10.10.2013 Views

Acremonium phylogenetic overview and revision of ... - CBS - KNAW

Acremonium phylogenetic overview and revision of ... - CBS - KNAW

Acremonium phylogenetic overview and revision of ... - CBS - KNAW

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

available online at www.studiesinmycology.org StudieS in Mycology 68: 139–162. 2011.<br />

doi:10.3114/sim.2011.68.06<br />

<strong>Acremonium</strong> <strong>phylogenetic</strong> <strong>overview</strong> <strong>and</strong> <strong>revision</strong> <strong>of</strong> Gliomastix, Sarocladium, <strong>and</strong><br />

Trichothecium<br />

R.C. Summerbell1, 2* , C. Gueidan3, 4 , H-J. Schroers3, 5 , G.S. de Hoog3 , M. Starink3 , Y. Arocha Rosete1 , J. Guarro6 1, 2<br />

<strong>and</strong> J.A. Scott<br />

1 Sporometrics, Inc. 219 Dufferin Street, Suite 20C, Toronto, Ont., Canada M6K 1Y9; 2 Dalla Lana School <strong>of</strong> Public Health, University <strong>of</strong> Toronto, 223 College St., Toronto ON<br />

Canada M5T 1R4; 3 <strong>CBS</strong>-<strong>KNAW</strong>, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherl<strong>and</strong>s; 4 Department <strong>of</strong> Botany, The Natural History Museum, Cromwell<br />

Road, SW7 5BD London, United Kingdom; 5 Agricultural Institute <strong>of</strong> Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia, Mycology Unit, Medical School; 6 IISPV, Universitat<br />

Rovira i Virgili, Reus, Spain<br />

*Correspondence: Richard Summerbell, rsummerbell@sporometrics.com<br />

Abstract: Over 200 new sequences are generated for members <strong>of</strong> the genus <strong>Acremonium</strong> <strong>and</strong> related taxa including ribosomal small subunit sequences (SSU) for <strong>phylogenetic</strong><br />

analysis <strong>and</strong> large subunit (LSU) sequences for phylogeny <strong>and</strong> DNA-based identification. Phylogenetic analysis reveals that within the Hypocreales, there are two major<br />

clusters containing multiple <strong>Acremonium</strong> species. One clade contains <strong>Acremonium</strong> sclerotigenum, the genus Emericellopsis, <strong>and</strong> the genus Geosmithia as prominent elements.<br />

The second clade contains the genera Gliomastix sensu stricto <strong>and</strong> Bionectria. In addition, there are numerous smaller clades plus two multi-species clades, one containing<br />

<strong>Acremonium</strong> strictum <strong>and</strong> the type species <strong>of</strong> the genus Sarocladium, <strong>and</strong>, as seen in the combined SSU/LSU analysis, one associated subclade containing <strong>Acremonium</strong><br />

breve <strong>and</strong> related species plus <strong>Acremonium</strong> curvulum <strong>and</strong> related species. This sequence information allows the <strong>revision</strong> <strong>of</strong> three genera. Gliomastix is revived for five species,<br />

G. murorum, G. polychroma, G. tumulicola, G. roseogrisea, <strong>and</strong> G. masseei. Sarocladium is extended to include all members <strong>of</strong> the <strong>phylogenetic</strong>ally distinct A. strictum<br />

clade including the medically important A. kiliense <strong>and</strong> the protective maize endophyte A. zeae. Also included in Sarocladium are members <strong>of</strong> the <strong>phylogenetic</strong>ally delimited<br />

<strong>Acremonium</strong> bacillisporum clade, closely linked to the A. strictum clade. The genus Trichothecium is revised following the principles <strong>of</strong> unitary nomenclature based on the<br />

oldest valid anamorph or teleomorph name, <strong>and</strong> new combinations are made in Trichothecium for the tightly interrelated <strong>Acremonium</strong> crotocinigenum, Spicellum roseum,<br />

<strong>and</strong> teleomorph Leucosphaerina indica. Outside the Hypocreales, numerous <strong>Acremonium</strong>-like species fall into the Plectosphaerellaceae, <strong>and</strong> A. atrogriseum falls into the<br />

Cephalothecaceae.<br />

Key words: <strong>Acremonium</strong>, Cephalothecaceae, Gliomastix, holomorph concept, Leucosphaerina, nomenclature, Sarcopodium, Sarocladium, Trichothecium.<br />

Taxonomic novelties: Trichothecium sympodiale Summerbell, Seifert, & Schroers, nom. nov.; Gliomastix roseogrisea (S.B. Saksena) Summerbell, comb. nov., Gliomastix<br />

tumulicola (Kiyuna, An, Kigawa & Sugiy.) Summerbell, comb. nov., Sarocladium bacillisporum (Onions & Barron) Summerbell, comb. nov., Sarocladium bactrocephalum (W.<br />

Gams) Summerbell, comb. nov., Sarocladium glaucum (W. Gams) Summerbell, comb. nov., Sarocladium kiliense (Grütz) Summerbell, comb. nov., Sarocladium ochraceum<br />

(Onions & Barron) Summerbell, comb. nov., Sarocladium strictum (W. Gams) Summerbell, comb. nov., Sarocladium zeae (W. Gams & D.R. Sumner) Summerbell, comb. nov.,<br />

Trichothecium crotocinigenum (Schol-Schwarz) Summerbell, Seifert, & Schroers, comb. nov., Trichothecium indicum (Arx, Mukerji & N. Singh) Summerbell, Seifert, & Schroers,<br />

comb. nov., Trichothecium ovalisporum (Seifert & Rehner) Seifert & Rehner, comb. nov.<br />

INTRODUCTION<br />

The genus <strong>Acremonium</strong> includes some <strong>of</strong> the most simply structured<br />

<strong>of</strong> all filamentous anamorphic fungi. The characteristic morphology<br />

consists <strong>of</strong> septate hyphae giving rise to thin, tapered, mostly lateral<br />

phialides produced singly or in small groups. Conidia tend to be<br />

unicellular, produced in mucoid heads or unconnected chains. They<br />

can be hyaline or melanised, but the hyphae are usually hyaline. A<br />

preliminary study <strong>of</strong> the <strong>phylogenetic</strong> diversity <strong>of</strong> <strong>Acremonium</strong> by<br />

Glenn et al. (1996), based on partial nuclear ribosomal small subunit<br />

(SSU) sequences, showed that recognised members belonged to at<br />

least three groups in distinct orders <strong>of</strong> fungi. Most species including<br />

the type, A. alternatum, belong to the order Hypocreales. A smaller<br />

group <strong>of</strong> species, <strong>Acremonium</strong> section Chaetomioidea, belongs to the<br />

Sordariales. This section, typified by the <strong>Acremonium</strong> alabamense<br />

anamorph <strong>of</strong> Thielavia terrestris, was conceived as including the<br />

<strong>Acremonium</strong>-like anamorphs <strong>of</strong> Chaetomium <strong>and</strong> Thielavia species<br />

(Morgan-Jones & Gams 1982). A recent study has placed several<br />

<strong>of</strong> these heret<strong>of</strong>ore unnamed <strong>Acremonium</strong>-like anamorphs into the<br />

new genus Taifanglania (Liang et al. 2009), based on the type, T.<br />

hechuanensis. Another <strong>Acremonium</strong> species included by Glenn et<br />

al. (1996), A. furcatum, belongs to an order <strong>of</strong> uncertain identity.<br />

Copyright 2011 <strong>CBS</strong>-<strong>KNAW</strong> Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherl<strong>and</strong>s.<br />

Subsequent publications have shown that A. furcatum is related to<br />

the well-known phytopathogen Verticillium dahliae <strong>and</strong> belongs to the<br />

recently established family Plectosphaerellaceae (Zare et al. 2007,<br />

Schoch et al. 2009), which groups together with the Glomerellaceae<br />

in a clade that forms a poorly defined, unnamed, ordinal-level sistertaxon<br />

to the Microascales. Several other <strong>Acremonium</strong> species such<br />

as the phytopathogen A. cucurbitacearum also have been shown<br />

to belong to the Plectosphaerellaceae (Zare et al. 2007). The<br />

simple structure <strong>of</strong> <strong>Acremonium</strong> has either convergently evolved<br />

in diverse fungal orders within the class Sordariomycetes or is<br />

symplesiomorphic at a very deep level.<br />

The diversity <strong>of</strong> fungi throughout the Ascomycota that produce<br />

<strong>Acremonium</strong>-like anamorphs is high, including genera such as<br />

Gabarnaudia (Microascales), Lecythophora (Coniochaetales), <strong>and</strong><br />

Pseudogliomastix (Sordariales incertae sedis). The present study<br />

does not review the vast range <strong>of</strong> fungi producing simple phialidic<br />

conidiophores, but instead, focuses specifically on: 1) anamorphs<br />

that have been formally placed into the genus <strong>Acremonium</strong>, <strong>and</strong><br />

2) species <strong>and</strong> genera <strong>phylogenetic</strong>ally related to the named<br />

<strong>Acremonium</strong> species.<br />

The number <strong>of</strong> previously <strong>phylogenetic</strong>ally unstudied fungi is large.<br />

Currently, there are approximately 95 named <strong>Acremonium</strong> species with<br />

You are free to share - to copy, distribute <strong>and</strong> transmit the work, under the following conditions:<br />

Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use <strong>of</strong> the work).<br />

Non-commercial: You may not use this work for commercial purposes.<br />

No derivative works: You may not alter, transform, or build upon this work.<br />

For any reuse or distribution, you must make clear to others the license terms <strong>of</strong> this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any <strong>of</strong> the above conditions can be waived if you get<br />

permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.<br />

139


SuMMerbell et al.<br />

traceable material (cultures or specimens in good condition), excluding<br />

endophyte species that were transferred to Neotyphodium by Glenn et<br />

al. (1996). In addition, there are an undetermined number <strong>of</strong> nectriaceous<br />

teleomorphs with unnamed <strong>Acremonium</strong>-like anamorphs plus about<br />

15 named <strong>and</strong> unnamed Emericellopsis species with <strong>Acremonium</strong><br />

anamorphs (Zuccaro et al. 2004). The preliminary phylogeny done by<br />

Glenn et al. (1996) includes only seven species that would currently be<br />

considered <strong>Acremonium</strong>, inclusive <strong>of</strong> the <strong>Acremonium</strong> berkeleyanum,<br />

anamorph <strong>of</strong> Cosmospora berkeleyana, formerly considered the<br />

anamorph <strong>of</strong> Cosmospora vilior, plus two Emericellopsis species. Clearly,<br />

further work is needed on the phylogeny <strong>of</strong> <strong>Acremonium</strong>.<br />

Because <strong>of</strong> the high biodiversity within <strong>Acremonium</strong>, relatively<br />

evolutionarily labile, rapidly evolving genes like the ribosomal internal<br />

transcribed spacer (ITS) are not alignable across the genus (de Hoog<br />

et al. 2000) or even within some <strong>of</strong> the individual orders that the<br />

genus spans. Because many <strong>Acremonium</strong> species are derived from<br />

relatively closely related families in the Sordariomycetes, relatively<br />

slowly evolving genes that are alignable such as the ribosomal large<br />

subunit (LSU) may yield considerable ambiguity about relationships.<br />

To address this problem, we performed an analysis <strong>of</strong> LSU <strong>and</strong> whole<br />

SSU sequences for a larger number <strong>of</strong> <strong>Acremonium</strong> isolates than has<br />

been examined previously. Based on these results, we chose six <strong>of</strong><br />

the most <strong>phylogenetic</strong>ally distinctive species <strong>and</strong> included them in the<br />

Ascomycetous Tree <strong>of</strong> Life project (Schoch et al. 2009). The elegant<br />

<strong>phylogenetic</strong> analysis in that project was based on two nuclear<br />

ribosomal genes, one mitochondrial ribosomal gene, <strong>and</strong> portions<br />

<strong>of</strong> three protein-coding genes. These results permitted us to gain a<br />

clearer picture <strong>of</strong> relationships among the <strong>Acremonium</strong> groups that<br />

were imperfectly resolved in LSU <strong>and</strong> SSU analysis.<br />

In the present study we present the results <strong>of</strong> the LSU <strong>and</strong><br />

small subunit (SSU) <strong>phylogenetic</strong> analyses for the majority <strong>of</strong><br />

<strong>Acremonium</strong> species available in pure culture including described<br />

<strong>and</strong> undescribed species. This gives not only a <strong>phylogenetic</strong><br />

<strong>overview</strong> <strong>of</strong> the genus, but also provides identification-enabling<br />

sequences for <strong>Acremonium</strong> species that have not been sequenced<br />

previously. Taken with the Tree <strong>of</strong> Life studies, these results shed<br />

new light on the biodiversity <strong>of</strong> these morphologically simple fungi<br />

that have long been pr<strong>of</strong>oundly problematical in terms <strong>of</strong> accurate<br />

classification <strong>and</strong> reliable species identification.<br />

MATeRIAls AND MeThODs<br />

Two separate sets <strong>of</strong> data matrices were assembled (Table 1).<br />

The first is a two-gene analysis that aims at investigating the<br />

<strong>phylogenetic</strong> position <strong>of</strong> <strong>Acremonium</strong> within the Sordariomycetes.<br />

The second is a one-gene analysis focusing on the <strong>Acremonium</strong><br />

strains belonging to the order Hypocreales. The first set includes<br />

the large <strong>and</strong> small subunits <strong>of</strong> the nuclear ribosomal RNA gene<br />

(nucLSU <strong>and</strong> nucSSU, respectively) <strong>and</strong> 166 taxa, including 56<br />

strains <strong>of</strong> <strong>Acremonium</strong>, 105 reference taxa <strong>of</strong> Sordariomycetes,<br />

<strong>and</strong> five species <strong>of</strong> Leotiomycetes as an outgroup (Botryotinia<br />

fuckeliana, Chalara aurea, Leotia lubrica, Microglossum rufum, <strong>and</strong><br />

Pseudeurotium zonatum). The second set includes only the nucLSU<br />

for 331 taxa including 170 strains <strong>of</strong> <strong>Acremonium</strong>, 158 sequences<br />

<strong>of</strong> Hypocreales, <strong>and</strong> three outgroup species (Ceratocystis fimbriata,<br />

Glomerella cingulata, <strong>and</strong> Ophiostoma piluliferum).<br />

DNA isolation <strong>and</strong> sequencing<br />

DNA was extracted with a FastDNA kit (Qbiogene, Heidelberg,<br />

Germany) from mycelium grown for 5–14 d in liquid Complete<br />

140<br />

Medium (Raper & Raper 1972). The LSU region <strong>of</strong> ribosomal<br />

DNA (rDNA) was amplified with primers V9G (de Hoog & Gerrits<br />

van den Ende 1998) <strong>and</strong> LR5 (Vilgalys & Hester 1990). The SSU<br />

region was amplified with primers NS1 <strong>and</strong> NS24 <strong>and</strong> sequenced<br />

using primers NS1–NS4, NS6, NS24 (White et al. 1990; Gargas et<br />

al. 1992). The components for the PCR were used as described<br />

by Schroers (2000). The PCR program was 60 s at 94 °C (initial<br />

denaturation); 35 cycles <strong>of</strong> 35 s at 94 °C (denaturation), 50 s at<br />

55 °C (annealing), <strong>and</strong> 120 s at 72 °C (elongation); <strong>and</strong> 6 min at<br />

72 °C (final elongation) followed by chilling to 4 °C. The PCR<br />

products were purified with a GFX purification kit (Amersham<br />

Pharmacia Biotech Inc., Roosendaal, The Netherl<strong>and</strong>s) <strong>and</strong><br />

visualised on an electrophoresis gel after ethidium bromide<br />

staining. The rDNA was sequenced with a BigDye terminator<br />

cycle sequencing kit (Applied Biosystems, Foster City, Calif.) <strong>and</strong><br />

analysed on an ABI Prism 3700 instrument (Applied Biosystems)<br />

by using the st<strong>and</strong>ard conditions recommended by the vendor.<br />

The primers used in the sequence reaction were NL1 <strong>and</strong> NL4<br />

(O’Donnell 1993), <strong>and</strong> LR5.<br />

Alignments <strong>and</strong> <strong>phylogenetic</strong> analyses<br />

Sequences were assembled <strong>and</strong> edited using SeqMan II s<strong>of</strong>tware<br />

(DNAStar, Inc., Madison, Wis.). Manual alignments were performed<br />

using MacClade v. 4.08 (Maddison & Maddison 2003). Ambiguous<br />

regions (sensu Lutzoni et al. 2000) <strong>and</strong> introns were delimited<br />

manually <strong>and</strong> excluded from the alignments. Congruence was<br />

tested using a 70 % reciprocal bootstrap criterion (Mason-Gamer<br />

& Kellogg 1996, Reeb et al. 2004). Final <strong>phylogenetic</strong> analyses<br />

<strong>of</strong> the two-gene <strong>and</strong> one-gene datasets were performed using<br />

Stamatakis’s “r<strong>and</strong>omised axelerated (sic) maximum likelihood<br />

for high performance computing” (RAxML VI-HPC, Stamatakis et<br />

al. 2005, 2008) on the Cipres Web Portal (http://www.phylo.org/<br />

sub_sections/portal/). For the two-gene analysis, the maximum<br />

likelihood search followed a "GTRMIX" model <strong>of</strong> molecular<br />

evolution applied to two partitions, nucLSU <strong>and</strong> nucSSU. The<br />

same model was applied to the one-gene analysis without partition.<br />

Support values were obtained in RAxML with bootstrap analyses<br />

<strong>of</strong> 500 pseudoreplicates. The trees are labeled with the updated<br />

scientific names.<br />

ResUlTs<br />

DNA sequence alignments<br />

A total <strong>of</strong> 228 new sequences were generated for <strong>Acremonium</strong>, 192<br />

nucLSU <strong>and</strong> 36 nucSSU (Table 1). For the two-gene dataset, one<br />

nucLSU <strong>and</strong> 41 nucSSU sequences were missing. After exclusion<br />

<strong>of</strong> ambiguous regions <strong>and</strong> introns, the two-gene dataset included 2<br />

955 characters (1 250 nucLSU <strong>and</strong> 1 705 nucSSU). Among these,<br />

1 739 were constant while 900 were parsimony-informative. After<br />

exclusion <strong>of</strong> ambiguous regions <strong>and</strong> introns, the one-gene dataset<br />

included 848 characters. Among these, 481 were constant while<br />

260 were parsimony-informative.<br />

Phylogenetic inference<br />

As shown in Fig. 1, the species <strong>of</strong> <strong>Acremonium</strong> mostly fall into<br />

three groups, namely the Hypocreales, the Plectosphaerellaceae,<br />

<strong>and</strong> the Sordariales. The bulk <strong>of</strong> species fall into the Hypocreales.


www.studiesinmycology.org<br />

Acremoniella lutzi T<br />

Petriella setifera<br />

Doratomyces stemonitis Microascales (1)<br />

93 Microascus longirostris<br />

Microascus trigonosporus<br />

Aniptodera chesapeakensis<br />

99<br />

Halosphaeria appendiculata<br />

80<br />

96<br />

99<br />

Lignincola laevis<br />

Nimbospora effusa<br />

Nohea umiumi Halosphaeriales<br />

95<br />

Corollospora maritima<br />

Varicosporina ramulosa<br />

Ceriosporopsis halima<br />

Graphium penicillioides Microascales (2)<br />

Ambrosiella xylebori<br />

Ceratocystis fimbriata<br />

Microascales (3)<br />

92<br />

89<br />

<strong>Acremonium</strong> alcalophilum <strong>CBS</strong> 114.92 T<br />

<strong>Acremonium</strong> restrictum <strong>CBS</strong> 178.40 T<br />

<strong>Acremonium</strong> antarcticum <strong>CBS</strong> 987.87<br />

<strong>Acremonium</strong> stromaticum <strong>CBS</strong> 863.73 T<br />

75<br />

<strong>Acremonium</strong> furcatum <strong>CBS</strong> 122.42 T<br />

Verticillium alboatrum (<strong>Acremonium</strong> apii T) <strong>CBS</strong> 130.51<br />

Verticillium dahliae<br />

<strong>Acremonium</strong> nepalense <strong>CBS</strong> 971.72 T<br />

Plectosphaerella cucumerina<br />

96<br />

70<br />

<strong>Acremonium</strong> cucurbitacearum <strong>CBS</strong> 683.88<br />

<strong>Acremonium</strong> brunnescens <strong>CBS</strong> 559.73 T<br />

Glomerella cingulata<br />

“<strong>Acremonium</strong> alternatum” <strong>CBS</strong> 406.66<br />

92 Sarocladium bacillisporum <strong>CBS</strong> 425.67 T<br />

“<strong>Acremonium</strong> implicatum” <strong>CBS</strong> 243.59<br />

bacillisporum<br />

-clade<br />

96 99 Sarocladium bactrocephalum <strong>CBS</strong> 749.69 T<br />

Sarocladium strictum <strong>CBS</strong> 346.70 T<br />

Sarocladium kiliense <strong>CBS</strong> 146.62<br />

95<br />

Sarocladium kiliense <strong>CBS</strong> 122.29 T<br />

strictum<br />

-clade<br />

99 Sarocladium zeae <strong>CBS</strong> 801.69 T<br />

<strong>Acremonium</strong> breve <strong>CBS</strong> 150.62 T<br />

<strong>Acremonium</strong> radiatum <strong>CBS</strong> 142.62 T breve/curvulum<br />

96<br />

<strong>Acremonium</strong> gamsii <strong>CBS</strong> 726.71 T<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 430.66 T<br />

-clade<br />

98<br />

“<strong>Acremonium</strong> blochii” <strong>CBS</strong> 424.93<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 310.59 T<br />

persicinum<br />

-clade<br />

99<br />

“<strong>Acremonium</strong> hyalinulum” <strong>CBS</strong> 271.36<br />

Roumegueriella rufula<br />

75<br />

Hydropisphaera erubescens 1<br />

99<br />

85 <strong>Acremonium</strong> spinosum <strong>CBS</strong> 136.33 T<br />

<strong>Acremonium</strong> rutilum <strong>CBS</strong> 396.66 T<br />

Bionectria ochroleuca 2<br />

99 “<strong>Acremonium</strong> blochii” <strong>CBS</strong> 427.93<br />

97 <strong>Acremonium</strong> pinkertoniae <strong>CBS</strong> 157.70 T<br />

74 <strong>Acremonium</strong> chrysogenum <strong>CBS</strong> 144.62 T chrysogenum<br />

<strong>Acremonium</strong> flavum <strong>CBS</strong> 596.70 T<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 124.42 T<br />

Geosmithia lavendula<br />

99 Geosmithia putterillii<br />

“<strong>Acremonium</strong> egyptiacum” <strong>CBS</strong> 303.64<br />

-clade<br />

acremonium phylogeny<br />

Fig. 1.A–C. The <strong>phylogenetic</strong> position <strong>of</strong> <strong>Acremonium</strong> <strong>and</strong> related fungi within the Sordariomycetes, as seen in combined analysis <strong>of</strong> the large <strong>and</strong> small subunits <strong>of</strong> the nuclear<br />

ribosomal RNA gene (LSU + SSU) analysed by maximum likelihood via RAxML VI-HPC following a GTRMIX model applied to two partitions. 100 % bootstrap values are<br />

indicated by a black dot on the relevant internode.<br />

Gliomastix/Bionectria clade<br />

Sarocladium clade<br />

sclerotigenum/Geosmithia clade<br />

Hypocreales<br />

Plectosphaerellaceae<br />

Glomerellales<br />

A<br />

141


SuMMerbell et al.<br />

Fig. 1. (Continued).<br />

142<br />

71<br />

96<br />

Simplicillium lanosoniveum <strong>CBS</strong> 321.72<br />

Cordyceps cardinalis<br />

<strong>Acremonium</strong> camptosporum <strong>CBS</strong> 756.69 T<br />

Paecilomyces lilacinus 2<br />

Elaphocordyceps capitata<br />

Elaphocordyceps ophioglossoides<br />

Balansia henningsiana<br />

Epichloe typhina<br />

Claviceps purpurea<br />

<strong>Acremonium</strong> guillematii <strong>CBS</strong> 766.69 T<br />

<strong>Acremonium</strong> minutisporum <strong>CBS</strong> 147.62 T<br />

<strong>Acremonium</strong> vitellinum <strong>CBS</strong> 792.69 T<br />

<strong>Acremonium</strong> exiguum <strong>CBS</strong> 587.73 T<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 416.68<br />

<strong>Acremonium</strong> psammosporum <strong>CBS</strong> 590.63<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 137.35 T<br />

Nectria cinnabarina<br />

Clavicipitaceae<br />

<strong>Acremonium</strong> roseolum <strong>CBS</strong> 289.62<br />

Stachybotrys chartarum<br />

Stachybotrys subsimplex<br />

Myrothecium roridum 1<br />

Peethambara spirostriata<br />

Pseudonectria rousseliana<br />

<strong>Acremonium</strong> nigrosclerotium <strong>CBS</strong> 154.72 T<br />

96 Hypocrea americana<br />

Hypocrea lutea<br />

Sphaerostilbella berkeleyana<br />

Hypocreaceae<br />

Niesslia exilis<br />

Nectria haematococca<br />

Chaetosphaerella phaeostroma<br />

96<br />

Melanospora tiffanii<br />

Melanospora zamiae<br />

Lindra thalassiae<br />

Lulworthia gr<strong>and</strong>ispora<br />

“<strong>Acremonium</strong> alabamense” <strong>CBS</strong> 456.75<br />

Cercophora terricola<br />

Apiosordaria verruculosa<br />

97 Cercophora striata<br />

Podospora decipiens<br />

Bombardia bombarda<br />

Lasiosphaeria ovina<br />

71<br />

Cercophora newfieldiana<br />

Gelasinospora tetrasperma<br />

99<br />

Neurospora crassa<br />

Immersiella immersa<br />

Lasiosphaeria hispida<br />

Podospora fibrinocaudata<br />

Strattonia carbonaria<br />

84<br />

98<br />

Camarops amorpha<br />

Camarops microspora<br />

Camarops tubulina<br />

Boliniales<br />

94 Camarops ustulinoides<br />

89 97<br />

Chaetosphaeria ovoidea<br />

Menispora tortuosa<br />

Melanochaeta hemipsila<br />

74 Lasiosphaeriella nitida<br />

Linocarpon appendiculatum<br />

T<br />

Cordycipitaceae<br />

Ophiocordycipitaceae<br />

T<br />

Stachybotrys/<br />

Peethambara<br />

-clade<br />

Lulworthiales<br />

Sordariales<br />

Chaetosphaeriales<br />

Hypocreales<br />

B


Fig. 1. (Continued).<br />

www.studiesinmycology.org<br />

99 “<strong>Acremonium</strong> cf. alternatum” <strong>CBS</strong> 109043<br />

<strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 544.79<br />

75<br />

<strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 981.70<br />

80 <strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 774.97<br />

<strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 507.82<br />

<strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 733.70<br />

86 <strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 252.68<br />

<strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 604.67 T<br />

88<br />

92 <strong>Acremonium</strong> atrogriseum <strong>CBS</strong> 306.85<br />

Cephalotheca sulfurea<br />

<strong>Acremonium</strong> thermophilum <strong>CBS</strong> 734.71 T<br />

Albertiniella polyporicola<br />

Coniochaeta ostrea<br />

99<br />

98 Coniochaeta savoryi Coniochaetales<br />

70 Coniochaeta discoidea<br />

Annulatascus triseptatus<br />

89<br />

91 Fragosphaeria purpurea<br />

97<br />

Ophiostoma piliferum 1<br />

Ophiostoma stenoceras<br />

Papulosa amerospora<br />

Apiognomonia errabunda<br />

92 Plagiostoma euphorbiae<br />

Cryptodiaporthe aesculi<br />

99 Gnomonia gnomon<br />

Cryptosporella hypodermia<br />

95 Melanconis alni<br />

Melanconis stilbostoma<br />

81<br />

89 99<br />

Melanconis marginalis<br />

97<br />

Chromendothia citrina<br />

Endothia gyrosa<br />

89 Chrysoporthe cubensis<br />

Diaporthe eres<br />

Diaporthe phaseolorum<br />

84<br />

Mazzantia napelli<br />

88 Leucostoma niveum<br />

Valsella salicis<br />

Valsa ambiens<br />

Cryphonectria parasitica<br />

Anthostomella torosa<br />

Apiospora montagnei<br />

Diatrype disciformis<br />

82<br />

Eutypa lata<br />

Graphostroma platystoma<br />

Xylariales<br />

77<br />

Xylaria acuta<br />

90 Xylaria hypoxylon<br />

Seynesia erumpens<br />

Leotia lubrica<br />

Microglossum rufum<br />

Pseudeurotium zonatum<br />

Chalara aurea<br />

<strong>Acremonium</strong> butyri (?) <strong>CBS</strong> 301.38 T<br />

<strong>Acremonium</strong> lichenicola <strong>CBS</strong> 425.66 T<br />

Botryotinia fuckeliana<br />

0.01 substitutions/site<br />

Cephalothecaceae<br />

Ophiostomatales<br />

Diaporthales<br />

Leotiomycetes (outgroup)<br />

acremonium phylogeny<br />

C<br />

143


SuMMerbell et al.<br />

Table 1. List <strong>of</strong> <strong>Acremonium</strong> species included in this study as well as other novel or independently redone sequences <strong>of</strong> related fungi<br />

used for comparison. Sequences from GenBank <strong>of</strong> other comparison taxa are listed in Supplemental Table 1a - see online Supplementary<br />

Information. Collection <strong>and</strong> GenBank numbers are indicated <strong>and</strong> type strains (T) are mentioned. Sequences generated in this study are<br />

shown in bold. Dashes indicate missing data in the two-gene analysis. Isolates that cannot be assigned a <strong>phylogenetic</strong>ally confirmed name<br />

are listed under the name under which they are currently held in the <strong>CBS</strong> collection.<br />

Currently assigned species name Collection numbers nuclsU nucssU Notes<br />

Acremoniella lutzi T <strong>CBS</strong> 103.48 hQ231971 – Ex-type <strong>of</strong> Acremoniella lutzi<br />

<strong>Acremonium</strong> acutatum T <strong>CBS</strong> 682.71 hQ231965<br />

<strong>Acremonium</strong> alabamense <strong>CBS</strong> 456.75 hQ231972 –<br />

<strong>Acremonium</strong> alcalophilum T <strong>CBS</strong> 114.92 hQ231973 – Ex-type <strong>of</strong> <strong>Acremonium</strong> alcalophilum<br />

<strong>Acremonium</strong> alternatum T <strong>CBS</strong> 407.66 hQ231988<br />

“<strong>Acremonium</strong> alternatum” <strong>CBS</strong> 381.70A hQ231986<br />

<strong>CBS</strong> 406.66 hQ231987 hQ232178<br />

<strong>CBS</strong> 831.97 hQ231989<br />

<strong>CBS</strong> 114602 hQ231990<br />

“<strong>Acremonium</strong> cf. alternatum” <strong>CBS</strong> 109043 hQ231974 –<br />

<strong>Acremonium</strong> antarcticum <strong>CBS</strong> 987.87 hQ231975 –<br />

<strong>Acremonium</strong> atrogriseum T <strong>CBS</strong> 604.67 hQ231981 – Ex-type <strong>of</strong> Phaeoscopulariopsis atrogrisea<br />

<strong>CBS</strong> 252.68 hQ231977 –<br />

<strong>CBS</strong> 306.85 hQ231978 –<br />

<strong>CBS</strong> 507.82 hQ231979 –<br />

<strong>CBS</strong> 544.79 hQ231980 –<br />

<strong>CBS</strong> 733.70 hQ231982 –<br />

<strong>CBS</strong> 774.97 hQ231983 –<br />

<strong>CBS</strong> 981.70 hQ231984 –<br />

<strong>Acremonium</strong> biseptum T <strong>CBS</strong> 750.69 hQ231998 Ex-type <strong>of</strong> <strong>Acremonium</strong> biseptum<br />

“<strong>Acremonium</strong> blochii” <strong>CBS</strong> 324.33 hQ231999<br />

<strong>CBS</strong> 424.93 hQ232000 hQ232181<br />

<strong>CBS</strong> 427.93 hQ232001 hQ232182<br />

<strong>CBS</strong> 993.69 hQ232002<br />

<strong>Acremonium</strong> borodinense T <strong>CBS</strong> 101148 hQ232003 Ex-type <strong>of</strong> <strong>Acremonium</strong> borodinense<br />

<strong>Acremonium</strong> brachypeniumT <strong>CBS</strong> 866.73 hQ232004<br />

<strong>Acremonium</strong> breve T <strong>CBS</strong> 150.62 hQ232005 hQ232183 Ex-type <strong>of</strong> Cephalosporium roseum var. breve<br />

<strong>Acremonium</strong> brunnescens T <strong>CBS</strong> 559.73 hQ231966 hQ232184 Ex-type <strong>of</strong> <strong>Acremonium</strong> brunnescens<br />

<strong>Acremonium</strong> butyri T <strong>CBS</strong> 301.38 hQ231967 – Ex-type <strong>of</strong> Tilachlidium butyri; synonym <strong>of</strong> Cadophora malorum<br />

<strong>Acremonium</strong> camptosporum T <strong>CBS</strong> 756.69 hQ232008 hQ232186 Ex-type <strong>of</strong> <strong>Acremonium</strong> camptosporum<br />

<strong>CBS</strong> 677.74 hQ232007<br />

<strong>CBS</strong> 757.69 hQ232009<br />

<strong>CBS</strong> 835.91 hQ232010<br />

<strong>CBS</strong> 890.85 hQ232011<br />

<strong>Acremonium</strong> cavaraeanum <strong>CBS</strong> 758.69 hQ232012<br />

<strong>Acremonium</strong> cerealis <strong>CBS</strong> 207.65 hQ232013 Ex-type <strong>of</strong> Gliomastix guttuliformis<br />

<strong>CBS</strong> 215.69 hQ232014<br />

<strong>Acremonium</strong> chrysogenum T <strong>CBS</strong> 144.62 hQ232017 hQ232187 Ex-type <strong>of</strong> Cephalosporium chrysogenum<br />

<strong>Acremonium</strong> cucurbitacearum <strong>CBS</strong> 683.88 hQ231968 – Previously identified as <strong>Acremonium</strong> strictum<br />

<strong>Acremonium</strong> curvulum T <strong>CBS</strong> 430.66 hQ232026 hQ232188 Ex-type <strong>of</strong> <strong>Acremonium</strong> curvulum<br />

<strong>CBS</strong> 104.78 hQ232019<br />

<strong>CBS</strong> 214.70 hQ232020<br />

<strong>CBS</strong> 229.75 hQ232021<br />

<strong>CBS</strong> 333.92 hQ232022<br />

<strong>CBS</strong> 384.70A hQ232023<br />

<strong>CBS</strong> 384.70C hQ232024<br />

<strong>CBS</strong> 523.72 hQ232028<br />

<strong>CBS</strong> 761.69 hQ232029<br />

<strong>CBS</strong> 898.85 hQ232030<br />

<strong>CBS</strong> 110514 hQ232032<br />

“<strong>Acremonium</strong> aff. curvulum” <strong>CBS</strong> 100551 hQ232031<br />

<strong>CBS</strong> 113275 hQ232033<br />

<strong>Acremonium</strong> egyptiacum <strong>CBS</strong> 303.64 hQ232034 hQ232189<br />

<strong>Acremonium</strong> exiguum T <strong>CBS</strong> 587.73 hQ232035 hQ232190 Ex-type <strong>of</strong> <strong>Acremonium</strong> exiguum<br />

<strong>Acremonium</strong> exuviarum T UAMH 9995 hQ232036<br />

<strong>Acremonium</strong> flavum T <strong>CBS</strong> 596.70 hQ232037 hQ232191 Ex-type <strong>of</strong> <strong>Acremonium</strong> flavum<br />

<strong>Acremonium</strong> fuci UAMH 6508 hQ232038<br />

<strong>Acremonium</strong> furcatum T <strong>CBS</strong> 122.42 AY378154 hQ232192 Ex-type <strong>of</strong> <strong>Acremonium</strong> furcatum<br />

144


Table 1. (Continued).<br />

www.studiesinmycology.org<br />

acremonium phylogeny<br />

Currently assigned species name Collection numbers nuclsU nucssU Notes<br />

<strong>Acremonium</strong> fusidioides T <strong>CBS</strong> 840.68 hQ232039 Ex-type <strong>of</strong> Paecilomyces fusidioides<br />

<strong>Acremonium</strong> gamsii T <strong>CBS</strong> 726.71 hQ232040 hQ232193 Ex-type <strong>of</strong> <strong>Acremonium</strong> gamsii<br />

<strong>Acremonium</strong> guillematii T <strong>CBS</strong> 766.69 hQ232042 hQ232194 Ex-type <strong>of</strong> <strong>Acremonium</strong> guillematii<br />

<strong>Acremonium</strong> hansfordii <strong>CBS</strong> 390.73 hQ232043<br />

<strong>Acremonium</strong> hennebertii T <strong>CBS</strong> 768.69 hQ232044 Ex-type <strong>of</strong> <strong>Acremonium</strong> hennebertii<br />

<strong>Acremonium</strong> hyalinulum <strong>CBS</strong> 271.36 hQ232045 hQ232195<br />

“<strong>Acremonium</strong> implicatum” <strong>CBS</strong> 243.59 hQ232046 hQ232196 Authentic strain <strong>of</strong> Fusarium terricola<br />

<strong>CBS</strong> 397.70B hQ232047<br />

<strong>Acremonium</strong> incrustatumT <strong>CBS</strong> 159.70 hQ232049<br />

<strong>Acremonium</strong> inflatum T <strong>CBS</strong> 212.69 hQ232050 Ex-type <strong>of</strong> Gliomastix inflata<br />

<strong>CBS</strong> 439.70 hQ232051<br />

<strong>CBS</strong> 403.70 hQ231991 In <strong>CBS</strong> as <strong>Acremonium</strong> atrogriseum<br />

<strong>Acremonium</strong> lichenicola T <strong>CBS</strong> 425.66 hQ231969 – Ex-type <strong>of</strong> <strong>Acremonium</strong> lichenicola<br />

<strong>Acremonium</strong> longisporum <strong>CBS</strong> 113.69 hQ232057<br />

“<strong>Acremonium</strong> luzulae” <strong>CBS</strong> 495.67 hQ232058<br />

<strong>CBS</strong> 579.73 hQ232059<br />

<strong>Acremonium</strong> minutisporum T <strong>CBS</strong> 147.62 hQ232061 hQ232199 Ex-type <strong>of</strong> Cephalosporium minutisporum<br />

det 267B hQ232062<br />

<strong>Acremonium</strong> nepalense T <strong>CBS</strong> 971.72 hQ231970 – Ex-type <strong>of</strong> <strong>Acremonium</strong> nepalense<br />

<strong>Acremonium</strong> nigrosclerotium T <strong>CBS</strong> 154.72 hQ232069 hQ232200 Ex-type <strong>of</strong> <strong>Acremonium</strong> nigrosclerotium<br />

<strong>Acremonium</strong> persicinum T <strong>CBS</strong> 310.59 hQ232077 hQ232201 Ex-type <strong>of</strong> Paecilomyces persicinus<br />

<strong>CBS</strong> 169.65 hQ232072<br />

<strong>CBS</strong> 295.70A hQ232075<br />

<strong>CBS</strong> 295.70M hQ232076<br />

<strong>CBS</strong> 330.80 hQ232078<br />

<strong>CBS</strong> 378.70A hQ232079<br />

<strong>CBS</strong> 378.70D hQ232081<br />

<strong>CBS</strong> 378.70 E hQ232082<br />

<strong>CBS</strong> 439.66 hQ232083<br />

<strong>CBS</strong> 469.67 hQ232084<br />

<strong>CBS</strong> 101694 hQ232085<br />

<strong>CBS</strong> 102349 hQ232086<br />

“<strong>Acremonium</strong> persicinum” <strong>CBS</strong> 378.70C hQ232080<br />

<strong>CBS</strong> 110646 hQ232088<br />

“<strong>Acremonium</strong> aff. persicinum” <strong>CBS</strong> 203.73 hQ232073<br />

<strong>CBS</strong> 263.89 hQ232074<br />

“<strong>Acremonium</strong> cf. persicinum” <strong>CBS</strong> 102877 hQ232087<br />

<strong>Acremonium</strong> pinkertoniae T <strong>CBS</strong> 157.70 hQ232089 hQ232202 Ex-type <strong>of</strong> <strong>Acremonium</strong> pinkertoniae<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 189.70 hQ232094<br />

<strong>CBS</strong> 379.70F hQ232096<br />

<strong>CBS</strong> 416.68 hQ232097 hQ232203<br />

<strong>CBS</strong> 433.88 hQ232098<br />

<strong>CBS</strong> 781.69 hQ232099<br />

<strong>Acremonium</strong> psammosporum T <strong>CBS</strong> 590.63 hQ232100 hQ232204 Ex-type <strong>of</strong> <strong>Acremonium</strong> psammosporum<br />

<strong>Acremonium</strong> pseudozeylanicum T <strong>CBS</strong> 560.73 hQ232101 Ex-type <strong>of</strong> <strong>Acremonium</strong> pseudozeylanicum<br />

<strong>Acremonium</strong> pteridii T <strong>CBS</strong> 782.69 hQ232102 Ex-type <strong>of</strong> <strong>Acremonium</strong> pteridii<br />

<strong>CBS</strong> 784.69 hQ232103<br />

<strong>Acremonium</strong> radiatum T <strong>CBS</strong> 142.62 hQ232104 hQ232205 Ex-type <strong>of</strong> Cephalosporium acremonium var. radiatum<br />

<strong>Acremonium</strong> recifei T <strong>CBS</strong> 137.35 hQ232106 hQ232206 Ex-type <strong>of</strong> Cephalosporium recifei<br />

<strong>CBS</strong> 135.71 hQ232105<br />

<strong>CBS</strong> 220.84 hQ232107<br />

<strong>CBS</strong> 362.76 hQ232108<br />

<strong>CBS</strong> 402.89 hQ232109<br />

<strong>CBS</strong> 411.91 hQ232110<br />

<strong>CBS</strong> 442.66 hQ232111<br />

<strong>CBS</strong> 541.89 hQ232114<br />

<strong>CBS</strong> 555.73 hQ232115<br />

<strong>CBS</strong> 596.74 hQ232116<br />

<strong>CBS</strong> 976.70 hQ232117<br />

<strong>CBS</strong> 400.85 hQ232025 In <strong>CBS</strong> as <strong>Acremonium</strong> curvulum<br />

<strong>CBS</strong> 505.94 hQ232027 In <strong>CBS</strong> as <strong>Acremonium</strong> cf. curvulum<br />

“<strong>Acremonium</strong> recifei” <strong>CBS</strong> 485.77 hQ232113<br />

<strong>CBS</strong> 482.78 hQ232112<br />

145


SuMMerbell et al.<br />

Table 1. (Continued).<br />

Currently assigned species name Collection numbers nuclsU nucssU Notes<br />

<strong>CBS</strong> 110348 hQ232118<br />

<strong>Acremonium</strong> restrictum T <strong>CBS</strong> 178.40 hQ232119 – Ex-type <strong>of</strong> Verticillium dahliae f. restrictum<br />

<strong>Acremonium</strong> rhabdosporum T <strong>CBS</strong> 438.66 hQ232120 Ex-type <strong>of</strong> <strong>Acremonium</strong> rhabdosporum<br />

<strong>Acremonium</strong> roseolum T <strong>CBS</strong> 289.62 hQ232123 hQ232207 Ex-type <strong>of</strong> Paecilomyces roseolus<br />

<strong>Acremonium</strong> rutilum T <strong>CBS</strong> 396.66 hQ232124 hQ232208 Ex-type <strong>of</strong> <strong>Acremonium</strong> rutilum<br />

<strong>Acremonium</strong> salmoneum T <strong>CBS</strong> 721.71 hQ232125 Ex-type <strong>of</strong> <strong>Acremonium</strong> salmoneum<br />

<strong>Acremonium</strong> sclerotigenum T <strong>CBS</strong> 124.42 hQ232126 hQ232209 Ex-type <strong>of</strong> Cephalosporium sclerotigenum<br />

<strong>CBS</strong> 270.86 hQ232127<br />

<strong>CBS</strong> 281.80 hQ232128<br />

<strong>CBS</strong> 384.65 hQ232129<br />

<strong>CBS</strong> 786.69 hQ232130<br />

<strong>CBS</strong> 100816 hQ232131<br />

OMH F1648.97 hQ232132<br />

OMH F2365.97 hQ232133<br />

OMH F2969.97 hQ232134<br />

OMH F3691.97 hQ232135<br />

<strong>CBS</strong> 287.70O hQ232140 In <strong>CBS</strong> as <strong>Acremonium</strong> strictum<br />

<strong>CBS</strong> 379.70D hQ232095 In <strong>CBS</strong> as <strong>Acremonium</strong> potronii<br />

<strong>CBS</strong> 223.70 hQ231985 In <strong>CBS</strong> as <strong>Acremonium</strong> alternatum<br />

<strong>Acremonium</strong> sordidulum T <strong>CBS</strong> 385.73 hQ232136 Ex-type <strong>of</strong> <strong>Acremonium</strong> sordidulum<br />

<strong>Acremonium</strong> sp. <strong>CBS</strong> 314.72 hQ232156<br />

<strong>Acremonium</strong> spinosum T <strong>CBS</strong> 136.33 hQ232137 hQ232210 Ex-type <strong>of</strong> Cephalosporium spinosum<br />

“<strong>Acremonium</strong> strictum” <strong>CBS</strong> 106.23 hQ232138<br />

<strong>CBS</strong> 147.49 hQ232139<br />

<strong>Acremonium</strong> stromaticum T <strong>CBS</strong> 863.73 hQ232143 – Ex-type <strong>of</strong> <strong>Acremonium</strong> stromaticum<br />

<strong>Acremonium</strong> tectonae T <strong>CBS</strong> 725.87 hQ232144 Ex-type <strong>of</strong> <strong>Acremonium</strong> tectonae<br />

<strong>Acremonium</strong> thermophilum T <strong>CBS</strong> 734.71 hQ232145 – Ex-type <strong>of</strong> <strong>Acremonium</strong> thermophilum<br />

<strong>Acremonium</strong> tsugae T <strong>CBS</strong> 788.69 hQ232146 Ex-type <strong>of</strong> <strong>Acremonium</strong> tsugae<br />

<strong>Acremonium</strong> tubakii T <strong>CBS</strong> 790.69 hQ232148 Ex-type <strong>of</strong> <strong>Acremonium</strong> tubakii<br />

“<strong>Acremonium</strong> tubakii” <strong>CBS</strong> 824.69 hQ232149<br />

<strong>Acremonium</strong> verruculosum T <strong>CBS</strong> 989.69 hQ232150 Ex-type <strong>of</strong> <strong>Acremonium</strong> verruculosum<br />

<strong>Acremonium</strong> vitellinum T <strong>CBS</strong> 792.69 hQ232151 hQ232212 Ex-type <strong>of</strong> <strong>Acremonium</strong> vitellinum<br />

<strong>Acremonium</strong> zeylanicum <strong>CBS</strong> 746.73 hQ232154<br />

<strong>Acremonium</strong> zonatum <strong>CBS</strong> 565.67 hQ232155<br />

“Cephalosporium acremonium var. cereum” T <strong>CBS</strong> 140.62 hQ232147 Ex-type <strong>of</strong> Cephalosporium acremonium var. cereum. In <strong>CBS</strong> as<br />

<strong>Acremonium</strong> tubakii<br />

“Cephalosporium acremonium var. <strong>CBS</strong> 141.62 hQ232053 Ex-type <strong>of</strong> Cephalosporium acremonium var. funiculosum. In <strong>CBS</strong><br />

funiculosum” T<br />

as <strong>Acremonium</strong> kiliense<br />

“Cephalosporium ballagii” T <strong>CBS</strong> 134.33 hQ232016 Ex-type <strong>of</strong> Cephalosporium ballagii. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

charticola<br />

“Cephalosporium malorum” T <strong>CBS</strong> 117.25 hQ232015 Ex-type <strong>of</strong> Cephalosporium malorum. In <strong>CBS</strong> as <strong>Acremonium</strong> charticola<br />

“Cephalosporium purpurascens” T <strong>CBS</strong> 149.62 hQ232071 Ex-type <strong>of</strong> Cephalosporium purpurascens. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

persicinum<br />

Cosmospora kh<strong>and</strong>alensis T <strong>CBS</strong> 356.65 hQ231996 Ex-type <strong>of</strong> Cephalosporium kh<strong>and</strong>alense. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

berkeleyanum<br />

Cosmospora lavitskiaeT <strong>CBS</strong> 530.68 hQ231997 Ex-type <strong>of</strong> Gliomastix lavitskiae. In <strong>CBS</strong> as <strong>Acremonium</strong> berkeleyanum<br />

Gliomastix masseei <strong>CBS</strong> 794.69 hQ232060 In <strong>CBS</strong> as <strong>Acremonium</strong> masseei<br />

Gliomastix murorum <strong>CBS</strong> 154.25 hQ232063 Ex-type <strong>of</strong> Graphium malorum. In <strong>CBS</strong> as <strong>Acremonium</strong> murorum<br />

var. felina<br />

<strong>CBS</strong> 195.70 hQ232064 In <strong>CBS</strong> as <strong>Acremonium</strong> murorum var. felina<br />

<strong>CBS</strong> 119.67 hQ232066 In <strong>CBS</strong> as <strong>Acremonium</strong> murorum var. murorum<br />

<strong>CBS</strong> 157.72 hQ232067 In <strong>CBS</strong> as <strong>Acremonium</strong> murorum var. murorum<br />

<strong>CBS</strong> 378.36 hQ232068 Ex-type <strong>of</strong> Torula cephalosporioides. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

murorum var. murorum<br />

Gliomastix polychroma T <strong>CBS</strong> 181.27 hQ232091 Ex-type <strong>of</strong> Oospora polychroma. In <strong>CBS</strong> as <strong>Acremonium</strong> polychromum<br />

<strong>CBS</strong> 151.26 hQ232090 Ex-type <strong>of</strong> Periconia tenuissima var. nigra. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

polychromum<br />

<strong>CBS</strong> 617.94 hQ232093 In <strong>CBS</strong> as <strong>Acremonium</strong> polychromum<br />

Gliomastix roseogrisea T <strong>CBS</strong> 134.56 hQ232121 Ex-type <strong>of</strong> Cephalosporium roseogriseum. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

roseogriseum<br />

<strong>CBS</strong> 279.79 hQ232122 In <strong>CBS</strong> as <strong>Acremonium</strong> roseogriseum<br />

<strong>CBS</strong> 213.69 hQ232092 In <strong>CBS</strong> as <strong>Acremonium</strong> polychromum<br />

CCFC 226570 AY283559 Identified as <strong>Acremonium</strong> murorum var. felina<br />

<strong>CBS</strong> 211.69 hQ232065 In <strong>CBS</strong> as <strong>Acremonium</strong> murorum var. felina<br />

Lanatonectria flavolanata <strong>CBS</strong> 230.31 hQ232157<br />

146


www.studiesinmycology.org<br />

acremonium phylogeny<br />

Table 1. (Continued).<br />

Currently assigned species name Collection numbers nuclsU nucssU Notes<br />

Lanatonectria flocculenta <strong>CBS</strong> 113461 hQ232158<br />

Leucosphaerina arxii T <strong>CBS</strong> 737.84 hQ232159 Ex-type <strong>of</strong> Leucosphaerina arxii<br />

Nalanthamala diospyri T <strong>CBS</strong> 560.89 hQ232160 Ex-type <strong>of</strong> Cephalosporium diospyri = <strong>Acremonium</strong> diospyri<br />

Nectria rishbethii T <strong>CBS</strong> 496.67 hQ232162 Ex-type <strong>of</strong> Nectria rishbethii<br />

Neocosmospora endophytica AR 2674 U17411 Anamorph is <strong>Acremonium</strong> fungicola<br />

Paecilomyces lilacinus <strong>CBS</strong> 101068 hQ232163 hQ232214 Atypical monophialidic isolate, <strong>Acremonium</strong>+E402-like<br />

Pochonia bulbillosa <strong>CBS</strong> 102853 hQ232164 Atypical isolate<br />

Sarcopodium circinatum <strong>CBS</strong> 376.81 hQ232167<br />

<strong>CBS</strong> 587.92 hQ232168<br />

<strong>CBS</strong> 114068 hQ232169<br />

Sarcopodium circinosetiferum <strong>CBS</strong> 100251 hQ232170<br />

<strong>CBS</strong> 100252 hQ232171<br />

<strong>CBS</strong> 100998 hQ232172<br />

<strong>CBS</strong> 101116 hQ232173<br />

Sarcopodium vanillae <strong>CBS</strong> 100582 hQ232174<br />

Sarocladium attenuatum T <strong>CBS</strong> 399.73 hQ232165 Ex-type <strong>of</strong> Sarocladium attenuatum<br />

Sarocladium bacillisporum T <strong>CBS</strong> 425.67 hQ231992 hQ232179 Ex-type <strong>of</strong> <strong>Acremonium</strong> bacillisporum<br />

Sarocladium bactrocephalum T <strong>CBS</strong> 749.69 hQ231994 hQ232180 Ex-type <strong>of</strong> <strong>Acremonium</strong> bactrocephalum<br />

NRRL 20583 hQ231995<br />

Sarocladium glaucum T <strong>CBS</strong> 796.69 hQ232041 Ex-type <strong>of</strong> <strong>Acremonium</strong> glaucum<br />

Sarocladium kiliense T <strong>CBS</strong> 122.29 hQ232052 hQ232198 Ex-type <strong>of</strong> <strong>Acremonium</strong> kiliense<br />

<strong>CBS</strong> 146.62 hQ232048 hQ232197 Ex-type <strong>of</strong> Cephalosporium incoloratum. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

incoloratum<br />

<strong>CBS</strong> 155.61 hQ232054 Ex-type <strong>of</strong> Cephalosporium incarnatum. In <strong>CBS</strong> as <strong>Acremonium</strong><br />

kiliense<br />

<strong>CBS</strong> 156.61 hQ232055 Ex-type <strong>of</strong> Cephalosporium incarnatum var. macrospora. In <strong>CBS</strong> as<br />

<strong>Acremonium</strong> kiliense<br />

<strong>CBS</strong> 157.61 hQ232056 Ex-type <strong>of</strong> Cephalosporium infestans.In <strong>CBS</strong> as <strong>Acremonium</strong> kiliense<br />

Sarocladium ochraceum T <strong>CBS</strong> 428.67 hQ232070 Ex-type <strong>of</strong> Paecilomyces ochraceus. In <strong>CBS</strong> as <strong>Acremonium</strong> ochraceum<br />

Sarocladium oryzae <strong>CBS</strong> 180.74 hQ232166<br />

Sarocladium strictum T <strong>CBS</strong> 346.70 hQ232141 hQ232211 Ex-type <strong>of</strong> <strong>Acremonium</strong> strictum<br />

“Sarocladium cf. strictum” JY03-006 hQ232142<br />

Sarocladium zeae T <strong>CBS</strong> 801.69 hQ232152 hQ232213 Ex-type <strong>of</strong> <strong>Acremonium</strong> zeae<br />

KAS 965 hQ232153<br />

Simplicillium lanosoniveum <strong>CBS</strong> 321.72 hQ232006 hQ232185 Ex-type <strong>of</strong> <strong>Acremonium</strong> byssoides<br />

Simplicillium obclavatum T <strong>CBS</strong> 311.74 hQ232175 Ex-type <strong>of</strong> <strong>Acremonium</strong> obclavatum<br />

Trichothecium crotocinigenum T <strong>CBS</strong> 129.64 hQ232018 Ex-type <strong>of</strong> <strong>Acremonium</strong> crotocinigenum<br />

“Trichothecium<br />

indicaT<br />

indicum”/ Leucosphaerina <strong>CBS</strong> 123.78 AF096194 Ex-type <strong>of</strong> ‘Leucosphaera’ indica<br />

Trichothecium roseum DAOM 208997 U69891<br />

Trichothecium sympodiale ATCC 36477 U69889 In <strong>CBS</strong> as Spicellum roseum<br />

Verticillium alboatrum <strong>CBS</strong> 130.51 hQ231976 – Ex-type <strong>of</strong> Cephalosporium apii, in <strong>CBS</strong> as <strong>Acremonium</strong> apii<br />

Verticillium insectorum <strong>CBS</strong> 101239 hQ248107<br />

Verticillium leptobactrum <strong>CBS</strong> 109351 hQ231993 In <strong>CBS</strong> as <strong>Acremonium</strong> cf. bacillisporum<br />

Nine <strong>of</strong> the named <strong>Acremonium</strong> species in this analysis belong to<br />

the Plectosphaerellaceae. The Sordariales are represented in Fig.<br />

1 only by <strong>Acremonium</strong> alabamense, the only named <strong>Acremonium</strong><br />

species in <strong>Acremonium</strong> section Chaetomioidea. Outside these<br />

groups <strong>Acremonium</strong> atrogriseum, represented by numerous<br />

conspecific isolates, belongs to the family Cephalothecaceae (Fig.<br />

1C), along with Albertiniella polyporicola <strong>and</strong> Cephalotheca sulfurea;<br />

this family is sister to the Coniochaetales. Another <strong>Acremonium</strong><br />

species, A. thermophilum, falls into the Cephalothecaceae clade<br />

grouping with Albertiniella polyporicola. An isolate provisionally<br />

identified as <strong>Acremonium</strong> alternatum, <strong>CBS</strong> 109043 is a member<br />

<strong>of</strong> the Cephalothecaceae. The complex status <strong>of</strong> A. alternatum is<br />

discussed below.<br />

The <strong>Acremonium</strong> species in the Hypocreales form an array <strong>of</strong><br />

poorly to well distinguished clades, most <strong>of</strong> which do not correspond<br />

to previously recognised genera or suprageneric taxa. Included within<br />

the Hypocreales in the Sarocladium clade labeled the "strictum-clade"<br />

is the well known soil fungus long known as <strong>Acremonium</strong> strictum (Fig.<br />

1A). The soil fungus <strong>and</strong> human opportunistic pathogen traditionally<br />

called A. kiliense is also included as is the maize corn endophyte<br />

known as A. zeae. The corresponding clade in Fig. 2C based on<br />

LSU reveals that this group <strong>of</strong> fungi includes the rice pathogen<br />

Sarocladium oryzae as a saltatory morphological apomorph. No<br />

teleomorphs are known to be associated with this group. This<br />

clade consists <strong>of</strong> fungi forming conidia in mucoid heads; it is closely<br />

related to a clade <strong>of</strong> species forming catenulate conidia, namely<br />

the <strong>Acremonium</strong> bacillisporum clade including A. bacillisporum, A.<br />

glaucum, A. implicatum pro parte, <strong>and</strong>, in a separate subclade, A.<br />

ochraceum (Figs 1A, 2C). The "bacillisporum-clade" <strong>and</strong> "strictumclade"<br />

grouped together in an overall Sarocladium clade (Figs 1,<br />

2). Two catenulate-conidial isolates labeled A. alternatum are also<br />

loosely associated with the A. bacillisporum clade in Fig. 2C. In Fig.<br />

1A, one isolate <strong>CBS</strong> 406.66 is connected to the Sarocladium <strong>and</strong> A.<br />

breve/curvulum clades with a 96 % bootstrap value.<br />

147


SuMMerbell et al.<br />

148<br />

85<br />

94<br />

75 <strong>Acremonium</strong> acutatum <strong>CBS</strong> 682.71 T<br />

“Cephalosporium acremonium var. cereum” <strong>CBS</strong> 140.62 T<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 223.70<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 379.70D<br />

<strong>Acremonium</strong> sclerotigenum OMH F2365.97<br />

<strong>Acremonium</strong> sclerotigenum OMH F2969.97<br />

<strong>Acremonium</strong> sclerotigenum OMH F1648.97<br />

<strong>Acremonium</strong> sclerotigenum OMH F3691.97<br />

Mycopepon smithii<br />

Pseudonectria sp.<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 100816<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 287.70O<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 384.65<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 281.80<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 270.86<br />

89 <strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 124.42 T<br />

<strong>Acremonium</strong> sclerotigenum <strong>CBS</strong> 786.69<br />

<strong>Acremonium</strong> alternatum <strong>CBS</strong> 407.66 T<br />

“Cephalosporium malorum” <strong>CBS</strong> 117.25 T<br />

<strong>Acremonium</strong> sordidulum <strong>CBS</strong> 385.73 T<br />

<strong>Acremonium</strong> brachypenium <strong>CBS</strong> 866.73 T<br />

“Cephalosporium purpurascens” <strong>CBS</strong> 149.62 T<br />

83<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 189.70<br />

<strong>Acremonium</strong> exuviarum UAMH 9995 T<br />

“<strong>Acremonium</strong> tubakii” <strong>CBS</strong> 824.69<br />

79<br />

Emericellopsis terricola<br />

<strong>Acremonium</strong> fuci UAMH 6508<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 379.70F<br />

99<br />

<strong>Acremonium</strong> salmoneum <strong>CBS</strong> 721.71 T<br />

93 Stilbella fimetaria<br />

<strong>Acremonium</strong> tubakii <strong>CBS</strong> 790.69 T<br />

Stanjemonium grisellum<br />

<strong>Acremonium</strong> chrysogenum <strong>CBS</strong> 144.62 T<br />

90 <strong>Acremonium</strong> flavum <strong>CBS</strong> 596.70 T<br />

71 Hapsidospora irregularis<br />

74<br />

Nigrosabulum globosum<br />

Mycoarachis inversa<br />

Geosmithia lavendula<br />

Geosmithia putterillii<br />

“<strong>Acremonium</strong> blochii” <strong>CBS</strong> 993.69<br />

96<br />

99 <strong>Acremonium</strong> borodinense <strong>CBS</strong> 101148 T<br />

<strong>Acremonium</strong> pinkertoniae <strong>CBS</strong> 157.70 T<br />

Bulbithecium hyalosporum<br />

Leucosphaerina arxii T<br />

pinkertoniae<br />

-clade<br />

“<strong>Acremonium</strong> cf. persicinum” <strong>CBS</strong> 102877<br />

85 “<strong>Acremonium</strong> alternatum” <strong>CBS</strong> 381.70A<br />

“<strong>Acremonium</strong> alternatum” <strong>CBS</strong> 831.97<br />

“<strong>Acremonium</strong> cavaraeanum” <strong>CBS</strong> 758.69 fusidioides<br />

<strong>Acremonium</strong> hennebertii <strong>CBS</strong> 768.69 T<br />

<strong>Acremonium</strong> fusidioides <strong>CBS</strong> 840.68 T<br />

“<strong>Acremonium</strong> hansfordii” <strong>CBS</strong> 390.73<br />

“<strong>Acremonium</strong> egyptiacum” <strong>CBS</strong> 303.64<br />

-clade<br />

96<br />

99 “<strong>Acremonium</strong> blochii” <strong>CBS</strong> 427.93<br />

“<strong>Acremonium</strong> blochii” <strong>CBS</strong> 324.33<br />

Verticillium insectorum<br />

“<strong>Acremonium</strong> zeylanicum” <strong>CBS</strong> 746.73<br />

Stilbocrea macrostoma<br />

sclerotigenum<br />

-clade<br />

brachypenium<br />

-clade<br />

Emericellopsis<br />

-clade<br />

chrysogenum<br />

-clade<br />

Fig. 2.A–E. The <strong>phylogenetic</strong> position <strong>of</strong> <strong>Acremonium</strong> <strong>and</strong> related fungi within the Hypocreales, as seen in nucLSU analysed by maximum likelihood via RAxML VI-HPC<br />

following a GTRMIX model applied to a single partition. 100 % bootstrap values are indicated by a black dot on the relevant internode.<br />

sclerotigenum/Geosmithia-clade<br />

A


Fig. 2. (Continued).<br />

www.studiesinmycology.org<br />

86<br />

78<br />

85<br />

<strong>Acremonium</strong> biseptum <strong>CBS</strong> 750.69<br />

<strong>Acremonium</strong> cerealis <strong>CBS</strong> 207.65<br />

<strong>Acremonium</strong> cerealis <strong>CBS</strong> 215.69<br />

93<br />

cerealis<br />

-clade<br />

“<strong>Acremonium</strong> blochii” <strong>CBS</strong> 424.93<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 378.70E<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 378.70D<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 378.70A<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 102349<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 169.65<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 295.70M<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 295.70A<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 439.66<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 101694<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 469.67<br />

91<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 330.80<br />

<strong>Acremonium</strong> verruculosum <strong>CBS</strong> 989.69 T<br />

<strong>Acremonium</strong> persicinum <strong>CBS</strong> 310.59 T<br />

Hydropisphaera erubescens 2<br />

Hydropisphaera erubescens 1<br />

Gliomastix masseei <strong>CBS</strong> 794.69 T<br />

Gliomastix murorum <strong>CBS</strong> 157.72<br />

Gliomastix murorum <strong>CBS</strong> 195.70<br />

Gliomastix murorum <strong>CBS</strong> 119.67<br />

80<br />

92<br />

Gliomastix murorum <strong>CBS</strong> 378.36<br />

Gliomastix murorum <strong>CBS</strong> 154.25<br />

98 Gliomastix polychroma <strong>CBS</strong> 151.26<br />

Gliomastix polychroma <strong>CBS</strong> 181.27 T<br />

Gliomastix polychroma <strong>CBS</strong> 617.94<br />

Gliomastix roseogrisea <strong>CBS</strong> 211.69<br />

Gliomastix roseogrisea <strong>CBS</strong> 213.69<br />

Gliomastix roseogrisea <strong>CBS</strong> 134.56 T<br />

99 Gliomastix roseogrisea <strong>CBS</strong> 279.79<br />

Gliomastix roseogrisea CCFC 226570<br />

Heleococcum japonicum<br />

99<br />

Hydropisphaera peziza 1<br />

89 Hydropisphaera peziza 2<br />

72 Roumegueriella rufula<br />

Selinia pulchra<br />

“<strong>Acremonium</strong> hyalinulum” <strong>CBS</strong> 271.36<br />

Nalanthamala squamicola<br />

“<strong>Acremonium</strong> aff. persicinum” <strong>CBS</strong> 203.73<br />

“<strong>Acremonium</strong> luzulae” <strong>CBS</strong> 495.67<br />

Nectria zonata<br />

<strong>Acremonium</strong> tectonae <strong>CBS</strong> 725.87 T<br />

“<strong>Acremonium</strong> longisporum” <strong>CBS</strong> 113.69<br />

“<strong>Acremonium</strong> persicinum” <strong>CBS</strong> 378.70C<br />

100 “<strong>Acremonium</strong> aff. persicinum” <strong>CBS</strong> 263.89<br />

<strong>Acremonium</strong> rutilum <strong>CBS</strong> 396.66 T<br />

<strong>Acremonium</strong> pteridii <strong>CBS</strong> 784.69<br />

100 <strong>Acremonium</strong> spinosum <strong>CBS</strong> 136.33 T<br />

<strong>Acremonium</strong> pteridii <strong>CBS</strong> 782.69 T<br />

Ochronectria calami<br />

93 Bionectria grammicospora<br />

Bionectria ochroleuca 2<br />

72 Nectria sesquicillii<br />

Bionectria pityrodes<br />

Stephanonectria keithii<br />

99<br />

Nectriopsis sporangiicola<br />

93 Nectriopsis violacea<br />

Sesquicillium microsporum<br />

Kallichroma glabrum<br />

Tilachlidium brachiatum<br />

T<br />

Gliomastix clade<br />

pteridii<br />

-clade<br />

persicinum<br />

-clade<br />

acremonium phylogeny<br />

Gliomastix/Bionectria-clade<br />

B<br />

149


SuMMerbell et al.<br />

93<br />

<strong>Acremonium</strong> incrustatum <strong>CBS</strong> 159.70 T<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 433.88<br />

Linkosia fusiformis<br />

<strong>Acremonium</strong> guillematii <strong>CBS</strong> 766.69 T<br />

“<strong>Acremonium</strong> persicinum” <strong>CBS</strong> 110646<br />

<strong>Acremonium</strong> sp. <strong>CBS</strong> 314.72<br />

<strong>Acremonium</strong> vitellinum <strong>CBS</strong> 792.69 T minutisporum<br />

100 <strong>Acremonium</strong> minutisporum <strong>CBS</strong> 147.62 T<br />

<strong>Acremonium</strong> minutisporum det 267B<br />

-clade<br />

100 “<strong>Acremonium</strong> alternatum” <strong>CBS</strong> 406.66<br />

“<strong>Acremonium</strong> alternatum” <strong>CBS</strong> 114602<br />

99 Sarocladium bacillisporum <strong>CBS</strong> 425.67 T<br />

77 “<strong>Acremonium</strong> implicatum” <strong>CBS</strong> 243.59<br />

Sarocladium glaucum <strong>CBS</strong> 796.69 T<br />

bacillisporum<br />

-clade<br />

94 Sarocladium bactrocephalum <strong>CBS</strong> 749.69 T<br />

Sarocladium bactrocephalum NRRL 20583<br />

84 Sarocladium cf. strictum JY03-006<br />

83 Sarocladium strictum <strong>CBS</strong> 346.70 T<br />

84 “<strong>Acremonium</strong> zonatum” <strong>CBS</strong> 565.67<br />

100 Sarocladium attenuatum T<br />

Sarocladium oryzae<br />

94 Sarocladium kiliense <strong>CBS</strong> 146.62<br />

Sarocladium kiliense <strong>CBS</strong> 122.29 T<br />

Sarocladium kiliense <strong>CBS</strong> 155.61<br />

Sarocladium kiliense <strong>CBS</strong> 157.61<br />

Sarocladium kiliense <strong>CBS</strong> 156.61<br />

Sarocladium zeae <strong>CBS</strong> 801.69 T<br />

98 Sarocladium zeae KAS 965<br />

Sarocladium ochraceum <strong>CBS</strong> 428.67 T<br />

strictum<br />

-clade<br />

Sarocladium<br />

-clade<br />

100<br />

<strong>Acremonium</strong> breve <strong>CBS</strong> 150.62 T<br />

76 <strong>Acremonium</strong> radiatum <strong>CBS</strong> 142.62 T<br />

91 “<strong>Acremonium</strong> strictum” <strong>CBS</strong> 147.49<br />

“Cephalosporium acremonium var. funiculosum” <strong>CBS</strong> 141.62<br />

<strong>Acremonium</strong> gamsii <strong>CBS</strong> 726.71 T<br />

T<br />

100<br />

83 Trichothecium crotocinigenum <strong>CBS</strong> 129.64 T<br />

“Trichothecium indicum”/Leucosphaerina indica T<br />

Trichothecium sympodiale<br />

73 Trichothecium roseum<br />

Trichothecium<br />

-clade<br />

74<br />

75<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 430.66 T<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 229.75<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 384.70A<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 898.85<br />

100 <strong>Acremonium</strong> curvulum <strong>CBS</strong> 761.69<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 333.92<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 214.70<br />

curvulum<br />

-clade<br />

95<br />

100<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 110514<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 384.70C<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 104.78<br />

<strong>Acremonium</strong> curvulum <strong>CBS</strong> 523.72<br />

98<br />

Valetoniellopsis laxa<br />

<strong>Acremonium</strong> rhabdosporum <strong>CBS</strong> 438.66 T<br />

Lanatonectria flavolanata 1<br />

Lanatonectria flavolanata 2<br />

Sarcopodium vanillae<br />

94 Sarcopodium circinatum 2<br />

Sarcopodium circinosetiferum 3 Lanatonectria<br />

82<br />

84<br />

Sarcopodium circinosetiferum 4<br />

Lanatonectria flocculenta<br />

Sarcopodium circinosetiferum 2<br />

Sarcopodium circinosetiferum 1<br />

Pseudonectria rousseliana<br />

-clade<br />

Fig. 2. (Continued).<br />

150<br />

breve<br />

-clade<br />

C


Fig. 2. (Continued).<br />

www.studiesinmycology.org<br />

100 <strong>Acremonium</strong> inflatum <strong>CBS</strong> 403.70<br />

99 <strong>Acremonium</strong> inflatum <strong>CBS</strong> 439.70<br />

76 <strong>Acremonium</strong> inflatum <strong>CBS</strong> 212.69<br />

100<br />

“<strong>Acremonium</strong> luzulae” <strong>CBS</strong> 579.73<br />

Scopinella solani<br />

<strong>Acremonium</strong> roseolum <strong>CBS</strong> 289.62<br />

Peethambara sundara<br />

Albosynnema elegans<br />

Didymostilbe echin<strong>of</strong>ibrosa<br />

Peethambara spirostriata<br />

Sarcopodium circinatum 3<br />

Sarcopodium circinatum 1<br />

Myrothecium cinctum<br />

Myrothecium inundatum<br />

Myrothecium roridum 1<br />

Myrothecium roridum 2<br />

Myrothecium leucotrichum<br />

Myrothecium verrucaria<br />

Parasarcopodium ceratocaryi<br />

Stachybotrys chartarum<br />

Chaetosphaeria aterrima<br />

96 Didymostilbe matsushimae<br />

Melanopsamma pomiformis<br />

80<br />

Cosmospora lavitskiae <strong>CBS</strong> 530.68<br />

Cosmospora episphaeria<br />

“<strong>Acremonium</strong> aff. curvulum” <strong>CBS</strong> 100551<br />

Cosmospora vilior<br />

Cosmospora kh<strong>and</strong>alensis <strong>CBS</strong> 356.65<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 400.85<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 976.70<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 411.91<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 596.74<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 505.94<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 220.84<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 555.73<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 362.76<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 137.35<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 135.71<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 541.89<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 402.89<br />

<strong>Acremonium</strong> recifei <strong>CBS</strong> 442.66<br />

“<strong>Acremonium</strong> strictum” <strong>CBS</strong> 106.23<br />

Fusarium dimerum<br />

Fusarium domesticum<br />

Fusarium oxysporum 1<br />

Fusarium oxysporum 2<br />

Fusarium verticillioides<br />

Persiciospora africana<br />

Nectria rigidiuscula<br />

Fusarium falciforme<br />

Fusarium solani<br />

Fusarium lichenicola<br />

Neocosmospora endophytica<br />

<strong>Acremonium</strong> tsugae <strong>CBS</strong> 788.69<br />

Cylindrocarpon cylindroides<br />

Heliscus lugdunensis<br />

Calonectria morganii<br />

Nectria radicicola<br />

Leuconectria clusiae<br />

Dematiocladium celtidis<br />

Nectria cinnabarina<br />

“<strong>Acremonium</strong> recifei” <strong>CBS</strong> 485.77<br />

“<strong>Acremonium</strong> recifei” <strong>CBS</strong> 482.78<br />

“<strong>Acremonium</strong> recifei” <strong>CBS</strong> 110348<br />

Nalanthamala diospyri<br />

Nalanthamala guajavae<br />

Nalanthamala vermoesenii<br />

Rubrinectria olivacea<br />

‘Nectria’ rishbethii <strong>CBS</strong> 496.67<br />

<strong>Acremonium</strong> exiguum <strong>CBS</strong> 587.73<br />

“<strong>Acremonium</strong> implicatum” <strong>CBS</strong> 397.70B<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 416.68<br />

“<strong>Acremonium</strong> potronii” <strong>CBS</strong> 781.69<br />

Nectriopsis squamulosa 1<br />

Nectriopsis squamulosa 2<br />

“Cephalosporium ballagii” <strong>CBS</strong> 134.33<br />

“<strong>Acremonium</strong> aff. curvulum” <strong>CBS</strong> 113275<br />

<strong>Acremonium</strong> pseudozeylanicum <strong>CBS</strong> 560.73<br />

Niesslia exilis 1<br />

<strong>Acremonium</strong> nigrosclerotium <strong>CBS</strong> 154.72<br />

Niesslia exilis 2<br />

76<br />

T<br />

T<br />

88<br />

98<br />

86<br />

78<br />

T<br />

86<br />

T<br />

88<br />

T<br />

89<br />

81<br />

100<br />

91<br />

99<br />

87<br />

70<br />

89<br />

T<br />

90<br />

T<br />

85 100<br />

96<br />

T<br />

T<br />

exiguum<br />

92<br />

93<br />

-clade<br />

100<br />

97<br />

T<br />

77<br />

T<br />

T<br />

inflatum<br />

-clade<br />

Stachybotrys/Peethambara<br />

-clade<br />

Cosmospora<br />

Fusarium<br />

-clade<br />

pseudozeylanicum<br />

-clade<br />

Nectriaceae/recifei-clade<br />

acremonium phylogeny<br />

D<br />

151


SuMMerbell et al.<br />

Fig. 2. (Continued).<br />

152<br />

97<br />

98<br />

80<br />

0.01 substitutions/site<br />

Cordyceps ramosipulvinata<br />

100<br />

Melanospora brevirostris<br />

83<br />

Bertia moriformis<br />

Phaeoacremonium aleophilum<br />

Ophiocordyceps bispora<br />

Elaphocordyceps longisegmentis<br />

Haptocillium sinense<br />

Haptocillium zeosporum<br />

99 Paecilomyces lilacinus 2<br />

Paecilomyces lilacinus 1<br />

82 Isaria takamizusanensis<br />

98<br />

99<br />

Chaunopycnis alba 1<br />

Chaunopycnis alba 2<br />

Chaunopycnis pustulata<br />

Tolypocladium inflatum<br />

Verticillium leptobactrum <strong>CBS</strong> 109351<br />

92 94 Simplicillium lanosoniveum <strong>CBS</strong> 321.72<br />

78 Simplicillium lanosoniveum<br />

98 Simplicillium obclavatum T<br />

91<br />

74<br />

Simplicillium lamellicola<br />

Beauveria bassiana<br />

Cordyceps militaris<br />

Pleurodesmospora coccorum<br />

Isaria javanica<br />

Syspastospora parasitica<br />

Hyperdermium bertonii<br />

Lecanicillium antillanum<br />

Lecanicillium aranearum<br />

Lecanicillium fusisporum<br />

Lecanicillium psalliotae 1<br />

Lecanicillium dimorphum<br />

Lecanicillium aff. psalliotae 2<br />

Lecanicillium lecanii<br />

Paecilomyces farinosus<br />

Lecanicillium attenuatum<br />

Epichloe typhina<br />

Pochonia bulbillosa 2<br />

Pochonia bulbillosa 1<br />

Pochonia gonioides<br />

Pochonia rubescens<br />

Metarhizium anisopliae var. frigidum<br />

Pochonia chlamydosporia var. catenulatum T<br />

95 Verticillium epiphytum 2<br />

Verticillium epiphytum 1<br />

Torrubiella pruinosa<br />

98 Torrubiella petchii<br />

Echinodothis tuberiformis<br />

Verticillium pseudohemipterigenum<br />

Ophionectria trichospora<br />

Torrubiella luteorostrata<br />

<strong>Acremonium</strong> camptosporum <strong>CBS</strong> 756.69 T<br />

<strong>Acremonium</strong> camptosporum <strong>CBS</strong> 835.91<br />

<strong>Acremonium</strong> camptosporum <strong>CBS</strong> 757.69<br />

<strong>Acremonium</strong> camptosporum <strong>CBS</strong> 677.74<br />

99 <strong>Acremonium</strong> camptosporum <strong>CBS</strong> 890.85<br />

Clypeosphaeria phillyreae<br />

Blistum tomentosum<br />

Neomunkia sydowii<br />

Hypocrea koningii<br />

Hypomyces chlorinigenus<br />

Sphaerostilbella aureonitens<br />

Sporophagomyces chrysostomus<br />

81 Cladobotryum rubrobrunnescens<br />

Hypomyces subiculosus<br />

Mycogone rosea<br />

Verticillium incurvum<br />

<strong>Acremonium</strong> psammosporum <strong>CBS</strong> 590.63 T<br />

Ceratocystis fimbriata<br />

Ophiostoma piluliferum 2<br />

Glomerella cingulata<br />

T<br />

T<br />

T<br />

T<br />

camptosporum<br />

-clade<br />

Ophiocordycipitaceae<br />

Cordycipitaceae<br />

Clavicipitaceae<br />

Hypocreaceae<br />

e


Another major hypocrealean <strong>Acremonium</strong> clade in Fig. 1A<br />

contains A. breve, A. radiatum, A. gamsii <strong>and</strong>, more distantly, with<br />

96 % bootstrap support, A. curvulum. In Fig. 2C where <strong>phylogenetic</strong><br />

signal is lower, A. curvulum loses its tight association with A. breve<br />

<strong>and</strong> its relatives <strong>and</strong> appears in unsupported juxtaposition with the<br />

genus Trichothecium <strong>and</strong> the corresponding teleomorph genus,<br />

Leucosphaerina. The clade containing Trichothecium roseum<br />

<strong>and</strong> Leucosphaerina indica (see taxonomic comments below)<br />

also contains two anamorph species that were long placed in<br />

different genera based on conidiogenesis, namely, <strong>Acremonium</strong><br />

crotocinigenum <strong>and</strong> Spicellum roseum, here recombined into<br />

Trichothecium.<br />

The next clade in Fig. 1A is a loosely structured assemblage<br />

consisting <strong>of</strong> members <strong>of</strong> <strong>Acremonium</strong> subgenus Gliomastix, some<br />

<strong>of</strong> which are delineated below as members <strong>of</strong> a <strong>phylogenetic</strong>ally<br />

delineated genus Gliomastix, plus the teleomorphic genera<br />

Bionectria, linked to the well known penicillate hyphomycete<br />

anamorph genus Clonostachys (Schroers 2001), Hydropisphaera,<br />

<strong>and</strong> Roumegueriella. As Fig. 2B shows in more detail, the type<br />

species <strong>of</strong> the genus Gliomastix, originally named Gliomastix<br />

chartarum but currently called G. murorum, is in a relatively<br />

well supported clade (92 % bootstrap support) along with G.<br />

masseei, G. polychroma, <strong>and</strong> G. roseogrisa, three other species<br />

with melanised conidia that were placed in <strong>Acremonium</strong> subg.<br />

Gliomastix by Gams (1971). Related to Gliomastix are two clades <strong>of</strong><br />

non-melanised <strong>Acremonium</strong> species placed in A. subg. Gliomastix,<br />

the A. persicinum clade, <strong>and</strong> A. pteridii clade. Smaller clades<br />

containing species in A. subg. Gliomastix such as A. biseptum, A.<br />

cerealis, A. luzulae, <strong>and</strong> A. rutilum (= A. roseum) are included in<br />

the large Gliomastix/Bionectria clade, which has 78 % bootstrap<br />

support. This clade includes additional teleomorphic fungi such as<br />

Heleococcum, Hydropisphaera, Nectriopsis, Ochronectria, Selinia,<br />

<strong>and</strong> Stephanonectria, along with the anamorph Sesquicillium<br />

microsporum.<br />

The Gliomastix/Bionectria clade, the sclerotigenum/Geosmithia<br />

clade, <strong>and</strong> other members <strong>of</strong> the Bionectriaceae form a weakly<br />

supported clade with 74 % bootstrap value as shown in Fig. 1A.<br />

Included in the sclerotigenum/Geosmithia clade is the penicillate<br />

anamorph genus Geosmithia sensu stricto <strong>and</strong> the ex-type isolates<br />

<strong>of</strong> <strong>Acremonium</strong> pinkertoniae <strong>and</strong> A. sclerotigenum as well as the<br />

cephalosporin-producer <strong>Acremonium</strong> chrysogenum <strong>and</strong> its close<br />

relative, the thermophilic A. flavum. It also includes non-type<br />

isolates identified as A. blochii <strong>and</strong> A. egyptiacum. In the LSU-tree<br />

(Fig. 2A) the sclerotigenum/Geosmithia clade includes an extensive<br />

group <strong>of</strong> <strong>Acremonium</strong> species <strong>and</strong> cleistothecial Bionectriaceae<br />

with <strong>Acremonium</strong>-like anamorphs, namely, Emericellopsis,<br />

Hapsidospora, Mycoarachis, <strong>and</strong> Nigrosabulum. Among the<br />

anamorphic species in this group are most <strong>of</strong> the <strong>phylogenetic</strong>ally<br />

disparate isolates identified as the type species <strong>of</strong> <strong>Acremonium</strong>,<br />

A. alternatum. One <strong>of</strong> these, <strong>CBS</strong> 407.66, is designated below<br />

as epitype <strong>of</strong> A. alternatum. Prominent subclades include the<br />

<strong>Acremonium</strong> sclerotigenum clade containing the ex-type isolates <strong>of</strong><br />

A. sclerotigenum <strong>and</strong> A. sordidulum.<br />

Another major, well supported bionectriaceous subclade<br />

associated with the sclerotigenum clade is the Emericellopsis<br />

clade (Fig. 2A). It includes the type species <strong>of</strong> the synnematal<br />

hyphomycete genus Stilbella, S. fimetaria (Seifert 1985) as<br />

well as the type <strong>of</strong> Stanjemonium (Gams et al. 1998) <strong>and</strong> the<br />

marine <strong>Acremonium</strong> tubakii sensu stricto <strong>and</strong> A. fuci (Zuccaro<br />

et al. 2004). Stilbella fimetaria is closely related to the ex-type<br />

isolate <strong>of</strong> <strong>Acremonium</strong> salmoneum isolated from dung, also a<br />

typical habitat for S. fimetaria (Seifert 1985). An adjacent weakly<br />

www.studiesinmycology.org<br />

acremonium phylogeny<br />

supported clade includes Hapsidospora, Mycoarachis, <strong>and</strong><br />

Nigrosabulum, <strong>and</strong> the two <strong>Acremonium</strong> species named for yellow<br />

pigmentation, A. chrysogenum <strong>and</strong> A. flavum. Although associated<br />

with A. chrysogenum <strong>and</strong> A. flavum in Fig. 1B, A. pinkertoniae<br />

<strong>and</strong> A. borodinense form a distinct clade in Fig. 2A along with an<br />

isolate included in the polyphyletic A. blochii (<strong>CBS</strong> 993.69), plus<br />

the cleistothecial teleomorphs Bulbithecium hyalosporum <strong>and</strong><br />

Leucosphaerina arxii, both <strong>of</strong> which have unnamed <strong>Acremonium</strong><br />

anamorphs. In Fig. 2A, the A. chrysogenum subclade appears<br />

to be distinct from the other clades containing A. sclerotigenum,<br />

Emericellopsis, <strong>and</strong> Geosmithia. The other clades within the overall<br />

sclerotigenum/Geosmithia clade include the A. fusidioides clade<br />

containing several acremonia forming similar conidial chains (A.<br />

cavaraeanum, A. fusidioides, A. hansfordii, A. hennebertii, one <strong>of</strong><br />

the isolates labeled A. alternatum). A small A. brachypenium clade<br />

associated with the A. sclerotigenum clade includes A. brachypenium<br />

plus the ex-type strain <strong>of</strong> Cephalosporium purpurascens placed<br />

by Gams (1971) in A. persicinum. There is also an isolate <strong>of</strong> the<br />

polyphyletic, untypified species A. potronii. Basal to these clades<br />

is another small clade that links an entomogenous isolate identified<br />

as Verticillium insectorum with two isolates from human sources<br />

identified as A. blochii; these conidial chain-forming isolates are<br />

sister to an isolate <strong>of</strong> the chain-forming entomogenous species<br />

<strong>Acremonium</strong> zeylanicum. The “A. blochii” isolate <strong>CBS</strong> 427.93,<br />

linked with a 99 % bootstrap value to A. pinkertoniae in Fig. 1B,<br />

is one <strong>of</strong> the two isolates associated with <strong>Acremonium</strong> zeylanicum<br />

in Fig. 2A.<br />

Adjacent <strong>and</strong> loosely linked to the bionectriaceous clades in<br />

Fig. 2B is a small clade in Fig. 2C containing the ex-type isolate <strong>of</strong><br />

<strong>Acremonium</strong> incrustatum plus an isolate labeled A. potronii, <strong>and</strong> a<br />

sequence attributed to Linkosia fusiformis, although this sequence<br />

most likely represents a contaminant.<br />

Below the sclerotigenum/Geosmithia clade in Fig. 1A <strong>and</strong><br />

above the Hypocreaceae in Fig. 2E fall clades representing<br />

the Clavicipitaceae sensu lato. These clades include the<br />

families Clavicipitaceae sensu stricto, Ophiocordycipitaceae,<br />

<strong>and</strong> Cordycipitaceae. Although many species in this group <strong>of</strong><br />

three families have <strong>Acremonium</strong>-like anamorphic states, only<br />

two described <strong>Acremonium</strong> species are associated here. In<br />

Fig. 2E A. camptosporum sits basally in a clade adjacent to the<br />

Clavicipitaceae <strong>and</strong> is close to the poorly understood teleomorphic<br />

species Clypeosphaeria phillyreae, assuming the latter is correctly<br />

associated with the sequence attributed to it. Simplicillium<br />

obclavatum, originally described as <strong>Acremonium</strong> obclavatum,<br />

provides the only other clavicipitaceous species in Fig. 2<br />

representing a named species <strong>of</strong> <strong>Acremonium</strong>.<br />

Below the Clavicipitaceaceae in Fig. 1B is a clade <strong>of</strong> ambiguous<br />

affinities containing <strong>Acremonium</strong> guillematii, A. minutisporum <strong>and</strong><br />

A. vitellinum. This group also appears as two to three unaffiliated<br />

clades in Fig. 2C. An insignificant branch in Fig. 1B subtends<br />

<strong>Acremonium</strong> exiguum, A. psammosporum, <strong>and</strong> an isolate identified<br />

as A. potronii. In Fig. 2D, just A. exiguum <strong>and</strong> the A. potronii entity<br />

remain associated while <strong>Acremonium</strong> psammosporum segregates<br />

into a basal hypocrealean clade <strong>of</strong> its own in Fig. 2E.<br />

The Nectriaceae is represented by Nectria cinnabarina in<br />

Fig. 1B along with the ex-type isolate <strong>of</strong> the tropical opportunistic<br />

pathogen <strong>of</strong> humans, <strong>Acremonium</strong> recifei. Fig. 2D shows A. recifei<br />

subtending multiple taxa with three non-type isolates splitting <strong>of</strong>f<br />

as a separate clade. These clades have approximately the same<br />

status in the Nectriaceae as the genus Nalanthamala, including N.<br />

diospyri, the former <strong>Acremonium</strong> diospyri. Another nectriaceous<br />

<strong>Acremonium</strong> in Fig. 2D is A. tsugae, which is closely related<br />

153


SuMMerbell et al.<br />

to Cylindrocarpon cylindroides. The broad morphotaxonomic<br />

concept <strong>of</strong> <strong>Acremonium</strong> berkeleyanum is polyphyletic consisting <strong>of</strong><br />

isolates placed in the nectriaceous genus Cosmospora (Fig. 2D).<br />

<strong>Acremonium</strong> berkeleyanum sensu lato is represented in Fig. 2D by<br />

the newly recombined Cosmospora species, C. lavitskiae <strong>and</strong> C.<br />

kh<strong>and</strong>alensis based on the ex-type isolates <strong>of</strong> Gliomastix lavitskiae<br />

<strong>and</strong> Cephalosporium kh<strong>and</strong>alense (Gräfenhan et al. 2011). Another<br />

purported synonym <strong>of</strong> A. berkeleyanum, a Cadophora isolate<br />

received as A. butyri <strong>CBS</strong> 301.38, falls outside the Hypocreales<br />

(Fig. 1C).<br />

Basally in the Hypocreales in Fig. 1B, <strong>Acremonium</strong> roseolum<br />

appears in loose association with Stachybotrys species. In Fig.<br />

2D, it appears in a clade along with the teleomorph Scopinella<br />

solani <strong>and</strong> three <strong>Acremonium</strong> inflatum isolates, including <strong>CBS</strong><br />

403.70, an atypical, catenate-conidial isolate identified at <strong>CBS</strong> as<br />

A. atrogriseum. Nearby but statistically unlinked clades include<br />

Stachybotrys <strong>and</strong> allied fungi such as Peethambara spirostriata<br />

<strong>and</strong> Didymostilbe echin<strong>of</strong>ibrosa (Castlebury et al. 2004).<br />

<strong>Acremonium</strong> nigrosclerotium represents an isolated<br />

<strong>Acremonium</strong> near the families Hypocreaceae <strong>and</strong> Niessliaceae<br />

(Fig. 1B). In Fig. 2D, A. nigrosclerotium is intercalated among<br />

two genotypes ascribed to N. exilis, <strong>and</strong> loosely associated (77<br />

% bootstrap) with <strong>Acremonium</strong> pseudozeylanicum <strong>and</strong> the type<br />

culture <strong>of</strong> Cephalosporium ballagii, currently in synonymy with<br />

<strong>Acremonium</strong> charticola (Gams 1971).<br />

A distant outlier is <strong>Acremonium</strong> lichenicola at the bottom <strong>of</strong> Fig.<br />

1C. This isolate, <strong>CBS</strong> 425.66, chosen to represent this species in<br />

lieu <strong>of</strong> ex-type material, blasts as a pezizalean fungus with affinities<br />

to another hyaline, phialidic fungus, Phialophora alba.<br />

A number <strong>of</strong> genera in addition to <strong>Acremonium</strong> were<br />

investigated for possible affinity with <strong>Acremonium</strong> clades as shown<br />

in Fig. 2. The sporodochial genus Sarcopodium was investigated<br />

<strong>and</strong> found to split into two groups (Fig. 2C, D). One isolate identified<br />

as S. circinatum grouped with Sarcopodium circinosetiferum <strong>and</strong><br />

S. vanillae in a widely separated clade along with Lanatonectria<br />

teleomorphs <strong>and</strong> a sequence identified as Pseudonectria<br />

rousseliana (Fig. 2C). This clade appeared in LSU sequencing to<br />

be independently situated within the Hypocreales. <strong>Acremonium</strong><br />

rhabdosporum appeared as a statistically unsupported, possible<br />

distant relative. The other two isolates <strong>of</strong> S. circinatum formed a<br />

clade near Myrothecium in the Stachybotrys/Peethambara clade<br />

(Fig. 2D). Also appearing in this clade was Parasarcopodium<br />

ceratocaryi, a monotypic genus recently described by Mel’nik et<br />

al. (2004).<br />

DIsCUssION<br />

The main morphotaxonomic groundwork for <strong>Acremonium</strong> as<br />

conceived in the late 20 th century was laid by Gams (1971)<br />

in his monograph Cephalosporium-artige Schimmelpilze<br />

(Hyphomycetes). This monograph was radically more<br />

comprehensive than previous treatments <strong>of</strong> the species <strong>and</strong> was<br />

followed by several key adjunct studies, including but not limited to<br />

Gams & Lacey (1972), Gams (1975), <strong>and</strong> Ito et al. (2000). Gams’<br />

studies were based on a meticulous morphological observation<br />

scheme that involved growing species on appropriate media, e.g.,<br />

oatmeal agar, <strong>and</strong> then making camera lucida drawings that could<br />

be directly compared with subsequent isolates. The comparison<br />

was done by superimposing the virtual image <strong>of</strong> the new isolate<br />

directly over the camera lucida drawings <strong>of</strong> previous isolates drawn<br />

154<br />

at the same scale. This highly rigorous approach was necessary<br />

for a group <strong>of</strong> hyphomycetous fungi so morphologically simplified<br />

as <strong>Acremonium</strong>.<br />

Gams (1971, 1975) also discovered a subtle character that<br />

allowed him to associate dark-conidial species, monographed<br />

by Dickinson (1968) as the genus Gliomastix, with numerous<br />

biologically related hyaline-conidial species. This character was<br />

"chondroid hyphae," which could be seen under the microscope as<br />

hyphae with wall thickenings, <strong>and</strong> which makes colonies somewhat<br />

resistant to being cut with a scalpel. The species Gams (1971)<br />

united using this character are, for the most part, grouped in the<br />

Gliomastix/Bionectria clade referred to earlier in this study.<br />

Despite the rigorous approach <strong>and</strong> the discovery <strong>of</strong> new, useful<br />

characters, a number <strong>of</strong> the morphotaxonomic species names<br />

ultimately were applied in the <strong>CBS</strong> collection to <strong>phylogenetic</strong>ally<br />

divergent organisms. Six distinct taxa from <strong>CBS</strong> investigated in<br />

this study were identified as A. persicinum; three are now seen<br />

<strong>phylogenetic</strong>ally to fall within the Gliomastix clade <strong>and</strong> three sort<br />

elsewhere. These taxa are mostly directly visible as A. persicinum<br />

isolates in Fig. 2. Names without quotation marks are consistent<br />

with the type, while names in quotation marks sort into other<br />

<strong>phylogenetic</strong> groups. An exception is represented by <strong>CBS</strong> 149.62.<br />

This isolate, the ex-type <strong>of</strong> Cephalosporium purpurascens, was<br />

listed by Gams (1971) as a synonym <strong>of</strong> A. persicinum. Five taxa<br />

in Fig. 2 were labeled A. potronii in <strong>CBS</strong>, <strong>and</strong> four were called<br />

A. strictum. Within both A. potronii <strong>and</strong> A. strictum, as conceived<br />

morphologically, some isolates fall within A. sclerotigenum. The<br />

name A. alternatum was applied to four species, three <strong>of</strong> them<br />

visible in Fig. 2, plus isolates <strong>of</strong> A. sclerotigenum with catenulate<br />

conidia. “<strong>Acremonium</strong> blochii” was applied to three different<br />

species.<br />

Phylogenetic analysis compared to the<br />

morphological treatment <strong>of</strong> <strong>Acremonium</strong><br />

Gams (1971, 1975) divided <strong>Acremonium</strong> into three major sections,<br />

Simplex, a name later updated as the type section <strong>Acremonium</strong>,<br />

Gliomastix, <strong>and</strong> Nectrioidea. Of these sections, only Gliomastix<br />

withst<strong>and</strong>s <strong>phylogenetic</strong> scrutiny as a unit, albeit a loosely<br />

associated one.<br />

The type section <strong>Acremonium</strong> contained four widely<br />

<strong>phylogenetic</strong>ally scattered major clades (Fig. 2), specifically the A.<br />

sclerotigenum clade, Sarocladium clade, A. curvulum clade, <strong>and</strong> A.<br />

breve clade. As seen best in Fig. 1, the Sarocladium clade <strong>and</strong> the<br />

A. breve <strong>and</strong> A. curvulum clades comprise a distinct group that falls<br />

within the Hypocreales but outside any currently recognised family.<br />

<strong>Acremonium</strong> sclerotigenum falls into a distinct clade within the<br />

Bionectriaceae that also contains Emericellopsis <strong>and</strong> Geosmithia.<br />

This clade also includes about half the investigated <strong>CBS</strong> isolates<br />

identified as the type species <strong>of</strong> <strong>Acremonium</strong>, A. alternatum,<br />

including <strong>CBS</strong> 407.66 as well as some isolates such as <strong>CBS</strong> 223.70<br />

revealed as morphological variants <strong>of</strong> A. sclerotigenum. Despite<br />

the substantial <strong>phylogenetic</strong> distance between A. sclerotigenum<br />

<strong>and</strong> A. strictum, relatively glabrous, cylindrical-conidial isolates<br />

<strong>of</strong> A. sclerotigenum not producing sclerotia on special media<br />

(lupine stem agar according to Gams, 1971, later replaced at<br />

<strong>CBS</strong> by nettle stem agar) are essentially micromorphologically<br />

indistinguishable from A. strictum. Table 1 shows <strong>CBS</strong> 287.70 O<br />

as an A. sclerotigenum isolate identified in <strong>CBS</strong> as A. strictum; ITS<br />

sequencing studies <strong>of</strong> additional strains (data not shown) have<br />

found two more such isolates, <strong>CBS</strong> 319.70 D <strong>and</strong> <strong>CBS</strong> 474.67.


The convergence among isolates <strong>of</strong> <strong>phylogenetic</strong>ally remote<br />

species is remarkable. An unknown proportion <strong>of</strong> the literature on<br />

A. strictum is based on studies <strong>of</strong> A. sclerotigenum. For example,<br />

in a study influential in medical mycology, Novicki et al. (2003)<br />

labeled ITS-sequenced isolates <strong>of</strong> A. sclerotigenum in GenBank<br />

as "<strong>Acremonium</strong> strictum genogroup II." The complexity <strong>of</strong> A.<br />

sclerotigenum, not its earliest valid name, goes beyond the scope<br />

<strong>of</strong> this paper. Perdomo et al. (2010) have recently investigated the<br />

diversity <strong>of</strong> medically important isolates within this species.<br />

Besides the four clades mentioned above, <strong>Acremonium</strong><br />

sect. <strong>Acremonium</strong> species also make up the non-synnematal<br />

anamorphs <strong>of</strong> the Emericellopsis clade, most <strong>of</strong> the A. fusidioides<br />

clade, <strong>and</strong> most <strong>of</strong> the small A. camptosporum, A. exiguum, A.<br />

minutisporum, A. pinkertoniae, <strong>and</strong> A. pseudozeylanicum clades.<br />

Gams (1975) accommodated A. byssoides, now known to belong<br />

in Simplicillium lanosoniveum (Zare & Gams 2001), in <strong>Acremonium</strong><br />

sect. <strong>Acremonium</strong>, while commenting that it was suggestive <strong>of</strong><br />

Verticillium sect. Prostrata, later recognised as Simplicillium (Zare<br />

& Gams 2001). He withheld A. byssoides from Verticillium because<br />

the colony margin was relatively flat <strong>and</strong> slightly fasciculate, rather<br />

than cottony. To some extent <strong>Acremonium</strong> sect. <strong>Acremonium</strong> was<br />

based on keying out all the relatively flat or fasciculate <strong>Acremonium</strong>like<br />

species together provided that they lacked the dark conidia or<br />

chondroid hyphae <strong>of</strong> Gliomastix.<br />

<strong>Acremonium</strong> sect. Nectrioidea as delineated by Gams (1971)<br />

included many Nectria sensu lato anamorphs. Some <strong>of</strong> these<br />

species are now placed in the genus Cosmospora by Gräfenhan et<br />

al. (2011). These include members <strong>of</strong> the A. berkeleyanum complex<br />

as well as A. arxii <strong>and</strong> A. cymosum. <strong>Acremonium</strong> falciforme in A.<br />

sect. Nectrioidea had already been recognised as a member <strong>of</strong><br />

the Fusarium solani complex (Summerbell & Schroers 2002) <strong>and</strong><br />

A. diospyri had been transferred into Nalanthamala along with<br />

other nectriaceous species (Schroers et al. 2005). <strong>Acremonium</strong><br />

tsugae appears to be a microconidial Cylindrocarpon species. The<br />

<strong>Acremonium</strong> recifei complex still remains as an undisposed major<br />

group <strong>of</strong> nectriaceous <strong>Acremonium</strong> species originally included in<br />

A. sect. Nectrioidea. The placement <strong>of</strong> A. sect. Nectrioidea species<br />

A. alcalophilum, A. brunnescens, A. furcatum, A. nepalense, A.<br />

restrictum, <strong>and</strong> A. stromaticum in the Plectosphaerellaceae has<br />

already been shown by Zare et al. (2007). <strong>Acremonium</strong> apii also<br />

has been shown to belong to this family as a synonym <strong>of</strong> Verticillium<br />

alboatrum, <strong>and</strong> its ex-type strain, <strong>CBS</strong> 130.51, was used as the<br />

representative isolate <strong>of</strong> that species by Zare et al. (2007).<br />

Other anomalous elements <strong>of</strong> A. sect. Nectrioidea include<br />

A. crotocinigenum in the Trichothecium clade, A. radiatum in the<br />

<strong>phylogenetic</strong>ally isolated A. breve clade, A. biseptum in the A.<br />

cerealis clade near Gliomastix, A. salmoneum in the Emericellopsis<br />

clade near Stilbella fimetaria, A. chrysogenum in a bionectriaceous<br />

clade containing cleistothecial teleomorphs such as Nigrosabulum,<br />

A. rutilum in a clade otherwise containing isolates identified as A.<br />

persicinum, <strong>and</strong> a non-type A. hyalinulum isolate in another clade<br />

peripheral to Gliomastix. When Sarocladium zeae as A. zeae in<br />

A. sect. Nectrioidea was compared to the <strong>phylogenetic</strong>ally related<br />

S. kiliense as A. kiliense in A. sect. <strong>Acremonium</strong> by Gams (1971,<br />

p. 16), he noted that the latter species may sometimes also be<br />

strongly branched <strong>and</strong> thus resemble the former. The exigencies<br />

<strong>of</strong> dichotomous morphological keying tended to sort closely related<br />

species into widely separated Sections <strong>of</strong> the genus.<br />

The main heterogeneous element included in Gams’ (1971)<br />

original concept <strong>of</strong> sect. Gliomastix was the “Striatisporum series.”<br />

These were later distinguished as the separate genus Sagenomella<br />

(Gams 1978). Both Sagenomella <strong>and</strong> the recently described genus<br />

www.studiesinmycology.org<br />

acremonium phylogeny<br />

Phialosimplex are members <strong>of</strong> the Eurotiales (Sigler et al. 2010).<br />

Another anomalous element in sect. Gliomastix, <strong>Acremonium</strong><br />

atrogriseum, is here removed to the Cephalothecaceae.<br />

Other species included by Gams (1971, 1975) in A.<br />

sect. Gliomastix that can now be seen to be separated from<br />

the Gliomastix/Bionectria clade include “Cephalosporium<br />

purpurascens,” synonymised by Gams (1971) with A. persicinum<br />

as well as A. brachypenium, A. hennebertii, A. incrustatum, <strong>and</strong><br />

A. inflatum. Species outside the Gliomastix/Bionectria clade that<br />

have well developed chondroid hyphae include A. hennebertii <strong>and</strong><br />

A. incrustatum.<br />

TAxONOMy<br />

The main purpose <strong>of</strong> this study is to provide a <strong>phylogenetic</strong> <strong>overview</strong><br />

<strong>of</strong> <strong>Acremonium</strong> plus distinctive LSU sequences to render the<br />

described species recognisable in molecular studies. In addition,<br />

some taxonomic changes are undertaken.<br />

What is <strong>Acremonium</strong>?<br />

The first task at h<strong>and</strong> is to establish what <strong>Acremonium</strong> is. The<br />

lectotype species <strong>of</strong> <strong>Acremonium</strong> is A. alternatum as designated<br />

by Gams (1968). Gams (1968) studied <strong>and</strong> illustrated the type<br />

material used by Link (1809) in describing A. alternatum. This<br />

material consists <strong>of</strong> a thin fungal mycelium colonising a birch leaf.<br />

In choosing living cultures that best approximated this specimen,<br />

Gams (1968) listed four isolates. From among these, one is chosen<br />

with a dried culture to be designated here as the epitype with an<br />

ex-epitype culture. This is <strong>CBS</strong> 407.66, which groups with the extype<br />

isolate <strong>of</strong> Cephalosporium malorum, synonymised by Gams<br />

(1971) with A. charticola, as well as with A. sordidulum <strong>and</strong> A.<br />

charticola in the poorly defined A. sclerotigenum/Geosmithia clade.<br />

Use <strong>of</strong> the corresponding dried culture <strong>CBS</strong> H-20525 as an epitype<br />

specimen serves nomenclatural stability because the genus name<br />

<strong>Acremonium</strong> is then used to designate a large group <strong>of</strong> species<br />

currently accepted in <strong>Acremonium</strong>.<br />

Other c<strong>and</strong>idate isolates included <strong>CBS</strong> 308.70 (called "Kultur<br />

1127"), which died out <strong>and</strong> was replenished from its degenerated,<br />

nonsporulating subculture MUCL 8432, now also called <strong>CBS</strong><br />

114602. As a degenerated isolate, it makes poor potential epitype<br />

material. Another isolate mentioned by Gams (1968), <strong>CBS</strong> 406.66,<br />

is conspecific with <strong>CBS</strong> 114602 <strong>and</strong> in good condition. Both<br />

isolates are included in a clade relatively distant from any other<br />

<strong>Acremonium</strong> group but deeply basal to the Sarocladium <strong>and</strong> A.<br />

breve clades, as seen in Fig. 1A. If <strong>Acremonium</strong> were epitypified<br />

with one <strong>of</strong> these isolates, the generic name might be restricted<br />

to this single species. The final isolate is <strong>CBS</strong> 223.70, an isolate<br />

that, despite its catenate conidia, is conspecific with the type <strong>of</strong> A.<br />

sclerotigenum (100 % ITS sequence identity; GenBank AJ621772<br />

for <strong>CBS</strong> 124.42 is essentially identical to A. sclerotigenum,<br />

U57674, <strong>CBS</strong> 223.70). Isolate <strong>CBS</strong> 223.70 strongly resembles pale<br />

greenish grey coloured, sclerotium-forming isolates identified as A.<br />

egyptiacum (e.g., <strong>CBS</strong> 734.69), which are also conspecific with A.<br />

sclerotigenum. It differs by not forming sclerotia. Catenate conidia<br />

may or may not be produced in this group <strong>and</strong> the greenish grey<br />

colonies produced by chain-forming isolates have explicitly been<br />

connected with A. egyptiacum, not A. alternatum. One other taxon<br />

that Gams (1971, 1975) consistently identified as A. alternatum, a<br />

species in the A. fusidioides clade, is represented by <strong>CBS</strong> 831.97<br />

155


SuMMerbell et al.<br />

<strong>and</strong> 381.70A. These isolates have the disadvantage <strong>of</strong> not having<br />

been explicitly compared with the type material. In addition, this<br />

clade is related to several clades with known teleomorphs, e.g.,<br />

Emericellopsis <strong>and</strong> Nigrosabulum, <strong>and</strong> anamorphs, e.g., Stilbella<br />

<strong>and</strong> Geosmithia. In a revised nomenclatural system, it would root<br />

<strong>Acremonium</strong> as a broad unitary genus name encompassing the<br />

teleomorphs <strong>and</strong> complex anamorphs. Ultimately, it might epitypify<br />

<strong>Acremonium</strong> strictly as a genus name for the A. fusidioides clade.<br />

<strong>Acremonium</strong> alternatum Link : Fr., Mag. Ges. naturf. Fr.<br />

Berlin 3: 15. 1809 : Fries, Syst. Mycol. 3: 425. 1832.<br />

Holotype: Germany, Rostock, on leaf litter <strong>of</strong> Betula, collected by<br />

Ditmar, B-type specimen labeled in Link’s h<strong>and</strong>writing.<br />

Epitype designated here: Austria, Stangensteig near Innsbruck, ex<br />

Ustulina deusta, W. Gams, Dec. 1965, <strong>CBS</strong>-H 20525 dried culture<br />

<strong>of</strong> <strong>CBS</strong> 407.66, ex-epitype living culture <strong>CBS</strong> 407.66.<br />

Additional genera recognised here<br />

Based on these analyses, three genera are represented in sufficient<br />

detail <strong>and</strong> with high bootstrap support to be formally recognised here.<br />

In most cases, the genera <strong>and</strong> clades are not sufficiently populated<br />

with their constituent members without analysis <strong>of</strong> additional<br />

sequences. For example, the Emericellopsis clade is missing 12 <strong>of</strong><br />

its 13 species including two identified as E. minima (Zuccaro et al.<br />

2004) as well as one <strong>of</strong> its two Stanjemonium species.<br />

Gliomastix<br />

The core clade <strong>of</strong> Gliomastix including the type species is well<br />

delimited with a 92 % bootstrap value even in the very conservative<br />

LSU analysis. Although Gams (1971) placed this genus into<br />

<strong>Acremonium</strong>, several authors have recognised Gliomastix. Most<br />

notably, Matsushima (1975) placed <strong>Acremonium</strong> masseei <strong>and</strong> A.<br />

polychromum into Gliomastix <strong>and</strong> Lechat et al. (2010) linked G.<br />

fusigera with Hydropisphaera bambusicola. As circumscribed in<br />

this paper, the <strong>phylogenetic</strong>ally supported Gliomastix differs from<br />

previous morphological concepts by excluding several distantly<br />

related species such as <strong>Acremonium</strong> cerealis <strong>and</strong> A. inflatum.<br />

The closely related A. persicinum clade may also be included as<br />

suggested by Supplemental fig. 6E in Schoch et al. (2009) <strong>and</strong><br />

discussed above. At the moment, we recognise only four species<br />

from the present study in Gliomastix. An additional species,<br />

published while the present manuscript was in preparation,<br />

<strong>Acremonium</strong> tumulicola (Kiyuna et al. 2010), should also be<br />

included in this concept <strong>of</strong> Gliomastix.<br />

The generic characters do not differ significantly from those<br />

summarised in the generic diagnosis <strong>of</strong> Dickinson (1968).<br />

1. Type species. Gliomastix murorum (Corda) S. Hughes,<br />

Canad. J. Bot. 36: 769. 1958.<br />

Basionym: Torula murorum Corda, Icon. Fung. 2: 9. 1838.<br />

≡ Sagrahamala murorum (Corda) Subram., Curr. Sci. 41: 49. 1972.<br />

≡ <strong>Acremonium</strong> murorum (Corda) W. Gams, Cephalosporium-artige<br />

Schimmelpilze (Stuttgart): 84. 1971.<br />

= Torula chartarum Corda, Icon. Fung. 2: 9. 1839.<br />

≡ Gliomastix chartarum (Corda) Guég, Bull. Soc. Mycol. France 21: 240.<br />

1905.<br />

For additional synonyms, see Gams (1971). The type species <strong>of</strong><br />

Gliomastix, G. chartarum, is a synonym <strong>of</strong> G. murorum (Hughes<br />

156<br />

1958). The distinction between G. murorum var. murorum having<br />

conidia in chains <strong>and</strong> G. murorum var. felina having conidia in<br />

mucoid heads does not appear to be supported by <strong>phylogenetic</strong><br />

analysis. Gliomastix murorum var. felina isolates originally<br />

described as Graphium malorum (ex-type <strong>CBS</strong> 154.25) <strong>and</strong> Torula<br />

cephalosporioides (ex-type <strong>CBS</strong> 378.36) are molecularly confirmed<br />

as synonyms <strong>of</strong> G. murorum (Fig. 2B). Recently, Kiyuna et al.<br />

(2010) neotypified Gliomastix felina (Marchal) Hammill, recombined<br />

as <strong>Acremonium</strong> felinum (Marchal) Kiyuna, An, Kigawa & Sugiy.,<br />

with <strong>CBS</strong> 147.81. The sequences deposited in GenBank, e.g.,<br />

AB540562, suggest that this isolate represents G. roseogrisea. The<br />

new combination is reduced to synonymy with that species below.<br />

2. Gliomastix masseei (Sacc. ) Matsush., Icon. micr<strong>of</strong>ung.<br />

Matsush. lect. (Kobe): 76. 1975.<br />

Basionym: Trichosporium masseei Sacc., Syll. Fung. 22: 1356.<br />

1913 [= Trichosporium aterrimum Massee, Bull. Misc. Inform. 1899: 167 non<br />

(Corda) Sacc. 1886]<br />

≡ <strong>Acremonium</strong> masseei (Sacc.) W. Gams, Cephalosporium-artige<br />

Schimmelpilze (Stuttgart): 83. 1971.<br />

The name lacks an ex-type isolate. Although the isolate (<strong>CBS</strong><br />

794.69) sequenced is basal to the Gliomastix clade (Fig. 2B), it<br />

appears to be a suitable to serve as the basis for epitypification.<br />

Holotype <strong>of</strong> Trichosporium masseei: India, Punjab, Changa Manga,<br />

on Morus indica, Jan. 1898, J. Gleadow, ex Herb. Massee, K;<br />

isotypes IMI 49,214 = IMI 87,346.<br />

Epitype designated here: Italy, Turin, isolated from rabbit dung, A.<br />

Fontana, <strong>CBS</strong> H-8244, ex-epitype culture <strong>CBS</strong> 794.69.<br />

3. Gliomastix polychroma (J.F.H. Beyma) Matsush., Icon.<br />

micr<strong>of</strong>ung. Matsush. lect. (Kobe): 77. 1975.<br />

Basionym: Oospora polychroma J.F.H. Beyma, Verh. K. Ned. Akad.<br />

Wetensch., Sect. 2, 26 (2): 5. 1928.<br />

≡ Sagrahamala polychroma (J.F.H. Beyma) Subram., Curr. Sci. 41: 49.<br />

1972.<br />

≡ <strong>Acremonium</strong> polychromum (J.F.H. Beyma) W. Gams, Cephalosporiumartige<br />

Schimmelpilze (Stuttgart): 81. 1971.<br />

Additional synonyms are given by Gams (1971). This clade<br />

includes the ex-type isolate <strong>of</strong> Oospora polychroma, basionym <strong>of</strong><br />

G. polychroma, <strong>CBS</strong> 181.27 (Fig. 2B). Periconia tenuissima var.<br />

nigra is confirmed as a synonym via inclusion <strong>of</strong> its ex-type isolate<br />

<strong>CBS</strong> 151.26 (Fig. 2B). The status <strong>of</strong> the different isolate, <strong>CBS</strong><br />

617.94, from banana, requires further clarification. This isolate may<br />

be related to <strong>Acremonium</strong> musicola, a species not represented in<br />

<strong>CBS</strong>.<br />

4. Gliomastix roseogrisea (S.B. Saksena) Summerbell,<br />

comb. nov. MycoBank MB519588.<br />

Basionym: Cephalosporium roseogriseum S.B. Saksena,<br />

Mycologia 47: 895. 1956 [1955].<br />

≡ <strong>Acremonium</strong> roseogriseum (S.B. Saksena) W. Gams [as ‘roseogriseum’],<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 87. 1971.<br />

= <strong>Acremonium</strong> felinum (Marchal) Kiyuna, An, Kigawa & Sugiy., Mycoscience<br />

52: 13. 2010.<br />

Gliomastix roseogrisea, like G. murorum, has a variety <strong>of</strong> conidial<br />

forms including conidia in chains <strong>and</strong> conidia <strong>of</strong> various shapes in<br />

mucoid heads. This plasticity <strong>of</strong> form recalls the situation mentioned


above for A. sclerotigenum <strong>and</strong> may represent a relatively common<br />

situation in acremonioid species. As another example Gams (1971)<br />

lists “Gliomastix murorum var. felina pro parte in Dickinson in Mycol<br />

Pap. 115: 16, 1968” as an additional synonym <strong>of</strong> this taxon.<br />

As mentioned above in the discussion <strong>of</strong> the genus, Kiyuna<br />

et al. (2010) recently neotypified Gliomastix felina (basionym<br />

Periconia felina Marchal, Bull. Soc. R. Bot. Belg. 34:141. 1895) with<br />

<strong>CBS</strong> 147.81, an isolate collected by Hammill (1981). This isolate<br />

is a typical G. roseogrisea, a taxon not studied by Kiyuna et al.<br />

(2010).<br />

5. Gliomastix tumulicola (Kiyuna, An, Kigawa & Sugiy.)<br />

Summerbell, comb. nov. MycoBank MB519599.<br />

Basionym: <strong>Acremonium</strong> tumulicola Kiyuna, An, Kigawa & Sugiy.,<br />

Mycoscience 52: 13. 2010.<br />

This newly described species is <strong>phylogenetic</strong>ally placed by its<br />

original authors (Kiyuna et al. 2010) in the Gliomastix clade <strong>and</strong><br />

comparison <strong>of</strong> sequences confirms that placement. Although this<br />

information was received too late to include this species in our<br />

<strong>phylogenetic</strong> analyses, the species is placed in Gliomastix.<br />

Sarocladium<br />

The genus Sarocladium was described for two pinkish coloured<br />

fungal pathogens causing sheath blast <strong>of</strong> rice (Gams & Hawksworth<br />

1976). The drawings in that paper <strong>and</strong> the photographs in Bills et<br />

al. (2004) show structures that overlap with those produced by the<br />

<strong>phylogenetic</strong>ally related A. kiliense, A. strictum, <strong>and</strong> A. zeae. As in<br />

Fusarium, plant pathogenic fungi that sporulate on above-ground<br />

plant parts are likely to produce upright, branching sporulating<br />

structures with mucoid conidia suggesting dispersal by insects<br />

that fly from plant to plant. Species with habitats where water<br />

flux or microarthropod movement may be important in dispersal,<br />

e.g., various Acremonia occurring in soil or Fusarium domesticum<br />

growing on cheese, may have simplified conidiogenous structures.<br />

Bills et al. (2004) suggested that the generic placement <strong>of</strong><br />

<strong>Acremonium</strong> kiliense <strong>and</strong> A. strictum should be re-examined in light<br />

<strong>of</strong> their close relationship with Sarocladium oryzae.<br />

The genus Sarocladium is delineated here to include several<br />

species previously recognised in <strong>Acremonium</strong>, as seen in Figs 1 <strong>and</strong><br />

2. In Fig. 2, where <strong>phylogenetic</strong> signal is relatively low, Sarocladium<br />

tepidly (84 % bootstrap) links to the A. bacillisporum clade. In Fig. 1, it<br />

links with a 99 % bootstrap value. Phylogenetic clustering algorithms<br />

<strong>of</strong>ten insert the A. bacillisporum clade between A. strictum <strong>and</strong> A.<br />

kiliense due to certain apo- or plesiomorphies shared with one or the<br />

other <strong>of</strong> these two members <strong>of</strong> the A. strictum clade (data not shown).<br />

On the other h<strong>and</strong>, the next most closely related clade in Fig. 1, the<br />

A. breve/A. curvulum clade, has ITS sequences with substantial<br />

sections that are difficult to align with those <strong>of</strong> the A. bacillisporum<br />

<strong>and</strong> A. strictum clades, indicating considerable evolutionary distance.<br />

The genus Sarocladium is emended here to include those<br />

species that belong to the A. strictum <strong>and</strong> A. bacillisporum clades.<br />

The generic name Sagrahamala is not a contender for this group<br />

because the type species is the unrelated <strong>Acremonium</strong> luzulae. In<br />

addition <strong>Acremonium</strong> luzulae is a species in need <strong>of</strong> epitypification,<br />

because, as shown in the present study, more than one <strong>phylogenetic</strong><br />

species is encompassed under the name.<br />

Sarocladium W. Gams & D. Hawksw., Kavaka 3: 57. 1976<br />

[1975].<br />

www.studiesinmycology.org<br />

acremonium phylogeny<br />

Colonies on 2 % malt extract agar slimy-glabrous to moderately<br />

floccose to deeply dusty, sometimes ropy; with, in Gams’<br />

terminology (Gams 1971), phalacrogenous, nematogenous, to<br />

plectonematogenous conidiation; growing 13–25 mm in 10 d at<br />

20 °C, whitish to pinkish to salmonaceous or, when conidia are<br />

formed in chains, sometimes acquiring vivid conidial mass colouration<br />

such as ochraceous or greenish glaucous; reverse pale to pinkish<br />

orange to pale grey-brown, rarely greenish-blue. Conidiogenous<br />

apparatus ranging from adelophialides, solitary orthotropic phialides<br />

to conidiophore structures with one or a few branches, or with<br />

cymose branching or occasionally with one or two ranks <strong>of</strong> loosely<br />

structured verticils, sometimes with repeated branching extending to<br />

90 μm long. Phialides subulate, aculeate to acerose, straight, slightly<br />

curved, or undulate, thin- <strong>and</strong> smooth-walled, 15–60(–75) μm long,<br />

tapering from a basal width <strong>of</strong> 1.2–2.5 μm, with minimal collarette;<br />

conidia borne in mucoid heads or dry chains, notably longer than<br />

broad, l/w mostly 2.2–7.0, cylindrical to fusiform to bacilliform,<br />

aseptate, smooth-walled, with rounded or tapered-truncate ends,<br />

3.5–8(–14) × 0.5–2 μm. Chlamydospores present or absent, when<br />

present relatively thick-walled, smooth or slightly roughened, globose<br />

to ellipsoidal, intercalary or terminal, mostly solitary, occasionally in<br />

short chains, 4–8 μm. Internal transcribed spacer sequence mostly<br />

with distinctive CGGTCGCGCC motif in mid-ITS2 region.<br />

Several species <strong>of</strong> Sarocladium are noted for melanogenesis<br />

yielding ochre-brown to dark grey-brown colony reverse colours on<br />

Sabouraud agar: S. glaucum, S. kiliense, <strong>and</strong> S. zeae (Gams 1971).<br />

In the case <strong>of</strong> S. kiliense, this melanogenesis has the result that<br />

most mycetoma cases feature black "grains" or sclerotium-like balls<br />

<strong>of</strong> compacted fungal hyphae (Summerbell 2003); melanogenesis<br />

is a well known pathogenicity factor in fungal diseases <strong>of</strong> humans<br />

<strong>and</strong> animals (Gómez & Nosanchuk 2003). As recognised here<br />

Sarocladium yields a remarkable unity <strong>of</strong> species with elongated<br />

conidia <strong>and</strong> phialides. Several species including S. kiliense, S.<br />

oryzae, <strong>and</strong> S. strictum form adelophialides prominently, at least in<br />

some isolates; acremonioid species outside Sarocladium usually<br />

lack this character.<br />

The recognised species are given below. <strong>Acremonium</strong><br />

implicatum may belong here, but the species lacks living ex-type or<br />

representative material. The “A. implicatum” isolate that grouped in<br />

Sarocladium, <strong>CBS</strong> 243.59, is noted by Gams (1971) as an authentic<br />

isolate <strong>of</strong> Fusidium terricola J.H. Mill., Giddens & A.A. Foster <strong>and</strong><br />

this name could be used if A. implicatum sensu Gams is revealed<br />

as polyphyletic. The other “A. implicatum” isolate, <strong>CBS</strong> 397.70B,<br />

included in this study is not a Sarocladium; rather it is a member <strong>of</strong><br />

the A. exiguum clade.<br />

1. Type species. Sarocladium oryzae (Sawada) W. Gams &<br />

D. Hawksw., Kavaka 3: 58. 1976 [1975].<br />

A description <strong>and</strong> synonymy are given by Gams & Hawksworth<br />

(1975). Bills et al. (2004) synonymised Sarocladium attenuatum with<br />

S. oryzae based on the reported identity <strong>of</strong> the ITS sequence <strong>of</strong> its<br />

ex-type isolate, <strong>CBS</strong> 399.73, with that <strong>of</strong> representative isolates <strong>of</strong> S.<br />

oryzae. We resequenced the ITS region <strong>of</strong> <strong>CBS</strong> 399.73 <strong>and</strong> obtained<br />

a sequence differing from Bills et al. (AY566995) by 6 base-pairs<br />

<strong>and</strong> 2 gaps. Some <strong>of</strong> the base pairs in our sequence appeared to<br />

be symplesiomorphies shared with A. kiliense or A. strictum but not<br />

S. oryzae, rather than r<strong>and</strong>om mutations or possible miscalls. Our<br />

resequencing <strong>of</strong> unequivocal S. oryzae isolates <strong>CBS</strong> 180.74 <strong>and</strong><br />

<strong>CBS</strong> 361.75 yielded results consistent with those <strong>of</strong> Bills et al. (2004).<br />

The status <strong>of</strong> S. attenuatum thus requires further study.<br />

157


SuMMerbell et al.<br />

2. Sarocladium bacillisporum (Onions & Barron)<br />

Summerbell, comb. nov. MycoBank MB519589.<br />

Basionym: Paecilomyces bacillisporus Onions & G.L. Barron,<br />

Mycol. Pap. 107: 11. 1967.<br />

≡ <strong>Acremonium</strong> bacillisporum (Onions & G.L. Barron) W. Gams,<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 72. 1971.<br />

≡ Sagrahamala bacillispora (Onions & G.L. Barron) Subram., Curr. Sci.<br />

41: 49. 1972.<br />

This species was described by Gams (1971). It is easily confused<br />

with Verticillium leptobactrum, which can be relatively floccose <strong>and</strong><br />

loosely structured although some isolates are very dense <strong>and</strong> slowgrowing<br />

(Gams, 1971). In addition colonies <strong>of</strong> S. bacillisporum at<br />

maturity have a pinkish colouration.<br />

3. Sarocladium bactrocephalum (W. Gams) Summerbell,<br />

comb. nov. MycoBank MB519590.<br />

Basionym: <strong>Acremonium</strong> bactrocephalum W. Gams,<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 44. 1971.<br />

As indicated by Gams (1971) this uncommon species is closely<br />

related to S. strictum, but is distinguished morphologically by its<br />

long, narrow conidia. It is molecularly distinguishable by LSU<br />

sequences.<br />

4. Sarocladium glaucum (W. Gams) Summerbell, comb.<br />

nov. MycoBank MB519591.<br />

Basionym: <strong>Acremonium</strong> glaucum W. Gams, Cephalosporium-artige<br />

Schimmelpilze (Stuttgart): 68. 1971.<br />

This species was described by Gams (1971). The ex-type culture<br />

<strong>CBS</strong> 796.69 indicates that this species belongs in Sarocladium.<br />

5. Sarocladium kiliense (Grütz) Summerbell comb. nov.<br />

MycoBank MB519592.<br />

Basionym: <strong>Acremonium</strong> kiliense Grütz, Dermatol. Wochenschr. 80:<br />

774. 1925.<br />

= Cephalosporium incoloratum Sukapure & Thirum., Sydowia 19: 171. 1966<br />

[1965].<br />

= <strong>Acremonium</strong> incoloratum (Sukapure & Thirum.) W. Gams, Cephalosporiumartige<br />

Schimmelpilze (Stuttgart): 50. 1971.<br />

Additional synonyms <strong>and</strong> a description <strong>of</strong> S. kiliense are given<br />

by Gams (1971) <strong>and</strong> Domsch et al. (2007); the species is also<br />

extensively illustrated by de Hoog et al. (2000). The ITS sequence<br />

<strong>of</strong> the ex-type strain <strong>of</strong> <strong>Acremonium</strong> incoloratum, <strong>CBS</strong> 146.62, is<br />

identical to that <strong>of</strong> the ex-type <strong>of</strong> S. kiliense, <strong>CBS</strong> 122.29 (data not<br />

shown). Though isolate <strong>CBS</strong> 146.62 is unusual in colour <strong>and</strong> lacks<br />

well differentiated chlamydospores that generally occur in S. kiliense,<br />

there is no phenetic difference pr<strong>of</strong>ound enough to suggest that<br />

additional genes must be examined to be certain <strong>of</strong> their synonymy.<br />

The sequences deposited in GenBank by Novicki et al. (2003)<br />

for their “<strong>Acremonium</strong> strictum genogroup III” (ITS: AY138846;<br />

LSU: AY138484) are actually <strong>of</strong> S. kiliense.<br />

6. Sarocladium ochraceum (Onions & Barron) Summerbell,<br />

comb. nov. MycoBank MB519593.<br />

Basionym: Paecilomyces ochraceus Onions & G.L. Barron, Mycol.<br />

Pap. 107: 15. 1967.<br />

≡ <strong>Acremonium</strong> ochraceum (Onions & G.L. Barron) W. Gams,<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 67. 1971.<br />

≡ Sagrahamala ochracea (Onions & G.L. Barron) Subram. & Pushkaran,<br />

Kavaka 3: 89. 1975 [1976].<br />

158<br />

This species was described by Gams (1971). We analysed the extype<br />

culture, <strong>CBS</strong> 428.67.<br />

7. Sarocladium strictum (W. Gams) Summerbell, comb.<br />

nov. MycoBank MB519594.<br />

Basionym: <strong>Acremonium</strong> strictum W. Gams, Cephalosporium-artige<br />

Schimmelpilze (Stuttgart): 42. 1971.<br />

Descriptions <strong>of</strong> S. strictum are given by Gams (1971) <strong>and</strong> Domsch<br />

et al. (2007). The type isolate <strong>of</strong> S. strictum was confirmed in this<br />

genus (Fig. 2C). Of the three isolates illustrated by Gams (1971)<br />

under A. strictum, <strong>CBS</strong> 287.70 D, is confirmed by sequencing<br />

as S. strictum. The only isolate <strong>of</strong> <strong>Acremonium</strong> zonatum in this<br />

study, <strong>CBS</strong> 565.67, turned out to have an ITS sequence identical<br />

to that <strong>of</strong> S. strictum. This is one <strong>of</strong> three isolates examined by<br />

Gams (1971) as A. zonatum. He stated that another isolate,<br />

<strong>CBS</strong> 145.62, appeared to be A. kiliense, but that examination <strong>of</strong><br />

herbarium material suggested that this species had been growing<br />

on the natural substrate mixed with the real A. zonatum <strong>and</strong> had<br />

been isolated accidentally. One herbarium specimen examined by<br />

Gams (1971) showed septate conidia, something not otherwise<br />

seen in Sarocladium, so there may indeed be a real A. zonatum.<br />

It is not clear if A. zonatum sensu Gams is a unified concept or<br />

a designation <strong>of</strong> various acremonioid fungi forming leaf spots on<br />

tropical plants. In any case, the known connection <strong>of</strong> the genus<br />

Sarocladium with phytopathogenesis <strong>and</strong> endophytism as in S.<br />

zeae makes it plausible that species such as S. strictum <strong>and</strong> S.<br />

kiliense may play a role in plant disease.<br />

8. Sarocladium zeae (W. Gams & D.R. Sumner) Summerbell,<br />

comb. nov. MycoBank MB519595.<br />

Basionym: <strong>Acremonium</strong> zeae W. Gams & D.R. Sumner, in Gams,<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 121. 1971.<br />

This economically important maize endophyte species fits the<br />

description given by Gams (1971) as a fungus with felty to shaggy<br />

colonies. Two S. zeae isolates with more flattened colonies were<br />

accessed in <strong>CBS</strong> as A. strictum. Both <strong>CBS</strong> 646.75 <strong>and</strong> 226.84 were<br />

from maize <strong>and</strong> found to be producers <strong>of</strong> pyrrocidine metabolites<br />

as well as dihydroresorcylide, characteristic <strong>of</strong> S. zeae (Wicklow<br />

et al. 2008). Pyrrocidines are antagonistic to Aspergillus flavus<br />

<strong>and</strong> Fusarium verticillioides in maize inflorescences <strong>and</strong> are thus<br />

important in the ecology <strong>and</strong> economic significance <strong>of</strong> S. zeae.<br />

An additional A. strictum isolate, <strong>CBS</strong> 310.85, is also S. zeae<br />

as evidenced by pyrrocidine production, but has not yet been<br />

sequenced (Wicklow et al. 2008).<br />

Trichothecium<br />

A significant theme <strong>of</strong> the current volume is the pioneering <strong>of</strong> a new<br />

approach to dikaryomycete nomenclature: the unitary naming <strong>of</strong><br />

genus-level clades based on the oldest valid generic name, whether<br />

originally anamorphic or teleomorphic in nature (see discussion in<br />

Gräfenhan et al. 2011). Because the first named fungi were <strong>of</strong>ten<br />

species prominently in contact with humans <strong>and</strong> their environs<br />

<strong>and</strong> because the first names usually were attached to the most<br />

frequently seen reproductive state, there is considerable wisdom to<br />

using the oldest name applied to either aspect <strong>of</strong> the holomorph in<br />

constructing a unitary nomenclature.<br />

The genus Trichothecium makes an excellent example,<br />

since the system used here preserves the best known species<br />

name in the group. A unitary system giving teleomorphs primacy


www.studiesinmycology.org<br />

acremonium phylogeny<br />

Fig. 3. A. Trichothecium roseum <strong>CBS</strong> 113334 showing retrogressive conidiation. B-D. conidiogenesis in “Trichothecium indicum”/ Leucosphaerina indica <strong>CBS</strong> 123.78 showing<br />

retrogressive development (B), phialidic development (B) <strong>and</strong> sympodial development (D).<br />

would replace the familiar "T. roseum" with a Leucosphaerina<br />

name. A system that retains primacy for morphology, which is<br />

the only reasonable basis for dual nomenclature in the molecular<br />

era, would divide the Trichothecium clade into four genera, as<br />

is the case today. One <strong>of</strong> those genera, <strong>Acremonium</strong>, would be<br />

quintessentially artificial <strong>and</strong> almost completely divorced from<br />

evolutionary biological relationships. With increased emphasis on<br />

genomes, proteomes, <strong>and</strong> metabolomes, a focus on polyphyletic<br />

elements <strong>of</strong> microscopic shape seems counterproductive. Every<br />

new system <strong>of</strong> nomenclatural change will entail both fortunate <strong>and</strong><br />

infelicitous changes <strong>and</strong> will receive some resistance in scientific<br />

communities. A nomenclatural system based on phylogeny will be<br />

considerably more stable than any previous system. The interests<br />

<strong>of</strong> all would be best served if it bridged gracefully out <strong>of</strong> pre<strong>phylogenetic</strong><br />

taxonomy, preserving as many familiar elements as<br />

possible. Trichothecium roseum, a constant from 1809 to today, is<br />

one <strong>of</strong> those elements that is worthy <strong>of</strong> being preserved.<br />

The small, tightly unified clade <strong>of</strong> Trichothecium includes<br />

isolates with three different anamorphic forms, currently classified as<br />

<strong>Acremonium</strong> (phialoconidia), Spicellum (sympodial blastoconidia),<br />

<strong>and</strong> Trichothecium (retrogressive blastoconidia). The associated<br />

teleomorph, Leucosphaerina indica, produces anamorphic forms<br />

described as “<strong>Acremonium</strong> or Sporothrix” (Suh & Blackwell 1999).<br />

These morphs are illustrated by von Arx et al. (1978). The range <strong>of</strong><br />

anamorphic forms produced by L. indica overlaps those produced<br />

by all the anamorphic species in the clade (Fig. 3).<br />

The four species studied here, Trichothecium roseum,<br />

<strong>Acremonium</strong> crotocinigenum, Leucosphaerina indica, <strong>and</strong> Spicellum<br />

roseum, have recently been associated with a fifth, newly described<br />

species, Spicellum ovalisporum. The dendrogram produced by<br />

Seifert et al. (2008) makes it clear that S. ovalisporum is related to<br />

S. roseum <strong>and</strong> is certainly a member <strong>of</strong> the Trichothecium clade. In<br />

parallel with the <strong>revision</strong> <strong>of</strong> the genus Microcera by Gräfenhan et al.<br />

(2011), this clade is redefined here as a genus with the oldest valid<br />

generic name, Trichothecium.<br />

As Fig. 2 shows, the second described Leucosphaerina<br />

species, L. arxii, is in the distant <strong>Acremonium</strong> pinkertoniae clade<br />

<strong>and</strong> is closely related to Bulbithecium hyalosporum. Malloch (1989)<br />

commented that it differed from L. indica by lacking sheathing gel<br />

around the ascospores <strong>and</strong> by having an <strong>Acremonium</strong> anamorph.<br />

Trichothecium Link : Fr., Mag. Gesell. naturf. Freunde,<br />

Berlin 3: 18. 1809.<br />

= Spicellum Nicot & Roquebert, Revue Mycol., Paris 39: 272. 1976 [1975].<br />

= Leucosphaerina Arx, Persoonia 13: 294. 1987.<br />

Older synonymy for the genus is given by Rifai & Cooke (1966).<br />

Colonies on malt extract agar 20–40 μm after 7 d at 24 °C, white<br />

to salmon orange or salmon pink (Methuen 6-7A2, 4-5A2-3), felty,<br />

floccose or lanose, sometimes appearing powdery with heavy<br />

conidiation. Ascomatal initials, if present, produced on aerial<br />

mycelium, irregularly coiled. Ascomata spherical or nearly so, nonostiolate,<br />

colourless or slightly pink, 150–300 μm; ascomatal wall<br />

persistent, nearly colourless, 10–13 μm thick, <strong>of</strong> indistinct hyphal<br />

cells; asci uniformly distributed in centrum, clavate to spherical,<br />

with thin, evanescent walls, 8-spored, 10–13 μm wide; ascospores<br />

ellipsoidal or reniform, with refractile walls <strong>and</strong> a 1–1.5 μm broad<br />

gelatinous sheath, smooth or finely striate, hyaline, yellow to pink en<br />

masse, without germ pore, 6–7 × 3–4 μm. Conidiogenous apparatus<br />

varying by species, featuring one or more <strong>of</strong>: conidiophores up to<br />

125 μm long × 2–3.5 μm wide, septate, unbranched, with terminal<br />

phialides 10–65 μm long, producing unicellular, hyaline, smoothwalled<br />

phialoconidia, obovate, oblong or cylindrical 4.4–7.4 μm; or<br />

conidiophores up to 175 μm long, unbranched or uncommonly with<br />

one or more branches, retrogressive, shortening with production<br />

<strong>of</strong> each conidium, with each conidial base subsuming a portion <strong>of</strong><br />

conidiophore apex; conidia 0–1-septate, ellipsoidal or ovate, with a<br />

decurved, abruptly narrowed basal hilum terminating in a distinct<br />

truncate end, 5–12 × 3–6.5 μm; or conidiophores ranging from<br />

unicellular conidiogenous cells to multicellular, multiply rebranched<br />

apparati extending indefinitely to beyond 200 μm long; terminal<br />

cells 9–37 μm long with a cylindrical basal part <strong>and</strong> a narrowing,<br />

apically extending conidiogenous rachis sympodially proliferating<br />

<strong>and</strong> producing oval to ellipsoidal to cylindrical or allantoid conidia<br />

3.5–11 × 1.5–3.5 μm, with truncate bases. Chlamydospores absent<br />

159


SuMMerbell et al.<br />

or present, when present mostly in intercalary chains, hyaline,<br />

smooth or finely warted, 5–8(–12) μm wide. Internal transcribed<br />

spacer sequence generally with distinct CACAAACCTCGCG<br />

motif in ITS2 region. The numerical position varies by species <strong>and</strong><br />

isolate, cf. position 476 in GenBank record EU445372, ITS for<br />

Spicellum ovalisporum ex-type isolate DAOM 186447.<br />

Various taxa described as Trichothecium need to be investigated<br />

to determine their relationship to this <strong>phylogenetic</strong> genus. For<br />

example, Trichothecium luteum <strong>and</strong> T. parvum, not represented by<br />

living cultures, should be investigated, as should T. campaniforme <strong>and</strong><br />

T. plasmoparae, which are represented by one isolate each in <strong>CBS</strong>.<br />

Trichothecium domesticum was recently redisposed as Fusarium<br />

domesticum (Bachmann et al. 2005). Of teleomorphs reported to have<br />

Trichothecium anamorphs, Heleococcum japonense is unrelated to<br />

the Trichothecium clade (Fig. 2; the sequence is erroneously listed<br />

as H. japonicum in GenBank); rather it is related to Gliomastix <strong>and</strong><br />

Hydropisphaera. A Trichothecium state <strong>of</strong> Hypomyces subiculosus<br />

(syn. H. trichothecoides) was described, but Hypomyces, a member<br />

<strong>of</strong> the Hypocreaceae, is a remote relative <strong>of</strong> the Trichothecium clade<br />

within the Hypocreales (Fig. 2).<br />

1. Type species. Trichothecium roseum (Pers.) Link, Mag.<br />

Gesell. naturf. Freunde, Berlin 3: 18. 1809.<br />

Synonymy is given in MycoBank record MB164181.<br />

2. Trichothecium crotocinigenum (Schol-Schwarz)<br />

Summerbell, Seifert, & Schroers, comb. nov. MycoBank<br />

MB519596.<br />

Basionym: Cephalosporium crotocinigenum Schol-Schwarz, Trans.<br />

Brit. Mycol. Soc. 48: 53. 1965.<br />

≡ <strong>Acremonium</strong> crotocinigenum (Schol-Schwarz) W. Gams,<br />

Cephalosporium-artige Schimmelpilze (Stuttgart): 112. 1971.<br />

As pointed out by Seifert et al. (2008, supplement), T. crotocinigenum<br />

has long been known to produce crotocin mycotoxins that are similar<br />

to the trichothecenes produced by T. roseum <strong>and</strong> T. sympodiale.<br />

The production <strong>of</strong> similar mycotoxins reinforces the argument for<br />

<strong>phylogenetic</strong> nomenclature such that scientific names reflect true<br />

relationships.<br />

3. Trichothecium indicum (Arx, Mukerji & N. Singh)<br />

Summerbell, Seifert, & Schroers, comb. nov. MycoBank<br />

MB519597.<br />

Basionym: Leucosphaerina indica (Arx, Mukerji & N. Singh) Arx,<br />

Persoonia 13: 294. 1987.<br />

With <strong>phylogenetic</strong> hindsight, the photographs <strong>of</strong> this species’<br />

anamorph in the original description by von Arx et al. (1978) can<br />

be seen to suggest <strong>Acremonium</strong>, Spicellum, <strong>and</strong> Trichothecium.<br />

4. Trichothecium ovalisporum (Seifert & Rehner) Seifert &<br />

Rehner, comb. nov. MycoBank MB519598.<br />

Basionym: Spicellum ovalisporum Seifert & S.A. Rehner, Fungal<br />

Planet: no. 28. 2008.<br />

The relationship <strong>of</strong> the recently described Spicellum ovalisporum<br />

to T. sympodiale is not clear. The ex-type <strong>of</strong> T. sympodiale<br />

(<strong>CBS</strong> 227.76) was resequenced for the ITS region; the resulting<br />

sequence differed from the GenBank record AB019365 by 7 gaps<br />

<strong>and</strong> one C ↔ T transition. The sequence had 100 % identity<br />

160<br />

with ITS sequence record EU445372 for the ex-type isolate <strong>of</strong> S.<br />

ovalisporum, DAOM 186447. Two more <strong>CBS</strong> isolates accessed<br />

as S. roseum, <strong>CBS</strong> 119.77 <strong>and</strong> <strong>CBS</strong> 146.78, also gave ITS<br />

sequences identical to EU445372. A recent partial ITS sequence<br />

made by K.A. Seifert for <strong>CBS</strong> 227.76 agreed with our sequence<br />

(data not shown). No one has thus been able to replicate the<br />

sequence given for S. roseum in AB019365 <strong>and</strong> we are uncertain<br />

<strong>of</strong> its significance, even though a similar sequence (GenBank<br />

AB019364) has been attributed to two other S. roseum isolates<br />

in the JCM collection by the same depositor, G. Okada. If the<br />

fallibilities <strong>of</strong> earlier sequencing chemistries are involved in these<br />

discrepancies, S. ovalisporum may be more closely related to T.<br />

sympodiale than is evident in the literature. Preliminary results<br />

have shown at least one substitution distinguishing the translation<br />

elongation factor α sequence <strong>of</strong> S. ovalisporum from that <strong>of</strong> T.<br />

sympodiale (Rehner, data not shown). Based on comparative<br />

morphology <strong>and</strong> habitat, the authors <strong>of</strong> S. ovalisporum are<br />

confident that their species is distinct, <strong>and</strong> thus the new<br />

combination is included here with their sanction.<br />

5. Trichothecium sympodiale Summerbell, Seifert, &<br />

Schroers, nom. nov. MycoBank MB 519600.<br />

Basionym: Spicellum roseum Nicot & Roquebert, Revue Mycol.,<br />

Paris 39: 272. 1976 [1975].<br />

If recombined into Trichothecium, Spicellum roseum would result in<br />

a homonym <strong>of</strong> the type species, thus a new name is needed.<br />

<strong>Acremonium</strong> atrogriseum <strong>and</strong> <strong>Acremonium</strong> cf.<br />

alternatum CBs 109043 in the Cephalothecaceae: a<br />

study in comparative morphology vs. phylogeny<br />

<strong>Acremonium</strong> atrogriseum <strong>and</strong> an isolate identified as <strong>Acremonium</strong> cf.<br />

alternatum <strong>CBS</strong> 109043 belong in the Cephalothecaceae (Fig. 1C).<br />

This isolate is a white coloured acremonioid fungus forming fusoid<br />

conidia in long chains. It also forms small, dark structures that may<br />

be aborted ascomatal initials. Sequencing <strong>of</strong> the ITS region (data not<br />

shown) reveals it to be a representative <strong>of</strong> Phialemonium obovatum.<br />

It is identical in all bases but one to the ITS sequence <strong>of</strong> ex-type strain<br />

<strong>CBS</strong> 279.76 (AB278187) <strong>and</strong> in all but two bases to another isolate<br />

<strong>of</strong> this species, <strong>CBS</strong> 116.74. Phialemonium obovatum was described<br />

as having conidia in slimy heads (Gams & McGinnis 1983). <strong>CBS</strong><br />

109043 shows that either mucoid heads or chains may be formed<br />

in this species, as in <strong>Acremonium</strong> persicinum, A. sclerotigenum,<br />

<strong>and</strong> Gliomastix murorum. Gams (1971) mentions an isolate <strong>of</strong><br />

Sarocladium bacillisporum that tends to produce mucoid heads.<br />

Colonies producing conidia in chains <strong>of</strong>ten have a different look from<br />

their head-forming conspecifics; the mass colour <strong>of</strong> the chains may<br />

give the colony colours not found in the species descriptions, such<br />

as the chalk white colour <strong>of</strong> <strong>CBS</strong> 109043 in contrast to the normally<br />

pale greenish brown <strong>of</strong> P. obovatum or the greenish grey <strong>of</strong> A.<br />

sclerotigenum isolate 223.70, in contrast to the normal pale salmon<br />

pink <strong>of</strong> non-catenate A. sclerotigenum.<br />

Existing morphological keys <strong>and</strong> descriptions not just in<br />

<strong>Acremonium</strong> but in all the acremonioid fungi need to be cautiously <strong>and</strong><br />

skeptically interpreted. At the very least, identifications for publication<br />

should be tested by sequencing. We hope that the LSU sequences<br />

in this paper will provide the foundation for a <strong>phylogenetic</strong>ally sound<br />

approach to the systematics <strong>and</strong> ecology <strong>of</strong> acremonioid fungi.


ACKNOWleDGeMeNTs<br />

We greatly thank Arien van Iperen, Bert Gerrits-van den Ende, <strong>and</strong> Kasper<br />

Luijsterburg for essential technical support in this study, as well as Keith Seifert<br />

<strong>and</strong> Steve Rehner for scientific contributions. Key work was done by co-op students<br />

Salvatore Lopes, Saghal Ahmed-Suleyman, Arwin van der Rhee, <strong>and</strong> Nienke<br />

Lancee as well as visiting Canadian student Jonathan Shapero. For sending type<br />

cultures, we thank Akira Nakagiri <strong>of</strong> the NITE Biological Resource Centre Fungi<br />

collection <strong>and</strong> Françoise Symoens <strong>of</strong> the BCCM-IHEM collection. The staff <strong>of</strong> the<br />

<strong>CBS</strong> Collection deserve special thanks for strain cultivation <strong>and</strong> additional work.<br />

The encouragement <strong>and</strong> mentorship <strong>of</strong> Walter Gams is highly appreciated, <strong>and</strong> we<br />

hope our partial resolution <strong>of</strong> the dilemmas posed by <strong>phylogenetic</strong> systematics in<br />

<strong>Acremonium</strong> will be recognised as complementary to his invaluable work.<br />

ReFeReNCes<br />

Arx JA von, Mukerji KG, Singh N (1978). Leucosphaera, a new genus <strong>of</strong> the<br />

Pseudeurotiaceae. Persoonia 10: 141–143.<br />

Bachmann HP, Bobst C, Bütik<strong>of</strong>er U, Casey MG, Dalla Torre M, Fröhlich-Wyder MT,<br />

Fürst M (2005). Occurrence <strong>and</strong> significance <strong>of</strong> Fusarium domesticum alias<br />

Anticollanti on smear-ripened cheeses. LWT - Food Science <strong>and</strong> Technology<br />

38: 399–407.<br />

Bills GF, Platas G, Gams W (2004). Conspecificity <strong>of</strong> the cerulenin <strong>and</strong> helvolic<br />

acid producing ‘Cephalosporium caerulens’, <strong>and</strong> the hypocrealean fungus<br />

Sarocladium oryzae Mycological Research 108: 1291–1300.<br />

Castlebury LA, Rossman AY, Sung GH, Hyten AS, Spatafora JW (2004). Multigene<br />

phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air<br />

fungus. Mycological Research 108: 864–872.<br />

Dickinson CH (1968). Gliomastix Guéguen. Mycological Papers 115: 1–26.<br />

Domsch KH, Gams W, Anderson T-H (2007) Compendium <strong>of</strong> soil fungi. IHW-Verl.,<br />

Eching, Germany.<br />

Gams W (1968). Typisierung der Gattung <strong>Acremonium</strong>. Nova Hedwigia 16: 141–145.<br />

Gams W (1971). Cephalosporium-artige Schimmelpilze (Hyphomycetes). 1–262.<br />

G. Fischer, Stuttgart.<br />

Gams W (1975). Cephalosporium-like Hyphomycetes: some tropical species.<br />

Transactions <strong>of</strong> the British Mycological Society 64: 389–404.<br />

Gams W (1978). Connected <strong>and</strong> disconnected chains <strong>of</strong> phialoconidia <strong>and</strong><br />

Sagenomella gen. nov. segregated from <strong>Acremonium</strong>. Persoonia 10: 97–112.<br />

Gams W, Hawksworth DL (1976) [‘1975’]. The identity <strong>of</strong> Acrocylindrium oryzae<br />

Sawada <strong>and</strong> a similar fungus causing sheath rot <strong>of</strong> rice. Kavaka 3: 57–61.<br />

Gams W, Lacey J (1972). Cephalosporium-like Hyphomycetes. Two species <strong>of</strong><br />

<strong>Acremonium</strong> from heated substrates. Transactions <strong>of</strong> the British Mycological<br />

Society 59: 519–522.<br />

Gams W, McGinnis MR (1983). Phialemonium, a new anamorph genus intermediate<br />

between Phialophora <strong>and</strong> <strong>Acremonium</strong>. Mycologia 75: 977–987.<br />

Gams W, O’Donnell K, Schroers H-J, Christensen M (1998). Generic classification<br />

<strong>of</strong> some more hyphomycetes with solitary conidia borne on phialides. Canadian<br />

Journal <strong>of</strong> Botany 76: 1570–1583.<br />

Gargas A, Taylor JW (1992). Polymerase chain reaction (PCR) primers for amplifying<br />

<strong>and</strong> sequencing 18S rDNA from lichenized fungi. Mycologia 84: 589–592.<br />

Glenn AE, Bacon CW, Price R, Hanlin RT (1996). Molecular phylogeny <strong>of</strong><br />

<strong>Acremonium</strong> <strong>and</strong> its taxonomic implications. Mycologia 88: 369–383.<br />

Gómez BL, Nosanchuk JD (2003). Melanin <strong>and</strong> fungi. Current Opinion in Infectious<br />

Disease 16: 91–96.<br />

Gräfenhan T, Schroers H-J, Nirenberg HI, Seifert KA (2011). An <strong>overview</strong> <strong>of</strong> the<br />

taxonomy, phylogeny, <strong>and</strong> typification <strong>of</strong> nectriaceous fungi in Cosmospora,<br />

<strong>Acremonium</strong>, Fusarium, Stilbella, <strong>and</strong> Volutella. Studies in Mycology 68: 79–<br />

113 (this issue).<br />

Hammill TM (1981). On Gliomastix murorum <strong>and</strong> G. felina. Mycologia 73: 229–237<br />

Hoog GS de, Guarro J, Gené J, Figueras MJ (2000). Atlas <strong>of</strong> Clinical Fungi. 2 nd ed.<br />

Utrecht, Netherl<strong>and</strong>s: Centraalbureau voor Schimmelcultures.<br />

Hoog GS de, Gerrits van den Ende AHG (1998). Molecular diagnostics <strong>of</strong> clinical<br />

strains <strong>of</strong> filamentous basidiomycetes. Mycoses 41: 183–189.<br />

Hughes SJ (1958). Revisiones hyphomycetum aliquot cum appendice de nominibus<br />

rejiciendis. Canadian Journal <strong>of</strong> Botany 36: 727–836.<br />

Ito T, Okane I, Nakagiri A, Gams W (2000). Two species <strong>of</strong> <strong>Acremonium</strong> section<br />

<strong>Acremonium</strong>: A. borodinense sp. nov. <strong>and</strong> A. cavaraeanum rediscovered.<br />

Mycological Research 104: 77–80.<br />

Kiyuna T, An K-D, Kigawa R, Sano C, Miura S, Sugiyama J (2010). Molecular<br />

assessment <strong>of</strong> fungi in ‘‘black spots" that deface murals in the Takamatsuzuka<br />

<strong>and</strong> Kitora Tumuli in Japan: <strong>Acremonium</strong> sect. Gliomastix including <strong>Acremonium</strong><br />

tumulicola sp. nov. <strong>and</strong> <strong>Acremonium</strong> felinum comb. nov. Mycoscience 52: 1–17.<br />

Lechat C, Farr DF, Hirooka Y, Minnis AM, Rossman AY (2010). A new species <strong>of</strong><br />

Hydropisphaera, H. bambusicola, is the sexual state <strong>of</strong> Gliomastix fusigera.<br />

Mycotaxon 111: 95–102.<br />

www.studiesinmycology.org<br />

acremonium phylogeny<br />

Liang ZQ, HanYF, Chu HL, Fox RTV (2009). Studies on the genus Paecilomyces<br />

in China V. Taifanglania gen. nov. for some monophialidic species. Fungal<br />

Diversity 34: 69–77.<br />

Link H (1809). Observationes in ordines plantarum naturals. Gesellschaft<br />

Naturforschender Freunde zu Berlin Magazin 3: 1–42.<br />

Lutzoni F, Wagner P, Reeb V, Zoller S (2000). Integrating ambiguously aligned<br />

regions <strong>of</strong> DNA sequences in <strong>phylogenetic</strong> analyses without violating positional<br />

homology. Systematic Biology 49: 628–651<br />

Maddison WP, Maddison DR (2003). MacClade: analysis <strong>of</strong> phylogeny <strong>and</strong> character<br />

evolution. V. 4.06. Sinauer, Sunderl<strong>and</strong>, Massachusetts.<br />

Malloch D (1989). An undescribed species <strong>of</strong> Leucosphaerina. Studies in Mycology<br />

31: 107–111.<br />

Mason-Gamer R, Kellogg E (1996). Testing for <strong>phylogenetic</strong> conflict among<br />

molecular datasets in the tribe Triticeae (Graminae). Systematic Biology 45:<br />

524–545.<br />

Matsushima T (1975). Icones Micr<strong>of</strong>ungorum a Matsushima lectorum. Published by<br />

the author, Kobe, Japan, 209 pp.<br />

Mel’nik V, Lee S, Groenewald J Z, Crous PW (2004). New hyphomycetes from<br />

Restionaceae in fynbos: Parasarcopodium ceratocaryi gen. et sp. nov., <strong>and</strong><br />

Rhexodenticula elegiae sp. nov. Mycological Progress 3: 19–28.<br />

Morgan-Jones G, Gams W (1982). Notes on Hyphomycetes. XLI. An endophyte <strong>of</strong><br />

Festuca arundinacea <strong>and</strong> the anamorph <strong>of</strong> Epichloe typhina, new taxa in one<br />

<strong>of</strong> two new sections <strong>of</strong> <strong>Acremonium</strong>. Mycotaxon 15: 311–318.<br />

Novicki TJ, LaFe K, Bui L, Bui U, Geise R, Marr K, Cookson BT (2003). Genetic<br />

diversity among clinical isolates <strong>of</strong> <strong>Acremonium</strong> strictum determined during an<br />

investigation <strong>of</strong> a fatal mycosis. Journal <strong>of</strong> Clinical Microbiology 41: 2623–2628.<br />

O’Donnell K (1993). Fusarium <strong>and</strong> its near relatives. In: The fungal holomorph:<br />

mitotic, meiotic <strong>and</strong> pleomorphic speciation in fungal systematics. (Reynolds<br />

R, Taylor JW, eds.), CBA International, Wallingford, United Kingdom: 225–233.<br />

Perdomo H, Sutton DA, García D, Fothergill AW, Cano J, Gené J, Summerbell<br />

RC, Rinaldi MG, Guarro J (2010). Spectrum <strong>of</strong> clinically relevant <strong>Acremonium</strong><br />

species in the United States. Journal <strong>of</strong> Clinical Microbiology. doi:10.1128/<br />

JCM.00793-10<br />

Raper JR, Raper CA (1972). Genetic analysis <strong>of</strong> the life cycle <strong>of</strong> Agaricus bisporus.<br />

Mycologia 64:1088–1117.<br />

Reeb V, Roux C, Lutzoni F (2004). Contribution <strong>of</strong> RPB2 to multilocus <strong>phylogenetic</strong><br />

studies <strong>of</strong> the euascomycetes (Pezizomycotina, Fungi) with special emphasis<br />

on the lichen-forming Acarosporaceae <strong>and</strong> evolution <strong>of</strong> polyspory. Molecular<br />

Phylogenetics <strong>and</strong> Evolution 32: 1036–1060.<br />

Rifai MA, Cooke RC (1966). Studies on some didymosporous genera <strong>of</strong> nematodetrapping<br />

Hyphomycetes. Transactions <strong>of</strong> the British Mycological Society 49:<br />

147 – 168.<br />

Rossman AY, Samuels GJ, Rogerson CT, Lowen R (1999). Genera <strong>of</strong> Bionectriaceae,<br />

Hypocreaceae <strong>and</strong> Nectriaceae (Hypocreales, Ascomycetes). Studies in<br />

Mycology 42: 1–248.<br />

Schoch CL, Sung G-H, López-Giráldez F, Townsend JP, Miadlikowska J, H<strong>of</strong>stetter<br />

V, Robbertse B, Matheny PB, Kauff F, Wang Z, Guiedan C, Andrie RM, Trippe K,<br />

Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Yahr R, Groenewald<br />

JZ, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K,<br />

Gryzenhout M, Wingfield MJ, Aptroot A, Suh S-O, Blackwell M, Hillis DM,<br />

Griffith GW, Castlebury LA, Rossman AY, Lumbsch HT, Lücking R, Büdel B,<br />

Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer<br />

J, Volkmann-Kohlmeyer B, Mostert L, O’Donnell K, Sipman H, Rogers JD,<br />

Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston P,<br />

Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe<br />

JM, Lutzoni F, Spatafora JW (2009) The Ascomycota tree <strong>of</strong> life: a phylumwide<br />

phylogeny clarifies the origin <strong>and</strong> evolution <strong>of</strong> fundamental reproductive <strong>and</strong><br />

ecological traits. Systematic Biology 58: 224–239.<br />

Schroers H-J (2000). Generic delimitation <strong>of</strong> Bionectria (Bionectriaceae,<br />

Hypocreales) based on holomorph characters <strong>and</strong> rDNA sequences. Studies<br />

in Mycology 45: 63–82.<br />

Schroers H-J (2001). A monograph <strong>of</strong> Bionectria (Ascomycota, Hypocreales,<br />

Bionectriaceae) <strong>and</strong> its Clonostachys anamorphs. Studies in Mycology 46:<br />

1–214.<br />

Schroers H-J, Geldenhuis MM, Wingfield MJ, Schoeman MH, Yen YF, Shen WC,<br />

Wingfield BD (2005). Classification <strong>of</strong> the guava wilt fungus Myxosporium<br />

psidii, the palm pathogen Gliocladium vermoesenii <strong>and</strong> the persimmon wilt<br />

fungus <strong>Acremonium</strong> diospyri in Nalanthamala. Mycologia 97: 375–395.<br />

Seifert KA (1985). A monograph <strong>of</strong> Stilbella <strong>and</strong> allied hyphomycetes. Studies in<br />

Mycology 27: 1–235.<br />

Seifert KA, Rehner SA, Sugita T, Okada G (2008). Spicellum ovalisporum Seifert &<br />

Rehner, sp. nov. Fungal Planet 28: 1–4.<br />

Sigler L, Sutton DA, Gibas CF, Summerbell RC, Noel RK, Iwen PC (2010)<br />

Phialosimplex, a new anamorphic genus associated with infections in dogs<br />

<strong>and</strong> having <strong>phylogenetic</strong> affinity to the Trichocomaceae. Medical Mycology 48:<br />

335–345.<br />

161


SuMMerbell et al.<br />

Stamatakis A, Hoover P, Rougemont J (2008). A rapid bootstrap algorithm for the<br />

RAxML web-servers. Systematic Biology 75: 758–771.<br />

Stamatakis A, Ludwig T, Meier H (2005). RAxML-III: A fast program for maximum<br />

likelihood-based inference <strong>of</strong> large <strong>phylogenetic</strong> trees. Bioinformatics 21:<br />

456–463.<br />

Suh S-O, Blackwell M (1999). Molecular phylogeny <strong>of</strong> the cleistothecial fungi placed<br />

in Cephalothecaceae <strong>and</strong> Pseudeurotiaceae Mycologia 91: 836–848.<br />

Summerbell RC (2003). Aspergillus, Fusarium, Sporothrix, Piedraia <strong>and</strong> their<br />

relatives. In: Pathogenic Fungi in Humans <strong>and</strong> Animals (Howard DH, ed)<br />

Marcel Dekker Press, New York: 237–498.<br />

Summerbell RC, Schroers H-J (2002). Analysis <strong>of</strong> <strong>phylogenetic</strong> relationship <strong>of</strong><br />

Cylindrocarpon lichenicola <strong>and</strong> <strong>Acremonium</strong> falciforme to the Fusarium solani<br />

species complex <strong>and</strong> a review <strong>of</strong> similarities in the spectrum <strong>of</strong> opportunistic<br />

infections caused by these fungi. Journal <strong>of</strong> Clinical Microbiology 40: 2866–<br />

2875.<br />

Sung GH, Hywell-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW<br />

(2007). Phylogenetic classification <strong>of</strong> Cordyceps <strong>and</strong> the clavicipitaceous fungi.<br />

Studies in Mycology 57: 5–59.<br />

Vilgalys R, Hester M (1990). Rapid genetic identification <strong>and</strong> mapping <strong>of</strong><br />

enzymatically amplified ribosomal DNA from several Cryptococcus species.<br />

Journal <strong>of</strong> Bacteriology 172: 4238–4246.<br />

162<br />

White TJ, Bruns TD, Lee SB, Taylor JW (1990). Amplification <strong>and</strong> direct sequencing<br />

<strong>of</strong> fungal ribosomal RNA genes for <strong>phylogenetic</strong>s. In: PCR protocols: A guide to<br />

methods <strong>and</strong> applications. (Innis MA, Gelf<strong>and</strong> DA, Sninsky JJ, White TJ, eds.),<br />

Academic Press, San Diego, California, USA: 315–322.<br />

Wicklow DT, Poling SM, Summerbell RC (2008). Occurrence <strong>of</strong> pyrrocidine <strong>and</strong><br />

dihydroresorcylide production among <strong>Acremonium</strong> zeae populations from<br />

maize grown in different regions. Canadian Journal <strong>of</strong> Plant Pathology 30:<br />

425–433.<br />

Zare R, Gams W (2001). A <strong>revision</strong> <strong>of</strong> Verticillium section Prostrata. IV. The genera<br />

Lecanicillium <strong>and</strong> Simplicillium gen. nov. Nova Hedwigia 73: 1–50.<br />

Zare R, Gams W, Starink-Willemse M, Summerbell RC (2007). Gibellulopsis, a<br />

suitable genus for Verticillium nigrescens, <strong>and</strong> Musicillium, a new genus for V.<br />

theobromae. Nova Hedwigia 85: 463–489.<br />

Zuccaro A, Summerbell RC, Gams W, Schroers H-J, Mitchell JI (2004). A new<br />

<strong>Acremonium</strong> species associated with Fucus spp., <strong>and</strong> its affinity with a<br />

<strong>phylogenetic</strong>ally distinct marine Emericellopsis clade. Studies in Mycology 50:<br />

283–297.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!