25.03.2014 Views

Star Forming Regions in Cepheus

Star Forming Regions in Cepheus

Star Forming Regions in Cepheus

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Handbook of <strong>Star</strong> <strong>Form<strong>in</strong>g</strong> <strong>Regions</strong> Vol. I<br />

Astronomical Society of the Pacific, 2008<br />

Bo Reipurth, ed.<br />

<strong>Star</strong> <strong>Form<strong>in</strong>g</strong> <strong>Regions</strong> <strong>in</strong> <strong>Cepheus</strong><br />

Mária Kun<br />

Konkoly Observatory, H-1525 Budapest, P.O. Box 67, Hungary<br />

Zoltán T. Kiss<br />

Baja Astronomical Observatory, P.O. Box 766, H-6500 Baja, Hungary<br />

Zoltán Balog 1<br />

Steward Observatory, University of Arizona, 933 N. Cherry Av., Tucson AZ<br />

85721, USA<br />

Abstract. The northern Milky Way <strong>in</strong> the constellation of <strong>Cepheus</strong> (100 ◦ ≤ l ≤<br />

120 ◦ ;0 ◦ ≤ b ≤ 20 ◦ ) conta<strong>in</strong>s several star form<strong>in</strong>g regions. The molecular clouds of<br />

the <strong>Cepheus</strong> Flare region at b > 10 ◦ , are sites of low and <strong>in</strong>termediate mass star formation<br />

located between 200 and 450 pc from the Sun. Three nearby OB associations,<br />

Cep OB2, Cep OB3, Cep OB4, located at 600–800 pc, are each <strong>in</strong>volved <strong>in</strong> form<strong>in</strong>g<br />

stars, like the well known high mass star form<strong>in</strong>g region S 140 at 900 pc. The reflection<br />

nebula NGC 7129 around 1 kpc harbors young, compact clusters of low and <strong>in</strong>termediate<br />

mass stars. The giant star form<strong>in</strong>g complex NGC 7538 and the young open cluster<br />

NGC 7380, associated with the Perseus arm, are located at d > 2 kpc.<br />

1. Overview<br />

In this chapter we describe the star form<strong>in</strong>g regions of the constellation of <strong>Cepheus</strong>.<br />

A large scale map of the constellation, with the boundaries def<strong>in</strong>ed by IAU overlaid,<br />

and the most prom<strong>in</strong>ent star form<strong>in</strong>g regions <strong>in</strong>dicated, is shown <strong>in</strong> Fig. 1. This huge<br />

area of the sky, stretch<strong>in</strong>g between the Galactic latitudes of about 0 ◦ and +30 ◦ , conta<strong>in</strong>s<br />

several giant star form<strong>in</strong>g molecular cloud complexes located at various distances from<br />

the Sun. Accord<strong>in</strong>g to their distance they can be ranged <strong>in</strong>to three large groups:<br />

(1) Clouds nearer than 500 pc located ma<strong>in</strong>ly at b ≥ 10 ◦ , <strong>in</strong> the <strong>Cepheus</strong> Flare.<br />

(2) Three OB associations, Cep OB 2, Cep OB 3 and Cep OB 4 between 600–900 pc.<br />

(3) <strong>Star</strong> form<strong>in</strong>g regions associated with the Perseus spiral arm at 2–3 kpc.<br />

In the follow<strong>in</strong>g we discuss the first two of these groups.<br />

Fig. 2 shows the distribution of dark clouds perpendicular to the Galactic plane<br />

(Dobashi et al. 2005), with the outl<strong>in</strong>es of the major star form<strong>in</strong>g complexes overplotted.<br />

The large-scale 13 CO observations performed by Yonekura et al. (1997) led to<br />

a ref<strong>in</strong>ement of division of the clouds <strong>in</strong>to complexes. The groups listed <strong>in</strong> Table 2,<br />

1 on leave from Dept. of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged,<br />

H-6720, Hungary<br />

1


2<br />

Figure 1. Positions of the major star form<strong>in</strong>g regions of <strong>Cepheus</strong>, overplotted on<br />

a schematic draw<strong>in</strong>g of the constellation.<br />

adopted from Yonekura et al. (1997), were def<strong>in</strong>ed on the basis of their positions, radial<br />

velocities, and distances, where distance data were available.<br />

Table 1 lists the dark clouds identified <strong>in</strong> the <strong>Cepheus</strong> region from Barnard (1927)<br />

to the Tokyo Gakugei University (TGU) Survey (Dobashi et al. 2005), and the molecular<br />

clouds, mostly revealed by the millimeter emission by various isotopes of the carbon<br />

monoxide (Dobashi et al. 1994; Yonekura et al. 1997). The cloud name <strong>in</strong> the first column<br />

is the LDN (Lynds 1962) name where it exists, otherwise the first appearance of<br />

the cloud <strong>in</strong> the literature. Equatorial (J2000) and Galactic coord<strong>in</strong>ates are listed <strong>in</strong><br />

columns (2)–(5), and the area of the cloud <strong>in</strong> square degrees <strong>in</strong> column (6). Column (7)<br />

shows the radial velocity of the cloud with respect to the Local Standard of Rest. The<br />

number of associated young stellar objects is given <strong>in</strong> column (8), and the alternative<br />

names, follow<strong>in</strong>g the system of designations by SIMBAD, are listed <strong>in</strong> column (9). We


note that the LDN coord<strong>in</strong>ates, derived from visual exam<strong>in</strong>ation of the POSS plates,<br />

may be uncerta<strong>in</strong> <strong>in</strong> several cases.<br />

Figure 3 shows the distribution of the pre-ma<strong>in</strong> sequence stars and candidates over<br />

the whole <strong>Cepheus</strong> region.<br />

3<br />

<strong>Cepheus</strong> Flare Shell<br />

20<br />

Cep OB4 Shell<br />

<strong>Cepheus</strong> Flare clouds<br />

15<br />

NGC 7023<br />

Galactic latitude ( o )<br />

10<br />

5<br />

Cep OB4<br />

Be 59<br />

S171<br />

Cep OB3<br />

S155<br />

Cep OB2<br />

NGC 7129<br />

<strong>Cepheus</strong> Bubble<br />

NGC 7160<br />

S140<br />

IC 1396<br />

0<br />

Cep OB6<br />

120 115 110 105 100 95<br />

Galactic longitude ( o )<br />

Figure 2. Distribution of the visual ext<strong>in</strong>ction <strong>in</strong> the <strong>Cepheus</strong> region <strong>in</strong> the [l,b]<br />

plane (Dobashi et al. 2005) with outl<strong>in</strong>es of the major star form<strong>in</strong>g regions, discussed<br />

<strong>in</strong> this chapter, overplotted. Solid rectangles <strong>in</strong>dicate the nom<strong>in</strong>al boundaries<br />

of the OB associations (Humphreys 1978; de Zeeuw et al. 1999), and the dashed<br />

rectangle shows the <strong>Cepheus</strong> Flare cloud complex; giant HII regions are marked by<br />

solid grey circles, and star symbols <strong>in</strong>dicate young open clusters. Three large circles,<br />

drawn by radial dashes, show giant shell-like structures <strong>in</strong> the <strong>in</strong>terstellar medium.<br />

The <strong>Cepheus</strong> Flare Shell (Olano et al. 2006) belongs to the nearby <strong>Cepheus</strong> Flare<br />

complex, and the <strong>Cepheus</strong> Bubble (Kun et al. 1987) is associated with the association<br />

Cep OB2, and the <strong>Cepheus</strong> OB4 Shell (Olano et al. 2006) is associated with<br />

Cep OB4.


4<br />

Figure 3. Pre-ma<strong>in</strong> sequence stars and candidates <strong>in</strong> the <strong>Cepheus</strong> region overlaid<br />

on the map of visual ext<strong>in</strong>ction obta<strong>in</strong>ed from 2MASS data based on <strong>in</strong>terstellar<br />

redden<strong>in</strong>g us<strong>in</strong>g the NICER method (Lombardi & Alves 2001). Large circles denote<br />

those clouds from Table 1 which have been associated with young stars. The<br />

mean<strong>in</strong>g of different symbols are as follows: Filled triangles - T Tauri stars; Filled<br />

squares - Herbig Ae/Be stars; Filled circles - Weak-l<strong>in</strong>e T Tauri stars; Diamonds -<br />

Tr 37 ROSAT X-ray sources; Open triangles - PMS members of Tr 37; Open squares<br />

- Candidate and possible PMS members of Cep OB3b; X - Hα emission stars; + -<br />

T Tauri candidates selected from a 2MASS color-color diagram.


Table 1.: List of clouds catalogued <strong>in</strong> <strong>Cepheus</strong>.<br />

Cloud name RA(2000) Dec(2000) l b Area v LSR n star Alternative names<br />

(h m) ( ◦ ′ ) ( ◦ ) ( ◦ ) (sq.deg.) (km s −1 )<br />

LDN 1122 20 32.7 +65 20.3 99.97 +14.81 0.041 4.8 0 YMD CO 1, TGU 597<br />

LDN 1089 20 32.8 +63 30.3 98.40 +13.78 0.244 −2.4 0 TDS 366, TGU 586<br />

LDN 1094 20 32.8 +64 00.3 98.83 +14.06 0.002 0.1 1 CB 222<br />

TGU 667 20 33.9 +73 51.6 107.53 +19.33 2.460 1 [KTK2006] G107.1+19.3, [KTK2006]<br />

G107.5+19.8, [KTK2006] G107.9+18.9<br />

LDN 1152 20 34.4 +68 00.4 102.37 +16.14 0.025 2.9 0 YMD CO 8<br />

CB 223 20 34.7 +64 10.7 99.10 +13.98 0.003 −2.7 0<br />

LDN 1100 20 34.8 +64 00.4 98.96 +13.88 0.007 −2.7 1 CB 224<br />

LDN 1033 20 37.2 +57 10.5 93.44 +9.69 0.714 −2.4 0 TDS 343, TDS 345, TDS 346,<br />

TGU 549, DBY 093.1+09.6,<br />

DBY 093.5+09.4<br />

LDN 1036 20 38.2 +57 10.6 93.52 +9.58 0.088 −2.1 1 DBY 093.5+09.4<br />

LDN 1041 20 38.2 +57 30.6 93.79 +9.78 0.022 −2.1 0 DBY 093.5+09.4<br />

LDN 1157 20 39.5 +68 00.7 102.65 +15.75 0.005 2.9 1 [DE95] LDN 1157 A1, YMD CO 8, TGU 619<br />

LDN 1147 20 40.5 +67 20.8 102.14 +15.29 0.127 2.9 0 YMD CO 8, TDS 379, TGU 619,<br />

JWT Core 36, [LM99] 340,<br />

[BM89] 1-99, [LM99] 344<br />

LDN 1148 20 40.5 +67 20.8 102.14 +15.29 0.015 2.9 1 YMD CO 8, TGU 619<br />

LDN 1044 20 41.2 +57 20.8 93.90 +9.35 0.006 −2.1 0 DBY 093.5+09.4<br />

LDN 1049 20 42.2 +57 30.8 94.12 +9.35 0.005 0.6 0 DBY 094.1+09.4<br />

LDN 1039 20 42.3 +56 50.8 93.58 +8.94 0.079 −2.1 0 DBY 093.5+09.4<br />

LDN 1051 20 42.7 +57 30.9 94.16 +9.29 0.010 0.6 0 DBY 094.1+09.4<br />

LDN 1155 20 43.5 +67 40.9 102.60 +15.25 0.006 2.9 0 YMD CO 8, TGU 619<br />

LDN 1158 20 44.5 +67 41.0 102.66 +15.17 0.111 0.9 0 TDS 388, [BM89] 1-100, [LM99] 346, TGU 619<br />

[BM89] 1-102, [BM89] 1-103, [LM99] 348<br />

LDN 1038 20 46.3 +56 21.0 93.53 +8.20 0.660 −2.1 0 [BM89] 1-104, DBY 093.5+09.4<br />

LDN 1076 20 49.3 +59 51.2 96.57 +10.04 0.008 −2.2 0 DBY 096.8+10.2<br />

LDN 1082 20 51.1 +60 11.3 96.98 +10.07 0.111 −2.6 8 Barnard 150, GF 9, TDS 362, [LM99] 350,<br />

DBY 097.1+10.1, [BM89] 1-105, [LM99] 351<br />

LDN 1171 20 53.5 +68 19.5 103.71 +14.88 0.002 3.4 0 CB 229<br />

LDN 1037 20 54.4 +55 26.5 93.53 +6.75 0.591 0 TGU 551<br />

LDN 1168 20 56.6 +67 36.6 103.31 +14.21 0.003 0<br />

5


Table 1.: Cont<strong>in</strong>ued.<br />

6<br />

Cloud name RA(2000) Dec(2000) l b Area v LSR n star Alternative names<br />

(h m) ( ◦ ′ ) ( ◦ ) ( ◦ ) (sq.deg.) (km s −1 )<br />

LDN 1061 20 58.3 +57 21.7 95.36 +7.56 0.618 −2.1 0 DBY 095.2+07.4, DBY 095.2+07.4<br />

LDN 1071 20 58.3 +58 11.7 96.00 +8.10 0.092 −0.4 0 Barnard 354, DBY 096.0+08.1, TGU 569<br />

LDN 1056 20 58.4 +56 01.7 94.35 +6.69 0.036 0<br />

TGU 730 20 58.8 +78 11.8 112.23 +20.50 0.803 −8.0 3 [BM89] 1-108, [BM89] 1-109,<br />

[B77] 48, [BM89] 1-112, GN 21.00.4, RNO 129<br />

LDN 1228 20 59.0 +77 31.8 111.67 +20.10 0.086 −7.6 4 YMD CO 66, MBM 162, TGU 718<br />

LDN 1170 21 01.7 +67 36.9 103.63 +13.84 0.215 2.8 0 TDS 392, TGU 629, GSH 093+07+9<br />

[LM99] 359, [LM99] 361<br />

LDN 1058 21 02.4 +56 01.9 94.72 +6.27 0.869 −1.1 1 TDS 354, TGU 558<br />

LDN 1174 21 02.6 +68 11.9 104.15 +14.14 0.294 2.8<br />

∼<br />

> 15 TDS 393, [LM99] 358, [BM89]1-110,<br />

[B77] 39, [BM89] 1-113, [LM99] 360,<br />

[BM89] 1-114, [BM89] 3B- 9,<br />

[BM89] 1-111, PP 100, [BM89] 1-115<br />

Ced 187, GN 21.01.0, YMD CO 14<br />

LDN 1172 21 02.7 +67 41.9 103.76 +13.82 0.010 2.7<br />

∼<br />

> 4 YMD CO 14, TGU 629<br />

LDN 1167 21 03.7 +67 02.0 103.30 +13.32 0.062 2.8 0 YMD CO 11<br />

LDN 1173 21 04.7 +67 42.0 103.88 +13.67 0.006 2.7 0 YMD CO 14<br />

LDN 1068 21 06.3 +57 07.1 95.89 +6.59 0.027 0.2 0 Barnard 359, DBY 095.9+06.6, TGU 570<br />

LDN 1063 21 07.4 +56 22.2 95.44 +5.97 0.025 0.3 0 Barnard 151, Barnard 360,<br />

DBY 095.5+06.5, TGU 561<br />

LDN 1065 21 07.4 +56 32.2 95.56 +6.09 0.023 0.3 0 DBY 095.5+06.5, TGU 568<br />

LDN 1069 21 08.4 +56 52.2 95.90 +6.21 0.018 0.3 0 DBY 095.5+06.5<br />

LDN 1067 21 09.4 +56 42.3 95.87 +6.00 0.012 0.3 0 DBY 095.5+06.5, TGU 568<br />

Sh 2-129 21 11.3 +59 42.3 98.26 +7.84 1.190 3.7 2 DBY 097.3+08.5, BFS 9<br />

LDN 1060 21 11.5 +55 17.4 95.02 +4.82 0.031 −0.9 0 DBY 090.5+02.4<br />

LDN 1119 21 13.2 +61 42.4 99.91 +9.03 0.010 2.5 0 DBY 100.1+09.3, TGU 598<br />

LDN 1062 21 13.5 +55 32.4 95.40 +4.79 0.003 −0.9 0 DBY 090.5+02.4<br />

LDN 1064 21 13.5 +55 37.4 95.46 +4.85 0.001 −0.9 0 DBY 090.5+02.4<br />

LDN 1125 21 14.7 +61 42.5 100.04 +8.90 0.010 2.5 1 Barnard 152, TDS 376, [LM99] 365,<br />

DBY 100.1+09.3, TGU 598<br />

LDN 1072 21 16.5 +56 12.6 96.18 +4.95 1.510 −0.6 0 Barnard 153, TDS 358, TGU 574,<br />

DBY 096.3+05.2<br />

LDN 1177 21 18.8 +68 15.7 105.22 +13.06 0.005 2.9 2 CB 230, TGU 641


Table 1.: Cont<strong>in</strong>ued.<br />

Cloud name RA(2000) Dec(2000) l b Area v LSR n star Alternative names<br />

(h m) ( ◦ ′ ) ( ◦ ) ( ◦ ) (sq.deg.) (km s −1 )<br />

TGU 589 21 19.7 +59 27.7 98.83 +6.90 0.560 2<br />

LDN 1162 21 20.0 +65 02.8 102.92 +10.76 0.004 0<br />

LDN 1080 21 21.5 +56 32.8 96.91 +4.69 0.001 0 Barnard 154<br />

YMD CO 23 21 22.2 +69 22.6 106.27 +13.60 0.056 −9.4 2 TGU 656<br />

LDN 1108 21 26.4 +59 33.1 99.49 +6.37 0.046 0<br />

DBY 098.4+05.2 21 26.8 +57 55.9 98.40 +5.17 0.107 1.0 0<br />

LDN 1086 21 28.5 +57 33.2 98.30 +4.74 0.095 −4.6 18 DBY 098.8+04.2, TGU 584, [PGS95] 2,<br />

IC 1396 W, FSE 1<br />

LDN 1176 21 31.0 +66 43.3 104.93 +11.15 0.446 −10.4 0 YMD CO 17, TGU 634,<br />

JWT Core 44, GAL 104.9+11.2<br />

LDN 1145 21 31.3 +62 43.3 102.14 +8.24 0.183 0 TGU 622, [PGH98b] Cloud 11<br />

LDN 1146 21 31.3 +62 43.3 102.14 +8.24 0.183 0<br />

LDN 1096 21 31.5 +58 03.3 98.93 +4.83 0.001 0 TGU 590<br />

LDN 1102 21 32.5 +58 03.3 99.03 +4.74 0.008 0<br />

LDN 1085 21 33.3 +56 44.6 98.23 +3.69 0.010 3.4 0 WWC 156<br />

LDN 1093 21 33.5 +57 38.4 98.85 +4.34 0.034 −4.6 20 DBY 098.8+04.2, TGU 587, FSE 3<br />

[PGS95] 8<br />

LDN 1083 21 33.6 +55 58.0 97.72 +3.11 0.761 8.7 WCC 178–179<br />

LDN 1098 21 34.5 +57 38.0 98.95 +4.25 0.025 −4.6 20 DBY 098.8+04.2, FSE 3<br />

Barnard 365 21 34.9 +56 43.0 98.36 +3.53 0.010 7.6 WWC 140<br />

TGU 639 21 35.5 +66 32.0 105.13 +10.70 0.280 1 [KTK2006] G105.0+10.7<br />

LDN 1087 21 35.6 +56 33.5 98.32 +3.35 0.013 7.4 2 TDS 364<br />

LDN 1090 21 35.6 +56 43.5 98.43 +3.48 0.028 0 Barnard 365<br />

LDN 1199 21 35.9 +68 33.5 106.57 +12.15 0.235 −11.5 1 TDS 398, TGU 653<br />

[KTK2006] G106.4+12.0,<br />

[KTK2006] G106.7+12.3<br />

LDN 1099 21 36.5 +57 23.5 98.98 +3.88 0.008 −8.0 22 DBY 099.1+04.0, FSE 5<br />

LDN 1116 21 36.5 +58 33.5 99.76 +4.75 0.034 3 [IS94] 7, [PGS95] 16, [IS94] 14, SFO 35,<br />

[G85] 5, [PGS95] 17, [PGS95] 19, FSE 6<br />

LDN 1105 21 37.1 +57 33.5 99.15 +3.95 0.008 −8.0 22 TDS 369, [B77] 37, DBY 099.1+04.0, FSE 5<br />

YMD CO 19 21 37.3 +67 01.2 105.60 +10.93 0.279 −10.2 1 TGU 642, [KTK2006] G105.5+10.8,<br />

[KTK2006] G105.7+10.8<br />

LDN 1092 21 37.6 +56 58.5 98.81 +3.48 0.014 1<br />

7


Table 1.: Cont<strong>in</strong>ued.<br />

8<br />

Cloud name RA(2000) Dec(2000) l b Area v LSR n star Alternative names<br />

(h m) ( ◦ ′ ) ( ◦ ) ( ◦ ) (sq.deg.) (km s −1 )<br />

LDN 1112 21 38.5 +58 03.6 99.63 +4.20 0.013 −0.3 0 DBY 099.7+04.1<br />

LDN 1117 21 38.5 +58 18.6 99.79 +4.39 0.004 −0.7 0 WWC 114–116<br />

LDN 1088 21 38.6 +56 13.6 98.41 +2.83 0.019 7.2 2 Barnard 160, TGU 585,<br />

DBY 098.4+02.9<br />

LDN 1135 21 39.4 +60 38.6 101.44 +6.06 0.054 0<br />

LDN 1110 21 39.5 +57 53.6 99.62 +3.99 0.007 −0.3 2 DBY 099.7+04.1<br />

LDN 1111 21 39.5 +57 53.6 99.62 +3.99 0.002 −0.3 2 Barnard 161, DBY 099.7+04.1, CB 233<br />

LDN 1123 21 39.5 +58 28.6 100.00 +4.43 0.003 0<br />

LDN 1126 21 39.5 +58 33.6 100.06 +4.49 0.006 0<br />

LDN 1101 21 39.6 +56 58.6 99.01 +3.30 0.095 0<br />

LDN 1131 21 40.0 +59 33.7 100.77 +5.20 0.046 −0.4 0 Barnard 366, TDS 378,<br />

DBY 100.9+05.3, TGU 609<br />

LDN 1140 21 40.4 +60 53.7 101.70 +6.16 0.240 0<br />

LDN 1121 21 40.5 +58 16.7 99.97 +4.19 0.008 −0.2<br />

∼<br />

> 25 DBY 100.0+04.2, [IS94] 5, [G85] 14,<br />

[LM99] 379, [IS94] 17, IC 1396 N,<br />

SFO 38, [PGS95] 24, FSE 19, TGU 599<br />

CB 234 21 40.5 +70 18.6 108.09 +13.15 0.044 −5.0 0<br />

LDN 1127 21 40.9 +58 33.7 100.20 +4.37 0.004 0 TGU 599<br />

TDS 395 21 40.9 +66 35.7 105.57 +10.38 0.161 −10.8 1 [KTK2006] G105.5+10.3, YMD CO 18<br />

LDN 1124 21 41.5 +58 13.7 100.04 +4.07 0.015 −0.2 20 DBY 100.0+4.2, IC 1396 N<br />

LDN 1128 21 41.5 +58 33.7 100.26 +4.32 0.015 1.2 0 TGU 599, WWC 117<br />

LDN 1134 21 41.5 +60 13.7 101.35 +5.58 2.630 −0.4 0 [PGH98b] Cloud 19, DBY 100.9+05.3,<br />

[PGH98b] Cloud 21,<br />

DBY 101.7+05.0<br />

LDN 1103 21 41.7 +56 43.7 99.07 +2.92 0.003 0<br />

LDN 1104 21 42.1 +56 43.7 99.11 +2.89 0.006 4.1 2 Barnard 163, TDS 371, WWC 184,<br />

[G85] 17, [LM99] 381<br />

LDN 1181 21 42.1 +66 08.7 105.36 +9.97 0.008 −9.9 0 YMD CO 18, TGU 645<br />

LDN 1183 21 42.1 +66 13.7 105.42 +10.03 0.090 −9.9 >84 Ced 196, GM 1-57, [B77] 40, TDS 395,<br />

[FMS2001] NGC 7129,<br />

[MPR2003] HI R<strong>in</strong>g, [MPR2003] HI Knot,<br />

BFS 11, JWT Core 46<br />

LDN 1095 21 42.6 +56 18.8 98.89 +2.52 0.012 0


Table 1.: Cont<strong>in</strong>ued.<br />

Cloud name RA(2000) Dec(2000) l b Area v LSR n star Alternative names<br />

(h m) ( ◦ ′ ) ( ◦ ) ( ◦ ) (sq.deg.) (km s −1 )<br />

LDN 1106 21 42.6 +56 53.8 99.27 +2.97 0.009 −0.4 0 [PGS95] 28<br />

LDN 1113 21 44.6 +57 11.8 99.67 +3.02 0.002 4.5 1 Barnard 367, WWC 186<br />

LDN 1130 21 44.6 +58 18.8 100.40 +3.87 0.012 −3.0 8 TGU 604, [PGS95] 32, FSE 8<br />

LDN 1136 21 45.5 +59 58.9 101.57 +5.06 0.012 −2.9 0 DBY 101.7+05.0<br />

DBY 100.0+03.0 21 46.3 +57 25.1 100.00 +3.03 0.015 −1.9 16 IC 1396 E,SFO 39, FSE 9<br />

LDN 1115 21 46.6 +56 58.9 99.74 +2.68 0.002 0<br />

LDN 1118 21 46.6 +57 12.9 99.89 +2.86 0.001 −2.1 0 SFO 42, [PGS95] 38<br />

LDN 1129 21 46.6 +57 53.9 100.33 +3.38 0.041 −2.1 0 [PGS95] 36, DBY 100.4+03.4, WWC 40–42<br />

LDN 1132 21 46.6 +58 43.9 100.87 +4.02 0.003 0<br />

LDN 1120 21 47.6 +57 09.0 99.96 +2.72 0.001 0<br />

LDN 1114 21 49.7 +56 24.0 99.69 +1.96 0.016 −1.8 0 TDS 375, DBY 099.9+01.8<br />

LDN 1241 21 50.0 +76 44.1 113.08 +17.48 1.380 −3.7 0 YMD CO 72, YMD CO 75,<br />

TGU 728, TGU 739<br />

LDN 1144 21 50.5 +60 07.1 102.14 +4.77 0.027 −2.2 1 Barnard 166, DBY 102.1+04.8<br />

LDN 1137 21 51.6 +59 04.1 101.58 +3.87 0.018 −10.5 0 [G85] 31, DBY 101.5+03.8<br />

LDN 1138 21 51.6 +59 04.1 101.58 +3.87 0.018 −10.5 0 DBY 101.5+03.8<br />

LDN 1109 21 51.7 +55 49.1 99.55 +1.33 0.150 −1.5 0 DBY 099.5+01.2<br />

Barnard 167 21 52.0 +60 04.0 102.25 +4.61 0.005 1<br />

LDN 1139 21 55.6 +58 34.3 101.68 +3.15 0.015 0.1 15 Barnard 169, DBY 101.3+03.00, TGU 620,<br />

[LM99] 386, [PGH98b] Cloud 27, FSE 10<br />

LDN 1141 21 55.6 +58 44.3 101.78 +3.28 0.010 0.1 0 Barnard 171, DBY 101.3+03.00,<br />

LDN 1142 21 56.6 +59 04.3 102.09 +3.47 0.002 0.1 0 CB 235, DBY 101.3+03.00<br />

LDN 1143 21 57.6 +58 59.3 102.14 +3.32 0.020 0.1 1 Barnard 170, TDS 380, DBY 101.3+03.00<br />

LDN 1149 21 57.6 +59 07.3 102.22 +3.43 0.015 0.1 0 DBY 101.3+03.00<br />

LDN 1151 21 59.6 +59 04.4 102.40 +3.23 0.027 0.1 0 DBY 101.3+03.00<br />

LDN 1153 22 00.6 +58 59.5 102.45 +3.09 0.079 0.1 0 TDS 383, DBY 101.3+03.00<br />

LDN 1133 22 02.7 +56 14.5 101.02 +0.72 0.248 0<br />

LDN 1160 22 04.7 +58 59.6 102.87 +2.78 0.019 0.1 0 DBY 101.3+03.00<br />

LDN 1166 22 05.7 +59 34.6 103.32 +3.18 0.001 −3.0 0 CB 236<br />

LDN 1159 22 06.7 +58 34.7 102.84 +2.29 2.790 −1.0 17 Barnard 174, TDS 384, TDS 391, [LM99] 389,<br />

[GA90] 3-36, DSH J2206.2+5819,<br />

DBY 102.9+02.4, [G85] 32,<br />

DBY 102.8+02.1, DBY 103.3+02.8,<br />

9


Table 1.: Cont<strong>in</strong>ued.<br />

10<br />

Cloud name RA(2000) Dec(2000) l b Area v LSR n star Alternative names<br />

(h m) ( ◦ ′ ) ( ◦ ) ( ◦ ) (sq.deg.) (km s −1 )<br />

DBY 103.2+01.8, [PGH98b] Cloud 30,<br />

DBY 103.5+02.0, GSH 103+02-66<br />

LDN 1164 22 06.7 +59 09.7 103.18 +2.76 0.019 −2.2 36 DBY 103.3+02.8, FSE 11<br />

LDN 1165 22 07.2 +59 04.7 103.18 +2.66 0.019 −2.2 1 DBY 103.3+02.8<br />

LDN 1169 22 07.2 +59 44.7 103.57 +3.20 0.004 −3.2 0 CB 237<br />

TGU 659 22 09.0 +64 29.7 106.53 +6.93 1.070 1 [KTK2006] G106.9+07.1<br />

LDN 1178 22 09.1 +62 19.8 105.27 +5.16 0.005 0<br />

LDN 1243 22 10.6 +75 20.0 113.16 +15.61 0.081 −2.9 0 YMD C0 74<br />

LDN 1219 22 11.6 +70 59.9 110.58 +12.06 0.003 −4.6 1 Barnard 175, TDS 414, YMD CO 57<br />

LDN 1182 22 13.1 +61 54.9 105.42 +4.55 0.004 0<br />

LDN 1217 22 13.1 +70 44.9 110.54 +11.79 0.186 −4.6 1 Ced 201, YMD CO 57, TDS 414, TGU 696<br />

LDN 1186 22 13.6 +62 07.9 105.59 +4.70 0.005 0 TGU 649<br />

LDN 1175 22 13.7 +60 44.9 104.81 +3.55 0.015 0 TGU 635<br />

LDN 1191 22 14.1 +62 24.9 105.80 +4.90 0.004 0<br />

LDN 1193 22 14.6 +62 24.9 105.85 +4.87 0.002 0<br />

LDN 1235 22 14.9 +73 25.0 112.24 +13.88 0.037 −4.0 4 YMD CO 69, TDS 426, HCL 1F,<br />

TGU725, [BM89] 1-117, [LM99] 390<br />

TGU 627 22 15.2 +58 47.6 103.87 +1.83 0.210 3<br />

LDN 1150 22 15.8 +56 00.0 102.37 −0.53 0.007 −6.9 0 Barnard 369, TDS 385, TGU 621<br />

LDN 1188 22 16.7 +61 45.0 105.67 +4.18 0.398 −10.6<br />

∼<br />

> 20 YMD CO 21, TGU 652,<br />

[PGH98b] Cloud 33, [ADM95] 3,<br />

[ADM95] 4, [ADM95] 5, [ADM95] 7,<br />

[ADM95] 13, [ADM95] 8, GN 22.15.0<br />

LDN 1154 22 16.8 +56 13.0 102.61 −0.43 0.007 0<br />

TGU 636 22 16.9 +60 11.6 104.83 +2.87 0.240 2<br />

TGU 640 22 17.6 +60 36.5 105.13 +3.17 0.330 2 DG 181, DG 182, GN 22.14.9<br />

LDN 1156 22 19.9 +55 45.1 102.71 −1.05 0.043 0<br />

LDN 1161 22 19.9 +56 08.1 102.92 −0.73 0.006 0 [KC97c] G102.9-00.7<br />

YMD CO 29 22 20.2 +63 53.1 107.20 +5.73 0.018 −11.0 13 Sh2-145, SFO 44<br />

LDN 1184 22 20.7 +60 45.1 105.53 +3.08 0.124 0 TGU 643, TGU 644<br />

LDN 1247 22 20.8 +75 15.2 113.66 +15.17 0.167 −5.1 0 TDS 430, TGU 742<br />

LDN 1163 22 20.9 +56 10.1 103.05 −0.78 0.007 0<br />

LDN 1201 22 23.6 +63 30.2 107.31 +5.21 0.009 0 TGU 661


Table 1.: Cont<strong>in</strong>ued.<br />

Cloud name RA(2000) Dec(2000) l b Area v LSR n star Alternative names<br />

(h m) ( ◦ ′ ) ( ◦ ) ( ◦ ) (sq.deg.) (km s −1 )<br />

LDN 1202 22 26.7 +63 05.3 107.38 +4.67 0.004 0 TGU 661<br />

LDN 1204 22 26.7 +63 15.3 107.47 +4.82 2.500 −7.6<br />

∼<br />

> 100 YMD CO 27, TDS 399, TDS 401,<br />

TDS 403, TDS 404, TDS 405, [KC97c],<br />

[PGH98b] Cloud 32, [PGH98b] Cloud 37,<br />

[PGH98b] Cloud 38, [G84b] 12,<br />

DG 185, [PGH98b] Cloud 36, Sh2-140,<br />

GSH 108+05-46, GN 22.21.5, TGU 661<br />

LDN 1180 22 26.8 +59 15.3 105.37 +1.41 7.000 −3.6 19 YMD CO 20, YMD CO 24, TDS 396, TDS 397,<br />

CB 240, TGU 631, TGU 638, TGU 655,<br />

TGU 658, M<strong>in</strong> 2-72, [PGH98b] Cloud 34,<br />

[KC97c] G104.6+01.4, KR 47,<br />

[LM99] 394, [KC97c] G105.6+00.4,<br />

Sh 2-138, [GSL2002] 109, [GSL2002] 110,<br />

[P85b] 18, [LM99] 396,<br />

DSH J2222.5+5918B, TGU 657,<br />

LDN 1195 22 26.8 +61 15.3 106.42 +3.11 0.017 1 [B77] 42, [LM99] 391, GN 22.24.9<br />

LDN 1196 22 26.8 +61 15.3 106.42 +3.11 0.029 1<br />

LDN 1179 22 27.3 +59 02.3 105.31 +1.19 0.002 0<br />

LDN 1203 22 27.7 +63 00.3 107.43 +4.54 0.016 0 TGU 661<br />

TGU 719 22 27.8 +71 21.4 111.90 +11.63 0.510 3<br />

LDN 1221 22 28.4 +69 00.4 110.67 +9.61 0.020 −4.9 3 TDS 416, [KTK2006] G110.6+09.6,<br />

[LM99] 392, TGU 702<br />

LDN 1206 22 28.7 +64 25.4 108.27 +5.70 0.083 0 TGU 673, [PGH98b] Cloud 35<br />

LDN 1185 22 29.3 +59 05.4 105.56 +1.10 0.006 0<br />

LDN 1207 22 29.7 +64 25.4 108.36 +5.64 0.047 0<br />

LDN 1209 22 29.7 +64 45.4 108.53 +5.93 0.111 −8.8 3 Sh2-150, TGU 680<br />

LDN 1208 22 30.7 +64 25.4 108.46 +5.58 0.018 0<br />

LDN 1190 22 30.9 +59 08.4 105.75 +1.04 0.004 0<br />

LDN 1242 22 31.2 +73 15.4 113.15 +13.11 0.793 0<br />

LDN 1213 22 31.6 +65 25.5 109.06 +6.39 0.006 −9.2 0 YMD CO 48, TGU 686, Sh2-150<br />

LDN 1194 22 32.9 +59 05.5 105.95 +0.87 0.009 0<br />

LDN 1214 22 33.6 +65 45.5 109.41 +6.57 0.256 −8.5 1 TDS 407, YMD CO 48, Sh2-150<br />

LDN 1192 22 33.9 +58 35.5 105.81 +0.37 0.007 −3.6 0 CB 240<br />

11


Table 1.: Cont<strong>in</strong>ued.<br />

12<br />

Cloud name RA(2000) Dec(2000) l b Area v LSR n star Alternative names<br />

(h m) ( ◦ ′ ) ( ◦ ) ( ◦ ) (sq.deg.) (km s −1 )<br />

TDS 417 22 35.5 +69 13.1 111.33 +9.47 0.014 −7.2 1 YMD CO 65, [B77] 46, GN 22.33.6<br />

[KTK2006] G101.9+15.8<br />

TGU 679 22 35.9 +63 35.2 108.53 +4.57 0.170 1<br />

LDN 1251 22 36.1 +75 15.6 114.51 +14.65 0.195 −3.8<br />

∼<br />

> 20 YMD CO 79, TGU 750, [SMN94] B,<br />

HCL 1A, [SMN94] C, [SMN94] D,<br />

[LM99] 397, [NJH2003] 5, [TW96] H2,<br />

[SMN94] E, [TW96] H1,<br />

[KTK2006] G114.4+14.6<br />

LDN 1198 22 36.9 +59 25.6 106.57 +0.90 0.054 −11.91 2<br />

TGU 672 22 37.5 +62 20.6 108.07 +3.40 0.360 1<br />

LDN 1197 22 37.9 +58 55.6 106.43 +0.40 0.009 0<br />

LDN 1187 22 38.0 +57 15.6 105.62 −1.06 0.145 0<br />

LDN 1189 22 39.0 +57 15.6 105.74 −1.12 0.473 0<br />

TGU 671 22 44.1 +60 16.1 107.77 +1.20 0.200 2<br />

LDN 1210 22 44.9 +62 05.8 108.70 +2.77 0.011 −10.0 0 YMD CO 40, TGU 699<br />

Sh 2-142 22 45.0 +57 55.8 106.76 −0.92 1.063 −41.0 14 Ced 206, GM 2-42, TGU 663, SFO 43,<br />

[KC97c] G107.2-01.0, [KC97c] G107.3-00.9<br />

LDN 1205 22 45.9 +60 25.8 108.04 +1.24 0.095 0<br />

LDN 1200 22 46.0 +58 45.8 107.27 −0.24 0.020 −3.7 3 YMD CO 28, TDS 402, TGU 665<br />

TGU 678 22 46.5 +61 12.8 108.47 +1.90 0.170 1<br />

LDN 1211 22 46.9 +62 10.8 108.95 +2.74 0.011 −11.1 4 YMD CO 40, TGU 699<br />

LDN 1212 22 47.9 +62 12.9 109.07 +2.71 0.014 −10.0 0 YMD CO 40, TGU 699<br />

TGU 689 22 50.2 +62 51.5 109.60 +3.17 0.160 2<br />

TGU 692 22 50.7 +63 15.4 109.83 +3.50 0.240 2<br />

YMD CO 38 22 51.1 +60 51.6 108.80 +1.33 0.028 −8.5 1 TGU 606, [KTK2006] G100.6+16.2<br />

YMD CO 49 22 51.1 +62 38.9 109.60 +2.93 0.014 −9.6 1 TGU 690<br />

LDN 1215 22 51.9 +62 06.0 109.44 +2.40 0.021 0 TGU 699<br />

LDN 1216 22 51.9 +62 16.0 109.52 +2.55 0.142 −9.5 11 Cep F, TDS 408,<br />

GN 22.51.3, TGU 699<br />

LDN 1236 22 52.7 +68 56.0 112.56 +8.49 0.044 −5.0 0 YMD CO 73, TGU 729<br />

YMD CO 51 22 56.2 +62 02.7 109.87 +2.13 0.489 −10.2<br />

∼<br />

> 15 Cep A<br />

LDN 1223 22 56.9 +64 16.1 110.89 +4.11 1.010 1 TGU 703, [BKP2003] 455<br />

GN 22.58.2, GSH 111+04-105


Table 1.: Cont<strong>in</strong>ued.<br />

Cloud name RA(2000) Dec(2000) l b Area v LSR n star Alternative names<br />

(h m) ( ◦ ′ ) ( ◦ ) ( ◦ ) (sq.deg.) (km s −1 )<br />

TGU 715 22 57.0 +65 53.5 111.60 +5.57 1.280 0<br />

TGU 684 22 57.4 +59 27.5 108.90 −0.27 0.230 −47.0 6 [KC97c] G109.1-00.3, [G82a] 13<br />

TGU 705 22 59.5 +63 26.0 110.80 +3.23 0.410 2<br />

LDN 1218 23 02.0 +62 16.2 110.58 +2.05 1.590 −5.1 >400 YMD CO 53, YMD CO 51<br />

YMD CO 56, YMD CO 58, YMD CO 59, YMD CO 62,<br />

YMD CO 63, TDS 418, Cep A, Cep A west,<br />

[THR85] Cep A-3, GAL 109.88+02.11,<br />

[HW84] 7d, [B77] 44, [TOH95] Ridge,<br />

[TOH95] C, [TOH95] B, [TOH95] A,<br />

Cep B, GN 22.55.2, [KC97c] G110.2+02.5, Cep E,<br />

Cep E South, Cep E North, [YNF96] a,<br />

[YNF96] b, TGU 699<br />

YMD CO 55 23 02.1 +61 29.2 110.27 +1.33 0.056 −7.3 2<br />

LDN 1224 23 04.0 +63 46.2 111.39 +3.33 0.016 0<br />

LDN 1220 23 04.1 +61 51.2 110.63 +1.57 0.006 −10.1 1 YMD CO 58, Cep E<br />

LDN 1222 23 05.1 +61 46.2 110.70 +1.45 0.002 −10.1 0 YMD CO 58, Cep E, TGU 699<br />

TGU 707 23 09.0 +61 04.8 110.87 +0.63 0.160 1<br />

TGU 700 23 09.7 +60 06.4 110.57 −0.30 0.650 −52.8 10 BFS 18<br />

LDN 1226 23 10.1 +62 16.3 111.44 +1.68 0.009 −10.7 0 YMD CO 63, TGU 699<br />

LDN 1227 23 10.1 +62 19.3 111.46 +1.73 0.008 −10.7 0 YMD CO 63, TGU 699<br />

LDN 1240 23 11.0 +66 26.3 113.12 +5.50 0.126 0<br />

LDN 1225 23 12.1 +61 36.3 111.41 +0.97 0.036 −10.9 4 TDS 419, CB 242, TGU 699<br />

LDN 1239 23 12.3 +66 04.3 113.11 +5.11 0.005 −7.6 0 CB 241<br />

NGC 7538 23 14.1 +61 29.4 111.58 +0.77 0.011 −57.0 ∼2000 [KSH92] CS 5, [KSH92] CS 4, [M73] C,<br />

[KSH92] CS 3, Ced 209, [WAM82] 111.543+0.7,<br />

[M73] B, [M73] A, [KSH92] CS 2, Sh2-158<br />

GAL 111.53+00.82, [WC89] 111.54+0.78, [KSH92] CS 1<br />

LDN 1229 23 14.1 +61 59.4 111.78 +1.24 0.004 −10.0 0 Cep D, TGU 699<br />

LDN 1230 23 14.1 +62 01.4 111.79 +1.27 0.002 −10.0 0 Cep D, TGU 699<br />

LDN 1233 23 16.5 +62 20.4 112.15 +1.47 0.001 −10.0 0 Cep D<br />

LDN 1232 23 17.2 +61 46.4 112.03 +0.91 0.004 −10.6 0 YMD CO 68, TGU 699<br />

LDN 1234 23 17.2 +62 24.4 112.25 +1.51 0.004 0<br />

TGU 717 23 17.3 +60 48.1 111.70 0.00 0.200 −30.1<br />

∼<br />

> 9<br />

13


Table 1.: Cont<strong>in</strong>ued.<br />

14<br />

Cloud name RA(2000) Dec(2000) l b Area v LSR n star Alternative names<br />

(h m) ( ◦ ′ ) ( ◦ ) ( ◦ ) (sq.deg.) (km s −1 )<br />

TGU 757 23 17.3 +69 56.0 114.97 +8.53 0.270 1<br />

LDN 1231 23 18.2 +61 16.4 111.97 +0.40 0.013 −11.2 0 TDS 424<br />

LDN 1250 23 22.1 +67 16.5 114.45 +5.89 2.630 −8.6 1 YMD CO 78, YMD CO 80,<br />

TDS 432, TGU 747<br />

GSH 114+06-47<br />

LDN 1259 23 22.9 +74 16.5 116.93 +12.44 0.035 3.9 0 YMD CO 101, TGU 772<br />

LDN 1244 23 25.2 +62 46.5 113.25 +1.53 0.007 0<br />

LDN 1246 23 25.2 +63 36.5 113.52 +2.32 0.002 −11.1 0 CB 243, [GA90] 3-40, [LM99] 400<br />

LDN 1261 23 27.0 +74 16.5 117.20 +12.35 0.030 3.9 2 YMD CO 101, TDS 447, TGU 772,<br />

TDS 448, CB 244, [LM99] 401<br />

LDN 1262 23 27.0 +74 16.5 117.20 +12.35 0.066 3.9 2 [BM89] 3B-10, [BM89] 1-119, TGU 772<br />

YMD CO 85 23 32.6 +67 02.0 115.33 +5.33 0.084 −5.4 0<br />

YMD CO 86 23 35.8 +66 26.2 115.47 +4.67 0.056 −7.0 0<br />

YMD CO 87 23 39.3 +65 42.4 115.60 +3.87 0.168 −25.3 2<br />

TGU 767 23 42.9 +68 52.9 116.80 +6.83 0.400 2<br />

LDN 1264 23 52.5 +68 16.7 117.50 +6.03 0.102 0<br />

LDN 1266 23 57.5 +67 16.7 117.75 +4.95 2.540 −6.8 14 YMD CO 103, YMD CO 104, YMD CO 105,<br />

YMD CO 108, YMD CO 111, TDS 449, TDS 451,<br />

TGU 774, [LM99] 404, [YF92] C1,<br />

[LM99] 405, [YF92] C2, GN 23.56.1,<br />

[KC97c] G118.1+05.0, [LM99] 406, [GA90] 1-1,<br />

[GA90] 1-1a, [LM99] 1, [KC97c] G118.4+04.7,<br />

DG 1, [GA90] 3-41, [GA90] 3-42,<br />

SFO 1, SFO 3, DSH J2359.6+6741<br />

LDN 1274 23 57.5 +70 56.7 118.52 +8.54 0.032 −2.5 0 YMD CO 109<br />

LDN 1268 23 59.5 +67 26.7 117.97 +5.07 0.158 −6.2 3 Sh2-171, YMD CO 104, TGU 774<br />

LDN 1269 00 00.6 +67 09.7 118.01 +4.78 0.025 0 TGU 774<br />

LDN 1270 00 01.6 +67 09.7 118.11 +4.76 0.009 2 TGU 774<br />

LDN 1271 00 01.6 +67 16.7 118.13 +4.87 0.010 −15.1 0 YMD CO 108, TGU 774<br />

LDN 1272 00 02.6 +67 16.7 118.23 +4.85 8.690 −6.3 23 YMD CO 97, YMD CO 98, YMD CO 110,<br />

YMD CO 112, YMD CO 113, YMD CO 114,<br />

YMD CO 116, TGU 779, SFO 2, [GA90] 3-1,<br />

[GA90] 1-1b, GSH 119+05-74


Table 1.: Cont<strong>in</strong>ued.<br />

Cloud name RA(2000) Dec(2000) l b Area v LSR n star Alternative names<br />

(h m) ( ◦ ′ ) ( ◦ ) ( ◦ ) (sq.deg.) (km s −1 )<br />

LDN 1273 00 02.6 +68 31.7 118.46 +6.08 0.199 −8.8 4 YMD CO 114<br />

LDN 1275 00 06.6 +67 26.7 118.64 +4.95 0.020 0 TGU 781<br />

References: [ADM95] – Ábrahám et al. (1995); Barnard – Barnard (1927); [B77] – Bernes (1977); [BKP2003] – Brunt et al. (2003); [BM89] –<br />

Benson & Myers (1989); BFS – Blitz et al. (1982); CB – Clemens & Barva<strong>in</strong>is (1988); Ced – Cederblad (1946) DBY – Dobashi et al.<br />

(1994); [DE95] – Davis & Eislöffel (1995); DG – Dorschner & Gürtler (1964); DSH – Kronberger et al. (2006); [ETM94] – Eiroa et al.<br />

(1994); [FMS2001] – Font et al. (2001); FSE – Froebrich et al. (2005); [G82a] – Gyulbudaghian (1982) [G85] – Gyulbudaghian (1985);<br />

[GA90] – Gyulbudaghian & Akopyan (1990); GAL – Kerber et al. (1996); GF – Schneider & Elmegreen (1979); GM – Magakian (2003);<br />

GN – Magakian (2003); GSH – Ehlerova & Palous (2005); [GSL2002] – Giveon et al. (2002) HCL – Heiles (1967); [HW84] – Hughes &<br />

Wouterloot (1984); [IS94] – Indrani & Sridharan (1994); JWT Core – Jessop & Ward-Thompson (2000); [KC97c] – Kuchar & Clark (1997);<br />

KR – Kallas & Reich (1980); [KSH92] – Kawabe et al. (1992); [KTK2006] – Kiss et al. (2006); LDN – Lynds (1962); [LM99] – Lee & Myers<br />

(1999); [M73] – Mart<strong>in</strong> (1973); MBM – Magnani et al. (1985); M<strong>in</strong> – M<strong>in</strong>kowski (1947); [MPR2003] – Matthews et al. (2003); [NJH2003] –<br />

Nikolić et al. (2003); [P85b] – Petrossian (1985) [PGH98b] Cloud – Patel et al. (1998); [PGS95] – Patel et al. (1995); PP – Parsamian &<br />

Petrosian (1979); RNO – Cohen (1980) SFO – Sugitani et al. (1991); Sh 2- – Sharpless (1959); [SMN94] – Sato et al. (1994); TDS – Taylor et<br />

al. (1987); TGU – Dobashi et al. (2005); [THR85] – Torrelles et al. (1985); [TOH95] – Testi et al. (1995); [TW96] – Tóth & Walmsley (1996);<br />

[WAM82] – W<strong>in</strong>k, Altenhoff & Mezger (1982); [WC89] – Wood & Churchwell (1989); WWC – Weikard et al. (1996); YMD CO – Yonekura<br />

et al. (1997); [YF92] – Yang & Fukui (1992); [YNF96] – Yu et al. (1996).<br />

15


16<br />

2. The <strong>Cepheus</strong> Flare<br />

2.1. Large-scale Studies of the <strong>Cepheus</strong> Flare<br />

The term ‘<strong>Cepheus</strong> flare’ was first used by Hubble (1934) who recognized that the zone<br />

of avoidance of external galaxies, conf<strong>in</strong>ed to the Galactic plane, extended to higher<br />

latitudes at certa<strong>in</strong> segments of the plane, suggest<strong>in</strong>g significant obscuration outside<br />

the ma<strong>in</strong> Galactic belt. He called these wide segments for Galactic disk flares. The<br />

<strong>Cepheus</strong> Flare can be found at 100 ◦ ≤ l ≤ 120 ◦ : there is a large amount of dense ISM<br />

above b ≥ 10 ◦ (Lynds 1962; Taylor, Dickman & Scoville 1987; Clemens & Barva<strong>in</strong>is<br />

1988; Dobashi et al. 2005).<br />

Heiles’ (1967) study of the HI distribution <strong>in</strong> the region revealed two k<strong>in</strong>ematically<br />

separate sheets of <strong>in</strong>terstellar gas <strong>in</strong> the Galactic latitude <strong>in</strong>terval +13 ◦ ≤ b ≤ +17 ◦ ,<br />

mov<strong>in</strong>g at a velocity of ∼ 15 km s −1 relative to each other. Heiles speculated that the<br />

two sheets probably represent an expand<strong>in</strong>g or collid<strong>in</strong>g system at a distance <strong>in</strong>terval<br />

of 300–500 pc. Berkhuijsen (1973) found a giant radio cont<strong>in</strong>uum region Loop III<br />

centered on l=124±2 ◦ , b=+15.5±3 ◦ and stretch<strong>in</strong>g across 65 ◦ , and suggested that it<br />

was a result of multiple supernova explosions. The HI shell reported by Hu (1981) at<br />

l=105 ◦ , b=+17 ◦ and v centr =+3 km s −1 also <strong>in</strong>dicates that the <strong>in</strong>terstellar medium <strong>in</strong> this<br />

region is <strong>in</strong> a state of energetic motion. The wide range <strong>in</strong> the velocity thus may reflect<br />

disturbances from various shocks.<br />

Lebrun’s (1986) low-resolution CO survey revealed that, <strong>in</strong> this region, the clouds<br />

constitute a coherent giant molecular cloud complex. Based on Rac<strong>in</strong>e’s (1968) study<br />

of reflection nebulae, Lebrun placed the <strong>Cepheus</strong> Flare molecular clouds between 300<br />

and 500 pc. Grenier et al. (1989) extended the CO survey to a region of 490 deg 2 <strong>in</strong><br />

<strong>Cepheus</strong>–Cassiopeia above b=+10 ◦ . They found that the clouds could be divided <strong>in</strong>to<br />

two k<strong>in</strong>ematically well separated subsystems around the radial velocities of v LSR ∼<br />

0 km s −1 and −10 km s −1 , respectively. They also detected CO emission around<br />

v LSR ∼ 0 km s −1 at higher longitudes (124 ◦ < l < 140 ◦ ) <strong>in</strong> Cassiopeia, and found an<br />

area free of CO emission at 118 ◦ < l < 124 ◦ . They suggested that the void between<br />

the <strong>Cepheus</strong> and Cassiopeia clouds is a supernova bubble. They estimated the age of<br />

the bubble as 4 × 10 4 years, and proposed that it may result from a Type I supernova.<br />

Yonekura et al. (1997) conducted a large-scale 13 CO survey of the <strong>Cepheus</strong>–<br />

Cassiopeia region at an 8-arcm<strong>in</strong> grid spac<strong>in</strong>g and with 2. ′ 7 beam size. Out of the<br />

188 molecular clouds found <strong>in</strong> the whole surveyed region 51 fall <strong>in</strong> the <strong>Cepheus</strong> Flare<br />

region. Their surface distribution, adopted from Yonekura et al. (1997), is shown <strong>in</strong><br />

Fig. 4.<br />

These clouds, distributed over the velocity <strong>in</strong>terval of (−15,+6) km s −1 , were classified<br />

<strong>in</strong>to three k<strong>in</strong>ematically different components by Yonekura et al. (see Table 2).<br />

The high latitude part of the molecular complex is <strong>in</strong>cluded <strong>in</strong> Magnani et al.’s (1985)<br />

catalog of high latitude molecular clouds. Ammonia observations of dense cores have<br />

been reported by Benson & Myers (1989) and Tóth & Walmsley (1996). In addition to<br />

the two major catalogs of dark clouds (Lynds 1962; Dobashi et al. 2005), dark cloud<br />

cores were catalogued by Lee & Myers (1999).<br />

Kun (1998) determ<strong>in</strong>ed cloud distances us<strong>in</strong>g Wolf diagrams, and presented a list<br />

of candidate YSOs found dur<strong>in</strong>g an objective prism Hα survey, and selected from the<br />

IRAS Catalogs.<br />

Kiss et al. (2006) performed a complex study of the visual and <strong>in</strong>frared properties<br />

of the ISM <strong>in</strong> the <strong>Cepheus</strong> Flare region us<strong>in</strong>g USNO, 2MASS, DIRBE, IRAS, and


17<br />

Table 2. Cloud groups <strong>in</strong> <strong>Cepheus</strong>, classified by Yonekura et al. (1997).<br />

N Longitude Latitude V LSR D M Associated Ref.<br />

l l l u b l b u V l V u (pc) (M⊙) objects<br />

( ◦ ) ( ◦ ) ( ◦ ) ( ◦ ) (km s −1 )<br />

Close Group<br />

1 99 105 13 18 1 5 440 3900 NGC 7023, L1157 1, 2<br />

2 102 104 16 18 −4 −1 300 90 3<br />

3 105 110 −1 1 −4 −1 300 110 L1200 3<br />

4 106 116 13 19 −8 −1 300 3600 <strong>Cepheus</strong> Flare 4<br />

5 110 116 4 12 −9 −3 300 730 L1221, L1250 3<br />

6 110 117 19 21 −9 −4 300 680 L1228 3<br />

7 115 117 −4 −1 −4 −1 140 20 L1253, L1257 5<br />

8 116 118 12 13 3 5 200 26 L1262 6<br />

9 117 124 6 10 −3 −1 300 200 L1304 3<br />

Distant Group<br />

10 ∗ 95 99 3 7 −8 2 624 4000 IC 1396 17<br />

13 103 111 9 15 −21 −8 1000 12000 NGC 7129 7, 8<br />

14 105 110 0 7 −14 −6 910 11000 S 140 9<br />

15 108 117 0 4 −17 −4 730 15000 Cep OB3 10<br />

16 115 116 3 5 −26 −23 1000 1400 M115.5+4.0 11<br />

17 116 124 −2 7 −22 −2 850 27000 Cep OB4 12<br />

Clouds <strong>in</strong> Perseus Arm<br />

22 111 112 −1 1 −31 −30 2200 2500 MWC1080 13, 14<br />

23 112 113 −3 −2 −37 −34 3000 5400 Cas A 15<br />

24 123 124 −7 −6 −32 −30 2100 2000 NGC 281 16<br />

References. (1) Viotti (1969); (2) Shevchenko et al. (1989); (3) Grenier et al. (1989); (4) Kun & Prusti<br />

(1993); (5) Snell (1981); (6) Myers & Benson (1983); (7) Rac<strong>in</strong>e (1968); (8) Shevchenko & Yakubov<br />

(1989); (9) Crampton & Fisher (1974); (10) Crawford & Barnes (1970); (11) Yang (1990); (12) Mac-<br />

Connell (1968); (13) Levreault (1985); (14) Levreault (1988); (15) Ungerechts & Thaddeus (1989); (16)<br />

Hogg (1959); (17) de Zeeuw et al. (1999).<br />

∗ The 13 CO clouds <strong>in</strong> the region of IC 1396 are <strong>in</strong>cluded <strong>in</strong> Dobashi et al. (1994), not <strong>in</strong> Yonekura et al.<br />

(1997).<br />

Figure 4. Distribution of 13 CO clouds <strong>in</strong> the <strong>Cepheus</strong> Flare (adopted from<br />

Yonekura et al. 1997)


18<br />

ISO data. Based on the distribution of visual ext<strong>in</strong>ction they identified 208 clouds,<br />

and divided them <strong>in</strong>to 8 complexes. They exam<strong>in</strong>ed the morphology of clouds, and<br />

established several empirical relationships between various properties of the clouds.<br />

Olano et al. (2006) studied the space distribution and k<strong>in</strong>ematics of the <strong>in</strong>terstellar<br />

matter <strong>in</strong> <strong>Cepheus</strong> and Cassiopeia, us<strong>in</strong>g the Leiden–Dw<strong>in</strong>geloo HI data and the<br />

Columbia Survey CO data. They found that the broad and often double-peaked spectral<br />

l<strong>in</strong>e profiles suggest that the <strong>Cepheus</strong> Flare forms part of a big expand<strong>in</strong>g shell that<br />

encloses an old supernova remnant. Assum<strong>in</strong>g a distance of 300 pc for the center of<br />

the shell, located at (l,b) ≈ (120 ◦ ,+17 ◦ ), they derived a radius of approximately 50 pc,<br />

expansion velocity of 4 km s −1 , and HI mass of 1.3 × 10 4 M⊙ for the <strong>Cepheus</strong> Flare<br />

Shell. The supernova bubble proposed by Grenier et al. (1989), the radio cont<strong>in</strong>uum<br />

structure Loop III (Berkhuijsen 1973), and the <strong>Cepheus</strong> Flare Shell are various observable<br />

aspects of the supernova explosion(s) that shaped the structure of the <strong>in</strong>terstellar<br />

medium and triggered star formation <strong>in</strong> the <strong>Cepheus</strong> Flare dur<strong>in</strong>g the past few million<br />

years.<br />

2.2. Distance to the <strong>Cepheus</strong> Flare Clouds<br />

Spectroscopic and photometric studies of stars illum<strong>in</strong>at<strong>in</strong>g reflection nebulae <strong>in</strong> the<br />

<strong>Cepheus</strong> Flare (Rac<strong>in</strong>e 1968) <strong>in</strong>dicated, long before the discovery of the molecular<br />

cloud complex, that <strong>in</strong>terstellar dust can be found at several distances along the l<strong>in</strong>e of<br />

sight <strong>in</strong> this region. The presence of clouds at different velocities also suggests that<br />

there are clouds at various distances (Grenier et al. 1989).<br />

At the low Galactic latitude boundary of the <strong>Cepheus</strong> Flare we f<strong>in</strong>d the associations<br />

Cep OB2 and Cep OB3 at a distance of ∼ 800 pc. Therefore Grenier et al. (1989)<br />

propose that the negative velocity component of the <strong>Cepheus</strong> flare clouds (v LSR ∼<br />

−10 km s −1 ) is an extension of these local arm features, while the more positive (v LSR ∼<br />

0 km s −1 ) velocity component corresponds to a nearby cloud complex at a distance of<br />

300 pc.<br />

Table 2 suggests a more complicated pattern of cloud distances. Both the close<br />

and the distant components are composed of several complexes, probably located at<br />

different distances. Other distance determ<strong>in</strong>ations found <strong>in</strong> the literature support this<br />

suggestion. Below we list some results and problems related to the distance of <strong>Cepheus</strong><br />

Flare clouds.<br />

Distances of <strong>in</strong>dividual clouds can reliably be derived by study<strong>in</strong>g the effects of<br />

the clouds on the light of associated stars. Rac<strong>in</strong>e (1968), <strong>in</strong> a spectroscopic and photometric<br />

study of stars <strong>in</strong> reflection nebulae, obta<strong>in</strong>ed a distance of 400±80 pc for the<br />

<strong>Cepheus</strong> R2 association above the latitude +10 ◦ . Both velocity components are represented<br />

among the clouds be<strong>in</strong>g illum<strong>in</strong>ated by the stars of Cep R2.<br />

A prom<strong>in</strong>ent object of the distant component, <strong>in</strong> addition to the possible outer<br />

parts of Cep OB2 and Cep OB3, is NGC 7129. Though Kun, Balázs & Tóth (1987) and<br />

Ábrahám, Balázs & Kun (2000) proposed that NGC 7129 may be associated with the<br />

<strong>Cepheus</strong> Bubble, and thus with Cep OB2, other observations suggest that NGC 7129<br />

may be farther than Cep OB2. Rac<strong>in</strong>e (1968) <strong>in</strong>vestigated three member stars, and derived<br />

m −M ≈ 12.2 for BD+65 ◦ 1637, and 10.0 for both BD+65 ◦ 1638 and LkHα 234,<br />

and labeled each value as uncerta<strong>in</strong>. Shevchenko & Yakubov (1989), based on an A V<br />

vs. distance diagram, derived 1250 pc for NGC 7129. Yonekura et al. (1997) found<br />

a group of clouds at l ∼ 107 ◦ − 111 ◦ , b ∼ +13 ◦ at similar velocity, and regarded<br />

them as an extension of the NGC 7129 clouds to the northeast (group 13 <strong>in</strong> Table 2).


19<br />

Table 3. Distance measured for the clouds with<strong>in</strong> the <strong>Cepheus</strong> Flare region together<br />

with their probable lower and upper limits and the method of determ<strong>in</strong>ation.<br />

Cloud l b d (∆d) Method Ref.<br />

( ◦ ) ( ◦ ) (pc)<br />

L1147/L1158 102.0 15.0 325±13 A V vs. distance 4<br />

L1167/L1174 104.0 15.0 440±100 spectroscopy & photometry of HD 200775 1<br />

L1167/L1174 104.0 15.0 288±25 A V vs. distance 4<br />

L1167/L1174 104.0 15.0 430 +160<br />

−90 Hipparcos parallax of HD 200775 10<br />

L1177 105.14 13.12 300±30 Wolf diagram 6<br />

L1199 106.50 12.21 500±100 Wolf diagram 6<br />

L1199 106.50 12.21 800 spectroscopy & photometry of HD 206135 2<br />

TDS400 107.01 16.78 300 +50<br />

−10 Wolf diagram 6<br />

CB 234 108.10 13.15 300 +50<br />

−10 Wolf diagram 6<br />

TDS406 108.50 18.15 300 +50<br />

−20 Wolf diagram 6<br />

L1217 110.34 11.41 400 +50<br />

−20 Wolf diagram 6<br />

L1219 110.60 11.96 400 +50<br />

−20 Wolf diagram 6<br />

L1219 110.60 11.96 400 spectroscopy & photometry of BD+69 1231 2, 8<br />

TDS420 111.57 14.25 300 +50<br />

−10 Wolf diagram 6<br />

L1228 111.63 20.14 200 +100<br />

−20 Wolf diagram 6<br />

L1228 111.63 20.14 180 +30<br />

−10 spectroscopy & photometry of BD+76 825<br />

TDS421 111.71 13.80 250 +30<br />

−10 Wolf diagram 6<br />

L1235 112.22 13.86 200 A V vs. distance 3<br />

L1235 112.22 13.86 300 +50<br />

−10 Wolf diagram 6<br />

L1235 112.22 13.86 400±80 spectroscopy & photometry of HD 210806 2, 8<br />

L1235 112.22 13.86 300 +80<br />

−40 Hipparcos parallax of HD 210806 7<br />

L1241 113.03 17.51 300 +50<br />

−10 Wolf diagram 6<br />

L1242 113.08 13.14 300 +30<br />

−10 Wolf diagram 6<br />

L1243 113.10 15.64 300 +50<br />

−10 Wolf diagram 6<br />

L1247 113.60 15.20 300 +50<br />

−10 Wolf diagram 6<br />

L1251 114.45 14.68 300±50 A V vs. distance 5<br />

L1251 114.45 14.68 300 +50<br />

−10 Wolf diagram 6<br />

L1251 114.45 14.68 337±50 star count analysis 9<br />

MBM163–165 116.00 20.25 200 +100<br />

−20 Wolf diagram 6<br />

L1259–1262 117.00 12.40 180 +40<br />

−20 Wolf diagram 6<br />

References: (1) Viotti (1969); (2) Rac<strong>in</strong>e (1968); (3) Snell (1981); (4) Straizys et al. (1992); (5) Kun &<br />

Prusti (1993); (6) Kun (1998); (7) ESA (1997); (8) Kun et al. (2000); (9) Balázs et al. (2004); (10) van<br />

den Ancker et al. (1997)<br />

This result suggests that a considerable part of the <strong>Cepheus</strong> Flare clouds is located at<br />

about 1 kpc. The situation is, however, far from clear. Simonson & van Someren Greve<br />

(1976) found a large HI cloud co<strong>in</strong>cid<strong>in</strong>g both <strong>in</strong> position and velocity with the molecular<br />

clouds of Yonekura et al.’s group 13. They associated this cloud not with NGC 7129,<br />

but with the reflection nebulae of Cep R2 (Rac<strong>in</strong>e 1968) at a distance of some 400 pc.<br />

The Wolf diagrams constructed by Kun (1998) show two layers of ext<strong>in</strong>ction towards<br />

b ∼ +11 ◦ − +13 ◦ , at 300 pc and ∼ 450 pc, respectively, thus it is tempt<strong>in</strong>g to identify<br />

the two velocity components with these two layers.<br />

Another direct distance determ<strong>in</strong>ation with<strong>in</strong> the area of the <strong>Cepheus</strong> Flare is that<br />

of Viotti (1969), who derived 440±100 pc for the reflection nebula NGC 7023, based on<br />

high resolution spectroscopy and UBV photometry of its illum<strong>in</strong>at<strong>in</strong>g star, HD 200775.


20<br />

In spite of the large uncerta<strong>in</strong>ty of this value, this is the most frequently cited distance of<br />

NGC 7023. Alecian et al. (2008) po<strong>in</strong>ted out that HD 200775 is a spectroscopic b<strong>in</strong>ary<br />

with two nearly identical components, thus its observed lum<strong>in</strong>osity has to be partitioned<br />

on both components, which suggests a distance of about 350 pc. The distance from the<br />

Hipparcos parallax of HD 200775, 430 +160<br />

−90 pc (van den Ancker et al. 1997) has to be<br />

treated with some caution, s<strong>in</strong>ce part of the measured displacement of the star resulted<br />

from its orbital motion. The projected separation of the components, estimated by<br />

Alecian et al. (2008), 16 ± 9 mas, commensurates with the measured parallax, and the<br />

orbital period of 1412 days suggests that Hipparcos might have measured the position<br />

of the star at any po<strong>in</strong>t of the orbit.<br />

Straizys et al. (1992) determ<strong>in</strong>ed the visual ext<strong>in</strong>ction A V vs. distance us<strong>in</strong>g photometric<br />

measurements of 79 stars <strong>in</strong> the Vilnius photometric system for the L1147/1158<br />

and NGC 7023 (L 1167/1174) regions. They obta<strong>in</strong>ed a distance 288±25 pc for NGC<br />

7023, and the same method resulted <strong>in</strong> 325±13 pc for the L1147/L1158 group.<br />

Snell (1981) studied the <strong>in</strong>terstellar redden<strong>in</strong>g towards L 1235 and po<strong>in</strong>ted out the<br />

presence of an absorb<strong>in</strong>g layer at a distance of 200 pc. This value is frequently assumed<br />

to be the distance of several other clouds <strong>in</strong> the region as well (e.g. Benson & Myers<br />

1989).<br />

Kun & Prusti (1993) found a distance of 300±50 pc for L 1251 by exam<strong>in</strong><strong>in</strong>g<br />

the <strong>in</strong>terstellar redden<strong>in</strong>g as a function of distance moduli of field stars. Kun (1998)<br />

determ<strong>in</strong>ed distances of dark clouds over the whole area of the <strong>Cepheus</strong> Flare us<strong>in</strong>g<br />

Wolf diagrams. The Wolf diagrams <strong>in</strong>dicated that the <strong>in</strong>terstellar matter <strong>in</strong> the <strong>Cepheus</strong><br />

Flare is concentrated at three characteristic distances: 200, 300 and 450 pc. The three<br />

components, though partly overlapp<strong>in</strong>g, can be separated along the Galactic latitude.<br />

The three absorb<strong>in</strong>g layers can be identified with Yonekura et al.’s (1997) groups 6,<br />

4, and 1, respectively. The overlap of the layers makes the distance determ<strong>in</strong>ation<br />

of some dark clouds ambiguous. For <strong>in</strong>stance, both the 300 pc and 200 pc layers can<br />

be recognized towards L 1228. However, L 1228 differs <strong>in</strong> radial velocity from the<br />

other clouds of the 300 pc component. Moreover, the star BD+76 ◦ 825 (spectral type:<br />

F2 V, B=11.21, V=10.62) is projected with<strong>in</strong> a compact group of pre-ma<strong>in</strong> sequence<br />

stars of L 1228 and illum<strong>in</strong>ates a fa<strong>in</strong>t reflection nebula (Padgett et al. 2004). Thus the<br />

photometric distance of this star, 180 pc, is a good estimate of the distance of L 1228.<br />

The <strong>Cepheus</strong> Flare shell, proposed by Olano et al. (2006), may expla<strong>in</strong> the existence<br />

of dark clouds at both 200 and 300 pc (see Fig. 5). Table 3 summarizes the results<br />

of distance determ<strong>in</strong>ations <strong>in</strong> the <strong>Cepheus</strong> Flare region. The group of clouds whose<br />

distance rema<strong>in</strong>s controversial is associated with the negative velocity component at<br />

l ∼ 107 ◦ − 111 ◦ , b ∼ +13 ◦ .<br />

2.3. <strong>Star</strong> Formation <strong>in</strong> the <strong>Cepheus</strong> Flare<br />

<strong>Star</strong> formation takes place <strong>in</strong> dense cores of molecular clouds. Dense cores with<strong>in</strong><br />

dark clouds are usually designated with letters appended to the name of the cloud, e.g.<br />

L 1082 A, L 1251 E. Several dense cores and IRAS sources of the <strong>Cepheus</strong> Flare clouds<br />

have been <strong>in</strong>cluded <strong>in</strong> large molecular surveys aimed at study<strong>in</strong>g their various properties<br />

and the associated young stellar objects. Below we list some major survey papers<br />

<strong>in</strong>clud<strong>in</strong>g key data for <strong>Cepheus</strong> Flare clouds, cores, and IRAS sources.<br />

Myers et al. (1983) – CO observations (L1152, L1155 H, L1155 D, L1082 C, L1082 A,<br />

L1082 B, L1174, L1172 D, L1172 B, L1262 A);<br />

Clemens & Barva<strong>in</strong>is (1988) – positions, radial velocities, and IRAS associations of


21<br />

300<br />

l=180 o<br />

Loop III - old supernova shell<br />

200<br />

<strong>Cepheus</strong> Flare<br />

Shell<br />

Y (pc)<br />

100<br />

0<br />

Sun<br />

UMa<br />

Polaris<br />

Flare<br />

L1333<br />

L1261<br />

L1228<br />

L1082?<br />

Local Bubble<br />

L1251<br />

L1235<br />

NGC 7023<br />

L1157<br />

L1219<br />

l=90 o<br />

0 100 200 300 400 500<br />

X (pc)<br />

300<br />

b=90 o<br />

110 o < l < 120 o<br />

Z (pc)<br />

200<br />

100<br />

Local Bubble <strong>Cepheus</strong><br />

L1228<br />

Flare<br />

Shell<br />

Loop III<br />

L1241<br />

L1251<br />

L1235<br />

L1219<br />

b=+15 o<br />

0<br />

Sun<br />

L1261<br />

b=0 o<br />

0 100 200 300 400 500<br />

X (pc)<br />

Figure 5. Upper panel: Distribution of the most prom<strong>in</strong>ent molecular clouds of<br />

the <strong>Cepheus</strong> Flare and nearby <strong>in</strong>terstellar shells, projected on the Galactic plane, and<br />

viewed from the direction of the North Galactic pole. Lower panel: the same objects<br />

projected onto a plane perpendicular to the Galactic equator.<br />

small, optically selected molecular clouds (CB 222, CB 224, CB 229 (L1171), CB 230,<br />

CB 232, CB 244);<br />

Benson & Myers (1989) – NH 3 observations (L1152, L1155 B, L1155 C, L1155 D,<br />

L1155 G, L1158, L1082 C, L1082 A, L1174, L1174 B, L1172 D, L1172 A, L1172 B,<br />

L1228 C, L1228 B, L1235, L1251 A, L1262 A);<br />

Goodman et al. (1993) – velocity gradients (L1152, L1082 A, L1082 B, L1082 C, L1174,<br />

L1172 A, L1251 A, L1251 E, L1262 A);<br />

Benson et al. (1998) – N 2 H + , C 3 H 2 , and CCS observations (L1155, L1152, L1152 (IR),<br />

L1082 A, L1082 C, L1174, L1172 A, L1228, L1228 D, L1221, L1251 A, L1251 E, L1262);


22<br />

Myers et al. (1988) – search for outflows (L1152, L1082 A, L1174, L1172 D, L1262);<br />

Fukui (1989) – search for outflows (PV Cep, L1228, L1172, NGC 7129, LkHα 234,<br />

L1221, L1251 A, L1251 B, L1262);<br />

Furuya et al. (2003) – search for H 2 O masers (L1082, L1082 A, L1082 B, L1228,<br />

L1174, L1172 D, L1221, L1251 A, L1251 B, L1262);<br />

Mardones et al. (1997) – search for protostellar <strong>in</strong>fall (IRAS 20353+6742,<br />

IRAS 20386+6751, IRAS 21017+6742, IRAS 22343+7501, IRAS 22376+7455, IRAS<br />

23238+7401).<br />

Table 4.<br />

Molecular outflows and sources <strong>in</strong> the <strong>Cepheus</strong> Flare.<br />

Cloud RA(2000) Dec(2000) Source References<br />

L 1157 20 39 06 +68 02 13 IRAS 20386+6751 5,17<br />

L 1157 20 45 54 +67 57 39 PV Cep 5,10,12<br />

L 1082 20 47 56.6 +60 04 14 IRAS 20468+5953 22<br />

L 1082 20 51 30.1 +60 18 39 GF9–2 22,23<br />

L 1082 20 53 13.6 +60 14 40 IRAS 20520+6003 22<br />

L 1228 A 20 57 13 +77 35 47 IRAS 20582+7724 5,7,9<br />

L 1228 B 20 57 06 +77 36 56 HH 200 IRS 9<br />

L 1174 A 21 00 22 +68 12 52 L 1174 A 21<br />

L 1172 21 02 24 +67 54 27 IRAS 21017+6742 2, 5,13,<br />

L 1174 21 03 02 +68 06 57 RNO 131A 1,3,20<br />

L 1177 21 17 40 +68 17 32 IRAS 21169+6804 19, 21<br />

L 1183 21 42 57 +66 04 47 RNO 138 1,3,24<br />

L 1183 21 43 01 +66 03 37 NGC 7129 FIRS 2 4,5,8,10<br />

L 1183 21 43 02 +66 06 29 LkHα 234 4,5,8,10<br />

L 1183 21 43 00 +66 11 28 V350 Cep 24<br />

L 1219 22 14 08 +70 15 05 IRAS 22129+7000 14,25<br />

L 1221 22 28 03 +69 01 13 IRAS 22266+6845 6,11,18<br />

TDS 417 22 35 06 +69 10 53 IRAS 22336+6855 6<br />

L 1251 A 22 35 24 +75 17 06 IRAS 22343+7501 5,15<br />

L 1251 B 22 38 47 +75 11 29 IRAS 22376+7455 5,15,16<br />

L 1262 23 25 46 +74 17 33 IRAS 23238+7401 5,17,20<br />

References. 1: Armstrong (1989); 2: Beichman, Myers & Emerson (1986); 3: Cohen (1980); 4: Edwards<br />

& Snell (1983); 5: Fukui (1989); 6: Haikala & Dietrich (1989); 7: Haikala & Laureijs (1989); 8: Harvey,<br />

Wilk<strong>in</strong>g & Joy (1984); 9: Bally et al. (1995); 10: Lada (1985); 11: Lee et al. (2002); 12: Levreault (1984);<br />

13: Myers et al. (1988); 14: Nikolić & Kun (2004); 15: Sato & Fukui (1989); 16: Sato et al. (1994); 17:<br />

Terebey et al. (1989); 18: Umemoto et al. (1991); 19: Wang et al. (1995); 20: Wu et al. (1992); 21: Yun<br />

& Clemens (1992); 22: Wiesemeyer et al. (1999); 23: Furuya et al. (2006); 24: Liseau & Sandell (1983);<br />

25: Goicoechea et al. (2008).<br />

The <strong>Cepheus</strong> Flare cloud cores can be found among the targets of <strong>in</strong>frared, submillimeter<br />

and millimeter cont<strong>in</strong>uum surveys of embedded low mass young stellar objects<br />

as well:<br />

Connelley et al. (2007) – a K-band atlas of reflection nebulae (IRAS 20353+6742, IRAS<br />

20453+6746, IRAS 21017+6742, IRAS 22266+6845, IRAS 22376+7455);<br />

Young et al. (2006) – submillimeter (450 and 850 µm) survey of cores <strong>in</strong>cluded <strong>in</strong><br />

the Spitzer c2d project (L 1152, CB 224, L 1157, L 1082 C, L 1082 A, L 1228, L 1177<br />

(CB 230), L 1221, L 1251 C, L 1251 E, L 1155 C);<br />

Rodríguez & Reipurth (1998) – VLA observations of HH excit<strong>in</strong>g sources (L 1152,<br />

L 1157, L 1221).


We f<strong>in</strong>d these objects <strong>in</strong> statistical studies of dense cores and young stellar objects:<br />

Fuller & Myers (1992) – l<strong>in</strong>e width–size relations (L 1152, L 1262);<br />

Myers et al. (1991) – shapes of cores (L 1152, L 1251, L 1262);<br />

Wu et al. (2004) – properties of outflows (L 1152, L 1155, L 1082, L 1174, L 1172,<br />

L 1228, L 1177, L 1221, L 1251, L 1262);<br />

Wu et al. (2007) – submm (350 µm) survey of cores <strong>in</strong>cluded <strong>in</strong> the Spitzer c2d project<br />

(L 1152, L 1157, L 1148, L 1177, L 1228, RNO 129, L 1221, L 1251).<br />

The molecular outflows discovered <strong>in</strong> the <strong>Cepheus</strong> Flare and their driv<strong>in</strong>g sources<br />

are listed <strong>in</strong> Table 4, and the Herbig–Haro objects and driv<strong>in</strong>g sources can be found <strong>in</strong><br />

Table 5.<br />

Figure 3 shows the surface distribution of pre-ma<strong>in</strong> sequence stars and candidates<br />

<strong>in</strong> the <strong>Cepheus</strong> Flare. Apparently star formation occurs <strong>in</strong> small aggregates, especially<br />

along the boundaries of the complex. The central part of the cloud complex conta<strong>in</strong>s<br />

clouds of low density and is avoided by known signposts of star formation.<br />

The samples of T Tauri stars, displayed <strong>in</strong> Fig. 3, result from several surveys for<br />

Hα emission stars conducted <strong>in</strong> the region of <strong>Cepheus</strong> Flare. Only 10 pre-ma<strong>in</strong> sequence<br />

objects are catalogued <strong>in</strong> the Herbig–Bell Catalog (Herbig & Bell 1988, here<strong>in</strong>after<br />

HBC). Ogura & Sato (1990) reported on 69 detected and 49 suspected Hα emission<br />

stars <strong>in</strong> a wide environment of L 1228. Kun (1998) reported 142 Hα emission<br />

stars, distributed over the whole area of the <strong>Cepheus</strong> Flare, identified on objective prism<br />

photographic Schmidt plates and 128 IRAS sources as possible YSOs. Spectroscopic<br />

follow up observations of both samples are underway (Kun et al., <strong>in</strong> preparation). We<br />

show <strong>in</strong> Fig. 3 and list <strong>in</strong> Table 7 those stars from these two surveys whose pre-ma<strong>in</strong><br />

sequence nature has already been confirmed. The known Herbig Ae/Be stars are also<br />

listed <strong>in</strong> Table 7.<br />

Tachihara et al.’s (2005) spectroscopic observations toward the ROSAT X-ray<br />

sources resulted <strong>in</strong> detect<strong>in</strong>g 16 Li-rich stars, represent<strong>in</strong>g weak l<strong>in</strong>e T Tauri stars. The<br />

ma<strong>in</strong> properties of these WTTSs are listed <strong>in</strong> Table 6.<br />

The distribution of the WTTSs <strong>in</strong> the <strong>Cepheus</strong> Flare differs from that of other<br />

YSOs. In the CO void found by Grenier et al. (1989), a group of WTTSs is separated<br />

from the 13 CO cloud by ∼ > 10 pc. The cloud-to-WTTS separations are significantly<br />

larger <strong>in</strong> <strong>Cepheus</strong> than <strong>in</strong> other nearby SFRs such as Chamaeleon. Because of their<br />

group<strong>in</strong>g, Tachihara et al. propose the <strong>in</strong>-situ formation model for them. From the<br />

total mass of the group of TTSs, a ∼ 800 M⊙ molecular cloud might have formed<br />

them, while only ∼ 200 M⊙ molecular gas rema<strong>in</strong>ed <strong>in</strong> their vic<strong>in</strong>ity. An external<br />

disturbance might have dissipated the molecular cloud with<strong>in</strong> several 10 5 yr. As the<br />

distances to the WTTSs are unknown, Tachihara et al. suggest two possible scenarios<br />

for the history of the formation of the WTTS sample isolated from the cloud complex:<br />

(1) The WTTSs <strong>in</strong> the CO void were formed at 300 pc and affected by the supernova<br />

shock discussed by Grenier et al. (1989); or (2) They are at 200 pc and an unknown<br />

supernova explosion has the responsibility for the parent cloud dissipation. Radial velocity<br />

measurements might help to f<strong>in</strong>d the relationship between the stars and the cloud<br />

complex. Tak<strong>in</strong>g <strong>in</strong>to account the picture of the <strong>Cepheus</strong> Flare Shell, the same supernova<br />

might have triggered star formation at both 200 and 300 pc.<br />

2.4. Notes on Individual Objects<br />

L 1147/L 1158 The cloud group often referred to as the L 1147/L 1158 complex consists<br />

of the clouds Lynds 1147, 1148, 1152, 1155, 1157, and 1158. L 1157 harbors a<br />

23


24<br />

Table 5.<br />

Herbig–Haro objects and their sources <strong>in</strong> the <strong>Cepheus</strong> Flare.<br />

Name RA(2000) Dec(2000) Source Cloud D(pc) Reference<br />

HH 376B 20 35 06.1 +67 48 47 IRAS 20359+6745 L1152 440 11,13<br />

HH 376A 20 36 02.4 +67 54 28 IRAS 20359+6745 L1152 440 11,13<br />

HH 376 20 36 55.3 +67 59 28 IRAS 20359+6745 L1152 440 15,19<br />

HH 375 20 39 06.2 +68 02 15 IRAS 20386+6751 L1157 440 2,18,19<br />

HH 315C 20 45 06.9 +68 04 50 PV Cep L1158 500 2,8,13<br />

HH 315 20 45 34.0 +68 03 25 PV Cep L1158 500 2,8,13<br />

HH 315B 20 45 34.0 +68 03 25 PV Cep L1158 500 2,8,13<br />

HH 315A 20 45 38.4 +68 00 55 PV Cep L1158 500 2,8,13<br />

HH 215 20 45 53.8 +67 57 39 PV Cep L1158 500 10,12,13<br />

HH 415 20 46 04.6 +68 00 28 L1158 500 8,11,16<br />

HH 315D 20 46 06.4 +67 54 13 PV Cep L1158 500 2,8,13<br />

HH 315E 20 46 28.1 +67 52 20 PV Cep L1158 500 2,8,13<br />

HH 315F 20 47 09.9 +67 50 05 PV Cep L1158 500 2,8,13<br />

HHL 65 20 53 06.0 +67 10 00 300 7<br />

HH 199R3 20 54 49.1 +77 32 16 IRAS 20582+7724 L1228 200 4<br />

HH 199R2 20 54 56.2 +77 32 21 IRAS 20582+7724 L1228 200 4<br />

HH 200B6 20 55 09.4 +77 31 20 HH 200 IRS L1228 200 4<br />

HH 199R1 20 55 12.2 +77 33 11 IRAS 20582+7724 L1228 200 4<br />

HH 200B5 20 55 22.5 +77 32 17 HH 200 IRS L1228 200 4<br />

HH 200B4 20 55 33.9 +77 33 07 HH 200 IRS L1228 200 4<br />

HH 200B4a 20 56 11.0 +77 34 18 HH 200 IRS L1228 200 4<br />

HH 200B3 20 56 22.2 +77 35 01 HH 200 IRS L1228 200 4<br />

HH 200B2 20 56 35.9 +77 35 34 HH 200 IRS L1228 200 4<br />

HH 200B1 20 56 51.2 +77 36 21 HH 200 IRS L1228 200 4<br />

HH 199B1 20 57 27.2 +77 35 38 IRAS 20582+7724 L1228 200 4<br />

HH 199B2 20 57 31.0 +77 35 44 IRAS 20582+7724 L1228 200 4<br />

HH 199B3 20 57 34.1 +77 35 53 IRAS 20582+7724 L1228 200 4<br />

HH 199B4 20 58 21.7 +77 37 42 IRAS 20582+7724 L1228 200 4<br />

HH 199B5 20 59 08.0 +77 39 25 IRAS 20582+7724 L1228 200 4<br />

HH 198 20 59 09.7 +78 22 48 IRAS 21004+7811 L1228 200 4,14,16,17<br />

HH 200R1 20 59 48.2 +77 43 50 HH 200 IRS L1228 200 4<br />

HH 199B6 21 00 27.4 +77 40 54 IRAS 20582+7724 L1228 200 4<br />

HHL 67 21 05 00.0 +66 47 00 300 7<br />

HH 450 22 14 24.1 +70 14 26 IRAS 22129+7000 L1219 400 5<br />

HH 450X 22 14 50.1 +70 13 47 L1219 400 5<br />

HH 363 22 27 46.7 +69 00 38 IRAS 22266+6845 L1221 200 1,9<br />

HH 149 22 35 24.2 +75 17 06 IRAS 22343+7501 L1251 300 3,13<br />

HH 373 22 37 00.0 +75 15 16 L1251 300 16<br />

HH 374 22 37 39.1 +75 07 31 L1251 300 16<br />

HH 374A 22 37 39.2 +75 07 31 L1251 300 1<br />

HH 374B 22 37 50.0 +75 08 13 L1251 300 1<br />

HH 364 22 38 19.2 +75 13 07 L1251 300 16<br />

HH 189C 22 38 39.4 +75 09 49 L1251 300 6<br />

HH 189 22 38 39.9 +75 10 41 IRAS 22376+7455? L1251 300 6<br />

HH 189B 22 38 40.0 +75 10 40 KP 44? L1251 300 6<br />

HH 189E 22 38 40.3 +75 13 52 L1251 300 1<br />

HH 189A 22 38 40.4 +75 10 53 L1251 300 6<br />

HH 189D 22 38 44.2 +75 13 28 L1251 300 1<br />

HH 358 23 24 39.0 +74 12 35 L1262 180 1,16<br />

HH 359 23 26 29.0 +74 22 28 L1262 180 1,16<br />

References. 1: Alten et al. (1997); 2: Arce & Goodman (2002); 3: Balázs et al. (1992); 4: Bally et al.<br />

(1995); 5: Bally & Reipurth (2001); 6: Eiroa et al. (1994); 7: Gyulbudaghian et al. (1987); 8: Gómez et al.<br />

(1997); 9: Lee et al. (2002); 10: Moreno-Corral et al. (1995); 11: Movsessian et al. (2004); 12: Neckel et<br />

al. (1987); 13: Reipurth, Bally, & Dev<strong>in</strong>e (1997); 14: Movsessian & Magakian (2004); 15: Rodríguez &<br />

Reipurth (1998); 16: Wu et al. (1992); 17: Brugel & Fesen (1990); 18: Dev<strong>in</strong>e, Reipurth & Bally (1997);<br />

19: Davis & Eislöffel (1995).


Class 0 object, L 1157-mm, with L bol ∼ 11 L⊙. It co<strong>in</strong>cides with IRAS 20386+6751<br />

and drives a spectacular outflow. The L 1157 outflow has been studied <strong>in</strong> detail through<br />

many molecular l<strong>in</strong>es, such as CO (Umemoto et al. 1992; Gueth, Guilloteau & Bachiller<br />

1996; Bachiller & Pérez Gutiérrez 1997; Hirano & Taniguchi 2001), SiO (Mikami et<br />

al. 1992; Zhang et al. 1995; Gueth, Guilloteau & Bachiller 1998; Zhang, Ho & Wright<br />

2000; Bachiller et al. 2001), H 2 (Hodapp 1994; Davis & Eislöffel 1995), NH 3 (Bachiller<br />

et al. 2001; Tafalla & Bachiller 1995; Umemoto et al. 1999), and CH 3 OH (Bachiller et<br />

al. 1995, 2001; Avery & Chiao 1996). Many other l<strong>in</strong>es have been detected (Bachiller<br />

& Pérez Gutiérrez 1997; Bachiller et al. 2001; Beltrán et al. 2004; Benedett<strong>in</strong>i et al.<br />

2007; Arce et al. 2008), mak<strong>in</strong>g L 1157 the prototype of chemically active outflows.<br />

Gas phase shock chemistry models have been used by Am<strong>in</strong> (2001) to study the production<br />

of the observed species <strong>in</strong> the L 1157 outflow . Arce & Sargent (2006) studied<br />

the outflow–envelope <strong>in</strong>teraction on a 10 4 AU scale us<strong>in</strong>g high angular resolution multil<strong>in</strong>e<br />

observations. Velusamy et al. (2002) detected spatially resolved methanol emission<br />

at 1 mm from L 1157. Their results <strong>in</strong>dicate the presence of a warm gas layer <strong>in</strong> the<br />

<strong>in</strong>fall–disk <strong>in</strong>terface, consistent with an accretion shock. Regard<strong>in</strong>g the protostar itself,<br />

dust cont<strong>in</strong>uum observations have been carried out at 2.7 mm (Gueth et al. 1996, 1997;<br />

Beltrán et al. 2004), 1.3 mm (Shirley et al. 2000; Ch<strong>in</strong>i et al. 2001; Gueth, Bachiller &<br />

Tafalla 2003; Beltrán et al. 2004), 850 µm (Shirley et al. 2000; Ch<strong>in</strong>i et al. 2001; Young<br />

et al. 2006), 450 µm (Ch<strong>in</strong>i et al. 2001), as well as 60, 100, 160, and 200 µm (Froebrich<br />

et al. 2003). Us<strong>in</strong>g the VLA, Rodríguez & Reipurth (1998) detected the protostar<br />

as a radio cont<strong>in</strong>uum source at 3.6 cm. Froebrich et al. (2003) obta<strong>in</strong>ed a far-<strong>in</strong>frared<br />

spectrum of the L 1157 protostar us<strong>in</strong>g the LWS on board ISO. Deep Spitzer IRAC images<br />

of L 1157 reveal many details of the outflow and the circumstellar environment of<br />

the protostar. Looney et al. (2007) report on the detection of a flattened structure seen<br />

<strong>in</strong> absorption at 8 µm aga<strong>in</strong>st the background emission. The structure is perpendicular<br />

to the outflow and is extended to a diameter of 2 arcm<strong>in</strong>. This structure is the first<br />

clear detection of a flattened circumstellar envelope or pseudo-disk around a Class 0<br />

protostar.<br />

25<br />

Table 6. Weak-l<strong>in</strong>e T Tauri stars <strong>in</strong> the <strong>Cepheus</strong> Flare (Tachihara et al. 2005)<br />

ID GSC RA(2000) Dec(2000) Sp. Type V V − I C M 1 (M ⊙) Age(Myr) 1<br />

4c1 0450001478 00 38 05.4 +79 03 21 K1 10.43 0.92 1.6 2<br />

4c2 00 38 05.4 +79 03 21 K7 13.86 1.77 0.8 15<br />

5c1 0450001549 00 39 06.1 +79 19 10 K6 12.18 1.52 0.6 1<br />

5c2 00 39 06.1 +79 19 10 M2 2 14.12 2.10 0.4 1<br />

19 0458901101 20 20 29.3 +78 07 22 G8 10.39 0.82 1.6 6<br />

20 0445900083 20 25 15.4 +73 36 33 K0 10.62 0.84 1.6 4<br />

28 0458601090 21 11 29.4 +76 14 29 G8 11.66 0.81 1.0 25<br />

34 0460801986 22 11 11.0 +79 18 00 K7 13.09 1.55 0.7 3<br />

36c1 0427200174 22 27 05.3 +65 21 31 K4 12.92 1.13 0.9 20<br />

36c2 22 27 05.3 +65 21 31 M4 2 15.55 2.50 0.2 0.2<br />

37c1 0448000917 22 33 44.9 +70 33 18 K3 11.63 1.65 1.0 0.4<br />

38 0460400743 22 39 58.1 +77 49 40 K2 11.88 1.03 1.2 8<br />

40 0460502733 23 00 44.4 +77 28 38 K0 10.98 0.88 1.4 6<br />

41 0460500268 23 05 36.1 +78 22 39 K6 13.19 1.59 0.8 7<br />

43c1 0448900036 23 09 43.4 +73 57 15 K7 13.21 1.86 0.3 4<br />

43c2 23 09 43.4 +73 57 15 M3 2 15.55 2.50 0.7 3<br />

44 0460500170 23 16 18.1 +78 41 56 K4 11.77 1.24 1.0 2<br />

45 0447900348 23 43 41.9 +68 46 27 K2 12.64 1.00 0.9 25<br />

46 0461001318 23 51 10.0 +78 58 05 K1 11.34 0.93 1.3 6<br />

1 Derived from the evolutionary tracks by D’Antona & Mazzitelli (1994).<br />

2 Derived only from the V − I C color.


26<br />

The K ′ image of the outflow source, presented by Hodapp (1994), is dom<strong>in</strong>ated by<br />

nebulosity of bipolar morphology, <strong>in</strong>dicative of an <strong>in</strong>-plane bipolar outflow. Knots of<br />

nebulosity extend to the north and south of the outflow position. Both the northern and<br />

the southern lobes conta<strong>in</strong> bow shock fronts.<br />

X-ray observations of L 1157, performed by the ASCA satellite, have been published<br />

by Furusho et al. (2000).<br />

The molecular cloud L 1155 was mapped by Harjunpää & Mattila (1991) <strong>in</strong> the<br />

l<strong>in</strong>es of C 18 O, HCO + , and NH 3 . The observations revealed that L 1155 consists of two<br />

separate clumps, L1155 C1 and L1155 C2. The optically visible pre-ma<strong>in</strong> sequence star<br />

associated with L 1152 is HBC 695 (RNO 124), studied <strong>in</strong> detail by Movsessian et al.<br />

(2004).<br />

Recently Kauffmann et al. (2005), us<strong>in</strong>g the data base of the Spitzer Space Telescope<br />

Legacy Program From Molecular Cores to Planet <strong>Form<strong>in</strong>g</strong> Disks (c2d, Evans<br />

et al. 2003) found a candidate sub-stellar (M ≪ 0.1M⊙) mass protostellar object <strong>in</strong><br />

L 1148. The object L 1148–IRS co<strong>in</strong>cides with IRAS F20404+6712.<br />

PV Cep The highly variable pre-ma<strong>in</strong> sequence star PV Cep lies near the northeastern<br />

edge of the dark cloud complex L 1147/L 1158. It is a bright IRAS source, and has been<br />

detected <strong>in</strong> radio cont<strong>in</strong>uum (Anglada et al. 1992). It illum<strong>in</strong>ates a reflection nebula,<br />

known as GM–29 (Gyulbudaghian & Magakian 1977) and RNO 125 (Cohen 1980).<br />

A dramatic brighten<strong>in</strong>g of the star (an EXor-like outburst) was observed <strong>in</strong> the period<br />

1976–1978, and at the same time the shape of the associated nebula changed drastically<br />

(Cohen, Kuhi & Harlan 1977).<br />

The stellar parameters of PV Cep are somewhat uncerta<strong>in</strong>. Most of its optical<br />

spectrograms available show no photospheric absorption features. Cohen et al. (1977),<br />

based on measurements of narrow-band cont<strong>in</strong>uum <strong>in</strong>dices, estimated a spectral type<br />

about A5. Cohen et al. (1981) found the same spectral type based on the strength of the<br />

Hδ absorption l<strong>in</strong>e, apparent <strong>in</strong> two blue spectra. They note, however, that the hydrogen<br />

features probably represent merely a shell spectrum. Magakian & Movsessian (2001)<br />

estimated a spectral type of G8–K0, based on a spectrum taken <strong>in</strong> July 1978, when<br />

the star was some 2 magnitudes fa<strong>in</strong>ter than dur<strong>in</strong>g the outburst. No other estimate of<br />

spectral type can be found <strong>in</strong> the literature (see Hernández et al. 2004, for a review).<br />

The spectral type of F, quoted by Staude (1986) and Neckel et al. (1987) is also based<br />

on the spectral <strong>in</strong>formation presented by Cohen et al. (1981).<br />

Cohen et al. (1981) found a distance of about 500 pc for PV Cep. Their estimate<br />

was based on three <strong>in</strong>dependent arguments. (1) PV Cep is probably related to<br />

NGC 7023. The spectroscopic and photometric data of its illum<strong>in</strong>at<strong>in</strong>g star, HD 200775,<br />

suggest a distance of 520 pc. (2) The spectroscopic and photometric data of the nebulous<br />

star RNO 124, located <strong>in</strong> the same cloud complex as PV Cep, suggest the same<br />

distance. (3) A similar distance can be obta<strong>in</strong>ed from the light travel time from the star<br />

to a nebular spike which brightened about a year after the outburst of the star. On the<br />

contrary, Straizys et al. (1992) obta<strong>in</strong>ed a distance of 325 pc for the L 1147/L 1158 dark<br />

cloud complex (see Table 3).<br />

The environment of the star shows a bipolar and rapidly chang<strong>in</strong>g optical morphology<br />

(Cohen et al. 1981; Neckel & Staude 1984; Staude 1986; Neckel et al. 1987;<br />

Levreault & Opal 1987; Scarrott et al. 1991a,b), as well as a bipolar CO outflow parallel<br />

to the symmetry axis of the reflection nebula (Levreault 1984). Neckel et al. (1987) detected<br />

several HH-knots, known as HH 215, emanat<strong>in</strong>g from PV Cep. Reipurth, Bally,<br />

& Dev<strong>in</strong>e (1997) and Gómez, Kenyon & Whitney (1997) discovered a giant (∼ 2.3 pc


long) Herbig-Haro flow, HH 315, consist<strong>in</strong>g of 23 knots. HH 215 is also part of this<br />

giant flow. Reipurth, Bally, & Dev<strong>in</strong>e (1997) detected a further small knot, HH 415, located<br />

north-east of PV Cep, but this may be a dwarf galaxy with Hα redshifted <strong>in</strong>to the<br />

[SII] passband (Bally, priv. comm.). Near-<strong>in</strong>frared spectroscopy of PV Cep is presented<br />

by Hamann & Persson (1994) and Greene & Lada (1996), and optical spectroscopy by<br />

Corcoran & Ray (1997).<br />

Far-<strong>in</strong>frared data obta<strong>in</strong>ed by ISOPHOT (Ábrahám et al. 2000) <strong>in</strong>dicate the presence<br />

of an extended dust component on arcm<strong>in</strong>ute scale around PV Cep. The existence<br />

of a dust core close to PV Cep is also supported by the 13 CO (J=1–0) mapp<strong>in</strong>g of the<br />

region by Fuente et al. (1998b), who found a molecular core with a size of some 60 ′′ .<br />

27<br />

Figure 6. Optical image of a field of 36 ′ × 24 ′ of L 1082, obta<strong>in</strong>ed by Giovanni<br />

Ben<strong>in</strong>tende (http://www.astrogb.com/).<br />

L 1082 is a remarkable filamentary cloud (see Fig. 6), first catalogued by E. E. Barnard<br />

(1927) as Barnard 150. It appears as GF 9 <strong>in</strong> the catalog of globular filaments by<br />

Schneider & Elmegreen (1979). Several dense cores, namely L 1082 A,B,C (Myers et<br />

al. 1983), and LM99 349, 350, 351 (≡ L 1082 C), 352 (Lee & Myers 1999), as well as<br />

four IRAS sources, IRAS 20468+5953, 20503+6006, 20520+6003, and 20526+5958<br />

are found along the filament. A f<strong>in</strong>d<strong>in</strong>g chart for the objects <strong>in</strong> L 1082 is given <strong>in</strong> Figure<br />

7.<br />

No distance determ<strong>in</strong>ation is available <strong>in</strong> the literature for L 1082. Several authors<br />

assume that L 1082 is close to NGC 7023 not only on the sky, but also <strong>in</strong> space, and<br />

thus accept 440 pc as its distance (e.g. Ciardi et al. 1998). We note that the angular<br />

separation of 10 ◦ between NGC 7023 and L 1082 corresponds to 70 pc at the distance<br />

of NGC 7023. If both objects belong to the same complex, a similar difference can<br />

be expected between their distances. Wiesemeyer et al. (1997), based on statistical


28<br />

arguments, assume a distance of 100±50 pc. Furuya et al. (2003) refer to 150 pc, and<br />

Furuya et al. (2006) derive the physical parameters of GF 9–2 us<strong>in</strong>g 200 pc. Kun (2007)<br />

speculates that L 1082 may lie at the <strong>in</strong>teraction region of the Local Bubble and Loop III<br />

(<strong>Cepheus</strong> Flare Shell). In this case its likely distance is about 150 pc.<br />

Ciardi et al. (1998) performed near-<strong>in</strong>frared observations of a core and a filament<br />

region with<strong>in</strong> GF 9 (GF 9-Core and GF 9–Fila, see Fig. 7). They found that neither the<br />

core nor the filament conta<strong>in</strong>s a Class I or Class II YSO. The ext<strong>in</strong>ction maps of the two<br />

7 ′ × 7 ′ fields observed reveal masses 26 and 22 M⊙ <strong>in</strong> the core and the filament, respectively<br />

(at a distance of 440 pc). The core conta<strong>in</strong>s a centrally condensed ext<strong>in</strong>ction<br />

maximum that appears to be associated with IRAS 20503+6006, whereas GF 9–Fila<br />

does not show centrally peaked dust distribution.<br />

60 30<br />

IRAS 20520+6003<br />

L 1082 C<br />

[LM99] 351<br />

GF9−2 = IRAS 20503+6006<br />

[LM99] 350<br />

60 20<br />

IRAS 20526+5958<br />

[LM99] 349<br />

Dec(J2000)<br />

60 10<br />

L 1082 B<br />

L 1082 A<br />

[LM99] 352<br />

Core<br />

Fila<br />

IRAS 20468+5953<br />

60 00<br />

59 50<br />

20 55 20 54 20 53 20 52 20 51 20 50 20 49 20 48 20 47<br />

RA(J2000)<br />

Figure 7. F<strong>in</strong>d<strong>in</strong>g chart for the structure of L 1082, based on Poidev<strong>in</strong> & Bastien’s<br />

(2006) Fig. 1 and Wiesemeyer et al.’s (1998) Fig. 1. Crosses <strong>in</strong>dicate the positions of<br />

the IRAS and ISOCAM po<strong>in</strong>t sources, open cirles mark the dense cores L 1082 A, B,<br />

and C (Benson & Myers 1989), diamonds show the dense cores catalogued by Lee<br />

& Myers (1999). Two rectangles show the regions GF 9 Core and GF 9 Fila, studied<br />

<strong>in</strong> detail by Ciardi et al. (1998; 2000). The size of the underly<strong>in</strong>g DSS red image is<br />

70 ′ × 50 ′ .<br />

Wiesemeyer et al. (1998) presented mid-<strong>in</strong>frared ISOCAM observations of L 1082.<br />

They identified 9 sources along the filament, and designated them as GF 9–1, 2, 3a,<br />

3b, 4, 5, 6, I6, and 7. The designations probably follow Mezger (1994) who labeled<br />

dense cores along the filament by the same numbers. GF 9–2 co<strong>in</strong>cides <strong>in</strong> position<br />

with IRAS 20503+6006, GF 9–3b with IRAS 20520+6003, GF 9–I6 with IRAS<br />

20468+5953, and GF 9–4 lies at 12 ′′ west of IRAS 20526+5958. They f<strong>in</strong>d that these<br />

latter two sources are Class 0 protostars, both associated with CO outflows, whereas


GF 9–6 and GF 9–7 are most likely reddened background stars. They speculate that the<br />

other ISOCAM sources, not associated with outflows, may be transitional objects between<br />

prestellar (Class −1) and Class 0 evolutionary stages. Wiesemeyer et al. (1999)<br />

presented far-<strong>in</strong>frared ISOPHOT and millimeter cont<strong>in</strong>uum measurements for GF 9–2,<br />

GF 9–3a/3b, and GF 9–4.<br />

Ciardi et al. (2000) performed CO, 13 CO, and CS observations of the GF 9–Core<br />

and GF 9–Fila regions, determ<strong>in</strong>ed excitation temperatures, densities and masses. The<br />

CS observations reveal that both regions conta<strong>in</strong> centrally condensed, high-density gas<br />

cores. The temperatures and masses of the two regions and of the cores conta<strong>in</strong>ed with<strong>in</strong><br />

the regions are similar, but the densities <strong>in</strong> GF 9–Core are twice those of GF 9–Fila.<br />

De Gregorio Monsalvo et al. (2006) detected CCS emission from GF 9–2. The<br />

structure of the magnetic field associated with GF 9 was studied by Jones (2003) and<br />

Poidev<strong>in</strong> & Bastien (2006).<br />

Furuya et al. (2003) detected H 2 O maser emission from GF 9–2. Furuya et al.<br />

(2006) studied <strong>in</strong> detail the spatial and velocity structure of GF 9–2, us<strong>in</strong>g several<br />

molecular transitions obta<strong>in</strong>ed by s<strong>in</strong>gle-dish and <strong>in</strong>terferometric radio observations<br />

and 350 µm cont<strong>in</strong>uum data. The observations revealed a dense core with a diameter<br />

of ∼ 0.08 pc and mass of ∼ 3 M⊙. With<strong>in</strong> the core a protostellar envelope with a<br />

size of ∼ 4500 AU and mass of ∼ 0.6 M⊙ could be identified. The radial column<br />

density profile of the core can be well fitted by a power-law form of ρ(r) ∝ r −2 for the<br />

0.003 < r/pc < 0.08 region. The power-law <strong>in</strong>dex of −2 agrees with the expectation<br />

for an outer part of the gravitationally collaps<strong>in</strong>g core. They found no jet-like outflow,<br />

but a compact, low-velocity outflow may have formed at the center. They discovered a<br />

potential protob<strong>in</strong>ary system with a projected separation of ∼ 1200 AU, embedded <strong>in</strong> a<br />

circumb<strong>in</strong>ary disk-like structure with ∼ 2000 AU radius at the core center. The b<strong>in</strong>ary<br />

consists of a very young protostar and a pre-protostellar condensation. The studies led<br />

to the conclusion that GF 9–2 is very likely at an extremely early stage of low-mass star<br />

formation before arriv<strong>in</strong>g at its most active outflow phase.<br />

Stecklum, Meus<strong>in</strong>ger & Froebrich (2007) discovered 14 Herbig–Haro objects <strong>in</strong><br />

the GF 9 region which apparently belong to at least three large HH-flows. Five HHobjects<br />

and GF 9–2 are l<strong>in</strong>early aligned, suggest<strong>in</strong>g that they constitute an HH-flow<br />

driven by IRAS 20503+6006. Its overall length amounts to 43.5 arcm<strong>in</strong>, which corresponds<br />

to 2.3 pc for an assumed distance of 200 pc. The presence of a well-developed,<br />

parsec-scale outflow from GF 9–2 <strong>in</strong>dicates a more advanced evolutionary stage of this<br />

source than previously believed.<br />

Furuya et al. (2008) mapped GF 9 <strong>in</strong> the NH 3 (1,1) and (2,2) <strong>in</strong>version l<strong>in</strong>es, us<strong>in</strong>g<br />

the Nobeyama 45-m telescope, with an angular resolution of 73 ′′ . The large-scale map<br />

reveal that the filament conta<strong>in</strong>s at least 7 dense cores, as well as 3 candidates, located<br />

at regular <strong>in</strong>tervals of ∼ 0.9 pc (at an assumed distance of 200 pc). The cores have<br />

k<strong>in</strong>etic temperatures of ∼ < 10 K and LTE-masses of 1.8 – 8.2 M⊙, mak<strong>in</strong>g them typical<br />

sites of low-mass star formation, probably formed via the gravitational fragmentation<br />

of the natal filamentary cloud.<br />

29<br />

NGC 7023 is a reflection nebula, illum<strong>in</strong>ated by the young massive star<br />

HD 200775 and a group of fa<strong>in</strong>ter stars. It was discovered by William Herschel <strong>in</strong><br />

1794. HD 200775 (also known as V380 Cep and HBC 726) is a Herbig Be star that has<br />

been extensively studied (e.g. Herbig 1960; Altamore et al. 1980; Pogod<strong>in</strong> et al. 2004;<br />

Alecian et al. 2008). The surround<strong>in</strong>g reflection nebula has been observed <strong>in</strong> detail (e.g.


30<br />

Slipher 1918; Witt & Cottrell 1980; Witt et al. 1982; Rogers et al. 1995; Laureijs et al.<br />

1996; Fuente et al. 2000; Werner et al. 2004; Berné et al. 2008). Figure 8 shows an<br />

optical image of the reflection nebula.<br />

Figure 8. Optical image of NGC 7023, illum<strong>in</strong>ated by the Herbig Be star<br />

HD 200775. The size of the field is about 30 ′ × 20 ′ . Courtesy of Richard Gilbert of<br />

the <strong>Star</strong> Shadows Remote Observatory.<br />

Weston (1953) found that, centered on the reflection nebula, there is a small cluster<br />

consist<strong>in</strong>g of stars which are variable and show Hα l<strong>in</strong>e <strong>in</strong> emission. Some two dozens<br />

of variable stars of the region were studied by Ros<strong>in</strong>o & Romano (1962). Nevertheless,<br />

the HBC lists only four of these stars (HBC 726, 304, 306, 307, see Table 7) as<br />

confirmed T Tauri type stars. Recently Goodman & Arce (2004) speculated that the<br />

young Herbig Ae star PV Cep, located more than 10 pc to the west of the cluster, might<br />

have been ejected from NGC 7023 at least 100,000 years ago. HD 200775 is located<br />

at the northern edge of an elongated molecular cloud, correspond<strong>in</strong>g to the dark clouds<br />

L 1167, 1168, 1170, 1171, 1172, 1173 and 1174, referred to as the L 1167/L 1174 complex.<br />

The cloud complex has been mapped <strong>in</strong> CO by Elmegreen & Elmegreen (1978).<br />

They found that the size of the cloud is 0.5 ◦ ×1.0 ◦ , or 3.9 pc×7.7 pc, and the mass of<br />

the molecular hydrogen is some 600 M⊙.


Table 7.: Pre-ma<strong>in</strong> sequence stars <strong>in</strong> the <strong>Cepheus</strong> Flare – (A) Classical T Tauri stars<br />

Names IRAS 2MASS J/ 2MASS magnitudes IRAS fluxes<br />

RA,Dec(J2000) J H K F(12) F(25) F(60) F(100)<br />

HBC 695n, RNO 124, K98 6 20359+6745 20361986+6756316 11.364 9.739 8.781 0.44 1.05 1.81<br />

GSC 04472-00143 20535+7439 20530638+7450348 10.149 9.405 8.861 0.42 0.63 0.68<br />

HH 200 IRS, L 1228 VLA 4 20570670+7736561∗<br />

FT Cep, K98 26 20587+6802 20592284+6814437 10.588 9.342 8.532 0.55 0.92 0.89<br />

K98 30, OSHA 42 F20598+7728 20584668+7740256 11.513 10.365 9.699 0.09 0.16<br />

RNO 129 S1, OSHA 44, K98 32 21004+7811 20591409+7823040 9.437 7.530 6.319 6.23 11.12 36.30 76.60:<br />

RNO 129 S2, OSHA 44, K98 32 21004+7811 20591256+7823078 10.993: 12.060 9.174<br />

RNO 129 A 20590373+7823088 12.565 11.280 10.726<br />

HBC 304, FU Cep, LkHα 427 21009+6758 21014672+6808454 11.792 10.798 10.159<br />

K98 35, PRN S5 F21016+7651 21005285+7703149 11.290 10.288 9.773 0.12 0.15 0.34<br />

F21022+7729 21011339+7741091 12.676 11.202 10.327 0.08 0.13 0.17<br />

NGC 7023 RS 2 21012706+6810381 12.323 11.150 10.417<br />

NGC 7023 RS 2 21012637+6810385 11.107 10.084 9.571<br />

PW Cep, LkHα 425, NGC 7023 RS 3 21013590+6808219 12.336 11.564 11.052<br />

NGC 7023 RS 5 21014250+6812572 11.911 10.892 10.421<br />

LkHα 428, NGC 7023 RS 8 21022829+6803285 11.141 10.457 9.723<br />

HZ Cep, NGC 7023 RS S3 21014358+6809361 11.218 10.415 10.156<br />

HBC 306, FV Cep, LkHα 275, K98 38 F21017+6813 21022039+6825240 11.513 10.529 9.880 0.12 0.14<br />

PRN S1(b) 21012508+7706540 17.212: 14.640 13.156<br />

PRN S1(a) 21012638+7707029 16.460: 14.622 13.244<br />

OSHA 48, PRN S6 21012919+7702373 9.919 9.093 8.563<br />

OSHA 49, K98 40, PRN S7 F21023+7650 21013097+7701536 11.669 10.910 10.614 0.17 0.23 0.72<br />

OSHA 50, K98 41, PRN S8 21013267+7701176 11.993 11.060 10.419 0.08 0.08 0.09<br />

PRN S4 21013505+7703567 13.217 12.018 11.084<br />

PRN S2 21013945+7706166 15.399 14.007 12.973<br />

PRN S3 21014960+7705479 12.449 11.272 10.802<br />

OSHA 53, K98 43, PRN S9 F21028+7645 21020488+7657184 11.108 10.352 10.027 0.09 0.20 0.24<br />

FW Cep, NGC 7023 RS 9 21023299+6807290 11.559 10.713 10.411<br />

NGC 7023 RS 10 21023+6754 21025943+6806322 13.871 13.083 12.357 0.27 0.39<br />

K98 46 F21037+7614 21030242+7626538 11.585 10.843 10.471 0.13 0.18<br />

HBC 307, EH Cep, LkHα 276, K98 42 21027+6747 21032435+6759066 9.538 8.767 8.196 0.59 0.71<br />

∗ No 2MASS counterpart.<br />

31


Table 7.: Pre-ma<strong>in</strong> sequence stars <strong>in</strong> the <strong>Cepheus</strong> Flare – (A) Classical T Tauri stars (cont.)<br />

32<br />

Names IRAS 2MASS J/ 2MASS magnitudes IRAS fluxes<br />

RA/Dec(J2000) J H K F(12) F(25) F(60) F(100)<br />

OSHA 59, K98 49 F21066+7710 21055189+7722189 10.689 9.755 9.086 0.17 0.24 0.18<br />

K98 53 21153595+6940477 11.585 10.843 10.471 0.13 0.18<br />

K98 58 F21202+6835 21205785+6848183 14.318 13.035 11.866 0.20 5.49:<br />

RNO 135, K98 61 21326+7608 21323108+7621567 11.101 10.072 9.688 1.46 5.01<br />

K98 66 21355434+7201330 11.323 10.724 10.463<br />

K98 71 F21394+6621 21402754+6635214 11.344 10.540 10.046 0.34 0.64 2.56<br />

HBC 731, SVS 6 21425961+660433.8 12.886 11.624 10.948<br />

HBC 732, V350 Cep, MMN 13 21430000+6611279 12.714 11.691 11.008<br />

NGC 7129 S V1 21401174+6630198 13.161 12.173 11.591<br />

NGC 7129 S V2 21402277+6636312 13.882 12.671 11.890<br />

NGC 7129 S V3 21403852+6635017 13.108 11.888 11.267<br />

V391 Cep, K98 72 F21404+6608 21413315+6622204 11.680 10.555 9.750 0.36 0.40<br />

NGC 7129 MMN 1 21422308+6606044 15.059 14.050 13.394<br />

NGC 7129 HL85 14, MMN2 2 21423880+6606358 14.796 13.479 12.514<br />

NGC 7129 MMN 3 21424194+6609244 15.179 14.340 13.987<br />

NGC 7129 MMN 5 21425142+6605562 15.199 14.128 13.573<br />

NGC 7129 MEG 1 21425177+6607000 16.679 15.546 14.675<br />

NGC 7129 MMN 6 21425262+6606573 13.821 12.650 11.803<br />

NGC 7129 MMN 7 21425314+6607148 14.338 13.193 12.679<br />

NGC 7129 MMN 8 21425346+6609197 16.990 15.497 14.578<br />

NGC 7129 MMN 9 21425350+6608054 13.214 12.365 12.124<br />

NGC 7129 MMN 10 21425481+6606128 14.192 13.254 12.907<br />

NGC 7129 MEG 2 21425476+6606354 14.183 13.179 12.564<br />

NGC 7129 MMN 11 21425626+6606022 12.423 11.657 11.406<br />

RNO 138, V392 Cep 21425771+6604235 14.567: 14.478 13.658<br />

NGC 7129 MMN 12 21425810+6607394 14.299 13.532 13.030<br />

NGC 7129 MEG 3 21425878+6606369 13.487 12.561 12.337<br />

NGC 7129 MMN 14 21430024+6606475 14.161 12.778 12.085<br />

NGC 7129 MMN 15 21430246+6607040 14.004 13.109 12.256<br />

GGD 33A 21430320+6611150 16.619 15.461 14.337<br />

NGC 7129 MMN 17 21431162+6609115 12.605 11.800 11.487<br />

∗ No 2MASS counterpart.


Table 7.: Pre-ma<strong>in</strong> sequence stars <strong>in</strong> the <strong>Cepheus</strong> Flare – (A) Classical T Tauri stars (cont.)<br />

Names IRAS 2MASS J/ 2MASS magnitudes IRAS fluxes<br />

RA/Dec(J2000) J H K F(12) F(25) F(60) F(100)<br />

NGC 7129 MMN 18<br />

2143124+661238 ∗<br />

NGC 7129 MMN 19 21431683+6605487 14.184 13.300 13.123<br />

NGC 7129 MMN 20 21433183+6608507 13.935 12.894 12.295<br />

NGC 7129 MMN 21 21433271+6610113 14.986 13.792 13.547<br />

NGC 7129 MMN 22 21434345+6607308 13.655 12.609 12.146<br />

K98 73 21443229+7008130 11.777 10.939 10.535 0.14 0.25<br />

K98 95 22131219+7332585 10.987 10.048 9.498 0.3 0.26 0.32 0.28<br />

GSC 04467-00835 22129+6949 2214068+7005043 9.620 9.072 8.753 0.254 0.567 0.484 0.50:<br />

K98 108 22190203+7319252 10.666 9.947 9.561 0.15 0.26 0.3<br />

K98 109 22190169+7346072 11.677 10.738 10.234 0.06 0.12 0.16 0.4<br />

K98 110 22190343+7349596 12.848 12.264 12.162 0.15 0.19 0.12 0.16<br />

K98 119 22256+7102 22265660+7118011 10.967 9.646 8.525 1.74 2.28 2.48 4.17<br />

KP 1, XMMU J223412.2+751809 22331+7502 22341189+7518101 10.095 8.808 7.827<br />

KP 39, XMMU J223516.6+751848 22351668+7518471 11.808 10.589 9.858<br />

KP 2, XMMU J223605.8+751831 22350+7502 2236059+7518325 11.957 10.894 10.253<br />

KP #10 22355+7505 2236345+7521352 11.984 10.628 10.026 0.11 0.24 0.23<br />

KP 43, XMMU J223727.7+751525 22372780+7515256 11.289 10.202 9.854<br />

KP 3, XMMU J223750.1+750408 22374953+7504065 11.785 10.974 10.680<br />

ETM <strong>Star</strong> 3, XMMU J223818.8+751154 22381872+7511538 11.248 9.815 8.912<br />

KP 44, ETM <strong>Star</strong> 1, XMMU J223842.5+751146 22384249+7511455 12.166 11.313 11.028<br />

KP 45, XMMU J22397.3+751029 22392717+7510284 11.748 10.851 10.377<br />

KP 46, XMMU J223942.9+750644 22385+7457 22394030+7513216 10.920 9.481 8.698<br />

GSC 04601-03483 F22424+7450 22433926+7506302 10.958 10.379 10.216 0.080 0.240 0.522<br />

K98 128 22490470+7513145 12.011 11.208 10.814<br />

TYC 4601-1543-1 22480+7533 22491626+7549438 9.938 9.256 8.727 0.61 0.90 0.81<br />

HBC 741, AS 507, K98 140 23189+7357 23205208+7414071 8.308 7.754 7.480<br />

∗ No 2MASS counterpart.<br />

33


34<br />

Table 7.<br />

Pre-ma<strong>in</strong> sequence stars the <strong>Cepheus</strong> Flare – (B) Herbig Ae/Be stars<br />

Names IRAS 2MASS J 2MASS magnitudes IRAS fluxes<br />

RA/Dec(J2000) J H K F(12) F(25) F(60) F(100)<br />

HBC 696n, PV Cep, K98 9 20453+6746 20455394+6757386 12.453 9.497 7.291 12.82 32.93 48.85 57.92<br />

HBC 726, HD 200775, MWC 361 21009+6758 21013691+6809477 6.111 5.465 4.651 26.700 76.800 638.000 1100.000<br />

HD 203024 21153+6842 21160299+6854521 8.377 8.209 8.120 3.680 10.800 4.260<br />

GSC 04461-01336, BD+68 ◦ 1118 21169+6842 21173917+6855098 9.269 8.741 8.105 1.570 3.480 4.130 2.59<br />

HBC 730, V361 Cep, AS 475, BD +65 ◦ 1637 21425018+6606352 8.973 8.729 8.474<br />

HBC 309, LkHα 234, V373 Cep 21418+6552 21430682+6606542 9.528 8.201 7.081 14.78 78.96 687.70 1215.00<br />

HBC 734, BH Cep, K98 83 22006+6930 22014287+6944364 9.686 8.993 8.310 0.524 1.200 1.390<br />

HBC 735, BO Cep, K98 100 F22156+6948 22165406+7003450 10.319 9.849 9.581 0.285 1.428<br />

HBC 736, SV Cep, K98 113 22205+7325 22213319+7340270 9.350 8.560 7.744 4.22 5.22 2.66 1.76<br />

GSC 04608-02063 22219+7908 22220233+7923279 11.509 10.920 10.266<br />

References to star names: NGC 7023 RS – variable stars from Ros<strong>in</strong>o & Romano (1962); OSHA – Hα emission stars from Ogura & Sato (1990); KP – Hα emission<br />

star from Kun & Prusti (1993), Table 2; KP# – IRAS po<strong>in</strong>t source from Kun & Prusti (1993), Table 3; ETM – Eiroa et al. (1994); K98 – Hα emission stars from Kun<br />

(1998); NGC 7129 MEG – Miranda et al. (1993); NGC 7129 MMN – Magakian et al. (2004); PRN – Padgett et al. (2004); NGC 7129 S – Semkov (2003); XMMU –<br />

Simon (2006)


35<br />

Figure 9. 13 CO contours of the molecular cloud associated with NGC 7023,<br />

overplotted on the DSS red image (Elmegreen & Elmegreen 1978). Positions of<br />

HD 200775 and lower mass pre-ma<strong>in</strong> sequence stars, as well as the protostar IRAS<br />

21017+6742 are <strong>in</strong>dicated.<br />

Watt et al. (1986) found a bipolar outflow associated with HD 200775. The region<br />

of the outflow has been mapped <strong>in</strong> 13 CO(1-0) by Fuente et al. (1998). These observations<br />

show that the star is located with<strong>in</strong> a biconical cavity, which has probably been<br />

excavated by a bipolar outflow. However, Fuente et al. found no evidence for current<br />

high-velocity gas with<strong>in</strong> the lobes of the cavity.<br />

Myers et al. (1988) detected another molecular outflow centered on the IRAS<br />

source IRAS 21017+6742. Hodapp’s (1994) K ′ image of the L 1172 outflow shows<br />

four stars associated with localized nebulosity. None of them are close to the nom<strong>in</strong>al<br />

outflow position. Visser, Richer & Chandler (2002) detected three submillimeter


36<br />

sources at the position of IRAS 21017+6742: L 1172 SMM 1–SMM 3. They found that<br />

L 1172 SMM 1, located at RA(2000)=21 h 02 m 21.5 s , Dec(2000)=+67 ◦ 54 ′ 14 ′′ is a protostar<br />

and the driv<strong>in</strong>g source of the outflow, whereas SMM 2 and SMM 3 are starless<br />

dust clumps. Figure 9 shows the 13 CO contour map of the L 1167/L 1174 complex,<br />

adopted from Elmegreen & Elmegreen (1978). Known pre-ma<strong>in</strong> sequence stars of the<br />

region are also <strong>in</strong>dicated.<br />

L 1177 (CB 230) conta<strong>in</strong>s a molecular outflow driven by the IRAS source 21169+6804<br />

(Yun & Clemens 1994). Near <strong>in</strong>frared observations by Yun (1996) revealed this source<br />

to be a b<strong>in</strong>ary protostar with a projected separation of 12 ′′ , and embedded <strong>in</strong> a common<br />

<strong>in</strong>frared nebula. The stars can be found near the center of a dense core whose size is<br />

about 360 ′′ (0.5 pc at 300 pc). Further CO and <strong>in</strong>frared studies can be found <strong>in</strong> Clemens,<br />

Yun & Heyer (1991). Submillimeter polarization measurements by Wolf, Launhardt &<br />

Henn<strong>in</strong>g (2003) reveal a magnetic field strength of 218 µG for the envelope of CB 230.<br />

Wolf et al. found that the outflow is oriented almost perpendicular to the symmetry<br />

axis of the globule core, whereas the magnetic field is parallel to the same axis. They<br />

discuss the possibility that the orientation of the magnetic field relative to the outflow<br />

directions reflects the evolutionary stage of the globule. Two A-type emission l<strong>in</strong>e stars,<br />

HD 203024 and BD +68 ◦ 1118 can be found to the north of the globule, at the edge of<br />

the diffuse outer part of the cloud. Their formation history may be connected to each<br />

other (Kun 1998). Miroshnichenko et al. (1997) and Kun, V<strong>in</strong>kó & Szabados (2000)<br />

classify these objects as candidate Herbig Ae/Be stars, whereas Mora et al. (2001) state<br />

that they are ma<strong>in</strong> sequence stars.<br />

L 1228 is a small cloud stretch<strong>in</strong>g some 3 ◦ along a north-south direction. Its most<br />

probable distance is 180 pc (see Sect. 2.2.). L 1228 differs k<strong>in</strong>ematically from the rest of<br />

the <strong>Cepheus</strong> Flare molecular clouds, suggest<strong>in</strong>g that the cloud is located on the near side<br />

of the <strong>Cepheus</strong> Flare shell. Numerous Hα emission stars have been found around this<br />

cloud (Ogura & Sato 1990; Kun 1998), as well as several molecular outflows (Haikala<br />

& Laureijs 1989) and Herbig–Haro objects (Bally et al. 1995).<br />

The elongated cloud consists of three centers of star formation.<br />

(1) The northernmost part is a small, nebulous group of stars, RNO 129, associated<br />

with IRAS 21004+7811. Bally et al. (1995) found Herbig–Haro emission from<br />

RNO 129. A detailed study of RNO 129 can be found <strong>in</strong> Movsessian & Magakian<br />

(2004). Arce & Sargent (2006) <strong>in</strong>cluded RNO 129 <strong>in</strong> their study of the evolution of<br />

outflow-envelope <strong>in</strong>teractions <strong>in</strong> low-mass protostars.<br />

(2) The L 1228 core or L 1228 A conta<strong>in</strong>s the Class I source IRAS 20582+7724. A<br />

13 CO map of the cloud is presented <strong>in</strong> Miesch & Bally (1994). A dense core, mapped<br />

<strong>in</strong> ammonia by Anglada, Sepúlveda & Gómez (1997), conta<strong>in</strong>s at least two sources<br />

driv<strong>in</strong>g molecular outflows as well as two Herbig-Haro flows, HH 199 and HH 200,<br />

revealed by the Hα image of L 1228 A, obta<strong>in</strong>ed by Bally et al. (1995) and shown<br />

<strong>in</strong> Fig. 10. HH 199 emerges from IRAS 20582+7724, associated with an east–west<br />

oriented <strong>in</strong>frared reflection nebula (Hodapp 1994; Reipurth et al. 2000). Whereas the<br />

molecular outflow and the HH 199 flow have a position angle of about 60 ◦ , Hodapp<br />

(1994) and Bally et al. (1995) found a well-collimated H 2 emission flow at a position<br />

angle of about 100 ◦ . Either IRAS 20582+7724 is a possibly wide b<strong>in</strong>ary where each<br />

component is launch<strong>in</strong>g a separate flow, or one of the components of a very close b<strong>in</strong>ary<br />

is precess<strong>in</strong>g rapidly, giv<strong>in</strong>g rise to the two very different flow angles. HH 200 is driven<br />

by an embedded T Tauri star about 1.5 arcm<strong>in</strong> further to the northwest (Bally et al.


37<br />

Figure 10. Hα + [SII] image of L 1228 A, based on KPNO 4 m images obta<strong>in</strong>ed<br />

with the Mosaic 1 prime focus CCD camera through narrow-band Hα and [SII] filters<br />

(80A passband). HH objects discussed <strong>in</strong> Bally et al. (1995) are marked. (Courtesy<br />

of John Bally).<br />

1995). A low-resolution 3.6 cm survey of the L 1228 cloud by Rodríguez & Reipurth<br />

(1996) revealed two sources. L 1228 VLA 1 is associated with the IRAS source, and<br />

the other, VLA 2, has no known counterpart but is located <strong>in</strong> the direction of the high<br />

ext<strong>in</strong>ction part of the L 1228 core. Reipurth et al. (2004) detected two further 3.6 cm<br />

sources, VLA 3 and VLA 4. VLA 4 is supposed to be the driv<strong>in</strong>g source of the HH 200<br />

flow. The environment of IRAS 20582+7724 was studied <strong>in</strong> detail by Tafalla & Myers<br />

(1997), Arce & Sargent (2004), and Arce & Sargent (2006).<br />

The K ′ image of L 1228 A, presented by Hodapp (1994), shows a star associated<br />

with a parabola-shaped nebula, located near the molecular outflow position. Two other<br />

stars further north at offsets (−21 ′′ ,72 ′′ ) and (12 ′′ ,75 ′′ ) are also associated with some<br />

less extended nebulae. The relatively bright stars <strong>in</strong> this region clearly stand out aga<strong>in</strong>st<br />

the fa<strong>in</strong>t background stars, so that Hodapp classified this region as a cluster.<br />

(3) L 1228 South conta<strong>in</strong>s a small aggregate of low-mass pre-ma<strong>in</strong> sequence stars.<br />

Padgett et al. (2004) identified 9 <strong>in</strong>frared sources <strong>in</strong> the images taken with IRAC on<br />

board the Spitzer Space Telescope (see Table 7).<br />

L 1219 (B 175) is a small cometary shaped cloud at the southernmost edge of the<br />

<strong>Cepheus</strong> Flare cloud complex. The cloud is illum<strong>in</strong>ated by the B9.5V type star BD +69 ◦<br />

1231, associated with the reflection nebula Ced 201 (see Cesarsky et al. 2000, and references<br />

there<strong>in</strong>). Two cold IRAS sources, 22129+7000 and 22127+7014, are projected


38<br />

with<strong>in</strong> the dark cloud. By an imag<strong>in</strong>g and spectroscopic study Bally & Reipurth (2001)<br />

discovered a Herbig-Haro object, HH 450, emerg<strong>in</strong>g from IRAS 22129+7000. Furthermore,<br />

they found several parsec-scale filaments of emission that trace the rim of<br />

a new supernova remnant, G 110.3+11.3, which appears to be approach<strong>in</strong>g the globule<br />

(see Figure 11). At 400 pc, G 110.3+11.3 is one of the closest known supernova<br />

remnants. The supernova remnant and the HH flow appear to be head<strong>in</strong>g toward a<br />

frontal collision <strong>in</strong> about 1000 yr. Nikolić & Kun (2004) discovered a CO outflow from<br />

IRAS 22129+7000. Goicoechea et al. (2008) present Spitzer IRAC and MIPS data, 1.2-<br />

mm dust cont<strong>in</strong>uum map, as well as observations of several molecular l<strong>in</strong>es for IRAS<br />

22129+7000. They detected a collimated molecular outflow <strong>in</strong> the CO J = 3 − 2 l<strong>in</strong>e,<br />

whereas the profile of the HCO + J = 1 − 0 l<strong>in</strong>e suggested <strong>in</strong>ward motion. Based on<br />

the SED they classified the object as either a transition Class 0/I source or a multiple<br />

protostellar system. They discuss the role of the photodissociation region associated<br />

with Ced 201 <strong>in</strong> trigger<strong>in</strong>g the star formation <strong>in</strong> L 1219.<br />

Figure 11. Left: An image of B 175 (L 1219) from Bally & Reipurth (2001).<br />

Right: the map of visual ext<strong>in</strong>ction, obta<strong>in</strong>ed from the 2MASS data us<strong>in</strong>g the NICER<br />

algorithm of Lombardi & Alves (2001), shows the northern core of the cloud centered<br />

on IRAS 22127+7014.<br />

Three known pre-ma<strong>in</strong> sequence stars can be found to the south of L 1219: the<br />

Herbig Ae stars BH Cep and BO Cep (HBC 734 and 735, respectively) and a T Tauri<br />

star, associated with IRAS 22129+6949. The head of the cometary globule with IRAS<br />

22129+7000 is po<strong>in</strong>t<strong>in</strong>g toward south. The embedded source IRAS 21127+7014, located<br />

to the north of IRAS 22129+7000, may be the youngest object associated with<br />

this cloud. The left panel of Fig. 11 shows the head of the globule B 175 and the supernova<br />

filaments, adopted from Bally & Reipurth (2001), and the right panel shows the<br />

ext<strong>in</strong>ction map of the whole cloud, reveal<strong>in</strong>g another core to the north.<br />

L 1221 is a small, isolated cometary dark cloud to the south of the ma<strong>in</strong> body of<br />

the <strong>Cepheus</strong> Flare cloud complex. No distance determ<strong>in</strong>ation has been published for<br />

this cloud. A frequently assumed distance is 200 pc (e.g. Fukui 1989; Umemoto et al.<br />

1991). Inside the cloud, Umemoto et al. (1991) found an unusual U-shaped CO outflow


associated with a low-lum<strong>in</strong>osity (2.7L⊙) Class I source, IRAS 22266+6845. More recent<br />

CO observations at high resolution showed that the U-shaped outflow may actually<br />

consist of two bipolar outflows, an east-west outflow associated with the IRAS source<br />

and a north-south outflow about 25 ′′ to the east of the IRAS source, <strong>in</strong>teract<strong>in</strong>g with<br />

each other (Lee et al. 2002). To the south of the IRAS source, a fairly bright compact<br />

object, HH 363, is detected <strong>in</strong> Hα and [S II] (Alten et al. 1997). There are three <strong>in</strong>frared<br />

sources with<strong>in</strong> the error ellipse of the IRAS source: a close b<strong>in</strong>ary consist<strong>in</strong>g of an east<br />

source and a west source around the IRAS source position and another source 45 ′′ to<br />

the southeast. The east source is identified as the IRAS source. Furuya et al. (2003)<br />

detected H 2 O maser emission associated with IRAS 22266+6845. Lee & Ho (2005)<br />

mapped IRAS 22266+6845 <strong>in</strong> 3.3 mm cont<strong>in</strong>uum, CO, HCO + , and N 2 H + . Cont<strong>in</strong>uum<br />

emission is seen around the east source and the southeast source at 3.3 mm, probably<br />

trac<strong>in</strong>g the dust around them. Assum<strong>in</strong>g a temperature of 40 K, the masses of the dust<br />

plus gas are estimated to be 0.02 and 0.01 M⊙ around the east source and southeast<br />

source, respectively. No cont<strong>in</strong>uum emission is seen toward the west source. The east–<br />

west outflow is likely powered by the east source, which shows a southeast extension<br />

along the outflow axis <strong>in</strong> the K ′ image (Connelley et al. 2007). Wu et al. (2007) detected<br />

two submillimeter sources <strong>in</strong> the cloud, L 1221 SMM 1 and L 1221 SMM 2,<br />

apparently co<strong>in</strong>cid<strong>in</strong>g with the b<strong>in</strong>ary and the southeast source, respectively.<br />

L 1251 is a cloud elongated east–west at the eastern boundary of the <strong>Cepheus</strong> Flare<br />

molecular complex. Its cometary shape suggests <strong>in</strong>teraction with the supernova bubble<br />

described by Grenier et al. (1989). Recent star formation is <strong>in</strong>dicated by two molecular<br />

outflows, driven by IRAS 22343+7501 and IRAS 22376+7455, respectively (Sato &<br />

Fukui 1989).<br />

The distance of L 1251 was determ<strong>in</strong>ed by three different methods (see Table 3).<br />

The cloud has been mapped <strong>in</strong> several molecular l<strong>in</strong>es, such as 13 CO, C 18 O, H 13 CO + ,<br />

SiO (Sato et al. 1994), NH 3 (Benson & Myers 1989; Tóth & Walmsley 1996), HNC,<br />

HCN, HCO + , CS (Nikolić, Johansson, & Harju 2003). Kun & Prusti (1993) studied the<br />

YSO population and reported on 12 Hα emission stars and IRAS po<strong>in</strong>t sources as YSO<br />

candidates. Balázs et al. (1992) discovered an optical jet, HH 149, orig<strong>in</strong>at<strong>in</strong>g from<br />

IRAS 22343+7501. Rosvick & Davidge (1995) found that this IRAS source is associated<br />

with a cluster of five near-<strong>in</strong>frared sources spread over a 10 ′ × 10 ′ area (sources<br />

A–E). Meehan et al. (1998) found two thermal radio cont<strong>in</strong>uum sources, VLA A and<br />

VLA B, co<strong>in</strong>cid<strong>in</strong>g with the near <strong>in</strong>frared sources D and A, respectively. Beltrán et<br />

al. (2001) found 9 radio cont<strong>in</strong>uum sources around IRAS 22343+7501, two of them,<br />

VLA 6 and VLA 7 separated by 7 ′′ , are located with<strong>in</strong> the error ellipse of the IRAS<br />

source and identical with Meehan et al.’s VLA A and VLA B, respectively. Beltrán et<br />

al. found a third source, VLA 5 to be a probable YSO, based on the positive spectral <strong>in</strong>dex.<br />

Nikolić et al. (2003) concluded that both VLA 6 and VLA 7 are protostars driv<strong>in</strong>g<br />

their own outflow.<br />

The high resolution VLA observations by Reipurth et al. (2004) revealed four radio<br />

cont<strong>in</strong>uum sources <strong>in</strong> the region around IRAS 22343+7501, three of which were known<br />

from previous studies. The high resolution VLA A map has revealed a new source,<br />

VLA 10, close to VLA 6, with which it was blended <strong>in</strong> the earlier low-resolution data<br />

of Meehan et al. (1998). The designations VLA 10 and 11 is a cont<strong>in</strong>uation of the<br />

number<strong>in</strong>g scheme of Beltrán et al. (2001). Meehan et al. (1998) suggest that VLA 6<br />

corresponds to the very red and embedded source IRS D, while VLA 7 is the brighter<br />

source IRS A.<br />

39


40<br />

Eiroa et al. (1994) discovered a cha<strong>in</strong> of Herbig–Haro objects, HH 189A,B,C near<br />

IRAS 22376+7455 (L 1251 B). The Spitzer Space Telescope observed L 1251 B as part<br />

of the Legacy Program From Molecular Cores to Planet <strong>Form<strong>in</strong>g</strong> Disks (Evans et al.<br />

2003) at wavelengths from 3.6 to 70 µm. The observations revealed a small cluster<br />

of protostars, consist<strong>in</strong>g of 5 Class 0/I and 14 Class II objects (Lee et al. 2006).<br />

Three Class 0/I objects are projected on IRAS 22376+7455, the most lum<strong>in</strong>ous is<br />

located 5 ′′ north of the IRAS position. Thus the molecular outflow observed from<br />

IRAS 22376+7455 (Sato & Fukui 1989) is probably a comb<strong>in</strong>ed effect of more outflows.<br />

Lee et al. (2007) studied the complex motions <strong>in</strong> the region, based on both<br />

s<strong>in</strong>gle-dish and <strong>in</strong>terferometric molecular l<strong>in</strong>e observations. The data have shown very<br />

complex k<strong>in</strong>ematics <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>fall, rotation, and outflow motions. The well-known<br />

outflow, associated with L 1251 B, was resolved <strong>in</strong>to a few narrow and compact components.<br />

They detected <strong>in</strong>fall signatures <strong>in</strong> the shape of HCO + , CS, and HCN l<strong>in</strong>es<br />

to the east of L 1251 B, where no <strong>in</strong>frared object has been detected, and an extended<br />

emission has been found at 850 µm. This result shows that, <strong>in</strong> addition to the Class 0–<br />

Class II objects, the young cluster conta<strong>in</strong>s a pre-protostellar core as well. Results of<br />

spectroscopic follow-up observations of the optically visible candidate YSOs reported<br />

by Kun & Prusti (1993) are given <strong>in</strong> Eredics & Kun (2003). Simon (2006) detected<br />

41 X-ray sources <strong>in</strong> the image obta<strong>in</strong>ed with the XMM-Newton telescope. The list of<br />

X-ray sources conta<strong>in</strong>s both outflow sources and 8 optically visible T Tauri stars.<br />

The structure of the cloud and the properties of its dust gra<strong>in</strong>s were studied, based<br />

on optical ext<strong>in</strong>ction maps, by Kandori et al. (2003) and Balázs et al. (2004).<br />

Young et al. (2006) and Wu et al. (2007) observed submm sources associated with<br />

the dense cores L 1251 A, B, and C.<br />

L 1261/L 1262 (CB 244) are small clouds to the east of the ma<strong>in</strong> body of the <strong>Cepheus</strong><br />

Flare cloud complex, at a probable distance of 180 pc from the Sun (Kun 1998). Two<br />

young, low lum<strong>in</strong>osity objects, the G2 type classical T Tauri star HBC 741 (AS 507)<br />

and the cold IRAS source IRAS 23238+7401 are projected on the cloud. A CO outflow<br />

centered on IRAS 23238+7401 was found by Parker et al. (1988). Wolf et al.’s<br />

(2003) submillimeter polarization measurements resulted <strong>in</strong> a magnetic field strength<br />

of 257 µG for the envelope of CB 244.<br />

2.5. NGC 7129<br />

Though NGC 7129 lies <strong>in</strong> the <strong>Cepheus</strong> Flare, it is more distant than the clouds discussed<br />

above. NGC 7129 (Ced 196) is a reflection nebula <strong>in</strong> the region of a young cluster,<br />

conta<strong>in</strong><strong>in</strong>g three B-type stars, namely BD +65 ◦ 1637, BD +65 ◦ 1638, and LkHα 234, as<br />

well as several low-mass pre-ma<strong>in</strong> sequence stars (e.g. Herbig 1960; Strom, Vrba &<br />

Strom 1976; Cohen & Schwartz 1983; Magakian, Movsessian & Nikogossian 2004,<br />

see Table 7). Whereas BD +65 ◦ 1638 is regarded a young ma<strong>in</strong> sequence star (but see<br />

Matthews et al. 2003), BD +65 ◦ 1637 and LkHα 234 are pre-ma<strong>in</strong> sequence stars (Herbig<br />

1960; Hernández et al. 2004). An optical image of NGC 7129, display<strong>in</strong>g several<br />

spectacular signposts of the <strong>in</strong>teractions between the young stars and their environments,<br />

is shown <strong>in</strong> Fig. 12. A f<strong>in</strong>d<strong>in</strong>g chart for the most prom<strong>in</strong>ent objects, related to<br />

star formation, is displayed <strong>in</strong> Fig. 13.<br />

LkHα 234 and its environments It has been suggested that LkHα 234 is the youngest<br />

among the three B-type stars (Hillenbrand et al. 1992). This star and its environment


41<br />

Figure 12. An optical image of NGC 7129, display<strong>in</strong>g the young cluster, embedded<br />

<strong>in</strong> a reflection nebula, as well as several HH objects. The size of the area is about<br />

15 ′ × 18 ′ . Photograph by Robert Gendler.<br />

have been studied extensively at optical, <strong>in</strong>frared, radio, centimeter to submillimeter<br />

wavelengths. Photometric and spectroscopic variability of LkHα 234 have been studied<br />

by Shevchenko et al. (1991) and Chakraborty & Mahadevan (2004), respectively.<br />

Wilk<strong>in</strong>g et al. (1986) presented high-resolution cont<strong>in</strong>uum and molecular-l<strong>in</strong>e observations<br />

of the circumstellar environment of LkHα 234. Sandell & Olofsson (1981)<br />

and Tofani et al. (1995) detected three H 2 O maser sources from the environment of


42<br />

LkHα 234. Ray et al. (1990) identified an optical jet orig<strong>in</strong>at<strong>in</strong>g from this region.<br />

Mitchell & Matthews (1994) detected a molecular jet associated with LkHα 234, and<br />

Schultz et al. (1995) observed shocked molecular hydrogen <strong>in</strong> the LkHα 234 region.<br />

VLA observations by Tr<strong>in</strong>idad et al. (2004) of water masers and radio cont<strong>in</strong>uum emission<br />

at 1.3 and 3.6 cm show that the LkHα 234 region conta<strong>in</strong>s a cluster of YSOs. In<br />

a field of ∼ 5 ′′ they detected five radio cont<strong>in</strong>uum sources (VLA 1, VLA 2, VLA 3A,<br />

VLA 3B, and LkHα 234) and 21 water maser spots. These water masers are ma<strong>in</strong>ly<br />

distributed <strong>in</strong> three clusters associated with VLA 1, VLA 2, and VLA 3B. The VLA<br />

observations suggest that there are at least four <strong>in</strong>dependent, nearly parallel outflows <strong>in</strong><br />

the LkHα 234 region. Probably all sources observed <strong>in</strong> this region (∼ 5 ′′ <strong>in</strong> diameter)<br />

form a cluster of YSOs, which were born <strong>in</strong>side the same core <strong>in</strong> the NGC 7129 molecular<br />

cloud. This fact could expla<strong>in</strong> that the major axes of the outflows have nearly<br />

the same orientation. Marvel (2005) performed VLBI observations of maser sources<br />

around LkHα 234, and detected maser emission associated with LkHα 234–VLA 2<br />

and LkHα 234–VLA 3b. No maser source associated with LkHα 234 itself has been<br />

detected.<br />

Tommasi et al. (1999) obta<strong>in</strong>ed far-<strong>in</strong>frared spectra of the LkHα 234 region, us<strong>in</strong>g<br />

the Long Wavelength Spectrograph of ISO. The observed spectra are consistent with a<br />

photodissociation region, associated with not LkHα 234, but with BD +65 ◦ 1637. Morris<br />

et al. (2004) have obta<strong>in</strong>ed mid-IR spectroscopy of regions around LkHα 234, with<br />

the Spitzer Space Telescope Infrared Spectrograph (IRS). They detected warm material<br />

at 16 µm around BD +65 ◦ 1638 which clearly shows that this region is not free of gas<br />

and dust. Wang & Looney (2007) identified a group of low-mass young stars around<br />

LkHα 234 us<strong>in</strong>g the Spitzer data base.<br />

Interstellar matter associated with NGC 7129 Molecular l<strong>in</strong>e observations of the region<br />

(Bechis et al. 1978; Font, Mitchell & Sandell 2001; Miskolczi et al. 2001; Ridge<br />

et al. 2003) revealed a kidney-shaped molecular cloud of about 11 pc <strong>in</strong> extent to the<br />

east and south of the cluster. BD +65 ◦ 1637 and most of the fa<strong>in</strong>ter cluster members<br />

are found <strong>in</strong> a cavity of the cloud, bordered by a prom<strong>in</strong>ent molecular ridge, while<br />

LkHα 234, located to the east of the ma<strong>in</strong> cluster, is associated with a peak of 13 CO<br />

emission. The optical jet detected by Ray et al. (1990) is po<strong>in</strong>t<strong>in</strong>g southwest <strong>in</strong>to the<br />

cavity. Torrelles et al. (1983) and Güsten & Marcaide (1986) presented ammonia observations<br />

of NGC 7129.<br />

Matthews et al. (2003) observed the region <strong>in</strong> the 21 cm l<strong>in</strong>e of H I with an angular<br />

resolution of 1 ′ . The observations revealed a r<strong>in</strong>g of H I emission about 30 ′ <strong>in</strong> extent.<br />

The H I r<strong>in</strong>g appears to be part of the surface of a molecular cloud and is centered on a<br />

relatively dense concentration of H I with unusually wide l<strong>in</strong>e profiles and positionally<br />

co<strong>in</strong>cident with BD +65 ◦ 1638. An <strong>in</strong>frared po<strong>in</strong>t source, IRAS 21418+6552, co<strong>in</strong>cides<br />

with<strong>in</strong> the positional errors with the H I knot.<br />

A cont<strong>in</strong>uum source co<strong>in</strong>cident with BD +65 ◦ 1638 has also been detected at 1420<br />

MHz, which shows a significant extension to the northeast overlapp<strong>in</strong>g the position<br />

of LkHα 234. Compar<strong>in</strong>g the radio cont<strong>in</strong>uum data with other radio observations of<br />

BD +65 ◦ 1638, Matthews et al. (2003) found that BD +65 ◦ 1638 has a flat centimeterwave<br />

spectrum, consistent with an optically th<strong>in</strong> H II region around the star. The authors<br />

conclude that the physical association of the star with the H I knot <strong>in</strong>dicates that<br />

BD +65 ◦ 1638 belongs to a rare class of “dissociat<strong>in</strong>g stars”, hav<strong>in</strong>g an extremely young<br />

age of not more than a few thousand years. BD +65 ◦ 1638 itself is found to be a 6 M⊙<br />

star that has just emerged from its cocoon and lies on the birthl<strong>in</strong>e.


43<br />

66 14<br />

GGD 33a,b<br />

V350 Cep<br />

66 12<br />

66 10<br />

Dec(J2000)<br />

66 08<br />

66 06<br />

66 04<br />

66 02<br />

GGD 35<br />

BD +65 o 1638<br />

GGD 34<br />

MM 4<br />

HH 105<br />

LkHα 234<br />

= FIRS 1<br />

MM 5<br />

SVS 6<br />

MM 3<br />

MM 2<br />

RNO 138<br />

FIRS 2<br />

BD +65 o 1637<br />

MM 1<br />

Molecular Ridge<br />

GGD 32<br />

HH 103<br />

21 44 00 21 43 30 21 43 00 21 42 30 21 42 00<br />

RA(J2000)<br />

Figure 13. A DSS 2 red image of NGC 7129 <strong>in</strong> which the crude position of the<br />

molecular ridge, border<strong>in</strong>g the cluster, is overplotted by white cross-dashed l<strong>in</strong>es.<br />

The B-type cluster members, HH objects, and some <strong>in</strong>terest<strong>in</strong>g low-mass young stars<br />

are labeled. Crosses <strong>in</strong>dicate the far-<strong>in</strong>frared sources FIRS 1 and FIRS 2, and diamonds<br />

stand for the compact millimeter sources detected by Fuente et al. (2001)<br />

outside the FIRS 1 and FIRS 2 regions.<br />

Embedded young stellar objects <strong>in</strong> NGC 7129 Bechis et al. (1978) identified two<br />

far-<strong>in</strong>frared sources <strong>in</strong> NGC 7129: FIRS 1 co<strong>in</strong>cides with LkHα 234, while FIRS 2,<br />

a deeply embedded protostellar object is located three arcm<strong>in</strong>utes to the south of the<br />

cluster, at the primary peak of the 13 CO emission. It was found to co<strong>in</strong>cide with an<br />

H 2 O maser (Cesarsky et al. 1978; Rodríguez et al. 1980b; Sandell & Olofsson 1981).<br />

NGC 7129 FIRS 2 has not been detected <strong>in</strong> the optical and near <strong>in</strong>frared. From the<br />

far-<strong>in</strong>frared and submillimeter observations, Eiroa, Palacios & Casali (1998) derived a<br />

lum<strong>in</strong>osity of 430 L⊙, a dust temperature of 35 K, and a mass of 6 M⊙. The low dust<br />

temperature and the low L bol /L 1.3 mm ratio of this source suggest that it is an <strong>in</strong>termediate<br />

mass counterpart of Class 0 sources. Fuente, Neri & Caselli (2005a) detected a hot


44<br />

molecular core associated with FIRS 2, and Fuente et al. (2005b) carried out a molecular<br />

survey of FIRS 2 and LkHα 234 with the aim of study<strong>in</strong>g the chemical evolution of<br />

the envelopes of <strong>in</strong>termediate-mass young stellar objects. Fuente (2008) present high<br />

angular resolution imag<strong>in</strong>g of the hot core of NGC 7129 FIRS 2, us<strong>in</strong>g the Plateau de<br />

Bure Interferometer. This is the first chemical study of an <strong>in</strong>termediate-mass hot core<br />

and provides important h<strong>in</strong>ts to understand the dependence of the hot core chemistry<br />

on the stellar lum<strong>in</strong>osity.<br />

Two molecular outflows were found <strong>in</strong> NGC 7129 by Edwards & Snell (1983).<br />

They seem to be associated with LkHα 234 and FIRS 2. We<strong>in</strong>traub et al. (1994), via<br />

near <strong>in</strong>frared polarimetry, identified a deeply embedded source, NGC 7129 PS 1, located<br />

about 3 ′′ northwest of LkHα 234. This source was not identified <strong>in</strong> the direct<br />

near-<strong>in</strong>frared images of LkHα 234, which revealed 5 sources (IRS 1–IRS 5, IRS 1 ≡<br />

LkHα 234) <strong>in</strong> a 20 ′′ × 20 ′′ field centered on LkHα 234. We<strong>in</strong>traub et al. (1996) detected<br />

NGC 7129 PS 1 at 3.8 µm, and proposed that it was the actual outflow source<br />

<strong>in</strong>stead of LkHα 234.<br />

Cabrit et al. (1997) present high-resolution imag<strong>in</strong>g of the region around LkHα 234<br />

<strong>in</strong> the 10 µm and 17 µm atmospheric w<strong>in</strong>dows and <strong>in</strong> the H 2 v=1-0 S(1) l<strong>in</strong>e and adjacent<br />

cont<strong>in</strong>uum. The cold mid-<strong>in</strong>frared companion, detected at 2.7 ′′ to the north-west<br />

of the optical star, corresponds to NGC 7129 PS 1. The companion illum<strong>in</strong>ates an arcshaped<br />

reflection nebula with very red colors, and is associated with a radio cont<strong>in</strong>uum<br />

source, H 2 O masers, and a bright extended H 2 emission knot, <strong>in</strong>dicat<strong>in</strong>g that it is deeply<br />

embedded and has strong outflow activity. Cabrit et al. (1997) refer to this star as IRS 6,<br />

extend<strong>in</strong>g We<strong>in</strong>traub et al.’s notation.<br />

Fuente et al. (2001) obta<strong>in</strong>ed s<strong>in</strong>gle-dish and <strong>in</strong>terferometric cont<strong>in</strong>uum images at<br />

2.6 mm and 1.3 mm of both FIRS 2 and LkHα 234. They identified two millimeter<br />

sources associated with FIRS 2: FIRS 2–MM1, apparently associated with the CO outflow,<br />

and a weaker source, FIRS 2–MM2, which does not present any sign of stellar activity.<br />

The <strong>in</strong>terferometric 1.3 mm cont<strong>in</strong>uum image of FIRS 1 reveals that LkHα234 is<br />

a member of a cluster of embedded objects. Two millimeter clumps are associated with<br />

this far-<strong>in</strong>frared source. The stronger is spatially co<strong>in</strong>cident with IRS 6. A new millimeter<br />

clump, FIRS 1–MM1, is detected at an offset (−3.23 ′′ , 3.0 ′′ ) from LkHα 234. The<br />

extremely young object FIRS 1–MM1 (it has not been detected <strong>in</strong> the near- and mid<strong>in</strong>frared)<br />

is the likely driv<strong>in</strong>g source of the H 2 jet. There is no evidence for the existence<br />

of a bipolar outflow associated with LkHα 234. In addition to FIRS 1 and FIRS 2, six<br />

other compact millimeter clumps are detected <strong>in</strong> the region, NGC 7129 MM1 to MM5<br />

(see Fig. 13), and the sixth co<strong>in</strong>cides with the bipolar nebula RNO 138.<br />

Submillimeter cont<strong>in</strong>uum observations by Font et al. (2001) revealed three compact<br />

sources: LkHα 234 SMM 1, LkHα 234 SMM 2 and FIRS 2. SMM 1 co<strong>in</strong>cides<br />

with IRS 6, which, accord<strong>in</strong>g to the submillimeter observations, may be a deeply embedded<br />

Herbig Be star, whereas SMM 2 is a newly discovered source (see Figure 14).<br />

Table 8 shows the coord<strong>in</strong>ates, wavelengths of detection, measured fluxes and sizes of<br />

the deeply embedded young stellar objects <strong>in</strong> NGC 7129, observed <strong>in</strong> submillimeter,<br />

millimeter, and centimeter cont<strong>in</strong>uum.<br />

Low-mass pre-ma<strong>in</strong> sequence members of NGC 7129 were identified as Hα emission<br />

objects by Hartigan & Lada (1985), Miranda et al. (1993), and Magakian et al. (2004),<br />

as variable stars (Semkov 2003) and near-<strong>in</strong>frared sources (Strom et al. 1976; Cohen<br />

& Schwartz 1983). Muzerolle et al. (2004) presented observations of NGC 7129 taken<br />

with the Multiband Imag<strong>in</strong>g Photometer for Spitzer (MIPS). A significant population


45<br />

Table 8. Embedded YSOs <strong>in</strong> NGC 7129.<br />

Name RA(2000) Dec(2000) λ(mm) Flux(mJy) Ref.<br />

NGC 7129 FIRS1 IRS6 21 43 06.4 66 06 55.6 2.6 91 1<br />

NGC 7129 FIRS1 IRS6 21 43 06.5 66 06 55.2 1.3 313 1<br />

NGC 7129 FIRS1 MM 1 21 43 06.3 66 06 57.4 1.3 180 1<br />

LkHα 234 21 43 06.8 66 06 54.4 1.3 < 20 1<br />

NGC 7129 FIRS2 MM 1 21 43 01.7 66 03 23.6 2.6 72 1<br />

21 43 01.7 66 03 23.6 1.3 381 1<br />

NGC 7129 FIRS2 MM 2 21 43 01.6 66 03 26.1 2.6 22 1<br />

21 43 01.7 66 03 24.7 1.3 137 1<br />

NGC 7129 FIRS2 IR 21 43 01.8 66 03 27.4 2.6


46<br />

Figure 14. Dust cont<strong>in</strong>uum emission of NGC 7129, observed at 850 µm by Font<br />

et al. (2001). Near-<strong>in</strong>frared sources are marked by star symbols, and H 2 O maser<br />

sources by triangles.<br />

source of RNO 138. Another <strong>in</strong>terest<strong>in</strong>g star is V350 Cep (denoted as IRS 1 by Cohen<br />

& Schwartz 1983), which brightened about 4 mag <strong>in</strong> the 1970’s (Semkov 2004), and<br />

has been stay<strong>in</strong>g at the high level s<strong>in</strong>ce then. Liseau & Sandell (1983) detected CO<br />

outflows associated with both RNO 138 and V350 Cep. Herbig (2008) has shown that<br />

V350 Cep does not belong to the class of the EXor-type eruptive young stars. The<br />

list of low-mass pre-ma<strong>in</strong> sequence stars <strong>in</strong> NGC 7129, based on a literature search, is<br />

given <strong>in</strong> Table 7.<br />

Herbig–Haro objects In the optical, a large number of HH-objects <strong>in</strong> and near NGC<br />

7129 have been reported (Gyulbudaghian, Glushkov & Denisyuk 1978; Hartigan &<br />

Lada 1985; Eiroa, Gómez de Castro & Miranda 1992; Gómez de Castro, Miranda &<br />

Eiroa 1993; Miranda, Eiroa, & Birkle 1994; Gómez de Castro & Robles 1999, see<br />

Table 9). Molecular hydrogen emission <strong>in</strong> the near-<strong>in</strong>frared has been detected from


47<br />

Figure 15. Mosaic of the NGC 7129 region <strong>in</strong> the 1-0 S(1) l<strong>in</strong>e of H 2 + cont. at<br />

2.12 µm, adopted from Eislöffel (2000). Emission from several molecular outflows,<br />

as well as from a probable photodissociation region to the east and south of the stellar<br />

cluster can be seen. Some H 2 outflows and H 2 counterparts of optical Herbig–Haro<br />

objects are labeled.<br />

several of the optical Herbig–Haro objects (Wilk<strong>in</strong>g et al. 1990). An <strong>in</strong>frared search<br />

for the excit<strong>in</strong>g sources of the optical HH objects was presented by Cohen & Schwartz<br />

(1983). Spectroscopic observations of HH objects are presented by Cohen & Fuller<br />

(1985). Fuente et al. (2001) suggest that NGC 7129 MM4 is the illum<strong>in</strong>at<strong>in</strong>g star of the<br />

nebular object GGD 34. Eislöffel (2000) used deep imag<strong>in</strong>g <strong>in</strong> the near-<strong>in</strong>frared 1-0<br />

S(1) l<strong>in</strong>e of H 2 at 2.12 µm to search for parsec-scale outflows <strong>in</strong> NGC 7129 (Fig. 15).<br />

They identified numerous outflows (see Table 9), but likely driv<strong>in</strong>g sources could be<br />

identified for only three of them. For most of the other emission-l<strong>in</strong>e knots and molecular<br />

flows no evident sources could be identified. The Spitzer observations revealed<br />

several dist<strong>in</strong>ct outflow arcs, traced by 4.5 µm bright knots, associated with FIRS 2<br />

(Muzerolle et al. 2004). The multipolar nature of this outflow system, <strong>in</strong> general agreement<br />

with the outflow analysis of Fuente et al. (2001), supports the claim by Miskolczi<br />

et al. (2001) that FIRS 2 is a multiple protostellar system.


48<br />

Table 9. Herbig–Haro objects <strong>in</strong> NGC 7129.<br />

name RA(2000) Dec(2000) Source Reference<br />

HH 822 21 41 42.1 +66 01 45 LkHα 234 5<br />

HH 103A 21 42 23.8 +66 03 47 LkHα 234 5,13<br />

HH 103B 21 42 24.7 +66 03 40 LkHα 234 1,13<br />

HH 232, GGD 32 21 42 26.9 +66 04 27 6,8<br />

HH 242 21 42 38.7 +66 06 36 6,10,12<br />

HH 825 21 42 39.2 +66 10 56 IRAS 21416+6556 5<br />

HH 238 21 42 40.3 +66 05 41 LkHα 234 6,10<br />

HH 237 21 42 42.3 +66 05 23 LkHα 234 6,10<br />

HH 239 21 42 44.1 +66 06 37 LkHα 234 6,10<br />

HH 824 21 42 56.9 +66 09 10 IRAS 21416+6556 4,10<br />

HH 236 21 42 59.2 +66 07 39 LkHα 234 6,10<br />

HH 233, GGD 33 21 43 00.0 +66 12 00 GGD 33a 1,3,13<br />

HH 167 21 43 06.7 +66 06 54 LkHα 234 4<br />

HH 105B 21 43 19.8 +66 07 53 LkHα 234 1,6,9<br />

HH 105A 21 43 22.1 +66 07 47 LkHα 234 1,6,9<br />

HH 823 21 43 27.9 +66 11 46 4<br />

HH 234 21 43 29.7 +66 08 38 6<br />

GGD 34 21 43 30.4 +66 03 43 NGC 7129 MM 4 1,2,7,11<br />

HH 235, GGD 35 21 43 42.0 +66 09 00 6,8,13<br />

HH 821 21 43 43.4 +66 08 47 LkHα 234 5<br />

HH 820 21 43 47.9 +66 09 50 LkHα 234 5<br />

HH 818 21 43 57.7 +66 10 26 LkHα 234 5<br />

HH 819 21 44 01.0 +66 09 52 LkHα 234 5<br />

HH 817 21 44 13.3 +66 10 55 LkHα 234 5<br />

HH 816 21 44 26.4 +66 10 58 LkHα 234 5<br />

HH 815 21 44 29.9 +66 13 42 LkHα 234 5<br />

References: 1 – Eiroa, Gómez de Castro & Miranda (1992); 2 – Gómez de Castro & Robles (1999); 3 –<br />

Miranda, Eiroa, & Birkle (1994); 4 – Moreno-Corral, Chavarría-K., & de Lara (1995); 5 – McGroarty et<br />

al. (2004); 6 – Wu et al. (2002); 7 – Gómez de Castro et al. (1993); 8 – Cohen & Schwartz (1983); 9 –<br />

Hartigan & Lada (1985); 10 – Miranda et al. (1993); 11 – Fuente et al. (2001); 12 – Avila et al. (2001); 13<br />

– Cohen & Fuller (1985).<br />

3. <strong>Star</strong> Formation <strong>in</strong> the Association Cep OB2<br />

The association Cep OB2 was discovered by Ambartsumian (1949). Simonson (1968)<br />

identified 75 bright members, <strong>in</strong>clud<strong>in</strong>g the runaway O6 Iab star λ Cep (HIP 109556).<br />

The clusters NGC 7160 and Trumpler 37 (Tr 37), with its associated H II region IC 1396<br />

(Fig. 16), have similar distances as Cep OB2, about 800 pc. Simonson & van Someren<br />

Greve (1976) suggested the division of Cep OB2 <strong>in</strong>to two subgroups. The younger subgroup,<br />

Cep OB2b is Tr 37, one of the youngest known open clusters, with an age of<br />

3.7 Myr (e.g., Marschall, Karshner & Com<strong>in</strong>s 1990). Garrison & Kormendy (1976)<br />

suggested that the bright star µ Cep (HIP 107259, M2 Ia) is a member of Tr 37. The<br />

ma<strong>in</strong> source of excitation of IC 1396 is the O6 star HD 206267 (HIP 106886), a Trapeziumlike<br />

system (Harv<strong>in</strong> 2004). IC 1396 and neighbor<strong>in</strong>g areas conta<strong>in</strong> a large number of<br />

Hα emission objects (e.g. Kun 1986; Kun & Pásztor 1990; Balázs et al. 1996), classical<br />

T Tauri stars (Sicilia-Aguilar et al. 2004, 2005) and several globules conta<strong>in</strong><strong>in</strong>g embedded<br />

young stellar objects (e.g., Duvert et al. 1990; Schwartz, Wilk<strong>in</strong>g & Gyulbudaghian<br />

1991). The other subgroup, Cep OB2a, conta<strong>in</strong>s a large number of evolved massive


stars that are spread over a large area, between 100 ◦ ≤ l ≤ 106 ◦ and +2 ◦ ≤ b ≤ +8 ◦ .<br />

The age of this subgroup is about 7-8 Myr, and conta<strong>in</strong>s NGC 7160. This subgroup is<br />

surrounded by a 9 ◦ diameter <strong>in</strong>frared emission r<strong>in</strong>g, the <strong>Cepheus</strong> Bubble (see Fig. 2),<br />

which possibly resulted from a supernova explosion (Kun et al. 1987). This supernova<br />

might have triggered star formation <strong>in</strong> the r<strong>in</strong>g, as suggested by the presence of several<br />

H II regions, and a number of <strong>in</strong>frared sources that have the characteristics of embedded<br />

young stellar objects (Balázs & Kun 1989).<br />

49<br />

Figure 16.<br />

De Mart<strong>in</strong>.<br />

Optical image of the HII region IC 1396. Color composite by Davide


50<br />

De Zeeuw et al. (1999) determ<strong>in</strong>ed the distance of Cep OB2, based on Hipparcos<br />

results on 76 members (one O, 56 B, 10 A, five F, one G, two K, and one M type stars).<br />

They obta<strong>in</strong>ed a mean distance of 615±35 pc.<br />

Daflon et al. (1999) studied the chemical abundances of OB stars <strong>in</strong> Cep OB2.<br />

Their results <strong>in</strong>dicate that this association is slightly metal-poor. The highest mass<br />

association members have been <strong>in</strong>volved <strong>in</strong> several studies of the <strong>in</strong>terstellar matter <strong>in</strong><br />

the region of the association. Clayton & Fitzpatrick (1987) detected anomalous dust <strong>in</strong><br />

the region of Tr 37, by study<strong>in</strong>g the far-ultraviolet ext<strong>in</strong>ction curves of 17 early-type<br />

stars. In order to measure the value of R V = A V /E B−V , Roth (1988) comb<strong>in</strong>ed near<strong>in</strong>frared<br />

photometry of OB stars with exist<strong>in</strong>g optical and ultraviolet data of the same<br />

sample. The results suggest anomalous gra<strong>in</strong> size distribution with respect to an average<br />

Galactic ext<strong>in</strong>ction curve. Morbidelli et al. (1997) performed VRIJHK photometry of<br />

14 bright cluster members. They obta<strong>in</strong>ed the normal Galactic value of R V = 3.1.<br />

In order to establish the velocity structure and column density of the <strong>in</strong>terstellar<br />

matter <strong>in</strong> the region of Cep OB2, Pan et al. (2004; 2005) studied several <strong>in</strong>terstellar<br />

absorption l<strong>in</strong>es <strong>in</strong> high resolution spectra of early-type association members. Their<br />

results are consistent with the large-scale structure suggested by radio molecular maps,<br />

and suggest significant variations <strong>in</strong> the column density on small (∼ 10000 AU) scales.<br />

Cep OB2 was mapped <strong>in</strong> the 21 cm l<strong>in</strong>e of HI by Simonson & van Someren Greve<br />

(1976). They detected an HI concentration of 2 × 10 4 M⊙ surround<strong>in</strong>g the HII region<br />

and bright-rimmed dark clouds associated with Cep OB2b, and found no significant<br />

amount of neutral hydrogen associated with Cep OB2a. Wendker & Baars (1980) constructed<br />

a three-dimensional model of the ionized region based on a 2695 MHz radio<br />

cont<strong>in</strong>uum map. The first molecular study of IC 1396 was performed by Loren, Peters<br />

& Vanden Bout (1975). Heske & Wendker (1985) surveyed the dark clouds of IC 1396<br />

<strong>in</strong> the 6 cm absorption l<strong>in</strong>e of the H 2 CO. Large-scale 12 CO and 13 CO mapp<strong>in</strong>g of the<br />

dark clouds <strong>in</strong> IC 1396 are presented by Patel et al. (1995) and Weikard et al. (1996).<br />

Both IC 1396 and NGC 7160 have been <strong>in</strong>cluded <strong>in</strong> the CO survey of regions around<br />

34 open clusters performed by Leisawitz, Bash, & Thaddeus (1989).<br />

The low and <strong>in</strong>termediate mass members of Cep OB2 belong to different populations,<br />

born <strong>in</strong> various subgroups dur<strong>in</strong>g the lifetime of the association. Significant low<br />

mass populations, born together with and thus nearly coeval with the high lum<strong>in</strong>osity<br />

members, are expected <strong>in</strong> both Cep OB2b and Cep OB2a. Younger subgroups are be<strong>in</strong>g<br />

born <strong>in</strong> the clouds border<strong>in</strong>g the HII region IC 1396, due to trigger<strong>in</strong>g effects by the<br />

lum<strong>in</strong>ous stars of Cep OB2b.<br />

3.1. Pre-ma<strong>in</strong> Sequence <strong>Star</strong>s <strong>in</strong> the Open Cluster Tr 37<br />

Marschall & van Altena (1987) derived k<strong>in</strong>ematic membership probabilities for stars<br />

of Tr 37, and identified 427 probable members. Marschall et al. (1990) performed<br />

UBV (RI) C photometry of 120 members, most of them brighter than V ≈ 13.5. Their<br />

HR diagram <strong>in</strong>dicated a number of probable pre-ma<strong>in</strong> sequence members.<br />

Dur<strong>in</strong>g a search for <strong>in</strong>termediate mass pre-ma<strong>in</strong> sequence members of Tr 37, Contreras<br />

et al. (2002) found three emission-l<strong>in</strong>e stars (MVA 426, MVA 437, and Kun 314S).<br />

They suggest that the low frequency of emission-l<strong>in</strong>e activity <strong>in</strong> the sample of B–A type<br />

stars <strong>in</strong>dicates that <strong>in</strong>ner disks around <strong>in</strong>termediate-mass stars evolve faster than those<br />

of low-mass stars.<br />

Sicilia-Aguilar et al. (2004), based on spectroscopic and photometric observations<br />

of candidate objects, presented the first identifications of low-mass (spectral types K–


M) pre-ma<strong>in</strong> sequence members of Tr 37 and NGC 7160. They expanded the studies<br />

<strong>in</strong> a second paper (Sicilia-Aguilar et al. 2005). In all, they identified and studied 130<br />

members of Tr 37, and ∼30 for NGC 7160. They confirmed previous age estimates of<br />

4 Myr for Tr 37 and 10 Myr for NGC 7160, and found active accretion <strong>in</strong> ∼40% of the<br />

stars <strong>in</strong> Tr 37, with average accretion rates of 10 −8 M⊙yr −1 , derived from their U-band<br />

excesses. These results expand the exist<strong>in</strong>g samples of accret<strong>in</strong>g stars. Only 1 accret<strong>in</strong>g<br />

star was detected <strong>in</strong> the older cluster NGC 7160, suggest<strong>in</strong>g that disk accretion ends<br />

before the age of 10 Myr.<br />

In order to follow the evolution of protoplanetary accretion disks through the ages<br />

∼3–10 Myr, Sicilia-Aguilar et al. (2006a) utilized the wavelength range 3.6–24 µm,<br />

offered by the IRAC and MIPS <strong>in</strong>struments of the Spitzer Space Telescope. They found<br />

detectable disk emission <strong>in</strong> the IRAC bands from 48% of the low mass stars of Tr 37.<br />

Some 10% of these disks have been detected only at wavelengths > 4.5 µm, <strong>in</strong>dicat<strong>in</strong>g<br />

optically th<strong>in</strong> <strong>in</strong>ner disks. Comparison of the SEDs of Tr 37 members with those of the<br />

younger Taurus region <strong>in</strong>dicates that the decrease of <strong>in</strong>frared excess is larger at 6–8 µm<br />

than at 24 µm, suggest<strong>in</strong>g that disk evolution is faster at smaller radii.<br />

Sicilia-Aguilar et al. (2004, 2005) also <strong>in</strong>vestigated the spatial asymmetries <strong>in</strong><br />

Tr 37 and the possible presence of younger populations triggered by Tr 37 itself. They<br />

found a spatial east-west asymmetry <strong>in</strong> the cluster that cannot yet be fully expla<strong>in</strong>ed.<br />

The low-mass Tr 37 members are concentrated on the western side of the O6 star<br />

HD 206267. In contrast, the B-A stars (Contreras et al. 2002) are more uniformly distributed,<br />

with a small excess to the east. Both the high and <strong>in</strong>termediate-mass stars<br />

and the low-mass stars show a clear “edge” to the east of HD 206267. The youngest<br />

stars are found preferentially on the western side of HD 206267. The presence of dense<br />

globules <strong>in</strong> this region suggests that the expansion of the HII region <strong>in</strong>to an <strong>in</strong>homogeneous<br />

environment triggered this later epoch of star formation. Larger amounts of<br />

<strong>in</strong>terstellar material on the western side may also have helped to shield disk systems<br />

from the photoevaporat<strong>in</strong>g effects of the central O6 star.<br />

Sicilia-Aguilar et al. (2006b) obta<strong>in</strong>ed high-resolution spectra of a large number<br />

of stars <strong>in</strong> the region of Tr 37. They derived accretion rates from the Hα emission l<strong>in</strong>e,<br />

and found lower average accretion rate <strong>in</strong> Tr 37 than <strong>in</strong> the younger Taurus. They used<br />

radial velocities as membership criterion, and thus confirmed the membership of 144<br />

stars and found 26 new members. They also calculated rotational velocities, and found<br />

no significant difference between the rotation of accret<strong>in</strong>g and non-accret<strong>in</strong>g stars. In<br />

order to study the dust evolution <strong>in</strong> protoplanetary disks, Sicilia-Aguilar et al. (2007)<br />

studied the 10 µm silicate feature <strong>in</strong> the Spitzer IRS spectra of several members of<br />

Tr 37. GM Cep, a solar-type member of Tr 37 exhibit<strong>in</strong>g EXor-like outbursts, was<br />

studied <strong>in</strong> detail by Sicilia-Aguilar et al. (2008).<br />

Tr 37 was searched for X-ray sources as possible WTTSs by Schulz, Berghöfer<br />

& Z<strong>in</strong>necker (1997). Soft X-ray observations with the ROSAT PSPC revealed X-ray<br />

emission from an area of 30 ′ radius around the center of globule IC 1396A, which was<br />

resolved <strong>in</strong>to 85 discrete sources of which 13 sources were identified as foreground<br />

objects. Most of the detected X-ray sources, except HD 206267, are very weak, which<br />

causes the measured lum<strong>in</strong>osity function to be cut off at logL x < 30.3 erg s −1 . X-ray<br />

sources are located not only <strong>in</strong> Tr 37 but are also scattered around the molecular globules<br />

IC 1396A and B (see Sect. 3.2.). Their X-ray spectra appear hard with lum<strong>in</strong>osities<br />

between log L∼ 30 and 31. LkHα 349, a 10 5 yr old pre-ma<strong>in</strong> sequence star at the very<br />

51


52<br />

center of globule A, appears very lum<strong>in</strong>ous with L x = 5.1 × 10 30 erg s −1 . The source<br />

density with<strong>in</strong> 5 ′ of the center of emission is 270 sources per square degree.<br />

Getman et al. (2007) detected 117 X-ray sources <strong>in</strong> a field centered on the globule<br />

IC 1396N (see Sect. 3.2.), of which 50-60 are likely members of Trumpler 37.<br />

Table 10. A. Bright rimmed globules and dark clouds associated with IC 1396.<br />

Names<br />

RA(J2000) D(J2000) IRAS Source Ref.<br />

[h m] [ ◦ ′ ]<br />

FSE 12 21 25 57 53<br />

FSE 13 21 25 58 37<br />

FSE 1, IC 1396 W 21 26 57 58 21246+5743 4,14,16,17<br />

FSE 14, LDN 1086 21 28 57 31<br />

BRC 32 21 32 24 57 24 08 21308+5710<br />

BRC 33, Pottasch IC 1396C 21 33 12 57 29 33 21316+5716<br />

BRC 34, GRS 3, Pottasch IC 1396D 21 33 32 58 03 29 21320+5750<br />

GRS 1 21 32 25 57 48 44<br />

FSE 2, GRS 2 21 33 54 57 49 44 21312+5736<br />

FSE 15 21 33 59 30<br />

FSE 16, LDN 1102 21 33 58 09<br />

FSE 3, LDN 1093, LDN 1098, 21 34 11 57 31 06 21324+5716 29<br />

GRS 4, Pottasch IC 1396B<br />

Weikard Rim I 21 34 35 58 19.5<br />

FSE 4, Pottasch IC 1396A, 21 36 12 57 27 34 21346+5714 5,6,7,14,19,<br />

GRS 6, BRC 36 29,32,33<br />

GRS 5, BRC 35 21 36 05 58 32 17 21345+5818<br />

FSE 5, LDN 1099, LDN 1105, GRS 6 21 36 54 57 30 21352+5715<br />

FSE 6, LDN 1116 21 37 58 37 21354+5823<br />

FSE 17, LDN 1088, GRS 9 21 38 56 56 07 36<br />

GRS 7 21 37 56 57 47 57<br />

Weikard Rim J 21 38 56 56 21.3<br />

FSE 7, GRS 12, BRC 37, 21 40 25 56 35 52 21388+5622 8,9,10,11,14,20,<br />

Pottasch IC 1396H 25,28,31,33,34<br />

WB89 108 21 40 38 56 48 21390+5634<br />

GRS 13 21 40 30 57 46 28<br />

GRS 14 21 40 41 58 15 52<br />

FSE 19, IC 1396 N(orth), LDN 1121, 21 40 43 58 20 09 21391+5802 1,2,3,13,14,15,<br />

GRS 14, WB89 110, 18,25,30,32<br />

BRC 38, Pottasch IC 1396E<br />

FSE 8, GRS 20, LDN 1130, 21 44 00 58 17 00 21428+5802 29<br />

Pottasch IC 1396F<br />

GRS 26 21 44 51 57 08 00<br />

GRS 23 21 45 05 56 59 22 21443+5646<br />

GRS 24 21 45 09 56 47 52<br />

LDN 1132 21 45 45 58 29.3<br />

GRS 25, WB89 122 21 45 58 57 13 54 21436+5657<br />

GRS 27 21 46 03 57 08 41<br />

GRS 28 21 46 27 57 18 07<br />

FSE 9, IC 1396 E(ast), 21 46 38 57 25 55 21445+5712 14,21,25,33<br />

WB89 123, LDN 1118, GRS 29,<br />

BRC 39, Pottasch IC 1396 G<br />

BRC 40 21 46 14 57 08 59 21446+5655<br />

BRC 41 21 46 29 57 18 41 21448+5704<br />

BRC 42 21 46 37 57 12 25 21450+5658<br />

FSE 21, LDN 1129 21 46 27 57 46 37<br />

FSE 22 21 49 56 43<br />

References to globule names and column 5 can be found under Table 10 B.


53<br />

Table 10.<br />

uncerta<strong>in</strong>.<br />

B. Other clouds <strong>in</strong> the IC 1396 region whose relation to Cep OB2 is<br />

Names<br />

RA(J2000) D(J2000) IRAS source Ref.<br />

[h m] [ ◦ ′ ]<br />

FSE 18, LDN 1131 21 40 59 34<br />

FSE 20, LDN 1131 21 41 59 36<br />

FSE 10, LDN 1139 21 55 36 58 35 21539+5821 14<br />

FSE 23, LDN 1153 22 01 58 54<br />

FSE 11, LDN 1165, LDN 1164 22 07 00 59 02 22051+5848<br />

GRS 32, LDN 1165 22 07 00 59 00 22051+5848 12,14,15,22,23,<br />

24,25,26,27,28<br />

FSE 24, LBN 102.84+02.07 22 08 58 23<br />

FSE 25, LBN 102.84+02.07 22 08 58 31<br />

References to globule names: Pottasch–Pottasch (1956); GRS–Gyulbudaghian (1985); WB89–Wouterloot<br />

& Brand (1989); BRC–Sugitani et al. (1991); Weikard–Weikard et al. (1996); FSE–Froebrich et al. (2005).<br />

References to column 5. 1. Beltrán et al. (2002); 2. Nis<strong>in</strong>i et al. (2001); 3. Codella et al. (2001); 4.<br />

Froebrich & Scholz (2003); 5. Nakano et al. (1989); 6. Hessman et al. (1995); 7. Reach et al. (2004);<br />

8. Duvert et al. (1990); 9. Sugitani et al. (1991); 10. de Vries et al. (2002); 11. Ogura et al. (2002); 12.<br />

Reipurth & Bally (2001); 13. Reipurth et al. (2003); 14: Schwartz et al. (1991); 15: Reipurth, Bally, &<br />

Dev<strong>in</strong>e (1997); 16: Froebrich et al. (2003); 17: Zhou et al. (2006); 18: Getman et al. (2007); 19: Sicilia-<br />

Aguilar et al. (2006a); 20: Sugitani et al. (1997); 21: Serabyn et al. (1993); 22: Reipurth & Asp<strong>in</strong> (1997);<br />

23: Tapia et al. (1997); 24: Parker et al. (1991); 25: Connelley et al. (2007), 26: Visser et al. (2002); 27:<br />

Slysh et al. (1997); 28: Bronfman et al. (1996); 29: Moriarty-Schieven et al. (1996); 30: Neri et al. (2007);<br />

31: Ogura et al. (2007); 32: Valdettaro et al. (2005); 33: Valdettaro et al. (2008); 34: Ikeda et al. (2008).<br />

Dec(J2000)<br />

59 30<br />

59 00<br />

58 30<br />

58 00<br />

57 30<br />

L1165<br />

FSE 25<br />

FSE 24<br />

L1153<br />

L1139<br />

L1131<br />

E (IC 1396 N)<br />

µ Cep<br />

L1132<br />

I<br />

F<br />

L1112<br />

G<br />

B161 A<br />

D<br />

C<br />

B<br />

FSE 2<br />

IC 1396W<br />

L1086<br />

57 00<br />

56 30<br />

FSE 22<br />

H<br />

B367<br />

B163<br />

HD 206267<br />

L1088<br />

22 10 22 05 22 00 21 55 21 50 21 45 21 40 21 35 21 30 21 25<br />

RA(J2000)<br />

Figure 17. Distribution of the globules listed <strong>in</strong> Table 10 and other dark clouds<br />

projected near IC 1396, overplotted on a DSS red image of the region (open circles).<br />

<strong>Star</strong> symbols show the embedded protostars, and plusses mark the IRAS sources of<br />

uncerta<strong>in</strong> nature (Schwartz et al. 1991).<br />

J<br />

B365


54<br />

3.2. <strong>Star</strong> Formation <strong>in</strong> Globules of IC 1396<br />

The HII region IC 1396 is powered by the O6.5 V star HD 206267. It appears that the<br />

expansion of this HII region has resulted <strong>in</strong> sweep<strong>in</strong>g up a molecular r<strong>in</strong>g of radius<br />

12 pc (Patel et al. 1998). Patel et al. derive an expansion age of the molecular r<strong>in</strong>g of<br />

about 3 Myr.<br />

The r<strong>in</strong>g-like HII region, shown <strong>in</strong> Fig. 16, is some 3 ◦ <strong>in</strong> diameter and is surrounded<br />

by a number of bright-rimmed globules which are probable sites of triggered<br />

star formation due to compression by ionization/shock fronts and radiation pressure.<br />

Many bright rimmed clouds harbor IRAS po<strong>in</strong>t sources of low dust temperature. They<br />

also frequently conta<strong>in</strong> small clusters of near-IR stars. The most prom<strong>in</strong>ent globules<br />

are located <strong>in</strong> the western and northern portions of the H II region.<br />

The globules of IC 1396 received different designations dur<strong>in</strong>g various studies.<br />

Pottasch (1956) labeled the most prom<strong>in</strong>ent bright rimmed globules with letters from<br />

A to H, <strong>in</strong> the order of their <strong>in</strong>creas<strong>in</strong>g distance from the excit<strong>in</strong>g star. Weikard et<br />

al. (1996) supplemented this list by rims I and J. IC 1396A corresponds to the famous<br />

Elephant Trunk Nebula. Gyulbudaghian (1985) identified 32 globules <strong>in</strong> the region of<br />

Cep OB2, and designated them as GRS (globules of radial systems) 1–32. Four radial<br />

systems of globules have been identified near IC 1396. One system, consist<strong>in</strong>g of<br />

16 globules, is centered on IC 1396. Another system of 12 globules, slightly south of<br />

IC 1396, appears to be associated with BD +54 ◦ 2612, whereas two further radial systems<br />

have been identified to the east and south-east of the ma<strong>in</strong> system of globules surround<strong>in</strong>g<br />

HD 206267. The system associated with HD 206267 is dom<strong>in</strong>ated by brightrimmed<br />

globules with diffuse tails generated by the radiation field of HD 206267. The<br />

other systems appear as opaque globules without rims. The systems partially overlap<br />

spatially. Gyulbudaghian, Rodríguez & Cantó (1986) have surveyed the GRS globules<br />

for CO emission. They found that the radial systems separate <strong>in</strong> radial velocity. The<br />

mean LSR velocity of the HD 206267 system is −2.8 ± 2.4 km s −1 , whereas the same<br />

for the BD+54 ◦ 2612 system is +6.5 ± 1.0 km s −1 . Two of the globules, GRS 12 and<br />

GRS 14, are associated with H 2 O masers (Gyulbudaghian, Rodríguez & Curiel 1990).<br />

Schwartz et al. (1991) used the IRAS data base to locate young stellar object candidates<br />

associated with the globules of IC 1396. They found that only six globule-related<br />

sources have po<strong>in</strong>t-like structure and lum<strong>in</strong>osities considerably <strong>in</strong> excess of that which<br />

can be caused by external heat<strong>in</strong>g. Most of the IRAS po<strong>in</strong>t sources associated with the<br />

globules are probably externally heated small-scale dust structures not related to star<br />

formation. Eleven globules of IC 1396 can be found <strong>in</strong> the catalog of bright rimmed<br />

clouds by Sugitani, Fukui & Ogura (1991) (BRC 32–42). Froebrich et al. (2005) presented<br />

a large-scale study of the IC 1396 region us<strong>in</strong>g new deep NIR and optical images,<br />

complemented by 2MASS data. They identified 25 globules (FSE 1–25) us<strong>in</strong>g ext<strong>in</strong>ction<br />

maps and the list of Schwartz et al. (1991). Four of them were previously uncatalogued<br />

<strong>in</strong> the SIMBAD database. In all but four cases the masses (or at least lower<br />

limits) of the globules could be determ<strong>in</strong>ed, and the size could be measured properly for<br />

all but seven objects. For ten globules <strong>in</strong> IC 1396 they determ<strong>in</strong>ed (J−H, H−K) colorcolor<br />

diagrams and identified the young stellar population. Five globules conta<strong>in</strong> a rich<br />

population of reddened objects, most of them probably young stellar objects. The five<br />

globules with many red objects <strong>in</strong>clude the targets with the highest ext<strong>in</strong>ction values,<br />

suggest<strong>in</strong>g a correlation of the strength of the star formation activity with the mass of<br />

the globule.


Moriarty-Schieven et al. (1996) have made the first arcm<strong>in</strong>ute resolution images<br />

of atomic hydrogen toward IC 1396, and have found remarkable “tail”-like structures<br />

associated with the globules IC 1396A, B and F, extend<strong>in</strong>g up to 6.5 pc radially away<br />

from the central ioniz<strong>in</strong>g star. These H I “tails” may be material which has been ablated<br />

from the globule through ionization and/or photodissociation and then accelerated away<br />

from the globule by the stellar w<strong>in</strong>d, but which has s<strong>in</strong>ce drifted <strong>in</strong>to the “shadow” of<br />

the globules.<br />

<strong>Star</strong> formation <strong>in</strong> small globules is often thought to be strongly <strong>in</strong>fluenced by the<br />

radiation pressure of a nearby bright star. Froebrich et al. therefore <strong>in</strong>vestigated how<br />

the globule properties <strong>in</strong> IC 1396 depend on the distance from the O star HD 206267.<br />

The masses of the globules have clearly shown positive correlation with the distance<br />

from this star, suggest<strong>in</strong>g that evaporation due to photo-ionization affects the mass distribution<br />

of the globules around HD 206267. Their data are consistent with a scenario<br />

<strong>in</strong> which the radiation pressure from the O-type star regulates the star form<strong>in</strong>g activity<br />

<strong>in</strong> the globules, <strong>in</strong> the sense that the radiation pressure compresses the gas and thus<br />

leads to enhanced star formation.<br />

The names and coord<strong>in</strong>ates of the known globules of IC 1396, as well as their<br />

associated IRAS sources are listed <strong>in</strong> Table 10, and the distribution of the same objects<br />

with respect to the HII zone is shown <strong>in</strong> Fig. 17. Some of the globules <strong>in</strong> IC 1396 were<br />

already <strong>in</strong>vestigated <strong>in</strong> detail and/or are known to harbor outflow sources. We give<br />

references for the works on <strong>in</strong>dividual globules <strong>in</strong> the last column of the table.<br />

Ogura et al. (2002) performed Hα grism spectroscopy and narrow band imag<strong>in</strong>g<br />

observations of the BRCs listed by Sugitani et al. (1991) <strong>in</strong> order to search for candidate<br />

pre-ma<strong>in</strong> sequence stars and Herbig-Haro objects. They have detected a large number<br />

of Hα emission stars down to a limit<strong>in</strong>g magnitude of about R = 20. Their results for<br />

IC 1396 are reproduced <strong>in</strong> Table 11, and the f<strong>in</strong>d<strong>in</strong>g charts for the Hα emission stars are<br />

shown <strong>in</strong> Fig. 18. Submillimeter observations of bright rimmed globules are presented<br />

by Morgan et al. (2008).<br />

The primary <strong>in</strong>dicators of star formation <strong>in</strong> the globules are the embedded IRAS<br />

po<strong>in</strong>t sources, molecular outflows and Herbig–Haro objects. Table 12 lists the Herbig–<br />

Haro objects found for the IC 1396 region.<br />

3.3. Notes on Individual Globules<br />

IC 1396 W lies about 1. ◦ 75 W–NW of HD 206267. In the center of the small (about<br />

6 ′ ) dark cloud, the IRAS source 21246+5743 can be found. This source is not detected<br />

at 12 µm. The very red IRAS colors and the extended appearance <strong>in</strong> the 100 µm IRAS<br />

image suggest a young, deeply embedded source. Observations of this object with the<br />

photometer ISOPHOT confirmed that IRAS 21246+5743 is a Class 0 source that will<br />

reach about one solar mass on the ma<strong>in</strong> sequence (Froebrich & Scholz 2003). The<br />

ISOPHOT maps at 160 and 200 µm show two further cold objects (2.5 arcm<strong>in</strong> SW and<br />

NE, respectively) <strong>in</strong> the vic<strong>in</strong>ity of the central source. This might be an <strong>in</strong>dication of<br />

other newly form<strong>in</strong>g stars or cold dust <strong>in</strong> the IC 1396 W globule.<br />

Froebrich & Scholz (2003) have observed the IC 1396 W globule <strong>in</strong> J, H, K ′ , and<br />

a narrow band filter centered on the 2.122 µm 1-0 S(1) l<strong>in</strong>e of molecular hydrogen.<br />

They detected three molecular outflows <strong>in</strong> the field. The flow axes are parallel with<strong>in</strong><br />

3 ◦ <strong>in</strong> projection. Magnetic fields cannot consistently expla<strong>in</strong> this phenomenon. A<br />

parallel <strong>in</strong>itial angular momentum of these objects, caused by the fragmentation of<br />

small clouds/globules, might be the reason for the alignment. NIR photometry, IRAS<br />

55


56<br />

Table 11. Hα emission stars associated with bright rimmed clouds <strong>in</strong> IC 1396,<br />

identified by Ogura et al. (2002), and revised by Ikeda et al. (2008)<br />

N RA(J2000.0) Dec(J2000.0) EW N RA(J2000.0) Dec(J2000.0) EW<br />

BRC 33 BRC 38<br />

1 21 34 19.8 57 30 01 53.4 4 21 40 31.7 58 17 55 · · ·<br />

2 21 34 20.8 57 30 47 3.3 5 21 40 36.7 58 13 46 4.0<br />

3 21 34 49.2: 57 31 25: 66.2 6 21 40 37.0 58 14 38 63.3<br />

BRC 34 7 21 40 37.2 58 15 03 29.8<br />

1 21 33 29.4 58 02 50 43.0 8 21 40 40.5 58 13 43 · · ·<br />

2 21 33 55.8 58 01 18 · · · 9 21 40 41.3 58 15 11 26.1<br />

BRC 37 10 21 40 41.7 58 14 25 14.8<br />

1 21 40 25.3 56 36 43 · · · 11 21 40 45.0 58 15 03 75.7<br />

2 21 40 26.1 56 36 31 18.4 12 21 40 48.1 58 15 38 19.0<br />

3 21 40 26.8 56 36 23 40.9 13 21 40 48.9 58 15 00 · · ·<br />

4 21 40 27.2 56 36 30 · · · 14 21 40 49.0 58 15 12 · · ·<br />

5 21 40 27.4 56 36 21 · · · 15 21 40 49.2 58 17 09 22.2<br />

6 21 40 28.2 56 36 05 · · · 16 21 41 02.0 58 15 25 · · ·<br />

7 21 40 28.8 56 36 09 78.8 BRC 39<br />

8 21 40 32.4 56 38 39 14.4 1 21 45 50.3 57 26 49 · · ·<br />

BRC 38 2 21 46 01.6 57 29 38 3.1<br />

1 21 40 26.2 58 14 24 22.2 3 21 46 07.1 57 26 31 13.0<br />

2 21 40 27.4 58 14 21 59.3 4 21 46 26.0 57 28 28 · · ·<br />

3 21 40 28.1 58 15 14 20.7 5N 21:45:54.08 57:28:18.5 9.3<br />

and ISOPHOT observations (Froebrich et al. 2003) led to the discovery of the driv<strong>in</strong>g<br />

sources of the outflows. The brightest outflow is driven by the Class 0 source IRAS<br />

21246+5743. Two flows are driven by more evolved Class I/II objects. The JHK photometry<br />

of the globule also revealed a population of young stars, situated ma<strong>in</strong>ly <strong>in</strong> a<br />

dense embedded subcluster, about 2.5 arcm<strong>in</strong> south-west of IRAS 21246+5743. This<br />

cluster co<strong>in</strong>cides with a clump of dense gas. The other young stars are almost uniformly<br />

distributed <strong>in</strong> the observed field.<br />

Zhou et al. (2006) mapped IC 1396 W <strong>in</strong> the CO(1-0) l<strong>in</strong>e, and found that its<br />

CO molecular cloud may consist of three physically dist<strong>in</strong>ct components with different<br />

velocities. They detected neither molecular outflows nor the dense cores associated<br />

with candidate driv<strong>in</strong>g sources. One possible reason is that CO(1-0) and its isotopes<br />

cannot trace high density gas, and another is that the beam of the observation was too<br />

large to observe them. The CO cloud may be part of the natal molecular cloud of<br />

IC 1396 W, <strong>in</strong> the process of disrupt<strong>in</strong>g and blow<strong>in</strong>g away. The CO cloud seems to be<br />

<strong>in</strong> the foreground of the H 2 outflows.<br />

IC 1396A, Elephant Trunk nebula conta<strong>in</strong>s an <strong>in</strong>termediate mass (M ∼ 3 M⊙, Sp.<br />

type: F9 – Hernández et al. 2004) pre-ma<strong>in</strong> sequence star, LkHα 349 (Herbig & Rao<br />

1972; Hessman et al. 1995) and a K7 type T Tauri star LkHα 349c (Cohen & Kuhi<br />

1979; Herbig & Bell 1988). No other YSOs were known before the Spitzer Space<br />

Telescope. Radio cont<strong>in</strong>uum maps of IC 1396A at 6 cm and 11 cm were obta<strong>in</strong>ed by<br />

Baars & Wendker (1976). The maps suggested the presence of an HII region with<strong>in</strong> the<br />

globule.


57<br />

Figure 18. Hα emission stars <strong>in</strong> bright rimmed globules of IC 1396, found by<br />

Ogura et al. (2002). Top: BRC 33, BRC 34; middle: BRC 37, BRC 38(≡ IC 1396 N);<br />

bottom: BRC 39. The position of the IRAS source associated with the globule is<br />

drawn by a pair of thick tick marks.


58<br />

Table 12. Herbig–Haro objects <strong>in</strong> IC 1396<br />

name RA(J2000) Dec(J2000) source Ref.<br />

HH 864 A 21 26 01.4 57 56 09 IRAS 21246+5743 1<br />

21 26 02.0 57 56 09 IRAS 21246+5743 1<br />

HH 864 B 21 26 07.9 57 56 03 IRAS 21246+5743 1<br />

HH 864 C 21 26 21.3 57 57 40 IRAS 21246+5743 1<br />

21 26 18.6 57 57 12 IRAS 21246+5743 1<br />

HH 588SW2D 21 40 10.5 56 33 46 IRAS 21388+5622 2<br />

HH 588SW2C 21 40 12.2 56 34 08 IRAS 21388+5622 2<br />

HH 588SW2A 21 40 16.7 56 33 55 IRAS 21388+5622 2<br />

HH 588SW2B 21 40 18.4 56 34 16 IRAS 21388+5622 2<br />

HH 777 21 40 21.6 58 15 49 IRAS 21391+5802 3<br />

HH 778 21 40 22.8 58 19 19 3<br />

HH 588SW1A 21 40 24.6 56 35 07 IRAS 21388+5622 2<br />

HH 588SW1B 21 40 26.6 56 34 40 IRAS 21388+5622 2<br />

HH 588SW1C 21 40 27.5 56 34 55 IRAS 21388+5622 2<br />

HH 588 21 40 29.1 56 35 55 IRAS 21388+5622 2<br />

HH 588NE1B 21 40 32.1 56 36 25 IRAS 21388+5622 2<br />

HH 588NE1C 21 40 32.1 56 36 30 IRAS 21388+5622 2<br />

HH 588NE1A 21 40 33.5 56 36 16 IRAS 21388+5622 2<br />

HH 588NE1D 21 40 33.5 56 36 32 IRAS 21388+5622 2<br />

HH 588NE1E 21 40 34.6 56 36 33 IRAS 21388+5622 2<br />

HH 589C 21 40 35.0 58 14 37 IRAS 21391+5802 2<br />

HH 590 21 40 35.1 58 17 52 2<br />

HH 591 21 40 35.8 58 18 21 2<br />

HH 592 21 40 36.8 58 17 02 2<br />

HH 589A 21 40 37.5 58 14 45 IRAS 21391+5802 2<br />

HH 589B 21 40 37.7 58 14 25 IRAS 21391+5802 2<br />

HH 593 21 40 45.2 58 16 09 2<br />

HH 588NE2E 21 40 45.6 56 37 15 IRAS 21388+5622 2<br />

HH 588NE2D 21 40 47.8 56 37 02 IRAS 21388+5622 2<br />

HH 779 21 40 47.9 58 13 35 3<br />

HH 588NE2C 21 40 49.0 56 37 07 IRAS 21388+5622 2<br />

HH 588NE2B 21 40 49.3 56 37 09 IRAS 21388+5622 2<br />

HH 588NE2A 21 40 49.7 56 37 27 IRAS 21388+5622 2<br />

HH 780 21 40 53.1 58 14 16 3<br />

HH 594 21 40 53.8 58 17 02 2<br />

HH 595 21 41 00.2 58 16 52 2<br />

HH 588NE3 21 41 00.0 56 37 19 IRAS 21388+5622 1<br />

21 41 01.0 56 37 25 IRAS 21388+5622 1<br />

HH 865A 21 44 28.5 57 32 01 IRAS 21445+5712 1<br />

21 44 29.3 57 32 24 IRAS 21445+5712 1<br />

HH 865B 21 45 10.5 57 29 51 IRAS 21445+5712 1<br />

GGD 36 21 58 30.0 58 56 00 4<br />

HH 354 22 07 42.5 59 11 53 IRAS 22051+5848 1,5<br />

References. 1 – Froebrich et al. (2005); 2 – Ogura et al. (2002); 3 – Reipurth et al. (2003); 4 – Gyulbudaghian<br />

et al. (1987); 5 – Reipurth, Bally, & Dev<strong>in</strong>e (1997).<br />

Spitzer Space Telescope images at 3.6, 4.5, 5.8, 8, and 24 µm (Reach et al. 2004)<br />

revealed this optically dark globule to be <strong>in</strong>frared-bright and to conta<strong>in</strong> a set of previously<br />

unknown protostars. The mid-<strong>in</strong>frared colors of the sources detected at 24 µm<br />

<strong>in</strong>dicate several very young (Class I or 0) protostars and a dozen Class II stars. Three of<br />

the new sources (IC 1396A γ, 1396Aδ, and 1396Aǫ) emit over 90% of their bolometric<br />

lum<strong>in</strong>osities at wavelengths longer than 3 µm, and they are located with<strong>in</strong> 0.02 pc of<br />

the ionization front at the edge of the globule. Many of the sources have spectra that are<br />

still ris<strong>in</strong>g at 24 µm. The two previously known young stars LkHα 349 and 349c are<br />

both detected, with component c harbor<strong>in</strong>g a massive disk and LkHα 349 itself be<strong>in</strong>g


are. About 5% of the mass of the globule is presently <strong>in</strong> the form of protostars <strong>in</strong> the<br />

10 5 –10 6 yr age range.<br />

The globule mass was estimated to be 220 M⊙ from a high-resolution CO map<br />

(Patel et al. 1995), much smaller than the virial mass, estimated as 300–800 M⊙ (Patel<br />

et al. 1995; Weikard et al. 1996).<br />

59<br />

Figure 19. YSOs <strong>in</strong> IC 1396A, discovered by Spitzer Space Telescope (Sicilia-<br />

Aguilar et al. 2006a), overplotted on the DSS red image of the globule. Circles mark<br />

Class I, and star symbols Class II sources. Diamonds mark uncerta<strong>in</strong> members.<br />

Sicilia-Aguilar et al. (2006a), based on IRAC and MIPS photometry, identified 57<br />

YSOs born <strong>in</strong> the Elephant Trunk. Most of them have no optical counterparts. Based on<br />

the color <strong>in</strong>dices and the shape of the SEDs, Sicilia-Aguilar et al. identified 11 Class I<br />

and 32 Class II objects. Their average age is about 1 Myr. The surface distribution of<br />

these objects is displayed <strong>in</strong> Fig. 19, adopted from Sicilia-Aguilar et al. (2006a).<br />

Valdettaro et al. (2005, 2008) detected H 2 O maser emission from the direction<br />

of IRAS 21345+5714, associated with IC 1396A. Probably each protostar observed by<br />

Spitzer contribute to the fluxes of the IRAS source.<br />

BRC 37, IC 1396H High resolution 12 CO, 13 CO and CS observations of this globule<br />

have been performed by Duvert et al. (1990). They detected a bipolar outflow and<br />

identified the possible optical counterpart of the driv<strong>in</strong>g source IRAS 21388+5622.<br />

Sugitani et al. (1997) reported on <strong>in</strong>terferometric 13 CO observations of BRC 37. They<br />

found evidence of <strong>in</strong>teraction with the UV radiation from the excit<strong>in</strong>g star of IC 1396.<br />

Bronfman et al. (1996) <strong>in</strong>cluded IRAS 21388+5622 <strong>in</strong> their CS(2–1) survey of IRAS<br />

po<strong>in</strong>t sources with color characteristic of ultracompact H II regions. In order to study<br />

the age distribution of stars Ogura et al. (2007) undertook BV I c JHK s photometry<br />

of stars <strong>in</strong> and around some bright rimmed globules <strong>in</strong>clud<strong>in</strong>g BRC 37. Their results<br />

<strong>in</strong>dicate that star formation proceeds from the excit<strong>in</strong>g star outward of the HII region.<br />

Ikeda et al. (2008) carried out near-IR/optical observations of BRC 37 <strong>in</strong> order to study


60<br />

the sequential star formation <strong>in</strong> the globule. Several results published by Ogura et al.<br />

(2002) are revised <strong>in</strong> the paper. Valdettaro et al. (2008) detected H 2 O maser emission<br />

from IRAS 21388+5622.<br />

IC 1396N Serabyn et al. (1993) estimated the density and temperature structure of<br />

this globule (they use the designation IC 1396E), and found evidence of the possibility<br />

that recent <strong>in</strong>ternal star formation was triggered by the ionization front <strong>in</strong> its southern<br />

surface. On the basis of NH 3 data, gas temperatures <strong>in</strong> the globule are found to<br />

<strong>in</strong>crease outward from the center, from a m<strong>in</strong>imum of 17 K <strong>in</strong> its tail to a maximum<br />

of 26 K on the surface most directly fac<strong>in</strong>g the stars ioniz<strong>in</strong>g IC 1396. Sugitani et al.<br />

(2000) performed 2 mm cont<strong>in</strong>uum observations of IC 1396N (BRC 38). Codella et al.<br />

(2001) reported mm-wave multil<strong>in</strong>e and cont<strong>in</strong>uum observations of IC 1396N. S<strong>in</strong>gledish<br />

high resolution observations <strong>in</strong> CO and CS l<strong>in</strong>es reveal the cometary structure of<br />

the globule with unprecedented detail. The globule head conta<strong>in</strong>s a dense core of 0.2<br />

pc, whereas the tail, po<strong>in</strong>t<strong>in</strong>g away from the excit<strong>in</strong>g star, has a total length of 0.8 pc.<br />

Two high velocity bipolar outflows have been identified <strong>in</strong> the CO maps: the first one<br />

is located around the position of the strong <strong>in</strong>frared source IRAS 21391+5802 <strong>in</strong> the<br />

head of the globule, and the second one is located <strong>in</strong> the northern region. The outflows<br />

emerge from high density clumps which exhibit strong l<strong>in</strong>e emission of CS, HCO + ,<br />

and DCO + . The sources driv<strong>in</strong>g the outflows have been identified by mm-wave cont<strong>in</strong>uum<br />

observations (e.g. Beltrán et al. 2002). The globule head harbors two YSOs<br />

separated by about 10 4 AU. SiO l<strong>in</strong>e observations of the central outflow unveil a highly<br />

collimated structure with four clumps of sizes pc, which are located along the outflow<br />

axis and suggest episodic events <strong>in</strong> the mass loss process from the central star.<br />

Nis<strong>in</strong>i et al. (2001) presented near <strong>in</strong>frared images of IC 1396N <strong>in</strong> the H 2 2.12 µm<br />

narrow band filter as well as <strong>in</strong> broad band J, H, and K filters. They detected several<br />

cha<strong>in</strong>s of collimated H 2 knots <strong>in</strong>side the globule, hav<strong>in</strong>g different lum<strong>in</strong>osities<br />

but similar orientations <strong>in</strong> the sky. Most of the knots are associated with peaks of<br />

high velocity CO emission, <strong>in</strong>dicat<strong>in</strong>g that they trace shocked regions along collimated<br />

stellar jets. From the morphology and orientation of the H 2 knots, they identify at<br />

least three different jets: one of them is driven by the young protostar associated with<br />

IRAS 21391+5802, while only one of the two other driv<strong>in</strong>g sources could be identified<br />

by means of near <strong>in</strong>frared photometry. The NIR photometry revealed the existence of a<br />

cluster of young embedded sources located <strong>in</strong> a south-north l<strong>in</strong>e which follows the distribution<br />

of the high density gas and testifies to a highly efficient star formation activity<br />

through all the globule. Valdettaro et al. (2005) and Furuya et al. (2003) detected H 2 O<br />

maser emission from IC 1396N.<br />

Saraceno et al. (1996) present a far-<strong>in</strong>frared spectrum of IRAS 21391+5802, together<br />

with submillimeter and millimeter photometry. A rich spectrum of CO, OH, and<br />

H 2 O l<strong>in</strong>es are detected <strong>in</strong> the ISO-LWS spectrum, <strong>in</strong>dicative of a warm, dense region<br />

around the source. They also obta<strong>in</strong>ed an accurate measure of the bolometric lum<strong>in</strong>osity<br />

and an estimate of the total envelope mass.<br />

Reipurth et al. (2003) identified a major Herbig-Haro flow, HH 777, that is burst<strong>in</strong>g<br />

out of the IC 1396N cometary cloud core. Near- and mid-<strong>in</strong>frared images reveal a very<br />

red object embedded <strong>in</strong> the center of the core, located on the symmetry axis of the large<br />

HH 777 flow, suggest<strong>in</strong>g that this is likely the driv<strong>in</strong>g source. The projected separation<br />

of the work<strong>in</strong>g surface from the source is 0.6 pc. Additionally, 0.4 pc to the east of the<br />

source and on the flow axis, there is a fa<strong>in</strong>t, previously known HH object (HH 594) that


61<br />

HH 778<br />

HH 777 IRS<br />

HH 777<br />

HH 780<br />

HH 779<br />

Figure 20. Members of the young cluster born <strong>in</strong> IC 1396N, overplotted on the<br />

DSS red image of the globule. <strong>Star</strong> symbols show the X-ray sources associated with<br />

Class II objects, plusses mark those correspond<strong>in</strong>g to Class I objects (Getman et<br />

al. 2007), diamonds show the Hα emission stars detected by Ogura et al. (2002),<br />

and open circles <strong>in</strong>dicate the near-<strong>in</strong>frared sources found by Nis<strong>in</strong>i et al. (2001).<br />

Positions of the HH objects, discovered by Reipurth et al. (2003), are <strong>in</strong>dicated and<br />

a large thick cross shows the position of HH 777 IRS.<br />

may be part of the counterflow (Ogura et al. 2002). It thus appears that we are see<strong>in</strong>g a<br />

blowout of a parsec-scale flow <strong>in</strong>to the surround<strong>in</strong>g H II region.<br />

IC 1396N has been observed with the ACIS detector on board the Chandra X-Ray<br />

Observatory (Getman et al. 2007). 25 of the 117 detected X-ray sources are associated<br />

with young stars formed with<strong>in</strong> the globule. Infrared photometry (2MASS and<br />

Spitzer) shows that the X-ray population is very young: 3 older Class III stars, 16 classical<br />

T Tauri stars, and 6 protostars <strong>in</strong>clud<strong>in</strong>g a Class 0/I system. The total T Tauri<br />

population <strong>in</strong> the globule, <strong>in</strong>clud<strong>in</strong>g the undetected population, amount to ∼30 stars,<br />

which implies a star formation efficiency of 1%-4%. Four of the X-ray-selected members<br />

co<strong>in</strong>cide with near-<strong>in</strong>frared sources reported by Nis<strong>in</strong>i et al. (2001), and 9 of them<br />

correspond to Hα emission stars detected by Ogura et al. (2002). An elongated spatial<br />

distribution of sources with an age gradient oriented toward the excit<strong>in</strong>g star is discovered<br />

<strong>in</strong> the X-ray population. The geometric and age distribution is consistent with<br />

the radiation-driven implosion model for triggered star formation <strong>in</strong> cometary globules<br />

by H II region shocks. The large number of X-ray-lum<strong>in</strong>ous protostars <strong>in</strong> the globule<br />

suggests either an unusually high ratio of Class I/0 to Class II/III stars or a nonstandard<br />

<strong>in</strong>itial mass function favor<strong>in</strong>g higher mass stars by the trigger<strong>in</strong>g process. The Chandra<br />

source associated with the lum<strong>in</strong>ous Class 0/I protostar IRAS 21391+5802 is one of the<br />

youngest stars ever detected <strong>in</strong> the X-ray band. Table 13 shows the list of young stars<br />

identified by their X-ray emission, together with their NIR (2MASS) and MIR (Spitzer


62<br />

Table 13. Young stellar objects <strong>in</strong> IC 1396N detected by Chandra, and their <strong>in</strong>frared<br />

counterparts (Getman et al. 2007)<br />

Source NIR(2MASS) MIR<br />

No. CXOU J J H K s [3.6] [4.5] [5.8] Class Other Id. ∗<br />

(mag) (mag) (mag) (mag) (mag) (mag)<br />

41 214027.31+581421.1 14.30 13.30 12.88 11.62 11.09 10.74 II OSP 2<br />

49 214031.58+581755.2 14.03 12.89 12.39 11.51 11.16 10.23 II OSP 4<br />

53 214036.57+581345.8 13.51 12.58 12.24 12.13 11.94 12.01 III OSP 5<br />

55 214036.90+581437.9 11.90 10.89 10.23 9.38 9.10 8.76 II OSP 6<br />

60 214039.62+581609.3 11.29 9.42 8.31 I a NMV 2<br />

61 214039.87+581834.8 >18.29 15.30 13.36 11.63 10.95 10.21 II NMV 3<br />

62 214041.12+581359.0 12.96 12.08 11.77 11.61 11.72 11.49 III<br />

63 214041.16+581511.2 12.97 11.61 10.68 9.15 8.61 8.05 II OSP 9<br />

65 214041.56+581425.5 13.65 12.62 12.17 11.40 11.20 10.68 II OSP 10<br />

66 214041.81+581612.3 11.30 8.90 7.50 0/I b<br />

67 214041.91+581523.1 15.68 14.30 13.65 12.69 12.49 >9.82 II<br />

68 214042.89+581601.0 10.60 8.78 7.60 I c<br />

70 214043.47+581559.7 12.89 11.95 >9.85 I/II<br />

71 214043.64+581618.9 >17.89 >16.09 13.51 9.97 8.72 8.00 I NMV 10<br />

72 214044.34+581513.3 16.05 14.59 13.60 12.42 11.64 10.60 II<br />

73 214044.84+581605.1 >15.85 14.28 12.89 11.73 11.15 10.68 II NMV 11<br />

74 214044.85+581503.4 14.62 13.35 12.66 12.29 11.40 10.96 II OSP 11<br />

76 214045.18+581559.8 11.95 10.82 10.03 I<br />

77 214045.51+581511.4 14.65 13.71 13.11 12.54 12.21 11.82 II<br />

78 214045.53+581602.9 15.68 13.73 12.85 12.23 11.84 >10.37 II<br />

80 214045.79+581549.0 12.59 11.19 10.04 I<br />

81 214046.49+581523.2 12.81 11.95 11.65 11.37 11.33 11.39 III<br />

82 214046.89+581533.3 15.30 13.55 12.63 11.97 11.80 11.15 II<br />

85 214048.03+581537.9 13.89 12.95 12.67 12.08 11.91 10.77 II OSP 12<br />

87 214049.09+581709.3 14.14 12.86 12.13 10.77 10.19 9.69 II OSP 15<br />

∗ OSP: Ogura et al. (2002); NMV: Nis<strong>in</strong>i et al. (2001)<br />

a X-ray source 60 is offset by 3.2 ′′ to the north of the radio cont<strong>in</strong>uum source VLA 1 and by 5.0 ′′ to the<br />

northwest of the millimeter source BIMA 1 of Beltrán et al. (2002).<br />

b X-ray source 66 is with<strong>in</strong> 0.5 ′′ of the radio cont<strong>in</strong>uum source VLA 2 and millimeter source BIMA 2 of<br />

Beltrán et al. (2002). This is also millimeter source A of Codella et al. (2001).<br />

c X-ray source 68 is with<strong>in</strong> 1.0 ′′ of the radio cont<strong>in</strong>uum source VLA 3 and millimeter source BIMA 3 of<br />

Beltrán et al. (2002).<br />

IRAC) magnitudes. Positions of the young stars born <strong>in</strong> this globule and some of the<br />

associated HH objects are displayed <strong>in</strong> Fig. 20.<br />

Neri et al. (2007) <strong>in</strong>vestigated the mm-morphology of IC 1396N at a scale of<br />

∼250 AU. They have mapped the thermal dust emission at 3.3 and 1.3 mm, and the<br />

emission from the J=13 k → 12 k hyperf<strong>in</strong>e transitions of methyl cyanide (CH 3 CN) <strong>in</strong><br />

the most extended configurations of the IRAM Plateau de Bure <strong>in</strong>terferometer. The<br />

observation revealed the existence of a sub-cluster of hot cores <strong>in</strong> IC 1396 N, consist<strong>in</strong>g<br />

of at least three cores, and distributed <strong>in</strong> a direction perpendicular to the emanat<strong>in</strong>g<br />

outflow. The cores are embedded <strong>in</strong> a common envelope of extended and diffuse<br />

dust emission. The CH 3 CN emission peaks towards the most massive hot core and is<br />

marg<strong>in</strong>ally extended <strong>in</strong> the outflow direction. The protocluster IC 1396N has been <strong>in</strong>-


cluded <strong>in</strong> a high angular resolution imag<strong>in</strong>g survey of the circumstellar material around<br />

<strong>in</strong>termediate mass stars conducted by Fuente (2008), as well as <strong>in</strong> a study of cluster<strong>in</strong>g<br />

properties of Class 0 protostars by Fuente et al. (2007).<br />

IC 1396 East (IC 1396G) IRAS 21445+5712, associated with this globule, co<strong>in</strong>cides<br />

with a fa<strong>in</strong>t, red, nebulous star (Schwartz et al. 1991). Ogura et al. (2002) detected<br />

Hα emission <strong>in</strong> the spectrum of this star (BRC 39 No. 3). Fukui (1989) detected a<br />

molecular outflow associated with IRAS 21445+5712. Connelley et al. (2007) found<br />

a small, elongated near-<strong>in</strong>frared nebula around the star. IRAS 21445+5712 has been<br />

<strong>in</strong>cluded <strong>in</strong> several surveys for H 2 O maser sources (Felli et al. 1992; Wouterloot et al.<br />

1993; Furuya et al. 2003; Valdettaro et al. 2008). High-resolution VLA observations by<br />

Valdettaro et al. (2008) resulted <strong>in</strong> the first detection of water maser emission associated<br />

with IRAS 21445+5712.<br />

L 1165 This cloud, harbor<strong>in</strong>g IRAS 22051+5848, is <strong>in</strong>cluded <strong>in</strong> several studies of<br />

the globules associated with IC 1396 (e.g. Schwartz et al. 1991; Gyulbudaghian 1985;<br />

Froebrich et al. 2005), though it lies at 2.6 ◦ east of the H II zone (correspond<strong>in</strong>g to<br />

some 30 pc at the distance of IC 1396). IRAS 22051+5848 is associated with a small<br />

reflection nebula, catalogued as Gy 2–21 by Gyulbudaghian (1982). Schwartz et al.<br />

(1991) note that, accord<strong>in</strong>g to its CO radial velocity (Gyulbudaghian et al. 1986), this<br />

globule may be foreground to IC 1396. Parker, Padman & Scott (1991) observed a<br />

bipolar CO outflow orig<strong>in</strong>at<strong>in</strong>g from IRAS 22051+5848. Tapia et al. (1997) presented<br />

near-<strong>in</strong>frared, IJHK, images of the globule. They identified the NIR counterpart of<br />

the IRAS source and an extended <strong>in</strong>frared nebula around it. Reipurth, Bally, & Dev<strong>in</strong>e<br />

(1997) detected a giant Herbig–Haro flow, HH 354, associated with IRAS 22051+5848.<br />

Reipurth & Asp<strong>in</strong> (1997) obta<strong>in</strong>ed a near-<strong>in</strong>frared spectrum of the source, also known as<br />

HH 354 IRS. They concluded that the detected CO absorption and the high lum<strong>in</strong>osity<br />

of the star suggest that HH 354 IRS is probably a FUor. Visser et al. (2002) detected a<br />

submillimeter source, L 1165 SMM 1, associated with the globule. Slysh et al. (1997)<br />

observed an OH maser emission at the position of the IRAS source. L 1165 is <strong>in</strong>cluded<br />

<strong>in</strong> the CS(2–1) survey of IRAS po<strong>in</strong>t sources with colors characteristic of ultracompact<br />

H II regions published by Bronfman et al. (1996). The distance of L 1165 is uncerta<strong>in</strong>.<br />

Several authors (e.g. Reipurth, Bally, & Dev<strong>in</strong>e 1997; Froebrich et al. 2005) associate<br />

this cloud with IC 1396, whereas others, e. g. Tapia et al. (1997) assume a k<strong>in</strong>ematic<br />

distance of 200 pc, and Visser et al. (2002) use 300 pc, with a reference to Dobashi et<br />

al. (1994). This value is based on the assumption that the cloud is part of the L<strong>in</strong>dblad<br />

r<strong>in</strong>g. Gyulbudaghian et al. (1986) associate L 1165 with a radial system of globules<br />

centered on the A0 type giant HD 209811. The Hipparcos parallax of this star suggests<br />

a distance of about 400 pc.<br />

63<br />

4. <strong>Star</strong> Formation along the <strong>Cepheus</strong> Bubble<br />

The <strong>Cepheus</strong> Bubble is a giant far <strong>in</strong>frared r<strong>in</strong>g-like structure around Cep OB2a, described<br />

by Kun et al. (1987), and identified as an HI shell by Patel et al. (1998) and<br />

Ábrahám et al. (2000). Several HII regions, such as IC 1396, S 140, S 134, S 129, and<br />

G 99.1+07.4 (Kuchar & Clark 1997) are located on the periphery of the r<strong>in</strong>g. The<br />

similarity of the distances of these HII regions (700–900 pc) and the presence of the<br />

<strong>in</strong>frared r<strong>in</strong>g-like structure apparently connect<strong>in</strong>g them suggest that the <strong>in</strong>frared r<strong>in</strong>g is


64<br />

22 20 22 00 21 40 21 20 21 00<br />

66 00<br />

NGC 7129<br />

66 00<br />

64 00<br />

S145<br />

S140<br />

64 00<br />

Dec (J2000)<br />

62 00<br />

L1188<br />

HD 207198<br />

62 00<br />

60 00<br />

G99.1+07.4<br />

S129<br />

60 00<br />

58 00<br />

S134<br />

VDB 140<br />

58 00<br />

56 00<br />

IC 1396<br />

56 00<br />

22 20 22 00 21 40 21 20 21 00<br />

RA (J2000)<br />

Figure 21. IRAS 100 µm (IRIS) image of the <strong>Cepheus</strong> Bubble. The HII regions<br />

and reflection nebulae, probably associated with the Bubble (Kun et al. 1987),<br />

are <strong>in</strong>dicated. <strong>Star</strong> symbols show the O-type and supergiant members of Cep OB2<br />

(Humphreys 1978).<br />

a real feature and is physically connected with the HII regions. It was probably created<br />

by the stellar w<strong>in</strong>ds and supernova explosions of the evolved high-mass members<br />

of Cep OB2a. In particular, the O9 IIe type star HD 207198, located near the center<br />

of the Bubble, may be a major source of powerful stellar w<strong>in</strong>d (Ábrahám et al. 2000).<br />

Figure 21 shows the distribution of the IRAS 100 µm emission over the area of the Bubble.<br />

The known HII regions and reflection nebulae, as well as the O-type and supergiant<br />

members of Cep OB2 are <strong>in</strong>dicated <strong>in</strong> the figure. CO observations performed by Patel<br />

et al. (1998) over the 10 ◦ × 10 ◦ area of the <strong>Cepheus</strong> Bubble revealed the molecular<br />

clouds associated with it. They found a total molecular mass of 1 × 10 5 M⊙. Most of<br />

the molecular mass is associated with L 1204/S 140 and IC 1396, but there are further<br />

molecular clouds whose star form<strong>in</strong>g activity has not yet been studied. Patel et al. have<br />

shown that the shapes and k<strong>in</strong>ematic properties of the IC 1396 globules <strong>in</strong>dicate their<br />

<strong>in</strong>teraction with the Bubble. The most comprehensive list of clouds and star form<strong>in</strong>g re-


gions associated with the <strong>Cepheus</strong> Bubble can be found <strong>in</strong> Kiss, Moór & Tóth’s (2004)<br />

Table C.<br />

4.1. <strong>Star</strong> Formation <strong>in</strong> S 140<br />

The HII region S 140 is located at the southwestern edge of the L 1204 dark cloud, along<br />

the <strong>Cepheus</strong> Bubble (Ábrahám et al. 2000), at a distance of about 900 pc from the Sun<br />

(Crampton & Fisher 1974). The ionization of the clouds is ma<strong>in</strong>ta<strong>in</strong>ed by HD 211880, a<br />

B0V star (Blair et al. 1978). It is separated from L 1204 by a nearly edge-on ionization<br />

front. The core of the cloud is totally <strong>in</strong>visible <strong>in</strong> optical images while even the earliest<br />

<strong>in</strong>frared and radio observations have suggested that there is a dense cluster <strong>in</strong> the center<br />

of the core. Rouan et al. (1977) detected far-<strong>in</strong>frared emission from a region <strong>in</strong> L 1204,<br />

a few arcm<strong>in</strong> NE of S 140. They deduced a dust temperature of about 35 K, computed<br />

the total IR <strong>in</strong>tensity, and estimated a mass of 600 M⊙ for the observed area. Further<br />

<strong>in</strong>frared and submillimeter studies of the <strong>in</strong>frared source, S 140 IRS (Tokunaga et al.<br />

1978; D<strong>in</strong>erste<strong>in</strong> et al. 1979; Beichman et al. 1979; Little et al. 1980; Hackwell et al.<br />

1982; Thronson et al. 1983) confirmed that the heat<strong>in</strong>g source of the cloud is a small<br />

cluster of embedded stars.<br />

Several observational studies have been carried out to study the region <strong>in</strong> different<br />

wavelength regimes. These are mostly focused on the photon-dom<strong>in</strong>ated region (PDR)<br />

at the edge of L 1204, and on the embedded <strong>in</strong>frared sources located right beh<strong>in</strong>d it<br />

(e.g. Hayashi et al. 1985; Keene et al. 1985; Lester et al. 1986; Schwartz et al. 1989;<br />

Hasegawa et al. 1991; Golynk<strong>in</strong> & Konovalenko 1991; Smirnov et al. 1992; Plume et<br />

al. 1994; Wilner & Welch 1994; Zhou et al. 1994; Schneider et al. 1995; M<strong>in</strong>ch<strong>in</strong> et<br />

al. 1995a,c; Stoerzer et al. 1995; Park & M<strong>in</strong>h 1995; Preibisch & Smith 2002; Bally et<br />

al. 2002; Poelman & Spaans 2006, 2005). VLA observations of the 6 cm H 2 CO l<strong>in</strong>e<br />

by Evans et al. (1987) revealed absorption of the cosmic background radiation towards<br />

a 4 ′ × 3 ′ region of the S 140 molecular cloud with structures on scales from 20 ′′ to 4 ′ .<br />

They attributed these structures to clumps with masses around 40 M⊙ and suggested<br />

that the clumps represent the first stages of the fragmentation of this portion of the<br />

cloud (although they did not rule out the possibility that the absorption maxima are low<br />

density holes surrounded by high-density regions). VLA observation of NH 3 by Zhou<br />

et al. (1993), however, showed absence of significant NH 3 (1,1) emission at the H 2 CO<br />

absorption peaks, <strong>in</strong>dicat<strong>in</strong>g that the peaks correspond to low density “holes” rather<br />

than high-density clumps. The high density molecular gas was studied by Ungerechts et<br />

al. (1986), who mapped the region us<strong>in</strong>g NH 3 (1,1) and (2,2), and found that the column<br />

density and rotational temperature peak at the position of the embedded <strong>in</strong>frared source.<br />

The k<strong>in</strong>etic temperature is peaked at 40 K and decreas<strong>in</strong>g smoothly to 20 K with<strong>in</strong> the<br />

neighborhood of the <strong>in</strong>frared source. Zeng et al. (1991) studied the hyperf<strong>in</strong>e structures<br />

of HCN (1-0) emission from the high density molecular core.<br />

Several optical, near-, mid- and far-<strong>in</strong>frared, and radio surveys were carried out<br />

look<strong>in</strong>g for young stars <strong>in</strong> the region (e.g. Rouan et al. 1977; Beichman et al. 1979;<br />

Hayashi et al. 1987; Evans et al. 1989; Persi et al. 1995; Ogura et al. 2002; Bally et al.<br />

2002; Preibisch & Smith 2002). Beichman, Beckl<strong>in</strong> & Wynn-Williams (1979) provided<br />

the first catalog of young stellar objects, consist<strong>in</strong>g of three <strong>in</strong>frared sources, IRS 1, 2, 3.<br />

Later Evans et al. (1989) added two additional sources (VLA 4 and NW) to the catalog<br />

from observations us<strong>in</strong>g the VLA at 6 and 2 cm. The positions of the sources can<br />

be found <strong>in</strong> Table 14. From the spectral <strong>in</strong>dices of IRS 1–3 they concluded that the<br />

radio emission from these sources orig<strong>in</strong>ates from optically th<strong>in</strong> HII regions ionized<br />

65


66<br />

by Lyman-cont<strong>in</strong>uum photons from s<strong>in</strong>gle, ma<strong>in</strong> sequence stars with spectral type of<br />

B1.5-B2. Evans et al. (1989) also carried out near-IR photometry us<strong>in</strong>g the NOAO<br />

<strong>in</strong>frared camera at 1.2, 1.65, and 2.2 µm. They detected all known far-IR sources<br />

except IRS 2 and found additional 11 sources <strong>in</strong> the near-IR. At least five of these near-<br />

IR sources appear to be discrete sources, suggest<strong>in</strong>g that a deeply embedded young<br />

cluster is form<strong>in</strong>g <strong>in</strong> the region. Another cluster, conta<strong>in</strong><strong>in</strong>g about 100 near-IR sources<br />

associated with S 140, was discovered north of the region by a K ′ -band imag<strong>in</strong>g survey<br />

by Hodapp (1994).<br />

Joyce & Simon (1986) carried out a near-<strong>in</strong>frared polarization study and found an<br />

extremely high level of 2.2 µm polarization towards S 140 IRS 1, <strong>in</strong>dicat<strong>in</strong>g an outflow<br />

directed nearly along our l<strong>in</strong>e of sight. This f<strong>in</strong>d<strong>in</strong>g was later confirmed by Hayashi<br />

et al. (1987) who observed the HII region <strong>in</strong> 12 CO and 13 CO. M<strong>in</strong>ch<strong>in</strong> et al. (1993)<br />

found that the blue and redshifted lobes of the CO bipolar outflow have position angles<br />

of 160 ◦ and 340 ◦ , respectively. The high-resolution CS map obta<strong>in</strong>ed by Hayashi &<br />

Murata (1992) reveals a prom<strong>in</strong>ent V-shaped ridge or a r<strong>in</strong>g around the S 140 IR cluster<br />

encircl<strong>in</strong>g the blue and red lobes of the molecular outflow, with no emission detected<br />

<strong>in</strong> the vic<strong>in</strong>ity of the IR sources. The observations suggest that the CS r<strong>in</strong>g is a remnant<br />

of a nearly pole-on massive gaseous disk <strong>in</strong>teract<strong>in</strong>g with the high-velocity outflow.<br />

Figure 22. Schematic representation of the S 140/L 1204 region show<strong>in</strong>g the plane<br />

that conta<strong>in</strong>s the observer, the external illum<strong>in</strong>at<strong>in</strong>g star HD 211880, the HII region/molecular<br />

cloud <strong>in</strong>terface and the embedded molecular outflow. Fig 2. of<br />

M<strong>in</strong>ch<strong>in</strong> et al. (1995b).<br />

A self-consistent model of the region, consistent with all the molecular, atomic<br />

and submm cont<strong>in</strong>uum data was provided by M<strong>in</strong>ch<strong>in</strong> et al. (1995b) (see Fig. 22).<br />

Accord<strong>in</strong>g to their model the eastern ridge is the dense, clumpy edge of the blueshifted<br />

outflow lobe that is closest to the observer. This outflow has expanded towards the edge<br />

of the molecular cloud so its blueshifted lobe is bounded by the HII region. Outside this


67<br />

Figure 23. Optical and NIR images of S 140 (Preibisch & Smith 2002).<br />

edge is an externally illum<strong>in</strong>ated PDR. The CI emission emanates from the outer edge<br />

of the cloud, with the CS emission trac<strong>in</strong>g the compressed high density gas between the<br />

expand<strong>in</strong>g outflow and PDR regions. The NH 3 and cont<strong>in</strong>uum emission emanate from<br />

the <strong>in</strong>ner edge of the outflow lobe, shielded from the external UV field.


68<br />

Optical and near-<strong>in</strong>frared images of S 140, adopted from Preibisch & Smith (2002)<br />

are displayed <strong>in</strong> Fig. 23. Accord<strong>in</strong>g to the catalog of Porras et al. (2003) the S 140 region<br />

conta<strong>in</strong>s two young stellar groups. One is S 140 itself, another one is S 140 N identified<br />

by Hodapp (1994).<br />

Schwartz (1989) found that the IRS 1 radio source consists of a core source with<br />

a jetlike appendage po<strong>in</strong>t<strong>in</strong>g toward an extended radio source suggest<strong>in</strong>g ejection of an<br />

<strong>in</strong>terstellar bullet of material from IRS 1.<br />

Harker et al. (1997) observed the protostellar system <strong>in</strong> S 140 at 2.2, 3.1 and<br />

3.45 µm. They developed a simple model of the region which has been used to derive<br />

the physical conditions of the dust and gas. IRS 1 is surrounded by a dense dusty<br />

disk viewed almost edge-on. Photons leak<strong>in</strong>g out through the poles of the disk illum<strong>in</strong>ate<br />

the <strong>in</strong>ner edge of a surround<strong>in</strong>g shell of molecular gas as seen at locations NW<br />

and VLA4. Their thick disk model can expla<strong>in</strong> both the observed K−[3.45] color and<br />

scattered light <strong>in</strong>tensity distributions. The observed K−[3.45] color of the bluest regions<br />

implies a cool radiation field with a color temperature of 850-900K. Most likely,<br />

these cool temperatures are the result of reprocess<strong>in</strong>g of the protostellar radiation field<br />

by dust close to the protostar.<br />

K band (2.0-2.3 µm) and H 2 observations have revealed two bipolar outflows <strong>in</strong> the<br />

region (Preibisch & Smith 2002; Weigelt et al. 2002), one of them with an orientation<br />

similar to the CO outflow (160/340 ◦ ) and the other one <strong>in</strong> the 20/200 ◦ direction. Both<br />

bipolar outflows seem to be centered on IRS 1.<br />

Ogura et al. (2002) catalogued 8 stars with visible Hα emission (Table 15, Fig. 24).<br />

The emission l<strong>in</strong>e stars are mostly concentrated around the tip of the bright rim, similarly<br />

to the distribution found for near-IR clusters <strong>in</strong> the vic<strong>in</strong>ity of an IRAS source.<br />

Figure 24. F<strong>in</strong>d<strong>in</strong>g chart for Hα emission objects <strong>in</strong> S 140. G designate ghost<br />

images. (Ogura et al. 2002)<br />

Tafalla et al. (1993) observed the dense gas <strong>in</strong> the L 1204/S 140 molecular complex<br />

us<strong>in</strong>g CS(J = 1-0) and NH 3 . The large-scale CS(J = 1-0) maps show that L 1204<br />

is formed by three filamentary clouds, each be<strong>in</strong>g fragmented <strong>in</strong>to cores of a few hundred<br />

solar masses and surrounded by low-level emission. The most prom<strong>in</strong>ent core is<br />

associated with S 140, the star-form<strong>in</strong>g activity, however, is not restricted to the vic<strong>in</strong>ity<br />

of the HII region, but extends throughout the complex; very red IRAS sources lie


69<br />

Table 14. Position of far-<strong>in</strong>frared sources <strong>in</strong> S 140<br />

number RA (J2000) Dec (J2000)<br />

IRS 1 22 19 18.4 +63 18 55<br />

IRS 2 22 19 18.2 +63 19 05<br />

IRS 3 22 19 19.6 +63 18 50<br />

VLA 4 22 19 17.5 +63 18 41<br />

NW 22 19 18.8 +63 18 57<br />

Table 15. List of Hα emission objects <strong>in</strong> S 140 (Ogura et al. 2002; Ikeda et al. 2008)<br />

number RA (J2000) Dec(J2000) EW(Hα)<br />

1 22 18 47.8 +63 18 18 · · ·<br />

2 22 18 48.5 +63 16 40 13.6<br />

3 22 18 49.6 +63 18 56 · · ·<br />

4 22 18 59.0 +63 18 12 94.8<br />

5 22 18 59.4 +63 19 07 · · ·<br />

6 22 19 03.5 +63 18 01 · · ·<br />

7 22 19 09.9 +63 17 21 26.4<br />

8 22 19 16.9 +63 17 22 163.5<br />

Table 16. List of HH objects <strong>in</strong> S 140<br />

Name RA (J2000) Dec (J2000) Remark from Bally et al. (2002) Ref.<br />

HH 615 22 19 15.6 +63 17 29 [S II] jet aimed at HH 616A 1<br />

HH 616A 22 19 05.9 +63 16 43 Northern tip 1<br />

HH 616B 22 19 05.9 +63 16 26 Middle tip 1<br />

HH 616C 22 19 05.7 +63 16 19 Southern tip 1<br />

HH 616D 22 19 07.1 +63 16 40 Inner shock 1<br />

HH 616E 22 19 12.8 +63 16 43 [S II] edge, southern rim of HH 616 1<br />

HH 616F 22 19 14.3 +63 16 28 [S II] edge, southeastern rim of HH 616 1<br />

HH 617 22 19 03.0 +63 17 53 Northern bow; tip of northern breakout 1<br />

HH 623 22 19 55.0 +63 19 30 Fa<strong>in</strong>t knot east of S 140IR 1<br />

HH 618A 22 19 53.0 +63 19 29 Western part of pair, east of S 140IR 1<br />

HH 618B 22 19 54.9 +63 19 30 Eastern part of pair, east of S 140IR 1<br />

Filament 22 18 52.1 +63 16:08 Hα filament at P.A. = 300 ◦ 1<br />

HH 251 22 19 34.4 +63 32 57 − 2<br />

HH 252 22 19 37.8 +63 32 38 − 2<br />

HH 253 22 19 45.0 +63 31 45 − 2<br />

HH 254 22 19 49.6 +63 31 14 − 2<br />

HH 619 22 19 16.4 +63 32 49 Two knots <strong>in</strong> east-west flow 1<br />

HH 620 22 19 27.6 +63 32 50 Cluster of three knots south of nebular star 1<br />

HH 621 22 19 21.5 +63 34 44 Cluster of knots: HH 251-254 counterflow 1<br />

HH 622 22 19 50.6 +63 35 18 Pair of knots at P.A. = 220 ◦ from nebular star 1<br />

HH 609 22 21 28.8 +63 30 02 Southwestern [S II] knot <strong>in</strong> cha<strong>in</strong> of two 1<br />

HH 610 22 21 33.3 +63 37 34 T<strong>in</strong>y knot west of reflection nebula 1<br />

HH 611 22 21 39.5 +63 36 53 Compact groups of [S II] knots 1<br />

HH 612 22 21 54.5 +63 34 39 Compact diffuse [S II] knot 1<br />

HH 613 22 21 58.5 +63 33 23 Fa<strong>in</strong>t [S II] group 1<br />

HH 614 22 22 01.2 +63 27 56 Diffuse [S II] complex 1<br />

References: (1) Bally et al. (2002); (2) Eiroa et al. (1993).


70<br />

Table 17. List of Class II/I/0 objects <strong>in</strong> S 140 (Megeath et al. 2004)<br />

RA (J2000) Dec (J2000) [3.6] [4.5] [5.8] [8.0] Class<br />

22 18 21.6 +63 15 32 12.38 12.07 11.65 11.09 Class II<br />

22 18 37.2 +63 13 01 12.91 12.49 12.20 11.65 Class II<br />

22 18 48.5 +63 16 40 9.94 9.65 9.22 8.77 Class II<br />

22 18 47.6 +63 18 17 13.03 12.82 12.26 11.38 Class II<br />

22 18 58.8 +63 18 11 11.84 11.32 10.50 9.87 Class II<br />

22 19 03.4 +63 18 00 12.10 11.78 10.99 10.13 Class II<br />

22 19 24.5 +63 14 26 11.81 11.50 11.50 10.92 Class II<br />

22 19 09.7 +63 17 20 11.97 11.62 11.32 10.62 Class II<br />

22 19 28.3 +63 15 07 12.35 11.56 11.43 10.58 Class II<br />

22 19 25.9 +63 18 24 11.70 10.90 10.23 9.50 Class II<br />

22 19 20.4 +63 19 38 10.74 9.98 9.59 8.95 Class II<br />

22 19 28.5 +63 18 49 11.92 11.32 10.51 9.54 Class II<br />

22 19 27.1 +63 19 22 9.80 9.16 7.93 7.06 Class II<br />

22 19 48.7 +63 16 41 11.37 11.22 11.23 10.46 Class II<br />

22 19 29.1 +63 21 01 13.64 12.89 12.29 11.30 Class II<br />

22 19 38.1 +63 19 32 12.85 12.56 11.78 10.83 Class II<br />

22 20 19.2 +63 16 23 13.01 12.65 12.27 11.31 Class II<br />

22 20 21.0 +63 16 14 13.09 12.62 11.81 10.90 Class II<br />

22 20 07.5 +63 18 45 13.32 12.76 12.24 11.18 Class II<br />

22 19 37.0 +63 25 31 12.54 12.36 11.63 10.65 Class II<br />

22 20 27.3 +63 17 07 11.51 11.20 11.02 10.47 Class II<br />

22 20 27.2 +63 17 58 12.31 11.58 11.10 10.34 Class II<br />

22 19 37.9 +63 17 10 11.43 11.18 10.83 9.54 Class II<br />

22 19 15.6 +63 19 33 11.29 9.75 8.90 7.87 Class 0/I<br />

22 19 25.7 +63 18 49 10.61 9.56 8.74 8.12 Class 0/I<br />

22 19 30.9 +63 18 32 11.16 10.13 9.19 8.54 Class 0/I<br />

22 19 32.5 +63 19 24 9.96 8.38 6.24 4.83 Class 0/I<br />

22 19 39.4 +63 19 03 11.94 10.92 10.43 9.70 Class 0/I<br />

22 19 43.5 +63 20 08 11.91 11.18 10.57 9.30 Class 0/I<br />

22 19 52.3 +63 19 01 14.73 12.78 11.86 11.00 Class 0/I<br />

22 19 48.3 +63 20 27 14.24 12.42 11.62 10.86 Class 0/I<br />

22 19 45.5 +63 21 21 14.59 13.01 12.39 11.47 Class 0/I<br />

22 20 18.5 +63 18 57 12.12 10.73 10.07 8.91 Class 0/I<br />

22 20 19.4 +63 19 05 13.90 12.75 11.90 11.05 Class 0/I<br />

22 19 35.1 +63 20 26 14.80 13.40 12.43 12.14 Class 0/I<br />

close to most of the cores, and molecular outflows have been detected <strong>in</strong> half of them.<br />

The ammonia observations reveal velocity shifts of about 0.5-0.8 km/s <strong>in</strong> the dense gas<br />

<strong>in</strong>side the cores with embedded stars. These velocity shifts, although small, are systematic<br />

and tend to divide the cores <strong>in</strong>to two velocity regimes with little overlap. Fast<br />

rotation of the cores or the <strong>in</strong>teraction between the bipolar outflows and the dense gas<br />

(or a comb<strong>in</strong>ation of both) are the most likely causes for these velocity shifts. M<strong>in</strong>ch<strong>in</strong><br />

et al. (1996) studied the structure of the magnetic field by measur<strong>in</strong>g the 800 µm polarization<br />

at three positions towards S 140. Several studies reported detection of water<br />

maser emission toward the S 140 IRS region (e.g. Lekht et al. 1993; Tofani et al. 1995;<br />

Lekht & Sorochenko 2001; Tr<strong>in</strong>idad et al. 2003).<br />

Bally et al. (2002) carried out a wide field CCD survey of Herbig–Haro objects<br />

<strong>in</strong> the S 140 HII region and reported several new Herbig–Haro objects <strong>in</strong> the vic<strong>in</strong>ity<br />

of S 140 (Table 16). They found two large bow shocks, HH 616 and HH 617. The<br />

northern shock, HH 617, is probably associated with the molecular hydrogen outflow


from IRS 3, while the source of the larger velocity southern bow shock, HH 616, is still<br />

unclear. It appears to trace an outflow from an unknown source south of S 140.<br />

Recently a survey us<strong>in</strong>g InfraRed Array Camera (IRAC) on board the Spitzer<br />

Space Telescope was carried out by Megeath et al. (2004). They used the IRAC color<br />

plane to identify 12 Class 0/I and 23 Class II objects (Table 17). The list of Megeath et<br />

al. (2004) conta<strong>in</strong>s 5 stars (1, 2, 4, 6, 7 <strong>in</strong> Table 15) with Hα emission from Ogura et<br />

al. (2002).<br />

Us<strong>in</strong>g H- and K s -band imag<strong>in</strong>g polarimetry for S 140 and spectropolarimetry from<br />

1.26 to 4.18 µm for IRS 1, Yao et al. (1998) discovered two reflection nebulae, illum<strong>in</strong>ated<br />

by IRS 1 and IRS 3, which seem to be physically connected. Based on the location<br />

and orientation of the reflection lobes around IRS 1, Yao et al. (1998) suggest that S 140<br />

IRS 1 may drive a quadrupolar outflow. Schertl et al. (2000) studied the structure of the<br />

envelope around the central protostar <strong>in</strong> IRS 1 us<strong>in</strong>g high resolution bispectrum speckle<br />

<strong>in</strong>terferometry and speckle polarimetry. Their high resolution images showed bright<br />

emission which can be attributed to light reflected from the <strong>in</strong>ner walls of a cavity <strong>in</strong><br />

the circumstellar material around IRS 1. Given that the orientation of the evacuated<br />

cavity agrees with the direction of the molecular outflow they suggest that the cavity<br />

has been carved out by the strong outflow from IRS 1. Recently Hoare (2006) obta<strong>in</strong>ed<br />

multiepoch high-resolution radio cont<strong>in</strong>uum maps of IRS 1 us<strong>in</strong>g the full MERLIN array.<br />

The observations revealed a highly elongated source that changes over time and<br />

is perpendicular to the larger scale bipolar molecular outflow. He expla<strong>in</strong>ed the phenomenon<br />

with an equatorial w<strong>in</strong>d driven by radiation pressure from the central star<br />

and <strong>in</strong>ner disk act<strong>in</strong>g on the gas <strong>in</strong> the surface layer of the disk. Jiang et al. (2008)<br />

obta<strong>in</strong>ed K-band polarimetric images with the Coronagraphic Imager with Adaptive<br />

Optics (CIAO) mounted on the Subaru telescope. They found that S140 IRS 1 shows<br />

well-def<strong>in</strong>ed outflow cavity walls and a polarization disk which matches the direction<br />

of previously observed equatorial disk w<strong>in</strong>d (Hoare 2006), thus confirm<strong>in</strong>g that the<br />

polarization disk is actually the circumstellar disk. Preibisch et al. (2001) obta<strong>in</strong>ed a<br />

bispectrum speckle <strong>in</strong>terferometric K-band image with a resolution of 150 mas and a<br />

see<strong>in</strong>g-limited molecular hydrogen l<strong>in</strong>e emission image of IRS 3. Their speckle image<br />

resolves IRS 3 <strong>in</strong>to three po<strong>in</strong>t sources, a close b<strong>in</strong>ary with separation 0. ′′ 63 and a<br />

third component 1. ′′ 3 away. A rough assessment of the system stability suggests that<br />

the IRS 3 triple system is unstable. The speckle image also reveals extended diffuse<br />

emission of very complex morphology around IRS 3.<br />

Tr<strong>in</strong>idad et al. (2007) present results of 1.3 cm cont<strong>in</strong>uum and H 2 O maser emission<br />

observations made with the VLA <strong>in</strong> its A configuration toward IRS 1 and also present<br />

results of cont<strong>in</strong>uum observations at 7 mm and re-analyse observations at 2, 3.5 and<br />

6 cm (previously published). IRS 1A is detected at all wavelengths, show<strong>in</strong>g an elongated<br />

structure. Three water maser spots are detected along the major axis of the radio<br />

source IRS 1A. They have also detected a new cont<strong>in</strong>uum source at 3.5 cm (IRS 1C)<br />

located some 0. ′′ 6 northeast of IRS 1A. The presence of these two YSOs (IRS 1A and<br />

1C) could expla<strong>in</strong> the existence of the two bipolar molecular outflows observed <strong>in</strong> the<br />

region. In addition, they have also detected three cont<strong>in</strong>uum clumps (IRS 1B, 1D and<br />

1E) located along the major axis of IRS 1A, and they discuss two possible models to<br />

expla<strong>in</strong> the nature of IRS 1A: a thermal jet and an equatorial w<strong>in</strong>d.<br />

Several papers have studied the physical processes <strong>in</strong> photon dom<strong>in</strong>ated regions<br />

of S 140 us<strong>in</strong>g sub-mm and radio observations (see e.g. Li et al. 2002; Poelman &<br />

Spaans 2005, 2006; Rodríguez et al. 2007, and references there<strong>in</strong>). Ashby et al. (2000)<br />

71


72<br />

detected H 2 O <strong>in</strong> S 140 us<strong>in</strong>g the Submillimeter Wave Astronomy Satellite. They used<br />

Monte Carlo simulation to model the radiative transport and to <strong>in</strong>terpret the detected<br />

557 GHz l<strong>in</strong>e profiles. Their model required significant bulk flow <strong>in</strong> order to expla<strong>in</strong><br />

the relatively s<strong>in</strong>gle-peaked H 2 O l<strong>in</strong>e. However, they were not able to discrim<strong>in</strong>ate<br />

between <strong>in</strong>fall and outflow.<br />

4.2. L 1188<br />

L 1188 is one of the molecular clouds along the <strong>Cepheus</strong> Bubble. Ábrahám et al. (1995)<br />

mapped the cloud <strong>in</strong> 13 CO, and found a molecular mass of ∼ 1800 M⊙ with<strong>in</strong> a field<br />

of 74 ′ ×44 ′ . They selected 6 IRAS po<strong>in</strong>t sources as candidate YSOs <strong>in</strong> the field, and<br />

found 15 Hα emission stars dur<strong>in</strong>g a photographic objective prism survey. Figure 25<br />

shows the 100 µm optical depth image of the L 1188/L 1204 region, suggest<strong>in</strong>g that<br />

these clouds are connected to each other, and the distribution of the candidate YSOs<br />

<strong>in</strong> and around L 1188. Könyves et al. (2004) studied the SEDs of the IRAS sources<br />

associated with L 1188 us<strong>in</strong>g 2MASS, MSX, IRAS, and ISOPHOT data.<br />

4.3. S 145<br />

S 145 is an extended HII region, located at (l,b)=(107. ◦ 67, +5. ◦ 69), <strong>in</strong> the north-eastern<br />

part of the <strong>Cepheus</strong> Bubble. Both its distance and velocity suggest its relation to the<br />

bubble (Patel et al. 1998; Kiss et al. 2004). S 145 is associated with a bright rimmed<br />

cloud BRC 44 (Sugitani et al. 1991), <strong>in</strong> which Ogura et al. (2002) found 13 Hα emission<br />

stars (Table 18, and Fig. 26).<br />

Table 18. Hα emission stars associated with BRC 44 from Ogura et al. (2002)<br />

(EW-s and remarks revised by Ikeda et al. (2008) are shown.)<br />

N RA(J2000) Dec(J2000) EW (Å) Remarks<br />

1 22 28 19.01 64 13 54.0 55.8<br />

2 22 28 21.00 64 14 13.2 4.2 reflection nebula ?<br />

3 22 28 41.77 64 13 11.6 · · · contam. from nearby star<br />

4 22 28 43.54 64 13 19.1 · · · double star<br />

5 22 28 43.98 64 13 26.0 50.6<br />

6 22 28 44.12 64 13 31.2 20.1 very weak cont.<br />

7 22 28 44.74 64 13 12.0 · · · contam. from nearby stars<br />

8 22 28 45.31 64 13 05.6 22.5 bad pix.<br />

9 22 28 45.48 64 13 23.0 · · · contam. from No. 11 star<br />

10 22 28 45.77 64 13 24.9 · · · contam. from Nos. 5 and 12 stars<br />

11 22 28 45.96 64 13 22.1 53.5 contam. from No. 9 star<br />

12 22 28 46.24 64 13 25.6 · · · contam. from No. 5 star<br />

13 22 28 47.12 64 13 14.3 9.5<br />

4.4. S 134<br />

Two star-form<strong>in</strong>g molecular clouds, associated with this HII region, can be found <strong>in</strong> the<br />

literature. Yonekura et al. (1998) observed a head-tail structured molecular cloud and<br />

CO outflow associated with IRAS 22103+5828, whereas Dobashi & Uehara (2001)<br />

reported on a CO outflow and molecular cloud associated with IRAS 22134+5834.


73<br />

Figure 25. Left: 100 µm optical depth image of the L 1188/L 1204 region. Right:<br />

Distribution of the molecular gas, IRAS po<strong>in</strong>t sources and Hα emission stars <strong>in</strong> the<br />

region of L 1188 (From Ábrahám et al. 1995).<br />

Figure 26. F<strong>in</strong>d<strong>in</strong>g chart for Hα emission objects <strong>in</strong> BRC 44, a bright-rimmed<br />

dark cloud associated with S145 (Ogura et al. 2002).


74<br />

The latter source proved to be a high-mass protostar at a very early evolutionary stage<br />

(Sridharan et al. 2002). It is associated with H 2 O maser emission (Cesaroni et al. 1988).<br />

5. <strong>Star</strong> Formation <strong>in</strong> the Association Cep OB3<br />

Blaauw, Hiltner & Johnson (1959) made the first detailed photometric <strong>in</strong>vestigation<br />

of the association Cep OB3. They found 40 early-type members at 725 pc. Blaauw<br />

(1964) found evidence for two subgroups, Cep OB3a and Cep OB3b, with ages of 8<br />

and 4 Myr, respectively. The lum<strong>in</strong>ous stars of the younger subgroup, Cep OB3b, excite<br />

the HII region S 155. Garmany (1973) suggested an expansion age of 0.72 Myr, based<br />

on the relative motion of the two subgroups. Seventeen of the 40 Cep OB3 members<br />

compiled by Blaauw et al. are conta<strong>in</strong>ed <strong>in</strong> the Hipparcos Catalog. However, de Zeeuw<br />

et al. (1999) could not identify Cep OB3 as a mov<strong>in</strong>g group us<strong>in</strong>g the Hipparcos data.<br />

Hoogerwerf et al. (2001) have shown that the parent association of the runaway star<br />

λ Cep is probably not Cep OB2, but Cep OB3.<br />

Several photometric studies (Crawford & Barnes 1970; Garrison 1970; Jordi, Trullors<br />

& Galadí-Enríquez 1996) ref<strong>in</strong>ed the Blaauw et al. membership list, and extended<br />

it to fa<strong>in</strong>ter stars. Moreno-Corral et al. (1993) performed JHK ′ LM photometry for the<br />

40 lum<strong>in</strong>ous stars <strong>in</strong> Blaauw et al.’s list. A comprehensive summary of all previous<br />

membership studies was given by Jordi et al. (1996), who obta<strong>in</strong>ed ages of 7.5 and<br />

5.5 Myr for the two subgroups.<br />

Simonson & van Someren Greve (1976) found an expand<strong>in</strong>g HI shell centered on<br />

the young subgroup <strong>in</strong> Cep OB3 but did not detect significant H I associated with the<br />

older subgroup.<br />

Sargent (1977, 1979) mapped the vic<strong>in</strong>ity of Cep OB3 <strong>in</strong> the J=1-0 transition of<br />

12 CO, and found a 20 pc×60 pc molecular cloud complex at the average radial velocity<br />

of −10 km s −1 , close to the velocity range of the association members and S 155. Sargent’s<br />

CO observations revealed several clumps <strong>in</strong> the Cep OB3 molecular cloud. She<br />

labeled them as Cep A,B,C,D,E,F, and concluded that some of them, especially Cep A,<br />

are sites of triggered star formation due to the <strong>in</strong>teraction of the expand<strong>in</strong>g HII region<br />

S 155 and the molecular cloud. Elmegreen & Lada (1977) considered Cep OB3 as one<br />

of the examples of sequential star formation. Felli et al. (1978) measured the thermal<br />

radio emission from Cep OB3 and S 155. Ammonia maps around the IRAS sources associated<br />

with the Cep A–Cep F clouds are presented <strong>in</strong> Harju, Walmsley & Wouterloot<br />

(1993). The distribution of the lum<strong>in</strong>ous stars of Cep OB3 and the associated molecular<br />

cloud as shown up <strong>in</strong> the ext<strong>in</strong>ction map of the region (Dobashi et al. 2005) is displayed<br />

<strong>in</strong> Fig. 27.<br />

5.1. Pre-ma<strong>in</strong> Sequence <strong>Star</strong>s and Candidates <strong>in</strong> Cep OB3b<br />

Naylor & Fabian (1999) discovered over 50 X-ray po<strong>in</strong>t sources <strong>in</strong> the region of Cep<br />

OB3 with ROSAT PSPC and HRI, the majority of which are probably T Tauri stars.<br />

Us<strong>in</strong>g the ratio of high-mass to low-mass stars to constra<strong>in</strong> the <strong>in</strong>itial mass function,<br />

Naylor & Fabian (1999) found that it is consistent with that for field stars. Most of the<br />

T Tauri stars are close to, but outside the molecular cloud.<br />

Pozzo et al. (2003) identified 10 T Tauri stars and 6 candidates us<strong>in</strong>g UBVI photometry<br />

and follow-up multi-fiber spectroscopy. Their optical survey covered an area<br />

of some 1300 arcm<strong>in</strong> 2 . The newly discovered pre-ma<strong>in</strong> sequence stars have masses <strong>in</strong>


75<br />

4<br />

Cep F<br />

V733 Cep<br />

Galactic latitude [deg]<br />

3<br />

2<br />

Cep D<br />

Cep C<br />

Cep B<br />

HW2<br />

L1211<br />

MM1-MM4<br />

Cep A<br />

Cep E mm<br />

1<br />

Cep E<br />

112<br />

111 110<br />

Galactic longitude [deg]<br />

109<br />

Figure 27. Distribution of the visual ext<strong>in</strong>ction (Dobashi et al. 2005) and the<br />

young, lum<strong>in</strong>ous stars <strong>in</strong> the region of Cep OB3b. The dense clumps Cep A–Cep<br />

F, identified <strong>in</strong> the distribution of CO by Sargent (1977), the dark cloud Lynds 1211,<br />

as well as the most prom<strong>in</strong>ent associated young stars are labeled. The lowest contour<br />

of the ext<strong>in</strong>ction is at A V = 1 mag, and the <strong>in</strong>crement is 0.7 mag. <strong>Star</strong> symbols mark<br />

the lum<strong>in</strong>ous members of Cep OB3, listed by Garmany & Stencel (1992).<br />

the range ∼ 0.9 − 3.0 M⊙ and ages from < 1 Myr to nearly 10 Myr. Out of the 10<br />

def<strong>in</strong>ite TTS, four have a ROSAT X-ray counterpart <strong>in</strong> Naylor & Fabian (1999).<br />

Mikami & Ogura (2001) presented a list and f<strong>in</strong>d<strong>in</strong>g charts of Hα emission stars <strong>in</strong><br />

the region of Cep OB3. Their objective prism survey covered an area of 36 square degrees.<br />

They found 108 Hα emission stars, 68 of which are new. The surface distribution<br />

of the Hα emission stars outl<strong>in</strong>es a r<strong>in</strong>g-like area, which almost co<strong>in</strong>cides with that of<br />

the heated dust shown by the IRAS images. The surveyed area is much larger than that<br />

occupied by the stars of Cep OB3, and extends to the south of the associated molecular<br />

cloud. It <strong>in</strong>cludes NGC 7419, a cluster at 2 kpc, and K<strong>in</strong>g 10, below the Galactic plane.<br />

Further objects, not associated with Cep OB3 but <strong>in</strong>cluded <strong>in</strong> the surveyed area and<br />

ly<strong>in</strong>g along the shell-like surface, are S 157, NGC 7654, and S 158.<br />

A portion of the Cep OB3b and the molecular cloud <strong>Cepheus</strong> B have been observed<br />

with the ACIS detector on board the Chandra X-ray Observatory (Getman et<br />

al. 2006). The observations resulted <strong>in</strong> the discovery of two rich clusters of pre-ma<strong>in</strong><br />

sequence stars. The cluster projected outside the molecular cloud is part of the association<br />

Cep OB3b. The X-ray observations detected 321 pre-ma<strong>in</strong> sequence members.


76<br />

Figure 28. Pre-ma<strong>in</strong> sequence stars and candidates <strong>in</strong> the Cep OB3 region overlaid<br />

on the map of visual ext<strong>in</strong>ction, obta<strong>in</strong>ed from 2MASS data based on <strong>in</strong>terstellar<br />

redden<strong>in</strong>g us<strong>in</strong>g the NICER method (Lombardi & Alves 2001). Large circles denote<br />

the clouds from Table 1 associated with young stars. The mean<strong>in</strong>g of the different<br />

symbols are as follows: Filled triangles - T Tauri stars; Filled squares - Herbig Ae/Be<br />

stars; Filled circles - Weak-l<strong>in</strong>e T Tauri stars; Open squares - Photometric candidate<br />

and possible PMS members; X - Hα emission stars; + - T Tauri candidates selected<br />

from 2MASS.<br />

This is the best census of the stellar population of the region. The results suggest that<br />

the X-ray lum<strong>in</strong>osity function, and thus probably the IMF, of <strong>Cepheus</strong> OB3b differs<br />

from that of the Orion Nebula Cluster: more stars of M < 0.3M⊙ can be found <strong>in</strong><br />

<strong>Cepheus</strong> OB3b than <strong>in</strong> Orion.<br />

Figure 28 shows the distribution of pre-ma<strong>in</strong> sequence stars and catalogued clouds<br />

overlaid on the visual ext<strong>in</strong>ction <strong>in</strong> the Cep OB3 region (Dobashi et al. 2005). Figure 29<br />

shows the field of view and the ma<strong>in</strong> results of the X-ray observations.<br />

5.2. <strong>Star</strong> Formation <strong>in</strong> the Molecular Cloud associated with Cep OB3<br />

<strong>Cepheus</strong> A is a very active high-mass star-form<strong>in</strong>g region with<strong>in</strong> the molecular cloud<br />

associated with Cep OB3. It shows str<strong>in</strong>gs of sources whose spectra suggest that some<br />

are thermal and some nonthermal (Hughes & Wouterloot 1984; Hughes 1985, 1988),<br />

several compact HII regions (Beichman et al. 1979; Rodríguez et al. 1980a), OH, H 2 O,<br />

and CH 3 OH masers (Blitz & Lada 1979; Wouterloot, Hab<strong>in</strong>g & Herman 1980; Lada<br />

et al. 1981; Cohen, Rowland & Blair 1984; Mehr<strong>in</strong>ger, Zhou & Dickel 1997; Patel et<br />

al. 2007), and strong <strong>in</strong>frared emission (Koppenaal et al. 1979; Beichman et al. 1979;<br />

Evans et al. 1981) with<strong>in</strong> an area smaller than 1 arcm<strong>in</strong>. Cep A has been therefore an


77<br />

62 50<br />

HD 217486<br />

62 45<br />

Dec(J2000)<br />

62 40<br />

62 35<br />

Hα knot<br />

62 30<br />

AFGL 3000<br />

HD 217061<br />

62 25<br />

Radio source No.9<br />

22 59 00<br />

22 58 00<br />

22 57 00<br />

RA(J2000)<br />

22 56 00<br />

22 55 00<br />

Figure 29. R-band image cover<strong>in</strong>g 0. ◦ 5 × 0. ◦ 5 of the Cep B and Cep OB3b neighborhood<br />

from the Digitized Sky Survey (DSS). North is up, and east is to the left.<br />

The Chandra 17 ′ × 17 ′ ACIS-I field (Getman et al. 2006) is outl<strong>in</strong>ed by the square,<br />

and the dashed rectangle shows the region <strong>in</strong> which Ogura et al. (2002) searched for<br />

Hα emission stars. Cep B, the hottest component of the <strong>Cepheus</strong> molecular cloud, is<br />

at the bottom left corner of the Chandra field. To the north and west lies Cep OB3b,<br />

the younger of two subgroups of the Cep OB3 association. The <strong>in</strong>terface between<br />

Cep B and Cep OB3 is del<strong>in</strong>eated by the H II region S 155. The most massive and<br />

optically bright stars <strong>in</strong> the field, HD 217086 (O7n) and HD 217061 (B1V), are labeled.<br />

Black plusses <strong>in</strong>dicate the T Tauri stars identified by Pozzo et al. (2003).<br />

Blue crosses show the X-ray sources which are probably members of a cluster belong<strong>in</strong>g<br />

to Cep OB3b. Red triangles <strong>in</strong>dicate the X-ray emitt<strong>in</strong>g members of an<br />

embedded cluster <strong>in</strong> the molecular cloud Cep B, whereas green diamonds show the<br />

X-ray sources whose 2MASS counterparts are <strong>in</strong>dicative of K-band excess, orig<strong>in</strong>at<strong>in</strong>g<br />

from accretion disks. Small, thick red plusses with<strong>in</strong> the dashed rectangle show<br />

the Hα emission stars found by Ogura et al. (2002). Black circle outl<strong>in</strong>es the bright<br />

Hα knot on the ionization front, associated with a compact cluster and studied <strong>in</strong><br />

detail by Moreno-Corral et al. (1993) and Testi et al. (1995). A star symbol shows<br />

the <strong>in</strong>frared source AFGL 3000, and a thick black cross is the bright radio cont<strong>in</strong>uum<br />

source No. 9 discovered by Felli et al. (1978).


78<br />

excit<strong>in</strong>g target for high-resolution <strong>in</strong>terferometric observations and has a huge literature.<br />

Figure 30. Structure of <strong>Cepheus</strong> A (Hartigan & Lada 1985). Solid l<strong>in</strong>es show<br />

the 20 cm cont<strong>in</strong>uum contours (Rodríguez & Cantó 1983), dot-dash and longdashed<br />

l<strong>in</strong>es show the distribution of the redshifted and blueshifted CO, respectively<br />

(Rodríguez et al. 1980a), and a short-dashed l<strong>in</strong>e shows the extent of the NH 3 emission<br />

(Ho, Moran & Rodríguez 1982). Triangles are reflection nebulae, plus signs<br />

<strong>in</strong>dicate HH objects, and filled circles are visible stars. The hatched circular area<br />

is an extended 20 µm emission area (Beichman et al. 1979). Small numbered open<br />

circles show the 6 cm cont<strong>in</strong>uum sources, detected by Hughes & Wouterloot (1984)<br />

and shown <strong>in</strong> more detail <strong>in</strong> Fig. 31.<br />

A powerful molecular outflow was discovered by Rodríguez et al. (1980a) and<br />

studied <strong>in</strong> further detail by among others Richardson et al. (1987), Torrelles et al.<br />

(1987), Hayashi, Hasegawa & Kaifu (1988), Bally & Lane (1990), Torrelles et al.<br />

(1993), Narayanan & Walker (1996), and Froebrich et al. (2002). Water maser emission<br />

has been detected from several centers of activity (Torrelles et al. 1996), and numerous<br />

thermal and nonthermal radio sources (Garay et al. 1996; Hughes 2001). The HH object<br />

HH 168 (orig<strong>in</strong>al name GGD 37), consist<strong>in</strong>g of several knots (Hartigan & Lada 1985),<br />

lies about 2 ′ west of Cep A. It was studied <strong>in</strong> detail by Hartigan & Lada (1985), Lenzen<br />

et al. (1984), Hartigan et al. (1986), Lenzen (1988), Garay et al. (1996), Wright et al.<br />

(1996), and Hartigan, Morse & Bally (2000). An apparent counter-flow of HH 168,<br />

HH 169 was discovered by Lenzen (1988) 2 ′ northeast of Cep A. The objects are part<br />

of a larger, elliptical region conta<strong>in</strong><strong>in</strong>g several fa<strong>in</strong>ter HH objects (Corcoran, Ray &<br />

Mundt 1993). A comprehensive summary of the literature of HH 168 and 169 can be<br />

found <strong>in</strong> Reipurth (1999).


79<br />

Figure 31. VLA map at 6 cm of Cep A East, observed by Hughes & Wouterloot<br />

(1984), display<strong>in</strong>g two cha<strong>in</strong>s of 14 compact sources.<br />

Hughes & Wouterloot (1982) mapped Cep A at 21 cm. The map has shown the<br />

presence of two sources, Cep A West and Cep A East, separated by ∼ 1. ′′ 5. Cep A West<br />

is associated with optical nebulosities and an optically visible star at its peak contour<br />

level. It is named HW object (Hartigan & Lada 1985), and appears to be an H II region<br />

on the near side of the cloud. Hughes (1989) obta<strong>in</strong>ed radio maps of Cep A West,<br />

and found it to consist of two compact sources, W 1 and W 2. The first component is<br />

constant <strong>in</strong> time, while the second is variable, and there is a third, diffuse component,<br />

W 3. The HW object was found to be nonstellar, radiat<strong>in</strong>g ma<strong>in</strong>ly <strong>in</strong> Hα, and suggested<br />

to be an HH object. Garay et al. (1996) studied <strong>in</strong> detail the three sources with<strong>in</strong> Cep A<br />

West, and found that the energy source, power<strong>in</strong>g the activity observed <strong>in</strong> Cep A West,<br />

is probably W 2, associated with a low-lum<strong>in</strong>osity embedded pre-ma<strong>in</strong> sequence star,<br />

whereas emission of the shocked gas flow<strong>in</strong>g from W 2 can be observed from the diffuse<br />

component W 3. Wright et al. (1996), based on observations by ISO SWS, studied the<br />

molecular hydrogen emission from the GGD 37 complex <strong>in</strong> Cep A West.<br />

OH and H 2 O maser sources are situated near the center of Cep A East, which<br />

appears younger and more heavily ext<strong>in</strong>cted than Cep A West. Hughes & Wouterloot<br />

(1984) performed radio observations of Cep A East, with resolutions down to 1 ′′ at<br />

21 cm and 6 cm, us<strong>in</strong>g both the Westerbork Synthesis Radio Telescope and VLA. The<br />

maps have shown two str<strong>in</strong>gs of 14 compact radio sources, numbered as HW 1a, 1b, 2,<br />

3a–d, 4, 5, 6, 7a–d, (see Fig. 31) which were <strong>in</strong>terpreted as HII regions, be<strong>in</strong>g produced<br />

by about 14 stars, each of which mimics ma<strong>in</strong>-sequence B3 stars; the length of each<br />

str<strong>in</strong>g is about 0.1 pc. Hughes (1988; 1993) reported on the variability and high proper<br />

motion of some compact radio sources of Cep A East and discovered two new, highly<br />

variable compact radio sources (sources 8 and 9). He suggested that, contrary to the<br />

orig<strong>in</strong>al <strong>in</strong>terpretation, some of the compact sources are probably not H II regions, but<br />

Herbig–Haro objects. Garay et al. (1996), based on multifrequency, high resolution radio<br />

cont<strong>in</strong>uum observations, classified the 16 compact sources <strong>in</strong>to two groups: sources<br />

2, 3a,3c, 3d, 8, and 9 harbor an energy source, whereas sources 1a, 1b, 4, 5, 6, 7a, 7b,


80<br />

7c, and 7d are excited by an external source of energy. Of the stellar sources, HW 2, 3c,<br />

and 3d are probably associated with high lum<strong>in</strong>osity stars, while the variable sources<br />

3a, 8, and 9 are probably low-mass pre-ma<strong>in</strong> sequence stars. The nature of source<br />

3b rema<strong>in</strong>ed uncerta<strong>in</strong>. Torrelles et al. (1998) detected a new cont<strong>in</strong>uum source (Cep<br />

A:VLA 1) <strong>in</strong> an 1.3 cm VLA map. Goetz et al. (1998) present new <strong>in</strong>frared images,<br />

<strong>in</strong>clud<strong>in</strong>g near-<strong>in</strong>frared broadband (K, L ′ , and M ′ ) and spectral l<strong>in</strong>e ([Fe II] emission<br />

l<strong>in</strong>e at 1.644 µm and H 2 1-0 S[1] l<strong>in</strong>e at 2.122 µm) observations of Cep A East. The<br />

images show two regions of shock-excited l<strong>in</strong>e emission from separate bipolar flows.<br />

Figure 30, adopted from Hartigan & Lada (1985), shows the schematic structure of the<br />

region of Cep A, and Fig. 31 shows the distribution of the radio cont<strong>in</strong>uum sources <strong>in</strong><br />

Cep A East, discovered by Hughes & Wouterloot (1984).<br />

Both the compact radio cont<strong>in</strong>uum and H 2 O maser sources <strong>in</strong> Cep A exhibit remarkable<br />

variations on various time scales. Hughes (1985; 1988; 1993; 2001) reported<br />

on the variability of sources HW 2, 3c, and 3d, and po<strong>in</strong>ted out that the strong variability<br />

results <strong>in</strong> appreciable changes <strong>in</strong> the spectra. Variations of H 2 O maser emission have<br />

been detected by Mattila et al. (1985; 1988), Cohen & Brebner (1985), and Rowland &<br />

Cohen (1986).<br />

Patel et al. (2007), us<strong>in</strong>g the Submillimeter Array (SMA), detected the 321.226<br />

GHz, 10 29 − 9 36 ortho-H 2 O maser emission from Cep A. The 22.235 GHz, 6 16 − 5 23<br />

water masers were also observed with the Very Large Array 43 days follow<strong>in</strong>g the<br />

SMA observations. Three of the n<strong>in</strong>e detected submillimeter maser spots are associated<br />

with the centimeter masers spatially as well as k<strong>in</strong>ematically, while there are 36<br />

22 GHz maser spots without correspond<strong>in</strong>g submillimeter masers. The authors <strong>in</strong>terpret<br />

the submillimeter masers <strong>in</strong> <strong>Cepheus</strong> A to be trac<strong>in</strong>g significantly hotter regions<br />

(600-2000 K) than the centimeter masers.<br />

Rodríguez et al. (1994) obta<strong>in</strong>ed multifrequency VLA radio cont<strong>in</strong>uum observations<br />

of HW 2, the most lum<strong>in</strong>ous radio cont<strong>in</strong>uum source of the region. They have<br />

shown HW 2 to be a powerful thermal radio jet, and suggest that it is responsible for<br />

at least part of the complex outflow and excitation phenomena observed <strong>in</strong> the region.<br />

HW 2 proved to be a complex object, consist<strong>in</strong>g of several components (e.g. Gómez<br />

et al. 1999; Curiel et al. 2002, 2006; Jiménez-Serra et al. 2007; Brogan et al. 2007),<br />

<strong>in</strong>clud<strong>in</strong>g a hot core (Martín-P<strong>in</strong>tado et al. 2005). Torrelles et al. (2001) report three<br />

epochs of VLBA water maser observations toward HW 2. VLBA data show that some<br />

of the masers detected previously with the VLA (Torrelles et al. 1998) unfold <strong>in</strong>to unexpected<br />

and remarkable l<strong>in</strong>ear/arcuate “microstructures,” reveal<strong>in</strong>g, <strong>in</strong> particular three<br />

filaments (R1, R2, R3) with length sizes ∼ 3–25 mas (2–18 AU) and unresolved <strong>in</strong><br />

the perpendicular direction ( ∼ < 0.1 AU), an arcuate structure (R4-A) of ≈ 20 mas size<br />

(15 AU), and a curved cha<strong>in</strong> of masers (R5) of ≈ 100 mas size (≈ 72 AU). Some of<br />

these structures unfold <strong>in</strong>to even smaller l<strong>in</strong>ear “build<strong>in</strong>g blocks” (down to scales of<br />

0.4 AU) shap<strong>in</strong>g the larger structures.<br />

Jiménez-Serra et al. (2007) present VLA and PdBI subarcsecond images (0.15 ′′ −<br />

0.6 ′′ ) of the radio cont<strong>in</strong>uum emission at 7 mm and of the SO 2 J = 19 2,18 − 18 3,15<br />

and J = 27 8,20 − 28 7,21 l<strong>in</strong>es toward the Cep A HW 2 region. The SO 2 images reveal<br />

the presence of a hot core <strong>in</strong>ternally heated by an <strong>in</strong>termediate-mass protostar, and a<br />

circumstellar rotat<strong>in</strong>g disk around the HW 2 radio jet of size 600 × 100 AU and mass<br />

1 M⊙. The high-sensitivity radio cont<strong>in</strong>uum image at 7 mm shows, <strong>in</strong> addition to the<br />

ionized jet, an extended emission to the west (and marg<strong>in</strong>ally to the south) of the HW2<br />

jet, fill<strong>in</strong>g the southwest cavity of the HW 2 disk.


Torrelles et al. (2007) report SMA 335 GHz cont<strong>in</strong>uum observations with angular<br />

resolution of ∼ 0. ′′ 3, together with VLA ammonia observations with ∼ 1 ′′ resolution<br />

toward Cep A HW 2. The observations have shown a flattened disk structure of the dust<br />

emission of ∼ 0. ′′ 6 size (450 AU), peak<strong>in</strong>g on HW 2. In addition, two ammonia cores<br />

were observed, one associated with a hot core previously reported and an elongated<br />

core with a double peak separated by ∼ 1. ′′ 3, with signs of heat<strong>in</strong>g at the <strong>in</strong>ner edges<br />

of the gas fac<strong>in</strong>g HW 2. The double-peaked ammonia structure, as well as the doublepeaked<br />

CH 3 CN structure reported previously (and proposed to be two <strong>in</strong>dependent hot<br />

cores), surround both the dust emission as well as the double-peaked SO 2 disk structure<br />

found by Jiménez-Serra et al. (2007).<br />

81<br />

Figure 32. Hα emission stars <strong>in</strong> Cep B found by Ogura et al. (2002).<br />

Pravdo & Tsuboi (2005) report the discovery of X-rays from both components of<br />

<strong>Cepheus</strong> A, East and West, with the XMM-Newton observatory. They detected prom<strong>in</strong>ent<br />

X-ray emission from the complex of compact radio sources and call this source<br />

HWX. Its hard X-ray spectrum and complex spatial distribution may arise from one or<br />

more protostars associated with the radio complex, the outflows, or a comb<strong>in</strong>ation of the<br />

two. They also detected 102 X-ray sources, many presumed to be pre-ma<strong>in</strong> sequence<br />

stars on the basis of the redden<strong>in</strong>g of their optical and IR counterparts.<br />

Sonnentrucker et al. (2008) report the first fully sampled maps of the distribution<br />

of <strong>in</strong>terstellar CO 2 ices, H 2 O ices and total hydrogen nuclei, as <strong>in</strong>ferred from the 9.7 µm<br />

silicate feature, toward <strong>Cepheus</strong> A East with the IRS <strong>in</strong>strument on board the Spitzer<br />

Space Telescope. They f<strong>in</strong>d that the column density distributions for these solid state<br />

features all peak at, and are distributed around, the location of HW2. A correlation<br />

between the column density distributions of CO 2 and water ice with that of total hydrogen<br />

<strong>in</strong>dicates that the solid state features mostly arise from the same molecular clumps<br />

along the probed sight l<strong>in</strong>es.<br />

Comito et al. (2007) employed the Plateau de Bure Interferometer to acquire<br />

(sub-)arcsecond-resolution imag<strong>in</strong>g of high-density and shock tracers, such as methyl<br />

cyanide (CH 3 CN) and silicon monoxide (SiO), towards the HW2 position. They f<strong>in</strong>d<br />

that on the 1 arcsec (∼ 725 AU) scale, the flattened distribution of molecular gas around<br />

HW2 appears to be due to the projected superposition, on the plane of the sky, of at


82<br />

least three protostellar objects, of which at least one is power<strong>in</strong>g a molecular outflow<br />

at a small angle with respect to the l<strong>in</strong>e of sight. The presence of a protostellar disk<br />

around HW2 is not ruled out, but such structure is likely to be detected on a smaller<br />

spatial scale, or us<strong>in</strong>g different molecular tracers.<br />

<strong>Cepheus</strong> B is located at the edge of the HII region S 155. Felli et al. (1978) and<br />

Panagia & Thum (1981) suggested that a younger subgroup of Cep OB3 orig<strong>in</strong>ated<br />

from the Cep B/S 155 complex. Several features of the Cep B/S 155 <strong>in</strong>terface <strong>in</strong>dicate<br />

triggered star formation <strong>in</strong> Cep B, for <strong>in</strong>stance a bright Hα nebula located near the<br />

ionization front, referred to as the Hα knot by Moreno-Corral et al. (1993) and Testi et<br />

al. (1995), a compact radio cont<strong>in</strong>uum source (source #9) detected by Felli et al. (1978),<br />

and the bright <strong>in</strong>frared source AFGL 3000.<br />

Moreno-Corral et al. (1993) studied the S 155/Cep B <strong>in</strong>terface with Hα and<br />

BV (RI) C imag<strong>in</strong>g, and identified a cluster of pre-ma<strong>in</strong> sequence stars <strong>in</strong> the Hα knot.<br />

Testi et al. (1995) performed radio and near <strong>in</strong>frared observations of the Hα knot. The<br />

unresolved radio source #9 lies on top of the diffuse emission. Far <strong>in</strong>frared and high<br />

resolution CO observations <strong>in</strong>dicate that an embedded B1–B0.5 star is the source of<br />

heat for the molecular hot spot and the source of ionization of #9. More than 100 low<br />

lum<strong>in</strong>osity stars have been found <strong>in</strong> an area of about 3 ′ ×2 ′ , and most of them lie above<br />

and to the right of the ma<strong>in</strong> sequence. Many of them are associated with reflection<br />

nebulosities. Testi et al. (1995) concluded that they are pre-ma<strong>in</strong> sequence stars. They<br />

identified new Herbig Ae/Be stars among the cluster members. Ogura et al. (2002)<br />

found 33 Hα emission stars <strong>in</strong> Cep B. The list of these candidate pre-ma<strong>in</strong> sequence<br />

stars is given <strong>in</strong> Table 19, and the f<strong>in</strong>d<strong>in</strong>g chart, adopted from Ogura et al. (2002) is<br />

displayed <strong>in</strong> Fig. 32. Getman et al. (2006) identified 64 members of the cluster embedded<br />

<strong>in</strong> Cep B, based on deep X-ray observations with the Chandra Observatory (see<br />

Fig. 29). Mookerjea et al. (2006) studied the emission from the photon dom<strong>in</strong>ated regions<br />

<strong>in</strong> <strong>Cepheus</strong> B, based on 15 ′ × 15 ′ fully sampled maps of [C I] at 492 GHz and<br />

12 CO (4-3) observed at 1 ′ resolution. They estimated the column densities of neutral<br />

carbon <strong>in</strong> <strong>Cepheus</strong> B and studied the factors which determ<strong>in</strong>e the abundance of neutral<br />

carbon relative to CO.<br />

<strong>Cepheus</strong> C The mass of this clump, estimated from the formaldehyde observations<br />

obta<strong>in</strong>ed by Few & Cohen (1983) is ∼ 3600 N⊙, which ranks Cep C as the most massive<br />

clump of the Cep OB3 molecular cloud. The region conta<strong>in</strong>s a cluster of <strong>in</strong>frared<br />

sources (Hodapp 1994) and is associated with water maser emission (Wouterloot &<br />

Walmsley 1986) and an outflow (Fukui 1989). The Cep C cluster, first identified <strong>in</strong> a<br />

near-IR survey by Hodapp (1994), was <strong>in</strong>cluded <strong>in</strong> the Young Stellar Cluster survey<br />

performed by the Spitzer Space Telescope (Megeath et al. 2004). In addition to the<br />

near-IR cluster, the IRAC data show Class I and II sources distributed over a 3 pc diameter<br />

region. The molecular gas traced by the C 18 O is visible <strong>in</strong> the IRAC images as<br />

filamentary dark clouds obscur<strong>in</strong>g a diffuse nebulosity extend<strong>in</strong>g across the entire mosaic.<br />

Two Class I objects appear outside the C 18 O emission; 13 CO emission is found<br />

toward both of these sources.<br />

<strong>Cepheus</strong> E is the second most massive and dense clump (M ∼2100 M⊙) of the<br />

Cep OB3 molecular cloud accord<strong>in</strong>g to the H 2 CO map (Few & Cohen 1983). An<br />

outflow was identified <strong>in</strong> <strong>Cepheus</strong> E based on millimeter CO observations (Sargent


83<br />

Table 19.<br />

et al. 2002)<br />

Hα emission stars associated with bright rimmed cloud Cep B (Ogura<br />

N RA(J2000) Dec(J2000) EW ∗ Remarks ∗<br />

1 22 56 37.97 62 39 51.1 69.7<br />

2 22 56 38.12 62 40 58.7 104.7 very weak cont.<br />

3 22 56 39.33 62 38 15.5 80.1<br />

4 22 56 39.58 62 38 43.1 17.2 very weak cont.<br />

5 22 56 39.93 62 41 37.1 14.6 M-star ?<br />

6 22 56 43.54 62 38 07.5 · · · <strong>in</strong>visible cont.<br />

7 22 56 45.33 62 41 15.8 8.0 M-star ?<br />

8 22 56 47.79 62 38 14.0 22.4<br />

9 22 56 48.02 62 38 40.2 125.6 very weak cont.<br />

10 22 56 48.23 62 39 11.1 62.3 very weak cont.<br />

11 22 56 49.54 62 41 10.0 21.4<br />

12 22 56 49.77 62 40 30.1 81.3 very weak cont.<br />

13 22 56 51.41 62 38 55.8 · · · <strong>in</strong>visible cont.<br />

14 22 56 52.40 62 40 59.6 63.6 contam. from nearby star<br />

15 22 56 53.87 62 41 17.7 19.0<br />

16 22 56 54.65 62 38 57.8 16.8 weak cont., contam. from bright rim<br />

17 22 56 56.11 62 39 30.8 · · · <strong>in</strong>visible cont.<br />

18 22 56 57.83 62 40 14.0 59.8<br />

19 22 56 58.65 62 40 56.0 · · · Hα ?<br />

20 22 56 59.68 62 39 20.2 76.4<br />

21 22 57 00.22 62 39 09.4 24.9 weak cont.<br />

22 22 57 01.88 62 37 52.1 · · · <strong>in</strong>visible cont.<br />

23 22 57 02.63 62 41 48.7 · · · contam. from nearby star<br />

24 22 57 02.93 62 41 14.9 4.9<br />

25 22 57 04.31 62 38 21.1 · · · contam. from neighbor<strong>in</strong>g stars<br />

26 22 57 07.86 62 41 33.2 23.1 weak cont.<br />

27 22 57 10.82 62 40 51.0 · · · <strong>in</strong>visible cont., contam. from bright rim<br />

28 22 57 11.48 62 38 14.1 39.6 very weak cont.<br />

29 22 57 12.10 62 41 48.1 · · · contam. from No. 30 star<br />

30 22 57 13.26 62 41 49.3 · · · contam. from No. 29 star<br />

31 22 57 14.11 62 41 19.8 · · · double star, both show Hα emission<br />

32 22 57 19.38 62 40 22.5 · · · Hα ?, contam. from bright. rim<br />

33 22 57 27.04 62 41 07.9 6.4<br />

34N 22 57 04.93 62 38 23.2 14.2<br />

35N 22 57 05.91 62 38 18.4 10.1<br />

36N 22 56 36.14 62 36 45.9 · · · <strong>in</strong>visible cont.<br />

37N 22 56 35.29 62 39 07.8 8.1<br />

∗ Column revised by Ikeda et al. (2008)<br />

1977; Fukui 1989), followed by near-<strong>in</strong>frared and higher spatial resolution CO studies<br />

(Hodapp 1994; Eislöffel et al. 1996; Ladd & Hodapp 1997; Noriega-Crespo et al. 1998).<br />

The outflow is quite compact, and driven by the source IRAS 23011+6126, also<br />

known as Cep E-mm. The outflow is deeply embedded <strong>in</strong> a clump of density 10 5 cm −3<br />

and nearly <strong>in</strong>visible at optical wavelengths, with the exception of its southern lobe,<br />

which is break<strong>in</strong>g through the molecular cloud and is seen as HH 377 (Dev<strong>in</strong>e et al.<br />

1997; Noriega-Crespo 1997; Noriega-Crespo & Garnavich 2001; Ayala et al. 2000).<br />

Lefloch, Eislöffel & Lazareff (1996) have shown that IRAS 23011+6126 is a Class 0<br />

protostar. The properties of the outflow have been thoroughly analyzed by Eislöffel et<br />

al. (1996), Moro-Mart<strong>in</strong> et al. (2001) and Smith et al. (2003). H 2 and [FeII] images<br />

obta<strong>in</strong>ed by Eislöffel et al. (1996) have shown two, almost perpendicular outflows emanat<strong>in</strong>g<br />

from Cep E, suggest<strong>in</strong>g that the driv<strong>in</strong>g source is a Class 0 b<strong>in</strong>ary. Submillimeter<br />

and near-<strong>in</strong>frared l<strong>in</strong>e and cont<strong>in</strong>uum observations by Ladd & Hodapp (1997) led to a


84<br />

similar conclusion. With the assumption that the morphology of the jet results from<br />

precession, Terquem et al. (1999) <strong>in</strong>ferred an orbital separation of 4–20 AU and disk<br />

radius of 1–10 AU for the b<strong>in</strong>ary.<br />

Hot molecular bullets were detected <strong>in</strong> the outflow by Hatchell, Fuller & Ladd<br />

(1999). A comparative study of the Cep E-mm source, <strong>in</strong> the context of other well<br />

known Class 0/I sources, was carried out by Froebrich et al. (2003).<br />

Submillimeter observations by Ch<strong>in</strong>i et al. (2001) and far-<strong>in</strong>frared photometry by<br />

Froebrich et al. (2003) resulted <strong>in</strong> L submm /L bol = 0.017 ± 0.001, an envelope mass<br />

M env = 7.0 M⊙, an estimated age of 3 × 10 4 yr, and an H 2 lum<strong>in</strong>osity of 0.07 L⊙,<br />

which confirm that Cep E-mm belongs to the Class 0 objects. At a distance 2 of 730 pc,<br />

Cep E-mm is one of the brightest Class 0 protostars known and likely to become an<br />

<strong>in</strong>termediate-mass (3 M⊙) star (Moro-Mart<strong>in</strong> et al. 2001; Froebrich et al. 2003).<br />

The Cep E outflow and its protostellar source have been observed us<strong>in</strong>g the three<br />

<strong>in</strong>struments aboard the Spitzer Space Telescope (Noriega-Crespo et al. 2004). The<br />

new observations have shown that the morphology of the outflow <strong>in</strong> the mid-<strong>in</strong>frared<br />

is remarkably similar to that of the near-<strong>in</strong>frared observations. The Cep E-mm source<br />

or IRAS 23011+6126 was detected <strong>in</strong> all four IRAC channels. The IRAC and MIPS<br />

<strong>in</strong>tegrated fluxes of the Cep E-mm source are consistent with the Class 0 envelope<br />

models.<br />

<strong>Cepheus</strong> F (L 1216) conta<strong>in</strong>s V733 Cep (Persson’s star), the only known bona fide<br />

FUor <strong>in</strong> the star form<strong>in</strong>g regions of <strong>Cepheus</strong>, located at the coord<strong>in</strong>ates 22:53:33.3,<br />

+62:32:23 (J 2000). The brighten<strong>in</strong>g of this star was discovered by Persson (2004) by<br />

compar<strong>in</strong>g the old and new Palomar Sky Survey plates. Reipurth et al. (2007) have<br />

shown that the optical spectrum of Persson’s star exhibits all the features characteristic<br />

of FU Ori type stars. They also identified a molecular outflow associated with the star.<br />

At an assumed distance of 800 pc the observed apparent magnitude R ∼ 17.3 mag,<br />

together with the ext<strong>in</strong>ction A V ∼ 8 mag, estimated from the strength of the water<br />

vapor features <strong>in</strong> the <strong>in</strong>frared spectrum, corresponds to a lum<strong>in</strong>osity of about 135 L⊙.<br />

The star erupted sometime between 1953 and 1984.<br />

Reipurth et al. (2007) identified several nebulous near-<strong>in</strong>frared sources <strong>in</strong> L 1216<br />

around IRAS 22151+6215 (Table 20, adopted from Reipurth et al. 2007). To the<br />

south of the aggregate of <strong>in</strong>frared sources conta<strong>in</strong><strong>in</strong>g Persson’s star there is an extended<br />

far-<strong>in</strong>frared source, Cep F(FIR) (Sargent et al. 1983), with a lum<strong>in</strong>osity of about<br />

500 L⊙. Several IRAS sources can be found around this object (see Table 21, adopted<br />

from Reipurth et al. 2007), which most probably form an embedded cluster conta<strong>in</strong><strong>in</strong>g<br />

a Herbig Ae/Be star. A compact HII region without an obvious IRAS counterpart,<br />

Cep F(HII), was discovered by Harten, Thum & Felli (1981) to the south of Cep F(FIR).<br />

L 1211 is a class 5 dark cloud (Lynds 1962) about 1 ◦ west of <strong>Cepheus</strong> A (see Fig. 27).<br />

The mass of this cloud, derived from 13 CO measurements, is 1900 M⊙ (Yonekura et<br />

al. 1997). Its angular proximity to the group of <strong>Cepheus</strong> A-F clouds and its similar<br />

LSR velocity suggest that it is related to the group, and therefore lies at a similar<br />

distance from the Sun (725 pc, see Blaauw et al. 1959; Crawford & Barnes 1970; Sar-<br />

2 Throughout the literature of Cep E, the distance of 730 pc is used. This value is not an <strong>in</strong>dependent<br />

estimate for this cloud, but rounded from the 725 pc derived by Blaauw et al. (1959) and Crawford &<br />

Barnes (1970) for Cep OB3 (see Ladd & Hodapp 1997).


85<br />

Table 20. Near-<strong>in</strong>frared sources <strong>in</strong> Cep F<br />

around IRAS 22151+6215 (Reipurth et al.<br />

2007)<br />

ID RA(2000) Dec(2000) K ′<br />

IRS 1 22 53 40.7 62 32 02 16.3<br />

IRS 2 22 53 41.1 62 31 56 13.7<br />

IRS 3 22 53 40.9 62 31 49 18.1<br />

IRS 4 22 53 41.0 62 31 48 17.4<br />

IRS 5 22 53 41.2 62 31 48 15.6<br />

IRS 6 22 53 43.3 62 31 46 14.2<br />

Table 21. IRAS sources around Cep F(FIR) (Reipurth et al. 2007)<br />

IRAS RA(2000) Dec(2000) 12µm 25µm 60µm 100µm L IRAS<br />

22507+6208 22 50 47.9 62 08 16 0.54: 1.00 12.99: 53.98 18<br />

22152+6201 22 51 14.1 62 01 23 1.61 4.86 13.11


86<br />

mm l<strong>in</strong>e data, the mm sources are embedded <strong>in</strong> an elongated, turbulent core of about<br />

150 M⊙ of mass and 0.6 pc length. Two of the millimeter sources power bipolar molecular<br />

outflows, another signature of their extreme youth. These outflows are referred<br />

to as the L1211-MMS1 and L1211-MMS4 outflows. L 1211 is <strong>in</strong>cluded <strong>in</strong> the far<strong>in</strong>frared<br />

(ISOPHOT) photometric studies of embedded objects performed by Froebrich<br />

et al. (2003). Table 22 lists the coord<strong>in</strong>ates, millimeter fluxes and estimated masses<br />

of the mm-sources <strong>in</strong> L 1211, and Fig. 33 shows their appearance at different wavelengths<br />

(adopted from Tafalla et al. 1999). Table 23 lists the Herbig–Haro objects <strong>in</strong><br />

the <strong>Cepheus</strong> OB3 molecular cloud.<br />

Table 22.<br />

L 1211 millimeter sources<br />

Source RA(2000) Dec(2000) Int. flux Mass ∗<br />

(mJy) (M⊙)<br />

MMS 1 22 46 54.5 62 01 31 45 0.3<br />

MMS 2 22 47 07.6 62 01 26 215 1.3<br />

MMS 3 22 47 12.4 62 01 37 85 0.5<br />

MMS 4 22 47 17.2 62 02 34 135 0.8<br />

∗ Assum<strong>in</strong>g optically th<strong>in</strong> dust at 30 K with an opacity<br />

of 0.01 cm 2 g −1<br />

Table 23.<br />

Herbig–Haro objects <strong>in</strong> the <strong>Cepheus</strong> OB3 molecular clouds.<br />

Name RA(2000) Dec(2000) Source Cloud d Reference<br />

[H89] W3 22 56 08.8 +62 01 44 Cep A 700 2<br />

HH 168 22 56 18.0 +62 01 47 HW 2 Cep A 700 1,5<br />

HH 169 22 56 34.8 +62 02 36 HW 2 Cep A 700 3<br />

HH 174 22 56 58.5 +62 01 42 HW 2 Cep A 700 4<br />

HH 377 23 03 00.0 +61 42 00 IRAS 23011+6126 Cep E 700 6<br />

References: 1 – Gyulbudaghian, Glushkov & Denisyuk (1978); 2 – Hughes (1989); 3 – Corcoran, Ray &<br />

Mundt (1993); 4 – Bally et al. (1999); 5 – Hartigan, Morse & Bally (2000); 6 – Dev<strong>in</strong>e et al. (1997).<br />

6. <strong>Star</strong> Formation <strong>in</strong> <strong>Cepheus</strong> OB4<br />

6.1. Structure of Cep OB4<br />

Cep OB4 was discovered by Blanco & Williams (1959), who noticed the presence of<br />

16 early-type stars <strong>in</strong> a small region around (l,b)=(118. ◦ 4,+4. ◦ 7), <strong>in</strong>clud<strong>in</strong>g the cluster<br />

Berkeley 59. Cep OB4 is related to a dense, irregular dark cloud conta<strong>in</strong><strong>in</strong>g several<br />

emission regions, <strong>in</strong>clud<strong>in</strong>g the dense H II region S 171 (W 1) <strong>in</strong> the central part, and<br />

NGC 7822 to the north of S 171 (Loz<strong>in</strong>skaya, Sitnik & Toropova 1987), see Fig. 34. We<br />

note that <strong>in</strong> the orig<strong>in</strong>al catalogs both W 1 (RA(J2000)=00 02 52; Dec(J2000)=+67 14,<br />

Westerhout 1958) and S 171 (RA(J2000)=00 04 40.3; Dec(J2000)=+67 09, Sharpless<br />

1959) are associated with NGC 7822, situated about one degree north of the HII region,<br />

accord<strong>in</strong>g to its catalog coord<strong>in</strong>ates (RA(J2000)=00 03.6; Dec(J2000)=+68 37). The<br />

Simbad data server also associates these objects with each other. A detailed description<br />

of the association and related objects was given by MacConnell (1968). He identified


42 members earlier than B8 at 845 pc. MacConnell’s UBV photometric study of the<br />

lum<strong>in</strong>ous members of Cep OB4 revealed a correlation between the lum<strong>in</strong>osity and redden<strong>in</strong>g<br />

of the stars: the O and early B stars were found only with<strong>in</strong> the cloud, whereas<br />

later B type stars are found only outside the cloud due to the <strong>in</strong>completeness of their<br />

detection. Based on the absence of supergiants, an earliest spectral type of O7 V, and<br />

the gravitational contraction time of a B8 star, MacConnell estimated an age between<br />

0.6 and 6 Myr.<br />

87<br />

BRC 2<br />

69 00<br />

NGC 7822<br />

68 00<br />

AFGL 4305<br />

<strong>Cepheus</strong> Loop<br />

Berkeley 59<br />

Dec(J2000)<br />

67 00<br />

S171 (W1)<br />

BRC 1<br />

AFGL 3193<br />

BRC 3<br />

66 00<br />

Cloud M 120.1 + 3.0<br />

65 00<br />

00 20 00 10 00 00 23 50<br />

RA(J2000)<br />

Figure 34. A large scale red photograph of the Cep OB4 region. The <strong>in</strong>frared<br />

sources and the radio cont<strong>in</strong>uum loop are <strong>in</strong>dicated on the red DSS image. The HII<br />

region W1 is also known as S171. <strong>Star</strong> symbols show the lum<strong>in</strong>ous stars of Cep OB4<br />

(Rossano et al. 1983), and crosses mark the Hα emission stars (MacConnell 1968).<br />

Loz<strong>in</strong>skaya et al. (1987) studied the morphology and k<strong>in</strong>ematics of the H II regions<br />

associated with Cep OB4 based on monochromatic images of the [OIII], [NII],<br />

[SII] and Hα l<strong>in</strong>es, and found two expand<strong>in</strong>g shells: one shell, of radius ∼0. ◦ 7, connects<br />

NGC 7822 and S 171. Most Cep OB4 members are located <strong>in</strong>side this shell; their en-


88<br />

ergy <strong>in</strong>put <strong>in</strong>to the <strong>in</strong>terstellar medium can account for its observed size and expansion<br />

velocity of 10 km s −1 . The other shell, of radius ∼1. ◦ 5, is centered on S 171 and has an<br />

expansion velocity of ∼30–40 km s −1 ; it may be the result of a supernova explosion or<br />

of the stellar w<strong>in</strong>d of a massive star that so far has escaped detection.<br />

Olano et al. (2006) found that the space distribution and k<strong>in</strong>ematics of the <strong>in</strong>terstellar<br />

matter <strong>in</strong> the region of Cep OB4 suggest the presence of a big expand<strong>in</strong>g<br />

shell, centered on (l,b) ∼ (122 ◦ ,+10 ◦ ). Assum<strong>in</strong>g a distance of 800 pc for the center<br />

they derived a radius of some 100 pc, expansion velocity of 4 km s −1 , and HI mass of<br />

9.9 × 10 4 M⊙ for the <strong>Cepheus</strong> OB4 Shell, whose approximate position is plotted <strong>in</strong><br />

Fig. 1.<br />

Only 19 of the 42 classical members of Cep OB4 are listed <strong>in</strong> the Hipparcos Catalog<br />

(de Zeeuw et al. 1999). This may be caused by a comb<strong>in</strong>ation of crowd<strong>in</strong>g effects<br />

and the large ext<strong>in</strong>ction toward Cep OB4, A V > 3 mag (MacConnell 1968). Based<br />

on their proper motions and parallaxes, three MacConnell stars (HIP 117724, 118192,<br />

118194) are not associated with Cep OB4. De Zeeuw et al. (1999) found that the<br />

Hipparcos parallaxes of the other classical members are consistent with a distance of<br />

800–1000 pc.<br />

Rossano, Grayzeck & Angerhofer (1983) mapped the Cep OB4 region <strong>in</strong> the 6 cm<br />

transition of H 2 CO, and detected neutral gas at the velocities −13, −7, and −1 km s −1 .<br />

They established that Cep OB4 consisted of two k<strong>in</strong>ematically dist<strong>in</strong>ct components,<br />

W1 west and W1 east, and a loop-shaped, optically th<strong>in</strong>, thermal shell, the Cep Loop.<br />

They modeled the observed morphology and k<strong>in</strong>ematics as follows. The association<br />

Cep OB4 consists of two subgroups with differ<strong>in</strong>g ages and k<strong>in</strong>ematic properties. The<br />

older, dispersed, subgroup extends over an area about 4 degrees (60 pc) <strong>in</strong> diameter,<br />

clustered towards the Cep Loop. The younger subgroup, the young cluster Berkeley 59,<br />

extends over an area of 15 ′ (about 4 pc) <strong>in</strong> diameter, located along the southern edge of<br />

the Cep Loop. The average velocity of the OB stars of the older subgroup is −6 km s −1 .<br />

Thus Rossano et al. (1983) propose that the gas component at −7 km s −1 represents the<br />

undisturbed gas associated with the star form<strong>in</strong>g region. Beg<strong>in</strong>n<strong>in</strong>g with a cloud complex<br />

hav<strong>in</strong>g a velocity of −7 km s −1 , star formation occurred near the center of what is<br />

now the Cep Loop. The Cep Loop was subsequently formed by this first generation of<br />

OB stars. Expansion of the Cep Loop <strong>in</strong>to a cloud to the north resulted <strong>in</strong> collisional<br />

excitation of the HII region NGC 7822. In the south, expansion of the Cep Loop resulted<br />

<strong>in</strong> fragmentation of the rema<strong>in</strong>der of the orig<strong>in</strong>al dark complex produc<strong>in</strong>g clouds<br />

at −13 and −1 km s −1 . Berkeley 59 was formed <strong>in</strong> this environment. Ionization of the<br />

clouds surround<strong>in</strong>g Berkeley 59 has resulted <strong>in</strong> ionized gas at each velocity component.<br />

Ionization is now occurr<strong>in</strong>g most actively <strong>in</strong> a −1 km s −1 cloud west of Be 59. Okada<br />

et al. (2003) studied the photodissociation region associated with S 171 us<strong>in</strong>g mid- to<br />

far-<strong>in</strong>frared spectroscopy us<strong>in</strong>g the ISO SWS, LWS, and PHT-S <strong>in</strong>struments. Gahm et<br />

al. (2006) <strong>in</strong>vestigated the structure and velocity of an elephant trunk associated with<br />

NGC 7822. Figure 34, based on Fig. 1 of Rossano et al. (1983), shows a large scale red<br />

photograph of the Cep OB4 region. The <strong>in</strong>frared sources and the radio cont<strong>in</strong>uum loop<br />

are <strong>in</strong>dicated. <strong>Star</strong> symbols show the lum<strong>in</strong>ous stars of Cep OB4, and crosses mark the<br />

Hα emission stars.<br />

6.2. Low and Intermediate Mass <strong>Star</strong> Formation <strong>in</strong> Cep OB4<br />

MacConnell (1968) found 24 Hα emission-l<strong>in</strong>e (named as MacC H1–H24) objects<br />

with<strong>in</strong> the dark cloud <strong>in</strong> the region of Cep OB4, some of which may be T Tauri stars.


89<br />

Figure 35. Hα emission stars discovered by Ogura et al. (2002) <strong>in</strong> BRC 1 (left)<br />

and BRC 2 (right) associated with S 171. The position of the IRAS source associated<br />

with the cloud is shown by a pair of thick tick marks.<br />

Cohen & Kuhi (1976) obta<strong>in</strong>ed optical spectrophotometry and <strong>in</strong>frared photometry of<br />

some MacC H stars, determ<strong>in</strong>ed their spectral types and lum<strong>in</strong>osities, as well as masses<br />

and ages us<strong>in</strong>g Iben’s (1965) pre-ma<strong>in</strong> sequence evolutionary tracks. They identified<br />

four new nebulous stars <strong>in</strong> the same field (MC 1–MC 4), three of which have shown Hα<br />

emission. Table 24 lists the Hα emission stars found by MacConnell, and nebulous Hα<br />

emission stars reported by Cohen & Kuhi (1976), supplemented by the spectral types<br />

determ<strong>in</strong>ed by Cohen & Kuhi (1976).<br />

Sharma et al. (2007) obta<strong>in</strong>ed slitless spectroscopy and JH photometry for Berkeley<br />

59. They identified 9 Hα emission stars, whose location <strong>in</strong> the J/J−H colormagnitude<br />

diagram <strong>in</strong>dicates that they may be pre-ma<strong>in</strong> sequence stars. The age of the<br />

cluster was estimated from the turn-off and turn-on po<strong>in</strong>ts and is found to lie between<br />

about 1 and 4 million years. Pandey et al. (2008) present UBV I C CCD photometry<br />

of Be 59 with the aim to study the star formation scenario <strong>in</strong> the cluster. Us<strong>in</strong>g slitless<br />

spectroscopy, they have identified 48 Hα emission stars <strong>in</strong> the region of Be 59.<br />

The ages of these YSOs range between


90<br />

Table 24. Data for the Hα emission stars found by MacConnell (1968) and Cohen<br />

& Kuhi (1976) <strong>in</strong> the region of Cep OB4<br />

Name Other name RA(2000) Dec(2000) V B−V U−B Type Remarks<br />

H1 HBC 742 23 52 33.0 68 25 55 14.97 1.47 +0.27 B8eα<br />

H2 23 41 45.0 66 39 36 12.47 1.1 −0.09 1<br />

H3 HBC 319, Blanco 1 23 54 26.6 66 54 17 14.50 1.09 −0.15 K2 2,20<br />

H4 HBC 321n, Blanco 3 23 58 41.4 66 26 11 14.67 1.96: A9eα 3<br />

H5 HBC 322, Blanco 4 23 59 20.2 66 23 10 15.80 1.75: K5 4,20<br />

H6 23 59 12.0 66 22 16 16.79 pT<br />

H7 Blanco 5 0 00 57.3 66 28 53 16.68 0.97 pT 5<br />

H8 Blanco 11 0 15 21.6 65 45 32 17.33 0.60: pT 6<br />

H9 Blanco 10 0 13 29.1 65 35 59 14.96 1.28: +0.72: K4 7,20<br />

H10 Blanco 9 0 12 54.4 65 34 09 14.72 1.51: +0.52: K4 8,20<br />

H11 Blanco 7 0 07 06.1 65 40 15 16.83 0.92: pT<br />

H12 0 07 03.1 65 38 37 16.23 1.12: F: 9,20<br />

H13 Blanco 8 0 07 18.4 65 36 42 16.77 0.87: pT 10<br />

H14 23 41 24.8 65 40 40 15.74<br />

H15 GG 179 0 17 35.0 65 16 08 12.12 1.04 −0.10 11<br />

H16 Sh 118 0 07 20.2 64 57 21 13.79 1.17 −0.36 12<br />

H17 0 04 52.2 65 05 49 13.49 0.83 −0.12 13<br />

H18 HBC 323, Blanco 6 0 02 13.0 64 54 22 14.21 1.29: +0.02: K7 14,20<br />

H19 HBC 320, Blanco 2 23 57 34.3 64 54 21 14.21 1.29: +0.02: K3 15,20<br />

H20 GG 162 23 50 02.3 64 41 41 12.23<br />

H21 0 06 40.6 65 34 52 11.55 0.49 +0.32 16<br />

H22 MWC 1085 23 52 12.4 67 10 07 9.96 0.53 −0.22 B3e 17<br />

H23 AS 517 23 57 33.9 66 25 54 10.37 0.70 +0.01 B5e 18<br />

H24 AS 2 0 12 58.9 66 19 19 10.68 0.77 +0.25 B5e 19<br />

MC1 0 06 57.9 65 37 21 14.6 A5 20<br />

MC2 0 35 57.5 66 19 15 14.1 A2 20<br />

MC3 0 16 35.0 65 43 20 16.8 K5 20<br />

MC4 0 16 42.0 65 44 20 14.4 K4 20<br />

sH15 0 13 23.9 65 35 20 13.6 K1 20<br />

Remarks: (1) Fa<strong>in</strong>t, blue cont<strong>in</strong>uum; could be Be. (2) Probable Ca II <strong>in</strong>frared emission; suspected var. <strong>in</strong><br />

B. (3) LkHa 259; probably not T Tauri type. (4) Found <strong>in</strong>dependently by Herbig (unpublished); probable<br />

Ca II <strong>in</strong>frared emission; var. <strong>in</strong> B and V. (5) Found <strong>in</strong>dependently by Herbig (unpublished). (6) Suspected<br />

var. <strong>in</strong> B (no filter) and V. (8) Found <strong>in</strong>dependently by Herbig (unpublished); probable var. <strong>in</strong> V. (7)<br />

Found <strong>in</strong>dependently by Herbig (unpublished); probable var. <strong>in</strong> V. (8) Found <strong>in</strong>dependently by Herbig<br />

(unpublished); probable var. <strong>in</strong> V. (9) Near-red nebulosity; probable Ca II <strong>in</strong>frared emission; var. <strong>in</strong> V.<br />

(10) Var. <strong>in</strong> V. (11) Fa<strong>in</strong>t, blue cont<strong>in</strong>uum; could be Be. (12) Known planetary nebula, Sh 118. (13)<br />

Fa<strong>in</strong>t, blue cont<strong>in</strong>uum; could be Be. (14) Var. <strong>in</strong> U and V. (15) Var. <strong>in</strong> U and V. (16) New Be star;<br />

spectral type about B8, very broad Balmer l<strong>in</strong>es, particularly Hζ and Hη. (17) Known Be star; No. 30 of<br />

MacConnell’s Table 3. (18) Known Be star; No. 33 of MacConnell’s Table 3. (19) Known Be star; No.<br />

32 of MacConnell’s Table 3. (20) Spectral type from Cohen & Kuhi (1976)<br />

(2008). Table 25 lists the coord<strong>in</strong>ates and Hα equivalent widths (revised by Ikeda et al.<br />

2008) of these stars, and Fig. 35 shows the f<strong>in</strong>d<strong>in</strong>g charts.<br />

The bright rimmed cloud BRC 2 conta<strong>in</strong>s a compact cluster of Hα emission stars.<br />

The S 171 cluster was observed by the IRAC on board the Spitzer Space Telescope<br />

(Megeath et al. 2004). The cluster of young stars is situated near the edge of the cloud<br />

with a dense group of five Class I sources at the northern apex of the cluster. This morphology<br />

suggests that star formation is triggered by a photoevaporation-driven shock<br />

wave propagat<strong>in</strong>g <strong>in</strong>to the cloud, as first proposed for this region by Sugitani et al.


91<br />

Table 25. Hα emission stars associated with bright rimmed clouds of S 171 and<br />

NGC 7822 (Ogura et al. 2002; Ikeda et al. 2008).<br />

N RA(J2000) Dec(J2000) EW(Hα) Remarks<br />

BRC 1<br />

1 23 59 42.50 67 22 27.8 · · · <strong>in</strong>visible cont., contam. from nearby star<br />

2 23 59 43.72 67 25 50.0 26.6 weak cont.<br />

3 23 59 43.99 67 22 46.8 · · · <strong>in</strong>visible cont.<br />

4 23 59 47.61 67 23 11.2 · · · Hα ?, <strong>in</strong>visible cont.<br />

5 23 59 47.98 67 23 06.9 · · · Hα ?, weak cont.<br />

6 23 59 52.75 67 25 37.5 32.6 weak cont.<br />

BRC 2<br />

1 00 03 51.03 68 33 15.8 · · · Hα ?<br />

2 00 03 52.32 68 31 58.8 · · · <strong>in</strong>visible cont.<br />

3 00 03 54.52 68 33 44.6 · · · contam. from nearby stars<br />

4 00 03 54.98 68 32 42.8 145.7 very weak cont.<br />

5 00 03 57.12 68 33 46.7 15.6<br />

6 00 03 57.35 68 33 23.0 99.6<br />

7 00 03 58.33 68 34 06.5 13.1<br />

8 00 03 59.12 68 32 47.3 18.2<br />

9 00 04 01.70 68 34 13.8 2.8<br />

10 00 04 01.81 68 34 00.0 14.0<br />

11 00 04 01.80 68 34 37.4 5.5<br />

12 00 04 01.88 68 34 34.5 21.2<br />

13 00 04 02.32 68 31 36.2 · · · Hα ?<br />

14 00 04 02.65 68 34 26.6 24.9<br />

15 00 04 04.69 68 33 49.3 25.8 weak cont.<br />

16 00 04 04.59 68 34 52.2 23.0<br />

17 00 04 05.28 68 33 56.0 136.6 very weak cont.<br />

18 00 04 05.26 68 33 53.1 50.4<br />

19 00 04 05.66 68 33 44.3 94.5<br />

20 00 04 07.33 68 33 42.3 · · · <strong>in</strong>visible cont.<br />

21 00 04 07.60 68 33 25.1 12.8<br />

22 00 04 11.66 68 33 25.4 46.7<br />

23 00 04 13.97 68 32 21.8 85.7 weak cont.<br />

24 00 04 14.71 68 32 49.1 42.1<br />

25 00 04 15.18 68 33 02.0 16.1<br />

26 00 04 15.41 68 34 05.5 26.6 very weak cont.<br />

27 00 04 21.66 68 30 59.6 · · · Hα ?<br />

28 00 04 25.36 68 32 31.0 12.3 weak cont.<br />

29 00 04 29.99 68 31 19.9 · · · Hα ?<br />

30N 00 03 59.88 68 33 41.7 1.4<br />

(1991). In addition to the stars <strong>in</strong> the cluster, Spitzer detected six Class II and two<br />

Class I objects spread throughout the molecular cloud. The presence of these stars<br />

suggests that a distributed mode of star formation is also occurr<strong>in</strong>g <strong>in</strong> the cloud.<br />

A new generation of low mass stars has been born <strong>in</strong> the molecular clouds <strong>in</strong><br />

the neighborhood of the young lum<strong>in</strong>ous stars. Yang et al. (1990) reported on the<br />

discovery of a molecular cloud <strong>in</strong> Cep OB4. The cloud M 120.1+3.0, appear<strong>in</strong>g dense<br />

and filamentary, is composed of two parts. Each of the two parts has a size of 6 pc×1 pc,<br />

and a mass of 800 M⊙. The cloud is associated with 12 low lum<strong>in</strong>osity (L < 20 L⊙)<br />

IRAS sources, and the locations of the sources show remarkable co<strong>in</strong>cidence with the<br />

distribution of the dense molecular gas. Two molecular outflows have been discovered<br />

towards two IRAS sources, IRAS 00213+6530 and IRAS 00259+6510. The results<br />

<strong>in</strong>dicate that low-mass star formation took place recently <strong>in</strong> the cloud.


92<br />

7. <strong>Cepheus</strong> OB6<br />

The nearby association Cep OB6 first appeared <strong>in</strong> the literature <strong>in</strong> 1999. De Zeeuw<br />

et al. (1999) identified this mov<strong>in</strong>g group of 27 stars <strong>in</strong> the Hipparcos data base. The<br />

stars show a modest concentration at (l,b)≈ (104. ◦ 0, −0. ◦ 5). The f<strong>in</strong>al sample conta<strong>in</strong>s<br />

20 stars, 6 B, 7 A, 1 F, 2 G and 3 K type <strong>in</strong> the area 110 ◦ < l < 110 ◦ , and −2 ◦ <<br />

b < +2 ◦ . The brightest member is the K1Ib supergiant ζ Cep (HIP 109492). The<br />

color–magnitude diagram is very narrow, and strengthens the evidence that these stars<br />

form a mov<strong>in</strong>g group, that is, an old OB association. The earliest spectral type is B5III,<br />

suggest<strong>in</strong>g an age of some 50 million years. The mean distance of the association is<br />

270 ±12 pc. The supergiant δ Cephei, the archetype of Cepheid variables, also belongs<br />

to Cep OB6. Makarov (2007) dur<strong>in</strong>g his study of the Galactic orbits of nearby stars<br />

found that a few members of the AB Dor mov<strong>in</strong>g group were <strong>in</strong> conjunction with the<br />

coeval <strong>Cepheus</strong> OB6 association 38 Myr ago. He proposed that the AB Dor nucleus<br />

formed 38 Myr ago dur<strong>in</strong>g a close passage of, or encounter with, the <strong>Cepheus</strong> OB6<br />

cloud, which may have triggered formation of the latter association as well. No younger<br />

subgroup of Cep OB 6 has been identified.<br />

Acknowledgments. This work was supported by the Hungarian OTKA grant<br />

T049082. We are grateful to Jeong-Eun Lee for send<strong>in</strong>g us the results on L 1251 B<br />

before publication, to Miklós Rácz for his help with some figures, to László Szabados<br />

for a careful read<strong>in</strong>g of the manuscript, and to Tom Megeath for the data <strong>in</strong> Table 17.<br />

We thank Giovanni Ben<strong>in</strong>tende, Richard Gilbert, John Bally, Robert Gendler, and Davide<br />

De Mart<strong>in</strong> for the use of figures 6, 8, 10, 12, and 16, respectively. Bo Reipurth’s<br />

referee report led to an enormous improvement of this chapter. We used the Simbad<br />

and ADS data bases throughout this work.<br />

References<br />

Ábrahám, P., Dobashi, K., Mizuno, A., & Fukui, Y. 1995, A&A, 300, 525<br />

Ábrahám, P., Balázs, L. G., & Kun, M. 2000, A&A, 354, 645<br />

Ábrahám, P., Le<strong>in</strong>ert, Ch., Burkert, A., Henn<strong>in</strong>g, Th., & Lemke, D. 2000, A&A, 354, 965<br />

Alecian, E., Catala, C., Wade, G. A., Donati, J.-F., Petit, P., Landstreet, J. D., Böhm, T., Bouret,<br />

J.-C., Bagnulo, S., Folsom, C., Grunhut, J., & Silvester, J. 2008, MNRAS, 385, 391<br />

Altamore, A., Baratta, G. B., Cassatella, A., Grasdalen, G. L., Persi, P., & Viotti, R. 1980, A&A,<br />

90, 290<br />

Alten, V. P., Bally, J., Dev<strong>in</strong>e, D., Miller, G. J. 1997, Low Mass <strong>Star</strong> Formation - from Infall to<br />

Outflow, poster proceed<strong>in</strong>gs of IAU 182, ed. F. Malbet & A. Castets, p.51<br />

Ambartsumian, V. A. 1949, Dokl. Akad. Nauk. SSR, 68, 22<br />

Am<strong>in</strong>, M. Y. 2001, New Astr., 6, 393<br />

Anglada, G., Rodríguez, L. F., Cantó, J., Estalella, R., & Torrelles, J. M. 1992, ApJ, 395, 494<br />

Anglada, G., Sepúlveda, I., & Gómez, J. F. 1997, A&AS, 121, 255<br />

Arce, H. G. & Goodman, A. A. 2002, ApJ, 575, 911<br />

Arce, H. G. & Sargent A. I. 2004, ApJ, 612, 342<br />

Arce, H. G. & Sargent A. I. 2006, ApJ, 646, 1070<br />

Arce, H. G., Santiago-García, J., Jorgensen, J. K., Tafalla, M., & Bachiller, R. 2008, ApJ, 681,<br />

L21<br />

Armstrong, J. T. 1989, <strong>in</strong> The Physics and Chemistry of Interstellar Molecular Clouds, ed. G.<br />

W<strong>in</strong>newisser & J. T. Armstrong (Berl<strong>in</strong>: Spr<strong>in</strong>ger), p. 143<br />

Ashby, M. L. N., Plume, R., Carpenter, J. M., Neufeld, D. A. et al. 2000, ApJ, 539, L115<br />

Avery, L. W. & Chiao, M. 1996, ApJ, 463, 642<br />

Avila, R., Rodríguez, L. F., & Curiel, S. 2001, RMxAA, 37, 201


Ayala, S., Noriega-Crespo, A., Garnavich, P., Curiel, S., Raga, A. C., & Böhm, K. H. 2000, AJ,<br />

120, 909<br />

Baars, J. W. M. & Wendker, H. J. 1976, A&A, 49, 473<br />

Bachiller, R., Liechti, S., Walmsley, C. M., & Colomer, F. 1995, A&A, 295, 51<br />

Bachiller, R. & Pérez Gutiérrez, M. 1997, ApJ, 487, L93<br />

Bachiller, R., Pérez Gutiérrez, M., Kumar, M. S. N., & Tafalla, M. 2001, A&A, 372, 899<br />

Balázs, L. G., Ábrahám, P., Kun, M., Tóth, L. V., & Kelemen, J. 2004, A&A, 425, 133<br />

Balázs, L. G., Eislöffel, J., Holl, A., Kelemen, J., & Kun, M. 1992, A&A, 255, 281<br />

Balázs, L. G., Garibjanyan, A. T., Mirzoyan, L. V., Hambaryan, V. V., Kun, M., Frontó, A., &<br />

Kelemen, J. 1996, A&A, 311, 145<br />

Balázs, L.G. & Kun, M. 1989, Astron. Nachr., 310, 192<br />

Bally, J., Dev<strong>in</strong>e, D., Fesen, R. A., & Lane, A. P. 1995, ApJ, 454, 345<br />

Bally, J., Reipurth, B., Lada, C. J., & Billawala, Y. 1999, AJ, 117, 410<br />

Bally, J. & Lane, A. P. 1990, ASP Conf. Ser. 14, Astrophysics with Infrared Arrays, ed. R.<br />

Elston, p. 273<br />

Bally, J. & Reipurth, B. 2001, ApJ, 552, L159<br />

Bally, J., Reipurth, B., Walawender, J., & Armond, T. 2002, AJ, 124, 2152<br />

Barnard, E.E. 1927, Barnard’s Catalogue of 349 Dark Objects <strong>in</strong> the Sky. A Photographic Atlas<br />

of Selected <strong>Regions</strong> of the Milky Way, by Barnard, E.E., ed. Frost, E.B. and Calvert,<br />

M.R., Carnegie Institution of Wash<strong>in</strong>gton<br />

see also http://www.library.gatech.edu/barnard/<br />

Bechis, K. P., Harvey, M. P. M., Campbell, M. F., & Hoffmann, W. F. 1978, ApJ, 226, 439<br />

Beichman, A., Beckl<strong>in</strong>, E. E., & Wynn-Williams, C. G. 1979, ApJ, 232, L47<br />

Beichman, C. A., Myers, P. C., Emerson, J. P., et al. 1986, ApJ, 307, 337<br />

Beltrán, M. T., Estalella, R., Anglada, G., Rodríguez, L. F., & Torrelles, J. M. 2001, AJ, 121,<br />

1156<br />

Beltrán, M. T., Girart, J. M., Estalella, R., Ho, P. T. P., & Palau, A. 2002, ApJ, 573, 246<br />

Beltrán, M.T., Gueth, F., Guilloteau, S., & Dutrey, A. 2004, A&A, 416, 631<br />

Benedett<strong>in</strong>i, M., Viti, S., Codella, C., Bachiller, R., Gueth, F., Beltrán, M. T., Dutrey, A., &<br />

Guilloteau, S. 2007, MNRAS, 381, 1127<br />

Benson, P. J., Caselli, P., & Myers, P. C. 1998, ApJ, 506, 743<br />

Benson, P. J. & Myers, P. C. 1989, ApJS, 71, 89<br />

Berkhuijsen, E. M. 1973, A&A, 24, 143<br />

Berné, O., Jobl<strong>in</strong>, C., Rapacioli, M., Thomas, J., Cuillandre, J.-C., & Deville, Y. 2008, A&A,<br />

479, L41<br />

Bernes, C. 1977, A&AS, 29, 65<br />

Blaauw, A. 1964, ARA&A, 2, 213<br />

Blaauw, A., Hiltner, W. A., & Johnson, H. L. 1959, ApJ, 130, 69<br />

Blair, G. N., Evans, N. J., II, Vanden Bout, P. A., & Peters, W. L., III 1978, ApJ, 219, 896<br />

Blanco, V. M. & Williams, A. D. 1959, ApJ, 130, 482<br />

Blitz, L., Fich, M., & <strong>Star</strong>k, A. A. 1982, ApJS, 49, 183<br />

Blitz, L. & Lada, C.J. 1979, ApJ, 227, 152<br />

Brogan, C. L., Chandler, C. J., Hunter, T. R., Shirley, Y. L., & Sarma, A. P. 2007, ApJ, 660,<br />

L133<br />

Bronfman, L., Nyman, L.-A., & May, J. 1996, A&AS, 115, 81<br />

Brugel, E. W. & Fesen, R. A. 1990, BAAS, 22, 1258<br />

Brunt, C. M., Kerton, C. R., & Pomerleau, C., 2003, ApJS, 144, 47<br />

Cabrit, S., Lagage, P.-O., McCaughrean, M., & Olofsson, G. 1997, A&A, 321, 523<br />

Cederblad, S. 1946, Lund Medd. Astron. Obs. Ser. II, 119, 1<br />

Cesaroni, R., Palagi, F., Felli, M., Catarzi, M., Comoretto, G., di Franco S., Giovanardi, C., &<br />

Palla, F. 1988, A&AS, 76, 445<br />

Cesarsky, C. J., Cesarsky, D. A., Churchwell, E., & Lequeux, J. 1978, A&A, 68, 33<br />

Cesarsky, D., Lequeux, J., Ryter, C., & Gér<strong>in</strong>, M. 2000, A&A, 354, 87<br />

Chakraborty, A., Ge, J., & Mahadevan, S. 2004, ApJ, 606, L69<br />

Ch<strong>in</strong>i, R., Ward-Thompson, D., Kirk, J. M., et al. 2001, A&A, 369, 155<br />

93


94<br />

Ciardi, D. R., Woodward, C. E., Clemens, D. P., Harker, D. E., & Rudy, R. J. 1998, AJ, 116,<br />

349<br />

Ciardi, D. R., Woodward, C. E., Clemens, D. P., Harker, D. E., & Rudy, R. J. 2000, AJ, 120,<br />

393<br />

Clayton, G. C. & Fitzpatrick, E. L. 1987, AJ, 92, 157<br />

Clemens, D. P. & Barva<strong>in</strong>is, R., 1988, ApJS, 68, 257<br />

Clemens, D. P., Yun, J. L., & Heyer, M. H. 1991, ApJS, 75, 877<br />

Codella, C., Bachiller, R., Nis<strong>in</strong>i, B., Saraceno, P., & Testi, L. 2001, A&A, 376, 271<br />

Cohen, M. 1980, AJ, 85, 29<br />

Cohen, R. J. & Brebner, G. C. 1985, MNRAS, 216, 51<br />

Cohen, M. & Fuller, G. A. 1985, ApJ, 296, 620<br />

Cohen, M. & Kuhi, L.V. 1976, ApJ, 210, 365<br />

Cohen, M. & Kuhi, L.V. 1979, ApJS, 41, 743<br />

Cohen, M. & Schwartz, R. D. 1983, ApJ, 265, 877<br />

Cohen, M., Kuhi, L. V., & Harlan, E. A. 1977, ApJ, 215, L127<br />

Cohen, M., Kuhi, L. V., Sp<strong>in</strong>rad, H., & Harlan, E. A. 1981, ApJ, 245, 920<br />

Cohen, R. J., Rowland, P. R., & Blair, M. M. 1984, MNRAS, 210, 425<br />

Comito, C., Schilke, P., Endesfelder, U., Jiménez-Serra, I., & Martín-P<strong>in</strong>tado, J. 2007, A&A,<br />

469, 207<br />

Connelley, M. S., Reipurth, B., & Tokunaga, A. T. 2007, AJ, 133, 1528<br />

Contreras, M. E., Sicilia-Aguilar, A., Muzerolle, J., Calvet, N., Berl<strong>in</strong>d, P., & Hartmann, L.<br />

2002, AJ, 124, 1585<br />

Corcoran, D., Ray, T. P., & Mundt, R. 1993, A&A, 279, 206<br />

Corcoran, D. & Ray, T. P. 1997, A&A, 321, 189<br />

Crampton, D. & Fisher, W. A. 1974, Publ. Dom. Astrophys. Obs., 14, 283<br />

Crawford, D. L. & Barnes, J. V. 1970, AJ, 75, 952<br />

Curiel, S., Ho, P. T. P., Patel, N. A., Torrelles, J. M., Rodríguez, L. F., et al. 2006, ApJ, 638, 878<br />

Curiel, S., Tr<strong>in</strong>idad, M. A., Cantó, J., Rodríguez, L. F., Torrelles, J. M., et al. 2002, ApJ, 564,<br />

L35<br />

Daflon, S., Cunha, K., & Becker, S. R. 1999, ApJ, 522, 950<br />

Davis, C. J. & Eislöffel, J. 1995, A&A, 330, 851<br />

de Gregorio-Monsalvo, I., Gómez, J. F., Suárez, O., Kuiper, T. B. H., Rodríguez, L. F., &<br />

Jiménez-Bailón, E. 2006, ApJ, 642, 319<br />

Dev<strong>in</strong>e, D., Reipurth, B., & Bally, J. 1997, Low Mass <strong>Star</strong> Formation – from Infall to Outflow,<br />

poster proceed<strong>in</strong>gs of IAU Symp. No. 182, eds. F. Malbet & A. Castets, p. 91<br />

de Vries, C. H., Narayanan, G., & Snell, R. L. 2002, ApJ, 577, 798<br />

de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown, A., & Blaauw, A. 1999, AJ, 114,<br />

354<br />

D<strong>in</strong>erste<strong>in</strong>, H. L., Lester, D. F., & Rank, D. M. 1979, ApJ, 227, L39<br />

Dobashi, K. & Uehara, H. 2001, PASJ, 53, 799<br />

Dobashi, K., Bernard, J. P., Yonekura, Y., & Fukui, Y. 1994, ApJS, 95, 419<br />

Dobashi, K., Uehara, H., Kandori, R., Sakurai, T., Kaiden, M., Umemoto, F., & Sato, F. 2005,<br />

PASJ, 57, S1<br />

Dorschner, J., & Gürtler, J. 1964, Astron. Nachr., 287, 257<br />

Draper, P. W., Warren-Smith, R. F., & Scarrott, S. M. 1984, MNRAS, 212, 5P<br />

Duvert, G., Cernicharo, J., Bachiller, R., & Gómez-González J. 1990, A&A, 233, 190<br />

Edwards, S., & Snell, R. L. 1983, ApJ, 270, 605<br />

Ehlerova, S. & Palous, J. 2005, A&A, 437, 101<br />

Eiroa, C., Gómez de Castro, A. I., & Miranda, L. F. 1992, A&AS, 92, 721<br />

Eiroa C., Lenzen R., Miranda L. F., Torrelles J. M., Anglada G., & Estalella, R. 1993, AJ, 106,<br />

613<br />

Eiroa, C., Palacios, J., & Casali, M. M. 1998, A&A, 335, 243<br />

Eiroa, C., Torrelles, J. M., Miranda, L. F., Anglada, G., & Estalella R. 1994, A&AS, 108, 73<br />

Eislöffel, J. 2000, A&A, 345, 236<br />

Eislöffel, J., Smith, M. D., Davis, C. J., & Ray, T. P. 1996, AJ, 112, 2086


Elmegreen, D. M. & Elmegreen, B. G. 1978, ApJ, 220, 510<br />

Elmegreen, B. G. & Lada, C. J. 1977, ApJ, 214, 725<br />

Eredics, M. & Kun, M. 2003, Comm. Konkoly Obs., 13, 27<br />

ESA 1997, The Hipparcos and Tycho Catalogues, ESA SP–1200<br />

Evans, N. J., II, Allen, L. E., Blake, G. A., Boogert, A. C. A., et al. 2003, PASP, 115, 965<br />

Evans, N. J. II, Kutner, M. L., & Mundy, L. G. 1987, ApJ, 323, 145<br />

Evans, N. J. II, Mundy, L. G., Kutner, M. L., & Depoy, D. L. 1989, ApJ, 346, 212<br />

Evans, N. J., II, Slovak, M. H., Beckl<strong>in</strong>, E. E., Beichman, C., Gatley, I., Werner, M. W., Hildebrand,<br />

R. H., Keene, J. & Whitcomb S. E. 1981, ApJ, 244, 115<br />

Felli, M., Palagi, F., & Tofani, G. 1992, A&A, 255, 293<br />

Felli, M., Tofani, G., Harten, R. H., & Panagia, N. 1978, A&A, 69, 199<br />

Few, R. W. & Cohen, R. J. 1983, MNRAS, 203, 853<br />

Font, A. S., Mitchell, G. F., & Sandell, G. 2001, ApJ, 555, 950<br />

Froebrich, D., Smith, M. D., & Eislöffel, J. 2002, A&A, 385, 239<br />

Froebrich, D., & Scholz, A. 2003, A&A, 407, 207<br />

Froebrich, D., Scholz, A., Eislöffel, J., & Murphy, G. C. 2005, A&A, 432, 575<br />

Froebrich, D., Smith, M. D., Hodapp, K.-W., & Eislöffel, J. 2003, MNRAS, 346, 163<br />

Fuente, A. 2008, Ap&SS, 313, 135<br />

Fuente, A., Ceccarelli, C., Neri, R., Alonso-Albi, T., Caselli, P., Johnstone, D., van Dishoeck,<br />

E. F., & Wyrowski, F. 2007, A&A, 468, L37<br />

Fuente, A., Martín-P<strong>in</strong>tado, J., Rodríguez-Franco, A., & Moriarty-Schieven, G. D. 1998a,<br />

A&A, 339, 575<br />

Fuente, A., Martín-P<strong>in</strong>tado, J., Bachiller, R., Neri, R., & Palla, F. 1998b, A&A, 334, 253<br />

Fuente, A., Martín-P<strong>in</strong>tado, J., Rodríguez-Fernández, N. J., Cernicharo, J., & Gér<strong>in</strong>, M. 2000,<br />

A&A, 354, 1053<br />

Fuente, A., Neri, R., Martín-P<strong>in</strong>tado, J., Bachiller, R., Rodríguez-Franco, A., & Palla, F. 2001,<br />

A&A, 366, 873<br />

Fuente, A., Neri, R., & Caselli, P. 2005a, A&A, 444, 481<br />

Fuente, A., Rizzo, J. R., Caselli, P., Bachiller, R. & Henkel, C. 2005b, A&A, 433, 535<br />

Fukui, Y. 1989, Low Mass <strong>Star</strong> Formation and Pre-Ma<strong>in</strong> Sequence Objects, ed. B. Reipurth<br />

(Garch<strong>in</strong>g: ESO), p. 95<br />

Fuller, G. A. & Myers, P. C. 1992, ApJ, 384, 523<br />

Furusho, T., Yamasaki, N. Y., Ohashi, T., Saito, Y., & Voges, W. 2000, PASJ, 52, 677<br />

Furuya, R. S., Kitamura, Y., Wootten, A., Claussen, M. J., & Kawabe, R. 2003, ApJS, 144, 71<br />

Furuya, R. S., Kitamura, Y., & Sh<strong>in</strong>naga, H. 2006, ApJ, 653, 1369<br />

Furuya, R. S., Kitamura, Y., & Sh<strong>in</strong>naga, H. 2008, PASJ, 60, 421<br />

Gahm, G. F., Carlqvist, P., Johansson, L. E. B., & Nikolić, S. 2006, A&A, 454, 201<br />

Garay, G., Ramirez, S., Rodríguez, L. F., Curiel, S., & Torrelles, J. M. 1996, ApJ, 459, 193<br />

Garmany, C. D. 1973, AJ, 78, 185<br />

Garmany, C. D. & Stencel, R. E. 1992, A&AS, 94, 211<br />

Garrison, R. 1970, AJ, 75, 1001<br />

Garrison, R. F. & Kormendy, J. 1976, PASP, 88, 865<br />

Getman, K. V., Feigelson, E. D., Townsley, L., Broos, P., Garmire, G., & Tsujimoto, M. 2006,<br />

ApJS, 163, 306<br />

Getman, K. V., Feigelson, E. D., Garmire, G., Broos, P., & Wang, J. 2007, ApJ, 654, 316<br />

Giveon, U., Sternberg, A., Lutz, D., Feuchtgruber, H., & Pauldrach, A. W. A. 2002, ApJ, 566,<br />

880<br />

Goetz, J. A., Pipher, J. L., Forrest, W. J., Watson, D. M., Ra<strong>in</strong>es, S. N., et al. 1998, ApJ, 504,<br />

359<br />

Goicoechea, J. R., Berné, O., Gér<strong>in</strong>, M., Jobl<strong>in</strong>, C., & Teyssier, D., 2008, ApJ, 680, 466<br />

Golynk<strong>in</strong>, A. A., & Konovalenko, A. A. 1991, Sov. Astr. Lett., 17, 7<br />

Gómez, J. F., Sargent, A. I., Torrelles, J. M., Ho, P. T. P., Rodríguez, L. F., Cantó, J., & Garay,<br />

G. 1999, ApJ, 514, 287<br />

Gómez, M., Kenyon, S. J., & Whitney, B. A. 1997, AJ, 114, 265<br />

Gómez de Castro, A. I., Miranda, L. F., & Eiroa, C. 1993, A&A, 267, 559<br />

95


96<br />

Gómez de Castro, A. I., & Robles, A. 1999, A&A, 344, 632<br />

Goodman, A. A. & Arce, H. G. 2004, ApJ, 608, 831<br />

Goodman A. A., Benson, P. J., Fuller, G. A., & Myers, P. C. 1993, ApJ, 406, 528<br />

Greene, T. P. & Lada, C. J. 1996, AJ, 112, 2184<br />

Grenier, I. A., Lebrun, F., Arnaud, M., Dame, T. M., & Thaddeus, P. 1989, ApJ, 347, 231<br />

Gueth, F., Bachiller, R., & Tafalla, M. 2003, A&A, 401, L5<br />

Gueth, F., Guilloteau, S., & Bachiller, R. 1996, A&A, 307, 891<br />

Gueth, F., Guilloteau, S., & Bachiller, R. 1998, A&A, 333, 287<br />

Gueth, F., Guilloteau, S., Dutrey, A., & Bachiller, R. 1997, A&A, 323, 943<br />

Güsten, R. & Marcaide, J. M. 1986, A&A, 164, 342<br />

Gutermuth, R. A., Megeath, S. T., Muzerolle, J., Allen, L. A., Pipher, J. L., Myers, P. C., &<br />

Fazio, G. G. 2004, ApJS, 154, 374<br />

Gyulbudaghian, A. L. 1982, Sov. Astr. Lett., 8, 123<br />

Gyulbudaghian, A. L. 1985, Astrophysics, 23, 538<br />

Gyulbudagyan A. L., & Akopyan V. A. 1990, Astrophysics, 33, 528<br />

Gyulbudaghian, A. L., Glushkov, Yu. I., & Denisyuk, E. K. 1978, ApJ, 224, L137<br />

Gyulbudaghian, A. L., & Magakian, T. Yu. 1977, Sov. Astr. Lett. 3, 58<br />

Gyulbudaghian, A. L., Rodríguez, L. F., & Cantó, J. 1986, Astrophysics, 24, 119<br />

Gyulbudaghian, A. L., Rodríguez, L. F., & Mendoza-Torres, E. 1987, RMxAA, 15, 53<br />

Gyulbudaghian, A. L., Rodríguez, L. F., & Curiel, S. 1990, RMxAA, 20, 51<br />

Hackwell, J. A., Grasdalen, G. L., & Gehrz, R. D. 1982, ApJ, 252, 250<br />

Haikala, L., & Dietrich, D. 1989, <strong>in</strong> The Physics and Chemistry of Interstellar Molecular<br />

Clouds, ed. G. W<strong>in</strong>newisser & J. T. Armstrong (Berl<strong>in</strong>: Spr<strong>in</strong>ger), p.236<br />

Haikala, L. & Laureijs, R. J. 1989, A&A, 223, 287<br />

Hamann, F. & Persson, S. E. 1994, ApJS, 82, 285<br />

Harju, J., Walmsley, C. W., & Wouterloot, J. G. A. 1993, A&AS, 98, 51<br />

Harjunpää, P., & Mattila, K. 1991, A&A, 249, 493<br />

Harker, D., Bregman, J., Tielens, A. G. G. M., Temi, P., & Rank, D. 1997, A&A, 324, 629<br />

Harten, R. H., Thum, C., & Felli, M. 1981, A&A, 94, 231<br />

Hartigan, P. & Lada, C.J. 1985, ApJS, 59, 383<br />

Hartigan, P., Lada, C. J., Tapia, S., & Stocke, J. 1986, AJ, 92, 1155<br />

Hartigan, P. Morse, J., & Bally, J. 2000, AJ, 120, 1436<br />

Harvey, P. M., Wilk<strong>in</strong>g, B. A., & Joy, M. 1984, ApJ, 278, 156<br />

Harv<strong>in</strong>, J. A. 2004, PASP, 116, 186<br />

Hasegawa, T. I., Mitchell, G. F., & Henriksen, R. N. 1991, AJ, 102, 666<br />

Hatchell, J., Fuller, G. A., & Ladd, E. F. 1999, A&A, 346, 278<br />

Hayashi, M., & Murata, Y. 1992, PASJ, 44, 391<br />

Hayashi, S. S., Hasegawa, T., & Kaifu, N. 1988, ApJ, 332, 354<br />

Hayashi, M., Hasegawa, T., Omodaka, T., Hayashi, S. S., & Miyawaki, R. 1987 ApJ, 312, 327<br />

Hayashi, M., Suzuki, S., Omodaka, T., & Hasegawa, T. 1985, ApJ, 288, 170<br />

Heiles, C. 1967, ApJS, 15, 97<br />

Herbig, G. H. 1960, ApJS, 4, 337<br />

Herbig, G. H. 2008, AJ, 135, 637<br />

Herbig, G.H. & Rao, N.K. 1972, ApJ, 174, 401<br />

Herbig, G. H. & Bell, K. R. 1988, Lick Obs. Bull. No. 1111 (Santa Cruz: Lick Obs.)<br />

Hernández, J., Calvet, N., Hartmann, L., & Berl<strong>in</strong>d, P. 2004, AJ, 127, 1682<br />

Heske, A., & Wendker, H. J. 1985, A&A, 149, 199<br />

Hessman, F. V., Beckwith, S. V. W., Bender, R., Eislöffel, J., Goetz, W., & Guenther, E. 1995,<br />

A&A, 299, 464<br />

Hillenbrand, L. A., Strom, S. E., Vrba, F. J., & Keene, J. 1992, ApJ, 397, 613<br />

Hirano, N. & Taniguchi, Y. 2001, ApJ, 550, L219<br />

Ho, P. T. P., Moran, J. M., & Rodríguez, L. F. 1982, ApJ, 262, 619<br />

Hoare, M. G. 2006, ApJ, 649 856<br />

Hodapp, K.-W. 1994, ApJS, 94, 615<br />

Hogg, H. S. 1959, Handbuch der Physik, ed. S. Flugge (Berl<strong>in</strong>: Spr<strong>in</strong>ger), 53, 194


Hoogerwerf, R., de Bruijne, J. H. J., & de Zeeuw, P. T. 2001, A&A, 365, 49<br />

Hu, E. M. 1981, ApJ, 248, 119<br />

Hubble, E. 1934, ApJ, 79, 8<br />

Hughes, V. A. 1985, ApJ, 298, 830<br />

Hughes, V. A. 1988, ApJ, 333, 788<br />

Hughes, V. A. 1989, AJ, 97, 1114<br />

Hughes, V. A. 1993, AJ, 105, 331<br />

Hughes, V. A. 2001, ApJ, 563, 919<br />

Hughes, V. A. & Wouterloot, J. G. A. 1982, A&A, 106, 171<br />

Hughes, V. A. & Wouterloot, J. G. A. 1984, ApJ, 276, 204<br />

Humphreys, R. M. 1978, ApJS, 38, 309<br />

Iben, I. Jr. 1965, ApJ, 142, 1447<br />

Ikeda, H., Sugitani, K., Watanabe, M., Fukuda, N., Tamura, M., Nakajima,Y., Pickles, A. J., et<br />

al. 2008, AJ, 135, 2323<br />

Indrani, C. & Sridharan, T. K. 1994, JApA, 15, 157<br />

Jessop, N. E. & Ward-Thompson, D. 2000, MNRAS, 311, 63<br />

Jiang, Z., Tamura, M., Hoare, M. G., Yao, Y., Ishii, M., Fang, M., & Yang, J. 2008, ApJ, 673,<br />

L175<br />

Jiménez-Serra, I., Martín-P<strong>in</strong>tado, J., Rodríguez-Franco, A., Chandler, C., Comito, C., &<br />

Schilke, P. 2007, ApJ, 661, L187<br />

Jones, T. J. 2003, AJ, 125, 3208<br />

Jordi, C., Trullors, E., & Galadí-Enríquez, D. 1996, A&A, 312, 499<br />

Joyce, R. R., & Simon, T. 1986, AJ, 91, 113<br />

Kallas, E. & Reich, W. 1980, A&AS, 42, 227<br />

Kandori, R., Dobashi, K., Uehara, H., Sato, F., & Yanagisawa, K. 2003, AJ, 126, 1888<br />

Kauffmann, J., Bertoldi, F., Evans, N. J. II, & the C2D Collaboration 2005, Astron. Nachr., 326,<br />

878<br />

Kawabe, R., Suzuki, M., Hirano, N., Akabane, K., Barsony, M., Najita, J. R., Kameya, O., &<br />

Ishiguro, M. 1992, PASJ, 44, 435<br />

Keene, J., Blake, G. A., Phillips, T. G., Hugg<strong>in</strong>s, P. J., & Beichman, C. A. 1985, ApJ, 299, 967<br />

Kerber, F., Lercher, G., & We<strong>in</strong>berger, R. 1996, A&AS, 119, 423<br />

Kiss, Cs., Moór, A., & Tóth, L. V. 2004, A&A, 418, 131<br />

Kiss, Z. T., Tóth, L. V., Krause, O., Kun, M., & Stickel, M. 2006, A&A, 453, 923<br />

Koppenaal, K., van Du<strong>in</strong>en, R. J., Aalders, J. W. G., Sargent, A. I., & Nordh, L. 1979, A&A,<br />

75, L1<br />

Könyves, V., Moór, A., Kiss, Cs., & Ábrahám, P. 2004, Balt. Astr., 13, 470<br />

Kronberger, M., Teutsch, P., Alessi, B., Ste<strong>in</strong>e, M., Ferrero, L., et al. 2006, A&A, 447, 921<br />

Kuchar, T. A. & Clark, F. O. 1997, ApJ, 488, 224<br />

Kun, M. 1986, Ap&SS, 125, 13<br />

Kun, M. 1998, ApJS, 115, 59<br />

Kun, M. 2007, Triggered <strong>Star</strong> Formation <strong>in</strong> a Turbulent ISM, Ed. B. G. Elmegreen and J. Palous.<br />

Proc. of the IAU Symp. 237, Cambridge Univ. Press, p.119<br />

Kun, M., Balázs, L.G., & Tóth, I. 1987, Ap&SS, 134, 211<br />

Kun, M. & Pásztor, L. 1990, Ap&SS, 174, 13<br />

Kun, M. & Prusti T. 1993, A&A, 272, 235<br />

Kun, M., V<strong>in</strong>kó, J., & Szabados, L. 2000, MNRAS, 319, 777<br />

Lada, C. J. 1985, ARA&A, 23, 267<br />

Lada, C. J., Blitz, L., Reid, M. J., & Moran, J. M. 1981, ApJ, 243, 769<br />

Ladd, E. F. & Hodapp, K. W. 1997, ApJ, 474, 749<br />

Laureijs, R. J., Acosta-Pulido, J., Ábrahám, P., K<strong>in</strong>kel, U., Klaas, U., et al. 1996, A&A, 315,<br />

L 313<br />

Lebrun, F. 1986, ApJ, 306, 16<br />

Lee, C.-F. & Ho, P. T. P. 2005, ApJ, 632, 964<br />

Lee, C. W. & Myers, P. C. 1999, ApJS, 123, 233<br />

Lee, C.-F., Mundy, L. G., Stone, J. M., & Ostriker, E. C. 2002, ApJ, 576, 294<br />

97


98<br />

Lee, J. E., Di Francesco, J., Lai, S. P., Bourke, T. L., Evans, N. J., II., et al. 2006, ApJ, 648, 491<br />

Lee, J.-E., Di Francesco, J., Bourke, T. L., Evans, N. J., II., & Wu, J. 2007, ApJ, 671, 1748<br />

Lefloch, B., Eislöffel, J., & Lazareff, B. 1996, A&A, 313, L17<br />

Leisawitz, D., Bash, N. F., & Thaddeus, P. 1989, ApJS, 70, 731<br />

Lekht, E. E. & Sorochenko, R. L. 2001, Astronomy Reports, 45, 113<br />

Lekht, E. E., Likhachev, S. F., Sorochenko, R. L., & Strel’nitskii, V. S. 1993, Astronomy Reports,<br />

37, 367<br />

Lenzen, R. 1988, A&A, 190, 269<br />

Lenzen, R., Hodapp, K.-W., & Solf, J. 1984, A&A, 137, 202<br />

Lester, D. F., Harvey, P. M., Joy, M., & Ellis, H. B., Jr. 1986, ApJ, 309, 80<br />

Levreault, R. M. 1984, ApJ, 277, 634<br />

Levreault, R. M. 1985, Ph.D. thesis, Univ. Texas, Aust<strong>in</strong><br />

Levreault, R. M. 1988, ApJS, 67, 283<br />

Levreault, R. M. & Opal, C. B. 1987, AJ, 93, 669<br />

Li, W., Evans, N. J., II, Jaffe, D. T., van Dishoeck, E. F., & Thi, W. F. 2002, ApJ, 568, 242<br />

Liseau, R. & Sandell, G. 1983, RMxAA, 7, 199<br />

Little, L. T., Brown, A. T., MacDonald, G. H., Riley, P. W., & Matheson, D. N. 1980, MNRAS,<br />

193, 115<br />

Lombardi, M., & Alves, J. 2001, A&A, 377, 1023<br />

Looney, L. W., Tob<strong>in</strong>, J. J., & Kwon, W. 2007, ApJ, 670, L131<br />

Loren, R. B., Peters, W. L., & Vanden Bout, P. A. 1975, ApJ, 195, 75<br />

Loz<strong>in</strong>skaya, T. A., Sitnik, T. G., & Toropova, M. S. 1987, Soviet Ast., 31, 493<br />

Lynds, B. T. 1962, ApJS, 7, 1<br />

MacConnell, D. J. 1968, ApJS, 16, 275<br />

Magakian, T. Yu. 2003, A&A, 399, 141<br />

Magakian, T. Yu., & Movsessian, T. A. 2001, Astrophysics, 44, 419<br />

Magakian, T. Yu., Movsessian, T. A., & Nikogossian, E. H. 2004, Astrophysics, 47, 519<br />

Magnani, L., Blitz, L., & Mundy, L. 1985, ApJ, 295, 402<br />

Majaess, D. J., Turner, D. G., Lane, D. J., & Moncrieff, K. E. 2008, JAVSO.tmp., 74<br />

Makarov, V. V. 2007, ApJS, 169, 105<br />

Mardones, D., Myers, P. C., Tafalla, M., Wilner, D. J., Bachiller, R., & Garay, G. 1997, ApJ,<br />

489, 719<br />

Marschall, L. A., Karshner, G. B., & Com<strong>in</strong>s, N. F. 1990, AJ, 99, 1536<br />

Marschall, L. A. & van Altena, W. F. 1987, AJ, 94, 71<br />

Mart<strong>in</strong>, A. H. M. 1973, MNRAS, 163, 141<br />

Martín-P<strong>in</strong>tado, J., Jiménez-Serra, I., Rodríguez-Franco, A., Martín, S., & Thum, C. 2005, ApJ,<br />

628, L61<br />

Marvel, K. B. 2005, AJ, 130, 2732<br />

Matthews, H. E., Purton, C. R., Roger, R. S., Dewdney, P. E., & Mitchell, G. F. 2003, ApJ, 592,<br />

176<br />

Mattila, K., Holsti, N., Toriseva, M., Anttila, R., & Malkamaki, L. 1985, A&A, 145, 192<br />

Mattila, K., Toriseva, M., Liljeström, T., Anttila, R., & Malkamaki, L. 1988, A&AS, 73, 209<br />

McGroarty, F., Ray, T. P., & Bally, J. 2004, A&A, 415, 189<br />

Meehan, L. S. G., Wilk<strong>in</strong>g, B. A., Claussen, M. J., Mundy, L. G., & Wootten, A. 1998, AJ, 115,<br />

1599<br />

Megeath, S. T., Allen, L. E., Gutermuth, R. A., et al. 2004, ApJS, 154, 367<br />

Mehr<strong>in</strong>ger, D. M., Zhou, S., & Dickel, H. R. 1997, ApJ, 475, 57<br />

Mezger, P. G. 1994, Ap&SS, 212, 197<br />

Miesch, M. S. & Bally, J. 1994, ApJ, 429, 645<br />

Mikami, T., Umemoto, T., Yamamoto, S., & Saito, S. 1992, ApJ, 392, L87<br />

Mikami, T. & Ogura, K. 2001, Ap&SS, 275, 441<br />

M<strong>in</strong>ch<strong>in</strong>, N. R., Bonifacio, V. H. R., & Murray, A. G. 1996, A&A, 315, L5<br />

M<strong>in</strong>ch<strong>in</strong>, N. R., White, G. J., & Ward-Thompson, D. 1995a, A&A, 301, 894<br />

M<strong>in</strong>ch<strong>in</strong>, N. R., Ward-Thompson, D., & White, G. J. 1995b, Ap&SS, 224, 203


M<strong>in</strong>ch<strong>in</strong>, N. R., Krause, D., Stutzki, J., & White, G. J. 1995c, <strong>in</strong>: The Physics and Chemistry of<br />

Interstellar Molecular Clouds, Ed. G. W<strong>in</strong>newisser & G. C. Pelz. Spr<strong>in</strong>ger, p. 210<br />

M<strong>in</strong>ch<strong>in</strong>, N. R., White, G. J., & Padman, R. 1993, A&A, 277, 595<br />

M<strong>in</strong>kowski, R. 1947, PASP, 59, 257<br />

Miranda, L. F., Eiroa, C., & Birkle, K. 1994, A&A, 289, L7<br />

Miranda, L. F., Eiroa, C., & Gómez de Castro, A. I. 1993, A&A, 271, 564<br />

Miroshnichenko, A. S., Bergner, Y. K., & Kuratov, K. S. 1997, Astron. Letters, 23, 97<br />

Miskolczi, B., Tothill, N .F. H., Mitchell, G. F., & Matthews, H. E. 2001, ApJ, 560, 841<br />

Mitchell, G. F. & Matthews, H. E. 1994, ApJ, 423, L55<br />

Mookerjea, B., Kramer, C., Röllig, M., & Masur, M. 2006, A&A, 456, 235<br />

Mora, A., Merín, B., Solano, E., Montes<strong>in</strong>os, B., de W<strong>in</strong>ter, D., et al. 2001, A&A, 378, 116<br />

Morbidelli, L., Patriarchi, P., Per<strong>in</strong>otto, M., Barbaro, G., & di Bartolomeo, A. 1997, A&A, 327,<br />

125<br />

Moreno-Corral, M. A., Chavarría-K., C., de Lara, E., & Wagner, S. 1993, A&A, 273, 619<br />

Moreno-Corral, M. A., Chavarría-K., C., & de Lara, E. 1995, RMxAC, 3, 121<br />

Morgan, L. K., Thompson, M. A., Urquhart, J. S., & White, G. J. 2008, A&A, 477, 557<br />

Moriarty-Schieven, G. H., Xie, T., & Patel, N. A. 1996, ApJ, 463, L105<br />

Moro-Mart<strong>in</strong>, A., Noriega-Crespo, A., Mol<strong>in</strong>ari, S., Testi, L., Cernicharo, J., & Sargent, A. I.<br />

2001, ApJ, 555, 146<br />

Morris, P. W., Noriega-Crespo, A., Marleau, F. R., Teplitz, H. I., Uchida, K. I., & Armus, L.<br />

2004, ApJS, 154, 339<br />

Movsessian, T. A. & Magakian, T. Yu. 2004, Astron. Rep., 48, 988<br />

Movsessian, T. A., Magakian, T. Yu., Boulesteix, J., & Amram, T. 2004, A&A, 413, 203<br />

Muzerolle, J., Megeath, S. T., Gutermuth, R. A., Allen, L. E., Pipher, J. L., et al. 2004, ApJS,<br />

154, 379<br />

Myers P. C. & Benson P. J. 1983, ApJ, 266, 309<br />

Myers, P. C., Fuller, G. A., Goodman, A. A., & Benson, P. J. 1991, ApJ, 376, 561<br />

Myers, P. C., L<strong>in</strong>ke, R., & Benson, P. J. 1983, ApJ, 264, 517<br />

Myers, P. C., Heyer, M., Snell, R. L., & Goldsmith, P. F. 1988, ApJ, 324, 907<br />

Nakano, M., Tomita, Y., Ohtani, H., Ogura, K., & Sofue, Y. 1989, PASJ, 41, 1073<br />

Narayanan, G. & Walker, C, K. 1996, ApJ, 466, 844<br />

Naylor, T. & Fabian, A. C. 1999, MNRAS, 302, 714<br />

Neckel, T. & Staude, H. J. 1984, A&A, 131, 200<br />

Neckel, T., Staude, H. J., Sarcander, M., Birkle, K. 1987, A&A, 175, 231<br />

Neri, R., Fuente, A., Ceccarelli, C., Caselli, P., Johnstone, D., van Dishoeck, E. F., et al. 2007,<br />

A&A, 468, L33<br />

Nikolić, S., Johansson, L. E. B., & Harju, J. 2003, A&A, 409, 941<br />

Nikolić, S., & Kun, M., 2004, Balt. Astr., 13, 487<br />

Nis<strong>in</strong>i, B., Massi, F., Vitali, F., Giann<strong>in</strong>i, T., et al. 2001, A&A, 376, 553<br />

Noriega-Crespo, A. 1997, <strong>in</strong> IAU Symp. 182, Herbig-Haro Flows and the Birth of Low Mass<br />

<strong>Star</strong>s, ed. B. Reipurth & C. Bertout (Dordrecht: Kluwer), 103<br />

Noriega-Crespo, A., & Garnavich, P. M. 2001, AJ, 122, 3317<br />

Noriega-Crespo, A., Garnavich, P. M., & Mol<strong>in</strong>ari, S. 1998, AJ, 116, 1388<br />

Noriega-Crespo, A., Moro-Mart<strong>in</strong>, A., Carey, S., Morris, P. W., Padgett, D. L., Latter, W. B., &<br />

Muzerolle, J. 2004, ApJS, 154, 402<br />

Ogura, K., Chauhan, N., Pandey, A.K., Bhatt, B. C., Ojha, D., & Itoh, Y. 2007, PASJ, 59, 199<br />

Ogura, K. & Sato, F. 1990, PASJ, 42, 583<br />

Ogura, K., Sugitani, K., & Pickles, A. 2002, AJ, 123, 2597<br />

Okada, Y., Onaka, T., Shibai, H., & Doi, Y. 2003, A&A, 412, 199<br />

Olano, C. A., Mesch<strong>in</strong>, P. I., & Niemela, V. S. 2006, MNRAS, 369, 867<br />

Padgett, D. L., Rebull, L. M., Noriega-Crespo, A., Carey, S. J., Stapelfeldt, K. R., et al. 2004,<br />

ApJS, 154, 433<br />

Pan, K., Federman, S. R., Cunha, K., Smith, V. V., & Welty, D. E. 2004, ApJS, 151, 313<br />

Pan, K., Federman, S. R., Sheffer, Y., & Andersson, B. G. 2005, ApJ, 633, 986<br />

Panagia, N., & Thum, C. 1981, A&A, 98, 295<br />

99


100<br />

Pandey, A. K., Sharma, S., Ogura, K., Ojha, D. K., Chen, W. P., Bhatt, B. C., & Ghosh, S. K.<br />

2008, MNRAS, 383, 1241<br />

Park, Y. & M<strong>in</strong>h, Y. 1995, Journal of Korean Astron. Soc., 28, 255<br />

Parker, N. D., Padman, R., & Scott, P. F. 1991, MNRAS, 252, 442<br />

Parker, N. D., Padman, R., Scott, P. F., & Hills, R. E. 1988, MNRAS, 234, 67P<br />

Parsamian E. S. & Petrosian V. M. 1979, Byurakan Soobs., 51, 3<br />

Patel, N. A., Curiel, S., Zhang, Q., Sridharan, T. K., Ho, P. T. P., & Torrelles, J. M. 2007, ApJ,<br />

658, L55<br />

Patel, N. A., Goldsmith, P. F., Heyer, M. H., Snell, R. L., & Pratap, P. 1998, ApJ, 507, 241<br />

Patel, N. A., Goldsmith, P. F., Snell, R. L., Hezel, T., & Xie, T. 1995, ApJ, 447, 721<br />

Persi, P., Ferrari-Toniolo, M., Marenzi, A. R., Busso, M., Corcione, L., Marengo, M., & Tapia,<br />

M. 1995, Ap&SS, 224, 535<br />

Persson, R. 2004, IAUC 8441<br />

Petrossian, V. M. 1985, Astrofizika, 22, 423<br />

Plume, R., Jaffe, D. T., & Keene, J. 1994, ApJ, 425, L49<br />

Poelman, D. R. & Spaans, M. 2005, A&A, 440, 559<br />

Poelman, D. R. & Spaans, M. 2006, A&A, 453, 615<br />

Pogod<strong>in</strong>, M. A., Miroshnichenko, A. S., Tarasov, A. E., Mitskevich, M. P., Chountonov, G. A.,<br />

et al. 2004, A&A, 417, 715<br />

Poidev<strong>in</strong>, F. & Bastien, P. 2006, ApJ, 650, 945<br />

Porras, A., Christopher, M., Allen, L., Di Francesco, J., Megeath, S. T., & Myers, P. C. 2003,<br />

AJ, 126, 1916<br />

Pottasch, S. 1956, Bull. Astron. Inst. Netherlands, 13, 77<br />

Pozzo, M., Naylor, T., Jeffries, R. D., & Drew, J. E. 2003, MNRAS, 341, 805<br />

Pravdo, S. H. & Tsuboi, Y. 2005, ApJ, 626, 272<br />

Preibisch, T. & Smith, M. D. 2002, A&A, 383, 540<br />

Preibisch, T., Balega, Y. Y., Schertl, D., Smith, M. D., & Weigelt, G. 2001, A&A, 378, 539<br />

Rac<strong>in</strong>e, R. 1968, AJ, 73, 233<br />

Ray, T. P., Poetzel, R., Solf, J., & Mundt, R. 1990, ApJ, 357, L45<br />

Reach, W. T., Rho, J., Young, E., Muzerolle, J., Fajardo-Acosta, S., et al. 2004, ApJS, 154, 385<br />

Reipurth, B. 1999, A General Catalogue of Herbig-Haro Objects, 2. Edition,<br />

(http://casa.colorado.edu/hhcat/)<br />

Reipurth, B., Armond, T., Raga, A., & Bally, J. 2003, ApJ, 593, 47<br />

Reipurth, B. & Asp<strong>in</strong>, C. 1997, AJ, 114, 2700<br />

Reipurth, B. & Bally, J. 2001, ARA&A, 39, 403<br />

Reipurth, B., Asp<strong>in</strong>, C., Beck, T., Brogan, C., Connelley, M. C., & Herbig, G. H. 2007, AJ, 133,<br />

1000<br />

Reipurth, B., Bally, J., & Dev<strong>in</strong>e, D. 1997, AJ, 114, 2708<br />

Reipurth, B., Rodríguez, L. F., Anglada, G., & Bally, J. 2004, AJ, 127, 1736<br />

Reipurth, B., Yu, K. C., Heathcote, S., & Bally, J. 2000, AJ, 120, 1449<br />

Richardson, K. J., White, G. J., Avery, L. W., Woodsworth, A. W. 1987, A&A, 174, 197<br />

Ridge, N. A., Wilson, T. L., Megeath, S. T., Allen, L. E., & Myers, P. C. 2003, AJ, 126, 286<br />

Rodríguez, L. F. & Cantó, J. 1983, RMxAA, 8, 163<br />

Rodríguez, L. F., Garay, G., Curiel, S., Ramirez, S., Torrelles, J. M., Gómez, Y., & Velazquez,<br />

A. 1994, ApJ, 430, L65<br />

Rodríguez, L. F., Ho, P. T. P., & Moran, J. M. 1980, ApJ, 240, L149<br />

Rodríguez, L. F., Moran, J. M., Ho, P. T. P., & Gottlieb, E. W. 1980, ApJ, 235, 845<br />

Rodríguez, L. F. & Reipurth, B. 1996, RMxAA, 32, 27<br />

Rodríguez, L. F. & Reipurth, B. 1998, RMxAA, 34, 13<br />

Rodríguez, M. I., Wikl<strong>in</strong>d, T., Allen, R. J., Escalante, V., & Lo<strong>in</strong>ard, L. 2007, ApJ, 663, 824<br />

Rogers, C., Heyer, M. H., & Dewdney, P. E. 1995, ApJ, 442, 694<br />

Ros<strong>in</strong>o, L. & Romano, G. 1962, Asiago Contrib. 127<br />

Rossano, G. S., Grayzeck, E. J., & Angerhofer, P. E. 1983, AJ, 88, 1835<br />

Rosvick, J. M. & Davidge, T. J. 1995, PASP, 107, 49<br />

Roth, M. 1988, MNRAS, 233, 773


101<br />

Rouan, D., Lena, P. J., Puget, J. L., de Boer, K. S., & Wijnbergen, J. J. 1977, ApJ, 213, L35<br />

Rowland, P. R. & Cohen, R. J. 1986, MNRAS, 220, 233<br />

Sandell, G. & Olofsson, H. 1981, A&A, 99, 80<br />

Saraceno, P., Ceccarelli, C., Clegg, P., Correia, C., di Giorgio, A., et al. 1996, A&A, 315, L293<br />

Sargent, A. I. 1977, ApJ, 218, 736<br />

Sargent, A. I. 1979, AJ, 88, 1236<br />

Sargent, A. I., van Du<strong>in</strong>en, R. J., Nordh, H. L., Fridlund, C. V. M., Aalders, J. W. G., & Be<strong>in</strong>tema,<br />

D. 1983, AJ, 88, 1236<br />

Sato, F. & Fukui, Y. 1989, ApJ, 343, 773<br />

Sato, F., Mizuno, A., Nagahama, T., Onishi, T., Yonekura, Y., & Fukui, Y. 1994, ApJ, 435, 279<br />

Scarrott, S. M., Rolph, C. D., & Tadhunter, C. N. 1991a, MNRAS, 249, 131<br />

Scarrott, S. M., Rolph, C. D., & Tadhunter, C. N. 1991b, MNRAS, 250, 111<br />

Schertl, D., Balega, Y., Hannemann, T., Hofmann, K.-H., Preibisch, T., & Weigelt, G. 2000,<br />

A&A, 361, L29<br />

Schneider, N., Madden, S., Stutzki, J., Block, D., & W<strong>in</strong>newisser, G. 1995, <strong>in</strong> The Physics<br />

and Chemistry of Interstellar Molecular Clouds, ed. G. W<strong>in</strong>newisser & J. T. Armstrong<br />

(Berl<strong>in</strong>: Spr<strong>in</strong>ger), p. 128<br />

Schulz, N. S., Berghöfer, T. W., & Z<strong>in</strong>necker, H. 1997, A&A, 325, 1001<br />

Schultz, A. S. B., Rank, D., Temi, P. & Harker, D. 1995, Ap&SS, 233, 71<br />

Schwartz, P. R. 1989, ApJ, 338, L25<br />

Schwartz, P. R., Snell, R. L., & Schloerb, F. P. 1989, ApJ, 336, 519<br />

Schwartz, R. D., Wilk<strong>in</strong>g, B. A., & Gyulbudaghian, A. L. 1991, ApJ, 370, 263<br />

Schneider, S. & Elmegreen, B. G. 1979, ApJS, 41, 87<br />

Semkov, E. H. 2003, IBVS, 5406<br />

Semkov, E. H. 2004, Balt. Astr. 13, 538<br />

Serabyn, E., Güsten, R., & Mundy, L. 1993, ApJ, 404, 247<br />

Sharma, S., Ogura, K., Pandey, A. K., Ojha, D. K., & Bhatt, B. C. 2007, Bull. Astron. Soc.<br />

India, 35, 53<br />

Sharpless, S., 1959, ApJS, 4, 257<br />

Shevchenko, V. S., Grank<strong>in</strong>, K. N., Ibragimov, M. A., Mel’nikov, S. Y., Yakubov, S. D. &<br />

Melikyan, N. D. 1991, IBVS, 3628<br />

Shevchenko, V. S., Ibragimov, M. A., & Yakubov, S. D. 1989, Soviet Ast., 33, 487<br />

Shevchenko, V. S., & Yakubov, S. D. 1989, Soviet Ast., 33, 370<br />

Shirley, Y. L., Evans, N. J., Rawl<strong>in</strong>gs, J. M. C., & Gregersen, E. M. 2000, ApJS, 131, 249<br />

Sicilia-Aguilar, A., Hartmann, L. W., Briceño, C., Muzerolle, J., & Calvet, N. 2004, AJ, 128,<br />

805<br />

Sicilia-Aguilar, A., Hartmann, L., Hernández, J., Briceño, C., & Calvet, N. 2005, AJ, 130, 188<br />

Sicilia-Aguilar, A., Hartmann, L. W., Calvet, N., Megeath, S. T., Muzerolle, J., et al. 2006a,<br />

ApJ, 638, 897<br />

Sicilia-Aguilar, A., Hartmann, L.W., Fürész, G., Henn<strong>in</strong>g, T., Dullemond, C., & Brandner, W.<br />

2006b, AJ, 132, 2135<br />

Sicilia-Aguilar, A., Hartmann, L.W., Watson, D., Bohac, C., Henn<strong>in</strong>g, T., & Bouwman, J. 2007,<br />

ApJ, 659, 1637<br />

Sicilia-Aguilar, A., Merín, B., Hormuth, F., Ábrahám, P., Henn<strong>in</strong>g, T., Kun, M., Patel, N.,<br />

Juhász, A., Brandner, W., Hartmann, L., Csizmadia, Sz., Moór, A. 2008, ApJ, 673, 382<br />

Simon, T. 2006, AJ, 131, 501<br />

Simonson, S. C. 1968, ApJ, 154, 923<br />

Simonson, S. C. & van Someren Greve, H. W. 1976, A&A, 49, 343<br />

Slipher, V. M. 1918, PASP, 30, 63<br />

Slysh, V. I., Dzura, A. M., Val’tts, I. E., & Gerard, E. 1997, A&AS, 124, 85<br />

Smirnov, G. T., Sorochenko, R. L., & Kitaev, V. V. 1992, Sov. Astr. Lett., 18, 192<br />

Smith, M. D., Froebrich, D., & Eislöffel, J. 2003, ApJ, 592, 245<br />

Snell, R. L., 1981, ApJS, 45, 121<br />

Sonnentrucker, P., Neufeld, D. A., Gerak<strong>in</strong>es, P. A., Berg<strong>in</strong>, E. A., Melnick, G. J., Forrest, W.<br />

J., Pipher, J. L., & Whittet, D. C. B. 2008, ApJ, 672, 361


102<br />

Sridharan, T. K., Beuther, H., Schilke, P., Menten, K. M., & Wyrowski, F. 2002, ApJ, 566, 945<br />

Staude, H. J., 1986, Ap&SS, 128, 179<br />

Stecklum, B., Meus<strong>in</strong>ger, H., & Froebrich, D. 2007, Ap&SS, 311, 63<br />

Stoerzer, H., Stutzki, J., & Sternberg, A. 1995, A&A, 296, L9<br />

Straizys, V., Cernis, K., Kazlauskas, A., & Meistas, E. 1992, Balt. Astr., 1, 149<br />

Strom, S. E., Vrba, F. J., & Strom, K. M. 1976, AJ, 81, 638<br />

Sugitani, K., Fukui, Y., & Ogura, K. 1991, ApJS, 77, 59<br />

Sugitani, K., Matsuo, H., Nakano, M., Tamura, M., & Ogura, K. 2000, AJ, 119, 323<br />

Sugitani, K., Morita, K., Nakano, M, Tamura, M., & Ogura, K. 1997, ApJ, 486, L141<br />

Tachihara, K., Neuhäuser, R., Kun, M., & Fukui, Y. 2005, A&A, 437, 919<br />

Tafalla, M. & Bachiller, R. 1995, ApJ, 443, L37<br />

Tafalla, M. & Myers, P. C. 1997, ApJ, 491, 653<br />

Tafalla, M., Bachiller, R., & Martín-P<strong>in</strong>tado, J. 1993, ApJ, 403, 175<br />

Tafalla, M., Myers, P. C., Mardones, D., & Bachiller, R. 1999, A&A, 348, 479<br />

Tapia, M., Persi, P., Bohigas, J., & Ferrari-Toniolo, M. 1997, AJ, 113, 1769<br />

Taylor, D. K., Dickman, R. L., & Scoville, N. Z. 1987, ApJ, 315, 104<br />

Terebey, S., Vogel, S. N., & Myers, P. C. 1989, ApJ, 340, 472<br />

Terquem, C., Eislöffel, J., Papaloizou, J. C. B., & Nelson, R. P. 1999, ApJ, 512, L131<br />

Testi, L., Olmi, L., Hunt, L., Felli, M., & Goldsmith, P. 1995, A&A, 303, 881<br />

Thronson, H. A., Jr., Lada, C. J., Smith, H. A., Glaccum, W., Harper, D. A., Schwartz, P. R., &<br />

Knowles, S. H. 1983, ApJ, 271, 625<br />

Tofani, G., Felli, M., Taylor, G. B., & Hunter, T. R. 1995, ApJS, 112, 299<br />

Tokunaga, A. T., Erickson, E. F., Caroff, L. J., & Dana, R. A. 1978, ApJ, 224, L19<br />

Tommasi, E., Lorenzetti, D., Giann<strong>in</strong>i, T., Nis<strong>in</strong>i, B., & Palla, F. 1999, Ap&SS, 291, 187<br />

Torrelles, J. M., Gómez, J. F., Garay, G., Rodríguez, L. F., Curiel, S., Cohen, R. J., & Ho, P. T.<br />

P. 1998, ApJ, 509, 262<br />

Torrelles, J. M., Gómez, J. F., Rodríguez, L. F., Curiel S., Ho, P. T. P., & Garay, G. 1996, ApJ,<br />

457, L107<br />

Torrelles, J. M., Ho, P. T. P., Moran, J. M., Rodríguez, L. F., & Cantó, J. 1987, ApJ, 321, 884<br />

Torrelles, J. M., Ho, P. T. P., Rodríguez, L. F., & Cantó, J. 1985, ApJ, 288, 595<br />

Torrelles, J. M., Patel, N. A., Curiel, S., Ho, P. T. P., Garay, G., & Rodríguez, L. F. 2007, ApJ,<br />

666, L37<br />

Torrelles, J. M., Patel, N. A., Gómez, J. F., Ho, P. T. P., Rodríguez, L. F., Anglada, G., Garay,<br />

G., Greenhill, L., Curiel, S., & Cantó, J. 2001, ApJ, 560, 853<br />

Torrelles, J. M., Rodríguez, L. F., Cantó, J., Carral, P., Marcaide, J., Moran, J. M., & Ho, P. T.<br />

P. 1983, ApJ, 274, 214<br />

Torrelles, J. M., Verdes-Montenegro, L., Ho, P. T. P., Rodríguez, L. F., & Cantó, J. 1993, ApJ,<br />

410, 202<br />

Tóth, L. V. & Walmsley, C. M. 1996, A&A, 311, 981<br />

Tr<strong>in</strong>idad, M. A., Curiel, S., Torrelles, J. M., Rodriguez, L. F., Cantó, J., Gómez, J. F., Patel, N.,<br />

& Ho, P. T. P. 2004, ApJ, 613, 416<br />

Tr<strong>in</strong>idad, M. A., Rojas, V., Plascencia, J. C., Ricalde, A., Curiel, S., & Rodríguez, L. F. 2003,<br />

RMxAA, 39, 311<br />

Tr<strong>in</strong>idad, M. A., Torrelles, J. M., Rodríguez, L. F., & Curiel, S. 2007, AJ, 134, 1870<br />

Umemoto, T., Hirano, N., Kameya, O., Fukui, Y., Kuno, N., & Takakubo, K. 1991, ApJ, 377,<br />

510<br />

Umemoto, T., Iwata, T., Fukui, Y., Mikami, H., Yamamoto, S., Kameya, O., & Hirano, N. 1992,<br />

ApJ, 392, 83<br />

Umemoto, T., Mikami, H., Yamamoto, S., & Hirano, N. 1999, ApJ, 525, L105<br />

Ungerechts, H. & Thaddeus, P. 1989, <strong>in</strong> The Physics and Chemistry of Interstellar Molecular<br />

Clouds, ed. G. W<strong>in</strong>newisser & J. T. Armstrong (Berl<strong>in</strong>: Spr<strong>in</strong>ger), 213<br />

Ungerechts, H., W<strong>in</strong>newisser, G., & Walmsley, C. M. 1986, A&A, 157, 207<br />

Valdettaro, R., Palla, F., Brand, J., & Cesaroni, R. 2005, A&A, 443, 535<br />

Valdettaro, R., Migenes, V., Tr<strong>in</strong>idad, M. A., Brand, J., & Palla, F. 2008, ApJ, 675, 1352<br />

van den Ancker, M., De W<strong>in</strong>ter, D., & Tj<strong>in</strong> A Djie, H. R. E. 1998, A&A, 330, 145


103<br />

Velusamy, T., Langer, W. D., & Goldsmith, P. F. 2002, ApJ, 565, L43<br />

Viotti, R., 1969, Mem. Soc. Astr. It., 40, 75<br />

Visser, A. E., Richer, J. S. & Chandler, C. J. 2002, AJ, 124, 2756<br />

Wang, Y., Evans, N. J., Zhou, S., & Clemens, D. P. 1995, ApJ, 454, 217<br />

Wang, S. & Looney, L. W. 2007, ApJ, 659, 1360<br />

Watt, G. D., Burton, W. B., Choe, S.-U., & Liszt, H. S. 1986, A&A, 163, 194<br />

Weigelt, G., Balega, Y. Y., Preibisch, T., Schertl, D., & Smith, M. D. 2002, A&A, 381, 905<br />

Weikard, H., Wouterloot, J. G. A., Castets, A., W<strong>in</strong>newisser, G., & Sugitani, K. 1996, A&A,<br />

309, 581<br />

We<strong>in</strong>traub, D. A., Kastner, J. H., & Mahesh, A. 1994, ApJ, 420, L87<br />

We<strong>in</strong>traub, D. A., Kastner, J. H., Gatley, I., & Merrill, K. M. 1996, ApJ, 468, L45<br />

Wendker, H. J. & Baars, W. M. 1980, A&A, 89, 180<br />

Werner, M. V., Uchida, K. I., Sellgren, K., Marengo, M., Gordon, K. D., Morris, P. W., Houck,<br />

J. R., & Stansberry, J. A. 2004, ApJS, 154, 309<br />

Westerhout, G. 1958, Bull. Astron. Inst. Netherlands, 14, 215<br />

Weston, E. B. 1953, AJ, 58, 48<br />

Wiesemeyer, H., Cox, P., Güsten, R., & Zylka, R. 1999, The Universe as seen by ISO, Eds. P.<br />

Cox & M. F. Kessler, ESA SP–427, p. 533<br />

Wiesemeyer, H., Güsten, R., Cox, P., Zylka, R., & Wright, M. C. H. 1998, <strong>Star</strong> Formation with<br />

the Infrared Space Observatory, ed. by J. L. Yun and R. Liseau, ASP Conf. Ser. 132, p.<br />

189<br />

Wiesemeyer, H., Güsten, R., & Wright, M. C. H. 1997, Low Mass <strong>Star</strong> Formation - from Infall to<br />

Outflow, Poster proceed<strong>in</strong>gs of IAU Symposium No. 182, ed. F. Malbet and A. Castets,<br />

p. 260<br />

Wilk<strong>in</strong>g, B. A., Mundy, L. G., & Schwartz, R. D. 1986, ApJ, 303, L61<br />

Wilk<strong>in</strong>g, B. A., Schwartz, R. D., Mundy, L. G., & Schultz, A. S. B. 1990, AJ, 99, 344<br />

Wilner, D. J. & Welch, W. J. 1994, ApJ, 427, 898<br />

W<strong>in</strong>k, J. E., Altenhoff, W. J., & Mezger, P. G. 1982, A&A, 108, 227<br />

Witt, A. N. & Cottrell, M. J. 1980, AJ, 85, 22<br />

Witt, A. N., Walker, G. A. H., Bohl<strong>in</strong>, R. C., & Stecher, T. P. 1982, ApJ, 261, 492<br />

Wolf, S., Launhardt, R., & Henn<strong>in</strong>g, T. 2003, ApJ, 592, 233<br />

Wood, D. O. S. & Churchwell, E. 1989, ApJS, 69, 831<br />

Wouterloot, J. G. A. & Brand, J. 1989, A&A, 80, 149<br />

Wouterloot, J. G. A., Brand, J., & Fiegle, K. 1993, A&AS, 98, 589<br />

Wouterloot, J. G. A., Hab<strong>in</strong>g, H. J., & Herman, J. 1980, A&A, 81, 11<br />

Wouterloot, J. G. A. & Walmsley, C. M. 1986, A&A, 168, 237<br />

Wright, C. M., Drapatz, S., Timmermann, R., van der Werf, P. P., Katterloher, R., & de Graauw,<br />

T. 1996, A&A, 315, 301<br />

Wu, Y., Zhou, S., & Evans, N. J. II 1992, ApJ, 394, 196<br />

Wu, J.-W., Wu, Y.-F., Wang, J.-Z., & Cai K. 2002, ChJAA, 2, 33<br />

Wu, Y., Wei, Y., Zhao, M., Shi, Y., Yu, W., Q<strong>in</strong>, S., & Huang, M. 2004, A&A, 426, 503<br />

Wu, J., Dunham, M. M., Evans, N. J. II, Bourke, T. L., & Young, C. H. 2007, AJ, 133, 1560<br />

Yang, J. 1990, Ph.D. thesis, Nagoya Univ.<br />

Yang, J., Fukui, Y., Umemoto, T., Ogawa, H., & Chen, H. 1990, ApJ, 362, 538<br />

Yang, J. & Fukui, Y. 1992, ApJ, 386, 618<br />

Yao, Y., Ishii, M., Nagata, T., Ogawa, Y., Sato, S., Watanabe, M., & Yamashita, T. 1998, ApJ,<br />

500, 320<br />

Yonekura, Y., Dobashi, K., Hayashi, Y., Sato, F., Ogawa, H., & Fukui, Y. 1998, AJ, 115, 2009<br />

Yonekura, Y., Dobashi, K., Mizuno, A., Ogawa, H., & Fukui, Y. 1997, ApJS, 110, 21<br />

Young, C. H., Bourke, T. L., Young, K. E., Evans II, N. J., Jorgensen, J. K., Shirley, Y. L., van<br />

Dishoeck, E. F., & Hogerheide, M. 2006, AJ, 132, 1998<br />

Yu, Z., Nagahama, T., & Fukui, Y. 1996, ApJ, 471, 867<br />

Yun, J. L. 1996, AJ, 111, 930<br />

Yun, J. L. & Clemens, D. P. 1992, ApJ, 385, L21<br />

Yun, J. L. & Clemens, D. P. 1994, ApJS, 92, 145


104<br />

Zeng, Q., Yang, J., Cao, Y. Q., Lou, G. F., & Fukui, Y. 1991, Ap&SS, 180, 151<br />

Zhang, Q., Ho, P. T. P., Wright, M. C. H., & Wilner, D. J. 1995, ApJ, 451, L71<br />

Zhang, Q., Ho, P. T. P., & Wright, M. C. H. 2000, AJ, 119, 134<br />

Zhou, S., Butner, H. M., Evans, N. J., II, Güsten, R., Kutner, M. L., & Mundy, L. G. 1994, ApJ,<br />

428, 219<br />

Zhou, S., Evans, N. J., II, Mundy, L. G., & Kutner, M. L. 1993, ApJ, 417, 613<br />

Zhou, J. J., Zhang, X. Z., Zhang, H. B., Esimbek, J., Zhang, J. Y., & Ju, B. G. 2006, New.<br />

Astron., 12, 111

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!