human opportunistic pathogen traditionally<br />

called A. kiliense is also included as is the maize corn endophyte<br />

known as A. zeae. The corresponding clade in Fig. 2C based on<br />

LSU reveals that this group <strong>of</strong> fungi includes the rice pathogen<br />

Sarocladium oryzae as a saltatory morphological apomorph. No<br />

teleomorphs are known to be associated with this group. This<br />

clade consists <strong>of</strong> fungi forming conidia in mucoid heads; it is closely<br />

related to a clade <strong>of</strong> species forming catenulate conidia, namely<br />

the <strong>Acremonium</strong> bacillisporum clade including A. bacillisporum, A.<br />

glaucum, A. implicatum pro parte, <strong>and</strong>, in a separate subclade, A.<br />

ochraceum (Figs 1A, 2C). The "bacillisporum-clade" <strong>and</strong> "strictumclade"<br />

grouped together in an overall Sarocladium clade (Figs 1,<br />

2). Two catenulate-conidial isolates labeled A. alternatum are also<br />

loosely associated with the A. bacillisporum clade in Fig. 2C. In Fig.<br />

1A, one isolate <strong>CBS</strong> 406.66 is connected to the Sarocladium <strong>and</strong> A.<br />

breve/curvulum clades with a 96 % bootstrap value.<br />

147


SuMMerbell et al.<br />

148<br />

85<br />

94<br />

75 <strong>Acremonium</strong> acutatum <strong>CBS</strong> 682.71 T<br />

“Cephalosporium acremonium var. cereum” <strong>CBS</strong> 140.62 T<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 223.70<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 379.70D<br />

<strong>Acremonium</strong> sclerotigenum OMH F2365.97<br />

<strong>Acremonium</strong> sclerotigenum OMH F2969.97<br />

<strong>Acremonium</strong> sclerotigenum OMH F1648.97<br />

<strong>Acremonium</strong> sclerotigenum OMH F3691.97<br />

Mycopepon smithii<br />

Pseudonectria sp.<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 100816<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 287.70O<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 384.65<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 281.80<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 270.86<br />

89 <strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 124.42 T<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 786.69<br />

<strong>Acremonium</strong> alternatum <strong>CBS</strong> 407.66 T<br />

“Cephalosporium malorum” <strong>CBS</strong> 117.25 T<br />

<strong>Acremonium</strong> sordidulum <strong>CBS</strong> 385.73 T<br />

<strong>Acremonium</strong> brachypenium <strong>CBS</strong> 866.73 T<br />

“Cephalosporium purpurascens” <strong>CBS</strong> 149.62 T<br />

83<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 189.70<br />

<strong>Acremonium</strong> exuviarum UAMH 9995 T<br />

“<strong>Acremonium</strong> tubakii” <strong>CBS</strong> 824.69<br />

79<br />

Emericellopsis terricola<br />

<strong>Acremonium</strong> fuci UAMH 6508<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 379.70F<br />

99<br />

<strong>Acremonium</strong> salmoneum <strong>CBS</strong> 721.71 T<br />

93 Stilbella fimetaria<br />

<strong>Acremonium</strong> tubakii <strong>CBS</strong> 790.69 T<br />

Stanjemonium grisellum<br />

<strong>Acremonium</strong> chrysogenum <strong>CBS</strong> 144.62 T<br />

90 <strong>Acremonium</strong> flavum <strong>CBS</strong> 596.70 T<br />

71 Hapsidospora irregularis<br />

74<br />

Nigrosabulum globosum<br />

Mycoarachis inversa<br />

Geosmithia lavendula<br />

Geosmithia putterillii<br />

“<strong>Acremonium</strong> blochii” <strong>CBS</strong> 993.69<br />

96<br />

99 <strong>Acremonium</strong> borodinense <strong>CBS</strong> 101148 T<br />

<strong>Acremonium</strong> pinkertoniae <strong>CBS</strong> 157.70 T<br />

Bulbithecium hyalosporum<br />

Leucosphaerina arxii T<br />

pinkertoniae<br />

-clade<br />

“<strong>Acremonium</strong> cf. persicinum” <strong>CBS</strong> 102877<br />

85 “<strong>Acremonium</strong> alternatum” <strong>CBS</strong> 381.70A<br />

“<strong>Acremonium</strong> alternatum” <strong>CBS</strong> 831.97<br />

“<strong>Acremonium</strong> cavaraeanum” <strong>CBS</strong> 758.69 fusidioides<br />

<strong>Acremonium</strong> hennebertii <strong>CBS</strong> 768.69 T<br />

<strong>Acremonium</strong> fusidioides <strong>CBS</strong> 840.68 T<br />

“<strong>Acremonium</strong> hansfordii” <strong>CBS</strong> 390.73<br />

“<strong>Acremonium</strong> egyptiacum” <strong>CBS</strong> 303.64<br />

-clade<br />

96<br />

99 “<strong>Acremonium</strong> blochii” <strong>CBS</strong> 427.93<br />

“<strong>Acremonium</strong> blochii” <strong>CBS</strong> 324.33<br />

Verticillium insectorum<br />

“<strong>Acremonium</strong> zeylanicum” <strong>CBS</strong> 746.73<br />

Stilbocrea macrostoma<br />

sclerotigenum<br />

-clade<br />

brachypenium<br />

-clade<br />

Emericellopsis<br />

-clade<br />

chrysogenum<br />

-clade<br />

Fig. 2.A–E. The <strong>phylogenetic</strong> position <strong>of</strong> <strong>Acremonium</strong> <strong>and</strong> related fungi within the Hypocreales, as seen in nucLSU analysed by maximum likelihood via RAxML VI-HPC<br />

following a GTRMIX model applied to a single partition. 100 % bootstrap values are indicated by a black dot on the relevant internode.<br />

sclerotigenum/Geosmithia-clade<br />

A


Fig. 2. (Continued).<br />

www.studiesinmycology.org<br />

86<br />

78<br />

85<br />

<strong>Acremonium</strong> biseptum <strong>CBS</strong> 750.69<br />

<strong>Acremonium</strong> cerealis <strong>CBS</strong> 207.65<br />

<strong>Acremonium</strong> cerealis <strong>CBS</strong> 215.69<br />

93<br />

cerealis<br />

-clade<br />

“<strong>Acremonium</strong> blochii” <strong>CBS</strong> 424.93<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 378.70E<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 378.70D<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 378.70A<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 102349<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 169.65<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 295.70M<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 295.70A<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 439.66<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 101694<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 469.67<br />

91<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 330.80<br />

<strong>Acremonium</strong> verruculosum <strong>CBS</strong> 989.69 T<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 310.59 T<br />

Hydropisphaera erubescens 2<br />

Hydropisphaera erubescens 1<br />

Gliomastix masseei <strong>CBS</strong> 794.69 T<br />

Gliomastix murorum <strong>CBS</strong> 157.72<br />

Gliomastix murorum <strong>CBS</strong> 195.70<br />

Gliomastix murorum <strong>CBS</strong> 119.67<br />

80<br />

92<br />

Gliomastix murorum <strong>CBS</strong> 378.36<br />

Gliomastix murorum <strong>CBS</strong> 154.25<br />

98 Gliomastix polychroma <strong>CBS</strong> 151.26<br />

Gliomastix polychroma <strong>CBS</strong> 181.27 T<br />

Gliomastix polychroma <strong>CBS</strong> 617.94<br />

Gliomastix roseogrisea <strong>CBS</strong> 211.69<br />

Gliomastix roseogrisea <strong>CBS</strong> 213.69<br />

Gliomastix roseogrisea <strong>CBS</strong> 134.56 T<br />

99 Gliomastix roseogrisea <strong>CBS</strong> 279.79<br />

Gliomastix roseogrisea CCFC 226570<br />

Heleococcum japonicum<br />

99<br />

Hydropisphaera peziza 1<br />

89 Hydropisphaera peziza 2<br />

72 Roumegueriella rufula<br />

Selinia pulchra<br />

“<strong>Acremonium</strong> hyalinulum” <strong>CBS</strong> 271.36<br />

Nalanthamala squamicola<br />

“<strong>Acremonium</strong> aff. persicinum” <strong>CBS</strong> 203.73<br />

“<strong>Acremonium</strong> luzulae” <strong>CBS</strong> 495.67<br />

Nectria zonata<br />

<strong>Acremonium</strong> tectonae <strong>CBS</strong> 725.87 T<br />

“<strong>Acremonium</strong> longisporum” <strong>CBS</strong> 113.69<br />

“<strong>Acremonium</strong> persicinum” <strong>CBS</strong> 378.70C<br />

100 “<strong>Acremonium</strong> aff. persicinum” <strong>CBS</strong> 263.89<br />

<strong>Acremonium</strong> rutilum <strong>CBS</strong> 396.66 T<br />

<strong>Acremonium</strong> pteridii <strong>CBS</strong> 784.69<br />

100 <strong>Acremonium</strong> spinosum <strong>CBS</strong> 136.33 T<br />

<strong>Acremonium</strong> pteridii <strong>CBS</strong> 782.69 T<br />

Ochronectria calami<br />

93 Bionectria grammicospora<br />

Bionectria ochroleuca 2<br />

72 Nectria sesquicillii<br />

Bionectria pityrodes<br />

Stephanonectria keithii<br />

99<br />

Nectriopsis sporangiicola<br />

93 Nectriopsis violacea<br />

Sesquicillium microsporum<br />

Kallichroma glabrum<br />

Tilachlidium brachiatum<br />

T<br />

Gliomastix clade<br />

pteridii<br />

-clade<br />

persicinum<br />

-clade<br />

acremonium phylogeny<br />

Gliomastix/Bionectria-clade<br />

B<br />

149


SuMMerbell et al.<br />

93<br />

<strong>Acremonium</strong> incrustatum <strong>CBS</strong> 159.70 T<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 433.88<br />

Linkosia fusiformis<br />

<strong>Acremonium</strong> guillematii <strong>CBS</strong> 766.69 T<br />

“<strong>Acremonium</strong> persicinum” <strong>CBS</strong> 110646<br />

<strong>Acremonium</strong> sp. <strong>CBS</strong> 314.72<br />

<strong>Acremonium</strong> vitellinum <strong>CBS</strong> 792.69 T minutisporum<br />

100 <strong>Acremonium</strong> minutisporum <strong>CBS</strong> 147.62 T<br />

<strong>Acremonium</strong> minutisporum det 267B<br />

-clade<br />

100 “<strong>Acremonium</strong> alternatum” <strong>CBS</strong> 406.66<br />

“<strong>Acremonium</strong> alternatum” <strong>CBS</strong> 114602<br />

99 Sarocladium bacillisporum <strong>CBS</strong> 425.67 T<br />

77 “<strong>Acremonium</strong> implicatum” <strong>CBS</strong> 243.59<br />

Sarocladium glaucum <strong>CBS</strong> 796.69 T<br />

bacillisporum<br />

-clade<br />

94 Sarocladium bactrocephalum <strong>CBS</strong> 749.69 T<br />

Sarocladium bactrocephalum NRRL 20583<br />

84 Sarocladium cf. strictum JY03-006<br />

83 Sarocladium strictum <strong>CBS</strong> 346.70 T<br />

84 “<strong>Acremonium</strong> zonatum” <strong>CBS</strong> 565.67<br />

100 Sarocladium attenuatum T<br />

Sarocladium oryzae<br />

94 Sarocladium kiliense <strong>CBS</strong> 146.62<br />

Sarocladium kiliense <strong>CBS</strong> 122.29 T<br />

Sarocladium kiliense <strong>CBS</strong> 155.61<br />

Sarocladium kiliense <strong>CBS</strong> 157.61<br />

Sarocladium kiliense <strong>CBS</strong> 156.61<br />

Sarocladium zeae <strong>CBS</strong> 801.69 T<br />

98 Sarocladium zeae KAS 965<br />

Sarocladium ochraceum <strong>CBS</strong> 428.67 T<br />

strictum<br />

-clade<br />

Sarocladium<br />

-clade<br />

100<br />

<strong>Acremonium</strong> breve <strong>CBS</strong> 150.62 T<br />

76 <strong>Acremonium</strong> radiatum <strong>CBS</strong> 142.62 T<br />

91 “<strong>Acremonium</strong> strictum” <strong>CBS</strong> 147.49<br />

“Cephalosporium acremonium var. funiculosum” <strong>CBS</strong> 141.62<br />

<strong>Acremonium</strong> gamsii <strong>CBS</strong> 726.71 T<br />

T<br />

100<br />

83 Trichothecium crotocinigenum <strong>CBS</strong> 129.64 T<br />

“Trichothecium indicum”/Leucosphaerina indica T<br />

Trichothecium sympodiale<br />

73 Trichothecium roseum<br />

Trichothecium<br />

-clade<br />

74<br />

75<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 430.66 T<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 229.75<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 384.70A<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 898.85<br />

100 <strong>Acremonium</strong> curvulum <strong>CBS</strong> 761.69<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 333.92<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 214.70<br />

curvulum<br />

-clade<br />

95<br />

100<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 110514<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 384.70C<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 104.78<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 523.72<br />

98<br />

Valetoniellopsis laxa<br />

<strong>Acremonium</strong> rhabdosporum <strong>CBS</strong> 438.66 T<br />

Lanatonectria flavolanata 1<br />

Lanatonectria flavolanata 2<br />

Sarcopodium vanillae<br />

94 Sarcopodium circinatum 2<br />

Sarcopodium circinosetiferum 3 Lanatonectria<br />

82<br />

84<br />

Sarcopodium circinosetiferum 4<br />

Lanatonectria flocculenta<br />

Sarcopodium circinosetiferum 2<br />

Sarcopodium circinosetiferum 1<br />

Pseudonectria rousseliana<br />

-clade<br />

Fig. 2. (Continued).<br />

150<br />

breve<br />

-clade<br />

C


Fig. 2. (Continued).<br />

www.studiesinmycology.org<br />

100 <strong>Acremonium</strong> inflatum <strong>CBS</strong> 403.70<br />

99 <strong>Acremonium</strong> inflatum <strong>CBS</strong> 439.70<br />

76 <strong>Acremonium</strong> inflatum <strong>CBS</strong> 212.69<br />

100<br />

“<strong>Acremonium</strong> luzulae” <strong>CBS</strong> 579.73<br />

Scopinella solani<br />

<strong>Acremonium</strong> roseolum <strong>CBS</strong> 289.62<br />

Peethambara sundara<br />

Albosynnema elegans<br />

Didymostilbe echin<strong>of</strong>ibrosa<br />

Peethambara spirostriata<br />

Sarcopodium circinatum 3<br />

Sarcopodium circinatum 1<br />

Myrothecium cinctum<br />

Myrothecium inundatum<br />

Myrothecium roridum 1<br />

Myrothecium roridum 2<br />

Myrothecium leucotrichum<br />

Myrothecium verrucaria<br />

Parasarcopodium ceratocaryi<br />

Stachybotrys chartarum<br />

Chaetosphaeria aterrima<br />

96 Didymostilbe matsushimae<br />

Melanopsamma pomiformis<br />

80<br />

Cosmospora lavitskiae <strong>CBS</strong> 530.68<br />

Cosmospora episphaeria<br />

“<strong>Acremonium</strong> aff. curvulum” <strong>CBS</strong> 100551<br />

Cosmospora vilior<br />

Cosmospora kh<strong>and</strong>alensis <strong>CBS</strong> 356.65<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 400.85<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 976.70<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 411.91<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 596.74<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 505.94<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 220.84<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 555.73<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 362.76<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 137.35<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 135.71<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 541.89<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 402.89<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 442.66<br />

“<strong>Acremonium</strong> strictum” <strong>CBS</strong> 106.23<br />

Fusarium dimerum<br />

Fusarium domesticum<br />

Fusarium oxysporum 1<br />

Fusarium oxysporum 2<br />

Fusarium verticillioides<br />

Persiciospora africana<br />

Nectria rigidiuscula<br />

Fusarium falciforme<br />

Fusarium solani<br />

Fusarium lichenicola<br />

Neocosmospora endophytica<br />

<strong>Acremonium</strong> tsugae <strong>CBS</strong> 788.69<br />

Cylindrocarpon cylindroides<br />

Heliscus lugdunensis<br />

Calonectria morganii<br />

Nectria radicicola<br />

Leuconectria clusiae<br />

Dematiocladium celtidis<br />

Nectria cinnabarina<br />

“<strong>Acremonium</strong> recifei” <strong>CBS</strong> 485.77<br />

“<strong>Acremonium</strong> recifei” <strong>CBS</strong> 482.78<br />

“<strong>Acremonium</strong> recifei” <strong>CBS</strong> 110348<br />

Nalanthamala diospyri<br />

Nalanthamala guajavae<br />

Nalanthamala vermoesenii<br />

Rubrinectria olivacea<br />

‘Nectria’ rishbethii <strong>CBS</strong> 496.67<br />

<strong>Acremonium</strong> exiguum <strong>CBS</strong> 587.73<br />

“<strong>Acremonium</strong> implicatum” <strong>CBS</strong> 397.70B<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 416.68<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 781.69<br />

Nectriopsis squamulosa 1<br />

Nectriopsis squamulosa 2<br />

“Cephalosporium ballagii” <strong>CBS</strong> 134.33<br />

“<strong>Acremonium</strong> aff. curvulum” <strong>CBS</strong> 113275<br />

<strong>Acremonium</strong> pseudozeylanicum <strong>CBS</strong> 560.73<br />

Niesslia exilis 1<br />

<strong>Acremonium</strong> nigrosclerotium <strong>CBS</strong> 154.72<br />

Niesslia exilis 2<br />

76<br />

T<br />

T<br />

88<br />

98<br />

86<br />

78<br />

T<br />

86<br />

T<br />

88<br />

T<br />

89<br />

81<br />

100<br />

91<br />

99<br />

87<br />

70<br />

89<br />

T<br />

90<br />

T<br />

85 100<br />

96<br />

T<br />

T<br />

exiguum<br />

92<br />

93<br />

-clade<br />

100<br />

97<br />

T<br />

77<br />

T<br />

T<br />

inflatum<br />

-clade<br />

Stachybotrys/Peethambara<br />

-clade<br />

Cosmospora<br />

Fusarium<br />

-clade<br />

pseudozeylanicum<br />

-clade<br />

Nectriaceae/recifei-clade<br />

acremonium phylogeny<br />

D<br />

151


SuMMerbell et al.<br />

Fig. 2. (Continued).<br />

152<br />

97<br />

98<br />

80<br />

0.01 substitutions/site<br />

Cordyceps ramosipulvinata<br />

100<br />

Melanospora brevirostris<br />

83<br />

Bertia moriformis<br />

Phaeoacremonium aleophilum<br />

Ophiocordyceps bispora<br />

Elaphocordyceps longisegmentis<br />

Haptocillium sinense<br />

Haptocillium zeosporum<br />

99 Paecilomyces lilacinus 2<br />

Paecilomyces lilacinus 1<br />

82 Isaria takamizusanensis<br />

98<br />

99<br />

Chaunopycnis alba 1<br />

Chaunopycnis alba 2<br />

Chaunopycnis pustulata<br />

Tolypocladium inflatum<br />

Verticillium leptobactrum <strong>CBS</strong> 109351<br />

92 94 Simplicillium lanosoniveum <strong>CBS</strong> 321.72<br />

78 Simplicillium lanosoniveum<br />

98 Simplicillium obclavatum T<br />

91<br />

74<br />

Simplicillium lamellicola<br />

Beauveria bassiana<br />

Cordyceps militaris<br />

Pleurodesmospora coccorum<br />

Isaria javanica<br />

Syspastospora parasitica<br />

Hyperdermium bertonii<br />

Lecanicillium antillanum<br />

Lecanicillium aranearum<br />

Lecanicillium fusisporum<br />

Lecanicillium psalliotae 1<br />

Lecanicillium dimorphum<br />

Lecanicillium aff. psalliotae 2<br />

Lecanicillium lecanii<br />

Paecilomyces farinosus<br />

Lecanicillium attenuatum<br />

Epichloe typhina<br />

Pochonia bulbillosa 2<br />

Pochonia bulbillosa 1<br />

Pochonia gonioides<br />

Pochonia rubescens<br />

Metarhizium anisopliae var. frigidum<br />

Pochonia chlamydosporia var. catenulatum T<br />

95 Verticillium epiphytum 2<br />

Verticillium epiphytum 1<br />

Torrubiella pruinosa<br />

98 Torrubiella petchii<br />

Echinodothis tuberiformis<br />

Verticillium pseudohemipterigenum<br />

Ophionectria trichospora<br />

Torrubiella luteorostrata<br />

<strong>Acremonium</strong> camptosporum <strong>CBS</strong> 756.69 T<br />

<strong>Acremonium</strong> camptosporum <strong>CBS</strong> 835.91<br />

<strong>Acremonium</strong> camptosporum <strong>CBS</strong> 757.69<br />

<strong>Acremonium</strong> camptosporum <strong>CBS</strong> 677.74<br />

99 <strong>Acremonium</strong> camptosporum <strong>CBS</strong> 890.85<br />

Clypeosphaeria phillyreae<br />

Blistum tomentosum<br />

Neomunkia sydowii<br />

Hypocrea koningii<br />

Hypomyces chlorinigenus<br />

Sphaerostilbella aureonitens<br />

Sporophagomyces chrysostomus<br />

81 Cladobotryum rubrobrunnescens<br />

Hypomyces subiculosus<br />

Mycogone rosea<br />

Verticillium incurvum<br />

<strong>Acremonium</strong> psammosporum <strong>CBS</strong> 590.63 T<br />

Ceratocystis fimbriata<br />

Ophiostoma piluliferum 2<br />

Glomerella cingulata<br />

T<br />

T<br />

T<br />

T<br />

camptosporum<br />

-clade<br />

Ophiocordycipitaceae<br />

Cordycipitaceae<br />

Clavicipitaceae<br />

Hypocreaceae<br />

e


Another major hypocrealean <strong>Acremonium</strong> clade in Fig. 1A<br />

contains A. breve, A. radiatum, A. gamsii <strong>and</strong>, more distantly, with<br />

96 % bootstrap support, A. curvulum. In Fig. 2C where <strong>phylogenetic</strong><br />

signal is lower, A. curvulum loses its tight association with A. breve<br />

<strong>and</strong> its relatives <strong>and</strong> appears in unsupported juxtaposition with the<br />

genus Trichothecium <strong>and</strong> the corresponding teleomorph genus,<br />

Leucosphaerina. The clade containing Trichothecium roseum<br />

<strong>and</strong> Leucosphaerina indica (see taxonomic comments below)<br />

also contains two anamorph species that were long placed in<br />

different genera based on conidiogenesis, namely, <strong>Acremonium</strong><br />

crotocinigenum <strong>and</strong> Spicellum roseum, here recombined into<br />

Trichothecium.<br />

The next clade in Fig. 1A is a loosely structured assemblage<br />

consisting <strong>of</strong> members <strong>of</strong> <strong>Acremonium</strong> subgenus Gliomastix, some<br />

<strong>of</strong> which are delineated below as members <strong>of</strong> a <strong>phylogenetic</strong>ally<br />

delineated genus Gliomastix, plus the teleomorphic genera<br />

Bionectria, linked to the well known penicillate hyphomycete<br />

anamorph genus Clonostachys (Schroers 2001), Hydropisphaera,<br />

<strong>and</strong> Roumegueriella. As Fig. 2B shows in more detail, the type<br />

species <strong>of</strong> the genus Gliomastix, originally named Gliomastix<br />

chartarum but currently called G. murorum, is in a relatively<br />

well supported clade (92 % bootstrap support) along with G.<br />

masseei, G. polychroma, <strong>and</strong> G. roseogrisa, three other species<br />

with melanised conidia that were placed in <strong>Acremonium</strong> subg.<br />

Gliomastix by Gams (1971). Related to Gliomastix are two clades <strong>of</strong><br />

non-melanised <strong>Acremonium</strong> species placed in A. subg. Gliomastix,<br />

the A. persicinum clade, <strong>and</strong> A. pteridii clade. Smaller clades<br />

containing species in A. subg. Gliomastix such as A. biseptum, A.<br />

cerealis, A. luzulae, <strong>and</strong> A. rutilum (= A. roseum) are included in<br />

the large Gliomastix/Bionectria clade, which has 78 % bootstrap<br />

support. This clade includes additional teleomorphic fungi such as<br />

Heleococcum, Hydropisphaera, Nectriopsis, Ochronectria, Selinia,<br />

<strong>and</strong> Stephanonectria, along with the anamorph Sesquicillium<br />

microsporum.<br />

The Gliomastix/Bionectria clade, the sclerotigenum/Geosmithia<br />

clade, <strong>and</strong> other members <strong>of</strong> the Bionectriaceae form a weakly<br />

supported clade with 74 % bootstrap value as shown in Fig. 1A.<br />

Included in the sclerotigenum/Geosmithia clade is the penicillate<br />

anamorph genus Geosmithia sensu stricto <strong>and</strong> the ex-type isolates<br />

<strong>of</strong> <strong>Acremonium</strong> pinkertoniae <strong>and</strong> A. sclerotigenum as well as the<br />

cephalosporin-producer <strong>Acremonium</strong> chrysogenum <strong>and</strong> its close<br />

relative, the thermophilic A. flavum. It also includes non-type<br />

isolates identified as A. blochii <strong>and</strong> A. egyptiacum. In the LSU-tree<br />

(Fig. 2A) the sclerotigenum/Geosmithia clade includes an extensive<br />

group <strong>of</strong> <strong>Acremonium</strong> species <strong>and</strong> cleistothecial Bionectriaceae<br />

with <strong>Acremonium</strong>-like anamorphs, namely, Emericellopsis,<br />

Hapsidospora, Mycoarachis, <strong>and</strong> Nigrosabulum. Among the<br />

anamorphic species in this group are most <strong>of</strong> the <strong>phylogenetic</strong>ally<br />

disparate isolates identified as the type species <strong>of</strong> <strong>Acremonium</strong>,<br />

A. alternatum. One <strong>of</strong> these, <strong>CBS</strong> 407.66, is designated below<br />

as epitype <strong>of</strong> A. alternatum. Prominent subclades include the<br />

<strong>Acremonium</strong> sclerotigenum clade containing the ex-type isolates <strong>of</strong><br />

A. sclerotigenum <strong>and</strong> A. sordidulum.<br />

Another major, well supported bionectriaceous subclade<br />

associated with the sclerotigenum clade is the Emericellopsis<br />

clade (Fig. 2A). It includes the type species <strong>of</strong> the synnematal<br />

hyphomycete genus Stilbella, S. fimetaria (Seifert 1985) as<br />

well as the type <strong>of</strong> Stanjemonium (Gams et al. 1998) <strong>and</strong> the<br />

marine <strong>Acremonium</strong> tubakii sensu stricto <strong>and</strong> A. fuci (Zuccaro<br />

et al. 2004). Stilbella fimetaria is closely related to the ex-type<br />

isolate <strong>of</strong> <strong>Acremonium</strong> salmoneum isolated from dung, also a<br />

typical habitat for S. fimetaria (Seifert 1985). An adjacent weakly<br />

www.studiesinmycology.org<br />

acremonium phylogeny<br />

supported clade includes Hapsidospora, Mycoarachis, <strong>and</strong><br />

Nigrosabulum, <strong>and</strong> the two <strong>Acremonium</strong> species named for yellow<br />

pigmentation, A. chrysogenum <strong>and</strong> A. flavum. Although associated<br />

with A. chrysogenum <strong>and</strong> A. flavum in Fig. 1B, A. pinkertoniae<br />

<strong>and</strong> A. borodinense form a distinct clade in Fig. 2A along with an<br />

isolate included in the polyphyletic A. blochii (<strong>CBS</strong> 993.69), plus<br />

the cleistothecial teleomorphs Bulbithecium hyalosporum <strong>and</strong><br />

Leucosphaerina arxii, both <strong>of</strong> which have unnamed <strong>Acremonium</strong><br />

anamorphs. In Fig. 2A, the A. chrysogenum subclade appears<br />

to be distinct from the other clades containing A. sclerotigenum,<br />

Emericellopsis, <strong>and</strong> Geosmithia. The other clades within the overall<br />

sclerotigenum/Geosmithia clade include the A. fusidioides clade<br />

containing several acremonia forming similar conidial chains (A.<br />

cavaraeanum, A. fusidioides, A. hansfordii, A. hennebertii, one <strong>of</strong><br />

the isolates labeled A. alternatum). A small A. brachypenium clade<br />

associated with the A. sclerotigenum clade includes A. brachypenium<br />

plus the ex-type strain <strong>of</strong> Cephalosporium purpurascens placed<br />

by Gams (1971) in A. persicinum. There is also an isolate <strong>of</strong> the<br />

polyphyletic, untypified species A. potronii. Basal to these clades<br />

is another small clade that links an entomogenous isolate identified<br />

as Verticillium insectorum with two isolates from human sources<br />

identified as A. blochii; these conidial chain-forming isolates are<br />

sister to an isolate <strong>of</strong> the chain-forming entomogenous species<br />

<strong>Acremonium</strong> zeylanicum. The “A. blochii” isolate <strong>CBS</strong> 427.93,<br />

linked with a 99 % bootstrap value to A. pinkertoniae in Fig. 1B,<br />

is one <strong>of</strong> the two isolates associated with <strong>Acremonium</strong> zeylanicum<br />

in Fig. 2A.<br />

Adjacent <strong>and</strong> loosely linked to the bionectriaceous clades in<br />

Fig. 2B is a small clade in Fig. 2C containing the ex-type isolate <strong>of</strong><br />

<strong>Acremonium</strong> incrustatum plus an isolate labeled A. potronii, <strong>and</strong> a<br />

sequence attributed to Linkosia fusiformis, although this sequence<br />

most likely represents a contaminant.<br />

Below the sclerotigenum/Geosmithia clade in Fig. 1A <strong>and</strong><br />

above the Hypocreaceae in Fig. 2E fall clades representing<br />

the Clavicipitaceae sensu lato. These clades include the<br />

families Clavicipitaceae sensu stricto, Ophiocordycipitaceae,<br />

<strong>and</strong> Cordycipitaceae. Although many species in this group <strong>of</strong><br />

three families have <strong>Acremonium</strong>-like anamorphic states, only<br />

two described <strong>Acremonium</strong> species are associated here. In<br />

Fig. 2E A. camptosporum sits basally in a clade adjacent to the<br />

Clavicipitaceae <strong>and</strong> is close to the poorly understood teleomorphic<br />

species Clypeosphaeria phillyreae, assuming the latter is correctly<br />

associated with the sequence attributed to it. Simplicillium<br />

obclavatum, originally described as <strong>Acremonium</strong> obclavatum,<br />

provides the only other clavicipitaceous species in Fig. 2<br />

representing a named species <strong>of</strong> <strong>Acremonium</strong>.<br />

Below the Clavicipitaceaceae in Fig. 1B is a clade <strong>of</strong> ambiguous<br />

affinities containing <strong>Acremonium</strong> guillematii, A. minutisporum <strong>and</strong><br />

A. vitellinum. This group also appears as two to three unaffiliated<br />

clades in Fig. 2C. An insignificant branch in Fig. 1B subtends<br />

<strong>Acremonium</strong> exiguum, A. psammosporum, <strong>and</strong> an isolate identified<br />

as A. potronii. In Fig. 2D, just A. exiguum <strong>and</strong> the A. potronii entity<br />

remain associated while <strong>Acremonium</strong> psammosporum segregates<br />

into a basal hypocrealean clade <strong>of</strong> its own in Fig. 2E.<br />

The Nectriaceae is represented by Nectria cinnabarina in<br />

Fig. 1B along with the ex-type isolate <strong>of</strong> the tropical opportunistic<br />

pathogen <strong>of</strong> humans, <strong>Acremonium</strong> recifei. Fig. 2D shows A. recifei<br />

subtending multiple taxa with three non-type isolates splitting <strong>of</strong>f<br />

as a separate clade. These clades have approximately the same<br />

status in the Nectriaceae as the genus Nalanthamala, including N.<br />

diospyri, the former <strong>Acremonium</strong> diospyri. Another nectriaceous<br />

<strong>Acremonium</strong> in Fig. 2D is A. tsugae, which is closely related<br />

153


SuMMerbell et al.<br />

to Cylindrocarpon cylindroides. The broad morphotaxonomic<br />

concept <strong>of</strong> <strong>Acremonium</strong> berkeleyanum is polyphyletic consisting <strong>of</strong><br />

isolates placed in the nectriaceous genus Cosmospora (Fig. 2D).<br />

<strong>Acremonium</strong> berkeleyanum sensu lato is represented in Fig. 2D by<br />

the newly recombined Cosmospora species, C. lavitskiae <strong>and</strong> C.<br />

kh<strong>and</strong>alensis based on the ex-type isolates <strong>of</strong> Gliomastix lavitskiae<br />

<strong>and</strong> Cephalosporium kh<strong>and</strong>alense (Gräfenhan et al. 2011). Another<br />

purported synonym <strong>of</strong> A. berkeleyanum, a Cadophora isolate<br />

received as A. butyri <strong>CBS</strong> 301.38, falls outside the Hypocreales<br />

(Fig. 1C).<br />

Basally in the Hypocreales in Fig. 1B, <strong>Acremonium</strong> roseolum<br />

appears in loose association with Stachybotrys species. In Fig.<br />

2D, it appears in a clade along with the teleomorph Scopinella<br />

solani <strong>and</strong> three <strong>Acremonium</strong> inflatum isolates, including <strong>CBS</strong><br />

403.70, an atypical, catenate-conidial isolate identified at <strong>CBS</strong> as<br />

A. atrogriseum. Nearby but statistically unlinked clades include<br />

Stachybotrys <strong>and</strong> allied fungi such as Peethambara spirostriata<br />

<strong>and</strong> Didymostilbe echin<strong>of</strong>ibrosa (Castlebury et al. 2004).<br />

<strong>Acremonium</strong> nigrosclerotium represents an isolated<br />

<strong>Acremonium</strong> near the families Hypocreaceae <strong>and</strong> Niessliaceae<br />

(Fig. 1B). In Fig. 2D, A. nigrosclerotium is intercalated among<br />

two genotypes ascribed to N. exilis, <strong>and</strong> loosely associated (77<br />

% bootstrap) with <strong>Acremonium</strong> pseudozeylanicum <strong>and</strong> the type<br />

culture <strong>of</strong> Cephalosporium ballagii, currently in synonymy with<br />

<strong>Acremonium</strong> charticola (Gams 1971).<br />

A distant outlier is <strong>Acremonium</strong> lichenicola at the bottom <strong>of</strong> Fig.<br />

1C. This isolate, <strong>CBS</strong> 425.66, chosen to represent this species in<br />

lieu <strong>of</strong> ex-type material, blasts as a pezizalean fungus with affinities<br />

to another hyaline, phialidic fungus, Phialophora alba.<br />

A number <strong>of</strong> genera in addition to <strong>Acremonium</strong> were<br />

investigated for possible affinity with <strong>Acremonium</strong> clades as shown<br />

in Fig. 2. The sporodochial genus Sarcopodium was investigated<br />

<strong>and</strong> found to split into two groups (Fig. 2C, D). One isolate identified<br />

as S. circinatum grouped with Sarcopodium circinosetiferum <strong>and</strong><br />

S. vanillae in a widely separated clade along with Lanatonectria<br />

teleomorphs <strong>and</strong> a sequence identified as Pseudonectria<br />

rousseliana (Fig. 2C). This clade appeared in LSU sequencing to<br />

be independently situated within the Hypocreales. <strong>Acremonium</strong><br />

rhabdosporum appeared as a statistically unsupported, possible<br />

distant relative. The other two isolates <strong>of</strong> S. circinatum formed a<br />

clade near Myrothecium in the Stachybotrys/Peethambara clade<br />

(Fig. 2D). Also appearing in this clade was Parasarcopodium<br />

ceratocaryi, a monotypic genus recently described by Mel’nik et<br />

al. (2004).<br />

DIsCUssION<br />

The main morphotaxonomic groundwork for <strong>Acremonium</strong> as<br />

conceived in the late 20 th century was laid by Gams (1971)<br />

in his monograph Cephalosporium-artige Schimmelpilze<br />

(Hyphomycetes). This monograph was radically more<br />

comprehensive than previous treatments <strong>of</strong> the species <strong>and</strong> was<br />

followed by several key adjunct studies, including but not limited to<br />

Gams & Lacey (1972), Gams (1975), <strong>and</strong> Ito et al. (2000). Gams’<br />

studies were based on a meticulous morphological observation<br />

scheme that involved growing species on appropriate media, e.g.,<br />

oatmeal agar, <strong>and</strong> then making camera lucida drawings that could<br />

be directly compared with subsequent isolates. The comparison<br />

was done by superimposing the virtual image <strong>of</strong> the new isolate<br />

directly over the camera lucida drawings <strong>of</strong> previous isolates drawn<br />

154<br />

at the same scale. This highly rigorous approach was necessary<br />

for a group <strong>of</strong> hyphomycetous fungi so morphologically simplified<br />

as <strong>Acremonium</strong>.<br />

Gams (1971, 1975) also discovered a subtle character that<br />

allowed him to associate dark-conidial species, monographed<br />

by Dickinson (1968) as the genus Gliomastix, with numerous<br />

biologically related hyaline-conidial species. This character was<br />

"chondroid hyphae," which could be seen under the microscope as<br />

hyphae with wall thickenings, <strong>and</strong> which makes colonies somewhat<br />

resistant to being cut with a scalpel. The species Gams (1971)<br />

united using this character are, for the most part, grouped in the<br />

Gliomastix/Bionectria clade referred to earlier in this study.<br />

Despite the rigorous approach <strong>and</strong> the discovery <strong>of</strong> new, useful<br />

characters, a number <strong>of</strong> the morphotaxonomic species names<br />

ultimately were applied in the <strong>CBS</strong> collection to <strong>phylogenetic</strong>ally<br />

divergent organisms. Six distinct taxa from <strong>CBS</strong> investigated in<br />

this study were identified as A. persicinum; three are now seen<br />

<strong>phylogenetic</strong>ally to fall within the Gliomastix clade <strong>and</strong> three sort<br />

elsewhere. These taxa are mostly directly visible as A. persicinum<br />

isolates in Fig. 2. Names without quotation marks are consistent<br />

with the type, while names in quotation marks sort into other<br />

<strong>phylogenetic</strong> groups. An exception is represented by <strong>CBS</strong> 149.62.<br />

This isolate, the ex-type <strong>of</strong> Cephalosporium purpurascens, was<br />

listed by Gams (1971) as a synonym <strong>of</strong> A. persicinum. Five taxa<br />

in Fig. 2 were labeled A. potronii in <strong>CBS</strong>, <strong>and</strong> four were called<br />

A. strictum. Within both A. potronii <strong>and</strong> A. strictum, as conceived<br />

morphologically, some isolates fall within A. sclerotigenum. The<br />

name A. alternatum was applied to four species, three <strong>of</strong> them<br />

visible in Fig. 2, plus isolates <strong>of</strong> A. sclerotigenum with catenulate<br />

conidia. “<strong>Acremonium</strong> blochii” was applied to three different<br />

species.<br />

Phylogenetic analysis compared to the<br />

morphological treatment <strong>of</strong> <strong>Acremonium</strong><br />

Gams (1971, 1975) divided <strong>Acremonium</strong> into three major sections,<br />

Simplex, a name later updated as the type section <strong>Acremonium</strong>,<br />

Gliomastix, <strong>and</strong> Nectrioidea. Of these sections, only Gliomastix<br />

withst<strong>and</strong>s <strong>phylogenetic</strong> scrutiny as a unit, albeit a loosely<br />

associated one.<br />

The type section <strong>Acremonium</strong> contained four widely<br />

<strong>phylogenetic</strong>ally scattered major clades (Fig. 2), specifically the A.<br />

sclerotigenum clade, Sarocladium clade, A. curvulum clade, <strong>and</strong> A.<br />

breve clade. As seen best in Fig. 1, the Sarocladium clade <strong>and</strong> the<br />

A. breve <strong>and</strong> A. curvulum clades comprise a distinct group that falls<br />

within the Hypocreales but outside any currently recognised family.<br />

<strong>Acremonium</strong> sclerotigenum falls into a distinct clade within the<br />

Bionectriaceae that also contains Emericellopsis <strong>and</strong> Geosmithia.<br />

This clade also includes about half the investigated <strong>CBS</strong> isolates<br />

identified as the type species <strong>of</strong> <strong>Acremonium</strong>, A. alternatum,<br />

including <strong>CBS</strong> 407.66 as well as some isolates such as <strong>CBS</strong> 223.70<br />

revealed as morphological variants <strong>of</strong> A. sclerotigenum. Despite<br />

the substantial <strong>phylogenetic</strong> distance between A. sclerotigenum<br />

<strong>and</strong> A. strictum, relatively glabrous, cylindrical-conidial isolates<br />

<strong>of</strong> A. sclerotigenum not producing sclerotia on special media<br />

(lupine stem agar according to Gams, 1971, later replaced at<br />

<strong>CBS</strong> by nettle stem agar) are essentially micromorphologically<br />

indistinguishable from A. strictum. Table 1 shows <strong>CBS</strong> 287.70 O<br />

as an A. sclerotigenum isolate identified in <strong>CBS</strong> as A. strictum; ITS<br />

sequencing studies <strong>of</strong> additional strains (data not shown) have<br />

found two more such isolates, <strong>CBS</strong> 319.70 D <strong>and</strong> <strong>CBS</strong> 474.67.


The convergence among isolates <strong>of</strong> <strong>phylogenetic</strong>ally remote<br />

species is remarkable. An unknown proportion <strong>of</strong> the literature on<br />

A. strictum is based on studies <strong>of</strong> A. sclerotigenum. For example,<br />

in a study influential in medical mycology, Novicki et al. (2003)<br />

labeled ITS-sequenced isolates <strong>of</strong> A. sclerotigenum in GenBank<br />

as "<strong>Acremonium</strong> strictum genogroup II." The complexity <strong>of</strong> A.<br />

sclerotigenum, not its earliest valid name, goes beyond the scope<br />

<strong>of</strong> this paper. Perdomo et al. (2010) have recently investigated the<br />

diversity <strong>of</strong> medically important isolates within this species.<br />

Besides the four clades mentioned above, <strong>Acremonium</strong><br />

sect. <strong>Acremonium</strong> species also make up the non-synnematal<br />

anamorphs <strong>of</strong> the Emericellopsis clade, most <strong>of</strong> the A. fusidioides<br />

clade, <strong>and</strong> most <strong>of</strong> the small A. camptosporum, A. exiguum, A.<br />

minutisporum, A. pinkertoniae, <strong>and</strong> A. pseudozeylanicum clades.<br />

Gams (1975) accommodated A. byssoides, now known to belong<br />

in Simplicillium lanosoniveum (Zare & Gams 2001), in <strong>Acremonium</strong><br />

sect. <strong>Acremonium</strong>, while commenting that it was suggestive <strong>of</strong><br />

Verticillium sect. Prostrata, later recognised as Simplicillium (Zare<br />

& Gams 2001). He withheld A. byssoides from Verticillium because<br />

the colony margin was relatively flat <strong>and</strong> slightly fasciculate, rather<br />

than cottony. To some extent <strong>Acremonium</strong> sect. <strong>Acremonium</strong> was<br />

based on keying out all the relatively flat or fasciculate <strong>Acremonium</strong>like<br />

species together provided that they lacked the dark conidia or<br />

chondroid hyphae <strong>of</strong> Gliomastix.<br />

<strong>Acremonium</strong> sect. Nectrioidea as delineated by Gams (1971)<br />

included many Nectria sensu lato anamorphs. Some <strong>of</strong> these<br />

species are now placed in the genus Cosmospora by Gräfenhan et<br />

al. (2011). These include members <strong>of</strong> the A. berkeleyanum complex<br />

as well as A. arxii <strong>and</strong> A. cymosum. <strong>Acremonium</strong> falciforme in A.<br />

sect. Nectrioidea had already been recognised as a member <strong>of</strong><br />

the Fusarium solani complex (Summerbell & Schroers 2002) <strong>and</strong><br />

A. diospyri had been transferred into Nalanthamala along with<br />

other nectriaceous species (Schroers et al. 2005). <strong>Acremonium</strong><br />

tsugae appears to be a microconidial Cylindrocarpon species. The<br />

<strong>Acremonium</strong> recifei complex still remains as an undisposed major<br />

group <strong>of</strong> nectriaceous <strong>Acremonium</strong> species originally included in<br />

A. sect. Nectrioidea. The placement <strong>of</strong> A. sect. Nectrioidea species<br />

A. alcalophilum, A. brunnescens, A. furcatum, A. nepalense, A.<br />

restrictum, <strong>and</strong> A. stromaticum in the Plectosphaerellaceae has<br />

already been shown by Zare et al. (2007). <strong>Acremonium</strong> apii also<br />

has been shown to belong to this family as a synonym <strong>of</strong> Verticillium<br />

alboatrum, <strong>and</strong> its ex-type strain, <strong>CBS</strong> 130.51, was used as the<br />

representative isolate <strong>of</strong> that species by Zare et al. (2007).<br />

Other anomalous elements <strong>of</strong> A. sect. Nectrioidea include<br />

A. crotocinigenum in the Trichothecium clade, A. radiatum in the<br />

<strong>phylogenetic</strong>ally isolated A. breve clade, A. biseptum in the A.<br />

cerealis clade near Gliomastix, A. salmoneum in the Emericellopsis<br />

clade near Stilbella fimetaria, A. chrysogenum in a bionectriaceous<br />

clade containing cleistothecial teleomorphs such as Nigrosabulum,<br />

A. rutilum in a clade otherwise containing isolates identified as A.<br />

persicinum, <strong>and</strong> a non-type A. hyalinulum isolate in another clade<br />

peripheral to Gliomastix. When Sarocladium zeae as A. zeae in<br />

A. sect. Nectrioidea was compared to the <strong>phylogenetic</strong>ally related<br />

S. kiliense as A. kiliense in A. sect. <strong>Acremonium</strong> by Gams (1971,<br />

p. 16), he noted that the latter species may sometimes also be<br />

strongly branched <strong>and</strong> thus resemble the former. The exigencies<br />

<strong>of</strong> dichotomous morphological keying tended to sort closely related<br />

species into widely separated Sections <strong>of</strong> the genus.<br />

The main heterogeneous element included in Gams’ (1971)<br />

original concept <strong>of</strong> sect. Gliomastix was the “Striatisporum series.”<br />

These were later distinguished as the separate genus Sagenomella<br />

(Gams 1978). Both Sagenomella <strong>and</strong> the recently described genus<br />

www.studiesinmycology.org<br />

acremonium phylogeny<br />

Phialosimplex are members <strong>of</strong> the Eurotiales (Sigler et al. 2010).<br />

Another anomalous element in sect. Gliomastix, <strong>Acremonium</strong><br />

atrogriseum, is here removed to the Cephalothecaceae.<br />

Other species included by Gams (1971, 1975) in A.<br />

sect. Gliomastix that can now be seen to be separated from<br />

the Gliomastix/Bionectria clade include “Cephalosporium<br />

purpurascens,” synonymised by Gams (1971) with A. persicinum<br />

as well as A. brachypenium, A. hennebertii, A. incrustatum, <strong>and</strong><br />

A. inflatum. Species outside the Gliomastix/Bionectria clade that<br />

have well developed chondroid hyphae include A. hennebertii <strong>and</strong><br />

A. incrustatum.<br />

TAxONOMy<br />

The main purpose <strong>of</strong> this study is to provide a <strong>phylogenetic</strong> <strong>overview</strong><br />

<strong>of</strong> <strong>Acremonium</strong> plus distinctive LSU sequences to render the<br />

described species recognisable in molecular studies. In addition,<br />

some taxonomic changes are undertaken.<br />

What is <strong>Acremonium</strong>?<br />

The first task at h<strong>and</strong> is to establish what <strong>Acremonium</strong> is. The<br />

lectotype species <strong>of</strong> <strong>Acremonium</strong> is A. alternatum as designated<br />

by Gams (1968). Gams (1968) studied <strong>and</strong> illustrated the type<br />

material used by Link (1809) in describing A. alternatum. This<br />

material consists <strong>of</strong> a thin fungal mycelium colonising a birch leaf.<br />

In choosing living cultures that best approximated this specimen,<br />

Gams (1968) listed four isolates. From among these, one is chosen<br />

with a dried culture to be designated here as the epitype with an<br />

ex-epitype culture. This is <strong>CBS</strong> 407.66, which groups with the extype<br />

isolate <strong>of</strong> Cephalosporium malorum, synonymised by Gams<br />

(1971) with A. charticola, as well as with A. sordidulum <strong>and</strong> A.<br />

charticola in the poorly defined A. sclerotigenum/Geosmithia clade.<br />

Use <strong>of</strong> the corresponding dried culture <strong>CBS</strong> H-20525 as an epitype<br />

specimen serves nomenclatural stability because the genus name<br />

<strong>Acremonium</strong> is then used to designate a large group <strong>of</strong> species<br />

currently accepted in <strong>Acremonium</strong>.<br />

Other c<strong>and</strong>idate isolates included <strong>CBS</strong> 308.70 (called "Kultur<br />

1127"), which died out <strong>and</strong> was replenished from its degenerated,<br />

nonsporulating subculture MUCL 8432, now also called <strong>CBS</strong><br />

114602. As a degenerated isolate, it makes poor potential epitype<br />

material. Another isolate mentioned by Gams (1968), <strong>CBS</strong> 406.66,<br />

is conspecific with <strong>CBS</strong> 114602 <strong>and</strong> in good condition. Both<br />

isolates are included in a clade relatively distant from any other<br />

<strong>Acremonium</strong> group but deeply basal to the Sarocladium <strong>and</strong> A.<br />

breve clades, as seen in Fig. 1A. If <strong>Acremonium</strong> were epitypified<br />

with one <strong>of</strong> these isolates, the generic name might be restricted<br />

to this single species. The final isolate is <strong>CBS</strong> 223.70, an isolate<br />

that, despite its catenate conidia, is conspecific with the type <strong>of</strong> A.<br />

sclerotigenum (100 % ITS sequence identity; GenBank AJ621772<br />

for <strong>CBS</strong> 124.42 is essentially identical to A. sclerotigenum,<br />

U57674, <strong>CBS</strong> 223.70). Isolate <strong>CBS</strong> 223.70 strongly resembles pale<br />

greenish grey coloured, sclerotium-forming isolates identified as A.<br />

egyptiacum (e.g., <strong>CBS</strong> 734.69), which are also conspecific with A.<br />

sclerotigenum. It differs by not forming sclerotia. Catenate conidia<br />

may or may not be produced in this group <strong>and</strong> the greenish grey<br />

colonies produced by chain-forming isolates have explicitly been<br />

connected with A. egyptiacum, not A. alternatum. One other taxon<br />

that Gams (1971, 1975) consistently identified as A. alternatum, a<br />

species in the A. fusidioides clade, is represented by <strong>CBS</strong> 831.97<br />

155


SuMMerbell et al.<br />

<strong>and</strong> 381.70A. These isolates have the disadvantage <strong>of</strong> not having<br />

been explicitly compared with the type material. In addition, this<br />

clade is related to several clades with known teleomorphs, e.g.,<br />

Emericellopsis <strong>and</strong> Nigrosabulum, <strong>and</strong> anamorphs, e.g., Stilbella<br />

<strong>and</strong> Geosmithia. In a revised nomenclatural system, it would root<br />

<strong>Acremonium</strong> as a broad unitary genus name encompassing the<br />

teleomorphs <strong>and</strong> complex anamorphs. Ultimately, it might epitypify<br />

<strong>Acremonium</strong> strictly as a genus name for the A. fusidioides clade.<br />

<strong>Acremonium</strong> alternatum Link : Fr., Mag. Ges. naturf. Fr.<br />

Berlin 3: 15. 1809 : Fries, Syst. Mycol. 3: 425. 1832.<br />

Holotype: Germany, Rostock, on leaf litter <strong>of</strong> Betula, collected by<br />

Ditmar, B-type specimen labeled in Link’s h<strong>and</strong>writing.<br />

Epitype designated here: Austria, Stangensteig near Innsbruck, ex<br />

Ustulina deusta, W. Gams, Dec. 1965, <strong>CBS</strong>-H 20525 dried culture<br />

<strong>of</strong> <strong>CBS</strong> 407.66, ex-epitype living culture <strong>CBS</strong> 407.66.<br />

Additional genera recognised here<br />

Based on these analyses, three genera are represented in sufficient<br />

detail <strong>and</strong> with high bootstrap support to be formally recognised here.<br />

In most cases, the genera <strong>and</strong> clades are not sufficiently populated<br />

with their constituent members without analysis <strong>of</strong> additional<br />

sequences. For example, the Emericellopsis clade is missing 12 <strong>of</strong><br />

its 13 species including two identified as E. minima (Zuccaro et al.<br />

2004) as well as one <strong>of</strong> its two Stanjemonium species.<br />

Gliomastix<br />

The core clade <strong>of</strong> Gliomastix including the type species is well<br />

delimited with a 92 % bootstrap value even in the very conservative<br />

LSU analysis. Although Gams (1971) placed this genus into<br />

<strong>Acremonium</strong>, several authors have recognised Gliomastix. Most<br />

notably, Matsushima (1975) placed <strong>Acremonium</strong> masseei <strong>and</strong> A.<br />

polychromum into Gliomastix <strong>and</strong> Lechat et al. (2010) linked G.<br />

fusigera with Hydropisphaera bambusicola. As circumscribed in<br />

this paper, the <strong>phylogenetic</strong>ally supported Gliomastix differs from<br />

previous morphological concepts by excluding several distantly<br />

related species such as <strong>Acremonium</strong> cerealis <strong>and</strong> A. inflatum.<br />

The closely related A. persicinum clade may also be included as<br />

suggested by Supplemental fig. 6E in Schoch et al. (2009) <strong>and</strong><br />

discussed above. At the moment, we recognise only four species<br />

from the present study in Gliomastix. An additional species,<br />

published while the present manuscript was in preparation,<br />

<strong>Acremonium</strong> tumulicola (Kiyuna et al. 2010), should also be<br />

included in this concept <strong>of</strong> Gliomastix.<br />

The generic characters do not differ significantly from those<br />

summarised in the generic diagnosis <strong>of</strong> Dickinson (1968).<br />

1. Type species. Gliomastix murorum (Corda) S. Hughes,<br />

Canad. J. Bot. 36: 769. 1958.<br />

Basionym: Torula murorum Corda, Icon. Fung. 2: 9. 1838.<br />

≡ Sagrahamala murorum (Corda) Subram., Curr. Sci. 41: 49. 1972.<br />

≡ <strong>Acremonium</strong> murorum (Corda) W. Gams, Cephalosporium-artige<br />

Schimmelpilze (Stuttgart): 84. 1971.<br />

= Torula chartarum Corda, Icon. Fung. 2: 9. 1839.<br />

≡ Gliomastix chartarum (Corda) Guég, Bull. Soc. Mycol. France 21: 240.<br />

1905.<br />

For additional synonyms, see Gams (1971). The type species <strong>of</strong><br />

Gliomastix, G. chartarum, is a synonym <strong>of</strong> G. murorum (Hughes<br />

156<br />

1958). The distinction between G. murorum var. murorum having<br />

conidia in chains <strong>and</strong> G. murorum var. felina having conidia in<br />

mucoid heads does not appear to be supported by <strong>phylogenetic</strong><br />

analysis. Gliomastix murorum var. felina isolates originally<br />

described as Graphium malorum (ex-type <strong>CBS</strong> 154.25) <strong>and</strong> Torula<br />

cephalosporioides (ex-type <strong>CBS</strong> 378.36) are molecularly confirmed<br />

as synonyms <strong>of</strong> G. murorum (Fig. 2B). Recently, Kiyuna et al.<br />

(2010) neotypified Gliomastix felina (Marchal) Hammill, recombined<br />

as <strong>Acremonium</strong> felinum (Marchal) Kiyuna, An, Kigawa & Sugiy.,<br />

with <strong>CBS</strong> 147.81. The sequences deposited in GenBank, e.g.,<br />

AB540562, suggest that this isolate represents G. roseogrisea. The<br />

new combination is reduced to synonymy with that species below.<br />

2. Gliomastix masseei (Sacc. ) Matsush., Icon. micr<strong>of</strong>ung.<br />

Matsush. lect. (Kobe): 76. 1975.<br />

Basionym: Trichosporium masseei Sacc., Syll. Fung. 22: 1356.<br />

1913 [= Trichosporium aterrimum Massee, Bull. Misc. Inform. 1899: 167 non<br />

(Corda) Sacc. 1886]<br />

≡ <strong>Acremonium</strong> masseei (Sacc.) W. Gams, Cephalosporium-artige<br />

Schimmelpilze (Stuttgart): 83. 1971.<br />

The name lacks an ex-type isolate. Although the isolate (<strong>CBS</strong><br />

794.69) sequenced is basal to the Gliomastix clade (Fig. 2B), it<br />

appears to be a suitable to serve as the basis for epitypification.<br />

Holotype <strong>of</strong> Trichosporium masseei: India, Punjab, Changa Manga,<br />

on Morus indica, Jan. 1898, J. Gleadow, ex Herb. Massee, K;<br />

isotypes IMI 49,214 = IMI 87,346.<br />

Epitype designated here: Italy, Turin, isolated from rabbit dung, A.<br />

Fontana, <strong>CBS</strong> H-8244, ex-epitype culture <strong>CBS</strong> 794.69.<br />

3. Gliomastix polychroma (J.F.H. Beyma) Matsush., Icon.<br />

micr<strong>of</strong>ung. Matsush. lect. (Kobe): 77. 1975.<br />

Basionym: Oospora polychroma J.F.H. Beyma, Verh. K. Ned. Akad.<br />

Wetensch., Sect. 2, 26 (2): 5. 1928.<br />

≡ Sagrahamala polychroma (J.F.H. Beyma) Subram., Curr. Sci. 41: 49.<br />

1972.<br />

≡ <strong>Acremonium</strong> polychromum (J.F.H. Beyma) W. Gams, Cephalosporiumartige<br />

Schimmelpilze (Stuttgart): 81. 1971.<br />

Additional synonyms are given by Gams (1971). This clade<br />

includes the ex-type isolate <strong>of</strong> Oospora polychroma, basionym <strong>of</strong><br />

G. polychroma, <strong>CBS</strong> 181.27 (Fig. 2B). Periconia tenuissima var.<br />

nigra is confirmed as a synonym via inclusion <strong>of</strong> its ex-type isolate<br />

<strong>CBS</strong> 151.26 (Fig. 2B). The status <strong>of</strong> the different isolate, <strong>CBS</strong><br />

617.94, from banana, requires further clarification. This isolate may<br />

be related to <strong>Acremonium</strong> musicola, a species not represented in<br />

<strong>CBS</strong>.<br />

4. Gliomastix roseogrisea (S.B. Saksena) Summerbell,<br />

comb. nov. MycoBank MB519588.<br />

Basionym: Cephalosporium roseogriseum S.B. Saksena,<br />

Mycologia 47: 895. 1956 [1955].<br />

≡ <strong>Acremonium</strong> roseogriseum (S.B. Saksena) W. Gams [as ‘roseogriseum’],<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 87. 1971.<br />

= <strong>Acremonium</strong> felinum (Marchal) Kiyuna, An, Kigawa & Sugiy., Mycoscience<br />

52: 13. 2010.<br />

Gliomastix roseogrisea, like G. murorum, has a variety <strong>of</strong> conidial<br />

forms including conidia in chains <strong>and</strong> conidia <strong>of</strong> various shapes in<br />

mucoid heads. This plasticity <strong>of</strong> form recalls the situation mentioned


above for A. sclerotigenum <strong>and</strong> may represent a relatively common<br />

situation in acremonioid species. As another example Gams (1971)<br />

lists “Gliomastix murorum var. felina pro parte in Dickinson in Mycol<br />

Pap. 115: 16, 1968” as an additional synonym <strong>of</strong> this taxon.<br />

As mentioned above in the discussion <strong>of</strong> the genus, Kiyuna<br />

et al. (2010) recently neotypified Gliomastix felina (basionym<br />

Periconia felina Marchal, Bull. Soc. R. Bot. Belg. 34:141. 1895) with<br />

<strong>CBS</strong> 147.81, an isolate collected by Hammill (1981). This isolate<br />

is a typical G. roseogrisea, a taxon not studied by Kiyuna et al.<br />

(2010).<br />

5. Gliomastix tumulicola (Kiyuna, An, Kigawa & Sugiy.)<br />

Summerbell, comb. nov. MycoBank MB519599.<br />

Basionym: <strong>Acremonium</strong> tumulicola Kiyuna, An, Kigawa & Sugiy.,<br />

Mycoscience 52: 13. 2010.<br />

This newly described species is <strong>phylogenetic</strong>ally placed by its<br />

original authors (Kiyuna et al. 2010) in the Gliomastix clade <strong>and</strong><br />

comparison <strong>of</strong> sequences confirms that placement. Although this<br />

information was received too late to include this species in our<br />

<strong>phylogenetic</strong> analyses, the species is placed in Gliomastix.<br />

Sarocladium<br />

The genus Sarocladium was described for two pinkish coloured<br />

fungal pathogens causing sheath blast <strong>of</strong> rice (Gams & Hawksworth<br />

1976). The drawings in that paper <strong>and</strong> the photographs in Bills et<br />

al. (2004) show structures that overlap with those produced by the<br />

<strong>phylogenetic</strong>ally related A. kiliense, A. strictum, <strong>and</strong> A. zeae. As in<br />

Fusarium, plant pathogenic fungi that sporulate on above-ground<br />

plant parts are likely to produce upright, branching sporulating<br />

structures with mucoid conidia suggesting dispersal by insects<br />

that fly from plant to plant. Species with habitats where water<br />

flux or microarthropod movement may be important in dispersal,<br />

e.g., various Acremonia occurring in soil or Fusarium domesticum<br />

growing on cheese, may have simplified conidiogenous structures.<br />

Bills et al. (2004) suggested that the generic placement <strong>of</strong><br />

<strong>Acremonium</strong> kiliense <strong>and</strong> A. strictum should be re-examined in light<br />

<strong>of</strong> their close relationship with Sarocladium oryzae.<br />

The genus Sarocladium is delineated here to include several<br />

species previously recognised in <strong>Acremonium</strong>, as seen in Figs 1 <strong>and</strong><br />

2. In Fig. 2, where <strong>phylogenetic</strong> signal is relatively low, Sarocladium<br />

tepidly (84 % bootstrap) links to the A. bacillisporum clade. In Fig. 1, it<br />

links with a 99 % bootstrap value. Phylogenetic clustering algorithms<br />

<strong>of</strong>ten insert the A. bacillisporum clade between A. strictum <strong>and</strong> A.<br />

kiliense due to certain apo- or plesiomorphies shared with one or the<br />

other <strong>of</strong> these two members <strong>of</strong> the A. strictum clade (data not shown).<br />

On the other h<strong>and</strong>, the next most closely related clade in Fig. 1, the<br />

A. breve/A. curvulum clade, has ITS sequences with substantial<br />

sections that are difficult to align with those <strong>of</strong> the A. bacillisporum<br />

<strong>and</strong> A. strictum clades, indicating considerable evolutionary distance.<br />

The genus Sarocladium is emended here to include those<br />

species that belong to the A. strictum <strong>and</strong> A. bacillisporum clades.<br />

The generic name Sagrahamala is not a contender for this group<br />

because the type species is the unrelated <strong>Acremonium</strong> luzulae. In<br />

addition <strong>Acremonium</strong> luzulae is a species in need <strong>of</strong> epitypification,<br />

because, as shown in the present study, more than one <strong>phylogenetic</strong><br />

species is encompassed under the name.<br />

Sarocladium W. Gams & D. Hawksw., Kavaka 3: 57. 1976<br />

[1975].<br />

www.studiesinmycology.org<br />

acremonium phylogeny<br />

Colonies on 2 % malt extract agar slimy-glabrous to moderately<br />

floccose to deeply dusty, sometimes ropy; with, in Gams’<br />

terminology (Gams 1971), phalacrogenous, nematogenous, to<br />

plectonematogenous conidiation; growing 13–25 mm in 10 d at<br />

20 °C, whitish to pinkish to salmonaceous or, when conidia are<br />

formed in chains, sometimes acquiring vivid conidial mass colouration<br />

such as ochraceous or greenish glaucous; reverse pale to pinkish<br />

orange to pale grey-brown, rarely greenish-blue. Conidiogenous<br />

apparatus ranging from adelophialides, solitary orthotropic phialides<br />

to conidiophore structures with one or a few branches, or with<br />

cymose branching or occasionally with one or two ranks <strong>of</strong> loosely<br />

structured verticils, sometimes with repeated branching extending to<br />

90 μm long. Phialides subulate, aculeate to acerose, straight, slightly<br />

curved, or undulate, thin- <strong>and</strong> smooth-walled, 15–60(–75) μm long,<br />

tapering from a basal width <strong>of</strong> 1.2–2.5 μm, with minimal collarette;<br />

conidia borne in mucoid heads or dry chains, notably longer than<br />

broad, l/w mostly 2.2–7.0, cylindrical to fusiform to bacilliform,<br />

aseptate, smooth-walled, with rounded or tapered-truncate ends,<br />

3.5–8(–14) × 0.5–2 μm. Chlamydospores present or absent, when<br />

present relatively thick-walled, smooth or slightly roughened, globose<br />

to ellipsoidal, intercalary or terminal, mostly solitary, occasionally in<br />

short chains, 4–8 μm. Internal transcribed spacer sequence mostly<br />

with distinctive CGGTCGCGCC motif in mid-ITS2 region.<br />

Several species <strong>of</strong> Sarocladium are noted for melanogenesis<br />

yielding ochre-brown to dark grey-brown colony reverse colours on<br />

Sabouraud agar: S. glaucum, S. kiliense, <strong>and</strong> S. zeae (Gams 1971).<br />

In the case <strong>of</strong> S. kiliense, this melanogenesis has the result that<br />

most mycetoma cases feature black "grains" or sclerotium-like balls<br />

<strong>of</strong> compacted fungal hyphae (Summerbell 2003); melanogenesis<br />

is a well known pathogenicity factor in fungal diseases <strong>of</strong> humans<br />

<strong>and</strong> animals (Gómez & Nosanchuk 2003). As recognised here<br />

Sarocladium yields a remarkable unity <strong>of</strong> species with elongated<br />

conidia <strong>and</strong> phialides. Several species including S. kiliense, S.<br />

oryzae, <strong>and</strong> S. strictum form adelophialides prominently, at least in<br />

some isolates; acremonioid species outside Sarocladium usually<br />

lack this character.<br />

The recognised species are given below. <strong>Acremonium</strong><br />

implicatum may belong here, but the species lacks living ex-type or<br />

representative material. The “A. implicatum” isolate that grouped in<br />

Sarocladium, <strong>CBS</strong> 243.59, is noted by Gams (1971) as an authentic<br />

isolate <strong>of</strong> Fusidium terricola J.H. Mill., Giddens & A.A. Foster <strong>and</strong><br />

this name could be used if A. implicatum sensu Gams is revealed<br />

as polyphyletic. The other “A. implicatum” isolate, <strong>CBS</strong> 397.70B,<br />

included in this study is not a Sarocladium; rather it is a member <strong>of</strong><br />

the A. exiguum clade.<br />

1. Type species. Sarocladium oryzae (Sawada) W. Gams &<br />

D. Hawksw., Kavaka 3: 58. 1976 [1975].<br />

A description <strong>and</strong> synonymy are given by Gams & Hawksworth<br />

(1975). Bills et al. (2004) synonymised Sarocladium attenuatum with<br />

S. oryzae based on the reported identity <strong>of</strong> the ITS sequence <strong>of</strong> its<br />

ex-type isolate, <strong>CBS</strong> 399.73, with that <strong>of</strong> representative isolates <strong>of</strong> S.<br />

oryzae. We resequenced the ITS region <strong>of</strong> <strong>CBS</strong> 399.73 <strong>and</strong> obtained<br />

a sequence differing from Bills et al. (AY566995) by 6 base-pairs<br />

<strong>and</strong> 2 gaps. Some <strong>of</strong> the base pairs in our sequence appeared to<br />

be symplesiomorphies shared with A. kiliense or A. strictum but not<br />

S. oryzae, rather than r<strong>and</strong>om mutations or possible miscalls. Our<br />

resequencing <strong>of</strong> unequivocal S. oryzae isolates <strong>CBS</strong> 180.74 <strong>and</strong><br />

<strong>CBS</strong> 361.75 yielded results consistent with those <strong>of</strong> Bills et al. (2004).<br />

The status <strong>of</strong> S. attenuatum thus requires further study.<br />

157


SuMMerbell et al.<br />

2. Sarocladium bacillisporum (Onions & Barron)<br />

Summerbell, comb. nov. MycoBank MB519589.<br />

Basionym: Paecilomyces bacillisporus Onions & G.L. Barron,<br />

Mycol. Pap. 107: 11. 1967.<br />

≡ <strong>Acremonium</strong> bacillisporum (Onions & G.L. Barron) W. Gams,<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 72. 1971.<br />

≡ Sagrahamala bacillispora (Onions & G.L. Barron) Subram., Curr. Sci.<br />

41: 49. 1972.<br />

This species was described by Gams (1971). It is easily confused<br />

with Verticillium leptobactrum, which can be relatively floccose <strong>and</strong><br />

loosely structured although some isolates are very dense <strong>and</strong> slowgrowing<br />

(Gams, 1971). In addition colonies <strong>of</strong> S. bacillisporum at<br />

maturity have a pinkish colouration.<br />

3. Sarocladium bactrocephalum (W. Gams) Summerbell,<br />

comb. nov. MycoBank MB519590.<br />

Basionym: <strong>Acremonium</strong> bactrocephalum W. Gams,<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 44. 1971.<br />

As indicated by Gams (1971) this uncommon species is closely<br />

related to S. strictum, but is distinguished morphologically by its<br />

long, narrow conidia. It is molecularly distinguishable by LSU<br />

sequences.<br />

4. Sarocladium glaucum (W. Gams) Summerbell, comb.<br />

nov. MycoBank MB519591.<br />

Basionym: <strong>Acremonium</strong> glaucum W. Gams, Cephalosporium-artige<br />

Schimmelpilze (Stuttgart): 68. 1971.<br />

This species was described by Gams (1971). The ex-type culture<br />

<strong>CBS</strong> 796.69 indicates that this species belongs in Sarocladium.<br />

5. Sarocladium kiliense (Grütz) Summerbell comb. nov.<br />

MycoBank MB519592.<br />

Basionym: <strong>Acremonium</strong> kiliense Grütz, Dermatol. Wochenschr. 80:<br />

774. 1925.<br />

= Cephalosporium incoloratum Sukapure & Thirum., Sydowia 19: 171. 1966<br />

[1965].<br />

= <strong>Acremonium</strong> incoloratum (Sukapure & Thirum.) W. Gams, Cephalosporiumartige<br />

Schimmelpilze (Stuttgart): 50. 1971.<br />

Additional synonyms <strong>and</strong> a description <strong>of</strong> S. kiliense are given<br />

by Gams (1971) <strong>and</strong> Domsch et al. (2007); the species is also<br />

extensively illustrated by de Hoog et al. (2000). The ITS sequence<br />

<strong>of</strong> the ex-type strain <strong>of</strong> <strong>Acremonium</strong> incoloratum, <strong>CBS</strong> 146.62, is<br />

identical to that <strong>of</strong> the ex-type <strong>of</strong> S. kiliense, <strong>CBS</strong> 122.29 (data not<br />

shown). Though isolate <strong>CBS</strong> 146.62 is unusual in colour <strong>and</strong> lacks<br />

well differentiated chlamydospores that generally occur in S. kiliense,<br />

there is no phenetic difference pr<strong>of</strong>ound enough to suggest that<br />

additional genes must be examined to be certain <strong>of</strong> their synonymy.<br />

The sequences deposited in GenBank by Novicki et al. (2003)<br />

for their “<strong>Acremonium</strong> strictum genogroup III” (ITS: AY138846;<br />

LSU: AY138484) are actually <strong>of</strong> S. kiliense.<br />

6. Sarocladium ochraceum (Onions & Barron) Summerbell,<br />

comb. nov. MycoBank MB519593.<br />

Basionym: Paecilomyces ochraceus Onions & G.L. Barron, Mycol.<br />

Pap. 107: 15. 1967.<br />

≡ <strong>Acremonium</strong> ochraceum (Onions & G.L. Barron) W. Gams,<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 67. 1971.<br />

≡ Sagrahamala ochracea (Onions & G.L. Barron) Subram. & Pushkaran,<br />

Kavaka 3: 89. 1975 [1976].<br />

158<br />

This species was described by Gams (1971). We analysed the extype<br />

culture, <strong>CBS</strong> 428.67.<br />

7. Sarocladium strictum (W. Gams) Summerbell, comb.<br />

nov. MycoBank MB519594.<br />

Basionym: <strong>Acremonium</strong> strictum W. Gams, Cephalosporium-artige<br />

Schimmelpilze (Stuttgart): 42. 1971.<br />

Descriptions <strong>of</strong> S. strictum are given by Gams (1971) <strong>and</strong> Domsch<br />

et al. (2007). The type isolate <strong>of</strong> S. strictum was confirmed in this<br />

genus (Fig. 2C). Of the three isolates illustrated by Gams (1971)<br />

under A. strictum, <strong>CBS</strong> 287.70 D, is confirmed by sequencing<br />

as S. strictum. The only isolate <strong>of</strong> <strong>Acremonium</strong> zonatum in this<br />

study, <strong>CBS</strong> 565.67, turned out to have an ITS sequence identical<br />

to that <strong>of</strong> S. strictum. This is one <strong>of</strong> three isolates examined by<br />

Gams (1971) as A. zonatum. He stated that another isolate,<br />

<strong>CBS</strong> 145.62, appeared to be A. kiliense, but that examination <strong>of</strong><br />

herbarium material suggested that this species had been growing<br />

on the natural substrate mixed with the real A. zonatum <strong>and</strong> had<br />

been isolated accidentally. One herbarium specimen examined by<br />

Gams (1971) showed septate conidia, something not otherwise<br />

seen in Sarocladium, so there may indeed be a real A. zonatum.<br />

It is not clear if A. zonatum sensu Gams is a unified concept or<br />

a designation <strong>of</strong> various acremonioid fungi forming leaf spots on<br />

tropical plants. In any case, the known connection <strong>of</strong> the genus<br />

Sarocladium with phytopathogenesis <strong>and</strong> endophytism as in S.<br />

zeae makes it plausible that species such as S. strictum <strong>and</strong> S.<br />

kiliense may play a role in plant disease.<br />

8. Sarocladium zeae (W. Gams & D.R. Sumner) Summerbell,<br />

comb. nov. MycoBank MB519595.<br />

Basionym: <strong>Acremonium</strong> zeae W. Gams & D.R. Sumner, in Gams,<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 121. 1971.<br />

This economically important maize endophyte species fits the<br />

description given by Gams (1971) as a fungus with felty to shaggy<br />

colonies. Two S. zeae isolates with more flattened colonies were<br />

accessed in <strong>CBS</strong> as A. strictum. Both <strong>CBS</strong> 646.75 <strong>and</strong> 226.84 were<br />

from maize <strong>and</strong> found to be producers <strong>of</strong> pyrrocidine metabolites<br />

as well as dihydroresorcylide, characteristic <strong>of</strong> S. zeae (Wicklow<br />

et al. 2008). Pyrrocidines are antagonistic to Aspergillus flavus<br />

<strong>and</strong> Fusarium verticillioides in maize inflorescences <strong>and</strong> are thus<br />

important in the ecology <strong>and</strong> economic significance <strong>of</strong> S. zeae.<br />

An additional A. strictum isolate, <strong>CBS</strong> 310.85, is also S. zeae<br />

as evidenced by pyrrocidine production, but has not yet been<br />

sequenced (Wicklow et al. 2008).<br />

Trichothecium<br />

A significant theme <strong>of</strong> the current volume is the pioneering <strong>of</strong> a new<br />

approach to dikaryomycete nomenclature: the unitary naming <strong>of</strong><br />

genus-level clades based on the oldest valid generic name, whether<br />

originally anamorphic or teleomorphic in nature (see discussion in<br />

Gräfenhan et al. 2011). Because the first named fungi were <strong>of</strong>ten<br />

species prominently in contact with humans <strong>and</strong> their environs<br />

<strong>and</strong> because the first names usually were attached to the most<br />

frequently seen reproductive state, there is considerable wisdom to<br />

using the oldest name applied to either aspect <strong>of</strong> the holomorph in<br />

constructing a unitary nomenclature.<br />

The genus Trichothecium makes an excellent example,<br />

since the system used here preserves the best known species<br />

name in the group. A unitary system giving teleomorphs primacy


www.studiesinmycology.org<br />

acremonium phylogeny<br />

Fig. 3. A. Trichothecium roseum <strong>CBS</strong> 113334 showing retrogressive conidiation. B-D. conidiogenesis in “Trichothecium indicum”/ Leucosphaerina indica <strong>CBS</strong> 123.78 showing<br />

retrogressive development (B), phialidic development (B) <strong>and</strong> sympodial development (D).<br />

would replace the familiar "T. roseum" with a Leucosphaerina<br />

name. A system that retains primacy for morphology, which is<br />

the only reasonable basis for dual nomenclature in the molecular<br />

era, would divide the Trichothecium clade into four genera, as<br />

is the case today. One <strong>of</strong> those genera, <strong>Acremonium</strong>, would be<br />

quintessentially artificial <strong>and</strong> almost completely divorced from<br />

evolutionary biological relationships. With increased emphasis on<br />

genomes, proteomes, <strong>and</strong> metabolomes, a focus on polyphyletic<br />

elements <strong>of</strong> microscopic shape seems counterproductive. Every<br />

new system <strong>of</strong> nomenclatural change will entail both fortunate <strong>and</strong><br />

infelicitous changes <strong>and</strong> will receive some resistance in scientific<br />

communities. A nomenclatural system based on phylogeny will be<br />

considerably more stable than any previous system. The interests<br />

<strong>of</strong> all would be best served if it bridged gracefully out <strong>of</strong> pre<strong>phylogenetic</strong><br />

taxonomy, preserving as many familiar elements as<br />

possible. Trichothecium roseum, a constant from 1809 to today, is<br />

one <strong>of</strong> those elements that is worthy <strong>of</strong> being preserved.<br />

The small, tightly unified clade <strong>of</strong> Trichothecium includes<br />

isolates with three different anamorphic forms, currently classified as<br />

<strong>Acremonium</strong> (phialoconidia), Spicellum (sympodial blastoconidia),<br />

<strong>and</strong> Trichothecium (retrogressive blastoconidia). The associated<br />

teleomorph, Leucosphaerina indica, produces anamorphic forms<br />

described as “<strong>Acremonium</strong> or Sporothrix” (Suh & Blackwell 1999).<br />

These morphs are illustrated by von Arx et al. (1978). The range <strong>of</strong><br />

anamorphic forms produced by L. indica overlaps those produced<br />

by all the anamorphic species in the clade (Fig. 3).<br />

The four species studied here, Trichothecium roseum,<br />

<strong>Acremonium</strong> crotocinigenum, Leucosphaerina indica, <strong>and</strong> Spicellum<br />

roseum, have recently been associated with a fifth, newly described<br />

species, Spicellum ovalisporum. The dendrogram produced by<br />

Seifert et al. (2008) makes it clear that S. ovalisporum is related to<br />

S. roseum <strong>and</strong> is certainly a member <strong>of</strong> the Trichothecium clade. In<br />

parallel with the <strong>revision</strong> <strong>of</strong> the genus Microcera by Gräfenhan et al.<br />

(2011), this clade is redefined here as a genus with the oldest valid<br />

generic name, Trichothecium.<br />

As Fig. 2 shows, the second described Leucosphaerina<br />

species, L. arxii, is in the distant <strong>Acremonium</strong> pinkertoniae clade<br />

<strong>and</strong> is closely related to Bulbithecium hyalosporum. Malloch (1989)<br />

commented that it differed from L. indica by lacking sheathing gel<br />

around the ascospores <strong>and</strong> by having an <strong>Acremonium</strong> anamorph.<br />

Trichothecium Link : Fr., Mag. Gesell. naturf. Freunde,<br />

Berlin 3: 18. 1809.<br />

= Spicellum Nicot & Roquebert, Revue Mycol., Paris 39: 272. 1976 [1975].<br />

= Leucosphaerina Arx, Persoonia 13: 294. 1987.<br />

Older synonymy for the genus is given by Rifai & Cooke (1966).<br />

Colonies on malt extract agar 20–40 μm after 7 d at 24 °C, white<br />

to salmon orange or salmon pink (Methuen 6-7A2, 4-5A2-3), felty,<br />

floccose or lanose, sometimes appearing powdery with heavy<br />

conidiation. Ascomatal initials, if present, produced on aerial<br />

mycelium, irregularly coiled. Ascomata spherical or nearly so, nonostiolate,<br />

colourless or slightly pink, 150–300 μm; ascomatal wall<br />

persistent, nearly colourless, 10–13 μm thick, <strong>of</strong> indistinct hyphal<br />

cells; asci uniformly distributed in centrum, clavate to spherical,<br />

with thin, evanescent walls, 8-spored, 10–13 μm wide; ascospores<br />

ellipsoidal or reniform, with refractile walls <strong>and</strong> a 1–1.5 μm broad<br />

gelatinous sheath, smooth or finely striate, hyaline, yellow to pink en<br />

masse, without germ pore, 6–7 × 3–4 μm. Conidiogenous apparatus<br />

varying by species, featuring one or more <strong>of</strong>: conidiophores up to<br />

125 μm long × 2–3.5 μm wide, septate, unbranched, with terminal<br />

phialides 10–65 μm long, producing unicellular, hyaline, smoothwalled<br />

phialoconidia, obovate, oblong or cylindrical 4.4–7.4 μm; or<br />

conidiophores up to 175 μm long, unbranched or uncommonly with<br />

one or more branches, retrogressive, shortening with production<br />

<strong>of</strong> each conidium, with each conidial base subsuming a portion <strong>of</strong><br />

conidiophore apex; conidia 0–1-septate, ellipsoidal or ovate, with a<br />

decurved, abruptly narrowed basal hilum terminating in a distinct<br />

truncate end, 5–12 × 3–6.5 μm; or conidiophores ranging from<br />

unicellular conidiogenous cells to multicellular, multiply rebranched<br />

apparati extending indefinitely to beyond 200 μm long; terminal<br />

cells 9–37 μm long with a cylindrical basal part <strong>and</strong> a narrowing,<br />

apically extending conidiogenous rachis sympodially proliferating<br />

<strong>and</strong> producing oval to ellipsoidal to cylindrical or allantoid conidia<br />

3.5–11 × 1.5–3.5 μm, with truncate bases. Chlamydospores absent<br />

159


SuMMerbell et al.<br />

or present, when present mostly in intercalary chains, hyaline,<br />

smooth or finely warted, 5–8(–12) μm wide. Internal transcribed<br />

spacer sequence generally with distinct CACAAACCTCGCG<br />

motif in ITS2 region. The numerical position varies by species <strong>and</strong><br />

isolate, cf. position 476 in GenBank record EU445372, ITS for<br />

Spicellum ovalisporum ex-type isolate DAOM 186447.<br />

Various taxa described as Trichothecium need to be investigated<br />

to determine their relationship to this <strong>phylogenetic</strong> genus. For<br />

example, Trichothecium luteum <strong>and</strong> T. parvum, not represented by<br />

living cultures, should be investigated, as should T. campaniforme <strong>and</strong><br />

T. plasmoparae, which are represented by one isolate each in <strong>CBS</strong>.<br />

Trichothecium domesticum was recently redisposed as Fusarium<br />

domesticum (Bachmann et al. 2005). Of teleomorphs reported to have<br />

Trichothecium anamorphs, Heleococcum japonense is unrelated to<br />

the Trichothecium clade (Fig. 2; the sequence is erroneously listed<br />

as H. japonicum in GenBank); rather it is related to Gliomastix <strong>and</strong><br />

Hydropisphaera. A Trichothecium state <strong>of</strong> Hypomyces subiculosus<br />

(syn. H. trichothecoides) was described, but Hypomyces, a member<br />

<strong>of</strong> the Hypocreaceae, is a remote relative <strong>of</strong> the Trichothecium clade<br />

within the Hypocreales (Fig. 2).<br />

1. Type species. Trichothecium roseum (Pers.) Link, Mag.<br />

Gesell. naturf. Freunde, Berlin 3: 18. 1809.<br />

Synonymy is given in MycoBank record MB164181.<br />

2. Trichothecium crotocinigenum (Schol-Schwarz)<br />

Summerbell, Seifert, & Schroers, comb. nov. MycoBank<br />

MB519596.<br />

Basionym: Cephalosporium crotocinigenum Schol-Schwarz, Trans.<br />

Brit. Mycol. Soc. 48: 53. 1965.<br />

≡ <strong>Acremonium</strong> crotocinigenum (Schol-Schwarz) W. Gams,<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 112. 1971.<br />

As pointed out by Seifert et al. (2008, supplement), T. crotocinigenum<br />

has long been known to produce crotocin mycotoxins that are similar<br />

to the trichothecenes produced by T. roseum <strong>and</strong> T. sympodiale.<br />

The production <strong>of</strong> similar mycotoxins reinforces the argument for<br />

<strong>phylogenetic</strong> nomenclature such that scientific names reflect true<br />

relationships.<br />

3. Trichothecium indicum (Arx, Mukerji & N. Singh)<br />

Summerbell, Seifert, & Schroers, comb. nov. MycoBank<br />

MB519597.<br />

Basionym: Leucosphaerina indica (Arx, Mukerji & N. Singh) Arx,<br />

Persoonia 13: 294. 1987.<br />

With <strong>phylogenetic</strong> hindsight, the photographs <strong>of</strong> this species’<br />

anamorph in the original description by von Arx et al. (1978) can<br />

be seen to suggest <strong>Acremonium</strong>, Spicellum, <strong>and</strong> Trichothecium.<br />

4. Trichothecium ovalisporum (Seifert & Rehner) Seifert &<br />

Rehner, comb. nov. MycoBank MB519598.<br />

Basionym: Spicellum ovalisporum Seifert & S.A. Rehner, Fungal<br />

Planet: no. 28. 2008.<br />

The relationship <strong>of</strong> the recently described Spicellum ovalisporum<br />

to T. sympodiale is not clear. The ex-type <strong>of</strong> T. sympodiale<br />

(<strong>CBS</strong> 227.76) was resequenced for the ITS region; the resulting<br />

sequence differed from the GenBank record AB019365 by 7 gaps<br />

<strong>and</strong> one C ↔ T transition. The sequence had 100 % identity<br />

160<br />

with ITS sequence record EU445372 for the ex-type isolate <strong>of</strong> S.<br />

ovalisporum, DAOM 186447. Two more <strong>CBS</strong> isolates accessed<br />

as S. roseum, <strong>CBS</strong> 119.77 <strong>and</strong> <strong>CBS</strong> 146.78, also gave ITS<br />

sequences identical to EU445372. A recent partial ITS sequence<br />

made by K.A. Seifert for <strong>CBS</strong> 227.76 agreed with our sequence<br />

(data not shown). No one has thus been able to replicate the<br />

sequence given for S. roseum in AB019365 <strong>and</strong> we are uncertain<br />

<strong>of</strong> its significance, even though a similar sequence (GenBank<br />

AB019364) has been attributed to two other S. roseum isolates<br />

in the JCM collection by the same depositor, G. Okada. If the<br />

fallibilities <strong>of</strong> earlier sequencing chemistries are involved in these<br />

discrepancies, S. ovalisporum may be more closely related to T.<br />

sympodiale than is evident in the literature. Preliminary results<br />

have shown at least one substitution distinguishing the translation<br />

elongation factor α sequence <strong>of</strong> S. ovalisporum from that <strong>of</strong> T.<br />

sympodiale (Rehner, data not shown). Based on comparative<br />

morphology <strong>and</strong> habitat, the authors <strong>of</strong> S. ovalisporum are<br />

confident that their species is distinct, <strong>and</strong> thus the new<br />

combination is included here with their sanction.<br />

5. Trichothecium sympodiale Summerbell, Seifert, &<br />

Schroers, nom. nov. MycoBank MB 519600.<br />

Basionym: Spicellum roseum Nicot & Roquebert, Revue Mycol.,<br />

Paris 39: 272. 1976 [1975].<br />

If recombined into Trichothecium, Spicellum roseum would result in<br />

a homonym <strong>of</strong> the type species, thus a new name is needed.<br />

<strong>Acremonium</strong> atrogriseum <strong>and</strong> <strong>Acremonium</strong> cf.<br />

alternatum CBs 109043 in the Cephalothecaceae: a<br />

study in comparative morphology vs. phylogeny<br />

<strong>Acremonium</strong> atrogriseum <strong>and</strong> an isolate identified as <strong>Acremonium</strong> cf.<br />

alternatum <strong>CBS</strong> 109043 belong in the Cephalothecaceae (Fig. 1C).<br />

This isolate is a white coloured acremonioid fungus forming fusoid<br />

conidia in long chains. It also forms small, dark structures that may<br />

be aborted ascomatal initials. Sequencing <strong>of</strong> the ITS region (data not<br />

shown) reveals it to be a representative <strong>of</strong> Phialemonium obovatum.<br />

It is identical in all bases but one to the ITS sequence <strong>of</strong> ex-type strain<br />

<strong>CBS</strong> 279.76 (AB278187) <strong>and</strong> in all but two bases to another isolate<br />

<strong>of</strong> this species, <strong>CBS</strong> 116.74. Phialemonium obovatum was described<br />

as having conidia in slimy heads (Gams & McGinnis 1983). <strong>CBS</strong><br />

109043 shows that either mucoid heads or chains may be formed<br />

in this species, as in <strong>Acremonium</strong> persicinum, A. sclerotigenum,<br />

<strong>and</strong> Gliomastix murorum. Gams (1971) mentions an isolate <strong>of</strong><br />

Sarocladium bacillisporum that tends to produce mucoid heads.<br />

Colonies producing conidia in chains <strong>of</strong>ten have a different look from<br />

their head-forming conspecifics; the mass colour <strong>of</strong> the chains may<br />

give the colony colours not found in the species descriptions, such<br />

as the chalk white colour <strong>of</strong> <strong>CBS</strong> 109043 in contrast to the normally<br />

pale greenish brown <strong>of</strong> P. obovatum or the greenish grey <strong>of</strong> A.<br />

sclerotigenum isolate 223.70, in contrast to the normal pale salmon<br />

pink <strong>of</strong> non-catenate A. sclerotigenum.<br />

Existing morphological keys <strong>and</strong> descriptions not just in<br />

<strong>Acremonium</strong> but in all the acremonioid fungi need to be cautiously <strong>and</strong><br />

skeptically interpreted. At the very least, identifications for publication<br />

should be tested by sequencing. We hope that the LSU sequences<br />

in this paper will provide the foundation for a <strong>phylogenetic</strong>ally sound<br />

approach to the systematics <strong>and</strong> ecology <strong>of</strong> acremonioid fungi.


ACKNOWleDGeMeNTs<br />

We greatly thank Arien van Iperen, Bert Gerrits-van den Ende, <strong>and</strong> Kasper<br />

Luijsterburg for essential technical support in this study, as well as Keith Seifert<br />

<strong>and</strong> Steve Rehner for scientific contributions. Key work was done by co-op students<br />

Salvatore Lopes, Saghal Ahmed-Suleyman, Arwin van der Rhee, <strong>and</strong> Nienke<br />

Lancee as well as visiting Canadian student Jonathan Shapero. For sending type<br />

cultures, we thank Akira Nakagiri <strong>of</strong> the NITE Biological Resource Centre Fungi<br />

collection <strong>and</strong> Françoise Symoens <strong>of</strong> the BCCM-IHEM collection. The staff <strong>of</strong> the<br />

<strong>CBS</strong> Collection deserve special thanks for strain cultivation <strong>and</strong> additional work.<br />

The encouragement <strong>and</strong> mentorship <strong>of</strong> Walter Gams is highly appreciated, <strong>and</strong> we<br />

hope our partial resolution <strong>of</strong> the dilemmas posed by <strong>phylogenetic</strong> systematics in<br />

<strong>Acremonium</strong> will be recognised as complementary to his invaluable work.<br />

ReFeReNCes<br />

Arx JA von, Mukerji KG, Singh N (1978). Leucosphaera, a new genus <strong>of</strong> the<br />

Pseudeurotiaceae. Persoonia 10: 141–143.<br />

Bachmann HP, Bobst C, Bütik<strong>of</strong>er U, Casey MG, Dalla Torre M, Fröhlich-Wyder MT,<br />

Fürst M (2005). Occurrence <strong>and</strong> significance <strong>of</strong> Fusarium domesticum alias<br />

Anticollanti on smear-ripened cheeses. LWT - Food Science <strong>and</strong> Technology<br />

38: 399–407.<br />

Bills GF, Platas G, Gams W (2004). Conspecificity <strong>of</strong> the cerulenin <strong>and</strong> helvolic<br />

acid producing ‘Cephalosporium caerulens’, <strong>and</strong> the hypocrealean fungus<br />

Sarocladium oryzae Mycological Research 108: 1291–1300.<br />

Castlebury LA, Rossman AY, Sung GH, Hyten AS, Spatafora JW (2004). Multigene<br />

phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air<br />

fungus. Mycological Research 108: 864–872.<br />

Dickinson CH (1968). Gliomastix Guéguen. Mycological Papers 115: 1–26.<br />

Domsch KH, Gams W, Anderson T-H (2007) Compendium <strong>of</strong> soil fungi. IHW-Verl.,<br />

Eching, Germany.<br />

Gams W (1968). Typisierung der Gattung <strong>Acremonium</strong>. Nova Hedwigia 16: 141–145.<br />

Gams W (1971). Cephalosporium-artige Schimmelpilze (Hyphomycetes). 1–262.<br />

G. Fischer, Stuttgart.<br />

Gams W (1975). Cephalosporium-like Hyphomycetes: some tropical species.<br />

Transactions <strong>of</strong> the British Mycological Society 64: 389–404.<br />

Gams W (1978). Connected <strong>and</strong> disconnected chains <strong>of</strong> phialoconidia <strong>and</strong><br />

Sagenomella gen. nov. segregated from <strong>Acremonium</strong>. Persoonia 10: 97–112.<br />

Gams W, Hawksworth DL (1976) [‘1975’]. The identity <strong>of</strong> Acrocylindrium oryzae<br />

Sawada <strong>and</strong> a similar fungus causing sheath rot <strong>of</strong> rice. Kavaka 3: 57–61.<br />

Gams W, Lacey J (1972). Cephalosporium-like Hyphomycetes. Two species <strong>of</strong><br />

<strong>Acremonium</strong> from heated substrates. Transactions <strong>of</strong> the British Mycological<br />

Society 59: 519–522.<br />

Gams W, McGinnis MR (1983). Phialemonium, a new anamorph genus intermediate<br />

between Phialophora <strong>and</strong> <strong>Acremonium</strong>. Mycologia 75: 977–987.<br />

Gams W, O’Donnell K, Schroers H-J, Christensen M (1998). Generic classification<br />

<strong>of</strong> some more hyphomycetes with solitary conidia borne on phialides. Canadian<br />

Journal <strong>of</strong> Botany 76: 1570–1583.<br />

Gargas A, Taylor JW (1992). Polymerase chain reaction (PCR) primers for amplifying<br />

<strong>and</strong> sequencing 18S rDNA from lichenized fungi. Mycologia 84: 589–592.<br />

Glenn AE, Bacon CW, Price R, Hanlin RT (1996). Molecular phylogeny <strong>of</strong><br />

<strong>Acremonium</strong> <strong>and</strong> its taxonomic implications. Mycologia 88: 369–383.<br />

Gómez BL, Nosanchuk JD (2003). Melanin <strong>and</strong> fungi. Current Opinion in Infectious<br />

Disease 16: 91–96.<br />

Gräfenhan T, Schroers H-J, Nirenberg HI, Seifert KA (2011). An <strong>overview</strong> <strong>of</strong> the<br />

taxonomy, phylogeny, <strong>and</strong> typification <strong>of</strong> nectriaceous fungi in Cosmospora,<br />

<strong>Acremonium</strong>, Fusarium, Stilbella, <strong>and</strong> Volutella. Studies in Mycology 68: 79–<br />

113 (this issue).<br />

Hammill TM (1981). On Gliomastix murorum <strong>and</strong> G. felina. Mycologia 73: 229–237<br />

Hoog GS de, Guarro J, Gené J, Figueras MJ (2000). Atlas <strong>of</strong> Clinical Fungi. 2 nd ed.<br />

Utrecht, Netherl<strong>and</strong>s: Centraalbureau voor Schimmelcultures.<br />

Hoog GS de, Gerrits van den Ende AHG (1998). Molecular diagnostics <strong>of</strong> clinical<br />

strains <strong>of</strong> filamentous basidiomycetes. Mycoses 41: 183–189.<br />

Hughes SJ (1958). Revisiones hyphomycetum aliquot cum appendice de nominibus<br />

rejiciendis. Canadian Journal <strong>of</strong> Botany 36: 727–836.<br />

Ito T, Okane I, Nakagiri A, Gams W (2000). Two species <strong>of</strong> <strong>Acremonium</strong> section<br />

<strong>Acremonium</strong>: A. borodinense sp. nov. <strong>and</strong> A. cavaraeanum rediscovered.<br />

Mycological Research 104: 77–80.<br />

Kiyuna T, An K-D, Kigawa R, Sano C, Miura S, Sugiyama J (2010). Molecular<br />

assessment <strong>of</strong> fungi in ‘‘black spots" that deface murals in the Takamatsuzuka<br />

<strong>and</strong> Kitora Tumuli in Japan: <strong>Acremonium</strong> sect. Gliomastix including <strong>Acremonium</strong><br />

tumulicola sp. nov. <strong>and</strong> <strong>Acremonium</strong> felinum comb. nov. Mycoscience 52: 1–17.<br />

Lechat C, Farr DF, Hirooka Y, Minnis AM, Rossman AY (2010). A new species <strong>of</strong><br />

Hydropisphaera, H. bambusicola, is the sexual state <strong>of</strong> Gliomastix fusigera.<br />

Mycotaxon 111: 95–102.<br />

www.studiesinmycology.org<br />

acremonium phylogeny<br />

Liang ZQ, HanYF, Chu HL, Fox RTV (2009). Studies on the genus Paecilomyces<br />

in China V. Taifanglania gen. nov. for some monophialidic species. Fungal<br />

Diversity 34: 69–77.<br />

Link H (1809). Observationes in ordines plantarum naturals. Gesellschaft<br />

Naturforschender Freunde zu Berlin Magazin 3: 1–42.<br />

Lutzoni F, Wagner P, Reeb V, Zoller S (2000). Integrating ambiguously aligned<br />

regions <strong>of</strong> DNA sequences in <strong>phylogenetic</strong> analyses without violating positional<br />

homology. Systematic Biology 49: 628–651<br />

Maddison WP, Maddison DR (2003). MacClade: analysis <strong>of</strong> phylogeny <strong>and</strong> character<br />

evolution. V. 4.06. Sinauer, Sunderl<strong>and</strong>, Massachusetts.<br />

Malloch D (1989). An undescribed species <strong>of</strong> Leucosphaerina. Studies in Mycology<br />

31: 107–111.<br />

Mason-Gamer R, Kellogg E (1996). Testing for <strong>phylogenetic</strong> conflict among<br />

molecular datasets in the tribe Triticeae (Graminae). Systematic Biology 45:<br />

524–545.<br />

Matsushima T (1975). Icones Micr<strong>of</strong>ungorum a Matsushima lectorum. Published by<br />

the author, Kobe, Japan, 209 pp.<br />

Mel’nik V, Lee S, Groenewald J Z, Crous PW (2004). New hyphomycetes from<br />

Restionaceae in fynbos: Parasarcopodium ceratocaryi gen. et sp. nov., <strong>and</strong><br />

Rhexodenticula elegiae sp. nov. Mycological Progress 3: 19–28.<br />

Morgan-Jones G, Gams W (1982). Notes on Hyphomycetes. XLI. An endophyte <strong>of</strong><br />

Festuca arundinacea <strong>and</strong> the anamorph <strong>of</strong> Epichloe typhina, new taxa in one<br />

<strong>of</strong> two new sections <strong>of</strong> <strong>Acremonium</strong>. Mycotaxon 15: 311–318.<br />

Novicki TJ, LaFe K, Bui L, Bui U, Geise R, Marr K, Cookson BT (2003). Genetic<br />

diversity among clinical isolates <strong>of</strong> <strong>Acremonium</strong> strictum determined during an<br />

investigation <strong>of</strong> a fatal mycosis. Journal <strong>of</strong> Clinical Microbiology 41: 2623–2628.<br />

O’Donnell K (1993). Fusarium <strong>and</strong> its near relatives. In: The fungal holomorph:<br />

mitotic, meiotic <strong>and</strong> pleomorphic speciation in fungal systematics. (Reynolds<br />

R, Taylor JW, eds.), CBA International, Wallingford, United Kingdom: 225–233.<br />

Perdomo H, Sutton DA, García D, Fothergill AW, Cano J, Gené J, Summerbell<br />

RC, Rinaldi MG, Guarro J (2010). Spectrum <strong>of</strong> clinically relevant <strong>Acremonium</strong><br />

species in the United States. Journal <strong>of</strong> Clinical Microbiology. doi:10.1128/<br />

JCM.00793-10<br />

Raper JR, Raper CA (1972). Genetic analysis <strong>of</strong> the life cycle <strong>of</strong> Agaricus bisporus.<br />

Mycologia 64:1088–1117.<br />

Reeb V, Roux C, Lutzoni F (2004). Contribution <strong>of</strong> RPB2 to multilocus <strong>phylogenetic</strong><br />

studies <strong>of</strong> the euascomycetes (Pezizomycotina, Fungi) with special emphasis<br />

on the lichen-forming Acarosporaceae <strong>and</strong> evolution <strong>of</strong> polyspory. Molecular<br />

Phylogenetics <strong>and</strong> Evolution 32: 1036–1060.<br />

Rifai MA, Cooke RC (1966). Studies on some didymosporous genera <strong>of</strong> nematodetrapping<br />

Hyphomycetes. Transactions <strong>of</strong> the British Mycological Society 49:<br />

147 – 168.<br />

Rossman AY, Samuels GJ, Rogerson CT, Lowen R (1999). Genera <strong>of</strong> Bionectriaceae,<br />

Hypocreaceae <strong>and</strong> Nectriaceae (Hypocreales, Ascomycetes). Studies in<br />

Mycology 42: 1–248.<br />

Schoch CL, Sung G-H, López-Giráldez F, Townsend JP, Miadlikowska J, H<strong>of</strong>stetter<br />

V, Robbertse B, Matheny PB, Kauff F, Wang Z, Guiedan C, Andrie RM, Trippe K,<br />

Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Yahr R, Groenewald<br />

JZ, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K,<br />

Gryzenhout M, Wingfield MJ, Aptroot A, Suh S-O, Blackwell M, Hillis DM,<br />

Griffith GW, Castlebury LA, Rossman AY, Lumbsch HT, Lücking R, Büdel B,<br />

Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer<br />

J, Volkmann-Kohlmeyer B, Mostert L, O’Donnell K, Sipman H, Rogers JD,<br />

Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston P,<br />

Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe<br />

JM, Lutzoni F, Spatafora JW (2009) The Ascomycota tree <strong>of</strong> life: a phylumwide<br />

phylogeny clarifies the origin <strong>and</strong> evolution <strong>of</strong> fundamental reproductive <strong>and</strong><br />

ecological traits. Systematic Biology 58: 224–239.<br />

Schroers H-J (2000). Generic delimitation <strong>of</strong> Bionectria (Bionectriaceae,<br />

Hypocreales) based on holomorph characters <strong>and</strong> rDNA sequences. Studies<br />

in Mycology 45: 63–82.<br />

Schroers H-J (2001). A monograph <strong>of</strong> Bionectria (Ascomycota, Hypocreales,<br />

Bionectriaceae) <strong>and</strong> its Clonostachys anamorphs. Studies in Mycology 46:<br />

1–214.<br />

Schroers H-J, Geldenhuis MM, Wingfield MJ, Schoeman MH, Yen YF, Shen WC,<br />

Wingfield BD (2005). Classification <strong>of</strong> the guava wilt fungus Myxosporium<br />

psidii, the palm pathogen Gliocladium vermoesenii <strong>and</strong> the persimmon wilt<br />

fungus <strong>Acremonium</strong> diospyri in Nalanthamala. Mycologia 97: 375–395.<br />

Seifert KA (1985). A monograph <strong>of</strong> Stilbella <strong>and</strong> allied hyphomycetes. Studies in<br />

Mycology 27: 1–235.<br />

Seifert KA, Rehner SA, Sugita T, Okada G (2008). Spicellum ovalisporum Seifert &<br />

Rehner, sp. nov. Fungal Planet 28: 1–4.<br />

Sigler L, Sutton DA, Gibas CF, Summerbell RC, Noel RK, Iwen PC (2010)<br />

Phialosimplex, a new anamorphic genus associated with infections in dogs<br />

<strong>and</strong> having <strong>phylogenetic</strong> affinity to the Trichocomaceae. Medical Mycology 48:<br />

335–345.<br />

161


SuMMerbell et al.<br />

Stamatakis A, Hoover P, Rougemont J (2008). A rapid bootstrap algorithm for the<br />

RAxML web-servers. Systematic Biology 75: 758–771.<br />

Stamatakis A, Ludwig T, Meier H (2005). RAxML-III: A fast program for maximum<br />

likelihood-based inference <strong>of</strong> large <strong>phylogenetic</strong> trees. Bioinformatics 21:<br />

456–463.<br />

Suh S-O, Blackwell M (1999). Molecular phylogeny <strong>of</strong> the cleistothecial fungi placed<br />

in Cephalothecaceae <strong>and</strong> Pseudeurotiaceae Mycologia 91: 836–848.<br />

Summerbell RC (2003). Aspergillus, Fusarium, Sporothrix, Piedraia <strong>and</strong> their<br />

relatives. In: Pathogenic Fungi in Humans <strong>and</strong> Animals (Howard DH, ed)<br />

Marcel Dekker Press, New York: 237–498.<br />

Summerbell RC, Schroers H-J (2002). Analysis <strong>of</strong> <strong>phylogenetic</strong> relationship <strong>of</strong><br />

Cylindrocarpon lichenicola <strong>and</strong> <strong>Acremonium</strong> falciforme to the Fusarium solani<br />

species complex <strong>and</strong> a review <strong>of</strong> similarities in the spectrum <strong>of</strong> opportunistic<br />

infections caused by these fungi. Journal <strong>of</strong> Clinical Microbiology 40: 2866–<br />

2875.<br />

Sung GH, Hywell-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW<br />

(2007). Phylogenetic classification <strong>of</strong> Cordyceps <strong>and</strong> the clavicipitaceous fungi.<br />

Studies in Mycology 57: 5–59.<br />

Vilgalys R, Hester M (1990). Rapid genetic identification <strong>and</strong> mapping <strong>of</strong><br />

enzymatically amplified ribosomal DNA from several Cryptococcus species.<br />

Journal <strong>of</strong> Bacteriology 172: 4238–4246.<br />

162<br />

White TJ, Bruns TD, Lee SB, Taylor JW (1990). Amplification <strong>and</strong> direct sequencing<br />

<strong>of</strong> fungal ribosomal RNA genes for <strong>phylogenetic</strong>s. In: PCR protocols: A guide to<br />

methods <strong>and</strong> applications. (Innis MA, Gelf<strong>and</strong> DA, Sninsky JJ, White TJ, eds.),<br />

Academic Press, San Diego, California, USA: 315–322.<br />

Wicklow DT, Poling SM, Summerbell RC (2008). Occurrence <strong>of</strong> pyrrocidine <strong>and</strong><br />

dihydroresorcylide production among <strong>Acremonium</strong> zeae populations from<br />

maize grown in different regions. Canadian Journal <strong>of</strong> Plant Pathology 30:<br />

425–433.<br />

Zare R, Gams W (2001). A <strong>revision</strong> <strong>of</strong> Verticillium section Prostrata. IV. The genera<br />

Lecanicillium <strong>and</strong> Simplicillium gen. nov. Nova Hedwigia 73: 1–50.<br />

Zare R, Gams W, Starink-Willemse M, Summerbell RC (2007). Gibellulopsis, a<br />

suitable genus for Verticillium nigrescens, <strong>and</strong> Musicillium, a new genus for V.<br />

theobromae. Nova Hedwigia 85: 463–489.<br />

Zuccaro A, Summerbell RC, Gams W, Schroers H-J, Mitchell JI (2004). A new<br />

<strong>Acremonium</strong> species associated with Fucus spp., <strong>and</strong> its affinity with a<br />

<strong>phylogenetic</strong>ally distinct marine Emericellopsis clade. Studies in Mycology 50:<br />

283–297.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!