20.05.2014 Views

Phylogeny and taxonomy of obscure genera of microfungi - Persoonia

Phylogeny and taxonomy of obscure genera of microfungi - Persoonia

Phylogeny and taxonomy of obscure genera of microfungi - Persoonia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Persoonia</strong> 22, 2009: 139–161<br />

www.persoonia.org<br />

RESEARCH ARTICLE<br />

doi:10.3767/003158509X461701<br />

<strong>Phylogeny</strong> <strong>and</strong> <strong>taxonomy</strong> <strong>of</strong> <strong>obscure</strong> <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi<br />

P.W. Crous 1 , U. Braun 2 , M.J. Wingfield 3 , A.R. Wood 4 , H.D. Shin 5 , B.A. Summerell 6 ,<br />

A.C. Alfenas 7 , C.J.R. Cumagun 8 , J.Z. Groenewald 1<br />

Key words<br />

Brycekendrickomyces<br />

Chalastospora<br />

Cyphellophora<br />

Dictyosporium<br />

Edenia<br />

phylogeny<br />

<strong>taxonomy</strong><br />

Thedgonia<br />

Trochophora<br />

Verrucisporota<br />

Vonarxia<br />

Xenostigmina<br />

Abstract The recently <strong>genera</strong>ted molecular phylogeny for the kingdom Fungi, on which a new classification scheme<br />

is based, still suffers from an under representation <strong>of</strong> numerous apparently asexual <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi. In an<br />

attempt to populate the Fungal Tree <strong>of</strong> Life, fresh samples <strong>of</strong> 10 <strong>obscure</strong> <strong>genera</strong> <strong>of</strong> hyphomycetes were collected.<br />

These fungi were subsequently established in culture, <strong>and</strong> subjected to DNA sequence analysis <strong>of</strong> the ITS <strong>and</strong> LSU<br />

nrRNA genes to resolve species <strong>and</strong> generic questions related to these <strong>obscure</strong> <strong>genera</strong>. Brycekendrickomyces<br />

(Herpotrichiellaceae) is introduced as a new genus similar to, but distinct from Haplographium <strong>and</strong> Lauriomyces.<br />

Chalastospora is shown to be a genus in the Pleosporales, with two new species, C. ellipsoidea <strong>and</strong> C. obclavata,<br />

to which Alternaria malorum is added as an additional taxon under its oldest epithet, C. gossypii. Cyphellophora<br />

eugeniae is newly described in Cyphellophora (Herpotrichiellaceae), <strong>and</strong> distinguished from other taxa in the genus.<br />

Dictyosporium is placed in the Pleosporales, with one new species, D. streliziae. The genus Edenia, which was<br />

recently introduced for a sterile endophytic fungus isolated in Mexico, is shown to be a hyphomycete (Pleosporales)<br />

forming a pyronellea-like synanamorph in culture. Thedgonia is shown not to represent an anamorph <strong>of</strong><br />

Mycosphaerella, but to belong to the Helotiales. Trochophora, however, clustered basal to the Pseudocercospora<br />

complex in the Mycosphaerellaceae, as did Verrucisporota. Vonarxia, a rather forgotten genus <strong>of</strong> hyphomycetes,<br />

is shown to belong to the Herpotrichiellaceae <strong>and</strong> Xenostigmina is confirmed as synanamorph <strong>of</strong> Mycopappus,<br />

<strong>and</strong> is shown to be allied to Seifertia in the Pleosporales. Dichotomous keys are provided for species in the various<br />

<strong>genera</strong> treated. Furthermore, several families are shown to be polyphyletic within some orders, especially in the<br />

Capnodiales, Chaetothyriales <strong>and</strong> Pleosporales.<br />

Article info Received: 2 April 2009; Accepted: 23 April 2009; Published: 9 June 2009.<br />

Introduction<br />

The recent ‘Deep Hypha’ issue <strong>of</strong> Mycologia (vol. 98, 2006)<br />

included 21 phylogenetic studies employing multi-gene phylogenies<br />

to resolve major groups <strong>of</strong> Fungi. These papers provided<br />

the foundation for the study <strong>of</strong> James et al. (2006), in which<br />

six genes (SSU, LSU, 5.8S rRNA, rpb1, rpb2 <strong>and</strong> tef1) for<br />

approximately 200 fungal taxa were used to present the first<br />

kingdom-level phylogeny, <strong>and</strong> a new classification for the Fungi<br />

(Hibbett et al. 2007). These studies also illustrated clearly that<br />

it was merely the ‘tip <strong>of</strong> the iceberg’, <strong>and</strong> that numerous <strong>genera</strong><br />

must now be accommodated in this phylogenetic framework.<br />

A major problem encountered during the Assembling the<br />

Fungal Tree <strong>of</strong> Life (AFTOL, www.aftol.org) project, was that<br />

many <strong>genera</strong> are insufficiently known, <strong>and</strong> have never been<br />

cultured, or subjected to DNA analyses. This is especially true<br />

for the majority <strong>of</strong> apparently asexual micr<strong>of</strong>ungi, namely the<br />

1<br />

CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The<br />

Netherl<strong>and</strong>s; corresponding author e-mail: p.crous@cbs.knaw.nl.<br />

2<br />

Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und<br />

Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle (Saale),<br />

Germany.<br />

3<br />

Department <strong>of</strong> Genetics, Forestry <strong>and</strong> Agricultural Biotechnology Institute<br />

(FABI), University <strong>of</strong> Pretoria, Pretoria 0002, South Africa.<br />

4<br />

ARC – Plant Protection Research Institute, P. Bag X5017, Stellenbosch,<br />

7599, South Africa.<br />

5<br />

Division <strong>of</strong> Environmental Science & Ecological Engineering, Korea University,<br />

Seoul 136-701, Korea.<br />

6<br />

Royal Botanic Gardens <strong>and</strong> Domain Trust, Mrs. Macquaries Road, Sydney,<br />

NSW 2000, Australia.<br />

7<br />

Departamento de Fitopatologia, Universidade Federal de Viçosa, 36.570<br />

Viçosa, MG, Brazil.<br />

8<br />

Crop Protection Cluster, College <strong>of</strong> Agriculture, University <strong>of</strong> the Philippines,<br />

Los Baños College, Laguna 4031, Philippines.<br />

coelomycetes (Sutton 1980, Nag Raj 1993) <strong>and</strong> hyphomycetes<br />

(Ellis 1971, 1976, Carmichael et al. 1980). The only means to<br />

deal with this problem is, therefore, to encourage mycologists<br />

to recollect these <strong>genera</strong> <strong>and</strong> species, to establish cultures for<br />

them <strong>and</strong> to ultimately <strong>genera</strong>te DNA sequence data (Shenoy<br />

et al. 2007), a process which can be described as ‘leafing out<br />

the fungal tree <strong>of</strong> life’.<br />

Ten <strong>genera</strong> <strong>of</strong> hyphomycetes not previously known from culture,<br />

or for which the phylogenetic classification is uncertain,<br />

are treated in the present study. These fungi were collected<br />

from diverse hosts from various continents, isolated in axenic<br />

culture, <strong>and</strong> subjected to DNA sequence analysis. They are<br />

shown to belong to the Chaetothyriales (Brycekendrickomyces,<br />

Cyphellophora, Vonarxia), Pleosporales (Chalastospora, Dictyosporium,<br />

Edenia, Xenostigmina), Helotiales (Thedgonia), <strong>and</strong><br />

the Capnodiales, Mycosphaerellaceae (Trochophora, Verrucisporota).<br />

The present paper represents a further contribution in a series<br />

aiming to clarify the morphology <strong>and</strong> DNA phylogeny <strong>of</strong> <strong>obscure</strong><br />

<strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi. Other than resolving their phylogenetic<br />

relationships, several novelties are described, <strong>and</strong> keys are<br />

provided to the accepted species in these <strong>genera</strong>.<br />

Material <strong>and</strong> Methods<br />

Isolates<br />

Symptomatic leaves <strong>and</strong> leaf litter were collected on various<br />

continents, <strong>and</strong> sent to the Centraalbureau voor Schimmelcultures<br />

(CBS) for isolation <strong>of</strong> micr<strong>of</strong>ungi. Leaves with visible fruiting<br />

were immediately subjected to direct isolation <strong>of</strong> hyphomycetes,<br />

or alternatively were first incubated in moist chambers to<br />

© 2009 Nationaal Herbarium Nederl<strong>and</strong> & Centraalbureau voor Schimmelcultures<br />

You are free to share - to copy, distribute <strong>and</strong> transmit the work, under the following conditions:<br />

Attribution:<br />

You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use <strong>of</strong> the work).<br />

Non-commercial: You may not use this work for commercial purposes.<br />

No derivative works: You may not alter, transform, or build upon this work.<br />

For any reuse or distribution, you must make clear to others the license terms <strong>of</strong> this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any <strong>of</strong> the above conditions can be<br />

waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.


140 <strong>Persoonia</strong> – Volume 22, 2009<br />

Table 1 Collection details <strong>and</strong> GenBank accession numbers for fungal species included in this study.<br />

Species Strain no. 1 Substrate Country Collector(s) GenBank Accession no. 2<br />

ITS LSU<br />

Brycekendrickomyces acaciae CBS 124104; CPC 15078 Acacia auriculiformis Indonesia M.J. Wingfield FJ839606 FJ839641<br />

Chalastospora cetera CBS 121340; E.G.S. 41.072 Elymus scabrus Australia R.G. Rees FJ839607 FJ839642<br />

Chalastospora ellipsoidea CBS 121331; E.G.S. 22.060 Triticum sp. Australia H.L. Harvey & S. Perth FJ839608 FJ839643<br />

Chalastospora gossypii CBS 112844; CPC 4571 Bromus tectorum USA F.M. Dugan AY251081 AY251081<br />

CBS 114005; CPC 4572 Festuca idahoensis USA F.M. Dugan AY251079 AY251079<br />

CBS 114809; MAF 943 Leaves <strong>of</strong> Anethum graveolens (dill) along with Itersonilia perplexans New Zeal<strong>and</strong> J. Pike FJ839609 FJ839644<br />

CBS 114810; MAF 954 Quercus robur (oak) leaves in association with Tubakia dryina New Zeal<strong>and</strong> H. Nettleton FJ839610 FJ839645<br />

CBS 148.66; CPC 3690; NRRL W 52-29 — USA C.W. Hesseltine FJ839611 FJ839646<br />

CBS 173.80; ATCC 200939; CPC 3685 Agricultural soil Syria M.I.A. Abdel-Kader — FJ839647<br />

CBS 216.65; NRRL A-13702 Triticum aestivum grain USA C.W. Hesseltine FJ839612 DQ008142<br />

CBS 266.75; ATCC 28332; CPC 3680; IMI 165252; PRE 44703 Wheat stubble South Africa W.F.O. Marasas FJ839613 FJ839648<br />

CBS 900.87; ATCC 200938 Soil Lebanon F. Seigle-Mur<strong>and</strong>i FJ839614 FJ839649<br />

CPC 15567; C.F. Hill 2008/3899 Wood <strong>and</strong> wallpaper from inside walls <strong>of</strong> a dwelling New Zeal<strong>and</strong> D. De Vanny FJ839615 FJ839650<br />

Chalastospora gossypii var. polymorpha CBS 112048; CPC 4570 Dormant buds (overwintered) <strong>of</strong> Vitis vinifera USA F.M. Dugan AY251080 AY251080<br />

Chalastospora obclavata CBS 124120; E.G.S. 12.128 Air USA C.T. Rogerson FJ839616 FJ839651<br />

Cyphellophora eugeniae CBS 124105; CPC 15172 Living leaves <strong>of</strong> Stenocalyx uniflorus Brazil A.C. Alfenas FJ839617 FJ839652<br />

Dictyosporium strelitziae CBS 123359; CPC 15359 Dead leaves <strong>of</strong> Strelitzia nicolai South Africa A. Wood FJ839618 FJ839653<br />

Edenia gomezpompae CBS 124106; CPC 15689 Senna alata Phillippines C.J.R. Cumagun FJ839619 FJ839654<br />

Haplographium catenatum CBS 196.73 Decaying wood Germany W. Gams FJ839620 FJ839655<br />

CBS 482.67; CMW 754 Decaying wood Germany W. Gams FJ839621 FJ839656<br />

CBS 739.68; CMW 755 Decaying wood Netherl<strong>and</strong>s H.A. van der Aa FJ839622 FJ839657<br />

Lauriomyces bellulus CBS 517.93 Cupule <strong>of</strong> Castanea sativa Switzerl<strong>and</strong> P.W. Crous FJ839623 FJ839658<br />

Lauriomyces heliocephalus CBS 112054; INIFAT CO2/59 Decaying leaf Brazil A. Stchigel & J. Guarro FJ839624 FJ839659<br />

Mycopappus aceris CBS 124109; CPC 14379 Fallen leaves <strong>of</strong> Acer macrophyllum Canada B. Callan FJ839625 FJ839660<br />

Mycosphaerella lupini CPC 1661 Lupinus sp. USA W. Kaiser AF362050 FJ839661<br />

Stenella anthuriicola CBS 118742 Anthurium leaf Thail<strong>and</strong> C. F. Hill FJ839626 FJ839662<br />

Stigmina platani CBS 110755; CPC 4299; IMI 136770 Platanus orientalis India — AY260090 FJ839663<br />

Thedgonia ligustrina CPC 10019 Ligustrum ovalifolium South Korea H.-D. Shin FJ839627 FJ839664<br />

CPC 10530 Ligustrum ovalifolium Netherl<strong>and</strong>s P.W. Crous FJ839628 FJ839665<br />

CPC 10861 Ligustrum ovalifolium South Korea H.-D. Shin FJ839629 FJ839666<br />

CPC 14754 Ligustrum obtusifolium South Korea H.-D. Shin FJ839630 FJ839667<br />

CPC 4298; W1877 Ligustrum sp. Asia H. Evans EU040242 EU040242<br />

Trochophora fasciculata CPC 10281 Leaves <strong>of</strong> Daphniphyllum macropodum South Korea H.-D. Shin FJ839631 —<br />

CPC 10282 Leaves <strong>of</strong> Daphniphyllum macropodum South Korea H.-D. Shin FJ839632 FJ839668<br />

Verrucisporota daviesiae CBS 116002; VPRI 31767 Living leaves <strong>of</strong> Daviesia mimosoides Australia V. & R. Beilharz FJ839633 FJ839669<br />

Verrucisporota grevilleae CBS 124107; CPC 14761 Leaves <strong>of</strong> Grevillia decurrens Australia B. Summerell FJ839634 FJ839670<br />

Verrucisporota proteacearum CBS 116003; VPRI 31812 Grevillea sp. Australia V. Beilharz FJ839635 FJ839671<br />

Vonarxia vagans CBS 123533; CPC 15151 Stenocalyx uniflorus Brazil A.C. Alfenas FJ839636 FJ839672<br />

CPC 15152 Stenocalyx uniflorus Brazil A.C. Alfenas FJ839637 FJ839673<br />

Xenostigmina zilleri CBS 115685; CPC 4011 Living leaves <strong>of</strong> Acer sp. Canada K.A. Seifert FJ839638 FJ839674<br />

CBS 124108; CPC 14376 Fallen leaves <strong>of</strong> Acer macrophyllum Canada B. Callan FJ839639 FJ839675<br />

CBS 115686; CPC 4010 Living leaves <strong>of</strong> Acer sp. Canada K.A. Seifert FJ839640 FJ839676<br />

1<br />

ATCC: American Type Culture Collection, Virginia, USA; C.F. Hill: Culture collection <strong>of</strong> C.F. Hill, housed at MAF, New Zeal<strong>and</strong>; CBS: CBS Fungal Biodiversity Centre, Utrecht, The Netherl<strong>and</strong>s; CMW: Culture collection <strong>of</strong> M.J. Wingfield, housed at FABI, Pretoria, South Africa; CPC:<br />

Culture collection <strong>of</strong> P.W. Crous, housed at CBS; E.G.S.: Culture collection <strong>of</strong> E.G. Simmons, Indiana USA; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; INIFAT: Alex<strong>and</strong>er Humboldt Institute for Basic Research in Tropical Agriculture,<br />

Ciudad de La Habana, Cuba; MAF: Ministry <strong>of</strong> Agriculture <strong>and</strong> Forestry, New Zeal<strong>and</strong>; NRRL: National Center for Agricultural Utilization Research, Peoria, USA; PRE: National collection <strong>of</strong> fungi, Pretoria, South Africa; VPRI: Victorian Department <strong>of</strong> Primary Industries, Knoxfield,<br />

Australia.<br />

2<br />

ITS: Internal transcribed spacers 1 <strong>and</strong> 2 together with 5.8S nrDNA; LSU: 28S nrDNA.


P.W. Crous et al.: Obscure <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi<br />

141<br />

stimulate sporulation. Single-conidial isolates were established<br />

on malt extract agar (MEA; 20 g/L Biolab malt extract, 15 g/L<br />

Biolab agar) using the technique outlined in Crous (1998).<br />

Cultures were later plated on fresh MEA, 2 % water agar (WA)<br />

supplemented with sterile pine needles, 2 % potato-dextrose<br />

agar (PDA), synthetic nutrient agar (SNA) <strong>and</strong>/or oatmeal agar<br />

(OA) (Crous et al. 2009), <strong>and</strong> subsequently incubated at 25 °C<br />

under near-ultraviolet light to promote sporulation. Reference<br />

strains are maintained in the culture collection <strong>of</strong> the CBS,<br />

Utrecht, the Netherl<strong>and</strong>s (Table 1). Descriptions, nomenclature,<br />

<strong>and</strong> illustrations were deposited in MycoBank (www.mycobank.<br />

org, Crous et al. 2004b).<br />

DNA isolation, amplification <strong>and</strong> analyses<br />

Genomic DNA was isolated from fungal mycelium grown on<br />

MEA, using the UltraClean TM Microbial DNA Isolation Kit (Mo<br />

Bio Laboratories, Inc., Solana Beach, CA, USA) according to the<br />

manufacturer’s protocols. The Primers V9G (de Hoog & Gerrits<br />

van den Ende 1998) <strong>and</strong> LR5 (Vilgalys & Hester 1990) were<br />

used to amplify part <strong>of</strong> the nuclear rDNA operon spanning the 3’<br />

end <strong>of</strong> the 18S rRNA gene (SSU), the first internal transcribed<br />

spacer (ITS1), the 5.8S rRNA gene, the second ITS region<br />

(ITS2) <strong>and</strong> the first 900 bases at the 5’ end <strong>of</strong> the 28S rRNA<br />

gene (LSU). The primers ITS4 (White et al. 1990) <strong>and</strong> LR0R<br />

(Rehner & Samuels 1994) were used as internal sequence<br />

primers to ensure good quality sequences over the entire length<br />

<strong>of</strong> the amplicon. The PCR conditions, sequence alignment<br />

<strong>and</strong> subsequent phylogenetic analysis followed the methods<br />

<strong>of</strong> Crous et al. (2006b). Alignment gaps were treated as new<br />

character states. Sequence data were deposited in GenBank<br />

(Table 1) <strong>and</strong> alignments in TreeBASE (www.treebase.org).<br />

The ITS sequences were compared with those sequences available<br />

in NCBI’s GenBank nucleotide database using a megablast<br />

search <strong>and</strong> the results are discussed where applicable under<br />

the taxonomic notes. Because the genus Chalastospora is relatively<br />

novel, species in this genus were supported by a separate<br />

phylogenetic tree.<br />

Morphology<br />

Fungal descriptions were based on cultures sporulating in<br />

vitro (media indicated). Wherever possible, 30 measurements<br />

(× 1 000 magnification) were made <strong>of</strong> structures mounted in<br />

lactic acid, with the extremes <strong>of</strong> spore measurements given in<br />

parentheses. Colony colours (surface <strong>and</strong> reverse) were assessed<br />

after 2–4 wk on different media at 25 °C in the dark,<br />

using the colour charts <strong>of</strong> Rayner (1970).<br />

Results<br />

Phylogenetic analysis<br />

Amplification products <strong>of</strong> approximately 1 700 bases were obtained<br />

for the isolates listed in Table 1. The LSU region <strong>of</strong> the<br />

sequences was used to obtain additional sequences from Gen-<br />

Bank, which were added to the alignment. Due to the inclusion<br />

<strong>of</strong> the shorter LSU sequences <strong>of</strong> Dictyosporium alatum (Gen-<br />

Bank accession DQ018101), Dictyosporium elegans (GenBank<br />

accession DQ018100) <strong>and</strong> Dictyosporium toruloides (GenBank<br />

accession DQ018104) in the alignment, it was not possible to<br />

subject the full length <strong>of</strong> the determined LSU sequences (Table<br />

1) to analyses. The manually adjusted LSU alignment contained<br />

115 sequences (including the two outgroup sequences) <strong>and</strong>, <strong>of</strong><br />

the 568 characters used in the phylogenetic analyses, 267 were<br />

parsimony informative, 30 were variable <strong>and</strong> parsimony uninformative,<br />

<strong>and</strong> 271 were constant. Neighbour-joining analyses<br />

using three substitution models on the sequence data yielded<br />

trees supporting the same tree topology to one another but<br />

differed from the most parsimonious tree shown in Fig. 1 with<br />

regard to the placement <strong>of</strong> the clade containing Ochroconis <strong>and</strong><br />

Fusicladium (in the distance analyses, this clade moves to a<br />

more basal position). Forty equally most parsimonious trees<br />

(TL = 1 039 steps; CI = 0.477; RI = 0.833; RC = 0.397), the first<br />

<strong>of</strong> which is shown in Fig. 1, were obtained from the parsimony<br />

analysis <strong>of</strong> the LSU alignment.<br />

The manually adjusted ITS alignment contained 28 sequences<br />

(including the outgroup sequence) <strong>and</strong>, <strong>of</strong> the 521 characters<br />

used in the phylogenetic analyses, 97 were parsimony informative,<br />

91 were variable <strong>and</strong> parsimony uninformative, <strong>and</strong> 333<br />

were constant. Neighbour-joining analyses using three substitution<br />

models on the sequence data yielded trees supporting the<br />

same tree topology to one another but differed from the most<br />

parsimonious tree shown in Fig. 2 with regard to the placement<br />

<strong>of</strong> Chalastospora ellipsoidea (in the distance analyses, this<br />

taxon moves to a more basal position in Chalastospora). Six<br />

equally most parsimonious trees (TL = 253 steps; CI = 0.913;<br />

RI = 0.938; RC = 0.856), the first <strong>of</strong> which is shown in Fig. 2,<br />

were obtained from the parsimony analysis <strong>of</strong> the ITS alignment.<br />

The results <strong>of</strong> the phylogenetic analyses are highlighted<br />

below under the taxonomic notes, or in the Discussion, where<br />

applicable.<br />

Taxonomy<br />

Brycekendrickomyces Crous & M.J. Wingf., gen. nov. —<br />

MycoBank MB509515<br />

Mycelium ex hyphis ramosis, septatis, laevibus, pallide brunneis, 1–2 µm<br />

latis compositum. Conidiophora solitaria, erecta, cylindrica, recta vel leviter<br />

flexuosa, cellula basali bulbosa, sine rhizoideis, stipite modice brunneo vel<br />

atro-brunneo, laevi, transverse euseptato, ad apicem cum (1–)2–4(–6)<br />

cellulis conidiogenis. Cellulae conidiogenae subcylindricae, allontoides vel<br />

doliiformes, rectae vel leviter curvatae, pallide brunneae, polyblasticae,<br />

sympodialiter proliferantes. Conidia hyalina, mucilagine aggregata (sed non<br />

catenata), ellipsoidea, apice subobtuso, basi subtruncata.<br />

Type species. Brycekendrickomyces acaciae Crous & M.J. Wingf.<br />

Etymology. Named for Bryce Kendrick, husb<strong>and</strong> <strong>of</strong> Laurie Kendrick, for<br />

which Lauriomyces was named <strong>and</strong> that resembles the current genus.<br />

Mycelium consisting <strong>of</strong> branched, septate, smooth, pale brown,<br />

1–2 µm wide hyphae. Conidiophores solitary, erect, cylindrical,<br />

straight to somewhat flexuous, basal cell bulbous, without<br />

rhizoids; stalk medium to dark brown, smooth, transversely<br />

euseptate; upper cell giving rise to (1–)2–4(–6) conidiogenous<br />

cells. Conidiogenous cells subcylindrical to allantoid or doliiform,<br />

straight to gently curved, pale brown, polyblastic, proliferating<br />

sympodially. Conidia hyaline, aggregating in slimy mass (never<br />

in chains), ellipsoid, apex subobtuse, base subtruncate.<br />

Brycekendrickomyces acaciae Crous & M.J. Wingf., sp. nov.<br />

— MycoBank MB509517; Fig. 3<br />

Maculae modice brunneae vel atro-brunneae, margine elevato, rubro-purpureo,<br />

oblongae vel ellipticae, ad 7 mm diam, in consortione ‘Phaeotrichoconis’<br />

crotalariae. In vitro (MEA): Mycelium ex hyphis ramosis, septatis,<br />

laevibus, pallide brunneis, 1–2 µm latis compositum. Conidiophora ex<br />

hyphis oriunda, solitaria, erecta, cylindrica, recta vel leviter flexuosa, cellula<br />

basali bulbosa, sine rhizoideis, 4–6 µm lata, ad basim 10–15 µm lata,<br />

stipite modice brunneo vel atro-brunneo, laevi, transverse 2–5-euseptato,<br />

(15–)30–50(–60) µm longo, (3–)4(–5) µm lato, ad apicem cum (1–)2–4(–6)<br />

cellulis conidiogenis. Cellulae conidiogenae subcylindricae, allontoides vel<br />

doliiformes, rectae vel leviter curvatae, pallide brunneae, 5–8 × 2–2.5 µm,<br />

polyblasticae, sympodialiter proliferantes. Conidia hyalina, mucilagine aggregata<br />

(sed non catenata), ellipsoidea, apice subobtuso, basi subtruncata,<br />

latitudine maxima in parte centrali vel in parte supra centrum, saepe leviter<br />

asymmetrica, (3.5–)4(–4.5) × 2(–2.5) µm.<br />

Etymology. Named after the host genus on which the fungus occurs,<br />

Acacia.


142 <strong>Persoonia</strong> – Volume 22, 2009<br />

Kluyveromyces lodderae AY048161<br />

Saccharomyces cerevisiae Z73326<br />

82<br />

10 changes<br />

62<br />

1<br />

100<br />

2<br />

99<br />

Mycosphaerella punctiformis EU167569<br />

Ramularia pratensis var. pratensis EU019284<br />

100<br />

99<br />

74<br />

56<br />

64<br />

97<br />

76<br />

97<br />

51<br />

Trochophora fasciculata CPC 10282<br />

Mycosphaerella crystallina DQ204747<br />

Mycosphaerella waimeana AY260083<br />

Mycosphaerella heimii DQ204751<br />

Mycosphaerella heimioides DQ204753<br />

Pseudocercospora vitis DQ073923<br />

Pseudocercospora pseudoeucalyptorum DQ204766<br />

Pseudocercospora robusta DQ204767<br />

Stigmina platani CBS 110755<br />

Pseudocercospora natalensis DQ267576<br />

Pseudocercospora basitruncata DQ204759<br />

Mycosphaerella lupini CPC 1661<br />

Mycosphaerella marksii DQ246250<br />

Pseudocercospora epispermogonia DQ204758<br />

100<br />

Schizothyrium pomi EF134947<br />

Schizothyrium pomi EF134949 SCH<br />

69 Schizothyrium pomi EF134948<br />

Cibiessia minutispora EU019259<br />

82 100 Teratosphaeria readeriellophora DQ246238<br />

88 Batcheloromyces leucadendri EU019246<br />

96 Cibiessia nontingens EU019260<br />

Teratosphaeria nubilosa DQ246228<br />

95 Teratosphaeria fibrillosa EU019282<br />

Mycosphaerella madeirae DQ204756<br />

Mycosphaerella parkii DQ246245<br />

Ramichloridium biverticillatum EU041853<br />

Verrucisporota grevilleae CPC 14761<br />

97 99 Verrucisporota proteacearum CBS 116003<br />

83 Periconiella arcuata EU041836<br />

Verrucisporota daviesiae CBS 116002<br />

Periconiella velutina EU041840<br />

MYC (2)<br />

54<br />

Ramichloridium musae EU041857<br />

Ramichloridium strelitziae EU041860<br />

54 Stenella anthuriicola CBS 118742<br />

Ramichloridium cerophilum EU041855<br />

77<br />

85<br />

Zasmidium cellare EU041878<br />

Cyphellophora laciniata EU035416 HER (1)<br />

Vonarxia vagans CPC 15151<br />

80 100 Vonarxia vagans CPC 15152<br />

CHA<br />

Ceramothyrium carniolicum AY004339<br />

Cyphellophora Cyphellophora eugeniae hylomeconis CPC EU035415<br />

15172<br />

78<br />

Exophiala eucalyptorum EU035417<br />

71 Exophiala pisciphila DQ823101<br />

Capronia mansonii AY004338<br />

100 Capronia munkii EF413604<br />

97 Brycekendrickomyces acaciae CPC 15078<br />

63 Phaeococcomyces chersonesos AJ507323<br />

65 Cladophialophora proteae EU035411<br />

100 Exophiala placitae EU040215<br />

Phaeococcomyces catenatus AF050277<br />

88<br />

70<br />

MYC (1)<br />

Fig. 1 The first <strong>of</strong> 1 000 equally most parsimonious trees obtained from a heuristic search with 100 r<strong>and</strong>om taxon additions <strong>of</strong> the LSU sequence alignment.<br />

The scale bar shows 10 changes, <strong>and</strong> bootstrap support values from 1 000 replicates are shown at the nodes. Novel sequences <strong>genera</strong>ted for this study are<br />

shown in bold. Branches present in the strict consensus tree are thickened. Orders <strong>and</strong> families are coded as indicated in the legends. The tree was rooted<br />

to a sequence <strong>of</strong> Kluyveromyces lodderae (GenBank accession AY048161) <strong>and</strong> Saccharomyces cerevisiae (GenBank accession Z73326).<br />

Abbreviations used: Families: AMO = Amorphothecaceae, CHA = Chaetothyriaceae, HEL = Helotiaceae, HER = Herpotrichiellaceae, HYA = Hyaloscyphaceae,<br />

IC = Incertae cedis: LEP = Leptosphaeriaceae, LOP = Lophiostomataceae, MEL = Melanommataceae, MYC = Mycosphaerellaceae, PHA = Phaeosphaeriaceae,<br />

PLE = Pleosporaceae, PSE = Pseudeurotiaceae, RHY = Rhytismataceae, SCH = Schizothyriaceae, TER = Teratosphaeriaceae. Orders: 1 = Capnodiales,<br />

2 = Chaetothyriales, 3 = Incertae cedis, 4 = Rhytismatales, 5 = Helotiales, 6 = Hypocreales, 7 = Pezizales, 8 = Pleosporales.<br />

TER<br />

HER (2)<br />

Leaf spots medium to dark brown, margin raised, red-purple,<br />

oblong to ellipsoid, up to 7 mm diam, associated with ‘Phaeotrichoconis’<br />

crotalariae. Description based on culture on MEA:<br />

Mycelium consisting <strong>of</strong> branched, septate, smooth, pale brown,<br />

1–2 µm wide hyphae. Conidiophores arising from mycelium,<br />

solitary, erect, cylindrical, straight to somewhat flexuous; basal<br />

cell bulbous, without rhizoids, 4–6 µm wide in upper part, but<br />

becoming 10–15 µm wide at basal part; stalk medium to dark<br />

brown, smooth, transversely 2–5-euseptate, (15–)30–50(–60)<br />

µm tall, (3–)4(–5) µm wide in the middle part; upper cell giving<br />

rise to (1–)2–4(–6) conidiogenous cells. Conidiogenous cells<br />

subcylindrical to allantoid or doliiform, straight to gently curved,<br />

pale brown, 5–8 × 2–2.5 µm; polyblastic, proliferating sympodially.<br />

Conidia hyaline, aggregating in slimy mass (never in<br />

chains), ellipsoid, apex subobtuse, base subtruncate, widest in<br />

the middle or upper third <strong>of</strong> the conidium, frequently somewhat<br />

asymmetrical, (3.5–)4(–4.5) × 2(–2.5) µm.<br />

Characteristics in culture — Colonies on MEA erumpent,<br />

spreading, with moderate aerial mycelium; surface folded,<br />

margin lobate, smooth; surface olivaceous-grey, outer margin<br />

iron-grey; reverse iron-grey; colonies reaching up to 20 mm<br />

after 1 mo. Colonies fertile on SNA, OA <strong>and</strong> MEA.<br />

Specimen examined. Indonesia, Pelalawan, living leaves <strong>of</strong> Acacia auriculiformis,<br />

Mar. 2008, leg. M.J. Wingfield, isol. P.W. Crous, holotype CBS<br />

H-20198, culture ex-type CPC 15078 = CBS 124104.<br />

Notes — Castañeda & Kendrick (1990) established the genus<br />

Lauriomyces, characterised by dark brown conidiophores,


P.W. Crous et al.: Obscure <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi<br />

143<br />

Fig. 1 (cont.)<br />

3 Lauriomyces bellulus CBS 517.93<br />

IC<br />

4 100 Lauriomyces heliocephalus CBS 112054<br />

Potebniamyces pyri DQ470949<br />

RHY<br />

5 Crinula caliciiformis AY544680<br />

HEL (1)<br />

100<br />

Holwaya mucida DQ257356<br />

Leuconeurospora pulcherrima AF096193<br />

61 6<br />

IC<br />

Pseudeurotium zonatum AF096198<br />

933<br />

PSE<br />

Pseudeurotium zonatum DQ470988<br />

3 97<br />

Amorphotheca resinae EU040230<br />

Amorphotheca resinae EU040231<br />

AMO<br />

100 Hyalodendriella betulae EU040232<br />

IC<br />

Phialea strobilina EF596821<br />

5 7 100 Haplographium catenatum CBS 482.67<br />

Haplographium catenatum CBS 196.73<br />

HYA (1)<br />

Haplographium catenatum CBS 739.68<br />

3 Clathrosporium intricatum AY616235<br />

66 Hydrocina chaetocladia AY789412<br />

Rhyzoscyphus ericae AM887699<br />

IC<br />

HEL (2)<br />

89<br />

Protoventuria alpina EU035444<br />

Thedgonia ligustrina CPC 10019<br />

100<br />

Thedgonia ligustrina EU040242<br />

Thedgonia ligustrina CPC 10861 IC<br />

Thedgonia ligustrina CPC 14754<br />

3<br />

Thedgonia ligustrina CPC 10530<br />

Trichoconis echinophila EU107315<br />

91 Trematosphaeria pertusa DQ678072<br />

10 changes<br />

8<br />

100<br />

100<br />

88<br />

Aposphaeria populina EU754130<br />

Herpotrichia juniperi DQ678080<br />

Wettsteinina macrotheca AY849969<br />

Seifertia azaleae EU030276<br />

Mycopappis aceris CPC 14379<br />

70<br />

Xenostigmina zilleri CBS 115685<br />

Xenostigmina zilleri CBS 115686<br />

Xenostigmina zilleri CPC 14376<br />

100<br />

Dictyosporium toruloides DQ018104<br />

Dictyosporium strelitziae CPC 15359<br />

Dictyosporium elegans DQ018100<br />

Dictyosporium alatum DQ018101<br />

91<br />

Pseudodiplodia sp. EU754201<br />

Coniothyrium concentricum EU754152<br />

Leptospora rubella DQ195792<br />

Phaeosphaeriopsis musae DQ885894<br />

HYA (2)<br />

MEL<br />

LOP<br />

PLE (1)<br />

60<br />

LEP<br />

IC<br />

PHA<br />

Phaeosphaeria nodorum EF590318<br />

Edenia gomezpompae CPC 15689<br />

Chalastospora gossypii CBS 112844<br />

94 Chalastospora gossypii DQ008142<br />

Chalastospora gossypii CBS 114810<br />

Chalastospora gossypii CBS 114005<br />

Chalastospora gossypii CBS 900.87<br />

Chalastospora gossypii var. polymorpha AY251080<br />

Chalastospora gossypii AY251081<br />

100 Chalastospora gossypii AY251079<br />

Chalastospora gossypii CPC 3685<br />

Chalastospora gossypii CPC 3680<br />

Chalastospora obclavata CBS 124120<br />

Chalastospora gossypii CPC 3690<br />

Chalastospora gossypii CPC 15567<br />

Chalastospora gossypii CBS 114809<br />

Chalastospora cetera CBS 121340<br />

64<br />

Chalastospora ellipsoidea CBS 121331<br />

IC<br />

PLE (2)<br />

<strong>and</strong> a series <strong>of</strong> branches, giving rise to chains <strong>of</strong> hyaline conidia<br />

via sympodial conidiogenesis. Brycekendrickomyces is morphologically<br />

similar to Lauriomyces, which in turn resembles<br />

Haplographium. The genus Haplographium is based on H. delicatum.<br />

Its confused history is discussed in detail by Zucconi<br />

& Pagano (1993). Haplographium delicatum was originally<br />

described by Berkeley & Broome as having conidia in chains<br />

(Mason 1933), which Saccardo (1886) also reported for the<br />

type species. Hughes (1958) noted that Stilbum catenatum<br />

was an older name for H. delicatum, which led Holubová-Jechová<br />

(1973) to place this species in Haplographium, while<br />

Castañeda & Kendrick (1990) placed it in Lauriomyces. If<br />

Haplographium <strong>and</strong> Lauriomyces are synonymous, the older<br />

name, Haplographium, would have preference. However, as<br />

shown here, ‘Lauriomyces’ catenatus is not congeneric with<br />

other species <strong>of</strong> Lauriomyces, such as L. heliocephalus (Rao<br />

& de Hoog 1986, Castañeda & Kendrick 1990) <strong>and</strong> L. bellulus<br />

(Crous & Wingfield 1994), suggesting that the two <strong>genera</strong> are<br />

distinct, <strong>and</strong> that the name Haplographium catenatum should<br />

be resurrected. Data from this study, furthermore, suggest that<br />

the strains <strong>of</strong> H. catenatum included here, probably represent<br />

a species complex.<br />

Brycekendrickomyces differs from Haplographium <strong>and</strong> Lauriomyces<br />

by the absence <strong>of</strong> an intricate conidiophore branching<br />

system, <strong>and</strong> in having conidia produced in slimy heads rather<br />

than in chains. Furthermore, it is not phylogenetically related<br />

to species <strong>of</strong> Lauriomyces or Haplographium presently known<br />

from culture (Fig. 1). Brycekendrickomyces is somewhat similar<br />

to Argopericonia (Sutton & Pascoe 1987), although the latter<br />

fungus produces hyaline, apical conidiogenous heads, <strong>and</strong> it<br />

has ellipsoidal, single to short catenate conidia, each with a<br />

prominent, globose guttule.


144 <strong>Persoonia</strong> – Volume 22, 2009<br />

Phaeosphaeriopsis musae DQ885894<br />

100<br />

100<br />

Alternaria alternata ATCC 52170 FJ545250<br />

Alternaria alternata EGS 34-016 AF347031<br />

62<br />

10 changes<br />

99<br />

99<br />

100<br />

100<br />

75<br />

94<br />

59<br />

78<br />

100<br />

99<br />

77<br />

70<br />

82<br />

90<br />

62<br />

Alternaria triticina EGS 17-061 AY762948<br />

Alternaria triticina MUCL 44210 AY714476<br />

Lewia ethzedia AY278833<br />

Lewia ethzedia EGS 37-143 AF392987<br />

Alternaria conjuncta EGS 37-139 AF392988<br />

Alternaria conjuncta FJ266475<br />

Chalastospora cetera CBS 121340<br />

Chalastospora obclavata CBS 124120<br />

Chalastospora ellipsoidea CBS 121331<br />

Chalastospora gossypii STE-U 4571 AY251081<br />

Chalastospora gossypii var. polymorpha AY251080<br />

Chalastospora gossypii STE-U 4572 AY251079<br />

100<br />

86<br />

62<br />

Chalastospora gossypii ATCC 28332 AF393680<br />

Chalastospora gossypii CPC 3690<br />

Chalastospora gossypii CPC 3680<br />

Chalastospora gossypii CBS 216.65<br />

Chalastospora gossypii ATCC 96020 AF393713<br />

Chalastospora gossypii ATCC 36953 AF393715<br />

Chalastospora gossypii ATCC 200938 AF393721<br />

Chalastospora gossypii CBS 900.87<br />

Chalastospora<br />

Fig. 2 The first <strong>of</strong> 6 equally most parsimonious trees obtained from a heuristic<br />

search with 100 r<strong>and</strong>om taxon additions <strong>of</strong> the ITS sequence alignment.<br />

The scale bar shows 10 changes, <strong>and</strong> bootstrap support values (blue are<br />

from the parsimony analysis <strong>and</strong> red from the distance analysis using the<br />

HKY85 substitution model) from 1 000 replicates are shown at the nodes.<br />

Branches present in the strict consensus tree are thickened. The tree was<br />

rooted to a sequence <strong>of</strong> Phaeosphaeriopsis musae (GenBank accession<br />

DQ885894).<br />

65<br />

63<br />

61<br />

50<br />

Chalastospora gossypii ATCC 200939 AF393722<br />

Chalastospora gossypii ATCC 38025 AF393714<br />

Chalastospora gossypii CPC 15567<br />

Chalastospora gossypii CBS 114809<br />

Chalastospora gossypii CBS 114810<br />

Chalastospora E.G. Simmons, Alternaria. An identification<br />

manual: 668. 2007<br />

Type species. Chalastospora cetera (E.G. Simmons) E.G. Simmons.<br />

Conidiophores solitary, brown, smooth, arising from surface hyphae<br />

or as short, lateral branches from ropes <strong>of</strong> aerial hyphae;<br />

short, subcylindrical to flask-shaped, 0–2-transversely euseptate,<br />

seldom once geniculate or branched. Conidiogenous cells<br />

integrated, terminal or conidiophores reduced to conidiogenous<br />

cells, monotretic, determinate to polytretic, sympodial, conidiogenous<br />

loci visible as minute pores, without or with somewhat<br />

darkened <strong>and</strong> slightly thickened rim. Conidia in acropetal,<br />

branched chains, narrowly ellipsoid to narrowly ovoid, pale to<br />

medium brown, rarely 1–3 transversely euseptate, <strong>genera</strong>lly<br />

lacking longitudinal or oblique septa; conidial apex functioning<br />

as secondary conidiophore, proliferating laterally.<br />

Chalastospora gossypii (Jacz.) U. Braun & Crous, comb. nov.<br />

— MycoBank MB509518; Fig. 4<br />

Basionym. Cladosporium gossypii Jacz., Holopkovoe Delo 1929, 5–6:<br />

564. 1929 <strong>and</strong> Trudy Byuro Priklad. Bot. 24 (5): 181–182. 1931.<br />

= Cladosporium malorum Rühle, Phytopathology 21: 1146. 1931.<br />

≡ Alternaria malorum (Rühle) U. Braun, Crous & Dugan, Mycol. Progr. 2:<br />

5. 2003.<br />

= Phaeoramularia kellermaniana Marasas & I.H. Bredell, Bothalia 11:<br />

217. 1974.<br />

= Cladophialophora kellermaniana (Marasas & I.H. Bredell) U. Braun &<br />

Feiler, Microbiol. Res. 150: 83, 1995.<br />

≡ Pseudocladosporium kellermanianum (Marasas & I.H. Bredell) U. Braun,<br />

A monograph <strong>of</strong> Cercosporella, Ramularia <strong>and</strong> allied <strong>genera</strong> 2: 393. 1998.<br />

= Cladosporium porophorum Matsush., Icones Micr<strong>of</strong>ungorum a Matsushima<br />

lectorum: 36. 1975.<br />

Characteristics in culture — See Braun et al. (2003).<br />

Specimens examined. Canada, Saskatchewan, Matador, from grass litter,<br />

27 May 1968, G.C. Bhatt 255, IMI 144487 = ATCC 38025 = CBS 597.69; from<br />

(?) soil, 18 Sept. 1973, H.A.H. Wallace, IMI 179345; Alberta, from Bromus<br />

inermis, 1994, R.J. Howad 397, IMI 360655, HAL. – Central Asia (without<br />

detailed locality), on fibres <strong>of</strong> Gossypium sp., 1927 <strong>and</strong> 1928, V.S. Fedorov,<br />

LEP, syntypes <strong>of</strong> Cladosporium gossypii. – Lebanon, from soil, July 1987,<br />

F. Seigle-Mur<strong>and</strong>i, ATCC 200938 = CBS 900.87. – Libya, from Prunus persica,<br />

April 1975, Casay, IMI 194863. – New Zeal<strong>and</strong>, Wellington, 40 Epuni Street,<br />

Te Aro Valley, wood <strong>and</strong> wallpaper from inside walls <strong>of</strong> a dwelling, 5 Sept.<br />

2008, leg. D. De Vanny, isol. C.F. Hill 2008/3899, CPC 15567; Auckl<strong>and</strong>,<br />

Henderson Valley Road, Henderson, leaves <strong>of</strong> Anethum graveolens (dill)


P.W. Crous et al.: Obscure <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi<br />

145<br />

a<br />

b<br />

c<br />

f<br />

d<br />

e<br />

Fig. 3 Brycekendrickomyces acaciae (CBS 124104). a. Colonies sporulating on MEA; b. colonies on SNA; c–e, g. conidiophores with conidiogenous apparatus;<br />

f. conidia. — Scale bars = 10 µm.<br />

g<br />

along with Itersonilia perplexans, 1 Dec. 2003, leg. J. Pike, isol. C.F. Hill,<br />

MAF 943 = CBS 114809; Auckl<strong>and</strong>, 90 Aberdeen Road, Castor Bay, isolated<br />

from Quercus robur (oak) leaves in association with Tubakia dryina,<br />

5 Sept. 2008, leg. H. Nettleton, isol. C.F. Hill, MAF 954 = CPC 15567 = CBS<br />

114810. – Pakistan, Karachi, from stored grains, 5 Jan. 1967, S.S. Hussain,<br />

IMI 124270. – South Africa, Western Cape Province, Kopgat, Calvinia,<br />

from wheat stubble, Feb. 1972, W.F.O. Marasas OP-76, PREM 44703, IMI<br />

165252, cultures ATCC 28332 = IMI 165252 = PRE 44703 = CPC 3680 =<br />

CBS 266.75, ex-type cultures <strong>of</strong> Phaeoramularia kellermaniana. – Syria,<br />

from agricultural soil, Feb. 1980, M.I.A. Abdel-Kader, CPC 3685 = ATCC<br />

200939 = CBS 173.80. – Turkey, Manisa, from Hordeum sp., 16 June 1971,<br />

Maksu & Selçuc, IMI 159198; Gossypium seeds, M. Esentepe, CBS 540.75.<br />

– USA, New Mexico, Red River, from a polypore on Picea sp., 4 Sept. 1996,<br />

D. Wicklow, IMI 386094; Washington State, from Bing cherry fruit, June 1992,<br />

F.M. Dugan, ATCC 96020; from fruits <strong>of</strong> Malus domestica, F.D. Heald, ATCC<br />

36953; Washington State, Festuca idahoensis, F.M. Dugan, STE-U 4572 =<br />

CBS 114005; Pacific Northwest, Feb. 1966, C.W. Hesseltine, NRRL W 52-<br />

29 = CPC 3690 = CBS 148.66; Oregon, Portl<strong>and</strong>, Triticum aestivum grain,<br />

June 1965, C.W. Hesseltine, NRRL A-13702 = CBS 216.65; Malus sylvestris<br />

fruit, Jan. 1931, F.D. Head, ATCC 36953 = MUCL 10096 = CBS 135.31;<br />

Washington State, Bromus tectorum, F.M. Dugan, CPC 4571 = CBS 112844;<br />

Washington State, Roza Canal near Prosser, isolated from dormant buds<br />

(overwintered) <strong>of</strong> Vitis vinifera, Mar. 2001, F.M. Dugan, holotype WSP 70286,<br />

cultures ex-type STE-U 4570 = CBS 112048 (var. polymorpha). – Uzbekistan,<br />

Bukhara, Experiment Station, on fibres <strong>of</strong> Gossypium hirsutum, 1928, V.S.<br />

Zelenetzi, LEP, lectotype <strong>of</strong> Cladosporium gossypii (selected here) (isolectotype<br />

in LEP); Bukhara, Shafrikanskoje, on fibres <strong>of</strong> Gossypium hirsutum,<br />

1928, V.S. Zelenetzi, LEP, syntype <strong>of</strong> Cladosporium gossypii.<br />

Notes — The genus Chalastospora appears to represent<br />

an anamorph lineage in the Pleosporales (Fig. 1). Chalastospora<br />

cetera <strong>and</strong> C. gossypii are clearly congeneric (Fig. 2).<br />

Based on the ITS data, there are some point mutations among<br />

strains <strong>of</strong> C. gossypii, suggesting that other genes need to be<br />

sequenced to fully elucidate the variation within this species<br />

(Fig. 2). On SNA, ramoconidia <strong>of</strong> CBS 114810 were 10–17<br />

× 3–5 µm, <strong>and</strong> conidia narrowly ellipsoid-ovoid, cylindrical<br />

to fusiform, 6–10 × 2–2.5 µm, thus much smaller than that<br />

reported by Braun et al. (2003) on PDA. Jaczewski introduced<br />

the name Cladosporium gossypii in 1929, <strong>and</strong> provided a brief<br />

Russian description, including shape <strong>and</strong> size <strong>of</strong> conidia. This<br />

description, published before 1935, is, however, valid. In his<br />

paper <strong>of</strong> 1931, he re-introduced C. gossypii together with a<br />

Latin description <strong>and</strong> a micrograph <strong>of</strong> conidia. Type material <strong>of</strong><br />

C. gossypii was re-examined <strong>and</strong> it is identical to C. malorum.<br />

However, C. gossypii is an older name than C. malorum, which<br />

was published in 1931, <strong>and</strong> has priority.<br />

Chalastospora ellipsoidea Crous & U. Braun, sp. nov. —<br />

MycoBank MB509519; Fig. 5<br />

Chalastosporae gossypii similis, sed conidiis ellipsoideis, longioribus et leviter<br />

latioribus, (8–)10–15(–17) × 3(–3.5) µm.<br />

Etymology. Named after its ellipsoid conidia.


146 <strong>Persoonia</strong> – Volume 22, 2009<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

Fig. 4 Chalastospora gossypii (CBS 114810). a–f. Superficial mycelium on SNA showing conidiophores with branched conidial chains. — Scale bars = 10 µm.<br />

On SNA: Conidiophores arising singly from aerial <strong>and</strong> creeping<br />

hyphae; subcylindrical, erect, medium brown, smooth, up<br />

to 25 × 3 µm, frequently reduced to conidiogenous cells, 5–13<br />

× 3 µm; seldom once geniculate, mostly straight, with a slight<br />

swelling in the apical conidiogenous region; conidiogenous loci<br />

1–3 per conidiogenous cell, medium brown, slightly thickened,<br />

darkened, up to 1 µm wide. Ramoconidia (0–)1–3-septate, ellipsoid-ovoid,<br />

subcylindrical or fusiform, smooth, medium brown,<br />

(12–)15–18(–30) × 3(–4) µm; apex at times with short beak,<br />

giving rise to lateral branch. Conidia ellipsoid to fusoid, medium<br />

brown, smooth, in long acropetal chains, simple, or branched<br />

with short apical or basal, lateral branches, (8–)10–15(–17)<br />

× 3(–3.5) µm, 0–1(–2)-septate; hila thickened <strong>and</strong> darkened,<br />

0.5–1 µm wide.<br />

Characteristics in culture — Colonies on OA spreading, with<br />

moderate, flattened aerial mycelium, smoke-grey. On MEA cinnamon<br />

with patches <strong>of</strong> hazel on surface <strong>and</strong> reverse. On PDA<br />

olivaceous-grey, with moderate aerial mycelium; iron-grey in<br />

reverse.<br />

Specimen examined. Australia, on Triticum, H.L. Harvey & S. Perth, holotype<br />

CBS H-20199, culture ex-type E.G.S. 22.060 = CBS 121331.<br />

Notes — The most characteristic features <strong>of</strong> this species<br />

are its short lateral branches, <strong>and</strong> ellipsoid conidia. It is clearly<br />

distinct from C. cetera <strong>and</strong> C. gossypii based on ITS sequence<br />

data (Fig. 2).<br />

Chalastospora obclavata Crous & U. Braun, sp. nov. —<br />

MycoBank MB509520; Fig. 6<br />

Differt ab omnibus specibus Chalastosporae conidiis intercalaribus obclavatis.<br />

Etymology. Named after its obclavate conidia.<br />

Sporulating poorly on SNA. Conidiophores 17–30 × 3–4 µm,<br />

arising singly from aerial <strong>and</strong> creeping hyphae; subcylindrical,<br />

somewhat clavate near apex <strong>of</strong> conidiogenous region, erect,<br />

straight to once geniculate, medium brown, smooth, frequently<br />

reduced to conidiogenous cells, 5–10 × 3–4 µm; conidiogenous<br />

loci medium brown, slightly thickened, darkened, 1–1.5 µm<br />

wide. Ramoconidia medium brown, smooth, developing short<br />

lateral beaks at apex that give rise to lateral chains (verticillate-like<br />

appearance), obclavate, widest at base, 0–3-septate,<br />

(28–)30–35 × (3.5–)4–5(–6) µm. Conidia obclavate, widest<br />

at base, (23–)26–30(–35) × (3.5–)4 µm, 0–3-septate; hila<br />

thickened, darkened, 1–1.5 µm wide.<br />

Characteristics in culture — Colonies on OA spreading, with<br />

moderate, white aerial mycelium, grey-olivaceous to smoke<br />

grey; reverse grey-olivaceous. On MEA cream with dense aerial<br />

mycelial mat.<br />

Specimen examined. USA, Kansas, Manhattan, ex air, Jan. 1958, C.T.<br />

Rogerson, holotype CBS H-20200, culture ex-type E.G.S. 12.128 = CBS<br />

124120.


P.W. Crous et al.: Obscure <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi<br />

147<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g h i j<br />

Fig. 5 Chalastospora ellipsoidea (CBS 121331). a–f. Superficial mycelium on SNA showing conidiophores with conidial chains; g, h. microconidiophores;<br />

i, j. conidia in chains. — Scale bars = 10 µm.<br />

Notes — The most characteristic features <strong>of</strong> this species are<br />

its conidial branching pattern <strong>and</strong> conidial shape. This strain<br />

was discussed by Simmons under Alternaria cetera (Simmons<br />

1996), <strong>and</strong> under Chalastospora in Simmons (2007). It is clearly<br />

distinct from C. cetera (ex-type CBS 121340, Fig. 7), C. ellipsoidea<br />

<strong>and</strong> C. gossypii based on ITS sequence data (Table 1,<br />

Fig. 2).<br />

Key to species <strong>of</strong> Chalastospora 1<br />

1. Intercalary conidia usually longer than 20 µm . . . . . . . . . 2<br />

1. Intercalary conidia shorter than 20 µm . . . . . . . . . . . . . . 3<br />

2. Intercalary conidia narrowly ellipsoid to narrowly ovoid, widest<br />

in middle or lower third, (10–)19–24(–30) × 3(–4) µm,<br />

0–3-septate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. cetera<br />

2. Intercalary conidia obclavate, widest at base, (23–)26–30<br />

(–35) × (3.5–)4 µm, 0–3-septate . . . . . . . . . C. obclavata<br />

3. Intercalary conidia narrowly ellipsoid-ovoid to cylindrical or<br />

fusiform, 6–10 × 2–2.5 µm, mostly aseptate. . C. gossypii<br />

3. Intercalary conidia ellipsoid, not cylindrical nor fusiform,<br />

(8–)10–15(–17) × 3(–3.5) µm, 0(–2)-septate C. ellipsoidea<br />

1<br />

Colonies cultivated on SNA.<br />

Cyphellophora G.A. de Vries, Mycopathol. Mycol. Appl. 16:<br />

47. 1962<br />

Type species. Cyphellophora laciniata G.A. de Vries.<br />

Hyphae fertile, pale brown, 1.5–3 µm wide, at times constricted<br />

at septa. Conidiogenous cells phialidic, intercalary, at times on<br />

short lateral branches, with a prominent to indistinct collarette.<br />

Conidia sickle-shaped, brown, smooth-walled, 1–3-septate,<br />

adhering in bundles.<br />

Cyphellophora eugeniae Crous & Alfenas, sp. nov. — Myco-<br />

Bank MB509521; Fig. 8<br />

Cyphellophorae taiwanensis similis, sed conidiis valde longioribus, (40–)60–<br />

75(–90) × 2–2.5(–3) µm.<br />

Etymology. Named after the host on which it occurs, Eugenia.<br />

On PDA. Mycelium consisting <strong>of</strong> branched, greenish brown,<br />

septate, smooth, 3–5 µm wide hyphae, constricted at septa.<br />

Conidiogenous cells phialidic, intercalary, inconspicuous to subdenticulate,<br />

1 µm wide, with minute collarettes, with several loci<br />

aggregated at hyphal swellings. Conidia subcylindrical, tapering<br />

towards obtuse ends, curved, smooth, hyaline to olivaceous,


148 <strong>Persoonia</strong> – Volume 22, 2009<br />

a<br />

b<br />

c<br />

d<br />

Fig. 6 Chalastospora obclavata (CBS 124120). a, b. Superficial mycelium on SNA showing conidiophores with branched conidial chains; c–e. conidia in<br />

chains. — Scale bar = 10 µm.<br />

e<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

Fig. 7 Chalastospora cetera (CBS 121340). a–g. Superficial mycelium on SNA showing conidiophores with conidial chains. — Scale bars = 10 µm.


P.W. Crous et al.: Obscure <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi<br />

149<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g h i j<br />

Fig. 8 Cyphellophora eugeniae (CBS 124105). a, b. Colonies sporulating on OA; c–e. conidia attached to conidiogenous cells (arrows denote loci); f–j.<br />

conidia. — Scale bars = 10 µm.<br />

finely guttulate, 4–6(–10)-septate, prominently constricted at<br />

septa, widest in the middle <strong>of</strong> conidium, (40–)60–75(–90) ×<br />

2–2.5(–3) µm; conidia also anastomose <strong>and</strong> undergo microcyclic<br />

conidiation in culture.<br />

Characteristics in culture — Colonies on PDA erumpent,<br />

with sparse aerial mycelium <strong>and</strong> even margins; surface olivaceous-grey,<br />

with patches <strong>of</strong> iron-grey; reverse iron-grey. On<br />

MEA erumpent, with folded surface <strong>and</strong> smooth, lobate margin,<br />

<strong>and</strong> sparse aerial mycelium; surface pale olivaceous-grey to<br />

olivaceous-grey; reverse iron-grey. On OA spreading, flat, with<br />

even, smooth margins <strong>and</strong> sparse aerial mycelium, olivaceousgrey.<br />

Colonies reaching 15 mm diam after 1 mo at 25 °C, fertile,<br />

sporulating in slimy sporodochial masses.<br />

Specimen examined. Brazil, Rio Gr<strong>and</strong>e do Sul, Guaiba, living leaves <strong>of</strong><br />

Stenocalyx uniflorus, 1 Apr. 2008, leg. A.C. Alfenas, isol. P.W. Crous, holotype<br />

CBS H-20201, culture ex-type CPC 15172 = CBS 124105.<br />

Notes — The indistinct conidiogenous loci <strong>of</strong> C. eugeniae are<br />

reminiscent <strong>of</strong> those <strong>of</strong> C. taiwanensis (Matsushima 1985). The<br />

two species can be distinguished by the much longer conidia in<br />

C. eugeniae. Based on the key provided by Decock et al. (2003),<br />

C. eugeniae appears to represent a new species. Further collections<br />

<strong>of</strong> this complex are required to confirm the synonymy<br />

<strong>of</strong> the <strong>genera</strong> Cyphellophora with Pseudomicrodochium <strong>and</strong><br />

Kumbhayama (Decock et al. 2003, Crous et al. 2007b), which<br />

were originally distinguished based on the absence <strong>of</strong> conidial<br />

pigmentation. The ITS sequence <strong>of</strong> C. eugeniae has 89 %<br />

similarity to that <strong>of</strong> Cyphellophora hylomeconis (GenBank accession<br />

EU035415).


150 <strong>Persoonia</strong> – Volume 22, 2009<br />

Key to species <strong>of</strong> Cyphellophora<br />

(adapted from Decock et al. 2003)<br />

1. Phialides intercalary, reduced to a sessile locus with collarette<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

1. Phialides prominent, cylindrical, flask-shaped, sessile or with<br />

an elongated base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

2. Conidia 1–3-septate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

2. Conidia usually more than 3-septate . . . . . . . . . . . . . . . . 4<br />

3. Conidia up to 2.5 µm wide (11–20 × 2–2.5 µm), 1(–2)-septate<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. fusarioides<br />

3. Conidia up to 5 µm wide (11–25 × 2–5 µm), 1–3-septate<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. laciniata<br />

4. Conidia up to 2 µm wide, 3–6-septate, sigmoid (16–35 ×<br />

1.5–2 µm) . . . . . . . . . . . . . . . . . . . . . . . . . C. taiwanensis<br />

4. Conidia wider than 2 µm . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

5. Conidia subcylindrical, 4–6(–10)-septate, (40–)60–75(–90)<br />

× 2–2.5(–3) µm . . . . . . . . . . . . . . . . . . . . . . . C. eugeniae<br />

5. Conidia sigmoid, 1–5-septate, (15–)25–35(–55) × (2.5–)<br />

3(–4) µm . . . . . . . . . . . . . . . . . . . . . . . . . . C. hylomeconis<br />

6. Phialides short to long <strong>and</strong> cylindrical; conidia 1–1.2 µm<br />

wide, 2–3-septate . . . . . . . . . . . . . . . . . . . . . . . C. suttonii<br />

6. Phialides prominent, flask-shaped, sessile or with an elongated<br />

base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

7. Conidia mainly straight, on average smaller than 20 µm, 1–5-<br />

septate . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C. pluriseptata<br />

7. Conidia straight to more commonly falcate, curved, or sigmoid,<br />

on average longer than 20 µm . . . . . . . . . . . . . . . . 8<br />

8. Conidia (1–)3-septate, wider than 3 µm, 25–40 × 3.5–5.5<br />

µm; phialides commonly with an elongated base C. indica<br />

8. Conidia 2–8-septate, narrower than 3 µm; phialides without<br />

elongated base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

9. Conidia vermiform, mostly curved, mostly 4–8-septate, 30–<br />

55 × 1.2–1.5 µm. . . . . . . . . . . . . . . . . . . . . . C. vermispora<br />

9. Conidia straight, falcate or slightly sigmoid, (2–)3–6-septate,<br />

(18–)19.5–28(–29) × 1.5–2 µm . . . . . . . . . C. guyanensis<br />

Dictyosporium Corda, in Weitenweber, Beitr. Gesammten<br />

Natur-Heilwiss., Prag 1: 87. 1836<br />

Type species. Dictyosporium elegans Corda.<br />

Conidiomata sporodochial, black, scattered. Mycelium predominantly<br />

immersed, consisting <strong>of</strong> branched, septate, smooth, thinwalled<br />

hyphae. Conidiophores micronematous, mononematous,<br />

pale brown, smooth to finely verruculose, thin-walled, septate,<br />

cylindrical. Conidiogenous cells monoblastic, integrated, pale<br />

to medium brown, smooth to finely verruculose, cylindrical,<br />

determinate; at times remaining attached to released conidium.<br />

Conidia cheiroid, medium to dark brown, smooth, euseptate,<br />

one cell-layer thick, cells arranged in 1–2 planes, fan-shaped;<br />

cell rows originating from a central basal cell; rows usually attached<br />

along their length; outer rows usually shorter than inner<br />

rows, at times paler in colour than central rows, <strong>and</strong> with or<br />

without hyaline, thin-walled, 1–2-celled appendages that are<br />

allantoid, clavate to globose, or fusoid to cylindrical.<br />

Dictyosporium strelitziae Crous & A.R. Wood, sp. nov. —<br />

MycoBank MB509522; Fig. 9<br />

Dictyosporii bulbosi valde simile, sed conidiis leviter longioribus, (30–)40–<br />

46(–55), et phylogenetice manifeste divergens.<br />

Etymology. Named after the host genus Strelitzia, on which it occurs.<br />

Leaf spots absent, colonies occurring on dead leaf tissue.<br />

Description based on colonies sporulating on WA with pine nee-<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

Fig. 9 Dictyosporium strelitziae (CBS 123359). a. Colony sporulating on PDA; b, c. conidia attached to conidiogenous cells; d–h. conidia with hyaline, apical<br />

appendages. — Scale bars = 10 µm.<br />

g<br />

h


P.W. Crous et al.: Obscure <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi<br />

151<br />

dles (colonies also sporulate well on OA <strong>and</strong> MEA): Mycelium<br />

predominantly internal in host tissue, consisting <strong>of</strong> branched,<br />

septate, smooth, brown, 2–2.5 µm wide hyphae. Conidiomata<br />

sporodochial, scattered, black, up to 170 µm diam. Conidiophores<br />

subcylindrical, darker brown than hyphae, at times<br />

slightly verruculose, irregularly curved to geniculate-sinuous,<br />

1–3-septate, 10–25 × 2–2.5 µm; older conidiophores curved<br />

like sheperd’s crook. Conidiogenous cells terminal, medium<br />

brown, verruculose, subcylindrical, curved (semi-circular), 5–10<br />

× 2–2.5 µm. Conidia solitary, complanante, cheiroid, smoothwalled,<br />

uniformly pale brown, becoming uniformly medium<br />

brown at maturity; cells arranged in (4–)5(–6) rows, meeting at<br />

basal cell; outer rows with 8–10 cells, with a hyaline, globose,<br />

apical appendage, 5–10 µm diam; outer rows shorter than inner<br />

rows; inner rows with 7–11 cells; central row with 6–10 cells;<br />

conidia (30–)40–46(–55) × (20–)21–23(–25) µm.<br />

Characteristics in culture — Colonies on OA flat, spreading,<br />

without aerial mycelium, <strong>and</strong> with regular, even margin; on MEA<br />

flat, spreading, with moderate aerial mycelium <strong>and</strong> regular,<br />

smooth margin; surface buff, reverse cinnamon; colonies on<br />

both media reaching 30 mm diam after 1 mo at 25 °C.<br />

Specimen examined. South Africa, KwaZulu-Natal, Skyline Nature<br />

Reserve, Uvongo, on dead leaves <strong>of</strong> Strelitzia nicolai, 29 May 2008, leg.<br />

A. Wood, isol. P.W. Crous, CBS H-20202 holotype, cultures ex-type CPC<br />

15359–15361, CBS 123359.<br />

Notes — The genus Dictyosporium is well defined, <strong>and</strong> separated<br />

from similar <strong>genera</strong> by having smooth-walled, euseptate<br />

conidia produced from determinate conidiogenous cells (Sutton<br />

et al. 1996, Tsui et al. 2006). Based on the key provided by Cai<br />

et al. (2003b), D. strelitziae is morphologically most similar to<br />

D. bulbosum (conidia 27–46 × 11–30 µm), but its conidia are<br />

somewhat longer, <strong>and</strong> there is a 10 bp difference between the<br />

ITS sequences <strong>of</strong> D. strelitziae <strong>and</strong> D. bulbosum (DQ018086).<br />

Phylogenetically, D. strelitziae is closest to D. elegans (conidia<br />

44–80 × 24–36 µm; appendages absent) (5 bp difference in<br />

the ITS sequence, DQ018087), but it has smaller conidia than<br />

the latter species. Furthermore, it also appears distinct from all<br />

species not occurring in the key <strong>of</strong> Cai et al. (2003b) (Arambarri<br />

et al. 2001, Cai et al. 2003a, Zhao & Zhang 2003, Kodsueb et<br />

al. 2006, Cai & Hyde 2007, McKenzie 2008).<br />

Key to species <strong>of</strong> Dictyosporium<br />

(adapted from Cai et al. 2003b)<br />

1. Conidia with appendages. . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

1. Conidia lacking appendages . . . . . . . . . . . . . . . . . . . . . 13<br />

2. Appendages apical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

2. Appendages not apical . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

3. Apical appendages aseptate . . . . . . . . . . . . . . . . . . . . . . 6<br />

3. Apical appendages frequently 1-septate, cylindrical, 24–51<br />

× 6–10.5 µm; conidia 27.5–47.5 × 20–25 µm, complanate,<br />

with 4–5 rows <strong>of</strong> cells . . . . . . . . . . . . . . . . D. canisporum<br />

4. Appendages subapical, cylindrical to clavate; conidia 52.5–<br />

72.5 × 18.5–26.5 µm, not complanate, with 5 rows <strong>of</strong> cells<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. tetraploides<br />

4. Appendages not subapical, but central or basal . . . . . . . 5<br />

5. Appendages central, hyaline, thin-walled, clavate to obovoid;<br />

conidia 36–45 × 16–21 µm, not complanate, mostly 7 rows<br />

<strong>of</strong> cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. musae<br />

5. Appendages basal, fusoid to cylindrical; conidia 22–28 × 12.5–<br />

18 µm, complanate, with 3 rows <strong>of</strong> cells . . D. manglietiae<br />

6. Conidia with 3 rows <strong>of</strong> cells, (27–)31–43 × 10–12 µm . . .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. freycinetiae<br />

6. Conidia with more than 3 rows <strong>of</strong> cells . . . . . . . . . . . . . . 7<br />

7. Conidia mostly with 4 rows <strong>of</strong> cells . . . . . . . . . . . . . . . . . 8<br />

7. Conidia with 5 or more rows <strong>of</strong> cells . . . . . . . . . . . . . . . 10<br />

8. Conidia with darker colour at apex <strong>of</strong> inner rows; apical<br />

cells <strong>of</strong> outer rows each bearing a hyaline, cylindrical appendage.<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . D. nigroapice<br />

8. Conidia concolorous . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

9. Conidia 24–40 × 14–20 µm; appendages clavate . . . . .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. tetraseriale<br />

9. Conidia 36–45 × 16–21 µm; appendages tapering . . . .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. palmae<br />

10. Conidia mostly comprising 5 rows <strong>of</strong> cells. . . . . . . . . . 11<br />

10. Conidia mostly comprising 6–8 rows, 46–88 × 26–46 µm;<br />

appendages hyaline, curved . . . . . . . . . . . . D. digitatum<br />

11. Conidia longer than 32 µm, appendages globose to obovoid<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

11. Conidia shorter than above, 26–32 × 15–24 µm; appendages<br />

cylindrical to clavate . . . . . . . . . . . . . . . . D. alatum<br />

12. Conidia up to 46 µm long, <strong>and</strong> 30 µm wide, 27–46 × 11–30<br />

µm; appendages globose to obovoid . . . . . D. bulbosum<br />

12. Conidia longer than 46 µm, but not wider than 25 µm,<br />

(30–)40–46(–55) × (20–)21–23(–25) µm; appendages<br />

globose . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. strelitziae<br />

13. Conidia complanate, one cell layer thick . . . . . . . . . . . 14<br />

13. Conidia not complanate, more than one cell layer thick 24<br />

14. Conidia regularly consisting <strong>of</strong> 3 rows <strong>of</strong> cells. . . . . . . 15<br />

14. Conidia consisting <strong>of</strong> at least 4 rows <strong>of</strong> cells . . . . . . . . 16<br />

15. Conidia 15–22.5 × 10–16.5 µm . . . . D. lakefuxianensis<br />

15. Conidia 26–32 × 16–18 µm . . . . . . . . . . . . . D. triseriale<br />

16. Conidia curved, with 5–7 rows <strong>of</strong> cells, each curving in the<br />

same direction, 34–56 × 20–38 µm . . . . . . . . D. foliicola<br />

16. Conidia not curved . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

17. Conidia less than 25 µm long . . . . . . . . . . . . . . . . . . . 18<br />

17. Conidia more than 25 µm long . . . . . . . . . . . . . . . . . . 19<br />

18. Conidia 18–24 × 13–19 µm . . . . . . D. brahmaswaroopii<br />

18. Conidia 15–17 × 11–12 µm . . . . . . D. schizostachyfolium<br />

19. Conidia with paler outer rows . . . . . . . . . . . . . . . . . . . 20<br />

19. Conidia concolorous . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

20. Conidia 25–45 × 22–38 µm, with (5–)6(–7) rows . . . . .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. yunnanensis 1<br />

20. Conidia 26–40 × 13–25 µm, mostly with 5 rows. . . . . . .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. zeylanicum<br />

21. Conidia with 4 rows, 23.5–40 × 16–21.5 µm . . . . . . . . .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. tetrasporum<br />

21. Conidia with more than 4 rows . . . . . . . . . . . . . . . . . . 22<br />

22. Conidia 40–80 × 24–36 µm, mostly with 5 rows, slightly<br />

constricted at septa . . . . . . . . . . . . . . . . . . . . D. elegans<br />

22. Conidia mostly with more than 5 rows, strongly constricted<br />

at septa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

23. Conidia 26–34 × 23–34 µm, mostly with 7–9 rows <strong>of</strong> cells;<br />

conidiomata sporodochial . . . . . . . . . . . . D. polystichum<br />

23. Conidia 38–56 × 25–32 µm, mostly 6–8 rows <strong>of</strong> cells;<br />

conidiomata not sporodochial . . . . . . . . . . . D. toruloides<br />

24. Conidia campaniform, with a darker base; with 12–16 rows<br />

<strong>of</strong> cells, 22–40 × 20–30 µm . . . . . . . . D. campaniforme<br />

24. Conidia more or less cylindrical, concolorous, comprising<br />

3–7 rows <strong>of</strong> cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

25. Conidia regularly with 3 rows <strong>of</strong> cells; usually 13.5 µm or<br />

less wide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

25. Conidia mostly with 4–7 rows <strong>of</strong> cells; more than 13.5 µm<br />

wide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

1<br />

Appearing morphologically similar to D. taishanensis, also described<br />

from China; conidia with (3–)5(–7) cell layers, 27–43 × 15–30 µm (Zhao<br />

& Zhang 2003). Dictyosporium taishanensis (22 February 2003) is older<br />

than D. yunnanensis (March 2003), <strong>and</strong> would have priority if these fungi<br />

are shown to be synonymous.


152 <strong>Persoonia</strong> – Volume 22, 2009<br />

26. Conidia 40–60 × 10–13.5 µm . . . . . . . . . . D. triramosum<br />

26. Conidia shorter than 43 µm . . . . . . . . . . . . . . . . . . . . . 27<br />

27. Conidia 36–43 × 11–12 µm; sporodochia usually covered<br />

with gelatinous matrix . . . . . . . . . . . . . . . D. australiense<br />

27. Conidia 20–30 × 10–12 µm; sporodochia not as above<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. micronesicum<br />

28. Conidia 40–50 × 18–25 µm, with 4–6 rows <strong>of</strong> cells, muriform,<br />

with hyaline, subglobose conidiogenous cell remaining<br />

attached as basal appendage . . . . . . . . . . D. gauntii<br />

28. Conidial morphology not as above . . . . . . . . . . . . . . . 29<br />

29. Conidia with rows <strong>of</strong> cells that are distinctly incurved or<br />

hook-like at the apex . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

29. Conidia with more or less straight rows <strong>of</strong> cells at the apex<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

30. Conidia 105–121 × 25–32 µm . . . . . . . . . D. giganticum<br />

30. Conidia up to 80 µm long . . . . . . . . . . . . . . . . . . . . . . 31<br />

31. Conidia 50–80 × 20–30 µm . . . . . . . . . D. heptasporum<br />

31. Conidia 33–42 × 16–20 µm . . . . . . . . D. subramanianii<br />

32. Colonies effuse, not sporodochial; conidia irregularly cylindrical<br />

or oblong, strongly constricted at septa; 30–50 ×<br />

12–30 µm . . . . . . . . . . . . . . . . . . . . . . . . . . D. oblongum<br />

32. Colonies sporodochial; conidia more or less cylindrical,<br />

slightly constricted at septa, 53–76 × 19–22 µm . . . . . .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. cocophilum<br />

Edenia M.C. González, Anaya, Glenn, Saucedo & Hanlin,<br />

Mycotaxon 101: 254. 2007.<br />

Type species. Edenia gomezpompae M.C. González, Anaya, Glenn,<br />

Saucedo & Hanlin.<br />

Conidiophores fasciculate, subcylindrical, medium brown,<br />

finely roughened, 3–15-septate, straight to variously curved<br />

or geniculate-sinuous, irregular in width, constricted at some<br />

septa, with percurrent rejuvenation in upper part, situated on<br />

a submerged, brown stroma. Conidiogenous cells terminal,<br />

integrated, becoming paler brown towards apex, tapering to<br />

a subtruncate tip, with several lateral loci that are somewhat<br />

thickened <strong>and</strong> protruding (pimple-like), giving rise to conidia<br />

a<br />

b<br />

c<br />

d<br />

h<br />

e<br />

f<br />

g<br />

i<br />

j k l<br />

m<br />

Fig. 10 Edenia gomezpompae (CBS 124106). a. Hyphal tufts visible when cultivated on MEA; b. leaf spot with conidiophores; c. fasciculate conidiophores;<br />

d. conidiophores arising from conidioma; e–g. conidiophores <strong>and</strong> conidiogenous cells; h. conidia; i. conidiomata forming on OA; j. conidioma with ostiolar<br />

setae; k, l. conidiogenous cells; m. conidia. — Scale bars = 10 µm.


P.W. Crous et al.: Obscure <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi<br />

153<br />

via sympodial proliferation near apex. Conidia 11–16 × 3.5–6<br />

µm, subhyaline, smooth, thin-walled, finely guttulate, fusoidellipsoidal<br />

with obtuse apex <strong>and</strong> tapering from its widest point<br />

in the middle towards a subtruncate base, 1–1.5 µm wide.<br />

Edenia gomezpompae M.C. González, Anaya, Glenn, Saucedo<br />

& Hanlin, Mycotaxon 101: 254. 2007 — Fig. 10<br />

Leaf spots subcircular, 3–12 mm diam, grey-brown, with a<br />

dark brown, raised border, surrounded by a diffuse, black halo<br />

(absent in smaller spots). Conidiophores in fascicles <strong>of</strong> 5–30,<br />

subcylindrical, medium brown, finely roughened, 3–15-septate,<br />

straight to variously curved or geniculate-sinuous, 50–170 ×<br />

4–6 µm, irregular in width, constricted at some septa, with percurrent<br />

rejuvenation in upper part; fascicles r<strong>and</strong>omly distributed<br />

over lesion, amphigenous, visible as erect, dark brown to black<br />

tufts on lesions, situated on a submerged, brown stroma, up to<br />

60 µm wide <strong>and</strong> 40 µm high, intermingled among leaf trichomes<br />

(fruiting structures <strong>of</strong> a Ramularia sp. <strong>and</strong> ascomata <strong>of</strong> another<br />

fungus also present in some lesions). Conidiogenous cells<br />

15–30 × 3–4 µm, terminal, integrated, becoming paler brown<br />

towards apex, tapering to a subtruncate tip, with several lateral<br />

loci that are somewhat thickened <strong>and</strong> protruding (pimple-like),<br />

up to 1 µm diam, giving rise to conidia via sympodial proliferation<br />

near apex, but some conidiogenous cells also show<br />

signs <strong>of</strong> percurrent proliferation, but this appears to be linked<br />

to rejuvenation, not conidiogenesis. Conidia (11–)13–15(–16)<br />

× (3.5–)4.5–5.5(–6) µm, subhyaline, smooth, thin-walled,<br />

finely guttulate, fusoid-ellipsoidal with obtuse apex <strong>and</strong> tapering<br />

from its widest point in the middle towards a subtruncate<br />

base, 1–1.5 µm wide.<br />

Characteristics in culture — Colonies fluffy, with white hyphal<br />

str<strong>and</strong>s that turn brown with age; surface woolly with abundant<br />

aerial mycelium; margins uneven. On MEA buff to rosy-buff<br />

(surface), brick to dark brick (reverse); on PDA fluffy, cream<br />

to buff (surface), dark brick to buff (reverse); on OA brick with<br />

patches <strong>of</strong> cream to buff. Colonies reaching 25 mm diam after<br />

2 wk at 25 °C, becoming fertile on OA.<br />

Specimens examined. Mexico, Quintana Roo, Isla Mujeres Municipality, El<br />

Eden Ecological reserve, from leaves <strong>of</strong> Callicarpa acuminata (Lamiaceae),<br />

May 2002, A. Saucedo-García & A.L. Anaya, holotype MEXU 25346. – Philippines,<br />

on Senna alata (≡ Cassia alata) (Caesalpiniaceae), Oct. 2008, leg.<br />

C.J.R. Cumagun, isol. P.W. Crous, epitype designated here CBS H-20203,<br />

cultures CPC 15689 = CBS 124106, CPC 15690, 15691.<br />

Notes — The genus Edenia was originally introduced for<br />

a sterile fungus (suspected to be a member <strong>of</strong> the Pleosporaceae),<br />

isolated as an endophyte from leaves <strong>of</strong> Callicarpa<br />

acuminata in Mexico (González et al. 2007). The genus was<br />

characterised by producing numerous sterile, whitish mycelial<br />

str<strong>and</strong>s <strong>and</strong> coils on PDA. The present collection from Cassia<br />

alata in the Philippines has the same colony characteristics,<br />

<strong>and</strong> based on its identical DNA sequence data (GenBank<br />

EF565744.1), we believe that this is the same fungus. What<br />

is interesting, however, is the fact that the latter collection was<br />

made from conidia <strong>of</strong> a dematiaceous hyphomycete sporulating<br />

on leaf spots <strong>of</strong> C. alata. As other fungi were also present on<br />

these spots, its potential role as pathogen remains uncertain.<br />

On host tissue, however, some conidiophores were associated<br />

with a weakly developed layer <strong>of</strong> pale brown stromatic cells. On<br />

OA, cultures became fertile, <strong>and</strong> conidiophores were arranged<br />

around well-developed ostioles <strong>of</strong> submerged pycnidia (with a<br />

similar pale brown stromatic wall to that observed on the host).<br />

It is possible, therefore, that if the field material had been placed<br />

in moist chambers, the pycnidial state would have developed.<br />

The latter state resembles species that are pyronellea-like in<br />

morphology.<br />

Morphologically, the hyphomycete state <strong>of</strong> Edenia resembles<br />

<strong>genera</strong> such as Digitopodium, although species <strong>of</strong> this genus<br />

have rhizoids, <strong>and</strong> 1-septate, pale brown conidia that can also<br />

occur in short chains (Heuchert et al. 2005). It also shares some<br />

similarities with Blastophorum (Matsushima 1971), although<br />

the latter fungus is distinct in having solitary conidiophores with<br />

rhizoids, <strong>and</strong> a hyaline, upper conidiogenous region.<br />

Thedgonia B. Sutton, Trans. Brit. Mycol. Soc. 61: 426. 1973<br />

Type species. Thedgonia ligustrina (Boerema) B. Sutton.<br />

Conidiomata fasciculate, punctiform. Mycelium internal, hyphae<br />

subhyaline, septate, branched, forming substomatal stromata,<br />

hyaline to pale brown. Conidiophores fasciculate, arising from<br />

stromata, simple, rarely branched, subcylindrical, straight to<br />

geniculate-sinuous, continuous to septate, smooth, hyaline to<br />

pale yellowish green. Conidiogenous cells integrated, terminal,<br />

occasionally conidiophores reduced to conidiogenous cells,<br />

sympodial, conidiogenous loci more or less planate, unthickened,<br />

non-pigmented. Conidia in disarticulating chains, rarely<br />

in branched chains, subcylindrical to obclavate, with one to<br />

several transverse eusepta, hyaline or almost so, apex rounded<br />

to truncate, base truncate, hila flat, unthickened, hyaline.<br />

Thedgonia ligustrina (Boerema) B. Sutton, Trans. Brit. Mycol.<br />

Soc. 61: 428. 1973 — Fig. 11<br />

Basionym. Cercospora ligustrina Boerema, Tijdschr. Plantenziekten 68:<br />

117. 1962.<br />

≡ Cercoseptoria ligustrina (Boerema) Arx, Genera <strong>of</strong> Fungi Sporulating<br />

in Pure Culture, ed. 3: 306, Lehre 1981.<br />

Characteristics in culture — On MEA erumpent, slow growing,<br />

5–8 mm after 2 wk, with moderate, white aerial mycelium<br />

<strong>and</strong> smooth, lobate margins; umber in reverse. On OA 5–8 mm<br />

diam after 2 wk, submerged to flattened on surface, sparse aerial<br />

mycelium, <strong>and</strong> smooth, even margins; umber on surface.<br />

Specimens examined. Asia, on Ligustrum sp., H. Evans, CPC 4296 =<br />

W2072, CPC 4297 = W 2073, CPC 4298 = W 1877. – Netherl<strong>and</strong>s, Eefde,<br />

on Ligustrum ovalifolium, 23 Mar. 1959, G.H. Boerema, holotype L, ex-type<br />

culture CBS 148.59; Bilthoven, on L. ovalifolium, 2003, P.W. Crous, CPC<br />

10530 = CBS 124332, CPC 10532, 10533. – South Korea, Namyangju, on<br />

L. ovalifolium, 9 Oct. 2002, leg. H.D. Shin, isol. P.W. Crous, CBS H-20204,<br />

CPC 10019, 10861–10863; Suwon, on L. obtusifolium, 2 Oct. 2007, leg. H.D.<br />

Shin, isol. P.W. Crous, CBS H-20207, CPC 14754–14756.<br />

Notes — Kaiser & Crous (1998) linked ‘Thedgonia’ lupini as<br />

anamorph to Mycosphaerella lupini, <strong>and</strong> thus suggested that<br />

Thedgonia belongs in the Mycosphaerellaceae. Results <strong>of</strong> this<br />

study (Fig. 1), however, show that Thedgonia s.str. belongs to<br />

the Helotiales, <strong>and</strong> is unrelated to the Mycosphaerellaceae.<br />

Furthermore, there is presently no separate anamorph genus<br />

in the Mycosphaerellaceae to accommodate ‘T.’ lupini. Although<br />

‘T.’ lupini resembles species <strong>of</strong> Pseudocercosporella (Braun<br />

1995), it appears to represent a separate phylogenetic lineage.<br />

Trochophora R.T. Moore, Mycologia 47: 90. 1955<br />

Type species. Trochophora fasciculata (Berk. & M.A. Curtis) Goos (syn.<br />

T. simplex (Petch) R.T. Moore).<br />

Colonies hypophyllous, medium to dark brown, consisting <strong>of</strong><br />

numerous synnemata. Stroma absent, but a superficial network<br />

<strong>of</strong> hyphae linking the various synnemata. Conidiophores synnematous,<br />

mostly unbranched <strong>and</strong> straight, or with 1–2 short<br />

branches, straight or curved, cylindrical, individual conidiophores<br />

tightly aggregated, but separating near the apex, pale<br />

to medium brown, smooth. Conidiogenous cells polyblastic,<br />

integrated, terminal, determinate to sympodial, with visible


154 <strong>Persoonia</strong> – Volume 22, 2009<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

Fig. 11 Thedgonia ligustrina (CBS 124332). a, b. Leaf spots on Ligustrum; c. fasciculate conidiophores; d, e. conidiophores; f, g. conidia. — Scale bars =<br />

10 µm.<br />

unthickened scar, clavate. Conidia solitary, terminal or lateral<br />

on conidiogenous cells, prominently curved to helicoid, pale to<br />

medium brown, smooth, transversely septate with a darkened,<br />

thickened b<strong>and</strong> at the septa.<br />

Trochophora fasciculata (Berk. & M.A. Curtis) Goos (as ‘fasciculatum’),<br />

Mycologia 78: 759. 1986 — Fig. 12<br />

Basionym. Helicoma fasciculatum Berk. & M.A. Curtis, U.S. North Pacific<br />

Exped.: 142. (1853–1856) 1853.<br />

≡ Helicosporium fasciculatum (Berk. & M.A. Curtis) Sacc., Syll. fung. 4:<br />

560. 1886.<br />

≡ Helicomyces fasciculatus (Berk. & M.A. Curtis) Pound & Clem., Minnesota<br />

Bot. Stud. 1: 658. 1896.<br />

= Helicosporium simplex Syd., Mém. Herb. Boissier 4: 7. 1900.<br />

≡ Helicoma simplex (Syd.) Linder, Ann. Missouri Bot. Gard. 16: 315.<br />

1929.<br />

= Helicostilbe simplex Petch, Ann. Roy. Bot. Gard. Peradeniya 7: 321.<br />

1922.<br />

≡ Trochophora simplex (Petch) R.T. Moore, Mycologia 47: 90. 1955.<br />

Specimen examined. Korea, Pusan, on leaves <strong>of</strong> Daphniphyllum macropodum,<br />

13 Nov. 2002, leg. H.D. Shin, isol. P.W. Crous, KUS-F19414, cultures<br />

CPC 10280–10282.<br />

Notes — Two species have been described in the genus,<br />

namely T. fasciculata <strong>and</strong> T. simplex; the latter recognised as<br />

a synonym <strong>of</strong> the former (Zhao et al. 2007). Within the Mycosphaerellaceae,<br />

pseudocercospora-like species cluster in two<br />

well-defined clades, namely the P. vitis clade (Pseudocercospora<br />

s.str.), <strong>and</strong> the P. heimii clade (pseudocercospora-like).<br />

Based on LSU DNA phylogeny (Fig. 1), Trochophora clusters<br />

basal to the pseudocercospora-like clade. Although it is tempting<br />

to use the name Trochophora for this clade, further collections<br />

<strong>of</strong> Trochophora are required to clarify the morphological<br />

variation among taxa with this unique conidial morphology.<br />

Using sequence data <strong>of</strong> the ITS gene, the closest taxa obtained<br />

from a BLAST search is the Mycosphaerella heimii species<br />

complex (96 % similarity).<br />

Zhao et al. (2007) consider T. fasciculata as a pathogen <strong>of</strong> Daphniphyllum,<br />

<strong>and</strong> report it from this host in several Asian countries,<br />

namely Sri Lanka, China (incl. Hong Kong <strong>and</strong> Taiwan)<br />

<strong>and</strong> India.<br />

Verrucisporota D.E. Shaw & Alcorn, Austral. Syst. Bot. 6: 273.<br />

1993<br />

≡ Verrucispora D.E. Shaw & Alcorn, Proc. Linn. Soc. New South Wales<br />

92: 171. 1967. (nom. illegit.).<br />

Type species. Verrucisporota proteacearum (D.E. Shaw & Alcorn) D.E.<br />

Shaw & Alcorn.<br />

Mycelium consisting <strong>of</strong> pale brown, septate, verrucose hyphae.<br />

Stroma forming in substomatal cavities, cells brown-walled,<br />

pseudoparenchymatous. Conidiophores macronematous,<br />

mononematous, simple, flexuous, <strong>of</strong>ten geniculate, septate,<br />

mainly smooth, pale to dark brown, tapering towards the apex,<br />

but <strong>of</strong>ten becoming more swollen, <strong>and</strong> also verruculose to verrucose<br />

at the apex. Conidiogenous cells cylindrical, becoming<br />

geniculate, integrated, terminal, becoming intercalary, polyblastic,<br />

proliferating sympodially, cicatrised; conidiogenous loci<br />

planate, conspicuous, protuberant, thickened <strong>and</strong> darkened.<br />

Conidia cylindrical, narrowing slightly to an obtuse apex <strong>and</strong><br />

with a truncate base with a distinctly thickened hilum, medium<br />

brown, straight or curved, transversely septate, verrucose to<br />

verruculose.


P.W. Crous et al.: Obscure <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi<br />

155<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

Fig. 12 Trochophora fasciculata (CPC 10280). a. Leaf spots on Daphniphyllum; b. colony on MEA; c. fasciculate conidiophores; d. conidiophores <strong>and</strong> conidiogenous<br />

cells; e–g. conidia. — Scale bars = 10 µm.<br />

Verrucisporota daviesiae (Cooke & Massee) Beilharz & Pascoe,<br />

Mycotaxon 82: 360. 2002<br />

Basionym. Cercospora daviesiae Cooke & Massee, Grevillea 18: 7.<br />

1889.<br />

Teleomorph. Mycosphaerella daviesiicola Beilharz & Pascoe, Mycotaxon<br />

82: 364. 2002.<br />

Characteristics in culture — On MEA erumpent, spreading<br />

with folded surface, <strong>and</strong> sparse aerial mycelium <strong>and</strong> even,<br />

lobate margin; surface iron-grey to olivaceous-grey; reverse<br />

iron-grey; colonies reaching 7 mm diam after 2 wk. On PDA<br />

erumpent, spreading, with moderate aerial mycelium <strong>and</strong><br />

uneven margins; surface white in middle, olivaceous-grey in<br />

outer region, iron-grey underneath; colonies reaching 8 mm<br />

diam after 2 wk. On OA erumpent, spreading, with moderate<br />

aerial mycelium <strong>and</strong> uneven margin; surface white in middle,<br />

olivaceous-grey in outer region; colonies reaching 8 mm diam<br />

after 2 wk.<br />

Specimen examined. Australia, Victoria, on living leaves <strong>of</strong> Daviesia<br />

mimosoides (≡ D. cormybosa var. mimosoides), V. & R. Beilharz, VPRI 31767<br />

= CBS 116002.<br />

Notes — The type species <strong>of</strong> the genus Stenella, S. araguata,<br />

clusters in the Teratosphaeriaceae (Crous et al. 2007a),<br />

<strong>and</strong> thus the majority <strong>of</strong> the stenella-like anamorphs in the<br />

Mycosphaerellaceae, will need to be placed in another genus.<br />

One option would be Zasmidium (Arzanlou et al. 2007), which<br />

clusters in the Mycosphaerellaceae, along with Verrucisporota<br />

(Fig. 1). This clade, however, is neither morphologically nor<br />

phylogenetically well resolved, <strong>and</strong> taxa need to be added to<br />

improve the phylogeny before a reasonable assessment can<br />

be made. The ITS sequence <strong>of</strong> this species is distinct from the<br />

other two species <strong>of</strong> this genus treated in this paper (Table 1).<br />

Verrucisporota grevilleae Crous & Summerell, sp. nov. —<br />

MycoBank MB509523; Fig. 13<br />

Differt a Verrucisporota protearum conidiis angustioribus et longioribus, (30–)<br />

50–65(–80) × (5–)6–7 µm, et conidiophoris brevioribus, (35–)80–120(–160)<br />

× (5–)6–7 µm.<br />

Etymology. Named after the host genus on which it occurs, Grevillea.<br />

Leaf spots angular, elongated, amphigenous, 1–2 mm wide,<br />

3–10 mm long, medium to dark brown to black, discrete.<br />

Mycelium immersed <strong>and</strong> superficial, hyphae medium brown,<br />

septate, verrucose, 1.5–3 µm wide. Stroma up to 60 µm wide<br />

<strong>and</strong> 40 µm high, forming in substomatal cavities, becoming<br />

erumpent, cells brown, thick-walled, pseudoparenchymatous.<br />

Conidiophores macronematous, mononematous, caespitose,<br />

emerging through the stomata, simple, flexuous, <strong>of</strong>ten geniculate-sinuous,<br />

4–7-septate, mainly smooth, dark brown, from<br />

a bulbous base tapering towards the apex, but <strong>of</strong>ten becoming<br />

more swollen, <strong>and</strong> also verrucose at the apex, (35–)80–120<br />

(–160) × (5–)6–7 µm. Conidiogenous cells cylindrical, becoming<br />

geniculate, integrated, terminal, polyblastic, proliferating<br />

sympodially, 20–45 × 5–7 µm, with conspicuous, cicatrised,<br />

protuberant, conidiogenous loci, 3 µm diam. Conidia subcylindrical,<br />

narrowing slightly to an obtuse apex (frequently<br />

swollen), <strong>and</strong> with a truncate base with a distinctly thickened,<br />

darkened, somewhat refractive hilum, 3 µm wide, red-brown,<br />

straight or curved, with 3–7(–12) mainly unconstricted eusepta,<br />

thick-walled, verrucose, (30–)50–65(–80) × (5–)6–7 µm. Conidiophores<br />

frequently arising from brown, erumpent spermatogonia,<br />

up to 150 µm wide. Spermatia hyaline, smooth, bacilliform,<br />

4–6 × 1–1.5 µm.<br />

Characteristics in culture — Colonies on MEA erumpent,<br />

with sparse aerial mycelium; margins feathery, crenate; surface


156 <strong>Persoonia</strong> – Volume 22, 2009<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

h<br />

i<br />

Fig. 13 Verrucisporota grevilleae (CBS 124107). a. Leaf spots on Grevillea; b. conidiophores; c, d. conidiophores <strong>and</strong> conidiogenous cells; e–h. conidia;<br />

i. colony on PDA; j. colony on SNA. — Scale bars = 10 µm.<br />

j<br />

folded, with zones <strong>of</strong> salmon or smoke-grey mycelium; outer<br />

region <strong>and</strong> reverse olivaceous-grey; colonies reaching 10 mm<br />

diam after 1 mo.<br />

Specimen examined. Australia, Northern Territory, Emerald Springs<br />

(13°37'13.3" 131°36'40"), on leaves <strong>of</strong> Grevillea decurrens, 22 Sept. 2007,<br />

leg. B. Summerell, isol. P.W. Crous, CBS H-20205, cultures CPC 14761 =<br />

CBS 124107, CPC 14762, 14763.<br />

Notes — Conidia <strong>of</strong> V. grevilleae are narrower <strong>and</strong> longer,<br />

<strong>and</strong> conidiophores shorter than those <strong>of</strong> V. protearum (conidia<br />

23–51 × 5.6–10.5 µm, conidiophores up to 290 µm long, 4.5–<br />

8.5 µm wide; Shaw & Alcorn 1967). South African specimens<br />

from the genus Protea have conidia that are (20–)31–36(–49)<br />

× (7–)8.5–9.5(–12) µm (Crous et al. 2004a). These findings<br />

suggest that the fungus treated as V. protearum on Proteaceae<br />

(Shaw & Alcorn 1967, 1993, Beilharz & Pascoe 2002, Crous et<br />

al. 2004a), probably represents a complex <strong>of</strong> several taxa.


P.W. Crous et al.: Obscure <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi<br />

157<br />

Verrucisporota proteacearum (D.E. Shaw & Alcorn)<br />

D.E. Shaw & Alcorn, Austral. Syst. Bot. 6: 273. 1993<br />

Basionym. Verrucispora proteacearum D.E. Shaw & Alcorn, Proc. Linn.<br />

Soc. New South Wales 92: 171. 1967.<br />

Characteristics in culture — On MEA erumpent with sparse<br />

aerial mycelium; surface cream to pale olivaceous-grey, folded,<br />

with smooth, even margin; reverse brown-vinaceous; reaching<br />

8 mm diam after 2 wk. On PDA erumpent with sparse aerial<br />

mycelium <strong>and</strong> smooth to feathery margin; surface cream to pale<br />

olivaceous-grey; reverse olivaceous-grey, reaching 8 mm diam<br />

after 2 wk. On OA erumpent, with moderate aerial mycelium<br />

<strong>and</strong> uneven margin, pale white in middle, pale olivaceous-grey<br />

in outer region; reaching 10 mm diam after 2 wk.<br />

Specimen examined. Australia, Grevillea sp., V. Beilharz, VPRI31812 =<br />

CBS 116003.<br />

Notes — Because V. proteacearum was originally described<br />

from Finschia (conidia 23–51 × 5.6–10.5 µm; Shaw & Alcorn<br />

1967), there is a strong possibility that the strain listed here from<br />

Grevillea (conidia 30–45 × 10–12 µm on OA) may represent a<br />

different taxon to the one occurring on Finschia. Although apparently<br />

identical based on the LSU phylogeny (see Fig. 1), the<br />

ITS sequence <strong>of</strong> this isolate is different to that <strong>of</strong> V. grevilleae<br />

(95 % similarity <strong>and</strong> 4 % gaps).<br />

Key to species <strong>of</strong> Verrucisporota<br />

1. Conidia wider than 4.5 µm . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

1. Conidia narrower than 4.5 µm . . . . . . . . . . . . . . . . . . . . . 3<br />

2. Conidia up to 56 µm long. . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

2. Conidia longer than 56 µm, 3–7(–12)-septate, (30–)50–<br />

65(–80) × (5–)6–7 µm; on Grevillea . . . . . . . V. grevilleae<br />

3. Conidia mostly up to 30 µm long, (0–)2–3(–7)-septate,<br />

13–30(–70) × 2.75–4 µm; on Capparis . V. kimberleyana<br />

3. Conidia longer, mostly up to 77 µm long, 1–11-septate,<br />

(10–)27–77(–108) × 3–4.5 μm; on Struthanthus . . . . . . .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. struthanthicola<br />

4. Conidia up to 3-septate, obclavate, 1–3-septate, 32.5–55<br />

× 7–10.5 µm; on Celastrus . . . . . . . . . . . . . . . . . V. indica<br />

4. Conidia more than 3 septa . . . . . . . . . . . . . . . . . . . . . . . 5<br />

5. Conidia up to 32 µm long; (1–)3–4(–5)-septate, 20–32 ×<br />

6–10 µm; on Bridelia . . . . . . . . . . . . . . . . . . . . V. brideliae<br />

5. Conidia frequently longer than above . . . . . . . . . . . . . . . 6<br />

6. Conidia 0–6-septate, 18–56 × 4.5–7 µm; on Daviesia (Beilharz<br />

& Pascoe 2002) . . . . . . . . . . . . . . . . . . . .V. daviesiae<br />

6. Conidia 3–7-septate, 23–51 × 5.6–10.5 µm; on Finschia<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. proteacearum<br />

Vonarxia Bat., Publ. Inst. Micol. Univ. Fed. Pernambuco 283:<br />

5. 1960<br />

Type species. Vonarxia anacardii Bat. & J.L. Bezerra.<br />

Mycelium immersed <strong>and</strong> superficial, composed <strong>of</strong> branched,<br />

septate, pale to medium brown, smooth to finely roughened<br />

hyphae. Conidiomata sporodochial; basal stroma composed<br />

<strong>of</strong> globose-ellipsoidal, brown, slightly roughened cells. Setae<br />

irregularly scattered throughout colony, simple, subulate with a<br />

bulbous base, straight to slightly curved, dark brown, smooth to<br />

slightly roughened, thick-walled, 5–16-euseptate, septa rather<br />

thick, but becoming thinner towards apex. Conidiogenous cells<br />

arise from upper cells <strong>of</strong> the stroma, tightly aggregated, doliiform<br />

to ellipsoid, pale brown to subhyaline or hyaline, smooth, giving<br />

rise to a cluster <strong>of</strong> conidia by means <strong>of</strong> sympodial proliferation,<br />

with successive conidia forming at a higher level. Conidia<br />

hyaline, smooth-walled, tetraradiate, basal cell subcylindrical to<br />

clavate to doliiform, 0–1-septate; upper three arms arise from<br />

the apical part <strong>of</strong> the basal cell, 3–10-septate, subcylindrical<br />

to cylindrical, apex subobtuse.<br />

Vonarxia vagans (Speg.) Aa, <strong>Persoonia</strong> 13: 128. 1986 — Fig.<br />

14<br />

Basionym. Ypsilonia vagans Speg., Revista Mus. La Plata, Secc. Bot.<br />

15: 35. 1908.<br />

≡ Kazulia vagans (Speg.) Nag Raj, Canad. J. Bot. 55: 1621. 1977.<br />

On PDA. Mycelium immersed <strong>and</strong> superficial, composed <strong>of</strong><br />

branched, septate, pale to medium brown, smooth to finely<br />

roughened, 3–5 µm wide hyphae. Conidiomata sporodochial,<br />

flattened to erect <strong>and</strong> globose (especially on WA, not so on MEA<br />

or PDA, tending to be more flattened, <strong>and</strong> more hemispherical<br />

on OA), up to 300 µm diam; basal stroma up to 70 µm thick,<br />

composed <strong>of</strong> globose-ellipsoidal, brown, slightly roughened<br />

cells, 5–10 µm diam. Setae irregularly scattered throughout<br />

colony, simple, subulate with a bulbous base, straight to<br />

slightly curved, dark brown, smooth to slightly roughened,<br />

thick-walled (1–1.5 µm diam), (5–)10–12(–16)-septate, septa<br />

rather thick, but becoming thinner towards apex, basal cell<br />

10–13 µm wide, with slight taper towards bluntly rounded, obtuse<br />

apex, (120–)150–200(–220) µm; width at basal septum<br />

(5–)6(–7) µm; width at apical septum, 2–3(–5) µm; apical<br />

two cells frequently pale brown; individual cells 10–25 µm<br />

long. Conidiogenous cells arise from upper cells <strong>of</strong> the stroma,<br />

tightly aggregated, doliiform to ellipsoid, pale brown to subhyaline<br />

or hyaline, smooth, 8–10 × 3–5 µm, giving rise to a<br />

cluster <strong>of</strong> conidia by means <strong>of</strong> sympodial proliferation, with<br />

successive conidia forming at a higher level. Conidia hyaline,<br />

smooth-walled, tetraradiate, basal cell subcylindrical to clavate<br />

to doliiform, 0–1-septate, 10–15 × (1.5–)2–3 µm (10–18 µm<br />

long on OA); upper three arms arise from the apical part <strong>of</strong> the<br />

basal cell, 3–5-septate (prominently constricted at septa on WA<br />

<strong>and</strong> MEA, up to 10-septate on these media), subcylindrical to<br />

cylindrical, apex subobtuse, arms 20–55 µm long (20–90 µm<br />

on OA), 1.5–2 µm wide (2–3 µm wide on OA).<br />

Characteristics in culture — Colonies on OA spreading,<br />

with sparse aerial mycelium, <strong>and</strong> uneven, striate surface, with<br />

crenate margin; surface black, with patches <strong>of</strong> mouse-grey,<br />

reaching up to 25 mm diam after 1 mo; on PDA spreading,<br />

with sparse aerial mycelium <strong>and</strong> crenate margins; surface<br />

pale mouse-grey, outer region grey-olivaceous; reverse greyolivaceous,<br />

reaching up to 25 mm diam after 1 mo; on MEA<br />

spreading, erumpent with sparse aerial mycelium; surface<br />

prominently striate, margin crenate; centre black, outer region<br />

mouse-grey; reverse black; colonies reaching up to 20 mm<br />

diam after 1 mo.<br />

Specimens examined. Brazil, São Paulo Horto Botanico, leaves <strong>of</strong> Spiraea<br />

cantoniensis, Sept. 1905, leg. Usteri no. 15 bis, holotype LPS 12280;<br />

Rio Gr<strong>and</strong>e do Sul, Guaiba, living leaves <strong>of</strong> Stenocalyx uniflorus, 1 Apr. 2008,<br />

leg. A.C. Alfenas, isol. P.W. Crous, epitype designated here CBS H-20206,<br />

culture ex-type CPC 15151 = CBS 123533, CPC 15152.<br />

Notes — The holotype specimen (LPS 12280) was described<br />

<strong>and</strong> illustrated in detail by Nag Raj (1977). The species was<br />

originally described from leaves <strong>of</strong> Spiraea cantoniensis collected<br />

in the São Paulo Botanical Garden, where it occurred<br />

on leaves <strong>of</strong> several tree species, suggesting that it is not host<br />

specific. The present collection was obtained by incubating<br />

Eugenia leaves with leaf spots <strong>of</strong> Phaeophleospora eugeniae<br />

in moist chambers, which resulted in a few conidiophores <strong>of</strong><br />

Vonarxia vegans developing.<br />

Nag Raj (1977) erected Kazulia for a genus <strong>of</strong> hyphomycetes<br />

with dark brown, septate setae, <strong>and</strong> tetraradiate conidia,<br />

which he regarded as morphologically distinct, <strong>and</strong> a probable<br />

anamorph <strong>of</strong> the Chaetothyriaceae. The fact that he did<br />

not compare Kazulia with Vonarxia is not surprising, because


158 <strong>Persoonia</strong> – Volume 22, 2009<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

h<br />

j<br />

k<br />

l<br />

i<br />

m<br />

Fig. 14 Vonarxia vagans (CBS 123533). a, b. Colony on PDA; c. colony with setae; d, e. setae with rounded apices <strong>and</strong> swollen bases, lacking rhizoids; f–i.<br />

conidiogenous cells giving rise to conidia; j–o. conidia. — Scale bars = 10 µm.<br />

n<br />

o<br />

Batista et al. (1960) who initially described Vonarxia, showed<br />

setae on the outside <strong>of</strong> the pycnidia, <strong>and</strong> thus this fungus was<br />

regarded as a coelomycete. Later comments from Nag Raj<br />

(1977) (as Kazulia) suggest, however, that these bodies are<br />

perithecia <strong>of</strong> a probable teleomorph. In a subsequent study<br />

Van der Aa & Van Oorschot (1985) <strong>and</strong> Van der Aa & Von Arx<br />

(1986) showed that Kazulia is a synonym <strong>of</strong> Vonarxia. Wu &<br />

Sutton (1995) were not convinced <strong>of</strong> the distinction between<br />

Vonarxia <strong>and</strong> another hyphomycete genus, Fumagopsis, due<br />

to insufficient material, <strong>and</strong> chose to use the name Fumagopsis<br />

for F. complexa, which they described from Eugenia leaves collected<br />

in India. Based on the present collection <strong>of</strong> V. vagans, it


P.W. Crous et al.: Obscure <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi<br />

159<br />

is apparent, that these are two distinct <strong>genera</strong>. In Fumagopsis<br />

the setae are aseptate, arranged around the sporodochium,<br />

<strong>and</strong> taxa have rhizoid-like structures. In contrast, the setae <strong>of</strong><br />

Vonarxia are septate, irregularly distributed <strong>and</strong> do not surround<br />

the sporodochium, <strong>and</strong> have a simple, bulbous base.<br />

Key to species <strong>of</strong> Vonarxia<br />

1. Setae 87–155 µm long; apical conidial arms 12–35 µm<br />

long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. anacardii<br />

1. Setae <strong>and</strong> conidial arms longer; setae 120–220 µm long;<br />

apical conidial arms 20–55(–90) µm long . . . . V. vagans<br />

Xenostigmina Crous, Mycol. Mem. 21: 154. 1998<br />

Type species. Xenostigmina zilleri (A. Funk) Crous.<br />

Associated with leaf spots. Mycelium internal, consisting <strong>of</strong><br />

hyaline to pale brown, septate, branched, smooth hyphae.<br />

Conidiomata sporodochial, brown to black. Conidiophores<br />

densely aggregated, arising from the upper cells <strong>of</strong> a pale<br />

brown stroma, finely verruculose, hyaline to pale brown, multiseptate,<br />

subcylindrical, straight to variously curved, branched.<br />

Conidiogenous cells terminal <strong>and</strong> intercalary, hyaline to pale<br />

brown, finely verruculose, doliiform to subcylindrical, tapering<br />

to flat tipped loci, proliferating sympodially <strong>and</strong> percurrent; loci<br />

not thickened or conspicuous. Conidia solitary, pale to medium<br />

brown, with pale brown apical <strong>and</strong> basal regions, finely verruculose,<br />

mostly straight, ellipsoidal, apex subobtuse, frequently<br />

extending into a beak; base truncate at dehiscence, inner part<br />

extending later to form a short, subobtuse basal appendage;<br />

septation muriform; basal marginal frill present.<br />

Xenostigmina zilleri (A. Funk) Crous, Mycol. Mem. 21: 155.<br />

1998 — Fig 15<br />

Basionym. Stigmina zilleri A. Funk, Canad. J. Bot. 65: 482. 1987.<br />

Synanamorph. Mycopappus aceris (Dearn. & Barthol.) Redhead & G.P.<br />

White, Canad. J. Bot. 63: 1430. 1985.<br />

Basionym. Cercosporella aceris Dearn. & Barthol., Mycologia 9: 362.<br />

1917.<br />

Teleomorph. ? Didymella mycopappi (A. Funk & Dorworth) Crous, Mycol.<br />

Mem. 21: 152. 1998.<br />

Basionym. Mycosphaerella mycopappi A. Funk & Dorworth, Canad. J.<br />

Bot. 66: 295. 1988.<br />

Characteristics in culture — Colonies spreading on PDA with<br />

moderate to abundant aerial mycelium, <strong>and</strong> feathery margins;<br />

olivaceous-grey with patches <strong>of</strong> iron-grey <strong>and</strong> pale olivaceousgrey;<br />

iron-grey in reverse. On OA spreading, with abundant<br />

aerial mycelium, olivaceous-grey with patches <strong>of</strong> pale olivaceous-grey.<br />

On MEA erumpent, spreading, with abundant aerial<br />

mycelium, pale olivaceous-grey with patches <strong>of</strong> olivaceous-grey<br />

<strong>and</strong> iron-grey; reverse iron-grey.<br />

Specimens examined. Canada, British Columbia, 15 km east <strong>of</strong> Sardis, on<br />

living leaves <strong>of</strong> Acer macrophyllum, 22 Oct. 1985, A. Funk & C.E. Dorworth,<br />

holotype DAVFP 23272; British Columbia, on living leaves <strong>of</strong> Acer sp., 2002,<br />

leg. K.A. Seifert, isol. P.W. Crous, CBS 115686 = CPC 4010, CBS 115685 =<br />

CPC 4011; Victoria BC, 48°30'25.63"N, 123°30'46.99"W, 115 m, fallen leaves<br />

<strong>of</strong> Acer macrophyllum, 6 Sept. 2007, leg. B. Callan, isol. P.W. Crous, CBS<br />

H-20208, CPC 14376 = CBS 124108, CPC 14377, 14378 (Xenostigmina zilleri),<br />

CPC 14379 = CBS 124109, CPC 14380, 14381 (Mycopappus aceris).<br />

Notes — Although Stigmina s.str. has been shown to reside in<br />

Pseudocercospora s.str. (Crous et al. 2006a, Braun & Crous 2006,<br />

2007), this is not the case for Xenostigmina (Crous 1998), which<br />

appears to be related to Seifertia (Seifert et al. 2007) in the<br />

Dothideomycetes. Isolates <strong>of</strong> the Xenostigmina state are shown<br />

here (Fig. 1) to be identical to those <strong>of</strong> the Mycopappus state,<br />

which proves that these two <strong>genera</strong> are indeed synanamorphs.<br />

No ascospore isolates were obtained, however, to confirm their<br />

relationship to ‘Mycosphaerella’ mycopappi, though this species<br />

is clearly not a member <strong>of</strong> the Mycosphaerellaceae. Xenostigmina<br />

wolfii (Crous & Corlett 1998), which is the anamorph <strong>of</strong><br />

Mycosphaerella stigmina-platani, <strong>and</strong> a Pseudocercospora<br />

synanamorph, is not congeneric with X. zilleri, <strong>and</strong> would be<br />

better accommodated in Pseudocercospora (Crous et al. 2006a)<br />

than in Xenostigmina.<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

h<br />

Fig. 15 Xenostigmina zilleri (CBS 124108). a–c. Conidial propagules <strong>of</strong> Mycopappus aceris; d. setae on the surface <strong>of</strong> conidial propagules; e. colony <strong>of</strong><br />

Xenostigmina zilleri; f, g. fasciculate conidiophores; h. conidia. — Scale bars = 10 µm.


160 <strong>Persoonia</strong> – Volume 22, 2009<br />

Acknowledgements We acknowledge Drs B.E. Callan (Canadian Forest<br />

Service, Natural Resources Canada), F. Dugan (Washington State University,<br />

Pullman), H. Evans (CABI, UK) <strong>and</strong> V. Beilharz (Department <strong>of</strong> Primary Industries,<br />

Knoxfield, Victoria, Australia), who provided valuable specimens for<br />

study. We are grateful to the technical staff including A. van Iperen, M. Vermaas,<br />

<strong>and</strong> M. Starink for providing assistance with cultures, photoplates <strong>and</strong> DNA<br />

sequencing, respectively. Dr E.G. Simmons (Crawfordsville, Indiana, USA) is<br />

acknowledged for bringing to our attention the problem <strong>of</strong> Alternaria malorum<br />

<strong>and</strong> for providing strains representing related novel taxa known to him, for<br />

inclusion in this study.<br />

REFERENCES<br />

Aa HA van der, Arx JA von. 1986. On Vonarxia, Kazulia <strong>and</strong> other fungi with<br />

stauroconidia. <strong>Persoonia</strong> 13: 127–128.<br />

Aa HA van der, Oorschot CAN van. 1985. A redescription <strong>of</strong> some <strong>genera</strong><br />

with staurospores. <strong>Persoonia</strong> 12: 415–425.<br />

Arambarri AM, Cabello MN, Cazau MC. 2001. Dictyosporium triramosum, a<br />

new hyphomycete from Argentina. Mycotaxon 78: 185–189.<br />

Arzanlou M, Groenewald JZ, Gams W, Braun U, Shin HD, Crous PW. 2007.<br />

Phylogenetic <strong>and</strong> morphotaxonomic revision <strong>of</strong> Ramichloridium <strong>and</strong> allied<br />

<strong>genera</strong>. Studies in Mycology 58: 57–93.<br />

Batista AC, Bezerra JL, Maia, Silva H da. 1960. Vonarxia n. gen. e outros<br />

imperfecti fungi. Publicaçao Instituto de Micologia Universidade de Recife<br />

283: 1–32.<br />

Beilharz V, Pascoe I. 2002. Two additional species <strong>of</strong> Verrucisporota, one with<br />

a Mycosphaerella teleomorph, from Australia. Mycotaxon 82: 357–365.<br />

Braun U. 1995. A monograph <strong>of</strong> Cercosporella, Ramularia <strong>and</strong> allied <strong>genera</strong><br />

(phytopathogenic hyphomycetes). Vol. 1. IHW-Verlag, Eching, Germany.<br />

Braun U, Crous PW. 2006. (1732) Proposal to conserve the name Pseudocercospora<br />

against Stigmina <strong>and</strong> Phaeoisariopsis (Hyphomycetes). Taxon<br />

55: 803.<br />

Braun U, Crous PW. 2007. The diversity <strong>of</strong> cercosporoid hyphomycetes<br />

– new species, combinations, names <strong>and</strong> nomenclatural clarifications.<br />

Fungal Diversity 26: 55–72.<br />

Braun U, Crous PW, Dugan F, Groenewald JZ, Hoog SG de. 2003. <strong>Phylogeny</strong><br />

<strong>and</strong> <strong>taxonomy</strong> <strong>of</strong> Cladosporium-like hyphomycetes, including Davidiella<br />

gen. nov., the teleomorph <strong>of</strong> Cladosporium s.str. Mycological Progress<br />

2: 3–18.<br />

Cai L, Hyde KD. 2007. Anamorphic fungi from freshwater habitats in China:<br />

Dictyosporium tetrasporum <strong>and</strong> Exserticlava yunnanensis spp. nov., <strong>and</strong><br />

two new records for Pseud<strong>of</strong>uscophialis lignicola <strong>and</strong> Pseudobotrytis terrestris.<br />

Mycoscience 48: 290–296.<br />

Cai L, Zhang K, McKenzie EHC, Hyde KD. 2003a. New species <strong>of</strong> Dictyosporium<br />

<strong>and</strong> Digitodesmium from submerged wood in Yunnan, China.<br />

Sydowia 55: 129–135.<br />

Cai L, Zhang K, McKenzie EHC, Lumyong S, Hyde KD. 2003b. New species<br />

<strong>of</strong> Canalisporium <strong>and</strong> Dictyosporium from China <strong>and</strong> a note on the differences<br />

between these <strong>genera</strong>. Cryptogamie Mycologie 24: 3–11.<br />

Carmichael JW, Kendrick BW, Conners IL, Sigler L. 1980. Genera <strong>of</strong> Hyphomycetes.<br />

Edmonton, University <strong>of</strong> Alberta Press, Canada.<br />

Castañeda RF, Kendrick B. 1990. Conidial fungi from Cuba II. University <strong>of</strong><br />

Waterloo Biological Series 33: 1–61.<br />

Crous PW. 1998. Mycosphaerella spp. <strong>and</strong> their anamorphs associated with<br />

leaf spot diseases <strong>of</strong> Eucalyptus. Mycologia Memoir 21: 1–170.<br />

Crous PW, Braun U, Groenewald JZ. 2007a. Mycosphaerella is polyphyletic.<br />

Studies in Mycology 58: 1–32.<br />

Crous PW, Corlett M. 1998. Reassessment <strong>of</strong> Mycosphaerella spp. <strong>and</strong><br />

their anamorphs occurring on Platanus. Canadian Journal <strong>of</strong> Botany 76:<br />

1523–1532.<br />

Crous PW, Denman S, Taylor JE, Swart L, Palm ME. 2004a. Cultivation <strong>and</strong><br />

diseases <strong>of</strong> Proteaceae: Leucadendron, Leucospermum <strong>and</strong> Protea. CBS<br />

Biodiversity Series 2: 1–228.<br />

Crous PW, Gams W, Stalpers JA, Cannon PF, Kirk PM, David JC, Triebel D.<br />

2004b. An online database <strong>of</strong> names <strong>and</strong> descriptions as an alternative to<br />

registration. Mycological Research 108: 1236–1238.<br />

Crous PW, Liebenberg MM, Braun U, Groenewald JZ. 2006a. Re-evaluating<br />

the taxonomic status <strong>of</strong> Phaeoisariopsis griseola, the causal agent <strong>of</strong><br />

angular leaf spot <strong>of</strong> bean. Studies in Mycology 55: 163–173.<br />

Crous PW, Schubert K, Braun U, Hoog GS de, Hocking AD, Shin H-D,<br />

Groenewald JZ. 2007b. Opportunistic, human-pathogenic species in the<br />

Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic<br />

species in the Venturiaceae. Studies in Mycology 58: 185–217.<br />

Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Philips AJL,<br />

Alves A, Burgess T, Barber P, Groenewald JZ. 2006b. Phylogenetic lineages<br />

in the Botryosphaeriaceae. Studies in Mycology 55: 235–253.<br />

Crous PW, Verkley GJM, Groenewald JZ, Samson RA (eds). 2009. Fungal<br />

Biodiversity. CBS Laboratory Manual Series 1. Centraalbureau voor Schimmelcultures,<br />

Utrecht, Netherl<strong>and</strong>s.<br />

Crous PW, Wingfield MJ. 1994. Sporendocladia fumosa <strong>and</strong> Lauriomyces<br />

bellulus sp. nov. from Castanea cupules in Switzerl<strong>and</strong>. Sydowia 46:<br />

193–203.<br />

Decock C, Delgado-Rodríguez G, Buchet S, Seng JM. 2003. A new species<br />

<strong>and</strong> three new combinations in Cyphellophora, with a note on the taxonomic<br />

affinities <strong>of</strong> the genus, <strong>and</strong> its relation to Kumbhamaya <strong>and</strong> Pseudomicrodochium.<br />

Antonie van Leeuwenhoek 84: 209–216.<br />

Ellis MB. 1971. Dematiaceous hyphomycetes. Commonwealth Mycological<br />

Institute, Kew, UK.<br />

Ellis MB. 1976. More dematiaceous hyphomycetes. Commonwealth Mycological<br />

Institute, Kew, UK.<br />

González MC, Anaya AL, Glenn AE, Saucedo-García A, Macías-Rubalcava<br />

ML, Hanlin RT. 2007. A new endophytic ascomycete from El Eden Ecological<br />

reserve, Quintana Roo, Mexico. Mycotaxon 201: 251–260.<br />

Heuchert B, Braun U, Schubert K. 2005. Morphotaxonomic revision <strong>of</strong> fungicolous<br />

Cladosporium species (Hyphomycetes). Schlechtendalia 13: 1–78.<br />

Hibbett DS, Binder M, Bisch<strong>of</strong>f JF, Blackwell M, Cannon PF, et al. 2007. A<br />

higher-level phylogenetic classification <strong>of</strong> the Fungi. Mycological Research<br />

111: 509–547.<br />

Holubová-Jechová V. 1973. Lignicolous hyphomycetes from the Netherl<strong>and</strong>s.<br />

Koninklijke Nederl<strong>and</strong>se Akademie van Wetenschappen, Ser. C,<br />

76: 297–302.<br />

Hoog GS de, Gerrits van den Ende AHG. 1998. Molecular diagnostics <strong>of</strong><br />

clinical strains <strong>of</strong> filamentous Basidiomycetes. Mycoses 41: 183–189.<br />

Hughes SJ. 1958. Revisiones hyphomycetum aliquot cum appendice de<br />

nominibus rejiciendis. Canadian Journal <strong>of</strong> Botany 36: 727–836.<br />

James TY, Kauff F, Schoch CL, Matheny PB, H<strong>of</strong>stetter V, et al. 2006. Reconstructing<br />

the early evolution <strong>of</strong> the fungi using a six gene phylogeny.<br />

Nature 443: 818–822.<br />

Kaiser W, Crous PW. 1998. Mycosphaerella lupini sp. nov., a serious leaf<br />

spot disease <strong>of</strong> perennial lupin in Southcentral Idaho, USA. Mycologia<br />

90: 726–731.<br />

Kodsueb R, Lumyong S, Hyde KD, Lumyong P, McKenzie EHC. 2006. Acrodictys<br />

micheliae <strong>and</strong> Dictyosporium manglietiae, two new anamorphic<br />

fungi from woody litter <strong>of</strong> Magnoliaceae in northern Thail<strong>and</strong>. Cryptogamie<br />

Mycologie 27: 111–119.<br />

McKenzie EHC. 2008. Two new dictyosporous hyphomycetes on P<strong>and</strong>anaceae.<br />

Mycotaxon 104: 23–28.<br />

Mason EW. 1933. Annotated account <strong>of</strong> fungi received at the Imperial Mycological<br />

Institute. Mycological Papers 3: 61–63.<br />

Matsushima T. 1971. Micr<strong>of</strong>ungi <strong>of</strong> the Solomon Isl<strong>and</strong>s <strong>and</strong> Papua New<br />

Guinea. Matsushima, Kobe, Japan.<br />

Matsushima T. 1985. Matsushima Mycological Memoirs No. 4. Matsushima,<br />

Kobe, Japan.<br />

Nag Raj TR. 1977. Ypsilonia, Acanthotheciella, <strong>and</strong> Kazulia gen. nov. Canadian<br />

Journal <strong>of</strong> Botany 55: 1599–1622.<br />

Nag Raj TR. 1993. Coelomycetous anamorphs with appendage-bearing<br />

conidia. Mycologue Publications, Waterloo, Ontario, Canada.<br />

Rao V, Hoog GS de. 1986. New or critical Hyphomycetes from India. Studies<br />

in Mycology 28: 1–84.<br />

Rayner RW. 1970. A mycological colour chart. Commonwealth Agricultural<br />

Bureau, Kew, UK.<br />

Rehner SA, Samuels GJ. 1994. Taxonomy <strong>and</strong> phylogeny <strong>of</strong> Gliocladium<br />

analysed from nuclear large subunit ribosomal DNA sequences. Mycological<br />

Research 98: 625–634.<br />

Saccardo PA. 1886. Sylloge fungorum omnium hucusque cognitorum. Vol.<br />

IV. Pavia, Italy.<br />

Seifert KA, Hughes SJ, Boulay H, Louis-Seize G. 2007. Taxonomy, nomenclature<br />

<strong>and</strong> phylogeny <strong>of</strong> three cladosporium-like hyphomycetes, Sorocybe<br />

resinae, Seifertia azalea <strong>and</strong> the Hormoconis anamorph <strong>of</strong> Amorphotheca<br />

resinae. Studies in Mycology 58: 235–245.<br />

Shaw DE, Alcorn JL. 1967. The genus Verrucispora gen. nov. (Fungi Imperfecti)<br />

on Proteaceae in New Guinea <strong>and</strong> Queensl<strong>and</strong>. Proceedings <strong>of</strong> the<br />

Linnean Society <strong>of</strong> New South Wales 92: 171–173.<br />

Shaw DE, Alcorn JL. 1993. New names for Verrucispora <strong>and</strong> its species.<br />

Australian Systematic Botany 6: 273–276.<br />

Shenoy BD, Jeewon R, Hyde KD. 2007. Impact <strong>of</strong> DNA sequence-data on<br />

the <strong>taxonomy</strong> <strong>of</strong> anamorphic fungi. Fungal Diversity 26: 1–54.<br />

Simmons EG. 1996. Alternaria themes <strong>and</strong> variations (145–149). Mycotaxon<br />

57: 391–409.<br />

Simmons EG. 2007. Alternaria. An identification manual. CBS Biodiversity<br />

Series 6: 1–775.<br />

Sutton BC. 1980. The coelomycetes. Fungi imperfecti with pycnidia, acervuli<br />

<strong>and</strong> stromata. Commonwealth Mycological Institute, Kew, UK.


P.W. Crous et al.: Obscure <strong>genera</strong> <strong>of</strong> micr<strong>of</strong>ungi<br />

161<br />

Sutton BC, Carmarán CC, Romero AI. 1996. Ramoconidiifera, a new genus <strong>of</strong><br />

hyphomycetes with cheiroid conidia from Argentina. Mycological Research<br />

100: 1337–1340.<br />

Sutton BC, Pascoe IG. 1987. Argopericonia <strong>and</strong> Thyssglobulus, new hyphomycete<br />

<strong>genera</strong> from Banksia leaves. Transactions <strong>of</strong> the British Mycological<br />

Society 88: 41–46.<br />

Tsui CKM, Berbee ML, Jeewon R, Hyde KD. 2006. Molecular phylogeny<br />

<strong>of</strong> Dictyosporium <strong>and</strong> allied <strong>genera</strong> inferred from ribosomal DNA. Fungal<br />

Diversity 21: 157–166.<br />

Vilgalys R, Hester M. 1990. Rapid genetic identification <strong>and</strong> mapping <strong>of</strong> enzymatically<br />

amplified ribosomal DNA from several Cryptococcus species.<br />

Journal <strong>of</strong> Bacteriology 172: 4238–4246.<br />

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification <strong>and</strong> direct sequencing<br />

<strong>of</strong> fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelf<strong>and</strong><br />

DH, Sninsky JJ, White TJ (eds), PCR Protocols: a guide to methods <strong>and</strong><br />

applications: 315–322. Academic Press, USA.<br />

Wu WP, Sutton BC. 1995. Fumagopsis complexa sp. nov., a species with<br />

complicated conidial morphology. Mycological Research 99: 1450–1452.<br />

Zhao GZ, Liu XZ, Wu WP. 2007. Helicosporous hyphomycetes from China.<br />

Fungal Diversity 26: 313–524.<br />

Zhao GZ, Zhang TY. 2003. Notes on dictyosporic hyphomycetes from China<br />

1. The genus Dictyosporium. Mycosystema 22: 19–22.<br />

Zucconi L, Pagano S. 1993. Concerning the generic limits in Haplographium.<br />

Mycotaxon 46: 11–18.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!