23.07.2014 Views

spg mitteilungen communications de la ssp - Schweizerische ...

spg mitteilungen communications de la ssp - Schweizerische ...

spg mitteilungen communications de la ssp - Schweizerische ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Nr. 40<br />

Juli 2013<br />

SPG MITTEILUNGEN<br />

COMMUNICATIONS DE LA SSP<br />

(a) SF+ (b) SF (c) SF-<br />

1<br />

1<br />

1<br />

2<br />

4<br />

2<br />

4<br />

2<br />

4<br />

3<br />

3<br />

3<br />

1<br />

2<br />

4<br />

1<br />

2<br />

4<br />

1<br />

2<br />

4<br />

The scientific community celebrates this year the<br />

centennary of the Atomic Mo<strong>de</strong>l of Niels Bohr.<br />

Read more (on p. 52) about the history of this outstanding<br />

event in physics, which is also the topic<br />

of the SCNAT Annual Congress (see p. 60).<br />

3 3<br />

3<br />

What have snowf<strong>la</strong>kes to do with a<br />

hot p<strong>la</strong>sma ? Find out on p. 36.<br />

Four years after its <strong>la</strong>unch the Herschel<br />

space observatory completed<br />

its observations about how stars and<br />

ga<strong>la</strong>xies are formed. The successful<br />

mission is <strong>de</strong>scribed on p. 42.<br />

Joint Annual Meeting of the<br />

Austrian Physical Society and Swiss Physical Society<br />

with<br />

Austrian and Swiss Societies for Astronomy and Astrophysics<br />

September 3 - 6, 2013, JKU Linz<br />

General information: page 10, preliminary program: page 12


SPG Mitteilungen Nr. 40<br />

Inhalt - Contenu - Contents<br />

Gemeinsame Jahrestagung in Linz, 03. - 06. September 2013 - Réunion annuelle commune à Linz, 3 - 6 septembre 2013 3<br />

Vorwort; Preisverleihung, Generalversammlung - Avant-Propos; Cérémonie <strong>de</strong> remise <strong>de</strong>s prix, Assemblée générale 3<br />

Informationen für die Mitglie<strong>de</strong>r - Informations pour les membres 4<br />

Zum Tod von Nobelpreisträger Heinrich Rohrer 9<br />

Allgemeine Tagungsinformationen - Informations générales sur <strong>la</strong> réunion 10<br />

Vorläufige Programmübersicht - Résumé préliminaire du programme 12<br />

Aussteller - Exposants 24<br />

Open Access, where do we stand today? 25<br />

Kurz<strong>mitteilungen</strong> - Short Communications 25, 45<br />

19 th Swiss Physics Olympiad 2013 (SPhO) in Aarau 26<br />

Das Rennen um die Industrieproduktion <strong>de</strong>r Zukunft 27<br />

First result from the AMS experiment 28<br />

Progress in Physics (33): Outreach: Can Physics Cross Boundaries? 30<br />

Progress in Physics (34): On the <strong>de</strong>velopment of physically-based regional climate mo<strong>de</strong>lling 32<br />

Progress in Physics (35): A snowf<strong>la</strong>ke in a million <strong>de</strong>gree p<strong>la</strong>sma 36<br />

Physics Anecdotes (17): IBM Research – Zurich, a Success Story 40<br />

Goodbye Herschel 42<br />

Structural MEMS Testing 44<br />

Physique et <strong>la</strong> Société: Quand <strong>la</strong> Physique rejoint le Sport 46<br />

History of Physics (8): On the Einstein-Grossmann Col<strong>la</strong>boration 100 Years ago 48<br />

Histoire <strong>de</strong> <strong>la</strong> Physique (9): Le modèle atomique <strong>de</strong> Bohr: origines, contexte et postérité (part 1) 52<br />

Buchbesprechung: Geschichte <strong>de</strong>s SIN 56<br />

Lehrerfortbildung: 18 Deutschschweizer Lehrer im Herz von CERN 58<br />

Annual Congress of SCNAT 60<br />

Präsi<strong>de</strong>nt / Prési<strong>de</strong>nt<br />

Dr. Andreas Schopper, CERN, Andreas.Schopper@cern.ch<br />

Vorstandsmitglie<strong>de</strong>r <strong>de</strong>r SPG / Membres du Comité <strong>de</strong> <strong>la</strong> SSP<br />

Physikausbildung und -för<strong>de</strong>rung /<br />

Education et encouragement à <strong>la</strong> physique<br />

Dr. Tibor Gyalog, Uni Basel, tibor.gyalog@unibas.ch<br />

Vize-Präsi<strong>de</strong>nt / Vice-Prési<strong>de</strong>nt<br />

Dr. Christophe Rossel, IBM Rüschlikon, rsl@zurich.ibm.com<br />

Sekretär / Secrétaire<br />

Dr. MER Antoine Pochelon, EPFL-CRPP, antoine.pochelon@epfl.ch<br />

Kassier / Trésorier<br />

Dr. Pascal Ruffieux, EMPA, pascal.ruffieux@empa.ch<br />

Kon<strong>de</strong>nsierte Materie / Matière Con<strong>de</strong>nsée (KOND)<br />

Prof. Christian Rüegg, PSI & Uni Genève, christian.rueegg@psi.ch, christian.rueegg@unige.ch<br />

Angewandte Physik / Physique Appliquée (ANDO)<br />

Dr. Ivo Furno, EPFL-CRPP, ivo.furno@epfl.ch<br />

Astrophysik, Kern- und Teilchenphysik /<br />

Astrophysique, physique nucléaire et corp. (TASK)<br />

Prof. Martin Pohl, Uni Genève, martin.pohl@cern.ch<br />

Theoretische Physik / Physique Théorique (THEO)<br />

Prof. Gian Michele Graf, ETH Zürich, gmgraf@phys.ethz.ch<br />

Physik in <strong>de</strong>r Industrie / Physique dans l‘industrie<br />

Dr. Kai Hencken, ABB Dättwil, kai.hencken@ch.abb.com<br />

Atomphysik und Quantenoptik /<br />

Physique Atomique et Optique Quantique<br />

Prof. Antoine Weis, Uni Fribourg, antoine.weis@unifr.ch<br />

Geschichte <strong>de</strong>r Physik / Histoire <strong>de</strong> <strong>la</strong> Physique<br />

Prof. Jan Lacki, Uni Genève, jan.<strong>la</strong>cki@unige.ch<br />

Physik <strong>de</strong>r Er<strong>de</strong>, Atmosphäre und Umwelt /<br />

Physique du globe et <strong>de</strong> l'environnement<br />

Dr. Stéphane Goyette, Uni Genève, stephane.goyette@unige.ch<br />

SPG Administration / Administration <strong>de</strong> <strong>la</strong> SSP<br />

Allgemeines Sekretariat (Mitglie<strong>de</strong>rverwaltung, Webseite, Druck, Versand, Redaktion Bulletin<br />

& SPG Mitteilungen) /<br />

Secrétariat générale (Service <strong>de</strong>s membres, internet, impression, envoi, rédaction Bulletin<br />

& Communications <strong>de</strong> <strong>la</strong> SSP)<br />

S. Albietz, SPG Sekretariat, Departement Physik,<br />

Klingelbergstrasse 82, CH-4056 Basel<br />

Tel. 061 / 267 36 86, Fax 061 / 267 37 84, sps@unibas.ch<br />

Buchhaltung / Service <strong>de</strong> <strong>la</strong> comptabilité<br />

F. Erkadoo, SPG Sekretariat, Departement Physik,<br />

Klingelbergstrasse 82, CH-4056 Basel<br />

Tel. 061 / 267 37 50, Fax 061 / 267 13 49, francois.erkadoo@unibas.ch<br />

Protokollführerin / Greffière<br />

Susanne Johner, SJO@zurich.ibm.com<br />

Wissenschaftlicher Redakteur/ Rédacteur scientifique<br />

Dr. Bernhard Braunecker, Braunecker Engineering GmbH,<br />

braunecker@bluewin.ch<br />

Impressum:<br />

Die SPG Mitteilungen erscheinen ca. 2-4 mal jährlich und wer<strong>de</strong>n an alle Mitglie<strong>de</strong>r abgegeben.<br />

Abonnement für Nichtmitglie<strong>de</strong>r:<br />

CHF 20.- pro Jahrgang (In<strong>la</strong>nd; Aus<strong>la</strong>nd auf Anfrage), incl. Lieferung <strong>de</strong>r Hefte sofort nach Erscheinen frei Haus. Bestellungen<br />

bzw. Kündigungen jeweils zum Jahresen<strong>de</strong> sen<strong>de</strong>n Sie bitte formlos an folgen<strong>de</strong> Adresse:<br />

Ver<strong>la</strong>g und Redaktion:<br />

<strong>Schweizerische</strong> Physikalische Gesellschaft, Klingelbergstr. 82, CH-4056 Basel, sps@unibas.ch, www.sps.ch<br />

Redaktionelle Beiträge und Inserate sind willkommen, bitte wen<strong>de</strong>n Sie sich an die obige Adresse.<br />

Namentlich gekennzeichnete Beiträge geben grundsätzlich die Meinungen <strong>de</strong>r betreffen<strong>de</strong>n Autoren wie<strong>de</strong>r. Die<br />

SPG übernimmt hierfür keine Verantwortung.<br />

Druck:<br />

Werner Druck & Medien AG, Kanonengasse 32, 4001 Basel<br />

2


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Gemeinsame Jahrestagung in Linz, 03. - 06. September 2013<br />

Réunion annuelle commune à Linz, 3 - 6 septembre 2013<br />

Vorwort<br />

Avant-Propos<br />

Im Zweijahresrhythmus organisiert die SPG ihre Jahrestagung<br />

gemeinsam mit <strong>de</strong>r Österreichischen Physikalischen<br />

Gesellschaft (ÖPG) sowie <strong>de</strong>n <strong>Schweizerische</strong>n und Österreichischen<br />

Gesellschaften für Astronomie und Astrophysik<br />

(SGAA und ÖGAA). Dieser Modus hat sich in <strong>de</strong>n<br />

vergangenen Jahren bei <strong>de</strong>n sehr erfolgreichen Tagungen<br />

in Innsbruck (2009) und Lausanne (2011) bewährt. Die diesjährige<br />

Tagung in Linz soll diese Tradition fortsetzen und<br />

<strong>de</strong>n Dialog zwischen Physikern bei<strong>de</strong>r Län<strong>de</strong>r weiter vertiefen.<br />

Mit rund 400 eingereichten Abstracts in 15 Fachsitzungen,<br />

9 Plenarvorträgen und zwei öffentlichen Abendvorträgen,<br />

einer davon von Serge Haroche (Physiknobelpreisträger<br />

2012), steht ein sehr attraktives Programm zur Verfügung.<br />

Zu<strong>de</strong>m fin<strong>de</strong>t vor <strong>de</strong>r gemeinsamen Jahrestagung noch ein<br />

spezieller Energietag statt, zu <strong>de</strong>m alle Tagungsteilnehmer<br />

herzlich willkommen sind.<br />

Im Folgen<strong>de</strong>n fin<strong>de</strong>n Sie die für die SPG-Mitglie<strong>de</strong>r relevanten<br />

Gesellschaftsnachrichten, die wichtigsten Tagungsinformationen<br />

sowie eine vorläufige Programmübersicht.<br />

Das <strong>de</strong>finitive Programm wird in Kürze auf <strong>de</strong>r SPG-Webseite<br />

verfügbar sein.<br />

Der SPG-Vorstand hofft auf eine rege Teilnahme an <strong>de</strong>r Tagung<br />

und freut sich auf Ihren Besuch.<br />

Tous les <strong>de</strong>ux ans, <strong>la</strong> SSP organise sa réunion annuelle<br />

en col<strong>la</strong>boration avec <strong>la</strong> société autrichienne <strong>de</strong> physique<br />

(ÖPG) et les <strong>de</strong>ux sociétés nationales d'astronomie et<br />

d'astrophysique (SSAA et ÖGAA). Ce modèle a fait ses<br />

preuves au cours <strong>de</strong>s <strong>de</strong>rnières années <strong>de</strong> rencontres très<br />

fructueuses à Innsbruck (2009) et à Lausanne (2011). La<br />

conférence <strong>de</strong> cette année à Linz a comme but <strong>de</strong> poursuivre<br />

cette tradition et d’approfondir le dialogue entre les<br />

physiciens <strong>de</strong> ces <strong>de</strong>ux pays.<br />

Avec environ 400 résumés soumis à 15 séances, 9 conférences<br />

plénières et <strong>de</strong>ux conférences publiques, l'une par<br />

Serge Haroche (Prix Nobel <strong>de</strong> physique 2012), un programme<br />

très attrayant a été mis en p<strong>la</strong>ce. En outre, une<br />

journée spéciale <strong>de</strong> l'énergie aura lieu avant <strong>la</strong> réunion<br />

annuelle commune, à <strong>la</strong>quelle tous les participants <strong>de</strong> <strong>la</strong><br />

conférence sont les bienvenus.<br />

Vous trouverez ci-<strong>de</strong>ssous les nouvelles <strong>de</strong> <strong>la</strong> société d’intérêt<br />

pour les membres, ainsi que les informations les plus<br />

importantes sur <strong>la</strong> conférence et sur le programme provisoire.<br />

La version finale sera accessible sous peu sur le site<br />

<strong>de</strong> <strong>la</strong> SSP.<br />

Le comité <strong>de</strong> <strong>la</strong> SSP comptes donc sur une participation<br />

active et nombreuse à notre réunion annuelle et nous réjouissons<br />

<strong>de</strong> votre visite.<br />

Preisverleihung - Cérémonie <strong>de</strong> remise <strong>de</strong>s prix<br />

Mittwoch 04. September 2013, 11:30h - Mercredi 4 septembre 2013, 11:30h<br />

Johannes Kepler Universität Linz, Keplergebäu<strong>de</strong>, Hörsaal 1<br />

Es wer<strong>de</strong>n alle Preise von SPG und ÖPG in einer gemeinsamen<br />

Zeremonie verliehen.<br />

Tous les prix <strong>de</strong> <strong>la</strong> SSP et l'ÖPG seront remises dans une<br />

cérémonie commune.<br />

Generalversammlung 2013 - Assemblée générale 2013<br />

Donnerstag 05. September 2013, 12:00h - Jeudi 5 septembre 2013, 12:00h<br />

Johannes Kepler Universität Linz, Keplergebäu<strong>de</strong>, Hörsaal 4<br />

Traktan<strong>de</strong>n<br />

Ordre du jour<br />

1. Protokoll <strong>de</strong>r Generalversammlung vom<br />

21. Juni 2012<br />

Procès-verbal <strong>de</strong> l'assemblée générale du<br />

21 juin 2012<br />

2. Kurzer Bericht <strong>de</strong>s Präsi<strong>de</strong>nten Bref rapport du prési<strong>de</strong>nt<br />

3. Rechnung 2012, Revisorenbericht Bi<strong>la</strong>n 2012, rapport <strong>de</strong>s vérificateurs <strong>de</strong>s<br />

comptes<br />

4. Wahlen Elections<br />

5. Projekte Projets<br />

6. Diverses Divers<br />

3


SPG Mitteilungen Nr. 40<br />

Neue Mitglie<strong>de</strong>r 2012 -<br />

Nouveaux membres en 2012<br />

Acremann Yves, Adams Jonathan, Ancu Lucian Stefan,<br />

Andreussi Oliviero, Antognini Aldo, Bachmann Maja, Barhoumi<br />

Rafik, Bernard Laetitia, Bettler Marc-Olivier, Bigler<br />

Matthias, Bonvin Camille, Braun Oliver, Brunner Bernhard,<br />

Casa<strong>de</strong>i Diego, Castiglioni Luca, Cepellotti Andrea, Chandrasekaran<br />

Anand, Cheah Erik, Cholleton Danaël, Cohen<br />

Denis, Crivelli Paolo, Doglioni Caterina, Dragoni Daniele,<br />

Ehtesham Alireza, Fantner Georg, Fernan<strong>de</strong>s Vaz Carlos<br />

Antonio, Gibertini Marco, Goyette Stéphane, Havare Ali Kemal,<br />

Herzog Benedikt, Huppert Martin, Issler Mena, Jaffe<br />

Arthur, Jordan Inga, Knabenhans Mischa, Knopp Gregor,<br />

Kraus Peter, Krauth Felix, Küçükbenli Emine, Kuhn Felix<br />

Arjun, Laine Mikko, Leindl Mario, Locher Reto, Mariotti Nico<strong>la</strong>s,<br />

Marzari Nico<strong>la</strong>, Mathys Christoph, Mermod Philippe,<br />

Miguel Sanchez Javier, Montaruli Teresa, Moutafis Christoforos,<br />

Müller Andreas, Nguyen Ngoc Linh, O'Regan David<br />

Daniel, Pizzi Giovanni, Pozzorini Stefano, Rakotomiaramanana<br />

Barinjaka, Reinle-Schmitt Mathil<strong>de</strong> Léna, Ries Dieter,<br />

Rochman Dimitri, Rønnow Henrik Moodysson, Rückauer<br />

Bodo, Sabatini Ricardo, Salman Zaher, Schwarz Sacha,<br />

Si<strong>la</strong>tani Mahsa, Strassmann Peter, Südmeyer Thomas,<br />

Šulc Miros<strong>la</strong>v, Teh<strong>la</strong>r Andres, Tiwari Rakesh, Tolba Tamer,<br />

Tourneur Stéphane, van Megen Bram, Vaniček Jiří, Vindigni<br />

Alessandro, Walter Manuel, Wyszynski Grzegorz, Zimmermann<br />

Tomáš<br />

Ehrenmitglie<strong>de</strong>r - Membres d'honneur<br />

Prof. Hans Beck (2010)<br />

Dr. J. Georg Bednorz (2011)<br />

Prof. Jean-Pierre B<strong>la</strong>ser (1990)<br />

Prof. Jean-Pierre Borel (2001)<br />

Prof. Jean-Pierre Eckmann (2011)<br />

Prof. Charles P. Enz (2005)<br />

Prof. Øystein Fischer (2010)<br />

Prof. Hans Frauenfel<strong>de</strong>r (2001)<br />

Prof. Jürg Fröhlich (2011)<br />

Prof. Hermann Grun<strong>de</strong>r (2001)<br />

Prof. Hans-Joachim Güntherodt (2010)<br />

Dr. Martin Huber (2011)<br />

Prof. Verena Meyer (2001)<br />

Prof. K. Alex Müller (1991)<br />

Prof. Hans Rudolf Ott (2005)<br />

Prof. T. Maurice Rice (2010)<br />

Dr. Heinrich Rohrer (1990)<br />

Prof. Louis Sch<strong>la</strong>pbach (2010)<br />

Statistik - Statistique<br />

Assoziierte Mitglie<strong>de</strong>r - Membres associés<br />

A) Firmen<br />

• F. Hoffmann-La-Roche AG, 4070 Basel<br />

B) Universitäten, Institute<br />

• Albert-Einstein-Center for Fundamental Physics, Universität<br />

Bern, 3012 Bern<br />

• CERN, 1211 Genève 23<br />

• Département <strong>de</strong> Physique, Université <strong>de</strong> Fribourg,<br />

1700 Fribourg<br />

• Departement Physik, Universität Basel, 4056 Basel<br />

• Departement Physik, ETH Zürich, 8093 Zürich<br />

• EMPA, 8600 Dübendorf<br />

• Lab. <strong>de</strong> Physique <strong>de</strong>s Hautes Energies (LPHE), EPFL,<br />

1015 Lausanne<br />

• Paul Scherrer Institut, 5332 Villigen PSI<br />

• Physik-Institut, Universität Zürich, 8057 Zürich<br />

• Section <strong>de</strong> Physique, Université <strong>de</strong> Genève, 1211 Genève<br />

4<br />

C) Stu<strong>de</strong>ntenfachvereine<br />

• AEP - Association <strong>de</strong>s Etudiant(e)s en Physique, Université<br />

<strong>de</strong> Genève, 1211 Genève 4<br />

• Fachschaft Physik und Astronomie, Universität Bern,<br />

3012 Bern<br />

• Fachschaft Physique, Université <strong>de</strong> Fribourg, 1700 Fribourg<br />

• Fachverein Physik <strong>de</strong>r Universität Zürich (FPU),<br />

8057 Zürich<br />

• FG 14 (Fachgruppe für Physik-, Mathematik- und Versicherungswissenschaft),<br />

Universität Basel, 4056 Basel<br />

• Les Irrotationnels, EPFL, 1015 Lausanne<br />

• Verein <strong>de</strong>r Mathematik- und Physikstudieren<strong>de</strong>n an<br />

<strong>de</strong>r ETH Zürich (VMP), 8092 Zürich<br />

Verteilung <strong>de</strong>r Mitgliedskategorien -<br />

Répartition <strong>de</strong>s catégories <strong>de</strong> membres<br />

(31.12.2012)<br />

Or<strong>de</strong>ntliche Mitglie<strong>de</strong>r 726<br />

Doktoran<strong>de</strong>n 55<br />

Stu<strong>de</strong>nten 80<br />

Doppelmitglie<strong>de</strong>r DPG, ÖPG o<strong>de</strong>r APS 164<br />

Doppelmitglie<strong>de</strong>r PGZ 41<br />

Mitglie<strong>de</strong>r auf Lebenszeit 144<br />

Assoziierte Mitglie<strong>de</strong>r 19<br />

Bibliotheksmitglie<strong>de</strong>r 2<br />

Ehrenmitglie<strong>de</strong>r 18<br />

Beitragsfreie (Korrespon<strong>de</strong>nz) 7<br />

Total 1256<br />

4


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Jahresbericht 2012 <strong>de</strong>s Präsi<strong>de</strong>nten - Rapport annuel 2012 du prési<strong>de</strong>nt<br />

The major event of our society in 2012 was once more the<br />

annual SPS meeting that took p<strong>la</strong>ce from 21-22 June 2012<br />

at the Hönggerberg campus of the ETHZ, jointly organized<br />

with the four National Centres of Competence in Research<br />

(NCCR) MaNEP, MUST, Nano and QSIT as well as with the<br />

Swiss Society for Crystallography. More than 550 persons<br />

atten<strong>de</strong>d the meeting. The scientific program was rather<br />

<strong>de</strong>nse with 6 plenary talks, 237 talks distributed over<br />

14 parallel sessions and 170 posters. Worth mentioning is<br />

the successful session of the new section "Earth, Atmosphere<br />

and Environmental Physics" and a <strong>de</strong>dicated session<br />

to celebrate the birth of crystallography in 1912 "100 Years<br />

of Diffraction". It was very satisfying to observe a <strong>la</strong>rge<br />

participation of young enthusiastic physicists sharing their<br />

research results and their experiences in a lively manner.<br />

The interest by the commercial exhibitors was once more<br />

well <strong>de</strong>monstrated by the attendance of 21 companies. As<br />

every year, the annual meeting was also the occasion to<br />

announce and present the winners of the SPS Awards in<br />

General Physics, Con<strong>de</strong>nsed Matter Physics and Applied<br />

Physics.<br />

It became a tradition that SPS organises in col<strong>la</strong>boration<br />

with the Physikalische Gesellschaft Zürich PGZ a joint symposium<br />

every year. In September 2012, PGZ and SPS celebrated<br />

together the 125 years of PGZ with a meeting in<br />

Zürich on "General re<strong>la</strong>tivity and its applications".<br />

Fostering its international re<strong>la</strong>tions, every other year the<br />

SPS organises its annual meeting together with the Austrian<br />

Physical Society ÖPG that will take p<strong>la</strong>ce in Linz in 2013.<br />

The SPS maintained tight links to the European Physical<br />

Society EPS, participating in its Council and in various activities<br />

of its groups. In 2012 our society also welcomed its<br />

first international Associate Member with domicile in Switzer<strong>la</strong>nd,<br />

namely CERN.<br />

In view of promoting young scientists, the SPS Young<br />

Physicist Forum YPF, that was created in 2010 and that<br />

regroups most of the Swiss physics stu<strong>de</strong>nt associations,<br />

has been accepted as a Commission of SPS in 2012. In the<br />

framework of this very active forum, the young physicists<br />

had organised a SPS sponsored visit to the International<br />

Laboratory for Particle Physics CERN at Geneva. As every<br />

year, our society also sponsored activities of the Swiss<br />

Young Physicists Tournament SYPT as well as of the Swiss<br />

Physics Olympiads SPhO, with two SPS prizes awar<strong>de</strong>d to<br />

the best male and female finalists of SPhO.<br />

Furthermore, our society also supported Swiss stu<strong>de</strong>nts for<br />

attending the 13 th IONS (International OSA Network of Stu<strong>de</strong>nts)<br />

conference, that was jointly organized by PhD stu<strong>de</strong>nts<br />

from EPFL and ETH and that took p<strong>la</strong>ce in Zürich and<br />

Lausanne from 9-12 Jan, 2013.<br />

Three times per year the SPS publishes its "Communications",<br />

which is the most important SPS publication to disseminate<br />

information about on-going activities within the<br />

society and to review scientific progress in various areas.<br />

High-c<strong>la</strong>ss articles have been published in the various,<br />

now well established rubrics. A paper copy is distributed<br />

to all members, whilst open access to this publication is<br />

also granted to the entire Swiss scientific community via<br />

the SPS homepage.<br />

SPS is a member organization of the Swiss Aca<strong>de</strong>my of<br />

Science SCNAT and part of the p<strong>la</strong>tform Mathematics, Astronomy<br />

and Physics MAP. With two SPS representatives<br />

in the organising committee, our society is supporting<br />

the p<strong>la</strong>tform MAP actively in organising the "SCNAT-Jahreskongress<br />

2013" on the occasion of the jubilee of "100<br />

Jahre Bohr'sches Atommo<strong>de</strong>ll".<br />

We are grateful to the organizational and financial support<br />

of SCNAT and acknowledge also support of the Swiss<br />

Aca<strong>de</strong>my of Engineering Science SATW. Thanks to a wellba<strong>la</strong>nced<br />

program the Swiss Physical Society could once<br />

more close its budget with a positive ba<strong>la</strong>nce for 2012.<br />

Andreas Schopper, SPS Presi<strong>de</strong>nt, May 2013<br />

Protokoll <strong>de</strong>r Generalversammlung vom 21. Juni 2012 in Zürich<br />

Protocole <strong>de</strong> l'assemblée générale du 21 juin 2012 à Zürich<br />

Traktan<strong>de</strong>n<br />

1. Protokoll <strong>de</strong>r Generalversammlung vom 16.06.2011<br />

2. Bericht <strong>de</strong>s Präsi<strong>de</strong>nten<br />

3. Rechnung 2011 & Revisorenbericht<br />

4. Anpassung <strong>de</strong>r Statuten<br />

5. Neue Sektion und Kommission<br />

6. Projekte<br />

7. Wahlen<br />

Der Präsi<strong>de</strong>nt, Christophe Rossel, eröffnet die Generalversammlung<br />

um 12:00 Uhr. Anwesend sind 41 Mitglie<strong>de</strong>r.<br />

1. Protokoll <strong>de</strong>r letzten GV vom 16.6.2011 in Lausanne<br />

Herrn Peter Wolff beanstan<strong>de</strong>t <strong>de</strong>n ihn betreffen<strong>de</strong>n ersten<br />

Satz unter Traktandum „6. Diverses“ und verweist auf das<br />

GV-Protokoll 2010 (Basel). Da keine Neuformulierung vorliegt,<br />

wird über die in <strong>de</strong>n SPG-Mitteilungen veröffentlichte<br />

Version abgestimmt und diese mit 35 Stimmen genehmigt,<br />

bei 5 Enthaltungen und 1 Gegenstimme.<br />

(Siehe dazu <strong>de</strong>n NACHTRAG am Schluss dieses Protokolls).<br />

2. Bericht <strong>de</strong>s Präsi<strong>de</strong>nten<br />

Der Jahresbericht 2011 <strong>de</strong>s Präsi<strong>de</strong>nten wur<strong>de</strong> auf Seite 5<br />

<strong>de</strong>r "SPG Mitteilungen Nr. 37" im Mai 2012 veröffentlicht.<br />

Christophe Rossel erläutert kurz einige Punkte:<br />

5


SPG Mitteilungen Nr. 40<br />

• Die gemeinsame Jahrestagung mit <strong>de</strong>r Österreichischen<br />

Physikalischen Gesellschaft (ÖPG) und <strong>de</strong>n<br />

bei<strong>de</strong>n nationalen Gesellschaften für Astronomie und<br />

Astrophysik (SGAA und ÖGAA) vom 15.-17. Juni 2011<br />

in Lausanne war wie<strong>de</strong>rum ein Erfolg mit rund 650 Teilnehmen<strong>de</strong>n,<br />

10 Plenarvorträgen, 470 Beiträgen verteilt<br />

auf 10 Parallel-Sitzungen, dazu zahlreichen Postern<br />

und 22 Ausstellern.<br />

• Die Generalversammlung 2011 ernannte vier neue Ehrenmitglie<strong>de</strong>r:<br />

Dr. J. Georg Bednorz, Prof. Jean-Pierre<br />

Eckmann, Prof. Jürg Fröhlich und Dr. Martin Huber.<br />

• Die Mitglie<strong>de</strong>rzahl ist auf etwa 1'250 gestiegen, was<br />

einer Zunahme von rund 10% gegenüber <strong>de</strong>m Vorjahr<br />

entspricht. Bei <strong>de</strong>n 18 Kollektiv- (neu: assoziierten) Mitglie<strong>de</strong>rn<br />

ist bei <strong>de</strong>n Firmen ein Rückgang zu verzeichnen,<br />

dafür sind mehr Universitäten und Stu<strong>de</strong>ntenorganisationen<br />

vertreten.<br />

3. Rechnung 2011 & Revisorenbericht<br />

Der Kassier, Pierangelo Gröning, präsentiert und erläutert<br />

die Jahresrechnung 2011, die <strong>de</strong>tailliert in <strong>de</strong>n "SPG-Mitteilungen<br />

Nr. 37" auf Seite 7 veröffentlicht wur<strong>de</strong>. Sie schliesst<br />

mit einem Gewinn von CHF 17'200.36 und einem Vereinsvermögen<br />

von CHF 36'606.87.<br />

Der Empfehlung <strong>de</strong>r Revisoren folgend genehmigt die Generalversammlung<br />

die Jahresrechnung 2011 und <strong>de</strong>r Kassier<br />

wird mit bestem Dank für die gute Rechnungsführung<br />

ent<strong>la</strong>stet.<br />

4. Anpassung <strong>de</strong>r Statuten<br />

Die Generalversammlung stimmt <strong>de</strong>r auf Seite 9 <strong>de</strong>r "SPG-<br />

Mitteilungen Nr. 37" veröffentlichten Anpassung <strong>de</strong>r Statuten<br />

einstimmig zu. Somit wird <strong>de</strong>r Begriff "Kollektivmitglie<strong>de</strong>r"<br />

durch "Assoziierte Mitglie<strong>de</strong>r" ersetzt und in Art. 2<br />

die Definition <strong>de</strong>r Gruppe B um "überstaatliche bzw. internationale"<br />

erweitert.<br />

5. Neue Sektion und Kommission<br />

Die Generalversammlung stimmt folgen<strong>de</strong>n Neugründungen<br />

einstimmig zu.<br />

• Neue Sektion:<br />

Physik <strong>de</strong>r Er<strong>de</strong>, Atmosphäre und Umwelt -<br />

Earth, Atmosphere and Environmental Physics -<br />

Physique du Globe et <strong>de</strong> l'Environnement<br />

• Neue Kommission:<br />

Young Physicists Forum<br />

6. Projekte<br />

• Im September 2013 soll die nächste gemeinsame Jahrestagung<br />

mit <strong>de</strong>r ÖPG in Linz stattfin<strong>de</strong>n.<br />

• In Zusammenarbeit mit <strong>de</strong>r PGZ wird am 29.9.2012 das<br />

Symposium „Allgemeine Re<strong>la</strong>tivitätstheorie und ihre<br />

Anwendungen“ an <strong>de</strong>r Universität Zürich, organisiert.<br />

• Das neu als Kommission integrierte „Young Physicists<br />

Forum“ wird Aktivitäten, Betriebsbesichtigungen und<br />

Exkursionen für Stu<strong>de</strong>nten organisieren.<br />

• Die Final-Run<strong>de</strong> <strong>de</strong>r Schweizer Physik-Olympia<strong>de</strong><br />

hat am 21./22. April 2012 in Aarau stattgefun<strong>de</strong>n. Die<br />

Goldmedaillen-Gewinner Thanh Phong Lê und Laura<br />

Gremion wur<strong>de</strong>n zusätzlich mit <strong>de</strong>n bei<strong>de</strong>n SPG-<br />

Nachwuchspreisen ausgezeichnet. Die Internationale<br />

Physik-Olympia<strong>de</strong> fin<strong>de</strong>t im Juli in Est<strong>la</strong>nd statt.<br />

• Ebenfalls im Juli 2012 wird das „International Young<br />

Physicists Tournament“ (IYPT) in Bad Sulgau (D) stattfin<strong>de</strong>n.<br />

• Die SPG könnte sich am Swiss Young Physicists' Tournament<br />

2013 beteiligen. Im Jahr 2016 wird das IYPT<br />

möglicherweise in <strong>de</strong>r Schweiz organisiert.<br />

• Im 2013 wird das Jubiläum "100 Jahre Bohr'sches<br />

Atommo<strong>de</strong>ll" gefeiert.<br />

• 2015 wur<strong>de</strong> zum „Internationalen Jahr <strong>de</strong>s Lichts“ bestimmt.<br />

Dann wird die SCNAT auch ihr 200jähriges Bestehen<br />

feiern.<br />

7. Wahlen<br />

Der Präsi<strong>de</strong>nt dankt <strong>de</strong>n bei<strong>de</strong>n ausschei<strong>de</strong>n<strong>de</strong>n Vorstandsmitglie<strong>de</strong>rn<br />

Urs Staub (Kon<strong>de</strong>nsierte Materie) und<br />

Pierangelo Gröning (Kassier) für Ihren <strong>la</strong>ngjährigen Einsatz.<br />

Und <strong>de</strong>r Vizepräsi<strong>de</strong>nt, Andreas Schopper, dankt <strong>de</strong>m zurücktreten<strong>de</strong>n<br />

Präsi<strong>de</strong>nten, Christophe Rossel, für seine<br />

vierjährige Amtszeit.<br />

In corpore wer<strong>de</strong>n einstimmig gewählt:<br />

• Präsi<strong>de</strong>nt (bisher Vizepräsi<strong>de</strong>nt): Dr. Andreas Schopper,<br />

CERN<br />

• Vize-Präsi<strong>de</strong>nt (bisher Präsi<strong>de</strong>nt): Dr. Christophe Rossel,<br />

IBM Research Zurich<br />

• Kassier (bisher Revisor): Dr. Pascal Ruffieux, EMPA<br />

• Kon<strong>de</strong>nsierte Materie (neu): Dr. Christian Rüegg, PSI<br />

• Theoretische Physik (bisher ad interim): Prof. Gian Michele<br />

Graf, ETH Zürich<br />

• Physik <strong>de</strong>r Er<strong>de</strong>, Atmosphäre und Umwelt (neu): Dr.<br />

Stéphane Goyette, Universität Genf<br />

Die übrigen Vorstandsmitglie<strong>de</strong>r bleiben für ihre restliche<br />

Amtszeit unverän<strong>de</strong>rt.<br />

Der neue Präsi<strong>de</strong>nt dankt <strong>de</strong>n Anwesen<strong>de</strong>n für ihr Erscheinen<br />

sowie <strong>de</strong>n Delegierten und seinen Vorstandskollegen<br />

für ihren Einsatz und die gute Zusammenarbeit.<br />

En<strong>de</strong> <strong>de</strong>r Generalversammlung: 12:45 Uhr.<br />

Zürich, 21. Juni 2012<br />

Die Protokollführerin: Susanne Johner<br />

NACHTRAG zu Punkt 1, Protokoll <strong>de</strong>r letzten GV vom<br />

16.06.2011 in Lausanne<br />

Nach <strong>de</strong>r GV stimmt Herr Peter Wolff folgen<strong>de</strong>r Neuformulierung<br />

zu:<br />

Der erste Satz unter Traktandum "6. Diverses" wird ersetzt<br />

durch:<br />

"Herr Peter Wolff erinnert an sein Anliegen betreffend die<br />

Schwierigkeiten, nicht-englische Artikel in wissenschaftlichen<br />

Zeitschriften zu publizieren, welches er an <strong>de</strong>r GV<br />

2010 in Basel geäussert hatte."<br />

6


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Jahresrechnung 2012 - Bi<strong>la</strong>n annuel 2012<br />

Bi<strong>la</strong>nz per 31.12.2012<br />

Aktiven<br />

Um<strong>la</strong>ufsvermögen<br />

Postscheckkonto 55733,76<br />

Bank - UBS 230-627945.M1U 14378,51<br />

Debitoren - Mitglie<strong>de</strong>r 6450,00<br />

Debitoren - SCNAT/SATW u.a.m. 39180,80<br />

Transitorische Aktiven 2853,81<br />

Passiven<br />

An<strong>la</strong>gevermögen<br />

Beteiligung EP Letters 15840,00<br />

Mobilien 1,00<br />

Fremdkapital<br />

Mobiliar 1,00<br />

Mitglie<strong>de</strong>r Lebenszeit 59824,50<br />

Transitorische Passiven 10729,25<br />

Eigenkapital<br />

Vefügbares Vermögen 36606,87<br />

Total Passiven 134437,88 107161,62<br />

Gewinn 27276,26<br />

Total 134437,88 134437,88<br />

Verfügbares Vermögen per 31.12.12 nach Gewinnzuweisung 63883,13<br />

Erfolgsrechnung per 31.12.2012<br />

Aufwand<br />

Gesellschaftsaufwand<br />

EPS - Membership 14364,81<br />

SCNAT - Membership 8400,00<br />

SATW-Mitglie<strong>de</strong>rbeitrag 1750,00<br />

Ertrag<br />

SCNAT und SATW Zahlungs- und Verpflichtungskredite<br />

SPG-Jahrestagung 18240,86<br />

Schweizer Physik Olympia<strong>de</strong> 4000,00<br />

SPG Young Physicist's Forum 1180,80<br />

SCNAT/SPG Bulletin 9627,00<br />

SCNAT Periodika (SPG-Mitteilungen, Druckkosten) 15720,20<br />

SCNAT Int. Young Phys. Tournament 5500,00<br />

SCNAT Ent<strong>de</strong>ckungen <strong>de</strong>s Jahres 1912 4142,90<br />

SATW Earth Sciences 2350,00<br />

SATW Light and Sound Exhibition 3000,00<br />

Betriebsaufwand<br />

Löhne 11909,76<br />

Sozialleistungen 1806,60<br />

Porti/Telefonspesen/WWW- und PC-Spesen 814,95<br />

Versand (Porti Massensendungen) 7080,30<br />

Unkosten 3395,85<br />

Büromaterial 4492,30<br />

Ausseror<strong>de</strong>ntlicher Aufwand 4536,70<br />

Bankspesen 138,00<br />

Debitorenverluste Mitglie<strong>de</strong>r 1665,00<br />

Debitorenverlust SCNAT/SATW u.a.m. 5319,20<br />

Sekretariatsaufwand extern 12375,00<br />

Ertrag<br />

Mitglie<strong>de</strong>rbeiträge 98826,30<br />

Inserate/Flyerbei<strong>la</strong>gen SPG Mitteilungen 5170,00<br />

Aussteller 12744,94<br />

Zinsertrag 99,80<br />

Ertrag aus EP Letters Beteiligung 2745,45<br />

SCNAT und SATW Zahlungs- und Verpflichtungskredite<br />

SPG-Jahrestagung (SCNAT) 15000,00<br />

Schweizer Physik Olympia<strong>de</strong> 4500,00<br />

SPG Young Physicist's Forum 6000,00<br />

SCNAT Ent<strong>de</strong>ckungen <strong>de</strong>s Jahres 1912 4000,00<br />

SPG Bulletin (SCNAT) 5500,00<br />

Periodika (SPG-Mitteilungen, Druckkosten) (SCNAT) 4000,00<br />

SCNAT Int. Young Phys. Tournament 5500,00<br />

SATW Earth Sciences 2000,00<br />

SATW Light and Sound Exhibition 3000,00<br />

Total Aufwand / Ertrag 141810,23 169086,49<br />

Gewinn 27276,26<br />

Total 169086,49 169086,49<br />

7


SPG Mitteilungen Nr. 40<br />

Revisorenbericht zur Jahresrechnung 2012<br />

Die Jahresrechnung 2012 <strong>de</strong>r SPG wur<strong>de</strong> von <strong>de</strong>n unterzeichneten Revisoren geprüft und<br />

mit <strong>de</strong>n Belegen in Übereinstimmung befun<strong>de</strong>n.<br />

Die Revisoren empfehlen <strong>de</strong>r Generalversammlung <strong>de</strong>r SPG, die Jahresrechnung zu<br />

genehmigen und <strong>de</strong>n Kassier mit bestem Dank für die gute Rechnungsführung zu<br />

ent<strong>la</strong>sten.<br />

Die Revisoren <strong>de</strong>r SPG:<br />

Prof. Dr. Philipp Aebi<br />

Dr. Pierangelo Gröning<br />

Basel, 04. April 2013<br />

F. Erkadoo, SPG Büro, Departement Physik, Klingelbergstrasse 82, CH-4056 Basel<br />

Tel : 061 / 267 37 50, Fax : 061 / 267 13 49, Email : francois.erkadoo@unibas.ch<br />

8


News from SPS committee meetings (February & April)<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Annual Meetings: The SPS meeting in 2014 will be held in Fribourg<br />

beginning of July, together with the National Centres of Competence<br />

in Research (NCCRs). The meeting in 2015 is p<strong>la</strong>nned with<br />

the Austrian Societies in Wien.<br />

Communications: The SPS has two major means of communication,<br />

the "SPG Mitteilungen" ("Communications <strong>de</strong> <strong>la</strong> SSP") and<br />

the SPS homepage (www.sps.ch). To further improve communication,<br />

from now on, we will report about <strong>de</strong>cisions from the executive<br />

committee meetings in the "SPG Mitteilungen". The editorial<br />

board is being en<strong>la</strong>rged, with the entire committee contributing<br />

to articles of the specific rubrics. With the aim of better publicizing<br />

colloquia, talks and seminars of general interest in Swiss<br />

aca<strong>de</strong>mic centres and universities, a list of these events and their<br />

links will be provi<strong>de</strong>d on the SPS website. You are most welcome<br />

to communicate events of interest to the SPS Secretariat<br />

(sps@unibas.ch).<br />

Projects: One of the main emphases of the SPS is to promote<br />

young aca<strong>de</strong>mics through a variety of activities and projects. The<br />

Young Physicists Forum (YPF), a commission of SPS also represented<br />

in the executive committee, organized a 2-day meeting on<br />

"Physics and Sport". (see p. 46 for a <strong>de</strong>tailed report). Another continuous<br />

en<strong>de</strong>avour of the SPS is to improve the contact between<br />

the teachers and the organizers of courses or training for secondary<br />

school teachers. The involvement of teachers varies from<br />

canton to canton, due to very different levels of encouragement<br />

(from the obligation of following paid courses during teaching time<br />

to the encouragement of following only courses at one’s expense<br />

and outsi<strong>de</strong> working time). In view of this year’s discovery of the<br />

Higgs particle, a visit to CERN took p<strong>la</strong>ce in cooperation with H. P.<br />

Beck and www.teilchenphysik.ch , in particu<strong>la</strong>r for teachers from<br />

the Swiss German. For the en<strong>la</strong>rgement of outreach to all domains<br />

of physics, it is felt that simi<strong>la</strong>r activities should <strong>de</strong>velop over the<br />

next years in other fields of physics.<br />

This year the SPS was once more involved in the Swiss Physics<br />

Olympiad (SPhO) by awarding 4 prizes, in the special recipients’<br />

configuration of 2013 including Liechtenstein in the winners. For<br />

the first time, Switzer<strong>la</strong>nd and Liechtenstein will organise the 2016<br />

International Physics Olympiad (typically 400 participants from 95<br />

countries), which will require additional organisational and scientific<br />

forces to be involved.<br />

There exists a <strong>de</strong>mand from secondary schools stu<strong>de</strong>nts to become<br />

members of the Society: as a very first action, we will try<br />

to establish an e-mail list, with the link to the electronic version of<br />

"SPS Communications" to be sent for each new publication.<br />

Contact to Aca<strong>de</strong>mies: The SATW has new structures and commissions<br />

(scientific advisory board, topical p<strong>la</strong>tforms, etc.) in<br />

which now more physicists can take part as experts; SPS will<br />

spread the information to its members. The SCNAT encourages<br />

participation to the "200 years SCNAT" Jubilee in 2015; the SPS<br />

will support the "Pop-up Lab" for this event, a project supported<br />

by AGORA, which is a SNF tool to intensify and fund dialogue<br />

between science and public.<br />

Contact to EPS: SPS has submitted a nomination to the EPS<br />

Physics Education Division Award. A <strong>de</strong>legation has participated<br />

to the Energy Group Meeting. A variety of SPS actions have been<br />

<strong>de</strong>fined to follow-up on the outcome of the EPS council meeting.<br />

Zum Tod von Nobelpreisträger Heinrich Rohrer<br />

Mit grosser Bestürzung und Trauer<br />

musste die SPG vom Tod ihres Ehrenmitglieds<br />

Heinrich Rohrer erfahren, <strong>de</strong>r<br />

am 16. Mai im Alter von 79 Jahren verstarb.<br />

Er war von 1963 bis 1997 am IBM<br />

Forschungszentrum in Rüschlikon tätig<br />

und gilt als einer <strong>de</strong>r massgeben<strong>de</strong>n<br />

Pioniere <strong>de</strong>r Nanowissenschaften, <strong>de</strong>ren<br />

Wer<strong>de</strong>gang aus <strong>de</strong>m Forschungsstadium<br />

heraus zur mittlerweile alle<br />

Bereiche <strong>de</strong>s täglichen Lebens erfassen<strong>de</strong>n<br />

Nanotechnologie er aktiv mitgestalten<br />

konnte. Für seine Erfindung<br />

<strong>de</strong>s Rastertunnelmikroskops wur<strong>de</strong> er<br />

1986 zusammen mit Gerd Binnig mit <strong>de</strong>r<br />

höchsten Auszeichnung in Physik, <strong>de</strong>m<br />

Nobelpreis, geehrt.<br />

Eine <strong>de</strong>r letzten beeindrucken<strong>de</strong>n Anwendungen<br />

seiner Pionierarbeit ist <strong>de</strong>r kurze Film "a Boy<br />

and his Atom" über einen Jungen, <strong>de</strong>r mit einem Atom<br />

spielt, und <strong>de</strong>r als kleinster Film <strong>de</strong>r Welt kürzlich von Wissenschaftlern<br />

am IBM Forschungs<strong>la</strong>bor Alma<strong>de</strong>n / San<br />

Jose (USA) produziert wur<strong>de</strong>. Im gewissen Sinn eine Parabel<br />

über Heini, <strong>de</strong>r gerne seine Begeisterung für die Nanowissenschaft<br />

weltweit an die junge Generation weitergab.<br />

Das mag auch noch folgen<strong>de</strong> kleine Begebenheit illustrieren:<br />

Als eine Gruppe von Leica-Physikern gegen En<strong>de</strong> <strong>de</strong>r<br />

80er Jahre während einer Zugfahrt von Lausanne nach<br />

Image courtesy of IBM Research – Zurich<br />

Heerbrugg unerwartete technische<br />

Schwierigkeiten in einem Gemeinschaftsprojekt<br />

mit <strong>de</strong>r EPFL <strong>la</strong>utstark<br />

bek<strong>la</strong>gte, kam Heini Rohrer aus <strong>de</strong>m<br />

Nebenabteil überraschend zu uns und<br />

meinte schelmisch, dass wir die Beschäftigung<br />

mit Problemen im Submikrometerbereich<br />

doch positiv als Chance<br />

für <strong>de</strong>n Einstieg in <strong>de</strong>n Nanobereich<br />

mit all seinen ungeahnten Möglichkeiten<br />

sehen sollten! Während wir Älteren noch<br />

recht skeptisch blickten, wur<strong>de</strong>n unsere<br />

jüngeren Kollegen durch diese ermuntern<strong>de</strong>n<br />

Worte sichtbar aufgerichtet.<br />

Seine Persönlichkeit und die Be<strong>de</strong>utung<br />

seines Wirkens wer<strong>de</strong>n von IBM unter<br />

folgen<strong>de</strong>m Link http://www.research.<br />

ibm.com/articles/heinrich-rohrer.shtml<br />

eindrücklich geschil<strong>de</strong>rt.<br />

So verlieren wir Physiker einen liebenswerten Freund und<br />

Kollegen, <strong>de</strong>ssen beschei<strong>de</strong>ne Art, sein subtiler Humor,<br />

seine grossartigen wissenschaftlichen Leistungen und vor<br />

allem seine stete Hilfsbereitschaft uns in bester Erinnerung<br />

bleiben wer<strong>de</strong>n.<br />

C. Rossel (IBM Research - Zurich) und B. Braunecker (früher<br />

Leica Geosystems)<br />

9


SPG Mitteilungen Nr. 40<br />

Allgemeine Tagungsinformationen - Informations générales sur <strong>la</strong> réunion<br />

Konferenzwebseite und Anmeldung<br />

Alle Teilnehmeranmeldungen wer<strong>de</strong>n über die Konferenzwebseite<br />

vorgenommen.<br />

www.sps.ch o<strong>de</strong>r www.jku.at/hfp/oepgsps13<br />

Anmel<strong>de</strong>schluß: 1. August 2013<br />

Tagungsort<br />

Johannes Kepler Universität Linz, Keplergebäu<strong>de</strong><br />

Tagungssekretariat<br />

Das Tagungssekretariat befin<strong>de</strong>t sich beim Haupteingang<br />

zur Tagung, vor <strong>de</strong>m Hörsaal 1.<br />

Öffnungszeiten:<br />

Di 03.09. 09:00 - 19:00<br />

Mi - Do 04. - 05.09. 08:00 - 19:00<br />

Fr 06.09. 08:00 - 15:00<br />

Alle Tagungsteilnehmer mel<strong>de</strong>n sich bitte vor <strong>de</strong>m Besuch<br />

<strong>de</strong>r ersten Veranstaltung beim Sekretariat an, wo<br />

Sie ein Namensschild und allfällige weitere Unter<strong>la</strong>gen<br />

erhalten sowie die Tagungsgebühr bezahlen.<br />

Wichtig: Ohne Namensschild ist kein Zutritt zu einer<br />

Veranstaltung möglich.<br />

Wir empfehlen Ihnen, wenn möglich <strong>de</strong>n Dienstag<br />

Nachmittag für die Anmeldung zu nutzen. So können<br />

Sie am Mittwoch direkt ohne Wartezeiten die Vorträge<br />

besuchen.<br />

Achtung: Das Tagungssekretariat gibt kein technisches<br />

o<strong>de</strong>r Büromaterial ab. Je<strong>de</strong>r Teilnehmer ist für seine<br />

Ausrüstung (Mobilrechner, Laserpointer, Adapter, Schere,<br />

Reissnägel, Folien usw.) selber verantwortlich !<br />

Hörsäle<br />

In allen Hörsälen stehen Beamer und Hellraumprojektoren<br />

zur Verfügung. Bitte bringen Sie Ihre eigenen Mobilrechner<br />

und evtl. Adapter und USB Stick/CD mit.<br />

Postersession<br />

Die Postersession fin<strong>de</strong>t am Mittwoch und Donnerstag<br />

Abend sowie am Freitag während <strong>de</strong>r Mittagspause in<br />

<strong>de</strong>r Halle statt. Bitte bringen Sie Befestigungsmaterial<br />

(Reissnägel, Klebestreifen) selbst mit. Die Posterwän<strong>de</strong><br />

sind entsprechend diesem Programm numeriert, sodaß<br />

je<strong>de</strong>r Teilnehmer "seine" Wand leicht fin<strong>de</strong>n sollte. Alle<br />

Poster sollen an allen drei Tagen präsentiert wer<strong>de</strong>n.<br />

Maximale Postergröße: A0 Hochformat<br />

Zahlung<br />

Wir bitten Sie, die Tagungsgebühren im Voraus zu bezahlen.<br />

Sie verkürzen damit die Wartezeiten am Tagungssekretariat,<br />

erleichtern uns die Arbeit und sparen<br />

darüber hinaus noch Geld !<br />

Die Angaben zur Zahlung wer<strong>de</strong>n während <strong>de</strong>r Anmeldung<br />

direkt auf <strong>de</strong>r Webseite angezeigt.<br />

Site web <strong>de</strong> <strong>la</strong> conférence et inscription<br />

L'inscription <strong>de</strong>s participants se fait sur le site web <strong>de</strong><br />

<strong>la</strong> conférence.<br />

www.sps.ch ou www.jku.at/hfp/oepgsps13<br />

Dé<strong>la</strong>i d'inscription: 1 er août 2013<br />

Lieu <strong>de</strong> <strong>la</strong> conférence<br />

Johannes Kepler Universität Linz, Bâtiment "Kepler"<br />

Secrétariat <strong>de</strong> <strong>la</strong> conférence<br />

Le secrétariat <strong>de</strong> <strong>la</strong> réunion se trouve juste à l'entrée,<br />

<strong>de</strong>vant l'auditoire 1.<br />

Heures d'ouverture :<br />

Mar 3.9. 09:00 - 19:00<br />

Mer - Jeu 4. - 5.9. 08:00 - 19:00<br />

Ven 6.9. 08:00 - 15:00<br />

Tous les participants doivent se présenter en premier<br />

lieu au secrétariat <strong>de</strong> <strong>la</strong> conférence afin <strong>de</strong> recevoir leur<br />

badge et les divers documents ainsi que pour le paiement<br />

<strong>de</strong>s frais d'inscription.<br />

Attention: Sans badge, l'accès aux sessions <strong>de</strong> <strong>la</strong> manifestation<br />

sera refusé.<br />

Nous vous recommandons <strong>de</strong> vous inscrire déjà mardi<br />

après-midi afin d'éviter <strong>de</strong>s temps d'attente inutiles<br />

mercredi matin.<br />

Attention: Le secrétariat <strong>de</strong> <strong>la</strong> conférence ne met aucun<br />

matériel technique ni matériel <strong>de</strong> bureau à disposition.<br />

Chaque participant est responsable <strong>de</strong> son équipement<br />

(ordinateur, pointeur <strong>la</strong>ser, adaptateurs, ciseaux, punaises,<br />

...) !<br />

Auditoires<br />

Les auditoires disposent tous d’un projecteur multimédia<br />

(beamer) et d'un projecteur pour transparents.<br />

Veuillez apporter votre ordinateur portable ainsi que<br />

d'éventuels accessoires tels que clé USB ou CD.<br />

Séance posters<br />

Les posters seront présentés dans le hall le mercredi<br />

et jeudi soir et pendant <strong>la</strong> pause <strong>de</strong> midi <strong>de</strong> vendredi.<br />

Veuillez amener vous-même le matériel nécessaire pour<br />

fixer les posters (punaises, ruban adhésif). Les panneaux<br />

<strong>de</strong> posters seront numérotés suivant le numéro<br />

<strong>de</strong> l'abstract indiqué dans le programme. Tous les posters<br />

<strong>de</strong>vraient rester installés pendant les trois jours.<br />

Dimension maximale: A0, format portrait<br />

Paiement<br />

Nous vous prions <strong>de</strong> régler d'avance vos frais d'inscription.<br />

De cette manière vous éviterez <strong>de</strong>s files d'attente<br />

et vous nous facilitez notre travail. En plus vous pourrez<br />

faire <strong>de</strong>s économies !<br />

Les informations pour le paiement sont indiquées directement<br />

sur <strong>la</strong> page web lors <strong>de</strong> l'enregistrement.<br />

10


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Preise gültig bei Zahlung bis 1. August - Prix va<strong>la</strong>ble pour <strong>de</strong>s paiements avant le 1er août<br />

Kategorie - Catégorie<br />

EUR<br />

Mitglie<strong>de</strong>r von SPG, ÖPG, SGAA, ÖGAA - Membres <strong>de</strong> <strong>la</strong> SSP ÖPG, SSAA, ÖGAA 90.-<br />

Doktoran<strong>de</strong>n, die in einer <strong>de</strong>r obigen Gesellschaft Mitglied sind -<br />

70.-<br />

Doctorants qui sont membres d'une <strong>de</strong>s sociétés mentionnées ci-<strong>de</strong>ssus<br />

Doktoran<strong>de</strong>n, die NICHT Mitglied sind - Doctorants qui ne sont PAS membres 90.-<br />

Stu<strong>de</strong>nten VOR Master/Diplom Abschluß - Etudiants AVANT le <strong>de</strong>gré master/diplôme 30.-<br />

Plenar-/Einge<strong>la</strong><strong>de</strong>ne Sprecher, Preisträger - Conférenciers pléniers / invités, <strong>la</strong>uréats 0.-<br />

An<strong>de</strong>re Teilnehmer - Autres participants 120.-<br />

Konferenz Aben<strong>de</strong>ssen - Dîner <strong>de</strong> <strong>la</strong> conférence 70.-<br />

Zusch<strong>la</strong>g für Zahlungen nach <strong>de</strong>m 1. August sowie Barzahler an <strong>de</strong>r Tagung -<br />

20.-<br />

Supplément pour paiements effectués après le 1er août et pour paiements en espèces à <strong>la</strong> conférence<br />

Am Tagungssekretariat kann nur bar bezahlt wer<strong>de</strong>n (in<br />

EUR). Kreditkarten können lei<strong>de</strong>r nicht akzeptiert wer<strong>de</strong>n.<br />

ACHTUNG: Tagungsgebühren können nicht zurückerstattet<br />

wer<strong>de</strong>n.<br />

Kaffeepausen, Mittagessen<br />

Die Kaffeepausen und die zur Postersitzung gehören<strong>de</strong>n<br />

Apéros fin<strong>de</strong>n in <strong>de</strong>r Halle bei Händlerausstellung statt.<br />

Diese Leistungen sind in <strong>de</strong>r Konferenzgebühr enthalten.<br />

Die Mensen auf <strong>de</strong>m Campus sowie umliegen<strong>de</strong> Restaurants<br />

stehen zum Mittagessen zur Verfügung.<br />

Konferenz-Aben<strong>de</strong>ssen<br />

Das Aben<strong>de</strong>ssen fin<strong>de</strong>t am Donnerstag im Anschluß an<br />

die Postersession statt. Der Preis beträgt EUR 70.- pro<br />

Person (beinhaltet Transfer, Menü und Getränke) Bitte<br />

registrieren Sie sich unbedingt im Voraus, damit wir<br />

disponieren können. Eine Anmeldung vor Ort ist nicht<br />

möglich !<br />

Hotels und Anreise<br />

Alle Informationen fin<strong>de</strong>n Sie auf <strong>de</strong>r Konferenzwebseite:<br />

www.jku.at/hfp/oepgsps13<br />

Les paiements lors <strong>de</strong> <strong>la</strong> conférence ne pourront être<br />

effectués qu'en espèces (EUR). Les cartes <strong>de</strong> crédit ne<br />

pourront malheureusement pas être acceptées.<br />

ATTENTION: Les frais d'inscription ne pourront pas être<br />

remboursés.<br />

Pauses café, repas <strong>de</strong> midi<br />

Les pauses café, et les apéros pendant <strong>la</strong> séance posters<br />

se dérouleront dans le hall près <strong>de</strong>s exposants. Ces<br />

prestations sont inclues dans les frais d'inscription.<br />

Les restaurants du campus ainsi que <strong>de</strong>s restaurants<br />

autour <strong>de</strong> l'université sont disponible pour les repas <strong>de</strong><br />

midi.<br />

Dîner <strong>de</strong> <strong>la</strong> conférence<br />

Le dîner se tiendra le jeudi soir après <strong>la</strong> séance posters.<br />

Le prix est <strong>de</strong> EUR 70.- par personne (transfert, repas et<br />

boissons inclus). Veuillez s.v.p. absolument vous enregistrer<br />

d'avance pour <strong>de</strong>s raisons d'organisation. Il n'est<br />

plus possible <strong>de</strong> s'inscrire sur p<strong>la</strong>ce.<br />

Hôtels et Arrivée<br />

Tous les informations se trouvent sur le site web <strong>de</strong> <strong>la</strong><br />

conférence: www.jku.at/hfp/oepgsps13<br />

Neuer MANTIS Kontakt für<br />

die Schweiz und Österreich<br />

Das britische Unternehmen Mantis Deposition Ltd.<br />

ist seit <strong>de</strong>m 1. Oktober 2012 in Deutsch<strong>la</strong>nd mit<br />

einer eigenen Nie<strong>de</strong>r<strong>la</strong>ssung in Mainz vertreten, die<br />

für die Betreuung <strong>de</strong>r Kun<strong>de</strong>n in Deutsch<strong>la</strong>nd,<br />

Österreich und <strong>de</strong>r Schweiz zuständig ist.<br />

Mantis wur<strong>de</strong> im Jahre 2003 in Oxford von<br />

Wissenschaftlern mit Erfahrung in <strong>de</strong>n Bereichen<br />

Nanotechnologie sowie Mess-und<br />

Dünnschichttechnik gegrün<strong>de</strong>t. Ein Team von<br />

erfahrenen und hochqualifizierten Mitarbeitern trägt<br />

in Entwicklung, Produktion, Beratung, Instal<strong>la</strong>tion<br />

und Service zum Erfolg <strong>de</strong>s Unternehmens bei.<br />

Heute steht das Unternehmen für die Herstellung<br />

qualitativ hochwertiger Beschichtungskomponenten<br />

und Vakuumabschei<strong>de</strong>an<strong>la</strong>gen. Die Produkte<br />

wer<strong>de</strong>n sowohl in <strong>de</strong>r innovativen<br />

Materialforschung (Nanobeschichtungen,<br />

Moleku<strong>la</strong>rstrahlexpitaxie, Sputterprozessen uvm.)<br />

als auch in Pilot-Produktionsbeschichtungsan<strong>la</strong>gen<br />

mit Erfolg eingesetzt und stehen an <strong>de</strong>r Spitze <strong>de</strong>r<br />

Dünnschicht-Beschichtungstechnologie. Die Firma hat<br />

in kürzester Zeit mehr als 60 komplette An<strong>la</strong>gen<br />

weltweit verkauft.<br />

Neben universellen Standard Beschichtungssystemen<br />

wer<strong>de</strong>n auch An<strong>la</strong>gen nach Kun<strong>de</strong>nspezifikationen<br />

angeboten. Als beson<strong>de</strong>re Dienstleistung wird ein<br />

Entwicklungsbeschichtungsservice unter Verwendung<br />

<strong>de</strong>r eigenen Nanopartikel- Abscheidungsquelle<br />

angeboten.<br />

Mantis Deposition GmbH<br />

Alte Fahrkartendruckerei<br />

Mombacher Straße 52<br />

55122 Mainz<br />

Deutsch<strong>la</strong>nd<br />

Tel: +49(0)6131-3272520<br />

OfficeDE@mantis<strong>de</strong>position.com<br />

www.mantis<strong>de</strong>position.<strong>de</strong><br />

11


SPG Mitteilungen Nr. 40<br />

Vorläufige Programmübersicht - Résumé préliminaire du programme<br />

Das vollständige Programm wird allen Teilnehmern am Tagungssekretariat<br />

abgegeben sowie auf <strong>de</strong>r SPG-Webseite<br />

publiziert.<br />

Hinweise:<br />

- Je Beitrag wird nur <strong>de</strong>r präsentieren<strong>de</strong> Autor aufgeführt.<br />

- Die Postersitzung ist am Mittwoch und Donnerstag<br />

von 18:30 - ca. 20:00 (mit Apéro) sowie am Freitag von<br />

12:00 - 13:30.<br />

- (p) = Plenarsprecher, (i) = einge<strong>la</strong><strong>de</strong>ner Sprecher<br />

Special: Energy Day 2013<br />

Tuesday, 03.09.2013, HS 1<br />

Le programme final complet sera distribué aux participants<br />

au stand du secrétariat <strong>de</strong> <strong>la</strong> conférence et sera publié sur<br />

le site <strong>de</strong> <strong>la</strong> SSP.<br />

Indication:<br />

- seul le nom <strong>de</strong> l’auteur présentant <strong>la</strong> contribution a été<br />

indiqué.<br />

- <strong>la</strong> session poster a lieu le mercredi et jeudi <strong>de</strong> 18.30 à<br />

env. 20.00 (avec apéro) ainsi que le vendredi <strong>de</strong> 12:00<br />

à 13:30.<br />

- (p) = orateur <strong>de</strong> <strong>la</strong> session plénière, (i) = orateur invité<br />

Special: Thermoelectrics<br />

Tuesday, 03.09.2013, HS 4<br />

Time ID Energy Day<br />

Chair: Werner Spitzl<br />

10:00 21 Energiespeicherung: Das Vorwort zum Energietag<br />

2013<br />

Norbert Pillmayr<br />

10:15 22 Zukünftiges Energiesystem benötigt neue Lösungsansätze<br />

beson<strong>de</strong>rs bei <strong>de</strong>r Speicherung<br />

Horst Steinmüller<br />

10:45 23 Herausfor<strong>de</strong>rungen für <strong>de</strong>n Betrieb <strong>de</strong>s kontinentaleuropäischen<br />

Verbundnetzes<br />

Martin Geidl<br />

11:15 Coffee Break<br />

11:30 24 Smart Grid und das Hauskraftwerk<br />

Michael Zahradnik<br />

12:00 25 Wieviel erneuerbare Energie muss zukünftig gespeichert<br />

wer<strong>de</strong>n? Analyse <strong>de</strong>s zukünftigen<br />

Speicherbedarfs in Österreich mit einem hohen Anteil<br />

an erneuerbarer Energie.<br />

Gerfried Jungmeier<br />

12:30 Diskussion<br />

12:45 Lunch<br />

Chair: Brigitte Pagana-Hammer<br />

13:30 26 Technologische und Ökonomische Aspekte <strong>de</strong>r<br />

Elektrochemischen Energiespeicherung<br />

Stefan Koller<br />

14:00 27 Wasserstoffspeicherung durch Magnesiumhydrid<br />

Iris Bergmair<br />

14:30 28 Superconducting Magnetic Energy Storage<br />

Bartlomiej A. Glowacki<br />

15:00 29 Die Lithium-Ionen Batterie – von <strong>de</strong>r Knopfzelle zur<br />

Traktionsbatterie<br />

Michael Sternad<br />

15:30 Diskussion<br />

15:50 Schlußbemerkungen<br />

Norbert Pillmayr<br />

16:00 END<br />

18:00 RECEPTION<br />

19:00 Official Opening of the Joint Annual Meeting of<br />

ÖPG, SPS, ÖGAA and SSAA<br />

Public Lecture<br />

Chair: Günther Bauer, JKU Linz<br />

19:15 11 Using Nanostructures toward Achieving Energy<br />

Sustainability<br />

Mildred Dresselhaus, MIT (p)<br />

20:30 END<br />

Time ID Thermoelectrics<br />

Chair: Armando Rastelli, JKU Linz<br />

15:15 31 From Superconductivity Towards Thermoelectricity:<br />

Germanium Based Skutterudites<br />

E. Bauer (i)<br />

15:45 32 Half-Heusler compounds for thermoelectricity<br />

Sascha Populoh<br />

16:00 Coffee Break<br />

16:30 33 Seebeck Effect in the Kondo Insu<strong>la</strong>tor CeRu 4<br />

Sn 6<br />

un<strong>de</strong>r<br />

Magnetic Field<br />

Valentina Martelli<br />

16:45 34 Seebeck-effect in organic semiconductors<br />

Kristin Wil<strong>la</strong><br />

17:00 35 Crucial role of surface-segregation-driven intermixing<br />

on the thermal transport through p<strong>la</strong>nar Ge/Si<br />

super<strong>la</strong>ttices<br />

Peixuan Chen<br />

17:15 36 X-ray characterization of Si/Ge thermoelectric<br />

structures<br />

Tanja Etzelstorfer<br />

17:30 37 Intermetallic transition metal c<strong>la</strong>thrates<br />

Andrey Prokofiev<br />

17:45 END<br />

ID<br />

Thermoelectrics Poster<br />

41 Influence of process variables of ball milling and hot pressing<br />

on the thermoelectric performance of type I c<strong>la</strong>thrates<br />

Xinlin Yan<br />

42 Development of a Measuring P<strong>la</strong>tform for Thermoelectric<br />

Properties of Nanowires<br />

Günther Lientschnig<br />

43 Thermoelectric properties of melt-spun SPS sintered type-<br />

VIII Ba 8<br />

Ga 16<br />

Sn 30-x<br />

Ge x<br />

c<strong>la</strong>thrates<br />

Petr Tomes<br />

44 Experimental setup and sample processing for direct measurements<br />

of the cross-p<strong>la</strong>ne Seebeck coefficient of nanostructured<br />

Si/Ge materials<br />

Lukas Nausner<br />

45 Melt spinning of CoSb 3<br />

: e ect<br />

of microstructure on phonon<br />

thermal conductivity<br />

Matthias Ikeda<br />

46 Thermoelectric properties of the anisotropic Kondo insu<strong>la</strong>tor<br />

CeRu 4<br />

Sn 6<br />

Jonathan Haenel<br />

47 Resonant scattering induced thermopower peak in one dimensional<br />

disor<strong>de</strong>red systems<br />

Daniel Müller<br />

12


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Special: Photovoltaics<br />

Tuesday, 03.09.2013, HS 5<br />

Time ID Photovoltaics<br />

Chair: Markus C<strong>la</strong>rk Scharber, JKU Linz<br />

14:45 51 Theory of light-harvesting in photosynthesis: From<br />

structure to function<br />

Thomas Renger<br />

15:15 52 Artificial Photosynthesis for the Storage of Chemical<br />

Energy<br />

Kerstin Oppelt<br />

15:30 53 Ultrathin, lightweight, and flexible organic so<strong>la</strong>r<br />

cells<br />

Matthew White<br />

15:45 54 Colloidal Quantum dot photovoltaics: Tuning optoelectronic<br />

properties<br />

Philipp Stadler<br />

16:00 Coffee Break<br />

16:30 55 Organic nanocrystals from <strong>la</strong>tent pigments for environmentally-friendly<br />

and biocompatible electronics<br />

Mykhailo Sytnyk<br />

16:45 56 Metal sulfi<strong>de</strong> nanoparticle/polymer hybrid so<strong>la</strong>r<br />

cells<br />

Gregor Trimmel<br />

17:00 57 Flexible Monograin Membrane Photovoltaic Membranes<br />

Axel Neisser<br />

17:15 58 15 years of research on organic so<strong>la</strong>r cells: lessons<br />

learned from 1 % to 10 % efficiency<br />

Christoph J. Brabec (i)<br />

18:00 END<br />

Plenary Session<br />

Wednesday, 04.09.2013, HS 1<br />

Time ID Plenary Session I<br />

Chair: NN<br />

08:55 Welcome note<br />

09:00 1 P<strong>la</strong>smons, forces and currents in atomic and molecu<strong>la</strong>r<br />

contacts<br />

Richard Berndt, Uni Kiel (p)<br />

09:40 2 Quantum simu<strong>la</strong>tion with Atoms, Ions and Molecules<br />

Peter Zoller, Uni Innsbruck (p)<br />

10:20 Coffee Break<br />

Chair: NN<br />

10:50 3 The Quantum Way of Doing Computations<br />

Rainer B<strong>la</strong>tt, Uni Innsbruck (p)<br />

11:30 Award Ceremony<br />

12:30 Lunch<br />

13:30 Topical Sessions<br />

18:30 Postersession and Apéro<br />

Public Lecture<br />

Chair: Rainer B<strong>la</strong>tt, Uni Innsbruck<br />

20:00 12 Manipu<strong>la</strong>tion of single quantum systems<br />

Serge Haroche, Collège <strong>de</strong> France (p)<br />

21:15 END<br />

Thursday, 05.09.2013, HS 1<br />

Time ID Plenary Session II<br />

Chair: NN<br />

09:00 4 100 years Bohr's Atomic Mo<strong>de</strong>l: Its birth and its importance<br />

in the rise of QM<br />

Jan Lacki, Uni Genève (p)<br />

09:40 5 Exop<strong>la</strong>nets and their atmospheres<br />

Lisa Kaltenegger, MPI Hei<strong>de</strong>lberg (p)<br />

10:20 Coffee Break<br />

Chair: NN<br />

10:50 6 GEO: Using Earth observation for Integrated Water<br />

Resources Management<br />

Doug<strong>la</strong>s Cripe, GEOSS Genève (p)<br />

11:30 16 Winner of the ÖPG Boltzmann Award<br />

12:00 General Assemblies<br />

12:30 Lunch<br />

13:30 Topical Sessions<br />

18:30 Postersession (continued)<br />

20:00 Conference Dinner<br />

Friday, 06.09.2013, HS 1<br />

Time ID Plenary Session III<br />

Chair: NN<br />

09:00 7 LHC - The first three years<br />

Rainer Wallny, ETH Zürich (p)<br />

09:40 8 Quantum phase transitions in con<strong>de</strong>nsed matter<br />

Silke Bühler-Paschen, TU Wien (p)<br />

10:20 Coffee Break<br />

Chair: Georg Pabst, Uni Graz<br />

10:50 9 Theoretical Insights into Structure of Animal Tissues<br />

Primoz Ziherl, Uni Ljubljana (p)<br />

11:30 17 Winner of the SPS ABB Award<br />

12:00 Best Poster Awards<br />

12:15 Postersession (continued), Lunch<br />

13:30 Topical Sessions<br />

15:30 END<br />

Careers for Physicists<br />

Thursday, 05.09.2013, K001A<br />

Time ID Careers for Physicists<br />

Chair: Kai Hencken, ABB Ba<strong>de</strong>n<br />

14:00 71 "Advanced Manufacturing", ein interessantes Feld<br />

für Physikerinnen und Physiker?<br />

Bernhard Braunecker (i)<br />

14:30 72 What does a physicist do at ETH Zürich if he is not<br />

in research?<br />

Bernd Rinn (i)<br />

15:00 73 On the Cutting Edge: Publication Dynamics and the<br />

Society of Scientific Journals<br />

Istvan Daruka<br />

15:30 Coffee Break<br />

13


SPG Mitteilungen Nr. 40<br />

16:00 74 A new generation of Physicists<br />

Stefano Verginelli (i)<br />

16:30 75 Workshop: Wie? Mit Physik Karriere machen?<br />

Josef Siess (i)<br />

17:00 END<br />

18:30 Postersession and Apéro<br />

20:00 Conference Dinner<br />

Physik und Schule<br />

Wednesday, 04.09.2013, K269D<br />

Time ID Physik und Schule<br />

Chair: Engelbert Stütz, JKU Linz<br />

13:15 81 Sexl-Preisträger: Preisvortrag 1<br />

13:35 82 Sexl-Preisträger: Preisvortrag 2<br />

14:00 83 Hat Aristoteles doch recht?<br />

Siegfried Bauer (i)<br />

Prämierte Fachbereichsarbeiten<br />

Chair: Leopold Mathelitsch, Uni Graz<br />

15:00 84 Introduction to Rutherford Backscattering Spectrometry<br />

(RBS)<br />

Maximilian Heinz Ruep<br />

15:15 85 Schwerelosigkeit und Mikrogravitation<br />

Bianca Neureiter<br />

15:30 Coffee Break<br />

16:00 86 Stringtheorie; Grundgedanken und ihr Einfluss auf<br />

Teilchenphysik und Kosmologie<br />

Stefan Purkhart<br />

16:15 87 Bildsensorik. Physikalische und technische Grund<strong>la</strong>gen<br />

am Beispiel <strong>de</strong>s CCD<br />

Stefan Janisch<br />

Chair: Engelbert Stütz, JKU Linz<br />

16:30 88 Präsentation <strong>de</strong>s österreichischen Teams <strong>de</strong>s IYPT<br />

2013<br />

16:50 89 Präsentation <strong>de</strong>s österreichischen Teams <strong>de</strong>r IPhO<br />

2013<br />

17:10 Sitzung <strong>de</strong>s FA Physik und Schule<br />

18:00 ENDE<br />

18:30 Postersession and Apéro<br />

ID<br />

Physik und Schule Poster<br />

91 Construction, <strong>de</strong>velopment and tests of a cost-effective<br />

force p<strong>la</strong>tform<br />

Florian Rie<strong>de</strong>r<br />

92 Schülervorstellungen zum Thema Strahlung<br />

Martin Hopf<br />

93 Astrobiology as an Interdisciplinary Starting Point to Natural<br />

Sciences<br />

Johannes Leitner<br />

94 Let`s P<strong>la</strong>y Physics! Making physics education physically - A<br />

project on the transit of the venus<br />

Christina Rothenhäusler<br />

95 Nanophysik am Beispiel eines Rastertunnelmikroskops in<br />

<strong>de</strong>r Schule<br />

Thomas Möst<br />

96 Professionswissen Physiklehramtsstudieren<strong>de</strong>r in Österreich<br />

Ingrid Krumphals<br />

KOND<br />

Wednesday, 04.09.2013, HS 5<br />

Time ID Magnetism, Superconductivity<br />

and Quantum Criticality<br />

Chair: Silke Bühler-Paschen, TU Wien<br />

13:30 101 Superconductivity in Materials without Inversion<br />

Symmetry<br />

Ernst Bauer (i)<br />

14:00 102 Quantum criticality of the heavy-fermion compound<br />

CeCoGe 2.2<br />

Si 0.8<br />

Julio Larrea<br />

14:15 103 Strong Pressure Depen<strong>de</strong>nce of the Magnetic<br />

Penetration Depth in Single Crystals of the Heavy-<br />

Fermion Superconductor CeCoIn 5<br />

Studied by Muon<br />

Spin Rotation<br />

Ludovic Howald<br />

14:30 104 Electric and magnetic coupling of quantum-critical<br />

materials to a microwave cop<strong>la</strong>nar wavegui<strong>de</strong> resonator<br />

at milli-Kelvin temperatures<br />

Diana Geiger<br />

14:45 105 Superconductivity and Quantum Criticality<br />

Johan Chang (i)<br />

15:15 106 About the origin of frustration in the magnetismdriven<br />

multiferroic YBaCuFeO 5<br />

Marisa Medar<strong>de</strong><br />

15:30 Coffee Break<br />

Neutrons and Synchrotron Radiation<br />

for Con<strong>de</strong>nsed Matter<br />

Chair: Oskar Paris, Uni Leoben<br />

16:00 111 X-ray absorption spectroscopy for element selective<br />

investigations of structure, valence and magnetism<br />

in doped oxi<strong>de</strong>s<br />

Andreas Ney (i)<br />

16:30 112 Growing semiconductor nitri<strong>de</strong>s into spintronic and<br />

magnetooptic materials<br />

Alberta Bonanni<br />

16:45 113 X-ray strain microscopy of inhomogoenously<br />

strained Ge micro-bridges<br />

Tanja Etzelstorfer<br />

17:00 114 A New Crystalline Phase of Gallium Phosphi<strong>de</strong>:<br />

Wurtzite Nanowires Investigated by X-ray Diffraction<br />

Dominik Kriegner<br />

17:15 115 In-situ synchrotron SAXS studies on Colloidal Nanocrystal<br />

Formation<br />

Rainer T. Lechner<br />

17:30 116 In-situ and ex-situ study of mesostructured silica<br />

synthesized in the gas phase<br />

Barbara Sartori<br />

17:45 117 Humidity Driven Pore-Lattice Deformation in Or<strong>de</strong>red<br />

Mesoporous Thin Films<br />

Parvin Sharifi<br />

18:00 118 Radiation assisted material synthesis and processing<br />

by <strong>de</strong>ep X-ray lithography<br />

Bene<strong>de</strong>tta Marmiroli<br />

18:15 119 Novel insights into photoemission from solids: Surface<br />

RABBITT yields absolute <strong>de</strong><strong>la</strong>ys and reveals<br />

temporal structure beyond transport phenomena.<br />

Luca Castiglioni<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

14


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Thursday, 05.09.2013, HS 5<br />

Friday, 06.09.2013, HS 5<br />

Time ID Soft Matter and Other Systems I<br />

(Shared with the Biophysics session)<br />

Chair: Georg Pabst, Uni Graz<br />

13:30 121 Equilibrium and flow of cluster-forming complex<br />

fluids<br />

Christos N. Likos (i)<br />

14:00 122 Optimized Fourier Monte Carlo Simu<strong>la</strong>tion of Solid<br />

and Hexatic Membranes<br />

Andreas Troester<br />

14:15 123 Biomimetic folding particle chains<br />

Peter Oostrum<br />

Soft Matter and Other Systems II<br />

Chair: Oskar Paris, Uni Leoben<br />

14:30 124 Small Angle Scattering Study of the self-assembly<br />

of an amphiphilic <strong>de</strong>signer pepti<strong>de</strong> from the monomer<br />

to a helical superstructure<br />

Heinz Amenitsch<br />

14:45 125 Liquid Structure and the Noncoinci<strong>de</strong>nce Effect of<br />

Liquid Dimethyl Sulfoxi<strong>de</strong> Revisited<br />

Maurizio Musso<br />

15:00 126 Generation of multiply twinned Ag clusters (n


SPG Mitteilungen Nr. 40<br />

Surfaces, Interfaces and Thin Films<br />

Wednesday, 04.09.2013, HS 1<br />

Time ID Surfaces + organic thin films<br />

Chair: Christian Teichert, Uni Leoben<br />

13:30 201 Iso<strong>la</strong>ted Pd Sites on PdGa Mo<strong>de</strong>l Catalyst Surfaces<br />

Jan Prinz<br />

13:45 202 Metal clusters and simple adsorbates on ultra-thin<br />

ZrO 2<br />

/Pt 3<br />

Zr<br />

Joong Il J. Choi<br />

14:00 203 Mechanics of single molecules<br />

Ernst Meyer (i)<br />

14:30 204 Initial steps of indigo film growth on silicon dioxi<strong>de</strong><br />

Boris Scherwitzl<br />

14:45 205 Tuning the 1D-self-assembly of dicyano-functionalized<br />

helicene building-blocks<br />

Aneliia Shchyrba<br />

15:00 206 Using po<strong>la</strong>rized light in PEEM<br />

Thorsten Wagner<br />

15:15 207 Substrate enhanced intermolecu<strong>la</strong>r dispersion:<br />

Pentacene on Cu(110)<br />

Thomas Ules<br />

15:30 Coffee Break<br />

Theory + clusters<br />

Chair: Ernst Meyer, Uni Basel<br />

16:00 211 Ohmic contacts for resistance measurements of<br />

ultra-thin metal-on-silicon <strong>la</strong>yers<br />

Bernhard Lutzer<br />

16:15 212 Electrical and Physical Characterization of Interfacial<br />

Germanates in Ge-based MOS <strong>de</strong>vices<br />

Ole Bethge<br />

16:30 213 Numerical Simu<strong>la</strong>tions of a Capil<strong>la</strong>rity Driven Morphological<br />

Transition on the Nanoscale<br />

Istvan Daruka<br />

16:45 214 Reflectance Anisotropy spectrum of water covered<br />

Cu(110) surface studied from first principles<br />

Amirreza Baghbanpourasl<br />

17:00 215 Organic Semiconductors Interfaces Explored With<br />

Ab-initio Electronic Structure Methods<br />

Peter Puschnig (i)<br />

17:30 216 Solid-solid interfaces in metal oxi<strong>de</strong> nanoparticle<br />

ensembles<br />

Oliver Diwald<br />

17:45 217 Single gold nanoparticles as nanoscopic pH-sensors<br />

Cynthia Vidal<br />

18:00 218 Efficient random <strong>la</strong>sing from star-shaped nanoparticles<br />

Johannes Ziegler<br />

18:15 219 Growth of in-p<strong>la</strong>ne SiGe nanowires<br />

Hannes Watzinger<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

Thursday, 05.09.2013, HS 1<br />

Time ID Metho<strong>de</strong>s<br />

Chair: Peter Zeppenfeld, Uni Linz<br />

13:30 221 On-surface magnetochemistry: controlling spins in<br />

adsorbed molecules by a chemical switch<br />

Christian Wäckerlin (i)<br />

14:00 222 Electronic and Magnetic Properties of Surface-<br />

Supported Hydrocarbon Radicals Studied by Low-<br />

Temperature Scanning Tunneling Microscopy<br />

Stefan Müllegger<br />

14:15 223 Using AFM nanoin<strong>de</strong>ntation to investigate mechanical<br />

properties of cellulose fibers in controlled humidities<br />

Christian Ganser<br />

14:30 224 Helium Atom Scattering Measurements of the<br />

Sb(111) Surface<br />

Markus Po<strong>la</strong>nz<br />

14:45 225 Formation of HCN + in Heterogeneous Reactions of<br />

N 2+ and N + with Surface Hydrocarbons<br />

Martina Harnisch<br />

15:00 226 Hydrogen Induced Buckling of Gold Films<br />

Baran Eren<br />

15:15 ÖPG-OGD Division Meeting<br />

15:30 Coffee Break<br />

Oxi<strong>de</strong>s<br />

Chair: Ulrike Diebold, TU Wien<br />

16:00 231 Growth and Morphology of Epitaxial MgO Films on<br />

GaAs(001)<br />

Anirban Sarkar<br />

16:15 232 Compositional and structural study of homoepitaxial-STO<br />

based oxi<strong>de</strong>s heterostructures<br />

Mathil<strong>de</strong> L. Reinle-Schmitt<br />

16:30 233 Single Metal Adatoms on Fe 3<br />

O 4<br />

(001)-(√2x√2)R45°<br />

Gareth Parkinson (i)<br />

17:00 234 Water Gas Shift Chemistry at the Fe 3<br />

O 4<br />

(001) Surface<br />

Oscar Gamba<br />

17:15 235 STM and photoemission study of vacancies and hydroxyls<br />

at the SrTiO 3<br />

(110)-(4×1) surface<br />

Stefan Gerhold<br />

17:30 236 Interface Fermi states of LaAlO 3<br />

/SrTiO 3<br />

and re<strong>la</strong>ted<br />

heterostructures<br />

C<strong>la</strong>udia Cancellieri (i)<br />

18:00 237 Combined Spectroscopic Study of the Evolution<br />

from the Metallic Surface State on SrTiO 3<br />

to the Interface<br />

of LaAlO 3<br />

/SrTiO 3<br />

Nicho<strong>la</strong>s Plumb<br />

18:15 238 Field-induced migration of oxygen vacancies towards<br />

the surface of TiO 2<br />

anatase(101)<br />

Martin Setvin<br />

18:30 Postersession and Apéro<br />

20:00 Conference Dinner<br />

Friday, 06.09.2013, HS 1<br />

Time ID Graphene + flexible electronics<br />

Chair: Adolf Winkler, TU Graz<br />

13:30 241 Observing Graphene grow: In-situ metrology for<br />

controlled growth of graphene and carbon nanotubes<br />

Bernhard Bayer<br />

13:45 242 Optical characterization of atomically precise<br />

graphene nanoribbons<br />

Richard Denk<br />

14:00 243 Electronic Structure of Atomically Precise Graphene<br />

Nanoribbons<br />

Pascal Ruffieux<br />

14:15 244 Modification of exfoliated graphene: a case study<br />

Markus Kratzer (i)<br />

16


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

14:45 245 In-situ thin film transistor fabrication: Electrical and<br />

surface analytical characterization<br />

Roman Lassnig<br />

15:00 246 Valve metal anodic oxi<strong>de</strong>s for flexible electronics<br />

Andrei Ionut Mardare<br />

15:15 247 Direct writing of high-k metal oxi<strong>de</strong> dielectrics for<br />

flexible <strong>la</strong>rge area electronics<br />

Christian M. Siket<br />

15:30 END<br />

ID Surfaces, Interfaces and Thin Films Poster<br />

251 Stabilization mechanisms at po<strong>la</strong>r ZnO surfaces in i<strong>de</strong>al<br />

vacuum conditions: a SCC-DFTB study<br />

Stefan Huber<br />

252 Shockley Surface States Revisited: A Comprehensive Density<br />

Functional Study<br />

Bernd Kollmann<br />

253 Molecule-Substrate Hybridization Revealed by Angle-Resolved<br />

Photoemission Spectroscopy<br />

Dario Knebl<br />

254 Initial growth of quinacridone on Ag(111)<br />

Thorsten Wagner<br />

255 Adsorption of quinacridone on Cu(110) and Cu(110)-(2x1)O<br />

surfaces<br />

Harald Zaglmayr<br />

256 Attachment-limited nucleation and growth of organic films:<br />

Pentacene on sputter modified mica (001)<br />

Levent Tümbek<br />

257 Interfacial structure and <strong>de</strong>vice efficiency of an organic bi<strong>la</strong>yer<br />

heterojunction so<strong>la</strong>r cell<br />

Michael Zawodzki<br />

258 Adsorption of pentacene and perfluoro-pentacene on<br />

Cu(110) studied by reflectance difference spectroscopy<br />

Johannes Gall<br />

259 Influences of rippled titania surfaces on to the growth morphologies<br />

of 6P thin films<br />

Reinhold Wartbichler<br />

260 Hydrogen adsorption on TiO 2<br />

anatase(101)<br />

Benjamin Daniel<br />

261 Optical properties of metal doped ZnO thin films on g<strong>la</strong>ss<br />

and polymer substrates<br />

Meirzhan Dosmailov<br />

262 Negative muonium as a local probe for the <strong>de</strong>tection of the<br />

photo-induced inversion of a Ge surface <strong>la</strong>yer<br />

Thomas Prokscha<br />

263 Short-Term Metastable Effects in Amorphous Silicon So<strong>la</strong>r<br />

Modules<br />

Ankit Mittal<br />

264 Oxi<strong>de</strong> diffusion barriers on GaAs(001)<br />

Shibo Wang<br />

265 Formation of Tungsten Oxi<strong>de</strong> Nano<strong>la</strong>yers by (WO 3<br />

) 3<br />

Cluster<br />

Con<strong>de</strong>nsation on Ag(100)<br />

Thomas Obermüller<br />

266 Influence of the Ni content in AlCu alloy using the combinatorial<br />

approach.<br />

Martina Hafner<br />

267 Susceptibility measurements of Ni clusters embed<strong>de</strong>d in<br />

organic matrices<br />

Mariel<strong>la</strong> Denk<br />

268 Investigation of Single Ni Adatoms on the Magnetite (001)<br />

Surface<br />

Ro<strong>la</strong>nd Bliem<br />

269 Investigation of Exchange Coupled Composites with Scanning<br />

Transmission X-ray Microscopy<br />

Phillip Wohlhüter<br />

270 Spin resolved photoemission spectroscopy of Fe 3<br />

O 4<br />

: The<br />

effect of surface structure<br />

Jiri Pavelec<br />

271 Charge behavior on insu<strong>la</strong>ting monocrystallic surfaces by<br />

Kelvin probe force microscopy<br />

Monika Mirkowska<br />

272 Stabilization of explosive compounds on metallic surfaces<br />

Stefan Ralser<br />

273 Characterizations of HOPG and Graphene Treated with Low<br />

Temperature Hydrogen P<strong>la</strong>sma<br />

Baran Eren<br />

274 Characterization of thin two-element compound material<br />

films by time-of-flight Low Energy Ion Scattering<br />

Dietmar Roth<br />

275 Indication of phonon-assisted electron-hole re<strong>la</strong>xations on<br />

Sb(111) and Bi(111) in iHAS measurements<br />

Patrick Kraus<br />

276 Determination of atmospheric corrosion of coated steel<br />

surfaces by in situ infrared reflection absorption spectroscopy<br />

(IRRAS)<br />

Maurizio Musso<br />

277 Al-Si thin films for hydrogen reference materials<br />

Cezarina Ce<strong>la</strong> Mardare<br />

Nuclear, Particle- and Astroparticle Physics<br />

Wednesday, 04.09.2013, HS 6<br />

Time ID I: LHC Physics I<br />

Chair: Martin Pohl, Uni Genève<br />

13:30 301 Search for a Higgs-like Boson <strong>de</strong>caying into bottom<br />

quarks<br />

Philipp Eller<br />

13:45 302 Search for long lived charged and massive particles<br />

at LHCb <strong>de</strong>tector<br />

Thi Viet Nga La<br />

14:00 303 Measurement of differential iso<strong>la</strong>ted diphoton production<br />

cross section at CMS<br />

Marco Peruzzi<br />

14:15 304 Search for Higgs boson production in supersymmetric<br />

casca<strong>de</strong>s using fully hadronic final states<br />

Mario Masciovecchio<br />

14:30 305 Search for supersymmetry in hadronic final states<br />

with MT2 at CMS<br />

Hannsjörg Weber<br />

14:45 306 Search for supersymmetry in events with two opposite-sign<br />

same-f<strong>la</strong>vor leptons, jets and missing<br />

energy<br />

Marco - Andrea Buchmann<br />

15:00 307 Application of CMS and ATLAS Simplified Mo<strong>de</strong>ls<br />

Results to Theories Beyond the Standard Mo<strong>de</strong>l<br />

(BSM)<br />

Ursu<strong>la</strong> Laa<br />

15:15 308 Measurement of quarkonium po<strong>la</strong>rization at CMS<br />

Valentin Knünz<br />

15:30 Coffee Break<br />

II: Astroparticle and Non-accelerator Physics<br />

Chair: Eberhard Widmann, ÖAW Wien<br />

16:00 311 Neutron Capture Measurements on 62 Ni, 63 Ni and<br />

197<br />

Au and their Relevance for Stel<strong>la</strong>r Nucleosynthesis<br />

C<strong>la</strong>udia Le<strong>de</strong>rer (i)<br />

17


SPG Mitteilungen Nr. 40<br />

16:30 312 Latest Results of Searches for Point and Exten<strong>de</strong>d<br />

Sources with Time In<strong>de</strong>pen<strong>de</strong>nt and Time Depen<strong>de</strong>nt<br />

emissions of Neutrinos with the IceCube Neutrino<br />

Observatory<br />

Asen Christov (i)<br />

17:00 313 High resolution 3D-simu<strong>la</strong>tions of ga<strong>la</strong>ctic cosmic<br />

ray propagation using GALPROP<br />

Michael Werner<br />

17:15 314 The cosmological constant puzzle: Vacuum energies<br />

from QCD to dark energy<br />

Steven Bass<br />

17:30 315 Numerical 3D-hydrodynamic mo<strong>de</strong>lling of colliding<br />

winds in massive star binaries: particle acceleration<br />

and gamma-ray emission<br />

K<strong>la</strong>us Reitberger<br />

17:45 316 High precision tests of the Pauli Exclusion Principle<br />

for Electrons at LNGS<br />

Johann Marton<br />

18:00 317 Search of neutrinoless double beta <strong>de</strong>cay with the<br />

GERDA experiment<br />

Giovanni Benato<br />

18:15 318 qBounce: A quantized frequency reference with<br />

gravity-resonance-spectroscopy<br />

Gunther Cronenberg<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

Thursday, 05.09.2013, HS 6<br />

Time ID III: Protons and Neutrons<br />

Chair: Johann Marton, ÖAW Wien<br />

13:30 321 Spectroscopy apparatus for the measurement of<br />

the hyperfine structure of antihydrogen<br />

Chloe Malbrunot (i)<br />

14:00 322 A progress report on <strong>de</strong>tector and analysis <strong>de</strong>velopment<br />

for the Hbar-HFS experiment within the<br />

ASACUSA col<strong>la</strong>boration<br />

Clemens Sauerzopf<br />

14:15 323 Beamline Simu<strong>la</strong>tions for cold Antihydrogens<br />

Berna<strong>de</strong>tte Kolbinger<br />

14:30 324 Gravitational interaction of antihydrogen: the AEgIS<br />

experiment at CERN<br />

Michael Doser<br />

14:45 325 Design of the downstream interface in the AEgIS<br />

beamline<br />

Sebastian Lehner<br />

15:00 326 Ultracold neutrons for fundamental physics experiments<br />

at the Paul Scherrer Institute<br />

Bernhard Lauss (i)<br />

15:30 Coffee Break<br />

IV: Protons and Neutrons, F<strong>la</strong>vor Physics<br />

Chair: Christoph Schwanda, ÖAW Wien<br />

16:00 331 Comparison of the Larmor precession frequencies<br />

of 199 Hg and ultracold neutrons in the nEDM experiment<br />

at PSI<br />

Beatrice Franke<br />

16:15 332 Vector Cesium Magnetometer for the nEDM Experiment<br />

Samer Afach<br />

16:30 333 The future neutron beta <strong>de</strong>cay facility PERC<br />

Jacqueline Erhart<br />

16:45 334 Tailoring of po<strong>la</strong>rised neutron beams by means of<br />

spatial magnetic spin resonance<br />

Erwin Jericha<br />

17:00 335<br />

PMNS<br />

F<strong>la</strong>vour GUT mo<strong>de</strong>ls with u 13<br />

= u C<br />

/ 2<br />

Constantin Sluka<br />

17:15 336 Angu<strong>la</strong>r analysis of B d<br />

" K*µ + µ - with the ATLAS <strong>de</strong>tector<br />

Emmerich Kneringer<br />

17:30 337 Measurement of B (B 0 " J/cf), B s (B0 " J/cf' (1525))<br />

s 2<br />

and B (B 0 " s J/cK+ K - ) and a <strong>de</strong>termination of the<br />

B 0 " J/cf po<strong>la</strong>rization at the Belle experiment<br />

s<br />

Felicitas Thorne<br />

17:45 338 Measurement of |V cb<br />

| through exclusive semileptonic<br />

B -> D l n <strong>de</strong>cays with a tagged fully reconstructed<br />

B meson at the Belle experiment<br />

Robin G<strong>la</strong>ttauer<br />

18:00 339 Monte Carlo simu<strong>la</strong>tion for Kaonic <strong>de</strong>uterium studies<br />

Carolina Berucci<br />

18:15<br />

18:30 Postersession and Apéro<br />

20:00 Conference Dinner<br />

Friday, 06.09.2013, HS 6<br />

Time ID V: LHC Physics II and Detectors<br />

Chair: Rainer Wallny, ETH Zürich<br />

13:30 341 Measurement of Charged Particle Multiplicities<br />

with the ATLAS <strong>de</strong>tector at the LHC<br />

Wolfgang Lukas<br />

13:45 342 Jet production in association with a Z boson at CMS<br />

Andrea Carlo Marini<br />

14:00 343 The Readout System of the Belle II Silicon Vertex<br />

Detector<br />

Richard Thalmeier<br />

14:15 344 Interstrip capacitance of double si<strong>de</strong>d silicon strip<br />

<strong>de</strong>tectors<br />

Bernhard Leitl<br />

14:30 345 Over Saturation Behaviour of SiPMs at High Photon<br />

Exposure<br />

Lukas Gruber<br />

14:45 346 FLUKA studies of hadron-irradiated scintil<strong>la</strong>ting<br />

crystals for calorimetry at the High-Luminosity LHC<br />

Milena Quittnat<br />

15:00 347 Studies of radiation hardness of diamond strip<br />

trackers.<br />

Felix Bachmair<br />

15:15 348 Irradiation Studies with the New Digital Readout<br />

Chip for the Phase I Upgra<strong>de</strong> of the CMS Pixel Detector<br />

Jan Hoss<br />

15:30 END<br />

ID Nuclear, Particle- and Astrophysics Poster<br />

351 Measurement of the thermal neutron flux at the source for<br />

ultracold neutrons at the Paul Scherrer Institute<br />

Dieter Ries<br />

352 An uncompensated magnetic field drifts in a search for an<br />

electric dipole moment of the neutron (nEDM) carrying out<br />

at Paul Scherrer Institute (PSI).<br />

N Prashanth Pataguppi<br />

353 High-volume production of Silicon strip <strong>de</strong>tectors for particle<br />

physics experiments<br />

Thomas Bergauer<br />

354 Bethe–Salpeter Description of Light Pseudosca<strong>la</strong>r Mesons<br />

Wolfgang Lucha<br />

355 Lock-in based <strong>de</strong>tection scheme for a hydrogen beam<br />

Michael Wolf<br />

356 Spin po<strong>la</strong>rized atomic hydrogen beam source<br />

Martin Diermaier<br />

18


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

357 A neutron interferometric measurement and calcu<strong>la</strong>tion of<br />

a phase shift induced by Laue transmission<br />

Thomas Potocar<br />

358 Development of a novel muon beam line for next generation<br />

precision experiments<br />

Kim Siang Khaw<br />

359 Measurements and simu<strong>la</strong>tions of magnetic field insi<strong>de</strong> the<br />

ASACUSA Antihydrogen spin-flip cavity<br />

Nazli Di<strong>la</strong>ver<br />

360 Neutron Reflectometry as Matura project - Verifying the<br />

Wave-Particle Dualism at the NARZISS Instrument at the<br />

Paul Scherrer Institut.<br />

Car<strong>la</strong> Kreis<br />

Theoretical Physics<br />

Wednesday, 04.09.2013, K034D<br />

Time ID Theoretical Physics I<br />

Chair: Jakob Yngvason, Uni Wien<br />

14:00 401 Lattice effects on vortex dynamics in strongly corre<strong>la</strong>ted<br />

electron systems<br />

Sebastian Huber (i)<br />

14:30 402 Strongly Interacting Dipo<strong>la</strong>r Quantum Gases<br />

Robert Zillich (i)<br />

15:00 403 On currents, anomalies and the RG-behaviour of<br />

supersymmetric gauge theories.<br />

Jean-Pierre Derendiger (i)<br />

15:30 Coffee Break<br />

16:00 404 Maximally entangled sets<br />

Barbara Kraus (i)<br />

16:30 405 Geometry as a Semic<strong>la</strong>ssical Effect in a Quantum<br />

World - Emergent gravity from matrix mo<strong>de</strong>ls<br />

Daniel B<strong>la</strong>schke<br />

16:45 406 Electrostatic Interactions with Dielectric Samples<br />

in Scanning Probe Microscopies<br />

Alexis Baratoff<br />

17:00<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

Thursday, 05.09.2013, K034D<br />

Time ID Theoretical Physics II<br />

Chair: Gian Michele Graf, ETH Zürich<br />

13:30 411 Exterior Navier-Stokes problems in two dimensions:<br />

results and open questions<br />

Peter Wittwer (i)<br />

14:00 412 Quantum many-body effects in transport through<br />

quantum dots: renormalization-group approaches<br />

Sabine An<strong>de</strong>rgassen (i)<br />

14:30 413 Atomic clocks: A mathematical physics perspective<br />

Martin Fraas (i)<br />

15:00 414 Non-local perturbations of hyperbolic PDEs and<br />

QFT mo<strong>de</strong>ls on non-commutative spacetimes<br />

Gandalf Lechner (i)<br />

15:30 Coffee Break; END<br />

Applied, P<strong>la</strong>sma and Geophysics<br />

Wednesday, 04.09.2013, K153C<br />

Time ID Applied Physics<br />

Chair: Ivo Furno, CRPP-EPFL<br />

13:30 451 Analysis of the Microscopic Fluid Flow of State-ofthe-art<br />

Absorption Heat Pump Working Pairs un<strong>de</strong>r<br />

Operational Conditions<br />

Johann Emhofer<br />

13:45 452 Entwicklung eines Kon<strong>de</strong>nsationswindkanals zur<br />

Untersuchung <strong>de</strong>s Wärme- und Massetransports<br />

an Wärmeüberträgern<br />

Sanda Seichter<br />

14:00 453 Precision Metrology with a Dio<strong>de</strong>-Pumped Solid-<br />

State Laser Optical Frequency Comb<br />

Stephane Schilt<br />

14:15 454 I<strong>de</strong>ntifying Photoreaction Products in Cinnamatebased<br />

Photoalignment Materials<br />

Daniele Passerone<br />

14:30 455 Experimental and simu<strong>la</strong>ted results on adsorption<br />

of molecules on fullerenes.<br />

Alexan<strong>de</strong>r Kaiser<br />

14:45 456 Dual-Comb Spectroscopy based on Mid-IR Quantum-Casca<strong>de</strong>-Lasers<br />

Frequency-combs<br />

Gustavo Vil<strong>la</strong>res<br />

15:00 457 Coinci<strong>de</strong>nce Time Resolution(CTR) of PMT and<br />

SiPM and readout components<br />

Albulena Berisha Shabani<br />

15:15<br />

15:30 Coffee Break<br />

Geohysics and Applied Physics<br />

Chair: Stéphane Goyette, Uni Genève<br />

16:00 461 Towards an integrated Observation System of the<br />

B<strong>la</strong>ck Sea catchment<br />

Nico<strong>la</strong>s Ray (i)<br />

16:30 462 Cs-137 in Wildpilzen in Österreich: Verteilung und<br />

zeitliche Trends<br />

Herbert Lettner<br />

16:45 463 Simu<strong>la</strong>tion of microwave propagation and absorption<br />

in heterogeneous rocks<br />

Ronald Meisels<br />

17:00 464 Calcu<strong>la</strong>tion of atom evaporation rates using entropy<br />

production maximisation<br />

Frank Kassubek<br />

P<strong>la</strong>sma Physics<br />

Chair: Ivo Furno, CRPP-EPFL<br />

17:15 465 Zeitaufgelöste schnelle Messungen von Wachstumsrate<br />

und Teilchentransport in HIPIMS-P<strong>la</strong>smen<br />

Christian Maszl<br />

17:30 466 P<strong>la</strong>sma fluctuations study in the new closed fluxsurfaces<br />

configuration of the TORPEX experiment<br />

Fabio Avino<br />

17:45 467 Simu<strong>la</strong>ting the effect of fine radial structures resulting<br />

from non-adiabatic passing electrons on turbulent<br />

transport in the ITG and TEM regimes<br />

J. Dominski<br />

18:00 468 Characterization of rf discharges in non-thermal atmospheric<br />

pressure p<strong>la</strong>sma jets using helium<br />

Johann Laimer<br />

18:15 END<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

19


SPG Mitteilungen Nr. 40<br />

ID<br />

Applied, P<strong>la</strong>sma and Geophysics Poster<br />

481 Simu<strong>la</strong>ted insertion loss of noise barriers using the boundary<br />

element method<br />

Holger Waubke<br />

482 In-line measurements of chlorine containing polymers in an<br />

industrial waste sorting p<strong>la</strong>nt by <strong>la</strong>ser-induced breakdown<br />

spectroscopy<br />

Norbert Huber<br />

483 Element analysis of complex materials by calibration-free<br />

<strong>la</strong>ser-induced breakdown spectroscopy<br />

Johannes D. Pedarnig<br />

484 Variable Capacitance Energy Harvesting<br />

Robert Pichler<br />

485 Photoluminescence enhancement of Double-Walled Carbon<br />

Nanotubes filled with linear carbon chains<br />

Philip Rohringer<br />

486 Inter-atomic Coulombic Decay (ICD) of clusters upon electron<br />

impact<br />

Elias Jabbour Al Maalouf<br />

487 The Inner Structure of Jupiter’s Moon Europa – Estimations<br />

on the Physical Conditions at the Sea Floor of its Potential<br />

Subsurface Ocean<br />

Susanne Pol<strong>la</strong>ck-Drs<br />

488 The evolution of hotspots on Earth and Venus<br />

Elisabeth Fahrngruber<br />

489 Comparing Characteristics of Polygonal Impact Craters on<br />

Mercury and Venus<br />

Gerhard Weihs<br />

490 Mo<strong>de</strong>ling the evolution and fate of early Mars' hypothesized<br />

ocean<br />

Gabor Imre Kiss<br />

Atomic Physics and Quantum Optics<br />

Wednesday, 04.09.2013, HS 4<br />

Time ID Atomic Physics and Quantum Optics I<br />

Chair: NN<br />

13:30 501 Measuring higher-or<strong>de</strong>r interferences with a fivepath<br />

interferometer<br />

Thomas Kauten<br />

13:45 502 Extraction of Ionic Cores From Charged Helium Nanodroplets<br />

Michael Renzler<br />

14:00 503 Probing Non-Equilibrium Dynamics of Iso<strong>la</strong>ted<br />

Quantum Many-Body Systems<br />

Bernhard Rauer<br />

14:15 504 Buffer gas cooling of atoms and molecules<br />

Sarah Skoff<br />

14:30 505 Spectroscopic and Theoretical Studies of Chromium<br />

Doped Helium Nanodroplets<br />

Andreas Kautsch<br />

14:45 506 A graph state formalism for mutually unbiased bases<br />

Christoph Spengler<br />

15:00 507 Strong coupling between single atoms and nontransversal<br />

photons<br />

Christian Junge<br />

15:15 508 Interactions of He – in doped He droplets<br />

Michael Neustetter<br />

15:30 Coffee Break<br />

Time ID Atomic Physics and Quantum Optics II<br />

Chair: NN<br />

16:00 511 Decoration of anionic and cationic fullerenes with<br />

po<strong>la</strong>r and apo<strong>la</strong>r molecules.<br />

Niko<strong>la</strong>us Weinberger<br />

16:15 512 Nonequilibrium dynamics, Optimal Control and Nanofibers<br />

on an Atom Chip<br />

Dominik Fischer<br />

16:30 513 A Spin Po<strong>la</strong>rised Temperature Controlled Atomic<br />

Hydrogen Beamline<br />

Peter Caradonna<br />

16:45 514 Theoretical Investigation of Excited States of the<br />

Diatomic Molecule LiCa<br />

Johann Pototschnig<br />

17:00 515 Single atom cavity quantum electrodynamics with<br />

non-transversally po<strong>la</strong>rized light fields<br />

Michael Scheucher<br />

17:15 516 Mapping Magnetic Nanostructures Using Radical<br />

Pair Reactions<br />

Jofre Espigule Pons<br />

17:30 517 Merging two immiscible BECs of Rb and Cs for optimized<br />

production of RbCs ground-state molecules<br />

Lukas Reichsöllner<br />

17:45 518 Cavity cooling of free silicon nanoparticles in high<br />

vacuum<br />

Peter Asenbaum<br />

18:00 519 Integrated Mach-Zehn<strong>de</strong>r interferometer for Bose-<br />

Einstein con<strong>de</strong>nsates<br />

T. Berrada<br />

18:15 520 Entanglement Swapping over a 143 km free-space<br />

link<br />

Thomas Herbst<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

Thursday, 05.09.2013, HS 4<br />

Time ID Atomic Physics and Quantum Optics III<br />

Chair: NN<br />

13:30 521 Tenfold reduction of Brownian noise in high-reflectivity<br />

optical coatings<br />

Garrett D. Cole<br />

13:45 522 Doublon stability and <strong>de</strong>cay mechanisms<br />

M. J. Mark<br />

14:00 523 Cavity cooling of an optically levitated nanoparticle<br />

Niko<strong>la</strong>i Kiesel<br />

14:15 524 Entanglement properties of locally maximally entangleable<br />

states<br />

Martí Cuquet<br />

14:30 525 Decrease in query complexity for quantum computers<br />

with superposition of circuits<br />

M. Araujo<br />

14:45 526 Optimal state reconstruction for cavity-optomechanical<br />

systems via Kalman filtering<br />

Jason Hoelscher-Obermaier<br />

15:00 527 Quantum Entanglement of High Angu<strong>la</strong>r Momenta<br />

Robert Fickler<br />

15:15 528 Cooling-by-measurement and mechanical state tomography<br />

via pulsed optomechanics<br />

M. R. Vanner<br />

15:30 Coffee Break<br />

20


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Time ID Atomic Physics and Quantum Optics IV<br />

Chair: NN<br />

16:00 531 Einstein-Podolsky-Rosen corre<strong>la</strong>tions from colliding<br />

Bose-Einstein con<strong>de</strong>nsates<br />

M. Ebner<br />

16:15 532 Real-Time Imaging of Quantum Entanglement<br />

Robert Fickler<br />

16:30 533 Creation of nitrogen-vacancy centres for cavity<br />

QED<br />

Kathrin Buczak<br />

16:45 534 Studies of Quantum Entanglement in 100 Dimensions<br />

Mario Krenn<br />

17:00 END<br />

18:30 Postersession and Apéro<br />

20:00 Conference Dinner<br />

ID Atomic Physics and Quantum Optics Poster<br />

541 Coupling Spins and Diamond Color Centers to<br />

Superconducting Cavities<br />

Stefan Putz<br />

542 Dipole-dipole influenced Ramsey interferometry<br />

Laurin Ostermann<br />

543 Ultracold atoms on a superconducting Atomchip<br />

Stefan Minniberger<br />

544 Coherent manipu<strong>la</strong>tion of cold cesium atoms in a nanofiberbased<br />

two-color dipole trap<br />

Daniel Reitz<br />

545 Coherence properties of cold cesium atomic spins in a<br />

nanofiber-based dipole trap<br />

Rudolf Mitsch<br />

546 see talk 516<br />

547 Photonic p<strong>la</strong>tform for experiments in higher dimensional<br />

quantum systems<br />

Christoph Schaeff<br />

548 Loophole- free Einstein Podolsky Rosen Experiment via<br />

Quantum Steering<br />

Bernhard Wittmann<br />

549 Quantum communication with satellites, its preparatory<br />

terrestrial free-space <strong>de</strong>monstrations and future missions<br />

Thomas Scheidl<br />

550 Laser <strong>de</strong>sorption/vaporization/ionization techniques for<br />

matter-wave interferometry<br />

Ugur Sezer<br />

Infrared Optical Nanostructures<br />

Wednesday, 04.09.2013, HS 3<br />

Time ID I: Quantum Casca<strong>de</strong> Lasers<br />

Chair: Karl Unterrainer, TU Wien<br />

13:30 601 Quantum casca<strong>de</strong> <strong>la</strong>ser frequency combs: spectroscopy<br />

and novel <strong>de</strong>velopments<br />

Jerome Faist (i)<br />

14:00 602 Bi-functional Quantum Casca<strong>de</strong> Laser/Detectors<br />

for Integrated Photonics<br />

Gottfried Strasser (i)<br />

14:30 603 Broadband external cavity tuning of a quantum casca<strong>de</strong><br />

<strong>la</strong>ser in the 3 - 4 µm window<br />

Sabine Riedi<br />

14:45 604 Terahertz spectroscopy of coupled cavity quantum<br />

casca<strong>de</strong> <strong>la</strong>sers<br />

Dominic Bachmann<br />

15:00 605 Terahertz Photonic Crystal Quantum Casca<strong>de</strong> Laser<br />

Coupled to a Second Or<strong>de</strong>r Bragg Vertical Extractor<br />

Christopher Bonzon<br />

15:15 606 From photonic crystal to micropil<strong>la</strong>r terahertz quantum<br />

casca<strong>de</strong> <strong>la</strong>sers and recent progress towards<br />

nanowire-based <strong>de</strong>vices<br />

Michael Krall<br />

15:30 Coffee Break<br />

II: Nanocrystals<br />

Chair: Gunther Springholz, JKU Linz<br />

16:00 611 Ultra strained Si and Ge for <strong>de</strong>vice applications<br />

Hans Sigg (i)<br />

16:30 612 Nanowires for so<strong>la</strong>r cell applications<br />

Knut Deppert (i)<br />

17:00 613 On polytypism in III-V nanowires<br />

Friedhelm Bechstedt (i)<br />

17:30 614 PbS nanocrystal photo<strong>de</strong>tectors with inorganic ligands<br />

Wolfgang Heiss (i)<br />

18:00 615 X-ray analysis of nanowires<br />

Julian Stangl<br />

18:15 616 Towards group IV direct gap semiconductors<br />

Martin G<strong>la</strong>ser<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

Thursday, 05.09.2013, HS 3<br />

Time ID III: Quantum Nanostructures<br />

Chair: Jérôme Faist, ETH Zürich<br />

13:30 621 Superconducting Split Ring Resonators for Ultrastrong<br />

Coupling<br />

Curdin Maissen<br />

13:45 622 Terahertz-induced nonlinear intersubband dynamics.<br />

Daniel Dietze<br />

14:00 623 Symmetric farfield, short-wavelength ( = 4.53 µm)<br />

MOPA quantum casca<strong>de</strong> <strong>la</strong>sers with Watt-level optical<br />

outpout power<br />

Boris<strong>la</strong>v Hinkov<br />

14:15 624 Optically pumped QD VECSEL for the Mid-Infrared<br />

Amir Khiar<br />

14:30 625 Intersublevel transition study of InAs/AlInAs quantum<br />

dashes by absorption, electroluminescence<br />

and magneto-tunneling spectroscopy<br />

Gian Lorenzo Paravicini Bagliani<br />

14:45 626 Erasing the exciton fine structure splitting in semiconductor<br />

quantum dots<br />

Rinaldo Trotta<br />

15:00 627 Grating-<strong>de</strong>sign based po<strong>la</strong>rization modifications of<br />

ring cavity quantum casca<strong>de</strong> <strong>la</strong>sers<br />

Rolf Szed<strong>la</strong>k<br />

15:15 628 Active control of THz-waves by coupling <strong>la</strong>rge-area<br />

CVD-graphene to a THz-Metamaterial<br />

Fe<strong>de</strong>rico Valmorra<br />

15:30 Coffee Break; END<br />

18:30 Postersession and Apéro<br />

20:00 Conference Dinner<br />

21


SPG Mitteilungen Nr. 40<br />

ID<br />

Infrared Optical Nanostructures Poster<br />

631 Enhancement of light extraction from aligned SiGe-based<br />

photonic crystal s<strong>la</strong>bs<br />

Magdalena Schatzl<br />

632 Optically driven current turnstile based on self-assembled<br />

semiconductor quantum dots<br />

Giancarlo Cerulo<br />

633 PbS quantum dots - silicon on insu<strong>la</strong>tor hybrid photonics<br />

Markus Humer<br />

634 Electronic and optical properties of strained and unstrained<br />

group-IV semiconductor Germanium alloys<br />

Kerstin Hummer<br />

635 Enhanced photoluminescence efficiency of SiGe is<strong>la</strong>nds integrated<br />

into <strong>la</strong>rge area photonic crystals<br />

Elisabeth Lausecker<br />

636 Tuning the emission properties of single semiconductor<br />

quantum dots via electro-e<strong>la</strong>stic fields<br />

Johannes Wildmann<br />

637 High power terahertz quantum casca<strong>de</strong> <strong>la</strong>ser for 63 μm<br />

Dana Turcinkova<br />

638 Quaternary Barrier InGaAs/AlInGaAs Terahertz Quantum<br />

Casca<strong>de</strong> Laser<br />

Keita Ohtani<br />

639 Distributed-Feedback Quantum Casca<strong>de</strong> Laser at 3.2 µm<br />

Johanna Wolf<br />

640 Tuning of resonances in photonic crystal photo<strong>de</strong>tectors<br />

Andreas Harrer<br />

641 Frequency noise in mid-infrared quantum casca<strong>de</strong> <strong>la</strong>sers<br />

Lionel Tombez<br />

642 Observation of THz Photo-luminescence from Multi<strong>la</strong>yer SiC<br />

Epitaxial Graphene Pumped by a Mid-infrared Quantum Casca<strong>de</strong><br />

Laser<br />

Peter Qiang Liu<br />

15:15 703 Innovating nanosensing technique to <strong>de</strong>tect living<br />

bacteria and reveal resistance to antibiotics<br />

Justin Notz<br />

15:30 Coffee Break<br />

Biophysics/Medical Physics<br />

Chair: Giovanni Dietler, EPF Lausanne<br />

Georg Pabst, Uni Graz<br />

16:00 711 Cell mechanics measured with Atomic force microscopy<br />

Jose Luis Toca- Herrera<br />

16:15 712 Measuring the stability of lipid membrane domains<br />

with nanometer resolution.<br />

Georg Fantner<br />

16:30 713 Protein partitioning in liquid-or<strong>de</strong>red (Lo) / liquiddisor<strong>de</strong>red<br />

(Ld) domains<br />

Benjamin Kollmitzer<br />

16:45 714 Filter gate closure inhibits ion but not water transport<br />

through potassium channels<br />

Peter Pohl<br />

17:00 715 Core-shell nanoparticles and their assembly<br />

Erik Reimhult<br />

17:15 716 Characterization of augmented bone structures<br />

with µ-computed tomography and Raman spectroscopy<br />

Johann Charwat-Pessler<br />

17:30 717 Raman spectroscopic investigation of urinary calculi<br />

and salivary stones<br />

Matthias E<strong>de</strong>r<br />

17:45 718 Saving Joint with Aerosolphysics<br />

Karoline Mühlbacher<br />

18:00 719 Probing metabolism in vivo in real time via hyperpo<strong>la</strong>rized<br />

NMR<br />

Arnaud Comment (i)<br />

18:30 END; Postersession and Apéro<br />

20:00 Conference Dinner<br />

Biophysics and Medical Physics<br />

Thursday, 05.09.2013, K153C<br />

Time ID Soft Matter<br />

(Shared with the Con<strong>de</strong>nsed Matter session)<br />

Go to HS 5<br />

Chair: Georg Pabst, Uni Graz<br />

13:30 121 Equilibrium and flow of cluster-forming complex<br />

fluids<br />

Christos N. Likos (i)<br />

14:00 122 Optimized Fourier Monte Carlo Simu<strong>la</strong>tion of Solid<br />

and Hexatic Membranes<br />

Andreas Troester<br />

14:15 123 Biomimetic folding particle chains<br />

Peter Oostrum<br />

14:30 Go back to K153C<br />

Biophysics<br />

Chair: Georg Pabst, Uni Graz<br />

14:30 701 Fluorescence and atomic force microscopy to<br />

visualize the interaction of HDL particles with lipid<br />

membranes<br />

Gerhard J. Schütz (i)<br />

15:00 702 Characterization of Curli A Production on Living<br />

Bacterial Surfaces by Scanning Probe Microscopy<br />

Yoojin Oh<br />

ID<br />

Biophysics and Medical Physics Poster<br />

721 Photomodification and Nanopatterning of Polystyrene for<br />

Bioapplications<br />

R. A. Barb<br />

722 Fractal characterization of tissue with the new Pyramid<br />

Method<br />

Michael Mayrhofer-Reinhartshuber<br />

723 The open pore of SecYEG does not show physiologically relevant<br />

ion selectivity<br />

Denis Knyazev<br />

724 Advancing high resolution structural analysis of lipid membranes<br />

using a generic algorithm<br />

Peter Heftberger<br />

725 Studies on the Cherenkov effect for improved TOF-PET<br />

Stefan Brunner<br />

726 Progress in the Structure-based Simu<strong>la</strong>tion of P<strong>la</strong>nt Light-<br />

Harvesting Complexes<br />

Frank Müh<br />

727 The <strong>de</strong>nsity and distribution of sacrificial bonds in polymer<br />

chains <strong>de</strong>termines the amount of dissipated energy<br />

S. Soran Nabavi<br />

728 STED-lithography nano-anchors with single protein capacity<br />

Richard Wollhofen<br />

729 These IgGs are ma<strong>de</strong> for walkin’: Random antibody movement<br />

on bacterial and viral surfaces<br />

Johannes Preiner<br />

730 Chemically tagged DNA tetrahedra as linker for single molecule<br />

force spectroscopy<br />

Michael Leitner<br />

22


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

731 Long and short lipid molecules experience the same interleaflet<br />

drag in lipid bi<strong>la</strong>yers<br />

Andreas Horner<br />

732 Bachelor thesis: Hyper Spectral Imaging with Two-Photon<br />

Microscopy<br />

Harald Razum<br />

733 Investigation of the pH stability of avidins and newly <strong>de</strong>veloped<br />

avidin mutants with atomic force microscopy based on<br />

single molecule sensors<br />

Me<strong>la</strong>nie Köhler<br />

734 Electrokinetic Trap<br />

Metin Kayci<br />

735 Towards a Non-Perturbative Theory of Optical Spectra of<br />

Pigment Protein Complexes: Application to the Water Soluble<br />

Chlorophyll Protein.<br />

Thanh-Chung Dinh<br />

17:15 820 Dynamical atmospheres of earth-like protop<strong>la</strong>nets<br />

Ernst Dorfi<br />

17:30 821 Constraining stel<strong>la</strong>r wind properties in habitable<br />

zones<br />

Colin Johnstone<br />

17:45 822 The analysis of young so<strong>la</strong>r-like stars and their stel<strong>la</strong>r<br />

winds observed with the EVLA to <strong>de</strong>fine mass<br />

loss rates<br />

Bibiana Fichtinger<br />

18:00 823 Stel<strong>la</strong>r magnetic fields and their potential influence<br />

on p<strong>la</strong>netary surroundings<br />

Theresa Lüftinger<br />

18:15 824 Photometry of different Minor Bodies and comparisons<br />

Mattia Galiazzo<br />

18:30 END; Postersession and Apéro<br />

20:00 Conference Dinner<br />

Astronomy and Astrophysics<br />

Thursday, 05.09.2013, K269D<br />

Time ID Astronomy and Astrophysics<br />

11:00 General Assembly ÖGAA<br />

12:30 Lunch<br />

13:30 801 Talk 1<br />

NN<br />

13:45 802 Talk 2<br />

NN<br />

14:00 803 Talk 3<br />

NN<br />

14:15 804 Talk 4<br />

NN<br />

Selected ÖGAA Talks<br />

Chair: NN<br />

Habitable Worlds:<br />

From Detection to Characterization<br />

Chair: NN<br />

14:30 811 Observing Exop<strong>la</strong>net Atmospheres: Recent Results<br />

from ESO and National Facilities<br />

Monika Lendl<br />

14:45 812 A massive stars' view on carbon-to-oxygen abundance<br />

ratios in exop<strong>la</strong>net host stars<br />

Norbert Przybil<strong>la</strong><br />

15:00 813 Composition of extraso<strong>la</strong>r p<strong>la</strong>nets<br />

Amaury Thiabaud<br />

15:15 814 The effect of metallicity in the envelope of protop<strong>la</strong>nets<br />

Julia Venturini<br />

15:30 Coffee Break<br />

16:00 815 Pathways to Habitability (PatH): An Austrian National<br />

Research Network<br />

Manuel Gü<strong>de</strong>l<br />

16:15 816 Long term evolution of protop<strong>la</strong>netary disks<br />

Alexan<strong>de</strong>r Stökl<br />

16:30 817 Formation of Chondrules in radiative shock waves<br />

Helmut Joham<br />

16:45 818 Formation of terrestrial p<strong>la</strong>nets in binary stel<strong>la</strong>r systems<br />

Zsolt Sándor<br />

17:00 819 A possible mo<strong>de</strong>l of water <strong>de</strong>livery by collisions in<br />

early p<strong>la</strong>netary systems<br />

Thomas I. Maindl<br />

ID<br />

Astronomy and Astrophysics Poster<br />

831 BRITE-Constel<strong>la</strong>tion and the chances for <strong>de</strong>tecting exop<strong>la</strong>nets<br />

Werner Weiss<br />

832 Simu<strong>la</strong>tions of Prebiotic Chemistry un<strong>de</strong>r Post-Impact Conditions<br />

on Titan<br />

Johannes Leitner<br />

833 On the Internal Structure of Ence<strong>la</strong>dus<br />

Ruth-Sophie Taubner<br />

834 Kepler-62 e and Kepler-62 f: The Potential Internal Structure<br />

of these habitable worlds<br />

Ruth-Sophie Taubner<br />

835 Theoretical mo<strong>de</strong>ls of p<strong>la</strong>netary system formation<br />

David Swoboda<br />

History of Physics<br />

Thursday, 05.09.2013, K012D<br />

Time ID History of Physics<br />

Chair: Heinz Krenn, Uni Graz<br />

13:30 901 Die Untersuchung p<strong>la</strong>netarer und interp<strong>la</strong>netarer<br />

Magnetfel<strong>de</strong>r: von <strong>de</strong>n ersten Satellitenmissionen<br />

bis zur Landung auf Asteroi<strong>de</strong>n und Kometen<br />

Konrad Schwingenschuh<br />

14:00 902 Die Novara-Weltumsegelung (1857-1859): Wen<strong>de</strong>punkt<br />

für Geophysik / Meteorologie / Ozeanographie<br />

in Österreich<br />

Bruno Besser<br />

14:15 903 Eine frühe Anwendung radioaktiver Tracer<br />

Heinrich Mitter<br />

14:30 904 G. E. Rosenthal, a follower of Deluc in northern Germany<br />

Jean-François Lou<strong>de</strong><br />

14:45 905 Die steinernen Schattenlinien <strong>de</strong>r Sonne: Die Sonnenuhren<br />

<strong>de</strong>s Andreas Pleninger<br />

Reinhard Folk<br />

15:00 906 The Incosistencies of the Lorentz transformations<br />

first formu<strong>la</strong>ted by Wol<strong>de</strong>mar Voigt in 1887<br />

Hartwig Thim<br />

15:15 Discussion<br />

15:30 Coffee Break<br />

23


SPG Mitteilungen Nr. 40<br />

Time ID Chair: Reinhard Folk, Uni Linz<br />

16:00 911 Physics in magnetic fields from Faraday to Pierre<br />

Weiss and his contemporaries<br />

Jean-François Lou<strong>de</strong><br />

16:30 912 Zur Erfindung <strong>de</strong>s Magnetinduktions-Zeigertelegraphen<br />

durch Charles Wheatstone<br />

Franz Pichler<br />

16:45 913 The Effective Mass Concept<br />

Gerhard Brunthaler<br />

17:00 914 Das Elektrotechnische Institut <strong>de</strong>r Universität Innsbruck,<br />

1907 – 1946. Ein 'vergessenes' Institut<br />

Armin Denoth<br />

17:15 915 Die Kommentare in Le Seurs und Jacquiers Ausgabe<br />

von Newtons Principia<br />

Harald Iro<br />

17:30 916 Viktor von Lang und Ernst Lecher – die Säulen <strong>de</strong>s<br />

I. Physikalischen Institutes<br />

Franz Sachslehner<br />

17:45 917 Das wissenschaftliche Exil in Großbritannien<br />

Wolfgang L. Reiter<br />

18:00 918 The *Squinting* in the Doppler-effect and the Hid<strong>de</strong>n<br />

Ether-drifts<br />

Karl Mocnik<br />

18:15 END<br />

18:30 Postersession and Apéro<br />

20:00 Conference Dinner<br />

Aussteller - Exposants<br />

Agilent Technologies, Vacuum Products Division,<br />

DE-60528 Frankfurt<br />

www.agilent.com<br />

Anton Paar GmbH, 8054 Graz;<br />

www.anton-paar.com/<br />

attocube systems AG, DE-80539 München<br />

www.attocube.com<br />

CryoVac GmbH & Co. KG, DE-53842 Troisdorf<br />

www.cryovac.<strong>de</strong><br />

Dr. Eberl MBE-Komponenten GmbH, DE-71263 Weil <strong>de</strong>r Stadt<br />

www.mbe-komponenten.<strong>de</strong><br />

EPL-IOP, UK-Bristol<br />

www.iop.org<br />

Finetech GmbH & Co. KG, DE-12681 Berlin<br />

www.finetech.<strong>de</strong><br />

Goodfellow GmbH, DE-61213 Bad Nauheim<br />

www.goodfellow.com<br />

Hositrad Deutsch<strong>la</strong>nd Vacuum Technology,<br />

DE-93047 Regensburg<br />

www.hositrad.com<br />

Mad City Labs GmbH, CH-8302 Kloten<br />

www.madcity<strong>la</strong>bs.eu<br />

Mantis Deposition GmbH, DE-55122 Mainz<br />

www.mantis<strong>de</strong>position.com<br />

MaTecK GmbH, DE-52428 Jülich<br />

www.mateck.<strong>de</strong><br />

Nanosurf AG, CH-4410 Liestal<br />

www.nanosurf.com<br />

Pfeiffer Vacuum Austria GmbH, AT-1150 Wien<br />

www.pfeiffer-vacuum.com<br />

Physik Instrumente (PI) GmbH & Co.KG, DE-76228 Karlsruhe<br />

www.pi.ws<br />

SPECS Surface Nano Analysis GmbH, DE-13355 Berlin<br />

www.specs.com<br />

VAQTEC - Scientific, DE-13189 Berlin<br />

www.vactec-scientific.com<br />

VAT – Deutsch<strong>la</strong>nd GmbH, DE-85630 Grasbrunn bei München<br />

www.vatvalve.com/<strong>de</strong>/contacts/vat-<strong>de</strong>utsch<strong>la</strong>nd<br />

VIDEKO GmbH, AT-2512 Oeynhausen<br />

www.vacuumtechnology.at<br />

Zurich Instruments, CH-8005 Zürich<br />

www.zhinst.com<br />

24


Open Access, where do we stand today?<br />

Your opinion interests us.<br />

Christophe Rossel, SPS Vice-Presi<strong>de</strong>nt<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

With the <strong>de</strong>velopment of Open Access (OA) where the research<br />

papers become freely accessible by the rea<strong>de</strong>rs, the<br />

aca<strong>de</strong>mic publishing scheme is changing rapidly all over<br />

the world. The general consensus is that the results of research<br />

should be accessible in the public domain so that<br />

they will bring benefits for public services and economic<br />

growth. They need nevertheless to un<strong>de</strong>rgo some quality<br />

control for relevance and reliability reasons and for avoiding<br />

misleading statements and erroneous conclusions. Open<br />

Access is not strictly speaking free access because somewhere<br />

time and money must be found to make it functioning.<br />

Any new business mo<strong>de</strong>l, different from the conventional<br />

subscription-based mo<strong>de</strong>l must then be robust and<br />

sustainable.<br />

In 2009 the European Physical Society (EPS) published a<br />

position paper, <strong>de</strong>c<strong>la</strong>ring its support, like other organizations,<br />

to the 2003 Berlin Dec<strong>la</strong>ration on Open Access to<br />

Knowledge in the Sciences and Humanities (http://oa.mpg.<br />

<strong>de</strong>/openaccess-berlin/berlin<strong>de</strong>c<strong>la</strong>ration.html).<br />

The ongoing discussions are based on several critical issues.<br />

Whereas most researchers are essentially concerned<br />

about publishing their results in the journal of their choice<br />

without concerns about any business mo<strong>de</strong>ls, librarians<br />

who are facing <strong>de</strong>creasing budgets and increasing journal<br />

prices are ready for alternatives to the subscription-based<br />

mo<strong>de</strong>l. But how to meet publication costs if the subscription<br />

income is removed?<br />

Part of the <strong>de</strong>bate is to <strong>de</strong>ci<strong>de</strong> whether the Gold OA mo<strong>de</strong>l<br />

where publishers get their revenues from authors rather<br />

than from rea<strong>de</strong>rs is preferable to the Green OA mo<strong>de</strong>l<br />

where the final refereed article is p<strong>la</strong>ced temporarily in their<br />

institutional repository, in a central repository, or on some<br />

other OA archive like arXiv for physics. Critical voices c<strong>la</strong>im<br />

that some <strong>de</strong>trimental embargo time of 6–12 months or<br />

longer might be associated with the Green OA mo<strong>de</strong>l, as<br />

done already by some non-OA journals.<br />

Funding is therefore a critical issue for research agencies<br />

and aca<strong>de</strong>mic institutions, which will have to subsidize not<br />

only the work of editors but also support charges re<strong>la</strong>ted to<br />

Gold OA. This leads to another concern, namely the aca<strong>de</strong>mic<br />

freedom. Critics c<strong>la</strong>im in<strong>de</strong>ed that full Open Access<br />

mo<strong>de</strong>l will see universities, not rea<strong>de</strong>rs, pay for articles to<br />

be published in journals, meaning the <strong>de</strong>cision on how to<br />

publish new research will rest with university and funding<br />

agencies administrators and not aca<strong>de</strong>mics themselves.<br />

Science Europe (www.scienceeurope.org), an umbrel<strong>la</strong><br />

organization of the most important research and funding<br />

institutions in Europe, has published in April 2013 a <strong>de</strong>c<strong>la</strong>ration<br />

entitled Principles for the Transition to Open Access<br />

to Research Publications. It <strong>de</strong>scribes the benefits of OA<br />

and proposes a set of common principles agreed by all its<br />

members to support the transition to full OA. It is stated<br />

that each organization will have to implement policies according<br />

to their own needs but in agreement with the proposed<br />

principles, viewed as a contribution to a global dialogues<br />

and cooperation with other stakehol<strong>de</strong>rs in Europe<br />

and worldwi<strong>de</strong>.<br />

Funding organizations, including the Swiss National Science<br />

Foundation, endorse both publications in openaccess<br />

journals and second publications on document<br />

servers. However, they are explicitly against supporting<br />

so-called hybrid publication mo<strong>de</strong>ls offered by most <strong>la</strong>rge<br />

commercial publishers. In<strong>de</strong>ed in the case of hybrid journals,<br />

the authors can, in exchange for a fee, p<strong>la</strong>ce the<br />

article with publishers on OA. This mo<strong>de</strong>l might result in<br />

double charges since on one si<strong>de</strong> libraries still pay for the<br />

journal subscriptions and licenses and, on the other, for the<br />

OA publication fees of the authors<br />

The OA policies of all participating institutions, including<br />

those in Switzer<strong>la</strong>nd, are published in the Registry of Open<br />

Access Repository Mandatory Archiving Policies (ROAR-<br />

MAP) and can be found un<strong>de</strong>r http://roarmap.eprints.org/.<br />

Since the active <strong>de</strong>bate on the economics and reliability<br />

of OA continues among researchers, librarians, universities<br />

and funding agencies administrators, government officials,<br />

and commercial publishers, the SPS Board would<br />

be very interested in collecting comments by its members<br />

in or<strong>de</strong>r to evaluate the general opinions prevailing in the<br />

Swiss scientific community. Please send your comments to<br />

sps@unibas.ch.<br />

Kurz<strong>mitteilungen</strong> - Short Announcements<br />

Initiative for Science in Europe<br />

The Initiative for Science in Europe is an in<strong>de</strong>pen<strong>de</strong>nt p<strong>la</strong>tform<br />

of European learned societies and scientific organizations<br />

whose aim is to promote mechanisms to support all<br />

fields of science at a European level, involve scientists in<br />

the <strong>de</strong>sign and implementation of European science policies,<br />

and to advocate strong in<strong>de</strong>pen<strong>de</strong>nt scientific advice<br />

in European policy making. In Winter 2012/13, ISE has coordinated<br />

the campaign "No-Cuts-On-Research.EU".<br />

More Info: http://www.initiative-science-europe.org/<br />

25


SPG Mitteilungen Nr. 40<br />

2013 PSI Summer School on Con<strong>de</strong>nsed Matter Research:<br />

Materials - structure and magnetism<br />

August 17-23, 2013, Lyceum Alpinum, Zuoz, Switzer<strong>la</strong>nd<br />

The 12 th edition of the PSI summer school on con<strong>de</strong>nsed<br />

matter physics is open for registration. This year the school<br />

will be <strong>de</strong>dicated to some of the main topics addressed at<br />

<strong>la</strong>rge scale user facilities such as neutron and muon sources<br />

or synchrotron photon sources: Materials - structure<br />

and magnetism.<br />

International experts and PSI staff members will introduce<br />

and <strong>de</strong>epen your knowledge not only about these scientific<br />

topics but also about the main methods applied to un<strong>de</strong>rstand<br />

the phenomena, which are presently at the forefront<br />

of mo<strong>de</strong>rn solid state physics and chemistry.<br />

The school is fully open to the national and non-national<br />

public and the <strong>la</strong>nguage of the school is English.<br />

Following the school a practical training is offered at PSI. It<br />

will allow a limited number of participants to get hands-on<br />

experience with state-of-the-art instrumentation using photons,<br />

neutrons, and muons.<br />

More information, the school’s programme and online registration<br />

is avai<strong>la</strong>ble from the school’s webpage:<br />

http://www.psi.ch/summerschool<br />

19 th Swiss Physics Olympiad 2013 (SPhO) in Aarau<br />

The final round of the Swiss Physics Olympiad took p<strong>la</strong>ce<br />

on March 23/24 in Aarau at the Neue Kantonsschule. The<br />

competition was held between twenty-four stu<strong>de</strong>nts from<br />

Switzer<strong>la</strong>nd and two from Liechtenstein.<br />

The selection process began in January with a preliminary<br />

round with a record participation of over 100 stu<strong>de</strong>nts, a<br />

success with 50% more participation than in earlier years.<br />

The stu<strong>de</strong>nts, aged between 16 and 20, had the chance to<br />

prepare for the final round at a three day training<br />

session at EPFL. The final round consisted of two<br />

challenging days, totalling no less than six and a<br />

half hours of theoretical and experimental exams,<br />

something like a Marathon! The top five participants<br />

– gold medals - will have the unique opportunity<br />

to travel to Denmark to represent Switzer<strong>la</strong>nd<br />

at the International Physics Olympiad in July.<br />

The award ceremony was a <strong>de</strong>dicated moment with talks<br />

and piano pieces, where one could feel the mood of the<br />

accomplished effort. After an excellent pedagogical talk by<br />

Gabriel Pa<strong>la</strong>cios on Fraunhofer lines, presi<strong>de</strong>nt of SPhO, it<br />

was the tour of the Swiss Physical Society – who is sponsoring<br />

the event – to present the mission and vision of the<br />

Society, and to proceed to the awards distribution.<br />

Antoine Pochelon, SPS Secretary<br />

The absolute best was Lukas Lang, from Liechtenstein.<br />

Followed just next by Sven Pfeiffer, from Münsingen (BE)<br />

and Rafael Winkler, from Mettauertal (AG). The SPS was<br />

happy to <strong>de</strong>liver the woman award to Viviane Kehl, from<br />

Küsnacht (ZH) who already illustrated herself in the preliminary<br />

round as 4 th and at the time best of the present Swiss<br />

winner group.<br />

Such an event is the opportunity to strengthen<br />

contact with offspring and teachers in a nice and<br />

stimu<strong>la</strong>ting climate. As summarized by Markus<br />

Meier, the local organizer: I hope and believe that<br />

this event (with SPS presentation and award giving)<br />

is the first and also successful contact of the<br />

SPS to future physicists. And truly, at this occasion<br />

young people of 15 or 16 were asking how to become<br />

member of the SPS and how they could be better<br />

informed about courses, seminars, ateliers … : a hint for the<br />

SPS to be well present for the young leaves.<br />

PS: Let us note that in Switzer<strong>la</strong>nd such Olympiads - in addition<br />

to Physics (www.swi<strong>ssp</strong>ho.ch) - are also organized in<br />

Biology, Chemistry, Informatics, Mathematics, Philosophy<br />

(www.olympiads.ch).<br />

The four recipients of the SPS awards: Sven Pfeiffer (first Swiss), Rafael Winkler (second Swiss), Viviane Kehl (first woman) and Lukas<br />

Lang (first Liechtensteiner and absolut best)<br />

26


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Das Rennen um die Industrieproduktion <strong>de</strong>r Zukunft<br />

Rolf Hügli, SATW Generalsekretär<br />

Die Schweiz gehört bekanntlich zu <strong>de</strong>n innovativsten Län<strong>de</strong>rn<br />

<strong>de</strong>r Welt. Die Ausgaben für die Forschung sind hoch<br />

und auf Jahre hinaus gesichert. Wenn die Schweiz aber<br />

eine be<strong>de</strong>uten<strong>de</strong> Industrienation bleiben will, muss auch<br />

<strong>de</strong>r Produktionsstandort Schweiz eine Zukunft haben. Produktions-Knowhow<br />

gehört zu <strong>de</strong>n Schlüsselkompetenzen<br />

für die "alten Industrienationen", die nicht auf billige Arbeitskräfte<br />

setzen können.<br />

In <strong>de</strong>n letzten 5 Jahren hat die EU 10% ihrer Industrieproduktion<br />

und 3 Millionen Jobs verloren. Zumin<strong>de</strong>st vor<strong>de</strong>rhand<br />

hat sich die Schweiz gut behaupten können, weil<br />

ihre Industriegüter hochspezialisiert sind. Diese Produkte<br />

sind weniger preissensitiv und ihre Herstellung ist sehr anspruchsvoll.<br />

Ob dies in Zukunft hilft, ist ungewiss. Die Währungssituation<br />

ist nach wie vor angespannt und Län<strong>de</strong>r wie<br />

China und Indien sind im Begriff, immer komplexere Eigenprodukte<br />

zu entwickeln und herzustellen.<br />

Hinzu kommt, dass sich be<strong>de</strong>uten<strong>de</strong> Neuerungen bei <strong>de</strong>n<br />

Herstellungsverfahren abzeichnen. Die massgeblichen Treiber<br />

dafür sind:<br />

• weitgehen<strong>de</strong> Digitalisierung <strong>de</strong>r Wertschöpfungskette<br />

(Herstellungsdaten wer<strong>de</strong>n verschickt, nicht physische<br />

Produkte)<br />

• präzisere Verfahren bei <strong>de</strong>r automatischen maschinellen<br />

Bearbeitung (schnelle, hochwirksame Korrekturalgorithmen<br />

verbessern die automatisierte mechanische<br />

Bearbeitung)<br />

• völlig neue, additive Herstellungsverfahren (z.B. 3D<br />

Printing).<br />

Dadurch wird eine kostengünstige Produktion anspruchsvoller<br />

Komponenten an einem beliebigen Ort <strong>de</strong>r Welt<br />

<strong>de</strong>nkbar. Auch die rentable Produktion von Kleinstserien<br />

o<strong>de</strong>r Einzelstücken könnte damit gelingen.<br />

Während diese Entwicklung für qualifizierte Facharbeiter<br />

eine Gefahr darstellen könnte, bietet sie <strong>de</strong>n westlichen Industrienationen<br />

die Möglichkeit, dank kostengünstiger Produktion<br />

einen Teil <strong>de</strong>s verlorenen Marktes zurückzuerobern.<br />

Welcher Aspekt dominieren wird, ist völlig unk<strong>la</strong>r. Für <strong>de</strong>n<br />

Werkp<strong>la</strong>tz Schweiz ist es von grosser Be<strong>de</strong>utung, diese<br />

Trends zu verstehen und richtig darauf zu reagieren.<br />

Die SATW hat kürzlich ein Forum unter <strong>de</strong>m Titel "advanced<br />

manufacturing" veranstaltet. Unter <strong>de</strong>n Teilnehmern waren<br />

Produktions- und Materialexperten, Wissenschaftler und<br />

Repräsentanten von Verwaltung und Industrieverbän<strong>de</strong>n.<br />

Auch unter <strong>de</strong>n Anwesen<strong>de</strong>n herrschte keine Einigkeit, in<br />

welche Richtung sich die Dinge entwickeln wer<strong>de</strong>n. K<strong>la</strong>r<br />

herausgeschält haben sich jedoch zwei Dinge:<br />

• Die neuen Verfahren bestehen aus einzelnen Komponenten<br />

und Arbeitsschritten, die aufeinan<strong>de</strong>r abgestimmt<br />

sein müssen. Es ist daher empfehlenswert,<br />

diese Verfahren „vertikal integriert“, d.h. in Konsortien<br />

zu entwickeln, welche die ganze Wertschöpfungskette<br />

ab<strong>de</strong>cken.<br />

• C. M. C<strong>la</strong>yton hat <strong>de</strong>n Begriff <strong>de</strong>r "disruptiven" Innovation<br />

geprägt. Gemeint sind damit Verän<strong>de</strong>rungen,<br />

die auf (vom Markt) unerwarteten, neuen Prinzipien<br />

beruhen und die die Spielregeln einer ganzen Branche<br />

verän<strong>de</strong>rn können. Die erwähnten neuen Herstellungsmetho<strong>de</strong>n<br />

haben das Potential dazu. Allerdings<br />

ist unk<strong>la</strong>r, welche Verfahren sich wo durchsetzen wer<strong>de</strong>n.<br />

Damit entstehen grosse Investitionsrisiken. Da<br />

nicht gewartet wer<strong>de</strong>n kann, bis völlige K<strong>la</strong>rheit darüber<br />

herrscht, ist zu prüfen ob eine finanzielle För<strong>de</strong>rung<br />

von Pilotprojekten durch Bun<strong>de</strong>smittel (evtl. im<br />

Rahmen KTI o<strong>de</strong>r SNF) im Sinne eines Schwerpunktprogrammes<br />

angezeigt wäre.<br />

Die SATW wird dieses Thema weiter bearbeiten. Im Verbund<br />

<strong>de</strong>r europäischen technischen Aka<strong>de</strong>mien (Euro-CASE) ist<br />

sie an einem Diskussionspapier für die EU-Kommission beteiligt.<br />

Sie verfolgt zu<strong>de</strong>m <strong>de</strong>n Jahreskongress <strong>de</strong>r Canadian<br />

Aca<strong>de</strong>my of Engineering (CAE), an <strong>de</strong>m ähnliche Fragen<br />

diskutiert wer<strong>de</strong>n. Die SATW p<strong>la</strong>nt ausser<strong>de</strong>m im Herbst ein<br />

Folgemeeting mit einzelnen Teilnehmern <strong>de</strong>s Forums, um<br />

praktische Handlungsoptionen zu bestimmen. Zusätzlich<br />

möchte die SATW ihr Netzwerk mit Produktionsexperten<br />

aus <strong>de</strong>r Industrie verstärken. Gerne nimmt sie auch Beiträge<br />

o<strong>de</strong>r Anregungen von Mitglie<strong>de</strong>rn <strong>de</strong>r SPG entgegen.<br />

"Advanced Manufacturing’", ein interessantes Feld<br />

für Physikerinnen und Physiker?<br />

Mo<strong>de</strong>rne Produktionsmetho<strong>de</strong>n beruhen auf <strong>de</strong>r durchgängigen<br />

Digitalisierung nahezu aller Prozessschritte,<br />

vom Design über die eigentliche Fertigung bis zur Auslieferung.<br />

Dabei umfasst <strong>de</strong>r Begriff Digitalisierung sowohl<br />

computergesteuerte Datenerfassung, numerische<br />

Mo<strong>de</strong>llierung wie Echtzeit-Kommunikation. Weist das<br />

zu fertigen<strong>de</strong> Gerät ab einer gewissen Fertigungsstufe<br />

einen bestimmten Grad an interner Digitalisierung auf,<br />

kann es -ab dann- selber mit <strong>de</strong>n Produktionswerkzeugen<br />

kommunizieren, was zu Genauigkeitssteigerungen<br />

und Durch<strong>la</strong>ufzeitverkürzungen führt. Im gleichen Sinne<br />

kann die interne Digitalisierung später im Einsatz beim<br />

Kun<strong>de</strong>n die Kommunikation mit <strong>de</strong>r Herstellfirma o<strong>de</strong>r<br />

einem Provi<strong>de</strong>r ermöglichen, um die Dienstleistung <strong>de</strong>s<br />

Gerätes nur dann und dort abzurufen, wann und wo es<br />

vom Kun<strong>de</strong>n benötigt wird. Für <strong>de</strong>n Kun<strong>de</strong>n be<strong>de</strong>utet<br />

das eine <strong>de</strong>utliche Effizienzsteigerung seiner Arbeit und<br />

eine Senkung <strong>de</strong>r Betriebskosten.<br />

Im Mittelpunkt all dieser Ansätze steht die Erfassung <strong>de</strong>r<br />

realen Fertigungsabläufe und <strong>de</strong>ren mathematische Mo<strong>de</strong>llierung<br />

('Virtuelle Fabrik'). Das erfor<strong>de</strong>rt ein profun<strong>de</strong>s<br />

physikalisches Verständnis, wenn man an die technischen<br />

Machbarkeitsgrenzen gehen will. Für Industriephysiker<br />

öffnen sich attraktive Betätigungsfel<strong>de</strong>r<br />

B. Braunecker<br />

27


SPG Mitteilungen Nr. 40<br />

First result from the AMS experiment<br />

Martin Pohl, Center for Astroparticle Physics, CAP Genève<br />

Beginning of April 2013, the Alpha Magnetic Spectrometer<br />

(AMS) Col<strong>la</strong>boration published its first physics result in<br />

Physical Review Letters 1 . The AMS experiment is a powerful<br />

and sensitive particle physics spectrometer. As seen in<br />

Figure 1, AMS is located on the exterior of the International<br />

Space Station (ISS). Since its instal<strong>la</strong>tion on 19 May 2011 it<br />

has measured over 30 billion cosmic rays in the GeV to TeV<br />

energy range. Its permanent magnet and array of precision<br />

particle <strong>de</strong>tectors collect and i<strong>de</strong>ntify charged cosmic rays<br />

passing through. Over its long duration mission on the ISS,<br />

AMS will record signals from 16 billion cosmic rays every<br />

year and transmit them to Earth for analysis by the AMS<br />

Col<strong>la</strong>boration. This is the first of many physics results to be<br />

reported.<br />

onboard the final mission of space shuttle En<strong>de</strong>avour (STS-<br />

134) on 16 May 2011. Once installed on 19 May 2011, AMS<br />

was powered up and immediately began collecting data<br />

from primary sources in space and these were transmitted<br />

to the AMS Payload Operations Control Center located at<br />

CERN, Geneva, Switzer<strong>la</strong>nd.<br />

Once AMS became operational, the first task for the AMS<br />

Col<strong>la</strong>boration was to ensure that all instruments and systems<br />

performed as <strong>de</strong>signed and as tested on the ground.<br />

The AMS <strong>de</strong>tector, with its multiple redundancies, has proven<br />

to perform f<strong>la</strong>wlessly in space. Over the <strong>la</strong>st 22 months in<br />

flight, AMS col<strong>la</strong>borators have gained invaluable operational<br />

experience in running a precision spectrometer in space<br />

and mitigating the hazardous conditions to which AMS is<br />

exposed as it orbits the Earth every 90 minutes. Conditions<br />

like this are not encountered by ground-based accelerator<br />

experiments or satellite-based experiments and require<br />

constant vigi<strong>la</strong>nce in or<strong>de</strong>r to avoid irreparable damage.<br />

They inclu<strong>de</strong> the extreme thermal variations caused by so<strong>la</strong>r<br />

effects and the re-positioning of ISS onboard radiators<br />

and so<strong>la</strong>r arrays. In addition, the AMS operators regu<strong>la</strong>rly<br />

transmit software updates from the AMS POCC at CERN to<br />

the AMS computers in space in or<strong>de</strong>r to match the regu<strong>la</strong>r<br />

upgra<strong>de</strong>s of the ISS software and hardware.<br />

Figure 1: From its vantage point about 400 km above the Earth, the<br />

Alpha Magnetic Spectrometer (AMS) collects data from primordial<br />

cosmic rays that traverse the <strong>de</strong>tector.<br />

The first publication from the AMS Experiment is a major<br />

milestone for the AMS international col<strong>la</strong>boration. Hundreds<br />

of scientists, engineers, technicians and stu<strong>de</strong>nts from all<br />

over the world have worked together for over 18 years to<br />

make AMS a reality. The col<strong>la</strong>boration represents 16 countries<br />

from Europe, Asia and North America (Fin<strong>la</strong>nd, France,<br />

Germany, Italy, the Nether<strong>la</strong>nds, Portugal, Spain, Switzer<strong>la</strong>nd,<br />

Romania, Russia, Turkey, China, Korea, Taiwan, Mexico<br />

and the United States) un<strong>de</strong>r the lea<strong>de</strong>rship of Nobel<br />

Laureate Samuel Ting of M.I.T. The col<strong>la</strong>boration continues<br />

to work closely with the NASA AMS Project Management<br />

team from Johnson Space Center as it has throughout the<br />

entire process. Many countries have ma<strong>de</strong> important contributions<br />

to the AMS <strong>de</strong>tector construction and presently<br />

to the data analysis. These inclu<strong>de</strong> two groups from Switzer<strong>la</strong>nd,<br />

University of Geneva and ETHZ, supported by fe<strong>de</strong>ral<br />

and cantonal authorities as well as the SNF.<br />

AMS was constructed at universities and research institutes<br />

around the world and assembled at the European Organization<br />

for Nuclear Research, CERN, Geneva, Switzer<strong>la</strong>nd.<br />

It was <strong>la</strong>unched by NASA to the ISS as the primary payload<br />

1 AMS Col<strong>la</strong>boration, M. Agui<strong>la</strong>r et al., First Result from the Alpha<br />

Magnetic Spectrometer on the International Space Station: Precision<br />

Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350<br />

GeV, Phys. Rev. Lett. 110, 141102 (2013)<br />

28<br />

Positron fraction measurement<br />

In the initial 18 months period of space operations, from<br />

19 May 2011 to 10 December 2012, AMS analyzed 25 billion<br />

primary cosmic ray events. Of these, an unprece<strong>de</strong>nted<br />

number, 6.8 million, were unambiguously i<strong>de</strong>ntified as<br />

electrons and their antimatter counterpart, positrons. The<br />

6.8 million particles observed in the energy range 0.5 to<br />

350 GeV are the subject of the precision study reported in<br />

this first paper.<br />

Electrons and positrons are i<strong>de</strong>ntified by the accurate and<br />

redundant measurements provi<strong>de</strong>d by the various AMS instruments<br />

against a <strong>la</strong>rge background of protons. Positrons<br />

are clearly distinguished from this background through the<br />

robust rejection power of AMS of more than one in one million.<br />

Currently, the total number of positrons i<strong>de</strong>ntified by AMS,<br />

in excess of 400,000, is the <strong>la</strong>rgest number of energetic<br />

antimatter particles directly measured and analyzed from<br />

space. The first paper can be summarized as follows:<br />

AMS has measured the positron fraction (ratio of the positron<br />

flux to the combined flux of positrons and electrons)<br />

in the energy range 0.5 to 350 GeV. We have observed that<br />

from 0.5 to 10 GeV, the fraction <strong>de</strong>creases with increasing<br />

energy. The fraction then increases steadily between 10<br />

GeV to ~250 GeV. Yet the slope (rate of growth) of the positron<br />

fraction <strong>de</strong>creases by an or<strong>de</strong>r of magnitu<strong>de</strong> from 20 to<br />

250 GeV. At energies above 250 GeV, the spectrum appears<br />

to f<strong>la</strong>tten but to study the behavior above 250 GeV requires<br />

more statistics – the data reported represents ~10% of the


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

total expected. The positron fraction spectrum exhibits neither<br />

structure nor time <strong>de</strong>pen<strong>de</strong>nce. The positron to electron<br />

ratio shows no anisotropy indicating the energetic positrons<br />

are not coming from a preferred direction in space.<br />

Together, these features show evi<strong>de</strong>nce of a new physics<br />

phenomena. Figure 2 illustrates the AMS data presented in<br />

the first publication.<br />

statistics avai<strong>la</strong>ble distinguish the reported positron fraction<br />

spectrum from earlier experiments 3 , by extending the<br />

energy range and improving the precision by an or<strong>de</strong>r of<br />

magnitu<strong>de</strong>.<br />

Outlook<br />

AMS is a magnetic spectrometer with the ability to explore<br />

new physics because of its precision, statistics, energy<br />

range, capability to i<strong>de</strong>ntify different particles and nuclei and<br />

its long duration in space. It is expected that hundreds of<br />

billions of cosmic rays will be measured by AMS throughout<br />

the lifetime of the Space Station. The volume of raw data<br />

requires a massive analysis effort. The parameters of each<br />

signal collected are meticulously reconstructed, characterized<br />

and archived before they un<strong>de</strong>rgo analysis by multiple<br />

in<strong>de</strong>pen<strong>de</strong>nt groups of AMS physicists thus ensuring the<br />

accuracy of the physics results.<br />

Figure 2: The positron fraction measured by AMS <strong>de</strong>monstrates<br />

excellent agreement with the mo<strong>de</strong>l <strong>de</strong>scribed below. Even with<br />

the high statistics, 6.8 million events, and accuracy of AMS, the<br />

fraction shows no fine structure.<br />

The exact shape of the spectrum, as shown in Figure 2, exten<strong>de</strong>d<br />

to higher energies, will ultimately <strong>de</strong>termine whether<br />

this spectrum originates from the collision of dark matter<br />

particles or from pulsars in the ga<strong>la</strong>xy. The high level of accuracy<br />

of this data indicates that AMS may soon resolve<br />

this issue.<br />

Over the <strong>la</strong>st few <strong>de</strong>ca<strong>de</strong>s there has been much interest on<br />

the positron fraction from primary cosmic rays by both particle<br />

physicists and astrophysicists. The un<strong>de</strong>rlying reason<br />

is that by measuring the ratio between positrons and electrons<br />

and by studying the behavior of any excess across<br />

the energy spectrum, a better un<strong>de</strong>rstanding of the origin<br />

of dark matter and other physics phenomena may be obtained.<br />

The first AMS result has been analyzed using several phenomenological<br />

mo<strong>de</strong>ls, one of which is <strong>de</strong>scribed in the<br />

paper and inclu<strong>de</strong>d in Figure 2. This generic mo<strong>de</strong>l, with<br />

diffuse electron and positron components and a common<br />

source component, fits the AMS data surprisingly well. This<br />

agreement indicates that the positron fraction spectrum is<br />

consistent with electron positron fluxes each of which is the<br />

sum of its diffuse spectrum and a single energetic common<br />

source. In other words, a significant portion of the highenergy<br />

electrons and positrons originate from a common<br />

source. More specific mo<strong>de</strong>ls 2 based on dark matter self<br />

annihi<strong>la</strong>tion and/or pulsar sources in the Milky Way have<br />

been published immediately after the release of the AMS<br />

data.<br />

As shown in Figure 3, the accuracy of AMS and the high<br />

2 See e.g.: Andrea De Simone, Antonio Riotto, Wei Xuec, CERN-<br />

PH-TH/2013-054 (April 3, 2013). Tim Lin<strong>de</strong>n and Stefano Profumo,<br />

arXiv:1304.1791v1 [astro-ph.HE], (April 5, 2013). Peng-Fei Yin, Zhao-Huan<br />

Yu, Qiang Yuan and Xiao-Jun Bi, arXiv:1304.4128v1 [astro-ph.HE] (April<br />

15, 2013)<br />

Figure 3: A comparison of AMS results with recent published measurements.<br />

With the wealth of data emitted by primary cosmic rays<br />

passing through AMS, the Col<strong>la</strong>boration will also explore<br />

other topics such as the precision measurements of the boron<br />

to carbon ratio, nuclei and antimatter nuclei, and antiprotons,<br />

precision measurements of the helium flux, proton<br />

flux and photons, as well as the search for new physics and<br />

astrophysics phenomena such as strangelets.<br />

The AMS Col<strong>la</strong>boration will provi<strong>de</strong> new, accurate information<br />

over the lifetime of the Space Station as the AMS<br />

<strong>de</strong>tector continues its mission to explore new physics phenomena<br />

in the cosmos.<br />

(This article is based on http://press.web.cern.ch/tags/ams.)<br />

3 TS93: R. Gol<strong>de</strong>n et al., Astrophys. J. 457 (1996) L103. Wizard/<br />

CAPRICE: M. Boezio et al., Adv. Sp. Res. 27-4 (2001) 669. HEAT: J. J.<br />

Beatty et al., Phys. Rev. Lett. 93 (2004) 241102; M. A. DuVernois et al.,<br />

Astrophys. J. 559 (2001) 296. AMS-01: M. Agui<strong>la</strong>r et al., Phys. Lett. B 646<br />

(2007) 145. PAMELA: P. Picozza, Proc. of the 4 th International Conference<br />

on Particle and Fundamental Physics in Space, Geneva, 5-7 Nov. 2012,<br />

to be published. O. Adriani et al., Astropart. Phys. 34 (2010) 1; O. Adriani<br />

et al., Nature 458 (2009) 607. Fermi-LAT: M. Ackermann et al., Phys. Rev.<br />

Lett. 108 (2012) 011103.<br />

29


SPG Mitteilungen Nr. 40<br />

Progress in Physics (33)<br />

Outreach: Can Physics Cross Boundaries?<br />

Jean-Pierre Eckmann, Département <strong>de</strong> Physique Théorique et Section <strong>de</strong> Mathématiques, Université <strong>de</strong> Genève<br />

Recently, physical thinking has been making progress in<br />

domains at which it did not aim originally. In this contribution,<br />

I want to sketch some examples of what can be done.<br />

The method consists of finding systems which originate in<br />

complex or complicated structure or dynamics, and which<br />

can profit from questions physicists ask. The examples I<br />

want to present comprise biology, <strong>la</strong>nguage and the Worldwi<strong>de</strong>-web<br />

(WWW).<br />

I find it fascinating that re<strong>la</strong>tively simple methods, questions,<br />

and techniques from the exact sciences seem to be<br />

able to shed new light, and also new insight, into structures<br />

which are mostly self-generated. I want to suggest<br />

and illustrate that questions outsi<strong>de</strong> physics proper can be<br />

<strong>de</strong>veloped fruitfully by physicists. My story is neither totally<br />

new (see, e.g., [14]) nor as revolutionary as it may seem. I<br />

just want to convey my interest and pleasure in addressing<br />

"esoteric" questions with the tools of mathematics and<br />

physics.<br />

The discussion will be in the subject of "network theory,"<br />

and I first summarize some of its literature [1, 12] : With the<br />

advent of powerful computers on every scientist’s <strong>de</strong>sk, it<br />

has become easy to analyze <strong>la</strong>rge data sets. These data<br />

sets come often, and quite naturally, in the form of <strong>la</strong>rge<br />

networks (graphs, directed or undirected), where the no<strong>de</strong>s<br />

of the graph are certain objects, and the edges are certain<br />

binary re<strong>la</strong>tions between them. For example, the no<strong>de</strong>s<br />

could be individual researchers, and the links could signify<br />

that they either co-author a paper, or cite each other.<br />

Other examples are pages and links in the WWW, which<br />

connect two pages; airports and connections provi<strong>de</strong>d by<br />

commercial airlines; words and links between these words<br />

and their <strong>de</strong>finition in a dictionary. I will call such graphs<br />

real-life graphs 1 . Experimental automation, and the avai<strong>la</strong>bility<br />

of <strong>la</strong>rge databases through the internet provi<strong>de</strong> many<br />

interesting networks for analysis. The most useful ones are<br />

obtained in col<strong>la</strong>boration with experimental scientists.<br />

Continuing a long tradition in statistical physics, the studies<br />

of <strong>la</strong>rge networks often concentrate on their statistical<br />

properties. Erdős and Rényi <strong>de</strong>scribed a set of random<br />

graphs which are built as follows [3]: Take N no<strong>de</strong>s (N very<br />

<strong>la</strong>rge) and assume that the mean <strong>de</strong>gree (number of links<br />

coming out of a no<strong>de</strong>) is k > 0, in<strong>de</strong>pen<strong>de</strong>ntly of N. Then,<br />

paraphrasing Erdős and Rényi, one can make two statements:<br />

1. Such a graph looks locally like a tree (i.e., it has very<br />

few loops, and these loops are all very long) [4].<br />

2. The expected number of triangles is k 3 /6, (i.e., this<br />

number does not grow with N). (Longer loops are also<br />

rare 2 .)<br />

1 One may legitimately ask why only binary re<strong>la</strong>tions seem important, but<br />

I will argue <strong>la</strong>ter that triangles in these graphs p<strong>la</strong>y the role of three-bodyinteractions<br />

and are the main indicators of semantic contexts.<br />

2 It is actually quite easy to prove these statements, although, at first,<br />

they certainly seem totally anti-intuitive.<br />

3 also called "rich get richer"<br />

30<br />

The first surprise was the discovery that real-life graphs are<br />

not random in the above sense. In contrast to general results<br />

on random graphs, the graphs of "affinities" or "connections"<br />

between "authors," "entities" have very specific<br />

general properties, namely power <strong>la</strong>w behavior over several<br />

<strong>de</strong>ca<strong>de</strong>s [1]. By this, one means the statistics of the number<br />

N^ j h of no<strong>de</strong>s which are attached to exactly j others (the<br />

-c<br />

<strong>de</strong>gree of the no<strong>de</strong>). In formu<strong>la</strong>s, N^ j h . const.<br />

j for <strong>la</strong>rge<br />

j. The point here is that the <strong>de</strong>cay is a power <strong>la</strong>w, and not<br />

an exponential, pointing to the important feature of no<strong>de</strong>s<br />

in the graph with very many connections, many more than<br />

a Gaussian, or Poisson distribution would allow for. In many<br />

real-life graphs g takes a value between 2 and 3.<br />

What this means is that there are a few no<strong>de</strong>s which have<br />

a really high <strong>de</strong>gree. For example, in studying the connections<br />

in Twitter, one finds that there are a few no<strong>de</strong>s with<br />

over 100’000 "friends" (these are usually politicians, perhaps<br />

also singers), the interesting question here is whether<br />

they are friends (the singers) or whether they think they<br />

have friends (the politicians...).<br />

Many studies then concentrate on the dynamics of how<br />

such networks come into being. This is usually called the<br />

"preferential attachment" 3 problem [2], namely the i<strong>de</strong>a<br />

that the networks build up in time, and that people have a<br />

ten<strong>de</strong>ncy to connect to well-known other people (or services).<br />

These mo<strong>de</strong>ls have successfully exp<strong>la</strong>ined how longrange<br />

(scale-free) properties of graphs come about.<br />

Another important aspect of network studies is summarized<br />

un<strong>de</strong>r the term of "clustering coefficient" [18]. In contrast to<br />

the power <strong>la</strong>ws <strong>de</strong>scribed above, this is a local property of<br />

any graph. In mathematical terms, if a no<strong>de</strong> n has j neighbors,<br />

then you count the number t of triangles which have<br />

the no<strong>de</strong> n as a corner. Obviously, there cannot be more<br />

than T^<br />

j h = j^j - 1h / 2 such triangles, and the clustering<br />

coefficient is <strong>de</strong>fined as t/<br />

T^ j h, which is a number between<br />

0 and 1. A high clustering coefficient means that many of<br />

the possible triangles are actually realized.<br />

When I started to study real-life graphs [7], I was puzzled by<br />

the abundance of triangles, which appear or<strong>de</strong>rs of magnitu<strong>de</strong><br />

above (k 3 ) predicted by Erdős and Rényi. What<br />

does this mean? It soon turned out that triangles p<strong>la</strong>y a<br />

strong semantic role. In other words, in all studies of this<br />

type, one can attach meaning to this abundance.<br />

The first case where we discovered this phenomenon was<br />

the set of links in the WWW [7]. While there are many links<br />

which seem irrelevant, we found that those links which form<br />

triangles re<strong>la</strong>te to common interests of the owners of the<br />

pages involved. Carrying this i<strong>de</strong>a further, we found that<br />

triangles of connections among neurons of C. Elegans (a little<br />

worm with 302 neurons) organize their function. Another<br />

example is provi<strong>de</strong>d by triangles of e-mail messages sent<br />

between people, and this <strong>de</strong>termines their social grouping<br />

[8].


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

The neurons of C. Elegans and their connections: Height is clustering<br />

coefficient, color co<strong>de</strong>s function (motor, sensory,...)<br />

My final example is the appearance of loops in the <strong>de</strong>finitions<br />

of words in a dictionary [10]. Here, the graph is formed<br />

by arrows pointing from each word (actually nouns) to the<br />

words in their <strong>de</strong>finition. One finds not only triangles, but<br />

also bi-angles, back-and-forth, (which are synonyms) and<br />

also longer loops. When the loops are too long, there might<br />

be a jump in interpretation, such as at the broken arrow in<br />

railcar & rails & bar & weapon & instrument &<br />

skill Z train & railcar.<br />

But the surprising fact is that the medium size loops are<br />

semantically coherent, and their words form the core of the<br />

<strong>la</strong>nguage. (We checked that by comparing the core-words<br />

to those of [13].) And furthermore, as a bonus, one can<br />

show that they are re<strong>la</strong>ted to the historical appearance of<br />

new concepts in <strong>la</strong>nguage [9].<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

What fascinates me in all this is that questions and methods<br />

from physics can shed new light on several systems<br />

with complex dynamics or structure. The most accessible<br />

among such systems are those where sub-units are assembled<br />

without a master building p<strong>la</strong>n.<br />

The common structure which appears in such studies is<br />

that the more "interesting dynamics" (biochemistry, feedback)<br />

[16], the "meaning" (<strong>la</strong>nguage) [5] or "mechanisms"<br />

(emergent life) are all revealed by <strong>de</strong>viations from the natural<br />

statistical structures of random assemblies. In general, the<br />

connected objects have some "<strong>de</strong>eper" i<strong>de</strong>ntity (meaning,<br />

semantics) that curves the pathways back to some originating<br />

no<strong>de</strong>, in contrast to the "rich get richer" scenario.<br />

So far, these methods have allowed to give some insight<br />

into realms outsi<strong>de</strong> of physics proper. I am convinced that<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

The structuring of words in a dictionary.<br />

<br />

<br />

<br />

<br />

<br />

this outreach has an interesting future, and will penetrate<br />

further new domains.<br />

Where does all this lead? The studies I have presented all<br />

use only the topology of the network, but never the metrics,<br />

namely the way some real-life networks are embed<strong>de</strong>d in<br />

the space in which we live. Adding this component opens<br />

new possibilities, especially in studying aspects of life. This<br />

is so because many aspects of life are about spatial connections,<br />

organisms are a linked set of individual units that<br />

have to interact well and "intelligently" in or<strong>de</strong>r to function.<br />

It is too early to make strong methodological statements<br />

about how mathematics and physics can p<strong>la</strong>y a role in<br />

studying such problems, but certainly, a few studies on<br />

neuronal networks [6, 17], or the interaction of ants in colonies<br />

[11, 15] seem to me promising beginnings in <strong>de</strong>veloping<br />

a methodology for studies in living systems.<br />

References<br />

[1] R. Albert and A.-L. Barabási. Statistical mechanics of complex<br />

networks. Rev. Mo<strong>de</strong>rn Phys. 74 (2002), 47–97.<br />

[2] A.-L. Barabási and R. Albert. Emergence of scaling in random<br />

networks. Science 286 (1999), 509–512.<br />

[3] B. Bollobás. Random graphs, volume 73 of Cambridge Studies<br />

in Advanced Mathematics (Cambridge: Cambridge University<br />

Press, 2001), second edition.<br />

[4] A. Dembo and A. Montanari. Ising mo<strong>de</strong>ls on locally tree-like<br />

graphs. Ann. Appl. Probab. 20 (2010), 565–592.<br />

[5] B. Dorow, D. Widdows, K. Ling, J.-P. Eckmann, D. Sergi, and<br />

E. Moses. Using curvature and Markov clustering in graphs for<br />

lexical acquisition and word sense discrimination. In: MEAN-<br />

ING-2005, 2nd Workshop organized by the MEANING Project,<br />

February 3rd-4th 2005, Trento, Italy. (2005).<br />

[6] J.-P. Eckmann, O. Feinermann, L. Gruendlinger, E. Moses,<br />

J. Soriano, and T. Tlusty. The physics of living neural networks.<br />

Physics Reports 449 (2007), 54–76.<br />

[7] J.-P. Eckmann and E. Moses. Curvature of co-links uncovers<br />

hid<strong>de</strong>n thematic <strong>la</strong>yers in the World Wi<strong>de</strong> Web. Proc. Natl. Acad.<br />

Sci. USA 99 (2002), 5825–5829 (electronic).<br />

[8] J.-P. Eckmann, E. Moses, and D. Sergi. Entropy of dialogues<br />

creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci.<br />

USA 101 (2004), 14333–14337 (electronic).<br />

[9] D. Harper. Online Etymology Dictionary. (2010).<br />

[10] D. Levary, J.-P. Eckmann, E. Moses, and T. Tlusty. Loops and<br />

self-reference in the construction of dictionaries. Phys. Rev. X 2<br />

(2012), 031018.<br />

[11] D. P. Mersch, A. Crespi, and L. Keller. Tracking individuals<br />

shows spatial fi<strong>de</strong>lity is a key regu<strong>la</strong>tor of ant social organization.<br />

Science 340.<br />

[12] M. Newman, A.-L. Barabási, and D. J. Watts, eds. The structure<br />

and dynamics of networks. Princeton Studies in Complexity<br />

(Princeton, NJ: Princeton University Press, 2006).<br />

[13] C. Og<strong>de</strong>n. Basic English: a general introduction with rules and<br />

grammar (Kegan Paul, London, 1930).<br />

[14] L. Onsager. Nobel lecture, The motion of ions: Principles and<br />

concepts. In: Nobel Lectures (December 11, 1968).<br />

[15] N. Razin, J.-P. Eckmann, and O. Feinerman. Desert ants<br />

achieve reliable recruitment across noisy interactions. J. Royal<br />

Soc. Interface 10 (2013) 20130079.<br />

[16] S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs<br />

in the transcriptional regu<strong>la</strong>tion network of Escherichia coli. Nature<br />

Genetics 31 (2002), 64–68.<br />

[17] T. Tlusty and J.-P. Eckmann. Remarks on bootstrap perco<strong>la</strong>tion<br />

in metric networks. J. Phys. A 42 (2009), 205004, 11.<br />

[18] D. Watts and S. Strogatz. Collective dynamics of 'small-world'<br />

networks. Nature 393 (1998), 409–410.<br />

31


SPG Mitteilungen Nr. 40<br />

Progress in Physics (34)<br />

On the <strong>de</strong>velopment of physically-based regional climate mo<strong>de</strong>lling<br />

Stéphane Goyette<br />

Institute for Environmental Sciences, University of Geneva, 7 route <strong>de</strong> Drize, Geneva<br />

There are huge scientific and technical challenges in research<br />

directed towards un<strong>de</strong>rstanding climate and climate<br />

change. No clear picture of how the weather and climate<br />

system works emerged prior to the 20 th century because<br />

of the <strong>la</strong>ck of connection between atmospheric variables.<br />

In fact, there was still some doubt about <strong>de</strong>riving a theory<br />

about how to interpret daily weather patterns, general circu<strong>la</strong>tion<br />

of the atmosphere, and the global climate. Atmospheric<br />

physics reached a <strong>la</strong>ndmark in the early 20 th century<br />

when empirical climatology, theoretical meteorology and<br />

forecasting were about to converge into a conceptualisation<br />

of this "vast machine" (Edwards, 2010). The problem of<br />

un<strong>de</strong>rstanding the causes of weather, climate and climate<br />

change is not one to be solved quickly or easily, but contributing<br />

to its solution is particu<strong>la</strong>rly worthwhile. In fact, the<br />

status of the climate results from the complex interactions<br />

between the atmosphere with the physical and biological<br />

systems which bound it - the <strong>la</strong>kes and oceans, ice sheets,<br />

<strong>la</strong>nd and vegetation through a spectrum of temporal and<br />

spatial scales. These elements all <strong>de</strong>termine the state and<br />

the evolution of the Earth’s weather and climate, owing to<br />

a particu<strong>la</strong>r influence of the general circu<strong>la</strong>tion of the atmosphere<br />

which redistributes energy, along with the ocean<br />

currents, from the Tropics to the Poles. This highly-coupled<br />

system presents a genuine challenge for mo<strong>de</strong>llers, and<br />

this has led to a body of literature which <strong>de</strong>tails the range<br />

and hierarchy of numerical climate mo<strong>de</strong>ls (e.g. Trenberth,<br />

1996, Schlesinger, 1988).<br />

Back in 1904, Vilhelm Bjerknes recognised that a physically-based<br />

weather forecast is a fundamental initial-value<br />

problem in the mathematical sense; this was <strong>la</strong>ter c<strong>la</strong>ssified<br />

as predictability of the first kind according to Lorenz (1975).<br />

The foundation of what became a framework of studying<br />

the geophysical fluid motions in or<strong>de</strong>r to predict the state<br />

of the atmosphere was shaping up. The <strong>de</strong>rivation of the<br />

equations of motion began in the 17 th century with Newton’s<br />

Laws of Motion, which were <strong>la</strong>ter applied for fluid flow<br />

purposes by Euler and Bernoulli in the 18 th century. The<br />

mo<strong>de</strong>rn conservation of momentum formu<strong>la</strong>tion consists<br />

of a form of the Navier–Stokes equations, an extension of<br />

Euler’s (but for viscous flow), that <strong>de</strong>scribe hydrodynamical<br />

flow. A continuity equation, also accredited to Euler, represents<br />

the conservation of mass. Hadley in 1735, and Ferrel,<br />

around 1850, showed that the <strong>de</strong>flection of rising warm air<br />

is due to the Coriolis effect, a force that began to be used in<br />

connection with meteorology in the early 20 th century. The<br />

first <strong>la</strong>w of thermodynamics, a version of the <strong>la</strong>w of conservation<br />

of energy, was codified near the end of the 19 th century<br />

by a number of scientists, but the first full statements<br />

of the <strong>la</strong>w came earlier from C<strong>la</strong>usius and Rankine. This led<br />

to the thermal energy equation re<strong>la</strong>ting the overall temperature<br />

of the system to heat sources and sinks. The gas state<br />

variables were re<strong>la</strong>ted in 1834 when, C<strong>la</strong>peyron combined<br />

Boyle’s Law and Charles’ <strong>la</strong>w into the first statement of the<br />

i<strong>de</strong>al Gas Law. The basic ingredients employed to approximate<br />

atmospheric flow were then gathered to progress<br />

from concepts to operational computer forecasting, thus<br />

aiming at representing weather by numbers (Harper, 2008).<br />

The partitioning of the atmospheric fluid into a dry and water<br />

vapour mixture, according to the Dalton’s <strong>la</strong>w, was <strong>la</strong>ter<br />

inclu<strong>de</strong>d in numerical mo<strong>de</strong>ls; this premise led to a genuine<br />

improvement when the water cycle and its associated energy<br />

exchange was introduced as an extra equation, <strong>de</strong>scribing<br />

the transport of water vapour handling the effects of<br />

changes of water phases for calcu<strong>la</strong>ting precipitation. All of<br />

the above form the basic equations used today for weather<br />

forecasting and climate prediction. The conservation equations<br />

are partial differential equations. For a unit mass, with<br />

a frame of reference attached to the Earth and the origin at<br />

its centre, these equations may be written as follows (e.g.<br />

Washington and Parkinson, 1986, Hen<strong>de</strong>rson-Sellers and<br />

McGuffie, 1987, Jacobson, 1998, Coiffier, 2011):<br />

dV<br />

=-2X<br />

# V -<br />

1<br />

dp<br />

- dU<br />

+ F momentum equation (1)<br />

dt<br />

t<br />

dT dp<br />

=<br />

1<br />

c + Q m<br />

dt c p dt<br />

thermodynamic equation (2)<br />

dt<br />

=- td $ V<br />

dt<br />

continuity equation (3)<br />

dq<br />

dt<br />

p<br />

= M<br />

water vapour equation (4)<br />

= tRT<br />

equation of state (5)<br />

which gives us a set of seven equations with seven unknowns,<br />

where V represents the three-dimensional wind<br />

velocity, T is the air temperature, p is the pressure, q is<br />

the specific humidity, and t is the air <strong>de</strong>nsity, all varying in<br />

space and in time. The other quantities are: X is the angu<strong>la</strong>r<br />

of rotation of the Earth, is the geopotential <strong>de</strong>fined as<br />

the product of geometric height above the surface z by the<br />

acceleration due to gravity g, (the <strong>la</strong>tter including the Newtonian<br />

gravity and the centrifugal acceleration), R and c p<br />

are<br />

the specific gas constant and the specific heat at constant<br />

pressure, and t is the time. F, Q and M represent the sources<br />

and sinks of momentum (e.g. frictional forces), heat (e.g.<br />

so<strong>la</strong>r and infrared radiation, and <strong>la</strong>tent heat release) and<br />

moisture (e.g. evaporation and con<strong>de</strong>nsation), respectively,<br />

and their expression <strong>de</strong>pends on the scale of the atmospheric<br />

motion the mo<strong>de</strong>l aims to <strong>de</strong>scribe, and they represent<br />

subgrid-scale processes commonly expressed in<br />

terms of resolved quantities. In the prognostic equations<br />

(1-4), the <strong>de</strong>rivative of any sca<strong>la</strong>r quantities } with respect<br />

to time taken following the fluid is expressed as<br />

d} 2}<br />

= + V $ d}<br />

(6)<br />

dt 2t<br />

where the first term on the right is a local partial <strong>de</strong>riva-<br />

32


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

tive at a fixed point in the chosen frame of reference and<br />

the second the advection of the same quantity. Advection<br />

that induces non-linear effects is a transport mechanism of<br />

a quantity by a fluid due to its bulk motion. Simplification<br />

and transformation are required in or<strong>de</strong>r to resolve for some<br />

analytical solutions or the numerical methods used to seek<br />

numerical solutions. The discretization of these continuous<br />

equations would ren<strong>de</strong>r them amenable, using appropriate<br />

algorithms, to a numerical solution of the continuous behaviour<br />

of the circu<strong>la</strong>ting atmosphere.<br />

Around 1920, Richardson, who may be consi<strong>de</strong>red as the<br />

father of today’s mo<strong>de</strong>ls for weather and climate, tried to<br />

solve a simplified set of equations using numerical methods<br />

"by hand and step-by-step". However, his 6-hour<br />

"retrospective forecast" proved unrealistic. Computational<br />

instability and imba<strong>la</strong>nce in the initial data set were <strong>la</strong>ter<br />

found to be the cause of this "setback". However, in 1928,<br />

Courant, Friedrichs, and Lewy showed that a time step<br />

must be less than a certain value in explicit time-marching<br />

schemes to warrant stable numerical solutions using the<br />

method of finite differences. Then, Richardson realised that<br />

64’000 computers [human automata] would be nee<strong>de</strong>d to<br />

race the weather for the whole globe, but by the time he<br />

published "Weather Prediction by Numerical Process" in<br />

1922, fast computers were unavai<strong>la</strong>ble. The <strong>de</strong>velopment<br />

of complex mo<strong>de</strong>ls remained dormant until the <strong>de</strong>velopment<br />

of electronic computers handling self-programmed<br />

sequences of instructions. In 1950, Charney, Ragnar Fjörtoft,<br />

and von Neumann ma<strong>de</strong> the first numerical weather<br />

prediction (NWP) using "simplified" equations to represent<br />

<strong>la</strong>rge-scale eddy motion. This accomplishment then fostered<br />

the <strong>de</strong>velopment of more complex prediction mo<strong>de</strong>ls<br />

of even greater spatial resolution, allowing small scales of<br />

motion to be resolved. In 1956, Phillips <strong>de</strong>veloped a mo<strong>de</strong>l<br />

which could realistically <strong>de</strong>pict monthly and seasonal patterns<br />

in the troposphere, which became the first successful<br />

climate mo<strong>de</strong>l. Following Phillips’ work, several groups<br />

began working out General Circu<strong>la</strong>tion Mo<strong>de</strong>ls (GCMs) of<br />

the atmosphere of increasing complexities, including the<br />

effects of sub-systems such as these induced by oceans.<br />

The challenge of numerical mo<strong>de</strong>ls is to run forward in time<br />

much faster than the real atmosphere and oceans with<br />

avai<strong>la</strong>ble electronic computers. To do this, they must make<br />

a <strong>la</strong>rge number of simplifying assumptions. Although there<br />

have been great advances ma<strong>de</strong> in the discipline of climate<br />

mo<strong>de</strong>lling over the <strong>la</strong>st fifty years, the most sophisticated<br />

mo<strong>de</strong>ls remain very much simpler than that of the full climate<br />

system (McGuffie and Hen<strong>de</strong>rson-Sellers, 2001).<br />

The first atmospheric general circu<strong>la</strong>tion mo<strong>de</strong>l applied<br />

for long-term integrations, were <strong>de</strong>rived directly from numerical<br />

mo<strong>de</strong>ls <strong>de</strong>signed for short-term numerical weather<br />

forecasting, which did not have a global coverage at this<br />

time. Then, the advance of computing technologies, along<br />

with the requirements of weather predictions needing hemispheric<br />

or even global computational domains, the longer<br />

integration periods became a matter of avai<strong>la</strong>bility of computer<br />

resources. The early climate mo<strong>de</strong>l grid spacing was<br />

very coarse in the horizontal and vertical dimensions. The<br />

evolution towards greater resolution and increased complexity<br />

has been the rule since. This has been facilitated<br />

by the avai<strong>la</strong>bility of <strong>la</strong>rge computing technologies and<br />

by new algorithms and numerical methods thus allowing<br />

longer numerical time-stepping (Mote and O’Neil, 2000). To<br />

this day, climate mo<strong>de</strong>lling and weather forecasting groups<br />

co-exist, but the needs and focus of the two disciplines<br />

differ. For climate mo<strong>de</strong>lling, long-term mass, energy and<br />

moisture conservation is an important issue. This may thus<br />

be consi<strong>de</strong>red as a fundamental boundary-value problem<br />

in the mathematical sense, c<strong>la</strong>ssified as predictability of<br />

the second kind according to Lorenz (1975). Not all climate<br />

mo<strong>de</strong>ls originated from weather forecast mo<strong>de</strong>ls, however.<br />

Simpler mo<strong>de</strong>ls based on global energy conservation are<br />

collectively called Energy Ba<strong>la</strong>nce Mo<strong>de</strong>ls, or EBMs (Hen<strong>de</strong>rson-Sellers<br />

and McGuffie, 1987). They take into account<br />

the different forms of energy driving the climate system and<br />

look for a steady state solution for the surface temperature.<br />

Their main advantage is that they can be extensively used<br />

to do sensitivity studies of the role of external forcing on the<br />

surface temperature (that of the greenhouse gases, of the<br />

Earth’s orbital parameters in the very long term, the impacts<br />

of volcanic eruptions, etc.), which can thus be investigated<br />

at a low computational cost. However, the atmospheric circu<strong>la</strong>tion<br />

is not explicitly resolved so they cannot be used<br />

neither to forecast daily conditions nor the general circu<strong>la</strong>tion<br />

of the atmosphere.<br />

During the early days of weather forecasting, the computational<br />

domains were restricted to an area of interest. These<br />

Limited Area Mo<strong>de</strong>ls (LAMs) were <strong>de</strong>veloped to enable<br />

short range predictions to be ma<strong>de</strong> over a <strong>la</strong>rge domain.<br />

Their major drawback is that flow field values have to be<br />

specified at the area boundary for each time step. Later on,<br />

to overcome this problem, these field values were interpo<strong>la</strong>ted<br />

from those obtained from a global <strong>la</strong>rger-scale mo<strong>de</strong>l.<br />

This technique has led to "nested mo<strong>de</strong>ls" that are the basis<br />

of operational prediction systems in most meteorological<br />

services. Following the pioneering work in the U.S. in<br />

the 1980s (e.g. Giorgi et al., 1989), the approach, consisting<br />

of driving a high resolution LAM <strong>la</strong>teral boundaries with<br />

low-resolution GCM flow fields, entered the scene (Laprise,<br />

2008). In practice, one or<strong>de</strong>r of magnitu<strong>de</strong> in resolution can<br />

be gained with this approach, so the small-scale structures<br />

of atmospheric circu<strong>la</strong>tion can be reproduced. One advantage<br />

of such a LAM is that it can also be driven by atmospheric<br />

reanalyses (data <strong>de</strong>rived from global observations<br />

using data assimi<strong>la</strong>tion schemes and mo<strong>de</strong>ls), rather than<br />

by GCM outputs; this feature is very convenient for <strong>de</strong>velopment<br />

and validation purposes. When LAMs are applied<br />

to long time scales, they are referred to as Regional Climate<br />

Mo<strong>de</strong>ls (RCMs). They are now exploited in a number of research<br />

centres around the world and used in a wi<strong>de</strong> range of<br />

climate applications, from pa<strong>la</strong>eoclimate to anthropogenic<br />

climate change studies (IPCC, 2007). The <strong>de</strong>velopment and<br />

application of such numerical tools has been motivated by<br />

the needs of assessing what the impact of global climate<br />

will be in different regions. This downscaling approach is<br />

very versatile since RCMs are locatable in any part of the<br />

world. Moreover, simu<strong>la</strong>ting climate and climate change at<br />

the regional and national levels is of paramount importance<br />

for policymaking. Any regional climate mo<strong>de</strong>lling approach<br />

affords focusing over an area of the globe with a regional<br />

grid-point spacing of a few tens of kms in the horizontal, for<br />

operational use on climate timescales. Furthermore, even<br />

when the increase of computing power will permit the operational<br />

use of GCMs at a resolution of a few tens of km,<br />

33


SPG Mitteilungen Nr. 40<br />

Global reanalysis (~ 2.5° x 2.5°) or GCM simu<strong>la</strong>ted outputs<br />

20-km RCM<br />

2-km<br />

RCM<br />

Figure 1. Regional climate mo<strong>de</strong>ls self-nesting methodology<br />

indicating two computational domains onto<br />

which simu<strong>la</strong>tions are performed. Starting with low<br />

resolution GCM outputs or global reanalysis, the finegrain<br />

<strong>de</strong>tails of the flow fields are downscaled in a<br />

step-wise manner to 2 km grid-spacing. The intermediate<br />

5-km RCM domain has been omitted for better<br />

c<strong>la</strong>rity. The re<strong>la</strong>tive humidity, represented in colour<br />

sha<strong>de</strong>s, is meant to show how the increase in the horizontal<br />

resolution impacts on the reproduction of these<br />

small scale <strong>de</strong>tails.<br />

the RCM approach could still be useful, allowing reaching<br />

resolution of a few kms for a simi<strong>la</strong>r computational load. In<br />

principle, specific physical parameterizations for the sources<br />

and sinks of momentum, heat and moisture, respectively<br />

F, Q and M as <strong>de</strong>picted in Eqs (1) - (2), and (4) are scale<br />

<strong>de</strong>pen<strong>de</strong>nt. In the historical <strong>de</strong>velopment of RCMs, these<br />

parameterisations often benefited from packages coming<br />

from either NWPs or from GCMs. Improvements to existing<br />

schemes and also new <strong>de</strong>velopments were nevertheless<br />

<strong>de</strong>emed necessary. This enables RCMs to be applied<br />

to a <strong>la</strong>rge range of atmospheric flows. This downscaling<br />

technique can be further exten<strong>de</strong>d to finer <strong>de</strong>tail with the<br />

casca<strong>de</strong> self-nesting capability as shown in Fig 1 (Goyette<br />

et al., 2001). The enhancement of horizontal resolution,<br />

also prompted for on the specification of surface boundary<br />

conditions as a sizeable portion of the performance of<br />

RCMs relies on the surface forcing not captured by GCMs.<br />

Their success <strong>de</strong>pends on their ability to respond to these<br />

forcing factors in a realistic manner in space and time. An<br />

important surface forcing not captured by GCMs (Fig 2.)<br />

which has received much attention <strong>la</strong>tely is the regional influence<br />

of in<strong>la</strong>nd water bodies (Goyette et al., 2000). Also,<br />

much attention is being paid to the capability of RCMs to<br />

reproduce extreme events. Wind gusts are fundamental<br />

characteristics of the variability of wind climate; physicallybased<br />

parameterization to simu<strong>la</strong>te gusts has been <strong>de</strong>veloped<br />

to better capture the effects of extremes associated<br />

with these features (Goyette et al., 2003).<br />

There is also a need for future climate projection at local and<br />

regional scales. In addition, climate mo<strong>de</strong>ls, either global or<br />

regional, are constantly improved so as to inclu<strong>de</strong> stateof-the-art<br />

numerical schemes, physical parameterizations,<br />

new scenarios for greenhouse gas forcing, etc. to warrant<br />

realistic simu<strong>la</strong>tions at an ever-increasing spatial resolution.<br />

For example, the European project "PRUDENCE" was<br />

34


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

20-km RCM<br />

2-km<br />

RCM<br />

Figure 2. Surface topography prescribed as a lower boundary<br />

condition in a 20- and a 2-km RCM. Local weather and climate<br />

are significantly influenced by local topographical features such as<br />

mountains. Small-scale topographical features are not resolved by<br />

GCMs neither by low resolution RCMs (e.g. 20-km RCM) due to<br />

the coarse resolution of their computational grids.<br />

aimed at quantifying confi<strong>de</strong>nce and uncertainties in predictions<br />

of future European climate and its impacts using a<br />

suite of high resolution RCMs driven by a coarser resolution<br />

GCM (Christensen et al., 2002).<br />

Ultra-high climate simu<strong>la</strong>tions, i.e. 30 years or more with an<br />

horizontal grid spacing on the or<strong>de</strong>r of one kilometre, is not<br />

foreseen in the near future due to as yet ina<strong>de</strong>quate computational<br />

resources. Some specific case studies using RCMs<br />

with 2 and even 1 km grid spacing have been carried out<br />

for short term integrations to test the downscaling ability of<br />

such an approach (Goyette, 2001). The analysis has shown<br />

that the mo<strong>de</strong>l cannot overcome the massive increase in<br />

resolution from coarse resolution GCM or reanalysis data<br />

down to these fine scales without introducing intermediate<br />

steps (Fig 1). The casca<strong>de</strong> self-nesting method requires, for<br />

long-term simu<strong>la</strong>tions, that the ratio between successive<br />

grid meshes should range between 3 and 5 to avoid numerical<br />

inconsistencies. However, 2.2-km numerical weather<br />

predictions do exist and this mo<strong>de</strong>l is particu<strong>la</strong>rly aimed at<br />

assisting in short-term local forecasting, showing skill for<br />

a 24-h forecast (COSMO 1 ). Much research remains to be<br />

done, <strong>de</strong>spite all the post World War II achievements. There<br />

are still many scientific and technical challenges in weather<br />

and climate research, and contributing to these innovations<br />

and findings is in<strong>de</strong>ed worthwhile.<br />

1 www.meteosuisse.admin.ch/web/fr/meteo/previsions_numeriques/<br />

cosmo.html<br />

References<br />

Coiffier, J.: Fundamentals of numerical weather prediction. Cambridge<br />

University Press, Cambridge 2011, 340 pp.<br />

Charney, J., R. Fjørtoft, J. von Neumann, 1950: Numerical Integration<br />

of the Barotropic Vorticity Equation. Tellus, 2, 237-254.<br />

Christensen, J. H., T. Carter, F. Giorgi, 2002: PRUDENCE Employs<br />

New Methods to Assess European Climate Change, EOS, 83,<br />

147.<br />

Courant, R., Friedrichs, K., Lewy, H., 1928: "Über die partiellen<br />

Differenzengleichungen <strong>de</strong>r mathematischen Physik", Mathematische<br />

Annalen, 100 (1), 32–74.<br />

Edwards, P.: A vast machine: Computer mo<strong>de</strong>ls, climate data, and<br />

the politics of global warming. MIT Press, Cambridge, 2010,<br />

518 pp.<br />

Giorgi. F, and G.T. Bates, 1989: The climatological skill of a regional<br />

mo<strong>de</strong>l over complex terrain, Mon. Weather Rev. 11,<br />

2325–2347.<br />

Goyette, S, O. Brasseur, and M. Beniston, 2003: Application of<br />

a new wind gust parameterisation. Multi-scale case studies<br />

performed with the Canadian RCM. J. of Geophys. Res., 108,<br />

4374-4390.<br />

Goyette, S., M. Beniston, D. Caya, J. P. R. Laprise, and P. Jungo,<br />

2001: Numerical investigation of an extreme storm with the<br />

Canadian Regional Climate Mo<strong>de</strong>l: The case study of windstorm<br />

VIVIAN, Switzer<strong>la</strong>nd, February 27, 1990. Clim. Dyn., 18,<br />

145 - 178.<br />

Goyette, S., N. A. McFar<strong>la</strong>ne, and G. M. F<strong>la</strong>to, 2000: Application<br />

of the Canadian Regional Climate Mo<strong>de</strong>l to the Laurentian<br />

Great Lakes region: Implementation of a <strong>la</strong>ke mo<strong>de</strong>l. Atmos.-<br />

Ocean, 38, 481 - 503.<br />

Harper, K. J.: Weather by the numbers: The genesis of mo<strong>de</strong>rn<br />

meteorology. MIT Press 2008, 308 pp.<br />

Hen<strong>de</strong>rson-Sellers, A, and K. McGuffie: A climate mo<strong>de</strong>lling primer.<br />

Wiley, Chichester, 2006, 296 pp.<br />

IPCC 2007, Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis,<br />

K. B. Averyt, M. Tignor and H. L. Miller (eds.). Contribution<br />

of Working Group I to the Fourth Assessment Report of<br />

the Intergovernmental Panel on Climate Change. Cambridge<br />

University Press, Cambridge, United Kingdom and New York,<br />

NY, USA, 996 pp.<br />

Jacobson, M. Z.: Fundamentals of atmospheric mo<strong>de</strong>lling. Cambridge<br />

University Press, Cambridge 1998, 828 pp.<br />

Laprise, R, 2008: Regional climate mo<strong>de</strong>lling. J. Comput. Phys,<br />

227, 3641-3666.<br />

Lorenz, E. N.: Climate predictability. In: The Physical Basis of Climate<br />

and Climate Mo<strong>de</strong>lling, WMO GARP Publ. Ser. No. 16,<br />

1975, 265 pp.<br />

McGuffie, K, and A. Hen<strong>de</strong>rson-Sellers, 2001: Forty years of numerical<br />

climate mo<strong>de</strong>lling. Int. J Climatol., 12, 1067 - 1109.<br />

Mote, P., and A. O’Neill, Numerical Mo<strong>de</strong>ling of the Global Atmosphere<br />

in the Climate System. Kluwer Aca<strong>de</strong>mic Publishers<br />

2000, Boston, Massachusetts, 517 pp.<br />

Phillips, N. A., 1956: The general circu<strong>la</strong>tion of the atmosphere:<br />

a numerical experiment. Quart. J. Roy. Meteor. Soc. 82, 123–<br />

154.<br />

Richardson, L. F.: Weather prediction by numerical processes.<br />

Cambridge University Press (reprinted by Dover Publications,<br />

1966), 236 pp.<br />

Schlesinger, M (ed.): Physically-based mo<strong>de</strong>lling and simu<strong>la</strong>tion of<br />

climate and climatic change - Part 1 and 2, Nato ASI Series C,<br />

No 243,Kluwer Aca<strong>de</strong>mic Publisher, Dordrecht 1988, 1084 pp.<br />

Washington, W., and C. Parkinson: An introduction to three-dimensional<br />

climate mo<strong>de</strong>ling. University Science books, 1986,<br />

Mill Valley, CA, 322 pp.<br />

WMO, The World Meteorological Organisation: The physical basis<br />

of climate and climate mo<strong>de</strong>lling. Garp Publication series No<br />

16, WMO/ICSU, Geneva 1975, 265 pp.<br />

35


SPG Mitteilungen Nr. 40<br />

Progress in Physics (35)<br />

A snowf<strong>la</strong>ke in a million <strong>de</strong>gree p<strong>la</strong>sma<br />

Y. Martin, B. Labit, H. Reimer<strong>de</strong>s, W. Vijvers<br />

CRPP, EPFL, Association EURATOM – Confédération Suisse, CH-1015 Lausanne<br />

Introduction<br />

Fusion is the energy that powers the stars. Harnessing fusion<br />

on Earth would offer the world almost inexhaustible,<br />

environmentally clean and safe energy, see box 1. Research<br />

and <strong>de</strong>velopment performed during a few <strong>de</strong>ca<strong>de</strong>s already<br />

brought significant results. In the domain of magnetic confinement,<br />

for instance, 16MW of fusion power have been<br />

produced in the JET tokamak [1] in 1997. Since then an<br />

international col<strong>la</strong>boration was set to build the next step<br />

<strong>de</strong>vice, ITER 1 , the first fusion reactor that would <strong>de</strong>liver<br />

500 MW of fusion power, 10 times the power injected into<br />

the <strong>de</strong>vice, see box 2. Recently, the European fusion scientists,<br />

un<strong>de</strong>r the banner of European Fusion Development<br />

Agreement 2 (EFDA), <strong>de</strong>veloped and published a roadmap 3<br />

that <strong>de</strong>scribes the steps and the challenges to achieve the<br />

production of electricity from fusion before 2050, see box<br />

3. The steps consist in completing the construction of ITER,<br />

operating ITER, <strong>de</strong>signing, building and operating DEMO, a<br />

prototype reactor that would provi<strong>de</strong> the electrical network<br />

1 ITER: www.iter.org<br />

2 EFDA: www.efda.org<br />

3 Fusion roadmap: http://www.efda.org/efda/activities/the-road-tofusion-electricity/<br />

with several hundreds of MW. The roadmap is divi<strong>de</strong>d into<br />

8 missions, including the 'heat exhaust' issue: if one extrapo<strong>la</strong>tes<br />

from the present <strong>de</strong>vices to a reactor gra<strong>de</strong> <strong>de</strong>vice,<br />

the heat flux <strong>de</strong>nsity produced by particles escaping<br />

from the p<strong>la</strong>sma would reach levels that may exceed the<br />

material capabilities. To mitigate the heat flux impact several<br />

strategies are proposed. One of these strategies aims<br />

at the exploration of the so-called snowf<strong>la</strong>ke configuration.<br />

The scientists of the CRPP-EPFL were the first to realise a<br />

snowf<strong>la</strong>ke configuration in a tokamak, thanks to the high<br />

shaping capability of the TCV tokamak but especially to<br />

the hard work of these <strong>de</strong>dicated scientists. It should be<br />

emphasized that this work was subsequently awar<strong>de</strong>d the<br />

R&D100 prize in 2012 4 . This paper presents the achieved<br />

snowf<strong>la</strong>ke configuration and its advantages with respect to<br />

heat exhaust.<br />

P<strong>la</strong>sma configuration<br />

The TCV tokamak is equipped with 16 in<strong>de</strong>pen<strong>de</strong>ntly driven<br />

poloidal field coils that are used for shaping the p<strong>la</strong>sma.<br />

Depending on the combination of coil currents, the p<strong>la</strong>s-<br />

4 R&D magazine: http://www.rdmag.com/award-winners/2012/08/highperformance-tokamak-exhaust<br />

Fusion<br />

The fusion of hydrogen isotopes, <strong>de</strong>uterium and tritium,<br />

is the easiest reaction that could be implemented<br />

on Earth, because of its higher cross section at a lower<br />

temperature than other possible reactions.<br />

Temperatures of about 100 MºC must be achieved<br />

so that fusion power becomes exploitable. Before<br />

reaching these temperatures, a gas turns to p<strong>la</strong>sma<br />

wherein particles are ionised.<br />

Magnetic fields then provi<strong>de</strong> a good way to gui<strong>de</strong> the<br />

ionised particles.<br />

The most attractive magnetic confinement <strong>de</strong>vice so<br />

far is the tokamak, a toroidal <strong>de</strong>vice wherein a poloidal<br />

field, induced by a toroidal current, is superimposed to<br />

a toroidal magnetic field to form the magnetic structure<br />

that gui<strong>de</strong>s and maintains the p<strong>la</strong>sma away from the<br />

vacuum vessel walls. In addition poloidal field coils are<br />

used to shape the p<strong>la</strong>sma.<br />

To reach the required temperatures, the p<strong>la</strong>sma is heated<br />

by either energetic neutral particles or by microwaves<br />

<strong>de</strong>livering their power in the p<strong>la</strong>sma through<br />

different possible resonant schemes.<br />

The CRPP-EPFL tokamak, called TCV 1 for 'Tokamak<br />

à Configuration Variable' has a high shaping capability<br />

and an Electron Cyclotron Heating (ECH) system of 4.5<br />

MW.<br />

Figure: The CRPP-EPFL Tokamak à Configuration Variable (TCV).<br />

Cyan: vacuum vessel; green: main toroidal field coils; orange:<br />

poloidal field coils (for p<strong>la</strong>sma current induction and p<strong>la</strong>sma shaping);<br />

yellow: microwave <strong>la</strong>unchers; pink: p<strong>la</strong>sma. TCV diameter:<br />

3.3m<br />

1 http://crpp.epfl.ch/research_TCV<br />

36


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

ma either lies against the carbon tile covered wall of the<br />

vacuum vessel, the so-called limited configuration, or is<br />

fully <strong>de</strong>tached from the wall thanks to the presence of a null<br />

point in the poloidal field (X-point) and the resulting separatrix<br />

that <strong>de</strong>limits the p<strong>la</strong>sma as shown in Fig. 1. In the<br />

<strong>la</strong>tter configuration, the so-called divertor configuration, the<br />

p<strong>la</strong>sma is not in immediate contact with the wall. Particles<br />

that escape from the p<strong>la</strong>sma are diverted towards the vessel<br />

wall, along the 'separatrix legs', towards a more remote<br />

position than in the limited configuration. In addition, the<br />

journey of particles escaping from a diverted p<strong>la</strong>sma is particu<strong>la</strong>rly<br />

long because the low value of the poloidal field in<br />

the vicinity of the X-point leads to almost entirely toroidal<br />

trajectories. For these reasons, higher performances can<br />

be achieved in diverted p<strong>la</strong>smas, making this configuration<br />

most suitable for fusion reactors.<br />

However, those escaping particles may damage the surface<br />

of the divertor because they <strong>de</strong>posit their significant<br />

energy on a re<strong>la</strong>tively small area leading to unacceptably<br />

high heat flux <strong>de</strong>nsities. The snowf<strong>la</strong>ke configuration has<br />

been proposed as a potential solution to mitigate the strong<br />

heat flux in the divertor.<br />

and SF-, reflecting the excess or <strong>la</strong>ck of current flowing in<br />

the conductors, respectively. The distance between the two<br />

X-points, indicated by the green crosses, normalized by the<br />

minor radius of the p<strong>la</strong>sma torus, is used as the measure,<br />

<strong>de</strong>noted s, of the proximity to the perfect snowf<strong>la</strong>ke.<br />

SF+ SF SF-<br />

I d1<br />

I p<br />

(a) ( b ) ( c)<br />

Figure 2: Schematic representation of a perfect snowf<strong>la</strong>ke configuration<br />

(b). Upper lobe represents the p<strong>la</strong>sma while the lower lobes<br />

encompass the current conductors. A small vertical disp<strong>la</strong>cement<br />

of the p<strong>la</strong>sma would generate the (a) or (c) configurations <strong>de</strong>pending<br />

of the direction of the disp<strong>la</strong>cement.<br />

I d2<br />

(a) SF+ (b) SF (c) SF-<br />

1<br />

1<br />

1<br />

#19421 t=2.2s<br />

#24239 t=0.37s<br />

2<br />

4<br />

2<br />

4<br />

2<br />

4<br />

Figure 1: Comparison of p<strong>la</strong>sma cross-sections in the limited (left,<br />

19421) and diverted (right, 24239) configurations. Also shown are<br />

the vessel and p<strong>la</strong>sma shaping coils cross-sections.<br />

Snowf<strong>la</strong>ke configuration<br />

A snowf<strong>la</strong>ke configuration is obtained when not only the<br />

poloidal field vanishes, as in the diverted configuration, but<br />

also its first <strong>de</strong>rivatives. This second or<strong>de</strong>r null implies that<br />

six separatrix sprout from the X-point instead of four for the<br />

diverted configuration, as shown in sketch (b) of Fig. 2. The<br />

name 'snowf<strong>la</strong>ke' comes from this 6-fold geometry. In the<br />

sketch, the upper lobe represents the p<strong>la</strong>sma enclosed in<br />

its separatrix while the lower lobes encompass two poloidal<br />

field coils. The vacuum vessel then cuts both lower lobes<br />

resulting in four separatrix legs instead of two. It directly<br />

reveals the advantage of such a configuration: the heat flux<br />

power may be diverted towards four sections of the vacuum<br />

vessel walls, thereby reducing the heat flux <strong>de</strong>nsities<br />

onto the divertor p<strong>la</strong>tes. If the configuration slightly <strong>de</strong>viates<br />

from the perfect snowf<strong>la</strong>ke shown in Fig. 2b, it produces the<br />

other configurations shown in Fig. 2. These variants of the<br />

snowf<strong>la</strong>ke configuration are <strong>la</strong>belled SF+ (snowf<strong>la</strong>ke plus)<br />

37<br />

1<br />

2<br />

3<br />

4<br />

1<br />

2<br />

3<br />

3 3<br />

3<br />

Figure 3: Equilibrium reconstruction and tangential views of the<br />

p<strong>la</strong>sma obtained with a CCD camera at three different times during<br />

a p<strong>la</strong>sma discharge in which the p<strong>la</strong>sma was vertically disp<strong>la</strong>ced<br />

to go through the variant configurations shown in Fig. 2.<br />

4<br />

1<br />

2<br />

3<br />

4


SPG Mitteilungen Nr. 40<br />

The snowf<strong>la</strong>ke configuration was proposed by Ryutov et al<br />

[2,3]. It was experimentally realised for the first time in the<br />

TCV tokamak at the CPPP-EPFL [4] and then reproduced in<br />

the NSTX spherical tokamak at the Princeton P<strong>la</strong>sma Physics<br />

Laboratory [5] and more recently in the DIII-D tokamak<br />

at General Atomics [6].<br />

Fig. 3 shows an example of a TCV discharge wherein the<br />

p<strong>la</strong>sma was vertically shifted to reveal the different snowf<strong>la</strong>ke<br />

configurations <strong>de</strong>scribed in the schematic representation<br />

(Fig. 2). The p<strong>la</strong>sma equilibrium reconstructions, based<br />

on magnetic measurements, are shown in the first row. The<br />

numbering 1-4 helps to i<strong>de</strong>ntify the regions where the separatrix<br />

legs reach the vacuum vessel walls. Locations 1 & 4<br />

are called primary locations since they correspond to the<br />

divertor legs of the traditional divertor configuration (field<br />

lines surrounding the p<strong>la</strong>sma hit the wall at the primary location).<br />

In opposition locations 2 & 3 are called secondary<br />

regions due to the absence of direct connection with the<br />

vicinity of the p<strong>la</strong>sma.<br />

The second row exhibits tangential views of the p<strong>la</strong>sma<br />

obtained with a CCD camera. Since most line radiation<br />

originates from re<strong>la</strong>tively "cold" p<strong>la</strong>sma, the measurement<br />

of the emitted visible light provi<strong>de</strong>s an excellent mean to<br />

locate the edge of the p<strong>la</strong>sma as well as the separatrix legs.<br />

This series of measurements shows a clear agreement between<br />

both information sources.<br />

In all three cases shown in Fig. 3, the emitted light clearly<br />

reveals that all separatrix become active. This suggests<br />

that the low poloidal field in the vicinity of the null point enhances<br />

the cross-field transport. If this transport were sufficiently<br />

<strong>la</strong>rge it could not only distribute the heat among four<br />

divertor legs instead of two, but also wi<strong>de</strong>n the power flux<br />

ITER<br />

ITER, currently un<strong>de</strong>r construction in the south of France,<br />

aims to <strong>de</strong>monstrate that fusion is an energy source of<br />

the future. ITER is a col<strong>la</strong>boration between European Union,<br />

including Switzer<strong>la</strong>nd, Japan, South Korea, China,<br />

India, Russia and United States.<br />

Main goals<br />

• Ratio of fusion power to input power <strong>la</strong>rger than 10<br />

(Q>10)<br />

• Fusion power up to 500 MW<br />

• Test of key technologies such as divertor materials<br />

and b<strong>la</strong>nket modules wherein neutrons will <strong>de</strong>liver<br />

their energy and breed tritium<br />

Main parameters<br />

• P<strong>la</strong>sma major & minor radii: 6.2 m & 2 m<br />

• Toroidal field: 5.3T<br />

• P<strong>la</strong>sma current: 15 MA<br />

• P<strong>la</strong>sma duration: 500 s<br />

Figure: ITER. Orange: divertor; dark blue: b<strong>la</strong>nket modules. ITER diameter: 28.6m<br />

38


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

channel at each leg and thereby further reduce the power<br />

flux <strong>de</strong>nsity onto material surfaces. Dedicated measurements<br />

were done in the most promising scenario for ITER:<br />

the H-mo<strong>de</strong>.<br />

H-mo<strong>de</strong> and snowf<strong>la</strong>kes<br />

In the early 1980's, tokamak experiments performed in<br />

diverted configuration revealed the existence of an operational<br />

regime wherein the confinement of particles and<br />

energy sud<strong>de</strong>nly increases by a factor of two [7]. It was<br />

called H-mo<strong>de</strong> regime (H for 'high') and has since been obtained<br />

in most tokamaks. By comparing results obtained<br />

in several <strong>de</strong>vices it was shown that the additional heating<br />

power should exceed a threshold that <strong>de</strong>pends on the<br />

p<strong>la</strong>sma <strong>de</strong>nsity, the p<strong>la</strong>sma size and the main toroidal field<br />

[8]. The improvement in the p<strong>la</strong>sma confinement properties<br />

observed in this H-mo<strong>de</strong> regime makes it the selected<br />

operational mo<strong>de</strong> for the ITER baseline scenario. Unfortunately,<br />

H-mo<strong>de</strong>s are generally accompanied with p<strong>la</strong>sma<br />

edge instabilities (ELM) that repeatedly release particles towards<br />

the divertor in sharp bursts that threaten the divertor<br />

material.<br />

H-mo<strong>de</strong>s are also regu<strong>la</strong>rly obtained and investigated in<br />

TCV diverted p<strong>la</strong>smas. Soon after the realisation of the<br />

first snowf<strong>la</strong>ke in TCV, efforts have been <strong>de</strong>dicated to the<br />

search for H-mo<strong>de</strong>s in snowf<strong>la</strong>ke configuration and results<br />

came soon: the access to the H-mo<strong>de</strong> regime occurs at approximately<br />

the same power as in the quadrupole diverted<br />

configuration. The confinement improvement is simi<strong>la</strong>r or<br />

even slightly better.<br />

Regarding the heat flux to the divertor, <strong>de</strong>dicated measurements<br />

were performed. The high pressure observed near<br />

Fusion electricity – EFDA roadmap<br />

European scientists established the necessary steps<br />

and challenges that should be solved in or<strong>de</strong>r to realise<br />

a fusion reactor that would provi<strong>de</strong> the electrical<br />

network with electricity before 2050.<br />

Steps<br />

• 2012-2020: Construction of ITER<br />

• 2020-2030: Exploitation of ITER<br />

• 2030-2050: Construction and exploitation of<br />

DEMO<br />

Challenges<br />

• P<strong>la</strong>sma regimes of operation<br />

• Heat exhaust<br />

• Neutron resistant materials<br />

• Tritium self-sufficiency<br />

• Integration of intrinsic safety features<br />

• Integrated DEMO <strong>de</strong>sign<br />

• Competitive cost of electricity<br />

• Stel<strong>la</strong>rator<br />

The roadmap to fusion electricity can be downloa<strong>de</strong>d<br />

from: http://www.efda.org/efda/activities/the-road-tofusion-electricity/<br />

the second or<strong>de</strong>r null even increased the cross-field transport<br />

re<strong>la</strong>tive to the conventional configuration. This resulted<br />

in an efficient distribution of the power on the secondary<br />

divertor regions as shown in Fig. 4. The power <strong>de</strong>posited<br />

onto the divertor tiles, measured in regions <strong>la</strong>belled 1 and<br />

3 in Fig. 3, shows a strong reduction in the primary divertor<br />

region while the secondary zone receives a significantly<br />

<strong>la</strong>rger fraction. [9].<br />

Fraction of ELM energy loss (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Snowf<strong>la</strong>ke<br />

Primary region<br />

Second. region<br />

Traditional<br />

divertor<br />

0<br />

0 0.5 1 1.5<br />

σ<br />

Figure 4: Fraction of the ELM energy loss reaching two of the divertor<br />

p<strong>la</strong>tes as a function of s, the measure of the proximity to the<br />

perfect snowf<strong>la</strong>ke (perfect at s=0). When the snowf<strong>la</strong>ke is formed<br />

by <strong>de</strong>creasing s below 0.75, up to 20% of the power (red curve)<br />

reaches the divertor at the additional location (<strong>la</strong>bel 3 in Fig. 3)<br />

while the power <strong>de</strong>creases (blue curve) at the primary location (<strong>la</strong>bel<br />

1 in Fig. 3).<br />

Conclusions<br />

CRPP-EPFL scientists have <strong>de</strong>monstrated the feasibility<br />

of the snowf<strong>la</strong>ke configuration and shown the advantage<br />

of the corresponding increase of the number of separatrix<br />

legs, in the form of a significant reduction of the heat flow<br />

onto the divertor p<strong>la</strong>tes. While snowf<strong>la</strong>kes will not likely be<br />

achievable in ITER, <strong>de</strong>sign studies for the subsequent <strong>de</strong>vice,<br />

DEMO, are evaluating the snowf<strong>la</strong>ke configuration as<br />

a potential divertor solution.<br />

[1] M. Keilhacker et al., Nucl. Fus. 39 (1999) 209.<br />

[2] D. D. Ryutov et al., Phys. P<strong>la</strong>smas 14 (2007) 064502.<br />

[3] D. D. Ryutov et al., Phys. P<strong>la</strong>smas 15 (2008) 092501.<br />

[4] F. Piras et al., P<strong>la</strong>sma Phys. Control. Fusion 51 (2009) 055009.<br />

[5] V. A. Soukhanovskii et al., Phys. P<strong>la</strong>smas 19 (2012) 082504.<br />

[6] S. L. Allen et al., 24th IAEA FEC Conf. 2012, PD/1-2.<br />

[7] F. Wagner et al., Phys. Rev. Lett. 49 (1982) 1408.<br />

[8] Y. Martin et al., Jou. Phys. Conf. Ser. 123 (2008) 012033.<br />

[9] W. Vijvers et al., IAEA FEC Conf. 2012, San Diego, US.<br />

39


SPG Mitteilungen Nr. 40<br />

An Industrial Lab Grows in Switzer<strong>la</strong>nd<br />

As the Zurich Lab recognizes its 50 th year in the leafy Zurich<br />

suburb of Rüschlikon, a closer look inspects the <strong>de</strong>tails of<br />

how this <strong>la</strong>b became the home of four Nobel Prize <strong>la</strong>ureates<br />

and countless innovations spanning material sciences,<br />

<strong>communications</strong>, analytics and Big Data.<br />

There are several reasons why IBM was consi<strong>de</strong>ring a research<br />

<strong>la</strong>b outsi<strong>de</strong> of the United States in the 1950s. At this<br />

time IBM was in its heyday. The company was financially<br />

strong, and the success of the recently opened San Jose<br />

<strong>la</strong>b ma<strong>de</strong> the management realize the benefits of having research<br />

conducted with the support of headquarters in New<br />

York, but without the local stress and peer pressure.<br />

Physics Anecdotes (17)<br />

IBM Research – Zurich, a Success Story<br />

Chris Sciacca and Christophe Rossel<br />

Switzer<strong>la</strong>nd wasn’t IBM’s first option for a European research<br />

<strong>la</strong>b; London and Amsterdam were also on the short<br />

list, and in 1955 an IBM electrical engineer named Arthur<br />

Samuel was tasked with scouting the three cities.<br />

Fig. 1. The building of IBM Research in Adliswil in 1956. Inset: Ambros<br />

Speiser, first <strong>la</strong>b director, in discussion with Thomas Watson<br />

Jr., CEO of IBM<br />

While officials in Eng<strong>la</strong>nd were receptive to the i<strong>de</strong>a, the<br />

proposed location was in the suburbs of London that he <strong>de</strong>scribed<br />

as, "the most dismal p<strong>la</strong>ces that I have ever seen."<br />

And shortly after, Samuel passed on Eng<strong>la</strong>nd and travelled<br />

to Switzer<strong>la</strong>nd, to a completely different experience - he<br />

never ma<strong>de</strong> it on to Amsterdam.<br />

Simultaneously, as Samuel was visiting Switzer<strong>la</strong>nd, Ambros<br />

Speiser, a young Swiss electrical engineer from ETH<br />

Zurich, had applied for positions at Remington Rand and<br />

IBM. He never got a response from Rand, but by that summer<br />

Speiser became an IBMer.<br />

How to Build a Research Lab<br />

Now that Speiser was on board he was tasked with building<br />

a new <strong>la</strong>boratory, and the challenges he faced were<br />

immense.<br />

As he tells it in the IEEE Annals of the History of Computing<br />

[1], "There was no established pattern to follow - an industrial<br />

<strong>la</strong>boratory, separate from production facilities, did not<br />

exist in Switzer<strong>la</strong>nd."<br />

But Speiser knew he nee<strong>de</strong>d to be close to Zurich, its universities<br />

and within reach of public transport. After viewing<br />

a number of locations, he <strong>de</strong>ci<strong>de</strong>d to rent the wing of a<br />

Swiss stationary company in Adliswil, which was at the end<br />

of a tram line and only a few kilometers from the city.<br />

Having the building for the new <strong>la</strong>b, Speiser nee<strong>de</strong>d brilliant<br />

scientists and engineers. Leveraging his acquaintances,<br />

professional societies and contacts at ETH, he began a<br />

recruiting campaign and quickly amassed a team from all<br />

parts of Europe.<br />

The goal set by IBM management was to build new and<br />

better computer hardware. At the time everyone knew that<br />

vacuum tubes would be rep<strong>la</strong>ced by solid-state circuits,<br />

40<br />

so it was obvious that IBM should begin <strong>de</strong>veloping transistors<br />

and magnetic <strong>de</strong>vices, but this was never formalized.<br />

This <strong>la</strong>ck of direction weighed heavily on Speiser’s mind because<br />

he knew that simi<strong>la</strong>r research was being conducted<br />

insi<strong>de</strong> and outsi<strong>de</strong> of IBM and that they would never achieve<br />

the global recognition he so <strong>de</strong>sired by doing the same<br />

science as everyone else.<br />

After building a stronger rapport with Research’s new management<br />

team in 1958, Speiser was given new direction<br />

for the Zurich Lab to change from electronics to physics,<br />

with a focus on solid-state as the basis for electronic <strong>de</strong>vices<br />

of the future.<br />

Once again Speiser went on recruiting missions across Europe<br />

to find young, creative physicists. Little did he know<br />

at the time that he was also <strong>la</strong>ying the groundwork for what<br />

would become a renowned team for <strong>de</strong>ca<strong>de</strong>s to come.<br />

Fig. 2. Hans Peter Louis one of the earlier research staff members<br />

in the 50’s, in front of a prototype technology called the phototron,<br />

which was never finished.


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Moving to Rüschlikon<br />

In addition to electrical engineering and physics, Speiser<br />

soon ad<strong>de</strong>d a mathematics <strong>de</strong>partment, and quickly the <strong>la</strong>b<br />

was outgrowing its mo<strong>de</strong>st space in Adliswil. Knowing that<br />

the growth would continue and to establish a more stable<br />

reputation, he requested approval from Thomas Watson Jr.,<br />

IBM’s CEO at the time and son of the foun<strong>de</strong>r, to look for<br />

a new location where the <strong>la</strong>b would have its own facilities.<br />

Again, Speiser knew the new <strong>la</strong>b had to be close to the city,<br />

the airport, but most importantly to ETH Zurich, and after<br />

some <strong>de</strong>bate a 10-acre site was purchased in Rüschlikon<br />

for $400,000.<br />

As for the actual <strong>de</strong>sign of the <strong>la</strong>b, Speiser’s main tenant<br />

was that it created spaces for personal interaction, which<br />

he referred to as "a vital process for a research <strong>la</strong>boratory".<br />

To assure this i<strong>de</strong>a, instead of building up, he wanted<br />

the <strong>la</strong>b to be horizontal with long corridors to encourage<br />

chance meetings, simi<strong>la</strong>r to the <strong>de</strong>sign of Bell Laboratories<br />

in New Jersey. It was also important for the <strong>la</strong>b to have a<br />

proper cafeteria for informal discussion and an auditorium<br />

for guest lectures. While initially this was met with some<br />

skepticism because of its costs, he eventually got his wish<br />

and construction started in 1961. The <strong>la</strong>b was officially inaugurated<br />

in front of several hundred guests on 23 May<br />

1963, that is, 50 years ago.<br />

Fig. 3. Introduced in 1956, the IBM 305 RAMAC (Random Access<br />

Memory Accounting System) was an electronic general purpose<br />

data-processing machine that maintained business records on a<br />

real-time basis. The 305 RAMAC was one of the <strong>la</strong>st vacuum tube<br />

systems <strong>de</strong>signed by IBM, and more than 1000 of them were built<br />

before production en<strong>de</strong>d in 1961.<br />

Impacting the Future of the Lab<br />

In the coming <strong>de</strong>ca<strong>de</strong>, the groundwork of Speiser and his<br />

successor began to bear fruit. The i<strong>de</strong>a to start a physics<br />

<strong>de</strong>partment resulted in the hiring of Heinrich Rohrer and<br />

Karl Alex Müller, who through their research and subsequent<br />

publications began to cement a strong reputation for<br />

the Zurich Lab, which reached its apex in the mid-80s when<br />

these two scientists and their colleagues Gerd Binnig and<br />

Georg Bednorz were recognized with the Nobel Prize for<br />

Physics in 1986 and 1987.<br />

This period also saw the addition of a new line of research<br />

in <strong>communications</strong>. Once again the <strong>la</strong>b succee<strong>de</strong>d with the<br />

<strong>de</strong>velopment of the token ring and trellis-co<strong>de</strong>d modu<strong>la</strong>tion,<br />

each p<strong>la</strong>ying a critical role in making the Internet what<br />

it is today.<br />

By 1987 the <strong>la</strong>b also had its own manufacturing line for<br />

semiconductor <strong>la</strong>sers which were used by telecommunication<br />

equipment manufacturers. The research became<br />

so successful that the Uniphase Corporation acquired the<br />

technology and the people from IBM for $45 million, a huge<br />

sum for the future tele<strong>communications</strong> giant with only 500<br />

people at the time.<br />

The Crash and Recovery<br />

With the end of the 80s, towards the mid-90s, IBM found<br />

itself in a dire position. IBM’s near-<strong>de</strong>ath experience was<br />

caused by its failure to recognize that the 40-year-old mainframe<br />

computing mo<strong>de</strong>l was out of touch with the needs of<br />

clients, and other firms like Sun Microsystems pounced on<br />

the opportunity.<br />

This experience also impacted IBM Research. Throughout<br />

the 1970s IBM Research was corporate fun<strong>de</strong>d, it had its<br />

own research agenda and occasionally it did some technology<br />

transfer, but it was not done in a very coordinated<br />

manner because the funding kept coming every year and<br />

the profit margins were strong. This affor<strong>de</strong>d the scientists<br />

the freedom they nee<strong>de</strong>d.<br />

By the 1980s IBM began doing more applied research, and<br />

management took a more active role in influencing the direction<br />

in which the <strong>de</strong>velopments had to go. For example,<br />

IBM started joint programs between Research and the<br />

product divisions with a shared agenda that both parties,<br />

Research and Development, had to agree upon. IBM also<br />

created col<strong>la</strong>borative teams to accelerate the transfer of<br />

research results which went into products spanning from<br />

storage to personal computers. It’s strange to look back at<br />

this now, as today this seems so obvious.<br />

In the 1990s change truly came. To preserve Research, scientists<br />

in Zurich tried to become more proactive in working<br />

on actual customer problems. At the time this was unheard<br />

of at IBM and a <strong>la</strong>rge reason why the company stumbled.<br />

The i<strong>de</strong>a was to interact with clients, gain insights into their<br />

challenges, and find solutions. The concept was a great<br />

success, and in 2000 the Zurich Lab opened up a <strong>de</strong>dicated<br />

facility called the Industry Solutions Lab (ISL), with the<br />

goal of hosting and interacting with clients on a daily basis.<br />

Today, there are simi<strong>la</strong>r facilities around the world hosting<br />

hundreds of clients every month and working directly with<br />

clients. This is a fundamental strategy across all twelve IBM<br />

Research <strong>la</strong>bs on the six continents. "The world is now our<br />

<strong>la</strong>b," as says Dr. John E. Kelly III, IBM senior vice presi<strong>de</strong>nt<br />

and director of Research.<br />

IBM Research in Zurich Today<br />

Un<strong>de</strong>r the direction of seven successive <strong>la</strong>b directors, the<br />

expansion in Zurich continued well into 2000s. Today, there<br />

are five <strong>de</strong>partments, namely, storage, computer science<br />

and systems in addition to physics (science and technology)<br />

and mathematics (mathematics and computational<br />

sciences).<br />

41


SPG Mitteilungen Nr. 40<br />

In addition, the <strong>la</strong>b has a new cutting-edge facility called<br />

the Binnig and Rohrer Nanotechnology Center, named for<br />

the two Nobel Laureates. When the current <strong>la</strong>b director requested<br />

the funding to upgra<strong>de</strong> the existing clean rooms on<br />

the campus he was greeted with a pleasant surprise: "I was<br />

told to make it much bigger and to find a partner. ETH Zurich<br />

was an obvious and logical choice," says Dr. Matthias<br />

Kaiserswerth, the current director of IBM Research - Zurich.<br />

No one could have predicted it, but Speiser’s intuition to<br />

keep the <strong>la</strong>b close to ETH Zurich was a fortuitous <strong>de</strong>cision.<br />

Nobel Laureates K. Alex Müller, Georg Bednorz and Heinrich<br />

Rohrer all came from ETH. And now nearly 60 years<br />

<strong>la</strong>ter, the partners built a $90 million facility, which features<br />

a <strong>la</strong>rge clean room and in particu<strong>la</strong>r six Noise Free Labs<br />

unlike any in the world.<br />

Outsi<strong>de</strong> of the nano world, IBM scientists are working on<br />

some of the greatest challenges of our society today.<br />

On Earth Day 2013, scientists in Zurich announced that<br />

they will be building an affordable photovoltaic system<br />

capable of concentrating so<strong>la</strong>r radiation 2,000 times and<br />

converting 80 percent of the incoming radiation into useful<br />

energy. The system can also provi<strong>de</strong> <strong>de</strong>salinated water and<br />

cool air in sunny, remote locations where both are often in<br />

short supply.<br />

Another team is col<strong>la</strong>borating with a consortium of scientists<br />

in the Nether<strong>la</strong>nds and South Africa on extremely fast,<br />

but low-power exascale computer systems aimed at <strong>de</strong>veloping<br />

advanced technologies for handling the Big Data<br />

that will be produced by the Square Kilometer Array (SKA),<br />

the world’s <strong>la</strong>rgest and most sensitive radio telescope that<br />

consortium will build.<br />

And to improve the much-strained energy grid, IBM scientists<br />

are col<strong>la</strong>borating with utility companies in Denmark,<br />

Austria and Switzer<strong>la</strong>nd to improve to ba<strong>la</strong>nce between <strong>de</strong>mand<br />

and the supply of renewable energy.<br />

While much has changed at IBM Research – Zurich, the<br />

essence of col<strong>la</strong>boration and the spirit of innovation and<br />

excellence that Speiser envisioned remains true to this day.<br />

Fig. 4. The newly built Binnig and Rohrer Nanotechnology Center<br />

and as inset an example of the complete atomic structure of a<br />

pentacene molecule resolved by AFM [2]. The extreme resolution<br />

of the C, H atoms and chemical bonds is achieved by the CO molecule<br />

attached to the tip.<br />

[1] A. P. Speiser, IEEE Annals of the History of Computing 20(1), 15<br />

(Jan.-March 1998).<br />

[2] L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 325,<br />

1110 (2009).<br />

On April 29 this year the Herschel space observatory exhausted<br />

its supply of helium that cooled the sensors in the<br />

far-infrared and submillimeter range, wavelengths that cannot<br />

be observed from the ground. Herschel was put into the<br />

Lagrange position L2 in the Sun-Earth system, 1.5 million<br />

kilometres from us. Four years after its <strong>la</strong>unch by the European<br />

Space Agency (ESA), the mission completed its novel<br />

observations about how stars and thus ga<strong>la</strong>xies form and<br />

evolve throughout the universe. The Herschel observatory<br />

was sent to space with 2,300 litres of superfluid helium. The<br />

helium was pumped around the spacecraft in such a way as<br />

to cool the three observing instruments and gradually evaporated<br />

in the process. Herschel cannot observe without<br />

cooling below 1 K in the most critical components, but the<br />

amount was limited and chosen to out<strong>la</strong>st the expected lifetime<br />

of the cutting-edge, but new-to-space electronics.<br />

Herschel excee<strong>de</strong>d expectations both in technology and<br />

science. The technical <strong>de</strong>velopments required by the unusual<br />

observing wavelengths <strong>de</strong><strong>la</strong>yed the start by more than<br />

two years. Swiss industry provi<strong>de</strong>d the <strong>la</strong>rge cryostat and<br />

Goodbye Herschel<br />

Arnold Benz, ETH Zürich<br />

42<br />

the optical assemblies for the HIFI instrument; the low-noise<br />

low-power indium phosphi<strong>de</strong> amplifiers for HIFI (Heterodyne<br />

Instrument for the Far Infrared) were <strong>de</strong>veloped at<br />

ETH Zürich, software for HIFI at the Fachhochschule FHNW<br />

in Windisch. After four years in space all three instruments<br />

on board were still fully operational.<br />

Herschel's observations have revealed the cosmos in unprece<strong>de</strong>nted<br />

<strong>de</strong>tail at these wavelengths. This raised interest<br />

in the astronomical community and resulted in 160<br />

"first results papers" within the first four months of scientific<br />

data taking. However, most results emerged and still do<br />

so after careful data analysis, mo<strong>de</strong>lling and interpretation.<br />

Some highlights of my personal selection are <strong>de</strong>scribed below.<br />

Herschel observations allowed studying ga<strong>la</strong>xies in the<br />

early universe that form stars at prodigious rates and apparently<br />

also in the absence of mergers. Other processes<br />

like inflowing interga<strong>la</strong>ctic streams of cold gas may thus<br />

be equally effective. In nearby active ga<strong>la</strong>xies, on the other


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

The region of ionized molecules in the inner parts of star<br />

and p<strong>la</strong>net forming regions is certainly a field of future research.<br />

On the other hand, O 2<br />

, also not observable from the<br />

ground, was much har<strong>de</strong>r to <strong>de</strong>tect than predicted. Free<br />

oxygen, not bound to carbon monoxi<strong>de</strong>, doesn’t seem to<br />

be in molecu<strong>la</strong>r gas form, but might hi<strong>de</strong> in silicates of the<br />

interstel<strong>la</strong>r dust.<br />

The Herschel image is a composite of observations at 70 (blue),<br />

160 (green), and 250 – 500 μm (red) wavelengths indicating hot,<br />

warm and cold regions, respectively. The image size is 2×2 <strong>de</strong>gree<br />

in the constel<strong>la</strong>tion of the Southern Cross. Note cloud cores (white<br />

dots) located on fi<strong>la</strong>ments (Credit: ESA and the SPIRE & PACS<br />

consortia).<br />

intensity<br />

hand, Herschel found for the first time vast amounts of outflowing<br />

molecu<strong>la</strong>r gas that may <strong>de</strong>plete a ga<strong>la</strong>xy's supply<br />

to form new stars.<br />

In observations of our own ga<strong>la</strong>xy, Herschel i<strong>de</strong>ntified the<br />

presence of a fi<strong>la</strong>mentary network in the gas of molecu<strong>la</strong>r<br />

clouds, fi<strong>la</strong>ments which contain cloud cores that will col<strong>la</strong>pse<br />

un<strong>de</strong>r their own weight to form stars. Herschel <strong>de</strong>monstrated<br />

that fi<strong>la</strong>ments are nearly everywhere in clouds<br />

and that they are a key to star formation. It is not clear how<br />

fi<strong>la</strong>ments originate; intersecting shock waves and magnetic<br />

fields are proposed.<br />

A chief goal of Herschel is the study of the chemical composition<br />

of cosmic objects through high-resolution spectroscopy,<br />

and in particu<strong>la</strong>r the search for water in the gas<br />

state, which cannot be observed from the ground. Of special<br />

interest at ETH Zürich were the chemical network of water<br />

in star formation and the evolution of protostel<strong>la</strong>r disks.<br />

Herschel found gaseous water already in a cold pre-stel<strong>la</strong>r<br />

core before the start of star formation. It amounts to a few<br />

million times the amount of water in the Earth's oceans. The<br />

10 million year old disc surrounding nearby star TW Hydrae<br />

still contains a water supply equivalent to several thousand<br />

times Earth's oceans. Disks ol<strong>de</strong>r than some 60 million years<br />

were observed to contain not enough gas to form new<br />

p<strong>la</strong>nets. These findings suggest that water p<strong>la</strong>yed an important<br />

role throughout the formation of the so<strong>la</strong>r system.<br />

Several molecules were discovered in interstel<strong>la</strong>r clouds for<br />

the first time. We mo<strong>de</strong>lled the chemistry in regions of star<br />

formation in an attempt to predict which molecules – especially<br />

ionised ones – exist there and could be used to<br />

infer the physical conditions. In particu<strong>la</strong>r, ultraviolet and<br />

X-ray irradiation change the chemistry and heat the col<strong>la</strong>psing<br />

envelope and its walls to the outflows. The surprise:<br />

new molecules in interstel<strong>la</strong>r space, like SH + , OH + , and<br />

H 2<br />

O + were discovered to be more abundant than expected.<br />

frequency<br />

The Herschel space observatory has discovered ionized water,<br />

H 2<br />

O + , in absorption at a location where a massive star is forming<br />

in the W3 molecu<strong>la</strong>r cloud. The star- forming region in the Perseus<br />

spiral arm of the Milky Way ga<strong>la</strong>xy is completely opaque in visual<br />

light shown as background in colour (Diameter of image: 500 light<br />

years; credit: ESA/ETH Zürich/Sierra Remote Observatories, Don<br />

Goldman, CA, USA).<br />

The water profile in the atmospheres of Mars is studied at<br />

the University of Bern. For the first time the water vapour<br />

was <strong>de</strong>termined from a global perspective yielding a view<br />

on overall seasonal changes. The group was also part of<br />

the team that discovered O 2<br />

in the Mars atmosphere.<br />

Two weeks after the end of the helium the Herschel observatory<br />

was moved away from the Lagrange point and the<br />

communication was terminated. The loss of pointing control<br />

ends the direct contact with Herschel. The observatory<br />

will slowly drift away from Earth and orbit in<strong>de</strong>finitely the<br />

Sun like a small p<strong>la</strong>net.<br />

Herschel has observed more than we expected, but the<br />

project is not over yet. More than 35,000 scientific observations<br />

were executed with Herschel, and more than 50.000<br />

lines have been <strong>de</strong>tected with the HIFI instrument alone.<br />

They will eventually be i<strong>de</strong>ntified, analyzed in more <strong>de</strong>tail,<br />

and mo<strong>de</strong>lled. Only limited parts of the data are fully exploited.<br />

It will probably be a long time before the next opportunity<br />

to gather this kind of data in space. Due to the breadth<br />

and completeness throughout the entire wavelength range,<br />

the Herschel data are bound to be unparalleled for many<br />

years to come. In a year, all the data will become a public<br />

legacy. Most important will be their combination with<br />

observations at other wavelengths, such as the millimetre/<br />

submillimetre telescope ALMA in Chile. ESA has just announced<br />

a Herschel data analysis course for beginners.<br />

43


SPG Mitteilungen Nr. 40<br />

Structural MEMS Testing<br />

Alex Dommann and Antonia Neels*<br />

EMPA, Lerchenfeldstrasse 5, 9014 St. Gallen, alex.dommann@empa.ch<br />

*CSEM, Microsystems Technology Division, 2002 Neuchâtel<br />

In single crystal silicon (SCSi) based <strong>de</strong>vices, stress and<br />

loading in operation introduces <strong>de</strong>fects during the Micro-<br />

ElectroMechanical Systems (MEMS) life time and increases<br />

the risk of failure. Reliability studies on potential<br />

failure sources have an impact on MEMS <strong>de</strong>sign and are<br />

essential to assure the long term functioning of the <strong>de</strong>vice.<br />

Defects introduced by Deep Reactive-Ion Etching (DRIE),<br />

thermal annealing, dicing and bonding and also the <strong>de</strong>vice<br />

environment (radiations, temperature) influence the crystalline<br />

perfection and have a direct impact on the mechanical<br />

properties of MEMS and their aging behavior. Defects and<br />

<strong>de</strong>formations are analyzed using High Resolution X-ray Diffraction<br />

Methods (HRXRD) such as Reciprocal Space Maps<br />

(RSM). Micro systems technology can be highly reliable,<br />

but can be different from those of solid-state electronics.<br />

Therefore testing techniques must be <strong>de</strong>veloped to accelerate<br />

MEMS-specific failures [1 - 4].<br />

which is <strong>de</strong>tected via the broa<strong>de</strong>ning of the X-ray peak<br />

in a "rocking-curve" (RC) measurement. Analysis is performed<br />

with high resolution X-ray diffraction. The set-up is<br />

composed by curved multi<strong>la</strong>yer x-ray mirrors named after<br />

Herbert Göbel (Göbel mirror) in front of the X-ray tube, followed<br />

by a monochromator for monochromatization and<br />

collimation of X-ray beams by using a 4-Crystal monochromator<br />

with two channel-cut Ge [220] called Bartels monochromator<br />

(Fig. 2). Two configurations are possible for the<br />

diffracted beam si<strong>de</strong>, <strong>de</strong>pending on the methods applied:<br />

Rocking curve (RC) or Reciprocal space map (RSM). Both<br />

methods allow measuring strain and <strong>de</strong>fects concentration<br />

in a crystal. The instrument used for HRXRD is shown (Figure<br />

1).<br />

New MEMS fabrication processes and packaging concepts<br />

find applications in areas where a high reliability is nee<strong>de</strong>d<br />

such as in aerospace, automotive or watch industry. This<br />

creates a strong <strong>de</strong>mand in quality control and failure analysis<br />

and also brings new challenges, particu<strong>la</strong>rly in the fields<br />

of testing and qualification. Non-<strong>de</strong>structive HRXRD methods<br />

are applied to monitor the mobility of <strong>de</strong>fects and strain<br />

Figure 1: Diffractometer used for HRXRD applications.<br />

HRXRD allows measuring the strain of a crystal with high<br />

resolution (Fig. 1). We use HRXRD to assess the strain in<br />

DRIE etched processed silicon beams. Strain <strong>de</strong>forms the<br />

silicon beam leading to an appreciable sample curvature<br />

A rocking curve (RC) is obtained as angu<strong>la</strong>r distribution<br />

of the reflected X-ray beam, when the <strong>de</strong>tector is<br />

set at a specific Bragg angle and when the sample is<br />

rotated about small angles normal to the Bragg p<strong>la</strong>ne<br />

axis. The rocking curve is broa<strong>de</strong>ned by disruptions of<br />

the p<strong>la</strong>ne parallelity and by crystal <strong>de</strong>fects like those<br />

introduced by mechanical stress. Reciprocal space<br />

mapping (RSM) adds, by the restriction of the angu<strong>la</strong>r<br />

acceptance of the <strong>de</strong>tector, another dimension to<br />

the information avai<strong>la</strong>ble from the HRXRD experiment.<br />

Strain and tilt elements being present in a sample are<br />

i<strong>de</strong>ntified separately. An excellent introduction to both<br />

analytical methods can be found at http://prism.mit.<br />

edu/xray/tutorials.htm. See 'Basics of High Resolution<br />

X-Ray Diffraction for Studying Epitaxial Thin Films'.<br />

Fig 2: Diffractometer setup for RSM’s (<strong>de</strong>tector position 1) and RC’s (<strong>de</strong>tector position 2)<br />

44


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

As the Q-factor is not only <strong>de</strong>pen<strong>de</strong>nt on the vacuum level<br />

of the MEMS cavity but also on the strain state of the <strong>de</strong>vice,<br />

the simultaneous data collection for the Q factor <strong>de</strong>termination<br />

and the strain state is evi<strong>de</strong>nt. The packaging<br />

induced strain created at the important interfaces such as<br />

the interfaces close to the bonding material and more importantly<br />

to the <strong>de</strong>vice <strong>la</strong>yer has been analyzed by means<br />

of X-ray Rocking Curves (Fig. 3). The stress profile can be<br />

<strong>de</strong>termined. Especially the strain close to the functional <strong>de</strong>vice<br />

is important as the strain state influences the application<br />

relevant physical parameters such as the resonance<br />

frequency and the Q factor in resonator.<br />

The combination of functional testing with state-of-the-art<br />

X-ray methods for the evaluation of <strong>de</strong>fect and strain gradients<br />

will serve as a useful tool for setting up a fundamental<br />

un<strong>de</strong>rstanding of the reliability and also aging problems of<br />

MEMS.<br />

References<br />

Figure 3: Schematic HRXRD measurement setup and silicon crystal<br />

orientation (top) and measured rocking curves RC’s from the<br />

bonding interface 1 of the <strong>de</strong>vice <strong>la</strong>yer to the bonding interface 2<br />

(bottom) resulting in a stress profiling.<br />

and along the MEMS fabrication and packaging processes.<br />

RSM is a powerful tool for evaluating the strain state of<br />

the entire structure. Due to the much more limited vertical<br />

divergence and the very small horizontal divergence of<br />

the RSM settings, it is possible to get a 'g-function like'<br />

reciprocal-space probe which is almost invariant over the<br />

Ewald sphere. Figure 2 shows a setup used for measuring<br />

such RSMs.<br />

HRXRD is a very sensitive and non-<strong>de</strong>structive technique<br />

for <strong>de</strong>termining the strain in MEMS <strong>de</strong>vices.<br />

An example of such a test structure is a silicon based piezoelectric<br />

resonator (Fig. 3), <strong>de</strong>veloped at CSEM, targeting<br />

vacuum hermetic wafer-level packaging technology [5]. The<br />

monitoring of quality factors (Q) for the resonators permits<br />

to evaluate the pressure level (hermeticity) of the <strong>de</strong>vice<br />

cavity and the leakage rate.<br />

[1] A. Dommann, A. Neels, “Reliability of MEMS” (2011), Proceedings<br />

of SPIE - The International Society for Optical Engineering,<br />

7928, art. no. 79280B.<br />

[2] A. Neels, A. Dommann, A. Schifferle, O. Papes, E. Mazza, Reliability<br />

and Failure in Single Crystal Silicon MEMS Devices, Microelectronics<br />

Reliability, 48, 1245-1247, 2008.<br />

[3] Herbert R. Shea ; Reliability of MEMS for space applications,<br />

Proc. SPIE Int. Soc. Opt. Eng. 6111, 61110A (2006).<br />

[4] Schweitz, J.-Å; Mechanical Characterization of Thin Films by<br />

Micromechanical Techniques, MRS Bulletin, XVII, 7, 1992, pp.34-<br />

45.<br />

[5] J. Baborowski, et al. "Wafer level packaging technology for<br />

silicon resonators", Procedia Chemistry 1, 1535-1538 (July 2009).<br />

Alex Dommann's research concentrates on the<br />

structuring, coating and characterization of thin films,<br />

MEMS and interfaces. In July 2013 he was appointed<br />

Head of Departement "Materials meet Life" at Empa,<br />

Swiss Fe<strong>de</strong>ral Laboratories for Materials Science and<br />

Technology. He is member of different national and international<br />

committees.<br />

Antonia Neels is heading the XRD Application Lab of<br />

CSEM’s Microsystems Technology Division. She has a<br />

broad experience in the application of X-ray diffraction<br />

methods for microsystems (MEMS) and thin films with<br />

respect to quality control and failure mo<strong>de</strong> analysis.<br />

Kurz<strong>mitteilungen</strong> (Fortsetzung)<br />

Felicitas Pauss und Karl Ga<strong>de</strong>mann neu im Vorstand SCNAT<br />

Die Physikerin Felicitas Pauss und <strong>de</strong>r Chemiker Karl Ga<strong>de</strong>mann<br />

sind an <strong>de</strong>r Delegiertenversammlung <strong>de</strong>r Aka<strong>de</strong>mie<br />

<strong>de</strong>r Naturwissenschaften Schweiz (SCNAT) am 24. Mai<br />

2013 in Bern neu in <strong>de</strong>n Vorstand gewählt wor<strong>de</strong>n. Zu<strong>de</strong>m<br />

wur<strong>de</strong> <strong>de</strong>r Verein <strong>Schweizerische</strong>r Naturwissenschaftslehrerinnen<br />

und -lehrer in die Aka<strong>de</strong>mie aufgenommen. Die<br />

Professorin für Experimentelle Teilchenphysik, Felicitas<br />

Pauss, forscht an <strong>de</strong>r ETH Zürich und am CERN in Genf,<br />

wo sie die «Internationalen Beziehungen» führt. Karl Ga<strong>de</strong>mann<br />

ist Professor für organische Chemie an <strong>de</strong>r Universität<br />

Basel und aktueller Präsi<strong>de</strong>nt <strong>de</strong>r P<strong>la</strong>tform Chemistry<br />

<strong>de</strong>r SCNAT. 2012 wur<strong>de</strong> er mit <strong>de</strong>m renommierten Latsis-<br />

Preis ausgezeichnet. Felicitas Pauss nimmt ab Juni 2013<br />

Einsitz im Vorstand, Karl Ga<strong>de</strong>mann ab Januar 2014. In <strong>de</strong>n<br />

Vorstand wie<strong>de</strong>rgewählt wur<strong>de</strong> Helmut Weissert von <strong>de</strong>r<br />

ETH Zürich.<br />

Quelle: SCNAT Newsletter Juni 2013<br />

45


SPG Mitteilungen Nr. 40<br />

Paul Scherrer Institute: User facilities - calls for proposals<br />

The Paul Scherrer Institute (PSI) in Villigen operates four<br />

major user <strong>la</strong>boratories: a third generation X-ray synchrotron<br />

source (SLS), the only continuous spal<strong>la</strong>tion neutron<br />

source worldwi<strong>de</strong> (SINQ), the world’s most powerful continuous-beam<br />

μSR facility (SμS) and a meson factory for<br />

fundamental nuclear and elementary particle physics (LTP).<br />

In fact, PSI is the only p<strong>la</strong>ce worldwi<strong>de</strong> to offer the three<br />

major probes for con<strong>de</strong>nsed matter research (synchrotron<br />

X-rays, neutrons and muons) on one campus.<br />

The instal<strong>la</strong>tions are all open access user facilities and offer<br />

regu<strong>la</strong>r calls for proposals.<br />

More information is avai<strong>la</strong>ble here:<br />

http://www.psi.ch/useroffice/proposal-<strong>de</strong>adlines<br />

Contact address:<br />

Paul Scherrer Institute phone: +41-56-310-4666<br />

User Office<br />

email: useroffice@psi.ch<br />

5232 Villigen PSI<br />

User facility<br />

Proposal submission<br />

<strong>de</strong>adline<br />

SLS<br />

all beamlines, except PX-I,-II,-III Mar 15, Sep 15<br />

PX beamlines Feb 15, Jun 15, Oct 15<br />

SINQ<br />

all beamlines May 15, Nov 15<br />

SμS<br />

DOLLY, GPD, GPS, LEM and LTF Dec 10<br />

GPD, GPS and LTF June 11<br />

PARTICLE PHYSICS<br />

all Dec 10<br />

Physique et <strong>la</strong> Société<br />

Quand <strong>la</strong> Physique rejoint le Sport<br />

Christophe Rossel<br />

Une quarantaine d’étudiants et étudiantes en physique <strong>de</strong>s<br />

universités suisses se sont réunis les 17 et 18 mai 2013 à<br />

Macolin pour un atelier <strong>de</strong> travail sur le thème Physique<br />

et Sport. Organisée dans le cadre du Forum <strong>de</strong>s Jeunes<br />

Physiciens (YPF) en col<strong>la</strong>boration avec <strong>la</strong> Société Suisse<br />

<strong>de</strong> Physique (SSP) et l’office fédéral du sport (OFSPO) cette<br />

réunion a permis à ces jeunes <strong>de</strong> se rencontrer dans une<br />

atmosphère amicale.<br />

L’YPF a été créé en 2009 à l’instigation <strong>de</strong> <strong>la</strong> SSP, grâce au<br />

soutien financier <strong>de</strong> l’Académie suisse <strong>de</strong>s sciences naturelles<br />

(SCNAT) et <strong>de</strong> sa p<strong>la</strong>teforme MAP. Les buts du Forum<br />

sont d’encourager <strong>la</strong> communication entre les sociétés<br />

d’étudiants en physique entre elles, avec les physiciens<br />

professionnels membres <strong>de</strong> <strong>la</strong> SSP ainsi que <strong>de</strong> créer une<br />

p<strong>la</strong>teforme pour discuter <strong>de</strong>s sujets d’intérêts communs et<br />

organiser <strong>de</strong>s évènements divers tels que visites ou séminaires.<br />

C’est dans ce contexte qu’a eu lieu ce premier workshop<br />

sur le splendi<strong>de</strong> site <strong>de</strong> <strong>la</strong> Haute école fédérale <strong>de</strong> sport<br />

(HEFS) <strong>de</strong> Macolin. Arrivés le vendredi soir les étudiants<br />

ont été reçus officiellement par le recteur <strong>de</strong> cette école,<br />

Walter Mengisen, qui leur a décrit <strong>la</strong> fonction et les activités<br />

<strong>de</strong> l’OFSPO qui est un centre <strong>de</strong> prestations, <strong>de</strong> formation<br />

et d’entraînement au service du sport d’élite, du sport <strong>de</strong><br />

compétition et du sport popu<strong>la</strong>ire.<br />

Après une soirée conviviale <strong>de</strong> discussion et <strong>de</strong> jeux au bar<br />

et <strong>la</strong> nuit passée au Grand Hôtel, les participants se sont<br />

retrouvés le samedi matin pour <strong>la</strong> série <strong>de</strong> conférences prévues<br />

au programme. Après une introduction générale sur le<br />

thème et l’organisation du workshop par Christophe Rossel,<br />

le premier conférencier, Didier Stau<strong>de</strong>nman du département<br />

<strong>de</strong> mé<strong>de</strong>cine <strong>de</strong> l’université <strong>de</strong> Fribourg a présenté<br />

le sujet <strong>de</strong> <strong>la</strong> biomécanique et <strong>de</strong> l’activation muscu<strong>la</strong>ire<br />

à une audience attentive. En particulier, il a décrit <strong>la</strong> tech-<br />

Une partie <strong>de</strong>s participants réunis <strong>de</strong>vant le Grand Hôtel <strong>de</strong> Macolin avec une vue imprenable sur les alpes<br />

46


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

nique d'électromyographie (EMG) qui permet d'enregister<br />

et analyser les signaux électriques produits par les variations<br />

physiologiques <strong>de</strong>s fibres muscu<strong>la</strong>ires.<br />

Dans une secon<strong>de</strong> présentation Pierre Cornu, avocat et<br />

conseiller juridique pour les affaires d’intégrité et <strong>de</strong> régu<strong>la</strong>tions<br />

à l’UEFA ainsi qu’au Centre international d’étu<strong>de</strong> du<br />

sport (CIES) <strong>de</strong> Neuchâtel a développé le sujet <strong>de</strong>s manipu<strong>la</strong>tions<br />

dans les compétitions sportives et <strong>la</strong> bonne gouvernance.<br />

De manière captivante avec maints exemples il<br />

a évoqué les paris illégaux, les manipu<strong>la</strong>tions en football,<br />

le dopage et ses effets pervers ainsi que les métho<strong>de</strong>s <strong>de</strong><br />

contrôle et <strong>de</strong> sanctions disciplinaires.<br />

Pascal Arnold, doctorant à l’Institut <strong>de</strong>s systèmes mécaniques<br />

<strong>de</strong> le l’ETHZ nous a ensuite expliqué les défis humains<br />

et technologiques dans le bobsleigh <strong>de</strong> compétition.<br />

De manière remarquable il nous a décrit toutes les étapes<br />

techniques dans <strong>la</strong> construction d’un bob professionnel<br />

qu’il a développé dans le cadre <strong>de</strong> sa thèse <strong>de</strong> doctorat.<br />

Par chance un exemp<strong>la</strong>ire d’un tel bob a été exposé en<br />

présence du pilote professionnel Rico Peter <strong>de</strong> l’équipe Suisse.<br />

II qui a aussi répondu aux nombreuses questions.<br />

Démonstration d’agilité sur <strong>la</strong> s<strong>la</strong>ckline<br />

Changement <strong>de</strong> décors l’après-midi où l’occasion a été<br />

donnée <strong>de</strong> passer <strong>de</strong> <strong>la</strong> théorie à <strong>la</strong> pratique grâce au soutien<br />

organisationnel <strong>de</strong> Bruno Tschanz. Sous un soleil radieux<br />

et en tenue sportive les participants se sont rendus à <strong>la</strong><br />

salle et au sta<strong>de</strong> <strong>de</strong> <strong>la</strong> Fin du Mon<strong>de</strong> pour tester différentes<br />

instal<strong>la</strong>tions. Par exemple ils ont pu se mesurer aux professionnels<br />

<strong>de</strong> l’équipe <strong>de</strong> bob du Lichtenstein à <strong>la</strong> poussée<br />

d’engins d’entrainement simi<strong>la</strong>ires sur roues ou encore<br />

tester leur habileté d’équilibristes en s<strong>la</strong>ckline, ou littéralement<br />

cor<strong>de</strong> souple. Dans ce sport créé dans les années 80,<br />

l’objectif est <strong>de</strong> se dép<strong>la</strong>cer ou <strong>de</strong> faire <strong>de</strong>s figures sur une<br />

sangle légèrement é<strong>la</strong>stique et ceci sans aucun accessoire.<br />

Un autre clou <strong>de</strong>s activités sportives a été sans conteste<br />

le football joué avec analyse <strong>de</strong>s performances <strong>de</strong> chaque<br />

joueur, visionné sur petit écran après <strong>la</strong> partie. Enfin chacun<br />

a aussi pu tester les signaux induits par le mouvement <strong>de</strong><br />

leur biceps grâce à un système <strong>de</strong> mesure électriques avec<br />

électro<strong>de</strong>s multiples et en comprendre les principes avec<br />

les explications <strong>de</strong> Didier Stau<strong>de</strong>nman.<br />

Pascal Arnold présentant les caractéristiques techniques du bob<br />

Suisse II en présence <strong>de</strong> son pilote Rico Peter<br />

Tous les secrets <strong>de</strong> <strong>la</strong> mesure <strong>de</strong> position en sport nous ont<br />

été révélés par Martin Rumo <strong>de</strong> <strong>la</strong> Haute école fédérale <strong>de</strong><br />

sport <strong>de</strong> Macolin. Il a expliqué les développements récents<br />

dans les instruments d’analyse <strong>de</strong> performance dans les<br />

sports d’élite et en particulier les métho<strong>de</strong>s <strong>de</strong> mesures locales<br />

<strong>de</strong> <strong>la</strong> position <strong>de</strong>s joueurs <strong>de</strong> football et du ballon. En<br />

effet les données 3D obtenues en temps réel permettent un<br />

entraînement précis, une observation exacte et une analyse<br />

<strong>de</strong> chaque joueur et <strong>de</strong> l’équipe.<br />

Finalement le <strong>de</strong>rnier conférencier, Benedikt Fasel du Laboratoire<br />

<strong>de</strong> mesure et d'analyse <strong>de</strong>s mouvements <strong>de</strong> l’EPFL<br />

s’est exprimé sur les métho<strong>de</strong>s d’analyse du mouvement et<br />

en particulier sur <strong>la</strong> prévention <strong>de</strong>s acci<strong>de</strong>nts dans les compétitions<br />

<strong>de</strong> ski alpin. Il a expliqué l’utilisation <strong>de</strong> senseurs<br />

inertiels p<strong>la</strong>cées sur le skieur, <strong>de</strong> caméras 3D ou du GPS<br />

pour mesurer <strong>la</strong> trajectoires, les forces et <strong>la</strong> dynamique du<br />

corps pendant <strong>la</strong> <strong>de</strong>scente et comment utiliser les données<br />

pour optimaliser <strong>la</strong> géométrie <strong>de</strong>s skis.<br />

Un bel exercice sportif, <strong>la</strong> poussée du bob à <strong>de</strong>ux<br />

C’est enthousiastes et presque à regret que les participants<br />

ont quitté le site en fin d’après-midi pour retourner chez<br />

eux après une journée riche en information scientifique et<br />

technique et en activités sportives.<br />

47


SPG Mitteilungen Nr. 40<br />

Introduction<br />

History of Physics (8)<br />

On the Einstein-Grossmann Col<strong>la</strong>boration 100 Years ago<br />

Norbert Straumann, Institute for Theoretical Physics, Uni Zürich<br />

Einstein’s path to general re<strong>la</strong>tivity (GR) mean<strong>de</strong>red steeply,<br />

encountered confusing forks, and also inclu<strong>de</strong>d a big U-<br />

turn. In this brief account I discuss in some <strong>de</strong>tail Einstein's<br />

remarkable progress beginning in August 1912, after his<br />

second return to Zürich, until Spring 1913. Before we come<br />

to this, some indications of what he had already achieved<br />

until this period are necessary.<br />

In 1907, while writing a review article on special re<strong>la</strong>tivity<br />

(SR), Einstein specu<strong>la</strong>ted – attempting to un<strong>de</strong>rstand the<br />

empirical equality of inertial and gravitational mass – on the<br />

possibility of extending the principle of re<strong>la</strong>tivity to accelerated<br />

motion, and ad<strong>de</strong>d an important section on gravitation<br />

in his review [2] 1 . With this "basic i<strong>de</strong>a", which he referred<br />

to as principle of equivalence, he went beyond the framework<br />

of SR. His (special formu<strong>la</strong>tion) of the equivalence<br />

principle – "the most fortunate thought of my life" – became<br />

the guiding thread in his search for a re<strong>la</strong>tivistic theory of<br />

gravitation. Until 1911 Einstein worked apparently mainly<br />

on the quantum puzzles and did not publish anything about<br />

gravitation, but continued to think about the problem. In<br />

[3] he writes: "Between 1909-1912 while I had to teach<br />

theoretical physics at the Zürich and Prague Universities I<br />

pon<strong>de</strong>red ceaselessly on the problem". When Einstein realized<br />

in 1911 that gravitational light <strong>de</strong>flection should be<br />

experimentally observable [4], he took up the problem of<br />

gravitation again and began to "work like a horse" in <strong>de</strong>veloping<br />

a coherent theory of the static gravitational fields.<br />

Since he had found that the velocity of light <strong>de</strong>pends on the<br />

gravitational potential, he conclu<strong>de</strong>d that the speed of light<br />

p<strong>la</strong>ys the role of the gravitational potential, and proposed a<br />

non-linear field equation, in which the gravitational energy<br />

<strong>de</strong>nsity itself acts as a source of the gravitational potential.<br />

Therefore, the field equation implied that the principle of<br />

equivalence is valid only for infinitely small spatial regions.<br />

In the second of his Prague papers on "gravito-statics" [5]<br />

he also showed how the equations of electrodynamics and<br />

thermodynamics are modified in the presence of a static<br />

gravitational field. At this point he began to investigate the<br />

dynamical gravitational field.<br />

Einstein gains Marcel Grossmann as a col<strong>la</strong>borator<br />

When Einstein arrived in Zürich in early August, he was<br />

convinced that a metric field of spacetime, generalizing<br />

the Minkowski metric to a pseudo-Riemannian dynamical<br />

metric, was the right re<strong>la</strong>tivistic generalization of Newton’s<br />

potential. The main question was to find the basic equation<br />

for this field. But how to achieve this was in the dark<br />

and he looked for mathematical help. Fortunately, Marcel<br />

Grossmann, his old friend since his stu<strong>de</strong>nt time, was now<br />

also professor at the ETH and Einstein succee<strong>de</strong>d in gain-<br />

1 References to papers that have appeared in the Collected Papers of<br />

Albert Einstein (CPAE) [1] are always cited by volume and document of<br />

CPAE.<br />

48<br />

ing him as a col<strong>la</strong>borator in his search for the gravitational<br />

field equation. In a 1955 reminiscence, shortly before his<br />

<strong>de</strong>ath, Einstein wrote [3]:<br />

I was ma<strong>de</strong> aware of these [works by Ricci and Levi-Civita]<br />

by my friend Grossmann in Zürich, when I put the<br />

problem to investigate generally covariant tensors, whose<br />

components <strong>de</strong>pend only on the <strong>de</strong>rivatives of the coefficients<br />

of the quadratic fundamental invariant.<br />

He at once caught fire, although as a mathematician he<br />

had a somewhat sceptical stance towards physics. (...)<br />

He went through the literature and soon discovered that<br />

the indicated mathematical problem had already been<br />

solved, in particu<strong>la</strong>r by Riemann, Ricci and Levi-Civita.<br />

This entire <strong>de</strong>velopment was connected to the Gaussian<br />

theory of curved surfaces, in which for the first time systematic<br />

use was ma<strong>de</strong> of generalized coordinates.<br />

Louis Kollros, another stu<strong>de</strong>nt friend of Einstein, who was<br />

also mathematics professor at the ETH during this time, remembered<br />

also in 1955 [6]:<br />

[Einstein] spoke to Grossmann about his troubles and<br />

said one day: "Grossmann, you must help me, otherwise<br />

I’ll go crazy ! ".<br />

The fruitful col<strong>la</strong>boration of<br />

Einstein and Grossmann<br />

led to the famous joint article<br />

with the mo<strong>de</strong>st title<br />

"Outline of a Generalized<br />

Theory of Re<strong>la</strong>tivity and a<br />

Theory of Gravitation" [7],<br />

one of the most important<br />

physics papers in the<br />

twentieth century. A lot of<br />

additional insight can be<br />

gained from Einstein’s <strong>de</strong>tailed<br />

'Zürich Notebook'<br />

[8]. It is really fascinating<br />

Figure 1: Marcel Grossmann.<br />

to study these research<br />

notes, because one can see Einstein at work, and theoretical<br />

physics at its best: A <strong>de</strong>licate interp<strong>la</strong>y between physical<br />

reasoning, based on an intuitive estimate of the most<br />

relevant empirical facts, and – equally important – mathematical<br />

structural aspects and requirements. We shall see<br />

that already <strong>la</strong>te in 1912 Einstein came very close to his<br />

final theory, but physical and conceptual arguments, that<br />

will be discussed <strong>la</strong>ter, convinced him for a long time that –<br />

with "heavy heart" – he had to abandon the general covariance<br />

of the gravitational field equation. In a letter to Lorentz<br />

[9] he called this the "ugly dark spot" of the theory. With<br />

this <strong>de</strong>cision, based on erroneous judgement, Einstein lost<br />

almost three years until physics and mathematics came<br />

into harmony in his beautiful general theory of re<strong>la</strong>tivity.<br />

The Einstein-Grossmann theory, published almost exactly<br />

hundred years ago, contains, however, virtually all essential<br />

elements of Einstein’s <strong>de</strong>finite gravitation theory.


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

The corresponding Euler-Lagrange equation is the geo<strong>de</strong>sic<br />

equation of motion for a point particle. Consi<strong>de</strong>ring<br />

an incoherent dust distribution as an ensemble of particles,<br />

Einstein guesses that the energy-momentum conservation<br />

<strong>la</strong>w of special re<strong>la</strong>tivity, n<br />

T mn = f m , with the energy-stress<br />

tensor T mn = 0<br />

u m u n ( 0<br />

= rest-mass matter <strong>de</strong>nsity, u m = fourvelocity<br />

field) and an external force <strong>de</strong>nsity f m , should be<br />

rep<strong>la</strong>ced by<br />

1<br />

mo<br />

( g g T )<br />

1<br />

ab<br />

2o<br />

- nm - 2ngabT<br />

= 0 (2)<br />

-g<br />

2<br />

(g := <strong>de</strong>t(g mn<br />

). The <strong>de</strong>tails of Einstein’s consi<strong>de</strong>rations are<br />

<strong>de</strong>scribed in his Part I, Sect. 4 of the "Entwurf" paper by<br />

Einstein and Grossmann [7]. This is just an explicit form of<br />

the equation n<br />

T mn<br />

= 0, as stated by Grossmann in his Part II<br />

of [7]. Later in Sect. 6 of [7] Einstein generalizes Maxwell’s<br />

equations in generally covariant form. This part has survived<br />

in GR. The coupling of electromagnetic fields to external<br />

gravitational fields is not yet formalized to the " $ " rule,<br />

as a mathematically precise expression of a local version of<br />

the equivalence principle.<br />

In search of the gravitational field equation<br />

Figure 2: Cover sheet of the Einstein-Grossmann "Entwurf" paper.<br />

Requirements to be satisfied by the future theory<br />

The following mixture of physical and mathematical properties<br />

of a re<strong>la</strong>tivistic theory of gravitation are among Einstein’s<br />

main guiding principles:<br />

• The theory reduces to the Newtonian limit for weak<br />

fields and slowly moving matter.<br />

• Conservation <strong>la</strong>ws for energy and momentum must<br />

hold.<br />

• The equivalence principle must be embodied.<br />

• The theory respects a generalized principle of re<strong>la</strong>tivity<br />

to accelerating frames, taking into account that gravitation<br />

and inertia are <strong>de</strong>scribed by one and the same<br />

metric field g mn<br />

. Einstein expressed this by the requirement<br />

of general covariance of the basic equations (to<br />

become a much <strong>de</strong>bated subject).<br />

Non-gravitational <strong>la</strong>ws in external gravitational fields<br />

The easier part of the new theory was to <strong>de</strong>scribe the coupling<br />

of external gravitational fields to matter and electromagnetic<br />

fields. In one of the Prague papers Einstein had<br />

<strong>de</strong>rived the equation of motion for a point particle in a static<br />

field from a variational principle, which is now generalized<br />

in an natural manner to<br />

2<br />

n o<br />

d # ds = 0, ds = g no dx dx .<br />

(1)<br />

Soon, Einstein begins to look for candidate field equations.<br />

The pages before 27 of the Zürich Notebook show that he<br />

was not yet acquainted with the absolute calculus of Ricci<br />

and Levi-Civita. On p. 27, referring to Grossmann, Einstein<br />

writes down the expression for the fully covariant Riemann<br />

curvature tensor R abg<br />

. Next, he forms by contraction the<br />

Ricci tensor R mn<br />

. The resulting terms involving second<br />

<strong>de</strong>rivatives consist, besi<strong>de</strong> g ab a<br />

b<br />

g mn<br />

, of three additional<br />

terms. Einstein writes below their sum: "should vanish"<br />

["sollte verschwin<strong>de</strong>n"]. The reason is that he was looking<br />

for a field equation of the following general form:<br />

with<br />

no<br />

no<br />

C 6 g@ = lT<br />

,<br />

(3)<br />

no<br />

ab no<br />

C 6 g@ = 2a( g 2bg<br />

) + terms that vanish in linear<br />

approximation. (4)<br />

After long complicated calcu<strong>la</strong>tions, Einstein discovers that<br />

the Ricci tensor is of the <strong>de</strong>sired form, when the coordinates<br />

are assumed to be harmonic. (Rea<strong>de</strong>rs who are not familiar<br />

with this may regard this as a kind of gauge condition,<br />

analogous to the Lorentz condition in electrodynamics.)<br />

This seems to look good, and Einstein begins to analyse<br />

the linear weak field approximation of the field equation 2<br />

R<br />

= lT<br />

.<br />

no no (5)<br />

(Rea<strong>de</strong>rs, familiar with GR, know that Einstein has to run<br />

into problems, because of the contracted Bianchi i<strong>de</strong>ntity.)<br />

2 Never before had Einstein used in his work such advanced and complex<br />

mathematics. This is expressed in a letter to Arnold Sommerfeld on 29<br />

October 1912 (CPAE, Vol. 5, Doc. 421): “But one thing is certain: never<br />

before in my life have I toiled any where near as much, and I have gained<br />

enormous respect for mathematics, whose more subtle parts I consi<strong>de</strong>red<br />

until now, in my ignorance, as pure luxury. Compared with this problem,<br />

the original theory of re<strong>la</strong>tivity is child’s p<strong>la</strong>y.”<br />

49


SPG Mitteilungen Nr. 40<br />

The weak field approximation<br />

The linearized harmonic coordinate condition becomes for<br />

h no: = g no - hno ( hno : Minkowski metric)<br />

na<br />

( h<br />

1 na<br />

2n<br />

- h h)<br />

= 0<br />

(6)<br />

2<br />

(h := h μ , indices are now raised and lowered by means of<br />

μ<br />

the Minkowski metric). This is nowadays usually called the<br />

Hilbert condition, but Einstein imposed it already in 1912.<br />

The field equation becomes an inhomogeneous wave<br />

equation:<br />

Xh<br />

=-2lT<br />

no no (7)<br />

Einstein takes for T mn<br />

his earlier expression for dust.<br />

But now he runs into a serious problem:<br />

From n T mn<br />

= 0 in the weak field limit, it follows that<br />

o<br />

X( 2 h no ) = 0 hence the harmonic coordinate condition requires<br />

X( 2 o h)<br />

= 0 , and therefore the trace of the the field<br />

equation implies Xh =- 2lT = const., T:<br />

= T<br />

n n . For dust<br />

this requires that T = -r 0<br />

= const. This is, of course, unacceptable.<br />

One would not even be able to <strong>de</strong>scribe a star,<br />

with a smooth distribution of matter localized in a finite region<br />

of space.<br />

Einstein’s modified linearized field equation<br />

Now, something very interesting happens. Einstein avoids<br />

this problem by modifying the field equation (7) to<br />

X( h -<br />

1<br />

h h)<br />

=-2lT<br />

2<br />

no no no (8)<br />

Then the harmonic coordinate condition (6) is compatible<br />

with n<br />

T mn = 0 . Remarkably, (8) is the linearized equation<br />

of the final theory (in harmonic coordinates). One won<strong>de</strong>rs<br />

why Einstein did not try at this point the analogous substitution<br />

R no $ R no - 2 g no R or Tno $ Tno - 2 g no T in the full<br />

1<br />

1<br />

non-linear equation (5), which would have led to the final<br />

field equation of GR. One probable reason for this is connected<br />

with the Newtonian limit.<br />

The problem with the Newtonian limit<br />

The problem with the Newtonian limit was, it appears, one<br />

of the main reasons why Einstein abandoned the general<br />

covariance of the field equation. Apparently, (8) did<br />

not reduce to the correct limit. That it leads to the Poisson<br />

equation for g 00<br />

(x) is fine, but because of the harmonic<br />

coordinate condition the metric can not be spatially f<strong>la</strong>t.<br />

(The almost Newtonian approximation of (6) and (8) is <strong>de</strong>rived<br />

in textbooks on GR; see, e.g., [11], Sect. 4.2.) Einstein<br />

found this unacceptable. He was convinced that for<br />

(weak) static gravitational fields the metric must be of the<br />

form (g mn<br />

) = diag(g 00<br />

(x), 1, 1, 1), as he already noted on p. 1<br />

of his research notes. I won<strong>de</strong>r why he did not remember<br />

his cautious remark in one of his Prague papers [12] on<br />

static gravitational fields, in which – while assuming spatial<br />

f<strong>la</strong>tness – he warned that this may very well turn out to be<br />

wrong, and says that actually it does not hold on a rotating<br />

disk. Since a non-f<strong>la</strong>tness would not affect the geo<strong>de</strong>sic<br />

equation in the Newtonian limit, there is actually, as we<br />

all know, no problem. But Einstein realized this only three<br />

years <strong>la</strong>ter 3 . Well(!): "If wise men did not err, fools should<br />

<strong>de</strong>spair" (Wolfgang Goethe).<br />

At the time, Einstein arrived at the conviction that there<br />

were other difficulties implied by generally covariant field<br />

equations. One was connnected with energy-momentum<br />

conservation (see [10].)<br />

The 'hole' argument against general covariance<br />

At the time when he finished the paper with Grossmann,<br />

Einstein wrote to Ehrenfest on May 28, 1913: "The conviction<br />

to which I have slowly struggled through is that there<br />

are no preferred coordinate systems of any kind. However,<br />

I have only partially succee<strong>de</strong>d, even formally, in reaching<br />

this standpoint." (CPAE, Vol. 5, Doc. 441.) In a lecture given<br />

to the Annual Meeting of the Swiss Naturforschen<strong>de</strong> Gesellschaft<br />

in September 1913, Einstein stated: "It is possible<br />

to <strong>de</strong>monstrate by a general argument that equations<br />

that completely <strong>de</strong>termine the gravitational field cannot be<br />

generally covariant with respect to arbitrary substitutions."<br />

(CPAE, Vol. 4, Doc. 16.) He repeated this statement shortly<br />

afterwards in his Vienna lecture [13] of September 23, 1913.<br />

The so-called "hole" ("Loch") argument runs as follows<br />

(instead of coordinate transformations, I use a more mo<strong>de</strong>rn<br />

<strong>la</strong>nguage): Imagine a finite region D of spacetime – the<br />

'hole' – in which the stress-energy tensor vanishes. Assume<br />

that a metric field g is a solution of a generally covariant<br />

field equation. Apply now a diffeomorphism on g,<br />

Figure 3: A typical page in Einstein's 'Zürich Notebook', CPAE,<br />

Vol. 4, Doc. 10, p.262.<br />

50<br />

3 In his calcu<strong>la</strong>tion of the perihelion motion (on the basis of the vacuum<br />

equations R mn<br />

= 0) it became clear to him that spatial f<strong>la</strong>tness did not hold<br />

even for weak static fields.


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

producing *g (push-forward), and choose the diffeomorphism<br />

such that it leaves the spacetime region outsi<strong>de</strong> D<br />

pointwise fixed. Clearly, g and *g are different solutions<br />

of the field equation that agree outsi<strong>de</strong> D. In other words,<br />

generally covariant field equations allow huge families of<br />

solutions for one and the same matter distribution (outsi<strong>de</strong><br />

the hole). At the time, Einstein found this unacceptable, because<br />

this was in his opinion a dramatic failure of what he<br />

called the <strong>la</strong>w of causality (now usually called <strong>de</strong>terminism).<br />

He then thought that the energy-momentum tensor should<br />

(for appropriate boundary or initial conditions) <strong>de</strong>termine<br />

the metric uniquely.<br />

It took a long time until Einstein un<strong>de</strong>rstood that this nonuniqueness<br />

is an expression of what we now call gauge<br />

invariance, analogous to the local invariance of our gauge<br />

theories in elementary particle physics. On January 3, 1916<br />

he wrote to Besso: "Everything in the hole argument was<br />

correct up to the final conclusion."<br />

The role of diffeomorphism invariance of GR, especially for<br />

the Cauchy problem, was first un<strong>de</strong>rstood by Hilbert.<br />

Final remarks<br />

When Einstein was finishing his work on GR un<strong>de</strong>r great<br />

stress and was suspending all correspon<strong>de</strong>nce with colleagues,<br />

he still found time to communicate with Michele<br />

Besso. On November 17, 1915 he mailed a postcard from<br />

Berlin, that contains the great news:<br />

I have worked with great success during these months. General<br />

covariant gravitational equations. Motions of the perihelion<br />

quantitatively exp<strong>la</strong>ined. (...). You will be amazed. I<br />

worked horribly strenuously [schau<strong>de</strong>rhaft angestrengt], [it<br />

is] strange that one can endure that. (...) (CPAE, Vol. 8, Part<br />

A, Doc. 147).<br />

Besso passed this card on to Zangger: "I enclose the historical<br />

card of Einstein, reporting the setting of the capstone<br />

of an epoch that began with Newton’s 'apple'."<br />

The discovery of the general theory of re<strong>la</strong>tivity has often<br />

been justly praised as one of the greatest intellectual<br />

achievements of a human being. At the ceremonial presentation<br />

of Hubacher’s bust of A. Einstein in Zürich, W. Pauli<br />

said:<br />

The general theory of re<strong>la</strong>tivity then completed and - in<br />

contrast to the special theory - worked out by Einstein<br />

alone without simultaneous contributions by other researchers,<br />

will forever remain the c<strong>la</strong>ssic example of a<br />

theory of perfect beauty in its mathematical structure.<br />

Auszug aus einem Interview von Res Jost mit Otto<br />

Stern, <strong>de</strong>r mit Einstein von Prag nach Zürich kam<br />

und zwei Jahre später an <strong>de</strong>r ETH (mit einem Gutachten<br />

von Einstein) habilitierte:<br />

In Zürich war's natürlich sehr schön (...) und beson<strong>de</strong>rs<br />

<strong>de</strong>swegen interessant, weil Laue an <strong>de</strong>r Universität<br />

war. Ausser<strong>de</strong>m waren Ehrenfest und Tatjana (...)<br />

min<strong>de</strong>stens ein Vierteljahr, vielleicht auch etwas länger<br />

zu Besuch (...). Das gab natürlich immer herrliche Diskussionen<br />

im Kolloquium (...). Wir waren auch ein paar<br />

jüngere Leute, die ganz eifrig waren. Ehrenfest nannte<br />

uns immer <strong>de</strong>n 'Dreistern'. Das waren <strong>de</strong>r Herzfeld<br />

und <strong>de</strong>r Kern (und ich). (Kern hatte <strong>de</strong>n Doktor bei Debye<br />

gemacht.) Debye war ja <strong>de</strong>r Vorgänger von Laue<br />

an <strong>de</strong>r Universität (...). Nur <strong>de</strong>r Weiss (...), Pierre Weiss<br />

war damals Experimentalphysiker und Institutsdirektor,<br />

<strong>de</strong>r kam nie ins Kolloquium. Er verbot auch das<br />

Rauchen, das war furchtbar (...). Dem Einstein konnte<br />

man das aber nicht verbieten. Infolge<strong>de</strong>ssen, wenn<br />

es eben zu schlimm war, dann bin ich einfach ins<br />

Einstein'sche Zimmer gegangen (...) und konnte mich<br />

mit ihm unterhalten (...). Das gab dann immer lebhafte<br />

Diskussionen (...) über damals völlig ungelöste Rätsel<br />

<strong>de</strong>r Quantentheorie. Das einzige, was man über<br />

Quantentheorie wirklich wusste, war die P<strong>la</strong>nck'sche<br />

Formel, Schluss (...). Ich bin auch ins Kolleg zu Einstein<br />

gegangen (...), das war (...) auch sehr schön,<br />

aber nicht für Anfänger. Einstein hat sich ja nie richtig<br />

vorbereitet auf die Vorlesung, aber er war eben doch<br />

Einstein (...), wenn er da so herumgemorkst hat, war<br />

es doch sehr interessant (...), immer sehr raffiniert gemacht<br />

und sehr physikalisch vor allen Dingen (...).<br />

References<br />

[1] CPAE, The collected papers of Albert Einstein, Edited by J.<br />

Stachel et al., Vols. 1-12. Princeton: Princeton University Press,<br />

1987–2010.<br />

[2] A. Einstein, On the Re<strong>la</strong>tivity Principle and the Conclusions<br />

Drawn from It, CPAE, Vol. 2, Doc. 47.<br />

[3] A. Einstein, Erinnerungen-Souveniers, <strong>Schweizerische</strong> Hochschulzeitung<br />

28 (Son<strong>de</strong>rheft) (1955), pp. 145-153; reprinted as<br />

"Autobiographische Skizze", in Carl Seelig, ed., Helle Zeit-Dunkle<br />

Zeit. In Memoriam Albert Einstein, Zürich, Europa Ver<strong>la</strong>g, 1955,<br />

pp. 9-17.<br />

[4] A. Einstein, On the Influence of Gravitation on the Propagation<br />

of Light, CPAE, Vol. 3, Doc. 23.<br />

[5] A. Einstein, On the Theory of the Static Gravitational Field,<br />

CPAE, Vol. 4, Doc. 4.<br />

[6] L. Kollros, Erinnerungen-Souveniers, <strong>Schweizerische</strong> Hochschulzeitung<br />

28 (Son<strong>de</strong>rheft) (1955), pp. 169-173; reprinted as<br />

"Erinnerungen eines Kommilitonen", in Carl Seelig, ed., Helle Zeit-<br />

Dunkle Zeit. In Memoriam Albert Einstein, Zürich, Europa Ver<strong>la</strong>g,<br />

1955, pp. 17-31.<br />

[7] A. Einstein and M. Grossmann, Outline of a Generalized Theory<br />

of Re<strong>la</strong>tivity and a Theory of Gravitation, CPAE, Vol. 4, Doc.<br />

13. Entwurf einer verallgemeinerten Re<strong>la</strong>tivitätstheorie und einer<br />

Theorie <strong>de</strong>r Gravitation, Zeitschrift für Mathematik und Physik, 62,<br />

225-259 (1914).<br />

[8] A. Einstein, Research Notes on a Generalized Theory of Gravitation,<br />

August 1912, CPAE, Vol. 4, Doc. 10.<br />

[9] A. Einstein, Letter to H.A. Lorentz, CPAE, Vol. 5, Doc. 470.<br />

[10] N. Straumann, Einstein’s Zürich Notebook and his Journey<br />

to General Re<strong>la</strong>tivity, Ann. Phys. (Berlin) 523, 488 (2011); [arXiv:1106.0900].<br />

[11] N. Straumann, General Re<strong>la</strong>tivity, Graduate Texts in Physics,<br />

Springer Berlin, 2013.<br />

[12] A. Einstein, The Speed of Light and the Statics of the Gravitational<br />

Field, CPAE, Vol. 4, Doc. 3.<br />

[13] A. Einstein, On the Present State of the Problem of Gravitation,<br />

CPAE, Vol. 4, Doc. 17.<br />

51


SPG Mitteilungen Nr. 40<br />

Histoire <strong>de</strong> <strong>la</strong> Physique (9)<br />

Le modèle atomique <strong>de</strong> Bohr: origines, contexte et postérité (part 1)<br />

Jan Lacki, Uni Genève<br />

Nous célébrons cette année le centième anniversaire du<br />

modèle atomique <strong>de</strong> Niels Bohr. Pour le physicien, il est le<br />

commencement <strong>de</strong> <strong>la</strong> route qui al<strong>la</strong>it mener à <strong>la</strong> formu<strong>la</strong>tion<br />

<strong>de</strong> <strong>la</strong> mécanique quantique; pour l'homme <strong>de</strong> <strong>la</strong> rue,<br />

il symbolise à lui tout seul <strong>la</strong> nature quantique du mon<strong>de</strong><br />

atomique. Nombre <strong>de</strong> ses particu<strong>la</strong>rités sont <strong>de</strong>puis passées<br />

dans les esprits et se sont banalisées: c'est oublier<br />

combien ce modèle a été révolutionnaire à son époque et<br />

combien il reste encore aujourd'hui paradoxal, mais <strong>de</strong> ces<br />

paradoxes profonds et fructueux qui ont pavé <strong>la</strong> voie <strong>de</strong><br />

<strong>la</strong> physique contemporaine. L'atome <strong>de</strong> Bohr appartient<br />

ainsi à cette c<strong>la</strong>sse restreinte <strong>de</strong> gran<strong>de</strong>s idées qui ont fait<br />

basculer le cours <strong>de</strong> <strong>la</strong> science. Malgré cette importance,<br />

peu <strong>de</strong> personnes, y compris les physiciens, connaissent le<br />

contexte précis <strong>de</strong> <strong>la</strong> découverte <strong>de</strong> Bohr et <strong>la</strong> formu<strong>la</strong>tion<br />

qu'il donna à ses idées. Son article, tout comme, pour donner<br />

un autre exemple notable, celui d'Einstein initiant <strong>la</strong> re<strong>la</strong>tivité<br />

en 1905, est aujourd'hui peu connu et encore moins<br />

lu. Le centennaire du modèle <strong>de</strong> Bohr offre une excellente<br />

occasion <strong>de</strong> revenir sur cet épiso<strong>de</strong> capital <strong>de</strong> l'histoire <strong>de</strong><br />

<strong>la</strong> physique quantique.<br />

1 Une courte histoire <strong>de</strong> <strong>la</strong> spectroscopie<br />

Quand Bohr entre en scène, l'étu<strong>de</strong> <strong>de</strong>s spectres est vieille<br />

<strong>de</strong> plus d'un <strong>de</strong>mi-siècle, et ses racines remontent encore<br />

plus loin 1 . L'histoire commence avec l'observation du<br />

spectre so<strong>la</strong>ire par le britannique William H. Wol<strong>la</strong>ston, qui<br />

relève en 1802 l'existence <strong>de</strong>s raies sombres; elles intrigueront<br />

ensuite fortement Joseph v. Fraunhofer qui en comptera<br />

476 entre 1814 et 1815. Fraunhofer introduira aussi dans<br />

le champ <strong>de</strong> <strong>la</strong> spectroscopie l'usage <strong>de</strong>s réseaux et obtiendra<br />

ainsi <strong>de</strong>s résultats remarquables sur <strong>la</strong> re<strong>la</strong>tion entre<br />

l'angle d'observation et <strong>la</strong> longueur d'on<strong>de</strong> <strong>de</strong>s raies. Il se<br />

livrera également à l'étu<strong>de</strong> <strong>de</strong>s spectres d'émission provenant<br />

<strong>de</strong> f<strong>la</strong>mmes colorées ou encore d'étincelles produites<br />

par décharge <strong>de</strong>s machines électrostatiques. L'étu<strong>de</strong> <strong>de</strong>s<br />

spectres électriques se poursuivra et se systématisera avec<br />

l'utilisation <strong>de</strong>s bobines d'induction et, dans les années<br />

1845-1850, <strong>de</strong> <strong>la</strong> bobine <strong>de</strong> Ruhmkorff.<br />

Il reviendra à Gustav Kirchhoff (1859) d'apporter <strong>de</strong>s arguments<br />

décisifs en faveur <strong>de</strong> l'interprétation <strong>de</strong>s raies<br />

sombres du soleil comme <strong>de</strong>s raies d'absorption. Observons<br />

que c'est dans le contexte <strong>de</strong> ces travaux que Kirchhoff<br />

parviendra à une découverte capitale pour le développement<br />

ultérieur <strong>de</strong> <strong>la</strong> physique. Réfléchissant sur le<br />

rapport entre les pouvoirs d'émission et d'absorption d'un<br />

corps à une longueur d'on<strong>de</strong> et température données, Kirchhoff<br />

obtient son fameux résultat affirmant son universalité<br />

pour tout corps. C'est le début <strong>de</strong> <strong>la</strong> problématique du<br />

rayonnement du corps noir qui amènera à <strong>la</strong> toute fin du<br />

siècle à <strong>la</strong> loi du rayonnement <strong>de</strong> P<strong>la</strong>nck et <strong>la</strong> découverte<br />

<strong>de</strong>s quanta.<br />

A défaut d'une correspondance stable entre les éléments et<br />

leurs spectres (on a réalisé dans les années 1870 qu'un élément<br />

peut produire plusieurs spectres selon les conditions<br />

physiques ce qui met fin à l'espoir d'une spectrochimie), on<br />

observe tout <strong>de</strong> même d'autres régu<strong>la</strong>rités. On remarque<br />

<strong>de</strong>s analogies entre les spectres d'éléments aux mêmes<br />

propriétés chimiques et on relève <strong>de</strong>s rapports numériques<br />

entre raies d'un même élément (Mascart 1869, Lecoq <strong>de</strong><br />

Boisbaudrant 1869, Cornu 1885). L'observation <strong>de</strong>s doublets<br />

et triplets suggère que l'on a affaire à <strong>de</strong>s harmoniques.<br />

Les tentatives d'expliquer les spectres sur <strong>la</strong> base<br />

d'une mécanique <strong>de</strong> vibrations en analogie avec les phénomènes<br />

sonores s'en trouvent renforcées. Les spectres<br />

à raies correspondraient aux vibrations internes <strong>de</strong>s molécules<br />

alors que leur interaction dans les liqui<strong>de</strong>s et les soli<strong>de</strong>s<br />

conduirait aux spectres continus (Clifton 1866, Stoney<br />

1868, 1871). L'hypothèse d'harmoniques perd cependant<br />

<strong>de</strong> son attrait à partir <strong>de</strong>s années 1880: certaines raies seraient<br />

associées à <strong>de</strong>s harmoniques d'ordre trop élevé par<br />

rapport à ce qui est physiquement p<strong>la</strong>usible. Alors que l'on<br />

ne croit plus à une explication aussi simple <strong>de</strong>s spectres,<br />

<strong>la</strong> conviction <strong>de</strong> l'existence <strong>de</strong> lois bien définies régissant<br />

les fréquences spectrales et susceptibles <strong>de</strong> renseigner sur<br />

les mécanismes internes à l'atome va cependant croissant.<br />

L'histoire <strong>de</strong> <strong>la</strong> spectroscopie franchit une étape capitale<br />

avec l'obtention <strong>de</strong> premières lois empiriques pour les longueurs<br />

d'on<strong>de</strong> <strong>de</strong>s raies. La formule <strong>de</strong> Balmer (1885) pour<br />

les raies d'Ångström <strong>de</strong> l'hydrogène (1868), d'une précision<br />

remarquable, donne une impulsion forte à <strong>la</strong> recherche<br />

<strong>de</strong> formules empiriques <strong>de</strong> plus en plus générales. Cellesci<br />

culminent avec les contributions <strong>de</strong> Rydberg (1890) et<br />

bien sûr <strong>de</strong> Ritz avec son principe <strong>de</strong> combinaisons (1908).<br />

Ces travaux s'appuient <strong>de</strong> manière fondamentale sur <strong>la</strong> découverte<br />

récente, pour <strong>de</strong>s éléments chimiquement semb<strong>la</strong>bles,<br />

<strong>de</strong> l'existence <strong>de</strong> séries homologues aux propriétés<br />

communes comme celles <strong>de</strong> présenter un point d'accumu<strong>la</strong>tion<br />

vers les hautes fréquences avec <strong>de</strong>s intensités <strong>de</strong><br />

raies al<strong>la</strong>nt décroissant.<br />

2 La spectroscopie et <strong>la</strong> structure <strong>de</strong> l'atome: questions<br />

et enjeux au tournant du siècle<br />

1 Pour <strong>de</strong>s étu<strong>de</strong>s détaillées <strong>de</strong> l'histoire <strong>de</strong> <strong>la</strong> spectroscopie, on<br />

consultera H. Dingle, A Hundred Years of Spectroscopy, British Journal<br />

of History of Science, vol. 1 (1963), 199-216 ; M.C. Lawrence, The Role of<br />

Spectroscopy in the Acceptance of an Internally Structured Atom (1860-<br />

1920), thèse <strong>de</strong> doctorat, University of Wisconsin, 1964 ; W. McGucken,<br />

Nineteenth-Century Spectroscopy : <strong>de</strong>velopment of the un<strong>de</strong>rstanding of<br />

spectra, 1802-1897, Johns Hopkins Press, 1969 ; J. C. D. Brand, Lines<br />

of Light: The Sources of Dispersive Spectroscopy, 1800-1930, Gordon<br />

& Breach Science Pub., 1995 ou encore M. Sail<strong>la</strong>rd, Histoire <strong>de</strong> <strong>la</strong><br />

spectroscopie, Cahiers d'histoire et <strong>de</strong> philosophie <strong>de</strong>s sciences, no 26<br />

(1988).<br />

52<br />

L'obtention <strong>de</strong> formules empiriques pour les fréquences<br />

<strong>de</strong> séries <strong>de</strong> raies ne pouvait qu'aviver les tentatives pour<br />

concevoir un modèle <strong>de</strong> l'atome. Des modèles dynamiques<br />

avaient été proposés bien avant l'avènement <strong>de</strong> <strong>la</strong> théorie<br />

<strong>de</strong>s quanta et <strong>la</strong> découverte <strong>de</strong> l'électron. La conception <strong>de</strong><br />

<strong>la</strong> lumière comme ondu<strong>la</strong>tion d'un éther é<strong>la</strong>stique suggérait<br />

que les spectres résultaient <strong>de</strong> vibrations molécu<strong>la</strong>ires<br />

transmises mécaniquement à l'éther (Stokes 1852, Stoney<br />

1868). La question <strong>de</strong> <strong>la</strong> structure atomique qui permettait


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

ces vibrations ne pouvait donner lieu qu'à <strong>de</strong>s spécu<strong>la</strong>tions.<br />

Suivant les travaux <strong>de</strong> Helmholtz sur l'hydrodynamique<br />

<strong>de</strong>s vortex dans un flui<strong>de</strong> idéal (1858), William Thomson<br />

(Lord Kelvin) proposait déjà en 1867 un modèle <strong>de</strong> l'atome<br />

comme un vortex <strong>de</strong> l'éther. Plus que les résultats <strong>de</strong> <strong>la</strong><br />

spectroscopie, <strong>la</strong> découverte <strong>de</strong> l'électron (1896) rendit<br />

obsolètes ces premières tentatives. Avec l'idée d'électrons<br />

comme corpuscules fondamentaux <strong>de</strong> <strong>la</strong> matière, et<br />

donc <strong>de</strong> l'atome, on disposait d'un nouveau principe <strong>de</strong><br />

sa construction en prenant en compte l'émission <strong>de</strong> rayonnement<br />

électromagnétique par <strong>de</strong>s charges en accélération.<br />

Le mécanisme d'excitation mécanique <strong>de</strong> l'éther était<br />

remp<strong>la</strong>cé par celui <strong>de</strong> l'excitation électromagnétique par le<br />

mouvement <strong>de</strong> l'électron <strong>de</strong>venu oscil<strong>la</strong>teur hertzien (Larmor<br />

1897, pressenti par Stoney 1889). La difficulté principale<br />

consistait alors à concilier les conditions assurant les<br />

stabilités mécanique et radiative <strong>de</strong> l'atome. En effet, on<br />

savait <strong>de</strong>puis longtemps (Earnshaw 1831) qu'un système<br />

<strong>de</strong> corpuscules sous l'effet mutuel <strong>de</strong>s forces en inverse du<br />

carré <strong>de</strong> <strong>la</strong> distance ne pouvait donner lieu à <strong>de</strong>s configurations<br />

statiques stables: il fal<strong>la</strong>it donc que les électrons <strong>de</strong><br />

l'atome soient en mouvement. Ce<strong>la</strong> impliquait à son tour<br />

que ces électrons <strong>de</strong>vaient, pour rester confinés et assurer<br />

<strong>la</strong> permanence <strong>de</strong> l'atome, subir nécessairement <strong>de</strong>s accélérations<br />

et donc rayonner <strong>de</strong> l'énergie électromagnétique,<br />

ce qui hypothéquait <strong>de</strong> nouveau <strong>la</strong> stabilité <strong>de</strong> l'atome par<br />

perte <strong>de</strong> son énergie.<br />

Larmor montrait cependant en 1897 que les déperditions<br />

d'énergie pour un système <strong>de</strong> charges accélérées pouvaient<br />

être limitées, voire nulles, si <strong>la</strong> somme vectorielle <strong>de</strong>s<br />

accélérations était nulle. On le voit, <strong>la</strong> satisfaction simultanée<br />

<strong>de</strong> conditions assurant <strong>la</strong> stabilité constituait déjà en<br />

soi un problème formidable mais il fal<strong>la</strong>it encore que les solutions<br />

<strong>de</strong> ce problème soient en nombre suffisant pour expliquer<br />

<strong>la</strong> variété d'éléments chimiques connus. Comme si<br />

ces défis ne suffisaient pas, tout modèle stable <strong>de</strong> l'atome<br />

<strong>de</strong>vait <strong>de</strong> surcroît rendre compte <strong>de</strong>s raies spectrales en<br />

accord avec les formules empiriques <strong>de</strong> Rydberg et Ritz.<br />

Au vu <strong>de</strong> ces multiples exigences, souvent contradictoires,<br />

il n'est pas étonnant que peu <strong>de</strong> modèles atomiques réussissaient<br />

à les satisfaire toutes et encore, ils ne le faisaient<br />

qu'au prix d'hypothèses au caractère ad hoc marqué 2 . En<br />

1901, James H. Jeans proposait pour chaque électron <strong>de</strong><br />

l'atome l'existence d'un partenaire positif <strong>de</strong> même masse.<br />

Dans l'état normal <strong>de</strong> l'atome, <strong>la</strong> configuration d'ensemble<br />

pouvait être stable grâce à l'hypothèse d'une force compensant<br />

l'interaction électrostatique ; le spectre résultait<br />

<strong>de</strong>s oscil<strong>la</strong>tions électroniques autour <strong>de</strong>s positions d'équilibre.<br />

Avec ses "dynami<strong>de</strong>s", Philipp Lenard concevait au<br />

contraire <strong>de</strong>s paires <strong>de</strong> charges où le partenaire <strong>de</strong> l'électron<br />

avait une masse sensiblement plus gran<strong>de</strong> (1903).<br />

Nous nous souvenons mieux aujourd'hui <strong>de</strong>s conceptions<br />

<strong>de</strong> Jean Perrin qui, en 1901, suggérait un atome p<strong>la</strong>nétaire<br />

avec une charge positive retenant les charges négatives en<br />

orbite. Le Japonais Hantaro Nagaoka 1904 s'inspirait pour<br />

sa part <strong>de</strong>s réflexions <strong>de</strong> jeune Maxwell sur <strong>la</strong> stabilité gravitationnelle<br />

<strong>de</strong>s anneaux <strong>de</strong> Saturne (1860) pour proposer<br />

un modèle saturnien où <strong>de</strong>s anneaux <strong>de</strong> charges négatives<br />

en orbite présentent <strong>de</strong>s oscil<strong>la</strong>tions responsables <strong>de</strong>s<br />

2 Pour une étu<strong>de</strong> <strong>de</strong>s modèles atomiques proposés dans le cadre <strong>de</strong><br />

<strong>la</strong> physique c<strong>la</strong>ssique, voir Bruno Carazza et Nadia Robotti, Exp<strong>la</strong>ining<br />

Atomic Spectra within C<strong>la</strong>ssical Physics: 1897-1913, Annals of Science,<br />

vol. 59 (2002), 299-320.<br />

raies. Comme il s'avéra rapi<strong>de</strong>ment, le modèle <strong>de</strong> Nagaoka,<br />

basé sur les forces électrostatiques et non gravitationnelles,<br />

présentait en fait <strong>de</strong>s problèmes <strong>de</strong> stabilité mécanique,<br />

un handicap plus sérieux que celui <strong>de</strong> <strong>la</strong> déperdition<br />

d'énergie par rayonnement qui pouvait être résolu selon les<br />

lignes suggérées par Larmor.<br />

Dès 1903, J. J. Thomson concevait à son tour un modèle<br />

qui marqua pendant quelques années les esprits. Selon sa<br />

conception, <strong>la</strong> charge positive <strong>de</strong> l'atome était distribuée<br />

<strong>de</strong> manière uniforme dans tout le volume <strong>de</strong> l'atome. Les<br />

électrons, distribués en anneaux, tournaient à l'intérieur.<br />

S'appuyant sur les observations <strong>de</strong> Larmor, Thomson mettait<br />

beaucoup d'espoir dans le fait que ses configurations<br />

électroniques, pourvu qu'un nombre suffisant d'électrons<br />

soit considéré, présentaient un moment dipo<strong>la</strong>ire total nul,<br />

ce qui assurait, à cet ordre, l'absence <strong>de</strong> rayonnement<br />

électromagnétique. Peu <strong>de</strong> temps après le même Thomson<br />

montrait cependant que le nombre d'électrons dans l'atome<br />

<strong>de</strong>vait être <strong>de</strong> même ordre <strong>de</strong> gran<strong>de</strong>ur que le nombre atomique<br />

(1906). Ce<strong>la</strong> mettait fin à <strong>de</strong> nombreux modèles qui<br />

multipliaient le nombre <strong>de</strong>s électrons à outrance, à commencer<br />

par le sien.<br />

La contrainte sur le nombre d'électrons présents dans<br />

l'atome permit à l'époque <strong>de</strong> trancher aussi l'importante<br />

question <strong>de</strong> savoir si l'ensemble <strong>de</strong> raies du spectre pouvait<br />

être imputé à une seule source, un atome dans une<br />

seule configuration, ou si <strong>de</strong>s configurations différentes<br />

d'un même atome, voire <strong>de</strong>s variétés atomiques différentes,<br />

<strong>de</strong>vaient être envisagées pour chaque raie. Comme<br />

les solutions à une seule source pour l'ensemble du spectre<br />

impliquaient un nombre prohibitif d'électrons 3 , on finit par<br />

pencher en faveur <strong>de</strong> configurations atomiques différentes<br />

pour chaque raie.<br />

Une étu<strong>de</strong> <strong>de</strong>s modèles atomiques ne <strong>de</strong>vrait pas à ce<br />

sta<strong>de</strong> omettre les conceptions du suisse Walter Ritz et <strong>de</strong><br />

son compatriote Arthur Schidlof. Comme j'eus déja l'occasion<br />

<strong>de</strong> traiter du parcours scientifique <strong>de</strong> ces <strong>de</strong>ux pionniers<br />

<strong>de</strong> <strong>la</strong> physique théorique suisse dans les Communications<br />

4 je terminerai juste sur une remarque. Les modèles<br />

<strong>de</strong> Ritz étaient caractéristiques <strong>de</strong> leur temps. Tout comme<br />

ceux <strong>de</strong> ses contemporains, ils étaient a posteriori handicapés<br />

par <strong>la</strong> conjonction d'une physique c<strong>la</strong>ssique et d'hypothèses<br />

ad hoc. Schidlof, en prenant en compte l'existence<br />

du quantum d'action (1911), apparaît au contraire se mettre<br />

résolument du côté d'une physique nouvelle 5 . Sa pensée<br />

est pourtant encore insuffisamment affranchie <strong>de</strong> <strong>la</strong> tradition<br />

c<strong>la</strong>ssique: elle ne visait pas tant l'obtention d'un modèle<br />

quantique <strong>de</strong> l'atome qu'une explication <strong>de</strong> l'existence<br />

et <strong>de</strong> <strong>la</strong> valeur du quantum d'action <strong>de</strong> P<strong>la</strong>nck. Ce sera tout<br />

le contraire avec <strong>la</strong> contribution <strong>de</strong> Bohr.<br />

3 L'avancée <strong>de</strong> Niels Bohr<br />

Quand Bohr propose son modèle, les quanta viennent à<br />

peine d'être acceptés comme une réalité physique incon-<br />

3 Voir Carazza et Robotti, op. cit., pp. 313-315.<br />

4 J. Lacki, Arthur Schidlof, un pionnier <strong>de</strong> <strong>la</strong> physique théorique suisse,<br />

Communications <strong>de</strong> <strong>la</strong> SSP, no 34, mai 2011, 48-51; Walter Ritz (1878-<br />

1909), the revolutionary c<strong>la</strong>ssical physicist, Communications <strong>de</strong> <strong>la</strong> SSP,<br />

no 35, septembre 2011, 26-29.<br />

5 A. Schidlof, Zur Aufklärung <strong>de</strong>r universellen elektrodynamischen<br />

Be<strong>de</strong>utung <strong>de</strong>r P<strong>la</strong>nckschen Strahlungskonstanten h, Annalen <strong>de</strong>r Physik,<br />

vol. 340 (1911), 90-100.<br />

53


SPG Mitteilungen Nr. 40<br />

tournable. Autant on salue en 1900 <strong>la</strong> loi du rayonnement<br />

du corps noir <strong>de</strong> P<strong>la</strong>nck comme une gran<strong>de</strong> réussite, autant<br />

on fait peu <strong>de</strong> cas, pour ne pas dire qu'on rejette, l'explication<br />

("désespérée" comme l'avait qualifiée lui-même<br />

P<strong>la</strong>nck) <strong>de</strong> cette loi en termes <strong>de</strong> discontinuités dans les<br />

échanges énergétiques entre matière et rayonnement. Des<br />

années après <strong>la</strong> découverte <strong>de</strong> P<strong>la</strong>nck on en cherchera encore<br />

une justification "c<strong>la</strong>ssique". Il y a pourtant <strong>de</strong>s esprits<br />

qui prennent les quanta d'emblée au sérieux, ainsi le jeune<br />

Einstein qui contribuera pour beaucoup à leur donner une<br />

respectabilité. Dans l'un <strong>de</strong>s articles <strong>de</strong> sa "merveilleuse<br />

année" 1905 Einstein montre que dans le régime <strong>de</strong> Wien<br />

(gran<strong>de</strong>s fréquences/petites températures) les propriétés<br />

thermodynamiques d'un volume d'énergie électromagnétique<br />

monochromatique <strong>de</strong> fréquence n sont thermodynamiquement<br />

semb<strong>la</strong>bles à celles d'un gaz <strong>de</strong> corpuscules<br />

d'énergie individuelle hn 6 . Ces "grains" d'énergie, dont<br />

Einstein se gar<strong>de</strong> encore bien d'affirmer l'existence physique<br />

autonome, signalent un aspect corpuscu<strong>la</strong>ire <strong>de</strong> <strong>la</strong><br />

lumière: plus tard Einstein montrera, toujours dans le cadre<br />

d'une analyse <strong>de</strong> propriétés énergétiques, que cet aspect<br />

cohabite avec celui, c<strong>la</strong>ssique et familier, <strong>de</strong>s phénomènes<br />

ondu<strong>la</strong>toires 7 . C'est l'application <strong>de</strong> <strong>la</strong> nature "granu<strong>la</strong>ire"<br />

<strong>de</strong> l'énergie électromagnétique à l'explication <strong>de</strong> l'effet photoélectrique,<br />

plutôt que <strong>la</strong> re<strong>la</strong>tivité, qui apportera à Einstein<br />

son prix Nobel 8 . En 1907 Einstein récidive sur le chemin <strong>de</strong><br />

l'exploration <strong>de</strong>s conséquences "quantiques" <strong>de</strong> <strong>la</strong> loi <strong>de</strong><br />

P<strong>la</strong>nck: si on comprend cette <strong>de</strong>rnière comme remp<strong>la</strong>cant<br />

l'énergie moyenne c<strong>la</strong>ssique d'un oscil<strong>la</strong>teur unidimensionnel,<br />

kT, par l'expression:<br />

kT "<br />

ho<br />

ho<br />

e kT - 1<br />

alors pourquoi ne pas opérer cette substitution pour les oscil<strong>la</strong>teurs<br />

matériels modélisant <strong>la</strong> matière dans les soli<strong>de</strong>s ?<br />

9<br />

Le résultat permet d'expliquer immédiatement <strong>la</strong> décroissance<br />

<strong>de</strong>s chaleurs spécifiques à basse température, l'une<br />

<strong>de</strong>s énigmes qui, vers <strong>la</strong> fin du XIX e siècle, constituait un<br />

argument puissant contre <strong>la</strong> théorie cinétique <strong>de</strong>s gaz et<br />

contre toute reconstruction <strong>de</strong> <strong>la</strong> thermodynamique sur <strong>la</strong><br />

base d'une mécanique <strong>de</strong>s constituants atomiques: grâce<br />

à Einstein, on comprend que ce n'était pas tant cette approche<br />

qui était fautive, mais les lois mécaniques sur les-<br />

6 Über einen die Erzeugung und Verwandlung <strong>de</strong>s Lichtes betreffen<strong>de</strong>n<br />

heuristischen Gesichtspunkt, Annalen <strong>de</strong>r Physik, vol. 17 (1905), pp. 132-<br />

148<br />

7 Entwicklung unserer Anschauungen über das Wesen und die<br />

Konstitution <strong>de</strong>r Strahlung, Physikalische Zeitschrift, vol. 10 (1909),<br />

817-825, conférence donnée lors du 81 e congrès <strong>de</strong> <strong>la</strong> Gesellschaft<br />

Deutscher Naturforscher à Salzburg. Einstein y argumente aussi en faveur<br />

d'un quantum <strong>de</strong> lumière aux propriétés résolument corpuscu<strong>la</strong>ires. Il<br />

faudra cependant encore <strong>de</strong>s années avant que l'idée ne s'impose: les<br />

expériences <strong>de</strong> <strong>la</strong> diffusion <strong>de</strong> Compton (1923) jouèrent ici un rôle décisif.<br />

Il est intéressant d'observer que Niels Bohr lui-même rejettera intialement<br />

<strong>la</strong> réalité <strong>de</strong>s corpuscules <strong>de</strong> lumière préférant dans un premier temps<br />

voir dans les aspects corpuscu<strong>la</strong>ires une manifestation <strong>de</strong> l'insuffisance,<br />

à l'échelle atomique, <strong>de</strong>s <strong>de</strong>scriptions spatio-temporelles, voir par<br />

exemple Dugald Murdoch, Niels Bohr's philosophy of physics, Cambridge<br />

University Press, 1989.<br />

8 On connaît bien les hésitations du comité du Nobel <strong>de</strong> physique à<br />

récompenser Einstein pour <strong>la</strong> re<strong>la</strong>tivité, voir R. M. Friedman, The Politics<br />

of Excellence: Behind the Nobel Prize in Science, W. H. Freeman Books,<br />

2001.<br />

9 Die P<strong>la</strong>ncksche Theorie <strong>de</strong>r Strahlung und die Theorie <strong>de</strong>r spezifischen<br />

Wärme, Annalen <strong>de</strong>r Physik, vol. 22 (1907),180-190.<br />

54<br />

quelles elle s'appuyait 10 .<br />

Ces <strong>de</strong>ux succès, où le génie d'Einstein se révèle autant<br />

que dans son article sur l'électrodynamique <strong>de</strong>s corps en<br />

mouvement, contribuent plus que tout autre, à convaincre<br />

<strong>la</strong> communauté <strong>de</strong> l'intérêt <strong>de</strong> l'hypothèse quantique et,<br />

progressivement, <strong>de</strong> l'existence réelle <strong>de</strong>s quanta. La première<br />

conférence Solvay en 1911 dont nous connaissons<br />

<strong>la</strong> photographie emblématique est consacrée à "La théorie<br />

du rayonnement et les quanta": on peut dire que ses travaux<br />

officialisent les quanta comme partie intégrante <strong>de</strong> <strong>la</strong><br />

physique 11 . Cependant, nous sommes encore loin d'une<br />

modification que les quanta opéreraient sur les lois <strong>de</strong>s<br />

systèmes individuels: dans ses <strong>de</strong>ux travaux Einstein tire<br />

les conséquences <strong>de</strong> l'existence <strong>de</strong>s quanta à partir d'un<br />

travail d'analyse <strong>de</strong>s lois phénoménologiques obtenues par<br />

ses prédécesseurs (Wien, P<strong>la</strong>nck, etc.) mais il ne les dérive<br />

pas d'une modification postulée <strong>de</strong>s lois <strong>de</strong> base <strong>de</strong> <strong>la</strong> mécanique<br />

ou <strong>de</strong> l'électrodynamique affectant les constituants<br />

élementaires 12 . Bohr se confrontera en revanche frontalement<br />

à ces lois c<strong>la</strong>ssiques et c'est précisément pour cette<br />

raison que sa contribution est une étape capitale sur le chemin<br />

<strong>de</strong> <strong>la</strong> mécanique quantique.<br />

A l'époque <strong>de</strong> <strong>la</strong> formu<strong>la</strong>tion <strong>de</strong> son modèle Niels Bohr est<br />

<strong>de</strong>puis mars 1912 col<strong>la</strong>borateur au <strong>la</strong>boratoire <strong>de</strong> Rutherford<br />

à Manchester. Il vient à peine <strong>de</strong> défendre sa thèse<br />

à Copenhague sur "<strong>la</strong> théorie électronique <strong>de</strong>s métaux"<br />

(1911). Après un séjour décevant chez J. J. Thomson à<br />

Cambridge qui voit les <strong>de</strong>ux hommes s'affronter à propos<br />

du... modèle atomique <strong>de</strong> Thomson, Bohr se tourne<br />

vers Rutherford 13 . Celui-ci vient à l'époque d'apporter <strong>de</strong>s<br />

arguments décisifs contre <strong>la</strong> conception <strong>de</strong> Thomson en<br />

montrant que les expériences <strong>de</strong> <strong>la</strong> diffusion à <strong>la</strong>rge angle<br />

<strong>de</strong>s particules alpha concluent aux effets d'une déflection<br />

unique sur <strong>de</strong>s centres <strong>de</strong> diffusion intraatomiques: le<br />

noyau atomique est découvert 14 . L'accueil que Bohr reçoit<br />

<strong>de</strong> <strong>la</strong> part du Néo-zé<strong>la</strong>ndais est d'emblée meilleur que celui<br />

que lui a reservé Thomson. Rutherford est convaincu <strong>de</strong><br />

l'importance <strong>de</strong>s idées <strong>de</strong> P<strong>la</strong>nck et encourage les efforts<br />

<strong>de</strong> son jeune collègue. Dans son <strong>la</strong>boratoire Bohr travaille<br />

sur l'absorption <strong>de</strong>s particules alpha par <strong>la</strong> matière et c'est<br />

pour lui l'occasion <strong>de</strong> se rapprocher encore plus <strong>de</strong> <strong>la</strong> pro-<br />

10 Pour les critiques <strong>de</strong> <strong>la</strong> théorie cinétique au XIXe siècle, voir S. Brush,<br />

The kind of motion we call heat. A History of the Kinetic Theory of Gases in<br />

the Nineteenth Century, North Hol<strong>la</strong>nd, 1986.<br />

11 C'est Walter Nernst, impressionné par les travaux d'Einstein, qui<br />

persua<strong>de</strong> le riche industriel Ernest Solvay <strong>de</strong> financer une conférence<br />

solennelle consacrée à <strong>la</strong> physique quantique, voir D. Kormos Barkan,<br />

The Witches' Sabbath: The First International Solvay Congress in Physics,<br />

Science in Context, vol. 6 (1993), 59-82. aussi M.-C. Bustamante, Paul<br />

Langevin et le Conseil Solvay <strong>de</strong> 1911, Images <strong>de</strong> <strong>la</strong> physique, 2011, 3-9.<br />

12 Ce<strong>la</strong> permet <strong>de</strong> comprendre comment Einstein est dans ces<br />

années indiscutablement un père fondateur <strong>de</strong> <strong>la</strong> théorie quantique alors<br />

qu'il <strong>de</strong>viendra, un dizaine d'années plus tard, un féroce critique <strong>de</strong> <strong>la</strong><br />

mécanique quantique. L'existence <strong>de</strong>s quanta n'entrait à ce moment pas<br />

en conflit avec les convictions profon<strong>de</strong>s d'Einstein sur <strong>la</strong> réalité et sur<br />

<strong>la</strong> manière dont nous <strong>de</strong>vrions <strong>la</strong> décrire: les thèmes d'indéterminisme,<br />

<strong>de</strong> l'inexistence <strong>de</strong> propriétés objectives <strong>de</strong>s systèmes, contre lesquels<br />

Einstein se battra jusqu'à <strong>la</strong> fin, n'étaient pas (encore) affleurants à<br />

<strong>la</strong> surface <strong>de</strong> <strong>la</strong> nouvelle physique quantique. Tout changera avec <strong>la</strong><br />

mécanique quantique et surtout l'interprétation qu'en prônera Bohr.<br />

13 Dans son survol "60 years of quantum mechanics", E. U. Condon<br />

rapporte que Bohr, suite à son désaccord avec Thomson, avait été<br />

"poliment invité" à aller voir ailleurs, voir Physics Today, vol. 15 (1962), 45.<br />

14 The scattering of alpha and beta particles by matter and the structure<br />

of the atom, Philosophical Magazine, vol. 21 (1911), 669-688.


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

blématique <strong>de</strong> l'atome 15 . Le modèle nucléaire <strong>de</strong> l'atome<br />

suggéré par Rutherford offre un cadre prometteur mais entraîne<br />

aussi son lot <strong>de</strong> problèmes. En particulier, Bohr réalise<br />

que les lois dynamiques c<strong>la</strong>ssiques sont impuissantes<br />

à fixer seules une échelle pour sa taille. En termes d'analyse<br />

dimensionnelle, il manque un ingrédient: le modèle <strong>de</strong><br />

Rutherford faisant intervenir les masses et les charges <strong>de</strong>s<br />

électrons, on peut se convaincre qu'il est impossible <strong>de</strong><br />

construire à partir <strong>de</strong> là une constante ayant <strong>la</strong> dimension<br />

d'une longueur. Tout change cependant si l'on introduit<br />

<strong>la</strong> constante <strong>de</strong> P<strong>la</strong>nck: on peut alors former l'expression<br />

h 2 /me 2 qui a non seulement <strong>la</strong> bonne dimension mais aussi<br />

le bon ordre <strong>de</strong> gran<strong>de</strong>ur atomique (h 2 /me 2 2·10 -10 m). La<br />

stratégie <strong>de</strong> Bohr al<strong>la</strong>it dès lors différer considérablement<br />

<strong>de</strong> celle <strong>de</strong> ses pré<strong>de</strong>cesseurs comme Schidlof. Alors que<br />

ce <strong>de</strong>rnier espérait, comme on l'a vu, justifier <strong>la</strong> valeur <strong>de</strong><br />

<strong>la</strong> constante h sur <strong>la</strong> base d'un mécanisme atomique décrit<br />

en termes c<strong>la</strong>ssiques, Bohr renverse <strong>la</strong> perspective en<br />

prenant acte <strong>de</strong> l'existence du quantum d'action et <strong>de</strong> sa<br />

valeur h pour rendre compte <strong>de</strong> <strong>la</strong> structure <strong>de</strong> l'atome et<br />

dériver les propriétés <strong>de</strong> son spectre. Il fal<strong>la</strong>it encore qu'il<br />

comprenne comment lier <strong>la</strong> constante <strong>de</strong> P<strong>la</strong>nck au champ<br />

<strong>de</strong> ses recherches. De retour à Copenhague dès septembre<br />

1912, Bohr ne prenait pas encore en considération ce que<br />

les données spectroscopiques pouvaient lui enseigner mais<br />

dès qu'il eut compris l'importance <strong>de</strong>s formules établies<br />

par Balmer, Rydberg et Ritz, les pièces du puzzle commencèrent<br />

à s'assembler: "dès que je pris connaissance <strong>de</strong> <strong>la</strong><br />

formule <strong>de</strong> Balmer, toute cette affaire <strong>de</strong>vint c<strong>la</strong>ire" 16 .<br />

Nous pouvons maintenant examiner les idées fortes du<br />

modèle <strong>de</strong> Bohr, non pas tant pour les découvrir (elles sont<br />

passées <strong>la</strong>rgement dans notre culture), mais pour examiner<br />

comment Bohr les exposa à l'origine dans sa publication 17 .<br />

Pour un atome constitué d'une charge positive E autour <strong>de</strong><br />

<strong>la</strong>quelle orbite une charge égale mais <strong>de</strong> signe opposé e,<br />

l'énergie totale est:<br />

W T V<br />

1 2<br />

= + = mv +<br />

Ee<br />

2<br />

2 r<br />

La condition <strong>de</strong> stabilité pour une orbite circu<strong>la</strong>ire <strong>de</strong> rayon<br />

r et fréquence n donne<br />

mv<br />

r<br />

2<br />

Ee<br />

2<br />

=- m r<br />

Ee<br />

2<br />

, ~ =-<br />

2<br />

,<br />

r<br />

r<br />

et, pour l'atome d'hydrogène (E = -e),<br />

2<br />

2<br />

2<br />

m r<br />

e<br />

2 e<br />

2<br />

~ =<br />

2<br />

( ~ =<br />

3<br />

= ( 2ro)<br />

.<br />

r<br />

mr<br />

2<br />

Ainsi W =-<br />

e<br />

, alors que o<br />

2r<br />

2<br />

3<br />

=-<br />

8W<br />

2 4<br />

.<br />

4r<br />

e m<br />

15 On the theory of the <strong>de</strong>crease of velocity of moving electrified particles<br />

on passing through matter, Philosophical Magazine, vol. 25 (1913), 10-31.<br />

16 "As soon as I saw Balmer's formu<strong>la</strong>, the whole thing was immediately<br />

clear to me", cité par Max Jammer, The conceptual <strong>de</strong>velopement of<br />

quantum mechanics, McGraw Hill, 1966, p. 77.<br />

17 On the constitution of atoms and molecules, Philosophical Magazine,<br />

vol. 26 (1913), 1-25, 476-502, 857-875.<br />

La donnée <strong>de</strong> l'energie détermine donc entièrement l'orbite<br />

circu<strong>la</strong>ire correspondante 18 .<br />

Mais comment faire entrer l'hypothèse <strong>de</strong>s quanta, et <strong>la</strong> dimension<br />

<strong>de</strong> h, dans le problème <strong>de</strong> <strong>la</strong> structure <strong>de</strong> l'atome ?<br />

Certes, <strong>la</strong> quantification <strong>de</strong>s échanges énergétiques entre<br />

<strong>la</strong> matière et le rayonnement doit avoir une conséquence<br />

au niveau <strong>de</strong> <strong>la</strong> structure atomique, mais comment faire le<br />

lien ? Bohr propose <strong>de</strong> considérer le processus <strong>de</strong> <strong>la</strong> formation<br />

<strong>de</strong> l'atome par <strong>la</strong> capture d'un électron par le noyau.<br />

Infiniment loin du noyau l'électron est libre, W = 0. Supposons<br />

qu'il soit capturé sur une orbite d'énergie W négative<br />

(état lié !). Par <strong>la</strong> conservation <strong>de</strong> l'énergie, une quantité<br />

d'énergie positive, -W, doit être libérée dans le processus:<br />

Bohr, suivant l'hypothèse quantique, suppose que c'est<br />

sous <strong>la</strong> forme d'un rayonnement d'un certain nombre t (entier<br />

!) <strong>de</strong> quanta d'énergie. Il pose:<br />

- W = xhol / xh o , (1) 2<br />

avec <strong>la</strong> fréquence du quantum rayonné n' posée égale à<br />

<strong>la</strong> moitié (!) <strong>de</strong> <strong>la</strong> fréquence <strong>de</strong> révolution mécanique <strong>de</strong><br />

l'orbite <strong>de</strong> capture. L'hypothèse <strong>de</strong> Bohr fixe, parmi le<br />

continuum <strong>de</strong>s énergies un nombre infini, mais néanmoins<br />

discret, d'entre elles :<br />

2 4<br />

- W =<br />

2r<br />

e m 1<br />

2 2<br />

. (2)<br />

h x<br />

La différence <strong>de</strong>s énergies, pour <strong>de</strong>ux nombres t 1<br />

et t 2<br />

donnés est alors :<br />

2 4<br />

D W =-<br />

2r<br />

e m 1 1<br />

2 c 2<br />

-<br />

2 m ;<br />

h x2<br />

x1<br />

Si <strong>de</strong> tels processus <strong>de</strong> changement <strong>de</strong> niveau énergétique<br />

surviennent dans l'atome, on doit supposer, avec Bohr,<br />

qu'ils donnent lieu à une émission/absorption <strong>de</strong> quanta<br />

d'énergie <strong>de</strong> rayonnement électromagnétique <strong>de</strong> frequence<br />

n' donnée par <strong>la</strong> formule<br />

2 4<br />

hol =- DW<br />

=<br />

2r<br />

e m 1 1<br />

2 c 2<br />

-<br />

2 m .<br />

h x2<br />

x1<br />

En posant t 2<br />

= 2, et t 1<br />

= 3; 4; 5; ... <strong>la</strong> formule ci-<strong>de</strong>ssus<br />

reproduit les valeurs <strong>de</strong>s fréquences <strong>de</strong>s raies spectrales<br />

<strong>de</strong> <strong>la</strong> série <strong>de</strong> Balmer (1885) exprimée, dans <strong>la</strong> formule <strong>de</strong><br />

Rydberg (1890), par:<br />

ol = Rcc 1 1<br />

2<br />

-<br />

2 m .<br />

x2<br />

x1<br />

Bohr avait donc réussi à obtenir <strong>la</strong> valeur <strong>de</strong> <strong>la</strong> constante <strong>de</strong><br />

Rydberg R à partir <strong>de</strong> constantes élémentaires,<br />

2 4<br />

R =<br />

2r<br />

e m<br />

3<br />

.<br />

ch<br />

18 En fait on peut montrer que le résultat s'applique aussi aux orbites<br />

elliptiques: leur grand axe 2r et <strong>la</strong> fréquence <strong>de</strong> rotation <strong>de</strong> l'électron n sont<br />

déterminés par <strong>la</strong> donnée <strong>de</strong> l'énergie <strong>de</strong> l'orbite et ne <strong>de</strong>pen<strong>de</strong>nt pas <strong>de</strong><br />

<strong>la</strong> valeur <strong>de</strong> l'excentricité.<br />

Pour <strong>de</strong>s raisons éditoriales, <strong>la</strong> suite <strong>de</strong> cet article apparaîtra dans les prochaines Communications <strong>de</strong> <strong>la</strong> SSP, no. 41.<br />

55


SPG Mitteilungen Nr. 40<br />

Geschichte <strong>de</strong>s SIN<br />

Buchbesprechung von Andreas Pritzker<br />

Im Hinblick auf Scherrers Emeritierung 1960 wählte <strong>de</strong>r<br />

Bun<strong>de</strong>srat 1959 Jean-Pierre B<strong>la</strong>ser zu <strong>de</strong>ssen Nachfolger<br />

an <strong>de</strong>r ETH. B<strong>la</strong>ser "erbte" die Zyklotronp<strong>la</strong>nungsgruppe.<br />

Unter <strong>de</strong>m Eindruck <strong>de</strong>r weltweiten Entwicklung strebte<br />

B<strong>la</strong>ser allerdings anstelle eines Zyklotrons für die Kernphysik<br />

eine Maschine an, die <strong>de</strong>n Einstieg in die Hochenergiephysik<br />

ermöglichte. Er wur<strong>de</strong> dabei unterstützt durch <strong>de</strong>n<br />

Theoretiker Res Jost, <strong>de</strong>r die Hochenergiephysik als fruchtbares<br />

künftiges Arbeitsgebiet betrachtete.<br />

B<strong>la</strong>ser, <strong>de</strong>r En<strong>de</strong> Februar 2013 seinen 90. Geburtstag feiern<br />

konnte, verfolgte dabei die I<strong>de</strong>e eines grossen Teilchenbeschleunigers,<br />

<strong>de</strong>n die ETH für sämtliche schweizerischen<br />

Universitäten betreiben sollte. In <strong>de</strong>n 1950er Jahren waren<br />

weltweit mehrere Maschinen im Bereich um 500 MeV gebaut<br />

wor<strong>de</strong>n. Sie ermöglichten es, Mesonen künstlich zu<br />

erzeugen und vorerst als solche zu studieren. Der nächste<br />

Schritt war die I<strong>de</strong>e, Mesonen als Werkzeuge einzusetzen.<br />

Die Mesonen wur<strong>de</strong>n mit Protonenbeschleunigern erzeugt.<br />

Für die sogenannten Mesonenfabriken waren hohe Protonenströme<br />

- man sprach von 100 Mikroamp - notwendig.<br />

Andreas Pritzker: Geschichte <strong>de</strong>s SIN. 188 Seiten,<br />

ISBN 978-3-905993-10-3, munda-Ver<strong>la</strong>g.<br />

Das Buch erzählt die Geschichte <strong>de</strong>s <strong>Schweizerische</strong>n Instituts<br />

für Nuklearforschung (SIN). Das Institut wur<strong>de</strong> 1968<br />

gegrün<strong>de</strong>t und ging 1988 ins Paul Scherrer Institut (PSI)<br />

über. Die Gründung <strong>de</strong>s SIN erfolgte in einer Zeit, als die<br />

Physik als Schlüsseldisziplin für die technologische und<br />

gesellschaftliche Entwicklung galt. Der Schritt war für ein<br />

kleines Land wie die Schweiz ungewöhnlich und zeugte<br />

von Mut und Weitsicht. Ungewöhnlich waren in <strong>de</strong>r Folge<br />

die Leistungen <strong>de</strong>s SIN im weltweiten Vergleich sowie sein<br />

Einfluss auf die schweizerische, teils auf die internationale<br />

Wissenschaftspolitik.<br />

Die Ausgangs<strong>la</strong>ge war günstig. Die ETH Zürich war bereits<br />

in <strong>de</strong>n 1930er Jahren führend im Gebiet <strong>de</strong>r Kernphysik.<br />

Zu<strong>de</strong>m wur<strong>de</strong> in <strong>de</strong>n 1950er Jahren das CERN in Genf gegrün<strong>de</strong>t.<br />

An bei<strong>de</strong>m war Paul Scherrer, Leiter <strong>de</strong>s Physikalischen<br />

Instituts <strong>de</strong>r ETH, massgeblich beteiligt. Er sorgte<br />

früh dafür, dass an <strong>de</strong>r ETH Teilchenbeschleuniger als Forschungsinstrumente<br />

eingesetzt wur<strong>de</strong>n. Eines davon war<br />

das berühmte ETH-Zyklotron. Als sich <strong>de</strong>ssen Nutzungsmöglichkeiten<br />

in <strong>de</strong>n 1950er Jahren allmählich erschöpften,<br />

grün<strong>de</strong>te Scherrer die Zyklotronp<strong>la</strong>nungsgruppe, welche<br />

<strong>de</strong>n Bau einer leistungsfähigeren Maschine für die Kernphysik<br />

zum Ziel hatte. Bereits diese hätte <strong>de</strong>n Rahmen<br />

eines einzelnen Hochschulinstituts gesprengt. In <strong>de</strong>r P<strong>la</strong>nungsgruppe<br />

waren <strong>de</strong>nn auch die Universitäten von Basel<br />

und Zürich vertreten.<br />

56<br />

Der Ringbeschleuniger <strong>de</strong>s SIN mit seinen Erbauern im September<br />

1973<br />

Hans Wil<strong>la</strong>x, <strong>de</strong>n bereits Scherrer als Physiker angestellt<br />

hatte, entwarf das zweistufige Zyklotron-Konzept, das später<br />

unter seiner Leitung verwirklicht wur<strong>de</strong>. Obschon <strong>de</strong>m<br />

Projekt, wie bei solchen Vorhaben üblich, Opposition aus<br />

Hochschulkreisen erwuchs, waren Bun<strong>de</strong>srat Tschudi und<br />

ETH-Präsi<strong>de</strong>nt Pallmann entschlossen, es zu verwirklichen,<br />

weil sie sich starke Impulse für <strong>de</strong>n Forschungsstandort<br />

Schweiz versprachen. Die Eidgenössischen Räte bewilligten<br />

1965 (im Rahmen einer Baubotschaft, welche auch die<br />

ersten Bauten <strong>de</strong>r ETH-Hönggerberg umfasste) einen Baukredit<br />

von beinahe 100 Millionen Franken. Und auf Anfang<br />

1968 wur<strong>de</strong> das SIN als Annexanstalt <strong>de</strong>r ETH gegrün<strong>de</strong>t.<br />

Von 1966 an entwickelten zumeist junge, begabte Physiker<br />

unter <strong>de</strong>r Leitung von B<strong>la</strong>ser und Wil<strong>la</strong>x an <strong>de</strong>r ETH, dann<br />

bei <strong>de</strong>r Maschinenfabrik Oerlikon das SIN-Zyklotron, und<br />

ab 1968 wur<strong>de</strong> das Institut auf <strong>de</strong>r grünen Wiese in Villigen,<br />

gegenüber <strong>de</strong>m ebenfalls zur ETH gehören<strong>de</strong>n Eidgenössischen<br />

Institut für Reaktorforschung (EIR) erbaut. Im Februar<br />

1974 war es dann soweit: das SIN produzierte die<br />

ersten Pionen.


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Gute Stimmung im Kontrollraum <strong>de</strong>s SIN am 24. Februar 1974, als<br />

die ersten Pionen produziert wur<strong>de</strong>n.<br />

Die Beschleunigeran<strong>la</strong>ge erfüllte sämtliche Erwartungen.<br />

Sie wur<strong>de</strong> in <strong>de</strong>n folgen<strong>de</strong>n Jahrzehnten <strong>la</strong>ufend ausgebaut<br />

und erreichte in ihrem Einsatzbereich die Weltspitze. Ihre<br />

Qualität <strong>la</strong>g aber darin, dass sie, als die Teilchenphysik an<br />

Aktualität verlor, zusätzlich für viele weitere Forschungsprogramme<br />

in Medizin und Materialwissenschaften eingesetzt<br />

wor<strong>de</strong>n konnte. Sie ist heute noch ein Standbein <strong>de</strong>s PSI.<br />

Dass diese Geschichte nun in allgemein verständlicher<br />

Form vorliegt, ist das Verdienst einiger von Anfang an am<br />

Projekt beteiligter Physiker, welche die Initiative dazu ergriffen,<br />

so<strong>la</strong>nge noch Zeitzeugen befragt wer<strong>de</strong>n konnten.<br />

Wie immer zeigen die offiziellen Dokumente nur einen Ausschnitt<br />

<strong>de</strong>r Wirklichkeit. Will man <strong>de</strong>n Menschen, die ihren<br />

Beitrag zum Gelingen leisteten, nahe kommen, braucht es<br />

persönliche Erinnerungen. Der Text stützt sich auf bei<strong>de</strong>s.<br />

Er hält zu<strong>de</strong>m die Geschehnisse in zahlreichen (schwarzweiss)<br />

Bil<strong>de</strong>rn fest.<br />

Wi<strong>de</strong>rstand gegen das SIN-Projekt<br />

Das Projekt <strong>de</strong>r Mesonenfabrik traf teilweise bei <strong>de</strong>n Physikern<br />

auf Wi<strong>de</strong>rstand. Beson<strong>de</strong>rs die Kernphysiker hätten<br />

lieber eine Maschine gehabt, wie sie von <strong>de</strong>r ursprünglichen<br />

Zyklotron-P<strong>la</strong>nungsgruppe ETH-Uni Zürich-Uni Basel gep<strong>la</strong>nt<br />

gewesen war. Die Projektleiter <strong>de</strong>r Mesonenfabrik gingen<br />

daher einen Kompromiss ein, in<strong>de</strong>m sie als Injektor für<br />

<strong>de</strong>n Ringbeschleuniger das Philips-Zyklotron wählten. Da<br />

dieses nicht geeignet war für <strong>de</strong>n späteren Hochstromausbau,<br />

entwickelte das SIN schon bald <strong>de</strong>n Injektor II nach<br />

<strong>de</strong>mselben Prinzip wie für <strong>de</strong>n Ringbeschleuniger.<br />

Im Hinblick auf <strong>de</strong>n SIN-Baukredit in <strong>de</strong>r ETH-Baubotschaft<br />

1965 wandte sich eine Gruppe von Physikern an Bun<strong>de</strong>srat<br />

Tschudi, um das Projekt zu verhin<strong>de</strong>rn. Tschudi und<br />

ETH-Präsi<strong>de</strong>nt Pallmann liessen sich nicht beirren. Tschudi<br />

meinte B<strong>la</strong>ser gegenüber, dass ein Projekt, das <strong>de</strong>rmassen<br />

auf Opposition stosse, gut sein müsse; er solle weiterfahren<br />

damit.<br />

Der Autor arbeitete in <strong>de</strong>n 1980er Jahren selbst am<br />

SIN, später beim ETH-Rat und schliesslich in <strong>de</strong>r Direktion<br />

<strong>de</strong>s PSI.<br />

Die Opposition f<strong>la</strong>mmte in <strong>de</strong>n Eidgenössischen Räten<br />

nochmals beim teuerungsbedingten Zusatzkredit in <strong>de</strong>r<br />

ETH-Baubotschaft 1972 auf. Sprecher <strong>de</strong>r Opposition war<br />

<strong>de</strong>r Basler Stan<strong>de</strong>sherr Wenk, <strong>de</strong>r sich wohl auf eine Intervention<br />

von Basler Physikern stützte. Das veran<strong>la</strong>sste Bun<strong>de</strong>srat<br />

Tschudi zur Erklärung:<br />

"Die Finanzverwaltung ist in <strong>de</strong>r Lage, dieses Kreditbegehren<br />

zu beurteilen, weil die Direktion <strong>de</strong>r Finanzverwaltung<br />

in <strong>de</strong>r Baukommission für das <strong>Schweizerische</strong> Institut für<br />

Nuklearforschung mitwirkt. Ich muss - Herr Wenk hat das<br />

schon gesagt - unterstreichen: die Finanzverwaltung ist <strong>de</strong>r<br />

Meinung, dass hier ein beson<strong>de</strong>rs mustergültiger Bau erstellt<br />

wird, <strong>de</strong>r in bezug auf P<strong>la</strong>nung <strong>de</strong>s Baus, auf sparsame<br />

Bauausführung an<strong>de</strong>rn als Mo<strong>de</strong>ll dienen kann, dass also in<br />

Bezug auf die Sparsamkeit und die gute Bauorganisation,<br />

die gute P<strong>la</strong>nung <strong>de</strong>s Baues <strong>de</strong>r Baukommission, die unter<br />

Leitung <strong>de</strong>s früheren Direktors <strong>de</strong>r Brown Boveri, Herrn Dr.<br />

Seippel, steht, das beste Zeugnis ausgestellt wer<strong>de</strong>n kann."<br />

Andreas Pritzker hat mit Unterstützung von Kollegen<br />

aus <strong>de</strong>m ehemaligen <strong>Schweizerische</strong>n Institut<br />

für Nuklearforschung (SIN) die Vorgeschichte, Gründung<br />

und Forschungsaktivitäten <strong>de</strong>s SIN nachgezeichnet.<br />

Es wird lebendig, mit zahlreichen Anekdoten<br />

umrahmt beschrieben, wie die erste Schweizer<br />

Grossforschungsan<strong>la</strong>ge, eine "Mesonenfabrik", mit<br />

<strong>de</strong>m von Hans Wil<strong>la</strong>x entworfenen zweistufigen Protonenbeschleuniger<br />

mit Injektor- und Ringzyklotron,<br />

in Zusammenarbeit mit <strong>de</strong>r Industrie realisiert wur<strong>de</strong>.<br />

Eng verbun<strong>de</strong>n mit <strong>de</strong>r Geschichte <strong>de</strong>s SIN ist<br />

das Wirken von Prof. Dr. Jean-Pierre B<strong>la</strong>ser. Er war<br />

Initiant dieser strategischen Forschungsinitiative, die<br />

<strong>de</strong>n Aufbau eines nationalen Forschungs<strong>la</strong>bors für<br />

universitäre Forschungsbedürfnisse auch ausserhalb<br />

<strong>de</strong>r Grund<strong>la</strong>genphysik zum Ziel hatte. Er war Grün<strong>de</strong>r<br />

und Direktor <strong>de</strong>s SIN während <strong>de</strong>n 20 Jahren seines<br />

Bestehens. Und er war auch einer <strong>de</strong>r Hauptinitianten<br />

für die Zusammenführung <strong>de</strong>s SIN mit <strong>de</strong>m Eidgenössischen<br />

Institut für Reaktorforschung (EIR) zum Paul<br />

Scherrer Institut (PSI) im Jahre 1988. Andreas Pritzker<br />

zeigt in <strong>de</strong>r Nachzeichnung <strong>de</strong>r SIN-Geschichte wie<br />

die breiten naturwissenschaftlichen Interessen von<br />

Jean-Pierre B<strong>la</strong>ser über die Physik hinaus zur Realisierung<br />

und För<strong>de</strong>rung von einzigartigen Projekten im<br />

Bereich <strong>de</strong>r Medizin (Krebstherapie und -diagnostik),<br />

<strong>de</strong>r Material- und Festkörperforschung (Spal<strong>la</strong>tionsneutronenquelle,<br />

Supraleitung) und <strong>de</strong>r Energieforschung<br />

(Kernfusion) führten. Das Buch über das SIN<br />

gibt einen guten Einblick in <strong>de</strong>n Forschungsbetrieb einer<br />

Institution, die grosse Forschungsan<strong>la</strong>gen kreiert<br />

und betreibt und diese auch externen Forschen<strong>de</strong>n<br />

zur Verfügung stellt. Das Buch ist sehr lesenswert.<br />

Es ist auch eine Hommage an Jean-Pierre B<strong>la</strong>ser, <strong>de</strong>r<br />

dieses Jahr bei guter Gesundheit seinen 90. Geburtstag<br />

feiern konnte.<br />

Martin Jermann, Paul Scherrer Institut<br />

57


SPG Mitteilungen Nr. 40<br />

Lehrerfortbildung:<br />

18 Deutschschweizer Lehrer im Herz von CERN<br />

Christine P<strong>la</strong>ss (Text und Bil<strong>de</strong>r)<br />

Im Rahmen <strong>de</strong>r Nachwuchsför<strong>de</strong>rung setzt sich die SPG<br />

für die Lehrerfortbildung im Gebiet <strong>de</strong>r Physik ein. Im Frühjahr<br />

wur<strong>de</strong> aus aktuellem An<strong>la</strong>ss, im Zusammenhang mit<br />

<strong>de</strong>r Higgs-Ent<strong>de</strong>ckung am CERN, eine Lehrerfortbildung<br />

mit Schwerpunkt Teilchenphysik zusammen mit teilchenphysik.ch<br />

durchgeführt. Anfang Juni 2013 reisten 18 Lehrerinnen<br />

und Lehrer aus <strong>de</strong>r Deutschschweiz nach Genf. Der<br />

Weiterbildungstag am CERN vermittelte ihnen Anschauungsmaterial<br />

und Experimente, um Hochenergiephysik zu<br />

unterrichten.<br />

"Das ist eine einmalige Gelegenheit, <strong>de</strong>n Detektor zu besichtigen!",<br />

erkannten acht Physiklehrer <strong>de</strong>r Kantonschule<br />

Zug, als ihr Kollege Markus Schmidinger ihnen von seiner<br />

Ein<strong>la</strong>dung ans CERN erzählte. Schmidinger hatte an einer<br />

Fortbildung zu Teilchenphysik in Bern teilgenommen und<br />

war zur Folgeveranstaltung ans CERN nach Genf einge<strong>la</strong><strong>de</strong>n<br />

wor<strong>de</strong>n. Höflich fragte er an, ob seine Kollegen wohl<br />

mitkommen dürften? Initiator Hans Peter Beck, Physiker<br />

am CERN und Dozent <strong>de</strong>r Uni Bern, überlegte nicht <strong>la</strong>nge.<br />

Er konzipierte sein Programm so um, dass es auch ohne<br />

Vorbildung verständlich war. Insgesamt nahmen18 Lehrerinnen<br />

und Lehrer aus <strong>de</strong>r Kantonsschule Ausserschwyz,<br />

<strong>de</strong>m Gymnasium Oberaargau, <strong>de</strong>m Gymnasium Rämibühl<br />

in Zürich und <strong>de</strong>m Gymnasium Biel die Chance wahr, das<br />

CERN von innen kennen zu lernen. Um trotz längerer Anreise<br />

einen vollen Tag am CERN zu erleben, waren sie bereits<br />

am Tag zuvor angereist und konnten kostenlos im CERN-<br />

Hostel übernachten.<br />

Es gehört zum Verständnis <strong>de</strong>s Conseil Européen pour<br />

<strong>la</strong> Recherche Nucléaire (kurz CERN) die Schulbildung zu<br />

unterstützen. "Wir möchten, dass mo<strong>de</strong>rne Physik in die<br />

Schulen Einzug fin<strong>de</strong>t und <strong>de</strong>r Unterricht nicht bei <strong>de</strong>r<br />

schiefen Ebene aufhört", erklärt Hans Peter Beck. Aus aller<br />

Welt kommen Lehrkräfte ans CERN um sich dort tage- und<br />

wochen<strong>la</strong>ng fortzubil<strong>de</strong>n o<strong>de</strong>r gemeinsam mit ihren Schülern<br />

eines <strong>de</strong>r faszinierendsten Forschungszentren <strong>de</strong>r Welt<br />

kennen zu lernen.<br />

Im Herz von CERN, <strong>de</strong>r Protonenquelle. Am Mo<strong>de</strong>ll erklärt Mick<br />

Storr, wie <strong>de</strong>m Wasserstoffgas hier die Protonen entzogen wer<strong>de</strong>n,<br />

die dann im Large Hadron Colli<strong>de</strong>r (LHC) miteinan<strong>de</strong>r kollidieren.<br />

Nach <strong>de</strong>r kurzen Einführung durch Hans Peter Beck geht<br />

es direkt ins Herz von CERN, <strong>de</strong>n LINAC2. Hier wer<strong>de</strong>n die<br />

Protonen bereitgestellt, die sie im Large Hadron Colli<strong>de</strong>r<br />

aufeinan<strong>de</strong>r schiessen. "Welcome to the Startrek Enterprise",<br />

scherzt Mick Storr, als wir <strong>de</strong>n Vorraum zur Protonenquelle<br />

betreten. Er erstrahlt im Design <strong>de</strong>r 70er Jahre, und<br />

das ist kein Retro, son<strong>de</strong>rn Original. Fehlt nur noch, dass<br />

Captain Kirk um die Ecke kommt. Mick Storr weiss, wie<br />

er seinen Besuchern die Scheu vor <strong>de</strong>r High-End-Physik<br />

nehmen kann. Doch was vielleicht noch viel wichtiger ist,<br />

er schätzt sehr, was die Lehrer in <strong>de</strong>n Schulen leisten: "Die<br />

physikalischen Grund<strong>la</strong>gen, die Sie an Ihren Schulen vermitteln,<br />

sind die Grund<strong>la</strong>ge von allem, was hier im CERN<br />

passiert", sagt Mick Storr und lädt seine Zuhörer ein, das,<br />

was sie heute sehen, auch einmal mit ihren Schülern zu besichtigen.<br />

Hans Peter Beck erklärt das CERN und wie Lehrer ihre Schüler mit<br />

einfachen Mo<strong>de</strong>llen und Experimenten an Teilchenphysik heranführen<br />

können.<br />

58<br />

Original-Kontrollraum <strong>de</strong>r Protonenquelle.


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Mit <strong>de</strong>m Bus geht es zur nächsten Station, <strong>de</strong>m LHCb-<br />

Experiment. "Sie haben ein Riesenglück, dass Sie direkt<br />

in <strong>de</strong>n Detektor reingehen können! Das hab ich selbst<br />

seit zehn Jahren nicht mehr gemacht", begrüsst Andreas<br />

Schopper seine Besucher. Der Physiker am CERN hat<br />

das LHCb Experiment mit aufgebaut und ist Präsi<strong>de</strong>nt <strong>de</strong>r<br />

<strong>Schweizerische</strong>n Physikalischen Gesellschaft (SPG). Sie<br />

hat die Reisekosten für die Lehrer ans CERN übernommen.<br />

Bevor ein Fahrstuhl die Reisegruppe 100 Meter ins<br />

Erdinnere beför<strong>de</strong>rt, erklärt Schopper an einem Mo<strong>de</strong>ll,<br />

was das Beson<strong>de</strong>re am LHCb ist. 700 Wissenschaftler aus<br />

61 Institutionen und 16 Län<strong>de</strong>rn forschen dort nach <strong>de</strong>n<br />

Unterschie<strong>de</strong>n zwischen Materie und Antimaterie. Aus <strong>de</strong>r<br />

Schweiz sind die ETH Lausanne und die Universität Zürich<br />

am Experiment beteiligt. So untersuchten die Forscher<br />

erstmals <strong>de</strong>n Zerfall eines weiteren Teilchens, <strong>de</strong>ssen Messung<br />

abermals beweist, dass Materie und Antimaterie nicht<br />

exakt symmetrisch sind.<br />

Nach einer zügigen Fahrt in 100 Meter Tiefe wartet die<br />

nächste Schleuse. Radioaktivität, vor <strong>de</strong>r auf <strong>de</strong>r Tür gewarnt<br />

wird, herrscht zur Zeit <strong>de</strong>s Shutdowns hier unten<br />

zwar nicht. Trotz<strong>de</strong>m hat Schopper ein Dosimeter dabei,<br />

da es sich um eine kontrollierte Zone han<strong>de</strong>lt, für die bestimmte<br />

Sicherheitsvorkehrungen gelten. Langweilig wird<br />

es <strong>de</strong>n Physikern während <strong>de</strong>s Shutdowns übrigens trotz<strong>de</strong>m<br />

nicht, <strong>de</strong>nn es gibt noch riesige Datenmengen, die auf<br />

ihre Auswertung warten, wie Markus Joos erklärt. Der Informatiker<br />

arbeitet an <strong>de</strong>r Software, die die Messergebnisse<br />

aufzeichnet, filtert und speichert. 100 Petabyte Rohdaten<br />

sind auf 40.000 Festp<strong>la</strong>tten und 40.000 Bandkassetten gespeichert.<br />

Bandkassetten? Tatsächlich setzten die Informatiker<br />

am CERN auf diese vermeintlich veralteten Speichermedien,<br />

da sie die Daten 100 Mal sicherer aufbewahren als<br />

eine Festp<strong>la</strong>tte.<br />

durch <strong>de</strong>n LHC hindurch. Gäbe es keine Supraleitungen<br />

müsste <strong>de</strong>r LHC <strong>de</strong>n Umfang <strong>de</strong>s Äquators haben.<br />

Unsere vorletzte Station ist <strong>de</strong>r Kontrollraum <strong>de</strong>s Alpha<br />

Magnetic Spectrometer (AMS2). Der schüttelsichere Detektor<br />

wur<strong>de</strong> 16 Jahre <strong>la</strong>ng gebaut und getestet, mit <strong>de</strong>m<br />

letzten Spaceshuttle zur Internationalen Raumstation (ISS)<br />

geschossen und von NASA Astronauten auf <strong>de</strong>r ISS installiert.<br />

Dort jagt er nach Antimaterie. Wenigstens ein einziges<br />

Anti-Helium. Noch besser zwei. Zehn, um ein Paper zu<br />

veröffentlichen. Die Wissenschaftler gehen nämlich davon<br />

aus, dass beim Urknall riesige Mengen von Materie und<br />

Anti-Materie freigesetzt wur<strong>de</strong>n, um sich sogleich wie<strong>de</strong>r<br />

gegenseitig zu zerstören. Nach dieser Theorie dürfte es<br />

keine stabile Antimaterie in unserem Universum geben –<br />

es sei <strong>de</strong>nn, AMS2 lieferte <strong>de</strong>n Gegenbeweis. Bis<strong>la</strong>ng hat<br />

AMS2 noch keine Antimaterie dingfest gemacht. Dafür fan<strong>de</strong>n<br />

Wissenschaftler signifikante Hinweise auf unbekannte<br />

Quellen kosmischer Strahlung, die beantworten könnten,<br />

was es mit <strong>de</strong>r dunklen Materie auf sich hat.<br />

Doch man braucht gar nicht ins All o<strong>de</strong>r ans CERN reisen,<br />

um Teilchen zu sehen. Wie sie ihren Schülern Elektronen<br />

und Alphateilchen in einem Experiment zeigen können, erfahren<br />

die Lehrer am Nachmittag beim Bau einer Nebelkammer.<br />

Rasch ist k<strong>la</strong>r, hier sind Profis am Werk. In Win<strong>de</strong>seile<br />

haben sie die Nebelkammern fachgerecht aufgebaut und<br />

die Gardinen zugezogen. Dann <strong>la</strong>uern sie auf Teilchen, die<br />

sich im Licht <strong>de</strong>r Taschen<strong>la</strong>mpe zeigen. "Joh, jetzt seh' ich<br />

eins", ruft einer. "Was für ein dicker Brummer!", stellt ein<br />

an<strong>de</strong>rer fest. Kleine wurmförmige Partikel bewegen sich<br />

horizontal und vertikal durch <strong>de</strong>n Lichtstrahl. Das einfache<br />

wie eindrückliche Experiment lässt sich sogar mit P<strong>la</strong>stikbecher<br />

und Alu-Aschenbecher durchführen. Trockeneis ist<br />

allerdings unentbehrlich.<br />

Die Lehrer sind von ihrem abwechslungsreichen Tag am<br />

CERN sichtlich begeistert. Als "sehr eindrücklich", beurteilt<br />

Markus Schmidinger <strong>de</strong>n Tag am CERN: "Es ist etwas an<strong>de</strong>res,<br />

wenn man das Experiment vor Ort sieht und Zutritt<br />

zu einer Welt erhält, die einem sonst verborgen bleibt". Er<br />

nimmt viele Anregungen mit nach Hause, die er gleich umsetzen<br />

will: "Zum Beispiel bei <strong>de</strong>r Lorentzkraft im Unterricht<br />

zeigen, dass es keine blosse Theorie ist, son<strong>de</strong>rn Ingenieure<br />

am CERN damit arbeiten."<br />

Gerfried Wiener von <strong>de</strong>r Uni Wien erklärt, warum Supraleitungen<br />

im LHC zum Einsatz kamen. Alle dürfen mal testen, wie schwer<br />

konventionelle Kupferkabel sind, die in <strong>de</strong>r Lage wären, 13000<br />

Ampère zu leiten, ohne zu schmelzen.<br />

Danach geht es weiter zur Magnettesthalle. Anhand einiger<br />

Mo<strong>de</strong>lle erklärt Gerfried Wiener von <strong>de</strong>r Universität Wien,<br />

wie <strong>de</strong>r LHC gebaut wur<strong>de</strong> und welche Hür<strong>de</strong>n dabei zu<br />

bewältigen waren. Allein die Kabel! 13000 Ampère <strong>la</strong>ufen<br />

Das von PD Dr. Hans Peter Beck (Universität Bern/<br />

CERN) initiierte 1. Deutschschweizer Lehrerprogramm<br />

am CERN wur<strong>de</strong>, in Zusammenarbeit mit www.teilchenphysik.ch,<br />

durch die fachliche und finanzielle<br />

Unterstützung von CERN und <strong>de</strong>r <strong>Schweizerische</strong>n<br />

Physikalischen Gesellschaft (SPG) ermöglicht. In regelmässigen<br />

Abstän<strong>de</strong>n wer<strong>de</strong>n weitere Programme<br />

für Schweizer Lehrer/innen folgen. Anmeldungen zu<br />

einer weiteren Fortbildung am 8./9. November zu diesem<br />

Thema, inklusive CERN Besuch, wer<strong>de</strong>n schon<br />

jetzt unter indico.cern.ch/event/swissteachers entgegengenommen.<br />

59


Annual Congress 2013 of the Swiss Aca<strong>de</strong>my of Sciences (SCNAT)<br />

The Quantum Atom at 100 –<br />

Niels Bohr’s Legacy<br />

Fotos: shutterstock.com | PSI<br />

November 21-22, 2013 | Winterthur<br />

The congress will celebrate the 100 th anniversary of Niels Bohr’s publication<br />

„On the Constitution of Atoms and Molecules“ and offer an overview on subsequent<br />

<strong>de</strong>velopments, leading to the mo<strong>de</strong>rn version of quantum mechanics and its implications<br />

and to the current un<strong>de</strong>rstanding of the constitution of matter.<br />

The Zurich University of Applied Science in Winterthur will host this year’s congress.<br />

• Aspects of Bohr’s 1913 Atomic Theory: Helge Kragh, University of Aarhus, Denmark<br />

• From Bohr’s Atom to Quantum Mechanics: Olivier Darrigol, CRNS, Paris<br />

• Ultrahigh-Resolution Spectroscopy of the Hydrogen Atom: Thomas U<strong>de</strong>m, MPI Quantum Optics, Garching<br />

• Muonic Hydrogen: Atomic Physics for Nuclear Structure: Randolf Pohl, MPI Quantum Optics, Garching<br />

• Antihydrogen: Past, Present, Future: Michael Doser, CERN, Geneva<br />

• Hydrogen, the Most Abundant Element in the Universe: Ruth Durrer, University of Geneva<br />

• Defining and Measuring Time: From Cesium to Atomic Clocks: Jacques Vanier, University of Montreal,<br />

Canada<br />

• Rydberg States of Atoms and Molecules: Frédéric Merkt, ETH Zurich<br />

• Manipu<strong>la</strong>ting trapped Photons and raising Schrödinger Cats of Light: Serge Haroche, Nobel Laureate<br />

2012, ENS and Collège <strong>de</strong> France, Paris<br />

• At the End of the Periodic Table: Yuri Oganessian, JINR, FLNR, Dubna, Russia<br />

• Insights and Puzzles in Particle Physics: Heinrich Leutwyler, University of Bern<br />

• Quantum Mechanics and Photosynthesis: Rienk van Gron<strong>de</strong>lle, VU Amsterdam, The Nether<strong>la</strong>nds<br />

Public Evening Lecture: Reinhard Werner, Leibniz Universität Hannover:<br />

Die Bohr-Einstein-Debatte zur Quantenmechanik<br />

There is no conference fee for registered participants. Registration Deadline: November 1 st , 2013<br />

More information and registration: http://congress13.scnat.ch

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!