20.05.2014 Views

Calonectria spp. causing leaf spot, crown and root rot of ... - Persoonia

Calonectria spp. causing leaf spot, crown and root rot of ... - Persoonia

Calonectria spp. causing leaf spot, crown and root rot of ... - Persoonia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Persoonia</strong> 27, 2011: 73–79<br />

www.ingentaconnect.com/content/nhn/pimj<br />

RESEARCH ARTICLE<br />

http://dx.doi.org/10.3767/003158511X615086<br />

<strong>Calonectria</strong> <strong>spp</strong>. <strong>causing</strong> <strong>leaf</strong> <strong>spot</strong>, <strong>crown</strong> <strong>and</strong> <strong>root</strong> <strong>rot</strong> <strong>of</strong><br />

ornamental plants in Tunisia<br />

L. Lombard 1 , G. Polizzi 2* , V. Guarnaccia 2 , A. Vitale 2 , P.W. Crous 1<br />

Key words<br />

<strong>Calonectria</strong><br />

<strong>crown</strong> <strong>and</strong> <strong>root</strong> <strong>rot</strong><br />

DNA phylogeny<br />

<strong>leaf</strong> <strong>spot</strong><br />

pathogenicity<br />

systematics<br />

Abstract <strong>Calonectria</strong> <strong>spp</strong>. are important pathogens <strong>of</strong> ornamental plants in nurseries, especially in the Northern<br />

Hemisphere. They are commonly associated with a wide range <strong>of</strong> disease symptoms <strong>of</strong> <strong>root</strong>s, leaves <strong>and</strong> shoots.<br />

During a recent survey in Tunisia, a number <strong>of</strong> <strong>Calonectria</strong> <strong>spp</strong>. were isolated from tissues <strong>of</strong> ornamental plants<br />

showing symptoms <strong>of</strong> <strong>leaf</strong> <strong>spot</strong>, <strong>crown</strong> <strong>and</strong> <strong>root</strong> <strong>rot</strong>. The aim <strong>of</strong> this study was to identify these <strong>Calonectria</strong> <strong>spp</strong>. using<br />

morphological <strong>and</strong> DNA sequence comparisons. Two previously undescribed <strong>Calonectria</strong> <strong>spp</strong>., C. pseudomexicana<br />

sp. nov. <strong>and</strong> C. tunisiana sp. nov., were recognised. <strong>Calonectria</strong> mexicana <strong>and</strong> C. polizzii are newly reported for the<br />

African continent. Pathogenicity tests with all four <strong>Calonectria</strong> <strong>spp</strong>. showed that they are able to cause disease on<br />

seedlings <strong>of</strong> Callistemon <strong>spp</strong>., Dodonaea viscosa, Metrosideros <strong>spp</strong>. <strong>and</strong> Myrtus communis.<br />

Article info Received: 5 September 2011; Accepted: 15 October 2011; Published: 18 November 2011.<br />

INTRODUCTION<br />

Species <strong>of</strong> <strong>Calonectria</strong> are common pathogens <strong>of</strong> a wide<br />

range <strong>of</strong> plant hosts in nurseries cultivated through seedings<br />

or vegetative propagation (Crous 2002, Lombard et al. 2010a).<br />

Nursery disease symptoms associated with these fungi include<br />

<strong>crown</strong>, collar <strong>and</strong> <strong>root</strong> <strong>rot</strong>, <strong>leaf</strong> <strong>spot</strong>s <strong>and</strong> cutting <strong>rot</strong> (Crous 2002,<br />

Vitale & Polizzi 2008, Polizzi et al. 2009, Lombard et al. 2010a).<br />

<strong>Calonectria</strong> <strong>spp</strong>. have been reported worldwide from agricultural<br />

<strong>and</strong> forestry nurseries (Crous et al. 1991, Crous 2002, Lombard<br />

et al. 2009, 2010a, b, d), whereas in Europe, they have only<br />

been reported from commercial ornamental nurseries (Polizzi<br />

& Crous 1999, Polizzi 2000, Crous 2002, Henricot & Culham<br />

2002, Polizzi et al. 2007a, b, Vitale & Polizzi 2008, Polizzi et<br />

al. 2009, Lombard et al. 2010a).<br />

Past reports have shown that C. morganii <strong>and</strong> C. pauciramosa<br />

are the most common <strong>Calonectria</strong> <strong>spp</strong>. found in ornamental<br />

nurseries in the Northern Hemisphere (Polizzi & Crous 1999,<br />

Polizzi 2000, Polizzi & Catara 2001, Polizzi et al. 2006a, b,<br />

2007a, b). Based on phylogenetic studies, C. morganii appears<br />

to be restricted to Brazil, Europe <strong>and</strong> the USA (Crous et al. 1993,<br />

Overmeyer et al. 1996, Schoch et al. 2000), whereas C. pauciramosa<br />

has a more global distribution <strong>and</strong> has been shown<br />

to better adapt to different environmental conditions (Crous<br />

2002, Lombard et al. 2010b, Chen et al. 2011). <strong>Calonectria</strong><br />

pauciramosa was also regarded as the dominant pathogen in<br />

nurseries in Australia <strong>and</strong> South Africa (Crous 2002, Schoch<br />

et al. 2001, Lombard et al. 2010b).<br />

In November 2010, a survey was conducted in an ornamental<br />

nursery in Carthage, Tunis, Tunisia. Various plant species were<br />

collected showing symptoms <strong>of</strong> <strong>leaf</strong> <strong>spot</strong>s, <strong>crown</strong> <strong>and</strong> <strong>root</strong> <strong>rot</strong>.<br />

Isolations consistently yielded <strong>Calonectria</strong> <strong>spp</strong>. <strong>and</strong> the aim<br />

<strong>of</strong> this study was to identify these species, <strong>and</strong> confirm their<br />

pathogenicity.<br />

1<br />

Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalalaan<br />

8, 3584 CT Utrecht, the Netherl<strong>and</strong>s<br />

2<br />

Dipartimento di Gestione dei Sistemi Agroalimentari e Ambientali, sezione di<br />

Patologia Vegetale, University <strong>of</strong> Catania, Via S. S<strong>of</strong>ia 100, 95123 Catania,<br />

Italy; corresponding author e-mail: gpolizzi@unict.it.<br />

MATERIALS AND METHODS<br />

Disease survey <strong>and</strong> isolates<br />

During November 2010, an ornamental nursery located in<br />

Carthage, Tunis, Tunisia was surveyed for diseased plants.<br />

Several samples <strong>of</strong> Callistemon <strong>spp</strong>., Dodonaea viscosa,<br />

Myrtus communis <strong>and</strong> Metrosideros <strong>spp</strong>. showing <strong>leaf</strong> <strong>spot</strong>s,<br />

<strong>crown</strong> <strong>and</strong> <strong>root</strong> <strong>rot</strong> were r<strong>and</strong>omly collected for analysis (Fig. 1,<br />

Table 1). Infected tissues collected from symptomatic plants<br />

were superficially disinfected with 1.0 % sodium hypochlorite<br />

for 2 min, rinsed with sterile water, placed on potato-dextrose<br />

agar (PDA, Oxoid) <strong>and</strong> incubated in the dark at 24 °C. Representative<br />

isolates <strong>of</strong> <strong>Calonectria</strong> from each ornamental species<br />

were obtained from single-spore colonies made from 14 d old<br />

cultures grown on PDA. Representative isolates have been<br />

deposited at the CBS-KNAW Fungal Biodiversity Centre (CBS),<br />

Utrecht, The Netherl<strong>and</strong>s (Table 1).<br />

DNA sequence comparisons<br />

Total genomic DNA was extracted from single-conidial isolates<br />

grown on 2 % malt extract agar (MEA) for 7 d, using the Ultra­<br />

Clean Microbial DNA isolation kits (Mo Bio Laboratories,<br />

Inc., California, USA) according to the manufacturer’s p<strong>rot</strong>ocol.<br />

Partial gene sequences were determined for β-tubulin (BT),<br />

histone H3 (HIS3) <strong>and</strong> translation elongation factor-1α (TEF-<br />

1α) using the primers <strong>and</strong> p<strong>rot</strong>ocols described by Lombard et<br />

al. (2010c).<br />

To ensure the integrity <strong>of</strong> the sequences, the amplicons were<br />

sequenced in both directions using the same primer pairs used<br />

for amplification. Sequence data from Lombard et al. (2010b, d)<br />

were used as reference data <strong>and</strong> subsequent alignments were<br />

generated using MAFFT v. 6 (Katoh & Toh 2010) <strong>and</strong> manually<br />

corrected where necessary.<br />

Congruency <strong>of</strong> the sequence datasets for the separate loci was<br />

determined using tree topologies <strong>of</strong> 70 % reciprocal Neighbour-<br />

Joining bootstrap trees with Maximum Likelihood distances that<br />

were compared visually to identify conflicts between partitions<br />

(Gueidan et al. 2007). Molecular evolution models for the<br />

separate gene regions were determined in Modeltest v. 3.7<br />

© 2011 Nationaal Herbarium Nederl<strong>and</strong> & Centraalbureau voor Schimmelcultures<br />

You are free to share - to copy, distribute <strong>and</strong> transmit the work, under the following conditions:<br />

Attribution:<br />

You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use <strong>of</strong> the work).<br />

Non-commercial: You may not use this work for commercial purposes.<br />

No derivative works: You may not alter, transform, or build upon this work.<br />

For any reuse or distribution, you must make clear to others the license terms <strong>of</strong> this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any <strong>of</strong> the above conditions can be<br />

waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.


74 <strong>Persoonia</strong> – Volume 27, 2011<br />

a<br />

b<br />

d<br />

e<br />

c<br />

f<br />

g h i<br />

Fig. 1 Symptoms <strong>of</strong> <strong>leaf</strong> <strong>spot</strong> caused by <strong>Calonectria</strong> <strong>spp</strong>. on several ornamental plants. a. Myrtus communis; b. Metrosideros thomasii; c. Callistemon sp.;<br />

d. Callistemon sp.; e. Dodonaea viscosa; f. Callistemon viminalis; g. Metrosideros excelsa; h. Metrosideros excelsa cv. Aurea; i. Metrosideros sp.<br />

(Posada & Cr<strong>and</strong>all 1998) <strong>and</strong> bootstrap analyses were run<br />

for 10 000 replicates.<br />

PAUP (Phylogenetic Analysis Using Parsimony, v. 4.0b10,<br />

Sw<strong>of</strong>ford 2002) was used to analyse the DNA sequence datasets.<br />

Phylogenetic relationships were estimated by heuristic<br />

searches with 1 000 r<strong>and</strong>om addition sequences <strong>and</strong> tree bisection-reconnection<br />

was used, with the branch swapping option<br />

set on ‘best trees’ only. All characters were weighted equally<br />

<strong>and</strong> alignment gaps were treated as missing data. Measures<br />

calculated for parsimony included tree length (TL), consistency<br />

index (CI), retention index (RI) <strong>and</strong> rescaled consistence<br />

index (RC). Bootstrap analysis (Hillis & Bull 1993) was based<br />

on 1 000 replications.<br />

A second phylogenetic analysis using a Markov Chain Monte<br />

Carlo (MCMC) algorithm was done to generate trees with Bayesian<br />

probabilities in MrBayes v. 3.1.1 (Ronquist & Huelsenbeck<br />

2003). Nucleotide substitution models were determined using<br />

MrModeltest (Nyl<strong>and</strong>er 2004) for each gene region <strong>and</strong> included<br />

in the analyses. Two analyses <strong>of</strong> four MCMC chains were run<br />

from r<strong>and</strong>om trees for one million generations <strong>and</strong> sampled<br />

every 100 generations. All runs converged on the same likelihood<br />

score <strong>and</strong> tree topology <strong>and</strong> therefore the first 800 trees<br />

were discarded as the burn-in phase <strong>of</strong> each analysis <strong>and</strong><br />

posterior probabilities determined from the remaining trees.<br />

The phylogenetic analyses included 46 partial gene sequences<br />

for each gene region, representing 20 <strong>Calonectria</strong> <strong>spp</strong>. (Table<br />

1). <strong>Calonectria</strong> colombiensis (CBS 112221) <strong>and</strong> C. chinensis<br />

(CBS 112744) were used as outgroup taxa in both analyses<br />

(Lombard et al. 2009). All novel sequences were deposited<br />

in GenBank <strong>and</strong> the alignments in TreeBASE (http://www.<br />

treebase.org).<br />

Taxonomy<br />

Morphological characterisation <strong>of</strong> the <strong>Calonectria</strong> isolates was<br />

done using single conidial cultures prepared on MEA <strong>and</strong> synthetic<br />

nutrient-poor agar (SNA; Nirenburg 1981, Lombard et al.<br />

2009). Inoculated plates were incubated at room temperature<br />

<strong>and</strong> examined after 7 d. Gross morphological characteristics<br />

<strong>of</strong> the anamorph state were determined by mounting fungal<br />

structures in clear lactic acid <strong>and</strong> 30 measurements at ×1 000<br />

magnification were made for each isolate using a Zeiss Axioscope<br />

2 microscope with interference contrast (DIC) illumination.<br />

The 95 % confidence levels were determined <strong>and</strong> extremes<br />

<strong>of</strong> conidial measurements are given in parentheses. For other<br />

structures, only extremes are presented. Colony characteristics<br />

were noted after 7 d <strong>of</strong> growth on MEA at 24 °C <strong>and</strong> colony<br />

colours determined using the colour charts <strong>of</strong> Rayner (1970).<br />

Descriptions, nomenclature <strong>and</strong> illustrations were deposited in<br />

MycoBank (Crous et al. 2004).<br />

Pathogenicity<br />

In order to test the pathogenicity <strong>of</strong> the <strong>Calonectria</strong> <strong>spp</strong>.<br />

collected in this study, seven isolates representing different<br />

<strong>Calonectria</strong> species identified by morphology <strong>and</strong> DNA sequence<br />

comparisons were selected for inoculation trials (Table<br />

1). A conidial suspension (1.0 × 10 5 conidia/mL) was prepared<br />

for each isolate by adding sterile water to plates <strong>of</strong> carnation <strong>leaf</strong><br />

agar (CLA; Fisher et al. 1982) 7 d after inoculation <strong>and</strong> dislodging<br />

the conidia. The conidial suspension was sprayed onto the<br />

canopy (until run-<strong>of</strong>f) <strong>of</strong> potted 2–6 mo old plants <strong>of</strong> Callistemon<br />

citrinus cv. Splendens, C. laevis, C. viminalis, Dodonaea viscose,<br />

Metrosideros excelsa, M. excelsa cv. Aurea, M. thomasii,<br />

Myrtus communis, M. communis subsp. tarentina. The conidial<br />

suspension <strong>of</strong> the isolate CBS 130351 was also applied to the<br />

<strong>crown</strong> <strong>of</strong> M. communis plants (10 mL/plant). All plants were<br />

subsequently covered with plastic bags for 48 h <strong>and</strong> maintained


L. Lombard et al.: <strong>Calonectria</strong> in Tunisia<br />

75<br />

Table 1 <strong>Calonectria</strong> isolates used in the phylogenetic analyses <strong>and</strong> pathogenicity trials.<br />

Species Isolate number 1 β-tubulin 2 Histone H3 2 TEF-1α 2 Host /substrate<br />

<strong>Calonectria</strong> brasiliensis CBS 230.30 4 GQ267241 GQ267259 GQ267328 Eucalyptus sp.<br />

CBS 114257 GQ267242 GQ267260 GQ267329 Leaf litter<br />

C. cerciana CBS 123693 4 FJ918510 FJ918528 FJ918559 E. gr<strong>and</strong>is × urophylla<br />

CBS 123695 FJ918511 FJ918529 FJ918560 E. gr<strong>and</strong>is × urophylla<br />

C. chinensis CBS 112744 AY725618 AY725660 AY725709 Soil<br />

C. colombiana CBS 115127 4 FJ972423 FJ972442 FJ972492 Soil<br />

CBS 115638 FJ972422 FJ972441 FJ972491 Soil<br />

C. colombiensis CBS 112220 4 GQ267207 AY725662 AY725711 Soil<br />

C. hawksworthii CBS 111870 4 AF333407 DQ190649 FJ918558 Nelumbo nucifera<br />

C. insularis CBS 114558 4 AF210861 FJ918526 FJ918556 Soil<br />

CBS 114559 AF210862 FJ918525 FJ918555 Soil<br />

C. leucothoës CBS 109166 FJ918508 FJ918523 FJ918553 Leucothoë axillaris<br />

C. mexicana CBS 110918 4 AF210863 FJ972460 FJ972526 Soil<br />

CBS 130353 3 JN607280 JN607265 JN607295 Dodonaea viscosa<br />

C. morganii CBS 110666 FJ918509 FJ918527 FJ918557 Ilex vomitoria<br />

CBS 119669 DQ521599 DQ521601 GQ421796 Pistacia lentiscus<br />

C. pauciramosa CPC 971 FJ918514 FJ918531 FJ918565 E. gr<strong>and</strong>is<br />

CPC 416 FJ918515 FJ918532 FJ918566 E. gr<strong>and</strong>is<br />

C. polizzii CBS 123402 4 FJ972419 FJ972438 FJ972488 Arbutus unedo<br />

CBS 125270 FJ972417 FJ972436 FJ972486 Callistemon citrinus<br />

CBS 130351 3 JN607270 JN607255 JN607285 Myrtus communis<br />

CBS 130352 3 JN607275 JN607260 JN607290 Metrosideros thomasii<br />

DISTEF-TMC2 JN607269 JN607254 JN607284 Myrtus communis<br />

DISTEF-TMEA1 JN607272 JN607257 JN607287 Metrosideros excelsa cv. Aurea<br />

DISTEF-TMN3 JN607274 JN607259 JN607289 Metrosideros sp.<br />

C. pseudomexicana CBS 130354 3,4 JN607281 JN607266 JN607496 Callistemon sp. (rouge)<br />

CBS 130355 3 JN607282 JN607267 JN607497 Callistemon sp. (rouge)<br />

DISTEF-TCROU4 JN607283 JN607268 JN607498 Callistemon sp. (rouge)<br />

C. pseudoscoparia CBS 125256 GQ267228 GQ267277 GQ267348 E. gr<strong>and</strong>is<br />

CBS 125257 4 GQ267229 GQ267278 GQ267349 E. gr<strong>and</strong>is<br />

C. scoparia CPC 1675 FJ972426 FJ972476 FJ972525 Eucalyptus sp.<br />

CPC 1679 FJ972427 GQ267246 GQ267298 Eucalyptus sp.<br />

C. spathulata CBS 112689 AF308463 FJ918524 FJ918554 E. viminalis<br />

CBS 555.92 4 GQ267215 GQ267261 GQ267331 Araucaria angustifolia<br />

C. sulawesiensis CBS 125248 GQ267223 GQ267272 GQ267343 Eucalyptus sp.<br />

CBS 125253 GQ267220 GQ267269 GQ267340 Eucalyptus sp.<br />

C. tunisiana CBS 130356 3 JN607277 JN607262 JN607292 Callistemon sp. (rouge)<br />

CBS 130357 3,4 JN607276 JN607261 JN607291 Callistemon laevis<br />

DISTEF-TCV1 JN607278 JN607263 JN607293 Callistemon viminalis<br />

DISTEF-TCROS4 JN607279 JN607264 JN607294 Callistemon sp. (rosè)<br />

DISTEF-TME1 JN607271 JN607256 JN607286 Metrosideros excelsa<br />

DISTEF-TMN1 JN607273 JN607258 JN607288 Metrosideros sp.<br />

C. variabilis CBS 112691 GQ267240 GQ267264 GQ267335 Eucalyptus sp.<br />

CBS 114677 AF333424 GQ267263 GQ267334 Eucalyptus sp.<br />

C. zuluensis CBS 125268 4 FJ972414 FJ972433 FJ972483 Eucalyptus sp.<br />

CBS 125272 FJ972415 FJ972434 FJ972484 Eucalyptus sp.<br />

1<br />

CBS: CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherl<strong>and</strong>s; CPC: Pedro Crous working collection housed at CBS; DISTEF: Dipartimento di Scienze e Tecnologie Fitosanitarie,<br />

Catania, Italy.<br />

2<br />

GenBank accession numbers.<br />

3<br />

Isolates used for the pathogenicity trials.<br />

4<br />

Ex-type cultures; Isolates in bold obtained during survey.<br />

in a growth chamber at 25 ± 1 °C for 14 d. Five plants for each<br />

isolate <strong>and</strong> host were used <strong>and</strong> the same number <strong>of</strong> control<br />

plants were treated using sterile water. Pathogenicity tests were<br />

evaluated 5, 10 <strong>and</strong> 25 d after inoculation.<br />

Results<br />

Disease survey <strong>and</strong> isolates<br />

During the survey, a total <strong>of</strong> 46 <strong>Calonectria</strong> isolates were collected<br />

from ornamental hosts sampled. Majority <strong>of</strong> the isolates<br />

(41) were associated with <strong>leaf</strong> <strong>spot</strong>s or <strong>leaf</strong> blight <strong>of</strong> Callistemon<br />

<strong>spp</strong>. (18), D. viscosa (1), Metrosideros <strong>spp</strong>. (17) <strong>and</strong> Myrtus<br />

communis (5), <strong>and</strong> the remaining (5) with <strong>crown</strong> <strong>and</strong> <strong>root</strong> <strong>rot</strong><br />

<strong>of</strong> M. communis. Leaves showed minute brown <strong>spot</strong>s, which<br />

<strong>of</strong>ten enlarged, forming a nec<strong>rot</strong>ic centre surrounded by a dark<br />

purple halo (Fig. 1). Young, non-lignified terminal shoots <strong>of</strong>ten<br />

exhibited dieback or lesions similar to those on the leaves. Severe<br />

defoliation was observed on M. communis <strong>and</strong> M. excelsa<br />

cv. Aurea. Several seedlings <strong>of</strong> M. communis had <strong>crown</strong> <strong>and</strong><br />

<strong>root</strong> <strong>rot</strong>, <strong>and</strong> fungal sporulation occurred on the lower part <strong>of</strong><br />

the <strong>crown</strong>. Initial symptoms were brown lesions that exp<strong>and</strong>ed<br />

rapidly to girdle the stem at the seedling <strong>crown</strong>, above <strong>and</strong><br />

below the soil line, resulting in plant death.<br />

DNA sequence comparisons<br />

Amplicons <strong>of</strong> approximately 450 bases for HIS3 <strong>and</strong> 500 bases<br />

each for BT <strong>and</strong> TEF-1α were generated. The 70 % reciprocal<br />

bootstrap trees showed no conflict in tree topologies for the<br />

three gene regions <strong>and</strong> therefore they were combined in a dataset<br />

consisting <strong>of</strong> 1 532 characters including gaps. Of these<br />

characters, 1 187 were constant <strong>and</strong> parsimony uninformative.<br />

Analysis <strong>of</strong> the 345 parsimony informative characters yielded<br />

16 equally most parsimonious trees (TL = 814, CI = 0.721,<br />

RI = 0.923, RC = 0.666), <strong>of</strong> which the first tree is presented (Fig.<br />

2). A HKY+I model for BT, a GTR+I+G model for HIS3 <strong>and</strong> a<br />

GTR+G model for TEF-1α was selected for Bayesian analysis.<br />

The Bayesian consensus tree confirmed the tree topology obtained<br />

with maximum parsimony including bootstrap support.<br />

The phylogenetic tree illustrates a number <strong>of</strong> well-supported<br />

clades containing the <strong>Calonectria</strong> isolates obtained during the<br />

survey. Some <strong>of</strong> the isolates clustered in a clade representing<br />

C. polizzii with a bootstrap value (BP) <strong>of</strong> 97 <strong>and</strong> a Bayesian<br />

posterior probability (PP) value <strong>of</strong> 1.00. Several isolates also<br />

grouped with <strong>and</strong> close to C. mexicana in two separate wellsupported<br />

clades (BP = 68, PP = 0.95 <strong>and</strong> BP = 78, PP = 0.98,<br />

respectively), which could represent novel phylogenetic species.


76 78/1.00 DISTEF-TCV1<br />

C. tunisiana sp. nov <strong>Persoonia</strong> – Volume 27, 2011<br />

DISTEF-TCROS4<br />

100/1.00<br />

100/1.00<br />

Fig. 2 One <strong>of</strong> 16 most parsimonious trees obtained from a heuristic search<br />

with 1 000 r<strong>and</strong>om addition sequences <strong>of</strong> the combined sequences <strong>of</strong> β-tubulin,<br />

histone H3 <strong>and</strong> translation elongation factor 1α sequence alignments<br />

<strong>of</strong> the <strong>Calonectria</strong> isolates obtained during the survey <strong>and</strong> other closely<br />

related species. Scale bar shows 10 changes. Bootstrap support values (in<br />

bold) <strong>and</strong> Bayesian posterior probability values are shown at the nodes.<br />

Thickened lines indicate branches in the strict consensus tree <strong>and</strong> the consensus<br />

tree <strong>of</strong> the Bayesian analyses. The tree was <strong>root</strong>ed to C. chinensis<br />

(CBS 112744) <strong>and</strong> C. colombiensis (CBS 112220). Isolates in bold were<br />

10 changes<br />

obtained during the survey.<br />

72/0.99<br />

68/0.88<br />

63/0.98<br />

DISTEF-TME1<br />

CBS 130357<br />

C. colombiensis CBS 112220<br />

C. chinensis CBS 112744<br />

CBS 110918<br />

C. leucothoes CBS 109166<br />

73/0.69<br />

C. mexicana C. hawksworthii CBS 111870<br />

52/1.00<br />

CBS 130353<br />

CBS 130355 100/1.00<br />

CBS 230.51<br />

C. brasiliensis<br />

100/1.00<br />

99/1.00CBS 13035479/0.76<br />

CBS 114257<br />

C. pseudomexicana sp. nov<br />

68/0.95<br />

99/1.00 CBS 125248<br />

72/0.99<br />

DISTEF-TCROU4<br />

C. sulawesiensis<br />

CBS 125253<br />

68/0.88 CBS 130356 82/1.00<br />

CBS 114677<br />

DISTEF-TMN1<br />

C. variabilis<br />

78/1.00<br />

63/0.98<br />

100/1.00<br />

CBS 112691<br />

DISTEF-TCV1<br />

C. tunisiana sp. nov<br />

DISTEF-TCROS4 53/0.73 CBS 110666<br />

C. morganii<br />

98/1.00<br />

DISTEF-TME1<br />

CBS 130357<br />

CBS 119669<br />

CBS 114558<br />

C. insularis<br />

100/1.00<br />

CBS 114559<br />

C. leucothoes CBS 109166<br />

C. 100/1.00<br />

CBS 123693<br />

hawksworthii CBS 111870 C. cerciana<br />

52/1.00<br />

CBS 123695<br />

100/1.00<br />

CBS 230.51<br />

CPC 1675<br />

C. brasiliensis<br />

99/1.00 79/0.76 C. scopariaCBS 114257<br />

100/1.00 CPC 1679<br />

99/1.00 CBS 125248<br />

CBS 125257<br />

C. sulawesiensis<br />

68/0.98<br />

C. pseudoscoparia CBS 125253<br />

CBS 125256 82/1.00<br />

CBS 114677<br />

98/1.00<br />

C. variabilis<br />

100/1.00<br />

CBS 115127<br />

100/1.00 C. colombiana CBS 112691<br />

50/0.98 CBS 115638<br />

53/0.73 CBS 110666<br />

C. morganii<br />

100/1.00 CBS 112689<br />

98/1.00<br />

CBS 119669 C. spathulata<br />

CBS 555.92<br />

CBS 114558<br />

C. insularis<br />

94/1.00 CPC 971<br />

100/1.00 C. pauciramosa CBS 114559<br />

CPC 416<br />

100/1.00<br />

CBS 123693<br />

CBS 125268<br />

C. cerciana<br />

98/0.97<br />

C. zuluensis<br />

CBS 123695<br />

63/1.00<br />

CBS 125272<br />

CPC 1675<br />

100/1.00<br />

CBS 123402 C. scoparia<br />

CPC 1679<br />

CBS 125270<br />

CBS 125257<br />

68/0.98 DISTEF-TMC2 C. pseudoscoparia<br />

CBS 125256<br />

98/1.00<br />

CBS 130351 C. polizzii<br />

97/1.00 CBS 115127<br />

100/1.00<br />

DISTEF-TMEA1 C. colombiana<br />

50/0.98 CBS 115638<br />

DISTEF-TMN3<br />

100/1.00 CBS 112689<br />

10 changes<br />

CBS 130352<br />

CBS 555.92<br />

C. spathulata<br />

98/0.97<br />

63/1.00<br />

DISTEF-TCROU4<br />

CBS 130356<br />

DISTEF-TMN1<br />

94/1.00 CPC 971<br />

97/1.00<br />

CPC 416<br />

CBS 125268<br />

CBS 125272<br />

CBS 123402<br />

CBS 125270<br />

DISTEF-TMC2<br />

CBS 130351<br />

DISTEF-TMEA1<br />

DISTEF-TMN3<br />

CBS 130352<br />

C. pauciramosa<br />

C. zuluensis<br />

C. polizzii<br />

Taxonomy<br />

DNA sequence <strong>and</strong> morphological comparisons <strong>of</strong> the <strong>Calonectria</strong><br />

isolates obtained during the survey show that these isolates<br />

belong to C. mexicana <strong>and</strong> C. polizzii <strong>and</strong> also constitute<br />

two previously undescribed taxa. Based on morphological<br />

comparisons, isolate CBS 130353 agrees with C. mexicana<br />

(Schoch et al. 1999) <strong>and</strong> isolates DISTEF-TMC2, CBS 130351,<br />

DISTEF-TMEA1, DISTEF-TMN3 <strong>and</strong> CBS 130352 represent<br />

C. polizzii (Lombard et al. 2010b). The remaining isolates are<br />

newly described as follows:<br />

<strong>Calonectria</strong> pseudomexicana L. Lombard, G. Polizzi & Crous,<br />

sp. nov. — MycoBank MB563138; Fig. 3<br />

Teleomorph unknown.<br />

<strong>Calonectria</strong> mexicana morphologice similes sed minus ramis conidiophorae.<br />

Etymology. Name reflects the fact that this species closely resembles<br />

C. mexicana.<br />

Conidiophores with a stipe bearing penicillate suites <strong>of</strong> fertile<br />

branches, stipe extensions, <strong>and</strong> terminal vesicles; stipe septate,<br />

hyaline, smooth, 38–69 × 5–9 µm; stipe extensions septate,<br />

straight to flexuous, 175–251 µm long, 3–6 µm wide at the apical<br />

septum, terminating in a fusiform to broadly ellipsoidal vesicle


L. Lombard et al.: <strong>Calonectria</strong> in Tunisia<br />

77<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

Fig. 3 <strong>Calonectria</strong> pseudomexicana. a, b. Macroconidiophores; c–e. fusiform to broadly ellipsoidal vesicles with papillate apices; f, g. conidiogenous apparatus<br />

with conidiophore branches <strong>and</strong> doliiform to reniform phialides; h. 1-septate macroconidia. — Scale bars = 10 μm.<br />

h<br />

9–14 µm diam with papillate apex. Conidiogenous apparatus<br />

38–68 µm long, 32–64 µm wide; primary branches aseptate<br />

or 1-septate, 21–43 × 4–7 µm; secondary branches aseptate,<br />

13–26 × 4–7 µm; tertiary branches <strong>and</strong> additional branches<br />

(–4), aseptate, 10–18 × 2–6 µm, each terminal branch producing<br />

2–6 phialides; phialides doliiform to reniform, hyaline,<br />

aseptate, 6–14 × 2–6 µm; apex with minute periclinal thickening<br />

<strong>and</strong> inconspicuous collarette. Conidia cylindrical, rounded<br />

at both ends, straight, (40–)43–48(–49) × (4–)5–6 µm (av. =<br />

45 × 5 µm), 1-septate, lacking a visible abscission scar, held<br />

in parallel cylindrical clusters by colourless slime. Megaconidia<br />

<strong>and</strong> microconidia not seen.<br />

Culture characteristics — Colonies fast growing at 24 ºC on<br />

MEA, sienna to bay on surface, reverse sienna after 7 d; moderate<br />

white aerial mycelium with sparse to moderate sporulation;<br />

chlamydospores extensive throughout medium.<br />

Specimens examined. Tunisia, Carthage, Tunis, from Callistemon sp.,<br />

Nov. 2010, G. Polizzi, (CBS H-20685, holotype <strong>of</strong> C. pseudomexicana,<br />

culture ex-type CBS 130354 = DISTEF-TCROU1); Carthage, Tunis, from<br />

Callistemon sp., Nov. 2010, G. Polizzi, culture CBS 130355 = DISTEF-<br />

TCROU3; Carthage, Tunis, from Callistemon sp., Nov. 2010, G. Polizzi,<br />

culture DISTEF-TCROU4.<br />

Notes — <strong>Calonectria</strong> pseudomexicana is morphologically<br />

similar to C. mexicana. <strong>Calonectria</strong> pseudomexicana has four<br />

or less conidiophore branches while C. mexicana has five as<br />

reported by Schoch et al. (1999).<br />

<strong>Calonectria</strong> tunisiana L. Lombard, G. Polizzi & Crous, sp.<br />

nov. — MycoBank MB563139; Fig. 4<br />

Teleomorph unknown.<br />

<strong>Calonectria</strong> mexicana morphologice similes sed minus conidiophorae ramis<br />

et fructibus breviores sunt stipe augue.<br />

Etymology. Name refers to the country Tunisia, where the fungus was<br />

collected.<br />

Conidiophores with a stipe bearing penicillate suites <strong>of</strong> fertile<br />

branches, stipe extensions, <strong>and</strong> terminal vesicles; stipe septate,<br />

hyaline, smooth, 42–95 × 7–11 µm; stipe extensions septate,<br />

straight to flexuous, 147–199 µm long, 4–5 µm wide at the<br />

apical septum, terminating in a fusiform to broadly ellipsoidal<br />

vesicle 8–14 µm diam with papillate apex. Conidiogenous apparatus<br />

40–68 µm long, 30–66 µm wide; primary branches<br />

aseptate or 1-septate, 17–41 × 5–7 µm; secondary branches<br />

aseptate, 10–22 × 4–7 µm; tertiary branches aseptate, 9–18<br />

× 4–5 µm, each terminal branch producing 2–6 phialides;<br />

phialides doliiform to reniform, hyaline, aseptate, 8–13 × 3–5<br />

µm; apex with minute periclinal thickening <strong>and</strong> inconspicuous<br />

collarette. Conidia cylindrical, rounded at both ends, straight,


78 <strong>Persoonia</strong> – Volume 27, 2011<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

h<br />

Fig. 4 <strong>Calonectria</strong> tunisiana. a, b. Macroconidiophores; c–e. fusiform to broadly ellipsoidal vesicles with papillate apices; f, g. conidiogenous apparatus with<br />

conidiophore branches <strong>and</strong> doliiform to reniform phialides; h. 1-septate macroconidia. — Scale bars = 10 μm.<br />

(43–)47–51(–53) × 4–6 µm (av. = 49 × 5 µm), 1-septate, lacking<br />

a visible abscission scar, held in parallel cylindrical clusters by<br />

colourless slime. Megaconidia <strong>and</strong> microconidia not seen.<br />

Culture characteristics — Colonies fast growing at 24 °C on<br />

MEA, sienna to bay on surface, <strong>and</strong> reverse sienna after 7 d;<br />

sparse white aerial mycelium with sparse sporulation; chlamydospores<br />

extensive throughout the medium.<br />

Specimens examined. Tunisia, Carthage, Tunis, from Callistemon laevis,<br />

Nov. 2010, G. Polizzi, (CBS H-20684, holotype <strong>of</strong> C. tunisiana, culture ex-type<br />

CBS 130357 = DISTEF-TCL1); Carthage, Tunis, from Callistemon sp., Nov.<br />

2010, G. Polizzi, culture CBS 130356 = DISTEF-TCROU2; Carthage, Tunis,<br />

from Metrosideros excelsus, Nov. 2010, G. Polizzi, culture DISTEF-TME1.<br />

Notes — Morphologically, C. tunisiana is similar to C. mexicana<br />

<strong>and</strong> C. pseudomexicana, but can be distinguished from<br />

both taxa by its shorter stipe extensions. The conidiophores <strong>of</strong><br />

C. tunisiana (–3) also form fewer fertile branches than C. mexicana<br />

(–5) <strong>and</strong> C. pseudomexicana (–4) (Schoch et al. 1999).<br />

Pathogenicity<br />

All plants inoculated with the <strong>Calonectria</strong> <strong>spp</strong>. in this study developed<br />

<strong>leaf</strong> <strong>spot</strong>, <strong>leaf</strong> blight or <strong>crown</strong> <strong>and</strong> <strong>root</strong> <strong>rot</strong> symptoms.<br />

The first symptoms <strong>of</strong> <strong>leaf</strong> <strong>spot</strong> <strong>and</strong> <strong>leaf</strong> blight were observed 5 d<br />

after inoculation on all test plants inoculated with the <strong>Calonectria</strong><br />

<strong>spp</strong>., resembling the symptoms observed during the survey. Isolates<br />

<strong>of</strong> C. pseudomexicana (CBS 130354, 130355), C. tunisiana<br />

(CBS 130356, 130357) as well as the single isolate <strong>of</strong> C. mexicana<br />

(CBS 130353) produced the most severe symptoms. Isolates<br />

<strong>of</strong> C. polizzii (CBS 130351, 130352) also caused <strong>leaf</strong> <strong>spot</strong><br />

<strong>and</strong> <strong>leaf</strong> blight on all inoculated plants, but less severe than the<br />

other three <strong>Calonectria</strong> <strong>spp</strong>. tested. Ten days after inoculation,<br />

severe or moderate defoliation <strong>of</strong> M. communis <strong>and</strong> M. excelsa<br />

cv. Aurea plants was observed.<br />

All inoculated plants <strong>of</strong> M. communis developed <strong>crown</strong> <strong>rot</strong>, basal<br />

stem <strong>rot</strong> <strong>and</strong> <strong>root</strong> <strong>rot</strong> 25 d after inoculation with the isolate<br />

representing C. polizzii (CBS 130351). All un-inoculated control<br />

plants remained healthy <strong>and</strong> re-isolations from the test plants<br />

consistently yielded the test fungi.<br />

DISCUSSION<br />

During a survey <strong>of</strong> diseased plants at an ornamental nursery in<br />

Tunis, Tunisia, a number <strong>of</strong> <strong>Calonectria</strong> <strong>spp</strong>. were isolated from<br />

plants exhibiting <strong>crown</strong>, <strong>root</strong> <strong>rot</strong> <strong>and</strong> <strong>leaf</strong> <strong>spot</strong>s. DNA sequence<br />

<strong>and</strong> morphological comparisons allowed the identification <strong>of</strong><br />

two <strong>of</strong> these isolates as C. mexicana <strong>and</strong> C. polizzii as well<br />

as the description <strong>of</strong> two new species, C. pseudomexicana<br />

<strong>and</strong> C. tunisiana, both in the C. scoparia complex (Schoch et<br />

al. 1999).


L. Lombard et al.: <strong>Calonectria</strong> in Tunisia<br />

79<br />

<strong>Calonectria</strong> mexicana resides in the C. scoparia complex<br />

(Schoch et al. 1999) <strong>and</strong> can be distinguished from the other<br />

seven <strong>Calonectria</strong> <strong>spp</strong>. in the complex based on their unique<br />

papillate vesicles (Schoch et al. 1999, Lombard et al. 2010b,<br />

c, Chen et al. 2011). Until now, C. mexicana has only been<br />

reported from soil samples collected in Mexico, <strong>and</strong> its pathogenicity<br />

was unknown (Schoch et al. 1999, Crous 2002). This<br />

study represents the first report <strong>of</strong> this fungus outside Mexico,<br />

<strong>and</strong> also demonstrates its pathogenicity on some plant hosts.<br />

<strong>Calonectria</strong> polizzii has previously been reported from ornamental<br />

plants collected at a nursery in Sicily, Italy (Schoch et<br />

al. 2001, Lombard et al. 2010b), although its pathogenicity was<br />

not confirmed. This study represents the first confirmation <strong>of</strong> the<br />

pathogenicity <strong>of</strong> C. polizzii <strong>and</strong> widens its distribution to Tunisia.<br />

<strong>Calonectria</strong> polizzii is a member <strong>of</strong> the C. scoparia complex <strong>and</strong><br />

can be distinguished from the other members by its smaller<br />

macroconidial dimensions (Lombard et al. 2010b).<br />

The description <strong>of</strong> C. pseudomexicana <strong>and</strong> C. tunisiana adds<br />

two more species to the C. scoparia complex. This complex is<br />

characterised by 1-septate macroconidia <strong>and</strong> the formation <strong>of</strong><br />

ellipsoidal to obpyriform terminal vesicles on the stipe extensions<br />

(Schoch et al. 1999, Crous 2002, Lombard et al. 2010b).<br />

Based on phylogenetic inference, both these newly described<br />

species are closely related to C. mexicana, which they also resemble<br />

in morphology. They can be distinguished from C. mexicana<br />

<strong>and</strong> each other by the number <strong>of</strong> fertile branches produced<br />

on the conidiophores. <strong>Calonectria</strong> tunisiana (av. = 49 × 5 µm)<br />

has slightly larger macroconidia than both C. mexicana (av. =<br />

45 × 4 µm; Schoch et al. 1999) <strong>and</strong> C. pseudomexicana (av.<br />

= 45 × 5 µm).<br />

The pathogenicity tests with isolates <strong>of</strong> C. mexicana, C. polizzii,<br />

C. pseudomexicana <strong>and</strong> C. tunisiana clearly showed that they<br />

are able to cause symptoms similar to those observed during<br />

the survey. <strong>Calonectria</strong> polizzii was less virulent than the other<br />

three species, but should still be regarded as an important<br />

nursery pathogen. This supports the view that most <strong>Calonectria</strong><br />

<strong>spp</strong>. can induce <strong>leaf</strong> <strong>spot</strong>s if the environmental conditions are<br />

favourable (Crous 2002). All four species caused similar disease<br />

symptoms on the nine inoculated plant species, suggesting<br />

that little is known about the host specificity <strong>and</strong> mechanisms<br />

<strong>of</strong> infection <strong>of</strong> this group <strong>of</strong> plant pathogens.<br />

This study stresses the importance <strong>of</strong> <strong>Calonectria</strong> <strong>spp</strong>. as<br />

nursery pathogens. Their soil-borne nature has contributed to<br />

their ease <strong>of</strong> movement globally <strong>and</strong> little is known about their<br />

origins. Furthermore, it is not known if these fungal pathogens<br />

originated from Tunisia or were introduced, <strong>and</strong> more isolates<br />

are needed for a study <strong>of</strong> their population dynamics.<br />

References<br />

Chen SF, Lombard L, Roux J, Xie YJ, Wingfield MJ, Zhou XD. 2011. Novel<br />

species <strong>of</strong> <strong>Calonectria</strong> associated with Eucalyptus <strong>leaf</strong> blight in Southeast<br />

China. <strong>Persoonia</strong> 26: 1–12.<br />

Crous PW. 2002. Taxonomy <strong>and</strong> pathology <strong>of</strong> Cylindrocladium (<strong>Calonectria</strong>)<br />

<strong>and</strong> allied genera. APS Press, St. Paul, Minnesota, USA.<br />

Crous PW, Alfenas AC, Wingfield MJ. 1993. <strong>Calonectria</strong> scoparia <strong>and</strong> <strong>Calonectria</strong><br />

morganii sp. nov., <strong>and</strong> variation among isolates <strong>of</strong> their Cylindrocladium<br />

anamorphs. Mycological Research 97: 701–708.<br />

Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G. 2004. MycoBank:<br />

an online initiative to launch mycology into the 21st century. Studies in<br />

Mycology 50: 19–22.<br />

Crous PW, Phillips AJL, Wingfield MJ. 1991. The genera Cylindrocladium <strong>and</strong><br />

Cylindrocladiella in South Africa, with special reference to forest nurseries.<br />

South African Forestry Journal 157: 69–89.<br />

Fisher NL, Burgess LW, Toussoun TA, Nelson PE. 1982. Carnation leaves<br />

as a substrate <strong>and</strong> for preserving cultures <strong>of</strong> Fusarium species. Phytopathology<br />

72: 151–153.<br />

Gueidan C, Roux C, Lutzoni F. 2007. Using multigene phylogeny analysis<br />

to assess generic delineation <strong>and</strong> character evolution in Verrucariaceae<br />

(Verrucariales, Ascomycota). Mycological Research 111: 1145–1168.<br />

Henricot B, Culham A. 2002. Cylindrocladium buxicola, a new species affecting<br />

Buxus <strong>spp</strong>., <strong>and</strong> its phylogenetic status. Mycologia 94: 980–997.<br />

Hillis DM, Bull JJ. 1993. An empirical test <strong>of</strong> bootstrapping as a method for<br />

assessing confidence in phylogenetic analysis. Systematic Biology 42:<br />

182–192.<br />

Katoh K, Toh H. 2010. Parallelization <strong>of</strong> the MAFFT multiple sequence alignment<br />

program. Bioinformatics 26: 1899–1900.<br />

Lombard L, Crous PW, Wingfield BD, Wingfield MJ. 2010a. Species concepts<br />

in <strong>Calonectria</strong> (Cylindrocladium). Studies in Mycology 66: 1–14.<br />

Lombard L, Crous PW, Wingfield BD, Wingfield MJ. 2010b. Multigene phylogeny<br />

<strong>and</strong> mating tests reveal three cryptic species related to <strong>Calonectria</strong><br />

pauciramosa. Studies in Mycology 66: 15–30.<br />

Lombard L, Crous PW, Wingfield BD, Wingfield MJ. 2010c. Phylogeny <strong>and</strong><br />

systematics <strong>of</strong> the genus <strong>Calonectria</strong>. Studies in Mycology 66: 31–69.<br />

Lombard L, Rodas CA, Crous PW, Wingfield BD, Wingfield MJ. 2009. <strong>Calonectria</strong><br />

(Cylindrocladium) species associated with dying Pinus cuttings.<br />

<strong>Persoonia</strong> 23: 41–47.<br />

Lombard L, Zhou XD, Crous PW, Wingfield BD, Wingfield MJ. 2010d. <strong>Calonectria</strong><br />

species associated with cutting <strong>rot</strong> <strong>of</strong> Eucalyptus. <strong>Persoonia</strong> 24:<br />

1–11.<br />

Nirenburg HI. 1981. A simplified method for identifying Fusarium <strong>spp</strong>. occurring<br />

on wheat. Canadian Journal <strong>of</strong> Botany 59: 1599–1609.<br />

Nyl<strong>and</strong>er JAA. 2004. MrModeltest v. 2. Programme distributed by the author.<br />

Evolutionary Biology Centre, Uppsala University.<br />

Overmeyer C, Lünneman S, Wallburnn C von, Meinhardt F. 1996. Genetic<br />

variability among isolates <strong>and</strong> sexual <strong>of</strong>fspring <strong>of</strong> the plant pathogenic<br />

fungus <strong>Calonectria</strong> morganii on the basis <strong>of</strong> r<strong>and</strong>om amplification <strong>of</strong><br />

polymorphic DNA (RAPD) <strong>and</strong> restriction fragment length polymorphism<br />

(RFLP). Current Microbiology 33: 249–255.<br />

Polizzi G. 2000. Prime esperienze di lotta chimica nei confronti del marciume<br />

del colletto e delle radici di Polygala myrtifolia causato da Cylindrocladium<br />

pauciramosum. Informatore Fitopatologico 11: 39–47.<br />

Polizzi G, Catara V. 2001. First report <strong>of</strong> <strong>leaf</strong> <strong>spot</strong> caused by Cylindrocladium<br />

pauciramosum on Acacia retinodes, Arbutus unedo, Feijoa sellowiana <strong>and</strong><br />

Dodonaea viscosa in southern Italy. Plant Disease 85: 803.<br />

Polizzi G, Crous PW. 1999. Root <strong>and</strong> collar <strong>of</strong> milkwort caused by Cylindrocladium<br />

pauciromosum, a new record for Europe. European Journal <strong>of</strong><br />

Plant Pathology 105: 407–411.<br />

Polizzi G, Grasso FM, Vitale A, Aiello D. 2007a. First occurrence <strong>of</strong> <strong>Calonectria</strong><br />

<strong>leaf</strong> <strong>spot</strong> on mexican blue palm in Italy. Plant Disease 91: 1057.<br />

Polizzi G, Vitale A, Aiello D, Castello I, Guarnaccia V, Parlavecchio G. 2009.<br />

First record <strong>of</strong> <strong>crown</strong> <strong>and</strong> <strong>root</strong> <strong>rot</strong> caused by Cylindrocladium pauciramosum<br />

on brush cherry in Italy. Plant Disease 93: 547.<br />

Polizzi G, Vitale A, Aiello D, Dimartino MA, Parlavecchio G. 2007b. First report<br />

<strong>of</strong> damping-<strong>of</strong>f <strong>and</strong> <strong>leaf</strong> <strong>spot</strong> caused by Cylindrocladium scoparium on different<br />

accessions <strong>of</strong> bottlebrush cuttings in Italy. Plant Disease 91: 769.<br />

Polizzi G, Vitale A, Aiello D, Parlavecchio G. 2006a. First record <strong>of</strong> <strong>crown</strong><br />

<strong>and</strong> <strong>root</strong> <strong>rot</strong> caused by Cylindrocladium pauciramosum on California lilac<br />

in Italy. Plant Disease 90: 1459.<br />

Polizzi G, Vitale A, Castello I, Groenewald JZ, Crous PW. 2006b. Cylindrocladium<br />

<strong>leaf</strong> <strong>spot</strong>, blight <strong>and</strong> <strong>crown</strong> <strong>rot</strong>, new diseases <strong>of</strong> mastic tree seedlings<br />

caused by Cylindrocladium scoparium. Plant Disease 90: 1110.<br />

Posada D, Cr<strong>and</strong>all KA. 1998. Modeltest: testing the model <strong>of</strong> DNA substitution.<br />

Bioinformatics 14: 817–818.<br />

Rayner RW. 1970. A mycological colour chart. Commonwealth Mycological<br />

Institute, Kew, Surry. British Mycological Society.<br />

Ronquist F, Heulsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference<br />

under mixed models. Bioinformatics 19: 1572–1574.<br />

Schoch CL, Crous PW, Cronwright G, Witthuhn RC, El-Gholl NE, Wingfield<br />

BD. 2000. Recombination in <strong>Calonectria</strong> morganii <strong>and</strong> phylogeny with other<br />

hete<strong>rot</strong>hallic small-spored <strong>Calonectria</strong> species. Mycologia 92: 665–673.<br />

Schoch CL, Crous PW, Polizzi G, Koike ST. 2001. Female fertility <strong>and</strong> single<br />

nucleotide polymorphism comparisons in Cylindrocladium pauciramosum.<br />

Plant Disease 85: 941–946.<br />

Schoch CL, Crous PW, Wingfield BD, Wingfield MJ. 1999. The Cylindrocladium<br />

c<strong>and</strong>elabrum species complex includes four distinct mating populations.<br />

Mycologia 91: 286–298.<br />

Sw<strong>of</strong>ford DL. 2002. PAUP*. Phylogenetic analysis using parsimony (* <strong>and</strong><br />

other methods), 4.0b10. Computer programme. Sinauer Associates, Sunderl<strong>and</strong>,<br />

Massachusetts, USA.<br />

Vitale A, Polizzi G. 2008. First record <strong>of</strong> <strong>leaf</strong> <strong>spot</strong>s <strong>and</strong> stem lesions on Pistacia<br />

lentiscus caused by Cylindrocladium pauciramosum <strong>and</strong> C. scoparium in<br />

Italy. Plant Pathology 57: 384.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!