04.03.2014 Views

Classical and augmentative biological control against ... - IOBC-WPRS

Classical and augmentative biological control against ... - IOBC-WPRS

Classical and augmentative biological control against ... - IOBC-WPRS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>IOBC</strong><br />

OILB<br />

<strong>WPRS</strong><br />

SROP<br />

In te rn atio na l O rg an isatio n fo r B iolog ical an d In teg ra te d C on tro l o f N o xiou s<br />

A nim als a n d P lan ts: W e st Pa la ea rctic R e gio na l S e ctio n<br />

O rg an isatio n In te rn a tio n ale d e L utte B io lo giqu e e t In te g ré e con tre les A n im a ux et le s<br />

P la ntes N u isibles: S e ction R é gio na le O u est P a lé a rctiq ue<br />

<strong>Classical</strong> <strong>and</strong> <strong>augmentative</strong> <strong>biological</strong><br />

<strong>control</strong> <strong>against</strong> diseases <strong>and</strong> pests:<br />

critical status analysis <strong>and</strong> review of factors<br />

influencing their success<br />

Edited by Philippe C. Nicot<br />

2011


The content of the contributions is the responsibility of the authors<br />

Published by the International Organization for Biological <strong>and</strong> Integrated Control of Noxious<br />

Animals <strong>and</strong> Plants, West Palaearctic Regional Section (<strong>IOBC</strong>/<strong>WPRS</strong>)<br />

Publié par l'Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux<br />

et les Plantes Nuisibles, Section Ouest Palaéarctique (OILB/SROP)<br />

Copyright <strong>IOBC</strong>/<strong>WPRS</strong> 2011<br />

ISBN 978-92-9067-243-2<br />

Cover page photo credits:<br />

1<strong>and</strong> 3: M Ruocco, CNR<br />

2: Anderson Mancini<br />

4. P.C. Nicot, INRA<br />

1<br />

2<br />

3<br />

4


Preface<br />

One of the Research Activities (RA 4.3) of the European Network for Durable Exploitation of crop<br />

protection strategies (ENDURE * ) has brought together representatives of industry <strong>and</strong> scientists<br />

from several European countries with experience ranging from fundamental biology to applied field<br />

work on <strong>biological</strong> <strong>control</strong> <strong>against</strong> pests <strong>and</strong> diseases. The unique diversity of expertise <strong>and</strong><br />

concerns allowed the group to set up very complementary approaches to tackle the issue of the<br />

factors of success of bio<strong>control</strong>.<br />

The initial part of the work accomplished by this group consisted in a thorough review of<br />

scientific literature published on all types of <strong>biological</strong> <strong>control</strong>. Although it had to be focused on<br />

selected key European crops <strong>and</strong> their major pests <strong>and</strong> pathogens, this review is unique in the scope<br />

of the topics it covered <strong>and</strong> in the comprehensive inventories it allowed to gather on the potential of<br />

bio<strong>control</strong> <strong>and</strong> factors of success at field level.<br />

In parallel with identifying knowledge gaps <strong>and</strong> key factors from published research,<br />

information was gathered on aspects linked to the production <strong>and</strong> commercialization of bio<strong>control</strong><br />

agents.<br />

These results, complemented by the views of experts in the field of bio<strong>control</strong> consulted at the<br />

occasion of meetings of <strong>IOBC</strong>-wprs, allowed the identification of majors gaps in knowledge <strong>and</strong><br />

bottlenecks for the successful deployment of bio<strong>control</strong> <strong>and</strong> lead to the proposition of key issues for<br />

future work by the research community, the field of development <strong>and</strong> prospects for technological<br />

improvement by industry.<br />

Avignon, June 2011<br />

Philippe C. Nicot<br />

*<br />

EU FR6 project 031499, funded in part by the European Commission<br />

i


Contributors<br />

ALABOUVETTE Claude,<br />

INRA, UMR1229, Microbiologie du Sol et de l'Environnement, 17 rue Sully,<br />

F-21000 Dijon, France<br />

Claude.Alabouvette@dijon.inra.fr<br />

current address: AGRENE, 47 rue Constant Pierrot 21000 DIJON, c.ala@agrene.fr<br />

BARDIN Marc,<br />

INRA, UR 407, Unité de Pathologie végétale, Domaine St Maurice, BP 94,<br />

F-84140 Montfavet, France<br />

Marc.Bardin@avignon.inra.fr<br />

BLUM Bernard,<br />

International Bio<strong>control</strong> Manufacturers Association, Blauenstrasse 57,<br />

CH-4054 Basel, Switzerl<strong>and</strong><br />

bjblum.ibma@bluewin.ch<br />

DELVAL Philippe,<br />

ACTA, Direction Scientifique, Technique et Internationale,<br />

ICB / VetAgroSup, 1 avenue Claude Bourgelat , F-69680 Marcy l'Etoile, France<br />

Philippe.Delval@acta.asso.fr<br />

GIORGINI Massimo,<br />

CNR, Istituto per la Protezione delle Piante, via Università 133,<br />

80055 Portici (NA), Italy<br />

giorgini@ipp.cnr.it<br />

HEILIG Ulf,<br />

IBMA, 6 rue de Seine, F-78230 Le Pecq, France<br />

ulf.heilig@cegetel.net<br />

KÖHL Jürgen,<br />

Wageningen UR, Plant Research International, Droevendaalsesteeg 1,<br />

P.O. Box 69, 6700 AB Wageningen, The Netherl<strong>and</strong>s<br />

jurgen.kohl@wur.nl<br />

LANZUISE Stefania,<br />

UNINA, Dip. Arboricoltura, Botanica e Patologia Vegetale,<br />

Università di Napoli Federico II, via Università 100, 80055 Portici (NA), Italy<br />

ii


LORITO Matteo<br />

UNINA, Dip. Arboricoltura, Botanica e Patologia Vegetale,<br />

Università di Napoli Federico II, via Università 100, 80055 Portici (NA), Italy<br />

lorito@unina.it<br />

MALAUSA Jean Claude,<br />

INRA, UE 1254, Unité expérimentale de Lutte Biologique,<br />

Centre de recherche PACA, 400 route des Chappes, BP 167,<br />

F-06903 Sophia Antipolis, France<br />

Jean-Claude.Malausa@sophia.inra.fr<br />

NICOT Philippe C.,<br />

INRA, UR 407, Unité de Pathologie végétale, Domaine St Maurice, BP 94,<br />

F-84140 Montfavet, France<br />

Philippe.Nicot@avignon.inra.fr<br />

RIS Nicolas,<br />

INRA, UE 1254, Unité expérimentale de Lutte Biologique,<br />

Centre de recherche PACA, 400 route des Chappes, BP 167,<br />

F-06903 Sophia Antipolis, France<br />

Nicolas.Ris@sophia.inra.fr<br />

RUOCCO Michelina,<br />

CNR, Istituto per la Protezione delle Piante, via Università 133,<br />

80055 Portici (NA), Italy<br />

ruocco@ipp.cnr.it<br />

VINALE Francesco,<br />

CNR, Istituto per la Protezione delle Piante, via Università 133,<br />

80055 Portici (NA), Italy<br />

frvinale@unina.it<br />

WOO Sheridan<br />

UNINA, Dip. Arboricoltura, Botanica e Patologia Vegetale,<br />

Università di Napoli Federico II, via Università 100, 80055 Portici (NA), Italy<br />

woo@unina.it<br />

iii


List of Tables<br />

Table 1:<br />

Table 2:<br />

Table 3:<br />

Table 4:<br />

Table 5:<br />

Table 6:<br />

Table 7:<br />

Table 8:<br />

Scientific papers published between 1973 <strong>and</strong> 2008 on <strong>biological</strong> <strong>control</strong><br />

<strong>against</strong> major plant diseases (from CAB Abstracts® database). ..........................................2<br />

Numbers of references on bio<strong>control</strong> examined per group of disease/plant<br />

pathogen......................................................................................................................3<br />

Numbers of different bio<strong>control</strong> compounds <strong>and</strong> microbial species reported as<br />

having successful effect <strong>against</strong> key airborne pathogens/diseases of selected<br />

crops. ..........................................................................................................................4<br />

Microbial species of fungi/oomycetes, yeasts <strong>and</strong> bacteria reported to have a<br />

significant effect <strong>against</strong> five main types of airborne diseases or pathogens in<br />

laboratory conditions or in the field.................................................................................5<br />

References extracted from the CAB Abstracts database <strong>and</strong> examined for<br />

reviewing augmentation <strong>biological</strong> <strong>control</strong> in grapevine. .................................................13<br />

Bio<strong>control</strong> agents evaluated in researches on <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong><br />

of pests in grapevine. ..................................................................................................15<br />

Number of references on <strong>augmentative</strong> bio<strong>control</strong> agents per group <strong>and</strong><br />

species of target pest in grapevine.................................................................................16<br />

Number of references reporting data on the efficacy of <strong>augmentative</strong><br />

bio<strong>control</strong> of pests in grapevine. ...................................................................................18<br />

Table 9: Recent introductions of parasitoids as <strong>Classical</strong> Bio<strong>control</strong> agents ....................................31<br />

Table 10:<br />

Table 11:<br />

Consulted sources of information on authorized bio<strong>control</strong> plant protection<br />

products in five European countries: .............................................................................34<br />

Active substances suitable for <strong>biological</strong> <strong>control</strong> listed on Annex I of<br />

91/414/EEC (EU Pesticide Database) - Status on 21st April 2009.....................................36<br />

Table 12: Evidence for, <strong>and</strong> effectiveness of, induced resistance in plants by<br />

Trichoderma species (Harman et al., 2004a). .................................................................47<br />

Table 13:<br />

Table 14:<br />

Table 15:<br />

Table 16:<br />

Trichoderma-based preparations commercialized for <strong>biological</strong> <strong>control</strong> of<br />

plant diseases. ............................................................................................................49<br />

Compared structure of the production costs for a microbial bio<strong>control</strong> agent<br />

(MBCA) <strong>and</strong> a chemical insecticide (source IBMA). ......................................................59<br />

Compared potential costs of registration for a microbial bio<strong>control</strong> agent<br />

(MBCA) <strong>and</strong> a chemical pesticide (source IBMA)..........................................................60<br />

Compared estimated market potential for a microbial bio<strong>control</strong> agent<br />

(MBCA) <strong>and</strong> for a chemical pesticide (source: IBMA) ....................................................60<br />

iv


List of Tables (continued)<br />

Table 17:<br />

Table 18:<br />

Table 19:<br />

Table 20:<br />

Table 21:<br />

Compared margin structure estimates for the production <strong>and</strong> sales of a<br />

microbial bio<strong>control</strong> agent (MBCA) <strong>and</strong> a chemical pesticide (source IBMA)....................61<br />

Production systems selected for a survey of factors influencing bio<strong>control</strong> use<br />

in Europe (source IBMA) ............................................................................................63<br />

Geographical distribution of sampling sites for a survey of factors influencing<br />

bio<strong>control</strong> use in Europe (source IBMA) .......................................................................63<br />

Structure of the questionnaire used in a survey of European farmers <strong>and</strong><br />

retailers of <strong>biological</strong> <strong>control</strong> products...........................................................................64<br />

Impact of twelve factors on the future use of bio<strong>control</strong> agents by European<br />

farmers according to a survey of 320 farmers .................................................................66<br />

v


List of Figures<br />

Figure 1:<br />

Figure 2:<br />

Evolution of the yearly number of publications dedicated to <strong>biological</strong> <strong>control</strong><br />

of plant diseases based on a survey of the CAB Abstracts® database. .................................1<br />

Range of efficacy of 157 microbial bio<strong>control</strong> agents <strong>against</strong> five main types<br />

of airborne diseases. Detailed data are presented in Table 4.............................................10<br />

Figure 3: Number of papers per year published during 1998-2008 concerning<br />

<strong>augmentative</strong> <strong>biological</strong> <strong>control</strong> of pests in grapevine......................................................13<br />

Figure 4:<br />

Figure 5:<br />

Figure 6:<br />

Figure 7:<br />

Figure 8:<br />

Figure 9:<br />

Figure 10:<br />

Figure 11:<br />

Figure 12:<br />

Groups of bio<strong>control</strong> agents investigated in <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong><br />

researches in grapevine. Number of references for each group is reported..........................19<br />

Groups of target pests investigated in <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong><br />

researches in grapevine. Number of references for each group is reported..........................19<br />

Large-scale temporal survey of the publications associated with classical<br />

<strong>biological</strong> <strong>control</strong>........................................................................................................26<br />

Relative importance of the different types of bio<strong>control</strong> during the temporal<br />

frame [1999-2008]......................................................................................................27<br />

Number of pest species <strong>and</strong> related citation rate by orders during the period<br />

[1999 ; 2008] .............................................................................................................28<br />

Relationships between the number of publications associated to the main<br />

pests <strong>and</strong> the relative percentage of ClBC related studies.................................................29<br />

Frequencies of papers <strong>and</strong> associated median IF related to the different<br />

categories of work ......................................................................................................30<br />

Estimated sales of bio<strong>control</strong> products in Europe in 2008 (in Million €). The<br />

estimates were obtained by extrapolating use patterns in a representative<br />

sample of EU farmers..................................................................................................64<br />

Estimated distribution of bio<strong>control</strong> use among types of crops in 2008 in<br />

Europe ......................................................................................................................65<br />

vi


Contents<br />

Chapter 1<br />

Potential of <strong>biological</strong> <strong>control</strong> based on published research.<br />

1. Protection <strong>against</strong> plant pathogens of selected crops...................................................1<br />

P. C. Nicot, M. Bardin, C. Alabouvette, J. Köhl <strong>and</strong> M. Ruocco<br />

Chapter 2<br />

Potential of <strong>biological</strong> <strong>control</strong> based on published research.<br />

2. Beneficials for <strong>augmentative</strong> bio<strong>control</strong> <strong>against</strong> insect pests. The<br />

grapevine case study .......................................................................................................12<br />

M. Giorgini<br />

Chapter 3<br />

Potential of <strong>biological</strong> <strong>control</strong> based on published research.<br />

3. Research <strong>and</strong> development in classical <strong>biological</strong> <strong>control</strong> with<br />

emphasis on the recent introduction of insect parasitoids .......................................20<br />

N. Ris <strong>and</strong> J.C. Malausa<br />

Chapter 4<br />

Registered Bio<strong>control</strong> Products <strong>and</strong> their use in Europe...................................................34<br />

U. Heilig, P. Delval <strong>and</strong> B. Blum<br />

Chapter 5<br />

Identified difficulties <strong>and</strong> conditions for field success of bio<strong>control</strong>.<br />

1. Regulatory aspects ................................................................................................. 42<br />

U. Heilig, C. Alabouvette <strong>and</strong> B.Blum<br />

Chapter 6<br />

Identified difficulties <strong>and</strong> conditions for field success of bio<strong>control</strong>.<br />

2. Technical aspects: factors of efficacy ...........................................................................45<br />

M. Ruocco, S. Woo, F. Vinale, S. Lanzuise <strong>and</strong> M. Lorito<br />

Chapter 7<br />

Identified difficulties <strong>and</strong> conditions for field success of bio<strong>control</strong>.<br />

3. Economic aspects: cost analysis ....................................................................................58<br />

B. Blum, P.C. Nicot, J. Köhl <strong>and</strong> M. Ruocco<br />

Chapter 8<br />

Identified difficulties <strong>and</strong> conditions for field success of bio<strong>control</strong>.<br />

4. Socio-economic aspects: market analysis <strong>and</strong> outlook ..............................................62<br />

B. Blum, P.C. Nicot, J. Köhl <strong>and</strong> M. Ruocco<br />

Conclusions <strong>and</strong> perspectives<br />

Perspectives for future research-<strong>and</strong>-development projects on <strong>biological</strong><br />

<strong>control</strong> of plant pests <strong>and</strong> diseases.................................................................................. 68<br />

P.C. Nicot, B. Blum, J. Köhl <strong>and</strong> M. Ruocco<br />

vii


Appendices....................................................................................................................... 71<br />

For Chapter 1<br />

Appendix 1.<br />

Appendix 2.<br />

Appendix 3.<br />

Appendix 4.<br />

Appendix 5.<br />

Inventory of bio<strong>control</strong> agents described in primary literature<br />

(1998-2008) for successful effect <strong>against</strong> Botrytis sp. in laboratory<br />

experiments <strong>and</strong> field trials with selected crops ...........................................72<br />

Inventory of bio<strong>control</strong> agents described in primary literature<br />

(1998-2008) for successful effect <strong>against</strong> powdery mildew in<br />

laboratory experiments <strong>and</strong> field trials with selected crops. .......................102<br />

Inventory of bio<strong>control</strong> agents described in primary literature<br />

(1973-2008) for successful effect <strong>against</strong> the rust pathogens in<br />

laboratory experiments <strong>and</strong> field trials with selected crops.........................111<br />

Inventory of bio<strong>control</strong> agents described in primary literature<br />

(1973-2008) for successful effect <strong>against</strong> the downy mildew / late<br />

blight pathogens in laboratory experiments <strong>and</strong> field trials with<br />

selected crops............................................................................................115<br />

Inventory of bio<strong>control</strong> agents described in primary literature<br />

(1973-2008) for successful effect <strong>against</strong> Monilinia in laboratory<br />

experiments <strong>and</strong> field trials with selected crops .........................................122<br />

Appendix 6. Primary literature (2007-2009) on <strong>biological</strong> <strong>control</strong> <strong>against</strong><br />

Fusarium oxysporum.................................................................................128<br />

For Chapter 2<br />

Appendix 7.<br />

Appendix 8.<br />

Number of references retrieved by using the CAB Abstracts<br />

database in order to review scientific literatures on <strong>augmentative</strong><br />

<strong>biological</strong> <strong>control</strong> in selected crops for Chapter 2. .....................................139<br />

Collection of data on <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong> of pests in<br />

grapevine. Each table refers to a group of bio<strong>control</strong> agents.......................141<br />

For Chapter 3<br />

Appendix 9.<br />

References on classical <strong>biological</strong> <strong>control</strong> <strong>against</strong> insect pests<br />

(cited in Chapter 3)....................................................................................152<br />

For Chapter 4<br />

Appendix 10. Substances included in the "EU Pesticides Database" as of April 21<br />

2009..........................................................................................................163<br />

Appendix 11.<br />

Invertebrate beneficials available as <strong>biological</strong> <strong>control</strong> agents<br />

<strong>against</strong> invertebrate pests in five European countries. ................................171<br />

viii


Chapter 1<br />

Potential of <strong>biological</strong> <strong>control</strong> based on published research.<br />

1. Protection <strong>against</strong> plant pathogens of selected crops<br />

Philippe C. Nicot 1 , Marc Bardin 1 , Claude Alabouvette 2 , Jürgen Köhl 3 <strong>and</strong> Michelina Ruocco 4<br />

1 INRA, UR407, Unité de Pathologie Végétale, Domaine St Maurice, 84140 Montfavet, France<br />

2 INRA, UMR1229, Microbiologie du Sol et de l'Environnement, 17 rue Sully, 21000 Dijon, France<br />

3 Wageningen UR, Plant Research International, Droevendaalsesteeg 1, P.O. Box 69, 6700 AB<br />

Wageningen, The Netherl<strong>and</strong>s<br />

4 CNR-IPP, Istituto pel la Protezione delle Piante, Via Univrsità 133, Portici (NA) Italy<br />

Evolution of the scientific literature<br />

The scientific literature published between 1973 <strong>and</strong> 2008 comprises a wealth of studies on<br />

<strong>biological</strong> <strong>control</strong> <strong>against</strong> diseases <strong>and</strong> pests of agricultural crops. A survey of the CAB Abstracts®<br />

database shows a steady increase in the yearly number of these publications from 20 in 1973 to over<br />

700 per year since 2004 (Figure 1).<br />

900<br />

Number of publications per year<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1970 1975 1980 1985 1990 1995 2000 2005 2010<br />

Publication year<br />

Figure 1:<br />

Evolution of the yearly number of publications dedicated to <strong>biological</strong> <strong>control</strong> of plant<br />

diseases based on a survey of the CAB Abstracts ® database.<br />

This survey was further refined by entering keywords describing some of the major plant<br />

pathogens/diseases of cultivated crops in Europe, alone or cross-referenced with keywords<br />

indicating bio<strong>control</strong>. Among studies published in the period between 1973 <strong>and</strong> 2008 on these<br />

plant pathogens <strong>and</strong> pests, the percentage dedicated to <strong>biological</strong> <strong>control</strong> was substantial, but<br />

unequally distributed (Table 1). It was notably higher for studies on soil-borne (9.5% ± 1.6% as<br />

average ± st<strong>and</strong>ard error) than for those on air-borne diseases (2.8% ± 0.7%).<br />

1


Nicot et al.<br />

Table 1: Scientific papers published between 1973 <strong>and</strong> 2008 on <strong>biological</strong> <strong>control</strong> <strong>against</strong> major<br />

plant diseases (from CAB Abstracts ® database).<br />

Disease or plant pathogen<br />

Total number<br />

of references<br />

References on <strong>biological</strong> <strong>control</strong><br />

%<br />

Soil-borne:<br />

Fusarium 34 818 1 925 5.5<br />

Rhizoctonia 10 744 1 278 11.9<br />

Verticillium 7 585 592 7.8<br />

Pythium 5 772 821 14.2<br />

Sclerotinia 5 545 456 8.2<br />

Air-borne:<br />

rusts 29 505 360 1.2<br />

powdery mildews 18 026 251 1.4<br />

Alternaria 12 766 415 3.3<br />

anthracnose 12 390 351 2.8<br />

Botrytis 9 295 705 7.5<br />

downy mildews 8 456 80 1.0<br />

Phytophthora infestans 5 303 61 1.1<br />

Monilia rot 1 861 81 4.3<br />

Venturia 3 870 104 2.7<br />

Inventory of potential bio<strong>control</strong> agents (microbials, botanicals, other natural<br />

compounds)<br />

The scientific literature described above was further examined to identify bio<strong>control</strong> compounds<br />

<strong>and</strong> microbial species reported to have a successful effect. Due to the great abundance of<br />

references, it was not possible to examine the complete body of literature. The study was thus<br />

focused on several key diseases selected for their general importance on cultivated crops, <strong>and</strong> in<br />

particular on those crops studied in the case studies of the European Network for Durable<br />

Exploitation of crop protection strategies (ENDURE * ).<br />

Methodology<br />

Three steps were followed. The first step consisted in collecting the appropriate literature references<br />

for the selected key diseases/plant pathogens to be targeted by the study. The references were<br />

extracted from the CAB Abstracts ® database <strong>and</strong> downloaded to separate files using version X1 of<br />

EndNote (one file for each target group). The files were then distributed among the contributors of<br />

this task for detailed analysis.<br />

In the second step, every reference was examined <strong>and</strong> we recorded for each:<br />

- the types of bio<strong>control</strong> agents (Microbial, Botanical or Other compounds) under study <strong>and</strong> their<br />

Latin name (for living organisms <strong>and</strong> plant extracts) or chemical name<br />

- the Latin name of the specifically targeted pathogens,<br />

- the crop species (unless tests were carried out exclusively in vitro),<br />

- the outcome of efficacy tests.<br />

Two types of efficacy tests were distinguished: Controlled environment tests (including tests on<br />

plants <strong>and</strong> in vitro tests), <strong>and</strong> field trials. The outcome of a test was rated (+) if significant effect<br />

was reported, (0) if no significant efficacy was shown <strong>and</strong> (-) if the bio<strong>control</strong> agent stimulated<br />

disease development.<br />

*<br />

EU FR6 project 031499, funded in part by the European Commission<br />

2


Chapter 1<br />

To allow for the analysis of a large number of references, the abstracts were examined for the<br />

presence of the relevant data. The complete publications were acquired <strong>and</strong> examined only when<br />

the abstracts were not sufficiently precise.<br />

The data were collected in separate tables for each type of key target pest. For each table, they<br />

were sorted (in decreasing order of priority) according to the type <strong>and</strong> name of the bio<strong>control</strong><br />

agents, the specifically targeted pest, <strong>and</strong> the outcome of efficacy tests.<br />

In the third step, synthetic summary tables were constructed to quantify the number of different<br />

bio<strong>control</strong> compounds <strong>and</strong> microbial species <strong>and</strong> strains reported to have successful effect <strong>against</strong><br />

each type of key pathogen/disease or pest target.<br />

Results<br />

A total number of 1791 references were examined for key airborne diseases including powdery<br />

mildews, rusts, downy mildews (+ late blight of Potato/Tomato) <strong>and</strong> Botrytis <strong>and</strong> Monilia rots,<br />

together with soilborne diseases caused by Fusarium oxysporum (Table 2). Based on the<br />

examination of these references, successful effect in <strong>control</strong>led conditions was achieved for all<br />

targets under study with a variety of species <strong>and</strong> compounds (Appendices 1 to 6, Table 3).<br />

Table 2:<br />

Numbers of references on bio<strong>control</strong> examined per group of disease/plant pathogen.<br />

Target disease / plant<br />

pathogen<br />

Botrytis<br />

Relevance to<br />

ENDURE Case<br />

Studies<br />

OR, FV, GR*<br />

(postharvest)<br />

Number of<br />

references<br />

examined<br />

Period of<br />

publication<br />

examined<br />

880 1998-2008<br />

Powdery mildews all 166 1998-2008<br />

Rusts AC, FV, OR 154 1973-2008<br />

Downy mildews +<br />

Phytophthora infestans<br />

FV, GR, PO, TO 349 1973-2008<br />

Monilinia rot OR 194 1973-2008<br />

Fusarium oxysporum FV, TO 48 2007-2009<br />

*AC: Arable Crops; FV: Field Vegetables; GR: Grapes; OR: orchard; PO: Potato; TO: Tomato<br />

Concerning airborne diseases <strong>and</strong> pathogens, the largest number of reported successes was<br />

achieved with microbials, but there is a growing body of literature on plant <strong>and</strong> microbial extracts,<br />

as well as other types of substances (Table 3). On average, reports of success were far more<br />

numerous for experiments in <strong>control</strong>led conditions (in vitro or in planta) than for field trials.<br />

Very contrasted situations were also observed depending on the type of target<br />

disease/pathogen, with rare reports on the bio<strong>control</strong> of rusts <strong>and</strong> mildews compared to Botrytis,<br />

despite the fact that the literature was examined over a 35 year period for the former diseases <strong>and</strong><br />

only over the last 10 years for the latter.<br />

In total in this review, 157 species of micro-organisms have been reported for significant<br />

bio<strong>control</strong> activity. They belong to 36 genera of fungi or oomycetes, 13 of yeasts <strong>and</strong> 25 of<br />

bacteria. Among them, 29 species of fungi/oomycetes <strong>and</strong> 18 bacteria were reported as successful in<br />

the field <strong>against</strong> at least one of the five key airborne diseases included in this review (Table 4).<br />

3


Nicot et al.<br />

Table 3: Numbers of different bio<strong>control</strong> compounds <strong>and</strong> microbial species reported as having<br />

successful effect <strong>against</strong> key airborne pathogens/diseases of selected crops. Detailed<br />

information <strong>and</strong> associated bibliographic references are presented in Appendices 1 to 5<br />

Botanicals Microbials y Others z<br />

Target plant pathogen /<br />

laboratory<br />

laboratory<br />

laboratory<br />

disease<br />

tests x field trials<br />

tests x field trials<br />

tests x field trials<br />

Botrytis<br />

in vitro 26 - 31 b, 21 f - 7 -<br />

legumes 4 2 10 b, 12 f 3b, 9 f 0 0<br />

protected vegetables 0 1 22 b, 24 f 8 b, 9 f 5 1<br />

strawberry 0 0 14 b, 21 f 2 b, 13 f 7 1<br />

field vegetables 0 0 5 b, 15 f 2 f 0 0<br />

grapes 1 3 5 b, 27 f 5 b, 13 f 0 1<br />

pome/stone fruits 1 0 12 b, 35 f 2 b, 6 f 4 0<br />

others 3 0 15 b, 25 f 6 b, 6 f 0 0<br />

Powdery mildews<br />

Grape 1 1 4b; 10f 2b; 12f 3 2<br />

Arable crops 1 0 2b;9f 1b 5 0<br />

Strawberry 0 0 4b; 6f 0 0 0<br />

Cucurbitaceae 4 0 14b; 22f 4b; 9f 9 1<br />

Pome/stone fruits 0 0 3f 1f 0 0<br />

Pepper 1 0 4f 0 1 0<br />

Tomato 5 0 4b; 5f 1f; 1b 0 0<br />

Various 2 0 2b; 10f 1b; 1f 5 0<br />

Rusts<br />

arable crops 0 0 5 b, 6 f 2 b 2 0<br />

others 0 0 8 b, 13 f 0 1 0<br />

Downy mildews + late<br />

blight<br />

grapes 2 4 2 f 3 b, 2 f 2 3<br />

field vegetables 0 0 4 0 4 6<br />

potato 9 1 8 b, 10 f 5 b, 4 f 3 1<br />

tomato 2 1 5 b, 5 f 4 b 12 1<br />

Monilia rot<br />

in vitro 0 - 8 - 1 -<br />

pome fruit 0 0 7 0 0 0<br />

stone fruit 0 1 23b, 19 7b, 7f 2 2<br />

others 0 0 1b 2b, 1f 0 0<br />

x tests conducted in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions<br />

y b: bacteria; f: fungi / oomycetes / yeasts<br />

z including culture filtrates <strong>and</strong> extracts from microorganisms<br />

4


Chapter 1<br />

Table 4:<br />

Microbial species of fungi/oomycetes, yeasts <strong>and</strong> bacteria reported to have a significant<br />

effect <strong>against</strong> five main types of airborne diseases or pathogens in laboratory conditions<br />

or in the field (yellow highlight). Bibliographic references are presented in Appendices 1<br />

to 5.<br />

A. Fungi <strong>and</strong> oomycetes<br />

Target disease / pathogen<br />

Microbial species<br />

Powdery<br />

Botrytis<br />

mildew<br />

Rust<br />

Acremonium spp.<br />

others<br />

cereals,<br />

Acremonium alternatum<br />

protected<br />

vegetables<br />

A. cephalosporium grapes<br />

A. obclavatum others<br />

Alternaria spp. grapes cereals<br />

Downy mildew,<br />

late blight<br />

A. alternata others grapes<br />

fruits, grapes,<br />

strawberry,<br />

Ampelomyces quisqualis<br />

protected<br />

vegetables,<br />

others,<br />

Aspergillus spp. others tomato<br />

A. flavus others<br />

Beauveria sp<br />

protected vegetables<br />

Botrytis cinerea nonaggressive<br />

strains<br />

legumes<br />

Chaetomium cochlioides<br />

grapes<br />

C. globosum legumes<br />

Cladosporium spp. flowers others<br />

C. chlorocephalum others<br />

C. cladosporioides flowers, legumes others<br />

C. oxysporum flowers others others<br />

C. tenuissimum strawberry<br />

field vegetables,<br />

others<br />

Monillia rot<br />

flowers, legumes,<br />

Clonostachys rosea<br />

others, strawberries,<br />

field vegetables,<br />

protected vegetables,<br />

Coniothyrium spp.<br />

grapes<br />

C. minitans field vegetables<br />

Cylindrocladium<br />

others<br />

Drechslera hawaiinensis<br />

others<br />

Epicoccum sp<br />

flowers, grapes, field<br />

vegetables<br />

E. nigrum legumes, strawberries plum, peach<br />

E. purpurascens apple, cherry<br />

Filobasidium floriforme<br />

fruits<br />

Fusarium spp. flowers others<br />

F. acuminatum cereals<br />

F. chlamydosporum others<br />

F. oxysporum cereals tomato<br />

F. proliferatum grapes<br />

Galactomyces geotrichum<br />

fruits<br />

5


Nicot et al.<br />

Table 4 (continued)<br />

Gliocladium spp.<br />

grapes, protected<br />

vegetables, others<br />

G. catenulatum<br />

protected vegetables,<br />

legumes<br />

G. roseum<br />

flowers, grapes,<br />

legumes, others<br />

others<br />

blueberry<br />

G. virens<br />

strawberries, field<br />

vegetables<br />

potato, others<br />

G. viride protected vegetables<br />

Lecanicillium spp.<br />

protected<br />

vegetables<br />

L. longisporum<br />

protected<br />

vegetables<br />

Meira geulakonigii<br />

protected<br />

vegetables<br />

Microdochium dimerum<br />

protected vegetables,<br />

protected vegetables<br />

Microsphaeropsis ochracea field vegetables<br />

Muscodor albus fruits, grapes peach<br />

Paecilomyces farinosus<br />

cereals<br />

P. fumorosoroseus<br />

protected<br />

vegetables<br />

Penicillium spp. fruits, field vegetables others potato, tomato<br />

P. aurantiogriseum legumes potato<br />

P. brevicompactum legumes<br />

P. frequentans plum, peach<br />

P. griseofulvum<br />

legumes, field<br />

vegetables<br />

P. purpurogenum peach<br />

P. viridicatum potato<br />

Phytophthora cryptogea<br />

potato<br />

grapes,<br />

Pseudozyma floculosa<br />

protected<br />

vegetables,<br />

Pythium olig<strong>and</strong>rum protected vegetables<br />

P. paroec<strong>and</strong>rum grapes<br />

P. periplocum grapes<br />

Rhizoctonia flowers potato<br />

Scytalidium<br />

grapes<br />

S. uredinicola others<br />

Sordaria fimicola<br />

apple<br />

Tilletiopsis spp.<br />

grapes<br />

T. minor others<br />

Trichoderma spp.<br />

flowers, grapes,<br />

legumes, strawberries,<br />

protected vegetables,<br />

potato<br />

others<br />

T. asperellum strawberries<br />

T. atroviride legumes, strawberries peach<br />

T. hamatum flowers, legumes<br />

T. harzianum<br />

flowers, grapes,<br />

others,<br />

grapes, potato,<br />

legumes, strawberries,<br />

strawberry,<br />

tomato, field<br />

field vegetables,<br />

others<br />

protected<br />

vegetables,<br />

protected vegetables,<br />

vegetables,<br />

others<br />

others<br />

cherry, peach<br />

T. inhamatum flowers<br />

T. koningii<br />

strawberries, field<br />

vegetables<br />

peach<br />

T. lignorum others<br />

6


Chapter 1<br />

Table 4 (continued)<br />

T. longibrachiatum strawberries<br />

T. polysporum strawberries apple<br />

T. taxi protected vegetables<br />

T. virens grapes<br />

T. viride<br />

fruits, grapes, legumes,<br />

strawberries, field others others potato, others peach<br />

vegetables, others<br />

Trichothecium<br />

grapes<br />

T. roseum grapes, legumes<br />

Ulocladium sp.<br />

grapes, field vegetables<br />

U. atrum<br />

flowers, grapes,<br />

strawberries, field<br />

vegetables, protected<br />

vegetables<br />

U. oudemansii grapes<br />

Ustilago maydis<br />

protected vegetables<br />

Verticillium grapes legumes<br />

V. chlamydosporium cereals<br />

V. lecanii strawberries<br />

cereals,<br />

protected<br />

vegetables,<br />

others<br />

legumes, others<br />

B. Yeasts<br />

Microbial species<br />

Botrytis<br />

Powdery<br />

mildew<br />

7<br />

Target disease / pathogen<br />

Rust<br />

Downy mildew,<br />

late blight<br />

Monillia rot<br />

fruits, grapes,<br />

apple, cherry<br />

Aureobasidium pullulans strawberries, protected<br />

vegetables<br />

C<strong>and</strong>ida spp. tomato peach<br />

C. butyri fruits<br />

C. famata fruits<br />

C. fructus strawberries<br />

C. glabrata strawberries<br />

C. guilliermondii<br />

grapes, protected<br />

cherry<br />

vegetables<br />

C. melibiosica fruits<br />

fruits, grapes,<br />

C. oleophila<br />

strawberries, protected<br />

vegetables<br />

C. parapsilosis fruits<br />

C. pelliculosa protected vegetables<br />

C. pulcherrima fruits, strawberries<br />

C. reukaufii strawberries<br />

C. saitoana fruits<br />

C. sake fruits<br />

C. tenuis fruits<br />

Cryptococcus albidus<br />

fruits, strawberries,<br />

protected vegetables<br />

C. humicola fruits<br />

C. infirmo-miniatus fruits cherry<br />

C. laurentii<br />

fruits, strawberries,<br />

cherry, peach<br />

protected vegetables<br />

Debaryomyces hansenii fruits, grapes cherry, peach<br />

Hanseniaspora uvarum grapes<br />

Kloeckera spp<br />

grapes<br />

K. apiculata fruits cherry, peach<br />

Metschnikowia fructicola<br />

fruits, grapes,<br />

strawberries<br />

M. pulcherrima fruits apple, apricot<br />

Pichia anomala<br />

grapes, fruits


Nicot et al.<br />

Table 4 (continued)<br />

P. guilermondii<br />

fruits, strawberries,<br />

protected vegetables<br />

P. membranaefaciens grapes peach<br />

P. onychis field vegetables<br />

P. stipitis fruits<br />

Rhodosporidium diobovatum protected vegetables<br />

R. toruloides fruits<br />

Rhodotorula<br />

peach<br />

flowers, fruits,<br />

R. glutinis<br />

strawberries, protected field vegetables,<br />

vegetables<br />

R. graminis flowers<br />

R. mucilaginosa flowers<br />

R. rubra protected vegetables<br />

Saccharomyces cerevisiae fruits<br />

protected<br />

vegetables<br />

Sporobolomyces roseus fruits<br />

Trichosporon sp.<br />

fruits<br />

T. pullulans<br />

fruits, grapes, protected<br />

vegetables<br />

C. Bacteria<br />

Microbial species<br />

Acinetobacter lwoffii<br />

Azotobacter<br />

Bacillus spp.<br />

B. amyloliquefaciens<br />

Botrytis<br />

grapes<br />

grapes, strawberry,<br />

protected vegetables,<br />

others<br />

arable crops, flowers,<br />

fruits, field vegetables,<br />

Powdery<br />

mildew<br />

protected<br />

vegetables<br />

Target disease / pathogen<br />

Rust<br />

others<br />

Downy<br />

mildew, late<br />

blight<br />

other<br />

potato, field<br />

vegetables<br />

protected vegetables<br />

B. cereus flowers, legumes others tomato<br />

B. circulans protected vegetables<br />

B. lentimorbus others<br />

B. licheniformis<br />

fruits, strawberry,<br />

protected vegetables<br />

B. macerans legumes<br />

B. marismortui strawberry<br />

B. megaterium legumes, others<br />

B. pumilus fruits, strawberry tomato, others<br />

B. subtilis<br />

flowers, fruits, grapes,<br />

legumes, strawberry,<br />

field vegetables,<br />

protected vegetables<br />

B. thuringiensis strawberry<br />

Bakflor (consortium of<br />

valuable bacterial<br />

protected vegetables<br />

physiological groups)<br />

Brevibacillus brevis<br />

field vegetables,<br />

protected vegetables<br />

cereals,<br />

grapes,<br />

strawberry,<br />

protected<br />

vegetables,<br />

others<br />

grapes,<br />

protected<br />

vegetables<br />

legumes<br />

grapes, potato,<br />

others<br />

grapes<br />

Monillia rot<br />

apricot<br />

peach<br />

apricot,<br />

blueberry,<br />

cherry, peach<br />

Burkholderia spp.<br />

tomato<br />

B. cepacia protected vegetables cherry<br />

B. gladii apricot<br />

B. gladioli flowers<br />

Cedecea dravisae<br />

others<br />

Cellulomonas flavigena<br />

tomato<br />

8


Chapter 1<br />

Table 4 (continued)<br />

Cupriavidus campinensis<br />

Enterobacter cloacae<br />

grapes, protected<br />

vegetables, others<br />

Enterobacteriaceae<br />

strawberry<br />

Erwinia<br />

fruits, others<br />

Halomonas sp.<br />

strawberry, protected<br />

vegetables<br />

H. subglaciescola protected vegetables<br />

Marinococcus halophilus protected vegetables<br />

Salinococcus roseus<br />

protected vegetables<br />

Halovibrio variabilis protected vegetables<br />

Halobacillus halophilus protected vegetables<br />

H. litoralis protected vegetables<br />

H. trueperi protected vegetables<br />

Micromonospora coerulea protected vegetables<br />

Paenibacillus polymyxa<br />

strawberry, protected<br />

vegetables<br />

Pantoea spp.<br />

grapes, protected<br />

vegetables<br />

P. agglomerans<br />

fruits, grapes,<br />

legumes, strawberry<br />

protected<br />

vegetables<br />

9<br />

legumes<br />

potato<br />

apple, apricot,<br />

blueberry,<br />

cherry, peach,<br />

plum<br />

Pseudomonas spp.<br />

flowers, fruits, grapes,<br />

potato, tomato,<br />

others<br />

field vegetables<br />

field vegetables<br />

apricot<br />

P. aeruginosa protected vegetables<br />

P. aureofasciens cereals cherry<br />

P. cepacia strawberry peach<br />

P. chlororaphis strawberry cherry<br />

P. corrugata peach<br />

P. fluorescens<br />

P. putida<br />

fruits, grapes,<br />

legumes, strawberry,<br />

protected vegetables,<br />

others<br />

flowers, legumes,<br />

protected vegetables,<br />

others<br />

cereals, ,<br />

protected<br />

vegetables<br />

others<br />

P. syringae<br />

fruits, strawberry, field<br />

vegetables<br />

grapes<br />

P. reactans strawberry<br />

P. viridiflava fruits<br />

Rhanella spp.<br />

R aquatilis<br />

fruits<br />

Serratia spp.<br />

S. marcescens flowers<br />

S. plymuthica protected vegetables<br />

Stenotrophomonas<br />

maltophilia<br />

Streptomyces spp.<br />

S. albaduncus legumes<br />

S. ahygroscopicus protected vegetables<br />

S. exfoliatus legumes<br />

S. griseoplanus legumes<br />

S. griseoviridis<br />

protected vegetables,<br />

others<br />

S. lydicus protected vegetables<br />

S. violaceus legumes<br />

Virgibacillus marismortui strawberry<br />

Xenorhabdus bovienii<br />

X. nematophilus<br />

protected<br />

vegetables<br />

legumes<br />

cereals<br />

legumes<br />

grapes, potato,<br />

tomato, others<br />

potato<br />

potato<br />

tomato<br />

potato<br />

blueberry,<br />

cherry<br />

apple, peach


Nicot et al.<br />

One striking aspect of this inventory is that although the five target diseases / pathogens<br />

included in our review are airborne <strong>and</strong> affect mostly the plant canopy, the vast majority of cited<br />

bio<strong>control</strong> microorganisms are soil microorganisms. The scarcity of bio<strong>control</strong> agents originating<br />

from the phyllosphere could be due to actual lack of effectiveness, or it could be the result of a bias<br />

by research groups in favour of soil microbes when they gather c<strong>and</strong>idate microorganisms to be<br />

screened for bio<strong>control</strong> activity. This question would merit further analysis as it may help to devise<br />

improved screening strategies. As "negative" results (the lack of effectiveness of tested<br />

microorganisms, for example) are seldom published, the completion of such an analysis would in<br />

turn necessitate direct information from research groups who have been implicated in screening for<br />

bio<strong>control</strong> agents, or the development of a specific screening experiment comparing equal numbers<br />

of phyllosphere <strong>and</strong> of soil microbial c<strong>and</strong>idates.<br />

Another striking aspect is that most of the beneficial micro-organisms inventoried in this study<br />

(49 fungi/oomycetes, 28 yeasts <strong>and</strong> 41 bacteria) are cited only for bio<strong>control</strong> of one of the five types<br />

of airborne diseases included in the survey (Figure 2). However, several species clearly st<strong>and</strong> out<br />

with a wide range of effectiveness, as they were successfully used <strong>against</strong> all five types of target<br />

diseases on a variety of crops. This includes the fungi Trichoderma harzianum <strong>and</strong> Trichoderma<br />

viride (2 of 12 species of Trichoderma reported as bio<strong>control</strong>-effective in the reviewed literature)<br />

<strong>and</strong> the bacteria Bacillus subtilis <strong>and</strong> Pseudomonas fluorescens.<br />

Number of species<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

fungi / oomycetes<br />

yeasts<br />

bacteria<br />

1 2 3 4 5<br />

Number of <strong>control</strong>led target diseases / pathogens<br />

Figure 2:<br />

Range of efficacy of 157 microbial bio<strong>control</strong> agents <strong>against</strong> five main types of airborne<br />

diseases. Detailed data are presented in Table 4.<br />

Concerning Fusarium oxysporum. A data base interrogation with the key words “Fusarium<br />

oxysporum AND <strong>biological</strong> <strong>control</strong>” provided 2266 for the period 1973-2009. Using these key<br />

words we did not select only papers regarding <strong>biological</strong> <strong>control</strong> of diseases induced by F.<br />

oxysporum but also all the paper dealing with the use of strains of F. oxysporum to <strong>control</strong> diseases<br />

<strong>and</strong> weeds. There are quite many papers dealing with the use of different strains of F. oxysporum to<br />

<strong>control</strong> Broom rape (orobanche) <strong>and</strong> also the use of F. oxysporum f. sp. erythroxyli to eradicate<br />

coca crops.<br />

We decided to limit our review to the two last years <strong>and</strong> to concentrate on references for which<br />

full text was available on line. Finally we reviewed 48 papers. All these papers were dealing with<br />

the selection <strong>and</strong> development of micro-<strong>biological</strong> <strong>control</strong> agents; only two were considering others<br />

methods. One was addressing the use of chemical elicitors to induce resistance in the plant; the<br />

10


Chapter 1<br />

other was aiming at identifying the beneficial influence of non-host plant species either used in<br />

rotation or in co-culture. Based on this very limited number of papers the formae speciales of F.<br />

oxysporum the most frequently studied was F.o. f. sp. lycopersici (17 studies). Other included f. spp.<br />

melonis, ciceris, cubense, niveum <strong>and</strong> cucumerinum. The antagonists studied included Bacillus spp<br />

<strong>and</strong> Paenibacillus (16 papers), Trichoderma spp. (14 papers), fluorescent Pseudomonads (7 papers),<br />

Actinomycetes (5 papers), non pathogenic strains of F. oxysporum (5 papers), mycorrhizal fungi<br />

<strong>and</strong> Penicillium.<br />

Most of the publications (28) reported on in vitro studies. Among them a few concerned the<br />

mechanisms of action of the antagonists, the others just related screening studies using plate<br />

confrontation between the antagonists <strong>and</strong> the target pathogens. In most of these papers (22) the in<br />

vitro screening was followed by pot or greenhouse experiments aimed at demonstrating the capacity<br />

of the antagonist to reduce disease severity or disease incidence after artificial inoculation of the<br />

pathogen. Finally only 9 publications report results of field experiments. Most of these papers<br />

concluded on the promising potential of the selected strains of antagonists able to decrease disease<br />

incidence or severity by 60 to 90%. Generally speaking, this limited literature review showed that<br />

most of the lab studies are not followed by field studies. There is a need for implementation of<br />

<strong>biological</strong> <strong>control</strong> in the fields.<br />

Identified knowledge gaps<br />

Several types of knowledge gaps were identified in this review. They include:<br />

- the near absence of information on bio<strong>control</strong> <strong>against</strong> diseases of certain important European<br />

crops such as winter arable crops.<br />

- the scarcity of reports on bio<strong>control</strong> <strong>against</strong> several diseases of major economic importance on<br />

numerous crops, such as those caused by obligate plant pathogens (rusts, powdery mildews,<br />

downy mildews)<br />

- the still limited (but increasing) body of detailed knowledge on specific mechanisms of action<br />

<strong>and</strong> their genetic determinism. The little knowledge available at the molecular level is<br />

concentrated on few model bio<strong>control</strong> agents such as Trichoderma <strong>and</strong> Pseudomonas.<br />

- the still very limited information on secondary metabolites produced by microbial bio<strong>control</strong><br />

agents<br />

- the lack of underst<strong>and</strong>ing for generally low field efficacy of resistance-inducing compounds<br />

- the lack of knowledge on variability in the susceptibility of plants pathogens to the action of<br />

BCAs <strong>and</strong> on possible consequences for field efficacy <strong>and</strong> its durability.<br />

References<br />

Due to their high number, the references used in this chapter are presented, together with<br />

summary tables, in Appendices 1 to 6.<br />

11


Chapter 2<br />

Potential of <strong>biological</strong> <strong>control</strong> based on published research.<br />

2. Beneficials for <strong>augmentative</strong> bio<strong>control</strong> <strong>against</strong> insect pests.<br />

The grapevine case study<br />

Massimo Giorgini<br />

CNR, Istituto per la Protezione delle Piante, via Università 133, 80055 Portici (NA), Italy<br />

Bibliographic survey on <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong> <strong>against</strong> arthropod pests in<br />

selected crops<br />

We carried out a preliminary bibliographic survey to quantify the literature on <strong>augmentative</strong><br />

<strong>biological</strong> <strong>control</strong> of pests published from 1973 to 2008. The survey was restricted to crops relevant<br />

to case studies of ENDURE. They included grapevine; orchards: apple <strong>and</strong> pear; arable crops: corn<br />

<strong>and</strong> wheat; field vegetables: carrot <strong>and</strong> onion. Augmentative <strong>biological</strong> <strong>control</strong> (Van Driesche &<br />

Bellows, 1996) comprises of inoculative augmentation (<strong>control</strong> being provided by the offspring of<br />

released organisms) <strong>and</strong> inundative augmentation (<strong>control</strong> expected to be performed by the<br />

organisms released, with little or no contribution by their offspring).<br />

Our bibliographic survey was conducted by using the CAB Abstracts database by entering the<br />

name of each crop <strong>and</strong> one key word selected from the following list in order to retrieve the<br />

maximum number of references. For each selected crop, the key words used for the bibliographic<br />

survey were: a) <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong>; b) augmentation <strong>biological</strong> <strong>control</strong>; c) inoculative<br />

<strong>biological</strong> <strong>control</strong>; d) inundative <strong>biological</strong> <strong>control</strong>. The survey with these key words produced a<br />

very low number of results all of which were examined. For this reason we added two key words<br />

that were more general: e) insects <strong>biological</strong> <strong>control</strong>; f) mites <strong>biological</strong> <strong>control</strong>. For the searching<br />

criteria a to d, total records will be examined. In this case, given the extremely high number of<br />

records, only references within the period 1998-2008 were examined to select only the publications<br />

concerning the <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong>. The results of this survey are reported in Appendix<br />

7.<br />

The analytical review of the scientific literature on <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong>, presented<br />

in the rest of this chapter, was then focused on grapevine.<br />

Status of researches on augmentation of natural enemies to <strong>control</strong> arthropod pests in<br />

grapevine<br />

The references extracted from the CAB Abstracts database, following the criteria described in the<br />

previous paragraph, were examined to identify those concerning the use of natural enemies in<br />

augmentation <strong>biological</strong> <strong>control</strong> in grapevine. The abstracts of 607 references were examined <strong>and</strong><br />

only 70 papers reported data on application <strong>and</strong> efficiency of <strong>augmentative</strong> bio<strong>control</strong> (Table 5).<br />

12


Chapter 2<br />

Table 5:<br />

References extracted from the CAB Abstracts database <strong>and</strong> examined for reviewing<br />

augmentation <strong>biological</strong> <strong>control</strong> in grapevine.<br />

Key words<br />

Total records 1998-2008<br />

(1973-2008)<br />

Augmentative <strong>biological</strong> <strong>control</strong> 7 6<br />

Augmentation <strong>biological</strong> <strong>control</strong> 10 6<br />

Inoculative <strong>biological</strong> <strong>control</strong> 4 1<br />

Inundative <strong>biological</strong> <strong>control</strong> 7 3<br />

Insects <strong>biological</strong> <strong>control</strong> 373<br />

Mites <strong>biological</strong> <strong>control</strong> 190<br />

Total references examined 28 579<br />

Total references showing data on<br />

70<br />

<strong>augmentative</strong> bio<strong>control</strong><br />

The survey includes records for grapevine, grape <strong>and</strong> vineyard.<br />

Results<br />

Very few papers (62) on <strong>augmentative</strong> bio<strong>control</strong> in grapevine have been published during the period 1998-2008, with<br />

an average of 5.6 publications per year. Most references (93.5%) showed data on <strong>biological</strong> <strong>control</strong> of insects <strong>and</strong> only<br />

4 papers on the <strong>biological</strong> <strong>control</strong> of mites were published (Figure 3).<br />

Figure 3:<br />

Number of papers per year published during 1998-2008 concerning <strong>augmentative</strong><br />

<strong>biological</strong> <strong>control</strong> of pests in grapevine.<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008<br />

bio<strong>control</strong> of insect pests<br />

bio<strong>control</strong> of mite pests<br />

The data extracted from the abstracts of the selected references were collected analytically in<br />

separate tables for each group of bio<strong>control</strong> agents (Appendix 8) <strong>and</strong> references were sorted<br />

chronologically (starting from the eldest). For each species of bio<strong>control</strong> agent, target species of<br />

pest, Country, type of augmentation (inundative, inoculative), type of test (laboratory, field),<br />

efficacy of bio<strong>control</strong>, additional information <strong>and</strong> results were reported.<br />

13


Giorgini<br />

Data reported in Appendix 8 were summarized in Table 6, Table 7, Table 8, Figure 4 <strong>and</strong><br />

Figure 5. A list of the bio<strong>control</strong> agents used in <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong> in grapevine is<br />

reported in Table 6 <strong>and</strong> Figure 4. A list of groups <strong>and</strong> species of the targeted pests <strong>and</strong> the<br />

antagonists used for their <strong>control</strong> is reported in Table 7 <strong>and</strong> Figure 5; the efficacy of bio<strong>control</strong><br />

agents is reported in Table 8.<br />

The group of pests on which the highest number of researches on <strong>augmentative</strong> bio<strong>control</strong> has<br />

been carried out is Lepidoptera (60% of total references) with the family Tortricidae representing<br />

the main target (55%) (Figure 5) including the grape berry moths key pests Lobesia botrana <strong>and</strong><br />

Eupecilia ambiguella (Table 7). Bacillus thuringiensis has resulted the most frequently used<br />

bio<strong>control</strong> agent <strong>against</strong> Lepidoptera by achieving an effective <strong>control</strong> of different targets in<br />

different geographic areas (Table 7, Table 8, Appendix 8.7). We sorted 28 references (39% of the<br />

total citations) dealing with the use of B. thuringiensis of which 23 references were referred to the<br />

<strong>control</strong> of L. botrana. The augmentation of egg parasitoids of the genus Trichogramma<br />

(Hymenoptera: Trichogrammatidae) resulted the alternative strategy to B. thuringiensis to <strong>control</strong><br />

Lepidoptera Tortricidae (13 references, 16% of total citations) (Table 7, Table 8). Field evaluations<br />

indicated T. evanescens as a promising bio<strong>control</strong> agent of L. botrana (El-Wakeil et al., 2008 in<br />

Appendix 8.1).<br />

Fewer researches were carried out on <strong>augmentative</strong> bio<strong>control</strong> of other group of pests. First in<br />

the list were mealybugs (Hemiptera: Pseudococcidae) (9 references, 13% of the total citations). In<br />

field evaluations (4 papers) parasitoid wasps of the family Encyrtidae have resulted extremely<br />

active <strong>and</strong> promising to be used in <strong>augmentative</strong> bio<strong>control</strong> of mealybugs (Appendix 8.2).<br />

Antagonists used in <strong>augmentative</strong> bio<strong>control</strong> in grapevine were mainly represented by insect<br />

pathogens (59% of the total citations), including the bacterium B. thuringiensis, fungi <strong>and</strong><br />

nematodes (Figure 4, Table 6). Beside the efficacy of B. thuringiensis, promising results were<br />

obtained from researches in the <strong>control</strong> of the grape phylloxera Daktulosphaira vitifolie, a gallforming<br />

aphid, by soil treatments with the fungus Metarhizium anisopliae (Table 8, Appendix 8.5).<br />

Once <strong>control</strong>led by grafting European grape cultivars onto resistant rootstocks, the grape phylloxera<br />

has gone to resurgence in commercial vineyards worldwide <strong>and</strong> new <strong>biological</strong> <strong>control</strong> strategy<br />

could be necessary to complement the use of resistant rootstocks <strong>and</strong> to avoid the distribution of<br />

chemical insecticides in the soil.<br />

Entomophagous arthropods, including parasitoid wasps <strong>and</strong> predators represented 41% of the<br />

total citations (Figure 4, Table 6). Best results were obtained from researches on parasitoids (18<br />

references), namely the use of Trichogrammatidae <strong>and</strong> Encyrtidae in <strong>augmentative</strong> bio<strong>control</strong> of<br />

grape moths (Tortricidae) <strong>and</strong> mealybugs (Pseudococcidae) respectively (Table 7, Table 8,<br />

Appendix 8.1 <strong>and</strong> 8.2). Among predators, augmentation of Phytoseiidae mites has produced some<br />

positive results in <strong>control</strong>ling spider mites <strong>and</strong> eriophyid mites on grape (Table 7, Table 8,<br />

Appendix 8.3).<br />

Brief considerations<br />

Key pests of grapevine like L. botrana <strong>and</strong> E. ambiguella can be <strong>control</strong>led effectively with<br />

<strong>augmentative</strong> strategies that rely on the use of B. thuringiensis. To date, formulations of B.<br />

thuringiensis are currently used in IPM strategies. The specificity of B. thuringiensis could be a<br />

problem in those vineyards where other pests can reach the status of economically importance, if<br />

not <strong>control</strong>led by indigenous <strong>and</strong>/or introduced natural enemies. Researches on <strong>augmentative</strong><br />

bio<strong>control</strong> should be implemented in order to develop new strategies to solve problems related to<br />

emerging pests <strong>and</strong> alternatives to B. thuringiensis if resistant strains should appear in target<br />

species.<br />

References<br />

Due to their high number, the references for this chapter are presented in Appendix 8.<br />

14


Chapter 2<br />

Table 6:<br />

Bio<strong>control</strong> agents evaluated in researches on <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong> of pests in<br />

grapevine.<br />

Target pests <strong>and</strong> bio<strong>control</strong> agents<br />

References<br />

before 1998<br />

References<br />

1998-2008<br />

Number of<br />

citations<br />

BIOLOGICAL CONTROL OF INSECTS<br />

Bacteria<br />

[1 species: 2 subspecies]<br />

0 28<br />

- Bacillus thuringiensis<br />

28<br />

(subsp. kurstaki, subsp. aizawai)<br />

Fungi [5 species] 0 10<br />

- Metarhizium anisopliae 7<br />

- Beauveria bassiana 2<br />

- Beauveria brongniartii 1<br />

- Verticillium lecanii 1<br />

- Clerodendron inerme 1<br />

Nematodes [5 species] 1 3<br />

- Steinernema spp. 2 spp. 2<br />

- Heterorabditis spp. 3 spp. 3<br />

Parasitoid Hymenoptera [15 species] 2 16<br />

- Trichogramma spp. (Trichogrammatidae) 10 spp 13<br />

- Coccidoxenoides spp. (Encyrtidae) 2 spp. 2<br />

- Anagyrus spp. (Encyrtidae) 2 spp. 3<br />

- Muscidifurax raptor (Pteromalidae) 1 spp. 1<br />

Predators [5 species] 2 4<br />

- Chrysoperla (Neuroptera: Chrysopidae) 3 spp. 3<br />

- Cryptolaemus montrouzieri<br />

2<br />

(Coleoptera: Coccinellidae)<br />

- Nephus includens (Coleoptera: Coccinellidae) 1<br />

BIOLOGICAL CONTROL OF MITES<br />

Predators (Acari: Phytoseiidae) [4 species]<br />

2 4<br />

- Typhlodromus pyri 5<br />

- Kampimodromus aberrans 2<br />

- Amblyseius <strong>and</strong>ersoni 1<br />

- Phytoseiulus persimilis 1<br />

15


Giorgini<br />

Table 7:<br />

Number of references on <strong>augmentative</strong> bio<strong>control</strong> agents per group <strong>and</strong> species of target pest in grapevine.<br />

Pest References Bacillus<br />

thuringiensis<br />

(2 subspecies)<br />

Trichogramma<br />

(10 species)<br />

other<br />

parasitoids<br />

(5 species)<br />

Predators of<br />

mites<br />

Acari:<br />

Phytoseidae<br />

(4 species)<br />

Predators of<br />

insects<br />

Coleoptera:<br />

Coccinellidae<br />

(2 species)<br />

Predators of<br />

insects<br />

Neuroptera:<br />

Chrysopidae<br />

(3 species)<br />

Fungi<br />

(5 species)<br />

Nematodes<br />

(5 species)<br />

Lepidoptera:<br />

39<br />

Tortricidae<br />

Lobesia botrana<br />

28 23 5<br />

(grape berry moth)<br />

Eupoecilia ambiguella<br />

6 3 3<br />

(grape berry moth)<br />

Epiphyas postvittana<br />

3 3<br />

(light brown apple moth)<br />

Argyrotaenia sphaleropa 3 1 2<br />

(South American tortricid moth)<br />

Bonagota cranaodes<br />

2 2<br />

(Brasilian apple leafroller)<br />

Endopiza viteana<br />

2 2<br />

(grape berry moth)<br />

Sparganothis pilleriana 1 1<br />

(grape leafroller)<br />

Epichoristodes acerbella 1 1<br />

(South African carnation tortrix)<br />

Lepidoptera:<br />

1<br />

Pyralidae<br />

Cryptoblabes gnidiella<br />

1 1<br />

(honey moth)<br />

Lepidoptera:<br />

1<br />

Arctiidae<br />

Hyphantria cunea<br />

1<br />

(fall webworm)<br />

Lepidoptera:<br />

2<br />

Sesiidae<br />

Vitacea polistiformis 2 2<br />

16


Table 7 (continued)<br />

Chapter 2<br />

Hemiptera:<br />

9<br />

Pseudococcidae<br />

Planococcus ficus 6 4<br />

2<br />

Encyrtidae<br />

Pseudococcus maritimus 1 1<br />

Pseudococcus longispinus 1<br />

Maconellicoccus hirsutus 1<br />

1<br />

Encyrtidae<br />

Hemiptera:<br />

3<br />

Cicadellidae<br />

Erythroneura variabilis 3 3<br />

Erythroneura elegantula 3 3<br />

Hemiptera:<br />

5<br />

Phylloxeridae<br />

Daktulosphaira vitifoliae<br />

4 1<br />

(grape phylloxera)<br />

Diptera:<br />

1<br />

Tephritidae<br />

Ceratitis capitata 1 1<br />

Pteromalidae<br />

Coleoptera:<br />

2<br />

Scarabeidae<br />

Melolontha melolontha 2 1 1<br />

Thysanoptera:<br />

3<br />

Thripidae<br />

Frankliniella occidentalis 2 2<br />

grape thrips 1 1<br />

Acari:<br />

6<br />

Tetranichidae<br />

Panonychus ulmi 5 5<br />

Tetranychus urticae 1 1<br />

Tetranychus kanzawai 1 1<br />

Eotetranychus carpini 2 2<br />

Acari:<br />

2<br />

Eriophyidae<br />

Calepitrimerus vitis 1 1<br />

Calomerus vitis 1 1<br />

17


Giorgini<br />

Table 8:<br />

Number of references reporting data on the efficacy of <strong>augmentative</strong> bio<strong>control</strong> of<br />

pests in grapevine.<br />

Groups of Pests Bio<strong>control</strong> agents Total<br />

number of<br />

references<br />

Number of references reporting data<br />

on efficacy in pest <strong>and</strong> related<br />

damage <strong>control</strong> *<br />

Laboratory assays Field evaluation<br />

Lepidoptera:<br />

Tortricidae<br />

Lepidoptera:<br />

Pyralidae<br />

Lepidoptera:<br />

Arctiidae<br />

Lepidoptera:<br />

Sesiidae<br />

Hemiptera:<br />

Pseudococcidae<br />

Hemiptera:<br />

Cicadellidae<br />

Hemiptera:<br />

Phylloxeridae<br />

Diptera:<br />

Tephritidae<br />

Acari:<br />

Tetranichidae<br />

Acari:<br />

Eriophyidae<br />

Coleoptera:<br />

Scarabeidae<br />

Thysanoptera:<br />

Thripidae<br />

Bacillus thuringiensis 26 2 + 16 +<br />

1 -<br />

Trichogramma spp.<br />

parasitoids<br />

13<br />

1 -<br />

9 +<br />

1 -<br />

Bacillus thuringiensis 1 1 +<br />

Bacillus thuringiensis 1 1 +<br />

Nematodes 2 2 + 1 +<br />

1 + (greenhouse)<br />

Encyrtidae parasitoids 5 4 +<br />

Coccinellidae 3 1 + (greenhouse)<br />

Fungi 1 1 +<br />

Chrysopidae 3 2 -<br />

Nematodes 1 1 +<br />

Fungi 5 1 + 2 +<br />

1 -<br />

Pteromalidae parasitoids 1 1 + 1 +<br />

Phytoseidae 6 4 +<br />

Phytoseidae 2 1 +<br />

Nematodes 1 1 +<br />

Fungi 1 1 +<br />

Fungi 3 1 + 2 +<br />

* + means effective, - means not effective bio<strong>control</strong> agent<br />

18


Chapter 2<br />

Bacillus thuringiensis: 28 (39%)<br />

Fungi: 10 (14%)<br />

Nematodes: 4 (6%)<br />

Parasitoid Hymenoptera: 18 (25%)<br />

Predators of insects (Chrysopidae,<br />

Coccinellidae): 6 (8%)<br />

Predators of mites (Phytoseidae): 6 (8%)<br />

Figure 4:<br />

Groups of bio<strong>control</strong> agents investigated in <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong><br />

researches in grapevine. Number of references for each group is reported.<br />

Lepidoptera Tortricidae: 39 (55%)<br />

Lepidoptera Sesiidae: 2 (3%)<br />

Lepidoptera Arctiidae: 1 (1%)<br />

Lepidoptera Pyralidae: 1 (1%)<br />

Hemiptera Pseudococcidae: 9 (13%)<br />

Hemiptera Phylloxeridae: 5 (7%)<br />

Hemiptera Cicadellidae: 3 (4%)<br />

Acari Tetranichidae <strong>and</strong> Eriophyidae: 6 (8%)<br />

Thysanoptera Thripidae: 3 (4%)<br />

Coleoptera Scarabeidae: 2 (3%)<br />

Diptera Tephritidae: 1 (1%)<br />

Figure 5:<br />

Groups of target pests investigated in <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong> researches<br />

in grapevine. Number of references for each group is reported.<br />

19


Chapter 3<br />

Potential of bio<strong>control</strong> based on published research.<br />

3. Research <strong>and</strong> Development in classical <strong>biological</strong> <strong>control</strong> with<br />

emphasis on the recent introduction of insect parasitoids<br />

Nicolas Ris <strong>and</strong> Jean Claude Malausa<br />

INRA, UE 1254, Unité expérimentale de Lutte Biologique, Centre de recherche PACA,<br />

400 route des Chappes, BP 167, F-06903 Sophia Antipolis, France<br />

Scope of the review<br />

Defined as “the intentional introduction of an exotic, usually co-evolved, <strong>biological</strong> <strong>control</strong><br />

agent [hereafter BCA] for permanent establishment <strong>and</strong> long-term pest <strong>control</strong>’, classical<br />

<strong>biological</strong> <strong>control</strong> [hereafter ClBC] is a pest <strong>control</strong> strategy that has crystallized numerous<br />

studies since more than one century <strong>and</strong> provided numerous efficient solutions for pest<br />

<strong>control</strong>. The main advantages <strong>and</strong> risks of this strategy can be summarized as follows. In a<br />

context of the globalisation of international trade <strong>and</strong> human mobility, an ever growing<br />

number of exotic pests emerge locally. Such species can rapidly pullulate <strong>and</strong> jeopardize<br />

cultural practices. This general trend can also be favoured by global climatic changes that<br />

may allow the development of agronomic pests beyond their initial distribution area <strong>and</strong><br />

increase their demography. Within this context, ClBC appears often to be the first way to try<br />

to regulate such pest populations. Moreover, when successful, ClBC appears to be very<br />

economic insofar as financial costs are only associated with the identification, evaluation <strong>and</strong><br />

initial releases of exotic BCA. Contrary to other pest <strong>control</strong> strategy, the implication of<br />

practitioners <strong>and</strong> other costs are not necessary after the establishment of the BCA. The<br />

overall financial costs of such operations are consequently rather limited with regard to the<br />

durability of the pest <strong>control</strong>, in particular when the local introduction of a new BCA benefits<br />

from the previous experiences in other countries. Nevertheless, at least two kinds of risks are<br />

usually associated with ClBC. First of all, the average success rate of ClBC varies between<br />

10 <strong>and</strong> 30% according to the authors for a total of more than 5000 introductions worldwide<br />

during the last century. As consequence, such operations may also appear too risky to be<br />

funded. Another risk is those associated with the non-target effects. Although few cases have<br />

been reported, their echoes may have contributed to a more harmonized approach <strong>and</strong> in<br />

some countries to more or less stringent regulations.<br />

As consequences, classical <strong>biological</strong> programmes are at the crossroad of several<br />

concerns:<br />

- agronomic; insofar as each introduction of exotic BCA is obviously an hope for the<br />

producers ;<br />

- scientific; ClBC namely questions both ecologist <strong>and</strong> evolutionist in order to optimize the<br />

probability of establishment while minimizing the non-target effects. Their implication on<br />

such issues nevertheless depends on their own interest (in term of scientific question<br />

<strong>and</strong>/or possibility or publishing);<br />

- political; since the introduction of BCA may depend on regulation or homologation<br />

decided at national or international levels;<br />

20


Chapter 3<br />

- financial; since the development of ClBC is relying on various sources of funding<br />

(agronomic partners, scientific partners, politic institutions) with various interests <strong>and</strong><br />

rationale (more or less short-term results, scientific excellence versus applied objectives).<br />

Within this context, global evaluations of ClBC programmes are necessary to better<br />

underst<strong>and</strong> the evolution of this practice <strong>and</strong> try to improve its use <strong>and</strong> efficiency. This has<br />

been repeatedly achieved during the last years either through reviews or meta-analysis. Based<br />

on a large (but probably not exhaustive) bibliographic survey, the present work aims to give a<br />

complementary point of view with the willingness to portray a realistic “state of the art” of<br />

Research <strong>and</strong> Development programmes of ClBC <strong>against</strong> arthropods. This chapter also firstly<br />

gives a broad temporal survey of the publication <strong>and</strong> a more precise survey of the literature<br />

for the decade [1999; 2008]. Bio<strong>control</strong> programmes <strong>against</strong> arthropods were then more<br />

precisely detailed with the objectives to give qualitative cues about the main pests <strong>and</strong> the<br />

types of related studies. Finally, a particular emphasis has been put on recent introductions of<br />

exotic insect parasitoids.<br />

Based on these data, we also address some more or less important subjective<br />

recommendations based on our own opinion.<br />

Method<br />

A large bibliographic survey has been conducted with the CAB abstracts. Several<br />

combinations of key-words were used with various successes. Too broad (e.g; cases for<br />

which discussion about ClBC are marginal) or unprecise (e.g. cases for which a pest is not<br />

precised) publications were excluded. A total of 764 publications were found using the keywords<br />

“classical <strong>biological</strong> <strong>control</strong>” or “classical bio<strong>control</strong>”. 452 papers were published<br />

during the period [1999-2008] but about 30% were not relevant with regard to the purpose of<br />

this survey <strong>and</strong> have been discarded. Using the more complex combinations [“<strong>biological</strong><br />

<strong>control</strong>” AND “exotic” AND “introduction”], 329 ClBC-related publications were obtained<br />

but only 253 dressed precisely questions related to classical <strong>biological</strong> <strong>control</strong>. 117 were<br />

published during the selected temporal frame but only 81 were relevant with regard to our<br />

objectives. Additionally, 47 ClBC-related publications were obtained using the more keywords<br />

association [“<strong>biological</strong> <strong>control</strong>” AND “exotic” AND “importation”] with 17 papers<br />

for the last ten years. Most of this literature was dedicated to the risk or regulatory aspects<br />

associated with the importation of exotic BCA so that only 7 relevant publications with<br />

regard to our objectives. Finally, 130 publications were found using “acclimatization” AND<br />

“<strong>biological</strong> <strong>control</strong>” for only one relevant publication for the targeted period. A total of 358<br />

publications were also obtained which is probably for far from being exhaustive. For<br />

instance, 37 new references about BCA introductions were found in addition to the first 35<br />

references found with the previous key-words combinations (see Table 9). Additional<br />

bibliographic research were also realised for some taxa (see below)<br />

[Remark: Although the terms “classical <strong>biological</strong> <strong>control</strong>” or “classical bio<strong>control</strong>”<br />

may be not as explicit as others (“introduction”, “importation”), the generalization of their<br />

use in titles, key-words or abstracts should be nevertheless used in order to improve the<br />

efficiency of bibliographic survey]<br />

21


Ris & Malausa<br />

General trends<br />

The temporal survey shows a quite regular increase of ClBC related publications with a mean<br />

of about 45 hits / year for the last ten years (Figure 6). Within this period, we observe a<br />

relative stability between the different combinations of pests <strong>and</strong> BCA (Figure 7). The main<br />

part of the publications (56%) of the cases deals with the bio<strong>control</strong> of phytophagous<br />

arthropods on which we will focus here. 42% of the papers deal with the bio<strong>control</strong> of weed.<br />

In this case, BCA are for 57% of the cases phytophagous insects <strong>and</strong> for 41% fungi (data not<br />

shown).<br />

More than 70 arthropod pests were listed which cover 7 orders <strong>and</strong> approximately 40<br />

families. As shown in Figure 8, Hemiptera <strong>and</strong> Lepidoptera were the two main orders with a<br />

total of 66% of the pest species <strong>and</strong> 70% of the publications. If the citation rate / order is<br />

highly correlated with the number of pests / order, this trend hides a great variability at the<br />

infra-order level. Indeed, the citation rate highly differs with regard to the pest species with a<br />

median of 2 papers / pest species <strong>and</strong> a range from 1 to 13 citations. The 13 most cited pests<br />

are listed in Figure 9. Two main observations can be drawn from this short list.<br />

Firstly, this list is quite equally composed of either very specialist pests like<br />

Phyllocnistis citrella (on Citrus species), Mononychellus tanajoa (on cassava) or Toxoptera<br />

citricida (on Citrus species) or more generalist taxa like Homalodisca vitripennis, Lymantria<br />

dispar or Pseudococcus viburni. All of them are phytophagous pests whose damage are<br />

linked either to their herbivory, consumption of sap or virus transmission except the<br />

particular case of the fire ant Solenopsis invicta which is responsible for direct nuisance on<br />

farmers or indirect ecological modifications in the agrosystems.<br />

The second observation is that the percentage of ClBC related publications / pest is<br />

negatively correlated with the corresponding total number of references (including also<br />

studies on other pest <strong>control</strong> strategies <strong>and</strong>/or various <strong>biological</strong> topics). For instance, 22% of<br />

the 32 references focusing on H. vitripennis explicitly deal with classical <strong>biological</strong> <strong>control</strong><br />

while this percentage falls down to only 1% to 3% for well documented species like L.<br />

dispar, S. invicta or D. virgifera virgifera. This may be explained by the fact that ClBC is<br />

mainly considered as a “pionneer” pest <strong>control</strong> strategy that are developed either soon after<br />

the emergence of a new invasive pest or on “non <strong>biological</strong> model” for which the<br />

investigations on other <strong>biological</strong> aspects are limited.<br />

[Remark: Although <strong>Classical</strong> Biological Control can be perceived as a “pioneer”<br />

pest <strong>control</strong> strategies on non “<strong>biological</strong> models”, substantial investments are required on<br />

several <strong>biological</strong> aspects (e.g. community ecology, population genetics)]<br />

Bio<strong>control</strong> agents used<br />

The bio<strong>control</strong> agents related to ClBC (hereafter ClBCA) <strong>against</strong> arthropod species were not<br />

detailed in only 12% of the papers. These are in most of the cases either prospective works<br />

(55%) such as faunistic inventories of natural enemies on “new” pests like Diabrotica<br />

virgifera virgifera or retrospective studies (35%) on advanced programmes that take into<br />

account several BCA (see Appendix 9.1). Among the documented cases, 76% of ClBC<br />

programmes were based on the use of insect parasitoids. Pathogens <strong>and</strong> nematodes on one<br />

side <strong>and</strong> predatory arthropods on the other side are equally represented with about 12% of the<br />

publications for each case.<br />

22


Chapter 3<br />

Pathogens <strong>and</strong> Nematodes as c<strong>and</strong>idate for ClBCA<br />

The particular cases of pathogens <strong>and</strong> nematodes have been recently reviewed by Hajek <strong>and</strong><br />

co-workers (62, 63 3 ). Our own survey indicates that half of the papers actually deal with<br />

entomopathogenic fungi. Six pest species were identified including two mites (Aceria<br />

guerreronis <strong>and</strong> Mononychellus tanajoa) <strong>and</strong> two insects (Aphis gossypii <strong>and</strong> Coptotermes<br />

formosanus). However, except for the evaluation of Neozygites species <strong>against</strong> M. tanajoa<br />

(14, 39, 42, 43), other attempts seem to be rather limited. With regard to the catalogue of<br />

Hajek et al.(62), two other cases of entomopathogen fungi were missed in our own survey.<br />

These are the introductions of Entomophaga maigmaiga <strong>and</strong> Metarhizium anisopliae, <strong>against</strong><br />

respectively the Lymantria dispar <strong>and</strong> the Curculionidae Otiorynchus nodosus for which the<br />

sources of Hajek <strong>and</strong> coworkers were mainly personal communications. The rather limited<br />

use of entomopathogenic fungi in ClBC was also confirmed by the review of Shah <strong>and</strong><br />

Pell(156). The use of viruses as bio<strong>control</strong> agent for ClBC <strong>against</strong> arthropod pests were only<br />

documented fort three cases that are the Lepidoptera species Anticarsia gemmatalis (48, 127)<br />

<strong>and</strong> Lymantria dispar (16) <strong>and</strong> the Coleoptera Oryctes rhinoceros (81). Microspodia as<br />

c<strong>and</strong>idate for ClBC were reported in only two studies (25, 165). The sole case of the use of<br />

nematodes is the study of Hurley et al. (79) who studied the extension of the use of parasitic<br />

nematode Deladenus siricidicola <strong>against</strong> the woodwasp Sirex noctilio.<br />

Predatory arthropods as c<strong>and</strong>idate for ClBCA<br />

The literature about predatory arthropods is dominated by four case-studies. The first one is<br />

the classical bio<strong>control</strong> of the cassava green mites M. tanajoa by Typhlodromalus aripo <strong>and</strong>,<br />

to a lesser extent, T. manihoti. All these studies are the extension of a very large classical<br />

bio<strong>control</strong> programme at a continental scale; two main issues were addressed during the<br />

recent decade that are the introduction <strong>and</strong> field evaluation of T. aripo in Mozambique <strong>and</strong><br />

Malawi (125, 194) <strong>and</strong> the ecological interactions with other species (14, 124, 193) or<br />

plants(55). The second case-study is those of the predatory ladybird Harmonia axyridis (19,<br />

90, 91, 137). The main concern of these publications is nevertheless not the Research <strong>and</strong><br />

Development in ClBC but rather the risks of non-intended effects <strong>and</strong> geographic spray of<br />

this insect that is now considered as a world-wide invasive species. Another case of the use of<br />

ladybird is those of Cryptolaemus montrouzieri <strong>and</strong> Scymnus coccivora which have been<br />

successfully used to <strong>control</strong> the hibiscus mealybug Maconellicoccus hirsutus (51, 86, 103)<br />

which is the extension of a worldwide use of these species. The fourth main case-study is the<br />

classical bio<strong>control</strong> programme of Prostephanus truncatus, a serious pest of stored maize<br />

beetle using Teretrius (formerly Teretriosa) nigrescens (73, 169, 170). The lasts reported uses<br />

of predatory arthropods as c<strong>and</strong>idate for ClBC were those of the Coleoptera Laricobius<br />

nigrinus <strong>against</strong> the adelgid Adelges tsugae (197) <strong>and</strong> the phytoseid Neoseiulus baraki<br />

<strong>against</strong> the coconut mite A. guerreronis (119). Contrary to other cases which were the<br />

continuity of older programmes, these two studies are associated with new BCA inventories<br />

undertaken during the last ten years - see respectively (196) <strong>and</strong>(99).<br />

Insect parasitoids as BCA<br />

Related journals papers <strong>and</strong> categorization of the studies<br />

In total, 125 publications were used for this analysis. Only 14% were associated to<br />

proceedings of meetings or other supports than journals. 43 different journals were identified<br />

but 50% of the publications were published only by five: Biological Control (21%),<br />

BioControl (8%), Bio<strong>control</strong> Science <strong>and</strong> Technology (7%), Florida Entomologist (7%) <strong>and</strong><br />

3 within this Chapter, numbers in parentheses refer to references listed in Appendix 9<br />

23


Ris & Malausa<br />

Bulletin of Entomological Research (7%). Impact Factors are respectively 1.805, 1.957,<br />

0.874, 0.886 <strong>and</strong> 1.415.<br />

The types of the works were categorized according to the simplified sequential steps in<br />

R&D of <strong>biological</strong> programmes: BCA Inventories BCA characterization (systematic,<br />

molecular tools) Pest or BCA rearing BCA biology (life history traits, thermal biology,<br />

behavioural ecology) Pre-release survey BCA introduction Post-release survey.<br />

Studies related to “non-target effects” (i.e. the direct or indirect impacts of the ClBCA on<br />

non-target species) as well as those related to the “bio<strong>control</strong> disruption” (i.e. the negative<br />

impacts of organisms on the ClBCA) (details in Appendix 9.3) were also categorized. As<br />

shown in Figure 10, most of the ClBC related publications logically deals either with BCA<br />

biology, BCA introductions or post-release surveys which are central steps of the ClBC<br />

programmes. A strong discrepancy nevertheless exists between the different types of work in<br />

term of scientific publication; highest Impact Factors are relied to studies linked to Nonintended<br />

effects, Bio<strong>control</strong> disruption or BCA Biology.<br />

[Remark: The different steps of R&D in <strong>Classical</strong> Biological Control are currently<br />

unequally promoted with regard to “scientific criteria”, with a clear emphasis on community<br />

ecology including non target effects. Such trend may be detrimental to the short-term<br />

development of less gratifying tasks <strong>and</strong> consequently on the whole dynamism of ClBC.]<br />

BCA Introductions<br />

As shown in Table 9, 65 introductions were recorded during the period of 1991-2006. This<br />

list is probably not exhaustive insofar as “cryptic introductions” may have been missed. This<br />

list does not also cover all the R&D in classical bio<strong>control</strong> programmes since some<br />

programmes may have been interrupted before releases. A faunistic inventory of the natural<br />

enemies of the North American leafhopper Scaphoideus titanus has for instance been led by<br />

our lab in 2000-2002 but the rearing of BCA c<strong>and</strong>idates (mainly dryinids <strong>and</strong> eggparasitoids)<br />

were not successful.<br />

All these releases involve 55 different bio<strong>control</strong> agents (all hymenopteran except<br />

the Pseudacteon species used <strong>against</strong> the fire ant Solenopsis invicta) <strong>and</strong> 35 pests. 57% of<br />

these pests were Hemiptera, other being quite equally distributed between Lepidoptera,<br />

Diptera, Hymenoptera <strong>and</strong> Coleoptera.<br />

Most of these introductions were realized <strong>against</strong> pest found on orchards <strong>and</strong> in<br />

particular Citrus. Other targeted crops were mainly tropical productions, ornamental or forest.<br />

Most of the BCA introductions (42%) were realized in Europe or neighbouring<br />

countries (including Mediterranean Basin) <strong>and</strong> in North America (26%). The percentages of<br />

introductions in other geographical areas were: Australia-New Zeal<strong>and</strong> <strong>and</strong> neighbouring<br />

isl<strong>and</strong>s (12%), South America (8%), sub-Saharan Africa (8%), Pacific Isl<strong>and</strong>s (3%), Asia<br />

(1%).<br />

The total number of released parasitoids <strong>and</strong> number of sites were highly variable<br />

ranging respectively from 456 to 660000 individuals <strong>and</strong> from 2 to 132 sites. The percentage<br />

of establishment was 83% <strong>and</strong>, when established, high parasitism was found in 42% of the<br />

cases. It is noteworthy that these values are relatively high compared to other estimates <strong>and</strong><br />

we are currently unable to say if this is linked to an improvement of practices or<br />

methodological differences or biases.<br />

[Remark: With regard to natural or other human-mediated introductions of exotic<br />

species, species flow associated with the ClBC seems to be rather limited. Although possible<br />

non-intended effects cannot be excluded (their studies having to be increased), we fear that<br />

too drastic regulations could severely disturbed R&D programmes]<br />

24


Chapter 3<br />

[Remark: Estimating the success of ClBC is difficult because of methodological<br />

several biases (“cryptic introductions”, barriers linked to languages <strong>and</strong>/or publishing).<br />

Shared international database should be necessary for more accurate estimation as well as<br />

an increasing traceability.]<br />

[Remark: In parallel with the geographical expansion of their related pests, some<br />

bio<strong>control</strong> agents have been repeatedly released <strong>and</strong> established worldwide. Population<br />

genetics studies in such pest-BCA interactions should be particularly interesting to<br />

underst<strong>and</strong> local adaptations, co-evolutionary processes <strong>and</strong> ultimately, the durability of<br />

<strong>Classical</strong> Biological Control.]<br />

25


Ris & Malausa<br />

70<br />

60<br />

50<br />

Publications in CabAbstracts<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1973<br />

1974<br />

1975<br />

1976<br />

1977<br />

1978<br />

1979<br />

1980<br />

1981<br />

1982<br />

1983<br />

1984<br />

1985<br />

1986<br />

1987<br />

1988<br />

1989<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

2008<br />

Figure 6:<br />

Large-scale temporal survey of the publications associated with classical<br />

<strong>biological</strong> <strong>control</strong><br />

26


Chapter 3<br />

100%<br />

80%<br />

60%<br />

P = Phytophagous arthropod ; BCA = not documented<br />

P = Phytophagous arthropod ; BCA = Pathogen<br />

P = Phytophagous arthropod ; BCA = Predator<br />

40%<br />

P = Phytophagous arthropod ; BCA = Parasitoid<br />

P = Other animals<br />

P = Weed<br />

20%<br />

0%<br />

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008<br />

Figure 7: Relative importance of the different types of bio<strong>control</strong> during the temporal frame [1999-2008]<br />

27


Ris & Malausa<br />

0,5<br />

0,4<br />

Hemiptera<br />

Percentage of citations<br />

0,3<br />

0,2<br />

Lepidoptera<br />

0,1 Acari<br />

Coleoptera<br />

Diptera<br />

Hymenoptera<br />

Thysanoptera<br />

0,0<br />

0,0 0,1 0,2 0,3 0,4 0,5<br />

Percentage of pests<br />

Figure 8:<br />

Number of pest species <strong>and</strong> related citation rate by orders during the period<br />

[1999 ; 2008]<br />

28


Chapter 3<br />

0,25<br />

4<br />

0,20<br />

% dedicated to ClBC<br />

0,15<br />

0,10<br />

8<br />

6<br />

2<br />

3<br />

0,05<br />

0,00<br />

13<br />

1<br />

12<br />

9 10<br />

11 7<br />

5<br />

0 100 200 300 400 500 600 700 800 900<br />

number of publications [1999 ; 2008]<br />

Figure 9: Relationships between the number of publications associated to the main pests <strong>and</strong><br />

the relative percentage of ClBC related studies.<br />

Pest species are ranked in the decreasing order in number of publications : 1 : Phyllocnistis citrella ; 2 :<br />

Mononychellus tanajoa ; 3 : Toxoptera citricida ; 4 : Homalodisca vitripennis ; 5 : Lymantria dispar ; 6 :<br />

Pseudococcus viburni ; 7 : Solenopsis invicta ; 8 : Aleurocanthus spiniferus ; 9 : Bactrocera oleae ; 10 : Chilo<br />

partellus ; 11 : Diabrotica virgifera virgifera ; 12 : Diatraea saccharalis ; 13 : Maconellicoccus hirsutus.<br />

Specialist <strong>and</strong> generalist pests are respectively indicated by white <strong>and</strong> dark diamonds.<br />

29


Ris & Malausa<br />

2,0<br />

1,8<br />

Bio<strong>control</strong><br />

disruption<br />

Non-target effects<br />

1,6<br />

BCA Biology<br />

median IF<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

BCA<br />

characterization<br />

Pre-release survey<br />

Rearing<br />

BCA inventories<br />

Post-release survey<br />

0,4<br />

0,2<br />

BCA<br />

0,0<br />

introduction<br />

0,00 0,05 0,10 0,15 0,20 0,25<br />

Frequencies of Type of work<br />

Figure 10: Frequencies of papers <strong>and</strong> associated median IF related to the different categories<br />

of work<br />

30


Chapter 3<br />

Table 9:<br />

Recent introductions of parasitoids as <strong>Classical</strong> Bio<strong>control</strong> agents<br />

Targeted pest Crop BCA Name<br />

Introduction Introduction Individuals<br />

Area<br />

Date (sites)<br />

Outcome<br />

References<br />

Aleurocanthus woglumi Citrus Amitus hesperidum Trinidad 2000<br />

1600 Establishment<br />

(3) High parasitism<br />

(White et al., 2005)<br />

Aleurodicus dispersus Banana Encarsia guadeloupae Spain (Tenerife) _ _ _ (Nijhof et al., 2000)<br />

Lecanoideus floccissimus _ _ _<br />

Encarsia haitiensis Australia 1992-1996 _ Establishment (Lambkin, 2004)*<br />

Aleurolobus niloticus<br />

Orchard<br />

Establishment<br />

Eretmocerus siphonini Egypt 1998-1999 237000<br />

High parasitism<br />

(Abd-Rabou, 2002)<br />

Aonidiella aurantii Citrus Aphytis lingnanensis Spain 2000 _ Establishment (Pina <strong>and</strong> Verdu, 2007)*<br />

Aphis gossypii Vegetable Lysiphlebus testaceipes Bulgaria _ _ Establishment (Dimitrov et al., 2008)*<br />

Bactrocera dorsalis<br />

Orchard<br />

Establishment<br />

Fopius arisanus French Polynesia 2003<br />

High parasitism<br />

(Vargas et al., 2007)*<br />

Bemisia tabaci<br />

Arable crops<br />

Vegetable<br />

Eretmocerus hayati Egypt 2000-2002 200700 Establishment (Abd-Rabou, 2004)*<br />

Ceratitis capitata Orchards Diachasmimorpha krausii Israel 2002-2004 75881 Establishment (Argov <strong>and</strong> Gazit, 2008)*<br />

(incl. Citrus) Fopius arisanus 2002-2004 258750 ?<br />

Fopius ceratitivorus 2002-2004 58860 Establishment<br />

Psyttalia concolor (complex) 2002-2004 75881 ?<br />

Ceroplastes rubens<br />

Orchard<br />

(incl. Citrus)<br />

Anicetus beneficus Papua New Guinea 2002<br />

Chilo sacchariphagus Sugarcane Xanthopimpla stemmator Mozambique 2001<br />

2200<br />

(2)<br />

5000<br />

(5)<br />

Establishment<br />

?<br />

(Krull <strong>and</strong> Basedow,<br />

2005)<br />

(Conlong <strong>and</strong> Goebel,<br />

2002)<br />

Cinara cupressivora<br />

Forest<br />

Ornamenta<br />

Pauesia juniperorum Mauritius 2003-2004 1500 ?_ (Alleck et al., 2006)<br />

Coccus viridis<br />

Citrus<br />

_ Establishment<br />

Diversinervus sp. near stramineus Australia _<br />

Coffee<br />

(4) High parasitism<br />

(Smith et al., 2004)*<br />

Ctenarytaina eucalypti<br />

Forest<br />

Establishment (Rodriguez <strong>and</strong> Saiz,<br />

Psyllaephagus pilosus Chile 2001 _<br />

Ornamental<br />

High parasitsm 2006)*<br />

Diaphorina citri Citrus Diaphorencyrtus aligarhensis USA _ _ _ (Hoy, 2005)<br />

Tamarixia radiata USA _ _<br />

_<br />

Diatraea saccharalis Sugarcane Cotesia flavipes USA 2001-2002<br />

Forest<br />

Dryocosmus kuriphilus<br />

Torymus sinensis Italy 2005-2006<br />

Ornamental<br />

Legend : _ : data not available ; ? : long-term establishment not sure ; * : additional references<br />

_<br />

(4)<br />

1100<br />

(14)<br />

Failure (White et al., 2004)*<br />

Establishment (Aebi et al., 2007)<br />

31


Ris & Malausa<br />

Table 9: Recent introductions of parasitoids as <strong>Classical</strong> Bio<strong>control</strong> agents (continued)<br />

Hemiberlesia pitysophila Forest Coccobius azumai China 2002 _ Establishment (Wang et al., 2004)*<br />

(Gr<strong>and</strong>girard et al.,<br />

Homalodisca vitripennis Wide range Gonatocerus ashmeadi Tahiti 2005<br />

2007a)<br />

14000 Establishment<br />

(Gr<strong>and</strong>girard et al.,<br />

(27) High parasitism<br />

2008)<br />

(Petit et al., 2008)<br />

Hypothenemus hampei Coffee Cephalonomia stephanoderis Cuba _<br />

_<br />

?<br />

(Murguido Morales et<br />

Phymastichus coffea Colombia _<br />

Lilioceris lilii Ornamental Diaparsis jucunda USA _ _ _<br />

(2)<br />

_<br />

(41)<br />

Establishment<br />

al., 2008)*<br />

(Aristizabal et al.,<br />

2004)*<br />

(Casagr<strong>and</strong>e <strong>and</strong><br />

Tewksbury, 2005)*<br />

Lemophagus errabundus _ _ _<br />

Tetrastichus setifer 2001<br />

1700<br />

(Tewksbury et al.,<br />

_<br />

(21)<br />

2005)*<br />

Liriomyza trifolii Vegetables Dacnusa sibirica Egypt _ 90000 ? (Abd-Rabou, 2006)*<br />

Diglyphus isaea _ 90000 ?<br />

Listronotus bonariensis Pasture Microctonus hyperodae New Zeal<strong>and</strong> 1991-1998<br />

66000<br />

(McNeill et al., 2002)<br />

_<br />

(121)<br />

(Phillips et al., 2008)<br />

Maconellicoccus hirsutus Wide range Anagyrus kamali North America<br />

Metcalfa pruinosa Wide range Neodryinus typhlocybae Greece 2006<br />

Ophelimus maskelli<br />

Forest<br />

Ornamental<br />

Closterocerus chamaeleon Israel 2005-206<br />

Closterocerus sp. Italy _<br />

Paracoccus marginatus Wide range Acerophagus papayae Palau 2003-2004 _<br />

Anagyrus loecki 2003-2004 _<br />

Pseudleptomastix mexicana 2003-2004 _ Failure<br />

Legend : _ : data not available ; ? : long-term establishment not sure ; * : additional references<br />

_<br />

_<br />

12000<br />

(6)<br />

_<br />

(5)<br />

Establishment<br />

High parasitism<br />

Establishment<br />

Establishment<br />

High parasitism<br />

Establishment<br />

High parasitism<br />

Establishment<br />

High parasitism<br />

Establishment<br />

High parasitism<br />

(Kairo et al., 2000)<br />

(Anagnou-Veroniki et<br />

al., 2008)<br />

(Protasov et al., 2007)*<br />

(Rizzo et al., 2006)*<br />

(Muniappan et al., 2006)<br />

32


Chapter 3<br />

Table 9: Recent introductions of parasitoids as <strong>Classical</strong> Bio<strong>control</strong> agents (continued)<br />

Phyllocnistis citrella<br />

Citrus<br />

Ageniaspis citricola Morocco 1995-1996 _ Failure (Rizqi et al., 2003)<br />

USA _ _<br />

Establishment<br />

High parasitism<br />

(Hoy, 2005)<br />

Italy 1995 _ Failure (Siscaro et al., 2003)<br />

Italy 1996-1997 _<br />

Establishment<br />

High parasitism<br />

(Siscaro et al., 1999)<br />

USA 1999<br />

25000<br />

(132)<br />

(Paiva et al., 2000)<br />

Argentina 2001-2004 ? (Zaia et al., 2006)<br />

Brazil 1999 25000 _ (Paiva et al., 2000)*<br />

Cirrospilus ingenuus Morocco _ _ _ (Rizqi et al., 2003)<br />

Cirrospilus quadristriatus [C.<br />

Establishement<br />

USA _ _<br />

ingenuus]<br />

(Hoy, 2005)<br />

Citrostichus phyllocnistoides Italy 1995 _<br />

Establishment<br />

(Siscaro et al., 2003)<br />

Morocco 2000 _ Establishment (Rizqi et al., 2003)<br />

Spain 1996-1999 _<br />

Establishment (Garcia-Mari et al.,<br />

High parasitism 2004)*<br />

Quadrastichus sp Morocco _ _ (Rizqi et al., 2003)<br />

Italy 1995 _ Failure (Siscaro et al., 2003)<br />

Italy 1996-1997 _ Failure (Siscaro et al., 1999)<br />

Semielacher petiolatus Morocco 1996-1997 _ Establishment (Rizqi et al., 2003)<br />

Pseudococcus viburni Orchard Pseudaphycus maculipennis New Zeal<strong>and</strong> 2001 _ _ (Charles, 2001)<br />

Saissetia coffeae Olive Coccophagus cowperi Egypt 2001-2003 300000 Establishment (Abd-Rabou, 2005)*<br />

Siphoninus phillyreae Orchard Eretmocerus siphonini Egypt 1998-1999 237000<br />

Establishment<br />

High parasitism<br />

(Abd-Rabou, 2002)<br />

Sirex noctilio Forest Ibalia leucospoides South Africa 1998-2001 456 Establishment (Tribe <strong>and</strong> Cillie, 2004)*<br />

Solenopsis invicta _ Pseudacteon curvatus USA 2003<br />

10100<br />

(2)<br />

Establishment (Vazquez et al., 2006)<br />

Pseudacteon obtusus USA 2006 ? (Gilbert et al., 2008)<br />

Pseudacteon tricuspis USA 1999-2001 Establishment<br />

Tephritidae sp.<br />

Orchard<br />

34000<br />

Diachasmimorpha longicaudata Brazil 2002<br />

(incl. Citrus)<br />

(2)<br />

Failure (Alvarenga et al., 2005)<br />

Toxoptera citricida Citrus Lipolexis oregmae USA 2000-2002 33500 Establishment<br />

(Hoy, 2005)<br />

(Persad et al., 2007)<br />

Yponomeuta malinellus * Orchard Ageniaspis fuscicollis Canada 1987-1997 _<br />

Establishment (Cossentine <strong>and</strong><br />

Kuhlmann, 2007)*<br />

Legend : _ : data not available ; ? : long-term establishment not sure ; * : additional references<br />

33


Chapter 4<br />

Registered Bio<strong>control</strong> Products <strong>and</strong> their use in Europe<br />

Ulf Heilig 1 , Philippe Delval 2 <strong>and</strong> Bernard Blum 1<br />

1 International Bio<strong>control</strong> Manufacturers Association, Blauenstrasse 57, CH-4054 Basel,<br />

Switzerl<strong>and</strong><br />

2 ACTA, 1 avenue Claude Bourgelat, F-69680 Marcy l'Etoile, France<br />

Collection of information<br />

A small team formed by ACTA <strong>and</strong> IBMA conducted a survey on <strong>biological</strong> active substances<br />

approved in the European Union <strong>and</strong> on Biological Control Products (BC products) authorised in<br />

five European countries. The investigation focused on crops covered by ENDURE RA1case studies.<br />

The frame of the present survey was defined in a meeting on 9 th January 2009 in Basle, <strong>and</strong> the<br />

work was performed during the period from April to September 2009.<br />

To compile a list of registered bio<strong>control</strong> products, the online EU Pesticides Database was<br />

consulted on 21 st April 2009. Data were retrieved <strong>and</strong> the list was reorganised <strong>and</strong> the information<br />

about use categories complemented with the help of the inclusion directives where necessary.<br />

Substances deemed suitable for bio<strong>control</strong> were identified <strong>and</strong> it was decided to distinguish four<br />

major groups: micro-organisms, semiochemicals (attractants), botanicals <strong>and</strong> "other plant protection<br />

substances of natural origin".<br />

This study was complemented by an analysis of specific uses of products commercialized in<br />

four countries of the EU (France, Germany, Spain <strong>and</strong> the United Kingdom). A fifth country,<br />

Switzerl<strong>and</strong> was included in the study for comparison, because it has not been restricted by the<br />

implementation of Directive 91/414/EEC (superceded in June 2011 by EC regulation No<br />

1107/2011) until recently. For each country, official national online databases on authorised plant<br />

protection products (Table 10) were screened for authorised bio<strong>control</strong> active substances:<br />

Table 10: Consulted sources of information on authorized bio<strong>control</strong> plant protection products in<br />

five European countries:<br />

Country Official source / website Reference date<br />

France<br />

e-phy database of the Ministry of Agriculture & Fisheries<br />

http://e-phy.agriculture.gouv.fr<br />

31/8/2009<br />

Germany<br />

Online-Datenbank Pflanzenschutzmittel of the Federal Office of Consumer<br />

Protection <strong>and</strong> Food Safety (BVL)<br />

http://www.bvl.bund.de/DE/04_Pflanzenschutzmittel/01_Aufgaben/02_Zulassung<br />

12 /8/2009<br />

PSM/01_ZugelPSM/01_OnlineDatenbank/psm_onlineDB_node.html<br />

Spain<br />

Registro de productos Fitosanitarios of the Ministerio de Ambiente y Medio Rural<br />

y Marino<br />

http://www.mapa.es/es/agricultura/pags/fitos/registro/menu.asp<br />

Switzerl<strong>and</strong><br />

Plant protection index ("Pflanzenschutzmittelverzeichnis") of the Federal Office<br />

for Agriculture (BWL, Fachbereich Pflanzenschutzmittel)<br />

31/7/2009<br />

http://www.psa.blw.admin.ch/index_de_5_2_A.htm<br />

Pesticides Register of UK approved products under the responsibility of the<br />

United<br />

Chemicals Regulation Directorate Pesticides<br />

Kingdom<br />

https://secure.pesticides.gov.uk/pestreg/ProdSearch.asp<br />

4/2009<br />

34


Chapter 4<br />

The survey was limited to uses concerning seven crops or cropping groups which are subject to<br />

ENDURE case studies: pomefruit (apples <strong>and</strong> pears), grapevine, cereals, rape, maize, potatoes <strong>and</strong><br />

tomatoes (greenhouse <strong>and</strong> field), the latter being extended to other vegetables where deemed of<br />

interest. Country lists of representative products (generally up to two) were created <strong>and</strong> sorted<br />

according to uses in crops, target pests <strong>and</strong> pathogens were identified by English <strong>and</strong> scientific<br />

names wherever possible.<br />

Bio<strong>control</strong> substances registered on Annex 1 of the EU (Pesticides Database)<br />

The complete list compiled from data retrieved in April 2009 in the EU Pesticides Database is<br />

presented in Appendix 10. Excerpts concerning the four categories of substances compatible with<br />

<strong>biological</strong> <strong>control</strong> are presented in Table 11.<br />

Botanicals<br />

Botanicals are plant-substances resulting from simple processing e.g. pressing or from extraction.<br />

By extension the definition applies to a small numbers of compounds or even single ones extracted<br />

from plants <strong>and</strong> purified e.g. laminarine.<br />

Fourteen botanicals have been identified (Table 11) including two borderline cases for which<br />

single molecules identical to naturally occurring substances have been synthesised.<br />

- Four botanicals are authorised as repellents only: Extract from the tea tree, garlic extract, clove<br />

oil (plant oils) <strong>and</strong> pepper.<br />

- Six botanicals enter into the category of plant growth regulators.<br />

- The phytohormones gibberellic acid <strong>and</strong> gibberelline are botanicals produced in fermenters<br />

acting on plant growth. Spearmint oil <strong>and</strong> sea-alga extract are listed for their effect on plant<br />

growth as well.<br />

- The phytohormone ethylene is naturally present in plants <strong>and</strong> in soil <strong>and</strong> can be included here<br />

although it is typically produced in the petrochemical industry by steam cracking.<br />

- Carvone is a terpene produced by aromatic plants in particular by the mint. It can also be<br />

classified among the botanicals. To obtain a pure grade it is generally synthesised. In plant<br />

protection it is used as a growth regulator.<br />

- Laminarin is extracted from sea weed <strong>and</strong> is classified as elicitor. Rape seed oil enters into the<br />

category of insecticides/acaroids. Citronella oil is the only BCA approved as herbicide.<br />

- Pyrethrins are extracted from Pyrethrum flowers, from cultivars of Chrysanthemum<br />

cinerariaefolium. By their origin they are botanicals but their structures are analogous <strong>and</strong> their<br />

properties are similar to those of synthetic pyrethroids. Due to their mode of action which is<br />

analogous to conventional insecticides <strong>and</strong> their toxicity for aquatic <strong>and</strong> other non target<br />

organisms, they are not typical <strong>biological</strong> substances although they are accepted in organic<br />

farming.<br />

35


Heilig et al.<br />

Table 11: Active substances suitable for <strong>biological</strong> <strong>control</strong> listed on Annex I of 91/414/EEC (EU<br />

Pesticide Database) - Status on 21 April 2009<br />

Substance Category 1, 2 List 3 Inclusion Date Expiry Date<br />

Legislati<br />

on<br />

Botanicals<br />

Extract from tea tree RE A 4 01/09/2009 31/08/2019 2008/127<br />

Garlic extract RE A 4 01/09/2009 31/08/2019 2008/127<br />

Gibberellic acid PG A 4 01/09/2009 31/08/2019 2008/127<br />

Gibberellin PG A 4 01/09/2009 31/08/2019 2008/127<br />

Laminarin EL C 01/04/2005 31/03/2015 05/3/EC<br />

Pepper RE A 4 01/09/2009 31/08/2019 2008/127<br />

Plant oils / Citronella oil HB A 4 01/09/2009 31/08/2019 2008/127<br />

Plant oils / Clove oil RE A 4 01/09/2009 31/08/2019 2008/127<br />

Plant oils / Rape seed oil IN, AC A 4 01/09/2009 31/08/2019 2008/127<br />

Plant oils / Spearmint oil PG A 4 01/09/2009 31/08/2019 2008/127<br />

Sea-algae extract (formerly sea-algae extract <strong>and</strong> PG A 4 01/09/2009 31/08/2019 2008/127<br />

seaweeds)<br />

Botanicals copied by synthesis (s) or excluded (e)<br />

Carvone (s) PG C 01/08/2008 31/07/2018 2008/44/<br />

EC<br />

Ethylene (s) PG A 4 01/09/2009 31/08/2019 2008/127<br />

Pyrethrins (e) IN A 4 01/09/2009 31/08/2019 2008/127<br />

Microbials<br />

Ampelomyces quisqualis strain AQ10 FU C 01/04/2005 31/03/2015 05/2/EC<br />

Bacillus subtilis str. QST 713 BA, FU C 01/02/2007 31/01/2017 07/6/EC<br />

Bacillus thuringiensis subsp. aizawai (ABTS-1857 <strong>and</strong> [IN] A 4 01/01/2009 31/12/2018 2008/113<br />

GC-91)<br />

Bacillus thuringiensis subsp. israelensis (AM65-52) [IN] A 4 01/01/2009 31/12/2018 2008/113<br />

Bacillus thuringiensis subsp. kurstaki (ABTS 351, PB [IN] A 4 01/01/2009 31/12/2018 2008/113<br />

54, SA 11, SA12 <strong>and</strong> EG 2348)<br />

Bacillus thuringiensis subsp. tenebrionis (NB 176) [IN] A 4 01/01/2009 31/12/2018 2008/113<br />

Beauveria bassiana (ATCC 74040 <strong>and</strong> GHA) IN A 4 01/01/2009 31/12/2018 2008/113<br />

Coniothyrium minitans FU C 01/01/2004 31/12/2013 03/79/EC<br />

Cydia pomonella granulosis virus (CpGV) [IN] A 4 01/01/2009 31/12/2018 2008/113<br />

Gliocladium catenulatum strain J1446 FU C 01/04/2005 31/03/2015 05/2/EC<br />

Lecanicillimum muscarium (Ve6) (former Verticillium IN A 4 01/01/2009 31/12/2018 2008/113<br />

lecanii)<br />

Metarhizium anisopliae (BIPESCO 5F/52) IN A 4 01/01/2009 31/12/2018 2008/113<br />

Paecilomyces fumosoroseus Apopka strain 97 [IN] C 01/07/2001 30/06/2011 01/47/EC<br />

Paecilomyces lilacinus [IN] C 01/08/2008 31/07/2018 2008/44/<br />

EC<br />

Phlebiopsis gigantea (several strains) FU A 4 01/01/2009 31/12/2018 2008/113<br />

Pseudomonas chlororaphis strain MA342 FU C 01/10/2004 30/09/2014 04/71/EC<br />

Pythium olig<strong>and</strong>rum (M1) FU A 4 01/01/2009 31/12/2018 2008/113<br />

Spodoptera exigua nuclear polyhedrosis virus FU C 01/12/2007 30/11/2017 07/50/EC<br />

Streptomyces K61 (K61) (formerly Streptomyces FU A 4 01/01/2009 31/12/2018 2008/113<br />

griseoviridis)<br />

Trichoderma aspellerum (ICC012) (T11) (TV1) FU A 4 01/01/2009 31/12/2018 2008/113<br />

(formerly T. harzianum)<br />

Trichoderma atroviride (IMI 206040) (T 11) (formerly FU A 4 01/01/2009 31/12/2018 2008/113<br />

Trichoderma harzianum)<br />

Trichoderma gamsii (formerly T. viride) (ICC080) FU A 4 01/01/2009 31/12/2018 2008/113<br />

Trichoderma harzianum Rifai (T-22) (ITEM 908) FU A 4 01/01/2009 31/12/2018 2008/113<br />

Trichoderma polysporum (IMI 206039) FU A 4 01/01/2009 31/12/2018 2008/113<br />

Verticillium albo-atrum (WCS850) (formerly<br />

Verticillium dahliae)<br />

FU A 4 01/01/2009 31/12/2018 2008/113<br />

36


Chapter 4<br />

Table 11 (continued)<br />

Other Natural<br />

Abamectin (aka avermectin) AC, IN A 3 01/01/2009 31/12/2018 2008/107<br />

Acetic acid HB A 4 01/09/2009 31/08/2018 2008/127<br />

Aluminium silicate (aka kaolin) RE A 4 01/09/2009 31/08/2019 2008/127<br />

Blood meal RE A 4 01/09/2009 31/08/2019 2008/127<br />

Carbon dioxide IN, RO A 4 01/09/2009 31/08/2019 2008/127<br />

Fat distilation residues RE A 4 01/09/2009 31/08/2019 2008/127<br />

Ferric phosphate MO C 01/11/2001 31/10/2011 01/87/EC<br />

Kieselguhr (diatomaceous earth) IN A 4 01/09/2009 31/08/2019 2008/127<br />

Milbemectin IN, AC C 01/12/2005 30/11/2015 05/58/EC<br />

Quartz s<strong>and</strong> RE A 4 01/09/2009 31/08/2019 2008/127<br />

Spinosad IN C 01/02/2007 31/01/2017 07/6/EC<br />

Other Natural, produced by synthesis<br />

Benzoic acid BA, FU, OT C 01/06/2004 31/05/2014 04/30/EC<br />

Potassium hydrogen carbonate FU A 4 01/09/2009 31/08/2019 2008/127<br />

Urea IN A 4 01/09/2009 31/08/2019 2008/127<br />

Other Natural, fatty acid<br />

Capric acid (CAS 334-48-5) IN, AC, HB, PG A 4 01/09/2009 31/08/2019 2008/127<br />

Caprylic acid (CAS 124-07-2) IN, AC, HB, PG A 4 01/09/2009 31/08/2019 2008/127<br />

Fatty acids C7 to C20 IN, AC, HB, PG A 4 01/09/2009 31/08/2019 2008/127<br />

Fatty acids C7-C18 <strong>and</strong> C18 unsaturated potassium IN, AC, HB, PG A 4 01/09/2009 31/08/2019 2008/127<br />

salts (CAS 67701-09-1)<br />

Fatty acids C8-C10 methyl esters (CAS 85566-26-3) IN, AC, HB, PG A 4 01/09/2009 31/08/2019 2008/127<br />

Lauric acid (CAS 143-07-7) IN, AC, HB, PG A 4 01/09/2009 31/08/2019 2008/127<br />

Methyl decanoate (CAS 110-42-9) IN, AC, HB, PG A 4 01/09/2009 31/08/2019 2008/127<br />

Methyl octaonate (CAS 111-11-5) IN, AC, HB, PG A 4 01/09/2009 31/08/2019 2008/127<br />

Oleic acid (CAS 112-80-1) IN, AC, HB, PG A 4 01/09/2009 31/08/2019 2008/127<br />

Pelargonic acid (CAS 112-05-0) IN, AC, HB, PG A 4 01/09/2009 31/08/2019 2008/127<br />

Other Natural, repellent<br />

Calcium carbonate RE A 4 01/09/2009 31/08/2019 2008/127<br />

Limestone RE A 4 01/09/2009 31/08/2019 2008/127<br />

Methyl nonyl ketone RE A 4 01/09/2009 31/08/2019 2008/127<br />

Sodium aluminium silicate RE A 4 01/09/2009 31/08/2019 2008/127<br />

Repellents by smell/Fish oil RE A 4 01/09/2009 31/08/2019 2008/127<br />

Repellents by smell/Sheep fat RE A 4 01/09/2009 31/08/2019 2008/127<br />

Semiochemical<br />

(Z)-13-Hexadecen-11yn-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(Z,Z,Z,Z)-7,13,16,19-Docosatetraen-1-yl isobutyrate AT A 4 01/09/2009 31/08/2019 2008/127<br />

Ammonium acetate AT A 4 01/01/2009 31/12/2018 2008/127<br />

Hydrolysed proteins IN A 4 01/09/2009 31/08/2019 2008/127<br />

Putrescine (1,4-Diaminobutane) AT A 4 01/09/2009 31/08/2019 2008/127<br />

Trimethylamine hydrochloride AT A 4 01/09/2009 31/08/2019 2008/127<br />

Straight Chain Lepidoptera Pheromones AT A 4 01/09/2009 31/08/2019 2008/127<br />

37


Heilig et al.<br />

Table 11 (continued)<br />

Semiochemical / SCLP<br />

(2E, 13Z)-Octadecadien-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(7E, 9E)-Dodecadien 1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(7E, 9Z)-Dodecadien 1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(7Z, 11E)-Hexadecadien-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(7Z, 11Z)-Hexadecdien-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(9Z, 12E)-Tetradecadien-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(E)-11-Tetradecen-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(E)-5-Decen-1-ol AT A 4 01/09/2009 31/08/2019 2008/127<br />

(E)-5-Decen-1-yl-acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(E)-8-Dodecen-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(E,E)-8,10-Dodecadien-1-ol AT A 4 01/09/2009 31/08/2019 2008/127<br />

(E/Z)-8-Dodecen-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(Z)-11-Hexadecen-1-ol AT A 4 01/09/2009 31/08/2019 2008/127<br />

(Z)-11-Hexadecen-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(Z)-11-Hexadecenal AT A 4 01/09/2009 31/08/2019 2008/127<br />

(Z)-11-Tetradecen-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(Z)-13-Octadecenal AT A 4 01/09/2009 31/08/2019 2008/127<br />

(Z)-7-Tetradecenal AT A 4 01/09/2009 31/08/2019 2008/127<br />

(Z)-8-Dodecen-1-ol AT A 4 01/09/2009 31/08/2019 2008/127<br />

(Z)-8-Dodecen-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(Z)-9-Dodecen-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

(Z)-9-Hexadecenal AT A 4 01/09/2009 31/08/2019 2008/127<br />

(Z)-9-Tetradecen-1-yl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

Dodecyl acetate AT A 4 01/09/2009 31/08/2019 2008/127<br />

Tetradecan-1-ol AT A 4 01/09/2009 31/08/2019 2008/127<br />

1 AC=acaricide, AT= attractant, BA=bactericide, EL=elicitor, FU=fungicide, HB=herbicide, IN=insecticida, MO=molluscicide,<br />

NE=nematicide, PA=Plant Activator, PG=Plant Growth, RE=repellent, RO=rodenticide.<br />

2<br />

Category in [ ] added by author<br />

3<br />

A: Existing active substances divided into four lists for phased evaluations; C: New active substances<br />

Micro-organisms<br />

The term micro-organism is defined in regulation (EC) No 1107/2009: ‘micro-organisms’ means<br />

any micro<strong>biological</strong> entity, including lower fungi <strong>and</strong> viruses, cellular or non-cellular, capable of<br />

replication or of transferring genetic material.. This definition applies to, but is not limited to,<br />

bacteria, fungi, protozoa, viruses <strong>and</strong> viroids. It does not include multicellular organisms, such as<br />

nematodes or insects.<br />

Twenty five microbial species are included in annex I, some of which are represented by<br />

several strains. Six bacterial (sub)species (Bacillus subtilis, Pseudomonas chlororaphis <strong>and</strong> four<br />

subspecies of Bacillus thuringiensis) <strong>and</strong> two virus species (Cydia pomonella Granulose Virus <strong>and</strong><br />

Spodoptera exigua NPV) are included. All B.t. subspecies <strong>and</strong> viral agents are approved for insect<br />

<strong>control</strong>. Pseudomonas is approved for fungicidal seed treatments <strong>and</strong> Bacillus subtilis can be used<br />

<strong>against</strong> plant pathogenic fungi <strong>and</strong> bacteria. Seventeen fungal agents belonging to twelve genera are<br />

listed, Trichoderma being represented by five species. Beauveria bassiana, Lecanicillimum<br />

muscarium <strong>and</strong> Metarhizium anisopliae are approved for use as insecticides, the other fungal agents<br />

for use <strong>against</strong> fungal diseases.<br />

Semiochemicals (attractants)<br />

Semiochemicals are chemical substances such as pheromones, kairomones <strong>and</strong> allomones that act to<br />

modify the behaviour of pests or their natural enemies.<br />

In the table based on the EU Pesticides Database, Straight Chain Lepidopteran Pheromones (SCLP)<br />

are highlighted in green, non-SCLP-pheromones in light cyan <strong>and</strong> other attractants (including<br />

hydrolysed proteins) are highlighted in yellow. There is one repellent which is marked in light red.<br />

38


Chapter 4<br />

SCLPs are included in annex I as a group but 25 compounds of this group are also listed<br />

individually. In the inclusion directive 2008/127/EC, some molecules are mentioned three times, as<br />

an individual substance, in a blend of the same type, e.g. acetates <strong>and</strong> in mixed blends, e.g. alcohols<br />

<strong>and</strong> acetates. Often single SCLP compounds show attraction to one or more moth species <strong>and</strong><br />

typically a combination of two or more of these compounds in a precise ratio enhances the<br />

attraction <strong>and</strong> the specificity. Thus SCLPs should be considered as a whole group <strong>and</strong> it must not be<br />

concluded that each compounds st<strong>and</strong>s for one species.<br />

The SCLPs listed individually are typical examples found in the pheromone blends of moth<br />

pest species currently of economic importance. A large variety of compounds <strong>and</strong> isomers, an<br />

estimated number of about 300 identified molecules, used by Lepidopterans are not listed here.<br />

They differ in carbon chain length, in the number of double bonds <strong>and</strong>/or their positions <strong>and</strong> in their<br />

chemical functional group (alcohol, acetate or aldehyde). SCLPs can be used for mass trapping,<br />

mating disruption or in attract <strong>and</strong> kill devices (A&K) or formulations. When associated with an<br />

insecticide, i.e in A&K products, attractants do not need to be included in annex I.<br />

Two non SCLP pheromones, (Z)-13-Hexadecen-11yn-1-yl acetate <strong>and</strong> (Z,Z,Z,Z)-7,13,16,19-<br />

Docosatetraen-1-yl isobutyrate, as well as four semiochemicals other than pheromones attractive to<br />

different fly (Diptera) species are listed in the EU Pesticides Database: Ammonium acetate,<br />

hydrolysed proteins, putrescine (1,4-diaminobutane) <strong>and</strong> Trimethylamine hydrochloride.<br />

Other Plant Protection substances of natural origin<br />

This group has been created for the purpose of the survey. It includes mineral substances as well as<br />

substances produced by or derived from animals or from micro-organisms. Thus very diversified<br />

substances <strong>and</strong> products like limestone powder, kaolin as well as diatomaceous earth (Kieselguhr),<br />

fatty acids <strong>and</strong> their derivates (e.g. soaps) can be found in this group. Not all substances of this<br />

group do meet the expectation of low non-target toxicity <strong>and</strong> low environmental impact.<br />

Some active substances included in annex I are produced by micro-organisms. Spinosad which<br />

is produced by the bacterium Saccharopolyspora spinosa finds its place here; it is accepted for<br />

organic farming. Milbemectin is a mixture of natural compounds (milbemycins) isolated from<br />

fermentation broth of the fungus Streptomyces hygroscopicus subsp. aureolacrimosus. The<br />

substance is active <strong>against</strong> insects of different families <strong>and</strong> a large range of mites. Abamectin<br />

contains avermectins which are biosynthesised by Streptomyces avermitilis. The substance shows<br />

very high toxicity in Mammals <strong>and</strong> in aquatic organisms. Milbemectin <strong>and</strong> abamectin are not<br />

authorised in organic crop protection.<br />

Potassium hydrogen carbonate is a slightly basic substance used for its fungicidal properties.<br />

The US FDA considers this substance as GRAS (Generally Recognised as Safe). Six natural<br />

substances are specifically marked in the EU List, they are used as animal repellents: three are<br />

minerals (Calcium carbonate, limestone, sodium aluminium silicate), two are of animal origin (fish<br />

oil <strong>and</strong> sheep fat) while methyl nonyle ketone is either produced by synthesis or extracted from<br />

plant oils (rue). The latter repellent acts by its strong odour. It is naturally present in some edible<br />

crops <strong>and</strong> spices.<br />

Limit cases <strong>and</strong> exclusions<br />

With regards to their (eco)toxicological profile <strong>and</strong> environmental impact neither sulphur <strong>and</strong> its<br />

derivates (iron sulphate) nor cupric compounds i.e. Bordeaux mixture, copper hydroxide, copper<br />

oxichloride <strong>and</strong> cuprous oxide are considered here as typical <strong>biological</strong> substances although they<br />

might be accepted in organic agriculture.<br />

Tall oils (crude or pitch) are a by-product in the Kraft process used in the paper industry. Thus<br />

they are substances resulting from a chemical process <strong>and</strong> are classified as chemicals here. Calcium<br />

carbide is produced from lime <strong>and</strong> coke in electric arc furnaces. It is fitted among chemicals but is<br />

used as a repellent like some other minerals. 1-Methyl-cyclopropene is an inhibitor of the effects of<br />

39


Heilig et al.<br />

the phytohormone ethylene <strong>and</strong> is mainly used to conserve cut flowers. It is placed among the<br />

chemicals.<br />

Uses of bio<strong>control</strong> products in five European countries<br />

Registered plant protection substances<br />

In each country all BCAs authorised for uses in seven crops or cropping groups were identified.<br />

Lists of representative products (generally up to two) were created <strong>and</strong> sorted according to uses in<br />

crops: pomefruit (apples <strong>and</strong> pears), vine, cereals, rape, maize, potatoes <strong>and</strong> tomatoes (greenhouse<br />

<strong>and</strong> field), the latter was extended to other vegetables where deemed of interest.<br />

In France twelve different microbial BCA species (or sub-species in the case of Bacillus<br />

thuringiensis) are authorised among which two species, Beauveria tenella <strong>and</strong> C<strong>and</strong>ida oleophila<br />

are not yet included in 91/414 Annex I. Only four botanical active substances are authorised,<br />

including rotenon (EU non-inclusion decision in April 2008 but temporary authorisation in FR) <strong>and</strong><br />

pyrethrum which were excluded from our survey. Fenugreek extracts benefited from a specific<br />

French approach to plant extracts under former national rules, while EU approval was given in<br />

2010, after the survey. Laminarin is included in Annex I. Five Straight Chain Lepidopteran<br />

Pheromones (SCLP) blends or associations (one just specifying minor components used for the<br />

single target codling moth) are registered for mating disruption in orchards or vineyard.<br />

In Germany nine microbial BCAs are authorised in Plant Protection Products (all included).<br />

Only four botanical substances are listed for plant protection, two of which are included in Annex I<br />

(pyrethrins <strong>and</strong> rape seed oil), two are not (azadirachtin <strong>and</strong> lecithin). Three different SCLP<br />

associations are authorised for mating disruption <strong>against</strong> Codling Moth or Vine Moths.<br />

For Germany only fully registered BC products according to the rules of the PPP directive<br />

were included in the survey. As a consequence, plant strengtheners authorised according to the<br />

Federal Plant Protection Act §§ 31ff were excluded. Plant Strengtheners can avoid the EU<br />

procedures <strong>and</strong> requiremments for plant protection products but they must not claim specific<br />

protective properties either.<br />

In Spain ten microbial BCAs are authorised, all of which are included in EU Annex 1. Only<br />

three botanical substances could be identified: Pyrethrins <strong>and</strong> rotenon which are excluded from the<br />

survey <strong>and</strong> Azadirachtin (Neem extract) which was re-included in EU Annex I in 2011. The plant<br />

growth regulators gibberellinic acid/gibberellin are not explored in the survey. Only four SCLP<br />

associations are authorised for mating disruption in vine <strong>and</strong> orchards including two for oriental<br />

fruit moth <strong>and</strong> peach twig borer typical for peach orchards.<br />

In Switzerl<strong>and</strong> twelve different microbial BCA species (or sub-species in the case of Bacillus<br />

thuringiensis) are authorised, among which is one species not included in 91/414 Annex I:<br />

Beauveria brognartii. Eleven botanicals are approved, among which the insecticides Pyrethrum<br />

(included in EU Annex I) <strong>and</strong> rotenon (rejected from Annex I) have been excluded from the survey<br />

because of their toxicological profile. The plant growth regulators gibberellic acid <strong>and</strong> gibberellin<br />

were also excluded from the survey. Five substances not included in EU Annex I are authorised:<br />

Azadirachtin (Neem extract), fennel oil, lecithin, mustard powder <strong>and</strong> Quassia extract. An<br />

impressive number of semiochemicals, eleven different SCLP associations are authorized for<br />

mating disruption allowing the <strong>control</strong> a large variety of moths in orchards (including one<br />

association of 8 compounds <strong>against</strong> five different species) <strong>and</strong> vineyards. This can be related to the<br />

facilitated approval of pheromone products in Switzerl<strong>and</strong>.<br />

In the UK eight microbial BCAs are approved but only a single botanical (Laminarin, EU<br />

approved) <strong>and</strong> a single pheromone blend (for codling moth). No <strong>biological</strong> plant protection products<br />

are available for use in grapevine, rape, maize or potatoes. With regard to the global availability of<br />

<strong>biological</strong> <strong>control</strong> products in the different crops, pomefruit, vegetables <strong>and</strong> vine are generally in a<br />

better position than arable crops in the countries included in the survey. In the UK e.g. only<br />

40


Chapter 4<br />

laminarin is available on wheat <strong>and</strong> cereals, <strong>and</strong> no <strong>biological</strong> plant protection products are<br />

registered for rape, maize or potatoes.<br />

None of the EU Member States covered in the present survey shows such a variety of BCAs as<br />

Switzerl<strong>and</strong> where we find the largest numbers of microbials, botanicals <strong>and</strong> pheromone blends<br />

authorised in the crops subject of the inquiry. Only France reaches the number of twelve microbial<br />

BCAs in registered products. The privileged situation in the Helvetic Confederation can be<br />

explained by the flexible regulatory approach of the competent authorities in the past, until the<br />

progressive implementation of EU directive 91/414/EEC <strong>and</strong> the related framework, as well as the<br />

sustained support by experts in confederal agronomic institutes.<br />

Invertebrate bio<strong>control</strong> agents<br />

Invertebrate bio<strong>control</strong> agents (BCAs) used in the five European countries of this survey are listed<br />

in Appendix 11.<br />

In France invertebrate BCAs cannot be registered <strong>and</strong> they do not yet need to be formally<br />

declared, but a law passed on 12 th July 2010 created the basis to establish rules governing the<br />

introduction into the environment of non-indigeneous macro-organisms useful to plants. Procedures<br />

<strong>and</strong> requirements for authorisations which will also cover non-indigeneous beneficial are expected<br />

to be set up for the in the coming months. The list provided in the present survey is based on the<br />

voluntary declarations to ACTA by the producers wishing to have their beneficials published in the<br />

non-official Index Phytosanitaire.<br />

Invertabrate BCAs must be registered in Germany. An official list which is regularly updated<br />

is published by the Julius Kühn Institute.<br />

In Spain companies which are responsible of commercialisation of IBCAs must give<br />

information to the Ministry of Agriculture to allow the inscription into a register before<br />

commercialisation (Orden APA/1470/2007). This information given is about name of commercial<br />

product, identification of the organism, the manufacturer, the company responsible for<br />

commercialisation. Another law (43/2002; 20 th of November 2002) covers the introduction of exotic<br />

organisms (article 44).<br />

In Switzerl<strong>and</strong> invertebrate BCAs must be formally approved by the BLW (Bundesamt für<br />

L<strong>and</strong>wirtschaft) <strong>and</strong> they are listed together with the plant protection products.<br />

In the United Kingdom no authorisation is required to release indigenous beneficials but the<br />

import (<strong>and</strong> release) of non indigenous species must be approved by the Advisory Committee for<br />

the Release of Exotics (ACRE acting under DEFRA).<br />

41


Chapter 5<br />

Identified difficulties <strong>and</strong> conditions for field success of bio<strong>control</strong>.<br />

1. Regulatory aspects<br />

Ulf Heilig 1 , Claude Alabouvette 2* <strong>and</strong> Bernard Blum 1<br />

1 International Bio<strong>control</strong> Manufacturers Association, Blauenstrasse 57, CH-4054 Basel,<br />

Switzerl<strong>and</strong><br />

2 INRA, UMR1229, Microbiologie du Sol et de l'Environnement, 17 rue Sully, F -21000 Dijon,<br />

France<br />

Objectives<br />

The objective of the work was to identify typical hurdles for the placing of <strong>biological</strong> plant<br />

protection products on the market experienced by bio<strong>control</strong> industry or evaluators in the recent<br />

past under the European directive 91/414/EEC. In parallel, we examined the new regulation (No<br />

1107/2009/EC of the European Parliament <strong>and</strong> of the Council of 21 October 2009) concerning the<br />

placing of plant protection products on the market <strong>and</strong> repealing Council Directives 79/117/EEC<br />

<strong>and</strong> 91/414/EEC <strong>and</strong> the new directive (N° 2009/128/EC of the European Parliament <strong>and</strong> of the<br />

Council of 21 October 2009) establishing a framework for Community action to achieve the<br />

sustainable use of pesticides. These two texts were examined for provisions creating new<br />

opportunities for the approval bio<strong>control</strong> agents, their placing on the market <strong>and</strong> use. In fine, it was<br />

the intent to establish a dialogue with EU regulators <strong>and</strong> evaluators in European institutions, i.e. in<br />

the European Commission <strong>and</strong> in the European Food Safety Agency (EFSA) <strong>and</strong> to seek solutions<br />

in common for the problems encountered.<br />

Working method<br />

An ad hoc group of representatives from the bio<strong>control</strong> industry <strong>and</strong> INRA called "Regulatory<br />

Review Team" was set up. Two full-day working sessions were organised in which regulatory<br />

experts identified difficulties <strong>and</strong> questions but also described positive experience <strong>and</strong> perspectives.<br />

The work of the Regulatory Review Team active under Reasearch Activity RA4.3 of the<br />

ENDURE network was then summarised <strong>and</strong> reported in a meeting of a delegation of ENDURE<br />

partners (IBMA, INRA <strong>and</strong> ACTA) with representatives of the European Commission (DG<br />

SANCO, DG Agriculture, DG Research) <strong>and</strong> the EFSA in Brussels (24 September 2009).<br />

Results<br />

A PowerPoint presentation entitled "Gaps - Problems - Opportunities for BCAs in E.U.<br />

Regulation - From Past to Future" was prepared for the ENDURE – Commission meeting, with<br />

inputs on general regulatory issues, micro-organisms, straight chain lepidopteran pheromones <strong>and</strong><br />

botanicals. In this document, two key issues related to directive 2001/36/EC annex II B which fixed<br />

requirements for microbial active substances were highlighted. Readers may note that since 14 th<br />

June 2011 Regulation (EU) No 544/2011 implements these data requirements unchanged to reg.<br />

* Current address: AGRENE, 47 rue Constant Pierrot 21000 DIJON, c.ala@agrene.fr<br />

42


Chapter 5<br />

(EC) No 1109/2009. Tests suggested by evaluation experts <strong>and</strong> intended to establish the genetic<br />

stability of a strain do not reflect practical conditions, while in the case of potential microbial<br />

contaminants no European reference list is available. The incidence of many pathogens can be<br />

excluded by production methods or the geographic location of production sites. Tolerance limits for<br />

contamination levels could take into consideration thresholds used in food industry, application<br />

levels for the microbial product <strong>and</strong> naturally occurring background levels. The two issues<br />

presented here but also other examples put forward to the Regulatory Review Team lead to the<br />

statement that "not all the studies or tests that can be performed for microbials will necessarily<br />

yield relevant data".<br />

The most important experience with semiochemicals was made during the on-going reassessment<br />

of Straight Chain Lepidopteran Pheromones (SCLPs), which were supported by an<br />

IBMA Task Force. Regulators <strong>and</strong> evaluators were flexible in accepting a single common dossier<br />

for all compounds notified but although an OECD guidance document recommends data waiving<br />

for numerous SCLP requirements, the Rapporteur Member State insisted that all existing data <strong>and</strong><br />

study reports on all compounds be submitted on the grounds that the requirements of the directive<br />

are superior to the guidance document recommendations. So far, the re-assessment procedure<br />

resulted in the inclusion with postponed peer review of SCLPs as a group, but 25 substances are<br />

also listed individually. New substances can be included in a simplified procedure provided that the<br />

applicant has access to the existing dossier. Remaining questions include what industry input will<br />

be required during the peer review by EFSA, the E.U. status of a revised OECD guidance document<br />

for semiochemicals other than SCLPs, the decision if MRLs are required for sprayable SCLP<br />

formulations, <strong>and</strong> equivalence criteria for SCLP substances. It was also noted that under the<br />

Biocidal Product Directive, rules <strong>and</strong> fees applied to SCLPs created an economic hurdle which<br />

resulted in the submission of a dossier for only one compound.<br />

Extracts from plants - as long as not purified - consist of mixtures of molecules while data<br />

requirements of directive 91/414/EEC maintained under new regulation (EC) No 1107/2009 are<br />

basically designed for defined single substances. Thus those requirements often do not fit for<br />

mixtures of several substances. It must be decided if the most “active” substance, the one with the<br />

highest content in the extract or the whole extract shall be used in studies required for different<br />

sections of a dossier i.e. for data on physical-chemical properties, metabolism, toxicology, residues,<br />

environmental fate <strong>and</strong> behaviour, <strong>and</strong> which data shall be used in risk assessment. While the whole<br />

extract can be recommended for use in toxicity studies, it is not convenient for residue, metabolism<br />

or environmental studies because in practice it is generally not possible to determine the fate of all<br />

compounds contained in an extract. Questions asked by evaluators from several Member States<br />

after the issuing of a draft assessment report for Neem extract <strong>and</strong> its lead substance Azadirachtin A<br />

illustrate the difficulties experienced by an applicant in the evaluation process for a botanical.<br />

Regulation (EC) No 1107/2009 concerning the placing of plant protection products on the<br />

market provides for a specific status for "low risk active substances" (article 22). Many bio<strong>control</strong><br />

substances can be expected to qualify for this new category but one exclusion criterion, the half-life<br />

in soil, may cause problems for microbial active substances unless it is clearly limited to chemicals.<br />

A full set of data is required to gain the status of low risk active substance but products containing<br />

them exclusively <strong>and</strong> without co-formulants of concern will benefit from reduced dossier<br />

requirements <strong>and</strong> time lines for approval. Micro-organisms, plant extracts or other natural<br />

substances may also meet the criteria for "Basic substances" provided for in article 23 but the<br />

discussion in the ENDURE-Commission meeting made it clear that this category is without interest<br />

for manufacturers who intend to market their substances for plant protection. It was noted that the<br />

new regulation does not provide for generic waivers i.e. for justifications of non submission of data<br />

or exemptions from requirements for groups of substances or products.<br />

43


Heilig et al.<br />

In the sustainable use directive 2009/128/EC a number of provisions in favour of <strong>biological</strong><br />

pest <strong>control</strong> measures or non-chemical methods have been identified. The new regulation also<br />

mentions in recital 35 that priority should be given to "non-chemical <strong>and</strong> natural alternatives<br />

wherever possible" but since the definition of non-chemical methods refers to "physical, mechanical<br />

or <strong>biological</strong> pest <strong>control</strong>" <strong>and</strong> does not specifically mention microbials, semiochemicals, botanicals<br />

or other natural substances with non-toxic mode of action it must be clarified how those groups are<br />

covered by the definition.<br />

Conclusion<br />

In the meeting between the ENDURE delegation <strong>and</strong> representatives of the European<br />

Commission, the need for discussions between regulators, evaluators <strong>and</strong> industry about<br />

requirements especially those relevant for microbial <strong>and</strong> botanical substances was recognised.<br />

Article 77 of the new plant protection product regulation authorises the Commission to "adopt or<br />

amend technical <strong>and</strong> other guidance documents e.g. explanatory notes or guidance documents on<br />

the content of the application concerning micro-organisms, pheromones <strong>and</strong> <strong>biological</strong> products."<br />

Thus at least part of the problems experienced by applicants can be addressed in guidance<br />

documents. Industry representatives <strong>and</strong> companies directly concerned by evaluations or reviews of<br />

bio<strong>control</strong> agents should enter into discussions with evaluators (EFSA or Competent Authorities in<br />

Member States) without forgetting the leading role of the Commission. Industry should fix<br />

priorities, prepare rationales <strong>and</strong> make substantiated proposals dealing with data requirements<br />

considered inappropriate, unnecessary or unrealistic.<br />

44


Chapter 6<br />

Identified difficulties <strong>and</strong> conditions for field success of bio<strong>control</strong>.<br />

2. Technical aspects: factors of efficacy<br />

Michelina Ruocco 1 , Sheridan Woo 1,2 , Francesco Vinale 1 , Stefania Lanzuise 2 , Matteo Lorito 1,2<br />

1 CNR-IPP, Consiglio Nazionale delle Ricerche, Istituto per la Protezione delle Piante, via<br />

Università 133, 80055 Portici, Italy<br />

2 Dip. Arboricoltura, Botanica e Patologia Vegetale, Università di Napoli Federico II, via<br />

Università 100, 80055 Portici, Italy<br />

Quality of the BCAs formulations<br />

Numerous investigations on the development of biopesticides have been initiated as legislation <strong>and</strong><br />

government policy have dem<strong>and</strong>ed less reliance on chemical pesticides <strong>and</strong> greater adoption of<br />

IPM. In Europe, some countries have set goals of reducing pesticide use by 50%. Successes have<br />

been achieved through better timing of applications, so that lower dosages are effective <strong>and</strong><br />

substituting less hazardous <strong>and</strong> more active materials, to reduce the number of applications.<br />

Biopesticides are distinguished from conventional chemical pesticides as many are very<br />

selective <strong>and</strong> are non-toxic towards non-target organisms. While biopesticides are likely to be less<br />

harmful to the environment than the conventional ones, care needs to be taken that wastage is<br />

minimised, by selecting the most appropriate droplet spectrum. A disadvantage of <strong>biological</strong> agents<br />

relative to chemicals, is that many are not sufficiently persistent <strong>and</strong> are relatively slow acting;<br />

therefore, research has been directed at extending the period of activity. However, some such agents<br />

may persist in the field or the forest for many months, <strong>and</strong> a risk–benefit analysis should be<br />

performed to establish their environmental acceptability.<br />

Transition from the optimised conditions of a laboratory experiment to the harsh conditions<br />

experienced in the field has so far proved more difficult for application of biopesticides in contrast<br />

to chemicals. This has undoubtedly been due to lack of investment in the development of effective<br />

formulations <strong>and</strong> delivery systems, in order to commercialise more potential biopesticides. The<br />

relatively small effort invested in target-specific sprayers, compared with the investment in<br />

laboratory studies, has led to unbalanced development, <strong>and</strong> exemplifies the need for closer<br />

integration between formulation <strong>and</strong> engineering research. The challenge is to get effective<br />

formulations so that <strong>biological</strong> <strong>control</strong> agents can be easily applied by farmers.<br />

A good example, the case of Trichoderma: direct <strong>and</strong> indirect mode of action <strong>against</strong><br />

plant pathogens<br />

Trichoderma species have long been recognized as <strong>biological</strong> <strong>control</strong> agents (BCAs) for the <strong>control</strong><br />

of plant disease <strong>and</strong> for their ability to increase plant growth <strong>and</strong> development. They are widely<br />

used in agriculture, <strong>and</strong> some of the most useful strains demonstrate a property known as<br />

‘rhizosphere competence’, the ability to colonize <strong>and</strong> grow in association with plant roots (Harman<br />

2000). Much of the known biology <strong>and</strong> many of the uses of these fungi have been documented<br />

recently (Harman et al. 2004a; Kubicek et al. 1998; Perello et al. 2009). The taxonomy of this<br />

fungal genus is continually being revised, <strong>and</strong> many new species are being described (Komon-<br />

Zelazowska et al. 2007; Kubicek et al. 2008; Overton et al. 2006; Samuels 2006; Samuels <strong>and</strong><br />

45


Ruocco et al.<br />

Ismaiel 2009). The mechanisms that Trichoderma uses to antagonize phytopathogenic fungi include<br />

competition, colonization, antibiosis <strong>and</strong> direct mycoparasitism (Harman 2006, 2011; Howell<br />

2003). This antagonistic potential serves as the basis for effective <strong>biological</strong> <strong>control</strong> applications of<br />

different Trichoderma strains as an alternative method to chemicals for the <strong>control</strong> of a wide<br />

spectrum of plant pathogens (Harman et al. 1991; Lorito et al. 2010).<br />

The colonization of the root system by rhizosphere competent strains of Trichoderma results in<br />

increased development of root <strong>and</strong>/or aerial systems <strong>and</strong> crop yields (Bae et al. 2011; Chacon et al.<br />

2007; Kubicek et al. 1998; Yedidia et al. 2003). Trichoderma has also been described as being<br />

involved in other <strong>biological</strong> activities such as the induction of plant systemic resistance (Shoresh et<br />

al. 2010; Tucci et al. 2011) <strong>and</strong> antagonistic effects on plant pathogenic nematodes (Jegathambigai<br />

et al. 2008; Sharon et al. 2001).Some strains of Trichoderma have also been noted to be aggressive<br />

biodegraders in their saprophytic phases, in addition to acting as competitors to fungal pathogens,<br />

particularly when nutrients are a limiting factor in the environment (Worasatit et al. 1994). These<br />

facts strongly suggest that in the plant root environment Trichoderma actively interacts with the<br />

components in the soil community, the plant, bacteria, fungi, other organisms, such as nematodes or<br />

insects, that share the same ecological niche (Lorito et al. 2010).<br />

Trichoderma spp. are important participants in the nutrient cycle. They aid in the<br />

decomposition of organic matter <strong>and</strong> make available to the plant many elements normally<br />

inaccessible. Yedidia et al. (2001) noted that the presence of the fungus increased the uptake <strong>and</strong><br />

concentration of a variety of nutrients (copper, phosphorus, iron, manganese <strong>and</strong> sodium) in the<br />

roots of plants grown in hydroponic culture, even under axenic conditions. These increased<br />

concentrations indicated an improvement in plant active-uptake mechanisms. Corn that developed<br />

from seeds treated with T. harzianum strain T-22 produced higher yields, even when a fertilizer<br />

containing 40% less nitrogen was applied, than the plants developed from seed that was not treated<br />

with T-22 (Harman 2000). This ability to enhance production with less nitrate fertilizer, provides<br />

the opportunity to potentially reduce nitrate pollution of ground <strong>and</strong> surface water, a serious adverse<br />

consequence of large-scale maize culture. In addition to effects on the increase of nutrient uptake<br />

<strong>and</strong> the efficiency of nitrogen use, the beneficial fungi can also solubilize various nutrients in the<br />

soil, that would be otherwise unavailable for uptake by the plant (Altomare et al. 1999b).<br />

The cross-talk that occurs between the fungal BCA <strong>and</strong> the plant is important both for<br />

identification of each component to one another <strong>and</strong> for obtaining beneficial effects. Somehow, the<br />

plant is able to sense, possibly by detection of the released fungal compounds, that Trichoderma is<br />

not a hostile presence, therefore the plant defence system is not activated as it is when there is pest<br />

attack <strong>and</strong> the BCA is recognized as a plant symbiont rather than a plant pathogen (Woo <strong>and</strong> Lorito,<br />

2006). Molecules produced by Trichoderma <strong>and</strong>/or its metabolic activity also have potential for<br />

promoting plant growth (Chacón et al., 2007; Vinale et al. 2008a; 2008b; Yedidia et al. 1999).<br />

Applications of T. harzianum to seed or the plant resulted in improved germination, increased plant<br />

size, augmented leaf area <strong>and</strong> weight, greater yields (Altomare et al. 1999a; Harman et al. 2004c, b;<br />

Inbar <strong>and</strong> Chet 1995; Tucci et al. 2011; Vinale et al. 2008a).<br />

Numerous studies indicated that metabolic changes occur in the root during colonization by<br />

Trichoderma spp., such as the activation of pathogenesis-related proteins (PR-proteins), which<br />

induce in the plant an increased resistance to subsequent attack by numerous microbial pathogens<br />

(Table 12)<br />

46


Chapter 6<br />

Table 12: Evidence for, <strong>and</strong> effectiveness of, induced resistance in plants by Trichoderma<br />

species (Harman et al., 2004a).<br />

The induction of systemic resistance (ISR) observed in planta determines an improved <strong>control</strong><br />

of different classes of pathogens (mainly fungi <strong>and</strong> bacteria), which are spatially <strong>and</strong> temporally<br />

distant from the Trichoderma inoculation site. This phenomenon has been observed in many plant<br />

species, both dicotyledons (tomato, pepper, tobacco, cotton, bean, cucumber) <strong>and</strong> monocotyledions<br />

(corn, rice). For example, Trichoderma induces resistance towards Botrytis cinerea in tomato,<br />

tobacco, lettuce, pepper <strong>and</strong> bean plants, with a symptom reduction ranging from 25 to 100% (Tucci<br />

et al. 2011). Moreover, Trichoderma determined an overall increased production of defence-related<br />

plant enzymes, including various peroxidases, chitinases, β-1,3-glucanases, <strong>and</strong> the lipoxygenasepathway<br />

hydroperoxide lyase (Harman et al. 2004c; Howell et al. 2000; Yedidia et al. 1999) of T.<br />

harzianum strain T-39, the active ingredient of the commercial product TricodexTM.<br />

Thus far, Trichoderma is able not only to produce toxic compounds with a direct antimicrobial<br />

activity <strong>against</strong> pathogens, but also to generate fungal substances that are able to stimulate the plant<br />

to produce its own defence metabolites. In fact, the ability of T. virens to induce phytoalexin<br />

accumulation <strong>and</strong> localized resistance in cotton has already been discussed (Hanson <strong>and</strong> Howell<br />

2004). In cucumber, root colonization by strain T-203 of T. asperellum caused an increase in<br />

phenolic glucoside levels in the leaves; the aglycones, which are phenolic glucosides with the<br />

carbohydrate moieties removed, are strongly inhibitory to a range of bacteria <strong>and</strong> fungi (Yedidia et<br />

al. 2003).<br />

47


Ruocco et al.<br />

A fundamental part of the Trichoderma antifungal capability consists in the production <strong>and</strong><br />

secretion of a great variety of extracellular cell wall degrading enzymes (CWDEs), including<br />

endochitinases, β-N-acetylhexosaminidase (N-acetyl-β-D-glucosaminidase), chitin-1,4-β-chitobiosidases,<br />

proteases, endo- <strong>and</strong> exo-β-1,3-glucanases, endo β-1,6-glucanases, lipases, xylanases,<br />

mananases, pectinases, pectin lyases, amylases, phospholipases, RNAses, DNAses, etc. (Benitez et<br />

al. 2004; Lorito et al. 1998). The chitinolytic <strong>and</strong> glucanolytic enzymes are especially valuable for<br />

their CWDE activity on fungal plant pathogens, hydrolyzing polymers not present in plant tissues<br />

(Woo et al. 1999). Each of these classes of enzymes contains diverse sets of proteins with distinct<br />

enzymatic activities. Some have been purified, characterized <strong>and</strong> their encoding genes cloned (Ait-<br />

Lahsen et al. 2001; de la Cruz et al. 1992; 1995a; 1995b; Garcia et al. 1994; Limon et al. 1995;<br />

Lora et al. 1995; Lorito et al. 1993,. 1994b; Montero et al. 2007; Peterbauer et al. 1996; Suarez et<br />

al. 2004; Viterbo et al. 2001, 2002). Once purified, many Trichoderma enzymes have shown to<br />

have strong antifungal activity <strong>against</strong> a wide variety of phytopathogens, <strong>and</strong> they are capable of<br />

hydrolyzing not only the tender young hyphal tips of the target fungal host, but they are also able to<br />

degrade the hard, resistant conservation structures such as sclerozi.<br />

Trichoderma spp. have been widely studied, <strong>and</strong> are presently marketed as biopesticides,<br />

biofertilizers <strong>and</strong> soil amendments, due to their ability to protect plants, enhance vegetative growth<br />

<strong>and</strong> contain pathogen populations under numerous agricultural conditions (Harman 2000, 2004;<br />

Vinale et al. 2008b). The commercial success of products containing these fungal antagonists can<br />

be attributed to the large volume of viable propagules that can be produced rapidly <strong>and</strong> readily on<br />

numerous substrates at a low cost in diverse fermentation systems. The living microorganisms,<br />

conserved as spores, can be incorporated into various formulations, liquid, granules or powder etc.,<br />

<strong>and</strong> stored for months without losing their efficacy (Jin et al. 1996). To date more than 50 different<br />

Trichoderma-based preparations are commercialized <strong>and</strong> used to protect or increase the<br />

productivity of numerous horticultural <strong>and</strong> ornamental crops (Table 13; Lorito et al. 2006).<br />

The case Trichoderma: mode of application, persistence on the target <strong>and</strong> new<br />

formulations.<br />

Effectiveness under <strong>control</strong>led conditions (even under field conditions) does not necessarily<br />

guarantee that the organism will perform successfully; proper formulation is a prime condition for<br />

meeting market requirements. For instance an efficient bio<strong>control</strong> agent of soilborne <strong>and</strong> airborne<br />

pathogens must first <strong>and</strong> foremost protect the young seedling <strong>against</strong> detrimental attack by infective<br />

inoculum. Therefore some factors may be considered:<br />

(a) soil ecosystem factors such as moisture, pH, structure, <strong>and</strong> temperature;<br />

(b) root colonization capacity;<br />

(c) reasonable shelf life;<br />

(d) efficiency of application of the bio<strong>control</strong> agent in terms of its specific habitat <strong>and</strong> target<br />

(Spiegel <strong>and</strong> Chet 1998)<br />

48


Table 13: Trichoderma-based preparations commercialized for <strong>biological</strong> <strong>control</strong> of plant diseases.<br />

Chapter 6<br />

Commercial<br />

Bio<strong>control</strong><br />

Product<br />

Formulation,<br />

Uses - Location,<br />

Uses, Pathogens<br />

Manufacturer/Supplier, Country, Internet Reference<br />

Product<br />

Organism(s)<br />

Type<br />

Application<br />

Crops<br />

<strong>control</strong>led<br />

Ago Bio<strong>control</strong><br />

Trichoderma<br />

50<br />

T. harzianum Biological<br />

fungicide<br />

n/a<br />

Flowers, vegetables,<br />

fruits, other crops<br />

Fusarium, Rhizoctonia,<br />

Alternaria, Rosellinia,<br />

Botrytis, Sclerotium,<br />

Phytophthora spp<br />

Ago Bio<strong>control</strong>, Colombia<br />

(http://www.sipweb.org/directorymcp/fungi.html)<br />

Antagon<br />

Binab T<br />

Trichoderma<br />

spp.<br />

T. harzianum,<br />

T. polysporum<br />

Biological<br />

fungicide<br />

Biological<br />

fungicide<br />

BioFit T. viride Biological<br />

fungicide<br />

Bio-Fungus<br />

(formerly<br />

Anti-Fungus),<br />

Supresivit<br />

Trichoderma<br />

spp.<br />

Biological<br />

fungicide<br />

powder<br />

Pellets, wettable<br />

powder or<br />

granules; spray,<br />

drench, mixed in<br />

soil<br />

Seed treatment,<br />

root/tuber dip,<br />

drench; Used<br />

alone or in<br />

combination with<br />

chemicals.<br />

granular, wettable<br />

powder, sticks,<br />

crumbles; soil<br />

incorporation;<br />

spray or injection<br />

Horticulture<br />

(commercial), parks,<br />

recreational areas,<br />

sports fields<br />

Wood products;<br />

ornamental, shade,<br />

forest trees;<br />

greenhouse, nursery,<br />

field; cut flowers,<br />

potted plants,<br />

vegetables,<br />

mushrooms, flower<br />

bulbs<br />

Gram, pepper,<br />

groundnut, wheat,<br />

potato, ginger,<br />

turmeric, peas,<br />

matki, mung, urid ,<br />

tomato, bhindi,<br />

onion, other<br />

vegetables, grapes.<br />

Flowers,<br />

strawberries, trees,<br />

vegetables<br />

damping-off diseases<br />

Wood rots causing<br />

internal decay, or<br />

originating from pruning<br />

wounds; Didymella,<br />

Chondrostereum,<br />

Heterobasidion, Botrytis,<br />

Verticillium, Pythium,<br />

Fusarium, Phytophthora,<br />

Rhizoctonia<br />

Pythium, Rhizoctonia,<br />

Fusarium, Sclerotium,<br />

other root rots; for<br />

Botrytis in combination<br />

with chemicals<br />

Sclerotinia,<br />

Phytophthora,<br />

Rhizoctonia solani,<br />

Pythium spp., Fusarium,<br />

Verticillium<br />

De Ceuster Meststoffen N.V. (DCM), Belgium<br />

(http://www.agroBiologicals.com/products/P1609.htm)<br />

BINAB Bio-Innovation AB, Sweden<br />

(http://www.algonet.se/~binab/index2.html); Henry<br />

Doubleday Research Association, United Kingdom;<br />

Svenska Predator AB, Sweden; E.R. Butts International,<br />

Inc., USA<br />

Ajay Bio-tech (India) Ltd., India<br />

(http://www.ajaybio.com)<br />

BioPlant, Denmark (www.bioplant.dk); De Ceuster<br />

Meststoffen N.V. (DCM), Belgium<br />

49


Ruocco et al.<br />

Table 13 (continued):<br />

Trichoderma-based preparations commercialized for <strong>biological</strong> <strong>control</strong> of plant diseases.<br />

Commercial<br />

Product<br />

Bio<strong>control</strong><br />

Organism(s)<br />

Product<br />

Type<br />

Formulation,<br />

Application<br />

Uses - Location,<br />

Crops<br />

Uses, Pathogens <strong>control</strong>led<br />

Manufacturer/Supplier, Country, Internet Reference<br />

Combat<br />

T. harzianum,<br />

T. virens<br />

(=T. lignorum<br />

G. virens),<br />

Bacillus<br />

subtilis<br />

Biological<br />

fungicide<br />

Talc; seed<br />

treatment,<br />

broadcast, root<br />

dip, drench,<br />

foliar spray<br />

Grapes, cotton,<br />

pulses, tea, potato,<br />

tomato, oil seeds,<br />

tobacco, spices,<br />

cereals, vegetables,<br />

horticultural crops<br />

Downy mildew, powdery<br />

mildew, die back,<br />

Verticillium, Fusarium,<br />

Panama wilt; pod, seedling,<br />

late blight; root, collar, stem,<br />

red, soft, clump, dry, bean,<br />

fruit, pod rot; black leg,<br />

damping off, abnormal leaf<br />

fall, black thread, canker<br />

BioAg Corporation USA<br />

(http://www.bioag.com/products.html)<br />

Harzian 20<br />

(under<br />

T. harzianum Biological<br />

fungicide<br />

n/a<br />

orchard crops,<br />

vineyards<br />

Armillaria spp., Pythium<br />

spp., Sclerotinia spp.<br />

Natural Plant Protection (NPP), France<br />

(http://www.agroBiologicals.com/products/P1362.htm)<br />

development)<br />

PlantShield T. harzianum Biological<br />

fungicide<br />

Primastop G. catenulatum Biological<br />

fungicide<br />

Granules,<br />

wettable powder;<br />

soil drench,<br />

foliar spray<br />

Powder; drench,<br />

spray, irrigation<br />

Greenhouse,<br />

flowers,<br />

ornamentals,<br />

herbs, nursery,<br />

vegetable crops;<br />

hydroponic,<br />

orchard trees<br />

ornamental,<br />

vegetable, tree<br />

crops<br />

Pythium, Fusarium,<br />

Rhizoctonia,<br />

Cylindrocladium,<br />

Thielaviopsis; suppresses<br />

Botrytis<br />

pathogens causing seed, root,<br />

stem rot, wilt disease<br />

BioWorks, Inc., USA<br />

(http://www.bioworksbio<strong>control</strong>.com)<br />

Kemira Agro Oy, Finl<strong>and</strong> (http://growhow.kemiraagro.com);<br />

AgBio Development Inc.USA<br />

Root Pro,<br />

RootProtato<br />

T. harzianum,<br />

T. cornedia<br />

Biological<br />

fungicide<br />

Powder; spores<br />

mixed with<br />

growing media<br />

Seedling, rooting<br />

stage in nursery;<br />

Horticulture -<br />

flowers,<br />

vegetables,<br />

potatoes<br />

Rhizoctonia solani, Pythium<br />

spp., Fusarium spp.,<br />

Sclerotium rolfsii<br />

My<strong>control</strong> Ltd., Israel; Efal Agri, Israel<br />

(http://www.efal.com/main.htm,<br />

http://www.agroBiologicals.com/company/C1096.htm)<br />

50


Chapter 6<br />

Many preparations have been developed to ensure a good shelf life of the product based on<br />

Trichoderma. Some of that formulation are stable in terms of pH, that remains constant <strong>and</strong> low<br />

(5.5) during the entire growth period, thus preventing bacterial contamination. Moreover the shelf<br />

life of the fungus at 25 °C is 1 year <strong>and</strong> from 1 to 2 years, the number of colonies-forming-units<br />

(CFUs) decreases by one order of magnitude. Many of that formulation have been proven<br />

successful in several experiments in the greenhouse <strong>and</strong> field. The rapid mass production of<br />

promising antagonists in the form of spores, mycelia or mixtures of both, has been achieved by<br />

liquid-fermentation technology: mass production of biomasses of T. hamatum, T. harzianum, <strong>and</strong> T.<br />

viride was reached by utilizing commercially available, inexpensive ingredients such as molasses,<br />

brewer's yeast, cotton seed flour, or corn-steeped liquor.. Other techniques have been employed to<br />

improve the delivery of the bio<strong>control</strong> agents. A lignite-stillage (a by-product of sorghum<br />

fermentation) carrier system was tested for applying a T. harzianum preparation to the soil.<br />

Encapsulation of the bio<strong>control</strong> agent in an alginate-clay matrix, using Pyrax as the clay material,<br />

improved yield <strong>and</strong> propagule viability over time.<br />

Pelletized formulations of wheat bran or kaolin clay in an alginate gel containing conidia,<br />

chlamydospores or fermentex biomass of several Trichoderma isolates revealed increased viability<br />

of stored pellets, <strong>and</strong> the number of CFUs formed after adding these pellets to the soil was<br />

comparable to that formed from freshly prepared pellets. These growth media <strong>and</strong> delivery systems<br />

for formulations of bio<strong>control</strong> fungi show promise because they are able to introduce high levels<br />

(10 6- 10 10 CFU/g) of fungi into soils not steamed, fumigated, or treated with other biocides.<br />

To enhance bio<strong>control</strong> efficacy, appropriate introduction of the antagonist into the<br />

microenvironment appears to be crucial: formulations have been applied to seedlings prior to<br />

planting or to seeds in furrows. Economic considerations have forced biotechnologists to improve<br />

the application techniques: seed-coating, a technique involving minimal amounts of inoculum was<br />

developed.<br />

Increased bio<strong>control</strong> activity may be achieved by combining two types (or more, if possible) of<br />

bio<strong>control</strong> agents, for example combining Trichoderma with a bacterium, or another beneficial<br />

fungus. The combined activity of the antifungal compounds produced by both microorganisms<br />

could exp<strong>and</strong> the spectrum of pathogens <strong>control</strong>led. In fact, in field trials combining T. koningii<br />

with certain fluorescent pseudomonads, greater suppression of take-all disease <strong>and</strong> increased wheat<br />

yield were achieved relative to plants treated with T. koningii alone (Duffy et al. 1996).Delivery<br />

systems must ensure that bio<strong>control</strong> agents will grow well <strong>and</strong> achieve their purpose. It is generally<br />

recognized that delivery <strong>and</strong> application processes must be developed on a crop by crop <strong>and</strong><br />

application by application basis. No general solutions exist, <strong>and</strong> so bio<strong>control</strong> systems must be<br />

developed for each crop. It is very important to use the organism properly <strong>and</strong> to have appropriate<br />

expectations. Any bio<strong>control</strong> organism will be unable to protect seeds as well as chemical<br />

fungicides. However, it colonizes roots, increases root mass <strong>and</strong> health, <strong>and</strong> consequently frequently<br />

provides yield increases, which chemical fungicides applied at reasonable rates cannot do. An<br />

effective method of use is to use the bio<strong>control</strong> fungus in conjunction with chemical fungicides. The<br />

chemicals provide good short-term seed protection, <strong>and</strong> the bio<strong>control</strong> fungus provides long-term<br />

root protection. As a consequence, yields frequently are increased over use of the chemical alone.<br />

Some experiences evidence that Trichoderma spp. is also highly effective when applied to<br />

blossoms or fruits for <strong>control</strong> of B. cinerea. Even low levels of the organism applied to strawberry<br />

blossoms by bee delivery or by sprays of liquid formulations are effective. For maximum <strong>control</strong> of<br />

the Botrytis bunch rot of grape, this initial application needs to be augmented by sprays as fruits<br />

mature, <strong>and</strong> addition of iprodione as a tank mix to this late application appears to have synergistic<br />

activity over either the bio<strong>control</strong> agent or the chemical fungicide alone.<br />

Novel applications of Trichoderma spp. Trichoderma spp. produce a variety of lytic enzymes that<br />

have a high diversity of structural <strong>and</strong> kinetic properties, thus increasing the probability of this<br />

fungus to counteract the inhibitory mechanisms used by neighbouring microorganisms. Further,<br />

51


Ruocco et al.<br />

Trichoderma hydrolytic enzymes have been demonstrated to be synergistic, showing an augmented<br />

antifungal activity when combined with themselves, other microbial enzymes, PR proteins of plants<br />

<strong>and</strong> some xenobiotic compounds (Fogliano et al. 2002; Lorito et al. 1994a, 1994b, 1994c, 1996,<br />

1998; Schirmbock et al. 1994; Woo et al. 2002). In fact, the inhibitory effect of chemical fungicides<br />

for the <strong>control</strong> of the foliar pathogen B. cinerea was substantially improved by the addition of<br />

minute quantities (10-20 ppm) of Trichoderma CWDEs to the treatment mixture (Lorito et al.,<br />

1994b).<br />

Extensive testing of T. harzianum strain T22 conducted for the registration of this bio<strong>control</strong><br />

agent in the USA by the Environmental Protection Agency (EPA) has found that the CWDEs do not<br />

have a toxic effect on humans <strong>and</strong> animals (ED50 <strong>and</strong> LD50), <strong>and</strong> that they do not leave residues,<br />

but degrade innocuously in the environment. Therefore, these Trichoderma hydrolytic enzymes<br />

present a novel product for plant disease <strong>control</strong> based on natural mycoparasitic compounds used by<br />

the antagonistic fungi. Single or mixed combinations of CWDEs with elevated antifungal effects,<br />

obtained from fermentation in inducing conditions, over-expression of the encoding genes in strains<br />

of Trichoderma, or heterologous expression of the encoding genes in other microbes are possible<br />

alternatives for pathogen <strong>control</strong>. These natural substances originating from the BCA are an<br />

improvement over the use of the living microorganism in the production of commercial<br />

formulations because they are easily characterized, resist desiccation, are stable at temperatures up<br />

to 60° C, <strong>and</strong> are active over a wide range of pH <strong>and</strong> temperatures in the agricultural environment.<br />

The important factors to consider in a commercial bio-formulation are product stability, the capacity<br />

to produce consistent results by preserving the characteristics producing the <strong>biological</strong> effects; the<br />

storability of the material, the ability to be conserved in unspecialized conditions similar to those of<br />

chemical pesticides; <strong>and</strong> a reasonable shelf-life or time that the product can be stored <strong>and</strong> used<br />

without compromising the efficacy (Agosin <strong>and</strong> Aguilera, 1998; Agosin et al., 1997; Powell <strong>and</strong><br />

Jutsum, 1993). When a formulation contains the living microorganism component, the treatment<br />

must consist of stabilizing the viability of the BCA. For liquid formulations this can be achieved by<br />

maintaining the product in refrigeration (


Chapter 6<br />

Persistence, physiological stresses, timing <strong>and</strong> coverage of others <strong>biological</strong> agents<br />

Other references have been screened for bio<strong>control</strong> agents considering the analysis of:<br />

persistence on the target,<br />

resistance to physiological stresses,<br />

timing <strong>and</strong> coverage.<br />

Cladosporium cladosporioides. The antagonist has been effective in reducing sporulation of<br />

Venturia inaequalis under orchard conditions. Furthermore, the results of the pre-screening indicate<br />

that it is cold <strong>and</strong> drought tolerant <strong>and</strong> results of experiments on spore production in solid state<br />

fermentation show that mass production is economically feasible. These results have been obtained<br />

in a stepwise selection approach (Köhl, 2009, Köhl et al., 2009).<br />

Ulocladium atrum <strong>and</strong> Gliocladium roseum. Köhl et al., 1998 described the effect of treatments<br />

with conidial suspensions of Ulocladium atrum <strong>and</strong> Gliocladium roseum on leaf rot of cyclamen<br />

caused by Botrytis cinerea was investigated under commercial greenhouse conditions. Spraying U.<br />

atrum (1 × 106 conidia per ml) or G. roseum (2 × 106 conidia per ml <strong>and</strong> 1 × 107 conidia per ml) at<br />

intervals of 2 to 3 weeks during the production period <strong>and</strong> spraying U. atrum (1 × 106 conidia per<br />

ml) at intervals of 4 to 6 weeks resulted in a significant reduction of natural infections of petioles by<br />

B. cinerea. U. atrum or G. roseum (1 × 107 conidia per ml) was as effective as the st<strong>and</strong>ard<br />

fungicide program. B. cinerea colonized senesced leaves within the plant canopy <strong>and</strong> infected<br />

adjacent petioles <strong>and</strong> leaves later. The antagonists colonized senesced leaves <strong>and</strong> reduced B. cinerea<br />

development on these leaves. Thus, the inoculum potential on petioles adjacent to necrotic leaf<br />

tissues was reduced. The fate of U. atrum conidia on surfaces of green cyclamen leaves during a 70-<br />

day period after application was studied. The number of conidia per square centimetre of leaf<br />

surface remained relatively constant during the entire experiment. Sixty percent of the conidia<br />

sampled during the experiments retained the ability to germinate. When green leaves were removed<br />

from the plants to induce senescence <strong>and</strong> subsequently were incubated in a moist chamber, U.<br />

atrum colonized the dead leaves. Senesced leaves also were colonized by other naturally occurring<br />

fungi including B. cinerea. On leaves treated with U. atrum from all sampling dates, sporulation of<br />

B. cinerea was significantly less as compared with the untreated <strong>control</strong>. Our results indicate that<br />

early applications of U. atrum before canopy closure may be sufficient to achieve commercially<br />

satisfactory <strong>control</strong> of Botrytis leaf rot in cyclamen.<br />

Kessel et al., 2005 developed a spatially explicit model describing saprophytic colonization of<br />

dead cyclamen leaf tissue by the plant-pathogenic fungus Botrytis cinerea <strong>and</strong> the saprophytic<br />

fungal antagonist Ulocladium atrum. Both fungi explore the leaf <strong>and</strong> utilize the resources it<br />

provides. Leaf tissue is represented by a two-dimensional grid of square grid cells. Fungal<br />

competition within grid cells is modelled using Lotka-Volterra equations. Spatial expansion into<br />

neighbouring grid cells is assumed proportional to the mycelial density gradient between donor <strong>and</strong><br />

receptor cell. Established fungal biomass is immobile. Radial growth rates of B. cinerea <strong>and</strong> U.<br />

atrum in dead cyclamen leaf tissue were measured to determine parameters describing the spatial<br />

dynamics of the fungi. At temperatures from 5 to 25°C, B. cinerea colonies exp<strong>and</strong>ed twice as<br />

rapidly as U. atrum colonies. In practical <strong>biological</strong> <strong>control</strong>, the slower colonization of space by U.<br />

atrum thus needs to be compensated by a sufficiently dense <strong>and</strong> even distribution of conidia on the<br />

leaf. Simulation results confirm the importance of spatial expansion to the outcome of the<br />

competitive interaction between B. cinerea <strong>and</strong> U. atrum at leaf scale. A sensitivity analysis further<br />

emphasized the importance of a uniform high density cover of vital U. atrum conidia on target<br />

leaves.<br />

53


Ruocco et al.<br />

References<br />

Agosin E, Volpe D, Munoz G, San Martin R, Crawford A (1997). Effect of culture conditions on<br />

spore shelf life of the bio<strong>control</strong> agent Trichoderma harzianum. World J. Microbiol.<br />

Biotechnol., 13:225-232.<br />

Agosin E, Volpe D, Munoz G, San Martin R, Crawford A (1997). Effect of culture conditions on<br />

spore shelf life of the bio<strong>control</strong> agent Trichoderma harzianum. World J. Microbiol.<br />

Biotechnol., 13:225-232.<br />

Agosin E, Aguilera JM (1998). Industrial production of active propagules of Trichoderma for<br />

agricultural use. In: Trichoderma <strong>and</strong> Gliocladium. Volume 2, Enzymes, Biological <strong>control</strong><br />

<strong>and</strong> commercial applications, G.E. Harman <strong>and</strong> C.P. Kubicek eds., Taylor & Francis Ltd.,<br />

London, UK, pp. 205-227.<br />

Ait-Lahsen, H., Soler, A., Rey, M., de La Cruz, J., Monte, E. & Llobell, A. (2001) An antifungal<br />

exo-alpha-1,3-glucanase (AGN13.1) from the bio<strong>control</strong> fungus Trichoderma harzianum.<br />

Appl Environ Microbiol, 67:5833-5839.<br />

Altomare, C., Norvell, W. A., Bjorkman, T. & Harman, G. E. (1999) Solubilization of phosphates<br />

<strong>and</strong> micronutrients by the plant-growth-promoting <strong>and</strong> bio<strong>control</strong> fungus Trichoderma<br />

harzianum Rifai 1295-22. Appl Environ Microb, 65:2926-2933.<br />

Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL & Bailey BA. (2011)<br />

Endophytic Trichoderma Isolates from tropical environments delay disease onset <strong>and</strong> induce<br />

resistance <strong>against</strong> Phytophthora capsici in hot pepper using multiple mechanisms. Mol<br />

Plant-Microbe Interactions, 24:336-351<br />

Benitez T, Rincon AM, Limon MC & Codon AC. (2004) Bio<strong>control</strong> mechanisms of Trichoderma<br />

strains. International Microbiology, 7:249-260<br />

Chacon, M. R., Rodriguez-Galan, O., Benitez, T., Sousa, S., Rey, M., Llobell, A. & Delgado-<br />

Jarana, J. (2007) Microscopic <strong>and</strong> transcriptome analyses of early colonization of tomato<br />

roots by Trichoderma harzianum. Int Microbiol, 10:19-27.<br />

de la Cruz, J., Hidalgo-Gallego, A., Lora, J. M., Benitez, T., Pintor-Toro, J. A. & Llobell, A. (1992)<br />

Isolation <strong>and</strong> characterization of three chitinases from Trichoderma harzianum. Eur J<br />

Biochem, 206:859-867.<br />

de la Cruz, J., Pintor-Toro, J. A., Benitez, T. & Llobell, A. (1995a) Purification <strong>and</strong> characterization<br />

of an endo-beta-1,6-glucanase from Trichoderma harzianum that is related to its<br />

mycoparasitism. J Bacteriol, 177:1864-1871.<br />

de la Cruz, J., Pintor-Toro, J. A., Benitez, T., Llobell, A. & Romero, L. C. (1995b) A novel endobeta-1,3-glucanase,<br />

BGN13.1, involved in the mycoparasitism of Trichoderma harzianum. J<br />

Bacteriol, 177:6937-6945.<br />

Duffy, B. K., Simon, A. & Weller, D. M. (1996) Combination of Trichoderma koningii with<br />

fluorescent pseudomonads for <strong>control</strong> of take-all on wheat. Phytopathology, 86:188-194.<br />

Fogliano, V., Ballio, A., Gallo, M., Woo, S., Scala, F. & Lorito, M. (2002) Pseudomonas<br />

lipodepsipeptides <strong>and</strong> fungal cell wall-degrading enzymes act synergistically in <strong>biological</strong><br />

<strong>control</strong>. Mol Plant Microbe Interact, 15:323-333.<br />

Garcia, I., Lora, J. M., de la Cruz, J., Benitez, T., Llobell, A. & Pintor-Toro, J. A. (1994) Cloning<br />

<strong>and</strong> characterization of a chitinase (chit42) cDNA from the mycoparasitic fungus<br />

Trichoderma harzianum. Curr Genet, 27:83-89.<br />

Hanson, L. E. & Howell, C. R. (2004) Elicitors of plant defense responses from bio<strong>control</strong> strains<br />

of Trichoderma virens. Phytopathology, 94:171-176.<br />

Harman, G. E. (2000) Myths <strong>and</strong> dogmas of bio<strong>control</strong> - Changes in perceptions derived from<br />

research on Trichoderma harzianum T-22. Plant Dis, 84:377-393.<br />

Harman, G. E. (2004) Overview of new insights into mechanisms <strong>and</strong> uses of Trichoderma based<br />

products. Phytopathology, 94:S138-S138.<br />

54


Chapter 6<br />

Harman, G. E. (2006) Overview of mechanisms <strong>and</strong> uses of Trichoderma spp. Phytopathology,<br />

96:190-194.<br />

Harman GE. (2011) Trichoderma-not just for bio<strong>control</strong> anymore. Phytoparasitica, 39:103-108<br />

Harman, G. E., Petzoldt, R., Comis, A. & Chen, J. (2004a) Interactions between Trichoderma<br />

harzianum strain T22 <strong>and</strong> maize inbred line Mo17 <strong>and</strong> effects of these interactions on<br />

diseases caused by Pythium ultimum <strong>and</strong> Colletotrichum graminicola. Phytopathology,<br />

94:147-153.<br />

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. (2004b) Trichoderma species -<br />

Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2:43-56.<br />

Harman, G. E., Jin, X., Stasz, T. E., Peruzzotti, G., Leopold, A. C. & Taylor, A. G. (1991)<br />

Production of conidial biomass of Trichoderma harzianum for <strong>biological</strong> <strong>control</strong>. Biol<br />

Control, 1:23-28.<br />

Howell, C. R. (2003) Mechanisms employed by Trichoderma species in the <strong>biological</strong> <strong>control</strong> of<br />

plant diseases: The history <strong>and</strong> evolution of current concepts. Plant Dis, 87:4-10.<br />

Howell, C. R., Hanson, L. E., Stipanovic, R. D. & Puckhaber, L. S. (2000) Induction of Terpenoid<br />

synthesis in cotton roots <strong>and</strong> <strong>control</strong> of Rhizoctonia solani by seed treatment with<br />

Trichoderma virens. Phytopathology, 90:248-252.<br />

Inbar, J. & Chet, I. (1995) The role of recognition in the induction of specific chitinases during<br />

mycoparasitism by Trichoderma harzianum. Microbiology, 141 ( Pt 11):2823-2829.<br />

Jegathambigai, V., Karunaratne, M. D., Svinningen, A. & Mikunthan, G. (2008) Bio<strong>control</strong> of rootknot<br />

nematode, Meloidogyne incognita damaging queen palm, Livistona rotundifolia using<br />

Trichoderma species. Commun Agric Appl Biol Sci, 73:681-687.<br />

Jin, X., Taylor, A. G. & Harman, G. E. (1996) Development of media <strong>and</strong> automated liquid<br />

fermentation methods to produce desiccation-tolerant propagules of Trichoderma<br />

harzianum. Biol Control, 7:267-274.<br />

Kessel, G.J.T., J. Köhl, J.A. Powell, R. Rabinge & W. van der Werf (2005). Modelling spatial<br />

characteristics in the bio<strong>control</strong> of fungi at leaf scale: competitive substrate colonization by<br />

Botrytis cinerea <strong>and</strong> the saprophytic antagonist Ulocladium atrum. Phytopathology 95: 439-<br />

448.<br />

Köhl J. Screening of bio<strong>control</strong> agents for <strong>control</strong> of foliar diseases. In:U. Gisi et al. (eds.), Recent<br />

developments in management of plant diseases, Plant Pathology in the 21st Century 1, DOI<br />

10.1007/978-1-4020-8804-9_9, © Springer Science+Business Media B.V. 2009<br />

Köhl, J., M. Gerlagh, B.H. de Haas & M.C. Krijger (1998). Biological <strong>control</strong> of Botrytis cinerea in<br />

cyclamen with Ulocladium atrum <strong>and</strong> Gliocladium roseum under commercial growing<br />

conditions. Phytopathology 88, 568-575.<br />

Köhl, J., W.M.L. Molhoek, B.H. Groenenboom-de Haas & H.M. Goossen-van de Geijn (2009).<br />

Selection <strong>and</strong> orchard testing of antagonists suppressing conidia production of the apple<br />

scab pathogen Venturia inaequalis. European Journal of Plant Pathology 123:401-414.<br />

Komon-Zelazowska, M., Bissett, J., Zafari, D., Hatvani, L., Manczinger, L., Woo, S., Lorito, M.,<br />

Kredics, L., Kubicek, C. P. & Druzhinina, I. S. (2007) Genetically closely related but<br />

phenotypically divergent Trichoderma species cause green mold disease in oyster<br />

mushroom farms worldwide. Appl Environ Microbiol, 73:7415-7426.<br />

Kubicek, C. P., Harman, G. E. & Ondik, K. L. Trichoderma <strong>and</strong> Gliocladium, London ; Bristol, PA,<br />

Taylor & Francis, 1998.<br />

Kubicek, C. P., Komon-Zelazowska, M. & Druzhinina, I. S. (2008) Fungal genus<br />

Hypocrea/Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sci B, 9:753-763.<br />

Limon, M. C., Lora, J. M., Garcia, I., de la Cruz, J., Llobell, A., Benitez, T. & Pintor-Toro, J. A.<br />

(1995) Primary structure <strong>and</strong> expression pattern of the 33-kDa chitinase gene from the<br />

mycoparasitic fungus Trichoderma harzianum. Curr Genet, 28:478-483.<br />

55


Ruocco et al.<br />

Lora, J. M., De la Cruz, J., Llobell, A., Benitez, T. & Pintor-Toro, J. A. (1995) Molecular<br />

characterization <strong>and</strong> heterologous expression of an endo-beta-1,6-glucanase gene from the<br />

mycoparasitic fungus Trichoderma harzianum. Mol Gen Genet, 247:639-645.<br />

Lorito M, Woo SL, Harman GE & Monte E. (2010) Translational research on Trichoderma: from<br />

'Omics to the field. Annu. Rev. Phytopathology, 48:395-417<br />

Lorito, M., Dipietro, A., Hayes, C. K., Woo, S. L. & Harman, G. E. (1993) Antifungal, synergistic<br />

interaction between chitinolytic enzymes from Trichoderma harzianum <strong>and</strong> Enterobactercloacae.<br />

Phytopathology, 83:721-728.<br />

Lorito, M., Hayes, C. K., Dipietro, A., Woo, S. L. & Harman, G. E. (1994a) Purification,<br />

characterization, <strong>and</strong> synergistic activity of a glucan 1,3-beta-glucosidase <strong>and</strong> an N-acetylbeta-glucosaminidase<br />

from Trichoderma-Harzianum. Phytopathology, 84:398-405.<br />

Lorito, M., Farkas, V., Rebuffat, S., Bodo, B. & Kubicek, C. P. (1996) Cell wall synthesis is a<br />

major target of mycoparasitic antagonism by Trichoderma harzianum. J Bacteriol,<br />

178:6382-6385.<br />

Lorito, M., Broadway, R. M., Hayes, C. K., Woo, S. L., Noviello, C., Williams, D. L. & Harman,<br />

G. E. (1994b) Proteinase-inhibitors from plants as a novel class of fungicides. Mol Plant<br />

Microbe In, 7:525-527.<br />

Lorito, M., Hayes, C. K., Zoina, A., Scala, F., Del Sorbo, G., Woo, S. L. & Harman, G. E. (1994c)<br />

Potential of genes <strong>and</strong> gene products from Trichoderma sp. <strong>and</strong> Gliocladium sp. for the<br />

development of <strong>biological</strong> pesticides. Mol Biotechnol, 2:209-217.<br />

Lorito, M., Woo, S. L., Fern<strong>and</strong>ez, I. G., Colucci, G., Harman, G. E., Pintor-Toro, J. A., Filippone,<br />

E., Muccifora, S., Lawrence, C. B., Zoina, A., Tuzun, S. & Scala, F. (1998) Genes from<br />

mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. P Natl<br />

Acad Sci USA, 95:7860-7865.<br />

Montero, M., Sanz, L., Rey, M., Llobell, A. & Monte, E. (2007) Cloning <strong>and</strong> characterization of<br />

bgn16.3, coding for a beta-1,6-glucanase expressed during Trichoderma harzianum<br />

mycoparasitism. J Appl Microbiol, 103:1291-1300.<br />

Montesinos E (2003). Development, registration <strong>and</strong> commercialization of microbial pesticides for<br />

plant protection. Int. Microbiol., 6: 245–252.<br />

Overton, B. E., Stewart, E. L. & Geiser, D. M. (2006) Taxonomy <strong>and</strong> phylogenetic relationships of<br />

nine species of Hypocrea with anamorphs assignable to Trichoderma section Hypocreanum.<br />

Stud Mycol, 56:39-65.<br />

Perello, A. E., Moreno, M. V., Monaco, C., Simon, M. R. & Cordo, C. (2009) Biological <strong>control</strong> of<br />

Septoria tritici blotch on wheat by Trichoderma spp. under field conditions in Argentina.<br />

Bio<strong>control</strong>, 54:113-122.<br />

Peterbauer, C. K., Lorito, M., Hayes, C. K., Harman, G. E. & Kubicek, C. P. (1996) Molecular<br />

cloning <strong>and</strong> expression of the nag1 gene (N-acetyl-beta-D-glucosaminidase-encoding gene)<br />

from Trichoderma harzianum P1. Curr Genet, 30:325-331.<br />

Powell KA, Jutsum AR (1993) Technical <strong>and</strong> commercial aspects of bi<strong>control</strong> products. J. Pestic.<br />

Sci., 37: 315–321.<br />

Samuels, G. J. (2006) Trichoderma: systematics, the sexual state, <strong>and</strong> ecology. Phytopathology,<br />

96:195-206.<br />

Samuels, G. J. & Ismaiel, A. (2009) Trichoderma evansii <strong>and</strong> T. lieckfeldtiae: two new T. hamatumlike<br />

species. Mycologia, 101:142-156.<br />

Schirmbock, M., Lorito, M., Wang, Y. L., Hayes, C. K., Arisan-Atac, I., Scala, F., Harman, G. E. &<br />

Kubicek, C. P. (1994) Parallel formation <strong>and</strong> synergism of hydrolytic enzymes <strong>and</strong><br />

peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of<br />

Trichoderma harzianum <strong>against</strong> phytopathogenic fungi. Appl Environ Microbiol, 60:4364-<br />

4370.<br />

56


Chapter 6<br />

Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O. & Spiegel, Y. (2001) Biological<br />

<strong>control</strong> of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum.<br />

Phytopathology, 91:687-693.<br />

Spiegel, Y. & Chet, I. (1998) Evaluation of Trichoderma spp. as a bio<strong>control</strong> agent <strong>against</strong><br />

soilborne fungi <strong>and</strong> plant-parasitic nematodes in Israel. Integrated Pest Management<br />

Reviews, 3:169-175.<br />

Suarez, B., Rey, M., Castillo, P., Monte, E. & Llobell, A. (2004) Isolation <strong>and</strong> characterization of<br />

PRA1, a trypsin-like protease from the bio<strong>control</strong> agent Trichoderma harzianum CECT<br />

2413 displaying nematicidal activity. Appl Microbiol Biotechnol, 65:46-55.<br />

Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M. (2011) The beneficial effect of<br />

Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathol.<br />

12:341-354<br />

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Barbetti, M. J., Li, H., Woo, S. L. &<br />

Lorito, M. (2008a) A novel role for Trichoderma secondary metabolites in the interactions<br />

with plants. Physiol Mol Plant P, 72:80-86.<br />

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L. & Lorito, M. (2008b)<br />

Trichoderma-plant-pathogen interactions. Soil Biol Biochem, 40:1-10.<br />

Viterbo, A., Haran, S., Friesem, D., Ramot, O. & Chet, I. (2001) Antifungal activity of a novel<br />

endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett,<br />

200:169-174.<br />

Viterbo, A., Montero, M., Ramot, O., Friesem, D., Monte, E., Llobell, A. & Chet, I. (2002)<br />

Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T.<br />

harzianum T-203). Curr Genet, 42:114-122.<br />

Woo, S., Fogliano, V., Scala, F. & Lorito, M. (2002) Synergism between fungal enzymes <strong>and</strong><br />

bacterial antibiotics may enhance bio<strong>control</strong>. Antonie Van Leeuwenhoek, 81:353-356.<br />

Woo SL, Donzelli B, Scala F, Mach R, Harman GE, Kubicek CP, Del Sorbo G, Lorito M. (1999)<br />

Disruption of the ech42 (endochitinase-encoding) gene affects bio<strong>control</strong> activity in<br />

Trichoderma harzianum P1. Molecular Plant-Microbe Interactions, 12:419-429<br />

Worasatit, N., Sivasithamparam, K., Ghisalberti, E. L. & Rowl<strong>and</strong>, C. (1994) Variation in pyrone<br />

production, lytic enzymes <strong>and</strong> <strong>control</strong> of Rhizoctonia root-rot of wheat among single-spore<br />

isolates of Trichoderma koningii. Mycological Research, 98:1357-1363.<br />

Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y. & Chet, I. (2003) Concomitant<br />

induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by<br />

Trichoderma asperellum (T-203) <strong>and</strong> accumulation of phytoalexins. Appl Environ<br />

Microbiol, 69:7343-7353.<br />

Yedidia, I., Srivastva, A. K., Kapulnik, Y. & Chet, I. (2001) Effect of Trichoderma harzianum on<br />

microelement concentrations <strong>and</strong> increased growth of cucumber plants. Plant Soil, 235:235-<br />

242.<br />

Yedidia, I. I., Benhamou, N. & Chet, I. I. (1999) Induction of defense responses in cucumber plants<br />

(Cucumis sativus L.) by the bio<strong>control</strong> agent Trichoderma harzianum. Appl Environ<br />

Microbiol, 65:1061-1070.<br />

57


Chapter 7<br />

Identified difficulties <strong>and</strong> conditions for field success of bio<strong>control</strong>.<br />

3. Economic aspects: cost analysis<br />

Bernard Blum 1 , Philippe C. Nicot 2 , Jürgen Köhl 3 <strong>and</strong> Michelina Ruocco 4<br />

1 International Bio<strong>control</strong> Manufacturers Association, Blauenstrasse 57, CH-4054 Basel, Switzerl<strong>and</strong><br />

2 INRA, UR407, Unité de Pathologie Végétale, Domaine St Maurice, 84140 Montfavet, France<br />

3 Wageningen UR, Plant Research International, Droevendaalsesteeg 1, P.O. Box 69,<br />

6700 AB Wageningen, The Netherl<strong>and</strong>s<br />

4 CNR-IPP, Istituto pel la Protezione delle Piante, Via Univrsità 133, Portici (NA) Italy<br />

The industrial <strong>and</strong> commercial development of <strong>biological</strong> <strong>control</strong> agents, although needed as an<br />

alternative to chemical pesticides in both organic farming <strong>and</strong> IPM systems is facing different<br />

constraints which are particularly difficult to overcome due to the size of the involved companies<br />

<strong>and</strong> the early development stage of the market. These constrains can be classified within four<br />

categories:<br />

- size of the targeted market<br />

- cost of production<br />

- costs of registration<br />

- business profitability<br />

In this paper, in order to be more specific, we shall consider the situation regarding microbial<br />

bio<strong>control</strong> agents (MBCAs), using the real case of a well defined product that we cannot mention<br />

here due to proprietary rights.<br />

Size of the targeted markets<br />

In most of the situations MBCAs are being developed with rather small, if not niche markets. The<br />

total value of MBCAs sold worldwide amounted in 2008 to 620 Mio Euro (122 Mio Euro in<br />

Europe) including products with insecticidal or fungicidal effects. This value can be compared with<br />

the sales of chemical insecticides <strong>and</strong> fungicides amounting to a total of 21 000 Mio Euros.<br />

MBCAs, with the exception of Bt products which can be used in larger crops such as grapes,<br />

forestry or even cereals, are presently still used in speciality crops, greenhouses <strong>and</strong> covered crops.<br />

The size of these crops is not growing anymore or at a very reduced rate. The only optimistic<br />

perspective is the intention to develop organic faster farming (objective 20% of the production area<br />

in France in 2030) where MBCAs can find a good market.<br />

Additionally the potential market is widely fragmented within a long list of crops such as<br />

carrots, petersillium, onions, etc, usually referred to as “Minor crops”. These markets are so small<br />

that even large chemical companies refrain from the investments that would cover the needs <strong>and</strong> the<br />

manufacturers of MBCAs, due to the specificity of their products, are obliged to invest <strong>and</strong> cover<br />

costs where scale economy can never be reached.<br />

Cost of production<br />

Contrary to the synthesis of chemicals, producing MBCAs requires a complicated <strong>and</strong> extremely<br />

expensive process of production which can be divided into four phases: fermentation, extraction,<br />

58


Chapter 7<br />

purification, formulation <strong>and</strong> packaging. All these phases are difficult <strong>and</strong> require relatively heavy<br />

costs.<br />

Fermentation. This first step has to be undertaken either with solid or with liquid phase<br />

technology. Although the liquid phase fermentation is usually simple <strong>and</strong> cost effective, the process<br />

is more risky because the produced spores are more fragile. In the contrary using solid fermentation<br />

substrates will produce stronger, but it becomes more difficult to increase the production volume.<br />

Extraction. Here again, there is a very strong difference between the MBCAs produced in<br />

liquid or in solid fermenters. In a liquid, the extraction will be rather easy by filtration, but the<br />

product will need to be dried, which is a very long, energy-dem<strong>and</strong>ing <strong>and</strong> expensive process. From<br />

a solid fermentation process, the extraction will be mechanical. Such a process is rather harmful for<br />

the spores: It is again energy dem<strong>and</strong>ing <strong>and</strong> it is extremely difficult to extract more that 60% of the<br />

spores from a substrate. In such a case the productivity becomes rather poor.<br />

Purification. This step is very important to ensure the stability of the MBCAs produced. The<br />

industrially produced MBCAs always contain impurities which, although <strong>biological</strong>ly inactive, may<br />

become critical over time, potentially creating risks of degradation, inactivation etc. In all situations<br />

the purification step requires a high level of sophistication <strong>and</strong> expensive processes.<br />

Formulation <strong>and</strong> packaging. Formulation <strong>and</strong> packaging of MBCAs, due to their living state<br />

(<strong>and</strong> the requirement that they remain alive for satisfactory effectiveness of the product), constitute<br />

an extremely difficult step <strong>and</strong> in any case more expensive than the equivalent process for<br />

chemicals. The choice of co-formulants, adjuvants <strong>and</strong> packaging material must secure the quality<br />

of the MBCAs <strong>and</strong> its vitality. This is again a source of problems <strong>and</strong> heavy costs.<br />

Additionally to all the above mentioned hurtles, it has to be secured that no contamination will<br />

occur, during the fermentation process naturally, but also during the extraction, the purification, the<br />

formulation <strong>and</strong> the packaging. All the safety measures are very expensive to carry out, but they are<br />

necessary in order to ensure the quality of the product brought to the market. As a consequence of<br />

all these extra expenses <strong>and</strong> technical difficulties the MBCAs used for this analysis were more than<br />

2.5 times more expensive to produce than an equivalent chemical pesticide (Table 14).<br />

Table 14: Compared structure of the production costs for a microbial bio<strong>control</strong> agent (MBCA)<br />

<strong>and</strong> a chemical insecticide (source IBMA).<br />

Typical Insecticide MBCA Comments<br />

Sales value 100 100<br />

Type of production cost<br />

Raw materials %* 8 29 40% lost material for<br />

MBCA by solid<br />

fermentation process<br />

Packaging 1 2<br />

Energy <strong>and</strong> miscellaneous 1 2<br />

Manpower 5 9<br />

Consumables 2 3<br />

Amortisation 4 11<br />

TOTAL 21 56<br />

* costs are expressed as percent of the sales value of the commercial product<br />

Cost of registration<br />

It has been already mentioned that <strong>biological</strong> <strong>control</strong> agents suffer from a highly unfavourable<br />

situation compared to chemical pesticides. The regulations for registration have initially been set up<br />

to reduce the risks attached to molecules <strong>and</strong> the regulator is trying to extrapolate these<br />

requirements for the registration of living organisms.<br />

59


Blum et al.<br />

The estimated cost for registering a microbial bio<strong>control</strong> agent is currently lower than that for a<br />

chemical pesticide (Table 15). However, the size of this investment is still very high for a company<br />

in comparison with the market potential (Table 16).This evaluation indicates that the introduction<br />

on the market of a MBCA is about 4 times less effective than its chemical equivalent.<br />

Table 15: Compared potential costs of registration for a microbial bio<strong>control</strong> agent (MBCA) <strong>and</strong> a<br />

chemical pesticide (source IBMA)<br />

Area<br />

Toxicity of the<br />

active substance<br />

Study Type<br />

Cost for Cost for<br />

Chemical (€) MBCA (€)<br />

Acute studies (6 tests) 140 000 140 000<br />

Sub-acute (rat study) 140 000 120 000<br />

Mutagenicity 40 000 may be waived<br />

Toxicity on cultured cells 10 000 not required<br />

Acute studies 140 000 140 000<br />

Toxicity of the<br />

formulation Toxicity on cultured cells 10 000 not required<br />

Environmental<br />

fate<br />

Soil, water, air 200 000 70 000<br />

Biology Mode of action etc 150 000 *50 000<br />

Ecotoxicology of Birds, fish, bees, algae, daphnia, earthworm 60 000 40 000<br />

active substance Beneficials 20 000 may be waived<br />

Ecotoxicology of Birds, fish, bees, algae,daphnia, earthworm 60 000 40 000<br />

formulation Beneficials 20 000<br />

Residues<br />

8 trials / crop 80 000 may be waived<br />

Development of analytical methods 100 000 **variable<br />

Formulation Physical properties, shelf life, etc. 200 000 220 000<br />

Efficacy 8 field trials 40 000 40 000<br />

TOTAL 1 410 000 860 000<br />

* cost of strain identification<br />

** e.g. development of strain-specific markers<br />

Table 16: Compared estimated market potential for a microbial bio<strong>control</strong> agent (MBCA) <strong>and</strong> for a<br />

chemical pesticide (source: IBMA)<br />

Year<br />

Estimated sales value ( Mio€)<br />

Chemical pesticide<br />

MBCA<br />

1 0.1 0.05<br />

2 1.2 0.15<br />

3 6.0 0.90<br />

4 15.0 1.50<br />

5 35.0 3.50<br />

Total early sales 57.3 6.10<br />

Plateau sales 120.0 15.00<br />

Registration costs 1.410 0.860<br />

Ratio registration/ early<br />

sales<br />

Ratio registration/<br />

Plateau sales<br />

2.4 % 14.0 %<br />

1.1 % 5.7 %<br />

60


Chapter 7<br />

Business profitability<br />

Comparing estimated production <strong>and</strong> other costs, relative to the sales value at plateau level, points<br />

out large differences between chemical pesticides <strong>and</strong> microbial bio<strong>control</strong> agents (Table 17). The<br />

gap between the two in terms of estimated profit is nearly 10-fold in favour of the chemical<br />

industry.<br />

Table 17: Compared margin structure estimates for the production <strong>and</strong> sales of a microbial<br />

bio<strong>control</strong> agent (MBCA) <strong>and</strong> a chemical pesticide (source IBMA)<br />

%* Chemical pesticide MBCA<br />

Sales value at plateau level 100 100<br />

Costs of production 21 56<br />

Gross margin 79 44<br />

Cost of sales 21 15<br />

Cost of research 8 12<br />

Cost of administration 4 3<br />

Earnings before investments taxes<br />

46 14<br />

<strong>and</strong> amortisation (EBITA)<br />

Profit after taxes, provisions <strong>and</strong><br />

18 2<br />

amortisation<br />

* costs <strong>and</strong> margins are expressed as percent of the sales value of the commercial product<br />

Conclusion <strong>and</strong> outlook for industry<br />

These data show clearly that the profitability of a bio<strong>control</strong> business is much less attractive than<br />

that of chemical pesticides <strong>and</strong> may explain why the large chemical companies decided in the 90’s<br />

to retreat from this business. Although these companies show presently some new signs of interest,<br />

they seem to remain basically reluctant to re-enter despite the new attractiveness of a fast growing<br />

bio<strong>control</strong> market. Contrary to European <strong>and</strong> US-based companies, several Japanese firms, such as<br />

Sumitomo chemicals or Mitsui appear to have invested for a potential long term return. Taking<br />

advantage of the divestment by the chemical majors, they have been able to acquire a good business<br />

basis at very attractive conditions. This should enable them to consider optimistically the future<br />

development of the bio<strong>control</strong> industry <strong>and</strong> its positive trend.<br />

The smaller companies which have invested in this business <strong>and</strong> try to overcome their financial<br />

problems have only two alternatives:<br />

- Either develop, often at a loss, into larger markets (grapevine, field crops etc), if they can. In<br />

order to sustain these efforts, they will need a strong support from venture capital<br />

companies;<br />

- or enter into venture agreements with other manufacturers/suppliers, in order to build up a<br />

product portfolio which will make them successful in the future.<br />

61


Chapter 8<br />

Identified difficulties <strong>and</strong> conditions for field success of bio<strong>control</strong>.<br />

4. Socio-economic aspects: market analysis <strong>and</strong> outlook<br />

Bernard Blum 1 , Philippe C. Nicot 2 , Jürgen Köhl 3 <strong>and</strong> Michelina Ruocco 4<br />

1 International Bio<strong>control</strong> Manufacturers Association, Blauenstrasse 57, CH-4054 Basel, Switzerl<strong>and</strong><br />

2 INRA, UR407, Unité de Pathologie Végétale, Domaine St Maurice, 84140 Montfavet, France<br />

3 Wageningen UR, Plant Research International, Droevendaalsesteeg 1, P.O. Box 69,<br />

6700 AB Wageningen, The Netherl<strong>and</strong>s<br />

4 CNR-IPP, Istituto pel la Protezione delle Piante, Via Univrsità 133, Portici (NA) Italy<br />

With estimated sales amounting to only 200 Mio€ in Europe in 2008, the market for <strong>biological</strong><br />

<strong>control</strong> agents appears to be extremely small compared with the 7 000 Mio€ turnover achieved with<br />

chemical pesticides. However, very important efforts have been undertaken for the development of<br />

bio<strong>control</strong> agents. The OECD estimated that 5 000 Mio$ have been spent worldwide in public<br />

research for bio<strong>control</strong> during the last 40 years. This amounts to a yearly average of 500Mio$, not<br />

far from the 600 Mio$ spent yearly in research by the agrochemical industry, but with a<br />

comparatively poor result!<br />

In the Conference on <strong>biological</strong> <strong>control</strong> organised in 2003 by IBMA in Béziers, France, the<br />

major stakeholders (farmers, retailers, distributors, regulators etc.) have provided a list of gaps<br />

considered to play a role in preventing wide adoption of bio<strong>control</strong> products. This list was meant to<br />

cover all potential explanations, but provided neither figures nor priority ranking, making it difficult<br />

to prioritize actions for improvement. It was however a general opinion that the complicated <strong>and</strong><br />

costly system of registration was the major reason of the problem. As a result, important efforts<br />

have been undertaken to convince the regulators to adopt more facilitating procedures for the<br />

registration of <strong>biological</strong>s. These efforts were not without effect <strong>and</strong> the newly adopted “Pesticides<br />

package” makes it easier, under certain conditions, to register <strong>biological</strong>s. In the meantime, several<br />

EU member states have adopted easier registrations tracks, such as the Biopesticides Scheme in the<br />

UK, for example.<br />

In reality, the unique assumption that the current regulations in Europe significantly hamper<br />

the development <strong>and</strong> the use of <strong>biological</strong>s does not seem to be proven by the facts. During a very<br />

long period, the <strong>biological</strong>s were not subject to registration <strong>and</strong> very few products were brought<br />

successfully to the market. At the same time countries such as the USA, New Zeal<strong>and</strong> or Japan have<br />

adopted very liberal registration procedures, but the sales of <strong>biological</strong>s remain marginal.<br />

In the frame of ENDURE, it has been therefore decided to get a detailed <strong>and</strong> quantified idea on<br />

the gaps which, in Europe, restrain the adoption of <strong>biological</strong>s, especially at the users <strong>and</strong><br />

commercial levels. In order to achieve this objective, a Pan-Europa survey was undertaken from<br />

2007 until 2008, with the assistance of the public opinion organisation Agridata.<br />

Methodological approach: survey of European farmers<br />

Since no validated data were available about the real market <strong>and</strong> the use of <strong>biological</strong> <strong>control</strong> agents<br />

in Europe, it has been necessary to build up a form of electronic map of the European agriculture<br />

<strong>and</strong> of the distribution of the potential users.<br />

62


Chapter 8<br />

A survey was carried out to evaluate the size of the bio<strong>control</strong> market in Europe <strong>and</strong> to identify key<br />

factors that could influence its future evolution. This study included four main steps:<br />

- Localisation of the main crops <strong>and</strong> cropping systems.<br />

Using the data from EUROSTAT <strong>and</strong> national statistics a model of European agriculture was<br />

constructed.<br />

- R<strong>and</strong>omised sampling of farmers <strong>and</strong> retailers.<br />

The model was used for the selection of 12 production systems (Table 18) located on 25 sites in<br />

9 countries (Table 19) where 2000 farmers <strong>and</strong> 21 retailers were identified.<br />

- The selected sample was contacted by phone directly <strong>and</strong> a questionnaire (Table 20) was sent to<br />

those who agreed to participate in the survey. A total of 675 full responses were obtained <strong>and</strong><br />

analysed.<br />

- Complementary survey.<br />

In order to validate the process, more specific data was collected in a survey concerning the<br />

<strong>biological</strong> <strong>control</strong> of wood diseases of grapevine in France<br />

Table 18: Production systems selected for a survey of factors influencing bio<strong>control</strong> use in Europe<br />

(source IBMA)<br />

Type of cropping system<br />

Large arable crops<br />

Multicropping<br />

arable crops dominant<br />

animal production dominant<br />

Fruit production<br />

orchards<br />

grapes<br />

Tomato production<br />

protected<br />

field<br />

Geographical sub-categories<br />

North, South<br />

Mountains, North, South<br />

Mountains, North South<br />

Table 19: Geographical distribution of sampling sites for a survey of factors influencing bio<strong>control</strong><br />

use in Europe (source IBMA)<br />

Country<br />

number of<br />

sampling site<br />

Austria 2<br />

Denmark 1<br />

Germany 4<br />

Greece 2<br />

France 4<br />

Italy 4<br />

Pol<strong>and</strong> 3<br />

Spain 3<br />

United Kingdom 2<br />

63


Blum et al.<br />

Table 20: Structure of the questionnaire used in a survey of European farmers <strong>and</strong> retailers of<br />

<strong>biological</strong> <strong>control</strong> products<br />

Categories of questions<br />

Nbr of Questions<br />

Geographical identification 5<br />

System of production concerned 12<br />

Ownership <strong>and</strong> social related aspects 5<br />

Crop protection issues / pest occurrence, etc 18<br />

Economy of the farm, actual costs, revenues etc 12<br />

Expectations for future, cropping systems, investments, etc 9<br />

Relations with input suppliers 18<br />

Relations with advisors 18<br />

Relations with authorities 18<br />

Relation with the food chain (coops, supermarkets etc.) 18<br />

Relations with the consumers 18<br />

Relations with the public 18<br />

Expectations about innovations, role of science 12<br />

Open comments 2<br />

Survey Results: The estimated market of bio<strong>control</strong> in Europe<br />

The questionnaire made it possible to estimate the total <strong>biological</strong> market in ha <strong>and</strong> in value (Figure<br />

11) <strong>and</strong> its partition among different crops (Figure 12).<br />

These data confirm that in 2008, the main use of <strong>biological</strong>s was in protected crops, followed<br />

by grapevine <strong>and</strong> fruit production. Nearly 40% of the estimated bio<strong>control</strong> market consisted in sales<br />

of beneficial insects, compared to 25% for microorganisms <strong>and</strong> 21% for semiochemicals (Figure<br />

11).<br />

Total estimated EU sales of bio<strong>control</strong> products = 204 Mio€ in 2008<br />

18 Mio€<br />

43 Mio€<br />

52 Moi€ 12 Mio€<br />

79 Mio€<br />

Beneficial insects<br />

Beneficial nematods<br />

Microbial bio<strong>control</strong> agents<br />

Semiochemicals<br />

Natural substances<br />

Figure 11: Estimated sales of bio<strong>control</strong> products in Europe in 2008 (in Million €). The estimates<br />

were obtained by extrapolating use patterns in a representative sample of EU farmers.<br />

64


Chapter 8<br />

80<br />

70<br />

60<br />

%of supply<br />

%of acreage<br />

% of total<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Protected crops<br />

Field vegetables<br />

Grapes<br />

Fruits<br />

Field crops<br />

Gardens, ornamentals<br />

Figure 12: Estimated distribution of bio<strong>control</strong> use among types of crops in 2008 in Europe<br />

Survey results: Factors of development of bio<strong>control</strong><br />

The exploitation of the questionnaires was somewhat difficult due to the large variety of farmers<br />

<strong>and</strong> situations. Additionally, several open ended questions were introduced to collect opinions on<br />

possible additional gaps <strong>and</strong> opportunities which were not mentioned in the form.<br />

Qualitative analysis. In a first step, the analysis of the responses led to the identification of 12<br />

factors deemed to have a significant influence on the future development of <strong>biological</strong> <strong>control</strong><br />

Nine factors with a positive influence:<br />

o Ability of manufacturers to invest in R&D<br />

o Financial strength of manufacturers<br />

o Direct involvement of leading distributors<br />

o Pull from the fresh food wholesalers <strong>and</strong> from the food industry<br />

o Dem<strong>and</strong> from consumers <strong>and</strong> NGOs<br />

o Incentives given to growers<br />

o Education of advisors <strong>and</strong> growers<br />

o Availability of Decision Support Systems (DSS)<br />

o Regulatory obstacles to chemical pesticides<br />

Three factors with a negative influence:<br />

o Regulations not adapted to Biological <strong>control</strong><br />

o Discovery of novel effective <strong>and</strong> safe chemicals<br />

o Development of new resistant crops<br />

Quantitative analysis. In a second step, a quantitative analysis was conducted to estimate the<br />

influence of the identified factors. For this, 320 contacts (50% of the sample) were requested to<br />

65


Blum et al.<br />

indicate which of the 12 factors they considered as important in terms of their potential impact on<br />

the evolution of future use of <strong>biological</strong> <strong>control</strong> agents. For those factors selected as important, the<br />

respondents were asked to weigh the expected impact positively or negatively on a scale from 0 to<br />

20.<br />

The data were used to compute for each of the 12 factors:<br />

a) an Influence Index, calculated as the percentage of respondents who selected the factor as<br />

important<br />

b) a Weight Index, calculated as the average of the weights attributed to the factor by those<br />

respondents who selected it as important<br />

c) a Growth Index, combining the two other indices according to the following formula:<br />

GI = (Influence Index)*(Weight Index)/10<br />

This index represents the overall estimate of the influence of a factor on the future use of<br />

<strong>biological</strong> <strong>control</strong> agents by European farmers.<br />

The scores computed for each of the 12 factors are presented in Table 21. Among the factors<br />

deemed to carry the most impact on future use of <strong>biological</strong> <strong>control</strong> by European farmers the action<br />

by far the most cited was the establishment of incentives for farmers (factor D).<br />

Table 21: Impact of twelve factors on the future use of bio<strong>control</strong> agents by European farmers<br />

according to a survey of 320 farmers<br />

A<br />

Factors<br />

Registration for <strong>biological</strong> <strong>control</strong><br />

products remains as present<br />

Influence<br />

Index (%)*<br />

Weight Index*<br />

(scale from<br />

-20 to +20)<br />

Growth<br />

Index*<br />

12 - 15 - 18.0<br />

Rank of<br />

positive<br />

influence<br />

B Involvement of distribution 65 8 52.0 4<br />

C Size / strength of the manufacturers 55 12 66.0 3<br />

D Incentives to growers 87 18 156.6 1<br />

E Education of advisors <strong>and</strong> growers 27 8 21.6 5<br />

F Decision Support Systems available 12 7 7.2 9<br />

G<br />

Pull from wholesalers <strong>and</strong> food<br />

industry<br />

43 16 66.8 2<br />

H Stringent registration of chemicals 16 14 22.4 6<br />

I New safe chemical pesticides 42 - 12 - 3.0<br />

J Progress in R&D of Bio<strong>control</strong> 8 14 11.2 8<br />

K New resistant varieties 16 - 4 - 6.4<br />

L Pull from Consumers 67 2 13,4 7<br />

* see main text above for the specific definition of the indices<br />

The second most important factors based on the Growth Index (G, C <strong>and</strong> B in Table 21) were<br />

linked to the influence of key economic actors (the wholesalers, the food industry, the distributors<br />

<strong>and</strong> manufacturers of bio<strong>control</strong> products). The factors with the lowest scores were those related to<br />

scientific innovation (factors K, I, J). Interestingly, both factors linked to regulatory aspects (factors<br />

H <strong>and</strong> A) also had a relatively low Growth Index. The registration requirements are obviously more<br />

a concern for the industry than for the users of the plant protection products. Surprisingly, the<br />

66


Chapter 8<br />

efficacy <strong>and</strong> the price of the <strong>biological</strong>s, usually considered as two critical factors, were not<br />

mentioned as real constraints. This may be due to two reasons:<br />

(1) It is anticipated that only “effective” solutions will be registered in the EU, showing the high<br />

confidence of the farmers <strong>and</strong> the retailers in the registration systems<br />

(2) The selling price of the new solutions (<strong>biological</strong> <strong>control</strong> products) will necessarily cope with<br />

the current price levels. Too highly priced, the new solutions will simply be ignored.<br />

Conclusions<br />

The gaps <strong>and</strong> the opportunities for the development of <strong>biological</strong> crop protection products are<br />

extremely relative to people concerned. While the industry, due to the heavy factor time/cost to the<br />

market, considers the regulation requirements as a major obstacle, the users <strong>and</strong> the retailers are<br />

much more influenced by the pull <strong>and</strong> push actions exercised at the market level. Somewhat<br />

disappointing is the relative low concern about the technical progress offered by the <strong>biological</strong><br />

solutions.<br />

67


Conclusions <strong>and</strong> perspectives<br />

Perspectives for future research-<strong>and</strong>-development projects on <strong>biological</strong><br />

<strong>control</strong> of plant pests <strong>and</strong> diseases<br />

Philippe C. Nicot 1 , Bernard Blum 2 , Jürgen Köhl 3 <strong>and</strong> Michelina Ruocco 4<br />

1 INRA, UR407, Unité de Pathologie Végétale, Domaine St Maurice, 84140 Montfavet, France<br />

2 International Bio<strong>control</strong> Manufacturers Association, Blauenstrasse 57, CH-4054 Basel, Switzerl<strong>and</strong><br />

3 Wageningen UR, Plant Research International, Droevendaalsesteeg 1, P.O. Box 69,<br />

6700 AB Wageningen, The Netherl<strong>and</strong>s<br />

4 CNR-IPP, Istituto pel la Protezione delle Piante, Via Univrsità 133, Portici (NA) Italy<br />

The review of published scientific literature on the <strong>biological</strong> <strong>control</strong> of selected pests <strong>and</strong> diseases<br />

has lead to the identification of clear knowledge gaps highlighted in previous chapters. Further<br />

bottlenecks were revealed by seeking the possible reasons for the striking discrepancy between the<br />

rich inventory of potential bio<strong>control</strong> agents described by scientists <strong>and</strong> a very small number of<br />

commercial products on the market.<br />

To complement these analyses, the participants of Research Activity 4.3 of the European<br />

Network ENDURE organized consultations of experts (scientists, extension specialists <strong>and</strong><br />

representatives of the Bio<strong>control</strong> industry) at the occasion of scientific meetings of three Working<br />

Groups of <strong>IOBC</strong>-wprs.<br />

- Working Group "Integrated Control of Plant Pathogens": meeting on "Molecular Tools for<br />

Underst<strong>and</strong>ing <strong>and</strong> Improving Bio<strong>control</strong>" in Interlaken (Switzerl<strong>and</strong>) September 9-12, 2008.<br />

(attended by P.C. Nicot <strong>and</strong> B. Blum – discussion session about the outlook on bio<strong>control</strong><br />

<strong>against</strong> plant diseases)<br />

- Working Group “Multitrophic Interactions in Soil” meeting in Uppsala (Sweden), 10-13 June<br />

2009. (attended by C. Alabouvette – roundtable about the outlook on bio<strong>control</strong> of soilborne<br />

pests <strong>and</strong> diseases)<br />

- Working Group "Insect Pathogens <strong>and</strong> Insect Parasitic Nematodes": meeting on "Future<br />

Research <strong>and</strong> Development in the Use of Microbial Agents <strong>and</strong> Nematodes for Biological Insect<br />

Control" in Pamplona (Spain), 22-25 June, 2009 (attended by C. Alabouvette – his plenary<br />

presentations about the outlook on bio<strong>control</strong> of diseases <strong>and</strong> pests has been published * ).<br />

These consultations were further complemented by discussions at the occasion of various<br />

meetings of participants of Research Activity 4.3 to identify the most prominent issues that could be<br />

tackled by future research <strong>and</strong> development activities. The key elements are organised below in<br />

three categories, based on their relevance to the concern of the research community, development or<br />

industry.<br />

Research issues<br />

Five key issues have been identified in term of research needs:<br />

Devise better strategies for the screening of bio<strong>control</strong> agents. The dem<strong>and</strong> for new<br />

bio<strong>control</strong> agents is already high. It is expected to increase sharply in the EU, with the ongoing<br />

* Alabouvette, C, Cordier, C. 2009 Biological <strong>control</strong> of plant diseases: Future research goals to make it successful.<br />

<strong>IOBC</strong>/<strong>WPRS</strong> Bulletin 45:3-5.<br />

68


Conclusions <strong>and</strong> perspectives<br />

reduction of available chemical pesticides <strong>and</strong> the need for new non-chemical plant protection tools<br />

to comply with Directive 2009/128/EC. Current methods need to be improved both in terms of<br />

logistics (high throughput to allow rapid mass screening of large numbers of c<strong>and</strong>idates) <strong>and</strong> in<br />

terms of the pertinence of criteria for efficacy, production <strong>and</strong> commercialization. This topic has<br />

been tackled within Research Activity 4.3 of the European Network ENDURE for microbial<br />

bio<strong>control</strong> agents <strong>against</strong> diseases (Deliverable DR4.9) <strong>and</strong> the results have been published (Köhl et<br />

al., 2011 * ).<br />

Improve knowledge on efficacy-related issues. The criteria traditionally used to asses the<br />

efficacy of <strong>biological</strong> <strong>control</strong> methods may be misleading because contrarily to conventional<br />

pesticides, bio<strong>control</strong> does not intend to eradicate pests <strong>and</strong> diseases but, rather, to install a<br />

<strong>biological</strong> balance which will enable the plants to grow more healthily. However the consistency of<br />

field efficacy remains one of the constraints for the large scale use of <strong>biological</strong> <strong>control</strong> of plant<br />

diseases. Despite much recent progress, research efforts are still necessary for (1) a better<br />

underst<strong>and</strong>ing of key parameters of field efficacy in relation to the type of bio<strong>control</strong> agent <strong>and</strong> their<br />

modes of action <strong>and</strong> (2) implementing the most promising methods for efficacy improvement.<br />

Promising avenues of research are to be sought both in terms of exploiting the <strong>biological</strong> properties<br />

of the bio<strong>control</strong> agents <strong>and</strong> enhancing their effectiveness through formulation of the products.<br />

Results obtained on these topics should provide key information both for the design of optimised<br />

production <strong>and</strong> application strategies, but also for improving the screening process of future<br />

bio<strong>control</strong> agents as mentioned in the point above.<br />

Promote multidisciplinary approaches to integrate better bio<strong>control</strong> with IPM <strong>and</strong> other<br />

production issues. Based on passed published experience, it is clear that levels of protection<br />

provided by a single bio<strong>control</strong> agent alone will seldom be sufficient, especially when faced with<br />

field conditions unfavourable to their effectiveness or with very high inoculum pressures of a pest<br />

or plant pathogen. More emphasis will need to be placed on the compatibility of bio<strong>control</strong> agents<br />

with the implementation of IPM, preferably in a systemic approach of integrated production.<br />

Among the many possible interactions to be considered, compatibility <strong>and</strong> combined used of<br />

bio<strong>control</strong> <strong>and</strong> plants genetically modified for improved resistance to pest or plant diseases should<br />

not be overlooked.<br />

Develop adapted delivery technologies. Much progress has been made in packaging<br />

technology <strong>and</strong> delivery for macrobial bio<strong>control</strong> agents (e.g. beneficial arthropods). In contrast,<br />

treatments with microbial bio<strong>control</strong> agents (<strong>against</strong> pests or diseases) still rely on sprayers<br />

developed for the application of pesticides. Research is needed to provide growers with low<br />

pressure spraying equipment to preserve the viability of the microbials. Technological<br />

improvements are also needed for optimal coverage of the target plant surfaces to be protected by<br />

the bio<strong>control</strong> agents.<br />

Safeguard the durability of bio<strong>control</strong>. Certain pests <strong>and</strong> pathogens are known for their<br />

capacity to develop resistance to chemical pesticides or to overcome varietal resistance. The<br />

durability of <strong>biological</strong> <strong>control</strong> has often been assumed to be higher than that of chemical <strong>control</strong>,<br />

but several examples of resistance of pests have already been reported. Much less is known about<br />

plant pathogens, probably in part because <strong>biological</strong> <strong>control</strong> <strong>against</strong> diseases is still very rare.<br />

Significant research efforts are needed to anticipate the potential hurtles in this domain <strong>and</strong> integrate<br />

durability concerns both in the screening of new bio<strong>control</strong> agents <strong>and</strong> in the careful management of<br />

their use once they become commercially available.<br />

* Köhl, J., Postma, J., Nicot, P., Ruocco, M., Blum, B. 2011. Stepwise screening of microorganisms for commercial use<br />

in <strong>biological</strong> <strong>control</strong> of plant pathogenic fungi <strong>and</strong> bacteria. Biological Control 57, 1-12.<br />

69


Nicot et al.<br />

Issues for development<br />

Three key issues have been identified in terms of development. They are directly related to<br />

improving the efficacy of crop protection but also to acceptability of bio<strong>control</strong> by farmers.<br />

Training of advisers <strong>and</strong> farmers. Compared to chemical <strong>control</strong>, the implementation of<br />

<strong>biological</strong> <strong>control</strong> presents an additional level of technical complexity when the "active substance"<br />

is a living organism or microorganism, whose liveliness <strong>and</strong> development on the target crop<br />

underpins the effectiveness of the protection. In many situations, achievement of successful<br />

bio<strong>control</strong> of pests has been linked to an active role of advisers in accompanying the farmers, at<br />

least during their initial phase of adoption <strong>and</strong> implementation. The success of large scale use of<br />

<strong>biological</strong> <strong>control</strong> in the future will require stepping up the technical training of farmers <strong>and</strong> of<br />

advisors. Such action will also positively influence the adoption issues mentioned below.<br />

Development <strong>and</strong> dissemination of Decision Support Systems (DSS). Growers routinely<br />

make decisions that take into account multiple constraints (both technical <strong>and</strong> economic) of their<br />

activity. However, the complexity of bio<strong>control</strong> <strong>and</strong> its necessary integration in a systems approach<br />

of crop protection <strong>and</strong> crop production make DSS more <strong>and</strong> more indispensible, including in their<br />

function as easily consultable repositories of knowledge on available choices.<br />

Establishment of demonstration schemes <strong>and</strong> development of farmers' networks. This<br />

action is needed to stimulate the dissemination of information to <strong>and</strong> among farmers, but also to<br />

facilitate exchange between the end users of bio<strong>control</strong> <strong>and</strong> the other actors of research,<br />

development <strong>and</strong> commercialization of the products. Breaking up regional <strong>and</strong> national barriers <strong>and</strong><br />

including a European dimension to such networks is desirable for optimal efficacy of multisite<br />

experimental trials.<br />

Industrial issues<br />

Quality <strong>control</strong>. Ongoing efforts by the manufacturers of <strong>biological</strong> <strong>control</strong> agents to<br />

guarantee the quality of their products need to be stepped up. The definition of tests <strong>and</strong> their<br />

routine implementation is crucial to ensure reliable effectiveness <strong>and</strong> maintain confidence of<br />

farmers for bio<strong>control</strong>. Whenever possible, such tests should include not only an evaluation of<br />

viability of the bio<strong>control</strong> agent but also an evaluation of physiological parameters related to its<br />

efficacy, based on knowledge of its modes of action.<br />

Improve distribution systems. Distibution systems need to be improved to safeguard the<br />

quality of the products <strong>and</strong> provide technical advice for the users. In many cases, the distribution of<br />

bio<strong>control</strong> products is common with that of chemical pesticides. One possible avenue of progress<br />

would be to improve awareness on the specificities of h<strong>and</strong>ling bio<strong>control</strong> products, especially those<br />

containing living organisms or micro-organisms. Another would be the development of sizeable<br />

distributions networks focused on bio<strong>control</strong>, which could be brought together by groups of<br />

(currently often small) producers of bio<strong>control</strong> products.<br />

70


Appendices<br />

For Chapter 1<br />

Appendix 1.<br />

Appendix 2.<br />

Appendix 3.<br />

Appendix 4.<br />

Appendix 5.<br />

Appendix 6.<br />

Inventory of bio<strong>control</strong> agents described in primary literature (1998-2008) for<br />

successful effect <strong>against</strong> Botrytis sp. in laboratory experiments <strong>and</strong> field trials<br />

with selected crops<br />

Inventory of bio<strong>control</strong> agents described in primary literature (1998-2008) for<br />

successful effect <strong>against</strong> powdery mildew in laboratory experiments <strong>and</strong> field<br />

trials on selected crops.<br />

Inventory of bio<strong>control</strong> agents described in primary literature (1973-2008) for<br />

successful effect <strong>against</strong> the rust pathogens in laboratory experiments <strong>and</strong> field<br />

trials on selected crops<br />

Inventory of bio<strong>control</strong> agents described in primary literature (1973-2008) for<br />

successful effect <strong>against</strong> the downy mildew / late blight pathogens in laboratory<br />

experiments <strong>and</strong> field trials on selected crops<br />

Inventory of bio<strong>control</strong> agents described in primary literature (1973-2008) for<br />

successful effect <strong>against</strong> Monilinia in laboratory experiments <strong>and</strong> field trials on<br />

selected crops<br />

Primary literature (2007-2009) on <strong>biological</strong> <strong>control</strong> <strong>against</strong> Fusarium oxysporum<br />

For Chapter 2<br />

Appendix 7.<br />

Appendix 8.<br />

Number of references retrieved by using the CAB Abstracts database in order to<br />

review scientific literatures on <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong> in selected crops<br />

for Chapter 2.<br />

Collection of data on <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong> of pests in grapevine. Each<br />

table refers to a group of bio<strong>control</strong> agents.<br />

For Chapter 3<br />

Appendix 9. References on classical <strong>biological</strong> <strong>control</strong> <strong>against</strong> insect pests (cited in Chapter 3)<br />

For Chapter 4<br />

Appendix 10. Substances included in the "EU Pesticides Database" as of April 21 2009<br />

Appendix 11. Invertebrate beneficials available as <strong>biological</strong> <strong>control</strong> agents <strong>against</strong> invertebrate<br />

pests in five European countries.<br />

71


Appendix 1. Inventory of bio<strong>control</strong> agents (M: microbials; B: botanicals; O: others) described in primary literature (1998-2008) for<br />

successful effect <strong>against</strong> Botrytis sp. in laboratory experiments <strong>and</strong> field trials with selected crops<br />

Tomato + Cucumber + Pepper (target pathogen = B. cinerea)<br />

Success in field trials<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

M<br />

Bacteria<br />

Bacillus amyloliquefaciens BL3, pepper (Park et al., 1999)<br />

Bacillus licheniformis > FG (Lee et al., 2006)<br />

Bacillus subtilis strain QST 713 (Serenade ASO) (Ingram <strong>and</strong> Meister, 2006),<br />

Quadra 136, preventive (Utkhede <strong>and</strong> Mathur, 2006)<br />

Brevibacillus brevis (Seddon et al., 2000) (McHugh et al., 2002) (Schmitt et al.,<br />

2001)<br />

Brevibacillus brevis WT + Milsana / cucumber (Konstantinidou-Doltsinis et al.,<br />

2002)<br />

Paenibacillus polymyxa BL4, pepper (Park et al., 1999)<br />

Pseudomonas putida Cha94, pepper (Park et al., 1999)<br />

Streptomyces (Mycostop(R), (Lahdenpera <strong>and</strong> Korteniemi, 2008)actinomyces<br />

(Yao et al., 2007), strains III-61 <strong>and</strong> A-21 (Pan et al., 2005)<br />

Bakflor (consortium of valuable bacterial physiological groups) (Kornilov et al.,<br />

2007)<br />

Fungi + yeasts:<br />

Clonostachys rosea (ADJ 710 OMRI), (Shipp et al., 2008)<br />

Gliocladium sp. (Georgieva, 2004)<br />

Gliocladium catenulatum Prestop(R), preventive (Utkhede <strong>and</strong> Mathur, 2006)<br />

(Utkhede <strong>and</strong> Mathur, 2002) (Lahdenpera <strong>and</strong> Korteniemi, 2008)<br />

Gliocladium viride (Lisboa et al., 2007)<br />

Microdochium dimerum (Nicot et al., 2003) (Trottin-Caudal et al., 2001)<br />

Rhodosporidium diobovatum S33 preventive (Utkhede <strong>and</strong> Mathur, 2006)<br />

curative (Utkhede <strong>and</strong> Mathur, 2002), /cucumber (Utkhede <strong>and</strong> Bogdanoff,<br />

2003)<br />

Trichoderma sp. (Georgieva, 2004)<br />

Trichoderma harzianum (Lisboa et al., 2007), T39 (Trichodex) tomato (Apablaza<br />

<strong>and</strong> Jalil R, 1998) (Moreno Vel<strong>and</strong>ia et al., 2007), tomato + cucumber<br />

(Elad, 2000b) (Dik <strong>and</strong> Wubben, 2001) / cucumber (Elad, 2000a), TM /<br />

pepper (Park et al., 1999), RootShield curative (Utkhede <strong>and</strong> Mathur, 2002),<br />

T22 PlantShield(R) curative (Utkhede <strong>and</strong> Mathur, 2006)<br />

Variable little or no effect once in the field (good in lab):<br />

Brevibacillus brevis WT / cucumber (Konstantinidou-Doltsinis et al., 2002)<br />

Gliocladium catenulatum (Prestop). (Ingram <strong>and</strong> Meister, 2006)<br />

Trichoderma (tomato + pepper) (Salas Brenes <strong>and</strong> Sanchez Garita, 2006)<br />

Trichoderma harzianum T39 Trichodex with BOTMAN (Moyano et al., 2003)<br />

Bacteria<br />

Bacillus antagonists (Tsomlexoglou et al., 2000) (Enya et al., 2007) (Tsomlexoglou et al., 2001) (Tsomlexoglou et<br />

al., 2002)<br />

Bacillus circulans (Wang et al., 2008b)<br />

Bacillus subtilis (Wang et al., 2008b) (Sadfi-Zouaoui et al., 2007a) (Gu et al., 2008) (Sadfi-Zouaoui et al., 2007b)<br />

Bacillus licheniformis (Lee et al., 2006) (Sadfi-Zouaoui et al., 2007a)<br />

Brevibacillus brevis (White et al., 2001) (Seddon <strong>and</strong> Schmitt, 1999) (Seddon et al., 2000) (Allan et al., 2003)<br />

Cupriavidus campinensis / cuc, tom (Schoonbeek et al., 2007)<br />

Halomonas subglaciescola, Halobacillus litoralis, Marinococcus halophilus, Salinococcus roseus, Halovibrio<br />

variabilis, Halobacillus halophilus, Halobacillus trueperi (Sadfi-Zouaoui et al., 2008)<br />

Halomonas sp. K2-5 (Sadfi-Zouaoui et al., 2007b)<br />

Micromonospora coerulea (Kim et al., 1999)<br />

Pantoea (Enya et al., 2007)<br />

Pseudomonas aeruginosa (Hern<strong>and</strong>ez-Rodriguez et al., 2004) 7NSK2 (Audenaert et al., 2002)<br />

Pseudomonas fluorescens (Yildiz et al., 2007) (Hern<strong>and</strong>ez-Rodriguez et al., 2004)<br />

Burkholderia cepacia (Hern<strong>and</strong>ez-Rodriguez et al., 2004)<br />

Serratia plymuthica HRO-C48 (Ma et al., 2007), IC1270 (Meziane et al., 2006), IC14 / cucumber (Kamensky et<br />

al., 2002, Kamensky et al., 2003)<br />

Streptomyces ahygroscopicus var. wuyiensis (Sun et al., 2004)<br />

Streptomyces lydicus/ cucumber (Farrag, 2003)<br />

Fungi + yeasts:<br />

Aureobasidium pullulans (Dik et al., 1999) (Dik <strong>and</strong> Elad, 1999)<br />

Beauveria sp. (Diaz et al., 2007)<br />

C<strong>and</strong>ida guilliermondii strains 101 <strong>and</strong> US 7 (Saligkarias et al., 2002)<br />

C<strong>and</strong>ida oleophila strain I-182 (Saligkarias et al., 2002)<br />

C<strong>and</strong>ida pelliculosa (Bello et al., 2008)<br />

Clonostachys rosea (Nobre et al., 2005) (Sutton et al., 2002) (Yohalem, 2001)<br />

Cryptococcus laurentii (Xi <strong>and</strong> Tian, 2005)<br />

Cryptococcus albidus (Dik et al., 1999) (Dik <strong>and</strong> Elad, 1999)<br />

Gliocladium (Hmouni et al., 2005) (Hmouni et al., 2006, Hmouni et al., 1999)<br />

Gliocadium viride (Bocchese et al., 2007) (Lisboa et al., 2007)<br />

Microdochium dimerum (Bardin et al., 2008) (Bardin et al., 2004b) (Bardin et al., 2004a) (Decognet <strong>and</strong> Nicot,<br />

1999) (Decognet et al., 1999) (Trottin-Caudal et al., 2001) (Nicot et al., 2002)<br />

Pichia guilliermondii (Zhao et al., 2008)<br />

Rhodosporidium diobovatum (S33), (Utkhede et al., 2001)<br />

Rhodotorula glutinis Y-44 (Kalogiannis et al., 2006)<br />

Rhodotorula rubra (Bello et al., 2008)<br />

Trichoderma (Hmouni et al., 2005) (Hmouni et al., 1999)<br />

Trichoderma harzianum (Hmouni et al., 2006) (Fiume et al., 2008) (Barakat <strong>and</strong> Al-Masri, 2005) (Lisboa et al.,<br />

72


Appendix 1<br />

B<br />

O<br />

Milsana + Brevibacillus brevis WT / cucumber (Konstantinidou-Doltsinis et al.,<br />

2002)<br />

Variable little or no effect once in the field:<br />

Reynoutria sachalinensis extract (Milsana); (Ingram <strong>and</strong> Meister, 2006)<br />

calcium foliar fertilizers (CaH2O2, CaSO4, Ca(NO3)2, CaCl2 <strong>and</strong> CaO),<br />

(Mizrakci <strong>and</strong> Yildiz, 2002)<br />

2007) T115 (Meyer et al., 2001) Trichodex T39 (Elad et al., 1998) (Yohalem et al., 1998) (Meyer et al., 1998)<br />

(Jalil R et al., 1997) (Dik et al., 1999) (Dik <strong>and</strong> Elad, 1999), RootShield (Utkhede et al., 2001), Th-B /pepper<br />

(Li et al., 2004), Rifai (Gromovikh et al., 1998)<br />

Trichoderma taxi ZJUF0986 (Wang et al., 2008a)<br />

Trichosporon pullulans (Cook, 2002)<br />

Ulocladium atrum (Nicot et al., 2002) (Fruit <strong>and</strong> Nicot, 1999) (Yohalem, 2001) / cucumber (Yohalem, 1997)<br />

Ustilago maydis (Teichmann et al., 2007)<br />

Oomycetes<br />

Pythium olig<strong>and</strong>rum (Floch et al., 2001) (Wang et al., 2007a)<br />

Little or no effect once in the field (good in lab):<br />

Trichoderma spp. commercial preparations/ cucumber (Yohalem, 1997)<br />

volatile substances produced by grape cv. Isabella (Vitis labrusca) (postharvest) (Kulakiotu et al., 2004) (Kulakiotu<br />

<strong>and</strong> Sfakiotakis, 2003)<br />

Compost water extracts prepared from animal sources (horse, sheep, <strong>and</strong> cattle) <strong>and</strong> a plant source (olive),<br />

(Hmouni et al., 2006)<br />

Adipic acid monoethyl ester (Vicedo et al., 2005)<br />

Calcium foliar fertilizers (CaH2O2, CaSO4, Ca(NO3)2, CaCl2 <strong>and</strong> CaO), (Mizrakci <strong>and</strong> Yildiz, 2002)<br />

Chitosan Elexa (Acar et al., 2008)<br />

Benzothiadiazole (BTH) (Hern<strong>and</strong>ez-Rodriguez et al., 2004)<br />

Variable little or no effect :<br />

Vital pasta, Vital gel <strong>and</strong> Elot-Vis (Gielen et al., 2004)<br />

73


Nicot et al. (Appendix for Chapter 1)<br />

Grapes (target pathogen = B. cinerea)<br />

Success in field trials<br />

M<br />

Bacteria<br />

Acinetobacter lwoffii PTA-113, (Magnin-Robert et al., 2007)<br />

Pseudomonas fluorescens PTA-CT2, (Magnin-Robert et al., 2007)<br />

Pantoea agglomerans PTA-AF1 (Magnin-Robert et al., 2007)<br />

Bacillus (isolate UYBC38) (Rabosto et al., 2006)<br />

Bacillus subtilis strain QST 713 (serenade) (Benuzzi et al., 2006) Serenade,<br />

moderate to good <strong>control</strong> (Schilder et al., 2002)<br />

Fungi + yeasts:<br />

Acremonium cephalosporium, strain B11 (Zahavi et al., 2000)<br />

C<strong>and</strong>ida guilliermondii, strain A42 (Zahavi et al., 2000)<br />

Chaetomium cochlioides (Lennartz et al., 1998)<br />

Gliocladium (Cherif <strong>and</strong> Boubaker, 1998)<br />

Gliocladium roseum (Holz <strong>and</strong> Volkmann, 2002)<br />

Hanseniaspora uvarum (isolate UYNS13) (Rabosto et al., 2006)<br />

Trichoderma (Cherif <strong>and</strong> Boubaker, 1998)<br />

Trichoderma harzianum (Holz <strong>and</strong> Volkmann, 2002), Rootshield(R) (Marco <strong>and</strong><br />

Osti, 2007) Rifai, 1295-22, (Harman et al., 1996), Trichodex 25 WP<br />

(Turcanu, 1997)<br />

Trichoderma virens 31 (Harman et al., 1996)<br />

Trichosporon pullulans (Holz <strong>and</strong> Volkmann, 2002)<br />

Ulocladium atrum, low disease pressure (Metz et al., 2002) (Roudet <strong>and</strong> Dubos,<br />

2001) (Schoene et al., 1999) (Holz <strong>and</strong> Volkmann, 2002) (Lennartz et al.,<br />

1998) (Schoene <strong>and</strong> Köhl, 1999), isolate 385 (Schoene et al., 2000)<br />

Ulocladium oudemansii + 5-chlorosalicylic acid in combination (Reglinski et al.,<br />

2005)<br />

Variable little or no effect once in the field:<br />

Trichoderma harzianum partial effect (Monchiero et al., 2005)<br />

Ulocladium oudemansii partial effect (Monchiero et al., 2005)<br />

Ulocladium atrum, high disease pressure (Metz et al., 2002) (Roudet <strong>and</strong> Dubos,<br />

2001)<br />

Croplife (citrus <strong>and</strong> coconut extract) + Plantfood (foliar fertilizer), moderate to<br />

good <strong>control</strong> (Schilder et al., 2002)<br />

B<br />

Milsana (giant knotweed [Fallopia sp.] extract), moderate <strong>control</strong> (Schilder et al.,<br />

2002)<br />

O Chitosan (Amborabe et al., 2004)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

Bacteria<br />

Bacillus sp., (Paul et al., 1998) (Krol, 1998) (Trotel-Aziz et al., 2003), isolate UYBC38 (Rabosto et al., 2006)<br />

Cupriavidus campinensis (Schoonbeek et al., 2007)<br />

Pseudomonas sp. (Trotel-Aziz et al., 2003), strain PsJN (Barka et al., 2002)<br />

Pseudomonas fluorescens (Krol, 1998)<br />

Pantoea (Trotel-Aziz et al., 2003)<br />

Fungi + yeasts:<br />

Alternaria spp., (Walter et al., 2006)<br />

Aureobasidium pullulans, L47 postharvest (Lima et al., 1997), LS-30 postharvest (Castoria et al., 2001)<br />

C<strong>and</strong>ida oleophila (Lima et al., 1997), postharvest (El-Neshawy <strong>and</strong> El-Morsy, 2003)<br />

Coniothyrium (Sesan et al., 2002)<br />

Debaryomyces hansenii (Santos et al., 2004)<br />

Epicoccum spp (Sesan et al., 2002) (Walter et al., 2006) (Fowler et al., 1999)<br />

Gliocladium, (Sesan et al., 2002)<br />

Hanseniaspora uvarum (isolate UYNS13) (Rabosto et al., 2006)<br />

Kloeckera spp. (Cirvilleri et al., 1999)<br />

Metschnikowia fructicola, postharvest (Karabulut et al., 2003), postharvest (Kurtzman <strong>and</strong> Droby, 2001)<br />

Muscodor albus, postharvest (Gabler et al., 2006)<br />

Pichia anomala (strain FY-102) (Masih et al., 2000) (Santos et al., 2004)<br />

Pichia membranaefaciens (Masih <strong>and</strong> Paul, 2002) (Masih et al., 2001) (Santos <strong>and</strong> Marquina, 2004) (Santos et al.,<br />

2004)<br />

Scytalidium, (Fowler et al., 1999)<br />

Trichoderma spp. (Walter et al., 2006) (Fowler et al., 1999)<br />

Trichoderma harzianum CECT 2413 – mutant (Rey et al., 2001), Rifai postharvest (Batta, 2007)<br />

Trichoderma viride, (Sesan et al., 2002)<br />

Trichothecium, (Sesan et al., 2002)<br />

Tricothecium roseum (Fowler et al., 1999)<br />

Ulodadium spp (Walter et al., 2006) (Fowler et al., 1999)<br />

Ulocladium atrum isolate 385 (Schoene et al., 2000)<br />

Verticillium, (Sesan et al., 2002)<br />

Oomycetes<br />

Pythium paroec<strong>and</strong>rum (Abdelghani et al., 2004)<br />

Pythium periplocum (Paul, 1999b)<br />

volatile substances produced by grape cv. Isabella (Vitis labrusca) (postharvest) (Kulakiotu et al., 2004) (Kulakiotu<br />

<strong>and</strong> Sfakiotakis, 2003)<br />

74


Appendix 1<br />

Strawberry (target pathogen = B. cinerea)<br />

Success in field trials<br />

M<br />

Bacteria<br />

Paenibacillus polymyxa 18191 (Helbig, 2001b)<br />

Pseudomonas fluorescens (Abada et al., 2002)<br />

Fungi + yeasts:<br />

Aureobasidium pullulans (Stromeng et al., 2006)<br />

C<strong>and</strong>ida fructus, (El-Neshawy <strong>and</strong> Shetaia, 2003)<br />

C. glabrata, (El-Neshawy <strong>and</strong> Shetaia, 2003)<br />

C. oleophila (El-Neshawy <strong>and</strong> Shetaia, 2003)<br />

Cryptococcus albidus (Helbig, 2002)<br />

Epicoccum nigrum, (Stromeng et al., 2006)<br />

Metschnikowia fructicola (=FG) (Karabulut et al., 2004)<br />

Pichia guilermondii + Bacillus mycoides mixture (Guetsky et al., 2001)<br />

(Guetsky et al., 2002)<br />

Rhodotorula glutinis (Helbig, 2001a)<br />

Trichoderma harzianum (Abada et al., 2002) (Antoniacci et al., 2000)<br />

(Maccagnani et al., 1999), 1295-22 (Kovach et al., 2000), (atroviride) P1<br />

(Hjeljord et al., 2001), T39 (Shafir et al., 2006), Trichodex (Freeman et al.,<br />

2001) (Freeman et al., 2002) (Freeman et al., 2004)<br />

Trichoderma products (BINAB) (Ricard <strong>and</strong> Jorgensen, 2000)<br />

Ulocladium atrum (Boff, 2001) (Boff et al., 2002a) (Boff et al., 2002b) (Köhl et<br />

al., 2001) (Köhl et al., 2004) (Köhl <strong>and</strong> Fokkema, 1998)<br />

Variable little or no effect once in the field:<br />

Bacillus subtilis (Gengotti et al., 2002)<br />

Gliocladium roseum (Chaves <strong>and</strong> Wang, 2004)<br />

Gliocladium catenulatum, (Prokkola et al., 2003), but low disease incidence<br />

(Prokkola <strong>and</strong> Kivijarvi, 2007)<br />

Trichoderma sp (Stensv<strong>and</strong>, 1997), (Stensv<strong>and</strong>, 1998) (Hjeljord et al., 2000)<br />

(Prokkola et al., 2003), but low disease incidence (Prokkola <strong>and</strong> Kivijarvi,<br />

2007)<br />

Trichoderma harzianum (atroviride) (Hjeljord, 2002) (Hjeljord et al., 2001),<br />

(Gengotti et al., 2002), Trichodex 40 WP (Meszka <strong>and</strong> Bielenin, 2004)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

Bacteria<br />

Bacillus sp. (isolate 17141) (Helbig et al., 1998)<br />

Bacillus pumilus (Essghaier et al., 2007), NCIMB 13374 (Swadling <strong>and</strong> Jeffries, 1998)<br />

Bacillus subtilis, (Essghaier et al., 2007) (Sardi et al., 2008) (Helbig <strong>and</strong> Bochow, 2001) (Marquenie et al., 1999)<br />

(Zhao et al., 2007) (Abada et al., 2002) (Gengotti et al., 2000)<br />

Bacillus marismortui, (Essghaier et al., 2007)<br />

Bacillus licheniformis, (Essghaier et al., 2007)<br />

Bacillus thuringiensis (Bacikol) (K<strong>and</strong>ybin, 2003)<br />

Virgibacillus marismortui, (Essghaier et al., 2007)<br />

Enterobacteriaceae (10B1, 5B4) (Guinebretiere et al., 2000)<br />

Halomonas sp. (Essghaier et al., 2007)<br />

Pantoea agglomerans strain EPS125, postharvest (Bonaterra et al., 2004)<br />

Pseudomonas fluorescens (Abada et al., 2002), NCIMB 13373 (Swadling <strong>and</strong> Jeffries, 1998)<br />

Pseudomonas cepacia (Marquenie et al., 1999)<br />

Pseudomonas chlororaphis isolate I-112 (Gulati et al., 1999)<br />

Pseudomonas syringae but phytotox (Pellegrini et al., 2007)<br />

Fungi + yeasts:<br />

Aureo basidium pullulans (Adikaram et al., 2002)<br />

C<strong>and</strong>ida reukaufii, (Guinebretiere et al., 2000)<br />

C<strong>and</strong>ida pulcherrima, (Guinebretiere et al., 2000)<br />

Clonostachys rosea (Cota et al., 2008), IK726 (Mamarabadi et al., 2008)<br />

Cryptococcus albidus (Helbig, 2002)<br />

Cryptococcus laurentii (Zheng et al., 2003)<br />

Gliocladium virens (Tehrani <strong>and</strong> Alizadeh, 2000)<br />

Metschnikowia fructicola (Shemer(R) postharvest (Ferrari et al., 2007)<br />

Pichia guilermondii + Bacillus mycoides mixture (Guetsky et al., 2002b) (Guetsky et al., 2001b) (Guetsky et al.,<br />

2001a) (Guetsky et al., 2002a)<br />

Rhodotorula glutinis, postharvest (Zhang et al., 2007a), (Helbig, 2001a)<br />

Trichoderma sp (Santorum et al., 2002)<br />

Trichoderma harzianum (Abada et al., 2002) (Tehrani <strong>and</strong> Alizadeh, 2000) (Sanz et al., 2002), T39 (Bilu et al.,<br />

2004) (Levy et al., 2004a) (Levy et al., 2006) (Levy et al., 2004b), atroviride P1 (Hjeljord, Stensv<strong>and</strong> et al.<br />

2001)<br />

Trichoderma asperellum (Sanz et al., 2005) (Sanz et al., 2002)<br />

Trichoderma longibrachiatum (Sanz et al., 2002)<br />

Trichoderma atroviride (Sanz et al., 2002)<br />

Trichoderma koningii, (Tehrani <strong>and</strong> Alizadeh, 2000)<br />

Trichoderma viride (Tehrani <strong>and</strong> Alizadeh, 2000)<br />

Ulocladium atrum (Boff, 2001) (Berto et al., 2001) (Boff et al., 2001)<br />

Verticillium lecanii (Koike et al., 2004)<br />

Variable little or no effect once in the field:<br />

Pichia guilermondii (Wszelaki <strong>and</strong> Mitcham, 2003)<br />

75


Nicot et al. (Appendix for Chapter 1)<br />

B<br />

O<br />

Messenger (harpin), (Meszka <strong>and</strong> Bielenin, 2004)<br />

Variable little or no effect once in the field:<br />

Biosept 33 SL (grapefruit extract) (Meszka <strong>and</strong> Bielenin, 2004)<br />

seaweed, garlic, <strong>and</strong> compost extracts (Prokkola et al., 2003), but low disease<br />

incidence (Prokkola <strong>and</strong> Kivijarvi, 2007)<br />

sodium bicarbonate (Funaro, 1997)<br />

Variable little or no effect once in the field:<br />

Biochicol 020 PC (chitosan) (Meszka <strong>and</strong> Bielenin, 2004)<br />

silicon (Prokkola et al., 2003), but low disease incidence (Prokkola <strong>and</strong> Kivijarvi,<br />

2007)<br />

Natural volatile compounds : benzaldehyde, methyl benzoate, methyl salicylate, 2-nonanone, 2-hexenal<br />

diethyl acetal, hexanol, <strong>and</strong> E-2-hexen-1-ol (Archbold et al., 1997)<br />

Field vegetables (lettuce, onion, cabbage, melon) (target pathogen = B. cinerea)<br />

Success in field trials<br />

M<br />

B<br />

O<br />

Microsphaeropsis ochracea / onion (Carisse et al., 2006)<br />

Ulocladium atrum 385, onion (Köhl <strong>and</strong> Fokkema, 1998) (Köhl et al., 1999)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

Bacteria<br />

Bacillus subtilis / lettuce (Fiddaman et al., 2000), L-form / Chinese cabbage (Walker et al., 2002), / melon (Wang<br />

et al., 2008c)<br />

Brevibacillus brevis / lettuce (McHugh <strong>and</strong> Seddon, 2001)<br />

Bacillus amyloliquefaciens/ melon (Wang et al., 2008c)<br />

Pseudomonas spp. (LC8, PF13, PF14, PF15), /lettuce (Card et al., 2002)<br />

Pseudomonas syringae pv. phaseolicola / Chinese cabbage (Daulagala <strong>and</strong> Allan, 2003)<br />

Fungus + yeast:<br />

Clonostachys rosea / onion (Nielsen et al., 2000) (Yohalem et al., 2004)<br />

Coniothyrium minitans / lettuce (Fiume <strong>and</strong> Fiume, 2005)<br />

Epicoccum sp. (E21) /lettuce (Card et al., 2002)<br />

Gliocladium virens [Trichoderma virens], / lettuce (Lolas et al., 2005)<br />

Penicillium griseofulvum, / onion (Tylkowska <strong>and</strong> Szopinska, 1998)<br />

Penicillium sp. 90/22, / onion (Tylkowska <strong>and</strong> Szopinska, 1998)<br />

Pichia onychis /onion postharvest (German Garcia et al., 2001) (Cotes, 2001)<br />

Ulocladium sp. (U13), /lettuce (Card et al., 2002)<br />

Ulocladium atrum / onion (Köhl et al., 2003), 385 <strong>and</strong> 302 / onion (Nielsen et al., 2000) (Yohalem et al., 2004)<br />

Trichoderma harzianum, / onion (Tylkowska <strong>and</strong> Szopinska, 1998), T39 / lettuce (Meyer et al., 1998) (Lolas et al.,<br />

2005), 'Supresivit' / cress (Borregaard, 2000)<br />

Trichoderma koningii / onion (Tylkowska <strong>and</strong> Szopinska, 1998)<br />

T. viride / onion (Tylkowska <strong>and</strong> Szopinska, 1998)<br />

Variable little or no effect :<br />

Trichoderma-Promot / onion (El-Neshawy et al., 1999)<br />

76


Appendix 1<br />

Fruits - postharvest (apple, pears, peach, sweet cherry, kiwi) (target pathogen = B. cinerea)<br />

Success in field trials<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

Bacteria<br />

Bacillus licheniformis (EN74-1) (Jamalizadeh et al., 2008)<br />

Bacillus subtilis (Ongena et al., 2005) , GA1 (Toure et al., 2004), Rizo-N (El-Sheikh Aly et al., 2000)<br />

Bacillus amyloliquefaciens 2TOE, /pears (Mari et al., 1996)<br />

Bacillus pumilus 3PPE, /pears (Mari et al., 1996)<br />

Erwinia sp (Floros et al., 1998)<br />

Pantoea agglomerans (Sobiczewski <strong>and</strong> Bryk, 1999) (Nunes et al., 2001a)<br />

Pseudomonas sp (Sobiczewski <strong>and</strong> Bryk, 1999)<br />

Pseudomonas syringae Strain ESC-11 BioSave (Janisiewicz <strong>and</strong> Jeffers, 1997), / pear (Sugar <strong>and</strong> Benbow, 2002)<br />

(Benhow <strong>and</strong> Sugar, 1997), MA-4 (Zhou et al., 2002), CPA5 (Nunes et al., 2007)<br />

Pseudomonas fluorescens (Mikani et al., 2007) (Mikani et al., 2008)<br />

Pseudomonas viridiflava (Bryk et al., 1999)<br />

Rahnella aquatilis (Calvo et al., 2007)<br />

M<br />

Bacteria<br />

Pantoea agglomerans (CPA-2) (Nunes et al., 2002b) (Nunes et al., 2001b)<br />

Pseudomonas syringae, MA-4, MB-4, MD-3b <strong>and</strong> NSA-6 (=FG) (Zhou et al., 2001)<br />

Fungi + yeasts:<br />

Aureobasidium pullulans, Rhodotorula glutinis <strong>and</strong> Bacillus subtilis in combination<br />

(=FG) (Leibinger et al., 1997)<br />

C<strong>and</strong>ida saitoana (El-Ghaouth et al., 2001a) , with chitosan (Bio-Coat) or lyric enzyme<br />

(Biocure) (El-Ghaouth et al., 2001b)<br />

C<strong>and</strong>ida sake strain CPA-1 combined with diphenylamine (Zanella et al., 2003), CPA-<br />

1 + ammonium molybdate /pear (Nunes et al., 2002a)<br />

Metschnikowia pulcherrima (Migheli et al., 1997)<br />

Pichia anomala strain K beta -1,3-glucans <strong>and</strong> calcium chloride (Jijakli et al., 2002)<br />

Fungi + yeasts:<br />

Aureobasidium pullulans (Achbani et al., 2005) (Lima et al., 2005) (Schena et al., 1999), LS-30 (Lima et al., 1999)<br />

(Lima et al., 2003), + calcium chloride or sodium bicarbonate (Ippolito et al., 2005b) (Ippolito et al., 2005a)<br />

C<strong>and</strong>ida butyri JCM 1501, (Wagner et al., 2006)<br />

C<strong>and</strong>ida melibiosica 2515 (Wagner et al., 2006)<br />

C<strong>and</strong>ida parapsilosis DSM 70125 (Wagner et al., 2006)<br />

C<strong>and</strong>ida oleophila Aspire (Droby et al., 2003), Aspire/pear (Sugar <strong>and</strong> Benbow, 2002) (Benhow <strong>and</strong> Sugar, 1997),<br />

Aspire + 2% sodium bicarbonate (Wisniewski et al., 2001), strain O (Jijakli, 2000) (Bajji <strong>and</strong> Jijakli, 2007)<br />

(Jijakli et al., 2004) (Lahlali et al., 2007), /peach (Karabulut <strong>and</strong> Baykal, 2004),<br />

C<strong>and</strong>ida saitoana (El-Ghaouth et al., 2001c) (El-Ghaouth et al., 2000a) (El-Ghaouth et al., 2000b) (El-Ghaouth et<br />

al., 2001b)<br />

C<strong>and</strong>ida sake (Vinas et al., 1998) (Nunes et al., 2002d) (Giraud <strong>and</strong> Crouzet, 2004) (Cook, 2002b), CPA-1 +<br />

Pantoea agglomerans (Nunes et al., 2002c)<br />

C<strong>and</strong>ida famata (21-D), (Lima et al., 1999)<br />

C<strong>and</strong>ida tenuis, (Faten, 2005)<br />

C<strong>and</strong>ida pulcherrima (Cook, 2002b)<br />

Cryptococcus laurentii (Benhow <strong>and</strong> Sugar, 1997) (Zhang et al., 2005) (Zhang et al., 2007b) (Sugar <strong>and</strong> Benbow,<br />

2002) (Tian et al., 2004a) (Jing et al., 2008) (Colgan, 1997) (Lima et al., 2005) (Filonow, 1998) + Gibberellic<br />

acid (Yu <strong>and</strong> Zheng, 2007), +IAA (Yu et al., 2008), + salicilic acid (Yu et al., 2007), LS28 (Lima et al.,<br />

2006) (Lima et al., 1998) (Lima et al., 1999) (Lima et al., 2003)<br />

Cryptococcus albidus, (Fan et al., 2001a) (Fan <strong>and</strong> Tian, 2001) (Tian et al., 2002)<br />

Cryptococcus humicola (Anderson et al., 1997) (Filonow et al., 1996)<br />

Cryptococcus infirmo-miniatus (Benhow <strong>and</strong> Sugar, 1997) (Sugar <strong>and</strong> Benbow, 2002)<br />

Debaryomyces hansenii (strain 43E) / citrus (Arras <strong>and</strong> Arru, 1999)<br />

Filobasidium floriforme NRRLY7454, (Filonow et al., 1996)<br />

Galactomyces geotrichum (Cook, 2002b)<br />

77


Nicot et al. (Appendix for Chapter 1)<br />

B<br />

O<br />

Kloeckera apiculata / peach (Karabulut <strong>and</strong> Baykal, 2003) (Karabulut et al., 2005)<br />

Metschnikowia pulcherrima (Spadaro et al., 2002) (Piano et al., 1998) (Spadaro et al., 2004), MACH1 (Duraisamy<br />

et al., 2008)<br />

Metschnikowia fructicola (Karabulut et al., 2005)<br />

Muscodor albus (Mercier <strong>and</strong> Jimenez, 2004) (Ramin et al., 2008) (Schotsmans et al., 2008)<br />

Penicillium spp. (El-Sheikh Aly et al., 2000)<br />

Pichia stipitis CBS 5773 (Wagner et al., 2006)<br />

Pichia anomala strain K (Grevesse et al., 2003) (Jijakli, 2000) (Friel <strong>and</strong> Jijakli, 2007) (Friel et al., 2007) (Jijakli<br />

<strong>and</strong> Lepoivre, 1998) (Lahlali et al., 2007)<br />

Pichia guilliermondii (29-A), (Lima et al., 1999)<br />

Rhodotorula glutinis (Sugar <strong>and</strong> Benbow, 2002) (Benhow <strong>and</strong> Sugar, 1997) (Lima et al., 2005) (Lima et al., 1998)<br />

(Sansone et al., 2005), LS-11 (Lima et al., 1999) (Lima et al., 2003),<br />

Rhodosporidium toruloides NRRL Y1091, (Filonow et al., 1996)<br />

Sporobolomyces roseus FS-43-238 (Filonow et al., 1996) (Filonow, 1998)<br />

Saccharomyces cerevisiae, (Faten, 2005)<br />

Trichoderma harzianum Plant-guard (El-Sheikh Aly et al., 2000), Rifai (Batta, 2004)<br />

Trichoderma Viride (El-Sheikh Aly et al., 2000),<br />

Trichosporon sp., (Fan et al., 2001b) (Tian et al., 2002)<br />

Trichosporon pullulans (Cook, 2002b)<br />

R. glutinis SL 1 + C. laurentii SL 62 mixture (Calvo et al., 2003)<br />

Variable little or no effect :<br />

C<strong>and</strong>ida oleophila (Aspire), (Colgan, 1997)<br />

volatile substances produced by grape cv. Isabella (Vitis labrusca) (Kulakiotu <strong>and</strong> Sfakiotakis, 2003b) (Kulakiotu<br />

et al., 2004a)<br />

Chitosan, (Faten, 2005)<br />

Calcium (Chardonnet et al., 2000) (Holmes et al., 1998)<br />

Phosphonate (Holmes et al., 1998)<br />

sodium bicarbonate (Karabulut et al., 2005)<br />

78


Appendix 1<br />

Legumes (Fabaceae) (target pathogen = B. cinerea)<br />

Success in field trials<br />

M<br />

Bacteria<br />

Bacillus subtilis K-3 / lupin (Kuptsov et al., 2004)<br />

Pantoea agglomerans / lentil (Huang <strong>and</strong> Erickson, 2002), LRC 954, / lentil (Huang<br />

<strong>and</strong> Erickson, 2005)<br />

Pseudomonas fluorescens, / lentil (Huang <strong>and</strong> Erickson, 2002) LRC 1788 / lentil<br />

(Huang <strong>and</strong> Erickson, 2005)<br />

Fungi + yeasts:<br />

Clonostachys rosea / alfalfa (Li et al., 2004a)<br />

Gliocladium catenulatum, / alfalfa (Li et al., 2004a)<br />

Penicillium aurantiogriseum LRC 2450 / lentil (Huang <strong>and</strong> Erickson, 2005)<br />

Penicillium griseofulvum / lentil (Huang <strong>and</strong> Erickson, 2002)<br />

Trichoderma hamatum / lentil (Huang <strong>and</strong> Erickson, 2002)<br />

Trichoderma harzianum LRC 2428 / lentil (Huang <strong>and</strong> Erickson, 2005)<br />

Trichoderma viride / chickpea (Abha et al., 1999)<br />

Trichoderma atroviride, / alfalfa (Li et al., 2004a)<br />

Trichothecium roseum / alfalfa (Li et al., 2004a)<br />

Mixture: Streptomyces exfoliatus + Trichoderma harzianum / faba bean (Mahmoud et<br />

al., 2004)<br />

B Eucalyptus citriodora + Ipomoea carnea extracts / faba bean (Mahmoud et al., 2004)<br />

O<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

Bacteria<br />

Bacillus subtilis (Saad et al., 2005)<br />

Bacillus megaterium (Saad et al., 2005)<br />

Bacillus cereus (Kishore <strong>and</strong> P<strong>and</strong>e, 2007)<br />

Bacillus macerans BS 153 (Sharga, 1997)<br />

Pantoea agglomerans (Huang <strong>and</strong> Erickson, 2002), LRC 954, (Huang <strong>and</strong> Erickson, 2005)<br />

Pseudomonas fluorescens, (Huang <strong>and</strong> Erickson, 2002) LRC 1788 (Huang <strong>and</strong> Erickson, 2005)<br />

Pseudomonas putida BTP1 (Ongena et al., 2002)<br />

Streptomyces albaduncus (Razak et al., 2000)<br />

Streptomyces griseoplanus (Razak et al., 2000)<br />

Streptomyces violaceus T118 (Ahmad et al., 2002)<br />

Fungi + yeasts:<br />

Botrytis cinerea non-aggressive strains /bean leaves (Weeds et al., 2000)<br />

Chaetomium globosum (Pradeep et al., 2000)<br />

Cladosporium cladosporioides (Jackson et al., 1997)<br />

Epicoccum nigrum, (Sz<strong>and</strong>ala <strong>and</strong> Backhouse, 2001)<br />

Gliocladium roseum (Li et al., 2002) (Sz<strong>and</strong>ala <strong>and</strong> Backhouse, 2001) (Burgess <strong>and</strong> Keane, 1997)<br />

Penicillium brevicompactum (Jackson et al., 1997)<br />

Penicillium aurantiogriseum LRC 2450 (Huang <strong>and</strong> Erickson, 2005)<br />

Penicillium griseofulvum (Huang <strong>and</strong> Erickson, 2002)<br />

Trichoderma (Burgess <strong>and</strong> Keane, 1997)<br />

Trichoderma harzianum (Sz<strong>and</strong>ala <strong>and</strong> Backhouse, 2001), T39 (Bigirimana et al., 1997) (Kapat et al., 1998) (Elad<br />

et al., 2004), LRC 2428 (Huang <strong>and</strong> Erickson, 2005)<br />

Trichoderma viride /pigeon pea (Pradeep et al., 2000), / chickpea (Abha <strong>and</strong> Tripathi, 1999) (Mukherjee et al.,<br />

1997)<br />

Trichoderma hamatum (Huang <strong>and</strong> Erickson, 2002)<br />

extracts from green parts of tomato, potato, rape (Smolinska <strong>and</strong> Kowalska, 2006)<br />

pterocarpan phytoalexin maackiain from chickpea (Stevenson <strong>and</strong> Haware, 1999)<br />

79


Nicot et al. (Appendix for Chapter 1)<br />

Flowers (target pathogen = B. cinerea)<br />

Success in field trials<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

Bacteria<br />

Bacillus amyloliquefaciens / lily (Chiou <strong>and</strong> Wu, 2001)<br />

Bacillus subtilis / rose buds (Tatagiba et al., 1998)<br />

Burkholderia gladioli, / lily (Chiou <strong>and</strong> Wu, 2001)<br />

Pseudomonas sp. 677 /geraldton waxflower (Beasley et al., 2001)<br />

Serratia marcescens strain B2 / cyclamen (Someya et al., 2001)<br />

M<br />

B<br />

O<br />

Bacteria<br />

Bacillus amyloliquefaciens B190 / lily (Chiou <strong>and</strong> Wu, 2003)<br />

Bacillus cereus / lily (Liu et al., 2008)<br />

Bacillus amyloliquefaciens / lily (Chiou <strong>and</strong> Wu, 2001)<br />

Burkholderia gladioli, / lily (Chiou <strong>and</strong> Wu, 2001)<br />

Pseudomonas putida / lily (Liu et al., 2008)<br />

Fungi + yeasts:<br />

Clonostachys rosea /rose (Mor<strong>and</strong>i et al., 2003)<br />

Ulocladium atrum / cyclamen (Köhl et al., 2000) (Köhl et al., 1998)<br />

Variable little or no effect :<br />

Trichoderma harzianum / cyclamen (Minuto et al., 2002) (Minuto et al., 2004)<br />

Fungi + yeasts<br />

Cladosporium spp. / rose (Mor<strong>and</strong>i et al., 1999)<br />

Cladosporium oxysporum, / rose debris + buds (Tatagiba et al., 1998)<br />

Cladosporium cladosporioides / rose buds (Tatagiba et al., 1998)<br />

Clonostachys rosea /rose (Mor<strong>and</strong>i et al., 1999) (Mor<strong>and</strong>i et al., 2006) (Mor<strong>and</strong>i et al., 2001) (Mor<strong>and</strong>i et al.,<br />

2007) (Mor<strong>and</strong>i et al., 2008) (Mor<strong>and</strong>i et al., 2000b) (Mor<strong>and</strong>i et al., 2000a) (Yohalem, 2004) (Yohalem,<br />

2000)<br />

Epicoccum sp. / Geraldton waxflower (Beasley et al., 2001)<br />

Fusarium sp., / Geraldton waxflower (Beasley et al., 2001)<br />

Gliocladium roseum FR136 / rose debris (Tatagiba et al., 1998)<br />

Rhizoctonia (BNR), / geranium (Olson <strong>and</strong> Benson, 2007)<br />

Rhodotorula glutinis PM4 / geranium (Buck <strong>and</strong> Jeffers, 2004) (Buck, 2004)<br />

Rhodotorula graminis, / geranium (Buck, 2004)<br />

Rhodotorula Mucilaginosa / geranium (Buck, 2004)<br />

Trichoderma spp / Geraldton waxflower (Beasley et al., 2001)<br />

Trichoderma harzianum (Trichodex) / Geraldton waxflower (Beasley et al., 2005)<br />

Trichoderma hamatum / statice (Diaz et al., 1999), 382 / geranium (Olson <strong>and</strong> Benson, 2007)<br />

Trichoderma inhamatum, / rose debris (Tatagiba et al., 1998)<br />

Ulocladium atrum / cyclamen (Kessel, 1999) (Kessel et al., 2001) (Kessel et al., 2005) (Köhl <strong>and</strong> Molhoek, 2001)<br />

(Kessel et al., 2002) (Kessel et al., 1999), /lily (Kessel et al., 1999) (Elmer <strong>and</strong> Köhl, 1998) (Kessel et al.,<br />

2001), / geranium (Gerlagh et al., 2001), / rose (Yohalem <strong>and</strong> Kristensen, 2004) (Yohalem, 2004) (Köhl <strong>and</strong><br />

Gerlagh, 1999) (Yohalem et al., 2007) (Yohalem, 2000), / pelargonium (Yohalem et al., 2007)<br />

Variable little or no effect :<br />

Trichoderma hamatum 382 in compost / begonia (Horst et al., 2005)<br />

Trichoderma harzianum preparations (Yohalem, 2000) (Trichodex <strong>and</strong> Supresivit) (Yohalem, 2004)<br />

grapefruit [Citrus paradisi] extract / lily, peony <strong>and</strong> tulip (Orlikowski et al., 2002), / tulips, Gerbera jamesonii <strong>and</strong><br />

carnations (Orlikowski <strong>and</strong> Skrzyoczak, 2003), Biosept 33 SL / tulip (Orlikowski <strong>and</strong> Skrzypczak, 2001)<br />

chitosan / tulips, Gerbera jamesonii <strong>and</strong> carnations (Orlikowski <strong>and</strong> Skrzyoczak, 2003)<br />

80


Appendix 1<br />

Miscellaneous crops (target pathogen = B. cinerea)<br />

Success in field trials<br />

M<br />

Bacteria<br />

Streptomyces griseoviridis (Mycostop) / Pinus sylvestris (Capieau et al., 2001)<br />

(Capieau et al., 2004)<br />

Fungi + yeasts<br />

Gliocladium sp (GlioMix) / Pinus sylvestris (Capieau et al., 2001) (Capieau et al.,<br />

2004)<br />

Gliocladium roseum / Eucalyptus nurseries (Stowasser <strong>and</strong> Ferreira, 1997)<br />

Trichoderma harzianum <strong>and</strong> T. polysporum (Binab TF.WP), / Pinus sylvestris (Capieau<br />

et al., 2001) (Capieau et al., 2004)<br />

Trichoderma viride (Trichosemin 25 PTS (25% Tv), / sunflower (Eva, 2003)<br />

Variable little or no effect :<br />

Penicillium sp. / Eucalyptus nurseries (Stowasser <strong>and</strong> Ferreira, 1997)<br />

Trichoderma harzianum , Trichoderma viride / Eucalyptus nurseries (Stowasser <strong>and</strong><br />

Ferreira, 1997)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

Bacteria<br />

Bacillus spp./ Ginseng (Kim et al., 1997) (Chung et al., 1998)<br />

Bacillus subtilis Cot1 <strong>and</strong> CL27 / Astilbe hybrida, Aster hybrida, Daphne blayana, Photinia fraseri (Li et al., 1998)<br />

Bacillus amyloliquefaciens / oilseed rape (Danielsson et al., 2007)<br />

Bacillus licheniformis / Perilla (Son et al., 2002)<br />

B. megaterium / Perilla (Son et al., 2002)<br />

Cupriavidus campinensis / Arabidopsis thaliana (Schoonbeek et al., 2007)<br />

Erwinia / Ginseng (Kim et al., 1997)<br />

Pseudomonas fluorescens / castor crop (Raoof et al., 2003), WCS374r / Eucalyptus (Ran et al., 2005)<br />

Pseudomonas putida WCS358r / Eucalyptus (Ran et al., 2005)<br />

Streptomyces griseoviridis (Mycostop) / Pinus sylvestris (Capieau et al., 2001) (Capieau et al., 2004)<br />

Fungi + yeasts<br />

Clonostachys (A-10) / Pinus radiate, Eucalyptus globulus (Molina Mercader et al., 2006)<br />

Cylindrocladium spp. / Eucalyptus (Fortes et al., 2007)<br />

Gliocladium sp (GlioMix) / Pinus sylvestris (Capieau et al., 2001) (Capieau et al., 2004)<br />

Gliocladium roseum / Picea mariana (Zhang et al., 1996)<br />

Trichoderma spp. / Eucalyptus (Fortes et al., 2007)<br />

Trichoderma harzianum / Arabidopsis thaliana (Korolev <strong>and</strong> Elad, 2004) / castor crop (Tirupathi et al., 2006)<br />

(Raoof et al., 2003) (Bhattiprolu <strong>and</strong> Bhattiprolu, 2006), / hazelnut (Machowicz-Stefaniak et al., 2004)<br />

Trichoderma viride / castor crop (Tirupathi et al., 2006) (Raoof et al., 2003) (Bhattiprolu <strong>and</strong> Bhattiprolu, 2006), T<br />

13-82 (Trichodermin-BL) / flax (Pristchepa et al., 2006), / hazelnut (Machowicz-Stefaniak et al., 2004)<br />

Trichoderma harzianum <strong>and</strong> T. polysporum (Binab TF.WP), / Pinus sylvestris (Capieau et al., 2001) (Capieau et<br />

al., 2004)<br />

B Mature leaf extract of Lantana camera / castor crop (Bhattiprolu <strong>and</strong> Bhattiprolu, 2006)<br />

O Cryptogein, elicitor secreted by Phytophthora cryptogea / tobacco (Blancard et al., 1998)<br />

81


Nicot et al. (Appendix for Chapter 1)<br />

Successful inhibition in vitro (target pathogen = B. cinerea)<br />

Bacteria<br />

Alcaligenes faecalis (Honda et al., 1999)<br />

Azotobacter (Khan et al., 2006)<br />

Bacillus sp mutant strain (Bernal et al., 2002)<br />

Bacillus amyloliquefaciens CCMI 1051 (Caldeira et al., 2007), BL-3 (Lee et al., 2001)<br />

Bacillus brevis [Brevibacillus brevis](Gu et al., 2001) (Edwards <strong>and</strong> Seddon, 2001)<br />

Bacillus cereus (Guven et al., 2008) (Huang <strong>and</strong> Chen, 2004)<br />

Bacillus circulans (Paul et al., 1997)<br />

Bacillus licheniformis W10 (Ji et al., 2007) (Gu et al., 2001)<br />

Bacillus subtilis (Gu et al., 2001) (Chen et al., 2008) (Chen et al., 2004b) (Zhao et al., 2003) (Chen et al., 2004a) (Zakharchenko et al., 2007) (Gu et al., 2004) (Novikova et al., 2003) (Hsieh et al.,<br />

2003) (Feng et al., 2003) (Liu et al., 2007b)<br />

Bacillus thuringiensis CMB26 (Kim et al., 2004)<br />

Paenibacillus polymyxa BL-4 (Lee et al., 2001)<br />

Photorhabdus luminescens ATCC 29999 (Hsieh et al., 2004)<br />

Plutella xylostella (Indirag<strong>and</strong>hi et al., 2008)<br />

Pseudomonas (Lian et al., 2007) (Cornea et al., 2007) (Kim et al., 2000) (Woo et al., 2002) (Bryk et al., 2004)<br />

Pseudomonas aeruginosa PUPa3 (Kumar et al., 2005)<br />

Pseudomonas antimicrobica (Walker et al., 2001)<br />

Pseudomonas corrugata strain P94 (Guo et al., 2007)<br />

Pseudomonas fluorescens (Nian et al., 2007) (Khan <strong>and</strong> Almas, 2002)<br />

Pseudomonas putida (Cornea et al., 2007), Cha 94 (Lee et al., 2001)<br />

M<br />

Pseudomonas syringae pv. syringae strain B359 (Fogliano et al., 2002)<br />

Lysobacter capsici sp. Nov (Park et al., 2008)<br />

Serratia plymuthica C48 (Frankowski et al., 2001a) (Frankowski et al., 2001b)<br />

Streptomyces + actinomycetes (Tian et al., 2004b) (Nadkarni et al., 1998) (Liang et al., 2007, Yan et al., 2004) (Han et al., 2004) (Liang et al., 2007) (Long et al., 2005) (Stoppacher et al., 2007) (Kim<br />

et al., 2007b)<br />

Streptomyces ahygroscopicus (Sun et al., 2003) (Yang et al., 2007) (Zhao et al., 1998)<br />

Streptomyces luteogriseus ECO 00001 (Li et al., 2008)<br />

Streptomyces rimosus subsp. daheishanensis strain MY02 (Liu et al., 2004)<br />

Streptomyces roseoflavus strain LS-A24 (Park et al., 2006)<br />

Tripterygiun wilfordii (Shentu et al., 2006)<br />

Xenorhabdus sp. strain CB43 (Xiao et al., 2005)<br />

Xenorhabdus nematophilus YL001 (Liu et al., 2006)<br />

marine bacteria (Nie et al., 2007)<br />

Fungi + yeasts<br />

Acremonium strictum (Kim et al., 2002)<br />

Aspergillus fumigatus <strong>and</strong> A. terreus (El-Zayat, 2008)<br />

Aspergillus clavatonanicus (Zhang et al., 2008)<br />

Cryptococcus laurentii (isolate LS-28) (Castoria et al., 1997)<br />

Fusarium lateritium extracts (Anitha, 2006)<br />

Fusarium semitectum (Altomare et al., 2000)<br />

82


Appendix 1<br />

Lecanicillium muscarium (Fenice <strong>and</strong> Gooday, 2006)<br />

Muscodor albus (Mercier <strong>and</strong> Jimenez, 2007)<br />

Rhodotorula (Calvente et al., 2001)<br />

Rhodotorula glutinis (Castoria et al., 1997)<br />

Trichoderma (Pezet et al., 1999) (Chen et al., 2005) (Liu et al., 2007a)<br />

Trichoderma viride (Machowicz-Stefaniak, 1998) T15 <strong>and</strong> T17 (Silva-Ribeiro et al., 2001)<br />

Trichoderma atroviride (Navazio et al., 2007) (Klemsdal et al., 2006) GMO (Brunner et al., 2005)<br />

Trichoderma harzianum (Dana et al., 2001) (Ding et al., 2002) (Limon et al., 2004) (Mach et al., 1999) T5A, T1 <strong>and</strong> T1A (Silva-Ribeiro et al., 2001) (Lee et al., 2001), T-33 (Witkowska <strong>and</strong> Maj,<br />

2002)<br />

Trichoderma hamatum C-1 (Witkowska <strong>and</strong> Maj, 2002)<br />

Trichoderma reesei [T. longibractiatum] M7-1 (Witkowska <strong>and</strong> Maj, 2002)<br />

Oomycetes<br />

Pythium bifurcatum (Paul, 2003)<br />

Pythium citrinum (Paul, 2004)<br />

Pythium contiguanum (Paul, 2000)<br />

Pythium radiosum (Paul, 1999a)<br />

B<br />

O<br />

Antifungal metabolites of endophytic fungus, A10 (Qian et al., 2006)<br />

antimicrobial peptide Ar-AMP from Amaranthus retroflexus L. (Lipkin, Anisimova et al. 2005)<br />

basic haem-peroxidase (WP1) from wheat (Triticum aestivum) kernels (Caruso, Chilosi et al. 2001)<br />

Extracts from Bazzania trilobata, Diplophyllum albicans, Sphagnum quinquefarium, Dicranodontium denudatum <strong>and</strong> Hylocomium splendens (Tadesse, Steiner et al. 2003)<br />

Extracts of Sophora flavescens (Zheng et al., 2000) (Zheng et al., 1999)<br />

Irpex lacteus (Fr.) Fr., Trametes versicolor (L.:Fr.) Pilat, <strong>and</strong> Chondrostereum purpureum (Pers.:Fr.) Pouzar (White <strong>and</strong> Traquair, 2006)<br />

Pyrrolnitrin, produced by several bacteria (Okada et al., 2005)<br />

Ten sesquiterpenes <strong>and</strong> six diterpenes from Pilgerodendron uviferum wood <strong>and</strong> bark (Solis et al., 2004)<br />

chlorine dioxide (Zoffoli et al., 2005)<br />

earthworm (Eisenia fetida) polysaccharides (Wang et al., 2007b)<br />

chitosan derivatives (Rabea et al., 2003)<br />

83


Nicot et al. (Appendix for Chapter 1)<br />

References on bio<strong>control</strong> <strong>against</strong> Botrytis<br />

Abada, K. A., Wahdan, H. M., <strong>and</strong> Abdel-Aziz, M. A. (2002). Fungi associated with fruit-rots of fresh strawberry plantations <strong>and</strong> some trials of their <strong>control</strong>. Bulletin of Faculty of Agriculture, Cairo<br />

University 53, 309-326.<br />

Abdelghani, E. Y., Bala, K., <strong>and</strong> Paul, B. (2004). Characterisation of Pythium paroec<strong>and</strong>rum <strong>and</strong> its antagonism towards Botrytis cinerea, the causative agent of grey mould disease of grape. FEMS<br />

Microbiology Letters 230, 177-183.<br />

Abha, A., <strong>and</strong> Tripathi, H. S. (1999). Biological <strong>and</strong> chemical <strong>control</strong> of Botrytis gray mould of chickpea. Journal of Mycology <strong>and</strong> Plant Pathology 29, 52-56.<br />

Abha, A., Tripathi, H. S., <strong>and</strong> Rathi, Y. P. S. (1999). Integrated management of grey mould of chickpea. Journal of Mycology <strong>and</strong> Plant Pathology 29, 116-117.<br />

Acar, O., Aki, C., <strong>and</strong> Erdugan, H. (2008). Fungal <strong>and</strong> bacterial diseases <strong>control</strong> with ElexaTM plant booster. Fresenius Environmental Bulletin 17, 797-802.<br />

Achbani, E. H., Mounir, R., Jaafari, S., Douira, A., Benbouazza, <strong>and</strong> Jijakli, M. H. (2005). Selection of antagonists of postharvest apple parasites: Penicillium expansum <strong>and</strong> Botrytis cinerea. Communications<br />

in Agricultural <strong>and</strong> Applied Biological Sciences 70, 143-149.<br />

Adikaram, N. K. B., Joyce, D. C., <strong>and</strong> Terry, L. A. (2002). Bio<strong>control</strong> activity <strong>and</strong> induced resistance as a possible mode of action for Aureobasidium pullulans <strong>against</strong> grey mould of strawberry fruit.<br />

Australasian Plant Pathology 31, 223-229.<br />

Ahmad, M. S., Abou-Zeid, N. M., Swelim, M. A., Yassin, M. H., <strong>and</strong> Daboor, S. M. (2002). Characterization of an antibiotic produced by Streptomyces violaceus T118 <strong>and</strong> its effect in <strong>control</strong>ling chocolate<br />

spot disease of Faba bean plant. Egyptian Journal of Microbiology 37, 197-212.<br />

Allan, E. J., Lazaraki, I., Dertzakis, D., Woodward, S., Seddon, B., <strong>and</strong> Schmitt, A. (2003). Integrated <strong>biological</strong> <strong>control</strong> of powdery mildew <strong>and</strong> grey mould of cucumber <strong>and</strong> tomato using Brevibacillus brevis<br />

combinations. In "The BCPC International Congress: Crop Science <strong>and</strong> Technology, Volumes 1 <strong>and</strong> 2. Proceedings of an international congress held at the SECC, Glasgow, Scotl<strong>and</strong>, UK, 10-12<br />

November 2003", pp. 469-474.<br />

Altomare, C., Perrone, G., Zonno, M. C., Evidente, A., Pengue, R., Fanti, F., <strong>and</strong> Polonelli, L. (2000). Biological characterization of fusapyrone <strong>and</strong> deoxyfusapyrone, two bioactive secondary metabolites of<br />

Fusarium semitectum. Journal of Natural Products 63, 1131-1135.<br />

Amborabe, E., Aziz, A., Trotel-Aziz, P., Quantinet, D., Dhuicq, L., <strong>and</strong> Vernet, G. (2004). Chitosan <strong>against</strong> Botrytis cinerea on vineyard. Phytoma, 26-29.<br />

Anderson, J. A., Filonow, A. B., <strong>and</strong> Vishniac, H. S. (1997). Cryptococcus humicola inhibits development of lesions in 'Golden Delicious' apples. HortScience 32, 1235-1236.<br />

Anitha, R. (2006). Antifungal activity of Fusarium lateritium extracts. Indian Journal of Microbiology 46, 73-75.<br />

Antoniacci, L., Cobelli, L., Paoli, E. d., <strong>and</strong> Gengotti, S. (2000). Open field <strong>control</strong> trials <strong>against</strong> strawberry grey mould. Informatore Fitopatologico 50, 45-51.<br />

Apablaza, H. G., <strong>and</strong> Jalil R, C. (1998). Trichoderma harzianum <strong>and</strong> pyrimethanil efficiency to <strong>control</strong> tomato gray mold (Botrytis cinerea) in greenhouse production. Ciencia e Investigacion Agraria 25, 51-<br />

58.<br />

Archbold, D. D., Hamilton-Kemp, T. R., Langlois, B. E., <strong>and</strong> Barth, M. M. (1997). Natural volatile compounds <strong>control</strong> Botrytis on strawberry fruit. Acta Horticulturae, 923-930.<br />

Arras, G., <strong>and</strong> Arru, S. (1999). Integrated <strong>control</strong> of postharvest citrus decay <strong>and</strong> induction of phytoalexins by Debaryomyces hansenii. Advances in Horticultural Science 13, 76-81.<br />

Audenaert, K., Damme, A. v., Cornelis, P., Cornelis, T., <strong>and</strong> Hofte, M. (2002). Induced resistance by Pseudomonas aeruginosa 7NSK2: bacterial determinants <strong>and</strong> reactions in the plant. Bulletin OILB/SROP<br />

25, 223-226.<br />

Bajji, M., <strong>and</strong> Jijakli, M. H. (2007). Wound age effect on the efficacy of C<strong>and</strong>ida oleophila strain O <strong>against</strong> post-harvest decay of apple fruits. Bulletin OILB/SROP 30, 279-282.<br />

Barakat, R. M., <strong>and</strong> Al-Masri, M. I. (2005). Biological <strong>control</strong> of gray mold disease (Botrytis cinerea) on tomato <strong>and</strong> bean plants by using local isolates of Trichoderma harzianum. Dirasat. Agricultural<br />

Sciences 32, 145-156.<br />

Bardin, M., Fargues, J., Couston, L., Troulet, C., Philippe, G., <strong>and</strong> Nicot, P. C. (2004a). Combined <strong>biological</strong> <strong>control</strong> <strong>against</strong> 3 bioaggressors of tomato. PHM Revue Horticole, 36-39.<br />

Bardin, M., Fargues, J., Couston, L., Troulet, C., Philippe, G., <strong>and</strong> Nicot, P. C. (2004b). Compatibility of intervention to <strong>control</strong> grey mould, powdery mildew <strong>and</strong> whitefly on tomato, using three <strong>biological</strong><br />

methods. Bulletin OILB/SROP 27, 5-9.<br />

Bardin, M., Fargues, J., <strong>and</strong> Nicot, P. C. (2008). Compatibility between biopesticides used to <strong>control</strong> grey mould, powdery mildew <strong>and</strong> whitefly on tomato. Biological Control 46, 476-483.<br />

Barka, E. A., Gognies, S., Nowak, J., Audran, J. C., <strong>and</strong> Belarbi, A. (2002). Inhibitory effect of endophyte bacteria on Botrytis cinerea <strong>and</strong> its influence to promote the grapevine growth. Biological Control 24,<br />

135-142.<br />

Batta, Y. A. (2004). Postharvest <strong>biological</strong> <strong>control</strong> of apple gray mold by Trichoderma harzianum Rifai formulated in an invert emulsion. Crop Protection 23, 19-26.<br />

Batta, Y. A. (2007). Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai. Postharvest Biology <strong>and</strong> Technology 43, 143-150.<br />

Beasley, D. R., Joyce, D. C., Coates, L. M., <strong>and</strong> Wearing, A. H. (2001). Saprophytic microorganisms with potential for <strong>biological</strong> <strong>control</strong> of Botrytis cinerea on Geraldton waxflower flowers. Australian<br />

Journal of Experimental Agriculture 41, 697-703.<br />

Beasley, D. R., Joyce, D. C., Wearing, A. H., <strong>and</strong> Coates, L. M. (2005). Bees as bio<strong>control</strong> agent delivery vectors: a preliminary study for Geraldton waxflower flowers. Acta Horticulturae, 421-424.<br />

84


Appendix 1<br />

Bedini, S., Bagnoli, G., Sbrana, C., Leporini, C., Tola, E., Dunne, C., Filippi, C., D'Andrea, F., O'Gara, F., <strong>and</strong> Nuti, M. P. (1999). Pseudomonads isolated from within fruit bodies of Tuber borchii are capable<br />

of producing <strong>biological</strong> <strong>control</strong> or phytostimulatory compounds in pure culture. Symbiosis (Rehovot) 26, 223-236.<br />

Bello, G. d., Monaco, C., Rollan, M. C., Lampugnani, G., Arteta, N., Abramoff, C., Ronco, L., <strong>and</strong> Stocco, M. (2008). Bio<strong>control</strong> of postharvest grey mould on tomato by yeasts. Journal of Phytopathology<br />

156, 257-263.<br />

Benhow, J. M., <strong>and</strong> Sugar, D. (1997). High CO2 CA storage combined with bio<strong>control</strong> agents to reduce postharvest decay of pear. Postharvest Horticulture Series - Department of Pomology, University of<br />

California, 270-276.<br />

Benuzzi, M., Ladurner, E., <strong>and</strong> Fiorentini, F. (2006). Efficacy of Serenade, new Bacillus subtilis-based biofungicide, in <strong>control</strong>ling the pathogenic microorganisms of crops. In "Giornate Fitopatologiche 2006,<br />

Riccione", pp. 429-436.<br />

Bernal, G., Illanes, A., <strong>and</strong> Ciampi, L. (2002). Isolation <strong>and</strong> partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity <strong>against</strong> plant pathogenic agents. EJB, Electronic<br />

Journal of Biotechnology 5, 1-7.<br />

Berto, P., Jijakli, M. H., <strong>and</strong> Lepoivre, P. (2001). Possible role of colonization <strong>and</strong> cell wall-degrading enzymes in the differential ability of three Ulocladium atrum strains to <strong>control</strong> Botrytis cinerea on<br />

necrotic strawberry leaves. Phytopathology 91, 1030-1036.<br />

Bhattiprolu, S. L., <strong>and</strong> Bhattiprolu, G. R. (2006). Management of castor grey rot disease using botanical <strong>and</strong> <strong>biological</strong> agents. Indian Journal of Plant Protection 34, 101-104.<br />

Bigirimana, J., Meyer, G. d., Poppe, J., Elad, Y., <strong>and</strong> Hofte, M. (1997). Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Mededelingen - Faculteit L<strong>and</strong>bouwkundige<br />

en Toegepaste Biologische Wetenschappen, Universiteit Gent 62, 1001-1007.<br />

Bilu, A., David, D. R., Dag, A., Shafir, S., Abu-Toamy, M., <strong>and</strong> Elad, Y. (2004). Using honeybees to deliver a bio<strong>control</strong> agent for the <strong>control</strong> of strawberry Botrytis cinerea-fruit rots. Bulletin OILB/SROP 27,<br />

17-21.<br />

Blancard, D., Coubard, C., Bonnet, P., Lenoir, M., <strong>and</strong> Ricci, P. (1998). Induction of an unspecific protection <strong>against</strong> 5 pathogenic fungi in stem <strong>and</strong> leaves of tobacco plants elicited by cryptogein. Annales du<br />

Tabac. Section 2, 11-20.<br />

Bocchese, C. A. C., Lisboa, B. B., Silveira, J. R. P., Vargas, L. K., Radin, B., <strong>and</strong> Oliveira, A. M. R. d. (2007). Selection of antagonists for the <strong>biological</strong> <strong>control</strong> of Botrytis cinerea in tomato grown under<br />

protected cultivation. Pesquisa Agropecuaria Gaucha 13, 29-38.<br />

Boff, P. (2001). Epidemiology <strong>and</strong> <strong>biological</strong> <strong>control</strong> of grey mould in annual strawberry crops. In "Epidemiology <strong>and</strong> <strong>biological</strong> <strong>control</strong> of grey mould in annual strawberry crops", pp. vii + 128 pp.<br />

Boff, P., Köhl, J., Gerlagh, M., <strong>and</strong> Kraker, J. d. (2002a). Bio<strong>control</strong> of grey mould by Ulocladium atrum applied at different flower <strong>and</strong> fruit stages of strawberry. BioControl 47, 193-206.<br />

Boff, P., Köhl, J., Jansen, M., Horsten, P. J. F. M., Plas, C. L. v. d., <strong>and</strong> Gerlagh, M. (2002b). Biological <strong>control</strong> of gray mold with Ulocladium atrum in annual strawberry crops. Plant Disease 86, 220-224.<br />

Boff, P., Kraker, J. d., Bruggen, A. H. C. v., Gerlagh, M., <strong>and</strong> Köhl, J. (2001). Conidial persistence <strong>and</strong> competitive ability of the antagonist Ulocladium atrum on strawberry leaves. Bio<strong>control</strong> Science <strong>and</strong><br />

Technology 11, 623-636.<br />

Bonaterra, A., Frances, J. M., Moreno, M. C., Badosa, E., <strong>and</strong> Montesinos, E. (2004). Post-harvest <strong>biological</strong> <strong>control</strong> of a wide range of fruit types <strong>and</strong> pathogens by Pantoea agglomerans EPS125. Bulletin<br />

OILB/SROP 27, 357-360.<br />

Borregaard, S. (2000). Supresivit (Trichoderma harzianum): "Evaluation of effect-trials". DJF Rapport, Havebrug, 63-65.<br />

Brunner, K., Zeilinger, S., Ciliento, R., Woo, S. L., Lorito, M., Kubicek, C. P., <strong>and</strong> Mach, R. L. (2005). Improvement of the fungal bio<strong>control</strong> agent Trichoderma atroviride to enhance both antagonism <strong>and</strong><br />

induction of plant systemic disease resistance. Applied <strong>and</strong> Environmental Microbiology 71, 3959-3965.<br />

Bryk, H., Dyki, B., <strong>and</strong> Sobiczewski, P. (2004). Inhibitory effect of Pseudomonas spp. on the development of Botrytis cinerea <strong>and</strong> Penicillium expansum. Plant Protection Science 40, 128-134.<br />

Bryk, H., Sobiczewski, P., <strong>and</strong> Berczynski, S. (1999). Evaluation of protective activity of epiphytic bacteria <strong>against</strong> gray mold (Botrytis cinerea) <strong>and</strong> blue mold (Penicillium expansum) on apples.<br />

Phytopathologia Polonica, 69-79.<br />

Buck, J. W. (2004). Combinations of fungicides with phylloplane yeasts for improved <strong>control</strong> of Botrytis cinerea on geranium seedlings. Phytopathology 94, 196-202.<br />

Buck, J. W., <strong>and</strong> Jeffers, S. N. (2004). Effect of pathogen aggressiveness <strong>and</strong> vinclozolin on efficacy of Rhodotorula glutinis PM4 <strong>against</strong> Botrytis cinerea on geranium leaf disks <strong>and</strong> seedlings. Plant Disease<br />

88, 1262-1268.<br />

Burgess, D. R., <strong>and</strong> Keane, P. J. (1997). Biological <strong>control</strong> of Botrytis cinerea on chickpea seed with Trichoderma spp. <strong>and</strong> Gliocladium roseum: indigenous versus non-indigenous isolates. Plant Pathology<br />

46, 910-918.<br />

Caldeira, A. T., Feio, S. S., Arteiro, J. M. S., <strong>and</strong> Roseiro, J. C. (2007). Bacillus amyloliquefaciens CCMI 1051 in vitro activity <strong>against</strong> wood contaminant fungi. Annals of Microbiology 57, 29-33.<br />

Calvente, V., Orellano, M. E. d., Sansone, G., Benuzzi, D., <strong>and</strong> Sanz de Tosetti, M. I. (2001). Effect of nitrogen source <strong>and</strong> pH on siderophore production by Rhodotorula strains <strong>and</strong> their application to<br />

bio<strong>control</strong> of phytopathogenic moulds. Journal of Industrial Microbiology & Biotechnology 26, 226-229.<br />

Calvo, J., Calvente, V., Orellano, M. E. d., Benuzzi, D., <strong>and</strong> Sanz de Tosetti, M. I. (2003). Improvement in the bio<strong>control</strong> of postharvest diseases of apples with the use of yeast mixtures. BioControl 48, 579-<br />

593.<br />

85


Nicot et al. (Appendix for Chapter 1)<br />

Calvo, J., Calvente, V., Orellano, M. E. d., Benuzzi, D., <strong>and</strong> Sanz de Tosetti, M. I. (2007). Biological <strong>control</strong> of postharvest spoilage caused by Penicillium expansum <strong>and</strong> Botrytis cinerea in apple by using the<br />

bacterium Rahnella aquatilis. International Journal of Food Microbiology 113, 251-257.<br />

Capieau, K., Stenlid, J., <strong>and</strong> Stenstrom, E. (2004). Potential for <strong>biological</strong> <strong>control</strong> of Botrytis cinerea in Pinus sylvestris seedlings. Sc<strong>and</strong>inavian Journal of Forest Research 19, 312-319.<br />

Capieau, K., Stenstrom, E., <strong>and</strong> Stenlid, J. (2001). Biological <strong>control</strong> of Botrytis cinerea of pine seedlings in a forest nursery in Sweden. Bulletin OILB/SROP 24, 185.<br />

Card, S., Jaspers, M. V., Walter, M., <strong>and</strong> Stewart, A. (2002). Evaluation of micro-organisms for bio<strong>control</strong> of grey mould on lettuce. In "New Zeal<strong>and</strong> Plant Protection Volume 55, 2002. Proceedings of a<br />

conference, Centra Hotel, Rotorua, New Zeal<strong>and</strong>, 13-15 August 2002", pp. 197-201.<br />

Carisse, O., Roll<strong>and</strong>, D., <strong>and</strong> Tremblay, D. M. (2006). Effect of Microsphaeropsis ochracea on production of sclerotia-borne <strong>and</strong> airborne conidia of Botrytis squamosa. BioControl 51, 107-126.<br />

Castoria, R., Curtis, F. d., Lima, G., Caputo, L., Pacifico, S., <strong>and</strong> Cicco, V. d. (2001). Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: study on its modes of action.<br />

Postharvest Biology <strong>and</strong> Technology 22, 7-17.<br />

Castoria, R., Curtis, F. d., Lima, G., <strong>and</strong> Cicco, V. d. (1997). beta -1,3-Glucanase activity of two saprophytic yeasts <strong>and</strong> possible mode of action as bio<strong>control</strong> agents <strong>against</strong> postharvest diseases. Postharvest<br />

Biology <strong>and</strong> Technology 12, 293-300.<br />

Cayuela, M. L., Millner, P. D., Meyer, S. L. F., <strong>and</strong> Roig, A. (2008). Potential of olive mill waste <strong>and</strong> compost as biobased pesticides <strong>against</strong> weeds, fungi, <strong>and</strong> nematodes. Science of the Total Environment<br />

399, 11-18.<br />

Chardonnet, C. O., Sams, C. E., Trigiano, R. N., <strong>and</strong> Conway, W. S. (2000). Variability of three isolates of Botrytis cinerea affects the inhibitory effects of calcium on this fungus. Phytopathology 90, 769-774.<br />

Chaves, N., <strong>and</strong> Wang, A. (2004). Control of gray mold (Botrytis cinerea) in strawberry with Gliocladium roseum. Agronomia Costarricense 28, 73-85.<br />

Chen, C., Wang, Y., <strong>and</strong> Huang, C. (2004a). Enhancement of the antifungal activity of Bacillus subtilis F29-3 by the chitinase encoded by Bacillus circulans chiA gene. Canadian Journal of Microbiology 50,<br />

451-454.<br />

Chen, H., Chen, J., Kan, G., <strong>and</strong> Li, H. (2005). Mutation of Trichoderma in tolerance to pyrimethanil <strong>and</strong> induction of related protein. Acta Phytophylacica Sinica 32, 77-80.<br />

Chen, H., Xiao, X., Wang, J., Wu, L., Zheng, Z., <strong>and</strong> Yu, Z. (2008). Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination <strong>and</strong> hyphal growth of the plant pathogen, Botrytis<br />

cinerea. Biotechnology Letters 30, 919-923.<br />

Chen, L., Tan, G., <strong>and</strong> Ding, K. (2004b). Inhibiting effect of Bacillus subtilis on four Botrytis cinerea. Journal of Fungal Research 2, 44-47.<br />

Cherif, M., <strong>and</strong> Boubaker, A. (1998). Effects of cultural practices, fungicides <strong>and</strong> bio<strong>control</strong> agents on Botrytis bunch rot of grapes. Bulletin OILB/SROP 21, 41-51.<br />

Chiou, A. L., <strong>and</strong> Wu, W. S. (2001). Isolation, identification <strong>and</strong> evaluation of bacterial antagonists <strong>against</strong> Botrytis elliptica on lily. Journal of Phytopathology 149, 319-324.<br />

Chiou, A. L., <strong>and</strong> Wu, W. S. (2003). Formulation of Bacillus amyloliquefaciens B190 for <strong>control</strong> of lily grey mould (Botrytis elliptica). Journal of Phytopathology 151, 13-18.<br />

Chung, H., Chung, E., <strong>and</strong> Lee, Y. (1998). Biological <strong>control</strong> of postharvest root rots of ginseng. Korean Journal of Plant Pathology 14, 268-277.<br />

Cirvilleri, G., Catara, V., Bella, P., <strong>and</strong> Coco, V. (1999). Evaluation of yeasts for <strong>biological</strong> <strong>control</strong> of grey mould on table grape. Phytophaga (Palermo) 9, 89-96.<br />

Colgan, R. J. (1997). Reducing the reliance on post-harvest fungicides to <strong>control</strong> storage rots of apples <strong>and</strong> pears. Bulletin OILB/SROP 20, 69-76.<br />

Cook, D. W. M. (2002a). Effect of formulated yeast in suppressing the liberation of Botrytis cinerea conidia. Plant Disease 86, 1265-1270.<br />

Cook, D. W. M. (2002b). A laboratory simulation for vectoring of Trichosporon pullulans by conidia of Botrytis cinerea. Phytopathology 92, 1293-1299.<br />

Cornea, C. P., Lupescu, I., Voaides, C., Groposila, D., Ciuca, M., Eremia, M., Popa, G., <strong>and</strong> Ilie, B. (2007). Polyhydroxyalkanoates biosynthesis in new bacterial strains with antimicrobial properties. Bulletin<br />

of University of Agricultural Sciences <strong>and</strong> Veterinary Medicine Cluj-Napoca. Animal Science <strong>and</strong> Biotechnologies 63/64, 540.<br />

Cota, L. V., Maffia, L. A., <strong>and</strong> Mizubuti, E. S. G. (2008). Brazilian isolates of Clonostachys rosea: colonization under different temperature <strong>and</strong> moisture conditions <strong>and</strong> temporal dynamics on strawberry<br />

leaves. Letters in Applied Microbiology 46, 312-317.<br />

Cotes, A. M. (2001). Bio<strong>control</strong> of fungal plant pathogens - from the discovery of potential bio<strong>control</strong> agents to the implementation of formulated products. Bulletin OILB/SROP 24, 43-47.<br />

Dana, M., Benitez, T., Kubicek, C. P., <strong>and</strong> Pintor-Toro, J. A. (2001). Chitinase 33 gene expression in Trichoderma harzianum during mycoparasitism. Bulletin OILB/SROP 24, 363.<br />

Danielsson, J., Reva, O., <strong>and</strong> Meijer, J. (2007). Protection of oilseed rape (Brassica napus) toward fungal pathogens by strains of plant-associated Bacillus amyloliquefaciens. Microbial Ecology 54, 134-140.<br />

Daulagala, P. W. H. K. P., <strong>and</strong> Allan, E. J. (2003). L-form bacteria of Pseudomonas syringae pv. phaseolicola induce chitinases <strong>and</strong> enhance resistance to Botrytis cinerea infection in Chinese cabbage.<br />

Physiological <strong>and</strong> Molecular Plant Pathology 62, 253-263.<br />

Decognet, V., <strong>and</strong> Nicot, P. (1999). Effects of fungicides on a Fusarium sp. <strong>biological</strong> <strong>control</strong> agent of Botrytis cinerea stem infections in the perspective of an integrated management of fungal diseases in<br />

greenhouse tomatoes. Bulletin OILB/SROP 22, 49-52.<br />

Decognet, V., Trottin-Caudal, Y., Fournier, C., Leyre, J. M., <strong>and</strong> Nicot, P. (1999). Protection of stem wounds <strong>against</strong> Botrytis cinerea in heated tomato greenhouses with a strain of Fusarium sp. Bulletin<br />

OILB/SROP 22, 53-56.<br />

Diaz, A., Poveda, D. C., <strong>and</strong> Cotes, A. M. (2007). Selection of crude fungal extracts with potential of <strong>control</strong> of Botrytis cinerea in tomato (Lycopersicon esculentum Mill.). Bulletin OILB/SROP 30, 49-53.<br />

Diaz, N. C., Barrera, M. J., <strong>and</strong> Granada, E. G. d. (1999). Controlling Botrytis cinerea Pers. in statice (Limonium sinuatum Mill.) 'Midnight Blue' cultivar. Acta Horticulturae, 235-238.<br />

86


Appendix 1<br />

Dik, A., <strong>and</strong> Wubben, J. (2001). Biological <strong>control</strong> of Botrytis cinerea in greenhouse crops. Bulletin OILB/SROP 24, 49-52.<br />

Dik, A. J., <strong>and</strong> Elad, Y. (1999). Comparison of antagonists of Botrytis cinerea in greenhouse-grown cucumber <strong>and</strong> tomato under different climatic conditions. European Journal of Plant Pathology 105, 123-<br />

137.<br />

Dik, A. J., Koning, G., <strong>and</strong> Köhl, J. (1999). Evaluation of microbial antagonists for <strong>biological</strong> <strong>control</strong> of Botrytis cinerea stem infection in cucumber <strong>and</strong> tomato. European Journal of Plant Pathology 105,<br />

115-122.<br />

Ding, Z., Liu, F., <strong>and</strong> Mu, L. (2002). UV-induced resistant strains of Trichoderma harzianum to procymidone. Chinese Journal of Biological Control 18, 75-78.<br />

Droby, S., Wisniewski, M., El-Ghaouth, A., <strong>and</strong> Wilson, C. (2003). Influence of food additives on the <strong>control</strong> of postharvest rots of apple <strong>and</strong> peach <strong>and</strong> efficacy of the yeast-based bio<strong>control</strong> product Aspire.<br />

Postharvest Biology <strong>and</strong> Technology 27, 127-135.<br />

Duraisamy, S., Ciavorella, A., Spadaro, D., Garibaldi, A., <strong>and</strong> Gullino, M. L. (2008). Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata <strong>and</strong> Penicillium expansum<br />

in apples through iron depletion. Postharvest Biology <strong>and</strong> Technology 49, 121-128.<br />

Edwards, S. G., <strong>and</strong> Seddon, B. (2001). Mode of antagonism of Brevibacillus brevis <strong>against</strong> Botrytis cinerea in vitro. Journal of Applied Microbiology 91, 652-659.<br />

El-Ghaouth, A., Smilanick, J. L., Brown, G. E., Ippolito, A., <strong>and</strong> Wilson, C. L. (2001a). Control of decay of apple <strong>and</strong> citrus fruits in semicommercial tests with C<strong>and</strong>ida saitoana <strong>and</strong> 2-deoxy-D-glucose.<br />

Biological Control 20, 96-101.<br />

El-Ghaouth, A., Smilanick, J. L., <strong>and</strong> Wilson, C. L. (2000a). Enhancement of the performance of C<strong>and</strong>ida saitoana by the addition of glycolchitosan for the <strong>control</strong> of postharvest decay of apple <strong>and</strong> citrus<br />

fruit. Postharvest Biology <strong>and</strong> Technology 19, 103-110.<br />

El-Ghaouth, A., Smilanick, J. L., Wisniewski, M., <strong>and</strong> Wilson, C. L. (2000b). Improved <strong>control</strong> of apple <strong>and</strong> citrus fruit decay with a combination of C<strong>and</strong>ida saitoana <strong>and</strong> 2-deoxy-D-glucose. Plant Disease<br />

84, 249-253.<br />

El-Ghaouth, A., Wilson, C., <strong>and</strong> Wisniewski, M. (2001b). Evaluation of two bio<strong>control</strong> products, Bio-Coat <strong>and</strong> Biocure, for the <strong>control</strong> of postharvest decay of pome <strong>and</strong> citrus fruit. Bulletin OILB/SROP 24,<br />

161-165.<br />

El-Ghaouth, A., Wilson, C., <strong>and</strong> Wisniewski, M. (2001c). Induction of systemic resistance in apple by the yeast antagonist C<strong>and</strong>ida saitoana. Bulletin OILB/SROP 24, 309-312.<br />

El-Neshawy, S., Osman, N., <strong>and</strong> Okasha, K. (1999). Biological <strong>control</strong> of neck rot <strong>and</strong> black mould of onion. Egyptian Journal of Agricultural Research 77, 125-137.<br />

El-Neshawy, S. M., <strong>and</strong> El-Morsy, F. M. (2003). Control of gray mold of grape by pre-harvest application of C<strong>and</strong>ida oleophila <strong>and</strong> its combination with a low dosage of Euparen. Acta Horticulturae, 95-102.<br />

El-Neshawy, S. M., <strong>and</strong> Shetaia, Y. M. H. (2003). Bio<strong>control</strong> capability of C<strong>and</strong>ida spp. <strong>against</strong> Botrytis rot of strawberries with respect to fruit quality. Acta Horticulturae, 727-733.<br />

El-Sheikh Aly, M. M., Baraka, M. A., <strong>and</strong> El-Sayed Abbass, A. G. (2000). The effectiveness of fumigants <strong>and</strong> <strong>biological</strong> protection of peach <strong>against</strong> fruit rots. Assiut Journal of Agricultural Sciences 31, 19-<br />

31.<br />

El-Zayat, S. A. (2008). Antimicrobial activities of secondary metabolites produced by endophytic fungi from Glinus lotoides. World Journal of Agricultural Sciences 4, 206-212.<br />

Elad, Y. (2000a). Biological <strong>control</strong> of foliar pathogens by means of Trichoderma harzianum <strong>and</strong> potential modes of action. Crop Protection 19, 709-714.<br />

Elad, Y. (2000b). Trichoderma harzianum T39 preparation for bio<strong>control</strong> of plant diseases - <strong>control</strong> of Botrytis cinerea, Sclerotinia sclerotiorum <strong>and</strong> Cladosporium fulvum. Bio<strong>control</strong> Science <strong>and</strong> Technology<br />

10, 499-507.<br />

Elad, Y., Baker, S. C., Faull, J. L., <strong>and</strong> Taylor, J. (2004). Multi trophic relationships - interaction of a bio<strong>control</strong> agent <strong>and</strong> a pathogen with the indigenous micro-flora on bean leaves. Bulletin OILB/SROP 27,<br />

151-154.<br />

Elad, Y., Kirshner, B., Yehuda, N., <strong>and</strong> Sztejnberg, A. (1998). Management of powdery mildew <strong>and</strong> gray mould of cucumber by Trichoderma harzianum T39 <strong>and</strong> Ampelomyces quisqualis AQ10. BioControl<br />

43, 241-251.<br />

Elmer, P. A. G., <strong>and</strong> Köhl, J. (1998). The survival <strong>and</strong> saprophytic competitive ability of the Botrytis spp. antagonist Ulocladium atrum in lily canopies. European Journal of Plant Pathology 104, 435-447.<br />

Enya, J., Shinohara, H., Yoshida, S., Tsukiboshi, T., Negishi, H., Suyama, K., <strong>and</strong> Tsushima, S. (2007). Culturable leaf-associated bacteria on tomato plants <strong>and</strong> their potential as <strong>biological</strong> <strong>control</strong> agents.<br />

Microbial Ecology 53, 524-536.<br />

Essghaier, B., Sadfi-Zouaoui, N., Fardeau, M. L., Boudabous, A., Ollivier, B., Friel, D., <strong>and</strong> Jijakli, M. H. (2007). Post-harvest <strong>biological</strong> <strong>control</strong> of grey mould rot on strawberry fruits using moderately<br />

halophilic bacteria. Bulletin OILB/SROP 30, 73.<br />

Eva, B. (2003). Biological <strong>control</strong> of pathogens Sclerotinia sclerotiorum (Lib.) de Bary <strong>and</strong> Botrytis cinerea (Pers.) from sunflower (Helianthus annuus L.) crops. Cercetari Agronomice in Moldova 36, 73-80.<br />

Fan, Q., <strong>and</strong> Tian, S. (2001). Postharvest <strong>biological</strong> <strong>control</strong> of grey mold <strong>and</strong> blue mold on apple by Cryptococcus albidus (Saito) Skinner. Postharvest Biology <strong>and</strong> Technology 21, 341-350.<br />

Fan, Q., Tian, S., Jiang, A., <strong>and</strong> Xu, Y. (2001a). Isolation <strong>and</strong> screening of bio<strong>control</strong> antagonists of diseases of postharvest fruits. China Environmental Science 21, 313-316.<br />

Fan, Q., Tian, S., <strong>and</strong> Xu, Y. (2001b). Effects of Trichosporon sp. on bio<strong>control</strong> efficacy of grey <strong>and</strong> blue mold on postharvest apple. Scientia Agricultura Sinica 34, 163-168.<br />

Farrag, A. A. (2003). New approaches in <strong>biological</strong> <strong>control</strong> of Alternaria alternata <strong>and</strong> Botrytis cinerea attacking cucumber plants. African Journal of Mycology <strong>and</strong> Biotechnology 11, 189-205.<br />

Faten, S. M. (2005). Postharvest treatments of apple fruits decay caused by Botrytis cinerea, Alternaria alternata <strong>and</strong> Penicillium expansum. Annals of Agricultural Science (Cairo) 50, 613-633.<br />

87


Nicot et al. (Appendix for Chapter 1)<br />

Feng, S., Wang, R., Lin, K., Zhang, Y., Du, L., Fan, X., <strong>and</strong> Cao, W. (2003). Identification of strain Bs-208 <strong>and</strong> its inhibition <strong>against</strong> plant pathogenic fungi. Chinese Journal of Biological Control 19, 171-174.<br />

Fenice, M., <strong>and</strong> Gooday, G. W. (2006). Mycoparasitic actions <strong>against</strong> fungi <strong>and</strong> oomycetes by a strain (CCFEE 5003) of the fungus Lecanicillium muscarium isolated in Continental Antarctica. Annals of<br />

Microbiology 56, 1-6.<br />

Ferrari, A., Sicher, C., Prodorutti, D., <strong>and</strong> Pertot, I. (2007). Potential new applications of Shemer, a Metschnikowia fructicola based product, in post-harvest soft fruit rots <strong>control</strong>. Bulletin OILB/SROP 30, 43-<br />

46.<br />

Fiddaman, P. J., O'Neill, T. M., <strong>and</strong> Rossall, S. (2000). Screening of bacteria for the suppression of Botrytis cinerea <strong>and</strong> Rhizoctonia solani on lettuce (Lactuca sativa) using leaf disc bioassays. Annals of<br />

Applied Biology 137, 223-235.<br />

Filonow, A. B. (1998). Role of competition for sugars by yeasts in the bio<strong>control</strong> of gray mold of apple. Bio<strong>control</strong> Science <strong>and</strong> Technology 8, 243-256.<br />

Filonow, A. B., Vishniac, H. S., Anderson, J. A., <strong>and</strong> Janisiewicz, W. J. (1996). Biological <strong>control</strong> of Botrytis cinerea in apple by yeasts from various habitats <strong>and</strong> their putative mechanisms of antagonism.<br />

Biological Control 7, 212-220.<br />

Fiume, F., <strong>and</strong> Fiume, G. (2005). Biological <strong>control</strong> of Botrytis Gray Mould <strong>and</strong> Sclerotinia Drop in lettuce. Communications in Agricultural <strong>and</strong> Applied Biological Sciences 70, 157-168.<br />

Fiume, G., Napolitano, S., Marziano, F., Ciscognetti, E., Correale, F., Raimo, S., Bove, C., <strong>and</strong> Fiume, F. (2008). Study of the antagonist fungus Trichoderma harzianum for the <strong>control</strong> of some tomato<br />

diseases. In "Giornate Fitopatologiche 2008, Cervia", pp. 547-554.<br />

Floch, G. l., Rey, P., Renault, A. S., Silue, D., Benhamou, N., <strong>and</strong> Tirilly, Y. (2001). Pythium olig<strong>and</strong>rum-mediated induced resistance <strong>against</strong> grey mould of tomato is associated with pathogenesis-related<br />

proteins. Bulletin OILB/SROP 24, 287-290.<br />

Floros, J. D., Dock, L. L., <strong>and</strong> Nielsen, P. V. (1998). Biological <strong>control</strong> of Botrytis cinerea growth on apples stored under modified atmospheres. Journal of Food Protection 61, 1661-1665.<br />

Fogliano, V., Ballio, A., Gallo, M., Woo, S., Scala, F., <strong>and</strong> Lorito, M. (2002). Pseudomonas lipodepsipeptides <strong>and</strong> fungal cell wall-degrading enzymes act synergistically in <strong>biological</strong> <strong>control</strong>. Molecular Plant-<br />

Microbe Interactions 15, 323-333.<br />

Fortes, F. d. O., Silva, A. C. F. d., Almanca, M. A. K., <strong>and</strong> Tedesco, S. B. (2007). Root induction from microcutting of an Eucalyptus sp. clone by Trichoderma spp. Revista Arvore 31, 221-228.<br />

Fowler, S. R., Jasper, M. V., Walter, M., <strong>and</strong> Stewart, A. (1999). Suppression of overwintering Botrytis cinerea inoculum on grape rachii using antagonistic fungi. Proceedings of the Fifty Second New<br />

Zeal<strong>and</strong> Plant Protection Conference, Auckl<strong>and</strong> Airport Centra, Auckl<strong>and</strong>, New Zeal<strong>and</strong>, 10-12 August, 1999, 141-147.<br />

Frankowski, J., Berg, G., <strong>and</strong> Bahl, H. (2001a). Purification <strong>and</strong> properties of two chitinolytic enzymes of the bio<strong>control</strong> agent Serratia plymuthica C48. Bulletin OILB/SROP 24, 319.<br />

Frankowski, J., Lorito, M., Scala, F., Schmid, R., Berg, G., <strong>and</strong> Bahl, H. (2001b). Purification <strong>and</strong> properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Archives of Microbiology 176, 421-<br />

426.<br />

Freeman, S., Barbul, O., David, D. R., Nitzani, Y., Zveibil, A., <strong>and</strong> Elad, Y. (2001). Trichoderma spp. for bio<strong>control</strong> of Colletotrichum acutatum <strong>and</strong> Botrytis cinerea in strawberry. Bulletin OILB/SROP 24,<br />

147-150.<br />

Freeman, S., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., Nitzani, Y., Kirshner, B., Rav-David, D., <strong>and</strong> Elad, Y. (2002). Use of Trichoderma spp. for bio<strong>control</strong> of Colletotrichum acutatum<br />

(anthracnose) <strong>and</strong> Botrytis cinerea (grey mould) in strawberry, <strong>and</strong> study of bio<strong>control</strong> population survival by PCR. Bulletin OILB/SROP 25, 167-170.<br />

Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., Nitzani, Y., Kirshner, B., Rav-David, D., Bilu, A., Dag, A., Shafir, S., <strong>and</strong> Elad, Y. (2004). Trichoderma bio<strong>control</strong> of Colletotrichum<br />

acutatum <strong>and</strong> Botrytis cinerea <strong>and</strong> survival in strawberry. European Journal of Plant Pathology 110, 361-370.<br />

Friel, D., <strong>and</strong> Jijakli, M. H. (2007). Simultaneous disruption of two exo- beta -1,3-glucanase genes of Pichia anomala significantly reduced the <strong>biological</strong> <strong>control</strong> efficiency <strong>against</strong> Botrytis cinerea <strong>and</strong><br />

Penicillium expansum on apples. Bulletin OILB/SROP 30, 147.<br />

Friel, D., Pessoa, N. M. G., V<strong>and</strong>enbol, M., <strong>and</strong> Jijakli, M. H. (2007). Separate <strong>and</strong> combined disruptions of two exo- beta -1,3-glucanase genes decrease the efficiency of Pichia anomala (strain K) bio<strong>control</strong><br />

<strong>against</strong> Botrytis cinerea on apple. Molecular Plant-Microbe Interactions 20, 371-379.<br />

Fruit, L., <strong>and</strong> Nicot, P. (1999). Biological <strong>control</strong> of Botrytis cinerea on tomato stem wounds with Ulocladium atrum. Bulletin OILB/SROP 22, 81-84.<br />

Funaro, M. (1997). Importance <strong>and</strong> spread of techniques of integrated <strong>control</strong> in strawberry crops in Calabria. Informatore Agrario 53, 43-48.<br />

Gabler, F. M., Fassel, R., Mercier, J., <strong>and</strong> Smilanick, J. L. (2006). Influence of temperature, inoculation interval, <strong>and</strong> dosage on biofumigation with Muscodor albus to <strong>control</strong> postharvest gray mold on grapes.<br />

Plant Disease 90, 1019-1025.<br />

Gengotti, S., Ceredi, G., <strong>and</strong> Paoli, E. d. (2002). Anti-botrytis measures in organic <strong>and</strong> integrated strawberries. Informatore Agrario 58, 55-58.<br />

Gengotti, S., Ceredi, G., Paoli, E. d., <strong>and</strong> Antoniacci, L. (2000). Products <strong>and</strong> <strong>control</strong> strategies <strong>against</strong> strawberry grey mould in Emilia-Romagna. In "Atti, Giornate fitopatologiche, Perugia, 16-20 aprile,<br />

2000, Volume 2", pp. 299-304.<br />

Georgieva, O. (2004). Possibilities for <strong>biological</strong> <strong>control</strong> of gray mold of tomatoes (Botrytis cinerea) in view of the organotropic pathogen specialization. Ecology <strong>and</strong> Future - Bulgarian Journal of Ecological<br />

Science 3, 31-34.<br />

88


Appendix 1<br />

Gerlagh, M., Amsing, J. J., Molhoek, W. M. L., Bosker-van Zessen, A. I., Lombaers-van der Plas, C. H., <strong>and</strong> Köhl, J. (2001). The effect of treatment with Ulocladium atrum on Botrytis cinerea-attack of<br />

geranium (Pelargonium zonale) stock plants <strong>and</strong> cuttings. European Journal of Plant Pathology 107, 377-386.<br />

German Garcia, P., Jimenez, Y., Neisa, A., <strong>and</strong> Marina Cotes, A. (2001). Selection of native yeasts for <strong>biological</strong> <strong>control</strong> of postharvest rots caused by Botrytis allii in onion <strong>and</strong> Rhizopus stolonifer in tomato.<br />

Bulletin OILB/SROP 24, 181-184.<br />

Gielen, S., Aerts, R., <strong>and</strong> Seels, B. (2004a). Bio<strong>control</strong> agents of Botrytis cinerea tested in climate chambers by making artificial infection on tomato leafs. Communications in Agricultural <strong>and</strong> Applied<br />

Biological Sciences 69, 631-639.<br />

Gielen, S., Aerts, R., <strong>and</strong> Seels, B. (2004b). Different products for <strong>biological</strong> <strong>control</strong> of Botrytis cinerea examined on wounded stem tissue of tomato plants. Communications in Agricultural <strong>and</strong> Applied<br />

Biological Sciences 69, 641-647.<br />

Giraud, M., <strong>and</strong> Crouzet, M. P. (2004). Control of storage diseases of apples <strong>and</strong> pears. A yeast for <strong>biological</strong> protection. Results of three years of European tests. Infos-Ctifl, 38-40.<br />

Grevesse, C., Lepoivre, P., <strong>and</strong> Mohamed Haissam, J. (2003). Characterization of the exoglucanase-encoding gene PaEXG2 <strong>and</strong> study of its role in the bio<strong>control</strong> activity of Pichia anomala strain K.<br />

Phytopathology 93, 1145-1152.<br />

Gromovikh, T. I., Gukasian, V. M., Golovanova, T. I., <strong>and</strong> Shmarlovskaya, S. V. (1998). Trichoderma harzianum Rifai Aggr. as a factor enhancing tomato plants resistance to the root rotting pathogens.<br />

Mikologiya i Fitopatologiya 32, 73-78.<br />

Gu, Z., Chen, W., Cheng, H., Ma, C., Gong, X., <strong>and</strong> Shen, L. (2008). Improvement of antifungal activity of Bacillus subtilis G3 by mutagenesis with acridine orange. Acta Phytopathologica Sinica 38, 185-<br />

191.<br />

Gu, Z., Ma, C., <strong>and</strong> Han, C. a. (2001). Inhibitory action of chitinase producing Bacillus spp. to pathogenic fungi. Acta Agriculturae Shanghai 17, 88-92.<br />

Gu, Z., Wu, W., Gao, X., <strong>and</strong> Ma, C. (2004). Antifungal substances of Bacillus subtilis strain G3 <strong>and</strong> their properties. Acta Phytopathologica Sinica 34, 166-172.<br />

Guetsky, R., Elad, Y., Shtienberg, D., <strong>and</strong> Dinoor, A. (2002a). Establishment, survival <strong>and</strong> activity of the bio<strong>control</strong> agents Pichia guillermondii <strong>and</strong> Bacillus mycoides applied as a mixture on strawberry<br />

plants. Bio<strong>control</strong> Science <strong>and</strong> Technology 12, 705-714.<br />

Guetsky, R., Elad, Y., Shtienberg, D., <strong>and</strong> Dinoor, A. (2002b). Improved bio<strong>control</strong> of Botrytis cinerea on detached strawberry leaves by adding nutritional supplements to a mixture of Pichia guilermondii <strong>and</strong><br />

Bacillus mycoides. Bio<strong>control</strong> Science <strong>and</strong> Technology 12, 625-630.<br />

Guetsky, R., Shtienberg, D., Elad, Y., <strong>and</strong> Dinoor, A. (2001a). Combining bio<strong>control</strong> agents to reduce the variability of <strong>biological</strong> <strong>control</strong>. Phytopathology 91, 621-627.<br />

Guetsky, R., Shtienberg, D., Elad, Y., <strong>and</strong> Dinoor, A. (2001b). Establishment, survival <strong>and</strong> activity of bio<strong>control</strong> agents applied as a mixture in strawberry crops. Bulletin OILB/SROP 24, 193-196.<br />

Guinebretiere, M. H., Nguyen-The, C., Morrison, N., Reich, M., <strong>and</strong> Nicot, P. (2000). Isolation <strong>and</strong> characterization of antagonists for the bio<strong>control</strong> of the postharvest wound pathogen Botrytis cinerea on<br />

strawberry fruits. Journal of Food Protection 63, 386-394.<br />

Gulati, M. K., Koch, E., <strong>and</strong> Zeller, W. (1999). Isolation <strong>and</strong> identification of antifungal metabolites produced by fluorescent Pseudomonas, antagonist of red core disease of strawberry. In "Modern fungicides<br />

<strong>and</strong> antifungal compounds II. 12th International Reinhardsbrunn Symposium, Friedrichroda, Thuringia, Germany, 24th-29th May 1998." pp. 437-444.<br />

Guo, Y., Zheng, H., Yang, Y., <strong>and</strong> Wang, H. (2007). Characterization of Pseudomonas corrugata strain P94 isolated from soil in Beijing as a potential bio<strong>control</strong> agent. Current Microbiology 55, 247-253.<br />

Guven, K., Ilhan, S., Mutlu, M. B., <strong>and</strong> Colak, F. (2008). Diversity, characterization <strong>and</strong> antimicrobial activities of Bacillus cereus strains isolated from soil. Fresenius Environmental Bulletin 17, 303-310.<br />

Halama, P., <strong>and</strong> Haluwin, C. v. (2004). Antifungal activity of lichen extracts <strong>and</strong> lichenic acids. BioControl 49, 95-107.<br />

Han, S., Xu, M., Bai, Z., Wu, W., <strong>and</strong> Lu, A. (2004). Studies on the antibiotic from actinomyces D2-4 <strong>against</strong> fungal disease. Journal of Microbiology 24, 8-10.<br />

Harman, G. E., Latorre, B., Agosin, E., Martin, R. s., Riegel, D. G., Nielsen, P. A., Tronsmo, A., <strong>and</strong> Pearson, R. C. (1996). Biological <strong>and</strong> integrated <strong>control</strong> of Botrytis bunch rot of grape using Trichoderma<br />

spp. Biological Control 7, 259-266.<br />

Helbig, J. (2001a). Biological <strong>control</strong> of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). Journal of Phytopathology 149, 265-273.<br />

Helbig, J. (2001b). Field <strong>and</strong> laboratory investigations into the effectiveness of Rhodotorula glutinis (isolate 10391) <strong>against</strong> Botrytis cinerea Pers. ex Fr. in strawberry. Zeitschrift fur Pflanzenkrankheiten und<br />

Pflanzenschutz 108, 356-368.<br />

Helbig, J. (2002). Ability of the antagonistic yeast Cryptococcus albidus to <strong>control</strong> Botrytis cinerea in strawberry. BioControl 47, 85-99.<br />

Helbig, J., <strong>and</strong> Bochow, H. (2001). Effectiveness of Bacillus subtilis (isolate 25021) in <strong>control</strong>ling Botrytis cinerea in strawberry. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 108, 545-559.<br />

Helbig, J., Trierweiler, B., Schutz, F. A., <strong>and</strong> Tauscher, B. (1998). Inhibition of Botrytis cinerea pers. ex Fr. <strong>and</strong> Penicillium digitatum Sacc. by Bacillus sp. (isolate 17141) in vitro. Zeitschrift fur<br />

Pflanzenkrankheiten und Pflanzenschutz 105, 8-16.<br />

Hern<strong>and</strong>ez-Rodriguez, A., Hern<strong>and</strong>ez-Lauzardo, A. N., Velazquez-del Valle, M. G., Bigiramana, Y., Audenaert, K., <strong>and</strong> Hofte, M. (2004). Use of rhizobacteria to induce resistance in bean (Phaseolus vulgaris<br />

L.) infected by Colletotrichum lindemuthianum (Sacc. <strong>and</strong> Magnus) Lams.-Scrib. <strong>and</strong> in tomato (Lycopersicon esculentum Mill.) infected by Botrytis cinerea Pers.:Fr. Revista Mexicana de Fitopatologia<br />

22, 100-106.<br />

89


Nicot et al. (Appendix for Chapter 1)<br />

Hjeljord, L. G. (2002). Conidial germination initiation in the fungal antagonist Trichoderma harzianum (atroviride) P1 in the context of <strong>biological</strong> <strong>control</strong> of plant disease. In "Conidial germination initiation in<br />

the fungal antagonist Trichoderma harzianum", pp. 30 pp. + appendices.<br />

Hjeljord, L. G., Stensv<strong>and</strong>, A., <strong>and</strong> Tronsmo, A. (2000). Effect of temperature <strong>and</strong> nutrient stress on the capacity of commercial Trichoderma products to <strong>control</strong> Botrytis cinerea <strong>and</strong> Mucor piriformis in<br />

greenhouse strawberries. Biological Control 19, 149-160.<br />

Hjeljord, L. G., Stensv<strong>and</strong>, A., <strong>and</strong> Tronsmo, A. (2001). Antagonism of nutrient-activated conidia of Trichoderma harzianum (atroviride) P1 <strong>against</strong> Botrytis cinerea. Phytopathology 91, 1172-1180.<br />

Hjeljord, L. G., <strong>and</strong> Tronsmo, A. (2003). Effect of germination initiation on competitive capacity of Trichoderma atroviride P1 conidia. Phytopathology 93, 1593-1598.<br />

Hmouni, A., Massoui, M., <strong>and</strong> Douira, A. M. (1999). Study of antagonistic activity of Trichoderma spp. <strong>and</strong> Gliocladium spp. <strong>against</strong> Botrytis cinerea: causal agent of tomato grey mould. Al Awamia, 75-92.<br />

Hmouni, A., Mouria, A., <strong>and</strong> Douira, A. (2005). Study of the receptivity of tomato leaves to Botrytis cinerea, causal agent of grey mould in relation to the bio<strong>control</strong> activities of Trichoderma <strong>and</strong> Gliocladium.<br />

Al Awamia, 31-48.<br />

Hmouni, A., Mouria, A., <strong>and</strong> Douira, A. (2006). Biological <strong>control</strong> of tomato grey mould with compost water extracts, Trichoderma species <strong>and</strong> Gliocladium species. Phytopathologia Mediterranea 45, 110-<br />

116.<br />

Holmes, R. J., Alwis, S. d., Shanmuganathan, N., Widyatuti, S., <strong>and</strong> Keane, P. J. (1998). Enhanced bio<strong>control</strong> of postharvest diseases of apples <strong>and</strong> pears. ACIAR Proceedings Series, 162-166.<br />

Holz, G., <strong>and</strong> Volkmann, A. (2002). Colonisation of different positions in grape bunches by potential bio<strong>control</strong> organisms <strong>and</strong> subsequent occurrence of Botrytis cinerea. Bulletin OILB/SROP 25, 9-12.<br />

Honda, N., Hirai, M., Ano, T., <strong>and</strong> Shoda, M. (1999). Control of tomato damping-off caused by Rhizoctonia solani by the heterotrophic nitrifier Alcaligenes faecalis <strong>and</strong> its product, hydroxylamine. Annals of<br />

the Phytopathological Society of Japan 65, 153-162.<br />

Horst, L. E., Locke, J., Krause, C. R., McMahon, R. W., Madden, L. V., <strong>and</strong> Hoitink, H. A. J. (2005). Suppression of Botrytis blight of begonia by Trichoderma hamatum 382 in peat <strong>and</strong> compost-amended<br />

potting mixes. Plant Disease 89, 1195-1200.<br />

Hsieh, F. C., Li, M. C., <strong>and</strong> Kao, S. S. (2003). Evaluation of the inhibition activity of Bacillus subtilis-based products <strong>and</strong> their related metabolites <strong>against</strong> pathogenic fungi in Taiwan. Plant Protection Bulletin<br />

(Taipei) 45, 155-162.<br />

Hsieh, F. C., Lin, T. C., Tseng, J. T., <strong>and</strong> Kao, S. S. (2004). An entomopathogenic-nematophilic bacterium, Photorhabdus luminescens, with insecticidal <strong>and</strong> antimicrobial activities. Plant Protection Bulletin<br />

(Taipei) 46, 163-172.<br />

Huang, C. J., <strong>and</strong> Chen, C. Y. (2004). Gene cloning <strong>and</strong> biochemical characterization of chitinase CH from Bacillus cereus 28-9. Annals of Microbiology 54, 289-297.<br />

Huang, H., <strong>and</strong> Erickson, R. S. (2002). Biological <strong>control</strong> of botrytis stem <strong>and</strong> blossom blight of lentil. Plant Pathology Bulletin 11, 7-14.<br />

Huang, H., <strong>and</strong> Erickson, R. S. (2005). Control of lentil seedling blight caused by Botrytis cinerea using microbial seed treatments. Plant Pathology Bulletin 14, 35-40.<br />

Indirag<strong>and</strong>hi, P., An<strong>and</strong>ham, R., Madhaiyan, M., <strong>and</strong> Sa, T. M. (2008). Characterization of plant growth-promoting traits of bacteria isolated from larval guts of Diamondback moth Plutella xylostella<br />

(Lepidoptera: Plutellidae). Current Microbiology 56, 327-333.<br />

Ingram, D. M., <strong>and</strong> Meister, C. W. (2006). Managing Botrytis gray mold in greenhouse tomatoes using traditional <strong>and</strong> bio-fungicides. Plant Health Progress, 1-5.<br />

Ippolito, A., Schena, L., Pentimone, I., <strong>and</strong> Nigro, F. (2005a). Control of postharvest rots of sweet cherries by pre- <strong>and</strong> postharvest applications of Aureobasidium pullulans in combination with calcium<br />

chloride or sodium bicarbonate. Postharvest Biology <strong>and</strong> Technology 36, 245-252.<br />

Ippolito, A., Schena, L., Pentimone, I., <strong>and</strong> Nigro, F. (2005b). Integrated <strong>control</strong> of sweet cherry postharvest rots by Aureobasidium pullulans in combination with calcium chloride or sodium bicarbonate. Acta<br />

Horticulturae, 1985-1990.<br />

Jackson, A. J., Walters, D. R., <strong>and</strong> Marshall, G. (1997). Antagonistic interactions between the foliar pathogen Botrytis fabae <strong>and</strong> isolates of Penicillium brevicompactum <strong>and</strong> Cladosporium cladosporioides on<br />

faba beans. Biological Control 8, 97-106.<br />

Jalil R, C., Norero S, A., <strong>and</strong> Apablaza H, G. (1997). Effects of temperature on mycelial growth of Botrytis cinerea <strong>and</strong> its antagonist Trichoderma harzianum. Ciencia e Investigacion Agraria 24, 125-132.<br />

Jamalizadeh, M., Etebarian, H. R., Alizadeh, A., <strong>and</strong> Aminian, H. (2008). Biological <strong>control</strong> of gray mold on apple fruits by Bacillus licheniformis (EN74-1). Phytoparasitica 36, 23-29.<br />

Janisiewicz, W. J., <strong>and</strong> Jeffers, S. N. (1997). Efficacy of commercial formulation of two biofungicides for <strong>control</strong> of blue mold <strong>and</strong> gray mold of apples in cold storage. Crop Protection 16, 629-633.<br />

Jaworska, M., <strong>and</strong> Dluzniewska, J. (2007). The effect of manganese ions on development <strong>and</strong> antagonism of Trichoderma isolates. Polish Journal of Environmental Studies 16, 549-553.<br />

Ji, Z., Tang, L., Zhang, Q., Xu, J., Chen, X., <strong>and</strong> Tong, Y. (2007). Isolation, purification <strong>and</strong> characterization of antifungal protein from Bacillus licheniformis W10 strain. Acta Phytopathologica Sinica 37,<br />

260-264.<br />

Jijakli, H., Lassois, L., <strong>and</strong> Lahlali, R. (2004). Antagonistic activity of yeast <strong>against</strong> post-harvest diseases of tropical fruits. Bulletin des Seances, Academie Royale des Sciences d'Outre- Mer 50, 153-163.<br />

Jijakli, M. H. (2000). Apples: storage diseases. Biological <strong>control</strong> based on two yeast strains. Arboriculture Fruitiere, 19-23.<br />

Jijakli, M. H., Clercq, D. d., Dickburt, C., <strong>and</strong> Lepoivre, P. (2002). Pre- <strong>and</strong> post-harvest practical application of Pichia anomala strain K, beta -1,3-glucans <strong>and</strong> calcium chloride on apples: two years of<br />

monitoring <strong>and</strong> efficacy <strong>against</strong> post-harvest diseases. Bulletin OILB/SROP 25, 29-32.<br />

Jijakli, M. H., <strong>and</strong> Lepoivre, P. (1998). Characterization of an exo- beta -1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology 88, 335-343.<br />

90


Appendix 1<br />

Jing, W., Tu, K., Shao, X., <strong>and</strong> Su, Z. (2008). Effects of combinations of hot water rinsing <strong>and</strong> brushing <strong>and</strong> yeast antagonist for <strong>control</strong> of decay <strong>and</strong> quality on harvested sweet cherries. Journal of Fruit<br />

Science 25, 367-372.<br />

Kalogiannis, S., Tjamos, S. E., Stergiou, A., Antoniou, P. P., Ziogas, B. N., <strong>and</strong> Tjamos, E. C. (2006). Selection <strong>and</strong> evaluation of phyllosphere yeasts as bio<strong>control</strong> agents <strong>against</strong> grey mould of tomato.<br />

European Journal of Plant Pathology 116, 69-76.<br />

Kamensky, M., Ovadis, M., Chet, I., <strong>and</strong> Chernin, L. (2002). Bio<strong>control</strong> of Botrytis cinerea <strong>and</strong> Sclerotinia sclerotiorum in the greenhouse by a Serratia plymuthica strain with multiple mechanisms of<br />

antifungal activity. Bulletin OILB/SROP 25, 229-232.<br />

Kamensky, M., Ovadis, M., Chet, I., <strong>and</strong> Chernin, L. (2003). Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides bio<strong>control</strong> of Botrytis cinerea <strong>and</strong><br />

Sclerotinia sclerotiorum diseases. Soil Biology & Biochemistry 35, 323-331.<br />

K<strong>and</strong>ybin, N. V. (2003). For activization of microbiomethod. Zashchita i Karantin Rastenii, 13-14.<br />

Kapat, A., Zim<strong>and</strong>, G., <strong>and</strong> Elad, Y. (1998). Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by Botrytis cinerea. Physiological <strong>and</strong> Molecular Plant Pathology<br />

52, 127-137.<br />

Karabulut, O. A., Arslan, U., Ilhan, K., <strong>and</strong> Kuruoglu, G. (2005). Integrated <strong>control</strong> of postharvest diseases of sweet cherry with yeast antagonists <strong>and</strong> sodium bicarbonate applications within a hydrocooler.<br />

Postharvest Biology <strong>and</strong> Technology 37, 135-141.<br />

Karabulut, O. A., <strong>and</strong> Baykal, N. (2003). Biological <strong>control</strong> of postharvest diseases of peaches <strong>and</strong> nectarines by yeasts. Journal of Phytopathology 151, 130-134.<br />

Karabulut, O. A., <strong>and</strong> Baykal, N. (2004). Integrated <strong>control</strong> of postharvest diseases of peaches with a yeast antagonist, hot water <strong>and</strong> modified atmosphere packaging. Crop Protection 23, 431-435.<br />

Karabulut, O. A., Smilanick, J. L., Gabler, F. M., Mansour, M., <strong>and</strong> Droby, S. (2003). Near-harvest applications of Metschnikowia fructicola, ethanol, <strong>and</strong> sodium bicarbonate to <strong>control</strong> postharvest diseases of<br />

grape in central California. Plant Disease 87, 1384-1389.<br />

Karabulut, O. A., Tezcan, H., Daus, A., Cohen, L., Wiess, B., <strong>and</strong> Droby, S. (2004). Control of preharvest <strong>and</strong> postharvest fruit rot in strawberry by Metschnikowia fructicola. Bio<strong>control</strong> Science <strong>and</strong><br />

Technology 14, 513-521.<br />

Kessel, G. (1999). Biological <strong>control</strong> of Botrytis spp. by Ulocladium atrum: an ecological analysis. In "Biological <strong>control</strong> of Botrytis spp. by Ulocladium atrum: an ecological analysis." pp. 155 pp.<br />

Kessel, G. J. T., Haas, B. H. d., Lombaers-van der Plas, C. H., Ende, J. E. v. d., Pennock-Vos, M. G., Werf, W. v. d., <strong>and</strong> Köhl, J. (2001). Comparative analysis of the role of substrate specificity in <strong>biological</strong><br />

<strong>control</strong> of Botrytis elliptica in lily <strong>and</strong> B. cinerea in cyclamen with Ulocladium atrum. European Journal of Plant Pathology 107, 273-284.<br />

Kessel, G. J. T., Haas, B. H. d., Lombaers-van der Plas, C. H., Meijer, E. M. J., Dewey, F. M., Goudriaan, J., Werf, W. v. d., <strong>and</strong> Köhl, J. (1999). Quantification of mycelium of Botrytis spp. <strong>and</strong> the antagonist<br />

Ulocladium atrum in necrotic leaf tissue of cyclamen <strong>and</strong> lily by fluorescence microscopy <strong>and</strong> image analysis. Phytopathology 89, 868-876.<br />

Kessel, G. J. T., Haas, B. H. d., Werf, W. v. d., <strong>and</strong> Köhl, J. (2002). Competitive substrate colonisation by Botrytis cinerea <strong>and</strong> Ulocladium atrum in relation to <strong>biological</strong> <strong>control</strong> of B. cinerea in cyclamen.<br />

Mycological Research 106, 716-728.<br />

Kessel, G. J. T., Köhl, J., Powell, J. A., Rabbinge, R., <strong>and</strong> Werf, W. v. d. (2005). Modeling spatial characteristics in the <strong>biological</strong> <strong>control</strong> of fungi at leaf scale: competitive substrate colonization by Botrytis<br />

cinerea <strong>and</strong> the saprophytic antagonist Ulocladium atrum. Phytopathology 95, 439-448.<br />

Khan, M. S., <strong>and</strong> Almas, Z. (2002). Plant growth promoting rhizobacteria from rhizospheres of wheat <strong>and</strong> chickpea. Annals of Plant Protection Sciences 10, 265-271.<br />

Khan, M. S., Almas, Z., <strong>and</strong> Wani, P. A. (2006). Determination of antagonistic potentials of Azotobacter to fungal phytopathogens. Annals of Plant Protection Sciences 14, 492-494.<br />

Kim, B., Moon, S., <strong>and</strong> Hwang, B. (1999). Isolation, antifungal activity, <strong>and</strong> structure elucidation of the glutarimide antibiotic, streptimidone, produced by Micromonospora coerulea. Journal of Agricultural<br />

<strong>and</strong> Food Chemistry 47, 3372-3380.<br />

Kim, J., Choi, G., Kim, H., Kim, H., Ahn, J., <strong>and</strong> Cho, K. (2002). Verlamelin, an antifungal compound produced by a mycoparasite, Acremonium strictum. Plant Pathology Journal 18, 102-105.<br />

Kim, K., Kang, J., Moon, S., <strong>and</strong> Kang, K. (2000). Isolation <strong>and</strong> identification of antifungal N-butylbenzenesulphonamide produced by Pseudomonas sp. AB2. Journal of Antibiotics 53, 131-136.<br />

Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., Park, R., <strong>and</strong> Chi, Y. T. (2004). Purification <strong>and</strong> characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. Journal of Applied<br />

Microbiology 97, 942-949.<br />

Kim, S., Yoo, S., <strong>and</strong> Kim, H. (1997). Selection of antagonistic bacteria for <strong>biological</strong> <strong>control</strong> of ginseng diseases. Korean Journal of Plant Pathology 13, 342-348.<br />

Kim, Y., Kim, H., Chang, C., Hwang, I., Oh, H., Ahn, J., Kim, K., Hwang, B., <strong>and</strong> Kim, B. (2007). Biological evaluation of neopeptins isolated from a Streptomyces strain. Pest Management Science 63,<br />

1208-1214.<br />

Kishore, G. K., <strong>and</strong> P<strong>and</strong>e, S. (2007). Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under <strong>control</strong>led conditions. Letters in<br />

Applied Microbiology 44, 98-105.<br />

Klemsdal, S. S., Clarke, J. L., Hoell, I. A., Eijsink, V. G. H., <strong>and</strong> Brurberg, M. B. (2006). Molecular cloning, characterization, <strong>and</strong> expression studies of a novel chitinase gene (ech30) from the mycoparasite<br />

Trichoderma atroviride strain P1. FEMS Microbiology Letters 256, 282-289.<br />

Köhl, J., Evenhuis, B., <strong>and</strong> Boff, P. (2004). Integration of the use of the antagonist Ulocladium atrum in management of strawberry grey mould (Botrytis cinerea). Bulletin OILB/SROP 27, 95-98.<br />

91


Nicot et al. (Appendix for Chapter 1)<br />

Köhl, J., <strong>and</strong> Fokkema, N. J. (1998). Biological <strong>control</strong> of Botrytis cinerea by suppression of sporulation. In "Brighton Crop Protection Conference: Pests & Diseases - 1998: Volume 2: Proceedings of an<br />

International Conference, Brighton, UK, 16-19 November 1998." pp. 681-692.<br />

Köhl, J., <strong>and</strong> Gerlagh, M. (1999). Biological <strong>control</strong> of Botrytis cinerea in roses by the antagonist Ulocladium atrum. Mededelingen - Faculteit L<strong>and</strong>bouwkundige en Toegepaste Biologische Wetenschappen,<br />

Universiteit Gent 64, 441-445.<br />

Köhl, J., Gerlagh, M., <strong>and</strong> Grit, G. (2000). Bio<strong>control</strong> of Botrytis cinerea by Ulocladium atrum in different production systems of cyclamen. Plant Disease 84, 569-573.<br />

Köhl, J., Gerlagh, M., Haas, B. H. d., <strong>and</strong> Krijger, M. C. (1998). Biological <strong>control</strong> of Botrytis cinerea in cyclamen with Ulocladium atrum <strong>and</strong> Gliocladium roseum under commercial growing conditions.<br />

Phytopathology 88, 568-575.<br />

Köhl, J., Kessel, G. J. T., Boff, P., Kraker, J. d., <strong>and</strong> Werf, W. v. d. (2001). Epidemiology of Botrytis spp. in different crops determines success of bio<strong>control</strong> by competitive substrate exclusion by Ulocladium<br />

atrum. Bulletin OILB/SROP 24, 171-174.<br />

Köhl, J., <strong>and</strong> Molhoek, W. M. L. (2001). Effect of water potential on conidial germination <strong>and</strong> antagonism of Ulocladium atrum <strong>against</strong> Botrytis cinerea. Phytopathology 91, 485-491.<br />

Köhl, J., Molhoek, W. W. L., Goossen-van de Geijn, H. M., <strong>and</strong> Lombaers-van der Plas, C. H. (2003). Potential of Ulocladium atrum for bio<strong>control</strong> of onion leaf spot through suppression of sporulation of<br />

Botrytis spp. BioControl 48, 349-359.<br />

Köhl, J., Plas, C. H. L. v. d., Molhoek, W. M. L., Kessel, G. J. T., <strong>and</strong> Geijn, H. M. G. v. d. (1999). Competitive ability of the antagonists Ulocladium atrum <strong>and</strong> Gliocladium roseum at temperatures favourable<br />

for Botrytis spp. development. BioControl 44, 329-346.<br />

Koike, M., Higashio, T., Komori, A., Akiyama, K., Kishimoto, N., Masuda, E., Sasaki, M., Yoshida, S., Tani, M., Kuramoti, K., Sugimoto, M., <strong>and</strong> Nagao, H. (2004). Verticillium lecanii (Lecanicillium spp.)<br />

as epiphyte <strong>and</strong> its application to <strong>biological</strong> <strong>control</strong> of arthropod pests <strong>and</strong> diseases. Bulletin OILB/SROP 27, 41-44.<br />

Konstantinidou-Doltsinis, S., Markellou, E., Petsikos-Panayotarou, N., Siranidou, E., Kalamarakis, A. E., Schmitt, A., Ernst, A., Seddon, B., Belanger, R. R., <strong>and</strong> Dik, A. J. (2002). Combinations of bio<strong>control</strong><br />

agents <strong>and</strong> Milsana(R) <strong>against</strong> powdery mildew <strong>and</strong> grey mould in cucumber in Greece <strong>and</strong> the Netherl<strong>and</strong>s. Bulletin OILB/SROP 25, 171-174.<br />

Kornilov, A. V., Sitnikov, A. V., <strong>and</strong> Smirnov, Y. V. (2007). Bakflor on tomatoes. Kartofel' i Ovoshchi, 24.<br />

Korolev, N., <strong>and</strong> Elad, Y. (2004). Systemic resistance in Arabidopsis thaliana induced by bio<strong>control</strong> agent Trichoderma harzianum. Bulletin OILB/SROP 27, 363-366.<br />

Kovach, J., Petzoldt, R., <strong>and</strong> Harman, G. E. (2000). Use of honey bees <strong>and</strong> bumble bees to disseminate Trichoderma harzianum 1295-22 to strawberries for Botrytis <strong>control</strong>. Biological Control 18, 235-242.<br />

Krol, E. (1998). Epiphytic bacteria isolated from grape leaves <strong>and</strong> its effect on Botrytis cinerea pers. Phytopathologia Polonica, 53-61.<br />

Kulakiotu, E., <strong>and</strong> Sfakiotakis, E. (2003a). Influence of inoculation time after wounding on the action of Isabella volatiles <strong>against</strong> Botrytis cinerea. Bulletin OILB/SROP 26, 71-74.<br />

Kulakiotu, E. K., <strong>and</strong> Sfakiotakis, E. M. (2003b). Influence of grape volatiles of Vitis labrusca 'Isabella' on growth of Botrytis cinerea on 'Hayward' kiwifruit. Acta Horticulturae, 445-446.<br />

Kulakiotu, E. K., Thanassoulopoulos, C. C., <strong>and</strong> Sfakiotakis, E. M. (2004a). Biological <strong>control</strong> of Botrytis cinerea by volatiles of 'Isabella' grapes. Phytopathology 94, 924-931.<br />

Kulakiotu, E. K., Thanassoulopoulos, C. C., <strong>and</strong> Sfakiotakis, E. M. (2004b). Postharvest <strong>biological</strong> <strong>control</strong> of Botrytis cinerea on kiwifruit by volatiles of "Isabella" grapes. Phytopathology 94, 1280-1285.<br />

Kumar, R. S., Ayyadurai, N., P<strong>and</strong>iaraja, P., Reddy, A. V., Venkateswarlu, Y., Prakash, O., <strong>and</strong> Sakthivel, N. (2005). Characterization of antifungal metabolite produced by a new strain Pseudomonas<br />

aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity <strong>and</strong> biofertilizing traits. Journal of Applied Microbiology 98, 145-154.<br />

Kuptsov, V., Kolomiets, E., <strong>and</strong> Sverchkova, N. (2004). Evaluation of antifungal activity of bacteria-antagonists towards lupin pathogens. In "Wild <strong>and</strong> cultivated lupins from the Tropics to the Poles.<br />

Proceedings of the 10th International Lupin Conference, Laugarvatn, Icel<strong>and</strong>, 19-24 June 2002", pp. 258-260.<br />

Kurtzman, C. P., <strong>and</strong> Droby, S. (2001). Metschnikowia fructicola, a new ascosporic yeast with potential for bio<strong>control</strong> of postharvest fruit rots. Systematic <strong>and</strong> Applied Microbiology 24, 395-399.<br />

Lahdenpera, M. L., <strong>and</strong> Korteniemi, M. (2008). Application methods for commercial biofungicides in greenhouses. Bulletin OILB/SROP 32, 111-114.<br />

Lahlali, R., Friel, D., <strong>and</strong> Jijakli, M. H. (2007). Comparative study of the ecological niche of Penicillum expansum Link., Botrytis cinerea Pers. <strong>and</strong> their antagonistic yeasts C<strong>and</strong>ida oleophila strain O <strong>and</strong><br />

Pichia anomala strain K. Bulletin OILB/SROP 30, 235-239.<br />

Lee, J., Bae, D., Park, S., Shim, C., Kwak, Y., <strong>and</strong> Kim, H. (2001). Occurrence <strong>and</strong> <strong>biological</strong> <strong>control</strong> of postharvest decay in onion caused by fungi. Plant Pathology Journal 17, 141-148.<br />

Lee, J., Lee, S., Kim, C., Son, J., Song, J., Lee, K., Kim, H., Jung, S., <strong>and</strong> Moon, B. (2006). Evaluation of formulations of Bacillus licheniformis for the <strong>biological</strong> <strong>control</strong> of tomato gray mold caused by<br />

Botrytis cinerea. Biological Control 37, 329-337.<br />

Leibinger, W., Breuker, B., Hahn, M., <strong>and</strong> Mendgen, K. (1997). Control of postharvest pathogens <strong>and</strong> colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology 87, 1103-<br />

1110.<br />

Lennartz, B., Schoene, P., <strong>and</strong> Oerke, E. C. (1998). Bio<strong>control</strong> of Botrytis cinerea on grapevine <strong>and</strong> Septoria spp. on wheat. Mededelingen - Faculteit L<strong>and</strong>bouwkundige en Toegepaste Biologische<br />

Wetenschappen, Universiteit Gent 63, 963-970.<br />

Levy, N. O., Elad, Y., <strong>and</strong> Katan, J. (2004a). Integration of Trichoderma <strong>and</strong> soil solarization for disease management. Bulletin OILB/SROP 27, 65-70.<br />

Levy, N. O., Elad, Y., Katan, J., Baker, S. C., <strong>and</strong> Faull, J. L. (2006). Trichoderma <strong>and</strong> soil solarization induced microbial changes on plant surfaces. Bulletin OILB/SROP 29, 21-26.<br />

Levy, N. O., Elad, Y., Korolev, N., <strong>and</strong> Katan, J. (2004b). Resistance induced by soil bio<strong>control</strong> application <strong>and</strong> soil solarization for the <strong>control</strong> of foliar pathogens. Bulletin OILB/SROP 27, 171-176.<br />

92


Appendix 1<br />

Li, G. Q., Huang, H. C., Acharya, S. N., <strong>and</strong> Erickson, R. S. (2004a). Biological <strong>control</strong> of blossom blight of alfalfa caused by Botrytis cinerea under environmentally <strong>control</strong>led <strong>and</strong> field conditions. Plant<br />

Disease 88, 1246-1251.<br />

Li, G. Q., Huang, H. C., Kokko, E. G., <strong>and</strong> Acharya, S. N. (2002). Ultrastructural study of mycoparasitism of Gliocladium roseum on Botrytis cinerea. Botanical Bulletin of Academia Sinica 43, 211-218.<br />

Li, H., White, D., Lamza, K. A., Berger, F., <strong>and</strong> Leifert, C. (1998). Biological <strong>control</strong> of Botrytis, Phytophthora <strong>and</strong> Pythium by Bacillus subtilis Cot1 <strong>and</strong> CL27 of micropropagated plants in high-humidity<br />

fogging glasshouses. Plant Cell, Tissue <strong>and</strong> Organ Culture 52, 109-112.<br />

Li, Y., Liu, S., Li, M., Zhao, J., Li, J., <strong>and</strong> Wen, M. (2008). Separation <strong>and</strong> identification of oligomycins A <strong>and</strong> C from Streptomyces luteogriseus ECO 00001 <strong>and</strong> their bioactive properties. Acta<br />

Phytophylacica Sinica 35, 47-50.<br />

Li, Z., He, Y., <strong>and</strong> Xia, X. (2004b). Inhibitory spectrum <strong>and</strong> partial <strong>biological</strong> traits of five Trichoderma isolates. Journal of Yunnan Agricultural University 19, 267-271.<br />

Li, Z., Xiang, J., Chen, J., Ge, C., <strong>and</strong> Ge, S. (2007). Isolation <strong>and</strong> identification of actinomycete <strong>against</strong> Fusarium graminearum Schw. Journal of Triticeae Crops 27, 149-152.<br />

Lian, C., Li, S., Chao, C., Ma, P., Jiang, J., <strong>and</strong> Lu, X. (2007). Selection, identification <strong>and</strong> characterization of antagonistic <strong>and</strong> phytohormone producing bacterial strain CX-5-2. Acta Phytopathologica Sinica<br />

37, 197-203.<br />

Liang, Y., Zong, Z., <strong>and</strong> Ma, Q. (2007). Inhibiting <strong>and</strong> promoting effect on plants of six strains endophytic actinomycetes isolated from wild plants. Journal of Northwest A & F University - Natural Science<br />

Edition 35, 131-136.<br />

Lima, G., Arru, S., Curtis, F. d., <strong>and</strong> Arras, G. (1999). Influence of antagonist, host fruit <strong>and</strong> pathogen on the <strong>biological</strong> <strong>control</strong> of postharvest fungal diseases by yeasts. Journal of Industrial Microbiology &<br />

Biotechnology 23, 223-229.<br />

Lima, G., Castoria, R., Spina, A. M., Curtis, F. d., <strong>and</strong> Caputo, L. (2005). Improvement of bio<strong>control</strong> yeast activity <strong>against</strong> postharvest pathogens: recent experiences. Acta Horticulturae, 2035-2040.<br />

Lima, G., Curtis, F. d., Castoria, R., <strong>and</strong> Cicco, V. d. (1998). Activity of the yeasts Cryptococcus laurentii <strong>and</strong> Rhodotorula glutinis <strong>against</strong> post-harvest rots on different fruits. Bio<strong>control</strong> Science <strong>and</strong><br />

Technology 8, 257-267.<br />

Lima, G., Curtis, F. d., Castoria, R., <strong>and</strong> Cicco, V. d. (2003). Integrated <strong>control</strong> of apple postharvest pathogens <strong>and</strong> survival of bio<strong>control</strong> yeasts in semi-commercial conditions. European Journal of Plant<br />

Pathology 109, 341-349.<br />

Lima, G., Curtis, F. d., Piedimonte, D., Spina, A. M., <strong>and</strong> Cicco, V. d. (2006). Integration of <strong>biological</strong> <strong>control</strong> yeast <strong>and</strong> thiabendazole protects stored apples from fungicide sensitive <strong>and</strong> resistant isolates of<br />

Botrytis cinerea. Postharvest Biology <strong>and</strong> Technology 40, 301-307.<br />

Lima, G., Ippolito, A., Nigro, F., <strong>and</strong> Salerno, M. (1997). Biological <strong>control</strong> of grey mould of stored table grapes by pre-harvest applications of Aureobasidium pullulans <strong>and</strong> C<strong>and</strong>ida oleophila. Difesa delle<br />

Piante 20, 21-28.<br />

Limon, M. C., Chacon, M. R., Mejias, R., Delgado-Jarana, J., Rincon, A. M., Codon, A. C., <strong>and</strong> Benitez, T. (2004). Increased antifungal <strong>and</strong> chitinase specific activities of Trichoderma harzianum CECT 2413<br />

by addition of a cellulose binding domain. Applied Microbiology <strong>and</strong> Biotechnology 64, 675-685.<br />

Lisboa, B. B., Bochese, C. C., Vargas, L. K., Silveira, J. R. P., Radin, B., <strong>and</strong> Oliveira, A. M. R. d. (2007). Efficiency of Trichoderma harzianum <strong>and</strong> Gliocladium viride in decreasing the incidence of Botrytis<br />

cinerea in tomato cultivated in protected environment. Ciencia Rural 37, 1255-1260.<br />

Liu, B., Peng, H., <strong>and</strong> Chen, S. (2007a). Screening of Trichoderma antagonistic strains to Tomato Botrytis cinerea <strong>and</strong> its evaluation of the <strong>control</strong> effect. Southwest China Journal of Agricultural Sciences 20,<br />

650-653.<br />

Liu, C. H., Chen, X., Liu, T. T., Lian, B., Gu, Y., Caer, V., Xue, Y. R., <strong>and</strong> Wang, B. T. (2007b). Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro <strong>and</strong> identification of its<br />

antifungal components. Applied Microbiology <strong>and</strong> Biotechnology 76, 459-466.<br />

Liu, Q., Yu, J., <strong>and</strong> Fang, S. (2004). Antagonism appraisement of strain MY02 <strong>against</strong> plant pathogenic fungus. Journal of Jilin Agricultural University 26, 499-502.<br />

Liu, X., Li, Q., Wang, Y., Xu, X., <strong>and</strong> Zhang, X. (2006). The antifungal activity of secondary metabolic products from Xenorhabdus nematophilus YL001. Acta Phytophylacica Sinica 33, 277-281.<br />

Liu, Y., Chen, Z., Ng, T. B., Zhang, J., Zhou, M., Song, F., Lu, F., <strong>and</strong> Liu, Y. (2007c). Bacisubin, an antifungal protein with ribonuclease <strong>and</strong> hemagglutinating activities from Bacillus subtilis strain B-916.<br />

Peptides 28, 553-559.<br />

Liu, Y., Huang, C., <strong>and</strong> Chen, C. (2008). Evidence of induced systemic resistance <strong>against</strong> Botrytis elliptica in lily. Phytopathology 98, 830-836.<br />

Lolas, M., Donoso, E., Gonzalez, V., <strong>and</strong> Carrasco, G. (2005). Use of a Chilean native strain 'Sherwood' of Trichoderma virens on the bio<strong>control</strong> of Botrytis cinerea in lettuces grown by a float system. Acta<br />

Horticulturae, 437-440.<br />

Long, J., Hu, Z., Liu, J., <strong>and</strong> Wu, W. (2005). Fungicidal activity of fermentation products of Streptomyces isolated from Qinling mountain area. Chinese Journal of Biological Control 21, 187-191.<br />

Ma, Y., Liu, X., Gao, K., Qin, N., Pang, Y., <strong>and</strong> Shi, C. (2007). Preliminary study on bio<strong>control</strong> potential of rhizobacterium Serratia plymuthica HRO-C48. Journal of Yunnan Agricultural University 22, 49-<br />

53.<br />

Maccagnani, B., Mocioni, M., Gullino, M. L., <strong>and</strong> Ladurner, E. (1999). Application of Trichoderma harzianum by using Apis mellifera as a vector for the <strong>control</strong> of grey mould of strawberry: first results.<br />

Bulletin OILB/SROP 22, 161-164.<br />

93


Nicot et al. (Appendix for Chapter 1)<br />

Mach, R. L., Peterbauer, C. K., Payer, K., Jaksits, S., Woo, S. L., Zeilinger, S., Kullnig, C. M., Lorito, M., <strong>and</strong> Kubicek, C. P. (1999). Expression of two major chitinase genes of Trichoderma atroviride (T.<br />

harzianum P1) is triggered by different regulatory signals. Applied <strong>and</strong> Environmental Microbiology 65, 1858-1863.<br />

Machowicz-Stefaniak, Z. (1998). Antagonistic activity of epiphytic fungi from grape-vine <strong>against</strong> Botrytis cinerea Pers. Phytopathologia Polonica, 45-52.<br />

Machowicz-Stefaniak, Z., Prischepa, L. I., Zalewska, E., <strong>and</strong> Krol, E. (2004). Effect of Trichoderma spp. on some pathogens of hazel. Annales Universitatis Mariae Curie-Sklodowska. Sectio EEE,<br />

Horticultura 14, 101-110.<br />

Magnin-Robert, M., Trotel-Aziz, P., Quantinet, D., Biagianti, S., <strong>and</strong> Aziz, A. (2007). Biological <strong>control</strong> of Botrytis cinerea by selected grapevine-associated bacteria <strong>and</strong> stimulation of chitinase <strong>and</strong> beta -1,3<br />

glucanase activities under field conditions. European Journal of Plant Pathology 118, 43-57.<br />

Mahmoud, Y. A. G., Ebrahim, M. K. H., <strong>and</strong> Aly, M. M. (2004). Influence of some plant extracts <strong>and</strong> microbioagents on some physiological traits of faba bean infected with Botrytis fabae. Turkish Journal of<br />

Botany 28, 519-528.<br />

Mamarabadi, M., Jensen, B., Jensen, D. F., <strong>and</strong> Lubeck, M. (2008). Real-time RT-PCR expression analysis of chitinase <strong>and</strong> endoglucanase genes in the three-way interaction between the bio<strong>control</strong> strain<br />

Clonostachys rosea IK726, Botrytis cinerea <strong>and</strong> strawberry. FEMS Microbiology Letters 285, 101-110.<br />

Marco, S. d., <strong>and</strong> Osti, F. (2007). Applications of Trichoderma to prevent Phaeomoniella chlamydospora infections in organic nurseries. Phytopathologia Mediterranea 46, 73-83.<br />

Mari, M., Guizzardi, M., <strong>and</strong> Pratella, G. C. (1996). Biological <strong>control</strong> of gray mold in pears by antagonistic bacteria. Biological Control 7, 30-37.<br />

Marquenie, D., Schenk, A., <strong>and</strong> Nicolai, B. (1999). VCBT investigates non-chemical methods to increase the storage life of strawberries <strong>and</strong> sweet cherries. Fruitteelt-nieuws 12, 18-19.<br />

Masih, E. I., Alie, I., <strong>and</strong> Paul, B. (2000). Can the grey mould disease of the grape-vine be <strong>control</strong>led by yeast? FEMS Microbiology Letters 189, 233-237.<br />

Masih, E. I., <strong>and</strong> Paul, B. (2002). Secretion of beta -1,3-glucanases by the yeast Pichia membranaefaciens <strong>and</strong> its possible role in the bio<strong>control</strong> of Botrytis cinerea causing grey mould disease of the grapevine.<br />

Current Microbiology 44, 391-395.<br />

Masih, E. I., Slezack-Deschaumes, S., Marmaras, I., Barka, E. A., Vernet, G., Charpentier, C., Adholeya, A., <strong>and</strong> Paul, B. (2001). Characterisation of the yeast Pichia membranifaciens <strong>and</strong> its possible use in<br />

the <strong>biological</strong> <strong>control</strong> of Botrytis cinerea, causing the grey mould disease of grapevine. FEMS Microbiology Letters 202, 227-232.<br />

McHugh, R., <strong>and</strong> Seddon, B. (2001). Mode of action of Brevibacillus brevis - bio<strong>control</strong> <strong>and</strong> biorational <strong>control</strong>. Bulletin OILB/SROP 24, 17-20.<br />

McHugh, R., White, D., Schmitt, A., Ernst, A., <strong>and</strong> Seddon, B. (2002). Bio<strong>control</strong> of Botrytis cinerea infection of tomato in unheated polytunnels in the North East of Scotl<strong>and</strong>. Bulletin OILB/SROP 25, 155-<br />

158.<br />

Mercier, J., <strong>and</strong> Jimenez, J. I. (2004). Control of fungal decay of apples <strong>and</strong> peaches by the biofumigant fungus Muscodor albus. Postharvest Biology <strong>and</strong> Technology 31, 1-8.<br />

Mercier, J., <strong>and</strong> Jimenez, J. I. (2007). Potential of the volatile-producing fungus Muscodor albus for <strong>control</strong> of building molds. Canadian Journal of Microbiology 53, 404-410.<br />

Meszka, B., <strong>and</strong> Bielenin, A. (2004). Possibilities of integrated grey mould <strong>control</strong> on strawberry plantations in Pol<strong>and</strong>. Bulletin OILB/SROP 27, 41-45.<br />

Metz, C., Oerke, E. C., <strong>and</strong> Dehne, H. W. (2002). Biological <strong>control</strong> of grey mould (Botrytis cinerea) with the antagonist Ulocladium atrum. Mededelingen - Faculteit L<strong>and</strong>bouwkundige en Toegepaste<br />

Biologische Wetenschappen, Universiteit Gent 67, 353-359.<br />

Meyer, G. d., Bigirimana, J., Elad, Y., <strong>and</strong> Hofte, M. (1998). Induced systemic resistance in Trichoderma harzianum T39 bio<strong>control</strong> of Botrytis cinerea. European Journal of Plant Pathology 104, 279-286.<br />

Meyer, U. M., Fischer, E., Barbul, O., <strong>and</strong> Elad, Y. (2001). Effect of bio<strong>control</strong> agents on antigens present in the extracellular matrix of Botrytis cinerea, which are important for pathogenesis. Bulletin<br />

OILB/SROP 24, 5-9.<br />

Meziane, H., Chernin, L., <strong>and</strong> Hofte, M. (2006). Use of Serratia plymuthica to <strong>control</strong> fungal pathogens in bean <strong>and</strong> tomato by induced resistance <strong>and</strong> direct antagonism. Bulletin OILB/SROP 29, 101-105.<br />

Migheli, Q., Gullino, M. L., Piano, S., Galliano, A., <strong>and</strong> Duverney, C. (1997). Bio<strong>control</strong> capability of Metschnikowia pulcherrima <strong>and</strong> Pseudomonas syringae <strong>against</strong> postharvest rots of apple under semicommercial<br />

condition. Mededelingen - Faculteit L<strong>and</strong>bouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent 62, 1065-1070.<br />

Mikani, A., Etebarian, H. R., Aminian, H., <strong>and</strong> Alizadeh, A. (2007). Interaction between Pseudomonas fluorescens isolates <strong>and</strong> thiabendazole in the <strong>control</strong> of gray mold of apple. Pakistan Journal of<br />

Biological Sciences 10, 2172-2177.<br />

Mikani, A., Etebarian, H. R., Sholberg, P. L., O'Gorman, D. T., Stokes, S., <strong>and</strong> Alizadeh, A. (2008). Biological <strong>control</strong> of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains.<br />

Postharvest Biology <strong>and</strong> Technology 48, 107-112.<br />

Minuto, G., Bruzzone, C., Tinivella, F., Lodovica Gullino, M., <strong>and</strong> Garibaldi, A. (2002). Biological <strong>control</strong> in cyclamen. Colture Protette 31, 85-95.<br />

Minuto, G., Minuto, A., Tinivella, F., Lodovica Gullino, M., <strong>and</strong> Garibaldi, A. (2004). Disease <strong>control</strong> on organically grown cyclamen. Bulletin OILB/SROP 27, 89-93.<br />

Mischke, S. (1998). Mycoparasitism of selected sclerotia-forming fungi by Sporidesmium sclerotivorum. Canadian Journal of Botany 76, 460-466.<br />

Mizrakci, A., <strong>and</strong> Yildiz, F. (2002). Studies on the effect of calcium <strong>and</strong> a Pseudomonas fluorescens isolate to <strong>control</strong> Botrytis cinerea Pers. on tomato. Journal of Turkish Phytopathology 31, 31-41.<br />

Molina Mercader, G., Zaldua Flores, S., Gonzalez Vargas, G., <strong>and</strong> Sanfuentes Von Stowasser, E. (2006). Screening to antagonistic fungi for Botrytis cinerea bio<strong>control</strong> in Chilean forest nurseries. Bosque 27,<br />

126-134.<br />

Monchiero, M., Gilardi, G., Garibaldi, A., <strong>and</strong> Gullino, M. L. (2005). Chemical <strong>and</strong> <strong>biological</strong> <strong>control</strong> of grey mould of grapevine in North-western Italy. Informatore Fitopatologico 55, 38-44.<br />

94


Appendix 1<br />

Mor<strong>and</strong>i, M. A. B., Maffia, L. A., Mizubuti, E. S. G., Alfenas, A. C., <strong>and</strong> Barbosa, J. G. (2003). Suppression of Botrytis cinerea sporulation by Clonostachys rosea on rose debris: a valuable component in<br />

Botrytis blight management in commercial greenhouses. Biological Control 26, 311-317.<br />

Mor<strong>and</strong>i, M. A. B., Maffia, L. A., Mizubuti, E. S. G., Alfenas, A. C., Barbosa, J. G., <strong>and</strong> Cruz, C. D. (2006). Relationships of microclimatic variables to colonization of rose debris by Botrytis cinerea <strong>and</strong> the<br />

bio<strong>control</strong> agent Clonostachys rosea. Bio<strong>control</strong> Science <strong>and</strong> Technology 16, 619-630.<br />

Mor<strong>and</strong>i, M. A. B., Maffia, L. A., <strong>and</strong> Sutton, J. C. (2001). Development of Clonostachys rosea <strong>and</strong> interactions with Botrytis cinerea in rose leaves <strong>and</strong> residues. Phytoparasitica 29, 103-113.<br />

Mor<strong>and</strong>i, M. A. B., Maffia, L. A., <strong>and</strong> Tatagiba, J. S. (1999). Pathogenicity of Cladosporium spp. isolates, potential bio<strong>control</strong> agents of Botrytis cinerea, to rose plants. Summa Phytopathologica 25, 367-369.<br />

Mor<strong>and</strong>i, M. A. B., Mattos, L. P. V., <strong>and</strong> Santos, E. R. (2007). Influence of application time on survival, establishment <strong>and</strong> ability of Clonostachys rosea to <strong>control</strong> Botrytis cinerea conidiation on rose debris.<br />

Bulletin OILB/SROP 30, 317-320.<br />

Mor<strong>and</strong>i, M. A. B., Mattos, L. P. V., Santos, E. R., <strong>and</strong> Bonugli, R. C. (2008). Influence of application time on the establishment, survival, <strong>and</strong> ability of Clonostachys rosea to suppress Botrytis cinerea<br />

sporulation on rose debris. Crop Protection 27, 77-83.<br />

Mor<strong>and</strong>i, M. A. B., Sutton, J. C., <strong>and</strong> Maffia, L. A. (2000a). Effects of host <strong>and</strong> microbial factors on development of Clonostachys rosea <strong>and</strong> <strong>control</strong> of Botrytis cinerea in rose. European Journal of Plant<br />

Pathology 106, 439-448.<br />

Mor<strong>and</strong>i, M. A. B., Sutton, J. C., <strong>and</strong> Maffia, L. A. (2000b). Relationships of aphid <strong>and</strong> mite infestations to <strong>control</strong> of Botrytis cinerea by Clonostachys rosea in rose (Rosa hybrida) leaves. Phytoparasitica 28,<br />

55-64.<br />

Moreno Vel<strong>and</strong>ia, C. A., Cotes, A. M., <strong>and</strong> Guevara Vergara, E. (2007). Biological <strong>control</strong> of foliar diseases in tomato greenhouse crop in Colombia: selection of antagonists <strong>and</strong> efficacy tests. Bulletin<br />

OILB/SROP 30, 59-62.<br />

Moyano, C., Raposo, R., Gomez, V., <strong>and</strong> Melgarejo, P. (2003). Integrated Botrytis cinerea management in Southeastern Spanish greenhouses. Journal of Phytopathology 151, 80-85.<br />

Mukherjee, P. K., Haware, M. P., <strong>and</strong> Raghu, K. (1997). Induction <strong>and</strong> evaluation of benomyl-tolerant mutants of Trichoderma viride for <strong>biological</strong> <strong>control</strong> of Botrytis grey mould of chickpea. Indian<br />

Phytopathology 50, 485-489.<br />

Nadkarni, S. R., Triptikumar, M., Bhat, R. G., Gupte, S. V., <strong>and</strong> Sachse, B. (1998). Mathemycin A, a new antifungal macrolactone from actinomycete sp. HIL Y-8620959: I. fermentation, isolation, physicochemical<br />

properties <strong>and</strong> <strong>biological</strong> activities. Journal of Antibiotics 51, 579-581.<br />

Navazio, L., Baldan, B., Moscatiello, R., Zuppini, A., Woo, S. L., Mariani, P., <strong>and</strong> Lorito, M. (2007). Calcium-mediated perception <strong>and</strong> defense responses activated in plant cells by metabolite mixtures<br />

secreted by the bio<strong>control</strong> fungus Trichoderma atroviride. BMC Plant Biology 7, (30 July 2007).<br />

Nian, H., Zhang, J., Fan, L., Liu, S., Song, F., <strong>and</strong> Huang, D. (2007). Application of ARDRA technology in Pseudomonas fluorescens isolation <strong>and</strong> identification. Scientia Agricultura Sinica 40, 92-98.<br />

Nicot, P. C., Decognet, V., Bardin, M., Romiti, C., Trottin, Y., Fournier, C., <strong>and</strong> Leyre, J. M. (2003). Potential for including Microdochium dimerum, a bio<strong>control</strong> agent <strong>against</strong> Botrytis cinerea, into an<br />

integrated protection scheme of greenhouse tomatoes. In "Colloque international tomate sous abri, protection integree - agriculture biologique, Avignon, France, 17-18 et 19 septembre 2003", pp. 19-23.<br />

Nicot, P. C., Decognet, V., Fruit, L., Bardin, M., <strong>and</strong> Trottin, Y. (2002). Combined effect of microclimate <strong>and</strong> dose of application on the efficacy of bio<strong>control</strong> agents for the protection of pruning wounds on<br />

tomatoes <strong>against</strong> Botrytis cinerea. Bulletin OILB/SROP 25, 73-76.<br />

Nie, Y., Liu, Y., Li, D., Liu, Y., Luo, C., <strong>and</strong> Chen, Z. (2007). Marine bacteria with antimicrobial activity <strong>against</strong> rice sheath blight. Jiangsu Journal of Agricultural Sciences 23, 420-427.<br />

Nielsen, K., Yohalem, D. S., Green, H., <strong>and</strong> Jensen, D. F. (2000). Biological <strong>control</strong> of grey mould in onion. DJF Rapport, Havebrug, 55-61.<br />

Nobre, S. A. M., Maffia, L. A., Mizubuti, E. S. G., Cota, L. V., <strong>and</strong> Dias, A. P. S. (2005). Selection of Clonostachys rosea isolates from Brazilian ecosystems effective in <strong>control</strong>ling Botrytis cinerea. Biological<br />

Control 34, 132-143.<br />

Novikova, I. I., Litvinenko, A. I., Boikova, I. V., Yaroshenko, V. A., <strong>and</strong> Kalko, G. V. (2003). Biological activity of new micro<strong>biological</strong> preparations alirins B <strong>and</strong> S designed for plant protection <strong>against</strong><br />

diseases. I. Biological activity of alirins <strong>against</strong> diseases of vegetable crops <strong>and</strong> potato. Mikologiya i Fitopatologiya 37, 92-98.<br />

Nunes, C., Teixido, N., Usall, J., <strong>and</strong> Vinas, I. (2001a). Biological <strong>control</strong> of major postharvest diseases on pear fruits with antagonistic bacterium Pantoea agglomerans (CPA-2). Acta Horticulturae, 403-404.<br />

Nunes, C., Usall, J., Teixido, N., Abadias, I., Asensio, A., <strong>and</strong> Vinas, I. (2007). Bio<strong>control</strong> of postharvest decay using a new strain of Pseudomonas syringae CPA-5 in different cultivars of pome fruits.<br />

Agricultural <strong>and</strong> Food Science 16, 56-65.<br />

Nunes, C., Usall, J., Teixido, N., Abadias, M., <strong>and</strong> Vinas, I. (2002a). Improved <strong>control</strong> of postharvest decay of pears by the combination of C<strong>and</strong>ida sake (CPA-1) <strong>and</strong> ammonium molybdate. Phytopathology<br />

92, 281-287.<br />

Nunes, C., Usall, J., Teixido, N., Fons, E., <strong>and</strong> Vinas, I. (2002b). Postharvest <strong>biological</strong> <strong>control</strong> by Pantoea agglomerans (CPA-2) on Golden Delicious apples. Journal of Applied Microbiology 92, 247-255.<br />

Nunes, C., Usall, J., Teixido, N., Torres, R., <strong>and</strong> Vinas, I. (2002c). Control of Penicillium expansum <strong>and</strong> Botrytis cinerea on apples <strong>and</strong> pears with the combination of C<strong>and</strong>ida sake <strong>and</strong> Pantoea agglomerans.<br />

Journal of Food Protection 65, 178-184.<br />

Nunes, C., Usall, J., Teixido, N., <strong>and</strong> Vinas, I. (2001b). Biological <strong>control</strong> of postharvest pear diseases using a bacterium, Pantoea agglomerans CPA-2. International Journal of Food Microbiology 70, 53-61.<br />

95


Nicot et al. (Appendix for Chapter 1)<br />

Nunes, C., Usall, J., Teixido, N., <strong>and</strong> Vinas, I. (2002d). Improvement of C<strong>and</strong>ida sake bio<strong>control</strong> activity <strong>against</strong> post-harvest decay by the addition of ammonium molybdate. Journal of Applied Microbiology<br />

92, 927-935.<br />

Okada, A., Banno, S., Ichiishi, A., Kimura, M., Yamaguchi, I., <strong>and</strong> Fujimura, M. (2005). Pyrrolnitrin interferes with osmotic signal transduction in Neurospora crassa. Journal of Pesticide Science 30, 378-383.<br />

Olson, H. A., <strong>and</strong> Benson, D. M. (2007). Induced systemic resistance <strong>and</strong> the role of binucleate Rhizoctonia <strong>and</strong> Trichoderma hamatum 382 in bio<strong>control</strong> of Botrytis blight in geranium. Biological Control 42,<br />

233-241.<br />

Ongena, M., Giger, A., Jacques, P., Dommes, J., <strong>and</strong> Thonart, P. (2002). Study of bacterial determinants involved in the induction of systemic resistance in bean by Pseudomonas putida BTP1. European<br />

Journal of Plant Pathology 108, 187-196.<br />

Ongena, M., Jacques, P., Toure, Y., Destain, J., Jabrane, A., <strong>and</strong> Thonart, P. (2005). Involvement of fengycin-type lipopeptides in the multifaceted bio<strong>control</strong> potential of Bacillus subtilis. Applied<br />

Microbiology <strong>and</strong> Biotechnology 69, 29-38.<br />

Orlikowski, L. B., <strong>and</strong> Skrzyoczak, C. (2003). Biocides in the <strong>control</strong> of soil-borne <strong>and</strong> leaf pathogens. Sodininkyste ir Darzininkyste 22, 426-433.<br />

Orlikowski, L. B., <strong>and</strong> Skrzypczak, C. (2001). Biopreparations from grapefruit extract - progress in the <strong>biological</strong> <strong>control</strong> of plant diseases. Annales Universitatis Mariae Curie-Sklodowska. Sectio EEE,<br />

Horticultura 9, 261-269.<br />

Orlikowski, L. B., Skrzypczak, C., <strong>and</strong> Jaworska-Marosz, A. (2002). Development of Botrytis species in the presence of grapefruit extract. Bulletin OILB/SROP 25, 151-154.<br />

Pan, Z., Liu, W., Qiu, J., Dong, K., Tian, Z., Liu, D., <strong>and</strong> Liu, X. (2005). Effect of the actinomyces strains III-61 <strong>and</strong> A-21 on the <strong>control</strong> of Fusarium wilt <strong>and</strong> grey mould of vegetables. Acta Agriculturae<br />

Boreali-Sinica 20, 92-97.<br />

Park, H., Lee, J. Y., Hwang, I., Yun, B., Kim, B., <strong>and</strong> Hwang, B. (2006). Isolation <strong>and</strong> antifungal <strong>and</strong> antioomycete activities of staurosporine from Streptomyces roseoflavus strain LS-A24. Journal of<br />

Agricultural <strong>and</strong> Food Chemistry 54, 3041-3046.<br />

Park, J., Kirn, R., Aslam, Z., Jeon, C., <strong>and</strong> Chung, Y. (2008). Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, <strong>and</strong> emended description of the genus Lysobacter.<br />

International Journal of Systematic <strong>and</strong> Evolutionary Microbiology 58, 387-392.<br />

Park, S., Bae, D., Lee, J., Chung, S., <strong>and</strong> Kim, H. (1999). Integration of <strong>biological</strong> <strong>and</strong> chemical methods for the <strong>control</strong> of pepper grey mould rot under commercial greenhouse conditions. Plant Pathology<br />

Journal 15, 162-167.<br />

Paul, B. (1999a). Pythium periplocum, an aggressive mycoparasite of Botrytis cinerea causing the gray mould disease of grape-vine. FEMS Microbiology Letters 181, 277-280.<br />

Paul, B. (1999b). Suppression of Botrytis cinerea causing the grey mould disease of grape-vine by an aggressive mycoparasite, Pythium radiosum. FEMS Microbiology Letters 176, 25-30.<br />

Paul, B. (2000). Pythium contiguanum nomen novum (syn. Pythium dreschleri Paul), its antagonism to Botrytis cinerea, ITS1 region of its nuclear ribosomal DNA, <strong>and</strong> its comparison with related species.<br />

FEMS Microbiology Letters 183, 105-110.<br />

Paul, B. (2003). Characterisation of a new species of Pythium isolated from a wheat field in northern France <strong>and</strong> its antagonism towards Botrytis cinerea causing the grey mould disease of the grapevine.<br />

FEMS Microbiology Letters 224, 215-223.<br />

Paul, B. (2004). A new species of Pythium isolated from burgundian vineyards <strong>and</strong> its antagonism towards Botrytis cinerea, the causative agent of the grey mould disease. FEMS Microbiology Letters 234,<br />

269-274.<br />

Paul, B., Chereyathmanjiyil, A., Masih, I., Chapuis, L., <strong>and</strong> Benoit, A. (1998). Biological <strong>control</strong> of Botrytis cinerea causing grey mould disease of grapevine <strong>and</strong> elicitation of stilbene phytoalexin (resveratrol)<br />

by a soil bacterium. FEMS Microbiology Letters 165, 65-70.<br />

Paul, B., Girard, I., Bhatnagar, T., <strong>and</strong> Bouchet, P. (1997). Suppression of Botrytis cinerea causing grey mould disease of grape vine (Vitis vinifera) <strong>and</strong> its pectinolytic activities by a soil bacterium.<br />

Micro<strong>biological</strong> Research 152, 413-420.<br />

Pellegrini, E., Sicher, C., Fiore, A., Fogliano, V., <strong>and</strong> Pertot, I. (2007). Efficacy of Pseudomonas syringae lipodepsipeptides in inhibiting Botrytis cinerea on strawberry fruits. Bulletin OILB/SROP 30, 195-198.<br />

Pezet, R., Pont, V., <strong>and</strong> Tabacchi, R. (1999). Simple analysis of 6-pentyl- alpha -pyrone, a major antifungal metabolite of Trichoderma spp., useful for testing the antagonistic activity of these fungi.<br />

Phytochemical Analysis 10, 285-288.<br />

Piano, S., Cerchio, F., Migheli, Q., <strong>and</strong> Gullino, M. L. (1998). Effect of different substances on bio<strong>control</strong> activity of the antagonistic yeast Metschnikowia pulcherrima 4.4 <strong>against</strong> Botrytis cinerea <strong>and</strong> on his<br />

survival on apple. Atti, Giornate fitopatologiche, Scicli e Ragusa, 3-7 maggio, 1998, 495-500.<br />

Pradeep, K., Anuja, <strong>and</strong> Kumud, K. (2000). Bio-<strong>control</strong> of seed-borne fungal pathogens of pigeonpea (Cajanus cajan (L.) Millsp.). Annals of Plant Protection Sciences 8, 30-32.<br />

Pristchepa, L., Voitka, D., Kasperovich, E., <strong>and</strong> Stepanova, N. (2006). Influence of Trichodermin-BL on the decrease of fiber flax infection by diseases <strong>and</strong> the improvement of ITS production quality. Journal<br />

of Plant Protection Research 46, 97-102.<br />

Prokkola, S., <strong>and</strong> Kivijarvi, P. (2007). Effect of <strong>biological</strong> sprays on the incidence of grey mould, fruit yield <strong>and</strong> fruit quality in organic strawberry production. Agricultural <strong>and</strong> Food Science 16, 25-33.<br />

Prokkola, S., Kivijarvi, P., <strong>and</strong> Parikka, P. (2003). Effects of <strong>biological</strong> sprays, mulching materials, <strong>and</strong> irrigation methods on grey mould in organic strawberry production. Acta Horticulturae, 169-175.<br />

Qian, Y., Yang, C., Ji, Z., Li, J., Long, J., <strong>and</strong> Wu, W. (2006). Antifungal metabolites of endophytic fungus A10 in Celastrus angulatus. Chinese Journal of Biological Control 22, 150-154.<br />

96


Appendix 1<br />

Rabea, E. I., Badawy, M. E. I., Rogge, T. M., Stevens, C. V., Smagghe, G., Hofte, M., <strong>and</strong> Steurbaut, W. (2003). Synthesis <strong>and</strong> <strong>biological</strong> activity of new chitosan derivatives <strong>against</strong> pest insects <strong>and</strong> fungi.<br />

Communications in Agricultural <strong>and</strong> Applied Biological Sciences 68, 135-138.<br />

Rabosto, X., Carrau, M., Paz, A., Boido, E., Dellacassa, E., <strong>and</strong> Carrau, F. M. (2006). Grapes <strong>and</strong> vineyard soils as sources of microorganisms for <strong>biological</strong> <strong>control</strong> of Botrytis cinerea. American Journal of<br />

Enology <strong>and</strong> Viticulture 57, 332-338.<br />

Ramin, A. A., Prange, R. K., Braun, P. G., <strong>and</strong> Delong, J. M. (2008). Bio<strong>control</strong> of postharvest fungal apple decay at 20 deg C with Muscodor albus volatiles. Acta Horticulturae, 329-335.<br />

Ran, L., Xiang, M., Zhou, B., <strong>and</strong> Bakker, P. A. H. M. (2005). Siderophores are the main determinants of fluorescent Pseudomonas strains in suppression of grey mould in Eucalyptus urophylla. Acta<br />

Phytopathologica Sinica 35, 6-12.<br />

Raoof, M. A., Mehtab, Y., <strong>and</strong> Rana, K. (2003). Potential of bio<strong>control</strong> agents for the management of castor grey mold, Botrytis ricini Godfrey. Indian Journal of Plant Protection 31, 124-126.<br />

Razak, A. A., Soliman, H. G., El-Sheikh, H. H., <strong>and</strong> Farrag, A. A. (2000). Physiological consequences of Botrytis fabae on Vicia faba plant. African Journal of Mycology <strong>and</strong> Biotechnology 8, 39-50.<br />

Reglinski, T., Elmer, P. A. G., Taylor, J. T., Parry, F. J., Marsden, R., <strong>and</strong> Wood, P. N. (2005). Suppression of Botrytis bunch rot in Chardonnay grapevines by induction of host resistance <strong>and</strong> fungal<br />

antagonism. Australasian Plant Pathology 34, 481-488.<br />

Rey, M., Delgado-Jarana, J., <strong>and</strong> Benitez, T. (2001). Improved antifungal activity of a mutant of Trichoderma harzianum CECT 2413 which produces more extracellular proteins. Applied Microbiology <strong>and</strong><br />

Biotechnology 55, 604-608.<br />

Ricard, T., <strong>and</strong> Jorgensen, H. (2000). BINAB's effective, economical, <strong>and</strong> environment compatible Trichoderma products as possible Systemic Acquired Resistance (SAR) inducers in strawberries. DJF<br />

Rapport, Havebrug, 67-75.<br />

Roudet, J., <strong>and</strong> Dubos, B. (2001). Efficacy <strong>and</strong> mode of action of Ulocladium atrum <strong>against</strong> grey mold on grapevine. Bulletin OILB/SROP 24, 73-77.<br />

Saad, M. M., Saad, A. M., <strong>and</strong> Hassan, H. M. (2005). Biological <strong>control</strong> of the pathogenic fungus Botrytis cinerea on bean leaves by using Bacillus subtilis <strong>and</strong> Bacillus megaterium. African Journal of<br />

Mycology <strong>and</strong> Biotechnology 13, 21-34.<br />

Sadfi-Zouaoui, N., Essghaier, B., Hajlaoui, M. R., Achbani, H., <strong>and</strong> Boudabous, A. (2007a). Ability of the antagonistic bacteria Bacillus subtilis <strong>and</strong> B. licheniformis to <strong>control</strong> Botrytis cinerea on fresh-market<br />

tomatoes. Bulletin OILB/SROP 30, 63.<br />

Sadfi-Zouaoui, N., Essghaier, B., Hajlaoui, M. R., Fardeau, M. L., Cayaol, J. L., Ollivier, B., <strong>and</strong> Boudabous, A. (2008). Ability of moderately halophilic bacteria to <strong>control</strong> grey mould disease on tomato<br />

fruits. Journal of Phytopathology 156, 42-52.<br />

Sadfi-Zouaoui, N., Essghaier, B., Hannachi, I., Hajlaoui, M. R., <strong>and</strong> Boudabous, A. (2007b). First report on the use of moderately halophilic bacteria <strong>against</strong> stem canker of greenhouse tomatoes caused by<br />

Botrytis cinerea. Annals of Microbiology 57, 337-339.<br />

Salas Brenes, W., <strong>and</strong> Sanchez Garita, V. (2006). Biological <strong>control</strong> of Botrytis cinerea on pepper <strong>and</strong> tomato crops under greenhouse conditions. Manejo Integrado de Plagas y Agroecologia, 56-62.<br />

Saligkarias, I. D., Gravanis, F. T., <strong>and</strong> Epton, H. A. S. (2002). Biological <strong>control</strong> of Botrytis cinerea on tomato plants by the use of epiphytic yeasts C<strong>and</strong>ida guilliermondii strains 101 <strong>and</strong> US 7 <strong>and</strong> C<strong>and</strong>ida<br />

oleophila strain I-182: II. A study on mode of action. Biological Control 25, 151-161.<br />

Sansone, G., Rezza, I., Calvente, V., Benuzzi, D., <strong>and</strong> Sanz de Tosetti, M. I. (2005). Control of Botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid <strong>and</strong> yeasts. Postharvest Biology <strong>and</strong><br />

Technology 35, 245-251.<br />

Santorum, P., Garcia-Roig, M., Azpilicueta, A., Llobell, A., <strong>and</strong> Monte, E. (2002). Trichoderma protein ability in preventing grey mould <strong>and</strong> anthracnose diseases on strawberry leaves <strong>and</strong> petioles. Bulletin<br />

OILB/SROP 25, 257-260.<br />

Santos, A., <strong>and</strong> Marquina, D. (2004). Killer toxin of Pichia membranifaciens <strong>and</strong> its possible use as a bio<strong>control</strong> agent <strong>against</strong> grey mould disease of grapevine. Microbiology (Reading) 150, 2527-2534.<br />

Santos, A., Sanchez, A., <strong>and</strong> Marquina, D. (2004). Yeasts as <strong>biological</strong> agents to <strong>control</strong> Botrytis cinerea. Micro<strong>biological</strong> Research 159, 331-338.<br />

Sanz, L., Montero, M., Grondona, I., Llobell, A., <strong>and</strong> Monte, E. (2002). In vitro antifungal activity of Trichoderma harzianum, T. longibrachiatum, T. asperellum <strong>and</strong> T. atroviride <strong>against</strong> Botrytis cinerea<br />

pathogenic to strawberry. Bulletin OILB/SROP 25, 253-256.<br />

Sanz, L., Montero, M., Redondo, J., Llobell, A., <strong>and</strong> Monte, E. (2005). Expression of an alpha -1,3- glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS Journal 272, 493-499.<br />

Sardi, P., Saracchi, M., <strong>and</strong> Farina, G. (2008). Antifungal activity of Bacillus subtilis <strong>against</strong> rot pathogens. In "Giornate Fitopatologiche 2008, Cervia", pp. 565-572.<br />

Schena, L., Ippolito, A., Zahavi, T., Cohen, L., Nigro, F., <strong>and</strong> Droby, S. (1999). Genetic diversity <strong>and</strong> bio<strong>control</strong> activity of Aureobasidium pullulans isolates <strong>against</strong> postharvest rots. Postharvest Biology <strong>and</strong><br />

Technology 17, 189-199.<br />

Schilder, A. M. C., Gillett, J. M., Sysak, R. W., <strong>and</strong> Wise, J. C. (2002). Evaluation of environmentally friendly products for <strong>control</strong> of fungal diseases of grapes. In "10th International Conference on<br />

Cultivation Technique <strong>and</strong> Phytopathological Problems in Organic Fruit-Growing <strong>and</strong> Viticulture. Proceedings of a conference, Weinsberg, Germany, 4-7 February 2002", pp. 163-167.<br />

Schmitt, A., Malathrakis, N., Konstantinidou-Doltsinis, S., Dik, A., Ernst, A., Francke, W., Petsikos-Panayotarou, N., Schuld, M., <strong>and</strong> Seddon, B. (2001). Improved plant health by the combination of<br />

<strong>biological</strong> disease <strong>control</strong> methods. Bulletin OILB/SROP 24, 29-32.<br />

Schoene, P., <strong>and</strong> Köhl, J. (1999). Biological <strong>control</strong> of Botrytis cinerea by Ulocladium atrum in grapevine <strong>and</strong> Cyclamen. Gesunde Pflanzen 51, 81-85.<br />

97


Nicot et al. (Appendix for Chapter 1)<br />

Schoene, P., Lennartz, B., <strong>and</strong> Oerke, E. C. (1999). Fungicide sensitivity of fungi used for bio<strong>control</strong> of perthotrophic pathogens. In "Modern fungicides <strong>and</strong> antifungal compounds II. 12th International<br />

Reinhardsbrunn Symposium, Friedrichroda, Thuringia, Germany, 24th-29th May 1998." pp. 477-482.<br />

Schoene, P., Oerke, E. C., <strong>and</strong> Dehne, H. W. (2000). A new concept for integrated <strong>control</strong> of grey mould (Botrytis cinerea) in grapevine. In "The BCPC Conference: Pests <strong>and</strong> diseases, Volume 3. Proceedings<br />

of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 13-16 November 2000", pp. 1031-1036.<br />

Schoonbeek, H. J., Jacquat-Bovet, A. C., Mascher, F., <strong>and</strong> Metraux, J. P. (2007). Oxalate-degrading bacteria can protect Arabidopsis thaliana <strong>and</strong> crop plants <strong>against</strong> Botrytis cinerea. Molecular Plant-Microbe<br />

Interactions 20, 1535-1544.<br />

Schotsmans, W. C., Braun, G., DeLong, J. M., <strong>and</strong> Prange, R. K. (2008). Temperature <strong>and</strong> <strong>control</strong>led atmosphere effects on efficacy of Muscodor albus as a biofumigant. Biological Control 44, 101-110.<br />

Seddon, B., McHugh, R. C., <strong>and</strong> Schmitt, A. (2000). Brevibacillus brevis - a novel c<strong>and</strong>idate bio<strong>control</strong> agent with broad-spectrum antifungal activity. In "The BCPC Conference: Pests <strong>and</strong> diseases, Volume<br />

2. Proceedings of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 13-16 November 2000", pp. 563-570.<br />

Seddon, B., <strong>and</strong> Schmitt, A. (1999). Integrated <strong>biological</strong> <strong>control</strong> of fungal plant pathogens using natural products. In "Modern fungicides <strong>and</strong> antifungal compounds II. 12th International Reinhardsbrunn<br />

Symposium, Friedrichroda, Thuringia, Germany, 24th-29th May 1998." pp. 423-428.<br />

Sesan, T. E., Stefan, A. L., Constantinescu, F., <strong>and</strong> Petrescu, A. (2002). Grapevine rots - diseases coming back into actuality in viticulture. II. Biological <strong>control</strong>. Analele Institutului de Cercetare-Dezvoltare<br />

pentru Protectia Plantelor 32, 167-174.<br />

Shafir, S., Dag, A., Bilu, A., Abu-Toamy, M., <strong>and</strong> Elad, Y. (2006). Honey bee dispersal of the bio<strong>control</strong> agent Trichoderma harzianum T39: effectiveness in suppressing Botrytis cinerea on strawberry under<br />

field conditions. European Journal of Plant Pathology 116, 119-128.<br />

Sharga, B. M. (1997). Bacillus isolates as potential bio<strong>control</strong> agents <strong>against</strong> chocolate spot on faba beans. Canadian Journal of Microbiology 43, 915-924.<br />

Shentu, X., Chen, X., <strong>and</strong> Yu, X. (2006). The isolation of endophytic fungi from Tripterygiun wilfordii Hook <strong>and</strong> the screening of its active strain. Acta Agriculturae Zhejiangensis 18, 308-312.<br />

Shipp, L., Kapongo, J. P., Kevan, P., Sutton, J., <strong>and</strong> Broadbent, B. (2008). Using bees to disseminate multiple fungal agents for insect pest <strong>control</strong> <strong>and</strong> plant disease suppression in greenhouse vegetables.<br />

Bulletin OILB/SROP 32, 201-204.<br />

Silva-Ribeiro, R. T., Termignoni, C., Dillon, A. J. P., <strong>and</strong> Henriques, J. A. P. (2001). Lethal effect of five Trichoderma spp. strains on the plant pathogen Botrytis cinerea. Summa Phytopathologica 27, 364-<br />

369.<br />

Smolinska, U., <strong>and</strong> Kowalska, B. (2006). The effectivity of plant extracts <strong>and</strong> antagonistic microorganisms on the growth inhibition of French bean pathogenic fungi. Vegetable Crops Research Bulletin 64,<br />

67-76.<br />

Sobiczewski, P., <strong>and</strong> Bryk, H. (1999). The possibilities <strong>and</strong> limitations of <strong>biological</strong> <strong>control</strong> of apples <strong>against</strong> gray mold <strong>and</strong> blue mold with bacteria Pantoea agglomerans <strong>and</strong> Pseudomonas sp. Progress in<br />

Plant Protection 39, 139-147.<br />

Solis, C., Becerra, J., Flores, C., Robledo, J., <strong>and</strong> Silva, M. (2004). Antibacterial <strong>and</strong> antifungal terpenes from Pilgerodendron uviferum (D. Don) Florin. Journal of the Chilean Chemical Society 49, 157-161.<br />

Someya, N., Nakajima, M., Hirayae, K., Hibi, T., <strong>and</strong> Akutsu, K. (2001). Synergistic antifungal activity of chitinolytic enzymes <strong>and</strong> prodigiosin produced by bio<strong>control</strong> bacterium, Serratia marcescens strain<br />

B2 <strong>against</strong> gray mold pathogen, Botrytis cinerea. Journal of General Plant Pathology 67, 312-317.<br />

Son, Y., Lee, J., Kim, C., Song, J., Kim, H., Kim, J., Kim, D., Park, H., <strong>and</strong> Moon, B. (2002). Biological <strong>control</strong> of gray mold rot of perilla caused by Botrytis cinerea. I. Resistance of perilla cultivars <strong>and</strong><br />

selection of antagonistic bacteria. Plant Pathology Journal 18, 36-42.<br />

Spadaro, D., Garibaldi, A., <strong>and</strong> Gullino, M. L. (2004). Control of Penicillium expansum <strong>and</strong> Botrytis cinerea on apple combining a bio<strong>control</strong> agent with hot water dipping <strong>and</strong> acibenzolar-S-methyl, baking<br />

soda, or ethanol application. Postharvest Biology <strong>and</strong> Technology 33, 141-151.<br />

Spadaro, D., Vola, R., Piano, S., <strong>and</strong> Gullino, M. L. (2002). Mechanisms of action <strong>and</strong> efficacy of four isolates of the yeast Metschnikowia pulcherrima active <strong>against</strong> postharvest pathogens on apples.<br />

Postharvest Biology <strong>and</strong> Technology 24, 123-134.<br />

Stensv<strong>and</strong>, A. (1997). Evaluation of two new fungicides <strong>and</strong> a bio<strong>control</strong> agent <strong>against</strong> grey mould in strawberries. Tests of Agrochemicals <strong>and</strong> Cultivars, 22-23.<br />

Stensv<strong>and</strong>, A. (1998). Evaluation of new fungicides <strong>and</strong> a bio<strong>control</strong> agent <strong>against</strong> grey mould in strawberries. Tests of Agrochemicals <strong>and</strong> Cultivars, 70-71.<br />

Stevenson, P. C., <strong>and</strong> Haware, M. P. (1999). Maackiain in Cicer bijugum Rech. f. associated with resistance to Botrytis grey mould. Biochemical Systematics <strong>and</strong> Ecology 27, 761-767.<br />

Stompor-Chrzan, E. (2002). Effect of aqueous extracts of aspen, black currant, folded blackberry <strong>and</strong> walnut leaves on development of pathogenic fungi. Plant Protection Science 38, 623-625.<br />

Stowasser, E. S. v., <strong>and</strong> Ferreira, F. A. (1997). Evaluation of fungi for <strong>biological</strong> <strong>control</strong> of Botrytis cinerea in eucalyptus nurseries. Revista Arvore 21, 147-153.<br />

Stromeng, G. M., Hjeljord, L. G., Dobson, A., Stensv<strong>and</strong>, A., <strong>and</strong> Tronsmo, A. (2006). Control of grey mould (Botrytis cinerea) in strawberry using fungal antagonists. Bulletin OILB/SROP 29, 9-13.<br />

Sugar, D., <strong>and</strong> Benbow, J. M. (2002). Effect of short-term exposure to high CO2 in combination with <strong>biological</strong> <strong>control</strong> on postharvest decay of pears, <strong>and</strong> factors affecting sensitivity of pears to CO2 injury.<br />

Acta Horticulturae, 891-894.<br />

Sun, Y., Zeng, H., Shi, Y., <strong>and</strong> Li, G. (2003). Mode of action of wuyiencin on Botrytis cinerea. Acta Phytopathologica Sinica 33, 434-438.<br />

Sun, Y., Zong, H., Shi, Y., Li, G., <strong>and</strong> Wang, X. (2004). Inhibition of Botrytis cinerea by wuyiencin <strong>and</strong> variation of enzyme activities associated with disease resistance in tomato. Plant Protection 30, 45-48.<br />

98


Appendix 1<br />

Sutton, J. C., Liu, W., Huang, R., <strong>and</strong> Owen-Going, N. (2002). Ability of Clonostachys rosea to establish <strong>and</strong> suppress sporulation potential of Botrytis cinerea in deleafed stems of hydroponic greenhouse<br />

tomatoes. Bio<strong>control</strong> Science <strong>and</strong> Technology 12, 413-425.<br />

Swadling, I. R., <strong>and</strong> Jeffries, P. (1998). Antagonistic properties of two bacterial bio<strong>control</strong> agents of grey mould disease. Bio<strong>control</strong> Science <strong>and</strong> Technology 8, 439-448.<br />

Sz<strong>and</strong>ala, E. S., <strong>and</strong> Backhouse, D. (2001). Suppression of sporulation of Botrytis cinerea by antagonists applied after infection. Australasian Plant Pathology 30, 165-170.<br />

Tatagiba, J. S. d., Maffia, L. A., Barreto, R. W., Alfenas, A. C., <strong>and</strong> Sutton, J. C. (1998). Biological <strong>control</strong> of Botrytis cinerea in residues <strong>and</strong> flowers of rose (Rosa hybrida). Phytoparasitica 26, 8-19.<br />

Tehrani, A. S., <strong>and</strong> Alizadeh, H. (2000). Bio<strong>control</strong> of Botrytis cinerea the causal agent of gray mold of strawberry by antagonistic fungi. Mededelingen - Faculteit L<strong>and</strong>bouwkundige en Toegepaste<br />

Biologische Wetenschappen, Universiteit Gent 65, 617-629.<br />

Teichmann, B., Linne, U., Hewald, S., Marahiel, M. A., <strong>and</strong> Bolker, M. (2007). A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Molecular<br />

Microbiology 66, 525-533.<br />

Tian, S., Fan, Q., Xu, Y., <strong>and</strong> Liu, H. (2002). Bio<strong>control</strong> efficacy of antagonist yeasts to gray mold <strong>and</strong> blue mold on apples <strong>and</strong> pears in <strong>control</strong>led atmospheres. Plant Disease 86, 848-853.<br />

Tian, S., Qin, G., <strong>and</strong> Xu, Y. (2004a). Survival of antagonistic yeasts under field conditions <strong>and</strong> their bio<strong>control</strong> ability <strong>against</strong> postharvest diseases of sweet cherry. Postharvest Biology <strong>and</strong> Technology 33,<br />

327-331.<br />

Tian, X., Long, J., Bai, H., <strong>and</strong> Wu, W. (2004b). Studies on the fungicidal activity of secondary metabolic products of Actinomycetales. Plant Protection 30, 51-54.<br />

Tirupathi, J., Kumar, C. P. C., <strong>and</strong> Reddy, D. R. R. (2006). Trichoderma as potential bio<strong>control</strong> agents for the management of grey mold of castor. Journal of Research ANGRAU 34, 31-36.<br />

Toure, Y., Ongena, M., Jacques, P., Guiro, A., <strong>and</strong> Thonart, P. (2004). Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple.<br />

Journal of Applied Microbiology 96, 1151-1160.<br />

Trotel-Aziz, P., Aziz, A., Amborabe, E., Kilani-Feki, O., <strong>and</strong> Vernet, G. (2003). Biological <strong>control</strong> of Botrytis cinerea in vineyards (Vitis vinifera L.): evaluation of native endophytic bacteria of the<br />

Champagne Ardenne region. Progres Agricole et Viticole 120, 279-280.<br />

Trottin-Caudal, Y., Fournier, C., Leyre, J. M., Nicot, P., Decognet, V., Bardin, M., <strong>and</strong> Romiti, C. (2001). Protected tomato: <strong>biological</strong> <strong>control</strong> of Botrytis cinerea <strong>and</strong> Oidium neolycopersici. PHM Revue<br />

Horticole, xiii-xv.<br />

Tsomlexoglou, E., Allan, E. J., <strong>and</strong> Seddon, B. (2000). Bio<strong>control</strong> strategies for Bacillus antagonists to tomato grey mould Botrytis cinerea) based on the mode of action <strong>and</strong> disease suppression. In "The<br />

BCPC Conference: Pests <strong>and</strong> diseases, Volume 3. Proceedings of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 13-16 November 2000", pp. 1037-1042.<br />

Tsomlexoglou, E., Seddon, B., <strong>and</strong> Allan, E. J. (2001). Bio<strong>control</strong> potential of Bacillus antagonists selected for their different modes of action <strong>against</strong> Botrytis cinerea. Bulletin OILB/SROP 24, 137-141.<br />

Tsomlexoglou, E., Seddon, B., <strong>and</strong> Allan, E. J. (2002). Influence of environmental factors on the performance of two bio<strong>control</strong> agents <strong>against</strong> the grey mould pathogen (Botrytis cinerea) in glasshouse-grown<br />

tomato crops. Bulletin OILB/SROP 25, 215-218.<br />

Turcanu, P. (1997). Preliminary results on the <strong>biological</strong> <strong>control</strong> of the fungus Sclerotinia fuckeliana (De Bary) F.C. at the Iasi Viticultural Research Station. Cercetari Agronomice in Moldova 30, 153-157.<br />

Tylkowska, K., <strong>and</strong> Szopinska, D. (1998). Effects of fungicides <strong>and</strong> Penicillium spp. <strong>and</strong> Trichoderma spp. on health <strong>and</strong> germination of onion seed. Roczniki Akademii Rolniczej w Poznaniu, Ogrodnictwo,<br />

339-344.<br />

Utkhede, R., <strong>and</strong> Bogdanoff, C. (2003). Influence of lysozyme, yeast, azoxystrobin, <strong>and</strong> myclobutanil on fungal diseases of cucumbers grown hydroponically. Crop Protection 22, 315-320.<br />

Utkhede, R., Bogdanoff, C., <strong>and</strong> McNevin, J. (2001). Effects of <strong>biological</strong> <strong>and</strong> chemical treatments on Botrytis stem canker <strong>and</strong> fruit yield of tomato under greenhouse conditions. Canadian Journal of Plant<br />

Pathology 23, 253-259.<br />

Utkhede, R. S., <strong>and</strong> Mathur, S. (2002). Biological <strong>control</strong> of stem canker of greenhouse tomatoes caused by Botrytis cinerea. Canadian Journal of Microbiology 48, 550-554.<br />

Utkhede, R. S., <strong>and</strong> Mathur, S. (2006). Preventive <strong>and</strong> curative <strong>biological</strong> treatments for <strong>control</strong> of Botrytis cinerea stem canker of greenhouse tomatoes. BioControl 51, 363-373.<br />

Vicedo, B., Leyva, M. d. l. O., Flors, V., Finiti, I., Amo, G. d., Walters, D., Real, M. D., Garcia-Agustin, P., <strong>and</strong> Gonzalez-Bosch, C. (2005). Control of the phytopathogen Botrytis cinerea using adipic acid<br />

monoethyl ester. Archives of Microbiology 184, 316-326.<br />

Vinas, I., Usall, J., Teixido, N., <strong>and</strong> Sanchis, V. (1998). Biological <strong>control</strong> of major postharvest pathogens on apple with C<strong>and</strong>ida sake. International Journal of Food Microbiology 40, 9-16.<br />

Wagner, A., Kordowska-Wiater, M., <strong>and</strong> Hetman, B. (2006). Effect of some yeast strains on grey mould development on apple fruit. Progress in Plant Protection 46, 625-628.<br />

Walker, R., Ferguson, C. M. J., Booth, N. A., <strong>and</strong> Allan, E. J. (2002). The symbiosis of Bacillus subtilis L-forms with Chinese cabbage seedlings inhibits conidial germination of Botrytis cinerea. Letters in<br />

Applied Microbiology 34, 42-45.<br />

Walker, R., Innes, C. M. J., <strong>and</strong> Allan, E. J. (2001). The potential bio<strong>control</strong> agent Pseudomonas antimicrobica inhibits germination of conidia <strong>and</strong> outgrowth of Botrytis cinerea. Letters in Applied<br />

Microbiology 32, 346-348.<br />

Walter, M., Zydenbos, S. M., Jaspers, M. V., <strong>and</strong> Stewart, A. (2006). Laboratory assays for selection of Botrytis suppressive micro-organisms on necrotic grape leaf discs. New Zeal<strong>and</strong> Plant Protection 59,<br />

348-354.<br />

99


Nicot et al. (Appendix for Chapter 1)<br />

Wang, A., Lou, B., <strong>and</strong> Xu, T. (2007a). Inhibitory effect of the secretion of Pythium olig<strong>and</strong>rum on plant pathogenic fungi <strong>and</strong> the <strong>control</strong> effect <strong>against</strong> tomato gray mould. Acta Phytophylacica Sinica 34, 57-<br />

60.<br />

Wang, C., Sun, Z., Liu, Y., Zheng, D., Liu, X., <strong>and</strong> Li, S. (2007b). Earthworm polysaccharide <strong>and</strong> its antibacterial function on plant-pathogen microbes in vitro. European Journal of Soil Biology 43, S135-<br />

S142.<br />

Wang, G., Lu, S., Zheng, B., <strong>and</strong> Zhang, C. (2008a). Studies on metabolites of Trichoderma taxi ZJUF0986 <strong>and</strong> its inhibitory effect to tomato grey mold disease. Acta Agriculturae Zhejiangensis 20, 104-108.<br />

Wang, M., Chen, J., Xue, L., <strong>and</strong> He, Y. (2008b). Identification <strong>and</strong> culturing conditions of endophytic antagonistic strains associated with tomato. Zhongguo Shengtai Nongye Xuebao / Chinese Journal of<br />

Eco-Agriculture 16, 441-445.<br />

Wang, Y., Hu, W., <strong>and</strong> Xu, L. (2008c). Identification of the antagonistic Bacillus strains on melon fruit surface. Acta Phytopathologica Sinica 38, 317-324.<br />

Weeds, P. L., Beever, R. E., <strong>and</strong> Long, P. G. (2000). Competition between aggressive <strong>and</strong> non-aggressive strains of Botrytis cinerea (Botryotinia fuckeliana) on French bean leaves. Australasian Plant<br />

Pathology 29, 200-204.<br />

White, D., Ernst, A., Schmitt, A., <strong>and</strong> Seddon, B. (2001). Interaction of the bio<strong>control</strong> agent Brevibacillus brevis with other disease <strong>control</strong> methods. Bulletin OILB/SROP 24, 229-232.<br />

White, G. J., <strong>and</strong> Traquair, J. A. (2006). Necrotrophic mycoparasitism of Botrytis cinerea by cellulolytic <strong>and</strong> ligninocellulolytic basidiomycetes. Canadian Journal of Microbiology 52, 508-518.<br />

Wisniewski, M., Wilson, C., El-Ghaouth, A., <strong>and</strong> Droby, S. (2001). Increasing the ability of the bio<strong>control</strong> product, Aspire, to <strong>control</strong> postharvest diseases of apple <strong>and</strong> peach with the use of additives. Bulletin<br />

OILB/SROP 24, 157-160.<br />

Witkowska, D., <strong>and</strong> Maj, A. (2002). Production of lytic enzymes by Trichoderma spp. <strong>and</strong> their effect on the growth of phytopathogenic fungi. Folia Microbiologica 47, 279-282.<br />

Woo, S., Fogliano, V., Scala, F., <strong>and</strong> Lorito, M. (2002). Synergism between fungal enzymes <strong>and</strong> bacterial antibiotics may enhance bio<strong>control</strong>. Antonie van Leeuwenhoek 81, 353-356.<br />

Wszelaki, A. L., <strong>and</strong> Mitcham, E. J. (2003). Effect of combinations of hot water dips, <strong>biological</strong> <strong>control</strong> <strong>and</strong> <strong>control</strong>led atmospheres for <strong>control</strong> of gray mold on harvested strawberries. Postharvest Biology <strong>and</strong><br />

Technology 27, 255-264.<br />

Xi, L., <strong>and</strong> Tian, S. (2005). Control of postharvest diseases of tomato fruit by combining antagonistic yeast with sodium bicarbonate. Scientia Agricultura Sinica 38, 950-955.<br />

Xiao, L., Yang, X., Dai, L., Qiu, D., Liu, Z., <strong>and</strong> Yuan, J. (2005). Antibiotic activities <strong>and</strong> properties of metabolites from Xenorhabdus sp. CB43. Journal of Hunan Agricultural University 31, 412-414.<br />

Yan, S., Yang, Q., <strong>and</strong> Chen, Y. (2004). Antagonism of complex microbial fertilizer <strong>and</strong> functional actinomycetes <strong>against</strong> soil-borne plant pathogenic fungi. Chinese Journal of Biological Control 20, 49-52.<br />

Yang, X., Liu, W., Lu, C., Qiu, J., <strong>and</strong> Wang, H. (2007). Bio<strong>control</strong> effect <strong>and</strong> the taxonomy of antagonistic actinomyces strain A03. Acta Phytophylacica Sinica 34, 73-77.<br />

Yao, M., Tu, X., Huang, L., Wang, M., Alimas, <strong>and</strong> Kang, Z. (2007). Screening of antagonistic endophytic actinomycetes <strong>against</strong> tomato. Pathogens <strong>and</strong> <strong>biological</strong> <strong>control</strong> effect on tomato leaf mould.<br />

Journal of Northwest A & F University - Natural Science Edition 35, 146-150.<br />

Yildiz, F., Yildiz, M., Delen, N., Coskuntuna, A., Kinay, P., <strong>and</strong> Turkusay, H. (2007). The effects of <strong>biological</strong> <strong>and</strong> chemical treatment on gray mold disease in tomatoes grown under greenhouse conditions.<br />

Turkish Journal of Agriculture <strong>and</strong> Forestry 31, 319-325.<br />

Yohalem, D. (1997). Prospects for the <strong>biological</strong> <strong>control</strong> of foliar plant diseases in Danish greenhouses. SP Rapport - Statens Planteavlsforsog, 199-206.<br />

Yohalem, D., Brodsgaard, H. F., <strong>and</strong> Enkegaard, A. (1998). Interaction of Verticillium lecanii (Mycotal) <strong>and</strong> Trichoderma harzianum (Trichodex) for <strong>control</strong> of white flies <strong>and</strong> grey mould on tomatoes: a<br />

preliminary report. DJF Rapport, Markbrug, 217-222.<br />

Yohalem, D. S. (2000). Microbial management of early establishment of grey mould in pot roses. DJF Rapport, Havebrug, 97-102.<br />

Yohalem, D. S. (2001). Micro<strong>biological</strong> management of foliar pathogens in glasshouses. DJF Rapport, Markbrug, 65-70.<br />

Yohalem, D. S. (2004). Evaluation of fungal antagonists for grey mould management in early growth of pot roses. Annals of Applied Biology 144, 9-15.<br />

Yohalem, D. S., <strong>and</strong> Kristensen, K. (2004). Optimization of timing <strong>and</strong> frequency of application of the antagonist Ulocladium atrum for management of gray mold in potted rose under high disease pressure.<br />

Biological Control 29, 256-259.<br />

Yohalem, D. S., Nielsen, K., Green, H., <strong>and</strong> Jensen, D. F. (2004). Bio<strong>control</strong> agents efficiently inhibit sporulation of Botrytis aclada on necrotic leaf tips but spread to adjacent living tissue is not prevented.<br />

FEMS Microbiology Ecology 47, 297-303.<br />

Yohalem, D. S., Paaske, K., Kristensen, K., <strong>and</strong> Larsen, J. (2007). Single application prophylaxis <strong>against</strong> gray mold in pot rose <strong>and</strong> pelargonium with Ulocladium atrum. Biological Control 41, 94-98.<br />

Yu, T., Chen, J., Chen, R., Huang, B., Liu, D., <strong>and</strong> Zheng, X. (2007). Bio<strong>control</strong> of blue <strong>and</strong> gray mold diseases of pear fruit by integration of antagonistic yeast with salicylic acid. International Journal of<br />

Food Microbiology 116, 339-345.<br />

Yu, T., Zhang, H., Li, X., <strong>and</strong> Zheng, X. (2008). Bio<strong>control</strong> of Botrytis cinerea in apple fruit by Cryptococcus laurentii <strong>and</strong> indole-3-acetic acid. Biological Control 46, 171-177.<br />

Yu, T., <strong>and</strong> Zheng, X. (2007). An integrated strategy to <strong>control</strong> postharvest blue <strong>and</strong> grey mould rots of apple fruit by combining bio<strong>control</strong> yeast with gibberellic acid. International Journal of Food Science &<br />

Technology 42, 977-984.<br />

Zaccardelli, M., Galdo, A. d., Campanile, F., <strong>and</strong> Giordano, I. (2006). Biological <strong>and</strong> genetic diversity of thermal-resistant bacteria isolated from different organs of garden solanaceous. Italus Hortus 13, 805-<br />

808.<br />

100


Appendix 1<br />

Zahavi, T., Cohen, L., Weiss, B., Schena, L., Daus, A., Kaplunov, T., Zutkhi, J., Ben-Arie, R., <strong>and</strong> Droby, S. (2000). Biological <strong>control</strong> of Botrytis, Aspergillus <strong>and</strong> Rhizopus rots on table <strong>and</strong> wine grapes in<br />

Israel. Postharvest Biology <strong>and</strong> Technology 20, 115-124.<br />

Zakharchenko, N. S., Georgievskaya, E. B., Shkolnaya, L. A., Yukhmanova, A. A., Kashparov, I. A., Buryanov, Y. I., Maslienko, L. V., Shipievskaya, E. Y., <strong>and</strong> Shevelukha, V. S. (2007). Isolation <strong>and</strong><br />

characteristics of a Bacillus subtilis K-1-1 polypeptide, an inhibitor of phytopathogenous fungi <strong>and</strong> bacteria growth. Biotekhnologiya, 21-26.<br />

Zanella, A., Degasperi, S., Lindner, L., Marschall, K., <strong>and</strong> Pernter, P. (2003). Bio<strong>control</strong> of fungal rot on diphenylamine treated apple fruit by means of the natural antagonist C<strong>and</strong>ida sake (CPA-1). Acta<br />

Horticulturae, 183-189.<br />

Zhang, C., Zheng, B., Lao, J., Mao, L., Chen, S., Kubicek, C. P., <strong>and</strong> Lin, F. (2008). Clavatol <strong>and</strong> patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endophytic fungus of Taxus<br />

mairei. Applied Microbiology <strong>and</strong> Biotechnology 78, 833-840.<br />

Zhang, H., Wang, L., Dong, Y., Jiang, S., Cao, J., <strong>and</strong> Meng, R. (2007a). Postharvest <strong>biological</strong> <strong>control</strong> of gray mold decay of strawberry with Rhodotorula glutinis. Biological Control 40, 287-292.<br />

Zhang, H., Zheng, X., Fu, C., <strong>and</strong> Xi, Y. (2005). Postharvest <strong>biological</strong> <strong>control</strong> of gray mold rot of pear with Cryptococcus laurentii. Postharvest Biology <strong>and</strong> Technology 35, 79-86.<br />

Zhang, H., Zheng, X., <strong>and</strong> Yu, T. (2007b). Biological <strong>control</strong> of postharvest diseases of peach with Cryptococcus laurentii. Food Control 18, 287-291.<br />

Zhang, P. G., Hopkin, A. A., <strong>and</strong> Sutton, J. C. (1996). Fungus shown to be an effective <strong>biological</strong> <strong>control</strong> of gray mold on container-grown conifers. In "Frontline, Technical Note - Great Lakes Forestry<br />

Centre, Canadian Forest Service", pp. 3 pp.<br />

Zhao, J., Li, J., <strong>and</strong> Kong, F. (2003). Bio<strong>control</strong> activity <strong>against</strong> Botrytis cinerea by Bacillus subtilis 728 isolated from marine environment. Annals of Microbiology 53, 29-35.<br />

Zhao, L., Song, J., Yang, H., Gao, Q., <strong>and</strong> Wang, J. (1998). Preliminary studies on a strain of Streptomyces used in bio<strong>control</strong>. Chinese Journal of Biological Control 14, 18-20.<br />

Zhao, Y., Shao, X., Tu, K., <strong>and</strong> Chen, J. (2007). Inhibitory effect of Bacillus subtilis B10 on the diseases of postharvest strawberry. Journal of Fruit Science 24, 339-343.<br />

Zhao, Y., Tu, K., Shao, X. F., Jing, W., Yang, J. L., <strong>and</strong> Su, Z. P. (2008). Biological <strong>control</strong> of the post-harvest pathogens Alternaria solani, Rhizopus stolonifer, <strong>and</strong> Botrytis cinerea on tomato fruit by Pichia<br />

guilliermondii. Journal of Horticultural Science <strong>and</strong> Biotechnology 83, 132-136.<br />

Zheng, X., Zhang, H., <strong>and</strong> Xi, Y. (2003). Postharvest <strong>biological</strong> <strong>control</strong> of gray mold rot of strawberry with Cryptococcus laurentii. Transactions of the Chinese Society of Agricultural Engineering 19, 171-<br />

175.<br />

Zheng, Y., Yao, J., Shao, X., <strong>and</strong> Muralee, N. (2000). Preliminary study on the <strong>biological</strong> activity of Sophora flavescens. Plant Protection 26, 17-19.<br />

Zheng, Y., Yao, J., Shao, X., <strong>and</strong> Nair, M. (1999). Preliminary study on the <strong>biological</strong> activity of Sophora flavescens Ait. Plant Protection 25, 17-19.<br />

Zhou, T., Chu, C., Liu, W. T., <strong>and</strong> Schaneider, K. E. (2001). Postharvest <strong>control</strong> of blue mold <strong>and</strong> gray mold on apples using isolates of Pseudomonas syringae. Canadian Journal of Plant Pathology 23, 246-<br />

252.<br />

Zhou, T., Northover, J., Schneider, K. E., <strong>and</strong> Lu, X. (2002). Interactions between Pseudomonas syringae MA-4 <strong>and</strong> cyprodinil in the <strong>control</strong> of blue mold <strong>and</strong> gray mold of apples. Canadian Journal of Plant<br />

Pathology 24, 154-161.<br />

Zoffoli, J. P., Latorre, B. A., Daire, N., <strong>and</strong> Viertel, S. (2005). Effectiveness of chlorine dioxide as influenced by concentration, pH, <strong>and</strong> exposure time on spore germination of Botrytis cinerea, Penicillium<br />

expansum <strong>and</strong> Rhizopus stolonifer. Ciencia e Investigacion Agraria 32, 181-188.<br />

101


Appendix 2. Inventory of bio<strong>control</strong> agents (M: microbials; B: botanicals; O: others) described in primary literature (1998-2008) for<br />

successful effect <strong>against</strong> powdery mildew in laboratory experiments <strong>and</strong> field trials on selected crops.<br />

Powdery mildew on cereals<br />

Success in field trials<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

Bacteria<br />

Pseudomonas aureofaciens ; Bacillus subtilis ; P. fluorescens<br />

(Sanin et al., 2008)<br />

General paper:<br />

Crop protection: management strategies (Prasad, 2005)<br />

M<br />

Fungi + yeasts:<br />

Bacteria<br />

Rhizobacteria (Yigit, 2004)<br />

Bacteria, (Azarang, 2004)<br />

Fungi + yeasts:<br />

Acremonium alternatum (Kasselaki, 2006a, b)<br />

Alternaria alternata, Aspergillus niger, Bipolaris spicifera, Cladosporium cladosporioides, Curvularia lunata,<br />

Fusarium acuminatum F. semitectum, Penicillium rubrum, (Simian, 2008)<br />

BCAs mix (David, 2007)<br />

Fungi (Azarang, 2004)<br />

Fusarium oxysporum f. sp. radicis-lycopersici (Nelson, 2005)<br />

Paecilomyces farinosus (Szentivanyi, 2006)<br />

Verticillium lecanii (Koike, 2004)<br />

B Bryophyte extracts (Tadesse, 2003)<br />

Aromatic substances (Koitabashi, 2002)<br />

Mycelial extracts (Haugaard, 2002)<br />

O<br />

PAF from Penicillium chrysogenum (Barna, 2008)<br />

Secondary metabolic products of strain A19 of actinomycetes (Shen et al., 2008)<br />

Verlamelin (Kim, 2002)<br />

Powdery mildew on pome/stone fruits<br />

Success in field trials<br />

Bacteria<br />

Fungi + yeasts:<br />

yeast (Y16) (Alaphilippe, 2007)<br />

M<br />

B<br />

O<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

General paper:<br />

Bacteria<br />

Fungi + yeasts:<br />

Ampelomyces quisqualis (Harvey, 2006)<br />

Ampelomyces quisqualis (Sonali, 2005)<br />

yeast (Y16) (Alaphilippe, 2008)<br />

102


Appendix 2<br />

Powdery mildew on grapes<br />

Success in field trials<br />

Bacteria<br />

Bacillus subtilis (Crisp, 2006)<br />

Photosynthetic bacteria (Robotic, 2002)<br />

Fungi + yeasts:<br />

Ampelomyces hyperparasites (Fuzi, 2003)<br />

Ampelomyces quisqualis (Angeli, 2006a, b, c, 2007a, b)<br />

Ampelomyces quisqualis (Hoffmann, 2007)<br />

Ampelomyces quisqualis 94013 (Lee, 2004)<br />

M<br />

BCAs (Amaro, 2003)<br />

BCAs (Ari, 2004)<br />

BCAs (Kaine, 2003)<br />

BCAs (Linder et al., 2006)<br />

BCAs (Zulini, 2004)<br />

Pseudozyma flocculosa (Schmitt, 2001)<br />

Yeast (Robotic, 2002)<br />

B<br />

O<br />

Milsana (VP99) (Schmitt, 2001, 2002)<br />

fresh or dried milk (10%),pinolene 1%, calcium chloride (2%),<br />

tripotassium phosphate (1%) <strong>and</strong> a mixture of mineral oil<br />

(1%),sodium bicarbonate/sodium silicate (0.5%) (Casulli, 2002)<br />

mycophagous mite (Melidossian, 2005)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

General paper:<br />

Bacteria<br />

Brevibacillus brevis (Schmitt, 2001, 2002)<br />

PGPR (Konstantinidou-Doltsinis, 2007)<br />

Pseudomonas syringes pv. Syringe (Kassemeyer, 1998)<br />

Serenade (Bacillus subtilis)(Schilder, 2002)<br />

Fungi + yeasts:<br />

Ampelomyces quisqualis (Angeli, 2006a, b, c, 2007a, b)<br />

Ampelomyces quisqualis 94013 (Lee, 2004)<br />

Ampelomyces quisqualis AQ10, (Schweigkofler, 2006)<br />

BCA mix (David, 2007)<br />

BCAs (Kaine, 2003)<br />

BCAs {Amaro, 2003 #177<br />

Pseudozyma flocculosa (Schmitt, 2001)<br />

Pseudozyma flocculosa (SporodexReg. L) (Konstantinidou-Doltsinis, 2007)<br />

Tilletiopsis spp (Haggag, 2007)<br />

Milsana (VP99) (Konstantinidou-Doltsinis, 2001)<br />

Milk, whey, whey protein, Bacillus subtilis, yeast extract medium (Crisp, 2006)<br />

Mycophagous mite (Melidossian, 2005)<br />

Orthotydeus lambi mites (English-Loeb, 1999, 2006, 2007)<br />

Powdery mildew on strawberry pathogen: Podosphaera aphanis f.sp. fragariae; Sphaerotheca macularis f.sp. fragariae<br />

Success in field trials<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

Bacteria<br />

Fungi + yeasts:<br />

Bacteria<br />

B. subtilis QST (Fiamingo, 2007a)<br />

Bacillus subtilis (Amsalem, 2004)<br />

Bacillus subtilis (Pertot, 2004) (Pertot, 2008)<br />

Pseudomonas reactans (Fiamingo, 2007b)<br />

M<br />

Fungi + yeasts:<br />

Ampelomyces quisqualis, Trichoderma harzianum T39, Bacillus sp. F77, Cladosporium tenuissimum (Amsalem,<br />

2004)<br />

BCAs mix (David, 2007)<br />

T. harzianum T39 (Fiamingo, 2007a)<br />

Trichoderma harzianum Rifai strain T-22 (Picton, 2003)<br />

Trichoderma harzianum T39 (Pertot, 2004) (Pertot, 2008)<br />

103


Nicot et al. (Appendix for Chapter 1)<br />

B<br />

O<br />

Powdery mildew on tomato, pathogen: Leveillula taurica, Oidium neolycopersici, Oidium lycopersicum, Oidium spp.<br />

Success in field trials<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

Bacteria<br />

General paper:<br />

Pseudomonas fluorescens (Shashi, 2007)<br />

Bacteria<br />

Fungi + yeasts:<br />

Bacillus brevis (Seddon, 1999)<br />

Trichoderma harzianum (Shashi, 2007)<br />

Bcillus subtilis (Jacob, 2007)<br />

Rhizobacteria B101R, B212R, <strong>and</strong> A068R, (Silva, 2004)<br />

Serenade ; Pseudomonas strains (Laethauwer, 2006)<br />

M<br />

Fungi + yeasts:<br />

Acremonium alternatum (Kasselaki, 2006a, b)<br />

Lecanicillium lecanii (Mycotal) (Bardin, 2004)<br />

Lecanicillium muscarium (Bardin, 2008)<br />

Sporothrix flocculosa (Jarvis, 2007)<br />

Trichoderma spp. (Moreno-Vel<strong>and</strong>ia, 2007) (Vel<strong>and</strong>ia, 2007)<br />

Milsana (Seddon, 1999)<br />

MilsanaReg. (VP 1999)(Malathrakis, 2002)<br />

B<br />

Milsana (Trottin-Caudal, 2003)<br />

Malsana (Bardin, 2004) (Bardin, 2008)<br />

Milsana ; (Laethauwer, 2006)<br />

O<br />

Powdery mildew on pepper, pathogen: Podosphaera leucotricha<br />

Success in field trials<br />

Bacteria<br />

Fungi + yeasts:<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

General paper:<br />

Bacteria<br />

Fungi + yeasts:<br />

M<br />

AQ10 (Ampelomyces quisqualis) (Tsror, 2004)<br />

Trichoderma harzianum (Gupta, 2005)<br />

Trichoderma harzianum T39; Ampelomyces quisqualis (Br<strong>and</strong>, 2002)<br />

Verticillium lecanii, Tilletiopsis minor (Haggag, 2008)<br />

B Milsana (Haggag, 2008)<br />

O Water extract of cattle manure compost, grape marc compost, , Kaligrin <strong>and</strong> Rifol (Tsror, 2004)<br />

104


Appendix 2<br />

Powdery mildew on cucurbits, pathogen: Podosphaera fusca<br />

Success in field trials<br />

Bacteria<br />

Bacillus brevis (Schmitt, 1999)<br />

Bacillus isolates (Koumaki, 2001)<br />

Brevibacillus brevis (Abd-El-Moneim, 2004)<br />

M<br />

B<br />

O<br />

Fungi + yeasts:<br />

Acremonium alternatum (Kasselaki, 2006a)<br />

Ampelomyces quisqualis (Kristkova, 2003)<br />

Ampelomyces quisqualis isolate M-10 (Benuzzi, 2006)<br />

Ampelomyces quisqualis, Verticillium lecanii, Sporothrix<br />

flocculosa (Dik, 1998)<br />

Cryptococcus laurentii <strong>and</strong> Aureobasidium pullulans (Lima,<br />

2002)<br />

PlantShield Trichoderma harzianum (Utkhede, 2006)<br />

Rhodotorula glutinis (Lima, 2002)<br />

T. harzianum T39 (Levy, 2004)<br />

Tilletiopsis washingtonensis (yeast) (El-Hafiz-Mohamed,<br />

1999)<br />

Verticillium lecanii; (Verhaar, 1999)<br />

fresh or dried milk (10%), pinolene 1%, calcium chloride (2%),<br />

tripotassium phosphate (1%) <strong>and</strong> a mixture of mineral oil<br />

(1%),sodium bicarbonate/sodium silicate (0.5%) (Casulli, 2002)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

Bacteria<br />

Bacillus spp (Romero, 2004a)<br />

Bacillus spp (Romero, 2004b)<br />

Bacillus subtilis (Abd-El-Moneim, 2004) (Gilardi, 2008) (Keinath, 2004) (Romero, 2007b) (Romero, 2007d)<br />

BCAs mix (David, 2007)<br />

Brevibacillus brevis (Allan, 2007) (Konstantinidou-Doltsinis, 2002) (Schmitt, 2001) (White, 2001)<br />

Enterobacter cloacae (Georgieva, 2003)<br />

Xenorhabdus nematophilus (Shi, 2004)<br />

Fungi + yeasts:<br />

Acremonium alternatum, Ampelomyces quisqualis , Lecanicillium lecanii (Romero, 2003)<br />

Acremonium alternatum, Verticillium lecanii (Romero, 2007b)<br />

Ampelomyces quisqualis (Gilardi, 2008) (Rankovic, 1998)<br />

AQ10Reg. (Ampelomyces quisqualis) <strong>and</strong> MycotalReg. (Lecanicillium lecanii) (Romero, 2007b)<br />

BCAs mix (David, 2007)<br />

Acremonium alternatum <strong>and</strong> Verticillium lecanii, (Romero, 2001)<br />

Lecanicillium longisporum (Kim, 2008)<br />

Lecanicillium spp. (Goettel, 2008)<br />

Meira geulakonigii (Sztejnberg, 2004)<br />

Paecilomyces fumosoroseus (Kavkova, 2005)<br />

Paecilomyces fumosoroseus; Verticillium lecanii (Kavkova, 2001)<br />

Pseudozyma flocculosa (Konstantinidou-Doltsinis, 2002) (Schmitt, 2001)<br />

Pseudozyma flocculosa, Ampelomyces quisqualis, Verticillium lecanii, Trichoderma harzianum (Dik, 2002)<br />

Saccharomyces cerevisiae (El-Gamal, 2003)<br />

Trichoderma harzianum (Abd-El-Moneim, 2004) (Elad, 2000)<br />

Trichoderma harzianum T39; Ampelomyces quisqualis AQ10 (Elad, 1998)<br />

Verticillium lecanii (Askary, 1998) (Verhaar, 1998)<br />

Ampelomyces quisqualis isolate M-10 (Benuzzi, 2006)<br />

Milsana (VP99) (Dik, 2002) (Schmitt, 2001) (White, 2001)<br />

Milsana (VP99) from Fallopia sachalinensis (Konstantinidou-Doltsinis, 2001)<br />

Fresh or dried milk (Casulli, 2002)<br />

gramicidin S; (Schmitt, 1999)<br />

lactoperoxidase system (Ravensberg, 2007)<br />

lipopeptide antibiotic neopeptins from Streptomyces sp. (Kim, 2007)<br />

lipopeptides (iturin <strong>and</strong> fengycin families of Bacillus subtilis) (Romero, 2007c)<br />

Lipopeptides of antagonistic strains of Bacillus subtilis (Romero, 2007a)<br />

oil formulations (Verhaar, 1999)<br />

Psyllobora bisoctonotata (Soylu, 2002)<br />

undiluted homogenised milk (Utkhede, 2006)<br />

105


Nicot et al. (Appendix for Chapter 1)<br />

Powdery mildew on various crops, pathogen: Oidium spp. Sphaerotheca spp., Erysiphe spp<br />

Success in field trials<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led conditions)<br />

Bacteria<br />

Bacillus subtilis (Nofal, 2006)<br />

M<br />

B<br />

O<br />

Fungi + yeasts:<br />

Verticillium lecanIi, Tilletiopsis minor (Nofal, 2006)<br />

Bacteria<br />

Pseudomonas fluorescens (Vimala, 2006)<br />

P. fluorescens (Hooda, 2006)<br />

Fungi + yeasts:<br />

Acremonium spp., Ampelomyces spp., Penicillium spp., Cladosporium spp., Trichoderma spp., Bacillus spp.,<br />

Pseudomonas spp., Bradyrhizobium spp., Brachybacterium spp., Curtobacterium spp., Cryptocoocus spp.,<br />

Rhodosporidium spp (Mmbaga, 2008)<br />

Ampelomyces mycoparasites (Kiss, 2004)<br />

BCAs (Dhananjoy, 2008)<br />

BCAs (Eken, 2005)<br />

BCAs(Casey, 2007)<br />

Cladosporium cladosporioides, Cladosporium oxysporum, Drechslera hawaiensis,T richoderma viride (Sankar,<br />

2007b)<br />

Cladosporium oxysporum (Sankar, 2007a)<br />

Gliocladium roseum (Lahoz, 2004)<br />

Kyu-W63 (Koitabashi, 2005)<br />

Trichoderma viride, T. harzianum, Pseudomonas fluorescens, mixture of T. harzianum P. fluorescens (Hooda, 2006)<br />

Exudates from sclerotia of two Sclerotium rolfsii isolates (P<strong>and</strong>ey, 2007)<br />

Mycophagous Ladybird (Sutherl<strong>and</strong>, 2005)<br />

Phyllactinia corylea (Krishnakumar, 2004)<br />

Psyllobora bisoctonotata (Muls.) (Soylu, 2002)<br />

Psyllobora vigintimaculata, (Sutherl<strong>and</strong>, 2008; Sutherl<strong>and</strong>, 2006)<br />

References<br />

Abd-El-Moneim, M. L. (2004). Integrated system to protect cucumber plants in greenhouses <strong>against</strong> diseases <strong>and</strong> pests under organic farming conditions. Egyptian-Journal-of-Agricultural-<br />

Research 82, 1-9.<br />

Alaphilippe, A. (2007). Effect of introduced epiphytic yeast on an insect pest (Cydia pomonella L.), on apple pathogens (Venturia inaequalis <strong>and</strong> Podosphaera leucotricha) <strong>and</strong> on the phylloplane<br />

chemical composition. Bulletin-OILB/SROP 30, 259-263.<br />

Alaphilippe, A. (2008). Effects of a bio<strong>control</strong> agent of apple powdery mildew (Podosphaera leucotricha) on the host plant <strong>and</strong> on non-target organisms: an insect pest (Cydia pomonella) <strong>and</strong> a<br />

pathogen (Venturia inaequalis). Bio<strong>control</strong>-Science-<strong>and</strong>-Technology 18, 121-138.<br />

Allan, E. J. (2007). Increased bio<strong>control</strong> efficacy of Brevibacillus brevis <strong>against</strong> cucurbit powdery mildew by combination with neem extracts. Bulletin-OILB/SROP 30, 401-404.<br />

Amaro, P. (2003). The good plant protection practice for grape vine is more concerned, in relation to IPM, with the risk of resistance than the safety <strong>and</strong> other side effects of pesticides. Bulletin<br />

OILB/SROP 26, 273-276.<br />

Amsalem, L. (2004). Efficacy of <strong>control</strong> agents on powdery mildew: a comparison between two populations. Bulletin-OILB/SROP 27, 309-313.<br />

Angeli, D. (2006a). Colonization of grapevine powdery mildew cleistothecia by the mycoparasite Ampelomyces quisqualis in Trentino, Italy. Bulletin-OILB/SROP 29, 89-92.<br />

Angeli, D. (2006b). Efficacy evaluation of integrated strategies for powdery <strong>and</strong> downy mildew <strong>control</strong> in organic viticulture. Bulletin-OILB/SROP 29, 51-56.<br />

Angeli, D. (2006c). Evaluation of new <strong>control</strong> agents <strong>against</strong> grapevine powdery mildew under greenhouse conditions. Bulletin-OILB/SROP 29, 83-87.<br />

Angeli, D. (2007a). Evaluation of new <strong>biological</strong> <strong>control</strong> agents <strong>against</strong> grapevine powdery mildew under greenhouse conditions. Bulletin-OILB/SROP 30, 37-42.<br />

Angeli, D. (2007b). Role of Ampelomyces quisqualis on grapevine powdery mildew in Trentino (northern Italy) vineyards. Bulletin-OILB/SROP 30, 245-248.<br />

Ari, M. E. (2004). Fungal diseases of grape. Crop-management-<strong>and</strong>-postharvest-h<strong>and</strong>ling-of-horticultural-products-Volume-IV:-Diseases-<strong>and</strong>-disorders-of-fruits-<strong>and</strong>-vegetables.<br />

106


Appendix 2<br />

Askary, H. (1998). Pathogenicity of the fungus Verticillium lecanii to aphids <strong>and</strong> powdery mildew. Bio<strong>control</strong>-Science-<strong>and</strong>-Technology 8, 23-32.<br />

Azarang, M. (2004). An integrated approach to simultaneously <strong>control</strong> insect pests, powdery mildew <strong>and</strong> seed borne fungal diseases in barley by bacterial seed treatment. Bulletin-OILB/SROP<br />

27, 57-62.<br />

Bardin, M. (2004). Compatibility of intervention to <strong>control</strong> grey mould, powdery mildew <strong>and</strong> whitefly on tomato, using three <strong>biological</strong> methods. Bulletin-OILB/SROP 27, 5-9.<br />

Bardin, M. (2008). Compatibility between biopesticides used to <strong>control</strong> grey mould, powdery mildew <strong>and</strong> whitefly on tomato. Biological-Control 46, 476-483.<br />

Barna, B. (2008). Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew <strong>and</strong> wheat leaf rust pathogens. Journal-of-Basic-Microbiology 48, 516-520.<br />

Benuzzi, M. (2006). Efficacy of Ampelomyces quisqualis isolate M-10 (AQ 10Reg.) <strong>against</strong> powdery mildews (Erysiphaceae) on protected crops. Bulletin-OILB/SROP 29, 275-280.<br />

Br<strong>and</strong>, M. (2002). Effect of greenhouse climate on bio<strong>control</strong> of powdery mildew (Leveillula taurica) in sweet pepper <strong>and</strong> prospects for integrated disease management. Bulletin-OILB/SROP 25,<br />

69-72.<br />

Casey, C. (2007). IPM program successful in California greenhouse cut roses. California-Agriculture 61, 71-78.<br />

Casulli, F. (2002). Effectiveness of natural compounds in the suppression of the powdery mildew fungi Sphaerotheca fusca <strong>and</strong> Uncinula necator. Bulletin-OILB/SROP 25, 179-182.<br />

Crisp, P. (2006). An evaluation of <strong>biological</strong> <strong>and</strong> abiotic <strong>control</strong>s for grapevine powdery mildew. 1. Greenhouse studies. Australian-Journal-of-Grape-<strong>and</strong>-Wine-Research 12, 192-202.<br />

David, D. R. (2007). Development of bio<strong>control</strong> of powdery mildew diseases. Bulletin-OILB/SROP 30, 11-15.<br />

Dhananjoy, M. (2008). Natural weed-insect-microbes association in <strong>and</strong> around Sriniketan in Lateritic Belt of West Bengal: bio<strong>control</strong> implications. Journal-of-Plant-Protection-<strong>and</strong>-<br />

Environment 5, 34-37.<br />

Dik, A. J. (1998). Comparison of three <strong>biological</strong> <strong>control</strong> agents <strong>against</strong> cucumber powdery mildew (Sphaerotheca fuliginea) in semi-commercial-scale glasshouse trials. European-Journal-of-<br />

Plant-Pathology 104, 413-423.<br />

Dik, A. J. (2002). Combinations of <strong>control</strong> methods <strong>against</strong> powdery mildew diseases in glasshouse-grown vegetables <strong>and</strong> ornamentals. Bulletin-OILB/SROP 25, 5-8.<br />

Eken, C. (2005). A review of <strong>biological</strong> <strong>control</strong> of rose powdery mildew (Sphaerotheca pannosa var. rosae) by fungal antagonists. Acta-Horticulturae (690), 193-196.<br />

El-Gamal, N. G. (2003). Usage of some biotic <strong>and</strong> abiotic agents for induction of resistance to cucumber powdery mildew under plastic house conditions. Egyptian-Journal-of-Phytopathology<br />

31, 129-140.<br />

El-Hafiz-Mohamed, K. A. (1999). Induction <strong>and</strong> isolation of more efficient yeast mutants for the <strong>control</strong> of powdery mildew on cucumber. Annals-of-Agricultural-Science-Cairo 44, 283-292.<br />

Elad, Y. (1998). Management of powdery mildew <strong>and</strong> gray mould of cucumber by Trichoderma harzianum T39 <strong>and</strong> Ampelomyces quisqualis AQ10. BioControl- 43, 241-251.<br />

Elad, Y. (2000). Biological <strong>control</strong> of foliar pathogens by means of Trichoderma harzianum <strong>and</strong> potential modes of action. Crop-Protection 19, 709-714.<br />

English-Loeb, G. (1999). Control of powdery mildew in wild <strong>and</strong> cultivated grapes by a tydeid mite. Biological-Control 14, 97-103.<br />

English-Loeb, G. (2006). Lack of trade-off between direct <strong>and</strong> indirect defence <strong>against</strong> grape powdery mildew in riverbank grape. Ecological-Entomology 31, 415-422.<br />

English-Loeb, G. (2007). Biological <strong>control</strong> of grape powdery mildew using mycophagous mites. Plant-Disease 91, 421-429.<br />

Fiamingo, F. (2007a). Effect of application time of <strong>control</strong> agents on Podosphaera aphanis <strong>and</strong> side effect of fungicides on bio<strong>control</strong> agents survival on strawberry leaves. Bulletin-OILB/SROP<br />

30, 433-436.<br />

Fiamingo, F. (2007b). First report of bio<strong>control</strong> activity of Pseudomonas reactans, pathogen of cultivated mushrooms, <strong>against</strong> strawberry powdery mildew in greenhouse trials. Bulletin-<br />

OILB/SROP 30, 33-36.<br />

Fuzi, I. (2003). Natural parasitism of Uncinula necator cleistothecia by Ampelomyces hyperparasites in the south-western vineyards of Hungary. Acta-Phytopathologica-et-Entomologica-<br />

Hungarica 38, 53-60.<br />

Georgieva, O. (2003). Biological <strong>control</strong> of powdery mildew <strong>and</strong> mildew cucumber with Enterobacter cloacae Jordan. Ecology-<strong>and</strong>-Future-Bulgarian-Journal-of-Ecological-Science 2, 32-34.<br />

Gilardi, G. (2008). Efficacy of the bio<strong>control</strong> agents Bacillus subtilis <strong>and</strong> Ampelomyces quisqualis applied in combination with fungicides <strong>against</strong> powdery mildew of zucchini. Journal-of-Plant-<br />

Diseases-<strong>and</strong>-Protection 115, 208-213.<br />

Goettel, M. S. (2008). Potential of Lecanicillium spp. for management of insects, nematodes <strong>and</strong> plant diseases. Journal-of-Invertebrate-Pathology 98, 256-261.<br />

Gupta, S. K. (2005). Diseases of bell pepper under protected cultivation conditions <strong>and</strong> their management. Integrated-plant-disease-management-Challenging-problems-in-horticultural-<strong>and</strong>forest-pathology,-Solan,-India,-14-to-15-November-2003.<br />

Haggag, M. W. (2007). Bio<strong>control</strong> activity <strong>and</strong> molecular characterization of three Tilletiopsis spp. <strong>against</strong> grape powdery mildew. Plant-Protection-Bulletin-Taipei 49, 39-56.<br />

Haggag, W. M. (2008). Integrated management of powdery mildew <strong>and</strong> grey mould of greenhouse pepper in Egypt. Bulletin-OILB/SROP 32, 275.<br />

Harvey, N. G. (2006). Characterization of six polymorphic microsatellite loci from Ampelomyces quisqualis, intracellular mycoparasite <strong>and</strong> bio<strong>control</strong> agent of powdery mildew.<br />

Molecular Ecology Notes 6, 1188-1190.<br />

107


Nicot et al. (Appendix for Chapter 1)<br />

Haugaard, H. (2002). Mechanisms involved in <strong>control</strong> of Blumeria graminis f.sp. hordei in barley treated with mycelial extracts from cultured fungi. Plant-Pathology 51, 612-620.<br />

Hoffmann, P. (2007). The occurrence of cleistothecia of Erysiphe necator (grapevine powdery mildew) <strong>and</strong> their epidemiological significance in some vine-growing regions of Hungary. Acta-<br />

Phytopathologica-et-Entomologica-Hungarica 42, 9-16.<br />

Hooda, K. S. (2006). Impact of bio<strong>control</strong> agents on the health of garden pea (Pisum sativum) in Kumaon hills of Himalayas. Indian-Journal-of-Agricultural-Sciences 76, 573-574.<br />

Jacob, D. (2007). Biology <strong>and</strong> <strong>biological</strong> <strong>control</strong> of tomato powdery mildew (Oidium neolycopersici). Bulletin-OILB/SROP 30, 329-332.<br />

Jarvis, W. R. (2007). SporodexReg., fungal bio<strong>control</strong> for powdery mildew in greenhouse crops. Biological-<strong>control</strong>:-a-global-perspective.<br />

Kaine, G. (2003). The adoption of pest <strong>and</strong> disease management practices by grape growers in New Zeal<strong>and</strong>. AERU-Discussion-Paper (150), 69-76.<br />

Kasselaki, A. M. (2006a). Control of Leveillula taurica in tomato by Acremonium alternatum is by induction of resistance, not hyperparasitism. European-Journal-of-Plant-Pathology 115, 263-<br />

267.<br />

Kasselaki, A. M. (2006b). Induction of resistance <strong>against</strong> tomato powdery mildew (Leveillula taurica) by Acremonium alternatum. Bulletin-OILB/SROP 29, 69-73.<br />

Kassemeyer, H. H. (1998). Induced resistance of grapevine - Perspectives of <strong>biological</strong> <strong>control</strong> of grapevine diseases. Bulletin-OILB/SROP 21, 43-45.<br />

Kavkova, M. (2001). Evaluation of mycoparasitic effect of Paecilomyces fumosoroseus <strong>and</strong> Verticillium lecanii on cucumber powdery mildew. Collection-of-Scientific-Papers,-Faculty-of-<br />

Agriculture-in-Ceske-Budejovice-Series-for-Crop-Sciences 18, 103-112.<br />

Kavkova, M. (2005). Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) as a potential mycoparasite on Sphaerotheca fuliginea (Ascomycotina: Erysiphales). Mycopathologia- 159,<br />

53-63.<br />

Keinath, A. P. (2004). Evaluation of fungicides for prevention <strong>and</strong> management of powdery mildew on watermelon. Crop-Protection 23, 35-42.<br />

Kim, J. (2002). Verlamelin, an antifungal compound produced by a mycoparasite, Acremonium strictum. Plant-Pathology-Journal 18, 102-105.<br />

Kim, J. (2008). Evaluation of Lecanicillium longisporum, VertalecReg. for simultaneous suppression of cotton aphid, Aphis gossypii, <strong>and</strong> cucumber powdery mildew, Sphaerotheca fuliginea, on<br />

potted cucumbers. Biological-Control 45, 404-409.<br />

Kim, Y. (2007). Biological evaluation of neopeptins isolated from a Streptomyces strain. Pest-Management-Science 63, 1208-1214.<br />

Kiss, L. (2004). Biology <strong>and</strong> bio<strong>control</strong> potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Bio<strong>control</strong>-Science-<strong>and</strong>-Technology 14, 635-651.<br />

Koike, M. (2004). Verticillium lecanii (Lecanicillium spp.) as epiphyte <strong>and</strong> its application to <strong>biological</strong> <strong>control</strong> of arthropod pests <strong>and</strong> diseases. Bulletin-OILB/SROP 27, 41-44.<br />

Koitabashi, M. (2002). Aromatic substances inhibiting wheat powdery mildew produced by a fungus detected with a new screening method for phylloplane fungi. Journal-of-General-Plant-<br />

Pathology 68, 183-188.<br />

Koitabashi, M. (2005). New bio<strong>control</strong> method for parsley powdery mildew by the antifungal volatiles-producing fungus Kyu-W63. Journal-of-General-Plant-Pathology 71, 280-284.<br />

Konstantinidou-Doltsinis, S. (2001). Efficacy of a new liquid formulation from Fallopia sachalinensis (Friedrich Schmidt Petrop.) Ronse Decraene as an inducer of resistance <strong>against</strong> powdery<br />

mildew in cucumber <strong>and</strong> grape. Bulletin-OILB/SROP 24, 221-224.<br />

Konstantinidou-Doltsinis, S. (2002). Combinations of bio<strong>control</strong> agents <strong>and</strong> MilsanaReg. <strong>against</strong> powdery mildew <strong>and</strong> grey mould in cucumber in Greece <strong>and</strong> the Netherl<strong>and</strong>s. Bulletin-<br />

OILB/SROP 25, 171-174.<br />

Konstantinidou-Doltsinis, S. (2007). Control of powdery mildew of grape in Greece using SporodexReg. L <strong>and</strong> MilsanaReg. Journal-of-Plant-Diseases-<strong>and</strong>-Protection 114, 256-262.<br />

Koumaki, C. M. (2001). Control of cucumber powdery mildew (Sphaerotheca fuliginea) with bacterial <strong>and</strong> fungal antagonists. Bulletin-OILB/SROP 24, 375-378.<br />

Krishnakumar, R. (2004). Management of powdery mildew in mulberry using coccinellid beetles, Illeis cincta (Fabricius) <strong>and</strong> Illeis bistigmosa (Mulsant). Journal-of-Entomological-Research<br />

28, 241-246.<br />

Kristkova, E. (2003). Distribution of powdery mildew species on cucurbitaceous vegetables in the Czech Republic. Sodininkyste-ir-Darzininkyste 22, 31-41.<br />

Laethauwer, S. d. (2006). Evaluation of resistance inducing products for <strong>biological</strong> <strong>control</strong> of powdery mildew in tomato bio<strong>control</strong> of Oidium lycopersici in tomato by induced resistance.<br />

Parasitica- 62, 57-78.<br />

Lahoz, E. (2004). Induction of systemic resistance to Erysiphe orontii cast in tobacco by application on roots of an isolate of Gliocladium roseum Bainier. Journal-of-Phytopathology 152, 465-<br />

470.<br />

Lee, S. (2004). Biological <strong>control</strong> of powdery mildew by Q-fect WP (Ampelomyces quisqualis 94013) in various crops. Bulletin-OILB/SROP 27, 329-331.<br />

Levy, N. O. (2004). Integration of Trichoderma <strong>and</strong> soil solarization for disease management. Bulletin-OILB/SROP 27, 65-70.<br />

Lima, G. (2002). Survival <strong>and</strong> activity of bio<strong>control</strong> yeasts <strong>against</strong> powdery mildew of cucurbits in the field. Bulletin-OILB/SROP 25, 187-190.<br />

Linder, C., Viret, O., Spring, J. L., Droz, P., <strong>and</strong> Dupuis, D. (2006). Integrated <strong>and</strong> organic grape production: synthesis of seven experimental years. Viticulture integree et bio-organique:<br />

synthese de sept ans d'observations. 38, 235-243.<br />

108


Appendix 2<br />

Malathrakis, N. E. (2002). Efficacy of MilsanaReg. (VP 1999), a formulated plant extract from Reynoutria sachalinensis, <strong>against</strong> powdery mildew of tomato (Leveillula taurica). Bulletin-<br />

OILB/SROP 25, 175-178.<br />

Melidossian, H. S. (2005). Suppression of grapevine powdery mildew by a mycophagous mite. Plant-Disease 89, 1331-1338.<br />

Mmbaga, M. T. (2008). Identification of microorganisms for <strong>biological</strong> <strong>control</strong> of powdery mildew in Cornus florida. Biological-Control 44, 67-72.<br />

Moreno-Vel<strong>and</strong>ia, C. A. (2007). Biological <strong>control</strong> of foliar diseases in tomato greenhouse crop in Colombia: selection of antagonists <strong>and</strong> efficacy tests. Bulletin-OILB/SROP 30, 59-62.<br />

Nelson, H. E. (2005). Fusarium oxysporum f. sp. radicis-lycopersici can induce systemic resistance in barley <strong>against</strong> powdery mildew. Journal-of-Phytopathology 153, 366-370.<br />

Nofal, M. A. (2006). Integrated management of powdery mildew of mango in Egypt. Crop-Protection 25, 480-486.<br />

P<strong>and</strong>ey, M. K. (2007). Biochemical investigations of sclerotial exudates of Sclerotium rolfsii <strong>and</strong> their antifungal activity. Journal-of-Phytopathology 155, 84-89.<br />

Pertot, I. (2004). Use of bio<strong>control</strong> agents <strong>against</strong> powdery mildew in integrated strategies for reducing pesticide residues on strawberry: evaluation of efficacy <strong>and</strong> side effects. Bulletin-<br />

OILB/SROP 27, 109-113.<br />

Pertot, I. (2008). Integrating bio<strong>control</strong> agents in strawberry powdery mildew <strong>control</strong> strategies in high tunnel growing systems. Crop-Protection 27, 622-631.<br />

Picton, D. D. (2003). Control of powdery mildew on leaves <strong>and</strong> stems of gooseberry. HortTechnology- 13, 365-367.<br />

Prasad, D. (2005). Crop protection: management strategies. Crop-protection:-management-strategies.<br />

Rankovic, B. (1998). Conidia production of Ampelomyces quisqualis in culture using suspension method <strong>and</strong> artificial infection of powdery mildew pathogens (Erysiphe artemisiae <strong>and</strong> E.<br />

cichoracearum) by the mycoparasite. Zastita-Bilja 49, 77-84.<br />

Ravensberg, W. (2007). The lactoperoxidase system as a novel, natural fungicide for <strong>control</strong> of powdery mildew. Bulletin-OILB/SROP 30, 19-22.<br />

Robotic, V. (2002). Biological <strong>control</strong> of grapevine powdery mildew with Effective Microorganisms (EM). Bulletin-OILB/SROP 25, 191.<br />

Romero, D. (2001). Biological <strong>control</strong> of cucurbit powdery mildew by mycoparasitic fungi. Bulletin-OILB/SROP 24, 143-146.<br />

Romero, D. (2003). Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves. Mycological-Research 107, 64-71.<br />

Romero, D. (2004a). Effect of relative humidity on the efficacy of mycoparasitic fungi <strong>and</strong> antagonistic bacteria towards cucurbit powdery mildew. Bulletin-OILB/SROP 27, 301-304.<br />

Romero, D. (2004b). Isolation <strong>and</strong> evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Applied-Microbiology-<strong>and</strong>-Biotechnology 64, 263-269.<br />

Romero, D. (2007a). Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology <strong>and</strong> ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. Journal-of-<br />

Applied-Microbiology 103, 969-976.<br />

Romero, D. (2007b). Evaluation of <strong>biological</strong> <strong>control</strong> agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant-Pathology 56, 976-986.<br />

Romero, D. (2007c). The iturin <strong>and</strong> fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular-Plant-Microbe-Interactions 20,<br />

430-440.<br />

Romero, D. (2007d). Management of cucurbit powdery mildew on greenhouse-grown melons by different <strong>biological</strong> <strong>control</strong> strategies. Bulletin-OILB/SROP 30, 427-431.<br />

Sanin, S. S., Neklesa, N. P., <strong>and</strong> Strizhekozin, Y. A. (2008). Wheat protection from powdery mildew (supplement). Zashchita i Karantin Rastenii.<br />

Sankar, N. R. (2007a). Cladosporium oxysporum as a mycoparasite on Uncinula tectonae - a new record. Journal-of-Plant-Disease-Sciences 2, 182-183.<br />

Sankar, N. R. (2007b). Evaluation of teak phylloplane mycoflora for bio<strong>control</strong> of powdery mildew of teak caused by Uncinula tectonae. Journal-of-Plant-Disease-Sciences 2, 203-205.<br />

Schilder, A. M. C. (2002). Evaluation of environmentally friendly products for <strong>control</strong> of fungal diseases of grapes. 10th-International-Conference-on-Cultivation-Technique-<strong>and</strong>-<br />

Phytopathological-Problems-in-Organic-Fruit-Growing-<strong>and</strong>-Viticulture-Proceedings-of-a-conference,-Weinsberg,-Germany,-4-7-February-2002.<br />

Schmitt, A. (1999). Antifungal activity of gramicidin S <strong>and</strong> use of Bacillus brevis for <strong>control</strong> of Sphaerotheca fuliginea. Modern-fungicides-<strong>and</strong>-antifungal-compounds-II-12th-International-<br />

Reinhardsbrunn-Symposium,-Friedrichroda,-Thuringia,-Germany,-24th-29th-May-1998.<br />

Schmitt, A. (2001). Improved plant health by the combination of <strong>biological</strong> disease <strong>control</strong> methods. Bulletin-OILB/SROP 24, 29-32.<br />

Schmitt, A. (2002). Use of Reynoutria sachalinensis plant extracts, clay preparations <strong>and</strong> Brevibacillus brevis <strong>against</strong> fungal diseases of grape berries. 10th-International-Conference-on-<br />

Cultivation-Technique-<strong>and</strong>-Phytopathological-Problems-in-Organic-Fruit-Growing-<strong>and</strong>-Viticulture-Proceedings-of-a-conference,-Weinsberg,-Germany,-4-7-February-2002.<br />

Schweigkofler, W. (2006). Effects of fungicides on the germination of Ampelomyces quisqualis AQ10, a <strong>biological</strong> antagonist of the powdery mildew of the grapevine. Bulletin-OILB/SROP 29,<br />

79-82.<br />

Seddon, B. (1999). Integrated <strong>biological</strong> <strong>control</strong> of fungal plant pathogens using natural products. Modern-fungicides-<strong>and</strong>-antifungal-compounds-II-12th-International-Reinhardsbrunn-<br />

Symposium,-Friedrichroda,-Thuringia,-Germany,-24th-29th-May-1998.<br />

Shashi, K. (2007). Field efficacy of bioagents <strong>and</strong> fungicides <strong>against</strong> tomato (Lycopersicon esculentum Mill.) diseases. Environment-<strong>and</strong>-Ecology 25S, 921-924.<br />

109


Nicot et al. (Appendix for Chapter 1)<br />

Shen, D., Wei, S., Ji, Z., <strong>and</strong> Wu, W. (2008). Primary studies on the secondary metabolic products of strain A19 of actinomycetes. Journal of Northwest A & F University - Natural Science<br />

Edition 36, 173-178.<br />

Shi, Y. (2004). Studies on 0.25% aqueous solution of Xenorhabdus nematophilus for the <strong>control</strong> of cucumber powdery mildew. Plant-Protection 30, 79-81.<br />

Silva, H. S. A. (2004). Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection <strong>and</strong> increase in enzyme activities. Biological-Control 29, 288-295.<br />

Simian, B. (2008). Inhibitory effect of phylloplane fungi on Erysiphe polygoni DC inciting powdery mildew disease of Trigonella foenum-graecum. Annals-of-Plant-Protection-Sciences 16,<br />

150-152.<br />

Sonali, V. (2005). Ampelomyces quisqualis Ces. - a mycoparasite of apple powdery mildew in western Himalayas. Indian-Phytopathology 58, 250-251.<br />

Soylu, S. (2002). Feeding of mycophagous ladybird, Psyllobora bisoctonotata (Muls.), on powdery mildew infested plants. Bulletin-OILB/SROP 25, 183-186.<br />

Sutherl<strong>and</strong>, A. (2008). A preliminary predictive model for the consumption of powdery mildew by the obligate mycophage Psyllobora vigintimaculata (Coleoptera: Coccinellidae). Bulletin-<br />

OILB/SROP 32, 209-212.<br />

Sutherl<strong>and</strong>, A. M. (2005). Effects of selected fungicides on a Mycophagous Ladybird (Coleoptera: Coccinellidae): ramifications for <strong>biological</strong> <strong>control</strong> of powdery mildew. Bulletin-OILB/SROP<br />

28, 253-256.<br />

Sutherl<strong>and</strong>, A. M. (2006). Quantification of powdery mildew removal by the mycophagous beetle Psyllobora vigintimaculata (Coleoptera: Coccinellidae). Bulletin-OILB/SROP 29, 281-286.<br />

Szentivanyi, O. (2006). Paecilomyces farinosus destroys powdery mildew colonies in detached leaf cultures but not on whole plants. European-Journal-of-Plant-Pathology 115, 351-356.<br />

Sztejnberg, A. (2004). A new fungus with dual bio<strong>control</strong> capabilities: reducing the numbers of phytophagous mites <strong>and</strong> powdery mildew disease damage. Crop-Protection 23, 1125-1129.<br />

Tadesse, M. (2003). Bryophyte extracts with activity <strong>against</strong> plant pathogenic fungi. Sinet,-Ethiopian-Journal-of-Science 26, 55-62.<br />

Trottin-Caudal, Y. (2003). Efficiency of plant extract from Reynoutria sachalinensis (Milsana) to <strong>control</strong> powdery mildew on tomato (Oidium neolycopersici). Colloque-international-tomatesous-abri,-protection-integree-agriculture-biologique,-Avignon,-France,-17-18-et-19-septembre-2003.<br />

Tsror, L. (2004). Control of powdery mildew on organic pepper. Bulletin-OILB/SROP 27, 333-336.<br />

Utkhede, R. S. (2006). Reduction of powdery mildew caused by Podosphaera xanthii on greenhouse cucumber plants by foliar sprays of various <strong>biological</strong> <strong>and</strong> chemical agents. Journal-of-<br />

Horticultural-Science-<strong>and</strong>-Biotechnology 81, 23-26.<br />

Vel<strong>and</strong>ia, C. A. M. (2007). Survival in the phylloplane of Trichoderma koningii <strong>and</strong> bio<strong>control</strong> activity <strong>against</strong> tomato foliar pathogens. Bulletin-OILB/SROP 30, 557-561.<br />

Verhaar, M. A. (1998). Selection of Verticillium lecanii isolates with high potential for bio<strong>control</strong> of cucumber powdery mildew by means of components analysis at different humidity regimes.<br />

Bio<strong>control</strong>-Science-<strong>and</strong>-Technology 8, 465-477.<br />

Verhaar, M. A. (1999). Improvement of the efficacy of Verticillium lecanii used in bio<strong>control</strong> of Sphaerotheca fuliginea by addition of oil formulations. BioControl- 44, 73-87.<br />

Vimala, R. (2006). Enhancing resistance in bhendi to powdery mildew disease by foliar spray with fluorescent pseudomonads. International-Journal-of-Agricultural-Sciences 2, 549-556.<br />

White, D. (2001). Interaction of the bio<strong>control</strong> agent Brevibacillus brevis with other disease <strong>control</strong> methods. Bulletin-OILB/SROP 24, 229-232.<br />

Yigit, F. (2004). Integrated <strong>biological</strong> <strong>and</strong> chemical <strong>control</strong> of powdery mildew of barley caused by Blumeria graminis f.sp. hordei using rhizobacteria <strong>and</strong> triadimenol. Pakistan-Journal-of-<br />

Biological-Sciences 7, 1671-1675.<br />

Zulini, L. (2004). Bio<strong>control</strong> agents <strong>and</strong> their integration in organic viticulture in Trentino, Italy: characteristics <strong>and</strong> constrains. Bulletin-OILB/SROP 27, 49-52.<br />

110


Appendix 3. Inventory of bio<strong>control</strong> agents (M: microbials; B: botanicals; O: others) described in primary literature (1973-2008)<br />

for successful effect <strong>against</strong> the rust pathogens in laboratory experiments <strong>and</strong> field trials on selected crops<br />

Rust on wheat, oat, soybean, groundnut, bean<br />

Success in field trials<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

Bean – target pathogen = Uromyces appendiculatus<br />

Pantoea agglomerans B1 (Yuen et al., 2001)<br />

Stenotrophomonas maltophilia C3 (Yuen et al., 2001)<br />

Cladosporium tenuissimum (Assante et al., 2004)<br />

M<br />

B<br />

O<br />

Bean – target pathogen = Uromyces appendiculatus<br />

Bacillus subtilis (Baker et al., 1985)<br />

Groundnut – target pathogen = Puccinia arachidis<br />

Pseudomonas fluorescens strain Pf1 (Meena et al., 2002)<br />

Groundnut – target pathogen = Puccinia arachidis<br />

Bacillus subtilis AF 1 (Manjula et al., 2004)<br />

Pseudomonas fluorescens strain Pf1 (Meena et al., 2000) (Meena et al., 2002)<br />

Acremonium obclavatum (Gowdu <strong>and</strong> Balasubramanian, 1993)<br />

Fusarium chlamydosporum (Mathivanan <strong>and</strong> Murugesan, 2000) (Mathivanan et<br />

al., 1998)<br />

Soybean – target pathogen = Phakopsora pachyrhizi<br />

Verticillium psalliotae, Verticillium lecanii (Saksirirat <strong>and</strong> Hoppe, 1990)<br />

(Saksirirat <strong>and</strong> Hoppe, 1991)<br />

Wheat, Oat – target pathogens = Puccinia recondite, P. coronata<br />

Pseudomonas putida strain BK8661 (Flaishman et al., 1996)<br />

Chaetomium globosum strain F0142 (Park et al., 2005b)<br />

Verticillium chlamydosporium (Leinhos <strong>and</strong> Buchenauer, 1992)<br />

endophytic fungi (Dingle <strong>and</strong> McGee, 2003)<br />

Fusaric acid from Fusarium oxysporum EF119 (Son et al., 2008)<br />

Bean – target pathogen = Uromyces appendiculatus<br />

2,6-dichloro-isonicotinic acid (CGA 41396) (Dann <strong>and</strong> Deverall, 1995)<br />

111


Nicot et al. (Appendix for Chapter 1)<br />

Rust on other crops<br />

Success in field trials<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

Chrysanthemum<br />

Verticillium lecanii (Whipps, 1993)<br />

M<br />

B<br />

O<br />

Coffee – target pathogens = Hemileia vastatrix<br />

Bacillus sp. (Haddad et al., 2006)<br />

Pseudomonas sp. (Maffia et al., 2005), variable effect (Haddad et al., 2006)<br />

Coffee – target pathogens = Hemileia vastatrix<br />

acibenzolar-S-methyl (ASM) (Patricio et al., 2008)<br />

Coffee – target pathogen = Hemileia vastatrix<br />

Bacillus lentimorbus (Shiomi et al., 2006)<br />

Bacillus cereus (Shiomi et al., 2006)<br />

Bacillus (Haddad et al., 2004)<br />

Cedecea davisae (Silva et al., 2008)<br />

Pseudomonas (Haddad et al., 2004)<br />

Acremonium (Haddad et al., 2004)<br />

Aspergillus (Haddad et al., 2004)<br />

Cladosporium (Haddad et al., 2004)<br />

Fusarium (Haddad et al., 2004)<br />

Penicillium (Haddad et al., 2004)<br />

Geranium – target pathogen = Puccinia pelargonii-zonalis<br />

Bacillus subtilis (Rytter et al., 1989)<br />

Safflower – target pathogen = Puccinia carthami<br />

Trichoderma viride <strong>and</strong> T. harzianum, Bacillus subtilis, B. cereus, B. thuringiensis,<br />

Pseudomonas fluorescens added alone <strong>and</strong> in combination (Tosi <strong>and</strong> Zazzerini,<br />

1994)<br />

Poplar – target pathogen = Melampsora ciliata<br />

Alternaria alternata <strong>and</strong> Cladosporium oxysporum (Sharma et al., 2002)<br />

Pine – target pathogens = Cronartium <strong>and</strong> Peridermium<br />

Cladosporium tenuissimum (Moricca et al., 2001)<br />

Scytalidium uredinicola (Moltzan et al., 2001)<br />

Plant-growth-promoting rhizobacteria (Enebak <strong>and</strong> Carey, 2004)<br />

112


Appendix 3<br />

References on bio<strong>control</strong> <strong>against</strong> the rust pathogens<br />

Assante, G., Maffi, D., Saracchi, M., Farina, G., Moricca, S., <strong>and</strong> Ragazzi, A. (2004). Histological studies on the mycoparasitism of Cladosporium tenuissimum on urediniospores of Uromyces appendiculatus.<br />

Mycological Research 108, 170-182.<br />

Baker, C. J., Stavely, J. R., <strong>and</strong> Mock, N. (1985). Bio<strong>control</strong> of bean rust by Bacillus-subtilis under field conditions. Plant Disease 69, 770-772.<br />

Dann, E. K., <strong>and</strong> Deverall, B. J. (1995). Effectiveness of systemic resistance in bean <strong>against</strong> foliar <strong>and</strong> soilborne pathogens as induced by <strong>biological</strong> <strong>and</strong> chemical means. Plant Pathology 44, 458-466.<br />

Dingle, J., <strong>and</strong> McGee, P. A. (2003). Some endophytic fungi reduce the density of pustules of Puccinia recondita f. sp tritici in wheat. Mycological Research 107, 310-316.<br />

Enebak, S. A., <strong>and</strong> Carey, W. A. (2004). Plant growth-promoting rhizobacteria may reduce fusiform rust infection in nursery-grown loblolly pine seedlings. Southern Journal of Applied Forestry 28, 185-188.<br />

Flaishman, M. A., Eyal, Z., Zilberstein, A., Voisard, C., <strong>and</strong> Haas, D. (1996). Suppression of Septoria tritici blotch <strong>and</strong> leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida.<br />

Molecular Plant-Microbe Interactions 9, 642-645.<br />

Gowdu, B. J., <strong>and</strong> Balasubramanian, R. (1993). Bio<strong>control</strong> potential of rust of groudnut by Acremonium-obclavatum. Canadian Journal of Botany-Revue Canadienne De Botanique 71, 639-643.<br />

Haddad, F., Maffia, L. A., Mizubuti, E. S., <strong>and</strong> Teixeira, H. (2006). Biological <strong>control</strong> of leaf rust in organically-grown coffee. Phytopathology 96, S44-S44.<br />

Haddad, F., Maffia, L. A., Mizubuti, E. S. G., <strong>and</strong> Romeiro, R. S. (2004). Bio<strong>control</strong> of coffee leaf rust with antagonists isolated from organic crops. Phytopathology 94, S37-S37.<br />

Leinhos, G. M. E., <strong>and</strong> Buchenauer, H. (1992). Inhibition of rust diseases of cereals by metabolic products of verticillium-chlamydosporium. Journal of Phytopathology-Phytopathologische Zeitschrift 136,<br />

177-193.<br />

Maffia, L., Haddad, F., Mizubuti, E., Teixeira, H., <strong>and</strong> Saraiva, R. (2005). Bio<strong>control</strong> of leaf rust in an organically-grown coffee planting. Phytopathology 95, S63-S64.<br />

Manjula, K., Kishore, G. K., <strong>and</strong> Podile, A. R. (2004). Whole cells of Bacillus subtilis AF 1 proved more effective than cell-free <strong>and</strong> chitinase-based formulations in <strong>biological</strong> <strong>control</strong> of citrus fruit rot <strong>and</strong><br />

groundnut rust. Canadian Journal of Microbiology 50, 737-744.<br />

Mathivanan, N., Kabilan, V., <strong>and</strong> Murugesan, K. (1998). Purification, characterization, <strong>and</strong> antifungal activity of chitinase from Fusarium chlamydosporum, a mycoparasite to groundnut rust, Puccinia<br />

arachidis. Canadian Journal of Microbiology 44, 646-651.<br />

Mathivanan, N., <strong>and</strong> Murugesan, K. (2000). Fusarium chlamydosporum, a potent bio<strong>control</strong> agent to groundnut rust, Puccinia arachidis. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz-Journal of<br />

Plant Diseases <strong>and</strong> Protection 107, 225-234.<br />

Meena, B., Radhajeyalakshmi, R., Marimuthu, T., Vidhyasekaran, P., Doraiswamy, S., <strong>and</strong> Velazhahan, R. (2000). Induction of pathogenesis-related proteins, phenolics <strong>and</strong> phenylalanine ammonia-lyase in<br />

groundnut by Pseudomonas fluorescens. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz-Journal of Plant Diseases <strong>and</strong> Protection 107, 514-527.<br />

Meena, B., Radhajeyalakshmi, R., Marimuthu, T., Vidhyasekaran, P., <strong>and</strong> Velazhahan, R. (2002). Biological <strong>control</strong> of groundnut late leaf spot <strong>and</strong> rust by seed <strong>and</strong> foliar applications of a powder formulation<br />

of Pseudomonas fluorescens. Bio<strong>control</strong> Science <strong>and</strong> Technology 12, 195-204.<br />

Moltzan, B. D., Blenis, P. V., <strong>and</strong> Hiratsuka, Y. (2001). Temporal occurrence <strong>and</strong> impact of Scytalidium uredinicola, a mycoparasite of western gall rust. Canadian Journal of Plant Pathology-Revue<br />

Canadienne De Phytopathologie 23, 384-390.<br />

Moricca, S., Ragazzi, A., Mitchelson, K. R., <strong>and</strong> Assante, G. (2001). Antagonism of the two-needle pine stem rust fungi Cronartium flaccidum <strong>and</strong> Peridermium pini by Cladosporium tenuissimum in vitro<br />

<strong>and</strong> in planta. Phytopathology 91, 457-468.<br />

Park, J. H., Choi, G. J., Jang, K. S., Lim, H. K., Kim, H. T., Cho, K. Y., <strong>and</strong> Kim, J. C. (2005). Antifungal activity <strong>against</strong> plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. Fems<br />

Microbiology Letters 252, 309-313.<br />

Patricio, F. R. A., Almeida, I. M. G., Barros, B. C., Santos, A. S., <strong>and</strong> Frare, P. M. (2008). Effectiveness of acibenzolar-S-methyl, fungicides <strong>and</strong> antibiotics for the <strong>control</strong> of brown eye spot, bacterial blight,<br />

brown leaf spot <strong>and</strong> coffee rust in coffee. Annals of Applied Biology 152, 29-39.<br />

Rytter, J. L., Lukezic, F. L., Craig, R., <strong>and</strong> Moorman, G. W. (1989). Biological-<strong>control</strong> of geranium rust by Bacillus-subtilis. Phytopathology 79, 367-370.<br />

Saksirirat, W., <strong>and</strong> Hoppe, H. H. (1990). Verticillium-psalliotae, an effective mycoparasite of the soybean rust fungus Phakopsora-pachyrhizi syd. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz-<br />

Journal of Plant Diseases <strong>and</strong> Protection 97, 622-633.<br />

Saksirirat, W., <strong>and</strong> Hoppe, H. H. (1991). Secretion of extracellular enzymes by Verticillium-psalliotae treschow <strong>and</strong> Verticillium-lecanii (zimm) viegas during growth on uredospores of the soybean rust<br />

fungus (Phakopsora-pachyrhizi syd) in liquid cultures. Journal of Phytopathology-Phytopathologische Zeitschrift 131, 161-173.<br />

Sharma, S., Sharma, R. C., <strong>and</strong> Malhotra, R. (2002). Effect of the saprophytic fungi Alternaria alternata <strong>and</strong> Cladosporium oxysporum on germination, parasitism <strong>and</strong> viability of Melampsora ciliata<br />

urediniospores. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz-Journal of Plant Diseases <strong>and</strong> Protection 109, 291-300.<br />

Shiomi, H. F., Silva, H. S. A., de Melo, I. S., Nunes, F. V., <strong>and</strong> Bettiol, W. (2006). Bioprospecting endophytic bacteria for <strong>biological</strong> <strong>control</strong> of coffee leaf rust. Scientia Agricola 63, 32-39.<br />

Silva, H. S. A., Terrasan, C. R. F., Tozzi, J. P. L., Melo, I. S., <strong>and</strong> Bettiol, W. (2008). Endophytic bacteria inducing enzymes correlated to the <strong>control</strong> of coffee leaf rust (Hemileia vastatrix). Tropical Plant<br />

Pathology 33, 49-54.<br />

113


Nicot et al. (Appendix for Chapter 1)<br />

Son, S. W., Kim, H. Y., Choi, G. J., Lim, H. K., Jang, K. S., Lee, S. O., Lee, S., Sung, N. D., <strong>and</strong> Kim, J. C. (2008). Bikaverin <strong>and</strong> fusaric acid from Fusarium oxysporum show antioomycete activity <strong>against</strong><br />

Phytophthora infestans. Journal of Applied Microbiology 104, 692-698.<br />

Tosi, L., <strong>and</strong> Zazzerini, A. (1994). Evaluation of some fungi <strong>and</strong> bacteria for potential <strong>control</strong> of safflower rust. Journal of Phytopathology-Phytopathologische Zeitschrift 142, 131-140.<br />

Whipps, J. M. (1993). A review of white rust (Puccinia horiana Henn) disease on chrysanthemum <strong>and</strong> the potential for its <strong>biological</strong> <strong>control</strong> with Vertillium lecanii (Zimm) Viegas. Annals of Applied Biology<br />

122, 173-187.<br />

Yuen, G. Y., Steadman, J. R., Lindgren, D. T., Schaff, D., <strong>and</strong> Jochum, C. (2001). Bean rust <strong>biological</strong> <strong>control</strong> using bacterial agents. Crop Protection 20, 395-402.<br />

114


Appendix 4. Inventory of bio<strong>control</strong> agents (M: microbials; B: botanicals; O: others) described in primary literature (1973-2008) for<br />

successful effect <strong>against</strong> the downy mildew / late blight pathogens in laboratory experiments <strong>and</strong> field trials on selected crops<br />

Potato (target pathogen = Phytophthora infestans)<br />

Success in field trials<br />

M<br />

Bacillus subtilis (Basu et al., 2001)<br />

Bacillus sp. isolate PB2 (Atia, 2005) effect < fungicides<br />

Pseudomonas fluorescens (Basu et al., 2001)<br />

Pseudomonas fluorescens isolate PPfl (Atia, 2005) effect < fungicides<br />

Pseudomonas (El-Sheikh et al., 2002)<br />

Gliocladium virens (Basu et al., 2001)<br />

Phytophthora cryptogea (Quintanilla, 2002)<br />

Trichoderma spp (Saikia <strong>and</strong> Azad, 1999)<br />

Trichoderma viride (Basu et al., 2001) (Basu <strong>and</strong> Srikanta, 2003) but no effect in other studies<br />

(Singh et al., 2001) (Arora, 2000) (Arora et al., 2006)<br />

little or no effect once in the field (good in lab):<br />

Acremonium strictum, Penicillium viridicatum <strong>and</strong> Penicillium aurantiogriseum (Arora, 2000)<br />

(Arora et al., 2006)<br />

Myrothecium verrucaria <strong>and</strong> Chaetomium brasiliense (Arora et al., 2006)<br />

B carvone (Quintanilla, 2002)<br />

O<br />

culture filtrates from Streptomyces padanus (Huang et al., 2007)<br />

negative effect:<br />

salicylic acid (Quintanilla, 2002)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

Serenade (Bacillus subtilis strain QST 713) (Stephan et al., 2005) (Olanya <strong>and</strong><br />

Larkin, 2006)<br />

Bacillus subtilis B5 (Ajay <strong>and</strong> Sunaina, 2005)<br />

Bacillus, Pseudomonas, Rahnella, <strong>and</strong> Serratia (Daayf et al., 2003)<br />

Enterobacter cloacae (Slininger et al., 2007)<br />

Pseudomonas fluorescens (Slininger et al., 2007)<br />

Xenorhabdus bovienii (Eibel et al., 2004)<br />

Penicillium aurantiogriseum (Jindal et al., 1988)<br />

Penicillium viridicatum (Hemant et al., 2004)<br />

Trichodex (Stephan et al., 2005)<br />

Trichoderma viride (Hemant et al., 2004)<br />

Penicillium, Rhizoctonia <strong>and</strong> Trichoderma spp (Phukan <strong>and</strong> Baruah, 1991)<br />

various microorganisms (Stephan <strong>and</strong> Koch, 2002)<br />

carvone , thymol, pinochamphone, plumbagin (Quintanilla, 2002)<br />

extracts of Rheum rhabarbarum <strong>and</strong> Solidago canadensis (Stephan et al., 2005)<br />

oregano extract (Olanya <strong>and</strong> Larkin, 2006)<br />

Elot-Vis (Stephan et al., 2005)<br />

patatin J from potato tuber (Sharma et al., 2004)<br />

chitosan ElexaTM (Acar et al., 2008)<br />

cyclic lipopeptides from Pseudomonas: massetolide A (Tran Thi Thu, 2007)<br />

extracts from Pseudomonas fluorescens (Martinez <strong>and</strong> Osorio, 2007)<br />

115


Nicot et al. (Appendix for Chapter 1)<br />

Tomato (target pathogen = Phytophthora infestans)<br />

Success in field trials<br />

M<br />

Bacillus cereus (Silva et al., 2004)<br />

Burkholderia (Lozoya-Saldana et al., 2006),<br />

Pseudomonas (Lozoya-Saldana et al., 2006),<br />

Streptomyces (Lozoya-Saldana et al., 2006)<br />

B Nochi leaf extract (Vanitha <strong>and</strong> Ramach<strong>and</strong>ram, 1999)<br />

O compost extracts (Zaller, 2006)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

Bacillus pumilus (Yan et al., 2002)<br />

Cellulomonas flavigena (Lourenco Junior et al., 2006)<br />

Pseudomonas fluorescens (Yan et al., 2002) (Ha et al., 2007) (Tran Thi Thu,<br />

2007)<br />

Streptomyces sp. AMG-P1 (Lee et al., 2005)<br />

Aspergillus sp., (Lourenco Junior et al., 2006)<br />

C<strong>and</strong>ida sp. (Lourenco Junior et al., 2006)<br />

Cryptococcus sp. (Lourenco Junior et al., 2006)<br />

Fusarium oxysporum (Kim et al., 2007a)<br />

Penicillium sp. (Perez Mancia <strong>and</strong> Sanchez Garita, 2000)<br />

Trichoderma harzianum T39 (Ferrari et al., 2007)<br />

capsidiol (El-Wazeri <strong>and</strong> El-Sayed, 1977)<br />

Elot-vis (Ferrari et al., 2007)<br />

acibenzolar-S-methyl (Becktell et al., 2005)<br />

beta -amino butyric acid (Yan et al., 2002)<br />

Bion (benzothiadiazole) (Surviliene et al., 2003)<br />

bikaverin <strong>and</strong> fusaric acid (Son et al., 2008)<br />

cellulose (Perez Mancia <strong>and</strong> Sanchez Garita, 2000)<br />

chaetoviridin A (Park et al., 2005a)<br />

chitosan ElexaTM (Acar et al., 2008)<br />

Chitoplant (Ferrari et al., 2007)<br />

extracts from actinomycete isolates (Mutitu et al., 2008)<br />

extracts from Bazzania trilobata <strong>and</strong> Diplophyllum albicans (Tadesse et al., 2003)<br />

extract from Gibberella zeae (Kim et al., 1995)<br />

phosphate (Becktell et al., 2005)<br />

116


Appendix 4<br />

Grapes (target pathogen = Plasmopara viticola)<br />

M<br />

B<br />

O<br />

Success in field trials<br />

Bacillus brevis (Schmitt et al., 2002)<br />

Bacillus subtilis (Serenade) (Schilder et al., 2002)<br />

Pseudomonas fluorescens (Rizoplan) (Kilimnik <strong>and</strong> Samoilov, 2000) (Rajeswari et al., 2008)<br />

Fusarium proliferatum (Falk et al., 1996)<br />

Trichoderma harzianum T39 (Vecchione et al., 2007)<br />

little or no effect once in the field:<br />

Bacillus licheniformis (Cravero et al., 2000)<br />

Biorange (Bacillus subtilis, C<strong>and</strong>ida oleophila, Pseudomonas spp. <strong>and</strong> Streptomyces spp.)<br />

(Spera et al., 2003)<br />

Croplife (citrus <strong>and</strong> coconut extract) (Schilder et al., 2002)<br />

Plantfood (foliar fertilizer) (Schilder et al., 2002)<br />

Milsana (giant knotweed extract) (Schilder et al., 2002) (Schmitt et al., 2002)<br />

neem (Rajeswari et al., 2008)<br />

acylbenzolar-s methyl (Dagostin et al., 2006)<br />

chitosan (Elexa) (Schilder et al., 2002)<br />

Mycosin (Angeli et al., 2006)<br />

Pearl millet Pennisetum glaucum (target pathogen = Sclerospora graminicola)<br />

Success in field trials<br />

Bacillus pumilus strain INR7, strain SE34 (Raj et al., 2003)<br />

Bacillus subtilis (Raj et al., 2003) (Raj et al., 2005)<br />

Pseudomonas fluorescens (Umesha et al., 1998) (Latake <strong>and</strong> Kolase, 2007)<br />

M<br />

Gliocladium virens (Arun et al., 2004) (Raj et al., 2005)<br />

Trichoderma harzianum (Raj et al., 2005) (Latake <strong>and</strong> Kolase, 2007)<br />

Trichoderma lignorum (Raj et al., 2005)<br />

B<br />

O milk (cow) (Arun et al., 2004)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

Alternaria alternata (Musetti et al., 2004)<br />

Fusarium proliferatum (Bakshi et al., 2001)<br />

neem (Achimu <strong>and</strong> Schlosser, 1992)<br />

extract of giant knotweed (Schmitt, 1996)<br />

Alternaria alternata extracts (Musetti et al., 2006)<br />

EXP1, copper gluconate, salt of fatty acid, plant based alcohol extract (Dagostin et<br />

al., 2006)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

Pseudomonas fluorescens (Raj et al., 2004)<br />

Aspergillus flavus, Trichoderma harzianum <strong>and</strong> T. viride (Surender et al., 2005)<br />

117


Nicot et al. (Appendix for Chapter 1)<br />

Other Vegetables <strong>and</strong> fruits<br />

Success in field trials<br />

Cauliflower <strong>and</strong> other crucifers (target pathogen = Peronospora parasitica)<br />

M<br />

B<br />

Bion (Pratibha et al., 2004)<br />

O<br />

phosphonate (Kofoet <strong>and</strong> Fischer, 2007)<br />

Lettuce (Bremia lactucae)<br />

M<br />

B<br />

phosphonate (Kofoet <strong>and</strong> Fischer, 2007)<br />

O Trichodermin (Borovko, 2005)<br />

Pimonex, Timorex <strong>and</strong> also Alkalin potassium+silicon (Robak <strong>and</strong> Ostrowska, 2006)<br />

Melon / cucumber (target pathogen = Pseudoperonospora cubensis)<br />

M<br />

B<br />

O phosphonate (Kofoet <strong>and</strong> Fischer, 2007)<br />

Miscellaneous<br />

Azotobacter slight effect <strong>against</strong> Peronospora arborescens on opium poppy (Chakrabarti <strong>and</strong><br />

M<br />

Yadav, 1991)<br />

B<br />

O phosphonate <strong>against</strong> Peronospora destructor on Allium (Kofoet <strong>and</strong> Fischer, 2007)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

Pseudomonas sp. XBC-PS (Li et al., 2007)<br />

Trichoderma harzianum (Pratibha et al., 2004)<br />

Bion (Gaw<strong>and</strong>e <strong>and</strong> Sharma, 2003)<br />

actinomycete (Shu <strong>and</strong> An, 2004)<br />

Bacillus strains, Z-X-3 <strong>and</strong> Z-X-10 (Li et al., 2003)<br />

attenuated cucumber mosaic cucumovirus (Qin et al., 1992)<br />

chitosan ElexaTM (Acar et al., 2008)<br />

compost extracts (Winterscheidt et al., 1990)<br />

Cladosporium chlorocephalum <strong>against</strong> Peronospora arborescens (Chaurasia <strong>and</strong><br />

Dayal, 1985) (Nalini <strong>and</strong> Rai, 1988)<br />

DL- beta -amino-n-butyric acid (BABA) <strong>against</strong> Plasmopara helianthi (Tosi <strong>and</strong><br />

Zazzerini, 2000)<br />

118


Appendix 4<br />

References on bio<strong>control</strong> <strong>against</strong> the downy mildew / late blight pathogens<br />

Acar, O., Aki, C., <strong>and</strong> Erdugan, H. (2008). Fungal <strong>and</strong> bacterial diseases <strong>control</strong> with ElexaTM plant booster. Fresenius Environmental Bulletin 17, 797-802.<br />

Achimu, P., <strong>and</strong> Schlosser, E. (1992). Effect of neem seed extracts (Azadirachta indica A. Juss) <strong>against</strong> downy mildew (Plasmopara viticola) of grapevine. Mededelingen van de Faculteit<br />

L<strong>and</strong>bouwwetenschappen, Universiteit Gent 57, 423-431.<br />

Ajay, S., <strong>and</strong> Sunaina, V. (2005). Direct inhibition of Phytophthora infestans, the causal organism of late blight of potato by Bacillus antagonists. Potato Journal 32, 179-180.<br />

Angeli, D., Maines, L., <strong>and</strong> Pertot, I. (2006). Efficacy evaluation of integrated strategies for powdery <strong>and</strong> downy mildew <strong>control</strong> in organic viticulture. Bulletin OILB/SROP 29, 51-56.<br />

Arora, R. K. (2000). Bio<strong>control</strong> of potato late blight. In "Potato, global research & development. Proceedings of the Global Conference on Potato, New Delhi, India, 6-11 December, 1999: Volume 1", pp.<br />

620-623.<br />

Arora, R. K., Garg, I. D., <strong>and</strong> Khurana, S. M. P. (2006). Achievements in <strong>biological</strong> <strong>control</strong> of diseases of potato with antagonistic organisms in Central Potato Research Institute, Shimla. In "Current status of<br />

<strong>biological</strong> <strong>control</strong> of plant diseases using antagonistic organisms in India. Proceedings of the group meeting on antagonistic organisms in plant disease management held at Project Directorate of<br />

Biological Control, Bangalore, India on 10-11th July 2003", pp. 236-243.<br />

Arun, K., Bhansali, R. R., <strong>and</strong> Mali, P. C. (2004). Raw cow's milk <strong>and</strong> Gliocladium virens induced protection <strong>against</strong> downy mildew of pearl millet. International Sorghum <strong>and</strong> Millets Newsletter 45, 64-65.<br />

Atia, M. M. M. (2005). Biological <strong>and</strong> chemical <strong>control</strong> of potato late blight disease. Annals of Agricultural Science, Moshtohor 43, 1401-1421.<br />

Bakshi, S., Sztejnberg, A., <strong>and</strong> Yarden, O. (2001). Isolation <strong>and</strong> characterization of a cold-tolerant strain of Fusarium proliferatum, a bio<strong>control</strong> agent of grape downy mildew. Phytopathology 91, 1062-1068.<br />

Basu, A., Konar, A., Mukhopadhyay, S. K., <strong>and</strong> Chettri, M. (2001). Biological management of late blight of potato using talc-based formulations of antagonists. Journal of the Indian Potato Association 28,<br />

80-81.<br />

Basu, A., <strong>and</strong> Srikanta, D. (2003). Integrated management of potato (Solanum tuberosum) diseases in Hooghly area of West Bengal. Indian Journal of Agricultural Sciences 73, 649-651.<br />

Becktell, M. C., Daughtrey, M. L., <strong>and</strong> Fry, W. E. (2005). Epidemiology <strong>and</strong> management of petunia <strong>and</strong> tomato late blight in the greenhouse. Plant Disease 89, 1000-1008.<br />

Borovko, L. (2005). Application of <strong>biological</strong> preparations to spring oilseed rape under ecological conditions. Rosliny Oleiste 26, 361-368.<br />

Chakrabarti, D. K., <strong>and</strong> Yadav, A. L. (1991). Effect of Azotobacter species on incidence of downy mildew (Peronospora arborescens) <strong>and</strong> growth <strong>and</strong> yield of opium poppy (Papaver somniferum). Indian<br />

Journal of Agricultural Sciences 61, 287-288.<br />

Chaurasia, S. N. P., <strong>and</strong> Dayal, R. (1985). Mycoparastitic nature of Cladosporium chlorocephalum with Peronospora arborescens causing downy mildew of opium. Indian Phytopathology 38, 467-470.<br />

Cravero, S., Bosca, P., Ferrari, D., <strong>and</strong> Scapin, I. (2000). Evaluation of the effectiveness of traditional <strong>and</strong> new compounds <strong>against</strong> grapevine downy mildew. In "Atti, Giornate fitopatologiche, Perugia, 16-20<br />

aprile, 2000, Volume 2", pp. 155-162.<br />

Daayf, F., Adam, L., <strong>and</strong> Fern<strong>and</strong>o, W. G. D. (2003). Comparative screening of bacteria for <strong>biological</strong> <strong>control</strong> of potato late blight (strain US-8), using in-vitro, detached-leaves, <strong>and</strong> whole-plant testing<br />

systems. Canadian Journal of Plant Pathology 25, 276-284.<br />

Dagostin, S., Ferrari, A., <strong>and</strong> Pertot, I. (2006). Efficacy evaluation of bio<strong>control</strong> agents <strong>against</strong> downy mildew for copper replacement in organic grapevine production in Europe. Bulletin OILB/SROP 29, 15-<br />

21.<br />

Eibel, P., Schmitt, A., Stephan, D., Carvalho, S. M., Seddon, B., <strong>and</strong> Koch, E. (2004). Strategies to provide integrated <strong>biological</strong> <strong>control</strong> of late blight of potato to replace copper for sustainable organic<br />

agriculture production. Bulletin OILB/SROP 27, 79.<br />

El-Sheikh, M. A., El-Korany, A. E., <strong>and</strong> Shaat, M. M. (2002). Screening for bacteria antagonistic to Phytophthora infestans for the organic farming of potato. Alex<strong>and</strong>ria Journal of Agricultural Research 47,<br />

169-178.<br />

El-Wazeri, S. M., <strong>and</strong> El-Sayed, S. A. (1977). Experimental <strong>control</strong> of soreshin disease in cotton <strong>and</strong> late blight in tomato by a natural antibiotic, capsidiol, that was synthesized by pepper fruits. Egyptian<br />

Journal of Horticulture 4, 151-156.<br />

Falk, S. P., Pearson, R. C., Gadoury, D. M., Seem, R. C., <strong>and</strong> Sztejnberg, A. (1996). Fusarium proliferatum as a bio<strong>control</strong> agent <strong>against</strong> grape downy mildew. Phytopathology 86, 1010-1017.<br />

Ferrari, A., Dubeshko, S., Vintel, H., David, D. R., <strong>and</strong> Elad, Y. (2007). Integration of bio<strong>control</strong> agents <strong>and</strong> natural products <strong>against</strong> tomato late blight. Bulletin OILB/SROP 30, 437-440.<br />

Gaw<strong>and</strong>e, S., <strong>and</strong> Sharma, P. (2003). Changes in host enzyme activity due to induction of resistance <strong>against</strong> downy mildew in cauliflower. Annals of Agricultural Research 24, 322-331.<br />

Ha, T., Ficke, A., Asiimwe, T., Hofte, M., <strong>and</strong> Raaijmakers, J. M. (2007). Role of the cyclic lipopeptide massetolide A in <strong>biological</strong> <strong>control</strong> of Phytophthora infestans <strong>and</strong> in colonization of tomato plants by<br />

Pseudomonas fluorescens. New Phytologist 175, 731-742.<br />

Hemant, G., Singh, B. P., <strong>and</strong> Jitendra, M. (2004). Biological <strong>control</strong> of late blight of potato. Journal of the Indian Potato Association 31, 39-42.<br />

Huang, J., Shih, H., Huang, H., <strong>and</strong> Chung, W. (2007). Effects of nutrients on production of fungichromin by Streptomyces padanus PMS-702 <strong>and</strong> efficacy of <strong>control</strong> of Phytophthora infestans. Canadian<br />

Journal of Plant Pathology 29, 261-267.<br />

Jindal, K. K., Singh, H., <strong>and</strong> Madhu, M. (1988). Biological <strong>control</strong> of Phytophthora infestans on potato. Indian Journal of Plant Pathology 6, 59-62.<br />

119


Nicot et al. (Appendix for Chapter 1)<br />

Kilimnik, A. N., <strong>and</strong> Samoilov, Y. K. (2000). Approaches to <strong>control</strong> downy mildew. Zashchita i Karantin Rastenii, 29.<br />

Kim, B., Kim, K., Lee, J., Lee, Y., <strong>and</strong> Cho, K. (1995). Isolation <strong>and</strong> purification of several substances produced by Fusarium graminearum <strong>and</strong> their antimicrobial activities. Korean Journal of Plant<br />

Pathology 11, 158-164.<br />

Kim, H. Y., Choi, G. J., Lee, H. B., Lee, S. W., Lim, H. K., Jang, K. S., Son, S. W., Lee, S. O., Cho, K. Y., Sung, N. D., <strong>and</strong> Kim, J. C. (2007). Some fungal endophytes from vegetable crops <strong>and</strong> their antioomycete<br />

activities <strong>against</strong> tomato late blight. Letters in Applied Microbiology 44, 332-337.<br />

Kofoet, A., <strong>and</strong> Fischer, K. (2007). Evaluation of plant resistance improvers to <strong>control</strong> Peronospora destructor, P. parasitica, Bremia lactucae <strong>and</strong> Pseudoperonospora cubensis. Journal of Plant Diseases <strong>and</strong><br />

Protection 114, 54-61.<br />

Latake, S. B., <strong>and</strong> Kolase, S. V. (2007). Screening of bioagents for <strong>control</strong> of downy mildew of pearl millet. International Journal of Agricultural Sciences 3, 32-35.<br />

Lee, H. B., Kim, Y., Kim, J. C., Choi, G. J., Park, S. H., Kim, C. J., <strong>and</strong> Jung, H. S. (2005). Activity of some aminoglycoside antibiotics <strong>against</strong> true fungi, Phytophthora <strong>and</strong> Pythium species. Journal of<br />

Applied Microbiology 99, 836-843.<br />

Li, J., Feng, S., <strong>and</strong> Xiao, J. (2007). The <strong>biological</strong> <strong>control</strong> effect of endophytic Pseudomonas XBC-PS from pakchoi. China Vegetables, 21-23.<br />

Li, X., Zhang, D., Yang, W., Dong, L., <strong>and</strong> Liu, D. (2003). A study on the effect of Bacillus on downy mildew of cucumber. Plant Protection 29, 25-27.<br />

Lourenco Junior, V., Maffia, L. A., Romeiro, R. d. S., <strong>and</strong> Mizubuti, E. S. G. (2006). Bio<strong>control</strong> of tomato late blight with the combination of epiphytic antagonists <strong>and</strong> rhizobacteria. Biological Control 38,<br />

331-340.<br />

Lozoya-Saldana, H., Coyote-Palma, M. H., Ferrera-Cerrato, R., <strong>and</strong> Lara-Hern<strong>and</strong>ez, M. E. (2006). Microbial antagonism <strong>against</strong> Phytophthora infestans (Mont) de Bary. Agrociencia (Montecillo) 40, 491-<br />

499.<br />

Martinez, E. P., <strong>and</strong> Osorio, J. A. (2007). Preliminary studies for the production of an active biosurfactant <strong>against</strong> Phytophthora infestans (Mont.) de Bary. Revista Corpoica - Ciencia y Tecnologia<br />

Agropecuarias 8, 5-16.<br />

Musetti, R., Stringher, L., Vecchione, A., Borselli, S., <strong>and</strong> Pertot, I. (2004). Bio<strong>control</strong> agents <strong>against</strong> downy mildew of grape: an ultrastructural study. Bulletin OILB/SROP 27, 299.<br />

Musetti, R., Vecchione, A., Stringher, L., Borselli, S., Zulini, L., Marzani, C., D'Ambrosio, M., Toppi, L. S. d., <strong>and</strong> Pertot, I. (2006). Inhibition of sporulation <strong>and</strong> ultrastructural alterations of grapevine downy<br />

mildew by the endophytic fungus Alternaria alternata. Phytopathology 96, 689-698.<br />

Mutitu, E. W., Muiru, W. M., <strong>and</strong> Mukunya, D. M. (2008). Evaluation of antibiotic metabolites from actinomycete isolates for the <strong>control</strong> of late blight of tomatoes under greenhouse conditions. Asian Journal<br />

of Plant Sciences 7, 284-290.<br />

Nalini, N., <strong>and</strong> Rai, B. (1988). Cladosporium cladosporioides as a mycoparasite of Peronospora arborescens. Acta Botanica Indica 16, 257-259.<br />

Olanya, O. M., <strong>and</strong> Larkin, R. P. (2006). Efficacy of essential oils <strong>and</strong> biopesticides on Phytophthora infestans suppression in laboratory <strong>and</strong> growth chamber studies. Bio<strong>control</strong> Science <strong>and</strong> Technology 16,<br />

901-917.<br />

Park, J., Choi, G., Jang, K., Lim, H., Kim, H., Cho, K., <strong>and</strong> Kim, J. (2005). Antifungal activity <strong>against</strong> plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiology<br />

Letters 252, 309-313.<br />

Perez Mancia, J. E., <strong>and</strong> Sanchez Garita, V. (2000). Effect of the substrate cellulose <strong>and</strong> glucan on antagonists of Phytophthora infestans on tomato. Manejo Integrado de Plagas, 45-53.<br />

Phukan, S. N., <strong>and</strong> Baruah, C. K. (1991). Effect of tuber surface microflora on the incidence of late blight fungus Phytophthora infestans. Indian Journal of Ecology 18, 32-35.<br />

Pratibha, S., Sain, S. K., Sindhu, M., <strong>and</strong> Kadu, L. N. (2004). Integrated use of CGA245704 <strong>and</strong> Trichoderma harzianum on downy mildew supression <strong>and</strong> enzymatic activity in cauliflower. Annals of<br />

Agricultural Research 25, 129-134.<br />

Qin, B. Y., Zhang, X. H., Wu, G. S., <strong>and</strong> Tien, P. (1992). Plant resistance to fungal diseases induced by the infection of cucumber mosaic virus attenuated by satellite RNA. Annals of Applied Biology 120,<br />

361-366.<br />

Quintanilla, P. (2002). Biological <strong>control</strong> in potato <strong>and</strong> tomato to enhance resistance to plant pathogens - especially <strong>against</strong> Phytophthora infestans in potato. In "Acta Universitatis Agriculturae Sueciae -<br />

Agraria", pp. 88 pp.<br />

Raj, S. N., Chaluvaraju, G., Amruthesh, K. N., Shetty, H. S., Reddy, M. S., <strong>and</strong> Kloepper, J. W. (2003). Induction of growth promotion <strong>and</strong> resistance <strong>against</strong> downy mildew on pearl millet (Pennisetum<br />

glaucum) by rhizobacteria. Plant Disease 87, 380-384.<br />

Raj, S. N., Shetty, N. P., <strong>and</strong> Shetty, H. S. (2004). Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants <strong>and</strong> induces resistance <strong>against</strong> downy mildew. International<br />

Journal of Pest Management 50, 41-48.<br />

Raj, S. N., Shetty, N. P., <strong>and</strong> Shetty, H. S. (2005). Synergistic effects of Trichoshield on enhancement of growth <strong>and</strong> resistance to downy mildew in pearl millet. BioControl 50, 493-509.<br />

Rajeswari, E., Chitra, K., Seetharaman, K., <strong>and</strong> Sankaralingam, V. (2008). Exploiting medicinal plants <strong>and</strong> phylloplane microflora for the management of grapevine downy mildew. Archives of<br />

Phytopathology <strong>and</strong> Plant Protection 41, 213-220.<br />

120


Appendix 4<br />

Robak, J., <strong>and</strong> Ostrowska, A. (2006). The most important disease of small area vegetable (minor crops) cultivation <strong>and</strong> potential possibility of their <strong>control</strong>. Progress in Plant Protection 46, 114-120.<br />

Saikia, R., <strong>and</strong> Azad, P. (1999). In vivo effect of some Trichoderma spp. <strong>and</strong> Dithane M-45 <strong>against</strong> late blight of potato. Neo Botanica 7, 89-91.<br />

Schilder, A. M. C., Gillett, J. M., Sysak, R. W., <strong>and</strong> Wise, J. C. (2002). Evaluation of environmentally friendly products for <strong>control</strong> of fungal diseases of grapes. In "10th International Conference on<br />

Cultivation Technique <strong>and</strong> Phytopathological Problems in Organic Fruit-Growing <strong>and</strong> Viticulture. Proceedings of a conference, Weinsberg, Germany, 4-7 February 2002", pp. 163-167.<br />

Schmitt, A. (1996). Plant extracts as pest <strong>and</strong> disease <strong>control</strong> agents. In "Atti convegno internazionale: Coltivazione e miglioramento di piante officinali, Trento, Italy, 2-3 giugno 1994." pp. 265-272.<br />

Schmitt, A., Kunz, S., N<strong>and</strong>i, S., Seddon, B., <strong>and</strong> Ernst, A. (2002). Use of Reynoutria sachalinensis plant extracts, clay preparations <strong>and</strong> Brevibacillus brevis <strong>against</strong> fungal diseases of grape berries. In "10th<br />

International Conference on Cultivation Technique <strong>and</strong> Phytopathological Problems in Organic Fruit-Growing <strong>and</strong> Viticulture. Proceedings of a conference, Weinsberg, Germany, 4-7 February 2002",<br />

pp. 146-151.<br />

Sharma, N., Gruszewski, H. A., Park, S. W., Holm, D. G., <strong>and</strong> Vivanco, J. M. (2004). Purification of an isoform of patatin with antimicrobial activity <strong>against</strong> Phytophthora infestans. Plant Physiology <strong>and</strong><br />

Biochemistry 42, 647-655.<br />

Shu, X., <strong>and</strong> An, D. (2004). Studies on the effect of zuelaemycin producing actinomycetes strain S-5120 on downy mildew of cucumber. Acta Botanica Boreali-Occidentalia Sinica 24, 2118-2122.<br />

Silva, H. S. A., Romeiro, R. S., Carrer Filho, R., Pereira, J. L. A., Mizubuti, E. S. G., <strong>and</strong> Mounteer, A. (2004). Induction of systemic resistance by Bacillus cereus <strong>against</strong> tomato foliar diseases under field<br />

conditions. Journal of Phytopathology 152, 371-375.<br />

Singh, B. P., Singh, P. H., Jhilmil, G., <strong>and</strong> Lokendra, S. (2001). Integrated management of late blight under Shimla hills. Journal of the Indian Potato Association 28, 84-85.<br />

Slininger, P. J., Schisler, D. A., Ericsson, L. D., Br<strong>and</strong>t, T. L., Frazier, M. J., Woodell, L. K., Olsen, N. L., <strong>and</strong> Kleinkopf, G. E. (2007). Biological <strong>control</strong> of post-harvest late blight of potatoes. Bio<strong>control</strong><br />

Science <strong>and</strong> Technology 17, 647-663.<br />

Son, S. W., Kim, H. Y., Choi, G. J., Lim, H. K., Jang, K. S., Lee, S. O., Lee, S., Sung, N. D., <strong>and</strong> Kim, J. C. (2008). Bikaverin <strong>and</strong> fusaric acid from Fusarium oxysporum show antioomycete activity <strong>against</strong><br />

Phytophthora infestans. Journal of Applied Microbiology 104, 692-698.<br />

Spera, G., Torre, A. l., <strong>and</strong> Alegi, S. (2003). Organic viticulture: efficacy evaluation of different fungicides <strong>against</strong> Plasmopara viticola. Communications in Agricultural <strong>and</strong> Applied Biological Sciences 68,<br />

837-847.<br />

Stephan, D., <strong>and</strong> Koch, E. (2002). Screening of plant extracts, micro-organisms <strong>and</strong> commercial preparations for bio<strong>control</strong> of Phytophthora infestans on detached potato leaves. Bulletin OILB/SROP 25, 391-<br />

394.<br />

Stephan, D., Schmitt, A., Carvalho, S. M., Seddon, B., <strong>and</strong> Koch, E. (2005). Evaluation of bio<strong>control</strong> preparations <strong>and</strong> plant extracts for the <strong>control</strong> of Phytophthora infestans on potato leaves. European<br />

Journal of Plant Pathology 112, 235-246.<br />

Surender, K., Sushil, S., Sharma, B. K., <strong>and</strong> Thakur, D. P. (2005). Evaluation of mycoflora for antagonism <strong>against</strong> Sclerospora graminicola causing downy mildew of pearl millet. Environment <strong>and</strong> Ecology<br />

23S, 523-526.<br />

Surviliene, E., Brazaityte, A., <strong>and</strong> Sidlauskiene, A. (2003). Effect of benzotiadiazole on phytopathological <strong>and</strong> physiological processes in tomato. Zemes ukio Mokslai, 34-40.<br />

Tadesse, M., Steiner, U., Hindorf, H., <strong>and</strong> Dehne, H. W. (2003). Bryophyte extracts with activity <strong>against</strong> plant pathogenic fungi. Sinet, Ethiopian Journal of Science 26, 55-62.<br />

Tosi, L., <strong>and</strong> Zazzerini, A. (2000). Interactions between Plasmopara helianthi, Glomus mosseae <strong>and</strong> two plant activators in sunflower plants. European Journal of Plant Pathology 106, 735-744.<br />

Tran Thi Thu, H. (2007). Interactions between biosurfactant-producing Pseudomonas <strong>and</strong> Phytophthora species. In "Interactions between biosurfactant-producing Pseudomonas <strong>and</strong> Phytophthora species", pp.<br />

133 pp.<br />

Umesha, S., Dharmesh, S. M., Shetty, S. A., Krishnappa, M., <strong>and</strong> Shetty, H. S. (1998). Bio<strong>control</strong> of downy mildew disease of pearl millet using Pseudomonas fluorescens. Crop Protection 17, 387-392.<br />

Vanitha, S., <strong>and</strong> Ramach<strong>and</strong>ram, K. (1999). Management of late blight disease of tomato with selected fungicides <strong>and</strong> plant products. South Indian Horticulture 47, 306-307.<br />

Vecchione, A., Silvia, D., Zulini, L., <strong>and</strong> Pertot, I. (2007). Trichoderma harzianum T39 activity <strong>against</strong> Plasmopara viticola. Bulletin OILB/SROP 30, 143-146.<br />

Winterscheidt, H., Minassian, V., <strong>and</strong> Weltzien, H. C. (1990). Studies on <strong>biological</strong> <strong>control</strong> of cucumber downy mildew - (Pseudoperonospora cubensis (Berk. et Curt.) Rost) - with compost extracts. Gesunde<br />

Pflanzen 42, 235-238.<br />

Yan, Z. N., Reddy, M. S., Ryu, C. M., McInroy, J. A., Wilson, M., <strong>and</strong> Kloepper, J. W. (2002). Induced systemic protection <strong>against</strong> tomato late blight elicited by plant growth-promoting rhizobacteria.<br />

Phytopathology 92, 1329-1333.<br />

Zaller, J. G. (2006). Foliar spraying of vermicompost extracts: effects on fruit quality <strong>and</strong> indications of late-blight suppression of field-grown tomatoes. Biological Agriculture & Horticulture 24, 165-180.<br />

121


Appendix 5. Inventory of bio<strong>control</strong> agents (M: microbials; B: botanicals; O: others) described in primary literature (1973-2008) for<br />

successful effect <strong>against</strong> Monilinia in laboratory experiments <strong>and</strong> field trials on selected crops<br />

Apple (target pathogens = Monilinia fructigena; M. laxa)<br />

Success in field trials<br />

M<br />

Apricot (target pathogen = Monilinia laxa)<br />

Success in field trials<br />

M<br />

bacteria<br />

Burkholderia gladii OSU 7 (Altindag et al., 2006) (Esitken et al., 2005)<br />

Bacillus OSU-142 <strong>and</strong> Pseudomonas BA-8 (Esitken et al., 2005)<br />

Plum (target pathogen = Monilinia laxa)<br />

Success in field trials<br />

M<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

Aureobasidium pullulans, Epicoccum purpurascens, Sordaria fimicola <strong>and</strong><br />

Trichoderma polysporum (Falconi <strong>and</strong> Mendgen, 1994)<br />

Metschnikowia pulcherrima <strong>and</strong> (Spadaro et al., 2002), (Migheli et al., 1997)<br />

Pseudomonas syringae (Migheli et al., 1997)<br />

(M laxa)<br />

Pantoea agglomerans strain EPS125 (Bonaterra et al., 2004)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

bacteria<br />

Pantoea agglomerans strain EPS125 (Bonaterra et al., 2003)<br />

(M fructicola)<br />

Bacillus subtillis strain B3 (Pusey <strong>and</strong> Wilson, 1984)<br />

fungi, yeasts<br />

Metschnikowia pulcherrima (Grebenisan et al., 2006) (Grebenisan et al., 2008)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

bacteria<br />

Pantoea agglomerans strain EPS125 (Bonaterra et al., 2004)<br />

Epicoccum nigrum (Larena et al., 2001)<br />

Penicillium frequentans (Cal et al., 2002)<br />

(M fructicola)<br />

Bacillus subtillis strain B3 (Pusey <strong>and</strong> Wilson, 1984)<br />

remark: no B or O for any of the crops<br />

122


Appendix 5<br />

Cherry (target pathogens = Monilia fructicola, M. laxa, M. fructigena)<br />

Success in field trials<br />

M<br />

B<br />

O<br />

bacteria<br />

(M laxa)<br />

Serenade (Bacillus subtilis QRD137) (Haseli <strong>and</strong> Weibel, 2002),<br />

fungi, yeasts<br />

(M fructicola)<br />

Cryptococcus laurentii (Tian et al., 2004a)<br />

Epicoccum purpurascens (E. nigrum) <strong>and</strong> Gliocladium roseum (Wittig et al., 1997)<br />

(M laxa)<br />

Aureobasidium pullulans isolates 533 <strong>and</strong> 547 (Schena et al., 2003)<br />

(M laxa)<br />

Trilogy (azadirachtin-free Neemoil) (Haseli <strong>and</strong> Weibel, 2002)<br />

(M laxa)<br />

lime sulphur (calcium polysulfide) (Haseli <strong>and</strong> Weibel, 2002)<br />

Blueberry (target pathogen = Monilinia vaccinii-corymbos)<br />

Success in field trials<br />

M<br />

B<br />

O<br />

bacteria<br />

Serenade (Bacillus subtilis QRD137) (Ngugi et al., 2005) (Dedej et al., 2004) (Scherm <strong>and</strong> Stanal<strong>and</strong>,<br />

2001) (Schilder et al., 2006)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

bacteria<br />

(M fructicola)<br />

Bacillus subtilis (15 isolates) (Utkhede <strong>and</strong> Sholberg, 1986)<br />

Burkholderia cepacia, Bacillus subtilis (Fan et al., 2001)<br />

(M laxa)<br />

Risoplan (Pseudomonas fluorescens), Gaupsin (Pseudomonas aureofaciens = P.<br />

chlororaphis) (Shevchuk, 2006)<br />

Pantoea agglomerans strain EPS125 (Bonaterra et al., 2004)<br />

fungi, yeasts<br />

(M fructicola)<br />

C<strong>and</strong>ida guilliermondii, Kloeckera apiculata, Debaryomyces hansenii (Fan et al.,<br />

2001)<br />

Cryptococcus infirmo-miniatus (Spotts et al., 2002)<br />

Cryptococcus laurentii (Wang <strong>and</strong> Tian, 2007) (Qin <strong>and</strong> Tian, 2005) (Qin et al.,<br />

2006)<br />

(M laxa + M fructigena)<br />

Trichodex (Trichoderma harzianum) (Cardei, 2001)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

bacteria<br />

BlightBan (Pseudomonas fluorescens A506) (Scherm et al., 2004)<br />

Serenade (Bacillus subtilis QRD137) (Scherm et al., 2004) (Thornton et al., 2008)<br />

Pantoea agglomerans C9-1Sv (Thornton et al., 2008)<br />

fungi, yeasts<br />

Gliocladium roseum H47 (Thornton et al., 2008)<br />

123


Nicot et al. (Appendix for Chapter 1)<br />

Peach / Nectarine (target pathogens = Monilia fructicola, M. laxa, M. fructigena)<br />

Success in field trials<br />

M<br />

B (<br />

bacteria<br />

(M fructicola)<br />

Pseudomonas corrugata <strong>and</strong> P. cepacia; Bacillus subtilis strain B3 (Smilanick et al., 1993)<br />

fungi, yeasts<br />

Epicoccum nigrum (Mari et al., 2007)<br />

(M laxa)<br />

Epicoccum nigrum (Cal et al., 2004) (Foschi et al., 1995) (Larena et al., 2005) (Madrigal et al.,<br />

1994) (Melgarejo et al., 1986)<br />

Penicillium frequentans (Cal et al., 1990) (Melgarejo et al., 1986) (Pascual et al., 2000)<br />

Penicillium purpurogenum (Melgarejo et al., 1986)<br />

O Sodium bicarbonate enhances effect of Aspire (C<strong>and</strong>ida oleophila) (Droby et al., 2003)<br />

Success in laboratory conditions (in vitro <strong>and</strong>/or in planta in <strong>control</strong>led<br />

conditions)<br />

bacteria<br />

(M fructicola)<br />

Rizo-N (Bacillus subtilis) (El-Sheikh Aly et al., 2000)<br />

Bacillus amyloliquefaciens C06 (Zhou et al., 2008)<br />

Bacillus subtillis (Gueldner et al., 1988)<br />

Bacillus subtillis strain B3 (Pusey et al., 1986) (Pusey et al., 1988) (Pusey, 1989)<br />

(Pusey <strong>and</strong> Wilson, 1984)<br />

Pantoea agglomerans strain IC1270 (Ritte et al., 2002)<br />

Pseudomonas syringae NSA-6 (Zhou et al., 1999)<br />

(M laxa)<br />

Pantoea agglomerans strain EPS125 (Bonaterra et al., 2003) (Bonaterra et al.,<br />

2004)<br />

fungi, yeasts<br />

(M fructicola)<br />

C<strong>and</strong>ida sp(Karabulut et al., 2002)<br />

Cryptococcus laurentii (Yao <strong>and</strong> Tian, 2005)<br />

Debaryomyces hansenii (Stevens et al., 1997) (Stevens et al., 1998)<br />

Kloeckera apiculata yeast (Karabulut <strong>and</strong> Baykal, 2003) (McLaughlin et al., 1992)<br />

Muscodor albus (Mercier <strong>and</strong> Jimenez, 2004) (Schnabel <strong>and</strong> Mercier, 2006)<br />

Pichia membranaefaciens (Xu et al., 2008)<br />

Trichoderma atroviride (2 isolates), T viride & Rhodotorula sp (Hong et al., 1998)<br />

Plant-guard (T. harzianum) (El-Sheikh Aly et al., 2000)<br />

(M laxa)<br />

Penicillium purpurogenum (Foschi et al., 1995) (Larena <strong>and</strong> Melgarejo, 1996)<br />

Penicillium frequentans (Foschi et al., 1995)<br />

Trichoderma koningii (Foschi et al., 1995)<br />

Extract from Bacillus subtillis (McKeen et al., 1986)<br />

Iturin peptides from Bacillus subtillis (Gueldner et al., 1988)<br />

Sodium bicarbonate (Wisniewski et al., 2001); enhances effect of Aspire (C<strong>and</strong>ida<br />

oleophila) (Droby et al., 2003)<br />

124


Appendix 5<br />

Successful inhibition in vitro (target pathogen = B. cinerea)<br />

Bacteria<br />

Pseudomonas syringae pv. morsprunorum BA35, Erwinia herbicola C9- (Vol<strong>and</strong> et al., 1999)<br />

Serratia plymuthica, isolate EF-5 (Frommel et al., 1991)<br />

M<br />

Fungi + yeasts<br />

Penicillium frequentans (Cal <strong>and</strong> Melgarejo, 1994) (Melgarejo et al., 1985)<br />

Aspergillus flavus, Epicoccum nigrum, Penicillium chrysogenum <strong>and</strong> P. purpurogenum (Melgarejo et al., 1985)<br />

B<br />

O Thiolutin from Streptomyces luteosporeus (Deb <strong>and</strong> Dutta, 1984)<br />

References on bio<strong>control</strong> <strong>against</strong> Monilia<br />

Altindag, M., Sahin, M., Esitken, A., Ercisli, S., Guleryuz, M., Donmez, M. F., <strong>and</strong> Sahin, F. (2006). Biological <strong>control</strong> of brown rot (Moniliana laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacihaliloglu)<br />

by Bacillus, Burkholdria, <strong>and</strong> Pseudomonas application under in vitro <strong>and</strong> in vivo conditions. Biological Control 38, 369-372.<br />

Bonaterra, A., Frances, J. M., Moreno, M. C., Badosa, E., <strong>and</strong> Montesinos, E. (2004). Post-harvest <strong>biological</strong> <strong>control</strong> of a wide range of fruit types <strong>and</strong> pathogens by Pantoea agglomerans EPS125. Bulletin<br />

OILB/SROP 27, 357-360.<br />

Bonaterra, A., Mari, M., Casalini, L., <strong>and</strong> Montesinos, E. (2003). Biological <strong>control</strong> of Monilinia laxa <strong>and</strong> Rhizopus stolonifer in postharvest of stone fruit by Pantoea agglomerans EPS125 <strong>and</strong> putative<br />

mechanisms of antagonism. International Journal of Food Microbiology 84, 93-104.<br />

Cal, A. d., Larena, I., Guijarro, B., <strong>and</strong> Melgarejo, P. (2002). Mass production of conidia of Penicillium frequentans, a bio<strong>control</strong> agent <strong>against</strong> brown rot of stone fruits. Bio<strong>control</strong> Science <strong>and</strong> Technology 12,<br />

715-725.<br />

Cal, A. d., Larena, I., Torres, R., Linan, M., Domenichini, P., Bellini, A., M<strong>and</strong>rin, J. F., Ochoa de Eribe, X., Usall, J., <strong>and</strong> Melgarejo, P. (2004). Control of brown rot of peaches caused by Monilinia spp. by<br />

preharvest treatments. In "Recent research developments in plant pathology, Vol. 3", pp. 85-98.<br />

Cal, A. d., Sagasta, E. M., <strong>and</strong> Melgarejo, P. (1990). Biological <strong>control</strong> of peach twig blight (Monilinia laxa) with Penicillium frequentans. Plant Pathology 39, 612-618.<br />

Cardei, E. (2001). Trichodex <strong>and</strong> Silposan - long-term <strong>biological</strong> preparations in phytoprotection of sweet cherry tree <strong>and</strong> sour cherry tree. Cercetari Agronomice in Moldova 34, 119-122.<br />

Dedej, S., Delaplane, K. S., <strong>and</strong> Scherm, H. (2004). Effectiveness of honey bees in delivering the bio<strong>control</strong> agent Bacillus subtilis to blueberry flowers to suppress mummy berry disease. Biological Control<br />

31, 422-427.<br />

Droby, S., Wisniewski, M., El-Ghaouth, A., <strong>and</strong> Wilson, C. (2003). Influence of food additives on the <strong>control</strong> of postharvest rots of apple <strong>and</strong> peach <strong>and</strong> efficacy of the yeast-based bio<strong>control</strong> product Aspire.<br />

Postharvest Biology <strong>and</strong> Technology 27, 127-135.<br />

El-Sheikh Aly, M. M., Baraka, M. A., <strong>and</strong> El-Sayed Abbass, A. G. (2000). The effectiveness of fumigants <strong>and</strong> <strong>biological</strong> protection of peach <strong>against</strong> fruit rots. Assiut Journal of Agricultural Sciences 31, 19-<br />

31.<br />

Esitken, A., Ercisli, S., Karlidag, H., <strong>and</strong> Sahin, F. (2005). Potential use of plant growth promoting rhizobacteria (PGPR) in organic apricot production. In "Proceedings of the international scientific<br />

conference: Environmentally friendly fruit growing, Polli, Estonia, 7-9 September, 2005", pp. 90-97.<br />

Falconi, C. J., <strong>and</strong> Mendgen, K. (1994). Epiphytic fungi on apple leaves <strong>and</strong> their value for <strong>control</strong> of the postharvest pathogens Botrytis cinerea, Monilinia fructigena <strong>and</strong> Penicillium expansum. Zeitschrift fur<br />

Pflanzenkrankheiten und Pflanzenschutz 101, 38-47.<br />

Fan, Q., Tian, S., Jiang, A., <strong>and</strong> Xu, Y. (2001). Isolation <strong>and</strong> screening of bio<strong>control</strong> antagonists of diseases of postharvest fruits. China Environmental Science 21, 313-316.<br />

Foschi, S., Roberti, R., Brunelli, A., <strong>and</strong> Flori, P. (1995). Application of antagonistic fungi <strong>against</strong> Monilinia laxa agent of fruit rot of peach. Bulletin OILB/SROP 18, 79-82.<br />

Grebenisan, I., Cornea, C. P., Mateescu, R., Olteanu, V., <strong>and</strong> Voaides, C. (2006). Control of postharvest fruit rot in apricot <strong>and</strong> peach by Metschnikowia pulcherrima. Buletinul Universitatii de Stiinte Agricole<br />

si Medicina Veterinara Cluj-Napoca. Seria Agricultura 62, 74-79.<br />

Grebenisan, I., Cornea, P., Mateescu, R., Cimpeanu, C., Olteanu, V., Campenu, G., Stefan, L. A., Oancea, F., <strong>and</strong> Lupu, C. (2008). Metschnikowia pulcherrima, a new yeast with potential for bio<strong>control</strong> of<br />

postharvest fruit rots. Acta Horticulturae, 355-360.<br />

Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., Himmelsbach, D. S., Crumley, F. G., <strong>and</strong> Cutler, H. G. (1988). Isolation <strong>and</strong> identification of iturins as antifungal<br />

peptides in <strong>biological</strong> <strong>control</strong> of peach brown rot with Bacillus subtilis. Journal of Agricultural <strong>and</strong> Food Chemistry 36, 366-370.<br />

125


Nicot et al. (Appendix for Chapter 1)<br />

Haseli, A., <strong>and</strong> Weibel, F. (2002). Disease <strong>control</strong> in organic cherry production with new products <strong>and</strong> early plastic cover of the trees. In "11th International Conference on Cultivation Technique <strong>and</strong><br />

Phytopathological Problems in Organic Fruit-Growing. Proceedings of the conference, Weinsberg, Germany, 3-5 February 2004", pp. 122-130.<br />

Hong, C., Michailides, T. J., <strong>and</strong> Holtz, B. A. (1998). Effects of wounding, inoculum density, <strong>and</strong> <strong>biological</strong> <strong>control</strong> agents on postharvest brown rot of stone fruits. Plant Disease 82, 1210-1216.<br />

Karabulut, O. A., <strong>and</strong> Baykal, N. (2003). Biological <strong>control</strong> of postharvest diseases of peaches <strong>and</strong> nectarines by yeasts. Journal of Phytopathology 151, 130-134.<br />

Karabulut, O. A., Cohen, L., Wiess, B., Daus, A., Lurie, S., <strong>and</strong> Droby, S. (2002). Control of brown rot <strong>and</strong> blue mold of peach <strong>and</strong> nectarine by short hot water brushing <strong>and</strong> yeast antagonists. Postharvest<br />

Biology <strong>and</strong> Technology 24, 103-111.<br />

Larena, I., Cal, A. d., <strong>and</strong> Melgarejo, P. (2001). Biological <strong>control</strong> of Monilinia laxa on stone fruits. Bulletin OILB/SROP 24, 313-317.<br />

Larena, I., <strong>and</strong> Melgarejo, P. (1996). Biological <strong>control</strong> of Monilinia laxa <strong>and</strong> Fusarium oxysporum f.sp. lycopersici by a lytic enzyme-producing Penicillium purpurogenum. Biological Control 6, 361-367.<br />

Larena, I., Torres, R., Cal, A. d., Linan, M., Melgarejo, P., Domenichini, P., Bellini, A., M<strong>and</strong>rin, J. F., Lichou, J., Ochoa de Eribe, X., <strong>and</strong> Usall, J. (2005). Biological <strong>control</strong> of postharvest brown rot<br />

(Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biological Control 32, 305-310.<br />

Madrigal, C., Pascual, S., <strong>and</strong> Melgarejo, P. (1994). Biological <strong>control</strong> of peach twig blight (Monilinia laxa) with Epicoccum nigrum. Plant Pathology 43, 554-561.<br />

Mari, M., Torres, R., Casalini, L., Lamarca, N., M<strong>and</strong>rin, J. F., Lichou, J., Larena, I., Cal, M. A. d., Melgarejo, P., <strong>and</strong> Usall, J. (2007). Control of post-harvest brown rot on nectarine by Epicoccum nigrum <strong>and</strong><br />

physico-chemical treatments. Journal of the Science of Food <strong>and</strong> Agriculture 87, 1271-1277.<br />

McKeen, C. D., Reilly, C. C., <strong>and</strong> Pusey, P. L. (1986). Production <strong>and</strong> partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology 76, 136-139.<br />

McLaughlin, R. J., Wilson, C. L., Droby, S., Ben-Arie, R., <strong>and</strong> Chalutz, E. (1992). Biological <strong>control</strong> of postharvest diseases of grape, peach, <strong>and</strong> apple with the yeasts Kloeckera apiculata <strong>and</strong> C<strong>and</strong>ida<br />

guilliermondii. Plant Disease 76, 470-473.<br />

Melgarejo, P., Carrillo, R., <strong>and</strong> Sagasta, E. M. (1986). Potential for <strong>biological</strong> <strong>control</strong> of Monilinia laxa in peach twigs. Crop Protection 5, 422-426.<br />

Mercier, J., <strong>and</strong> Jimenez, J. I. (2004). Control of fungal decay of apples <strong>and</strong> peaches by the biofumigant fungus Muscodor albus. Postharvest Biology <strong>and</strong> Technology 31, 1-8.<br />

Migheli, Q., Gullino, M. L., Piano, S., Galliano, A., <strong>and</strong> Duverney, C. (1997). Bio<strong>control</strong> capability of Metschnikowia pulcherrima <strong>and</strong> Pseudomonas syringae <strong>against</strong> postharvest rots of apple under semicommercial<br />

condition. Mededelingen - Faculteit L<strong>and</strong>bouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent 62, 1065-1070.<br />

Ngugi, H. K., Dedej, S., Delaplane, K. S., Savelle, A. T., <strong>and</strong> Scherm, H. (2005). Effect of flower-applied Serenade biofungicide (Bacillus subtilis) on pollination-related variables in rabbiteye blueberry.<br />

Biological Control 33, 32-38.<br />

Pascual, S., Melgarejo, P., <strong>and</strong> Naresh, M. (2000). Accumulation of compatible solutes in Penicillium frequentans grown at reduced water activity <strong>and</strong> bio<strong>control</strong> of Monilinia laxa. Bio<strong>control</strong> Science <strong>and</strong><br />

Technology 10, 71-80.<br />

Pusey, P. L. (1989). Use of Bacillus subtilis <strong>and</strong> related organisms as biofungicides. Pesticide Science 27, 133-140.<br />

Pusey, P. L., Hotchkiss, M. W., Dulmage, H. T., Baumgardner, R. A., Zehr, E. I., Reilly, C. C., <strong>and</strong> Wilson, C. L. (1988). Pilot tests for commercial production <strong>and</strong> application of Bacillus subtilis (B-3) for<br />

postharvest <strong>control</strong> of peach brown rot. Plant Disease 72, 622-626.<br />

Pusey, P. L., <strong>and</strong> Wilson, C. L. (1984). Postharvest <strong>biological</strong> <strong>control</strong> of stone fruit brown rot by Bacillus subtilis. Plant Disease 68, 753-756.<br />

Pusey, P. L., Wilson, C. L., Hotchkiss, M. W., <strong>and</strong> Franklin, J. D. (1986). Compatibility of Bacillus subtilis for postharvest <strong>control</strong> of peach brown rot with commercial fruit waxes, dicloran, <strong>and</strong> cold-storage<br />

conditions. Plant Disease 70, 587-590.<br />

Qin, G. Z., <strong>and</strong> Tian, S. P. (2005). Enhancement of <strong>biological</strong> <strong>control</strong> activity of Cryptococcus laurentii by silicon <strong>and</strong> the possible mechanisms involved. Phytopathology 95, 69-75.<br />

Qin, G. Z., Tian, S. P., Xu, Y., Chan, Z. L., <strong>and</strong> Li, B. Q. (2006). Combination of antagonistic yeasts with two food additives for <strong>control</strong> of brown rot caused by Monilinia fructicola on sweet cherry fruit.<br />

Journal of Applied Microbiology 100, 508-515.<br />

Ritte, E., Lurie, S., Droby, S., Ismailov, Z., Chet, I., <strong>and</strong> Chernin, L. (2002). Bio<strong>control</strong> of postharvest fungal pathogens of peaches <strong>and</strong> apples by Pantoae agglomerans strain IC1270. Bulletin OILB/SROP 25,<br />

199-202.<br />

Schena, L., Nigro, F., Pentimone, I., Ligorio, A., <strong>and</strong> Ippolito, A. (2003). Control of postharvest rots of sweet cherries <strong>and</strong> table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest<br />

Biology <strong>and</strong> Technology 30, 209-220.<br />

Scherm, H., Ngugi, H. K., Savelle, A. T., <strong>and</strong> Edwards, J. R. (2004). Biological <strong>control</strong> of infection of blueberry flowers caused by Monilinia vaccinii-corymbosi. Biological Control 29, 199-206.<br />

Scherm, H., <strong>and</strong> Stanal<strong>and</strong>, R. D. (2001). Evaluation of fungicide timing strategies for <strong>control</strong> of mummy berry disease of rabbiteye blueberry in Georgia. Small Fruits Review 1, 69-81.<br />

Schilder, A. M. C., Hancock, J. F., <strong>and</strong> Hanson, E. J. (2006). An integrated approach to disease <strong>control</strong> in blueberries in Michigan. Acta Horticulturae, 481-488.<br />

Schnabel, G., <strong>and</strong> Mercier, J. (2006). Use of a Muscodor albus pad delivery system for the management of brown rot of peach in shipping cartons. Postharvest Biology <strong>and</strong> Technology 42, 121-123.<br />

Shevchuk, I. V. (2006). Efficiency of biofungicides <strong>against</strong> dominating diseases of cherries <strong>and</strong> plums under the different climatic conditions of Ukraine. Phytopathologia Polonica, 125-131.<br />

126


Appendix 5<br />

Smilanick, J. L., Denis-Arrue, R., Bosch, J. R., Gonzalez, A. R., Henson, D., <strong>and</strong> Janisiewicz, W. J. (1993). Control of postharvest brown rot of nectarines <strong>and</strong> peaches by Pseudomonas species. Crop<br />

Protection 12, 513-520.<br />

Spadaro, D., Vola, R., Piano, S., <strong>and</strong> Gullino, M. L. (2002). Mechanisms of action <strong>and</strong> efficacy of four isolates of the yeast Metschnikowia pulcherrima active <strong>against</strong> postharvest pathogens on apples.<br />

Postharvest Biology <strong>and</strong> Technology 24, 123-134.<br />

Spotts, R. A., Cervantes, L. A., <strong>and</strong> Facteau, T. J. (2002). Integrated <strong>control</strong> of brown rot of sweet cherry fruit with a preharvest fungicide, a postharvest yeast, modified atmosphere packaging, <strong>and</strong> cold storage<br />

temperature. Postharvest Biology <strong>and</strong> Technology 24, 251-257.<br />

Stevens, C., Khan, V. A., Lu, J. Y., Wilson, C. L., Pusey, P. L., Igwegbe, E. C. K., Kabwe, K., Mafolo, Y., Liu, J., Chalutz, E., <strong>and</strong> Droby, S. (1997). Integration of ultraviolet (UV-C) light with yeast treatment<br />

for <strong>control</strong> of postharvest storage rots of fruits <strong>and</strong> vegetables. Biological Control 10, 98-103.<br />

Stevens, C., Khan, V. A., Lu, J. Y., Wilson, C. L., Pusey, P. L., Kabwe, M. K., Igwegbe, E. C. K., Chalutz, E., <strong>and</strong> Droby, S. (1998). The germicidal <strong>and</strong> hormetic effects of UV-C light on reducing brown rot<br />

disease <strong>and</strong> yeast microflora of peaches. Crop Protection 17, 75-84.<br />

Thornton, H. A., Savelle, A. T., <strong>and</strong> Scherm, H. (2008). Evaluating a diverse panel of bio<strong>control</strong> agents <strong>against</strong> infection of blueberry flowers by Monilinia vaccinii-corymbosi. Bio<strong>control</strong> Science <strong>and</strong><br />

Technology 18, 391-407.<br />

Tian, S., Qin, G., <strong>and</strong> Xu, Y. (2004). Survival of antagonistic yeasts under field conditions <strong>and</strong> their bio<strong>control</strong> ability <strong>against</strong> postharvest diseases of sweet cherry. Postharvest Biology <strong>and</strong> Technology 33,<br />

327-331.<br />

Utkhede, R. S., <strong>and</strong> Sholberg, P. L. (1986). In vitro inhibition of plant pathogens by Bacillus subtilis <strong>and</strong> Enterobacter aerogenes <strong>and</strong> in vivo <strong>control</strong> of two postharvest cherry diseases. Canadian Journal of<br />

Microbiology 32, 963-967.<br />

Wang, Y., <strong>and</strong> Tian, S. (2007). Interaction between Cryptococcus laurentii, Monilinia fructicola <strong>and</strong> sweet cherry fruit at different temperatures. Scientia Agricultura Sinica 40, 2811-2820.<br />

Wisniewski, M., Wilson, C., El-Ghaouth, A., <strong>and</strong> Droby, S. (2001). Increasing the ability of the bio<strong>control</strong> product, Aspire, to <strong>control</strong> postharvest diseases of apple <strong>and</strong> peach with the use of additives. Bulletin<br />

OILB/SROP 24, 157-160.<br />

Wittig, H. P. P., Johnson, K. B., <strong>and</strong> Pscheidt, J. W. (1997). Effect of epiphytic fungi on brown rot blossom blight <strong>and</strong> latent infections in sweet cherry. Plant Disease 81, 383-387.<br />

Xu, X., Chan, Z., Xu, Y., <strong>and</strong> Tian, S. (2008). Effect of Pichia membranaefaciens combined with salicylic acid on <strong>control</strong>ling brown rot in peach fruit <strong>and</strong> the mechanisms involved. Journal of the Science of<br />

Food <strong>and</strong> Agriculture 88, 1786-1793.<br />

Yao, H. J., <strong>and</strong> Tian, S. P. (2005). Effects of a bio<strong>control</strong> agent <strong>and</strong> methyl jasmonate on postharvest diseases of peach fruit <strong>and</strong> the possible mechanisms involved. Journal of Applied Microbiology 98, 941-<br />

950.<br />

Zhou, T., Northover, J., <strong>and</strong> Schneider, K. E. (1999). Biological <strong>control</strong> of postharvest diseases of peach with phyllosphere isolates of Pseudomonas syringae. Canadian Journal of Plant Pathology 21, 375-<br />

381.<br />

Zhou, T., Schneider, K. E., <strong>and</strong> Li, X. (2008). Development of bio<strong>control</strong> agents from food microbial isolates for <strong>control</strong>ling post-harvest peach brown rot caused by Monilinia fructicola. International Journal<br />

of Food Microbiology 126, 180-185.<br />

127


Appendix 6. Primary literature (2007-2009) on <strong>biological</strong> <strong>control</strong> <strong>against</strong> Fusarium oxysporum<br />

Abo-Elyousr, K. A. M. <strong>and</strong> H. M. Mohamed (2009). "Biological Control of Fusarium Wilt in Tomato by Plant Growth-Promoting Yeasts <strong>and</strong> Rhizobacteria." Plant Pathology Journal 25(2): 199-204.<br />

Three plant growth-promoting yeasts <strong>and</strong> two rhizobacteria were tested for <strong>control</strong>ling tomato wilt caused by Fusarium oxysporum L sp. lycopersici under greenhouse <strong>and</strong> field conditions. Under<br />

greenhouse <strong>and</strong> field conditions, all treatments were significantly reduced disease severity of tomato wilt relative to the infected <strong>control</strong>. The highest disease reductions in pots (75.0, 67.4%) <strong>and</strong> field<br />

(52.5, 42.4%) were achieved by Azospirillum brasilense <strong>and</strong> Bacillus subtilis compared to infected <strong>control</strong>. Under field condition all treatments produced the highest tomato yield compared to the <strong>control</strong><br />

plants inoculated with the pathogen<br />

.<br />

Al-Jedabi, A. A. (2009). "Biological <strong>control</strong> of Fusarium root-rot of sorghum." Research Journal of Agriculture <strong>and</strong> Biological Sciences 5(4): 465-473.<br />

several crops including sorghum that result in low grain yield. All antagonists showed inhibition of mycelial growth of F. oxysporum <strong>and</strong> the maximum inhibition was recorded when Bacillus subtilis as<br />

bio<strong>control</strong> agent (67.7%). The in vitro root colonization study demonstrated that after four days of germination, the cell counts obtained from the roots have increased <strong>and</strong> the maximum count is achieved<br />

by B. subtilis (16.9*105 cfu/cm root). The greenhouse pot experiment demonstrated that T. viride <strong>and</strong> B. subtilis resulted in more than 80% suppression of root rot. The reduction in fresh weight of roots<br />

amounted to 93.6% in the <strong>control</strong> treatment inoculated with F. oxysporum alone, whereas 71.1% reduction in fresh root weight was recorded for the treatments inoculated with both the pathogen <strong>and</strong> B.<br />

subtilis; 66.8% reduction in fresh root weight was recorded for the treatments inoculated with both the pathogen <strong>and</strong> T. harzianum. Root dry weight of the <strong>control</strong> treatment inoculated with only F.<br />

oxysporum decreased by 94.5% in relation to the non-inoculated <strong>control</strong>. Among the potential <strong>biological</strong> <strong>control</strong> agents in this study, B. cereus resulted in 42.3 reduction in root dry weight compared to<br />

the 94.5% reduction recorded for the <strong>control</strong> inoculated with F. oxysporum alone. 100% of the roots from the <strong>control</strong> treatment (F. oxysporum only) rendered growth of F. oxysporum compared to an<br />

incidence ranging from 20 to 55% for plants treated with B. subtilis, B. lecheniformis, B. cereus, T. harzianum <strong>and</strong> T. viride. Both chlorophyll fractions increased when treated with antagonist <strong>and</strong> the<br />

maximum enhancement was recorded when Bacillus subtilis used as antagonist compared with that of <strong>control</strong>. The maximum values of the carbohydrate components were recorded when Bacillus<br />

subtilis used as antagonist relative to those of <strong>control</strong>.<br />

Amini, J. (2009). "Induced Resistance in Tomato Plants Against Fusarium Wilt Invoked by Nonpathogenic Fusarium, Chitosan <strong>and</strong> Bion." Plant Pathology Journal 25(3): 256-262.<br />

The potential of nonpathogenic Fusarium oxysporum strain Avr5, either alone or in combination with chitosan <strong>and</strong> Bion, for inducing defense reaction in tomato plants inoculated with E oxyysporum f.<br />

sp lycopersici, was studied in vitro <strong>and</strong> glasshouse conditions. Application Bion at concentration of 5, 50, 100 <strong>and</strong> 500 mu g/ml, <strong>and</strong> the highest concentration of chitosan reduced in vitro growth of the<br />

pathogen. Nonpathogenic F oxysporum Avr5 reduced the disease severity of Fusarium wilt of tomato in split plants, significantly. Bion <strong>and</strong> chitosan applied on tomato seedlings at concentration 100 mu<br />

g a.i./plant; 15, 10 <strong>and</strong> 5 days before inoculation of pathogen. All treatments significantly reduced disease severity of Fusarium wilt of tomato relative to the infected <strong>control</strong>. The biggest disease reduction<br />

<strong>and</strong> increasing tomato growth belong to combination of nonpathogenic Fusarium <strong>and</strong> Bion. Growth rate of shoot <strong>and</strong> root markedly inhibited in tomato plants in response to tomato Fusarium wilt as<br />

compared with healthy <strong>control</strong>. These results suggest that reduction in disease incidence <strong>and</strong> promotion in growth parameters in tomato plants inoculated with nonpathogenic Fusarium <strong>and</strong> sprayed with<br />

elicitors could be related to the synergistic <strong>and</strong> cooperative effect between them, which lead to the induction <strong>and</strong> regulation of disease resistance. Combination of elicitors <strong>and</strong> nonpathogenic Fusarium<br />

synergistically inhibit the growth of pathogen <strong>and</strong> provide the first experimental support to the hypothesis that such synergy can contribute to enhanced fungal resistance in tomato. This chemical could<br />

provide a new approach for suppression of tomato Fusarium wilt, but its practical use needs further investigation.<br />

An<strong>and</strong>, R., S. Kulothungan, et al. (2009). "Assay of chitinase <strong>and</strong> beta-1,3 glucanase in Gossypium hirsutum seedlings by Trichoderma spp. <strong>against</strong> Fusarium oxysporum." International Journal of Plant<br />

Sciences (Muzaffarnagar) 4(1): 255-258.<br />

wilt in cotton. In this regard, the six species of Trichoderma, namely T. viride, T. virens [Gliocladium virens], T. hamatum, T. harzianum, T. koningii <strong>and</strong> T. reesi, were evaluated for its bio<strong>control</strong><br />

properties <strong>and</strong> induction of defence-related enzymes, namely chitinase <strong>and</strong> beta1-3-glucanase in 30 days old cotton (G. hirsutum) seedlings. Trichoderma spp. could efficiently <strong>control</strong> the growth rate of<br />

F. oxysporum. In vitro assay of chitinase <strong>and</strong> beta-1,3-glucanase revealed the maximum production by T. harzianum (56 U/ml) <strong>and</strong> T. hamatum (80 U/ml), respectively. It also produced appreciable<br />

quantities of defence enzymes. The maximum induction of chitinase <strong>and</strong> beta1-3-glucanase in plants was found to be 80 U/ml when challenged with T. harzianum, in addition to the enhancement of<br />

defence mechanism in plants. Trichoderma spp. improved the germination rate of seedlings.<br />

Anitha, A. <strong>and</strong> M. Rebeeth (2009). "Self-fusion of Streptomyces griseus enhances chitinase production <strong>and</strong> bio<strong>control</strong> activity <strong>against</strong> Fusarium oxysporum f. sp. lycopersici." Biosciences, Biotechnology<br />

Research Asia 6(1): 175-180.<br />

Protoplasts were isolated from Streptomyces griseus (MTCC - *4734) strain using lysing enzymes <strong>and</strong> self-fusion of Streptomyces griseus protoplasts was carried out using 50% polyethylene glycol<br />

(MW 1000, Sigma Chemicals Co., USA) in protoplast buffer. The regenerated 8 self fused Streptomyces griseus were studied detailed for chitinase production <strong>and</strong> bio<strong>control</strong> activity. Parent strain (PSg)<br />

128


Appendix 6<br />

showed protein content of 2.7 mg/ml with chitinase activity of 120 IU/ml. High chitinase activity was measured in the culture filtrates of most of the self-fusants (87%) than the parent. Among the<br />

fusants, the strain SFSg 5 produced protein content of 7.8 mg/ml, maximum chitinase activity of 283.3 IU/ml with a two-fold increase as compared to the parent strain. All the self-fusants exhibited<br />

increased antagonistic activity <strong>against</strong> F. oxysporum f. sp. lycopersici than the parent. Maximum inhibition (82%, 80%) of mycelial growth of F. oxysporum was recorded with fusant of SFSg 5, SFSg 1<br />

as <strong>against</strong> 61.1% with PSg. The result implies that, the self-fused Streptomyces griseus resulted in appreciable increase of chitinase production <strong>and</strong> bio<strong>control</strong> activity also the significance of the<br />

protoplast fusion technique, which could successfully be used to develop hybrid strains also for commercial formulation.<br />

Baysal, O., M. Calskan, et al. (2008). "An inhibitory effect of a new Bacillus subtilis strain (EU07) <strong>against</strong> Fusarium oxysporum f. sp. Radicis-lycopersici." PMPP Physiological <strong>and</strong> Molecular Plant<br />

Pathology 73(1/3): 25-32.<br />

destructive disease on tomato (Lycopersicon esculentum Mill.) transplant seedlings <strong>and</strong> the causal organism of crown <strong>and</strong> root rot of tomato plants growing in southern coast greenhouses of Turkey. An<br />

isolate of Bacillus subtilis (EU07) identified by the 16s RNA region code gene was selected as the best antagonist <strong>and</strong> evaluated <strong>against</strong> FORL in vitro studies. Strain EU07 at 106 CFU ml-1 was able to<br />

reduce disease incidence by 75%, when applied as an inoculant. It efficiently inhibited FORL compared to the <strong>control</strong> <strong>and</strong> QST 713 (AgraQuest, Davis, CA) whose inhibition ratio was only 52% in vivo.<br />

R<strong>and</strong>om amplified polymorphic DNA analyses showed b<strong>and</strong>ing (genetic) differences between EU07 <strong>and</strong> QST 713 whereas there were no differences between DNAs of strains that have high homology<br />

to genes involved in the synthesis of antibiotics fengycin, bacillomycin <strong>and</strong> iturin when screened by oligonucleotide primers designed based on sequence information obtained from the NCBI database.<br />

Furthermore, one specific fragment in the EU07 genome showed the highest similarity to YrvN protein by 99% <strong>and</strong> AAA ATPase domain protein (72.2%) after amplifying oligonucleotide primers that<br />

are specific to the N-acyl-homoserine lactonase (HLS) gene as a bio<strong>control</strong> activity marker. These results suggested an effect of EU07 on <strong>control</strong> FORL by YrvN protein as subunit of protease enzyme.<br />

Furthermore, this fragment associated with HLS gene may be a potential molecular marker for selecting effective <strong>biological</strong> <strong>control</strong> agent belonging to Bacillus in order to <strong>control</strong> soilborne pathogens<br />

such as Fusarium, suggesting impairment in FORL invasion by signaling in the plant rhizosphere.<br />

Bernal-Vicente, A., M. Ros, et al. (2009). "Increased effectiveness of the Trichoderma harzianum isolate T-78 <strong>against</strong> Fusarium wilt on melon plants under nursery conditions." Journal of the Science of Food<br />

<strong>and</strong> Agriculture 89(5): 827-833.<br />

BACKGROUND: The use of isolates of the genus Trichoderma to <strong>control</strong> Fusarium wilt in melon plants is one of the most recent <strong>and</strong> effective alternatives to chemical treatments. In this work we have<br />

studied the immobilization of the isolate Trichoderma harzianum T-78 on different carriers as an efficient method to <strong>control</strong> vascular Fusarium wilt of melon in nurseries. Different formulations were<br />

developed: liquids (spore suspension, guar gum <strong>and</strong> carboxymethylcellulose) <strong>and</strong> solids (bentonite, vermiculite <strong>and</strong> wheat bran). RESULTS: The introduction of F. oxysporum resulted in a significant<br />

decrease in seedling fresh weight. The treatments which gave a lesser reduction in weight <strong>and</strong> showing a greater bio<strong>control</strong> effect were the liquid conidial suspension <strong>and</strong> the solid treatments with<br />

bentonite <strong>and</strong> superficial vermiculite. Micro<strong>biological</strong> analyses revealed that the conidial suspension <strong>and</strong> all the solid treatments, except wheat bran, significantly decreased F. oxysporum populations. Of<br />

all the treatments assayed, bentonite produced the greatest decline in the F. oxysporum population. CONCLUSIONS: The most effective treatments <strong>against</strong> Fusarium wilt on melon plants were the solid<br />

treatments bentonite <strong>and</strong> superficial vermiculite. These two treatments gave the greatest plant weight, the lowest percentage of infected plants <strong>and</strong> the greatest T. harzianum population throughout the<br />

assay. (C) 2009 Society of Chemical Industry<br />

Boureghda, H. <strong>and</strong> Z. Bouznad (2009). "Biological <strong>control</strong> of Fusarium wilt of chickpea using isolates of Trichoderma atroviride, T. harzianum <strong>and</strong> T. longibrachiatum." Acta Phytopathologica et<br />

Entomologica Hungarica 44(1): 25-38.<br />

The efficiency of the antagonist species Trichoderma atroviride (strains Ta.3, Ta.7 <strong>and</strong> Ta.13), T. harzianum (Th.6, Th.12, Th.15, Th.16 <strong>and</strong> Th.18) <strong>and</strong> T. longibrachiatum (TL.1, TL.2, TL.4, TL.5, TL.8,<br />

TL.9, TL.10, TL.11, TL.14 <strong>and</strong> TL17) <strong>against</strong> Fusarium wilt (caused by Fusarium oxysporum f.sp. ciceris) was compared using in vitro- <strong>and</strong> in vivo-based bioassay. A significant decrease of both<br />

growth <strong>and</strong> conidia production of the pathogen was obtained compared to the <strong>control</strong>. The highest percentages of diameter colony reduction <strong>and</strong> conidial production were obtained with Ta.13, causing<br />

65.64% reduction in colony diameter (direct confrontation), 48.71% reduction in colony diameter (indirect confrontation), <strong>and</strong> a complete inhibition of conidial production. Once more in direct<br />

confrontation, T. atroviride overgrowth the pathogen colony <strong>and</strong> sporulate above. The seed treatment by Trichoderma spp. isolates before sowing in a soil already infested by the pathogen led to a<br />

significant decrease of disease severity compared to the untreated <strong>control</strong>. The weakest index of disease severity was obtained with Ta.13, which caused 83.92% reduction compared to the <strong>control</strong>. The<br />

most effective isolates in protecting chickpea seedlings <strong>against</strong> the disease were Ta.3, Ta.7 <strong>and</strong> Ta.13 as well as Th.16. The reduction of disease severity was associated with an increase of the vegetal<br />

growth including the stem height as well as the plant fresh <strong>and</strong> dry weights.<br />

129


Nicot et al. (Appendix for Chapter 1)<br />

Casimiro Michel-Aceves, A., M. Antonio Otero-Sanchez, et al. (2009). "In vitro bio<strong>control</strong> of Fusarium subglutinans (Wollenweb. <strong>and</strong> Reinking) Nelson, Toussoun <strong>and</strong> Marasas <strong>and</strong> F. oxysporum Schlecht.,<br />

causal agents of "Witches' broom" of mango (Mangifera indica L.) by Trichoderma spp." Revista Mexicana de Fitopatologia 27(1): 18-26.<br />

The antagonistic effect of native strains of Trichoderma spp. was evaluated in vitro <strong>against</strong> Fusarium oxysporum (Fo) <strong>and</strong> Fusarium subglutinans (Fs), causal agents of mango "witches' broom". Ten<br />

strains of the antagonistic fungus were isolated, one of which was selected <strong>and</strong> identified to the species level (T. harzianum); this species showed the highest percentage of antagonism inhibiting mycelial<br />

growth of Fo by 62.9% <strong>and</strong> 42.0% of Fs. In dual Cultures between Fo <strong>and</strong>/or Fs with the selected strains of Trichoderma, the time for the first contact for Fo was between 3 <strong>and</strong> 4 days, <strong>and</strong> between 2 <strong>and</strong><br />

3 for Fs. The greatest intersection area (0.87 cm) was observed in T. lignorum <strong>against</strong> Fo, while the intersection area in Fs with the native strain Thzn-2 was 0.85 cm. Native strains Thzn-2 <strong>and</strong> Thzcf-12,<br />

<strong>and</strong> the commercial one showed antagonism class 2, being able to stop growth of both plant pathogens. Strain Thzn-2 is promising as an alternative for bio<strong>control</strong> of Fo <strong>and</strong> Fs; however, it is necessary to<br />

evaluate it under field conditions.<br />

Chebotar, V. K., N. M. Makarova, et al. (2009). "Antifungal <strong>and</strong> phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of bioprepations." Applied Biochemistry <strong>and</strong><br />

Microbiology 45(4): 419-423.<br />

Bacillus subtilis Ch-13 industrial strain was shown to have a wide spectrum of antagonistic activities <strong>against</strong> different species of phytopathogenic fungi <strong>and</strong> bacteria. The B. subtilis Ch-13 strain produces<br />

lytic enzymes; cyanide <strong>and</strong> other antifungal metabolites; stimulates plant growth, producing phytohormones-auxin derivatives. This strain by 2.5 times reduced the quantity of tomato plants infected with<br />

phytopathogenic fungus Fusarium oxysporum during inoculation. Fungi abundance on roots with bacterial inoculation was 6.9 times less than in the absence of inoculation. The application of detected<br />

antifungal metabolites as biochemical markers for the strain enables to <strong>control</strong> the stability of physiologic <strong>and</strong> biochemical characteristics of the producer, <strong>and</strong> ensures a rapid quality assay of<br />

biopreparations with high performance liquid chromatography (HPLC).<br />

Chen, L. <strong>and</strong> W. Chen (2009). "Genome shuffling enhanced antagonistic activity <strong>against</strong> Fusarium oxysporum f. sp. melonis <strong>and</strong> tolerance to chemical fungicides in Bacillus subtilis BS14." Journal of Food,<br />

Agriculture & Environment 7(2): 856-860.<br />

enhance antagonistic activity <strong>against</strong> Fusarium oxysporum f. sp. melonis (FOM) <strong>and</strong> tolerance to two chemical fungicides. Strain BS14 was identified as a strain of Bacillus subtilis by the analysis of 16S<br />

rDNA sequences. A stable recombinant F35 was obtained after three rounds of shuffling. Antagonistic activity of recombinant F35 <strong>against</strong> FOM was increased by 34.52% <strong>and</strong> 65.48% compared to that<br />

of the parent strain HN8-7 with highest activity <strong>and</strong> another parent strain utilized, BS14. The tolerance to chemical fungicides was also significantly improved (p0.05) compared to that of strain BS14.<br />

Reduction of FOM of 94% was observed by using recombinant F35, which was increased by 45% compared to that of strain BS14 (p0.05) <strong>and</strong> no significant differences (p>0.05) compared to that of<br />

thiophanate methyl (MRL). Reduction of FOM of 100% was dramatically observed by using an integrated treatment combining MRL (50% of usual dosage) with recombinant F35. Strain F35 with these<br />

improved traits would be a promising bio<strong>control</strong> agent in the <strong>control</strong> of FOM. Here genome shuffling was proved to be a practical methodology for strain improvement of antagonistic microorganism<br />

Bacillus subtilis BS14 for enhancing antagonistic activity <strong>against</strong> FOM <strong>and</strong> tolerance to chemical fungicides.<br />

Clematis, F., M. L. Gullino, et al. (2009). "Antagonistic activity of microorganisms isolated from recycled soilless substrates <strong>against</strong> Fusarium crow rot." Protezione delle Colture(3): 29-33.<br />

We report the results obtained in <strong>biological</strong> <strong>control</strong> trials <strong>against</strong> crown <strong>and</strong> root rot of tomato incited by Fusarium oxysporum f. sp. radicis lycopersici by using microorganisms isolated from soilless<br />

cultivation systems that showed suppressiveness <strong>against</strong> this disease. Among the tested microorganisms belonging to fluorescent bacteria (32 isolates) <strong>and</strong> to fungi belonging to Trichoderma (39 isolates)<br />

<strong>and</strong> Fusarium (38 isolated), 5 bacteria <strong>and</strong> 6 fungi showed a good activity <strong>against</strong> the pathogen. Such strains will be used in greenhouse trials, under situations closer to the field, in order to evaluate their<br />

potential to be adopted under practical conditions.<br />

Eden Paredes-Escalante, J., J. Arm<strong>and</strong>o Carrillo-Fasio, et al. (2009). "Antagonistic microorganismos for <strong>control</strong> of the fungal complex that cause wilt in chickpea (Cicer arietinum L.) in the state of Sinaloa,<br />

Mexico." Revista Mexicana de Fitopatologia 27(1): 27-35.<br />

The antagonistic activity in vitro of microorganisms isolated from chickpea rhizosphere, was evaluated <strong>against</strong> Fusarium oxysporum, Sclerotium rolfsii, <strong>and</strong> Rhizoctonia solani, causal agents of chickpea<br />

wilt. The native strains with the higher percentage of pathogen mycelial growth inhibition were selected <strong>and</strong> identified as Trichoderma lignorum (CIAD 06-540903), T. harzianum (CIAD 05-550903),<br />

Bacillus subtilis (CIAD-940111), <strong>and</strong> Pseudomonas fluorescens (CIAD-990111). These strains <strong>and</strong> a commercial strain of T. harzianum (T-22) were mixed with Glomus intraradices <strong>and</strong> their<br />

effectiveness to reduce chickpea wilt was compared <strong>against</strong> a chemical treatment (PCNB) <strong>and</strong> all absolute <strong>control</strong> in the field. The seed was treated with the microorganisms before sowing <strong>and</strong><br />

evaluations of disease severity were conducted each 15 days, while root colonization by the antagonistic microorganisms was assessed 45 days after sowing. Colonization of T, harzianum CIAD 05-<br />

550903 + G. infraradices was 33 x 10(3) ufc/g fresh root-75% <strong>and</strong> B. subtilis + G. intraradices was 1.3 x 10(8) Ufc/g fresh root-75%; while the combination P.fluorescens + G. intraradices was 1.4 x<br />

10(7) Ufc/g fresh root-88%. These treatments also showed a reduction of disease severity in 64, 57, <strong>and</strong> 51%, respectively in comparison with the <strong>control</strong>.<br />

130


Appendix 6<br />

El-Khallal, S. M. (2007). "Induction <strong>and</strong> modulation of resistance in tomato plants <strong>against</strong> Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) <strong>and</strong>/or hormonal elicitors (jasmonic acid & salicylic<br />

acid): 2 - changes in the antioxidant enzymes, phenolic compounds <strong>and</strong> pathogen related-proteins." Australian Journal of Basic <strong>and</strong> Applied Sciences 1(4): 717-732.<br />

Induction of plant defense <strong>against</strong> pathogen attack is regulated by a complex network of different signals. In the present study interaction between hormonal signals [jasmonic acid (JA) or salicylic acid<br />

(SA)] <strong>and</strong> bioagent [arbuscular mychorrhiza (AM) fungi] was used as new strategy to enhance tomato defense responses <strong>against</strong> wilt disease caused by Fusarium oxysporum (Fo). Thus changes in<br />

various physiological defenses including antioxidant enzymes, phenolic compounds <strong>and</strong> pathogenesis related (PR) proteins were investigated in leaves of tomato plants. Results appeared that production<br />

of reactive oxygen species (ROS), mainly H2O2 <strong>and</strong> O2 increasing the time of infection. Application with bioagent AM fungi <strong>and</strong>/or hormonal elicitors (JA & SA) markedly decreased these levels,<br />

while LOX activity greatly increased as compared with infected <strong>control</strong>. SA - treated plants had the highest MDA level but JA+AM fungi treated plants recorded the highest LOX activity. Infection by<br />

Fusarium oxysporm significantly increased activity of antioxidant enzymes (SOD, APX <strong>and</strong> CAT) in tomato leaves at different stages of growth. The highest activity was recorded in leaves of AM<br />

fungi+JA-treated plants, while treatments with SA especially when applied alone markedly decreased H2O2 scavenging enzymes (APX <strong>and</strong> CAT) <strong>and</strong> greatly increased SOD activity. Thus, imbalance<br />

between H2O2 - generation <strong>and</strong> scavenging enzymes in leaves may reflect a defense mechanism in tomato or a pathogenicity strategy of the fungus. Levels of certain phenolic acids greatly changed in<br />

tomato leaves in response to Fusarium oxysporum, AM fungi <strong>and</strong> hormonal elicitors. Benzoic <strong>and</strong> Galleic acids contents markedly decreased, however, contents of coumaric, cinnamic, chlorogenic <strong>and</strong><br />

ferulic acids increased in leaves of all treatments. Also, activity of lignification enzymes POX, PPX <strong>and</strong> PAL significantly increased in leaves of infected tomato plants. JA-treated plants caused the<br />

highest POX <strong>and</strong> PPX activities, while SA-treated plants having the highest PAL activities. High accumulation of phenolic compounds <strong>and</strong> activity POX, PPX <strong>and</strong> PAL in these plants may reflect a<br />

component of many defense signals activated by bioagent <strong>and</strong> hormonal inducers which leading to the activation of power defense system in tomato <strong>against</strong> attack. Analysis of protein electrophoresis<br />

revealed that interaction between hormone signal (JA & SA) <strong>and</strong> bioagent AM fungi mediating the expression of the majority of different PR-proteins leading to increasing defense mechanism <strong>against</strong><br />

Fusarium oxysporum infection. Thus, induction of protein b<strong>and</strong>s of molecular weights 35, 33, 32, 31 (PR-2, beta-1, 3 glucanase), 30.5 <strong>and</strong> 27 (PR-3,-4, chitinase) in infected leaves indicated the<br />

important role which played in disease resistance. Finally, the new mechanism of the combination strategy between bioagent <strong>and</strong> hormonal signals (either synergistically or antagonistically) played<br />

important roles for increasing various defense systems <strong>and</strong> altering expression of defense genes which leading to different PR-proteins working together to increased resistance in tomato plants <strong>against</strong><br />

wilt disease caused by Fusarium oxysporum. In addition, results revealed that defense mechanism in plants treated with AM fungi <strong>and</strong> JA are more effective than AM fungi plus SA-treated plants.<br />

Floch, G. l., J. Vallance, et al. (2009). "Combining the oomycete Pythium olig<strong>and</strong>rum with two other antagonistic fungi: root relationships <strong>and</strong> tomato grey mold bio<strong>control</strong>." Biological Control 50(3): 288-<br />

298.<br />

To reduce Pythium olig<strong>and</strong>rum bio<strong>control</strong> variability <strong>and</strong> improve its efficacy, experiments were performed by combining the oomycete with two other antagonistic fungi, Fusarium dishes, Fo47 or T.<br />

harzianum hyphae destroyed P. olig<strong>and</strong>rum cells by antibiosis <strong>and</strong> mycoparasitism processes; in the rhizosphere of tomato plants (Lycopersicon esculentum), the same antagonistic features were<br />

observed. However, in the rhizosphere, hyphae are frequently separated by a certain distance; this allows the coexistence <strong>and</strong> the persistence of the three microorganisms on the root systems. When<br />

introduced in the rhizosphere, Fo47 <strong>and</strong> P. olig<strong>and</strong>rum were able to penetrate the root tissues with Fo47 limited to the epidermal <strong>and</strong> upper layers of cortical cells while P. olig<strong>and</strong>rum colonized deeper<br />

tissue at a faster rate. The two antagonists were killed in few days within roots following elicited plant-defense reactions. T. harzianum was not able to penetrate root tissues. Root colonization with either<br />

P.olig<strong>and</strong>rum alone or in combination with Fo47 <strong>and</strong>/or T. harzianum resulted in systemic plant resistance which provided plant protection <strong>against</strong> Botrytis cinerea infection of leaves. The level of <strong>control</strong><br />

<strong>and</strong> the expression of pathogenesis-related proteins (PR-proteins) in leaves were similar whatever the antagonistic microbial treatment applied to roots.<br />

Gay, M. I. T., Anonymous, et al. (2009). Substrates containing a Trichoderma asperellum strain for <strong>biological</strong> <strong>control</strong> of Fusarium <strong>and</strong> Rhizoctonia, Universidad de Barcelona.<br />

The strain of Trichoderma asperellum T34(2) CECT No. 20417 is useful for preparing substrates for <strong>biological</strong> <strong>control</strong> of vascular fusariose <strong>and</strong> death of plants caused by Rhizoctonia solani. The<br />

substrates can be peats, composts (hardwood compost, pine bark compost, cork compost, sludge compost from sewage treatment plants, garden residues, etc.) or formulations based on CPV-type<br />

compost (compost+peat+vermiculite). The fact that the substrates suppress both Fusarium oxysporum f. sp. lycopersici <strong>and</strong> Rhizoctonia solani provides an advantage in comparison with other substrates<br />

known in prior art. Another advantage is that the use of methyl bromide, a highly harmful product for the environment, in the <strong>control</strong> of vascular fusariose is avoided.<br />

Huang, X., J. Luo, et al. (2009). "Isolation <strong>and</strong> bioactivity of endophytic fungi in Derris hancei." Journal of South China Agricultural University 30(2): 44-47.<br />

Derris hancei Hemsl. The antagonism of endophytic fungi <strong>against</strong> fungal pathogens was tested in vitro. Penicillium sp. Q1, Rhizoctonia sp. S1, Phomopsis sp. N2, <strong>and</strong> Corticium sp. F1 isolated from the<br />

caudex of D. hancei, <strong>and</strong> Penicillium sp. Q2 isolated from the leaf, inhibited the hyphal growth of Colletotrichum gloeosporioides Penz, Fusarium oxysporum f. niveum (E. F. Smith) Snyber et Hansen,<br />

Rhizoctonia sp. S1 <strong>against</strong> Colletotrichum orbiculare Arx, <strong>and</strong> Phomopsis sp. N2 <strong>against</strong> Colletotrichum musae (Berk1 & Curt1) Arx1 on dual culture with inhibition index II. It was reported that<br />

endophytic fungus in D.hancei could produced antibacterial substances in this paper. The culture filtrates of Penicillium sp. Q2 treated in 48 h after treatment possessed 100.00% of adjusted mortality<br />

<strong>against</strong> the 2nd larvae of Spodoptera litura by leaves disc feeding bioassays, <strong>and</strong> 75.10% <strong>against</strong> Lipaphis erysimi Kaltenbach (apterous adult) by insect-soaking method, respectively, which showed that<br />

the activity of Penicillium sp. Q2 was higher than that of other endophytic fungi.<br />

131


Nicot et al. (Appendix for Chapter 1)<br />

Jadeja, K. B. <strong>and</strong> D. M. N<strong>and</strong>oliya (2008). "Integrated management of wilt of cumin (Cuminum cyminum L.)." Journal of Spices <strong>and</strong> Aromatic Crops 17(3): 223-229.<br />

Four components of integrated management namely, soil solarization, crop rotation, chemicals <strong>and</strong> bio<strong>control</strong> agents were tested under field condition at Junagadh (Gujarat) for the management of wilt of<br />

cumin (Cuminum cyminum) caused by Fusarium oxysporum f. sp. cumini. Growing of sorghum (Sorghum bicolor) or maize (Zea mays) during kharif season did not reduce wilt incidence during the<br />

following rabi season. Soil solarization with 25 m LLDPE plastic cover for 15 days in summer proved most effective in reducing wilt incidence to 26.27% as <strong>against</strong> 44.90% in non-solarization <strong>and</strong><br />

increasing yield to 396 kg ha-1 as <strong>against</strong> 286 kg ha-1 in non-solarized plots. Application of carbendazim granules @ 10 kg ha-1 one month after sowing or Trichoderma viride in organic carrier @ 62.5<br />

kg ha-1 at sowing time were also effective. Integrating soil solarization followed by growing of sorghum in kharif <strong>and</strong> application of either carbendazim granules @ 10 kg ha-1 one month after sowing or<br />

application of T.viride in organic carrier @ 62.5 kg ha-1 was effective for the management of cumin wilt.<br />

Kamilova, F., S. Validov, et al. (2009). Biological <strong>control</strong> of tomato foot <strong>and</strong> root rot caused by Fusarium oxysporum f.sp. radicis-lycopersici by Pseudomonas bacteria. Proceedings of the Second<br />

International Symposium on Tomato Diseases, Kusadasi, Turkey, 8-12 October 2007.<br />

Rhizobacteria are a natural <strong>and</strong> most suitable source for the isolation of potential micro<strong>biological</strong> <strong>control</strong> agents that can protect plants from soilborne pathogens <strong>and</strong> consequently improve crop quality<br />

<strong>and</strong> yield. The beneficial effect of such bacteria on plant health depends in many cases on their ability to aggressively colonize the rhizosphere <strong>and</strong> compete with the indigenous, including pathogenic,<br />

microflora for nutrients <strong>and</strong> niches on the plant root. Bacterial strains Pseudomonas chlororaphis PCL1391 <strong>and</strong> P. fluorescens WCS365 employ antibiosis <strong>and</strong> induced systemic resistance, respectively, to<br />

<strong>control</strong> tomato foot <strong>and</strong> root rot (TFRR) caused by phytopathogenic fungus Fusarium oxysporum f.sp. radicis-lycopersici (Forl). For the selection of bio<strong>control</strong> bacteria acting via the mechanism<br />

"competition for nutrients <strong>and</strong> niches" we have developed an enrichment method for enhanced tomato root tip colonizers, starting from a crude mixture of rhizobacteria coated on the seed, using a sterile<br />

quartz s<strong>and</strong>/plant nutrient solution gnotobiotic system. As a result of this enrichment procedure, <strong>and</strong> subsequent tests on competitive tomato root tip colonization, the strongly competitive bio<strong>control</strong><br />

strains P. fluorescens PCL1751 <strong>and</strong> P. putida PCL1760 were isolated. Both strains effectively suppress TFRR under soil <strong>and</strong> hydroponic cultivation conditions.<br />

Kamilova, F., S. Validov, et al. (2009). "Biological <strong>control</strong> of tomato foot <strong>and</strong> root rot caused by Fusarium oxysporum f.sp. radicis-lycopersici by Pseudomonas bacteria." Acta Horticulturae(808): 317-320.<br />

isolation of potential micro<strong>biological</strong> <strong>control</strong> agents that can protect plants from soilborne pathogens <strong>and</strong> consequently improve crop quality <strong>and</strong> yield. The beneficial effect of such bacteria on plant<br />

health depends in many cases on their ability to aggressively colonize the rhizosphere <strong>and</strong> compete with the indigenous, including pathogenic, microflora for nutrients <strong>and</strong> niches on the plant root.<br />

Bacterial strains Pseudomonas chlororaphis PCL1391 <strong>and</strong> P. fluorescens WCS365 employ antibiosis <strong>and</strong> induced systemic resistance, respectively, to <strong>control</strong> tomato foot <strong>and</strong> root rot (TFRR) caused by<br />

phytopathogenic fungus Fusarium oxysporum f.sp. radicis-lycopersici (Forl). For the selection of bio<strong>control</strong> bacteria acting via the mechanism "competition for nutrients <strong>and</strong> niches" we have developed<br />

an enrichment method for enhanced tomato root tip colonizers, starting from a crude mixture of rhizobacteria coated on the seed, using a sterile quartz s<strong>and</strong>/plant nutrient solution gnotobiotic system. As a<br />

result of this enrichment procedure, <strong>and</strong> subsequent tests on competitive tomato root tip colonization, the strongly competitive bio<strong>control</strong> strains P. fluorescens PCL1751 <strong>and</strong> P. putida PCL1760 were<br />

isolated. Both strains effectively suppress TFRR under soil <strong>and</strong> hydroponic cultivation conditions.<br />

Kannan, V. <strong>and</strong> R. Sureendar (2009). "Synergistic effect of beneficial rhizosphere microflora in bio<strong>control</strong> <strong>and</strong> plant growth promotion." Journal of Basic Microbiology 49(2): 158-164.<br />

Biological systems are getting more relevance than chemical <strong>control</strong> of plant pathogens as they are not only eco-friendly <strong>and</strong> economic in approach but are also involved in improving the soil consistency<br />

<strong>and</strong> maintenance of natural soil flora. Plant growth promoting rhizosphere microorganisms were isolated from three different tree rhizospheres using selective culture media. Five microorganisms were<br />

selected from each rhizosphere soil based on their efficiency <strong>and</strong> screened for their ability to promote plant growth as a consortium. Each of the developed consortium has a phosphate solubilizer,<br />

nitrogen fixer, growth hormone producer, heterotrophic member <strong>and</strong> an antagonist. The plant growth promoting ability of the microbial members present in the consortium was observed by estimating<br />

the IAA production level <strong>and</strong> also by the nitrogenase activity of the nitrogen fixers. The bio<strong>control</strong> potentiality of the consortium <strong>and</strong> the antagonist present in the consortium were checked by both dual<br />

plate assay <strong>and</strong> cross-streaking technique. Consortial treatments effected very good growth promotion in Lycopersicon esculentum Mill <strong>and</strong> the treated plants also developed resistance <strong>against</strong> wilt<br />

pathogen, Fusarium oxysporum f. sp. lycopersici though the effect was well pronounced with consortium developed from Santalum album.<br />

Li, J., Q. Yang, et al. (2009). "Evaluation of bio<strong>control</strong> efficiency <strong>and</strong> security of A Bacillus subtilis strain B29 <strong>against</strong> cucumber Fusarium wilt in field." China Vegetables(2): 30-33.<br />

cucumerinum, was isolated from cucumber rhizosphere. After twice of 4-field-plot experiments, the <strong>control</strong> efficiencies of 100, 250 <strong>and</strong> 500 dilution times to cucumber Fusarium wilt were 70.3-88.2%,<br />

62.3-85.9%, <strong>and</strong> 54.7-80.6%, respectively. The average efficiency of field trials with B29 was 84.9% during 2 years <strong>and</strong> the yield of cucumber increased by 12.57%. The acute toxicity of Bacillus subtilis<br />

strain B29 to big mouse through its mouth <strong>and</strong> skin was examined, <strong>and</strong> the LD50 was more than 5000 mg/kg. The application of strain B29 on cucumber, tomato, bean <strong>and</strong> seed pumpkin was safe based<br />

on the observed seedling rate, growth <strong>and</strong> development.<br />

132


Appendix 6<br />

Liu, Q., J. C. Yu, et al. (2009). "Antagonism <strong>and</strong> Action Mechanism of Antifungal Metabolites from Streptomyces rimosus MY02." Journal of Phytopathology 157(5): 306-310.<br />

The genus of Streptomyces, a saprophytic Gram-positive bacterium, has properties, which make them useful as pharmaceutical <strong>and</strong> bio<strong>control</strong> agents. A streptomyces strain MY02 from soil samples<br />

showed significant antagonism <strong>against</strong> 14 plant pathogenic fungi including Fusarium oxysporum f. sp. cucumarinum. Antifungal metabolite(s) SN06 from the culture of the strain MY02 were extracted<br />

with n-butanol <strong>and</strong> purified by silica gel column chromatography. The minimum concentration of SN06 inhibiting any visible fungal growth of F. oxysporum f. sp. cucumarinum is 12.5 mu g/ml by<br />

twofold serial dilutions method. The mycelia of F. oxysporum f. sp. cucumarinum treated with SN06 were observed under the normal optics microscope. The results showed that some cells of hyphae<br />

began to dilate <strong>and</strong> formed some strings of beads. The cytoplasm oozed out of the cells with the culture time <strong>and</strong> so most of the cells became empty. The hyphae broke into many segments <strong>and</strong> then<br />

collapsed after 48 h. After inoculated in potato dextrose medium for 48 h, the filtrate of mycelia treated with 1% NaCl containing 12.5 mu g/ml SN06 was scanned using ultraviolet spectrophotometer<br />

<strong>and</strong> absorption peak at 260 nm showed that the mycelia cell membrane of F. oxysporum f. sp. cucumarinum was broken <strong>and</strong> that nucleic acid oozed out of the cell.<br />

Maina, M., R. Hauschild, et al. (2008). "Protection of tomato plants <strong>against</strong> fusaric acid by resistance induction." Journal of Applied Biosciences(JABs) 1: 18-31.<br />

Objectives: The rhizobacteria Bacillus sphaericus B43, Pseudomonas fluorescens T58, <strong>and</strong> P. putida 53 are able to induce systemic resistance (ISR) <strong>against</strong> Fusarium oxysporum f.sp. lycopersici (FOL)<br />

in tomato. This study investigated if the ISR reduced the damage by the toxin fusaric acid (FA) produced by FOL. Methodology <strong>and</strong> Results: The bacteria were applied to the rhizosphere of tomato<br />

plants. Chlorophyll content <strong>and</strong> ion leakage were determined after placing the leaf discs in FA. Active oxygen species (AOS), superoxide <strong>and</strong> hydrogen peroxide levels were determined in leaves of<br />

plants injected with FA. Activities of superoxide dismutase (SOD), ascorbate (AS) <strong>and</strong> guaiacol peroxidases (GPX) involved in AOS metabolism were quantified. In untreated plants, FA led to high ion<br />

leakage <strong>and</strong> chlorophyll degradation caused by H2O2 accumulation. All the bacteria treatments decreased the chlorophyll degradation. Ion leakage was reduced by treatment with P. fluorescens T58 <strong>and</strong><br />

B. sphaericus B43, while P. putida 53 was less effective. Treatment of plants with bacteria resulted in increased superoxide contents, but varying over time. Increased SOD <strong>and</strong> GPX activities in untreated<br />

plants were suppressed after bacteria treatment. Plants treated with P. fluorescens T58 showed only a transient increase in superoxide. P. putida 53-treated plants removed AOS, but high initial superoxide<br />

levels led to membrane damages. Treatment with B. sphaericus B43 suppressed the effects of FA, but AOS metabolism showed only slight alterations. Conclusions <strong>and</strong> potential applications of findings:<br />

ISR could also protect plant tissues from damage by pathogen toxins, which is a potential new dimension to the known mechanisms of action of <strong>biological</strong> <strong>control</strong> agents.<br />

Martinez-Medina, A., J. A. Pascual, et al. (2009). "Interactions between arbuscular mycorrhizal fungi <strong>and</strong> Trichoderma harzianum <strong>and</strong> their effects on Fusarium wilt in melon plants grown in seedling<br />

nurseries." Journal of the Science of Food <strong>and</strong> Agriculture 89(11): 1843-1850.<br />

BACKGROUND: Biological <strong>control</strong> through the use of Trichoderma spp. <strong>and</strong> arbuscular mycorrhizal fungi (AMF) could contribute to a reduction of the inputs of environmentally damaging<br />

agrochemical products. The objective of this study was to evaluate the interactions between four AMF (Glomus intraradices, Glomus mosseae, Glomus claroideum <strong>and</strong> Glomus constrictum) <strong>and</strong><br />

Trichoderma harzianum for their effects on melon plant growth <strong>and</strong> bio<strong>control</strong> of Fusarium wilt in seedling nurseries. RESULTS: AMF colonisation decreased fresh plant weight, which was unaffected<br />

by the presence of T. harzianum. Dual inoculation resulted in a decrease in fresh weight compared with AMF-inoculated plants, except for G. intraradices. AMF colonisation level varied with the AM<br />

endophyte <strong>and</strong> was increased by T. harzianum, except in G. mosseae-inoculated plants. Negative effects of AMF on T. harzianum colony-forming units were found, except with G. intraradices. AMF<br />

alone were less effective than T. harzianum in suppressing disease development. Combined inoculation resulted in a general synergistic effect on disease <strong>control</strong>. CONCLUSION: Selection of the<br />

appropriate AMF species <strong>and</strong> its combination with T. harzioanum were significant both in the formation <strong>and</strong> effectiveness of AM symbiosis <strong>and</strong> the reduction of Fusarium wilt incidence in melon plants.<br />

The combination of G. intraradices <strong>and</strong> T. harzianum provided better results than any other tested. (C) 2009 Society of Chemical Industry<br />

Matar, S. M., S. A. El-Kazzaz, et al. (2009). "Antagonistic <strong>and</strong> inhibitory effect of Bacillus subtilis <strong>against</strong> certain plant pathogenic fungi, I." Biotechnology 8(1): 53-61.<br />

subtilis isolates (B1 to B14), obtained from different Egyptian sites, were tested <strong>against</strong> six fungal isolates belonging to four different genera, Rhizoctonia solani, Helminthosporium spp., Alternaria spp.<br />

<strong>and</strong> Fusarium oxysporum. Cultural, morphological <strong>and</strong> physiological characteristics of these isolates were found to be identical to B. subtilis. Four B. subtilis isolates (B1, B4, B7, B8) had more<br />

antagonistic effect on all fungal isolates. Supernatant of B. subtilis isolate B7 had antagonistic effect on 6 fungal isolates but it was more effective on Helminthosporium spp., Alternaria spp. <strong>and</strong> F.<br />

oxysporum. B. subtilis as well as isolate B7 showed effectiveness in reducing disease incidence <strong>and</strong> severity levels of tomato plants when added to the F. oxysporum <strong>and</strong> R. solani-infested soil. Also, it<br />

stimulated the growth of tomato plants compared to the other. HPLC analysis of the HCl precipitate of B.subtilis isolate B7 culture supernatant revealed that an identical pattern of five peaks to that of a<br />

purified preparation of iturin A was obtained.<br />

Matar, S. M., S. A. El-Kazzaz, et al. (2009). "Bioprocessing <strong>and</strong> scaling-up cultivation of Bacillus subtilis as a potential antagonist to certain plant pathogenic fungi, III." Biotechnology 8(1): 138-143.<br />

isolate G-GANA7 (GenBank accession No. EF583053), collected from Abo-Homos in Egypt, was tested <strong>against</strong> six fungal isolates belonging to four different genera, i.e. Rhizoctonia solani,<br />

Helminthosporium sp., Alternaria sp. <strong>and</strong> Fusarium oxysporum. B. subtilis isolate G-GANA7 was cultured in 3 litre bench-top New Brunswick Scientific BioFlow III bioreactor for producing the<br />

maximum yield of biomass <strong>and</strong> antifungal compound. Fed-batch processes were automated through a computer aided data bioprocessing system AFS-BioComm<strong>and</strong> multi-process management program<br />

133


Nicot et al. (Appendix for Chapter 1)<br />

to regulate the cell growth rate by <strong>control</strong>ling interactively the nutrient feed rate, temperature, pH <strong>and</strong> agitation speed based on dissolved oxygen. In batch cultivation, the process suffered from low yield<br />

of cell mass (3.2 g litre-1) <strong>and</strong> antifungal activity because of high initial glucose concentration followed by acetate formation which the causal agent for inhibition of cell growth. Constant <strong>and</strong> exponential<br />

fed-batch strategies were adopted to circumvent this potential problem. Fed-batch cultivation of B. subtilis was conducted at the specific growth rate of 0.13 <strong>and</strong> 0.1 h-1 for constant <strong>and</strong> exponential<br />

strategies, respectively. High cell density of 12.8 <strong>and</strong> 14.6 g litre-1 for both operations, with an overall biomass yield of 0.45 g g-1 was achieved. The inhibitory activity of antifungal in supernatant<br />

reached its maximum value of 2 <strong>and</strong> 2.2 cm for constant <strong>and</strong> exponential fed-batch cultivations.<br />

Mazurier, S., T. Corber<strong>and</strong>, et al. (2009). "Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt." ISME Journal 3(8): 977-991.<br />

Natural disease-suppressive soils provide an untapped resource for the discovery of novel beneficial microorganisms <strong>and</strong> traits. For most suppressive soils, however, the consortia of microorganisms <strong>and</strong><br />

mechanisms involved in pathogen <strong>control</strong> are unknown. To date, soil suppressiveness to Fusarium wilt disease has been ascribed to carbon <strong>and</strong> iron competition between pathogenic Fusarium oxysporum<br />

<strong>and</strong> resident non-pathogenic F. oxysporum <strong>and</strong> fluorescent pseudomonads. In this study, the role of bacterial antibiosis in Fusarium wilt suppressiveness was assessed by comparing the densities,<br />

diversity <strong>and</strong> activity of fluorescent Pseudomonas species producing 2,4-diacetylphloroglucinol (DAPG) (phlD+) or phenazine (phzC+) antibiotics. The frequencies of phlD+ populations were similar in<br />

the suppressive <strong>and</strong> conducive soils but their genotypic diversity differed significantly. However, phlD genotypes from the two soils were equally effective in suppressing Fusarium wilt, either alone or in<br />

combination with non-pathogenic F. oxysporum strain Fo47. A mutant deficient in DAPG production provided a similar level of <strong>control</strong> as its parental strain, suggesting that this antibiotic does not play a<br />

major role. In contrast, phzC+ pseudomonads were only detected in the suppressive soil. Representative phzC+ isolates of five distinct genotypes did not suppress Fusarium wilt on their own, but acted<br />

synergistically in combination with strain Fo47. This increased level of disease suppression was ascribed to phenazine production as the phenazine-deficient mutant was not effective. These results<br />

suggest, for the first time, that redox-active phenazines produced by fluorescent pseudomonads contribute to the natural soil suppressiveness to Fusarium wilt disease <strong>and</strong> may act in synergy with carbon<br />

competition by resident non-pathogenic F. oxysporum.<br />

Minerdi, D., S. Bossi, et al. (2009). "Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35." Environmental Microbiology<br />

11(4): 844-854.<br />

Fusarium oxysporum MSA 35 [wild-type (WT) strain] is an antagonistic Fusarium that lives in association with a consortium of bacteria belonging to the genera Serratia, Achromobacter, Bacillus <strong>and</strong><br />

Stenotrophomonas in an Italian soil suppressive to Fusarium wilt. Typing experiments <strong>and</strong> virulence tests provided evidence that the F. oxysporum isolate when cured of the bacterial symbionts [the<br />

cured (CU) form], is pathogenic, causing wilt symptoms identical to those caused by F. oxysporum f. sp. lactucae. Here, we demonstrate that small volatile organic compounds (VOCs) emitted from the<br />

WT strain negatively influence the mycelial growth of different formae speciales of F. oxysporum. Furthermore, these VOCs repress gene expression of two putative virulence genes in F. oxysporum<br />

lactucae strain Fuslat10, a fungus <strong>against</strong> which the WT strain MSA 35 has antagonistic activity. The VOC profile of the WT <strong>and</strong> CU fungus shows different compositions. Sesquiterpenes, mainly<br />

caryophyllene, were present in the headspace only of WT MSA 35. No sesquiterpenes were found in the volatiles of ectosymbiotic Serratia sp. strain DM1 <strong>and</strong> Achromobacter sp. strain MM1. Bacterial<br />

volatiles had no effects on the growth of the different ff. spp. of F. oxysporum examined. Hyphae grown with VOC from WT F. oxysporum f. sp. lactucae strain MSA 35 were hydrophobic whereas<br />

those grown without VOCs were not, suggesting a correlation between the presence of volatiles in the atmosphere <strong>and</strong> the phenotype of the mycelium. This is the first report of VOC production by<br />

antagonistic F. oxysporum MSA 35 <strong>and</strong> their effects on pathogenic F. oxysporum. The results obtained in this work led us to propose a new potential direct long-distance mechanism for antagonism by F.<br />

oxysporum MSA 35 mediated by VOCs. Antagonism could be the consequence of both reduction of pathogen mycelial growth <strong>and</strong> inhibition of pathogen virulence gene expression.<br />

Nam, M. H., M. S. Park, et al. (2009). "Biological Control of Strawberry Fusarium Wilt Caused by Fusarium oxysporum f. sp fragariae Using Bacillus velezensis BS87 <strong>and</strong> RK1 Formulation." Journal of<br />

Microbiology <strong>and</strong> Biotechnology 19(5): 520-524.<br />

Two isolates, Bacillus sp. BS87 <strong>and</strong> RK1, selected from soil in strawberry fields in Korea, showed high levels of antagonism towards Fusarium oxysporum f. sp. fragariae in vitro. The isolates were<br />

identified as B. velezensis based on the homology of their gyrA sequences to reference strains. BS87 <strong>and</strong> RK1 were evaluated for <strong>control</strong> of Fusarium wilt in strawberries in pot trials <strong>and</strong> field trials<br />

conducted in Nonsan, Korea. In the pot trials, the optimum applied concentration of BS87 <strong>and</strong> RK1 for pre-plant root-dip application to <strong>control</strong> Fusarium wilt was 10(5) <strong>and</strong> 10(6) colony-forming units<br />

(CFU)/ml, respectively. Meanwhile, in the 2003 <strong>and</strong> 2005 field trials, the <strong>biological</strong> <strong>control</strong> efficacies of formulations of RK1 were similar to that of a conventional fungicide (copper hydroxide) when<br />

compared with a non-treated <strong>control</strong>. The RK1 formulation was also more effective than BS87 in suppressing Fusarium wilt under field conditions. Therefore, the results indicated that formulations of B.<br />

velezensis BS87 <strong>and</strong> RK1 may have potential to <strong>control</strong> Fusarium wilt in strawberries.<br />

Narayan, M., P. Tini, et al. (2009). "Biological <strong>and</strong> chemical management of tomato wilt caused by Fusarium oxysporum f.sp. lycopersici." Journal of Soils <strong>and</strong> Crops 19(1): 118-121.<br />

Wilt of tomato is one of the most important known disease caused by Fusarium oxysporum f. sp. lycopersici. In the present study four bioagents (Trichoderma harzianum, T. viride, Bacillus subtilis <strong>and</strong><br />

Pseudomonas fluorescens) <strong>and</strong> two fungicides (Carbendazim <strong>and</strong> Thiram) were evaluated both in vitro <strong>and</strong> in vivo conditions. In vitro evaluation, of Carbendazim (0.1%) completely inhibited the growth<br />

134


Appendix 6<br />

of tomato wilt pathogen Fusarium oxysporum f.sp. lycopersici <strong>and</strong> was found significantly superior over the rest of fungicides. While, among the <strong>biological</strong> agents Trichoderma viride was found<br />

significantly superior to the rest in checking the growth of pathogens <strong>and</strong> showed 85.69 per cent inhibition. In vivo under field condition, seedling dip treatment of Carbendazim (1 gl-1 water) was found<br />

most significant followed by Carbendazim+ T.viride (1+100 gl-1 water) <strong>and</strong> T. viride (100 gl-1 water) significantly reduced wilt incidence by 73.91, 69.56 <strong>and</strong> 68.11 per cent respectively as <strong>against</strong><br />

71.88 per cent wilting in <strong>control</strong> (under epiphytotic condition i.e. wilt sick soil).<br />

Ortega-Morales, B. O., F. N. Ortega-Morales, et al. (2009). "Antagonism of Bacillus spp. Isolated from Marine Biofilms Against Terrestrial Phytopathogenic Fungi." Marine Biotechnology 11(3): 375-383.<br />

We aimed at determining the antagonistic behavior of bacteria derived from marine biofilms <strong>against</strong> terrestrial phytopathogenic fungi. Some bacteria closely related to Bacillus mojavensis (three isolates)<br />

<strong>and</strong> Bacillus firmus (one isolate) displayed antagonistic activity <strong>against</strong> Colletotrichum gloeosporioides ATCC 42374, selected as first screen organism. The four isolates were further quantitatively tested<br />

<strong>against</strong> C. gloeosporioides, Colletotrichum fragariae, <strong>and</strong> Fusarium oxysporum on two culture media, potato dextrose agar (PDA) <strong>and</strong> a marine medium-based agar [yeast extract agar (YEA)] at different<br />

times of growth of the antagonists (early, co-inoculation with the pathogen <strong>and</strong> late). Overall antagonistic assays showed differential susceptibility among the pathogens as a function of the type of culture<br />

media <strong>and</strong> time of colonization (P < 0.05). In general, higher suppressive activities were recorded for assays performed on YEA than on PDA; <strong>and</strong> also when the antagonists were allowed to grow 24 h<br />

earlier than the pathogen. F. oxysporum was the most resistant fungus while the most sensitive was C. gloeosporioides ATCC 42374. Significant differences in antagonistic activity (P < 0.05) were found<br />

between the different isolates. In general, Bacillus sp. MC3B-22 displayed a greater antagonistic effect than the commercial bio<strong>control</strong> strain Bacillus subtilis G03 (KodiakA (R)). Further incubation<br />

studies <strong>and</strong> scanning electronic microscopy revealed that Bacillus sp. MC3B-22 was able to colonize, multiply, <strong>and</strong> inhibit C. gloeosporioides ATCC 42374 when tested in a mango leaf assay, showing<br />

its potential for fungal bio<strong>control</strong>. Additional studies are required to definitively identify the active isolates <strong>and</strong> to determine their mode of antifungal action, safety, <strong>and</strong> biocompatibility.<br />

Padghan, P. R. <strong>and</strong> M. M. Baviskar (2009). "Efficacy of bioagent <strong>and</strong> different root extracts for supression of chickpea wilt in vitro." Asian Journal of Bio Science 4(1): 56-58.<br />

udid, sorghum (Sorghum bicolor), groundnut <strong>and</strong> mung bean <strong>and</strong> <strong>biological</strong> <strong>control</strong> agents (Trichoderma viride, T. harzianum, T lignorum <strong>and</strong> T. koningii) <strong>against</strong> the chickpea wilt pathogen, Fusarium<br />

oxysporum f.sp. ciceris (FOC), was studied in the laboratory. A lower radial mycelial growth <strong>and</strong> a higher inhibitory effect were recorded in sorghum root extract medium (28.00 mm <strong>and</strong> 54.34%),<br />

respectively, however, it was at par with groundnut root extract medium (30.00 mm <strong>and</strong> 51.08%), compared to the <strong>control</strong> (61.33 mm). In dual culture technique, the growth of FOC was restricted by T.<br />

viride (56.16%), followed by T. harzianum (50.57%). T. lignorum recorded the minimum zone of inhibition (40.45%).<br />

Qiu, W., H. Huang, et al. (2009). "Screening of actinomycete <strong>against</strong> Fusarium oxysporum f. sp. cubense <strong>and</strong> identification of strain DA07408." Research of Agricultural Modernization 30(1): 126-128.<br />

samples, <strong>and</strong> 8 of these strains showed significant activities <strong>against</strong> F. oxysporum f.sp. cubense. One actinomycete (DA07408) isolated from an arboretum in Danzhou, Hainan, China, exhibited marked<br />

antagonism towards F. oxysporum f.sp. cubense. The conditions for the fermentation of the actinomycete were optimized. Based on the morphological, physiological <strong>and</strong> biochemical characteristics of<br />

the strain, <strong>and</strong> on the analysis of 16S rDNA <strong>and</strong> phylogenetic tree, DA07408 was identified as Streptomyces olivochromogenes.<br />

Raddadi, N., A. Belaouis, et al. (2009). "Characterization of polyvalent <strong>and</strong> safe Bacillus thuringiensis strains with potential use for bio<strong>control</strong>." Journal of Basic Microbiology 49(3): 293-303.<br />

Sixteen Bacillus thuringiensis (Bt) strains were screened for their anti-insect, antibacterial <strong>and</strong> antifungal determinants by phenotypic tests <strong>and</strong> PCR targeting major insecticidal proteins <strong>and</strong> complements,<br />

chitinases, lactonases, beta-1,3-glucanases <strong>and</strong> zwittermicin A. Six strains had genes of at least two major insecticidal toxins <strong>and</strong> of insecticidal complements. With regard to fungal bio<strong>control</strong>, all the<br />

strains inhibited Fusarium oxysporum <strong>and</strong> Aspergillus flavus growth <strong>and</strong> four strains had all or most of the antifungal determinants examined, with strain Bt HD932 showing the widest antifungal activity<br />

spectrum. Autolysins, bacteriocin <strong>and</strong> AHL-lactonases were produced by all or most of the tested strains with different activity spectra including pathogens like Listeria monocytogenes. Safety evaluation<br />

was carried out via PCR by screening the B. cereus psychrotolerance-related genes, toxin genes <strong>and</strong> the virulence pleiotropic regulator plcR. Diarrheal enterotoxins <strong>and</strong> other toxin genes were widespread<br />

among the collection with strains Bt HD9 <strong>and</strong> H45 lacking psychrotolerance-related genes, while five strains were positive. Only three strains (BMG1.7, H172, H156) resulted positive with primer sets<br />

targeting partial or complete plcR gene. By Vero Cell Assays, Bt HD868 followed by Bt HD9 were shown to be the safest strains. These polyvalent <strong>and</strong> safe Bt strains could be very promising in field<br />

application.<br />

Rasal, P. H., J. R. Shelar, et al. (2009). "Effect of endophytic antagonist on pigeonpea." Journal of Maharashtra Agricultural Universities 34(1): 52-53.<br />

resistant (ICP 8863) <strong>and</strong> resistant (BDN2) cultivars of pigeon pea were screened <strong>against</strong> Fusarium oxysporum f. udum [F. udum]. The inoculation of endophytic antagonists into different cultivars of<br />

pigeon pea improved germination, plant height, branching, nodulation, root length <strong>and</strong> biomass production, <strong>and</strong> reduced wilt intensity significantly over the un-inoculated <strong>control</strong>. Among the inoculants,<br />

Pseudomonas-2 was the most beneficial, followed by Pseudomonas-3, Bacillus-3, Pseudomonas-1, <strong>and</strong> Bacillus-1 <strong>and</strong> -2. Antagonists isolated from resistant cultivar were the most beneficial, followed<br />

by antagonists from the moderately resistant cultivar, <strong>and</strong> antagonists isolated from the susceptible cultivar.<br />

135


Nicot et al. (Appendix for Chapter 1)<br />

Recep, K., S. Fikrettin, et al. (2009). "Biological <strong>control</strong> of the potato dry rot caused by Fusarium species using PGPR strains." Biological Control 50(2): 194-198.<br />

In this study, a total of 17 Plant Growth Promoting Rhizobacteria (PGPR) strains, consisting of eight different species (Bacillus subtilis, Bacillus pumilus, Burkholderia cepacia, Pseudomonas putida,<br />

Bacillus amyloliquefaciens, Bacillus atrophaeus, Bacillus macerans <strong>and</strong> Flavobacter balastinium), were tested for antifungal activity in in vitro (on Petri plate) <strong>and</strong> in vivo (on potato tuber) conditions<br />

<strong>against</strong> Fusarium sambucinum, Fusarium oxysporum <strong>and</strong> Fusarium culmorum cause of dry rot disease of potato. All PGPR strains had inhibitory effects on the development of at least one or more fungal<br />

species on Petri plates. The strongest antagonism was observed in B. cepacia strain OSU-7 with inhibition zones ranging from 35.33 to 47.37 mm. All PGPR strains were also tested on tubers of two<br />

potato cultivars 'Agria' <strong>and</strong> 'Granola' under storage conditions. Only B. cepacia strain OSU-7 had significant effects on <strong>control</strong>ling potato dry rot caused by three different fungi species on the two potato<br />

cultivars. There were no significant differences in rot diameters among the treatments in comparison to the negative <strong>control</strong> (with water). This is the first study showing that B. cepacia has great potential<br />

to be used as effective bio<strong>control</strong> agent of Fusanium dry rot of potatoes (F. oxysporum <strong>and</strong> F culmorum) under storage conditions. (C) 2009 Elsevier Inc. All rights reserved.<br />

Riaz, T., S. N. Khan, et al. (2009). "Effect of co-cultivation <strong>and</strong> crop rotation on corm rot disease of Gladiolus." Scientia Horticulturae 121(2): 218-222.<br />

Field <strong>and</strong> pot experiments were conducted to evaluate the effect of co-cultivation <strong>and</strong> crop rotation on the growth <strong>and</strong> corm rot disease of gladiolus (Gladiolus gr<strong>and</strong>iflorus sect. Bl<strong>and</strong>us) cv. Aarti caused<br />

by Fusarium oxysporum f.sp. gladioli (Massey) Snyd. <strong>and</strong> Hans. In the field experiment, gladiolus was co-cultivated with 10 agricultural/horticultural crops viz. Allium cepa L., Brassica campestris L.,<br />

Capsicum annuum L., Eruca sativa Mill., Helianthus annuus L., Tagetes erectus L., Zea mays L., Vinca rosea L. <strong>and</strong> Rosa indica L., in a soil infested with F. oxysporum. All the crops except V. rosea <strong>and</strong><br />

R. indica reduced disease incidence. The effect of H. annuus <strong>and</strong> T. erectus was significant <strong>and</strong> more pronounced than other co-cultivated crops. In general, root <strong>and</strong> shoot dry biomass, corm fresh weight,<br />

number of cormlets <strong>and</strong> number of flowers per spike decreased as compared to the un-inoculated monoculture gladiolus treatment (negative <strong>control</strong>) but these parameters enhanced as compared to the F.<br />

oxysporum inoculated monoculture gladiolus treatment (positive <strong>control</strong>). In a pot experiment, all the crops of the field experiment except V. rosea <strong>and</strong> R. indica were sown in rotation with gladiolus. Pot<br />

grown plants of different species were harvested at maturity <strong>and</strong> the soil was inoculated with F oxysporum. Gladiolus was cultivated I week after inoculation. Disease incidence was significantly<br />

suppressed in all the treatments ranging from 29% to 53%. The highest suppression of disease incidence was recorded in T erectus (53%) followed by B. campestris (49%). The effect of preceding crops<br />

on various vegetative parameters was similar in the pot experiment to that of the field experiment. The present study suggests that corm rot disease of gladiolus can be managed by mixed cropping of H.<br />

annuus <strong>and</strong> T erectus or cultivation of T. erectus <strong>and</strong> B. campestris in rotation. (c) 2009 Elsevier B.V. All rights reserved.<br />

Saidi, N., S. Kouki, et al. (2009). "Characterization <strong>and</strong> selection of Bacillus sp strains, effective bio<strong>control</strong> agents <strong>against</strong> Fusarium oxysporum f. sp radicis-lycopersici, the causal agent of Fusarium crown<br />

<strong>and</strong> root rot in tomato." Annals of Microbiology 59(2): 191-198.<br />

The antagonistic activities of 20 Bacillus isolates were tested with dual culture <strong>and</strong> greenhouse conditions <strong>against</strong> Fusarium oxysporum f. sp. radicis-lycopersici (FORL) race 0, the causal agent of<br />

Fusarium crown <strong>and</strong> root rot of tomato. Under dual culture, 10 isolates inhibited mycelial growth > 38% <strong>and</strong> the most effective inhibited fungal growth > 50%. The 20 Bacillus isolates were tested for<br />

production of volatiles, cyanide, antibiotics, <strong>and</strong> phosphorus solubilisation; 15 isolates produced volatiles that inhibited growth of pathogens, 9 isolates produced cyanide, 10 produced antibiotics, <strong>and</strong> five<br />

solubilised phosphorus. Greenhouse experiments with the same 20 isolates revealed the effectiveness of 12 strains, which increased the percentage of healthy plants in the tested cultivar from 66 to 96%.<br />

The best disease <strong>control</strong> was achieved by isolates B11, B5, B17, <strong>and</strong> B18. However, B11 <strong>and</strong> B17 were the only isolates that produced cyanide, antibiotics, solubilised phosphate <strong>and</strong> showed 44%<br />

inhibition of fungal growth. The selected strains could be considered in plant growth promotion <strong>and</strong> <strong>biological</strong> disease <strong>control</strong>.<br />

Shi, Y. W., K. Lou, et al. (2009). "Isolation, quantity distribution <strong>and</strong> characterization of endophytic microorganisms within sugar beet." African Journal of Biotechnology 8(5): 835-840.<br />

The present investigation was undertaken in order to document the spectrum of endophytes colonizing healthy leaves of sugar beet cultivars in Xinjiang Province ( China) <strong>and</strong> to determine the degree of<br />

colonization at three growth stages. From the 360 sugar beet leaf <strong>and</strong> root segments incubated, 221 bacterial isolates, 34 fungal isolates <strong>and</strong> 5 actinomycete isolates were obtained. Of all the isolates, 7<br />

bacterial species <strong>and</strong> 6 fungal species were identified. The actinomycete isolates were characterized as Streptomyces griseofuscus <strong>and</strong> Streptomyces globisporus. There were significant differences<br />

between microorganisms, stages of growth, <strong>and</strong> stages of microorganism interaction. The number of microorganisms isolated increased during the growth period of the sugar beet. At the same time, the<br />

number of microorganisms affecting different parts of the sugar beet tissue was quite different. The greatest number of microorganisms was found in the secondary root emergence zone of the sugar beet<br />

tissue. Endophytic microorganisms in sugar beet promote growth <strong>and</strong> increase the yield of the beet.<br />

Son, S. H., Z. Khan, et al. (2009). "Plant growth-promoting rhizobacteria, Paenibacillus polymyxa <strong>and</strong> Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode <strong>and</strong> fusarium wilt<br />

fungus." Journal of Applied Microbiology 107(2): 524-532.<br />

Paenibacillus strains <strong>against</strong> disease complex caused by Meloidogyne incognita <strong>and</strong> Fusarium oxysporum f. sp. lycopersici interactions. Methods <strong>and</strong> Results: Paenibacillus strains were collected from<br />

rotten ginseng roots. The strains were tested under in vitro <strong>and</strong> pots for their inhibitory activities, <strong>and</strong> bio<strong>control</strong> potential <strong>against</strong> disease complex caused by M. incognita <strong>and</strong> F. oxysporum f. sp.<br />

lycopersici on tomato. In in vitro experiments, among 40 tested strains of Paenibacillus spp., 11 strains showed antifungal <strong>and</strong> nematicidal activities <strong>against</strong> F. oxysporum f. sp. lycopersici <strong>and</strong> M.<br />

136


Appendix 6<br />

incognita, respectively. Paenibacilluspolymyxa GBR-462; GBR-508 <strong>and</strong> P. lentimorbus GBR-158 showed the strongest antifungal <strong>and</strong> nematicidal activities. These three strains used in pot experiment<br />

reduced the symptom development of the disease complex (wilting <strong>and</strong> plant death), <strong>and</strong> increased plant growth. The <strong>control</strong> effects were estimated to be 90-98%, <strong>and</strong> also reduced root gall formation by<br />

64-88% compared to the untreated <strong>control</strong>. Conclusion: The protective properties of selected Paenibacillus strains make them as potential tool to reduce deleterious impact of disease complex plants.<br />

Significance <strong>and</strong> Impact of the Study: The study highlights bio<strong>control</strong> potential of Paenibacillus strains in management of disease complex caused by nematode-fungus interaction.<br />

Srinivasan, K., G. Gilardi, et al. (2009). "BACTERIAL ANTAGONISTS FROM USED ROCKWOOL SOILLESS SUBSTRATES SUPPRESS FUSARIUM WILT OF TOMATO." Journal of Plant<br />

Pathology 91(1): 147-154.<br />

Five bacterial E,trains (FC-6B, FC-7B, FC-8B, FC-9B <strong>and</strong> FC-24B) isolated from used rockwool soilless substrates were identified using 16S ribosomal DNA (16S rDNA) sequence analysis as<br />

belonging to the Pseudomonas genus. Seven glasshouse trials were conducted in order to evaluate the efficacy of these bacteria strains (Pseudomonas putida FC-6B, Pseudomonas sp. FC-7B,<br />

Pseudomonas putida FC-8B, Pseudomonas sp. FC-9B <strong>and</strong> Pseudomonas sp. FC-24B) together with Achromobacter sp. AM1 <strong>and</strong> Serratia sp. DM1 obtained from suppressive sod, <strong>against</strong> Fusarium wilt<br />

of tomato. Two commercial bioproducts, Trichoderma harzianum T22 (RootShield) <strong>and</strong> Pseudomonas chlororaphis MA 342 (Cedomon) were also evaluated. Different treatment strategies including soil<br />

application (10(7) <strong>and</strong> 10(8) cfu ml(-1)) were adopted in different glasshouse trials (Trial I to VI) to test the efficacy of the bacterial strains <strong>against</strong> Fusarium wilt. Root dipping was used in Trial VII<br />

(10(8) <strong>and</strong> 10(9) cfu ml(-1)). The lowest: disease incidence (3.3) was recorded with a single application of P. putida FC-6B at 10(8) cfu ml(-1). Similar results were obtained with the same bacteria when<br />

the concentration was decreased to 10(7) cfu ml(-1) but an increasing number of applications was required. The highest plant biomass (50.3 g/plant) was recorded in the P. putida FC-8B treatment (Trial<br />

III). In conclusion, the current study showed the potential bio<strong>control</strong> activity of bacterial strains FC-6B, FC-7B, FC-8B, FC-9B <strong>and</strong> FC-24B isolated from re-used rockwool soilless substrates <strong>against</strong><br />

Fusarium wilt disease, <strong>and</strong> the growth promoting activity of these strains on tomato plants.<br />

Srivastava, D. K., A. K. Singh, et al. (2009). "Efficacy of bio-<strong>control</strong> agents <strong>and</strong> seed dressing fungicides <strong>against</strong> damping off of tomato." Annals of Plant Protection Sciences 17(1): 257-258.<br />

in Unao, Madhya Pradesh, India, during 2005-06 yielded associated pathogen on PDA medium. The antagonistic activity of <strong>biological</strong> <strong>control</strong> agents <strong>against</strong> Fusarium oxysporum f.sp. lycopersici was<br />

determined using dual culture method. All the antagonists <strong>and</strong> fungicide inhibited the mycelial growth of Fusarium, however, Trichoderma viride caused maximum inhibition of mycelial growth.<br />

Trichoderma viride, Trichoderma harzianum, Gliocladium virens, carbendazim <strong>and</strong> thiram, which showed significant in vitro inhibition of Fusarium were tested in the field. Maximum increase in seed<br />

germination (83.4%), seedling survival (79.0) <strong>and</strong> plant height (6.32 cm) over the <strong>control</strong> was observed when treated with Trichoderma viride followed by Trichoderma harzianum, carbendazim, thiram,<br />

<strong>and</strong> Gliocladium virens.<br />

Thanh, D. T., L. T. T. Tarn, et al. (2009). "Biological Control of Soilborne Diseases on Tomato, Potato <strong>and</strong> Black Pepper by Selected PGPR in the Greenhouse <strong>and</strong> Field in Vietnam." Plant Pathology Journal<br />

25(3): 263-269.<br />

Bacterial wilt, Fusarium wilt <strong>and</strong> Foot rot caused by Ralstonia solanacearum, Fusarium oxysporum, <strong>and</strong> Phytophthora capsici respectively, continue to be severe problems to tomato, potato <strong>and</strong> black<br />

pepper growers in Vietnam. Three bio-products, Bacillus vallismortis EXTN-1 (EXTN-1), Bacillus sp. <strong>and</strong> Puenibacillus sp. (ESSC) <strong>and</strong> Bacillus substilis (MFMF) were examined in greenhouse<br />

bioassay for the ability to reduce bacterial wilt, fusarium wilt <strong>and</strong> foot rot disease severity. While these bio-products significantly reduced disease severities, EXTN-1 was the most effective, providing a<br />

mean level of disease reduction 80.0 to 90.0% <strong>against</strong> bacterial wilt, fusarium wilt <strong>and</strong> foot rot diseases under greenhouse conditions. ESSC <strong>and</strong> MFMF also significantly reduced fusarium wilt, bacterial<br />

wilt <strong>and</strong> foot rot severity under greenhouse conditions. Bio-product, EXTN-1 with the greatest efficacy under greenhouse condition was tested for the ability to reduce bacterial wilt, fusarium wilt <strong>and</strong><br />

foot rot under field condition at Song Phuong <strong>and</strong> Thuong Tin locations in Ha Tay province, Vietnam. Under field condition, EXTN-1 provided a mean level of disease reduction more than 45.0%<br />

<strong>against</strong> all three diseases compared to water treated <strong>control</strong>. Besides, EXTN-1 treatment increased the yield in tomato fruits 17.3% than water treated <strong>control</strong> plants.<br />

Wu, H., X. Yang, et al. (2009). "Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms." BioControl 54(2): 287-300.<br />

the crop has been grown for many seasons. Its occurrence results in a severely decreased watermelon crop. The goal of this study was to assess the capability of a new product (bio-organic fertilizer) to<br />

<strong>control</strong> the wilt in Fusarium-infested soil. Pot experiments were conducted under growth chamber <strong>and</strong> greenhouse conditions. The results showed that the fertilizer <strong>control</strong>led the wilt disease. Compared<br />

with <strong>control</strong> pots, the incidence rates of Fusarium wilt at 27 <strong>and</strong> 63 days following treatment of the plants with the bio-organic fertilizer at a rate of 0.5% (organic fertilizer+antagonistic microorganisms,<br />

including 3*109 CFU g-1 respectively, in both the growth chamber <strong>and</strong> greenhouse settings. The activities of antioxidases (catalase, superoxide dismutase <strong>and</strong> peroxidase) in watermelon leaves increased<br />

by 38.9, 150 <strong>and</strong> 250%, respectively. In the roots, stems <strong>and</strong> leaves, the activity of beta-1,3-glucanase (pathogenesis-related proteins) increased by 80, 1140 <strong>and</strong> 100% <strong>and</strong> that of chitinase increased by<br />

240, 80, <strong>and</strong> 20%, respectively, while the contents of malondialdehyde fell by 56.8, 42.1 <strong>and</strong> 45.9%, respectively. These results indicate that this new fertilizer formula is capable of protecting<br />

watermelon from Fusarium oxysporum f.sp. niveum. The elevated levels of defense-related enzymes are consistent with the induction <strong>and</strong> enhancement of systemic acquired resistance of plant.<br />

137


Nicot et al. (Appendix for Chapter 1)<br />

Wu, Q., H. Zeng, et al. (2009). "Stability of fermentation broth of actinomycete strain WZ162 resistance to Fusarium oxysporum f.sp. cubense of banana." Guangxi Agricultural Sciences 40(4): 366-369.<br />

The fermentation broth of actinomycete strain WZ162 has strong inhibiting effect <strong>against</strong> Fusarium oxysporum f.sp. cubense of banana. Under different conditions, the stabilities of fermentation broth of<br />

WZ162 were detected. The results showed that the fermentation broth of WZ162 had better heat stability when temperature of water bath was below 80C. The antibiotics ingredient of fermentation broth<br />

would not be changed <strong>and</strong> can maintain the antifungal activity under conditions of sun light <strong>and</strong> ultraviolet rays. Under acid <strong>and</strong> neutrality conditions, the inhibition rate of fermentation broth <strong>against</strong><br />

Focr4 was 24.92%-34.73% <strong>and</strong> 11.21%-25.39%, respectively. Therefore, the stability of fermentation broth in acid was better than that of neutrality. When the fermentation broth with pH 1-12 were<br />

treated with different time in 100C water bath, the inhibition rate was obviously lower than that of the treatments without water bath, <strong>and</strong> the stability of fermentation broth with pH 1 was the best.<br />

Yin, X., D. Chen, et al. (2009). "An endophytic Erwinia chrysanthemi strain antagonistic <strong>against</strong> banana fusarium wilt disease." Chinese Journal of Biological Control 25(1): 60-65.<br />

An endophytic strain E353 was obtained from the pseudostem of healthy banana plant in a field heavily infected with Fusarium oxysporum f. sp. cubense (FOC). Antagonism of the strain <strong>against</strong> FOC<br />

was tested via dual-culture, inhibition test on conidia germination, <strong>and</strong> pot trials. Results showed that E353 effectively inhibited mycelium growth <strong>and</strong> conidia germination. Efficacy of strain E353 to<br />

<strong>control</strong> the wilt disease was 60.67% in pot trials. Strain E353 was identified as Erwinia chrysanthemi according to its characteristics in morphology, physiology, biochemistry <strong>and</strong> 16S rDNA sequence.<br />

Zhong, X., M. Liang, et al. (2009). "Study on the inhibition of Trichoderma sp. <strong>against</strong> Fusarium oxysporum f. sp. cubense in banana." Journal of Fruit Science 26(2): 186-189.<br />

effective antagonist <strong>against</strong> Fusarium oxysporum f. sp. cubens, was isolated <strong>and</strong> identified as Trichoderma sp. based upon 18S rDNA gene analysis. With solid <strong>and</strong> liquid cultures, the inhibitive efficacy<br />

to the growth of Fusarium oxysporum f. sp. cubens was primarily studied. The experimental results showed that the cells of Fusarium oxysporum f. sp. cubens were completely covered by short fiber-like<br />

hyphace <strong>and</strong> spore stem of G2 within 7 days in the dual culture plate, <strong>and</strong> in the antagonist plate, the average rate of inhibitory by the culture solution of G2 was about 90.4%, the average rate of the<br />

inhibitory by volatile substance reached 68.3%. After 10 days' incubation with 20% (v/v) fungal strain G2, the melt of the pathogenic mycel <strong>and</strong> spore were observed in the liquid culture containing<br />

1.0*107 cfu . L-1 G2 can strongly inhibit the growth of Fusarium oxysporum f. sp. cubens.<br />

Zhu, H., Y. Ma, et al. (2009). "Control effect of combining bio<strong>control</strong> strains <strong>against</strong> Fusarium oxysporium f. sp. niveum <strong>and</strong> Verticillium dahliae." Journal of Northwest A & F University - Natural Science<br />

Edition 37(7): 152-156.<br />

Objective: Five actinomycetes strains having certain inhibiting capability were screened as material to study the <strong>control</strong> effect of the actinomycetes <strong>and</strong> five combinations on watermelon Fusarium wilt<br />

<strong>and</strong> Eggplant Verticillium wilt, <strong>and</strong> to filter the combining bio<strong>control</strong> strains which have better bio<strong>control</strong> efficacy <strong>and</strong> growth promotion. Method: The bio<strong>control</strong> efficacy <strong>and</strong> growth promotion of<br />

single <strong>and</strong> combining strains were analyzed by antagonistic activity in vitro <strong>and</strong> manual inoculation in vivo. Result: Strain SC11 <strong>and</strong> SE2 had significant inhibiting effect on Fusarium oxysporium f. sp.<br />

niveum <strong>and</strong> Verticillium dahliae in vitro. Inhibiting rate on conidia germination was also high; in greenhouse experiment, 84.93% <strong>control</strong> ratio to Fusarium oxysporium f. sp. niveum <strong>and</strong> 71. 48% to<br />

Verticillium dahliae were found by C2; The fermentation broth of C3 had the most significant effect for every index of watermelon. The effect on reduction intensity of watermelon rootage was obvious.<br />

For eggplant, the growth promotion was only inferior to strain SF6. Conclusion: These results suggested that the <strong>control</strong> effect <strong>and</strong> growth promotion of combining bio<strong>control</strong> strains are significantly<br />

higher than individual, <strong>and</strong> combining strains express complementary bio<strong>control</strong> activities by collaboration. There is no correlation between the number of strains <strong>and</strong> <strong>control</strong> effect, only proper<br />

combinations of bio<strong>control</strong> strains can enhance disease <strong>control</strong> effect.<br />

138


Appendix 7. Number of references retrieved by using the CAB Abstracts database in<br />

order to review scientific literatures on <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong> in<br />

selected crops for Chapter 2.<br />

GRAPEVINE*<br />

Key words 1973-2008 1998-2008<br />

Biological <strong>control</strong> 1644 -<br />

Augmentative <strong>biological</strong> <strong>control</strong> 7 6<br />

Augmentation <strong>biological</strong> <strong>control</strong> 10 6<br />

Inoculative <strong>biological</strong> <strong>control</strong> 4 1<br />

Inundative <strong>biological</strong> <strong>control</strong> 7 3<br />

Insects <strong>biological</strong> <strong>control</strong> 773 373<br />

Mites <strong>biological</strong> <strong>control</strong> 320 190<br />

Total references dealing with<br />

<strong>augmentative</strong> bio<strong>control</strong> to be examined<br />

607 579<br />

* Survey includes records for grapevine, grape <strong>and</strong> vineyard.<br />

APPLE<br />

Key words 1973-2008 1998-2008<br />

Biological <strong>control</strong> 3971 -<br />

Augmentative <strong>biological</strong> <strong>control</strong> 13 10<br />

Augmentation <strong>biological</strong> <strong>control</strong> 18 9<br />

Inoculative <strong>biological</strong> <strong>control</strong> 5 3<br />

Inundative <strong>biological</strong> <strong>control</strong> 10 2<br />

Insects <strong>biological</strong> <strong>control</strong> 2310 817<br />

Mites <strong>biological</strong> <strong>control</strong> 981 258<br />

Total references dealing with<br />

<strong>augmentative</strong> bio<strong>control</strong> to be examined<br />

1145 1099<br />

PEAR<br />

Key words 1973-2008 1998-2008<br />

Biological <strong>control</strong> 1270 -<br />

Augmentative <strong>biological</strong> <strong>control</strong> 3 2<br />

Augmentation <strong>biological</strong> <strong>control</strong> 2 1<br />

Inoculative <strong>biological</strong> <strong>control</strong> 1 1<br />

Inundative <strong>biological</strong> <strong>control</strong> 3 1<br />

Insects <strong>biological</strong> <strong>control</strong> 756 325<br />

Mites <strong>biological</strong> <strong>control</strong> 174 61<br />

Total references dealing with<br />

<strong>augmentative</strong> bio<strong>control</strong> to be examined<br />

400 391<br />

139


140 Nicot et al. (Appendix for Chapter 1)<br />

CORN*<br />

Key words 1973-2008 1998-2008<br />

Biological <strong>control</strong> 6828 -<br />

Augmentative <strong>biological</strong> <strong>control</strong> 19 14<br />

Augmentation <strong>biological</strong> <strong>control</strong> 38 18<br />

Inoculative <strong>biological</strong> <strong>control</strong> 18 8<br />

Inundative <strong>biological</strong> <strong>control</strong> 39 17<br />

Insects <strong>biological</strong> <strong>control</strong> 4293 1682<br />

Mites <strong>biological</strong> <strong>control</strong> 250 66<br />

Total references dealing with<br />

<strong>augmentative</strong> bio<strong>control</strong> to be examined<br />

1919 1805<br />

* Survey include records for corn <strong>and</strong> maize.<br />

WHEAT<br />

Key words 1973-2008 1998-2008<br />

Biological <strong>control</strong> 5250 -<br />

Augmentative <strong>biological</strong> <strong>control</strong> 9 7<br />

Augmentation <strong>biological</strong> <strong>control</strong> 13 6<br />

Inoculative <strong>biological</strong> <strong>control</strong> 1 1<br />

Inundative <strong>biological</strong> <strong>control</strong> 8 3<br />

Insects <strong>biological</strong> <strong>control</strong> 2307 866<br />

Mites <strong>biological</strong> <strong>control</strong> 157 66<br />

Total references dealing with<br />

<strong>augmentative</strong> bio<strong>control</strong> to be examined<br />

980 949<br />

CARROT<br />

Key words 1973-2008 1998-2008<br />

Biological <strong>control</strong> 360 -<br />

Augmentative <strong>biological</strong> <strong>control</strong> 1 1<br />

Augmentation <strong>biological</strong> <strong>control</strong> 1 1<br />

Inoculative <strong>biological</strong> <strong>control</strong> 1 1<br />

Inundative <strong>biological</strong> <strong>control</strong> 0 0<br />

Insects <strong>biological</strong> <strong>control</strong> 179 62<br />

Mites <strong>biological</strong> <strong>control</strong> 20 8<br />

Total references dealing with<br />

<strong>augmentative</strong> bio<strong>control</strong> to be examined<br />

76 73<br />

ONION<br />

Key words 1973-2008 1998-2008<br />

Biological <strong>control</strong> 810 -<br />

Augmentative <strong>biological</strong> <strong>control</strong> 2 2<br />

Augmentation <strong>biological</strong> <strong>control</strong> 3 3<br />

Inoculative <strong>biological</strong> <strong>control</strong> 3 3<br />

Inundative <strong>biological</strong> <strong>control</strong> 1 1<br />

Insects <strong>biological</strong> <strong>control</strong> 532 233<br />

Mites <strong>biological</strong> <strong>control</strong> 187 62<br />

Total references dealing with<br />

<strong>augmentative</strong> bio<strong>control</strong> to be examined<br />

313 304<br />

140


Appendix 8. Collection of data on <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong> of pests in grapevine. Each table refers to a group of bio<strong>control</strong> agents.<br />

8.1 Parasitoid Hymenoptera: Trichogramma spp. (Trichogrammatidae) [10 species]<br />

References<br />

Species of<br />

bio<strong>control</strong> agent<br />

Species of insect pest Taxonomic<br />

category of<br />

Remund & Bigler, 1986 T. dendrolimi Eupoecilia ambiguella<br />

(grape berry moth)<br />

pests<br />

Lepidoptera:<br />

Tortricidae<br />

Country<br />

Type of<br />

augmentation<br />

Type of<br />

test<br />

Lab<br />

Efficacy of<br />

bio<strong>control</strong><br />

agents*<br />

Additional information <strong>and</strong><br />

results<br />

Evaluation of <strong>biological</strong><br />

parameters<br />

Switzerl<strong>and</strong> Field Evaluation of <strong>biological</strong><br />

parameters<br />

T. maidis Switzerl<strong>and</strong> Inundative Field +<br />

Segonca & Leisse, 1989 T. semblidis Eupoecilia ambiguella <strong>and</strong> Lepidoptera: Ahr Valley, Inundative Field +<br />

Lobesia botrana<br />

Tortricidae Germany<br />

Glenn & Hoffmann, 1997 T. carverae Epiphyas postvittana<br />

(light brown apple moth)<br />

Lepidoptera:<br />

Tortricidae<br />

Victoria,<br />

Australia<br />

Inundative Field<br />

(small<br />

+<br />

Basso et al., 1998<br />

Basso et al., 1999<br />

Garnier-Geoffroy et al.,<br />

1999<br />

Hommay et al., 2002<br />

T. pretiosum<br />

T. exiguum<br />

Argyrotaenia sphaleropa<br />

(South American tortricid<br />

moth),<br />

Bonagota cranaodes<br />

(Brasilian apple leafroller)<br />

A. sphaleropa<br />

B. cranaodes<br />

Lepidoptera:<br />

Tortricidae<br />

T. pretiosum<br />

T. exiguum<br />

Lepidoptera:<br />

Tortricidae<br />

T. brassicae Lobesia botrana Lepidoptera:<br />

Tortricidae<br />

T. evanescens <strong>and</strong> Lobesia botrana<br />

Lepidoptera:<br />

T. cacoeciae (two<br />

Tortricidae<br />

strains)<br />

Nagargatti et al., 2002 T. minutum Endopiza viteana (grape<br />

berry moth)<br />

Lepidoptera:<br />

Tortricidae<br />

Thomson & Hoffmann,<br />

2002<br />

T. carverae Epiphyas postvittana<br />

(light brown apple moth)<br />

Lepidoptera:<br />

Tortricidae<br />

Nagargatti et al., 2003 T. minutum Endopiza viteana Lepidoptera:<br />

Tortricidae<br />

Zimmermann, 2004 Trichogramma spp. Lobesia botrana <strong>and</strong> Lepidoptera:<br />

Eupoecilia ambiguella Tortricidae<br />

Begum et al., 2006 T. carverae Epiphyas postvittana Lepidoptera:<br />

Tortricidae<br />

blocks)<br />

Uruguay Lab Evaluation of <strong>biological</strong><br />

parameters<br />

Uruguay Inundative Field +<br />

Lab - Evaluation of allelocemical<br />

relations<br />

France Inundative Field + + as % parasitization.<br />

- - as % grapes attacked.<br />

Pennsylvania,<br />

USA<br />

Field + + as natural parasitism.<br />

Inundative releases of T.<br />

minutum in border rows is<br />

suggested<br />

Lab<br />

Assessment of quality indicators<br />

Field<br />

Inundative Field + Parasitoids released in border<br />

rows<br />

Victoria,<br />

Australia<br />

Pennsylvania,<br />

USA<br />

Germany Inundative Field Commercialized to be used in<br />

home garden<br />

Australia Inundative Greenho + Ground-cover plant species<br />

use/<br />

identified to improve performance<br />

Field<br />

of mass released parasitoids.<br />

141


Giorgini (Appendix for Chapter 2)<br />

El-Wakeil et al., 2008 T. evanescens Lobesia botrana (European<br />

grape berry moth)<br />

* + means effective, - means not effective bio<strong>control</strong> agent.<br />

Lepidoptera:<br />

Tortricidae<br />

Egypt Inundative Field + Parasitism > 97% <strong>and</strong> reduction<br />

percents of infestation reached<br />

96.8%<br />

8.2 Parasitoid Hymenoptera: Encyrtidae [4 species], Pteromalidae [1 species]<br />

Reference<br />

Species of<br />

bio<strong>control</strong> agent<br />

Species of insect<br />

pest<br />

Taxonomic category of<br />

pests<br />

Walton & Pringle, 1999<br />

Walton & Pringle, 2004<br />

Abd-Rabou, 2005<br />

Daane et al., 2006<br />

Daane et al., 2008<br />

Kapongo et al., 2007<br />

Coccidoxenoides<br />

peregrinus<br />

(Encyrtidae)<br />

Coccidoxenoides<br />

perminutus<br />

(Encyrtidae)<br />

Anagyrus kamali<br />

(Encyrtidae)<br />

Anagyrus<br />

pseudococci<br />

(Encyrtidae)<br />

Anagyrus<br />

pseudococci<br />

(Encyrtidae)<br />

Muscidifurax<br />

raptor<br />

(Pteromalidae)<br />

Planococcus ficus<br />

(vine mealybug)<br />

Planococcus ficus<br />

(vine mealybug)<br />

Maconellicoccus<br />

hirsutus<br />

Planococcus ficus<br />

Planococcus ficus<br />

Ceratitis capitata<br />

(Mediterranean fruit<br />

fly)<br />

* + means effective, - means not effective bio<strong>control</strong> agent.<br />

Hemiptera:<br />

Pseudococcidae<br />

Hemiptera:<br />

Pseudococcidae<br />

Hemiptera:<br />

Pseudococcidae<br />

Hemiptera:<br />

Pseudococcidae<br />

Hemiptera:<br />

Pseudococcidae<br />

Cuontry<br />

Type of<br />

augmentation<br />

Type of<br />

test<br />

Efficacy of<br />

bio<strong>control</strong><br />

agents*<br />

Additional information <strong>and</strong><br />

results<br />

South Africa Lab Compatibility of fungicides <strong>and</strong><br />

incompatibility of insecticides<br />

with <strong>augmentative</strong> releases<br />

South Africa Inundative Field + Mass release was at least as<br />

effective as the chemical <strong>control</strong><br />

Egypt Inundative Field + It is concluded that the releases of<br />

parasitoids were suitable for<br />

<strong>control</strong>.<br />

California Inoculative Field + Promising results. Commercial<br />

products are not yet available.<br />

Israel Inoculative Field + Promising results. Commercial<br />

products are not yet available.<br />

Diptera: Tephritidae Canada Inundative Field<br />

Lab<br />

cages<br />

+ M. raptor constitutes a promising<br />

bio<strong>control</strong> agent in vineyards.<br />

8.3 Predators of mites. Acari: Phytoseidae.<br />

References Species of bio<strong>control</strong><br />

agent<br />

Species of mite pest<br />

Boller et al., 1988 Typhlodromus pyri Panonychus ulmi,<br />

Tetranychus urticae<br />

Taxonomic<br />

category of<br />

pests<br />

Acari:<br />

Tetranychidae<br />

Country<br />

Type of<br />

augmentation<br />

Type of<br />

test<br />

Efficacy of<br />

bio<strong>control</strong><br />

agents*<br />

Additional information <strong>and</strong><br />

results<br />

Switzerl<strong>and</strong> Inoculative Field Inoculative release of T. pyri<br />

along with the increase of the<br />

internal ecological diversity<br />

achieved by proper management<br />

of the green cover plants will<br />

have a strong influence on<br />

predator densities.<br />

142


Appendix 8<br />

Camporese & Duso, 1996<br />

Typhlodromus pyri,<br />

Amblyseius <strong>and</strong>ersoni,<br />

Kampimodromus aberrans<br />

Panonychus ulmi<br />

Acari:<br />

Tetranychidae<br />

Takahashi et al., 1998 Phytoseiulus persimilis Tetranychus kanzawai Acari:<br />

Tetranychidae<br />

Duso & Vettorazzo, 1999<br />

Kampimodromus<br />

aberrans, Typhlodromus<br />

pyri<br />

Panonychus ulmi,<br />

Eotetranychus carpini<br />

Calepitrimerus vitis<br />

Acari:<br />

Tetranychidae<br />

Acari:<br />

Eriophyidae<br />

Marshall & Lester, 2001 Typhlodromus pyri Panonychus ulmi Acari:<br />

Tetranychidae<br />

Duso et al., 2006<br />

Typhlodromus pyri<br />

strain resistant to<br />

organophosphates<br />

Panonychus ulmi,<br />

Eotetranychus carpini<br />

Calomerus vitis<br />

* + means effective, - means not effective bio<strong>control</strong> agent.<br />

Acari:<br />

Tetranychidae<br />

Acari:<br />

Eriophyidae<br />

Italy Inoculative Field + Different colonization patterns on<br />

three grape varieties (with<br />

different pubescent leaf<br />

undersurfaces).<br />

The high competitiveness of K.<br />

aberrans over the other 2<br />

phytoseid species is a major<br />

factor in selecting predatory<br />

species for inoculative releases.<br />

Japan Inundative Field<br />

(grape in<br />

green<br />

house)<br />

+ Release of P. persimilis onto the<br />

grass ground cover in the spring.<br />

No chemical <strong>control</strong> was<br />

required.<br />

Veneto, Italy Inoculative Field (A) + Releases were successful <strong>and</strong> the<br />

predators became more abundant<br />

on the variety with pubescent leaf<br />

under-surface.<br />

Native A. <strong>and</strong>ersoni were<br />

displaced by T. pyri.<br />

Field (B) + Two grape varieties with different<br />

leaf hair density.<br />

T. pyri colonization failed; K.<br />

aberrans was more successful on<br />

glabrous varieties. K. aberrans<br />

displaced native P. finitimus.<br />

Ontario,<br />

Canada<br />

North-eastern<br />

Italy<br />

Inoculative Field + T. pyri out-competed native<br />

Amblyseius fallacies.<br />

T. pyri is an effective bio<strong>control</strong><br />

agent <strong>and</strong> may be introduced by<br />

transferring leaves.<br />

Inoculative Field 15-years observations. The<br />

predator colonized the vineyard<br />

<strong>and</strong> competed successfully with<br />

other species.<br />

Role of alternative foods, leaf<br />

morphology <strong>and</strong> selective<br />

pesticides.<br />

143


Giorgini (Appendix for Chapter 2)<br />

8.4 Predators of insects. Neuroptera: Chrysopidae [3 species] <strong>and</strong> Coleoptera: Coccinellidae [2 species]<br />

Reference<br />

Daane et al., 1996<br />

Daane & Yokota, 1997<br />

Wunderlich & Giles,<br />

1999<br />

Species of bio<strong>control</strong><br />

agent<br />

NEUROPTERA:<br />

CHRYSOPIDAE<br />

Chrysoperla carnea<br />

(common green<br />

lacewing)<br />

Chrysoperla carnea,<br />

C. comanche,<br />

C. rufilabris<br />

Chrysoperla rufilabris<br />

Species of<br />

insect pest<br />

Erythroneura<br />

variabilis,<br />

E. elegantula<br />

(leafhoppers)<br />

Erythroneura<br />

variabilis,<br />

E. elegantula<br />

(leafhoppers)<br />

Erythroneura<br />

variabilis,<br />

E. elegantula<br />

(leafhoppers)<br />

COLEOPTERA:<br />

COCCINELLIDAE<br />

Anagnou et al., 2003 Nephus includens Planococcus<br />

citri<br />

Daane et al., 2008<br />

Cryptolaemus<br />

montrouzieri<br />

Pseudococcus<br />

maritimus,<br />

P. longispinus<br />

(mealybugs)<br />

Mani, 2008<br />

Cryptolaemus<br />

montrouzieri<br />

Planococcus<br />

citri<br />

* + means effective, - means not effective bio<strong>control</strong> agent.<br />

Taxonomic<br />

category of pests<br />

Hemiptera:<br />

Cicadellidae<br />

Hemiptera:<br />

Cicadellidae<br />

Hemiptera:<br />

Cicadellidae<br />

Hemiptera:<br />

Pseudococcidae<br />

Hemiptera:<br />

Pseudococcidae<br />

Hemiptera:<br />

Pseudococcidae<br />

Country<br />

Type of<br />

augmentation<br />

Type of test<br />

California Inundative Field<br />

(caged smallplot)<br />

Field<br />

(uncaged<br />

small-plot)<br />

Field<br />

(on-farm<br />

trials)<br />

Efficacy of<br />

bio<strong>control</strong><br />

agents*<br />

Additional information <strong>and</strong> results<br />

- Average leafhopper density reduction<br />

29.5%.<br />

- Release rates reflecting commercial<br />

recommendations.<br />

Average reduction 15.5%.<br />

- Average reduction 9.6%<br />

Not sufficient to lower the leafhopper<br />

density below the economic injury<br />

threshold.<br />

California Inundative Field - Aspects of release strategies evaluated.<br />

High mortality of lacewing eggs <strong>and</strong><br />

neonate larvae.<br />

California Inundative Field A mechanical technique was assessed for<br />

releasing eggs in liquid suspensions.<br />

Adhesion of eggs to the canopy was an<br />

issue.<br />

Greece Field It is suggested, for combined infestation<br />

by L. botrana <strong>and</strong> mealybugs, the<br />

application of B. thuringiensis <strong>and</strong> the<br />

releases of the effective predator N.<br />

includens.<br />

California Inoculative Field Commonly released in vineyards, but<br />

release rates, timing, <strong>and</strong> expected<br />

outcomes have not been scientifically<br />

evaluated.<br />

It may be best used by releasing at hot<br />

India Inundative Green<br />

house<br />

+<br />

spots where the mealybug density is high.<br />

144


Appendix 8<br />

8.5 Fungi [5 species]<br />

Reference<br />

Berner &<br />

Schnetter, 2002<br />

Tsitsipis et al.,<br />

2003<br />

Species of bio<strong>control</strong><br />

agent<br />

Beauveria brongniartii<br />

(in combination with the<br />

nematode H.<br />

bacteriophora)<br />

Beauveria bassiana<br />

Species of insect pest<br />

Melolontha melolontha<br />

(European cockchafer)<br />

Frankliniella<br />

occidentalis<br />

(western flower thrips)<br />

Taxonomic<br />

category of pests<br />

Coleoptera:<br />

Scarabeidae<br />

Thysanoptera:<br />

Thripidae<br />

Al-Jboory et al.,<br />

2006<br />

Beauveria bassiana grape thrips Thysanoptera:<br />

Thripidae<br />

Lopes et al., 2002 Metarhizium anisopliae Frankliniella<br />

Thysanoptera:<br />

occidentalis<br />

Thripidae<br />

Laengle et al.,<br />

2004<br />

Kirchmair et al.,<br />

2004<br />

Kirchmair et al.,<br />

2005<br />

Huber &<br />

Kirchmair, 2007<br />

Metarhizium anisopliae<br />

Metarhizium anisopliae<br />

Metarhizium anisopliae<br />

Metarhizium anisopliae<br />

Daktulosphaira<br />

vitifoliae<br />

(grape phylloxera)<br />

Daktulosphaira<br />

vitifoliae<br />

(grape phylloxera)<br />

Daktulosphaira<br />

vitifoliae<br />

(grape phylloxera)<br />

Daktulosphaira<br />

vitifoliae<br />

(grape phylloxera)<br />

Hemiptera:<br />

Phylloxeridae<br />

Hemiptera:<br />

Phylloxeridae<br />

Hemiptera:<br />

Phylloxeridae<br />

Hemiptera:<br />

Phylloxeridae<br />

Country<br />

Type of<br />

augmentation<br />

Type of<br />

test<br />

Germany Inundative Field<br />

(soil)<br />

Efficacy of Additional information <strong>and</strong> results<br />

bio<strong>control</strong><br />

agents*<br />

+ Only under optimum conditions <strong>and</strong> with<br />

high doses <strong>control</strong> of the white grubs<br />

could be reached.<br />

Greece Inundative Field +<br />

-<br />

B. bassiana in combination with mass<br />

trapping was compared to mass trapping<br />

or insecticides.<br />

Less efficient in the <strong>control</strong> of insect<br />

population if compared to some<br />

chemicals.<br />

Iraq Lab + Two isolates of B. bassiana showed<br />

100% mortality after 5 days<br />

Brazil Inundative Field + The effect of chemicals (thiacloprid <strong>and</strong><br />

methiocarb) with or without M.a. was<br />

tested. M.a. in combination with<br />

methiocarb was the best strategy.<br />

Austria Inundative Field Non-target effects on soil fauna: no<br />

negative effects detected.<br />

Austria Inundative Lab + M.a. was effective in pot experiments.<br />

Potential role of M.a. in grape phylloxera<br />

<strong>control</strong>.<br />

Germany Inundative Field + M.a. was effective.<br />

No target effects on soil fauna (Acari,<br />

Collembola, Lumbricida <strong>and</strong> the<br />

Carabidae Harpalus affinis) <strong>and</strong> fungi.<br />

Germany Inundative Field - Evaluation of efficacy: more difficulties<br />

arise in testing the efficacy of M.a. under<br />

field conditions because of the uneven<br />

distribution of roots <strong>and</strong> pest insects in<br />

the soil.<br />

145


Giorgini (Appendix for Chapter 2)<br />

Kirchmair et al.,<br />

2007<br />

Maheshkumar-<br />

Katke & Balikai,<br />

2008<br />

Metarhizium anisopliae<br />

Metarhizium anisopliae,<br />

Verticillium lecanii,<br />

Clerodendron inerme<br />

Daktulosphaira<br />

vitifoliae<br />

(grape phylloxera)<br />

Maconellicoccus<br />

hirsutus<br />

(grape mealybug)<br />

* + means effective, - means not effective bio<strong>control</strong> agent.<br />

Hemiptera:<br />

Phylloxeridae<br />

Hemiptera:<br />

Pseudococcidae<br />

Germany Inundative Field + 3 months after application an increase of<br />

the M.a. density in soil was observed.<br />

Compared with untreated plots a lower<br />

infestation was observed in the M.a.-<br />

treated plots. Two years after treatment a<br />

<strong>control</strong> effect was still observed whereas<br />

the density of M.a. in soil decreased.<br />

Three years after treatment no effect on<br />

the pest was detectable <strong>and</strong> the M.a.<br />

density had decreased to a value similar<br />

to that in the <strong>control</strong> . A periodically<br />

application is necessary.<br />

India Inundative Field +<br />

8.6 Nematodes [5 species]<br />

Reference Species of bio<strong>control</strong> agent Species of insect pest Taxonomic<br />

category of<br />

pests<br />

Saunders & All,<br />

1985<br />

English-Loeb et<br />

al., 1999<br />

Steinernema carpocapsae<br />

Heterorhabditis<br />

bacteriophora<br />

(Oswego strain),<br />

Steinernema glaseri<br />

(isolate 326)<br />

Vitacea polistiformis<br />

(grape root borer)<br />

Daktulosphaira vitifolia<br />

(grape phylloxera - root<br />

form)<br />

Lepidoptera:<br />

Sesiidae<br />

Hemiptera:<br />

Phylloxeridae<br />

Country Type of augmentation Type<br />

of test<br />

Georgia,<br />

USA<br />

NY,<br />

USA<br />

Inundative<br />

(soil)<br />

Lab,<br />

Field<br />

Efficacy of<br />

bio<strong>control</strong><br />

agents*<br />

Lab +<br />

Additional information <strong>and</strong><br />

results<br />

+ Susceptibility of V.p. 1st-instar<br />

larvae. Augmentation of nematode<br />

populations during the critical<br />

period of V.p. oviposition <strong>and</strong><br />

eclosion is suggested as a <strong>control</strong><br />

technique.<br />

-<br />

-<br />

H. bacteriophora: reduced survival<br />

of attached phylloxera by up to<br />

80%.<br />

S. glaseri had no measurable impact.<br />

No evidence that H.b. could<br />

successfully reproduce within the<br />

bodies of the hosts.<br />

Augmentative use in the field in an<br />

release programme may be<br />

constrained by the need to use high<br />

densities, their dependence on moist<br />

soils, <strong>and</strong> their inability to propagate<br />

themselves within hosts.<br />

146


Appendix 8<br />

Berner &<br />

Schnetter, 2002<br />

Williams et al.,<br />

2002<br />

Heterorhabditis<br />

bacteriophora,<br />

H.bacteriophora<br />

+ Beauveria brongniartii<br />

(fungus)<br />

Heterorhabditis<br />

bacteriophora,<br />

H. zeal<strong>and</strong>ica,<br />

H. marelata, <strong>and</strong><br />

Steinernema carpocapsae<br />

Melolontha melolontha<br />

(European cockchafer)<br />

Vitacea polistiformis<br />

(grape root borer)<br />

Coleoptera:<br />

Scarabeidae<br />

Lepidoptera:<br />

Sesiidae<br />

Germany<br />

Inundative<br />

(soil)<br />

Ohio, USA Inundative Lab<br />

Field + Only under optimum conditions <strong>and</strong><br />

with high doses of nematodes<br />

<strong>control</strong> of grubs could be reached.<br />

New variant for the application of<br />

nematodes proposed.<br />

Greenh<br />

ouse<br />

+<br />

+<br />

H. bacteriophora strains GPS11 <strong>and</strong><br />

Oswego, H. zeal<strong>and</strong>ica strain X1,<br />

<strong>and</strong> H. marelata.<br />

S. carpocapsae strain All less<br />

effective<br />

H. zeal<strong>and</strong>ica strain X1<br />

H. bacteriophora strain GPS11<br />

* + means effective, - means not effective bio<strong>control</strong> agent.<br />

8.7 Bacillus thuringiensis<br />

Reference<br />

B. thuringiensis<br />

subspecies<br />

Species of Insect<br />

pest<br />

Taxonomic<br />

category of<br />

pests<br />

Lepidoptera:<br />

Caroli et al., 1998 subsp. aizawai Lobesia botrana<br />

(grape berry moth) Tortricidae<br />

Keil & Schruft, 1998<br />

L. botrana,<br />

Lepidoptera:<br />

Eupoecilia<br />

Tortricidae<br />

ambiguella<br />

(grape berry moths)<br />

Mor<strong>and</strong>o et al., 1998<br />

L. botrana,<br />

Lepidoptera:<br />

E. ambiguella Tortricidae<br />

Boselli et al., 2000 L. botrana Lepidoptera:<br />

Tortricidae<br />

Fretay & Quenin, 2000 L. botrana Lepidoptera:<br />

Tortricidae<br />

Bagnoli & Lucchi, subsp. kurstaki Cryptoblabes Lepidoptera :<br />

2001<br />

gnidiella<br />

Pyralidae<br />

Boselli & Scannavini,<br />

2001<br />

Neves & Frescata,<br />

2001<br />

subsp. kurstaki<br />

subsp. aizawai<br />

(honey moth)<br />

L. botrana Lepidoptera:<br />

Tortricidae<br />

kurstaki x aizawai L. botrana Lepidoptera:<br />

Tortricidae<br />

Country Type of test Efficacy Additional results <strong>and</strong> information<br />

Emilia-<br />

Romagna, Italy<br />

Field + 90-95% reduction in damage <strong>against</strong> severe pest infestations<br />

comparable to the st<strong>and</strong>ard chemical products.<br />

Lab<br />

4 Bt products (0.2% Bactospeine FC, 0.1 % Delfin, 0.1% Dipel<br />

ES <strong>and</strong> 0.1% Thuricide HP) were compared. The influence of<br />

temperature on the efficacy is discussed.<br />

Toscana, Italy Field +<br />

Piemonte, Italy Field + The efficacy of Bt was compared to 7 insecticides. All the<br />

tested insecticides had a significantly good efficacy.<br />

Emilia- Field<br />

Bt compared to insecticides.<br />

Romagna, Italy<br />

France Field Evaluation of new formularions.<br />

Emilia-<br />

Romagna, Italy<br />

Bairrada,<br />

Portugal<br />

Field<br />

Treatments included Agree (Bt kurstaki <strong>and</strong> aizawi),<br />

flufenoxuron, chlorpyrifos, lufenuron, tebufenozide,<br />

methoxyfenozide, indoxacarb <strong>and</strong> spinosad. The best <strong>control</strong><br />

was obtained with methoxyfenozide, indoxacarb, <strong>and</strong> spinosad.<br />

Field + TUREX was tested to <strong>control</strong> the L. botrana third generation.<br />

Great interest of this Bt product regarding its efficiency <strong>and</strong><br />

persistence based in a correct spray moment determination.<br />

147


Giorgini (Appendix for Chapter 2)<br />

Anagnou et al., 2003<br />

Ifoulis & Savopoulou-<br />

Soultani, 2003<br />

subsp. kurstaki<br />

subsp. aizawai<br />

L. botrana Lepidoptera:<br />

Tortricidae<br />

L. botrana Lepidoptera:<br />

Tortricidae<br />

Roditakis, 2003 L. botrana Lepidoptera:<br />

Tortricidae<br />

Samoilov, 2003<br />

Sparganothis<br />

pilleriana (grape<br />

leafroller)<br />

Lepidoptera:<br />

Tortricidae<br />

Bakr, 2004 subsp. kurstaki Lobesia botrana Lepidoptera:<br />

Tortricidae<br />

Besnard et al., 2004 subsp. aizawai Lobesia botrana Lepidoptera:<br />

Tortricidae<br />

Hera et al., 2004 subsp. kurstaki Hyphantria cunea Lepidoptera:<br />

(fall webworm) Arctiidae<br />

Laccone et al., 2004 subsp. kurstaki Lobesia botrana Lepidoptera:<br />

Tortricidae<br />

Mazzocchetti et al.,<br />

2004<br />

Moiraghi et al., 2004<br />

Lobesia botrana<br />

L. botrana<br />

E. ambiguella<br />

Lepidoptera:<br />

Tortricidae<br />

Lepidoptera:<br />

Tortricidae<br />

Delbac et al., 2006 Lobesia botrana Lepidoptera:<br />

Tortricidae<br />

Marchesini et al., 2006 subsp. aizawai Lobesia botrana Lepidoptera:<br />

subsp. kurstaki<br />

Tortricidae<br />

Laccone, 2007 Lobesia botrana Lepidoptera:<br />

Tortricidae<br />

Mescalchin, 2007 Lobesia botrana Lepidoptera:<br />

Tortricidae<br />

Mitrea et al.,<br />

subsp. kurstaki Lobesia botrana Lepidoptera:<br />

2007<br />

Tortricidae<br />

Lab + Several products incorporated into an artificial diet resulted in<br />

>90% larval mortality.<br />

The same formulations did not significantly affect the survival<br />

of Nephus includens.<br />

Greece Field + Two formulations of Bt are significantly more effective than the<br />

<strong>control</strong>, the dusting being more effective in most cultivars <strong>and</strong><br />

the spraying in a few cultivars.<br />

Greece Field Pest <strong>control</strong> strategy involves B.t. application, mating<br />

disruption, botanical insecticides <strong>and</strong> minimal use of<br />

insecticides<br />

Odessa, Ukraine Field +<br />

Egypt Field + The addition of sugar as a feeding stimulant to a 50% reduced<br />

rate of Dipel-2X resulted in higher <strong>control</strong> rates (80%)<br />

compared to using the recommended field rates of Dipel-2X<br />

alone or Actellic [pirimiphos-methyl].<br />

France Field + Xen Tari commercial product.<br />

Romania Field + Dipel 2x WP at 0.075% also showed good protection. The<br />

synergenism of mixtures (50:50) of chemical <strong>and</strong> <strong>biological</strong><br />

insecticides was effective in <strong>control</strong>ling the pest.<br />

Calabria, Italy Field + Bt gave satisfactory <strong>control</strong> if applied at the onset of<br />

ovideposition <strong>and</strong> provided the canopy was managed in such a<br />

way as to expose the berries.<br />

Abruzzo, Italy Field Mating disruption was compared with the traditional methods<br />

generally used in the area: chemicals (phosphorganic<br />

molecules) <strong>and</strong> B. thuringiensis.<br />

Italy Field - In four years, trials were carried out using several commercial<br />

products (9 insecticides <strong>and</strong> Bt). The best <strong>control</strong> was obtained<br />

using insecticides. Control was lower for azadirachtin <strong>and</strong> less<br />

constant for etofenprox <strong>and</strong> B. thuringiensis.<br />

France Field + L. botrana was well-<strong>control</strong>led by the use of B.t. or IGR’s,<br />

without mating disruption justification<br />

Veneto, Italy Field + Bta compared to Btk <strong>and</strong> chemicals.<br />

Molise <strong>and</strong><br />

Calabria, Italy<br />

Field<br />

High efficacy of B.t. aizawai.<br />

Pest <strong>control</strong> with indoxacarb, spinosad <strong>and</strong> B. thuringiensis<br />

applied <strong>against</strong> the 2nd generation of insects parasitizing fruit is<br />

also outlined<br />

Trentino, Italy Field + 5-years study (2000-2005). Formulations based Bt can be used<br />

for <strong>control</strong>ling tortricids such as L. botrana.<br />

Romania Field + Chemical insecticides followed by Btk to <strong>control</strong> the second or<br />

the third generation. Efficiency of the <strong>control</strong> treatments ranged<br />

between 89.4% <strong>and</strong> 91.4%.<br />

148


Appendix 8<br />

Mor<strong>and</strong>i-Filho et al.,<br />

2007<br />

Pryke & Samways,<br />

2007<br />

Ruiz-de-Escudero et<br />

al., 2007<br />

subsp. kurstaki<br />

Argyrotaenia<br />

sphaleropa (South<br />

American tortricid<br />

moth)<br />

Epichoristodes<br />

acerbella<br />

(South African<br />

carnation tortrix)<br />

Lobesia botrana<br />

Lepidoptera:<br />

Tortricidae<br />

Lepidoptera:<br />

Tortricidae<br />

Lepidoptera:<br />

Tortricidae<br />

Subic, 2007 subsp. kurstaki Lobesia botrana Lepidoptera:<br />

Tortricidae<br />

Dongiovanni et al., subsp. kurstaki Lobesia botrana Lepidoptera:<br />

2008<br />

Tortricidae<br />

Brazil<br />

Lab<br />

Field<br />

+<br />

+<br />

Lab: reducition of the insect population by more than 90%.<br />

Field: reduced damage between 83.3 <strong>and</strong> 94.4%. The <strong>control</strong><br />

efficacy of B.t was equal to that of chemicals.<br />

South Africa Field + DiPelReg commercial formulation<br />

Lab + The potential of Bt Cry proteins to <strong>control</strong> L. botrana was<br />

explored.<br />

Either Cry1Ia or Cry9C could be used in combination with<br />

Cry1Ab to <strong>control</strong> this pest, either as the active components of<br />

Bt sprays or expressed together in transgenic plants.<br />

Croatia Field + Over 90% <strong>control</strong> was achieved.<br />

Puglia, Italy Field +<br />

References<br />

Abd-Rabou S. 2005. The effect of <strong>augmentative</strong> releases of indigenous parasitoid, Anagyrus kamali (Hymenoptera: Encyrtidae) on populations of Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) in<br />

Egypt. Archives of Phytopathology <strong>and</strong> Plant Protection 38: 129-132.<br />

Al Jboory I.J., Ismail I.A. & Al Dahwe S.S. 2006. Evaluation of two isolates of Beauveria bassiana (Bals.) Vuill. <strong>against</strong> some insects <strong>and</strong> mites <strong>and</strong> testing the efficiency of some culture media.<br />

University of Aden, Journal of Natural <strong>and</strong> Applied Sciences 10(1): 23-29.<br />

Anagnou M., Kontodimas V. & Kontodimas D.C. 2003. Laboratory tests of the effect of Bacillus thuringiensis on grape berry moth Lobesia botrana (Lepidoptera: Tortricidae) <strong>and</strong> on the pseudococcids'<br />

predator Nephus includens (Coleoptera: Coccinellidae). Bulletin OILB/SROP 26(8): 117-119.<br />

Bagnoli B. & Lucchi A. 2001. Bionomics of Cryptoblabes gnidiella (Milliere) (Pyralidae Phycitinae) in Tuscan vineyards. Bulletin OILB/SROP 24(7): 79-83.<br />

Bakr H.A. 2004. A feeding stimulant for improving the efficacy of Bacillus thuringiensis var. kurstaki in larval <strong>control</strong> of the grape moth, Lobesia botrana Den. & Schiff. (Lepidoptera: Tortricidae).<br />

Egyptian Journal of Biological Pest Control 14(2): 411-413.<br />

Basso C., Grille G., Pompanon F., Allem<strong>and</strong> R. & Pintureau B. 1998. Comparison of <strong>biological</strong> <strong>and</strong> ethological characters of Trichogramma pretiosum <strong>and</strong> T. exiguum (Hymenoptera: Trichogrammatidae).<br />

Revista Chilena de Entomologia 25: 45-53.<br />

Basso C., Grille G. & Pintureau B. 1999. Efficiency of Trichogramma exiguum Pinto & Platner <strong>and</strong> T. pretiosum Riley to <strong>control</strong> Argyrotaenia sphaleropa (Meyrick) <strong>and</strong> Bonagota cranaodes (Meyrick) in<br />

Uruguayan vineyard. Agrociencia Montevideo 3(1): 20-26<br />

Begum M., Gurr G.M., Wratten S.D., Hedberg P.R. & Nicol H.I. 2006. Using selective food plants to maximize <strong>biological</strong> <strong>control</strong> of vineyard pests. Journal of Applied Ecology 43: 547-554.<br />

Besnard Y. & Boudet M. 2004. Bacillus thuringiensis sp. aizawai? Insecticide <strong>against</strong> grape berry moths <strong>and</strong> noctuids. Phytoma 575: 46-47.<br />

Berner M. & Schnetter W. 2002. Field trials with the entomopathogenic nematode Heterorhabditis bacteriophora <strong>against</strong> white grubs of the European cockchafer (Melolontha melolontha) in the southern<br />

part of Germany. Bulletin OILB/SROP 25(7): 29-34.<br />

Boller E.F., Remund U. & C<strong>and</strong>olfi,-M.P. 1988. Hedges as potential sources of Typhlodromus pyri, the most important predatory mite in vineyards of northern Switzerl<strong>and</strong>. Entomophaga 33: 240-255.<br />

Boselli M.& Scannavini M. 2001. Control of grape moth in Emilia-Romagna. Informatore Agrario 57(19): 97-100.<br />

Boselli M., Scannavini M. & Mel<strong>and</strong>ri M. 2000. Comparison of <strong>control</strong> strategies <strong>against</strong> the grape moth. Informatore Agrario 56(19): 61-65.<br />

Camporese P. & Duso C. 1996. Different colonization patterns of phytophagous <strong>and</strong> predatory mites (Acari: Tetranychidae, Phytoseiidae) on three grape varieties: a case study. Experimental <strong>and</strong> Applied<br />

Acarology 20: 1-22.<br />

Caroli L. & Boselli M. 1998. Evaluation of efficacy of a new Bacillus thuringiensis aizawai based product <strong>against</strong> the grape moth, Lobesia botrana. Atti Giornate fitopatologiche, Scicli e Ragusa,3-7<br />

maggio,1998: 293-296.<br />

149


Giorgini (Appendix for Chapter 2)<br />

Daane K.M., Bentley W.J., Walton V.M. et al. 2006. New <strong>control</strong>s investigated for vine mealybug. California Agriculture 60(1): 31-38.<br />

Daane K.M., Cooper M.L., Triapitsyn S.V. et al. 2008. Integrated management of mealybugs in California vineyards. Acta Horticulturae 785: 235-252.<br />

Daane K.M. & Yokota G.Y. 1997. Release strategies affect survival <strong>and</strong> distribution of green lacewings (Neuroptera: Chrysopidae) in augmentation programs. Environmental Entomology 26: 455-464.<br />

Daane K.M., Yokota,G.Y., Zheng Y. & Hagen, K.S. 1996. Inundative release of common green lacewings (Neuroptera: Chrysopidae) to suppress Erythroneura variabilis <strong>and</strong> E. elegantula (Homoptera:<br />

Cicadellidae) in vineyards. Environmental Entomology 25: 1224-1234.<br />

Delbac L., Brustis J.M., Deliere L. et al. 2006. Development of decision rules for pest vineyard management. Bulletin OILB/SROP 29(11): 41.<br />

Dongiovanni C., Giampaolo C., di Carolo M., Natale P. & Venerito P. 2008. Evaluation of different application modes of Bacillus thuringiensis <strong>against</strong> grape moth of grapevine in Apulia. Giornate<br />

Fitopatologiche 2008, Cervia RA, 12-14 marzo 2008,Vol. 1: 199-202.<br />

Duso C., Pozzebon A. & Malagnini V. 2006. Augmentative releases of beneficials in vineyards: factors affecting predatory mite (Acari: Phytoseiidae) persistence in the long-term period. Bulletin<br />

OILB/SROP 29(11): 215-219.<br />

Duso C. & Vettorazzo E. 1999. Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Experimental <strong>and</strong> Applied Acarology 23: 741-763.<br />

El Wakeil N.E., Farghaly H.T. & Ragab Z.A. 2008. Efficacy of inundative releases of Trichogramma evanescens in <strong>control</strong>ling Lobesia botrana in vineyards in Egypt. Journal of Pest Science 81: 49-55.<br />

English Loeb G., Villani M.,Martinson T., Forsline A. & Consolie N. 1999. Use of entomopathogenic nematodes for <strong>control</strong> of grape phylloxera (Homoptera: Phylloxeridae): a laboratory evaluation.<br />

Environmental Entomology 28: 890-894.<br />

Fretay G. du & Quenin H. 2000. Evaluation of a new formulation of Bacillus thuringiensis <strong>against</strong> European grapevine moth [Lobesia botrana] in France. Bulletin OILB/SROP 23(4): 175-177.<br />

Garnier Geoffroy F., Malosse C., Durier C. & Hawlitzky N. 1999. Behaviour of Trichogramma brassicae Bezdenko (Hym.: Trichogrammatidae) towards Lobesia botrana Denis & Schiffermuller (Lep.:<br />

Tortricidae). Annales de la Societe Entomologique de France 35(Supp.): 390-396.<br />

Glenn D.C. & Hoffmann A.A. 1997. Developing a commercially viable system for <strong>biological</strong> <strong>control</strong> of light brown apple moth (Lepidoptera: Tortricidae) in grapes using endemic Trichogramma<br />

(Hymenoptera: Trichogrammatidae). Journal of Economic Entomology 90: 370-382.<br />

Hera E., Tudorache M., Mincea C. & Pasareanu A. 2004. Chemical <strong>and</strong> <strong>biological</strong> <strong>control</strong> of the Hyphantria cunea Drury. in vineyard. Analele Institutului de Cercetare Dezvoltare pentru Protectia<br />

Plantelor, 2004, publ.2005, 33: 259-264.<br />

Hommay G., Gertz C.,Kienlen J.C., Pizzol J. & Chavigny P. 2002. Comparison between the <strong>control</strong> efficacy of Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae) <strong>and</strong> two<br />

Trichogramma cacoeciae Marchal strains <strong>against</strong> grapevine moth (Lobesia botrana Den. & Schiff.), depending on their release density. Bio<strong>control</strong> Science <strong>and</strong> Technology 12: 569-581.<br />

Huber L. & Kirchmair M. 2007. Evaluation of efficacy of entomopathogenic fungi <strong>against</strong> small-scale grape-damaging insects in soil - experiences with grape phylloxera. Acta Horticulturae 733: 167-171.<br />

Ifoulis A.A. & Savopoulou Soultani M. 2003. Biological <strong>control</strong> of Lobesia botrana (Lepidoptera: Tortricidae) larvae by using different formulations of Bacillus thuringiensis in 11 vine cultivars under<br />

field conditions. Journal of Economic Entomology 97: 340-343.<br />

Kapongo J.P., Kevan P.G. & Giliomee J.H. 2007. Control of Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae) with the parasitoid Muscidifurax raptor (Hymenoptera: Pteromalidae) in<br />

vineyards. HortScience 42(6): 1400-1404.<br />

Keil S.& Schruft G. 1998. Effectiveness of Bacillus thuringiensis on the grape vine <strong>and</strong> grape berry moth (Lobesia botrana <strong>and</strong> Eupoecilia ambiguella). Bulletin OILB/SROP 21(2): 63-65.<br />

Kirchmair M., Hoffman M., Neuhauser S., Strasser H. & Huber L. 2007. Persistence of GranMetReg., a Metarhizium anisopliae based product, in grape phylloxera-infested vineyards. Bulletin OILB/SROP<br />

30(7): 137-142.<br />

Kirchmair M., Huber L., Leither E. & Strasser H. 2005. The impact of the fungal BCA Metarhizium anisopliae on soil fungi <strong>and</strong> animals. Bulletin OILB/SROP 28(2): 157-161.<br />

Kirchmair M., Huber L., Porten M., Rainer J. & Strasser H. 2004. Metarhizium anisopliae, a potential agent for the <strong>control</strong> of grape phylloxera. BioControl 49: 295-303.<br />

Laccone G. 2007. Control of the grape berry moth based on active substances. Informatore Agrario 63(26): 67-69.<br />

Laccone G., Scarpelli P.G., Spataro D., Caterisano R. 2004. Protecting wine grape vines in the South. Informatore Agrario 60(21): 65-70.<br />

Laengle T., Kirchmair M., Bauer T. et al. 2004. Environmental risk assessment of soil-applied fungal <strong>biological</strong> <strong>control</strong> agents with respect to European registration. Bulletin-OILB/SROP. 2004; 27(8):<br />

197-200<br />

Lopes R.B., Tamai M.A., Alves, S.B., Silveira-Neto S. & Salvo S. de 2002. Occurrence of thrips in Niagara table grape <strong>and</strong> their <strong>control</strong> with insecticides thiacloprid <strong>and</strong> methiocarb in association with<br />

Metarhizium anisopliae. Revista Brasileira de Fruticultura 24(1): 269-272.<br />

Maheshkumar Katke & Balikai R.A. 2008. Management of grape mealy bug, Maconellicoccus hirsutus (Green). Indian Journal of Entomology 70(3): 232-236.<br />

Mani M. 2008. Polyhouse efficacy of Cryptolaemus montrouzieri Mulsant for the suppression of Planococcus citri (Risso) on grapes <strong>and</strong> Ferrisia virgata (Cockerell) on guava. Journal of Insect Science<br />

Ludhiana 21(2): 202-204.<br />

Marchesini E., Ruggiero P. & Posenato G. 2006. Efficacy of Bacillus thuringensis subsp. aizawai in the <strong>control</strong> of grape berry moth (Lobesia botrana Den. & Schiff.). Giornate Fitopatologiche 2006,<br />

Riccione RN, 27-29 marzo 2006 Atti, vol. 1: 105-110<br />

150


Appendix 8<br />

Marshall D.B. & Lester P.J. 2001. The transfer of Typhlodromus pyri on grape leaves for <strong>biological</strong> <strong>control</strong> of Panonychus ulmi (Acari: Phytoseiidae, Tetranychidae) in vineyards in Ontario, Canada.<br />

Biological Control 20: 228-235.<br />

Mazzocchetti A., Angelucci S., Casolari A. et al. 2004. Mating disruption technique for the <strong>control</strong> of Lobesia botrana (Denis & Schiffermuller) (Tortricidae) on pergola-trained grapevines in Abruzzo.<br />

Giornate Fitopatologiche 2004, Montesilvano-Pescara, 4-6 maggio 2004, Atti, vol. 1: 77-82.<br />

Mescalchin E. 2007. Protection strategies in organic viticulture. Notiziario ERSA 2007, publ. 2008, 20(4): 59-61.<br />

Mitrea I., Stan C., Tuca O. 2007. Research regarding the integrate management of the vine moth (Lobesia botrana Den et Schiff.) at the Dealurile Craiovei vineyard. Bulletin of University of Agricultural<br />

Sciences <strong>and</strong> Veterinary Medicine Cluj Napoca Agriculture 63/64: 201-206.<br />

Moiraghi G., Mor<strong>and</strong>o A., Sozzani F. & Lembo S. 2004. Trials of grape berry moth <strong>control</strong>. Giornate Fitopatologiche 2004, Montesilvano-Pescara, 4-6 maggio 2004, Atti, vol. 1: 71-76.<br />

Mor<strong>and</strong>i Filho W.J., Botton M., Grutzmacher A.D. & Zanardi O.Z. 2007. Effect of Bacillus thuringiensis <strong>and</strong> chemical insecticides for the <strong>control</strong> of Argyrotaenia sphaleropa (Meyrick, 1909)<br />

(Lepidoptera: Tortricidae) in vineyards. Arquivos do Instituto Biologico Sao Paulo 74(2): 129-134.<br />

Mor<strong>and</strong>o A., Lembo S., Marenco, G.L.,Cerrato M., Mor<strong>and</strong>o P. & Bevione D. 1998. Control of grape berry moth with <strong>biological</strong> preparations in comparison with insect growth regulators <strong>and</strong><br />

organophosphates. Atti Giornate fitopatologiche, Scicli e Ragusa, 3-7 maggio, 1998: 201-204.<br />

Nagarkatti S., Tobin P.C., Saunders M.C. & Muza A.J. 2002. Role of the egg parasitoid Trichogramma minutum in <strong>biological</strong> <strong>control</strong> of the grape berry moth, Endopiza viteana. BioControl 47: 373-385.<br />

Nagargatti S., Tobin P.C., Saunders M.C. & Muza A.J. 2003. Release of native Trichogramma minutum to <strong>control</strong> grape berry moth. Canadian Entomologist 135: 589-598 .<br />

Neves M. & Frescata C. 2001. TUREX (Bacillus thuringiensis ssp. kurstaki x ssp. aizawai) for the <strong>control</strong> of Lobesia botrana third generation in Bairrada (Portugal). Bulletin OILB/SROP 24(7): 109-111.<br />

Pryke J.S. & Samways M.J. 2007. Current <strong>control</strong> of phytosanitary insect pests in table grape vineyards of the Hex River Valley, South Africa. African Entomology 15(1): 25-36.<br />

Remund U. & Bigler F. 1986. Tests for parasitism of the grape berry moth, Eupoecilia ambiguella Hubner (Lepidoptera, Tortricidae) by Trichogramma dendrolimi Mastsumura <strong>and</strong> Trichogramma maidis<br />

Pintureau et Voegele (Hymenoptera, Trichogrammatidae). Journal of Applied Entomology 102: 169-178.<br />

Roditakis N. 2003. Integrated <strong>control</strong> of grape berry moth Lobesia botrana Den. & Schiff. (Lepidoptera: Tortricidae) in Greece - present status <strong>and</strong> perspectives. Bulletin OILB/SROP 26(8): 145-146.<br />

Ruiz de Escudero I., Estela A., Escriche B. & Caballero P. 2007. Potential of the Bacillus thuringiensis toxin reservoir for the <strong>control</strong> of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape<br />

plants. Applied <strong>and</strong> Environmental Microbiology 73: 337-340.<br />

Samoilov Yu K. 2003. Vineyards without chemicals. Zashchita i Karantin Rastenii 6: 22-23.<br />

Saunders M.C. & All J.N.1985. Association of entomophilic rhabditoid nematode populations with natural <strong>control</strong> of first-instar larvae of the grape root borer, Vitacea polistiformis, in concord grape<br />

vineyards. Journal of Invertebrate Pathology 45: 147-151.<br />

Segonca C. & Leisse N. 1989. Enhancement of the egg parasite Trichogramma semblidis (Auriv.) (Hym., Trichogrammatidae) for <strong>control</strong> of both grape vine moth species in the Ahr Valley. Journal of<br />

Applied Entomology 107: 41-45<br />

Subic M. 2007. Multi-year trials of the chemical, biotechnological <strong>and</strong> <strong>biological</strong> <strong>control</strong> of European grape vine moth (Lobesia botrana) in the Meimurje wine region. Glasilo Biljne Zastite 7(4): 245-254.<br />

Takahashi F., Inoue M., Takafuji A. 1998. Management of the spider-mite population in a vinyl house vinery by releasing Phytoseiulus persimilis Athias-Henriot onto the ground cover. Japanese Journal<br />

of Applied Entomology <strong>and</strong> Zoology 42: 71-76.<br />

Thomson L.J. & Hoffmann A.A. 2002. Laboratory fecundity as predictor of field success in Trichogramma carverae (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology 95: 912-917.<br />

Tsitsipis J.A., Roditakis N., Michalopoulos G. et al. 2003. A novel scarring symptom on seedless grapes in the Corinth region (Peloponnese, southern Greece) caused by the western flower thrips,<br />

Frankliniella occidentalis, <strong>and</strong> pest <strong>control</strong> tests. Bulletin OILB/SROP 26(8): 259-263.<br />

Van Driesche R.G. & Bellows T.S. 1996. Biological Control. Chapman & Hall, New York, NY, USA, 539 pp.<br />

Walton V.M. & Pringle K.L. 1999. Effects of pesticides used on table grapes on the mealybug parasitoid Coccidoxenoides peregrinus (Timberlake) (Hymenoptera: Encyrtidae). South African Journal for<br />

Enology <strong>and</strong> Viticulture 20(1): 31-34<br />

Walton V.M. & Pringle K.L. 2004. Vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), a key pest in South African vineyards. A review. South African Journal of Enology <strong>and</strong><br />

Viticulture 25(2): 54-62.<br />

Williams R.N., Fickle D.S., Grewal P.S. & Meyer J.R. 2002. Assessing the potential of entomopathogenic nematodes to <strong>control</strong> the grape root borer Vitacea polistiformis (Lepidoptera: Sesiidae) through<br />

laboratory <strong>and</strong> greenhouse bioassays. Bio<strong>control</strong> Science <strong>and</strong> Technology 12: 35-42.<br />

Wunderlich L.R. & Giles D.K. 1999. Field assessment of adhesion <strong>and</strong> hatch of Chrysoperla eggs mechanically applied in liquid carriers. Biological-Control. 1999; 14(3): 159-167.<br />

Zimmermann O. 2004. Use of Trichogramma wasps in Germany: present status of research <strong>and</strong> commercial application of egg parasitoids <strong>against</strong> lepidopterous pests for crop <strong>and</strong> storage protection.<br />

Gesunde Pflanzen 56(6): 157-166.<br />

151


Appendix 9. References on classical <strong>biological</strong> <strong>control</strong> <strong>against</strong> insect pests (cited in Chapter 3)<br />

9.1. Bio<strong>control</strong> agents not precisely known<br />

Type of work Pest (genus level) References*<br />

Prospective studies (55%) (88)<br />

Aproaerema (89)<br />

Cameraria (61)<br />

Cryptococcus (175) (94)<br />

Diabrotica (154)<br />

Hypsipyla (141)<br />

Liriomyza (87)<br />

Lymanthria (70)(72)<br />

Scirtothrips (45)<br />

Tetranychus<br />

Retrospective studies (35%) (166)<br />

Chilo (128)<br />

Cinara (56)<br />

Cosmopolites (103)<br />

Maconellicoccus (47)<br />

mealybugs (191)<br />

Mononychellus (97)<br />

Phenacoccus<br />

Other studies (10%) (82)<br />

Pest biology Enarmonia (88)<br />

* Numbers correspond to refernces presented in section 9.4<br />

152


Appendix 9<br />

9.2. Details on the use of pathogens, nematodes <strong>and</strong> predators as agents of <strong>Classical</strong> Biological Control<br />

Pest BCA lifestyle BCA References*<br />

Aceria<br />

Fungus<br />

Hirsutella<br />

(114)<br />

Predatory mite Neoseiulus<br />

Adelges Predatory Insect Laricobius (119)<br />

Anticarsia Virus Nucleopolyhedrovirus (197)<br />

Aphids Predatory Insect Harmonia (48) (127)<br />

Aphis Fungus Neozygites (19) (90) (91) (137)<br />

Coptotermes Fungus Beauvaria & Metarhizium (168)<br />

Lymantria Fungus<br />

Microspora<br />

(35)<br />

Virus<br />

Nucleopolyhedrovirus<br />

Maconellicoccus Predatory Insect Cryptolaemus<br />

(165)<br />

Scymnus<br />

Mononychellus Fungus<br />

Neozygites<br />

(16)<br />

Predatory mite Neosiulus &Typhlodromalus<br />

Oryctes Virus _ (51) (86)<br />

Prostephanus Predatory Insect Teretrius (51)<br />

Review Fungus _ (14) (39) (42) (43)<br />

Review Nematode _ (14) (55) (124) (125) (193) (194)<br />

Sirex Nematode Deladenus (81)<br />

Solenopsis Fungus Vairimorpha (73) (169) (170)<br />

* Numbers correspond to refernces presented in section 9.4<br />

153


Ris & Malausa (Appendix for Chapter 3)<br />

9.3 Categorization of publications related to Insect parasitoids as ClBCA according to the type of work<br />

Pest Biology<br />

Pest rearing : (83, 183)<br />

BCA Biology<br />

BCA inventories : (30, 34, 65) (67) (88) (157) (178)<br />

BCA systematics: (18, 52, 123) (36) (186)<br />

BCA molecular characterization: (121, 132)<br />

BCA rearing: (21, 58, 92, 163) (171)<br />

BCA biology: (6, 10, 37) (74) (77) (85) (98) (100) (102) (104) (105) (158) (159) (160) (172) (190) (195)<br />

BCA Evaluation: (12, 44, 46) (57) (80) (108) (151)<br />

BCA Field Implications<br />

Pre-release survey: (9, 60, 66) (122) (140) (166)<br />

BCA introduction : see table 1<br />

Post-release survey : (20, 22, 32) (33) (36) (50) (54) (64) (68) (76) (78) (106) (107) (113) (109) (135) (142) (145) (146) (148) (150) (162) (179)<br />

Non-intended effects<br />

(24, 29, 38) (58) (71) (84) (92) (65) (101) (129) (149) (155) (184) (189)<br />

Bio<strong>control</strong> disruption<br />

(17, 27, 69) (95) (130) (147) (180)<br />

Miscellaneous<br />

Economic valuation: (23)<br />

Review: (75, 112, 152) (153)<br />

Miscellaneous: (111, 115, 116) (139) (176)<br />

“Conservation BC-like” : (173)<br />

154


Appendix 9<br />

References<br />

1. Abd-Rabou S. 2002. Biological <strong>control</strong> of two species of whiteflies by Eretmocerus siphonini (Hymenoptera: Aphelinidae) in Egypt. Acta Phytopathologica et Entomologica Hungarica 37:<br />

257-60<br />

2. Abd-Rabou S. 2004. Biological <strong>control</strong> of Bemisia tabaci biotype "B" (Homoptera : Aleyrodidae) by introduction, release <strong>and</strong> establishment of Eretmocerus hayati (Hymenoptera :<br />

Aphelinidae). Journal of Pest Science 77: 91-4<br />

3. Abd-Rabou S. 2005. Importation, colonization <strong>and</strong> establishment of Coccophagus cowperi Gir. (Hymenoptera : Aphelinidae) on Saissetia coffeae (Walk.) (Homoptera : Coccidae) in Egypt.<br />

Journal of Pest Science 78: 77-81<br />

4. Abd-Rabou S. 2006. Biological <strong>control</strong> of the leafminer, Liriomyza trifolii by introduction, releasing, evaluation of the parasitoids Diglyphus isaea <strong>and</strong> Dacnusa sibirica on vegetables crops<br />

in greenhouses in Egypt. Archives of Phytopathology <strong>and</strong> Plant Protection 39: 439-43<br />

5. Aebi A, Schonrogge K, Melika G, Quacchia A, Alma A, Stone GN. 2007. Native <strong>and</strong> introduced parasitoids attacking the invasive chestnut gall wasp Dryocosmus kuriphilus. Bulletin<br />

OEPP/EPPO Bulletin 37: 166-71<br />

6. Aldrich JR, Zhang A. 2002. Kairomone strains of Euclytia flava (Townsend), a parasitoid of stink bugs. Journal of Chemical Ecology 28: 1565-82<br />

7. Alleck M, Seewooruthun SI, Ramlugun D. 2006. Cypress aphid status in Mauritius & trial releases of Pauesia juniperorum (Hymenoptera: Braconidae), a promising bio<strong>control</strong> agent. Revue<br />

Agricole et Sucriere de l'Ile Maurice 85: 60-7<br />

8. Alvarenga CD, Brito ES, Lopes EN, Silva MA, Alves DA, et al. 2005. Introduction <strong>and</strong> recovering of the exotic parasitoid Diachasmimorpha longicaudata (Ashmead) (Hymenoptera:<br />

Braconidae) in commercial guava orchards in the north of the state of Minas Gerais, Brazil. Neotropical Entomology 34: 133-6<br />

9. Alyokhin AV, Yang PJ, Messing RH. 2001. Distribution <strong>and</strong> parasitism of Sophonia rufofascia (Homoptera: Cicadellidae) eggs in Hawaii. Annals of the Entomological Society of America<br />

94: 664-9<br />

10. Amalin DM, Pena JE, Duncan RE. 2005. Effects of host age, female parasitoid age, <strong>and</strong> host plant on parasitism of Ceratogramma etiennei (Hymenoptera: Trichogrammatidae). Florida<br />

Entomologist 88: 77-82<br />

11. Anagnou-Veroniki M, Papaioannou-Souliotis P, Karanastasi E, Giannopolitis CN. 2008. New records of plant pests <strong>and</strong> weeds in Greece, 1990-2007. Hellenic Plant Protection Journal 1: 55-<br />

78<br />

12. Andreassen LD, Kuhlmann U, Mason PG, Holliday NJ. 2007. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of the cabbage root fly, Delia radicum, in Canadian canola: an analysis of research needs. CAB<br />

Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition <strong>and</strong> Natural Resources 2<br />

13. Argov Y, Gazit Y. 2008. Biological <strong>control</strong> of the Mediterranean fruit fly in Israel: Introduction <strong>and</strong> establishment of natural enemies. Biological Control 46: 502-7<br />

14. Ariori SL, Dara SK. 2007. Predation of Neozygites tanajoae-infected cassava green mites by the predatory mite, Typhlodromalus aripo (Acari: Phytoseiidae). Agriculturae Conspectus<br />

Scientificus (Poljoprivredna Znanstvena Smotra) 72: 169-72<br />

15. Aristizabal ALF, Salazar EHM, Mejia MCG, Bustillo PAE. 2004. Introduction <strong>and</strong> evaluation of Phymastichus coffea (Hymenoptera: Eulophidae) in smallholder coffee farms, through<br />

participatory research. Revista Colombiana de Entomologia 30: 219-24<br />

16. Barlow ND, Caldwell NP, Kean JM, Barron MC. 2000. Modelling the use of NPV for the <strong>biological</strong> <strong>control</strong> of Asian gypsy moth Lymantria dispar invading New Zeal<strong>and</strong>. Agricultural <strong>and</strong><br />

Forest Entomology 2: 173-84<br />

17. Batchelor TP, Hardy ICW, Barrera JF, Perez-Lachaud G. 2005. Insect gladiators II: Competitive interactions within <strong>and</strong> between bethylid parasitoid species of the coffee berry borer,<br />

Hypothenemus hampei (Coleoptera: Scolytidae). Biological Control 33: 194-202<br />

18. Baur H, Muller FJ, Gibson GAP, Mason PG, Kuhlmann U. 2007. A review of the species of Mesopolobus (Chalcidoidea: Pteromalidae) associated with Ceutorhynchus (Coleoptera:<br />

Curculionidae) host-species of European origin. Bulletin of Entomological Research 97: 387-97<br />

19. Bazzocchi GG, Lanzoni A, Accinelli G, Burgio G. 2004. Overwintering, phenology <strong>and</strong> fecundity of Harmonia axyridis in comparison with native coccinellid species in Italy. BioControl 49:<br />

245-60<br />

20. Bento JMS, Moraes GJd, Matos APd, Bellotti AC. 2000. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of the mealybug Phenacoccus herreni (Hemiptera: Pseudococcidae) in northeastern Brazil.<br />

Environmental Entomology 29: 355-9<br />

21. Berg MAvd, Greenl<strong>and</strong> J. 1999. Rearing <strong>and</strong> releasing methods for Encarsia cf. smithi (Hym.: Aphelinidae), used in a classical <strong>biological</strong> <strong>control</strong> programme for the spiny blackfly,<br />

Aleurocanthus spiniferus (Hem.: Aleyrodidae). Neltropika Bulletin: 56-8<br />

22. Berg MAvd, Greenl<strong>and</strong> J. 2001. Pest status of two blackfly species on citrus in South Africa <strong>and</strong> Swazil<strong>and</strong>. African Plant Protection 7: 53-7<br />

23. Berg MAvd, Hoppner G, Greenl<strong>and</strong> J. 2000. An economic study of the <strong>biological</strong> <strong>control</strong> of the spiny blackfly, Aleurocanthus spiniferus (Hemiptera: Aleyrodidae), in a citrus orchard in<br />

Swazil<strong>and</strong>. Bio<strong>control</strong> Science <strong>and</strong> Technology 10: 27-32<br />

155


Ris & Malausa (Appendix for Chapter 3)<br />

24. Boyd EA, Hoddle MS. 2007. Host specificity testing of Gonatocerus spp. egg-parasitoids used in a classical <strong>biological</strong> <strong>control</strong> program <strong>against</strong> Homalodisca vitripennis: a retrospective<br />

analysis for non-target impacts in southern California. Biological Control 43: 56-70<br />

25. Briano JA, Williams DF. 2002. Natural occurrence <strong>and</strong> laboratory studies of the fire ant pathogen Vairimorpha invictae (Microsporida: Burenellidae) in Argentina. Environmental<br />

Entomology 31: 887-94<br />

26. Casagr<strong>and</strong>e RA, Tewksbury LA. 2005. Lily leaf beetle <strong>biological</strong> <strong>control</strong>: research report to the North American Lily Society - January 4, 2006. Lily Yearbook of the North American Lily<br />

Society, Inc.: 35-41<br />

27. Chacon JM, L<strong>and</strong>is DA, Heimpel GE. 2008. Potential for biotic interference of a classical <strong>biological</strong> <strong>control</strong> agent of the soybean aphid. Biological Control 46: 216-25<br />

28. Charles J. 2001. Introduction of a parasitoid for mealybug bio<strong>control</strong>: a case study under new environmental legislation. New Zeal<strong>and</strong> Plant Protection Volume 54, 2001. Proceedings of a<br />

conference, Quality Hotel, Palmerston North, New Zeal<strong>and</strong>, 14-16 August 2001: 37-41<br />

29. Charles JG, Allan DJ. 2002. An ecological perspective to host-specificity testing of bio<strong>control</strong> agents. New Zeal<strong>and</strong> Plant Protection Volume 55, 2002. Proceedings of a conference, Centra<br />

Hotel, Rotorua, New Zeal<strong>and</strong>, 13-15 August 2002<br />

30. Chinajariyawong A, Clarke AR, Jirasurat M, Kritsaneepiboon S, Lahey HA, et al. 2000. Survey of opiine parasitoids of fruit flies (Diptera: Tephritidae) in Thail<strong>and</strong> <strong>and</strong> Malaysia. Raffles<br />

Bulletin of Zoology 48: 71-101<br />

31. Conlong DE, Goebel R. 2002. Biological <strong>control</strong> of Chilo sacchariphagus (Lepidoptera: Crambidae) in Mocanbique: the first steps. Proceedings of the Annual Congress - South African<br />

Sugar Technologists' Association<br />

32. Cossentine JE, Kuhlmann U. 2007. Introductions of parasitoids to <strong>control</strong> the apple ermine moth in British Columbia. In Biological <strong>control</strong>: a global perspective, pp. 13-9<br />

33. Costanzi M, Frassetti F, Malausa JC. 2003. Biological <strong>control</strong> of the psyllid Ctenarytaina eucalypti Maskell in eucalyptus plantations of Ligurian Riviera. Informatore Fitopatologico 53: 52-6<br />

34. Coutinot D, Hoelmer K. 1999. Parasitoids of Lygus spp. in Europe <strong>and</strong> their potential for <strong>biological</strong> <strong>control</strong> of Lygus spp. in North America. Proceedings of the Fifth International<br />

Conference on Pests in Agriculture, Part 3, Montpellier, France, 7-9 December, 1999.<br />

35. Culliney TW, Grace JK. 2000. Prospects for the <strong>biological</strong> <strong>control</strong> of subterranean termites (Isoptera: Rhinotermitidae), with special reference to Coptotermes formosanus. Bulletin of<br />

Entomological Research 90: 9-21<br />

36. Daane KM, Cooper ML, Triapitsyn SV, Andrews JW, Jr., Ripa R. 2008. Parasitoids of obscure mealybug, Pseudococcus viburni (Hem.: Pseudococcidae) in California: establishment of<br />

Pseudaphycus flavidulus (Hym.: Encyrtidae) <strong>and</strong> discussion of related parasitoid species. Bio<strong>control</strong> Science <strong>and</strong> Technology 18: 43-57<br />

37. Daane KM, Sime KR, Wang XG, Nadel H, Johnson MW, et al. 2008. Psyttalia lounsburyi (Hymenoptera: Braconidae), potential <strong>biological</strong> <strong>control</strong> agent for the olive fruit fly in California.<br />

Biological Control 44: 79-89<br />

38. Day WH. 2005. Changes in abundance of native <strong>and</strong> introduced parasites (Hymenoptera: Braconidae), <strong>and</strong> of the target <strong>and</strong> non-target plant bug species (Hemiptera: Miridae), during two<br />

classical <strong>biological</strong> <strong>control</strong> programs in alfalfa. Biological Control 33: 368-74<br />

39. Delalibera I, Jr., Humber RA, Hajek AE. 2004. Preservation of in vitro cultures of the mite pathogenic fungus Neozygites tanajoae. Canadian Journal of Microbiology 50: 579-86<br />

40. Dillon AB, Rolston AN, Meade CV, Downes MJ, Griffin CT. 2008. Establishment, persistence, <strong>and</strong> introgression of entomopathogenic nematodes in a forest ecosystem. Ecological<br />

Applications 18: 735-47<br />

41. Dimitrov A, Karadjova O, Sengalevich G. 2008. Investigation on the potential of a new imported parasitoid <strong>against</strong> aphids in Bulgaria. Rasteniev'dni Nauki 45: 25-7<br />

42. Elliot SL, Moraes GJd, Delalibera I, Jr., Silva CADd, Tamai MA, Mumford JD. 2000. Potential of the mite-pathogenic fungus Neozygites floridana (Entomophthorales: Neozygitaceae) for<br />

<strong>control</strong> of the cassava green mite Mononychellus tanajoa (Acari: Tetranychidae). Bulletin of Entomological Research 90: 191-200<br />

43. Elliot SL, Mumford JD, Moraes GJd. 2003. The role of resting spores in the survival of the mite-pathogenic fungus Neozygites floridana from Mononychellus tanajoa during dry periods in<br />

Brazil. Journal of Invertebrate Pathology 81: 148-57<br />

44. Emana G. 2005. Suitability of Chilo partellus, Sesamia calamistis <strong>and</strong> Busseola fusca for the development of Cotesia flavipes in Ethiopia: implication for <strong>biological</strong> <strong>control</strong>. Ethiopian Journal<br />

of Biological Sciences 4: 123-34<br />

45. Fiaboe KKM, Fonseca RL, Moraes GJd, Ogol CKPO, Knapp M. 2006. Identification of priority areas in South America for exploration of natural enemies for classical <strong>biological</strong> <strong>control</strong> of<br />

Tetranychus evansi (Acari: Tetranychidae) in Africa. Biological Control 38: 373-9<br />

46. Folgarait PJ, Patrock RJW, Gilbert LE. 2006. Development of Pseudacteon nocens (Diptera: Phoridae) on Solenopsis invicta <strong>and</strong> Solenopsis richteri fire ants (Hymenoptera: Formicidae).<br />

Journal of Economic Entomology 99: 295-307<br />

47. Franco JC, Suma P, Borges da Silva E, Mendel Z. 2003. Management strategies of mealybug pests of citrus in Mediterranean countries. Bulletin OILB/SROP 26: 137<br />

48. Fuxa JR, Richter AR. 1999. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> in an ephemeral crop habitat with Anticarsia gemmatalis nucleopolyhedrovirus. BioControl 44: 403-19<br />

49. Garcia-Mari F, Vercher R, Costa-Comelles J, Marzal C, Villalba M. 2004. Establishment of Citrostichus phyllocnistoides (Hymenoptera: Eulophidae) as a <strong>biological</strong> <strong>control</strong> agent for the<br />

citrus leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae) in Spain. Biological Control 29: 215-26<br />

156


Appendix 9<br />

50. Gariepy TD, Kuhlmann U, Gillott C, Erl<strong>and</strong>son M. 2008. Does host plant influence parasitism <strong>and</strong> parasitoid species composition in Lygus rugulipennis? A molecular approach. Bulletin of<br />

Entomological Research 98: 217-21<br />

51. Gautam RD. 2003. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of pink hibiscus mealy bug, Maconellicoccus hirsutus (green) in the Caribbean. Plant Protection Bulletin (Faridabad) 55: 1-8<br />

52. Gibson GAP, Gillespie DR, Dosdall L. 2006. The species of Chalcidoidea (Hymenoptera) introduced to North America for <strong>biological</strong> <strong>control</strong> of the cabbage seedpod weevil, <strong>and</strong> the first<br />

recovery of Stenomalina gracilis (Chalcidoidea: Pteromalidae). Canadian Entomologist 138: 285-91<br />

53. Gilbert LE, Barr CL, Calixto AA, Cook JL, Drees BM, et al. 2008. Introducing phorid fly parasitoids of red imported fire ant workers from South America to Texas: Outcomes vary by<br />

region <strong>and</strong> by pseudacteon species released. Southwestern Entomologist 33: 15-29<br />

54. Gillespie DR, Mason PG, Dosdall LM, Bouchard P, Gibson GAP. 2006. Importance of long-term research in classical <strong>biological</strong> <strong>control</strong>: an analytical review of a release <strong>against</strong> the cabbage<br />

seedpod weevil in North America. Journal of Applied Entomology 130: 401-9<br />

55. Gnanvossou D, Hanna R, Yaninek JS, Toko M. 2005. Comparative life history traits of three neotropical phytoseiid mites maintained on plant-based diets. Biological Control 35: 32-9<br />

56. Gold CS, Pena JE, Karamura EB. 2001. Biology <strong>and</strong> integrated pest management for the banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae). Integrated Pest<br />

Management Reviews 6: 79-155<br />

57. Goolsby JA, DeBarro PJ, Kirk AA, Sutherst RW, Canas L, et al. 2005. Post-release evaluation of <strong>biological</strong> <strong>control</strong> of Bemisia tabaci biotype "B" in the USA <strong>and</strong> the development of<br />

predictive tools to guide introductions for other countries. Biological Control 32: 70-7<br />

58. Gr<strong>and</strong>girard J, Hoddle MS, Petit JN, Percy DM, Roderick GK, Davies N. 2007. Pre-introductory risk assessment studies of Gonatocerus ashmeadi (Hymenoptera: Mymaridae) for use as a<br />

classical <strong>biological</strong> <strong>control</strong> agent <strong>against</strong> Homalodisca vitripennis (Hemiptera: Cicadellidae) in the Society Isl<strong>and</strong>s of French Polynesia. Bio<strong>control</strong> Science <strong>and</strong> Technology 17: 809-22<br />

59. Gr<strong>and</strong>girard J, Hoddle MS, Petit JN, Roderick GK, Davies N. 2008. Engineering an invasion: classical <strong>biological</strong> <strong>control</strong> of the glassy-winged sharpshooter, Homalodisca vitripennis, by the<br />

egg parasitoid Gonatocerus ashmeadi in Tahiti <strong>and</strong> Moorea, French Polynesia. Biological Invasions 10: 135-48<br />

60. Gr<strong>and</strong>girard J, Hoddle MS, Triapitsyn SV, Petit JN, Roderick GK, Davies N. 2007. First records of Gonatocerus dolichocerus Ashmead, Palaeoneura sp., Anagrus sp. (Hymenoptera:<br />

Mymaridae), <strong>and</strong> Centrodora sp. (Hymenoptera: Aphelinidae) in French Polynesia, with notes on egg parasitism of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar)<br />

(Hemiptera: Cicadellidae). Pan-Pacific Entomologist 83: 177-84<br />

61. Gwiazdowski RA, Driesche RGv, Desnoyers A, Lyon S, Wu S, et al. 2006. Possible geographic origin of beech scale, Cryptococcus fagisuga (Hemiptera: Eriococcidae), an invasive pest in<br />

North America. Biological Control 39: 9-18<br />

62. Hajek A, McManus M, Delalibera I. 2005. Catalogue of introductions of pathogens <strong>and</strong> nematodes for classical <strong>biological</strong> <strong>control</strong> of insect <strong>and</strong> mites, Forest Health Technology Enterprise<br />

Team<br />

63. Hajek AE, McManus ML, Delalibera Junior I. 2007. A review of introductions of pathogens <strong>and</strong> nematodes for classical <strong>biological</strong> <strong>control</strong> of insects <strong>and</strong> mites. Biological Control 41: 1-13<br />

64. Hanks LM, Millar JG, Paine TD, Campbell CD. 2000. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of the Australian weevil Gonipterus scutellatus (Coleoptera: Curculionidae) in California. Environmental<br />

Entomology 29: 369-75<br />

65. Haye T, Achterberg Cv, Goulet H, Barratt BIP, Kuhlmann U. 2006. Potential for classical <strong>biological</strong> <strong>control</strong> of the potato bug Closterotomus norwegicus (Hemiptera: Miridae): description,<br />

parasitism <strong>and</strong> host specificity of Peristenus closterotomae sp. n. (Hymenoptera: Braconidae). Bulletin of Entomological Research 96: 421-31<br />

66. Hemach<strong>and</strong>ra KS, Holliday NJ, Klimaszewski J, Mason PG, Kuhlmann U. 2005. Erroneous records of Aleochara bipustulata from North America: an assessment of the evidence. Canadian<br />

Entomologist 137: 182-7<br />

67. Hemach<strong>and</strong>ra KS, Holliday NJ, Mason PG, Soroka JJ, Kuhlmann U. 2007. Comparative assessment of the parasitoid community of Delia radicum in the Canadian prairies <strong>and</strong> Europe: a<br />

search for classical <strong>biological</strong> <strong>control</strong> agents. Biological Control 43: 85-94<br />

68. Henne DC, Johnson SJ, Cronin JT. 2007. Population spread of the introduced red imported fire ant parasitoid, Pseudacteon tricuspis Borgmeier (Diptera: Phoridae), in Louisiana. Biological<br />

Control 42: 97-104<br />

69. Hill SL, Hoy MA. 2003. Interactions between the red imported fire ant Solenopsis invicta <strong>and</strong> the parasitoid Lipolexis scutellaris potentially affect classical <strong>biological</strong> <strong>control</strong> of the aphid<br />

Toxoptera citricida. Biological Control 27: 11-9<br />

70. Hoddle MS. 2005. Identifying the donor region within the home range of an invasive species: implications for classical <strong>biological</strong> <strong>control</strong> of arthropod pests. Second International Symposium<br />

on Biological Control of Arthropods, Davos, Switzerl<strong>and</strong>, 12-16 September, 2005<br />

71. Hoddle MS. 2006. Historical review of <strong>control</strong> programs for Levuana iridescens (Lepidoptera: Zygaenidae) in Fiji <strong>and</strong> examination of possible extinction of this moth by Bessa remota<br />

(Diptera: Tachinidae). Pacific Science 60: 439-53<br />

72. Hoddle MS, Nakahara S, Phillips PA. 2002. Foreign exploration for Scirtothrips perseae Nakahara (Thysanoptera: Thripidae) <strong>and</strong> associated natural enemies on avocado (Persea americana<br />

Miller). Biological Control 24: 251-65<br />

157


Ris & Malausa (Appendix for Chapter 3)<br />

73. Holst N, Meikle WG. 2003. Teretrius nigrescens <strong>against</strong> larger grain borer Prostephanus truncatus in African maize stores: <strong>biological</strong> <strong>control</strong> at work? Journal of Applied Ecology 40: 307-19<br />

74. Hougardy E, Bezemer TM, Mills NJ. 2005. Effects of host deprivation <strong>and</strong> egg expenditure on the reproductive capacity of Mastrus ridibundus, an introduced parasitoid for the <strong>biological</strong><br />

<strong>control</strong> of codling moth in California. Biological Control 33: 96-106<br />

75. Hoy MA. 2005. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of citrus pests in Florida <strong>and</strong> the Caribbean: interconnections <strong>and</strong> sustainability. Second International Symposium on Biological Control of<br />

Arthropods, Davos, Switzerl<strong>and</strong>, 12-16 September, 2005: 237-53<br />

76. Hoy MA, Jeyaprakash A, Clarke-Harris D, Rhodes L. 2007. Molecular <strong>and</strong> field analyses of the fortuitous establishment of Lipolexis oregmae (Hymenoptera: Aphidiidae) in Jamaica as a<br />

natural enemy of the brown citrus aphid. Bio<strong>control</strong> Science <strong>and</strong> Technology 17: 473-82<br />

77. Hoy MA, Jeyaprakash A, Nguyen R. 2001. Long PCR is a sensitive method for detecting Liberobacter asiaticum in parasitoids undergoing risk assessment in quarantine. Biological Control<br />

22: 278-87<br />

78. Hoy MA, Singh R, Rogers ME. 2007. Citrus leafminer, Phyllocnistis citrella (Lepidoptera: Gracillariidae), <strong>and</strong> natural enemy dynamics in Central Florida during 2005. Florida Entomologist<br />

90: 358-69<br />

79. Hurley BP, Slippers B, Croft PK, Hatting HJ, Linde Mvd, et al. 2008. Factors influencing parasitism of Sirex noctilio (Hymenoptera: Siricidae) by the nematode Deladenus siricidicola<br />

(Nematoda: Neotylenchidae) in summer rainfall areas of South Africa. Biological Control 45: 450-9<br />

80. Jacas JA, Pena JE, Duncan RE, Ulmer BJ. 2008. Thermal requirements of Fidiobia dominica (Hymenoptera: Platygastridae) <strong>and</strong> Haeckeliania sperata (Hymenoptera: Trichogrammatidae),<br />

two exotic egg parasitoids of Diaprepes abbreviatus (Coleoptera: Curculionidae). BioControl 53: 451-60<br />

81. Jackson TA, Crawford AM, Glare TR. 2005. Oryctes virus - time for a new look at a useful bio<strong>control</strong> agent. Journal of Invertebrate Pathology 89: 91-4<br />

82. Jenner WH, Cossentine JE, Whistlecraft J, Kuhlmann U. 2005. Host rearing is a bottleneck for classical <strong>biological</strong> <strong>control</strong> of the cherry bark tortrix: a comparative analysis of artificial diets.<br />

Bio<strong>control</strong> Science <strong>and</strong> Technology 15: 519-25<br />

83. Jenner WH, Kuhlmann U, Cossentine JE, Roitberg BD. 2005. Reproductive biology <strong>and</strong> small-scale rearing of cherry bark tortrix <strong>and</strong> its c<strong>and</strong>idate <strong>biological</strong> <strong>control</strong> agent. Journal of<br />

Applied Entomology 129: 437-42<br />

84. Johnson MT, Follett PA, Taylor AD, Jones VP. 2005. Impacts of <strong>biological</strong> <strong>control</strong> <strong>and</strong> invasive species on a non-target native Hawaiian insect. Oecologia 142: 529-40<br />

85. Joyce AL, Hanks LM, Paine TD, Millar JG. 2000. Effect of host larval size on sex ratio of progeny of Syngaster lepidus (Hymenoptera: Braconidae) attacking Phoracantha semipunctata<br />

(Coleoptera: Cerambycidae) <strong>and</strong> P. recurva borers on Eucalyptus camaldulensis. California Conference on Biological Control II, The Historic Mission Inn Riverside, California, USA, 11-12<br />

July, 2000<br />

86. Kairo MTK, Pollard GV, Peterkin DD, Lopez VF. 2000. Biological <strong>control</strong> of the hibiscus mealybug, Maconellicoccus hirsutus Green (Hemiptera: Pseudococcidae) in the Caribbean.<br />

Integrated Pest Management Reviews 5: 241-54<br />

87. Kenis M. 1999. Possibilities for classical <strong>biological</strong> <strong>control</strong> <strong>against</strong> forest pests through collaborative programmes between Europe <strong>and</strong> North Africa. Bulletin OILB/SROP 22: 145-50<br />

88. Kenis M, Cugala D. 2006. Prospects for the <strong>biological</strong> <strong>control</strong> of the groundnut leaf miner, Aproaerema modicella, in Africa. CAB Reviews: Perspectives in Agriculture, Veterinary Science,<br />

Nutrition <strong>and</strong> Natural Resources 1<br />

89. Kenis M, Tomov R, Svatos A, Schlinsog P, Vaamonde CL, et al. 2005. The horse-chestnut leaf miner in Europe - prospects <strong>and</strong> constraints for <strong>biological</strong> <strong>control</strong>. Second International<br />

Symposium on Biological Control of Arthropods, Davos, Switzerl<strong>and</strong>, 12-16 September, 2005<br />

90. Koch RL, Carrillo MA, Venette RC, Cannon CA, Hutchison WD. 2004. Cold hardiness of the multicolored Asian lady beetle (Coleoptera: Coccinellidae). Environmental Entomology 33:<br />

815-22<br />

91. Koch RL, Hutchison WD, Venette RC, Heimpel GE. 2003. Susceptibility of immature monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae: Danainae), to predation by<br />

Harmonia axyridis (Coleoptera: Coccinellidae). Biological Control 28: 265-70<br />

92. Krugner R, Johnson MW, Groves RL, Morse JG. 2008. Host specificity of Anagrus epos: a potential <strong>biological</strong> <strong>control</strong> agent of Homalodisca vitripennis. BioControl 53: 439-49<br />

93. Krull SME, Basedow T. 2005. Evaluation of the <strong>biological</strong> <strong>control</strong> of the pink wax scale Ceroplastes rubens Maskell (Hom., Coccidae) with the introduced parasitoid Anicetus beneficus Ishii<br />

& Yasumatsu (Hym., Encyrtidae) in the Central province of Papua New Guinea. Journal of Applied Entomology 129: 323-9<br />

94. Kuhlmann U, Toepfer S, Feng Z. 2005. Is classical <strong>biological</strong> <strong>control</strong> <strong>against</strong> western corn rootworm in Europe a potential sustainable management strategy? In Western corn rootworm:<br />

ecology <strong>and</strong> management<br />

95. Lacey LA, Unruh TR, Headrick HL. 2003. Interactions of two idiobiont parasitoids (Hymenoptera: Ichneumonidae) of codling moth (Lepidoptera: Tortricidae) with the entomopathogenic<br />

nematode Steinernema carpocapsae (Rhabditida: Steinernematidae). Journal of Invertebrate Pathology 83: 230-9<br />

96. Lambkin TA. 2004. Successful establishment of Encarsia ?haitiensis Dozier (Hymenoptera: Aphelinidae) in Torres Strait, Queensl<strong>and</strong>, for the <strong>biological</strong> <strong>control</strong> of Aleurodicus dispersus<br />

Russell (Hemiptera: Aleyrodidae). Australian Entomologist 31: 83-91<br />

158


Appendix 9<br />

97. Langewald J, Neuenschw<strong>and</strong>er P. 2002. Challenges in coordinating regional <strong>biological</strong> <strong>control</strong> projects in Africa: classical <strong>biological</strong> <strong>control</strong> versus <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong>.<br />

Bio<strong>control</strong> News <strong>and</strong> Information 23: 101N-7N<br />

98. Lauziere I, Legaspi JC, Legaspi BC, Jr., Smith JW, Jr., Jones WA. 2001. Life-history studies of Lydella jalisco (Diptera: Tachinidae), a parasitoid of Eoreuma loftini (Lepidoptera:<br />

Pyralidae). BioControl 46: 71-90<br />

99. Lawson-Balagbo LM, Gondim MGC, Jr., Moraes GJd, Hanna R, Schausberger P. 2007. Refuge use by the coconut mite Aceria guerreronis: fine scale distribution <strong>and</strong> association with other<br />

mites under the perianth. Biological Control 43: 735-47<br />

100. Lim UT, Hoy MA. 2005. Biological assessment in quarantine of Semielacher petiolatus (Hymenoptera: Eulophidae) as a potential classical <strong>biological</strong> <strong>control</strong> agent of citrus leafminer,<br />

Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), in Florida. Biological Control 33: 87-95<br />

101. Lim UT, Zappala L, Hoy MA. 2006. Pre-release evaluation of Semielacher petiolatus (Hymenoptera: Eulophidae) in quarantine for the <strong>control</strong> of citrus leafminer: host discrimination,<br />

relative humidity tolerance, <strong>and</strong> alternative hosts. Biological Control 36: 65-73<br />

102. Llacer E, Urbaneja A, Garrido A, Jacas JA. 2006. Temperature requirements may explain why the introduced parasitoid Quadrastichus citrella failed to <strong>control</strong> Phyllocnistis citrella in Spain.<br />

BioControl 51: 439-52<br />

103. Lopez VF, Kairo MTK. 2000. Old solutions to new problems: new perspectives on the sustainable management of pests through <strong>biological</strong> <strong>control</strong>. Proceedings of the 35th Annual Meeting,<br />

Caribbean Food Crops Society, Castries, St. Lucia, 25-31 July 1999<br />

104. Lu B, Tang C, Peng Z, Salle Jl, Wan F. 2008. Biological assessment in quarantine of Asecodes hispinarum Boucek (Hymenoptera: Eulophidae) as an imported <strong>biological</strong> <strong>control</strong> agent of<br />

Brontispa longissima (Gestro) (Coleoptera: Hispidae) in Hainan, China. Biological Control 45: 29-35<br />

105. Lyons DB. 1999. Phenology of the native parasitoid Sinophorus megalodontis (Hymenoptera: Ichneumonidae) relative to its introduced host, the pine false webworm (Hymenoptera:<br />

Pamphiliidae). Canadian Entomologist 131: 787-800<br />

106. Malausa JC, Giuge L, Fauvergue X. 2003. Acclimatization <strong>and</strong> spreading in France of Neodryinus typhlocybae (Ashmead) (Hymenoptera, Dryinidae) introduced to <strong>control</strong> Metcalfa pruinosa<br />

(Say) (Hemiptera, Flatidae). Bulletin de la Societe Entomologique de France 108: 97-102<br />

107. Mani M, Krishnamoorthy A. 2002. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of the spiralling whitefly, Aleurodicus dispersus Russell - an appraisal. Insect Science <strong>and</strong> its Application 22: 263-73<br />

108. Mansfield S, Kriticos DJ, Potter KJB, Watson MC. 2005. Parasitism of gum leaf skeletoniser (Uraba lugens) in New Zeal<strong>and</strong>. New Zeal<strong>and</strong> Plant Protection, Volume 58, 2005. Proceedings<br />

of a conference, Wellington, New Zeal<strong>and</strong>, 9-11 August 2005<br />

109. Matsumoto T, Itioka T, Nishida T. 2004. Is spatial density-dependent parasitism necessary for successful <strong>biological</strong> <strong>control</strong>? Testing a stable host-parasitoid system. Entomologia<br />

Experimentalis et Applicata 110: 191-200<br />

110. McNeill MR, Goldson SL, Proffitt JR, Phillips CB, Addison PJ. 2002. A description of the commercial rearing <strong>and</strong> distribution of Microctonus hyperodae (Hymenoptera: Braconidae) for<br />

<strong>biological</strong> <strong>control</strong> of Listronotus bonariensis (Kuschel) (Coleoptera: Curculionidae). Biological Control 24: 167-75<br />

111. Messing RH. 2003. The role of parasitoids in eradication or area-wide <strong>control</strong> of tephritid fruit flies in the Hawaiian Isl<strong>and</strong>s. Turning the tide: the eradication of invasive species: Proceedings<br />

of the International Conference on eradication of isl<strong>and</strong> invasives<br />

112. Michaud JP. 2002. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong>: a critical review of recent programs <strong>against</strong> citrus pests in Florida. Annals of the Entomological Society of America 95: 531-40<br />

113. Mills N. 2005. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of codling moth: the California experience. Second International Symposium on Biological Control of Arthropods, Davos, Switzerl<strong>and</strong>, 12-16<br />

September, 2005<br />

114. Moore D. 2002. Non-chemical <strong>control</strong> of Aceria guerreronis on coconuts. Proceedings of the International Workshop on Coconut mite (Aceria guerreronis), Coconut Research Institute, Sri<br />

Lanka, 6-8 January 2000<br />

115. Morozov AS, Rytova SV, Thompson LC. 2003. Introducing entomophagous insects to <strong>control</strong> pests: prediction of target species density. Russian Entomological Journal 12: 441-5<br />

116. Morozov AS, Rytova SV, Thompson LC. 2004. Introducing entomophagous insects to <strong>control</strong> pests: prediction of target species density. Russian Entomological Journal 13: 441-5<br />

117. Muniappan R, Meyerdirk DE, Sengebau FM, Berringer DD, Reddy GVP. 2006. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of the papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae) in<br />

the Republic of Palau. Florida Entomologist 89: 212-7<br />

118. Murguido Morales CA, Elizondo Silva AI, Moreno Rodriguez D, Caballero Figueroa S, Armas Garcia JLd. 2008. Liberation of the wasp from Costa de Marfil Cephalonomia stephanoderis<br />

Betrem (Hymenoptera: Bethylidae) in two locations of Guamuhaya Mountains, Cuba. Fitosanidad 12: 83-7<br />

119. Negloh K, Hanna R, Schausberger P. 2008. Comparative demography <strong>and</strong> diet breadth of Brazilian <strong>and</strong> African populations of the predatory mite Neoseiulus baraki, a c<strong>and</strong>idate for<br />

<strong>biological</strong> <strong>control</strong> of coconut mite. Biological Control 46: 523-31<br />

120. Nijhof BW, Oudman L, Torres R, Garrido C. 2000. The introduction of Encarsia guadeloupae (Hymenoptera, Aphelinidae) for <strong>control</strong> of Aleurodicus dispersus <strong>and</strong> Lecanoideus floccissimus<br />

(Homoptera, Aleyrodidae) on tenerife. Proceedings of the Section Experimental <strong>and</strong> Applied Entomology of the Netherl<strong>and</strong>s Entomological Society 11: 41-7<br />

159


Ris & Malausa (Appendix for Chapter 3)<br />

121. Niyibigira EI. 2003. Genetic variability in Cotesia flavipes <strong>and</strong> its importance in <strong>biological</strong> <strong>control</strong> of lepidopteran stemborers. In Genetic variability in /i Cotesia flavipes/ <strong>and</strong> its importance<br />

in <strong>biological</strong> <strong>control</strong> of lepidopteran stemborers<br />

122. Niyibigira EI, Abdallah ZS, Overholt WA, Lada VY, Huis Av. 2001. Distribution <strong>and</strong> abundance, in maize <strong>and</strong> sorghum, of lepidopteran stemborers <strong>and</strong> associated indigenous parasitoids in<br />

Zanzibar. Insect Science <strong>and</strong> its Application 21: 335-46<br />

123. Niyibigira EI, Overholt WA, Stouthamer R. 2004. Cotesia flavipes Cameron (Hymenoptera: Braconidae) does not exhibit complementary sex determination (ii) evidence from laboratory<br />

experiments. Applied Entomology <strong>and</strong> Zoology 39<br />

124. Onzo A, Hanna R, Janssen A, Sabelis MW. 2004. Interactions between two neotropical phytoseiid predators on cassava plants <strong>and</strong> consequences for <strong>biological</strong> <strong>control</strong> of a shared spider mite<br />

prey: a screenhouse evaluation. Bio<strong>control</strong> Science <strong>and</strong> Technology 14: 63-76<br />

125. Onzo A, Hanna R, Sabelis MW. 2005. Biological <strong>control</strong> of cassava green mites in Africa: impact of the predatory mite Typhlodromalus aripo. Entomologische Berichten 65: 2-7<br />

126. Paiva PEB, Gravena S, Amorim LCdS. 2000. Introduction of the parasitoid Ageniaspis citricola Logvinoskaya for the <strong>biological</strong> <strong>control</strong> of the citrus leafminer Phyllocnistis citrella Stainton<br />

in Brazil. Laranja 21: 289-94<br />

127. Peng F, Fuxa JR, Richter AR, Johnson SJ. 1999. Effects of heat-sensitive agents, soil type, moisture, <strong>and</strong> leaf surface on persistence of Anticarsia gemmatalis (Lepidoptera: Noctuidae)<br />

nucleopolyhedrovirus. Environmental Entomology 28: 330-8<br />

128. Penteado SdRC, Iede ET, Reis Filho W. 2000. The occurrence, distribution, damage <strong>and</strong> <strong>control</strong> of aphids of the genus Cinara on Pinus spp. in Brazil. Floresta 30: 55-64<br />

129. Persad AB, Hoy MA. 2003. Intra- <strong>and</strong> interspecific interactions between Lysiphlebus testaceipes <strong>and</strong> Lipolexis scutellaris (Hymenoptera: Aphidiidae) reared on Toxoptera citricidus<br />

(Homoptera: Aphididae). Journal of Economic Entomology 96: 564-9<br />

130. Persad AB, Hoy MA. 2004. Predation by Solenopsis invicta <strong>and</strong> Blattella asahinai on Toxoptera citricida parasitized by Lysiphlebus testaceipes <strong>and</strong> Lipolexis oregmae on citrus in Florida.<br />

Biological Control 30: 531-7<br />

131. Persad AB, Hoy MA, Nguyen R. 2007. Establishment of Lipolexis oregmae (Hymenoptera: Aphidiidae) in a classical <strong>biological</strong> <strong>control</strong> program directed <strong>against</strong> the brown citrus aphid<br />

(Homoptera: Aphididae) in Florida. Florida Entomologist 90: 204-13<br />

132. Persad AB, Jeyaprakash A, Hoy MA. 2004. High-fidelity PCR assay discriminates between immature Lipolexis oregmae <strong>and</strong> Lysiphlebus testaceipes (Hymenoptera: Aphidiidae) within their<br />

aphid hosts. Florida Entomologist 87: 18-24<br />

133. Petit JN, Hoddle MS, Gr<strong>and</strong>girard J, Roderick GK, Davies N. 2008. Short-distance dispersal behavior <strong>and</strong> establishment of the parasitoid Gonatocerus ashmeadi (Hymenoptera: Mymaridae)<br />

in Tahiti: implications for its use as a <strong>biological</strong> <strong>control</strong> agent <strong>against</strong> Homalodisca vitripennis (Hemiptera: Cicadellidae). Biological Control 45: 344-52<br />

134. Phillips CB, Baird DB, Iline II, McNeill MR, Proffitt JR, et al. 2008. East meets west: adaptive evolution of an insect introduced for <strong>biological</strong> <strong>control</strong>. Journal of Applied Ecology 45: 948-<br />

56<br />

135. Pickett CH, Pitcairn MJ. 1999. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of ash whitefly: factors contributing to its success in California. BioControl 44: 143-58<br />

136. Pina T, Verdu MJ. 2007. Establishment <strong>and</strong> dispersal of Aphytis melinus <strong>and</strong> A. lingnanensis (Hym.: Aphelinidae), two parasitoids introduced to <strong>control</strong> Chrysomphalus dictyospermi<br />

Morgan <strong>and</strong> Aonidiella aurantii (Maskell) (Hem.: Diaspididae) in citrus of the Valencian region (Spain). Boletin de Sanidad Vegetal Plagas 33: 311-20<br />

137. Poutsma J, Loomans AJM, Aukema B, Heijerman T. 2008. Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model.<br />

BioControl 53: 103-25<br />

138. Protasov A, Blumberg D, Br<strong>and</strong> D, Salle Jl, Mendel Z. 2007. Biological <strong>control</strong> of the eucalyptus gall wasp Ophelimus maskelli (Ashmead): taxonomy <strong>and</strong> biology of the parasitoid species<br />

Closterocerus chamaeleon (Girault), with information on its establishment in Israel. Biological Control 42: 196-206<br />

139. Quilici S, Duyck PF, Rousse P, Gourdon F, Simi<strong>and</strong> C, Franck A. 2005. Bactrocera zonata in La Reunion isl<strong>and</strong>. Phytoma<br />

140. Ramani S, Poorani J, Bhumannavar BS. 2002. Spiralling whitefly, Aleurodicus dispersus, in India. Bio<strong>control</strong> News <strong>and</strong> Information 23: 55N-62N<br />

141. Rauf A, Shepard BM, Johnson MW. 2000. Leafminers in vegetables, ornamental plants <strong>and</strong> weeds in Indonesia: surveys of host crops, species composition <strong>and</strong> parasitoids. International<br />

Journal of Pest Management 46: 257-66<br />

142. Rizqi A, Nia M, Abbassi M, Rochd A. 2003. Establishment of exotic parasites of citrus leaf miner, Phyllocnistis citrella, in citrus groves in Morocco. Bulletin OILB/SROP 26: 1-6<br />

143. Rizzo MC, Verde Gl, Rizzo R, Buccellato V, Caleca V. 2006. Introduction of Closterocerus sp. in Sicily for <strong>biological</strong> <strong>control</strong> of Ophelimus maskelli Ashmead (Hymenoptera Eulophidae)<br />

invasive gall inducer on eucalypt trees. Bollettino di Zoologia Agraria e di Bachicoltura 38: 237-48<br />

144. Rodriguez A, F., Saiz G, F. 2006. Parasitoidism of Psyllaephagus pilosus Noyes (Hym.: Encyrtidae) on the blue gum psyllid, Ctenarytaina eucalypti (Maskell) (Hem.: Psyllidae) in V region<br />

eucalypts plantations. Agricultura Tecnica 66: 342-51<br />

145. Roltsch WJ. 2000. Establishment of silverleaf whitefly parasitoids in Imperial Valley. California Conference on Biological Control II, The Historic Mission Inn Riverside, California, USA,<br />

11-12 July, 2000<br />

160


Appendix 9<br />

146. Roltsch WJ, Meyerdirk DE, Warkentin R, Andress ER, Carrera K. 2006. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of the pink hibiscus mealybug, Maconellicoccus hirsutus (Green), in southern California.<br />

Biological Control 37: 155-66<br />

147. Rossbach A, Lohr B, Vidal S. 2008. Interspecific competition between Diadegma semiclausum Hellen <strong>and</strong> Diadegma mollipla (Holmgren), parasitoids of the diamondback moth, Plutella<br />

xylostella (L), feeding on a new host plant. Bulletin of Entomological Research 98: 135-43<br />

148. Rossi MN, Fowler HG. 2003. Temporal patterns of parasitism in Diatraea saccharalis Fabr. (Lep., Crambidae) populations at different spatial scales in sugarcane fields in Brazil. Journal of<br />

Applied Entomology 127: 501-8<br />

149. Rossi MN, Fowler HG. 2004. Spatial <strong>and</strong> temporal population interactions between the parasitoids Cotesia flavipes <strong>and</strong> Tachinidae flies: considerations on the adverse effects of <strong>biological</strong><br />

<strong>control</strong> practice. Journal of Applied Entomology 128: 112-9<br />

150. Rossi MN, Fowler HG. 2004. Spatial pattern of parasitism in Diatraea saccharalis Fab. (Lep., Crambidae) populations at two different spatial scales in sugarcane fields in Brazil. Journal of<br />

Applied Entomology 128: 279-83<br />

151. Rousse P, Gourdon F, Quilici S. 2006. Host specificity of the egg pupal parasitoid Fopius arisanus (Hymenoptera: Braconidae) in La Reunion. Biological Control 37: 284-90<br />

152. Rousse P, Harris EJ, Quilici S. 2005. Fopius arisanus, an egg-pupal parasitoid of Tephritidae. Overview. Bio<strong>control</strong> News <strong>and</strong> Information 26: 59N-69N<br />

153. S<strong>and</strong>s D, Liebregts W. 2005. Biological <strong>control</strong> of fruit piercing moth (Eudocima fullonia Clerck ) (Lepidoptera: Noctuidae) in the Pacific: exploration, specificity, <strong>and</strong> evaluation of<br />

parasitoids. Second International Symposium on Biological Control of Arthropods, Davos, Switzerl<strong>and</strong>, 12-16 September, 2005<br />

154. S<strong>and</strong>s DPA, Murphy ST. 2001. Prospects for <strong>biological</strong> <strong>control</strong> of Hypsipyla spp. with insect agents. Hypsipyla shoot borers in Meliaceae. Proceedings of an International Workshop held at<br />

K<strong>and</strong>y, Sri Lanka, 20-23 August 1996<br />

155. Schellhorn NA, Kuhman TR, Olson AC, Ives AR. 2002. Competition between native <strong>and</strong> introduced parasitoids of aphids: nontarget effects <strong>and</strong> <strong>biological</strong> <strong>control</strong>. Ecology 83: 2745-57<br />

156. Shah PA, Pell JK. 2003. Entomopathogenic fungi as <strong>biological</strong> <strong>control</strong> agents. Applied Microbiology <strong>and</strong> Biotechnology 61: 413-23<br />

157. Silva RGd, Silva EBd, Franco JC. 2006. Parasitoid complex of citrus leafminer on lemon orchards in Portugal. Bulletin OILB/SROP 29: 197-204<br />

158. Sime KR, Daane KM, Kirk A, Andrews JW, Johnson MW, Messing RH. 2007. Psyttalia ponerophaga (Hymenoptera: Braconidae) as a potential <strong>biological</strong> <strong>control</strong> agent of olive fruit fly<br />

Bactrocera oleae (Diptera: Tephritidae) in California. Bulletin of Entomological Research 97: 233-42<br />

159. Sime KR, Daane KM, Nadel H, Funk CS, Messing RH, et al. 2006. Diachasmimorpha longicaudata <strong>and</strong> D. kraussii (Hymenoptera: Braconidae), potential parasitoids of the olive fruit fly.<br />

Bio<strong>control</strong> Science <strong>and</strong> Technology 16: 169-79<br />

160. Singh R, Hoy MA. 2007. Tools for evaluating Lipolexis oregmae (Hymenoptera: Aphidiidae) in the field: effects of host aphid <strong>and</strong> host plant on mummy location <strong>and</strong> color plus improved<br />

methods for obtaining adults. Florida Entomologist 90: 214-22<br />

161. Siscaro G, Barbagallo S, Longo S, Reina P, Zappala L. 1999. Results of the introduction of exotic parasitoids of Phyllocnistis citrella Stainton (Lepidoptera, Gracillariidae) in Sicily.<br />

Phytophaga (Palermo) 9: 31-9<br />

162. Siscaro G, Caleca V, Reina P, Rizzo MC, Zappala L. 2003. Current status of the <strong>biological</strong> <strong>control</strong> of the citrus leafminer in Sicily. Bulletin OILB/SROP 26: 29-36<br />

163. Skelley LH, Hoy MA. 2004. A synchronous rearing method for the Asian citrus psyllid <strong>and</strong> its parasitoids in quarantine. Biological Control 29: 14-23<br />

164. Smith D, Papacek D, Neale C. 2004. The successful introduction to Australia of Diversinervus sp. near Stramineus Compere (Hymenoptera: Encyrtidae), Kenyan parasitoid of green coffee<br />

scale. General <strong>and</strong> Applied Entomology 33: 33-9<br />

165. Solter LF, Maddox JV. 1999. Strategies for evaluating the host specificity of lepidopteran microsporidian. Revista de la Sociedad Entomologica Argentina 58: 9-16<br />

166. Songa JM, Overholt WA, Okello RO, Mueke JM. 2002. Control of lepidopteran stemborers in maize by indigenous parasitoids in semi-arid areas of Eastern Kenya. Biological Agriculture &<br />

Horticulture 20: 77-90<br />

167. Sosa-Gomez DR. 1999. Current status of the microbial <strong>control</strong> of agricultural pests with entomopathogenic fungi. Revista de la Sociedad Entomologica Argentina 58: 295-300<br />

168. Steinkraus DC, Boys GO, Rosenheim JA. 2002. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of Aphis gossypii (Homoptera: Aphididae) with Neozygites fresenii (Entomophthorales: Neozygitaceae) in<br />

California cotton. Biological Control 25: 297-304<br />

169. Stewart-Jones A, Hodges RJ, Farman DI, Hall DR. 2006. Solvent extraction of cues in the dust <strong>and</strong> frass of Prostephanus truncatus <strong>and</strong> analysis of behavioural mechanisms leading to<br />

arrestment of the predator Teretrius nigrescens. Physiological Entomology 31: 63-72<br />

170. Stewart-Jones A, Hodges RJ, Farman DI, Hall DR. 2007. Prey-specific contact kairomones exploited by adult <strong>and</strong> larval Teretrius nigrescens: a behavioural comparison across different<br />

stored-product pests <strong>and</strong> different pest substrates. Journal of Stored Products Research 43: 265-75<br />

171. Suazo A, Arismendi N, Frank JH, Cave RD. 2006. Method for continuously rearing Lixadmontia franki (Diptera: Tachinidae), a potential <strong>biological</strong> <strong>control</strong> agent of Metamasius callizona<br />

(Coleoptera: Dryophthoridae). Florida Entomologist 89: 348-53<br />

172. Sullivan DJ, Daane KM, Sime KR, Andrews JW, Jr. 2006. Protective mechanisms for pupae of Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae), a parasitoid of the red-gum lerp<br />

psyllid, Glycaspis brimblecombei Moore (Hemiptera: Psylloidea). Australian Journal of Entomology 45: 101-5<br />

161


Ris & Malausa (Appendix for Chapter 3)<br />

173. Takagi M, Okumura M, Shoubu M, Shiraishi A, Ueno T. 2005. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of the alfalfa weevil in Japan. Second International Symposium on Biological Control of<br />

Arthropods, Davos, Switzerl<strong>and</strong>, 12-16 September, 2005<br />

174. Tewksbury L, Gold MS, Casagr<strong>and</strong>e RA, Kenis M. 2005. Establishment in North America of Tetrastichus setifer Thomson (Hymenoptera: Eulophidae), a parasitoid of Lilioceris lilii<br />

(Coleopetera: Chrysomelidae). Second International Symposium on Biological Control of Arthropods, Davos, Switzerl<strong>and</strong>, 12-16 September, 2005<br />

175. Toepfer S, Kuhlmann U. 2004. Survey for natural enemies of the invasive alien chrysomelid, Diabrotica virgifera virgifera, in Central Europe. BioControl 49<br />

176. Toepfer S, Zhang F, Kiss J, Kuhlmann U. 2005. The invasion of the western corn rootworm, Diabrotica vergifera virgifera, in Europe <strong>and</strong> potential for classical <strong>biological</strong> <strong>control</strong>. Second<br />

International Symposium on Biological Control of Arthropods, Davos, Switzerl<strong>and</strong>, 12-16 September, 2005<br />

177. Tribe GD, Cillie JJ. 2004. The spread of Sirex noctilio Fabricius (Hymenoptera : Siricidae) in South African pine plantations <strong>and</strong> the introduction <strong>and</strong> establishment of its <strong>biological</strong> <strong>control</strong><br />

agents. African Entomology 12: 9-17<br />

178. Trjapitzin VA, Triapitsyn SV. 2002. A new species of Neoplatycerus (Hymenoptera: Encyrtidae) from Egypt, parasitoid of the vine mealybug, Planococcus ficus (Homoptera:<br />

Pseudococcidae). Entomological News 113: 203-10<br />

179. Tuda M, Matsumoto T, Itioka T, Ishida N, Takanashi M, et al. 2006. Climatic <strong>and</strong> intertrophic effects detected in 10-year population dynamics of <strong>biological</strong> <strong>control</strong> of the arrowhead scale by<br />

two parasitoids in southwestern Japan. Population Ecology 48: 59-70<br />

180. Urbaneja A, Llacer E, Garrido A, Jacas JA. 2003. Interspecific competition between two ectoparasitoids of Phyllocnistis citrella (Lepidoptera: Gracillariidae): Cirrospilus brevis <strong>and</strong> the<br />

exotic Quadrastichus sp. (Hymenoptera: Eulophidae). Biological Control 28: 243-50<br />

181. Vargas RI, Leblanc L, Putoa R, Eitam A. 2007. Impact of introduction of Bactrocera dorsalis (Diptera : Tephritidae) <strong>and</strong> classical <strong>biological</strong> <strong>control</strong> releases of Fopius arisanus (Hymenoptera<br />

: Braconidae) on economically important fruit flies in French Polynesia. Journal of Economic Entomology 100: 670-9<br />

182. Vazquez RJ, Porter SD, Briano JA. 2006. Field release <strong>and</strong> establishment of the decapitating fly Pseudacteon curvatus on red imported fire ants in Florida. BioControl 51: 207-16<br />

183. Virla EG, Cangemi L, Logarzo GA. 2007. Suitability of different host plants for nymphs of the sharpshooter Tapajosa rubromarginata (Hemiptera: Cicadellidae: Proconinii). Florida<br />

Entomologist 90: 766-9<br />

184. Wang XG, Messing RH. 2002. Newly imported larval parasitoids pose minimal competitive risk to extant egg-larval parasitoid of tephritid fruit flies in Hawaii. Bulletin of Entomological<br />

Research 92: 158-63<br />

185. Wang Z, Huang J, Liang Z, Lian B, Lin Q, Zhong J. 2004. Introduction <strong>and</strong> application of Coccobius azumai Tachikawa (Hymenoptera: Aphelinidae). Journal of Fujian Agriculture <strong>and</strong><br />

Forestry University (Natural Science Edition) 33: 313-7<br />

186. Wharton RA, Lopez-Martinez V. 2000. A new species of Triaspis Haliday (Hymenoptera: Braconidae) parasitic on the pepper weevil, Anthonomus eugenii Cano (Coleoptera:<br />

Curculionidae). Proceedings of the Entomological Society of Washington 102: 794-801<br />

187. White GL, Kairo MTK, Lopez V. 2005. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of the citrus blackfly Aleurocanthus woglumi by Amitus hesperidum in Trinidad. BioControl 50: 751-9<br />

188. White WH, Reagan TE, Smith JW, Salazar JA. 2004. Refuge releases of Cotesia flavipes (Hymenoptera : braconidae) into the Louisiana sugarcane ecosystem. Environmental Entomology<br />

33: 627-32<br />

189. Wyckhuys KAG, Koch RL, Heimpel GE. 2007. Physical <strong>and</strong> ant-mediated refuges from parasitism: implications for non-target effects in <strong>biological</strong> <strong>control</strong>. Biological Control 40: 306-13<br />

190. Wyckhuys KAG, Strange-George JE, Kulhanek CA, Wackers FL, Heimpel GE. 2008. Sugar feeding by the aphid parasitoid Binodoxys communis: how does honeydew compare with other<br />

sugar sources? Journal of Insect Physiology 54: 481-91<br />

191. Yaninek S, Hanna R. 2002. Cassava green mite in Africa - a unique example of successful classical <strong>biological</strong> <strong>control</strong> of a mite pest on a Continental scale. In Biological <strong>control</strong> in IPM<br />

systems in Africa<br />

192. Zaia G, Willink E, Gastaminza G, Salas H, Villagran ME, et al. 2006. <strong>Classical</strong> <strong>biological</strong> <strong>control</strong> of the citrus leaf miner: balance realized in EEAOC. Avance Agroindustrial 27: 29-34<br />

193. Zannou ID, Hanna R, Agboton B, Moraes GJd, Kreiter S, et al. 2007. Native phytoseiid mites as indicators of non-target effects of the introduction of Typhlodromalus aripo for the <strong>biological</strong><br />

<strong>control</strong> of cassava green mite in Africa. Biological Control 41: 190-8<br />

194. Zannou ID, Hanna R, Moraes GJd, Kreiter S, Phiri G, Jone A. 2005. Mites of cassava (Manihot esculenta Crantz) habitats in Southern Africa. International Journal of Acarology 31: 149-64<br />

195. Zhang F, Toepfer S, Riley K, Kuhlmann U. 2004. Reproductive biology of Celatoria compressa (Diptera: Tachinidae), a parasitoid of Diabrotica virgifera virgifera (Coleoptera:<br />

Chrysomelidae). Bio<strong>control</strong> Science <strong>and</strong> Technology 14: 5-16<br />

196. Zilahi-Balogh GMG, Kok LT, Salom SM. 2002. Host specificity of Laricobius nigrinus Fender (Coleoptera: Derodontidae), a potential <strong>biological</strong> <strong>control</strong> agent of the hemlock wooly adelgid,<br />

Adelges tsugae Ann<strong>and</strong> (Homoptera: Adelgidae). Biological Control 24: 192-8<br />

197. Zilahi-Balogh GMG, Kok LT, Salom SM. 2005. A predator case history: Laricobius nigrinus, a derodontid beetle introduced <strong>against</strong> the hemlock woolly adelgid. Second International<br />

Symposium on Biological Control of Arthropods, Davos, Switzerl<strong>and</strong>, 12-16 September, 2005<br />

162


Appendix 10. Substances included in the "EU Pesticides Database" as of April 21 2009<br />

Substance<br />

Cipac<br />

& incl<br />

2008/<br />

127 √<br />

Category<br />

List<br />

(*)<br />

Inclusion<br />

Date<br />

Expiry<br />

Date<br />

Legislation<br />

Botanical Extract from tea tree RE A 4 01/09/2009 31/08/2019 2008/127<br />

Botanical Garlic extract RE A 4 01/09/2009 31/08/2019 2008/127<br />

Botanical Gibberellic acid '307 PG A 4 01/09/2009 31/08/2019 2008/127<br />

Botanical Gibberellin PG A 4 01/09/2009 31/08/2019 2008/127<br />

Botanical Laminarin EL C 01/04/2005 31/03/2015 05/3/EC<br />

Botanical Pepper RE A 4 01/09/2009 31/08/2019 2008/127<br />

Botanical Plant oils / Citronella oil HB A 4 01/09/2009 31/08/2019 2008/127<br />

Botanical Plant oils / Clove oil RE A 4 01/09/2009 31/08/2019 2008/127<br />

Botanical Plant oils / Rape seed oil IN, AC A 4 01/09/2009 31/08/2019 2008/127<br />

Botanical Plant oils / Spearmint oil PG A 4 01/09/2009 31/08/2019 2008/127<br />

Botanical Sea-algae extract (formerly seaalgae<br />

extract <strong>and</strong> seaweeds)<br />

PG A 4 01/09/2009 31/08/2019 2008/127<br />

Botanical<br />

copied by<br />

synthesis<br />

Botanical<br />

copied by<br />

synthesis<br />

Botanical<br />

but excluded<br />

Carvone PG C 01/08/2008 31/07/2018 2008/44/EC<br />

Ethylene PG A 4 01/09/2009 31/08/2019 2008/127<br />

Pyrethrins '32 IN A 4 01/09/2009 31/08/2019 2008/127<br />

Chemical 2,4-D '1 HB, PG A 1 01/10/2002 30/09/2012 01/103/EC<br />

Chemical 2,4-DB '83 HB A 1 01/01/2004 31/12/2013 03/31/EC<br />

Chemical 1-Methyl-cyclopropene PG C 01/04/2006 31/03/2016 06/19/EC<br />

Chemical Acetamiprid IN C 01/01/2005 31/12/2014 04/99/EC<br />

Chemical Acibenzolar-S-methyl<br />

(benzothiadiazole)<br />

PA C 01/11/2001 31/10/2011 01/87/EC<br />

Chemical Aclonifen '498 HB A 3 01/08/2009 31/07/2019 2008/116<br />

Chemical Alpha-Cypermethrin (aka<br />

'454 IN A 1 01/03/2005 28/02/2015 04/58/EC<br />

alphamethrin)<br />

Chemical Aluminium ammonium sulfate RE A 4 01/09/2009 31/08/2019 2008/127<br />

Chemical Aluminium phosphide '227 IN, RO A 3 01/09/2009 31/08/2019 2008/125<br />

Chemical Amidosulfuron '515 HB A 3 01/01/2009 31/12/2018 2008/40<br />

Chemical Amitrole (aminotriazole) '90 HB A 1 01/01/2002 31/12/2012 01/21/EC<br />

Chemical Azimsulfuron HB C 01/10/1999 01/10/2019 99/80/EC<br />

Chemical Azoxystrobin FU C 01/07/1998 01/07/2008 98/47/EC<br />

Chemical Beflubutamid HB C 01/12/2007 30/11/2017 07/50/EC<br />

Chemical Benalaxyl '416 FU A 1 01/03/2005 28/02/2015 04/58/EC<br />

Chemical Benfluralin '285 HB A 3 01/01/2009 31/12/2018 2008/108<br />

Chemical Bensulfuron '502 HB A 3 01/11/2009 31/10/2019 2009/11<br />

Chemical Bentazone '366 HB A 1 01/08/2001 31/07/2011 00/68/EC<br />

Chemical Benthiavalicarb FU C 01/08/2008 31/07/2018 08/44/EC<br />

Chemical Beta-Cyfluthrin '482 IN A 1 01/01/2004 31/12/2013 03/31/EC<br />

Chemical Bifenazate AC C 01/12/2005 30/11/2015 05/58/EC<br />

Chemical Bifenox '413 HB A 3 01/01/2009 31/12/2018 2008/66<br />

Chemical Bordeaux mixture FU A 3 01/11/2009 30/11/2016 SCoFCAH<br />

voted<br />

01.2009<br />

Chemical Boscalid FU C 01/08/2008 31/07/2018 08/44/EC<br />

Chemical Bromoxynil '87 HB A 1 01/03/2005 28/02/2015 04/58/EC<br />

163


Heilig et al (Appendix for Chapter 4)<br />

Chemical Calcium carbide RE A 4 01/09/2009 31/08/2019 2008/127<br />

Chemical Calcium phosphide '505 RO A 3 01/09/2009 31/08/2019 2008/125<br />

Chemical Captan '40 FU A 2 01/10/2007 30/09/2017 07/5/EC<br />

Chemical Carbendazim '263 FU A 1 01/01/2007 31/12/2009 06/135/EC<br />

Chemical Carfentrazone-ethyl HB C 01/10/2003 30/09/2013 03/68/EC<br />

Chemical Chloridazon (aka pyrazone) '111 HB A 3 01/01/2009 31/12/2018 2008/41<br />

Chemical Chlormequat (chloride) '143 PG A 3 01/12/2009 30/11/2019<br />

Chemical Chlorothalonil '288 FU A 1 01/03/2006 28/02/2016 05/53/EC<br />

Chemical Chlorotoluron '217 HB A 1 01/03/2006 28/02/2016 05/53/EC<br />

Chemical Chlorpropham '43 PG, HB A 1 01/02/2005 31/01/2015 04/20/EC<br />

Chemical Chlorpyrifos '221 IN, AC A 1 01/07/2006 30/06/2016 05/72/EC<br />

Chemical Chlorpyrifos-methyl '486 IN, AC A 1 01/07/2006 30/06/2016 05/72/EC<br />

Chemical Chlorsulfuron '391 HB A 3 01/09/2009 31/08/2019<br />

Chemical Cinidon ethyl HB C 01/10/2002 30/09/2012 02/64/EC<br />

Chemical Clodinafop HB A 2 01/02/2007 31/01/2017 06/39/EC<br />

Chemical Clofentezine '418 AC A 3 01/01/2009 31/12/2018 2008/69<br />

Chemical Clomazone '509 HB A 3 01/11/2008 01/11/2018 2007/76<br />

Chemical Clopyralid '455 HB A 2 01/01/2007 30/04/2017 06/64/EC<br />

Chemical Clothianidin IN C 01/08/2006 31/07/2016 06/41/EC<br />

Chemical Copper compounds FU A 3 01/11/2009 30/11/2016 SCoFCAH<br />

voted<br />

01.2009<br />

Chemical Copper hydroxide FU A 3 01/11/2009 30/11/2016 SCoFCAH<br />

voted<br />

01.2009<br />

Chemical Copper oxychloride FU A 3 01/11/2009 30/11/2016 SCoFCAH<br />

voted<br />

01.2009<br />

Chemical Cuprous oxide FU A 3 01/11/2009 30/11/2016 SCoFCAH<br />

voted<br />

01.2009<br />

Chemical Cyazofamid FU C 01/07/2003 30/06/2013 03/23/EC<br />

Chemical Cyclanilide PG C 01/11/2001 31/10/2011 01/87/EC<br />

Chemical Cyfluthrin '385 IN, AC A 1 01/01/2004 31/12/2013 03/31/EC<br />

Chemical Cyhalofop-butyl HB C 01/10/2002 30/09/2012 02/64/EC<br />

Chemical Cymoxanil '419 FU A 3 01/09/2009 31/08/2019 2008/125<br />

Chemical Cypermethrin '332 IN, AC A 1 01/03/2006 28/02/2016 05/53/EC<br />

Chemical Cyprodinil '511 FU A 2 01/05/2007 30/04/2017 06/64/EC<br />

Chemical Cyromazine '420 IN A 3 01/01/2010 31/08/2019<br />

Chemical Daminozide '330 PG A 1 01/03/2006 28/02/2016 05/53/EC<br />

Chemical Deltamethrin '333 IN A 1 01/11/2003 31/10/2013 03/5/EC<br />

Chemical Desmedipham '477 HB A 1 01/11/2003 31/10/2013 04/58/EC<br />

Chemical Dicamba '85 HB A 3 01/01/2009 31/12/2018 2008/69<br />

Chemical Dichlorobenzoic acid methylester FU, PGR A 3 01/09/2009 31/08/2019 2008/125<br />

Chemical Dichlorprop-P '476 HB A 2 01/06/2007 31/05/2017 06/74/EC<br />

Chemical Didecyldimethylammonium<br />

FU A 4<br />

chloride<br />

Chemical Difenacoum '514 RO A 4<br />

Chemical Difenoconazole '687 FU A 3 01/01/2009 31/12/2018 2008/69<br />

Chemical Diflubenzuron '339 IN A 3 01/01/2009 31/12/2018 2008/69<br />

Chemical Diflufenican '462 HB A 3 01/01/2009 31/12/2018 2008/66<br />

Chemical Dimethachlor HB A 3 01/01/2010 31/08/2019<br />

Chemical Dimethenamid ? P HB C 01/01/2004 31/12/2013 03/84/EC<br />

Chemical Dimethoate '59 IN, AC A 2 01/10/2007 30/09/2017 07/25/EC<br />

Chemical Dimethomorph '483 FU A 2 01/10/2007 30/09/2017 07/25/EC<br />

164


Appendix 10<br />

Chemical Dimoxystrobin FU C 01/10/2006 30/09/2016 06/75/EC<br />

Chemical Dinocap '98 FU, AC A 1 01/01/2007 31/12/2009 06/136/EC<br />

Chemical Diquat (dibromide) '55 HB A 1 01/01/2002 31/12/2011 01/21/EC<br />

Chemical Diuron '100 HB A 2 01/10/2008 30/09/2018 08/91/EC<br />

Chemical Dodemorph '300 FU A 3 01/09/2009 31/08/2019 2008/125<br />

Chemical Epoxiconazole '609 FU A 3 01/01/2009 31/12/2018 2008/107<br />

Chemical Esfenvalerate '481 IN A 1 01/08/2001 31/07/2011 00/67/EC<br />

Chemical Ethephon '373 PG A 2 01/08/2007 31/07/2017 06/85/EC<br />

Chemical Ethofumesate '233 HB A 1 01/03/2003 28/02/2013 02/37/EC<br />

Chemical Ethoprophos '218 NE, IN A 2 01/10/2007 30/09/2017 07/52/EC<br />

Chemical Ethoxysulfuron HB C 01/07/2003 30/06/2013 03/23/EC<br />

Chemical Etofenprox '471 IN A 3 01/01/2010 31/12/2019<br />

Chemical Etoxazole IN C 01/06/2005 31/05/2015 05/34/EC<br />

Chemical Famoxadone FU C 01/10/2002 30/09/2012 02/64/EC<br />

Chemical Fenamidone FU C 01/10/2003 30/09/2013 03/68/EC<br />

Chemical Fenamiphos (aka phenamiphos) NE A 2 01/08/2007 31/07/2017 06/85/EC<br />

Chemical Fenhexamid FU C 01/06/2001 31/05/2011 01/28/EC<br />

Chemical Fenoxaprop-P '484 HB A 3 01/01/2009 31/12/2018 2008/66<br />

Chemical Fenpropidin '520 FU A 3 01/01/2009 31/12/2018 2008/66<br />

Chemical Fenpropimorph '427 FU A 3 01/01/2009 31/12/2018 2008/107<br />

Chemical Fenpyroximate AC A 3 01/01/2009 31/12/2018 2008/107<br />

Chemical Fipronil '581 IN A 2 01/10/2007 30/09/2017 07/52/EC<br />

Chemical Flazasulfuron HB C 01/06/2004 31/05/2014 04/30/EC<br />

Chemical Florasulam HB C 01/10/2002 30/09/2012 02/64/EC<br />

Chemical Fluazinam '521 FU A 3 01/01/2009 31/12/2018 2008/108<br />

Chemical Fludioxonil '522 FU A 3 01/11/2008 01/11/2018 2007/76<br />

Chemical Flufenacet (formerly fluthiamide) HB C 01/01/2004 31/12/2013 03/84/EC<br />

Chemical Flumioxazin HB C 01/01/2003 31/12/2012 02/81/EC<br />

Chemical Fluoxastrobin FU C 01/08/2008 31/07/2018 08/44/EC<br />

Chemical Flupyrsulfuron methyl HB C 01/07/2001 30/06/2011 01/49/EC<br />

Chemical Fluroxypyr '431 HB A 1 01/12/2000 30/11/2010 00/10/EC<br />

Chemical Flurtamone HB C 01/01/2004 31/12/2013 03/84/EC<br />

Chemical Flusilazole '435 FU A 1 01/01/2007 30/06/2008 06/133/EC<br />

Chemical Flutolanil '524 FU A 3 01/01/2009 31/12/2018 2008/108<br />

Chemical Folpet '75 FU A 2 01/10/2007 30/09/2017 07/5/EC<br />

Chemical Foramsulfuron HB C 01/07/2003 30/06/2013 03/23/EC<br />

Chemical Forchlorfenuron PG C 01/04/2006 31/03/2016 06/10/EC<br />

Chemical Formetanate IN, AC A 2 01/10/2007 30/09/2017 07/5/EC<br />

Chemical Fosetyl '384 FU A 2 01/05/2007 30/04/2017 06/64/EC<br />

Chemical Fosthiazate NE C 01/01/2004 31/12/2013 03/84/EC<br />

Chemical Fuberidazole '525 FU A 3 01/01/2009 31/12/2018 2008/108<br />

Chemical Glufosinate '437 HB A 2 01/10/2007 30/09/2017 07/25/EC<br />

Chemical Glyphosate (incl trimesium aka '284 HB A 1 01/07/2002 30/06/2012 01/99/EC<br />

sulfosate)<br />

Chemical Imazalil (aka enilconazole) '335 FU A 1 01/01/1999 31/12/2008 97/73/EC<br />

Chemical Imazamox HB C 01/07/2003 30/06/2013 03/23/EC<br />

Chemical Imazaquin '699 PG A 3 01/01/2009 31/12/2018 2008/69<br />

Chemical Imazosulfuron HB C 01/04/2005 31/03/2015 05/3/EC<br />

Chemical Imidacloprid IN A 3 01/08/2009 31/07/2019 2008/116<br />

Chemical Indoxacarb IN C 01/04/2006 31/03/2016 06/10/EC<br />

Chemical Iodosulfuron-methyl-sodium HB C 01/01/2004 31/12/2013 03/84/EC<br />

Chemical Ioxynil '86 HB A 1 01/03/2005 28/02/2015 04/58/EC<br />

Chemical Iprodione '278 FU A 1 01/01/2004 31/12/2013 03/31/EC<br />

Chemical Iprovalicarb FU C 01/07/2002 30/06/2011 02/48/EC<br />

165


Heilig et al (Appendix for Chapter 4)<br />

Chemical Iron sulphate HB A 4 01/09/2009 31/08/2019 2008/127<br />

Chemical Isoproturon '336 HB A 1 01/01/2003 31/12/2012 02/18/EC<br />

Chemical Isoxaflutole HB C 01/01/2003 31/12/2012 03/68/EC<br />

Chemical Kresoxim-methyl FU C 01/02/1999 31/01/2009 99/01/EC<br />

Chemical lambda-Cyhalothrin '463 IN A 1 01/01/2002 31/12/2011 00/80/EC<br />

Chemical Lenacil '163 HB A 3 01/01/2009 31/12/2018 2008/69<br />

Chemical Linuron '76 HB A 1 01/01/2004 31/12/2013 03/31/EC<br />

Chemical Lufenuron IN A 3 01/01/2010 31/12/2019<br />

Chemical Magnesium phosphide '228 IN, RO A 3 01/09/2009 31/08/2019 2008/125<br />

Chemical Maleic hydrazide '310 PG A 1 01/01/2004 31/12/2013 03/31/EC<br />

Chemical Mancozeb '34 FU A 1 01/07/2006 30/06/2016 05/72/EC<br />

Chemical Maneb '61 FU A 1 01/07/2006 30/06/2016 05/72/EC<br />

Chemical MCPA '2 HB A 1 01/05/2006 30/04/2016 05/57/EC<br />

Chemical MCPB '50 HB A 1 01/05/2006 30/04/2016 05/57/EC<br />

Chemical Mecoprop '51 HB A 1 01/06/2004 31/05/2014 03/70/EC<br />

Chemical Mecoprop-P '475 HB A 1 01/06/2004 31/05/2014 03/70/EC<br />

Chemical Mepanipyrim FU C 01/10/2004 30/09/2014 04/62/EC<br />

Chemical Mepiquat '440 PG A 3 01/01/2009 31/12/2018 2008/108<br />

Chemical Mesosulfuron HB C 01/04/2004 31/03/2014 03/119/EC<br />

Chemical Mesotrione HB C 01/10/2003 30/09/2013 03/68/EC<br />

Chemical Metalaxyl-M FU C 01/10/2002 30/09/2012 02/64/EC<br />

Chemical Metamitron '381 HB A 3 01/09/2009 31/08/2019 2008/125<br />

Chemical Metazachlor '411 HB A 3 01/08/2009 31/07/2019 2008/116<br />

Chemical Metconazole FU A 2 01/06/2007 31/05/2017 06/74/EC<br />

Chemical Methiocarb (aka<br />

'165 IN, MO, RE A 2 01/10/2007 30/09/2017 07/5/EC<br />

mercaptodimethur)<br />

Chemical Methoxyfenozide IN C 01/04/2005 31/03/2015 05/3/EC<br />

Chemical Metiram '478 FU A 1 01/07/2006 30/06/2016 05/72/EC<br />

Chemical Metrafenone FU C 01/02/2007 31/01/2017 07/6/EC<br />

Chemical Metribuzin '283 HB A 2 01/10/2007 30/09/2017 07/25/EC<br />

Chemical Metsulfuron '441 HB A 1 01/07/2001 30/06/2011 00/49/EC<br />

Chemical Molinate '235 HB A 1 01/08/2004 31/07/2014 03/81/EC<br />

Chemical Nicosulfuron '709 HB A 3 01/01/2009 31/12/2018 2008/40<br />

Chemical Oxadiargyl HB C 01/07/2003 30/06/2013 03/23/EC<br />

Chemical Oxadiazon '213 HB A 3 01/01/2009 31/12/2018 2008/69<br />

Chemical Oxamyl '342 IN, NE A 2 01/08/2006 31/07/2016 06/16/EC<br />

Chemical Oxasulfuron HB C 01/07/2003 30/06/2013 03/23/EC<br />

Chemical Penconazole '446 FU A 3 01/01/2010 31/08/2019<br />

Chemical Pendimethalin '357 HB A 1 01/01/2004 31/12/2013 03/31/EC<br />

Chemical Pethoxamid HB C 01/08/2006 31/07/2016 06/41/EC<br />

Chemical Phenmedipham '77 HB A 1 01/03/2005 28/02/2015 04/58/EC<br />

Chemical Phosmet '318 IN A 2 01/10/2007 30/09/2017 07/25/EC<br />

Chemical Picloram '174 HB A 3 01/01/2009 31/12/2018 2008/69<br />

Chemical Picolinafen HB C 01/10/2002 30/09/2012 02/64/EC<br />

Chemical Picoxystrobin FU C 01/01/2004 31/12/2013 03/84/EC<br />

Chemical Pirimicarb '231 IN A 2 01/02/2007 31/01/2017 06/39/EC<br />

Chemical Pirimiphos-methyl '239 IN A 2 01/10/2007 30/09/2017 07/52/EC<br />

Chemical Prohexadione-calcium PG C 01/10/2000 01/10/2010 00/50/EC<br />

Chemical Propamocarb '399 FU A 2 01/10/2007 30/09/2017 07/25/EC<br />

Chemical Propaquizafop HB A 3 01/12/2009 30/11/2019<br />

Chemical Propiconazole '408 FU A 1 01/06/2004 31/05/2014 03/70/EC<br />

Chemical Propineb '177 FU A 1 01/04/2004 30/03/2014 03/39/EC<br />

Chemical Propoxycarbazone HB C 01/04/2004 31/03/2014 03/119/EC<br />

Chemical Propyzamide '315 HB A 1 01/04/2004 30/03/2014 03/39/EC<br />

166


Appendix 10<br />

Chemical Prosulfocarb '539 HB A 3 01/01/2009 31/12/2018 2007/76<br />

Chemical Prosulfuron HB C 01/07/2002 30/06/2011 02/48/EC<br />

Chemical Prothioconazole FU C 01/08/2008 31/07/2018 08/44/EC<br />

Chemical Pymetrozine IN C 01/11/2001 31/10/2011 01/87/EC<br />

Chemical Pyraclostrobin FU, PG C 01/06/2004 31/05/2014 04/30/EC<br />

Chemical Pyraflufen-ethyl HB C 01/11/2001 31/10/2011 01/87/EC<br />

Chemical Pyridate '447 HB A 1 01/01/2002 31/12/2011 01/21/EC<br />

Chemical Pyrimethanil FU A 2 01/06/2007 31/05/2017 06/74/EC<br />

Chemical Pyriproxyfen '715 IN A 3 01/01/2009 31/12/2018 2008/69<br />

Chemical Quinoclamine '648 HB, AL A 3 01/01/2009 31/12/2018 2008/66<br />

Chemical Quinoxyfen FU C 01/09/2004 31/08/2014 04/60/EC<br />

Chemical Quizalofop-P '641 HB A 3 01/12/2009 30/11/2019 SCoFCAH<br />

voted<br />

01.2009<br />

Chemical Quizalofop-P-ethyl '641 HB A 3 01/12/2009 30/11/2019<br />

Chemical Quizalofop-P-tefuryl '641 HB A 3 01/12/2009 30/11/2019<br />

Chemical Rimsulfuron (aka renriduron) HB A 2 01/02/2007 31/01/2017 06/39/EC<br />

Chemical Silthiofam FU C 01/01/2004 31/12/2013 03/84/EC<br />

Chemical S-Metholachlor HB C 01/04/2005 31/03/2015 05/3/EC<br />

Chemical Sodium 5-nitroguaiacolate PG A 3 01/11/2009 31/10/2019 2009/11<br />

chemical Sodium hypochlorite BA A 4 01/09/2009 31/08/2019 2008/127<br />

Chemical Sodium o-nitrophenolate PG A 3 01/11/2009 31/10/2019 2009/11<br />

Chemical Sodium p-nitrophenolate PG A 3 01/11/2009 31/10/2019 2009/11<br />

Chemical Spiroxamine FU C 01/09/1999 01/09/2009 99/73/EC<br />

Chemical Sulcotrione HB A 3 01/09/2009 31/08/2019 2008/125<br />

Chemical Sulfosulfuron HB C 01/07/2002 30/06/2011 02/48/EC<br />

Chemical Sulphur '0018 FU, AC, RE A 4 SCoFCAH<br />

voted<br />

03.2009<br />

Chemical Tebuconazole '494 FU A 3 01/09/2009 31/08/2019 2008/125<br />

Chemical Tebufenpyrad AC A 3 01/11/2009 31/10/2019 2009/11<br />

Chemical Teflubenzuron '450 IN A 3 01/12/2009 30/11/2019<br />

Chemical Tepraloxydim HB C 01/06/2005 31/05/2015 05/34/EC<br />

Chemical Thiabendazole '323 FU A 1 01/01/2002 31/12/2011 01/21/EC<br />

Chemical Thiacloprid IN C 01/01/2005 31/12/2014 04/99/EC<br />

Chemical Thiamethoxam IN C 01/02/2007 31/01/2017 07/6/EC<br />

Chemical Thifensulfuron-methyl '452 HB A 1 01/07/2002 30/06/2012 01/99/EC<br />

Chemical Thiophanate-methyl '262 FU A 1 01/03/2006 28/02/2016 05/53/EC<br />

Chemical Thiram '24 FU A 1 01/08/2004 31/07/2014 03/81/EC<br />

Chemical Tolclofos-methyl '479 FU A 2 01/02/2007 31/01/2017 06/39/EC<br />

Chemical Tolylfluanid '275 FU, AC A 2 01/10/2006 30/09/2016 06/06/EC<br />

Chemical Tralkoxydim '544 HB A 3 01/01/2009 31/12/2018 2008/107<br />

Chemical Triadimenol '398 FU A 3 01/09/2009 31/08/2019 2008/125<br />

Chemical Tri-allate '97 HB A 3 01/01/2010 31/12/2019<br />

Chemical Triasulfuron '480 HB A 1 01/08/2001 31/07/2011 00/66/EC<br />

Chemical Tribasic copper sulfate FU A 3<br />

Chemical Tribenuron (aka metometuron) '546 HB A 2 01/03/2006 28/02/2016 05/54/EC<br />

Chemical Triclopyr '376 HB A 2 01/06/2007 31/05/2017 06/74/EC<br />

Chemical Trifloxystrobin FU C 01/10/2003 30/09/2013 03/68/EC<br />

Chemical Triflusulfuron HB A 3 01/01/2010 31/12/2019<br />

Chemical Trinexapac (aka cimetacarb ethyl) PG A 2 01/05/2007 30/04/2017 06/64/EC<br />

Chemical Triticonazole '652 FU A 2 01/02/2007 31/01/2017 06/39/EC<br />

Chemical Tritosulfuron HB C 01/12/2008 30/11/2018 08/70/EC<br />

Chemical Warfarin (aka coumaphene) '70 RO A 1 01/10/2006 30/09/2013 06/05/EC<br />

167


Heilig et al (Appendix for Chapter 4)<br />

Chemical zeta-Cypermethrin IN A 3 01/12/2009 30/11/2019<br />

Chemical Ziram '31 FU, RE A 1 01/08/2004 31/07/2014 03/81/EC<br />

Chemical Zoxamide FU C 01/04/2004 31/03/2014 03/119/EC<br />

Chemical<br />

repellent<br />

Denathonium benzoate RE A 4 01/09/2009 31/08/2019 2008/127<br />

Chemical<br />

repellent<br />

Chemical<br />

repellent<br />

Repellents by smell/ Tall oil crude<br />

(CAS 8002-26-4)<br />

Repellents by smell/Tall oil pitch<br />

(CAS 8016-81-7)<br />

A 4 01/09/2009 31/08/2019 2008/127<br />

A 4 01/09/2009 31/08/2019 2008/127<br />

Microbial Ampelomyces quisqualis strain<br />

FU C 01/04/2005 31/03/2015 05/2/EC<br />

AQ10<br />

Microbial Bacillus subtilis str. QST 713 BA, FU C 01/02/2007 31/01/2017 07/6/EC<br />

Microbial<br />

Microbial<br />

Microbial<br />

Microbial<br />

Bacillus thuringiensis subsp.<br />

aizawai (ABTS-1857 <strong>and</strong> GC-91)<br />

Bacillus thuringiensis subsp.<br />

israelensis (AM65-52)<br />

Bacillus thuringiensis subsp.<br />

kurstaki (ABTS 351, PB 54, SA<br />

11, SA12 <strong>and</strong> EG 2348)<br />

Bacillus thuringiensis subsp.<br />

tenebrionis (NB 176)<br />

Microbial Beauveria bassiana (ATCC 74040<br />

<strong>and</strong> GHA)<br />

[IN] A 4 01/01/2009 31/12/2018 2008/113<br />

[IN] A 4 01/01/2009 31/12/2018 2008/113<br />

[IN] A 4 01/01/2009 31/12/2018 2008/113<br />

[IN] A 4 01/01/2009 31/12/2018 2008/113<br />

IN A 4 01/01/2009 31/12/2018 2008/113<br />

Microbial Coniothyrium minitans FU C 01/01/2004 31/12/2013 03/79/EC<br />

Microbial<br />

Microbial<br />

Microbial<br />

Microbial<br />

Microbial<br />

Cydia pomonella granulosis virus<br />

(CpGV)<br />

Gliocladium catenulatum strain<br />

J1446<br />

Lecanicillimum muscarium (Ve6)<br />

(former Verticillium lecanii)<br />

Metarhizium anisopliae<br />

(BIPESCO 5F/52)<br />

Paecilomyces fumosoroseus<br />

Apopka strain 97<br />

IN A 4 01/01/2009 31/12/2018 2008/113<br />

FU C 01/04/2005 31/03/2015 05/2/EC<br />

IN A 4 01/01/2009 31/12/2018 2008/113<br />

IN A 4 01/01/2009 31/12/2018 2008/113<br />

FU C 01/07/2001 30/06/2011 01/47/EC<br />

Microbial Paecilomyces lilacinus FU C 01/08/2008 31/07/2018 2008/44/EC<br />

Microbial Phlebiopsis gigantea (several<br />

FU A 4 01/01/2009 31/12/2018 2008/113<br />

strains)<br />

Microbial Pseudomonas chlororaphis<br />

strain MA342<br />

FU C 01/10/2004 30/09/2014 04/71/EC<br />

Microbial Pythium olig<strong>and</strong>rum (M1) FU A 4 01/01/2009 31/12/2018 2008/113<br />

Microbial Spodoptera exigua nuclear<br />

FU C 01/12/2007 30/11/2017 07/50/EC<br />

polyhedrosis virus<br />

Microbial<br />

Streptomyces K61 (K61) (formerly<br />

Streptomyces griseoviridis)<br />

Microbial Trichoderma aspellerum (ICC012)<br />

(T11) (TV1) (formerly T.<br />

harzianum)<br />

Microbial Trichoderma atroviride (IMI<br />

206040) (T 11) (formerly<br />

Trichoderma harzianum)<br />

Microbial Trichoderma gamsii (formerly T.<br />

viride) (ICC080)<br />

Microbial<br />

Microbial<br />

Microbial<br />

Trichoderma harzianum Rifai (T-<br />

22) (ITEM 908)<br />

Trichoderma polysporum (IMI<br />

206039)<br />

Verticillium albo-atrum<br />

(WCS850) (formerly V. dahliae)<br />

FU A 4 01/01/2009 31/12/2018 2008/113<br />

FU A 4 01/01/2009 31/12/2018 2008/113<br />

FU A 4 01/01/2009 31/12/2018 2008/113<br />

FU A 4 01/01/2009 31/12/2018 2008/113<br />

FU A 4 01/01/2009 31/12/2018 2008/113<br />

FU A 4 01/01/2009 31/12/2018 2008/113<br />

FU A 4 01/01/2009 31/12/2018 2008/113<br />

168


Appendix 10<br />

Natural other Abamectin (aka avermectin) '495 AC, IN A 3 01/01/2009 31/12/2018 2008/107<br />

Natural other Acetic acid HB A 4 01/09/2009 31/08/2018 2008/127<br />

Natural other Aluminium silicate (aka kaolin) RE A 4 01/09/2009 31/08/2019 2008/127<br />

Natural other Blood meal RE A 4 01/09/2009 31/08/2019 2008/127<br />

Natural other Carbon dioxide IN, RO A 4 01/09/2009 31/08/2019 2008/127<br />

Natural other Fat distilation residues RE A 4 01/09/2009 31/08/2019 2008/127<br />

Natural other Ferric phosphate MO C 01/11/2001 31/10/2011 01/87/EC<br />

Natural other Kieselguhr (diatomaceous earth) IN A 4 01/09/2009 31/08/2019 2008/127<br />

Natural other Milbemectin IN, AC C 01/12/2005 30/11/2015 05/58/EC<br />

Natural other Quartz s<strong>and</strong> RE A 4 01/09/2009 31/08/2019 2008/127<br />

Natural other Spinosad IN C 01/02/2007 31/01/2017 07/6/EC<br />

Natural other<br />

by synthesis<br />

Natural other<br />

by synthesis<br />

Natural other<br />

by synthesis<br />

Natural other<br />

fatty acid<br />

Natural other<br />

fatty acid<br />

Natural other<br />

fatty acid<br />

Natural other<br />

fatty acid<br />

Benzoic acid BA, FU, OT C 01/06/2004 31/05/2014 04/30/EC<br />

Potassium hydrogen carbonate FU A 4 01/09/2009 31/08/2019 2008/127<br />

Urea IN A 4 01/09/2009 31/08/2019 2008/127<br />

Capric acid (CAS 334-48-5)<br />

Caprylic acid (CAS 124-07-2)<br />

Fatty acids C7 to C20<br />

Fatty acids C7-C18 <strong>and</strong> C18<br />

unsaturated potassium salts (CAS<br />

67701-09-1)<br />

IN, AC, HB,<br />

PG<br />

IN, AC, HB,<br />

PG<br />

IN, AC, HB,<br />

PG<br />

IN, AC, HB,<br />

PG<br />

A 4 01/09/2009 31/08/2019 2008/127<br />

A 4 01/09/2009 31/08/2019 2008/127<br />

A 4 01/09/2009 31/08/2019 2008/127<br />

A 4 01/09/2009 31/08/2019 2008/127<br />

Natural other<br />

fatty acid<br />

Natural other<br />

fatty acid<br />

Natural other<br />

fatty acid<br />

Natural other<br />

fatty acid<br />

Natural other<br />

fatty acid<br />

Natural other<br />

fatty acid<br />

Natural other<br />

repellent<br />

Natural other<br />

repellent<br />

Natural other<br />

Repellent<br />

Natural other<br />

repellent<br />

Natural other<br />

repellent<br />

Natural other<br />

repellent<br />

Fatty acids C8-C10 methyl esters<br />

(CAS 85566-26-3)<br />

Lauric acid (CAS 143-07-7)<br />

Methyl decanoate (CAS 110-42-9)<br />

Methyl octaonate (CAS 111-11-5)<br />

Oleic acid (CAS 112-80-1)<br />

Pelargonic acid (CAS 112-05-0)<br />

IN, AC, HB,<br />

PG<br />

IN, AC, HB,<br />

PG<br />

IN, AC, HB,<br />

PG<br />

IN, AC, HB,<br />

PG<br />

IN, AC, HB,<br />

PG<br />

IN, AC, HB,<br />

PG<br />

A 4 01/09/2009 31/08/2019 2008/127<br />

A 4 01/09/2009 31/08/2019 2008/127<br />

A 4 01/09/2009 31/08/2019 2008/127<br />

A 4 01/09/2009 31/08/2019 2008/127<br />

A 4 01/09/2009 31/08/2019 2008/127<br />

A 4 01/09/2009 31/08/2019 2008/127<br />

Calcium carbonate RE A 4 01/09/2009 31/08/2019 2008/127<br />

Limestone RE A 4 01/09/2009 31/08/2019 2008/127<br />

Methyl nonyl ketone √ RE A 4 01/09/2009 31/08/2019 2008/127<br />

Sodium aluminium silicate RE A 4 01/09/2009 31/08/2019 2008/127<br />

Repellents by smell/Fish oil RE A 4 01/09/2009 31/08/2019 2008/127<br />

Repellents by smell/Sheep fat RE A 4 01/09/2009 31/08/2019 2008/127<br />

169


Heilig et al (Appendix for Chapter 4)<br />

Semio (Z)-13-Hexadecen-11yn-1-yl<br />

2008/127<br />

acetate √ AT A 4 01/09/2009 31/08/2019<br />

Semio (Z,Z,Z,Z)-7,13,16,19-<br />

2008/127<br />

Docosatetraen-1-yl isobutyrate<br />

√ AT A 4 01/09/2009 31/08/2019<br />

Semio Ammonium acetate √ AT A 4 01/01/2009 31/12/2018 2008/127<br />

Semio Hydrolysed proteins √ IN A 4 01/09/2009 31/08/2019 2008/127<br />

Semio Putrescine (1,4-Diaminobutane) √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio Trimethylamine hydrochloride √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio Straight Chain Lepidoptera<br />

Pheromones<br />

√ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (2E, 13Z)-Octadecadien-1-yl √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

acetate<br />

Semio/SCLP (7E, 9E)-Dodecadien 1-yl acetate √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (7E, 9Z)-Dodecadien 1-yl acetate √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (7Z, 11E)-Hexadecadien-1-yl √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

acetate<br />

Semio/SCLP (7Z, 11Z)-Hexadecdien-1-yl √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

acetate<br />

Semio/SCLP (9Z, 12E)-Tetradecadien-1-yl √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

acetate<br />

Semio/SCLP (E)-11-Tetradecen-1-yl acetate √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (E)-5-Decen-1-ol √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (E)-5-Decen-1-yl-acetate √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (E)-8-Dodecen-1-yl acetate √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (E,E)-8,10-Dodecadien-1-ol √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (E/Z)-8-Dodecen-1-yl acetate √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (Z)-11-Hexadecen-1-ol √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (Z)-11-Hexadecen-1-yl acetate √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (Z)-11-Hexadecenal √ √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (Z)-11-Tetradecen-1-yl acetate √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (Z)-13-Octadecenal √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (Z)-7-Tetradecenal √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (Z)-8-Dodecen-1-ol √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (Z)-8-Dodecen-1-yl acetate √ √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (Z)-9-Dodecen-1-yl acetate 422 √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

√<br />

Semio/SCLP (Z)-9-Hexadecenal √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP (Z)-9-Tetradecen-1-yl acetate √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP Dodecyl acetate √ √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Semio/SCLP Tetradecan-1-ol √ AT A 4 01/09/2009 31/08/2019 2008/127<br />

Official Total Included: 334 A: Existing active substances divided into<br />

four lists for phased evaluations<br />

C: New active substances<br />

170


Appendix 11. Invertebrate beneficials available as <strong>biological</strong> <strong>control</strong> agents <strong>against</strong><br />

invertebrate pests in five European countries.<br />

11.1. Invertebrate bio<strong>control</strong> agents used in France<br />

Beneficial Taxonomy Target Crop<br />

Adalia bipunctata coleoptera aphids on leaves orchards: all<br />

Adalia bipunctata coleoptera aphids on leaves<br />

vegetable greenhouse: all<br />

crops<br />

Delphastus pusillus coleoptera whiteflies<br />

vegetables greenhouse<br />

<strong>and</strong> covered<br />

Harmonia axyridis coleoptera aphids on leaves Vegetables , orchards<br />

Aphidoletes aphidimyza diptera aphids on leaves<br />

vegetable greenhouse:<br />

tomato,<br />

cucumber, egg plant,<br />

sweet pepper<br />

Feltiella acarisuga diptera Tetranychus urticae<br />

vegetable greenhouse: all<br />

crops<br />

Anthocoris nemoralis heteroptera psylla orchard: pear<br />

Aleurodina (whiteflies),<br />

secondarily <strong>against</strong><br />

Macrolophus<br />

vegetable greenhouse: all<br />

heteroptera Tetranychus & aphids<br />

caliginosus<br />

crops<br />

(Macrosiphum euphorbiae,<br />

Aphis gossypii)<br />

Anagrus atomus<br />

hymenoptera<br />

Tomato Leaf-hopper<br />

(Hauptidia maroccana)<br />

Aphelinus abdominalis hymenoptera aphids: M. euphorbiae<br />

Aphidius colemani<br />

hymenoptera<br />

aphids:<br />

A. gossypii, Myzus persicae<br />

(green peach aphid)<br />

aphids: Aulacorthum solani, M.<br />

euphorbiae, M. persicae<br />

171<br />

vegetables<br />

vegetable greenhouse: all,<br />

tomato,<br />

egg plant, sweet pepper<br />

vegetable greenhouse: all<br />

crops<br />

Aphidius ervi<br />

hymenoptera<br />

vegetable greenhouse: all<br />

crops<br />

Diaeretiella rapae hymenoptera aphids : Brevicoryne brassicae Cabbage, oil-seed rape<br />

Dacnusa sibirica<br />

Diglyphus isaea<br />

hymenoptera<br />

hymenoptera<br />

Agromyzidae (leaf-miner<br />

flies)<br />

Agromyzidae (leaf-miner<br />

flies)<br />

Encarsia formosa hymenoptera Aleurodina (whiteflies)<br />

Eretmocerus eremicus<br />

(syn. Californicus)<br />

Eretmocerus mundus<br />

Orius insidiosus<br />

hymenoptera<br />

hymenoptera<br />

hymenoptera<br />

Aleurodina (whiteflies):<br />

Bemisia tabaci,<br />

Trialeurodes vaporariorum<br />

Aleurodina (whiteflies):<br />

B. tabaci,<br />

T. vaporariorum<br />

thrips:<br />

Frankliniella occidentalis,<br />

Thrips tabaci<br />

Orius laevigatus hymenoptera thrips, partial: Tetranychus<br />

Orius majusculus hymenoptera thrips, partial: Tetranychus<br />

vegetable greenhouse: all<br />

crops<br />

vegetable greenhouse: all<br />

crops<br />

vegetable greenhouse: all<br />

crops<br />

vegetable greenhouse: all<br />

crops<br />

vegetable greenhouse: all<br />

crops, orchards<br />

vegetable greenhouse: all<br />

crops<br />

vegetable greenhouse: all<br />

crops<br />

vegetable greenhouse: all<br />

crops


Heilig et al (Appendix for Chapter 4)<br />

Trichogramma brassicae<br />

Ostrinia nubilalis<br />

hymenoptera<br />

Bezdenko<br />

(European corn borer)<br />

maize<br />

Trichogramma<br />

Noctuidae(Owlet moths), vegetable greenhouse: all<br />

hymenoptera<br />

evanescens<br />

Pyralidae<br />

crops<br />

Amblyseius <strong>and</strong>ersoni mite N. rubi, P. ulmi, T.urticae orchards: all<br />

Amblyseius <strong>and</strong>ersoni mite<br />

Aculops lycopersici,<br />

Tetranychus<br />

Vegetables<br />

Amblyseius californicus mite Tetranychus, Panonychus vegetables<br />

Amblyseius cucumeris mite Tetranychus, thrips<br />

vegetable covered:<br />

tomato, cucumber,<br />

sweet pepper, all crops<br />

(thrips)<br />

Amblyseius degenerans mite thrips<br />

vegetable greenhouse: egg<br />

plant, sweet pepper<br />

Amblyseius swirskii mite thrips, whiteflies vegetables<br />

Hypoaspis aculeifer mite<br />

Sciaridae (fungus gnats), bulb vegetable greenhouse: all<br />

mite (Rhyzogliphus robini) crops<br />

Hypoaspis miles mite Sciaridae (fungus gnats), thrips<br />

vegetable greenhouse: all<br />

crops<br />

Phytoseiulus persimilis mite Tetranychus urticae vegetables<br />

Otiorhynchus salicicola,<br />

Heterorhabditis<br />

nematode Otiorhynchus sulcatus (vine<br />

bacteriophora,<br />

weevil), Phyllopertha horticola<br />

orchards: crops & nursery<br />

Heterorhabditis megidis nematode<br />

Otiorhynchus salicicola,<br />

Otiorhynchus sulcatus (vine Vegetables, flowers<br />

weevil)<br />

Phasmarhabditis<br />

nematode Limacidae (Slugs) vegetable: general<br />

hermaphrodita<br />

Steinernema<br />

carpocapsae<br />

Steinernema kraussei<br />

Steinernema<br />

carpocapsae<br />

nematode Codling moth pome fruit<br />

nematode<br />

nematode<br />

Otiorhynchus salicicola,<br />

Otiorhynchus sulcatus (vine<br />

weevil)<br />

Noctuids,<br />

Gryllotalpa gryllotalpa<br />

(European mole cricket),<br />

Tipula paludosa (March crane<br />

fly )<br />

vegetable: general<br />

vegetable: general<br />

Steinernema feltiae nematode codling moth, Cydia molesta pome fruit<br />

Steinernema feltiae nematode Sciaridae (fungus gnats)<br />

vegetable: general young<br />

plants<br />

Chrysoperla carnea nevroptera aphids on leaves<br />

vegetables <strong>and</strong> ornements<br />

covered<br />

Chrysoperla lucasina<br />

nevroptera<br />

aphids, thrips, scales,<br />

whiteflies, acarids eggs, leak<br />

moth<br />

Micromus angulatus nevroptera scales, aphids vegetables<br />

Franklinothrips<br />

vespiformis<br />

thysanoptera thrips<br />

vegetables <strong>and</strong> ornements<br />

covered<br />

vegetable greenhouse: all<br />

crops<br />

172


Appendix 11<br />

11.2. Invertebrate bio<strong>control</strong> agents used in Germany<br />

Beneficial<br />

Entomopathogenic nematodes<br />

Heterorhabditis bacteriophora Poinar<br />

Heterorhabditis megidis Poinar<br />

Steinernema carpocapsae Weiser<br />

Steinernema feltiae Filipjev<br />

Steinernema kraussei Steiner<br />

Gastropod pathogenic nematodes<br />

Phasmarhabditis hermaphrodita A. Schneider<br />

Predatory mites<br />

Amblyseius <strong>and</strong>ersoni Chant<br />

Amblyseius barkeri Hughes<br />

Amblyseius californicus McGregor<br />

Amblyseius cucumeris Oudemans<br />

Amblyseius degenerans Berlese<br />

Amblyseius swirskii Athias-Henriot<br />

Cheyletus eruditus Schrank<br />

Hypoaspis aculeifer Canestrini<br />

Hypoaspis milesBerlese<br />

Phytoseiulus persimilis Athias-Henriot<br />

Typhlodromus pyri Scheuten<br />

Predatory thrips (Thysanoptera)<br />

Franklinothrips vespiformis Crawford<br />

Parasitic wasps (Hymenoptera)<br />

Anagrus atomus Linnaeus<br />

Anagyrus fusciventris Girault<br />

Anisopteromalus cal<strong>and</strong>rae Howard<br />

Aphelinus abdominalis Dalman<br />

Aphelinus mali Haldeman<br />

Aphidius colemani Viereck<br />

Aphidius ervi Haliday<br />

Aphidius matricariae Haliday<br />

Aprostocetus hagenowii Ratzeburg<br />

Cephalonomia tarsalis Ashmead<br />

Coccidoxenoides perminutus Girault<br />

Coccophagus licymnia Walker<br />

Coccophagus rusti Compere<br />

Pest<br />

Larvae of vine weevil (Otiorynchus sulcatus), caterpillars<br />

of ghost moths (genus: Hepialus), larvae of garden<br />

chaffer (Phyllopertha horticola) <strong>and</strong> other insect larvae<br />

feeding on roots<br />

Larvae of vine weevil (Otiorynchus sulcatus) <strong>and</strong> other<br />

insect larvae feeding on roots<br />

Larvae of vine weevil (Otiorynchus sulcatus) <strong>and</strong> other<br />

insect larvae feeding on roots, mole cricket<br />

Larvae of fungus gnats (Diptera: Sciaridae) <strong>and</strong> March<br />

flies (Diptera: Bibionidae)<br />

Insect larvae feeding on roots, e.g. vine weevil<br />

(Otiorynchus sulcatus)<br />

Slugs (Deroceras spp, Agriolimax spp <strong>and</strong> others)<br />

Spider mites (Tetranychus spp, Panonychus spp), gall<br />

mites (Eriophyidae) u.a.<br />

Thrips (Frankliniella occidentalis <strong>and</strong> others)<br />

Spider mites<br />

Thrips (Frankliniella occidentalis <strong>and</strong> others)<br />

Thrips<br />

White flies (e.g. Bemisia tabaci),<br />

spider mites (Tetranychus spp.) <strong>and</strong> thrips<br />

Stored product mites, booklice (Psocoptera)<br />

Thrips<br />

Thrips<br />

Spider mites (Tetranychus spp)<br />

Spider mites<br />

Thrips (in particular Echinothrips americanus,<br />

Parthenothrips dracaenae, Frankliniella occidentalis)<br />

Cicadidae eggs<br />

Wooly aphids (Eriosomatidae) <strong>and</strong> mealy bugs<br />

(Pseudococcididae)<br />

Drugstore (Stegobium paniceum), Tobacco (Lasioderma<br />

serricorne)<br />

Aphids (Macrosiphum euphorbiae, Aulacorthum solani)<br />

Wooly aphid (Eriosoma lanigerum)<br />

Aphids (Aphis gossypii, Myzus persicae, M. nicotianae)<br />

Aphids (Macrosiphum euphorbiae)<br />

Aphids (Myzus persicae)<br />

Cockroaches (Blatta orientalis, Periplaneta spp)<br />

Saw-toothed <strong>and</strong> march<strong>and</strong> grain beetles (Oryzaephilus<br />

surinamensis und O. mercator)<br />

Different wooly aphids <strong>and</strong> mealy bugs<br />

(Pseudococcididae)<br />

Scale insects (Coccidae)<br />

Scale insects (Coccidae)<br />

173


Heilig et al (Appendix for Chapter 4)<br />

Coccophagus scutellaris Dalman<br />

Dacnusa sibirica Telenga<br />

Diglyphus isaea Walker<br />

Diaeretiella rapae M'Intosh<br />

Encarsia citrina Craw<br />

Encarsia formosa Gahan<br />

Encyrtus lecaniorum Mayr<br />

Eretmocerus californicus Howard (= eremicus<br />

Rose & Zolnerowich)<br />

Eretmocerus mundus Mercet<br />

Gyranusoidea litura Prinsloo<br />

Habrobracon hebetor Say<br />

Lariophagus distinguendus Förster<br />

Leptomastidea abnormis Girault<br />

Leptomastix dactylopii Howard<br />

Leptomastix epona<br />

Walker<br />

Lysiphlebus testaceipes Cresson<br />

Metaphycus flavus Howard<br />

Metaphycus helvolus Compere<br />

Metaphycus lounsburyi Howard<br />

Metaphycus stanleyi Compere<br />

Microterys flavus Howard<br />

Pseudaphycus maculipennis Mercet<br />

Theocolax elegans Westwood<br />

Thripobius semiluteus Boucek<br />

Trichogramma brassicae<br />

Bezdenko<br />

Trichogramma cacoeciae Marchal<br />

Trichogramma dendrolimi Matsumura<br />

Trichogramma evanescens Westwood<br />

Trichogramma evanescens Westwood (Stamm<br />

„Lager“)<br />

Venturia canescens Gravenhorst<br />

Predatory midges <strong>and</strong> syrphids (Diptera)<br />

Aphidoletes aphidimyza Rondani<br />

Diaeretiella rapae DeGeer<br />

Feltiella acarisuga Vallot<br />

Predatory beetles (Coleoptera)<br />

Adalia bipunctata Linnaeus<br />

Atheta coriaria Kraatz<br />

Chilocorus nigritus Fabricius<br />

Scale insects (Coccidae)<br />

Leaf-miner flies (Agromyzidae: Liriomyza <strong>and</strong> others<br />

Leaf-miner flies (Agromyzidae: Liriomyza <strong>and</strong> others<br />

Cabbage aphid (Brevicoryne brassicae)<br />

Diaspididae<br />

White fly (Trialeurodes vaporarium)<br />

Scale insect (Saissetia hemisphaerica)<br />

White flies (Bemisia spp <strong>and</strong> others)<br />

White flies (Aleyrodidae)<br />

Long-tailed mealy bug (Pseudococcus longispinus)<br />

Stored product moths (Indian Meal moth, Plodia<br />

interpuntella) <strong>and</strong> (Ephestia spp)<br />

Grain weevils (Sitophilus spp), drugstore beetle<br />

(Stegobium paniceum), tobacco beetle (Lasioderma<br />

serricorne), shiny spider beetle (Gibbium psylloides),<br />

golden spider beetle (Niptus hololeucus)<br />

Wooly aphids <strong>and</strong> mealy bugs (Pseudococcididae)<br />

Wooly aphids <strong>and</strong> mealy bugs (Pseudococcididae)<br />

Wooly aphids <strong>and</strong> mealy bugs (Pseudococcididae)<br />

Apids (Aphis gossypii)<br />

Scale insects (Coccidae: Saissetia oleae, Coccus<br />

hesperidum)<br />

Scale insects (Coccidae: Saissetia oleae,<br />

Coccus hesperidum)<br />

Scale insects (Coccidae: Saissetia oleae)<br />

Scale insects (Coccidae)<br />

Scale insects (Coccidae: Saissetia oleae)<br />

Wooly aphids <strong>and</strong> mealy bugs (Pseudococcididae)<br />

Lesser grain borer (Rhyzopertha dominica)<br />

Thrips (Hercinothrips femoralis, Heliothrips<br />

haemorrhoidalis, Echinothrips americanus)<br />

Eggs of corn borer (Ostrinia nubilalis) <strong>and</strong> other moths<br />

Eggs of plum maggot moth (Cydia funebrana) <strong>and</strong><br />

codling moth (Cydia pomonella)<br />

Eggs of plum maggot moth (Cydia funebrana) <strong>and</strong><br />

codling moth (Cydia pomonella)<br />

Eggs of pest lepidoptera <strong>and</strong> stored product moths<br />

Eggs of stored product moths<br />

Eggs of stored product mothes (Indian meal moth, Plodia<br />

interpuntella) <strong>and</strong> (Ephestia spp)<br />

Aphids<br />

Aphids<br />

Spider mites (Tetranychus urticae, T. cinnabarinus,<br />

Panonychus ulmi)<br />

Aphids<br />

Parasites of fly pupa<br />

Scale insects<br />

174


Appendix 11<br />

Coccinella septempunctata Linnaeus<br />

Cryptolaemus montrouzieri Mulsant<br />

Exochomus quadripustulatus Linnaeus<br />

Rhyzobius forestieri Mulsant<br />

Rhyzobius lophantae Blaisdell<br />

Rodolia cardinalis Mulsant<br />

Stethorus punctillum Weise<br />

Predatory true bugs (Heteroptera)<br />

Anthocoris nemoralis Fabricius<br />

Dicyphus hesperus Knight<br />

Macrolophus melanotoma Costa(= caliginosus<br />

E. Wagner)<br />

Macrolophus pygmaeus Rambur<br />

Orius insidiosus Say<br />

Orius laevigatus Fieber<br />

Orius majusculus Reuter<br />

Lacewings<br />

Chrysoperla carnea Stephens<br />

Parasites <strong>and</strong> predators of stable flies<br />

Diaeretiella rapae Girault & S<strong>and</strong>ers<br />

Muscidifurax zaraptor Kogan & Legner<br />

Nasonia vitripennis Walker<br />

Spalangia cameroni Perkins<br />

Spalangia endius Walker<br />

Spalangia nigroaeneus Curtis<br />

Hydrothaea aenescens Wiedemann<br />

Aphids<br />

Wooly aphids (Eriosomatidae) <strong>and</strong> mealy bugs<br />

(Pseudococcididae)<br />

Scale insects<br />

Scale insects (Saissetia oleae)<br />

Scale insects (Coccidae), Wooly aphids (Eriosomatidae)<br />

<strong>and</strong> mealy bugs (Pseudococcididae)<br />

Wooly aphids (Eriosomatidae) <strong>and</strong> mealy bugs<br />

(Pseudococcididae)<br />

Spider mites<br />

Suckers (Psyllids, Psyllidae)<br />

White fly (Trialeurodes vaporariorum)<br />

White flies (Aleyrodidae)<br />

White flies (Aleyrodidae)<br />

Thrips (Thysanoptera)<br />

Thrips (Thysanoptera)<br />

Thrips (Thysanoptera)<br />

Aphids<br />

Housefly-related flies<br />

Housefly-related flies<br />

Housefly-related flies<br />

Housefly-related flies<br />

Housefly-related flies<br />

Housefly-related flies<br />

Housefly-related flies<br />

Source: http://www.jki.bund.de/<br />

175


Heilig et al (Appendix for Chapter 4)<br />

11.3. Invertebrate bio<strong>control</strong> agents used in Spain<br />

Beneficial Taxonomy Target Crop<br />

Adalia bipunctata coleoptera Aphids on leaves orchards: all<br />

Adalia bipunctata coleoptera Aphids on leaves<br />

vegetable greenhouse: all<br />

crops<br />

Delphastus pusillus coleoptera Whiteflies<br />

vegetables greenhouse<br />

<strong>and</strong> covered<br />

Harmonia axyridis coleoptera aphids on leaves Vegetables , orchards<br />

Aphidoletes aphidimyza diptera Aphids on leaves<br />

vegetable greenhouse:<br />

tomato,<br />

cucumber, egg plant,<br />

sweet pepper<br />

Feltiella acarisuga diptera Tetranychus urticae<br />

vegetable greenhouse: all<br />

crops<br />

Anthocoris nemoralis heteroptera Psylla orchard: pear<br />

Aleurodina (whiteflies),<br />

secondary vs<br />

Macrolophus<br />

vegetable greenhouse: all<br />

heteroptera Tetranychus &<br />

caliginosus<br />

crops<br />

Aphids: Macrosiphum<br />

euphorbiae, Aphis gossypii<br />

Anagrus atomus hymenoptera<br />

Tomato Leaf-hopper<br />

vegetables<br />

Aphelinus abdominalis<br />

hymenoptera<br />

(Hauptidia maroccana)<br />

Aphids:<br />

Macrosiphum<br />

euphorbiae<br />

Aphids:<br />

Aphis gossypii,<br />

176<br />

vegetable greenhouse: all,<br />

tomato,<br />

egg plant, sweet pepper<br />

Aphidius colemani hymenoptera<br />

vegetable greenhouse: all<br />

crops<br />

Myzus persicae (green peach<br />

aphid)<br />

Aphidius ervi<br />

hymenoptera<br />

Aphids: Aulacorthum solani<br />

vegetable greenhouse: all<br />

Macrosiphum euphorbiae,<br />

crops<br />

myzus persicae<br />

Diaeretiella rapae hymenoptera Aphids : Brevicoryne brassicae Cabbage, oil-seed rape<br />

Dacnusa sibirica hymenoptera<br />

Agromyzidae<br />

vegetable greenhouse: all<br />

(leaf-miner flies)<br />

crops<br />

Diglyphus isaea hymenoptera<br />

Agromyzidae<br />

vegetable greenhouse: all<br />

(leaf-miner flies)<br />

crops<br />

Encarsia formosa hymenoptera Aleurodina (whiteflies)<br />

Eretmocerus eremicus<br />

(syn. Californicus)<br />

Eretmocerus mundus<br />

Orius insidiosus<br />

Orius laevigatus<br />

Orius majusculus<br />

hymenoptera<br />

hymenoptera<br />

hymenoptera<br />

hymenoptera<br />

hymenoptera<br />

Aleurodina (whiteflies):<br />

Bemisia tabaci,<br />

Trialeurodes vaporariorum<br />

Aleurodina (whiteflies):<br />

Bemisia tabaci,<br />

Trialeurodes vaporariorum<br />

Thrips:<br />

Frankliniella occidentalis,<br />

Thrips tabaci<br />

Thrips,<br />

partial: Tetranychus<br />

Thrips,<br />

partial: Tetranychus<br />

vegetable greenhouse: all<br />

crops<br />

vegetable greenhouse: all<br />

crops<br />

vegetable greenhouse: all<br />

crops, orchards<br />

vegetable greenhouse: all<br />

crops<br />

vegetable greenhouse: all<br />

crops<br />

vegetable greenhouse: all<br />

crops


Appendix 11<br />

Trichogramma brassicae<br />

Ostrinia nubilalis<br />

hymenoptera<br />

Bezdenko<br />

(European corn borer)<br />

maize<br />

Trichogramma brassicae<br />

Noctuidae(Owlet moths), vegetable greenhouse: all<br />

hymenoptera<br />

Bezdenko<br />

Pyralidae<br />

crops<br />

Trichogramma<br />

Noctuidae(Owlet moths), vegetable greenhouse: all<br />

hymenoptera<br />

evanescens<br />

Pyralidae<br />

crops<br />

Amblyseius <strong>and</strong>ersoni mite N. rubi, P. ulmi, T.urticae orchards: all<br />

Amblyseius <strong>and</strong>ersoni mite<br />

Aculops lycopersici,<br />

Tetranychus<br />

Vegetables<br />

Amblyseius californicus mite Tetranychus, Panonychus vegetables<br />

Amblyseius cucumeris mite Tetranychus, thrips<br />

vegetable covered:<br />

tomato, cucumber,<br />

sweet pepper, all crops<br />

(thrips)<br />

Amblyseius degenerans mite Thrips<br />

vegetable greenhouse: egg<br />

plant, sweet pepper<br />

Amblyseius barkeri<br />

(mackenziei)<br />

mite Thrips vegetables<br />

Amblyseius swirskii mite Thrips, whiteflies vegetables<br />

Hypoaspis aculeifer mite<br />

Sciaridae (fungus gnats), bulb vegetable greenhouse: all<br />

mite (Rhyzogliphus robini) crops<br />

Hypoaspis miles mite Sciaridae (fungus gnats), thrips<br />

vegetable greenhouse: all<br />

crops<br />

Phytoseiulus persimilis mite Tetranychus urticae vegetables<br />

Otiorhynchus salicicola,<br />

Heterorhabditis<br />

nematode Otiorhynchus sulcatus (vine<br />

bacteriophora,<br />

weevil),Phyllopertha horticola<br />

orchards: crops & nursery<br />

Heterorhabditis megidis nematode<br />

Otiorhynchus salicicola,<br />

Otiorhynchus sulcatus (vine Vegetables, flowers<br />

weevil)<br />

Phasmarhabditis<br />

nematode Limacidae (Slugs) vegetable: general<br />

hermaphrodita<br />

Steinernema<br />

carpocapsae<br />

Steinernema kraussei<br />

Steinernema<br />

carpocapsae<br />

nematode Codling moth Apple, pear<br />

nematode<br />

nematode<br />

Otiorhynchus salicicola,<br />

Otiorhynchus sulcatus (vine<br />

weevil)<br />

Noctuids,<br />

Gryllotalpa gryllotalpa<br />

(European mole cricket),<br />

Tipula paludosa (March crane<br />

fly )<br />

177<br />

vegetable: general<br />

vegetable: general<br />

Steinernema feltiae nematode Codling moth, cydia molesta Apple, pear<br />

Steinernema feltiae nematode Sciaridae (fungus gnats)<br />

vegetable: general young<br />

plants<br />

Chrysoperla carnea nevroptera aphids on leaves<br />

vegetables <strong>and</strong> ornements<br />

covered<br />

Chrysoperla lucasina<br />

nevroptera<br />

Aphids, thrips, scales,<br />

whiteflies, acarids eggs, leak<br />

moth<br />

vegetables <strong>and</strong> ornements<br />

covered<br />

Micromus angulatus nevroptera Scales, aphids vegetables<br />

Franklinothrips<br />

vegetable greenhouse: all<br />

Thrips<br />

Thrips<br />

vespiformis<br />

crops<br />

Adalia bipunctata coleoptera Aphids on leaves orchards: all<br />

Adalia bipunctata coleoptera Aphids on leaves vegetable greenhouse: all


Heilig et al (Appendix for Chapter 4)<br />

crops<br />

Delphastus pusillus coleoptera Whiteflies<br />

vegetables greenhouse<br />

<strong>and</strong> covered<br />

Harmonia axyridis coleoptera aphids on leaves Vegetables , orchards<br />

Aphidoletes aphidimyza diptera Aphids on leaves<br />

vegetable greenhouse:<br />

tomato, cucumber, egg<br />

plant, sweet pepper<br />

Feltiella acarisuga diptera Tetranychus urticae<br />

vegetable greenhouse: all<br />

crops<br />

Anthocoris nemoralis heteroptera Psylla orchard: pear<br />

Aleurodina (whiteflies),<br />

secondary vs<br />

Macrolophus<br />

vegetable greenhouse: all<br />

heteroptera Tetranychus &<br />

caliginosus<br />

crops<br />

Aphids: Macrosiphum<br />

euphorbiae, Aphis gossypii<br />

Anagrus atomus hymenoptera<br />

Tomato Leaf-hopper<br />

vegetables<br />

Aphelinus abdominalis<br />

hymenoptera<br />

(Hauptidia maroccana)<br />

Aphids:<br />

Macrosiphum<br />

euphorbiae<br />

vegetable greenhouse: all,<br />

tomato, egg plant, sweet<br />

pepper<br />

178


Appendix 11<br />

11.4. Invertebrate bio<strong>control</strong> agents used in Switzerl<strong>and</strong><br />

Beneficial Taxonomy Target Crop<br />

Adalia bipunctata coleoptera Aphids on leaves orchards: all<br />

Adalia bipunctata coleoptera Aphids on leaves vegetable greenhouse: egg<br />

plant, cucumber, sweet<br />

pepper<br />

Aphidoletes aphidimyza diptera Aphids on leaves vegetable greenhouse:<br />

tomato,<br />

cucumber, egg plant,<br />

sweet pepper<br />

Aphidoletes aphidimyza diptera Aphids on leaves vegetable covered: all<br />

Feltiella acarisuga diptera Tetranychus urticae vegetable greenhouse:<br />

cucumber, egg plant,<br />

sweet pepper<br />

Anthocoris nemoralis heteroptera Psylla orchard: pear<br />

Macrolophus<br />

caliginosus<br />

heteroptera<br />

Aleurodina (whiteflies),<br />

secondary vs<br />

Tetranychus &<br />

Aphids: Macrosiphum<br />

euphorbiae, Aphis gossypii<br />

Aphelinus abdominalis hymenoptera Aphids:<br />

Macrosiphum<br />

euphorbiae,<br />

Aulacorthum solani<br />

Myzus persicae (green peach<br />

aphid)<br />

Aphidius colemani hymenoptera Aphids:<br />

Aphis gossypii,<br />

Aphis fabae,<br />

Myzus persicae (green peach<br />

aphid)<br />

hymenoptera<br />

Aphids:<br />

Aulacorthum solani<br />

Macrosiphum euphorbiae<br />

179<br />

vegetable greenhouse:<br />

tomato,<br />

egg plant, sweet pepper<br />

vegetable greenhouse: all,<br />

tomato,<br />

egg plant, sweet pepper<br />

vegetable greenhouse: all<br />

crops<br />

vegetable greenhouse: all<br />

crops<br />

Aphidius ervi<br />

hymenoptera Agromyzidae<br />

vegetable greenhouse: all<br />

Dacnusa sibirica<br />

(leaf-miner flies)<br />

crops<br />

hymenoptera Agromyzidae<br />

vegetable greenhouse: all<br />

Diglyphus isaea<br />

(leaf-miner flies)<br />

crops<br />

Encarsia formosa hymenoptera Aleurodina (whiteflies) vegetable greenhouse: all<br />

crops<br />

hymenoptera Aleurodina (whiteflies): vegetable greenhouse:<br />

Bemisia tabaci,<br />

tomato,<br />

Trialeurodes vaporariorum cucumber, egg plant,<br />

Eretmocerus eremicus<br />

(syn. Californicus)<br />

Orius insidiosus hymenoptera Thrips:<br />

Frankliniella occidentalis,<br />

Thrips tabaci<br />

sweet pepper<br />

vegetable greenhouse:<br />

sweet pepper<br />

hymenoptera Thrips,<br />

vegetable greenhouse: all<br />

Orius laevigatus<br />

partial: Tetranychus<br />

crops<br />

hymenoptera Thrips,<br />

vegetable greenhouse:<br />

Orius majusculus<br />

partial: Tetranychus<br />

sweet pepper<br />

Trichogramma brassicae hymenoptera Ostrinia nubilalis<br />

maize<br />

Bezdenko<br />

(European corn borer)<br />

Trichogramma brassicae hymenoptera Noctuidae(Owlet moths), vegetable greenhouse: all


Heilig et al (Appendix for Chapter 4)<br />

Bezdenko Pyralidae crops<br />

Amblyseius barkeri<br />

(mackenziei)<br />

mite Thrips vegetable greenhouse: all<br />

crops, tomato, cucumber,<br />

egg plant, sweet pepper<br />

Amblyseius californicus mite Tetranychus vegetable greenhouse:<br />

sweet pepper<br />

Amblyseius cucumeris mite Tetranychus, thrips vegetable covered:<br />

tomato, cucumber,<br />

sweet pepper, all crops<br />

(thrips)<br />

Amblyseius degenerans mite Tetranychus, thrips vegetable greenhouse: egg<br />

plant, sweet pepper<br />

mite Sciaridae (fungus gnats) vegetable greenhouse: all<br />

Hypoaspis aculeifer<br />

crops<br />

Hypoaspis miles mite Sciaridae (fungus gnats) vegetable greenhouse: all<br />

crops<br />

mite<br />

Phytoseiulus persimilis<br />

Tetranychus urticae<br />

Heterorhabditis nematode Otiorhynchus salicicola,<br />

bacteriophora,<br />

Otiorhynchus sulcatus (vine<br />

weevil)<br />

Heterorhabditis megidis nematode Otiorhynchus salicicola,<br />

Otiorhynchus sulcatus (vine<br />

weevil)<br />

Heterorhabditis megidis nematode Otiorhynchus salicicola,<br />

Otiorhynchus sulcatus (vine<br />

weevil)<br />

Phasmarhabditis<br />

hermaphrodita<br />

Photorhabdus<br />

luminescens<br />

Photorhabdus<br />

luminescens<br />

Steinernema<br />

carpocapsae<br />

Steinernema<br />

carpocapsae<br />

Steinernema<br />

carpocapsae<br />

vegetable greenhouse: all<br />

crops, tomato, cucumber,<br />

egg plant, sweet pepper<br />

orchards: nursery<br />

orchards: nursery<br />

vine: young plants<br />

nematode Limacidae (Slugs) vegetable: general<br />

nematode<br />

nematode<br />

nematode<br />

nematode<br />

nematode<br />

Otiorhynchus salicicola,<br />

Otiorhynchus sulcatus (vine<br />

weevil)<br />

Otiorhynchus salicicola,<br />

Otiorhynchus sulcatus (vine<br />

weevil)<br />

Otiorhynchus salicicola,<br />

Otiorhynchus sulcatus (vine<br />

weevil)<br />

Otiorhynchus salicicola,<br />

Otiorhynchus sulcatus (vine<br />

weevil)<br />

Noctuids,<br />

Gryllotalpa gryllotalpa<br />

(European mole cricket)<br />

orchards: nursery<br />

vine: young plants<br />

orchards: all<br />

vine: young plants<br />

vegetable: general<br />

Steinernema feltidae nematode Sciaridae (fungus gnats) vegetable: general young<br />

plants<br />

Xenorhabdus bovienii nematode Sciaridae (fungus gnats) vegetable: general young<br />

plants<br />

180


Appendix 11<br />

11.5. Invertebrate bio<strong>control</strong> agents used in the United Kingdom<br />

Active Substance Product Name Type of product Target(s)<br />

Steinernema feltiae Nemasys<br />

Entompathogenic Sciarids, leafminer,<br />

nematode<br />

WFT<br />

Steinernema kraussei Nemasys L<br />

Entompathogenic<br />

nematode<br />

vine weevil<br />

Heterorhabditis megidis Nemasys H<br />

Entompathogenic<br />

nematode<br />

vine weevil,<br />

Heterorhabditis megidis Nemasys H<br />

Entompathogenic<br />

nematode<br />

Grubs<br />

Steinernema carpocasae Nemasys C<br />

Entompathogenic codling moth (occasional<br />

nematode<br />

cutworms)<br />

Steinernema carpocasae Nemasys C<br />

Entompathogenic<br />

nematode<br />

Hylobius<br />

Phasmarhabditis<br />

hermaphrodita<br />

Nemaslug slug parasitic nematode Slugs<br />

Adalia bipunctata Adalsure Natural enemy Aphids<br />

Amblyseius californicus Ambsure Natural enemy Thrips, rsm<br />

Trichogramma evanescans Trichogramma Natural enemy Caterpillars<br />

Anagrus atomus Anagsure Natural enemy Leaf hopper<br />

Amblyseius cucumeris Ambsure Natural enemy Thrips<br />

Hypoaspis miles Hyposure Natural enemy<br />

181<br />

Thrips, bulb mite,<br />

sciarids<br />

Orius laevigatus Orisure Natural enemy Thrips<br />

Aphelinus abdominalis Aphelsure Natural enemy Aphids<br />

Aphidius ervi Aphissure (e) Natural enemy Thrips<br />

Aphidius colemani Aphisure (c) Natural enemy Thrips<br />

Aphidoletes aphidimyza Aphidosure Natural enemy Aphids<br />

Chilocorus nigritus Chilosure(n) Natural enemy Scale insect<br />

Chrysoperla carnea Chrysosure (c ) Natural enemy Aphids<br />

Cryptolaemus montrouzieiri Cryptosure (m) Natural enemy Mealy bug<br />

Dacnusa sibirica Dacsure (si) Natural enemy Leaf miner<br />

Diglyphus isaea Digsure (i) Natural enemy Leaf miner<br />

Encarsia formosa Encsure Natural enemy Whitefly<br />

Encarsia formosa <strong>and</strong><br />

Enersure Natural enemy Whitefly<br />

Eretmocerus eremicus<br />

Eretmocerus eremicus Eretsure (f) Natural enemy Whitefly<br />

Feltiella acarisuga Felsure (a) Natural enemy rsm<br />

Macrolophus caliginosus Macsure (c ) Natural enemy Whitefly<br />

Phytoseiulus persimilis Phytosure (p) Natural enemy rsm<br />

Bombus terrestris Beesure Pollinator Pollination<br />

Metaphycus helvolus,<br />

Encarsia citrina,<br />

Coccophagus lycimnia <strong>and</strong><br />

Encyrtus infelix<br />

Scalesure Natural enemy Scale insect<br />

Leptomastix dactilopii Leptosure (d) Natural enemy Mealy bug<br />

Leptomastix dactylopii,<br />

Anagyrus pseudococci <strong>and</strong><br />

Leptomastidea abnormis<br />

Mealysure Natural enemy Mealy bug<br />

Metaphycus helviolus Metasure (h) Natural enemy Scale insect<br />

Encarsia formosa EN-STRIP parasitic wasp Whitefly<br />

Encarsia formosa +<br />

Eretmocerus eremicus pupae<br />

ENERMIX parasitic wasp Whitefly


Heilig et al (Appendix for Chapter 4)<br />

Eretmocerus eremicus ERCAL parasitic wasp Whitefly<br />

Macrolophus caliginosus MIRICAL predatory bug Whitefly/spidermite<br />

Macrolophus caliginosus MIRICAL NYMPH predatory bug Whitefly/spidermite<br />

Feltiella acarisuga SPIDEND predatory bug Spidermite<br />

Phytoseiulus persimilis SPIDEX predatory mite Spidermite<br />

Amblyseius californicus SPICAL predatory mite Spidermite<br />

Aphidoletes aphidimyza APHIDEND predatory bug Aphids<br />

Aphelinus abdominalis APHILIN parasitic wasp Aphids<br />

Aphidius colemani APHIPAR parasitic wasp Aphids<br />

Chrysoperla carnea CHRYSOPA predatory bug Aphids<br />

Aphidius ervi ERVIPAR parasitic wasp Aphids<br />

Episyrphus balteatus SYRPHIDEND predatory bug Aphids<br />

Adalia bipunctata ADALIA larvae predatory beetle Aphids<br />

Amblyseius cucumeris THRIPEX predatory mite Thrips + some mites<br />

Orius laevigatus THRIPOR predatory bug Thrips<br />

Amblyseius swirski SWIRSKI MITE predatory mite Thrips <strong>and</strong> Whiteflies<br />

Dacnusa sibirica +<br />

Diglyphus isaea<br />

DIMINEX parasitic wasp Leafminers<br />

Diglyphus isaea MIGLYPHUS parasitic wasp Leafminers<br />

Dacnusa sibirica MINUSA parasitic wasp Leafminers<br />

Hypoaspis aculeifer<br />

ENTOMITE<br />

aculeifer<br />

predatory mite<br />

Sciarids<br />

Steinernema feltiae ENTONEM parasitic nematode Sciarids<br />

Steinernema feltiae SCIA-RID parasitic nematode Mushroom flies<br />

Steinernema carpocapsae<br />

CAPSANEM 50<br />

million<br />

parasitic nematode Cranefly, Caterpillar<br />

Trichogramma sp. TRICHO-STRIP parasitic wasp Caterpillar<br />

Heterorhabditis megidis LARVANEM parasitic nematode Vine Weevil, Chafer<br />

Cryptolaemus montrouzieri CRYPTOBUG predatory beetle Mealybug<br />

Adalia bipunctata Adaline b Predator Aphids<br />

Amblyseius (Euseius) ovalis Ovaline Predator Whitefly <strong>and</strong> thrips<br />

Amblyseius (Iphiseius)<br />

degenerans<br />

Amblyline d Predator Thrips<br />

Amblyseius (Neoseiulus )<br />

californicus<br />

Amblyline cal Predator Spider mites<br />

Amblyseius (Neoseiulus)<br />

cucumeris<br />

Amblyline cu Predator Thrips<br />

Amblyseius (Typhlodromips)<br />

montdorensis<br />

Amblyline m Predator Thrips<br />

Amblyseius (Typhlodromips)<br />

swirskii<br />

Swirskiline Predator Whitefly <strong>and</strong> thrips<br />

Amblyseius <strong>and</strong>ersoni Anderline aa Predator Spider mites<br />

Anagrus atomus Anagline a Parasitoid Leaf Hoppers<br />

Anthocoris nemoralis Antholine n Predator Pear Psylla<br />

Aphelinus abdominalis Apheline a Parasitoid Aphids<br />

Aphidius colemani Aphiline c Parasitoid Small aphids<br />

Aphidius ervi Aphiline e Parasitoid Large aphids<br />

Aphidoletes aphidimyza Aphidoline a Predator Aphids<br />

Atheta coriaria Staphyline c Predator Sciarid <strong>and</strong> Shore Flies<br />

Bombus terrestris<br />

Beeline Total<br />

System<br />

Pollinator -<br />

Chrysoperla carnea Chrysoline c Predator Aphids<br />

Cryptolaemus montrouzieri Cryptoline m Predator Mealybugs<br />

Dacnusa sibirica Dacline s Parasitoid Leafminers<br />

182


Appendix 11<br />

Diglyphus isaea Digline i Parasitoid Leafminers<br />

Encarsia formosa Encarline f Parasitoid Trialeurodes<br />

Eretmocerus eremicus Eretline e Parasitoid<br />

Trialeurodes <strong>and</strong><br />

Bemisia<br />

Feltiella acarisuga Feltiline a Predator Spider mites<br />

Heterorhabditis megidis Nemasys H<br />

Entomopathogenic<br />

nematode<br />

Vine Weevils<br />

Hypoaspis miles Hypoline m Predator Sciarid Flies<br />

Macrolophus caliginosus<br />

(also known as M.<br />

Macroline c Predator Whiteflies<br />

pygmaeus)<br />

Orius laevigatus Oriline l Predator Thrips<br />

Orius majusculus Oriline m Predator Thrips<br />

Phasmarhabditis<br />

Entomopathogenic<br />

Nemaslug<br />

hermaphrodita<br />

nematode<br />

Slugs<br />

Phytoseiulus persimilis Phytoline p Predator Spider mites<br />

183


Nicot, P. C. (Ed)<br />

<strong>Classical</strong> <strong>and</strong> <strong>augmentative</strong> <strong>biological</strong> <strong>control</strong> <strong>against</strong> diseases <strong>and</strong> pests: critical status analysis <strong>and</strong><br />

review of factors influencing their success<br />

1 st Edition August 2011<br />

Copyright: <strong>IOBC</strong>/<strong>WPRS</strong> 20011<br />

http://www.iobc-wprs.org<br />

ISBN 978-92-9067-243-2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!